From f9bc900984e4c10f11d1a3a4759a6207bbedf654 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 5 Sep 2025 16:09:45 +0200 Subject: [PATCH 01/83] add and change functions --- src/post_processing/utils/fpod_utils.py | 343 +++++++++++++++--------- 1 file changed, 223 insertions(+), 120 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index c6069e9..c80d0c8 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -1,7 +1,7 @@ from __future__ import annotations from pathlib import Path -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Any import pytz import seaborn as sns @@ -12,7 +12,7 @@ DataFrame, Series, Timedelta, - Timestamp, + api, concat, date_range, notna, @@ -187,61 +187,85 @@ def usable_data_phase( return percentage_data -def meta_cut_aplose( - d_meta: DataFrame, - df: DataFrame, -) -> DataFrame: - """From APLOSE DataFrame with all rows to filtered DataFrame. +def meta_cut_aplose(raw_data: DataFrame,metadata: DataFrame, + col_deploy_name:str="deploy.name", + col_timestamp:str="start_datetime", + col_debut:str="deployment_date", + col_fin:str="recovery_date", +) -> DataFrame | tuple[int, Any]: + """Filter data to keep only the ones corresponding to a deployment. Parameters ---------- - df: DataFrame - CPOD result dataframe - d_meta: DataFrame - Metadata dataframe with deployments information (previously exported as json) + raw_data : DataFrame + Dataframe containing deploy.name et timestamp + metadata : DataFrame + Metadata containing deploy.name, deployment_date, recovery_date + col_deploy_name : str + Name of the deployment name column (default: 'deploy.name') + col_timestamp : str + Name of the timestamps column in raw_data (default: 'start_datetime') + col_debut : str + Name of the deployment column in metadata (default: 'deployment_date') + col_fin : str + Name of the recovery column in metadata (default: 'recovery_date') Returns ------- DataFrame - An APLOSE DataFrame with data from beginning to end of each deployment. - Returns the percentage of usable datas. + Filtered data containing only rows in deployment periods """ - d_meta.loc[:, ["deployment_date", "recovery_date"]] = d_meta[ - ["deployment_date", "recovery_date"] - ].apply(to_datetime) - df["start_datetime"] = to_datetime( - df["start_datetime"], - format=TIMESTAMP_FORMAT_AUDIO_FILE, + # Vérifier que les colonnes existent + if col_deploy_name not in raw_data.columns: + msg =f"'{col_deploy_name}' not found" + raise ValueError(msg) + if col_timestamp not in raw_data.columns: + msg = f"'{col_timestamp}' not found" + raise ValueError(msg) + if col_deploy_name not in metadata.columns: + msg = f"'{col_deploy_name}' not found" + raise ValueError(msg) + if col_debut not in metadata.columns: + msg = f"'{col_debut}' not found" + raise ValueError(msg) + if col_fin not in metadata.columns: + msg = f"'{col_fin}' not found" + raise ValueError(msg) + + data = raw_data.copy() + meta = metadata.copy() + + # S'assurer que les timestamps sont au bon format datetime + if not api.types.is_datetime64_any_dtype(data[col_timestamp]): + data[col_timestamp] = to_datetime(data[col_timestamp]) + if not api.types.is_datetime64_any_dtype(meta[col_debut]): + meta[col_debut] = to_datetime(meta[col_debut]) + if not api.types.is_datetime64_any_dtype(meta[col_fin]): + meta[col_fin] = to_datetime(meta[col_fin]) + + actual_data = data.merge( + meta[[col_deploy_name, col_debut, col_fin]], on=col_deploy_name, how="left") + + lignes_avec_meta = actual_data[col_debut].notna() + + if not lignes_avec_meta.any(): + return DataFrame(columns=raw_data.columns) + + mask_valid_period = ( + lignes_avec_meta & + (actual_data[col_timestamp] >= actual_data[col_debut]) & + (actual_data[col_timestamp] <= actual_data[col_fin]) ) - # Add DPM column - df["DPM"] = (df["Nfiltered"] > 0).astype(int) - - # Extract corresponding line - campaign = df.iloc[0]["dataset"] - phase = d_meta.loc[d_meta["name"] == campaign].reset_index() - start_date = phase.loc[0, "deployment_date"] - end_date = phase.loc[0, "recovery_date"] - df = df[ - (df["start_datetime"] >= start_date) & (df["start_datetime"] <= end_date) - ].copy() + filt_data = actual_data[mask_valid_period][raw_data.columns] - # Calculate the percentage of collected data on the phase length of time - if df.empty: - msg = "No data for this phase" - else: - df_end = df.loc[df.index[-1], "start_datetime"] - df_start = df.loc[df.index[0], "start_datetime"] - act_length = df_end - df_start - p_length = end_date - start_date - percentage_data = act_length * 100 / p_length - on = int(df.loc[df.MinsOn == 1, "MinsOn"].count()) - percentage_on = percentage_data * (on / len(df)) - msg = f"Percentage of usable data : {percentage_on}%" + # Statistics + nb_total = len(raw_data) + nb_filter = len(filt_data) + del_nb = nb_total - nb_filter - logger.info(msg) - return df + return del_nb, filt_data.reset_index(drop=True) def format_calendar(path: Path) -> DataFrame: @@ -265,48 +289,6 @@ def format_calendar(path: Path) -> DataFrame: ) -def dpm_to_dph( - df: DataFrame, - tz: pytz.BaseTzInfo, - dataset_name: str, - annotation: str, - bin_size: int = 3600, - extra_columns: list | None = None, -) -> DataFrame: - """From CPOD result DataFrame to APLOSE formatted DataFrame. - - Parameters - ---------- - df: DataFrame - CPOD result DataFrame - tz: pytz.BaseTzInfo - Timezone object to get timezone-aware datetimes - dataset_name: str - dataset name - annotation: str - annotation name - bin_size: int - Duration of the detections in seconds - extra_columns: list, optional - Additional columns added from df to data - - Returns - ------- - DataFrame - An APLOSE DataFrame - - """ - df["start_datetime"] = to_datetime(df["start_datetime"], utc=True) - df["end_datetime"] = to_datetime(df["end_datetime"], utc=True) - df["Date heure"] = df["start_datetime"].dt.floor("h") - dph = df.groupby(["Date heure"])["DPM"].sum().reset_index() - dph["Date heure"] = dph["Date heure"].apply( - lambda x: Timestamp(x).strftime(format="%d/%m/%Y %H:%M:%S"), - ) - - return cpod2aplose(dph, tz, dataset_name, annotation, bin_size, extra_columns) - - def assign_phase( meta: DataFrame, data: DataFrame, @@ -346,7 +328,7 @@ def assign_phase( <= data.loc[j, "start_datetime"] < meta_row["recovery_date"] ): - data.loc[j, "name"] = meta_row["name"] + data.loc[j, "name"] = f"{meta_row['site.name']}_{meta_row['campaign.name']}" j += 1 return data @@ -378,9 +360,9 @@ def assign_phase_simple( meta["recovery_date"] = meta["recovery_date"].dt.floor("d") data["name"] = None - for site in data["site.name"].unique(): - site_meta = meta[meta["site.name"] == site] - site_data = data[data["site.name"] == site] + for site in data["deploy.name"].unique(): + site_meta = meta[meta["deploy.name"] == site] + site_data = data[data["deploy.name"] == site] for _, meta_row in site_meta.iterrows(): time_filter = ( @@ -420,13 +402,50 @@ def generate_hourly_detections(meta: DataFrame, site: str) -> DataFrame: {"name": row["name"], "start_datetime": date} for _, row in df_meta.iterrows() for date in date_range( - start=row["deployment_date"], end=row["recovery_date"], freq="h", + start=row["deployment_date"], + end=row["recovery_date"], + freq="h", ) ] return DataFrame(records) +def build_hour_range(dph: DataFrame) -> DataFrame: + """Create a DataFrame with one line per hour between start and end dates. + + Keep the number of detections per hour between these dates. + + Parameters + ---------- + dph: pd.DataFrame + Metadata dataframe with deployments information (previously exported as json) + + Returns + ------- + pd.DataFrame + A full period of time with positive and negative hours to detections. + + """ + dph["Date heure"] = to_datetime(dph["Date heure"], dayfirst=True) + + deploy_ranges = ( + dph.groupby("deploy.name")["Date heure"] + .agg(start="min", end="max") + .reset_index() + ) + + all_ranges = [] + for _, row in deploy_ranges.iterrows(): + hours = date_range(row["start"], row["end"], freq="h") + tmp = DataFrame({ + "deploy.name": row["deploy.name"], + "Date heure": hours, + }) + all_ranges.append(tmp) + + return concat(all_ranges, ignore_index=True) + def merging_tab(meta: DataFrame, data: DataFrame) -> DataFrame: """Create a DataFrame with one line per hour between start and end dates. @@ -448,16 +467,15 @@ def merging_tab(meta: DataFrame, data: DataFrame) -> DataFrame: data["start_datetime"] = to_datetime(data["start_datetime"], utc=True) meta["start_datetime"] = to_datetime(meta["start_datetime"], utc=True) - deploy_detec = data["name"].unique() - df_filtered = meta[meta["name"].isin(deploy_detec)] + deploy_detec = data["deploy.name"].unique() + df_filtered = meta[meta["deploy.name"].isin(deploy_detec)] output = df_filtered.merge( - data[["name", "start_datetime", "DPM", "Nfiltered"]], - on=["name", "start_datetime"], + data[["deploy.name", "start_datetime", "DPM"]], + on=["deploy.name", "start_datetime"], how="outer", ) output["DPM"] = output["DPM"].fillna(0) - output["Nfiltered"] = output["Nfiltered"].fillna(0) output["Day"] = output["start_datetime"].dt.day output["Month"] = output["start_datetime"].dt.month @@ -485,27 +503,13 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: Containing all ICIs for every positive minutes to clicks """ - df.columns = df.columns.str.upper() - df["MICROSEC"] = df["MICROSEC"] / 1e6 - col = "DATE HEURE MINUTE" - col2 = "HEURE MINUTE" - if col in df.columns: - df[["DATE", "HEURE", "MINUTE"]] = df[col].str.split(" ", expand=True) - df["Time"] = (df["DATE"].astype(str) + " " + - df["HEURE"].astype(str) + ":" + - df["MINUTE"].astype(str) + ":" + - df["MICROSEC"].astype(str)) - df["Time"] = to_datetime(df["Time"], dayfirst=True) - elif col2 in df.columns: - df[["HEURE", "MINUTE"]] = df[col2].str.split(" ", expand=True) - df["Time"] = (df["DATE"].astype(str) + " " + - df["HEURE"].astype(str) + ":" + - df["MINUTE"].astype(str) + ":" + - df["MICROSEC"].astype(str)) - df["Time"] = to_datetime(df["Time"], dayfirst=True) - else : - df["Time"] = (df["MINUTE"].astype(str) + ":" + df["MICROSEC"].astype(str)) - df["Time"] = to_datetime(df["Time"], dayfirst=True) + df["microsec"] = df["microsec"] / 1e6 + + df["Time"] = (df["Minute"].astype(str) + ":" + + df["microsec"].astype(str)) + df["Time"] = to_datetime(df["Time"], dayfirst=True) + + df["Time"] = to_datetime(df["Time"], dayfirst=True) df = df.sort_values(by="Time").reset_index(drop=True) df["ICI"] = df["Time"].diff().dt.total_seconds() @@ -583,7 +587,7 @@ def assign_daytime( return df -def process_files_in_folder(folder_path:Path, species:str) -> DataFrame: +def fb_folder(folder_path:Path, species:str) -> DataFrame: """Process a folder containing all CPOD/FPOD feeding buzz detection files. Apply the feeding buzz function to these files. @@ -608,7 +612,7 @@ def process_files_in_folder(folder_path:Path, species:str) -> DataFrame: file_path = folder_path / file df = read_csv(file_path, sep="\t") processed_df = feeding_buzz(df, species) - processed_df["file"] = file + processed_df["deploy.name"] = file.name all_data.append(processed_df) return concat(all_data, ignore_index=True) @@ -820,4 +824,103 @@ def hour_percent(df: DataFrame, metric: str) -> None: for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle(f"{metric} per hour", fontsize=16) - plt.show() \ No newline at end of file + plt.show() + + +def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: + """Process a folder containing data files and concatenate them. + + Parameters + ---------- + folder_path: Union[str, Path] + Path to the folder containing files. + **kwargs: dict + Additional parameters for pd.read_csv (sep, skiprows, etc.) + + Returns + ------- + pd.DataFrame + Concatenated dataframe with all files data and file column. + + Raises + ------ + ValueError + If file_format is not supported or no files found. + FileNotFoundError + If folder_path doesn't exist. + + """ + folder_path = Path(folder_path) + + # Folder validation + if not folder_path.exists(): + raise FileNotFoundError + + if not folder_path.is_dir(): + message = f"{folder_path} is not a directory." + raise ValueError(message) + + # Configuration + default_params = {"sep": ";", "skiprows": 7} + + # Parameters fusion + read_params = {**default_params, **kwargs} + + # File research + files = list(folder_path.rglob("*csv")) + + if not files: + msg = f"No CSV file found in {folder_path}" + raise ValueError(msg) + + all_data = [] + + for file in files: + try: + df = read_csv(file, **read_params) + df["deploy.name"] = file.name.rsplit(".", 1)[0] # file name + df["file_path"] = str(file) # file path + all_data.append(df) + except Exception: + continue + + if not all_data: + msg = f"No valid CSV file found in {folder_path}" + raise ValueError(msg) + + return concat(all_data, ignore_index=True) + + +def dpm_to_dph( + df: DataFrame, + extra_columns: list | None = None, +) -> DataFrame: + """Create a dataframe containing the number of DPM per hour. + + Parameters + ---------- + df: DataFrame + Contains every minute positive to click detection. + extra_columns: list, optional + Additional columns added from df to data. + + Returns + ------- + DataFrame + Contains sum of minutes positive to detection per hour. + + """ + df["start_datetime"] = to_datetime(df["start_datetime"], utc=True) + df["end_datetime"] = to_datetime(df["end_datetime"], utc=True) + df["Date heure"] = df["start_datetime"].dt.floor("h") + + agg_dict = {"DPM": "sum"} + + if extra_columns: + for col in extra_columns: + if col in df.columns: + agg_dict[col] = "first" + else: + logger.warning(f"Column '{col}' does not exist and will be ignored.") + + return df.groupby("Date heure").agg(agg_dict).reset_index() From e78bfcdebccc551708b033a1280236b72d9293a4 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 5 Sep 2025 16:10:16 +0200 Subject: [PATCH 02/83] create the usalble case notebook --- user_case/user_case_CALAIS.ipynb | 183 +++++++++++++++++++++++++++++++ 1 file changed, 183 insertions(+) create mode 100644 user_case/user_case_CALAIS.ipynb diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb new file mode 100644 index 0000000..437f235 --- /dev/null +++ b/user_case/user_case_CALAIS.ipynb @@ -0,0 +1,183 @@ +{ + "cells": [ + { + "cell_type": "code", + "id": "initial_id", + "metadata": { + "collapsed": true + }, + "source": [ + "from pathlib import Path\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import pytz\n", + "\n", + "from post_processing.dataclass.data_aplose import DataAplose\n", + "from post_processing.utils.fpod_utils import cpod2aplose, usable_data_phase, dpm_to_dph,build_hour_range, fb_folder,csv_folder, meta_cut_aplose\n", + "from post_processing.utils.core_utils import json2df" + ], + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Pre-processing\n", + "\n" + ], + "id": "e8e8c57c7f4197fe" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "data = csv_folder(r\"U:\\A\")\n", + "print(data.head())\n", + "\n", + "df_1 = data[data[\"DPM\"]==1]\n", + "\n", + "df_aplose = cpod2aplose(df_1, pytz.utc, \"CA4\", \"Commerson\", extra_columns=[\"DPM\", \"deploy.name\"])\n", + "print(df_aplose.head())" + ], + "id": "8636a8a27fe2af47", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_kerguelen.json\")\n", + "metadatax = json2df(json_path=json)\n", + "\n", + "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", + " metadatax[\"campaign.name\"].astype(str))\n", + "\n", + "data = meta_cut_aplose(df_aplose, metadatax)\n", + "\n", + "df_aplose.to_csv(r\"U:\\APLOSE_A1112.csv\", index=False)" + ], + "id": "ed6a06c522aea169", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Load data", + "id": "73d08f821cd03ae3" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", + "data_list = DataAplose.from_yaml(file=yaml_file)\n", + "print(data_list.df.head())" + ], + "id": "ad94c9baae5a1748", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "## Create a detection per hour dataframe\n", + "\n" + ], + "id": "4d6b640178d7563" + }, + { + "metadata": {}, + "cell_type": "code", + "source": "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])", + "id": "c46fb2201838f42", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Add the feeding buzzes", + "id": "8375ddbe07ad0aee" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "fb = fb_folder(r\"U:\\fb_A_NBHF\", \"Commerson\")\n", + "fb[\"Date heure\"] = fb[\"start_datetime\"].dt.floor(\"h\")\n", + "fb = fb.groupby(\"Date heure\")[\"Foraging\"].sum().reset_index()\n", + "\n", + "d_hour = dph.merge(fb[[\"Date heure\",\"Foraging\"]], on=\"Date heure\", how=\"left\")" + ], + "id": "2b19f90c99252ff3", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "new = build_hour_range(dph)\n", + "final_df = new.merge(d_hour, on=[\"deploy.name\", \"Date heure\"], how = \"left\")\n", + "\n", + "final_df[[\"DPM\",\"Foraging\"]] = final_df[[\"DPM\",\"Foraging\"]].fillna(0)\n", + "print(final_df.head())" + ], + "id": "f93bf1f3ca4f4112", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "final_df[\"Year\"] = final_df[\"Date heure\"].dt.year\n", + "final_df[\"Month\"] = final_df[\"Date heure\"].dt.month\n", + "final_df[\"Day\"] = final_df[\"Date heure\"].dt.day\n", + "final_df[\"Hour\"] = final_df[\"Date heure\"].dt.hour\n", + "\n", + "final_df[\"FBR\"] = final_df[\"Foraging\"] / final_df[\"DPM\"]" + ], + "id": "a2261ce5093a3104", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "final_df[\"FBR\"] = final_df[\"FBR\"].fillna(0)\n", + "final_df.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteA1112.csv\", index=False)" + ], + "id": "d606f4f6904b57c6", + "outputs": [], + "execution_count": null + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 76d1336f632c58e9e3dc9dd8081e0a9a221bce45 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 5 Sep 2025 16:10:47 +0200 Subject: [PATCH 03/83] create yaml for CPOD --- user_case/resource/CPOD-FPOD_yaml.yml | 31 +++++++++++++++++++++++++++ 1 file changed, 31 insertions(+) create mode 100644 user_case/resource/CPOD-FPOD_yaml.yml diff --git a/user_case/resource/CPOD-FPOD_yaml.yml b/user_case/resource/CPOD-FPOD_yaml.yml new file mode 100644 index 0000000..3e259cc --- /dev/null +++ b/user_case/resource/CPOD-FPOD_yaml.yml @@ -0,0 +1,31 @@ +#This file is to be used to load an APLOSE result csv file. +#If a parameter is set here to `null`, it will be loaded with a `None` value in the Python scripts. +#For parameter definition, see `sort_detections` function in `utils\def_func`. +# +#Note: +# - Several csv files can be loaded at once, to perform this copy the template and paste it at the end of the present file. + +######################################### +'U:\APLOSE_A1112.csv': + # timebin: detection time resolution in seconds + 'timebin_new': null + # begin datetime: '2000-01-01T00:00:00+0000' + 'begin': null + # end datetime: '2000-01-01T00:00:00+0000' + 'end': null + # annotator: ['annotator1', 'annotator2'] + 'annotator': null + # annotation: ['annotation1', 'annotation2'] + 'annotation': "Commerson" + # box: boolean value, whether to keep strong annotations + 'box': False + # timestamp file + 'timestamp_file': null + # user selection + 'user_sel': all + # f_min filter + 'f_min': null + # f_max filter + 'f_max': null + # score + 'score': null From 81a02486dd82491ca0943af0f333c08f64583db3 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 9 Sep 2025 17:28:50 +0200 Subject: [PATCH 04/83] add new functions, correct others --- src/post_processing/utils/fpod_utils.py | 144 +++++++++++------------- 1 file changed, 65 insertions(+), 79 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index c80d0c8..a588452 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -12,9 +12,10 @@ DataFrame, Series, Timedelta, - api, + Timestamp, concat, date_range, + merge, notna, read_csv, read_excel, @@ -116,23 +117,22 @@ def cpod2aplose( An APLOSE formatted DataFrame """ - df_cpod = df.rename(columns={"ChunkEnd": "Date heure"}) + df = df.rename(columns={"ChunkEnd": "Date heure"}) + results = [] - # remove lines where the C-POD stopped working - df_cpod = df_cpod.drop( - df_cpod.loc[df_cpod["Date heure"] == " at minute "].index, - ) - data = fpod2aplose(df_cpod, tz, dataset_name, annotation, bin_size) - data["annotator"] = data.loc[data["annotator"] == "FPOD"] = "CPOD" - if extra_columns: - for col in extra_columns: - if col in df_cpod.columns: - data[col] = df_cpod[col].tolist() - else: - msg = f"Column '{col}' does not exist and will be ignored." - logger.warning(msg) + for deploy_name in df["deploy.name"].unique(): + df_deploy = df[df["deploy.name"] == deploy_name].copy() - return DataFrame(data) + result = fpod2aplose(df_deploy, tz, dataset_name, annotation, bin_size) + + if extra_columns: + for col in extra_columns: + if col in df_deploy.columns: + result[col] = df_deploy[col].tolist() + + results.append(result) + + return concat(results, ignore_index=True) def usable_data_phase( @@ -192,7 +192,7 @@ def meta_cut_aplose(raw_data: DataFrame,metadata: DataFrame, col_timestamp:str="start_datetime", col_debut:str="deployment_date", col_fin:str="recovery_date", -) -> DataFrame | tuple[int, Any]: +) -> DataFrame: """Filter data to keep only the ones corresponding to a deployment. Parameters @@ -216,56 +216,43 @@ def meta_cut_aplose(raw_data: DataFrame,metadata: DataFrame, Filtered data containing only rows in deployment periods """ - # Vérifier que les colonnes existent - if col_deploy_name not in raw_data.columns: - msg =f"'{col_deploy_name}' not found" - raise ValueError(msg) - if col_timestamp not in raw_data.columns: - msg = f"'{col_timestamp}' not found" - raise ValueError(msg) - if col_deploy_name not in metadata.columns: - msg = f"'{col_deploy_name}' not found" - raise ValueError(msg) - if col_debut not in metadata.columns: - msg = f"'{col_debut}' not found" - raise ValueError(msg) - if col_fin not in metadata.columns: - msg = f"'{col_fin}' not found" - raise ValueError(msg) - - data = raw_data.copy() + required_raw = [col_deploy_name, col_timestamp] + required_meta = [col_deploy_name, col_debut, col_fin] + for col in required_raw: + if col not in raw_data.columns: + msg = f"'{col}' not found in raw_data" + raise ValueError(msg) + for col in required_meta: + if col not in metadata.columns: + msg = f"'{col}' not found in metadata" + raise ValueError(msg) + + # Convert to datetime + raw = raw_data.copy() meta = metadata.copy() - - # S'assurer que les timestamps sont au bon format datetime - if not api.types.is_datetime64_any_dtype(data[col_timestamp]): - data[col_timestamp] = to_datetime(data[col_timestamp]) - if not api.types.is_datetime64_any_dtype(meta[col_debut]): - meta[col_debut] = to_datetime(meta[col_debut]) - if not api.types.is_datetime64_any_dtype(meta[col_fin]): - meta[col_fin] = to_datetime(meta[col_fin]) - - actual_data = data.merge( - meta[[col_deploy_name, col_debut, col_fin]], on=col_deploy_name, how="left") - - lignes_avec_meta = actual_data[col_debut].notna() - - if not lignes_avec_meta.any(): - return DataFrame(columns=raw_data.columns) - - mask_valid_period = ( - lignes_avec_meta & - (actual_data[col_timestamp] >= actual_data[col_debut]) & - (actual_data[col_timestamp] <= actual_data[col_fin]) + raw[col_timestamp] = to_datetime(raw[col_timestamp], errors="coerce") + meta[col_debut] = to_datetime(meta[col_debut], errors="coerce") + meta[col_fin] = to_datetime(meta[col_fin], errors="coerce") + + dfm = raw.merge( + meta[[col_deploy_name, col_debut, col_fin]], + on=col_deploy_name, + how="left", ) - filt_data = actual_data[mask_valid_period][raw_data.columns] + out = dfm[ + (dfm[col_timestamp] >= dfm[col_debut]) + & (dfm[col_timestamp] <= dfm[col_fin]) + & dfm[col_timestamp].notna() + & dfm[col_debut].notna() + & dfm[col_fin].notna() + ].copy() - # Statistics - nb_total = len(raw_data) - nb_filter = len(filt_data) - del_nb = nb_total - nb_filter + columns_to_drop = [col for col in [col_debut, col_fin] if col not in raw_data.columns] + if columns_to_drop: + out = out.drop(columns=columns_to_drop) - return del_nb, filt_data.reset_index(drop=True) + return out.sort_values([col_deploy_name, col_timestamp]).reset_index(drop=True) def format_calendar(path: Path) -> DataFrame: @@ -515,10 +502,13 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: df["ICI"] = df["Time"].diff().dt.total_seconds() df["Buzz"] = 0 - if species == "Porpoise": + if species == "Marsouin": feeding_idx = df.index[df["ICI"] < 0.01] + elif species == "Commerson" : + feeding_idx = df.index[df["ICI"] <= 0.005] else : - feeding_idx = df.index[df["ICI"] >= 0.005] + msg = "This species is not supported" + raise ValueError(msg) df.loc[feeding_idx, "Buzz"] = 1 df.loc[feeding_idx - 1, "Buzz"] = 1 @@ -619,10 +609,10 @@ def fb_folder(folder_path:Path, species:str) -> DataFrame: colors = { - "DY1": "#118B50", - "DY2": "#5DB996", - "DY3": "#B0DB9C", - "DY4": "#E3F0AF", + "Site A Haute": "#118B50", + "Site B Heugh": "#5DB996", + "Site C Chat": "#B0DB9C", + "Site D Simone": "#E3F0AF", "CA4": "#5EABD6", "Walde": "#FFB4B4", } @@ -732,7 +722,7 @@ def year_percent(df: DataFrame, metric: str) -> None: label=f"Site {site}", color=colors.get(site, "gray"), ) - ax.set_title(f"Site {site}") + ax.set_title(f"{site}") ax.set_ylim(0,max(df[metric]) + 0.2) ax.set_ylabel(metric) if i != 3: @@ -770,7 +760,7 @@ def month_percent(df: DataFrame, metric: str) -> None: label=f"Site {site}", color=colors.get(site, "gray"), ) - ax.set_title(f"{site} - Percentage of postitive to detection minutes per month") + ax.set_title(f"{site} - Percentage of minutes postitive to detection per month") ax.set_ylim(0,max(df[metric]) + 0.2) ax.set_ylabel(metric) ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], @@ -813,7 +803,7 @@ def hour_percent(df: DataFrame, metric: str) -> None: label=f"Site {site}", color=colors.get(site, "gray"), ) - ax.set_title(f"Site {site} - Percentage of positive to detection per hour") + ax.set_title(f"Site {site} - Percentage of minutes positive to detection per hour") ax.set_ylim(0,max(df[metric]) + 0.2) ax.set_ylabel(metric) if i != 3: @@ -861,7 +851,7 @@ def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: raise ValueError(message) # Configuration - default_params = {"sep": ";", "skiprows": 7} + default_params = {"sep": ";"} # Parameters fusion read_params = {**default_params, **kwargs} @@ -876,13 +866,9 @@ def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: all_data = [] for file in files: - try: - df = read_csv(file, **read_params) - df["deploy.name"] = file.name.rsplit(".", 1)[0] # file name - df["file_path"] = str(file) # file path - all_data.append(df) - except Exception: - continue + df = read_csv(file, **read_params) + df["deploy.name"] = file.stem + all_data.append(df) if not all_data: msg = f"No valid CSV file found in {folder_path}" From 9bb34752c6b9b285f91fa7b6be79777e65f7f8ef Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 9 Sep 2025 17:29:28 +0200 Subject: [PATCH 05/83] change notebook config --- user_case/user_case_CALAIS.ipynb | 97 ++++++++++++++++++++++++-------- 1 file changed, 74 insertions(+), 23 deletions(-) diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index 437f235..0f5e509 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -4,7 +4,11 @@ "cell_type": "code", "id": "initial_id", "metadata": { - "collapsed": true + "collapsed": true, + "ExecuteTime": { + "end_time": "2025-09-09T14:50:36.642346Z", + "start_time": "2025-09-09T14:50:36.638397Z" + } }, "source": [ "from pathlib import Path\n", @@ -18,7 +22,7 @@ "from post_processing.utils.core_utils import json2df" ], "outputs": [], - "execution_count": null + "execution_count": 21 }, { "metadata": {}, @@ -30,23 +34,73 @@ "id": "e8e8c57c7f4197fe" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-09T14:51:43.424921Z", + "start_time": "2025-09-09T14:50:38.447445Z" + } + }, "cell_type": "code", "source": [ "data = csv_folder(r\"U:\\A\")\n", "print(data.head())\n", "\n", - "df_1 = data[data[\"DPM\"]==1]\n", + "df_1 = data.dropna()\n", "\n", - "df_aplose = cpod2aplose(df_1, pytz.utc, \"CA4\", \"Commerson\", extra_columns=[\"DPM\", \"deploy.name\"])\n", + "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site A Haute\", \"Commerson\", extra_columns=[\"DPM\", \"deploy.name\"])\n", "print(df_aplose.head())" ], "id": "8636a8a27fe2af47", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " File ChunkEnd DPM Nall MinsOn \\\n", + "0 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:03 0 0 0 \n", + "1 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:04 0 0 0 \n", + "2 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:05 0 0 0 \n", + "3 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:06 0 0 0 \n", + "4 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:07 0 0 0 \n", + "\n", + " deploy.name \n", + "0 Site A Haute_Phase11 \n", + "1 Site A Haute_Phase11 \n", + "2 Site A Haute_Phase11 \n", + "3 Site A Haute_Phase11 \n", + "4 Site A Haute_Phase11 \n", + " dataset filename start_time end_time start_frequency \\\n", + "0 Site A Haute 0 60 0 \n", + "1 Site A Haute 0 60 0 \n", + "2 Site A Haute 0 60 0 \n", + "3 Site A Haute 0 60 0 \n", + "4 Site A Haute 0 60 0 \n", + "\n", + " end_frequency annotation annotator start_datetime \\\n", + "0 0 Commerson FPOD 2022-12-01T16:03:00.000+0000 \n", + "1 0 Commerson FPOD 2022-12-01T16:04:00.000+0000 \n", + "2 0 Commerson FPOD 2022-12-01T16:05:00.000+0000 \n", + "3 0 Commerson FPOD 2022-12-01T16:06:00.000+0000 \n", + "4 0 Commerson FPOD 2022-12-01T16:07:00.000+0000 \n", + "\n", + " end_datetime is_box DPM deploy.name \n", + "0 2022-12-01T16:04:00.000+0000 0 0 Site A Haute_Phase11 \n", + "1 2022-12-01T16:05:00.000+0000 0 0 Site A Haute_Phase11 \n", + "2 2022-12-01T16:06:00.000+0000 0 0 Site A Haute_Phase11 \n", + "3 2022-12-01T16:07:00.000+0000 0 0 Site A Haute_Phase11 \n", + "4 2022-12-01T16:08:00.000+0000 0 0 Site A Haute_Phase11 \n" + ] + } + ], + "execution_count": 22 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-09T14:56:09.883356Z", + "start_time": "2025-09-09T14:51:52.486050Z" + } + }, "cell_type": "code", "source": [ "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_kerguelen.json\")\n", @@ -55,13 +109,13 @@ "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", " metadatax[\"campaign.name\"].astype(str))\n", "\n", - "data = meta_cut_aplose(df_aplose, metadatax)\n", + "cleared = meta_cut_aplose(df_aplose, metadatax)\n", "\n", - "df_aplose.to_csv(r\"U:\\APLOSE_A1112.csv\", index=False)" + "cleared.to_csv(r\"U:\\APLOSE_A.csv\", index=False)" ], "id": "ed6a06c522aea169", "outputs": [], - "execution_count": null + "execution_count": 23 }, { "metadata": {}, @@ -122,11 +176,8 @@ "metadata": {}, "cell_type": "code", "source": [ - "new = build_hour_range(dph)\n", - "final_df = new.merge(d_hour, on=[\"deploy.name\", \"Date heure\"], how = \"left\")\n", - "\n", - "final_df[[\"DPM\",\"Foraging\"]] = final_df[[\"DPM\",\"Foraging\"]].fillna(0)\n", - "print(final_df.head())" + "d_hour[[\"DPM\",\"Foraging\"]] = d_hour[[\"DPM\",\"Foraging\"]].fillna(0)\n", + "print(d_hour.head())" ], "id": "f93bf1f3ca4f4112", "outputs": [], @@ -136,12 +187,12 @@ "metadata": {}, "cell_type": "code", "source": [ - "final_df[\"Year\"] = final_df[\"Date heure\"].dt.year\n", - "final_df[\"Month\"] = final_df[\"Date heure\"].dt.month\n", - "final_df[\"Day\"] = final_df[\"Date heure\"].dt.day\n", - "final_df[\"Hour\"] = final_df[\"Date heure\"].dt.hour\n", + "d_hour[\"Year\"] = d_hour[\"Date heure\"].dt.year\n", + "d_hour[\"Month\"] = d_hour[\"Date heure\"].dt.month\n", + "d_hour[\"Day\"] = d_hour[\"Date heure\"].dt.day\n", + "d_hour[\"Hour\"] = d_hour[\"Date heure\"].dt.hour\n", "\n", - "final_df[\"FBR\"] = final_df[\"Foraging\"] / final_df[\"DPM\"]" + "d_hour[\"FBR\"] = d_hour[\"Foraging\"] / d_hour[\"DPM\"]" ], "id": "a2261ce5093a3104", "outputs": [], @@ -151,8 +202,8 @@ "metadata": {}, "cell_type": "code", "source": [ - "final_df[\"FBR\"] = final_df[\"FBR\"].fillna(0)\n", - "final_df.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteA1112.csv\", index=False)" + "d_hour[\"FBR\"] = d_hour[\"FBR\"].fillna(0)\n", + "d_hour.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteA.csv\", index=False)" ], "id": "d606f4f6904b57c6", "outputs": [], From 566cffdad9b62ebe74de2b93824ef537a93f492e Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 26 Sep 2025 09:34:04 +0200 Subject: [PATCH 06/83] change notebook config --- user_case/user_case_CALAIS.ipynb | 337 ++++++++++++++++++++++++------- 1 file changed, 263 insertions(+), 74 deletions(-) diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index 0f5e509..c7d0ff5 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -6,23 +6,26 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-09-09T14:50:36.642346Z", - "start_time": "2025-09-09T14:50:36.638397Z" + "end_time": "2025-09-25T15:14:38.565748Z", + "start_time": "2025-09-25T15:14:36.291938Z" } }, "source": [ "from pathlib import Path\n", "\n", - "import matplotlib.pyplot as plt\n", - "import pandas as pd\n", "import pytz\n", + "from pandas import (\n", + " concat,\n", + " read_csv,\n", + " to_datetime,\n", + ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import cpod2aplose, usable_data_phase, dpm_to_dph,build_hour_range, fb_folder,csv_folder, meta_cut_aplose\n", - "from post_processing.utils.core_utils import json2df" + "from post_processing.utils.fpod_utils import cpod2aplose, fpod2aplose, dpm_to_dp10m, dpm_to_dph, dpm_to_dpd, fb_folder,csv_folder, meta_cut_aplose, date_format,extract_site,percent_calc,site_percent, year_percent, ym_percent, month_percent, hour_percent, actual_data, build_hour_range\n", + "from post_processing.utils.core_utils import json2df,get_season" ], "outputs": [], - "execution_count": 21 + "execution_count": 1 }, { "metadata": {}, @@ -36,19 +39,16 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-09-09T14:51:43.424921Z", - "start_time": "2025-09-09T14:50:38.447445Z" + "end_time": "2025-09-25T15:15:16.539360Z", + "start_time": "2025-09-25T15:15:15.617231Z" } }, "cell_type": "code", "source": [ - "data = csv_folder(r\"U:\\A\")\n", + "data = csv_folder(r\"U:\\D\")\n", "print(data.head())\n", "\n", - "df_1 = data.dropna()\n", - "\n", - "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site A Haute\", \"Commerson\", extra_columns=[\"DPM\", \"deploy.name\"])\n", - "print(df_aplose.head())" + "df_0 = data.dropna()" ], "id": "8636a8a27fe2af47", "outputs": [ @@ -56,52 +56,99 @@ "name": "stdout", "output_type": "stream", "text": [ - " File ChunkEnd DPM Nall MinsOn \\\n", - "0 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:03 0 0 0 \n", - "1 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:04 0 0 0 \n", - "2 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:05 0 0 0 \n", - "3 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:06 0 0 0 \n", - "4 Ile Haute Site A POD3059 file01.CP3 01/12/2022 16:07 0 0 0 \n", + " File ChunkEnd DPM Nall MinsOn \\\n", + "0 POD3042 file01.CP3 21/10/2019 12:11 0 0 0 \n", + "1 POD3042 file01.CP3 21/10/2019 12:12 0 0 0 \n", + "2 POD3042 file01.CP3 21/10/2019 12:13 0 0 0 \n", + "3 POD3042 file01.CP3 21/10/2019 12:14 0 0 0 \n", + "4 POD3042 file01.CP3 21/10/2019 12:15 0 0 0 \n", "\n", " deploy.name \n", - "0 Site A Haute_Phase11 \n", - "1 Site A Haute_Phase11 \n", - "2 Site A Haute_Phase11 \n", - "3 Site A Haute_Phase11 \n", - "4 Site A Haute_Phase11 \n", - " dataset filename start_time end_time start_frequency \\\n", - "0 Site A Haute 0 60 0 \n", - "1 Site A Haute 0 60 0 \n", - "2 Site A Haute 0 60 0 \n", - "3 Site A Haute 0 60 0 \n", - "4 Site A Haute 0 60 0 \n", - "\n", - " end_frequency annotation annotator start_datetime \\\n", - "0 0 Commerson FPOD 2022-12-01T16:03:00.000+0000 \n", - "1 0 Commerson FPOD 2022-12-01T16:04:00.000+0000 \n", - "2 0 Commerson FPOD 2022-12-01T16:05:00.000+0000 \n", - "3 0 Commerson FPOD 2022-12-01T16:06:00.000+0000 \n", - "4 0 Commerson FPOD 2022-12-01T16:07:00.000+0000 \n", - "\n", - " end_datetime is_box DPM deploy.name \n", - "0 2022-12-01T16:04:00.000+0000 0 0 Site A Haute_Phase11 \n", - "1 2022-12-01T16:05:00.000+0000 0 0 Site A Haute_Phase11 \n", - "2 2022-12-01T16:06:00.000+0000 0 0 Site A Haute_Phase11 \n", - "3 2022-12-01T16:07:00.000+0000 0 0 Site A Haute_Phase11 \n", - "4 2022-12-01T16:08:00.000+0000 0 0 Site A Haute_Phase11 \n" + "0 Site D Simone_Phase1 \n", + "1 Site D Simone_Phase1 \n", + "2 Site D Simone_Phase1 \n", + "3 Site D Simone_Phase1 \n", + "4 Site D Simone_Phase1 \n" ] } ], - "execution_count": 22 + "execution_count": 3 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-09-09T14:56:09.883356Z", - "start_time": "2025-09-09T14:51:52.486050Z" + "end_time": "2025-09-25T15:16:18.967295Z", + "start_time": "2025-09-25T15:15:37.397762Z" } }, "cell_type": "code", + "source": "d_beg_end = actual_data(df_0, col_timestamp=\"ChunkEnd\")", + "id": "4208969d9e509a8", + "outputs": [], + "execution_count": 5 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-25T15:16:22.557433Z", + "start_time": "2025-09-25T15:16:22.552202Z" + } + }, + "cell_type": "code", + "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ]", + "id": "597efd1d90e3d069", + "outputs": [], + "execution_count": 6 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## APLOSE format", + "id": "4f8c83c96f0b6ff4" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### *CPOD*", + "id": "8ed339c688bdef1" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\", extra_columns=[\"deploy.name\"])\n", + "print(df_aplose.head())" + ], + "id": "812ed7c0c5e258e7", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### *FPOD*", + "id": "a39bb10d8ac60a27" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", + "print(df_aplose.head())" + ], + "id": "9b632673397a184" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Remove non usable lines", + "id": "7860838f8514da39" + }, + { + "metadata": {}, + "cell_type": "code", "source": [ "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_kerguelen.json\")\n", "metadatax = json2df(json_path=json)\n", @@ -109,48 +156,76 @@ "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", " metadatax[\"campaign.name\"].astype(str))\n", "\n", - "cleared = meta_cut_aplose(df_aplose, metadatax)\n", - "\n", - "cleared.to_csv(r\"U:\\APLOSE_A.csv\", index=False)" + "cleared = meta_cut_aplose(df_aplose, metadatax)" ], "id": "ed6a06c522aea169", "outputs": [], - "execution_count": 23 + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "cleared.to_csv(r\"U:\\APLOSE_D.csv\", index=False)", + "id": "76f70cb6c6658ba6", + "outputs": [], + "execution_count": null }, { "metadata": {}, "cell_type": "markdown", - "source": "## Load data", - "id": "73d08f821cd03ae3" + "source": "## Load data\n", + "id": "f5d38266dc9d5273" }, { "metadata": {}, "cell_type": "code", + "outputs": [], + "execution_count": null, "source": [ "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", "data_list = DataAplose.from_yaml(file=yaml_file)\n", "print(data_list.df.head())" ], - "id": "ad94c9baae5a1748", - "outputs": [], - "execution_count": null + "id": "6837593897111b0a" }, { "metadata": {}, "cell_type": "markdown", + "source": "## Format choice\n", + "id": "9f93eb863e3e3a9e" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, "source": [ - "## Create a detection per hour dataframe\n", - "\n" + "dp10 = dpm_to_dp10m(data_list.df, extra_columns=[\"deploy.name\"])\n", + "dp10 = date_format(dp10)" ], - "id": "4d6b640178d7563" + "id": "a27ceea1fefdd298" }, { "metadata": {}, "cell_type": "code", - "source": "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])", - "id": "c46fb2201838f42", "outputs": [], - "execution_count": null + "execution_count": null, + "source": [ + "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])\n", + "dph = date_format(dph)" + ], + "id": "6cc79b2aeef076ed" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "dpd = dpm_to_dpd(data_list.df, extra_columns=[\"deploy.name\"])\n", + "dpd = date_format(dpd)" + ], + "id": "e6655c36fc1851c7" }, { "metadata": {}, @@ -162,16 +237,25 @@ "metadata": {}, "cell_type": "code", "source": [ - "fb = fb_folder(r\"U:\\fb_A_NBHF\", \"Commerson\")\n", - "fb[\"Date heure\"] = fb[\"start_datetime\"].dt.floor(\"h\")\n", - "fb = fb.groupby(\"Date heure\")[\"Foraging\"].sum().reset_index()\n", - "\n", - "d_hour = dph.merge(fb[[\"Date heure\",\"Foraging\"]], on=\"Date heure\", how=\"left\")" + "fb_all = fb_folder(r\"U:\\fb_D_NBHF\", \"Commerson\")\n", + "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(\"h\")\n", + "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n" ], "id": "2b19f90c99252ff3", "outputs": [], "execution_count": null }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "d_hour = build_hour_range(d_beg_end)\n", + "d_tot = dph.merge(fb, on=\"start_datetime\", how=\"left\")" + ], + "id": "b00c8f1e2210ea7" + }, { "metadata": {}, "cell_type": "code", @@ -183,16 +267,25 @@ "outputs": [], "execution_count": null }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Add time columns", + "id": "c7b1d32ed1c99fb7" + }, { "metadata": {}, "cell_type": "code", "source": [ - "d_hour[\"Year\"] = d_hour[\"Date heure\"].dt.year\n", - "d_hour[\"Month\"] = d_hour[\"Date heure\"].dt.month\n", - "d_hour[\"Day\"] = d_hour[\"Date heure\"].dt.day\n", - "d_hour[\"Hour\"] = d_hour[\"Date heure\"].dt.hour\n", + "d_hour[\"Year\"] = d_hour[\"start_datetime\"].dt.year\n", + "d_hour[\"Month\"] = d_hour[\"start_datetime\"].dt.month\n", + "d_hour['YM'] = d_hour['Year'].astype(str) + '-' + d_hour['Month'].astype(str)\n", + "d_hour['YM'] = to_datetime(d_hour['YM'])\n", + "d_hour[\"Day\"] = d_hour[\"start_datetime\"].dt.day\n", + "d_hour[\"Hour\"] = d_hour[\"start_datetime\"].dt.hour\n", "\n", - "d_hour[\"FBR\"] = d_hour[\"Foraging\"] / d_hour[\"DPM\"]" + "d_hour[\"FBR\"] = d_hour[\"Foraging\"] / d_hour[\"DPM\"]\n", + "d_hour[\"DPH\"] = (d_hour[\"DPM\"] >0).astype(int)" ], "id": "a2261ce5093a3104", "outputs": [], @@ -203,11 +296,107 @@ "cell_type": "code", "source": [ "d_hour[\"FBR\"] = d_hour[\"FBR\"].fillna(0)\n", - "d_hour.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteA.csv\", index=False)" + "d_hour.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteD.csv\", index=False)" ], "id": "d606f4f6904b57c6", "outputs": [], "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "## Overview", + "id": "4bc0904182a3f845" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "ca4 = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteCA4.csv\")\n", + "walde = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteWalde.csv\")\n", + "\n", + "data_k = concat([ca4, walde])\n", + "data_k['YM'] = data_k['Year'].astype(str) + '-' + data_k['Month'].astype(str)\n", + "data_k['YM'] = to_datetime(data_k['YM'])" + ], + "id": "9909fbfdcb8e2e78", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "a = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteA.csv\")\n", + "b = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteB.csv\")\n", + "c = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteC.csv\")\n", + "d = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteD.csv\")\n", + "\n", + "data_k = concat([a, b, c, d])\n", + "data_k[\"start_datetime\"] = to_datetime(data_k[\"start_datetime\"])\n", + "data_k[\"start_datetime\"] = data_k[\"start_datetime\"].apply(lambda x : x.tz_convert(\"Indian/Kerguelen\"))\n", + "data_k[\"Hour\"] = data_k[\"start_datetime\"].dt.hour" + ], + "id": "87e2d1938787aefc", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "data_k = extract_site(data_k)\n", + "y_per = percent_calc(data_k, \"Year\")\n", + "ym_per = percent_calc(data_k, \"YM\")\n", + "ym_per[\"YM\"] = to_datetime(ym_per[\"YM\"])\n", + "ym_per[\"Season\"] = ym_per[\"YM\"].apply(lambda x: get_season(x)[0])\n", + "m_per = percent_calc(data_k, \"Month\")\n", + "h_per = percent_calc(data_k, \"Hour\")\n", + "s_per = percent_calc(data_k)" + ], + "id": "2826b79097a85607", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "site_percent(s_per, \"%click\")", + "id": "ddd1fac6295136c6", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "year_percent(y_per, \"%click\")", + "id": "ba7581e97fdbd07c", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "ym_percent(ym_per, \"%click\")", + "id": "4de618933c154f86", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "month_percent(m_per, \"%buzzes\")", + "id": "7cf84c8744185424", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "hour_percent(h_per, \"%click\")", + "id": "12d83e9082d711c0", + "outputs": [], + "execution_count": null } ], "metadata": { From 15c6677f37c13a73682ce3b556762a9170b259d9 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 26 Sep 2025 09:34:47 +0200 Subject: [PATCH 07/83] add new functions --- src/post_processing/utils/fpod_utils.py | 338 ++++++++++++++++++++++-- 1 file changed, 312 insertions(+), 26 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index a588452..fda5701 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -6,20 +6,20 @@ import pytz import seaborn as sns from matplotlib import pyplot as plt +from matplotlib.patches import Patch from osekit.config import TIMESTAMP_FORMAT_AUDIO_FILE from osekit.utils.timestamp_utils import strftime_osmose_format, strptime_from_text from pandas import ( DataFrame, Series, Timedelta, - Timestamp, concat, date_range, - merge, notna, read_csv, read_excel, to_datetime, + to_timedelta, ) from post_processing import logger @@ -117,7 +117,6 @@ def cpod2aplose( An APLOSE formatted DataFrame """ - df = df.rename(columns={"ChunkEnd": "Date heure"}) results = [] for deploy_name in df["deploy.name"].unique(): @@ -248,7 +247,8 @@ def meta_cut_aplose(raw_data: DataFrame,metadata: DataFrame, & dfm[col_fin].notna() ].copy() - columns_to_drop = [col for col in [col_debut, col_fin] if col not in raw_data.columns] + columns_to_drop = [col for col in [col_debut, col_fin] + if col not in raw_data.columns] if columns_to_drop: out = out.drop(columns=columns_to_drop) @@ -315,7 +315,8 @@ def assign_phase( <= data.loc[j, "start_datetime"] < meta_row["recovery_date"] ): - data.loc[j, "name"] = f"{meta_row['site.name']}_{meta_row['campaign.name']}" + data.loc[j, "name"] = (f"{meta_row["site.name"]}_" + f"{meta_row["campaign.name"]}") j += 1 return data @@ -491,10 +492,10 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: """ df["microsec"] = df["microsec"] / 1e6 + df["microsec_formatted"] = df["microsec"].apply(lambda x: f"{x:.6f}") df["Time"] = (df["Minute"].astype(str) + ":" + - df["microsec"].astype(str)) - df["Time"] = to_datetime(df["Time"], dayfirst=True) + df["microsec_formatted"].astype(str)) df["Time"] = to_datetime(df["Time"], dayfirst=True) @@ -602,7 +603,6 @@ def fb_folder(folder_path:Path, species:str) -> DataFrame: file_path = folder_path / file df = read_csv(file_path, sep="\t") processed_df = feeding_buzz(df, species) - processed_df["deploy.name"] = file.name all_data.append(processed_df) return concat(all_data, ignore_index=True) @@ -613,8 +613,15 @@ def fb_folder(folder_path:Path, species:str) -> DataFrame: "Site B Heugh": "#5DB996", "Site C Chat": "#B0DB9C", "Site D Simone": "#E3F0AF", - "CA4": "#5EABD6", - "Walde": "#FFB4B4", + "CA4": "#FF0066", + "Walde": "#934790", +} + +season_color = { + "spring": "#C5E0B4", + "summer": "#FCF97F", + "autumn": "#ED7C2F", + "winter": "#B4C7E8", } @@ -632,7 +639,7 @@ def extract_site(df: DataFrame) -> DataFrame: The same dataframe with two additional columns. """ - df[["site.name", "campaign.name"]] = df["name"].str.split("_", expand=True) + df[["site.name", "campaign.name"]] = df["deploy.name"].str.split("_", expand=True) return df @@ -669,7 +676,7 @@ def percent_calc(data: DataFrame, time_unit: str | None = None) -> DataFrame: df["%click"] = df["DPM"] * 100 / (df["Day"] * 60) df["%DPH"] = df["DPH"] * 100 / df["Day"] df["FBR"] = df["Foraging"] * 100 / df["DPM"] - df["%buzz"] = df["Foraging"] * 100 / (df["Day"] * 60) + df["%buzzes"] = df["Foraging"] * 100 / (df["Day"] * 60) return df @@ -736,6 +743,54 @@ def year_percent(df: DataFrame, metric: str) -> None: plt.show() +def ym_percent(df: DataFrame, metric: str) -> None: + """Plot a graph with the percentage of DPM per site/month-year. + + Parameters + ---------- + df: DataFrame + All percentages grouped by site and month per year + metric: str + Type of percentage you want to show on the graph + + """ + sites = df["site.name"].unique() + n_sites = len(sites) + fig, axs = plt.subplots(n_sites, 1, figsize=(14, 2.5 * n_sites), sharex=True) + if n_sites == 1: + axs = [axs] + for i, site in enumerate(sorted(sites)): + site_data = df[df["site.name"] == site] + ax = axs[i] + bar_colors = site_data["Season"].map(season_color).fillna("gray") + ax.bar(site_data["YM"], + site_data[metric], + label=f"Site {site}", + color=bar_colors, + width=25, + ) + ax.set_title(f"{site} - Percentage of minutes postitive to detection per month") + ax.set_ylim(0,max(df[metric]) + 0.2) + ax.set_ylabel(metric) + if i != 3: + ax.set_xlabel("") + else: + ax.set_xlabel("Months") + if metric == "%buzzes": + for _, bar in enumerate(ax.patches): + bar.set_hatch("/") + legend_elements = [ + Patch(facecolor=season_color, edgecolor="black", label=season.capitalize()) + for season, season_color in season_color.items() + ] + fig.legend(handles=legend_elements, + loc="upper right", + title="Seasons", + bbox_to_anchor=(0.95, 0.95)) + fig.suptitle(f"{metric} per month", fontsize=16) + plt.show() + + def month_percent(df: DataFrame, metric: str) -> None: """Plot a graph with the percentage of minutes positive to detection per site/month. @@ -798,12 +853,13 @@ def hour_percent(df: DataFrame, metric: str) -> None: for i, site in enumerate(sorted(sites)): site_data = df[df["site.name"] == site] ax = axs[i] - ax.bar(site_data["hour"], + ax.bar(site_data["Hour"], site_data[metric], label=f"Site {site}", color=colors.get(site, "gray"), ) - ax.set_title(f"Site {site} - Percentage of minutes positive to detection per hour") + ax.set_title(f"Site {site} - " + f"Percentage of minutes positive to detection per hour") ax.set_ylim(0,max(df[metric]) + 0.2) ax.set_ylabel(metric) if i != 3: @@ -829,7 +885,7 @@ def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: Returns ------- - pd.DataFrame + DataFrame Concatenated dataframe with all files data and file column. Raises @@ -851,7 +907,7 @@ def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: raise ValueError(message) # Configuration - default_params = {"sep": ";"} + default_params = {"sep": ";", "encoding":"latin-1"} # Parameters fusion read_params = {**default_params, **kwargs} @@ -877,28 +933,102 @@ def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: return concat(all_data, ignore_index=True) -def dpm_to_dph( - df: DataFrame, - extra_columns: list | None = None, +def dpm_to_dp10m(df: DataFrame, + extra_columns: list | None = None, ) -> DataFrame: - """Create a dataframe containing the number of DPM per hour. + """From CPOD result with a line per minute (DPM) to one line per 10 minutes (DP10M). Parameters ---------- df: DataFrame - Contains every minute positive to click detection. - extra_columns: list, optional + CPOD result DataFrame, DPM. + extra_columns: list Additional columns added from df to data. Returns ------- DataFrame - Contains sum of minutes positive to detection per hour. + DPM10M Dataframe. + + """ + df = df.copy() + df["ChunkEnd"] = to_datetime(df["ChunkEnd"], dayfirst=True) + + df["Date heure"] = df["ChunkEnd"].dt.floor("10min") + + agg_dict = {"DPM": "sum"} + + if extra_columns: + for col in extra_columns: + if col in df.columns: + agg_dict[col] = "first" + else: + logger.warning(f"Column '{col}' does not exist and will be ignored.") + + return df.groupby("Date heure").agg(agg_dict).reset_index() + + +def dpm_to_dph( + df: DataFrame, + extra_columns: list | None = None, +) -> DataFrame: + """From CPOD result with a line per minute (DPM) to one line per hour (DPH). + + Parameters + ---------- + df: pd.DataFrame + CPOD result DataFrame + extra_columns: list + Additional columns added from df to data + + Returns + ------- + pd.DataFrame + DPH Dataframe. + + """ + df = df.copy() + df["ChunkEnd"] = to_datetime(df["ChunkEnd"], dayfirst=True) + + # Truncate column + df["Date heure"] = df["ChunkEnd"].dt.floor("h") + + agg_dict = {"DPM": "sum"} + + if extra_columns: + for col in extra_columns: + if col in df.columns: + agg_dict[col] = "first" + else: + logger.warning(f"Column '{col}' does not exist and will be ignored.") + + return df.groupby("Date heure").agg(agg_dict).reset_index() + + +def dpm_to_dpd( + df: DataFrame, + extra_columns: list | None = None, +) -> DataFrame: + """From CPOD result with a line per minute (DPM) to one line per day (DPD). + + Parameters + ---------- + df: pd.DataFrame + CPOD result DataFrame + extra_columns: list + Additional columns added from df to data + + Returns + ------- + pd.DataFrame + DPD Dataframe. """ - df["start_datetime"] = to_datetime(df["start_datetime"], utc=True) - df["end_datetime"] = to_datetime(df["end_datetime"], utc=True) - df["Date heure"] = df["start_datetime"].dt.floor("h") + df = df.copy() + df["ChunkEnd"] = to_datetime(df["ChunkEnd"], dayfirst=True) + + # Truncate column + df["Date heure"] = df["ChunkEnd"].dt.floor("D") agg_dict = {"DPM": "sum"} @@ -910,3 +1040,159 @@ def dpm_to_dph( logger.warning(f"Column '{col}' does not exist and will be ignored.") return df.groupby("Date heure").agg(agg_dict).reset_index() + + +def date_format(df: DataFrame, + ) -> DataFrame : + """Change the date time format of a DataFrame to "%d/%m/%Y %H:%M:%S". + + Parameters + ---------- + df: pd.DataFrame + CPOD result DataFrame + + Returns + ------- + Return the same dataframe with a different time format. + + """ + df["Date heure"] = to_datetime(df["Date heure"], format="%Y-%m-%d %H:%M:%S") + df["Date heure"] = df["Date heure"].dt.strftime("%d/%m/%Y %H:%M:%S") + + return df + + +def actual_data(df:DataFrame, + col_timestamp:str="start_datetime", + )-> DataFrame: + """Create a table with beginning and end of every deployment. + + Parameters + ---------- + col_timestamp + df: pd.DataFrame + CPOD result DataFrame + col_timestamp: str + Name of the timestamps column in raw_data (default: 'start_datetime') + + Returns + ------- + pd.DataFrame + Simple Dataframe with beginning and end columns. + + """ + df[col_timestamp] = df[col_timestamp].apply( + lambda x: strptime_from_text(x,["%Y-%m-%dT%H:%M:%S:%Z", + "%Y-%m-%dT%H:%M:%S","%d/%m/%Y %H:%M"])) + return df.groupby(["deploy.name"]).agg(Début=(col_timestamp, "first"), + Fin=(col_timestamp, "last")).reset_index() + + +def calendar(meta:DataFrame, + data:DataFrame, + )-> None: + """Produce the calendar of the given data. + + Parameters + ---------- + meta: DataFrame + metadatax file + data: DataFrame + cpod file from all sites and phases + + Returns + ------- + Return a plot of all deployments and associated data. + + """ + # format the dataframe + meta["deployment_date"] = to_datetime(meta["deployment_date"]) + meta["recovery_date"] = to_datetime(meta["recovery_date"]) + meta = meta.sort_values(["deploy.name", "deployment_date"]).reset_index(drop=True) + data = data.sort_values(["deploy.name", "Début"]).reset_index(drop=True) + df_fusion = data.merge(meta[["deploy.name", "deployment_date", "recovery_date"]], + on=["deploy.name"], how="outer") + + df_fusion["Début"] = df_fusion["Début"].fillna(df_fusion["deployment_date"]) + df_fusion["Fin"] = df_fusion["Fin"].fillna(df_fusion["deployment_date"]) + + df_fusion[["Site","Phase"]] = df_fusion["deploy.name"].str.split("_", expand=True) + df_fusion["color"] = df_fusion["Site"].map(colors) + + # Create the figure + fig, ax = plt.subplots(figsize=(14, 4)) + + sites = sorted(df_fusion["Site"].unique(), reverse=True) + site_mapping = {site: idx for idx, site in enumerate(sites)} + for _, row in df_fusion.iterrows(): + y_pos = site_mapping[row["Site"]] + ax.broken_barh( + [(row["deployment_date"], row["recovery_date"] - row["deployment_date"])], + (y_pos - 0.3, 0.6), + facecolors="#F5F5F5", + edgecolors="black", + linewidth=0.8) + + if row["Début"] != row["deployment_date"]: + ax.broken_barh( + [(row["Début"], row["Fin"] - row["Début"])], + (y_pos - 0.15, 0.3), + facecolors=row["color"], + edgecolors="black", + linewidth=0.8) + + ax.set_yticks(range(len(sites))) + ax.set_yticklabels(sites, fontsize=12) + + legend_elements = [Patch(facecolor="#F5F5F5", edgecolor="black", + label="Deployment")] + for site, color in colors.items(): + if site in sites: + legend_elements.append(Patch(facecolor=color, edgecolor="black", + label=f"{site}")) + + ax.legend(handles=legend_elements, loc="upper left", fontsize=11, frameon=True) + # Layout final + plt.xticks(fontsize=12) + plt.tight_layout() + plt.show() + + +def f_b2(df: DataFrame, species: str) -> DataFrame: + """Process a CPOD/FPOD feeding buzz detection file. + + Gives the feeding buzz duration, depending on the studied species. + + Parameters + ---------- + df: DataFrame + Path to cpod.exe feeding buzz file + species: str + Select the species to use between porpoise and Commerson's dolphin + + Returns + ------- + DataFrame + Containing all ICIs for every positive minutes to clicks + + """ + df["microsec"] = df["microsec"] / 1e6 + df["ICI"] = df["microsec"].diff() + + if species == "Marsouin": #Nuuttila et al., 2013 + df["Buzz"] = (df["ICI"].between(0, 0.01)).astype(int) + elif species == "Commerson" : + df["Buzz"] = (df["ICI"].between(0, 0.005)).astype(int) + else : + msg = "This species is not supported" + raise ValueError(msg) + + df["Minute"] = to_datetime(df["Minute"], dayfirst=False, utc=True) + f = df.groupby(["Minute"])["Buzz"].sum().reset_index() + + #df['datetime'] = to_datetime('1900-01-01') + to_timedelta(df['Minute'], unit='min') + # + to_timedelta(df['microsec'], unit='us') - to_timedelta(2, unit='D') + + f["Foraging"] = (f["Buzz"] != 0).astype(int) + + return f \ No newline at end of file From a71dd136709dc380ae9412daa3db5cdf269cdc86 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 26 Sep 2025 10:56:43 +0200 Subject: [PATCH 08/83] ruff changes --- src/post_processing/utils/fpod_utils.py | 266 ++++++++++++++---------- 1 file changed, 156 insertions(+), 110 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index fda5701..9c59fd3 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -1,13 +1,13 @@ from __future__ import annotations +import logging from pathlib import Path -from typing import TYPE_CHECKING, Any +from typing import TYPE_CHECKING import pytz import seaborn as sns from matplotlib import pyplot as plt from matplotlib.patches import Patch -from osekit.config import TIMESTAMP_FORMAT_AUDIO_FILE from osekit.utils.timestamp_utils import strftime_osmose_format, strptime_from_text from pandas import ( DataFrame, @@ -19,14 +19,11 @@ read_csv, read_excel, to_datetime, - to_timedelta, ) -from post_processing import logger from post_processing.utils.core_utils import get_coordinates, get_sun_times if TYPE_CHECKING: - import pytz @@ -182,15 +179,17 @@ def usable_data_phase( percentage_data = act_length * 100 / p_length msg = f"Percentage of usable data : {percentage_data}%" - logger.info(msg) + logging.info(msg) return percentage_data -def meta_cut_aplose(raw_data: DataFrame,metadata: DataFrame, - col_deploy_name:str="deploy.name", - col_timestamp:str="start_datetime", - col_debut:str="deployment_date", - col_fin:str="recovery_date", +def meta_cut_aplose( + raw_data: DataFrame, + metadata: DataFrame, + col_deploy_name: str = "deploy.name", + col_timestamp: str = "start_datetime", + col_debut: str = "deployment_date", + col_fin: str = "recovery_date", ) -> DataFrame: """Filter data to keep only the ones corresponding to a deployment. @@ -247,8 +246,9 @@ def meta_cut_aplose(raw_data: DataFrame,metadata: DataFrame, & dfm[col_fin].notna() ].copy() - columns_to_drop = [col for col in [col_debut, col_fin] - if col not in raw_data.columns] + columns_to_drop = [ + col for col in [col_debut, col_fin] if col not in raw_data.columns + ] if columns_to_drop: out = out.drop(columns=columns_to_drop) @@ -315,8 +315,9 @@ def assign_phase( <= data.loc[j, "start_datetime"] < meta_row["recovery_date"] ): - data.loc[j, "name"] = (f"{meta_row["site.name"]}_" - f"{meta_row["campaign.name"]}") + data.loc[j, "name"] = ( + f"{meta_row['site.name']}_{meta_row['campaign.name']}" + ) j += 1 return data @@ -426,14 +427,17 @@ def build_hour_range(dph: DataFrame) -> DataFrame: all_ranges = [] for _, row in deploy_ranges.iterrows(): hours = date_range(row["start"], row["end"], freq="h") - tmp = DataFrame({ - "deploy.name": row["deploy.name"], - "Date heure": hours, - }) + tmp = DataFrame( + { + "deploy.name": row["deploy.name"], + "Date heure": hours, + }, + ) all_ranges.append(tmp) return concat(all_ranges, ignore_index=True) + def merging_tab(meta: DataFrame, data: DataFrame) -> DataFrame: """Create a DataFrame with one line per hour between start and end dates. @@ -494,8 +498,7 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: df["microsec"] = df["microsec"] / 1e6 df["microsec_formatted"] = df["microsec"].apply(lambda x: f"{x:.6f}") - df["Time"] = (df["Minute"].astype(str) + ":" + - df["microsec_formatted"].astype(str)) + df["Time"] = df["Minute"].astype(str) + ":" + df["microsec_formatted"].astype(str) df["Time"] = to_datetime(df["Time"], dayfirst=True) @@ -505,9 +508,9 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: df["Buzz"] = 0 if species == "Marsouin": feeding_idx = df.index[df["ICI"] < 0.01] - elif species == "Commerson" : + elif species == "Commerson": feeding_idx = df.index[df["ICI"] <= 0.005] - else : + else: msg = "This species is not supported" raise ValueError(msg) @@ -525,7 +528,7 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: def assign_daytime( - df: DataFrame, + df: DataFrame, ) -> DataFrame: """Assign datetime categories to events. @@ -545,7 +548,7 @@ def assign_daytime( start = df.iloc[0]["Time"] stop = df.iloc[-1]["Time"] lat, lon = get_coordinates() - _, _,dawn,day,dusk,night = get_sun_times(start, stop, lat, lon) + _, _, dawn, day, dusk, night = get_sun_times(start, stop, lat, lon) dawn = Series(dawn, name="dawn") day = Series(day, name="day") dusk = Series(dusk, name="dusk") @@ -556,10 +559,10 @@ def assign_daytime( dpm_i = row["Time"] if notna(dpm_i): # Check if time is not NaN jour_i = jour[ - (jour["dusk"].dt.year == dpm_i.year) & - (jour["dusk"].dt.month == dpm_i.month) & - (jour["dusk"].dt.day == dpm_i.day) - ] + (jour["dusk"].dt.year == dpm_i.year) + & (jour["dusk"].dt.month == dpm_i.month) + & (jour["dusk"].dt.day == dpm_i.day) + ] if not jour_i.empty: # Ensure there"s a matching row jour_i = jour_i.iloc[0] # Extract first match if dpm_i <= jour_i["day"]: @@ -578,7 +581,7 @@ def assign_daytime( return df -def fb_folder(folder_path:Path, species:str) -> DataFrame: +def fb_folder(folder_path: Path, species: str) -> DataFrame: """Process a folder containing all CPOD/FPOD feeding buzz detection files. Apply the feeding buzz function to these files. @@ -666,12 +669,18 @@ def percent_calc(data: DataFrame, time_unit: str | None = None) -> DataFrame: group_cols.insert(0, time_unit) # Aggregate and compute metrics - df = data.groupby(group_cols).agg({ - "DPH": "sum", - "DPM": "sum", - "Day": "size", - "Foraging": "sum", - }).reset_index() + df = ( + data.groupby(group_cols) + .agg( + { + "DPH": "sum", + "DPM": "sum", + "Day": "size", + "Foraging": "sum", + }, + ) + .reset_index() + ) df["%click"] = df["DPM"] * 100 / (df["Day"] * 60) df["%DPH"] = df["DPH"] * 100 / df["Day"] @@ -691,12 +700,14 @@ def site_percent(df: DataFrame, metric: str) -> None: Type of percentage you want to show on the graph """ - ax = sns.barplot(data=df, x="site.name", - y=metric, - hue="site.name", - dodge=False, - palette=colors, - ) + ax = sns.barplot( + data=df, + x="site.name", + y=metric, + hue="site.name", + dodge=False, + palette=colors, + ) ax.set_title(f"{metric} per site") ax.set_ylabel(f"{metric}") if metric == "%buzzes": @@ -724,13 +735,14 @@ def year_percent(df: DataFrame, metric: str) -> None: for i, site in enumerate(sorted(sites)): site_data = df[df["site.name"] == site] ax = axs[i] - ax.bar(site_data["Year"], - site_data[metric], - label=f"Site {site}", - color=colors.get(site, "gray"), - ) + ax.bar( + site_data["Year"], + site_data[metric], + label=f"Site {site}", + color=colors.get(site, "gray"), + ) ax.set_title(f"{site}") - ax.set_ylim(0,max(df[metric]) + 0.2) + ax.set_ylim(0, max(df[metric]) + 0.2) ax.set_ylabel(metric) if i != 3: ax.set_xlabel("") @@ -763,14 +775,15 @@ def ym_percent(df: DataFrame, metric: str) -> None: site_data = df[df["site.name"] == site] ax = axs[i] bar_colors = site_data["Season"].map(season_color).fillna("gray") - ax.bar(site_data["YM"], - site_data[metric], - label=f"Site {site}", - color=bar_colors, - width=25, - ) + ax.bar( + site_data["YM"], + site_data[metric], + label=f"Site {site}", + color=bar_colors, + width=25, + ) ax.set_title(f"{site} - Percentage of minutes postitive to detection per month") - ax.set_ylim(0,max(df[metric]) + 0.2) + ax.set_ylim(0, max(df[metric]) + 0.2) ax.set_ylabel(metric) if i != 3: ax.set_xlabel("") @@ -783,10 +796,12 @@ def ym_percent(df: DataFrame, metric: str) -> None: Patch(facecolor=season_color, edgecolor="black", label=season.capitalize()) for season, season_color in season_color.items() ] - fig.legend(handles=legend_elements, - loc="upper right", - title="Seasons", - bbox_to_anchor=(0.95, 0.95)) + fig.legend( + handles=legend_elements, + loc="upper right", + title="Seasons", + bbox_to_anchor=(0.95, 0.95), + ) fig.suptitle(f"{metric} per month", fontsize=16) plt.show() @@ -810,19 +825,32 @@ def month_percent(df: DataFrame, metric: str) -> None: for i, site in enumerate(sorted(sites)): site_data = df[df["site.name"] == site] ax = axs[i] - ax.bar(site_data["Month"], - site_data[metric], - label=f"Site {site}", - color=colors.get(site, "gray"), - ) + ax.bar( + site_data["Month"], + site_data[metric], + label=f"Site {site}", + color=colors.get(site, "gray"), + ) ax.set_title(f"{site} - Percentage of minutes postitive to detection per month") - ax.set_ylim(0,max(df[metric]) + 0.2) + ax.set_ylim(0, max(df[metric]) + 0.2) ax.set_ylabel(metric) - ax.set_xticks([1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], - ["Jan", "Feb", "Mar", "Apr", "May","Jun", - "Jul", "Agu", "Sep", "Oct", "Nov", "Dec", - ], - ) + ax.set_xticks( + [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], + [ + "Jan", + "Feb", + "Mar", + "Apr", + "May", + "Jun", + "Jul", + "Agu", + "Sep", + "Oct", + "Nov", + "Dec", + ], + ) if i != 3: ax.set_xlabel("") else: @@ -853,14 +881,16 @@ def hour_percent(df: DataFrame, metric: str) -> None: for i, site in enumerate(sorted(sites)): site_data = df[df["site.name"] == site] ax = axs[i] - ax.bar(site_data["Hour"], - site_data[metric], - label=f"Site {site}", - color=colors.get(site, "gray"), - ) - ax.set_title(f"Site {site} - " - f"Percentage of minutes positive to detection per hour") - ax.set_ylim(0,max(df[metric]) + 0.2) + ax.bar( + site_data["Hour"], + site_data[metric], + label=f"Site {site}", + color=colors.get(site, "gray"), + ) + ax.set_title( + f"Site {site} - Percentage of minutes positive to detection per hour", + ) + ax.set_ylim(0, max(df[metric]) + 0.2) ax.set_ylabel(metric) if i != 3: ax.set_xlabel("") @@ -907,7 +937,7 @@ def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: raise ValueError(message) # Configuration - default_params = {"sep": ";", "encoding":"latin-1"} + default_params = {"sep": ";", "encoding": "latin-1"} # Parameters fusion read_params = {**default_params, **kwargs} @@ -933,8 +963,9 @@ def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: return concat(all_data, ignore_index=True) -def dpm_to_dp10m(df: DataFrame, - extra_columns: list | None = None, +def dpm_to_dp10m( + df: DataFrame, + extra_columns: list | None = None, ) -> DataFrame: """From CPOD result with a line per minute (DPM) to one line per 10 minutes (DP10M). @@ -963,7 +994,7 @@ def dpm_to_dp10m(df: DataFrame, if col in df.columns: agg_dict[col] = "first" else: - logger.warning(f"Column '{col}' does not exist and will be ignored.") + logging.warning(f"Column '{col}' does not exist and will be ignored.") return df.groupby("Date heure").agg(agg_dict).reset_index() @@ -1000,7 +1031,7 @@ def dpm_to_dph( if col in df.columns: agg_dict[col] = "first" else: - logger.warning(f"Column '{col}' does not exist and will be ignored.") + logging.warning(f"Column '{col}' does not exist and will be ignored.") return df.groupby("Date heure").agg(agg_dict).reset_index() @@ -1037,13 +1068,14 @@ def dpm_to_dpd( if col in df.columns: agg_dict[col] = "first" else: - logger.warning(f"Column '{col}' does not exist and will be ignored.") + logging.warning(f"Column '{col}' does not exist and will be ignored.") return df.groupby("Date heure").agg(agg_dict).reset_index() -def date_format(df: DataFrame, - ) -> DataFrame : +def date_format( + df: DataFrame, +) -> DataFrame: """Change the date time format of a DataFrame to "%d/%m/%Y %H:%M:%S". Parameters @@ -1062,9 +1094,10 @@ def date_format(df: DataFrame, return df -def actual_data(df:DataFrame, - col_timestamp:str="start_datetime", - )-> DataFrame: +def actual_data( + df: DataFrame, + col_timestamp: str = "start_datetime", +) -> DataFrame: """Create a table with beginning and end of every deployment. Parameters @@ -1082,15 +1115,21 @@ def actual_data(df:DataFrame, """ df[col_timestamp] = df[col_timestamp].apply( - lambda x: strptime_from_text(x,["%Y-%m-%dT%H:%M:%S:%Z", - "%Y-%m-%dT%H:%M:%S","%d/%m/%Y %H:%M"])) - return df.groupby(["deploy.name"]).agg(Début=(col_timestamp, "first"), - Fin=(col_timestamp, "last")).reset_index() + lambda x: strptime_from_text( + x, ["%Y-%m-%dT%H:%M:%S:%Z", "%Y-%m-%dT%H:%M:%S", "%d/%m/%Y %H:%M"], + ), + ) + return ( + df.groupby(["deploy.name"]) + .agg(Début=(col_timestamp, "first"), Fin=(col_timestamp, "last")) + .reset_index() + ) -def calendar(meta:DataFrame, - data:DataFrame, - )-> None: +def calendar( + meta: DataFrame, + data: DataFrame, +) -> None: """Produce the calendar of the given data. Parameters @@ -1110,13 +1149,16 @@ def calendar(meta:DataFrame, meta["recovery_date"] = to_datetime(meta["recovery_date"]) meta = meta.sort_values(["deploy.name", "deployment_date"]).reset_index(drop=True) data = data.sort_values(["deploy.name", "Début"]).reset_index(drop=True) - df_fusion = data.merge(meta[["deploy.name", "deployment_date", "recovery_date"]], - on=["deploy.name"], how="outer") + df_fusion = data.merge( + meta[["deploy.name", "deployment_date", "recovery_date"]], + on=["deploy.name"], + how="outer", + ) df_fusion["Début"] = df_fusion["Début"].fillna(df_fusion["deployment_date"]) df_fusion["Fin"] = df_fusion["Fin"].fillna(df_fusion["deployment_date"]) - df_fusion[["Site","Phase"]] = df_fusion["deploy.name"].str.split("_", expand=True) + df_fusion[["Site", "Phase"]] = df_fusion["deploy.name"].str.split("_", expand=True) df_fusion["color"] = df_fusion["Site"].map(colors) # Create the figure @@ -1131,7 +1173,8 @@ def calendar(meta:DataFrame, (y_pos - 0.3, 0.6), facecolors="#F5F5F5", edgecolors="black", - linewidth=0.8) + linewidth=0.8, + ) if row["Début"] != row["deployment_date"]: ax.broken_barh( @@ -1139,17 +1182,20 @@ def calendar(meta:DataFrame, (y_pos - 0.15, 0.3), facecolors=row["color"], edgecolors="black", - linewidth=0.8) + linewidth=0.8, + ) ax.set_yticks(range(len(sites))) ax.set_yticklabels(sites, fontsize=12) - legend_elements = [Patch(facecolor="#F5F5F5", edgecolor="black", - label="Deployment")] + legend_elements = [ + Patch(facecolor="#F5F5F5", edgecolor="black", label="Deployment"), + ] for site, color in colors.items(): if site in sites: - legend_elements.append(Patch(facecolor=color, edgecolor="black", - label=f"{site}")) + legend_elements.append( + Patch(facecolor=color, edgecolor="black", label=f"{site}"), + ) ax.legend(handles=legend_elements, loc="upper left", fontsize=11, frameon=True) # Layout final @@ -1179,20 +1225,20 @@ def f_b2(df: DataFrame, species: str) -> DataFrame: df["microsec"] = df["microsec"] / 1e6 df["ICI"] = df["microsec"].diff() - if species == "Marsouin": #Nuuttila et al., 2013 + if species == "Marsouin": # Nuuttila et al., 2013 df["Buzz"] = (df["ICI"].between(0, 0.01)).astype(int) - elif species == "Commerson" : + elif species == "Commerson": df["Buzz"] = (df["ICI"].between(0, 0.005)).astype(int) - else : + else: msg = "This species is not supported" raise ValueError(msg) df["Minute"] = to_datetime(df["Minute"], dayfirst=False, utc=True) f = df.groupby(["Minute"])["Buzz"].sum().reset_index() - #df['datetime'] = to_datetime('1900-01-01') + to_timedelta(df['Minute'], unit='min') + # df['datetime'] = to_datetime('1900-01-01') + to_timedelta(df['Minute'], unit='min') # + to_timedelta(df['microsec'], unit='us') - to_timedelta(2, unit='D') f["Foraging"] = (f["Buzz"] != 0).astype(int) - return f \ No newline at end of file + return f From c30a9deca7c1d578b4821836d2c2bcc6c4e1aaca Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 26 Sep 2025 10:58:15 +0200 Subject: [PATCH 09/83] add new usages --- user_case/user_case_CALAIS.ipynb | 95 +++++++++++++++++++++----------- 1 file changed, 62 insertions(+), 33 deletions(-) diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index c7d0ff5..ca4d0c3 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-09-25T15:14:38.565748Z", - "start_time": "2025-09-25T15:14:36.291938Z" + "end_time": "2025-09-26T08:52:15.428921Z", + "start_time": "2025-09-26T08:52:15.419187Z" } }, "source": [ @@ -25,7 +25,7 @@ "from post_processing.utils.core_utils import json2df,get_season" ], "outputs": [], - "execution_count": 1 + "execution_count": 2 }, { "metadata": {}, @@ -39,8 +39,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-09-25T15:15:16.539360Z", - "start_time": "2025-09-25T15:15:15.617231Z" + "end_time": "2025-09-26T08:52:58.615704Z", + "start_time": "2025-09-26T08:52:57.824901Z" } }, "cell_type": "code", @@ -77,28 +77,28 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-09-25T15:16:18.967295Z", - "start_time": "2025-09-25T15:15:37.397762Z" + "end_time": "2025-09-26T08:53:49.493845Z", + "start_time": "2025-09-26T08:53:06.634574Z" } }, "cell_type": "code", "source": "d_beg_end = actual_data(df_0, col_timestamp=\"ChunkEnd\")", "id": "4208969d9e509a8", "outputs": [], - "execution_count": 5 + "execution_count": 4 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-09-25T15:16:22.557433Z", - "start_time": "2025-09-25T15:16:22.552202Z" + "end_time": "2025-09-26T08:54:32.450760Z", + "start_time": "2025-09-26T08:54:32.445250Z" } }, "cell_type": "code", "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ]", "id": "597efd1d90e3d069", "outputs": [], - "execution_count": 6 + "execution_count": 5 }, { "metadata": {}, @@ -113,15 +113,44 @@ "id": "8ed339c688bdef1" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-26T08:54:37.660741Z", + "start_time": "2025-09-26T08:54:37.211161Z" + } + }, "cell_type": "code", "source": [ - "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\", extra_columns=[\"deploy.name\"])\n", + "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", "print(df_aplose.head())" ], "id": "812ed7c0c5e258e7", - "outputs": [], - "execution_count": null + "outputs": [ + { + "ename": "KeyError", + "evalue": "'Date heure'", + "output_type": "error", + "traceback": [ + "\u001B[31m---------------------------------------------------------------------------\u001B[39m", + "\u001B[31mKeyError\u001B[39m Traceback (most recent call last)", + "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:3812\u001B[39m, in \u001B[36mIndex.get_loc\u001B[39m\u001B[34m(self, key)\u001B[39m\n\u001B[32m 3811\u001B[39m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[32m-> \u001B[39m\u001B[32m3812\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43m_engine\u001B[49m\u001B[43m.\u001B[49m\u001B[43mget_loc\u001B[49m\u001B[43m(\u001B[49m\u001B[43mcasted_key\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 3813\u001B[39m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mKeyError\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m err:\n", + "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/index.pyx:167\u001B[39m, in \u001B[36mpandas._libs.index.IndexEngine.get_loc\u001B[39m\u001B[34m()\u001B[39m\n", + "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/index.pyx:196\u001B[39m, in \u001B[36mpandas._libs.index.IndexEngine.get_loc\u001B[39m\u001B[34m()\u001B[39m\n", + "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/hashtable_class_helper.pxi:7088\u001B[39m, in \u001B[36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001B[39m\u001B[34m()\u001B[39m\n", + "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/hashtable_class_helper.pxi:7096\u001B[39m, in \u001B[36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001B[39m\u001B[34m()\u001B[39m\n", + "\u001B[31mKeyError\u001B[39m: 'Date heure'", + "\nThe above exception was the direct cause of the following exception:\n", + "\u001B[31mKeyError\u001B[39m Traceback (most recent call last)", + "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[6]\u001B[39m\u001B[32m, line 1\u001B[39m\n\u001B[32m----> \u001B[39m\u001B[32m1\u001B[39m df_aplose = \u001B[43mcpod2aplose\u001B[49m\u001B[43m(\u001B[49m\u001B[43mdf_1\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mpytz\u001B[49m\u001B[43m.\u001B[49m\u001B[43mutc\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mSite D Simone\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mCommerson\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\n\u001B[32m 2\u001B[39m \u001B[38;5;28mprint\u001B[39m(df_aplose.head())\n", + "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\utils\\fpod_utils.py:122\u001B[39m, in \u001B[36mcpod2aplose\u001B[39m\u001B[34m(df, tz, dataset_name, annotation, bin_size, extra_columns)\u001B[39m\n\u001B[32m 119\u001B[39m \u001B[38;5;28;01mfor\u001B[39;00m deploy_name \u001B[38;5;129;01min\u001B[39;00m df[\u001B[33m\"\u001B[39m\u001B[33mdeploy.name\u001B[39m\u001B[33m\"\u001B[39m].unique():\n\u001B[32m 120\u001B[39m df_deploy = df[df[\u001B[33m\"\u001B[39m\u001B[33mdeploy.name\u001B[39m\u001B[33m\"\u001B[39m] == deploy_name].copy()\n\u001B[32m--> \u001B[39m\u001B[32m122\u001B[39m result = \u001B[43mfpod2aplose\u001B[49m\u001B[43m(\u001B[49m\u001B[43mdf_deploy\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mtz\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mdataset_name\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mannotation\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbin_size\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 124\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m extra_columns:\n\u001B[32m 125\u001B[39m \u001B[38;5;28;01mfor\u001B[39;00m col \u001B[38;5;129;01min\u001B[39;00m extra_columns:\n", + "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\utils\\fpod_utils.py:61\u001B[39m, in \u001B[36mfpod2aplose\u001B[39m\u001B[34m(df, tz, dataset_name, annotation, bin_size)\u001B[39m\n\u001B[32m 30\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mfpod2aplose\u001B[39m(\n\u001B[32m 31\u001B[39m df: DataFrame,\n\u001B[32m 32\u001B[39m tz: pytz.timezone,\n\u001B[32m (...)\u001B[39m\u001B[32m 35\u001B[39m bin_size: \u001B[38;5;28mint\u001B[39m = \u001B[32m60\u001B[39m,\n\u001B[32m 36\u001B[39m ) -> DataFrame:\n\u001B[32m 37\u001B[39m \u001B[38;5;250m \u001B[39m\u001B[33;03m\"\"\"Format FPOD DataFrame to match APLOSE format.\u001B[39;00m\n\u001B[32m 38\u001B[39m \n\u001B[32m 39\u001B[39m \u001B[33;03m Parameters\u001B[39;00m\n\u001B[32m (...)\u001B[39m\u001B[32m 56\u001B[39m \n\u001B[32m 57\u001B[39m \u001B[33;03m \"\"\"\u001B[39;00m\n\u001B[32m 58\u001B[39m fpod_start_dt = \u001B[38;5;28msorted\u001B[39m(\n\u001B[32m 59\u001B[39m [\n\u001B[32m 60\u001B[39m tz.localize(strptime_from_text(entry, \u001B[33m\"\u001B[39m\u001B[38;5;132;01m%d\u001B[39;00m\u001B[33m/\u001B[39m\u001B[33m%\u001B[39m\u001B[33mm/\u001B[39m\u001B[33m%\u001B[39m\u001B[33mY \u001B[39m\u001B[33m%\u001B[39m\u001B[33mH:\u001B[39m\u001B[33m%\u001B[39m\u001B[33mM\u001B[39m\u001B[33m\"\u001B[39m))\n\u001B[32m---> \u001B[39m\u001B[32m61\u001B[39m \u001B[38;5;28;01mfor\u001B[39;00m entry \u001B[38;5;129;01min\u001B[39;00m \u001B[43mdf\u001B[49m\u001B[43m[\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mDate heure\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m]\u001B[49m\n\u001B[32m 62\u001B[39m ],\n\u001B[32m 63\u001B[39m )\n\u001B[32m 65\u001B[39m fpod_end_dt = \u001B[38;5;28msorted\u001B[39m(\n\u001B[32m 66\u001B[39m [entry + Timedelta(seconds=bin_size) \u001B[38;5;28;01mfor\u001B[39;00m entry \u001B[38;5;129;01min\u001B[39;00m fpod_start_dt],\n\u001B[32m 67\u001B[39m )\n\u001B[32m 69\u001B[39m data = {\n\u001B[32m 70\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mdataset\u001B[39m\u001B[33m\"\u001B[39m: [dataset_name] * \u001B[38;5;28mlen\u001B[39m(df),\n\u001B[32m 71\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mfilename\u001B[39m\u001B[33m\"\u001B[39m: [\u001B[33m\"\u001B[39m\u001B[33m\"\u001B[39m] * \u001B[38;5;28mlen\u001B[39m(df),\n\u001B[32m (...)\u001B[39m\u001B[32m 80\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mis_box\u001B[39m\u001B[33m\"\u001B[39m: [\u001B[32m0\u001B[39m] * \u001B[38;5;28mlen\u001B[39m(df),\n\u001B[32m 81\u001B[39m }\n", + "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\.venv\\Lib\\site-packages\\pandas\\core\\frame.py:4107\u001B[39m, in \u001B[36mDataFrame.__getitem__\u001B[39m\u001B[34m(self, key)\u001B[39m\n\u001B[32m 4105\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m.columns.nlevels > \u001B[32m1\u001B[39m:\n\u001B[32m 4106\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m._getitem_multilevel(key)\n\u001B[32m-> \u001B[39m\u001B[32m4107\u001B[39m indexer = \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43mcolumns\u001B[49m\u001B[43m.\u001B[49m\u001B[43mget_loc\u001B[49m\u001B[43m(\u001B[49m\u001B[43mkey\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 4108\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m is_integer(indexer):\n\u001B[32m 4109\u001B[39m indexer = [indexer]\n", + "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:3819\u001B[39m, in \u001B[36mIndex.get_loc\u001B[39m\u001B[34m(self, key)\u001B[39m\n\u001B[32m 3814\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(casted_key, \u001B[38;5;28mslice\u001B[39m) \u001B[38;5;129;01mor\u001B[39;00m (\n\u001B[32m 3815\u001B[39m \u001B[38;5;28misinstance\u001B[39m(casted_key, abc.Iterable)\n\u001B[32m 3816\u001B[39m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28many\u001B[39m(\u001B[38;5;28misinstance\u001B[39m(x, \u001B[38;5;28mslice\u001B[39m) \u001B[38;5;28;01mfor\u001B[39;00m x \u001B[38;5;129;01min\u001B[39;00m casted_key)\n\u001B[32m 3817\u001B[39m ):\n\u001B[32m 3818\u001B[39m \u001B[38;5;28;01mraise\u001B[39;00m InvalidIndexError(key)\n\u001B[32m-> \u001B[39m\u001B[32m3819\u001B[39m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mKeyError\u001B[39;00m(key) \u001B[38;5;28;01mfrom\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34;01merr\u001B[39;00m\n\u001B[32m 3820\u001B[39m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mTypeError\u001B[39;00m:\n\u001B[32m 3821\u001B[39m \u001B[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001B[39;00m\n\u001B[32m 3822\u001B[39m \u001B[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001B[39;00m\n\u001B[32m 3823\u001B[39m \u001B[38;5;66;03m# the TypeError.\u001B[39;00m\n\u001B[32m 3824\u001B[39m \u001B[38;5;28mself\u001B[39m._check_indexing_error(key)\n", + "\u001B[31mKeyError\u001B[39m: 'Date heure'" + ] + } + ], + "execution_count": 6 }, { "metadata": {}, @@ -132,13 +161,13 @@ { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", "print(df_aplose.head())" ], - "id": "9b632673397a184" + "id": "9b632673397a184", + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -179,14 +208,14 @@ { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", "data_list = DataAplose.from_yaml(file=yaml_file)\n", "print(data_list.df.head())" ], - "id": "6837593897111b0a" + "id": "6837593897111b0a", + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -197,35 +226,35 @@ { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "dp10 = dpm_to_dp10m(data_list.df, extra_columns=[\"deploy.name\"])\n", "dp10 = date_format(dp10)" ], - "id": "a27ceea1fefdd298" + "id": "a27ceea1fefdd298", + "outputs": [], + "execution_count": null }, { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])\n", "dph = date_format(dph)" ], - "id": "6cc79b2aeef076ed" + "id": "6cc79b2aeef076ed", + "outputs": [], + "execution_count": null }, { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "dpd = dpm_to_dpd(data_list.df, extra_columns=[\"deploy.name\"])\n", "dpd = date_format(dpd)" ], - "id": "e6655c36fc1851c7" + "id": "e6655c36fc1851c7", + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -248,13 +277,13 @@ { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "d_hour = build_hour_range(d_beg_end)\n", "d_tot = dph.merge(fb, on=\"start_datetime\", how=\"left\")" ], - "id": "b00c8f1e2210ea7" + "id": "b00c8f1e2210ea7", + "outputs": [], + "execution_count": null }, { "metadata": {}, From d89604c20f4e4dbd25c195799b8a85c615496d03 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 30 Sep 2025 16:54:05 +0200 Subject: [PATCH 10/83] correct some functions --- src/post_processing/utils/fpod_utils.py | 270 +++++++++++------------- 1 file changed, 122 insertions(+), 148 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 9c59fd3..c132cc5 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -1,3 +1,5 @@ +"""FPOD/ CPOD processing functions.""" + from __future__ import annotations import logging @@ -11,7 +13,6 @@ from osekit.utils.timestamp_utils import strftime_osmose_format, strptime_from_text from pandas import ( DataFrame, - Series, Timedelta, concat, date_range, @@ -19,6 +20,7 @@ read_csv, read_excel, to_datetime, + to_timedelta, ) from post_processing.utils.core_utils import get_coordinates, get_sun_times @@ -26,6 +28,27 @@ if TYPE_CHECKING: import pytz +logger = logging.getLogger(__name__) +site_colors = { + "Site A Haute": "#118B50", + "Site B Heugh": "#5DB996", + "Site C Chat": "#B0DB9C", + "Site D Simone": "#E3F0AF", + "CA4": "#FF0066", + "Walde": "#934790", + "Point C": "#932F67", + "Point D": "#D92C54", + "Point E": "#DDDEAB", + "Point F": "#8ABB6C", + "Point G": "#456882", +} + +season_color = { + "spring": "#C5E0B4", + "summer": "#FCF97F", + "autumn": "#ED7C2F", + "winter": "#B4C7E8", +} def fpod2aplose( df: DataFrame, @@ -58,7 +81,7 @@ def fpod2aplose( fpod_start_dt = sorted( [ tz.localize(strptime_from_text(entry, "%d/%m/%Y %H:%M")) - for entry in df["Date heure"] + for entry in df["ChunkEnd"] ], ) @@ -79,6 +102,8 @@ def fpod2aplose( "end_datetime": [strftime_osmose_format(entry) for entry in fpod_end_dt], "is_box": [0] * len(df), } + if "deploy.name" in df.columns: + data["deploy.name"] = df["deploy.name"] return DataFrame(data) @@ -179,17 +204,14 @@ def usable_data_phase( percentage_data = act_length * 100 / p_length msg = f"Percentage of usable data : {percentage_data}%" - logging.info(msg) + logger.info(msg) return percentage_data def meta_cut_aplose( raw_data: DataFrame, metadata: DataFrame, - col_deploy_name: str = "deploy.name", - col_timestamp: str = "start_datetime", - col_debut: str = "deployment_date", - col_fin: str = "recovery_date", + column_names: dict[str, str] | None = None, ) -> DataFrame: """Filter data to keep only the ones corresponding to a deployment. @@ -199,14 +221,10 @@ def meta_cut_aplose( Dataframe containing deploy.name et timestamp metadata : DataFrame Metadata containing deploy.name, deployment_date, recovery_date - col_deploy_name : str - Name of the deployment name column (default: 'deploy.name') - col_timestamp : str - Name of the timestamps column in raw_data (default: 'start_datetime') - col_debut : str - Name of the deployment column in metadata (default: 'deployment_date') - col_fin : str - Name of the recovery column in metadata (default: 'recovery_date') + column_names : dict[str, str], optional + Dictionary with column names. Keys: 'deploy_name', 'timestamp', + 'deployment_date', 'recovery_date'. If None, uses defaults. + Returns ------- @@ -214,8 +232,24 @@ def meta_cut_aplose( Filtered data containing only rows in deployment periods """ + defaults = { + "deploy_name": "deploy.name", + "timestamp": "start_datetime", + "deployment_date": "deployment_date", + "recovery_date": "recovery_date", + } + + # Merge with user-provided names + cols = {**defaults, **(column_names or {})} + + col_deploy_name = cols["deploy_name"] + col_timestamp = cols["timestamp"] + col_debut = cols["deployment_date"] + col_fin = cols["recovery_date"] + required_raw = [col_deploy_name, col_timestamp] required_meta = [col_deploy_name, col_debut, col_fin] + for col in required_raw: if col not in raw_data.columns: msg = f"'{col}' not found in raw_data" @@ -400,15 +434,17 @@ def generate_hourly_detections(meta: DataFrame, site: str) -> DataFrame: return DataFrame(records) -def build_hour_range(dph: DataFrame) -> DataFrame: +def build_range(df: DataFrame, fr:str="h") -> DataFrame: """Create a DataFrame with one line per hour between start and end dates. Keep the number of detections per hour between these dates. Parameters ---------- - dph: pd.DataFrame + df: pd.DataFrame Metadata dataframe with deployments information (previously exported as json) + fr:str + Frequency of the range of detections. Returns ------- @@ -416,21 +452,18 @@ def build_hour_range(dph: DataFrame) -> DataFrame: A full period of time with positive and negative hours to detections. """ - dph["Date heure"] = to_datetime(dph["Date heure"], dayfirst=True) - - deploy_ranges = ( - dph.groupby("deploy.name")["Date heure"] - .agg(start="min", end="max") - .reset_index() - ) + df["Début"] = to_datetime(df["Début"], utc=True) + df["Début"] = df["Début"].dt.floor("h") + df["Fin"] = to_datetime(df["Fin"], utc=True) + df["Fin"] = df["Fin"].dt.floor("h") all_ranges = [] - for _, row in deploy_ranges.iterrows(): - hours = date_range(row["start"], row["end"], freq="h") + for _, row in df.iterrows(): + hours = date_range(row["Début"], row["Fin"], freq=fr) tmp = DataFrame( { "deploy.name": row["deploy.name"], - "Date heure": hours, + "start_datetime": hours, }, ) all_ranges.append(tmp) @@ -496,30 +529,26 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: """ df["microsec"] = df["microsec"] / 1e6 - df["microsec_formatted"] = df["microsec"].apply(lambda x: f"{x:.6f}") - - df["Time"] = df["Minute"].astype(str) + ":" + df["microsec_formatted"].astype(str) - - df["Time"] = to_datetime(df["Time"], dayfirst=True) - - df = df.sort_values(by="Time").reset_index(drop=True) - df["ICI"] = df["Time"].diff().dt.total_seconds() + df["ICI"] = df["microsec"].diff() - df["Buzz"] = 0 - if species == "Marsouin": - feeding_idx = df.index[df["ICI"] < 0.01] - elif species == "Commerson": - feeding_idx = df.index[df["ICI"] <= 0.005] + if species == "Marsouin": # Nuuttila et al., 2013 + df["Buzz"] = (df["ICI"].between(0, 0.01)).astype(int) + elif species == "Commerson": # Reyes Reyes et al., 2015 + df["Buzz"] = (df["ICI"].between(0, 0.005)).astype(int) else: msg = "This species is not supported" raise ValueError(msg) - df.loc[feeding_idx, "Buzz"] = 1 - df.loc[feeding_idx - 1, "Buzz"] = 1 - df.loc[df.index < 0, "Buzz"] = 0 + try: + df["Minute"].astype(int) + df["datetime"] = (to_datetime("1900-01-01") + + to_timedelta(df["Minute"], unit="min") + + to_timedelta(df["microsec"], unit="us") - + to_timedelta(2, unit="D")) + df["start_datetime"] = df["datetime"].dt.floor("min") + except (ValueError, TypeError): + df["start_datetime"] = to_datetime(df["Minute"], dayfirst=True) - df["start_datetime"] = df["Time"].dt.floor("min") - df["start_datetime"] = to_datetime(df["start_datetime"], dayfirst=False, utc=True) f = df.groupby(["start_datetime"])["Buzz"].sum().reset_index() f["Foraging"] = (f["Buzz"] != 0).astype(int) @@ -530,7 +559,7 @@ def feeding_buzz(df: DataFrame, species: str) -> DataFrame: def assign_daytime( df: DataFrame, ) -> DataFrame: - """Assign datetime categories to events. + """Assign datetime categories to temporal events. Categorize daytime of the detection (among 4 categories). @@ -545,38 +574,35 @@ def assign_daytime( The same dataframe with the column daytime. """ - start = df.iloc[0]["Time"] - stop = df.iloc[-1]["Time"] + df["start_datetime"] = to_datetime(df["start_datetime"], utc=True) + start = df["start_datetime"].min() + stop = df["start_datetime"].max() lat, lon = get_coordinates() - _, _, dawn, day, dusk, night = get_sun_times(start, stop, lat, lon) - dawn = Series(dawn, name="dawn") - day = Series(day, name="day") - dusk = Series(dusk, name="dusk") - night = Series(night, name="night") - jour = concat([day, night, dawn, dusk], axis=1) + sunrise, sunset = get_sun_times(start, stop, lat, lon) + + sun_times = DataFrame( + { "date": date_range(start, stop, freq="D"), + "sunrise": [Timedelta(h, "hours") for h in sunrise], + "sunset": [Timedelta(h, "hours") for h in sunset], + }) + + sun_times["sunrise"] = sun_times["date"].dt.floor("D") + sun_times["sunrise"] + sun_times["sunset"] = sun_times["date"].dt.floor("D") + sun_times["sunset"] for i, row in df.iterrows(): - dpm_i = row["Time"] + dpm_i = row["start_datetime"] if notna(dpm_i): # Check if time is not NaN - jour_i = jour[ - (jour["dusk"].dt.year == dpm_i.year) - & (jour["dusk"].dt.month == dpm_i.month) - & (jour["dusk"].dt.day == dpm_i.day) - ] - if not jour_i.empty: # Ensure there"s a matching row + jour_i = sun_times[ + (sun_times["sunrise"].dt.year == dpm_i.year) + & (sun_times["sunrise"].dt.month == dpm_i.month) + & (sun_times["sunrise"].dt.day == dpm_i.day) + ] + if not jour_i.empty: # Ensure there's a matching row jour_i = jour_i.iloc[0] # Extract first match - if dpm_i <= jour_i["day"]: - df.loc[i, "REGIME"] = 1 - elif dpm_i < jour_i["dawn"]: - df.loc[i, "REGIME"] = 2 - elif dpm_i < jour_i["dusk"]: - df.loc[i, "REGIME"] = 3 - elif dpm_i > jour_i["night"]: + if (dpm_i <= jour_i["sunrise"]) | (dpm_i > jour_i["sunset"]): df.loc[i, "REGIME"] = 1 - elif dpm_i > jour_i["dusk"]: - df.loc[i, "REGIME"] = 4 else: - df.loc[i, "REGIME"] = 1 + df.loc[i, "REGIME"] = 2 return df @@ -611,23 +637,6 @@ def fb_folder(folder_path: Path, species: str) -> DataFrame: return concat(all_data, ignore_index=True) -colors = { - "Site A Haute": "#118B50", - "Site B Heugh": "#5DB996", - "Site C Chat": "#B0DB9C", - "Site D Simone": "#E3F0AF", - "CA4": "#FF0066", - "Walde": "#934790", -} - -season_color = { - "spring": "#C5E0B4", - "summer": "#FCF97F", - "autumn": "#ED7C2F", - "winter": "#B4C7E8", -} - - def extract_site(df: DataFrame) -> DataFrame: """Create new columns: site.name and campaign.name, in order to match the metadata. @@ -706,7 +715,7 @@ def site_percent(df: DataFrame, metric: str) -> None: y=metric, hue="site.name", dodge=False, - palette=colors, + palette=site_colors, ) ax.set_title(f"{metric} per site") ax.set_ylabel(f"{metric}") @@ -739,7 +748,7 @@ def year_percent(df: DataFrame, metric: str) -> None: site_data["Year"], site_data[metric], label=f"Site {site}", - color=colors.get(site, "gray"), + color=site_colors.get(site, "gray"), ) ax.set_title(f"{site}") ax.set_ylim(0, max(df[metric]) + 0.2) @@ -793,8 +802,8 @@ def ym_percent(df: DataFrame, metric: str) -> None: for _, bar in enumerate(ax.patches): bar.set_hatch("/") legend_elements = [ - Patch(facecolor=season_color, edgecolor="black", label=season.capitalize()) - for season, season_color in season_color.items() + Patch(facecolor=col, edgecolor="black", label=season.capitalize()) + for season, col in season_color.items() ] fig.legend( handles=legend_elements, @@ -829,7 +838,7 @@ def month_percent(df: DataFrame, metric: str) -> None: site_data["Month"], site_data[metric], label=f"Site {site}", - color=colors.get(site, "gray"), + color=site_colors.get(site, "gray"), ) ax.set_title(f"{site} - Percentage of minutes postitive to detection per month") ax.set_ylim(0, max(df[metric]) + 0.2) @@ -885,7 +894,7 @@ def hour_percent(df: DataFrame, metric: str) -> None: site_data["Hour"], site_data[metric], label=f"Site {site}", - color=colors.get(site, "gray"), + color=site_colors.get(site, "gray"), ) ax.set_title( f"Site {site} - Percentage of minutes positive to detection per hour", @@ -903,7 +912,7 @@ def hour_percent(df: DataFrame, metric: str) -> None: plt.show() -def csv_folder(folder_path: str | Path, **kwargs) -> DataFrame: +def csv_folder(folder_path: str | Path, **kwargs: str) -> DataFrame: """Process a folder containing data files and concatenate them. Parameters @@ -983,9 +992,10 @@ def dpm_to_dp10m( """ df = df.copy() - df["ChunkEnd"] = to_datetime(df["ChunkEnd"], dayfirst=True) + df["DPM"] = 1 + df["start_datetime"] = to_datetime(df["start_datetime"], dayfirst=True) - df["Date heure"] = df["ChunkEnd"].dt.floor("10min") + df["start_datetime"] = df["start_datetime"].dt.floor("10min") agg_dict = {"DPM": "sum"} @@ -994,9 +1004,9 @@ def dpm_to_dp10m( if col in df.columns: agg_dict[col] = "first" else: - logging.warning(f"Column '{col}' does not exist and will be ignored.") + logger.warning(" '%s' does not exist and will be ignored.", col) - return df.groupby("Date heure").agg(agg_dict).reset_index() + return df.groupby("start_datetime").agg(agg_dict).reset_index() def dpm_to_dph( @@ -1019,10 +1029,11 @@ def dpm_to_dph( """ df = df.copy() - df["ChunkEnd"] = to_datetime(df["ChunkEnd"], dayfirst=True) + df["DPM"] = 1 + df["start_datetime"] = to_datetime(df["start_datetime"], dayfirst=True) # Truncate column - df["Date heure"] = df["ChunkEnd"].dt.floor("h") + df["start_datetime"] = df["start_datetime"].dt.floor("h") agg_dict = {"DPM": "sum"} @@ -1031,9 +1042,9 @@ def dpm_to_dph( if col in df.columns: agg_dict[col] = "first" else: - logging.warning(f"Column '{col}' does not exist and will be ignored.") + logger.warning("Column '%s' does not exist and will be ignored.", col) - return df.groupby("Date heure").agg(agg_dict).reset_index() + return df.groupby("start_datetime").agg(agg_dict).reset_index() def dpm_to_dpd( @@ -1056,10 +1067,11 @@ def dpm_to_dpd( """ df = df.copy() - df["ChunkEnd"] = to_datetime(df["ChunkEnd"], dayfirst=True) + df["DPM"] = 1 + df["start_datetime"] = to_datetime(df["start_datetime"], dayfirst=True) # Truncate column - df["Date heure"] = df["ChunkEnd"].dt.floor("D") + df["start_datetime"] = df["start_datetime"].dt.floor("D") agg_dict = {"DPM": "sum"} @@ -1068,9 +1080,9 @@ def dpm_to_dpd( if col in df.columns: agg_dict[col] = "first" else: - logging.warning(f"Column '{col}' does not exist and will be ignored.") + logger.warning(" '%s' does not exist and will be ignored.", col) - return df.groupby("Date heure").agg(agg_dict).reset_index() + return df.groupby("start_datetime").agg(agg_dict).reset_index() def date_format( @@ -1114,6 +1126,7 @@ def actual_data( Simple Dataframe with beginning and end columns. """ + df = df.copy() df[col_timestamp] = df[col_timestamp].apply( lambda x: strptime_from_text( x, ["%Y-%m-%dT%H:%M:%S:%Z", "%Y-%m-%dT%H:%M:%S", "%d/%m/%Y %H:%M"], @@ -1159,7 +1172,7 @@ def calendar( df_fusion["Fin"] = df_fusion["Fin"].fillna(df_fusion["deployment_date"]) df_fusion[["Site", "Phase"]] = df_fusion["deploy.name"].str.split("_", expand=True) - df_fusion["color"] = df_fusion["Site"].map(colors) + df_fusion["color"] = df_fusion["Site"].map(site_colors) # Create the figure fig, ax = plt.subplots(figsize=(14, 4)) @@ -1191,7 +1204,7 @@ def calendar( legend_elements = [ Patch(facecolor="#F5F5F5", edgecolor="black", label="Deployment"), ] - for site, color in colors.items(): + for site, color in site_colors.items(): if site in sites: legend_elements.append( Patch(facecolor=color, edgecolor="black", label=f"{site}"), @@ -1203,42 +1216,3 @@ def calendar( plt.tight_layout() plt.show() - -def f_b2(df: DataFrame, species: str) -> DataFrame: - """Process a CPOD/FPOD feeding buzz detection file. - - Gives the feeding buzz duration, depending on the studied species. - - Parameters - ---------- - df: DataFrame - Path to cpod.exe feeding buzz file - species: str - Select the species to use between porpoise and Commerson's dolphin - - Returns - ------- - DataFrame - Containing all ICIs for every positive minutes to clicks - - """ - df["microsec"] = df["microsec"] / 1e6 - df["ICI"] = df["microsec"].diff() - - if species == "Marsouin": # Nuuttila et al., 2013 - df["Buzz"] = (df["ICI"].between(0, 0.01)).astype(int) - elif species == "Commerson": - df["Buzz"] = (df["ICI"].between(0, 0.005)).astype(int) - else: - msg = "This species is not supported" - raise ValueError(msg) - - df["Minute"] = to_datetime(df["Minute"], dayfirst=False, utc=True) - f = df.groupby(["Minute"])["Buzz"].sum().reset_index() - - # df['datetime'] = to_datetime('1900-01-01') + to_timedelta(df['Minute'], unit='min') - # + to_timedelta(df['microsec'], unit='us') - to_timedelta(2, unit='D') - - f["Foraging"] = (f["Buzz"] != 0).astype(int) - - return f From 5bddac0eb1ef236fc10191c1989a1f15b3d3b651 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 30 Sep 2025 16:54:32 +0200 Subject: [PATCH 11/83] add details --- user_case/user_case_CALAIS.ipynb | 483 ++++++++++++++++++++++--------- 1 file changed, 347 insertions(+), 136 deletions(-) diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index ca4d0c3..4bea267 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-09-26T08:52:15.428921Z", - "start_time": "2025-09-26T08:52:15.419187Z" + "end_time": "2025-09-29T15:38:07.683846Z", + "start_time": "2025-09-29T15:38:05.621538Z" } }, "source": [ @@ -21,11 +21,11 @@ ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import cpod2aplose, fpod2aplose, dpm_to_dp10m, dpm_to_dph, dpm_to_dpd, fb_folder,csv_folder, meta_cut_aplose, date_format,extract_site,percent_calc,site_percent, year_percent, ym_percent, month_percent, hour_percent, actual_data, build_hour_range\n", + "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose, dpm_to_dp10m, dpm_to_dph, dpm_to_dpd,fb_folder, build_range, extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent\n", "from post_processing.utils.core_utils import json2df,get_season" ], "outputs": [], - "execution_count": 2 + "execution_count": 1 }, { "metadata": {}, @@ -39,13 +39,13 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-09-26T08:52:58.615704Z", - "start_time": "2025-09-26T08:52:57.824901Z" + "end_time": "2025-09-29T15:15:34.902195Z", + "start_time": "2025-09-29T15:15:34.168693Z" } }, "cell_type": "code", "source": [ - "data = csv_folder(r\"U:\\D\")\n", + "data = csv_folder(r\"U:\\Cetiroise\")\n", "print(data.head())\n", "\n", "df_0 = data.dropna()" @@ -56,42 +56,42 @@ "name": "stdout", "output_type": "stream", "text": [ - " File ChunkEnd DPM Nall MinsOn \\\n", - "0 POD3042 file01.CP3 21/10/2019 12:11 0 0 0 \n", - "1 POD3042 file01.CP3 21/10/2019 12:12 0 0 0 \n", - "2 POD3042 file01.CP3 21/10/2019 12:13 0 0 0 \n", - "3 POD3042 file01.CP3 21/10/2019 12:14 0 0 0 \n", - "4 POD3042 file01.CP3 21/10/2019 12:15 0 0 0 \n", + " File podN ChunkEnd \\\n", + "0 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:34 \n", + "1 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:35 \n", + "2 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:36 \n", + "3 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 22:40 \n", + "4 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 24/02/2023 15:32 \n", "\n", - " deploy.name \n", - "0 Site D Simone_Phase1 \n", - "1 Site D Simone_Phase1 \n", - "2 Site D Simone_Phase1 \n", - "3 Site D Simone_Phase1 \n", - "4 Site D Simone_Phase1 \n" + " Minute DPM MinsOn deploy.name \n", + "0 64748494 1 1 Point C_Phase 4 \n", + "1 64748495 1 1 Point C_Phase 4 \n", + "2 64748496 1 1 Point C_Phase 4 \n", + "3 64749520 1 1 Point C_Phase 4 \n", + "4 64773572 1 1 Point C_Phase 4 \n" ] } ], - "execution_count": 3 + "execution_count": 2 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-09-26T08:53:49.493845Z", - "start_time": "2025-09-26T08:53:06.634574Z" + "end_time": "2025-09-29T15:15:37.726484Z", + "start_time": "2025-09-29T15:15:37.563404Z" } }, "cell_type": "code", "source": "d_beg_end = actual_data(df_0, col_timestamp=\"ChunkEnd\")", "id": "4208969d9e509a8", "outputs": [], - "execution_count": 4 + "execution_count": 3 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-09-26T08:54:32.450760Z", - "start_time": "2025-09-26T08:54:32.445250Z" + "end_time": "2025-09-29T15:15:47.105610Z", + "start_time": "2025-09-29T15:15:47.101813Z" } }, "cell_type": "code", @@ -113,44 +113,15 @@ "id": "8ed339c688bdef1" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-26T08:54:37.660741Z", - "start_time": "2025-09-26T08:54:37.211161Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", "print(df_aplose.head())" ], "id": "812ed7c0c5e258e7", - "outputs": [ - { - "ename": "KeyError", - "evalue": "'Date heure'", - "output_type": "error", - "traceback": [ - "\u001B[31m---------------------------------------------------------------------------\u001B[39m", - "\u001B[31mKeyError\u001B[39m Traceback (most recent call last)", - "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:3812\u001B[39m, in \u001B[36mIndex.get_loc\u001B[39m\u001B[34m(self, key)\u001B[39m\n\u001B[32m 3811\u001B[39m \u001B[38;5;28;01mtry\u001B[39;00m:\n\u001B[32m-> \u001B[39m\u001B[32m3812\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43m_engine\u001B[49m\u001B[43m.\u001B[49m\u001B[43mget_loc\u001B[49m\u001B[43m(\u001B[49m\u001B[43mcasted_key\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 3813\u001B[39m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mKeyError\u001B[39;00m \u001B[38;5;28;01mas\u001B[39;00m err:\n", - "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/index.pyx:167\u001B[39m, in \u001B[36mpandas._libs.index.IndexEngine.get_loc\u001B[39m\u001B[34m()\u001B[39m\n", - "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/index.pyx:196\u001B[39m, in \u001B[36mpandas._libs.index.IndexEngine.get_loc\u001B[39m\u001B[34m()\u001B[39m\n", - "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/hashtable_class_helper.pxi:7088\u001B[39m, in \u001B[36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001B[39m\u001B[34m()\u001B[39m\n", - "\u001B[36mFile \u001B[39m\u001B[32mpandas/_libs/hashtable_class_helper.pxi:7096\u001B[39m, in \u001B[36mpandas._libs.hashtable.PyObjectHashTable.get_item\u001B[39m\u001B[34m()\u001B[39m\n", - "\u001B[31mKeyError\u001B[39m: 'Date heure'", - "\nThe above exception was the direct cause of the following exception:\n", - "\u001B[31mKeyError\u001B[39m Traceback (most recent call last)", - "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[6]\u001B[39m\u001B[32m, line 1\u001B[39m\n\u001B[32m----> \u001B[39m\u001B[32m1\u001B[39m df_aplose = \u001B[43mcpod2aplose\u001B[49m\u001B[43m(\u001B[49m\u001B[43mdf_1\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mpytz\u001B[49m\u001B[43m.\u001B[49m\u001B[43mutc\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mSite D Simone\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mCommerson\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m)\u001B[49m\n\u001B[32m 2\u001B[39m \u001B[38;5;28mprint\u001B[39m(df_aplose.head())\n", - "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\utils\\fpod_utils.py:122\u001B[39m, in \u001B[36mcpod2aplose\u001B[39m\u001B[34m(df, tz, dataset_name, annotation, bin_size, extra_columns)\u001B[39m\n\u001B[32m 119\u001B[39m \u001B[38;5;28;01mfor\u001B[39;00m deploy_name \u001B[38;5;129;01min\u001B[39;00m df[\u001B[33m\"\u001B[39m\u001B[33mdeploy.name\u001B[39m\u001B[33m\"\u001B[39m].unique():\n\u001B[32m 120\u001B[39m df_deploy = df[df[\u001B[33m\"\u001B[39m\u001B[33mdeploy.name\u001B[39m\u001B[33m\"\u001B[39m] == deploy_name].copy()\n\u001B[32m--> \u001B[39m\u001B[32m122\u001B[39m result = \u001B[43mfpod2aplose\u001B[49m\u001B[43m(\u001B[49m\u001B[43mdf_deploy\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mtz\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mdataset_name\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mannotation\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbin_size\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 124\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m extra_columns:\n\u001B[32m 125\u001B[39m \u001B[38;5;28;01mfor\u001B[39;00m col \u001B[38;5;129;01min\u001B[39;00m extra_columns:\n", - "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\utils\\fpod_utils.py:61\u001B[39m, in \u001B[36mfpod2aplose\u001B[39m\u001B[34m(df, tz, dataset_name, annotation, bin_size)\u001B[39m\n\u001B[32m 30\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mfpod2aplose\u001B[39m(\n\u001B[32m 31\u001B[39m df: DataFrame,\n\u001B[32m 32\u001B[39m tz: pytz.timezone,\n\u001B[32m (...)\u001B[39m\u001B[32m 35\u001B[39m bin_size: \u001B[38;5;28mint\u001B[39m = \u001B[32m60\u001B[39m,\n\u001B[32m 36\u001B[39m ) -> DataFrame:\n\u001B[32m 37\u001B[39m \u001B[38;5;250m \u001B[39m\u001B[33;03m\"\"\"Format FPOD DataFrame to match APLOSE format.\u001B[39;00m\n\u001B[32m 38\u001B[39m \n\u001B[32m 39\u001B[39m \u001B[33;03m Parameters\u001B[39;00m\n\u001B[32m (...)\u001B[39m\u001B[32m 56\u001B[39m \n\u001B[32m 57\u001B[39m \u001B[33;03m \"\"\"\u001B[39;00m\n\u001B[32m 58\u001B[39m fpod_start_dt = \u001B[38;5;28msorted\u001B[39m(\n\u001B[32m 59\u001B[39m [\n\u001B[32m 60\u001B[39m tz.localize(strptime_from_text(entry, \u001B[33m\"\u001B[39m\u001B[38;5;132;01m%d\u001B[39;00m\u001B[33m/\u001B[39m\u001B[33m%\u001B[39m\u001B[33mm/\u001B[39m\u001B[33m%\u001B[39m\u001B[33mY \u001B[39m\u001B[33m%\u001B[39m\u001B[33mH:\u001B[39m\u001B[33m%\u001B[39m\u001B[33mM\u001B[39m\u001B[33m\"\u001B[39m))\n\u001B[32m---> \u001B[39m\u001B[32m61\u001B[39m \u001B[38;5;28;01mfor\u001B[39;00m entry \u001B[38;5;129;01min\u001B[39;00m \u001B[43mdf\u001B[49m\u001B[43m[\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mDate heure\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m]\u001B[49m\n\u001B[32m 62\u001B[39m ],\n\u001B[32m 63\u001B[39m )\n\u001B[32m 65\u001B[39m fpod_end_dt = \u001B[38;5;28msorted\u001B[39m(\n\u001B[32m 66\u001B[39m [entry + Timedelta(seconds=bin_size) \u001B[38;5;28;01mfor\u001B[39;00m entry \u001B[38;5;129;01min\u001B[39;00m fpod_start_dt],\n\u001B[32m 67\u001B[39m )\n\u001B[32m 69\u001B[39m data = {\n\u001B[32m 70\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mdataset\u001B[39m\u001B[33m\"\u001B[39m: [dataset_name] * \u001B[38;5;28mlen\u001B[39m(df),\n\u001B[32m 71\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mfilename\u001B[39m\u001B[33m\"\u001B[39m: [\u001B[33m\"\u001B[39m\u001B[33m\"\u001B[39m] * \u001B[38;5;28mlen\u001B[39m(df),\n\u001B[32m (...)\u001B[39m\u001B[32m 80\u001B[39m \u001B[33m\"\u001B[39m\u001B[33mis_box\u001B[39m\u001B[33m\"\u001B[39m: [\u001B[32m0\u001B[39m] * \u001B[38;5;28mlen\u001B[39m(df),\n\u001B[32m 81\u001B[39m }\n", - "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\.venv\\Lib\\site-packages\\pandas\\core\\frame.py:4107\u001B[39m, in \u001B[36mDataFrame.__getitem__\u001B[39m\u001B[34m(self, key)\u001B[39m\n\u001B[32m 4105\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28mself\u001B[39m.columns.nlevels > \u001B[32m1\u001B[39m:\n\u001B[32m 4106\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mself\u001B[39m._getitem_multilevel(key)\n\u001B[32m-> \u001B[39m\u001B[32m4107\u001B[39m indexer = \u001B[38;5;28;43mself\u001B[39;49m\u001B[43m.\u001B[49m\u001B[43mcolumns\u001B[49m\u001B[43m.\u001B[49m\u001B[43mget_loc\u001B[49m\u001B[43m(\u001B[49m\u001B[43mkey\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 4108\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m is_integer(indexer):\n\u001B[32m 4109\u001B[39m indexer = [indexer]\n", - "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\.venv\\Lib\\site-packages\\pandas\\core\\indexes\\base.py:3819\u001B[39m, in \u001B[36mIndex.get_loc\u001B[39m\u001B[34m(self, key)\u001B[39m\n\u001B[32m 3814\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[38;5;28misinstance\u001B[39m(casted_key, \u001B[38;5;28mslice\u001B[39m) \u001B[38;5;129;01mor\u001B[39;00m (\n\u001B[32m 3815\u001B[39m \u001B[38;5;28misinstance\u001B[39m(casted_key, abc.Iterable)\n\u001B[32m 3816\u001B[39m \u001B[38;5;129;01mand\u001B[39;00m \u001B[38;5;28many\u001B[39m(\u001B[38;5;28misinstance\u001B[39m(x, \u001B[38;5;28mslice\u001B[39m) \u001B[38;5;28;01mfor\u001B[39;00m x \u001B[38;5;129;01min\u001B[39;00m casted_key)\n\u001B[32m 3817\u001B[39m ):\n\u001B[32m 3818\u001B[39m \u001B[38;5;28;01mraise\u001B[39;00m InvalidIndexError(key)\n\u001B[32m-> \u001B[39m\u001B[32m3819\u001B[39m \u001B[38;5;28;01mraise\u001B[39;00m \u001B[38;5;167;01mKeyError\u001B[39;00m(key) \u001B[38;5;28;01mfrom\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34;01merr\u001B[39;00m\n\u001B[32m 3820\u001B[39m \u001B[38;5;28;01mexcept\u001B[39;00m \u001B[38;5;167;01mTypeError\u001B[39;00m:\n\u001B[32m 3821\u001B[39m \u001B[38;5;66;03m# If we have a listlike key, _check_indexing_error will raise\u001B[39;00m\n\u001B[32m 3822\u001B[39m \u001B[38;5;66;03m# InvalidIndexError. Otherwise we fall through and re-raise\u001B[39;00m\n\u001B[32m 3823\u001B[39m \u001B[38;5;66;03m# the TypeError.\u001B[39;00m\n\u001B[32m 3824\u001B[39m \u001B[38;5;28mself\u001B[39m._check_indexing_error(key)\n", - "\u001B[31mKeyError\u001B[39m: 'Date heure'" - ] - } - ], - "execution_count": 6 + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -159,15 +130,47 @@ "id": "a39bb10d8ac60a27" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:15:49.464586Z", + "start_time": "2025-09-29T15:15:49.294885Z" + } + }, "cell_type": "code", "source": [ "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", "print(df_aplose.head())" ], "id": "9b632673397a184", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset filename start_time end_time start_frequency end_frequency \\\n", + "0 CETIROISE 0 60 0 0 \n", + "1 CETIROISE 0 60 0 0 \n", + "2 CETIROISE 0 60 0 0 \n", + "3 CETIROISE 0 60 0 0 \n", + "4 CETIROISE 0 60 0 0 \n", + "\n", + " annotation annotator start_datetime \\\n", + "0 Marsouin FPOD 2023-02-07T05:34:00.000+0000 \n", + "1 Marsouin FPOD 2023-02-07T05:35:00.000+0000 \n", + "2 Marsouin FPOD 2023-02-07T05:36:00.000+0000 \n", + "3 Marsouin FPOD 2023-02-07T22:40:00.000+0000 \n", + "4 Marsouin FPOD 2023-02-24T15:32:00.000+0000 \n", + "\n", + " end_datetime is_box deploy.name \n", + "0 2023-02-07T05:35:00.000+0000 0 Point C_Phase 4 \n", + "1 2023-02-07T05:36:00.000+0000 0 Point C_Phase 4 \n", + "2 2023-02-07T05:37:00.000+0000 0 Point C_Phase 4 \n", + "3 2023-02-07T22:41:00.000+0000 0 Point C_Phase 4 \n", + "4 2023-02-24T15:33:00.000+0000 0 Point C_Phase 4 \n" + ] + } + ], + "execution_count": 6 }, { "metadata": {}, @@ -176,10 +179,15 @@ "id": "7860838f8514da39" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:15:53.508059Z", + "start_time": "2025-09-29T15:15:53.491931Z" + } + }, "cell_type": "code", "source": [ - "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_kerguelen.json\")\n", + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_cetiroise.json\")\n", "metadatax = json2df(json_path=json)\n", "\n", "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", @@ -189,15 +197,20 @@ ], "id": "ed6a06c522aea169", "outputs": [], - "execution_count": null + "execution_count": 7 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:15:55.344572Z", + "start_time": "2025-09-29T15:15:54.985631Z" + } + }, "cell_type": "code", - "source": "cleared.to_csv(r\"U:\\APLOSE_D.csv\", index=False)", + "source": "cleared.to_csv(r\"U:\\APLOSE_CETIROISE_pos.csv\", index=False)", "id": "76f70cb6c6658ba6", "outputs": [], - "execution_count": null + "execution_count": 8 }, { "metadata": {}, @@ -206,7 +219,12 @@ "id": "f5d38266dc9d5273" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:15:57.748310Z", + "start_time": "2025-09-29T15:15:57.640771Z" + } + }, "cell_type": "code", "source": [ "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", @@ -214,8 +232,35 @@ "print(data_list.df.head())" ], "id": "6837593897111b0a", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset filename start_time end_time start_frequency end_frequency \\\n", + "0 CETIROISE NaN 0 60 0 0 \n", + "1 CETIROISE NaN 0 60 0 0 \n", + "2 CETIROISE NaN 0 60 0 0 \n", + "3 CETIROISE NaN 0 60 0 0 \n", + "4 CETIROISE NaN 0 60 0 0 \n", + "\n", + " annotation annotator start_datetime end_datetime \\\n", + "0 Marsouin FPOD 2023-02-07 05:34:00+00:00 2023-02-07 05:35:00+00:00 \n", + "1 Marsouin FPOD 2023-02-07 05:35:00+00:00 2023-02-07 05:36:00+00:00 \n", + "2 Marsouin FPOD 2023-02-07 05:36:00+00:00 2023-02-07 05:37:00+00:00 \n", + "3 Marsouin FPOD 2023-02-07 22:40:00+00:00 2023-02-07 22:41:00+00:00 \n", + "4 Marsouin FPOD 2023-02-24 15:32:00+00:00 2023-02-24 15:33:00+00:00 \n", + "\n", + " is_box deploy.name \n", + "0 0 Point C_Phase 4 \n", + "1 0 Point C_Phase 4 \n", + "2 0 Point C_Phase 4 \n", + "3 0 Point C_Phase 4 \n", + "4 0 Point C_Phase 4 \n" + ] + } + ], + "execution_count": 9 }, { "metadata": {}, @@ -226,32 +271,28 @@ { "metadata": {}, "cell_type": "code", - "source": [ - "dp10 = dpm_to_dp10m(data_list.df, extra_columns=[\"deploy.name\"])\n", - "dp10 = date_format(dp10)" - ], + "source": "dp10 = dpm_to_dp10m(data_list.df, extra_columns=[\"deploy.name\"])", "id": "a27ceea1fefdd298", "outputs": [], "execution_count": null }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:16:01.922947Z", + "start_time": "2025-09-29T15:16:01.917142Z" + } + }, "cell_type": "code", - "source": [ - "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])\n", - "dph = date_format(dph)" - ], + "source": "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])", "id": "6cc79b2aeef076ed", "outputs": [], - "execution_count": null + "execution_count": 10 }, { "metadata": {}, "cell_type": "code", - "source": [ - "dpd = dpm_to_dpd(data_list.df, extra_columns=[\"deploy.name\"])\n", - "dpd = date_format(dpd)" - ], + "source": "dpd = dpm_to_dpd(data_list.df, extra_columns=[\"deploy.name\"])", "id": "e6655c36fc1851c7", "outputs": [], "execution_count": null @@ -263,38 +304,83 @@ "id": "8375ddbe07ad0aee" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:16:04.290557Z", + "start_time": "2025-09-29T15:16:04.215490Z" + } + }, "cell_type": "code", "source": [ - "fb_all = fb_folder(r\"U:\\fb_D_NBHF\", \"Commerson\")\n", + "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\")\n", + "fb_all = fb_folder(fb_files, \"Marsouin\")\n", + "\n", "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(\"h\")\n", - "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n" + "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", + "fb[\"start_datetime\"] = to_datetime(fb[\"start_datetime\"], utc=True)" ], "id": "2b19f90c99252ff3", "outputs": [], - "execution_count": null + "execution_count": 11 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:16:08.387825Z", + "start_time": "2025-09-29T15:16:08.377003Z" + } + }, "cell_type": "code", "source": [ - "d_hour = build_hour_range(d_beg_end)\n", - "d_tot = dph.merge(fb, on=\"start_datetime\", how=\"left\")" + "d_tot = dph.merge(fb, on=\"start_datetime\", how=\"left\")\n", + "\n", + "d_hour = build_range(d_beg_end, \"h\")" ], "id": "b00c8f1e2210ea7", "outputs": [], - "execution_count": null + "execution_count": 12 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:16:09.946724Z", + "start_time": "2025-09-29T15:16:09.933681Z" + } + }, + "cell_type": "code", + "source": "d_fin = d_hour.merge(d_tot, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")", + "id": "601787cc806226b0", + "outputs": [], + "execution_count": 13 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:16:12.364503Z", + "start_time": "2025-09-29T15:16:12.358919Z" + } + }, "cell_type": "code", "source": [ - "d_hour[[\"DPM\",\"Foraging\"]] = d_hour[[\"DPM\",\"Foraging\"]].fillna(0)\n", + "d_fin[[\"DPM\",\"Foraging\"]] = d_fin[[\"DPM\",\"Foraging\"]].fillna(0)\n", "print(d_hour.head())" ], "id": "f93bf1f3ca4f4112", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " deploy.name start_datetime\n", + "0 Point C_Phase 4 2023-02-07 05:00:00+00:00\n", + "1 Point C_Phase 4 2023-02-07 06:00:00+00:00\n", + "2 Point C_Phase 4 2023-02-07 07:00:00+00:00\n", + "3 Point C_Phase 4 2023-02-07 08:00:00+00:00\n", + "4 Point C_Phase 4 2023-02-07 09:00:00+00:00\n" + ] + } + ], + "execution_count": 14 }, { "metadata": {}, @@ -303,33 +389,52 @@ "id": "c7b1d32ed1c99fb7" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:16:18.370775Z", + "start_time": "2025-09-29T15:16:18.346171Z" + } + }, "cell_type": "code", "source": [ - "d_hour[\"Year\"] = d_hour[\"start_datetime\"].dt.year\n", - "d_hour[\"Month\"] = d_hour[\"start_datetime\"].dt.month\n", - "d_hour['YM'] = d_hour['Year'].astype(str) + '-' + d_hour['Month'].astype(str)\n", - "d_hour['YM'] = to_datetime(d_hour['YM'])\n", - "d_hour[\"Day\"] = d_hour[\"start_datetime\"].dt.day\n", - "d_hour[\"Hour\"] = d_hour[\"start_datetime\"].dt.hour\n", + "d_fin[\"Year\"] = d_fin[\"start_datetime\"].dt.year\n", + "d_fin[\"Month\"] = d_fin[\"start_datetime\"].dt.month\n", + "d_fin['YM'] = d_fin[\"Year\"].astype(str) + '-' + d_fin[\"Month\"].astype(str)\n", + "d_fin['YM'] = to_datetime(d_fin['YM'])\n", + "d_fin[\"Day\"] = d_fin[\"start_datetime\"].dt.day\n", + "d_fin[\"Hour\"] = d_fin[\"start_datetime\"].dt.hour\n", "\n", - "d_hour[\"FBR\"] = d_hour[\"Foraging\"] / d_hour[\"DPM\"]\n", - "d_hour[\"DPH\"] = (d_hour[\"DPM\"] >0).astype(int)" + "d_fin[\"FBR\"] = d_fin[\"Foraging\"] / d_fin[\"DPM\"]\n", + "d_fin[\"DPH\"] = (d_fin[\"DPM\"] >0).astype(int)" ], "id": "a2261ce5093a3104", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\fouinel\\AppData\\Local\\Temp\\ipykernel_4000\\4171406010.py:4: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", + " d_fin['YM'] = to_datetime(d_fin['YM'])\n" + ] + } + ], + "execution_count": 15 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:16:45.204062Z", + "start_time": "2025-09-29T15:16:34.484075Z" + } + }, "cell_type": "code", "source": [ - "d_hour[\"FBR\"] = d_hour[\"FBR\"].fillna(0)\n", - "d_hour.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteD.csv\", index=False)" + "d_fin[\"FBR\"] = d_fin[\"FBR\"].fillna(0)\n", + "d_fin.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteCETIROISE.csv\", index=False)" ], "id": "d606f4f6904b57c6", "outputs": [], - "execution_count": null + "execution_count": 16 }, { "metadata": {}, @@ -344,9 +449,10 @@ "ca4 = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteCA4.csv\")\n", "walde = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteWalde.csv\")\n", "\n", - "data_k = concat([ca4, walde])\n", - "data_k['YM'] = data_k['Year'].astype(str) + '-' + data_k['Month'].astype(str)\n", - "data_k['YM'] = to_datetime(data_k['YM'])" + "data_c = concat([ca4, walde])\n", + "data_c[\"start_datetime\"] = to_datetime(data_c[\"start_datetime\"])\n", + "data_c[\"start_datetime\"] = data_c[\"start_datetime\"].apply(lambda x : x.tz_convert(\"Europe/Paris\"))\n", + "data_c[\"Hour\"] = data_c[\"start_datetime\"].dt.hour" ], "id": "9909fbfdcb8e2e78", "outputs": [], @@ -371,61 +477,166 @@ "execution_count": null }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:38:21.849991Z", + "start_time": "2025-09-29T15:38:21.342466Z" + } + }, + "cell_type": "code", + "source": [ + "ceti = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteCETIROISE.csv\")\n", + "\n", + "ceti[\"start_datetime\"] = to_datetime(ceti[\"start_datetime\"])\n", + "ceti[\"start_datetime\"] = ceti[\"start_datetime\"].apply(lambda x : x.tz_convert(\"CET\")) #TimeZone Central European Time\n", + "ceti[\"Hour\"] = ceti[\"start_datetime\"].dt.hour" + ], + "id": "5928770d1c47bcad", + "outputs": [], + "execution_count": 2 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:38:23.189207Z", + "start_time": "2025-09-29T15:38:23.142072Z" + } + }, "cell_type": "code", "source": [ - "data_k = extract_site(data_k)\n", - "y_per = percent_calc(data_k, \"Year\")\n", - "ym_per = percent_calc(data_k, \"YM\")\n", + "data = ceti\n", + "data = extract_site(data)\n", + "y_per = percent_calc(data, \"Year\")\n", + "ym_per = percent_calc(data, \"YM\")\n", "ym_per[\"YM\"] = to_datetime(ym_per[\"YM\"])\n", "ym_per[\"Season\"] = ym_per[\"YM\"].apply(lambda x: get_season(x)[0])\n", - "m_per = percent_calc(data_k, \"Month\")\n", - "h_per = percent_calc(data_k, \"Hour\")\n", - "s_per = percent_calc(data_k)" + "m_per = percent_calc(data, \"Month\")\n", + "h_per = percent_calc(data, \"Hour\")\n", + "s_per = percent_calc(data)" ], "id": "2826b79097a85607", "outputs": [], - "execution_count": null + "execution_count": 3 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:38:25.650190Z", + "start_time": "2025-09-29T15:38:25.510368Z" + } + }, "cell_type": "code", "source": "site_percent(s_per, \"%click\")", "id": "ddd1fac6295136c6", - "outputs": [], - "execution_count": null + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAMtCAYAAADZu09yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAT7RJREFUeJzt3Qvc1/P9+P9n5xItx7gshyRZSkPFnEoOqxzGsBmS87Q5RCHWxpxF8XOasEpYYrM55bCppmUOv7Emck4phy9FNQnV//Z6/77X9e+qq6Suuq6r1/1+u123T70/72PcPhc9rtfrVWvRokWLAgAAAAAAADJUu6pvAAAAAAAAAKqKWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAqGK1atWKzp07l9t20UUXFdvHjh1bqefNWfqzSH8mAAAAixPLAAAA/tfdd98dbdu2jXXXXTfatWsXI0eOrHC/Dz/8MDbaaKPo27fvGr9HKleKkSmgpTgJAADkSSwDAACIiAcffDCOOeaYaNy4cfz85z+PBQsWxFFHHRWPPPLIUvv+4he/iA022CAuueSS1XY/v/zlL+PVV1+Njh07rrZr5ObOO+8s/kwBAAAWV7fc7wAAADJ1yy23xLbbbhvjx4+PunXrxoABA2KrrbaKm266KXr06FG23/333x9/+tOfYty4cdGoUaPVdj9p5Fr6ovJsscUWVX0LAABANWRkGQAAQES8++67sdNOOxWhLPnOd74TrVq1KraXmjlzZjHiq3fv3rHnnnt+4zknT54cJ5xwQhHdGjRoEJtssklxXApz32R5a5atynmTgQMHRu3atWP33XcvnmlF1z6bMWNGHHvsscX1Uijceeed45577lnmcY8//nh07969iH7pPrfZZpvo169ffPrpp0vtm54lfc2ePTvOPvvs4tf16tVboekR06jArl27xmabbVZcp6SkJPbee++4+eabl7tmWa9evaJLly7Fry+++OLivdKvJf/c//CHPxT7Nm3aNBo2bBjbb799XHrppTF//vxvvD8AAKB6M7IMAADgf0cdvfTSS7Fw4cIiJKVo8/rrr8duu+1Wts8ZZ5xRRKIrr7zyG8+Xpm884ogjipjywx/+sJjSMUWif//733H11VfHaaedtlL3uSrnTc921llnxQ033BCHHXZYsUZbCj8rYtasWfGDH/ygiEXHH398cc1Ro0bF0UcfHdOnTy8i2OJSfEqhK01XeeCBBxaBbeLEiXHNNdfEo48+Gs8880w0adKk3DFffvll7LPPPkXA23///Yv3t9566+Xe15AhQ+LUU0+NTTfdNA466KAizH300UfFtYYOHVqEzWX50Y9+VLwOHz68iGspppVKsa5UCpPpXN/97nfjxz/+cfFn8M9//rMYffi3v/0tnnzyybLICgAA1Dz+ax4AACCiWKfs0EMPLUZopSg0evToIgiVxqcUqVJcSmFk3XXXXe65Pv744/jZz34WX3/9dTz11FNFiFnce++9t1L3uCrn/eKLL4qwlaaQTKPjrr/++iIKrqgUn1KkGzlyZNlx559/fjG67MILLywiUosWLYrtY8aMKUJZCo0pjKW4VGrYsGFFbPvNb34TgwcPLneN999/P773ve8VU1ymteNWxK233hr169cvYmEKckv+eS1PimXp3lIsS6GsolFs6X5TKEv/bqR//otPvZn2T1EwTdV55plnrtD9AgAA1Y9pGAEAAP43nKQwkgJZmr4vTcU3YsSIYrTSZ599VoxeOvHEE2PfffeNP/7xj9G6deuoU6dOMQIpjW5aXIovaWRaCm1LBq0kjVBaGSt73jRSK933Aw88EFdddVUxsuzbhLIkPWs6dvHj0qivNNruq6++Kv6sSv2f//N/itfbbrutXCgrnfqwffv2RXiqyLXXXrvCoaxUGtWVpmxcUmWs+ZaiYjr/73//+6XWqEsjyzbccMNlPgsAAFAzGFkGAADwv4477rjia0nnnHNOWcj517/+VYywSiOp0oiiNFIrhbTNN988evToUeyXpuhLunXrVqn3tzLn/fDDD4u1yd5+++246667ipFpKztNZUVTIqYRWWl01Ysvvli2LU2xmOLVfffdV3wtKU23+D//8z/xySefFLGpVJoSsl27dt/qvtJoufTPJ41I++lPf1pExPS8G2+8cayqzz//vBixlqLbddddV+E+aY20V199dZWvBQAAVB2xDAAAYDn++te/xh133BEPPfRQfOc73ymC2XrrrVeMQksjoNIaW0888UQx6qo0lqXRaUkKaJVpZc77wQcfFKPR0qizPfbYY6Wv3axZswq3p7XCkjT6rlSKYGmqyBTRlmfu3LnlYlmaRjGN6Ps2zj777CJmpdGAaURbilrpHCmaDRw4MHbZZZdYWWmdtkWLFhVh75ueBQAAqLlMwwgAALCcmHPyyScXo5cOPPDAYlsaRbTddtuVTRWYwsz3v//9mDRpUtlxpVMPTp8+vVLvZ2XOu+OOOxbTN6Zj9tprr2KE2cpII9SWFeOSFBJLpV+vv/76RWha3teWW25Z7lzfNpSV6tmzZzHqLkW6tLZcmi7z73//exxwwAFF6FpZpc+U/vl+07MAAAA1l1gGAACwDOeff37MmzevWLdqcfPnzy/3+y+++KLc73fdddfidfTo0ZV6Pyt73mOOOSZGjhwZM2bMKILZ66+//q2vPXXq1JgyZcpS28eOHVsWlBa/zzQqa/GAuCakmNi9e/dirbS0Nlpaqy1Fs29aiy1ZsGDBUu+tu+660aZNm+I50rkAAIC1k1gGAABQgaeffrqY2u/GG28sN1VgWhsrxZPSEVpp+sG0b4oqpdK6Z02aNIlbbrmlwljz3nvvrdQ9rcp5Dz/88Lj//vvj448/LqYo/LYhK8Wk8847LxYuXFi27Z133immPqxbt24R5Er16dOneE2j8lKgW9J///vfsvXXVtWYMWMqHNn10UcfFa/rrLPOco8v/WebYuCypnlMa6ydcMIJZdNgLi5FwbSOHQAAUHNZswwAAGAJaTRZmsrvsMMOKyLT4vr27Rt/+MMfirXK0vtPPvlkEVHSKLRSaQ2te+65pzi2S5cu0a1bt2jXrl2xdtjEiRNj2rRpRWj6tlb1vAcffHD85S9/iUMPPTQ6d+5crMeWpmlcEek6zz77bOy8886x//77F888atSo4vXqq6+ObbbZpmzfrl27xpVXXhn9+/ePbbfdthjttfXWWxfTWr777rsxbty4Yv20xx57LFZVepY0AiyNZttqq62KcJbi5fPPP1/c67777rvc49OUmmkNuDTyrl69esXUkGk6yGOPPbb4dYpk//f//t8inKZnTFM7brHFFsVIs/RnnaLl8ccfH7/73e9W+VkAAICqIZYBAAAsYcCAAcX6VzfddNNS77Vv3z7++Mc/xq9+9ati1Fnz5s2Laf9SEFpcjx494oUXXoirrroq/va3v8UTTzxRrOPVunXrIiKtrFU9b4o9jz76aBx00EFFcHv88cejQ4cO33hcukaa/vHcc8+NoUOHFoEujbJL8fBnP/vZUvunUWi77757MfJs/PjxRaRLa4ClMHXKKadUeMzKSFEuPUMa3ZWeq2HDhkXkSn8+p512WhHAvmkaxgceeKCInffdd1/MmTOnCG4p5pWuqZb+PUhhMgWxFBhTINxggw2KaNavX79yo+oAAICap9YiKxEDAACwHGmkVZq6sXR9MgAAgLWJNcsAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAslW3qm8AAACA6s1S1wAAwNrMyDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANmqW9U3kLtNN900/vvf/8YWW2xR1bcCAAAAAABQI02dOjUaN24cH3zwwbc+1siyKpZC2VdffVXVtwEAAAAAAFBjpdaSmsvKMLKsipWOKJs0aVJV3woAAAAAAECN1KZNm5U+1sgyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIVt2qvgGqhyv2PLWqbwGoJvo/fWtV3wIAAAAAwBpjZBkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkK26VX0DAAAAADXFtQ+eV9W3AFQj5xx8VVXfAgCVwMgyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkK0aF8vmz58f5513XpSUlESjRo2iU6dO8eSTT67QsdOnT48jjzwymjZtGk2aNIlDDjkk3n777aX2++yzz+Lcc8+NbbfdtrjGlltuGSeeeGJMnTp1NTwRAAAAAAAAVaVu1DC9evWK+++/P84666wiZg0bNiy6d+8eY8aMiT322GOZx82dOze6dOlShLALLrgg6tWrF4MHD4699947Xnrppdhwww2L/RYuXBj77bdfvPLKK9G7d+9o1apVvPnmm3HzzTfH448/Hq+++mqst956a/CJAQAAAAAAWF1qVCx77rnnYuTIkTFw4MDo27dvsa1nz56xww47FCPBJkyYsMxjU+x64403inN06NCh2NatW7fi2GuvvTYuv/zyYts///nPeP755+PGG2+MX/ziF2XHb7fddnHCCSfEX//61zj00ENX+7MCAAAAAACw+tWoaRjTiLI6derEKaecUratYcOGxRSJzzzzTEybNm25x6ZIVhrKktatW0fXrl1j1KhRZdtmz55dvDZr1qzc8ZtttlnxmqZlBAAAAAAAYO1Qo2LZiy++WEyLmNYbW1zHjh2L1zSdYkXS1IoTJ06MXXbZZan30rFvvfVWzJkzp/h92qdx48YxYMCAeOqpp4p1zsaNG1eMXEuhbd99910tzwYAAAAAAMCaV6OmYXz//ffLRngtrnTbjBkzKjxu5syZMX/+/G88Nk21uNFGG8W9994bJ598cjHqrNQBBxxQjE6rW3fl/sjatGlT4fYU6rbZZpuVOicAAAAAAAAZjSybN29eNGjQYKntaSrG0veXdVyyosduvPHG8f3vfz8uu+yy+POf/xwXXXRRPP3003H88cdX2rMAAAAAAABQ9WrUyLK0XlgaIbakL774ouz9ZR2XrMixb7/9dnTp0iXuvPPO+PGPf1xsO+SQQ2KrrbaKXr16xejRo6Nbt27f+t4nTZr0rUacAQAAAAAAsPrVqJFlacrENBXjkkq3lZSUVHjcBhtsUIwqW5Fjhw0bVgS0Aw88sNx+Bx98cPH6j3/8oxKeBAAAAAAAgOqgRsWy9u3bx+uvvx6zZ88ut/3ZZ58te78itWvXjrZt28YLL7yw1Hvp2BYtWsR6661X/P7DDz+MRYsWxYIFC8rt99VXXxWvX3/9daU9DwAAAAAAAFWrRsWyww8/vIhYQ4YMKduWplYcOnRodOrUKZo3b15smzp1akyePHmpY59//vlywey1116Lp556Ko444oiyba1atSpi2ahRo8od/4c//KF4TWuZAQAAAAAAsHaoUWuWpSCWwlb//v3jo48+ipYtW8bw4cNjypQpcccdd5Tt17Nnzxg3blwRvUr17t07brvttujRo0f07ds36tWrF4MGDYpmzZrFOeecU7ZfWpfsmmuuiVNPPTVefPHFYk2xf/3rX3H77bcXvz700EPX+HMDAAAAAACwetSoWJbceeedMWDAgBgxYkTMmjUr2rVrFw8//HDstddeyz0uTbM4duzY6NOnT1x66aWxcOHC6Ny5cwwePDg23njjsv023HDDYvTZr3/963jooYfid7/7XbHthBNOiMsvvzzq16+/Bp4SAAAAAACANaHGxbKGDRvGwIEDi69lSVGsIt/97nfjvvvu+8ZrbL755uVGqgEAAAAAALB2qlFrlgEAAAAAAEBlEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIVo2LZfPnz4/zzjsvSkpKolGjRtGpU6d48sknV+jY6dOnx5FHHhlNmzaNJk2axCGHHBJvv/12hft++OGHceqpp8bmm28eDRs2jK222ipOPPHESn4aAAAAAAAAqlLdqGF69eoV999/f5x11lmx7bbbxrBhw6J79+4xZsyY2GOPPZZ53Ny5c6NLly7x2WefxQUXXBD16tWLwYMHx9577x0vvfRSbLjhhmX7Tps2LXbffffi1z//+c+LYDZjxox47rnn1sgzAgAAAAAAsGbUqFiWYtXIkSNj4MCB0bdv32Jbz549Y4cddohzzz03JkyYsMxjb7755njjjTeKc3To0KHY1q1bt+LYa6+9Ni6//PKyfdOIsrp168bzzz9fLqIBAAAAAACwdqlR0zCmEWV16tSJU045pWxbmiIxTY/4zDPPFCPClndsimSloSxp3bp1dO3aNUaNGlW2bfLkyTF69Ojo169fEcq++OKL+Oqrr1bjUwEAAAAAAFBValQse/HFF6NVq1bFemOL69ixY/GaplOsyMKFC2PixImxyy67LPVeOvatt96KOXPmFL//61//Wrw2a9asCGlpXbT0lUahTZkyZaXvvU2bNhV+pWsDAAAAAABQNWpULHv//fdjs802W2p76ba0rlhFZs6cGfPnz1+hY9NUjUkavVa/fv24995748orr4zx48fHvvvuG59//nmlPhMAAAAAAABVp0atWTZv3rxo0KDBUtvTVIyl7y/ruGRFjp07d27xuummm8YjjzwStWv/v5743e9+N4466qi455574qSTTvrW9z5p0qQKt6fRZQAAAAAAAFSNGjWyLE2HmEaILSmtK1b6/rKOS1bk2NLXI488siyUJUcccUTUrVs3JkyYUCnPAgAAAAAAQNWrUbEsTZmYpmJcUum2kpKSCo/bYIMNilFlK3Js6Wtas2xxderUiQ033DBmzZpVCU8CAAAAAABAdVCjYln79u3j9ddfj9mzZ5fb/uyzz5a9X5E0Qqxt27bxwgsvLPVeOrZFixax3nrrFb/feeedi9fp06eX2+/LL7+Mjz/+ODbeeONKex4AAAAAAACqVo2KZYcffngsWLAghgwZUrYtTa04dOjQ6NSpUzRv3rzYNnXq1Jg8efJSxz7//PPlgtlrr70WTz31VDHFYqnOnTvHJptsEnfffXfZFI3JsGHDimvvt99+q/kpAQAAAAAAWFPqRg2SglgKW/3794+PPvooWrZsGcOHD48pU6bEHXfcUbZfz549Y9y4cbFo0aKybb17947bbrstevToEX379o169erFoEGDiukWzznnnLL90nSNAwcOjOOOOy722muvOPbYY4v4dv3118eee+4Zhx122Bp/bgAAAAAAAFaPGhXLkjvvvDMGDBgQI0aMKNYPa9euXTz88MNF2FqeNM3i2LFjo0+fPnHppZfGwoULi1FkgwcPXmpqxRTb6tevH1deeWX069cvmjZtGqeeempcfvnlxdplAAAAAAAArB1qLVp8+BVrXJs2bYrXSZMmVel9XLHnqVV6faD66P/0rVV9CwAAUG1d++B5VX0LQDVyzsFXVfUtAFAJvaVGrVkGAAAAAAAAlUksAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQrTUeyz799NM1fUkAAAAAAABY/bHszDPPXO77c+bMiQMOOKAyLwkAAAAAAADVI5bdcMMNMXjw4ArfmzdvXvTo0SMmTpxYmZcEAAAAAACA6hHL+vfvH/369Ys//vGP5bbPnz8/Dj744PjnP/8Z9957b2VeEgAAAAAAAFZa3ahEl112Wbz77rtx7LHHRklJSey2227x9ddfxxFHHBFjxoyJu+++u4hmAAAAAAAAsNaNLEuGDh0au+66axHFXn311Tj66KPjkUceiSFDhsRPfvKTyr4cAAAAAAAAVI+RZUm9evXigQceiN133z122mmn+PLLL+O6666LE044obIvBQAAAAAAAFUXy6ZOnbrM92655ZY46KCD4sQTT4xDDjmk3L5bbLHFqlwWAAAAAAAAqj6WbbXVVlGrVq1lvr9o0aIimqWvxS1YsGBVLgsAAAAAAABVH8t+/etfLzeWAQAAAAAAwFobyy666KLKuxMAAAAAAABYw2qv6QsCAAAAAADAWhnL7r333ujZs+cy1y9L7/3xj3+szEsCAAAAAABA9YhlN9100zLXMEvb69SpEzfeeGNlXhIAAAAAAACqRyx79dVX4/vf//4y30/vvfLKK5V5SQAAAAAAAKgesWzOnDlRv379Zb6fRpZ99tlnlXlJAAAAAAAAqB6xbIsttohnn312me+n90pKSirzkgAAAAAAAFA9YtmBBx4Yd999d/zlL39Z6r0HH3ww/vCHP8RBBx1UmZcEAAAAAACAlVY3KtEFF1wQ9913Xxx22GHRuXPnsvXLXnzxxRg7dmwxquzCCy+szEsCAAAAAABA9YhlG220UUyYMCFOO+20GD16dIwZM6bYXqtWrejevXvcdNNNsckmm1TmJQEAAAAAAKB6xLKkefPm8fDDD8esWbPizTffLLa1bNky1l9//cq+FAAAAAAAAFSvWFYqxbEOHTqsrtMDAAAAAADAKqu96qcAAAAAAACADEeW1a5du/j6/PPPo379+sWv0/pky5Pe//rrr1flsgAAAAAAAFD1saxnz55F/KpTp0653wMAAAAAAMBaH8uGDRu23N8DAAAAAABAdWbNMgAAAAAAALIllgEAAAAAAJCtVZqGsUWLFt/6mLSm2VtvvbUqlwUAAAAAAICqj2VbbLFFEb8AAAAAAAAgu1g2duzYyrsTAAAAAAAAWMOsWQYAAAAAAEC2KjWWvfPOO/HQQw9V+N6iRYuK96ZMmVKZlwQAAAAAAICqmYZxSb/61a/i3XffjYMOOmip99LaZgMHDoytt946hg8fXpmXBQAAAAAAgKofWTZ+/Pj44Q9/uMz3DzjggPj73/9emZcEAAAAAACA6hHLPvzww9h0002X+X6zZs3igw8+qMxLAgAAAAAAQPWIZU2aNFnummRpTbPGjRtX5iUBAAAAAACgesSy3XbbLX7/+9/HrFmzlnovbRs6dGh06tSpMi8JAAAAAAAA1SOW9e3bNz766KPo2LFjjBgxIl5++eXiK/06RbL0Xr9+/SrzkgAAAAAAALDS6kYl2nPPPeN3v/tdnH766dGrV6+y7YsWLYoGDRrELbfcEp07d67MSwIAAAAAAED1iGXJSSedFN27d4/77rsvXn/99WJbq1at4ogjjoiSkpLKvhwAAAAAAABUn1iWpCh25plnro5TAwAAAAAAQPWOZYt79tlnY9q0abH55psX65bVrl2py6QBAAAAAABA9Ytl06dPjx49esTEiRPLtm2//fbx0EMPRYsWLVbXZQEAAAAAAGCFrbZhXmeccUZsttlmxbpl8+bNi3/+85+xYMGC6N279+q6JAAAAAAAAKzZWPbYY49VuD3FscsuuyxatmwZDRo0iI4dOxYBLW0HAAAAAACAtSKWHXzwwXHcccfFzJkzy21Pa5SNHz++3LZ//OMfUVJSsqqXBAAAAAAAgOoRy9JIsZdffrlYj+zee+8t237hhRdGnz59Ys8994yjjz462rZtGyNHjiy2AwAAAAAAwFoRy3baaad47rnnijB2/PHHFyPNZsyYEYccckgR0tq0aROffvpp7LrrrjF27NginAEAAAAAAEB1ULcyTlKnTp04//zz48c//nGcfPLJ8b3vfS+uvPLK+PnPfx4dOnSojEsAAAAAAABA9RtZtrhtt922GD129dVXR//+/WPvvfeON954ozIvAQAAAAAAANUvln355Zcxe/bs4tennHJKTJo0KTbccMPYcccd44orrogFCxZU1qUAAAAAAACgesSymTNnxqGHHhrrrrturL/++tGuXbt44YUXoqSkJP70pz/FiBEj4oYbboidd945/vWvf1XOXQMAAAAAAEB1iGVnnXVWTJgwIW699dYijqVoltYu++qrr4r3069fffXVIpbtuuuu0a9fv8q4bwAAAAAAAKj6WDZ69Og4//zz4/jjj49DDjkkbr/99pg2bVq88sorZft85zvfiTvuuCMee+yx+POf/7yqlwQAAAAAAIDqEcvq1asX8+bNK/v9F198EbVq1Yq6desute8+++wT//nPf1b1kgAAAAAAAFApli5a31Jar+zKK6+Mr7/+uliz7Oabb47WrVvH9ttvX+H+DRs2XNVLAgAAAAAAQPWIZQMHDozatWsXa5Z9/vnn8YMf/CCuv/76YhsAAAAAAACs1bFsnXXWiRtuuKH4AgAAAAAAgJrE8C8AAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMhWjYtl8+fPj/POOy9KSkqiUaNG0alTp3jyySdX6Njp06fHkUceGU2bNo0mTZrEIYccEm+//fZyjxk/fnzUqlWr+Pr4448r6SkAAAAAAACoDmpcLOvVq1cMGjQojj766Lj++uujTp060b179yJqLc/cuXOjS5cuMW7cuLjgggvi4osvjhdffDH23nvv+OSTTyo8ZuHChXH66adH48aNV9PTAAAAAAAAUJVqVCx77rnnYuTIkXHFFVfEwIED45RTTomnnnoqttxyyzj33HOXe+zNN98cb7zxRjz88MPFvn369Iknnngi3n///bj22msrPGbIkCExbdq0OOmkk1bTEwEAAAAAAFCValQsu//++4uRZCmSlWrYsGGceOKJ8cwzzxRha3nHdujQofgq1bp16+jatWuMGjVqqf1nzpwZv/rVr+K3v/1tMW0jAAAAAAAAa58aFcvStImtWrUq1htbXMeOHYvXl156aZnTKU6cODF22WWXpd5Lx7711lsxZ86cctsHDBgQm266aZx66qmVcu9t2rSp8CtdGwAAAAAAgKpRN2qQNGXiZpttttT20m0zZsyo8Lg0Smz+/PnfeOx2221X/DqFtVtvvTUeffTRYiQbAAAAAAAAa6caFcvmzZsXDRo0WGp7moqx9P1lHZes6LFnnHFGdOvWLfbff/9Ku/dJkyZVuD2NLgMAAAAAAKBq1KhY1qhRo2KE2JK++OKLsveXdVyyIsfee++9MWHChHj55Zcr9d4BAAAAAACofmpULEtTJk6fPr3C6RmTkpKSCo/bYIMNilFlpfst79h+/frFEUccEfXr148pU6YU2z799NPiddq0afHll18u8zoAAAAAAADULDUqlrVv3z7GjBkTs2fPjiZNmpRtf/bZZ8ver0jt2rWjbdu28cILLyz1Xjq2RYsWsd5665UFsXvuuaf4WtJOO+0UO+64Y7z00kuV+FQAAAAAAABUldpRgxx++OGxYMGCGDJkSNm2NLXi0KFDo1OnTtG8efNi29SpU2Py5MlLHfv888+XC2avvfZaPPXUU8VIslIPPPDAUl8/+clPivfuvPPOGDx48Bp4UgAAAAAAANaEGjWyLAWxFLb69+8fH330UbRs2TKGDx9eTJd4xx13lO3Xs2fPGDduXCxatKhsW+/eveO2226LHj16RN++faNevXoxaNCgaNasWZxzzjll+/3oRz9a6rqlI8m6desWG2200Wp/TgAAAAAAANaMGhXLSkd3DRgwIEaMGBGzZs2Kdu3axcMPPxx77bXXco9L0yyOHTs2+vTpE5deemksXLgwOnfuXIwU23jjjdfY/QMAAAAAAFB91Fq0+PAr1rg2bdoUr5MmTarS+7hiz1Or9PpA9dH/6Vur+hYAAKDauvbB86r6FoBq5JyDr6rqWwCgEnpLjVqzDAAAAAAAACqTWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMhWjYpl8+fPj/POOy9KSkqiUaNG0alTp3jyySdX6Njp06fHkUceGU2bNo0mTZrEIYccEm+//Xa5faZNmxYXX3xxdOzYMdZff/3YaKONonPnzvHXv/51NT0RAAAAAAAAValGxbJevXrFoEGD4uijj47rr78+6tSpE927d4/x48cv97i5c+dGly5dYty4cXHBBRcUQezFF1+MvffeOz755JOy/f7yl7/EVVddFS1btoxLL700BgwYEHPmzIn99tsvhg4dugaeEAAAAAAAgDWpbtQQzz33XIwcOTIGDhwYffv2Lbb17Nkzdthhhzj33HNjwoQJyzz25ptvjjfeeKM4R4cOHYpt3bp1K4699tpr4/LLLy+2paA2derUYkRZqZ///OfRvn37+PWvfx3HH3/8an9OAAAAAAAA1pwaM7Ls/vvvL0aSnXLKKWXbGjZsGCeeeGI888wzxRSKyzs2RbLSUJa0bt06unbtGqNGjSrb1qZNm3KhLGnQoEExeu29994rRpkBAAAAAACw9qgxI8vStImtWrUq1htbXFpfLHnppZeiefPmSx23cOHCmDhxYpxwwglLvZeOfeKJJ4oItt566y3z2h988EGss846xdfKSiGuIm+99VZss802K31eAAAAAAAAMhhZ9v7778dmm2221PbSbTNmzKjwuJkzZ8b8+fNX6tjkzTffjD/96U/x4x//uBjZBgAAAAAAwNqjxowsmzdvXjEl4pLSVIyl7y/ruGRljv3888/jiCOOiEaNGsWVV165Svc/adKkbzXiDAAAAAAAgNWvxsSyFKzSCLElffHFF2XvL+u45Nseu2DBgvjpT38ar7zySowePTpKSkpW+RkAAAAAAACoXmpMLEtTJk6fPr3C6RmTZcWsDTbYoBhVVrrfih578sknx8MPPxx333137LPPPpXwBAAAAAAAAFQ3NWbNsvbt28frr78es2fPLrf92WefLXu/IrVr1462bdvGCy+8sNR76dgWLVrEeuutV257v379YujQoTF48OA46qijKvU5AAAAAAAAqD5qTCw7/PDDi6kRhwwZUrYtTa2YolanTp2iefPmxbapU6fG5MmTlzr2+eefLxfMXnvttXjqqaeKNckWN3DgwLjmmmviggsuiDPPPHO1PxcAAAAAAABVp8ZMw5iCWApb/fv3j48++ihatmwZw4cPjylTpsQdd9xRtl/Pnj1j3LhxsWjRorJtvXv3jttuuy169OgRffv2jXr16sWgQYOiWbNmcc4555Tt98ADD8S5554b2267bWy//fZx1113lbuH/fbbrzgGAAAAAACAtUONiWXJnXfeGQMGDIgRI0bErFmzol27dsW6Ynvttddyj0vTLI4dOzb69OkTl156aSxcuDA6d+5cTLO48cYbl+3373//u3h944034thjj13qPGPGjBHLAAAAAAAA1iK1Fi0+BIs1rk2bNsXrpEmTqvQ+rtjz1Cq9PlB99H/61qq+BQAAqLauffC8qr4FoBo55+CrqvoWAKiE3lJj1iwDAAAAAACAyiaWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGSrblXfAABUN+O7Hl/VtwBUI3v8bWhV3wIAAACwGhlZBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBs1bhYNn/+/DjvvPOipKQkGjVqFJ06dYonn3xyhY6dPn16HHnkkdG0adNo0qRJHHLIIfH2229XuO8dd9wR22+/fTRs2DC23XbbuOGGGyr5SQAAAAAAAKhqNS6W9erVKwYNGhRHH310XH/99VGnTp3o3r17jB8/frnHzZ07N7p06RLjxo2LCy64IC6++OJ48cUXY++9945PPvmk3L633nprnHTSSdGmTZsiku22225xxhlnxFVXXbWanw4AAAAAAIA1qW7UIM8991yMHDkyBg4cGH379i229ezZM3bYYYc499xzY8KECcs89uabb4433nijOEeHDh2Kbd26dSuOvfbaa+Pyyy8vts2bNy8uvPDC6NGjR9x///3FtpNPPjkWLlwYl1xySZxyyimx/vrrr5HnBQAAAAAAYPWqUSPLUrxKI8lSsCqVpkk88cQT45lnnolp06Yt99gUyUpDWdK6devo2rVrjBo1qmzbmDFjipFmvXv3Lnf8L37xi/jvf/8bjzzySKU/FwAAAAAAAFWjRsWyNG1iq1ativXGFtexY8fi9aWXXqrwuDQqbOLEibHLLrss9V469q233oo5c+aUXSNZct+dd945ateuXfY+AAAAAAAANV+Nmobx/fffj80222yp7aXbZsyYUeFxM2fOjPnz53/jsdttt11xjTR6bZNNNim3X/369WPDDTdc5jW+SVr/rCKTJ0+OevXqLfP9NeXjKe9X6fWB6uOuNstfAzIHn7+7cp/1wNppnTbPVfUtAFCNfDLnw6q+BaAa+X3/h6v6FgD4X2lgVOota30sS+uJNWjQYKntaSrG0veXdVyyIsem1xTGKpL2XdY1VlatWrVW+h9eZdpoq6VDIvl9kCTbbLNNVd8KVLl1tiyp6lugivlMBCjP5yL8/zZcr1lV3wJVzGciQHk+F6kuUmtp3Ljx2h/LGjVqVIwQW9IXX3xR9v6yjktW5Nj0+uWXX1Z4nrTvsq7xTSZNmrRSx8GaUjq60b+rAD4TAZbkcxHg/+czEaA8n4usDWrUmmVpysQ0TeKSSreVlFQ8EmCDDTYoRpWtyLHpGgsWLIiPPvqo3H4poH3yySfLvAYAAAAAAAA1T42KZe3bt4/XX389Zs+eXW77s88+W/Z+RWrXrh1t27aNF154Yan30rEtWrSI9dZbr9w5ltw3/X7hwoXLvAYAAAAAAAA1T42KZYcffngx6mvIkCFl29LUikOHDo1OnTpF8+bNi21Tp06NyZMnL3Xs888/Xy6Cvfbaa/HUU0/FEUccUbZtn332KUai3XLLLeWOT79fZ511okePHqvxCQEAAAAAAFiTatSaZSmIpbDVv3//YprEli1bxvDhw2PKlClxxx13lO3Xs2fPGDduXCxatKhsW+/eveO2224rYlffvn2Lhd4GDRoUzZo1i3POOadsv7Qm2SWXXBK/+MUvimsdcMAB8fTTT8ddd90Vl112WRHSAAAAAAAAWDvUqFiW3HnnnTFgwIAYMWJEzJo1K9q1axcPP/xw7LXXXss9Lk2zOHbs2OjTp09ceumlxZSKnTt3jsGDB8fGG29cbt8U1lJMu/baa+PBBx8sRqyl/c4888zV/HQAAAAAAACsSbUWLT78CgAAAAAAADJSo9YsAwAAAAAAgMoklgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWWQkc6dOxdfAPhMBFiSz0WA8nwuAvw/Pg/JgVgG1diwYcOiVq1aZV8NGzaMVq1axS9/+cv48MMP1+i93HPPPXHdddd9q2MWLFgQQ4cOLb6ZbrDBBtGgQYPYaqut4vjjj48XXnhhtd0rsHaqyZ+J6bOv9L5r164dTZs2jbZt28Ypp5wSzz777Gq9V2DttbZ8Li759cMf/nC13iuw9lpbPxe/+OKL1XqvwNqnJn8eJgsXLow777wz9ttvv9hoo42iXr16sckmm8T+++8fQ4YMifnz56+2+yVftRYtWrSoqm8CWPY3thSWfvvb38bWW29d/Afy+PHjY8SIEbHlllvGyy+/HOuss84Kn+/LL78sXuvXr/+t7+XAAw8srjdlypQV2n/evHlx2GGHxWOPPRZ77bVXHHTQQUUwS8ePGjUqXn/99Zg6dWp897vf/db3AuSpJn8mpr/8WH/99eOcc84pfj9nzpx49dVX47777osPPvgg+vTpE4MGDfrW9wHkbW36XFxcSUlJ7LPPPt/6HgDW1s/Fn/3sZ8UPXAHk8neKhx56aDz++OPxgx/8oPg7xWbNmsXMmTNj3Lhx8eijj8Zxxx0Xd9xxx7e+F1ieust9F6gWunXrFrvsskvx65NOOik23HDD4i9V//KXv8RRRx21wudZmW9oK6tfv35FKBs8eHCcddZZ5d77zW9+U2wHyOUzMdl8883jmGOOKbftqquuKv7yI30mbrvttnHaaaet0XsC1g5r0+ciQGXwuQhQcz8P0w+TplCWRqOdeeaZ5d5LP1DwxhtvxJNPPrnG7od8+LEUqIFKf9L2nXfeKV6//vrruOSSS2KbbbYpm+rwggsuWGpI8pLzC48dO7YYip1Gel122WXFKK80LLtr167x5ptvljvukUceiXfffbds+Ha6xrK89957ceuttxZDpZcMZUmdOnWib9++RpUBWXwmLk+jRo2Kn+xLI2/TNQ34B3L/XARYHXwuAtSMz8Np06bF7bffXkzLvWQoK5V+0LR3796r/GcBSzKyDGqgt956q3hNPw1S+pMhw4cPj8MPP7z4CYu0/s0VV1xRTPH1wAMPfOP5rrzyymJKhxSwPvvss7j66qvj6KOPLltH58ILLyy2pwhWOiJs3XXXXeb5Ro8eXXyzPfbYYyvpiQFq7mfiN0nHpikm0hQSr7zySrRp02alzwVQkz4Xv/rqq/j444+X2t64cePihwkAKktN/lxM06R9m6nSAGr63ykuWLDAKFuqhFgGNUD6ppL+gznNL/yPf/yjmG84/QVCmvP33//+d/FNLX1zu+2224r9009XpEUvr7nmmhgzZkx06dJluedP533ppZfKhlSnedLTT2+k+YR32GGHYoRYmg5i1qxZK/TNKn1DTdq2bVspzw9Qkz8TV0Q6b+n/uIhlQC6fi0888URsvPHGS21Pf0Fz/vnnf+s/B4C18XMxLWNw0UUXrdSfA0BN+zycPHlyuf9HXnzNtNmzZ5f9Po1QKw1+UFlMwwg1wL777lv8B3Pz5s3jpz/9afETGOmnO9I3m7SoZXL22WeXO6Z0UeA01PmbpAU/F597eM899yxe33777ZW639JvXuutt95KHQ+wNn0mrojSn6ybM2fOarsGsPaqqZ+LnTp1KtabWPLr26yfAbC2fy727Nlzlc4J5K2m/p3ikqPP0r2m5yj92nLLLVfq/LA8RpZBDXDTTTdFq1atom7dutGsWbPYbrvtiiHOSZrzN/26ZcuW5Y7ZdNNNo2nTpsX732SLLbYo9/v0UyBJ+qmPldGkSZPi1V/6AqtDTftMXBFz584tXv2QAZDT5+JGG21U/AUOQGXzuQhQMz8PS/+fuPT/kUvtvvvuxQ8QJAMHDixGyUFlE8ugBujYsWPssssuy90nDT9eWXXq1Klw+6JFi1bqfK1bty5e//Of/0T79u1X+r4A1obPxBWRpqhIlvyfFIBcPxcBVoXPRYCa/XeK6f+Rd9xxx7LtaTRZ6Q8T3HXXXSt1bvgmpmGEGi4NO164cGG88cYb5bZ/+OGH8emnn1basORv842zW7duxTdL37yANa06fiZ+k/QTc2kajDQtxvbbb19p5wWoqZ+LAKuTz0WA6v93infffXelXBu+DbEMarju3bsXr9ddd1257YMGDSpee/ToUSnXady4cbEo6IpIf+F78sknF4sT33DDDUu9n74RX3vttfHee+9Vyr0BVOfPxOWZN29eHHvssTFz5sy48MIL/aUKELl/LgKsbj4XAarv52Ga1vGEE06I0aNHx4033ljhPkbxsrqYhhFquDQk+bjjjoshQ4YUP/Wx9957x3PPPRfDhw+PH/3oR9GlS5dKuc7OO+8c9957b7HoZ4cOHYqFNg866KBl7p9i2FtvvRVnnHFG/OlPf4oDDzywmLd46tSpcd9998XkyZOLhUUBcvhMTKZPn1424jaNJnvllVeKz8MPPvigWED51FNPrZR7A6iJn4uLS8emewPI7XMRYE2qrp+HKd698847cfrpp8fIkSOLfTfZZJP4+OOPi7XKHnrooWLtNahsYhmsBW6//fZo0aJFDBs2rJjKKy3E2b9///jNb35Tadfo3bt3vPTSSzF06NAYPHhwMRR7ed/Y1llnneKnQNI9pW+yl1xySXz++edRUlIS++yzTzGcevPNN6+0+wOozp+JSdo/jSJLo8fSosVpFG465qSTTirmkQfI9XNxSelYsQzI8XMRYE2rrn+n+Nhjj8WIESOKr6uvvjpmz54dTZs2LQLfzTffXEQ+qGy1Fhm3CAAAAAAAQKasWQYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAA1VTnzp1jq622qurbAAAAWKuJZQAAADXIn//857jooouq+jYAAADWGrUWLVq0qKpvAgAAgKV9+eWXkf6XrUGDBmXbevXqFcOHDy+2AwAAsOrqVsI5AAAAWA3q169f1bcAAACw1jMNIwAAQBWYP39+XHLJJfG9730vGjduHE2aNIntttsuTjjhhJg3b16Fa5alX6dRZUmtWrXKvoYNG1a2z5w5c+LCCy8szpVGpG2wwQbxox/9KCZOnLhC95XOlc45ZsyYuO6666JVq1bFebbeeusYNGjQUvs/99xzxT2n66XnSF8dOnSIoUOHLrVvmj4ynfvVV1+Nvn37xuabbx7rrLNO/OAHPyjOk/zjH/8onnvdddeNjTfeOM4+++z4+uuvlzrXhx9+GKeffnrxZ5KiYrNmzeKYY46JKVOmrNBzAgAAlDKyDAAAoAr88pe/jNtvvz2OPvroOOOMM4pt77zzTjz88MPx3//+Nxo1arTUMSlepWD19NNPx4gRI8q2p9iUzJ49O/bYY494880347jjjosdd9wxZs2aFbfddlvstttuxXE77bTTCt3fBRdcUJzv+OOPL8LVnXfeGeecc06UlJTET3/607L9HnjggXj55Zfj8MMPjy233DI+++yzGDVqVBHQ/ud//ifOPffcpc6d7q1hw4bFe+lZr7nmmthvv/2KZ0rTTJ500knFNUaPHh2DBw8uoln//v3Ljp82bVrxzHPnzo0TTzyxCHrTp0+PW265JZ544ol44YUXYosttviW/0QAAIBcWbMMAACgCqQRX506dSqC0LKkEVZppNTio6WWt2ZZnz594qabbiqiWDp3qU8//TTatm0bLVu2LEaMfdPIshTI2rVrV4z2Kl0vLUWtFMNSmJowYULZ/ml7Gk22uIULFxb3nkazpWBWr169spFlF198cXTr1q2IgrVr/7/JTv785z/HoYceGnXq1ClGli1+79///veLUWQzZswo25b2HTduXBHFWrRoUbY9/Tml50zhrqKRbQAAABUxDSMAAEAVaNq0aUyaNCn+/e9/V8r5Ujy76667ihFk22yzTXz88cdlX2kaw/3337+IaKVTPK7IyLfSUJakIJbO/frrr5fbb/FQls79ySefxMyZM+OHP/xhMcrstddeqzDqlYayZO+99y5eUyRbPJQle+21V7z//vvFKLIknfPBBx+M7t27F1NXLv6caQTcrrvuGo8//vgK/7kBAACYhhEAAKAKXH/99XHsscdG+/btiykD99xzzzjggAPiiCOOKKYo/LZKg9Hf//73YtrC5e3XvHnzbzzf4iO2Sm244YZFDFvyfL/+9a+L0WEpai0phbNvOvf666+/zGuWvpeum2JYinVp5Nrdd99dfFVk8RAHAADwTcQyAACAKnDQQQcV0wamUVBjx44tvlL8SdMUPvPMM8sNXhVJAal0JNaAAQOWud+KnjdNibgio9lS4PvPf/4Tp59+enTo0KGIW+nYRx99tFhvrPS+VuTcy7tm6bSTpec78sgj4+STT16hZwEAAFgesQwAAKAKp2L8yU9+Unwlv/vd7+K0004r1h1L63tVpFatWsuMYOl8s2bNin333TfWhBTJ/vWvfxVx7re//W2595588snVcs207loaOZamfFxTzwkAAKzdzE0BAACwhi1YsKCIWkvaeeedi9clpzpcXJqKsKLpDVNAOuaYY4qANXz48AqP/fDDD8v9/q233orJkyfHyiodCVY66qvUjBkz4vbbb4/VIU0FmdYre+SRR2LMmDEr9JwAAADLY2QZAADAGjZnzpzYbLPNiqkY05pl6dcpMN12221Rt27dOProo5d57K677ho33nhj9O7dO3r06BH16tWLTp06xdZbbx2XXXZZTJgwIXr16lWsIZbWQWvcuHFMnTo1/va3v0WjRo3KBaauXbvGu+++u1TsWlGtW7eOHXbYIa6++uqYO3dutGnTJt5555249dZbY5tttqlwvbLKkEbg7bHHHrHffvvFz372s2L6xxQL07Ok6R932WWXGDZs2Gq5NgAAsPYRywAAANawddZZJ84+++x46qmnirXKZs+eHZtsskkRwvr16xcdO3Zc5rFHHXVUvPjiizFy5Mi47777ijW8hg4dWsSyJk2axPjx4+O6666Le++9t1gPLUWkFONSUOvZs2elPkcaWZZGeJ133nlxzz33FM+x3XbbFfEsXff444+P1WHzzTcvpn9M10lRcNSoUVG/fv1iewqEJ5544mq5LgAAsHaqtWhlf4QQAAAAAAAAajhrlgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAABC5+v8ADGEyUIN07HEAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 4 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:38:29.427907Z", + "start_time": "2025-09-29T15:38:29.079002Z" + } + }, "cell_type": "code", "source": "year_percent(y_per, \"%click\")", "id": "ba7581e97fdbd07c", - "outputs": [], - "execution_count": null + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAaiCAYAAABQHAfEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QuUV1XdP/7PcMcL3kAFBfECooNEqKDmBS3FNEWfIC0IMZTMJPURNczrk5JKaQZqWYT3S5EZmZcowUQUQiFzxMujIiQQPiJqyt35r33+a74/hpnD9TvAF16vtb7rnNnnnL33+c7oWvnus3dZZWVlZQAAAAAAAAA11KvZBAAAAAAAACTCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAADYp3bt3j7Kysuwzfvz4Wu+5+uqrC/ek87pWNVb6AAAAsGURpgEAwGbkpZdeim984xvRqlWraNSoUXbs06dPvPzyy2vcx6uvvhqNGzfOgqMbb7yxTucLAAAAmzphGgAAbCZ++9vfxkEHHRQPPPBAzJkzJ5YuXZod77///ujSpUuMHj16jfr57ne/G0uWLIny8vK48MIL63zeAAAAsCkTpgEAwGbgjTfeiDPOOCML0JLDDjsszj777Dj00EOzn1N7up7uW5UUxD311FPZ+a233hoNGzbcALMHAACATZcwDQAANgNpOcaFCxcWzp999tm44447YuLEiXHttddm7Z9++mkMGzYst4+PPvooLrroouy8b9++cdRRR8WmKu2TVllZmX02xJ5pAAAAbLmEaQAAsBn405/+lB332muv+O///u9q1y699NJo27Zttftqc+WVV2bLQm633Xbx4x//uI5nDAAAAKVBmAYAACXuww8/zEKwJFWT1a9fv9r1Bg0axJFHHpmdz549O6tAW9k//vGPGDFiRHaeKtl22WWXDTJ3AAAA2NQJ0wAAoMR9/PHHhfO8EKxly5a13p+kpRLPPffcWL58eXTp0iU7X19vvfVWtvxiCvF22223aNKkSWy11VZZ5dwpp5wSw4cPj3nz5q1z/6nvsrKy7LOmyzy+9NJL8f3vfz+6desWu+66azRq1Ci22Wab2HfffeO0006LkSNHZsHk+vjss8/iu9/9bmFuqf8nn3xynfqaMWNGoZ+qysLkr3/9a3z961+PvffeO5o2bRotWrSII444IgtDFy9evFZjfPLJJ3H77bfHSSedFHvssUf2O9p2222jXbt28a1vfauwf96q3HnnnYV59u/fP2tLf0sPPvhg9OzZM/udp3mm64888shaze9zn/tcoe+0n9+aSvsDVj23cqXmyqZPnx6XXXZZdO3aNfvnJ/1dpO80/Z2kas0UQK+J9LeT5vjtb387e7Z58+ZZX82aNct+V+l39pvf/Cb7G9mY3ykAALD2GqzDMwAAwCYkhR9V/v3vf9d6z4rt6T/ur+jXv/51trdavXr14rbbbsuO6yqFOWnftV/84hexbNmyGtfffvvt7POHP/whu+/999+vNv+6sGDBgjjnnHOyICMFhytaunRpvP7669knXf/BD34Qc+fOXadxlixZEt/85jezfpIdd9wxW1bzkEMOKcp7pLmed9552V54K1q0aFFMmDAh+6TfXwpX2rdvv9r+fvvb38b3vve9Wt/3f//3f7PPqFGj4itf+Urce++92fKfayKFTymcTPNZX2effXYMGjSo8HeaAqnVSZWXo0ePLvx81lln5f6tnn/++fGrX/0qC6pW9H//93/ZZ/LkydmSp2kfwvTd53n44YfjG9/4Rq1hZvq9pQA7BcwpDEsB4e9///vYc889Y00V8zsFAADWnjANAABKXAo5UuVZWuox/cf2VPmyYiCWgoJnnnkmO09VYiuGV/Pnz8+qtapCh1RRs67+85//xHHHHRfPPfdcoS1VOn3hC1+I1q1bZ0HWu+++Gy+88EIWoqWQYeUQo9hSCHHMMcfEa6+9Vmjbfvvtszml7yzNYebMmdmcUgiTgql1ffdTTz01/vKXvxS+5z//+c+x//77F+1d0t53VUFap06donPnztl3mub+yiuvFKqs0vum30H6zvPcfPPNWZhZFS6mgPXQQw+N3XffPfudVFRUxJQpU7Lrjz76aHTv3j2effbZ7Pe5KilMOvnkk7M5peVFDzvssKwqK7W/+OKLa/3Offv2jUsuuSQWLlyYVeSlar0Vq/Rqk6rDPv300+w8vVNtv4NUkdejR4/snaqkeR544IGxww47ZP9cpGvp7yeNnQK99PeRKthqk6osq4K09B2mMVP1Y/q+0t9G+r2k90/fZ1pSNVVsTps2LXbaaafVfgfF/k4BAIB1UAkAAJS8AQMGpFQk+9xyyy3Vrv3kJz8pXBs4cGC1a2effXbW3rx588r3339/veZw2mmnFcapX79+5TXXXFP5n//8p8Z9y5cvr3zqqacqe/bsWblgwYIa14866qhCP+PGjat1rKuuuqpwTzqvzdKlSyu/8IUvFO5r2rRp5YgRIyqXLFlS497FixdXjhkzpvKUU06pta+qPmr7n1Dvvfde5cEHH1y4vu+++1a+8847levr7bffLvTZsGHD7LjTTjtVPvnkkzXuTXNv1qxZ4f4ePXrk9vuXv/ylsl69etl9jRo1qrz++usrP/nkkxr3TZ06tXL//fcv9Pmd73yn1v5GjRpVuKdBgwbZMf0O0/xXtmjRorX+Hs4444xC/1deeeVq71/xdzFy5Mha7+nXr1/hnvbt29f6d7Zs2bLK2267rbJx48aFv+mJEyfW2l/6/n/0ox9VvvHGG7nzeuutt7LfS9W46Z/ZPHX9nQIAAGtHmAYAAJuB6dOnF/6jf/occcQRWXB2+OGHVwuTXn/99cIzzz//fGVZWdkqQ4c1NXbs2GqB0wMPPLDOfRUrTPvlL39ZLYz629/+ts5zygvTUmiWwrOqawcddFDlvHnzKothxTAtfVIA9uyzz67x7+Cvf/1rrUFmu3btCvc8/PDDq5zDnDlzKnfZZZfCdzhr1qxVBj/pc8ABB1R++umnlcWS3rmq7zZt2mTvkOell14q3LvtttvWGuamv4Oqe/bee+8sDF2VFd/v+OOPX693SUFup06dsr6aNGlSOX/+/NWOWRffKQAAsHbWfTMEAABgk9GhQ4ds76f69etnP6dlHdOSgFV7LDVs2DDuuuuuaNeuXfZzWsrv3HPPzZadS8vGnXnmmTX6TMvbpX2j0rKRq/OTn/ykcJ72djr99NNjY1txTv/93/8dRxxxRFH7T0shpu+uagnJL37xizFu3Lho0aJF1IU+ffpk4+X50pe+FP/1X/9V+PmXv/xljXv++Mc/xhtvvJGdn3LKKdnSlKuSliq84IILsvO0JGbVfnCrcsMNN0TTpk2jWNI7l5eXZ+dpSc6xY8fm3jty5MjCefob3HrrrWvcc9NNN1X7G2nevPkqx+/fv3/2z1fy5JNPZkuUrqv0z2H6Pa64192aKPZ3CgAArB1hGgAAbCbS/lKTJ0+Or33ta1kIkv7DfdoX7Otf/3q231Lv3r0L995+++3ZfkspfLvtttuirKwsa0/BWfo5hRdpv6cUDKU91lJAVhXCrCzt3TR+/PjCz2l/qY3tnXfeiVdffbXw83nnnVfU/tOeZCmcS3vAJb169YrHHnssttlmm6gr/fr1W+09Z5xxRuE8BXsrS3Os8o1vfGONxk17sFVZXfiT9htL++YV29lnn11rYLaiJUuWxL333lv4Oe0BuLJly5YVwri0T9xXvvKVNRr/6KOPzo4pfF5xn7XaLFiwIJ544oksqEt7rH3ve9/L/v6qPmkvvSpp37TVqavvFAAAWHMN1uJeAABgE9elS5d46KGHVnnPv//977j88suz8/Qf9z/3uc8VgoIUvK1cffTpp59mbakqJwUBXbt2rXY9BQKpyiZJAVy3bt1iY3v++ecL56kab/fddy9a3ymQSsFk+l6Sb3/721kAWa9e3f1/FVPYuSbf66GHHlrt9zxnzpwsUF0xBKzyu9/9Lp5++unV9vnhhx8WzmfNmrXKezt37lyojix2kPj9738/+zv7wx/+kFWH7bTTTtXueeSRRwpVYwcccECNv9PkpZdeik8++SQ7T2Hz+eefv0bj//3vf1/td/Cvf/0rm+Po0aOzgHlNpMrP1amr7xQAAFhzwjQAANjCDB48OAtIUsjyP//zP4X2W2+9tRCkpUq066+/Pqtw+9Of/hQDBgzInkntr7zySrUl51JoU6V169bRoMHG/58ZK85pr732KmrfPXv2zCqckhSe/OhHP4q6lqqTUoXg6qRKwiZNmhTCzffee69amDZ79uzC+epC19p88MEHqx2/rt4/Vf+lyrNUgXbPPfcUlp+srWKttqq0ld8/BW/pb74Y38HUqVOzZT5X9/2s7OOPP17tPXX1nQIAAGvOMo8AALAFSZVIVUvhpWXo0lJ3VVVpN954Y3a+9957x3333Rdt27bNgpmvfvWrMWzYsOzajBkz4oEHHsgNBOpymcO1UZdzShVNVV5//fVsL7G6lir+1tSK+4StHNasWGW2LqpCxDx1ua/XwIEDc5d6THup/eUvf8nOGzdunC15Wpv1ff/avoNUhZb+GakK0lL4lSo/0zKbqYotVcKl5VPTP2PpM2rUqMKza7Ifob3SAABg4xOmAQDAFiKFPueee25hH6y0pGOV6dOnF5avS1VoKy8rl5bZqwpp0nKPK1qxYuo///lPbArqck6PPvpoIeB4+OGH4/TTT6/zQK1qSck1UbWMYbJyNduKQVvaM68q4FnTTwpTN5a0R12HDh2y85dffjnbH7BKCqiqgqn/+q//ih133LHWPlZ8/06dOq31+6fP1VdfXa3PtFzm22+/nZ3vtttu8Y9//CN++MMfRvfu3bPlRVMQWrUn4ZpWowEAAJsWYRoAAGwhbr755myJxkaNGtVY3i5VWFVp3759jWdTtc8ee+xR495kl112KZynQG511Usbwopzqgo6iiUFkbUFanX53qnqaU1CwbQHV9USj0nz5s1zv5e5c+dGqTn77LNrVKetXO2Vt8RjXb3/X//618J5WnpyxWU1a/POO+8UZVwAAGDDEaYBAMAW4F//+ldhf7SLLrqoUOFTWzVT3pKCVVU9K4c6nTt3zpaDrKqgmjRpUmxshxxySOE8hX/p/YsdqP3xj3+sFqil/eTqKlBLgdGafK/PPfdcteCoVatW1a5369atcP7ss89GqTnjjDOyYDd58MEHs7+3tLxjVUCV9sc7+uijc59Pf6tVz8+bNy/+93//d73ntOI+bAcccMBq7//b3/623mMCAAAbljANAAC2AOeff34WmKXqsrSf08pWXA4wL3iqaq/aZ61KCidWDDBGjBgRG1t6z/3226/w88qVeMXwxS9+sUagVpcVavfcc89q77n77rsL57WFSl/5ylcK57/+9a+rVbGVgp122ilbxjH56KOP4re//W21/dO+9a1vVVtScWXpd5WC0Cq33Xbbes+pXr16a7wc5wsvvBB///vf13tMAABgwxKmAQDAZu6JJ57Igp7klltuqbXybMXg6U9/+lOtIcCcOXOy8/3337/G9f/+7/8unKeKofTZ2Fac009+8pN45pln6jxQS/tn1VWgdu+9966yOm3cuHHZ+Kta7vCrX/1q7LPPPtl5+n2mPfRS1duaSBWJK1YwbiwDBw4snP/0pz+NRx55JDtP+/ydeeaZq33+0ksvLZwPHz48q2xbU7UtDZmq4aqMGTMm99kUtK04dwAAoHQI0wAAYDOWKo8GDRqUnZ944onRs2fPWu9r165d7Lvvvtl5CofGjh1brY+LL7641uqmKl/60peid+/ehZ/79u2bLStZW6XOZ599lgU/p556anz44YdRV/r37x+HHXZYdr506dI4/vjjs0qkdL6yJUuWZO+d5rQugVoKUeoyUGvYsGEsX748++5rC39SAJrmXhWMHXvssdm8VpYCp9tvvz07JmmvsfR3MX369Nyxp02blgVQrVu3Lvr+c+uie/fu2d9r1dwWL16cnX/5y1+usaxlbY466qhsucgk/Y7S+//oRz/K3ZMu/f2nwC79s3PyySfXuH7SSScVzu+6664suE2/qxWl5SSPO+64ePHFFwvLpQIAAKWjwcaeAAAAUHduuOGG7D/kp6AnVeGsyhVXXJGFYCnsSsFECp923XXXeOqppwohSseOHbPqptr86le/yvaumjx5chYmXHXVVXHjjTfGF77whSyISUHPu+++G1OmTIn3338/e2ZNq6LWRYMGDeKhhx7KlvV74403smDvu9/9bvzgBz/I5tSyZcssTElzTpV3adnA7bbbbp3GSmFiCtRS2LJw4cIsUPv6178eDzzwQDaP9ZVCohSWpUqsFJR97nOfy/b/St9fmntFRUXh3vRev/zlL1c51xSofec738l+T48//nhWvZgqDjt16pQt45m+q1S59o9//CPee++92NScffbZcckll1Rrq60SL88vfvGL7P3+/Oc/Z0HqZZddFtdee222p1ybNm2ypUsXLFgQb775Zrz88suFwO7AAw+s0VcKyY488shsL7T0+xg8eHC2rGiXLl2yv6f0tzdx4sTsu95tt92yJVdXnjsAALBpE6YBAMBmKgUB119/fXY+ZMiQ2HPPPVd5f58+fbIg7Gc/+1n2H/5XXu4xBTqjR4/ODYdSCDN+/PgsLEj7caU+0rKAKbCoTZMmTQoVUnVl9913j+effz4LWn7/+99nbSkkqW0py2SbbbZZ57FSSPWHP/whq2BKgVr6rpJiBWopmPz444+zPcJSyJU+K0vVhamKKu0Zt7owKi33+O1vfzsLe1IIlAK5FUO5lZWXl8eOO+4Ym4JUdZj2/ktBWFWAmCrM1lQKyx577LG45pprskqyFB6mT6qYXFV14CGHHFLrtd/85jdxwgknZJVnSQqfV67iS2Fl2uMt/TMGAACUFss8AgDAZiot75iWqEtL4q1pJUzaUy2FTikY2mGHHaJRo0ax9957Z/uPpSX1qpaCzJMq4O64446smicFeF27do2dd945C5PSXm2pr1RhlZZbTFVq2267bdS1FAClPeNSiHHBBRdkFV3NmzfPgrwUnnXo0CFblvHOO++M1157bb3GSlVjKVCrWvIxBWqpQq0YSz6mMCdV/6UqsrSkZtu2bbNQKL1fqrRLIWgK2NL7rImjjz46W94xzTHtNZb2zUu/8/S9pN9LCtvSspJDhw6NqVOnZr/TNVlGcUNo0aJFHH744YWf07KNaxtYpvdMS5HOmDEjfvzjH2eVmKkqLf2dpu96p512yqrLUt/pbyP9vY4YMaLWvnbZZZes+ixdT/Pafvvts392UpiblttM/0z8/e9/r3W/QQAAYNNXVlmX66oAAACwTlLIU1VNmCrN0s/8/1LFY1qCNO1zVlZWFq+//noW/gEAANQFlWkAAACUlLQXXgrSku7duwvSAACAOiVMAwAAoGSkxVWGDx9e+Pmcc87ZqPMBAAA2f8I0AAAASkbalyzt35ekfePSHnwAAAB1ae12aAYAAIANaPLkyXH//ffHkiVL4qWXXopnn322cO1//ud/omHDhht1fgAAwOZPmAYAAMAm65VXXolbbrmlRnvv3r3jm9/85kaZEwAAsGURpgEAAFASmjRpEu3bt48zzzwzBg0atLGnAwAAbCHKKtPuzQAAAAAAAEAN9Wo2AQAAAAAAAIkwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAtmD9+/ePsrKymDFjxsaeCgAAwCZJmAYAALCJS2HXip/69etH8+bN45hjjon7778/NgV33nlnNrd0XFevvvpqDBo0KDp27BjbbbddNGrUKFq1ahUnnnhijBw5MhYvXlzUOQMAAKyJBmt0FwAAABvdVVddlR2XLl2aBU9/+MMfYty4cTFlypS46aab1qnPH/3oR/H9738/dtttt9iY/ud//ieuueaa+Oyzz+LQQw+NM844I7bZZpv497//HePHj4+zzjorbr/99uxdAQAANiRhGgAAQIm4+uqrq/3817/+NY499tj46U9/Gt/73veibdu2a91ny5Yts8/GNHTo0CwobN26dfz2t7+Nbt261bjn0UcfjZ/85CcbZX4AAMCWzTKPAAAAJeqLX/xidOjQISorK+Pvf/97of2FF16Ir371q7HzzjtH48aNY4899ohzzz035syZs0Z7pqXz1JaupfPTTz89W1aySZMmcdBBB2XB1oq6d+8eZ555ZnaejisuSbm6vdjS9RQSNmzYMB577LFag7TkK1/5SjzxxBNr/R0BAACsL5VpAAAAJSwFaUkKrpIUdKUgLbX36tUrC9JSuJaWSEzLQk6YMCH23HPPNer7nXfeia5du8Zee+0V3/zmN2P+/Pnx0EMPRc+ePeMvf/lLHH300dl9KXTbfvvts/7Ttc6dOxf6SO2rMmrUqGzZyhTYpb3SViUFgwAAABuaMA0AAKBEpUDrtddey4K0gw8+OP7zn/9ke40tW7Ys22fsiCOOKNx7ww03ZHujffvb344///nPa9R/6iNVjVXt1ZZ84xvfiOOPPz6GDRtWLUxLUph2yimnFH5eEyncq6qyAwAA2BQJ0wAAAEpsz7RUyZVCtEceeSSrQLvwwguzCrT77rsvqx77+te/Xi1ISy666KL4+c9/HmPHjo2ZM2dGmzZtVjte6vPyyy+v1tajR4/s2cmTJxflnaqWntx9992L0h8AAECxCdMAAABKxDXXXJMdUyVaWj4xBWYDBgyIvn37Zu0vvvhidjzmmGNqPNugQYM48sgjsz3Kpk6dukZhWlqusX79+jXaW7duHc8991wR3ggAAGDTJ0wDAAAosf3R8nz44YfZsWXLlrVer2pfsGDBGo2Xt99ZCuY+++yzKIY0p+nTp8e7775blP4AAACKrV7RewQAAGCj2G677bLj3LlzV7mkYtV9m4LDDz88O/71r3/d2FMBAAColTANAABgM/H5z38+O44fP77GtWXLlsUzzzyTnXfp0qXoY1ctB7l8+fK1eu7MM8+Mhg0bxu9+97t45ZVXVnnv4sWL12uOAAAA60KYBgAAsJk45ZRTYscdd4wHHnggnn/++WrXfvrTn8bbb78dX/rSl9Zov7S1tdNOO2XHmTNnrtVzbdu2jauvvjqWLFkSJ554YkyZMqXW+5544on48pe/XJS5AgAArA17pgEAAGwmttlmm/j1r38dvXv3jqOOOio7puDshRdeiD//+c+x6667xi9+8Ys6GfvQQw+NrbbaKgvt3n///WysZNCgQatdVvKyyy7LKueuueaaOPjgg+Owww6Lgw46KHuff//73/G3v/0t3njjjawNAABgQxOmAQAAbEZ69uwZzz77bAwdOjSefPLJ+PDDD7Ng65xzzokrrrgiWrVqVSfj7rDDDtlSjSkQu/POO+OTTz7J2vv27btGe7RdeeWVWfh32223xbhx42LUqFGxaNGirOKtc+fOcemll2Z9AQAAbGhllZWVlRt8VAAAAAAAACgB9kwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMjRIO8CG8auu+4an3zySbRp02ZjTwUAAAAAAKAkzZw5M7beeuuYO3du0ftWmbaRpSBt6dKlG3saAAAAAAAAJWvp0qVZ5lIXVKZtZFUVaRUVFRt7KgAAAAAAACWpvLy8zvpWmQYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACwOYRpixcvjksvvTRatWoVTZs2jW7dusXYsWNX+9zDDz8cp512Wuy1116x1VZbxb777hsXXXRRLFiwoMa9bdu2jbKyshqfc845p47eCgAAAAAAgE1Vgygh/fv3j9GjR8cFF1wQ7dq1izvvvDNOOOGEGDduXBx++OG5zw0cODAL4Pr27Rtt2rSJf/7znzFixIh47LHH4sUXX8yCuRV17tw5C9tW1L59+zp7LwAAAAAAADZNJROmTZ48OR588MEYNmxYDB48OGvr169fdOzYMS655JKYOHFi7rMpgOvevXu1tgMPPDDOOOOMuO++++Kss86qdm233XbLgjcAAAAAAAC2bCWzzGMKxOrXr59VmVVp0qRJDBgwIJ577rmYNWtW7rMrB2nJqaeemh2nT59e6zNLliyJTz75pChzBwAAAAAAoDSVTJg2derUbKnFZs2aVWvv2rVrdpw2bdpa9Td37tzs2Lx58xrXnnrqqWxvtW222SbbQ+2WW25Zr7kDAAAAAABQmkpmmcc5c+ZEy5Yta7RXtc2ePXut+rvhhhuySrdevXpVa+/UqVO2/9q+++4b77//frYvW9qjLfWfnllX5eXltba/+eabsffee69zvwAAAAAAANSdkgnTFi5cGI0bN67RnpZ6rLq+pu6///4YOXJkttdau3btql0bM2ZMtZ/PPPPM+PKXvxw33XRTDBo0KHbfffd1fgcAAAAAAABKS8mEaU2bNo3FixfXaF+0aFHh+pp45plnsn3WevToEdddd91q7y8rK4sLL7wwnnzyyRg/fnz07dt3HWYfUVFRsVYVawAAAAAAAGx8JbNnWlrOMS31uLKqtlatWq22j3/84x9x8sknR8eOHWP06NHRoMGaZYmtW7fOjvPnz1/reQMAAAAAAFC6SiZM69y5c7z++uvx0UcfVWufNGlS4fqqpL3Jjj/++Nh5553jsccei2222WaNx37rrbeyY4sWLdZp7gAAAAAAAJSmkgnTevXqFcuXL4877rij0JaWfRw1alR069atUD02c+bMePXVV6s9O3fu3DjuuOOiXr162XKNeaFYqjxLY6xo6dKlcf3110ejRo3i6KOPrpN3AwAAAAAAYNNUMnumpcCsd+/eMWTIkJg3b17ss88+cdddd8WMGTNi5MiRhfv69esXTz/9dFRWVhbaUkVaqi675JJLYsKECdmnyi677BLHHntsdj5mzJi49tprs+Buzz33zMK1+++/P15++eUYOnRo7Lrrrhv4rQEAAAAAANiYSiZMS+6+++644oor4p577okPPvggOnXqFI8++mgceeSRq90rLbnxxhtrXDvqqKMKYdoBBxwQ+++/f9x7773x3nvvZdVoafnI3/zmN1mQBwAAAAAAwJalrHLFEi42uPLy8uxYUVGxsacCAAAAAABQksrrMG8pmT3TAAAAAAAAYEMTpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAADA5hCmLV68OC699NJo1apVNG3aNLp16xZjx45d7XMPP/xwnHbaabHXXnvFVlttFfvuu29cdNFFsWDBglrvHzNmTHTp0iWaNGkSbdq0iauuuiqWLVtWB28EAAAAAADApqykwrT+/fvHTTfdFH369Ilbbrkl6tevHyeccEJMmDBhlc8NHDgwpk+fHn379o2f/exncfzxx8eIESPi0EMPjYULF1a79/HHH49TTjkltt9++xg+fHh2fu2118agQYPq+O0AAAAAAADY1JRVVlZWRgmYPHlyVok2bNiwGDx4cNa2aNGi6NixY+y8884xceLE3GfHjx8f3bt3r9Z29913xxlnnBG//OUv46yzziq0l5eXR8OGDWPKlCnRoEGDrO3yyy+PoUOHxiuvvBIdOnQo6nul8ZKKioqi9gsAAAAAALClKK/DvKVkKtNGjx6dVaKlKrMqaRnGAQMGxHPPPRezZs3KfXblIC059dRTs2OqWKuSwrL0SWNUBWnJueeeGylzTHMAAAAAAABgy/H/EqNN3NSpU6N9+/bRrFmzau1du3bNjtOmTYvWrVuvcX9z587Njs2bN682RnLQQQdVuzft0bb77rsXrq9PIrqyN998M/bee+917hcAAAAAAIC6UzKVaXPmzImWLVvWaK9qmz179lr1d8MNN2SVbr169ao2xop9rjzO2o4BAAAAAABAaSuZyrSFCxdG48aNa7SnpR6rrq+p+++/P0aOHBmXXHJJtGvXrtoYSd44H3300TrOPn+NzryKNQAAAAAAADa+kqlMa9q0aSxevLhG+6JFiwrX18QzzzyT7bPWo0ePuO6662qMkeSNs6ZjAAAAAAAAsHkomTAtLbNYtQzjiqra0r5mq/OPf/wjTj755OjYsWOMHj06GjSoXphXtbxj3jhrMgYAAAAAAACbj5IJ0zp37hyvv/56jaUWJ02aVLi+Km+++WYcf/zxsfPOO8djjz0W22yzTa1jJFOmTKnWnvZK+9e//rXaMQAAAAAAANi8lEyY1qtXr1i+fHnccccdhba0HOOoUaOiW7du0bp166xt5syZ8eqrr1Z7du7cuXHcccdFvXr14sknn4wWLVrk7l/WoUOHbIw0VpXbb789ysrKsjkAAAAAAACw5ai+zuEmLAVmvXv3jiFDhsS8efNin332ibvuuitmzJgRI0eOLNzXr1+/ePrpp6OysrLQlirS3nrrrbjkkktiwoQJ2afKLrvsEscee2zh52HDhmVLQabw7fTTT4+XX345RowYEWeddVbst99+G/CNAQAAAAAA2NjKKldMnTZxixYtiiuuuCLuvffe+OCDD6JTp07xwx/+MHr06FG4p3v37jXCtFRVlueoo46K8ePHV2t75JFH4pprronp06dnVWz9+/ePK6+8Mho2bFj0d0rVcElFRUXR+wYAAAAAANgSlNdh3lJSYdrmSJgGAAAAAACw6eYtJbNnGgAAAAAAAGxowjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIBNJUxbsGDBhh4SAAAAAAAANn6Ydv7556/y+scffxw9evQo5pAAAAAAAABQGmHa8OHD4+abb6712sKFC+PEE0+Ml156qZhDAgAAAAAAQGmEaUOGDImLL744fve731VrX7x4cZx88snx/PPPx0MPPVTMIQEAAAAAAKDONChmZ9ddd12888478c1vfjNatWoVhx56aCxbtix69+4d48aNi/vuuy8L1QAAAAAAAGCLq0xLRo0aFYccckgWmk2fPj369OkTf/rTn+KOO+6I0047rdjDAQAAAAAAQGlUpiUNGzaM3//+9/GFL3whunTpEkuWLImf/vSn8a1vfavYQwEAAAAAAMCmG6bNnDkz99rtt98eJ510UgwYMCB69uxZ7d42bdqsz7AAAAAAAACwQZRVVlZWruvD9erVi7Kystzrqevari9fvnxdh9zslJeXZ8eKioqNPRUAAAAAAICSVF6Hect6VaZdeeWVqwzTAAAAAAAAoJStV5h29dVXF28mAAAAAAAAsImpt7EnAAAAAAAAAFtEmPbQQw9Fv379cvdPS9d+97vfFXNIAAAAAAAAKI0w7dZbb83dQy21169fP0aMGFHMIQEAAAAAAKA0wrTp06fH5z//+dzr6dorr7xSzCEBAAAAAACgNMK0jz/+OBo1apR7PVWmffjhh8UcEgAAAAAAAEojTGvTpk1MmjQp93q61qpVq2IOCQAAAAAAAKURpn3lK1+J++67L/7whz/UuDZmzJh44IEH4qSTTirmkAAAAAAAAFBnyiorKyuL1dn//d//ZfuizZ49O7p3717YP23q1Kkxfvz4rCrthRdeiJ133rlYQ5a88vLy7FhRUbGxpwIAAAAAAFCSyuswb2lQzM6aN28eEydOjO985zvx+OOPx7hx47L2srKyOOGEE+LWW28VpAEAAAAAAFAyihqmJa1bt45HH300Pvjgg/jf//3frG2fffaJHXbYodhDAQAAAAAAQOnsmbaiFJ4dfPDB2adYQdrixYvj0ksvzZaLbNq0aXTr1i3Gjh272udee+21uPDCC+Owww6LJk2aZJVyM2bMqPXetm3bZtdX/pxzzjlFeQcAAAAAAAC24Mq0utS/f/8YPXp0XHDBBdGuXbu48847s+Uj03KShx9+eO5zzz33XPzsZz+L/fffP/bbb7+YNm3aKsfp3LlzXHTRRdXa2rdvX7T3AAAAAAAAYAsI0+rVq5d9Pv3002jUqFF2nqq4ViVdX7Zs2VqPNXny5HjwwQdj2LBhMXjw4KytX79+0bFjx7jkkkuyvdrynHzyybFgwYLYdttt48c//vFqw7Tddtst+vbtu9ZzBAAAAAAAYPOyXmFaCrNSOFa/fv1qP9eFVJGWxhk4cGChLS3ZOGDAgLjsssti1qxZ2X5ttdlxxx3XerwlS5bE0qVLY+utt16veQMAAAAAALCFhmlpmcVV/VxMU6dOzZZabNasWbX2rl27ZsdUbZYXpq2tp556KrbaaqtYvnx57LHHHtl+a+eff/569VleXl5r+5tvvhl77733evUNAAAAAADAFr5n2pw5c6Jly5Y12qvaZs+eXZRxOnXqlO2/tu+++8b777+fBYRpj7bU/w033FCUMQAAAAAAACgNJROmLVy4MBo3blyjPS31WHW9GMaMGVPt5zPPPDO+/OUvx0033RSDBg2K3XfffZ36raioWKuKNQAAAAAAAEo8TNtrr73W+pm0p1pa2nBtNW3aNBYvXlyjfdGiRYXrdSHNNy3z+OSTT8b48eOjb9++dTIOAAAAAAAAm1mY1qZNmyxs2hDSco7vvvturcs/Jq1ataqzsav2Yps/f36djQEAAAAAAMBmFqalSq0NpXPnzjFu3Lj46KOPolmzZoX2SZMmFa7Xlbfeeis7tmjRos7GAAAAAAAAYNNTL0pEr169Yvny5XHHHXcU2tKyj6NGjYpu3boVqsdmzpwZr7766jqNkSrP0hgrWrp0aVx//fXRqFGjOProo9fzLQAAAAAAANhiKtNW9vbbb8fLL78cJ510Uo1rlZWV8eijj8YBBxwQbdu2Xeu+U2DWu3fvGDJkSMybNy/22WefuOuuu2LGjBkxcuTIwn39+vWLp59+OhuvyocffhjDhw/Pzp999tnsOGLEiNh+++2zz3nnnZe1jRkzJq699tosuNtzzz2zcO3+++/P3mno0KGx6667rtP3AgAAAAAAQGkqq1wxdVpPffr0iXfeeScmTJhQ6/UjjzwyC6lSCLYuFi1aFFdccUXce++98cEHH0SnTp3ihz/8YfTo0aNwT/fu3WuEaSlwS+PWZo899siuJy+88EJcc8018eKLL8Z7772XVaOl5SO/973vZUFeXSgvL8+OFRUVddI/AAAAAADA5q68DvOWooZpKZg6++yz4/LLL6/1+nXXXRe/+tWvsgo2/n/CNAAAAAAAgE03bynqnmn//ve/V7kU4i677BJz584t5pAAAAAAAABQZ4oapjVr1qywZGJtUkXa1ltvXcwhAQAAAAAAoDTCtEMPPTR+/etfZ/uZrSy1jRo1Krp161bMIQEAAAAAAKA0wrTBgwfHvHnzomvXrnHPPffEyy+/nH3SeQrR0rWLL764mEMCAAAAAABAnWlQzM6OOOKI+PnPfx6DBg2K/v37F9orKyujcePGcfvtt0f37t2LOSQAAAAAAACURpiWnHXWWXHCCSfEb3/723j99deztvbt20fv3r2jVatWxR4OAAAAAAAASidMS1Jodv7559dF1wAAAAAAAFDaYdqKJk2aFLNmzYrddtst2zetXr2ibtMGAAAAAAAApRemvfvuu3HiiSfGSy+9VGjbb7/94o9//GPstddedTUsAAAAAAAAFE2dlYl973vfi5YtW2b7pi1cuDCef/75WL58eZx77rl1NSQAAAAAAABsWmHaE088UWt7Cs+uu+662GeffaJx48bRtWvXLGBL7QAAAAAAALBFhGknn3xynHHGGTF//vxq7WmPtAkTJlRre/bZZ6NVq1brOyQAAAAAAACURpiWKs1efvnlbD+0hx56qND+gx/8IC688MI44ogjok+fPnHAAQfEgw8+mLUDAAAAAADAFhGmdenSJSZPnpwFZ2eeeWZWqTZ79uzo2bNnFrSVl5fHggUL4pBDDonx48dnwRoAAAAAAACUgrLKysrKYnX2xhtvxNlnnx3Tpk2L66+/Ps4555xidb3ZSmFjUlFRsbGnAgAAAAAAUJLK6zBvWe/KtBW1a9cuqz678cYbY8iQIXHUUUdlARsAAAAAAACUoqKFaUuWLImPPvooOx84cGCW/O20007xuc99Ln70ox/F8uXLizUUAAAAAAAAlEaYNn/+/Dj11FNjm222iR122CE6deoUU6ZMiVatWsXDDz8c99xzTwwfPjwOPPDAePHFF4szawAAAAAAACiFMO2CCy6IiRMnxi9+8YssPEuh2le/+tVYunRpdj2dT58+PQvTDjnkkLj44ouLMW8AAAAAAADY9MO0xx9/PL7//e/HmWeeGT179oxf/epXMWvWrHjllVcK92y33XYxcuTIeOKJJ+KRRx5Z3yEBAAAAAACgNMK0hg0bxsKFCws/L1q0KMrKyqJBgwY17j3mmGPin//85/oOCQAAAAAAABtEzcRrLaX90q6//vpYtmxZtmfabbfdFh06dIj99tuv1vubNGmyvkMCAAAAAABAaYRpw4YNi3r16mV7pn366adx2GGHxS233JK1AQAAAAAAQCkrq6ysrNzYk9iSlZeXZ8eKioqNPRUAAAAAAICSVF6HeYvyMQAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAzSFMW7x4cVx66aXRqlWraNq0aXTr1i3Gjh272udee+21uPDCC+Owww6LJk2aRFlZWcyYMSP3/jFjxkSXLl2ye9u0aRNXXXVVLFu2rMhvAwAAAAAAwKaupMK0/v37x0033RR9+vSJW265JerXrx8nnHBCTJgwYZXPPffcc/Gzn/0sPv7449hvv/1Wee/jjz8ep5xySmy//fYxfPjw7Pzaa6+NQYMGFfltAAAAAAAA2NSVVVZWVkYJmDx5claJNmzYsBg8eHDWtmjRoujYsWPsvPPOMXHixNxn58+fHw0bNoxtt902fvzjH8fFF18cb7/9drRt27bGveXl5dm9U6ZMiQYNGmRtl19+eQwdOjReeeWV6NChQ1HfK42XVFRUFLVfAAAAAACALUV5HeYtJVOZNnr06KwSbeDAgYW2tAzjgAEDssqzWbNm5T674447ZkHa6qSwLH3SGFVBWnLuuedGyhzTHAAAAAAAANhy/L/EaBM3derUaN++fTRr1qxae9euXbPjtGnTonXr1us9RnLQQQdVa097tO2+++6F6+uTiK7szTffjL333nud+wUAAAAAAKDulExl2pw5c6Jly5Y12qvaZs+eXZQxVuxz5XGKMQYAAAAAAAClo2Qq0xYuXBiNGzeu0Z6Weqy6XowxkrxxPvroo3XuO2+NzryKNQAAAAAAADa+kqlMa9q0aSxevLhG+6JFiwrXizFGkjdOMcYAAAAAAACgdJRMmJaWWaxahnFFVW1pX7NijLFinyuPU4wxAAAAAAAAKB0lE6Z17tw5Xn/99RpLLU6aNKlwvRhjJFOmTKnWnvZK+9e//lWUMQAAAAAAACgdJROm9erVK5YvXx533HFHoS0txzhq1Kjo1q1btG7dOmubOXNmvPrqq+s0Rtq/rEOHDtkYaawqt99+e5SVlWVzAAAAAAAAYMvRIEpECsx69+4dQ4YMiXnz5sU+++wTd911V8yYMSNGjhxZuK9fv37x9NNPR2VlZaHtww8/jOHDh2fnzz77bHYcMWJEbL/99tnnvPPOK9w7bNiwOPnkk+O4446L008/PV5++eXs3rPOOiv222+/DfrOAAAAAAAAbFxllSumTpu4RYsWxRVXXBH33ntvfPDBB9GpU6f44Q9/GD169Cjc07179xphWgrc9txzz1r73GOPPbLrK3rkkUfimmuuienTp0eLFi2if//+ceWVV0bDhg2L/k6pGi6pqKgoet8AAAAAAABbgvI6zFtKKkzbHAnTAAAAAAAANt28pWT2TAMAAAAAAIANTZgGAAAAAAAAORrkXYBNzYjO52zsKQBANedN+/nGngIAAAAAdUxlGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAwOYSpi1evDguvfTSaNWqVTRt2jS6desWY8eOXaNn33333fja174W22+/fTRr1ix69uwZb731Vo37ysrKav1cf/31dfBGAAAAAAAAbKoaRInp379/jB49Oi644IJo165d3HnnnXHCCSfEuHHj4vDDD8997j//+U8cffTR8eGHH8Zll10WDRs2jJtvvjmOOuqomDZtWuy0007V7j/22GOjX79+1do+//nP19l7AQAAAAAAsOkpqTBt8uTJ8eCDD8awYcNi8ODBWVsKvDp27BiXXHJJTJw4MffZ2267Ld54442sj4MPPjhr+/KXv5w9+5Of/CSGDh1a7f727dtH37596/iNAAAAAAAA2JSV1DKPqSKtfv36MXDgwEJbkyZNYsCAAfHcc8/FrFmzVvlsCtGqgrSkQ4cO8cUvfjF+85vf1PrMwoULY9GiRUV+CwAAAAAAAEpFSYVpU6dOzSrG0n5nK+ratWt2TMs11uazzz6Ll156KQ466KAa19Kzb775Znz88cfV2tPykVtvvXW2L9v+++8f999/f1HfBQAAAAAAgE1fSS3zOGfOnGjZsmWN9qq22bNn1/rc/PnzY/Hixat9dt99983ODzvssPja174We+65Z9Z+6623Rp8+fbL91r7zne+s09zLy8trbU9B3t57771OfQIAAAAAAFC3SipMS8suNm7cuEZ7Wuqx6nrec8maPvvss89Wu+db3/pWHHjggXHZZZdF//79s2o1AAAAAAAANn8lFaalECtVmK2sal+zvJCrqn1dnk0aNWoU5513XpxzzjnxwgsvxOGHH77Wc6+oqFirijUAAAAAAAA2vpLaMy0tyZiWelxZVVurVq1qfW7HHXfMqtLW5dkqrVu3LiwZCQAAAAAAwJahpMK0zp07x+uvvx4fffRRtfZJkyYVrtemXr16ccABB8SUKVNqXEvP7rXXXrHtttuucuy33norO7Zo0WI93gAAAAAAAIBSUlJhWq9evWL58uVxxx13FNrS0o2jRo2Kbt26FarHZs6cGa+++mqNZ//+979XC9Ree+21eOqpp6J3796Ftvfee6/GuB9//HH89Kc/jebNm2d7pwEAAAAAALBlKKk901JgloKvIUOGxLx582KfffaJu+66K2bMmBEjR44s3NevX794+umno7KystB27rnnxi9/+cs48cQTY/DgwdGwYcO46aabYpdddomLLrqocN+tt94ajzzySJx00knRpk2bbBnIX//611lAd88992T7pwEAAAAAALBlKKkwLbn77rvjiiuuyIKtDz74IDp16hSPPvpoHHnkkat8Li3jOH78+Ljwwgvj2muvjc8++yy6d+8eN998c7WlG7/whS/ExIkT41e/+lW8//77sfXWW0fXrl2zQO2YY47ZAG8IAAAAAADApqKscsXyLTa48vLy7FhRUbGxp7LJG9H5nI09BQCo5rxpP9/YUwAAAAAg6jZvKak90wAAAAAAAGBDEqYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAwOYSpi1evDguvfTSaNWqVTRt2jS6desWY8eOXaNn33333fja174W22+/fTRr1ix69uwZb731Vq33jhw5Mvbbb79o0qRJtGvXLoYPH17kNwEAAAAAAGBTV3JhWv/+/eOmm26KPn36xC233BL169ePE044ISZMmLDK5/7zn//E0UcfHU8//XRcdtllcc0118TUqVPjqKOOivfff7/avb/4xS/irLPOivLy8ixEO/TQQ+N73/te3HDDDXX8dgAAAAAAAGxKyiorKyujREyePDmrRBs2bFgMHjw4a1u0aFF07Ngxdt5555g4cWLuszfeeGNW0Zb6OPjgg7O2V199NXv2kksuiaFDh2ZtCxcujNatW8chhxwSjz76aOH5vn37xiOPPBKzZs2KHXbYoWjvlAK7pKKiomh9bq5GdD5nY08BAKo5b9rPN/YUAAAAAIi6zVtKqjJt9OjRWSXawIEDC21pGcYBAwbEc889lwVdq3o2hWhVQVrSoUOH+OIXvxi/+c1vCm3jxo3LKtXOPffcas9/97vfjU8++ST+9Kc/Ff29AAAAAAAA2DSVVJiWlmVs3759tt/Zirp27Zodp02bVutzn332Wbz00ktx0EEH1biWnn3zzTfj448/LoyRrHzvgQceGPXq1StcBwAAAAAAYPPXIErInDlzomXLljXaq9pmz55d63Pz58+PxYsXr/bZfffdNxsjVb+lZSNX1KhRo9hpp51yx1jT8sKVpaUmGzZsmHud/2f+m3M29hQAoJrby5/Z2FMAAAAAICIrnEp5S2zpYVraz6xx48Y12tNSj1XX855L1uTZdEzBWW3SvXljrKuysrKi/3LTH0yy9957x+Zkx71rhqHA2ttc/x0BrD//fgDy+PcDkMe/H4A8/v0AbOh/R6SsZeutt47Y0sO0pk2bZhVmK1u0aFHhet5zyZo8m45LliyptZ90b94Yq1MXG95tjE32gNLn3xFAHv9+APL49wOQx78fgDz+/QBsTv+OKKk909KSjGkZxpVVtbVq1arW53bcccesKm1Nnk1jLF++PObNm1ftvhSwvf/++7ljAAAAAAAAsPkpqTCtc+fO8frrr8dHH31UrX3SpEmF67WpV69eHHDAATFlypQa19Kze+21V2y77bbV+lj53vTzZ599ljsGAAAAAAAAm5+SCtN69eqVVY3dcccdhba0dOOoUaOiW7du0bp166xt5syZ8eqrr9Z49u9//3u1kOy1116Lp556Knr37l1oO+aYY7JKtttvv73a8+nnrbbaKk488cQ6fEMAAAAAAAA2JSW1Z1oKzFLwNWTIkGwZxn322SfuuuuumDFjRowcObJwX79+/eLpp5+OysrKQtu5554bv/zlL7MwbPDgwdlGdDfddFPssssucdFFFxXuS3ui/fCHP4zvfve72Vg9evSIZ555Ju6999647rrrsqANAAAAAACALUNJhWnJ3XffHVdccUXcc8898cEHH0SnTp3i0UcfjSOPPHKVz6VlHMePHx8XXnhhXHvttdmSjd27d4+bb745WrRoUe3eFLylsO0nP/lJjBkzJqt4S/edf/75dfx2AAAAAAAAbErKKlcs3wIAAAAAAABKc880AAAAAAAA2JCEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAABbqP79+0dZWVnMmDFjY08FAABgkyVMAwAA2ISlsGvFT/369aN58+ZxzDHHxP333x+bgjvvvDObWzqu7/s1btw4WrRoEV26dImzzjorHn/88Vi+fHmdzBsAAGBNNFijuwAAANiorrrqquy4dOnSePXVV+MPf/hDjBs3LqZMmRI33XTTOvX5ox/9KL7//e/HbrvtFpvK+6XgbMGCBVFRURH33HNPjBw5Mg466KC47777on379ht7mgAAwBaorLKysnJjTwIAAIDapWqtZOX/6fbXv/41jj322Oz8rbfeirZt28bGkirSzjzzzBg1alS2dGQx3i/597//HYMGDYrf/va30bp16yw43HnnnYs2bwAAgDVhmUcAAIAS9MUvfjE6dOiQhVB///vfC+0vvPBCfPWrX81Cp7Rk4h577BHnnntuzJkzZ432TEvnqS1dS+enn356tqxkkyZNsgqxRx99tFof3bt3z4K0JB1XXLJxffdi22WXXeLBBx/Mxpg1a1YMHTp0vfoDAABYF5Z5BAAAKFFV1VxV1V0p6EpBWmrv1atXFqSlcO3222/PloWcMGFC7LnnnmvU9zvvvBNdu3aNvfbaK775zW/G/Pnz46GHHoqePXvGX/7ylzj66KOz+1Lotv3222f9p2udO3cu9JHa11e9evXi8ssvj/Hjx8cDDzwQN998c+F9AQAANgRhGgAAQAlKgdZrr72WBUsHH3xw/Oc//4kzzjgjli1blgVPRxxxROHeG264Idsb7dvf/nb8+c9/XqP+Ux9XX311YS+z5Bvf+EYcf/zxMWzYsGphWpLCtFNOOWWtl3lcE4cffng0aNAg5s2bl1W7rWkgCAAAUAzCNAAAgBKQgq1k6dKlWYj2yCOPZBVoF154YVaBdt9992XVY1//+terBWnJRRddFD//+c9j7NixMXPmzGjTps1qx0t9poqwFfXo0SN7dvLkybEhpeUqd9ppp2wPtffee0+YBgAAbFDCNAAAgBJwzTXXZMdUiZaWT0yB2YABA6Jv375Z+4svvpgdjznmmBrPpqquI488Mqvqmjp16hqFaWm5xvr169dob926dTz33HOxsZe0BAAA2FCEaQAAACWgKkzK8+GHH2bHli1b1nq9qn3BggVrNF7efmcpmPvss89iQ1q0aFFWdZe0aNFig44NAABQb2NPAAAAgPW33XbbZce5c+fWen3OnDnV7islEyZMyPaC22WXXaJt27YbezoAAMAWRpgGAACwGfj85z+fHcePH1/jWgqinnnmmey8S5cuRR+7ajnI5cuXF73vVAV33XXXZeff+MY3it4/AADA6gjTAAAANgOnnHJK7LjjjvHAAw/E888/X+3aT3/603j77bfjS1/60hrtl7a2dtppp+w4c+bMovY7b968OP3007OAMM37sssuK2r/AAAAa8KeaQAAAJuBbbbZJn79619H796946ijjsqOKYB64YUX4s9//nPsuuuu8Ytf/KJOxj700ENjq622ykK7999/PxsrGTRo0BovK3n11VcXKtHSvm4VFRXZ8o5LliyJrl27xn333RfNmzevk/kDAACsijANAABgM9GzZ8949tlnY+jQofHkk0/Ghx9+mAVb55xzTlxxxRXRqlWrOhl3hx12iN/97ndxzTXXxJ133hmffPJJ1t63b981DtPSs0mjRo1i2223jT322CP69esXX/3qV+O4446LevUsrAIAAGwcZZWVlZUbaWwAAAAAAADYpPm/9gEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5GiQd4ENY9ddd41PPvkk2rRps7GnAgAAAAAAUJJmzpwZW2+9dcydO7fofatM28hSkLZ06dKNPQ0AAAAAAICStXTp0ixzqQsq0zayqoq0ioqKjT0VAAAAAACAklReXl5nfatMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgM0hTFu8eHFceuml0apVq2jatGl069Ytxo4du9rnHn744TjttNNir732iq222ir23XffuOiii2LBggU17m3btm2UlZXV+Jxzzjl19FYAAAAAAABsqhpECenfv3+MHj06LrjggmjXrl3ceeedccIJJ8S4cePi8MMPz31u4MCBWQDXt2/faNOmTfzzn/+MESNGxGOPPRYvvvhiFsytqHPnzlnYtqL27dvX2XsBAAAAAACwaSqZMG3y5Mnx4IMPxrBhw2Lw4MFZW79+/aJjx45xySWXxMSJE3OfTQFc9+7dq7UdeOCBccYZZ8R9990XZ511VrVru+22Wxa8AQAAAAAAsGUrmWUeUyBWv379rMqsSpMmTWLAgAHx3HPPxaxZs3KfXTlIS0499dTsOH369FqfWbJkSXzyySdFmTsAAAAAAAClqWTCtKlTp2ZLLTZr1qxae9euXbPjtGnT1qq/uXPnZsfmzZvXuPbUU09le6tts8022R5qt9xyy3rNHQAAAAAAgNJUMss8zpkzJ1q2bFmjvapt9uzZa9XfDTfckFW69erVq1p7p06dsv3X9t1333j//fezfdnSHm2p//TMuiovL6+1/c0334y99957nfsFAAAAAACg7pRMmLZw4cJo3Lhxjfa01GPV9TV1//33x8iRI7O91tq1a1ft2pgxY6r9fOaZZ8aXv/zluOmmm2LQoEGx++67r/M7AAAAAAAAUFpKJkxr2rRpLF68uEb7okWLCtfXxDPPPJPts9ajR4+47rrrVnt/WVlZXHjhhfHkk0/G+PHjo2/fvusw+4iKioq1qlgDAAAAAABg4yuZPdPSco5pqceVVbW1atVqtX384x//iJNPPjk6duwYo0ePjgYN1ixLbN26dXacP3/+Ws8bAAAAAACA0lUyYVrnzp3j9ddfj48++qha+6RJkwrXVyXtTXb88cfHzjvvHI899lhss802azz2W2+9lR1btGixTnMHAAAAAACgNJVMmNarV69Yvnx53HHHHYW2tOzjqFGjolu3boXqsZkzZ8arr75a7dm5c+fGcccdF/Xq1cuWa8wLxVLlWRpjRUuXLo3rr78+GjVqFEcffXSdvBsAAAAAAACbppLZMy0FZr17944hQ4bEvHnzYp999om77rorZsyYESNHjizc169fv3j66aejsrKy0JYq0lJ12SWXXBITJkzIPlV22WWXOPbYY7PzMWPGxLXXXpsFd3vuuWcWrt1///3x8ssvx9ChQ2PXXXfdwG8NAAAAAADAxlQyYVpy9913xxVXXBH33HNPfPDBB9GpU6d49NFH48gjj1ztXmnJjTfeWOPaUUcdVQjTDjjggNh///3j3nvvjffeey+rRkvLR/7mN7/JgjwAAAAAAAC2LGWVK5ZwscGVl5dnx4qKio09FQAAAAAAgJJUXod5S8nsmQYAAAAAAAAbmjANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAADaHMG3x4sVx6aWXRqtWraJp06bRrVu3GDt27Gqfe/jhh+O0006LvfbaK7baaqvYd99946KLLooFCxbUev+YMWOiS5cu0aRJk2jTpk1cddVVsWzZsjp4IwAAAAAAADZlJRWm9e/fP2666abo06dP3HLLLVG/fv044YQTYsKECat8buDAgTF9+vTo27dv/OxnP4vjjz8+RowYEYceemgsXLiw2r2PP/54nHLKKbH99tvH8OHDs/Nrr702Bg0aVMdvBwAAAAAAwKamrLKysjJKwOTJk7NKtGHDhsXgwYOztkWLFkXHjh1j5513jokTJ+Y+O378+OjevXu1trvvvjvOOOOM+OUvfxlnnXVWob28vDwaNmwYU6ZMiQYNGmRtl19+eQwdOjReeeWV6NChQ1HfK42XVFRUFLVfAAAAAACALUV5HeYtJVOZNnr06KwSLVWZVUnLMA4YMCCee+65mDVrVu6zKwdpyamnnpodU8ValRSWpU8aoypIS84999xImWOaAwAAAAAAAFuOkgnTpk6dGu3bt49mzZpVa+/atWt2nDZt2lr1N3fu3OzYvHnzamMkBx10ULV70x5tu+++e+E6AAAAAAAAW4b/V361iZszZ060bNmyRntV2+zZs9eqvxtuuCGrdOvVq1e1MVbsc+Vx1naM2soLV/bmm2/G3nvvvc79AgAAAAAAUHdKpjJt4cKF0bhx4xrtaanHqutr6v7774+RI0fGRRddFO3atas2RpI3ztqMAQAAAAAAQOkrmcq0pk2bxuLFi2u0L1q0qHB9TTzzzDPZPms9evSI6667rsYYSd44azpGbfI2vMurWAMAAAAAAGDjK5nKtLTMYtUyjCuqakv7mq3OP/7xjzj55JOjY8eOMXr06GjQoHqWWLW8Y944azIGAAAAAAAAm4+SCdM6d+4cr7/+enz00UfV2idNmlS4vippb7Ljjz8+dt5553jsscdim222qXWMZMqUKdXa015p//rXv1Y7BgAAAAAAAJuXkgnTevXqFcuXL4877rij0JaWYxw1alR069YtWrdunbXNnDkzXn311WrPzp07N4477rioV69ePPnkk9GiRYvcJRc7dOiQjZHGqnL77bdHWVlZNgcAAAAAAAC2HCWzZ1oKzHr37h1DhgyJefPmxT777BN33XVXzJgxI0aOHFm4r1+/fvH0009HZWVloS1VpL311ltxySWXxIQJE7JPlV122SWOPfbYws/Dhg3LloJM4dvpp58eL7/8cowYMSLOOuus2G+//TbgGwMAAAAAALCxlVWumDpt4hYtWhRXXHFF3HvvvfHBBx9Ep06d4oc//GH06NGjcE/37t1rhGmpqizPUUcdFePHj6/W9sgjj8Q111wT06dPz6rY+vfvH1deeWU0bNiw6O+UquGSioqKovcNAAAAAACwJSivw7ylpMK0zZEwDQAAAAAAYNPNW0pmzzQAAAAAAADY0IRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAsKmEaQsWLNjQQwIAAAAAAMDGD9POP//8VV7/+OOPo0ePHsUcEgAAAAAAAEojTBs+fHjcfPPNtV5buHBhnHjiifHSSy8Vc0gAAAAAAAAojTBtyJAhcfHFF8fvfve7au2LFy+Ok08+OZ5//vl46KGHijkkAAAAAAAA1JkGxezsuuuui3feeSe++c1vRqtWreLQQw+NZcuWRe/evWPcuHFx3333ZaEaAAAAAAAAbHGVacmoUaPikEMOyUKz6dOnR58+feJPf/pT3HHHHXHaaacVezgAAAAAAAAojcq0pGHDhvH73/8+vvCFL0SXLl1iyZIl8dOf/jS+9a1vFXsoAAAAAAAA2HTDtJkzZ+Zeu/322+Okk06KAQMGRM+ePavd26ZNm/UZFgAAAAAAADaIssrKysp1fbhevXpRVlaWez11Xdv15cuXr+uQm53y8vLsWFFRsbGnAgAAAAAAUJLK6zBvWa/KtCuvvHKVYRoAAAAAAACUsvUK066++urizQQAAAAAAAA2MfU29gQAAAAAAABgiwjTHnrooejXr1/u/mnp2u9+97tiDgkAAAAAAAClEabdeuutuXuopfb69evHiBEjijkkAAAAAAAAlEaYNn369Pj85z+fez1de+WVV4o5JAAAAAAAAJRGmPbxxx9Ho0aNcq+nyrQPP/ywmEMCAAAAAABAaYRpbdq0iUmTJuVeT9datWpVzCEBAAAAAACgNMK0r3zlK3HffffFH/7whxrXxowZEw888ECcdNJJxRwSAAAAAAAA6kxZZWVlZbE6+7//+79sX7TZs2dH9+7dC/unTZ06NcaPH59Vpb3wwgux8847F2vIkldeXp4dKyoqNvZUAAAAAAAASlJ5HeYtDYrZWfPmzWPixInxne98Jx5//PEYN25c1l5WVhYnnHBC3HrrrYI0AAAAAAAAtsxlHpPWrVvHo48+mlWppT3S0ied//GPf8z2VFsfixcvjksvvTSrcGvatGl069Ytxo4du9rnXnvttbjwwgvjsMMOiyZNmmTh3owZM2q9t23bttn1lT/nnHPOes0dAAAAAACA0lPUyrQV7bDDDnHwwQcXtc/+/fvH6NGj44ILLoh27drFnXfemVW8pQq4ww8/PPe55557Ln72s5/F/vvvH/vtt19MmzZtleN07tw5Lrroompt7du3L9p7AAAAAAAAsIWHacU2efLkePDBB2PYsGExePDgrK1fv37RsWPHuOSSS7LlJfOcfPLJsWDBgth2223jxz/+8WrDtN122y369u1b9HcAAAAAAABgC1rmsV69etGgQYNYsmRJ4ef69euv8pPuXxepIi09P3DgwEJbWrJxwIABWeXZrFmzcp/dcccdsyBtbaR3+uSTT9ZprgAAAAAAAGwe1qsyLVWGpf3EUsi14s91YerUqdlSi82aNavW3rVr1+yYqs3Sfm3F8NRTT8VWW20Vy5cvjz322CPbb+38888vSt8AAAAAAABsIWFa2rNsVT8X05w5c6Jly5Y12qvaZs+eXZRxOnXqlO2/tu+++8b777+fvVPaoy31f8MNN6xzv+Xl5bW2v/nmm7H33nuvx4wBAAAAAACILX3PtIULF0bjxo1rtKelHquuF8OYMWOq/XzmmWfGl7/85bjpppti0KBBsfvuuxdlHAAAAAAAADZ9JROmNW3aNBYvXlyjfdGiRYXrdSEtW5mWeXzyySdj/Pjx0bdv33Xqp6KiYq0q1gAAAAAAACjxMG2vvfZap3AqLW24ttJyju+++26tyz8mrVq1irpStRfb/Pnz62wMAAAAAAAANrMwrU2bNlk4tiF07tw5xo0bFx999FE0a9as0D5p0qTC9bry1ltvZccWLVrU2RgAAAAAAABsZmFaWvZwQ+nVq1f8+Mc/jjvuuCMGDx6ctaVlH0eNGhXdunUrVI/NnDkzPv300+jQocNaj5Eqz7bbbruoX79+oW3p0qVx/fXXR6NGjeLoo48u4hsBAAAAAACwqSuZPdNSYNa7d+8YMmRIzJs3L/bZZ5+46667YsaMGTFy5MjCff369Yunn346KisrC20ffvhhDB8+PDt/9tlns+OIESNi++23zz7nnXde1jZmzJi49tprs+Buzz33zMK1+++/P15++eUYOnRo7Lrrrhv8vQEAAAAAANhMwrS33347C55OOumkGtdSuPXoo4/GAQccEG3btl2n/u++++644oor4p577okPPvggOnXqlPV55JFHrvK5dG96bkU/+clPsuMee+xRCNPS3Pbff/+4995747333suq0dLykb/5zW+yIA8AAAAAAIAtS1nliiVc66lPnz7xzjvvxIQJE2q9nkKvVPGVKsr4/5WXl2fHioqKjT0VAAAAAACAklReh3lLvWJ2lkK0448/Pvd6jx494m9/+1sxhwQAAAAAAIA6U9Qw7d///vcq9xXbZZddYu7cucUcEgAAAAAAAEojTGvWrFnMmDFjlXuqbb311sUcEgAAAAAAAEojTDv00EPj17/+dXzwwQc1rqW2UaNGRbdu3Yo5JAAAAAAAAJRGmDZ48OCYN29edO3aNe655554+eWXs086TyFaunbxxRcXc0gAAAAAAACoMw2K2dkRRxwRP//5z2PQoEHRv3//QntlZWU0btw4br/99ujevXsxhwQAAAAAAIDSCNOSs846K0444YT47W9/G6+//nrW1r59++jdu3e0atWq2MMBAAAAAABA6YRpSQrNzj///LroGgAAAAAAAEo7TFvRpEmTYtasWbHbbrtl+6bVq1fUbdoAAAAAAACg9MK0d999N0488cR46aWXCm377bdf/PGPf4y99tqrroYFAAAAAACAoqmzMrHvfe970bJly2zftIULF8bzzz8fy5cvj3PPPbeuhgQAAAAAAIBNK0x74oknam1P4dl1110X++yzTzRu3Di6du2aBWypHQAAAAAAALaIMO3kk0+OM844I+bPn1+tPe2RNmHChGptzz77bLRq1Wp9hwQAAAAAAIDSCNNSpdnLL7+c7Yf20EMPFdp/8IMfxIUXXhhHHHFE9OnTJw444IB48MEHs3YAAAAAAADYIsK0Ll26xOTJk7Pg7Mwzz8wq1WbPnh09e/bMgrby8vJYsGBBHHLIITF+/PgsWAMAAAAAAIBSUFZZWVlZrM7eeOONOPvss2PatGlx/fXXxznnnFOsrjdbKWxMKioqNvZUAAAAAAAASlJ5HeYt612ZtqJ27dpl1Wc33nhjDBkyJI466qgsYAMAAAAAAIBSVLQwbcmSJfHRRx9l5wMHDsySv5122ik+97nPxY9+9KNYvnx5sYYCAAAAAACA0gjT5s+fH6eeempss802scMOO0SnTp1iypQp0apVq3j44YfjnnvuieHDh8eBBx4YL774YnFmDQAAAAAAAKUQpl1wwQUxceLE+MUvfpGFZylU++pXvxpLly7Nrqfz6dOnZ2HaIYccEhdffHEx5g0AAAAAAACbfpj2+OOPx/e///0488wzo2fPnvGrX/0qZs2aFa+88krhnu222y5GjhwZTzzxRDzyyCPrOyQAAAAAAACURpjWsGHDWLhwYeHnRYsWRVlZWTRo0KDGvcccc0z885//XN8hAQAAAAAAYIOomXitpbRf2vXXXx/Lli3L9ky77bbbokOHDrHffvvVen+TJk3Wd0gAAAAAAAAojTBt2LBhUa9evWzPtE8//TQOO+ywuOWWW7I2AAAAAAAAKGVllZWVlRt7Eluy8vLy7FhRUbGxpwIAAAAAAFCSyuswb1E+BgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAACbQ5i2ePHiuPTSS6NVq1bRtGnT6NatW4wdO3a1z7322mtx4YUXxmGHHRZNmjSJsrKymDFjRu79Y8aMiS5dumT3tmnTJq666qpYtmxZkd8GAAAAAACATV1JhWn9+/ePm266Kfr06RO33HJL1K9fP0444YSYMGHCKp977rnn4mc/+1l8/PHHsd9++63y3scffzxOOeWU2H777WP48OHZ+bXXXhuDBg0q8tsAAAAAAACwqSurrKysjBIwefLkrBJt2LBhMXjw4Kxt0aJF0bFjx9h5551j4sSJuc/Onz8/GjZsGNtuu238+Mc/josvvjjefvvtaNu2bY17y8vLs3unTJkSDRo0yNouv/zyGDp0aLzyyivRoUOHor5XGi+pqKgoar8AAAAAAABbivI6zFtKpjJt9OjRWSXawIEDC21pGcYBAwZklWezZs3KfXbHHXfMgrTVSWFZ+qQxqoK05Nxzz42UOaY5AAAAAAAAsOUomTBt6tSp0b59+2jWrFm19q5du2bHadOmFWWM5KCDDqrWnvZo23333QvXAQAAAAAA2DL8v/KrTdycOXOiZcuWNdqr2mbPnl2UMVbsc+Vx1meMqvLClb355pux9957r3O/AAAAAAAA1J2SqUxbuHBhNG7cuEZ7Wuqx6noxxkjyxinGGAAAAAAAAJSOkqlMa9q0aSxevLhG+6JFiwrXizFGkjfO+oyRt+FdXsUaAAAAAAAAG1/JVKalZRarlmFcUVVb2tesGGOs2OfK4xRjDAAAAAAAAEpHyYRpnTt3jtdffz0++uijau2TJk0qXC/GGMmUKVOqtae90v71r38VZQwAAAAAAABKR8mEab169Yrly5fHHXfcUWhLyzGOGjUqunXrFq1bt87aZs6cGa+++uo6jZGWXOzQoUM2Rhqryu233x5lZWXZHAAAAAAAANhylMyeaSkw6927dwwZMiTmzZsX++yzT9x1110xY8aMGDlyZOG+fv36xdNPPx2VlZWFtg8//DCGDx+enT/77LPZccSIEbH99ttnn/POO69w77Bhw+Lkk0+O4447Lk4//fR4+eWXs3vPOuus2G+//TboOwMAAAAAALBxlVWumDpt4hYtWhRXXHFF3HvvvfHBBx9Ep06d4oc//GH06NGjcE/37t1rhGkpcNtzzz1r7XOPPfbIrq/okUceiWuuuSamT58eLVq0iP79+8eVV14ZDRs2LPo7pWq4pKKiouh9AwAAAAAAbAnK6zBvKakwbXMkTAMAAAAAANh085aS2TMNAAAAAAAANjRhGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCm/X/s3QuUl1W9P/7PcEeU8ALKKKjI1UEO3hg1E9RjKB5Ff4F1DoQoxjHSlD+IYVK5VFJJvKCZGCLeUiOPEWVGR+AnQiAKmaNIByRI4ODhImgwIsx/Pc9vzRyGmQe5zMB84fVa67ue73z2s/d+HnN9q/Vee28AAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgP0lTCsuLo6bb7458vPzo2HDhlFYWBhTpkzZqb4ffvhhXHHFFdGkSZNo3Lhx9OzZMxYvXlzhvry8vEo/d911VzW8EQAAAAAAADVVncgx/fv3j4kTJ8aNN94Ybdq0iSeeeCJ69OgRU6dOjbPPPjuz3yeffBLnnntufPzxx3HLLbdE3bp147777ouuXbvG/Pnz4/DDDy93/wUXXBD9+vUrVzv55JOr7b0AAAAAAACoeXIqTJszZ04899xzMWrUqBg6dGhaSwKvjh07xrBhw2LmzJmZfX/605/GX//613SM008/Pa1ddNFFad977703Ro4cWe7+tm3bRt++fav5jQAAAAAAAKjJcmqbx2RFWu3atWPgwIFltQYNGsSAAQNi1qxZsWzZsh32TUK00iAt0b59+zj//PPjhRdeqLTPxo0bY9OmTVX8FgAAAAAAAOSKnArT5s2bl64YS84721aXLl3Sa7JdY2W2bt0ab7/9dpx22mkV2pK+ixYtig0bNpSrJ9tHNmrUKD2X7cQTT4xnn322St8FAAAAAACAmi+ntnlcsWJFNG/evEK9tLZ8+fJK+61ZsyaKi4u/sG+7du3S72eddVZcccUVcfzxx6f1hx9+OPr06ZOet/btb397t569oKCg0noS5J1wwgm7NSYAAAAAAADVK6fCtGTbxfr161eoJ1s9lrZn9UvsbN/XX3+93D1XX311nHrqqXHLLbdE//7909VqAAAAAAAA7P9yKkxLQqxkhdn2Ss81ywq5Suu70zdRr169uO666+Laa6+NN998M84+++xdfvaioqJdWrEGAAAAAADAvpdTZ6YlWzImWz1ur7SWn59fab/DDjssXZW2O31LtWjRomzLSAAAAAAAAA4MORWmde7cORYuXBjr168vV589e3ZZe2Vq1aoVJ510UsydO7dCW9K3VatWccghh+xw7sWLF6fXpk2b7sEbAAAAAAAAkEtyKkzr1atXbNmyJcaOHVtWS7ZuHD9+fBQWFpatHlu6dGksWLCgQt833nijXKD2/vvvx6uvvhq9e/cuq3300UcV5t2wYUPcf//9ccQRR6RnpwEAAAAAAHBgyKkz05LALAm+hg8fHqtWrYrWrVvHhAkTYsmSJTFu3Liy+/r16xfTp0+PkpKSstqgQYPisccei4svvjiGDh0adevWjdGjR8eRRx4ZQ4YMKbvv4YcfjpdeeikuueSSaNmyZboN5OOPP54GdE899VR6fhoAAAAAAAAHhpwK0xJPPvlkjBgxIg221q5dG506dYrJkyfHOeecs8N+yTaO06ZNi8GDB8cdd9wRW7dujW7dusV9991XbuvGL3/5yzFz5sz4+c9/HqtXr45GjRpFly5d0kDtvPPO2wtvCAAAAAAAQE2RV7Lt8i32uoKCgvRaVFS0rx8FAAAAAAAgJxVUY96SU2emAQAAAAAAwN4kTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADHWyGqCmWXhS7339CABQTtu//HJfPwIAAAAA1czKNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAA2F/CtOLi4rj55psjPz8/GjZsGIWFhTFlypSd6vvhhx/GFVdcEU2aNInGjRtHz549Y/HixZXeO27cuOjQoUM0aNAg2rRpE2PGjKniNwEAAAAAAKCmy7kwrX///jF69Ojo06dPPPDAA1G7du3o0aNHzJgxY4f9Pvnkkzj33HNj+vTpccstt8Rtt90W8+bNi65du8bq1avL3fvoo4/GNddcEwUFBWmIduaZZ8Z3v/vduPvuu6v57QAAAAAAAKhJ8kpKSkoiR8yZMyddiTZq1KgYOnRoWtu0aVN07NgxmjVrFjNnzszse88996Qr2pIxTj/99LS2YMGCtO+wYcNi5MiRaW3jxo3RokWLOOOMM2Ly5Mll/fv27RsvvfRSLFu2LA499NAqe6cksEsUFRVV2Zj7q4Un9d7XjwAA5bT9yy/39SMAAAAAENWbt+TUyrSJEyemK9EGDhxYVku2YRwwYEDMmjUrDbp21DcJ0UqDtET79u3j/PPPjxdeeKGsNnXq1HSl2qBBg8r1/853vhOffvpp/Pa3v63y9wIAAAAAAKBmyqkwLdmWsW3btul5Z9vq0qVLep0/f36l/bZu3Rpvv/12nHbaaRXakr6LFi2KDRs2lM2R2P7eU089NWrVqlXWDgAAAAAAwP6vTuSQFStWRPPmzSvUS2vLly+vtN+aNWuiuLj4C/u2a9cunSNZ/ZZsG7mtevXqxeGHH545x84uL9xestVk3bp1M9v5X58t+vu+fgQAKKee//4GAAAAqBGShVNJ3hIHepiWnGdWv379CvVkq8fS9qx+iZ3pm1yT4Kwyyb1Zc+yuvLy8Kv8PN/kXJnHCCSfE/qTeCcfs60eA/cL++hsB7Dm/D0AWvw9AFr8PQBa/D8De/o1IspZGjRpFHOhhWsOGDdMVZtvbtGlTWXtWv8TO9E2un332WaXjJPdmzfFFquPAu31xyB6Q+/xGAFn8PgBZ/D4AWfw+AFn8PgD7029ETp2ZlmzJmGzDuL3SWn5+fqX9DjvssHRV2s70TebYsmVLrFq1qtx9ScC2evXqzDkAAAAAAADY/+RUmNa5c+dYuHBhrF+/vlx99uzZZe2VqVWrVpx00kkxd+7cCm1J31atWsUhhxxSbozt703+3rp1a+YcAAAAAAAA7H9yKkzr1atXumps7NixZbVk68bx48dHYWFhtGjRIq0tXbo0FixYUKHvG2+8US4ke//99+PVV1+N3r17l9XOO++8dCXbI488Uq5/8vdBBx0UF198cTW+IQAAAAAAADVJTp2ZlgRmSfA1fPjwdBvG1q1bx4QJE2LJkiUxbty4svv69esX06dPj5KSkrLaoEGD4rHHHkvDsKFDh6YH0Y0ePTqOPPLIGDJkSNl9yZlot99+e3znO99J5+revXu89tpr8fTTT8edd96ZBm0AAAAAAAAcGHIqTEs8+eSTMWLEiHjqqadi7dq10alTp5g8eXKcc845O+yXbOM4bdq0GDx4cNxxxx3plo3dunWL++67L5o2bVru3iR4S8K2e++9NyZNmpSueEvuu+GGG6r57QAAAAAAAKhJ8kq2Xb4FAAAAAAAA5OaZaQAAAAAAALA3CdMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAADgANe/f//Iy8uLJUuW7OtHAQAAqHGEaQAAADkgCbu2/dSuXTuOOOKIOO+88+LZZ5+NmuCJJ55Iny257un7VfaZNm1atTw3AADAjtTZYSsAAAA1yg9/+MP0unnz5liwYEH8+te/jqlTp8bcuXNj9OjRuzXmj3/84/je974XRx99dNSU96vMcccdt1efBQAAIJFXUlJS4h8FAABAzZaszEps/3/h/vM//zMuuOCC9PvixYv3aeCUrEi76qqrYvz48enWkVXxfgAAAPuabR4BAABy2Pnnnx/t27dPQ6g33nijrP7mm2/G1772tWjWrFnUr18/jj322Bg0aFCsWLFip85MS74ntaQt+f6Nb3wj3VayQYMGcdppp8XkyZPLjdGtW7c0SEsk1223Z3QWGwAAkMts8wgAAJDjSldzla7uSoKuJEhL6r169UqDtCRce+SRR9JtIWfMmBHHH3/8To39t7/9Lbp06RKtWrWKb37zm7FmzZp4/vnno2fPnvHHP/4xzj333PS+JHRr0qRJOn7S1rlz57IxkjoAAECuEqYBAADksCTQev/999Mg7fTTT49PPvkkrrzyyvj8889j2rRp8ZWvfKXs3rvvvjs9G+3f//3f4w9/+MNOjZ+M8aMf/ajcWWb/9m//FhdeeGGMGjWqXJiWSMK0yy67bJe3eSyVzFWZZEVc8uwAAAB7mzANAAAgh5SGTZs3b05DtJdeeildgTZ48OB0BdozzzyTrh7713/913JBWmLIkCHxs5/9LKZMmRJLly6Nli1bfuF8yZi33npruVr37t3TvnPmzKnit4u47bbbKq1/6UtfEqYBAAD7hDANAAAgh5SGTclKtGT7xCQwGzBgQPTt2zetv/XWW+n1vPPOq9C3Tp06cc4556RnmM2bN2+nwrRku8batWtXqLdo0SJmzZoV1bVlJQAAQE0hTAMAAMghXxQ2ffzxx+m1efPmlbaX1tetW7dT82Wdd5YEc1u3bt2pMQAAAHJZrX39AAAAAFSdZDvExMqVKyttX7FiRbn7AAAA2DFhGgAAwH7k5JNPTq/Tpk2r0Pb555/Ha6+9ln4/5ZRTqnzu0u0gt2zZUuVjAwAA7CvCNAAAgP3IZZddFocddlj84he/iD/96U/l2u6///744IMP4p//+Z936ry0XXX44Yen16VLl1b52AAAAPuKM9MAAAD2IwcffHA8/vjj0bt37+jatWt6TYKzN998M/7whz/EUUcdFY8++mi1zH3mmWfGQQcdlIZ2q1evTudKXH/99Tu9reSPfvSjHQaFnTt3rrLnBQAA2BnCNAAAgP1Mz5494/XXX4+RI0fGK6+8Eh9//HEabF177bUxYsSIyM/Pr5Z5Dz300PjVr34Vt912WzzxxBPx6aefpvW+ffvudJiW9M1y3HHHCdMAAIC9Lq+kpKRk708LAAAAAAAANZ8z0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIEOdrAb2jqOOOio+/fTTaNmy5b5+FAAAAAAAgJy0dOnSaNSoUaxcubLKx7YybR9LgrTNmzfv68cAAAAAAADIWZs3b04zl+pgZdo+VroiraioaF8/CgAAAAAAQE4qKCiotrGtTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAID9IUwrLi6Om2++OfLz86Nhw4ZRWFgYU6ZM+cJ+L774Ynz961+PVq1axUEHHRTt2rWLIUOGxLp16yrce9xxx0VeXl6Fz7XXXltNbwUAAAAAAEBNVSdySP/+/WPixIlx4403Rps2beKJJ56IHj16xNSpU+Pss8/O7Ddw4MA0gOvbt2+0bNky/vKXv8RDDz0Uv/vd7+Ktt95Kg7ltde7cOQ3bttW2bdtqey8AAAAAAABqppwJ0+bMmRPPPfdcjBo1KoYOHZrW+vXrFx07doxhw4bFzJkzM/smAVy3bt3K1U499dS48sor45lnnolrrrmmXNvRRx+dBm8AAAAAAAAc2HJmm8ckEKtdu3a6yqxUgwYNYsCAATFr1qxYtmxZZt/tg7TE5Zdfnl7fe++9Svt89tln8emnn1bJswMAAAAAAJCbciZMmzdvXrrVYuPGjcvVu3Tpkl7nz5+/S+OtXLkyvR5xxBEV2l599dX0bLWDDz44PUPtgQce2KNnBwAAAAAAIDflzDaPK1asiObNm1eol9aWL1++S+Pdfffd6Uq3Xr16lat36tQpPX+tXbt2sXr16vRctuSMtmT8pM/uKigoqLS+aNGiOOGEE3Z7XAAAAAAAAKpPzoRpGzdujPr161eoJ1s9lrbvrGeffTbGjRuXnrXWpk2bcm2TJk0q9/dVV10VF110UYwePTquv/76OOaYY3b7HQAAAAAAAMgtOROmNWzYMIqLiyvUN23aVNa+M1577bX0nLXu3bvHnXfe+YX35+XlxeDBg+OVV16JadOmRd++fXfj6SOKiop2acUaAAAAAAAA+17OnJmWbOeYbPW4vdJafn7+F47x5z//OS699NLo2LFjTJw4MerU2bkssUWLFul1zZo1u/zcAAAAAAAA5K6cCdM6d+4cCxcujPXr15erz549u6x9R5KzyS688MJo1qxZ/O53v4uDDz54p+devHhxem3atOluPTsAAAAAAAC5KWfCtF69esWWLVti7NixZbVk28fx48dHYWFh2eqxpUuXxoIFC8r1XblyZXz1q1+NWrVqpds1ZoViycqzZI5tbd68Oe66666oV69enHvuudXybgAAAAAAANRMOXNmWhKY9e7dO4YPHx6rVq2K1q1bx4QJE2LJkiUxbty4svv69esX06dPj5KSkrJasiItWV02bNiwmDFjRvopdeSRR8YFF1yQfp80aVLccccdaXB3/PHHp+Has88+G++8806MHDkyjjrqqL381gAAAAAAAOxLOROmJZ588skYMWJEPPXUU7F27dro1KlTTJ48Oc4555wvPCstcc8991Ro69q1a1mYdtJJJ8WJJ54YTz/9dHz00UfparRk+8gXXnghDfIAAAAAAAA4sOSVbLuEi72uoKAgvRYVFe3rRwEAAAAAAMhJBdWYt+TMmWkAAAAAAACwtwnTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAAGB/CNOKi4vj5ptvjvz8/GjYsGEUFhbGlClTvrDfiy++GF//+tejVatWcdBBB0W7du1iyJAhsW7dukrvnzRpUpxyyinRoEGDaNmyZfzwhz+Mzz//vBreCAAAAAAAgJosp8K0/v37x+jRo6NPnz7xwAMPRO3ataNHjx4xY8aMHfYbOHBgvPfee9G3b9948MEH48ILL4yHHnoozjzzzNi4cWO5e19++eW47LLLokmTJjFmzJj0+x133BHXX399Nb8dAAAAAAAANU1eSUlJSeSAOXPmpCvRRo0aFUOHDk1rmzZtio4dO0azZs1i5syZmX2nTZsW3bp1K1d78skn48orr4zHHnssrrnmmrJ6QUFB1K1bN+bOnRt16tRJa7feemuMHDky3n333Wjfvn2VvlcyX6KoqKhKxwUAAAAAADhQFFRj3pIzK9MmTpyYrkRLVpmVSrZhHDBgQMyaNSuWLVuW2Xf7IC1x+eWXp9dkxVqpJCxLPskcpUFaYtCgQZFkjskzAAAAAAAAcODImTBt3rx50bZt22jcuHG5epcuXdLr/Pnzd2m8lStXptcjjjii3ByJ0047rdy9yRltxxxzTFk7AAAAAAAAB4b/XX5Vw61YsSKaN29eoV5aW758+S6Nd/fdd6cr3Xr16lVujm3H3H6eXZ2jsuWF21u0aFGccMIJuz0uAAAAAAAA1SdnVqZt3Lgx6tevX6GebPVY2r6znn322Rg3blwMGTIk2rRpU26ORNY8uzIHAAAAAAAAuS9nVqY1bNgwiouLK9Q3bdpU1r4zXnvttfScte7du8edd95ZYY5E1jw7O0dlsg68y1qxBgAAAAAAwL6XMyvTkm0WS7dh3FZpLTnX7Iv8+c9/jksvvTQ6duwYEydOjDp1ymeJpds7Zs2zM3MAAAAAAACw/8iZMK1z586xcOHCWL9+fbn67Nmzy9p3JDmb7MILL4xmzZrF7373uzj44IMrnSMxd+7ccvXkrLS///3vXzgHAAAAAAAA+5ecCdN69eoVW7ZsibFjx5bVku0Yx48fH4WFhdGiRYu0tnTp0liwYEG5vitXroyvfvWrUatWrXjllVeiadOmmVsutm/fPp0jmavUI488Enl5eekzAAAAAAAAcODImTPTksCsd+/eMXz48Fi1alW0bt06JkyYEEuWLIlx48aV3devX7+YPn16lJSUlNWSFWmLFy+OYcOGxYwZM9JPqSOPPDIuuOCCsr9HjRqVbgWZhG/f+MY34p133omHHnoorrnmmujQocNefGMAAAAAAAD2tbySbVOnGm7Tpk0xYsSIePrpp2Pt2rXRqVOnuP3226N79+5l93Tr1q1CmJasKsvStWvXmDZtWrnaSy+9FLfddlu899576Sq2/v37xw9+8IOoW7dulb9TshouUVRUVOVjAwAAAAAAHAgKqjFvyakwbX8kTAMAAAAAAKi5eUvOnJkGAAAAAAAAe5swDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAAGpKmLZu3bq9PSUAAAAAAADs+zDthhtu2GH7hg0bonv37lU5JQAAAAAAAORGmDZmzJi47777Km3buHFjXHzxxfH2229X5ZQAAAAAAACQG2Ha8OHD46abbopf/epX5erFxcVx6aWXxp/+9Kd4/vnnq3JKAAAAAAAAqDZ1qnKwO++8M/72t7/FN7/5zcjPz48zzzwzPv/88+jdu3dMnTo1nnnmmTRUAwAAAAAAgANuZVpi/PjxccYZZ6Sh2XvvvRd9+vSJ3/72tzF27Nj4+te/XtXTAQAAAAAAQG6sTEvUrVs3/uM//iO+/OUvxymnnBKfffZZ3H///XH11VdX9VQAAAAAAABQc8O0pUuXZrY98sgjcckll8SAAQOiZ8+e5e5t2bLlnkwLAAAAAAAAe0VeSUlJye52rlWrVuTl5WW2J0NX1r5ly5bdnXK/U1BQkF6Lior29aMAAAAAAADkpIJqzFv2aGXaD37wgx2GaQAAAAAAAJDL9ihM+9GPflR1TwIAAAAAAAA1TK19/QAAAAAAAABwQIRpzz//fPTr1y/z/LSk7Ve/+lVVTgkAAAAAAAC5EaY9/PDDmWeoJfXatWvHQw89VJVTAgAAAAAAQG6Eae+9916cfPLJme1J27vvvluVUwIAAAAAAEBuhGkbNmyIevXqZbYnK9M+/vjjqpwSAAAAAAAAciNMa9myZcyePTuzPWnLz8+vyikBAAAAAAAgN8K0f/mXf4lnnnkmfv3rX1domzRpUvziF7+ISy65pCqnBAAAAAAAgGqTV1JSUlJVg/3P//xPei7a8uXLo1u3bmXnp82bNy+mTZuWrkp78803o1mzZlU1Zc4rKChIr0VFRfv6UQAAAAAAAHJSQTXmLXWqcrAjjjgiZs6cGd/+9rfj5ZdfjqlTp6b1vLy86NGjRzz88MOCNAAAAAAAAA7MbR4TLVq0iMmTJ6er1JIz0pJP8v03v/lNeqbaniguLo6bb745XeHWsGHDKCwsjClTpnxhv/fffz8GDx4cZ511VjRo0CAN95YsWVLpvccdd1zavv3n2muv3aNnBwAAAAAAIPdU6cq0bR166KFx+umnV+mY/fv3j4kTJ8aNN94Ybdq0iSeeeCJd8ZasgDv77LMz+82aNSsefPDBOPHEE6NDhw4xf/78Hc7TuXPnGDJkSLla27Ztq+w9AAAAAAAAOMDDtKo2Z86ceO6552LUqFExdOjQtNavX7/o2LFjDBs2LN1eMsull14a69ati0MOOSR+8pOffGGYdvTRR0ffvn2r/B0AAAAAAAA4gLZ5rFWrVtSpUyc+++yzsr9r1669w09y/+5IVqQl/QcOHFhWS7ZsHDBgQLrybNmyZZl9DzvssDRI2xXJO3366ae79awAAAAAAADsH/ZoZVqyMiw5TywJubb9uzrMmzcv3WqxcePG5epdunRJr8lqs+S8tqrw6quvxkEHHRRbtmyJY489Nj1v7YYbbqiSsQEAAAAAADhAwrTkzLId/V2VVqxYEc2bN69QL60tX768Subp1KlTev5au3btYvXq1ek7JWe0JePffffduz1uQUFBpfVFixbFCSecsAdPDAAAAAAAQBzoZ6Zt3Lgx6tevX6GebPVY2l4VJk2aVO7vq666Ki666KIYPXp0XH/99XHMMcdUyTwAAAAAAADUfDkTpjVs2DCKi4sr1Ddt2lTWXh2SbSuTbR5feeWVmDZtWvTt23e3xikqKtqlFWsAAAAAAADkeJjWqlWr3Qqnkq0Nd1WyneOHH35Y6faPifz8/KgupWexrVmzptrmAAAAAAAAYD8L01q2bJmGY3tD586dY+rUqbF+/fpo3LhxWX327Nll7dVl8eLF6bVp06bVNgcAAAAAAAD7WZiWbHu4t/Tq1St+8pOfxNixY2Po0KFpLdn2cfz48VFYWFi2emzp0qXxj3/8I9q3b7/LcyQrz770pS9F7dq1y2qbN2+Ou+66K+rVqxfnnntuFb4RAAAAAAAANV3OnJmWBGa9e/eO4cOHx6pVq6J169YxYcKEWLJkSYwbN67svn79+sX06dOjpKSkrPbxxx/HmDFj0u+vv/56en3ooYeiSZMm6ee6665La5MmTYo77rgjDe6OP/74NFx79tln45133omRI0fGUUcdtdffGwAAAAAAgP0kTPvggw/S4OmSSy6p0JaEW5MnT46TTjopjjvuuN0a/8knn4wRI0bEU089FWvXro1OnTqlY55zzjk77Jfcm/Tb1r333ptejz322LIwLXm2E088MZ5++un46KOP0tVoyfaRL7zwQhrkAQAAAAAAcGDJK9l2Cdce6tOnT/ztb3+LGTNmVNqehF7Jiq9kRRn/T0FBQXotKira148CAAAAAACQkwqqMW+pVZWDJSHahRdemNnevXv3+L//9/9W5ZQAAAAAAABQbao0TPvv//7vHZ4rduSRR8bKlSurckoAAAAAAADIjTCtcePGsWTJkh2eqdaoUaOqnBIAAAAAAAByI0w788wz4/HHH4+1a9dWaEtq48ePj8LCwqqcEgAAAAAAAHIjTBs6dGisWrUqunTpEk899VS888476Sf5noRoSdtNN91UlVMCAAAAAABAtalTlYN95StfiZ/97Gdx/fXXR//+/cvqJSUlUb9+/XjkkUeiW7duVTklAAAAAAAA5EaYlrjmmmuiR48e8ctf/jIWLlyY1tq2bRu9e/eO/Pz8qp4OAAAAAAAAcidMSySh2Q033FAdQwMAAAAAAEBuh2nbmj17dixbtiyOPvro9Ny0WrWq9Jg2AAAAAAAAyL0w7cMPP4yLL7443n777bJahw4d4je/+U20atWquqYFAAAAAACAKlNty8S++93vRvPmzdNz0zZu3Bh/+tOfYsuWLTFo0KDqmhIAAAAAAABqVpj2+9//vtJ6Ep7deeed0bp166hfv3506dIlDdiSOgAAAAAAABwQYdqll14aV155ZaxZs6ZcPTkjbcaMGeVqr7/+euTn5+/plAAAAAAAAJAbYVqy0uydd95Jz0N7/vnny+rf//73Y/DgwfGVr3wl+vTpEyeddFI899xzaR0AAAAAAAAOiDDtlFNOiTlz5qTB2VVXXZWuVFu+fHn07NkzDdoKCgpi3bp1ccYZZ8S0adPSYA0AAAAAAAByQV5JSUlJVQ3217/+Nb71rW/F/Pnz46677oprr722qobebyVhY6KoqGhfPwoAAAAAAEBOKqjGvGWPV6Ztq02bNunqs3vuuSeGDx8eXbt2TQM2AAAAAAAAyEVVFqZ99tlnsX79+vT7wIED0+Tv8MMPj3/6p3+KH//4x7Fly5aqmgoAAAAAAAByI0xbs2ZNXH755XHwwQfHoYceGp06dYq5c+dGfn5+vPjii/HUU0/FmDFj4tRTT4233nqrap4aAAAAAAAAciFMu/HGG2PmzJnx6KOPpuFZEqp97Wtfi82bN6ftyff33nsvDdPOOOOMuOmmm6riuQEAAAAAAKDmh2kvv/xyfO9734urrroqevbsGT//+c9j2bJl8e6775bd86UvfSnGjRsXv//97+Oll17a0ykBAAAAAAAgN8K0unXrxsaNG8v+3rRpU+Tl5UWdOnUq3HveeefFX/7ylz2dEgAAAAAAAPaKionXLkrOS7vrrrvi888/T89M++lPfxrt27ePDh06VHp/gwYN9nRKAAAAAAAAyI0wbdSoUVGrVq30zLR//OMfcdZZZ8UDDzyQ1gAAAAAAACCX5ZWUlJTs64c4kBUUFKTXoqKiff0oAAAAAAAAOamgGvMWy8cAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAYH8I04qLi+Pmm2+O/Pz8aNiwYRQWFsaUKVO+sN/7778fgwcPjrPOOisaNGgQeXl5sWTJksz7J02aFKecckp6b8uWLeOHP/xhfP7551X8NgAAAAAAANR0ORWm9e/fP0aPHh19+vSJBx54IGrXrh09evSIGTNm7LDfrFmz4sEHH4wNGzZEhw4ddnjvyy+/HJdddlk0adIkxowZk36/44474vrrr6/itwEAAAAAAKCmyyspKSmJHDBnzpx0JdqoUaNi6NChaW3Tpk3RsWPHaNasWcycOTOz75o1a6Ju3bpxyCGHxE9+8pO46aab4oMPPojjjjuuwr0FBQXpvXPnzo06deqktVtvvTVGjhwZ7777brRv375K3yuZL1FUVFSl4wIAAAAAABwoCqoxb8mZlWkTJ05MV6INHDiwrJZswzhgwIB05dmyZcsy+x522GFpkPZFkrAs+SRzlAZpiUGDBkWSOSbPAAAAAAAAwIEjZ8K0efPmRdu2baNx48bl6l26dEmv8+fPr5I5Eqeddlq5enJG2zHHHFPWDgAAAAAAwIHhf5df1XArVqyI5s2bV6iX1pYvX14lc2w75vbz7MkcpcsLt7do0aI44YQTdntcAAAAAAAAqk/OrEzbuHFj1K9fv0I92eqxtL0q5khkzVMVcwAAAAAAAJA7cmZlWsOGDaO4uLhCfdOmTWXtVTFHImuePZkj68C7rBVrAAAAAAAA7Hs5szIt2WaxdBvGbZXWknPNqmKObcfcfp6qmAMAAAAAAIDckTNhWufOnWPhwoWxfv36cvXZs2eXtVfFHIm5c+eWqydnpf3973+vkjkAAAAAAADIHTkTpvXq1Su2bNkSY8eOLasl2zGOHz8+CgsLo0WLFmlt6dKlsWDBgt2aI9lysX379ukcyVylHnnkkcjLy0ufAQAAAAAAgANHzpyZlgRmvXv3juHDh8eqVauidevWMWHChFiyZEmMGzeu7L5+/frF9OnTo6SkpKz28ccfx5gxY9Lvr7/+enp96KGHokmTJunnuuuuK7t31KhRcemll8ZXv/rV+MY3vhHvvPNOeu8111wTHTp02KvvDAAAAAAAwL6VV7Jt6lTDbdq0KUaMGBFPP/10rF27Njp16hS33357dO/eveyebt26VQjTksDt+OOPr3TMY489Nm3f1ksvvRS33XZbvPfee9G0adPo379//OAHP4i6detW+Tslq+ESRUVFVT42AAAAAADAgaCgGvOWnArT9kfCNAAAAAAAgJqbt+TMmWkAAAAAAACwtwnTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAAGB/CdOKi4vj5ptvjvz8/GjYsGEUFhbGlClTdqrvhx9+GFdccUU0adIkGjduHD179ozFixdXuC8vL6/Sz1133VUNbwQAAAAAAEBNVSdyTP/+/WPixIlx4403Rps2beKJJ56IHj16xNSpU+Pss8/O7PfJJ5/EueeeGx9//HHccsstUbdu3bjvvvuia9euMX/+/Dj88MPL3X/BBRdEv379ytVOPvnkansvAAAAAAAAap6cCtPmzJkTzz33XIwaNSqGDh2a1pLAq2PHjjFs2LCYOXNmZt+f/vSn8de//jUd4/TTT09rF110Udr33nvvjZEjR5a7v23bttG3b99qfiMAAAAAAABqspza5jFZkVa7du0YOHBgWa1BgwYxYMCAmDVrVixbtmyHfZMQrTRIS7Rv3z7OP//8eOGFFyrts3Hjxti0aVMVvwUAAAAAAAC5IqfCtHnz5qUrxpLzzrbVpUuX9Jps11iZrVu3xttvvx2nnXZahbak76JFi2LDhg3l6sn2kY0aNUrPZTvxxBPj2WefrdJ3AQAAAAAAoObLqW0eV6xYEc2bN69QL60tX7680n5r1qyJ4uLiL+zbrl279PtZZ50VV1xxRRx//PFp/eGHH44+ffqk5619+9vf3q1nLygoqLSeBHknnHDCbo0JAAAAAABA9cqpMC3ZdrF+/foV6slWj6XtWf0SO9v39ddfL3fP1VdfHaeeemrccsst0b9//3S1GgAAAAAAAPu/nArTkhArWWG2vdJzzbJCrtL67vRN1KtXL6677rq49tpr480334yzzz57l5+9qKhol1asAQAAAAAAsO/l1JlpyZaMyVaP2yut5efnV9rvsMMOS1el7U7fUi1atCjbMhIAAAAAAIADQ06FaZ07d46FCxfG+vXry9Vnz55d1l6ZWrVqxUknnRRz586t0Jb0bdWqVRxyyCE7nHvx4sXptWnTpnvwBgAAAAAAAOSSnArTevXqFVu2bImxY8eW1ZKtG8ePHx+FhYVlq8eWLl0aCxYsqND3jTfeKBeovf/++/Hqq69G7969y2offfRRhXk3bNgQ999/fxxxxBHp2WkAAAAAAAAcGHLqzLQkMEuCr+HDh8eqVauidevWMWHChFiyZEmMGzeu7L5+/frF9OnTo6SkpKw2aNCgeOyxx+Liiy+OoUOHRt26dWP06NFx5JFHxpAhQ8rue/jhh+Oll16KSy65JFq2bJluA/n444+nAd1TTz2Vnp8GAAAAAADAgSGnwrTEk08+GSNGjEiDrbVr10anTp1i8uTJcc455+ywX7KN47Rp02Lw4MFxxx13xNatW6Nbt25x3333ldu68ctf/nLMnDkzfv7zn8fq1aujUaNG0aVLlzRQO++88/bCGwIAAAAAAFBT5JVsu3yLva6goCC9FhUV7etHAQAAAAAAyEkF1Zi35NSZaQAAAAAAALA3CdMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAYH8J04qLi+Pmm2+O/Pz8aNiwYRQWFsaUKVN2qu+HH34YV1xxRTRp0iQaN24cPXv2jMWLF1d677hx46JDhw7RoEGDaNOmTYwZM6aK3wQAAAAAAICaLufCtP79+8fo0aOjT58+8cADD0Tt2rWjR48eMWPGjB32++STT+Lcc8+N6dOnxy233BK33XZbzJs3L7p27RqrV68ud++jjz4a11xzTRQUFKQh2plnnhnf/e534+67767mtwMAAAAAAKAmySspKSmJHDFnzpx0JdqoUaNi6NChaW3Tpk3RsWPHaNasWcycOTOz7z333JOuaEvGOP3009PaggUL0r7Dhg2LkSNHprWNGzdGixYt4owzzojJkyeX9e/bt2+89NJLsWzZsjj00EOr7J2SwC5RVFRUZWMCAAAAAAAcSAqqMW/JqZVpEydOTFeiDRw4sKyWbMM4YMCAmDVrVhp07ahvEqKVBmmJ9u3bx/nnnx8vvPBCWW3q1KnpSrVBgwaV6/+d73wnPv300/jtb39b5e8FAAAAAABAzZRTYVqyLWPbtm3T88621aVLl/Q6f/78Svtt3bo13n777TjttNMqtCV9Fy1aFBs2bCibI7H9vaeeemrUqlWrrB0AAAAAAID9X53IIStWrIjmzZtXqJfWli9fXmm/NWvWRHFx8Rf2bdeuXTpHsvot2TZyW/Xq1YvDDz88c46dXV64vWSrybp162a2AwAAAAAAsGPJwqkkb4kDfWVacp5Z/fr1K9STrR5L27P6JXamb3JNgrPKJPdmzbG78vLyqvw/3ORfmOQDUBm/EUAWvw9AFr8PQBa/D0AWvw/A3v6NSLKWRo0aRRzoK9MaNmyYrjDb3qZNm8ras/oldqZvcv3ss88qHSe5N2uOL1IdB97ti0P2gNznNwLI4vcByOL3Acji9wHI4vcB2J9+I3JqZVqyJWOyDeP2Smv5+fmV9jvssMPSVWk70zeZY8uWLbFq1apy9yUB2+rVqzPnAAAAAAAAYP+TU2Fa586dY+HChbF+/fpy9dmzZ5e1V6ZWrVpx0kknxdy5cyu0JX1btWoVhxxySLkxtr83+Xvr1q2ZcwAAAAAAALD/yakwrVevXumqsbFjx5bVkq0bx48fH4WFhdGiRYu0tnTp0liwYEGFvm+88Ua5kOz999+PV199NXr37l1WO++889KVbI888ki5/snfBx10UFx88cXV+IYAAAAAAADUJDl1ZloSmCXB1/Dhw9NtGFu3bh0TJkyIJUuWxLhx48ru69evX0yfPj1KSkrKaoMGDYrHHnssDcOGDh2aHkQ3evToOPLII2PIkCFl9yVnot1+++3xne98J52re/fu8dprr8XTTz8dd955Zxq0AQAAAAAAcGDIqTAt8eSTT8aIESPiqaeeirVr10anTp1i8uTJcc455+ywX7KN47Rp02Lw4MFxxx13pFs2duvWLe67775o2rRpuXuT4C0J2+69996YNGlSuuItue+GG26o5rcDAAAAAACgJskr2Xb5FgAAAAAAAJCbZ6YBAAAAAADA3iRMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAgANc//79Iy8vL5YsWbKvHwUAAKDGEaYBAADkgCTs2vZTu3btOOKII+K8886LZ599NmqCJ554In225Lqn77f9Z3fGBAAAqAp1qmQUAAAA9oof/vCH6XXz5s2xYMGC+PWvfx1Tp06NuXPnxujRo3drzB//+Mfxve99L44++uioKe+3vc6dO+/1ZwEAAEjklZSUlPhHAQAAULMlq7MS2/9fuP/8z/+MCy64IP2+ePHiOO6442JfSVaPXXXVVTF+/Ph068iqeD8AAIB9zTaPAAAAOez888+P9u3bpyHUG2+8UVZ/880342tf+1o0a9Ys6tevH8cee2wMGjQoVqxYsVNnpiXfk1rSlnz/xje+kW4r2aBBgzjttNNi8uTJ5cbo1q1bGqQlkuu2WzQ6iw0AAMhltnkEAADIcaWruUpXdyVBVxKkJfVevXqlQVoSrj3yyCPptpAzZsyI448/fqfG/tvf/hZdunSJVq1axTe/+c1Ys2ZNPP/889GzZ8/44x//GOeee256XxK6NWnSJB0/adt2W8akDgAAkKuEaQAAADksCbTef//9NEg7/fTT45NPPokrr7wyPv/885g2bVp85StfKbv37rvvTs9G+/d///f4wx/+sFPjJ2P86Ec/KneW2b/927/FhRdeGKNGjSoXpiWSMO2yyy7b5W0eSyVzbS/ZunJ3xwMAANhTwjQAAIAcUho2bd68OQ3RXnrppXQF2uDBg9MVaM8880y6euxf//VfywVpiSFDhsTPfvazmDJlSixdujRatmz5hfMlY956663lat27d0/7zpkzp4rfLuK2226rUOvataswDQAA2GeEaQAAADmkNGxKVqIl2ycmgdmAAQOib9++af2tt95Kr+edd16FvnXq1IlzzjknPcNs3rx5OxWmJds11q5du0K9RYsWMWvWrKiuLSsBAABqCmEaAABADvmisOnjjz9Or82bN6+0vbS+bt26nZov67yzJJjbunXrTo0BAACQy2rt6wcAAACg6nzpS19KrytXrqy0fcWKFeXuAwAAYMeEaQAAAPuRk08+Ob1OmzatQtvnn38er732Wvr9lFNOqfK5S7eD3LJlS5WPDQAAsK8I0wAAAPYjl112WRx22GHxi1/8Iv70pz+Va7v//vvjgw8+iH/+53/eqfPSdtXhhx+eXpcuXVrlYwMAAOwrzkwDAADYjxx88MHx+OOPR+/evaNr167pNQnO3nzzzfjDH/4QRx11VDz66KPVMveZZ54ZBx10UBrarV69Op0rcf3119tWEgAAyFnCNAAAgP1Mz5494/XXX4+RI0fGK6+8Eh9//HEabF177bUxYsSIyM/Pr5Z5Dz300PjVr34Vt912WzzxxBPx6aefpvW+ffsK0wAAgJyVV1JSUrKvHwIAAAAAAABqImemAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkqJPVwN5x1FFHxaeffhotW7bc148CAAAAAACQk5YuXRqNGjWKlStXVvnYVqbtY0mQtnnz5n39GAAAAAAAADlr8+bNaeZSHaxM28dKV6QVFRXt60cBAAAAAADISQUFBdU2tpVpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAAPtDmFZcXBw333xz5OfnR8OGDaOwsDCmTJnyhf1efPHF+PrXvx6tWrWKgw46KNq1axdDhgyJdevWVbj3uOOOi7y8vAqfa6+9tpreCgAAAAAAgJqqTuSQ/v37x8SJE+PGG2+MNm3axBNPPBE9evSIqVOnxtlnn53Zb+DAgWkA17dv32jZsmX85S9/iYceeih+97vfxVtvvZUGc9vq3LlzGrZtq23bttX2XgAAAAAAANRMOROmzZkzJ5577rkYNWpUDB06NK3169cvOnbsGMOGDYuZM2dm9k0CuG7dupWrnXrqqXHllVfGM888E9dcc025tqOPPjoN3gAAAAAAADiw5cw2j0kgVrt27XSVWakGDRrEgAEDYtasWbFs2bLMvtsHaYnLL788vb733nuV9vnss8/i008/rZJnBwAAAAAAIDflTJg2b968dKvFxo0bl6t36dIlvc6fP3+Xxlu5cmV6PeKIIyq0vfrqq+nZagcffHB6htoDDzywR88OAAAAAABAbsqZbR5XrFgRzZs3r1AvrS1fvnyXxrv77rvTlW69evUqV+/UqVN6/lq7du1i9erV6blsyRltyfhJn91VUFBQaX3RokVxwgkn7Pa4AAAAAAAAVJ+cCdM2btwY9evXr1BPtnosbd9Zzz77bIwbNy49a61Nmzbl2iZNmlTu76uuuiouuuiiGD16dFx//fVxzDHH7PY7AAAAAAAAkFtyJkxr2LBhFBcXV6hv2rSprH1nvPbaa+k5a927d48777zzC+/Py8uLwYMHxyuvvBLTpk2Lvn377sbTRxQVFe3SijUAAAAAAAD2vZw5My3ZzjHZ6nF7pbX8/PwvHOPPf/5zXHrppdGxY8eYOHFi1Kmzc1liixYt0uuaNWt2+bkBAAAAAADIXTkTpnXu3DkWLlwY69evL1efPXt2WfuOJGeTXXjhhdGsWbP43e9+FwcffPBOz7148eL02rRp0916dgAAAAAAAHJTzoRpvXr1ii1btsTYsWPLasm2j+PHj4/CwsKy1WNLly6NBQsWlOu7cuXK+OpXvxq1atVKt2vMCsWSlWfJHNvavHlz3HXXXVGvXr0499xzq+XdAAAAAAAAqJly5sy0JDDr3bt3DB8+PFatWhWtW7eOCRMmxJIlS2LcuHFl9/Xr1y+mT58eJSUlZbVkRVqyumzYsGExY8aM9FPqyCOPjAsuuCD9PmnSpLjjjjvS4O74449Pw7Vnn3023nnnnRg5cmQcddRRe/mtAQAAAAAA2JdyJkxLPPnkkzFixIh46qmnYu3atdGpU6eYPHlynHPOOV94VlrinnvuqdDWtWvXsjDtpJNOihNPPDGefvrp+Oijj9LVaMn2kS+88EIa5AEAAAAAAHBgySvZdgkXe11BQUF6LSoq2tePAgAAAAAAkJMKqjFvyZkz0wAAAAAAAGBvE6YBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAwP4QphUXF8fNN98c+fn50bBhwygsLIwpU6Z8Yb8XX3wxvv71r0erVq3ioIMOinbt2sWQIUNi3bp1ld4/adKkOOWUU6JBgwbRsmXL+OEPfxiff/55NbwRAAAAAAAANVlOhWn9+/eP0aNHR58+feKBBx6I2rVrR48ePWLGjBk77Ddw4MB47733om/fvvHggw/GhRdeGA899FCceeaZsXHjxnL3vvzyy3HZZZdFkyZNYsyYMen3O+64I66//vpqfjsAAAAAAABqmrySkpKSyAFz5sxJV6KNGjUqhg4dmtY2bdoUHTt2jGbNmsXMmTMz+06bNi26detWrvbkk0/GlVdeGY899lhcc801ZfWCgoKoW7duzJ07N+rUqZPWbr311hg5cmS8++670b59+yp9r2S+RFFRUZWOCwAAAAAAcKAoqMa8JWdWpk2cODFdiZasMiuVbMM4YMCAmDVrVixbtiyz7/ZBWuLyyy9Pr8mKtVJJWJZ8kjlKg7TEoEGDIskck2cAAAAAAADgwJEzYdq8efOibdu20bhx43L1Ll26pNf58+fv0ngrV65Mr0cccUS5ORKnnXZauXuTM9qOOeaYsnYAAAAAAAAODP+7/KqGW7FiRTRv3rxCvbS2fPnyXRrv7rvvTle69erVq9wc2465/Ty7Okdlywu3t2jRojjhhBN2e1wAAAAAAACqT86sTNu4cWPUr1+/Qj3Z6rG0fWc9++yzMW7cuBgyZEi0adOm3ByJrHl2ZQ4AAAAAAAByX86sTGvYsGEUFxdXqG/atKmsfWe89tpr6Tlr3bt3jzvvvLPCHImseXZ2jspkHXiXtWINAAAAAACAfS9nVqYl2yyWbsO4rdJacq7ZF/nzn/8cl156aXTs2DEmTpwYdeqUzxJLt3fMmmdn5gAAAAAAAGD/kTNhWufOnWPhwoWxfv36cvXZs2eXte9IcjbZhRdeGM2aNYvf/e53cfDBB1c6R2Lu3Lnl6slZaX//+9+/cA4AAAAAAAD2LzkTpvXq1Su2bNkSY8eOLasl2zGOHz8+CgsLo0WLFmlt6dKlsWDBgnJ9V65cGV/96lejVq1a8corr0TTpk0zt1xs3759OkcyV6lHHnkk8vLy0mcAAAAAAADgwJEzZ6YlgVnv3r1j+PDhsWrVqmjdunVMmDAhlixZEuPGjSu7r1+/fjF9+vQoKSkpqyUr0hYvXhzDhg2LGTNmpJ9SRx55ZFxwwQVlf48aNSrdCjIJ377xjW/EO++8Ew899FBcc8010aFDh734xgAAAAAAAOxreSXbpk413KZNm2LEiBHx9NNPx9q1a6NTp05x++23R/fu3cvu6datW4UwLVlVlqVr164xbdq0crWXXnopbrvttnjvvffSVWz9+/ePH/zgB1G3bt0qf6dkNVyiqKioyscGAAAAAAA4EBRUY96SU2Ha/kiYBgAAAAAAUHPzlpw5Mw0AAAAAAAD2NmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABATQnT1q1bt7enBAAAAAAAgH0fpt1www07bN+wYUN07969KqcEAAAAAACA3AjTxowZE/fdd1+lbRs3boyLL7443n777aqcEgAAAAAAAHIjTBs+fHjcdNNN8atf/apcvbi4OC699NL405/+FM8//3xVTgkAAAAAAADVpk5VDnbnnXfG3/72t/jmN78Z+fn5ceaZZ8bnn38evXv3jqlTp8YzzzyThmoAAAAAAABwwK1MS4wfPz7OOOOMNDR77733ok+fPvHb3/42xo4dG1//+terejoAAAAAAADIjZVpibp168Z//Md/xJe//OU45ZRT4rPPPov7778/rr766qqeCgAAAAAAAGpumLZ06dLMtkceeSQuueSSGDBgQPTs2bPcvS1bttyTaQEAAAAAAGCvyCspKSnZ3c61atWKvLy8zPZk6Mrat2zZsrtT7ncKCgrSa1FR0b5+FAAAAAAAgJxUUI15yx6tTPvBD36wwzANAAAAAAAActkehWk/+tGPqu5JAAAAAAAAoIapta8fAAAAAAAAAA6IMO3555+Pfv36ZZ6flrT96le/qsopAQAAAAAAIDfCtIcffjjzDLWkXrt27XjooYeqckoAAAAAAADIjTDtvffei5NPPjmzPWl79913q3JKAAAAAAAAyI0wbcOGDVGvXr3M9mRl2scff1yVUwIAAAAAAEBuhGktW7aM2bNnZ7Ynbfn5+VU5JQAAAAAAAORGmPYv//Iv8cwzz8Svf/3rCm2TJk2KX/ziF3HJJZdU5ZQAAAAAAABQbfJKSkpKqmqw//mf/0nPRVu+fHl069at7Py0efPmxbRp09JVaW+++WY0a9asqqbMeQUFBem1qKhoXz8KAAAAAABATiqoxrylTlUOdsQRR8TMmTPj29/+drz88ssxderUtJ6Xlxc9evSIhx9+WJAGAAAAAABAzqjSMC3RokWLmDx5cqxduzb+67/+K621bt06Dj300KqeCgAAAAAAAHLnzLRtJeHZ6aefnn6qKkgrLi6Om2++Od0usmHDhlFYWBhTpkz5wn7vv/9+DB48OM4666xo0KBBulJuyZIlld573HHHpe3bf6699toqeQcAAAAAAAAO4JVp1al///4xceLEuPHGG6NNmzbxxBNPpNtHJttJnn322Zn9Zs2aFQ8++GCceOKJ0aFDh5g/f/4O5+ncuXMMGTKkXK1t27ZV9h4AAAAAAAAcAGFarVq10s8//vGPqFevXvo9WcW1I0n7559/vstzzZkzJ5577rkYNWpUDB06NK3169cvOnbsGMOGDUvPasty6aWXxrp16+KQQw6Jn/zkJ18Yph199NHRt2/fXX5GAAAAAAAA9i97FKYlYVYSjtWuXbvc39UhWZGWzDNw4MCyWrJl44ABA+KWW26JZcuWpee1Veawww7b5fk+++yz2Lx5czRq1GiPnhsAAAAAAIADNExLtlnc0d9Vad68eelWi40bNy5X79KlS3pNVptlhWm76tVXX42DDjootmzZEscee2x63toNN9xQJWMDAAAAAACQO3LmzLQVK1ZE8+bNK9RLa8uXL6+SeTp16pSev9auXbtYvXp1GhAmZ7Ql49999927PW5BQUGl9UWLFsUJJ5ywB08MAAAAAABAHOhh2saNG6N+/foV6slWj6XtVWHSpEnl/r7qqqvioosuitGjR8f1118fxxxzTJXMAwAAAAAAwH4eprVq1WqX+yRnqiWrsXZVw4YNo7i4uEJ906ZNZe3VIXneZJvHV155JaZNmxZ9+/bdrXGKiop2acUaAAAAAAAAOR6mtWzZMg2b9oZkO8cPP/yw0u0fE/n5+dU2d+lZbGvWrKm2OQAAAAAAANjPwrRkpdbe0rlz55g6dWqsX78+GjduXFafPXt2WXt1Wbx4cXpt2rRptc0BAAAAAABAzVMrckSvXr1iy5YtMXbs2LJasu3j+PHjo7CwsGz12NKlS2PBggW7NUey8iyZY1ubN2+Ou+66K+rVqxfnnnvuHr4FAAAAAAAAB8zKtO198MEH8c4778Qll1xSoa2kpCQmT54cJ510Uhx33HG7PHYSmPXu3TuGDx8eq1atitatW8eECRNiyZIlMW7cuLL7+vXrF9OnT0/nK/Xxxx/HmDFj0u+vv/56en3ooYeiSZMm6ee6665La5MmTYo77rgjDe6OP/74NFx79tln03caOXJkHHXUUbv1zwUAAAAAAIDclFeybeq0h/r06RN/+9vfYsaMGZW2n3POOWlIlYRgu2PTpk0xYsSIePrpp2Pt2rXRqVOnuP3226N79+5l93Tr1q1CmJYEbsm8lTn22GPT9sSbb74Zt912W7z11lvx0UcfpavRku0jv/vd76ZBXnUoKChIr0VFRdUyPgAAAAAAwP6uoBrzlioN05Jg6lvf+lbceuutlbbfeeed8fOf/zxdwcb/I0wDAAAAAACouXlLlZ6Z9t///d873ArxyCOPjJUrV1bllAAAAAAAAFBtqjRMa9y4cdmWiZVJVqQ1atSoKqcEAAAAAACA3AjTzjzzzHj88cfT88y2l9TGjx8fhYWFVTklAAAAAAAA5EaYNnTo0Fi1alV06dIlnnrqqXjnnXfST/I9CdGStptuuqkqpwQAAAAAAIBqU6cqB/vKV74SP/vZz+L666+P/v37l9VLSkqifv368cgjj0S3bt2qckoAAAAAAADIjTAtcc0110SPHj3il7/8ZSxcuDCttW3bNnr37h35+flVPR0AAAAAAADkTpiWSEKzG264oTqGBgAAAAAAgNwO07Y1e/bsWLZsWRx99NHpuWm1alXpMW0AAAAAAACQe2Hahx9+GBdffHG8/fbbZbUOHTrEb37zm2jVqlV1TQsAAAAAAABVptqWiX33u9+N5s2bp+embdy4Mf70pz/Fli1bYtCgQdU1JQAAAAAAANSsMO33v/99pfUkPLvzzjujdevWUb9+/ejSpUsasCV1AAAAAAAAOCDCtEsvvTSuvPLKWLNmTbl6ckbajBkzytVef/31yM/P39MpAQAAAAAAIDfCtGSl2TvvvJOeh/b888+X1b///e/H4MGD4ytf+Ur06dMnTjrppHjuuefSOgAAAAAAABwQYdopp5wSc+bMSYOzq666Kl2ptnz58ujZs2catBUUFMS6devijDPOiGnTpqXBGgAAAAAAAOSCvJKSkpKqGuyvf/1rfOtb34r58+fHXXfdFddee21VDb3fSsLGRFFR0b5+FAAAAAAAgJxUUI15yx6vTNtWmzZt0tVn99xzTwwfPjy6du2aBmwAAAAAAACQi6osTPvss89i/fr16feBAwemyd/hhx8e//RP/xQ//vGPY8uWLVU1FQAAAAAAAORGmLZmzZq4/PLL4+CDD45DDz00OnXqFHPnzo38/Px48cUX46mnnooxY8bEqaeeGm+99VbVPDUAAAAAAADkQph24403xsyZM+PRRx9Nw7MkVPva174WmzdvTtuT7++9914app1xxhlx0003VcVzAwAAAAAAQM0P015++eX43ve+F1dddVX07Nkzfv7zn8eyZcvi3XffLbvnS1/6UowbNy5+//vfx0svvbSnUwIAAAAAAEBuhGl169aNjRs3lv29adOmyMvLizp16lS497zzzou//OUvezolAAAAAAAA7BUVE69dlJyXdtddd8Xnn3+enpn205/+NNq3bx8dOnSo9P4GDRrs6ZQAAAAAAACQG2HaqFGjolatWumZaf/4xz/irLPOigceeCCtAQAAAAAAQC7LKykpKdnXD3EgKygoSK9FRUX7+lEAAAAAAAByUkE15i2WjwEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAA7A9hWnFxcdx8882Rn58fDRs2jMLCwpgyZcoX9nv//fdj8ODBcdZZZ0WDBg0iLy8vlixZknn/pEmT4pRTTknvbdmyZfzwhz+Mzz//vIrfBgAAAAAAgJoup8K0/v37x+jRo6NPnz7xwAMPRO3ataNHjx4xY8aMHfabNWtWPPjgg7Fhw4bo0KHDDu99+eWX47LLLosmTZrEmDFj0u933HFHXH/99VX8NgAAAAAAANR0eSUlJSWRA+bMmZOuRBs1alQMHTo0rW3atCk6duwYzZo1i5kzZ2b2XbNmTdStWzcOOeSQ+MlPfhI33XRTfPDBB3HcccdVuLegoCC9d+7cuVGnTp20duutt8bIkSPj3Xffjfbt21fpeyXzJYqKiqp0XAAAAAAAgANFQTXmLTmzMm3ixInpSrSBAweW1ZJtGAcMGJCuPFu2bFlm38MOOywN0r5IEpYln2SO0iAtMWjQoEgyx+QZAAAAAAAAOHD8b2JUw82bNy/atm0bjRs3Llfv0qVLep0/f360aNFij+dInHbaaeXqyRltxxxzTFn7niSi21u0aFGccMIJuz0uAAAAAAAA1SdnVqatWLEimjdvXqFeWlu+fHmVzLHtmNvPUxVzAAAAAAAAkDtyZmXaxo0bo379+hXqyVaPpe1VMUcia57169fv9thZe3RmrVgDAAAAAABg38uZlWkNGzaM4uLiCvVNmzaVtVfFHImseapiDgAAAAAAAHJHzqxMS7ZZ/PDDDzO3ZkzONauKOUrH3P78taRWej4b+8aoP16/rx8BAMq56Z/H7OtHAAAAAKCa5czKtM6dO8fChQsrbLU4e/bssvaqmCMxd+7ccvXkrLS///3vVTIHAAAAAAAAuSNnwrRevXrFli1bYuzYsWW1ZDvG8ePHR2FhYdlKsqVLl8aCBQt2a47k/LL27duncyRzlXrkkUciLy8vfQYAAAAAAAAOHDmzzWMSmPXu3TuGDx8eq1atitatW8eECRNiyZIlMW7cuLL7+vXrF9OnT4+SkpKy2scffxxjxvy/bZhef/319PrQQw9FkyZN0s91111Xdu+oUaPi0ksvja9+9avxjW98I95555303muuuSY6dOiwV98ZAAAAAACAfStnwrTEk08+GSNGjIinnnoq1q5dG506dYrJkyfHOeecs8N+yb1Jv23de++96fXYY48tF6b9y7/8S7z44otx2223xfXXXx9NmzaNW265JX7wgx9U01sBAAAAAABQU+WVbLuEi70u2VoyUVRUtK8fpcYb9cfr9/UjAEA5N/3z/1v5DgAAAMD+m7fkzJlpAAAAAAAAsLcJ0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAy1MlqAACA/cGoP16/rx8BAMrc9M9j9vUjAACwi6xMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAA2F/CtOLi4rj55psjPz8/GjZsGIWFhTFlypSd6vvhhx/GFVdcEU2aNInGjRtHz549Y/HixRXuy8vLq/Rz1113VcMbAQAAAAAAUFPViRzTv3//mDhxYtx4443Rpk2beOKJJ6JHjx4xderUOPvsszP7ffLJJ3HuuefGxx9/HLfcckvUrVs37rvvvujatWvMnz8/Dj/88HL3X3DBBdGvX79ytZNPPrna3gsAAAAAAICaJ6fCtDlz5sRzzz0Xo0aNiqFDh6a1JPDq2LFjDBs2LGbOnJnZ96c//Wn89a9/Tcc4/fTT09pFF12U9r333ntj5MiR5e5v27Zt9O3bt5rfCAAAAAAAgJosp7Z5TFak1a5dOwYOHFhWa9CgQQwYMCBmzZoVy5Yt22HfJEQrDdIS7du3j/PPPz9eeOGFSvts3LgxNm3aVMVvAQAAAAAAQK7IqTBt3rx56Yqx5LyzbXXp0iW9Jts1Vmbr1q3x9ttvx2mnnVahLem7aNGi2LBhQ7l6sn1ko0aN0nPZTjzxxHj22Wf36NkLCgoq/SRzAwAAAAAAUDPl1DaPK1asiObNm1eol9aWL19eab81a9ZEcXHxF/Zt165d+v2ss86KK664Io4//vi0/vDDD0efPn3S89a+/e1vV/FbAQAAAAAAUFPlVJiWbLtYv379CvVkq8fS9qx+iZ3t+/rrr5e75+qrr45TTz01brnllujfv3+6Wm1XFRUVVVpPVqcBAAAAAABQM+XUNo9JiJWsMNte6blmWSFXaX13+ibq1asX1113Xaxbty7efPPN3X5+AAAAAAAAcktOhWnJlozJVo/bK63l5+dX2u+www5LV6XtTt9SLVq0KNsyEgAAAAAAgANDToVpnTt3joULF8b69evL1WfPnl3WXplatWrFSSedFHPnzq3QlvRt1apVHHLIITuce/Hixem1adOme/AGAAAAAAAA5JKcCtN69eoVW7ZsibFjx5bVkq0bx48fH4WFhWWrx5YuXRoLFiyo0PeNN94oF6i9//778eqrr0bv3r3Lah999FGFeTds2BD3339/HHHEEenZaQAAAAAAABwY6kQOSQKzJPgaPnx4rFq1Klq3bh0TJkyIJUuWxLhx48ru69evX0yfPj1KSkrKaoMGDYrHHnssLr744hg6dGjUrVs3Ro8eHUceeWQMGTKk7L6HH344XnrppbjkkkuiZcuW6TaQjz/+eBrQPfXUU+n5aQAAAAAAABwYcipMSzz55JMxYsSINNhau3ZtdOrUKSZPnhznnHPODvsl2zhOmzYtBg8eHHfccUds3bo1unXrFvfdd1+5rRu//OUvx8yZM+PnP/95rF69Oho1ahRdunRJA7XzzjtvL7whAAAAAAAANUXOhWkNGjSIUaNGpZ8sSWhWmWOOOSZ++ctf7nD8Cy64IP0AAAAAAABATp2ZBgAAAAAAAHuTMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAA9pcwrbi4OG6++ebIz8+Phg0bRmFhYUyZMmWn+n744YdxxRVXRJMmTaJx48bRs2fPWLx4caX3jhs3Ljp06BANGjSINm3axJgxY6r4TQAAAAAAAKjpci5M69+/f4wePTr69OkTDzzwQNSuXTt69OgRM2bM2GG/Tz75JM4999yYPn163HLLLXHbbbfFvHnzomvXrrF69epy9z766KNxzTXXREFBQRqinXnmmfHd73437r777mp+OwAAAAAAAGqSOpFD5syZE88991yMGjUqhg4dmtb69esXHTt2jGHDhsXMmTMz+/70pz+Nv/71r+kYp59+elq76KKL0r733ntvjBw5Mq1t3Lgxvv/978fFF18cEydOTGvf+ta3YuvWrXH77bfHwIED49BDD90r7wsAAAAAAMC+lVMr05JwK1mJlgRapZJtGAcMGBCzZs2KZcuW7bBvEqKVBmmJ9u3bx/nnnx8vvPBCWW3q1KnpSrVBgwaV6/+d73wnPv300/jtb39b5e8FAAAAAABAzZRTK9OSbRnbtm2bnne2rS5duqTX+fPnR4sWLSr0S1aVvf3223H11VdXaEv6/uEPf4gNGzbEIYccks6ROO2008rdd+qpp0atWrXS9r59++7ysydbRlZmwYIFUbdu3cx2/tfqT1fu60cAgHKeaPTqvn4EdoL/DQFATeJ/PwAAVI9FixaleUsc6GHaihUronnz5hXqpbXly5dX2m/NmjVRXFz8hX3btWuXzpGsfmvWrFm5++rVqxeHH3545hy7Ky8vr8r/w03+hUmccMIJsT85vNFR+/oRYL+wv/5GAHtuf/198L8hYM/tr78PwJ7z+wBk8fsA7O3fiCRradSoUcSBHqYl55nVr1+/Qj3Z6rG0PatfYmf6JtckOKtMcm/WHF+kqKgo9pbSVW57c04gd/iNALL4fQCy+H0Asvh9ALL4fQD2p9+InDozrWHDhukKs+1t2rSprD2rX2Jn+ibXzz77rNJxknuz5gAAAAAAAGD/k1NhWrIlY7IN4/ZKa/n5+ZX2O+yww9JVaTvTN5ljy5YtsWrVqnL3JQHb6tWrM+cAAAAAAABg/5NTYVrnzp1j4cKFsX79+nL12bNnl7VXplatWnHSSSfF3LlzK7QlfVu1ahWHHHJIuTG2vzf5e+vWrZlzAAAAAAAAsP/JqTCtV69e6aqxsWPHltWSrRvHjx8fhYWF0aJFi7S2dOnSWLBgQYW+b7zxRrmQ7P33349XX301evfuXVY777zz0pVsjzzySLn+yd8HHXRQXHzxxdX4hgAAAAAAANQkdSKHJIFZEnwNHz483YaxdevWMWHChFiyZEmMGzeu7L5+/frF9OnTo6SkpKw2aNCgeOyxx9IwbOjQoVG3bt0YPXp0HHnkkTFkyJCy+5Iz0W6//fb4zne+k87VvXv3eO211+Lpp5+OO++8Mw3aAAAAAAAAODDklWybOOWATZs2xYgRI9Jwa+3atdGpU6c0/EpCr1LdunWrEKYl/v73v8fgwYPjD3/4Q7plY3Lffffdl4Zy20uCt3vvvTc++OCDdMXbddddFzfccEPk5eXtlfcEAAAAAABg38u5MA0AAAAAAAD2lpw6Mw0AAAAAAAD2JmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAA7Ie++c1vRl5eXvzmN7+ptH39+vVx/PHHR9OmTeO///u/9/rzAQAA5Iq8kpKSkn39EAAAAFStjz/+OE466aQoLi6Ov/zlL9GsWbNy7f37948JEybEiy++GJdffvk+e04AAICazso0AACA/dCXvvSleOKJJ+Kjjz6KAQMGlGv7j//4jzRISwK1vRmkJavhAAAAco0wDQAAYD913nnnxY033hiTJ0+On/3sZ2lt5cqVMXDgwDjuuOPiwQcfjA0bNsT3v//9aNeuXdSvXz8OO+ywuOyyy+Ltt98uN9bWrVtj5MiR0a1bt2jevHnUq1cvjj766Ljyyitj6dKlFeZOtphMwrpp06alfRo3bhz/9E//tNfeHQAAoKrY5hEAAGA/lmzzeOqpp8YHH3wQb731Vvx//9//F7///e/TkCsJt84+++z4r//6rzQUS/5eu3ZtPPbYY+k5aq+99lqccsop6TibNm2KI488Mv7P//k/ceKJJ6Yr35LA7fHHH08DuOR7ct02TCsoKIglS5bE1VdfHR07dkyDuyFDhuzDfxoAAAC7TpgGAACwn5s/f34UFhamAViy7eOwYcPi7rvvjsGDB8fDDz+chmZJe6l169al5621bt06pk6dmtaS/+u4cePGOOigg8qN/cc//jEuuOCCuOeee+Kmm24qF6YlXn755bjwwgv32rsCAMD/3969gHlV1fvj/wwXAS+EF1BGQUVAcJDwBt5BPYqXo+YJ1AIRDx6O4v2IGJ3MTCUVRU2M1AjvmaGZecmswBQMRSGTQDoQQQJhoqDGRfD7f9b+PzM/hmFznQG+zOv1PF+/M2uvvdfaOCz2zHvWWlDdLPMIAACwjevUqVNcf/31WZCWZovdeOONWTg2YsSI+Pzzz6N+/frxz3/+s+K1YsWKOOmkk7KQLQVo5eFYeZCWlnxMgVuqm66dQroJEyZUaTfNdBOkAQAAxU6YBgAAsBVLIdaqr7p168Zuu+2W7Yf2+OOPr/d1jjzyyOz90EMPzfY7S0FYWgIySctANm3atNIrLd+4cuXKrF65Z555JrtOo0aNYuedd66ou2jRonjqqafiwQcfrNRm27Zt17t/06dPz5agTMtKpuUiU8CX3tOMuYEDB8Zbb7213tcCAACoTvWq9WoAAADUiDSzLEkzyaZNmxa/+MUvsiUYJ06cGMOGDdvg66XZZeXhWpqpVq/emr89TGFZkto766yzsvqpvZYtW2ahWvKVr3wlPvvssyrnrr4k5JqkGXLf/e53s1fqUwrTzjnnnCxIS3uspb3Y7rnnnrjjjjti+PDhcckll2zwvQIAAGwKYRoAAEAR+M53vlPp89/+9rfZXmV33XVXXH755bHPPvts0PVSSNakSZNsdtr6LMX40EMPRcOGDeOVV16pFJKlEO1f//pXbKwUoqV7a9GiRfzkJz+Jo446qkqdBQsWZPeZZsABAABsbpZ5BAAAKEInnHBCtGvXLpvZ9eabb1aUp+UQv/rVr0azZs2iQYMGsffee8eAAQPiww8/rHR+nTp1Yo899og//elPcfvtt1eUz5o1K1tOsm/fvtl1zz333GxZyTQzLQVvzz//fKXrtG/fPutDcsEFF1QsR5l8+umna72HmTNnxk033ZQtO/niiy+uMUhL0r0MGTIkBg0atBF/UgAAAJvGzDQAAIAiVR5ilYdXzz33XBakpfIePXpkQVoK10aMGBE/+9nPqpyfllRMS0Zec801MW7cuDjmmGNiyZIl2bGnn34625Mt1TnvvPPi7bffjt///vdx9tlnx6WXXhpt2rSJl156KZuVlsKw5cuXx5lnnhmdOnXKzr/hhhuy8rUZNWpUrFixIr7+9a9HWVnZOu83bylKAACAmuQ7EQAAgCL0m9/8Jt57770sSDvssMOyWWDnn39+Fk6NHTs2C8bK3XrrrfGNb3yjyjXq16+fvacw7de//nUWjpVL+5WlEO3hhx+uKPuf//mfuPPOO+MHP/hB7Lrrrtkyk5MnT84CtDTzLe2dlma0rW+YlgK85Pjjj6+GPxEAAICaIUwDAAAooj3TPv/88yxEe+aZZ7IZaFdddVU2A+2xxx6LhQsXxte+9rVKQVpy9dVXxw9/+MNsCce0R9nq0jKQt912W/ZxqrPvvvtm10wzx1Y1bNiweOqpp7J90tI+ZuXSMpFpicc1zZpbm/nz52fve+65Z5VjqR8PPvhgpbK0x9uVV165zusCAABUJ2EaAABAEUgzvZI0Ey2FSikw69evX/Tu3TsrT8sw5s3ySssjHnvssVlANWnSpGjZsuU620uzzerWrVulvEWLFvH6669HTUt9Lb/ncingE6YBAACbmzANAACgCKxrpteiRYuy9+bNm6/xeHn5xx9/vF7tpcBuTVIw98UXX0R12GOPPWLq1Kkxd+7cKse6detWcc9p6cryJSkBAAA2tzqbvUUAAACq3Ze+9KVKSyeubt68eZXqbQ2OOuqo7P23v/3tlu4KAABALmEaAADANuCggw7K3seOHVvlWJrZ9eqrr2YfH3zwwdXedvlykCtXrtyg8/r27ZvNdBs9enQ2Qw0AAGBrJEwDAADYBnzlK1+JXXbZJX7yk5/EH/7wh0rH7rrrrvjrX/8a//Zv/7Ze+6VtqF133TV7nz179gadt99++8W3vvWtWL58eZxyyikxfvz4NdZb36UpAQAAaoI90wAAALYBO+64Y/z4xz+Onj17RteuXbP3FJy99dZb8etf/zrbn+y+++6rkbaPOOKI2H777bPQ7sMPP8zaSi677LJ1Liv57W9/O9sb7cYbb8yWfTzkkEOic+fOWTCYQrRZs2bFb37zm6zuscceWyP9BwAAWBthGgAAwDbizDPPjHHjxsWQIUPipZdeikWLFmXB1kUXXRTXXXddlJaW1ki7O++8czz11FNxww03xIMPPhifffZZVt67d+91hmklJSXxne98J772ta/FD3/4wxgzZkw8/vjj2TV22mmnbPbaxRdfHOedd16NLFEJAACwLiWF9CuAAAAAAAAAQBX2TAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyFEv7wCbxx577BGfffZZtGzZckt3BQAAAAAAoCjNnj07dthhh5g/f361X9vMtC0sBWmff/75lu4GAAAAAABA0fr888+zzKUmmJm2hZXPSJsyZcqW7goAAAAAAEBRKisrq7Frm5kGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAsC2EacuWLYtrr702SktLo1GjRtGlS5d4+eWX13ne008/Heecc060atUqtt9++9h///3j6quvjo8//rhK3X322SdKSkqqvC666KIauisAAAAAAAC2VvWiiPTt2zdGjx4dV155ZbRp0yYefPDBOPXUU2PMmDFx9NFH557Xv3//LIDr3bt3tGzZMv70pz/F8OHD44UXXoi33347C+ZW1alTpyxsW1Xbtm1r7L4AAAAAAADYOhVNmPbGG2/EE088EUOHDo2BAwdmZX369IkOHTrEoEGDYvz48bnnpgCuW7dulcoOOeSQOP/88+Oxxx6LCy+8sNKxPffcMwveAAAAAAAAqN2KZpnHFIjVrVs3m2VWrmHDhtGvX794/fXXY86cObnnrh6kJWeddVb2PnXq1DWes3z58vjss8+qpe8AAAAAAAAUp6KZmTZp0qRsqcXGjRtXKu/cuXP2Pnny5GjRosV6X2/+/PnZ+2677Vbl2O9+97tsb7WVK1fG3nvvHVdddVVcccUVm9T/srKyNZbPmDEj9ttvv026NgAAAAAAALU8TJs3b140b968Snl52dy5czfoerfeems2061Hjx6Vyjt27Jjtv7b//vvHhx9+mO3LlvZoS9dP5wAAAAAAAFB7FE2YtmTJkmjQoEGV8rTUY/nx9fX444/HyJEjs73W2rRpU+nYs88+W+nzCy64IE455ZQYNmxYXHbZZbHXXnttVP+nTJmyQTPWAAAAAAAA2PKKZs+0Ro0axbJly6qUL126tOL4+nj11Vezfda6d+8eN9988zrrl5SUZMs8rlixIsaOHbsRPQcAAAAAAKBYFU2YlpZzTEs9rq68rLS0dJ3X+OMf/xhnnHFGdOjQIUaPHh316q3fxLzyvdgWLly4wf0GAAAAAACgeBVNmNapU6eYPn16LF68uFL5hAkTKo6vzYwZM+Lkk0+OZs2axQsvvBA77rjjerc9c+bM7L1p06Yb1XcAAAAAAACKU9GEaT169IiVK1fG/fffX1GWln0cNWpUdOnSpWL22OzZs2PatGmVzp0/f36cdNJJUadOnXjppZdyQ7E08yy1sarPP/88brnllthuu+3iuOOOq5F7AwAAAAAAYOu0fuscbgVSYNazZ88YPHhwLFiwIFq3bh0PPfRQzJo1K0aOHFlRr0+fPvHKK69EoVCoKEsz0tLsskGDBsVrr72WvcrtvvvuceKJJ2YfP/vss3HTTTdlwd2+++6bhWuPP/54vPvuuzFkyJDYY489NvNdAwAAAAAAsCUVTZiWPPzww3HdddfFI488Eh999FF07NgxnnvuuTj22GPXuVdactttt1U51rVr14ow7cADD4wDDjggHn300fjggw+y2Whp+cgnn3wyC/IAAAAAAACoXUoKq07hYrMrKyvL3qdMmbKluwIAAAAAAFCUymowbymaPdMAAAAAAABgcxOmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAMC2EKYtW7Ysrr322igtLY1GjRpFly5d4uWXX17neU8//XScc8450apVq9h+++1j//33j6uvvjo+/vjjNdZ/9tln4+CDD46GDRtGy5Yt4/rrr48VK1bUwB0BAAAAAACwNSuqMK1v374xbNiw6NWrV9x9991Rt27dOPXUU+O1115b63n9+/ePqVOnRu/eveP73/9+nHzyyTF8+PA44ogjYsmSJZXqvvjii/GVr3wlmjRpEvfcc0/28U033RSXXXZZDd8dAAAAAAAAW5uSQqFQiCLwxhtvZDPRhg4dGgMHDszKli5dGh06dIhmzZrF+PHjc88dO3ZsdOvWrVLZww8/HOeff3488MADceGFF1aUl5WVRf369WPixIlRr169rOxb3/pWDBkyJP785z9Hu3btqvW+UnvJlClTqvW6AAAAAAAAtUVZDeYtRTMzbfTo0dlMtDTLrFxahrFfv37x+uuvx5w5c3LPXT1IS84666zsPc1YK5fCsvRKbZQHacmAAQMiZY6pDwAAAAAAANQe/y8x2spNmjQp2rZtG40bN65U3rlz5+x98uTJ0aJFi/W+3vz587P33XbbrVIbyaGHHlqpbtqjba+99qo4vimJ6OpmzJgR++2330ZfFwAAAAAAgJpTNDPT5s2bF82bN69SXl42d+7cDbrerbfems1069GjR6U2Vr3m6u1saBsAAAAAAAAUt6KZmbZkyZJo0KBBlfK01GP58fX1+OOPx8iRI2PQoEHRpk2bSm0kee0sXrx4I3ufv0Zn3ow1AAAAAAAAtryimZnWqFGjWLZsWZXypUuXVhxfH6+++mq2z1r37t3j5ptvrtJGktfO+rYBAAAAAADAtqFowrS0zGL5MoyrKi9L+5qtyx//+Mc444wzokOHDjF69OioV6/yxLzy5R3z2lmfNgAAAAAAANh2FE2Y1qlTp5g+fXqVpRYnTJhQcXxtZsyYESeffHI0a9YsXnjhhdhxxx3X2EYyceLESuVpr7S///3v62wDAAAAAACAbUvRhGk9evSIlStXxv33319RlpZjHDVqVHTp0iVatGiRlc2ePTumTZtW6dz58+fHSSedFHXq1ImXXnopmjZtmrt/Wbt27bI2UlvlRowYESUlJVkfAAAAAAAAqD0qr3O4FUuBWc+ePWPw4MGxYMGCaN26dTz00EMxa9asGDlyZEW9Pn36xCuvvBKFQqGiLM1ImzlzZgwaNChee+217FVu9913jxNPPLHi86FDh2ZLQabw7dxzz4133303hg8fHhdeeGG0b99+M94xAAAAAAAAW1pJYdXUaSu3dOnSuO666+LRRx+Njz76KDp27Bg33nhjdO/evaJOt27dqoRpaVZZnq5du8bYsWMrlT3zzDNxww03xNSpU7NZbH379o1vf/vbUb9+/Wq/pzQbLpkyZUq1XxsAAAAAAKA2KKvBvKWowrRtkTANAAAAAABg681bimbPNAAAAAAAANjchGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAABbS5j28ccfb+4mAQAAAAAAYMuHaVdcccVaj3/yySfRvXv36mwSAAAAAAAAiiNMu+eee+LOO+9c47ElS5bEaaedFu+88051NgkAAAAAAADFEaYNHjw4rrnmmnjqqacqlS9btizOOOOM+MMf/hA//elPq7NJAAAAAAAAqDH1qvNiN998c/ztb3+L8847L0pLS+OII46IFStWRM+ePWPMmDHx2GOPZaEaAAAAAAAA1LqZacmoUaPi8MMPz0KzqVOnRq9eveL555+P+++/P84555zqbg4AAAAAAACKY2ZaUr9+/fj5z38eRx11VBx88MGxfPnyuOuuu+I///M/q7spAAAAAAAA2HrDtNmzZ+ceGzFiRJx++unRr1+/OPPMMyvVbdmy5aY0CwAAAAAAAJtFSaFQKGzsyXXq1ImSkpLc4+nSazq+cuXKjW1ym1NWVpa9T5kyZUt3BQAAAAAAoCiV1WDeskkz07797W+vNUwDAAAAAACAYrZJYdp3vvOd6usJAAAAAAAAbGXqbOkOAAAAAAAAQK0I0376059Gnz59cvdPS8eeeuqp6mwSAAAAAAAAiiNMu/fee3P3UEvldevWjeHDh1dnkwAAAAAAAFAcYdrUqVPjoIMOyj2ejv35z3+uziYBAAAAAACgOMK0Tz75JLbbbrvc42lm2qJFi6qzSQAAAAAAACiOMK1ly5YxYcKE3OPpWGlpaXU2CQAAAAAAAMURpv37v/97PPbYY/GLX/yiyrFnn302fvKTn8Tpp59enU0CAAAAAABAjSkpFAqF6rrYP//5z2xftLlz50a3bt0q9k+bNGlSjB07NpuV9tZbb0WzZs2qq8miV1ZWlr1PmTJlS3cFAAAAAACgKJXVYN5Srzovtttuu8X48ePj4osvjhdffDHGjBmTlZeUlMSpp54a9957ryANAAAAAACA2rnMY9KiRYt47rnnsllqaY+09Eof//KXv8z2VNsUy5Yti2uvvTab4daoUaPo0qVLvPzyy+s877333ourrroqjjzyyGjYsGEW7s2aNWuNdffZZ5/s+Oqviy66aJP6DgAAAAAAQPGp1plpq9p5553jsMMOq9Zr9u3bN0aPHh1XXnlltGnTJh588MFsxluaAXf00Ufnnvf666/H97///TjggAOiffv2MXny5LW206lTp7j66qsrlbVt27ba7gMAAAAAAIBaHqZVtzfeeCOeeOKJGDp0aAwcODAr69OnT3To0CEGDRqULS+Z54wzzoiPP/44dtppp7j99tvXGabtueee0bt372q/BwAAAAAAAGrRMo916tSJevXqxfLlyys+r1u37lpfqf7GSDPS0vn9+/evKEtLNvbr1y+beTZnzpzcc3fZZZcsSNsQ6Z4+++yzjeorAAAAAAAA24ZNmpmWZoal/cRSyLXq5zVh0qRJ2VKLjRs3rlTeuXPn7D3NNkv7tVWH3/3ud7H99tvHypUrY++99872W7viiiuq5doAAAAAAADUkjAt7Vm2ts+r07x586J58+ZVysvL5s6dWy3tdOzYMdt/bf/9948PP/wwu6e0R1u6/q233rrR1y0rK1tj+YwZM2K//fbbhB4DAAAAAAAQtX3PtCVLlkSDBg2qlKelHsuPV4dnn3220ucXXHBBnHLKKTFs2LC47LLLYq+99qqWdgAAAAAAANj6FU2Y1qhRo1i2bFmV8qVLl1Ycrwlp2cq0zONLL70UY8eOjd69e2/UdaZMmbJBM9YAAAAAAAAo8jCtVatWGxVOpaUNN1RazvH9999f4/KPSWlpadSU8r3YFi5cWGNtAAAAAAAAsI2FaS1btszCsc2hU6dOMWbMmFi8eHE0bty4onzChAkVx2vKzJkzs/emTZvWWBsAAAAAAABsY2FaWvZwc+nRo0fcfvvtcf/998fAgQOzsrTs46hRo6JLly4Vs8dmz54d//rXv6Jdu3Yb3EaaefalL30p6tatW1H2+eefxy233BLbbbddHHfccdV4RwAAAAAAAGztimbPtBSY9ezZMwYPHhwLFiyI1q1bx0MPPRSzZs2KkSNHVtTr06dPvPLKK1EoFCrKFi1aFPfcc0/28bhx47L34cOHR5MmTbLXpZdempU9++yzcdNNN2XB3b777puFa48//ni8++67MWTIkNhjjz02+30DAAAAAACwjYRpf/3rX7Pg6fTTT69yLIVbzz33XBx44IGxzz77bNT1H3744bjuuuvikUceiY8++ig6duyYXfPYY49d63mpbjpvVXfccUf2vvfee1eEaalvBxxwQDz66KPxwQcfZLPR0vKRTz75ZBbkAQAAAAAAULuUFFadwrWJevXqFX/729/itddeW+PxFHqlGV9pRhn/v7Kysux9ypQpW7orAAAAAAAARamsBvOWOtV5sRSinXzyybnHu3fvHr///e+rs0kAAAAAAACoMdUapv3jH/9Y675iu+++e8yfP786mwQAAAAAAIDiCNMaN24cs2bNWuueajvssEN1NgkAAAAAAADFEaYdccQR8eMf/zg++uijKsdS2ahRo6JLly7V2SQAAAAAAAAUR5g2cODAWLBgQXTu3DkeeeSRePfdd7NX+jiFaOnYNddcU51NAgAAAAAAQI2pV50XO+aYY+KHP/xhXHbZZdG3b9+K8kKhEA0aNIgRI0ZEt27dqrNJAAAAAAAAKI4wLbnwwgvj1FNPjZ/97Gcxffr0rKxt27bRs2fPKC0tre7mAAAAAAAAoHjCtCSFZldccUVNXBoAAAAAAACKO0xb1YQJE2LOnDmx5557Zvum1alTrdu0AQAAAAAAQPGFae+//36cdtpp8c4771SUtW/fPn75y19Gq1ataqpZAAAAAAAAqDY1Nk3s8ssvj+bNm2f7pi1ZsiT+8Ic/xMqVK2PAgAE11SQAAAAAAABsXWHar371qzWWp/Ds5ptvjtatW0eDBg2ic+fOWcCWygEAAAAAAKBWhGlnnHFGnH/++bFw4cJK5WmPtNdee61S2bhx46K0tHRTmwQAAAAAAIDiCNPSTLN333032w/tpz/9aUX5//7v/8ZVV10VxxxzTPTq1SsOPPDAeOKJJ7JyAAAAAAAAqBVh2sEHHxxvvPFGFpxdcMEF2Uy1uXPnxplnnpkFbWVlZfHxxx/H4YcfHmPHjs2CNQAAAAAAACgGJYVCoVBdF/vLX/4S//Vf/xWTJ0+OW265JS666KLquvQ2K4WNyZQpU7Z0VwAAAAAAAIpSWQ3mLZs8M21Vbdq0yWaf3XbbbTF48ODo2rVrFrABAAAAAABAMaq2MG358uWxePHi7OP+/ftnyd+uu+4aX/7yl+N73/terFy5srqaAgAAAAAAgOII0xYuXBhnnXVW7LjjjrHzzjtHx44dY+LEiVFaWhpPP/10PPLII3HPPffEIYccEm+//Xb19BoAAAAAAACKIUy78sorY/z48XHfffdl4VkK1b761a/G559/nh1PH0+dOjUL0w4//PC45pprqqPfAAAAAAAAsPWHaS+++GJ84xvfiAsuuCDOPPPM+NGPfhRz5syJP//5zxV1vvSlL8XIkSPjV7/6VTzzzDOb2iQAAAAAAAAUR5hWv379WLJkScXnS5cujZKSkqhXr16Vuscff3z86U9/2tQmAQAAAAAAYLOomnhtoLRf2i233BIrVqzI9kz7wQ9+EO3atYv27duvsX7Dhg03tUkAAAAAAAAojjBt6NChUadOnWzPtH/9619x5JFHxt13352VAQAAAAAAQDErKRQKhS3didqsrKwse58yZcqW7goAAAAAAEBRKqvBvMX0MQAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADYFsK0ZcuWxbXXXhulpaXRqFGj6NKlS7z88svrPO+9996Lq666Ko488sho2LBhlJSUxKxZs3LrP/vss3HwwQdndVu2bBnXX399rFixoprvBgAAAAAAgK1dUYVpffv2jWHDhkWvXr3i7rvvjrp168app54ar7322lrPe/311+P73/9+fPLJJ9G+ffu11n3xxRfjK1/5SjRp0iTuueee7OObbropLrvssmq+GwAAAAAAALZ2JYVCoRBF4I033shmog0dOjQGDhyYlS1dujQ6dOgQzZo1i/Hjx+eeu3Dhwqhfv37stNNOcfvtt8c111wTf/3rX2OfffapUresrCyrO3HixKhXr15W9q1vfSuGDBkSf/7zn6Ndu3bVel+pvWTKlCnVel0AAAAAAIDaoqwG85aimZk2evTobCZa//79K8rSMoz9+vXLZp7NmTMn99xddtklC9LWJYVl6ZXaKA/SkgEDBkTKHFMfAAAAAAAAqD2KJkybNGlStG3bNho3blypvHPnztn75MmTq6WN5NBDD61UnvZo22uvvSqOAwAAAAAAUDv8v+lXW7l58+ZF8+bNq5SXl82dO7da2lj1mqu3syltlE8vXN2MGTNiv/322+jrAgAAAAAAUHOKZmbakiVLokGDBlXK01KP5cero40kr53qaAMAAAAAAIDiUTQz0xo1ahTLli2rUr506dKK49XRRpLXzqa0kbfhXd6MNQAAAAAAALa8opmZlpZZLF+GcVXlZWlfs+poY9Vrrt5OdbQBAAAAAABA8SiaMK1Tp04xffr0WLx4caXyCRMmVByvjjaSiRMnVipPe6X9/e9/r5Y2AAAAAAAAKB5FE6b16NEjVq5cGffff39FWVqOcdSoUdGlS5do0aJFVjZ79uyYNm3aRrWRllxs165d1kZqq9yIESOipKQk6wMAAAAAAAC1R9HsmZYCs549e8bgwYNjwYIF0bp163jooYdi1qxZMXLkyIp6ffr0iVdeeSUKhUJF2aJFi+Kee+7JPh43blz2Pnz48GjSpEn2uvTSSyvqDh06NM4444w46aST4txzz4133303q3vhhRdG+/btN+s9AwAAAAAAsGWVFFZNnbZyS5cujeuuuy4effTR+Oijj6Jjx45x4403Rvfu3SvqdOvWrUqYlgK3fffdd43X3HvvvbPjq3rmmWfihhtuiKlTp0bTpk2jb9++8e1vfzvq169f7feUZsMlU6ZMqfZrAwAAAAAA1AZlNZi3FFWYti0SpgEAAAAAAGy9eUvR7JkGAAAAAAAAm5swDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAC2lTBt2bJlce2110ZpaWk0atQounTpEi+//PJ6nfv+++/H2WefHU2aNInGjRvHmWeeGTNnzqxSr6SkZI2vW265pQbuCAAAAAAAgK1VvSgyffv2jdGjR8eVV14Zbdq0iQcffDBOPfXUGDNmTBx99NG553366adx3HHHxaJFi+Kb3/xm1K9fP+68887o2rVrTJ48OXbddddK9U888cTo06dPpbKDDjqoxu4LAAAAAACArU9RhWlvvPFGPPHEEzF06NAYOHBgVpYCrw4dOsSgQYNi/Pjxuef+4Ac/iL/85S/ZNQ477LCs7JRTTsnOveOOO2LIkCGV6rdt2zZ69+5dw3cEAAAAAADA1qyolnlMM9Lq1q0b/fv3ryhr2LBh9OvXL15//fWYM2fOWs9NIVp5kJa0a9cuTjjhhHjyySfXeM6SJUti6dKl1XwXAAAAAAAAFIuiCtMmTZqUzRhL+52tqnPnztl7Wq5xTb744ot455134tBDD61yLJ07Y8aM+OSTTyqVp+Ujd9hhh2xftgMOOCAef/zxar0XAAAAAAAAtn5FtczjvHnzonnz5lXKy8vmzp27xvMWLlwYy5YtW+e5+++/f/bxkUceGWeffXbsu+++Wfm9994bvXr1yvZbu/jiizeq72VlZWssT0Hefvvtt1HXBAAAAAAAoGYVVZiWll1s0KBBlfK01GP58bzzkvU9d9y4cZXq/Od//mcccsgh8c1vfjP69u2bzVYDAAAAAABg21dUYVoKsdIMs9WV72uWF3KVl2/Mucl2220Xl156aVx00UXx1ltvxdFHH73BfZ8yZcoGzVgDAAAAAABgyyuqPdPSkoxpqcfVlZeVlpau8bxddtklm5W2MeeWa9GiRcWSkQAAAAAAANQORRWmderUKaZPnx6LFy+uVD5hwoSK42tSp06dOPDAA2PixIlVjqVzW7VqFTvttNNa2545c2b23rRp0024AwAAAAAAAIpJUYVpPXr0iJUrV8b9999fUZaWbhw1alR06dKlYvbY7NmzY9q0aVXOffPNNysFau+991787ne/i549e1aUffDBB1Xa/eSTT+Kuu+6K3XbbLds7DQAAAAAAgNqhqPZMS4FZCr4GDx4cCxYsiNatW8dDDz0Us2bNipEjR1bU69OnT7zyyitRKBQqygYMGBAPPPBAnHbaaTFw4MCoX79+DBs2LHbfffe4+uqrK+rde++98cwzz8Tpp58eLVu2zJaB/PGPf5wFdI888ki2fxoAAAAAAAC1Q1GFacnDDz8c1113XRZsffTRR9GxY8d47rnn4thjj13reWkZx7Fjx8ZVV10VN910U3zxxRfRrVu3uPPOOyst3XjUUUfF+PHj40c/+lF8+OGHscMOO0Tnzp2zQO3444/fDHcIAAAAAADA1qKksOr0LTa7srKy7H3KlClbuisAAAAAAABFqawG85ai2jMNAAAAAAAANidhGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAABsK2HasmXL4tprr43S0tJo1KhRdOnSJV5++eX1Ovf999+Ps88+O5o0aRKNGzeOM888M2bOnLnGuiNHjoz27dtHw4YNo02bNnHPPfdU850AAAAAAACwtSu6MK1v374xbNiw6NWrV9x9991Rt27dOPXUU+O1115b63mffvppHHfccfHKK6/EN7/5zbjhhhti0qRJ0bVr1/jwww8r1b3vvvviwgsvjLKysixEO+KII+Lyyy+PW2+9tYbvDgAAAAAAgK1JSaFQKESReOONN7KZaEOHDo2BAwdmZUuXLo0OHTpEs2bNYvz48bnn3nbbbdmMtnSNww47LCubNm1adu6gQYNiyJAhWdmSJUuiRYsWcfjhh8dzzz1XcX7v3r3jmWeeiTlz5sTOO+9cbfeUArtkypQp1XZNAAAAAACA2qSsBvOWopqZNnr06GwmWv/+/SvK0jKM/fr1i9dffz0LutZ2bgrRyoO0pF27dnHCCSfEk08+WVE2ZsyYbKbagAEDKp1/ySWXxGeffRbPP/98td8XAAAAAAAAW6eiCtPSsoxt27bN9jtbVefOnbP3yZMnr/G8L774It5555049NBDqxxL586YMSM++eSTijaS1esecsghUadOnYrjAAAAAAAAbPvqRRGZN29eNG/evEp5edncuXPXeN7ChQtj2bJl6zx3//33z9pIs9/SspGr2m677WLXXXfNbWN9pxeuLi01Wb9+/dzjAAAAAAAArF2aOJXylqjtM9PSfmYNGjSoUp6Weiw/nndesj7npvcUnK1JqpvXxsYqKSmp9v+56QsmvQDWxBgB5DE+AHmMD0Ae4wOQx/gAbO4xImUtO+ywQ0Rtn5nWqFGjbIbZ6pYuXVpxPO+8ZH3OTe/Lly9f43VS3bw21qUmNrzbEpvsAcXPGAHkMT4AeYwPQB7jA5DH+ABsS2NEUc1MS0sypmUYV1deVlpausbzdtlll2xW2vqcm9pYuXJlLFiwoFK9FLB9+OGHuW0AAAAAAACw7SmqMK1Tp04xffr0WLx4caXyCRMmVBxfkzp16sSBBx4YEydOrHIsnduqVavYaaedKl1j9brp8y+++CK3DQAAAAAAALY9RRWm9ejRI5s1dv/991eUpaUbR40aFV26dIkWLVpkZbNnz45p06ZVOffNN9+sFJK999578bvf/S569uxZUXb88cdnM9lGjBhR6fz0+fbbbx+nnXZaDd4hAAAAAAAAW5Oi2jMtBWYp+Bo8eHC2DGPr1q3joYceilmzZsXIkSMr6vXp0ydeeeWVKBQKFWUDBgyIBx54IAvDBg4cmG1EN2zYsNh9993j6quvrqiX9kS78cYb45JLLsna6t69e7z66qvx6KOPxs0335wFbQAAAAAAANQORRWmJQ8//HBcd9118cgjj8RHH30UHTt2jOeeey6OPfbYtZ6XlnEcO3ZsXHXVVXHTTTdlSzZ269Yt7rzzzmjatGmluil4S2HbHXfcEc8++2w24y3Vu+KKK2r47gAAAAAAANialBRWnb4FAAAAAAAAFOeeaQAAAAAAALA5CdMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMG0zefPNN+PSSy+NsrKy2GGHHaJly5Zx9tlnx/Tp06vUnTp1apx88smx4447xi677BLnnXdefPDBB5XqTJs2LQYNGhSdOnWKnXbaKZo3bx6nnXZaTJw4scr1nn766TjnnHOiVatWsf3228f+++8fV199dXz88cfr1fe+fftGSUlJlVe7du024U8E2FrGiJ///OfRvXv3KC0tjQYNGsRee+0VPXr0iHfffXe9+78+fQJq3/jgGQK23fFhdSeeeGL29zv1Z32NHz8+jj766Ox7lD322CMuv/zy+PTTT9f7fGDbHB+6deu2xueH1Eeg+MeI73znO2v8O96wYcP17r9nCKg5xTw+dKvhZ4h61XIV1unWW2+NcePGRc+ePaNjx44xf/78GD58eBx88MHxhz/8ITp06JDV+/vf/x7HHntsfOlLX4ohQ4Zk/xDcfvvt8ac//SneeOON2G677bJ6P/rRj2LkyJHx1a9+NQYMGBCLFi2K++67Lw4//PD41a9+Ff/2b/9W0Xb//v2zH4L17t07++JP10ptv/DCC/H2229Ho0aN1tn/9AO01OaqUh+B4h8j0rk777xzXHHFFbHbbrtlbf/4xz+Ozp07x+uvvx5f/vKX19r39e0TUPvGh8QzBGyb48Pqv7yXxoQNMXny5DjhhBOiffv2MWzYsKyPqU9/+ctf4sUXX6yGPx2o3Yp5fEjSL/B873vfq1SWfq4BbDtjxIgRI7IfwJerW7fuevXdMwTUrGIeH2r8GaLAZjFu3LjCsmXLKpVNnz690KBBg0KvXr0qyi6++OJCo0aNCn/7298qyl5++eVC+l913333VZRNnDix8Mknn1S63j//+c9C06ZNC0cddVSl8jFjxlTpz0MPPZRd84EHHlhn388///zCDjvssJ53ChTbGLEm8+fPL9SrV6/w3//93+usu759Amrf+OAZArb98WHJkiWFffbZp/Dd7343u94ll1yyXn0/5ZRTCs2bNy8sWrSooix9b5Ku8dJLL63XNYBtc3zo2rVroaysbL3vFSiuMeL666/Pzv/ggw82qu+eIaBmFfP40LWGnyEs87iZHHnkkVVmZ7Rp0yabLpmmQ5Z76qmn4t///d+zGWTlUjrbtm3bePLJJyvKDjnkkErpbLLrrrvGMcccU+l65dMbV3fWWWdl76vXXZuVK1fG4sWL17s+UBxjxJo0a9YsWy5hfZaDXd8+AbVvfCjnGQK23fHhtttuiy+++CIGDhy43v1O48HLL7+crZzRuHHjivI+ffpk7Xt+gNo7PqxqxYoVlm2DbXiMKBQK2TNBel9fniGg5hXr+LA5niGEaVtQ+mL4xz/+kS2blLz//vuxYMGCOPTQQ6vUTcspTZo0aZ3XTNMuy6+3rnrJ+tRN/vWvf2X/SKVpm2n900suucRDLWxjY0T6wXha1zhNx77wwguzf7TS0glrUx19ArbN8aGcZwjYdseH2bNnxy233JItBbM+S8eXS2NJ+gZ39T6lb9rTXgqeH6D2jg/l0r4saZ+WtLdK2g/puuuui88//3yDrwNsvd9jtGrVKvseIf09T+FYantdPEPAllEM48PmeIawZ9oW9Nhjj2VfeN/97nezz+fNm5e9p034VpfKFi5cGMuWLcv2HlmTV199NVuL/Fvf+tY6204PtGmt0R49eqyzbmo7bRKY1kVNv1WW1jL9wQ9+EH/84x9j7NixUa+eLyPYFsaItFbxe++9l32cfmMk1evXr99a+7ipfQK23fGhvG3PELDtjg9XX311HHTQQXHuueduUB/X1afUJlA7x4dkv/32i+OOOy4OPPDA+Oyzz2L06NFx0003ZT8c++lPf7rB1wO2rjEi7cl86aWXxhFHHJGdm+rde++92R5LEydOrDTjbHWeIWDLKIbxYXM8Q/gJxhYybdq07Dez0xfG+eefn5UtWbIke1/TF1nDhg0r6qzpeEqCv/71r8e+++6b/dBqbR5//PFs079UL03RXJfVN+xLD8Npuub//u//Zl+QG/NwDGx9Y8SoUaOy2SYzZ87MPk7XSkuz1amTP4l5U/oEbNvjQ+IZArbd8WHMmDHZ0i4TJkzY4H6uq0/lx4HaNz4k6ecVqzrvvPOif//+8cADD8RVV12V/ZIPULxjxBVXXFHp869+9avZTJZevXplv3j3jW98I7efniFg8yuW8WFzPENY5nELSFMYTzvttGyqYvpBUpohlpQvfZBS29UtXbq0Up1VpZQ1rU/6ySefxC9+8Ysqa5CuKqW56TfJu3fvHjfffPNG30P64ks/QPvNb36z0dcAtq4xIv2jmMaGiy++OF566aV49NFHY/DgwWvt68b2Cdj2x4c8niGg+MeHtLzS5Zdfnn1zethhh21wX9fVJ88OUHvHhzxpplvi+QG2rZ9Tlks/WE/Lsa3r77hnCNi8iml82BzPEMK0zWzRokVxyimnZHuPpKWOSktLK46VT4ssnya5qlSW9hlZPc1dvnx5/Md//Ee888472Rdghw4dcttOSyqdccYZWZ30xb8pSyulvwxpo8A0ZRPYNsaI1adVH3/88dk07rXZmD4BtWN8yOMZAop/fHj44YezpV//+7//O2bNmlXxStI3xunjtF9innX1adX+A7VrfMjTokWL7N3zA2yb32OU/z1f199xzxCw+RTb+LA5niGEaZtRSmVPP/30bI3O5557Lg444IBKx/fcc89o2rRptv7n6tK6oGkjzVWlvUf69OkTv/3tb7OlG7t27Zrb9owZM+Lkk0+OZs2axQsvvLBeqe/apIfgf/7zn1l/geIfI9YkTcdO/3CuzYb2Cag940MezxBQ/OPD7Nmzs028jzrqqGx5lvJX+Q/S08e//vWvc/ucvnFOv9i3ep/SN9iTJ0/2/AC1eHzIk5aaTjw/wLb5PUahUMjC9nX9HfcMAZtHMY4Pm+UZosBmsWLFisIZZ5xRqFevXuH555/PrXfRRRcVGjVqVJg9e3ZF2W9+85tC+l81YsSISnUHDBiQld93331rbXvevHmFVq1aFUpLSwt//etf11r3//7v/7JXuSVLlhQWL15cpd4111yTtf3000+v9XrA1j9G/OMf/6hSlsaKnXbaqXDMMcesdYzY0D4BtWd88AwB2+74MHXq1MLPf/7zKq903qmnnpp9PHfu3Er1//a3v1W6xsknn1xo3rx5pXHiRz/6UXaNF198cYP/LIBtY3xYtGhRYenSpZWu+cUXXxTOOeec7BpvvfXWBv9ZAFvX9xgLFiyoUnbvvfdm5w4bNqxSuWcI2PyKdXxYtBmeIUrSfzY9kmNdrrzyyrj77ruzRPfss8+ucrx3797Z+5w5c+Kggw6KJk2aZBvuffrppzF06NDYa6+94s0336yYHnnXXXdle46kPUwGDBhQ5XpnnXVW7LDDDtnHKQlOSzymDf0OPPDASvV23333OPHEEys+32effbL38mUY0nvqz9e+9rVo165dVpb2Skmz29JMt+effz7b9wQo3jEijQMnnHBCNlak5dv+8pe/ZBt2puVX0m+MHHnkkbljxIb0Cahd44NnCNi2x4c1KSkpyTYnHz58eJXy9NunY8eOrSh7++23szEk/ZZr2hT873//e9xxxx1x7LHHZmMFUDvHh/Senh3Sq3Xr1tls+J///Ocxbty4bKy47777NvnPBtiyY8T2228f55xzTvYzyoYNG8Zrr70WTzzxRHz5y1/O/q6n4+U8Q8DmV6zjw9jN8QyxyXEc66Vr165ZApr3WtW7775bOOmkkwrbb799oUmTJoVevXoV5s+fX6nO+eefv9brrToDbW31Ur9Wtffee2evch999FGhd+/ehdatW2f9adCgQaGsrKwwZMiQwvLly2vszwtqmy05Rlx//fWFQ0tI9owAAAFTSURBVA89tLDzzjtnv3WSZrGee+65hXfeeadKP1cfIzakT0DtGh88Q8C2PT6sSapzySWXrLF89e87kldffbVw5JFHFho2bFho2rRpdu6aZrQCtWd8mDlzZqFnz56FffbZJxsbUp8OOeSQwg9/+MPst8uB4h8jLrzwwsIBBxyQrXZRv3797PuFa6+9do3PAJ4hYPMr1vFh5mZ4hjAzDQAAAAAAAHJYWwcAAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACDW7P8DicOTpfEF7esAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 5 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:38:36.349765Z", + "start_time": "2025-09-29T15:38:35.849216Z" + } + }, "cell_type": "code", "source": "ym_percent(ym_per, \"%click\")", "id": "4de618933c154f86", - "outputs": [], - "execution_count": null + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAAByEAAAaiCAYAAACFK4SgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeYVNX9P/5DBxuigoqCBTt2RURj7yV27LHGrrFrSOyxG3tvwRpLbIm9YsUSjViwV1BUsKJSFJz/8zn/3+x3dnd2WZZZFtjX63nGnb1z5865dfC+93NOq0KhUEgAAAAAAAAAFdK6UgsCAAAAAAAACEJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAADUa+21106tWrXKjyeffLLsPCeddFLVPPG8qRU/Kx7Q0s43AACA6YEQEgAAmtDrr7+edt5559S9e/fUvn37/HOXXXZJb775ZoOX8c4776QOHTrkUOLss89u0vYCAAAAVIIQEgAAmsi//vWvtPLKK6dbbrklffHFF+nXX3/NP//5z3+mFVdcMd1xxx0NWs5BBx2Ufvnll9S7d+90+OGHN3m7gcrYY489qqoar7vuuuZuDgAAwFQlhAQAgCbw/vvvp9133z0Hj2G11VZL++yzT+rXr1/+PabH6zFffSLAfOKJJ/LzSy+9NLVr124qtB4AAABgygghAQCgCUS3qWPHjq16/txzz6WrrroqDR48OJ166ql5+pgxY9I555xT5zJGjx6djjzyyPx81113TWuttVaaVsU4kIVCIT+mxpiQAAAAwLRNCAkAAE3g/vvvzz8XXnjhdMQRR1R77dhjj00LLrhgtfnKOeGEE3L3rZ07d05///vfm7jFAAAAAJUjhAQAgAr74YcfcngYonqxTZs21V5v27ZtWnPNNfPzESNG5IrHml577bV0ySWX5OdROTn33HNPlbYDAAAAVIIQEgAAKuzHH3+sel5XeDjvvPOWnT9El6YHHnhgmjhxYlpxxRXz8yn10Ucf5W5SI/ycb775UseOHdNMM82UKzW32mqrdPHFF6eRI0c2evmx7FatWuVHQ7tjff3119Of//zn1Ldv3zTPPPOk9u3bp1lmmSUtvvjiaYcddkjXXnttDnSnxG+//ZYOOuigqrbF8h9++OFGLeuTTz6pWk6xkjU8/vjjaaeddkq9evVKnTp1Sl27dk1rrLFGDpHHjx8/WZ/x888/p8svvzz9/ve/TwsssEDeR7POOmtadNFF01577VU1Pmh9rrvuuqp27rHHHnlaHEu33npr2nLLLfM+j3bG6/fcc08jtkSqWn48ioYMGZIOOOCAvP9iO8cj9u1ll12WJkyYUGsZL7/8cm7fkksumWaeeeY055xzpnXWWSfdfPPNk9WWGF914MCB+TiObRbrNttss+V27L333unRRx9t0HJinxbXKfZ1+Oyzz9Lxxx+flltuuTT77LPndi6xxBLpkEMOSZ9++ukkl3X99ddXTdtzzz2rbbfJOV++/fbbdNZZZ6U+ffqkueaaK69j7MdYvzfffLNB6wcAADDVFQAAgIr6/vvvC/FP7XjsueeeZefZY489quYZPXp0tdeuueaaPL1169aFF154YYraMm7cuMJBBx1UaNu2bdXn1fVo165drbaEtdZaq2qeQYMGlf2cE088sWqeeF6f7777rrDDDjsUWrVqNck2zT333GWXUTpPXcaPH1/Yfvvtq+abY445Cs8//3yhsT7++OOqZS2wwAKFX375pbDvvvvW2/4ll1yy8O677zZo+bfffnthnnnmmeQ22XzzzfMxVpeBAwdWzbv77rsXPv/888Lvfve7ssu6++67G7Utam7/s846q9CmTZs627zRRhvlYzFMmDChcMABB9S7jjvuuGOeb1Li/OjVq9ckt9kGG2xQGDVqVL3Lin1anD/2dWybzp0717nMTp06Fe67775JLmtSj5rnS83z7dlnny3MN998db4/tvtVV101GXsPAABg6mg79WNPAACYscUYjlHpGF2yPvvss7kar3Xr/+uEJKrSnnnmmfw8qhKj0q204imqA8Mf//jHXEnWWD/99FPacMMN0/PPP181LSrrVl999dSjR49ccfn555+nV155JX3zzTe5oiza1pSi+9l11103vfvuu1XTosIs2hTbLNowbNiw3KbopnbcuHGNXvett946PfbYY1Xb+ZFHHklLLbVUxdYlxva86qqr8vNll102Lb/88nmbRtvfeuutPP3tt9/O6xv7ILZ5Xc4///x05JFH5veHqOTr169fmn/++fM+GTp0aK4cjNfvu+++tPbaa6fnnnsu78/6RCXmFltskdsU3QCvttpquWIzpv/vf/+ryHa48sor87Yo3Q7RBfGLL75YtR2i+vRPf/pTnjcqe2O7xTkRlX1RCRnnSJwTH3/8cZ4/qjaj+rB4LpTz9NNPp0022SSNGTMm/x5Vhausskrex7/88kt64YUX0ocffphfi2rIOMbifIxK1UmJ42b//ffP275nz555X8Q+ifY9+eSTubJz7Nixafvtt8+ViAsttFC19+++++75nIoq2XfeeSdPW2+99XIVZU3R5rrEsgcMGJCP527duuUK26gYjfM2qmKjDdHGaOsyyyyTVl111UmuGwAAwFQzlcJOAABoUfbee++qSqULL7yw2mvnnntu1WtRSVdqn332ydPnmmuuwjfffDNFbYhqw9JqqZNPPrnw008/1Zpv4sSJhSeeeKKw5ZZblq2wq1Ql5K+//lpYffXVq1WSXXLJJbmisFwV43/+85/CVlttNdmVkFHx1qdPn6rXF1988cKnn35amFKllZBRNRo/55xzzsLDDz9ca95o+2yzzVatErAujz32WK56jfnat29fOPPMMws///xzrfleffXVwlJLLVW1zKgmnFQlZLECNvZhtL+mYnXi5Crd/h06dMgVnOWOjb///e/V2nLeeedVVYgOGTKk2rxR+XjYYYdVzT/LLLOUPV7Dt99+W606cNFFFy28/PLLtea76aab8nFWnO/3v/99netUWr0Y6zTzzDMXbrzxxsJvv/1Wbb4333yz2mfXVe0cohK1OF/sl4YoPd+iHXHuxjUjzp9Sw4YNKyy99NJV866zzjoNWj4AAMDUIoQEAIAm8Pbbb+cAoRgQrLHGGjlwLO0WM8KR9957r1rXksUuSq+99top+vxHH320WlB0yy23NHpZlQohr7766moh3tNPP93oNtUVQkbYGKFj8bWVV165MHLkyEIllIaQ8Yjg8LnnnmvwPnj88cfLBsARoBXnueuuu+ptwxdffJG7qC1uw+HDh9cbQsZjmWWWKYwZM6ZQSaXL79ixYw7m6rL++utXm79bt26Fr776quy8EUSW7r/bbrut7HwnnHBC1TxdunTJgVxdYpuWfv5TTz01yRAyzsMHH3ywzmVGN6ylYWnNgLBSIWQ8rrzyyjrnfeONN6quGfFzxIgRDfoMAACAqeH/+oQCAAAqJrpdvOaaa3K3lCG6mowuKKM7yNCuXbt0/fXXp0UXXTT/Hl0qRjeVke9El5l77rlnrWVG14tff/117rpyUs4999yq5zvssEPacccdU3MrbdMRRxyRu5aspOiyNLZdsavX6P5y0KBBDep+szF22WWX/Hl1WX/99dM222xT9fvVV19da5577703vf/++/n5VlttlbuQrc8888yTDjvssPw8uq69/fbbJ9nOs846K3Xq1Ck1lf322y/17t27ztd32mmnar//5S9/yV2LlhPnS3RxWvTSSy/VmifOkWI3uOH444+vt6vb2KbRbWvR5ZdfniZl8803TxtvvHGdr2+66aZ5X4ToKjW63W0K0cXqvvvuW+frSy+9dO7StrhdosteAACAaYUQEgAAmsiuu+6aQ5QIVSKwiOAxxj2MUCbG6Ovfv3+1YCTG6IsQ5rLLLsvj24UIHOP3CHli/L8I1GIMyQgWi+FVTTHeX4xbV3TIIYek5vbpp59WjY0XDj744IouP8ZcjFAzxsoL2223XXrggQfSLLPMkprKbrvtNsl5YmzAoghEa4o2Fu28884N+twYY7KoGGrXpUuXLnlc0KYU23pSQdrkzB/BWlFxjMhSEfh9+eWX+XmcLw3ZDzG+alHpuVGX0nOznDg/Y8zKok8++SQ1hUm1I6ywwgpN3g4AAIDGaNuodwEAAA2y4oorpttuu63eeb766qt03HHHVYVzxXAjKpsisKxZ7TZmzJg87eGHH06PPPJIWmWVVaq9PmTIkDRu3Lj8PILLvn37pub2wgsvVD2P6s/555+/YsuOIC/Cmtguxcq8CG5bt266v7mMEKoh27Vfv37V9vMXX3yRg+jS8LTozjvvTE899dQkl/nDDz9UPR8+fHi98y6//PJV1bhNpTQ0rCsILercuXOab7756p1/jjnmqHo+evToWq+/+uqrVc8XX3zxNOecc06yjauvvnrV8wgwR4wYkbp3797g4LSc0s8t185KmFbaAQAA0BhCSAAAaGZHHXVUDpYinDrllFOqpl966aVVAWRUPp555pm5ovL+++9Pe++9d35PTH/rrbeqdbcZYVdRdFPZtm3z/7O/tE0LL7xwRZe95ZZbpgkTJuTnf/7zn9MZZ5yRmloEa1GROilRudqxY8eqUHjUqFHVQsgIw4omFVaX8913303y85taBIv1KT3+JjVvzfmjy9maYhsWLbDAAg1q49xzz11tP0S3xvWFkA1pZ1Q219fOSphW2gEAANAYumMFAIBmFJVvN910U9WYibPNNltVFeTZZ5+dn/fq1SvdfPPNacEFF8xByrbbbpvOOeecqu4Xb7nllmrL/PHHH6ueN2V3pJOjKdtUGsK89957UyWIiQrThpp55pnLboeaVY2NUQxf69KUY0EWFbsOrvS8dYkxGMtt2ynZD03RzkqYVtoBAADQGEJIAABoJhGWHXjggVXj/EXXq6Xj3hW72oyqx5pdasY4eMVQJbplLVVaoVca2DSnpmzTfffdVxW23XXXXWnHHXds8iCy2PVrQ/z8889Vz2tWT5YGYzEmaITPk/NoiWMAlobYpdt2SvYDAAAAlSeEBACAZnL++efnrlTbt2+fu14tFRV9RYsttlit93bo0KGqK8rSeYtdTxZFkDmparmpobRNH3/8cUWXHQFuuSCyKdc7ukFtSJga3X4WuwANc801V53bJcYqZNJKu5gdNmxYg94zcuTIevcDAAAAlSeEBACAZvDZZ59Vjf945JFHpiWWWKLOqq26uv4sVtHVDMOWX3753G1rsWLvxRdfTM1t1VVXrXoeoWmsf6WDyHvvvbdaEBnjZTZVEBlViA3Zrs8//3y1wLHmOIR9+/atev7cc89VuJUzphVWWKHq+TvvvJO+/fbbSb6ndNvGuKr1jQdZSbpTBQAAWjIhJAAANINDDz00B41RzXjcccfVer20u8i6Arvi9OI4kqVVkuuss07V75dccklqbrGeSy65ZNXvNSs/K2G99darFUQ2ZUXkjTfeOMl5brjhhqrnpfukaPPNN696/o9//KNatR7lxXEUQWKYOHFi1Ziq9bn22mvr3Q9NpfjHAGFqjFUKAAAwLRFCAgDAVPbQQw/lgCxceOGFZSsdSwO7+++/v9brr7zySvriiy/y86WWWqrW60cccUTV81tvvTU/mltpm84999z0zDPPNHkQeeeddzZZEBnhV33VkIMGDcqfX/THP/6x1jzbbrttWmSRRfLz2J8xRmhUWTZEVMBOzpiIM4qoLtx3332rfo+K4s8//7zO+f/zn/9UO4f233//NLXMOeecVc/rayMAAMCMSAgJAABTUVS6HXLIIfn5Zpttlrbccsuy8y266KJp8cUXz88jVHv00UerLePoo48uW01XtP7666f+/ftX/b7rrrvmsCa6Z63pt99+y4HZ1ltvnX744YfUVPbYY4+02mqrVVWFbbzxxumyyy4rWyH2yy+/5PWONjUmiIzgqSmDyHbt2uUqvNj2jz32WK3XI/SKthcDxQ022CC3q6Y2bdqkyy+/PP8MAwcOzMfF22+/XednDxkyJB177LGpR48eFR9fc3px2GGHpfnmmy8//+abb/K2je1SU4TvO+20U9Xvv//979Oaa6451dq59NJLVz3/97//nY9rAACAlqJtczcAAABakrPOOit98MEHOSC7+OKL6533+OOPz+FhhISbbLJJDu2iG8onnniiKnyKkCOq6cq55ppr0qeffppeeumlHJideOKJ6eyzz06rr756DrAiIIvqrJdffjkHOaGhVXiN0bZt23Tbbbfl8Rvff//9HIgedNBB6a9//Wtu07zzzpuDwmhzVHqOHj06de7cuVGfFSFsBJFbbLFFGjt2bA4iI4y65ZZbcjumVIwpGCHjBRdckAPG5ZZbLo/FGdsv2j506NCqeWO9rr766nrbGkHkAQcckPfTgw8+mKtlo8J12WWXzd3txraKSsnXXnstjRo1KrV0Xbp0Sf/85z/zeRHb5t13300rrrhiHmMztluEfS+88EI+10qD/dJuWaeGaF+c63EMRkgaFc5rr712mn322avGi9xwww3zAwAAYEYjhAQAgKnkww8/TGeeeWZ+PmDAgLTQQgvVO/8uu+ySA8SLLrooh1M1u2WNIOyOO+6oM1SL8OrJJ5/M40/GeIOxjOi+85FHHqlz/LpiRV5TmX/++XM4FF2T3n333Xna999/X7bL2TDLLLM0+rMi3Ivqs6g2jRAotlWoVBAZge6PP/6Yg60IB+NRU1Sz3nPPPXlMzPrss88+uVvW/fbbLwe0EWZGkFkaZtbUu3fvNMccc6SWKioaH3/88XyefPTRR3mbxbEVj3LHQoSWXbt2naptjBD9vPPOq+pmN9oZj5rHuBASAACYEemOFQAAppLohjW6Uo2KrGOOOaZB74kxIyOsixAlqr/at2+fevXqlcdXjMqqYpetdYkqrKuuuiq9+eabOfhcZZVVUrdu3XIIF2NRxrKioi+6RY2qyFlnnTU1tQjOYkzMCFijW82oIJxrrrlyABqBzBJLLJG7T73uuutyhduUiCrFCCKLXbNGEBkVkZXomjW6ZI1q06hajK5vF1xwwdShQ4e8flHZGeFxBJOxPg2xzjrr5G5Yo4177rlnrpqLfR7bJfZLhJTR/evpp5+eXn311bxPI4huyVZdddW8zSIIjq5Wo8I39kEcR7G9ogvghx9+OHdnPLUDyNIxKGP80z/84Q9pscUWSzPPPHNVFSQAAMCMrFWhKftbAgAAmEF88sknVdWrUdkYvwMAAADlqYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARbUqFAqFyi4SAAAAAAAAaMlUQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCi2lZ2cQAAAAAAAMwICoVCGj16dBo/fnxq1apVczeHZtC5c+fUvn37Rr23VSGOIAAAAAAAAPh/Ij766quv0uyzz546dOgghGyBfvvttzRy5Mg099xzN2r/CyEBAAAAAACo5ocffsjhY8eOHZu7KTSjX375Jf3888+pS5cuk/1eY0ICAAAAAABQTXTBGiEkLVv79u3ThAkTGvVeISQAAAAAAADVRPebumBlSgghAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAACgWQwaNChtu+22ab755svjD3bp0iUtvvjiqX///umSSy5JP/zwQ3M3kUZqVSgUCo19MwAAAAAAADOeUaNGpa5duzbpZ5xyyinpxBNPzM+XXHLJtMQSS6R27dqld999N73xxhvpt99+S88//3xaddVVm7QdNM2x0Hay3wEAAAAAAABT4JVXXkknnXRSDh1vv/32tNVWW1V7/csvv0w33XRTmn322ZutjUwZISQAAAAAAABT1V133ZWis87tt9++VgAZ5plnnnTUUUc1S9uoDGNCAgAAAAAAMNW7+AyT283nmDFj0hlnnJFWWGGFNMsss+RHdNd6/fXXl53/mWeeSQcffHBadtll83iTnTp1yt2+/vnPf07ff/992fcMHjw4B6MLLLBA6tChQw5EV1lllfyen376qdb8N954Y/rd736XZptttjTTTDPlzzrjjDPSuHHjas27xx57pFatWqUnn3wyPf3002nddddNs846a37vZpttlt56661a74mw9uabb86fMffcc6eOHTumHj16pPXXXz9deumlaVplTEgAAAAAAACm6piQf/vb39IJJ5yQw7SXX345devWbZLvGTlyZNpggw3S66+/noPBFVdcMQd0ERr+8MMPOWy8+OKLq70nAsrXXnstB4PxWREM/u9//0tffPFF6t27d3rhhRdykFl077335gAylhvB40ILLZTDyvfffz99+OGH6eOPP04LLrhg1fz77bdfuuqqq3IwGIFihJARMH799depX79+6bHHHsvTSkPICEyPOOKIdOGFF6aVV145h51DhgxJ7733XppzzjnTm2++mdev6Oijj05///vfcyC65pprprnmmit3VxvzxbI/+eSTNC0eC0JIAAAAAAAApmoI+dFHH6Wll146jR07NlcCbrPNNrnSb6WVVsqBYZs2bWq9JyoFH3jggXTooYems846K4dy4auvvkqbb755DjMffPDBtPHGG1e9J35fbbXVUufOnaumjR8/Pv3pT3/K4eHJJ5+cw9CitdZaK1co3nHHHWnbbbet9vn//e9/cxVltDfceeedabvttkvdu3fPweOiiy6ap0cguvnmm6dnn302HXnkkTlArBlCtm7dOr+/2BXtxIkT0w477JCnHX/88emUU07J0yM0jXEx27dvn8PUCEWLJkyYkJ5//vm0xhprpKYkhAQAAAAAAGC6CCHD448/nvbcc880fPjwatMjdNtpp51yGDfvvPPmaVEpGF2w9unTJ1cvRohX6tVXX82VkVtssUX697//PcnPjvAzukCNwPOVV16pmr7UUkult99+O1c/lgaX5RQDyyuvvDLtu+++1V57/fXX0/LLL59mnnnmvC2jUrI0hNxll13STTfdVO090Y6ojIzlRqhZrP6MLlhjWbGO09OxYExIAAAAAAAAprr11lsvffDBB+muu+5K+++/fw4R27ZtmwPAyy+/PAdv7777bp73kUceyT+jcrBmABmKY0S+9NJLtV77/PPP0xVXXJEOO+ywtNdee+Ug8IADDsjVhdHNaqmoxAx/+MMfcuXjb7/9Vrbtv/76aw5DQwSKNS277LL5EWNIRoBa04Ybblhr2mKLLZZ/RlexRdFN7fzzz5+XEWNSRgXp9EIICQAAAAAAQLOIIHDrrbfOoWNUAkbVXTzv0qVLrgKMcR5DcdzDv/71r6lVq1ZlHxH4xViMpc4777zchWmEjjEG48CBA3MlYjzGjBmTfvzxx2rzn3766Wm55ZbLY0PGmJAx/mJUV15zzTW5a9Sib775Jv3yyy/59ah2LGfB/zd2ZISgNUWwWFOxm9foLrZUtDUqEaML2l69euXl7r777rmr2WlZ2+ZuAAAAAAAAABS7Yo2qyBhnccstt0yDBg3KYWGxIjHGjYwgriGiUjHGZIxuVSOAXHvttdM888xTNZZkfEZp1WHo0aNHHlvyiSeeSPfdd1966qmnciAZj7PPPjuPwTjnnHM26PNbtWpV52vlqjnrsu666+aK0WjPQw89lLtqveGGG/Ijxq2M8SunRUJIAAAAAAAApikRvIWJEyfm7lmLlYPRHWsEiw1x991355+nnXZarhysOSbkl19+WfZ90SVsdJda7DL1008/zd24RjAZ1YgRRkYQGVWcUXn5888/l62G/OT/VW/ON998aUrF+JU777xzfhQD1v79+6c777wzPfDAA2nTTTdN0xrdsQIAAAAAADBVFQqFel+Pyr8QQV90ebrBBhtUCxYb4rvvvquz69N//etfk2xD0QILLJCOPfbY/PzNN9/MP9u1a5dWXXXV/PzWW2+t9Z4333wzvfbaa3mcyhjbstLis2PcytI2TWuEkAAAAAAAAExVxx9/fDr66KPThx9+WOu1GENxv/32y89jPMYIIvv27ZuDyOeeey4ddNBBafTo0bXeF6FfdFdatNhii+Wf1157bfr111+rpr/11ltVoWJN559/ftkKyag2LHbXWnTIIYfknyeddFL66KOPqqbHOJMHH3xwDjljPTp27Jgaa9iwYem6667LXdKWivEpo6vamm2alrQqNDTmBQAAAAAAoEUYNWpU6tq1a5Mt/7DDDsvjNBbDwqWWWiqHdZ999ll68cUXc2i4yCKL5PEPi92Zjhw5Mm288cbp1VdfzWNHRoVhjOv4ww8/pNdffz0NHz48HXrooemCCy7I83/zzTdp6aWXzqHiQgstlPr06ZO+/fbbPM5jdOv60ksv5a5WS6OyWG6EiMstt1xadNFF82sRbr733ntpjjnmyN2gxvSiCBmvuuqq1KlTp9yF7EwzzZTbPGrUqFyt+Pjjj+dpRXvssUe6/vrrc4AYY1SWG0cyKi+LXbkOGTIkrbDCCnkZK6+8cq7qjO5fBw8enD8jpj377LNV41xOS8eCEBIAAAAAAICpGkLGWIpRtfjwww/nkG/EiBE5TIyxD5dccsm05ZZbpgMPPLDWWItRAXj11VfnLlCHDh2ax3ace+6508ILL5w233zztOOOO1brfjVCzah6jOAxQskII2N8yKOOOir16tWrVgh544035na98soruU3FSsMIP4844oiy4zvGe6644oochE6YMCEvd+edd06HH354DidLTW4IGYForG+EmVHBGYFqbJNYj1122SXtu+++1ULOpiCEBAAAAAAAYLoIIZnxjwVjQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAANIGTTjoptWrVKrVEQkgAAAAAAABalDfeeCNtt912aYEFFkgdO3ZM8803X9pggw3SxRdf3NxNm2G0KhQKheZuBAAAAAAAANOOUaNGpa5du5Z97aS/nZB++Pm71Jw6z9wlnXT8KY167+DBg9M666yTevbsmXbfffc0zzzzpOHDh6cXXnghffjhh+mDDz6oWDsnTJiQHxF0zojHQn3aNklrAAAAAAAAmCFFANn/gI2btQ3/uvyhRr/3tNNOS507d07//e9/0+yzz17ttZEjR1agdSn9/PPPaeaZZ05t27bNj5ZId6wAAAAAAAC0GFHt2Lt371oBZOjWrVvV8xjL8eCDD04333xzWnzxxXM140orrZSefvrpsuM+vvXWW2nnnXdOXbp0Sb/73e+qvVaquNx77rknLb300qlDhw65PQ89VDtYffLJJ9PKK6+cP7tXr17pyiuvnG7GmWyZ0SsAAAAAAAAtUowD+fzzz6c333wzh4D1eeqpp9Jtt92W/vSnP+Ww8LLLLksbb7xxeumll2q9t3///mnRRRdNp59+eprUaIjPPvtsuuuuu9KBBx6YZp111nTRRRelbbfdNg0bNizNOeeceZ5XX301f9a8886bTj755DRx4sR0yimnNKpr1OYghAQAAAAAAKDFOOqoo9Imm2ySll9++bTKKqukNdZYI6233np5nMh27dpVmzeCypdffjlXQIYdd9wxV0WecMIJOUQstdxyy6V//vOfDWrD22+/nSsno7oxxGfH+2+55ZZcJRlOPPHE1KZNm/Tcc8+l7t2752nbb799WnLJJdP0QHesAAAAAAAAtBgbbLBBroTcYost0muvvZbOPvvstNFGG6X55psv/ec//6k2b79+/aoCyNCzZ8+05ZZbpocffjhXJpbaf//9G9yG9ddfvyqADMsuu2yabbbZ0kcffZR/j2U/9thjaauttqoKIMMiiyySA9TpgRASAAAAAACAFqVPnz65kvG7777LXasOGDAg/fjjj2m77bbLFYpF0b1qTYsttlgaM2ZMGjVqVLXpCy20UIM/v2fPnrWmxViS0Z4wcuTINHbs2Bw61lRu2rRICAkAAAAAAECL1L59+xxIxjiOl19+efr111/Tv/71r0Ytq1OnTg2et02bNmWnT2osyemJEBIAAAAAAIAWb+WVV84/v/jii6pp77//fq353nvvvTTTTDOlrl27NllbunXrljp27Jg++OCDWq+VmzYtEkICAAAAAADQYgwaNKhsxeEDDzyQfy6++OJV02LsyP/9739Vvw8fPjz9+9//ThtuuGGd1YyV0KZNmzxu5D333JNGjBhRLYB88MEH0/SgbXM3AAAAAAAAAKaWQw45JI/puPXWW6clllgi/fLLL2nw4MHptttuSwsuuGDac889q+Zdeuml00YbbZT+9Kc/pQ4dOqTLLrssTz/55JObvJ0nnXRSeuSRR9Lqq6+eDjjggDRx4sR0ySWX5DYNGTIkTeuEkAAAAAAAADRY55m7pH9d/lCzt6Gx/v73v+dxH6Py8aqrrsohZM+ePdOBBx6YjjvuuDT77LNXzbvWWmulfv365dBx2LBhaamllkrXXXddWnbZZVNTW2mllXLV41FHHZWOP/741KNHj3TKKaekt99+O73zzjtpWteqMCONcAkAAAAAAMAUGzVqVJOOeTg9aNWqVTrooINy9eG0ZKuttkpDhw4tO17ltHQsGBMSAAAAAAAApkFjx46t9nsEj1HBufbaa6dpne5YAQAAAAAAYBq08MILpz322CP//PTTT9Pll1+e2rdvn4455pg0rRNCAgAAAAAAwDRo4403Trfcckv68ssvU4cOHfL4lKeffnpadNFF07TOmJAAAAAAAABUY0xIiowJCQAAAAAAAEwThJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAFqUN954I2233XZpgQUWSB07dkzzzTdf2mCDDdLFF1/c3E2bYbQqFAqF5m4EAAAAAAAA045Ro0alrl27ln3tjDOOSePGfpWaU8dOc6cBA85u1HsHDx6c1llnndSzZ8+0++67p3nmmScNHz48vfDCC+nDDz9MH3zwQcXbO6MeC/Vp2yStAQAAAAAAYIYUAeQJxy3UrG045dSPG/3e0047LXXu3Dn997//TbPPPnu110aOHJlamjFjxqSZZpqp4svVHSsAAAAAAAAtRlQ79u7du1YAGbp165Z/fvLJJ6lVq1bpuuuuqzVPTD/ppJOqfo/nMe29995Lu+66aw44u3btmo4//vgUHZJGleWWW26ZZptttlx1ee6551Zb3pNPPpnff/vtt6eTTz45dw0766yz5u5if/jhhzR+/Ph02GGH5bbNMsssac8998zTarrpppvSSiutlDp16pTmmGOOtOOOO+bPLrX22munpZdeOr3yyitpzTXXzOHjX/7yl9QUVEICAAAAAADQYsQ4kM8//3x68803cyBXKTvssENacskl05lnnpnuv//+dOqpp+Yw8Morr0zrrrtuOuuss9LNN9+cjjrqqNSnT58cApY644wzcoD45z//OXcJG+NTtmvXLrVu3Tp99913OeyMLmMjGF1ooYXSCSecUK26M0LP7bffPv3xj3/MXajG++MzXn311WqB6zfffJM22WSTHFJGaDr33HOnpiCEBAAAAAAAoMWIEDBCuOWXXz6tssoqaY011kjrrbdeHicyQr/GimVF4Bj23XfftOCCC6Yjjzwyh4vHHntsnr7TTjul7t27p3/84x+1QsgJEyakp556qqoNESTeeuutaeONN04PPPBAnnbggQfmgDLeXwwhP/3003TiiSfm0LO0qnGbbbZJK6ywQrrsssuqTf/yyy/TFVdckfbbb7/UlHTHCgAAAAAAQIuxwQYb5ErILbbYIr322mvp7LPPThtttFHuBvU///lPo5cbFYhFbdq0SSuvvHLujnXvvfeumh4ViYsvvnj66KOPar1/t912qxaC9u3bN79/r732qjZfTI9uViO0DHfddVf67bffchXk119/XfWIrl8XXXTRNGjQoGrv79ChQ+7StamphAQAAAAAAKBFie5QI7z75ZdfchB59913p/PPPz+PwzhkyJA8VuLk6tmzZ7XfO3funDp27JjmmmuuWtOjS9SGvD/06NGj1vQIHWO8yDnnnDO9//77OayMwLGcmtWdEba2b98+NTUhJAAAAAAAAC1ShHERSMZjscUWyxWC//rXv9Iee+xRdv6JEyfWuayofmzItBChYUPnndQyIpBs1apVevDBB8vOO8sss1T7PcadnBqEkAAAAAAAALR40X1q+OKLL1KXLl3y8++//77aPDH+4rSmV69eOZBcaKGFcpA6rTAmJAAAAAAAAC1GjJFYrhLxgQceyD9jzMbZZpstd6P69NNPV5vnsssuS9OabbbZJldAnnzyybXWK34v1/Xr1KASEgAAAAAAgBbjkEMOSWPGjElbb711WmKJJfK4kIMHD0633XZbWnDBBXOXrOGPf/xjOvPMM/PPqJKMQPK9995L02Il5KmnnpoGDBiQPvnkk7TVVlulWWedNX388cd5rMt99903HXXUUVO9XUJIAAAAAAAAWoy///3vedzHqHy86qqrcgjZs2fPdOCBB6bjjjsuzT777Hm+E044IY0aNSrdcccd6fbbb0+bbLJJHnexW7duaVrz5z//OXfFev755+eKyNCjR4+04YYbpi222KJZ2tSqUK7eFAAAAAAAgBYrwreuXbuWfe2MM45J48Z+lZpTx05zpwEDzm7WNrQUo+o5FuojhAQAAAAAAKAiwRMznlGNPBZaN0lrAAAAAAAAgBZLCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAC3SZZddllq1apX69u07Rct54IEH0kknnVSxds0IWhUKhUJzNwIAAAAAAIBpx6hRo1LXrl3LvnbaMQenMV99nJrTTHMvlP569iVTvJzVV189jRgxIn3yySfp/fffT4ssskijlnPwwQenSy+9NM2Isduoeo6F+rRtktYAAAAAAAAwQ4oA8sienzdrG84dNuXL+Pjjj9PgwYPTXXfdlfbbb7908803pxNPPLESzUN3rAAAAAAAALREETp26dIlbbbZZmm77bbLv5d68sknc1et8bNUVE3G9Ouuuy7/vscee+QqyBDTi4/JWUZxObPMMksaNmxY2nzzzfPz+eabr2rZb7zxRlp33XXTzDPPnBZYYIH0z3/+s9oyY1mxzOeeey4dccQRuXox5t16661zNePUJoQEAAAAAACgxYnQcZtttknt27dPO+20U+6O9b///e9kLyeqKDfYYIP8/MYbb6x6NMbEiRPTJptsknr06JHOPvvstOCCC+auXiNg3HjjjdPKK6+czjrrrDTrrLOm3XbbLVdz1nTIIYek1157LVd1HnDAAenee+/Ny5jadMcKAAAAAABAi/LKK6+kd955J1188cX599/97ndp/vnnz8Fknz59JmtZ/fr1S4sttlh69NFH06677jpF7Ro3blxexoABA/LvO++8c+revXvaa6+90i233JJ22GGHPD1CzyWWWCJdf/316aSTTqq2jDnnnDM98sgjVdWYv/32W7rooovSDz/8kDp37pymFpWQAAAAAAAAtCgRNs4999xpnXXWyb9HYBcB36233pqrEZvTH//4x6rns88+e1p88cVzt6rbb7991fSYFq999NFHtd6/7777VgWQYY011sjr9Omnn6apSQgJANAEog//+Mde9O8P/J8vv/wy7b777vmvS9u0aZPPk++//36qfX5xfIzSMTeYPhTHS4nr6+RYe+21q/3PN/+/6NIpHjOylrCO1M+/xwCAukQgF2FjBJDRnekHH3yQH3379k1fffVVevzxx5utbR07dsxjOZaK6sX4/+ia/28T07/77rtay+jZs2e132Pcy1Bu3qYkhAQAWqzSgcLjEYHIXHPNlQf4rjmwd3OpRGASXYvEWABLL710/sdpjHMQ3XjEoOvXXnttGj9+fGrp23lqie5Ryg1G39JuCMe4GGuttVY67rjj8vgU8T9YLYEAdNJi+0RoOCOHDNNbe5tin1WKgBnfqwBAYz3xxBPpiy++yEHkoosuWvUoVhpGlWSo69+bk1Mp2WoylxH3TSZneqFQmKJ5m5IxIQGAFi9CkPDrr7/mwO7f//53GjRoUHr55ZfTeeed16hlnnHGGenPf/5zmm+++VJzOuWUU9LJJ5+c+/6P8QmiAm2WWWbJf9UXN+yie4/LL788r+v0uJ2Zvvzyyy95fIz111+/6n/opratt946rbrqqmneeedtls+n8eJ6+vbbb0/2+CU33HBDGjNmTJO1i2lXc/71OgAA07b4f9Ju3bqlSy+9tNZrd911V7r77rvTFVdcUVVBWLMHn3LdmtYVNnaZjGXMaISQAECLV3Pw7rhpGYN7X3DBBelPf/pTo7pyi4CjuUOO008/PQd/PXr0SP/6179ylyI13Xfffencc8+dbrcz019XrBGIRyVuc4kAa3JDLKYN7dq1S0ssscRkv69mN0S0HL169WruJgAAMA0aO3ZsDhr79++ftttuu1qvx/+z3nLLLek///lP2njjjXNV4dNPP5222mqrqnkuu+yyWu+LMRuLYWOM1Vi0wAILNHgZMxrdsQIA1LDeeuvlG93RRcV///vfqumvvPJK2nbbbfNfynXo0CH/I/LAAw/M3Xc0pLu90vHM4vmOO+6YuyWNrihXXnnlHAjW7GZuzz33zM/jZ2mXppPqxi9ej9Avbto/8MADZQPIsPnmm6eHHnooTUvb+bPPPksHH3xwWnjhhfN2nnPOOdMWW2xRbZ5y3bBF166xnlHpWRpoRgXUWWedlbfxrLPOml9fcsklc/AZFaGlYt6oYl1++eXz/zzEvFFBGv/zUVN8Znx2tGHIkCG5e9v4n4yZZpopdzU6ePDgavNHm6IqNcSYE6X7s+i9997LFbTR1hj/oXicxYDysV3Kie50ow3F7bXQQgvlbk5jel3dJE6YMCH/z05UBM4222y5zSussEK65JJLckg4Od5///2022675Sq1Yle/8XtMr7n+sS7h+uuvr1r3hozvV1yP2F977bVXmnvuufP+WW211dIzzzyT5/n555/T0UcfnT8jtkPv3r1z+N7QLlGLY8cVlxPBVSxnkUUWycdPzS5rSvd/Q8aia+j5PLn7Jv6nOM6l+KOHaG9s/zj+Gvo/s6Xb4/7778/bNLZt/KVu/M94zf1YFNe9gw46KK9j7Pc4XrfZZpt8nSxXAXvRRRelFVdcMS831inet+WWW6bHHnusWjvCU089VW37FLdxuTEh4/c4nkIc+8X31Nz2pedZdLcUvx9++OFl1y3OnWhnbNPYH6XiWhDnb5zrce2Oa8mpp57a4G6tG9LeyTmvJiWO2zh24nyI9sby4vr6ww8/1Pu+hqxnQ/ZZ0YsvvpiPp3nmmSevT/xxzH777ZdGjBhR9vO//fbb9Ne//jV3Ix7HS/zhwHLLLZevj3GOFo+F+Nzidi0+Sq95dY0JGetx5plnpmWWWSYvP861NdZYI91+++215p3c7+5JKbYx1v0Pf/hD/jdFp06d0korrVRvF+UPP/xw2nTTTfNnx7keAWtcq8qNqVtc79GjR6cjjjgiP49/D9R1vSq3rh9++GHeZ/EdHN+dG264YXrzzTfzfKNGjcrfS3GOxHbo06dP7tmgnDjWBgwYkBZffPE8b5xbG220UdW539Tfq6WuvPLKvM+jHfE9EuswqXMBAJgxxf9H/fjjj/leQznx/2Px/zhRLRn/Fo2w8uKLL05HHnlk/n+t+HdZufsy8W+6EPcb4r233npr/n1yljGjUQkJAFBGMXAo3siKm4wRQMb0uCkXQUfcbI+uTKNb0WeffTbfUG6I6G5jlVVWyaFR3ICMm6233XZb1Q35uJEW4iZg3HyL5cdrEYwVlf5FXTkDBw7M3Z7GzdK4iVufuJk5rWzn//3vf/lGZ2yTuEkZocbXX3+d7rnnnvS73/0ud4cS/1CvKao5o5vP3//+93n7FW8qxoDr8ftrr72Wb4BGgBU3wOPmamyjWH7ciAxxIzfGqXz11VdzWBLzRugTN3533nnnNHTo0HwTvqboTvbss8/OYWV0bzts2LB055135mAobqLG54bDDjssr0fcNI9uccvdGI+/xIzuXqLNEQZFW+Nzr7nmmnTvvffmzyrt4je2XxyXER7F2BURLsR+j3Ag3ldOvB7bKdYr2hbrFjdk4wZyjB0aYUGM2dgQEQxH16rF/3lbaqmlcle7N910Uz5u43iOm9PF9Y//wbrwwgtzmFD868/S47o+sX9WX331fDN8p512ysdI/A9dHCfPP/98DjRiWgTrsY4Rouywww457Ij/gWyIeF8sL8KBTTbZJLVt2zbvswg+xo0bV9WlcGM05Hye3H1z1VVX5fWOYCfeF+HEyJEj0+uvv56P7/gjiYaKY+/BBx/M3dVGQBLHbhzH8dlx4794HIePP/44n4+xneKcif0xfPjwHPrGsRjvi/1Quu6xP+JaFEFaBC7x3rhuxh9BxDEU2yO2bwQKcX0tDRrrG28w3hP7KM7xQw89tGpb1neNjGMvbgJE4HPOOefk/Vwq9lEcb3FzoPS1uCbEdp1//vnzeRef8cILL6Tjjz8+V3bHNajmshrT3sk5ryYlzrsIgCMsisAlgqhYRhxLEQ7HNaamhq5nQ/fZP/7xj/zZ8V0T6xPnZISpxetaLLu0WjWOr7gGxndl3MQ54IAD8rU4/kjj/PPPT/vvv39uU3x2XOtivtJzc1JV9bHecZ7HtTj+ECbC9PgDlDvuuCNfM+LYj54EGvvd3RDx3RTX+FiP+KOEON4iAN1ll13S559/nsPFUrGNI5ibY4458rkVwWWc53//+9/zHxrFNTCC1JrrGedntDO+V+P1hv47Ja7V8Uc9ET4Xw9f4/o39Gp8V1QCxvNhexWtxXDNjH5Xuy+J1+6233srHbByP8Z0e6xptin9DxTWsKb9Xi4455ph8bY1rZXx2XNuuvvrq9MEHH+TxoACAliUCwvh/reidqZzWrVvnP4iK+b755pscHsb/r8X/r8e/a2PcyPh/iZr3W+IeQ/y/W/z7KP79XigU8n2Z0NBlzHAKAAAtVPxTqNw/hx599NFCq1at8uOTTz4p/Pjjj4U55pij0Lp168LTTz9dbd4zzzwzL2ODDTaoNn333XfP0z/++OOqafG8+JknnXRStfkfeuihPH2TTTapNn3gwIF5evycHOuuu25+39VXX12YXrbzr7/+WujVq1ehQ4cOhSeffLLavJ9//nmhe/fuhXnmmacwbty4quknnnhiXvZMM81U+N///lfrM3baaaf8+v7771+YOHFitddiv37//fe19tlZZ51Vbb6xY8cWNtpoo9zOV199tWr6oEGDqtat5v654oor8vQDDjig2vRie+O95Xz22WfV1q/o4YcfzsdfrEepG264IS9vjTXWKIwfP75q+nfffVdYfPHF82trrbVW2TYcfPDBhQkTJlRNj+d77bVXfu2ee+4pTMpvv/1WWGKJJfL8N910U7XXbr311jw92lC63YvnQGzryVHczvvtt1+15RXXv0uXLoXNN98876uiOFfjta222qpB59QCCyxQdQ6OGTOmavpXX31V6Ny5c3788ssvtfZ/bM9yYnnxaMhnN3bfrLjiioX27dvnNtY0atSoQkMU2xSPe++9t9prF1xwQZ4e15NSG264YZ5+6qmnVpv+3HPPFdq0aZOvl3F+hTjH4txZaaWVqq1T0ddff13t93LH7KSOn3LX21KxvJrXoH333bfsOodNN900v/b666/X2k5bb711teOjdL/F9mqI+trbmPOqLrE/Yv64rn7zzTdV0+M8WXXVVfNrdR2jk7Oe9e2zd999t9CuXbvchri+lXrsscfyda3mOdqvX7+8zNNPP73scV16npfbt5M6D2O5xXM9vneK4jwqXgdi203Jd3d9isvq379/tf340Ucf5WtZbK8PP/ywavoTTzyR54/tEtf2cvvrsMMOq7XeMX299dYr/PTTTw1uW+m61jy/TznllKrrbV3X4prtKJ5n8TOO7aL33nuvMNtss+XrV+l50BTfq8XzrUePHoVPP/20anrs+/jujNdefPHFBm8jAGhpRo4cWedrpx59UOEvu23arI9oA81/LNRHCAkAtFjFG11xAysef/nLXwrbbrttvoke0w8//PA8X9wIjt8j0KopbmItuOCC+fXSm1v1hZBxc7DczfiePXsW5pxzzoqEkEsuuWR+34MPPliYXrZzhCvx+1FHHVV2OcVA5P77769187Hmjc/iDeW4wT3vvPNO8iZsBCHRnpVXXrns60OGDMmfc/TRR9e6Wbr66qvXmj/CqrZt2+bgZXJultZnmWWWKSy00ELVpsUN5ljeU089VWv+4nFbGg7ETeMIiCLMLb35XhQ3uCMwipvjk/Lss89W3Rgv53e/+12ttk1JCBlB8+jRo6tNj/MotnO8XnrTvijOzXhMTgj5/vvv11rObrvtll974403miyEbMy+iRAytsu3335baKxim2oGjcXtG+FRvB5/KBCGDx+ef4/rVWkoW7Trrrvm16+//vr8+w8//JB/X2211aqFEHWZWiFkMaDbbrvtqk3/4osv8rVghRVWqDZ9+eWXz8dazRCouJ3i2t2nT59Jrt+k2tuY86ouf/zjH/O8//jHP2q9Vjx+ax6jjVnP+vZZXJvj9fvuu6/s6xFAxvYuntsvv/xynj/a0ZCgtTEh5CKLLJLPpbfffrvW/Ndcc01e3p577jlF3931iWXFOkfoWFPxO6I07IxtFNPefPPNssuLbdW1a9ey17P47pocxXWN62bNdY1/40zqWrz22mtXTYs/jIl5Z5lllmoheNFxxx2Xl3fyySc36fdq8Xwr90dZcW7EaxdffHG92wUAWrLGBk/MeEY28ljQHSsA0OIVxxOKLkGja7QYF2rvvfdOu+66a1UXoSG6NaspuqRbc801c1dl0Y1naTdkdYku7GJA8pqii7ro5mxaFN2dRRdoNdejdED1Kd3OxXWPLu/KjVtVHAvt7bffrtUla3SRV1N0aRhd+MX+KQ4OX5eYd+LEiXWO8RddphQ/u6YYE6ym6PIwunmNLvcmR9yfju5eoovB6K4x3h/tKqrZdWIcc9FNTHTrV1N0l1lTdJUXXedF163lupYN0VVmufWsqb7zojg9utuMNsY+mFKLLbZY7oq1VJxHsZ1jjLjoIrGm6Lo2up1sqOiiM8aALHduhsndn5OjMfsmum6MLkOju87o4ifGTIuuD2PskskV760ptm8cR9F9cezH6HIzfoY4f+M4L7ffo9uhmC+6Xo0uG6P7w+h2M64Z0b1nvDe6eoxx3ppLnDNxTEW7Yr/GOHUhzr8450q7Fo2uOuN8jO5uL7jggrLLi+6UGnLeTM3zqriscvs29mvN76GmWM/idT26yyw3rm90HxzbO47/6Ho1umYN0V1qXNsqLbq4je4349oQXbHWVNzuxeO8qb67498K5bpGje5O47uy9PNj2XGuRXfH5ca5jW5XY4zG6CYsxm8siu7Fll122dQY5dY1xiWd1LW4dOzid999Nx9TcU2KbmTLbeu41pXb1pX8Xq1vmVPj2g4A0NIJIQGAFq84LmFdiuMLxpha5RSnx9hHDVHXWGURaEZoVgnRprhRHGNLVSqEvP7666tNi/GXJieEnNR2jhuoodxN1lI//fRTrWkxJl5Nxf1ROobipD47bpKXu1Fe32fXtz9LA8SGOOKII/LN/9h/cRM+2h7BUyiOfVbz2Iybu+XGoSuOdVluPSPQLYbCDV3Ppj4vGhIQlhPrXt9rEyZMaPBn1Lcvw+Tuz8nRmH0Tx0sERpdddlke9y+OnQjSI3SKsUXK3XSvS7njpfTcKu7vxuz3GDfvrLPOymMwFsfui4AkxteNMe3q+uymFtewv/71r3m8lhh3MMR1LsKOGI+zKAKKuH5F0FPfvqmESp5XxWWV275xTMexU6op1rN4XMfxWJ/icT051+2pvX0r+d3d0POtuA3jOjapfRLbsDSEjHEji+MtT65y19TidbC+623xD3aacls39jpcbplT49oOANDSVf5PCwEAZjDFG25ffvll2de/+OKLavNNC4pVcI8//nhFlhcB2P/ryr/qEdMqqbj9/v3vf9f6rNJHMcQoVe5Ga/GGY0OC2OJnH3744fV+9qBBg1JTiYqgCJJiUPqoIIlqsghuojIzHlGBVFNUmUX1XLmg7auvvqpzPbfeeut61/Pjjz+eIc+LSipWadUVck5u+NrYfRPVhlE9FkHF/fffn6uLn3766RxiR5jUUOWOl9L9W2xfY/Z7BOlxDEe127Bhw/KxHdeo+BlBZHP5wx/+kPdj8Q8soiLrjTfeyJXWpQFdcV1WWGGFevfNpP7QoiEqeV4V5ym3b+O4/frrr8vOX8n1LC4zAqn6lles1pyc63ZjTCvXrYaeb8XnUak7qX0SlcqlGhtAzmjbGgCA5iWEBACYhLghG5588smyN3KfeeaZ/HzFFVes+GcXu0Ob3L/S33PPPXM1z5133pneeuuteucdP358mhasuuqq+Wdxe06p6KI1AoYIZKK7zobMW6nPbsz+/Oijj3I1zYYbblirq7vo4i5eL3dsxnsGDx5c67XosrGm6H4wbvJHaFVasVLp8yIUA9umOC+mBcXuO4cPH17rtejusbSSqSH7f0r3Tbw3wrOrr746dyUa4XQc+w0V3WXWFO0sHkfF/V38GdPLBbCT2u/R/WF0I/vwww/nrm9jOcVquRDn4eRe7xp7nYy2RJeQ0WVvBP/FMDIqJEvNMsssqXfv3mno0KF5u06p+tpbyfOqOE+5fRvbvebnN3Y969tnk3tdL84fx0dDqgsnd9/HtbVXr1455Cx28d0c160I46Mb95qK+714HBS3SVSpxn6Zniy++OK5y+Xo4rfcH2VUals39vwHAGDqEEICAExCdDkaXV7ecsstVeNVFUX3h1GZtP766zdoPMjJVexaLW5YTo4FF1wwVx7FWFGbbbZZevnll8vO99BDD6VNNtkkTQu23HLLfHP40ksvTQ888EDZeWJsrBhjqiFiXLwYJy+qLY466qhaN7Sj67piUBTd1kUwEtvpb3/7W9mbmTEuXkMqBBu7P2OflQsHop377LNP2cAnquDCcccdl/d1UaxXrEe5rucOOeSQvE3+9Kc/pbFjx9aaJ16bVHAdYpyvuMkc7b3jjjuqvRa/R+gQY4eVG5tyRhChYVSiRuVuVLEWxTaNbTu5+78x+yZu4perSiu2Z3LGXHziiSfSfffdV23aJZdcko/7ddZZp6rKav75508bbLBBDlBqjhsYYV50uRoBbVR0hqjGjOrCmuIPA+LYjvUuHes0tlG5YLcprpOhOPbjtddem6/xUQG5+eab15ovur6Nc2yvvfYqG6hESFQcg3FK2lvJ86q4bqeddlq1UHHcuHFpwIABZd/TmPWsb58dfPDB+Q9ioso8KmFris8qDShjXMgYrzPGII5K8JoisI72l3725O77WLc4b44++uhq19qoDC1eN2OephSfe+yxx1b7Xorvl6iGj3OiOFZyiG0X4ntgxIgRZc+lmv82mRbEeR3fqzEO5/HHH1/ttbiuxLrGsREVyVNiSs5/AACanjEhAQAmIapD/vGPf6T+/fvnLuPiZwSOr7zySnrkkUfyGE5XXnllk3x2v379cpAQN/vj5mtxvKgIKybVhdlf/vKXqnGk+vTpk2/sxhhxsT7RFVxUSUUlyOSMG9eU4mbkXXfdlbuRjOA02rv88svn9Y8b3DFWY1QDRhDT0HAlQpQ333wzXXHFFbnCJJYdN0bjZm9U2vznP/9Ja6+9dtW8sT1OOOGEdOONN+ab/DFuV9z0jfE14/MjpFhooYUavY4R5kTVUAQA0a5iNV2EiLFvIzSN8elivaMiMsLERx99NI+fF9PixnzNEDLmjzA5unHdYostchVdVMDGPo/qrmK3oUVxMzgqU2Kb3HvvvbkSLMZfi+Aq1v+5557LocVSSy1V77pEV39RORaB1A477JBD5Ajm4jNjDNGoOLrhhhtqff6MIo7XQw89NIcWUbUUoVucb7G/unfvnh+Tez5P7r6Jz4zzOSqlIsSOYCUCnThWI8yJP45oqN///vd5efGICsU41h588MH8Bxgx5mSpaF+EZRHixDUwriFxjsZ4rrG/Bw4cWFXNGxVnsX2WWWaZtOyyy+bqw9GjR+fAM7ppjMC1tPJ3vfXWy8d0tCcqpGI7r7nmmvlRl3hPjDkYIc22226blxeVoRGATUqsb4TJsU/i3Il9EZ9ZU4RScc2PbRF/LBHXkvgeiHAvridxPY0K9Ng2k1Jfeyt5XsU+ivW5+OKL8/Uhur6NdYvgPK495cbqa8x61rfPou3x/RnLjSrLjTfeOIeosa0jNIrjNf5g5J133qlaXnTTG9fl+A6La1k8j2M7zoE43mLe4h9txGfHcbfNNtvkSuDo+jcC8/qCrfijlDi2Yzsst9xy+X3xxy2xnDjXjjnmmCb/44k4FyK0j/M0rvUR+N5+++3559lnn523fen2PfPMM/P3xqKLLprbG99DEeLHOMFR6Rrtje+BaU20O/ZxfL/GdSm+AyPsjXWNcDKmT8l36qS+VwEAmAYUAABaqPin0OT8c+ill14qbLXVVoW55pqr0K5du0KPHj0K+++/f+Hzzz+vNe/uu++el/3xxx9XTYvnMS1eK2ettdYq254HH3ywsOqqqxZmnnnmqjaXLndS3nrrrcLBBx9c6N27d2HWWWfNbZ9nnnkKG2+8ceGaa64pjBs3rjAtbeevvvqqcOyxx+b2durUKa/3IossUth2220LN954Y+HXX3+tmvfEE0/Myx40aFCdy/vpp58Kp556amGZZZbJy5tlllkKSy65ZOHQQw/Nn1Vq/PjxhYsvvrjQr1+/wmyzzVZo37593s/rrrtu4fzzzy98/fXXVfPGZ8ZnRxvKWWCBBfKjpliH5ZZbrtCxY8da2+bnn38u/OUvfyn06tWr0KFDh8L8889fOPDAA/Pn1nV8jB07tnD88ccXFlxwwdze+MxYxmeffZbn33LLLWu957fffivccMMNeb26dOmSj4nu3bsXVl999cJpp51WGDZsWKGh3nnnncKuu+6aj6m2bdvmn7vsskueXtOkzoG6xHti/SdnO4dy22zgwIF5Wvxs6HLqOs5iO55xxhmFhRdeuOqacPTRR+f9WNfyJnU+T86+ufzyy/M1aaGFFsrHdsy//PLLF84666zC6NGjCw1Ruj3uvffe3LaZZpqp0Llz58I222xTePfdd8u+L46vuP717Nkzt3HOOefMx1pcJ0t99913hZNPPrmwzjrr5PWIYzSOkdg3//znP/P6lopzcqeddip069at0Lp162rnWH3Hz7nnnltYYokl8vJjntJtX9e5U7T33ntX7YuXX3653u0V22izzTYrdO3aNa/33HPPXejTp0/hr3/9a+Htt9+u970Nbe/knlf1ie0b17TiZ80777z5mvL999/Xe8xPznrWt8+KXn/99bzf4niJdsSxGtf4fffdt/D444/X+vy45h1zzDGFxRZbLF8L43iM62Zc2+L8KpowYUJhwIAB+RyI7VTzWlHXOsZ1M86naENci+N7Ic6xOCZraux3d12KbYx/O8Q+jW0c67jCCisUbr755jrf98wzzxT69++f92Hsk/i3SGyTww8/vPDf//632rz17dv6TGpdG3MtjmtA7Mv4Ho99H/ty/fXXLzz88MO15m2K79Vy/x5r6OcBAIXCyJEjm7sJTOfHQqv4T3MHoQAAQGVFRV5U2Pz5z39OZ5xxRnM3h2nUddddlyvbonqx2H0n0HSi2jV6Vahr3E8AgGlJDK8QPVfAqEYeCzNm30gAANBClBsjLLr6jPAxFMfmAwAAAJiajAkJAADTsSOOOCKPIxhjaMZfJX722Wd5vLMYw22//fZLq6yySnM3EQAAAGiBhJAAADAd22abbdJXX32V7r333vT999+njh07pt69e6e99947PwAAAACagzEhAQAAAAAAqMaYkOXF+N7rrLNOGjRoUFp77bVTSzDKmJAAAAAAAABQt9tvvz21atUq3X333bVeW2655fJrETDW1LNnzzwUypQYMWJEOumkk9KQIUNSS6A7VgAAAAAAABrshJNOS9/98HOztqFL55nTKSf9dbLf97vf/S7/fPbZZ9PWW29dNX306NHpzTffTG3btk3PPfdcrnYsGj58eH7suOOOac0110xjx45N7du3b1QIefLJJ6cFF1wwLb/88mlGJ4QEAAAAAACgwSKA3HiHQ5u1DQ/ddmGj3te9e/e00EIL5RCy1PPPP59iBMP+/fvXeq34ewSYrVu3Th07dkzTkp9//jnNPPPMaVqjO1YAAAAAAABajAgTX3311VzRWBTVj717906bbLJJeuGFF9Jvv/1W7bXopnX11VfPY0LG8/hZFGNDLr300umtt97KFZQzzTRTmm+++dLZZ59dNU/M36dPn/x8zz33zMuIx3XXXVc1z4svvpg23njj1Llz57yMtdZaK392qejONd4Xn7XzzjunLl26VFV3TmuEkAAAAAAAALQYEdr9+uuvOfQrirAvxnyMxw8//JC7Zi19bYkllkhzzjlnncv87rvvcoAY40qee+65ef5jjz02Pfjgg/n1JZdcMp1yyin5+b777ptuvPHG/IjuXcMTTzyRn0e3sCeeeGI6/fTT0/fff5/WXXfd9NJLL9X6vKjYHDNmTJ5vn332SdMi3bECAAAAAADQYpSOCxlVjBMmTMiB5O6775569eqV5p577vzasssum3788cf0xhtvpL322muS4z3ecMMN6Q9/+EP+fe+9904LLLBAuvbaa3N1ZSwzfp5wwgmpX79+adddd616b3QDu//+++cqyggto9Ix7Lfffrk687jjjkuPPPJItc+LsPOf//xnmpYJIZvIPPPMk/vg7dmzZ3M3BQAAAAAAYLIceeSRaZVVVin7WuQf07OoSoyqxuJYj6+99lpep6iCDPEzqh8PPPDAPFbkxIkTJ9nl6SyzzFItWGzfvn3efh999NEk2zNkyJD0/vvv57Dxm2++qfbaeuutlysmo3vYGI+yKELLaZ0QsonEwRqlvAAAAAAAAEw7otIwgsann346h3sROHbr1i0tssgi+fV47ZJLLsnPi2MyTiqEnH/++asqGIu6dOmSXn/99Um2JwLIEJWYdYkuYmN5RQsttFCa1gkhm0ixAnLo0KHN3RQAAAAAAIDJMmrUqNS1a9eyr80888xpeheh4r333pu7Wi2OB1kUz48++uj0+eef52rJ7t27p4UXXrje5bVp06bs9EKhMMm2RBAazjnnnLT88svXWWlZqlOnTmlaJ4QEAAAAAACgxY4LGSHkYYcdVvXaSiutlDp06JCefPLJPFbkpptuWpHPbFWjUrIoxqEMs802W1p//fXTjOL/Oo8FAAAAAACAFmDllVdOHTt2TDfffHOueCythIwAcsUVV0yXXnppHn5vUl2xNtTM/6+C9Pvvv682PULPCCL//ve/p59++qlsVer0SCUkAAAAAAAALUr79u1Tnz590jPPPJNDxwgCS0Uoee655+bnlQohe/XqlWafffZ0xRVXpFlnnTWHkn379s3jO15zzTVpk002Sb1790577rlnmm+++XI4OmjQoFwhGV3HTm+EkAAAAAAAADRYl84zp4duu7DJPyeqEOsagzLaMKUiXIwQstj9aqnVV189h5ARFi633HKpEtq1a5euv/76NGDAgLT//vunCRMmpIEDB+YQcu21107PP/98+tvf/pYuueSSXBE5zzzz5JByv/32S9OjVoWGjIjJZIukOgwdOrS5mwIAAAAAADBZogvQrl27Nmsb3nzzzfxz6aWXbtZ2tHSjGnksGBMSAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAEAtv/32W3M3gWngGCgUCi0jhBw/fnw69thjU/fu3VOnTp1S375906OPPtqg9z722GNpnXXWSXPNNVeaffbZ0yqrrJJuvPHGJm8zAAAAAADA9KRz585p5MiR6ZdffmnuptCMAWQcA126dGnU+9um6cwee+yR7rjjjnTYYYelRRddNF133XVp0003TYMGDUq/+93v6nzff/7zn7TVVlulfv36pZNOOim1atUq3X777Wm33XZLX3/9dTr88MOn6noAAAAAAABMq9q3b5/mnnvu9P3336cffvihWdrw0ksv5Z/RDqa+qICcc845U7t27Rr1/laFxtZQNtPBFpWP55xzTjrqqKPytHHjxqWll146devWLQ0ePLjO92644YZp6NCh6aOPPkodOnTI0yZMmJCWWGKJNPPMM6fXXnutom3t3bt3/hmfCQAAAAAAwOSRtUzfpqvuWKMCsk2bNmnfffetmtaxY8e09957p+effz4NHz68zveOHj06l4sWA8jQtm3b3DVrdOsKAAAAAAAAtMAQ8tVXX02LLbZYmm222apNj7Edw5AhQ+p879prr52T8uOPPz598MEH6cMPP0x/+9vf0ssvv5yOOeaYJm87AAAAAAAAtBTT1ZiQX3zxRZp33nlrTS9OGzFiRJ3vjfDx448/Tqeddlo69dRT87SZZpop3XnnnWnLLbec4lLgmiLk7NWrV6OXCwAAAAAAANOr6aoScuzYsdW6Uy3tkrX4el3ifVFFud1226Vbbrkl3XTTTWnllVdOu+66a3rhhReatN0AAAAAAADQkkxXlZAxduP48eNrTR83blzV63U5+OCDc9j4v//9L7Vu/f9nr9tvv32uZDz00EPTiy++2Kg21TUYal0VkgAAAAAAADCjm64qIaPb1eiStabitO7du5d93y+//JKuvfbatNlmm1UFkKFdu3Zpk002yeNCxjwAAAAAAABACwshl19++fTee++l0aNHV5terGKM18v55ptv0oQJE9LEiRNrvfbrr7+m3377rexrAAAAAAAAwAweQsZ4jhEWXnXVVVXTonvWgQMHpr59+6YePXrkacOGDUvvvPNO1TzdunVLs88+e7r77rurVTz+9NNP6d57701LLLFEvV25AgAAAAAAADPomJARNPbv3z8NGDAgjRw5Mi2yyCLp+uuvT5988knubrVot912S0899VQqFAr59zZt2qSjjjoqHXfccWnVVVfNr0eYGe/57LPP0k033dSMawUAAAAAAAAzlukqhAw33HBDOv7449ONN96Yvvvuu7Tsssum++67L6255pr1vu+vf/1rWmihhdKFF16YTj755FxBGe+944470rbbbjvV2g8AAAAAAAAzulaFYrkgFdW7d+/8c+jQoc3dFAAAAAAAgOmOrGX6Nl2NCQkAAAAAAABM+4SQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICWHUKOHz8+HXvssal79+6pU6dOqW/fvunRRx9t8Ptvu+221K9fvzTzzDOn2WefPa222mrpiSeeaNI2AwAAAAAAQEsy3YWQe+yxRzrvvPPSLrvski688MLUpk2btOmmm6Znn312ku896aST0k477ZR69OiRl3HqqaemZZddNn3++edTpe0AAAAAAADQErQqFAqFNJ146aWXcuXjOeeck4466qg8bdy4cWnppZdO3bp1S4MHD67zvS+88EKuejz33HPT4Ycf3uRt7d27d/45dOjQJv8sAAAAAACAGY2sZfo2XVVC3nHHHbnycd99962a1rFjx7T33nun559/Pg0fPrzO915wwQVpnnnmSYceemiK3PWnn36aSq0GAAAAAACAlmW6CiFfffXVtNhii6XZZput2vRVVlkl/xwyZEid73388cdTnz590kUXXZS6du2aZp111jTvvPOmSy65pMnbDQAAAAAAAC1J2zQd+eKLL3JwWFNx2ogRI8q+77vvvktff/11eu6559ITTzyRTjzxxNSzZ880cODAdMghh6R27dql/fbbb4pKgWv68MMPU69evRq1TAAAAAAAAJieTVch5NixY1OHDh1qTY8uWYuvl1PsevWbb75Jt956a9phhx3y79ttt11aZpll0qmnntroEBIAAAAAAACYjkPITp06pfHjx9eaPm7cuKrX63pfiIrHCB6LWrdunQPJqIwcNmxYro6cXHUNhlpXhSQAAAAAAADM6KarMSGj29XokrWm4rTu3buXfd8cc8yRqyXnnHPO1KZNm2qvdevWrarLVgAAAAAAAKCFhZDLL798eu+999Lo0aOrTX/xxRerXi8nKh7jtVGjRqVffvml2mvFcSS7du3aZO0GAAAAAACAlmS6CiGjK9WJEyemq666qmpadM86cODA1Ldv39SjR488LbpWfeedd6q9N7pdjfdef/311bpxvfnmm9NSSy1VZxUlAAAAAAAAMAOPCRlBY//+/dOAAQPSyJEj0yKLLJJDxU8++SRde+21VfPttttu6amnnkqFQqFq2n777ZeuueaadNBBB+Vqyhj/8cYbb0yffvppuvfee5tpjQAAAAAAAGDGM12FkOGGG25Ixx9/fA4QYxzHZZddNt13331pzTXXrPd9nTp1Sk888UQ65phj0j/+8Y/0888/5y5a77///rTRRhtNtfYDAAAAAADAjK5VobRckIrp3bt3/jl06NDmbgoAAAAAAMB0R9YyfZuuxoQEAAAAAAAApn1CSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAADA9B1Cfv/991P7IwEAAAAAAIDpNYQ89NBD6339xx9/TBtttFElPxIAAAAAAACYkUPIiy++OJ1//vllXxs7dmzabLPN0uuvv17JjwQAAAAAAABm5BBywIAB6eijj0533nlntenjx49PW2yxRXrhhRfSbbfdVsmPBAAAAAAAAKYxbSu5sNNOOy19+umn6Q9/+EPq3r176tevX5owYULq379/GjRoULr55ptzGAkAAAAAAADMuCpaCRkGDhyYVl111Rw2vv3222mXXXZJ999/f7rqqqvSDjvsUOmPAwAAAAAAAGbkSsjQrl27dPfdd6fVV189rbjiiumXX35JF1xwQdprr70q/VEAAAAAAADAjBZCDhs2rM7XLr/88vT73/8+7b333mnLLbesNm/Pnj2n5GMBAAAAAACAaVirQqFQaOybW7dunVq1alXn67Hocq9PnDgxzeh69+6dfw4dOrS5mwIAAAAAADDdkbW04ErIE044od4QEgAAAAAAAGh5piiEPOmkkyrXEgAAAAAAAGCG0Lq5GwAAAAAAAADMWCoaQt52221pt912q3N8yHjtzjvvrORHAgAAAAAAADNyCHnppZfWOUZkTG/Tpk265JJLKvmRAAAAAAAAwIwcQr799ttphRVWqPP1eO2tt96q5EcCAAAAAAAAM3II+eOPP6b27dvX+XpUQv7www+V/EgAAAAAAABgRg4he/bsmV588cU6X4/XunfvXsmPBAAAAAAAAGbkEHLzzTdPN998c/r3v/9d67X//Oc/6ZZbbkm///3vK/mRAAAAAAAAwDSmVaFQKFRqYV9//XUe93HEiBFp7bXXrhof8tVXX01PPvlkroJ85ZVXUrdu3dKMrnfv3vnn0KFDm7spAAAAAAAA0x1Zy/StbSUXNtdcc6XBgwenAw44ID344INp0KBBeXqrVq3Spptumi699NIWEUACAAAAAABAS1bREDL06NEj3Xfffem7775LH3zwQZ62yCKLpC5dulT6owAAAAAAAICWEEIWRejYp0+fplo8AAAAAAAAMI1q3dwNAAAAAAAAAGYsU1QJ2bp16/wYM2ZMat++fX4e4z/WJ16fMGHClHwsAAAAAAAAMKOGkLvttlsOFdu0aVPtdwAAAAAAAKDlalUoFArN3YgZUe/evfPPoUOHNndTAAAAAAAApjuylumbMSEBAAAAAACAihJCAgAAAAAAANPOmJALL7zwZL8nxoz88MMPp+RjAQAAAAAAgBk1hOzZs2cOFQEAAAAAAAAqEkI++eSTU/J2AAAAAAAAYAZkTEgAAAAAAABg2g0hP/7443TvvfeWfa1QKOTXPvnkkyn6jPHjx6djjz02de/ePXXq1Cn17ds3Pfroo5O9nA022CB3JXvwwQdPUXsAAAAAAACAJgwhjzvuuHTWWWeVfS0Cv3POOSedeOKJU/QZe+yxRzrvvPPSLrvski688MLUpk2btOmmm6Znn322wcu466670vPPPz9F7QAAAAAAAACmQggZQeDGG29c5+sbbbRRevrppxu9/Jdeeindeuut6YwzzsiB5r777pueeOKJtMACC6RjjjmmQcsYN25cOvLII3M1JQAAAAAAADCNh5BfffVVmmeeeep8fe65505ffvllo5d/xx135MrHCB+LOnbsmPbee+9c2Th8+PBJLuPss89Ov/32WzrqqKMa3Q4AAAAAAABgKoWQs802W71jPsaYkTPPPHOjl//qq6+mxRZbLH9OqVVWWSX/HDJkSL3vHzZsWDrzzDNzl7ExniQAAAAAAABQeW0rubB+/fqlf/zjH7m70y5dulR77bvvvksDBw5Mffv2bfTyv/jiizTvvPPWml6cNmLEiHrfH+1aYYUV0o477pgqpXfv3mWnf/jhh6lXr14V+xwAAAAAAABokZWQ0cXpyJEjc2XijTfemN588838iOcRPsZrRx99dKOXP3bs2NShQ4da06NL1uLrdRk0aFC688470wUXXNDozwcAAAAAAACmciXkGmuska644op0yCGHpD322KNqeqFQyOHh5ZdfntZee+1GLz+6UB0/fnyt6ePGjat6vZwJEyakP/3pT+kPf/hD6tOnT6qkoUOHTlaFJAAAAAAAAMzoKhpChj/+8Y9p0003Tf/617/Se++9l6fFOI79+/dP3bt3n6JlR7ern3/+edluWkNdy7/hhhvSu+++m6688spaY1b++OOPeVq3bt3STDPNNEXtAwAAAAAAAJoghCyGgYceemjFl7v88svnblVHjx6dZptttqrpL774YtXr5QwbNiz9+uuvafXVVy8bUMbj7rvvTltttVXF2wwAAAAAAAAtTZOEkKUiIBw+fHiab7758riQrVs3fhjK7bbbLv39739PV111VR5/MkT3rAMHDszL7tGjR1XoOGbMmLTEEkvk33fccceyAeXWW2+dqzb32Wef/H4AAAAAAABgGg4ho9vUzTbbLL3++utV05Zccsl07733poUXXrhRy4ygMLp1HTBgQBo5cmRaZJFF0vXXX5+7U7322mur5tttt93SU089lceiDBFGFgPJmhZaaCEVkAAAAAAAAFBBjS9LnIQ//elPeQzHGBdy7Nix6YUXXkgTJ05MBx544BQtN7pOPeyww9KNN96YPyO6Wb3vvvvSmmuuWbG2AwAAAAAAAI3XqlAsF2ykhx56KG288ca1pkf3q1H1uOKKK1ZNu+yyy9Jf/vKX9P3336cZXe/evfPPoUOHNndTAAAAAAAApjuylhZeCbnFFluk3XffPX377be1Qshnn3222rTnnnsude/efUo/EgAAAAAAAJiRQ8joZvXNN9/M4z3edtttVdP/+te/psMPPzytscYaaZdddknLLLNMuvXWW/N0AAAAAAAAYMY1xSFkdLf60ksv5cBxzz33zJWRI0aMSFtuuWUOKKNUNrpfXXXVVdOTTz6ZA0kAAAAAAABgxjXFY0KWev/999M+++yThgwZks4888y0//77p5ZKP8UAAAAAAACNJ2tp4ZWQpRZddNFc7Xj22WenAQMGpLXWWisHkwAAAAAAAEDLUbEQ8pdffkmjR4/Oz/fdd9+cSs8555xpueWWS2eccUaaOHFipT4KAAAAAAAAmJFDyG+//TZtvfXWaZZZZkldunRJyy67bHr55ZdT9+7d01133ZVuvPHGdPHFF6eVVlop/e9//6tMqwEAAAAAAIAZN4Q87LDD0uDBg9OVV16ZQ8cII7fddtv066+/5tfj+dtvv51DyFVXXTUdffTRlWg3AAAAAAAAMKOGkA8++GD685//nPbcc8+05ZZbpmuuuSYNHz48vfXWW1XzdO7cOV177bXpoYceSvfcc8+UfiQAAAAAAAAwI4eQ7dq1S2PHjq36fdy4calVq1apbdu2teZdd9110xtvvDGlHwkAAAAAAABMw2onhZMpxoM888wz04QJE/KYkJdddllaYokl0pJLLll2/o4dO07pRwIAAAAAAAAzcgh5zjnnpNatW+cxIceMGZNWW221dOGFF+ZpAAAAAAAAQMvTqlAoFJq7ETOi3r17559Dhw5t7qYAAAAAAABMd2Qt0zfligAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAGi5IeT48ePTsccem7p37546deqU+vbtmx599NFJvu+uu+5KO+ywQ1p44YXTTDPNlBZffPF05JFHpu+//36qtBsAAAAAAABakukqhNxjjz3Seeedl3bZZZd04YUXpjZt2qRNN900Pfvss/W+b999901vv/122nXXXdNFF12UNt5443TJJZekfv36pbFjx0619gMAAAAAAEBL0KpQKBTSdOCll17KlY/nnHNOOuqoo/K0cePGpaWXXjp169YtDR48uM73Pvnkk2nttdeuNu2GG25Iu+++e7r66qvTH//4x4q3t3fv3vnn0KFDK75smJ4M/vT+NKNYbYHNmrsJAAAAAAAthqxl+jbdVELecccdufIxqhqLOnbsmPbee+/0/PPPp+HDh9f53poBZNh6663zz6iQBAAAAAAAAFpgCPnqq6+mxRZbLM0222zVpq+yyir555AhQyZreV9++WX+Oddcc1WwlQAAAAAAAEDbNJ344osv0rzzzltrenHaiBEjJmt5Z511Vq6s3G677SpSClzThx9+mHr16jVFywYAAAAAAIDp0XRTCTl27NjUoUOHWtOjS9bi6w31z3/+M1177bXpyCOPTIsuumhF2wkAAAAAAAAt3XRTCdmpU6c0fvz4WtPHjRtX9XpDPPPMM3kcyY022iiddtppU9yuugZDratCEgAAAAAAAGZ0000lZHS7Gl2y1lSc1r1790ku47XXXktbbLFFWnrppdMdd9yR2radbjJYAAAAAAAAmG5MNyHk8ssvn9577700evToatNffPHFqtfrE2M0brzxxqlbt27pgQceSLPMMkuTthcAAAAAAABaqukmhNxuu+3SxIkT01VXXVU1LbpnHThwYOrbt2/q0aNHnjZs2LD0zjvvVHvvl19+mTbccMPUunXr9PDDD6euXbtO9fYDAAAAAABASzHd9EcaQWP//v3TgAED0siRI9MiiyySrr/++vTJJ5+ka6+9tmq+3XbbLT311FOpUChUTYsKyI8++igdc8wx6dlnn82PornnnjttsMEGU319AAAAAAAAYEY13YSQ4YYbbkjHH398uvHGG9N3332Xll122XTfffelNddcc5JjQYazzz671mtrrbWWEBIAAAAAAAAqqFWhtGSQiundu3f+OXTo0OZuCjSrwZ/en2YUqy2wWXM3AQAAAACgxZC1TN+mmzEhAQAAAAAAgOnDdNUdK0yvVAMCAAAAAAAtiUpIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqqm1lFweT7/4Xvkozis1Wnbu5mwAAAAAAANDsVEICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAAC07BBy/Pjx6dhjj03du3dPnTp1Sn379k2PPvpog977+eefp+233z7NPvvsabbZZktbbrll+uijj5q8zQAAAAAAANCSTHch5B577JHOO++8tMsuu6QLL7wwtWnTJm266abp2Wefrfd9P/30U1pnnXXSU089lf7yl7+kk08+Ob366qtprbXWSt98881Uaz8AAAAAAADM6Nqm6chLL72Ubr311nTOOeeko446Kk/bbbfd0tJLL52OOeaYNHjw4Drfe9lll6X3338/L6NPnz552iabbJLfe+6556bTTz99qq0HAAAAAAAAzMimq0rIO+64I1c+7rvvvlXTOnbsmPbee+/0/PPPp+HDh9f73ggfiwFkWGKJJdJ6662Xbr/99iZvOwAAAAAAALQU01UIGd2nLrbYYnk8x1KrrLJK/jlkyJCy7/vtt9/S66+/nlZeeeVar8V7P/zww/Tjjz82UasBAAAAAACgZZmuumP94osv0rzzzltrenHaiBEjyr7v22+/TePHj5/kexdffPHJblPv3r3LTn/nnXdSu3bt6nyd//PT2AlpRjFLp/Kn1Jhff0ozipnazTJZ87fkdQcAAAAAoPGiiCyyFqZP01UIOXbs2NShQ4da06NL1uLrdb0vNOa9jdWqVatp6sSIEzX06tUrTS/B3YykJYdXU2Pdp+XjGyrBMU5L4ninJXG8M6NzjNMSOM5pSRzvtCSO92lH5CwzzzxzczeDRpqu0p9OnTrlisaaxo0bV/V6Xe8LjXnvpAwdOjRND4oVmdNLe2FyOL6Z0TnGaUkc77QkjndmdI5xWgLHOS2J452WxPEOLXBMyOg6Nbpkrak4rXv37mXfN8ccc+QqyMa8FwAAAAAAAJiBQ8jll18+vffee2n06NHVpr/44otVr5fTunXrtMwyy6SXX3651mvx3oUXXjjNOuusTdRqAAAAAAAAaFmmqxByu+22SxMnTkxXXXVV1bToYnXgwIGpb9++qUePHnnasGHD0jvvvFPrvf/973+rBZHvvvtueuKJJ1L//v2n4loAAAAAAADAjG26GhMygsYIDAcMGJBGjhyZFllkkXT99denTz75JF177bVV8+22227pqaeeSoVCoWragQcemK6++uq02WabpaOOOioPZnreeeelueeeOx155JHNtEYAAAAAAAAw45muQshwww03pOOPPz7deOON6bvvvkvLLrtsuu+++9Kaa65Z7/uiu9Unn3wyHX744enUU09Nv/32W1p77bXT+eefn7p27TrV2g8AAAAAAAAzulaF0nJBAAAAAAAAgJY0JiQAAAAAAAAw7RNCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAATWCPPfZIrVq1Sp988klzNwWmSRdddFFaaqmlUqdOnfK5csEFF0zVz4/PXHvttafqZ1IZsd9i/02O6667Lr8nfvJ/TjrppLxdnnzyyTSjagnrSP1i38cxEMcCAABTlxASAGix4oZU6aNNmzZprrnmSuuuu2765z//maYFU3LjvOb6dejQIXXt2jWtuOKK6Y9//GN68MEH08SJE9PUDGVLHzPPPHNaeuml05///Of03XffpZYigulY/9gmLdWtt96aDj300NSxY8d02GGHpRNPPDGtuuqqqaUQgFb+jzimt5BhemvvtPyHNwJmfK8CAEy72jZ3AwAAmlsEIOHXX39N77zzTvr3v/+dBg0alF5++eV03nnnNWqZZ5xxRg7X5ptvvjStrF8Ejt9//30aOnRouvHGG9O1116bVl555XTzzTenxRZbbKq0Zcstt0zLL798fv7ll1+me++9N5111lnpjjvuSC+99FKaY445pko7aF733Xdf1c/u3bs3SxvefvvtNNNMMzXLZzNlbrjhhjRmzJjJes/WW2+dg+555523ydrFtOnggw9OO+64Y+rZs2dzNwUAAFocISQA0OLVrER5/PHH0wYbbJC7h/zTn/6UFlxwwcleZtzonlZudpertPnqq6/SIYcckv71r3+l9ddfPweu3bp1a/K2bLXVVtUqFf7+97+nvn37prfeeitdfPHFVYEpM7YRI0bkn80VQIYlllii2T6bKdOYMKlz5875QcsTPRzEAwAAmPp0xwoAUMN6662XA4pCoZD++9//Vk1/5ZVX0rbbbpvDuujadIEFFkgHHnhg+uKLLxrUNV1pd2HxPCoz4sZodEkZFYnF6rCi6K5xzz33zM/jZ2lXplPa5d3cc8+du8SMzxg+fHg6/fTTU3OYZZZZ0u67756fRyVk0YQJE9Jll12WK5dmm222XLG2wgorpEsuuST99ttv1ZZRul3fe++9tMMOO+R91Lp162pjgD3yyCPp97//fdX+69GjR67MfOyxx2q16+GHH06bbrpp3j8xb69evdLRRx+dK0lripA6Hj///HOeJwKSeM8iiyySqzzjOCoNhBdaaKH8/Prrr6+2T4tdCf7yyy95PePz4xiLZUWFaITF0YVuXaLNq6++eu7mNuaPwDcqe+vrJvHFF19M2223XZpnnnlS+/bt8zbZb7/9qkLChho/fnw688wz0zLLLJP3VeyzNdZYI91+++1lx2aLSuNQuv6TUlyPjz/+OG+fGE8yzp3Y9nH8FrdzBOurrLJK3g6xr6MKauzYsQ3qErV07Liozo3lxPrE9ozz9fPPP69z/zdkLLpit5Hhqaeeqrb+Nf9YYHL2zUcffZT23XfffMzFGJvR3tgX+++/f/rmm28muW1Lt0cs/w9/+EPedrGslVZaqc7uqeNcvOKKK1KfPn3yuRzbPJ5ffvnltc7T8Mwzz+RzcP7558/HdaxbnOMnn3xytXbEuRHiXClun9JtXHNMyDg21llnnfw8llW6XWtu++J5Nm7cuDT77LPn9YzrTTkHHHBAfk/Na3PxvIp9Evsmrqc777xzevfddxu0rRvS3sk5rxoivr823njjNOuss+blxPXk+eefr/c9DV3Phuyz8O2336YBAwakJZdcMh9bEQrH921cm+ty22235XnimC6e7zvttFP+w5mGfk/WNyZk/NFRbJdYfhyT0StA9GLwww8/1Jq3eNzF8RLXnEUXXbTqu+TYY4/N1+6GKl7P4tyNHhfi3xyxfnFuHH744Wn06NFl3/fZZ5/la9rCCy+cP3vOOedMW2yxRbV/qxSVrnecw/EHP3GeNuQPq4rrGj1EnHLKKfk7MNq3+OKLp6uvvrpqvjj/4/iM/Rltjz8kKnfuhzhu11xzzbzfY/54X/QaEcd5U3+vlhoyZEjabLPN8vkf59Vaa62VBg8ePMltAgBA46iEBAAoo3iDq3ijO25CRwAZ0yMYiHAoburGzfbovvXZZ5+tugk2KZ9++mkON+ImYtzsjxuzcaO1GIgVb07HTcq4SRbLL+3GNMT0KRUh3XHHHZdvUN5yyy3p/PPPb1AY1NTbOm56RlARoVrc8Iyb3nHzM4KrqN6McCa6k63pww8/zDdZ4ybyLrvskoOnuNke4sZo3EiNG7ARzsVN4whb4sbjTTfdlG/IF0UoEDc146b05ptvnkOK119/PVdtPvDAA/nGfXG5RdHmjTbaKC9zk002SW3btk333HNPvpkdYUexwjNu7EaQeeGFF6blllsut6WouH/jeIjxEldbbbVckRvjeEbQHV3XRjAZN4BjTM9SESgXt9P222+fq3Bj3fr165c/p5x//OMfObiKG7txEzu2yfvvv5+uueaa/FkvvPBCgyrO4sZ7rHuEanEj/aCDDspdZUaIF4Fw3PAthtzF0C9uDMd50JjK16OOOiofs3GMbLjhhuk///lP+utf/5rbEfsstnls1whrHn300XTppZfmrojjXG2oCMBjubFd4gZ1HHNxjr722mt5fWKbNUbs41jnOMbiGlJaFVwaiE7OvoljI4K/CC3i+IjrVBxzEdbGeRKBRQQVDRFjs8ZxF9eXCHTiWI3gIM6nCGAjDCgV168IN6J9cUzGOXz33XfnP86Ia2J09Vz00EMP5Rv/ce7EOkVX1XGsR7e4sb2Lx0L8jHMntnWcB8VrXX3XvOJ5FAFE7K/SbVlX4BLnShyfV111VQ7343gqFcFI7PMI3iKkKl2PbbbZpuo6FaFIBEN33XVXuv/++/N1KsbdrU9D2js559WkxLUgrnGxzGh7tDneH58bYyCXMznr2ZB9Fud7fF4Eg3FuxjaNgCm+W+P5lVdemfbZZ59q3wtxDMY2ij8GibbEtTDaEJ8d3w3xxztT8j0ZnxlBc4Tn/fv3z9f6uLZEyBXn2XPPPVd2GXGtjUA9rvVxPMf3wtlnn51GjhyZBg4cmCZHBI5PP/10vm5H++N7L3phiOXHORTHadH//ve/fM2L8yaOjdgmX3/9dd72v/vd7/K5F9eAms4999x8LYz9GP++KBew1iX++CKuf7Hcdu3a5eMvrk3xPL4XY//E92QExXHNjO/ZCPYilC31l7/8JQeOsS9j+8V3cZx3MT3WOYLoCLqb6nu1KMLr2Ffx3RjXrGHDhqU777wztz/OiTiuAACosAIAQAsV/xQq98+hRx99tNCqVav8+OSTTwo//vhjYY455ii0bt268PTTT1eb98wzz8zL2GCDDapN33333fP0jz/+uGpaPC9+5kknnVRt/oceeihP32STTapNHzhwYJ4ePyu1fqXGjRtXaNu2bZ7vo48+KjSV4vaouR6xbZdccsn82imnnJKnnXjiifn3gw8+uDBhwoSqeeP5XnvtlV+75557ym7XAQMG1Prshx9+OL+20EILFT777LNarw8fPrzq+RNPPJHn7devX+G7774ruy8OO+ywatMXWGCBqn03ZsyYqulfffVVoXPnzvnxyy+/1GpvbJO69klpm4q+//77Qu/evQtdunSp9jmjR48uzD777IX27dsXhgwZUu09xx57bNW2KT0W33333UK7du0KvXr1qrVNHnvssXysb7XVVoWGOP3006vW/9dff622/sVt89xzz1V7z1prrTXJY7OuYyiWWdrm2E9zzjlnYaaZZirMNddchbfeeqvatozjK7ZNtKdULCvaUap47M0666yF119/vdprO+20U37ttttuqzY92hOPcorLGzRo0CQ/u7H75qKLLsrLu+CCC2ot66effqp2rNSneJz079+/MHHixKrpcV2IYy7a9OGHH1ZN/+c//5nnX2GFFfJ5XPqZK620Un7t5ptvrpq+zTbb5Gk1j9EwatSoSV4/J3X8xDaOabHNyyl3LR08eHCetu2229aa//bbb8+vHXHEEVXTvv3223yuxfE2dOjQavO/8cYbhZlnnjlvj4aYVHsbc16V89tvvxUWX3zxWtfNEMdMcb+XHqONWc+G7LP4Tr3llluqTY/zd7nllit07Nix8OWXX1ZNv/LKK/Py+vTpk699peK7YMSIEQ3+nix3HsZ3e1wX4lx/++23q81/wAEH5Pn32WefWusQ01dcccXCN998U+2Yj/M1zs0vvvii0BDF7RXbONpSFOde8VwpfieGOAbiMzp06FB48sknqy3r888/L3Tv3r0wzzzz5GtezfWOa+P//ve/BrWr5rquvPLK1b4L4xoQ14I4PhZccMGy1+K4Dpces8XzrEePHtW2T8yz+eab59dOO+20Jv1eLZ5v5Y6TK664Ik+P/Q4AQOXpjhUAaPGi6i0eUU0VVY5RlRH35A877LBcrRQVFlF5ENUnUcFR6sgjj8yVK1FlEH9R3xCxzKhALBV/7R+VTaVdkk4Nxe7cwqhRo5r886KKobi9owIlqg6iEiq6eouKrejGLcaGjG4aozKzTZs2Ve+N51HREdVWpRVWRVGxVK6yLpYX4r1RfVVTdCFXdNFFF+WfUW1YswImKm6iqqLcZxffG13MFUVVTVS2RNVJQ7tpLO6T0jYVRRd2e+21V65WK+16L47PqAKJarWaVY9xnJWr5ImqwKgyicqRmtskKkKiUi0qgX788cdJtjeq9mKfRJeCUalSuv7HH398fh4VfJUSyyxtc6xftDeqxOKYiq4eS7dlnLdRARbHWUPFWLDRVWCpYpVWU5+jjd03pcdeUVR4lZtelzjHogosqqSLosI7tke0qbQCOfZ7iO5Co6qp9DNjGXXt93Ltaa7x+qIaKiqnY3vGNb5UsXvRYnfR4YYbbsjnWlSyRnfApZZeeul8jLz66qt5jNspVanzKqog4/oT3WDG9ahUXHPj2ltTpdczKiSjojOqdKOyrlScv/E5UdkWFWk1r9tRrVhzLM84Tqd0zOWogI/rQmyDmuPDnnbaabnb2jjey3UVGsd3VF2XHvNx/Y3vr2I3sQ0VlaPxb4KiOPfOOeec/LN4joWoPo1q/+gNIKpnS8XYusccc0z68ssvc/eyNUXlYnRn3hhxfpd+h0QPDlF1GcdHuWtxVFtGdWZp19XF9Yjvo/huL4rjOr6XY13rOpYr9b1aFF2Wl1agh/hejbZM7X9/AQC0FLpjBQBavOJ4ZHHDN26iRdC49957p1133bWqC7RQrtu6uHEVN3eji7m4KduQ7isjyCoN14qiS8NJjdE1NbpDrUusY7nxlWqOZVefCMziEeLGYgS4cfM2ulfr0qVLHoMswoAYa+vUU08tu4x4X7lAKQK4ct1kRteVsW6lXSrWJbZ/dDMX4wrGo6a4aR1hbYyzV9rFZdwkj+4Ky+3TEMHh5Bg6dGi+ER3d9EV3m3GDvlTpDd447kLcGK4pwqE43mqOhVY8ziIYKDeWWHQrGF2YxhibMSZgXSII++CDD/KN6Jo38kvPmWIbKyG6YKwpbsKHcm0t3iSPbhyn5DMauy8n1+Tumwglo0vD6K4zujWMP2iIG+0RHk1u98px/SrXrXR0dxjXydL9GNfFCA9qjqsZIiSJa1zp/HGeR1ee0WVyBMPRLWS0s1zgPjVFyBh/gBJdGkc3suGrr77K2zKCm2WXXbbWvolQrdx1L/ZJiOtTzfBuclTyvCp+f9UMrkLso7huRLhVqtLrWVxeBEflllf8A5jidT26aX3zzTfzH5Y0NjyblPq+1+O7KD43rr/xnVTzjzsqeX0ot18i6IvlxXduhH3x75LiNoxubcttw+iuubgNa3bJGt2/N8f1thiu1ret448A4hoQ3UfH8VEaOFf6e7Wu9Ynv/DjWmvraDgDQUgkhAYAWrxjC1aU4flJdlRfF6XGzsCHqGqcqAs2opJiaItwqVgDFeFv1iRuixcC2sSFkjJdVswqhVIR7xRuq5T6r6Keffqo1rbTColTsl7ip3JCKsPj8CRMm1PvZxc8vDSHr26chQqOGitA0btZGO4qVbzHuWAQ+MWZVhLil1TnF4zNuopZTbnpxO0fQWZ9y27kpz42GqFkVVbqd63stKvkaqtz+bMy+bIzJ3Tdxoz8qeOI8jHH8Iugr3qiP8TOjirGh6jqGiudW6Vhy8TyqwWqO41bcVlHdGIFpUYxfF+P/ReVTVEZFhVsxyIix4mL80+aw22675YquqHwshpBR7RznX2kVZOm+iUrpKTlvJqWS59Wkrg/lrpuVXs/i8qLHgHhMannF9SpXuV4pU7KNK3l9qG+/ROAY7YzPK27Dcn8c09jvxql1vW3Ito6eJGJbly6zkt+rDVlmU1/bAQBaKiEkAMAkFG+KRVdn5USlWul805Nnn30232yPG6FRlVifqHiaVGA7pYrbcOutt64KUxqqrqqv4g3csWPHTjKIjM+PILhm14xTU1SARlsHDRpUq8oswppiJWlRBJTF6q1yyk0vbue4OVx8f2PMyOdGQ0U4HBWy5TQmfG3MvokuaG+77bZ8Lkf12mOPPZa7s4yuHqOryKjsboi6jqHi/q1ZpRTnSYQNUUlUKtoRXTLWbP9mm22WH1Hp9uKLL+ZQMrqf3XzzzXNV35RUDzZWVGFF6B/bLKreovIwAslYp5133rnavMX1j21cWiFZaZU8r4rzTGrfNuV6FpcXXQw3JBQvBkWlFd9NuY179+7dbNeu2C/RLfmkzrniz7j+xx+mTI7JrYhuym1drvvflvA9AQDQkhkTEgBgEordwdXs0rJ4s/2ZZ57Jz1dcccWKf3ax29am+Av9CNti7KtQ82Z7c4kAIG5ARzXg5FSu1WfVVVfN4WlUiTVk3uiSLbpDbSqT2qfRDWNUmJXr5jK66Kzr+IxAuVxVTFRPllvPUDx2GyvGTYubyhEWFLsDLBVBalOdG9OKqLKNIKHc8VrX+HARXNa1/6dk30Q1T1QWHnvssemWW26pGoe1oaIaKSqeaype+0q7xozncQ2JLitrimmxfnXt9whGI/iL8Q6jK9kIcR988MEpuu5NybWyWJ0d4WOcL6+//nraZJNNalWHV+q8mVR7K3leFecpd+2Izy533WjMeta3PpO7vDg+YuzJOK8a0uVsY/Z9fd/r8ccDcRx07Nix2hizTaHcfvnoo4/S8OHD8x8GFQPZSh57U1t92zq+76Lr1ugGuq4qxeb+txIAAFNGCAkAMAlbbbVVDoXipn6EY6UuuOCCPJbR+uuv36DxICdXscvPCAcqKbpJ3HHHHfNNwWh3BAHTgghRDjnkkFwZERUzURFYU7z21ltvNXiZsbxw5JFHlq2sKZ12+OGH55/77LNPGjFiRK15o4Kr5jHQmNAqKlPq2qdx4zkqzCIIKXXttdfmcepq2nLLLXMFSXQhGZVLNasqy1XjHXzwwbnSK9a3OL5bqQiFGnqze6+99soh79FHH13tBnBUwv3tb3+rmmdGFeOtxR8jRFfDpWL81Oeee67O8zpChnImd9+88sor1bpJLSpWvs0000wNXpfYfxFglnYLHde3iy66KJ+bxXFyS/fpgAED0pgxY6qmx/MY4zWUVmBGMBnbqSHtbMx1b0quldFVbFRt3nTTTVXj3pbrNnrPPffMQUl01xxd4NYU261c0NKY9lbqvFpttdVypV1s/5pV1Jdcckmt8SAbu571rU+MwxdjLUd1e3TFW84bb7xRrfveYsXkfvvtV+v4js8vVs9N6rPrEsdynGdRMRxBWKnonnf06NF5nnLjDFdSVIdGt6ul6xb7PH7Gfii9zkcwfemll6YHHnig7LJi3MjSc3FaUTxO4/uoOP5niOM6uoyOdW1otXZjv1cBAGg+umMFAJiEWWaZJd847d+/f1prrbXyzwju4ub/I488ksdbKo5vVmn9+vXLN+cj7IwuRYtjO0Ww1tCuy4pjNsaNvgikosovql8izIgAJcKrGL9tWhE3gCNMu+KKK9K9996bK6ZibLC4QR1VQRHsRAVnQ7tu3PD/Y+9O4Kyq6//xf9gERMkVdQpNwXUUl1Iwv+KWobgnaIYirmmaS6KGado3LZVCcU0NScitcClxKUqlEAUtTB1xwwUSlFQMTUDB+3+8z+975z/LnWEYDgwz83w+HuMdzrnnnM8553POHc/rfj6fb3wjXXjhhdkD0GjVEqFyjJcX4Ucch2hhUgweYgzGyy+/PAtWNt9889S/f/+shUa0KIwHxdFq5X/+538a1KqyvvrUu3fvLEgaNGhQ2mKLLbJWHNHFXnR9eNZZZ2VhY2zniCOOyM5ztKiLsg4YMCCNGzeu2voiPIkH08ccc0wWOMQyMcbW5MmTs+MYdTbKHa3vqrY4jTodD4ejK8L99tsvK0e05ouHuFG2aAUW3VMuTTxEjlZsEXBsv/322TGLB+Exdlmcs/POOy/bl5YqrsUIIE899dT0l7/8Jatb0YoqAoHoZjS6HK0p6tldd92VDjrooKylWoQhffv2zX6W9dyMHTs2u//EMY6QIh7GR7AU104EKFGfGirqX3STGq0p47qJ+8Vvf/vb7PXKK6+s1pVitJ6Ocx7zo5xxXUUIEC0vI7g88sgjs/pdNVSKwH+33XbLgvYYSzLuoY8++mg2rmV8KaLq8YkxMePLAIcffnjWMjBCsQho6xJBW9wn4rjG8Yx1Rnniuojf6xPdNMd9PYL+G264IQu1otvYmmJ6XH/RXXTcN6Kcse+xnQiV45zHfTrG2l2apZU3r+sq1hn7FWNuxrGMwLVnz55ZHY36GvWr5v2sMfu5tHN2xx13ZPfyCJsi1I57YMyPVnDxhYsXXnghW2+3bt2y95944olZXY/6HffiCOGi3seXQ6LOxPVR/GxrzOdk1MF4/2mnnZZdg3HfjPXHvTLKEdfhFVdckVa0uB522GGH7HqJssa9P+7bcQ3GOS6KOhIhbr9+/bK6Gff6WC72O87J008/nbWgjHB2Wb54sDJEWWNf4h4SLVzjcyxau0b9jvMe9TiC1+WxtM9VAACaUAEAoJWKP4WW5c+hqVOnFg499NDCeuutV+jQoUOhe/fuhVNOOaXw9ttv13rvsccem637jTfeqJwWv8e0mFfKHnvsUbI8Dz/8cKFPnz6FLl26VJa56nqXtn/Fn9VWW62w7rrrFnbaaafCiSeemK13yZIlhZWheDxGjx7doPd//vnnhTFjxhT23nvvwtprr50d77KyssJuu+1WuOyyywozZ85s8HEtevDBBwv9+vXL1hfH4ktf+lJ2Pv/yl7/Ueu/f/va3wsCBAwsbbbRRtu0459tvv33h7LPPLjz99NPV3rvJJptkP6VcfPHFWdkee+yxatNfffXVwoEHHlhYZ511Cm3atKl1bB544IFC7969C2ussUbhC1/4QmHfffctTJw4MXtPXcfxoYceKuy6666Fzp07F9Zaa63CwQcfXJg+fXrhgAMOyJaZN29erWWee+657LhtvPHG2TGJY1NeXl44+eSTSx6XuixYsCA7L7Fsp06dsnLHubrjjjuWqa7Xp9Q1tbTjHOo6ZjEtytHQ9dRXz6K+7L777tmxX3PNNQv9+/cv/POf/6xzfe+++27hqKOOKnTr1q3Qtm3b7D3x3sacm6eeeiq7D/Xq1St7Txz/Hj16FIYMGVJ4/vnn6z2mpY5H3M8GDRpUWH/99QsdO3Ys7LjjjoXbb7+95DJx/7j++usLX/nKV7J9j5+4v1x33XW17i1333134Vvf+lahZ8+e2b0sjlPszwUXXFCYO3durXX/4he/KGy11VbZvkfZql5jddWfuEfHPaNr166V11Xx2Nd37RTPYfFeefrpp9d7rKIunHbaadm+xDGKfdlyyy0LRx99dOG+++6rd9mGlrcx11V9nnnmmez+F+uIn3322acwefLkpdb5ZdnP+s5ZmD9/frY/UUeiDsQ+ffnLX86ul5tuuqnw8ccf11rnb37zm0Lfvn2zYxRliPd/+9vfLvz9739v8Odkffv4xz/+Mbu/xj0zyh3XzrnnnlvyflnffWtp9auu+9mMGTMKP//5z7PjGvsXn3Nnnnlm4T//+U/J5eLecf7552d1Iq632N84P4cffnhh7Nixhc8++6zyvfXt99LUt6+NvRffeeedWf2N+hf7us022xQuvfTSrJ7XlPfnary31H22IdsDAGD5tIn/NGUICgAArBjR3d1mm22WtXqt2n0h1BSt3KLVbEO7EwUaL7r7jTFIo9VwtMoEAICWypiQAADQzEV3mTXHAovvGkYXtNGFZ3SrCAAAALAyGRMSAACauaeeeiobUyzG8YtWNTGGZUyLcd9ijMLi2GkAAAAAK4sQEgAAmrktt9wyHXjggemJJ55IDz30UFq8eHH60pe+lM4444x0wQUXpG7dujV1EQEAAIBWxpiQAAAAAAAAQK6MCQkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAOSqfb6ro2jDDTdM//3vf9PGG2/c1EUBAAAAAABodmbOnJm6dOmS3nnnnaYuCo2gJeQKEgHkZ5991tTFAAAAAAAAaJYiZ4m8heZJS8gVpNgCsqKioqmLAgAAAAAA0OyUl5c3dRFYDlpCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAAK07hFy0aFE6//zzU1lZWercuXPq3bt3mjBhQoOW/fOf/5z22muvtN5666W11lor7bLLLmns2LErvMwAAAAAAADQmjS7EHLIkCFpxIgRadCgQWnkyJGpXbt2qX///mnSpEn1LveHP/whfeMb30iffvppuuSSS9Jll12WhZiDBw9OV1111UorPwAAAAAAALR0bQqFQiE1E1OnTs1aPg4fPjwNHTo0m7Zw4cK07bbbpm7duqXJkyfXuWwEkBUVFen1119PHTt2zKYtXrw4bbXVVqlLly7pn//8Z65lLS8vz15jmwAAAAAAACwbWUvz1qxaQo4bNy5r+XjyySdXTuvUqVM64YQT0pNPPplmzZpV57Lz589Pa6+9dmUAGdq3b591zRotIgEAAAAAAIB8tE/NyLRp09IWW2yRunbtWm16jO0Ynn322dS9e/eSy+65557piiuuSBdddFE69thjU5s2bdIdd9yRnnnmmfTb3/52uVP4mmbMmJF69OjR6PUCAAAAAABAc9WsQsg5c+akjTbaqNb04rTZs2fXuWyEj2+88UY2FuSll16aTVt99dXTPffckw455JAVWGoAAAAAAABoXZpVCLlgwYJq3alW7ZK1OL8usVy0ohwwYED65je/mZYsWZJuvvnmdPTRR6cJEyakPn36NKpMdfVDXFcLSQAAAAAAAGjpmlUIGWM3Llq0qNb0hQsXVs6vy+mnn56eeuqp9I9//CO1bfv/hsI84ogjsrDwzDPPTFOmTFmBJQcAAAAAAIDW4/+lcc1EdLsaXbLWVJxWVlZWcrlPP/00jRo1Kh1wwAGVAWTo0KFD2n///bNxIeM9AAAAAAAAQCsLIXfYYYf0yiuvpPnz51ebXmzFGPNLef/999PixYuzLlhr+uyzz9Lnn39ech4AAAAAAADQwkPIGM+xOJZjUXTPOnr06NS7d+/UvXv3bNrMmTPTSy+9VPmebt26pbXWWivdd9991Vo8fvzxx+mBBx5IW221Vb1duQIAAAAAAAAtdEzICBoHDhyYhg0blubOnZt69uyZbrvttvTmm29m3a0WDR48OE2cODEVCoXs3+3atUtDhw5NF154YerTp082P8LMWOZf//pX+s1vftOEewUAAAAAAAAtS7MKIcOYMWPSRRddlMaOHZvmzZuXevXqlcaPH5/69u1b73I//OEP06abbppGjhyZfvzjH2ctKGPZcePGpcMPP3yllR8AAAAAAABaujaFYnNBclVeXp69VlRUNHVRAAAAAAAAmh1ZS/PWrMaEBAAAAAAAAFZ9QkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAAKB1h5CLFi1K559/fiorK0udO3dOvXv3ThMmTGjw8nfffXfaddddU5cuXdJaa62Vvva1r6VHH310hZYZAAAAAAAAWpNmF0IOGTIkjRgxIg0aNCiNHDkytWvXLvXv3z9NmjRpqctecskl6aijjkrdu3fP1nHppZemXr16pbfffnullB0AAAAAAABagzaFQqGQmompU6dmLR+HDx+ehg4dmk1buHBh2nbbbVO3bt3S5MmT61z2qaeeylo9/uIXv0hnn332Ci9reXl59lpRUbHCtwUAAAAAANDSyFqat2bVEnLcuHFZy8eTTz65clqnTp3SCSeckJ588sk0a9asOpe9+uqr04YbbpjOPPPMFLnrxx9/vJJKDQAAAAAAAK1Lswohp02blrbYYovUtWvXatN32WWX7PXZZ5+tc9m//OUvaeedd07XXHNNWn/99dOaa66ZNtpoo3Tdddet8HIDAAAAAABAa9I+NSNz5szJgsOaitNmz55dcrl58+al9957Lz3xxBPp0UcfTRdffHHaeOON0+jRo9P3vve91KFDh/Sd73xnuZoC1zRjxozUo0ePRq0TAAAAAAAAmrNmFUIuWLAgdezYsdb06JK1OL+UYter77//frrrrrvSkUcemf17wIABabvttkuXXnppo0NIAAAAAAAAoBmHkJ07d06LFi2qNX3hwoWV8+taLkSLxwgei9q2bZsFktEycubMmVnryGVV12CodbWQBAAAAAAAgJauWY0JGd2uRpesNRWnlZWVlVxunXXWyVpLrrvuuqldu3bV5nXr1q2yy1YAAAAAAACglYWQO+ywQ3rllVfS/Pnzq02fMmVK5fxSosVjzPv3v/+dPv3002rziuNIrr/++ius3AAAAAAAANCaNKsQMrpSXbJkSbr55psrp0X3rKNHj069e/dO3bt3z6ZF16ovvfRStWWj29VY9rbbbqvWjevtt9+ettlmmzpbUQIAAAAAAAAteEzICBoHDhyYhg0blubOnZt69uyZhYpvvvlmGjVqVOX7Bg8enCZOnJgKhULltO985zvpV7/6VTrttNOy1pQx/uPYsWPTW2+9lR544IEm2iMAAAAAAABoeZpVCBnGjBmTLrrooixAjHEce/XqlcaPH5/69u1b73KdO3dOjz76aDrvvPPSrbfemv773/9mXbQ++OCDqV+/fiut/AAAAAAAANDStSlUbS5IbsrLy7PXioqKpi4KAAAAAABAsyNrad6a1ZiQAAAAAAAAwKpPCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAAA07xDyww8/XNmbBAAAAAAAAJprCHnmmWfWO/+jjz5K/fr1y3OTAAAAAAAAQEsOIa+99tp01VVXlZy3YMGCdMABB6Tnnnsuz00CAAAAAAAALTmEHDZsWDr33HPTPffcU236okWL0sEHH5yeeuqpdPfdd+e5SQAAAAAAAGAV0z7PlV122WXprbfeSsccc0wqKytLu+66a1q8eHEaOHBgeuyxx9Ltt9+ehZEAAAAAAABAy5VrS8gwevTo1KdPnyxsnD59eho0aFB68MEH080335yOPPLIvDcHAAAAAAAAtOSWkKFDhw7pvvvuS7vttlvaaaed0qeffpquvvrqdPzxx+e9KQAAAAAAAKClhZAzZ86sc96NN96YDjrooHTCCSekQw45pNp7N9544+XZLAAAAAAAALAKa1MoFAqNXbht27apTZs2dc6PVZeav2TJktTSlZeXZ68VFRVNXRQAAAAAAIBmR9bSiltC/uhHP6o3hAQAAAAAAABan+UKIS+55JL8SgIAAAAAAAC0CG2bugAAAAAAAABAy5JrCHn33XenwYMH1zk+ZMy755578twkAAAAAAAA0JJDyOuvv77OMSJjert27dJ1112X5yYBAAAAAACAlhxCTp8+Pe244451zo95L774Yp6bBAAAAAAAAFpyCPnRRx+l1VZbrc750RLyP//5T56bBAAAAAAAAFpyCLnxxhunKVOm1Dk/5pWVleW5SQAAAAAAAKAlh5AHHnhguv3229Pvf//7WvP+8Ic/pDvvvDMddNBBeW4SAAAAAAAAWMW0KRQKhbxW9t5772XjPs6ePTvtueeeleNDTps2LT3++ONZK8i///3vqVu3bqmlKy8vz14rKiqauigAAAAAAADNjqyleWuf58rWW2+9NHny5HTqqaemhx9+OD322GPZ9DZt2qT+/fun66+/vlUEkAAAAAAAANCa5RpChu7du6fx48enefPmpddeey2b1rNnz7T22mvnvSkAAAAAAACgNYSQRRE67rzzzitq9QAAAAAAAMAqqm1TFwAAAAAAAABoWZarJWTbtm2zn08++SStttpq2e8x/mN9Yv7ixYuXZ7MAAAAAAABASw0hBw8enIWK7dq1q/ZvAAAAAAAAoPVqUygUCk1diJaovLw8e62oqGjqogAAAAAAADQ7spbmzZiQAAAAAAAAQK6EkAAAAAAAAMCqMybkZptttszLxJiRM2bMWJ7NAgAAAAAAAC01hNx4442zUBEAAAAAAAAglxDy8ccfX57FAQAAAAAAgBbImJAAAAAAAADAqhtCvvHGG+mBBx4oOa9QKGTz3nzzzeXaxqJFi9L555+fysrKUufOnVPv3r3ThAkTlnk9++67b9aV7Omnn75c5QEAAAAAAABWYAh54YUXpiuuuKLkvAj8hg8fni6++OLl2saQIUPSiBEj0qBBg9LIkSNTu3btUv/+/dOkSZMavI577703Pfnkk8tVDgAAAAAAAGAlhJARBO633351zu/Xr1/661//2uj1T506Nd11113pZz/7WRZonnzyyenRRx9Nm2yySTrvvPMatI6FCxemc845J2tNCQAAAAAAAKziIeS7776bNtxwwzrnb7DBBumdd95p9PrHjRuXtXyM8LGoU6dO6YQTTshaNs6aNWup67jyyivT559/noYOHdrocgAAAAAAAAArKYTs2rVrvWM+xpiRXbp0afT6p02blrbYYotsO1Xtsssu2euzzz5b7/IzZ85Ml19+edZlbIwnCQAAAAAAAOSvfZ4r23XXXdOtt96adXe69tprV5s3b968NHr06NS7d+9Gr3/OnDlpo402qjW9OG327Nn1Lh/l2nHHHdO3vvWtlJfy8vKS02fMmJF69OiR23YAAAAAAACgVbaEjC5O586dm7VMHDt2bHrhhReyn/g9wseYd+655zZ6/QsWLEgdO3asNT26ZC3Or8tjjz2W7rnnnnT11Vc3evsAAAAAAADASm4Jufvuu6df/vKX6Xvf+14aMmRI5fRCoZCFhzfeeGPac889G73+6EJ10aJFtaYvXLiwcn4pixcvTmeccUY65phj0s4775zyVFFRsUwtJAEAAAAAAKClyzWEDCeeeGLq379/+t3vfpdeeeWVbFqM4zhw4MBUVla2XOuOblfffvvtkt20hrrWP2bMmPTyyy+nm266qdaYlR999FE2rVu3bmn11VdfrvIBAAAAAAAAKyCELIaBZ555Zu7r3WGHHbJuVefPn5+6du1aOX3KlCmV80uZOXNm+uyzz9Juu+1WMqCMn/vuuy8deuihuZcZAAAAAAAAWpsVEkJWFQHhrFmz0he/+MVsXMi2bRs/DOWAAQPSz3/+83TzzTdn40+G6J519OjR2bq7d+9eGTp+8sknaauttsr+/a1vfatkQHnYYYdlrTZPOumkbHkAAAAAAABgFQ4ho9vUAw44ID333HOV07beeuv0wAMPpM0226xR64ygMLp1HTZsWJo7d27q2bNnuu2227LuVEeNGlX5vsGDB6eJEydmY1GGCCOLgWRNm266qRaQAAAAAAAAkKPGN0tcijPOOCMbwzHGhVywYEF66qmn0pIlS9J3v/vd5VpvdJ161llnpbFjx2bbiG5Wx48fn/r27Ztb2QEAAAAAAIDGa1MoNhdspEceeSTtt99+taZH96vR6nGnnXaqnHbDDTekCy64IH344YeppSsvL89eKyoqmrooAAAAAAAAzY6spZW3hDz44IPTsccemz744INaIeSkSZOqTXviiSdSWVnZ8m4SAAAAAAAAaMkhZHSz+sILL2TjPd59992V03/4wx+ms88+O+2+++5p0KBBabvttkt33XVXNh0AAAAAAABouZY7hIzuVqdOnZoFjscdd1zWMnL27NnpkEMOyQLKaCob3a/26dMnPf7441kgCQAAAAAAALRcyz0mZFWvvvpqOumkk9Kzzz6bLr/88nTKKaek1ko/xQAAAAAAAI0na2nlLSGr2nzzzbPWjldeeWUaNmxY2mOPPbJgEgAAAAAAAGg9cgshP/300zR//vzs95NPPjlLpdddd920/fbbp5/97GdpyZIleW0KAAAAAAAAaMkh5AcffJAOO+ywtMYaa6S111479erVKz3zzDOprKws3XvvvWns2LHp2muvTV/5ylfSP/7xj3xKDQAAAAAAALTcEPKss85KkydPTjfddFMWOkYYefjhh6fPPvssmx+/T58+PQsh+/Tpk84999w8yg0AAAAAAAC01BDy4YcfTj/4wQ/Scccdlw455JD0q1/9Ks2aNSu9+OKLle/5whe+kEaNGpUeeeSRdP/99y/vJgEAAAAAAICWHEJ26NAhLViwoPLfCxcuTG3atEnt27ev9d699947Pf/888u7SQAAAAAAAGAVVjspXEYxHuTll1+eFi9enI0JecMNN6Stttoqbb311iXf36lTp+XdJAAAAAAAANCSQ8jhw4entm3bZmNCfvLJJ+lrX/taGjlyZDYNAAAAAAAAaH3aFAqFQlMXoiUqLy/PXisqKpq6KAAAAAAAAM2OrKV501wRAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAABovSHkokWL0vnnn5/KyspS586dU+/evdOECROWuty9996bjjzyyLTZZpul1VdfPW255ZbpnHPOSR9++OFKKTcAAAAAAAC0Js0qhBwyZEgaMWJEGjRoUBo5cmRq165d6t+/f5o0aVK9y5188slp+vTp6eijj07XXHNN2m+//dJ1112Xdt1117RgwYKVVn4AAAAAAABoDdoUCoVCagamTp2atXwcPnx4Gjp0aDZt4cKFadttt03dunVLkydPrnPZxx9/PO25557Vpo0ZMyYde+yx6ZZbbkknnnhi7uUtLy/PXisqKnJfNwAAAAAAQEsna2nemk1LyHHjxmUtH6NVY1GnTp3SCSeckJ588sk0a9asOpetGUCGww47LHuNFpIAAAAAAABAKwwhp02blrbYYovUtWvXatN32WWX7PXZZ59dpvW988472et6662XYykBAAAAAACA9qmZmDNnTtpoo41qTS9Omz179jKt74orrshaVg4YMCCXpsA1zZgxI/Xo0WO51g0AAAAAAADNUbNpCblgwYLUsWPHWtOjS9bi/Ia644470qhRo9I555yTNt9881zLCQAAAAAAAK1ds2kJ2blz57Ro0aJa0xcuXFg5vyH+9re/ZeNI9uvXL1122WXLXa66BkOtq4UkAAAAAAAAtHTNpiVkdLsaXbLWVJxWVla21HX885//TAcffHDadttt07hx41L79s0mgwUAAAAAAIBmo9mEkDvssEN65ZVX0vz586tNnzJlSuX8+sQYjfvtt1/q1q1beuihh9Iaa6yxQssLAAAAAAAArVWzCSEHDBiQlixZkm6++ebKadE96+jRo1Pv3r1T9+7ds2kzZ85ML730UrVl33nnnfSNb3wjtW3bNv3xj39M66+//kovPwAAAAAAALQWzaY/0ggaBw4cmIYNG5bmzp2bevbsmW677bb05ptvplGjRlW+b/DgwWnixImpUChUTosWkK+//no677zz0qRJk7Kfog022CDtu+++K31/AAAAAAAAoKVqNiFkGDNmTLrooovS2LFj07x581KvXr3S+PHjU9++fZc6FmS48sora83bY489hJAAAAAAAACQozaFqk0GyU15eXn2WlFR0dRFAQAAAAAAaHZkLc1bsxkTEgAAAAAAAGgehJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK7a57s6gOomv/Vgaim+tskBTV0EAAAAAABoFrSEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAWncIuWjRonT++eensrKy1Llz59S7d+80YcKEBi379ttvpyOOOCKttdZaqWvXrumQQw5Jr7/++govMwAAAAAAALQmzS6EHDJkSBoxYkQaNGhQGjlyZGrXrl3q379/mjRpUr3Lffzxx2mvvfZKEydOTBdccEH68Y9/nKZNm5b22GOP9P7776+08gMAAAAAAEBL1z41I1OnTk133XVXGj58eBo6dGg2bfDgwWnbbbdN5513Xpo8eXKdy95www3p1Vdfzdax8847Z9P233//bNlf/OIX6ac//elK2w8AAAAAAABoyZpVS8hx48ZlLR9PPvnkymmdOnVKJ5xwQnryySfTrFmz6l02wsdiABm22mqrtM8++6Tf/va3K7zsAAAAAAAA0Fo0qxAyuk/dYostsvEcq9pll12y12effbbkcp9//nl67rnn0le/+tVa82LZGTNmpI8++mgFlRoAAAAAAABal2bVHeucOXPSRhttVGt6cdrs2bNLLvfBBx+kRYsWLXXZLbfccpnLVF5eXnL6Sy+9lDp06FDnfGgtPvns49RSrN5hjaYuAgAAAABAqxGNyCJroXlqViHkggULUseOHWtNjy5Zi/PrWi40ZtnGatOmzSp1YcSFGnr06NHURaGVWRnBnfpNS6eO05qo77Qm6jstnTpOa6Ce05qo77Qm6vuqI3KWLl26NHUxaA0hZOfOnbMWjTUtXLiwcn5dy4XGLLs0FRUVqTkotshsLuWFZaF+09Kp47Qm6jutifpOS6eO0xqo57Qm6jutifoOrXBMyOg6Nbpkrak4raysrORy66yzTtYKsjHLAgAAAAAAAC04hNxhhx3SK6+8kubPn19t+pQpUyrnl9K2bdu03XbbpWeeeabWvFh2s802S2uuueYKKjUAAAAAAAC0Ls0qhBwwYEBasmRJuvnmmyunRRero0ePTr17907du3fPps2cOTO99NJLtZZ9+umnqwWRL7/8cnr00UfTwIEDV+JeAAAAAAAAQMvWrMaEjKAxAsNhw4aluXPnpp49e6bbbrstvfnmm2nUqFGV7xs8eHCaOHFiKhQKldO++93vpltuuSUdcMABaejQodlgpiNGjEgbbLBBOuecc5pojwAAAAAAAKDlaVYhZBgzZky66KKL0tixY9O8efNSr1690vjx41Pfvn3rXS66W3388cfT2WefnS699NL0+eefpz333DNdddVVaf31119p5QcAAAAAAICWrk2hanNBAAAAAAAAgNY0JiQAAAAAAACw6hNCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIArCBDhgxJbdq0SW+++WZTFwVWGX/605/S1772tbTWWmtl18ehhx66Ure/5557Ztul+bnkkkuyc/f44483eJm4/8YycT/m/xfHMI5LHNOWqjXsI0sXdSDu+wAANA0hJACQWvvDqao/7dq1S+utt17ae++90x133JFWBb/+9a+zssXr8u5fqZ9leaDf2LJX/enYsWPadNNNs1DgxRdfTK3Jl7/85eyntYpA6JBDDklvvPFGOv7449PFF1+cvvWtb6XWQgC6Yu51zS1kaG7lXVGfT8tLwExo7Z+rAACruvZNXQAAgFVBhCHhs88+Sy+99FL6/e9/nx577LH0zDPPpBEjRjRqnT/72c/SD37wg/TFL34xrSr7V8rKeHi3/fbbV7Z4+89//pMFn7fddlv67W9/mx599NHUp0+fFV4Gmt6f//zntHDhwvSLX/wiffvb326SMowZMyZ98sknTbJtls/pp5+ehdYbb7xxg5eJ++/06dPTF77whRVaNlY9u+yyS3bu44tFAABA0xBCAgD8Xzd/Vf3lL39J++67b7r66qvTGWec0aigbqONNsp+VgVN3R3dDjvsUK0MhUIhHXfccVkQOWzYsCzwpeWbPXt29lpWVtZkZViWAItVS4RJyxoodejQIW211VYrrEysulZffXXnHgAAmpjuWAEASthnn32yh5cRlj399NOV0//+97+nww8/PHXr1i3rVnSTTTZJ3/3ud9OcOXMaNCZk1e7j4vdo1RMP1Tt16pS++tWvpvHjx1dbR3TZF2FdiNeq3Zo257Emo/xx3MLUqVOrzfvjH/+Y+vfvnx2XOMY9evRI5557bvrwww/r7IZt/vz56fvf/372e4QOVQPPaNkaXX/GvFhfnLvdd9893XjjjbXWF++Nc9O9e/e02mqrpQ022CBrsffyyy/Xe35vuummtN1222XnMZY5+eSTsxafNccme+utt7KfquexaleC999/fzr66KPTFltskbp06ZL9fOUrX0nXXHNN+vzzz0sey1deeSWrk2uvvXb2/hhv8cEHH6y3m8R//etfWauyzTbbLDsm6667bjr44IOr1fWGitasffv2zVqade7cOTsO0Qp40aJFtfa/2CJ3r732anB3wFX3Y8KECdm5W2ONNdL666+fXRPFejFt2rR04IEHZsch5sf+lLpGSnWJWnXsuGeffTYdcMAB2ZiVEWLsscceafLkycs05mvNseiK1/3EiROzf1c9/zW75VyWc/PRRx+ln/zkJ2nbbbdNXbt2TWuuuWZ2vRx55JHZvaohiscjzteFF16YdZVcvO5+/OMfp08//bTkcvFFjf322y+ts8462fujzkbL76r1vuj111/PromePXtmdSSWiXpyyimnpPfff7/B97qaY0IW60aIY1t1mZrHvup1FuWOaf/85z9L7tvdd9+dzR86dGi16R988EH2pYmtt94624+o8/FZEeOcNkRDyrss11VDvPvuu+mEE07I7kuxnvhCSHz5oz4N3c+Gfj4tXrw43XDDDVmL96incV3tuOOO6brrrqvzvhafC1GPoyVr1K/4Qs83vvGN7LiEOF5RV0PsT9VtF+959Y0J+eqrr6bBgwdn6497fXwxIv4d02uqWu/GjRuXtbCMfYh6HJ/hb7/9dmqoqvezuE/H/Tru23HfGjBgQMnth2i9Hec/zl+8P+5xu+66a7rzzjtrvbfqfsdxjPtZlLUhfzdU3ddYd3z+xL7G8YnP2GL9ix4M4vzH+YyyH3PMMZXXck2N/bspr8/Vovfeey9bR9SlKEd5eXkaPXp0vccDAIDlpyUkAEAdIoAMxYfGERDGg7SYHg8L40FaPFyLMCu6b500aVLlQ9GliQdm8SAzgoZ4eBcPfePBd4yXF11WRkgT4kFahCGx/pgXDyCLYnpLOr4hQo94CBoPTCNQioeWzz33XPr5z3+eHnroofTkk09mDz2ripAkxvCMYxgPqWN+8TzEQ96BAwdmD04jeDjqqKOy0CrChyuvvDKdeuqplet55JFH0je/+c2sS96DDjooC0wiELr33nuz9URrzZ122qnWfpx33nlZcBrLxPbjfbfcckt67bXXsge1IQLQCOCiZW0466yzKpevek4jxGnbtm3q3bt39nA8HrjGOs4888wshBo7dmyt0DQeYs+bNy970NyrV68s8DnssMOyILeUf/zjH1k543j169cv2+d4OBsB6P/8z/+k++67r85la7rggguyB+MRGEdYGw/GH3744Wx6HJMILeIBf3H/46FxhC/HHntsZevihrYy/sMf/pBdg1EvIryKYDAe5MfD6ihDhCQRUEbg8vzzz6cHHnggOxZRf+KYNkR0vxz1Ih7un3jiiWnmzJnpnnvuydYd4eSWW26ZGiOu1dj/KG9c+1W7R666/8tybuL6iTodx6FY3vbt22d1NupgHIsIEBrqiCOOyOpY3NsiyI97TlyLcUzi2Fe9TiMciGsnwpC4vuI6jXN7xRVXZMf9iSeeqLw/RdCw8847Z18UiLLHPTS65I1xQaM+R+AaQWtj7nXxnjiWcd+I+3HV4KG+MRej/kX9jK55o2vgmoohXdX1xXmLdUZ9i2Mbx/6///1vVifj9zgmJ510Ur3HuKHlbeh1tTRRd+L+ENdB1J/4ifMR10/Us1KWZT8bcs6K99Mod1w/sT8RKkUd/d73vpemTJlS674W98+oXzFGcwTwm2++eZo7d25WFyPMjLoaZYx7+ciRI6t19108zvWJev71r389C/Fj/dtss012L/3Nb36T7Ut8BkedrSm2HddCLBNfToiyx+d2fJ7E/SGCrYaKz5U4p3Gvjn2J5eNeE8clrumq95rYz/iMiy9axGdQfKkmwts4pnE8Kyoq0qWXXlprG/F5GfUoznssE/WhIfUmXHvttVn54rhG+aLOXXXVVdm9Kc51hK/xmROhXpQ3jl2sP5apqrF/N+X5uVo8hrvttlu2/1GO+Jvgd7/7XXZc4vMh7gkAAKwgBQCAViz+HCr1J9GECRMKbdq0yX7efPPNwkcffVRYZ511Cm3bti389a9/rfbeyy+/PFvHvvvuW236sccem01/4403KqfF78VtXnLJJdXe/8gjj2TT999//2rTR48enU2P18bu38UXX1zy52c/+1lhRSqWPY5FVZ9//nlh8ODB2by99947m/boo49m/951110L8+bNK7mes846q9r0TTbZJJu+zz77FD7++ONq8/79738XunbtWujQoUPh8ccfr1W2WbNmVf7+wQcfFNZaa63CuuuuW6ioqKj2vueff77QpUuXwo477ljy/Hbv3r3w1ltvVU7/7LPPCrvvvns2b8qUKbXKGz91ee2112pNW7JkSeWxeuqpp6rNi2MX02+44YZq0x966KHKc1+13kTZevToUejYsWOtY/L2228XysrKChtuuGFh4cKFhaWZPHly5f7PmTOn2jYOPPDAbN5ll11WbZmoczH9scceKzRU8dy3a9euWpnjuHz961/P5q299tqF3/zmN9WWO/7447N5999/f7Xpe+yxR61rPspT6niFX/7yl9n0U089danXd831xf4ubduNPTfPPfdctq5DDz201rri2ESdbohimTbffPNqyyxYsKDQp0+fbN6YMWMqp8f9cLXVViusueaahenTp1dbVxyjeP9JJ51UOe2aa67Jpl199dW1th3X7CeffNLge11d9SemxX6UUrznVr0Hxb594QtfKGywwQbZca8q6nLUtZ122qnWcYrPgzvvvLPa9LhXbb/99oVOnToV3nnnnUJD1FfexlxXdYnzUOq++fTTTxfat29fZx1dlv1s6Dk7/fTTC4sXL66cHr+Xukbj/htli2v6hRdeqPe+XercLu06jM+erbbaKpte855x1113ZdO33HLL7BqquQ9R5+O6q+qoo47K5t19992Fhiger/h54IEHqs2La6TqZ2LNe80VV1xRbXrU4379+mXna9q0abX2O37i/rUsivsan50vvvhi5fS472yzzTbZ30Dxt1Bd9+Kq5Viev5vy/FwtHosTTjihWh2MuhbX+tZbb71MxwgAgGUjhAQAWrWaId0FF1xQOPzww7MHUzH97LPPzt4XDyvj3/HAsaZ4OPblL385m1/1oVl9IWQ8MKv6MKxo4403zoKwvEPIun7iQfyKVCx7PLwuHuN4IL7DDjtk0zt37lx48skns/dGmBLTSj14DrHM+uuvXzKEfPbZZ2u9/+c//3k274wzzlhqOYsPf6+77rqS86PMMb9qQFk8v7fcckut9996663ZvGuvvXaZHpbW5e9//3u2vh//+MeV02bOnJlN69mzZ7UH5kXFh8JV60087I9pQ4cOrfc4PPjgg0st04knnpi996abbqo17+WXX84ePG+66aa5hZBHH310rXm33XZbNi8eTtcUD8lLhf31hZC77bZbrfV8+umnWSjyla98ZYWGkMt6boohZKl70rIolqlq0FhzP/bcc8/KaZdeemk2bdiwYbXeHyFmBDURVBXD0mIIWaqe1LSyQsiqAd348eOrTR8+fHg2feTIkZXT4v4S0wYMGFDvubv++uuXuo9LK29jrqtSot6uvvrq2fn48MMPa80v1t+qdbQx+1nfOYv7UoRQEZ7XDHuLwWYEaAMHDqycFmFlrG/EiBFL3cfGhJCTJk2q/LJLKf/zP/+TzZ84cWKtevfDH/6w1vuLX54555xzCg1RPF41g8YQfxPEFxFifoT94b333sv+HvnqV79acn3Fc3buuefW2u/4zFxWxX298MILa82Lz5+Yd8wxx9Sa9+tf/zqbF69Fy/N3U56fq7FMXAv/+c9/as3r27dvNj8CUwAAVgzdsQIA/F83oCG6HIxu5IrdOsb4fMVuEkN0iVZTdIEYY3dF93XRXdrGG2+81O1FV2HR1VxNMRZhdKG2oro+baxSY2pFV3wN7Uozuqsrjr8WXT3GmEzRDW10Pxpd4YXY75gXXaTFT03R7eq///3vbNyp6L6xKLr2i25Ia3rqqaey1/3333+p5Sse8yhjqX2NcRfD9OnTK8tbFGN5ljqPIbpJXRaxb8OHD8+6no0uFKMbxKqqjj0W3feF6IqzVHej0QVfdCtYaj+jy8W6xkkr7ufSumSt75qI8QG/9KUvZV1uRpeyMabc8ip1nGOcslCq29HozjZE96TLs42okzEe2bKey2W1rOcm6mHcR2LctlgmukiMcx770NAuF6uK7iVrivXFfSruaw057zE2XIz199e//jXr3jK6yYyuK6Mb0dNOOy3rXjG6mY1uEaP8NcfmXJni/hXdO0bXq9GtZFH8O855dHNZ89xEXS51buK+VDw3yyuv6yqOf4wjGJ9lpd4XXWzWHBsy7/2M+2Z03xndqZbqLjTEmJNV17cs9+28j29xenQRGnU+PtdX1L2+1PUW11pcczNmzMi2H12XRtexS5YsqXNsy+jutq5zEl2+N+X9dnn+bsrzWIeogzW7cq+5zuj2GACA/AkhAQAaENLFQ9kQ4Vkpxekx7lBD1DXGWTyYi7GeVtWQtuZD7IaGkDHeUoyHt7QAbvHixSW3VdXHH39cLYSM8ehKhRnFc1F8OLq0bYcIJZa27YacyziPIR4eN1SUN8Yhi4AhHh4PHjw4Gxsz1lUc+yzGsapZJyMgK6XU9OJ+lgp5l7afjbkmYkzFKHseIWSpdRSPc33zig/pl/e6XJZz2RjLem4isIix0f73f/83jRs3Lp1//vnZ9DXXXDO73mIsuGV5qF6qvsR+x7iEMR5fY++FEaRMnTo1C1Bi3NUYC6/48H/o0KHpjDPOSE0hxkqMUC/G+IsAIgLUCE1eeOGFbBy82O+a52bChAnZz/JcNyvrulra/WHDDTesNS3v/SyuLwL0+u7rVde3LPftxliez/K87vUNOS/FchaPYYSR8bMs56TUOV6Z99tV5VjXtb7lXScAAA1T+yvTAADUUnzo9s4775ScP2fOnGrva2n+rxv/aj8RQuYpjl0EAaW2VfUnQo2q6mpNVXzoWLX1YH3bLraErG/bEe6sKL/61a+yAPLiiy9OU6ZMSTfccEPWeijCmyOPPLLW+4utOt59992S6ys1vbifv//97+vdzyjD0rT2a6LY+jSC85oa+mWE5T03cb1cddVVadasWVnQE3Voq622Stddd1069dRTl2n7pepL7Nt7771XrQVRY8771ltvne6+++4sUHnmmWfS5Zdfnn3Z4swzz0yjRo1KTSWC/gj2o2yh2DKw5nVe3Jf4IkB952b06NHLXaa8rqvi/LruD6XWn/d+Ftd32GGH1bu+uO815r7dGKvKfWtp56W4/eLr2WefXe8xfOyxx2qtqylbGq9KxxoAgKYlhAQAaIDoYjA8/vjjJR/U/+1vf8t+32mnnXLfdrHb1pb+Tf0+ffpkLZIqKipyW194+OGHG/ze4nlcUeJc1nUeX3vttez18MMPrzVv4sSJtaZFV5zFLhRLtZ6NLgVX5H7Wd03EvkS3fJtuummdLVCauwgAQwSANUXQtqzX8vKem549e2ZdSEddiRaQEWYui1J1LOpQlLV4rpd23iN8jW6Co4vkCB5LtTqKrhyj1WZ0Ixvuv//+5b7XRSDcmPtjhJCxbISP0YIryhQtIKt2z7oi7g/1lTev6yrC6NVXXz07H8UWaVWVWn9j9rO+cxZliHJGF6sNbZG8LPftxtSX+o5vKIZ5K+KzfGnXW+xH8b5dLGe0io/6sqI/m5rz3031fa4CAND0hJAAAA0Q3fNF15jxkLo4ZlXR1VdfnbXk+PrXv96g8SCXVbHr0eiCryWLlh7hpJNOSrNnz641P8ZHrHns6xOtmaIF14033piNUVdT1bGrjjvuuOxheXQZGF1H1hQhX10PrZf1XMa4agsWLKg1r9i1bc3txHhZ0bVmTVHXojVqBBM33XRTtXnR7WXN8SBDjBvYo0ePdP3112fjTpYSoWaMJbc0xx9/fPYarTWLY8WFeBgc3WzGMYtQrKUqjrdWswvf559/PmtJtqzX8rKem7jnxLihNUWQH637Yqy9ZfGTn/yk2lhrCxcuTMOGDau8PopinNwYM/Haa6+tDM6LLrroojR//vzsPR07dsym/f3vfy8ZghVbgkVQtrz3uliuVBi8NNElbIxXF/eVOGdRj2MsyNi/muPTxdiK0ZXsrbfeWnJdcd6rdlvb2PLmdV3FPgwaNCh99NFHtcYSjJD89ttvr7VMY/azvnMWofP3vve9rMVbdLtb6r4X81588cXKf0cL3lgu6mPV6aXu2/FFgGjttyz1JcYj3XLLLbOwL7oxrir+HcFYdNMbYzOuSNGV8vjx46tNixbMMR7kXnvtVdniP7obj/MY5yyOSamwLZap2pq0tf3dVN/nKgAATc+YkAAADRAti+Kh7MCBA9Mee+yRvcaDs3jA/qc//Skbe6lmEJSXXXfdNXtQHw/tojvD4jhP8XC3od2Y1XwIXfNBYbFVXVPaZ599sm4aI/jYfPPNU//+/bMWPzHW1VtvvZW1HIkHwxGwNUS0aLrjjjvSgAEDsoe6+++/f+rVq1cWkjz33HNZCFB8cBsPMeMBdHQbGC1xoizl5eXZA+54X4Q/cewjmFnefYxxvfbbb7/Ut2/fLKjZfvvt00EHHZS1yho+fHg666yzstY4cQyii814UP3Nb36zssvIqiKwiofq3/3ud7PgKvYvgql77rknC7WiNVyx29BiMBEBQ79+/bLWXjEuXpz7qF+xn1G2WD6CgarhUCmx7HnnnZeuvPLKtO2222bHuUuXLlkLphhXL87Vueeem1qqOL5xjuIBewQjvXv3zsKQOOYx77e//W3J8x9jPsb5jPodQWGEDcccc8wyn5voOjjWE+OIRqvDsrKy7EF8bD9anRXHiGyoWEfU+TiPUZZYT4QbUZYoX9WwPO5Fp512WtaC6Ygjjkjrr79+dn3GdRKt36644orK948dOza7N0Z9iJA1gqNY7wMPPJDV/6jvy3uvi+N61113ZddRlCnKH9dX/DTkywoR2F9wwQWV/y4l7iURWEYAeM0112TnO764EOc+7idR52P/IzRamvrKm+d19dOf/jT95S9/yY5nhFixbNSfuJdE/YvxMJd3P5d2ziKYjrr6y1/+Mjvnse4Y7zGCzLi/PfHEE+myyy5L22yzTbZcvEZX1KecckrWkq54ncW64xqIL5YUWyvG53KUL4LDCOoiPIxWcQcffHB2Lywl7unR8nXffffNurmO9Uedffnll7NWuTGm6pgxY6rdN1eEOPfxeRM/0Yo5WqzGOY7QLva/ZjgZx+pHP/pRdj3FeYwxJePLOtOnT8+OS9yH4vOyNf7dVN/nKgAAq4ACAEArFn8OLcufRFOnTi0ceuihhfXWW6/QoUOHQvfu3QunnHJK4e2336713mOPPTZb9xtvvFE5LX6PaTGvlD322KNkeR5++OFCnz59Cl26dKksc9X1Lm3/6vsZPXp0YUWJdde3v6X87W9/KwwcOLCw0UYbZcc4jvX2229fOPvsswtPP/10tfdusskm2U99XnjhhcIxxxxTKCsry9bXrVu3Qt++fQs33XRTrffGMT3ttNMKPXv2LHTs2LGw5pprFrbccsvC0UcfXbjvvvuWen6LHnvssWzexRdfXG36xx9/nNWXL37xi4V27drVOjYVFRWFgw46qLD++usXVl999cJOO+1UuOWWW+qtN9OnTy8cdthhhS984QvZMlFPxo8fXxg+fHi2TM1yh3fffbdw/vnnF8rLywudO3fO6lXs8+GHH14YO3Zs4bPPPis01J133lnYbbfdCmussUZ2zLbZZpvCpZdeWliwYEGt98bxiDLF8VnWOlSqntZ1nENdx6zUNVbfeuqrZzNnziwcccQRhbXXXrvQqVOnwle/+tXCPffcU+f6Fi9eXBg2bFhh0003LbRv3z57T5SnMedm1qxZ2bq+9rWvFTbYYIPCaqutltWr/fbbr/DQQw/Ve0xLHY+FCxcWfvjDHxa+/OUvZ+uKMl5yySXZ9FL++Mc/Fvbdd9/CWmutlb2/R48ehXPPPbcwb968au976qmnsjrfq1evyuMU7x0yZEjh+eefX6Z7XV31J47ZUUcdlV3bbdu2rXbsl3bP/e9//1vo2rVr9p5tt9223mM1f/78wmWXXZZdl1G+2Jc4Xv3798/uJ3F9N0R95W3MdVWfOXPmFI477rjsPhrljXtpXEv11fll3c+lfT59/vnnhTFjxhT23nvvrA7EfTjux7F/sZ24jmqaPHly4Zvf/GZ2L4z3x+dBv379Cr/73e+qve/VV18tHHjggYV11lmn0KZNm2r3ivr28aWXXsru6xtuuGF2LcbroEGDsunLct9aWv2q7372wAMPZMct7ttx/479ffnll0sut2jRosK1115b2HXXXbP6Gtdc/P0Rx/Sqq64qvPfeew2+n9Wnvn1t7L14ef9uWt7P1VL32YZsDwCAfLSJ/zR1EAoAAOQrWgZFq6aXXnop634QSokufaMVo/8thBXv17/+dda98ejRo9OQIUOaujgAALDCGRMSAACaqRgf7p133qk1PbpgjC4Xo2tDASQAAADQFIwJCQAAzdSnn36aunfvno15GeOatW/fPlVUVKQJEyak1VZbLRszEgAAAKApCCEBAKCZ6tChQzrllFPSo48+mqZMmZI++eSTtN5666WBAwemH/zgB2nHHXds6iICAAAArZQxIQEAAAAAAIBcGRMSAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyFX7fFdH0YYbbpj++9//po033ripiwIAAAAAANDszJw5M3Xp0iW98847TV0UGkFLyBUkAsjPPvusqYsBAAAAAADQLEXOEnkLzZOWkCtIsQVkRUVFUxcFAAAAAACg2SkvL2/qIrActIQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAABadwi5aNGidP7556eysrLUuXPn1Lt37zRhwoQGLfvnP/857bXXXmm99dZLa621Vtpll13S2LFjV3iZAQAAAAAAoDVpdiHkkCFD0ogRI9KgQYPSyJEjU7t27VL//v3TpEmT6l3uD3/4Q/rGN76RPv3003TJJZekyy67LAsxBw8enK666qqVVn4AAAAAAABo6doUCoVCaiamTp2atXwcPnx4Gjp0aDZt4cKFadttt03dunVLkydPrnPZCCArKirS66+/njp27JhNW7x4cdpqq61Sly5d0j//+c9cy1peXp69xjYBAAAAAABYNrKW5q1ZtYQcN25c1vLx5JNPrpzWqVOndMIJJ6Qnn3wyzZo1q85l58+fn9Zee+3KADK0b98+65o1WkQCAAAAAAAArTCEnDZtWtpiiy1S165dq02PsR3Ds88+W+eye+65Z5aUX3TRRem1115LM2bMSD/5yU/SM888k84777wVXnYAAAAAAABoLdqnZmTOnDlpo402qjW9OG327Nl1Lhvh4xtvvJGNBXnppZdm01ZfffV0zz33pEMOOWS5mwLXFCFnjx49Gr1eAAAAAAAAaK6aVUvIBQsWVOtOtWqXrMX5dYnlohXlgAED0p133pl+85vfpK9+9avp6KOPTk899dQKLTcAAAAAAAC0Js2qJWSM3bho0aJa0xcuXFg5vy6nn356Fjb+4x//SG3b/r/s9YgjjshaMp555plpypQpjSpTXYOh1tVCEgAAAAAAAFq6ZtUSMrpdjS5ZaypOKysrK7ncp59+mkaNGpUOOOCAygAydOjQIe2///7ZuJDxHgAAAAAAAKCVhZA77LBDeuWVV9L8+fOrTS+2Yoz5pbz//vtp8eLFacmSJbXmffbZZ+nzzz8vOQ8AAAAAAABo4SFkjOcYYeHNN99cOS26Zx09enTq3bt36t69ezZt5syZ6aWXXqp8T7du3dJaa62V7rvvvmotHj/++OP0wAMPpK222qrerlwBAAAAAACAFjomZASNAwcOTMOGDUtz585NPXv2TLfddlt68803s+5WiwYPHpwmTpyYCoVC9u927dqloUOHpgsvvDD16dMnmx9hZizzr3/9K/3mN79pwr0CAAAAAACAlqVZhZBhzJgx6aKLLkpjx45N8+bNS7169Urjx49Pffv2rXe5H/7wh2nTTTdNI0eOTD/+8Y+zFpSx7Lhx49Lhhx++0soPAAAAAAAALV2bQrG5ILkqLy/PXisqKpq6KAAAAAAAAM2OrKV5a1ZjQgIAAAAAAACrPiEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAADQukPIRYsWpfPPPz+VlZWlzp07p969e6cJEyY0ePm777477brrrqlLly5prbXWSl/72tfSo48+ukLLDAAAAAAAAK1JswshhwwZkkaMGJEGDRqURo4cmdq1a5f69++fJk2atNRlL7nkknTUUUel7t27Z+u49NJLU69evdLbb7+9UsoOAAAAAAAArUGbQqFQSM3E1KlTs5aPw4cPT0OHDs2mLVy4MG277bapW7duafLkyXUu+9RTT2WtHn/xi1+ks88+e4WXtby8PHutqKhY4dsCAAAAAABoaWQtzVuzagk5bty4rOXjySefXDmtU6dO6YQTTkhPPvlkmjVrVp3LXn311WnDDTdMZ555Zorc9eOPP15JpQYAAAAAAIDWpVmFkNOmTUtbbLFF6tq1a7Xpu+yyS/b67LPP1rnsX/7yl7Tzzjuna665Jq2//vppzTXXTBtttFG67rrrVni5AQAAAAAAoDVpn5qROXPmZMFhTcVps2fPLrncvHnz0nvvvZeeeOKJ9Oijj6aLL744bbzxxmn06NHpe9/7XurQoUP6zne+s1xNgWuaMWNG6tGjR6PWCQAAAAAAAM1ZswohFyxYkDp27FhrenTJWpxfSrHr1ffffz/ddddd6cgjj8z+PWDAgLTddtulSy+9tNEhJAAAAAAAANCMQ8jOnTunRYsW1Zq+cOHCyvl1LReixWMEj0Vt27bNAsloGTlz5sysdeSyqmsw1LpaSAIAAAAAAEBL16zGhIxuV6NL1pqK08rKykout84662StJdddd93Url27avO6detW2WUrAAAAAAAA0MpCyB122CG98soraf78+dWmT5kypXJ+KdHiMeb9+9//Tp9++mm1ecVxJNdff/0VVm4AAAAAAABoTZpVCBldqS5ZsiTdfPPNldOie9bRo0en3r17p+7du2fTomvVl156qdqy0e1qLHvbbbdV68b19ttvT9tss02drSgBAAAAAACAFjwmZASNAwcOTMOGDUtz585NPXv2zELFN998M40aNaryfYMHD04TJ05MhUKhctp3vvOd9Ktf/SqddtppWWvKGP9x7Nix6a233koPPPBAE+0RAAAAAAAAtDzNKoQMY8aMSRdddFEWIMY4jr169Urjx49Pffv2rXe5zp07p0cffTSdd9556dZbb03//e9/sy5aH3zwwdSvX7+VVn4AAAAAAABo6doUqjYXJDfl5eXZa0VFRVMXBQAAAAAAoNmRtTRvzWpMSAAAAAAAAGDVJ4QEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAJp3CPnhhx+u7E0CAAAAAAAAzTWEPPPMM+ud/9FHH6V+/frluUkAAAAAAACgJYeQ1157bbrqqqtKzluwYEE64IAD0nPPPZfnJgEAAAAAAICWHEIOGzYsnXvuuemee+6pNn3RokXp4IMPTk899VS6++6789wkAAAAAAAAsIppn+fKLrvssvTWW2+lY445JpWVlaVdd901LV68OA0cODA99thj6fbbb8/CSAAAAAAAAKDlyrUlZBg9enTq06dPFjZOnz49DRo0KD344IPp5ptvTkceeWTemwMAAAAAAABackvI0KFDh3Tfffel3XbbLe20007p008/TVdffXU6/vjj894UAAAAAAAA0NJCyJkzZ9Y578Ybb0wHHXRQOuGEE9IhhxxS7b0bb7zx8mwWAAAAAAAAWIW1KRQKhcYu3LZt29SmTZs658eqS81fsmRJaunKy8uz14qKiqYuCgAAAAAAQLMja2nFLSF/9KMf1RtCAgAAAAAAAK3PcoWQl1xySX4lAQAAAAAAAFqEtk1dAAAAAAAAAKBlyTWEvPvuu9PgwYPrHB8y5t1zzz15bhIAAAAAAABoySHk9ddfX+cYkTG9Xbt26brrrstzkwAAAAAAAEBLDiGnT5+edtxxxzrnx7wXX3wxz00CAAAAAAAALTmE/Oijj9Jqq61W5/xoCfmf//wnz00CAAAAAAAALTmE3HjjjdOUKVPqnB/zysrK8twkAAAAAAAA0JJDyAMPPDDdfvvt6fe//32teX/4wx/SnXfemQ466KA8NwkAAAAAAACsYtoUCoVCXit77733snEfZ8+enfbcc8/K8SGnTZuWHn/88awV5N///vfUrVu31NKVl5dnrxUVFU1dFAAAAAAAgGZH1tK8tc9zZeutt16aPHlyOvXUU9PDDz+cHnvssWx6mzZtUv/+/dP111/fKgJIAAAAAAAAaM1yDSFD9+7d0/jx49O8efPSa6+9lk3r2bNnWnvttfPeFAAAAAAAANAaQsiiCB133nnnFbV6AAAAAAAAYBXVtqkLAAAAAAAAALQsy9USsm3bttnPJ598klZbbbXs9xj/sT4xf/HixcuzWQAAAAAAAKClhpCDBw/OQsV27dpV+zcAAAAAAADQerUpFAqFpi5ES1ReXp69VlRUNHVRAAAAAAAAmh1ZS/NmTEgAAAAAAAAgV0JIAAAAAAAAYNUZE3KzzTZb5mVizMgZM2Ysz2YBAAAAAACAlhpCbrzxxlmoCAAAAAAAAJBLCPn4448vz+IAAAAAAABAC2RMSAAAAAAAAGDVDSHfeOON9MADD5ScVygUsnlvvvnmcm1j0aJF6fzzz09lZWWpc+fOqXfv3mnChAnLvJ59990360r29NNPX67yAAAAAAAAACswhLzwwgvTFVdcUXJeBH7Dhw9PF1988XJtY8iQIWnEiBFp0KBBaeTIkaldu3apf//+adKkSQ1ex7333puefPLJ5SoHAAAAAAAAsBJCyAgC99tvvzrn9+vXL/31r39t9PqnTp2a7rrrrvSzn/0sCzRPPvnk9Oijj6ZNNtkknXfeeQ1ax8KFC9M555yTtaYEAAAAAAAAVvEQ8t13300bbrhhnfM32GCD9M477zR6/ePGjctaPkb4WNSpU6d0wgknZC0bZ82atdR1XHnllenzzz9PQ4cObXQ5AAAAAAAAgLq1Tznq2rVrvWM+xpiRXbp0afT6p02blrbYYotsO1Xtsssu2euzzz6bunfvXufyM2fOTJdffnm69dZbs/Ek81BeXl5y+owZM1KPHj1y2QYAAAAAAAC02paQu+66axbwzZs3r9a8mDZ69OjUu3fvRq9/zpw5aaONNqo1vTht9uzZ9S4f3bDuuOOO6Vvf+lajywAAAAAAAACsxJaQ0cXpXnvtlbVM/NGPfpQFfsUWjD/5yU/S3Llz07nnntvo9S9YsCB17Nix1vTokrU4vy6PPfZYuueee9KUKVNSnioqKpaphSQAAAAAAAC0dLmGkLvvvnv65S9/mb73ve+lIUOGVE4vFApZeHjjjTemPffcs9Hrjy5UFy1aVGv6woULK+eXsnjx4nTGGWekY445Ju28886N3j4AAAAAAACwkkPIcOKJJ6b+/fun3/3ud+mVV17JpsU4jgMHDkxlZWXLte7odvXtt98u2U1rqGv9Y8aMSS+//HK66aabao1Z+dFHH2XTunXrllZfffXlKh8AAAAAAACwAkLIYhh45pln5r7eHXbYIetWdf78+alr166V04tdrMb8UmbOnJk+++yztNtuu5UMKOPnvvvuS4ceemjuZQYAAAAAAIDWZoWEkFVFQDhr1qz0xS9+MfXu3Tu1bdu20esaMGBA+vnPf55uvvnmbPzJEN2zjh49Olt39+7dK0PHTz75JG211VbZv7/1rW+VDCgPO+ywrNXmSSedlC0PAAAAAAAArMIhZHSbesABB6TnnnuuctrWW2+dHnjggbTZZps1ap0RFEa3rsOGDUtz585NPXv2TLfddlvWneqoUaMq3zd48OA0ceLEbCzKEGFkMZCsadNNN9UCEgAAAAAAAHLU+GaJS3HGGWdkYzjGuJALFixITz31VFqyZEn67ne/u1zrja5TzzrrrDR27NhsG9HN6vjx41Pfvn1zKzsAAAAAAADQeG0KxeaCjfTII4+k/fbbr9b06H41Wj3utNNOldNuuOGGdMEFF6QPP/wwtXTl5eXZa0VFRVMXBQAAAAAAoNmRtbTylpAHH3xwOvbYY9MHH3xQK4ScNGlStWlPPPFEKisrW95NAgAAAAAAAC05hIxuVl944YVsvMe77767cvoPf/jDdPbZZ6fdd989DRo0KG233XbprrvuyqYDAAAAAAAALddyh5DR3erUqVOzwPG4447LWkbOnj07HXLIIVlAGU1lo/vVPn36pMcffzwLJAEAAAAAAICWa7nHhKzq1VdfTSeddFJ69tln0+WXX55OOeWU1FrppxgAAAAAAKDxZC2tvCVkVZtvvnnW2vHKK69Mw4YNS3vssUcWTAIAAAAAAACtR24h5Keffprmz5+f/X7yySdnqfS6666btt9++/Szn/0sLVmyJK9NAQAAAAAAAC05hPzggw/SYYcdltZYY4209tprp169eqVnnnkmlZWVpXvvvTeNHTs2XXvttekrX/lK+sc//pFPqQEAAAAAAICWG0KeddZZafLkyemmm27KQscIIw8//PD02WefZfPj9+nTp2chZJ8+fdK5556bR7kBAAAAAACAlhpCPvzww+kHP/hBOu6449IhhxySfvWrX6VZs2alF198sfI9X/jCF9KoUaPSI488ku6///7l3SQAAAAAAADQkkPIDh06pAULFlT+e+HChalNmzapffv2td679957p+eff355NwkAAAAAAACswmonhcsoxoO8/PLL0+LFi7MxIW+44Ya01VZbpa233rrk+zt16rS8mwQAAAAAAABacgg5fPjw1LZt22xMyE8++SR97WtfSyNHjsymAQAAAAAAAK1Pm0KhUGjqQrRE5eXl2WtFRUVTFwUAAAAAAKDZkbU0b5orAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAArTeEXLRoUTr//PNTWVlZ6ty5c+rdu3eaMGHCUpe7995705FHHpk222yztPrqq6ctt9wynXPOOenDDz9cKeUGAAAAAACA1qRZhZBDhgxJI0aMSIMGDUojR45M7dq1S/3790+TJk2qd7mTTz45TZ8+PR199NHpmmuuSfvtt1+67rrr0q677poWLFiw0soPAAAAAAAArUGbQqFQSM3A1KlTs5aPw4cPT0OHDs2mLVy4MG277bapW7duafLkyXUu+/jjj6c999yz2rQxY8akY489Nt1yyy3pxBNPzL285eXl2WtFRUXu6wYAAAAAAGjpZC3NW7NpCTlu3Lis5WO0aizq1KlTOuGEE9KTTz6ZZs2aVeeyNQPIcNhhh2Wv0UISAAAAAAAAyE/71ExMmzYtbbHFFqlr167Vpu+yyy7Z67PPPpu6d+/e4PW988472et6662XSwpf04wZM1KPHj2Wa90AAAAAAADQHDWblpBz5sxJG220Ua3pxWmzZ89epvVdccUVWcvKAQMG5FZGAAAAAAAAoBm1hFywYEHq2LFjrenRJWtxfkPdcccdadSoUem8885Lm2+++XKVq65+iOtqIQkAAAAAAAAtXbNpCdm5c+e0aNGiWtMXLlxYOb8h/va3v2XjSPbr1y9ddtlluZcTAAAAAAAAWrtmE0JGt6vRJWtNxWllZWVLXcc///nPdPDBB6dtt902jRs3LrVv32waggIAAAAAAECz0WxCyB122CG98soraf78+dWmT5kypXJ+fWbMmJH222+/1K1bt/TQQw+lNdZYY4WWFwAAAAAAAFqrZhNCDhgwIC1ZsiTdfPPNldOie9bRo0en3r17p+7du2fTZs6cmV566aVqy77zzjvpG9/4Rmrbtm364x//mNZff/2VXn4AAAAAAABoLZpNf6QRNA4cODANGzYszZ07N/Xs2TPddttt6c0330yjRo2qfN/gwYPTxIkTU6FQqJwWLSBff/31dN5556VJkyZlP0UbbLBB2nfffVf6/gAAAAAAAEBL1WxCyDBmzJh00UUXpbFjx6Z58+alXr16pfHjx6e+ffsudSzIcOWVV9aat8ceewghAQAAAAAAIEdtClWbDJKb8vLy7LWioqKpiwIAAAAAANDsyFqat2YzJiQAAAAAAADQPAghAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACA1h1CLlq0KJ1//vmprKwsde7cOfXu3TtNmDChQcu+/fbb6YgjjkhrrbVW6tq1azrkkEPS66+/vsLLDAAAAAAAAK1JswshhwwZkkaMGJEGDRqURo4cmdq1a5f69++fJk2aVO9yH3/8cdprr73SxIkT0wUXXJB+/OMfp2nTpqU99tgjvf/++yut/AAAAAAAANDStU/NyNSpU9Ndd92Vhg8fnoYOHZpNGzx4cNp2223TeeedlyZPnlznsjfccEN69dVXs3XsvPPO2bT9998/W/YXv/hF+ulPf7rS9gMAAAAAAABasmbVEnLcuHFZy8eTTz65clqnTp3SCSeckJ588sk0a9asepeN8LEYQIatttoq7bPPPum3v/3tCi87AAAAAAAAtBbNKoSM7lO32GKLbDzHqnbZZZfs9dlnny253Oeff56ee+659NWvfrXWvFh2xowZ6aOPPlpBpQYAAAAAAIDWpVl1xzpnzpy00UYb1ZpenDZ79uySy33wwQdp0aJFS112yy23XOYylZeXl5z+0ksvpQ4dOtQ5HwAAAAAAgLpFI7LIWmiemlVLyAULFqSOHTvWmh5dshbn17VcaMyyjdWmTZtV6sKICzV+oCVSv2np1HFaE/Wd1kR9p6VTx2kN1HNaE/Wd1kR9X3VEztKlS5emLgatoSVk586dsxaNNS1cuLByfl3LhcYsuzQVFRWpOSi2yGwu5YVloX7T0qnjtCbqO62J+k5Lp47TGqjntCbqO62J+g6tsCVkdJ0aXbLWVJxWVlZWcrl11lknawXZmGUBAAAAAACAFhxC7rDDDumVV15J8+fPrzZ9ypQplfNLadu2bdpuu+3SM888U2teLLvZZpulNddccwWVGgAAAAAAAFqXZhVCDhgwIC1ZsiTdfPPNldOii9XRo0en3r17p+7du2fTZs6cmV566aVayz799NPVgsiXX345Pfroo2ngwIErcS8AAAAAAACgZWtWY0JG0BiB4bBhw9LcuXNTz54902233ZbefPPNNGrUqMr3DR48OE2cODEVCoXKad/97nfTLbfckg444IA0dOjQbDDTESNGpA022CCdc845TbRHAAAAAAAA0PI0qxAyjBkzJl100UVp7Nixad68ealXr15p/PjxqW/fvvUuF92tPv744+nss89Ol156afr888/Tnnvuma666qq0/vrrr7TyAwAAAAAAQEvXplC1uSAAAAAAAABAaxoTEgAAAAAAAFj1CSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQBWoCFDhqQ2bdqkN998s6mLAquEO++8M+24445pzTXXzK6Ns846a6Vu/8tf/nL2Q+u4nz7++OPZMpdccskKLVtz8+tf/zo7LvHaUrWGfaR+ca+IOhD3DgAAmoYQEgBo9eIBVdWfdu3apfXWWy/tvffe6Y477kjN/WFqzf2r+bMiH9DGg/+a2+vcuXPaYost0mmnnZb+9a9/pdYk9n/PPfdMrdWTTz6ZBg0alD766KN06qmnposvvjjtt99+qbUQgDbsfhHBYUsNGZpbeVfEOcuLgJnQ2j9XAQBWde2bugAAAKuKCETCZ599ll566aX0+9//Pj322GPpmWeeSSNGjGjUOn/2s5+lH/zgB+mLX/xiWlX2r6YddthhhW97jz32qHxI+N5776U//elP6YYbbki//e1v01NPPZV69OixwstA03vwwQdToVBIY8aMSV/72teapAx/+ctfmmS7LL/G3E932WWXNH369OyLJbQuhx12WOrTp0/aaKONmrooAADQagkhAQD+T83WFBFW7Lvvvunqq69OZ5xxRqNaMMXDz1XlAWhTthaJALLq9iPo3X///bNjfOmll6bRo0c3WdlYeWbPnp29lpWVNVkZBN7NV2Pup6uvvnraaqutVliZWHV94QtfyH4AAICmoztWAIA67LPPPtnD62i59fTTT1dO//vf/54OP/zw1K1bt9SxY8e0ySabpO9+97tpzpw5DRrDrGp3fPH7t771rayVTqdOndJXv/rVNH78+FoB3nHHHZf9Hq9VuzZtrmNNdujQIZ188snZ71OnTq01ZuBee+2V1lprreyYbL311llQuWjRojq7YXvnnXfSiSeemLWQiu50q3YxG+s/8sgjs3lxviLE+MY3vpG1wqxpypQpacCAAWnDDTdMq622WurevXv6zne+UxmeVRXbje0vXrw4/fSnP02bb755tv5Y5vzzz0+ffvppre50w8SJE6udw6rhbLwv6tZmm22WdVvbtWvXtNtuu6Xf/OY3dR7LqJuxPzHGYrz/61//etbtaX3dJEZL36h/UdbYzw022CB9+9vfTi+//HJaFp9//nn65S9/mXbeeee0xhprpC5dumS/33jjjdm8mvtfDJs33XTTBtfhqvsRdeMrX/lKFixFkPn973+/sl48+uij2TmJY7D22munY445Jr3//vsN6hK1anfH0fo51lM8ngcccEDWkq6u89+Q7pOL3Ua+9dZb2U/V81+zW85lOTfvvvtuGjp0aNpyyy2zYx/XTPwey7/++uv1Hteax+M///lPOv3007PrJK67bbbZJl1zzTXZ/a+UuH769u2bhTxRV7fbbruspWKp6/S5555LRx11VLaduEbWX3/9tNNOO2XjgcYXEorl+PGPf5z9Htd/1WNU1/006kbUpXDbbbeV7Ga6VJedcV+PYxutsku54oorsmWuu+66atOj++g4RnF9xn6su+666eCDD672+VCfhpR3Wa6rhnjttdfSwIEDs2si1hMtkKNFcn0aup8NOWfhk08+yepGtLqPMsQ+7brrrtn1XJdoLX/QQQdVfs7G9XDIIYekP//5z5V1IbYZogxVt12859XXjXljP8dvuummrK7HNRLXZnyOxbXTUFXvZ1EHYnzcuH6iHMcff3z2WVbKBx98kIYNG5Z9Hsb747qLv1HiONVUdb8feeSR7F4V76/rflVqX994442s/sd9IPY1znV8zhXvB7/73e+yVsZxPqPsUV8WLFhQcp3xZaPodnudddbJjnV0xx4tmksdtxXxuVrUkL+3AADIn5aQAAD1KD5wKz7oigdW8eAypkdYFQ8u42FmPByO7lsnTZpU+ZB5aSKMiId48aA3ApN4yHj33XdXPmgtPmCNh4IRLsT6Y17V7lNjeks5tiEewkZQ9aUvfSk7zrF/0V3rRRddlD3InDBhQmrfvvqfsHHcosu9eLD9zW9+M7Vt2zZ7OBxuueWWbOzBCCbjIXo80Jw7d27WxW50B3vEEUdUrufWW2/NHijHA894bzz0fPXVV9OvfvWr9MADD2Tl2HjjjWvtRwREf/vb37KWnRFaPfTQQ+nKK6/MtlMM3eKcRXe48bA86kzV4KnqWFZR1vLy8izcibA0QrRYX9SPCKF+8pOfVNv2X//61yyAXLJkSbbv0crv+eefz+pOjGlaSjyUjvdG+BMP+Xv27JmFDvfee28WTkQIFwFRQ0S5YtzUOFYRAse5vO+++7KH+XEt3H777dX2//7770///Oc/05lnnllZdxtah6+99tr08MMPp0MPPTQ7ZvHw/aqrrsrOf1wX8XA5AsM4h5MnT86C2wiZYpmGius7rrM4l6ecckp68cUXs+Mf4Uv83tguPeMBfux/tKoOEb4VVb2el+XcRLATAfWMGTOyFtvx/rim4r4S+xD3p7i3NEQ82I/w+sMPP8yOY/z7nnvuyc5T1Lvrr7++2vsvuOCCLFSK4xH1P669OM4x/Y9//GN2biLkKwaQvXv3zupGXFdxf5w/f34WjsU1GF8wiC8lxDGJ+hFhwrHHHtugludRD6LMI0eOTNtvv31WN0od15pi/VHWCMG+973v1Zof4VCUP/at6B//+Ed2rUV969evX3aeon5Fmf/nf/4nq/f9+/fPpbwNva6WJu5fEfbFfSTqdGwjjntsN/5dyrLsZ0POWexv3IumTZuW1d24x0eQGvUkjm9FRUVWB6qKa+V///d/s3oVZY3jEF8EKV7XUVeLxy7OVdXuvsPS6k5jP8fPO++8rNxxrcUxiusxPmPimMaXIJZF3LviOokvyERAF9uMz4sIJ+PLMBHUF8U1HfsXIdruu++evf+///1vth/xewSjJ510Uq1tjBs3LrunFO9nsZ6Gii83RFmK+/qHP/wh/fCHP8zuDREmRogY5yDKE5/LcY+Iz6E4hlVF2eJzLcLKCMMjsIz1RtAfn6tPPPFEyc+APD9Xl+XvLQAAVoACAEArF38SlfqzaMKECYU2bdpkP2+++Wbho48+KqyzzjqFtm3bFv76179We+/ll1+erWPfffetNv3YY4/Npr/xxhuV0+L34jYvueSSau9/5JFHsun7779/temjR4/OpsdrY/fv4osvrvXTmPUti9hGcdtVffbZZ4W99947m3f88cdX28fDDjus8Mknn5Rcz9VXX11y34455phsnVVVVFQU2rdvX1h77bULL7zwQq2yzZo1q/L3l19+udChQ4dCjx49Cv/617+qve/Pf/5zds4PPfTQatP32GOPbNs77bRT4f3336+c/vHHH2friWXmzJlTq7yxXF1ee+21WtMWLVqUHavYl6plW7JkSaFnz57ZOh966KFqy9x4442Vx+axxx6rnP7BBx8U1lprrcK6666bHZ+qnn/++UKXLl0KO+64Y6Eh7rjjjmz98f64Nqru/1e+8pVs3u23377U62Fpiue+a9euhRdffLFy+sKFCwvbbLNNdpzjunz88cerHZuvf/3r2XLTpk2rtr5NNtkk+6mqWPfatWuXne+qfvCDH2TzrrjiipLnv5S6rtdS227sufnDH/6QbeOss84qWWfmz59faIgoT6xnt912y45pUdTpzTbbLJs3ceLEyumTJ0/OpnXv3r1a/Y7r78ADD8zmXXbZZZXTv//972fT7r///pL7HOeq5rmuWmcbej+NeaXEumreg+Laj3oT9bSmqVOnZu//5je/WW3f4pru2LFjtXoW3n777UJZWVlhww03rHb86rK08jbmuqpLfB6Vum/GuSjeH6rW0cbsZ0PPWc3rZ8GCBYV+/fpln69Vr9E//vGP2fs33XTTWvfimvftUud2adfh8nyOR51/6623qh2v3XffPZs3ZcqUQkMUj1d83vzjH/+oNi+u5aqfiVXvNXGc7rzzzmrT582bV9h+++0LnTp1Krzzzju19juWefjhhxtUrpr7GveFqsc/thX3ptVXX72w3nrr1boXb7311oXVVlut8O6771ZOj7+bYtqaa65ZmD59erXtnHrqqdl2TjrppBX6udqYv7cAAMiX7lgBAP5PdN8VP/Ft/2gdES0M4vlWtPaIb9lHC4n49ny0XIhv/1d1zjnnZK0vokXAzJkzG7S9WOeFF15YbVq0PInWdjW7KM1DtBao+VOqm7oVIVo+FI9vtDyKLt6i5Ui0pIrjHaJ1ULRyjBaJ0d1cVdESMroELNUCKFos/fznP6/VQjJaZESXbrFstC6sKVpbVn1vtD6LMkR3lFVFl3fRgitabXz00Ue11hMtOqJlSFG0+Bg0aFDW2idaXC7veIWxf6eddlq2L9EatChaBUULnGjBUbNVU7QGjC7vahozZkzWMinOfZyDqrbddtusNU20WIpWf0sT5ylcfvnlWYulqvsfxyREK9K8xLis0RVhUbRYjWsxjnO0gIzWUEXRGvboo4/Ofo+Wlw0VrQDjfFdVV7fBeWvsual5rRTrTHQnuyyiZWMc06Ko03HthKpjthbPe9y7otviorj+fvGLX2THvtR5L1XO6CI03r+yxbUf5zlav0VLvKqiZV2Iln1F0Qo1WpzGvatqPQvRLXC0kItuNKten42V13UVLWjj8yha9EVXmVVF66+a+7Ei9jNaYEbLxej2MpatKrrDjP2Jz9ho9Vm1xXOIulTzXlzzvt0Yy/M5/qMf/ahaa/io88Wu0pf1/hCt8aIr1qri8zG6TY3jUezWOO5f0dI0Wm7G/amqaEEY94uFCxdmLZdrivMcf8c0Rlz7VY9/bCs+B6MFdrRsLHUvjlaSVbuujnMf06L+1RyX9bLLLsvuUWPHji3ZhXOen6tN8fcWAAD/P92xAgD8n+LYVtH1XTxwiweUJ5xwQmWYEd3UhVLdXMbDyOhCM7pLi6CgVLedNUVXYtFNaE3R9VyM6Ze3usZ2W5oIRordSFYV4WxDu9KMh6jxE4pjLUb3cNElYvweDzbjYWuEkqW2VXzQWWpsvnhoHF281RTdp4a6uh2sqni8o4ylxneLLuCiq7lXXnklG5OwqnjAXlPsU5g3b15aFvHgOx6+xkP++L3mGFtvv/125e9Rz0J0kVhTBDsx9luUt9R+xrEuNWZW8f1xnGsGYTXF9RDbqdntXYgAI+p2sYx5KHWcIxgJNc9JKD5AjzBmebbR2HO5rJb13MQxjn2MsCrORXSRGd2z1nVfqU/cv6K+1FQ8t1XPY333wQi+IySK8eRivLcIVCKciHA/um6ML3dEV5pRzlKB+8oUXTdG2BShY3TzGCIwiS5a435StWvV4rmJLh1LnZvo9rR4bpbWJevS5HVdVb0/lKoPsf7iPXlF7WfcS+O+WdcYfcXxQKve1+O+He9vbHi2NMvzOZ7n/aFUCBzXS1y/cV7imMTvxXMS11OpY/jvf/87ey312Rjdjzbl/ba+Yx1fQIgQNroUj3Fwo3viFXkvXtl/bwEA8P8TQgIANDCki4eAIcbqK6U4PUK7hqgrwIsHofFt/1VFsXVWTcWxKhsixm0q9QC1KB4qxvGPB6qltlWfqq2xqiqeh1KtaUq12AnDhw+v930ff/xxrWmljkGxVWY8gG+o119/PXtoHMciAvAYhyseSseD03goHmFJ1RYjxfpYHP+yplLTi/sZ45gt637WFNuPlirFsf9q7n8EyhHe5iWORantLG1eMehoiLzOZWMs67mJcdIisIlrK8Zri7HqQhz3GDswWv3EWIsNEcuUekBfvLaKda2h98EI0OP6i/MSdTrGdouWTzFGXbR8CltuuWVW9qOOOio1hcMOOyw7htFaK1qBxv7HGHvRSi6+YFG1ZXXx3Pzud79b7utmZV1XS7s/lLpv5r2fxfVFGFnqyx2l1hf1JgKqUi1n87A8n+N53h+Wdl6K5SwewwjM42dZzkldn40r6367qhzruta3Kv69BQDQEgkhAQAaqPjgLbqjK2XOnDnV3tdSREvDxraibKjiMYuWEcXWEw0VrWbqe+gYrQdrdgVX1/bjoWkEE01hxIgR2QPn6PoyAt6qonVWsZvIomI533333ZLrKzW9uJ/R2q5Xr17LVd5YVwQ28dC5ZtgVXce+9957TXYsV4ZiN6KxrzW7Am7oFxGW99xEq8NRo0Zl12d00xpdHF9//fXpf//3f7MH6z/5yU8atJ44V/Fgv2YQWbzXVb2nVb0PlmrNWOo+uOuuu2YBX4To0QXqI488knW7+e1vfzutv/76WevIlS1CriOOOCLr2jTCnWh5V6or1qr7El15RpeUK1Je11WxzHXdH0p9juW9n8X1nX322dn9rSHivh33wWgFviKCyFXlc3xp56W4/eJrtCaOLqnz+GxcWaoe61JdorfUv5kAAKjOmJAAAA1UHL8pxjesKR4OR2ufsNNOO+W+7WI4sKJbYzWVGPssHlLG+GzxAD4Pffr0yV4ffvjhBr+3eA5XZHBV1zmM8R1DjP1VU81uE6vWx0mTJtWaFwFUjBm5Ivczth/bie70aoppsZ8r4lpYVURrrTBr1qxa8+oasyyu47rO//Kcmwgb4vqJsfyKraXuv//+Bi8f969S9aV4r6s6dl1998Gow9EdY4xDWKrlUXSpHN2+Rkh6zTXXVAZey3OfW557YzHsj/AxWmHHvSIC4Oi6cUVdN0srb17XVdX7Q6ltlTp/jdnP+vYnWsHGPW9Z1hdliFA9gurl2faq+Dm+tHt6fAnm2WefzcbLLI65uLI+m1aE+o51fFGj5r6uiM9VAACanhASAKCBYkyz6CYvWqUVxxssinEMYxy0aNHTkPEgl9W6666bvUY3hy3V97///WxMtuOPP75kS7LopnRZWkmeeuqpWQu1aA0WrcRqqjp21emnn561OooWOzXHUQxRrjweAsd5LBVaFVuclnpgG/GcPGQAAHkrSURBVN1sRmutmorj6j322GO1gtabb7655H4cd9xxWTgUXd5OnTq11vwIP0o9MC4lzlMYNmxYNqZnUfz+gx/8IPs9xlRtqYrjrdXsPjXG84x7RF3nP8KummN9NubcRGBfqjVVcdrqq6++TPsT57Fqd7/xZYBLL720smw1z3vMK45HFyIEGDp0aFbOquc9ws1S+1uqnI25z0UYHCFsY+6NcQ1tvvnmWRD6y1/+Mmt9WLMVcjjkkEOyay1amT700EMl1xXjylW9Dhpb3ryuq2glu++++2afS9ddd121ebG/pUKwxuxnfecsxtYcNGhQFsrHfbhUUDRjxoysjEURpIdzzjmn2hi4RVWnNaa+NOXneFXRLXHNsT2jy/IIIqOL4gjsi2MjRvfc9957b7r11ltLruv555/PtevrvMR42vG5Gq2ei1+yKbrooovS/Pnzs/cU93VFfK4CAND0dMcKALAMrfXiIeDAgQPTHnvskb3Gg8roXvBPf/pTNv7STTfdtEK2Hd0ZxsP6eEgaXdUVx3qKB7YtpSuzePgex/KGG27IHoT369cvO74RhsSD4WgFFGFIhAUNsc0222TrOuWUU7IWGfGAPQKHOH4xPll0aRgBXojuWuPcRhmiRVl0zbjFFltkoUQ84I4AMrqNfOmll5ZrH/fZZ5901113pYMOOihraRMPaPv27Zv9xDh+0RVr1KsBAwaksrKy9MILL2QtgqLbyLvvvrtW648IJ6Os0XVitKCM4/bcc89lreH233//LJwsdhtafFj7/7H3J/BWVfX/+L+YBEQJJ9BbYAriAKJpiGYqak6QM2h+UMQoMofURAzNtNRSSZSc0iRSckrUSkyLUilEIQs0EYdQBEUlFUMTUPD8H+/9/Z/7uyNcYDOcc5/Px+N6L3tce+919jnu11lrjRs3LhsPL1rYRHnieCMUiYe4ETDE+Vm8ePEKjyW60oww4ze/+U22jXi4H9uJFnhxvY4//vgsgChXURdjDNEYTzC6UI36FsFvnPM4v/fdd1+tdeJ8R92LaxbXPB6+77LLLll9WNlrE9f4vPPOy+4NUVcj8IlgPa5JXPOY11AxNlsEkN27d8/qUtT7KEt0lxj1MspaFC0Zhw0blq666qps+airbdq0yY476uuXv/zlavuO5aKb2AhSooVk3EcjQI3lI5AbMmRI5bL7779/VvYI4GJbxdamMb5lfWJ7vXr1yl6jUd/iXEQLuTiOhnRrO3DgwCwQiZAsvrRQV52N12mEQHFP6tu3b3YOorVk3JPj2sQ1jTFd43ytKPxdUXnzfF1FmBj1I8a4jPeoqGsRBj3wwANZnXvwwQdX+zhXdM0iAH355ZfTD37wgyx4i/oR4yHOmzcvzZw5M9tmBIJRN0KMhRvrRsgdLeTi+Dt27JiF1tGqM14bv/rVryrHFY0xf+OeGmXfeuuts3N10kknZX+vb+/jVcX9OULwuLfH6y+OLX7iyyhXXHFFtWXvvPPOdMABB2Thc7QgjvoTX1iI13vc7+O8x/0h7gHrkziW+Mxy+umnZ+93cazxPhoBeJQ33nevvPLK1d7P8t5XAQBYDxQAABq5+Ei0Mh+Lpk6dWjjqqKMKm2++eaFFixaFjh07Fk499dTCG2+8UWvZk08+Odv2q6++Wjkt/o5pMa8u++23X53lefjhhwt77rlnoU2bNpVlrrrdvI4vTxdffHG27/jdUA8++GChb9++hS222CI7vx06dCj07NmzcOGFFxZmzpxZbdnYdpyv5Zk8eXLhmGOOqdzeVlttVTjkkEMK9957b61ln3322ey6dOrUqbDBBhsUNtlkk0K3bt0KQ4YMKfzlL39p0HUKY8aMyebF76refvvtwgknnFBo3759oWnTprXOzRNPPFHYf//9C+3atStstNFGhb333rvwwAMPFB577LF6z+NTTz1V+MpXvpItHz8HHnhgdsynn356ts60adNqrRP1JuZ36dKl0LJly8LGG29c2H777Qsnnnhitr+GWrZsWeGGG24o7L777oXWrVtnP7vttlvh+uuvz+Y15PXQ0DoU56Ch5znUd8623nrr7Keh21lePXvuuecKhx12WHbe43UZyzz++OP1bu/DDz/M7hWf/exnC82aNavzPtDQa/P8888XzjnnnOzcx70o6msc17HHHpvVo4Yqno/333+/cNpppxUqKiqybe2www6FUaNGFT799NM617vrrruy+hnHHuXcaaedCpdddllh0aJF1Zb74x//WBg0aFBhxx13LLRt27aw4YYbFrp27Vo488wzC7Nnz6613bFjxxZ22WWXQqtWrWrdu+qrPy+//HLhq1/9amHTTTctNGnSpNq5X95rJ7z22muVr8XYxvLE6/f888/P7glR1+Oax3WKcx7l/uSTT5a7fkPKuyqvqxXtK8r3mc98Jjv38R4yfvz45db5lT3O5V2zsGTJksJ1111X2GuvvbI6EPUr3jcPOOCAwjXXXFN45513apXhoYceyu7TcQ+O5T/3uc9l77s178Pxfhzbie0Wz2XxXrG8Y1zd9/GiFdWv5d3PolzF8xbliNfJvHnz6lxv4cKFhcsvvzyrB3E9Yp3Pf/7zhT59+hRuvvnm7N7S0PvZ8izvWFf1Xhz3gIMOOih7X4tr2blz58J5551XWLBgQa1l835fXdXPWwAA5KdJ/GddB6EAAEC+opXNlClTsu79oqUaLK8b4NmzZ6/rokDZiy5Xo8vlaIXfu3fvdV0cAABY44wJCQAAJSrGZqtr/MzorjDG4ouuDQWQAAAAwLpgTEgAAChRMV5ljHd50EEHpS5duqSlS5emadOmZWOLxZhhV1999bouIgAAANBICSEBAKBEdejQIQ0YMCBNnDgx695vyZIlacstt0ynnHJKuvDCC1Pnzp3XdREBAACARsqYkAAAAAAAAECujAkJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkqnm+m6Noyy23TP/73/9Sp06d1nVRAAAAAAAASs6cOXNSmzZt0ltvvbWui8Iq0BJyDYkA8pNPPlnXxQAAAAAAAChJkbNE3kJp0hJyDSm2gJwxY8a6LgoAAAAAAEDJ6dat27ouAqtBS0gAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAACgcYeQS5YsSeeff36qqKhIrVu3Tr169UoTJkxo0Lp//vOf0/77758233zz1K5du7THHnuksWPHrvEyAwAAAAAAQGNSciHkoEGD0siRI9OAAQPSqFGjUrNmzVKfPn3SpEmTlrve73//+3TwwQenjz/+OF1yySXp8ssvz0LMgQMHpmuuuWatlR8AAAAAAADKXZNCoVBIJWLq1KlZy8cRI0akoUOHZtMWL16cunfvntq3b58mT55c77oRQM6YMSO98sorqWXLltm0pUuXph122CG1adMmPfPMM7mWtVu3btnv2CcAAAAAAAArR9ZS2kqqJeS4ceOylo9DhgypnNaqVas0ePDg9OSTT6a5c+fWu+7ChQvTJptsUhlAhubNm2dds0aLSAAAAAAAAKARhpDTpk1LXbt2TW3btq02PcZ2DNOnT6933d69e2dJ+UUXXZT+/e9/p1mzZqVLL700Pf3002nYsGFrvOwAAAAAAADQWDRPJeTNN99MW221Va3pxWnz5s2rd90IH1999dVsLMjLLrssm7bhhhum++67Lx155JGr3RS4pgg5O3fuvMrbBQAAAAAAgFJVUi0hFy1aVK071apdshbn1yfWi1aU/fr1S3fddVf69a9/nb74xS+mE088MT311FNrtNwAAAAAAADQmJRUS8gYu3HJkiW1pi9evLhyfn3OOOOMLGz85z//mZo2/X/Z63HHHZe1ZDzrrLPSlClTVqlM9Q2GWl8LSQAAAAAAACh3JdUSMrpdjS5ZaypOq6ioqHO9jz/+OI0ePTr17du3MoAMLVq0SIcddlg2LmQsAwAAAAAAADSyEHLXXXdNL730Ulq4cGG16cVWjDG/Lu+++25aunRpWrZsWa15n3zySfr000/rnAcAAAAAAACUeQgZ4zlGWHjLLbdUTovuWceMGZN69eqVOnbsmE2bM2dOeuGFFyqXad++fWrXrl164IEHqrV4/PDDD9ODDz6Ydthhh+V25QoAAAAAAACU6ZiQETT2798/DR8+PM2fPz916dIl3XbbbWn27NlZd6tFAwcOTBMnTkyFQiH7d7NmzdLQoUPT97///bTnnntm8yPMjHVef/319Otf/3odHhUAAAAAAACUl5IKIcPtt9+eLrroojR27Ni0YMGC1KNHjzR+/Pi07777Lne9Cy+8MG2zzTZp1KhR6Yc//GHWgjLWHTduXDr22GPXWvkBAAAAAACg3DUpFJsLkqtu3bplv2fMmLGuiwIAAAAAAFByZC2lraTGhAQAAAAAAADWf0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFfN890cAEDj8N5Fu6Zyseml09d1EQAAAAAoM1pCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAAI07hFyyZEk6//zzU0VFRWrdunXq1atXmjBhQoPXv+eee9Jee+2V2rRpk9q1a5e+9KUvpUcffXSNlhkAAAAAAAAak5ILIQcNGpRGjhyZBgwYkEaNGpWaNWuW+vTpkyZNmrTCdS+55JJ0wgknpI4dO2bbuOyyy1KPHj3SG2+8sVbKDgAAAAAAAI1B81RCpk6dmu6+++40YsSINHTo0GzawIEDU/fu3dOwYcPS5MmT6133qaeeSj/60Y/S1Vdfnc4555y1WGoAAAAAAABoXEqqJeS4ceOylo9DhgypnNaqVas0ePDg9OSTT6a5c+fWu+61116bttxyy3TWWWelQqGQPvzww7VUagAAAAAAAGhcSiqEnDZtWuratWtq27Zttel77LFH9nv69On1rvuXv/wl9ezZM/3sZz9LW2yxRdp4443TVlttla6//vo1Xm4AAAAAAABoTEqqO9Y333wzCw5rKk6bN29enestWLAgvfPOO+mJJ55Ijz76aLr44otTp06d0pgxY9KZZ56ZWrRokb71rW+tUpm6detW5/RZs2alzp07r9I2AQAAAAAAoJSVVAi5aNGi1LJly1rTo0vW4vy6FLtefffdd7MxJY8//vjs3/369Us777xzuuyyy1Y5hAQAAAAAAABKOIRs3bp1WrJkSa3pixcvrpxf33ohWjxG8FjUtGnTLJCMlpFz5szJWkeurBkzZqxUC0kAAAAAAAAodyU1JmR0uxpdstZUnFZRUVHneptuumnWWnKzzTZLzZo1qzavffv2lV22AgAAAAAAAI0shNx1113TSy+9lBYuXFht+pQpUyrn1yVaPMa8//znP+njjz+uNq84juQWW2yxxsoNAAAAAAAAjUlJhZDRleqyZcvSLbfcUjktumcdM2ZM6tWrV+rYsWM2LbpWfeGFF6qtG92uxrq33XZbtW5c77jjjrTTTjvV24oSAAAAAAAAKOMxISNo7N+/fxo+fHiaP39+6tKlSxYqzp49O40ePbpyuYEDB6aJEyemQqFQOe1b3/pWuvXWW9Ppp5+etaaM8R/Hjh2bXnvttfTggw+uoyMCAAAAAACA8lNSIWS4/fbb00UXXZQFiDGOY48ePdL48ePTvvvuu9z1WrdunR599NE0bNiw9Mtf/jL973//y7pofeihh9Ihhxyy1soPAAAAAAAA5a5JoWpzQXLTrVu37PeMGTPWdVEAgDXgvYvqHou6FG166fR1XQQAAACAWmQtpa2kxoQEAAAAAAAA1n9CSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAAKC0Q8j3339/be8SAAAAAAAAKNUQ8qyzzlru/A8++CAdcsghee4SAAAAAAAAKOcQ8rrrrkvXXHNNnfMWLVqU+vbtm5599tk8dwkAAAAAAACUcwg5fPjwdN5556X77ruv2vQlS5akI444Ij311FPpnnvuyXOXAAAAAAAAwHqmeZ4bu/zyy9Nrr72WTjrppFRRUZH22muvtHTp0tS/f//02GOPpTvuuCMLIwEAAAAAAIDylWtLyDBmzJi05557ZmHjzJkz04ABA9JDDz2UbrnllnT88cfnvTsAAAAAAACgnFtChhYtWqQHHngg7b333mm33XZLH3/8cbr22mvT17/+9bx3BQAAAAAAAJRbCDlnzpx65910003p8MMPT4MHD05HHnlktWU7deq0OrsFAAAAAAAAyjWE/PznP5+aNGlS7/xCoZCFkfFT1bJly1ZntwAAAAAAAEC5hpA/+MEPlhtCAgAAAAAAAI3PaoWQl1xySX4lAQAAAAAAAMpC03VdAAAAAAAAAKC85BpC3nPPPWngwIH1jg8Z8+677748dwkAAAAAAACUcwh5ww031DtGZExv1qxZuv766/PcJQAAAAAAAFDOIeTMmTPTF77whXrnx7znn38+z10CAAAAAAAA5RxCfvDBB2mDDTaod360hPzvf/+b5y4BAAAAAACAcg4hO3XqlKZMmVLv/JhXUVGR5y4BAAAAAACAcg4hv/rVr6Y77rgj/e53v6s17/e//32666670uGHH57nLgEAAAAAAID1TPM8N3bBBReke++9Nx1zzDGpd+/eleNDTps2LT3++ONZK8gLL7wwz10CAAAAAAAA5RxCbr755mny5Mnp29/+dnr44YfTY489lk1v0qRJ6tOnT7rhhhtS+/bt89wlAAAAAAAAUM4hZOjYsWMaP358WrBgQfr3v/+dTevSpUvaZJNN8t4VAAAAAAAA0BhCyKIIHXv27LmmNg8AAAAAAACsp5qu6wIAAAAAAAAA5WW1WkI2bdo0+/noo4/SBhtskP0d4z8uT8xfunTp6uwWAAAAAAAAKNcQcuDAgVmo2KxZs2r/BgAAAAAAABqv1Qohf/WrXy333wAAAAAAAEDjY0xIAAAAAAAAIFdCSAAAAAAAAGD96Y512223Xel1YszIWbNmrc5uAQAAAAAAgHINITt16pSFigAAAAAAAAC5hJCPP/746qwOAAAAAAAAlCFjQgIAAAAAAADrbwj56quvpgcffLDOeYVCIZs3e/bs1drHkiVL0vnnn58qKipS69atU69evdKECRNWejsHHXRQ1pXsGWecsVrlAQAAAAAAANZgCPn9738/XXnllXXOi8BvxIgR6eKLL16tfQwaNCiNHDkyDRgwII0aNSo1a9Ys9enTJ02aNKnB27j//vvTk08+uVrlAAAAAAAAANZCCBlB4KGHHlrv/EMOOST99a9/XeXtT506Nd19993pJz/5SRZoDhkyJD366KNp6623TsOGDWvQNhYvXpzOPffcrDUlAAAAAAAAsJ6HkG+//Xbacsst653foUOH9NZbb63y9seNG5e1fIzwsahVq1Zp8ODBWcvGuXPnrnAbV111Vfr000/T0KFDV7kcAAAAAAAAwFoKIdu2bbvcMR9jzMg2bdqs8vanTZuWunbtmu2nqj322CP7PX369OWuP2fOnHTFFVdkXcbGeJIAAAAAAABA/prnubG99tor/fKXv8y6O91kk02qzVuwYEEaM2ZM6tWr1ypv/80330xbbbVVrenFafPmzVvu+lGuL3zhC+lrX/tayku3bt3qnD5r1qzUuXPn3PYDAAAAAAAAjbIlZHRxOn/+/Kxl4tixY9Nzzz2X/cTfET7GvPPOO2+Vt79o0aLUsmXLWtOjS9bi/Po89thj6b777kvXXnvtKu8fAAAAAAAAWMstIffZZ5/085//PJ155plp0KBBldMLhUIWHt50002pd+/eq7z96EJ1yZIltaYvXry4cn5dli5dmr7zne+kk046KfXs2TPlacaMGSvVQhIAAAAAAADKXa4hZPjGN76R+vTpk+6999700ksvZdNiHMf+/funioqK1dp2dLv6xhtv1NlNa6hv+7fffnt68cUX080331xrzMoPPvggm9a+ffu04YYbrlb5AAAAAAAAgDUQQhbDwLPOOiv37e66665Zt6oLFy5Mbdu2rZw+ZcqUyvl1mTNnTvrkk0/S3nvvXWdAGT8PPPBAOuqoo3IvMwAAAAAAADQ2aySErCoCwrlz56bPfvaz2biQTZuu+jCU/fr1Sz/96U/TLbfcko0/GaJ71jFjxmTb7tixY2Xo+NFHH6Uddtgh+/fXvva1OgPKo48+Omu1+c1vfjNbHwAAAAAAAFiPQ8joNrVv377p2WefrZy24447pgcffDBtu+22q7TNCAqjW9fhw4en+fPnpy5duqTbbrst60519OjRlcsNHDgwTZw4MRuLMkQYWQwka9pmm220gAQAAAAAAIBSCCG/853vZGM4jhs3Lmuh+Mwzz2Th4GmnnZYeeeSRVd5udJ160UUXpbFjx6YFCxakHj16pPHjx6d999031/IDAAAAQKla9vElqVw026B8jgUAGpPVDiEjUDz00ENrTX/qqaeyVo/RWjHsscceWTB5wQUXrNb+WrVqlUaMGJH91Ofxxx9v0LaKLSUBAAAAAACA/Kz6AI3/f0cccUQ6+eST03vvvVdteowBOWnSpGrTnnjiiVRRUbG6uwQAAAAAAADKOYSMFo/PPfdcNt7jPffcUzn9wgsvTOecc07aZ5990oABA9LOO++c7r777mw6AAAAAAAAUL5WO4Tcbbfd0tSpU7PA8ZRTTslaRs6bNy8deeSRWUDZrVu39P7776c999wz6yY1AkkAAAAAAACgfK32mJChWbNm6Xvf+1469thj0ze/+c200047pSuuuCKdeuqpqWfPnnnsAgAAAAAAAGgsLSGr2m677bLWjldddVUaPnx42m+//dLLL7+c5y4AAAAAAACAxhJCfvzxx2nhwoXZ30OGDEkzZsxIm222Wdpll13ST37yk7Rs2bK8dgUAAAAAAACUcwj53nvvpaOPPjpttNFGaZNNNkk9evRITz/9dKqoqEj3339/Gjt2bLruuuvS7rvvnv75z3/mU2oAAAAAAACgfEPIs88+O02ePDndfPPNWegYYWSMDfnJJ59k8+PvmTNnZiHknnvumc4777w8yg0AAAAAAACUawj58MMPp+9973vplFNOSUceeWS69dZb09y5c9Pzzz9fucxnPvOZNHr06PTII4+k3/72t6u7SwAAAAAAAKCcQ8gWLVqkRYsWVf578eLFqUmTJql58+a1lj3ggAPSv/71r9XdJQAAAAAAALAeq50UrqQYD/KKK65IS5cuzcaEvPHGG9MOO+yQdtxxxzqXb9Wq1eruEgAAAAAAACjnEHLEiBGpadOm2ZiQH330UfrSl76URo0alU0DAAAAAAAAGp/VDiE33HDDdN1112U/AAAAAAAAAJorAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAjTeEXLJkSTr//PNTRUVFat26derVq1eaMGHCCte7//770/HHH5+23XbbtOGGG6btt98+nXvuuen9999fK+UGAAAAAACAxqSkQshBgwalkSNHpgEDBqRRo0alZs2apT59+qRJkyYtd70hQ4akmTNnphNPPDH97Gc/S4ceemi6/vrr01577ZUWLVq01soPAAAAAAAAjUHzVCKmTp2a7r777jRixIg0dOjQbNrAgQNT9+7d07Bhw9LkyZPrXXfcuHGpd+/e1abtvvvu6eSTT0533HFH+sY3vrHGyw8AAAAAAACNRcm0hIwgMVo+RqvGolatWqXBgwenJ598Ms2dO7fedWsGkOHoo4/OfkcLSQAAAAAAAKARhpDTpk1LXbt2TW3btq02fY899sh+T58+faW299Zbb2W/N9988xxLCQAAAAAAAJRMd6xvvvlm2mqrrWpNL06bN2/eSm3vyiuvzFpW9uvXb7XK1a1btzqnz5o1K3Xu3Hm1tg0AAAAAAAClqGRaQi5atCi1bNmy1vTokrU4v6HuvPPONHr06HTuueem7bbbLtdyAgAAAAAAQGNXMi0hW7dunZYsWVJr+uLFiyvnN8Tf/va3bBzJQw45JF1++eWrXa4ZM2asVAtJAAAAAAAAKHcl0xIyul2NLllrKk6rqKhY4TaeeeaZdMQRR6Tu3buncePGpebNSyaDBQAAAAAAgJJRMiHkrrvuml566aW0cOHCatOnTJlSOX95YozGQw89NLVv3z794Q9/SBtttNEaLS8AAAAAAAA0ViXTFLBfv37ppz/9abrlllvS0KFDs2nRPeuYMWNSr169UseOHbNpc+bMSR999FHaYYcdKtd966230sEHH5yaNm2a/vjHP6YttthinR0HAJSTZR9fkspFsw3K51gAAAAAYF0rmRAygsb+/fun4cOHp/nz56cuXbqk2267Lc2ePTuNHj26crmBAwemiRMnpkKhUDktWkC+8soradiwYWnSpEnZT1GHDh3SQQcdtNaPBwAAAAAAAMpVyYSQ4fbbb08XXXRRGjt2bFqwYEHq0aNHGj9+fNp3331XOBZkuOqqq2rN22+//YSQAAAAAAAA0FhDyFatWqURI0ZkP/V5/PHHa02r2ioSAAAAAAAAWLOaruHtAwAAAAAAAI2MEBIAAAAAAADIlRASAAAAAAAAaLxjQgIAAAD5mPzaQ6lcfGnrvuu6CAAAQA1aQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuWqe7+YAAAAAYP2w7ONLUrlotkH5HAsA0DhoCQkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAOSqeb6bAwAAAGB9s+zjS1K5aLZB+RwLAEA50xISAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIVfN8NwcAQDl776JdU7nY9NLp67oIAAAAAGVLCAkAAAA0CpNfeyiViy9t3XddFwEAAJZLd6wAAAAAAABA4w4hlyxZks4///xUUVGRWrdunXr16pUmTJjQoHXfeOONdNxxx6V27dqltm3bpiOPPDK98sora7zMAAAAAAAA0JiUXAg5aNCgNHLkyDRgwIA0atSo1KxZs9SnT580adKk5a734Ycfpv333z9NnDgxXXDBBemHP/xhmjZtWtpvv/3Su+++u9bKDwAAAAAAAOWupMaEnDp1arr77rvTiBEj0tChQ7NpAwcOTN27d0/Dhg1LkydPrnfdG2+8Mb388svZNnr27JlNO+yww7J1r7766vTjH/94rR0HAAAAAAAAlLOSagk5bty4rOXjkCFDKqe1atUqDR48OD355JNp7ty5y103wsdiABl22GGHdOCBB6bf/OY3a7zsAAAAAAAA0FiUVEvI6D61a9eu2XiOVe2xxx7Z7+nTp6eOHTvWWu/TTz9Nzz77bPr6179ea16s+6c//Sl98MEHaeONN17pMnXr1q3O6S+88EJq0aJFvfMBoCwU/pPKRpN7V2rxZfNnpXLR7P6Gf15prMcNUI4++uTDVC42bLFRg5ZrjMecGvvntsZ63I392AEoG7NmzcqyFkpTSYWQb775Ztpqq61qTS9OmzdvXp3rvffee2nJkiUrXHf77bfPraxNmjRZr14Y8UINnTt3XtdFgdyp35S79bqON9kiNVbN2q+H16MMjnu9ru+QM/WdkguxyqCOr+ljXq811s9ta/i418d6nhr7Nadx1nfImfq+/oicpU2bNuu6GDSGEHLRokWpZcuWtaZHl6zF+fWtF1Zl3RWZMWNGKgXFFpmlUl5YGeo35U4dpzFR32lM1HfKnTpOY6Ce05io7zQm6js0wjEhW7dunbVorGnx4sWV8+tbL6zKugAAAAAAAEAZh5DRdWp0yVpTcVpFRUWd62266aZZK8hVWRcAAAAAAAAo4xBy1113TS+99FJauHBhtelTpkypnF+Xpk2bpp133jk9/fTTtebFuttuu23aeOON11CpAQAAAAAAoHEpqRCyX79+admyZemWW26pnBZdrI4ZMyb16tUrdezYMZs2Z86c9MILL9Ra9+9//3u1IPLFF19Mjz76aOrfv/9aPAoAAAAAAAAob81TCYmgMQLD4cOHp/nz56cuXbqk2267Lc2ePTuNHj26crmBAwemiRMnpkKhUDnttNNOS7/4xS9S375909ChQ1OLFi3SyJEjU4cOHdK55567jo4IAAAAAAAAyk+TQtWkrgQsXrw4XXTRRenXv/51WrBgQerRo0e69NJL0yGHHFK5TO/evWuFkOH1119P55xzTvrTn/6UPv3002y5a665JgszAQAAAAAAgEYaQgIAAAAAAADrt5IaExIAAAAAAABY/wkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAWCmXXHJJatKkSZo9e/a6LgoAAADrKSEkAADAOvT4449ngV78nHzyyXUuUygU0jbbbJMt07x587VSrt/+9rdZ2AgAAACrQggJAACwHmjVqlUaN25cWrhwYa15EyZMyFodxjJrS4SQP/zhD9fa/gAAACgvQkgAAID1wDHHHJM++uijdNddd9Wad+utt6ZOnTqlnj17rpOyAQAAwMoSQgIAAKwHdtxxx/SlL30pjR49utr0d955J/3ud79Lp5xySmratPb/wr3wwgvpa1/7WurQoUNq2bJl2nbbbdPQoUNrtaj81a9+lXXn+thjj6Vrr702de3aNVs+unkdOXJktWU///nPp9tuuy37u9hVbPzENqr6+OOP0w9+8IO09dZbZ9uKY7jjjjtqlfGpp55Khx9+eKqoqMiW22qrrdL++++ftbYEAACgPK2dwUQAAABYoW984xvp61//evrXv/6Vdt5552za7bffnpYuXZpNj/Ejq5o+fXrad999s/mnnXZaFkBOmjQpXX311ekvf/lLeuKJJ9KGG25YbZ0LLrggCygj1Nxoo42y7Z977rlZQBhhZoiQMoLJv/3tb2ns2LGV60ZIWlWMYRnh5He+850sIL3xxhvTiSeemDp37pz23HPPbJmXXnopHXjggal9+/ZZGWM/Eaz+4x//SE8++WQ66qij1tj5BAAAYN0RQgIAAKwnjjvuuHTWWWdlrSEjCAzx91e+8pWsO9aaIvz78MMPs7Bw7733zqZF0LfDDjukiy++OAsSv//971dbJ7p8/ec//5m1SAwRbkZLxp/97GeVIWQEg9FKMbYboWJ9NtlkkzR+/PjKFpr9+vXLAsjYVjGEfOSRR7J93n333alXr165nSsAAADWb7pjBQBYAwYNGpS1Dpo9e/a6Lgqsl2Lcwy984Qtp4403zl4rZ5999lrdf3Q3Gj/rmzZt2mRB4K9//eusq9PJkyen559/PmshWdN//vOfLCQ86KCDKgPIouiONbZ133331VrvjDPOqAwgi/vca6+9shaLK+ucc86p1kVsx44d0/bbb19tW+3atct+R6i5aNGitC7ur9GCNNa55JJLVnv/5aTYRW/NbnbLSWM4RpYv7hVRB+LeAQDA2iWEBAAararjnMVPs2bN0uabb54OOOCAdOedd6ZyeXgaYcB3v/vdtNtuu6VNN900tWjRIvsdLZIiqIguEde0ePBf83y3bt06G5Pu9NNPT6+//npqTOL4e/funRqr6IJzwIAB6YMPPkjf/va3sxZ7hx56aGosVhSADh48OL377rtZaHfrrbdm96Ujjzyy1nKvvPJK9rvYbWtV0QVrtEicNWtWrXnRZWtNm222WbbPldWQbUWoGtf3iiuuyFpORvex0TrzueeeW+79ombXs+UUMpRaeVdkVa5ZXgTMhMb+vgoAsL7SHSsA0OhFABI++eST9MILL6Tf/e536bHHHktPP/101pXhqvjJT36Svve976XPfvazaV0pFArpRz/6Ufbz6aefZiHk8ccfnwWQEf48++yz6brrrsvGjrv++uuzMHBN22+//SofEsaYcH/605+yMeR+85vfpKeeeioLTSh/Dz30UFY/YyzCmmMMri0xXuL6Kr4g0L1796xL0xjzcciQIWmDDTbIbfvxhYs1va24vkVR9ocffjjrAvaPf/xjNmblNddck3784x+nESNGZONRrun76x577JFmzpyZBbo0LkcffXTWNfBWW221rosCAACNjhASAGj0araeiHAiujeM8dhivLVV6bIxHnau6weeET7GsUX3iNH1Zc3uGsP8+fOz4/zvf/+7VsoUAWTV8x3B72GHHZad88suuyyNGTNmrZSDdWvevHnZ74qKinVWhvU98I7WkNHVafHv5bVCnDFjRq150e1ptJTs0qXLarUsylN8ESJ+woIFC7IA+oILLkhnnnnmSoWsq3J/jZahMU4mjc9nPvOZ7AcAAFj7dMcKAFDDgQcemD2sjpY8f//73yunR7elxx57bGrfvn02ntrWW2+dTjvttPTmm282aMyyqt3vxd/RRWG0ymnVqlX64he/mMaPH18rsDvllFOyv+N31a5MVzQWWoQPEeoVWyDVFUCGOJZojTRs2LC0LkTXsNHKK0ydOrXavAhO999//2w8uThHO+64Y3ZMS5YsqbcbtrfeeisbOy9aSEULrard2Mb2oyVozIvrFyHGwQcfnLXCrGnKlCmpX79+acstt8zOYQS53/rWtyrDs6piv7H/pUuXZudyu+22y7Yf65x//vnZuH41u9cNEydOrHZNq4azsVzUtQiZotvatm3bZtcwxgmsT9TVOJ4YYzGW/8pXvpJ1e7q8bhKj5W/UxyhrHGeHDh3S//3f/6UXX3wxrYxoafvzn/889ezZM2200UbZGIPx90033ZTNq3n8xbB5m222aXCdrnocUTd23333LFiKIDO6Gy7Wi0cffTS7JnEOouvPk046qc5uRuvqErVq98fRGjq2Uzyfffv2zVrS1Xf9G9KdcrHbyNdeey37KR571POaouXWLrvsktX/GDuzeG0++uijymW22GKLtM8++6RHHnkk6942xmKMcx/rxDX98MMP69x2XcaNG5f9ji8kxJiR8ToZO3ZsZcvDqi0bq4r7VnSvGiFP1NXoGnbOnDnVlo9WzyFaX59wwgnZeY/XVtyn4vURX/aILySEmPfDH/4w+zvKXvU1Ut/9NepG1KVw2223VVun5rmv+jqL+3zU+2L5arryyiuzdaKleFXRfXSco3h9xms9up894ogjqr1fLE9Dyrsyr6uG+Pe//5369++fvSZiOxEAR4vk5WnocTbkmoWou1GXdt1116wMcUwxFmm8nusTreUPP/zwyvfdqNfRNfGf//znyrpQrONRhqr7Lt7zltet+aq+r998881ZXY/3pnhtxvvYynyZp+r9LOpAvMbj9RPl+PrXv569l9XlvffeS8OHD8/eD2P5eN3FZ5Y4TzVVPe64R8S9KpZvyJcLisf66quvZvV/p512yo41rnW8zxVf3/fee2/WyjiuZ5Q96kt9477Gl42iW+bojSHOdXTHHi2a6zpva+J9taghn78AAMiPlpAAAHUoPmArPtiKB1TxoDKmRzgVDyrj4WU8DI7uW6N7weJD5RWJ8CEe2sWD3QhI4qHiPffcU/lgtfhANR4CRpgQ24958eC2KKYvT4Q88fAuQotu3bqtsEzNmzdfb851iIewcQyf+9znsvMexxvdtV500UXZg8wJEybUKnOcxwhu4sH2Mccck5o2bZo9HA6/+MUvsrEHI5iMh+jxQDNagUaXu9Ed7HHHHVe5nV/+8pfZA+V44BnLxkPPl19+ORub78EHH8zK0alTp1rHEef6b3/7W9ayM0KrP/zhD+mqq67K9lMM3eIaRve/8bA86lDV8eCqjmUVZY3rFuFOhKURosX2or5EQHjppZdW2/df//rXLIBctmxZduzRyu9f//pXVpdijNO6xEPpWDbCn3jIHy3mInS4//77s3AiQrhiq7UViXLFOKpxriIEjmv5wAMPZA/z47Vxxx13VDv+GOvwmWeeSWeddVZlXV5RnS6KLoQjWD/qqKOycxYP36Nrz7j+8TqJh8sRGMY1nDx5chbcRsgU6zRUvN7jdRfX8tRTT03PP/98dv4jfIm/V7VLz3iAH8cfrY/D2WefXflQPIKIhlybeF1XDfgiKIuAOs5/1KkIdd54440sYI76Xt8XEOoT4fX777+fnceoQ/Fai9aK8bqLaxtdxVa910UrxjgfUf/jtRfnOYKLeP1EUBAhX3x5IK55lCvqRoSrESBHqBtBarzmfvrTn2ZfSohzEstGmHDyySc3qCV61IMo86hRo7JtR90oqnrfrCm2H8cWIVgcR01xTaL8cWxF0aVsvNaivh1yyCHZdYr6FWX+8pe/nNX7Pn365FLehr6uViTuX1Ev4j4SdTr2EaFk7Df+XZeVOc6GXLM43rgXTZs2LbuvxD0+gtTonjfOb7TmjXpSVbxWokV/1Ksoa5yH+CJI8XUddbV47uJaVe3uO6yo7qzq+3p8aSfKHa/NOEdxr4z3mDin8SWIlRH3rriHxRdkIqCLfcb7RYST8WWYeH1U/ewQxxf3i/jyQSz/v//9LzuO+DuC0W9+85t1fsEg7inF+1lsp6Fi3OgoS/FYf//736cLL7wwe21HmBghYlyDKE/cK2644YbsfSjOYVVRtnhfi7AywvAILGO7cf+K99UnnniizveAPN9XV+bzFwAAOSoAADRS8VGoro9DEyZMKDRp0iT7mT17duGDDz4obLrppoWmTZsW/vrXv1Zb9oorrsi2cdBBB1WbfvLJJ2fTX3311cpp8Xdxn5dcckm15R955JFs+mGHHVZt+pgxY7Lp8Xtl7L///tl6t956a2F9cPHFF2flid9VffLJJ4UDDjggm/f1r3+92jEfffTRhY8++qjO7Vx77bXVphfP60knnZRts6oZM2YUmjdvXthkk00Kzz33XK2yzZ07t/LvF198sdCiRYtC586dC6+//nq15f785z9ndeCoo46qNn2//fbL9r3bbrsV3n333crpH374YbadWOfNN9+sVd5Yrz7//ve/a01bsmRJdq7iWKqWbdmyZYUuXbpk2/zDH/5QbZ2bbrqp8tw89thjldPfe++9Qrt27QqbbbZZdn6q+te//lVo06ZN4Qtf+EKhIe68885s+7F8vFaqHv/uu++ezbvjjjtW+PpYkeK1b9u2beH555+vnL548eLCTjvtlJ3neJ0+/vjj1c7NV77ylWy9adOmVdve1ltvnf1UVax7zZo1y653Vd/73veyeVdeeWWd178u9b1+a+47rk0sd+mll67w2sRxVt3f73//++zf2223XWHzzTfP6m9s+7vf/W5h/vz5hYULF9YqT9W6UBTXPObtvffe2Tktnr/TTjstOx/FelQ8lni9xr8rKiqq1e94/cV1iHmXX3555fF17do1m7bBBhtk17BHjx7ZuYzXeBxz7Kvmta6rnCu6v8a8uhTPcdV7ULz243xGPa1p6tSp2fLHHHNMtWOL13TLli2r1bPwxhtvZOdiyy23rDx/y7Oi8q7K66o+8f5U133zt7/9ba3ruqrH2dBrVvP1s2jRosIhhxySvd9WfY3+8Y9/zJbfZpttat2La96367q2K3odrs77eseOHQuvvfZatfO1zz77ZPOmTJlSaIji+YrX6z//+c9q884+++xq74lV7zVxnu66665q0xcsWFDYZZddCq1atSq89dZbtY471nn44YcbVK6axxr3kqrnP/YV96YNN9wwu9/UvBfvuOOO2Wv87bffrpwen6Ni2sYbb1yYOXNmtf18+9vfzvbzzW9+c42+r67K5y8AAPKhO1YAoNGL7rriJ77dH60hokVBPM+K1h3xrfpoERHflo+WCvFt/6rOPffcrLVFtACILggbIrb5/e9/v9q0aGkSretqdkm6qopduUWXijVFK4riMRd/ii2z1rRo+VDcZ7Q8ii7eouVItKSK8x+idVC0cozWUdHdXFXREjK6BKyrBVC0WIrWVDVbSEaLjGg9FuvW1So0WltWXTZan0UZap676PIuWkZGq40PPvig1naiRUe0DCmKFh/RRWa09okWl6s7XmEc3+mnn54dS7RKK4pWQdECJ1pw1GzVFK0Bo8u7mm6//fasZVK0HIlrUFX37t2z1jTRYila/a1IXKdwxRVXZC2Wqh5/nJMQrUjzEl13RleERdHiLl6bcZ6jBWS0hiqK1rAnnnhi9ne0vGyoaAUY17uq+roNzkO01ol7TtwXVnRt4vhDzWsT967//Oc/WQuleI1fffXVWSuq6E62KFoIxX5qtg4Kxdad0V1mnNPi+YuWTcXrF+sXWxnFvBAtkKJr1aJ4/UU3wDG/uF7s76tf/Wr2d7x+ovvFuB7Roixe49FFaHF7a1O89uM6R+u3muNqFlumRsu+omghPGvWrOzeVbWehegWOI4n7r1VX5+rKq/XVbSgjfenaNEXXWVWFa2/ah7HmjjOaIEZLRej28uaXX9Hd5hxPFEvo9Vn1RbPIepxXe9jVe/bq2J13td/8IMfVGsNH3W+2HX6yt4fojVedMVaVbw/RrepcT6K3UzH6yVamkbLzbg/VRUtCON+sXjx4nTffffV2kdc5/hcsyrifbPq+Y99xftgdK0bLRvruhfHPahq19Vx7WNa1L+a47Jefvnl2T0qun6uq6v1PN9X19bnLwAAqtMdKwDQ6BXHsoqu7uIBWzyQHDx4cGV4Ed3Shbq6tYyHj9FlZjz0j9Cmrm46a4quw6KbxJqiq7l4eL+mRVmLx1z1wVyxa8j6RDBSV1gZ6zW0K814iBo/oTjWYnQPF10ixt/xYDMetkYgUl8wGg866xqbLx4aRxdvNUX3qaG+bgerKp7/KGNd47tFF3DR1dxLL72UjUlYVTxgrymOKSxYsCCtjHjwHQ9f4yF//F1zjK3o1rIo6l2ILhJrimAnxn6L8tZ1nHGu6xozq7h8nOeaQVhN8fqI/dQVbEWAEXW9WMY81HWeIxgJNa9JKD5AjzBmdfaxqtdyZa3stYlzHMcYYVVci+giM7pgre8+szxxP4v6UlPx2la9jsu7L0bwHSFRdMsagWMEKhFORLgfXTdGYBpdaUY56wrc16YIVSNsitAxunkMEZhEF61xP6natWrx2kSXjnVdm+j2tHhtVtQl64rk9bqqen+oqz7E9ov35DV1nHEvjftmfWP0FccDrXpfj/t2LL+q4dmKrM77ep73h7pC4Hi9xOs3rkuck/i7eE3i9VTXOYwvIIS63huj+9F1eb9d3rmOLyBECBtdikcX0tE98Zq8F6/rz18AAI2REBIAaPSqjq9Wl3joF2JsvroUp0dI1xD1BXbx4DO+3Z+HaJkUDyNj/Kz6Wl2FaFUX47A1RLF1Vk3FsSsbIlpN1fUAtSgeKkbZ4oFqXftanqqtsaoqXpe6WtPU1WInjBgxYrnLffjhh7Wm1XUOiq0y4wF8Q73yyivZQ+M4FxGIxzhc8VA6HpwWxw6s2mKkWD+L41/WVNf04nHGOGYre5w1xf6jpUqEynUdfwTKEd7mJc5FXftZ0bxi0NEQeV3LVbGy1ybGSYvAJl5bMV5bjFUX4rzH2IHR6qehr/FYp64H9MXXVrGuNfS+GAF6vP7iukSdjrHdouVTjFEXLZ/C9ttvn5X9hBNOSOvC0UcfnZ3DaK0VrUDj+GOMvWglF1+wqNqyunht7r333tV+3ayt19WK7g913TfzPs7i9iKMrOvLHXVtL+pNBFQ1W8PnZXXe1/O8P6zouhTLWTyHEZjHz8pck/reG9fW/XZ9Odf1bS/vz18AAFSnO1YAgBUoPmgrdnFa05tvvlltufVBtDAKeXQLWLWlYQSENX9iel6K5zBaRtS1r6o/NUWrmeU9dKzaenBF+4+Hpsvbd12tV/IycuTI7IHz6NGjs+5rf/azn6VLL700C2+j27iaIkAJb7/9dp3bq2t68Tijtd3yjrNqV5T1iW1FYFNXyBch9zvvvFNZxnJU7EY0jrWmhn4xYXWvTbQ6jPoSodRzzz2X1ZnotvhHP/pR9tNQca3qerBfvPdVvcetyn1xr732ygK+CNifeOKJrKvHqJ//93//l/785z+ndSFCruOOOy4rbzHcqasr1qrHEl15Lu/aRKi6uvJ6XRXLXN/9oa7rl/dxFrd3zjnnLHd7jz32WLX7dtSTmq3Ay+19fUXXpbj/4u9oTby8czhmzJgGvzeuLevLuQYAYN0QQgIArEBxvKYIhOp6GByte8Juu+2W+76LrZJW9hv/0ToxvtkfLY7q6p5tfRVjn8W4jTE+WzyAz8Oee+6Z/X744YcbvGzxmq7J4Kq+axrjO4YY+6ummt0mVq2fkyZNqjUvWnbEmJFr8jhj/7Gf6E6vppgWx7kmXhvri2itFebOnVtrXn1jlsXrur7rvzrXJsKGeP3EWH7FQO23v/1tg9eP+1ld9aV476s6dt3y7otRh6M7xhiHsK6WR9GlcnT7GgFpBKbFwGt17nureq8MxXEuI3yMVthxr+jRo0fWdeOaet2sqLx5va6q3h/q2ldd129VjnN5xxOtYOOetzLbizJEqPbII4+s1r7Xx/f1Fd3T40sw06dPz8bLLI65uLbem9aE5Z3r+KJGzWNdE++rAACsO0JIAIAViDHMolu8GCOsOL5gUYxbGOOexfhmDRkPcmVFa6YQ3RqujBhnLbphjLHNYizEuoKFVW2ptaZ997vfzcr99a9/vc7yReuY4hhTDfHtb387C2SjNeHzzz9fa37VsavOOOOMrOvKaLFTcxzFEOXK4yFwXNe6QqtQbFla84FtdLN566231lq+OK5etCKqGbTecsstdR7HKaeckoVD0eXt1KlTa82P8KOuB8Z1iesUhg8fno3pWRR/f+9738v+jjFWy1VxvLWa3adGK+S4Z9R3/SPsqquV18pemwjs62pNVZy24YYbrtTxxHWs2t1vfBngsssuqyxbzese84rj0YUIAYYOHZqVs+p1j3tQXcdbVzlX5b4XYXCEsCt7ryy+hrbbbrssCP35z3+etT4sBpNVHXnkkdlr7YYbbkh/+MMf6txWjCtX9XWwquXN63UVrWQPOuig7H3q+uuvrzYvjreuEGxVjnN51yzG1hwwYEAWysd9uK6gaNasWVkZiyJID+eee26drdirTluV+rIu39erim6Ja47tGa3eI4iMLoojsC+OjRjdc99///3pl7/8ZZ3b+te//pVr19d5ifG14331uuuuq/ySTVG0hl64cGG2TPFY18T7KgAA644xIQEAGtA6Lx769e/fP+uGM37Hg8l//OMf6U9/+lM23tLNN9+8RvYd3RfGw/l4KBpddBbHdooHtCvquuwHP/hB1pIkHvrGQ/bdd989C0ziwWuEezG+YLELxH333TetL+Lhe5zbG2+8MXsQHl2QxvmOMCQeDEcroAhDIixoiJ122inb1qmnnpq1yIgH7BE4xPmM8cmiS8NiN4A77LBDdq2jDNGi7NBDD01du3bNQol4wB0B5BZbbJFeeOGF1TrGAw88MN19993p8MMPz1raxAPauAbxE+P4RZd6Uc/69euXKioqsi42o0VQdBt5zz331Gr9EeFklPWII47IWlDGeXv22Wez1nARQkc4Wew2tPiwNlrJxnh40cImyhPHG6FIPMSNgCHOz+LFi1d4LNGVZoQZv/nNb7JtxMP92E60wIvrdfzxx2cBRLmKuhhjiMZ4gtGFatS3CH7jnMf5ve+++2qtE+c76l5cs7jm8fB9l112yerDyl6buMbnnXdedq+IuhqBTwTrcU3imse8hoqx2SKA7N69e1aXot5HWaK7xKiXVe8T0ZJx2LBh6aqrrsqWj7rapk2b7Lijvn75y1+utu9Y7tFHH82ClGghGffVCFBj+QjkhgwZUrns/vvvn5U9ArjYVrG1aXyxoj6xvV69emWv0ahvcS6ihVwcR7RqXJGBAwdmgUjcL+NLC3XV2XidRggU96S+fftm5yBaS8Y9Oq5NXNMY0zXO14rC3xWVN8/XVYSJUT9ijMt4z4q6FmHQAw88kNW5Bx98cLWPc0XXLALQl19+OXtfiuAt6keMhxjjFkdr/dhmBIJRN0KMhRvrRsgdLeTi+Dt27JiF1tGqM14bv/rVryrHFY0xf+OeGmXfeuuts3N10kknZX+vb+/rVcX9Od6f494er784tviJL6NcccUV1Za988470wEHHJCFz9GCOOpPfGEhXu9xv4/zHveHuAesT+JY4jPM6aefnr3fxbHG+2gE4FHeeN+98sorV3s/y3tfBQBgHSoAADRS8VFoZT4OTZ06tXDUUUcVNt9880KLFi0KHTt2LJx66qmFN954o9ayJ598crbtV199tXJa/B3TYl5d9ttvvzrL8/DDDxf23HPPQps2bSrLXHW7K/LCCy8Uzj777MIuu+xS+MxnPlNo3rx5YZNNNil88YtfzKb/4x//KKxpF198cVbu+N1QDz74YKFv376FLbbYIjvfHTp0KPTs2bNw4YUXFmbOnFlt2dh2nL/lmTx5cuGYY46p3N5WW21VOOSQQwr33ntvrWWfffbZ7Dp16tSpsMEGG2Tnq1u3boUhQ4YU/vKXvzTouoUxY8Zk8+J3VW+//XbhhBNOKLRv377QtGnTWufmiSeeKOy///6Fdu3aFTbaaKPC3nvvXXjggQcKjz32WL3n8amnnip85StfyZaPnwMPPDA75tNPPz1bZ9q0abXWiXoU87t06VJo2bJlYeONNy5sv/32hRNPPDHbX0MtW7ascMMNNxR23333QuvWrbOf3XbbrXD99ddn8xry+mhoHYpz0NDzHOo7Z1tvvXX209DtLK+ePffcc4XDDjssO+/xOo1lHn/88Xq39+GHH2b3js9+9rOFZs2a1XlfaOi1ef755wvnnHNOdu7j3hT1NY7r2GOPzepRQxXPx/vvv1847bTTChUVFdm2dthhh8KoUaMKn376aZ3r3XXXXVn9jGOPcu60006Fyy67rLBo0aJqy/3xj38sDBo0qLDjjjsW2rZtW9hwww0LXbt2LZx55pmF2bNn19ru2LFjs3tWq1atat2r66s/L7/8cuGrX/1qYdNNNy00adKk2rlf3msnvPbaa5WvxdjG8sTr9/zzz8/uCVHX45rHdYpzHuX+5JNPlrt+Q8q7Kq+rFe0ryhfvAXHu4z1l/Pjxy63zK3ucy7tmYcmSJYXrrruusNdee2V1IOpXvI8ecMABhWuuuabwzjvv1CrDQw89lN2n4x4cy3/uc5/L3odr3ofj/Tm2E9stnsvivWJ5x7i67+tFK6pfy7ufRbmK5y3KEa+TefPm1bnewoULC5dffnlWD+J6xDqf//znC3369CncfPPN2b2lofez5Vnesa7qvTjuAQcddFD2vhbXsnPnzoXzzjuvsGDBglrL5v2+uqqfvwAAWH1N4j/rMgQFAADWnGhlM2XKlKx7v2ipBsvrBjhaSANrVnS5Gl0uRyv83r17r+viAADAGmNMSAAAKHExNltd42dGd4UxFl90bSiABAAAANYmY0ICAECJi/EqY7zLgw46KHXp0iUtXbo0TZs2LRtbLMYMu/rqq9d1EQEAAIBGRggJAAAlrkOHDmnAgAFp4sSJWfd+S5YsSVtuuWU65ZRT0oUXXpg6d+68rosIAAAANDLGhAQAAAAAAAByZUxIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV83z3RxFW265Zfrf//6XOnXqtK6LAgAAAAAAUHLmzJmT2rRpk9566611XRRWgZaQa0gEkJ988sm6LgYAAAAAAEBJipwl8hZKk5aQa0ixBeSMGTPWdVEAAAAAAABKTrdu3dZ1EVgNWkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAjTuEXLJkSTr//PNTRUVFat26derVq1eaMGFCg9b985//nPbff/+0+eabp3bt2qU99tgjjR07do2XGQAAAAAAABqTkgshBw0alEaOHJkGDBiQRo0alZo1a5b69OmTJk2atNz1fv/736eDDz44ffzxx+mSSy5Jl19+eRZiDhw4MF1zzTVrrfwAAAAAAABQ7poUCoVCKhFTp07NWj6OGDEiDR06NJu2ePHi1L1799S+ffs0efLketeNAHLGjBnplVdeSS1btsymLV26NO2www6pTZs26Zlnnsm1rN26dct+xz4BAAAAAABYObKW0lZSLSHHjRuXtXwcMmRI5bRWrVqlwYMHpyeffDLNnTu33nUXLlyYNtlkk8oAMjRv3jzrmjVaRAIAAAAAAAD5aJ5KyLRp01LXrl1T27Ztq02PsR3D9OnTU8eOHetct3fv3unKK69MF110UTr55JNTkyZN0p133pmefvrp9Jvf/Ga1U/iaZs2alTp37rzK2wUAAAAAAIBSVVIh5Jtvvpm22mqrWtOL0+bNm1fvuhE+vvrqq9lYkJdddlk2bcMNN0z33XdfOvLII9dgqQEAAAAAAKBxKakQctGiRdW6U63aJWtxfn1ivWhF2a9fv3TMMcekZcuWpVtuuSWdeOKJacKECWnPPfdcpTLV1w9xfS0kAQAAAAAAoNyVVAgZYzcuWbKk1vTFixdXzq/PGWeckZ566qn0z3/+MzVt+v+GwjzuuOOysPCss85KU6ZMWYMlBwAAAAAAgMbj/6VxJSK6XY0uWWsqTquoqKhzvY8//jiNHj069e3btzKADC1atEiHHXZYNi5kLAMAAAAAAAA0shBy1113TS+99FJauHBhtenFVowxvy7vvvtuWrp0adYFa02ffPJJ+vTTT+ucBwAAAAAAAJR5CBnjORbHciyK7lnHjBmTevXqlTp27JhNmzNnTnrhhRcql2nfvn1q165deuCBB6q1ePzwww/Tgw8+mHbYYYflduUKAAAAAAAAlOmYkBE09u/fPw0fPjzNnz8/denSJd12221p9uzZWXerRQMHDkwTJ05MhUIh+3ezZs3S0KFD0/e///205557ZvMjzIx1Xn/99fTrX/96HR4VAAAAAAAAlJeSCiHD7bffni666KI0duzYtGDBgtSjR480fvz4tO+++y53vQsvvDBts802adSoUemHP/xh1oIy1h03blw69thj11r5AQAAAAAAoNw1KRSbC5Krbt26Zb9nzJixrosCAAAAAABQcmQtpa2kxoQEAAAAAAAA1n9CSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAoHGHkEuWLEnnn39+qqioSK1bt069evVKEyZMaPD699xzT9prr71SmzZtUrt27dKXvvSl9Oijj67RMgMAAAAAAEBjUnIh5KBBg9LIkSPTgAED0qhRo1KzZs1Snz590qRJk1a47iWXXJJOOOGE1LFjx2wbl112WerRo0d644031krZAQAAAAAAoDFoUigUCqlETJ06NWv5OGLEiDR06NBs2uLFi1P37t1T+/bt0+TJk+td96mnnspaPV599dXpnHPOWeNl7datW/Z7xowZa3xfAAAAAAAA5UbWUtpKqiXkuHHjspaPQ4YMqZzWqlWrNHjw4PTkk0+muXPn1rvutddem7bccst01llnpchdP/zww7VUagAAAAAAAGhcSiqEnDZtWuratWtq27Zttel77LFH9nv69On1rvuXv/wl9ezZM/3sZz9LW2yxRdp4443TVlttla6//vo1Xm4AAAAAAABoTJqnEvLmm29mwWFNxWnz5s2rc70FCxakd955Jz3xxBPp0UcfTRdffHHq1KlTGjNmTDrzzDNTixYt0re+9a3Vagpc06xZs1Lnzp1XaZsAAAAAAABQykoqhFy0aFFq2bJlrenRJWtxfl2KXa++++676e67707HH3989u9+/fqlnXfeOV122WWrHEICAAAAAAAAJRxCtm7dOi1ZsqTW9MWLF1fOr2+9EC0eI3gsatq0aRZIRsvIOXPmZK0jV1Z9g6HW10ISAAAAAAAAyl1JjQkZ3a5Gl6w1FadVVFTUud6mm26atZbcbLPNUrNmzarNa9++fWWXrQAAAAAAAEAjCyF33XXX9NJLL6WFCxdWmz5lypTK+XWJFo8x7z//+U/6+OOPq80rjiO5xRZbrLFyAwAAAAAAQGNSUiFkdKW6bNmydMstt1ROi+5Zx4wZk3r16pU6duyYTYuuVV944YVq60a3q7HubbfdVq0b1zvuuCPttNNO9baiBAAAAAAAAMp4TMgIGvv375+GDx+e5s+fn7p06ZKFirNnz06jR4+uXG7gwIFp4sSJqVAoVE771re+lW699dZ0+umnZ60pY/zHsWPHptdeey09+OCD6+iIAAAAAAAAoPyUVAgZbr/99nTRRRdlAWKM49ijR480fvz4tO+++y53vdatW6dHH300DRs2LP3yl79M//vf/7IuWh966KF0yCGHrLXyAwAAAAAAQLlrUqjaXJDcdOvWLfs9Y8aMdV0UAAAAAACAkiNrKW0lNSYkAAAAAAAAsP4TQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAClHUK+//77a3uXAAAAAAAAQKmGkGedddZy53/wwQfpkEMOyXOXAAAAAAAAQDmHkNddd1265ppr6py3aNGi1Ldv3/Tss8/muUsAAAAAAACgnEPI4cOHp/POOy/dd9991aYvWbIkHXHEEempp55K99xzT567BAAAAAAAANYzzfPc2OWXX55ee+21dNJJJ6WKioq01157paVLl6b+/funxx57LN1xxx1ZGAkAAAAAAACUr1xbQoYxY8akPffcMwsbZ86cmQYMGJAeeuihdMstt6Tjjz8+790BAAAAAAAA5dwSMrRo0SI98MADae+990677bZb+vjjj9O1116bvv71r+e9KwAAAAAAAKDcQsg5c+bUO++mm25Khx9+eBo8eHA68sgjqy3bqVOn1dktAAAAAAAAsB5rUigUCqu6ctOmTVOTJk3qnR+brmv+smXLUrnr1q1b9nvGjBnruigAAAAAAAAlR9bSiFtC/uAHP1huCAkAAAAAAAA0PqsVQl5yySX5lQQAAAAAAAAoC03XdQEAAAAAAACA8pJrCHnPPfekgQMH1js+ZMy777778twlAAAAAAAAUM4h5A033FDvGJExvVmzZun666/Pc5cAAAAAAADAeibXEHLmzJnpC1/4Qr3zY97zzz+f5y4BAAAAAACAcg4hP/jgg7TBBhvUOz9aQv73v//Nc5cAAAAAAABAOYeQnTp1SlOmTKl3fsyrqKjIc5cAAAAAAABAOYeQX/3qV9Mdd9yRfve739Wa9/vf/z7ddddd6fDDD89zlwAAAAAAAMB6pkmhUCjktbF33nknG/dx3rx5qXfv3pXjQ06bNi09/vjjWSvIf/zjH6l9+/ap3HXr1i37PWPGjHVdFAAAAAAAgJIjayltzfPc2Oabb54mT56cvv3tb6eHH344PfbYY9n0Jk2apD59+qQbbrihUQSQAAAAAAAA0JjlGkKGjh07pvHjx6cFCxakf//739m0Ll26pE022STvXQEAAAAAAACNIYQsitCxZ8+ea2rzAAAAAAAAwHqq6bouAAAAAAAAAFBeVqslZNOmTbOfjz76KG2wwQbZ3zH+4/LE/KVLl67ObgEAAAAAAIByDSEHDhyYhYrNmjWr9m8AAAAAAACg8WpSKBQK67oQ5ahbt27Z7xkzZqzrogAAAAAAAJQcWUtpMyYkAAAAAAAAkCshJAAAAAAAALD+jAm57bbbrvQ6MWbkrFmzVme3AAAAAAAAQLmGkJ06dcpCRQAAAAAAAIBcQsjHH398dVYHAAAAAAAAypAxIQEAAAAAAID1N4R89dVX04MPPljnvEKhkM2bPXv2au1jyZIl6fzzz08VFRWpdevWqVevXmnChAkrvZ2DDjoo60r2jDPOWK3yAAAAAAAAAGswhPz+97+frrzyyjrnReA3YsSIdPHFF6/WPgYNGpRGjhyZBgwYkEaNGpWaNWuW+vTpkyZNmtTgbdx///3pySefXK1yAAAAAAAAAGshhIwg8NBDD613/iGHHJL++te/rvL2p06dmu6+++70k5/8JAs0hwwZkh599NG09dZbp2HDhjVoG4sXL07nnntu1poSAAAAAAAAWM9DyLfffjttueWW9c7v0KFDeuutt1Z5++PGjctaPkb4WNSqVas0ePDgrGXj3LlzV7iNq666Kn366adp6NChq1wOAAAAAAAAYC2FkG3btl3umI8xZmSbNm1WefvTpk1LXbt2zfZT1R577JH9nj59+nLXnzNnTrriiiuyLmNjPEkAAAAAAAAgf83z3Nhee+2VfvnLX2bdnW6yySbV5i1YsCCNGTMm9erVa5W3/+abb6atttqq1vTitHnz5i13/SjXF77whfS1r30t5aVbt251Tp81a1bq3LlzbvsBAAAAAACARtkSMro4nT9/ftYycezYsem5557LfuLvCB9j3nnnnbfK21+0aFFq2bJlrenRJWtxfn0ee+yxdN9996Vrr712lfcPAAAAAAAArOWWkPvss0/6+c9/ns4888w0aNCgyumFQiELD2+66abUu3fvVd5+dKG6ZMmSWtMXL15cOb8uS5cuTd/5znfSSSedlHr27JnyNGPGjJVqIQkAAAAAAADlLtcQMnzjG99Iffr0Sffee2966aWXsmkxjmP//v1TRUXFam07ul1944036uymNdS3/dtvvz29+OKL6eabb641ZuUHH3yQTWvfvn3acMMNV6t8AAAAAAAAwBoIIYth4FlnnZX7dnfdddesW9WFCxemtm3bVk6fMmVK5fy6zJkzJ33yySdp7733rjOgjJ8HHnggHXXUUbmXGQAAAAAAABqbNRJCVhUB4dy5c9NnP/vZbFzIpk1XfRjKfv36pZ/+9KfplltuycafDNE965gxY7Jtd+zYsTJ0/Oijj9IOO+yQ/ftrX/tanQHl0UcfnbXa/OY3v5mtDwAAAAAAAKzHIWR0m9q3b9/07LPPVk7bcccd04MPPpi23XbbVdpmBIXRrevw4cPT/PnzU5cuXdJtt92Wdac6evToyuUGDhyYJk6cmI1FGSKMLAaSNW2zzTZaQAIAAAAAAECOVr1Z4gp85zvfycZwjHEhFy1alJ566qm0bNmydNppp63WdqPr1LPPPjuNHTs220d0szp+/Pi077775lZ2AAAAAAAAYNU1KRSbC66iRx55JB166KG1pkf3q9HqcbfddqucduONN6YLLrggvf/++6ncdevWLfs9Y8aMdV0UAAAAAACAkiNraeQtIY844oh08sknp/fee69WCDlp0qRq05544olUUVGxursEAAAAAAAAyjmEjG5Wn3vuuWy8x3vuuady+oUXXpjOOeectM8++6QBAwaknXfeOd19993ZdAAAAAAAAKB8rXYIGd2tTp06NQscTznllKxl5Lx589KRRx6ZBZTRVDa6X91zzz3T448/ngWSAAAAAAAAQPla7TEhq3r55ZfTN7/5zTR9+vR0xRVXpFNPPTU1VvopBgAAAAAAWHWylkbeErKq7bbbLmvteNVVV6Xhw4en/fbbLwsmAQAAAAAAgMYjtxDy448/TgsXLsz+HjJkSJZKb7bZZmmXXXZJP/nJT9KyZcvy2hUAAAAAAABQziHke++9l44++ui00UYbpU022ST16NEjPf3006mioiLdf//9aezYsem6665Lu+++e/rnP/+ZT6kBAAAAAACA8g0hzz777DR58uR08803Z6FjhJHHHnts+uSTT7L58ffMmTOzEHLPPfdM5513Xh7lBgAAAAAAAMo1hHz44YfT9773vXTKKaekI488Mt16661p7ty56fnnn69c5jOf+UwaPXp0euSRR9Jvf/vb1d0lAAAAAAAAUM4hZIsWLdKiRYsq/7148eLUpEmT1Lx581rLHnDAAelf//rX6u4SAAAAAAAAWI/VTgpXUowHecUVV6SlS5dmY0LeeOONaYcddkg77rhjncu3atVqdXcJAAAAAAAAlHMIOWLEiNS0adNsTMiPPvoofelLX0qjRo3KpgEAAAAAAACNT5NCoVBY14UoR926dct+z5gxY10XBQAAAAAAoOTIWkqb5ooAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAEDjDSGXLFmSzj///FRRUZFat26devXqlSZMmLDC9e6///50/PHHp2233TZtuOGGafvtt0/nnntuev/999dKuQEAAAAAAKAxKakQctCgQWnkyJFpwIABadSoUalZs2apT58+adKkSctdb8iQIWnmzJnpxBNPTD/72c/SoYcemq6//vq01157pUWLFq218gMAAAAAAEBj0KRQKBRSCZg6dWrW8nHEiBFp6NCh2bTFixen7t27p/bt26fJkyfXu+7jjz+eevfuXW3a7bffnk4++eT0i1/8In3jG9/IvbzdunXLfs+YMSP3bQMAAAAAAJQ7WUtpK5mWkOPGjctaPkarxqJWrVqlwYMHpyeffDLNnTu33nVrBpDh6KOPzn5HC0kAAAAAAACgEYaQ06ZNS127dk1t27atNn2PPfbIfk+fPn2ltvfWW29lvzfffPMcSwkAAAAAAAA0TyXizTffTFtttVWt6cVp8+bNW6ntXXnllVnLyn79+uXSFLimWbNmpc6dO6/WtgEAAAAAAKAUlUxLyEWLFqWWLVvWmh5dshbnN9Sdd96ZRo8enc4999y03Xbb5VpOAAAAAAAAaOxKpiVk69at05IlS2pNX7x4ceX8hvjb3/6WjSN5yCGHpMsvv3y1y1XfYKj1tZAEAAAAAACAclcyLSGj29XokrWm4rSKiooVbuOZZ55JRxxxROrevXsaN25cat68ZDJYAAAAAAAAKBklE0Luuuuu6aWXXkoLFy6sNn3KlCmV85cnxmg89NBDU/v27dMf/vCHtNFGG63R8gIAAAAAAEBjVTIhZL9+/dKyZcvSLbfcUjktumcdM2ZM6tWrV+rYsWM2bc6cOemFF16otu5bb72VDj744NS0adP0xz/+MW2xxRZrvfwAAAAAAADQWJRMf6QRNPbv3z8NHz48zZ8/P3Xp0iXddtttafbs2Wn06NGVyw0cODBNnDgxFQqFymnRAvKVV15Jw4YNS5MmTcp+ijp06JAOOuigtX48AAAAAAAAUK5KJoQMt99+e7rooovS2LFj04IFC1KPHj3S+PHj07777rvCsSDDVVddVWvefvvtJ4QEAAAAAACAHDUpVG0ySG66deuW/Z4xY8a6LgoAAAAAAEDJkbWUtpIZExIAAAAAAAAoDUJIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAACgcYeQS5YsSeeff36qqKhIrVu3Tr169UoTJkxo0LpvvPFGOu6441K7du1S27Zt05FHHpleeeWVNV5mAAAAAAAAaExKLoQcNGhQGjlyZBowYEAaNWpUatasWerTp0+aNGnSctf78MMP0/77758mTpyYLrjggvTDH/4wTZs2Le23337p3XffXWvlBwAAAAAAgHLXPJWQqVOnprvvvjuNGDEiDR06NJs2cODA1L179zRs2LA0efLkete98cYb08svv5xto2fPntm0ww47LFv36quvTj/+8Y/X2nEAAAAAAABAOSuplpDjxo3LWj4OGTKkclqrVq3S4MGD05NPPpnmzp273HUjfCwGkGGHHXZIBx54YPrNb36zxssOAAAAAAAAjUVJhZDRfWrXrl2z8Ryr2mOPPbLf06dPr3O9Tz/9ND377LPpi1/8Yq15se6sWbPSBx98sIZKDQAAAAAAAI1LSXXH+uabb6atttqq1vTitHnz5tW53nvvvZeWLFmywnW33377lS5Tt27d6pz+wgsvpBYtWtQ7HwAAAAAAgPpFI7LIWihNJdUSctGiRally5a1pkeXrMX59a0XVmXdVdWkSZP16oURL9T4gXKkflPu1HEaE/WdxkR9p9yp4zQG6jmNifpOY6K+rz8iZ2nTps26LgaNoSVk69atsxaNNS1evLhyfn3rhVVZd0VmzJiRSkGxRWaplBdWhvpNuVPHaUzUdxoT9Z1yp47TGKjnNCbqO42J+g6NsCVkdJ0aXbLWVJxWUVFR53qbbrpp1gpyVdYFAAAAAAAAyjiE3HXXXdNLL72UFi5cWG36lClTKufXpWnTpmnnnXdOTz/9dK15se62226bNt544zVUagAAAAAAAGhcSiqE7NevX1q2bFm65ZZbKqdFF6tjxoxJvXr1Sh07dsymzZkzJ73wwgu11v373/9eLYh88cUX06OPPpr69++/Fo8CAAAAAAAAyltJjQkZQWMEhsOHD0/z589PXbp0SbfddluaPXt2Gj16dOVyAwcOTBMnTkyFQqFy2mmnnZZ+8YtfpL59+6ahQ4dmg5mOHDkydejQIZ177rnr6IgAAAAAAACg/JRUCBluv/32dNFFF6WxY8emBQsWpB49eqTx48enfffdd7nrRXerjz/+eDrnnHPSZZddlj799NPUu3fvdM0116QttthirZUfAAAAAAAAyl2TQtXmggAAAAAAAACNaUxIAAAAAAAAYP0nhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEXAv+/ve/pzPOOCN169YttWnTJnXq1Ckdd9xx6aWXXqq17MyZM9Ohhx6aNtpoo7Tpppumk046Kf3nP/+ptswLL7yQhg0blnbddde08cYbp6222ir17ds3Pf3007W298ADD6RDDjkkVVRUpJYtW6bPfe5zqV+/fum5555bqWMYPXp02nHHHVOrVq3Sdtttl6677rpay7z44ovpnHPOSV/60pey5Zo0aZJmz569Uvuh9DSW+l3TQQcdlNXxOHbKX2Op55///Oezel3XT6xD41Dq9f2mm25K/fv3z8oddXfQoEH1Lvv++++nIUOGpC222CI71v333z/985//bPC+KG3rsq7n8bni008/TVdddVXaZpttsnt7jx490l133VVrualTp6bTTjst7b777qlFixbZfmg8Gks9r+qTTz5JO+20U7avn/70pw3eF6WrsdTz+j6nx0/sl8ah1Ov75Zdfno444ojUoUOHbN1LLrmk3mXfeOON7NjatWuX2rZtm4488sj0yiuvNHhflLZ1WdejXtZ1r417dEP5rA7/n+ZV/mYNufLKK9MTTzyRPRCLG85bb72Vrr/++rTbbrulp556KnXv3j1b7vXXX0/77rtv+sxnPpN+/OMfpw8//DD7n6Z//etf2Q1pgw02yJa79dZbs4fJxx57bHaT+u9//5tuvvnmtOeee6ZHHnkkfeUrX6ncd6y7ySabpLPOOittvvnm2b5/+ctfpj322CM9+eSTaZdddllh+WPbp556ara/7373u+lvf/tb+s53vpM++uijdP7551cuF9v72c9+lv0PXzzonj59+ho5n6xfGkv9rur+++/Ptk/j0Vjq+bXXXpuVuarXXnstff/7308HH3xwjmeU9Vmp1/co/wcffJCt8+abby73fwrjfzqfeeaZdN5552X7u/HGG1Pv3r3TP/7xD8F7I7Au63oenysuvPDCdMUVV6RvfvObqWfPnul3v/td+r//+7/swcXXvva1yuX+8Ic/ZGWLY9x2223rfHBD+Wos9byq+KLVnDlzVnpflK7GUs/Hjh1ba914eD5q1Cif1RuRUq/v8f+WW265ZfrCF76Q/vjHP9a7XJQ3viAY5bnggguycOaaa65J++23X/a8cbPNNlvpfVNa1oe6Hl9wjWCzqFmzZg0uv8/qUEWBNe6JJ54oLFmypNq0l156qdCyZcvCgAEDKqd9+9vfLrRu3brw2muvVU6bMGFCIS7TzTffXDnt6aefLnzwwQfVtvfOO+8Utthii8Lee++9wvK89dZbhebNmxe+9a1vrXDZjz76qLDZZpsV+vbtW216lLtNmzaF9957r3Lau+++W1i4cGH294gRI7Jyv/rqqyvcB6WtsdTvokWLFhU+//nPF370ox9lZT/99NNXuB9KX2Or51VdeumlWfnjHNA4lHJ9D7Nnzy58+umn2d9Rx08++eQ6l7vnnnuyst57772V0+bPn19o165d4YQTTmjQviht60NdX9XPFa+//nqhRYsW1ZaPer/PPvsUPve5zxWWLl1a7TUU7wUhlve/gI1LY6nnRW+//XbhM5/5TOW+4v9LKX+NrZ5XNXjw4EKTJk0Kc+fObdD+KH2lXN9D8Tnhf/7zn2zdiy++uM7lrrzyymz+1KlTK6fNnDmz0KxZs8Lw4cMbvD9K17qs61EvY/2op6vCZ3WoTq1eh3bbbbfsp6h9+/aF/v3711qua9euhQMPPHCF2zvmmGMKm2666QqXi5te27ZtC8cff/wKl33ooYeym1/8rmry5MnZ9LFjx9a5nhCScq3fP/zhDwudOnXKPiAIISnXel7VjjvuWNhmm21WuB/KXynU95qWF0JG2Tt06FBYtmxZtelDhgwpbLjhhoXFixev9P4oD2uzrq/q54obbrghW37GjBnVpt95553Z9L/97W91rufBBuVez0855ZTCHnvsUXjllVeEkJRtPS+Kzyrx5anevXs3aF+Ut1Ko71WtKITs2bNn9lPTwQcfXOjcufNK74/ysTbqejGEjC+p/ve//638kmtD+awO1RkTch2JAPjtt9/Ouv4q9nM+f/789MUvfrHWstGd2LRp01a4zWiWXtxeXWMeRV/Y0RT9G9/4Rlq4cGE68MADV7jN4n5rliv6qW7atGmDykXjU671O7p1iq4UokuI1q1br3D7lLdyrec1142xFaLLEBq3UqnvKyPKGF35xOugZvmjq2Ld4DROa7Our87nithvjI0TQyDULFNxPjS2eh5drt12221Z9/LGU6Jc63lV0YVffGYaMGDASu2T8lMq9b2hYtiEZ599tt7yz5o1Kxt+gcZnbf9/aXSPGt28xhiSJ554YrbvhvBZHaoTQq4jd9xxR3ajPP7447N/F8csikFxa4pp7733XlqyZEm924vxvaIv9uL2aor+rdu3b5/1L/2b3/wm64N98ODBKyxnlCv6u451q4r+tKP/9Xnz5q1wGzQ+5Vq/zz333GzcgvrGn6FxKdd6XvMYgwcblEp9XxlxDPWVP/iM0zitzbq+Op8rolwdOnSoFbSovzTWeh4PJc8888ysDHvttddK74vyU471vK5jbNmyZerXr99K75fyUir1vaGK5fNZnXVV1zfZZJN0xhlnZGNGjhs3Lvti7D333JP22Wef7AuyK+KzOlTXvMa/WQteeOGFdPrpp2f/c3TyySdn0xYtWpT9jg+QNbVq1apymbrmxzc+opXKNttsk4YNG1bnPseMGZPdJF955ZXs79jWsmXLan37v6ZYrjiAb13lKpYbyr1+P/bYY+m+++5LU6ZMWe42aRzKtZ7X/Pbp3Xffnf0PZs1v79G4lFJ9Xxn1la9q+Wlc1mZdX93PFeovq6pc6/mvfvWrrPV8PCiEcq3nVcXnpIceeij16dMntWvXbpX2TXkopfreUA0tP43L2qzrZ511VrV/H3vssVkrxviC9o033pi+973vLbesPqtDdULItSyaePft2zdryh3/gxStU0KxC4O6vp2xePHiastU9b///S999atfzbohmDRpUtpoo43q3G/Vb4PGt5WKD5R/+tOfZr+jy7N4uFcU24mf2OfHH39c5zajXLqkpDHU76VLl6bvfOc76aSTTko9e/ZciTNCOSrXel7TxIkTs28YnnPOOcs5G5S7UqvvKyPKt7Llp3ytzbq+Mp8rolxVRflif+ovq6Jc63mEMcOHD0/nnXde6tixY4POBeWrXOt5TREExTJ6LGncSq2+N9Sqlp/yta7+v7SqCCyjJfCf//znyhDSZ3VoGN2xrkX//e9/02GHHZb12f/II4+kioqKWs2xi83Iq4ppm266aa1vUMRD5WOOOSbrJ/13v/td6t69e4PKEU3KDzjggMpu9kJ8gIgyFH+KD/ni73jIF98Oqbnvd999t9ox0LiVc/2+/fbb04svvpi+9a1vpdmzZ1f+hPjAEn/H+GGUv3Ku5zXFtqPV2QknnNCgMlF+SrG+r4xYr77yB59xGo+1XddX5nNF1XoeP9ENVHF6PPSILihrlimovzSmeh7vAVGe6EqtuJ/XX389m7dgwYLs3/V9IYvyUs71vKb4XBQPu+MhOo1TKdb3hiqWz2d11qf/Lw3xZafo4rXq/n1WhxXTEnItiW86HH744emll17KvjGx0047VZv/2c9+Nm2xxRbp6aefrrXu1KlT06677lqrm7yBAwemv/zlL9lYSfvtt99KlSeafcdNvOoH2KpNwWPg3VDcb5Qruvkoin9HGWqWi8ap3Ot3DLz+ySefpL333rvWvuKDePw88MAD6aijjlqpclJayr2eVxXf2ItvV/fu3duH40aqVOv7yogyxhggUbaq3bxG91Ibbrhh6tq160pvk9KzLur6ynyumDBhQrX53bp1y37Hfm+99dY0c+bMamUudo/mMzqNqZ7HviJsLK5X1Y9//OPsZ9q0aV4XZa7c63nNh9jRLeagQYPq7O6P8leq9b2h4rP5zjvvXGf547URn/033njjldompWl9+v/SCBQjbI8ha4p8VocGKrDGLV26tHDEEUcUmjdvXnjooYfqXe7UU08ttG7dujBnzpzKaX/+85/jKxOFm266qdqyp512Wjb95ptvXu6+33777VrTXn311cLGG29c2GeffVZY9o8++qiw6aabFr761a9Wm37iiScWNtxww8K7775b53ojRozIyhf7orw1hvo9c+bMwgMPPFDrJ8rYp0+f7O958+atcH+UrsZQz6u6//77s7KNHj16hdun/JRyfa+pTZs2hZNPPrnOeXfffXdWpnvvvbdy2n/+859Cu3btCscff/xK74vSs67qeh6fK+bOnVto0aJF4fTTT6+c9umnn2avk89+9rPZsdUllve/gI1LY6jn//jHP2rtJ8oW+xo0aFD27/fff79B54vS1BjqeVUjR47M9vGXv/xludumPJVyfa8qPnfHuhdffHGd86+44ops/t///vfKaS+88EKhWbNmhfPPP7/B+6F0rcv/L50/f36taTfccEO2btyDV8RndaiuSfynoYElq+bss89Oo0aNyr65cdxxx9Waf+KJJ2a/586dm32bIgYVjwFwP/zwwzRixIj0uc99Lv3973+v/Ibbtddem43RFeMlnXbaabW2d/TRR6c2bdpkf3fo0CEdeOCB2Tcsojuzl19+OY0ePTrrIiG+9fGlL31pheWPAXdj4N9+/fqlQw45JGs1EN9wuvzyy9MFF1xQuVy0ULjuuuuyv5944omsiXz0lR3HEz9nnHHGapxF1leNpX7XpUmTJtm6119/fYPPF6WpsdXzWG78+PHp7bffzrp5onEp9fr+4IMPpmeeeSb7+9JLL82+jRrd7YQjjjgi9ejRI/s7uin+8pe/nJ577rlsHLHNN988e63Et7yj/Ntvv/1qnUfWf+uyrufxuWLYsGFZOYYMGZJ1Ufzb3/42PfTQQ1lL4Rizpui1115LY8eOzf6Oe3t8AzteG2HrrbfOxnaifDWWel5TtFTYZpttsnWHDh3aoH1RuhpbPf/iF7+YtYaM46namwONQ6nX9/hMEp9N4vP9T37yk7T//vtnQy+E+EwSn02KXbxG+eN33MdbtGiRRo4cmX2Gnz59etb6jfK2Lut69IwT3bxHi9xWrVpl40befffdaZdddsmeecf8FfFZHaqoEUqyBuy3337Ztxjq+6nqueeeKxx88MFZ65T4Jv6AAQMKb731VrVl4hv9y9te1daH8Y2iL37xi4VNNtkk++ZIRUVF4Wtf+1rh2WefXaljuOWWWwrbb799YYMNNih07ty5cM0112Tf4Kgq9ltfmbbeeutVOnes/xpL/a5LlKfqt5ooX42pnv/3v/8ttGrVqnDMMces9HmiPJR6fV/e/saMGVNt2ffee68wePDgwmabbZYdQxx71W9bU97WZV3P43PFsmXLCj/+8Y+zz9lxb+/WrVvh17/+da3lHnvssXrLFOeA8tZY6nlNxf83jR56KH+NqZ5HS7DY/ne/+90Gb5/yUur1fXnlj88sNVuT9evXr9C2bdvCRhttlPXu8/LLLzd4X5S2dVnXv/GNbxR22mmnrEeeaNHYpUuXrAXuwoULG1x+n9Xh/6MlJAAAAAAAAJAr/TYAAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCwv+vPTsmAAAAQBhk/9SW2Ak1AAAAAAAAICUhAQAAAAAAgJSEBAAAAAAAAFISEgAAAAAAAEhJSAAAAAAAACAlIQEAAAAAAICUhAQAAAAAAABSEhIAAAAAAABISUgAAAAAAAAgJSEBAAAAAACAlIQEAAAAAAAAVjpeNJ6Izrk0iQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 6 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:38:41.460845Z", + "start_time": "2025-09-29T15:38:41.172135Z" + } + }, "cell_type": "code", "source": "month_percent(m_per, \"%buzzes\")", "id": "7cf84c8744185424", - "outputs": [], - "execution_count": null + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAaiCAYAAABkZcbYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs/QecVNX9P/4fEAQs2Bt2RUWxYMUOauy9JRqJYo01amzRWGOJxhJ7Jyp2Y6KxGxPFj4o1alTEEiygYokNjYAK83u8z/8/853dna3swu7O8/l4rLvcuXP7vePjvOZ9TpdCoVBIAAAAAAAAUIW6zugNAAAAAAAAgBlFWAYAAAAAAEDVEpYBAAAAAABQtYRlAAAAAAAAVC1hGQAAAAAAAFVLWAYAAAAAAEDVEpYBAAAAAABQtYRlAAAAAAAAVC1hGQAAAAAAAFVLWAYAAAAAAEDVEpYBAAAAAABQtYRlAAAAAAAAVC1hGQAAAAAAAFVLWAYAAAAAAEDVEpYBAEAHM2LEiNSlS5f8M3jw4Bm9OUAn4dkCAEC1EpYBAEALvfLKK+nnP/956tOnT5p55pnz7z322CO99tprTV7GG2+8kXr06JEbp//whz+06fYCAAAAdQnLAACgBf785z+nNdZYI916661p/Pjx6Ycffsi/b7nllrTaaqulO++8s0nLOeSQQ9L333+f+vfvn4488sg2326gOrz33nulKrElllhiRm8OAAC0a8IyAABoprfffjvttddeOSAL6667btp///3TOuusk/8d0+P1mK8hEbQ9+uij+e/LLrssde/efTpsPQAAAFBOWAYAAM0U3SVOnDix9PdTTz2Vrr766jRy5Mh0xhln5OnfffddOvfcc+tdxoQJE9JRRx2V/x4yZEgaNGjQdNp6AAAAoJywDAAAmun+++/Pv5daaqn061//usZrxx13XKnLs+J8lZx88sm528Y55pgjnXfeeW28xQAAAEB9hGUAANAMX3/9dQ65QlSDzTTTTDVe79atW9pwww3z3x999FGuIKvt3//+d7r00kvz31GJtsACC0yXbQcAAADqEpYBAEAzfPPNN6W/6wu5FlpooYrzh0KhkA4++OA0ZcqUtNpqq+W/W0Ms969//Wvabrvt0uKLL5569uyZFlxwwbTZZpul4cOHp6lTpzb4/vfeey916dIl/xQr4xoT8xXfE++vb3nN/Slf1uDBg1u0jFNPPbXBbR83blw6/fTT0wYbbJD69OmTevTokeaee+606qqrpqOPPjq99dZbTToGMT7dTTfdlHbaaadcaTjbbLPlwHT22WdPffv2TZtvvnmuInzuuefStBo6dGhp/66//vo87fPPP0/nnHNOWmuttdJ8882XevXqlZZeeul0wAEHpJdeeqnZ63j++efTkUcemQYMGJCXN/PMM+frKILhWM+XX37ZoutizJgx6be//W0+vrHcrl275nW0RJzb2ud50qRJ6aqrrsrXS9x/sd2LLLJI2nPPPdPrr79eZxnffvttHidw/fXXz/PH/RLH7ZBDDkkffPBBs7Zn1KhR6Zhjjsn7Nu+88+ZrKa6p2JY4ZnGOGhPns7hPcZ6L7rrrrrTtttumxRZbLC93/vnnz/d0XHNxzze0rCWXXLI07f3336/3XmmKGFtxt912y9d4HKt55pknfykgQv/i2I0AANChFQAAgCb76quvooU6/+y9994V5xk6dGhpngkTJtR47dprr83Tu3btWnjmmWdatA2PPfZYafmDBg3K69h+++1L0yr9rLPOOoVPPvmk3mW+++67pXkXX3zxJm1HzFd8T7y/vuU196d8WbF/LVnGKaecUnGbp0yZUjjppJMKPXv2bPD93bp1K5xwwgmFqVOn1rv/b775ZmH55Zdv8ja9/fbbhWmx1157lZZ13XXXFUaOHFno06dPveubaaaZ6j0OtX3xxReFnXfeudF9mHPOOQt//vOfm3VdXHXVVRWP9yqrrNKi4xD7VH6ex4wZk5dV3zb36NGj8NBDD5Xe/9xzzxUWXnjheufv3bt34emnn250O3744YfCYYcdlo9zY8fs+uuvb3BZcT6L88d5jufMdttt1+Byt9hii8J3333X4LKa8tPQs2Xy5MmF/fffv8H3r7baaoXPPvusWecQAADam24zOqwDAICOJMYYi0qU6IrxySefzBVbUSVTFBVjTzzxRP574YUXzhVGRV988UX6zW9+k//eb7/90sCBA1tlm6IS5W9/+1uuEokKoxVWWCFNnjw5jRw5slTZ8/TTT6dNNtkkPfXUU6l3796prcU6okqnKV555ZXSMQvl1S477rhjWnHFFRtdRlQWXXfddaUKukoVM3Fufvazn6W//OUvpWlxjopVWVFt9Oyzz+YqqB9//DGdddZZ6bPPPktXX311nWVFxeBPfvKTXKEW4hqIyqLll18+V5d999136cMPP8xdbv73v/9NrS0qhWK8vKj0ivVtvPHGudIxuv587LHH8vpjf0877bR8TH73u9/Vu6yPP/44v3/06NGlaf3790+rrLJKXvann36az09USH311Vfppz/9abrxxhvTHnvs0eh2/vnPf07HHnts/juqrdZbb718D8V2xv0wraKb0y233DJXAsY1FxVwUQkX+/TPf/4zH4e4F+I6evXVV3MVVJy3eF9UgUV1VFRJjR07NldPxevx2g477JDefPPNvK2VxDHdeeed0z333FOaFpWJUU0Wv+O6iPPw/fff52MW92j8Pvzwwxvdp7j2Ytmx/VEht+666+aqt7jG4zzEtoaHHnooXwNXXHFFjffHNRj3XlyjUVUa4jkUVXbNFRWKN9xwQ76+43nVr1+/vO/PPPNMPj7hxRdfzMt+4IEHmr18AABoN2Z0WgcAAB3NvvvuW6qquOiii2q8dv7555deO+CAA2q8VqzQmHfeeQuff/55i9dfXv0x88wz599LLrlk4fnnn68z7zXXXFPo3r17vdvUVpVlTTV27NjCggsuWFrO7rvv3qLl7LHHHqVlLLDAAoX333+/zjxRUVacJ9b5l7/8pWLl2B133FGYY445SvPefvvtdea58MILS6+vsMIKhTfeeKPidsXyo5LpoIMOyvvaWpVlxfMe+/3111/XqRLbaaedSvNGFeNTTz1Vb6XdRhttVJp3rbXWKrz44ot15ps4cWLh1FNPLXTp0iXPN+ussxbeeeedRq+LqNCLbb366qvrHOtJkyZNc2VZVI3F77i3aldxjhs3rtCvX78aFVurr7563ofYl6iaKvfaa6/VuBZPO+20erfhnHPOqVFd9Zvf/KbO8saPH1/YbLPNahyL+qpJy6vBivu05ZZbFj744IM61WxHH310ad7Yl/ruvZbc0+XPluJ2rLnmmoXRo0fXmC/OZfk9ED+PP/54k9YBAADtkbAMAACaKRqOiw3J8bPBBhvkEGr99dcvTevVq1fhrbfeKr0nGsmLQcOwYcOmaf3lDdrF4OI///lPvfMXu34sNq5XmndGhGXffvttYcCAAaVlDBw4MIcyzXXGGWfUaOCv1IVebF+xu7y55567weMVHn300dIyo6vF2kFPeZeFjzzySGF6KA/L4merrbbKYVclEaoMHjy4xjVayfDhw0vzrL322hW79asvqDrwwAMbvS7i56abbmrB3jZtG+JnyJAh9c775JNP1uk2sKGuKWNby897JRFOzjbbbKX5IryqTwSCETYV541gspLaXSfG+YpzWElci+XLPPvss9skLIufZZZZpvDNN9/UO/8uu+zS6PUAAAAdwf/rLwYAAGiS6Irs2muvTTPNNFP+d3SNFl31RbeMoXv37rnrsmWWWSb/O7rDO/jgg+OLarlLtb333rvOMidOnJi76yt2I9gc0RVbdNNWn3333Tetvvrq+e/Yhtj2GS224xe/+EV6+eWX878XXXTRdPfdd6eePXs2azl33XVXOumkk0r/HjZsWFp77bXrzHfRRRfl8xBOPvnkBo9X2GijjdLmm2+e/47uCV966aUar0dXfUXRheP0Ft1MXnzxxTW6AC3XrVu3/HpRXKPFbvPKXXDBBaW/r7zyytSrV68G1xvdiM4555z571tvvbXR6zW6uGxKd40tFd0UnnfeefW+Ht0+LrbYYqV/R1eVJ5xwQr3z77TTTnmZ4Y033shdGdZ2yy235C47i8trqIvLHj16pEsvvbT07+iasdJ5qO3CCy/M57C+c1/+DHnuuedSWzn77LNzV5z12WeffabLdgAAQFsTlgEAQAsMGTIkNw7H+E0xRlIEZDGW2e67757+9a9/pV133bU0b4wpFOP6RLh2+eWXl8bTiqAh/h3jQ80yyyw5dImxhWJcrbfffrvJ29KUsYjK54kG+xntt7/9bQ66wqyzzprHforj2BwRtEXgFsFbcZn1BTPl4yn9/Oc/b9LyYxyvomIQWhThXnnINL0Vx7FqyEorrZTHUavvvMe4e8WwMsa5izHKGhNh5jrrrJP//vrrr9Nrr73W4Py77bZbaksbbLBBDqwaUj7m3bbbblsKwyqJsLB4XOO6Ko75Vy7GNiuK+72xgDECwzgXTb3/llpqqbTaaqs1OE/5ea20ja0hznUcrxm9HQAAMD1U/qoaAADQqGjQvv322xuc55NPPkknnnhi/vvQQw8tBRLREB8N7XfccUeN+b/77rs87eGHH05///vfc0N7Q+add97Ut2/fRre1GHCECEhi/cXQbnq76aab0u9///v8d2xD/HvAgAHNWsbHH3+cG/L/97//5X/vvPPO6fTTT6847+eff57eeuut/HcEJaeddlqT1vH666+X/h43blyN1yIk/dOf/lQKyyIg3WuvvXI1WlPOx7QqP5+NzVesiqtdHff000/XqGyM67MpxowZU+O4rLzyyvXOW6xobCvlQVh95pprrtLfEUw3Zu65565YQVhUfhwjtGyKqHB79dVX898RnDekPFirzzzzzNPgNraG5ZZbLn8JYEZvBwAATA/CMgAAaENHH310rsCJqrPy7touu+yyUlAWlWTR3VlUVt1///2528R4T0yPwKahypXyLuYaUj7f5MmTc/dyvXv3TtPbM888k/bbb7/Sv88666y0ww47NGsZkyZNSttvv3364IMPSqHl8OHD6w3/ooKq6Pvvv8/Hvrm+/PLLGv+OUOywww5Ll1xySf73888/n39CVDqtv/76afDgwXnfFllkkdTaWnLeP/vssxqvffTRR6W/33333VY5LrW1dReVc8wxR6PzlHdn2Nz5f/jhhzqvlx/HxRdfvEnbucQSS5T+ju5WG9KUbSwPsSptY2to7nb8+OOPbbIdAAAwPeiGEQAA2sjjjz+eq6bC+eefXwqnoqrrD3/4Q/47uny7+eabc2N6dHsWFVLnnntuqVuzGBeqIdF9Y1NEV4flKo3F1NbGjh2bw6MI64pdQ8YYWM0V4yQVx0eKEDK6cGzoOETwOK0qBQExJthf//rXOtV/UU34l7/8JYdpEVbtsssued9bU0vOe+1z3lbHpVxjXRROq+ZWR7ZGNWVxvLJK91VLzkNtM6ris71uBwAATA/CMgAAaANR7XHwwQeXxr6KLheLRo8eXerWL6rIYiyzchEiFRvXozvGhkS3jU1R7K6wKMZGm1Yx5lpTxfq32267HCQVu6W7+uqrm73OM844oxQgRhDzt7/9LS288MJNDioisIywsrk/119/fcVl77jjjunZZ59N77//frrhhhvSL3/5yzz+V1G8N4KzqH4rdgXZGlpy3muf8/LjEuemJcdl6NChqdrMNtts9d5XLTkPAADAjCcsAwCANvDHP/4xd6EYY2TV7t6uPDRZdtll67y3R48epe7dGgtYao+l1ZT5Yvm1G+xb0p1aUyuTIlQZMmRI+ve//53/HfsWFVmxHc0RodPJJ59cqnq57rrr0pprrtno+6JbxPJxlZoaNDVHVJBFyBnjl40aNSpXksXYaMUKsBg37de//nWrra+plWrl5z3Gt6vvuMQYcDRNedeSTT0PUSVa33kAAABmPGEZAAC0shhLqzg+2VFHHZX69etXb5VJfd3pFat+yrt8qyTGTxozZkyj2/T000+X/h4wYECdLtbKxy+Lcagi4GpIhAQRPDXFCSeckO6+++78d4R09957b5p//vlTc7z00ks5jCpu1ymnnJLHdGuK6Kpx0UUXLf175MiRqa3F+iLYK6+e+/vf/17qgrI1xn5rivLzHtVt5QYOHFj6++WXX25ylVS1W3XVVZt9LZXPV/s8tBXdKAIAQNMJywAAoJUdfvjhOXiICqoTTzyxzuvlVV0RrFVSnF4eYtXnxhtvbNY8G220UcVtmnvuufPfUXnVWEXbHXfc0eg6i+s9++yz899du3bNXSiutNJKqTnGjx+fuwksVoRFSBZhWXNss802pb8vv/zyNL3Edpd3zfnFF1+0ynKfeuqp9O677zY4T1S4vfjii6V/Dx48uMbrSy21VFp++eXz399//30aNmxYq2xbZxfdqhbddtttadKkSQ3O/8ILL6RXXnmlwfuvLcQYiOXXHgAAUD9hGQAAtKKHHnoodzEYLrroooqVY8WAItx///11Xv/Xv/6VA6JQPv5VfS644IIGg5MYb+v5558vVZvEOGmVlFca1TdGVzHI+/3vf9+kapr999+/9O8//OEPaeutt07NEUHEDjvsUAoPo9vF6H6xuaLCrzg23F133dXg/tVWqYvC//73v83uBjHCwnnmmSe1hqiwi1C2vgrAKVOmpF/96lelf6+//vp1KhzDcccdV/o7gt1XX321ydtQrV03/vznPy+NWxb3aXS3WZ8IIQ877LAaQdlyyy03XbZzzjnnzNdcsQJVYAYAAPUTlgEAQCuJYKfYMB6h0Pbbb19xvmWWWabUYB5dEj7yyCM1lnHMMcdUrIiqJMZE++abb9Kmm25ao4qoKIKlX/7yl6V/R1DWt2/fekOA8gAuxgir1P3foEGDcleNse6GumnccccdS90O7rPPPjmwaq699947Pffcc/nvRRZZJP3tb39LvXr1avZyll566RpVfrE9Rx99dL2hV4zbFt0m/uIXv6jR7V7ROuusk4/Xgw8+mAORSqI6b6+99ir9e5NNNmnwmDVHLCeunaFDh+bzXy7Oze67754effTRUkBaX7gZY8kVK6ViORGqXXXVVfXuU3S9efPNN+cqtfIQqJpEtedJJ51U+ndUTsa/ax+zTz75JD8Dil1mduvWrUkhc2uJMQHjWRMiKCt2hQoAANTVrcI0AACgBc4555z0n//8J4c5l1xySYPzRuN6BBVTp05NW265Zdpiiy3SggsumAOOYpXYiiuumHbeeecGlxOhTXSfGNVSa6yxRlp77bVz5VqEVDFe1TvvvFOaN6afd9559S5rt912y6//+9//zg3/u+yySx5fKcY4i0ql6Eouxg4Lp556ag7i3n///YrLitc+/fTT/HdUdEVQcOihh6amiPHeYp9i2dHNXVE0/J955plNWsZWW22Vf8pF143vvfdeuuGGG3JF1vnnn5/PUxy3CNOiCjDCoJgn9rU4hlelarAIH6JLyfiJ873yyivnbg0jSImwKo57dL9XFPM0dOyb6/jjj8+Vi8OHD8/nPgKvGAcuqr3iGioffyzmjRCskjg30aVmhK1xbmP/DzzwwHTsscfma2vhhRfO88Q+vfnmm2n06NE5SAyNXZudWQStTz75ZA4swxlnnJGuuOKKXDk211xz5YrCxx57rMYYdeeee26N6s3pIc7RWWedlf/eY489ckVlhOXdu3cvzdOa1yUAAHRUwjIAAGgFY8aMKY3NFeHEkksu2eD80XAdFVMXX3xxDqJqd8fYp0+fdOedd+aQqTHRAB7hzX333ZcDsvipLRrpo7JkjjnmqHc5sa4IXn7yk5+UQraoViuvWIsqpRNOOCGdfPLJDXaHWN49YOzf1VdfnZoTRERYVruLwQgf4qcp5p133jphWWx7HKvVV189B2cRAEUoGN1Fxk8l8Z711luvwXHnJk6cmJ599tn8U0lcCzfddFMO1FrLEksska+ZCDSjK8CouKstQq7f/OY3OchpSISBMQbar3/963TttdfmMCxCs4cffrje90T4F8exWkX3htHd6pFHHplDsrjGP//883zP1hb33IUXXpirAKe3CD1jO9944438jHjggQfqzCMsAwAAYRkAALSK6JIuulCM6qdooG6KqAyKSpTLLrssj1MW1UCLLrpo7rotQo755puvScuJaqZ77rknN9RH1VRURUUXcDFmUQQ0EcztueeepfGLGhLBTrw/Kq6ikT26EozqmAjvNthgg3TQQQdN9+qYtjhXEVzceOONuQvMqKSLMZ3i/EUIFt099u/fP3c1GIFbnJPaXn755dy9XoR3EXpG1dVHH32Uvvvuu1yhFlWCUZG33XbbpZ/+9Ke5S7zWtu666+ZtjyAyQs6oiPv222/zuYpKs4MPPjhXBjZFhF8R+sQYZhHsRXVanPsIgKL6MQKfqJxbZZVVcneSUQkZ1101i3A57pOoxPvTn/6U/vnPf+aKsujOMsLeZZddNl8/MW5fa41V11xx3mK8wssvvzyHq1EZ+NVXXxm/DAAAaulSqG9EaAAAANqNCPgiDA1R1TcjKpUAAAA6o8a/WgoAAAAAAACdlLAMAAAAAACAqiUsAwAAAAAAoGoJywAAAAAAAKhawjIAAAAAAACqlrAMAAAAAACAqtWlUCgUZvRGAAAAAAAAwIygsgwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAABmsKFDh6YuXbqk9957b0ZvCrQrH3/8cdprr73SIosskmaaaaZ8n3z11VfTbf3XX399Xmf8pmOJ52mcu3i+NsfgwYPz+6hpiSWWyD+dWTXsIw3z/2MAUN2EZQAATRCNJ+U/0XA/77zzpo033jjdcsstqT1ojYb9N954Ix122GFpxRVXTHPMMUeaeeaZU58+fdLWW2+dhg0bliZPnpyq/ThPL6eeemo+BiNGjEjV3HB54403pkGDBqUTTzwxnXLKKalnz56pGgjqGhfHJ8KtztwY3tG2ty3OWWsRhOJzFQBoSLcGXwUAoIZorA8//PBDDpb+9re/pcceeyy98MIL6YILLmjRMn//+9+n3/zmN2nhhRdOM9Lvfve7dNppp6WpU6emddZZJ1f0zDbbbOmTTz7JDUv77bdfuuKKK/K+dsTjTMfy/fffp0ceeST95Cc/STfffPMM2YYdd9wxrb322mmhhRaaIeun5eJ5Onr06Bz6N8fw4cPTd99912bbRfv1z3/+c0ZvAgAAM5CwDACgmd9Krt24tummm6YLL7ww/epXv2pRF07RED+jG+PPOuusHFAtuuii6c9//nMaOHBgnXnuu+++dP7553fY40zH64IxgtuobJxRImhpbthC+9C9e/fUr1+/Zr9vscUWa5Ptof1beumlZ/QmAAAwA+mGEQBgGmyyySa5QbZQKKTnn3++NP1f//pX2nnnndP888+fevTokRZffPF08MEHp/Hjxzepm63y8Xbi79122y13Rxhd0K2xxho5uKrdvdTee++d/47f5V0ZNtZ9V7we4VQ0Lj/wwAMVg7KwzTbbpIceeii1p+P8wQcfpEMPPTQttdRS+TjPM888abvttqsxT6Xul6JLx9jPqJwrD96iouScc87Jx3j22WfPry+//PI5oIsKu3Ixb1QFDhgwIM0666x53qjIu/XWW+usO9YZ645tePnll3O3lnPOOWeaZZZZcheDI0eOrDF/bFNU+YWNNtqoxvkseuutt3JFYmzrfPPNV7rODjjggHxcKoluNGMbisdrySWXzN0bxvT6ukf78ccf0+WXX54rrHr37p23edVVV02XXnppDrOa4+2330577rlnrvopdvEZ/47ptfc/9iXccMMNpX1vyvhTxf2I87XPPvukBRZYIJ+fddddNz3xxBN5nv/973/pmGOOyeuI49C/f/8cEje1K8Ti2EbF5UTAEsvp27dvvn7iOq3v/DdlrKSm3s/NPTf33HNPvpcinI/tjeMf118soynKj8f999+fj2kc27nmmivtsssudc5jUTz3DjnkkLyPcd7jet1pp53yc7JSReHFF1+cVltttbzc2Kd43/bbb5/+8Y9/1NiO8Pjjj9c4PsVjXGnMsvh3XE8hrv3ie2of+/L77Lbbbsv/PvLIIyvuW9w7sZ1xTON8lItnQdy/ca/HszueJWeccUaTu7NtyvY2575qTFy3ce3E/RDbG8uL5+vXX3/d4Puasp9NOWdFzz77bL6eFlxwwbw/8SWOX/7yl+mjjz6quP4vvvgi/fa3v83dB8f1EgH3Kquskp+PcY8Wr4VYb/G4Fn/Kn3n1jVkW+3H22WenlVZaKS8/7rUNNtgg3XHHHXXmbe5nd2OK2xj7/otf/CL/P0WvXr3S6quv3mDXxA8//HDaaqut8rrjXo8gMJ5VlcZ8LO73hAkT0q9//ev8d/z/QH3Pq0r7OmbMmHzO4jM4Pjs322yz9Nprr+X5Pvvss/y5FPdIHIc111wzV4pXEtfa8ccfn5Zbbrk8b9xbm2++eeneb+vP1XJXXXVVPuexHfE5EvvQ2L0AAHRsKssAAKZRsWG82OASjWERlMX0aDyKBvloFI4uDKM7wSeffDI3fDbF+++/n9Zaa60cbkRDWTQK3n777aWG42jwCdFYFY1Esfx4LQKcopjekOuuuy53dxiNetHY2JBodGsvx/nFF1/MDXJxTKIxLRrf//vf/6a77747rb/++umuu+7KjYW1RXVcdO+37bbb5uNXbPz68ssv87///e9/54a6CFqioTYaAeMYxfKjwSxEg2OMo/bSSy/lRv2YN8KJaKD8+c9/nkaNGpUbi2uLbiT/8Ic/5FAturUcO3Zs+stf/pIDjGjsi/WGI444Iu9HNO5Gd5iVGnD/+te/piuvvDJvc4QWsa2x3muvvTbde++9eV3lXXvG8YvrMkKOZZZZJjeCx3mPRux4XyXxehyn2K/Ytti3aDiMhs4Y2y4atWNMsaaIADO6VPzmm29yoLnCCivkLjZvuummfN3G9RyNqMX9j4bYiy66KDd677DDDnl6+XXdkDg/6623Xm603X333fM1EqFHXCdPP/10bniPaREAxz5GY//Pfvaz3CgfwVNTxPtiedGIveWWW6Zu3brlcxYN9JMmTSp1JdoSTbmfm3turr766rzfEUDE+6IR/dNPP02vvPJKvr4jzG+quPYefPDB3E1lNOTHtRvXcaw7GqiL13F499138/0YxynumTgf48aNy+FkXIvxvjgP5fse5yOeRRH4RDAQ743nZoT1cQ3F8YjjGw3f8XwtD8QaGg8r3hPnKO7xww8/vHQsG3pGxrUX4UsEE+eee24+z+XiHMX1dtRRR9V4LZ4JcVwXWWSRfN/FOp555pl00kkn5UrZeAbVXlZLtrc591Vj4r6LoDJCjQgGIjCJZcS1FCFmPGNqa+p+NvWc/elPf8rrjs+a2J+4JyP0Kz7XYtnl1X9xfcUzMD4rI0A66KCD8rM4vkzwxz/+MR144IF5m2Ld8ayL+crvzcaqlGO/4z6PZ3F8YSNC3/iixJ133pmfGXHtR2V2Sz+7myI+m+IZH/sR4XlcbxHU7bHHHunDDz/MIVi5OMYRIM0999z53oqALe7z8847L38hJp6BEfjV3s+4P2M743M1Xm/q/6fEszq+fBIhaTEkjM/fOK+xri222CIvL45X8Vkcz8w4R+Xnsvjcfv311/M1G9djfKbHvsY2xf9DxTOsLT9Xi4499tj8bI1nZaw7nm3XXHNN+s9//pMeffTRJh0XAKADKgAA0Kj436ZK/+v0yCOPFLp06ZJ/3nvvvcI333xTmHvuuQtdu3Yt/N///V+Nec8+++y8jE033bTG9L322itPf/fdd0vT4u/iOk899dQa8z/00EN5+pZbbllj+nXXXZenx+/m2HjjjfP7rrnmmkJHOc4//PBDYemlly706NGjMGLEiBrzfvjhh4U+ffoUFlxwwcKkSZNK00855ZS87FlmmaXw4osv1lnH7rvvnl8/8MADC1OmTKnxWpzXr776qs45O+ecc2rMN3HixMLmm2+et/Oll14qTX/sscdK+1b7/Fx55ZV5+kEHHVRjenF7472VfPDBBzX2r+jhhx/O11/sR7nhw4fn5W2wwQaFyZMnl6Z/+eWXheWWWy6/NmjQoIrbcOihhxZ+/PHH0vT4e5999smv3X333YXGTJ06tdCvX788/0033VTjtdtuuy1Pj20oP+7FeyCOdXMUj/Mvf/nLGssr7v9cc81V2GabbfK5Kop7NV7bYYcdmnRPLb744qV78LvvvitN/+STTwpzzDFH/vn+++/rnP84npXE8uKnKetu6blZbbXVCjPPPHPexto+++yzQlMUtyl+7r333hqvXXjhhXl6PE/KbbbZZnn6GWecUWP6U089VZhpppny8zLurxD3WNw7q6++eo19Kvrvf/9b49+VrtnGrp9Kz9tysbzaz6ADDjig4j6HrbbaKr/2yiuv1DlOO+64Y43ro/y8xfFqioa2tyX3VX3ifMT88Vz9/PPPS9PjPll77bXza/Vdo83Zz4bO2Ztvvlno3r173oZ4vpX7xz/+kZ9rte/RddZZJy/zrLPOqnhdl9/nlc5tY/dhLLd4r8fnTlHcR8XnQBy7afnsbkhxWbvuumuN8/jOO+/kZ1kcrzFjxpSmP/roo3n+OC7xbK90vo444og6+x3TN9lkk8K3337b5G0r39fa9/fvfve70vO2vmdx7e0o3mfxO67torfeeqvQu3fv/Pwqvw/a4nO1eL8tuuiihffff780Pc59fHbGa88++2yTjxEA0LEIywAAmqDYIBMNLfFzwgknFHbeeefc2BvTjzzyyDxfNFjGvyN4qS0aW5ZYYon8enkjTENhWTRiVWo0XmyxxQrzzDNPq4Rlyy+/fH7fgw8+WOgoxzlCgPj30UcfXXE5xYb7+++/v04jWe0GumLDZzTELrTQQo02FkaDfWzPGmusUfH1l19+Oa/nmGOOqdOot95669WZP0KVbt265YCgOY16DVlppZUKSy65ZI1p0RAay3v88cfrzF+8bssbsaNxM4KMCB3LG4mLoiE2go1oxG3Mk08+WWrArWT99devs23TEpZFIDphwoQa0+M+iuMcr5c3LhfFvRk/zQnL3n777TrL2XPPPfNrr776apuFZS05NxGWxXH54osvCi1V3KbagVjx+EbIEa9HoB3GjRuX/x3Pq/LwsGjIkCH59RtuuCH/++uvv87/XnfddWs0ltdneoVlxSBpl112qTF9/Pjx+Vmw6qqr1pg+YMCAfK3VDiuKxyme3WuuuWaj+9fY9rbkvqrPfvvtl+f905/+VOe14vVb+xptyX42dM7i2Ryv33fffRVfj6Asjnfx3n7hhRfy/LEdTQkEWxKW9e3bN99Lo0ePrjP/tddem5e39957T9Nnd0NiWbHPEY7VVvyMKA/l4hjFtNdee63i8uJYzTfffBWfZ/HZ1RzFfY3nZu19jf/HaexZPHjw4NK0+AJHzDvbbLPVCGuLTjzxxLy80047rU0/V4v3W6UvD8W9Ea9dcsklDR4XAKDj0g0jAEAzFMe7iK4Ao0ukGLdk3333TUOGDCl1DRiiO6PaoiuqDTfcMHdRFN33lXc/VJ/oumqmmWaqMz26porujdqj6OYouj6qvR/FrvRa4zgX9z26uqo0rkpxrJ7Ro0fX6YoxusaqLboyi6674vzEGEwNiXmnTJlS7xhU0T1ecd21xZg1tUVXZ9G9Y3S11RzRjnrzzTfnrsWim7Z4f2xXUe0u0+Ka69q1a+7Oq7boJq+26CIrusyKLhsrdSkZoou8SvtZW0P3RXF6dLMX2xjnYFotu+yyuQvGcnEfxXGOMYyia7TaosvK6G6uqaJrvhijrNK9GZp7PpujJecmumyLrgKjm77ocjXG9Ikuz2L8sOaK99YWxzeuo+i2NM5jdLUXv0Pcv3GdVzrv0V1gzBddLkZXbdHtWXS3F8+M6NYv3htdvMU4RDNK3DNxTcV2xXmNcZRC3H9xz5V3KRhd9MX9GN1cXnjhhRWXF10MNuW+mZ73VXFZlc5tnNfan0NtsZ/F53p0k1dp3MnoNjSOd1z/0eVidMkYopvEeLa1tujaMrrdi2dDdMFYW/G4F6/ztvrsjv9XqNQlYnRzGJ+V5euPZce9Ft2cVhqHMbpbjDHEPv/88zy+WFF04bryyiunlqi0rzFuXmPP4vKxNd988818TcUzKbqPrHSs41lX6Vi35udqQ8ucHs92AGDGEpYBALRg3Kz6FMe/ijFfKilOj7E5mqK+sXQieItwpzXENkWDZox90lph2Q033FBjWowP0pywrLHjHA19oVJjYLlvv/22zrQYs6m24vkoH+OrsXVHY26lBt2G1t3Q+SwPupri17/+dW6kjvMXjcWx7RGQhOLYPLWvzWiErDROUnEstkr7GcFjMbxs6n629X3RlCCrktj3hl778ccfm7yOhs5laO75bI6WnJu4XiLYuPzyy/O4VHHtROAb4UiMxVWpcbg+la6X8nureL5bct5jXKdzzjknjxFWHFsqGvJj/McYc6m+dbe1eIb99re/zeMtxbhYIZ5z0Sgf48UVRUN6PL8ikGjo3LSG1ryvisuqdHzjmo5rp1xb7Gfxuo7rsSHF67o5z+3pfXxb87O7qfdb8RjGc6yxcxLHsDwsi3HNiuOBNlelZ2rxOdjQ87b4xZK2PNYtfQ5XWub0eLYDADNW63/9CgCgihUbhj7++OOKr48fP77GfO1Bsaron//8Z6ssL4Ka/39336WfmNaaisfvb3/7W511lf8UG9vLVWoQLDaMNSUwLK77yCOPbHDdjz32WGorUWERgceKK66Yv5Ef1TkRMESlW/xERUdtUbUT1UiVAqFPPvmk3v3ccccdG9zPd999t1PeF62pWPVSXxjX3JCwpecmqreiGica1O+///5crfl///d/OWyN0KOpKl0v5ee3uH0tOe8R+MY1HNVDY8eOzdd2PKPidwRmM8ovfvGLfB6LXwSICpdXX301V66WB0nFfVl11VUbPDeNfSGgKVrzvirOU+ncxnX73//+t+L8rbmfxWVGcNLQ8orVb815brdEe3luNfV+K/4dlY+NnZOo/CzX0qCssx1rAKC6CcsAAFpRNByGESNGVGxwfOKJJ/Lfq622Wquvu9gNUnO/9bz33nvn6oi//OUv6fXXX29w3smTJ6f2YO21186/i8dzWkXXjNEQHsFBdNPXlHlba90tOZ/vvPNOrk7YbLPN6nRxFV1bxeuVrs14z8iRI+u8Fl211RbdjkVjdIQr5RUArX1fhGKw2Bb3RXtQ7LZv3LhxdV6Lbt7KK0Oacv6n9dzEeyPkueaaa3IXghGixrXfVNFNXm2xncXrqHi+i79jeqWgsLHzHt2eRfeRDz/8cO7yMpZTrD4KcR8293nX0udkbEt0BRdddUZAXQzNouKs3GyzzZb69++fRo0alY/rtGpoe1vzvirOU+ncxnGvvf6W7mdD56y5z/Xi/HF9NKVaq7nnPp6tSy+9dA7jil37zojnVoTG0X1zbcXzXrwOisckqv7ivHQkyy23XO5qNbr2rPTlgdY61i29/wGA6iAsAwBoRdHVYHR1d+utt5bGUymKbs+i0uMnP/lJk8Yra65il0rRsNYcSyyxRK7kiLFMtt566/TCCy9UnO+hhx5KW265ZWoPtt9++9yIedlll6UHHnig4jwxdkuMgdIUMW5TjOMU314/+uij6zS8RpdVxUAjuquKBvw4TqeffnrFRrcYt6kpFVctPZ9xzio1Ysd27r///hWDiagqCieeeGI+10WxX7EflbqcOuyww/Ix+dWvfpUmTpxYZ554rbGANcQ4NNEYGtt755131ngt/h2N4zG2TaWx0zqDCLeisi8qIaMqsCiOaRzb5p7/lpybaGyuVOVT3J7mjAn26KOPpvvuu6/GtEsvvTRf9xtttFGpamWRRRZJm266aW7orz2uVYRO0dViBIlRIReiui2qtWqLADuu7djv8rH44hhVCiDb4jkZimOTDRs2LD/jo6Jsm222qTNfdHkZ99g+++xTseE/woziGGHTsr2teV8V9+3MM8+sEX5NmjQpHX/88RXf05L9bOicHXroofmLG1G1G5WFtcW6yoO0GLcsxpOLMTKjsra2CFZj+8vX3dxzH/sW980xxxxT41kblXbF52bM05Zivccdd1yNz6X4fInq4rgnimN5hjh2IT4HPvroo4r3Uu3/N2kP4r6Oz9UYJ+6kk06q8Vo8V2Jf49qICs9pMS33PwDQ+RmzDACgFcW37f/0pz+lXXfdNXcVFb8jGPvXv/6V/v73v+cxRq666qo2Wfc666yTG7yjUToaCYvjmUSjemNdF51wwgmlcU7WXHPN3AAZYxjF/kQXUFF1Et+sb864Rm0pGs3++te/5u7jIuCL7R0wYEDe/2iIjbHEoroqAoOmhgDR2P/aa6+lK6+8Mn9jP5YdDXjRKBmVC/fcc08aPHhwad44HieffHK68cYbc2N0jCsTjZMx/lusPxrTl1xyyRbvY4QOUYURDdWxXcXqpAi74txGuBfjJ8V+R4VZhF6PPPJIHt8ppkUDcu2wLOaP0DO6b9xuu+1yVVJUFMY5j2qZYneBRdFoGd/0j2Ny77335sqaGB8oApbY/6eeeio3rq+wwgoN7kt08RWVOBGc/OxnP8thZwRIsc4Y4y4qOIYPH15n/Z1FXK+HH354blyPKpAIh+J+i/PVp0+f/NPc+7m55ybWGfdzVJ5E2BoBQAQPca1G6BAhflNtu+22eXnxExVfca09+OCD+YsCMSZaudi+CHUibIhnYDxD4h6N8QbjfF933XWl6sio4Injs9JKK6WVV145V3NNmDAhB3PRPVsEg+WVlJtsskm+pmN7ouIkjvOGG26Yf+oT74kxsSJM2HnnnfPyotIugprGxP5G6BnnJO6dOBexztoiPIlnfhyLCPXjWRKfAxFCxfMknqdR0RvHpjENbW9r3ldxjmJ/Lrnkkvx8iC4vY98i4I1nT6WxpFqynw2ds9j2+PyM5UbV2hZbbJHDvjjWEW7E9RpfbHjjjTdKy4vuOeO5HJ9h8SyLv+PajnsgrreYt/jlglh3XHc77bRTrqyMLj8j2G0ogIkvT8S1HcdhlVVWye+LL2HEcuJeO/bYY9s85I97IcLluE/jWR/B5B133JF//+EPf8jHvvz4nn322flzY5lllsnbG59DETbHOJZRORjbG58D7U1sd5zj+HyN51J8BkYoGfsaIVpMn5bP1MY+VwEA4n8kAQBoRPxvU3P+1+m5554r7LDDDoV555230L1798Kiiy5aOPDAAwsffvhhnXn32muvvOx33323NC3+jmnxWiWDBg2quD0PPvhgYe211y7MOuuspW0uX25jXn/99cKhhx5a6N+/f2H22WfP277gggsWtthii8K1115bmDRpUqE9HedPPvmkcNxxx+Xt7dWrV97vvn37FnbeeefCjTfeWPjhhx9K855yyil52Y899li9y/v2228LZ5xxRmGllVbKy5ttttkKyy+/fOHwww/P6yo3efLkwiWXXFJYZ511Cr179y7MPPPM+TxvvPHGhT/+8Y+F//73v6V5Y52x7tiGShZffPH8U1vswyqrrFLo2bNnnWPzv//9r3DCCScUll566UKPHj0KiyyySOHggw/O663v+pg4cWLhpJNOKiyxxBJ5e2OdsYwPPvggz7/99tvXec/UqVMLw4cPz/s111xz5WuiT58+hfXWW69w5plnFsaOHVtoqjfeeKMwZMiQfE1169Yt/95jjz3y9NoauwfqE++J/W/OcQ6Vjtl1112Xp8Xvpi6nvussjuPvf//7wlJLLVV6JhxzzDH5PNa3vMbu5+acmyuuuCI/k5Zccsl8bcf8AwYMKJxzzjmFCRMmFJqi/Hjce++9edtmmWWWwhxzzFHYaaedCm+++WbF98X1Fc+/xRZbLG/jPPPMk6+1eE6W+/LLLwunnXZaYaONNsr7EddoXCNxbm655Za8v+Xintx9990L888/f6Fr16417rGGrp/zzz+/0K9fv7z8mKf82Nd37xTtu+++pXPxwgsvNHi84hhtvfXWhfnmmy/v9wILLFBYc801C7/97W8Lo0ePbvC9Td3e5t5XDYnjG8+04roWWmih/Ez56quvGrzmm7OfDZ2zoldeeSWft7heYjviWo1n/AEHHFD45z//WWf98cw79thjC8suu2x+Fsb1GM/NeLbF/VX0448/Fo4//vh8D8Rxqv2sqG8f47kZ91NsQzyL43Mh7rG4Jmtr6Wd3fYrbGP/vEOc0jnHs46qrrlq4+eab633fE088Udh1113zOYxzEv8vEsfkyCOPLDz//PM15m3o3DaksX1tybM4ngFxLuNzPM59nMuf/OQnhYcffrjOvG3xuVrp/8eauj4AoOPrEv+Z0YEdAAAw40SFU1Qs/OY3v0m///3vZ/Tm0E5df/31uVIoqsGK3fYBbSeqB6NKvb5x6QAAaD2ds58TAACgjkpj2EQXfxGSheLYUQAAAFBNjFkGAABV4te//nUe5yrGeIuxfz744IM8Hk+MMfTLX/4yrbXWWjN6EwEAAGC6E5YBAECV2GmnndInn3yS7r333vTVV1+lnj17pv79+6d99903/wAAAEA1MmYZAAAAAAAAVcuYZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVq9uM3oBqt+CCC6b//e9/abHFFpvRmwIAAAAAANAhjR07Ns0666zp448/bvZ7VZbNYBGU/fDDDzN6MwAAAAAAADqsyFoic2kJlWUzWLGibNSoUTN6UwAAAAAAADqk/v37t/i9KssAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqdaiwbPLkyem4445Lffr0Sb169UoDBw5MjzzySKPv++tf/5p+9rOfpaWWWirNMsssabnllktHHXVU+uqrryrOf88996TVVlst9ezZMy222GLplFNOST/++GMb7BEAAAAAAAAzUocKy4YOHZouuOCCtMcee6SLLroozTTTTGmrrbZKTz75ZIPvO+CAA9Lo0aPTkCFD0sUXX5y22GKLdOmll6Z11lknTZw4sca8Dz74YNphhx3SnHPOmS655JL89xlnnJEOO+ywNt47AAAAAAAAprcuhUKhkDqA5557LleSnXvuuenoo4/O0yZNmpRWXHHFNP/886eRI0fW+94RI0akwYMH15g2fPjwtNdee6Vrrrkm7bfffqXp/fv3T927d08vvPBC6tatW5524oknprPOOiu9/vrrqV+/fq26X7G+MGrUqFZdLgAAAAAAQLXoPw15S4epLLvzzjtzJVlUiRVFN4n77rtvevrpp9O4cePqfW/toCzsuOOO+XdUnBVFGBY/sY5iUBYOPvjgFJlibAMAAAAAAACdR4cJy1566aW07LLLpt69e9eYvtZaa+XfL7/8crOW9/HHH+ff8847b411hDXWWKPGvDFG2iKLLFJ6HQAAAAAAgM7h/5VPtXPjx49PCy20UJ3pxWkfffRRs5Z3zjnn5Eq1XXbZpcY6ypdZez3NXUel8r/axowZk5ZeeukWLxcAAAAAAIAqqCybOHFi6tGjR53p0RVj8fWmuuWWW9KwYcPSUUcdlZZZZpka6wj1rac56wAAAAAAAKD96zCVZb169UqTJ0+uM33SpEml15viiSeeyOOcbb755unMM8+ss45Q33qauo5K6htQrr6KMwAAAAAAANpeh6ksi24Qi90klitOi3HFGvPvf/87bbfddmnFFVdMd955Z+rWrWZWWOx+sb71NGUdAAAAAAAAdBwdJiwbMGBAeuutt9KECRNqTH/22WdLrzckxgbbYost0vzzz58eeOCBNNtss1VcR3jhhRdqTI+xyj744ING1wEAAAAAAEDH0mHCsl122SVNmTIlXX311aVp0V3iddddlwYOHJgWXXTRPG3s2LHpjTfeqPHejz/+OG222Wapa9eu6eGHH07zzTdfvV0i9uvXL68j1lV0xRVXpC5duuRtAAAAAAAAoPPoMGOWRSC26667puOPPz59+umnqW/fvumGG25I7733Xho2bFhpvj333DM9/vjjqVAolKZFRdk777yTjj322PTkk0/mn6IFFlggbbrppqV/n3vuubmrxgjXdtttt/Taa6+lSy+9NO23335p+eWXn457DAAAAAAAQFvrUihPldq5SZMmpZNOOinddNNN6csvv0wrr7xyOv3009Pmm29emmfw4MF1wrKoCqvPoEGD0ogRI2pMu/vuu9Npp52WRo8enavQhg4dmk4++eTUvXv3Vt+nqGYLo0aNavVlAwAAAAAAVIP+05C3dKiwrDMSlgEAAAAAAMy4vKXDjFkGAAAAAAAArU1YBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVatDhWWTJ09Oxx13XOrTp0/q1atXGjhwYHrkkUcafd+bb76ZjjzyyLTuuuumnj17pi5duqT33nuv4rxLLLFEfr32z4EHHtgGewQAAAAAAMCM1C11IEOHDk133nlnOuKII9IyyyyTrr/++rTVVlulxx57LK2//vr1vu/pp59OF198cVphhRXS8ssvn15++eUG1zNgwIB01FFH1Zi27LLLttp+AAAAAAAA0D50mLDsueeeS7fddls699xz09FHH52n7bnnnmnFFVdMxx57bBo5cmS9791uu+3SV199lWafffZ03nnnNRqWLbzwwmnIkCGtvg8AAAAAAAC0Lx2mG8aoKJtpppnSAQccUJoWXSruu+++uXJs3Lhx9b537rnnzkFZc3z//ffpf//73zRtMwAAAAAAAO1bhwnLXnrppdwVYu/evWtMX2uttfLvxqrFmuPRRx9Ns8wyS5ptttnyGGYXXXRRqy0bAAAAAACA9qPDdMM4fvz4tNBCC9WZXpz20Ucftcp6Vl555Tz+2XLLLZc+//zzPC5ajJEWyz/nnHNavNz+/ftXnD5mzJi09NJLT8MWAwAAAAAA0OnDsokTJ6YePXrUmR5dMRZfbw333HNPjX/vvffeacstt0wXXHBBOuyww9IiiyzSKusBAAAAAABgxuswYVmvXr3S5MmT60yfNGlS6fW20KVLl3TkkUemhx9+OI0YMSINGTKkRcsZNWpUsyrOAAAAAAAAaHsdZsyy6G4xumKsrTitT58+bbbuRRddNP/+4osv2mwdAAAAAAAATH8dJiwbMGBAeuutt9KECRNqTH/22WdLr7eVd955J/+eb7752mwdAAAAAAAAdPCwLLpJrF199fnnn6ff/e536fDDD0/PPfdci5e9yy67pClTpqSrr766xvquu+66NHDgwFL119ixY9Mbb7zRonXEtsc6yv3www/p7LPPTjPPPHPaaKONWrz9AAAAAAAAdPIxyw4++OAciL366qulMGvttddOY8aMyf++8sor01NPPZXWWGONZi87ArFdd901HX/88enTTz9Nffv2TTfccEN677330rBhw0rz7bnnnunxxx9PhUKhNO3rr79Ol1xySf471h8uvfTSNOecc+afQw89NE+755570hlnnJGDuSWXXDKHZ7fcckt67bXX0llnnZUWXHDBaTxCAAAAAAAAdNqwLIKoHXfcsfTvP//5zzkou+KKK9Jqq62Ww67zzjsv3XbbbS1a/vDhw9NJJ52UbrzxxvTll1+mlVdeOd13331pww03bPB9MW+8r9z555+ffy+++OKlsGyllVZKK6ywQrrpppvSZ599lqvJonvHO+64I287AAAAAAAAnUuXQnkJ1jSaY4450rnnnpsOOOCA/O9f/OIX6cUXX0yjRo3K/z7zzDNzN4rvv/9+a62yw+vfv3/+XTxGAAAAAAAATL+8pVXHLKs93tcTTzyRBg8eXPp3nz59cheKAAAAAAAA0B60algWXRoWxwR75ZVX0tixY2uEZePHj0+9e/duzVUCAAAAAABA+xizbLfddkunnHJK+u9//5vL3Oacc860+eabl15/+eWX09JLL92aqwQAAAAAAID2UVl23HHHpX333Tc988wzaaaZZkrDhw8vVZJ99dVX6d57700bb7xxa64SAAAAAAAAWqxLoVAopOlg6tSp6ZtvvkmzzDJL6t69+/RYZacfcA4AAAAAAIA0TXlLq3bD2JCuXbumOeaYY3qtDgAAAAAAAKZvN4zhgw8+yF0xLrLIImnmmWdOjz76aJ7+6aefpn322Sc9//zzrb1KAAAAAAAAaJFWrSx7//3308CBA9N3332X1l577TR+/PjSa/PPP38OyiJAW3PNNVtztQAAAAAAADDjw7ITTzwx/37ttdfy2GQRkJXbaqut0n333deaqwQAAAAAAID20Q3jI488kg466KC02GKLpS5dutR5ffHFF08ffvhha64SAAAAAAAA2kdY9uWXX6aFF1643tenTp2avv/++9ZcJQAAAAAAALSPsKxPnz7prbfeqvf1GLNsySWXbM1VAgAAAAAAQPsIy7bZZps0bNiw9P7779d5bcSIEenWW29NO+ywQ2uuEgAAAAAAAFqsS6FQKKRW8umnn6bVV189TZw4MW211Vbp5ptvTj/96U/zv++///48ltmLL76Y5phjjtZaZYfXv3///HvUqFEzelMAAAAAAACqLm9p1cqy+eefPz399NNpgw02SLfcckuKHO72229P9913X9pyyy3TE088ISgDAAAAAACg3ejW2gtcZJFF0l133ZUmTJiQxy+bOnVq6tu3b5p77rlbe1UAAAAAAADQvsKyot69e6c11lijrRYPAAAAAAAA06xVu2Hs2rVrWnjhhdNLL71U8fUYw2ymmWZqzVUCAAAAAABA+wjLwieffJIGDRqUHnzwwdZeNAAAAAAAALTvsOz3v/99WmqppdL222+frr322tZePAAAAAAAALTfsCy6YXzyySfT4MGD0y9/+ct00kkntfYqAAAAAAAAoH2GZWG22WZLDzzwQBoyZEg688wz01577ZV+/PHHtlgVAAAAAAAAtFi3Nltwt27phhtuSIssskjumvGjjz5KO+64Y1utDgAAAAAAANpPWFYUlWWLL754OuSQQ9JTTz3V1qsDAAAAAACAGdMNY4Ri0QVjbQcccEC66667UpcuXVpzdQAAAAAAANB+Ksvefffdel/bZptt0rhx49I333zTmqsEAAAAAACA9lFZNnz48PTwww/X+/qECRPS448/3pqrBAAAAAAAgPYRlg0dOjRttdVW6YQTTqj4eoxZtvfee7fmKgEAAAAAAKB9hGVhmWWWSWeffXYaMmRI+uGHH1p78QAAAAAAANA+xywLJ598cvrPf/6TTj311DR+/Ph01113pd69e7f2agAAAAAAAKD9VZYVA7M//elP6Yknnkjrr79++uCDD9piNQAAAAAAAND+wrLi+GX33ntveu+999I666yTXnnllbZaFQAAAAAAALSvsCxsvvnm6fHHH09TpkxJG2ywQfrHP/7RlqsDAAAAAACA9hOWhVVXXTU9/fTTaeGFF0433HBDW68OAAAAAAAAmqxbakWnnHJKWnnlletMX3zxxdPIkSPTgQcemD755JPWXCUAAAAAAAC0WJdCoVBo+duZVv3798+/R40aNaM3BQAAAAAAoOryljbvhhEAAAAAAACqohvGpZZaqtF5unTpksaMGdOaqwUAAAAAAIAZH5YttthiOQwr9+OPP6Z33nknjR8/PvXt2zctvPDCrblKAAAAAAAAaB9h2YgRI+p97aabbkrHHHNMuuqqq1pzlQAAAAAAANBi023MsiFDhqRtt902HX300dNrlQAAAAAAANA+wrKwxhprpP/7v/+bnqsEAAAAAACA9hGWvf3222nq1Kktfv/kyZPTcccdl/r06ZN69eqVBg4cmB555JFG3/fmm2+mI488Mq277rqpZ8+eeVy19957r97577nnnrTaaqvleWMctlNOOSWPvQYAAAAAAEDn0qpjlo0dO7bi9C+++CL94x//SJdeemn6yU9+0uLlDx06NN15553piCOOSMsss0y6/vrr01ZbbZUee+yxtP7669f7vqeffjpdfPHFaYUVVkjLL798evnll+ud98EHH0w77LBDGjx4cLrkkkvSq6++ms4444z06aefpiuuuKLF2w4AAAAAAED706VQKBRaa2Fdu3bNVVuVxGoirLr33nvTkksu2exlP/fcc7mS7Nxzzy2NezZp0qS04oorpvnnnz+NHDmy3vdGWNe9e/c0++yzp/POOy8dc8wx6d13301LLLFEnXn79++f533hhRdSt27/vyzxxBNPTGeddVZ6/fXXU79+/VJrivWFUaNGtepyAQAAAAAAqkX/achbWrWy7OSTT64TlsW/55577rTccsvlqrL6wrTGREXZTDPNlA444IDStOgmcd99900nnHBCGjduXFp00UUrvjfW3xQRhsXPZZddVgrKwsEHH5zOPPPMvA0RnAEAAAAAANA5tGpYduqpp6a28tJLL6Vll1029e7du8b0tdZaK/+OrhXrC8uas46wxhpr1JgeY6QtssgipdenJdGsbcyYMWnppZdu8XIBAAAAAABoua6pgxg/fnxaaKGF6kwvTvvoo49aZR3ly6y9ntZYBwAAAAAAAJ20six89913eVywv/zlL+k///lPnta3b9+08847p6OOOirNOuusLVruxIkTU48ePepMj64Yi69Pq+Iy6lvPhAkTWrzs+vrIrK/iDAAAAAAAgA4Wln322Wdp8ODBafTo0WnOOedMK6ywQqmrweii8bbbbkuPP/54mm+++Zq97F69eqXJkyfXmT5p0qTS69OquIz61tMa6wAAAAAAAKCTdsN47LHHpjfeeCNdcMEF6ZNPPknPP/98/om/zz///PTmm2/meVoiukEsdpNYrjgtxhWbVsXuF+tbT2usAwAAAAAAgE4alt13331p6NCh6Ygjjkjdu3cvTY+/jzzyyLTXXnule++9t0XLHjBgQHrrrbfqdIX47LPPll6fVsVlvPDCCzWmx1hlH3zwQausAwAAAAAAgE4alsWYX2uttVa9r8drxW4Tm2uXXXZJU6ZMSVdffXVpWnSXeN1116WBAwemRRddNE8bO3Zsrm5riRg/rF+/fnkdsa6iK664InXp0iVvAwAAAAAAAJ1Hq45ZFpVXr7/+er2vx1hmLa3OikBs1113Tccff3z69NNPU9++fdMNN9yQ3nvvvTRs2LDSfHvuuWceF61QKJSmff311+mSSy7Jfz/11FP596WXXprHVYufQw89tDTvueeem7bbbru02Wabpd122y299tpred799tsvLb/88i3adgAAAAAAANqnLoXyVGkajRgxIgdNEWLtuOOONV77y1/+kvbee+/cDeOgQYNatPyoSjvppJPSTTfdlL788su08sorp9NPPz1tvvnmpXkGDx5cJyyLQG3JJZesuMzFF188v17u7rvvTqeddloO9+abb77cteTJJ59co2vJ1hLVbGHUqFGtvmwAAAAAAIBq0H8a8pZpCsv22WefOtNefPHF9Oqrr6Zll102rbDCCnlaVJvFeGMrrbRSWn311WtUglU7YRkAAAAAAEAHDcu6dm3+kGcx9lf5eGDVTlgGAAAAAAAw4/KWaRqzbOrUqdPydgAAAAAAAJihml8aBgAAAAAAAJ3ENFWWNcWzzz6bxo0blxZeeOE0cODAFnXdCAAAAAAAAB0qLPvwww/T1ltvnV555ZXStOWXXz7de++9aamllmqr1QIAAAAAAECTtVmZ169+9au00EILpbfeeitNnDgxPfPMM2nKlCnp4IMPbqtVAgAAAAAAwPQNyx566KGK0yMcO/PMM1Pfvn1Tjx490lprrZUDtJgOAAAAAAAAnSIs22677dJee+2VvvjiixrTY4yyJ598ssa0p556KvXp02daVwkAAAAAAADtIyyLSrHXXnstj0d2++23l6b/9re/TUceeWTaYIMN0h577JFWWmmldNttt+XpAAAAAAAA0CnCstVWWy0999xzORjbe++9c6XZRx99lLbffvscpPXv3z999dVXae21104jRozIwRkAAAAAAAC0B10KhUKhtRb29ttvp/333z+9/PLL6eyzz04HHnhgay2604owMYwaNWpGbwoAAAAAAEDV5S3TXFlWbplllsnVY3/4wx/S8ccfnwYNGpQDNAAAAAAAAGiPWi0s+/7779OECRPy3wcccEBO7uaZZ560yiqrpN///vdpypQprbUqAAAAAAAAaB9h2RdffJF23HHHNNtss6W55porrbzyyumFF15Iffr0SX/961/TjTfemC655JK0+uqrpxdffLF1thoAAAAAAADaQ1h2xBFHpJEjR6arrroqh2MRmu28887phx9+yK/H36NHj85h2dprr52OOeaY1thuAAAAAAAAmPFh2YMPPph+85vfpL333jttv/326dprr03jxo1Lr7/+emmeOeaYIw0bNiw99NBD6e67757WVQIAAAAAAED7CMu6d++eJk6cWPr3pEmTUpcuXVK3bt3qzLvxxhunV199dVpXCQAAAAAAAK2ibqLVTDFe2dlnn51+/PHHPGbZ5Zdfnvr165eWX375ivP37NlzWlcJAAAAAAAA7SMsO/fcc1PXrl3zmGXfffddWnfdddNFF12UpwEAAAAAAEB71qVQKBRm9EZUs/79++ffo0aNmtGbAgAAAAAAUHV5i/IvAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqlaHC8smT56cjjvuuNSnT5/Uq1evNHDgwPTII4806b0ffvhh+ulPf5rmnHPO1Lt377T99tund955p858Xbp0qfhz9tlnt8EeAQAAAAAAMKN0Sx3M0KFD05133pmOOOKItMwyy6Trr78+bbXVVumxxx5L66+/fr3v+/bbb9NGG22Uvv7663TCCSek7t27pz/+8Y9p0KBB6eWXX07zzDNPjfk33XTTtOeee9aYtuqqq7bZfgEAAAAAADD9daiw7Lnnnku33XZbOvfcc9PRRx+dp0WgteKKK6Zjjz02jRw5st73Xn755entt9/Oy1hzzTXztC233DK/9/zzz09nnXVWjfmXXXbZNGTIkDbeIwAAAAAAAGakDtUNY1SUzTTTTOmAAw4oTevZs2fad99909NPP53GjRvX4HsjJCsGZaFfv35pk002SXfccUfF90ycODFNmjSplfcCAAAAAACA9qJDhWUvvfRSrviK8cbKrbXWWvl3dKdYydSpU9Mrr7yS1lhjjTqvxXvHjBmTvvnmmxrTo3vHWWedNY+LtsIKK6RbbrmlVfcFAAAAAACAGa9DdcM4fvz4tNBCC9WZXpz20UcfVXzfF198kSZPntzoe5dbbrn897rrrpt++tOfpiWXXDJPv+yyy9Iee+yRxzs76KCDWrTt/fv3rzg9grqll166RcsEAAAAAACgisKy6BaxR48edaZHV4zF1+t7X2jqe5966qka8+yzzz5p9dVXTyeccEIaOnRorjYDAAAAAACg4+tQYVmEVFEhVltxXLH6Qqzi9Ja8N8w888zp0EMPTQceeGD617/+ldZff/1mb/uoUaOaVXEGAAAAAABA2+tQY5ZFl4nRFWNtxWl9+vSp+L655547V5W15L1Fiy66aKlLRwAAAAAAADqHDhWWDRgwIL311ltpwoQJNaY/++yzpdcr6dq1a1pppZXSCy+8UOe1eO9SSy2VZp999gbX/c477+Tf88033zTsAQAAAAAAAO1JhwrLdtlllzRlypR09dVXl6ZF14rXXXddGjhwYKn6a+zYsemNN96o897nn3++RmD25ptvpkcffTTtuuuupWmfffZZnfV+88036cILL0zzzjtvHrsMAAAAAACAzqFDjVkWgVgEW8cff3z69NNPU9++fdMNN9yQ3nvvvTRs2LDSfHvuuWd6/PHHU6FQKE07+OCD0zXXXJO23nrrdPTRR6fu3bunCy64IC2wwALpqKOOKs132WWXpbvvvjttu+22abHFFsvdNP7pT3/KAdyNN96Yxy8DAAAAAACgc+hQYVkYPnx4Oumkk3Jw9eWXX6aVV1453XfffWnDDTds8H3RzeKIESPSkUcemc4444w0derUNHjw4PTHP/6xRteK6623Xho5cmS69tpr0+eff55mnXXWtNZaa+XAbOONN54OewgAAAAAAMD00qVQXn7FdNe/f//8e9SoUTN6UwAAAAAAAKoub+lQY5YBAAAAAABAaxKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVq9uM3gAAKHfpgAPTl99/my4ec2/67/cT0rwz906/WnrbNNfMs6WOpjPsx6EvXzmjNwEAAAAA2pTKMgDalc4QMHWm/QAAAACAzk5YBkC70hkCps4SlMV+AAAAAEBnJywDoF3pDAFTZwnKYj8AAAAAoLMTlgHQrnSGgKmzBGWxHwAAAADQ2QnLAGhXOkPA1FmCstgPAAAAAOjshGUAtCudIWDqLEFZ7AcAAAAAdHbCMgCYBp05KOuI+wEAAAAAzSUsA4AqD5g6y34AAAAAQEsIywCgigOmzrIfAAAAANBSwjIAqNKAqbPsBwAAAABMC2EZAFRhwNRZ9gMAAAAAplW3aV4CAFSJzhIwtbf9uHTAgZ1iP1qqPe7HoS9fOUPXDwAAADA9qSwDgA4aaLSE/WhfOst+AAAAAHRkwjIAqJJAw360L51lPwAAAAA6OmEZAFRBoGE/2pfOsh8AAAAAnYGwDAA6eaBhP9qXzrIfAAAAAJ2FsAwAOnGgYT/al86yHwAAAACdibAMADppoGE/2pfOsh8AAAAAnY2wDAA6YaBhP9qXzrIfAAAAAJ1Rtxm9AQANuXTAgZ264bmj7cehL1+ZOrOOdj7qYz/al86yHwAAAACdVYerLJs8eXI67rjjUp8+fVKvXr3SwIED0yOPPNKk93744Yfppz/9aZpzzjlT79690/bbb5/eeeedivMOGzYsLb/88qlnz55pmWWWSZdcckkr7wlQ7Q3PnWU/OovOcj7sR/vSWfYDAAAAoDPrcGHZ0KFD0wUXXJD22GOPdNFFF6WZZpopbbXVVunJJ59s8H3ffvtt2mijjdLjjz+eTjjhhHTaaaell156KQ0aNCh9/vnnNea96qqr0n777Zf69++fQ7J11lkn/epXv0rnnHNOG+8dUC0Nz51lPzqLznI+7Ef70ln2AwAAAKCz61DdMD733HPptttuS+eee246+uij87Q999wzrbjiiunYY49NI0eOrPe9l19+eXr77bfzMtZcc808bcstt8zvPf/889NZZ52Vp02cODH99re/TVtvvXW6884787T9998/TZ06NZ1++unpgAMOSHPNNdd02V+gczY8d5b96Cw6y/mwH+1LZ9kPAAAAgGrQoSrLIryKSrIIrIqim8R99903Pf3002ncuHENvjdCsmJQFvr165c22WSTdMcdd5SmPfbYY7nS7OCDD67x/kMOOST973//S/fff3+r7xdQPQ3PnWU/OovOcj7sR/vSWfYDAAAAoFp0qLAsuk1cdtll83hj5dZaa638++WXX674vqgKe+WVV9Iaa6xR57V475gxY9I333xTWkeoPe/qq6+eunbtWnodmH46S8NzZ9mPzqKznA/70b50lv0AAAAAqCYdqhvG8ePHp4UWWqjO9OK0jz76qOL7vvjiizR58uRG37vccsvldUT12vzzz19jvplnnjnNM8889a6jMTH+WSVvvPFG6t69e72vQ7X77D8fpi9++CZNKUxNM3XpmrqkLunydx5IHU1sf2fYjyv6P9Hm6/hizPg2X0dnOR/TYz+mxzl3n7cvsf3T47wDAAAAtKYojIq8pdOHZTGeWI8ePepMj64Yi6/X977QlPfG7wjGKol561tHS3Xp0qXFJ4+OebOGpZdeekZvSocxX9+F03ypE5z3Liktt3y/Gb0pHcLcS9f9YkNbmK+T3Osd/f4I7nM6Kp/r1cc5r07Oe/VxzquPc16dnPfq45xXJ+e9unTv3j3NOuusnT8s69WrV64Qq23SpEml1+t7X2jKe+P3999/X3E5MW9962jMqFGjWvQ+OpdiBaHrobo479XHOa8+znl1ct6rj3NenZz36uOcVx/nvDo579XHOa9Ozjudcsyy6DIxukmsrTitT58+Fd8399xz56qyprw31jFlypT06aef1pgvArTPP/+83nUAAAAAAADQ8XSosGzAgAHprbfeShMmTKgx/dlnny29XknXrl3TSiutlF544YU6r8V7l1pqqTT77LPXWEbteePfU6dOrXcdAAAAAAAAdDwdKizbZZddctXX1VdfXZoWXSted911aeDAgWnRRRfN08aOHZveeOONOu99/vnna4Rgb775Znr00UfTrrvuWpq28cYb50q0K664osb749+zzDJL2nrrrdtwDwEAAAAAAJieOtSYZRGIRbB1/PHH524S+/btm2644Yb03nvvpWHDhpXm23PPPdPjjz+eCoVCadrBBx+crrnmmhx2HX300XmgtwsuuCAtsMAC6aijjirNF2OSnX766emQQw7J69p8883TE088kW666aZ05pln5iANAAAAAACAzqFDhWVh+PDh6aSTTko33nhj+vLLL9PKK6+c7rvvvrThhhs2+L7oZnHEiBHpyCOPTGeccUbuUnHw4MHpj3/8Y5pvvvlqzBvBWoRp559/frrnnntyxVrMd/jhh7fx3gEAAAAAADA9dSmUl18BAAAAAABAFelQY5YBAAAAAABAaxKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAwAw0dOjQ1KVLl/Tee+/N6E2Bduniiy9OK6ywQurVq1e+Vy688MLpuv5Y5+DBg6frOmkdcd7i/DXH9ddfn98Tv/l/Tj311HxcRowYkTqrathHGhbnPq6BuBYAgOojLAMAaEQ0nJT/zDTTTGneeedNG2+8cbrllltSezAtDby1969Hjx5pvvnmS6uttlrab7/90oMPPpimTJmSpmd4WP4z66yzphVXXDH95je/SV9++WWqFhGgxv7HMalWt912Wzr88MNTz5490xFHHJFOOeWUtPbaa6dqIahr/S8bdLTG8I62ve35CyKCUHyuAgAN6dbgqwAAlERDffjhhx/SG2+8kf72t7+lxx57LL3wwgvpggsuaNEyf//73+cQaOGFF07tZf8iGPvqq6/SqFGj0o033piGDRuW1lhjjXTzzTenZZdddrpsy/bbb58GDBiQ//7444/Tvffem84555x05513pueeey7NPffc02U7mLHuu+++0u8+ffrMkG0YPXp0mmWWWWbIupk2w4cPT999912z3rPjjjvmQHahhRZqs+2ifTr00EPTbrvtlhZbbLEZvSkAAMwAwjIAgCaq/c3+f/7zn2nTTTfN3cL96le/SksssUSzlxkNsu2lUbZS5cInn3ySDjvssPTnP/85/eQnP8nB4Pzzz9/m27LDDjvU+Ob3eeedlwYOHJhef/31dMkll5SCPTq3jz76KP+eUUFZ6Nev3wxbN9OmJaHHHHPMkX+oPlExHj8AAFQn3TACALTQJptskhvSC4VCev7550vT//Wvf6Wdd945h0rRpeHiiy+eDj744DR+/PgmdUlV3k1Q/B3fdI8GvOiKLiq8itU2RdFN2957753/jt/lXRhOa1dXCyywQO4KL9Yxbty4dNZZZ6UZYbbZZkt77bVX/jsqy4p+/PHHdPnll+dKkN69e+cKoFVXXTVdeumlaerUqTWWUX5c33rrrfSzn/0sn6OuXbvWGKPm73//e9p2221L52/RRRfNlW7/+Mc/6mzXww8/nLbaaqt8fmLepZdeOh1zzDG5Mq+2CFPj53//+1+eJxry4z19+/bNVXNxHZUHl0suuWT++4YbbqhxTotdiH3//fd5P2P9cY3FsqLiLkLN6DqzPrHN6623Xu7eMuaPYDIqJRvqHu3ZZ59Nu+yyS1pwwQXTzDPPnI/JL3/5y1KY1VSTJ09OZ599dlpppZXyuYpztsEGG6Q77rij4thBUbkZyve/McX9ePfdd/PxifHO4t6JYx/Xb/E4RwC81lpr5eMQ5zqqSiZOnNikrhDLxzaKasdYTuxPHM+4Xz/88MN6z39TxkoqdhcXHn/88Rr7XzvUbs65eeedd9IBBxyQr7kYAy62N87FgQcemD7//PNGj2358Yjl/+IXv8jHLpa1+uqr19stbdyLV155ZVpzzTXzvRzHPP6+4oor6tyn4Yknnsj34CKLLJKv69i3uMdPO+20GtsR90aIe6V4fMqPce0xy+La2GijjfLfsazy41r72Bfvs0mTJqU555wz72c8byo56KCD8ntqP5uL91Wckzg38Tz9+c9/nt58880mHeumbG9z7qumiM+vLbbYIs0+++x5OfE8efrppxt8T1P3synnLHzxxRfp+OOPT8svv3y+tiK8jM/beDbX5/bbb8/zxDVdvN933333/AWPpn5ONjRmWXw5Jo5LLD+uyaiyjqrwr7/+us68xesurpd45iyzzDKlz5LjjjsuP7ubqvg8i3s3Ktjj/zli/+LeOPLII9OECRMqvu+DDz7Iz7Sllloqr3ueeeZJ2223XY3/Vykq3++4h+OLKXGfNuULQMV9jYr73/3ud/kzMLZvueWWS9dcc01pvrj/4/qM8xnbHl94qXTvh7huN9xww3zeY/54X1Thx3Xe1p+r5V5++eW09dZb5/s/7qtBgwalkSNHNnpMAICOS2UZAMA0KDbEFBtko7E0grKYHg3YEWJE42M0Cke3jU8++WSpsaYx77//fm6Ej8auaJSOBsRoECwGN8VG1GhMi8acWH5594Uhpk+rCJNOPPHE3JB26623pj/+8Y9NCi3a+lhH41w0qEf4Ew1z0TgbjXQRsEQ1XIQI0Y1kbWPGjMmNgdHYuccee+SAJBqFQzTgRYNfNBRGiBSNmxEKRAPZTTfdlBuOi6LxOhrfovF0m222yY3pr7zySq6Ce+CBB3IDc3G5RbHNm2++eV7mlltumbp165buvvvu3OgajfLFirlogIzA7aKLLkqrrLJK3pai4vmN6yHG81p33XVzhWOMMxeBbHRZGQFaNFTGmHPlIvgsHqef/vSnuaox9m2dddbJ66nkT3/6Uw5YogEyGlvjmLz99tvp2muvzet65plnmlTBEw3Ese8R/kSD7yGHHJK7yIuwKYLLaJgshrHFcCoaMOM+aEkl4dFHH52v2bhGNttss3TPPfek3/72t3k74pzFMY/jGqHCI488ki677LLcBWncq00VQW0sN45LNKTGNRf36L///e+8P3HMWiLOcexzXGPxDCmvsiwP7ppzbuLaiIAqGtfj+ojnVFxzESrGfRIN69Gg3hQxdmBcd/F8ieAhrtVo4I77KYLCaLQuF8+vaISP7YtrMu7hu+66K3+JIJ6J0cVr0UMPPZQbqOPeiX2KLmrjWo/uMON4F6+F+B33ThzruA+Kz7qGnnnF+ygayuN8lR/L+oKBuFfi+rz66qtzCB3XU7lowI9zHgFRhCnl+7HTTjuVnlPReB8Bxl//+td0//335+dUjAvZkKZsb3Puq8bEsyCecbHM2PbY5nh/rDfG6KykOfvZlHMW93usLwKsuDfjmEYQEp+t8fdVV12V9t9//xqfC3ENxjGKLy3EtsSzMLYh1h2fDfElk2n5nIx1RiAaIe+uu+6an/XxbIkwJu6zp556quIy4lkbwW886+N6js+FP/zhD+nTTz9N1113XWqOCMb+7//+Lz+3Y/vjcy+q2mP5cQ/FdVr04osv5mde3DdxbcQx+e9//5uP/frrr5/vvXgG1Hb++efnZ2Gcx/j/i0pBYH3iSwLx/Ivldu/ePV9/8WyKv+NzMc5PfE5GoBnPzPicjQAqwsNyJ5xwQg7G4lzG8YvP4rjvYnrscwSmEci21edqUYSsca7iszGeWWPHjk1/+ctf8vbHPRHXFQDQCRUAAGhQ/C9Tpf9teuSRRwpdunTJP++9917hm2++Kcw999yFrl27Fv7v//6vxrxnn312Xsamm25aY/pee+2Vp7/77rulafF3cZ2nnnpqjfkfeuihPH3LLbesMf26667L0+N3a+1fuUmTJhW6deuW53vnnXcKbaV4PGrvRxzb5ZdfPr/2u9/9Lk875ZRT8r8PPfTQwo8//liaN/7eZ5998mt33313xeN6/PHH11n3ww8/nF9bcsklCx988EGd18eNG1f6+9FHH83zrrPOOoUvv/yy4rk44ogjakxffPHFS+fuu+++K03/5JNPCnPMMUf++f777+tsbxyT+s5J+TYVffXVV4X+/fsX5pprrhrrmTBhQmHOOecszDzzzIWXX365xnuOO+640rEpvxbffPPNQvfu3QtLL710nWPyj3/8I1/rO+ywQ6EpzjrrrNL+//DDDzX2v3hsnnrqqRrvGTRoUKPXZn3XUCyzfJvjPM0zzzyFWWaZpTDvvPMWXn/99RrHMq6vODaxPeViWbEd5YrX3uyzz1545ZVXary2++6759duv/32GtNje+KnkuLyHnvssUbX3dJzc/HFF+flXXjhhXWW9e2339a4VhpSvE523XXXwpQpU0rT47kQ11xs05gxY0rTb7nlljz/qquumu/j8nWuvvrq+bWbb765NH2nnXbK02pfo+Gzzz5r9PnZ2PUTxzimxTGvpNKzdOTIkXnazjvvXGf+O+64I7/261//ujTtiy++yPdaXG+jRo2qMf+rr75amHXWWfPxaIrGtrcl91UlU6dOLSy33HJ1npshrpnieS+/Rluyn005Z/GZeuutt9aYHvfvKqusUujZs2fh448/Lk2/6qqr8vLWXHPN/OwrF58FH330UZM/Jyvdh/HZHs+FuNdHjx5dY/6DDjooz7///vvX2YeYvtpqqxU+//zzGtd83K9xb44fP77QFMXjFcc4tqUo7r3ivVL8TAxxDcQ6evToURgxYkSNZX344YeFPn36FBZccMH8zKu93/FsfPHFF5u0XbX3dY011qjxWRjPgHgWxPWxxBJLVHwWx3O4/Jot3meLLrpojeMT82yzzTb5tTPPPLNNP1eL91ul6+TKK6/M0+O8AwCdk24YAQCaKKqI4ieqU6JqLL7lHm3HRxxxRK7+iG+sxze549v88Y34ckcddVSuBIhvbcc3lJsilhkVXeXi29NRKVLeFeH0UOzGKXz22Wdtvr74VnjxeMc3+uNb3FFZEl08RQVMdN8UY5dF92xR6TbTTDOV3ht/xzfko3qlvGKlKCpAKlUqxfJCvDeqWWqLrqOKLr744vw7qrdqVxREBUN8S73Suovvja6liqJKISoF4lv8Te2erXhOyrepKLqu2meffXL1T3mXW3F9xrfqo/qndhVZXGeVKiOiyiq+tR/fxK99TOIb9lH5E5UV33zzTaPbG1VQcU6iK7H45n/5/p900kn576iIai2xzPJtjv2L7Y2qm7imoou38mMZ921U1MR11lQxVmF0EVauWPXS1vdoS89N+bVXFBUzlabXJ+6xqKqJqtOiqJiN4xHbVF7RGec9RDeBUSVSvs5YRn3nvdL2zKjxpKK6JCpR43jGM75csVvBYjexYfjw4flei8rA6Aa03IorrpivkZdeeimPwTitWuu+iqqyeP5E93fxPCoXz9x49tbW2vsZFWdRIRdVj1GpVC7u31hPVApFhU/t53ZUf9Ueay6u02kdEzQqiuO5EMeg9viFZ555Zu6uMq73Sl0ExvUdVazl13w8f+Pzq9g9ZFNFJV78P0FR3Hvnnntu/l28x0JU80X1dFRXRzViuRj78dhjj00ff/xx7laytqgEi26MWyLu7/LPkKiIjyq2uD4qPYujei2q3cq7rC3uR3wexWd7UVzX8bkc+1rftdxan6tF0VVxeUVviM/V2Jbp/f9fAMD0oxtGAIAmKo6XEw2T0dgTgdi+++6bhgwZUur6KFTqrioaWKIRMrqWisbDpnRbF4FLeQhUFF2ZNTaGzPToBrE+sY+Vxv+oPdZSQyLYiZ8QDWARNEYjY3SrNNdcc+UxcqLROsaCOeOMMyouI95XKfiIoKhS93jRZV3sW3lXavWJ4x/dS8W4V/FTWzSuRqgY40CVd20XjbnRTVmlcxoi4GqOUaNG5QbT6J4rutmLhuRy5Q2Rcd2FaMCsLUKMuN5qj9VTvM6iAbvSWDfRnVh0XRhjwMWYVfWJwOY///lPbjCt3eBcfs8Ut7E1RNdrtUVjcai0rcXG3Oi+bVrW0dJz2VzNPTcRnkVXZtFNX3RnFsF7NAhHyNHcblXj+VWpO9no5iyek+XnMZ6L0chde9y3EI358Ywrnz/u8+jCL7pKjQAzuoOL7awUDE9PEYbFFyWiK9PoPjJ88skn+VhGwLDyyivXOTcR/lR67sU5CfF8qh0yNUdr3lfFz6/aAUuIcxTPjQhhyrX2fhaXFwFHpeUVv6hRfK5H94yvvfZa/gJES0OexjT0uR6fRbHeeP7GZ1LtLyG05vOh0nmJQCqWF5+5EUrF/5cUj2F0Z1npGEY3rcVjWLsrxuj2eUY8b4shYEPHOsLqeAZEt7FxfZQHo639uVrf/sRnflxrbf1sBwBmHGEZAEATlQ8UX0lxfI/6vslenB6NWk1R3zgqEbzFN9OnpwhhihUVMR5MQ6LhrhgstjQsi/Fcan+ru1yEUMWGv0rrKvr222/rTCv/xnq5OC/R+NmUCptY/48//tjguovrLw/LGjqnIcKNpopwLxoVYzuKlUQxLk4EEzGmSoSN5dUOxeszGvsqqTS9eJwjkGtIpePclvdGU9SuMik/zg29FpVRTVXpfLbkXLZEc89NNEhHRUTchzHOVARSxQblGN8tqsKaqr5rqHhvlY91FH9HdU3tcYaKxyqqxSLYK4rxlWJ8qqgkiUqTqBgqNrjHWEYxPt+MsOeee+YKmagkK4ZlUT0a9195VVn5uYnK02m5bxrTmvdVY8+HSs/N1t7P4vKiAjt+Gltecb8qVQK3lmk5xq35fGjovEQwFtsZ6ysew0pf4mjpZ+P0et425VhHZX4c6/JltubnalOW2dbPdgBgxhGWAQC0kmLjTXRxVElU/pTP15E8+eSTuVE4GuyiyqshUUHSWLA4rYrHcMcddyw1+jdVfVU0xYbGiRMnNhqYxfojsKzdJdv0FBV1sa2PPfZYnaqdCBWKlXlFEaQVq2EqqTS9eJyjEbP4/pbozPdGU0WIGRWHlbQkJGzJuYmuJ2+//fZ8L0c10D/+8Y/cjV108RZdxEWlbFPUdw0Vz2/tqo+4T6JRPCozysV2RFdstbd/6623zj9ROfTss8/m8Cy6ndxmm21yldS0VGO1VFS1RDgdxyyqiKKSK4Kz2Kef//znNeYt7n8c4/KKs9bWmvdVcZ7Gzm1b7mdxedG1aFPC22KgUV5B25bHuH///jPs2RXnJbojbuyeK/6O5398gaI5mlth2pbHulK3n9XwOQEAzFjGLAMAaCXFbqBqd2VXbBR+4okn8t+rrbZaq6+72F1jW3zjOUKhGJsl1G4UnlGioToaSqO6qjmVQA1Ze+21c8gXVTdNmTe6YopuENtKY+c0ul+Lip1K3dtF13z1XZ8RfFaqMohqtEr7GYrXbkvFuD7R+BmN2sVuwMpF4NdW90Z7EVWL0eBd6Xqtb/yiCNjqO//Tcm6iOiIqtY477rh06623lsYJbKqo7ogK0tqKz77yLvHi73iGRFd1tcW02L/6znsEeBFQxXhc0YVkhI0PPvjgND33puVZWax2jZAs7pdXXnklbbnllnWqbVvrvmlse1vzvirOU+nZEeuu9NxoyX42tD/NXV5cHzE2WtxXTelqsiXnvqHP9Qi54zro2bNnjTEQ20Kl8/LOO++kcePG5S+wFIPD1rz2preGjnV83kWXjdH9a31VXzP6/5UAgI5PWAYA0Ep22GGHHF5E43OEOOUuvPDCPNbGT37ykyaNV9Zcxa7+ohG7NUX3aLvttltuvIrtjgbr9iAa+w877LD8TfOoQIgKq9ritddff73Jy4zlhaOOOqpipUL5tCOPPDL/3n///dNHH31UZ96oiKl9DbQkXIlv+td3TqOBNCp2osG+3LBhw/I4SrVtv/32+Rv50XVcVILUrlKrVN106KGH5sqZ2N/i+EPlIrxoaqPsPvvsk8PIY445pkZDZVQWnX766aV5OqsYDyhC8+hitFyM7/fUU0/Ve19HY3glzT03//rXv2p0j1hUrCSaZZZZmrwvcf4iaCvvDjaebxdffHG+N4vjOJaf0+OPPz599913penxd4xBGMor2iJAi+PUlO1syXNvWp6V0UVkVMHddNNNpXEZK3UXu/fee+cG/eimNbq+rC2OW6VAoCXb21r31brrrpsrl+L4165KvfTSS+uMV9bS/Wxof2KcqBgLNKqFowvOSl599dUa3XYWK9B++ctf1rm+Y/3FaqTG1l2fuJbjPosKzAhsykW3nBMmTMjzVBoHszVFtV10t1i+b3HO43ech/LnfASol112WXrggQcqLivGNSu/F9uL4nUan0fF8elCXNfRVWzsa1OrX1v6uQoAVDfdMAIAtJLZZpstN/DtuuuuadCgQfl3BEzRSP33v/89jwdSHH+nta2zzjq5ETlCuehKsDj2SARATe2yqDimWDRIRXASVVNRTRCN7tHQHyFLjC/UXkRDZYQ+V155Zbr33ntzBUqMXRMNqVFlEQFEVMQ1tcu2zTbbLJ144om5oS6qBCL8jPGcopE+jkN8Y7/YQB5jhJ199tk5AFhmmWXSVlttlb/xHhVa0aAZVQDrr79+k6rUGrqeBg4cmAOPPfbYIy277LL5W/HRtVZ0eXbEEUfkUCzW89Of/jSf56hQim3dZZdd0p133lljedHIHw2ov/jFL3LDeLwnxoAZOXJkPo5xzcZ2RzVTeQVfXNPRiBldkG2xxRZ5O6I6KhobY9uiqia6pWtMNHZGVVA0xK+yyir5mEWDbYytE+fs2GOPzfvSWcW9GEHZQQcdlP75z3/mayuqUqLhOroXjK4Ga4vr7LbbbkvbbrttrvyJRvsNN9ww/zT33Nx44435+RPHOBrTo9E4ApC4d6KhP66nporrL7pHjOq0uG/ieXHHHXfk33/4wx9qdKEW1ahxzuP12M64r6KxOirZImD72c9+lq/v8vAjgun11lsvB8Ix1lk8Qx999NE87lqE9+XHJ8Zsi9B65513zpVWEd5EkFifCITiORHHNY5nLDO2J+6L+Lsh0T1rPNcjkL788stz+BLdRdYW0+P+i25i47kR2xn7HuuJ8DPOeTynYyzIxjS2va11X8UyY79iTLg4lhEM9u3bN1+jcb3G9VX7edaS/WzsnN1yyy35WR6hSISv8QyM16OqKL4Y8Nprr+Xlzj///Hn+/fbbL1/rcX3HszjCorju40sMcc3E/VH8bGvJ52RcgzH/IYccku/BeG7G8uNZGdsR9+E555yT2lrcDwMGDMj3S2xrPPvjuR33YJzjorhGImzcfPPN87UZz/p4X+x3nJPnn38+V6RFiNicgHx6iG2NfYlnSFQMxudYVA/G9R3nPa7jCAinRWOfqwBAlSsAANCg+F+m5vxv03PPPVfYYYcdCvPOO2+he/fuhUUXXbRw4IEHFj788MM68+6111552e+++25pWvwd0+K1SgYNGlRxex588MHC2muvXZh11llL21y+3Mb2r/gz88wzF+aZZ57CaqutVthvv/3ycqdMmVKYHorH47rrrmvS/FOnTi0MHz68sPHGGxfmmmuufLz79OlTWG+99QpnnnlmYezYsU0+rkX3339/YfPNN8/Li2OxyCKL5PP5z3/+s868TzzxRGHXXXctLLTQQnndcc5XWWWVwpFHHll4/vnna8y7+OKL559KTjnllLxtjz32WI3pb7/9dmGbbbYpzD333IUuXbrUOTb33ntvYeDAgYXZZputMMcccxQ23XTTwuOPP57nqe84PvDAA4V11lmn0KtXr8Kcc85Z2G677QqjR48ubL311vk9X375ZZ33vPLKK/m4LbbYYvmYxLHp379/4YADDqh4XOozceLEfF7ivT179szbHefqlltuada13pBK91RjxznUd8xiWmxHU5fT0HUW18sGG2yQj/3ss89e2GqrrQr//ve/613eJ598Uth9990L888/f6Fr1655npi3JefmmWeeyc+hlVdeOc8Tx3/ppZcuDB06tPDqq682eEwrHY94nu2xxx6F+eabr9CjR4/CqquuWrj55psrvieeH5dddllh9dVXz/seP/F8ufTSS+s8W26//fbCbrvtVujbt29+lsVxiv054YQTCp9++mmdZZ9//vmFfv365X2PbSu/x+q7fuIZHc+M3r17l+6r4rFv6N4pnsPis/LQQw9t8FjFtXDIIYfkfYljFPuy3HLLFYYMGVK46667GnxvU7e3JfdVQ1544YX8/ItlxM8mm2xSGDlyZKPXfHP2s6FzFiZMmJD3J66RuAZin5ZYYol8v1x11VWFb7/9ts4yb7rppsKGG26Yj1FsQ8z/85//vPCvf/2ryZ+TDe3jww8/nJ+v8cyM7Y5755hjjqn4vGzoudXY9VXf82zMmDGF8847Lx/X2L/4nDv88MMLX3/9dcX3xbPjuOOOy9dE3G+xv3F+dt5558KNN95Y+OGHH0rzNrTfjWloX1v6LL711lvz9RvXX+zrCiusUDjjjDPydV5ba3+uxryVnrNNWR8A0PF1if/M6MAOAACYcaKbq6WWWipXEZZ3Wwa1RdVQVCE2tRtBoOWim88YIy+qMKPKDQCAtmPMMgAAqBLRTV7tsWriu3PR9WR03RfdqQEAAEC1MWYZAABUiWeeeSaPeRPjTEWVQoyxFtNiXKIYQ6s4tg8AAABUE2EZAABUieWWWy5ts8026amnnkoPPPBA+vHHH9MiiyySfvWrX6UTTjghzT///DN6EwEAAGC6M2YZAAAAAAAAVcuYZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVq9uM3oBqt+CCC6b//e9/abHFFpvRmwIAAAAAANAhjR07Ns0666zp448/bvZ7VZbNYBGU/fDDDzN6MwAAAAAAADqsyFoic2kJlWUzWLGibNSoUTN6UwAAAAAAADqk/v37t/i9KssAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqdaiwbPLkyem4445Lffr0Sb169UoDBw5MjzzySKPv++tf/5p+9rOfpaWWWirNMsssabnllktHHXVU+uqrryrOf88996TVVlst9ezZMy222GLplFNOST/++GMb7BEAAAAAAAAzUocKy4YOHZouuOCCtMcee6SLLroozTTTTGmrrbZKTz75ZIPvO+CAA9Lo0aPTkCFD0sUXX5y22GKLdOmll6Z11lknTZw4sca8Dz74YNphhx3SnHPOmS655JL89xlnnJEOO+ywNt47AAAAAAAAprcuhUKhkDqA5557LleSnXvuuenoo4/O0yZNmpRWXHHFNP/886eRI0fW+94RI0akwYMH15g2fPjwtNdee6Vrrrkm7bfffqXp/fv3T927d08vvPBC6tatW5524oknprPOOiu9/vrrqV+/fq26X7G+MGrUqFZdLgAAAAAAQLXoPw15S4epLLvzzjtzJVlUiRVFN4n77rtvevrpp9O4cePqfW/toCzsuOOO+XdUnBVFGBY/sY5iUBYOPvjgFJlibAMAAAAAAACdx/9LhNq5l156KS277LKpd+/eNaavtdZa+ffLL7+cFl100SYv7+OPP86/55133hrrCGussUaNeWOMtEUWWaT0+rQkmrWNGTMmLb300i1eLgAAAAAAAC3XYSrLxo8fnxZaaKE604vTPvroo2Yt75xzzsmVarvsskuNdZQvs/Z6mrsOAAAAAAAA2rcOU1k2ceLE1KNHjzrToyvG4utNdcstt6Rhw4alY489Ni2zzDI11hHqW8+ECRNauPX195FZX8UZAAAAAAAAba/DVJb16tUrTZ48uc70SZMmlV5viieeeCKPc7b55punM888s846Qn3raeo6AAAAAAAA6Bg6TFgW3SAWu0ksV5wW44o15t///nfabrvt0oorrpjuvPPO1K1bzcK6YveL9a2nKesAAAAAAACg4+gwYdmAAQPSW2+9VacrxGeffbb0ekPGjBmTtthiizT//POnBx54IM0222wV1xFeeOGFGtNjrLIPPvig0XUAAAAAAADQsXSYsGyXXXZJU6ZMSVdffXVpWnSXeN1116WBAwemRRddNE8bO3ZseuONN2q89+OPP06bbbZZ6tq1a3r44YfTfPPNV+/4Yf369cvriHUVXXHFFalLly55GwAAAAAAAOg8avZD2I5FILbrrrum448/Pn366aepb9++6YYbbkjvvfdeGjZsWGm+PffcMz3++OOpUCiUpkVF2TvvvJOOPfbY9OSTT+afogUWWCBtuummpX+fe+65uavGCNd222239Nprr6VLL7007bfffmn55ZefjnsMAAAAAABAW+tSKE+V2rlJkyalk046Kd10003pyy+/TCuvvHI6/fTT0+abb16aZ/DgwXXCsqgKq8+gQYPSiBEjaky7++6702mnnZZGjx6dq9CGDh2aTj755NS9e/dW36eoZgujRo1q9WUDAAAAAABUg/7TkLd0qLCsMxKWAQAAAAAAzLi8pcOMWQYAAAAAAACtTVgGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKW/X/s/Qu81VP+OP6v00UlkjuRqOhG7hWDXMYYuY/LzHwkuUwfwtBHmMy4zAyGiQy5DKaJGINx+9C4TDPUIIpRH+QSkaLco1Ch9v/xen//+/zOZZ/T6XROndN+Ph+Pbe/W+7Le7/d6v9c+1muvtQAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoNapg2eLFi9N5552X2rVrl1q1apV69+6dxo0bt8zt3njjjTRkyJC0++67p5YtW6aSkpI0c+bMgutuueWW2fKKr1NOOaUezggAAAAAAIBVqVlqRAYOHJjuvffedNZZZ6Wtt9463Xrrralfv37pySefTHvssUeV2z377LPp2muvTd27d0/dunVLU6dOrTafHXbYIZ199tnl0rbZZps6Ow8AAAAAAAAahkYTLJs8eXK666670vDhw9PQoUOztAEDBqRtt902nXvuuWnixIlVbnvooYemzz//PK299trpyiuvXGawbLPNNkv9+/ev83MAAAAAAACgYWk0wzBGj7KmTZumQYMGlabFkIonnXRS1nNs9uzZVW673nrrZYGy5fHNN9+kr776aoWOGQAAAAAAgIat0QTLpkyZkg2F2KZNm3LpvXr1yt6X1VtseTzxxBNpzTXXTGuttVY2h9k111xTZ/sGAAAAAACg4Wg0wzDOnTs3bbrpppXS82lz5sypk3x69uyZzX/WpUuX9Omnn2bzosUcabH/K664otb77dGjR8H0GTNmpE6dOq3AEQMAAAAAALDaB8sWLlyYWrRoUSk9hmLML68LDz30ULl/n3DCCenAAw9MI0aMSGeccUbafPPN6yQfAAAAAAAAVr1GEyxr1apVWrx4caX0RYsWlS6vDyUlJWnIkCHp8ccfT+PHj0/9+/ev1X6mTZu2XD3OAAAAAAAAqH+NZs6yGG4xhmKsKJ/Wrl27esu7ffv22ftnn31Wb3kAAAAAAACw8jWaYNkOO+yQpk+fnubPn18ufdKkSaXL68vbb7+dvW+44Yb1lgcAAAAAAACNPFgWwyRW7H316aefpt/85jfpzDPPTJMnT671vo866qi0ZMmSdPPNN5fLb/To0al3796lvb9mzZqVXn/99VrlEcceeZT17bffpssvvzytscYaaZ999qn18QMAAAAAALCaz1k2ePDgLCD28ssvlwaz+vTpk2bMmJH9+49//GN65pln0i677LLc+46A2NFHH52GDRuWPvroo9S5c+d02223pZkzZ6ZRo0aVrjdgwIA0YcKElMvlStO++OKLNHLkyOxz5B+uu+661LZt2+x1+umnZ2kPPfRQuuSSS7LA3FZbbZUFz+688870yiuvpMsuuyxtsskmK3iFAAAAAAAAWG2DZRGIOuKII0r//be//S0LlN14441pp512yoJdV155Zbrrrrtqtf8xY8akCy64IN1+++1p3rx5qWfPnmns2LFpr732qna7WDe2K+uqq67K3jt06FAaLNtuu+1S9+7d0x133JE+/vjjrDdZDO94zz33ZMcOAAAAAADA6qUkV7YL1gpaZ5110vDhw9OgQYOyfx933HHpxRdfTNOmTcv+femll2bDKL777rt1lWWj16NHj+w9f40AAAAAAABYefGWOp2zrOJ8X0899VTae++9S//drl27bAhFAAAAAAAAaAjqNFgWQxrm5wR76aWX0qxZs8oFy+bOnZvatGlTl1kCAAAAAABAw5iz7Cc/+Um66KKL0ieffJJ1c2vbtm064IADSpdPnTo1derUqS6zBAAAAAAAgIbRs+y8885LJ510UnruuedS06ZN05gxY0p7kn3++efp4YcfTvvuu29dZgkAAAAAAAC1VpLL5XJpJVi6dGlasGBBWnPNNVPz5s1XRpar/YRzAAAAAAAApBWKt9TpMIzVadKkSVpnnXVWVnYAAAAAAACwcodhDO+99142FOPmm2+e1lhjjfTEE09k6R999FE68cQT0/PPP1/XWQIAAAAAAECt1GnPsnfffTf17t07ff3116lPnz5p7ty5pcs22mijLFAWAbRdd921LrMFAAAAAACAVR8s+9WvfpW9v/LKK9ncZBEgK6tfv35p7NixdZklAAAAAAAANIxhGMeNG5dOPfXUtMUWW6SSkpJKyzt06JDef//9uswSAAAAAAAAGkawbN68eWmzzTarcvnSpUvTN998U5dZAgAAAAAAQMMIlrVr1y5Nnz69yuUxZ9lWW21Vl1kCAAAAAABAwwiWHXzwwWnUqFHp3XffrbRs/Pjx6a9//Ws6/PDD6zJLAAAAAAAAqLWSXC6XS3Xko48+SjvvvHNauHBh6tevX/rLX/6SjjnmmOzff//737O5zF588cW0zjrr1FWWjV6PHj2y92nTpq3qQwEAAAAAACi6eEud9izbaKON0rPPPpv23HPPdOedd6aIw919991p7Nix6cADD0xPPfWUQBkAAAAAAAANRrO63uHmm2+eHnjggTR//vxs/rKlS5emzp07p/XWW6+uswIAAAAAAICGFSzLa9OmTdpll13qa/cAAAAAAACwwup0GMYmTZqkzTbbLE2ZMqXg8pjDrGnTpnWZJQAAAAAAADSMYFn48MMPU9++fdOjjz5a17sGAAAAAACAhh0s+93vfpc6duyYDjvssPSnP/2prncPAAAAAAAADTdYFsMwPv3002nvvfdO//3f/50uuOCCus4CAAAAAAAAGmawLKy11lrpkUceSf3790+XXnppOv7449N3331XH1kBAAAAAABArTWrtx03a5Zuu+22tPnmm2dDM86ZMycdccQR9ZUdAAAAAAAANJxgWV70LOvQoUM67bTT0jPPPFPf2QEAAAAAAMCqGYYxgmIxBGNFgwYNSg888EAqKSmpy+wAAAAAAACg4fQse+edd6pcdvDBB6fZs2enBQsW1GWWAAAAAAAA0DB6lo0ZMyY9/vjjVS6fP39+mjBhQl1mCQAAAAAAAA0jWDZw4MDUr1+/dP755xdcHnOWnXDCCXWZJQAAAAAAADSMYFnYeuut0+WXX5769++fvv3227rePQAAAAAAADTMOcvChRdemN5666108cUXp7lz56YHHnggtWnTpq6zAQAAAAAAgIbXsywfMPvzn/+cnnrqqbTHHnuk9957rz6yAQAAAAAAgIYXLMvPX/bwww+nmTNnpt122y299NJL9ZUVAAAAAAAANKxgWTjggAPShAkT0pIlS9Kee+6Z/vnPf9ZndgAAAAAAANBwgmVhxx13TM8++2zabLPN0m233Vbf2QEAAAAAAECNNUt16KKLLko9e/aslN6hQ4c0ceLEdMopp6QPP/ywLrMEAAAAAACAWivJ5XK52m/OiurRo0f2Pm3atFV9KAAAAAAAAEUXb6n3YRgBAAAAAACgKIZh7Nix4zLXKSkpSTNmzKjLbAEAAAAAAGDVB8u22GKLLBhW1nfffZfefvvtNHfu3NS5c+e02Wab1WWWAAAAAAAA0DCCZePHj69y2R133JHOOeecdNNNN9VllgAAAAAAAFBrK23Osv79+6dDDjkkDR06dGVlCQAAAAAAAA0jWBZ22WWX9O9//7vW2y9evDidd955qV27dqlVq1apd+/eady4ccvc7o033khDhgxJu+++e2rZsmU2VOTMmTOrXP+hhx5KO+20U7ZuDC150UUXZcNJAgAAAAAAsHpZqcGyN998My1durTW2w8cODCNGDEiHXvssemaa65JTZs2Tf369UtPP/10tds9++yz6dprr00LFixI3bp1q3bdRx99NB1++OGpbdu2aeTIkdnnSy65JJ1xxhm1Pm4AAAAAAACKYM6yWbNmFUz/7LPP0j//+c903XXXpe9///u12vfkyZPTXXfdlYYPH146lOOAAQPStttum84999w0ceLEKrc99NBD0+eff57WXnvtdOWVV6apU6dWuW7su2fPnukf//hHatbs/12eNm3apMsuuyydeeaZqWvXrrU6fgAAAAAAAFbznmVbbrll2mqrrSq9dt555yyg1alTp6yHV23ce++9WU+yQYMGlabFMIknnXRS1nNs9uzZVW673nrrZYGyZXn11VezV+SRD5SFwYMHp1wulx0DAAAAAAAAq4867Vl24YUXZvOBlRX/jmBVly5dsl5lFZfX1JQpU9I222yT9fIqq1evXtl79BZr3779Chz9/8sjP7daWTFH2uabb166HAAAAAAAgNVDnQbLLr744lRf5s6dmzbddNNK6fm0OXPm1EkeZfdZMZ8VyaNHjx4F02fMmJH1uAMAAAAAAKCRD8NYnxYuXJhatGhRKT2GYswvr4s8QlX51EUeAAAAAAAArKY9y8LXX3+drrzyynTfffelt956K0vr3LlzOvLII9PZZ5+dWrduXav9tmrVKi1evLhS+qJFi0qXr6j8PqrKZ0XymDZt2nL1OAMAAAAAAKCR9Sz7+OOP06677poNxzh79uzUvXv37BWfIy2WxTq1EcMg5odJLCufFvOKraj88ItV5VMXeQAAAAAAALCaBsvOPffc9Prrr6cRI0akDz/8MD3//PPZKz5fddVV6Y033sjWqY0ddtghTZ8+Pc2fP79c+qRJk0qXr6j8Pl544YVy6TFX2XvvvVcneQAAAAAAALCaBsvGjh2bBg4cmM4666zUvHnz0vT4PGTIkHT88cenhx9+uFb7Puqoo9KSJUvSzTffXJoWwyWOHj069e7dO7Vv3z5LmzVrVhawq40YErFr165ZHpFX3o033phKSkqyYwAAAAAAAGD1Uadzli1cuDD16tWryuWx7J577qnVviMgdvTRR6dhw4aljz76KJsH7bbbbkszZ85Mo0aNKl1vwIABacKECSmXy5WmffHFF2nkyJHZ52eeeSZ7v+6661Lbtm2z1+mnn1667vDhw9Ohhx6afvCDH6Sf/OQn6ZVXXsnWPfnkk1O3bt1qdewAAAAAAAAUQbAshil89dVXq1z+2muvrdBQhmPGjEkXXHBBuv3229O8efNSz549s95se+21V7XbxbqxXVkxLGTo0KFDuWDZwQcfnO6///7061//Op1xxhlpww03TOeff3668MILa33cAAAAAAAANEwlubJdsFbQ+PHjs15Z0ePriCOOKLfsvvvuSyeccEI2DGPfvn3rKstGL4Z+DNOmTVvVhwIAAAAAAFB08ZYV6ll24oknVkrr2LFjNrfXNttsk7p3756lRW+z6dOnp+222y7rHSZYBgAAAAAAQKPvWdakSZPlz7CkJC1ZsqS2Wa529CwDAAAAAABopD3Lli5duiKbAwAAAAAAwCq1/F3DAAAAAAAAYDWxQj3LamLSpElp9uzZabPNNku9e/eu1dCNAAAAAAAA0KiCZe+//3466KCD0ksvvVSa1q1bt/Twww+njh071le2AAAAAAAAUGP11s3r5z//edp0003T9OnT08KFC9Nzzz2XlixZkgYPHlxfWQIAAAAAAMDKDZY99thjBdMjOHbppZemzp07pxYtWqRevXplAbRIBwAAAAAAgNUiWHbooYem448/Pn322Wfl0mOOsqeffrpc2jPPPJPatWu3olkCAAAAAABAwwiWRU+xV155JZuP7O677y5N/+Uvf5mGDBmS9txzz3Tsscem7bbbLt11111ZOgAAAAAAAKwWwbKddtopTZ48OQuMnXDCCVlPszlz5qTDDjssC6T16NEjff7556lPnz5p/PjxWeAMAAAAAAAAGoKSXC6Xq6udvfnmm+lnP/tZmjp1arr88svTKaecUle7Xm1FMDFMmzZtVR8KAAAAAABA0cVbVrhnWVlbb7111nvs97//fRo2bFjq27dvFkADAAAAAACAhqjOgmXffPNNmj9/fvZ50KBBWeRu/fXXT9tvv3363e9+l5YsWVJXWQEAAAAAAEDDCJZ99tln6YgjjkhrrbVWWnfddVPPnj3TCy+8kNq1a5fuv//+dPvtt6eRI0emnXfeOb344ot1c9QAAAAAAADQEIJlZ511Vpo4cWK66aabsuBYBM2OPPLI9O2332bL4/Nrr72WBcv69OmTzjnnnLo4bgAAAAAAAFj1wbJHH300/eIXv0gnnHBCOuyww9Kf/vSnNHv27PTqq6+WrrPOOuukUaNGpcceeyw9+OCDK5olAAAAAAAANIxgWfPmzdPChQtL/71o0aJUUlKSmjVrVmndfffdN7388ssrmiUAAAAAAADUicoRreUU85Vdfvnl6bvvvsvmLLvhhhtS165dU7du3Qqu37JlyxXNEgAAAAAAABpGsGz48OGpSZMm2ZxlX3/9ddp9993TNddck6UBAAAAAABAQ1aSy+Vyq/ogilmPHj2y92nTpq3qQwEAAAAAACi6eIvuXwAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNFqdMGyxYsXp/POOy+1a9cutWrVKvXu3TuNGzeuRtu+//776Zhjjklt27ZNbdq0SYcddlh6++23K61XUlJS8HX55ZfXwxkBAAAAAACwqjRLjczAgQPTvffem84666y09dZbp1tvvTX169cvPfnkk2mPPfaocrsvv/wy7bPPPumLL75I559/fmrevHm6+uqrU9++fdPUqVPT+uuvX279/fffPw0YMKBc2o477lhv5wUAAAAAAMDK16iCZZMnT0533XVXGj58eBo6dGiWFgGtbbfdNp177rlp4sSJVW57ww03pDfffDPbx6677pqlHXjggdm2V111VbrsssvKrb/NNtuk/v371/MZAQAAAAAAsCo1qmEYo0dZ06ZN06BBg0rTWrZsmU466aT07LPPptmzZ1e7bQTJ8oGy0LVr17Tffvule+65p+A2CxcuTIsWLarjswAAAAAAAKChaFTBsilTpmQ9vmK+sbJ69eqVvcdwioUsXbo0vfTSS2mXXXaptCy2nTFjRlqwYEG59BjesXXr1tm8aN27d0933nlnnZ4LAAAAAAAAq16jGoZx7ty5adNNN62Unk+bM2dOwe0+++yztHjx4mVu26VLl+zz7rvvno455pi01VZbZenXX399OvbYY7P5zk499dRaHXuPHj0KpkegrlOnTrXaJwAAAAAAAEUULIthEVu0aFEpPYZizC+vartQ022feeaZcuuceOKJaeedd07nn39+GjhwYNbbDAAAAAAAgMavUQXLIkgVPcQqys8rVlUQK59em23DGmuskU4//fR0yimnpP/85z9pjz32WO5jnzZt2nL1OAMAAAAAAKD+Nao5y2LIxBiKsaJ8Wrt27Qput95662W9ymqzbV779u1Lh3QEAAAAAABg9dCogmU77LBDmj59epo/f3659EmTJpUuL6RJkyZpu+22Sy+88EKlZbFtx44d09prr11t3m+//Xb2vuGGG67AGQAAAAAAANCQNKpg2VFHHZWWLFmSbr755tK0GFpx9OjRqXfv3qW9v2bNmpVef/31Sts+//zz5QJmb7zxRnriiSfS0UcfXZr28ccfV8p3wYIF6Q9/+EPaYIMNsrnLAAAAAAAAWD00qjnLIiAWga1hw4aljz76KHXu3DnddtttaebMmWnUqFGl6w0YMCBNmDAh5XK50rTBgwenW265JR100EFp6NChqXnz5mnEiBFp4403TmeffXbpetdff3168MEH0yGHHJK22GKLbJjGP//5z1kA7vbbb8/mLwMAAAAAAGD10KiCZWHMmDHpggsuyAJX8+bNSz179kxjx45Ne+21V7XbxTCL48ePT0OGDEmXXHJJWrp0adp7773T1VdfXW5oxe9973tp4sSJ6U9/+lP69NNPU+vWrVOvXr2ygNm+++67Es4QAAAAAACAlaUkV7b7FStdjx49svdp06at6kMBAAAAAAAounhLo5qzDAAAAAAAAOqSYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAilajC5YtXrw4nXfeealdu3apVatWqXfv3mncuHE12vb9999PxxxzTGrbtm1q06ZNOuyww9Lbb79dcN1Ro0albt26pZYtW6att946jRw5so7PBAAAAAAAgFWt0QXLBg4cmEaMGJGOPfbYdM0116SmTZumfv36paeffrra7b788su0zz77pAkTJqTzzz8//frXv05TpkxJffv2TZ9++mm5dW+66aZ08sknpx49emRBst122y39/Oc/T1dccUU9nx0AAAAAAAArU0kul8ulRmLy5MlZT7Lhw4enoUOHZmmLFi1K2267bdpoo43SxIkTq9z297//fdYjLfax6667Zmmvv/56tu25556bLrvssixt4cKFqX379qlPnz5p7Nixpdv3798/Pfjgg2n27Nlp3XXXrbNzioBcmDZtWp3tEwAAAAAAoJj0WIF4S7PUiNx7771ZT7JBgwaVpsUwiSeddFLWWywCWRHoqmrbCJLlA2Wha9euab/99kv33HNPabDsySefzHqaDR48uNz2p512WvrLX/6S/v73v2eBMwCgbkzf7ujSz3O/+Tod986ENPvbr1L75q3T7Vv1TZuusWZqbBr7eWzz8t9W9SEAAAAArDSNahjGGDZxm222yeYbK6tXr17Z+9SpUwtut3Tp0vTSSy+lXXbZpdKy2HbGjBlpwYIFpXmEiuvuvPPOqUmTJqXLAYC61dgDTKvbeQAAAAAUi0bVs2zu3Llp0003rZSeT5szZ07B7T777LO0ePHiZW7bpUuXLI/ovRbDOpa1xhprpPXXX7/KPGra/a+iGAqyefPmVS4HgNXdNzPeS9/llqb3vvkqfZdyqVkqSU1LStLJ71Y/H2lDtLqcxxr+LgEAAAAamegYFfGW1T5YFvOJtWjRolJ6DMWYX17VdqEm28Z7BMYKiXWryqO2SkpKal14NM6HNXTq1GlVHworkXIvPsp8+azRafMU37zbpNWgzDt3atTnwfLxrBcfZV6clHvxUebFR5kXJ+VefJR5cVLuxaV58+apdevWq3+wrFWrVlkPsYoWLVpUuryq7UJNto33b775puB+Yt2q8liW2kwox+pnRSYYpPFS7sVHmRcfZV6clHvxUebFSbkXH2VefJR5cVLuxUeZFyflzmo5Z1kMmRjDJFaUT2vXrl3B7dZbb72sV1lNto08lixZkj766KNy60UA7dNPP60yDwAAAAAAABqfRhUs22GHHdL06dPT/Pnzy6VPmjSpdHkhTZo0Sdttt1164YUXKi2LbTt27JjWXnvtcvuouG78e+nSpVXmAQAAAAAAQOPTqIJlRx11VNbr6+abby5Ni6EVR48enXr37p3at2+fpc2aNSu9/vrrlbZ9/vnnywXB3njjjfTEE0+ko48+ujRt3333zXqi3XjjjeW2j3+vueaa6aCDDqrHMwQAAAAAAGBlalRzlkVALAJbw4YNy4ZJ7Ny5c7rtttvSzJkz06hRo0rXGzBgQJowYULK5XKlaYMHD0633HJLFuwaOnRoNtHbiBEj0sYbb5zOPvvs0vViTrLf/va36bTTTsvyOuCAA9JTTz2V7rjjjnTppZdmgTQAAAAAAABWD40qWBbGjBmTLrjggnT77benefPmpZ49e6axY8emvfbaq9rtYpjF8ePHpyFDhqRLLrkkG1Jx7733TldffXXacMMNy60bgbUIpl111VXpoYceynqsxXpnnnlmPZ8dAAAAAAAAK1NJrmz3KwAAAAAAACgijWrOMgAAAAAAAKhLgmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAWMUGDhyYSkpK0syZM1f1oUCD8Y9//CPtvvvuqW3bttnzcfjhh6/U/Pfee+8sXxqfiy++OCu78ePH13ibqH9jm6iP+f/ENYzrEtd0dVUM58iyxT0Q9T4AULwEywAAatiIUvbVtGnTtMEGG6R999033XnnnakhuPXWW7Nji/cVPb9Cr+VpeK7tsZd9tWjRIm211VZZ4/Wrr76aismWW26ZvYpVBC4OO+yw9M4776QTTzwxXXTRReknP/lJKhYCdfVT1zW2xvDGdrz19f20ogRCCcX+vQoALFuzGqwDAMD/XzTah2+//Ta9/vrr6X//93/Tk08+mV544YU0YsSIWu3zd7/7XfrFL36RNttss9RQzq+QldHItP3225f2IPriiy+yAN1tt92W7rnnnvTEE0+kPn361PsxsOr985//TIsWLUpXXXVV+q//+q9VcgxjxoxJX3/99SrJmxVz+umnZ8HVLbbYosbbRP372muvpXXWWadej42Gp1evXlnZxw9gAAAoXoJlAADLoeIwTf/617/S/vvvn/7whz+kn//857UKKG266abZqyFY1cNQ7bDDDuWOIZfLpRNOOCELmA0bNiwLTLL6mzNnTvberl27VXYMyxNooWGJoMfyBj6aN2+eunbtWm/HRMO15pprKnsAAAzDCACwIvbbb7+skS2COs8//3xp+n/+85905JFHpo022igbTrBDhw5p8ODBae7cuTWas6zssFHxOXpJRONvy5Yt0y677JLGjh1bbh8xVFcElUK8lx3OsDHPhRbHH9ctTJ48udyyxx9/PPXr1y+7LnGNO3XqlM4555z0+eefVzn80vz589P//M//ZJ+jcbxsYC56CsaQf7Es9hdlt+eee6Ybb7yx0v5i3Sib9u3bpzXWWCNtvPHGWQ+oN954o9ryvemmm9J2222XlWNsM2jQoKwHXcW5c959993sVbYcyw4h9uCDD6b+/funbbbZJrVu3Tp77bzzzunaa69NS5cuLXgtp0+fnt2T6667brZ+zAf297//vdrh0d57772sl07Hjh2za7L++uunQw89tNy9XlPRO3CvvfbKeu60atUquw7Rq3Lx4sWVzj/fw3Gfffap8TCgZc9j3LhxWdmttdZaacMNN8yeifx9MWXKlHTwwQdn1yGWx/kUekYKDYVYdm6jqVOnpoMOOiibUy0a2/v27ZsmTpy4XHMSVpwrKf/cT5gwIft32fKvOBzf8pTNggUL0m9/+9u07bbbpjZt2qS11147e15+/OMfZ3VVTeSvR5TXr371q2yI1Pxz9+tf/zp98803BbeLHxT88Ic/TOutt162ftyz0ZO27H2f9/bbb2fPROfOnbN7JLaJ++SUU05Jn376aY3ruopzluXvjRDXtuw2Fa992ecsjjvS/u///q/gud19993Z8qFDh5ZL/+yzz7Lgfrdu3bLziHs+vitiHr6aqMnxLs9zVRMffvhhOumkk7J6KfYTP1yIHylUp6bnWdPvp++++y7dcMMNWQ/iuE/judpxxx3TddddV2W9Ft8LcR9Hz8C4v+KHJz/4wQ+y6xLiesW9GuJ8yuadr/Oqm7PszTffTAMGDMj2H3V9BPDj35FeUdn77t577816rMU5xH0c3+Hvv/9+qqmy9VnU01FfR70d9dZRRx1VMP8QvWGj/KP8Yv2o43bbbbf017/+tdK6Zc87rmPUZ3GsNfm7oey5xr7j+yfONa5PfMfm77/oER7lH+UZx37ccceVPssV1fbvprr6Xs375JNPsn3EvRTH0aNHjzR69OhqrwcAsHrQswwAYAVFoCzkGzcjkBUNPpEejVrR4BONQBF0iWEbn3766dLGu2WJhp1ocIsG8WhkisbJaKCN+ZxiqLoIJoRo8IlG+9h/LIuGsrxIX52ub4jG+Wisi4a9CHxE49pLL72UrrzyyvTII4+kZ599NmucKysa82OOubiG0Zgay/PlEI2RRx99dNbAFw3kP/3pT7PgSjSS//73v0+nnnpq6X4ee+yx9KMf/SgbivOQQw7JGvYjcHH//fdn+4nebzvttFOl8zj33HOzAF9sE/nHerfcckt66623sgbFEIG6CBRFT8Vw1llnlW5ftkwj2NCkSZPUu3fvrBE3GgZjH2eeeWYWLLn99tsrBfeisXXevHlZg2jPnj2zwMQRRxyRBRwLefHFF7PjjOt1wAEHZOccjYgRqNtjjz3SAw88UOW2FZ1//vlZA24ENiOoGA24jz76aJYe1yQa16MhOn/+0bgZQYLjjz++tLdmTXttPvTQQ9kzGPdFBFkigBUNztGoGscQjfkRSIvAwMsvv5wefvjh7FrE/RPXtCZi2NW4L6IR+uSTT06zZs1K9913X7bvCKJ16dIl1UY8q3H+cbzx7JcdFrXs+S9P2cTzE/d0XIf88TZr1iy7Z+MejGsRDd01dcwxx2T3WNRtEXCOOieexbgmce3LPqfRiB3PTjTax/MVz2mU7RVXXJFd92eeeaa0fooG8V133TULaMexRx0aQ3HGvHVxP0dgMAKCtanrYp24llFvRH1ctoG8ujnB4v6L+zOG5IwhQSvKB5PK7i/KLfYZ91tc27j2X331VXZPxue4Jj/72c+qvcY1Pd6aPlfLEvdO1A/xHMT9E68oj3h+4j4rZHnOsyZllq9P47jj+YnzieBH3KNnnHFGmjRpUqV6LerPuL9iDtEIFG+99dbpo48+yu7FCLrFvRrHGHX5NddcU26Y3/x1rk7c59///vezYHPsv3v37lldescdd2TnEt/Bcc9WFHnHsxDbRBA9jj2+t+P7JOqHCMDUVHyvRJlGXR3nEttHXRPXJZ7psnVNnGd8x8UPAuI7KH78EUHGuKZxPadNm5YuueSSSnnE92XcR1HusU3cDzW5b8LIkSOz44vrGscX99zVV1+d1U1R1hEkjO+cCD7F8ca1i/3HNmXV9u+muvxezV/D733ve9n5x3HE3wR/+9vfsusS3w9RJwAAq7EcAADLFH82FfrTady4cbmSkpLsNXPmzNyCBQty6623Xq5Jkya5f//73+XWvfzyy7N97L///uXSjz/++Cz9nXfeKU2Lz/k8L7744nLrP/bYY1n6gQceWC599OjRWXq81/b8LrroooKv3/3ud7n6lD/2uBZlLV26NDdgwIBs2b777pulPfHEE9m/d9ttt9y8efMK7uess84ql96hQ4csfb/99st9+eWX5ZZ9/PHHuTZt2uSaN2+eGz9+fKVjmz17dunnzz77LNe2bdvc+uuvn5s2bVq59V5++eVc69atczvuuGPB8m3fvn3u3XffLU3/9ttvc3vuuWe2bNKkSZWON15VeeuttyqlLVmypPRaPffcc+WWxbWL9BtuuKFc+iOPPFJa9mXvmzi2Tp065Vq0aFHpmrz//vu5du3a5TbZZJPcokWLcssyceLE0vOfO3duuTwOPvjgbNmll15abpu45yL9ySefzNVUvuybNm1a7pjjunz/+9/Plq277rq5O+64o9x2J554YrbswQcfLJfet2/fSs98HE+h6xX++Mc/ZumnnnrqMp/vivuL811W3rUtm5deeinb1+GHH15pX3Ft4p6uifwxbb311uW2WbhwYa5Pnz7ZsjFjxpSmR324xhpr5NZee+3ca6+9Vm5fcY1i/Z/97Geladdee22W9oc//KFS3vHMfv311zWu66q6fyItzqOQfJ1btg6Kc1tnnXVyG2+8cXbdy4p7Oe61nXbaqdJ1iu+Dv/71r+XSo67afvvtcy1btsx98MEHuZqo7nhr81xVJcqhUL35/PPP55o1a1blPbo851nTMjv99NNz3333XWl6fC70jEb9G8cWz/Qrr7xSbb1dqGyX9RzGd0/Xrl2z9Ip1xl133ZWld+nSJXuGKp5D3PPx3JX105/+NFt2991352oif73i9fDDD5dbFs9I2e/EinXNFVdcUS497uMDDjggK68pU6ZUOu94Rf21PPLnGt+dr776aml61Dvdu3fP/gaKv4WqqovLHseK/N1Ul9+r+Wtx0kknlbsH416LZ71bt27LdY0AgMZHsAwAoBbBpPPPPz935JFHZg0okT5kyJBsvWhUi39Hw1hF0Yiz5ZZbZsvLNu5UFyyLhp2yjTZ5W2yxRRawqetgWVWvaDCuT/ljj0bW/DWOhtsddtghS2/VqlXu2WefzdaNRv9IK9RAGmKbDTfcsGCwbOrUqZXWv/LKK7NlP//5z5d5nPlGyuuuu67g8jjmWF42kJYv31tuuaXS+n/+85+zZSNHjlyuRr2q/Oc//8n29+tf/7o0bdasWVla586dyzXs5uUbL8veN9EoHWlDhw6t9jr8/e9/X+YxnXzyydm6N910U6Vlb7zxRtZAutVWW9VZsKx///6Vlt12223ZsmhErSgacwsFpasLln3ve9+rtJ9vvvkma7zfeeed6zVYtrxlkw+WFaqTlkf+mMoGxCqex957712adskll2Rpw4YNq7R+BNsioBABlXxQLx8sK3SfVLSygmVlA0ljx44tlz58+PAs/ZprrilNi/ol0o466qhqy+76669f5jku63hr81wVEvftmmuumZXH559/Xml5/v4te4/W5jyrK7OolyJYEkHeikHJfAAuAj1HH310aVoE1WJ/I0aMWOY51iZY9vTTT5f+KKOQPfbYI1s+YcKESvfdL3/5y0rr53/kcfbZZ+dqIn+9KgbEQvxNEAHzWB5B6fDJJ59kf4/ssssuBfeXL7Nzzjmn0nnHd+byyp/rr371q0rL4vsnlh133HGVlt16663ZsnjPW5G/m+ryezW2iWfhiy++qLRsr732ypZHYA8AWH0ZhhEAYDnEsFghhhqL4aPyw7nF/FH54dFCDIVUUQx9FnPLxLBVMUzSFltsscz8YoigGGKqopgrK4ZOqq8hD2ur0JwvMQRXTYfQi2Gq8vMDxRBvMWdIDD8Zww7GEFghzjuWxdBI8aoohlv8+OOPs3lRYti2vBjSK4YfrOi5557L3g888MBlHl/+mscxFjrXmBcsvPbaa6XHmxdzzRUqxxDDIy6POLfhw4dnQ07G0Gkx/FlZZefGiWG7QgzBV2iYwRh6K4YTK3SeMdRaVfP45M9zWUMxVvdMxPxVm2++eTbUXgwlGXMerahC1znm0QmFhhuMYSxDDEu4InnEPRnz5SxvWS6v5S2buA+jHol5hWKbGBotyjzOoaZDrZUVw8pVFPuLeirqtZqUe8xdFHNR/fvf/86GtYvh8WLIuhg+8LTTTsuGVYvhJWM4tDj+inPHrUxRf8WwbjHkYgwnlxf/jjKP4e0qlk3cy4XKJuqlfNmsqLp6ruL6xzxX8V1WaL0YWq/i3GV1fZ5Rb8awfTGMYqFhAkPMiVZ2f8tTb9f19c2nx9CAcc/H93p91fWFnrd41uKZmzFjRpZ/DFkYQ0YuWbKkyrnXYpjLqsokhnpelfXtivzdVJfXOsQ9WHEI54r7jOFOAYDVk2AZAEAdBpPyk8pHkKeQfHrMi1ETVc3BEw1IMRdJQw0mVmxsrWmwLOYDifmalhUo+u677wrmVdaXX35ZLlgW8yUVanTPl0W+EW9ZeYdoPF9W3jUpyyjHEI2cNRXHG/PkREN4NHIOGDAgm7st9pWfmyfmWal4T0Ygp5BC6fnzLBSMXNZ51uaZiDm/4tjrIlhWaB/561zdsnxj8oo+l8tTlrWxvGUTDesxd89vfvObdO+996bzzjsvS1977bWz5y3mKlqext9C90ucd8ybFfNF1bYujAb/yZMnZw39MS9gzNWUb6QeOnRo+vnPf55WhZjLK4JPMQdVNJRHoC8a91955ZVsnqY474plM27cuOy1Is/NynqullU/bLLJJpXS6vo88/uLQG919XrZ/S1PvV0bK/JdXld1fU3KJX+c+WsYQbN4LU+ZFCrjlVnfNpRrXdX+VnSfAEDjUbMZrAEAqJF849AHH3xQcPncuXPLrbe6+f8P813uFcGyuhTXLhqsC+VV9hWN72VV1Tsl3zhWtjdWdXnne5ZVl3cEIerLn/70pyxQdtFFF6VJkyalG264IeuNEUGGH//4x5XWz/9K/sMPPyy4v0Lp+fP83//932rPM45hWYr9mcj35osAb0U1DZqvaNnE83L11Ven2bNnZwGJuIe6du2arrvuunTqqacuV/6F7pc4t08++aRcj4zalHu3bt3S3XffnTX8v/DCC+nyyy/PfhRw5plnplGjRqVVJQLSEYCOYwv5nlYVn/P8uUTAurqyGT169AofU109V/nlVdUPhfZf1+eZ398RRxxR7f6i3qtNvV0bDaXeWla55PPPvw8ZMqTaa/jkk09W2teq7LnZkK41AIBgGQBAHYqhxcL48eMLNig/9dRT2eeddtqpzvPOD9e4uv/yuU+fPlkPj2nTptXZ/sKjjz5a43Xz5VhfoiyrKse33norez/yyCMrLZswYUKltBiCLz90WqHeiDGUWH2eZ3XPRJxLDMe11VZbVfmL/sYuAlUhAlUVRUBoeZ/lFS2bzp07Z0PHxr0SPcoi6LY8Ct1jcQ/FsebLelnlHkHCGB40hkaNAFmhXhwxhFv0govhI8ODDz64wnVdBC5rUz9GsCy2jSBZ9IiJY4oeZWWHZayP+qG6462r5yqCpmuuuWZWHvkePmUV2n9tzrO6MotjiOOMoRVr2sNzeert2twv1V3fkA861cd3+bKetziPfL2dP87oZRz3S31/NzXmv5uq+14FAAiCZQAAdSiG5Yoh8aIxNT+nSt4f/vCH7Jfx3//+92s0X9nyyg85GENvrc7il/PhZz/7WZozZ06l5TF/V8VrX53oHRI9Ym688cZsDqWKys6tcsIJJ2SNujFUWAwZV1EEo6pqXF3esox5fxYuXFhpWX5Iy4r5xHwuMaReRXGvRe++aEC/6aabyi2L4e4qzlcWYl6rTp06peuvvz6bF62QCL7FXEfLcuKJJ2bv0fstP5dRiEbLGF4vrlkEb1ZX+fmAKg7d+fLLL2c9c5b3WV7esok6J+a1qygCztFbKuaCWh6//e1vy80FtGjRojRs2LDS5yMv5nGMOb1GjhxZGuDNu+CCC9L8+fOzdVq0aJGl/ec//ykYrMn3rImAzorWdbFdoaDlssRQkDGfUtQrUWZxH8dcZXF+FedPirm/YgjJP//5zwX3FeVedrjK2h5vXT1XcQ7HHntsWrBgQaW5riKY+5e//KXSNrU5z+rKLIKjZ5xxRtaDKIbbLFTvxbJXX3219N/RIzK2i/uxbHqhejsC1tF7annul5gvr0uXLllQKoYvLSv+HQGcGJ4z5g6rTzGE6tixY8ulRY/QmK9sn332Ke1BHcMMRzlGmcU1KRQUim3K9s4rtr+bqvteBQAI5iwDAKhD0VMjGg+PPvro1Ldv3+w9GniiIfgf//hHNjdIxYBFXdltt92yBuVoXIphzPLzkEQjZE2HL6rYWFqxQSvfS2lV2m+//bLh2aKBfuutt079+vXLelDEXCzvvvtu9kv8aMCMQFBNRA+RO++8Mx111FFZ4+OBBx6YevbsmTXmv/TSS1ljdb6BMRrboqE0hguLng1xLD169MgaYmO9CFLEtY8AwoqeY8w788Mf/jDttddeWUBh++23T4ccckjWy2X48OHprLPOyno3xDWIofWiQfVHP/pR6VBxZUVgJRp/Bw8enAVY4vwigHLfffdlwZfoXZQfLjDfgB4N4QcccEDWeybmbYqyj/srzjOOLbaPBuyyQYxCYttzzz03/f73v0/bbrttdp1bt26d9QiJeZ+irM4555y0uorrG2UUDcHRgN+7d++s0T6ueSy75557CpZ/zEkW5Rn3dwS0olH8uOOOW+6yiSFDYz8xz1304mrXrl3WYBz5Ry+e/BxmNRX7iHs+yjGOJfYTjfBxLHF8ZYO6UReddtppWY+QY445Jm244YbZ8xnPSfQmuuKKK0rXv/3227O6Me6HCAZGgCP2+/DDD2f3f9zvK1rXxXW96667sucojimOP56veNUkqB6B5fPPP7/034VEXRKBtQhUXXvttVl5R4A9yj7qk7jn4/wjuLEs1R1vXT5Xl112WfrXv/6VXc8ItsS2cf9EXRL3X8zXtqLnuawyiwBq3Kt//OMfszKPfcd8ZBFwi/rtmWeeSZdeemnq3r17tl28xxC0p5xyStYzKf+cxb7jGYgfQOR7f8X3chxfBLgioBRBruhldOihh2Z1YSFRp0dPwv333z8b3jb2H/fsG2+8kfVyjDn/xowZU67erA9R9vF9E6/oFRo9AKOMI7gU518xiBbX6sILL8yepyjHmPMsflTy2muvZdcl6qH4vizGv5uq+14FAMjkAABYpvizaXn+dJo8eXLu8MMPz22wwQa55s2b59q3b5875ZRTcu+//36ldY8//vhs3++8805pWnyOtFhWSN++fQsez6OPPprr06dPrnXr1qXHXHa/yzq/6l6jR4/O1ZfYd3XnW8hTTz2VO/roo3Obbrppdo3jWm+//fa5IUOG5J5//vly63bo0CF7VeeVV17JHXfccbl27dpl+9too41ye+21V+6mm26qtG5c09NOOy3XuXPnXIsWLXJrr712rkuXLrn+/fvnHnjggWWWb96TTz6ZLbvooovKpX/55ZfZ/bLZZpvlmjZtWunaTJs2LXfIIYfkNtxww9yaa66Z22mnnXK33HJLtffNa6+9ljviiCNy66yzTrZN3Cdjx47NDR8+PNum4nGHDz/8MHfeeeflevTokWvVqlV2X8U5H3nkkbnbb7899+233+Zq6q9//Wvue9/7Xm6ttdbKrln37t1zl1xySW7hwoWV1o3rEccU12d576FC92lV1zlUdc0KPWPV7ae6+2zWrFm5Y445JrfuuuvmWrZsmdtll11y9913X5X7++6773LDhg3LbbXVVrlmzZpl68Tx1KZsZs+ene1r9913z2288ca5NdZYI7uvfvjDH+YeeeSRaq9poeuxaNGi3C9/+cvclltume0rjvHiiy/O0gt5/PHHc/vvv3+ubdu22fqdOnXKnXPOObl58+aVW++5557L7vmePXuWXqdYd+DAgbmXX355ueq6qu6fuGY//elPs2e7SZMm5a79surcr776KtemTZtsnW233bbaazV//vzcpZdemj2XcXxxLnG9+vXrl9Un8XzXRHXHW5vnqjpz587NnXDCCVk9GscbdWk8S9Xd88t7nsv6flq6dGluzJgxuX333Te7B6Iejvo4zi/yieeoookTJ+Z+9KMfZXVhrB/fBwcccEDub3/7W7n13nzzzdzBBx+cW2+99XIlJSXl6orqzvH111/P6vVNNtkkexbj/dhjj83Sl6feWtb9VV199vDDD2fXLertqL/jfN94442C2y1evDg3cuTI3G677Zbdr/HMxd8fcU2vvvrq3CeffFLj+qw61Z1rbeviFf27aUW/VwvVszXJDwBYfZTEf8QNAQCgOEVPi+gl8vrrr2fDjkEhMZRn9Arzv49Q/2699dZsWNPRo0engQMHrurDAQAoCuYsAwCA1VzMX/TBBx9USo+h12KotRjSTKAMAACAYmXOMgAAWM198803qX379tmcbDHvTrNmzdK0adPSuHHj0hprrJHNaQYAAADFSrAMAABWc82bN0+nnHJKeuKJJ9KkSZPS119/nTbYYIN09NFHp1/84hdpxx13XNWHCAAAAKuMOcsAAAAAAAAoWuYsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAotVsVR9Asdtkk03SV199lbbYYotVfSgAAAAAAACN0qxZs1Lr1q3TBx98sNzb6lm2ikWg7Ntvv13VhwEAAAAAANBoRawlYi61oWfZKpbvUTZt2rRVfSgAAAAAAACNUo8ePWq9rZ5lAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEWrUQXLFi9enM4777zUrl271KpVq9S7d+80bty4ZW53//33px//+MepY8eOac0110xdunRJZ599dvr8888Lrv/QQw+lnXbaKbVs2TJtscUW6aKLLkrfffddPZwRAAAAAAAAq1KjCpYNHDgwjRgxIh177LHpmmuuSU2bNk39+vVLTz/9dLXbDRo0KL322mupf//+6dprr00//OEP03XXXZd22223tHDhwnLrPvroo+nwww9Pbdu2TSNHjsw+X3LJJemMM86o57MDAAAAAABgZSvJ5XK51AhMnjw560k2fPjwNHTo0Cxt0aJFadttt00bbbRRmjhxYpXbjh8/Pu29997l0saMGZOOP/74dMstt6STTz65NL1Hjx6pefPm6YUXXkjNmjXL0n71q1+lyy67LL366qupa9eudXpekV+YNm1ane4XAAAAAACgWPRYgXhLo+lZdu+992Y9yaKXWF4Mk3jSSSelZ599Ns2ePbvKbSsGysIRRxyRvUePs7wIhsUr8sgHysLgwYNTxBTjGAAAAAAAAFh9NJpg2ZQpU9I222yT2rRpUy69V69e2fvUqVOXa38ffPBB9r7BBhuUyyPssssu5daNOdI233zz0uUAAAAAAACsHv6/7lMN3Ny5c9Omm25aKT2fNmfOnOXa3xVXXJH1VDvqqKPK5VF2nxXzWd48CnX/q2jGjBmpU6dOtd4vAAAAAAAARdCzbOHChalFixaV0mMoxvzymrrzzjvTqFGj0tlnn5223nrrcnmEqvJZnjwAAAAAAABo+BpNz7JWrVqlxYsXV0pftGhR6fKaeOqpp7J5zg444IB06aWXVsojVJVPTfMopKoJ5arqcQYAAAAAAED9azQ9y2IYxPwwiWXl02JesWX5v//7v3TooYembbfdNt17772pWbPyscL88ItV5VOTPAAAAAAAAGg8Gk2wbIcddkjTp09P8+fPL5c+adKk0uXVibnBfvjDH6aNNtooPfLII2mttdYqmEd44YUXyqXHXGXvvffeMvMAAAAAAACgcWk0wbKjjjoqLVmyJN18882laTFc4ujRo1Pv3r1T+/bts7RZs2al119/vdy2H3zwQfrBD36QmjRpkh5//PG04YYbVjkkYteuXbM8Iq+8G2+8MZWUlGTHAAAAAAAAwOqj0cxZFgGxo48+Og0bNix99NFHqXPnzum2225LM2fOTKNGjSpdb8CAAWnChAkpl8uVpkWPsrfffjude+656emnn85eeRtvvHHaf//9S/89fPjwbKjGCK795Cc/Sa+88kq67rrr0sknn5y6deu2Es8YAAAAAACA+laSKxtVauAWLVqULrjggnTHHXekefPmpZ49e6bf/va36YADDihdZ++9964ULIteYVXp27dvGj9+fLm0Bx98MP36179Or732WtYLbeDAgenCCy9MzZs3r/Nzit5sYdq0aXW+bwAAAAAAgGLQYwXiLY0qWLY6EiwDAAAAAABYdfGWRjNnGQAAAAAAANQ1wTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIpWowqWLV68OJ133nmpXbt2qVWrVql3795p3Lhxy9zujTfeSEOGDEm77757atmyZSopKUkzZ84suO6WW26ZLa/4OuWUU+rhjAAAAAAAAFiVmqVGZODAgenee+9NZ511Vtp6663Trbfemvr165eefPLJtMcee1S53bPPPpuuvfba1L1799StW7c0derUavPZYYcd0tlnn10ubZtttqmz8wAAAAAAAKBhaDTBssmTJ6e77rorDR8+PA0dOjRLGzBgQNp2223TueeemyZOnFjltoceemj6/PPP09prr52uvPLKZQbLNttss9S/f/86PwcAAAAAAAAalkYzDGP0KGvatGkaNGhQaVoMqXjSSSdlPcdmz55d5bbrrbdeFihbHt9880366quvVuiYAQAAAAAAaNgaTc+yKVOmZEMhtmnTplx6r169svfoLda+ffs6yeuJJ55Ia665ZlqyZEnq0KFDNt/ZmWeeuUL77NGjR8H0GTNmpE6dOq3QvgEAAAAAAFjNg2Vz585Nm266aaX0fNqcOXPqJJ+ePXtm85916dIlffrpp9m8aDFHWuz/iiuuqJM8AAAAAAAAaBgaTbBs4cKFqUWLFpXSYyjG/PK68NBDD5X79wknnJAOPPDANGLEiHTGGWekzTffvFb7nTZt2nL1OAMAAAAAAKD+NZo5y1q1apUWL15cKX3RokWly+tDSUlJNgzjd999l8aPH18veQAAAAAAALBqNJpgWQy3GEMxVpRPa9euXb3lnZ8L7bPPPqu3PAAAAAAAAFj5Gk2wbIcddkjTp09P8+fPL5c+adKk0uX15e23387eN9xww3rLAwAAAAAAgEYeLIthEiv2vvr000/Tb37zm3TmmWemyZMn13rfRx11VFqyZEm6+eaby+U3evTo1Lt379LeX7NmzUqvv/56rfKIY488yvr222/T5ZdfntZYY420zz771Pr4AQAAAAAAaHia1eXOBg8enAXEXn755dJgVp8+fdKMGTOyf//xj39MzzzzTNpll12We98REDv66KPTsGHD0kcffZQ6d+6cbrvttjRz5sw0atSo0vUGDBiQJkyYkHK5XGnaF198kUaOHJl9jvzDddddl9q2bZu9Tj/99CztoYceSpdcckkWmNtqq62y4Nmdd96ZXnnllXTZZZelTTbZZAWvEAAAAAAAAKttsCwCUUcccUTpv//2t79lgbIbb7wx7bTTTlmw68orr0x33XVXrfY/ZsyYdMEFF6Tbb789zZs3L/Xs2TONHTs27bXXXtVuF+vGdmVdddVV2XuHDh1Kg2Xbbbdd6t69e7rjjjvSxx9/nPUmi+Ed77nnnuzYAQAAAAAAWL2U5Mp2wVpB66yzTho+fHgaNGhQ9u/jjjsuvfjii2natGnZvy+99NJsGMV33323rrJs9Hr06JG9568RAAAAAAAAKy/eUqdzllWc7+upp55Ke++9d+m/27Vrlw2hCAAAAAAAAA1BnQbLYkjD/JxgL730Upo1a1a5YNncuXNTmzZt6jJLAAAAAAAAaBhzlv3kJz9JF110Ufrkk0+ybm5t27ZNBxxwQOnyqVOnpk6dOtVllgAAAAAAANAwepadd9556aSTTkrPPfdcatq0aRozZkxpT7LPP/88Pfzww2nfffetyywBAAAAAACg1kpyuVwurQRLly5NCxYsSGuuuWZq3rz5yshytZ9wDgAAAAAAgLRC8ZY6HYaxOk2aNEnrrLPOysoOAAAAAAAAVu4wjOG9997LhmLcfPPN0xprrJGeeOKJLP2jjz5KJ554Ynr++efrOksAAAAAAAColTrtWfbuu++m3r17p6+//jr16dMnzZ07t3TZRhttlAXKIoC266671mW2AAAAAAAAsOqDZb/61a+y91deeSWbmywCZGX169cvjR07ti6zBAAAAAAAgIYxDOO4cePSqaeemrbYYotUUlJSaXmHDh3S+++/X5dZAgAAAAAAQMMIls2bNy9tttlmVS5funRp+uabb+oySwAAAAAAAGgYwbJ27dql6dOnV7k85izbaqut6jJLAAAAAAAAaBjBsoMPPjiNGjUqvfvuu5WWjR8/Pv31r39Nhx9+eF1mCQAAAAAAALVWksvlcqmOfPTRR2nnnXdOCxcuTP369Ut/+ctf0jHHHJP9++9//3s2l9mLL76Y1llnnbrKstHr0aNH9j5t2rRVfSgAAAAAAABFF2+p055lG220UXr22WfTnnvume68884Ucbi77747jR07Nh144IHpqaeeEigDAAAAAACgwWhW1zvcfPPN0wMPPJDmz5+fzV+2dOnS1Llz57TeeuvVdVYAAAAAAADQsIJleW3atEm77LJLfe0eAAAAAAAAVlidDsPYpEmTtNlmm6UpU6YUXB5zmDVt2rQuswQAAAAAAICGESwLH374Yerbt2969NFH63rXAAAAAAAA0LCDZb/73e9Sx44d02GHHZb+9Kc/1fXuAQAAAAAAoOEGy2IYxqeffjrtvffe6b//+7/TBRdcUNdZAAAAAAAAQMMMloW11lorPfLII6l///7p0ksvTccff3z67rvv6iMrAAAAAAAAqLVm9bbjZs3SbbfdljbffPNsaMY5c+akI444or6yAwAAAAAAgIYTLMuLnmUdOnRIp512WnrmmWfqOzsAAAAAAABYNcMwRlAshmCsaNCgQemBBx5IJSUldZkdAAAAAAAANJyeZe+8806Vyw4++OA0e/bstGDBgrrMEgAAAAAAABpGz7IxY8akxx9/vMrl8+fPTxMmTKjLLAEAAAAAAKBhBMsGDhyY+vXrl84///yCy2POshNOOKEuswQAAAAAAICGESwLW2+9dbr88stT//7907ffflvXuwcAAAAAAICGOWdZuPDCC9Nbb72VLr744jR37tz0wAMPpDZt2tR1NgAAAAAAANDwepblA2Z//vOf01NPPZX22GOP9N5779VHNgAAAAAAANDwgmX5+csefvjhNHPmzLTbbrull156qb6yAgAAAAAAgIYVLAsHHHBAmjBhQlqyZEnac8890z//+c/6zA4AAAAAAAAaTrAs7LjjjunZZ59Nm222WbrtttvqOzsAAAAAAACosWapDl100UWpZ8+eldI7dOiQJk6cmE455ZT04Ycf1mWWAAAAAAAAUGsluVwuV/vNWVE9evTI3qdNm7aqDwUAAAAAAKDo4i31PgwjAAAAAAAAFMUwjB07dlzmOiUlJWnGjBl1mS0AAAAAAACs+mDZFltskQXDyvruu+/S22+/nebOnZs6d+6cNttss7rMEgAAAAAAABpGsGz8+PFVLrvjjjvSOeeck2666aa6zBIAAAAAAABqbaXNWda/f/90yCGHpKFDh66sLAEAAAAAAKBhBMvCLrvskv7973/XevvFixen8847L7Vr1y61atUq9e7dO40bN26Z273xxhtpyJAhaffdd08tW7bMhoqcOXNmles/9NBDaaeddsrWjaElL7roomw4SQAAAAAAAFYvKzVY9uabb6alS5fWevuBAwemESNGpGOPPTZdc801qWnTpqlfv37p6aefrna7Z599Nl177bVpwYIFqVu3btWu++ijj6bDDz88tW3bNo0cOTL7fMkll6Qzzjij1scNAAAAAABAEcxZNmvWrILpn332WfrnP/+ZrrvuuvT973+/VvuePHlyuuuuu9Lw4cNLh3IcMGBA2nbbbdO5556bJk6cWOW2hx56aPr888/T2muvna688so0derUKteNfffs2TP94x//SM2a/b/L06ZNm3TZZZelM888M3Xt2rVWxw8AAAAAAMBq3rNsyy23TFtttVWl184775wFtDp16pT18KqNe++9N+tJNmjQoNK0GCbxpJNOynqOzZ49u8pt11tvvSxQtiyvvvpq9oo88oGyMHjw4JTL5bJjAAAAAAAAYPVRpz3LLrzwwmw+sLLi3xGs6tKlS9arrOLympoyZUraZpttsl5eZfXq1St7j95i7du3X4Gj/3955OdWKyvmSNt8881LlwMAAAAAALB6qNNg2cUXX5zqy9y5c9Omm25aKT2fNmfOnDrJo+w+K+azInn06NGjYPqMGTOyHncAAAAAAAA08mEY69PChQtTixYtKqXHUIz55XWRR6gqn7rIAwAAAAAAgNW0Z1n4+uuv05VXXpnuu+++9NZbb2VpnTt3TkceeWQ6++yzU+vWrWu131atWqXFixdXSl+0aFHp8hWV30dV+axIHtOmTVuuHmcAAAAAAAA0sp5lH3/8cdp1112z4Rhnz56dunfvnr3ic6TFslinNmIYxPwwiWXl02JesRWVH36xqnzqIg8AAAAAAABW02DZueeem15//fU0YsSI9OGHH6bnn38+e8Xnq666Kr3xxhvZOrWxww47pOnTp6f58+eXS580aVLp8hWV38cLL7xQLj3mKnvvvffqJA8AAAAAAABW02DZ2LFj08CBA9NZZ52VmjdvXpoen4cMGZKOP/749PDDD9dq30cddVRasmRJuvnmm0vTYrjE0aNHp969e6f27dtnabNmzcoCdrURQyJ27do1yyPyyrvxxhtTSUlJdgwAAAAAAACsPup0zrKFCxemXr16Vbk8lt1zzz212ncExI4++ug0bNiw9NFHH2XzoN12221p5syZadSoUaXrDRgwIE2YMCHlcrnStC+++CKNHDky+/zMM89k79ddd11q27Zt9jr99NNL1x0+fHg69NBD0w9+8IP0k5/8JL3yyivZuieffHLq1q1brY4dAAAAAACAIgiWxTCFr776apXLX3vttRUaynDMmDHpggsuSLfffnuaN29e6tmzZ9abba+99qp2u1g3tisrhoUMHTp0KBcsO/jgg9P999+ffv3rX6czzjgjbbjhhun8889PF154Ya2PGwAAAAAAgIapJFe2C9YKGj9+fNYrK3p8HXHEEeWW3XfffemEE07IhmHs27dvXWXZ6MXQj2HatGmr+lAAAAAAAACKLt6yQj3LTjzxxEppHTt2zOb22mabbVL37t2ztOhtNn369LTddttlvcMEywAAAAAAAGj0PcuaNGmy/BmWlKQlS5bUNsvVjp5lAAAAAAAAjbRn2dKlS1dkcwAAAAAAAFillr9rGAAAAAAAAKwmVqhnWU1MmjQpzZ49O2222Wapd+/etRq6EQAAAAAAABpVsOz9999PBx10UHrppZdK07p165Yefvjh1LFjx/rKFgAAAAAAAGqs3rp5/fznP0+bbrppmj59elq4cGF67rnn0pIlS9LgwYPrK0sAAAAAAABYucGyxx57rGB6BMcuvfTS1Llz59SiRYvUq1evLIAW6QAAAAAAALBaBMsOPfTQdPzxx6fPPvusXHrMUfb000+XS3vmmWdSu3btVjRLAAAAAAAAaBjBsugp9sorr2Tzkd19992l6b/85S/TkCFD0p577pmOPfbYtN1226W77rorSwcAAAAAAIDVIli20047pcmTJ2eBsRNOOCHraTZnzpx02GGHZYG0Hj16pM8//zz16dMnjR8/PgucAQAAAAAAQENQksvlcnW1szfffDP97Gc/S1OnTk2XX355OuWUU+pq16utCCaGadOmrepDAQAAAAAAKLp4ywr3LCtr6623znqP/f73v0/Dhg1Lffv2zQJoAAAAAAAA0BDVWbDsm2++SfPnz88+Dxo0KIvcrb/++mn77bdPv/vd79KSJUvqKisAAAAAAABoGMGyzz77LB1xxBFprbXWSuuuu27q2bNneuGFF1K7du3S/fffn26//fY0cuTItPPOO6cXX3yxbo4aAAAAAAAAGkKw7KyzzkoTJ05MN910UxYci6DZkUcemb799ttseXx+7bXXsmBZnz590jnnnFMXxw0AAAAAAACrPlj26KOPpl/84hfphBNOSIcddlj605/+lGbPnp1effXV0nXWWWedNGrUqPTYY4+lBx98cEWzBAAAAAAAgIYRLGvevHlauHBh6b8XLVqUSkpKUrNmzSqtu++++6aXX355RbMEAAAAAACAOlE5orWcYr6yyy+/PH333XfZnGU33HBD6tq1a+rWrVvB9Vu2bLmiWQIAAAAAAEDDCJYNHz48NWnSJJuz7Ouvv0677757uuaaa7I0AAAAAAAAaMhKcrlcblUfRDHr0aNH9j5t2rRVfSgAAAAAAABFF2/R/QsAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQaXbBs8eLF6bzzzkvt2rVLrVq1Sr17907jxo2r0bbvv/9+OuaYY1Lbtm1TmzZt0mGHHZbefvvtSuuVlJQUfF1++eX1cEYAAAAAAACsKs1SIzNw4MB07733prPOOittvfXW6dZbb039+vVLTz75ZNpjjz2q3O7LL79M++yzT/riiy/S+eefn5o3b56uvvrq1Ldv3zR16tS0/vrrl1t///33TwMGDCiXtuOOO9bbeQEAAAAAALDyNapg2eTJk9Ndd92Vhg8fnoYOHZqlRUBr2223Teeee26aOHFildvecMMN6c0338z2seuuu2ZpBx54YLbtVVddlS677LJy62+zzTapf//+9XxGAAAAAAAArEqNahjG6FHWtGnTNGjQoNK0li1bppNOOik9++yzafbs2dVuG0GyfKAsdO3aNe23337pnnvuKbjNwoUL06JFi+r4LAAAAAAAAGgoGlWwbMqUKVmPr5hvrKxevXpl7zGcYiFLly5NL730Utpll10qLYttZ8yYkRYsWFAuPYZ3bN26dTYvWvfu3dOdd95Zp+cCAAAAAADAqteohmGcO3du2nTTTSul59PmzJlTcLvPPvssLV68eJnbdunSJfu8++67p2OOOSZttdVWWfr111+fjj322Gy+s1NPPbVWx96jR4+C6RGo69SpU632CQAAAAAAQBEFy2JYxBYtWlRKj6EY88ur2i7UdNtnnnmm3Donnnhi2nnnndP555+fBg4cmPU2AwAAAAAAoPFrVMGyCFJFD7GK8vOKVRXEyqfXZtuwxhprpNNPPz2dcsop6T//+U/aY489lvvYp02btlw9zgAAAAAAAKh/jWrOshgyMYZirCif1q5du4Lbrbfeelmvstpsm9e+ffvSIR0BAAAAAABYPTSqYNkOO+yQpk+fnubPn18ufdKkSaXLC2nSpEnabrvt0gsvvFBpWWzbsWPHtPbaa1eb99tvv529b7jhhitwBgAAAAAAADQkjSpYdtRRR6UlS5akm2++uTQthlYcPXp06t27d2nvr1mzZqXXX3+90rbPP/98uYDZG2+8kZ544ol09NFHl6Z9/PHHlfJdsGBB+sMf/pA22GCDbO4yAAAAAAAAVg+Nas6yCIhFYGvYsGHpo48+Sp07d0633XZbmjlzZho1alTpegMGDEgTJkxIuVyuNG3w4MHplltuSQcddFAaOnRoat68eRoxYkTaeOON09lnn1263vXXX58efPDBdMghh6QtttgiG6bxz3/+cxaAu/3227P5ywAAAAAAAFg9NKpgWRgzZky64IILssDVvHnzUs+ePdPYsWPTXnvtVe12Mczi+PHj05AhQ9Ill1ySli5dmvbee+909dVXlxta8Xvf+16aOHFi+tOf/pQ+/fTT1Lp169SrV68sYLbvvvuuhDMEAAAAAABgZSnJle1+xUrXo0eP7H3atGmr+lAAAAAAAACKLt7SqOYsAwAAAAAAgLokWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNFqdMGyxYsXp/POOy+1a9cutWrVKvXu3TuNGzeuRtu+//776Zhjjklt27ZNbdq0SYcddlh6++23C647atSo1K1bt9SyZcu09dZbp5EjR9bxmQAAAAAAALCqNbpg2cCBA9OIESPSsccem6655prUtGnT1K9fv/T0009Xu92XX36Z9tlnnzRhwoR0/vnnp1//+tdpypQpqW/fvunTTz8tt+5NN92UTj755NSjR48sSLbbbruln//85+mKK66o57MDAAAAAABgZSrJ5XK51EhMnjw560k2fPjwNHTo0Cxt0aJFadttt00bbbRRmjhxYpXb/v73v896pMU+dt111yzt9ddfz7Y999xz02WXXZalLVy4MLVv3z716dMnjR07tnT7/v37pwcffDDNnj07rbvuunV2ThGQC9OmTauzfQIAAAAAABSTHisQb2lUPcvuvfferCfZoEGDStNimMSTTjopPfvss1kgq7ptI0iWD5SFrl27pv322y/dc889pWlPPvlk1tNs8ODB5bY/7bTT0ldffZX+/ve/1/l5AQAAAAAAsGo0qmBZDJu4zTbbZPONldWrV6/sferUqQW3W7p0aXrppZfSLrvsUmlZbDtjxoy0YMGC0jxCxXV33nnn1KRJk9LlAAAAAAAANH7NUiMyd+7ctOmmm1ZKz6fNmTOn4HafffZZWrx48TK37dKlS5ZH9F6LYR3LWmONNdL6669fZR417f5XUQwF2bx58yqXAwAAAAAAUL3oGBXxltW+Z1nMJ9aiRYtK6TEUY355VduFmmwb7xEYKyTWrSqP2iopKal14dE4H9Z4UVyUe/FR5sVHmRcn5V58lHlxUu7FR5kXH2VenJR78VHmxUm5F5fmzZun1q1br/49y1q1apX1EKto0aJFpcur2i7UZNt4/+abbwruJ9atKo9lqc2Ecqx+VmSCQRov5V58lHnxUebFSbkXH2VenJR78VHmxUeZFyflXnyUeXFS7qyWPctiyMQYJrGifFq7du0Kbrfeeutlvcpqsm3ksWTJkvTRRx+VWy8CaJ9++mmVeQAAAAAAAND4NKpg2Q477JCmT5+e5s+fXy590qRJpcsLadKkSdpuu+3SCy+8UGlZbNuxY8e09tprl9tHxXXj30uXLq0yDwAAAAAAABqfRhUsO+qoo7JeXzfffHNpWgytOHr06NS7d+/Uvn37LG3WrFnp9ddfr7Tt888/Xy4I9sYbb6QnnngiHX300aVp++67b9YT7cYbbyy3ffx7zTXXTAcddFA9niEAAAAAAAArU6OasywCYhHYGjZsWDZMYufOndNtt92WZs6cmUaNGlW63oABA9KECRNSLpcrTRs8eHC65ZZbsmDX0KFDs4neRowYkTbeeON09tlnl64Xc5L99re/TaeddlqW1wEHHJCeeuqpdMcdd6RLL700C6QBAAAAAACwemhUwbIwZsyYdMEFF6Tbb789zZs3L/Xs2TONHTs27bXXXtVuF8Msjh8/Pg0ZMiRdcskl2ZCKe++9d7r66qvThhtuWG7dCKxFMO2qq65KDz30UNZjLdY788wz6/nsAAAAAAAAWJlKcmW7XwEAAAAAAEARaVRzlgEAAAAAAEBdEiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAQAMwcODAVFJSkmbOnLmqDwUahL/+9a9pxx13TGuvvXb2bJx11lkrNf8tt9wye1Ec9en48eOzbS6++OJ6PbbG5tZbb82uS7yvrorhHKle1BVxD0TdAQAUL8EyAIAaioaUsq+mTZumDTbYIO27777pzjvvTI290a/i+VV81WdDYjRQV8yvVatWaZtttkmnnXZaeu+991IxifPfe++9U7F69tln07HHHpsWLFiQTj311HTRRRelH/7wh6lYCNTVrL6IANfq2hje2I63PsqsrgiEEor9exUAWLZmNVgHAIAyouE+fPvtt+n1119P//u//5uefPLJ9MILL6QRI0bUap+/+93v0i9+8Yu02WabpYZyfhXtsMMO9Z533759SxuzPvnkk/SPf/wj3XDDDemee+5Jzz33XOrUqVO9HwOr3t///veUy+XSmDFj0u67775KjuFf//rXKsmXFVeb+rRXr17ptddey34AQXE54ogjUp8+fdKmm266qg8FAIBVSLAMAGA5Vfx1ejSq77///ukPf/hD+vnPf16rHiHRSNdQGupW5a/vI1BWNv8ISB544IHZNb7kkkvS6NGjV9mxsfLMmTMne2/Xrt0qOwaB2carNvXpmmuumbp27Vpvx0TDtc4662QvAACKm2EYAQBW0H777Zc1skZPmOeff740/T//+U868sgj00YbbZRatGiROnTokAYPHpzmzp1bozl2yg7DFZ9/8pOfZL0eWrZsmXbZZZc0duzYSoGmE044Ifsc72WHNGysc6E1b948DRo0KPs8efLkSnNa7bPPPqlt27bZNenWrVsWUFu8eHGVwy998MEH6eSTT856nMQwmmWHloz9//jHP86WRXlFY/sPfvCDrFdbRZMmTUpHHXVU2mSTTdIaa6yR2rdvn/77v/+7NMhTVuQb+X/33XfpsssuS1tvvXW2/9jmvPPOS998802lYTTDhAkTypVh2SBirBf3VseOHbPhKtu0aZO+973vpTvuuKPKaxn3ZpxPzAEW63//+9/Phjusbni06DkZ918ca5znxhtvnP7rv/4rvfHGG2l5LF26NP3xj39Mu+66a1prrbVS69ats8833nhjtqzi+eeDoltttVWN7+Gy5xH3xs4775wFQCLg9j//8z+l98UTTzyRlUlcg3XXXTcdd9xx6dNPP63RUIhlhzmN3qSxn/z1POigg7KeSVWVf02GTc0PF/fuu+9mr7LlX3E4vuUpmw8//DANHTo0denSJbv28czE59j+7bffrva6VrweX3zxRTr99NOz5ySeu+7du6drr702q/8Kiednr732yoIRca9ut912Wc+vQs/pSy+9lH76059m+cQzsuGGG6addtopm68uAuf54/j1r3+dfY7nv+w1qqo+jXsj7qVw2223FRxettBQfVGvx7WNXq6FXHHFFdk21113Xbn0GDY2rlE8n3Ee66+/fjr00EPLfT9UpybHuzzPVU289dZb6eijj86eidhP9OiMHp7Vqel51qTMwtdff53dG9GLOY4hzmm33XbLnueqRO/jQw45pPR7Np6Hww47LP3zn/8svRcizxDHUDbvfJ1X3fDFtf0ev+mmm7J7PZ6ReDbjeyyenZoqW5/FPRDzN8bzE8dx4oknZt9lhXz22Wdp2LBh2fdhrB/PXfyNEteporLn/dhjj2V1VaxfVX1V6Fzfeeed7P6PeiDONco6vufy9cHf/va3rNdmlGcce9wvCxcuLLjP+FFMDLe73nrrZdc6hmGOHqKFrlt9fK/m1eTvLQBg9aRnGQBAHcg3DOUbZKJhJRrYIj2CKtHAFo1u0YgZwzY+/fTTpY2hyxKN5tHYFA2S0bAfjWF33313aYNgviEwGq+iETz2H8vKDpsY6avLtQ3RWBgBlc033zy7znF+MUzjBRdckDW4jRs3LjVrVv5P3bhuMdRWNMD+6Ec/Sk2aNMkaMcMtt9ySzY0VAbRo7I2Gt48++igbWjOGgTzmmGNK9/PnP/85a/iMhrlYNxrn3nzzzfSnP/0pPfzww9lxbLHFFpXOIwIZTz31VNZTLoIrjzzySPr973+f5ZMPDkWZxTCY0agb90zZAEnZuVbiWHv06JEFISKoF8Ge2F/cHxEs+e1vf1su73//+99ZoGzJkiXZuUevqZdffjm7d2LOvUKi8TTWjSBFNEZ37tw5axy///77s0b0CBZFIKMm4rhiXr+4VhGsjLJ84IEHskbneBb+8pe/lDv/Bx98MP3f//1fOvPMM0vv3ZrewyNHjkyPPvpoOvzww7NrFo3EV199dVb+8VxEI2gEtqIMJ06cmAUYIxgS29RUPN/xnEVZnnLKKenVV1/Nrn8ECeJzbYfyi4bmOP/opRoiSJRX9nlenrKJAEQEUmfMmJH1gI3145mKeiXOIeqnqFtqIhqgI8j6+eefZ9cx/n3fffdl5RT33fXXX19u/fPPPz8LfsT1iPs/nr24zpH++OOPZ2UTwah8oKx3797ZvRHPVdSP8+fPz4I48QxGIDyC53FN4v6IRu/jjz++Rj154z6IY77mmmvS9ttvn90bha5rRbH/ONYI1pxxxhmVlkcQI44/zi3vxRdfzJ61uN8OOOCArJzi/opj3mOPPbL7vl+/fnVyvDV9rpYl6q8ISkU9Evd05BHXPfKNfxeyPOdZkzKL8426aMqUKdm9G3V8BPziPonrO23atOweKCueld/85jfZfRXHGtchfrCQf67jXs1fuyirssP8hmXdO7X9Hj/33HOz445nLa5RPI/xHRPXNIL1yyPqrnhO4occEUiKPOP7IoJo8aONCCjnxTMd5xfBnj333DNb/6uvvsrOIz5HAO9nP/tZpTzuvfferE7J12exn5qKIHwcS/5cH3roofTLX/4yqxsi6BXBriiDOJ74Xo46Ir6H4hqWFccW32sRVIugbQTWYr8RkI7v1Weeeabgd0Bdfq8uz99bAMBqKgcAQI3En06F/nwaN25crqSkJHvNnDkzt2DBgtx6662Xa9KkSe7f//53uXUvv/zybB/7779/ufTjjz8+S3/nnXdK0+JzPs+LL7643PqPPfZYln7ggQeWSx89enSWHu+1Pb+LLrqo0qs2+1sekUc+77K+/fbb3L777pstO/HEE8ud4xFHHJH7+uuvC+7nD3/4Q8FzO+6447J9ljVt2rRcs2bNcuuuu27ulVdeqXRss2fPLv38xhtv5Jo3b57r1KlT7r333iu33j//+c+szA8//PBy6X379s3y3mmnnXKffvppafqXX36Z7Se2mTt3bqXjje2q8tZbb1VKW7x4cXat4lzKHtuSJUtynTt3zvb5yCOPlNvmxhtvLL02Tz75ZGn6Z599lmvbtm1u/fXXz65PWS+//HKudevWuR133DFXE3feeWe2/1g/no2y57/zzjtny/7yl78s83lYlnzZt2nTJvfqq6+Wpi9atCjXvXv37DrHczl+/Phy1+b73/9+tt2UKVPK7a9Dhw7Zq6z8vde0adOsvMv6xS9+kS274oorCpZ/IVU9r4Xyrm3ZPPTQQ1keZ511VsF7Zv78+bmaiOOJ/Xzve9/Lrmle3NMdO3bMlk2YMKE0feLEiVla+/bty93f8fwdfPDB2bJLL720NP1//ud/srQHH3yw4DlHWVUs67L3bE3r01hWSOyrYh0Uz37cN3GfVjR58uRs/R/96Eflzi2e6RYtWpS7z8L777+fa9euXW6TTTYpd/2qsqzjrc1zVZX4PipUb0ZZ5OuHsvdobc6zpmVW8flZuHBh7oADDsi+X8s+o48//ni2/lZbbVWpLq5Ybxcq22U9hyvyPR73/Lvvvlvueu25557ZskmTJuVqIn+94vvmxRdfLLcsnuWy34ll65q4Tn/961/Lpc+bNy+3/fbb51q2bJn74IMPKp13bPPoo4/W6LgqnmvUC2Wvf+QVddOaa66Z22CDDSrVxd26dcutscYauQ8//LA0Pf5uirS1114799prr5XL59RTT83y+dnPflav36u1+XsLAFj9GIYRAGA5xbA98YpfT8evzeMX29EOE7+ej18txy/O49fI8Uvw+DV1WWeffXb2a/b4hfWsWbNqlF/s81e/+lW5tPglf/Reqjg0YV2IX19XfBUanqo+xC/J89c3enLE0E7xS/zomRLXO0Rvi+g1Fj28YpipsqJnWQwFVqhHRfQAufLKKyv1OItfuMdQTrFt9NaqKHqvlV03evPEMcQwdGXFUFfRIyZ+Bb9gwYJK+4lfyMcv7fPiF/THHnts1nsierCt6HxacX6nnXZadi7Ruy4vellEj4b4RXzFXiLRuyqGuqpozJgxWU+PKPsog7K23XbbrHdC9ACJXlTLEuUULr/88qwHSNnzj2sSoldeXYl5A2MIsrzoARjPYlzn6FEWvUvyondh//79s8/Rk62moldVlHdZVQ0XWtdqWzYVn5X8PRPDSC6P6CkW1zQv7ul4dkLZOQXz5R51VwxXmhfP31VXXZVd+0LlXug4Y2jAWH9li2c/yjl6E0XPprKip1KInlJ50asvevBF3VX2PgsxHGj0OIrh88o+n7VVV89V9EiM76PoIRVD5JUVvWkqnkd9nGf0aIueYDHcXWxbVgyDF+cT37HRi65sD9IQ91LFurhivV0bK/I9fuGFF5brXRz3fH6I5OWtH6J3UwzBWFZ8P8ZwiXE98sOZRv0VPfeiJ1zUT2VFj6yoLxYtWpT1BK0oyjn+jqmNePbLXv/IK74Ho0dr9BQrVBdHr7OyQ9ZG2Uda3H8V5w289NJLszrq9ttvLzh0a11+r66Kv7cAgIbFMIwAAMspP/dKDHkVDUPRkHbSSSeVNrrH8FSh0PB20WgWQ+fFMEnRoF1ouL6KYgihGB6wohhyKuacqmtVzT20LNGAnx8+rqwIItZ0CL1o7ItXyM8FFsNCxVBo8Tka4KJRMIJnhfLKN8gVmjsqGjdjaKeKYtjEUNVwY2Xlr3ccY6H5h2Lopxhiavr06dmcWWVFQ3BFcU5h3rx5aXlEA200EkZjdHyuOAfM+++/X/o57rMQQ6NVFAGImJsojrfQeca1LjSnS379uM4VAzYVxfMQ+VQc7ipEQ3vc2/ljrAuFrnM04IeKZRLyDb0RNFiRPGpblstrecsmrnGcYwRVoixiaLwYlrGqeqU6UX/F/VJRvmzLlmN19WAEaCOYEfMdxXxE0fAfjegRhI4h2+JHCDGEXhxnocDwyhRDtkVQJIJjMbxbiIb9GJox6pOyQyrmyyaGcitUNjHcYb5sljUU47LU1XNVtn4odD/E/vN1cn2dZ9SlUW9WNYdUfr66svV61Nuxfm2DPMuyIt/jdVk/FApWxvMSz2+US1yT+Jwvk3ieCl3Djz/+OHsv9N0Yww6uyvq2umsdgfIIFsZQwjFPYwxLWp918cr+ewsAaFgEywAA6jiYlJ+MPuaSKiSfHsGlmqgq0BQNdvHr6YYi39ulovxcajUR84oUaujLi8avuP7R8Fcor+qU7d1SVr4cCvVOKNQDIgwfPrza9b788stKaYWuQb6XWzQU19Tbb7+dNW7GtYhAbcwTE42n0cAXjbfRqF/2F/j5+zE/P1tFhdLz5xnz7CzveVYU+ccv//NzU1U8/wh8RpCxrsS1KJTPspblG+Rroq7KsjaWt2xiHp8ILMSzFfMJxVxKIa57zG0VvShiLrCaiG0KNSTnn638vVbTejACvfH8RbnEPR1zD0VPkphDKXqShC5dumTH/tOf/jStCkcccUR2DaP3S/Sqi/OPOaCi11H8EKBsT9V82fztb39b4edmZT1Xy6ofCtWbdX2e+f1F0KzQjxAK7S/umwikFOqJWBdW5Hu8LuuHZZVL/jjz1zACu/FanjKp6rtxZdW3DeVaV7W/hvj3FgBQPwTLAADqWL6BKIahKmTu3Lnl1ltdRM+t2vZKq6n8NYtfmud/jV5T0Quhusax6I1VcQioqvKPxr1oQF8VRowYkTWMxpB3EYgsK3q75IeHy8sf54cfflhwf4XS8+cZvZd69uy5Qscb+4rAQjSOVgzKxJCRn3zyySq7litDfvjAONeKQ4DWNGC+omUTvbhGjRqVPZ8xPGMMbXr99den3/zmN1kD8G9/+9sa7SfKKhqgKwbM8nVd2TqtbD1YqHdYoXpwt912ywJREeyNoQ8fe+yxbLi9//qv/0obbrhh1ttsZYtgzDHHHJMNaRhBiOjJVGgIxrLnEkP4xVB09amunqv8MVdVPxT6Hqvr88zvb8iQIVn9VhNRb0c9GL1q6yNg1lC+x5dVLvn88+/ROzOGoq2L78aVpey1LjQU8ur6NxMA0PCYswwAoI7l5xeJ+bcqikbM6D0RdtpppzrPO9+IXd+9W1aVmJsnGtNi/qBoKK4Lffr0yd4fffTRGq+bL8P6DLBUVYYx/1iIuWkqqjhcWtn78emnn660LAIlMadZfZ5n5B/5xDBaFUVanGd9PAsNRfR+CbNnz660rKo5deI5rqr8V6RsolE8np+Yayrf++TBBx+s8fZRfxW6X/J1Xdm5laqrB+MejmHYYp6sQj05YijVGO4xgnnXXnttaWBmReq5Fakb80HpCJJFr9aoKyJQGUO21ddzs6zjravnqmz9UCivQuVXm/Os7nyiV2HUecuzvziGCP5GQHVF8m6I3+PLqtPjxxpTp07N5nPLzwm2sr6b6kN11zp+UFDxXOvjexUAIAiWAQDUsZhzJ4bHil4++fmw8mKerZinJ3pI1GS+suW1/vrrZ+8xvNnq6n/+53+yOYNOPPHEgj1zYnjC5el1duqpp2Y9fqJ3TfS6qajs3Cqnn3561osjekBUnOcrxHHVRWNllGOh4Eq+B1+hhsUYXi96v1SUn/fpySefrBQQvPnmmwuexwknnJAFMWKoy8mTJ1daHo30hRo2C4lyCsOGDcvmnMuLz7/4xS+yzzHn3+oqPx9QxWETY765qCOqKv8IylSci642ZROB5UK9U/Jpa6655nKdT5Rj2WE+I2h9ySWXlB5bxXKPZfn5kkI0Vg8dOjQ7zrLlHkG4Qudb6DhrU89F0DKChbWpG+MZ2nrrrbOA3R//+MesN1fFXp3hsMMOy5616LX3yCOPFNxXzHtU9jmo7fHW1XMVvQ7333//7HvpuuuuK7cszrdQsKY251ldmcXcb8cee2wWPI56uFBAY8aMGdkx5kXAN5x99tnl5mjMK5tWm/tlVX6PlxXDkVacey6GKo6AWQxNGoHl/NxdMSzv/fffn/785z8X3NfLL79cp0Pe1pWY7zW+V6MXaf7HIHkXXHBBmj9/frZO/lzr43sVACAYhhEAoB56P0Vj1dFHH5369u2bvUeDWgwr9o9//CObH+Smm26ql7xjGLNoVI7GvBiiKj8XSTQsri5DGEUjcVzLG264IWuwPeCAA7LrG4320YAZvSqi0T4atWuie/fu2b5OOeWU7Bfu0RAcDeNx/WL+nBjKLAJNIYZpjLKNY4geOjEk2zbbbJM1nkdDbATKYri4119/fYXOcb/99kt33XVXOuSQQ7KeC9GQuNdee2WvmGcqhmCM++qoo45K7dq1S6+88krWwyKGi7v77rsr/Zo+gmhxrDFkWvRIi+v20ksvZb2LDjzwwCyIlh8uMN+oGPNGxXxN0WMhjifONxrvo7ExGsLj+ixatGiZ5xJD6EWj+z333JPtIxqhYz/RoynK68c//nHWUL66insx5riL+a5i6MS43yJAGdc8ru99991XaZu43nHvRZlFmUcj8fbbb5/dD8tbNlHG55xzTlY3xL0agYkIAEeZRJnHspqKuYMiULbttttm91Lc93EsMUxa3JdxrHnRM+zcc89Nv//977P1415t3bp1dt5xv+6xxx7l8o71YnjIaPCPHmdRj0agL9aPwNGgQYNK191nn32yY49AUewr33sv5l+rSuyvd+/e2TMa91tci+hxFOdRk+EsBwwYkDXcRzAnguuF7tl4TiNYEXXSQQcdlF2D6H0WdXKUTZRpzDkY12tZQcplHW9dPlcR9Ir7I+Zgi++ouNciaPHAAw9k99zDDz+8wue5rDKLQN2bb76ZLrzwwixAFPdHzNc1Z86c9Nprr2X7jMBV3Bsh5mqMbSMYGz2O4vzbt2+fBVejl1w8G7feemvpvHcxJ2XUqXHsHTp0yK7Vcccdl31uaN/jZUX9HMHaqNvj+Ytzi1f8aOLyyy8vt+6dd96Z9t133yxIGj0y4/6JwHo871Hfx3WP+iHqgIYkziX+ZjnttNOy77s41/gejUBtHG98715xxRUrnE9136sAAJkcAAA1En86Lc+fT5MnT84dfvjhuQ022CDXvHnzXPv27XOnnHJK7v3336+07vHHH5/t+5133ilNi8+RFssK6du3b8HjefTRR3N9+vTJtW7duvSYy+63rs6vLl100euLwU4AAIT8SURBVEVZ3vFeUw8//HDuoIMOym244YbZ9d14441zu+66a+6Xv/xl7rXXXiu3buw7rld1Jk6cmPvRj35Uur9NN900d8ABB+T+9re/VVr3pZdeyspliy22yK2xxhq5ddddN9ejR4/coEGDcv/6179qVE5h9OjR2bJ4L+vDDz/M/fSnP81ttNFGuSZNmlS6Ns8880xun332ybVt2za31lpr5b73ve/lHnjggdyTTz5Z5XV87rnnct///vez9eO13377Zed82mmnZdtMmTKl0jZx38Tyzp0751q0aJFbe+21c126dMn1798/y6+mlixZkrv++utzO++8c65Vq1bZa6eddspdd9112bKaPA81vYfiGtT0OoeqrlmHDh2yV033U9199sorr+QOPPDA7LrHcxnrjB8/vsr9ffnll1ldsdlmm+WaNm1asB6oadm8+uqruSFDhmTXPuqiuF/jvI488sjsPqqp/PX4/PPPc4MHD861a9cu21fXrl1z11xzTW7p0qUFt/vrX/+a3Z9x7nGc3bt3z11yySW5hQsXllvv8ccfzw0cODDXrVu3XJs2bXJrrrlmbptttsmdccYZuZkzZ1ba7+23357bfvvtcy1btqxUd1V1/7z55pu5gw8+OLfeeuvlSkpKyl376p6d8O6775Y+i7GP6sTze95552V1QtzrUeZRTnHN47i//fbbarevyfHW5rlaVl5xfOuss0527eM7ZOzYsdXe88t7ntWVWVi8eHFu5MiRud122y27B+L+iu/NfffdN3f11VfnPvnkk0rH8Pe//z2rp6MOjvU333zz7Hu3Yj0c38exn9hv/lrm64rqznFFv8fzlnV/VVefxXHlr1scRzwnc+bMKbjd/Pnzc5deeml2H0R5xDZbbrllrl+/frmbbropq1tqWp9Vp7pzrW1dHHXA/vvvn32vRVl26tQpd8455+TmzZtXad26/l6t7d9bAMDqpST+I24IAADFKXotTJo0KRvWK3r+QHXDf86cOXNVHwqs9mKoxRhqNXo177333qv6cAAAioI5ywAAYDUXcwcVmt8thimLuaJiSDOBMgAAAIqVOcsAAGA1F/OpxXxs+++/f+rcuXP67rvv0pQpU7K5b2JOm6uuumpVHyIAAACsMoJlAACwmtt4443TsccemyZMmJAN67V48eK0ySabpBNOOCH98pe/TJ06dVrVhwgAAACrjDnLAAAAAAAAKFrmLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARavZqj6AYrfJJpukr776Km2xxRar+lAAAAAAAAAapVmzZqXWrVunDz74YLm31bNsFYtA2bfffruqDwMAAAAAAKDRilhLxFxqQ8+yVSzfo2zatGmr+lAAAAAAAAAapR49etR6Wz3LAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFq1EFyxYvXpzOO++81K5du9SqVavUu3fvNG7cuGVud//996cf//jHqWPHjmnNNddMXbp0SWeffXb6/PPPC67/0EMPpZ122im1bNkybbHFFumiiy5K3333XT2cEQAAAAAAAKtSowqWDRw4MI0YMSIde+yx6ZprrklNmzZN/fr1S08//XS12w0aNCi99tprqX///unaa69NP/zhD9N1112Xdtttt7Rw4cJy6z766KPp8MMPT23btk0jR47MPl9yySXpjDPOqOezAwAAAAAAYGUryeVyudQITJ48OetJNnz48DR06NAsbdGiRWnbbbdNG220UZo4cWKV244fPz7tvffe5dLGjBmTjj/++HTLLbekk08+uTS9R48eqXnz5umFF15IzZo1y9J+9atfpcsuuyy9+uqrqWvXrnV6XpFfmDZtWp3uFwAAAAAAoFj0WIF4S6PpWXbvvfdmPcmil1heDJN40kknpWeffTbNnj27ym0rBsrCEUcckb1Hj7O8CIbFK/LIB8rC4MGDU8QU4xgAAAAAAABYfTSaYNmUKVPSNttsk9q0aVMuvVevXtn71KlTl2t/H3zwQfa+wQYblMsj7LLLLuXWjTnSNt9889LlAAAAAAAArB7+v+5TDdzcuXPTpptuWik9nzZnzpzl2t8VV1yR9VQ76qijyuVRdp8V81nePAp1/6toxowZqVOnTrXeL8D/r70/gdd6zB/H/+u0qCxpGFtJlqJEshUGhTGN7GMZM5pkmYYwNLJkxjaWQWSIMZYkjDHGNjSWyYcaRGloEMlEiiJLZKlQ9//xen//9/mdteV0n8453c/n43F3n673cr33+77fr/f1uhIAAAAAAKt+y7L58+enZs2aVSqPVIz54cvq7rvvTsOHD09nnHFG6tChQ7k6QnX1LE8dAAAAAAAA1H8NpmVZixYt0sKFCyuVL1iwoHT4snjmmWeyfs569eqVLr300kp1hOrqWdY6qlJdh3LVtTgDAAAAAACg9jWYlmWRBjGfJrGsfFn0K7Y0//3vf9NBBx2Uttlmm3TfffelJk3Kxwrz6Rerq2dZ6gAAAAAAAKDhaDDBsq5du6apU6emefPmlSsfP3586fAlib7BfvzjH6f1118/Pfroo2nNNdesso4wceLEcuXRV9l777231DoAAAAAAABoWBpMsOzwww9PixYtSjfffHNpWaRLHDFiROrevXtq27ZtVjZjxow0ZcqUctN+8MEH6Uc/+lFq1KhReuKJJ9J6661XbUrEjh07ZnVEXXk33nhjKikpyZYBAAAAAACAVUeD6bMsAmJHHHFEGjx4cJozZ05q3759GjlyZJo+fXoaPnx46Xh9+/ZNY8eOTblcrrQsWpS9/fbb6ayzzkrPPvts9srbYIMN0r777lv6/yFDhmSpGiO4dtRRR6XXXnstXX/99emEE05InTp1WolrDAAAAAAAQG0ryZWNKtVzCxYsSOedd16666670ty5c1OXLl3SxRdfnHr16lU6Ts+ePSsFy6JVWHV69OiRxowZU67soYceShdddFF64403slZo/fr1S+eff35q2rRpwdcpWrOFyZMnF3zeAAAAAAAAxaDzCsRbGlSwbFUkWAYAAAAAAFB38ZYG02cZAAAAAAAAFJpgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKVoMKli1cuDCdffbZqXXr1qlFixape/fuafTo0Uud7s0330wDBw5Mu+22W2revHkqKSlJ06dPr3LcTTfdNBte8XXiiSfWwhoBAAAAAABQl5qkBqRfv37pvvvuS6effnrq0KFDuv3221Pv3r3T008/nXbfffdqp3v++efTddddl7beeuvUqVOnNGnSpCXW07Vr13TGGWeUK9tyyy0Lth4AAAAAAADUDw0mWDZhwoR0zz33pCFDhqRBgwZlZX379k3bbLNNOuuss9K4ceOqnfaggw5Kn332WVprrbXSVVddtdRgWZs2bVKfPn0Kvg4AAAAAAADULw0mDWO0KGvcuHHq379/aVmkVDz++OOzlmMzZ86sdtp11lknC5Qtj2+++SZ99dVXK7TMAAAAAAAA1G8NJlj28ssvZ6kQW7ZsWa68W7du2fvSWostj6eeeiqtvvrqac0118z6MLv22msLNm8AAAAAAADqjwaThnH27Nlpo402qlSeL5s1a1ZB6unSpUvW/9lWW22VPvnkk6xftOgjLeZ/xRVX1Hi+nTt3rrJ82rRpaYsttliBJQYAAAAAAGCVD5bNnz8/NWvWrFJ5pGLMDy+Ehx9+uNz/jz322LTffvuloUOHplNPPTVtvPHGBakHAAAAAACAutdggmUtWrRICxcurFS+YMGC0uG1oaSkJA0cODA98cQTacyYMalPnz41ms/kyZOXq8UZAAAAAAAAta/B9FkW6RYjFWNF+bLWrVvXWt1t27bN3j/99NNaqwMAAAAAAICVr8EEy7p27ZqmTp2a5s2bV658/PjxpcNry9tvv529r7feerVWBwAAAAAAAA08WBZpEiu2vvrkk0/S73//+3TaaaelCRMm1Hjehx9+eFq0aFG6+eaby9U3YsSI1L1799LWXzNmzEhTpkypUR2x7FFHWd9++226/PLL02qrrZb22muvGi8/AAAAAAAAq3ifZQMGDMgCYq+++mppMGuXXXZJ06ZNy/7/5z//OT333HNpp512Wu55R0DsiCOOSIMHD05z5sxJ7du3TyNHjkzTp09Pw4cPLx2vb9++aezYsSmXy5WWff7552nYsGHZ31F/uP7661OrVq2y1ymnnJKVPfzww+mSSy7JAnObbbZZFjy7++6702uvvZYuu+yytOGGG67gFgIAAAAAAGCVDZZFIOrQQw8t/f/f//73LFB24403ph122CELdl111VXpnnvuqdH877jjjnTeeeelO++8M82dOzd16dIljRo1Ku25555LnC7GjenKuvrqq7P3du3alQbLtt1227T11lunu+66K3300UdZa7JI73jvvfdmyw4AAAAAAMCqpSRXtgnWClp77bXTkCFDUv/+/bP//+IXv0gvvfRSmjx5cvb/Sy+9NEuj+O677xaqygavc+fO2Xt+GwEAAAAAALDy4i0F7bOsYn9fzzzzTOrZs2fp/1u3bp2lUAQAAAAAAID6oKDBskhpmO8T7JVXXkkzZswoFyybPXt2atmyZSGrBAAAAAAAgPrRZ9lRRx2VLrjggvTxxx9nzdxatWqVevXqVTp80qRJaYsttihklQAAAAAAAFA/WpadffbZ6fjjj08vvPBCaty4cbrjjjtKW5J99tln6ZFHHkl77713IasEAAAAAACAGivJ5XK5tBIsXrw4ffHFF2n11VdPTZs2XRlVrvIdzgEAAAAAAJBWKN5S0DSMS9KoUaO09tprr6zqAAAAAAAAYOWmYQzvvfdelopx4403Tquttlp66qmnsvI5c+ak4447Lr344ouFrhIAAAAAAABqpKAty959993UvXv39PXXX6dddtklzZ49u3TY+uuvnwXKIoC28847F7JaAAAAAAAAqPtg2e9+97vs/bXXXsv6JosAWVm9e/dOo0aNKmSVAAAAAAAAUD/SMI4ePTqddNJJaZNNNkklJSWVhrdr1y69//77hawSAAAAAAAA6kewbO7cualNmzbVDl+8eHH65ptvClklAAAAAAAA1I9gWevWrdPUqVOrHR59lm222WaFrBIAAAAAAADqR7DsgAMOSMOHD0/vvvtupWFjxoxJf/3rX9MhhxxSyCoBAAAAAACgxkpyuVwuFcicOXPSjjvumObPn5969+6d/vKXv6Qjjzwy+/8///nPrC+zl156Ka299tqFqrLB69y5c/Y+efLkul4UAAAAAACAoou3FLRl2frrr5+ef/75tMcee6S77747RRzub3/7Wxo1alTab7/90jPPPCNQBgAAAAAAQL3RpNAz3HjjjdODDz6Y5s2bl/Vftnjx4tS+ffu0zjrrFLoqAAAAAAAAqF/BsryWLVumnXbaqbZmDwAAAAAAACusoGkYGzVqlNq0aZNefvnlKodHH2aNGzcuZJUAAAAAAABQP4Jl4cMPP0w9evRIjz32WKFnDQAAAAAAAPU7WPaHP/whbb755unggw9Ot956a6FnDwAAAAAAAPU3WBZpGJ999tnUs2fP9Ktf/Sqdd955ha4CAAAAAAAA6mewLKy55prp0UcfTX369EmXXnppOuaYY9J3331XG1UBAAAAAABAjTWptRk3aZJGjhyZNt544yw146xZs9Khhx5aW9UBAAAAAABA/QmW5UXLsnbt2qWTTz45Pffcc7VdHQAAAAAAANRNGsYIikUKxor69++fHnzwwVRSUlLI6gAAAAAAAKD+tCx75513qh12wAEHpJkzZ6YvvviikFUCAAAAAABA/WhZdscdd6Qnnnii2uHz5s1LY8eOLWSVAAAAAAAAUD+CZf369Uu9e/dO5557bpXDo8+yY489tpBVAgAAAAAAQP0IloUOHTqkyy+/PPXp0yd9++23hZ49AAAAAAAA1M8+y8L555+f/ve//6ULL7wwzZ49Oz344IOpZcuWha4GAAAAAAAA6l/LsnzA7LbbbkvPPPNM2n333dN7771XG9UAAAAAAABA/QuW5fsve+SRR9L06dPTrrvuml555ZXaqgoAAAAAAADqV7As9OrVK40dOzYtWrQo7bHHHunJJ5+szeoAAAAAAACg/gTLwvbbb5+ef/751KZNmzRy5Mjarg4AAAAAAACWWZNUQBdccEHq0qVLpfJ27dqlcePGpRNPPDF9+OGHhawSAAAAAAAAaqwkl8vlaj45K6pz587Z++TJk+t6UQAAAAAAAIou3lLraRgBAAAAAACgKNIwbr755ksdp6SkJE2bNq2Q1QIAAAAAAEDdB8s22WSTLBhW1nfffZfefvvtNHv27NS+ffvUpk2bQlYJAAAAAAAA9SNYNmbMmGqH3XXXXenMM89MN910UyGrBAAAAAAAgBpbaX2W9enTJx144IFp0KBBK6tKAAAAAAAAqB/BsrDTTjulf//73yuzSgAAAAAAAKgfwbK33norLV68uMbTL1y4MJ199tmpdevWqUWLFql79+5p9OjRS53uzTffTAMHDky77bZbat68edav2vTp06sd/+GHH0477LBDNm70w3bBBRdkfa8BAAAAAACwailon2UzZsyosvzTTz9NTz75ZLr++uvTD3/4wxrPv1+/fum+++5Lp59+eurQoUO6/fbbU+/evdPTTz+ddt9992qne/7559N1112Xtt5669SpU6c0adKkasd97LHH0iGHHJJ69uyZhg0bll599dV0ySWXpDlz5qQbb7yxxssOAAAAAABA/VOSy+VyhZpZo0aNslZbVYlqIlj1yCOPpM0222y55z1hwoSsJdmQIUNK+z1bsGBB2mabbdL666+fxo0bV+20Eaxr2rRpWmuttdJVV12VzjzzzPTOO++kTTfdtNK4nTt3zsadOHFiatLk/8USf/e736XLLrssvf7666ljx46pkKK+MHny5ILOFwAAAAAAoFh0XoF4S0Fblp1//vmVgmXx/3XWWSdttdVWWauy6oJpSxMtyho3bpz69+9fWhZpEo8//vh07rnnppkzZ6a2bdtWOW3UvywiGBavG264oTRQFgYMGJAuvfTSbBkicAYAAAAAAMCqoaDBsgsvvDDVlpdffjltueWWqWXLluXKu3Xrlr1HasXqgmXLU0fYaaedypVHH2kbb7xx6XAAAAAAAABWDQUNltWm2bNnp4022qhSeb5s1qxZBamj7Dwr1rMideSb/1U0bdq0tMUWW9R4vgAAAAAAANRco1RgX3/9dfr973+ftttuu7TGGmtkr/g7yr766qsaz3f+/PmpWbNmlcojFWN++IrKz6O6egpRBwAAAAAAAKtoy7KPPvoo9ezZM73xxhupVatWaeutty5tPRUpGu+55540duzYtN566y33vFu0aJEWLlxYqXzBggWlw1dUfh7V1bMidVTXoVx1Lc4AAAAAAABoYC3LzjrrrDRlypQ0dOjQ9OGHH6YXX3wxe8XfV199dXrzzTezcWoi0iDm0ySWlS+LfsVWVD79YnX1FKIOAAAAAAAAVtFg2ahRo1K/fv3S6aefnpo2bVpaHn8PHDgwHXPMMemRRx6p0by7du2apk6dmubNm1eufPz48aXDV1R+HhMnTixXHn2VvffeewWpAwAAAAAAgFU0WBZ9enXr1q3a4TEsnzZxeR1++OFp0aJF6eabby4ti3SJI0aMSN27d09t27bNymbMmJG1bquJSInYsWPHrI6oK+/GG29MJSUl2TIAAAAAAACw6ihon2XR8ur111+vdnj0ZVbT1lkREDviiCPS4MGD05w5c1L79u3TyJEj0/Tp09Pw4cNLx+vbt2/WL1oulyst+/zzz9OwYcOyv5977rns/frrr8/6VYvXKaecUjrukCFD0kEHHZR+9KMfpaOOOiq99tpr2bgnnHBC6tSpU42WHQAAAAAAgPqpJFc2qrSCxowZkwWaIoh16KGHlht2//33p2OPPTZLw9ijR48azT9apZ133nnprrvuSnPnzk1dunRJF198cerVq1fpOD179qwULIuA2mabbVblPNu1a5cNL+uhhx5KF110URbcW2+99bLUkueff3651JKFEq3ZwuTJkws+bwAAAAAAgGLQeQXiLSsULDvuuOMqlb300kvp1VdfTVtuuWXaeuuts7JobRb9jW277bZpxx13LNcSrNgJlgEAAAAAADTQYFmjRsvf5Vn0/VW2P7BiJ1gGAAAAAABQd/GWFeqzbPHixSsyOQAAAAAAANSp5W8aBgAAAAAAAKuIFWpZtizGjx+fZs6cmdq0aZO6d+9eo9SNAAAAAAAA0KCCZe+//37af//90yuvvFJa1qlTp/TII4+kzTffvLaqBQAAAAAAgGVWa828fv3rX6eNNtooTZ06Nc2fPz+98MILadGiRWnAgAG1VSUAAAAAAACs3GDZ448/XmV5BMcuvfTS1L59+9SsWbPUrVu3LIAW5QAAAAAAALBKBMsOOuigdMwxx6RPP/20XHn0Ufbss8+WK3vuuedS69atV7RKAAAAAAAAqB/Bsmgp9tprr2X9kf3tb38rLf/tb3+bBg4cmPbYY4909NFHp2233Tbdc889WTkAAAAAAACsEsGyHXbYIU2YMCELjB177LFZS7NZs2algw8+OAukde7cOX322Wdpl112SWPGjMkCZwAAAAAAAFAflORyuVyhZvbWW2+lX/7yl2nSpEnp8ssvTyeeeGKhZr3KimBimDx5cl0vCgAAAAAAQNHFW1a4ZVlZHTp0yFqPXXnllWnw4MGpR48eWQANAAAAAAAA6qOCBcu++eabNG/evOzv/v37Z5G7ddddN2233XbpD3/4Q1q0aFGhqgIAAAAAAID6ESz79NNP06GHHprWXHPN9L3vfS916dIlTZw4MbVu3To98MAD6c4770zDhg1LO+64Y3rppZcKs9QAAAAAAABQH4Jlp59+eho3bly66aabsuBYBM0OO+yw9O2332bD4+833ngjC5btsssu6cwzzyzEcgMAAAAAAEDdB8see+yxdM4556Rjjz02HXzwwenWW29NM2fOTK+//nrpOGuvvXYaPnx4evzxx9NDDz20olUCAAAAAABA/QiWNW3aNM2fP7/0/wsWLEglJSWpSZMmlcbde++906uvvrqiVQIAAAAAAEBBVI5oLafor+zyyy9P3333XdZn2Z/+9KfUsWPH1KlTpyrHb968+YpWCQAAAAAAAPUjWDZkyJDUqFGjrM+yr7/+Ou22227p2muvzcoAAAAAAACgPivJ5XK5ul6IYta5c+fsffLkyXW9KAAAAAAAAEUXb9H8CwAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFoNLli2cOHCdPbZZ6fWrVunFi1apO7du6fRo0cv07Tvv/9+OvLII1OrVq1Sy5Yt08EHH5zefvvtSuOVlJRU+br88strYY0AAAAAAACoK01SA9OvX7903333pdNPPz116NAh3X777al3797p6aefTrvvvnu103355Zdpr732Sp9//nk699xzU9OmTdM111yTevTokSZNmpTWXXfdcuPvu+++qW/fvuXKtt9++1pbLwAAAAAAAFa+BhUsmzBhQrrnnnvSkCFD0qBBg7KyCGhts8026ayzzkrjxo2rdto//elP6a233srmsfPOO2dl++23Xzbt1VdfnS677LJy42+55ZapT58+tbxGAAAAAAAA1KUGlYYxWpQ1btw49e/fv7SsefPm6fjjj0/PP/98mjlz5hKnjSBZPlAWOnbsmPbZZ5907733VjnN/Pnz04IFCwq8FgAAAAAAANQXDSpY9vLLL2ctvqK/sbK6deuWvUc6xaosXrw4vfLKK2mnnXaqNCymnTZtWvriiy/KlUd6xzXWWCPrF23rrbdOd999d0HXBQAAAAAAgLrXoNIwzp49O2200UaVyvNls2bNqnK6Tz/9NC1cuHCp02611VbZ37vttls68sgj02abbZaV33DDDenoo4/O+js76aSTarTsnTt3rrI8AnVbbLFFjeYJAAAAAABAEQXLIi1is2bNKpVHKsb88OqmC8s67XPPPVdunOOOOy7tuOOO6dxzz039+vXLWpsBAAAAAADQ8DWoYFkEqaKFWEX5fsWqC2Lly2sybVhttdXSKaeckk488cT0n//8J+2+++7LveyTJ09erhZnAAAAAAAA1L4G1WdZpEyMVIwV5ctat25d5XTrrLNO1qqsJtPmtW3btjSlIwAAAAAAAKuGBhUs69q1a5o6dWqaN29eufLx48eXDq9Ko0aN0rbbbpsmTpxYaVhMu/nmm6e11lpriXW//fbb2ft66623AmsAAAAAAABAfdKggmWHH354WrRoUbr55ptLyyK14ogRI1L37t1LW3/NmDEjTZkypdK0L774YrmA2ZtvvpmeeuqpdMQRR5SWffTRR5Xq/eKLL9If//jH9P3vfz/ruwwAAAAAAIBVQ4PqsywCYhHYGjx4cJozZ05q3759GjlyZJo+fXoaPnx46Xh9+/ZNY8eOTblcrrRswIAB6ZZbbkn7779/GjRoUGratGkaOnRo2mCDDdIZZ5xROt4NN9yQHnrooXTggQemTTbZJEvTeNttt2UBuDvvvDPrvwwAAAAAAIBVQ4MKloU77rgjnXfeeVngau7cualLly5p1KhRac8991zidJFmccyYMWngwIHpkksuSYsXL049e/ZM11xzTbnUij/4wQ/SuHHj0q233po++eSTtMYaa6Ru3bplAbO99957JawhAAAAAAAAK0tJrmzzK1a6zp07Z++TJ0+u60UBAAAAAAAounhLg+qzDAAAAAAAAApJsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKLV4IJlCxcuTGeffXZq3bp1atGiRerevXsaPXr0Mk37/vvvpyOPPDK1atUqtWzZMh188MHp7bffrnLc4cOHp06dOqXmzZunDh06pGHDhhV4TQAAAAAAAKhrDS5Y1q9fvzR06NB09NFHp2uvvTY1btw49e7dOz377LNLnO7LL79Me+21Vxo7dmw699xz00UXXZRefvnl1KNHj/TJJ5+UG/emm25KJ5xwQurcuXMWJNt1113Tr3/963TFFVfU8toBAAAAAACwMpXkcrlcaiAmTJiQtSQbMmRIGjRoUFa2YMGCtM0226T1118/jRs3rtppr7zyyqxFWsxj5513zsqmTJmSTXvWWWelyy67LCubP39+atu2bdpll13SqFGjSqfv06dPeuihh9LMmTPT9773vYKtUwTkwuTJkws2TwAAAAAAgGLSeQXiLQ2qZdl9992XtSTr379/aVmkSTz++OPT888/nwWyljRtBMnygbLQsWPHtM8++6R77723tOzpp5/OWpoNGDCg3PQnn3xy+uqrr9I///nPgq8XAAAAAAAAdaNJakAibeKWW26Z9TdWVrdu3bL3SZMmZa3CKlq8eHF65ZVX0nHHHVdpWEz7r3/9K33xxRdprbXWyuoIO+20U7nxdtxxx9SoUaNseLQyq2lEs6Jo3da0adNqhwMAAAAAALBk06ZNy+ItNdGgWpbNnj07bbTRRpXK82WzZs2qcrpPP/00LVy4cJmmjTqi9VqkdSxrtdVWS+uuu261ddRUSUlJjXceDfNkjRfFxX4vPvZ58bHPi5P9Xnzs8+Jkvxcf+7z42OfFyX4vPvZ5cbLfi0vTpk3TGmusseq3LIv+xJo1a1apPFIx5odXN11YlmnjPQJjVYlxq6tjafRJRtBHXXGy34uPfV587PPiZL8XH/u8ONnvxcc+Lz72eXGy34uPfV6c7HdWyZZlLVq0yFqIVbRgwYLS4dVNF5Zl2nj/5ptvqpxPjFtdHQAAAAAAADQ8DSpYFikTI01iRfmy1q1bVzndOuusk7UqW5Zpo45FixalOXPmlBsvAmiffPJJtXUAAAAAAADQ8DSoYFnXrl3T1KlT07x588qVjx8/vnR4VRo1apS23XbbNHHixErDYtrNN988rbXWWuXmUXHc+P/ixYurrQMAAAAAAICGp0EFyw4//PCs1dfNN99cWhapFUeMGJG6d++e2rZtm5XNmDEjTZkypdK0L774Yrkg2JtvvpmeeuqpdMQRR5SW7b333llLtBtvvLHc9PH/1VdfPe2///61uIYAAAAAAACsTE1SAxIBsQhsDR48OEuT2L59+zRy5Mg0ffr0NHz48NLx+vbtm8aOHZtyuVxp2YABA9Itt9ySBbsGDRqUmjZtmoYOHZo22GCDdMYZZ5SOF32SXXzxxenkk0/O6urVq1d65pln0l133ZUuvfTSLJAGAAAAAADAqqEkVzai1AAsWLAgnXfeeVnwau7cualLly5ZcCuCWnk9e/asFCwL7733Xho4cGD617/+laVUjPGuueaaLOhWUQTWrr766vTOO+9kLdZOOeWUdNppp6WSkpKVsp4AAAAAAADUvgYXLAMAAAAAAICi7LMMAAAAAAAACkmwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAasWFF16YSkpK0vTp0+t6UQAAAKolWAYAANAAjBkzJgs8xeuYY46pcpxcLpc222yzbJwmTZqslOV66KGHsqAYAABAQyVYBgAA0IA0b9483XfffWnevHmVho0ePTprxRXjrCwRLLvoootWWn0AAACFJlgGAADQgPzkJz9JX3/9dfrrX/9aaditt96aNtlkk7TzzjvXybIBAAA0RIJlAAAADUinTp3SbrvtloYPH16u/OOPP07/+Mc/0rHHHpsaNar8U2/KlCnpqKOOShtssEFq1qxZ2nzzzdOgQYMqtVC7/fbbszSOTz/9dPrjH/+Yttxyy2z8SO84dOjQcuNuuummaeTIkdnf+RSR8Yp5lPXNN9+k888/P7Vr1y6bV6zDX/7yl0rL+MILL6QDDzwwtW7dOhtvo402SnvttVfWeg0AAKC2rJwk9gAAABTMCSeckI477rj06quvpm233TYru+OOO9J3332XlUf/ZmVNmjQp7bnnntnwAQMGZIGyZ599Nl199dXp//7v/9Jzzz2XVl999XLTnHvuuVkgLYJva665Zjb/M844IwtkRdAtRDAtAmjPPPNMuvPOO0unjWBeWdHHWgTRfv3rX2eBvD/96U+pT58+aYsttki77LJLNs7UqVPTPvvsk9Zff/1sGaOeCAD+5z//Sc8//3w65JBDam17AgAAxU2wDAAAoIE58sgj02mnnZa1LouAVYi/f/jDH2ZpGCuKINWXX36ZBbV+8IMfZGURkOrYsWO64IILsoDX7373u3LTRKrHl156KWvhFSIIFy3DrrvuutJgWQSwotVXzDeCX9X53ve+l0aNGlXa4u3www/PAmUxr3yw7PHHH8/qvOeee1L37t0Ltq0AAACWRhpGAIA61K9fv6y1xfTp0+t6UaBein65tt9++7TWWmtl58rpp5++UuuPNIPxqm/WWGONLGB11113ZSkOx40bl15//fWsxVlFH330URbM2nfffUsDZXmRhjHmdf/991ea7pRTTikNlOXr3HXXXbMWYMtr4MCB5VJDtm3bNm211Vbl5tWqVavsPYJv8+fPT3VxfY0WeTHNhRdeuML1r0ryqTkrptdclRTDOrJkca2IYyCuHQBA8REsAwBYirL98MSrcePG6fvf/37ae++90913351WlZt8cdP6N7/5Tdphhx3SOuusk5o2bZq9RwuPuKEeqdBqW9ygrri9W7RokfWZdPLJJ6f33nsvFZNY/549e6ZiFan3jj766PTFF1+kk046KWsB9eMf/zgVi6UF6o4//vj0ySefZMGlW2+9NbsuHXzwwZXGe/vtt7P3fLrGsiL1YrTwmjZtWqVhkaqxonXXXTerc3kty7wi+Bf79/LLL89aokXayGjt9tprry3xelEx5eSqdDO8oS3v0tRknxWKQCih2D9XAYDqScMIALCM4kZ9+Pbbb9OUKVPSP/7xj/T000+niRMnZinMauIPf/hDOuecc1KbNm1SXcnlcun3v/999lq8eHEWLPvpT3+aBcoiSPHKK6+kYcOGZX0bXX/99VnQqrb16NGj9GZW9Fn0r3/9K+vj6N57700vvPBCdnOfVd8///nP7PiMvrIq9oG1skR/XvVVBLK32WabLJVh9EnWv3//tNpqqxVs/vFgQG3PK/ZvXiz7Y489lqV+fOKJJ7I+1a655pp02WWXpSFDhmT9pdX29bVbt27pjTfeyAKPFJdDDz00Swm60UYb1fWiAABQBwTLAACWUcWn0eMmeqQ1i/6Coj+gmqRqi5tydX1jLoJksW6RFi1S3lVM0xbmzJmTrefnn3++UpYpAmVlt3cEKPfbb79sm19yySVpxIgRK2U5qFuzZs3K3lu3bl1ny1DfA7PRuixSHOb/XlKrrsmTJ1caFukOo+VZ+/btV6ilRiFFwD5eYe7cuVmg9Nxzz02nnnrqcgUDa3J9jZZ20Y8bxWfttdfOXgAAFCdpGAEAamifffbJbqpGy4gXX3yxtDzSFR522GFp/fXXz/r7adeuXRowYECaPXv2MvWpUzbtVvwdqcmilUPz5s3TTjvtlEaNGlUpsHTsscdmf8d72RSGS+urJ26SR/Ap36KjqkBZiHWJ1h1nnXVWqguREjJazYQJEyaUGxYBvr322ivr7yi2UadOnbJ1WrhwYbXplz744IOsb6docRItXsqmr4z5R8u6GBb7L262/+hHP8patVU0fvz4dPjhh6cNN9ww24YRcPzVr35VGuQpK+qN+r/77rtsW3bo0CGbf0xz9tlnZ/1OVUyrGcaOHVtun5YNIsZ4caxFMCTSVbZs2TLbh9GPVXXiWI31iT7AYvwf/vCHWbrDJaVHi5aUcTzGssZ6brDBBunnP/95evPNN9PyiJaLf/7zn9POO++c1lxzzawPrPj7xhtvzIZVXP98UHSzzTZb5mO67HrEsbHjjjtmAZAIuEWa0fxx8dRTT2X7JLZBpPz7xS9+UWV6wapSIZZNexqtS2M++e25//77Zy2Tqtv/y5JGNZ8u7t13381e+XWP47yiaAmz3XbbZcd/9O2W3zdff/116Tjrrbde2mOPPdLjjz+epbWMvsJi28c0sU+//PLLKuddlfvuuy97j8B59GkW58mdd95Z2pKrbEuxsuK6FWkVIxgRx2qkhJwxY0a58aMVaYjWrD/72c+y7R7nVlyn4vyIhxIicB5i2EUXXZT9Hcte9hyp7voax0YcS2HkyJHlpqm47cueZ3Gdj+M+v3wVXXHFFdk00fK2rEgbG9sozs841yPt5EEHHVTu82JJlmV5l+e8Whb/+9//0hFHHJGdEzGfCFRGC88lWdb1XJZ9FuLYjWOpa9eu2TLEOkVfeXE+VydaHx944IGln7txXEdK0ieffLL0WMgf47EMZevOX/OWlM64pp/rN910U3asx2dTnJvxObY8D52UvZ7FMRDneJw/sRzHHXdc9llWlU8//TQNHjw4+zyM8eO8i+8ssZ0qKrvecY2Ia1WMvyxB8Py6vvPOO9nxv/XWW2frGvs6Pufy5/ff//73rNVm7M9Y9jhequuXMB6KiXSs0bo9tnWkYY4WolVtt9r4XM1blu9fAMCqRcsyAIAVkL8RlL8BEzdS4oZalEcQJW6oxU22uGkZaRsjrVj+5ufSxE3yuLkUNyDjRn7c/Prb3/5WegMwf+MvblbFTe+YfwyLG4x5Ub4kEYyIm0xxc71z585LXaYmTZrUm20d4mZhrMPGG2+cbfdY30jTeN5552U33EaPHl1pmWM7RoAhbsD+5Cc/SY0aNcpuYoZbbrkl6xsrAmhxszduvEWruki1GWkgjzzyyNL53HbbbdmNz7gxF+PGzbm33nor6zvqkUceyZZjk002qbQesa2feeaZrKVcBFceffTRdOWVV2b15INDsQ8j7Wfc1I1jqGx/RWX7Wolljf0WQYgI6kWwJ+YXx0sEsi6++OJydf/73//OAmWLFi3K1j1aTb366qvZsRR98FUlbp7GuBGkiJvR0QIpbo4/8MAD2U30CBblWwEtTSxX9PMX2yqClbEvH3zwweymc5wbf/nLX8qtf/TF9d///jeddtpppcfy0o7pvEgdGgHgQw45JNtmcZM4UvrF/o/zJG6CRmAr9uG4ceOyAGMEQ2KaZRXne5x3sS9PPPHE9Prrr2fbP4IE8XdNU/nFjeZY/2jNGU4//fTSm7dxw3xZ9k2c12UDURHQiUBqbP84piL48P7772eB0DjeqwuUVyeCrJ999lm2HeMYinMtWn/FeRf7NlJElr3WRauw2B5x/Me5F9s5brDH+RM3tCMYFUHu2OexXHFsRBAwAp0RfIyAX5xzV111VRY8j20S48ZN72OOOWaZWvbGcRDLfO2112bzjmMjr+x1s6KYf6xbBGtiPSqKfRLLH+uWF6kk41yL461Xr17ZforjK5Z59913z4773r17F2R5l/W8Wpq4fsVxEdeROKajjgieRb3x/6osz3ouyz6L9Y1r0csvv5xdV+IaHwG/SMsZ2zdaR8ZxUlacK9FCOo6rWNbYDvHAQv68jmM1v+1iX5VN8xuWduzU9HM9Hi6J5Y5zM7ZRXCvjMya2aQTrl0dcu+IaFg9yRCAp6ozPiwiixUMbcX6U/e4Q6xfXiwiSx/hfffVVth7xdwTwfvnLX1YZCI9rSv56FvNZVtGvaSxLfl0ffvjh9Nvf/jY7tyPoFcGu2AexPHGtuOGGG7LPodiGZcWyxedaBNUiaBuBtZhvXL/ic/W5556r8jOgkJ+ry/P9CwBYxeQAAFii+MpU1dem0aNH50pKSrLX9OnTc1988UVunXXWyTVq1Cj373//u9y4l19+eTaPfffdt1z5Mccck5W/8847pWXxd77OCy+8sNz4jz/+eFa+3377lSsfMWJEVh7vy2OvvfbKprv11ltz9cEFF1yQLU+8l/Xtt9/m9t5772zYcccdV26dDz300NzXX39d5Xz++Mc/livPb9df/OIX2TzLmjx5cq5Jkya5733ve7nXXnut0rLNnDmz9O8333wz17Rp09wWW2yRe++998qN9+STT2bHwCGHHFKuvEePHlndO+ywQ+6TTz4pLf/yyy+z+cQ0s2fPrrS8MV11/ve//1UqW7hwYbatYl3KLtuiRYty7du3z+b56KOPlpvmxhtvLN02Tz/9dGn5p59+mmvVqlVu3XXXzbZPWa+++mpujTXWyG2//fa5ZXH33Xdn84/x41wpu/477rhjNuwvf/nLUs+Ppcnv+5YtW+Zef/310vIFCxbktt5662w7x3k6ZsyYctvmhz/8YTbdyy+/XG5+7dq1y15l5Y+9xo0bZ/u7rHPOOScbdsUVV1S5/6tS3flbse7YNzHexRdfvNR9E+tZtr6HH344+3+HDh1y3//+97PjN+b9m9/8JjdnzpzcvHnzKi1P2WMhL/Z5DPvBD36QbdP89hswYEC2PfLHUX5d4nyN/7du3brc8R3nX+yHGHbppZeWrt+WW26Zla222mrZPuzSpUu2LeMcj3WOuiru66qWc2nX1xhWlfw2LnsNinM/tmccpxVNmDAhG/8nP/lJuXWLc7pZs2bljrPw/vvvZ9tiww03LN1+S7K05a3JeVWd+Hyq6rr50EMPVdqvNV3PZd1nFc+f+fPn53r16pV93pY9R5944ols/M0226zStbjidbuqfbu083BFPtfbtm2be/fdd8ttrz322CMbNn78+NyyyG+vOF9feumlcsNOP/30cp+JZa81sZ3++te/liufO3dubrvttss1b94898EHH1Ra75jmscceW6blqriucS0pu/2jrrg2rb766tn1puK1uFOnTtk5/uGHH5aWx/eoKFtrrbVyb7zxRrl6TjrppKyeX/7yl7X6uVqT718AwKpDsAwAYCnyN07iplW8zj333Nxhhx1WemN44MCB2Xh33XVX9v+f/exnleYRN8k23XTTbHjZm2dLupkbN5++++67SvPaZJNNsptQhQiWxQ2rmK6qG2SxHPl1zr+uueaaXG3K3xiMG1n5Ok855ZTsBn+Ux023adOmZeN27do1CwjFTbmKYrvFNtp5553Lledvwpe9QZcX9cTwoUOHLnU58zcpR40aVeXwCJTF8VE2AJG/qRdB1orOP//8bNgjjzyyXMGy6tx///3ZtCNHjiwte+aZZ7KyCJBWFAGIfJCi7E3suGkeZddff/0St0PFYE1V8sGouLldUQScqlq2FQmW/e53v6s07KKLLioNllZ0++23Z8PifVmDZUcffXSl+bz99tvZsLhGFDpYVtby7pt8sGzw4MG5FRHLE/OpGDgoux79+vUrLTvhhBOysptuuqnS+BF0jpvZEejIi+BddcdJRSsrWFY2kFQxkH7yySdn5f/4xz8qBZcGDRq0xH33z3/+c6nruLTlrcl5VZUIKuWDTlV97uSP37LHaE3Wc0n77OOPP86umzvttFOV85s0aVI27ZlnnlladsABB2RlDzzwwFLXsSbBshX5XL/lllsqTXPbbbdlw4YNG5ZbFvntVTEgFj777LPc2muvnQW/8gHJ/DY6/PDDq5xffp/dcMMNlda74gMeyyK/rlU9cHPsscdmw84777xKwyIQFcPKBlkvueSSaq9RESiPIFrZda2Nz9WafP8CAFYd0jACACyjfF8rkeIq0gBFOqHjjz8+9enTpzQdVagqnV2kAoxUeZEWKdJLVZWer6JIGRTp0SqKFFPRx1Rti2XNr3NepC7Kp4SrTqTRyqePKyumW9YUepGmK14h3xdYpIWKVGjxd/RpE+n5Iq1bVXWFSO9WVd9RkXIrUjtVFGkTQ3XpxsrKb/9Yxqr6H4rUT5FiaurUqVmfWWVFvycVxTqFuXPnpuURfT5FeqpIfRd/V+wDJtLZ5cVxFyI1WkWRijL6JorlrWo9Y1tX1adLfvzYztFXzZLE+RH1VEx3FSItWhzr+WUshKq2c/RbFirukxB9b4VIY7giddR0Xy6v5d03sY1jHS+//PJsX0RqvEi9WN11ZkniehbHS0X5fVt2Py7puhh9EUUK1UjHGP0RRT9JkWYu0g5GyrZIeRcp9GI5I2VoXYqUbZE+LtL4RXq3ECnmIjVjXE/KplTM75tI5VbVvol0h/l9s7RUjEtTqPOq7PWhquMh5p+/JtfWesa1NK6b1fUhle+vrux1Pa7bMX6kF6wNK/K5XsjrQ+zLiuJ8ifM39ktsk/g7v0/ifKpqG3700UfZe1WfjZF2sC6vt0va1tGHXvTXFqmEI3VspCWtzWtxXX//AgDqhmAZAMAyKtv/T1Xync9H31FVyZdHMGlZVBdYiht00YdLIWy44YbZTbPo36Wqm6P5dY7+j6KfoGUR61cxyFa2b7VlEf2KVHWjLy9ufsWyxY2/qupa2jpXJb9f8jfxliT69AlDhgxZ4nhffvllpbKqtkG+X7W4Ubys3n777ezmZmyLCNxGPzFx8zRu8OX7tlq4cGGl4zPfP1tFVZXn1zP62Vne9awo6o++ayL4WdX6R+AzgoyFEtuiqnqWNix/Q35ZFGpf1sTy7pvoxycCC3FuRX9C0ZdSiO0efVv97ne/W+ZzPKap6kZy/tzKH2vLel2MQG+cf7Ff4piOvocuvfTSrA+lO++8Mxtvq622ypb9Zz/7WaoLhx56aLYNow+sP/zhD9n6Rx9Q0ZdRPAhQtm/E/L75+9//vsLnzco6r5Z2fajqulno9czPL4JmVT2EUNX84riJQEqLFi1SbViRz/VCXh+Wtl/yy5nfhhHYjdfy7JPqPhtX1vW2vmzr6uZX6O9fAED906iuFwAAYFWRvyH0wQcfVDl89uzZ5carD6LFRoiWSYUSLbf+/+m+y72ivFDy2zCeNK+qrrKviqIVwpJujpVtjbW0+uPm3pLqrqo1QKEMHTo0uzE6fPjwNGbMmHTdddeliy++OAsy9urVq9L4caM/fPjhh1XOr6ry/HpG66Ulrecxxxyz1OWNeUVgoapgVARjP/7449JlXBVF65/8ula0rAH0Fd030YorjpcInrz22mvZMbPuuuum3//+99lrWcW+quoGdP7aV/YaV5Pr4q677poFoiIQ/Nxzz6XzzjsvOz5//vOfpyeffDLVhQjGHHnkkdny5oMQEZAOFY///Lr84x//WOK+ieDfiirUeZVf5uquD1Xtv0KvZ35+AwcOXOL8nn766XLX7ThOKraqXdU+15e2X/L159+jdeaStuGIESOW+bNxZakv2xoAKF6CZQAABRKBmxCBi6puWkZribDDDjsUvO58K4/lfYI6WnvFk9LRgqOqtEz11Zprrpk6d+6cJk+enN0oLoRddtkle3/ssceWedz8Pq3NAEt1+/R///tf9n7YYYdVGlYxXVrZ4/PZZ5+tNCyelB83blytrmfUH/VEGq2KoizWszbOjfoiWr+EmTNnVho2ceLEas/r6vb/iuybuCke58+pp55aGvh56KGHlnn6uJ5Vdbzkr335Y21p18U4hiMN22abbVZlS45IpRrpHiOQF4G9fGBmRa57Nb1W5q+X+SBZtGqNa0WXLl2ylG21dd4sbXkLdV6VvT5UVVdV+68m67mk9YlWhXHNW575xTJE8Ofxxx9fobrr4+f60q7p8bDGpEmTUvPmzVOnTp1W6mdTbVjSto4HCiqua218rgIAxU2wDACgQKKPnUiHFX3Y5Pu/yot+taJfnuh/Z1n6K1te0TokRDqz5RH9AEX6teh7J/rqquoGeE1bvtS23/zmN9lyH3fccVUuX7Q2yPeBsixOOumkLHAYrbNef/31SsPL9q1yyimnZCnrogVExX6+QixXIW5Wxn6tKrgS8i31Kt5YjPR6t956a6Xx8/0+RauMigHBm2++ucr1OPbYY7MgRqS6nDBhQqXhcZO+qhubVYn9FAYPHpz1OZcXf59zzjnZ39EH4Koq3x9QxbSJ0aozrhnV7f8IylTVamZ5900ElqtqnZIvW3311ZdrfWI/lk3zGUHrSy65pHTZKu73GJbvLynEzepBgwZly1l2v8c1qKr1rWo5a3Ldi6BlBAuX91qZP4c6dOiQBez+/Oc/Z6258gG0sg4++ODsXLvhhhvSo48+WuW8ot+jsudBTZe3UOdVtDrcd999s8+p66+/vtywWN+qgjU1Wc8l7bPo++3oo4/OgsdxHa4qoDFt2rRsGfMi4BvOOOOMKlsFly2ryfFSl5/rZUU60op9z0Ur4giYRWrSCCzn++6KtLwPPPBAuu2226qc16uvvlrQlLeFEv2/xufqsGHDSh8GyYvWpfPmzcvGya9rbXyuAgDFTZ9lAAAFbO0UN6eOOOKILP1evMcNtP/85z/pX//6V9YfyE033VQrdUfasriJHDfvIjVfvu+RuJG4tJRF559/fvZkftycjJvBO+64Y3ZjP24QRhAq+r/Kpz7bc889U30RN4lj2/7pT3/KbthG6sHY3nHTPm5gRquKuGkfN7WXxdZbb53N68QTT8yecI8bwXFjPLZn9J8Tqczy6b86duyY7etYhmih8+Mf/zhtueWW2c3zuBEbgbL11lsvTZkyZYXWcZ999kn33HNPOvDAA7OWC3EjMfZBvKKfqUilFcfZ4Ycfnlq3bp2l1osWFpEu7m9/+1ulp+kjiBbLetBBB2Ut0mK7vfLKK1nrogiWRhAtny4wf1MxWh1Gf03RYiGWJ9Y3bt7Hzca4ER7bZ8GCBUtdl0ihFzfd77333mwecRM65hMtmmJ//fSnP81ulK+q4liMPu6iv6tInRjHWwQoY5vH9r3//vsrTRPbO4692Gexz+Mm8XbbbZcdD8u7b2Ifn3nmmdm1Io7VCExEADj2SezzGLasou+gCJRts8022bEUx30sS6RJi+Oy7HUiWoadddZZ6corr8zGj2N1jTXWyNY7jtfdd9+9XN0x3lNPPZXd8I8WZ3FdjUBfjB+Bo/79+5eOu9dee2XLHoGimFe+9V48AFCdmF/37t2zczSOt9gW0eIo1iNaiS1N3759sxv3cb2M4HpVx2ycpxGsiGvS/vvvn22DaH0W1+jYN7FPo8/B2F5LC1IubXkLeV5F0CuOj+iDLT6z4liLoMWDDz6YHXOPPPLICq/n0vZZBOreeuut7HMpAkRxfER/XdGvZrR+jnlG4CqOjRB9Nca0EYyNFkex/m3bts2Cq9FKLs6N22+/vbTfu+iTMq6psezt2rXLttUvfvGL7O/69rleVlyf4/M5ru1x/sW6xSsemrj88svLjXv33XenvffeOwuSRovMOH4isB7ne1zvY7vH9SGuAfVJrEt8hzn55JOzz7tY1/gcjUBtLG987l5xxRUrXM+SPlcBgCKXAwBgieIr0/J8bZowYULukEMOyX3/+9/PNW3aNNe2bdvciSeemHv//fcrjXvMMcdk837nnXdKy+LvKIthVenRo0eVy/PYY4/ldtlll9waa6xRusxl57s0U6ZMyZ1++um57bbbLrf22mvnmjRpkvve976X22mnnbLy//znP7nadsEFF2TLHe/L6pFHHsntv//+ufXWWy/b3htssEFu5513zv32t7/NvfHGG+XGjXnH9luScePG5X7yk5+Uzm+jjTbK9erVK/f3v/+90rivvPJKtp822WST3GqrrZZtr86dO+f69++f+7//+79l2m9hxIgR2bB4L+vDDz/M/exnP8utv/76uUaNGlXaNs8991xur732yrVq1Sq35ppr5n7wgx/kHnzwwdzTTz9d7XZ84YUXcj/84Q+z8eO1zz77ZOt88sknZ9O8/PLLlaaJ4yiGt2/fPtesWbPcWmutldtqq61yffr0yepbVosWLcrdcMMNuR133DHXokWL7LXDDjvkrr/++mzYspwfy3oMxTZY1u0cqttm7dq1y17LOp8lHWevvfZabr/99su2e5ynMc6YMWOqnd+XX36ZXTvatGmTa9y4cZXXhWXdN6+//npu4MCB2baPa1Mcr7Fehx12WHYcLav89vjss89yAwYMyLVu3TqbV8eOHXPXXnttbvHixVVO99e//jU7PmPdYzm33nrr3CWXXJKbP39+ufGeeOKJXL9+/XKdOnXKtWzZMrf66qvnttxyy9ypp56amz59eqX53nnnndk1q3nz5pWu1dUdP2+99VbugAMOyK2zzjq5kpKSctt+SedOePfdd0vPxZjHksT5e/bZZ2fXhDjWY5/HfoptHsv97bffLnH6ZVnempxXS6srli8+A2Lbx2fKqFGjlnjML+96LmmfhYULF+aGDRuW23XXXbNjII6v+Bzde++9c9dcc03u448/rrQM//znP7PrdFyDY/yNN944+xyueB2Oz+eYT8w3vy3z14olreOKfq7nLe34WtL1LJYrv91iOeI8mTVrVpXTzZs3L3fppZdmx0Hsj5hm0003zfXu3Tt30003ZdeWZb2eLcmS1rWm1+K4Buy7777Z51rsyy222CJ35pln5ubOnVtp3EJ/rtb0+xcAsGooiX/qOmAHAADUrWi1MH78+CytV7T8gSWl/4wWp0DtilSLkWo1WjX37NmzrhcHAGCVps8yAAAoEtF3UFX9u0WasugrKlKaCZQBAABQbPRZBgAARSL6U4v+2Pbdd9/Uvn379N1336WXX3456/sm+rS5+uqr63oRAQAAYKUTLAMAgCKxwQYbpKOPPjqNHTs2S+u1cOHCtOGGG6Zjjz02/fa3v01bbLFFXS8iAAAArHT6LAMAAAAAAKBo6bMMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABStJnW9AMVuww03TF999VXaZJNN6npRAAAAAAAAGqQZM2akNdZYI33wwQfLPa2WZXUsAmXffvttXS8GAAAAAABAgxWxloi51ISWZXUs36Js8uTJdb0oAAAAAAAADVLnzp1rPK2WZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAotWggmULFy5MZ599dmrdunVq0aJF6t69exo9evRSp3vggQfST3/607T55pun1VdfPW211VbpjDPOSJ999lmV4z/88MNphx12SM2bN0+bbLJJuuCCC9J3331XC2sEAAAAAABAXWpQwbJ+/fqloUOHpqOPPjpde+21qXHjxql3797p2WefXeJ0/fv3T2+88Ubq06dPuu6669KPf/zjdP3116ddd901zZ8/v9y4jz32WDrkkENSq1at0rBhw7K/L7nkknTqqafW8toBAAAAAACwspXkcrlcagAmTJiQtSQbMmRIGjRoUFa2YMGCtM0226T1118/jRs3rtppx4wZk3r27Fmu7I477kjHHHNMuuWWW9IJJ5xQWt65c+fUtGnTNHHixNSkSZOs7He/+1267LLL0uuvv546duxY0PWK+sLkyZMLOl8AAAAAAIBi0XkF4i0NpmXZfffdl7Uki1ZieZEm8fjjj0/PP/98mjlzZrXTVgyUhUMPPTR7jxZneREMi1fUkQ+UhQEDBqSIKcYyAAAAAAAAsOr4/yJC9dzLL7+cttxyy9SyZcty5d26dcveJ02alNq2bbvM8/vggw+y9+9///vl6gg77bRTuXGjj7SNN964dPiKRDQrmjZtWtpiiy1qPF8AAAAAAABqrsG0LJs9e3baaKONKpXny2bNmrVc87viiiuylmqHH354uTrKzrNiPctbBwAAAAAAAPVbg2lZNn/+/NSsWbNK5ZGKMT98Wd19991p+PDh6ayzzkodOnQoV0eorp558+bVcOmrz5FZXYszAAAAAAAAal+DaVnWokWLtHDhwkrlCxYsKB2+LJ555pmsn7NevXqlSy+9tFIdobp6lrUOAAAAAAAAGoYGEyyLNIj5NIll5cuiX7Gl+e9//5sOOuigtM0226T77rsvNWlSvmFdPv1idfUsSx0AAAAAAAA0HA0mWNa1a9c0derUSqkQx48fXzp8SaZNm5Z+/OMfp/XXXz89+uijac0116yyjjBx4sRy5dFX2XvvvbfUOgAAAAAAAGhYGkyw7PDDD0+LFi1KN998c2lZpEscMWJE6t69e2rbtm1WNmPGjDRlypRy037wwQfpRz/6UWrUqFF64okn0nrrrVdt/2EdO3bM6oi68m688cZUUlKSLQMAAAAAAACrjvJ5COuxCIgdccQRafDgwWnOnDmpffv2aeTIkWn69Olp+PDhpeP17ds3jR07NuVyudKyaFH29ttvp7POOis9++yz2Stvgw02SPvuu2/p/4cMGZKlaozg2lFHHZVee+21dP3116cTTjghderUaSWuMQAAAAAAALWtJFc2qlTPLViwIJ133nnprrvuSnPnzk1dunRJF198cerVq1fpOD179qwULItWYdXp0aNHGjNmTLmyhx56KF100UXpjTfeyFqh9evXL51//vmpadOmBV+naM0WJk+eXPB5AwAAAAAAFIPOKxBvaVDBslWRYBkAAAAAAEDdxVsaTJ9lAAAAAAAAUGiCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWg0qWLZw4cJ09tlnp9atW6cWLVqk7t27p9GjRy91ujfffDMNHDgw7bbbbql58+appKQkTZ8+vcpxN91002x4xdeJJ55YC2sEAAAAAABAXWqSGpB+/fql++67L51++umpQ4cO6fbbb0+9e/dOTz/9dNp9992rne75559P1113Xdp6661Tp06d0qRJk5ZYT9euXdMZZ5xRrmzLLbcs2HoAAAAAAABQPzSYYNmECRPSPffck4YMGZIGDRqUlfXt2zdts8026ayzzkrjxo2rdtqDDjooffbZZ2mttdZKV1111VKDZW3atEl9+vQp+DoAAAAAAABQvzSYNIzRoqxx48apf//+pWWRUvH444/PWo7NnDmz2mnXWWedLFC2PL755pv01VdfrdAyAwAAAAAAUL81mGDZyy+/nKVCbNmyZbnybt26Ze9Lay22PJ566qm0+uqrpzXXXDPrw+zaa68t2LwBAAAAAACoPxpMGsbZs2enjTbaqFJ5vmzWrFkFqadLly5Z/2dbbbVV+uSTT7J+0aKPtJj/FVdcUeP5du7cucryadOmpS222GIFlhgAAAAAAIBVPlg2f/781KxZs0rlkYoxP7wQHn744XL/P/bYY9N+++2Xhg4dmk499dS08cYbF6QeAAAAAAAA6l6DCZa1aNEiLVy4sFL5ggULSofXhpKSkjRw4MD0xBNPpDFjxqQ+ffrUaD6TJ09erhZnAAAAAAAA1L4G02dZpFuMVIwV5ctat25da3W3bds2e//0009rrQ4AAAAAAABWvgYTLOvatWuaOnVqmjdvXrny8ePHlw6vLW+//Xb2vt5669VaHQAAAAAAADTwYFmkSazY+uqTTz5Jv//979Npp52WJkyYUON5H3744WnRokXp5ptvLlffiBEjUvfu3Utbf82YMSNNmTKlRnXEskcdZX377bfp8ssvT6uttlraa6+9arz8AAAAAAAArOJ9lg0YMCALiL366qulwaxddtklTZs2Lfv/n//85/Tcc8+lnXbaabnnHQGxI444Ig0ePDjNmTMntW/fPo0cOTJNnz49DR8+vHS8vn37prFjx6ZcLlda9vnnn6dhw4Zlf0f94frrr0+tWrXKXqecckpW9vDDD6dLLrkkC8xtttlmWfDs7rvvTq+99lq67LLL0oYbbriCWwgAAAAAAIBVNlgWgahDDz209P9///vfs0DZjTfemHbYYYcs2HXVVVele+65p0bzv+OOO9J5552X7rzzzjR37tzUpUuXNGrUqLTnnnsucboYN6Yr6+qrr87e27VrVxos23bbbdPWW2+d7rrrrvTRRx9lrckiveO9996bLTsAAAAAAACrlpJc2SZYK2jttddOQ4YMSf3798/+/4tf/CK99NJLafLkydn/L7300iyN4rvvvluoKhu8zp07Z+/5bQQAAAAAAMDKi7cUtM+yiv19PfPMM6lnz56l/2/dunWWQhEAAAAAAADqg4IGyyKlYb5PsFdeeSXNmDGjXLBs9uzZqWXLloWsEgAAAAAAAOpHn2VHHXVUuuCCC9LHH3+cNXNr1apV6tWrV+nwSZMmpS222KKQVQIAAAAAAED9aFl29tlnp+OPPz698MILqXHjxumOO+4obUn22WefpUceeSTtvffehawSAAAAAAAAaqwkl8vl0kqwePHi9MUXX6TVV189NW3adGVUucp3OAcAAAAAAEBaoXhLQdMwLkmjRo3S2muvvbKqAwAAAAAAgJWbhjG89957WSrGjTfeOK222mrpqaeeysrnzJmTjjvuuPTiiy8WukoAAAAAAACokYK2LHv33XdT9+7d09dff5122WWXNHv27NJh66+/fhYoiwDazjvvXMhqAQAAAAAAoO6DZb/73e+y99deey3rmywCZGX17t07jRo1qpBVAgAAAAAAQP1Iwzh69Oh00kknpU022SSVlJRUGt6uXbv0/vvvF7JKAAAAAAAAqB/Bsrlz56Y2bdpUO3zx4sXpm2++KWSVAAAAAAAAUD+CZa1bt05Tp06tdnj0WbbZZpsVskoAAAAAAACoH8GyAw44IA0fPjy9++67lYaNGTMm/fWvf02HHHJIIasEAAAAAACAGivJ5XK5VCBz5sxJO+64Y5o/f37q3bt3+stf/pKOPPLI7P///Oc/s77MXnrppbT22msXqsoGr3Pnztn75MmT63pRAAAAAAAAii7eUtCWZeuvv356/vnn0x577JHuvvvuFHG4v/3tb2nUqFFpv/32S88884xAGQAAAAAAAPVGk0LPcOONN04PPvhgmjdvXtZ/2eLFi1P79u3TOuusU+iqAAAAAAAAoH4Fy/JatmyZdtppp9qaPQAAAAAAAKywgqZhbNSoUWrTpk16+eWXqxwefZg1bty4kFUCAAAAAABA/QiWhQ8//DD16NEjPfbYY4WeNQAAAAAAANTvYNkf/vCHtPnmm6eDDz443XrrrYWePQAAAAAAANTfYFmkYXz22WdTz549069+9at03nnnFboKAAAAAAAAqJ/BsrDmmmumRx99NPXp0yddeuml6ZhjjknfffddbVQFAAAAAAAANdak1mbcpEkaOXJk2njjjbPUjLNmzUqHHnpobVUHAAAAAAAA9SdYlhcty9q1a5dOPvnk9Nxzz9V2dQAAAAAAAFA3aRgjKBYpGCvq379/evDBB1NJSUkhqwMAAAAAAID607LsnXfeqXbYAQcckGbOnJm++OKLQlYJAAAAAAAA9aNl2R133JGeeOKJaofPmzcvjR07tpBVAgAAAAAAQP0IlvXr1y/17t07nXvuuVUOjz7Ljj322EJWCQAAAAAAAPUjWBY6dOiQLr/88tSnT5/07bffFnr2AAAAAAAAUD/7LAvnn39++t///pcuvPDCNHv27PTggw+mli1bFroaAAAAAAAAqH8ty/IBs9tuuy0988wzaffdd0/vvfdebVQDAAAAAAAA9S9Ylu+/7JFHHknTp09Pu+66a3rllVdqqyoAAAAAAACoX8Gy0KtXrzR27Ni0aNGitMcee6Qnn3yyNqsDAAAAAACA+hMsC9tvv316/vnnU5s2bdLIkSNruzoAAAAAAABYZk1SAV1wwQWpS5culcrbtWuXxo0bl0488cT04YcfFrJKAAAAAAAAqLGSXC6Xq/nkrKjOnTtn75MnT67rRQEAAAAAACi6eEutp2EEAAAAAACAokjDuPnmmy91nJKSkjRt2rRCVgsAAAAAAAB1HyzbZJNNsmBYWd999116++230+zZs1P79u1TmzZtClklAAAAAAAA1I9g2ZgxY6oddtddd6Uzzzwz3XTTTYWsEgAAAAAAAGpspfVZ1qdPn3TggQemQYMGrawqAQAAAAAAoH4Ey8JOO+2U/v3vf9d4+oULF6azzz47tW7dOrVo0SJ17949jR49eqnTvfnmm2ngwIFpt912S82bN89SRU6fPr3a8R9++OG0ww47ZONGaskLLrggSycJAAAAAADAqmWlBsveeuuttHjx4hpP369fvzR06NB09NFHp2uvvTY1btw49e7dOz377LNLnO75559P1113Xfriiy9Sp06dljjuY489lg455JDUqlWrNGzYsOzvSy65JJ166qk1Xm4AAAAAAACKoM+yGTNmVFn+6aefpieffDJdf/316Yc//GGN5j1hwoR0zz33pCFDhpSmcuzbt2/aZptt0llnnZXGjRtX7bQHHXRQ+uyzz9Jaa62VrrrqqjRp0qRqx415d+nSJf3rX/9KTZr8v83TsmXLdNlll6XTTjstdezYsUbLDwAAAAAAwCresmzTTTdNm222WaXXjjvumAW0tthii6yFV03cd999WUuy/v37l5ZFmsTjjz8+azk2c+bMaqddZ511skDZ0rz++uvZK+rIB8rCgAEDUi6Xy5YBAAAAAACAVUdBW5adf/75WX9gZcX/I1i11VZbZa3KKg5fVi+//HLacssts1ZeZXXr1i17j9Zibdu2XYGl/3915PtWKyv6SNt4441LhwMAAAAAALBqKGiw7MILL0y1Zfbs2WmjjTaqVJ4vmzVrVkHqKDvPivWsSB2dO3eusnzatGlZizsAAAAAAAAaeBrG2jR//vzUrFmzSuWRijE/vBB1hOrqKUQdAAAAAAAArKIty8LXX3+drrrqqnT//fen//3vf1lZ+/bt02GHHZbOOOOMtMYaa9Rovi1atEgLFy6sVL5gwYLS4SsqP4/q6lmROiZPnrxcLc4AAAAAAABoYC3LPvroo7Tzzjtn6RhnzpyZtt566+wVf0dZDItxaiLSIObTJJaVL4t+xVZUPv1idfUUog4AAAAAAABW0WDZWWedlaZMmZKGDh2aPvzww/Tiiy9mr/j76quvTm+++WY2Tk107do1TZ06Nc2bN69c+fjx40uHr6j8PCZOnFiuPPoqe++99wpSBwAAAAAAAKtosGzUqFGpX79+6fTTT09NmzYtLY+/Bw4cmI455pj0yCOP1Gjehx9+eFq0aFG6+eabS8siXeKIESNS9+7dU9u2bbOyGTNmZAG7moiUiB07dszqiLrybrzxxlRSUpItAwAAAAAAAKuOgvZZNn/+/NStW7dqh8ewe++9t0bzjoDYEUcckQYPHpzmzJmT9YM2cuTINH369DR8+PDS8fr27ZvGjh2bcrlcadnnn3+ehg0blv393HPPZe/XX399atWqVfY65ZRTSscdMmRIOuigg9KPfvSjdNRRR6XXXnstG/eEE05InTp1qtGyAwAAAAAAUATBskhT+Prrr1c7/I033lihVIZ33HFHOu+889Kdd96Z5s6dm7p06ZK1Zttzzz2XOF2MG9OVFWkhQ7t27coFyw444ID0wAMPpIsuuiideuqpab311kvnnntuOv/882u83AAAAAAAANRPJbmyTbBW0JgxY7JWWdHi69BDDy037P7770/HHntsloaxR48ehaqywYvUj2Hy5Ml1vSgAAAAAAABFF29ZoZZlxx13XKWyzTffPOvba8stt0xbb711VhatzaZOnZq23XbbrHWYYBkAAAAAAAANvmVZo0aNlr/CkpK0aNGimla5ytGyDAAAAAAAoIG2LFu8ePGKTA4AAAAAAAB1avmbhgEAAAAAAMAqYoVali2L8ePHp5kzZ6Y2bdqk7t271yh1IwAAAAAAADSoYNn777+f9t9///TKK6+UlnXq1Ck98sgjafPNN6+tagEAAAAAAGCZ1Vozr1//+tdpo402SlOnTk3z589PL7zwQlq0aFEaMGBAbVUJAAAAAAAAKzdY9vjjj1dZHsGxSy+9NLVv3z41a9YsdevWLQugRTkAAAAAAACsEsGygw46KB1zzDHp008/LVcefZQ9++yz5cqee+651Lp16xWtEgAAAAAAAOpHsCxair322mtZf2R/+9vfSst/+9vfpoEDB6Y99tgjHX300WnbbbdN99xzT1YOAAAAAAAAq0SwbIcddkgTJkzIAmPHHnts1tJs1qxZ6eCDD84CaZ07d06fffZZ2mWXXdKYMWOywBkAAAAAAADUByW5XC5XqJm99dZb6Ze//GWaNGlSuvzyy9OJJ55YqFmvsiKYGCZPnlzXiwIAAAAAAFB08ZYVbllWVocOHbLWY1deeWUaPHhw6tGjRxZAAwAAAAAAgPqoYMGyb775Js2bNy/7u3///lnkbt11103bbbdd+sMf/pAWLVpUqKoAAAAAAACgfgTLPv3003TooYemNddcM33ve99LXbp0SRMnTkytW7dODzzwQLrzzjvTsGHD0o477pheeumlwiw1AAAAAAAA1Idg2emnn57GjRuXbrrppiw4FkGzww47LH377bfZ8Pj7jTfeyIJlu+yySzrzzDMLsdwAAAAAAACwwlY4WPbYY4+lc845Jx177LHp4IMPTrfeemuaOXNmev3110vHWXvttdPw4cPT448/nh566KEVrRIAAAAAAADqR7CsadOmaf78+aX/X7BgQSopKUlNmjSpNO7ee++dXn311RWtEgAAAAAAAAqickRrOUV/ZZdffnn67rvvsj7L/vSnP6WOHTumTp06VTl+8+bNV7RKAAAAAAAAqB/BsiFDhqRGjRplfZZ9/fXXabfddkvXXnttVgYAAAAAAAD1WUkul8vV9UIUs86dO2fvkydPrutFAQAAAAAAKLp4i+ZfAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0WpwwbKFCxems88+O7Vu3Tq1aNEide/ePY0ePXqZpn3//ffTkUcemVq1apVatmyZDj744PT2229XGq+kpKTK1+WXX14LawQAAAAAAEBdaZIamH79+qX77rsvnX766alDhw7p9ttvT717905PP/102n333aud7ssvv0x77bVX+vzzz9O5556bmjZtmq655prUo0ePNGnSpLTuuuuWG3/fffdNffv2LVe2/fbb19p6AQAAAAAAsPI1qGDZhAkT0j333JOGDBmSBg0alJVFQGubbbZJZ511Vho3bly10/7pT39Kb731VjaPnXfeOSvbb7/9smmvvvrqdNlll5Ubf8stt0x9+vSp5TUCAAAAAACgLjWoNIzRoqxx48apf//+pWXNmzdPxx9/fHr++efTzJkzlzhtBMnygbLQsWPHtM8++6R77723ymnmz5+fFixYUOC1AAAAAAAAoL5oUMGyl19+OWvxFf2NldWtW7fsPdIpVmXx4sXplVdeSTvttFOlYTHttGnT0hdffFGuPNI7rrHGGlm/aFtvvXW6++67C7ouAAAAAAAA1L0GlYZx9uzZaaONNqpUni+bNWtWldN9+umnaeHChUuddquttsr+3m233dKRRx6ZNttss6z8hhtuSEcffXTW39lJJ51Uo2Xv3LlzleURqNtiiy1qNE8AAAAAAACKKFgWaRGbNWtWqTxSMeaHVzddWNZpn3vuuXLjHHfccWnHHXdM5557burXr1/W2gwAAAAAAICGr0EFyyJIFS3EKsr3K1ZdECtfXpNpw2qrrZZOOeWUdOKJJ6b//Oc/affdd1/uZZ88efJytTgDAAAAAACg9jWoPssiZWKkYqwoX9a6desqp1tnnXWyVmU1mTavbdu2pSkdAQAAAAAAWDU0qGBZ165d09SpU9O8efPKlY8fP750eFUaNWqUtt122zRx4sRKw2LazTffPK211lpLrPvtt9/O3tdbb70VWAMAAAAAAADqkwYVLDv88MPTokWL0s0331xaFqkVR4wYkbp3717a+mvGjBlpypQplaZ98cUXywXM3nzzzfTUU0+lI444orTso48+qlTvF198kf74xz+m73//+1nfZQAAAAAAAKwaGlSfZREQi8DW4MGD05w5c1L79u3TyJEj0/Tp09Pw4cNLx+vbt28aO3ZsyuVypWUDBgxIt9xyS9p///3ToEGDUtOmTdPQoUPTBhtskM4444zS8W644Yb00EMPpQMPPDBtsskmWZrG2267LQvA3XnnnVn/ZQAAAAAAAKwaGlSwLNxxxx3pvPPOywJXc+fOTV26dEmjRo1Ke+655xKnizSLY8aMSQMHDkyXXHJJWrx4cerZs2e65ppryqVW/MEPfpDGjRuXbr311vTJJ5+kNdZYI3Xr1i0LmO29994rYQ0BAAAAAABYWUpyZZtfsdJ17tw5e588eXJdLwoAAAAAAEDRxVsaVJ9lAAAAAAAAUEiCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWg0uWLZw4cJ09tlnp9atW6cWLVqk7t27p9GjRy/TtO+//3468sgjU6tWrVLLli3TwQcfnN5+++0qxx0+fHjq1KlTat68eerQoUMaNmxYgdcEAAAAAACAutbggmX9+vVLQ4cOTUcffXS69tprU+PGjVPv3r3Ts88+u8Tpvvzyy7TXXnulsWPHpnPPPTdddNFF6eWXX049evRIn3zySblxb7rppnTCCSekzp07Z0GyXXfdNf36179OV1xxRS2vHQAAAAAAACtTSS6Xy6UGYsKECVlLsiFDhqRBgwZlZQsWLEjbbLNNWn/99dO4ceOqnfbKK6/MWqTFPHbeeeesbMqUKdm0Z511Vrrsssuysvnz56e2bdumXXbZJY0aNap0+j59+qSHHnoozZw5M33ve98r2DpFQC5Mnjy5YPMEAAAAAAAoJp1XIN7SoFqW3XfffVlLsv79+5eWRZrE448/Pj3//PNZIGtJ00aQLB8oCx07dkz77LNPuvfee0vLnn766ayl2YABA8pNf/LJJ6evvvoq/fOf/yz4egEAAAAAAFA3GlSwLNImbrnllll/Y2V169Yte580aVKV0y1evDi98soraaeddqo0LKadNm1a+uKLL0rrCBXH3XHHHVOjRo1KhwMAAAAAANDwNUkNyOzZs9NGG21UqTxfNmvWrCqn+/TTT9PChQuXOu1WW22V1RGt1yKtY1mrrbZaWnfddautY1mb/1UUqSCbNm1a7XAAAAAAAACWLBpGRbxllW9ZFv2JNWvWrFJ5pGLMD69uurAs08Z7BMaqEuNWV0dNlZSU1Hjn0TBP1nhRXOz34mOfFx/7vDjZ78XHPi9O9nvxsc+Lj31enOz34mOfFyf7vbg0bdo0rbHGGqt+y7IWLVpkLcQqWrBgQenw6qYLyzJtvH/zzTdVzifGra6OpalJh3Kselakg0EaLvu9+Njnxcc+L072e/Gxz4uT/V587PPiY58XJ/u9+Njnxcl+Z5VsWRYpEyNNYkX5statW1c53TrrrJO1KluWaaOORYsWpTlz5pQbLwJon3zySbV1AAAAAAAA0PA0qGBZ165d09SpU9O8efPKlY8fP750eFUaNWqUtt122zRx4sRKw2LazTffPK211lrl5lFx3Pj/4sWLq60DAAAAAACAhqdBBcsOP/zwrNXXzTffXFoWqRVHjBiRunfvntq2bZuVzZgxI02ZMqXStC+++GK5INibb76ZnnrqqXTEEUeUlu29995ZS7Qbb7yx3PTx/9VXXz3tv//+tbiGAAAAAAAArEwNqs+yCIhFYGvw4MFZmsT27dunkSNHpunTp6fhw4eXjte3b980duzYlMvlSssGDBiQbrnllizYNWjQoKyjt6FDh6YNNtggnXHGGaXjRZ9kF198cTr55JOzunr16pWeeeaZdNddd6VLL700C6QBAAAAAACwamhQwbJwxx13pPPOOy/deeedae7cualLly5p1KhRac8991zidJFmccyYMWngwIHpkksuyVIq9uzZM11zzTVpvfXWKzduBNYimHb11Venhx9+OGuxFuOddtpptbx2AAAAAAAArEwlubLNrwAAAAAAAKCINKg+ywAAAAAAAKCQBMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTKAOtKvX7+05ppr1vViAABQQyUlJenCCy+s68UAAABWkGAZFMDtt9+e/VCeOHFiXS8KK3F/V/U655xz6nrxqMX9/eyzz1YansvlUtu2bbPhBxxwQJ0sI7XrT3/6U7Z/u3fvXteLQi1wjuN7HI6B4uDzvLi8+uqr6fDDD0/t2rVLzZs3T23atEn77rtvGjZsWF0vGivB5MmTU58+fbL93qxZs9S6det09NFHZ+XL6/XXX88eipg+fXqtLCsr/vkd5/j7779faXjPnj3TNttsUyfLxsq5Hxf7Ps7vXr16peuuuy598cUXdb2INHBN6noBABqq3//+92mzzTYrV+aL2KorvoTdfffdaffddy9XPnbs2PTee+9lP8JYNf3lL39Jm266aZowYUL63//+l9q3b1/Xi0QtcI4DrNp8nhePcePGpb322ittsskm6Ze//GXacMMN08yZM9MLL7yQrr322nTqqafW9SJSix544IH0s5/9LK2zzjrp+OOPz36zR6Br+PDh6b777kv33HNPOvTQQ5crWHbRRRdlgZe4hlD/LFy4MF1++eWC4UV4P+7bb79NH3zwQRozZkw6/fTT09ChQ9PDDz+cunTpUteLSAMlWAZQQ/vtt1/aaaed6noxWEl69+6d/v73v2dPKzVp8v99fMbN9R133DF9/PHHBaln8eLF6Ztvvslu3FP33nnnneyGS/zo/tWvfpXdaLvgggsKNv+vvvoqrbHGGgWbH/X/HAdg1fs8p3659NJL09prr51efPHF1KpVq3LD5syZU2fLRe2bNm1a+sUvfpE233zz9O9//zutt956pcNOO+20tMcee2TDX3nllWwcVg1du3ZNt9xySxo8eHDWyojiux8X+/6pp57KMoEcdNBB6Y033kgtWrSo02WkYZKGEWpBfPGK/qjiy1fc8I4n2Y477rj0ySeflBsvmvJHs+F4sjHGjy/y8aX+2GOPTV9//XWdLT8r7rHHHsu+iMdN8LXWWivtv//+1aZ8ePvtt7Mm4zFufLGLJ2Qi7Rf1SzydGOfw6NGjS8siqBVPJ/785z+vNP5VV12Vdtttt7TuuutmX9LiZnuMW1FcA0455ZTspk3nzp2z1iuPP/54ra8Pyyb2y/e+973sHI5UPvH/suIp1diHsb+vueaaLNVP7O8ePXqk1157rcp+CuNHfARm4toQ6WBYdc/xOA622267Kuvbaqutsms/9U88OR6viuIcLvtEednz/+abb05bbLFFdg3feeedsxu0rPrHAKvO53mIz4C4id6yZcvsd9kxxxyT/vvf/2bneaR9ynN81H/xXSu+V1cMlIX111+/3P/vuuuu7DM8PsujJdJRRx2VtUKrKpXbf/7zn+yzP8aNFg1//vOfa31dWD5DhgzJ7qXE53LZQFn4/ve/n2666absYbUrr7yytDzS90ULtPgtHp/jsW9POumk7HtgnPtHHHFENl60VsynfotWLNQf5557blq0aFHWumxJvvvuu3TxxReXfmeLa3ZMGy3T8iLYUl0gddddd/XAdD229957p/POOy+9++672bU9b8qUKdlnf1zj4x5t7MNofVbRZ599lgYOHJgdF3F8bLzxxqlv374emiwygmVQC+JGWwRAIugVzcDjC3c09Y+bo1UFQY488sgsr+4f/vCH7O/4QhbN/KnfPv/88+xDs+wr3HnnndkP8bgpfsUVV2Qf1pG6IVJ7VcxzHl/ofvzjH6cNNtgg+8IeP9TiKVdPutY/8YUpvhz/9a9/LRcUjeMgzvGKIsXL9ttvnwU/L7vssqylSvzQ+uc//1lp3HgCKr6U/fSnP82mc6Ol/oibaT/5yU/SaqutlgVT3nrrrSpvgt9xxx1Zi6STTz45e6otAmXxZf3DDz+s9AMtAiRxoyZusB922GErcW1Y2ed4/snlioHTOIamTp2a9aVBwxetD+PmXLRWueSSS7LP+rhuRFoYoGF8nkfL/gMPPDD7DIggWbRMmj17dvY3DU88vBSBrYqfvxXFfo4boR06dMhSd0UKr//7v/9Le+65Z3bTtKy5c+dmv+fj91r8boubqBFQue2222p5bVgejzzySPadLh5crUrs2xie/742a9as1K1bt+x+TfwWi+/z8f0t0nBH0C3G//Wvf52NG0GV+K0fr06dOq3U9WLJIsAZ53K0Lot9Wp0TTjghnX/++WmHHXbIHnSMB9viPlzZ7/pxHERr5Iq/+SIAE6lcq/pdQP0R52/417/+lb3HQ+u77LJL1tLsnHPOSVdffXX2oPohhxySHnzwwdLpvvzyy+y6Efdwf/SjH2W/9U488cQs0BYp+SkiOWCFjRgxIiJguRdffDH7/9dff11pnL/+9a/ZOP/+979Lyy644IKs7Ljjjis37qGHHppbd911V8KSsyL7u6rXF198kWvVqlXul7/8ZblpPvjgg9zaa69drvyYY47Jpjn11FNLyxYvXpzbf//9c6uttlruo48+WqnrxdLP7+uvvz631lprlZ7jRxxxRG6vvfbK/m7Xrl227/IqXge++eab3DbbbJPbe++9y5XHvBs1apSbPHnySlkflt3EiROz/TN69OjS83PjjTfOnXbaaaXjvPPOO9k4LVq0yL333nul5ePHj8/KBw4cWOmcP+ecc1bymlBX5/hnn32Wa968ee7ss88uN+6vf/3r3BprrJH78ssva3ntqMn3uB49emSviuIcjuOg4vkf39k+/fTT0vJ//OMfWfkjjzyyktaAujoGQkwX3+lp2J/n999/fzbOH//4x9KyRYsWZdf0KI9jJG95jg/qxr/+9a9c48aNs9euu+6aO+uss3JPPPFE9lmdN3369Gz4pZdeWm7aV199NdekSZNy5bG/4zi4+uqrS8sWLlyY69q1a2799dcvN1/qTnzviv108MEHL3G8gw46KBtv3rx5ub59+2a/xfLX/7LiWhH+/ve/Z+M//fTTtbbsrPjn97Rp07JzN75nlz13O3funP09adKkbNwTTjih3DwGDRqUlT/11FPZ/z///PNcs2bNcmeccUa58a688spcSUlJ7t13310p68ayfWerStx723777bO/99lnn9y2226bW7BgQblze7fddst16NChtOz888/P5vvAAw9Uey2gOGhZBrWgbF7cBQsWZC2O4kmG8NJLL1UaP55WKCueZog0IPPmzVsJS0tN3XDDDVkrwoqveAoxnlgt2+KscePGqXv37unpp5+uNJ9IwVcxJV+kfHjyySdX8hqxNNHyc/78+WnUqFFZa9B4ryo9W8XrQDyJGq1T4tyu6hoQT7RtvfXWtbrs1Owp9Gj1GSlX8udnPGkYT55Gq9Cy4sm0Nm3alP4/nlCNc/7RRx+tNN94CpniOMcjtfLBBx+ctVTItyyPY+dvf/tbdszor27VENeFSO+Wl3+aPbIMAA3j8zxSYDdt2jT98pe/LJ2uUaNGWYtxGp599903Pf/881m/NZFKM1qCRcv++K6WT70V/ddFi8L47C/7uy26UIiWZhV/t0UL8mhBnBetFOP/0QdatGKj7sV3txCpzpckPzzutzz00ENZq9KqUuvFtYKGI1InRquiSMEZLYMryv8u+81vflOu/Iwzzsje860NIxVv9Id17733lssMFd/f477eJptsUstrwoqKLE9xPfj000+zLD75bF7563zcb43PhGhlHmlYw/3335+lzz/00EMrzc+1oLgIlkEtiAtydB4bP8riZlrkyo5m4SFuplVU8cM2f8Mlbr5Rf8XN8B/+8IflXvFhGyL9Wuz3sq9oBl6xQ+n4EV4xH/aWW26ZvVdM2Ujdi/0Y+zlSbsUP7LjBErmvqxI32ePLdOTEjtzYMe2NN95Y5TUgf32g/oh9GzfR4sZapOGIviXjFQGwSK0YKXrKipsqFcW5XPE8jhstkbaH4jnHIyXMjBkz0jPPPJP9Px6EiGMonyKEhs/3OGj4n+eRXmujjTZKq6++ernp27dvX0dLzoqK/iPjszyuxRMmTMjSZMfN0vhcjxT58bstboTHd7iKv9siXVfF323Rn1XFh1z8bqtf8kGwfNCsOvnhkR49AmbRHx2rht/97nfZfq2q77K4zsf9l4rX9QiQR/+GMTwvHqiIvgsj6J7vBzGC4lFO/RcpFeN6EJ/3cZ2PrlEqXufzXZ/kr/Wxj10LCE1sBii8eGph3Lhx6cwzz0xdu3bNnmqIp9aib6p4ryhaHVWlqv7NqN/y+zfymMeXroriRjkNW7QyiaeOP/jgg+yJs6o6Do+b4vEka+S4/9Of/pTdfImnlUeMGJHdhF9SCxXqh3gCLZ5IjBts8arqKfXIZb68oqPg+JFG8Zzj8dRiPDwTnUzH+PEenw8RlKN+iqdHq/oOVrFFaZ7vcaue5T0GKK7Pc8dHwxItwCJwFq8IbkW/4n//+9+z322xL6N/0qqu4/EbnoYlWvTHd7LoL3ZJYni0MowHnli1xIPI0SdwtC6L/qmqsiythKK1YTw8Ea3Ldtttt+w9fsNF/8TUb9G/WDy8GEHR/P25QYMGZb/JquKhGCpy1xYKLJ5ciycUL7rooqzj0Lx8iyNWbVtssUX2vv766y/TjdD48I40TfmnEsPUqVOz9+h4mPonmuVHypXo3DdSMVQlmvDHj68nnngiC47kxY10Goa4eRbncaRbrSieUo7OgP/85z8v8Rof57LzuOEp9DkeN+AiAHf77benK664Ikv3E8G46gIs1L1oGVZVCsWyTxyzanMMFN/nebt27bK0e19//XW51mXxVHpFjo+GK59qLwKo8bstgp6R4aHsb7HqzJo1K3311VflWpf53Vb/HHDAAemWW25Jzz77bNp9992rfOApWgLGd71oXRIp91577bUlzlMKtobXuiweTovv3WXFdT7uv8Tvtk6dOpWWRyvj6EojhufFeR7HUgTWhw4dmv0miDTb0cKU+i0eXA8RHMtncYqHGpd2fy4+E5Z2LaA4eLQZCix/86vi04Z//OMf62iJWJniAzm+cF922WXp22+/rTT8o48+qlR2/fXXl/4dx038Pz7M99lnn1pfXpZfPGUaqdYuvPDC7Imz6q4D8aOq7BPG8aMsbpJT/0WfVXEDLX4gRaqeiq/oVzDSt+T7vAixb/P5zkOk+xk/fnzWMomGpTbO8Ui5GA/TxI2ZSAsST7xSf8WP5SlTppT7zI4+b5577rk6XS5WHsdA8X2ex3f4+O4eN9nz4qZqVUE2x0f9F4HPqlr/5fss2mqrrdJPfvKT7PM8HnKtOG78P/q0KStSu910002l/48+puP/EXDZcccda21dWD6R3SeydsR3ror7MLrLiP7iIyAe40VLoehD9pFHHkkTJ06sNK/8cZEPkEZAhfovrtHxXTvOz8gUkde7d+8q781FMCzsv//+5coj5WIEyW+99dbsGi8FY8NoTX7xxRdnD0EcffTR2cMyPXv2zI6FqvqxK/s5fthhh2X7OR6iqUi2iOKiZRkUWARKIs1SdCIcP7iieX/0VRU58imO/R83WePG6A477JCOOuqo7AdU9FcTHcb+4Ac/KBcci5YJ0aH4Mccck/WdEGlAYrxzzz03m476KfbXksQX7fjSHalXo0VJ5MGOmy3RxH9paUGoe3HTLG6eRZq9qkQ/VXF+xtPqcd6G2Lfx9OpJJ52UFi5cmP0IW3fdddNZZ521kpee+niOb7/99lkO/Hg6NZ5kjc8H6q/jjjsu279x8/z444/P9m+0POncuXPWtwmrPsdA8X2ex82x6I/4jDPOyFqTdezYMZs+bq5XbFni+Kj/Tj311KyVYLQWj30Zga3oJiFah0QrsEjFGGmWL7nkkqwvs3jgJYIm0cdN/G6P46F///5Z6q68aFESLVVi3GiJFvOaNGlSlu4tHnSkfog+6EaOHJndKN92222zczRunMd+Gz58ePr444/TX//619KMMPGQa9yv6dGjR7bP43ta3FSP72zROi2Ok+haIwKrsf8jvVtkFYg+yuNGPPXTb3/726yF0Ztvvpldm8N2222XfcePczYCn7HP4wHHOF7i/I++LcuK4FpcE+I6EPs/ginUH3HvLB5ciQcZonVgBMpGjx6dtRCMz+98mtX4jRa/0+N6ENk9orVZjB/90UXKxgiQhQig33fffVmqzficj4cg4jtAzCs+4+P4oUjkgBV22223xWMGuZdeein7/3vvvZc79NBDc61atcqtvfbauSOOOCI3a9asbJwLLrigdLr4O8o++uijcvMbMWJEVv7OO++s9HVh6fL758UXX6x2nKeffjrXq1evbP83b948t8UWW+T69euXmzhxYuk4xxxzTG6NNdbITZs2LfejH/0ot/rqq+c22GCD7LhYtGjRSlobCrG/Q7t27XL7779/6f+HDx+e69ChQ65Zs2a5jh07ZvPJn/Nlxf9PPvnkWlt+lt+BBx6YnbdfffVVtePE+dy0adPsnI59OGTIkNzVV1+da9u2bbbP99hjj9x///vfctPkz3mK6xzPu/LKK7Nhl112WcHXgcJ+jwt33XVXbvPNN8+tttpqua5du+aeeOKJ7ByO4yAvvqflz/+KKn7nY9U8BoJ9vWp8nn/88cfZb7Kf//znubXWWiv7Dh/DnnvuuWwf33PPPeWmW9bjg7rx2GOP5Y477rjs83nNNdfM9lP79u1zp556au7DDz8sN+7999+f23333bPvaPGKaeK7+Ztvvlk6To8ePXKdO3fOvvftuuuu2XEV+/r666+vg7VjWbzyyiu5n/3sZ7mNNtooO8c33HDD7P+vvvpqpXHffffdXN++fXPrrbde9r0uzu04BhYuXFg6zi233JKVN27cOLsmxO996vf3+Lgmx7A4d/O+/fbb3EUXXZTbbLPNsuMifrsNHjw4t2DBgirnf/TRR2fz+OEPf1ir68Hy7/P8K67vcX7vu+++uWuvvTY3b968StPEPbc4x2O82O9t2rTJHXDAAbn77ruv3HiffPJJ7pRTTsmGx3w33njj7DiK7wgUj5L4p64DdtDQXXfddem0007LnkLMP6EEwKovnlKNp1WHDBlS7uljqOjaa69NAwcOzI6ZTTbZpK4XhzJ8j8MxQHUivW60TooWJpEhguIUabyiRZL+bABg1abPMiiAF198MctjXbZDUACAEM+mReqfSPciUFb/+B6HY4B8H2dlRb+Uw4YNy9KsS58LALDq02cZrID7778/jRkzJstzf8IJJ6QmTZxSAMD/89VXX2V57p9++un06quvpn/84x91vUiU4XscjgEq9nMVAbNdd90163/0gQceyPq5ij6NWrRoUdeLBwBALfNrAFZApNyKTqOj09hrrrmmrhcHAKhHPvroo/Tzn/886xz+3HPPTQcddFBdLxJl+B6HY4Cy9t5773T11VenUaNGpQULFqT27dtnLctOOeWUul40AABWAn2WAQAAAAAAULT0WQYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAFKx+v8B2CHbBtQRO6sAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 7 }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-09-29T15:38:46.563634Z", + "start_time": "2025-09-29T15:38:46.244983Z" + } + }, "cell_type": "code", "source": "hour_percent(h_per, \"%click\")", "id": "12d83e9082d711c0", - "outputs": [], - "execution_count": null + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABsEAAAaiCAYAAABzR1YRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeYVNX9B/yDqIAFe4EEG4j6xygaFbsmxqjYFWLBjqLGHlFDjIkpxoIlxm6iROyJLbHHHlswJhKV2IISiGCLKEYBEed9fud9Z98ts5Ut7OXzeZ51Z+/M3HvuuWXwfOec06VUKpUSAAAAAAAAFMhCHV0AAAAAAAAAaG1CMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAABAm9p2221Tly5d8s/jjz9e8TVnnnlm1WvicVsrbyt+aH/qHwAAaA9CMAAAmI+9+OKLaf/990+9e/dOiy66aP49bNiw9PLLLzd5Ha+++mrq1q1bDhzOO++8Ni0vAAAAzC+EYAAAMJ/6/e9/nzbaaKN08803p2nTpqU5c+bk3zfddFPacMMN02233dak9RxzzDHp888/TwMGDEgnnXRSm5cbAAAA5gdCMAAAmA+98cYb6eCDD87BV9h8883TEUcckTbbbLP8dyyP5+N1DYkA7dFHH82PL7vssrTIIou0Q+kBAACg4wnBAABgPhTDFs6cObPq8dNPP52uvvrq9Mwzz6Sf//zneflnn32WRo8eXe86ZsyYkU4++eT8+IADDkjbbLNNml/FPGClUin/tMecYAAAABSfEAwAAOZD9957b/69xhprpO9973s1njvttNPSaqutVuN1lfzoRz/KwycutdRS6fzzz2/jEgMAAMD8RQgGAADzmY8//jiHVyF6b3Xt2rXG8wsvvHDaeuut8+OpU6fmHl+1/eMf/0iXXnppfhw9x1ZaaaV2KTsAAADML4RgAAAwn/nkk0+qHtcXXvXq1avi60MMKfjd7343zZ07N2244Yb58bx688038zCFEb595StfSd27d0+LLbZY7qm2xx57pEsuuSS99957LV5/rLtLly75p6nDIb744ovp+9//fho0aFBaeeWV06KLLpqWWGKJtNZaa6V99tknXXPNNTlQnBdffvllOuaYY6rKFut/8MEHW7SuSZMmVa2n3JMvPPLII2m//fZLffv2TT169EgrrLBC2mqrrXKIOXv27GZt49NPP01XXHFF2nXXXdOqq66aj9GSSy6Z1lxzzXTYYYdVzQ/XkN/+9rdV5TzkkEPysjiXbrnllrT77rvnYx7ljOfvuuuu1Fpee+21dOKJJ6Z11lkn13PPnj3T+uuvn0aNGpU++OCDZq1rwoQJ6ZRTTkkbbLBBWn755VO3bt1S796907bbbpvOPffc9N///rfVz8nHH3+86vWxnea85r777svnQByn2Pd4/pe//GWz9hkAAKhr4QrLAACADhShRdm7775b8TXVl0dYUN21116b5w5baKGF0uWXX55/t1SEMDGv2FVXXZW++OKLOs+/9dZb+ecPf/hDfl2EC9XL3xY++uijdNRRR6Xf/e53OfCrbs6cOen111/PP/H86aefnt55550Wbefzzz9PBx54YF5PWHbZZfPwk5tuummr7EeU9dhjj81zvVU3a9as9NRTT+WfOH4RNPXv37/R9f3+979Pxx9/fMX9/de//pV/xowZk3bZZZd0ww035GEymyJ6G0aoGOVpK1deeWUOwGqHfhF0xs+vf/3r9MADD6SNNtqowfXEORrDh0a9RXBXXfSujJ8nnnginXPOOTlkOvjgg1NHipD20EMPTXfeeWeHlgMAAIpKCAYAAPOZCCeip1c02EfwEL2RqgdZ0bj/5JNP5sfRK6t66PThhx/m3lHh8MMPz72kWup///tf+va3v52effbZqmXRs2iLLbZIffr0yQHU22+/nf72t7/l8CtCndrBQ2uLQOab3/xm7jVUtvTSS+cyRZ1FGSZPnpzLFMNERqDU0n3fc88908MPP1xVz3/605/S//3f/7XavsTcbuUAbL311ksDBw7MdRpl/+c//5mXv/LKK3l/4xhEndfnoosuyiFkORSMYHSzzTZLX/3qV/MxiZ5Rzz//fH7+nnvuyb2Qnn766Xw8GxKh1G677ZbLFMNwbr755rnHWiz/+9//3ir1ED3Pjj766Pw4evFF0BU9zV599dVcxihznF9RjqiP+sK7uE723nvv9Mc//rFqWQSXsa/xe8qUKemxxx7L4WYEqdHLLX6fcMIJqSPEfh1wwAH5eETPr9jvOL9i+csvv5yXAQAA80YIBgAA86HBgwfn4fzeeOONPCxe9PApu/jii9PEiRPz45133rnG+yIAi6HjYgi4s88+e57KECFaOQCLecl+9KMf5aBl8cUXrxM+RO+aKFdbNtxHL5/vfOc7VQFYBCWjR49OI0aMSIssskiN10bQEcMWRq+45or6i/r/61//WhXMRAC2yiqrtGqYF8HVcsstl2666aYcNlZ3991354AkgrwIGo844ojcE6qSGE5x5MiROTyJISF/+tOfpuOOO65OwDV+/Pg0bNiwHLDF43hP9JhqyG233ZbrPeami7Cq+jCOobnDNVYSvfpiCMixY8emHXfcscZzf/7zn/PQjlEPEQrHORbnYSXnn39+jQAsroWf/OQnuU7Kopdc9P6K4xmiDqJn37yExS0VvTWjbr/2ta+lG2+8Mf9u7boFAIAFnTnBAABgPhSN8zGPUYieKjEX15FHHpnnioogqhwCxevKxo0bl37zm9/kxzHvUfR+aanoAXXrrbdW/R3D50X4UDsAC9FL7Rvf+EYetq+pQ+y1RIQw0TMoROgVIVfM11U7AAsRfER40txh5qIX2ZZbblkVgEXvnOh115oBWIgea1FvEdrUDsBClP3222+v+jv2tdJ8XhFARi+q+B1i3q7oYVaph1f0NIvArDzPXJwr//nPfxosZzmkuf/+++sEYKF8js6rON9qB2Ahzvtf/OIXVX/ffPPNFd8fIdnPfvazqr/juogQuHoAFmLuuKjzjTfeuGr/Ys6xjhDbjvLEca0dgLVm3QIAwIJMCAYAAPOhtddeO4cU0QMrRBATQ+eV52WK4Oe6665La665Zv47hrz77ne/m3sDxZB1Mc9QbTNnzsy9nMqBSUMuuOCCqscxH9S+++6bOlr1MsW8TxEItqYYMjDqrtzTbLvttsvD50UvpbYQvbJie/X51re+lfbaa6+qv2NerNqix1j0Fgx77LFHHsKxIRG6xNxb5SCuPN9ZQyJQjcC1rURPvhgOsj4HHXRQHooxxLGJwKu26E0XQ1iGCPmiN1x9IlyK3pVlcYyrD6/ZniJYjl6bAABA2xCCAQDAfCqGw3vuuefyEIARXkTwFfNe7bfffnmOpqFDh1a99oorrshzNEVoFkPclYcljMAr/h4wYEDuHRSBTswhFsFWOTypLYZhe/zxx6v+jqH1Otq///3vPEdU2bHHHtuq649hHyNUi6EHw5AhQ9J9992XllhiidRWItxpTAzdVz2sqS3KWLb//vs3absxx1hZOVStzzLLLFOxp1prqn4eVxLna8xDFiLkjXOhtuq95OL6aCy022STTWr0vqpUt+0hrkMAAKDtmBMMAADmYxtuuGGNYQkreffdd9MPf/jDqnBo/fXXrwoMIhCo3dvns88+y8tiiL2YGykCgepivqhZs2blxxGcdcR8SbX95S9/qXocvd+++tWvttq6I0iKICbqJcSwkxEcxnCFbSVCyqbU62abbVbjOMe8WBGElpXnbAsxfGLMzdaYjz/+uOrxlClTGnxtDKFY7o3YVioNBVhbzJ1WVqkn2AsvvFD1uKHeddVtscUW6aWXXsqPI0Bub6uvvvo8DVkKAAA0TggGAACdXMx/FMFGhCPVh4G77LLLqgKw6HFyzjnn5B5l9957bxo+fHh+Tyz/5z//WaPnTIQtZX369Kkaiq4jVS/TGmus0arr3n333fP8TOH73/9+nkuqrUUPq+jh1Jjoude9e/eqUPL999+vEYJNnTq16nFjYWkl06dPb3T7ba0p88hVn/cthnGsLeqlbNVVV23SdqvPcRbDhLa39qhbAABY0BkOEQAAOrHo+XPDDTdUzZnVs2fPql5g5513Xn4cQ8ndeOONudE/ApW99947jR49Oj83adKkdPPNN9dY5yeffFL1uC2HA2yOtixT9YDl9ddfrxiytLboYddUiy++eMV6qN2rqyXK4V992nIusLLy0J3zojwfWO36amm9tof2qFsAAFjQCcEAAKCTirDmu9/9btU8TzH0Ydkrr7xSNdRd9PqqPaRdzEdVDgFiWMTqqvdQqh4udKS2LNM999xTFUjccccdad99923zIKw89GJTfPrpp1WPa/ceqx7kxJB+EX425ydC0CKoHoxWr6+W1mtLxPx7AADA/EUIBgAAndRFF12UhzJcdNFF89CH1UWPprL+/fvXeW+3bt2qho2r/tqw0korVT2OIK2x3kLtoXqZ3nrrrVZddwSIlYKwttzvGIawKWFeDNNXHgoxLL/88vXWyzvvvJMWVNWHFpw8eXKT3lM9AKxdr7V7CDblXJjXXnkAAEDrE4IBAEAn9J///Kdq/q+TTz45rb322vX2cqlv6L1yL6LaYczAgQPzsInlHkvjxo1LHW3TTTetehyhXex/awdhd999d40gLOZLa6sgLHphNaVen3322RqBV+/evWs8P2jQoKrHTz/9dFpQbbDBBlWPn3nmmSa9p/rrNtxwwzrPl4cWDf/9738bXd9LL73UpO0CAADtRwgGAACd0AknnJCDrujN9cMf/rDO89WHd6svMCovr97YX+4l9o1vfKPq70svvTR1tNjPddZZp+rv2j3fWsN2221XJwhryx5h119/faOvGTt2bNXj6sekbJdddql6fO2119boNbYgiRCz7JZbbmm0Hp5//vn04osvNli3MYde2fjx4xstw+9+97tmlBgAAGgPQjAAAOhkHnjggRzQhIsvvrhiT6/qgdG9995b5/m//e1vadq0afnx//3f/9V5/nvf+16NUCF+Olr1Ml1wwQXpySefbPMg7Pbbb2+zIOyGG25osDfYY489lrdfdvjhh9d5zd5775369euXH8fxjDniopdZU0QPwKbOnzW/23///avmBYt6+MlPflLvaz///PN03HHH1QjA1lprrTqv23jjjVOXLl3y4zhOMc9efS6//PI0YcKEedwLAACgtQnBAACgE4keLuUG/J133jntvvvuFV+35pprVjXsR6jz0EMP1VjHKaecUrE3Udm3vvWtNHTo0Kq/DzjggDz8YgyPWNuXX36ZA5s999yzTedFOuSQQ9Lmm2+eH8+ZMyftuOOOOXyIx5WCjtjvKFNLgrA//vGPbRqExXxTc+fOzXX/8MMP13k+gssoeznQ2n777XO5auvatWu64oor8u8wZsyYfF40FNhEr6bTTjst9enTp9XnV+so0ZvxjDPOqPr7nHPOyX/HeVDdu+++m6+Zv/zlL/nvhRdeOJ199tkV17nyyitX9TCL47DffvvV6VUZ50QEsscff3zuQQkAAMxfFu7oAgAAAE137rnnpn/96185oLnkkksafG2EABFeRUi100475dAoGvYfffTRqvBj3XXXzb2JKvnNb36T/v3vf6fnnnsuBzY//vGP03nnnZe22GKLHKBEMPD222/noeXKcyY1tRdSS0Rgceutt+Zg4o033siB3DHHHJNOP/30XKZevXrlUCLKHD3dZsyYkZZaaqkWbStCwAjCdttttzRz5swchEUIcvPNN+dyzKuY2ytCrl/+8pc54Fp//fXzXGxRf1H26r2KYr9+/etfN1jWCMKOPvrofJzuv//+3Fswevitt956OSCKuooeUv/4xz/S+++/n4po5MiR6amnnsrhZ/j5z3+e6yV6ei2zzDJpypQpOaydPXt21XtGjx5dY1612s4666z8nriGou769++fz7+vfOUr6cMPP0x//vOf03vvvZd7oUWYVr2HGQAA0PGEYAAA0ElMnDgx93AJo0aNSquvvnqDrx82bFgOsH71q1/lcKT2sIgRxNx22231hjoRnjz++ON5/rGYbyrWEcPn/elPf6r4+u7du1f1SGorX/3qV3Mvnhga8M4778zLPvroo4pDPobyEHktEeHSH/7wh9xzKIKwqKvQWkFYBIqffPJJuuaaa3LAEj+1RW++u+66K8+J1pAjjjgiD4t45JFH5oAwwrQI0hoaom/AgAFp2WWXTUWx0EIL5WFCTzrppBx+xfka4Wz5uFUX4WgEkNG7sCERkEUAOWLEiLy+OA9qn2sRUkY4G88DAADzF8MhAgBAJxG9TGIowxjq8NRTT23Se2LOsAiLItCJ3jCLLrpo6tu3b55fK4bFqzQXUnXR4+zqq69OL7/8cg7eNtlkk7TiiivmECjmIot1RY+mGJYweoUtueSSqa1FcBNhRwR8J554Yu5Btfzyy+cALkKvtddeOw9f+Nvf/ja99tpr87St6KUVQVh5aMQIVKJHWGsMjRhDIkZvu+i1FUNPrrbaanlIvdi/6NkW4WUEY7E/TRE9nmIYxCjjoYcemueFi2Me9RLHJUKyGH7xF7/4RXrhhRfyMY0gtEjivIweklFvcY5HD7uoz6jrlVZaKW211Va5x1YEyo0FYGWHHXZYevHFF9Pw4cNz8Bxh79JLL5022GCD3Nssnov1AgAA858upbYcrwQAAIBs0qRJVb33omdX/A0AAEDb0RMMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhdOlVCqVOroQAAAAAAAA0Jr0BAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAFJKv/3tb1OXLl3y7yLadttt8/4BNb3xxhtpzz33TCuvvHK+RpZeeul23f6ZZ56Zt/v444+363Zp3KRJk/KxOeSQQ5r1PvfbylZbbbX8U2QLwj7OD9cYAEBzCMEAgEKaO3du+vWvf5222WabtOyyy6ZFFlkkrbjiimm99dZLhx9+ePrjH/84XzVolRuCqv8svPDCaaWVVko777xzuv/++9P8oDUa7J977rk0fPjwtNZaa6Ull1wydevWLa266qppyJAh6Xe/+10+dgt6PbeXaHiMOoh6WRDFubbHHnuk++67L+2yyy7pxz/+cfr+97+fFhQCuAXjuuls5W1M7EsEjR1BwAkA0Pks3NEFAABoi4btaNB+4IEHcq+OCDe++tWvps8//zxNmDAh3XTTTenVV19Nu+22W9V7oifIpptumnr16tWhZV9qqaXSiSeemB/PmjUr/eMf/8gN9PFz8cUXp+OPP75F6x07dmz67LPPUkeaM2dOLv+VV16ZunbtmgPKODYRgv3nP/9Jjz76aLr99tvT3nvvnW677bZOWc90Lm+99Vb65z//mY444oh09dVXd0gZjj322LTvvvumVVZZpUO2T/2+8pWvpFdeeSXfLzrb/ZaO8cgjj3R0EQAAqEUIBgAUzs0335wDsPXXXz898cQTdRowo3Fy3LhxNZbFa5rb0NkWIrSL3hnVjRkzJh122GHpBz/4Qe7FtthiizV7vfNDA/sxxxyTe+d97WtfS7///e9zT7Da4WUElE3tpTc/1jOdy9SpU/Pv3r17d1gZll9++fzD/Cd6EK+99tqd8n5Lx+jbt29HFwEAgFoMhwgAFM4zzzxTNQRUpWArwo1vfOMbDc4JFsODxd///ve/80/14fNqz10RvcpiWZ8+fdKiiy6ah9bbf//902uvvdYq+xPrXnzxxdOnn36ae7JV/8b5jjvumId7jN5U/fv3z0O5ffzxx00awqm8jxEGjR8/PvfKinAo6id6aZXrsSyGhfzJT36SH0f9Va+Txjz99NM5AIuyPvjgg3UCsBC9ww488MB0ww03pI5QXz035/iWhx1788030yWXXJKH3+zRo0eNobs+/PDDdPrpp6d1110313WcoxHYxrGLbVcXrx01alRaZ5118nritdttt13605/+VGfb1c/hxx57LG8zhpvs2bNnPrbRo6W6eO11112XH6+++upVx7L68J9/+9vf0gknnJDLF8eue/fuac0110wnn3xymj59esV6jPMvetlF78t4fYQIF154Ya6T+uZ+iWD67LPPTgMHDszHYIkllkibbbZZDrSbK8ocvQlj+NPyUJvf/e5307Rp0+rsf5znIc7r8v7XDkcbmsNm4sSJeRjP5ZZbLtf1t7/97fTyyy/n173//vtpxIgRuXdp1MPGG2+cj0tThyQsD/n2wQcfVK0n9mfAgAE5sG3uvIa1h5Br6vXcnGNTKpXyObX55punFVZYIe93XDc77LBDuvXWWxus10r1EevaYIMN8rkfxzNC6nfeeafeud0OOuig3HsrrtMINuPvWF7bJ598kn72s5/lazCujzh2EV7ss88++fxpaL6iplw3te+3t9xyS/77pJNOqlj22bNnp2WWWSYf4y+++KLGc1HPcXzi3hz1GfeCn//85/k9TdGU8ja3/hoS58Cll16az9Mob6wvejtW+lxq7n6Wz/EQX3Cpfs7Wvm7jiy5xbcZcf7E/cR4eeeSRVcF3bY3dl8vnQmy3XK/ln9rXVaUhlGM/zjnnnPwlkFh/nHdbbbVVHgK4turnXTyOnqIRlEe9bLTRRumee+5JzVEuY+x7fMbGtRTX1Ne//vX8xZP6xGf14MGD87bj3hPXyCmnnJI++uijOq8t7/eMGTPS9773vfw4QuTG7qe197up+9qc+qz+b51KKh2z6vfT+FJV1F+cE4bCBIDOSU8wAKBwokE6vP766y1eRzSIxPxAv/zlL/Pf5aHzQjQGl0XjyF577ZWH+tt1111Tv3798tB+d9xxR7r33ntzo/eGG26Y5lU0LIZyA8xVV12Vjj766NwoPXTo0NyoFQ095557brr77rtz6BSNiU3x/PPPp/POOy83bEcPqMmTJ+dhCSNsiXCsHFhFHdx11125EfDggw9u1lxp5aHmyo35DYnGto5Su55benwjOHryySdz+BSNiBHwlYffi4beCFajATKO4ZdffpnP1YsuuigdddRR+ZiGeE00vEXDYDTuReAZjbHRKBiP4xyIYfxqi+f/8Ic/pJ122imvL4b7i2Ee//rXv+bH5V5HcX7H8YyhIKO85fOl+nkTweWdd96Zw6JvfetbuawREkSoFfOnRUNzBAhlMbTkN7/5zfT3v/89hxfDhg3Ljd9nnXVWro9KokE13vPCCy/kuoygI7YTDbARNkYgGY3hTRH7HgFYHMdoAI8ALMp7xRVX5Dp56qmnchBQ3v+o2wgIYv/KDdlNnWso3jto0KDcWF9urI66ivc/++yz+RhFw2wEK9HAHkFIHJM41k3tKRR1s8UWW+RG/NifaPiNXpRRRwsttFC+DluqKddzc49NhAgRmEUdf+c738mNxhE+xrkX5Y66aKq4HiLsjfdEXcaxi/Av7nNx3kXIVhbrj/Mzwq0Y5vb//u//cngdgXoc94cffjiHkCHOjVhfhPzle17MCxjXdVzPca3FtVmfplw3tcW8c1EXETiMHj06b6+6KGPUdYTL1Z+L+o59jkA5zuvYxl/+8pd0xhln5C9BPPTQQ3XW1ZLyNqf+mnJe/epXv8r3+bjfRxAS64hjFkMSx7lcW1P3Mz57Y38ivI1ru3o4Wf26vfbaa/O247Mk9icCsAjzfvOb3+TPx1h39WuwKfflKFNsO0KReF08LmvsszD2O4LguNbiSwHRKzrC5Rj2N87v+Jz9xS9+Ued9sZ1NNtkkrbHGGjm8ivtIhMm77757Pia1v8zTkPjSQoTTsR+HHnpoPt8iMIp79Ntvv53DreqijiM0ii8/xPDS8W+MF198MZ1//vn58yTucXF/q72fcb+IcsYXAuL58v22Mc3Z15bWZ0vEOuPfAeXP0ygnANAJlQAACubvf/97aZFFFil16dKldMABB5Ruv/320qRJkxp8z5gxYyL9yL+rW3XVVfNPJR9++GFp6aWXLi233HKlCRMm1HjupZdeKi2++OKlDTbYoEllfuutt/L2K23rmmuuyc/F+j777LO8L4suumhpySWXLL3yyis1Xnv00Ufn1x5xxBE1lm+zzTZ5eXWPPfZYXlZpv6+88sq8PNZX3Y9//OO8PN7bHGussUZ+30MPPVTqSM2p55Yc34MPPjivo3fv3qU333yzzjY222yz/PwvfvGLOs+9//77pZkzZ9Y4ZnEO33zzzTVeN3369NL6669f6t69e+mdd96pcw537dq19PDDD9d4z/e///383LnnnluxvFEvlcS59sUXX9RZ/pvf/Ca/75xzzqmx/Kc//Wlevu+++5a+/PLLquWTJ08uLb/88vm52GalMtQuW9TFDjvskOvghRdeKDXmk08+KS277LKlhRZaqPTnP/+5xnNRztjG9ttvX/EaiPO6uedQ/Pz85z+vuP/LLLNM6cgjjyzNnTu36rmxY8fm50488cQmXVPlbQwfPrzGMYhzMY7xOuus06R7WPX1xTnVlG239NhE/X/lK18pffrppxXP76Yolynu4XEvry7qLp477LDDqpbFebb22mvn5TfccEON199yyy15+VprrVV1LF588cW8bI899qiz7XhNXPe1j3V952x9102l++2IESPysrvvvrvO6wcPHpyfi7LVPp577rlnvh9VqqNf/vKXpaZoqLzNrb+GPP300/n1ffv2Lf33v/+tcb5suummFe+9LdnPSudy2WuvvZbPnSjDf/7znxrPxX0x7g+1j31z78sNNaNU+jdDrDfes9NOO5XmzJlTtfzdd9/Nr43nou4q3WPOPPPMGut64IEHqtbVVOV1DR06tMZxjM+ouFdFfU2cOLFq+aOPPppfH/USnzeVjlft+1h5P7bbbrvS//73vyaXrSX72tz6bOw+X+mYlfcz7nH3339/k/cHAJg/CcEAgEK69dZbSyuvvHJV40r8RANtNH798Y9/bJUQLBrm4j2XXnppxefLDba1A5SGGoKWWmqp3FATP6eddlpu5CmX/+KLL86vjYb3+HvUqFF11hMNuBGORUAya9asJoVgW2yxRZ31fP7556WFF1649PWvf71VQrAePXrk99UO7dpbc+q5Jce33NhcqXH6+eefz88NHDiw0Qbl8ePH59cOGTKk4vN33XVXfv6yyy6rcw4PGzaszuujsTOe23vvvZvVmF+faDjv2bNn6Rvf+EaN5dHwHI3MldZXPm+rBwoffPBBDnQ22mijBuvhlFNOabRM0YAfr91vv/3qPBcNpauttlp+/t///nerhGCxvtoBYaw7nltsscVKM2bMqPFcvDauqW233bbJIVis5+OPP65Thq233jo/H8FfW4VgLTk2cY+Neql+72mucpmqB11lH330Ub52q9/fnnrqqaoG+0q23HLL/PwTTzxRIwSrdJ7U1pohWDkgqn1NT5s2Lddz7UA97hNxvtQOIcrnUoTzG2+8caP70Fh5m1t/DTn88MPza6+99to6z5Wvtdqfpy3Zz4ZCsPJ9+Z577qn4fPwbIOq7fH02577c0hCsX79+OUyp9PlX/kLBoYceWvHLGpW+hLDKKqvkemmq8pcjKn0xo3y9VQ+goo5i2csvv1xxfVFXK6ywQo1l5fAp7gvN0ZJ9bW59zksIViksBwA6H8MhAgCFFENx7bnnnnl4qxhGK4bzit8xLFT8xFwn1ecXaYkYDijEMFOV5pooD8cYczHF8FJNEUPHlefpiSH0YiiiGIYn5lSJYfVCDDUXYtih2mJemRiG7s9//nMezirmNGlMzLtRWwxhFXNf1TfvU0eLYxfDz1UXw2E1dSi7ptTzvBzfGNapthiCK8QwTjGUXUPK245yVtp2zDdV3nZTjmcMBxaaezxjGMgYdjGG8ouhFKM8MUxYWQyjVRZzwcQcWbGtSsODbbnllnWWxTBsc+fOrXe+lth+fftZW0PXRQyltvXWW+dzJu4FTR2OsCExNFt5mMuymEcpxPx81YeJDPHauKZi2L2mivnXag85Vvt4xhxdbaElxyaGVou58OJ6iHtwDDMZQw5WmpuxMeX52qqL9US9xzBosd143NBxLy8vfwbEORBli/fFHFQxtFkMtxbnZlw3lYbqay0xFF2cFzEcXxy3uFeHG2+8Mddz9aH9Ymi3uO/E0KXlIXlri6H+mnJdNKa59deUdVU6dlHHta+XttjP8r0zzpE4h2t77733cn3H/TuGPmzOfbklYojJf/3rX3lutBi6r7ZyvUf9NuUeU77+y/vZVHHPqzQ0YXxmxmdh9e3HuuPfADGEafzUFsMRxmfQf//736rhp0PM4xXzYLZEU/d1XuqzJSp9lgMAnY8QDAAorGjEiXkp4idEw1fMdRXzj4wdOzaHZDFXS0tFA1B53qSG/O9//2vyOmOek9rhTm0RRIT65tYqL680eX0l9c1lE8FB1FlriDK9+eabOTSp1HDVkhAsGjlra2oI1pR6npfju/LKK9dZVj4e0XjXmPK2Yy6c+GnOtisdz/K8Qc09njG/SsxzFfO0RFgQ+1Wesy0arWOOquohWIigp5JKy8v7GY3VlRqsm3MNtfZ10ZhKwU65nusLfeL5cng0r9dmaK3rs5KWHJuYPynOlZjf6Zxzzsk/UdYIli+44II8p15T1Xcela+t8vFu7nGPhvZHH300/fSnP83z/Zx22ml5eYSWMTdazGnWVsFirD/mTYtQOeadCjEnXXxWxRxrZRGSRQeeCBrKYX1bac3rpryuSscuzoPyfIRtuZ/l8zbmXmtI+bxtzn25veu3oeu/+pcRWvN6KtfhF1980egxiTqsHoLFvGEt/WJRU/e1ve/zlT7LAYDOp/W/6gQAMJ+Kxs/onXDSSSflv6MhdF6UG7rjm+z/3zDTFX+i4bM1lbf7zjvvVHx+2rRpNV43Pyj3AnrkkUdaZX2PP/54nXqu1Fulo45vpYbAciNf9d5TjW374osvbnDbETa0leeffz4HYN/61rfSa6+9lrcVAUHU849+9KPcG6C6co+ld999t+L6Ki0v72dckw3tZ/ToLOJ10ZrKvVii8bq2ljQIt+TYxD32xBNPzNdMHO/40kF82eCPf/xj2nHHHWuEpo2p7zwqH99y+Vpy3KMXVgR2U6ZMSW+88Ub6zW9+k8P5Sy+9tCqcagsHHnhgPk4RfJV7q7z00ks5JKweEJXLGr16G6r7/3eku3nTmtdN+TWVjl2clx988EHF17fmfpbXGWFJQ+sr91Zrzn25JeaX+1JTr6fy47hGGjsm8WWS6ualZ31b1mdD98bG7o/tsU8AQNsTggEAC5zyMGVNaViLRt36eltsuumm+feTTz6Z2lM0GJaDoEqNOePHj8/DEq2zzjqtvu3ycEXN7YEyYsSI/Pvqq6+utzGurDkN5W2ptY9veX0PPvhgo9/ib69zq6HjGUNOhd12262q51HZc889l2bOnFknBIteQNGYXKmXXQypVmmoqWigbI39bOi6iMbP8jY23HDDVETl4fUi2KkUaDb3+M/rsYleIXvttVf63e9+l4coi6EyX3755Sa/v1JPzwg2at/fGjruoRzS1Xfco3fa8OHD8/aiB9gf/vCHNrsPxtBuURfjxo3LwXI5DKsdpEc5BgwYkCZMmJA+/PDDZm2jueWd1/qrrvyaSscurv/a22/pfsZ52Vqfy825L7fk2Me/N/r27ZvvixG4zkv9zovJkydXvC+Xj3v5PCjXSfTSi+Myv2lJfTZ0b4zPueq94ACAYhKCAQCFE3O9xBBylRq04tvD5eHtGpvfJMRQPzFUU+0G/3DooYfmb5HHkEERCtQW26+vYXFeHHDAAXn4rJh7pxxUlJ1xxhl5WLp4TXnYutZUHvooGtSaY4sttkhHHHFEHmYpeoRUaryK+opjF70l5getfXxj/pmYFyga8c8999w6z0fdzJo1Kz+O+Ym22mqrdMcdd6Rrr7224vqiB0nMb9NWx7M8r1ftfYxtHnPMMRXXF3PtRb2MGjWqRsgcjY+V5vyJoCTmkYqQ5mc/+1nFhuUIT956661G9yWGNo253eIcKs/zUxbbjnVEr7bWmA9sfhTnTIQDN910U55rqSzChVNPPbXZx7+5xybC66effrrOa2L4x3LAsdhiizV5f66//vo68/pEL8RosN5vv/2q7m9xb1lrrbVyyBLDG1YXf0cYEnNxlXujRnljaNbaotE/9qFHjx5tdh8M5bm/rrnmmnyuRg+wXXbZpc7rvve97+XeljF8b6WeKlHe8hxc81Le5tZfU/btrLPOqhFqxX0t7gmVtGQ/Y38qBRoh5nWMz8fowViet7G62Fb1gKw59+Xytpt77GPf4n54yimn1LiOomdcXFvl17Sl2G4M/Vn930VxLfzqV7/KX3KIfzOUlXvLx2f21KlT66zr008/rXOPbU/Nrc/o5Rlf0oiAu/pnZvy77vjjj2/n0gMAHcGcYABA4cS37GMYuZjLIRruypPBR4PPvffemxs+Yn6jIUOGNLqu7bbbLs+HE8FNhGbR8Lr++uunXXfdNTeGRSNhDPcV35yO18a32mP4nGigi8ncazegtYYIJ6JRP4KI+LZzDPG4wgor5G/fxzajwadSY15r+MY3vpEb2qNBM3p1lL9h/cMf/rDR91522WX5W/RXXnll7sUR83dFXUadxre6Y3jK//znP006Lu2hLY7vDTfckPf7Bz/4QR4qLh5HY16Egn/605/Sq6++WhU+RZgRvUail0o0VA4aNCiHclFHL774Yq7/KEOEFS0V+xRz50Rj5957752/ZR/biIbkjTfeODeQRxAXjcRxLUUvvvvvvz83mvfu3bvO+iJsueuuu/KcR9HTJebji9AiegPF9RPPlYemKosh6GL/Y4jFCD5iOzF/TTS+vvLKK/n6i7CgfB3XJ3qVRGA4dOjQPNRZ/I7A629/+1uu27gfXHXVVamoYi6cCK2iDgcOHJh23nnnHIjfd999ue5rB0pNuZ6bc2zivhrPR8+qCBZiqLS4NuILCfHa6FHYnN6pO+20Uz7/4v4W+xYhTfzE9RFzjZXF9Rg9qrbffvs8h13c2+MeGOdfnG9xTscckOXzLoZqjB5qcX5HeeI8ji86RAN5BHblOcJaet00Ju4n0SAf9/DY3nHHHZdDm9qiET/O3csvvzz3fNlhhx3y+RzhUnyW/fnPf85BfdxP56W8za2/hsTxiv2JL2isu+66+V4e+xZ1G+dWpXmcWrKfsT9xj4nP4fgMjG3EOR4/Ufa4D8R6434dn90R4kVdR3AVAVh8Xsa9tiX35dj273//+3wOxTCWEZrGud7QlzdGjhyZ75tRD/GZF++LoDrWE6FM3DebEjLOi/XWWy//2yiuzbgvR+AY9+X4fd555+W6r16/cY3FfWHNNdfM5Y1rPOYA+/e//53/rRHlfeCBB1JHaG59xvlxwgkn5IAserzFNRi9g+PeFNd/pc8yAKBgSgAABTN58uTSpZdeWtpjjz1K/fv3Ly255JKlRRZZpLTyyiuXdtppp9L1119fmjt3bo33jBkzJrqt5N/V/e9//ysdddRRpa985Sulrl275tccfPDBNV7z1ltvlY455phSv379St26dcvbW2uttUoHHHBA6c4772xSmWMdse5VV121yfv54IMPlrbffvvS0ksvXVp00UVLffv2LZ1yyiml6dOn13ntNttsk9df3WOPPZaX/fjHP664/ihLpfJE/a2//vql7t275/c395+Uf/nLX0qHHXZYac011ywtvvjiuexf/epX8/G69dZb6xyb1tSSem7O8Y1zI9Yf76nPBx98UDr11FPzuRnrW2qppXJ9/uAHPyh9+umnNV47Y8aM0llnnVXacMMNc11Fna+22mqlwYMHl6666qp8fjZ2DpfFc3Ee1HbBBReU1l577XwcatfNf//739LRRx+dl0VZ11hjjdKoUaNyOes7P+L8O+6440q9evXK64y6Ov/880vjxo3L6z/hhBPqvGf27NmlSy65pLTZZpuVevbsmd/Xp0+f0je/+c3SRRddlOusqZ577rl8Li2//PL5uo/1xDX89ttv13ltY9dAQ+dQ7ftAY/UcKtVZbDveE2Vp6nrqO89mzZpVGjlyZL5fxb7HPeEXv/hFac6cOfWur7HruanH5vPPPy+de+65pR133DE/H+dLHINBgwaVrrjiiryepqheH3Eul8sW6zrkkENKU6dOrfi+V199NV+TcZ9feOGF8+9hw4bl5dVNmTIln8Obb755aaWVVsr7E/UV5b7vvvuafKwbum4q3W+rGz58eFVdP//88w3Wx913313aeeedSyussEI+plHmjTfeuHT66aeXXnnllQbf29TyNqf+GvPll1/m86W8rbgPfPe73y199NFH9d4zmruf7777bmm//fYrrbjiiqWFFlqo4jX84osv5uO2yiqr5HIss8wypQEDBpRGjBhReuSRR1p8X/7iiy/y+bP66qvneqp9XdW3jzNnzsz38ihDnM9LLLFEaYsttijddNNNzb7HNHZ+1VYuY9wD45hGHcc+brDBBqUbb7yx3vc9+eSTpaFDh+ZjGMckrsGok5NOOqn017/+tcZrGzq2DWnpvjanPsvn5dlnn50/w8qfC/Hvpfo+yxr7PAUAOpcu8Z+ODuIAAIBii2FIY2646NFx5JFHdnRxmE/FkIcxBGnM7RM9coB5E739ondsWwzPDADQGZgTDAAAaDWV5pCJYchiKKqYeyaGMAMAAID2YE4wAACg1cScQzH/Tsw9E/MOTZo0Kd1zzz15zpazzz7b/CsAAAC0GyEYAADQag488MB0/fXXp9tvvz19/PHHaYkllkiDBg1Kxx57bNprr706ungAAAAsQMwJBgAAAAAAQOGYEwwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFs3BHF6CoVl555fTpp5+mVVZZpaOLAgAAAAAA0OlMnjw5Lb744umdd95p0fv1BGsjEYDNmTOno4sBAAAAAADQKUXOEnlLS+kJ1kbKPcAmTJjQ0UUBAAAAAADodAYMGDBP7+90PcFmz56dTjvttNS7d+/Uo0ePNGjQoPTQQw81+r4zzzwzdenSpc5P9+7d26XcAAAAAAAAtJ9O1xPskEMOSbfddls68cQT05prrpl++9vfpsGDB6fHHnssbbnllo2+/4orrkhLLLFE1d9du3Zt4xIDAAAAAADQ3jpVCPbcc8+lW265JY0ePTqNHDkyLzvooIPSuuuum0499dT0zDPPNLqOIUOGpOWXX74dSgsAAAAAAEBH6VTDIUYPsOi5NWLEiKplMZzh8OHD07PPPpumTJnS6DpKpVKaMWNG/g0AAAAAAEAxdaoQ7IUXXkj9+/dPPXv2rLF8k002yb/Hjx/f6DrWWGONtNRSS6Ull1wyHXDAAendd99ts/ICAAAAAADQMTrVcIjTpk1LvXr1qrO8vGzq1Kn1vneZZZZJxx57bNpss81St27d0pNPPpkuu+yyPMTi888/XydYa6oBAwZUXD5x4sTUt2/fFq0TAAAAAACABSgEmzlzZg6waoshEcvP1+eEE06o8ffee++de5ANGzYsXX755en73/9+G5QYAAAAAACAjtCphkPs0aNHmj17dp3ls2bNqnq+Ofbff/+08sorp4cffrjFZZowYULFH73AAAAAAAAAOk6nCsFi2MMYErG28rLevXs3e519+vRJH374YauUDwAAAAAAgPlDpwrBBg4cmF5//fU0Y8aMGsvHjRtX9XxzlEqlNGnSpLTCCiu0ajkBAAAAAADoWJ0qBBsyZEiaO3duuvrqq6uWxfCIY8aMSYMGDcq9usLkyZPTq6++WuO977//fp31XXHFFXn5jjvu2A6lBwAAAAAAoL0snDqRCLqGDh2aRo0ald57773Ur1+/dN111+XeXNdcc03V6w466KD0xBNP5J5eZauuumraZ5990te+9rXUvXv39NRTT6Vbbrkl9x478sgjO2iPAAAAAAAASAt6CBbGjh2bzjjjjHT99den6dOnp/XWWy/dc889aeutt27wfcOGDUvPPPNMuv3229OsWbNyKHbqqaem008/PS222GLtVn4AAAAAAADaXpdS9e5StJoBAwbk3xMmTOjoogAAAAAAACxwWUunmhMMAAAAAAAAmkIIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4XS6EGz27NnptNNOS7179049evRIgwYNSg899FCz17P99tunLl26pGOPPbZNygkAAAAAAEDH6XQh2CGHHJIuvPDCNGzYsHTxxRenrl27psGDB6ennnqqyeu444470rPPPtum5QQAAAAAAKDjdKoQ7Lnnnku33HJLOvvss9Po0aPTiBEj0qOPPppWXXXVdOqppzZpHbNmzUonn3xy7k0GAAAAAABAMXWqEOy2227LPb8i/Crr3r17Gj58eO7ZNWXKlEbXcd5556Uvv/wyjRw5so1LCwAAAAAAQEfpVCHYCy+8kPr375969uxZY/kmm2ySf48fP77B90+ePDmdc8456dxzz83ziQEAAAAAAFBMC6dOZNq0aalXr151lpeXTZ06tcH3xzCIG2ywQdp3331brUwDBgyouHzixImpb9++rbYdAAAAAAAAChqCzZw5M3Xr1q3O8hgSsfx8fR577LF0++23p3HjxrVpGQEAAAAAAOh4nSoEiyEMZ8+eXWf5rFmzqp6v5IsvvkjHH398OvDAA9PGG2/cqmWaMGFCs3qIAQAAAAAA0PY6VQgWwx6+/fbbFYdJDL179674vrFjx6bXXnstXXXVVWnSpEk1nvvkk0/yshVXXDEttthibVRyAAAAAAAA2tNCqRMZOHBgev3119OMGTNqLC8PcRjPVzJ58uQ0Z86ctMUWW6TVV1+96qcckMXjP/3pT+2wBwAAAAAAALSHTtUTbMiQIen8889PV199dRo5cmReFsMjjhkzJg0aNCj16dOnKvT67LPP0tprr53/3nfffSsGZHvuuWcaPHhwOuKII/L7AQAAAAAAKIZOFYJFUDV06NA0atSo9N5776V+/fql6667Lg9neM0111S97qCDDkpPPPFEKpVK+e8Iw8qBWG3RC2yPPfZot30AAAAAAACg7XWqEKw8fOEZZ5yRrr/++jR9+vS03nrrpXvuuSdtvfXWHV00AAAAAAAA5hNdSuXuUrSqAQMG5N8TJkzo6KIAAAAAAAAscFnLQq1cHgAAAAAAAOhwQjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDjtHoJ99NFH7b1JAAAAAAAAFjCtGoKdcMIJDT7/ySefpB122KE1NwkAAAAAAABtG4Jdcskl6aKLLqr43MyZM9POO++cXnzxxRavf/bs2em0005LvXv3Tj169EiDBg1KDz30UKPvu/POO3P4Fu/r1q1b+upXv5qGDBmSXn755RaXBQAAAAAAgAUkBBs1alQ65ZRT0u23314nvNptt93SX/7yl3Trrbe2eP2HHHJIuvDCC9OwYcPSxRdfnLp27ZoGDx6cnnrqqQbf99JLL6Vlllkm91S7/PLL09FHH51eeOGFtMkmm6R//OMfLS4PAAAAAAAA86cupVKp1JorPOCAA9Idd9yRHnnkkbTZZpulL774Iu21117pvvvuSzfeeGPaZ599WrTe5557Lvf8Gj16dBo5cmReNmvWrLTuuuumFVdcMT3zzDPNWt+7776be4QNHz48XXnllam1DRgwIP+eMGFCq68bAAAAAACg6AbMY9bSqj3BwpgxY9Kmm26ae3698sorudfWvffem66++uoWB2Dhtttuyz2/RowYUbWse/fuOcR69tln05QpU5q1vgjOFltssfTRRx+1uEwAAAAAAADMnxZu7RUussgieQ6uLbbYIm244Ybp888/T7/85S/TYYcdNk/rjeEL+/fvn3r27FljeQxpGMaPH5/69OnT4Doi8JozZ0565513cplmzJiRtttuu1ZJIWubOHFi6tu37zytGwAAAAAAgA4IwSZPnlzvc1dccUXaddddc0+t3XffvcZrV1lllWZva9q0aalXr151lpeXTZ06tdF1RA+11157LT9eYokl0g9/+MNcPgAAAAAAAIplnkKw1VZbLXXp0qXe52O6sQjD4qe6uXPnNntbM2fOTN26dauzPIZELD/flKEao/fXm2++mR/He6IsCy3U8lEh6xuHsr4eYgAAAAAAAMznIdiPfvSjBkOw1tSjR480e/bsOstnzZpV9XxjNttss6rH++67b1pnnXXy4/PPP79VywoAAAAAAEAnDsHOPPPM1F5i2MO333674jCJoXfv3s1a3zLLLJO++c1vphtvvFEIBgAAAAAAUDAtHwewnQ0cODC9/vrreTjD6saNG1f1fHPFcIgff/xxq5URAAAAAACAAoZgt956azrooIPqnR8snrv99ttbtO4hQ4bk+buuvvrqqmUxPGLM7TVo0KDUp0+fvGzy5Mnp1VdfrfHe9957r876Jk2alB555JG00UYbtag8AAAAAAAAFHQ4xNouu+yytPrqq1d8LuYO69q1a7r00kvT3nvv3ex1R9A1dOjQNGrUqBxq9evXL1133XU5zLrmmmuqXhdB2xNPPJFDt7Kvfe1rabvttsu9xWIYxDfeeCO/Z86cOemcc85p4d4CAAAAAACwQIRgr7zyStprr73qfX6DDTZI9913X4vXP3bs2HTGGWek66+/Pk2fPj2tt9566Z577klbb711g+87+uij07333pseeOCB9Mknn6QVV1wxffvb304/+MEPckAGAAAAAABAsbRqCBYB06KLLlrv89ETbF7m4OrevXsaPXp0/qnP448/XmfZmWeemX8AAAAAAABYMLTqnGCrrLJKGjduXL3Px3O9e/duzU0CAAAAAABA24Zgu+yyS7rxxhvTH/7whzrP/fGPf0w333xz2nXXXVtzkwAAAAAAAFBHl1KpVEqt5IMPPsjzfk2dOjVtu+22+XF44YUX8jCF0Qvsb3/7W56Tq+gGDBiQf0+YMKGjiwIAAAAAALDAZS2tOifY8ssvn5555pl09NFHp/vvvz899thjeXmXLl3S4MGD02WXXbZABGAAAAAAAAB0rFYNwUKfPn3SPffck6ZPn57+9a9/5WX9+vVLyyyzTGtvCgAAAAAAANonBCuL0GvjjTduq9UDAAAAAABAvRaq/ykAAAAAAABYAHuCLbTQQvnns88+S4suumh+HPN/NSSe/+KLL+ZlswAAAAAAANB2IdhBBx2UQ62uXbvW+BsAAAAAAAA6UpdSqVTq0BIU1IABA/LvCRMmdHRRAAAAAAAAFrisxZxgAAAAAAAAFI4QDAAAAAAAgMKZpznB1lhjjWa/J+YMmzhx4rxsFgAAAAAAANouBFtllVVyqAUAAAAAAACFCcEef/zx1isJAAAAAAAAtBJzggEAAAAAAFA4rRqCvfXWW+nuu++u+FypVMrPTZo0qTU3CQAAAAAAAK07HGJtP/zhD9O///3vtOuuu9Z5LuYOGz16dFp99dXTdddd15qbBQAAAAAAgLbrCfbUU0+lHXfcsd7nd9hhh/TnP/+5NTcJAAAAAAAAbRuCvfvuu2nllVeu9/mVVlopvfPOO625SQAAAAAAAGjbEKxnz54NzvkVc4YtvvjirblJAAAAAAAAaNsQbLPNNkvXXnttmj59ep3nYtmYMWPSoEGDWnOTAAAAAAAA0LYh2MiRI9N7772XNtlkk3T99denl19+Of/E4wi/4rlTTjmlNTcJAAAAAAAAdSycWtFWW22VrrzyynTcccelQw45pGp5qVRK3bp1S1dccUXadtttW3OTAAAAAAAA0LYhWDj88MPT4MGD0+9///v0+uuv52X9+/dPQ4cOTb17927tzQEAAAAAAEDbh2Ahwq4TTjihLVYNAAAAAAAAHROCVTdu3Lg0ZcqU9JWvfCXPC7bQQq06DRkAAAAAAAC0Xwj29ttvp5133jm9+OKLVcvWWWeddPfdd6c11lijrTYLAAAAAAAAqc26ZR1//PGpV69eeV6wmTNnpr/85S9p7ty56bvf/W5bbRIAAAAAAABaJwR74IEHKi6P0Ouss85K/fr1S926dUubbLJJDsZiOQAAAAAAAMzXIdhuu+2WDj744PThhx/WWB5zgD311FM1lj399NOpd+/e87pJAAAAAAAAaNsQLHp2vfzyy3m+r1tvvbVq+emnn55OOumktNVWW6Vhw4alr33ta+mWW27JywEAAAAAAGC+DsE23HDD9Nxzz+XA69BDD809w6ZOnZp23333HJANGDAgffTRR2nTTTdNjz/+eA7EAAAAAAAAoC11KZVKpdZa2RtvvJGOOOKINH78+HTOOeeko446Ki2oIvwLEyZM6OiiAAAAAAAALHBZyzz3BKtuzTXXzL29zjvvvDRq1Ki0zTbb5GCstcyePTuddtppeV6xHj16pEGDBqWHHnqo0ffdcccdaZ999klrrLFGWmyxxdJaa62VTj755NxDDQAAAAAAgOJptRDs888/TzNmzMiPR4wYkVO55ZZbLq2//vrp7LPPTnPnzp3nbRxyyCHpwgsvzEMqXnzxxalr165p8ODB6amnnmrwfVGeV155JR1wwAHpV7/6Vdpxxx3TpZdemjbbbLM0c+bMeS4XAAAAAAAABRsO8cMPP0zDhw9P9957bw66omvatddemzbaaKP8/O23356OO+64tOKKK+blMYdYS8S8Y9Hza/To0WnkyJF52axZs9K6666b1/3MM8/U+97onbbtttvWWDZ27Nh08MEHp1//+tfp8MMPT63NcIgAAAAAAACdeDjEE088MQdQV111VR52cIkllkh77713mjNnTn4+HkcvrK9//etp0003TaecckqLtnPbbbflnl/Rq6use/fuOYB79tln05QpU+p9b+0ALOy55575d5QNAAAAAACAYpnnEOz+++9P3//+99Ohhx6adt999/Sb3/wmB1L//Oc/q16z1FJLpWuuuSY98MAD6a677mrRdl544YXUv3//1LNnzxrLN9lkk/x7/PjxzVrfO++8k38vv/zyLSoPAAAAAAAA86+F53UFiyyySI15tWKIwi5duqSFF6676m9+85vppZdeatF2pk2blnr16lVneXnZ1KlTm7W+c889N/csGzJkSGqNrni1TZw4MfXt23ee1g0AAAAAAEAHhWAxrOA555yTvvjii7TMMsukyy+/PK299tppnXXWqfj6GMKwJSJo69atW73rqx7ENeamm27KPdNOPfXUtOaaa7aoPAAAAAAAABQ4BBs9enRaaKGF8pxgn332Wdp8883TxRdfnJe1ph49eqTZs2fXWR49z8rPN8WTTz6Z5xHbYYcd0llnnTXP5apvMrb6eogBAMVz6cCjUhEcO/7Kji4CAAAAwPwTgi222GLpkksuyT9tKYY9fPvttysOkxh69+7d6Dr+8Y9/pN122y2tu+666bbbbqs4ZCMAAAAAAACdX+t212pDAwcOTK+//nqaMWNGjeXjxo2rer4hMUfXjjvumFZcccV03333pSWWWKJNywsAAAAAAEDH6TQh2JAhQ9LcuXPT1VdfXbUshkccM2ZMGjRoUOrTp09eNnny5PTqq6/WeO8777yTvv3tb+chGh988MG0wgortHv5AQAAAAAAaD+dZjzACLqGDh2aRo0ald57773Ur1+/dN1116VJkyala665pup1Bx10UHriiSdSqVSqWhY9wN5888106qmnpqeeeir/lK200kpp++23b/f9AQAAAAAAoO10mhAsjB07Np1xxhnp+uuvT9OnT0/rrbdeuueee9LWW2/d6Fxg4bzzzqvz3DbbbCMEA4BWcunAo1Jnd+z4Kzu6CAAAAAAsaCFY9+7d0+jRo/NPfR5//PE6y6r3CgMAAAAAAKD4Os2cYAAAAAAAANBUQjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDgLd3QBACiuSwcelYrg2PFXdnQRAACAeeT/TwBgwaMnGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHAW7ugCwILq0oFHpSI4dvyVHV0EAAAAAP4/2pwA/n9CMAAAAIAFiAZyAGBBYThEAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4Szc0QUAAAAAAIB5cenAo1IRHDv+yo4uAhSKnmAAAAAAAAAUTqcKwWbPnp1OO+201Lt379SjR480aNCg9NBDDzX6vtdeey2ddNJJafPNN0/du3dPXbp0SZMmTWqXMgMAAAAAAND+OlUIdsghh6QLL7wwDRs2LF188cWpa9euafDgwempp55q8H3PPvts+tWvfpU++eSTtM4667RbeQEAAAAAAOgYnSYEe+6559Itt9ySzj777DR69Og0YsSI9Oijj6ZVV101nXrqqQ2+d7fddksfffRReumll3KABgAAAAAAQLF1mhDstttuyz2/Ivwqi6ENhw8fnnt6TZkypd73LrvssmnJJZdsp5ICAAAAAADQ0TpNCPbCCy+k/v37p549e9ZYvskmm+Tf48eP76CSAQAAAAAAML9ZOHUS06ZNS7169aqzvLxs6tSpHVCqlAYMGFBx+cSJE1Pfvn3bvTwAAAAAAAB0op5gM2fOTN26dauzPIZELD8PAAAAAAAAnaonWI8ePdLs2bPrLJ81a1bV8x1hwoQJzeohBgAAAAAAQNvrND3BYtjDGBKxtvKy3r17d0CpAAAAAAAAmB91mp5gAwcOTI899liaMWNG6tmzZ9XycePGVT0PAAAA0FSXDjwqFcGx46/s6CIA0EF8lkFBeoINGTIkzZ07N1199dVVy2J4xDFjxqRBgwalPn365GWTJ09Or776ageWFAAAAAAAgI7WaXqCRdA1dOjQNGrUqPTee++lfv36peuuuy5NmjQpXXPNNVWvO+igg9ITTzyRSqVS1bKPP/44XXLJJfnx008/nX9feumlaemll84/xx57bAfsEQAAAAAAAGlBD8HC2LFj0xlnnJGuv/76NH369LTeeuule+65J2299dYNvi9eG++r7oILLsi/V111VSEYAAAAAABAwXSqEKx79+5p9OjR+ac+jz/+eJ1lq622Wo2eYQAAAAAAABRbp5kTDAAAAAAAAArZE4xiunTgUR1dhHl27PgrO7oIAABtqgj/Zgv+3UZjnOsAxeGeDoCeYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMJZuKMLAAAAncmlA49KRXDs+Cs7ugjM54pwrjvPAQBgwaYnGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwlm4owsALFiKMMF6MMk6AAAAAMD8TQgG0A6EfwAAAAAA7ctwiAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACmfhji4AAAAAANB2Lh14VOrsjh1/ZUcXAYBOSE8wAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcBbu6AIAANA5XTrwqFQEx46/sqOLAAAAQDP4/1GaSk8wAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACF0+lCsNmzZ6fTTjst9e7dO/Xo0SMNGjQoPfTQQ01679tvv52+853vpKWXXjr17Nkz7b777unNN99s8zIDAAAAAADQvhZOncwhhxySbrvttnTiiSemNddcM/32t79NgwcPTo899ljacsst633f//73v/SNb3wjffzxx+kHP/hBWmSRRdJFF12UttlmmzR+/Pi03HLLtet+AFBclw48KhXBseOv7OgiAHQ493QWFM51AACKqFOFYM8991y65ZZb0ujRo9PIkSPzsoMOOiitu+666dRTT03PPPNMve+9/PLL0xtvvJHXsfHGG+dlO+20U37vBRdckH7xi1+0234AAAAAAADQtjrVcIjRA6xr165pxIgRVcu6d++ehg8fnp599tk0ZcqUBt8b4Vc5AAtrr7122m677dLvfve7Ni87AAAAAAAA7adThWAvvPBC6t+/f57Pq7pNNtkk/45hDSv58ssv04svvpg22mijOs/FeydOnJg++eSTNio1AAAAAAAA7a1LqVQqtftWWyiGLlxppZXSI488UmP5P//5zzRgwIB05ZVXpiOPPLLO+z744IO0wgorpJ/+9KfpjDPOqDNM4jHHHJNeffXVtNZaazW7TLHdSmJ9Me9Y3759m73OBc2HE6elzm7Zvr0WyP1uyb7b787NfjfNgrrfRdn3BXW/g3O9aex352a/F6x9X1D3OzjXm8Z+d272e8Ha9wV1v4NzvWnsd+dmv6lPdGKKrKWlHZk61ZxgM2fOTN26dauzPIZELD9f3/tCS97bUl26dMkHho6/0OMiCfNbILmg3uDs94LFfi9Y97XgmC9Y7PeCZUG9ty2ox3tB3nf7vWBxb1uwLKj7vSDvu/1uG+5t8xf7TdEtssgiafHFF2/x+ztVCNajR480e/bsOstnzZpV9Xx97wsteW9jJkyY0KL30X7KvfUcK6Ao3NeAInJvA4rIvQ0oIvc2oDPpVHOC9erVK02bVrebY3lZ7969K75v2WWXzb3AWvJeAAAAAAAAOp9OFYINHDgwvf7662nGjBk1lo8bN67q+UoWWmih9LWvfS09//zzdZ6L966xxhppySWXbKNSAwAAAAAA0N46VQg2ZMiQNHfu3HT11VdXLYshDseMGZMGDRqU+vTpk5dNnjw5vfrqq3Xe+9e//rVGEPbaa6+lRx99NA0dOrQd9wIAAAAAAIC21qnmBIugKwKrUaNGpffeey/169cvXXfddWnSpEnpmmuuqXrdQQcdlJ544olUKpWqln33u99Nv/71r9POO++cRo4cmSdTu/DCC9NKK62UTj755A7aIwAAAAAAANKCHoKFsWPHpjPOOCNdf/31afr06Wm99dZL99xzT9p6660bfF8Md/j444+nk046Kf385z9PX375Zdp2223TRRddlFZYYYV2Kz8AAAAAAABtr0upencpAAAAAAAAKIBONScYAAAAAAAANIUQDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwBIKf32t79NXbp0yb+LaNttt837B9Q1Z86c9OMf/zitueaaqVu3bvlaueuuu9pt+5MmTcrbPOSQQ9ptm7Tt/bPonyktdeaZZ+Z6efzxx1NRLQj72Nr8GwUAaEtCMACgkObOnZt+/etfp2222SYtu+yyaZFFFkkrrrhiWm+99dLhhx+e/vjHPzZpPauttlr+aa9G8Oo/Cy+8cFpppZXSzjvvnO6///7UmRv3Ku1fjx498jHZdNNN07HHHpuefPLJ1N4NbtV/llxyyfT1r389/eIXv0gzZ85MC4o4lrH/cWwXVBdccEH66U9/mnr37p1GjhyZA7G11147LQgEcAvGddPZytuYOF9jf+L8bW8CTgCAzmXhji4AAEBbBGC77LJLeuCBB9LSSy+dQ6SvfvWr6fPPP08TJkxIN910U3r11VfTbrvtVvWePffcM4cxvXr16tCyL7XUUunEE0/Mj2fNmpX+8Y9/pPvuuy//XHzxxen4449v0XrHjh2bPvvss9TRqu/fF198kT788MO8j1dccUW67LLL0re//e1c1gj/2sPBBx+cQ85SqZT+85//pDvuuCOdfvrp6Q9/+EN66qmncnhK8d1zzz1piSWWSA899FBadNFF2337X/nKV9Irr7ySrw/mPy25f84vnym0v/hSx7777ptWWWWVji4KAABCMACgiG6++eYcgK2//vrpiSeeqNOwHI2Z48aNq7EsXjM/NEBHaFf7m/pjxoxJhx12WPrBD36Qe7EttthizV7v/NIYV2n/wptvvpmGDx+e/vSnP6Udd9wxPfvss6l79+7t0psgeoWV/fznP08bbLBBeu6553JYGiEZxTd16tS03HLLdUgAFiJsXVB6nnVGLbl/zi+fKbS/5ZdfPv8AADB/MBwiAFA4zzzzTFXAUakRMkKkb3zjGw0Ob1QeOurf//53/qk+bF7tYcOiV1ks69OnT25Ej15M+++/f3rttddaZX9i3Ysvvnj69NNPc0+2skceeSQHRjHcY8xj1L9///T9738/ffzxx02ab6P68Fjjx4/PPeYipIr6iWEky/VYFj2mfvKTn+THUX/V62RerbHGGunee+/NQUCU5corr0wdIXpt7LXXXvlxBGHVg9Ozzz47DRw4MB+L6DW02Wab5cC1tur1GuuIeo1jVHvorltvvTVtt912+bkI/KJ+99tvv/T888/XWWdsJ+o8jk+8dp111smB3ezZs+u8NrYTx/uDDz5II0aMyPsU58eAAQNyoFr73CpfC3Fsqx/T8pCXcT6NHj06ffOb38w9KuMcX2GFFXJPyggr63PjjTemDTfcsGrYywMPPDCHTQ3N/fLggw+mwYMH5wbkKHPfvn3TKaeckj766KPUHFHmUaNGpbXWWivX1zLLLJN22GGH9PDDD9fZ/yjLW2+9VeM6b8oQqOX9iPnEYijFKGtsK7YZQ7GWxbn8ta99LddD1F8Mtfjll182aUjC6kO+XXXVVXk9sY24x8SxrXStl49/U4aQi3N09dVXz4+vu+66Gse/9lBvzTk2L774Yj6Xox7jtXG+xLkQvUCjvhpTvT7i/rrHHnvk6ySuvS233DKH5ZXE9XDOOefkeor7WM+ePdNWW22Vfve731V8fQyLG9dg+RqJ4TDj3nf55ZfXeF3tc7Yp103tz5To2RvXb1wL0Qu2kqOPPjq/J3omtuZnTFPK25L6a8jf/va3/PkUw8zGer71rW81eL9ozn5GueN8DXH+1nfdRk/juA/E/TKuv/j3QBzv+s6fptyX41w49NBD8+P4Xb0uq19X9Q0b3JLP7ThfYpje8pyFUT+nnXZa7t3eVOVrP75wcuGFF+bP2ti/uCeddNJJacaMGRXfFz2ko2dbfEbHtuPLAnHv/+tf/1rntdX3O75EMmjQoPxZ2ZwhpZu7r82pz4aGt67vmJXvp++8807+ElL02u3atauhMAGgk9ETDAAonGikCa+//nqL1xENJdFY/ctf/jL/XR7CL0QQUhY9ziI0iYbdXXfdNfXr169qWL0IdR577LHc+DuvYri+UG6IjQbxaDCNRuGhQ4fmhtVovDn33HPT3XffnZ5++unc4NoU0bh33nnn5VAnGnkmT56cbr/99twQGIFUNOqX6+Cuu+7KvevKwwi2pmh0jfmYogwRoFSv8/ZUu66jkT8CoBdeeCEfy+iVFyFGhALRQBvBZARStUWDbwRn0Wgf74lQKhp2Y/3ReBqNuBEoxPkTIUGcN3G+RH1vtNFGVeuJ90Z4FY2Ve++9dz6uf/nLX9IZZ5yRGwBjCL+YP666KPMWW2yRtzdkyJDcuP373/8+r2uhhRaq6uEW4UKIskTjf/XwpHx8Y5i+GCJy6623zoFeBEpxjkSAEHPVxfkWjZDVxfkUDZfx2thWND5HOaNM9fWOicb5aIiMxswYzjTO6QhTzj///DwcaNRnNKY3przv//znP9PGG2+cz6Oo+2jIj+E2Y+jNI488smr/Yz9rX+dNvXZCDHsWPUsjIIoeXbfddlsOqOJxlD/qNvYnrqeoswjM4lyP+mmqU089NZ9vcY+JfYjzJIK2f/3rX+nRRx9NLRXHO+orhlqNnrPl86H2fa45xyaWR+N3XD/RWB4hRTSwR1kjXIprpanDjEY4GfelCGXimE2bNi2HFDvttFNuZN9nn32qXhuN5BF0xv0pGviPOeaYHF7H8YjXxb0sGtfLrr766rzOlVdeOddrXIvvvfdeLn9cb9/97nfrLVdTrpvaInCIcsR247qJbVYX12jsWwQ/1a+n1viMaUp5m1t/DYkvUEToFeuMskeZ4/2x3biXVtKc/YzP5vgsiqF0TzjhhKrrtfp1G6F2bC+CqQjyok7jiyQRMMbj+Aw94ogjql7f1PtyhEmxnRgyd/fdd69xnTR232jp53Z8zsScmXHex3UW11zcY+N8rf3FhsZE4PXnP/85fec738nlj/tK3P9i/TEEcPUe2H//+9/z/SbCxDg3ok7iXhp1H59rd955Z77vVZpjMe73cRwjfK0USNWnOfvamv8OakjsfwxtGoFe1EF8hrbXkM0AQCspAQAUzN///vfSIossUurSpUvpgAMOKN1+++2lSZMmNfieMWPGRPKRf1e36qqr5p9KPvzww9LSSy9dWm655UoTJkyo8dxLL71UWnzxxUsbbLBBk8r81ltv5e1X2tY111yTn4v1ffbZZ3lfFl100dKSSy5ZeuWVV2q89uijj86vPeKII2os32abbfLy6h577LG8rNJ+X3nllXl5rK+6H//4x3l5vLc5Gtq/6v71r3/l13Xt2rU0Z86cUlsp10ft/Zg6dWppxRVXzM+NHTs2Lzv44IPz3+eee26N186cObO0ww475PPshRdeqFivUY+1XXXVVfm5jTfeuPTRRx/VeO6LL77IZah9Xu6555752Fc6Fr/85S9rLC9ve/jw4Xl9ZXGORr2us846NV5fLm+sr5Io4/vvv19n+ZQpU0q9evUqrb322jWWT5w4sbTwwguXll9++dLkyZOrln/55Zelfffdt6p81T366KN52WabbVaaPn16jefKdXDiiSeWmmLEiBH59fE7tln2+uuvl3r27JmvnTgfm3qdN3YObbTRRjXKHPsf95+4N6y22mql//znP1XPxevifhF1U/38Ll8fca5VVz73+vTpU/r3v/9dtTzeu9VWW+Xnxo0bV+M9sSzKVkl5fdX3v75tt/TYfO9738vL7rrrror3zLlz55YaUy5T/IwcObLGc3/961/z+RX1+/HHH1ct/8UvfpFfv9NOO9Wo23fffTcf23ju6aefrlq+4YYb5nMhnq+t9vne0P2zvuum0mfKM888k5ftvffedV7/u9/9Lj8X9dcWnzGNlbe59VefuObWWmutiudA3KvKx7X6vbcl+1npXK59zOLefPPNN9dYHufw+uuvX+revXvpnXfemaf7cu3PzYY+J+flczvO1f/+979Vy//3v/+V+vbtW1pooYVK06ZNKzVFub6ijqv/eyiux7322is/99Of/rRqeZwDsY1u3bqVHn/88Rrrevvtt0u9e/curbzyyqVZs2bV2e/FFlss/zusOZq7ry2pz4bu8/X926Z8vh544IFt+m8SAKBtGQ4RACicmNPphhtuyN/Ujd/Reya+7R49xPbcc8/8DeHWMHbs2NyLInpJ/N///V+N59Zdd938LfPoPRQ9Upoq1hc9LuInhvSJb1nHXFkhvoUfQzrFPsU37GOIotrzCJ111ll5+Knrr7++4lB5lUSvmdrDsEWPoehdVH1IwPYQQw2FuXPn5m9ft7UY0ijqOnoWRD3HcYxvnG+yySa5h89///vfXN/RAyB641QX35iPb5xHO1n0SqktegiUexxVd8kll1R9i712r6gYZimGZiuLHjpxHK699tp87KuLnmBxTkevudqip1EMeRXrK4t9i2MdPbv+97//NbmOooyV5reJnmnRyyyGMIueYWVRFzGk1XHHHZeHsiqLnkEx1Fr1MpX96le/yr+jd1Ptb+7HuRl1WWk/a4vrIo5XfGM/euFVH8Iuhtc6/vjj82vi2m0tsU/VyxzDhkUvibiW4xiVz+kQr4veEdGb4u23327yNn70ox/VmJcqzonykGxtfY229NjUPl9D9AyMXhTNOfdi36uLa3HYsGG5fqMnSllcI3G847yv3jMyeofEcQi/+c1vaqwrXlepV1pbzecUvdpiuLb4DKp9fysP71d9HsK2+IypT0vqr75eYDF8YfQcjZ5G1cVnVgyjWVtr72f0EIsebfHZH/fx6uIcju3E8JTR47kl9+WWmJfP7ficiV6YZdHzKa6B6JFcafjchkTPuVVXXbXq77geY7jb+B3nQFn0vps4cWK+j0fvwepi2ND4PIwhAqM3cm3REzb+HdYSTd3X1v53UEOiR3X0eq3d4xoA6Dx8igMAhRRD/UTgFcMYxRA/0YAWv2MYn/g56KCDquZsaany/CbR4BZBSm3l4RgjdKjdsFefGDaoPO9WNLxFY1AMCxQNPeVhh2KIolBpWKloZI7GpxjuKMKJGOKsMdWH3iuLhuEIEadPn546YijC0NixieG14ljWbuBszjCK5YbncmNbBCXRcPq9730v10HMexKBXHmOr9rK8xvFMa4tgrTaYjiul19+OddtY42EMRRZnFvRIF8erq+2mAOl0rZjPyoNHVgOpeK4RlDUVDGsVARycc5HSFh7fpYIdMohTVxrIYKg2qLxNcpQfW60EOuN+o4hG+Onttje+++/n0PJ8nCnlUTje9RbhH3VG1LL4pqJ4fjKZWwNla6faCQOX//61+s8Vw7FYpi16o3Rzd1G9WPZlpp7bGLovDhXYgi+CEljWLw4HpXCj8bE8HfRmF1bDHMX124cxwiNPvnkkzzcYtRt7Qbx6vfK6sc9GtZPPvnkfG+OoCQa+qOcMQReW4ryxvCit9xyS9WQi++++24eli7uCeutt16bfsZU0pL6q0/586l2cFL+TIv7QoQr1bX2fpbXF5+nldYX52t5fc29L7fUvHxut+b1X+m4RHBfvi9HGBmfo+U6jGElK9XhG2+8UVWHtYdErPTZ11RN3dfW/ndQQ+JLVBEGAwCdlxAMACisaLiN+SziJ0SYEd/8jl5O8c3zCMmqz4HTXNHoW+4h0ZDm9LqJRvHaAUFt5fk16vtmenl5NGY1RX1zZsS3nqPO2tPUqVOrGkujIauxEKwcGFavv+aEYBGSVp8fp75jHGFY/DTnGMdcQ7WVj0n13kH1iQa/CAWjwbb2fs7LMQ3NOa7R2ybCjOj5tv322+cwIwLD6DkQ869Ej4vq37Yvn5/1zZkSy2uf41HP0Xussf2Mem4oBGvta6MpKs1xVq7nhp4rB6gtPZ4tOZYt0dxjEw3gMadP9MaI+aSiN0aIOZWix+V+++3X5G3Xdw6Vr63y8W7JcY+gOwLmmKcsertF0Bxhd4QE0TOmUmN8a4gvYETPqgjxyiFY9KSLOq7eC6ytPmPa+rpp7PqvdF9s7f0sry/mpYqfxtbXnPtyR9Rxa17/DR2XCLyinLG9ch1WCr5b8tnXVE3d1/a818/L/gAA8wfDIQIAC4wIVqKHWEwMHx599NF5Wl+5gTu+vR5hRX0/tRs251V5uzEUUSXTpk2r8brOJEKpcg+axoYeiqHYatd1YwFic5XrMM6Zho5xudzVVerJVm7ga8pQeOVtxzfaG9p29d5zbSEa7GM4qBiKKnreXXDBBemnP/1p7h0QwUZt5R5o0bulkkrLY18j9GxsPxvrOVXka6Op4ryLQKWSljQIt+TYxLB/99xzTw5yoxdhnENx3Pfff//08MMPN3nb9Z1D5eNbPo4tPe4RSP3lL3/JDf4x/FsMiRq9R3bYYYeq3kKtLYYRjd4rMYxl9FIJEYjFlzaifjriM6Y1r5vyaxo7dm25n+X1RY/EhtY3ZsyYZt+XW2p+uTc195r6wx/+0GAdRrBd27z0sG/L+owvbrTk3tge+wMAtC0hGACwwCkPr9WU8CCCs/q+ab3pppvm39HroT2Vh2uKXjiVGnKih1T02llnnXVafdvl+ZzaovdJDGMXAUt5qLL5QfRqiYaz1jrG0YMq5riJhsjGhhaL4QoHDBiQJkyY0KbzozV2TGOYtBiCrPb5FHO0xBCj9Z2flZ6LngZTpkypeC1FYBL7Oi8ilIv50KIxvVKjZjmsjGH2iioCq0p1HMc37g3NPf7zcmxiuM7NN988h6blucWiUb2pYsizGKqvtvK9r3yuxT09eihGiFEepq05xz1CkBjSLXoiRbge11uEYW11LyzPwRjhVxyTF198MQ97W3soxtb8jGmovPNaf9WVXxM9RGuLbVe6L7RkPxvan+aurzn35ca2PT9+bldX6bi8+eab+Z4Rw/6VA8GO+vdNW9Zn3BvjGFfqhdvcudUAgM5FCAYAFM7NN9+ch0CKRvra4lvD5SGXtt5660bXFcN7RY+AmTNn1nnu0EMPzQ1GMUxYfKu/tth+pQaaeXXAAQfkXgOXXHJJDiiqix4XM2bMyK+JBujWVh6KbvLkya263rfeeivtvPPOuWdENG4deeSRaX4Q84BEIBcNZD/72c8qNnrG/DZR/qY6/vjj8+/Yx/KQTtXPmfI32MtDtsWcSzGEZ6VQJ8KJ8twobXVMo2E0GsbLQ1WWA+ToCfbPf/6zzuujN0v04ovzs3oYE+8ZNWpUxTos98484ogjamynLObsiR47jYkea3G8IjiJa6H2cYogJq6dAw88MBVVBLdxLP/0pz/VWB5zoUUIWVs0DEdPh/qOf3OPzTPPPFPxflnugRIhZVPF9REBWnVxLcbwgdHDI4a0LYtrJM6xU045pcY59sEHH+Rrt/ya6sFOpS9CxJx3TSnnvNwL99prr9xj8oYbbshzU1YPxtrqM6ax8ja3/uoToWeE0REi1g48L7300jrzgbV0PxvanxjKcquttkp33HFHuvbaayuW86WXXqo61s29L7fk2Hfk53Z10Tuu+n0g9i2OefyO41C2++6752D0sssuS/fdd1/FdcW8YfHllY7QkvqMe2P0BCv3ACyLazB6rAIAxWVOMACgcMaNG5cbemIehy233DKtvvrqeXkEFTHkVTTQRgNPzHPUmO222y7PBbXjjjvm0CwaVGKS9V133TU3hMWcN9EQG9+ajtdGz51oUI7G/2ggimG2Zs2a1ar7F6FEzF9zzDHH5G/dxxCP0YMgvuEd21x77bXTueeem9rCN77xjdwzKsKMl19+uWrerh/+8IdNen8EORGehGiMihAneu1EuaMRLuo5eke0dUNgc0TDbYRAP/rRj/L8RnFOxbwqEQi88sor+fyI4LV8njXm8MMPz9+uj3Wtueaa+VyM4xfriyE6o6G5XEfx+G9/+1uetygaJGOYtlVWWSX3VInzORqao+HyyiuvbPH+RYN1zIVzyy235EbFGNYuzuEIiuJxhCBHHXVUDif33nvv/JpoMIwALK6Du+++u8b6opwRXPzgBz/I18o+++yTA4sIpqPcsSx6vlQX184555yTz6uok+iVE/UZ881Eg22c21HvDzzwQKP7E+uJ+o3jFscmztloyP/d736Xw7FY3tRj1RmNHDkyPfjgg/m8irpfdtllczAV50vMf1c7TIgeh4MGDcp1FgFi//79c0+X3XbbLa233nrNPjbnnXdePo8jhIjXxfqjF9n999+f7xcjRoxo8r7EPfc3v/lNvqdvscUWOYi49dZb873iqquuqhp6s7zfsY0IXuIci3JGA33MaRRhx6mnnprLWRb37Shb3LvjnhoBUNRBnDMxHOu3vvWtebpuGtKjR480dOjQdM011+RrOz5L4ksAtbXmZ0xj5W1u/dUn1hn7FfMHxv0iAr9+/frlnjmPPPJIvsfXvo5bsp/xmpi7LcLZ2E70Zosg7dhjj83P33TTTXnYyRjiMsLvOMfj+f/85z/5/hOfX7He+KJDc+/LMdxnhKTxORzlKs8Zddxxx9U7nGFHfm5XF9fRwIEDq+7Lca+Iz+A45+MYl8U5EiFifObEuRnhZrwv9juOSVwn0YMsrsnmBNutpSX1GccnArCjjz46n4t9+vTJ52W8fpdddslDuAIABVUCACiYyZMnly699NLSHnvsUerfv39pySWXLC2yyCKllVdeubTTTjuVrr/++tLcuXNrvGfMmDHRJSD/ru5///tf6aijjip95StfKXXt2jW/5uCDD67xmrfeeqt0zDHHlPr161fq1q1b3t5aa61VOuCAA0p33nlnk8oc64h1r7rqqk3ezwcffLC0/fbbl5ZeeunSoosuWurbt2/plFNOKU2fPr3Oa7fZZpu8/uoee+yxvOzHP/5xxfVHWSqVJ+pv/fXXL3Xv3j2/vyn/pCzvX/WfqKsVVlihNGjQoNKxxx5bevLJJ0vtpVwfUQdNMXv27NIll1xS2myzzUo9e/bM9d2nT5/SN7/5zdJFF11U+uCDD5pcr2U33HBDaeutt87ri7pYbbXVSvvvv3/pb3/7W53X3n333aWdd94511ecyyuttFJp4403Lp1++umlV155pcZrY9uxf5XEuRvPx/Go7rnnnsv7EmXp0qVLnbqJ6yKO+WKLLVZabrnl8rX14osv5n2srx7Hjh1bGjhwYN635ZdfvjRs2LDS22+/XRowYEBpqaWWqli+OAeGDh1a6tWrV97PeF9s96STTir99a9/LTVVXAOnnnpqvibjWMX2vvWtb+VrpjnnekMqXVON1XOoVGfl66P2vaWh9TR0nv3hD38off3rX891v+yyy5b22Wef0qRJk+pd3xtvvFHaZZdd8mvLx7/2vbCpxybq+JBDDimts846+XyKcybuw8cdd1wuQ1NUr49//vOfpd122y3f53r06FHafPPNSw888EDF982cObN01lln5XMs7k9LLLFEaYsttijddNNNdV57xRVX5PN49dVXz+tdZpll8vl67rnnlmbMmNGkY93QdVPfZ0r1+izfC+P+11h9zOtnTGPlbW79Neb5558v7bDDDnkd8bPddtuVnnnmmQbvGc3dzwsuuKC09tpr52u80udnHMfYnw033LC0+OKL532K++zgwYNLV111Vf58b+l9+f777y9tuummeb3l41i+rhrax3n93C5r7PyqrXztT5w4sXT++efneo396927d+mEE04offzxxxXf9+6775ZOO+20fE7EdRL7G8dn7733zv8WmDNnTtVrG9rvxrR0X5tTn+Xrbquttsr7EudXnAv/+Mc/6i17Q5+nAEDn0SX+09FBHAAAUHwxRFX0ooseBfHte6hk0qRJuRfZwQcfXDVcINByMdxm9LKOHqHRiwoAYEFiTjAAAKBVxTx6c+bMqbEshr88+eST85Bm1edyAgAAgLZiTjAAAKBV3X777XkOtZhXKeZdibnAYv6y119/PfcCi7lZAAAAoK0JwQAAgFY1aNCgtOWWW+bg67///W9eFsPbnX766em0005LPXr06OgiAgAAsAAwJxgAAAAAAACFY04wAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFM7CHV2Aolp55ZXTp59+mlZZZZWOLgoAAAAAAECnM3ny5LT44ound955p0Xv1xOsjUQANmfOnI4uBgAAAAAAQKcUOUvkLS2lJ1gbKfcAmzBhQkcXBQAAAAAAoNMZMGDAPL2/0/UEmz17djrttNNS7969U48ePdKgQYPSQw891Oj7zjzzzNSlS5c6P927d2+XcgMAAAAAANB+Ol1PsEMOOSTddttt6cQTT0xrrrlm+u1vf5sGDx6cHnvssbTllls2+v4rrrgiLbHEElV/d+3atY1LDAAAAAAAQHvrVCHYc889l2655ZY0evToNHLkyLzsoIMOSuuuu2469dRT0zPPPNPoOoYMGZKWX375digtAAAAAAAAHaVTDYcYPcCi59aIESOqlsVwhsOHD0/PPvtsmjJlSqPrKJVKacaMGfk3AAAAAAAAxdSpQrAXXngh9e/fP/Xs2bPG8k022ST/Hj9+fKPrWGONNdJSSy2VllxyyXTAAQekd999t83KCwAAAAAAQMfoVMMhTps2LfXq1avO8vKyqVOn1vveZZZZJh177LFps802S926dUtPPvlkuuyyy/IQi88//3ydYK2pBgwYUHH5xIkTU9++fVu0TgAAAAAAABagEGzmzJk5wKothkQsP1+fE044ocbfe++9d+5BNmzYsHT55Zen73//+21QYgAAAAAAADpCpxoOsUePHmn27Nl1ls+aNavq+ebYf//908orr5wefvjhFpdpwoQJFX/0AgMAAAAAAOg4nSoEi2EPY0jE2srLevfu3ex19unTJ3344YetUj4AAAAAAADmD50qBBs4cGB6/fXX04wZM2osHzduXNXzzVEqldKkSZPSCius0KrlBAAAAAAAoGN1qhBsyJAhae7cuenqq6+uWhbDI44ZMyYNGjQo9+oKkydPTq+++mqN977//vt11nfFFVfk5TvuuGM7lB4AAAAAAID2snDqRCLoGjp0aBo1alR67733Ur9+/dJ1112Xe3Ndc801Va876KCD0hNPPJF7epWtuuqqaZ999klf+9rXUvfu3dNTTz2Vbrnlltx77Mgjj+ygPQIAAAAAACAt6CFYGDt2bDrjjDPS9ddfn6ZPn57WW2+9dM8996Stt966wfcNGzYsPfPMM+n2229Ps2bNyqHYqaeemk4//fS02GKLtVv5AQAAAAAAaHtdStW7S9FqBgwYkH9PmDCho4sCAAAAAACwwGUtnWpOMAAAAAAAAGgKIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIXT6UKw2bNnp9NOOy317t079ejRIw0aNCg99NBDzV7P9ttvn7p06ZKOPfbYNiknAAAAAAAAHafThWCHHHJIuvDCC9OwYcPSxRdfnLp27ZoGDx6cnnrqqSav44477kjPPvtsm5YTAAAAAACAjtOpQrDnnnsu3XLLLenss89Oo0ePTiNGjEiPPvpoWnXVVdOpp57apHXMmjUrnXzyybk3GQAAAAAAAMXUqUKw2267Lff8ivCrrHv37mn48OG5Z9eUKVMaXcd5552XvvzyyzRy5Mg2Li0AAAAAAAAdpVOFYC+88ELq379/6tmzZ43lm2yySf49fvz4Bt8/efLkdM4556Rzzz03zycGAAAAAABAMS2cOpFp06alXr161VleXjZ16tQG3x/DIG6wwQZp3333bbUyDRgwoOLyiRMnpr59+7badgAAAAAAAChoCDZz5szUrVu3OstjSMTy8/V57LHH0u23357GjRvXpmUEAAAAAACg43WqECyGMJw9e3ad5bNmzap6vpIvvvgiHX/88enAAw9MG2+8cauWacKECc3qIQYAAAAAAEDb61QhWAx7+Pbbb1ccJjH07t274vvGjh2bXnvttXTVVVelSZMm1Xjuk08+yctWXHHFtNhii7VRyQEAAAAAAGhPC6VOZODAgen1119PM2bMqLG8PMRhPF/J5MmT05w5c9IWW2yRVl999aqfckAWj//0pz+1wx4AAAAAAADQHjpVT7AhQ4ak888/P1199dVp5MiReVkMjzhmzJg0aNCg1KdPn6rQ67PPPktrr712/nvfffetGJDtueeeafDgwemII47I7wcAAAAAAKAYOlUIFkHV0KFD06hRo9J7772X+vXrl6677ro8nOE111xT9bqDDjooPfHEE6lUKuW/IwwrB2K1RS+wPfbYo932AQAAAAAAgLbXqUKw8vCFZ5xxRrr++uvT9OnT03rrrZfuueeetPXWW3d00QAAAAAAAJhPdCmVu0vRqgYMGJB/T5gwoaOLAgAAAAAAsMBlLQu1cnkAAAAAAACgwwnBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhtHsI9tFHH7X3JgEAAAAAAFjAtGoIdsIJJzT4/CeffJJ22GGHFq9/9uzZ6bTTTku9e/dOPXr0SIMGDUoPPfRQo++7884783bjfd26dUtf/epX05AhQ9LLL7/c4rIAAAAAAACwgIRgl1xySbrooosqPjdz5sy08847pxdffLHF6z/kkEPShRdemIYNG5Yuvvji1LVr1zR48OD01FNPNfi+l156KS2zzDI5pLv88svT0UcfnV544YW0ySabpH/84x8tLg8AAAAAAADzpy6lUqnUWis7/fTT07nnnptuvfXWtPfee9fowbXLLrukJ554It12221pt912a/a6n3vuudzza/To0WnkyJF52axZs9K6666bVlxxxfTMM880a33vvvtu7hE2fPjwdOWVV6bWNmDAgPx7woQJrb5uAAAAAACAohswj1lLq/YEO+uss9K+++6bDjzwwPTss8/mZV988UUaOnRoeuyxx9L111/fogAsRHgWPb9GjBhRtax79+45xIptTZkypVnri+BsscUWM0cZAAAAAABAAbVqCBbGjBmTNt100xx2vfLKK3nownvvvTddffXVaZ999mnxemP4wv79+6eePXvWWB5DGobx48c3uo4IvN5///08POLhhx+eZsyYkbbbbrsWlwkAAAAAAID508KtvcJFFlkk3XnnnWmLLbZIG264Yfr888/TL3/5y3TYYYfN03qnTZuWevXqVWd5ednUqVMbXUeEc6+99lp+vMQSS6Qf/vCHuSdZa3TFq23ixImpb9++87RuAAAAAAAAOiAEmzx5cr3PXXHFFWnXXXfNIdPuu+9e47WrrLJKs7c1c+bM1K1btzrLY0jE8vNN6aUWvb/efPPN/DjeM3fu3LTQQq3eIQ4AAAAAgP+HvXsBs6qq/4C/AJWLimKKMoWmIGoooilI5j1T8Z6QGoaYRVleEzE0uv0zL5SKdykkIG+FWolamSKJGGRBKooaSpCgZKJYwqh43ue33/fMO5czw8wwwzCbz+d5xjPsffbea1/PuL5nrQXQWkOwj3/846lNmza1zi8UClkYFj+VRfDUUB07dkzl5eU1pq9atapi/poMGDCg4vcYu2y33XbLfv/xj3+cGqu2wdhqayEGAAAAAADAeh6Cfec736kzBGtK0e3hq6++WrKbxFBWVtag9XXp0iUdeuih6fbbb1+rEAwAAAAAAICchWDf+9730rrSt2/fNG3atKw7w86dO1dMnzVrVsX8horuEN9+++0mLScAAAAAAAAtr9UMhjVo0KCsG8Vx48ZVTIvuEWNsr/79+6fu3btn02Lssfnz51dZdtmyZTXWt3DhwvTII4+kffbZZx2UHgAAAAAAgFbTEqy6u+++Oz3wwANp0qRJJccHO/3009Pxxx+fTjrppAavO4KuwYMHp1GjRmWhVs+ePdPEiROzMGv8+PEV7xs6dGiaPn16tr2iPfbYIx122GFZa7HoBvGll17Klnn//ffTFVdcsRZ7DAAAAAAAQO5DsBtvvDHtuOOOJefF2GHt2rVLN9xwQ6NCsBDh2ujRo9PkyZPT8uXLU58+fdLUqVPTgQceWOdyZ511VhbO/e53v0vvvPNO6tq1a/rsZz+bLrnkkiwgAwAAAAAAIF/aFCo3mVpL22yzTbr00kvT+eefX3L+ddddly677LL0+uuvp7zr3bt39jpv3ryWLgoAAAAAAMAGl7U06Zhg0cpqk002qXV+tAR7++23m3KTAAAAAAAA0Lwh2Pbbb59mzZpV6/yYV1ZW1pSbBAAAAAAAgOYNwY455ph0++23p9/85jc15v32t79Nd955Zzr22GObcpMAAAAAAADQvGOCvfHGG2mvvfZKS5YsSQcffHD2e5gzZ0567LHHslZgf/3rX1PXrl1T3hkTDAAAAAAAoOWylo1SE9p6663TzJkz01lnnZUeeuihNG3atGx6mzZt0sCBA9ONN964QQRgAAAAAAAAtKwmDcFC9+7d09SpU9Py5cvTP/7xj2xaz549U5cuXZp6UwAAAAAAALBuQrCiCL323Xff5lo9AAAAAAAA1Kpt7bMAAAAAAABgA2wJ1rZt2+zn3XffTZtsskn2e4z/VZeY/8EHH6zNZgEAAAAAAKD5QrChQ4dmoVa7du2q/BsAAAAAAABaUptCoVBo0RLkVO/evbPXefPmtXRRAAAAAAAANrisxZhgAAAAAAAA5I4QDAAAAAAAgNxZqzHBdtpppwYvE2OGLViwYG02CwAAAAAAAM0Xgm2//fZZqAUAAAAAAAC5CcEee+yxpisJAAAAAAAANBFjggEAAAAAAJA7TRqCvfLKK+n+++8vOa9QKGTzFi5c2JSbBAAAAAAAgKbtDrG6b3/72+mf//xnOvbYY2vMi7HDxowZk3bcccc0ceLEptwsAAAAAAAANF9LsBkzZqQjjzyy1vlHHHFE+tOf/tSUmwQAAAAAAIDmDcFef/31tN1229U6f9ttt02vvfZaU24SAAAAAAAAmjcE69y5c51jfsWYYZtuumlTbhIAAAAAAACaNwQbMGBAuu2229Ly5ctrzItpEyZMSP3792/KTQIAAAAAAEDzhmAjRoxIy5YtS/369UuTJ09Ozz77bPYTv0f4FfMuuuiiptwkAAAAAAAA1LBRakIHHHBAuuWWW9I555yThg0bVjG9UCik9u3bp5tvvjkdfPDBTblJAAAAAAAAaN4QLHz5y19OAwcOTL/61a/Siy++mE3r1atXGjx4cCorK2vqzQEAAAAAAEDzh2Ahwq7zzjuvOVYNAAAAAAAALROCVTZr1qy0ePHi9NGPfjQbF6xt2yYdhgwAAAAAAADWXQj26quvpqOPPjo9/fTTFdN22223dP/996eddtqpuTYLAAAAAAAAqdmaZZ177rmpW7du2bhgK1euTH/+85/T6tWr09e//vXm2iQAAAAAAAA0TQj2u9/9ruT0CL0uu+yy1LNnz9S+ffvUr1+/LBiL6QAAAAAAALBeh2DHHXdcOv3009Obb75ZZXqMATZjxowq05544olUVla2tpsEAAAAAACA5g3BomXXs88+m433dffdd1dMv/TSS9MFF1yQDjjggDRkyJC0xx57pLvuuiubDgAAAAAAAOt1CLb33nun2bNnZ4HXGWeckbUMW7JkSTr++OOzgKx3797prbfeSvvtt1967LHHskAMAAAAAAAAmlObQqFQaKqVvfTSS+krX/lKmjt3brriiivS1772tbShivAvzJs3r6WLAgAAAAAAsMFlLWvdEqyynXfeOWvtddVVV6VRo0algw46KAvGmkp5eXm6+OKLs3HFOnbsmPr3758efvjhNS537733ppNPPjnttNNOqVOnTmmXXXZJF154YdZCDQAAAAAAgPxpshDsvffeSytWrMh+Hz58eJbKfeQjH0l77rlnuvzyy9Pq1avXehvDhg1LV199ddal4tixY1O7du3SwIED04wZM+pcLsrz/PPPp9NOOy1dd9116cgjj0w33HBDGjBgQFq5cuValwsAAAAAAICcdYf45ptvpjPPPDM98MADWdAVTdNuu+22tM8++2Tz77nnnnTOOeekrl27ZtNjDLHGiHHHouXXmDFj0ogRI7Jpq1atSrvvvnu27pkzZ9a6bLROO/jgg6tMmzRpUjr99NPTT3/60/TlL385NTXdIQIAAAAAALTi7hDPP//8LIC69dZbs24HN9tss3TSSSel999/P5sfv0crrE9+8pNpv/32SxdddFGjtjNlypSs5Ve06irq0KFDFsA9+eSTafHixbUuWz0ACyeeeGL2GmUDAAAAAAAgXzZa2xU89NBD6ZJLLklnnHFGxbhg0Trrueeey7pCDFtssUUaP3581o3hV7/61aw1V0PNmTMn9erVK3Xu3LnK9H79+mWvc+fOTd27d6/3+l577bXsdeutt05NkUJWt2DBgtSjR4+1WjcAAAAAAACpZVqCbbzxxlXG1YouCtu0aZM22qhmvnbooYemZ555plHbWbp0aerWrVuN6cVpS5YsadD6rrzyyqxl2aBBgxpVHgAAAAAAAHLcEiy6FbziiivSBx98kLp06ZJuuummtOuuu6bddtut5PujC8PGiKCtffv2ta6vchC3JnfccUfWMm3kyJFZy7W1UVs/lLW1EAMAAAAAAKAVhGDRtWHbtm2zMcHefffd9KlPfSqNHTs2m9aUOnbsmMrLy2tMj5Znxfn18fjjj2fjiB1xxBHpsssua9IyAgAAAAAAkJMQrFOnTun666/PfppTdHv46quvluwmMZSVla1xHX//+9/Tcccdl41ZNmXKlJJdNgIAAAAAAND6NW1zrWbUt2/f9OKLL6YVK1ZUmT5r1qyK+XVZsGBBOvLII1PXrl3Tgw8+mDbbbLNmLS8AAAAAAAAtp9WEYIMGDUqrV69O48aNq5gW3SNOmDAh9e/fP3Xv3j2btmjRojR//vwqy7722mvps5/9bNZF4+9///u0zTbbrPPyAwAAAAAAsO60mv4AI+gaPHhwGjVqVFq2bFnq2bNnmjhxYlq4cGEaP358xfuGDh2apk+fngqFQsW0aAH28ssvp5EjR6YZM2ZkP0XbbrttOvzww9f5/gAAAAAAANB8Wk0IFiZNmpRGjx6dJk+enJYvX5769OmTpk6dmg488MA1jgUWrrrqqhrzDjroICEYAAAAAABAzrQpVG4yRZPp3bt39jpv3ryWLgoAAAAAAMAGl7W0mjHBAAAAAAAAoL6EYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMidjVq6AAAAAAAAQMO9uMfglAe9nvlVSxeBnNISDAAAAAAAgNwRggEAAAAAAJA7rSoEKy8vTxdffHEqKytLHTt2TP37908PP/zwGpd74YUX0gUXXJA+9alPpQ4dOqQ2bdqkhQsXrpMyAwAAAAAAsO61qhBs2LBh6eqrr05DhgxJY8eOTe3atUsDBw5MM2bMqHO5J598Ml133XXpnXfeSbvttts6Ky8AAAAAAAAto9WEYLNnz0533XVXuvzyy9OYMWPS8OHD06OPPpp22GGHNHLkyDqXPe6449Jbb72VnnnmmSxAAwAAAAAAIN9aTQg2ZcqUrOVXhF9F0bXhmWeembX0Wrx4ca3LbrXVVmnzzTdfRyUFAAAAAACgpbWaEGzOnDmpV69eqXPnzlWm9+vXL3udO3duC5UMAAAAAACA9c1GqZVYunRp6tatW43pxWlLlixpgVKl1Lt375LTFyxYkHr06LHOywMAAAAAAEAragm2cuXK1L59+xrTo0vE4nwAAAAAAABoVS3BOnbsmMrLy2tMX7VqVcX8ljBv3rwGtRADAAAAAACg+bWalmDR7WF0iVhdcVpZWVkLlAoAAAAAAID1UasJwfr27ZtefPHFtGLFiirTZ82aVTEfAAAAAAAAWlUINmjQoLR69eo0bty4imnRPeKECRNS//79U/fu3bNpixYtSvPnz2/BkgIAAAAAANDSWs2YYBF0DR48OI0aNSotW7Ys9ezZM02cODEtXLgwjR8/vuJ9Q4cOTdOnT0+FQqFi2ttvv52uv/767Pcnnngie73hhhvSlltumf2cffbZLbBHAAAAAAAApA09BAuTJk1Ko0ePTpMnT07Lly9Pffr0SVOnTk0HHnhgncvFe2O5yn7yk59krzvssIMQDAAAAAAAIGfaFCo3maLJ9O7dO3udN29eSxcFAAAAAIAcenGPwSkPej3zq5YuAjnNWlrNmGAAAAAAAABQX0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5M5GLV0AAAAAAACA+npxj8EpD3o986uWLkLuaQkGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAcmejli4AAEBr9+Ieg1Me9HrmVy1dBAAAmkEe/l71tyoAjaElGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDubNTSBQCAvHlxj8EpD3o986sNct8bs99sWPJwnTfmWt9Q9xs2FO5xAADySEswAAAAAAAAcqfVhWDl5eXp4osvTmVlZaljx46pf//+6eGHH67Xsq+++mr6/Oc/n7bccsvUuXPndPzxx6eXX3652csMAAAAAADAutXqQrBhw4alq6++Og0ZMiSNHTs2tWvXLg0cODDNmDGjzuX++9//pkMOOSRNnz49XXLJJen73/9+mjNnTjrooIPSf/7zn3VWfgAAAAAAAJpfqxoTbPbs2emuu+5KY8aMSSNGjMimDR06NO2+++5p5MiRaebMmbUue9NNN6WXXnopW8e+++6bTTvqqKOyZX/yk5+kH/3oR+tsPwAAAAAAAGheraol2JQpU7KWX8OHD6+Y1qFDh3TmmWemJ598Mi1evLjOZSP8KgZgYdddd02HHXZY+uUvf9nsZQcAAAAAAGDdaVUhWHRf2KtXr2w8r8r69euXvc6dO7fkch9++GF6+umn0z777FNjXiy7YMGC9M477zRTqQEAAAAAAFjXWlV3iEuXLk3dunWrMb04bcmSJSWXe/PNN1N5efkal91ll10aXKbevXuXnD5//vy08cYb1zofgPx6b8G/Uh5s0ojPsDzs+4a6343d9w3Rhnq+N9T9hg2FexzyLQ/3uPsb8nt/B/9/Qm2iEVNkLRtECLZy5crUvn37GtOjS8Ti/NqWC41ZtrHatGmzVieGpr1JQo8ePVq6KMAGYpMeH9tgn2vNve/rqw11vzdUG+r53pCfbbAh2FCfbc3Ns431hXucpuTZtn7ZUO/vDXW/N0Qbb7xx2nTTTTeMEKxjx45Zi67qVq1aVTG/tuVCY5Zdk3nz5jVqOdadYms85wrIC881II8824A88mwD8sizDWhNWtWYYNF1YXSJWF1xWllZWcnlttpqq6wVWGOWBQAAAAAAoPVpVSFY375904svvphWrFhRZfqsWbMq5pfStm3btMcee6SnnnqqxrxYdqeddkqbb755M5UaAAAAAACAda1VhWCDBg1Kq1evTuPGjauYFl0cTpgwIfXv3z917949m7Zo0aI0f/78Gsv+5S9/qRKEvfDCC+nRRx9NgwcPXod7AQAAAAAAQHNrVWOCRdAVgdWoUaPSsmXLUs+ePdPEiRPTwoUL0/jx4yveN3To0DR9+vRUKBQqpn39619PP/3pT9PRRx+dRowYkQ2mdvXVV6dtt902XXjhhS20RwAAAAAAAKQNPQQLkyZNSqNHj06TJ09Oy5cvT3369ElTp05NBx54YJ3LRXeHjz32WLrgggvSD3/4w/Thhx+mgw8+OF1zzTVpm222WWflBwAAAAAAoPm1KVRuLgUAAAAAAAA50KrGBAMAAAAAAID6EIIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMA+P/8/Oc/T23atMle8+jggw/O9g/4/915551pr732Sptvvnl2f5x//vnrdPsf//jHsx/WP9/73veya+Kxxx6r9zILFy7Mlhk2bFizlq21iWMYxyWOaV5tCPu4PtxjAAANJQQDAHJr9erV6ac//Wk66KCD0lZbbZU23njj1LVr19SnT5/05S9/Of32t79dryqpi5WnlX822mijtO2226ajjz46PfTQQ6k1V1qV2r9SP/G+5i575Z+OHTumXr16pW984xvpX//6V9qQxP5HOLqhevLJJ9OQIUPSO++8k84666z03e9+Nx155JFpQyGA2zDum9ZW3vX1yyoCTgCA1mmjli4AAEBzBWDHHHNM+t3vfpe23HLLLET62Mc+lt577700b968dMcdd6T58+en4447rmKZE088Me23336pW7duLVr2LbbYoqI1yqpVq9Lf//739OCDD2Y/Y8eOTeeee26j1jtp0qT07rvvppZWef9KifPV3CIYLVYKv/HGG+kPf/hDuummm9Ivf/nL9Oc//zn16NGj2ctAy3vggQdSoVDI7o1PfepTLVKGRx55pEW2y5qdffbZ6ZRTTknbb799vZf56Ec/mp5//vnsOceGpV+/ftm533rrrVu6KAAAVCIEAwBy28VZBGB77rlnmj59eo0KyQiDZs2aVWVavGd9qLiMEKh6d0oTJkxIX/rSl9Ill1yStWLr1KlTg9fbkIrcdb1/61oEYJXL8P7776ejjjoqCyR++MMfZseb/FuyZEn2WlZW1mJlELiuvyLMaGigES2Od91112YrE+uv+Fx27gEA1j+6QwQAcmnmzJnZa3RbVCrYisqqQw45pM5ulorje/zzn//Mfip3oVe9O6RoVRbTunfvnjbZZJOsC8MvfOEL6YUXXmiS/Yl1b7rppul///tf1pKtKEKb6L4tunts37591q3ft771rfT222/Xa0ywymOYzJ07N2sxFyFVHJ9oLVU8jkXRddr3v//97Pc4fpWPSWsWFdfDhw/Pfp89e3aNQDX2NY5Lhw4d0m677ZYFZeXl5bV2O/baa69lYWW0CmnXrl2Vrrti/SeffHI2L85ZtDz87Gc/m7VCqy6C2kGDBqXtttsuu67i+vrqV79aEd6UOr8ffPBB+tGPfpR23nnnbP2xzMUXX5y1gqx+rYcIiSufx8rhYLzvpJNOSjvttFPWbWTnzp3T/vvvn37xi1/Ueiz/8pe/ZPsTY2zF+z/zmc9k3Q7W1Y1mU90/H374YbrlllvSvvvumzbbbLPsnonfb7755mxe9f0vhp077rhjvbvjrLwfcW188pOfzO6XCNK++c1vVlwXjz76aHZO4hh06dIlffGLX0z/+c9/6tUlYeVn0bRp07L1FI9n3KPR2qQhY/6tq2fb66+/nkaMGJF22WWX7NjHPRO/x/Ivv/xynce1+vGIZ1i0xIr7JO67T3ziE+m6667LWu6VEvfPgQcemD3v41rdY4890uWXX17yPn366afTqaeemm0n7pFtttkm7b333lkL1QjEi6pfs/W5b0p1mRfP6JgWrXpLufvuu7P5cewqe/PNN9OoUaOyZ07sU+zbYYcdlrVcrY/63ucNPX51iWvgzDPPzK6TWE/fvn3TxIkT61ymvvsZ1/gZZ5yR/R6vtXWjG8/AaNkbLbvjnon7M8b9u+GGG6o8Bypb03M5jlc8J0LsT+VtV7+vSn3J46WXXkpDhw7N1h/3UTwv4t8xvbrK192UKVOyFmaxD/E5Hy0TX3311VRfle/9aPkaLV7j3oxnUny2lNp+8YtCcf7j/MX743k6YMCA7JlXXeX9juMYz6goa0O7N27IvjbkeMa9WFtZajtnxedpfG7+4Ac/yJ5jcV3oChMAWictwQCAXPrIRz6Svb744ouNXkdUkMYYQddee23278pd+EXFUFG0OPvc5z6XVZ4ee+yxqWfPntnYUvfee29W6RSV2FHBuraKlb/FSs1bb701G8coKqgGDx6cjXcWFTpXXnlluv/++9MTTzxR764Fn3rqqXTVVVdllVwR3ixatCjdc889WUVkhGNRAVQ8Br/+9a+zCtXTTz89V+MJVT++IVrfRVASXWlGGBTHM7pLHD16dBZAPvzww9m4bdUrdKPyNSoN47po27ZtViEcYoy6OGcRjEVXnBFULVu2LDv+UWn7+c9/vmI9t912WxbMRcVbvDdCiKjg+9nPfpad3yhHqdZ9EVA8/vjjWcu2qACObjTj3MZ2iqFPXL9xbUegucMOO1Sp2Ks8dlCUtXfv3lnleFQKR4gT64tAJ0KQ//u//6uy7T/96U9ZxXF0Rxr7Hq2cnnnmmSxEPPTQQ0se96a8f6Jc0dVpHKu4juNc3nfffenrX/96mjFjRrr99tur7H9cyxFMnHfeeRX3Sn3vmeuvvz4bp++EE07IjllU2F9zzTXZ+T/++OOzCtyoDI5zGGFyBIfR9WZDxvabOnVq+s1vfpOdy6997Wvpueeey45/BI3xe2O7XWuOZ1tUmkdAumDBgnT44Ydn7497KkK22IeocI8wtT6i4jnC07feeis7jvHveB7FeYrr7sYbb6zy/mghGxX2cTzi+o97L45zTP/973+fnZuoKC8GYP3798+ujbivIthYsWJF+sc//pHdgxFwRyheSn3vm+riWRnliG43f/KTn9SYXwyJKq8vjlusMyruDzjggCxIiy9BxDURv8fz/ytf+Uqdx7G+5W3I8atLXN8RskTg+elPfzr7Wbp0aXbtxnOhlIbsZ5Q/7s+4nuIeq3ytFu/b4rUa5Y7PrdifCFHjWj3nnHOyLxZMnjy5Shnq81yOMsb1GF0SRwvzuO8rH+e6xP0a13OMPRjrj0A3wuV4JsS+/PGPf8zC+upi2zF2aSwTX0qJskdgGs+s+FyOz4b6ins2zml0+xz7EsvHPRXHJZ5Pxc/4EPsZz+s5c+Zk93d8DkZ4GMc0jmd8ESfuk+riyw5xHcV5j2XieqjPddPQfW3s8WyM+NyP7cUzOM55/J0FALRCBQCAHPrb3/5W2HjjjQtt2rQpnHbaaYV77rmnsHDhwjqXmTBhQqQg2WtlO+ywQ/ZTyptvvlnYcsstCx/5yEcK8+bNqzLvmWeeKWy66aaFvfbaq15lfuWVV7Ltl9rW+PHjs3mxvnfffTfbl0022aSw+eabF55//vkq7z3rrLOy937lK1+pMv2ggw7Kplc2bdq0bFqp/b7llluy6bG+yr773e9m02PZhiju3xZbbJGto9TPzTffXGhOxbLHa2Xvv/9+4dBDD83mfelLX6pyPZx44onZMS+1nmuvvbbK9OKx/OIXv5its7K4PjbaaKNCly5dCs8++2yNsi1evLji9xdeeCG7fnv06FH417/+VeV9f/zjHwtt27YtnHDCCSXP79577134z3/+UzH9v//9b7aeWGbp0qU1yhvL1eYf//hHjWnl5eXZsYp9qVy21atXF3r27Jmt88EHH6yyTJzX4rGpfN005f1zxx13ZOuP97/zzjtV9v+Tn/xkNu/222+vsszpp5+eTY9rs76K575z586F5557rmL6qlWrCp/4xCey47zVVlsVHnvssSrH5jOf+Uy23Jw5c9b4fClee+3atcvOd2Xf+ta3snlXXnnlGu/vdfls++1vf5tt4/zzzy95zaxYsaJQH1GeWM/++++fHdOiuKZ32mmnbN706dMrps+cOTOb1r179yrXd9x/xxxzTDbvsssuq5j+zW9+M5v261//uuQ+x7la07Ourvum+JyLa6to5cqV2XNv2223rfFciDLHeY77trJYf3x+3XnnnVWmL1++vLDnnnsWOnToUHjttdcK9VFXeRt6/OoSnzmlroG//OUv2fOi1LO3oftZ27Vc/ZydffbZhQ8++KBievwez/bq574hz+VS57bU52nlffzwww8Lu+66azb9F7/4RZX333XXXdn0XXbZpeR1F5/vTz/9dJVlTj311Gze3XffXaiP4vGKn/vvv7/KvPj8iunxPC/1XKz+jInr+IgjjsjOV+XnWOW/I+LvhoZo6L425njW9Zwvdc4qP0/32GOPwr///e8G7RMAsP4RggEAuRUVJ9ttt11F5Uz8ROV0hAdRYdsUFcXFSqQbbrih5PyoDIz51SuR6xsSXXzxxYWjjjqqovxjx47N3vvDH/4w+/eoUaNKVuRGhVJUHlauRK4rBIsK5+ree++9rHIwAoSmDMHq+olKz+ZULHsci+IxjsrSnXfeOZu+9dZbFxYsWJC9t2/fvtn+R2VsdVGhGuHAvvvuW2V6rCPCyddff73GMrGdmH/11VevsZzF62bq1Kkl58c1HBXnlYOF4vl9+OGHa7z/O9/5TslK0DWFYLWJUDmWnThxYsW0xx9/PJt2yCGH1Hh/VEj26tWrxnXTlPdPMWT6/e9/X2NeBEmlyrY2Idi3v/3tGvO+//3vV4Sg1f385z/P5sVrfUOwIUOG1FjPyy+/nM076aSTmjUEa+i5KYZgpZ5JDVEMwf70pz/Vuh/Dhg2rmPblL385m3brrbfWeH+EyRFK7rjjjjVCsFLXSXVNFYJVDoiq39Njxoyp8mwPc+fOzaYNGjSo5DYixIn5N9544xr3YU3lbejxq018XnTq1Cn77HnrrbdqzC/ea5XDhsbsZ10hWDxn4jM+Pverh40hnuUR4AwePLhRz+XGhGAzZszIpg0YMKDkMp/+9KdrBLvF6+7SSy+t8f5HH300m3fhhRcW6qN4vKoHXcXPsfiCRMwvfknojTfeyD5b9tlnn5LrK56ziy66qMZ+x2dmQzV0XxtzPNcmBCsVlgMArY/uEAGA3IoujKLrn+juJ7pCi6594jW6QIufGD+i8pgpjRHd/4TosqfUOCDF7hhjDJ/osqc+Yiyc4rhb0T1TjI0RXfHE+DgDBw7Mpv/tb3/LXkt1MRdjfcT4J9E1XXQRFF03rck+++xTY1p0CRbd+C1fvjw1peiWqyHjhFQXXTUVu3GrLLp0q29XdtGdY/yE4lhb0WVXdP8Vv0fXbnFOo3uwUtsK0T1TqbGZoqu5Ul0mRfeFIc5lfa+rKGN0xVRddNUVXQ7G9RVjUq3pXMY+hYaey+gWM7rXjK4f4/eVK1dWmV95vJa4v0J0hVVddAkZ3aRV7560Ke+fuCdiO6W6pYvuteJeKpaxKZQ6zjEuTah+TkKMXROiO8G12UZjz2VDNfTcxDGOfbziiiuycxHPqugeMbqKi2PfENHFaFwv1RXPbeXzWNezMMZIjK5MX3nlley5GmNNxbhP0aVddG0WXTRGt2pRzui6szlFV37R7V50fRjdZBbFv+NZG93MVT/2UeZSx/7f//539lrq+dNQDT1+tYnPmnhuRpeGpd4X56762GBNvZ9xTUZ3pNGdYanu+kKMOVZ5fQ15Ljf18S1OL/59Et3ONtf9H/dndXFfxvM6ujCN7cdnc3zexGdLbWObFcfMK3VOYjyvxqrvvq7N8WyMtdknAGD9IQQDAHItKhdjLJLieCRRuRPjYMR4FTE+S4Rklcf2aKgYIylE5WZd/vvf/zZpSBSVhiHGaSqlOD0Co/qoLTyKyug4ZuuT2KdiSFhZcbyY+ohxckpV8BVFpVs0oIhK2FLbqst2221XcnrxXBTDkPpcV2PGjGnwdVXqGBTHLWvIuYxxfaICMI5FVGzHPRSV21FxGtdnVGiXl5fXuCaL459VV2p6U94/sf0IjEuNQRP7H4FmhIdNpVRFf/E41zWvWIlcH011Lhujoecmxp+LQCHurRjbJ8YPCnHcY0y2b3/727WOtVVdLFMqOCveW8Vrrb7Pwghw4/6L8xLXdIyZd9lll6UpU6ZUjA8VYyJF2U899dTUHCLUi1Apjk3cU/FlhajQf/bZZ7PPoMrjuxWPfYw5GD9N8blSm4YevzWtp7b7v9Rzsan3s7i+GDuxrud25fU15LncGGvzWd2U9/+azkuxnMVjGGFYqS9g1HVOavvsq4/67mtT/+2zJmuzTwDA+qNtSxcAAGBdiorVaCF2wQUXZP9+9NFH12p9xUrBaC3x/3U1XfLn9NNPb5LyV9/ua6+9VnL+0qVLq7wvT6KlValjHNObSvG4RYu6us7r/9vTWFW1tSwsVvJVbj21pu1HhV9d2y717f6mcvXVV2cVouPHj0+PPfZYuu6669L//d//ZeHhEUccUeP9EYKE119/veT6Sk1vyvsn1hWtQEqFTB988EF64403KsqYR9EKrriv1TWmQrgx5yZaDcX1EmFjhDtxzXzkIx9JP/jBD7Kf+opzVaqSv/i8q/xca8yzcMCAAWnq1KlZGPXEE0+k0aNHZ9dntMb64x//mJpLtD6O4Pjuu+/O/l1sGVX9+i6WNVqs1XXsJ0yYsN58lhTn13b/l1p/U+9ncX3x5Za61hct2xrzXG7Nn9VrOi/F7Rdf42+kuo5htLCvbm1a1Tfn8VybZ+O62CcAoPkJwQCADdLmm2+evZYKMUoFZ7V963q//fbLXqNlwboU4UyIcKJUpc7cuXNThw4d0m677dbk2y620FjfWog1pc022yz17t07zZs3LwtWmkLxWnnooYfq/d7mvq6icrC28/iPf/wjez3ppJNqzCt2JVnqmoyuqKr78MMP08yZM5t1P2P7sZ3oBrS6mBb7uffee6e8ipZFYfHixTXmPfXUU+v02RYVx3H/nHPOORUtfKIL2vqKyupS10vxeVe81tb0LIxrOLqf3HHHHUu2NIkuTaOFVgR0EdiF3/zmN2t136wpBItlI/yKsPbOO+/MWoBV7h6xOe7/usq7Nsevsl133TV16tQp++yp3FKvqNT6G7OfdX3+RBminNEisb4tLhvyXG7MZ19dxzcUw6TmfjaVembHfhSf18VyRkvJuF7W9d80zXk8G/NsBADyRQgGAORSVC5G5WtUilcX3yAudvFVnzEjoiVDdItXfTykcMYZZ2SVbtH10uzZs2vMj+3XVlmzNk477bSsa7Hrr7++IqwoilYNK1asyN4TlbxNLY5HiC6y8uyb3/xmeu+997KuM0t9WzxakRTHJ6mPs846K+veKVpTPffcczXmVx4rKsZ/i/Mb38avPo5WiHI1RSVlnMtSFYOh2LKu+vUb3dz97Gc/q/H+4rhKUQlZvUJ53LhxJfejKe+fOE9h1KhR2dhERfH7t771rez3M888M+VVceya6t0Xxnhu8Txs7mdbBMalWpsUp0VA0hBxHit3txlhdHGcpyhb9fMe84pjSBUr+EeMGJGVs/J5j3Ct1P42pJx13Td1iTGOYsyiCGmi9VOUN1qfVe8mMsZHii5I77333nTbbbeVXNczzzxT7+496ypvQ49fbWIfhgwZkt55550aXc1G0HD77bfXWKYx+1nX5088XyN4jdZA5557bsnzHPMqP38b8lyOMCUC3oZ89sVzMbrajLAput+sLP4dz/HoJrPUWIpNKVq9R+vHym644YZsPLBDDjkk64Y5xHiWcR7jnMUxKRX4xTKVW9OtS405nrU9G+PaivsQAMg/Y4IBALk0a9asrHIjxnOIypD4JnuIipsHHnggqxw7/vjj06BBg9a4rsMOOywbG+PII4/MQrMIlvbcc8907LHHZhVyUfES3S/FN8rjvdECIirKotLxySefzLqUW7VqVZPuXwQU1157bfrGN76RfeM5unjcZpttsm97xzbjG/FXXnllag5RYRbfFI9K6ujyrPgt6xjzpz4iUKprPK4Y26spuzZsrKgc/utf/5puuummLNyJLgC33377rDI+rqNoXRSV8bfccku91veJT3wiW9fXvva17Nvscf3tvPPO2fUR11d01Vf8Fnucv6gUjjLE9RTXXlTsReuGqICNir443/Pnz1+rfYzr9a677squ5biOoiI7rvH4iXGcohuywYMHZ/dJWVlZdr5/97vfZddbsUu3orgmIhyLsh533HFZC7I4bk8//XQWSB911FFZOFbsmio05f0TYUK04vnlL3+ZrSPGWYr1RAukOF8nn3xyVrmbV3Etxhhyl19+edaFYVxvETzGMY/jG2MhNuezLc7xRRddlHU1GNdqVKZHgBDnJM55zKuvGNcnArDdd989u5biuo+yRIAR12XlLy9ES66RI0emq666Knt/XKubbrpptt9xvcbzv/K2430RCET4Ep8L0eozArx4fzzLhg8fvlb3zZpE14fR5eIll1xS8e9S7rjjjiwwiwAqWqn1798/CyXjmMY9FfsW5yCO89qUt6HHry4/+tGPstA1PpsiRIll45zFs2LgwIHZeGhru59xfUVQGduI6684ZlOEX9EFXnwJJK7/eC7ff//92bpjvK8I0mKssOj+MsaDi/ujoc/luFaifPH8jWdJXOfROiyu0T59+pQ8JnG/RMu/ww8/PHsGxfrj+f7CCy9kz6ZolR7jk1Z+LjaHOPdxL8dPz549sxZ7cY5jHMXY/+rhWByr73znO9mYeXEeY0yxJUuWpOeffz47LhGsF/+uWpcaczyL5zTKHNdVnMP4HI1nU8yLzwwAIOcKAAA5tGjRosINN9xQOOGEEwq9evUqbL755oWNN964sN122xWOOuqowuTJkwurV6+ussyECROib8TstbL//ve/ha997WuFj370o4V27dpl7zn99NOrvOeVV14pfOMb3yj07Nmz0L59+2x7u+yyS+G0004r3HffffUqc6wj1r3DDjvUez9///vfFw4//PDClltuWdhkk00KPXr0KFx00UWF5cuX13jvQQcdlK2/smnTpmXTvvvd75Zcf5SlVHni+O25556FDh06ZMvX58/K4v6t6SfK1FxiP+va31Luv//+wtFHH13YZpttsmto2223Ley7776FSy+9tPD8889XeW+sO45zXWbOnFn43Oc+V7G+bt26FY444ojCr371qxrvffrpp7Nrbfvtt8/Ob5cuXQq9e/cuDB8+vPDII4+s8fyu6dp+/fXXC6eeemqha9euhbZt29Y4Nk888UThkEMOya6vzTbbrLD//vtn13Nd182f//znwmc+85ns/fFz2GGHZfsc90csM2fOnBrLNMX9E+KevvHGGwuf/OQnCx07dsx+9t577+xZUP1+D3Fso0yx/YZeQ6Wu09qOc6jtmJW6x+paT13X2bPPPps93+K4b7rpptl7HnvssXXybHvuuecKF1xwQXbst9566+x6jf066aSTsuuovorH46233ip8/etfL5SVlWXr2nXXXQtjx44tfPjhhyWXu/POO7PrM/Y9yvmJT3yi8MMf/rCwcuXKGs/MYcOGFXbbbbdC586dC506dco+I84555zCwoUL63Wu67pvis+56sex6H//+1+23XjP7rvvXuexWLFiReGyyy7LruE4n/G8/fjHP14YOHBg4dZbb83OX32s6T5vyPFbk6VLlxbOOOOM7BqI8sbnRFx3dT0zGrqfDz30UGG//fbL3lv83Kh8D8c1MmnSpMKhhx6aPTPjORvXUexfbCf+Pmjsc/mll14qHHPMMYWtttqq0KZNmyr3VV37OH/+/Oyeib9BNtpoo+x1yJAh2fSGPGPWdH1VV/nej8+yOG5xzW+xxRbZ/r7wwgsllysvLy9cf/31hQEDBmTXa9yD3bt3z47pNddcU3jjjTfq/XdEXRq7rw05niHO+ec///nseojra5999incc889tZa9rs9TAKD1aRP/aekgDgAAyLfoxipaaMZ4QdHSBEoptgJduHBhSxcFWr2f//znWSvRaNUbrawBADZExgQDAACaRIy/VWr8tKiIjbGYPvvZzwrAAAAAWGeMCQYAADSJGGclxtWJ8Vpi3JkPPvggzZkzJ82YMSMb5+cnP/lJSxcRAACADYgQDAAAaBLbbrttGjJkSJo+fXqaNm1aKi8vT9ttt13WHdell16aevTo0dJFBAAAYANiTDAAAAAAAAByx5hgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALmzUUsXIK+222679L///S9tv/32LV0UAAAAAACAVmfRokVp0003Ta+99lqjltcSrJlEAPb++++3dDEAAAAAAABapchZIm/ZYFqClZeXp+985ztp8uTJafny5alPnz7phz/8YTr88MPrXO573/te+v73v19jevv27dOqVauavJzFFmDz5s1r8nUDAAAAAADkXe/evddq+VYXgg0bNixNmTIlnX/++WnnnXdOP//5z9PAgQPTtGnT0qc//ek1Ln/zzTenzTbbrOLf7dq1a+YSAwAAAAAAsK61qhBs9uzZ6a677kpjxoxJI0aMyKYNHTo07b777mnkyJFp5syZa1zHoEGD0tZbb70OSgsAAAAAAEBLaVVjgkULsGi5NXz48IppHTp0SGeeeWZ68skn0+LFi9e4jkKhkFasWJG9AgAAAAAAkE+tKgSbM2dO6tWrV+rcuXOV6f369cte586du8Z17LTTTmmLLbZIm2++eTrttNPS66+/3mzlBQAAAAAAoGW0qu4Qly5dmrp161ZjenHakiVLal22S5cu6eyzz04DBgxI7du3T48//ni68cYbsy4Wn3rqqRrB2toOyrZgwYLUo0ePRq0TAAAAAACADSgEW7lyZRZgVRddIhbn1+a8886r8u+TTjopa0E2ZMiQdNNNN6VvfetbzVBiAAAAAAAAWkKr6g6xY8eOqby8vMb0VatWVcxviC984Qtpu+22S3/84x8bXaZ58+aV/NEKDAAAAAAAoOW0qhAsuj2MLhGrK04rKytr8Dq7d++e3nzzzSYpHwAAAAAAAOuHVhWC9e3bN7344otpxYoVVabPmjWrYn5DFAqFtHDhwrTNNts0aTkBAAAAAABoWa0qBBs0aFBavXp1GjduXMW06B5xwoQJqX///lmrrrBo0aI0f/78Ksv++9//rrG+m2++OZt+5JFHroPSAwAAAAAAsK5slFqRCLoGDx6cRo0alZYtW5Z69uyZJk6cmLXmGj9+fMX7hg4dmqZPn5619CraYYcd0sknn5z22GOP1KFDhzRjxox01113Za3HvvrVr7bQHgEAAAAAAJA29BAsTJo0KY0ePTpNnjw5LV++PPXp0ydNnTo1HXjggXUuN2TIkDRz5sx0zz33pFWrVmWh2MiRI9Oll16aOnXqtM7KDwAAAAAAQPNrU6jcXIom07t37+x13rx5LV0UAAAAAACADS5raVVjggEAAAAAAEB9CMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC50+pCsPLy8nTxxRensrKy1LFjx9S/f//08MMPN3g9hx9+eGrTpk06++yzm6WcAAAAAAAAtJxWF4INGzYsXX311WnIkCFp7NixqV27dmngwIFpxowZ9V7Hvffem5588slmLScAAAAAAAAtp1WFYLNnz0533XVXuvzyy9OYMWPS8OHD06OPPpp22GGHNHLkyHqtY9WqVenCCy/MWpMBAAAAAACQT60qBJsyZUrW8ivCr6IOHTqkM888M2vZtXjx4jWu46qrrkoffvhhGjFiRDOXFgAAAAAAgJayUWpF5syZk3r16pU6d+5cZXq/fv2y17lz56bu3bvXuvyiRYvSFVdckW677bZsPLGm0Lt375LTFyxYkHr06NEk2wAAAAAAACDHLcGWLl2aunXrVmN6cdqSJUvqXD66Qdxrr73SKaec0mxlBAAAAAAAoOW1qpZgK1euTO3bt68xPbpELM6vzbRp09I999yTZs2a1aRlmjdvXoNaiAEAAAAAAND8WlVLsOjCsLy8vMb0VatWVcwv5YMPPkjnnntu+uIXv5j23XffZi8nAAAAAAAALatVtQSLbg9fffXVkt0khrKyspLLTZo0Kb3wwgvp1ltvTQsXLqwy75133smmde3aNXXq1KmZSg4AAAAAAMC61KpagvXt2ze9+OKLacWKFVWmF7s4jPmlLFq0KL3//vtp//33TzvuuGPFTzEgi9//8Ic/rIM9AAAAAAAAYF1oVS3BBg0alH784x+ncePGpREjRmTTonvECRMmpP79+6fu3btXhF7vvvtu2nXXXbN/n3LKKSUDshNPPDENHDgwfeUrX8mWBwAAAAAAIB9aVQgWQdXgwYPTqFGj0rJly1LPnj3TxIkTs+4Mx48fX/G+oUOHpunTp6dCoZD9O8KwYiBWXbQCO+GEE9bZPgAAAAAAAND8WlUIVuy+cPTo0Wny5Mlp+fLlqU+fPmnq1KnpwAMPbOmiAQAAAAAAsJ5oUyg2l6JJ9e7dO3udN29eSxcFAAAAAABgg8ta2jZxeQAAAAAAAKDFCcEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO6s8xDsrbfeWtebBAAAAAAAYAPTpCHYeeedV+f8d955Jx1xxBGNXn95eXm6+OKLU1lZWerYsWPq379/evjhh9e43H333ZdtN5Zr3759+tjHPpYGDRqUnn322UaXBQAAAAAAgA0kBLv++uvTNddcU3LeypUr09FHH52efvrpRq9/2LBh6eqrr05DhgxJY8eOTe3atUsDBw5MM2bMqHO5Z555JnXp0iUL6W666aZ01llnpTlz5qR+/fqlv//9740uDwAAAAAAAOunNoVCodBUK7v00kvTlVdeme6+++500kknVWnBdcwxx6Tp06enKVOmpOOOO67B6549e3bW8mvMmDFpxIgR2bRVq1al3XffPXXt2jXNnDmzQet7/fXXsxZhZ555ZrrllltSU+vdu3f2Om/evCZfNwAAAAAAQN71XsuspUlbgl122WXplFNOSV/84hfTk08+mU374IMP0uDBg9O0adPS5MmTGxWAhQjPouXX8OHDK6Z16NAhC7FiW4sXL27Q+iI469SpkzHKAAAAAAAAcqhJQ7AwYcKEtN9++2Vh1/PPP591XfjAAw+kcePGpZNPPrnR643uC3v16pU6d+5cZXp0aRjmzp27xnVE4PXvf/876x7xy1/+clqxYkU67LDDGl0mAAAAAAAA1k8bNfUKN95443Tfffel/fffP+29997pvffeS9dee2360pe+tFbrXbp0aerWrVuN6cVpS5YsWeM6Ipx74YUXst8322yz9O1vfztrSdYUTfGqW7BgQerRo8darRsAAAAAAIAWCMEWLVpU67ybb745HXvssVnIdPzxx1d57/bbb9/gba1cuTK1b9++xvToErE4vz6t1KL118svv5z9HsusXr06tW3b5A3iAAAAAAAAaK0h2Mc//vHUpk2bWucXCoUsDIufyiJ4aqiOHTum8vLyGtNXrVpVMX9NBgwYUPF7jF222267Zb//+Mc/To1V22BstbUQAwAAAAAAYD0Pwb7zne/UGYI1pej28NVXXy3ZTWIoKytr0Pq6dOmSDj300HT77bevVQgGAAAAAABAzkKw733ve2ld6du3b5o2bVrWnWHnzp0rps+aNatifkNFd4hvv/12k5YTAAAAAACAltdqBsMaNGhQ1o3iuHHjKqZF94gxtlf//v1T9+7ds2kx9tj8+fOrLLts2bIa61u4cGF65JFH0j777LMOSg8AAAAAAECraQlW3d13350eeOCBNGnSpJLjg51++unp+OOPTyeddFKD1x1B1+DBg9OoUaOyUKtnz55p4sSJWZg1fvz4ivcNHTo0TZ8+Pdte0R577JEOO+ywrLVYdIP40ksvZcu8//776YorrliLPQYAAAAAACD3IdiNN96Ydtxxx5LzYuywdu3apRtuuKFRIViIcG306NFp8uTJafny5alPnz5p6tSp6cADD6xzubPOOisL5373u9+ld955J3Xt2jV99rOfTZdcckkWkAEAAAAAAJAvbQqVm0ytpW222SZdeuml6fzzzy85/7rrrkuXXXZZev3111Pe9e7dO3udN29eSxcFAAAAAABgg8tamnRMsGhltckmm9Q6P1qCvf322025SQAAAAAAAGjeEGz77bdPs2bNqnV+zCsrK2vKTQIAAAAAAEDzhmDHHHNMuv3229NvfvObGvN++9vfpjvvvDMde+yxTblJAAAAAAAAaN4xwd5444201157pSVLlqSDDz44+z3MmTMnPfbYY1krsL/+9a+pa9euKe+MCQYAAAAAANByWctGqQltvfXWaebMmemss85KDz30UJo2bVo2vU2bNmngwIHpxhtv3CACMAAAAAAAAFpWk4ZgoXv37mnq1Klp+fLl6R//+Ec2rWfPnqlLly5NvSkAAAAAAABYNyFYUYRe++67b3OtHgAAAAAAAGrVtvZZAAAAAAAAsAG2BGvbtm328+6776ZNNtkk+z3G/6pLzP/ggw/WZrMAAAAAAADQfCHY0KFDs1CrXbt2Vf4NAAAAAAAALalNoVAotGgJcqp3797Z67x581q6KAAAAAAAABtc1mJMMAAAAAAAAHJHCAYAAAAAAEDurNWYYDvttFODl4kxwxYsWLA2mwUAAAAAAIDmC8G23377LNQCAAAAAACA3IRgjz32WNOVBAAAAAAAAJqIMcEAAAAAAADInSYNwV555ZV0//33l5xXKBSyeQsXLmzKTQIAAAAAAEDTdodY3be//e30z3/+Mx177LE15sXYYWPGjEk77rhjmjhxYlNuFgAAAAAAAJqvJdiMGTPSkUceWev8I444Iv3pT39qyk0CAAAAAABA84Zgr7/+etpuu+1qnb/tttum1157rSk3CQAAAAAAAM0bgnXu3LnOMb9izLBNN920KTcJAAAAAAAAzRuCDRgwIN12221p+fLlNebFtAkTJqT+/fs35SYBAAAAAACgeUOwESNGpGXLlqV+/fqlyZMnp2effTb7id8j/Ip5F110UVNuEgAAAAAAAGrYKDWhAw44IN1yyy3pnHPOScOGDauYXigUUvv27dPNN9+cDj744KbcJAAAAAAAADRvCBa+/OUvp4EDB6Zf/epX6cUXX8ym9erVKw0ePDiVlZU19eYAAAAAAACg+UOwEGHXeeed1xyrBgAAAAAAgJYJwSqbNWtWWrx4cfroRz+ajQvWtm2TDkMGAAAAAAAA6y4Ee/XVV9PRRx+dnn766Yppu+22W7r//vvTTjvt1FybBQAAAAAAgNRszbLOPffc1K1bt2xcsJUrV6Y///nPafXq1enrX/96c20SAAAAAAAAmiYE+93vfldyeoRel112WerZs2dq37596tevXxaMxXQAAAAAAABYr0Ow4447Lp1++unpzTffrDI9xgCbMWNGlWlPPPFEKisrW9tNAgAAAAAAQPOGYNGy69lnn83G+7r77rsrpl966aXpggsuSAcccEAaMmRI2mOPPdJdd92VTQcAAAAAAID1OgTbe++90+zZs7PA64wzzshahi1ZsiQdf/zxWUDWu3fv9NZbb6X99tsvPfbYY1kgBgAAAAAAAOt1CBbatWuXvvWtb6W///3vacWKFekTn/hEuuWWW9K+++6bvT7wwAPppz/9adYqbG2Ul5eniy++OOtSsWPHjql///7p4YcfXuNy9957bzr55JPTTjvtlDp16pR22WWXdOGFF2bhHAAAAAAAAPnTplAoFJp6pePGjcvCqj59+qSf/exnaeedd26S9Z566qlpypQp6fzzz8/W+fOf/zz95S9/SdOmTUuf/vSna11u6623zoKzE044IW2//fbpmWeeycK5CMX+9re/ZYFaU4sWcGHevHlNvm4AAAAAAIC8672WWUuThWDvvfdeWrVqVercuXP27+gS8eyzz06/+93v0ujRo9PIkSOzFmONFV0uRsuvMWPGpBEjRmTTYnu777576tq1a5o5c2aty0Y3jAcffHCVaZMmTUqnn3561kLty1/+cmpqQjAAAAAAAICWy1rWujvEN998M5144olps802S126dMlafz311FNZy6vohnDy5Mnp+uuvT5/85CezVleNFS3AIkQbPnx4xbQOHTqkM888Mz355JNp8eLFtS5bPQALUebw/PPPN7pMAAAAAAAArJ/WOgSLrgmjFdatt96ahV4Rhp100knp/fffz+bH7xE0RQi23377pYsuuqhR25kzZ07q1atXRUuzon79+mWvc+fObdD6XnvttYquEgEAAAAAAMiXjdZ2BQ899FC65JJL0hlnnJH9O8bqii4Kn3vuubTnnntm07bYYos0fvz4NGTIkPTVr34169KwoZYuXZq6detWY3pxWnS/2BBXXnll1rJs0KBBqSma4lW3YMGC1KNHj7VaNwAAAAAAAC3UEmzjjTdOK1eurPh3jNPVpk2btNFGNfO1Qw89ND3zzDON2k5so3379jWmR5eIxfn1dccdd2Sh3IUXXpiFdgAAAAAAAOTLWrcEi7G1rrjiivTBBx9kY4LddNNNadddd0277bZbyfcXQ6uG6tixYyovL68xPUK34vz6ePzxx7NxxI444oh02WWXpbVV22BstbUQAwAAAAAAoBWEYNG1Ydu2bbMxwd599930qU99Ko0dOzab1pSi28NXX321ZDeJoaysbI3r+Pvf/56OO+64rLvGKVOmlGytBgAAAAAAQOu31ilQp06d0vXXX5/9NKe+ffumadOmpRUrVqTOnTtXTJ81a1bF/LrEGF1HHnlk6tq1a3rwwQfTZptt1qzlBQAAAAAAoOU0bXOtZjRo0KC0evXqNG7cuIpp0T3ihAkTUv/+/VP37t2zaYsWLUrz58+vsuxrr72WPvvZz2at037/+9+nbbbZZp2XHwAAAAAAgHWn1fQHGEHX4MGD06hRo9KyZctSz54908SJE9PChQvT+PHjK943dOjQNH369FQoFCqmRQuwl19+OY0cOTLNmDEj+ynadttt0+GHH77O9wcAAAAAAIDm02pCsDBp0qQ0evToNHny5LR8+fLUp0+fNHXq1HTggQeucSywcNVVV9WYd9BBBwnBAAAAAAAAcqZNoXKTKZpM7969s9d58+a1dFEAAAAAAAA2uKyl1YwJBgAAAAAAAPUlBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOROqwrBysvL08UXX5zKyspSx44dU//+/dPDDz+8xuVeeOGFdMEFF6RPfepTqUOHDqlNmzZp4cKF66TMAAAAAAAArHutKgQbNmxYuvrqq9OQIUPS2LFjU7t27dLAgQPTjBkz6lzuySefTNddd11655130m677bbOygsAAAAAAEDLaDUh2OzZs9Ndd92VLr/88jRmzJg0fPjw9Oijj6YddtghjRw5ss5ljzvuuPTWW2+lZ555JgvQAAAAAAAAyLdWE4JNmTIla/kV4VdRdG145plnZi29Fi9eXOuyW221Vdp8883XUUkBAAAAAABoaRulVmLOnDmpV69eqXPnzlWm9+vXL3udO3du6t69+zovV+/evUtOX7BgQerRo8c6Lw8AAAAAAACtqCXY0qVLU7du3WpML05bsmRJC5QKAAAAAACA9VGraQm2cuXK1L59+xrTo0vE4vyWMG/evAa1EAMAAAAAAKD5tZqWYB07dkzl5eU1pq9atapiPgAAAAAAALSqECy6PYwuEasrTisrK2uBUgEAAAAAALA+ajUhWN++fdOLL76YVqxYUWX6rFmzKuYDAAAAAABAqwrBBg0alFavXp3GjRtXMS26R5wwYULq379/6t69ezZt0aJFaf78+S1YUgAAAAAAAFraRqmViKBr8ODBadSoUWnZsmWpZ8+eaeLEiWnhwoVp/PjxFe8bOnRomj59eioUChXT3n777XT99ddnvz/xxBPZ6w033JC23HLL7Ofss89ugT0CAAAAAAAgbeghWJg0aVIaPXp0mjx5clq+fHnq06dPmjp1ajrwwAPrXC7eG8tV9pOf/CR73WGHHYRgAAAAAAAAOdOmULnJFE2md+/e2eu8efNauigAAAAAAAAbXNbSasYEAwAAAAAAgPoSggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDutLgQrLy9PF198cSorK0sdO3ZM/fv3Tw8//HC9ln311VfT5z//+bTlllumzp07p+OPPz69/PLLzV5mAAAAAAAA1q1WF4INGzYsXX311WnIkCFp7NixqV27dmngwIFpxowZdS733//+Nx1yyCFp+vTp6ZJLLknf//7305w5c9JBBx2U/vOf/6yz8gMAAAAAAND8NkqtyOzZs9Ndd92VxowZk0aMGJFNGzp0aNp9993TyJEj08yZM2td9qabbkovvfRSto599903m3bUUUdly/7kJz9JP/rRj9bZfgAAAAAAANC8WlVLsClTpmQtv4YPH14xrUOHDunMM89MTz75ZFq8eHGdy0b4VQzAwq677poOO+yw9Mtf/rLZyw4AAAAAAMC606pCsOi+sFevXtl4XpX169cve507d27J5T788MP09NNPp3322afGvFh2wYIF6Z133mmmUgMAAAAAALCutaruEJcuXZq6detWY3px2pIlS0ou9+abb6by8vI1LrvLLrs0uEy9e/cuOX3+/Plp4403rnU+AAAAAAAAtYtGTJG1bBAtwVauXJnat29fY3p0iVicX9tyoTHLNlabNm3W6sTQtDdJ/ADkhecakEeebUAeebYBeeTZBqxLkbNsuummG0ZLsI4dO2YtuqpbtWpVxfzalguNWXZN5s2b16jlWHeKrfGcKyAvPNeAPPJsA/LIsw3II882oDVpVS3BouvC6BKxuuK0srKykstttdVWWSuwxiwLAAAAAABA69OqQrC+ffumF198Ma1YsaLK9FmzZlXML6Vt27Zpjz32SE899VSNebHsTjvtlDbffPNmKjUAAAAAAADrWqsKwQYNGpRWr16dxo0bVzEtujicMGFC6t+/f+revXs2bdGiRWn+/Pk1lv3LX/5SJQh74YUX0qOPPpoGDx68DvcCAAAAAACA5taqxgSLoCsCq1GjRqVly5alnj17pokTJ6aFCxem8ePHV7xv6NChafr06alQKFRM+/rXv55++tOfpqOPPjqNGDEiG0zt6quvTttuu2268MILW2iPAAAAAAAASBt6CBYmTZqURo8enSZPnpyWL1+e+vTpk6ZOnZoOPPDAOpeL7g4fe+yxdMEFF6Qf/vCH6cMPP0wHH3xwuuaaa9I222yzzsoPAAAAAABA82tTqNxcCgAAAAAAAHKgVY0JBgAAAAAAAPUhBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgBQyc9//vPUpk2b7DWPDj744Gz/gP/Xddddlz7xiU+kjh07ZvfGtddeu063H9uM+5L1z7Bhw7Lzs3Dhwnov89hjj2XLfO9732vWsrU2ef9s3VD2cX24xwAAGkoIBgDk2urVq9NPf/rTdNBBB6Wtttoqbbzxxqlr166pT58+6ctf/nL67W9/W6/1fPzjH89+mltUBEWFUOWfjTbaKG277bbp6KOPTg899FBaH0QFb5QtKnzXdv+q/zR0nY2pcKv8s+mmm6bdd989fetb30rLly9PG4riuYhjsqG666670nnnnZc6dOiQzj///PTd73437bfffmlDIYDL/33T2srbXJ89TUHACQDQOm3U0gUAAGjOAOyYY45Jv/vd79KWW26ZhUgf+9jH0nvvvZfmzZuX7rjjjjR//vx03HHHVSxz4oknZpXg3bp1a9Gyb7HFFlmlfFi1alX6+9//nh588MHsZ+zYsencc89t1HonTZqU3n333dTSKu9fdesibDz++ONT3759s99fe+21dP/996crr7wyTZkyJc2ePTsLTMm/qVOnVryWlZW1SBmef/751KlTpxbZNnW7/PLLs3D8ox/9aL2X6devX3ZOt95662YtG+uf9eXvBwAAqhKCAQC5deedd2YB2J577pmmT5+eBS+VRRg0a9asKtPiPdXf1xIitKv+bfMJEyakL33pS+mSSy7JWrE1puJ8++23T+uDUvu3Lp1wwglVWkb8+Mc/Tv3790/PPfdcuv7667MWQeTfkiVLsteWCsDCrrvu2mLbpm4RZjQ00IjnsnO6YVpf/n4AAKAq3SECALk1c+bM7DXCjlIVU1FZecghh9Q5pkex+6N//vOf2U/lbvSqdy8VrcpiWvfu3dMmm2ySdWH4hS98Ib3wwgtNsj+x7ui673//+1/Wkq3okUceSUceeWTWeql9+/apV69eWeuFt99+u15jglXu4mnu3LlZi7kIqeL4RDeSxeNYuaXW97///ez3OH6Vj0lrtdlmm6XTTz89+z1aghV98MEH6aabbsq+3d+5c+fsmOy1117phhtuSB9++GGt3Y69+OKL6eSTT8663mzbtm2Vrrv+8Ic/pGOPPTabF+crrpdomfbHP/6xRrl+//vfp4EDB2atSuK9PXr0SBdddFF66623au2yM66PeE8EnrFMz549s1ZuhUKh4r1xrnfcccfs94kTJ1Y5h8VrP1pMxn7G9nfYYYdsXXGNfeYzn6mzW84o8/77759dq/H+CByL90ZtY79EGD1o0KC03XbbZfdOHJOvfvWrFSFVfZWXl6crrrgi7bHHHtm5inN2wAEHpF/+8pclu1SbNm1a9u+GXMPF/XjllVey4xPjiUV3inHsf/SjH1Uc51/96ldZq6A4DnGuzz777LRy5cp6dUlYucu3aJ0Y64n9ieN5yimnpFdffbVBXbZW70Ku+JwL8QWByvtfPZxuyLl5+eWX0/Dhw7NrLsZYi/LGufja176W/vOf/6zx2FY+HrH+L37xi9mxi3V98pOfzFrvlhL34i233JL23Xff7F6OYx6/33zzzTXu0/D4449n92C0DI7rOvYt7vHic62o+jVbn/umVJd5EYrFsXvjjTdKlj/uz1gmrqfK/vWvf2XXzU477ZSV8yMf+UjWcvkvf/lLvY5lfcrbmONXl3/84x9p8ODBqUuXLtl6PvWpT6UHHnigzmXqu5/1/eyJL7hEK75o7RtliH0aMGBA9sWY2qzpuRzXQvHvhShDqS586xoT7K9//Ws66aSTKtYfz9Svf/3raenSpTXeW/m6u/XWW7N7KJ4x8TdF3F+lPttrU/nej2sgPr/ifopyxJdqoiV0KW+++WYaNWpU2m233bL3x99Qhx12WHacqqu83/HFo7h/4/0N/ZugIfvakONZ11iotZ2z4vN0xYoV6Zvf/Gb2e3SnrStMAGidtAQDAHIrKtJCBBKNFRUf0Sro2muvzf5duQu/Ynd6ISp+Pve5z6X3338/q0iLSuCo2Lv33nuzCsCobN97773T2ipWsBcrdKLS6Kyzzsoq+qLiMSqEorIrKlWji78nnngiC7Tq46mnnkpXXXVVVlkYLc0WLVqU7rnnnqziK8KxXXbZpeIY/PrXv84qzyM4WhfdF64L1Y9t8VxGqBP7HoFmVM7FuTznnHOycGDy5Mk11rNgwYKsVVmEkUOGDMmCjwhjQlxLP/jBD7JK2QiHoqI1KvsjaPzFL36RBUxFUdEaFW4RJES3nnFun3766azVWnSL+eSTT1astyjKfMQRR2TrPOqoo7Lx5OJcRSga3WoWW7hFpWAEadG1ZrSUjLJUv66jEjTGy4pK7MMPPzxts802WQVjXFcRjMVYe3GdVB9jq3icPv/5z2etaGLf4pqK7ZRy2223ZZWdUZEZFd9xTF566aX0s5/9LNvWn//853q1YIzQLvY9rssIHb7xjW9kleERIkUgGddwhFTF/Q9R8RnhdmNa/o0YMSK71+Ia+exnP5uNL3jppZdm5YhzFsc8jmuEcA8//HC68cYbsy5aI1iorwhgY71xXCKQjmvu7rvvzrpHjf2JY9YYcY5jn+Mai8rjyoF+5UCuIecmro0ITqLSOK6PqKCOay7CwrhPIuQoPpPXJMbmi+sunl1nnHFGdq1GkBn3UwSAEfJWFmFZBGRRvrgm4x6+7777skrxGTNmpNtvv73KszqC/rh3Yp+iq8O41qMLwzjedV0L9blvSonnZLTgjRAmnh3VRTgRIVncO0V/+9vfsusqyhbXdXy+RIgW9/OnP/3pbP/iONelvuVtyPGrS1wbca9H4BnPn9hGhGKx3fh3KQ3Zz/p89sT+HnrooWnOnDnZZ24EPRHkxXM8jm98geSHP/xhlWXq81wuHrs4V3EvVr5P1vQZGN2txv0QnzERKMc9FyFOPAt+85vfZMe4GFZWNnLkyKzcxWdMfPbEczeO6aOPPpoa4pprrskCrHgWxpdmYpvRujyeYfFcied7UTwTY/8ihIvnV7w/vlwR+xG/x98dX/nKV2psI561cX/FuY7gO9ZTXw3Z18Yez4aKZ3lcS3FtRpnimdEU6wUAWkABACCn/va3vxU23njjQps2bQqnnXZa4Z577iksXLiwzmUmTJgQSUj2WtkOO+yQ/ZTy5ptvFrbccsvCRz7ykcK8efOqzHvmmWcKm266aWGvvfaqV5lfeeWVbPultjV+/PhsXqzv3XffzfZlk002KWy++eaF559/vsp7zzrrrOy9X/nKV6pMP+igg7LplU2bNi2bVmq/b7nllmx6rK+y7373u9n0WLYhivu3xRZbZOuo/nPfffcVmtPpp59ecj/feeedwm677ZbN+8EPflBlH88+++zCBx98UPHe+P1LX/pSNu/Xv/51jX2Ln1GjRtXY9u9///ts3o477lj417/+VWP+4sWLK35/9NFHs/cOGDCgsHz58pLX6Pnnn19lelwzMf2oo47Kro+i119/PTve8fPee+/VKG8ck1JWrVpVpUxFb731VqF3796FLl26VNnOihUrsvsgrsm5c+dWWebiiy+uODax3aIXXnghu0d79OhR45j88Y9/LLRt27ZwwgknFOrjRz/6UcX+v//++1X2v3hsnnjiiTXeD/W9hmKdlcsc5ymeAZ06dSpsvfXWheeee67KsYzrK45NlKeyWFeUo7LitRf39tNPP11l3qmnnprNu/vuu+v9jKrtfi217caem+uuuy5b37XXXltjXf/973+rXCt1KV4ngwcPLqxevbpi+ssvv5xdc1GmBQsWVEy/4447svfHMzbu48rb/OQnP5nNu/322yumf+5zn8umVb9Gw7///e+S57ryNbum+6b4PI1jXhT3URyvKE91s2fPzt4f5SqK6zeOe/v27QuPPfZYlfe/+uqrhbKyssJ2222XXVdrsqbyNvT41eXwww8veQ3Ec7LUZ0xj9nNNnz3Fc3bllVdWmb5y5crCEUcckf09MGfOnEY9l0ud2zX9/RDHdKuttsrO/5/+9Kcq77/iiiuy98dxK7UP3bt3L/zzn/+scrwOOOCAbN6sWbMK9VE8XnHfxN9ElcVnSMyLz7PK4pkQx+nOO++sMj2ecXvuuWehQ4cOhddee63GfscyDz30UL3K1dh9bczxrOs5X9fffDH9sMMOy+4FAKB1E4IBALkWFcVRiVasgIufqECJytvf/va3TRKCRYVfLHPDDTeUnF+saKoekNU3JIoAISr2i+UfO3Zs9t4f/vCHtQYuEcxFBXpUVlWuQKwrBNt///1rrCdCk4022qhG5e3ahmC1/dRWUdtUihVuxx9/fMXx/drXvpZVtsb0qJCNYxeV73GdxLVTOVCpXBkYFX5RUV9937bddtuSldPHHHNMNv/ee+9dYznj+oz3PvvssyXn9+3bt7DNNtuUrLR76aWXarx/6NCh2bwIZauXtzHH/Cc/+Um27PTp0yumTZ48OZt2xhln1Hh/VFxGQFY9UCjeG1OnTq31OLRr1y4L2NakZ8+e2TmpHgiHn/3sZyXLtjYhWKyzulh/zBs9enSNed/73veyedUr++sKwS699NIa6ykGpBdeeGGzhmANPTfFEOzWW28trI1YR6w3Qq/a9iOOZdFnPvOZbFqEGdVFWBfzDjnkkBohWIR8a9JUIVjlgKj6Pf2Nb3wjm/6b3/ymRmg0YsSIOj9zHnjggTXuw5rK29DjV5sIi4phUuUvDVS/1yp/tjZmP+v67HnjjTeya2efffYpub4IPmPZiy66qFHP5caEYL/4xS+yaRFeVxefLR//+Mez+ZUDoOJ199Of/rTGMrfddls27/rrry/UR/F4VQ+6il9oiL81Kv+dUDxGgwYNKrm+4jm78cYba+x3fb+wUFlD97Uxx3NtQrBSYTkA0ProDhEAyLXoku3EE0/MutaJLnKii6R4jS6V4mfo0KFVxsdpjOiWLkQXZaXGiyh2xxjdbcX4QfUR42AUxz5p165d1r1adDEUXYoVu4aKbqRCdNdTXYzHEmN//OlPf8rGY6qtK7rK9tlnnxrTYgyMGJsjuidrStF9Uamxoeojlis15kpDxuqILpPiJ8R4J9GdVXS1Fl3YxbGLYxZdIO288841us4qiuXinFYXx7pUN3XRdVxcZ9GdVH2uqTj2Ma5U/JTqpunf//531u1Y5S7mYhyW6IqzuujeKzT0PEbXYWPGjMmuo+juLrq3q6zy2FRxb4Xowqy66GYsukarPDZacT9DdG9WapyjZcuWZV0Ixj0UY0LV5p133sm6zYqu7aIrxOqK90ixjE2h1P1SVlaWvZYqa5QtRDepa7ONxp7LhmrouYmuBaPLv+iGMro1i67tYmy4eOY19PkaXSyW6nYsumiL52Ll8xjPwRh3r/q4aiG6rYvnZ+X3x30e3dRGl6XRNVyM8xTljPHBmlN0ORndYkZ3etHtbPE+ji4So6vTyl0bFo99dCdX6rkW3Q6GeP6sqUvENWno8atN5fs/lqku1h/XUmVNvZ9xncY1WWpsu2J3scX1Nea53Bh1fU5Hd7UHHnhg9pkWx696t69Nef/HuawuPi/iuRznJY5J/F48J/E3SKljGJ87odRnX4xd2Fj13de1OZ4NFd369unTZ63WAQCsH4RgAEDuRZgQ4znET4hKshjrKsYKmTRpUhaSVR4rpaEiiAgxfkVd/vvf/zZpSFQcMD7GXSqlOD3GSKmP2sYOi4qlOGbrizguxYCwsSFYjIVSeRyk2s5pVMKW2lZd53S77bYr+d44DxGwRXi2JrH9Dz74oM5tF7dfOQSr6xyGhpzHqByOisYoR4wLFyFHjIkSFeYxHlWEiOXl5TWuxwhNSyk1vXicI2hbm3unqe+F+ogK5NqOc13zihXx9VHqfDbmXDZGQ89NPLNmz56d3YcxLlAETcWK7Bg/7dxzz633tmu7hor3VvF8F3+PLwnEmFqljtXWW2+dBXZFMeZUjCn0k5/8JBvzLMY3ChHkXX755dn4d80hPmfi/okxpmI7ERRFOSJsj7Guiue18rEvFYA39jOlNg09fnWtpz7nrrKm3s/i+iIMKxXcllpfQ57LjbE2z6amvP/re08Vj2EEtvHTFJ999VHffV2Xz/oIp9fmC1IAwPqjbUsXAABgXYvKx2ghdsEFF2T/bugA89UVK7yjJdj/1910yZ/TTz+9ScpffbuvvfZayfnRcqfy+/IiWhSUOr5NqXjMouK6rnP6yiuv1Fi2tkqzqOSLb7SvXLmyXtuPitm6th0/ETw0l2gBF2X9wx/+kB566KF07bXXph/84AdZyBGtaKqLCv7w+uuvl1xfqenF4xwVm3XtZ6lWDKXWs6HdC5VFOBmBZSmNqRBuzLnZbbfd0t13351VpD/11FPpiiuuSB9++GE677zz0vjx4+u97dquoeL5rXwe4/cIkkqFi3E83njjjYprs+joo4/OnvtxPz7yyCPZZ0G0ejzmmGPSc889l5pDhCzxuRPXYjFciFZhofpnQ3H/Imiu69h/97vfXetyNeb41bae+py75tzP4vrifNa1vmgZ3pjncmOsL8+m+t5TxdexY8fWeQzjiyTVrYvAqDHHM56NodTzsa5nowAMAPJDCAYAbLA233zz7LU+AUoEZ7V983q//fbLXh9//PG0LkV3h6F6F3PFip1orRPd+UTFdFMrdne1PrUQa0rRpV5UjkZrqIa03KlLXCdxrUUrmfq8Nypmo2K+uazpHEb3gtFCpFQ3adW7Nat8PUZ3o6VaDcT12Fz3TtzLPXr0yLpnLHahVlmx0nvvvfdOeRWhaVR0l7peI5AqJSqHm+O5Fi04omXVxRdfnHX3F6L72fpatGhRyZawxWdd8Vor/h5BW3TZWV1Mi/2r7bxvuummWWvHq6++OuvKMbonjMC3uZ59xdanEX5Ft3KxrehuLbqha67PlDWVd22OX/X1FO//Utsq9TnVmP2sa3+iO764phuyvoY8lxtz7uv6nI5QpljW5n42lXpmR8Bd/e+Elvp7pjmPZzwbw+LFi+v9bAQA8kUIBgDkVlS+xjfuo4KvuvgWcbH7whhDYk2iy7motCz1bfEzzjgjC0yi67roDqy62H6pCpu1ddppp2VdPV5//fVZYFHZ6NGj04oVK7L3lBqfam0Vu+CLyuo8ikr8c845J/tWeXTjVuq8x7yGtBqJ9YULL7ywylhaRZWnFVspfuUrX0lLliyp8d7//e9/WUC3NqJiML7pXts5jHHSooXI008/XWV6tOiJMZ+qO/7447Nv399+++1Zq8jqrcpKfeM+xriLazj2tzh2XmURStS3Mja6N43K7IsuuqhKJXW0ZPm///u/ivfkVQQAUQlcvYVGjJ/3xBNP1Hofl6oYbsy5+etf/1qlm8LqLVA6depU732J8xcBWuVnd7S6vO6667J7M55rRcVzOmrUqPTuu+9WTI/fY4y/cOaZZ1YJdkq1CKlvOdd039Qlxh6LcQaj5dMtt9ySBZalumWNeylC3RtvvDE9+OCDJdcVYzdV3t/Glrehx682MaZadCUZ5+mGG26oMi/2t1QI05j9rOuzJ7qvizHfItiIe75UWLVgwYIqLXgb8lxuzOdedLUcXyaIv0eqP7OjdW2U5TOf+cxaj1+1JpMnT64xtlu06o179tRTT634OyHG5jrggAOy7kyju9BSnnnmmXp1kdkcGnM8i2OVVe+yOlqBFkN6ACDfjAkGAOTWrFmzsi59YpyKT3/602nHHXfMpkclyQMPPJAFG1EJN2jQoDWuK8ZEijFGjjzyyCw0iwqjPffcMx177LFZxdiUKVOyrvPiW9Tx3t69e2cVj1HBHJV40T3YqlWrmnT/IqSISp9vfOMb2beeo6utbbbZJqtsjG1Ga6Yrr7wyNYdDDjkk+8Z9VJw+++yzFd+0/va3v53yIoLECHOisvr+++/PWox89KMfzSr/orVRBAuXXXZZ+sQnPlGv9cWYdHF8IhCKb91HZV6MlxSV79F6Iq6dCCxCXEPRlVwc36g0HzhwYHb9Rouqf/7zn9k5jmu6Pq0XarPZZptl3RpGkBEVx7169cpaOsTYX9E6JcYpirArthPXVgRcUbkcZY17Jq75yqLLtKjM/uIXv5g+9alPZcvE+CwzZ87MjmN0mxflLnZNFeIajYrWqIiPeyburyhHhANR0Rxli2t6/vz5a9yfGHcqWtZEhXvcm3HMovI8xhuKczZy5MhsX/IqKvMjADvrrLOyyt24tqKVRzwLopu/GH+qurjO7rrrruw5Fs+QCL3i+RY/DT03Ucke42vFMY5gI54JETjEvRPPy7ie6iuuv3h+R2uyuG8iQP3lL3+ZvV511VXZ+ou+8IUvZOc85kc5476KZ2+0PItn/cknn5xd30URakewEYFUPENjLKwI8KJ7xOhe9JRTTlmr+2ZNhg4dmj1bIqSJQK9y2YriPEQIccQRR2RdN8b9FK3FIqCLz5T4LHr55ZezIH5Nod2aytvQ41eXuP8HDBiQnevoRjXuw/iCxn333ZddY3EtrO1+rumzJwK4eD5/5zvfya7JuB5jPKz4MsHzzz+frTOCj+LfAw15Lu+yyy7ZZ0DcM1H2uF7iWMUzr7auaeP4x300ePDg7BkYrxHQxDUXxyj+PimOS9ecjjrqqOyaLz6XY9/iJ+6B+Kyp7I477sg+7yL8jOA5rp/4os+//vWv7EsRcdzjuRKh47rWmOMZX1SKsQ1jLL74LIrP7Aj24/Mi/m6LMWIBgJwrAADk1KJFiwo33HBD4YQTTij06tWrsPnmmxc23njjwnbbbVc46qijCpMnTy6sXr26yjITJkyIvhGz18r++9//Fr72ta8VPvrRjxbatWuXvef000+v8p5XXnml8I1vfKPQs2fPQvv27bPt7bLLLoXTTjutcN9999WrzLGOWPcOO+xQ7/38/e9/Xzj88MMLW265ZWGTTTYp9OjRo3DRRRcVli9fXuO9Bx10ULb+yqZNm5ZN++53v1ty/VGWUuWJ47fnnnsWOnTokC1fnz8tG7N/TSnOWanzW5sPP/ywMGnSpMKhhx5a6NKlS3b9lJWVFfbff//CZZddll1j1fet+nVR3QMPPFA44ogjsvXF+frYxz6WXaOPPPJIjfc+/vjjhcGDBxe6deuWbXvrrbfOjvkFF1xQ+Mtf/lKv8xTi3EbZ4lxX9tJLLxWOOeaYwlZbbVVo06ZNjWNz//33F/r371/YbLPNCltssUV2nU2fPr3W+yQ8+OCDhQEDBhQ6duyYXZPHHXdc4fnnny8cffTR2TKlrsunn346O27bb799dkzi2PTu3bswfPjwkselNitXrszOSywb12WUO87VHXfcUfL9pe6H+l5Dcb7re5xDbccspkU56rueuq6zuF4OOOCA7NjH82fgwIGFv//977Wu7/XXXy+ceuqpha5duxbatm1b8jlQ33Pz5z//OXtG9unTJ3tPHP94Fg0bNqzwzDPP1HlMSx2PV199tTBkyJDCNttskz1P99prr8Ltt99ecpl4jt94442FT37yk9m+x8/ee++dPf+rP+PvvvvuwimnnJI9pzfddNPsOMX+XHLJJYVly5bV61zXdd+s6Xn6z3/+s+JYxzrqEufn4osvzsoX+xTljXKfdNJJ2fP3/fffr9cxXdN93pDjV59tRfniedGpU6fCfvvtV5g6dWqdz4yG7ueaPnvKy8sL119/ffYc6ty5c3bddu/ePXuOX3PNNYU33nij0c/l2bNnZ+uJ9RaPZfG+qmsfY7lYXzzD41ke5Yn7Ja7zhjxj1nR9VVf53o9yFY9blCPuzSVLlpRcbsWKFdmzNK6DOB+xzMc//vHsmXLrrbdmfxMV1bXfa9LYfW3I8QzPPvts9ndffCbE/sQz5rHHHqu17HV9ngIArU+b+E9LB3EAAEB+RbdkO+20U9aFXrTqgNpEy5po4dEcXcjChia6PIyummNcxFLjOwIAbAiMCQYAADSJ6K6u+jhF8Z276GosutCLrqcAAABgXTEmGAAA0CT+/Oc/Z2MIxTg7MdZMjGEW02JsqhhnJ1olAAAAwLoiBAMAAJrELrvsko455pj0xBNPpAcffDB98MEH6WMf+1g699xz0yWXXJK6du3a0kUEAABgA2JMMAAAAAAAAHLHmGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADInY1augB5td1226X//e9/afvtt2/pogAAAAAAALQ6ixYtSptuuml67bXXGrW8lmDNJAKw999/v6WLAQAAAAAA0CpFzhJ5S2NpCdZMii3A5s2b19JFAQAAAAAAaHV69+69Vsu3upZg5eXl6eKLL05lZWWpY8eOqX///unhhx9e43Lf+973Ups2bWr8dOjQYZ2UGwAAAAAAgHWn1bUEGzZsWJoyZUo6//zz084775x+/vOfp4EDB6Zp06alT3/602tc/uabb06bbbZZxb/btWvXzCUGAAAAAABgXWtVIdjs2bPTXXfdlcaMGZNGjBiRTRs6dGjafffd08iRI9PMmTPXuI5Bgwalrbfeeh2UFgAAAAAAgJbSqrpDjBZg0XJr+PDhFdOiO8MzzzwzPfnkk2nx4sVrXEehUEgrVqzIXgEAAAAAAMinVhWCzZkzJ/Xq1St17ty5yvR+/fplr3Pnzl3jOnbaaae0xRZbpM033zyddtpp6fXXX2+28gIAAAAAANAyWlV3iEuXLk3dunWrMb04bcmSJbUu26VLl3T22WenAQMGpPbt26fHH3883XjjjVkXi0899VSNYK2+evfuXXL6ggULUo8ePRq1TgAAAAAAADagEGzlypVZgFVddIlYnF+b8847r8q/TzrppKwF2ZAhQ9JNN92UvvWtbzVDiQEAAAAAAGgJrao7xI4dO6by8vIa01etWlUxvyG+8IUvpO222y798Y9/bHSZ5s2bV/JHKzAAAAAAAICW06pCsOj2MLpErK44raysrMHr7N69e3rzzTebpHwAAAAAAACsH1pVCNa3b9/04osvphUrVlSZPmvWrIr5DVEoFNLChQvTNtts06TlBAAAAAAAoGW1qhBs0KBBafXq1WncuHEV06J7xAkTJqT+/ftnrbrCokWL0vz586ss++9//7vG+m6++eZs+pFHHrkOSg8AAAAAAMC6slFqRSLoGjx4cBo1alRatmxZ6tmzZ5o4cWLWmmv8+PEV7xs6dGiaPn161tKraIcddkgnn3xy2mOPPVKHDh3SjBkz0l133ZW1HvvqV7/aQnsEAAAAAABA2tBDsDBp0qQ0evToNHny5LR8+fLUp0+fNHXq1HTggQfWudyQIUPSzJkz0z333JNWrVqVhWIjR45Ml156aerUqdM6Kz8AAAAAAADNr02hcnMpmkzv3r2z13nz5rV0UQAAAAAAADa4rKVVjQkGAAAAAAAA9SEEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd1pdCFZeXp4uvvjiVFZWljp27Jj69++fHn744Qav5/DDD09t2rRJZ599drOUEwAAAAAAgJbT6kKwYcOGpauvvjoNGTIkjR07NrVr1y4NHDgwzZgxo97ruPfee9OTTz7ZrOUEAAAAAACg5bSqEGz27NnprrvuSpdffnkaM2ZMGj58eHr00UfTDjvskEaOHFmvdaxatSpdeOGFWWsyAAAAAAAA8qlVhWBTpkzJWn5F+FXUoUOHdOaZZ2YtuxYvXrzGdVx11VXpww8/TCNGjGjm0gIAAAAAANBSWlUINmfOnNSrV6/UuXPnKtP79euXvc6dO7fO5RctWpSuuOKKdOWVV2bjiQEAAAAAAJBPG6VWZOnSpalbt241phenLVmypM7loxvEvfbaK51yyilNVqbevXuXnL5gwYLUo0ePJtsOAAAAAAAAOQ3BVq5cmdq3b19jenSJWJxfm2nTpqV77rknzZo1q1nLCAAAAAAAQMtrVSFYdGFYXl5eY/qqVasq5pfywQcfpHPPPTd98YtfTPvuu2+TlmnevHkNaiEGAAAAAABA82tVIVh0e/jqq6+W7CYxlJWVlVxu0qRJ6YUXXki33nprWrhwYZV577zzTjata9euqVOnTs1UcgAAAAAAANaltqkV6du3b3rxxRfTihUrqkwvdnEY80tZtGhRev/999P++++fdtxxx4qfYkAWv//hD39YB3sAAAAAAADAutCqWoINGjQo/fjHP07jxo1LI0aMyKZF94gTJkxI/fv3T927d68Ivd5999206667Zv8+5ZRTSgZkJ554Yho4cGD6yle+ki0PAAAAAABAPrSqECyCqsGDB6dRo0alZcuWpZ49e6aJEydm3RmOHz++4n1Dhw5N06dPT4VCIft3hGHFQKy6aAV2wgknrLN9AAAAAAAAoPm1qhCs2H3h6NGj0+TJk9Py5ctTnz590tSpU9OBBx7Y0kUDAAAAAABgPdGmUGwuRZPq3bt39jpv3ryWLgoAAAAAAMAGl7W0beLyAAAAAAAAQIsTggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3NloXW/wrbfeSltuueW63iwAAAAAADk15o/npDy46DPXt3QRIFeatCXYeeedV+f8d955Jx1xxBFNuUkAAAAAAABo3hDs+uuvT9dcc03JeStXrkxHH310evrppxu9/vLy8nTxxRensrKy1LFjx9S/f//08MMPr3G5++67LwvfYrn27dunj33sY2nQoEHp2WefbXRZAAAAAAAA2EBCsFGjRqWLLroo3XPPPTXCq+OOOy79+c9/TnfffXej1z9s2LB09dVXpyFDhqSxY8emdu3apYEDB6YZM2bUudwzzzyTunTpkrVUu+mmm9JZZ52V5syZk/r165f+/ve/N7o8AAAAAAAArJ/aFAqFQlOu8LTTTkv33ntveuSRR9KAAQPSBx98kD73uc+lBx98MN1+++3p5JNPbtR6Z8+enbX8GjNmTBoxYkQ2bdWqVWn33XdPXbt2TTNnzmzQ+l5//fWsRdiZZ56ZbrnlltTUevfunb3OmzevydcNAAAAAMD/z5hgkE+91zJradKWYGHChAlpv/32y1p+Pf/881mrrQceeCCNGzeu0QFYmDJlStbya/jw4RXTOnTokIVYTz75ZFq8eHGD1hfBWadOndJbb73V6DIBAAAAAACwftqoqVe48cYbZ2Nw7b///mnvvfdO7733Xrr22mvTl770pbVab3Rf2KtXr9S5c+cq06NLwzB37tzUvXv3OtcRgdf777+fXnvttaxMK1asSIcddliTpJDVLViwIPXo0WOt1g0AAAAAAEALhGCLFi2qdd7NN9+cjj322Kyl1vHHH1/lvdtvv32Dt7V06dLUrVu3GtOL05YsWbLGdUQLtRdeeCH7fbPNNkvf/va3s/IBAAAAAACQL2sVgn384x9Pbdq0qXV+DDcWYVj8VLZ69eoGb2vlypWpffv2NaZHl4jF+fXpqjFaf7388svZ77FMlKVt28b3CllbP5S1tRADAAAAAABgPQ/BvvOd79QZgjWljh07pvLy8hrTV61aVTF/TQYMGFDx+ymnnJJ222237Pcf//jHTVpWAAAAAAAAWnEI9r3vfS+tK9Ht4auvvlqym8RQVlbWoPV16dIlHXrooen2228XggEAAAAAAORM4/sBXMf69u2bXnzxxaw7w8pmzZpVMb+hojvEt99+u8nKCAAAAAAAQA5DsLvvvjsNHTq01vHBYt4999zTqHUPGjQoG79r3LhxFdOie8QY26t///6pe/fu2bRFixal+fPnV1l22bJlNda3cOHC9Mgjj6R99tmnUeUBAAAAAAAgp90hVnfjjTemHXfcseS8GDusXbt26YYbbkgnnXRSg9cdQdfgwYPTqFGjslCrZ8+eaeLEiVmYNX78+Ir3RdA2ffr0LHQr2mOPPdJhhx2WtRaLbhBfeumlbJn3338/XXHFFY3cWwAAAAAAADaIEOz5559Pn/vc52qdv9dee6UHH3yw0eufNGlSGj16dJo8eXJavnx56tOnz//T3p2AaVXW/+O/ARVwwR1lDFdEDcUlBTXFfcOtEtLSEFMpzfUrQmhk38pcSM19ixBJw8IsxS1TIBEELXBBEUMRAhH9ioIJqPj8r8/5/Z+5ZmdmmGGYw+t1XeMM93nOOfdZn8fzfu77TqNHj049evSocb5zzjknPfroo+mJJ55IixcvTu3bt09HHnlkuuyyy7KADAAAAAAAgHxp0BAsAqZ11lmn2unREmxlxuBq06ZNGjJkSPZTnbFjx1Yq+9nPfpb9AAAAAAAAsGZo0DHBtt566zRp0qRqp8e0kpKShlwlAAAAAAAANG4Idtxxx6X77rsv/fWvf6007eGHH05/+MMf0vHHH9+QqwQAAAAAAIDG7Q4xxtj605/+lI0LdvDBB2djgIUpU6Zk3RRGK7DLL7+8IVcJAAAAAAAAjRuCbbbZZmnChAnpnHPOSY8//ngaM2ZMVt6iRYvUs2fPdOutt6b27ds35CoBAAAAAACgcUOw0LFjxzR69Oi0cOHC9O9//zsr69SpU9p4440belUAAAAAAACwakKwogi99tlnn8ZaPAAAAAAAAFSrZfWTAAAAAAAAYA1sCdayZcvs59NPP03rrLNO9neM/1WTmP7FF1+szGoBAAAAAACg8UKwPn36ZKFWq1atyv0bAAAAAAAAmm0Ids8999T4bwAAAAAAAGgKxgQDAAAAAAAgd4RgAAAAAAAA5M5KdYe4/fbb13meGDNs5syZK7NaAAAAAAAAaLwQbOutt85CLQAAAAAAAMhNCDZ27NiGqwkAAJTvjRwAAFkHSURBVAAAAAA0EGOCAQAAAAAAkDsNGoK9/fbb6ZFHHqlyWqFQyKbNmjWrIVcJAAAAAAAADdsdYkU/+clP0jvvvJOOP/74StNi7LAhQ4ak7bbbLg0fPrwhVwsAAAAAQEppyN/PT3lw6eE3N3UVgBxo0JZg48ePT0cffXS104866qj0j3/8oyFXCQAAAAAAAI0bgr333ntpyy23rHb6FltskebPn9+QqwQAAAAAAIDGDcHatWtX45hfMWbYeuut15CrBAAAAAAAgMYNwfbbb7/0u9/9Li1cuLDStCgbNmxY6t69e0OuEgAAAAAAACpZKzWg/v37p0MOOSR169Yt/fSnP0177rlnVj5lypT0i1/8Ii1YsCBdeumlDblKAAAAAKAGQ/5+fmruLj385qauAgBregh24IEHpjvuuCOdf/75qW/fvqXlhUIhtW7dOt1+++3p4IMPbshVAgAAAADkMvwLAkCA1SQEC2eddVbq2bNn+tOf/pRmzJiRlXXu3Dn17t07lZSUNPTqAAAAAAAAoPFDsBBh14UXXtgYiwYAAAAAAICmCcHKmjRpUpozZ07aaqutUvfu3VPLli0be5UAAAAAAACs4RotBJs7d2469thj08svv1xatssuu6RHHnkkbb/99o21WgAAAAAAAEiN1izrggsuSB06dMjGBVuyZEl6/vnn0/Lly9O5557bWKsEAAAAAACAhgnBnnjiiSrLI/S68sorU6dOnVLr1q1Tt27dsmAsygEAAAAAAGC1DsFOOOGEdPrpp6cPP/ywXHmMATZ+/PhyZc8991wqKSlZ2VUCAAAAAABA44Zg0bLr1Vdfzcb7euCBB0rLL7/88nTxxRenAw88MJ166qlpt912SyNHjszKAQAAAAAAYLUOwfbaa680efLkLPA644wzspZh8+bNSyeeeGIWkHXp0iV99NFHad99901jx47NAjEAAAAAAABoTGs1xEJatWqVfvzjH6eTTjopnX322emrX/1quvrqq9MPf/jDtM8++zTEKgAAAAAAAGDVtQQra8cdd8xae1177bVp0KBB6aCDDkpvvvlmgy1/2bJlaeDAgdm4Ym3btk3du3dPTz311Arn+/Of/5xOPvnktP3226d111037bTTTumSSy7JWqgBAAAAAACQPw0Wgn322Wdp0aJF2d/9+vVL06ZNS5tuumnafffd01VXXZWWL1++0uvo27dvuv7667MuFW+88casBVrPnj3T+PHja5wv6vP666+n0047Ld10003p6KOPTrfcckvab7/90pIlS1a6XgAAAAAAAOQsBPvwww/TN7/5zbT++uunjTfeOHXt2jW9+OKLWWutaIE1YsSIdPPNN6evfe1r6V//+le91xPjjo0cOTIL1IYMGZIFW88880zaZptt0oABA2qcd9SoUenll19OP//5z9NZZ52VBWh33313mj59errvvvvqXScAAAAAAAByGoJddNFFacKECenOO+/MQq8Iw2JssM8//zybHn9HK6wIwfbdd9906aWX1ms9EWRFy68Iv4ratGmTzjzzzDRx4sQ0Z86cauc9+OCDK5VFcBeibgAAAAAAAOTLSodgjz/+ePrxj3+czjjjjHTiiSem3/72t1kg9dprr5W+ZsMNN0xDhw5NTzzxRPrLX/5Sr/VMmTIlde7cObVr165cebdu3bLfU6dOrdPy5s+fn/3ebLPN6lUfAAAAAAAAVl9rrewC1l577XLjai1dujS1aNEirbVW5UUfeuih6ZVXXqnXet59993UoUOHSuXFsnnz5tVpeddcc03WsqxXr15pZXTp0qXK8pkzZ6YddthhpZYNAAAAAABAE4Vg0a3g1Vdfnb744otsTLDbbrst7bzzzmmXXXap8vXRhWF9RNDWunXrapdXNohbkfvvvz9rmRZjie244471qg8AAAAAAAA5DsGGDBmSWrZsmY0J9umnn6b9998/3XjjjVlZQ2rbtm1atmxZpfJoeVacXhvPPvtsNo7YUUcdla688sqVrte0adPq1EIMAAAAAACAZhCCrbvuuunmm2/OfhpTdHs4d+7cKrtJDCUlJStcxksvvZROOOGEtOuuu6ZRo0ZV2WUjAAAAAAAAzV/DNtdqRHvssUeaMWNGWrRoUbnySZMmlU6vSYzRdfTRR6f27dunxx57LK2//vqNWl8AAAAAAACaTrMJwXr16pWWL1+e7rrrrtKy6B5x2LBhqXv37qljx45Z2ezZs9P06dPLzTt//vx05JFHZl00Pvnkk2nzzTdf5fUHAAAAAABg1Wk2/QFG0NW7d+80aNCgtGDBgtSpU6c0fPjwNGvWrDR06NDS1/Xp0yeNGzcuFQqF0rJoAfbWW2+lAQMGpPHjx2c/RVtssUU64ogjVvn2AAAAAAAA0HiaTQgW7r333jR48OA0YsSItHDhwtS1a9c0evTo1KNHjxWOBRauvfbaStMOOuggIRgAAAAAAEDONKsQrE2bNmnIkCHZT3XGjh1bqaxsqzAAAAAAAADyr9mMCQYAAAAAAAC1JQQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyJ21mroCAAA0T0P+fn7Kg0sPv7mpqwAAAAA0Ai3BAAAAAAAAyJ1mFYItW7YsDRw4MJWUlKS2bdum7t27p6eeemqF873xxhvp4osvTvvvv39q06ZNatGiRZo1a9YqqTMAAAAAAACrXrPqDrFv375p1KhR6aKLLko77rhjuueee1LPnj3TmDFj0gEHHFDtfBMnTkw33XRT+upXv5p22WWXNHXq1FVabwAAAIDVhS6NAYA1RbMJwSZPnpxGjhyZhgwZkvr375+V9enTJ+26665pwIABacKECdXOe8IJJ6SPPvoobbDBBunXv/61EAwAAAAQBgEA5Fyz6Q4xWoC1atUq9evXr7QsujY888wzs5Zec+bMqXbeTTbZJAvAAAAAAAAAWDM0mxBsypQpqXPnzqldu3blyrt165b91roLAAAAAACAZtcd4rvvvps6dOhQqbxYNm/evCaoVUpdunSpsnzmzJlphx12WOX1AQAAAAAAoBmFYEuWLEmtW7euVB5dIhanAwAAAEBVjAEHAGueZhOCtW3bNi1btqxS+dKlS0unN4Vp06bVqYUYAAAAAAAAja/ZjAkW3R5Gl4gVFctKSkqaoFYAAAAAAACsjppNCLbHHnukGTNmpEWLFpUrnzRpUul0AAAAAAAAaFYhWK9evdLy5cvTXXfdVVoW3SMOGzYsde/ePXXs2DErmz17dpo+fXoT1hQAAAAAAICm1mzGBIugq3fv3mnQoEFpwYIFqVOnTmn48OFp1qxZaejQoaWv69OnTxo3blwqFAqlZR9//HG6+eb/N2joc889l/2+5ZZb0kYbbZT9nHfeeU2wRQAAAAAAAKQ1PQQL9957bxo8eHAaMWJEWrhwYeratWsaPXp06tGjR43zxWtjvrKuu+667Pc222wjBAMAAAAAAMiZZhWCtWnTJg0ZMiT7qc7YsWMrlW277bblWoYBAAAAAACQb81mTDAAAAAAAACoLSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOTOWk1dAQAAgNXVkL+fn/Lg0sNvbuoqAAAArHJCMAAAAFjDCXwBAMgj3SECAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4YEwwAAFgh4wUBAADQ3AjBAAAAAACgGfJlNaiZ7hABAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOTOWk1dAQAAAFY/eRhkvT4DrOdhu4PB5QEAQEswAAAAAAAAckgIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd9Zq6goAAEBzMuTv56c8uPTwm5u6CgAAANCohGAAACtJKAIAAACw+tEdIgAAAAAAALkjBAMAAAAAACB3dIcITUTXWQAAAAAA0Hi0BAMAAAAAACB3hGAAAAAAAADkju4QAQAAAACAZsNQM9SWlmAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDvGBANYBfRTzJoiD+e68xwAAAAgH7QEAwAAAAAAIHeEYAAAAAAAAOROs+sOcdmyZemnP/1pGjFiRFq4cGHq2rVr+uUvf5mOOOKIFc47d+7cdPHFF6e//e1v6csvv0yHHHJIuuGGG9L222+/SupO1XSdBQAAAAAApDU9BOvbt28aNWpUuuiii9KOO+6Y7rnnntSzZ880ZsyYdMABB1Q73yeffJKFXh9//HG67LLL0tprr50FYAcddFCaOnVq2nTTTVfpdgCsCfIQctcn6F5TtxsAAAAAVifNKgSbPHlyGjlyZBoyZEjq379/VtanT5+06667pgEDBqQJEyZUO+9tt92W3nzzzWwZ++yzT1Z2zDHHZPNed9116Ve/+tUq2w4AAAAAAAAaV7MaEyxagLVq1Sr169evtKxNmzbpzDPPTBMnTkxz5sypcd4Iv4oBWNh5553TYYcdlv74xz82et0BAAAAAABYdVoUCoVCaiZi3K8Y1+u1114rV/7000+nww8/PD388MPp+OOPrzRfjP+17rrrpu9///tZi7CyBg8enI0ptmjRorTBBhvUuU5dunSpsnz69OlZl4s77LBDnZe5pvm//85Pzd2m6225Rm53fbd9TbSmHm/b3bytqfe2NXW7g3O9dmx382a716xtX1O3OzjXa8d2N2+2e83a9jV1u4NzvXZsd/Nmu6nOzJkzs6xl8eLFKffdIb777rupQ4cOlcqLZfPmzatyvg8//DAtW7ZshfPutNNODVbXFi1aZAeGpr/Q4yIJq1sg6Qa3ZllTj7ftXrPua8ExX7PY7jXLmnpvW1OP95q87bZ7zeLetmZZU7d7Td5229043NtWL7abvFt77bXTeuutV+/5m1UItmTJktS6detK5dElYnF6dfOF+sy7ItOmTavXfKw6xdZ6jhWQF+5rQB65twF55N4G5JF7G9CcNKsxwdq2bZu16Kpo6dKlpdOrmy/UZ14AAAAAAACan2YVgkXXhdElYkXFspKSkirn22STTbJWYPWZFwAAAAAAgOanWYVge+yxR5oxY0ZatGhRufJJkyaVTq9Ky5Yt02677ZZefPHFStNi3u233z5tsMEGjVRrAAAAAAAAVrVmFYL16tUrLV++PN11112lZdHF4bBhw1L37t1Tx44ds7LZs2en6dOnV5r3hRdeKBeEvfHGG+mZZ55JvXv3XoVbAQAAAAAAQGNbKzUjEXRFYDVo0KC0YMGC1KlTpzR8+PA0a9asNHTo0NLX9enTJ40bNy4VCoXSsnPPPTfdfffd6dhjj039+/dPa6+9drr++uvTFltskS655JIm2iIAAAAAAAAaQ4tC2aSoGVi6dGkaPHhw+v3vf58WLlyYunbtmn7xi1+ko446qvQ1Bx98cKUQLPznP/9JF198cfrb3/6Wvvzyy+x1N9xwQxamAQAAAAAAkB/NLgQDAAAAAACAXI0JBgAAAAAAALUhBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAABAMzF27NjUokWL9Mtf/rLa12y77bapU6dOq7ReAAAAqyMhGAAAAAAAALkjBAMAAKDBLFq0qKmrAAAAkBGCAQAA5NykSZPScccdlzbZZJPUpk2btPPOO6df/OIX6bPPPiv3ur59+2bdLVbXzeLBBx9crixeG/NEN40xrV27dmn33Xdv1G0BAACorbVq/UoAAABWC59++mn64IMPqpz25Zdflvv3E088kU444YQsoDr33HPTlltumR577LH005/+NE2YMCE9+uijqWXL+n8/8sUXX0yjRo1K3//+99N3v/vdtHjx4novCwAAoCEJwQAAAJqZq666Kvupzg477JD9Xr58eTrnnHPSWmutlZ5//vnUqVOnrPy8887LQqthw4al+++/P5122mn1rsu0adPS448/no4++uh6LwMAAKAx6A4RACCldM8992TdesXvPIpuyqrr4gxI6aabbkpf/epXU9u2bbNr5Te/+c0qXX+ss2JXgzWJLgifeuqpKn+22GKL0tf961//SrNmzUrf+973SgOwop/97GfZ7wcffHCl6h7dH+Y5ACt2ERn7sbaie8iYp7iPWTPea9eUbVwdrjEAgNoSggEAuRStH+6+++500EEHZWPgrL322ql9+/apa9eu6ayzzkoPP/xwrZYTY+DET2OLBz/xAKjsT7TciIfZxx57bNbKYnUQD3SjbvGAt77++c9/ph/+8Idp1113TRtuuGF2bDbffPN04IEHpsGDB6c33ngjraoHbmV/1ltvvaxOP/7xj9PChQvTmqJ47sU+WVONHDkyXXjhhdlYWRdddFG64oor0r777ptWZ9HS6/DDD6/yJ7aj6K233sp+77bbbpWWsfXWW2ddJP7lL3+pUwBXUefOndOaprldN82tvqvivai+BJwAAM2L7hABgFwGYMcdd1w2Ds5GG22UhUhf+cpX0meffZZ12xVdf02fPj0bI6fom9/8ZvbQu0OHDk1a9wiF4iF8WLp0aXrppZeysXvi58Ybb0wXXHBBvZZ77733ZmMINaXY/1H/O++8M3uAuP/++6dDDjkkewj/0UcfZeFYdO/2q1/9Knsof/zxxzd6nU488cS0xx57ZH/Pnz8/PfLII+maa67JxjeaPHlyFqCSf6NHjy79XVJS0iR1eP3119O66667ytdbsYVoTS1Gv/jiiyrLm6Leq1LclyIc32qrrWo9T7du3bJjutlmmzVq3Vj9rC6fJwAA+H+EYABA7vzhD3/IArDoomvcuHFZsFRWhEGTJk0qVxavqfi6phChXcVvl8eYPTF2z2WXXZa1YqvPA+do8dHUfvCDH2TdQ0WLlDhGXbp0qfSad955JwvBVlVLrG984xvlWkb8+te/Tt27d0+vvfZauvnmm7MWQeTfvHnzst9NFYCFnXfeuVGWWxwbLL4AUNGcOXPSxx9/XK6sGPx++OGH5ULgJUuWpHfffbdSl4prgggz6hpoxH26sY4pq7fV5fMEAAD/j+4QAYDcmTBhQvY7wo2qHkTFw8logVTTGB7F7o4ilImfst3mVexOKlqVRVnHjh3TOuusk3Vh+N3vfrfBuvWLZUdXff/973/LPch++umns3F44kF169atsy7JorVCxYfa1Y0JVrZLp6lTp2Yt5iKEi/0T3UgW92NRdAv5v//7v9nfsf/K7pMV+cc//pHt20033TT97W9/qzIAC9tss03WUiz2X1NYf/310+mnn579HS3ByraAue2227Jv90fLtdhHe+65Z7rlllvSl19+WW23YzNmzEgnn3xy1hVny5Yty3XdFfshWrvFtDh+cf5Ey7S///3vler15JNPpp49e2atSuK1EWxceumlWQu66rrwjPMlXhMBaMwT4UW0cisUCqWvjWO/3XbbZX8PHz683DEtXgvRgi+2M9YfxyeWFedcdLtXUzedUeevf/3r2bkbr4/AsXitVDf2S4TTvXr1SltuuWV2LcU+ifC0GFLV1rJly9LVV1+dBa5xrOKYRXebf/zjH6vsUm3MmDHZv+tyThe34+233872T4wnFt0Qxr6PILe4n//0pz9lrYJiP8SxPu+887JAqTZjgpXt8i1aJ8ZyimNvPfDAA2nu3LmVlhPr/89//lP67zhPo2zEiBFZK9OyXciddtpppa+LLwzEtOuvvz77d+z3smLeONfjvlD22FQlumDs169fds7FGGtx/ONYRDeo//d//7fCfVt2f8Sxj/HMYt/Fsr72ta9lrXmrEvW744470j777JNdy7HP4+/bb7+90nUann322ewajJbCcV7HeRfXePE+V1TxnK3NdVNVl3kRisW+++CDD6qsf1yfMU+cT2XF8YzzZvvtt8/qGffRaMn8wgsv1Gpf1qa+9dl/Nfn3v/+devfunTbeeONsOdHy99FHH61xntpuZ23fi+ILL9GKL1r7Rh1im/bbb7/sSxjVWdF9Oc6F4ueHqEPZdRevq5rGBIsWzyeddFLp8uOeeu6552YBc0Vlz7t4X4xrKO4x8Rkjrq+q3uurU/ZeEudA3Bfieop6xJdsoiV0VSIMHzRoUNpll12y18dnqsMOOyzbTxWV3e74IlJcv/H6uo5HWpdtrcv+rGls1OqOWfH9dNGiRel//ud/sr+jC2ddYQJA86IlGACQO/HgLEQAUV/xoCNaAf3mN7/J/l3sojAUu88L8aDnW9/6Vvr888+zB2fx0Dce5P35z3/OHvjFw/W99torraziA/XiA5x4SHTOOedkD/biQWM8AIqHW/EQNbr0e+6557JAqzZefPHFdO2112YPB6Ol2ezZs9ODDz6YPeiKcGynnXYq3QfRTWE8LI+gqC5jpcX4bCEemseD5hWJ8dCaSsV9XTy2EerEvoiALh7OxbE9//zzs+AmAoaKZs6cmbUqi3Dy1FNPzYKPCGNCnFs///nPs4eyEQ7Fg9Z42B8Bw+9///ssYCqKB63xwC2ChOjmM471yy+/nLVai24yJ06cWLrcoqjzUUcdlS3zmGOOyfZnHLsISaObzWILt3goGEFadLUZLSejLhXP83gIGuNlxUPsI444Ihu/LR4wxnkWwVgc2zhvKo6xVdxP3/72t7NWNLFtcY7Feqryu9/9LnvYGQ8y48F37JM333wz/fa3v83W9fzzz9eqRWOEdrHtcZ5G6PCjH/0oexgeIVIEknFOR0hV3P4QDz4j7K5Py7/+/ftn116cI0ceeWQ23uDll1+e1SOOWezz2K8Rwj311FPp1ltvzbpsjWChtiKAjeXGfomAIAKwV199NTtPYntin1WnVatW2bpi3uJ1+NBDD6UhQ4Zk4XQEqnGuxsPjeOgeAWKcD3Fuxf6Ih9DRGjXuEyHuK/G64rEJn3zySen64tyI4CQeGsf5EQ+o45yLsDCukwg5ivfoFYkWoXHexTrPOOOM7FyNIDOupwgAI+QtK8KyCMji3IlzMq7h2NZ4KD5+/Ph03333lbt3R/Af107sm+jqMM716MIw9ndN50JtrpuqxH0zWvRGCBP3jooinIiQrOyXAP71r39l51XULc7reL+JEC2u5wMOOCDbvtjPNaltfeuy/2oS50Zc6xF4xv0n1hGhWKw3/l2Vumxnbd6LYnsPPfTQNGXKlOw9OIKeCPLiPh77N75Q8stf/rLcPLW5Lxf3XRyr+LJI2eB6Re+J0d1qXA/xHhNhf1xzEeLE9fnXv/4128fFsLKsAQMGZPUu3mPivSeu5dinzzzzTKqLG264IQuw4l4YgXqsM67vuIfFe1nc34vinhjbFyFc3L/i9fHlitiO+Ds+h5x99tmV1hH32ri+4lhH8B3Lqa26bGt992ddxb08zqU4N6NOcc9oiOUCAKtQAQAgZ/71r38V1l577UKLFi0Kp512WuHBBx8szJo1q8Z5hg0bFslH9rusbbbZJvupyocffljYaKONCptuumlh2rRp5aa98sorhfXWW6+w55571qrOb7/9drb+qtY1dOjQbFos79NPP822ZZ111ilssMEGhddff73ca88555zstWeffXa58oMOOigrL2vMmDFZWVXbfccdd2Tlsbyyrrjiiqw85q2L7bbbLpvv73//e2F1cPrpp1e53YsXLy7ssssu2bSf//zn5bb5vPPOK3zxxRelr42/v//972fT/vKXv1Q6lvEzaNCgSut+8skns2mxT/7zn/9Umj5nzpzSv5955pnstfvtt19h4cKFVZ6zF110UbnyOIei/JhjjsnOl6L33nuvsOGGG2Y/n332WaX6xj6pytKlS8vVqeijjz4qdOnSpbDxxhuXW8+iRYuy6yLO0alTp5abZ+DAgaX7JtZb9MYbb2TX7A477FBpn8Q507Jly8I3vvGNQm386le/Kt3+zz//vNz2F/fNc889t8Lro7bnUCyzbJ3jOMU9Yd111y1sttlmhddee63cvozzK/ZN1KesWFbUo6ziuRfX+ssvv1zuut1tt92y3w888EC5eaI+rVq1yvZlWRMnTix06tQpm2ettdYqdO7cOTvHly1bVmndL7zwQqFHjx6FNm3aFNq1a5ft/2233baw1VZblXtdHJuYt2PHjqVlN910U1b2m9/8ptI+++STT8qdKzUpnie9e/cuLF++vLT8rbfeys65OF9mzpxZWn7//fdnr497blzHZdf5ta99LZt23333lZZ/61vfysoqnqPh/fffr/JYlz1nV3TdFI9THMOiuI5iX0Z9Kpo8eXL2+qhXUZy/cRxbt25dGDt2bLnXz507t1BSUlLYcssts/NqRVZU37ruv5occcQRVZ4DcZ+s6j2nPtu5ovei4jG75pprypUvWbKkcNRRR2WfD6ZMmVKv+3JVx3ZFnydin26yySbZ8f/HP/5R7vVXX3119vrYb1VtQ1xf77zzTrn9deCBB2bTJk2aVKiN4v6K6yY+I5UV7yExLd7PyoprPfbTH/7wh3LlcY/bfffds/vD/PnzK213zPP444/Xql713db67M+a7vM1fQaM8sMOOyy7FgCA5kkIBgDkUjwYjodmxQdu8RMPTOJB+sMPP9wgIVg84It5brnlliqnFx8sVQzIanpAGQFFPKyKnwgM4kF+sf433nhj9tpf/vKX1QYsEczFA/N4OFX2gWFNIdjXv/71SsuJkCQelFd8WFvfEKxt27bZfBVDuxAPIovbXPypeBwaWvGB24knnli6zh/+8IfZw9YojweysS/j4XucN3EulQ1Uyj4MjAd+8aC+4rHcYostqnw4fdxxx2XT//znP6+wnnG+xmtfffXVKqfvsccehc0337zKh3Zvvvlmpdf36dMnmxYhbW0fjtfkuuuuy+YdN25cadmIESOysjPOOKPS6+PBZQRkFQOF4rUyevToavdDBDsRsK1IBD1xTKo61377299WWbeVCcFimRXF8mPa4MGDK0372c9+lk2r+LC/phDs8ssvr7ScYkB6ySWX1PqeVd31W9W663tsiiHYnXfeWVgZsYxYboRe1W1H7Muiww8/PCuLMKOiYlh3yCGHVArBIoBdkYYKwcoGRBWv6R/96EdZ+V//+tdKoVH//v1rfA969NFHV7gNK6pvXfdfdSIsKoZJZb80UPFaK3uPr8921vRe9MEHH2Tnzt57713l8iL4jHkvvfTSet2X6xOC/f73v8/KvvOd71R6fby3RMgc08sGQMXz7u677640z+9+97ts2s0331yojeL+qhh0Fb/QEJ89yn5uKO6jXr16Vbm84jG79dZbK213bb+wUFZdt7U++3NlQrCqwnIAoPnQHSIAkEvRBds3v/nNrCud6BInukSK39GFUvz06dOndAyI+opu6MJLL71U5fgQxe4Yo3utGC+oNmLci+JYJ9GNWXSnFl0KRRdixa6gotuoEN3zVBTjr8RYH9HNWYy/VF3Xc2XtvffelcpizIvoBi26I2ts0Z1bxTF4opupimOvVRRdNFU15kpdxuqILpPiJ8R4J9GdVXS1Fl3Yxb6MfRhdIO24446Vus4qivniGFcU+76qbuqiW78474pjO63oHItjEeNKxU9V3TS9//77WbdjZbuYi3FYomvOiqJ7r1DX4xpdhxW7z4vu7qJ7u7LKjk0V11qILswqim7Gomu0smOjFbczRPdmVY1ztGDBgqwLwbimYkyo6ixevDjrNiu6touuECsqXjPFOjaEqq6fkpKS7HdVdY26hbLjdtVnHfU9lnVV12MTXQtGl3/RDWV0axZd28XYcHEPrOv9Nrq/rKrbseiiLe4ZZY9j3Bdj3L2K46oV7ydxPy37+rjOo9va6LI0uoaLcZ6injE+WGOK+1p0ixnd6UU3tMXrOLpIjK5Oy3ZtWNz30Z1cVfe16HYwxP1nRV0irkhd9191yl7/MU9Fsfw4l8pq6O2M8zTOyYpjspXtLra4vPrcl+ujpvft6K62R48e2Xta7L+K3b425PUfx7KieL+I+3Icl9gn8XfxmMRnkqr2YbzvhKre+2Lswvqq7bauzP6sq+jWt2vXriu1DACgaQnBAIDcivAgxm+InxAPxWKsqxgb5N57781CsrJjo9RVBA+hOM5OdcqOl7MiMaZFPLipSXGA+BhnqSrF8hgTpTaqGzssHiTFPmsIMQ5YjAkU46tUDCfioXAx8IoAIwKn2oj9VDE8q2sIFmOh1BS2FY9xPIStal01HePqxj6L4xIBW4RnKxLr/+KLL2pcd3H9ZUOwmo5pqMtxjYfD8aAx6hHjxEXIEWOixAPzCDAjRIxxpCqenxGiVqWq8uJ+jqBtZa6lhr42aiMeIFe3n2uaVnwQXxtVHc/6HMv6qOuxiXvY5MmTs+swxgWKoKn4IDvGT7vgggtqve7qzqHitVU83sW/40sDMaZWVftqs802ywK7ohhzKsYUuu6667Lx6GJ8oxBB3lVXXZWNf9cY4n0nrp8YYyrWE0FR1CPC9hjrqux4iMV9X1UAXt/3mOrUdf/VtJzaHLuyGno7i8uLMKyq4Laq5dXlvlwfK3Nvasjrv7bXVHEfRmAbPw3x3lcbtd3WVXmvj3B6Zb4wBQA0vZZNXQEAgFUlHjZGC7GLL744+3ddB5SvqPiAO1qC/f/dTFf5c/rppzdI/Suud/78+VVOj5Y6ZV+3OogWFuHpp59usGVGi4Kq9ndDKu7DeHBd0zGOgK+i6h6axUO++Eb7kiVLarX+eDBb07rjJ4KHxhIt4KKuf/vb39Ljjz+efvOb36Sf//znWcgRrWgqigf84b333qtyeVWVF/dzPNisaTurasXQ3K+NhhbhZASWVanPA+H6HJtddtklPfDAA9mD9BdffDFdffXV6csvv0wXXnhhGjp0aK3XXd05VDy+ZY9j/B1BUlXhYuyPDz74oPTcLDr22GOz94G4HuPeFO8N0erxuOOOS6+99lpqDBGyxPtQnIvFcCFahYWK7xXF7YuguaZ9f8UVV6x0veqz/6pbTm2OXWNuZ3F5cTxrWl60FK/Pfbk+Vpd7U22vqeLvG2+8scZ9GF8kqWhVBEb12Z9xbwxV3R9rujcKwACg+ROCAQBrnA022CD7XZvAJIKz6r5pve+++2a/n3322bQqRXeHoWKXcsUHOdE6J7rviQfRDa3YvVVdv31+1llnZb/vuuuuah/CrY6i1Vo8HI3WUHVpuVOTOG/i3ItWMrV5bTyYjQfzjWVFxzRa50ULkaq6SavYrVnZ8zO6H62q1UCcn411LcW1vcMOO2TdMxa7UCur+NB7r732SnkVoWlcY1WdrxFIVSUeDjfGfS5acETLqoEDB2bd/YXojra2Zs+eXWXL2OK9r3iuFf+OoC267KwoymL7qjvu6623Xtba8frrr8+6cozuCSPwbYx7YSi2Po3wK7qVi3VFd2vRDV1jvcesqL4rs/8qLqd4/Ve1rqret+qznTVtT3THF+d0XZZXl/tyfY59Te/bEcoU69rY96aq7tkRcFf83NBUn28ac3/GvTHMmTOn1vdGACAfhGAAQO7Ew9b4hn080KsovjVc7L4wxoxYkehiLh5SVvXt8DPOOCMLSKKruuj+q6JYf1UPaFbWaaedlnX1ePPNN2cBRVmDBw9OixYtyl5T1XhUK6vY5V48nK6L4hhf0ZogxgiqahyRhu6mriHEQ/zzzz8/+1Z5dONW1XkQ0+rSaiSWFy655JJyY2kVlS0rtlo8++yzs64kK/rvf/+bBXQrIx4MxjfdqzumMU5atBB5+eWXy5VHi54Y86miE088Mfv2/X333Ze1kqzYqqyqYxxj3sU5HdtbHEuvrAglavswNro7jYfZl156abmH1HHu/eIXvyh9TV5FABAPgSu20Ijx85577rlqr+uqHgzX59j885//LNdNYVEx/F533XVrvS1x/CJAK3svj1aXN910U3Ztxn2uqHhMBw0alD799NPS8vg7xvgLZ555Zrlgp6oWIbWt54qumxW1jI1uX6Pl0x133JEFllV1yxrXUoS6t956a3rssceqXFaM3VR2e+tb37ruv+rEmGrRlWQcp1tuuaXctNjeqkKY+mxnTe9F0X1djPkWwUZc81WFVTNnzizXgrcu9+X6vA9G18vxZYL4fFLxnh2ta6Muhx9++EqPX7UiI0aMqDS2W7TqjWv2O9/5Tunnhhib68ADD8y6M43uQqvyyiuv1KqLzMZQn/1ZHKusYhfW0Qq0GNIDAPlkTDAAIHcmTZqUdeET41IccMABabvttsvK46HIo48+mgUZ8dCtV69eK1xWjIEUY4ocffTRWWgWD4h23333dPzxx2cPwkaNGpV1lRffmo7XdunSJXvQGA+U46FddAe2dOnSBt2+CCXiIc+PfvSj7FvO0bXW5ptvnj1cjHVG66VrrrkmNYZDDjkk+4Z9PCh99dVXS79Z/ZOf/GSF88aYOzHeTLQG23XXXdP++++ffZs7utiK/RQtdyI0jOXHcVtdRLAYYU48rH7kkUeyFiNbbbVV9vAv6hzBwpVXXpm++tWv1mp5MUZd7K8IhOJb9/EwL8ZLiofv0XoizqUILEKcU9GVXOzveGjes2fP7HyOFlXvvPNOdsxjX9Wm9UJ11l9//axbwwgy4sFx586ds5YOMfZXtE6JcYoi7Ir1xLkWAVc8XI66xjUU10BZcTzjYfb3vve97BjHPDE+y4QJE7L9GIFo1LvYNVWIczYetMaD+LiG4nqLekQ4EA+ao25xjk+fPn2F2xPjTkXLmnjgHtdq7LN4eB7jDcUxGzBgwGp1fjW0eJgfAdg555yTPdyNcytaecS9Ibr5i/GnKorzbOTIkdl9Le4pEXrF/S5+6nps4iF7XOuxjyPYiHtEBA5x7cT9M86n2orzL+7n0ZosrpsIUP/4xz9mv6+99tps+UXf/e53s2Me06OecV3FvThansW9/+STT87O76IItSPYiEAq7qlxb4oAL7pHjO5FTznllJW6blakT58+2b0lQpoI9MrWrSiOQ4QQ8cWB6LoxrqdoLRYBXbzHxHvTW2+9lQXxKwrtVlTfuu6/msT1v99++2XHOrpRjeswvrDx0EMPZedYnAsru50rei+KAC7uzz/96U+zczLOxxgPK75MEF/CiGVG8FH8fFCX+/JOO+2UvQfENRN1j/Ml9lXc86rrmjb2f1xHvXv3zu6B8TsCmjjnYh/F55XiuHSN6ZhjjsnO+eJ9ObYtfuIaiPeasu6///7s/S7Czwie4/yJL/785z//yb4UEfs97isROq5q9dmf8cWlGNswxuKL96J4z45gP94v4nNcjBkLAORUAQAgZ2bPnl245ZZbCt/4xjcKnTt3LmywwQaFtddeu7DlllsWjjnmmMKIESMKy5cvLzfPsGHDom/E7HdZn3zySeGHP/xhYauttiq0atUqe83pp59e7jVvv/124Uc/+lGhU6dOhdatW2fr22mnnQqnnXZa4aGHHqpVnWMZsextttmm1tv55JNPFo444ojCRhttVFhnnXUKO+ywQ+HSSy8tLFy4sNJrDzrooGz5ZY0ZMyYru+KKK6pcftSlqvrE/tt9990Lbdq0yeav60fKF154odCvX7/CLrvsku2rtdZaq7DpppsW9t9//8Jll11WmD59eqGxxTGs6nhX58svvyzce++9hUMPPbSw8cYbZ+dTSUlJ4etf/3rhyiuvzM65isey4nlS0aOPPlo46qijsuXF8fvKV76SnbNPP/10pdc+++yzhd69exc6dOiQrXuzzTbLjsHFF1+c7c/aHLcQxzrqFse+rDfffLNw3HHHFTbZZJNCixYtKu2bRx55pNC9e/fC+uuvX9hwww2z827cuHHVXjfhscceK+y3336Ftm3bZufoCSecUHj99dcLxx57bDZPVefpyy+/nO23rbfeOtsnsW+6dOmSnS9V7ZfqLFmyJDsuMW+cp1HvOFb3339/la+v6vqo7TkUx7u2+zlUt8+iLOpR2+XUdJ7F+XLggQdm+z6usZ49exZeeumlapf33nvvFb7zne8U2rdvX2jZsmWV94XaHpvnn38+u2d27do1e03s/7g39e3bt/DKK6/UuE+r2h9z584tnHrqqYXNN988u7/uueeehfvuu6/KeeK+fuuttxa+9rWvZdseP3vttVf2flDxnv/AAw8UTjnllOy+vd5662X7KbYn7kELFiyo1bGu6bpZ0f31nXfeKd3XsYyaxPEZOHBgVr/Ypqhv1Pukk07K7seff/55rfbpiq7zuuy/2qwr6hf3i3XXXbew7777FkaPHl3jPaOu27mi96Jly5YVbr755uw+1K5du+y87dixY3Yfv+GGGwoffPBBve/LkydPzpYTyy3uy+J1VdM2xnyxvLiHx7086hPXS5zndbnHrOj8qqjstR/1Ku63qEdcm/PmzatyvkWLFmX30jgP4njEPNtuu212T7nzzjuzz0hFNW33itR3W+uyP8Orr76afQ6M94TYnrjHjB07ttq61/R+CgA0Hy3iP00dxAEAAPkX3ZJtv/32WRd60aoDqhMta6KFR2N0KQtrmujyMLpujnERqxrfEQAgz4wJBgAANKjorq7iOEXx3bvoaiy60IuupwAAAKCxGRMMAABoUM8//3w2hlCMsxNjzcQYZlEWY1PFODvRKgEAAAAamxAMAABoUDvttFM67rjj0nPPPZcee+yx9MUXX6SvfOUr6YILLkiXXXZZat++fVNXEQAAgDWAMcEAAAAAAADIHWOCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHfWauoK5NWWW26Z/vvf/6att966qasCAAAAAADQ7MyePTutt956af78+fWaX0uwRhIB2Oeff97U1QAAAAAAAGiWImeJvKW+tARrJMUWYNOmTWvqqgAAAAAAADQ7Xbp0Wan5m11LsGXLlqWBAwemkpKS1LZt29S9e/f01FNPrXC+n/3sZ6lFixaVftq0abNK6g0AAAAAAMCq0+xagvXt2zeNGjUqXXTRRWnHHXdM99xzT+rZs2caM2ZMOuCAA1Y4/+23357WX3/90n+3atWqkWsMAAAAAADAqtasQrDJkyenkSNHpiFDhqT+/ftnZX369Em77rprGjBgQJowYcIKl9GrV6+02WabrYLaAgAAAAAA0FSaVXeI0QIsWm7169evtCy6MzzzzDPTxIkT05w5c1a4jEKhkBYtWpT9BgAAAAAAIJ+aVQg2ZcqU1Llz59SuXbty5d26dct+T506dYXL2H777dOGG26YNthgg3Taaael9957r9HqCwAAAAAAQNNoVt0hvvvuu6lDhw6Vyotl8+bNq3bejTfeOJ133nlpv/32S61bt07PPvtsuvXWW7MuFl988cVKwVptdenSpcrymTNnph122KFeywQAAAAAAGANCsGWLFmSBVgVRZeIxenVufDCC8v9+6STTspakJ166qnptttuSz/+8Y8bocYAAAAAAAA0hWbVHWLbtm3TsmXLKpUvXbq0dHpdfPe7301bbrll+vvf/17vOk2bNq3KH63AAAAAAAAAmk6zCsGi28PoErGiYllJSUmdl9mxY8f04YcfNkj9AAAAAAAAWD00qxBsjz32SDNmzEiLFi0qVz5p0qTS6XVRKBTSrFmz0uabb96g9QQAAAAAAKBpNasQrFevXmn58uXprrvuKi2L7hGHDRuWunfvnrXqCrNnz07Tp08vN+/7779faXm33357Vn700UevgtoDAAAAAACwqqyVmpEIunr37p0GDRqUFixYkDp16pSGDx+eteYaOnRo6ev69OmTxo0bl7X0Ktpmm23SySefnHbbbbfUpk2bNH78+DRy5Mis9dgPfvCDJtoiAAAAAAAA0poegoV77703DR48OI0YMSItXLgwde3aNY0ePTr16NGjxvlOPfXUNGHChPTggw+mpUuXZqHYgAED0uWXX57WXXfdVVZ/AAAAAAAAGl+LQtnmUjSYLl26ZL+nTZvW1FUBAAAAAABY47KWZjUmGAAAAAAAANSGEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNxpdiHYsmXL0sCBA1NJSUlq27Zt6t69e3rqqafqvJwjjjgitWjRIp133nmNUk8AAAAAAACaTrMLwfr27Zuuv/76dOqpp6Ybb7wxtWrVKvXs2TONHz++1sv485//nCZOnNio9QQAAAAAAKDpNKsQbPLkyWnkyJHpqquuSkOGDEn9+vVLzzzzTNpmm23SgAEDarWMpUuXpksuuSRrTQYAAAAAAEA+NasQbNSoUVnLrwi/itq0aZPOPPPMrGXXnDlzVriMa6+9Nn355Zepf//+jVxbAAAAAAAAmkqzCsGmTJmSOnfunNq1a1euvFu3btnvqVOn1jj/7Nmz09VXX52uueaabDwxAAAAAAAA8mmt1Iy8++67qUOHDpXKi2Xz5s2rcf7oBnHPPfdMp5xySoPVqUuXLlWWz5w5M+2www4Nth4AAAAAAAByGoItWbIktW7dulJ5dIlYnF6dMWPGpAcffDBNmjSpUesIAAAAAABA02tWIVh0Ybhs2bJK5UuXLi2dXpUvvvgiXXDBBel73/te2meffRq0TtOmTatTCzEAAAAAAAAaX7MKwaLbw7lz51bZTWIoKSmpcr577703vfHGG+nOO+9Ms2bNKjdt8eLFWVn79u3Tuuuu20g1BwAAAAAAYFVqmZqRPfbYI82YMSMtWrSoXHmxi8OYXpXZs2enzz//PH39619P2223XelPMSCLv//2t7+tgi0AAAAAAABgVWhWLcF69eqVfv3rX6e77ror9e/fPyuL7hGHDRuWunfvnjp27Fgaen366adp5513zv59yimnVBmQffOb30w9e/ZMZ599djY/AAAAAAAA+dCsQrAIqnr37p0GDRqUFixYkDp16pSGDx+edWc4dOjQ0tf16dMnjRs3LhUKhezfEYYVA7GKohXYN77xjVW2DQAAAAAAADS+ZhWCFbsvHDx4cBoxYkRauHBh6tq1axo9enTq0aNHU1cNAAAAAACA1USLQrG5FA2qS5cu2e9p06Y1dVUAAAAAAADWuKylZQPXBwAAAAAAAJqcEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5M4qD8E++uijVb1KAAAAAAAA1jANGoJdeOGFNU5fvHhxOuqoo+q9/GXLlqWBAwemkpKS1LZt29S9e/f01FNPrXC+hx56KFtvzNe6dev0la98JfXq1Su9+uqr9a4LAAAAAAAAa0gIdvPNN6cbbrihymlLlixJxx57bHr55Zfrvfy+ffum66+/Pp166qnpxhtvTK1atUo9e/ZM48ePr3G+V155JW288cZZSHfbbbelc845J02ZMiV169YtvfTSS/WuDwAAAAAAAKunFoVCodBQC7v88svTNddckx544IF00kknlWvBddxxx6Vx48alUaNGpRNOOKHOy548eXLW8mvIkCGpf//+WdnSpUvTrrvumtq3b58mTJhQp+W99957WYuwM888M91xxx2poXXp0iX7PW3atAZfNgAAAAAAQN51WcmspUFbgl155ZXplFNOSd/73vfSxIkTs7Ivvvgi9e7dO40ZMyaNGDGiXgFYiPAsWn7169evtKxNmzZZiBXrmjNnTp2WF8HZuuuua4wyAAAAAACAHGrQECwMGzYs7bvvvlnY9frrr2ddFz766KPprrvuSieffHK9lxvdF3bu3Dm1a9euXHl0aRimTp26wmVE4PX+++9n3SOeddZZadGiRemwww6rd50AAAAAAABYPa3V0Atce+2100MPPZS+/vWvp7322it99tln6Te/+U36/ve/v1LLfffdd1OHDh0qlRfL5s2bt8JlRDj3xhtvZH+vv/766Sc/+UnWkqwhmuJVNHPmzLTDDjus1LIBAAAAAABoghBs9uzZ1U67/fbb0/HHH5+FTCeeeGK512699dZ1XteSJUtS69atK5VHl4jF6bVppRatv956663s75hn+fLlqWXLBm8QBwAAAAAAQHMNwbbddtvUokWLaqcXCoUsDIufsiJ4qqu2bdumZcuWVSpfunRp6fQV2W+//Ur/jrHLdtlll+zvX//616m+qhuMrboWYgAAAAAAAKzmIdhPf/rTGkOwhhTdHs6dO7fKbhJDSUlJnZa38cYbp0MPPTTdd999KxWCAQAAAAAAkLMQ7Gc/+1laVfbYY480ZsyYrDvDdu3alZZPmjSpdHpdRXeIH3/8cYPWEwAAAAAAgKbXbAbD6tWrV9aN4l133VVaFt0jxthe3bt3Tx07dszKYuyx6dOnl5t3wYIFlZY3a9as9PTTT6e99957FdQeAAAAAACAZtMSrKIHHnggPfroo+nee++tcnyw008/PZ144onppJNOqvOyI+jq3bt3GjRoUBZqderUKQ0fPjwLs4YOHVr6uj59+qRx48Zl6yvabbfd0mGHHZa1FotuEN98881sns8//zxdffXVK7HFAAAAAAAA5D4Eu/XWW9N2221X5bQYO6xVq1bplltuqVcIFiJcGzx4cBoxYkRauHBh6tq1axo9enTq0aNHjfOdc845WTj3xBNPpMWLF6f27dunI488Ml122WVZQAYAAAAAAEC+tCiUbTK1kjbffPN0+eWXp4suuqjK6TfddFO68sor03vvvZfyrkuXLtnvadOmNXVVAAAAAAAA1rispUHHBItWVuuss06106Ml2Mcff9yQqwQAAAAAAIDGDcG23nrrNGnSpGqnx7SSkpKGXCUAAAAAAAA0bgh23HHHpfvuuy/99a9/rTTt4YcfTn/4wx/S8ccf35CrBAAAAAAAgMYdE+yDDz5Ie+65Z5o3b146+OCDs7/DlClT0tixY7NWYP/85z9T+/btU94ZEwwAAAAAAKDpspa1UgPabLPN0oQJE9I555yTHn/88TRmzJisvEWLFqlnz57p1ltvXSMCMAAAAAAAAJpWg4ZgoWPHjmn06NFp4cKF6d///ndW1qlTp7Txxhs39KoAAAAAAABg1YRgRRF67bPPPo21eAAAAAAAAKhWy+onAQAAAAAAwBrYEqxly5bZz6effprWWWed7O8Y/6smMf2LL75YmdUCAAAAAABA44Vgffr0yUKtVq1alfs3AAAAAAAANKUWhUKh0KQ1yKkuXbpkv6dNm9bUVQEAAAAAAFjjshZjggEAAAAAAJA7QjAAAAAAAAByZ6XGBNt+++3rPE+MGTZz5syVWS0AAAAAAAA0Xgi29dZbZ6EWAAAAAAAA5CYEGzt2bMPVBAAAAAAAABqIMcEAAAAAAADInQYNwd5+++30yCOPVDmtUChk02bNmtWQqwQAAAAAAICG7Q6xop/85CfpnXfeSccff3ylaTF22JAhQ9J2222Xhg8f3pCrBQAAAAAAgMZrCTZ+/Ph09NFHVzv9qKOOSv/4xz8acpUAAAAAAADQuCHYe++9l7bccstqp2+xxRZp/vz5DblKAAAAAAAAaNwQrF27djWO+RVjhq233noNuUoAAAAAAABo3BBsv/32S7/73e/SwoULK02LsmHDhqXu3bs35CoBAAAAAACgcUOw/v37pwULFqRu3bqlESNGpFdffTX7ib8j/Ippl156aUOuEgAAAAAAACpZKzWgAw88MN1xxx3p/PPPT3379i0tLxQKqXXr1un2229PBx98cEOuEgAAAAAAABo3BAtnnXVW6tmzZ/rTn/6UZsyYkZV17tw59e7dO5WUlDT06gAAAAAAAKDxQ7AQYdeFF17YGIsGAAAAAACApgnBypo0aVKaM2dO2mqrrbJxwVq2bNBhyAAAAAAAAGDVhWBz585Nxx57bHr55ZdLy3bZZZf0yCOPpO23376xVgsAAAAAAACp0ZplXXDBBalDhw7ZuGBLlixJzz//fFq+fHk699xzG2uVAAAAAAAA0DAh2BNPPFFleYReV155ZerUqVNq3bp16tatWxaMRTkAAAAAAACs1iHYCSeckE4//fT04YcfliuPMcDGjx9fruy5555LJSUlK7tKAAAAAAAAaNwQLFp2vfrqq9l4Xw888EBp+eWXX54uvvjidOCBB6ZTTz017bbbbmnkyJFZOQAAAAAAAKzWIdhee+2VJk+enAVeZ5xxRtYybN68eenEE0/MArIuXbqkjz76KO27775p7NixWSAGAAAAAAAAjalFoVAoNNTC3nzzzXT22WenqVOnpquvvjr98Ic/TGuqCP/CtGnTmroqAAAAAAAAa1zWstItwcracccds9Ze1157bRo0aFA66KCDsmCsoSxbtiwNHDgwG1esbdu2qXv37umpp55a4Xx//vOf08knn5y23377tO6666addtopXXLJJVkLNQAAAAAAAPKnwUKwzz77LC1atCj7u1+/flkqt+mmm6bdd989XXXVVWn58uUrvY6+ffum66+/PutS8cYbb0ytWrVKPXv2TOPHj69xvqjP66+/nk477bR00003paOPPjrdcsstab/99ktLlixZ6XoBAAAAAACQs+4QP/zww3TmmWemRx99NAu6omna7373u7T33ntn0x988MF0/vnnp/bt22flMYZYfcS4Y9Hya8iQIal///5Z2dKlS9Ouu+6aLXvChAnVzhut0w4++OByZffee286/fTT0913353OOuus1NB0hwgAAAAAANCMu0O86KKLsgDqzjvvzLodXH/99dNJJ52UPv/882x6/B2tsL72ta+lfffdN1166aX1Ws+oUaOyll/RqquoTZs2WQA3ceLENGfOnGrnrRiAhW9+85vZ76gbAAAAAAAA+bLWyi7g8ccfT5dddlk644wzSscFi9ZZr732WtYVYthwww3T0KFDs24Mf/CDH2StuepqypQpqXPnzqldu3blyrt165b9njp1aurYsWOtlzd//vzs92abbZYaIoWsaObMmWmHHXZYqWUDAAAAAACQmqYl2Nprr11uXK3oorBFixZprbUq52uHHnpoeuWVV+q1nnfffTd16NChUnmxbN68eXVa3jXXXJO1LOvVq1e96gMAAAAAAECOW4JFt4JXX311+uKLL9LGG2+cbrvttrTzzjunXXbZpcrXRxeG9RFBW+vWratdXtkgbkXuv//+rGXagAEDspZrK6O6fiirayEGAAAAAABAMwjBomvDli1bZmOCffrpp2n//fdPN954Y1bWkNq2bZuWLVtWqTxanhWn18azzz6bjSN21FFHpSuvvLJB6wgAAAAAAEBOQrB111033XzzzdlPY4puD+fOnVtlN4mhpKRkhct46aWX0gknnJCNWTZq1Kgqu2wEAAAAAACg+WvY5lqNaI899kgzZsxIixYtKlc+adKk0uk1mTlzZjr66KNT+/bt02OPPZbWX3/9Rq0vAAAAAAAATafZhGC9evVKy5cvT3fddVdpWXSPOGzYsNS9e/fUsWPHrGz27Nlp+vTp5eadP39+OvLII7MuGp988sm0+eabr/L6AwAAAAAAsOo0m/4AI+jq3bt3GjRoUFqwYEHq1KlTGj58eJo1a1YaOnRo6ev69OmTxo0blwqFQmlZtAB766230oABA9L48eOzn6ItttgiHXHEEat8ewAAAAAAAGg8zSYEC/fee28aPHhwGjFiRFq4cGHq2rVrGj16dOrRo8cKxwIL1157baVpBx10kBAMAAAAAAAgZ1oUyjaZosF06dIl+z1t2rSmrgoAAAAAAMAal7U0mzHBAAAAAAAAoLaEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5E6zCsGWLVuWBg4cmEpKSlLbtm1T9+7d01NPPbXC+d5444108cUXp/333z+1adMmtWjRIs2aNWuV1BkAAAAAAIBVr1mFYH379k3XX399OvXUU9ONN96YWrVqlXr27JnGjx9f43wTJ05MN910U1q8eHHaZZddVll9AQAAAAAAaBrNJgSbPHlyGjlyZLrqqqvSkCFDUr9+/dIzzzyTttlmmzRgwIAa5z3hhBPSRx99lF555ZUsQAMAAAAAACDfmk0INmrUqKzlV4RfRdG14Zlnnpm19JozZ061826yySZpgw02WEU1BQAAAAAAoKk1mxBsypQpqXPnzqldu3blyrt165b9njp1ahPVDAAAAAAAgNXNWqmZePfdd1OHDh0qlRfL5s2b1wS1SqlLly5Vls+cOTPtsMMOq7w+AAAAAAAANKOWYEuWLEmtW7euVB5dIhanAwAAAAAAQLNqCda2bdu0bNmySuVLly4tnd4Upk2bVqcWYgAAAAAAADS+ZtMSLLo9jC4RKyqWlZSUNEGtAAAAAAAAWB01mxBsjz32SDNmzEiLFi0qVz5p0qTS6QAAAAAAANCsQrBevXql5cuXp7vuuqu0LLpHHDZsWOrevXvq2LFjVjZ79uw0ffr0JqwpAAAAAAAATa3ZjAkWQVfv3r3ToEGD0oIFC1KnTp3S8OHD06xZs9LQoUNLX9enT580bty4VCgUSss+/vjjdPPNN2d/P/fcc9nvW265JW200UbZz3nnndcEWwQAAAAAAEBa00OwcO+996bBgwenESNGpIULF6auXbum0aNHpx49etQ4X7w25ivruuuuy35vs802QjAAAAAAAICcaVEo22SKBtOlS5fs97Rp05q6KgAAAAAAAGtc1tJsxgQDAAAAAACA2hKCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO80uBFu2bFkaOHBgKikpSW3btk3du3dPTz31VK3mnTt3bvr2t7+dNtpoo9SuXbt04oknprfeeqvR6wwAAAAAAMCq1exCsL59+6brr78+nXrqqenGG29MrVq1Sj179kzjx4+vcb5PPvkkHXLIIWncuHHpsssuS//7v/+bpkyZkg466KD0f//3f6us/gAAAAAAADS+tVIzMnny5DRy5Mg0ZMiQ1L9//6ysT58+adddd00DBgxIEyZMqHbe2267Lb355pvZMvbZZ5+s7Jhjjsnmve6669KvfvWrVbYdAAAAAAAANK5m1RJs1KhRWcuvfv36lZa1adMmnXnmmWnixIlpzpw5Nc4b4VcxAAs777xzOuyww9If//jHRq87AAAAAAAAq06zCsGi+8LOnTtn43mV1a1bt+z31KlTq5zvyy+/TC+//HLae++9K02LeWfOnJkWL17cSLUGAAAAAABgVWtW3SG+++67qUOHDpXKi2Xz5s2rcr4PP/wwLVu2bIXz7rTTTnWuU5cuXaosnz59elp77bWrnQ4AAAAAAED1ohFTZC1rREuwJUuWpNatW1cqjy4Ri9Ormy/UZ976atGixUodGBr2IokfgLxwXwPyyL0NyCP3NiCP3NuAVSlylvXWW2/NaAnWtm3brEVXRUuXLi2dXt18oT7zrsi0adPqNR+rTrE1nmMF5IX7GpBH7m1AHrm3AXnk3gY0J82qJVh0XRhdIlZULCspKalyvk022SRrBVafeQEAAAAAAGh+mlUItscee6QZM2akRYsWlSufNGlS6fSqtGzZMu22227pxRdfrDQt5t1+++3TBhts0Ei1BgAAAAAAYFVrViFYr1690vLly9Ndd91VWhZdHA4bNix17949dezYMSubPXt2mj59eqV5X3jhhXJB2BtvvJGeeeaZ1Lt371W4FQAAAAAAADS2ZjUmWARdEVgNGjQoLViwIHXq1CkNHz48zZo1Kw0dOrT0dX369Enjxo1LhUKhtOzcc89Nd999dzr22GNT//79s8HUrr/++rTFFlukSy65pIm2CAAAAAAAgLSmh2Dh3nvvTYMHD04jRoxICxcuTF27dk2jR49OPXr0qHG+6O5w7Nix6eKLL06//OUv05dffpkOPvjgdMMNN6TNN998ldUfAAAAAACAxteiULa5FAAAAAAAAORAsxoTDAAAAAAAAGpDCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQjl5YtW5YGDhyYSkpKUtu2bVP37t3TU0891dTVAqi3sWPHphYtWlT58/zzzzd19QBW6JNPPklXXHFFOvroo9Mmm2yS3b/uueeeKl/7+uuvZ69bf/31s9d+73vfS++///4qrzNAQ93b+vbtW+XnuJ133rlJ6g1QkxdeeCGdd955qUuXLmm99dZLW2+9dfr2t7+dZsyYUem1PrcBq7u1mroC0BjifzBGjRqVLrroorTjjjtm/xPSs2fPNGbMmHTAAQc0dfUA6u2CCy5I++yzT7myTp06NVl9AGrrgw8+SD//+c+zhyi77757Fu5X5T//+U/q0aNH2nDDDdOvfvWr7AHzr3/96/TKK6+kyZMnp3XWWWeV1x1gZe9toXXr1um3v/1tubK41wGsbq655pr03HPPpd69e6euXbum+fPnp1tuuSXttdde2Zcwd9111+x1PrcBzYEQjNyJN9mRI0emIUOGpP79+2dlffr0yd6gBwwYkCZMmNDUVQSotwMPPDD16tWrqasBUGcdOnRI7777btpyyy3Tiy++WCnQL4oHKP/973/TP//5z+yhcujWrVs64ogjsi829evXbxXXHGDl721hrbXWSqeddtoqrR9AffzP//xPuv/++8uFWCeffHLabbfd0tVXX51+//vfZ2U+twHNge4QyZ1oAdaqVatyb7Rt2rRJZ555Zpo4cWKaM2dOk9YPYGUtXrw4ffHFF01dDYA6iRYQ8ZB4RR588MF03HHHlT5ICYcffnjq3Llz+uMf/9jItQRonHtb0fLly9OiRYsatU4AK2v//fev1IorelqK7hGj+8Min9uA5kAIRu5MmTIle7Nt165dufL4JkqYOnVqE9UMYOWdccYZ2f0twv1DDjkk+8YxQF7MnTs3LViwIO29996VpsVnuficB9Bcffrpp9nnuOg2LMbN+dGPfpR1HQbQHBQKhfTee++lzTbbLPu3z21Ac6E7RHInuqKILikqKpbNmzevCWoFsHLiW3gnnXRSNr5h/E/Ha6+9lvW1Ht0jRjeve+65Z1NXEaBBPseF6j7Lffjhh2nZsmVZywuA5iTuYdE9f4yn8+WXX6Ynnngi3Xbbbemll17KxhGLrhIBVmf33XdfFnzFOIjB5zagufApi9xZsmRJlW+w0WqiOB2gOXZHET9FJ5xwQjY2WAxSPGjQoOxBCkBzV/yctqLPch6mAM3NVVddVe7fp5xyStaDyeWXX5516R//BlhdTZ8+PWu9ut9++6XTTz89K/O5DWgudIdI7rRt2zb7pklFS5cuLZ0OkAedOnVKJ554YhozZkw2vgRAc1f8nOazHLAmuPjii1PLli3T3//+96auCkC15s+fn4499tisK9cI7Vu1apWV+9wGNBdCMHInmlwXm2SXVSwrKSlpgloBNI6OHTumzz77LP33v/9t6qoArLRidzrVfZaLMXR8mxjIi3g4vOmmm2ZdhgGsjj7++ON0zDHHpI8++ijrfaTsMzWf24DmQghG7uyxxx5pxowZadGiReXKJ02aVDodIC/eeuutrKuJ9ddfv6mrArDSttpqq7T55punF198sdK0yZMn+xwH5MrixYvTBx98kN33AFY30Zrr+OOPz56xjR49On31q18tN93nNqC5EIKROzFGTnQLdtddd5WWRdPsYcOGpe7du2etJgCam/fff79SWQyk/vDDD6cjjzwy60oHIA9OOumk7EHLnDlzSsuefvrp7AFM7969m7RuAPV9kByBV0W/+MUvUqFQSEcffXST1AugOvFc7eSTT04TJ05Mf/rTn7KxwKricxvQHLQoxCcuyJlvf/vb6aGHHsr6WI8xc4YPH559CyXeiHv06NHU1QOos0MPPTTrMmf//fdP7du3T6+99loW9q+99trZ/5jssssuTV1FgBW65ZZbsu505s2bl26//fb0rW99K+25557ZtPPPPz8bayIeokTZRhttlC688ML0ySefpCFDhqSvfOUr6YUXXtCtDtDs7m0LFy7M/v2d73wn7bzzzln5k08+mR577LEsAHv00Ud9oQlYrVx00UXpxhtvzFqCxTO2ik477bTst89tQHMgBCO337QbPHhw+v3vf5/9D0fXrl2zb9kdddRRTV01gHq56aab0n333Zf+/e9/Z929RrcThx12WLriiiuysB+gOdh2223TO++8U+W0t99+O5sepk2blv7nf/4njR8/Pq2zzjrZYOzXXXdd2mKLLVZxjQFW/t4WD4cjDHv++eezoCxaWMTnt1NPPTX1798/+1ITwOrk4IMPTuPGjat2etnHyT63Aas7IRgAAAAAAAC5o709AAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACDlzf8HIdFJ+oc2unkAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 8 } ], "metadata": { From acafaebbf2615e414939419f068f61a1c9043d87 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 14 Oct 2025 09:28:09 +0200 Subject: [PATCH 12/83] modify functions --- src/post_processing/utils/fpod_utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index c132cc5..a03072c 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -453,9 +453,9 @@ def build_range(df: DataFrame, fr:str="h") -> DataFrame: """ df["Début"] = to_datetime(df["Début"], utc=True) - df["Début"] = df["Début"].dt.floor("h") + df["Début"] = df["Début"].dt.floor(fr) df["Fin"] = to_datetime(df["Fin"], utc=True) - df["Fin"] = df["Fin"].dt.floor("h") + df["Fin"] = df["Fin"].dt.floor(fr) all_ranges = [] for _, row in df.iterrows(): From 5be166a85d8f4c99fe211ff8f2795ccda87bc70e Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 14 Oct 2025 09:28:50 +0200 Subject: [PATCH 13/83] add comments --- user_case/user_case_CALAIS.ipynb | 464 ++++++++++++------------------- 1 file changed, 172 insertions(+), 292 deletions(-) diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index 4bea267..08495af 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-09-29T15:38:07.683846Z", - "start_time": "2025-09-29T15:38:05.621538Z" + "end_time": "2025-10-13T10:06:55.748967Z", + "start_time": "2025-10-13T10:06:46.756740Z" } }, "source": [ @@ -36,19 +36,25 @@ ], "id": "e8e8c57c7f4197fe" }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "Import your csv files. All files for one site must be stored in the same folder.", + "id": "6f9beab2dcba1a9c" + }, { "metadata": { "ExecuteTime": { - "end_time": "2025-09-29T15:15:34.902195Z", - "start_time": "2025-09-29T15:15:34.168693Z" + "end_time": "2025-10-13T10:07:00.142758Z", + "start_time": "2025-10-13T10:06:59.189951Z" } }, "cell_type": "code", "source": [ - "data = csv_folder(r\"U:\\Cetiroise\")\n", - "print(data.head())\n", + "path = csv_folder(r\"U:\\Cetiroise\")\n", + "print(path.head())\n", "\n", - "df_0 = data.dropna()" + "df_0 = path.dropna()" ], "id": "8636a8a27fe2af47", "outputs": [ @@ -77,8 +83,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-09-29T15:15:37.726484Z", - "start_time": "2025-09-29T15:15:37.563404Z" + "end_time": "2025-10-13T10:07:03.680051Z", + "start_time": "2025-10-13T10:07:03.501607Z" } }, "cell_type": "code", @@ -90,76 +96,65 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-09-29T15:15:47.105610Z", - "start_time": "2025-09-29T15:15:47.101813Z" + "end_time": "2025-10-13T10:07:05.017124Z", + "start_time": "2025-10-13T10:07:05.012527Z" } }, "cell_type": "code", "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ]", "id": "597efd1d90e3d069", "outputs": [], - "execution_count": 5 + "execution_count": 4 }, { "metadata": {}, "cell_type": "markdown", - "source": "## APLOSE format", + "source": "### APLOSE format", "id": "4f8c83c96f0b6ff4" }, { "metadata": {}, "cell_type": "markdown", - "source": "#### *CPOD*", - "id": "8ed339c688bdef1" - }, - { - "metadata": {}, - "cell_type": "code", - "source": [ - "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", - "print(df_aplose.head())" - ], - "id": "812ed7c0c5e258e7", - "outputs": [], - "execution_count": null + "source": "Chose the right function, depending on the instrument you are working with.", + "id": "9849c47189cf1a85" }, { "metadata": {}, "cell_type": "markdown", - "source": "#### *FPOD*", - "id": "a39bb10d8ac60a27" + "source": "#### *CPOD*", + "id": "8ed339c688bdef1" }, { "metadata": { "ExecuteTime": { - "end_time": "2025-09-29T15:15:49.464586Z", - "start_time": "2025-09-29T15:15:49.294885Z" + "end_time": "2025-10-13T10:07:15.647400Z", + "start_time": "2025-10-13T10:07:15.456897Z" } }, "cell_type": "code", "source": [ - "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", + "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", "print(df_aplose.head())" ], - "id": "9b632673397a184", + "id": "812ed7c0c5e258e7", "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ - " dataset filename start_time end_time start_frequency end_frequency \\\n", - "0 CETIROISE 0 60 0 0 \n", - "1 CETIROISE 0 60 0 0 \n", - "2 CETIROISE 0 60 0 0 \n", - "3 CETIROISE 0 60 0 0 \n", - "4 CETIROISE 0 60 0 0 \n", + " dataset filename start_time end_time start_frequency \\\n", + "0 Site D Simone 0 60 0 \n", + "1 Site D Simone 0 60 0 \n", + "2 Site D Simone 0 60 0 \n", + "3 Site D Simone 0 60 0 \n", + "4 Site D Simone 0 60 0 \n", "\n", - " annotation annotator start_datetime \\\n", - "0 Marsouin FPOD 2023-02-07T05:34:00.000+0000 \n", - "1 Marsouin FPOD 2023-02-07T05:35:00.000+0000 \n", - "2 Marsouin FPOD 2023-02-07T05:36:00.000+0000 \n", - "3 Marsouin FPOD 2023-02-07T22:40:00.000+0000 \n", - "4 Marsouin FPOD 2023-02-24T15:32:00.000+0000 \n", + " end_frequency annotation annotator start_datetime \\\n", + "0 0 Commerson FPOD 2023-02-07T05:34:00.000+0000 \n", + "1 0 Commerson FPOD 2023-02-07T05:35:00.000+0000 \n", + "2 0 Commerson FPOD 2023-02-07T05:36:00.000+0000 \n", + "3 0 Commerson FPOD 2023-02-07T22:40:00.000+0000 \n", + "4 0 Commerson FPOD 2023-02-24T15:32:00.000+0000 \n", "\n", " end_datetime is_box deploy.name \n", "0 2023-02-07T05:35:00.000+0000 0 Point C_Phase 4 \n", @@ -170,61 +165,81 @@ ] } ], - "execution_count": 6 + "execution_count": 5 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### *FPOD*", + "id": "a39bb10d8ac60a27" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", + "print(df_aplose.head())" + ], + "id": "9b632673397a184", + "outputs": [], + "execution_count": null }, { "metadata": {}, "cell_type": "markdown", - "source": "## Remove non usable lines", + "source": "### Remove non usable lines", "id": "7860838f8514da39" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:15:53.508059Z", - "start_time": "2025-09-29T15:15:53.491931Z" - } - }, + "metadata": {}, + "cell_type": "markdown", + "source": "Import the .json file available on metadatax.", + "id": "32f8ff8f9ece35a8" + }, + { + "metadata": {}, "cell_type": "code", "source": [ - "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_cetiroise.json\")\n", + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_cetiroise.json\") #Path to your metadata file.\n", "metadatax = json2df(json_path=json)\n", "\n", "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", " metadatax[\"campaign.name\"].astype(str))\n", "\n", - "cleared = meta_cut_aplose(df_aplose, metadatax)" + "cleared = meta_cut_aplose(df_aplose, metadatax) #Remove lines captures outside the instrument submersion." ], "id": "ed6a06c522aea169", "outputs": [], - "execution_count": 7 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:15:55.344572Z", - "start_time": "2025-09-29T15:15:54.985631Z" - } - }, + "metadata": {}, + "cell_type": "markdown", + "source": "Export your file to the aplose format. You can change the name of the file to match the project you are working on.", + "id": "8f5fe75cc3463971" + }, + { + "metadata": {}, "cell_type": "code", - "source": "cleared.to_csv(r\"U:\\APLOSE_CETIROISE_pos.csv\", index=False)", + "source": "cleared.to_csv(r\"U:\\APLOSE_CETIROISE_pos.csv\", index=False) #You can stock all DPM for a site in a DataAplose file.", "id": "76f70cb6c6658ba6", "outputs": [], - "execution_count": 8 + "execution_count": null }, { "metadata": {}, "cell_type": "markdown", - "source": "## Load data\n", + "source": "### Load data", "id": "f5d38266dc9d5273" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:15:57.748310Z", - "start_time": "2025-09-29T15:15:57.640771Z" - } - }, + "metadata": {}, + "cell_type": "markdown", + "source": "Use the yaml file to import your aplose files one at a time.", + "id": "2ce11c6e57f38690" + }, + { + "metadata": {}, "cell_type": "code", "source": [ "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", @@ -232,42 +247,21 @@ "print(data_list.df.head())" ], "id": "6837593897111b0a", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " dataset filename start_time end_time start_frequency end_frequency \\\n", - "0 CETIROISE NaN 0 60 0 0 \n", - "1 CETIROISE NaN 0 60 0 0 \n", - "2 CETIROISE NaN 0 60 0 0 \n", - "3 CETIROISE NaN 0 60 0 0 \n", - "4 CETIROISE NaN 0 60 0 0 \n", - "\n", - " annotation annotator start_datetime end_datetime \\\n", - "0 Marsouin FPOD 2023-02-07 05:34:00+00:00 2023-02-07 05:35:00+00:00 \n", - "1 Marsouin FPOD 2023-02-07 05:35:00+00:00 2023-02-07 05:36:00+00:00 \n", - "2 Marsouin FPOD 2023-02-07 05:36:00+00:00 2023-02-07 05:37:00+00:00 \n", - "3 Marsouin FPOD 2023-02-07 22:40:00+00:00 2023-02-07 22:41:00+00:00 \n", - "4 Marsouin FPOD 2023-02-24 15:32:00+00:00 2023-02-24 15:33:00+00:00 \n", - "\n", - " is_box deploy.name \n", - "0 0 Point C_Phase 4 \n", - "1 0 Point C_Phase 4 \n", - "2 0 Point C_Phase 4 \n", - "3 0 Point C_Phase 4 \n", - "4 0 Point C_Phase 4 \n" - ] - } - ], - "execution_count": 9 + "outputs": [], + "execution_count": null }, { "metadata": {}, "cell_type": "markdown", - "source": "## Format choice\n", + "source": "### Format choice\n", "id": "9f93eb863e3e3a9e" }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "Here you need to choose the format in which you want to visualise the positive detections. This aims to replace the functionality available in CPOD.exe.", + "id": "925d92d3eec065e6" + }, { "metadata": {}, "cell_type": "code", @@ -277,17 +271,12 @@ "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:16:01.922947Z", - "start_time": "2025-09-29T15:16:01.917142Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])", "id": "6cc79b2aeef076ed", "outputs": [], - "execution_count": 10 + "execution_count": null }, { "metadata": {}, @@ -300,87 +289,68 @@ { "metadata": {}, "cell_type": "markdown", - "source": "## Add the feeding buzzes", + "source": "### Add the feeding buzzes", "id": "8375ddbe07ad0aee" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:16:04.290557Z", - "start_time": "2025-09-29T15:16:04.215490Z" - } - }, + "metadata": {}, + "cell_type": "markdown", + "source": "Import your click details files. All files for one site must be stacked in the same folder.", + "id": "9753f4ba20c7267e" + }, + { + "metadata": {}, + "cell_type": "code", + "source": "frq = \"D\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", + "id": "10e00649ec7dac05", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, "cell_type": "code", "source": [ - "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\")\n", + "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", "fb_all = fb_folder(fb_files, \"Marsouin\")\n", "\n", - "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(\"h\")\n", + "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq)\n", "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", "fb[\"start_datetime\"] = to_datetime(fb[\"start_datetime\"], utc=True)" ], "id": "2b19f90c99252ff3", "outputs": [], - "execution_count": 11 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:16:08.387825Z", - "start_time": "2025-09-29T15:16:08.377003Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ - "d_tot = dph.merge(fb, on=\"start_datetime\", how=\"left\")\n", - "\n", - "d_hour = build_range(d_beg_end, \"h\")" + "d_tot = dpd.merge(fb, on=\"start_datetime\", how=\"left\")\n", + "#This function aims to reindent 0 between the positive detections. It will be useful to produce first visualization graphs and use this dataset in R.\n", + "d_hour = build_range(d_beg_end, frq)" ], "id": "b00c8f1e2210ea7", "outputs": [], - "execution_count": 12 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:16:09.946724Z", - "start_time": "2025-09-29T15:16:09.933681Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "d_fin = d_hour.merge(d_tot, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")", "id": "601787cc806226b0", "outputs": [], - "execution_count": 13 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:16:12.364503Z", - "start_time": "2025-09-29T15:16:12.358919Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "d_fin[[\"DPM\",\"Foraging\"]] = d_fin[[\"DPM\",\"Foraging\"]].fillna(0)\n", - "print(d_hour.head())" + "print(d_fin.head())" ], "id": "f93bf1f3ca4f4112", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " deploy.name start_datetime\n", - "0 Point C_Phase 4 2023-02-07 05:00:00+00:00\n", - "1 Point C_Phase 4 2023-02-07 06:00:00+00:00\n", - "2 Point C_Phase 4 2023-02-07 07:00:00+00:00\n", - "3 Point C_Phase 4 2023-02-07 08:00:00+00:00\n", - "4 Point C_Phase 4 2023-02-07 09:00:00+00:00\n" - ] - } - ], - "execution_count": 14 + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -389,12 +359,7 @@ "id": "c7b1d32ed1c99fb7" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:16:18.370775Z", - "start_time": "2025-09-29T15:16:18.346171Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "d_fin[\"Year\"] = d_fin[\"start_datetime\"].dt.year\n", @@ -408,33 +373,19 @@ "d_fin[\"DPH\"] = (d_fin[\"DPM\"] >0).astype(int)" ], "id": "a2261ce5093a3104", - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\fouinel\\AppData\\Local\\Temp\\ipykernel_4000\\4171406010.py:4: UserWarning: Could not infer format, so each element will be parsed individually, falling back to `dateutil`. To ensure parsing is consistent and as-expected, please specify a format.\n", - " d_fin['YM'] = to_datetime(d_fin['YM'])\n" - ] - } - ], - "execution_count": 15 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:16:45.204062Z", - "start_time": "2025-09-29T15:16:34.484075Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "d_fin[\"FBR\"] = d_fin[\"FBR\"].fillna(0)\n", - "d_fin.to_csv(r\"U:\\Hours_DPM_FBUZZ_SiteCETIROISE.csv\", index=False)" + "d_fin.to_csv(r\"U:\\Hours_DPM_FBUZZ_CETIROISE.csv\", index=False)" ], "id": "d606f4f6904b57c6", "outputs": [], - "execution_count": 16 + "execution_count": null }, { "metadata": {}, @@ -442,6 +393,12 @@ "source": "## Overview", "id": "4bc0904182a3f845" }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### *Import datasets*", + "id": "e1de414e2eb3fa8f" + }, { "metadata": {}, "cell_type": "code", @@ -477,15 +434,10 @@ "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:38:21.849991Z", - "start_time": "2025-09-29T15:38:21.342466Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ - "ceti = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteCETIROISE.csv\")\n", + "ceti = read_csv(r\"U:\\Hours_DPM_FBUZZ_CETIROISE.csv\")\n", "\n", "ceti[\"start_datetime\"] = to_datetime(ceti[\"start_datetime\"])\n", "ceti[\"start_datetime\"] = ceti[\"start_datetime\"].apply(lambda x : x.tz_convert(\"CET\")) #TimeZone Central European Time\n", @@ -493,18 +445,26 @@ ], "id": "5928770d1c47bcad", "outputs": [], - "execution_count": 2 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:38:23.189207Z", - "start_time": "2025-09-29T15:38:23.142072Z" - } - }, + "metadata": {}, + "cell_type": "markdown", + "source": "#### *Generate graphs*", + "id": "200273fc36fb7d5d" + }, + { + "metadata": {}, + "cell_type": "code", + "source": "data = ceti #Precise which dataset you are working with", + "id": "be10e9d690294cff", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, "cell_type": "code", "source": [ - "data = ceti\n", "data = extract_site(data)\n", "y_per = percent_calc(data, \"Year\")\n", "ym_per = percent_calc(data, \"YM\")\n", @@ -516,127 +476,47 @@ ], "id": "2826b79097a85607", "outputs": [], - "execution_count": 3 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:38:25.650190Z", - "start_time": "2025-09-29T15:38:25.510368Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "site_percent(s_per, \"%click\")", "id": "ddd1fac6295136c6", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAMtCAYAAADZu09yAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAT7RJREFUeJzt3Qvc1/P9+P9n5xItx7gshyRZSkPFnEoOqxzGsBmS87Q5RCHWxpxF8XOasEpYYrM55bCppmUOv7Emck4phy9FNQnV//Z6/77X9e+qq6Suuq6r1/1+u123T70/72PcPhc9rtfrVWvRokWLAgAAAAAAADJUu6pvAAAAAAAAAKqKWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAqGK1atWKzp07l9t20UUXFdvHjh1bqefNWfqzSH8mAAAAixPLAAAA/tfdd98dbdu2jXXXXTfatWsXI0eOrHC/Dz/8MDbaaKPo27fvGr9HKleKkSmgpTgJAADkSSwDAACIiAcffDCOOeaYaNy4cfz85z+PBQsWxFFHHRWPPPLIUvv+4he/iA022CAuueSS1XY/v/zlL+PVV1+Njh07rrZr5ObOO+8s/kwBAAAWV7fc7wAAADJ1yy23xLbbbhvjx4+PunXrxoABA2KrrbaKm266KXr06FG23/333x9/+tOfYty4cdGoUaPVdj9p5Fr6ovJsscUWVX0LAABANWRkGQAAQES8++67sdNOOxWhLPnOd74TrVq1KraXmjlzZjHiq3fv3rHnnnt+4zknT54cJ5xwQhHdGjRoEJtssklxXApz32R5a5atynmTgQMHRu3atWP33XcvnmlF1z6bMWNGHHvsscX1Uijceeed45577lnmcY8//nh07969iH7pPrfZZpvo169ffPrpp0vtm54lfc2ePTvOPvvs4tf16tVboekR06jArl27xmabbVZcp6SkJPbee++4+eabl7tmWa9evaJLly7Fry+++OLivdKvJf/c//CHPxT7Nm3aNBo2bBjbb799XHrppTF//vxvvD8AAKB6M7IMAADgf0cdvfTSS7Fw4cIiJKVo8/rrr8duu+1Wts8ZZ5xRRKIrr7zyG8+Xpm884ogjipjywx/+sJjSMUWif//733H11VfHaaedtlL3uSrnTc921llnxQ033BCHHXZYsUZbCj8rYtasWfGDH/ygiEXHH398cc1Ro0bF0UcfHdOnTy8i2OJSfEqhK01XeeCBBxaBbeLEiXHNNdfEo48+Gs8880w0adKk3DFffvll7LPPPkXA23///Yv3t9566+Xe15AhQ+LUU0+NTTfdNA466KAizH300UfFtYYOHVqEzWX50Y9+VLwOHz68iGspppVKsa5UCpPpXN/97nfjxz/+cfFn8M9//rMYffi3v/0tnnzyybLICgAA1Dz+ax4AACCiWKfs0EMPLUZopSg0evToIgiVxqcUqVJcSmFk3XXXXe65Pv744/jZz34WX3/9dTz11FNFiFnce++9t1L3uCrn/eKLL4qwlaaQTKPjrr/++iIKrqgUn1KkGzlyZNlx559/fjG67MILLywiUosWLYrtY8aMKUJZCo0pjKW4VGrYsGFFbPvNb34TgwcPLneN999/P773ve8VU1ymteNWxK233hr169cvYmEKckv+eS1PimXp3lIsS6GsolFs6X5TKEv/bqR//otPvZn2T1EwTdV55plnrtD9AgAA1Y9pGAEAAP43nKQwkgJZmr4vTcU3YsSIYrTSZ599VoxeOvHEE2PfffeNP/7xj9G6deuoU6dOMQIpjW5aXIovaWRaCm1LBq0kjVBaGSt73jRSK933Aw88EFdddVUxsuzbhLIkPWs6dvHj0qivNNruq6++Kv6sSv2f//N/itfbbrutXCgrnfqwffv2RXiqyLXXXrvCoaxUGtWVpmxcUmWs+ZaiYjr/73//+6XWqEsjyzbccMNlPgsAAFAzGFkGAADwv4477rjia0nnnHNOWcj517/+VYywSiOp0oiiNFIrhbTNN988evToUeyXpuhLunXrVqn3tzLn/fDDD4u1yd5+++246667ipFpKztNZUVTIqYRWWl01Ysvvli2LU2xmOLVfffdV3wtKU23+D//8z/xySefFLGpVJoSsl27dt/qvtJoufTPJ41I++lPf1pExPS8G2+8cayqzz//vBixlqLbddddV+E+aY20V199dZWvBQAAVB2xDAAAYDn++te/xh133BEPPfRQfOc73ymC2XrrrVeMQksjoNIaW0888UQx6qo0lqXRaUkKaJVpZc77wQcfFKPR0qizPfbYY6Wv3axZswq3p7XCkjT6rlSKYGmqyBTRlmfu3LnlYlmaRjGN6Ps2zj777CJmpdGAaURbilrpHCmaDRw4MHbZZZdYWWmdtkWLFhVh75ueBQAAqLlMwwgAALCcmHPyyScXo5cOPPDAYlsaRbTddtuVTRWYwsz3v//9mDRpUtlxpVMPTp8+vVLvZ2XOu+OOOxbTN6Zj9tprr2KE2cpII9SWFeOSFBJLpV+vv/76RWha3teWW25Z7lzfNpSV6tmzZzHqLkW6tLZcmi7z73//exxwwAFF6FpZpc+U/vl+07MAAAA1l1gGAACwDOeff37MmzevWLdqcfPnzy/3+y+++KLc73fdddfidfTo0ZV6Pyt73mOOOSZGjhwZM2bMKILZ66+//q2vPXXq1JgyZcpS28eOHVsWlBa/zzQqa/GAuCakmNi9e/dirbS0Nlpaqy1Fs29aiy1ZsGDBUu+tu+660aZNm+I50rkAAIC1k1gGAABQgaeffrqY2u/GG28sN1VgWhsrxZPSEVpp+sG0b4oqpdK6Z02aNIlbbrmlwljz3nvvrdQ9rcp5Dz/88Lj//vvj448/LqYo/LYhK8Wk8847LxYuXFi27Z133immPqxbt24R5Er16dOneE2j8lKgW9J///vfsvXXVtWYMWMqHNn10UcfFa/rrLPOco8v/WebYuCypnlMa6ydcMIJZdNgLi5FwbSOHQAAUHNZswwAAGAJaTRZmsrvsMMOKyLT4vr27Rt/+MMfirXK0vtPPvlkEVHSKLRSaQ2te+65pzi2S5cu0a1bt2jXrl2xdtjEiRNj2rRpRWj6tlb1vAcffHD85S9/iUMPPTQ6d+5crMeWpmlcEek6zz77bOy8886x//77F888atSo4vXqq6+ObbbZpmzfrl27xpVXXhn9+/ePbbfdthjttfXWWxfTWr777rsxbty4Yv20xx57LFZVepY0AiyNZttqq62KcJbi5fPPP1/c67777rvc49OUmmkNuDTyrl69esXUkGk6yGOPPbb4dYpk//f//t8inKZnTFM7brHFFsVIs/RnnaLl8ccfH7/73e9W+VkAAICqIZYBAAAsYcCAAcX6VzfddNNS77Vv3z7++Mc/xq9+9ati1Fnz5s2Laf9SEFpcjx494oUXXoirrroq/va3v8UTTzxRrOPVunXrIiKtrFU9b4o9jz76aBx00EFFcHv88cejQ4cO33hcukaa/vHcc8+NoUOHFoEujbJL8fBnP/vZUvunUWi77757MfJs/PjxRaRLa4ClMHXKKadUeMzKSFEuPUMa3ZWeq2HDhkXkSn8+p512WhHAvmkaxgceeKCInffdd1/MmTOnCG4p5pWuqZb+PUhhMgWxFBhTINxggw2KaNavX79yo+oAAICap9YiKxEDAACwHGmkVZq6sXR9MgAAgLWJNcsAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAslW3qm8AAACA6s1S1wAAwNrMyDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANmqW9U3kLtNN900/vvf/8YWW2xR1bcCAAAAAABQI02dOjUaN24cH3zwwbc+1siyKpZC2VdffVXVtwEAAAAAAFBjpdaSmsvKMLKsipWOKJs0aVJV3woAAAAAAECN1KZNm5U+1sgyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIVt2qvgGqhyv2PLWqbwGoJvo/fWtV3wIAAAAAwBpjZBkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkK26VX0DAAAAADXFtQ+eV9W3AFQj5xx8VVXfAgCVwMgyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkK0aF8vmz58f5513XpSUlESjRo2iU6dO8eSTT67QsdOnT48jjzwymjZtGk2aNIlDDjkk3n777aX2++yzz+Lcc8+NbbfdtrjGlltuGSeeeGJMnTp1NTwRAAAAAAAAVaVu1DC9evWK+++/P84666wiZg0bNiy6d+8eY8aMiT322GOZx82dOze6dOlShLALLrgg6tWrF4MHD4699947Xnrppdhwww2L/RYuXBj77bdfvPLKK9G7d+9o1apVvPnmm3HzzTfH448/Hq+++mqst956a/CJAQAAAAAAWF1qVCx77rnnYuTIkTFw4MDo27dvsa1nz56xww47FCPBJkyYsMxjU+x64403inN06NCh2NatW7fi2GuvvTYuv/zyYts///nPeP755+PGG2+MX/ziF2XHb7fddnHCCSfEX//61zj00ENX+7MCAAAAAACw+tWoaRjTiLI6derEKaecUratYcOGxRSJzzzzTEybNm25x6ZIVhrKktatW0fXrl1j1KhRZdtmz55dvDZr1qzc8ZtttlnxmqZlBAAAAAAAYO1Qo2LZiy++WEyLmNYbW1zHjh2L1zSdYkXS1IoTJ06MXXbZZan30rFvvfVWzJkzp/h92qdx48YxYMCAeOqpp4p1zsaNG1eMXEuhbd99910tzwYAAAAAAMCaV6OmYXz//ffLRngtrnTbjBkzKjxu5syZMX/+/G88Nk21uNFGG8W9994bJ598cjHqrNQBBxxQjE6rW3fl/sjatGlT4fYU6rbZZpuVOicAAAAAAAAZjSybN29eNGjQYKntaSrG0veXdVyyosduvPHG8f3vfz8uu+yy+POf/xwXXXRRPP3003H88cdX2rMAAAAAAABQ9WrUyLK0XlgaIbakL774ouz9ZR2XrMixb7/9dnTp0iXuvPPO+PGPf1xsO+SQQ2KrrbaKXr16xejRo6Nbt27f+t4nTZr0rUacAQAAAAAAsPrVqJFlacrENBXjkkq3lZSUVHjcBhtsUIwqW5Fjhw0bVgS0Aw88sNx+Bx98cPH6j3/8oxKeBAAAAAAAgOqgRsWy9u3bx+uvvx6zZ88ut/3ZZ58te78itWvXjrZt28YLL7yw1Hvp2BYtWsR6661X/P7DDz+MRYsWxYIFC8rt99VXXxWvX3/9daU9DwAAAAAAAFWrRsWyww8/vIhYQ4YMKduWplYcOnRodOrUKZo3b15smzp1akyePHmpY59//vlywey1116Lp556Ko444oiyba1atSpi2ahRo8od/4c//KF4TWuZAQAAAAAAsHaoUWuWpSCWwlb//v3jo48+ipYtW8bw4cNjypQpcccdd5Tt17Nnzxg3blwRvUr17t07brvttujRo0f07ds36tWrF4MGDYpmzZrFOeecU7ZfWpfsmmuuiVNPPTVefPHFYk2xf/3rX3H77bcXvz700EPX+HMDAAAAAACwetSoWJbceeedMWDAgBgxYkTMmjUr2rVrFw8//HDstddeyz0uTbM4duzY6NOnT1x66aWxcOHC6Ny5cwwePDg23njjsv023HDDYvTZr3/963jooYfid7/7XbHthBNOiMsvvzzq16+/Bp4SAAAAAACANaHGxbKGDRvGwIEDi69lSVGsIt/97nfjvvvu+8ZrbL755uVGqgEAAAAAALB2qlFrlgEAAAAAAEBlEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIVo2LZfPnz4/zzjsvSkpKolGjRtGpU6d48sknV+jY6dOnx5FHHhlNmzaNJk2axCGHHBJvv/12hft++OGHceqpp8bmm28eDRs2jK222ipOPPHESn4aAAAAAAAAqlLdqGF69eoV999/f5x11lmx7bbbxrBhw6J79+4xZsyY2GOPPZZ53Ny5c6NLly7x2WefxQUXXBD16tWLwYMHx9577x0vvfRSbLjhhmX7Tps2LXbffffi1z//+c+LYDZjxox47rnn1sgzAgAAAAAAsGbUqFiWYtXIkSNj4MCB0bdv32Jbz549Y4cddohzzz03JkyYsMxjb7755njjjTeKc3To0KHY1q1bt+LYa6+9Ni6//PKyfdOIsrp168bzzz9fLqIBAAAAAACwdqlR0zCmEWV16tSJU045pWxbmiIxTY/4zDPPFCPClndsimSloSxp3bp1dO3aNUaNGlW2bfLkyTF69Ojo169fEcq++OKL+Oqrr1bjUwEAAAAAAFBValQse/HFF6NVq1bFemOL69ixY/GaplOsyMKFC2PixImxyy67LPVeOvatt96KOXPmFL//61//Wrw2a9asCGlpXbT0lUahTZkyZaXvvU2bNhV+pWsDAAAAAABQNWpULHv//fdjs802W2p76ba0rlhFZs6cGfPnz1+hY9NUjUkavVa/fv24995748orr4zx48fHvvvuG59//nmlPhMAAAAAAABVp0atWTZv3rxo0KDBUtvTVIyl7y/ruGRFjp07d27xuummm8YjjzwStWv/v5743e9+N4466qi455574qSTTvrW9z5p0qQKt6fRZQAAAAAAAFSNGjWyLE2HmEaILSmtK1b6/rKOS1bk2NLXI488siyUJUcccUTUrVs3JkyYUCnPAgAAAAAAQNWrUbEsTZmYpmJcUum2kpKSCo/bYIMNilFlK3Js6Wtas2xxderUiQ033DBmzZpVCU8CAAAAAABAdVCjYln79u3j9ddfj9mzZ5fb/uyzz5a9X5E0Qqxt27bxwgsvLPVeOrZFixax3nrrFb/feeedi9fp06eX2+/LL7+Mjz/+ODbeeONKex4AAAAAAACqVo2KZYcffngsWLAghgwZUrYtTa04dOjQ6NSpUzRv3rzYNnXq1Jg8efJSxz7//PPlgtlrr70WTz31VDHFYqnOnTvHJptsEnfffXfZFI3JsGHDimvvt99+q/kpAQAAAAAAWFPqRg2SglgKW/3794+PPvooWrZsGcOHD48pU6bEHXfcUbZfz549Y9y4cbFo0aKybb17947bbrstevToEX379o169erFoEGDiukWzznnnLL90nSNAwcOjOOOOy722muvOPbYY4v4dv3118eee+4Zhx122Bp/bgAAAAAAAFaPGhXLkjvvvDMGDBgQI0aMKNYPa9euXTz88MNF2FqeNM3i2LFjo0+fPnHppZfGwoULi1FkgwcPXmpqxRTb6tevH1deeWX069cvmjZtGqeeempcfvnlxdplAAAAAAAArB1qLVp8+BVrXJs2bYrXSZMmVel9XLHnqVV6faD66P/0rVV9CwAAUG1d++B5VX0LQDVyzsFXVfUtAFAJvaVGrVkGAAAAAAAAlUksAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQrTUeyz799NM1fUkAAAAAAABY/bHszDPPXO77c+bMiQMOOKAyLwkAAAAAAADVI5bdcMMNMXjw4ArfmzdvXvTo0SMmTpxYmZcEAAAAAACA6hHL+vfvH/369Ys//vGP5bbPnz8/Dj744PjnP/8Z9957b2VeEgAAAAAAAFZa3ahEl112Wbz77rtx7LHHRklJSey2227x9ddfxxFHHBFjxoyJu+++u4hmAAAAAAAAsNaNLEuGDh0au+66axHFXn311Tj66KPjkUceiSFDhsRPfvKTyr4cAAAAAAAAVI+RZUm9evXigQceiN133z122mmn+PLLL+O6666LE044obIvBQAAAAAAAFUXy6ZOnbrM92655ZY46KCD4sQTT4xDDjmk3L5bbLHFqlwWAAAAAAAAqj6WbbXVVlGrVq1lvr9o0aIimqWvxS1YsGBVLgsAAAAAAABVH8t+/etfLzeWAQAAAAAAwFobyy666KLKuxMAAAAAAABYw2qv6QsCAAAAAADAWhnL7r333ujZs+cy1y9L7/3xj3+szEsCAAAAAABA9YhlN9100zLXMEvb69SpEzfeeGNlXhIAAAAAAACqRyx79dVX4/vf//4y30/vvfLKK5V5SQAAAAAAAKgesWzOnDlRv379Zb6fRpZ99tlnlXlJAAAAAAAAqB6xbIsttohnn312me+n90pKSirzkgAAAAAAAFA9YtmBBx4Yd999d/zlL39Z6r0HH3ww/vCHP8RBBx1UmZcEAAAAAACAlVY3KtEFF1wQ9913Xxx22GHRuXPnsvXLXnzxxRg7dmwxquzCCy+szEsCAAAAAABA9YhlG220UUyYMCFOO+20GD16dIwZM6bYXqtWrejevXvcdNNNsckmm1TmJQEAAAAAAKB6xLKkefPm8fDDD8esWbPizTffLLa1bNky1l9//cq+FAAAAAAAAFSvWFYqxbEOHTqsrtMDAAAAAADAKqu96qcAAAAAAACADEeW1a5du/j6/PPPo379+sWv0/pky5Pe//rrr1flsgAAAAAAAFD1saxnz55F/KpTp0653wMAAAAAAMBaH8uGDRu23N8DAAAAAABAdWbNMgAAAAAAALIllgEAAAAAAJCtVZqGsUWLFt/6mLSm2VtvvbUqlwUAAAAAAICqj2VbbLFFEb8AAAAAAAAgu1g2duzYyrsTAAAAAAAAWMOsWQYAAAAAAEC2KjWWvfPOO/HQQw9V+N6iRYuK96ZMmVKZlwQAAAAAAICqmYZxSb/61a/i3XffjYMOOmip99LaZgMHDoytt946hg8fXpmXBQAAAAAAgKofWTZ+/Pj44Q9/uMz3DzjggPj73/9emZcEAAAAAACA6hHLPvzww9h0002X+X6zZs3igw8+qMxLAgAAAAAAQPWIZU2aNFnummRpTbPGjRtX5iUBAAAAAACgesSy3XbbLX7/+9/HrFmzlnovbRs6dGh06tSpMi8JAAAAAAAA1SOW9e3bNz766KPo2LFjjBgxIl5++eXiK/06RbL0Xr9+/SrzkgAAAAAAALDS6kYl2nPPPeN3v/tdnH766dGrV6+y7YsWLYoGDRrELbfcEp07d67MSwIAAAAAAED1iGXJSSedFN27d4/77rsvXn/99WJbq1at4ogjjoiSkpLKvhwAAAAAAABUn1iWpCh25plnro5TAwAAAAAAQPWOZYt79tlnY9q0abH55psX65bVrl2py6QBAAAAAABA9Ytl06dPjx49esTEiRPLtm2//fbx0EMPRYsWLVbXZQEAAAAAAGCFrbZhXmeccUZsttlmxbpl8+bNi3/+85+xYMGC6N279+q6JAAAAAAAAKzZWPbYY49VuD3FscsuuyxatmwZDRo0iI4dOxYBLW0HAAAAAACAtSKWHXzwwXHcccfFzJkzy21Pa5SNHz++3LZ//OMfUVJSsqqXBAAAAAAAgOoRy9JIsZdffrlYj+zee+8t237hhRdGnz59Ys8994yjjz462rZtGyNHjiy2AwAAAAAAwFoRy3baaad47rnnijB2/PHHFyPNZsyYEYccckgR0tq0aROffvpp7LrrrjF27NginAEAAAAAAEB1ULcyTlKnTp04//zz48c//nGcfPLJ8b3vfS+uvPLK+PnPfx4dOnSojEsAAAAAAABA9RtZtrhtt922GD129dVXR//+/WPvvfeON954ozIvAQAAAAAAANUvln355Zcxe/bs4tennHJKTJo0KTbccMPYcccd44orrogFCxZU1qUAAAAAAACgesSymTNnxqGHHhrrrrturL/++tGuXbt44YUXoqSkJP70pz/FiBEj4oYbboidd945/vWvf1XOXQMAAAAAAEB1iGVnnXVWTJgwIW699dYijqVoltYu++qrr4r3069fffXVIpbtuuuu0a9fv8q4bwAAAAAAAKj6WDZ69Og4//zz4/jjj49DDjkkbr/99pg2bVq88sorZft85zvfiTvuuCMee+yx+POf/7yqlwQAAAAAAIDqEcvq1asX8+bNK/v9F198EbVq1Yq6desute8+++wT//nPf1b1kgAAAAAAAFApli5a31Jar+zKK6+Mr7/+uliz7Oabb47WrVvH9ttvX+H+DRs2XNVLAgAAAAAAQPWIZQMHDozatWsXa5Z9/vnn8YMf/CCuv/76YhsAAAAAAACs1bFsnXXWiRtuuKH4AgAAAAAAgJrE8C8AAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMhWjYtl8+fPj/POOy9KSkqiUaNG0alTp3jyySdX6Njp06fHkUceGU2bNo0mTZrEIYccEm+//fZyjxk/fnzUqlWr+Pr4448r6SkAAAAAAACoDmpcLOvVq1cMGjQojj766Lj++uujTp060b179yJqLc/cuXOjS5cuMW7cuLjgggvi4osvjhdffDH23nvv+OSTTyo8ZuHChXH66adH48aNV9PTAAAAAAAAUJVqVCx77rnnYuTIkXHFFVfEwIED45RTTomnnnoqttxyyzj33HOXe+zNN98cb7zxRjz88MPFvn369Iknnngi3n///bj22msrPGbIkCExbdq0OOmkk1bTEwEAAAAAAFCValQsu//++4uRZCmSlWrYsGGceOKJ8cwzzxRha3nHdujQofgq1bp16+jatWuMGjVqqf1nzpwZv/rVr+K3v/1tMW0jAAAAAAAAa58aFcvStImtWrUq1htbXMeOHYvXl156aZnTKU6cODF22WWXpd5Lx7711lsxZ86cctsHDBgQm266aZx66qmVcu9t2rSp8CtdGwAAAAAAgKpRN2qQNGXiZpttttT20m0zZsyo8Lg0Smz+/PnfeOx2221X/DqFtVtvvTUeffTRYiQbAAAAAAAAa6caFcvmzZsXDRo0WGp7moqx9P1lHZes6LFnnHFGdOvWLfbff/9Ku/dJkyZVuD2NLgMAAAAAAKBq1KhY1qhRo2KE2JK++OKLsveXdVyyIsfee++9MWHChHj55Zcr9d4BAAAAAACofmpULEtTJk6fPr3C6RmTkpKSCo/bYIMNilFlpfst79h+/frFEUccEfXr148pU6YU2z799NPiddq0afHll18u8zoAAAAAAADULDUqlrVv3z7GjBkTs2fPjiZNmpRtf/bZZ8ver0jt2rWjbdu28cILLyz1Xjq2RYsWsd5665UFsXvuuaf4WtJOO+0UO+64Y7z00kuV+FQAAAAAAABUldpRgxx++OGxYMGCGDJkSNm2NLXi0KFDo1OnTtG8efNi29SpU2Py5MlLHfv888+XC2avvfZaPPXUU8VIslIPPPDAUl8/+clPivfuvPPOGDx48Bp4UgAAAAAAANaEGjWyLAWxFLb69+8fH330UbRs2TKGDx9eTJd4xx13lO3Xs2fPGDduXCxatKhsW+/eveO2226LHj16RN++faNevXoxaNCgaNasWZxzzjll+/3oRz9a6rqlI8m6desWG2200Wp/TgAAAAAAANaMGhXLSkd3DRgwIEaMGBGzZs2Kdu3axcMPPxx77bXXco9L0yyOHTs2+vTpE5deemksXLgwOnfuXIwU23jjjdfY/QMAAAAAAFB91Fq0+PAr1rg2bdoUr5MmTarS+7hiz1Or9PpA9dH/6Vur+hYAAKDauvbB86r6FoBq5JyDr6rqWwCgEnpLjVqzDAAAAAAAACqTWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMhWjYpl8+fPj/POOy9KSkqiUaNG0alTp3jyySdX6Njp06fHkUceGU2bNo0mTZrEIYccEm+//Xa5faZNmxYXX3xxdOzYMdZff/3YaKONonPnzvHXv/51NT0RAAAAAAAAValGxbJevXrFoEGD4uijj47rr78+6tSpE927d4/x48cv97i5c+dGly5dYty4cXHBBRcUQezFF1+MvffeOz755JOy/f7yl7/EVVddFS1btoxLL700BgwYEHPmzIn99tsvhg4dugaeEAAAAAAAgDWpbtQQzz33XIwcOTIGDhwYffv2Lbb17Nkzdthhhzj33HNjwoQJyzz25ptvjjfeeKM4R4cOHYpt3bp1K4699tpr4/LLLy+2paA2derUYkRZqZ///OfRvn37+PWvfx3HH3/8an9OAAAAAAAA1pwaM7Ls/vvvL0aSnXLKKWXbGjZsGCeeeGI888wzxRSKyzs2RbLSUJa0bt06unbtGqNGjSrb1qZNm3KhLGnQoEExeu29994rRpkBAAAAAACw9qgxI8vStImtWrUq1htbXFpfLHnppZeiefPmSx23cOHCmDhxYpxwwglLvZeOfeKJJ4oItt566y3z2h988EGss846xdfKSiGuIm+99VZss802K31eAAAAAAAAMhhZ9v7778dmm2221PbSbTNmzKjwuJkzZ8b8+fNX6tjkzTffjD/96U/x4x//uBjZBgAAAAAAwNqjxowsmzdvXjEl4pLSVIyl7y/ruGRljv3888/jiCOOiEaNGsWVV165Svc/adKkbzXiDAAAAAAAgNWvxsSyFKzSCLElffHFF2XvL+u45Nseu2DBgvjpT38ar7zySowePTpKSkpW+RkAAAAAAACoXmpMLEtTJk6fPr3C6RmTZcWsDTbYoBhVVrrfih578sknx8MPPxx333137LPPPpXwBAAAAAAAAFQ3NWbNsvbt28frr78es2fPLrf92WefLXu/IrVr1462bdvGCy+8sNR76dgWLVrEeuutV257v379YujQoTF48OA46qijKvU5AAAAAAAAqD5qTCw7/PDDi6kRhwwZUrYtTa2YolanTp2iefPmxbapU6fG5MmTlzr2+eefLxfMXnvttXjqqaeKNckWN3DgwLjmmmviggsuiDPPPHO1PxcAAAAAAABVp8ZMw5iCWApb/fv3j48++ihatmwZw4cPjylTpsQdd9xRtl/Pnj1j3LhxsWjRorJtvXv3jttuuy169OgRffv2jXr16sWgQYOiWbNmcc4555Tt98ADD8S5554b2267bWy//fZx1113lbuH/fbbrzgGAAAAAACAtUONiWXJnXfeGQMGDIgRI0bErFmzol27dsW6Ynvttddyj0vTLI4dOzb69OkTl156aSxcuDA6d+5cTLO48cYbl+3373//u3h944034thjj13qPGPGjBHLAAAAAAAA1iK1Fi0+BIs1rk2bNsXrpEmTqvQ+rtjz1Cq9PlB99H/61qq+BQAAqLauffC8qr4FoBo55+CrqvoWAKiE3lJj1iwDAAAAAACAyiaWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGRLLAMAAAAAACBbYhkAAAAAAADZEssAAAAAAADIllgGAAAAAABAtsQyAAAAAAAAsiWWAQAAAAAAkC2xDAAAAAAAgGyJZQAAAAAAAGSrblXfAABUN+O7Hl/VtwBUI3v8bWhV3wIAAACwGhlZBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBs1bhYNn/+/DjvvPOipKQkGjVqFJ06dYonn3xyhY6dPn16HHnkkdG0adNo0qRJHHLIIfH2229XuO8dd9wR22+/fTRs2DC23XbbuOGGGyr5SQAAAAAAAKhqNS6W9erVKwYNGhRHH310XH/99VGnTp3o3r17jB8/frnHzZ07N7p06RLjxo2LCy64IC6++OJ48cUXY++9945PPvmk3L633nprnHTSSdGmTZsiku22225xxhlnxFVXXbWanw4AAAAAAIA1qW7UIM8991yMHDkyBg4cGH379i229ezZM3bYYYc499xzY8KECcs89uabb4433nijOEeHDh2Kbd26dSuOvfbaa+Pyyy8vts2bNy8uvPDC6NGjR9x///3FtpNPPjkWLlwYl1xySZxyyimx/vrrr5HnBQAAAAAAYPWqUSPLUrxKI8lSsCqVpkk88cQT45lnnolp06Yt99gUyUpDWdK6devo2rVrjBo1qmzbmDFjipFmvXv3Lnf8L37xi/jvf/8bjzzySKU/FwAAAAAAAFWjRsWyNG1iq1ativXGFtexY8fi9aWXXqrwuDQqbOLEibHLLrss9V469q233oo5c+aUXSNZct+dd945ateuXfY+AAAAAAAANV+Nmobx/fffj80222yp7aXbZsyYUeFxM2fOjPnz53/jsdttt11xjTR6bZNNNim3X/369WPDDTdc5jW+SVr/rCKTJ0+OevXqLfP9NeXjKe9X6fWB6uOuNstfAzIHn7+7cp/1wNppnTbPVfUtAFCNfDLnw6q+BaAa+X3/h6v6FgD4X2lgVOota30sS+uJNWjQYKntaSrG0veXdVyyIsem1xTGKpL2XdY1VlatWrVW+h9eZdpoq6VDIvl9kCTbbLNNVd8KVLl1tiyp6lugivlMBCjP5yL8/zZcr1lV3wJVzGciQHk+F6kuUmtp3Ljx2h/LGjVqVIwQW9IXX3xR9v6yjktW5Nj0+uWXX1Z4nrTvsq7xTSZNmrRSx8GaUjq60b+rAD4TAZbkcxHg/+czEaA8n4usDWrUmmVpysQ0TeKSSreVlFQ8EmCDDTYoRpWtyLHpGgsWLIiPPvqo3H4poH3yySfLvAYAAAAAAAA1T42KZe3bt4/XX389Zs+eXW77s88+W/Z+RWrXrh1t27aNF154Yan30rEtWrSI9dZbr9w5ltw3/X7hwoXLvAYAAAAAAAA1T42KZYcffngx6mvIkCFl29LUikOHDo1OnTpF8+bNi21Tp06NyZMnL3Xs888/Xy6Cvfbaa/HUU0/FEUccUbZtn332KUai3XLLLeWOT79fZ511okePHqvxCQEAAAAAAFiTatSaZSmIpbDVv3//YprEli1bxvDhw2PKlClxxx13lO3Xs2fPGDduXCxatKhsW+/eveO2224rYlffvn2Lhd4GDRoUzZo1i3POOadsv7Qm2SWXXBK/+MUvimsdcMAB8fTTT8ddd90Vl112WRHSAAAAAAAAWDvUqFiW3HnnnTFgwIAYMWJEzJo1K9q1axcPP/xw7LXXXss9Lk2zOHbs2OjTp09ceumlxZSKnTt3jsGDB8fGG29cbt8U1lJMu/baa+PBBx8sRqyl/c4888zV/HQAAAAAAACsSbUWLT78CgAAAAAAADJSo9YsAwAAAAAAgMoklgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWWQkc6dOxdfAPhMBFiSz0WA8nwuAvw/Pg/JgVgG1diwYcOiVq1aZV8NGzaMVq1axS9/+cv48MMP1+i93HPPPXHdddd9q2MWLFgQQ4cOLb6ZbrDBBtGgQYPYaqut4vjjj48XXnhhtd0rsHaqyZ+J6bOv9L5r164dTZs2jbZt28Ypp5wSzz777Gq9V2DttbZ8Li759cMf/nC13iuw9lpbPxe/+OKL1XqvwNqnJn8eJgsXLow777wz9ttvv9hoo42iXr16sckmm8T+++8fQ4YMifnz56+2+yVftRYtWrSoqm8CWPY3thSWfvvb38bWW29d/Afy+PHjY8SIEbHlllvGyy+/HOuss84Kn+/LL78sXuvXr/+t7+XAAw8srjdlypQV2n/evHlx2GGHxWOPPRZ77bVXHHTQQUUwS8ePGjUqXn/99Zg6dWp897vf/db3AuSpJn8mpr/8WH/99eOcc84pfj9nzpx49dVX47777osPPvgg+vTpE4MGDfrW9wHkbW36XFxcSUlJ7LPPPt/6HgDW1s/Fn/3sZ8UPXAHk8neKhx56aDz++OPxgx/8oPg7xWbNmsXMmTNj3Lhx8eijj8Zxxx0Xd9xxx7e+F1ieust9F6gWunXrFrvsskvx65NOOik23HDD4i9V//KXv8RRRx21wudZmW9oK6tfv35FKBs8eHCcddZZ5d77zW9+U2wHyOUzMdl8883jmGOOKbftqquuKv7yI30mbrvttnHaaaet0XsC1g5r0+ciQGXwuQhQcz8P0w+TplCWRqOdeeaZ5d5LP1DwxhtvxJNPPrnG7od8+LEUqIFKf9L2nXfeKV6//vrruOSSS2KbbbYpm+rwggsuWGpI8pLzC48dO7YYip1Gel122WXFKK80LLtr167x5ptvljvukUceiXfffbds+Ha6xrK89957ceuttxZDpZcMZUmdOnWib9++RpUBWXwmLk+jRo2Kn+xLI2/TNQ34B3L/XARYHXwuAtSMz8Np06bF7bffXkzLvWQoK5V+0LR3796r/GcBSzKyDGqgt956q3hNPw1S+pMhw4cPj8MPP7z4CYu0/s0VV1xRTPH1wAMPfOP5rrzyymJKhxSwPvvss7j66qvj6KOPLltH58ILLyy2pwhWOiJs3XXXXeb5Ro8eXXyzPfbYYyvpiQFq7mfiN0nHpikm0hQSr7zySrRp02alzwVQkz4Xv/rqq/j444+X2t64cePihwkAKktN/lxM06R9m6nSAGr63ykuWLDAKFuqhFgGNUD6ppL+gznNL/yPf/yjmG84/QVCmvP33//+d/FNLX1zu+2224r9009XpEUvr7nmmhgzZkx06dJluedP533ppZfKhlSnedLTT2+k+YR32GGHYoRYmg5i1qxZK/TNKn1DTdq2bVspzw9Qkz8TV0Q6b+n/uIhlQC6fi0888URsvPHGS21Pf0Fz/vnnf+s/B4C18XMxLWNw0UUXrdSfA0BN+zycPHlyuf9HXnzNtNmzZ5f9Po1QKw1+UFlMwwg1wL777lv8B3Pz5s3jpz/9afETGOmnO9I3m7SoZXL22WeXO6Z0UeA01PmbpAU/F597eM899yxe33777ZW639JvXuutt95KHQ+wNn0mrojSn6ybM2fOarsGsPaqqZ+LnTp1KtabWPLr26yfAbC2fy727Nlzlc4J5K2m/p3ikqPP0r2m5yj92nLLLVfq/LA8RpZBDXDTTTdFq1atom7dutGsWbPYbrvtiiHOSZrzN/26ZcuW5Y7ZdNNNo2nTpsX732SLLbYo9/v0UyBJ+qmPldGkSZPi1V/6AqtDTftMXBFz584tXv2QAZDT5+JGG21U/AUOQGXzuQhQMz8PS/+fuPT/kUvtvvvuxQ8QJAMHDixGyUFlE8ugBujYsWPssssuy90nDT9eWXXq1Klw+6JFi1bqfK1bty5e//Of/0T79u1X+r4A1obPxBWRpqhIlvyfFIBcPxcBVoXPRYCa/XeK6f+Rd9xxx7LtaTRZ6Q8T3HXXXSt1bvgmpmGEGi4NO164cGG88cYb5bZ/+OGH8emnn1basORv842zW7duxTdL37yANa06fiZ+k/QTc2kajDQtxvbbb19p5wWoqZ+LAKuTz0WA6v93infffXelXBu+DbEMarju3bsXr9ddd1257YMGDSpee/ToUSnXady4cbEo6IpIf+F78sknF4sT33DDDUu9n74RX3vttfHee+9Vyr0BVOfPxOWZN29eHHvssTFz5sy48MIL/aUKELl/LgKsbj4XAarv52Ga1vGEE06I0aNHx4033ljhPkbxsrqYhhFquDQk+bjjjoshQ4YUP/Wx9957x3PPPRfDhw+PH/3oR9GlS5dKuc7OO+8c9957b7HoZ4cOHYqFNg866KBl7p9i2FtvvRVnnHFG/OlPf4oDDzywmLd46tSpcd9998XkyZOLhUUBcvhMTKZPn1424jaNJnvllVeKz8MPPvigWED51FNPrZR7A6iJn4uLS8emewPI7XMRYE2qrp+HKd698847cfrpp8fIkSOLfTfZZJP4+OOPi7XKHnrooWLtNahsYhmsBW6//fZo0aJFDBs2rJjKKy3E2b9///jNb35Tadfo3bt3vPTSSzF06NAYPHhwMRR7ed/Y1llnneKnQNI9pW+yl1xySXz++edRUlIS++yzTzGcevPNN6+0+wOozp+JSdo/jSJLo8fSosVpFG465qSTTirmkQfI9XNxSelYsQzI8XMRYE2rrn+n+Nhjj8WIESOKr6uvvjpmz54dTZs2LQLfzTffXEQ+qGy1Fhm3CAAAAAAAQKasWQYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAAAAAAZEssAwAAAAAAIFtiGQAAAAAAANkSywAAAAAAAMiWWAYAAAAAAEC2xDIAAAAAAACyJZYBAAAAAACQLbEMAAAAAACAbIllAAAA1VTnzp1jq622qurbAAAAWKuJZQAAADXIn//857jooouq+jYAAADWGrUWLVq0qKpvAgAAgKV9+eWXkf6XrUGDBmXbevXqFcOHDy+2AwAAsOrqVsI5AAAAWA3q169f1bcAAACw1jMNIwAAQBWYP39+XHLJJfG9730vGjduHE2aNIntttsuTjjhhJg3b16Fa5alX6dRZUmtWrXKvoYNG1a2z5w5c+LCCy8szpVGpG2wwQbxox/9KCZOnLhC95XOlc45ZsyYuO6666JVq1bFebbeeusYNGjQUvs/99xzxT2n66XnSF8dOnSIoUOHLrVvmj4ynfvVV1+Nvn37xuabbx7rrLNO/OAHPyjOk/zjH/8onnvdddeNjTfeOM4+++z4+uuvlzrXhx9+GKeffnrxZ5KiYrNmzeKYY46JKVOmrNBzAgAAlDKyDAAAoAr88pe/jNtvvz2OPvroOOOMM4pt77zzTjz88MPx3//+Nxo1arTUMSlepWD19NNPx4gRI8q2p9iUzJ49O/bYY494880347jjjosdd9wxZs2aFbfddlvstttuxXE77bTTCt3fBRdcUJzv+OOPL8LVnXfeGeecc06UlJTET3/607L9HnjggXj55Zfj8MMPjy233DI+++yzGDVqVBHQ/ud//ifOPffcpc6d7q1hw4bFe+lZr7nmmthvv/2KZ0rTTJ500knFNUaPHh2DBw8uoln//v3Ljp82bVrxzHPnzo0TTzyxCHrTp0+PW265JZ544ol44YUXYosttviW/0QAAIBcWbMMAACgCqQRX506dSqC0LKkEVZppNTio6WWt2ZZnz594qabbiqiWDp3qU8//TTatm0bLVu2LEaMfdPIshTI2rVrV4z2Kl0vLUWtFMNSmJowYULZ/ml7Gk22uIULFxb3nkazpWBWr169spFlF198cXTr1q2IgrVr/7/JTv785z/HoYceGnXq1ClGli1+79///veLUWQzZswo25b2HTduXBHFWrRoUbY9/Tml50zhrqKRbQAAABUxDSMAAEAVaNq0aUyaNCn+/e9/V8r5Ujy76667ihFk22yzTXz88cdlX2kaw/3337+IaKVTPK7IyLfSUJakIJbO/frrr5fbb/FQls79ySefxMyZM+OHP/xhMcrstddeqzDqlYayZO+99y5eUyRbPJQle+21V7z//vvFKLIknfPBBx+M7t27F1NXLv6caQTcrrvuGo8//vgK/7kBAACYhhEAAKAKXH/99XHsscdG+/btiykD99xzzzjggAPiiCOOKKYo/LZKg9Hf//73YtrC5e3XvHnzbzzf4iO2Sm244YZFDFvyfL/+9a+L0WEpai0phbNvOvf666+/zGuWvpeum2JYinVp5Nrdd99dfFVk8RAHAADwTcQyAACAKnDQQQcV0wamUVBjx44tvlL8SdMUPvPMM8sNXhVJAal0JNaAAQOWud+KnjdNibgio9lS4PvPf/4Tp59+enTo0KGIW+nYRx99tFhvrPS+VuTcy7tm6bSTpec78sgj4+STT16hZwEAAFgesQwAAKAKp2L8yU9+Unwlv/vd7+K0004r1h1L63tVpFatWsuMYOl8s2bNin333TfWhBTJ/vWvfxVx7re//W2595588snVcs207loaOZamfFxTzwkAAKzdzE0BAACwhi1YsKCIWkvaeeedi9clpzpcXJqKsKLpDVNAOuaYY4qANXz48AqP/fDDD8v9/q233orJkyfHyiodCVY66qvUjBkz4vbbb4/VIU0FmdYre+SRR2LMmDEr9JwAAADLY2QZAADAGjZnzpzYbLPNiqkY05pl6dcpMN12221Rt27dOProo5d57K677ho33nhj9O7dO3r06BH16tWLTp06xdZbbx2XXXZZTJgwIXr16lWsIZbWQWvcuHFMnTo1/va3v0WjRo3KBaauXbvGu+++u1TsWlGtW7eOHXbYIa6++uqYO3dutGnTJt5555249dZbY5tttqlwvbLKkEbg7bHHHrHffvvFz372s2L6xxQL07Ok6R932WWXGDZs2Gq5NgAAsPYRywAAANawddZZJ84+++x46qmnirXKZs+eHZtsskkRwvr16xcdO3Zc5rFHHXVUvPjiizFy5Mi47777ijW8hg4dWsSyJk2axPjx4+O6666Le++9t1gPLUWkFONSUOvZs2elPkcaWZZGeJ133nlxzz33FM+x3XbbFfEsXff444+P1WHzzTcvpn9M10lRcNSoUVG/fv1iewqEJ5544mq5LgAAsHaqtWhlf4QQAAAAAAAAajhrlgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAAJAtsQwAAAAAAIBsiWUAAAAAAABkSywDAAAAAAAgW2IZAAAAAAAA2RLLAAAAAAAAyJZYBgAAAAAAQLbEMgAAAAAAALIllgEAAAAAABC5+v8ADGEyUIN07HEAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 4 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:38:29.427907Z", - "start_time": "2025-09-29T15:38:29.079002Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "year_percent(y_per, \"%click\")", "id": "ba7581e97fdbd07c", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABtMAAAaiCAYAAABQHAfEAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QuUV1XdP/7PcMcL3kAFBfECooNEqKDmBS3FNEWfIC0IMZTMJPURNczrk5JKaQZqWYT3S5EZmZcowUQUQiFzxMujIiQQPiJqyt35r33+a74/hpnD9TvAF16vtb7rnNnnnL33+c7oWvnus3dZZWVlZQAAAAAAAAA11KvZBAAAAAAAACTCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAADYp3bt3j7Kysuwzfvz4Wu+5+uqrC/ek87pWNVb6AAAAsGURpgEAwGbkpZdeim984xvRqlWraNSoUXbs06dPvPzyy2vcx6uvvhqNGzfOgqMbb7yxTucLAAAAmzphGgAAbCZ++9vfxkEHHRQPPPBAzJkzJ5YuXZod77///ujSpUuMHj16jfr57ne/G0uWLIny8vK48MIL63zeAAAAsCkTpgEAwGbgjTfeiDPOOCML0JLDDjsszj777Dj00EOzn1N7up7uW5UUxD311FPZ+a233hoNGzbcALMHAACATZcwDQAANgNpOcaFCxcWzp999tm44447YuLEiXHttddm7Z9++mkMGzYst4+PPvooLrroouy8b9++cdRRR8WmKu2TVllZmX02xJ5pAAAAbLmEaQAAsBn405/+lB332muv+O///u9q1y699NJo27Zttftqc+WVV2bLQm633Xbx4x//uI5nDAAAAKVBmAYAACXuww8/zEKwJFWT1a9fv9r1Bg0axJFHHpmdz549O6tAW9k//vGPGDFiRHaeKtl22WWXDTJ3AAAA2NQJ0wAAoMR9/PHHhfO8EKxly5a13p+kpRLPPffcWL58eXTp0iU7X19vvfVWtvxiCvF22223aNKkSWy11VZZ5dwpp5wSw4cPj3nz5q1z/6nvsrKy7LOmyzy+9NJL8f3vfz+6desWu+66azRq1Ci22Wab2HfffeO0006LkSNHZsHk+vjss8/iu9/9bmFuqf8nn3xynfqaMWNGoZ+qysLkr3/9a3z961+PvffeO5o2bRotWrSII444IgtDFy9evFZjfPLJJ3H77bfHSSedFHvssUf2O9p2222jXbt28a1vfauwf96q3HnnnYV59u/fP2tLf0sPPvhg9OzZM/udp3mm64888shaze9zn/tcoe+0n9+aSvsDVj23cqXmyqZPnx6XXXZZdO3aNfvnJ/1dpO80/Z2kas0UQK+J9LeT5vjtb387e7Z58+ZZX82aNct+V+l39pvf/Cb7G9mY3ykAALD2GqzDMwAAwCYkhR9V/v3vf9d6z4rt6T/ur+jXv/51trdavXr14rbbbsuO6yqFOWnftV/84hexbNmyGtfffvvt7POHP/whu+/999+vNv+6sGDBgjjnnHOyICMFhytaunRpvP7669knXf/BD34Qc+fOXadxlixZEt/85jezfpIdd9wxW1bzkEMOKcp7pLmed9552V54K1q0aFFMmDAh+6TfXwpX2rdvv9r+fvvb38b3vve9Wt/3f//3f7PPqFGj4itf+Urce++92fKfayKFTymcTPNZX2effXYMGjSo8HeaAqnVSZWXo0ePLvx81lln5f6tnn/++fGrX/0qC6pW9H//93/ZZ/LkydmSp2kfwvTd53n44YfjG9/4Rq1hZvq9pQA7BcwpDEsB4e9///vYc889Y00V8zsFAADWnjANAABKXAo5UuVZWuox/cf2VPmyYiCWgoJnnnkmO09VYiuGV/Pnz8+qtapCh1RRs67+85//xHHHHRfPPfdcoS1VOn3hC1+I1q1bZ0HWu+++Gy+88EIWoqWQYeUQo9hSCHHMMcfEa6+9Vmjbfvvtszml7yzNYebMmdmcUgiTgql1ffdTTz01/vKXvxS+5z//+c+x//77F+1d0t53VUFap06donPnztl3mub+yiuvFKqs0vum30H6zvPcfPPNWZhZFS6mgPXQQw+N3XffPfudVFRUxJQpU7Lrjz76aHTv3j2effbZ7Pe5KilMOvnkk7M5peVFDzvssKwqK7W/+OKLa/3Offv2jUsuuSQWLlyYVeSlar0Vq/Rqk6rDPv300+w8vVNtv4NUkdejR4/snaqkeR544IGxww47ZP9cpGvp7yeNnQK99PeRKthqk6osq4K09B2mMVP1Y/q+0t9G+r2k90/fZ1pSNVVsTps2LXbaaafVfgfF/k4BAIB1UAkAAJS8AQMGpFQk+9xyyy3Vrv3kJz8pXBs4cGC1a2effXbW3rx588r3339/veZw2mmnFcapX79+5TXXXFP5n//8p8Z9y5cvr3zqqacqe/bsWblgwYIa14866qhCP+PGjat1rKuuuqpwTzqvzdKlSyu/8IUvFO5r2rRp5YgRIyqXLFlS497FixdXjhkzpvKUU06pta+qPmr7n1Dvvfde5cEHH1y4vu+++1a+8847levr7bffLvTZsGHD7LjTTjtVPvnkkzXuTXNv1qxZ4f4ePXrk9vuXv/ylsl69etl9jRo1qrz++usrP/nkkxr3TZ06tXL//fcv9Pmd73yn1v5GjRpVuKdBgwbZMf0O0/xXtmjRorX+Hs4444xC/1deeeVq71/xdzFy5Mha7+nXr1/hnvbt29f6d7Zs2bLK2267rbJx48aFv+mJEyfW2l/6/n/0ox9VvvHGG7nzeuutt7LfS9W46Z/ZPHX9nQIAAGtHmAYAAJuB6dOnF/6jf/occcQRWXB2+OGHVwuTXn/99cIzzz//fGVZWdkqQ4c1NXbs2GqB0wMPPLDOfRUrTPvlL39ZLYz629/+ts5zygvTUmiWwrOqawcddFDlvHnzKothxTAtfVIA9uyzz67x7+Cvf/1rrUFmu3btCvc8/PDDq5zDnDlzKnfZZZfCdzhr1qxVBj/pc8ABB1R++umnlcWS3rmq7zZt2mTvkOell14q3LvtttvWGuamv4Oqe/bee+8sDF2VFd/v+OOPX693SUFup06dsr6aNGlSOX/+/NWOWRffKQAAsHbWfTMEAABgk9GhQ4ds76f69etnP6dlHdOSgFV7LDVs2DDuuuuuaNeuXfZzWsrv3HPPzZadS8vGnXnmmTX6TMvbpX2j0rKRq/OTn/ykcJ72djr99NNjY1txTv/93/8dRxxxRFH7T0shpu+uagnJL37xizFu3Lho0aJF1IU+ffpk4+X50pe+FP/1X/9V+PmXv/xljXv++Mc/xhtvvJGdn3LKKdnSlKuSliq84IILsvO0JGbVfnCrcsMNN0TTpk2jWNI7l5eXZ+dpSc6xY8fm3jty5MjCefob3HrrrWvcc9NNN1X7G2nevPkqx+/fv3/2z1fy5JNPZkuUrqv0z2H6Pa64192aKPZ3CgAArB1hGgAAbCbS/lKTJ0+Or33ta1kIkv7DfdoX7Otf/3q231Lv3r0L995+++3ZfkspfLvtttuirKwsa0/BWfo5hRdpv6cUDKU91lJAVhXCrCzt3TR+/PjCz2l/qY3tnXfeiVdffbXw83nnnVfU/tOeZCmcS3vAJb169YrHHnssttlmm6gr/fr1W+09Z5xxRuE8BXsrS3Os8o1vfGONxk17sFVZXfiT9htL++YV29lnn11rYLaiJUuWxL333lv4Oe0BuLJly5YVwri0T9xXvvKVNRr/6KOPzo4pfF5xn7XaLFiwIJ544oksqEt7rH3ve9/L/v6qPmkvvSpp37TVqavvFAAAWHMN1uJeAABgE9elS5d46KGHVnnPv//977j88suz8/Qf9z/3uc8VgoIUvK1cffTpp59mbakqJwUBXbt2rXY9BQKpyiZJAVy3bt1iY3v++ecL56kab/fddy9a3ymQSsFk+l6Sb3/721kAWa9e3f1/FVPYuSbf66GHHlrt9zxnzpwsUF0xBKzyu9/9Lp5++unV9vnhhx8WzmfNmrXKezt37lyojix2kPj9738/+zv7wx/+kFWH7bTTTtXueeSRRwpVYwcccECNv9PkpZdeik8++SQ7T2Hz+eefv0bj//3vf1/td/Cvf/0rm+Po0aOzgHlNpMrP1amr7xQAAFhzwjQAANjCDB48OAtIUsjyP//zP4X2W2+9tRCkpUq066+/Pqtw+9Of/hQDBgzInkntr7zySrUl51JoU6V169bRoMHG/58ZK85pr732KmrfPXv2zCqckhSe/OhHP4q6lqqTUoXg6qRKwiZNmhTCzffee69amDZ79uzC+epC19p88MEHqx2/rt4/Vf+lyrNUgXbPPfcUlp+srWKttqq0ld8/BW/pb74Y38HUqVOzZT5X9/2s7OOPP17tPXX1nQIAAGvOMo8AALAFSZVIVUvhpWXo0lJ3VVVpN954Y3a+9957x3333Rdt27bNgpmvfvWrMWzYsOzajBkz4oEHHsgNBOpymcO1UZdzShVNVV5//fVsL7G6lir+1tSK+4StHNasWGW2LqpCxDx1ua/XwIEDc5d6THup/eUvf8nOGzdunC15Wpv1ff/avoNUhZb+GakK0lL4lSo/0zKbqYotVcKl5VPTP2PpM2rUqMKza7Ifob3SAABg4xOmAQDAFiKFPueee25hH6y0pGOV6dOnF5avS1VoKy8rl5bZqwpp0nKPK1qxYuo///lPbArqck6PPvpoIeB4+OGH4/TTT6/zQK1qSck1UbWMYbJyNduKQVvaM68q4FnTTwpTN5a0R12HDh2y85dffjnbH7BKCqiqgqn/+q//ih133LHWPlZ8/06dOq31+6fP1VdfXa3PtFzm22+/nZ3vtttu8Y9//CN++MMfRvfu3bPlRVMQWrUn4ZpWowEAAJsWYRoAAGwhbr755myJxkaNGtVY3i5VWFVp3759jWdTtc8ee+xR495kl112KZynQG511Usbwopzqgo6iiUFkbUFanX53qnqaU1CwbQHV9USj0nz5s1zv5e5c+dGqTn77LNrVKetXO2Vt8RjXb3/X//618J5WnpyxWU1a/POO+8UZVwAAGDDEaYBAMAW4F//+ldhf7SLLrqoUOFTWzVT3pKCVVU9K4c6nTt3zpaDrKqgmjRpUmxshxxySOE8hX/p/YsdqP3xj3+sFqil/eTqKlBLgdGafK/PPfdcteCoVatW1a5369atcP7ss89GqTnjjDOyYDd58MEHs7+3tLxjVUCV9sc7+uijc59Pf6tVz8+bNy/+93//d73ntOI+bAcccMBq7//b3/623mMCAAAbljANAAC2AOeff34WmKXqsrSf08pWXA4wL3iqaq/aZ61KCidWDDBGjBgRG1t6z/3226/w88qVeMXwxS9+sUagVpcVavfcc89q77n77rsL57WFSl/5ylcK57/+9a+rVbGVgp122ilbxjH56KOP4re//W21/dO+9a1vVVtScWXpd5WC0Cq33Xbbes+pXr16a7wc5wsvvBB///vf13tMAABgwxKmAQDAZu6JJ57Igp7klltuqbXybMXg6U9/+lOtIcCcOXOy8/3337/G9f/+7/8unKeKofTZ2Fac009+8pN45pln6jxQS/tn1VWgdu+9966yOm3cuHHZ+Kta7vCrX/1q7LPPPtl5+n2mPfRS1duaSBWJK1YwbiwDBw4snP/0pz+NRx55JDtP+/ydeeaZq33+0ksvLZwPHz48q2xbU7UtDZmq4aqMGTMm99kUtK04dwAAoHQI0wAAYDOWKo8GDRqUnZ944onRs2fPWu9r165d7Lvvvtl5CofGjh1brY+LL7641uqmKl/60peid+/ehZ/79u2bLStZW6XOZ599lgU/p556anz44YdRV/r37x+HHXZYdr506dI4/vjjs0qkdL6yJUuWZO+d5rQugVoKUeoyUGvYsGEsX748++5rC39SAJrmXhWMHXvssdm8VpYCp9tvvz07JmmvsfR3MX369Nyxp02blgVQrVu3Lvr+c+uie/fu2d9r1dwWL16cnX/5y1+usaxlbY466qhsucgk/Y7S+//oRz/K3ZMu/f2nwC79s3PyySfXuH7SSScVzu+6664suE2/qxWl5SSPO+64ePHFFwvLpQIAAKWjwcaeAAAAUHduuOGG7D/kp6AnVeGsyhVXXJGFYCnsSsFECp923XXXeOqppwohSseOHbPqptr86le/yvaumjx5chYmXHXVVXHjjTfGF77whSyISUHPu+++G1OmTIn3338/e2ZNq6LWRYMGDeKhhx7KlvV74403smDvu9/9bvzgBz/I5tSyZcssTElzTpV3adnA7bbbbp3GSmFiCtRS2LJw4cIsUPv6178eDzzwQDaP9ZVCohSWpUqsFJR97nOfy/b/St9fmntFRUXh3vRev/zlL1c51xSofec738l+T48//nhWvZgqDjt16pQt45m+q1S59o9//CPee++92NScffbZcckll1Rrq60SL88vfvGL7P3+/Oc/Z0HqZZddFtdee222p1ybNm2ypUsXLFgQb775Zrz88suFwO7AAw+s0VcKyY488shsL7T0+xg8eHC2rGiXLl2yv6f0tzdx4sTsu95tt92yJVdXnjsAALBpE6YBAMBmKgUB119/fXY+ZMiQ2HPPPVd5f58+fbIg7Gc/+1n2H/5XXu4xBTqjR4/ODYdSCDN+/PgsLEj7caU+0rKAKbCoTZMmTQoVUnVl9913j+effz4LWn7/+99nbSkkqW0py2SbbbZZ57FSSPWHP/whq2BKgVr6rpJiBWopmPz444+zPcJSyJU+K0vVhamKKu0Zt7owKi33+O1vfzsLe1IIlAK5FUO5lZWXl8eOO+4Ym4JUdZj2/ktBWFWAmCrM1lQKyx577LG45pprskqyFB6mT6qYXFV14CGHHFLrtd/85jdxwgknZJVnSQqfV67iS2Fl2uMt/TMGAACUFss8AgDAZiot75iWqEtL4q1pJUzaUy2FTikY2mGHHaJRo0ax9957Z/uPpSX1qpaCzJMq4O64446smicFeF27do2dd945C5PSXm2pr1RhlZZbTFVq2267bdS1FAClPeNSiHHBBRdkFV3NmzfPgrwUnnXo0CFblvHOO++M1157bb3GSlVjKVCrWvIxBWqpQq0YSz6mMCdV/6UqsrSkZtu2bbNQKL1fqrRLIWgK2NL7rImjjz46W94xzTHtNZb2zUu/8/S9pN9LCtvSspJDhw6NqVOnZr/TNVlGcUNo0aJFHH744YWf07KNaxtYpvdMS5HOmDEjfvzjH2eVmKkqLf2dpu96p512yqrLUt/pbyP9vY4YMaLWvnbZZZes+ixdT/Pafvvts392UpiblttM/0z8/e9/r3W/QQAAYNNXVlmX66oAAACwTlLIU1VNmCrN0s/8/1LFY1qCNO1zVlZWFq+//noW/gEAANQFlWkAAACUlLQXXgrSku7duwvSAACAOiVMAwAAoGSkxVWGDx9e+Pmcc87ZqPMBAAA2f8I0AAAASkbalyzt35ekfePSHnwAAAB1ae12aAYAAIANaPLkyXH//ffHkiVL4qWXXopnn322cO1//ud/omHDhht1fgAAwOZPmAYAAMAm65VXXolbbrmlRnvv3r3jm9/85kaZEwAAsGURpgEAAFASmjRpEu3bt48zzzwzBg0atLGnAwAAbCHKKtPuzQAAAAAAAEAN9Wo2AQAAAAAAAIkwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAtmD9+/ePsrKymDFjxsaeCgAAwCZJmAYAALCJS2HXip/69etH8+bN45hjjon7778/NgV33nlnNrd0XFevvvpqDBo0KDp27BjbbbddNGrUKFq1ahUnnnhijBw5MhYvXlzUOQMAAKyJBmt0FwAAABvdVVddlR2XLl2aBU9/+MMfYty4cTFlypS46aab1qnPH/3oR/H9738/dtttt9iY/ud//ieuueaa+Oyzz+LQQw+NM844I7bZZpv497//HePHj4+zzjorbr/99uxdAQAANiRhGgAAQIm4+uqrq/3817/+NY499tj46U9/Gt/73veibdu2a91ny5Yts8/GNHTo0CwobN26dfz2t7+Nbt261bjn0UcfjZ/85CcbZX4AAMCWzTKPAAAAJeqLX/xidOjQISorK+Pvf/97of2FF16Ir371q7HzzjtH48aNY4899ohzzz035syZs0Z7pqXz1JaupfPTTz89W1aySZMmcdBBB2XB1oq6d+8eZ555ZnaejisuSbm6vdjS9RQSNmzYMB577LFag7TkK1/5SjzxxBNr/R0BAACsL5VpAAAAJSwFaUkKrpIUdKUgLbX36tUrC9JSuJaWSEzLQk6YMCH23HPPNer7nXfeia5du8Zee+0V3/zmN2P+/Pnx0EMPRc+ePeMvf/lLHH300dl9KXTbfvvts/7Ttc6dOxf6SO2rMmrUqGzZyhTYpb3SViUFgwAAABuaMA0AAKBEpUDrtddey4K0gw8+OP7zn/9ke40tW7Ys22fsiCOOKNx7ww03ZHujffvb344///nPa9R/6iNVjVXt1ZZ84xvfiOOPPz6GDRtWLUxLUph2yimnFH5eEyncq6qyAwAA2BQJ0wAAAEpsz7RUyZVCtEceeSSrQLvwwguzCrT77rsvqx77+te/Xi1ISy666KL4+c9/HmPHjo2ZM2dGmzZtVjte6vPyyy+v1tajR4/s2cmTJxflnaqWntx9992L0h8AAECxCdMAAABKxDXXXJMdUyVaWj4xBWYDBgyIvn37Zu0vvvhidjzmmGNqPNugQYM48sgjsz3Kpk6dukZhWlqusX79+jXaW7duHc8991wR3ggAAGDTJ0wDAAAosf3R8nz44YfZsWXLlrVer2pfsGDBGo2Xt99ZCuY+++yzKIY0p+nTp8e7775blP4AAACKrV7RewQAAGCj2G677bLj3LlzV7mkYtV9m4LDDz88O/71r3/d2FMBAAColTANAABgM/H5z38+O44fP77GtWXLlsUzzzyTnXfp0qXoY1ctB7l8+fK1eu7MM8+Mhg0bxu9+97t45ZVXVnnv4sWL12uOAAAA60KYBgAAsJk45ZRTYscdd4wHHnggnn/++WrXfvrTn8bbb78dX/rSl9Zov7S1tdNOO2XHmTNnrtVzbdu2jauvvjqWLFkSJ554YkyZMqXW+5544on48pe/XJS5AgAArA17pgEAAGwmttlmm/j1r38dvXv3jqOOOio7puDshRdeiD//+c+x6667xi9+8Ys6GfvQQw+NrbbaKgvt3n///WysZNCgQatdVvKyyy7LKueuueaaOPjgg+Owww6Lgw46KHuff//73/G3v/0t3njjjawNAABgQxOmAQAAbEZ69uwZzz77bAwdOjSefPLJ+PDDD7Ng65xzzokrrrgiWrVqVSfj7rDDDtlSjSkQu/POO+OTTz7J2vv27btGe7RdeeWVWfh32223xbhx42LUqFGxaNGirOKtc+fOcemll2Z9AQAAbGhllZWVlRt8VAAAAAAAACgB9kwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMjRIO8CG8auu+4an3zySbRp02ZjTwUAAAAAAKAkzZw5M7beeuuYO3du0ftWmbaRpSBt6dKlG3saAAAAAAAAJWvp0qVZ5lIXVKZtZFUVaRUVFRt7KgAAAAAAACWpvLy8zvpWmQYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACwOYRpixcvjksvvTRatWoVTZs2jW7dusXYsWNX+9zDDz8cp512Wuy1116x1VZbxb777hsXXXRRLFiwoMa9bdu2jbKyshqfc845p47eCgAAAAAAgE1Vgygh/fv3j9GjR8cFF1wQ7dq1izvvvDNOOOGEGDduXBx++OG5zw0cODAL4Pr27Rtt2rSJf/7znzFixIh47LHH4sUXX8yCuRV17tw5C9tW1L59+zp7LwAAAAAAADZNJROmTZ48OR588MEYNmxYDB48OGvr169fdOzYMS655JKYOHFi7rMpgOvevXu1tgMPPDDOOOOMuO++++Kss86qdm233XbLgjcAAAAAAAC2bCWzzGMKxOrXr59VmVVp0qRJDBgwIJ577rmYNWtW7rMrB2nJqaeemh2nT59e6zNLliyJTz75pChzBwAAAAAAoDSVTJg2derUbKnFZs2aVWvv2rVrdpw2bdpa9Td37tzs2Lx58xrXnnrqqWxvtW222SbbQ+2WW25Zr7kDAAAAAABQmkpmmcc5c+ZEy5Yta7RXtc2ePXut+rvhhhuySrdevXpVa+/UqVO2/9q+++4b77//frYvW9qjLfWfnllX5eXltba/+eabsffee69zvwAAAAAAANSdkgnTFi5cGI0bN67RnpZ6rLq+pu6///4YOXJkttdau3btql0bM2ZMtZ/PPPPM+PKXvxw33XRTDBo0KHbfffd1fgcAAAAAAABKS8mEaU2bNo3FixfXaF+0aFHh+pp45plnsn3WevToEdddd91q7y8rK4sLL7wwnnzyyRg/fnz07dt3HWYfUVFRsVYVawAAAAAAAGx8JbNnWlrOMS31uLKqtlatWq22j3/84x9x8sknR8eOHWP06NHRoMGaZYmtW7fOjvPnz1/reQMAAAAAAFC6SiZM69y5c7z++uvx0UcfVWufNGlS4fqqpL3Jjj/++Nh5553jsccei2222WaNx37rrbeyY4sWLdZp7gAAAAAAAJSmkgnTevXqFcuXL4877rij0JaWfRw1alR069atUD02c+bMePXVV6s9O3fu3DjuuOOiXr162XKNeaFYqjxLY6xo6dKlcf3110ejRo3i6KOPrpN3AwAAAAAAYNNUMnumpcCsd+/eMWTIkJg3b17ss88+cdddd8WMGTNi5MiRhfv69esXTz/9dFRWVhbaUkVaqi675JJLYsKECdmnyi677BLHHntsdj5mzJi49tprs+Buzz33zMK1+++/P15++eUYOnRo7Lrrrhv4rQEAAAAAANiYSiZMS+6+++644oor4p577okPPvggOnXqFI8++mgceeSRq90rLbnxxhtrXDvqqKMKYdoBBxwQ+++/f9x7773x3nvvZdVoafnI3/zmN1mQBwAAAAAAwJalrHLFEi42uPLy8uxYUVGxsacCAAAAAABQksrrMG8pmT3TAAAAAAAAYEMTpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAADA5hCmLV68OC699NJo1apVNG3aNLp16xZjx45d7XMPP/xwnHbaabHXXnvFVlttFfvuu29cdNFFsWDBglrvHzNmTHTp0iWaNGkSbdq0iauuuiqWLVtWB28EAAAAAADApqykwrT+/fvHTTfdFH369Ilbbrkl6tevHyeccEJMmDBhlc8NHDgwpk+fHn379o2f/exncfzxx8eIESPi0EMPjYULF1a79/HHH49TTjkltt9++xg+fHh2fu2118agQYPq+O0AAAAAAADY1JRVVlZWRgmYPHlyVok2bNiwGDx4cNa2aNGi6NixY+y8884xceLE3GfHjx8f3bt3r9Z29913xxlnnBG//OUv46yzziq0l5eXR8OGDWPKlCnRoEGDrO3yyy+PoUOHxiuvvBIdOnQo6nul8ZKKioqi9gsAAAAAALClKK/DvKVkKtNGjx6dVaKlKrMqaRnGAQMGxHPPPRezZs3KfXblIC059dRTs2OqWKuSwrL0SWNUBWnJueeeGylzTHMAAAAAAABgy/H/EqNN3NSpU6N9+/bRrFmzau1du3bNjtOmTYvWrVuvcX9z587Njs2bN682RnLQQQdVuzft0bb77rsXrq9PIrqyN998M/bee+917hcAAAAAAIC6UzKVaXPmzImWLVvWaK9qmz179lr1d8MNN2SVbr169ao2xop9rjzO2o4BAAAAAABAaSuZyrSFCxdG48aNa7SnpR6rrq+p+++/P0aOHBmXXHJJtGvXrtoYSd44H3300TrOPn+NzryKNQAAAAAAADa+kqlMa9q0aSxevLhG+6JFiwrX18QzzzyT7bPWo0ePuO6662qMkeSNs6ZjAAAAAAAAsHkomTAtLbNYtQzjiqra0r5mq/OPf/wjTj755OjYsWOMHj06GjSoXphXtbxj3jhrMgYAAAAAAACbj5IJ0zp37hyvv/56jaUWJ02aVLi+Km+++WYcf/zxsfPOO8djjz0W22yzTa1jJFOmTKnWnvZK+9e//rXaMQAAAAAAANi8lEyY1qtXr1i+fHnccccdhba0HOOoUaOiW7du0bp166xt5syZ8eqrr1Z7du7cuXHcccdFvXr14sknn4wWLVrk7l/WoUOHbIw0VpXbb789ysrKsjkAAAAAAACw5ai+zuEmLAVmvXv3jiFDhsS8efNin332ibvuuitmzJgRI0eOLNzXr1+/ePrpp6OysrLQlirS3nrrrbjkkktiwoQJ2afKLrvsEscee2zh52HDhmVLQabw7fTTT4+XX345RowYEWeddVbst99+G/CNAQAAAAAA2NjKKldMnTZxixYtiiuuuCLuvffe+OCDD6JTp07xwx/+MHr06FG4p3v37jXCtFRVlueoo46K8ePHV2t75JFH4pprronp06dnVWz9+/ePK6+8Mho2bFj0d0rVcElFRUXR+wYAAAAAANgSlNdh3lJSYdrmSJgGAAAAAACw6eYtJbNnGgAAAAAAAGxowjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIBNJUxbsGDBhh4SAAAAAAAANn6Ydv7556/y+scffxw9evQo5pAAAAAAAABQGmHa8OHD4+abb6712sKFC+PEE0+Ml156qZhDAgAAAAAAQGmEaUOGDImLL744fve731VrX7x4cZx88snx/PPPx0MPPVTMIQEAAAAAAKDONChmZ9ddd12888478c1vfjNatWoVhx56aCxbtix69+4d48aNi/vuuy8L1QAAAAAAAGCLq0xLRo0aFYccckgWmk2fPj369OkTf/rTn+KOO+6I0047rdjDAQAAAAAAQGlUpiUNGzaM3//+9/GFL3whunTpEkuWLImf/vSn8a1vfavYQwEAAAAAAMCmG6bNnDkz99rtt98eJ510UgwYMCB69uxZ7d42bdqsz7AAAAAAAACwQZRVVlZWruvD9erVi7Kystzrqevari9fvnxdh9zslJeXZ8eKioqNPRUAAAAAAICSVF6Hect6VaZdeeWVqwzTAAAAAAAAoJStV5h29dVXF28mAAAAAAAAsImpt7EnAAAAAAAAAFtEmPbQQw9Fv379cvdPS9d+97vfFXNIAAAAAAAAKI0w7dZbb83dQy21169fP0aMGFHMIQEAAAAAAKA0wrTp06fH5z//+dzr6dorr7xSzCEBAAAAAACgNMK0jz/+OBo1apR7PVWmffjhh8UcEgAAAAAAAEojTGvTpk1MmjQp93q61qpVq2IOCQAAAAAAAKURpn3lK1+J++67L/7whz/UuDZmzJh44IEH4qSTTirmkAAAAAAAAFBnyiorKyuL1dn//d//ZfuizZ49O7p3717YP23q1Kkxfvz4rCrthRdeiJ133rlYQ5a88vLy7FhRUbGxpwIAAAAAAFCSyuswb2lQzM6aN28eEydOjO985zvx+OOPx7hx47L2srKyOOGEE+LWW28VpAEAAAAAAFAyihqmJa1bt45HH300Pvjgg/jf//3frG2fffaJHXbYodhDAQAAAAAAQOnsmbaiFJ4dfPDB2adYQdrixYvj0ksvzZaLbNq0aXTr1i3Gjh272udee+21uPDCC+Owww6LJk2aZJVyM2bMqPXetm3bZtdX/pxzzjlFeQcAAAAAAAC24Mq0utS/f/8YPXp0XHDBBdGuXbu48847s+Uj03KShx9+eO5zzz33XPzsZz+L/fffP/bbb7+YNm3aKsfp3LlzXHTRRdXa2rdvX7T3AAAAAAAAYAsI0+rVq5d9Pv3002jUqFF2nqq4ViVdX7Zs2VqPNXny5HjwwQdj2LBhMXjw4KytX79+0bFjx7jkkkuyvdrynHzyybFgwYLYdttt48c//vFqw7Tddtst+vbtu9ZzBAAAAAAAYPOyXmFaCrNSOFa/fv1qP9eFVJGWxhk4cGChLS3ZOGDAgLjsssti1qxZ2X5ttdlxxx3XerwlS5bE0qVLY+utt16veQMAAAAAALCFhmlpmcVV/VxMU6dOzZZabNasWbX2rl27ZsdUbZYXpq2tp556KrbaaqtYvnx57LHHHtl+a+eff/569VleXl5r+5tvvhl77733evUNAAAAAADAFr5n2pw5c6Jly5Y12qvaZs+eXZRxOnXqlO2/tu+++8b777+fBYRpj7bU/w033FCUMQAAAAAAACgNJROmLVy4MBo3blyjPS31WHW9GMaMGVPt5zPPPDO+/OUvx0033RSDBg2K3XfffZ36raioWKuKNQAAAAAAAEo8TNtrr73W+pm0p1pa2nBtNW3aNBYvXlyjfdGiRYXrdSHNNy3z+OSTT8b48eOjb9++dTIOAAAAAAAAm1mY1qZNmyxs2hDSco7vvvturcs/Jq1ataqzsav2Yps/f36djQEAAAAAAMBmFqalSq0NpXPnzjFu3Lj46KOPolmzZoX2SZMmFa7Xlbfeeis7tmjRos7GAAAAAAAAYNNTL0pEr169Yvny5XHHHXcU2tKyj6NGjYpu3boVqsdmzpwZr7766jqNkSrP0hgrWrp0aVx//fXRqFGjOProo9fzLQAAAAAAANhiKtNW9vbbb8fLL78cJ510Uo1rlZWV8eijj8YBBxwQbdu2Xeu+U2DWu3fvGDJkSMybNy/22WefuOuuu2LGjBkxcuTIwn39+vWLp59+OhuvyocffhjDhw/Pzp999tnsOGLEiNh+++2zz3nnnZe1jRkzJq699tosuNtzzz2zcO3+++/P3mno0KGx6667rtP3AgAAAAAAQGkqq1wxdVpPffr0iXfeeScmTJhQ6/UjjzwyC6lSCLYuFi1aFFdccUXce++98cEHH0SnTp3ihz/8YfTo0aNwT/fu3WuEaSlwS+PWZo899siuJy+88EJcc8018eKLL8Z7772XVaOl5SO/973vZUFeXSgvL8+OFRUVddI/AAAAAADA5q68DvOWooZpKZg6++yz4/LLL6/1+nXXXRe/+tWvsgo2/n/CNAAAAAAAgE03bynqnmn//ve/V7kU4i677BJz584t5pAAAAAAAABQZ4oapjVr1qywZGJtUkXa1ltvXcwhAQAAAAAAoDTCtEMPPTR+/etfZ/uZrSy1jRo1Krp161bMIQEAAAAAAKA0wrTBgwfHvHnzomvXrnHPPffEyy+/nH3SeQrR0rWLL764mEMCAAAAAABAnWlQzM6OOOKI+PnPfx6DBg2K/v37F9orKyujcePGcfvtt0f37t2LOSQAAAAAAACURpiWnHXWWXHCCSfEb3/723j99deztvbt20fv3r2jVatWxR4OAAAAAAAASidMS1Jodv7559dF1wAAAAAAAFDaYdqKJk2aFLNmzYrddtst2zetXr2ibtMGAAAAAAAApRemvfvuu3HiiSfGSy+9VGjbb7/94o9//GPstddedTUsAAAAAAAAFE2dlYl973vfi5YtW2b7pi1cuDCef/75WL58eZx77rl1NSQAAAAAAABsWmHaE088UWt7Cs+uu+662GeffaJx48bRtWvXLGBL7QAAAAAAALBFhGknn3xynHHGGTF//vxq7WmPtAkTJlRre/bZZ6NVq1brOyQAAAAAAACURpiWKs1efvnlbD+0hx56qND+gx/8IC688MI44ogjok+fPnHAAQfEgw8+mLUDAAAAAADAFhGmdenSJSZPnpwFZ2eeeWZWqTZ79uzo2bNnFrSVl5fHggUL4pBDDonx48dnwRoAAAAAAACUgrLKysrKYnX2xhtvxNlnnx3Tpk2L66+/Ps4555xidb3ZSmFjUlFRsbGnAgAAAAAAUJLK6zBvWe/KtBW1a9cuqz678cYbY8iQIXHUUUdlARsAAAAAAACUoqKFaUuWLImPPvooOx84cGCW/O20007xuc99Ln70ox/F8uXLizUUAAAAAAAAlEaYNn/+/Dj11FNjm222iR122CE6deoUU6ZMiVatWsXDDz8c99xzTwwfPjwOPPDAePHFF4szawAAAAAAACiFMO2CCy6IiRMnxi9+8YssPEuh2le/+tVYunRpdj2dT58+PQvTDjnkkLj44ouLMW8AAAAAAADY9MO0xx9/PL7//e/HmWeeGT179oxf/epXMWvWrHjllVcK92y33XYxcuTIeOKJJ+KRRx5Z3yEBAAAAAACgNMK0hg0bxsKFCws/L1q0KMrKyqJBgwY17j3mmGPin//85/oOCQAAAAAAABtEzcRrLaX90q6//vpYtmxZtmfabbfdFh06dIj99tuv1vubNGmyvkMCAAAAAABAaYRpw4YNi3r16mV7pn366adx2GGHxS233JK1AQAAAAAAQCkrq6ysrNzYk9iSlZeXZ8eKioqNPRUAAAAAAICSVF6HeYvyMQAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAzSFMW7x4cVx66aXRqlWraNq0aXTr1i3Gjh272udee+21uPDCC+Owww6LJk2aRFlZWcyYMSP3/jFjxkSXLl2ye9u0aRNXXXVVLFu2rMhvAwAAAAAAwKaupMK0/v37x0033RR9+vSJW265JerXrx8nnHBCTJgwYZXPPffcc/Gzn/0sPv7449hvv/1Wee/jjz8ep5xySmy//fYxfPjw7Pzaa6+NQYMGFfltAAAAAAAA2NSVVVZWVkYJmDx5claJNmzYsBg8eHDWtmjRoujYsWPsvPPOMXHixNxn58+fHw0bNoxtt902fvzjH8fFF18cb7/9drRt27bGveXl5dm9U6ZMiQYNGmRtl19+eQwdOjReeeWV6NChQ1HfK42XVFRUFLVfAAAAAACALUV5HeYtJVOZNnr06KwSbeDAgYW2tAzjgAEDssqzWbNm5T674447ZkHa6qSwLH3SGFVBWnLuuedGyhzTHAAAAAAAANhy/L/EaBM3derUaN++fTRr1qxae9euXbPjtGnTonXr1us9RnLQQQdVa097tO2+++6F6+uTiK7szTffjL333nud+wUAAAAAAKDulExl2pw5c6Jly5Y12qvaZs+eXZQxVuxz5XGKMQYAAAAAAAClo2Qq0xYuXBiNGzeu0Z6Weqy6XowxkrxxPvroo3XuO2+NzryKNQAAAAAAADa+kqlMa9q0aSxevLhG+6JFiwrXizFGkjdOMcYAAAAAAACgdJRMmJaWWaxahnFFVW1pX7NijLFinyuPU4wxAAAAAAAAKB0lE6Z17tw5Xn/99RpLLU6aNKlwvRhjJFOmTKnWnvZK+9e//lWUMQAAAAAAACgdJROm9erVK5YvXx533HFHoS0txzhq1Kjo1q1btG7dOmubOXNmvPrqq+s0Rtq/rEOHDtkYaawqt99+e5SVlWVzAAAAAAAAYMvRIEpECsx69+4dQ4YMiXnz5sU+++wTd911V8yYMSNGjhxZuK9fv37x9NNPR2VlZaHtww8/jOHDh2fnzz77bHYcMWJEbL/99tnnvPPOK9w7bNiwOPnkk+O4446L008/PV5++eXs3rPOOiv222+/DfrOAAAAAAAAbFxllSumTpu4RYsWxRVXXBH33ntvfPDBB9GpU6f44Q9/GD169Cjc07179xphWgrc9txzz1r73GOPPbLrK3rkkUfimmuuienTp0eLFi2if//+ceWVV0bDhg2L/k6pGi6pqKgoet8AAAAAAABbgvI6zFtKKkzbHAnTAAAAAAAANt28pWT2TAMAAAAAAIANTZgGAAAAAAAAORrkXYBNzYjO52zsKQBANedN+/nGngIAAAAAdUxlGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAwOYSpi1evDguvfTSaNWqVTRt2jS6desWY8eOXaNn33333fja174W22+/fTRr1ix69uwZb731Vo37ysrKav1cf/31dfBGAAAAAAAAbKoaRInp379/jB49Oi644IJo165d3HnnnXHCCSfEuHHj4vDDD8997j//+U8cffTR8eGHH8Zll10WDRs2jJtvvjmOOuqomDZtWuy0007V7j/22GOjX79+1do+//nP19l7AQAAAAAAsOkpqTBt8uTJ8eCDD8awYcNi8ODBWVsKvDp27BiXXHJJTJw4MffZ2267Ld54442sj4MPPjhr+/KXv5w9+5Of/CSGDh1a7f727dtH37596/iNAAAAAAAA2JSV1DKPqSKtfv36MXDgwEJbkyZNYsCAAfHcc8/FrFmzVvlsCtGqgrSkQ4cO8cUvfjF+85vf1PrMwoULY9GiRUV+CwAAAAAAAEpFSYVpU6dOzSrG0n5nK+ratWt2TMs11uazzz6Ll156KQ466KAa19Kzb775Znz88cfV2tPykVtvvXW2L9v+++8f999/f1HfBQAAAAAAgE1fSS3zOGfOnGjZsmWN9qq22bNn1/rc/PnzY/Hixat9dt99983ODzvssPja174We+65Z9Z+6623Rp8+fbL91r7zne+s09zLy8trbU9B3t57771OfQIAAAAAAFC3SipMS8suNm7cuEZ7Wuqx6nrec8maPvvss89Wu+db3/pWHHjggXHZZZdF//79s2o1AAAAAAAANn8lFaalECtVmK2sal+zvJCrqn1dnk0aNWoU5513XpxzzjnxwgsvxOGHH77Wc6+oqFirijUAAAAAAAA2vpLaMy0tyZiWelxZVVurVq1qfW7HHXfMqtLW5dkqrVu3LiwZCQAAAAAAwJahpMK0zp07x+uvvx4fffRRtfZJkyYVrtemXr16ccABB8SUKVNqXEvP7rXXXrHtttuucuy33norO7Zo0WI93gAAAAAAAIBSUlJhWq9evWL58uVxxx13FNrS0o2jRo2Kbt26FarHZs6cGa+++mqNZ//+979XC9Ree+21eOqpp6J3796Ftvfee6/GuB9//HH89Kc/jebNm2d7pwEAAAAAALBlKKk901JgloKvIUOGxLx582KfffaJu+66K2bMmBEjR44s3NevX794+umno7KystB27rnnxi9/+cs48cQTY/DgwdGwYcO46aabYpdddomLLrqocN+tt94ajzzySJx00knRpk2bbBnIX//611lAd88992T7pwEAAAAAALBlKKkwLbn77rvjiiuuyIKtDz74IDp16hSPPvpoHHnkkat8Li3jOH78+Ljwwgvj2muvjc8++yy6d+8eN998c7WlG7/whS/ExIkT41e/+lW8//77sfXWW0fXrl2zQO2YY47ZAG8IAAAAAADApqKscsXyLTa48vLy7FhRUbGxp7LJG9H5nI09BQCo5rxpP9/YUwAAAAAg6jZvKak90wAAAAAAAGBDEqYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAwOYSpi1evDguvfTSaNWqVTRt2jS6desWY8eOXaNn33333fja174W22+/fTRr1ix69uwZb731Vq33jhw5Mvbbb79o0qRJtGvXLoYPH17kNwEAAAAAAGBTV3JhWv/+/eOmm26KPn36xC233BL169ePE044ISZMmLDK5/7zn//E0UcfHU8//XRcdtllcc0118TUqVPjqKOOivfff7/avb/4xS/irLPOivLy8ixEO/TQQ+N73/te3HDDDXX8dgAAAAAAAGxKyiorKyujREyePDmrRBs2bFgMHjw4a1u0aFF07Ngxdt5555g4cWLuszfeeGNW0Zb6OPjgg7O2V199NXv2kksuiaFDh2ZtCxcujNatW8chhxwSjz76aOH5vn37xiOPPBKzZs2KHXbYoWjvlAK7pKKiomh9bq5GdD5nY08BAKo5b9rPN/YUAAAAAIi6zVtKqjJt9OjRWSXawIEDC21pGcYBAwbEc889lwVdq3o2hWhVQVrSoUOH+OIXvxi/+c1vCm3jxo3LKtXOPffcas9/97vfjU8++ST+9Kc/Ff29AAAAAAAA2DSVVJiWlmVs3759tt/Zirp27Zodp02bVutzn332Wbz00ktx0EEH1biWnn3zzTfj448/LoyRrHzvgQceGPXq1StcBwAAAAAAYPPXIErInDlzomXLljXaq9pmz55d63Pz58+PxYsXr/bZfffdNxsjVb+lZSNX1KhRo9hpp51yx1jT8sKVpaUmGzZsmHud/2f+m3M29hQAoJrby5/Z2FMAAAAAICIrnEp5S2zpYVraz6xx48Y12tNSj1XX855L1uTZdEzBWW3SvXljrKuysrKi/3LTH0yy9957x+Zkx71rhqHA2ttc/x0BrD//fgDy+PcDkMe/H4A8/v0AbOh/R6SsZeutt47Y0sO0pk2bZhVmK1u0aFHhet5zyZo8m45LliyptZ90b94Yq1MXG95tjE32gNLn3xFAHv9+APL49wOQx78fgDz+/QBsTv+OKKk909KSjGkZxpVVtbVq1arW53bcccesKm1Nnk1jLF++PObNm1ftvhSwvf/++7ljAAAAAAAAsPkpqTCtc+fO8frrr8dHH31UrX3SpEmF67WpV69eHHDAATFlypQa19Kze+21V2y77bbV+lj53vTzZ599ljsGAAAAAAAAm5+SCtN69eqVVY3dcccdhba0dOOoUaOiW7du0bp166xt5syZ8eqrr9Z49u9//3u1kOy1116Lp556Knr37l1oO+aYY7JKtttvv73a8+nnrbbaKk488cQ6fEMAAAAAAAA2JSW1Z1oKzFLwNWTIkGwZxn322SfuuuuumDFjRowcObJwX79+/eLpp5+OysrKQtu5554bv/zlL7MwbPDgwdlGdDfddFPssssucdFFFxXuS3ui/fCHP4zvfve72Vg9evSIZ555Ju6999647rrrsqANAAAAAACALUNJhWnJ3XffHVdccUXcc8898cEHH0SnTp3i0UcfjSOPPHKVz6VlHMePHx8XXnhhXHvttdmSjd27d4+bb745WrRoUe3eFLylsO0nP/lJjBkzJqt4S/edf/75dfx2AAAAAAAAbErKKlcs3wIAAAAAAABKc880AAAAAAAA2JCEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAABbqP79+0dZWVnMmDFjY08FAABgkyVMAwAA2ISlsGvFT/369aN58+ZxzDHHxP333x+bgjvvvDObWzqu7/s1btw4WrRoEV26dImzzjorHn/88Vi+fHmdzBsAAGBNNFijuwAAANiorrrqquy4dOnSePXVV+MPf/hDjBs3LqZMmRI33XTTOvX5ox/9KL7//e/HbrvtFpvK+6XgbMGCBVFRURH33HNPjBw5Mg466KC47777on379ht7mgAAwBaorLKysnJjTwIAAIDapWqtZOX/6fbXv/41jj322Oz8rbfeirZt28bGkirSzjzzzBg1alS2dGQx3i/597//HYMGDYrf/va30bp16yw43HnnnYs2bwAAgDVhmUcAAIAS9MUvfjE6dOiQhVB///vfC+0vvPBCfPWrX81Cp7Rk4h577BHnnntuzJkzZ432TEvnqS1dS+enn356tqxkkyZNsgqxRx99tFof3bt3z4K0JB1XXLJxffdi22WXXeLBBx/Mxpg1a1YMHTp0vfoDAABYF5Z5BAAAKFFV1VxV1V0p6EpBWmrv1atXFqSlcO3222/PloWcMGFC7LnnnmvU9zvvvBNdu3aNvfbaK775zW/G/Pnz46GHHoqePXvGX/7ylzj66KOz+1Lotv3222f9p2udO3cu9JHa11e9evXi8ssvj/Hjx8cDDzwQN998c+F9AQAANgRhGgAAQAlKgdZrr72WBUsHH3xw/Oc//4kzzjgjli1blgVPRxxxROHeG264Idsb7dvf/nb8+c9/XqP+Ux9XX311YS+z5Bvf+EYcf/zxMWzYsGphWpLCtFNOOWWtl3lcE4cffng0aNAg5s2bl1W7rWkgCAAAUAzCNAAAgBKQgq1k6dKlWYj2yCOPZBVoF154YVaBdt9992XVY1//+terBWnJRRddFD//+c9j7NixMXPmzGjTps1qx0t9poqwFfXo0SN7dvLkybEhpeUqd9ppp2wPtffee0+YBgAAbFDCNAAAgBJwzTXXZMdUiZaWT0yB2YABA6Jv375Z+4svvpgdjznmmBrPpqquI488Mqvqmjp16hqFaWm5xvr169dob926dTz33HOxsZe0BAAA2FCEaQAAACWgKkzK8+GHH2bHli1b1nq9qn3BggVrNF7efmcpmPvss89iQ1q0aFFWdZe0aNFig44NAABQb2NPAAAAgPW33XbbZce5c+fWen3OnDnV7islEyZMyPaC22WXXaJt27YbezoAAMAWRpgGAACwGfj85z+fHcePH1/jWgqinnnmmey8S5cuRR+7ajnI5cuXF73vVAV33XXXZeff+MY3it4/AADA6gjTAAAANgOnnHJK7LjjjvHAAw/E888/X+3aT3/603j77bfjS1/60hrtl7a2dtppp+w4c+bMovY7b968OP3007OAMM37sssuK2r/AAAAa8KeaQAAAJuBbbbZJn79619H796946ijjsqOKYB64YUX4s9//nPsuuuu8Ytf/KJOxj700ENjq622ykK7999/PxsrGTRo0BovK3n11VcXKtHSvm4VFRXZ8o5LliyJrl27xn333RfNmzevk/kDAACsijANAABgM9GzZ8949tlnY+jQofHkk0/Ghx9+mAVb55xzTlxxxRXRqlWrOhl3hx12iN/97ndxzTXXxJ133hmffPJJ1t63b981DtPSs0mjRo1i2223jT322CP69esXX/3qV+O4446LevUsrAIAAGwcZZWVlZUbaWwAAAAAAADYpPm/9gEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5GiQd4ENY9ddd41PPvkk2rRps7GnAgAAAAAAUJJmzpwZW2+9dcydO7fofatM28hSkLZ06dKNPQ0AAAAAAICStXTp0ixzqQsq0zayqoq0ioqKjT0VAAAAAACAklReXl5nfatMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgM0hTFu8eHFceuml0apVq2jatGl069Ytxo4du9rnHn744TjttNNir732iq222ir23XffuOiii2LBggU17m3btm2UlZXV+Jxzzjl19FYAAAAAAABsqhpECenfv3+MHj06LrjggmjXrl3ceeedccIJJ8S4cePi8MMPz31u4MCBWQDXt2/faNOmTfzzn/+MESNGxGOPPRYvvvhiFsytqHPnzlnYtqL27dvX2XsBAAAAAACwaSqZMG3y5Mnx4IMPxrBhw2Lw4MFZW79+/aJjx45xySWXxMSJE3OfTQFc9+7dq7UdeOCBccYZZ8R9990XZ511VrVru+22Wxa8AQAAAAAAsGUrmWUeUyBWv379rMqsSpMmTWLAgAHx3HPPxaxZs3KfXTlIS0499dTsOH369FqfWbJkSXzyySdFmTsAAAAAAAClqWTCtKlTp2ZLLTZr1qxae9euXbPjtGnT1qq/uXPnZsfmzZvXuPbUU09le6tts8022R5qt9xyy3rNHQAAAAAAgNJUMss8zpkzJ1q2bFmjvapt9uzZa9XfDTfckFW69erVq1p7p06dsv3X9t1333j//fezfdnSHm2p//TMuiovL6+1/c0334y99957nfsFAAAAAACg7pRMmLZw4cJo3Lhxjfa01GPV9TV1//33x8iRI7O91tq1a1ft2pgxY6r9fOaZZ8aXv/zluOmmm2LQoEGx++67r/M7AAAAAAAAUFpKJkxr2rRpLF68uEb7okWLCtfXxDPPPJPts9ajR4+47rrrVnt/WVlZXHjhhfHkk0/G+PHjo2/fvusw+4iKioq1qlgDAAAAAABg4yuZPdPSco5pqceVVbW1atVqtX384x//iJNPPjk6duwYo0ePjgYN1ixLbN26dXacP3/+Ws8bAAAAAACA0lUyYVrnzp3j9ddfj48++qha+6RJkwrXVyXtTXb88cfHzjvvHI899lhss802azz2W2+9lR1btGixTnMHAAAAAACgNJVMmNarV69Yvnx53HHHHYW2tOzjqFGjolu3boXqsZkzZ8arr75a7dm5c+fGcccdF/Xq1cuWa8wLxVLlWRpjRUuXLo3rr78+GjVqFEcffXSdvBsAAAAAAACbppLZMy0FZr17944hQ4bEvHnzYp999om77rorZsyYESNHjizc169fv3j66aejsrKy0JYq0lJ12SWXXBITJkzIPlV22WWXOPbYY7PzMWPGxLXXXpsFd3vuuWcWrt1///3x8ssvx9ChQ2PXXXfdwG8NAAAAAADAxlQyYVpy9913xxVXXBH33HNPfPDBB9GpU6d49NFH48gjj1ztXmnJjTfeWOPaUUcdVQjTDjjggNh///3j3nvvjffeey+rRkvLR/7mN7/JgjwAAAAAAAC2LGWVK5ZwscGVl5dnx4qKio09FQAAAAAAgJJUXod5S8nsmQYAAAAAAAAbmjANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAADaHMG3x4sVx6aWXRqtWraJp06bRrVu3GDt27Gqfe/jhh+O0006LvfbaK7baaqvYd99946KLLooFCxbUev+YMWOiS5cu0aRJk2jTpk1cddVVsWzZsjp4IwAAAAAAADZlJRWm9e/fP2666abo06dP3HLLLVG/fv044YQTYsKECat8buDAgTF9+vTo27dv/OxnP4vjjz8+RowYEYceemgsXLiw2r2PP/54nHLKKbH99tvH8OHDs/Nrr702Bg0aVMdvBwAAAAAAwKamrLKysjJKwOTJk7NKtGHDhsXgwYOztkWLFkXHjh1j5513jokTJ+Y+O378+OjevXu1trvvvjvOOOOM+OUvfxlnnXVWob28vDwaNmwYU6ZMiQYNGmRtl19+eQwdOjReeeWV6NChQ1HfK42XVFRUFLVfAAAAAACALUV5HeYtJVOZNnr06KwSLVWZVUnLMA4YMCCee+65mDVrVu6zKwdpyamnnpodU8ValRSWpU8aoypIS84999xImWOaAwAAAAAAAFuOkgnTpk6dGu3bt49mzZpVa+/atWt2nDZt2lr1N3fu3OzYvHnzamMkBx10ULV70x5tu+++e+E6AAAAAAAAW4b/V361iZszZ060bNmyRntV2+zZs9eqvxtuuCGrdOvVq1e1MVbsc+Vx1naM2soLV/bmm2/G3nvvvc79AgAAAAAAUHdKpjJt4cKF0bhx4xrtaanHqutr6v7774+RI0fGRRddFO3atas2RpI3ztqMAQAAAAAAQOkrmcq0pk2bxuLFi2u0L1q0qHB9TTzzzDPZPms9evSI6667rsYYSd44azpGbfI2vMurWAMAAAAAAGDjK5nKtLTMYtUyjCuqakv7mq3OP/7xjzj55JOjY8eOMXr06GjQoHqWWLW8Y944azIGAAAAAAAAm4+SCdM6d+4cr7/+enz00UfV2idNmlS4vippb7Ljjz8+dt5553jsscdim222qXWMZMqUKdXa015p//rXv1Y7BgAAAAAAAJuXkgnTevXqFcuXL4877rij0JaWYxw1alR069YtWrdunbXNnDkzXn311WrPzp07N4477rioV69ePPnkk9GiRYvcJRc7dOiQjZHGqnL77bdHWVlZNgcAAAAAAAC2HCWzZ1oKzHr37h1DhgyJefPmxT777BN33XVXzJgxI0aOHFm4r1+/fvH0009HZWVloS1VpL311ltxySWXxIQJE7JPlV122SWOPfbYws/Dhg3LloJM4dvpp58eL7/8cowYMSLOOuus2G+//TbgGwMAAAAAALCxlVWumDpt4hYtWhRXXHFF3HvvvfHBBx9Ep06d4oc//GH06NGjcE/37t1rhGmpqizPUUcdFePHj6/W9sgjj8Q111wT06dPz6rY+vfvH1deeWU0bNiw6O+UquGSioqKovcNAAAAAACwJSivw7ylpMK0zZEwDQAAAAAAYNPNW0pmzzQAAAAAAADY0IRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAsKmEaQsWLNjQQwIAAAAAAMDGD9POP//8VV7/+OOPo0ePHsUcEgAAAAAAAEojTBs+fHjcfPPNtV5buHBhnHjiifHSSy8Vc0gAAAAAAAAojTBtyJAhcfHFF8fvfve7au2LFy+Ok08+OZ5//vl46KGHijkkAAAAAAAA1JkGxezsuuuui3feeSe++c1vRqtWreLQQw+NZcuWRe/evWPcuHFx3333ZaEaAAAAAAAAbHGVacmoUaPikEMOyUKz6dOnR58+feJPf/pT3HHHHXHaaacVezgAAAAAAAAojcq0pGHDhvH73/8+vvCFL0SXLl1iyZIl8dOf/jS+9a1vFXsoAAAAAAAA2HTDtJkzZ+Zeu/322+Okk06KAQMGRM+ePavd26ZNm/UZFgAAAAAAADaIssrKysp1fbhevXpRVlaWez11Xdv15cuXr+uQm53y8vLsWFFRsbGnAgAAAAAAUJLK6zBvWa/KtCuvvHKVYRoAAAAAAACUsvUK066++urizQQAAAAAAAA2MfU29gQAAAAAAABgiwjTHnrooejXr1/u/mnp2u9+97tiDgkAAAAAAAClEabdeuutuXuopfb69evHiBEjijkkAAAAAAAAlEaYNn369Pj85z+fez1de+WVV4o5JAAAAAAAAJRGmPbxxx9Ho0aNcq+nyrQPP/ywmEMCAAAAAABAaYRpbdq0iUmTJuVeT9datWpVzCEBAAAAAACgNMK0r3zlK3HffffFH/7whxrXxowZEw888ECcdNJJxRwSAAAAAAAA6kxZZWVlZbE6+7//+79sX7TZs2dH9+7dC/unTZ06NcaPH59Vpb3wwgux8847F2vIkldeXp4dKyoqNvZUAAAAAAAASlJ5HeYtDYrZWfPmzWPixInxne98Jx5//PEYN25c1l5WVhYnnHBC3HrrrYI0AAAAAAAAtsxlHpPWrVvHo48+mlWppT3S0ied//GPf8z2VFsfixcvjksvvTSrcGvatGl069Ytxo4du9rnXnvttbjwwgvjsMMOiyZNmmTh3owZM2q9t23bttn1lT/nnHPOes0dAAAAAACA0lPUyrQV7bDDDnHwwQcXtc/+/fvH6NGj44ILLoh27drFnXfemVW8pQq4ww8/PPe55557Ln72s5/F/vvvH/vtt19MmzZtleN07tw5Lrroompt7du3L9p7AAAAAAAAsIWHacU2efLkePDBB2PYsGExePDgrK1fv37RsWPHuOSSS7LlJfOcfPLJsWDBgth2223jxz/+8WrDtN122y369u1b9HcAAAAAAABgC1rmsV69etGgQYNYsmRJ4ef69euv8pPuXxepIi09P3DgwEJbWrJxwIABWeXZrFmzcp/dcccdsyBtbaR3+uSTT9ZprgAAAAAAAGwe1qsyLVWGpf3EUsi14s91YerUqdlSi82aNavW3rVr1+yYqs3Sfm3F8NRTT8VWW20Vy5cvjz322CPbb+38888vSt8AAAAAAABsIWFa2rNsVT8X05w5c6Jly5Y12qvaZs+eXZRxOnXqlO2/tu+++8b777+fvVPaoy31f8MNN6xzv+Xl5bW2v/nmm7H33nuvx4wBAAAAAACILX3PtIULF0bjxo1rtKelHquuF8OYMWOq/XzmmWfGl7/85bjpppti0KBBsfvuuxdlHAAAAAAAADZ9JROmNW3aNBYvXlyjfdGiRYXrdSEtW5mWeXzyySdj/Pjx0bdv33Xqp6KiYq0q1gAAAAAAACjxMG2vvfZap3AqLW24ttJyju+++26tyz8mrVq1irpStRfb/Pnz62wMAAAAAAAANrMwrU2bNlk4tiF07tw5xo0bFx999FE0a9as0D5p0qTC9bry1ltvZccWLVrU2RgAAAAAAABsZmFaWvZwQ+nVq1f8+Mc/jjvuuCMGDx6ctaVlH0eNGhXdunUrVI/NnDkzPv300+jQocNaj5Eqz7bbbruoX79+oW3p0qVx/fXXR6NGjeLoo48u4hsBAAAAAACwqSuZPdNSYNa7d+8YMmRIzJs3L/bZZ5+46667YsaMGTFy5MjCff369Yunn346KisrC20ffvhhDB8+PDt/9tlns+OIESNi++23zz7nnXde1jZmzJi49tprs+Buzz33zMK1+++/P15++eUYOnRo7Lrrrhv8vQEAAAAAANhMwrS33347C55OOumkGtdSuPXoo4/GAQccEG3btl2n/u++++644oor4p577okPPvggOnXqlPV55JFHrvK5dG96bkU/+clPsuMee+xRCNPS3Pbff/+4995747333suq0dLykb/5zW+yIA8AAAAAAIAtS1nliiVc66lPnz7xzjvvxIQJE2q9nkKvVPGVKsr4/5WXl2fHioqKjT0VAAAAAACAklReh3lLvWJ2lkK0448/Pvd6jx494m9/+1sxhwQAAAAAAIA6U9Qw7d///vcq9xXbZZddYu7cucUcEgAAAAAAAEojTGvWrFnMmDFjlXuqbb311sUcEgAAAAAAAEojTDv00EPj17/+dXzwwQc1rqW2UaNGRbdu3Yo5JAAAAAAAAJRGmDZ48OCYN29edO3aNe655554+eWXs086TyFaunbxxRcXc0gAAAAAAACoMw2K2dkRRxwRP//5z2PQoEHRv3//QntlZWU0btw4br/99ujevXsxhwQAAAAAAIDSCNOSs846K0444YT47W9/G6+//nrW1r59++jdu3e0atWq2MMBAAAAAABA6YRpSQrNzj///LroGgAAAAAAAEo7TFvRpEmTYtasWbHbbrtl+6bVq1fUbdoAAAAAAACg9MK0d999N0488cR46aWXCm377bdf/PGPf4y99tqrroYFAAAAAACAoqmzMrHvfe970bJly2zftIULF8bzzz8fy5cvj3PPPbeuhgQAAAAAAIBNK0x74oknam1P4dl1110X++yzTzRu3Di6du2aBWypHQAAAAAAALaIMO3kk0+OM844I+bPn1+tPe2RNmHChGptzz77bLRq1Wp9hwQAAAAAAIDSCNNSpdnLL7+c7Yf20EMPFdp/8IMfxIUXXhhHHHFE9OnTJw444IB48MEHs3YAAAAAAADYIsK0Ll26xOTJk7Pg7Mwzz8wq1WbPnh09e/bMgrby8vJYsGBBHHLIITF+/PgsWAMAAAAAAIBSUFZZWVlZrM7eeOONOPvss2PatGlx/fXXxznnnFOsrjdbKWxMKioqNvZUAAAAAAAASlJ5HeYt612ZtqJ27dpl1Wc33nhjDBkyJI466qgsYAMAAAAAAIBSVLQwbcmSJfHRRx9l5wMHDsySv5122ik+97nPxY9+9KNYvnx5sYYCAAAAAACA0gjT5s+fH6eeempss802scMOO0SnTp1iypQp0apVq3j44YfjnnvuieHDh8eBBx4YL774YnFmDQAAAAAAAKUQpl1wwQUxceLE+MUvfpGFZylU++pXvxpLly7Nrqfz6dOnZ2HaIYccEhdffHEx5g0AAAAAAACbfpj2+OOPx/e///0488wzo2fPnvGrX/0qZs2aFa+88krhnu222y5GjhwZTzzxRDzyyCPrOyQAAAAAAACURpjWsGHDWLhwYeHnRYsWRVlZWTRo0KDGvcccc0z885//XN8hAQAAAAAAYIOomXitpbRf2vXXXx/Lli3L9ky77bbbokOHDrHffvvVen+TJk3Wd0gAAAAAAAAojTBt2LBhUa9evWzPtE8//TQOO+ywuOWWW7I2AAAAAAAAKGVllZWVlRt7Eluy8vLy7FhRUbGxpwIAAAAAAFCSyuswb1E+BgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAACbQ5i2ePHiuPTSS6NVq1bRtGnT6NatW4wdO3a1z7322mtx4YUXxmGHHRZNmjSJsrKymDFjRu79Y8aMiS5dumT3tmnTJq666qpYtmxZkd8GAAAAAACATV1JhWn9+/ePm266Kfr06RO33HJL1K9fP0444YSYMGHCKp977rnn4mc/+1l8/PHHsd9++63y3scffzxOOeWU2H777WP48OHZ+bXXXhuDBg0q8tsAAAAAAACwqSurrKysjBIwefLkrBJt2LBhMXjw4Kxt0aJF0bFjx9h5551j4sSJuc/Onz8/GjZsGNtuu238+Mc/josvvjjefvvtaNu2bY17y8vLs3unTJkSDRo0yNouv/zyGDp0aLzyyivRoUOHor5XGi+pqKgoar8AAAAAAABbivI6zFtKpjJt9OjRWSXawIEDC21pGcYBAwZklWezZs3KfXbHHXfMgrTVSWFZ+qQxqoK05Nxzz42UOaY5AAAAAAAAsOUomTBt6tSp0b59+2jWrFm19q5du2bHadOmFWWM5KCDDqrWnvZo23333QvXAQAAAAAA2DL8v/KrTdycOXOiZcuWNdqr2mbPnl2UMVbsc+Vx1meMqvLClb355pux9957r3O/AAAAAAAA1J2SqUxbuHBhNG7cuEZ7Wuqx6noxxkjyxinGGAAAAAAAAJSOkqlMa9q0aSxevLhG+6JFiwrXizFGkjfO+oyRt+FdXsUaAAAAAAAAG1/JVKalZRarlmFcUVVb2tesGGOs2OfK4xRjDAAAAAAAAEpHyYRpnTt3jtdffz0++uijau2TJk0qXC/GGMmUKVOqtae90v71r38VZQwAAAAAAABKR8mEab169Yrly5fHHXfcUWhLyzGOGjUqunXrFq1bt87aZs6cGa+++uo6jZGWXOzQoUM2Rhqryu233x5lZWXZHAAAAAAAANhylMyeaSkw6927dwwZMiTmzZsX++yzT9x1110xY8aMGDlyZOG+fv36xdNPPx2VlZWFtg8//DCGDx+enT/77LPZccSIEbH99ttnn/POO69w77Bhw+Lkk0+O4447Lk4//fR4+eWXs3vPOuus2G+//TboOwMAAAAAALBxlVWumDpt4hYtWhRXXHFF3HvvvfHBBx9Ep06d4oc//GH06NGjcE/37t1rhGkpcNtzzz1r7XOPPfbIrq/okUceiWuuuSamT58eLVq0iP79+8eVV14ZDRs2LPo7pWq4pKKiouh9AwAAAAAAbAnK6zBvKakwbXMkTAMAAAAAANh085aS2TMNAAAAAAAANjRhGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCm/X/s3QuUl1W9P/7PcEeU8ALKKKjI1UEO3hg1E9RjKB5Ff4F1DoQoxjHSlD+IYVK5VFJJvKCZGCLeUiOPEWVGR+AnQiAKmaNIByRI4ODhImgwIsx/Pc9vzRyGmQe5zMB84fVa67ue73z2s/d+HnN9q/Vee28AAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgP0lTCsuLo6bb7458vPzo2HDhlFYWBhTpkzZqb4ffvhhXHHFFdGkSZNo3Lhx9OzZMxYvXlzhvry8vEo/d911VzW8EQAAAAAAADVVncgx/fv3j4kTJ8aNN94Ybdq0iSeeeCJ69OgRU6dOjbPPPjuz3yeffBLnnntufPzxx3HLLbdE3bp147777ouuXbvG/Pnz4/DDDy93/wUXXBD9+vUrVzv55JOr7b0AAAAAAACoeXIqTJszZ04899xzMWrUqBg6dGhaSwKvjh07xrBhw2LmzJmZfX/605/GX//613SM008/Pa1ddNFFad977703Ro4cWe7+tm3bRt++fav5jQAAAAAAAKjJcmqbx2RFWu3atWPgwIFltQYNGsSAAQNi1qxZsWzZsh32TUK00iAt0b59+zj//PPjhRdeqLTPxo0bY9OmTVX8FgAAAAAAAOSKnArT5s2bl64YS84721aXLl3Sa7JdY2W2bt0ab7/9dpx22mkV2pK+ixYtig0bNpSrJ9tHNmrUKD2X7cQTT4xnn322St8FAAAAAACAmi+ntnlcsWJFNG/evEK9tLZ8+fJK+61ZsyaKi4u/sG+7du3S72eddVZcccUVcfzxx6f1hx9+OPr06ZOet/btb397t569oKCg0noS5J1wwgm7NSYAAAAAAADVK6fCtGTbxfr161eoJ1s9lrZn9UvsbN/XX3+93D1XX311nHrqqXHLLbdE//7909VqAAAAAAAA7P9yKkxLQqxkhdn2Ss81ywq5Suu70zdRr169uO666+Laa6+NN998M84+++xdfvaioqJdWrEGAAAAAADAvpdTZ6YlWzImWz1ur7SWn59fab/DDjssXZW2O31LtWjRomzLSAAAAAAAAA4MORWmde7cORYuXBjr168vV589e3ZZe2Vq1aoVJ510UsydO7dCW9K3VatWccghh+xw7sWLF6fXpk2b7sEbAAAAAAAAkEtyKkzr1atXbNmyJcaOHVtWS7ZuHD9+fBQWFpatHlu6dGksWLCgQt833nijXKD2/vvvx6uvvhq9e/cuq3300UcV5t2wYUPcf//9ccQRR6RnpwEAAAAAAHBgyKkz05LALAm+hg8fHqtWrYrWrVvHhAkTYsmSJTFu3Liy+/r16xfTp0+PkpKSstqgQYPisccei4svvjiGDh0adevWjdGjR8eRRx4ZQ4YMKbvv4YcfjpdeeikuueSSaNmyZboN5OOPP54GdE899VR6fhoAAAAAAAAHhpwK0xJPPvlkjBgxIg221q5dG506dYrJkyfHOeecs8N+yTaO06ZNi8GDB8cdd9wRW7dujW7dusV9991XbuvGL3/5yzFz5sz4+c9/HqtXr45GjRpFly5d0kDtvPPO2wtvCAAAAAAAQE2RV7Lt8i32uoKCgvRaVFS0rx8FAAAAAAAgJxVUY96SU2emAQAAAAAAwN4kTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADHWyGqCmWXhS7339CABQTtu//HJfPwIAAAAA1czKNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAA2F/CtOLi4rj55psjPz8/GjZsGIWFhTFlypSd6vvhhx/GFVdcEU2aNInGjRtHz549Y/HixZXeO27cuOjQoUM0aNAg2rRpE2PGjKniNwEAAAAAAKCmy7kwrX///jF69Ojo06dPPPDAA1G7du3o0aNHzJgxY4f9Pvnkkzj33HNj+vTpccstt8Rtt90W8+bNi65du8bq1avL3fvoo4/GNddcEwUFBWmIduaZZ8Z3v/vduPvuu6v57QAAAAAAAKhJ8kpKSkoiR8yZMyddiTZq1KgYOnRoWtu0aVN07NgxmjVrFjNnzszse88996Qr2pIxTj/99LS2YMGCtO+wYcNi5MiRaW3jxo3RokWLOOOMM2Ly5Mll/fv27RsvvfRSLFu2LA499NAqe6cksEsUFRVV2Zj7q4Un9d7XjwAA5bT9yy/39SMAAAAAENWbt+TUyrSJEyemK9EGDhxYVku2YRwwYEDMmjUrDbp21DcJ0UqDtET79u3j/PPPjxdeeKGsNnXq1HSl2qBBg8r1/853vhOffvpp/Pa3v63y9wIAAAAAAKBmyqkwLdmWsW3btul5Z9vq0qVLep0/f36l/bZu3Rpvv/12nHbaaRXakr6LFi2KDRs2lM2R2P7eU089NWrVqlXWDgAAAAAAwP6vTuSQFStWRPPmzSvUS2vLly+vtN+aNWuiuLj4C/u2a9cunSNZ/ZZsG7mtevXqxeGHH545x84uL9xestVk3bp1M9v5X58t+vu+fgQAKKee//4GAAAAqBGShVNJ3hIHepiWnGdWv379CvVkq8fS9qx+iZ3pm1yT4Kwyyb1Zc+yuvLy8Kv8PN/kXJnHCCSfE/qTeCcfs60eA/cL++hsB7Dm/D0AWvw9AFr8PQBa/D8De/o1IspZGjRpFHOhhWsOGDdMVZtvbtGlTWXtWv8TO9E2un332WaXjJPdmzfFFquPAu31xyB6Q+/xGAFn8PgBZ/D4AWfw+AFn8PgD7029ETp2ZlmzJmGzDuL3SWn5+fqX9DjvssHRV2s70TebYsmVLrFq1qtx9ScC2evXqzDkAAAAAAADY/+RUmNa5c+dYuHBhrF+/vlx99uzZZe2VqVWrVpx00kkxd+7cCm1J31atWsUhhxxSbozt703+3rp1a+YcAAAAAAAA7H9yKkzr1atXumps7NixZbVk68bx48dHYWFhtGjRIq0tXbo0FixYUKHvG2+8US4ke//99+PVV1+N3r17l9XOO++8dCXbI488Uq5/8vdBBx0UF198cTW+IQAAAAAAADVJTp2ZlgRmSfA1fPjwdBvG1q1bx4QJE2LJkiUxbty4svv69esX06dPj5KSkrLaoEGD4rHHHkvDsKFDh6YH0Y0ePTqOPPLIGDJkSNl9yZlot99+e3znO99J5+revXu89tpr8fTTT8edd96ZBm0AAAAAAAAcGHIqTEs8+eSTMWLEiHjqqadi7dq10alTp5g8eXKcc845O+yXbOM4bdq0GDx4cNxxxx3plo3dunWL++67L5o2bVru3iR4S8K2e++9NyZNmpSueEvuu+GGG6r57QAAAAAAAKhJ8kq2Xb4FAAAAAAAA5OaZaQAAAAAAALA3CdMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAADgANe/f//Iy8uLJUuW7OtHAQAAqHGEaQAAADkgCbu2/dSuXTuOOOKIOO+88+LZZ5+NmuCJJ55Iny257un7VfaZNm1atTw3AADAjtTZYSsAAAA1yg9/+MP0unnz5liwYEH8+te/jqlTp8bcuXNj9OjRuzXmj3/84/je974XRx99dNSU96vMcccdt1efBQAAIJFXUlJS4h8FAABAzZaszEps/3/h/vM//zMuuOCC9PvixYv3aeCUrEi76qqrYvz48enWkVXxfgAAAPuabR4BAABy2Pnnnx/t27dPQ6g33nijrP7mm2/G1772tWjWrFnUr18/jj322Bg0aFCsWLFip85MS74ntaQt+f6Nb3wj3VayQYMGcdppp8XkyZPLjdGtW7c0SEsk1223Z3QWGwAAkMts8wgAAJDjSldzla7uSoKuJEhL6r169UqDtCRce+SRR9JtIWfMmBHHH3/8To39t7/9Lbp06RKtWrWKb37zm7FmzZp4/vnno2fPnvHHP/4xzj333PS+JHRr0qRJOn7S1rlz57IxkjoAAECuEqYBAADksCTQev/999Mg7fTTT49PPvkkrrzyyvj8889j2rRp8ZWvfKXs3rvvvjs9G+3f//3f4w9/+MNOjZ+M8aMf/ajcWWb/9m//FhdeeGGMGjWqXJiWSMK0yy67bJe3eSyVzFWZZEVc8uwAAAB7mzANAAAgh5SGTZs3b05DtJdeeildgTZ48OB0BdozzzyTrh7713/913JBWmLIkCHxs5/9LKZMmRJLly6Nli1bfuF8yZi33npruVr37t3TvnPmzKnit4u47bbbKq1/6UtfEqYBAAD7hDANAAAgh5SGTclKtGT7xCQwGzBgQPTt2zetv/XWW+n1vPPOq9C3Tp06cc4556RnmM2bN2+nwrRku8batWtXqLdo0SJmzZoV1bVlJQAAQE0hTAMAAMghXxQ2ffzxx+m1efPmlbaX1tetW7dT82Wdd5YEc1u3bt2pMQAAAHJZrX39AAAAAFSdZDvExMqVKyttX7FiRbn7AAAA2DFhGgAAwH7k5JNPTq/Tpk2r0Pb555/Ha6+9ln4/5ZRTqnzu0u0gt2zZUuVjAwAA7CvCNAAAgP3IZZddFocddlj84he/iD/96U/l2u6///744IMP4p//+Z936ry0XXX44Yen16VLl1b52AAAAPuKM9MAAAD2IwcffHA8/vjj0bt37+jatWt6TYKzN998M/7whz/EUUcdFY8++mi1zH3mmWfGQQcdlIZ2q1evTudKXH/99Tu9reSPfvSjHQaFnTt3rrLnBQAA2BnCNAAAgP1Mz5494/XXX4+RI0fGK6+8Eh9//HEabF177bUxYsSIyM/Pr5Z5Dz300PjVr34Vt912WzzxxBPx6aefpvW+ffvudJiW9M1y3HHHCdMAAIC9Lq+kpKRk708LAAAAAAAANZ8z0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIEOdrAb2jqOOOio+/fTTaNmy5b5+FAAAAAAAgJy0dOnSaNSoUaxcubLKx7YybR9LgrTNmzfv68cAAAAAAADIWZs3b04zl+pgZdo+VroiraioaF8/CgAAAAAAQE4qKCiotrGtTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAID9IUwrLi6Om2++OfLz86Nhw4ZRWFgYU6ZM+cJ+L774Ynz961+PVq1axUEHHRTt2rWLIUOGxLp16yrce9xxx0VeXl6Fz7XXXltNbwUAAAAAAEBNVSdySP/+/WPixIlx4403Rps2beKJJ56IHj16xNSpU+Pss8/O7Ddw4MA0gOvbt2+0bNky/vKXv8RDDz0Uv/vd7+Ktt95Kg7ltde7cOQ3bttW2bdtqey8AAAAAAABqppwJ0+bMmRPPPfdcjBo1KoYOHZrW+vXrFx07doxhw4bFzJkzM/smAVy3bt3K1U499dS48sor45lnnolrrrmmXNvRRx+dBm8AAAAAAAAc2HJmm8ckEKtdu3a6yqxUgwYNYsCAATFr1qxYtmxZZt/tg7TE5Zdfnl7fe++9Svt89tln8emnn1bJswMAAAAAAJCbciZMmzdvXrrVYuPGjcvVu3Tpkl7nz5+/S+OtXLkyvR5xxBEV2l599dX0bLWDDz44PUPtgQce2KNnBwAAAAAAIDflzDaPK1asiObNm1eol9aWL1++S+Pdfffd6Uq3Xr16lat36tQpPX+tXbt2sXr16vRctuSMtmT8pM/uKigoqLS+aNGiOOGEE3Z7XAAAAAAAAKpPzoRpGzdujPr161eoJ1s9lrbvrGeffTbGjRuXnrXWpk2bcm2TJk0q9/dVV10VF110UYwePTquv/76OOaYY3b7HQAAAAAAAMgtOROmNWzYMIqLiyvUN23aVNa+M1577bX0nLXu3bvHnXfe+YX35+XlxeDBg+OVV16JadOmRd++fXfj6SOKiop2acUaAAAAAAAA+17OnJmWbOeYbPW4vdJafn7+F47x5z//OS699NLo2LFjTJw4MerU2bkssUWLFul1zZo1u/zcAAAAAAAA5K6cCdM6d+4cCxcujPXr15erz549u6x9R5KzyS688MJo1qxZ/O53v4uDDz54p+devHhxem3atOluPTsAAAAAAAC5KWfCtF69esWWLVti7NixZbVk28fx48dHYWFh2eqxpUuXxoIFC8r1XblyZXz1q1+NWrVqpds1ZoViycqzZI5tbd68Oe66666oV69enHvuudXybgAAAAAAANRMOXNmWhKY9e7dO4YPHx6rVq2K1q1bx4QJE2LJkiUxbty4svv69esX06dPj5KSkrJasiItWV02bNiwmDFjRvopdeSRR8YFF1yQfp80aVLccccdaXB3/PHHp+Has88+G++8806MHDkyjjrqqL381gAAAAAAAOxLOROmJZ588skYMWJEPPXUU7F27dro1KlTTJ48Oc4555wvPCstcc8991Ro69q1a1mYdtJJJ8WJJ54YTz/9dHz00UfparRk+8gXXnghDfIAAAAAAAA4sOSVbLuEi72uoKAgvRYVFe3rRwEAAAAAAMhJBdWYt+TMmWkAAAAAAACwtwnTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAAGB/CNOKi4vj5ptvjvz8/GjYsGEUFhbGlClTvrDfiy++GF//+tejVatWcdBBB0W7du1iyJAhsW7dukrvnzRpUpxyyinRoEGDaNmyZfzwhz+Mzz//vBreCAAAAAAAgJosp8K0/v37x+jRo6NPnz7xwAMPRO3ataNHjx4xY8aMHfYbOHBgvPfee9G3b9948MEH48ILL4yHHnoozjzzzNi4cWO5e19++eW47LLLokmTJjFmzJj0+x133BHXX399Nb8dAAAAAAAANU1eSUlJSeSAOXPmpCvRRo0aFUOHDk1rmzZtio4dO0azZs1i5syZmX2nTZsW3bp1K1d78skn48orr4zHHnssrrnmmrJ6QUFB1K1bN+bOnRt16tRJa7feemuMHDky3n333Wjfvn2VvlcyX6KoqKhKxwUAAAAAADhQFFRj3pIzK9MmTpyYrkRLVpmVSrZhHDBgQMyaNSuWLVuW2Xf7IC1x+eWXp9dkxVqpJCxLPskcpUFaYtCgQZFkjskzAAAAAAAAcODImTBt3rx50bZt22jcuHG5epcuXdLr/Pnzd2m8lStXptcjjjii3ByJ0047rdy9yRltxxxzTFk7AAAAAAAAB4b/XX5Vw61YsSKaN29eoV5aW758+S6Nd/fdd6cr3Xr16lVujm3H3H6eXZ2jsuWF21u0aFGccMIJuz0uAAAAAAAA1SdnVqZt3Lgx6tevX6GebPVY2r6znn322Rg3blwMGTIk2rRpU26ORNY8uzIHAAAAAAAAuS9nVqY1bNgwiouLK9Q3bdpU1r4zXnvttfScte7du8edd95ZYY5E1jw7O0dlsg68y1qxBgAAAAAAwL6XMyvTkm0WS7dh3FZpLTnX7Iv8+c9/jksvvTQ6duwYEydOjDp1ymeJpds7Zs2zM3MAAAAAAACw/8iZMK1z586xcOHCWL9+fbn67Nmzy9p3JDmb7MILL4xmzZrF7373uzj44IMrnSMxd+7ccvXkrLS///3vXzgHAAAAAAAA+5ecCdN69eoVW7ZsibFjx5bVku0Yx48fH4WFhdGiRYu0tnTp0liwYEG5vitXroyvfvWrUatWrXjllVeiadOmmVsutm/fPp0jmavUI488Enl5eekzAAAAAAAAcODImTPTksCsd+/eMXz48Fi1alW0bt06JkyYEEuWLIlx48aV3devX7+YPn16lJSUlNWSFWmLFy+OYcOGxYwZM9JPqSOPPDIuuOCCsr9HjRqVbgWZhG/f+MY34p133omHHnoorrnmmujQocNefGMAAAAAAAD2tbySbVOnGm7Tpk0xYsSIePrpp2Pt2rXRqVOnuP3226N79+5l93Tr1q1CmJasKsvStWvXmDZtWrnaSy+9FLfddlu899576Sq2/v37xw9+8IOoW7dulb9TshouUVRUVOVjAwAAAAAAHAgKqjFvyakwbX8kTAMAAAAAAKi5eUvOnJkGAAAAAAAAe5swDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAAGpKmLZu3bq9PSUAAAAAAADs+zDthhtu2GH7hg0bonv37lU5JQAAAAAAAORGmDZmzJi47777Km3buHFjXHzxxfH2229X5ZQAAAAAAACQG2Ha8OHD46abbopf/epX5erFxcVx6aWXxp/+9Kd4/vnnq3JKAAAAAAAAqDZ1qnKwO++8M/72t7/FN7/5zcjPz48zzzwzPv/88+jdu3dMnTo1nnnmmTRUAwAAAAAAgANuZVpi/PjxccYZZ6Sh2XvvvRd9+vSJ3/72tzF27Nj4+te/XtXTAQAAAAAAQG6sTEvUrVs3/uM//iO+/OUvxymnnBKfffZZ3H///XH11VdX9VQAAAAAAABQc8O0pUuXZrY98sgjcckll8SAAQOiZ8+e5e5t2bLlnkwLAAAAAAAAe0VeSUlJye52rlWrVuTl5WW2J0NX1r5ly5bdnXK/U1BQkF6Lior29aMAAAAAAADkpIJqzFv2aGXaD37wgx2GaQAAAAAAAJDL9ihM+9GPflR1TwIAAAAAAAA1TK19/QAAAAAAAABwQIRpzz//fPTr1y/z/LSk7Ve/+lVVTgkAAAAAAAC5EaY9/PDDmWeoJfXatWvHQw89VJVTAgAAAAAAQG6Eae+9916cfPLJme1J27vvvluVUwIAAAAAAEBuhGkbNmyIevXqZbYnK9M+/vjjqpwSAAAAAAAAciNMa9myZcyePTuzPWnLz8+vyikBAAAAAAAgN8K0f/mXf4lnnnkmfv3rX1domzRpUvziF7+ISy65pCqnBAAAAAAAgGqTV1JSUlJVg/3P//xPei7a8uXLo1u3bmXnp82bNy+mTZuWrkp78803o1mzZlU1Zc4rKChIr0VFRfv6UQAAAAAAAHJSQTXmLXWqcrAjjjgiZs6cGd/+9rfj5ZdfjqlTp6b1vLy86NGjRzz88MOCNAAAAAAAAA7MbR4TLVq0iMmTJ6er1JIz0pJP8v03v/lNeqbaniguLo6bb745XeHWsGHDKCwsjClTpnxhv/fffz8GDx4cZ511VjRo0CAN95YsWVLpvccdd1zavv3n2muv3aNnBwAAAAAAIPdU6cq0bR166KFx+umnV+mY/fv3j4kTJ8aNN94Ybdq0iSeeeCJd8ZasgDv77LMz+82aNSsefPDBOPHEE6NDhw4xf/78Hc7TuXPnGDJkSLla27Ztq+w9AAAAAAAAOMDDtKo2Z86ceO6552LUqFExdOjQtNavX7/o2LFjDBs2LN1eMsull14a69ati0MOOSR+8pOffGGYdvTRR0ffvn2r/B0AAAAAAAA4gLZ5rFWrVtSpUyc+++yzsr9r1669w09y/+5IVqQl/QcOHFhWS7ZsHDBgQLrybNmyZZl9DzvssDRI2xXJO3366ae79awAAAAAAADsH/ZoZVqyMiw5TywJubb9uzrMmzcv3WqxcePG5epdunRJr8lqs+S8tqrw6quvxkEHHRRbtmyJY489Nj1v7YYbbqiSsQEAAAAAADhAwrTkzLId/V2VVqxYEc2bN69QL60tX768Subp1KlTev5au3btYvXq1ek7JWe0JePffffduz1uQUFBpfVFixbFCSecsAdPDAAAAAAAQBzoZ6Zt3Lgx6tevX6GebPVY2l4VJk2aVO7vq666Ki666KIYPXp0XH/99XHMMcdUyTwAAAAAAADUfDkTpjVs2DCKi4sr1Ddt2lTWXh2SbSuTbR5feeWVmDZtWvTt23e3xikqKtqlFWsAAAAAAADkeJjWqlWr3Qqnkq0Nd1WyneOHH35Y6faPifz8/KgupWexrVmzptrmAAAAAAAAYD8L01q2bJmGY3tD586dY+rUqbF+/fpo3LhxWX327Nll7dVl8eLF6bVp06bVNgcAAAAAAAD7WZiWbHu4t/Tq1St+8pOfxNixY2Po0KFpLdn2cfz48VFYWFi2emzp0qXxj3/8I9q3b7/LcyQrz770pS9F7dq1y2qbN2+Ou+66K+rVqxfnnntuFb4RAAAAAAAANV3OnJmWBGa9e/eO4cOHx6pVq6J169YxYcKEWLJkSYwbN67svn79+sX06dOjpKSkrPbxxx/HmDFj0u+vv/56en3ooYeiSZMm6ee6665La5MmTYo77rgjDe6OP/74NFx79tln45133omRI0fGUUcdtdffGwAAAAAAgP0kTPvggw/S4OmSSy6p0JaEW5MnT46TTjopjjvuuN0a/8knn4wRI0bEU089FWvXro1OnTqlY55zzjk77Jfcm/Tb1r333ptejz322LIwLXm2E088MZ5++un46KOP0tVoyfaRL7zwQhrkAQAAAAAAcGDJK9l2Cdce6tOnT/ztb3+LGTNmVNqehF7Jiq9kRRn/T0FBQXotKira148CAAAAAACQkwqqMW+pVZWDJSHahRdemNnevXv3+L//9/9W5ZQAAAAAAABQbao0TPvv//7vHZ4rduSRR8bKlSurckoAAAAAAADIjTCtcePGsWTJkh2eqdaoUaOqnBIAAAAAAAByI0w788wz4/HHH4+1a9dWaEtq48ePj8LCwqqcEgAAAAAAAHIjTBs6dGisWrUqunTpEk899VS888476Sf5noRoSdtNN91UlVMCAAAAAABAtalTlYN95StfiZ/97Gdx/fXXR//+/cvqJSUlUb9+/XjkkUeiW7duVTklAAAAAAAA5EaYlrjmmmuiR48e8ctf/jIWLlyY1tq2bRu9e/eO/Pz8qp4OAAAAAAAAcidMSySh2Q033FAdQwMAAAAAAEBuh2nbmj17dixbtiyOPvro9Ny0WrWq9Jg2AAAAAAAAyL0w7cMPP4yLL7443n777bJahw4d4je/+U20atWquqYFAAAAAACAKlNty8S++93vRvPmzdNz0zZu3Bh/+tOfYsuWLTFo0KDqmhIAAAAAAABqVpj2+9//vtJ6Ep7deeed0bp166hfv3506dIlDdiSOgAAAAAAABwQYdqll14aV155ZaxZs6ZcPTkjbcaMGeVqr7/+euTn5+/plAAAAAAAAJAbYVqy0uydd95Jz0N7/vnny+rf//73Y/DgwfGVr3wl+vTpEyeddFI899xzaR0AAAAAAAAOiDDtlFNOiTlz5qTB2VVXXZWuVFu+fHn07NkzDdoKCgpi3bp1ccYZZ8S0adPSYA0AAAAAAAByQV5JSUlJVQ3217/+Nb71rW/F/Pnz46677oprr722qobebyVhY6KoqGhfPwoAAAAAAEBOKqjGvGWPV6Ztq02bNunqs3vuuSeGDx8eXbt2TQM2AAAAAAAAyEVVFqZ99tlnsX79+vT7wIED0+Tv8MMPj3/6p3+KH//4x7Fly5aqmgoAAAAAAAByI0xbs2ZNXH755XHwwQfHoYceGp06dYq5c+dGfn5+vPjii/HUU0/FmDFj4tRTT4233nqrap4aAAAAAAAAciFMu/HGG2PmzJnx6KOPpuFZEqp97Wtfi82bN6ftyff33nsvDdPOOOOMuOmmm6riuQEAAAAAAKDmh2kvv/xyfO9734urrroqevbsGT//+c9j2bJl8e6775bd86UvfSnGjRsXv//97+Oll17a0ykBAAAAAAAgN8K0unXrxsaNG8v+3rRpU+Tl5UWdOnUq3HveeefFX/7ylz2dEgAAAAAAAPaKionXLkrOS7vrrrvi888/T89M++lPfxrt27ePDh06VHp/gwYN9nRKAAAAAAAAyI0wbdSoUVGrVq30zLR//OMfcdZZZ8UDDzyQ1gAAAAAAACCX5ZWUlJTs64c4kBUUFKTXoqKiff0oAAAAAAAAOamgGvMWy8cAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAYH8I04qLi+Pmm2+O/Pz8aNiwYRQWFsaUKVO+sN/7778fgwcPjrPOOisaNGgQeXl5sWTJksz7J02aFKecckp6b8uWLeOHP/xhfP7551X8NgAAAAAAANR0ORWm9e/fP0aPHh19+vSJBx54IGrXrh09evSIGTNm7LDfrFmz4sEHH4wNGzZEhw4ddnjvyy+/HJdddlk0adIkxowZk36/44474vrrr6/itwEAAAAAAKCmyyspKSmJHDBnzpx0JdqoUaNi6NChaW3Tpk3RsWPHaNasWcycOTOz75o1a6Ju3bpxyCGHxE9+8pO46aab4oMPPojjjjuuwr0FBQXpvXPnzo06deqktVtvvTVGjhwZ7777brRv375K3yuZL1FUVFSl4wIAAAAAABwoCqoxb8mZlWkTJ05MV6INHDiwrJZswzhgwIB05dmyZcsy+x522GFpkPZFkrAs+SRzlAZpiUGDBkWSOSbPAAAAAAAAwIEjZ8K0efPmRdu2baNx48bl6l26dEmv8+fPr5I5Eqeddlq5enJG2zHHHFPWDgAAAAAAwIHhf5df1XArVqyI5s2bV6iX1pYvX14lc2w75vbz7MkcpcsLt7do0aI44YQTdntcAAAAAAAAqk/OrEzbuHFj1K9fv0I92eqxtL0q5khkzVMVcwAAAAAAAJA7cmZlWsOGDaO4uLhCfdOmTWXtVTFHImuePZkj68C7rBVrAAAAAAAA7Hs5szIt2WaxdBvGbZXWknPNqmKObcfcfp6qmAMAAAAAAIDckTNhWufOnWPhwoWxfv36cvXZs2eXtVfFHIm5c+eWqydnpf3973+vkjkAAAAAAADIHTkTpvXq1Su2bNkSY8eOLasl2zGOHz8+CgsLo0WLFmlt6dKlsWDBgt2aI9lysX379ukcyVylHnnkkcjLy0ufAQAAAAAAgANHzpyZlgRmvXv3juHDh8eqVauidevWMWHChFiyZEmMGzeu7L5+/frF9OnTo6SkpKz28ccfx5gxY9Lvr7/+enp96KGHokmTJunnuuuuK7t31KhRcemll8ZXv/rV+MY3vhHvvPNOeu8111wTHTp02KvvDAAAAAAAwL6VV7Jt6lTDbdq0KUaMGBFPP/10rF27Njp16hS33357dO/eveyebt26VQjTksDt+OOPr3TMY489Nm3f1ksvvRS33XZbvPfee9G0adPo379//OAHP4i6detW+Tslq+ESRUVFVT42AAAAAADAgaCgGvOWnArT9kfCNAAAAAAAgJqbt+TMmWkAAAAAAACwtwnTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAAGB/CdOKi4vj5ptvjvz8/GjYsGEUFhbGlClTdqrvhx9+GFdccUU0adIkGjduHD179ozFixdXuC8vL6/Sz1133VUNbwQAAAAAAEBNVSdyTP/+/WPixIlx4403Rps2beKJJ56IHj16xNSpU+Pss8/O7PfJJ5/EueeeGx9//HHccsstUbdu3bjvvvuia9euMX/+/Dj88MPL3X/BBRdEv379ytVOPvnkansvAAAAAAAAap6cCtPmzJkTzz33XIwaNSqGDh2a1pLAq2PHjjFs2LCYOXNmZt+f/vSn8de//jUd4/TTT09rF110Udr33nvvjZEjR5a7v23bttG3b99qfiMAAAAAAABqspza5jFZkVa7du0YOHBgWa1BgwYxYMCAmDVrVixbtmyHfZMQrTRIS7Rv3z7OP//8eOGFFyrts3Hjxti0aVMVvwUAAAAAAAC5IqfCtHnz5qUrxpLzzrbVpUuX9Jps11iZrVu3xttvvx2nnXZahbak76JFi2LDhg3l6sn2kY0aNUrPZTvxxBPj2WefrdJ3AQAAAAAAoObLqW0eV6xYEc2bN69QL60tX7680n5r1qyJ4uLiL+zbrl279PtZZ50VV1xxRRx//PFp/eGHH44+ffqk5619+9vf3q1nLygoqLSeBHknnHDCbo0JAAAAAABA9cqpMC3ZdrF+/foV6slWj6XtWf0SO9v39ddfL3fP1VdfHaeeemrccsst0b9//3S1GgAAAAAAAPu/nArTkhArWWG2vdJzzbJCrtL67vRN1KtXL6677rq49tpr480334yzzz57l5+9qKhol1asAQAAAAAAsO/l1JlpyZaMyVaP2yut5efnV9rvsMMOS1el7U7fUi1atCjbMhIAAAAAAIADQ06FaZ07d46FCxfG+vXry9Vnz55d1l6ZWrVqxUknnRRz586t0Jb0bdWqVRxyyCE7nHvx4sXptWnTpnvwBgAAAAAAAOSSnArTevXqFVu2bImxY8eW1ZKtG8ePHx+FhYVlq8eWLl0aCxYsqND3jTfeKBeovf/++/Hqq69G7969y2offfRRhXk3bNgQ999/fxxxxBHp2WkAAAAAAAAcGHLqzLQkMEuCr+HDh8eqVauidevWMWHChFiyZEmMGzeu7L5+/frF9OnTo6SkpKw2aNCgeOyxx+Liiy+OoUOHRt26dWP06NFx5JFHxpAhQ8rue/jhh+Oll16KSy65JFq2bJluA/n444+nAd1TTz2Vnp8GAAAAAADAgSGnwrTEk08+GSNGjEiDrbVr10anTp1i8uTJcc455+ywX7KN47Rp02Lw4MFxxx13xNatW6Nbt25x3333ldu68ctf/nLMnDkzfv7zn8fq1aujUaNG0aVLlzRQO++88/bCGwIAAAAAAFBT5JVsu3yLva6goCC9FhUV7etHAQAAAAAAyEkF1Zi35NSZaQAAAAAAALA3CdMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAYH8J04qLi+Pmm2+O/Pz8aNiwYRQWFsaUKVN2qu+HH34YV1xxRTRp0iQaN24cPXv2jMWLF1d677hx46JDhw7RoEGDaNOmTYwZM6aK3wQAAAAAAICaLufCtP79+8fo0aOjT58+8cADD0Tt2rWjR48eMWPGjB32++STT+Lcc8+N6dOnxy233BK33XZbzJs3L7p27RqrV68ud++jjz4a11xzTRQUFKQh2plnnhnf/e534+67767mtwMAAAAAAKAmySspKSmJHDFnzpx0JdqoUaNi6NChaW3Tpk3RsWPHaNasWcycOTOz7z333JOuaEvGOP3009PaggUL0r7Dhg2LkSNHprWNGzdGixYt4owzzojJkyeX9e/bt2+89NJLsWzZsjj00EOr7J2SwC5RVFRUZWMCAAAAAAAcSAqqMW/JqZVpEydOTFeiDRw4sKyWbMM4YMCAmDVrVhp07ahvEqKVBmmJ9u3bx/nnnx8vvPBCWW3q1KnpSrVBgwaV6/+d73wnPv300/jtb39b5e8FAAAAAABAzZRTYVqyLWPbtm3T88621aVLl/Q6f/78Svtt3bo13n777TjttNMqtCV9Fy1aFBs2bCibI7H9vaeeemrUqlWrrB0AAAAAAID9X53IIStWrIjmzZtXqJfWli9fXmm/NWvWRHFx8Rf2bdeuXTpHsvot2TZyW/Xq1YvDDz88c46dXV64vWSrybp162a2AwAAAAAAsGPJwqkkb4kDfWVacp5Z/fr1K9STrR5L27P6JXamb3JNgrPKJPdmzbG78vLyqvw/3ORfmOQDUBm/EUAWvw9AFr8PQBa/D0AWvw/A3v6NSLKWRo0aRRzoK9MaNmyYrjDb3qZNm8ras/oldqZvcv3ss88qHSe5N2uOL1IdB97ti0P2gNznNwLI4vcByOL3Acji9wHI4vcB2J9+I3JqZVqyJWOyDeP2Smv5+fmV9jvssMPSVWk70zeZY8uWLbFq1apy9yUB2+rVqzPnAAAAAAAAYP+TU2Fa586dY+HChbF+/fpy9dmzZ5e1V6ZWrVpx0kknxdy5cyu0JX1btWoVhxxySLkxtr83+Xvr1q2ZcwAAAAAAALD/yakwrVevXumqsbFjx5bVkq0bx48fH4WFhdGiRYu0tnTp0liwYEGFvm+88Ua5kOz999+PV199NXr37l1WO++889KVbI888ki5/snfBx10UFx88cXV+IYAAAAAAADUJDl1ZloSmCXB1/Dhw9NtGFu3bh0TJkyIJUuWxLhx48ru69evX0yfPj1KSkrKaoMGDYrHHnssDcOGDh2aHkQ3evToOPLII2PIkCFl9yVnot1+++3xne98J52re/fu8dprr8XTTz8dd955Zxq0AQAAAAAAcGDIqTAt8eSTT8aIESPiqaeeirVr10anTp1i8uTJcc455+ywX7KN47Rp02Lw4MFxxx13pFs2duvWLe67775o2rRpuXuT4C0J2+69996YNGlSuuItue+GG26o5rcDAAAAAACgJskr2Xb5FgAAAAAAAJCbZ6YBAAAAAADA3iRMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAgANc//79Iy8vL5YsWbKvHwUAAKDGEaYBAADkgCTs2vZTu3btOOKII+K8886LZ599NmqCJ554In225Lqn77f9Z3fGBAAAqAp1qmQUAAAA9oof/vCH6XXz5s2xYMGC+PWvfx1Tp06NuXPnxujRo3drzB//+Mfxve99L44++uioKe+3vc6dO+/1ZwEAAEjklZSUlPhHAQAAULMlq7MS2/9fuP/8z/+MCy64IP2+ePHiOO6442JfSVaPXXXVVTF+/Ph068iqeD8AAIB9zTaPAAAAOez888+P9u3bpyHUG2+8UVZ/880342tf+1o0a9Ys6tevH8cee2wMGjQoVqxYsVNnpiXfk1rSlnz/xje+kW4r2aBBgzjttNNi8uTJ5cbo1q1bGqQlkuu2WzQ6iw0AAMhltnkEAADIcaWruUpXdyVBVxKkJfVevXqlQVoSrj3yyCPptpAzZsyI448/fqfG/tvf/hZdunSJVq1axTe/+c1Ys2ZNPP/889GzZ8/44x//GOeee256XxK6NWnSJB0/adt2W8akDgAAkKuEaQAAADksCbTef//9NEg7/fTT45NPPokrr7wyPv/885g2bVp85StfKbv37rvvTs9G+/d///f4wx/+sFPjJ2P86Ec/KneW2b/927/FhRdeGKNGjSoXpiWSMO2yyy7b5W0eSyVzbS/ZunJ3xwMAANhTwjQAAIAcUho2bd68OQ3RXnrppXQF2uDBg9MVaM8880y6euxf//VfywVpiSFDhsTPfvazmDJlSixdujRatmz5hfMlY956663lat27d0/7zpkzp4rfLuK2226rUOvataswDQAA2GeEaQAAADmkNGxKVqIl2ycmgdmAAQOib9++af2tt95Kr+edd16FvnXq1IlzzjknPcNs3rx5OxWmJds11q5du0K9RYsWMWvWrKiuLSsBAABqCmEaAABADvmisOnjjz9Or82bN6+0vbS+bt26nZov67yzJJjbunXrTo0BAACQy2rt6wcAAACg6nzpS19KrytXrqy0fcWKFeXuAwAAYMeEaQAAAPuRk08+Ob1OmzatQtvnn38er732Wvr9lFNOqfK5S7eD3LJlS5WPDQAAsK8I0wAAAPYjl112WRx22GHxi1/8Iv70pz+Va7v//vvjgw8+iH/+53/eqfPSdtXhhx+eXpcuXVrlYwMAAOwrzkwDAADYjxx88MHx+OOPR+/evaNr167pNQnO3nzzzfjDH/4QRx11VDz66KPVMveZZ54ZBx10UBrarV69Op0rcf3119tWEgAAyFnCNAAAgP1Mz5494/XXX4+RI0fGK6+8Eh9//HEabF177bUxYsSIyM/Pr5Z5Dz300PjVr34Vt912WzzxxBPx6aefpvW+ffsK0wAAgJyVV1JSUrKvHwIAAAAAAABqImemAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkqJPVwN5x1FFHxaeffhotW7bc148CAAAAAACQk5YuXRqNGjWKlStXVvnYVqbtY0mQtnnz5n39GAAAAAAAADlr8+bNaeZSHaxM28dKV6QVFRXt60cBAAAAAADISQUFBdU2tpVpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAABmEaQAAAAAAAJBBmAYAAAAAAAAZhGkAAAAAAACQQZgGAAAAAAAAGYRpAAAAAAAAkEGYBgAAAAAAAPtDmFZcXBw333xz5OfnR8OGDaOwsDCmTJnyhf1efPHF+PrXvx6tWrWKgw46KNq1axdDhgyJdevWVbj3uOOOi7y8vAqfa6+9tpreCgAAAAAAgJqqTuSQ/v37x8SJE+PGG2+MNm3axBNPPBE9evSIqVOnxtlnn53Zb+DAgWkA17dv32jZsmX85S9/iYceeih+97vfxVtvvZUGc9vq3LlzGrZtq23bttX2XgAAAAAAANRMOROmzZkzJ5577rkYNWpUDB06NK3169cvOnbsGMOGDYuZM2dm9k0CuG7dupWrnXrqqXHllVfGM888E9dcc025tqOPPjoN3gAAAAAAADiw5cw2j0kgVrt27XSVWakGDRrEgAEDYtasWbFs2bLMvtsHaYnLL788vb733nuV9vnss8/i008/rZJnBwAAAAAAIDflTJg2b968dKvFxo0bl6t36dIlvc6fP3+Xxlu5cmV6PeKIIyq0vfrqq+nZagcffHB6htoDDzywR88OAAAAAABAbsqZbR5XrFgRzZs3r1AvrS1fvnyXxrv77rvTlW69evUqV+/UqVN6/lq7du1i9erV6blsyRltyfhJn91VUFBQaX3RokVxwgkn7Pa4AAAAAAAAVJ+cCdM2btwY9evXr1BPtnosbd9Zzz77bIwbNy49a61Nmzbl2iZNmlTu76uuuiouuuiiGD16dFx//fVxzDHH7PY7AAAAAAAAkFtyJkxr2LBhFBcXV6hv2rSprH1nvPbaa+k5a927d48777zzC+/Py8uLwYMHxyuvvBLTpk2Lvn377sbTRxQVFe3SijUAAAAAAAD2vZw5My3ZzjHZ6nF7pbX8/PwvHOPPf/5zXHrppdGxY8eYOHFi1Kmzc1liixYt0uuaNWt2+bkBAAAAAADIXTkTpnXu3DkWLlwY69evL1efPXt2WfuOJGeTXXjhhdGsWbP43e9+FwcffPBOz7148eL02rRp0916dgAAAAAAAHJTzoRpvXr1ii1btsTYsWPLasm2j+PHj4/CwsKy1WNLly6NBQsWlOu7cuXK+OpXvxq1atVKt2vMCsWSlWfJHNvavHlz3HXXXVGvXr0499xzq+XdAAAAAAAAqJly5sy0JDDr3bt3DB8+PFatWhWtW7eOCRMmxJIlS2LcuHFl9/Xr1y+mT58eJSUlZbVkRVqyumzYsGExY8aM9FPqyCOPjAsuuCD9PmnSpLjjjjvS4O74449Pw7Vnn3023nnnnRg5cmQcddRRe/mtAQAAAAAA2JdyJkxLPPnkkzFixIh46qmnYu3atdGpU6eYPHlynHPOOV94VlrinnvuqdDWtWvXsjDtpJNOihNPPDGefvrp+Oijj9LVaMn2kS+88EIa5AEAAAAAAHBgySvZdgkXe11BQUF6LSoq2tePAgAAAAAAkJMKqjFvyZkz0wAAAAAAAGBvE6YBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAAAAAAwP4QphUXF8fNN98c+fn50bBhwygsLIwpU6Z8Yb8XX3wxvv71r0erVq3ioIMOinbt2sWQIUNi3bp1ld4/adKkOOWUU6JBgwbRsmXL+OEPfxiff/55NbwRAAAAAAAANVlOhWn9+/eP0aNHR58+feKBBx6I2rVrR48ePWLGjBk77Ddw4MB47733om/fvvHggw/GhRdeGA899FCceeaZsXHjxnL3vvzyy3HZZZdFkyZNYsyYMen3O+64I66//vpqfjsAAAAAAABqmrySkpKSyAFz5sxJV6KNGjUqhg4dmtY2bdoUHTt2jGbNmsXMmTMz+06bNi26detWrvbkk0/GlVdeGY899lhcc801ZfWCgoKoW7duzJ07N+rUqZPWbr311hg5cmS8++670b59+yp9r2S+RFFRUZWOCwAAAAAAcKAoqMa8JWdWpk2cODFdiZasMiuVbMM4YMCAmDVrVixbtiyz7/ZBWuLyyy9Pr8mKtVJJWJZ8kjlKg7TEoEGDIskck2cAAAAAAADgwJEzYdq8efOibdu20bhx43L1Ll26pNf58+fv0ngrV65Mr0cccUS5ORKnnXZauXuTM9qOOeaYsnYAAAAAAAAODP+7/KqGW7FiRTRv3rxCvbS2fPnyXRrv7rvvTle69erVq9wc2465/Ty7Okdlywu3t2jRojjhhBN2e1wAAAAAAACqT86sTNu4cWPUr1+/Qj3Z6rG0fWc9++yzMW7cuBgyZEi0adOm3ByJrHl2ZQ4AAAAAAAByX86sTGvYsGEUFxdXqG/atKmsfWe89tpr6Tlr3bt3jzvvvLPCHImseXZ2jspkHXiXtWINAAAAAACAfS9nVqYl2yyWbsO4rdJacq7ZF/nzn/8cl156aXTs2DEmTpwYdeqUzxJLt3fMmmdn5gAAAAAAAGD/kTNhWufOnWPhwoWxfv36cvXZs2eXte9IcjbZhRdeGM2aNYvf/e53cfDBB1c6R2Lu3Lnl6slZaX//+9+/cA4AAAAAAAD2LzkTpvXq1Su2bNkSY8eOLasl2zGOHz8+CgsLo0WLFmlt6dKlsWDBgnJ9V65cGV/96lejVq1a8corr0TTpk0zt1xs3759OkcyV6lHHnkk8vLy0mcAAAAAAADgwJEzZ6YlgVnv3r1j+PDhsWrVqmjdunVMmDAhlixZEuPGjSu7r1+/fjF9+vQoKSkpqyUr0hYvXhzDhg2LGTNmpJ9SRx55ZFxwwQVlf48aNSrdCjIJ377xjW/EO++8Ew899FBcc8010aFDh734xgAAAAAAAOxreSXbpk413KZNm2LEiBHx9NNPx9q1a6NTp05x++23R/fu3cvu6datW4UwLVlVlqVr164xbdq0crWXXnopbrvttnjvvffSVWz9+/ePH/zgB1G3bt0qf6dkNVyiqKioyscGAAAAAAA4EBRUY96SU2Ha/kiYBgAAAAAAUHPzlpw5Mw0AAAAAAAD2NmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABATQnT1q1bt7enBAAAAAAAgH0fpt1www07bN+wYUN07969KqcEAAAAAACA3AjTxowZE/fdd1+lbRs3boyLL7443n777aqcEgAAAAAAAHIjTBs+fHjcdNNN8atf/apcvbi4OC699NL405/+FM8//3xVTgkAAAAAAADVpk5VDnbnnXfG3/72t/jmN78Z+fn5ceaZZ8bnn38evXv3jqlTp8YzzzyThmoAAAAAAABwwK1MS4wfPz7OOOOMNDR77733ok+fPvHb3/42xo4dG1//+terejoAAAAAAADIjZVpibp168Z//Md/xJe//OU45ZRT4rPPPov7778/rr766qqeCgAAAAAAAGpumLZ06dLMtkceeSQuueSSGDBgQPTs2bPcvS1bttyTaQEAAAAAAGCvyCspKSnZ3c61atWKvLy8zPZk6Mrat2zZsrtT7ncKCgrSa1FR0b5+FAAAAAAAgJxUUI15yx6tTPvBD36wwzANAAAAAAAActkehWk/+tGPqu5JAAAAAAAAoIapta8fAAAAAAAAAA6IMO3555+Pfv36ZZ6flrT96le/qsopAQAAAAAAIDfCtIcffjjzDLWkXrt27XjooYeqckoAAAAAAADIjTDtvffei5NPPjmzPWl79913q3JKAAAAAAAAyI0wbcOGDVGvXr3M9mRl2scff1yVUwIAAAAAAEBuhGktW7aM2bNnZ7Ynbfn5+VU5JQAAAAAAAORGmPYv//Iv8cwzz8Svf/3rCm2TJk2KX/ziF3HJJZdU5ZQAAAAAAABQbfJKSkpKqmqw//mf/0nPRVu+fHl069at7Py0efPmxbRp09JVaW+++WY0a9asqqbMeQUFBem1qKhoXz8KAAAAAABATiqoxrylTlUOdsQRR8TMmTPj29/+drz88ssxderUtJ6Xlxc9evSIhx9+WJAGAAAAAABAzqjSMC3RokWLmDx5cqxduzb+67/+K621bt06Dj300KqeCgAAAAAAAHLnzLRtJeHZ6aefnn6qKkgrLi6Om2++Od0usmHDhlFYWBhTpkz5wn7vv/9+DB48OM4666xo0KBBulJuyZIlld573HHHpe3bf6699toqeQcAAAAAAAAO4JVp1al///4xceLEuPHGG6NNmzbxxBNPpNtHJttJnn322Zn9Zs2aFQ8++GCceOKJ0aFDh5g/f/4O5+ncuXMMGTKkXK1t27ZV9h4AAAAAAAAcAGFarVq10s8//vGPqFevXvo9WcW1I0n7559/vstzzZkzJ5577rkYNWpUDB06NK3169cvOnbsGMOGDUvPasty6aWXxrp16+KQQw6Jn/zkJ18Yph199NHRt2/fXX5GAAAAAAAA9i97FKYlYVYSjtWuXbvc39UhWZGWzDNw4MCyWrJl44ABA+KWW26JZcuWpee1Veawww7b5fk+++yz2Lx5czRq1GiPnhsAAAAAAIADNExLtlnc0d9Vad68eelWi40bNy5X79KlS3pNVptlhWm76tVXX42DDjootmzZEscee2x63toNN9xQJWMDAAAAAACQO3LmzLQVK1ZE8+bNK9RLa8uXL6+SeTp16pSev9auXbtYvXp1GhAmZ7Ql49999927PW5BQUGl9UWLFsUJJ5ywB08MAAAAAABAHOhh2saNG6N+/foV6slWj6XtVWHSpEnl/r7qqqvioosuitGjR8f1118fxxxzTJXMAwAAAAAAwH4eprVq1WqX+yRnqiWrsXZVw4YNo7i4uEJ906ZNZe3VIXneZJvHV155JaZNmxZ9+/bdrXGKiop2acUaAAAAAAAAOR6mtWzZMg2b9oZkO8cPP/yw0u0fE/n5+dU2d+lZbGvWrKm2OQAAAAAAANjPwrRkpdbe0rlz55g6dWqsX78+GjduXFafPXt2WXt1Wbx4cXpt2rRptc0BAAAAAABAzVMrckSvXr1iy5YtMXbs2LJasu3j+PHjo7CwsGz12NKlS2PBggW7NUey8iyZY1ubN2+Ou+66K+rVqxfnnnvuHr4FAAAAAAAAB8zKtO198MEH8c4778Qll1xSoa2kpCQmT54cJ510Uhx33HG7PHYSmPXu3TuGDx8eq1atitatW8eECRNiyZIlMW7cuLL7+vXrF9OnT0/nK/Xxxx/HmDFj0u+vv/56en3ooYeiSZMm6ee6665La5MmTYo77rgjDe6OP/74NFx79tln03caOXJkHHXUUbv1zwUAAAAAAIDclFeybeq0h/r06RN/+9vfYsaMGZW2n3POOWlIlYRgu2PTpk0xYsSIePrpp2Pt2rXRqVOnuP3226N79+5l93Tr1q1CmJYEbsm8lTn22GPT9sSbb74Zt912W7z11lvx0UcfpavRku0jv/vd76ZBXnUoKChIr0VFRdUyPgAAAAAAwP6uoBrzlioN05Jg6lvf+lbceuutlbbfeeed8fOf/zxdwcb/I0wDAAAAAACouXlLlZ6Z9t///d873ArxyCOPjJUrV1bllAAAAAAAAFBtqjRMa9y4cdmWiZVJVqQ1atSoKqcEAAAAAACA3AjTzjzzzHj88cfT88y2l9TGjx8fhYWFVTklAAAAAAAA5EaYNnTo0Fi1alV06dIlnnrqqXjnnXfST/I9CdGStptuuqkqpwQAAAAAAIBqU6cqB/vKV74SP/vZz+L666+P/v37l9VLSkqifv368cgjj0S3bt2qckoAAAAAAADIjTAtcc0110SPHj3il7/8ZSxcuDCttW3bNnr37h35+flVPR0AAAAAAADkTpiWSEKzG264oTqGBgAAAAAAgNwO07Y1e/bsWLZsWRx99NHpuWm1alXpMW0AAAAAAACQe2Hahx9+GBdffHG8/fbbZbUOHTrEb37zm2jVqlV1TQsAAAAAAABVptqWiX33u9+N5s2bp+embdy4Mf70pz/Fli1bYtCgQdU1JQAAAAAAANSsMO33v/99pfUkPLvzzjujdevWUb9+/ejSpUsasCV1AAAAAAAAOCDCtEsvvTSuvPLKWLNmTbl6ckbajBkzytVef/31yM/P39MpAQAAAAAAIDfCtGSl2TvvvJOeh/b888+X1b///e/H4MGD4ytf+Ur06dMnTjrppHjuuefSOgAAAAAAABwQYdopp5wSc+bMSYOzq666Kl2ptnz58ujZs2catBUUFMS6devijDPOiGnTpqXBGgAAAAAAAOSCvJKSkpKqGuyvf/1rfOtb34r58+fHXXfdFddee21VDb3fSsLGRFFR0b5+FAAAAAAAgJxUUI15yx6vTNtWmzZt0tVn99xzTwwfPjy6du2aBmwAAAAAAACQi6osTPvss89i/fr16feBAwemyd/hhx8e//RP/xQ//vGPY8uWLVU1FQAAAAAAAORGmLZmzZq4/PLL4+CDD45DDz00OnXqFHPnzo38/Px48cUX46mnnooxY8bEqaeeGm+99VbVPDUAAAAAAADkQph24403xsyZM+PRRx9Nw7MkVPva174WmzdvTtuT7++9914app1xxhlx0003VcVzAwAAAAAAQM0P015++eX43ve+F1dddVX07Nkzfv7zn8eyZcvi3XffLbvnS1/6UowbNy5+//vfx0svvbSnUwIAAAAAAEBuhGl169aNjRs3lv29adOmyMvLizp16lS497zzzou//OUvezolAAAAAAAA7BUVE69dlJyXdtddd8Xnn3+enpn205/+NNq3bx8dOnSo9P4GDRrs6ZQAAAAAAACQG2HaqFGjolatWumZaf/4xz/irLPOigceeCCtAQAAAAAAQC7LKykpKdnXD3EgKygoSK9FRUX7+lEAAAAAAAByUkE15i2WjwEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAA7A9hWnFxcdx8882Rn58fDRs2jMLCwpgyZcoX9nv//fdj8ODBcdZZZ0WDBg0iLy8vlixZknn/pEmT4pRTTknvbdmyZfzwhz+Mzz//vIrfBgAAAAAAgJoup8K0/v37x+jRo6NPnz7xwAMPRO3ataNHjx4xY8aMHfabNWtWPPjgg7Fhw4bo0KHDDu99+eWX47LLLosmTZrEmDFj0u933HFHXH/99VX8NgAAAAAAANR0eSUlJSWRA+bMmZOuRBs1alQMHTo0rW3atCk6duwYzZo1i5kzZ2b2XbNmTdStWzcOOeSQ+MlPfhI33XRTfPDBB3HcccdVuLegoCC9d+7cuVGnTp20duutt8bIkSPj3Xffjfbt21fpeyXzJYqKiqp0XAAAAAAAgANFQTXmLTmzMm3ixInpSrSBAweW1ZJtGAcMGJCuPFu2bFlm38MOOywN0r5IEpYln2SO0iAtMWjQoEgyx+QZAAAAAAAAOHD8b2JUw82bNy/atm0bjRs3Llfv0qVLep0/f360aNFij+dInHbaaeXqyRltxxxzTFn7niSi21u0aFGccMIJuz0uAAAAAAAA1SdnVqatWLEimjdvXqFeWlu+fHmVzLHtmNvPUxVzAAAAAAAAkDtyZmXaxo0bo379+hXqyVaPpe1VMUcia57169fv9thZe3RmrVgDAAAAAABg38uZlWkNGzaM4uLiCvVNmzaVtVfFHImseapiDgAAAAAAAHJHzqxMS7ZZ/PDDDzO3ZkzONauKOUrH3P78taRWej4b+8aoP16/rx8BAMq56Z/H7OtHAAAAAKCa5czKtM6dO8fChQsrbLU4e/bssvaqmCMxd+7ccvXkrLS///3vVTIHAAAAAAAAuSNnwrRevXrFli1bYuzYsWW1ZDvG8ePHR2FhYdlKsqVLl8aCBQt2a47k/LL27duncyRzlXrkkUciLy8vfQYAAAAAAAAOHDmzzWMSmPXu3TuGDx8eq1atitatW8eECRNiyZIlMW7cuLL7+vXrF9OnT4+SkpKy2scffxxjxvy/bZhef/319PrQQw9FkyZN0s91111Xdu+oUaPi0ksvja9+9avxjW98I95555303muuuSY6dOiwV98ZAAAAAACAfStnwrTEk08+GSNGjIinnnoq1q5dG506dYrJkyfHOeecs8N+yb1Jv23de++96fXYY48tF6b9y7/8S7z44otx2223xfXXXx9NmzaNW265JX7wgx9U01sBAAAAAABQU+WVbLuEi70u2VoyUVRUtK8fpcYb9cfr9/UjAEA5N/3z/1v5DgAAAMD+m7fkzJlpAAAAAAAAsLcJ0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAy1MlqAACA/cGoP16/rx8BAMrc9M9j9vUjAACwi6xMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAAyCBMAwAAAAAAgAzCNAAAAAAAAMggTAMAAAAAAIAMwjQAAAAAAADIIEwDAAAAAACADMI0AAAAAAAA2F/CtOLi4rj55psjPz8/GjZsGIWFhTFlypSd6vvhhx/GFVdcEU2aNInGjRtHz549Y/HixRXuy8vLq/Rz1113VcMbAQAAAAAAUFPViRzTv3//mDhxYtx4443Rpk2beOKJJ6JHjx4xderUOPvsszP7ffLJJ3HuuefGxx9/HLfcckvUrVs37rvvvujatWvMnz8/Dj/88HL3X3DBBdGvX79ytZNPPrna3gsAAAAAAICaJ6fCtDlz5sRzzz0Xo0aNiqFDh6a1JPDq2LFjDBs2LGbOnJnZ96c//Wn89a9/Tcc4/fTT09pFF12U9r333ntj5MiR5e5v27Zt9O3bt5rfCAAAAAAAgJosp7Z5TFak1a5dOwYOHFhWa9CgQQwYMCBmzZoVy5Yt22HfJEQrDdIS7du3j/PPPz9eeOGFSvts3LgxNm3aVMVvAQAAAAAAQK7IqTBt3rx56Yqx5LyzbXXp0iW9Jts1Vmbr1q3x9ttvx2mnnVahLem7aNGi2LBhQ7l6sn1ko0aN0nPZTjzxxHj22Wf36NkLCgoq/SRzAwAAAAAAUDPl1DaPK1asiObNm1eol9aWL19eab81a9ZEcXHxF/Zt165d+v2ss86KK664Io4//vi0/vDDD0efPn3S89a+/e1vV/FbAQAAAAAAUFPlVJiWbLtYv379CvVkq8fS9qx+iZ3t+/rrr5e75+qrr45TTz01brnllujfv3+6Wm1XFRUVVVpPVqcBAAAAAABQM+XUNo9JiJWsMNte6blmWSFXaX13+ibq1asX1113Xaxbty7efPPN3X5+AAAAAAAAcktOhWnJlozJVo/bK63l5+dX2u+www5LV6XtTt9SLVq0KNsyEgAAAAAAgANDToVpnTt3joULF8b69evL1WfPnl3WXplatWrFSSedFHPnzq3QlvRt1apVHHLIITuce/Hixem1adOme/AGAAAAAAAA5JKcCtN69eoVW7ZsibFjx5bVkq0bx48fH4WFhWWrx5YuXRoLFiyo0PeNN94oF6i9//778eqrr0bv3r3Lah999FGFeTds2BD3339/HHHEEenZaQAAAAAAABwY6kQOSQKzJPgaPnx4rFq1Klq3bh0TJkyIJUuWxLhx48ru69evX0yfPj1KSkrKaoMGDYrHHnssLr744hg6dGjUrVs3Ro8eHUceeWQMGTKk7L6HH344XnrppbjkkkuiZcuW6TaQjz/+eBrQPfXUU+n5aQAAAAAAABwYcipMSzz55JMxYsSINNhau3ZtdOrUKSZPnhznnHPODvsl2zhOmzYtBg8eHHfccUds3bo1unXrFvfdd1+5rRu//OUvx8yZM+PnP/95rF69Oho1ahRdunRJA7XzzjtvL7whAAAAAAAANUXOhWkNGjSIUaNGpZ8sSWhWmWOOOSZ++ctf7nD8Cy64IP0AAAAAAABATp2ZBgAAAAAAAHuTMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAAMgjTAAAAAAAAIIMwDQAAAAAAADII0wAAAAAAACCDMA0AAAAAAAAyCNMAAAAAAAAggzANAAAAAAAA9pcwrbi4OG6++ebIz8+Phg0bRmFhYUyZMmWn+n744YdxxRVXRJMmTaJx48bRs2fPWLx4caX3jhs3Ljp06BANGjSINm3axJgxY6r4TQAAAAAAAKjpci5M69+/f4wePTr69OkTDzzwQNSuXTt69OgRM2bM2GG/Tz75JM4999yYPn163HLLLXHbbbfFvHnzomvXrrF69epy9z766KNxzTXXREFBQRqinXnmmfHd73437r777mp+OwAAAAAAAGqSOpFD5syZE88991yMGjUqhg4dmtb69esXHTt2jGHDhsXMmTMz+/70pz+Nv/71r+kYp59+elq76KKL0r733ntvjBw5Mq1t3Lgxvv/978fFF18cEydOTGvf+ta3YuvWrXH77bfHwIED49BDD90r7wsAAAAAAMC+lVMr05JwK1mJlgRapZJtGAcMGBCzZs2KZcuW7bBvEqKVBmmJ9u3bx/nnnx8vvPBCWW3q1KnpSrVBgwaV6/+d73wnPv300/jtb39b5e8FAAAAAABAzZRTK9OSbRnbtm2bnne2rS5duqTX+fPnR4sWLSr0S1aVvf3223H11VdXaEv6/uEPf4gNGzbEIYccks6ROO2008rdd+qpp0atWrXS9r59++7ysydbRlZmwYIFUbdu3cx2/tfqT1fu60cAgHKeaPTqvn4EdoL/DQFATeJ/PwAAVI9FixaleUsc6GHaihUronnz5hXqpbXly5dX2m/NmjVRXFz8hX3btWuXzpGsfmvWrFm5++rVqxeHH3545hy7Ky8vr8r/w03+hUmccMIJsT85vNFR+/oRYL+wv/5GAHtuf/198L8hYM/tr78PwJ7z+wBk8fsA7O3fiCRradSoUcSBHqYl55nVr1+/Qj3Z6rG0PatfYmf6JtckOKtMcm/WHF+kqKgo9pbSVW57c04gd/iNALL4fQCy+H0Asvh9ALL4fQD2p9+InDozrWHDhukKs+1t2rSprD2rX2Jn+ibXzz77rNJxknuz5gAAAAAAAGD/k1NhWrIlY7IN4/ZKa/n5+ZX2O+yww9JVaTvTN5ljy5YtsWrVqnL3JQHb6tWrM+cAAAAAAABg/5NTYVrnzp1j4cKFsX79+nL12bNnl7VXplatWnHSSSfF3LlzK7QlfVu1ahWHHHJIuTG2vzf5e+vWrZlzAAAAAAAAsP/JqTCtV69e6aqxsWPHltWSrRvHjx8fhYWF0aJFi7S2dOnSWLBgQYW+b7zxRrmQ7P33349XX301evfuXVY777zz0pVsjzzySLn+yd8HHXRQXHzxxdX4hgAAAAAAANQkdSKHJIFZEnwNHz483YaxdevWMWHChFiyZEmMGzeu7L5+/frF9OnTo6SkpKw2aNCgeOyxx9IwbOjQoVG3bt0YPXp0HHnkkTFkyJCy+5Iz0W6//fb4zne+k87VvXv3eO211+Lpp5+OO++8Mw3aAAAAAAAAODDklWybOOWATZs2xYgRI9Jwa+3atdGpU6c0/EpCr1LdunWrEKYl/v73v8fgwYPjD3/4Q7plY3Lffffdl4Zy20uCt3vvvTc++OCDdMXbddddFzfccEPk5eXtlfcEAAAAAABg38u5MA0AAAAAAAD2lpw6Mw0AAAAAAAD2JmEaAAAAAAAAZBCmAQAAAAAAQAZhGgAAAAAAAGQQpgEAAAAAAEAGYRoAAAAAAABkEKYBAAAAAABABmEaAAAAAAAAZBCmAQAA7Ie++c1vRl5eXvzmN7+ptH39+vVx/PHHR9OmTeO///u/9/rzAQAA5Iq8kpKSkn39EAAAAFStjz/+OE466aQoLi6Ov/zlL9GsWbNy7f37948JEybEiy++GJdffvk+e04AAICazso0AACA/dCXvvSleOKJJ+Kjjz6KAQMGlGv7j//4jzRISwK1vRmkJavhAAAAco0wDQAAYD913nnnxY033hiTJ0+On/3sZ2lt5cqVMXDgwDjuuOPiwQcfjA0bNsT3v//9aNeuXdSvXz8OO+ywuOyyy+Ltt98uN9bWrVtj5MiR0a1bt2jevHnUq1cvjj766Ljyyitj6dKlFeZOtphMwrpp06alfRo3bhz/9E//tNfeHQAAoKrY5hEAAGA/lmzzeOqpp8YHH3wQb731Vvx//9//F7///e/TkCsJt84+++z4r//6rzQUS/5eu3ZtPPbYY+k5aq+99lqccsop6TibNm2KI488Mv7P//k/ceKJJ6Yr35LA7fHHH08DuOR7ct02TCsoKIglS5bE1VdfHR07dkyDuyFDhuzDfxoAAAC7TpgGAACwn5s/f34UFhamAViy7eOwYcPi7rvvjsGDB8fDDz+chmZJe6l169al5621bt06pk6dmtaS/+u4cePGOOigg8qN/cc//jEuuOCCuOeee+Kmm24qF6YlXn755bjwwgv32rsCAMD/3969gHlV1fvj/wwXAS+EF1BGQUVAcJDwBt5BPYqXo+YJ1AIRDx6O4v2IGJ3MTCUVRU2M1AjvmaGZecmswBQMRSGTQDoQQQJhoqDGRfD7f9b+PzM/hmFznQG+zOv1PF+/M2uvvdfaOCz2zHvWWlDdLPMIAACwjevUqVNcf/31WZCWZovdeOONWTg2YsSI+Pzzz6N+/frxz3/+s+K1YsWKOOmkk7KQLQVo5eFYeZCWlnxMgVuqm66dQroJEyZUaTfNdBOkAQAAxU6YBgAAsBVLIdaqr7p168Zuu+2W7Yf2+OOPr/d1jjzyyOz90EMPzfY7S0FYWgIySctANm3atNIrLd+4cuXKrF65Z555JrtOo0aNYuedd66ou2jRonjqqafiwQcfrNRm27Zt17t/06dPz5agTMtKpuUiU8CX3tOMuYEDB8Zbb7213tcCAACoTvWq9WoAAADUiDSzLEkzyaZNmxa/+MUvsiUYJ06cGMOGDdvg66XZZeXhWpqpVq/emr89TGFZkto766yzsvqpvZYtW2ahWvKVr3wlPvvssyrnrr4k5JqkGXLf/e53s1fqUwrTzjnnnCxIS3uspb3Y7rnnnrjjjjti+PDhcckll2zwvQIAAGwKYRoAAEAR+M53vlPp89/+9rfZXmV33XVXXH755bHPPvts0PVSSNakSZNsdtr6LMX40EMPRcOGDeOVV16pFJKlEO1f//pXbKwUoqV7a9GiRfzkJz+Jo446qkqdBQsWZPeZZsABAABsbpZ5BAAAKEInnHBCtGvXLpvZ9eabb1aUp+UQv/rVr0azZs2iQYMGsffee8eAAQPiww8/rHR+nTp1Yo899og//elPcfvtt1eUz5o1K1tOsm/fvtl1zz333GxZyTQzLQVvzz//fKXrtG/fPutDcsEFF1QsR5l8+umna72HmTNnxk033ZQtO/niiy+uMUhL0r0MGTIkBg0atBF/UgAAAJvGzDQAAIAiVR5ilYdXzz33XBakpfIePXpkQVoK10aMGBE/+9nPqpyfllRMS0Zec801MW7cuDjmmGNiyZIl2bGnn34625Mt1TnvvPPi7bffjt///vdx9tlnx6WXXhpt2rSJl156KZuVlsKw5cuXx5lnnhmdOnXKzr/hhhuy8rUZNWpUrFixIr7+9a9HWVnZOu83bylKAACAmuQ7EQAAgCL0m9/8Jt57770sSDvssMOyWWDnn39+Fk6NHTs2C8bK3XrrrfGNb3yjyjXq16+fvacw7de//nUWjpVL+5WlEO3hhx+uKPuf//mfuPPOO+MHP/hB7Lrrrtkyk5MnT84CtDTzLe2dlma0rW+YlgK85Pjjj6+GPxEAAICaIUwDAAAooj3TPv/88yxEe+aZZ7IZaFdddVU2A+2xxx6LhQsXxte+9rVKQVpy9dVXxw9/+MNsCce0R9nq0jKQt912W/ZxqrPvvvtm10wzx1Y1bNiweOqpp7J90tI+ZuXSMpFpicc1zZpbm/nz52fve+65Z5VjqR8PPvhgpbK0x9uVV165zusCAABUJ2EaAABAEUgzvZI0Ey2FSikw69evX/Tu3TsrT8sw5s3ySssjHnvssVlANWnSpGjZsuU620uzzerWrVulvEWLFvH6669HTUt9Lb/ncingE6YBAACbmzANAACgCKxrpteiRYuy9+bNm6/xeHn5xx9/vF7tpcBuTVIw98UXX0R12GOPPWLq1Kkxd+7cKse6detWcc9p6cryJSkBAAA2tzqbvUUAAACq3Ze+9KVKSyeubt68eZXqbQ2OOuqo7P23v/3tlu4KAABALmEaAADANuCggw7K3seOHVvlWJrZ9eqrr2YfH3zwwdXedvlykCtXrtyg8/r27ZvNdBs9enQ2Qw0AAGBrJEwDAADYBnzlK1+JXXbZJX7yk5/EH/7wh0rH7rrrrvjrX/8a//Zv/7Ze+6VtqF133TV7nz179gadt99++8W3vvWtWL58eZxyyikxfvz4NdZb36UpAQAAaoI90wAAALYBO+64Y/z4xz+Onj17RteuXbP3FJy99dZb8etf/zrbn+y+++6rkbaPOOKI2H777bPQ7sMPP8zaSi677LJ1Liv57W9/O9sb7cYbb8yWfTzkkEOic+fOWTCYQrRZs2bFb37zm6zuscceWyP9BwAAWBthGgAAwDbizDPPjHHjxsWQIUPipZdeikWLFmXB1kUXXRTXXXddlJaW1ki7O++8czz11FNxww03xIMPPhifffZZVt67d+91hmklJSXxne98J772ta/FD3/4wxgzZkw8/vjj2TV22mmnbPbaxRdfHOedd16NLFEJAACwLiWF9CuAAAAAAAAAQBX2TAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyCFMAwAAAAAAgBzCNAAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADIIUwDAAAAAACAHMI0AAAAAAAAyFEv7wCbxx577BGfffZZtGzZckt3BQAAAAAAoCjNnj07dthhh5g/f361X9vMtC0sBWmff/75lu4GAAAAAABA0fr888+zzKUmmJm2hZXPSJsyZcqW7goAAAAAAEBRKisrq7Frm5kGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAAA5hGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAsC2EacuWLYtrr702SktLo1GjRtGlS5d4+eWX13ne008/Heecc060atUqtt9++9h///3j6quvjo8//rhK3X322SdKSkqqvC666KIauisAAAAAAAC2VvWiiPTt2zdGjx4dV155ZbRp0yYefPDBOPXUU2PMmDFx9NFH557Xv3//LIDr3bt3tGzZMv70pz/F8OHD44UXXoi33347C+ZW1alTpyxsW1Xbtm1r7L4AAAAAAADYOhVNmPbGG2/EE088EUOHDo2BAwdmZX369IkOHTrEoEGDYvz48bnnpgCuW7dulcoOOeSQOP/88+Oxxx6LCy+8sNKxPffcMwveAAAAAAAAqN2KZpnHFIjVrVs3m2VWrmHDhtGvX794/fXXY86cObnnrh6kJWeddVb2PnXq1DWes3z58vjss8+qpe8AAAAAAAAUp6KZmTZp0qRsqcXGjRtXKu/cuXP2Pnny5GjRosV6X2/+/PnZ+2677Vbl2O9+97tsb7WVK1fG3nvvHVdddVVcccUVm9T/srKyNZbPmDEj9ttvv026NgAAAAAAALU8TJs3b140b968Snl52dy5czfoerfeems2061Hjx6Vyjt27Jjtv7b//vvHhx9+mO3LlvZoS9dP5wAAAAAAAFB7FE2YtmTJkmjQoEGV8rTUY/nx9fX444/HyJEjs73W2rRpU+nYs88+W+nzCy64IE455ZQYNmxYXHbZZbHXXnttVP+nTJmyQTPWAAAAAAAA2PKKZs+0Ro0axbJly6qUL126tOL4+nj11Vezfda6d+8eN9988zrrl5SUZMs8rlixIsaOHbsRPQcAAAAAAKBYFU2YlpZzTEs9rq68rLS0dJ3X+OMf/xhnnHFGdOjQIUaPHh316q3fxLzyvdgWLly4wf0GAAAAAACgeBVNmNapU6eYPn16LF68uFL5hAkTKo6vzYwZM+Lkk0+OZs2axQsvvBA77rjjerc9c+bM7L1p06Yb1XcAAAAAAACKU9GEaT169IiVK1fG/fffX1GWln0cNWpUdOnSpWL22OzZs2PatGmVzp0/f36cdNJJUadOnXjppZdyQ7E08yy1sarPP/88brnllthuu+3iuOOOq5F7AwAAAAAAYOu0fuscbgVSYNazZ88YPHhwLFiwIFq3bh0PPfRQzJo1K0aOHFlRr0+fPvHKK69EoVCoKEsz0tLsskGDBsVrr72WvcrtvvvuceKJJ2YfP/vss3HTTTdlwd2+++6bhWuPP/54vPvuuzFkyJDYY489NvNdAwAAAAAAsCUVTZiWPPzww3HdddfFI488Eh999FF07NgxnnvuuTj22GPXuVdactttt1U51rVr14ow7cADD4wDDjggHn300fjggw+y2Whp+cgnn3wyC/IAAAAAAACoXUoKq07hYrMrKyvL3qdMmbKluwIAAAAAAFCUymowbymaPdMAAAAAAABgcxOmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAMC2EKYtW7Ysrr322igtLY1GjRpFly5d4uWXX17neU8//XScc8450apVq9h+++1j//33j6uvvjo+/vjjNdZ/9tln4+CDD46GDRtGy5Yt4/rrr48VK1bUwB0BAAAAAACwNSuqMK1v374xbNiw6NWrV9x9991Rt27dOPXUU+O1115b63n9+/ePqVOnRu/eveP73/9+nHzyyTF8+PA44ogjYsmSJZXqvvjii/GVr3wlmjRpEvfcc0/28U033RSXXXZZDd8dAAAAAAAAW5uSQqFQiCLwxhtvZDPRhg4dGgMHDszKli5dGh06dIhmzZrF+PHjc88dO3ZsdOvWrVLZww8/HOeff3488MADceGFF1aUl5WVRf369WPixIlRr169rOxb3/pWDBkyJP785z9Hu3btqvW+UnvJlClTqvW6AAAAAAAAtUVZDeYtRTMzbfTo0dlMtDTLrFxahrFfv37x+uuvx5w5c3LPXT1IS84666zsPc1YK5fCsvRKbZQHacmAAQMiZY6pDwAAAAAAANQe/y8x2spNmjQp2rZtG40bN65U3rlz5+x98uTJ0aJFi/W+3vz587P33XbbrVIbyaGHHlqpbtqjba+99qo4vimJ6OpmzJgR++2330ZfFwAAAAAAgJpTNDPT5s2bF82bN69SXl42d+7cDbrerbfems1069GjR6U2Vr3m6u1saBsAAAAAAAAUt6KZmbZkyZJo0KBBlfK01GP58fX1+OOPx8iRI2PQoEHRpk2bSm0kee0sXrx4I3ufv0Zn3ow1AAAAAAAAtryimZnWqFGjWLZsWZXypUuXVhxfH6+++mq2z1r37t3j5ptvrtJGktfO+rYBAAAAAADAtqFowrS0zGL5MoyrKi9L+5qtyx//+Mc444wzokOHDjF69OioV6/yxLzy5R3z2lmfNgAAAAAAANh2FE2Y1qlTp5g+fXqVpRYnTJhQcXxtZsyYESeffHI0a9YsXnjhhdhxxx3X2EYyceLESuVpr7S///3v62wDAAAAAACAbUvRhGk9evSIlStXxv33319RlpZjHDVqVHTp0iVatGiRlc2ePTumTZtW6dz58+fHSSedFHXq1ImXXnopmjZtmrt/Wbt27bI2UlvlRowYESUlJVkfAAAAAAAAqD0qr3O4FUuBWc+ePWPw4MGxYMGCaN26dTz00EMxa9asGDlyZEW9Pn36xCuvvBKFQqGiLM1ImzlzZgwaNChee+217FVu9913jxNPPLHi86FDh2ZLQabw7dxzz4133303hg8fHhdeeGG0b99+M94xAAAAAAAAW1pJYdXUaSu3dOnSuO666+LRRx+Njz76KDp27Bg33nhjdO/evaJOt27dqoRpaVZZnq5du8bYsWMrlT3zzDNxww03xNSpU7NZbH379o1vf/vbUb9+/Wq/pzQbLpkyZUq1XxsAAAAAAKA2KKvBvKWowrRtkTANAAAAAABg681bimbPNAAAAAAAANjchGkAAAAAAACQQ5gGAAAAAAAAOYRpAAAAAAAAkEOYBgAAAAAAADmEaQAAAAAAAJBDmAYAAAAAAABbS5j28ccfb+4mAQAAAAAAYMuHaVdcccVaj3/yySfRvXv36mwSAAAAAAAAiiNMu+eee+LOO+9c47ElS5bEaaedFu+88051NgkAAAAAAADFEaYNHjw4rrnmmnjqqacqlS9btizOOOOM+MMf/hA//elPq7NJAAAAAAAAqDH1qvNiN998c/ztb3+L8847L0pLS+OII46IFStWRM+ePWPMmDHx2GOPZaEaAAAAAAAA1LqZacmoUaPi8MMPz0KzqVOnRq9eveL555+P+++/P84555zqbg4AAAAAAACKY2ZaUr9+/fj5z38eRx11VBx88MGxfPnyuOuuu+I///M/q7spAAAAAAAA2HrDtNmzZ+ceGzFiRJx++unRr1+/OPPMMyvVbdmy5aY0CwAAAAAAAJtFSaFQKGzsyXXq1ImSkpLc4+nSazq+cuXKjW1ym1NWVpa9T5kyZUt3BQAAAAAAoCiV1WDeskkz07797W+vNUwDAAAAAACAYrZJYdp3vvOd6usJAAAAAAAAbGXqbOkOAAAAAAAAQK0I0376059Gnz59cvdPS8eeeuqp6mwSAAAAAAAAiiNMu/fee3P3UEvldevWjeHDh1dnkwAAAAAAAFAcYdrUqVPjoIMOyj2ejv35z3+uziYBAAAAAACgOMK0Tz75JLbbbrvc42lm2qJFi6qzSQAAAAAAACiOMK1ly5YxYcKE3OPpWGlpaXU2CQAAAAAAAMURpv37v/97PPbYY/GLX/yiyrFnn302fvKTn8Tpp59enU0CAAAAAABAjSkpFAqF6rrYP//5z2xftLlz50a3bt0q9k+bNGlSjB07NpuV9tZbb0WzZs2qq8miV1ZWlr1PmTJlS3cFAAAAAACgKJXVYN5Srzovtttuu8X48ePj4osvjhdffDHGjBmTlZeUlMSpp54a9957ryANAAAAAACA2rnMY9KiRYt47rnnsllqaY+09Eof//KXv8z2VNsUy5Yti2uvvTab4daoUaPo0qVLvPzyy+s877333ourrroqjjzyyGjYsGEW7s2aNWuNdffZZ5/s+Oqviy66aJP6DgAAAAAAQPGp1plpq9p5553jsMMOq9Zr9u3bN0aPHh1XXnlltGnTJh588MFsxluaAXf00Ufnnvf666/H97///TjggAOiffv2MXny5LW206lTp7j66qsrlbVt27ba7gMAAAAAAIBaHqZVtzfeeCOeeOKJGDp0aAwcODAr69OnT3To0CEGDRqULS+Z54wzzoiPP/44dtppp7j99tvXGabtueee0bt372q/BwAAAAAAAGrRMo916tSJevXqxfLlyys+r1u37lpfqf7GSDPS0vn9+/evKEtLNvbr1y+beTZnzpzcc3fZZZcsSNsQ6Z4+++yzjeorAAAAAAAA24ZNmpmWZoal/cRSyLXq5zVh0qRJ2VKLjRs3rlTeuXPn7D3NNkv7tVWH3/3ud7H99tvHypUrY++99872W7viiiuq5doAAAAAAADUkjAt7Vm2ts+r07x586J58+ZVysvL5s6dWy3tdOzYMdt/bf/9948PP/wwu6e0R1u6/q233rrR1y0rK1tj+YwZM2K//fbbhB4DAAAAAAAQtX3PtCVLlkSDBg2qlKelHsuPV4dnn3220ucXXHBBnHLKKTFs2LC47LLLYq+99qqWdgAAAAAAANj6FU2Y1qhRo1i2bFmV8qVLl1Ycrwlp2cq0zONLL70UY8eOjd69e2/UdaZMmbJBM9YAAAAAAAAo8jCtVatWGxVOpaUNN1RazvH9999f4/KPSWlpadSU8r3YFi5cWGNtAAAAAAAAsI2FaS1btszCsc2hU6dOMWbMmFi8eHE0bty4onzChAkVx2vKzJkzs/emTZvWWBsAAAAAAABsY2FaWvZwc+nRo0fcfvvtcf/998fAgQOzsrTs46hRo6JLly4Vs8dmz54d//rXv6Jdu3Yb3EaaefalL30p6tatW1H2+eefxy233BLbbbddHHfccdV4RwAAAAAAAGztimbPtBSY9ezZMwYPHhwLFiyI1q1bx0MPPRSzZs2KkSNHVtTr06dPvPLKK1EoFCrKFi1aFPfcc0/28bhx47L34cOHR5MmTbLXpZdempU9++yzcdNNN2XB3b777puFa48//ni8++67MWTIkNhjjz02+30DAAAAAACwjYRpf/3rX7Pg6fTTT69yLIVbzz33XBx44IGxzz77bNT1H3744bjuuuvikUceiY8++ig6duyYXfPYY49d63mpbjpvVXfccUf2vvfee1eEaalvBxxwQDz66KPxwQcfZLPR0vKRTz75ZBbkAQAAAAAAULuUFFadwrWJevXqFX/729/itddeW+PxFHqlGV9pRhn/v7Kysux9ypQpW7orAAAAAAAARamsBvOWOtV5sRSinXzyybnHu3fvHr///e+rs0kAAAAAAACoMdUapv3jH/9Y675iu+++e8yfP786mwQAAAAAAIDiCNMaN24cs2bNWuueajvssEN1NgkAAAAAAADFEaYdccQR8eMf/zg++uijKsdS2ahRo6JLly7V2SQAAAAAAAAUR5g2cODAWLBgQXTu3DkeeeSRePfdd7NX+jiFaOnYNddcU51NAgAAAAAAQI2pV50XO+aYY+KHP/xhXHbZZdG3b9+K8kKhEA0aNIgRI0ZEt27dqrNJAAAAAAAAKI4wLbnwwgvj1FNPjZ/97Gcxffr0rKxt27bRs2fPKC0tre7mAAAAAAAAoHjCtCSFZldccUVNXBoAAAAAAACKO0xb1YQJE2LOnDmx5557Zvum1alTrdu0AQAAAAAAQPGFae+//36cdtpp8c4771SUtW/fPn75y19Gq1ataqpZAAAAAAAAqDY1Nk3s8ssvj+bNm2f7pi1ZsiT+8Ic/xMqVK2PAgAE11SQAAAAAAABsXWHar371qzWWp/Ds5ptvjtatW0eDBg2ic+fOWcCWygEAAAAAAKBWhGlnnHFGnH/++bFw4cJK5WmPtNdee61S2bhx46K0tHRTmwQAAAAAAIDiCNPSTLN333032w/tpz/9aUX5//7v/8ZVV10VxxxzTPTq1SsOPPDAeOKJJ7JyAAAAAAAAqBVh2sEHHxxvvPFGFpxdcMEF2Uy1uXPnxplnnpkFbWVlZfHxxx/H4YcfHmPHjs2CNQAAAAAAACgGJYVCoVBdF/vLX/4S//Vf/xWTJ0+OW265JS666KLquvQ2K4WNyZQpU7Z0VwAAAAAAAIpSWQ3mLZs8M21Vbdq0yWaf3XbbbTF48ODo2rVrFrABAAAAAABAMaq2MG358uWxePHi7OP+/ftnyd+uu+4aX/7yl+N73/terFy5srqaAgAAAAAAgOII0xYuXBhnnXVW7LjjjrHzzjtHx44dY+LEiVFaWhpPP/10PPLII3HPPffEIYccEm+//Xb19BoAAAAAAACKIUy78sorY/z48XHfffdl4VkK1b761a/G559/nh1PH0+dOjUL0w4//PC45pprqqPfAAAAAAAAsPWHaS+++GJ84xvfiAsuuCDOPPPM+NGPfhRz5syJP//5zxV1vvSlL8XIkSPjV7/6VTzzzDOb2iQAAAAAAAAUR5hWv379WLJkScXnS5cujZKSkqhXr16Vuscff3z86U9/2tQmAQAAAAAAYLOomnhtoLRf2i233BIrVqzI9kz7wQ9+EO3atYv27duvsX7Dhg03tUkAAAAAAAAojjBt6NChUadOnWzPtH/9619x5JFHxt13352VAQAAAAAAQDErKRQKhS3didqsrKwse58yZcqW7goAAAAAAEBRKqvBvMX0MQAAAAAAAMghTAMAAAAAAIAcwjQAAAAAAADYFsK0ZcuWxbXXXhulpaXRqFGj6NKlS7z88svrPO+9996Lq666Ko488sho2LBhlJSUxKxZs3LrP/vss3HwwQdndVu2bBnXX399rFixoprvBgAAAAAAgK1dUYVpffv2jWHDhkWvXr3i7rvvjrp168app54ar7322lrPe/311+P73/9+fPLJJ9G+ffu11n3xxRfjK1/5SjRp0iTuueee7OObbropLrvssmq+GwAAAAAAALZ2JYVCoRBF4I033shmog0dOjQGDhyYlS1dujQ6dOgQzZo1i/Hjx+eeu3Dhwqhfv37stNNOcfvtt8c111wTf/3rX2OfffapUresrCyrO3HixKhXr15W9q1vfSuGDBkSf/7zn6Ndu3bVel+pvWTKlCnVel0AAAAAAIDaoqwG85aimZk2evTobCZa//79K8rSMoz9+vXLZp7NmTMn99xddtklC9LWJYVl6ZXaKA/SkgEDBkTKHFMfAAAAAAAAqD2KJkybNGlStG3bNho3blypvHPnztn75MmTq6WN5NBDD61UnvZo22uvvSqOAwAAAAAAUDv8v+lXW7l58+ZF8+bNq5SXl82dO7da2lj1mqu3syltlE8vXN2MGTNiv/322+jrAgAAAAAAUHOKZmbakiVLokGDBlXK01KP5cero40kr53qaAMAAAAAAIDiUTQz0xo1ahTLli2rUr506dKK49XRRpLXzqa0kbfhXd6MNQAAAAAAALa8opmZlpZZLF+GcVXlZWlfs+poY9Vrrt5OdbQBAAAAAABA8SiaMK1Tp04xffr0WLx4caXyCRMmVByvjjaSiRMnVipPe6X9/e9/r5Y2AAAAAAAAKB5FE6b16NEjVq5cGffff39FWVqOcdSoUdGlS5do0aJFVjZ79uyYNm3aRrWRllxs165d1kZqq9yIESOipKQk6wMAAAAAAAC1R9HsmZYCs549e8bgwYNjwYIF0bp163jooYdi1qxZMXLkyIp6ffr0iVdeeSUKhUJF2aJFi+Kee+7JPh43blz2Pnz48GjSpEn2uvTSSyvqDh06NM4444w46aST4txzz4133303q3vhhRdG+/btN+s9AwAAAAAAsGWVFFZNnbZyS5cujeuuuy4effTR+Oijj6Jjx45x4403Rvfu3SvqdOvWrUqYlgK3fffdd43X3HvvvbPjq3rmmWfihhtuiKlTp0bTpk2jb9++8e1vfzvq169f7feUZsMlU6ZMqfZrAwAAAAAA1AZlNZi3FFWYti0SpgEAAAAAAGy9eUvR7JkGAAAAAAAAm5swDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAC2lTBt2bJlce2110ZpaWk0atQounTpEi+//PJ6nfv+++/H2WefHU2aNInGjRvHmWeeGTNnzqxSr6SkZI2vW265pQbuCAAAAAAAgK1VvSgyffv2jdGjR8eVV14Zbdq0iQcffDBOPfXUGDNmTBx99NG553366adx3HHHxaJFi+Kb3/xm1K9fP+68887o2rVrTJ48OXbddddK9U888cTo06dPpbKDDjqoxu4LAAAAAACArU9RhWlvvPFGPPHEEzF06NAYOHBgVpYCrw4dOsSgQYNi/Pjxuef+4Ac/iL/85S/ZNQ477LCs7JRTTsnOveOOO2LIkCGV6rdt2zZ69+5dw3cEAAAAAADA1qyolnlMM9Lq1q0b/fv3ryhr2LBh9OvXL15//fWYM2fOWs9NIVp5kJa0a9cuTjjhhHjyySfXeM6SJUti6dKl1XwXAAAAAAAAFIuiCtMmTZqUzRhL+52tqnPnztl7Wq5xTb744ot455134tBDD61yLJ07Y8aM+OSTTyqVp+Ujd9hhh2xftgMOOCAef/zxar0XAAAAAAAAtn5FtczjvHnzonnz5lXKy8vmzp27xvMWLlwYy5YtW+e5+++/f/bxkUceGWeffXbsu+++Wfm9994bvXr1yvZbu/jiizeq72VlZWssT0Hefvvtt1HXBAAAAAAAoGYVVZiWll1s0KBBlfK01GP58bzzkvU9d9y4cZXq/Od//mcccsgh8c1vfjP69u2bzVYDAAAAAABg21dUYVoKsdIMs9WV72uWF3KVl2/Mucl2220Xl156aVx00UXx1ltvxdFHH73BfZ8yZcoGzVgDAAAAAABgyyuqPdPSkoxpqcfVlZeVlpau8bxddtklm5W2MeeWa9GiRcWSkQAAAAAAANQORRWmderUKaZPnx6LFy+uVD5hwoSK42tSp06dOPDAA2PixIlVjqVzW7VqFTvttNNa2545c2b23rRp0024AwAAAAAAAIpJUYVpPXr0iJUrV8b9999fUZaWbhw1alR06dKlYvbY7NmzY9q0aVXOffPNNysFau+991787ne/i549e1aUffDBB1Xa/eSTT+Kuu+6K3XbbLds7DQAAAAAAgNqhqPZMS4FZCr4GDx4cCxYsiNatW8dDDz0Us2bNipEjR1bU69OnT7zyyitRKBQqygYMGBAPPPBAnHbaaTFw4MCoX79+DBs2LHbfffe4+uqrK+rde++98cwzz8Tpp58eLVu2zJaB/PGPf5wFdI888ki2fxoAAAAAAAC1Q1GFacnDDz8c1113XRZsffTRR9GxY8d47rnn4thjj13reWkZx7Fjx8ZVV10VN910U3zxxRfRrVu3uPPOOyst3XjUUUfF+PHj40c/+lF8+OGHscMOO0Tnzp2zQO3444/fDHcIAAAAAADA1qKksOr0LTa7srKy7H3KlClbuisAAAAAAABFqawG85ai2jMNAAAAAAAANidhGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAADkEKYBAAAAAABADmEaAAAAAAAA5BCmAQAAAAAAQA5hGgAAAAAAAOQQpgEAAAAAAEAOYRoAAAAAAABsK2HasmXL4tprr43S0tJo1KhRdOnSJV5++eX1Ovf999+Ps88+O5o0aRKNGzeOM888M2bOnLnGuiNHjoz27dtHw4YNo02bNnHPPfdU850AAAAAAACwtSu6MK1v374xbNiw6NWrV9x9991Rt27dOPXUU+O1115b63mffvppHHfccfHKK6/EN7/5zbjhhhti0qRJ0bVr1/jwww8r1b3vvvviwgsvjLKysixEO+KII+Lyyy+PW2+9tYbvDgAAAAAAgK1JSaFQKESReOONN7KZaEOHDo2BAwdmZUuXLo0OHTpEs2bNYvz48bnn3nbbbdmMtnSNww47LCubNm1adu6gQYNiyJAhWdmSJUuiRYsWcfjhh8dzzz1XcX7v3r3jmWeeiTlz5sTOO+9cbfeUArtkypQp1XZNAAAAAACA2qSsBvOWopqZNnr06GwmWv/+/SvK0jKM/fr1i9dffz0LutZ2bgrRyoO0pF27dnHCCSfEk08+WVE2ZsyYbKbagAEDKp1/ySWXxGeffRbPP/98td8XAAAAAAAAW6eiCtPSsoxt27bN9jtbVefOnbP3yZMnr/G8L774It5555049NBDqxxL586YMSM++eSTijaS1esecsghUadOnYrjAAAAAAAAbPvqRRGZN29eNG/evEp5edncuXPXeN7ChQtj2bJl6zx3//33z9pIs9/SspGr2m677WLXXXfNbWN9pxeuLi01Wb9+/dzjAAAAAAAArF2aOJXylqjtM9PSfmYNGjSoUp6Weiw/nndesj7npvcUnK1JqpvXxsYqKSmp9v+56QsmvQDWxBgB5DE+AHmMD0Ae4wOQx/gAbO4xImUtO+ywQ0Rtn5nWqFGjbIbZ6pYuXVpxPO+8ZH3OTe/Lly9f43VS3bw21qUmNrzbEpvsAcXPGAHkMT4AeYwPQB7jA5DH+ABsS2NEUc1MS0sypmUYV1deVlpausbzdtlll2xW2vqcm9pYuXJlLFiwoFK9FLB9+OGHuW0AAAAAAACw7SmqMK1Tp04xffr0WLx4caXyCRMmVBxfkzp16sSBBx4YEydOrHIsnduqVavYaaedKl1j9brp8y+++CK3DQAAAAAAALY9RRWm9ejRI5s1dv/991eUpaUbR40aFV26dIkWLVpkZbNnz45p06ZVOffNN9+sFJK999578bvf/S569uxZUXb88cdnM9lGjBhR6fz0+fbbbx+nnXZaDd4hAAAAAAAAW5Oi2jMtBWYp+Bo8eHC2DGPr1q3joYceilmzZsXIkSMr6vXp0ydeeeWVKBQKFWUDBgyIBx54IAvDBg4cmG1EN2zYsNh9993j6quvrqiX9kS78cYb45JLLsna6t69e7z66qvx6KOPxs0335wFbQAAAAAAANQORRWmJQ8//HBcd9118cgjj8RHH30UHTt2jOeeey6OPfbYtZ6XlnEcO3ZsXHXVVXHTTTdlSzZ269Yt7rzzzmjatGmluil4S2HbHXfcEc8++2w24y3Vu+KKK2r47gAAAAAAANialBRWnb4FAAAAAAAAFOeeaQAAAAAAALA5CdMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMG0zefPNN+PSSy+NsrKy2GGHHaJly5Zx9tlnx/Tp06vUnTp1apx88smx4447xi677BLnnXdefPDBB5XqTJs2LQYNGhSdOnWKnXbaKZo3bx6nnXZaTJw4scr1nn766TjnnHOiVatWsf3228f+++8fV199dXz88cfr1fe+fftGSUlJlVe7du024U8E2FrGiJ///OfRvXv3KC0tjQYNGsRee+0VPXr0iHfffXe9+78+fQJq3/jgGQK23fFhdSeeeGL29zv1Z32NHz8+jj766Ox7lD322CMuv/zy+PTTT9f7fGDbHB+6deu2xueH1Eeg+MeI73znO2v8O96wYcP17r9nCKg5xTw+dKvhZ4h61XIV1unWW2+NcePGRc+ePaNjx44xf/78GD58eBx88MHxhz/8ITp06JDV+/vf/x7HHntsfOlLX4ohQ4Zk/xDcfvvt8ac//SneeOON2G677bJ6P/rRj2LkyJHx1a9+NQYMGBCLFi2K++67Lw4//PD41a9+Ff/2b/9W0Xb//v2zH4L17t07++JP10ptv/DCC/H2229Ho0aN1tn/9AO01OaqUh+B4h8j0rk777xzXHHFFbHbbrtlbf/4xz+Ozp07x+uvvx5f/vKX19r39e0TUPvGh8QzBGyb48Pqv7yXxoQNMXny5DjhhBOiffv2MWzYsKyPqU9/+ctf4sUXX6yGPx2o3Yp5fEjSL/B873vfq1SWfq4BbDtjxIgRI7IfwJerW7fuevXdMwTUrGIeH2r8GaLAZjFu3LjCsmXLKpVNnz690KBBg0KvXr0qyi6++OJCo0aNCn/7298qyl5++eVC+l913333VZRNnDix8Mknn1S63j//+c9C06ZNC0cddVSl8jFjxlTpz0MPPZRd84EHHlhn388///zCDjvssJ53ChTbGLEm8+fPL9SrV6/w3//93+usu759Amrf+OAZArb98WHJkiWFffbZp/Dd7343u94ll1yyXn0/5ZRTCs2bNy8sWrSooix9b5Ku8dJLL63XNYBtc3zo2rVroaysbL3vFSiuMeL666/Pzv/ggw82qu+eIaBmFfP40LWGnyEs87iZHHnkkVVmZ7Rp0yabLpmmQ5Z76qmn4t///d+zGWTlUjrbtm3bePLJJyvKDjnkkErpbLLrrrvGMcccU+l65dMbV3fWWWdl76vXXZuVK1fG4sWL17s+UBxjxJo0a9YsWy5hfZaDXd8+AbVvfCjnGQK23fHhtttuiy+++CIGDhy43v1O48HLL7+crZzRuHHjivI+ffpk7Xt+gNo7PqxqxYoVlm2DbXiMKBQK2TNBel9fniGg5hXr+LA5niGEaVtQ+mL4xz/+kS2blLz//vuxYMGCOPTQQ6vUTcspTZo0aZ3XTNMuy6+3rnrJ+tRN/vWvf2X/SKVpm2n900suucRDLWxjY0T6wXha1zhNx77wwguzf7TS0glrUx19ArbN8aGcZwjYdseH2bNnxy233JItBbM+S8eXS2NJ+gZ39T6lb9rTXgqeH6D2jg/l0r4saZ+WtLdK2g/puuuui88//3yDrwNsvd9jtGrVKvseIf09T+FYantdPEPAllEM48PmeIawZ9oW9Nhjj2VfeN/97nezz+fNm5e9p034VpfKFi5cGMuWLcv2HlmTV199NVuL/Fvf+tY6204PtGmt0R49eqyzbmo7bRKY1kVNv1WW1jL9wQ9+EH/84x9j7NixUa+eLyPYFsaItFbxe++9l32cfmMk1evXr99a+7ipfQK23fGhvG3PELDtjg9XX311HHTQQXHuueduUB/X1afUJlA7x4dkv/32i+OOOy4OPPDA+Oyzz2L06NFx0003ZT8c++lPf7rB1wO2rjEi7cl86aWXxhFHHJGdm+rde++92R5LEydOrDTjbHWeIWDLKIbxYXM8Q/gJxhYybdq07Dez0xfG+eefn5UtWbIke1/TF1nDhg0r6qzpeEqCv/71r8e+++6b/dBqbR5//PFs079UL03RXJfVN+xLD8Npuub//u//Zl+QG/NwDGx9Y8SoUaOy2SYzZ87MPk7XSkuz1amTP4l5U/oEbNvjQ+IZArbd8WHMmDHZ0i4TJkzY4H6uq0/lx4HaNz4k6ecVqzrvvPOif//+8cADD8RVV12V/ZIPULxjxBVXXFHp869+9avZTJZevXplv3j3jW98I7efniFg8yuW8WFzPENY5nELSFMYTzvttGyqYvpBUpohlpQvfZBS29UtXbq0Up1VpZQ1rU/6ySefxC9+8Ysqa5CuKqW56TfJu3fvHjfffPNG30P64ks/QPvNb36z0dcAtq4xIv2jmMaGiy++OF566aV49NFHY/DgwWvt68b2Cdj2x4c8niGg+MeHtLzS5Zdfnn1zethhh21wX9fVJ88OUHvHhzxpplvi+QG2rZ9Tlks/WE/Lsa3r77hnCNi8iml82BzPEMK0zWzRokVxyimnZHuPpKWOSktLK46VT4ssnya5qlSW9hlZPc1dvnx5/Md//Ee888472Rdghw4dcttOSyqdccYZWZ30xb8pSyulvwxpo8A0ZRPYNsaI1adVH3/88dk07rXZmD4BtWN8yOMZAop/fHj44YezpV//+7//O2bNmlXxStI3xunjtF9innX1adX+A7VrfMjTokWL7N3zA2yb32OU/z1f199xzxCw+RTb+LA5niGEaZtRSmVPP/30bI3O5557Lg444IBKx/fcc89o2rRptv7n6tK6oGkjzVWlvUf69OkTv/3tb7OlG7t27Zrb9owZM+Lkk0+OZs2axQsvvLBeqe/apIfgf/7zn1l/geIfI9YkTcdO/3CuzYb2Cag940MezxBQ/OPD7Nmzs028jzrqqGx5lvJX+Q/S08e//vWvc/ucvnFOv9i3ep/SN9iTJ0/2/AC1eHzIk5aaTjw/wLb5PUahUMjC9nX9HfcMAZtHMY4Pm+UZosBmsWLFisIZZ5xRqFevXuH555/PrXfRRRcVGjVqVJg9e3ZF2W9+85tC+l81YsSISnUHDBiQld93331rbXvevHmFVq1aFUpLSwt//etf11r3//7v/7JXuSVLlhQWL15cpd4111yTtf3000+v9XrA1j9G/OMf/6hSlsaKnXbaqXDMMcesdYzY0D4BtWd88AwB2+74MHXq1MLPf/7zKq903qmnnpp9PHfu3Er1//a3v1W6xsknn1xo3rx5pXHiRz/6UXaNF198cYP/LIBtY3xYtGhRYenSpZWu+cUXXxTOOeec7BpvvfXWBv9ZAFvX9xgLFiyoUnbvvfdm5w4bNqxSuWcI2PyKdXxYtBmeIUrSfzY9kmNdrrzyyrj77ruzRPfss8+ucrx3797Z+5w5c+Kggw6KJk2aZBvuffrppzF06NDYa6+94s0336yYHnnXXXdle46kPUwGDBhQ5XpnnXVW7LDDDtnHKQlOSzymDf0OPPDASvV23333OPHEEys+32effbL38mUY0nvqz9e+9rVo165dVpb2Skmz29JMt+effz7b9wQo3jEijQMnnHBCNlak5dv+8pe/ZBt2puVX0m+MHHnkkbljxIb0Cahd44NnCNi2x4c1KSkpyTYnHz58eJXy9NunY8eOrSh7++23szEk/ZZr2hT873//e9xxxx1x7LHHZmMFUDvHh/Senh3Sq3Xr1tls+J///Ocxbty4bKy47777NvnPBtiyY8T2228f55xzTvYzyoYNG8Zrr70WTzzxRHz5y1/O/q6n4+U8Q8DmV6zjw9jN8QyxyXEc66Vr165ZApr3WtW7775bOOmkkwrbb799oUmTJoVevXoV5s+fX6nO+eefv9brrToDbW31Ur9Wtffee2evch999FGhd+/ehdatW2f9adCgQaGsrKwwZMiQwvLly2vszwtqmy05Rlx//fWFQ0tI9owAAAFTSURBVA89tLDzzjtnv3WSZrGee+65hXfeeadKP1cfIzakT0DtGh88Q8C2PT6sSapzySWXrLF89e87kldffbVw5JFHFho2bFho2rRpdu6aZrQCtWd8mDlzZqFnz56FffbZJxsbUp8OOeSQwg9/+MPst8uB4h8jLrzwwsIBBxyQrXZRv3797PuFa6+9do3PAJ4hYPMr1vFh5mZ4hjAzDQAAAAAAAHJYWwcAAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACCHMA0AAAAAAAByCNMAAAAAAAAghzANAAAAAAAAcgjTAAAAAAAAIIcwDQAAAAAAAHII0wAAAAAAACDW7P8DicOTpfEF7esAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 5 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:38:36.349765Z", - "start_time": "2025-09-29T15:38:35.849216Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "ym_percent(ym_per, \"%click\")", "id": "4de618933c154f86", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAAByEAAAaiCAYAAACFK4SgAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeYVNX9P/5DBxuigoqCBTt2RURj7yV27LHGrrFrSOyxG3tvwRpLbIm9YsUSjViwV1BUsKJSFJz/8zn/3+x3dnd2WZZZFtjX63nGnb1z5865dfC+93NOq0KhUEgAAAAAAAAAFdK6UgsCAAAAAAAACEJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAADUa+21106tWrXKjyeffLLsPCeddFLVPPG8qRU/Kx7Q0s43AACA6YEQEgAAmtDrr7+edt5559S9e/fUvn37/HOXXXZJb775ZoOX8c4776QOHTrkUOLss89u0vYCAAAAVIIQEgAAmsi//vWvtPLKK6dbbrklffHFF+nXX3/NP//5z3+mFVdcMd1xxx0NWs5BBx2Ufvnll9S7d+90+OGHN3m7gcrYY489qqoar7vuuuZuDgAAwFQlhAQAgCbw/vvvp9133z0Hj2G11VZL++yzT+rXr1/+PabH6zFffSLAfOKJJ/LzSy+9NLVr124qtB4AAABgygghAQCgCUS3qWPHjq16/txzz6WrrroqDR48OJ166ql5+pgxY9I555xT5zJGjx6djjzyyPx81113TWuttVaaVsU4kIVCIT+mxpiQAAAAwLRNCAkAAE3g/vvvzz8XXnjhdMQRR1R77dhjj00LLrhgtfnKOeGEE3L3rZ07d05///vfm7jFAAAAAJUjhAQAgAr74YcfcngYonqxTZs21V5v27ZtWnPNNfPzESNG5IrHml577bV0ySWX5OdROTn33HNPlbYDAAAAVIIQEgAAKuzHH3+sel5XeDjvvPOWnT9El6YHHnhgmjhxYlpxxRXz8yn10Ucf5W5SI/ycb775UseOHdNMM82UKzW32mqrdPHFF6eRI0c2evmx7FatWuVHQ7tjff3119Of//zn1Ldv3zTPPPOk9u3bp1lmmSUtvvjiaYcddkjXXnttDnSnxG+//ZYOOuigqrbF8h9++OFGLeuTTz6pWk6xkjU8/vjjaaeddkq9evVKnTp1Sl27dk1rrLFGDpHHjx8/WZ/x888/p8svvzz9/ve/TwsssEDeR7POOmtadNFF01577VU1Pmh9rrvuuqp27rHHHnlaHEu33npr2nLLLfM+j3bG6/fcc08jtkSqWn48ioYMGZIOOOCAvP9iO8cj9u1ll12WJkyYUGsZL7/8cm7fkksumWaeeeY055xzpnXWWSfdfPPNk9WWGF914MCB+TiObRbrNttss+V27L333unRRx9t0HJinxbXKfZ1+Oyzz9Lxxx+flltuuTT77LPndi6xxBLpkEMOSZ9++ukkl3X99ddXTdtzzz2rbbfJOV++/fbbdNZZZ6U+ffqkueaaK69j7MdYvzfffLNB6wcAADDVFQAAgIr6/vvvC/FP7XjsueeeZefZY489quYZPXp0tdeuueaaPL1169aFF154YYraMm7cuMJBBx1UaNu2bdXn1fVo165drbaEtdZaq2qeQYMGlf2cE088sWqeeF6f7777rrDDDjsUWrVqNck2zT333GWXUTpPXcaPH1/Yfvvtq+abY445Cs8//3yhsT7++OOqZS2wwAKFX375pbDvvvvW2/4ll1yy8O677zZo+bfffnthnnnmmeQ22XzzzfMxVpeBAwdWzbv77rsXPv/888Lvfve7ssu6++67G7Utam7/s846q9CmTZs627zRRhvlYzFMmDChcMABB9S7jjvuuGOeb1Li/OjVq9ckt9kGG2xQGDVqVL3Lin1anD/2dWybzp0717nMTp06Fe67775JLmtSj5rnS83z7dlnny3MN998db4/tvtVV101GXsPAABg6mg79WNPAACYscUYjlHpGF2yPvvss7kar3Xr/+uEJKrSnnnmmfw8qhKj0q204imqA8Mf//jHXEnWWD/99FPacMMN0/PPP181LSrrVl999dSjR49ccfn555+nV155JX3zzTe5oiza1pSi+9l11103vfvuu1XTosIs2hTbLNowbNiw3KbopnbcuHGNXvett946PfbYY1Xb+ZFHHklLLbVUxdYlxva86qqr8vNll102Lb/88nmbRtvfeuutPP3tt9/O6xv7ILZ5Xc4///x05JFH5veHqOTr169fmn/++fM+GTp0aK4cjNfvu+++tPbaa6fnnnsu78/6RCXmFltskdsU3QCvttpquWIzpv/vf/+ryHa48sor87Yo3Q7RBfGLL75YtR2i+vRPf/pTnjcqe2O7xTkRlX1RCRnnSJwTH3/8cZ4/qjaj+rB4LpTz9NNPp0022SSNGTMm/x5Vhausskrex7/88kt64YUX0ocffphfi2rIOMbifIxK1UmJ42b//ffP275nz555X8Q+ifY9+eSTubJz7Nixafvtt8+ViAsttFC19+++++75nIoq2XfeeSdPW2+99XIVZU3R5rrEsgcMGJCP527duuUK26gYjfM2qmKjDdHGaOsyyyyTVl111UmuGwAAwFQzlcJOAABoUfbee++qSqULL7yw2mvnnntu1WtRSVdqn332ydPnmmuuwjfffDNFbYhqw9JqqZNPPrnw008/1Zpv4sSJhSeeeKKw5ZZblq2wq1Ql5K+//lpYffXVq1WSXXLJJbmisFwV43/+85/CVlttNdmVkFHx1qdPn6rXF1988cKnn35amFKllZBRNRo/55xzzsLDDz9ca95o+2yzzVatErAujz32WK56jfnat29fOPPMMws///xzrfleffXVwlJLLVW1zKgmnFQlZLECNvZhtL+mYnXi5Crd/h06dMgVnOWOjb///e/V2nLeeedVVYgOGTKk2rxR+XjYYYdVzT/LLLOUPV7Dt99+W606cNFFFy28/PLLtea76aab8nFWnO/3v/99netUWr0Y6zTzzDMXbrzxxsJvv/1Wbb4333yz2mfXVe0cohK1OF/sl4YoPd+iHXHuxjUjzp9Sw4YNKyy99NJV866zzjoNWj4AAMDUIoQEAIAm8Pbbb+cAoRgQrLHGGjlwLO0WM8KR9957r1rXksUuSq+99top+vxHH320WlB0yy23NHpZlQohr7766moh3tNPP93oNtUVQkbYGKFj8bWVV165MHLkyEIllIaQ8Yjg8LnnnmvwPnj88cfLBsARoBXnueuuu+ptwxdffJG7qC1uw+HDh9cbQsZjmWWWKYwZM6ZQSaXL79ixYw7m6rL++utXm79bt26Fr776quy8EUSW7r/bbrut7HwnnHBC1TxdunTJgVxdYpuWfv5TTz01yRAyzsMHH3ywzmVGN6ylYWnNgLBSIWQ8rrzyyjrnfeONN6quGfFzxIgRDfoMAACAqeH/+oQCAAAqJrpdvOaaa3K3lCG6mowuKKM7yNCuXbt0/fXXp0UXXTT/Hl0qRjeVke9El5l77rlnrWVG14tff/117rpyUs4999yq5zvssEPacccdU3MrbdMRRxyRu5aspOiyNLZdsavX6P5y0KBBDep+szF22WWX/Hl1WX/99dM222xT9fvVV19da5577703vf/++/n5VlttlbuQrc8888yTDjvssPw8uq69/fbbJ9nOs846K3Xq1Ck1lf322y/17t27ztd32mmnar//5S9/yV2LlhPnS3RxWvTSSy/VmifOkWI3uOH444+vt6vb2KbRbWvR5ZdfniZl8803TxtvvHGdr2+66aZ5X4ToKjW63W0K0cXqvvvuW+frSy+9dO7StrhdosteAACAaYUQEgAAmsiuu+6aQ5QIVSKwiOAxxj2MUCbG6Ovfv3+1YCTG6IsQ5rLLLsvj24UIHOP3CHli/L8I1GIMyQgWi+FVTTHeX4xbV3TIIYek5vbpp59WjY0XDj744IouP8ZcjFAzxsoL2223XXrggQfSLLPMkprKbrvtNsl5YmzAoghEa4o2Fu28884N+twYY7KoGGrXpUuXLnlc0KYU23pSQdrkzB/BWlFxjMhSEfh9+eWX+XmcLw3ZDzG+alHpuVGX0nOznDg/Y8zKok8++SQ1hUm1I6ywwgpN3g4AAIDGaNuodwEAAA2y4oorpttuu63eeb766qt03HHHVYVzxXAjKpsisKxZ7TZmzJg87eGHH06PPPJIWmWVVaq9PmTIkDRu3Lj8PILLvn37pub2wgsvVD2P6s/555+/YsuOIC/Cmtguxcq8CG5bt266v7mMEKoh27Vfv37V9vMXX3yRg+jS8LTozjvvTE899dQkl/nDDz9UPR8+fHi98y6//PJV1bhNpTQ0rCsILercuXOab7756p1/jjnmqHo+evToWq+/+uqrVc8XX3zxNOecc06yjauvvnrV8wgwR4wYkbp3797g4LSc0s8t185KmFbaAQAA0BhCSAAAaGZHHXVUDpYinDrllFOqpl966aVVAWRUPp555pm5ovL+++9Pe++9d35PTH/rrbeqdbcZYVdRdFPZtm3z/7O/tE0LL7xwRZe95ZZbpgkTJuTnf/7zn9MZZ5yRmloEa1GROilRudqxY8eqUHjUqFHVQsgIw4omFVaX8913303y85taBIv1KT3+JjVvzfmjy9maYhsWLbDAAg1q49xzz11tP0S3xvWFkA1pZ1Q219fOSphW2gEAANAYumMFAIBmFJVvN910U9WYibPNNltVFeTZZ5+dn/fq1SvdfPPNacEFF8xByrbbbpvOOeecqu4Xb7nllmrL/PHHH6ueN2V3pJOjKdtUGsK89957UyWIiQrThpp55pnLboeaVY2NUQxf69KUY0EWFbsOrvS8dYkxGMtt2ynZD03RzkqYVtoBAADQGEJIAABoJhGWHXjggVXj/EXXq6Xj3hW72oyqx5pdasY4eMVQJbplLVVaoVca2DSnpmzTfffdVxW23XXXXWnHHXds8iCy2PVrQ/z8889Vz2tWT5YGYzEmaITPk/NoiWMAlobYpdt2SvYDAAAAlSeEBACAZnL++efnrlTbt2+fu14tFRV9RYsttlit93bo0KGqK8rSeYtdTxZFkDmparmpobRNH3/8cUWXHQFuuSCyKdc7ukFtSJga3X4WuwANc801V53bJcYqZNJKu5gdNmxYg94zcuTIevcDAAAAlSeEBACAZvDZZ59Vjf945JFHpiWWWKLOqq26uv4sVtHVDMOWX3753G1rsWLvxRdfTM1t1VVXrXoeoWmsf6WDyHvvvbdaEBnjZTZVEBlViA3Zrs8//3y1wLHmOIR9+/atev7cc89VuJUzphVWWKHq+TvvvJO+/fbbSb6ndNvGuKr1jQdZSbpTBQAAWjIhJAAANINDDz00B41RzXjcccfVer20u8i6Arvi9OI4kqVVkuuss07V75dccklqbrGeSy65ZNXvNSs/K2G99darFUQ2ZUXkjTfeOMl5brjhhqrnpfukaPPNN696/o9//KNatR7lxXEUQWKYOHFi1Ziq9bn22mvr3Q9NpfjHAGFqjFUKAAAwLRFCAgDAVPbQQw/lgCxceOGFZSsdSwO7+++/v9brr7zySvriiy/y86WWWqrW60cccUTV81tvvTU/mltpm84999z0zDPPNHkQeeeddzZZEBnhV33VkIMGDcqfX/THP/6x1jzbbrttWmSRRfLz2J8xRmhUWTZEVMBOzpiIM4qoLtx3332rfo+K4s8//7zO+f/zn/9UO4f233//NLXMOeecVc/rayMAAMCMSAgJAABTUVS6HXLIIfn5Zpttlrbccsuy8y266KJp8cUXz88jVHv00UerLePoo48uW01XtP7666f+/ftX/b7rrrvmsCa6Z63pt99+y4HZ1ltvnX744YfUVPbYY4+02mqrVVWFbbzxxumyyy4rWyH2yy+/5PWONjUmiIzgqSmDyHbt2uUqvNj2jz32WK3XI/SKthcDxQ022CC3q6Y2bdqkyy+/PP8MAwcOzMfF22+/XednDxkyJB177LGpR48eFR9fc3px2GGHpfnmmy8//+abb/K2je1SU4TvO+20U9Xvv//979Oaa6451dq59NJLVz3/97//nY9rAACAlqJtczcAAABakrPOOit98MEHOSC7+OKL6533+OOPz+FhhISbbLJJDu2iG8onnniiKnyKkCOq6cq55ppr0qeffppeeumlHJideOKJ6eyzz06rr756DrAiIIvqrJdffjkHOaGhVXiN0bZt23Tbbbfl8Rvff//9HIgedNBB6a9//Wtu07zzzpuDwmhzVHqOHj06de7cuVGfFSFsBJFbbLFFGjt2bA4iI4y65ZZbcjumVIwpGCHjBRdckAPG5ZZbLo/FGdsv2j506NCqeWO9rr766nrbGkHkAQcckPfTgw8+mKtlo8J12WWXzd3txraKSsnXXnstjRo1KrV0Xbp0Sf/85z/zeRHb5t13300rrrhiHmMztluEfS+88EI+10qD/dJuWaeGaF+c63EMRkgaFc5rr712mn322avGi9xwww3zAwAAYEYjhAQAgKnkww8/TGeeeWZ+PmDAgLTQQgvVO/8uu+ySA8SLLrooh1M1u2WNIOyOO+6oM1SL8OrJJ5/M40/GeIOxjOi+85FHHqlz/LpiRV5TmX/++XM4FF2T3n333Xna999/X7bL2TDLLLM0+rMi3Ivqs6g2jRAotlWoVBAZge6PP/6Yg60IB+NRU1Sz3nPPPXlMzPrss88+uVvW/fbbLwe0EWZGkFkaZtbUu3fvNMccc6SWKioaH3/88XyefPTRR3mbxbEVj3LHQoSWXbt2naptjBD9vPPOq+pmN9oZj5rHuBASAACYEemOFQAAppLohjW6Uo2KrGOOOaZB74kxIyOsixAlqr/at2+fevXqlcdXjMqqYpetdYkqrKuuuiq9+eabOfhcZZVVUrdu3XIIF2NRxrKioi+6RY2qyFlnnTU1tQjOYkzMCFijW82oIJxrrrlyABqBzBJLLJG7T73uuutyhduUiCrFCCKLXbNGEBkVkZXomjW6ZI1q06hajK5vF1xwwdShQ4e8flHZGeFxBJOxPg2xzjrr5G5Yo4177rlnrpqLfR7bJfZLhJTR/evpp5+eXn311bxPI4huyVZdddW8zSIIjq5Wo8I39kEcR7G9ogvghx9+OHdnPLUDyNIxKGP80z/84Q9pscUWSzPPPHNVFSQAAMCMrFWhKftbAgAAmEF88sknVdWrUdkYvwMAAADlqYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARbUqFAqFyi4SAAAAAAAAaMlUQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCi2lZ2cQAAAAAAAMwICoVCGj16dBo/fnxq1apVczeHZtC5c+fUvn37Rr23VSGOIAAAAAAAAPh/Ij766quv0uyzz546dOgghGyBfvvttzRy5Mg099xzN2r/CyEBAAAAAACo5ocffsjhY8eOHZu7KTSjX375Jf3888+pS5cuk/1eY0ICAAAAAABQTXTBGiEkLVv79u3ThAkTGvVeISQAAAAAAADVRPebumBlSgghAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAACgWQwaNChtu+22ab755svjD3bp0iUtvvjiqX///umSSy5JP/zwQ3M3kUZqVSgUCo19MwAAAAAAADOeUaNGpa5duzbpZ5xyyinpxBNPzM+XXHLJtMQSS6R27dqld999N73xxhvpt99+S88//3xaddVVm7QdNM2x0Hay3wEAAAAAAABT4JVXXkknnXRSDh1vv/32tNVWW1V7/csvv0w33XRTmn322ZutjUwZISQAAAAAAABT1V133ZWis87tt9++VgAZ5plnnnTUUUc1S9uoDGNCAgAAAAAAMNW7+AyT283nmDFj0hlnnJFWWGGFNMsss+RHdNd6/fXXl53/mWeeSQcffHBadtll83iTnTp1yt2+/vnPf07ff/992fcMHjw4B6MLLLBA6tChQw5EV1lllfyen376qdb8N954Y/rd736XZptttjTTTDPlzzrjjDPSuHHjas27xx57pFatWqUnn3wyPf3002nddddNs846a37vZpttlt56661a74mw9uabb86fMffcc6eOHTumHj16pPXXXz9deumlaVplTEgAAAAAAACm6piQf/vb39IJJ5yQw7SXX345devWbZLvGTlyZNpggw3S66+/noPBFVdcMQd0ERr+8MMPOWy8+OKLq70nAsrXXnstB4PxWREM/u9//0tffPFF6t27d3rhhRdykFl077335gAylhvB40ILLZTDyvfffz99+OGH6eOPP04LLrhg1fz77bdfuuqqq3IwGIFihJARMH799depX79+6bHHHsvTSkPICEyPOOKIdOGFF6aVV145h51DhgxJ7733XppzzjnTm2++mdev6Oijj05///vfcyC65pprprnmmit3VxvzxbI/+eSTNC0eC0JIAAAAAAAApmoI+dFHH6Wll146jR07NlcCbrPNNrnSb6WVVsqBYZs2bWq9JyoFH3jggXTooYems846K4dy4auvvkqbb755DjMffPDBtPHGG1e9J35fbbXVUufOnaumjR8/Pv3pT3/K4eHJJ5+cw9CitdZaK1co3nHHHWnbbbet9vn//e9/cxVltDfceeedabvttkvdu3fPweOiiy6ap0cguvnmm6dnn302HXnkkTlArBlCtm7dOr+/2BXtxIkT0w477JCnHX/88emUU07J0yM0jXEx27dvn8PUCEWLJkyYkJ5//vm0xhprpKYkhAQAAAAAAGC6CCHD448/nvbcc880fPjwatMjdNtpp51yGDfvvPPmaVEpGF2w9unTJ1cvRohX6tVXX82VkVtssUX697//PcnPjvAzukCNwPOVV16pmr7UUkult99+O1c/lgaX5RQDyyuvvDLtu+++1V57/fXX0/LLL59mnnnmvC2jUrI0hNxll13STTfdVO090Y6ojIzlRqhZrP6MLlhjWbGO09OxYExIAAAAAAAAprr11lsvffDBB+muu+5K+++/fw4R27ZtmwPAyy+/PAdv7777bp73kUceyT+jcrBmABmKY0S+9NJLtV77/PPP0xVXXJEOO+ywtNdee+Ug8IADDsjVhdHNaqmoxAx/+MMfcuXjb7/9Vrbtv/76aw5DQwSKNS277LL5EWNIRoBa04Ybblhr2mKLLZZ/RlexRdFN7fzzz5+XEWNSRgXp9EIICQAAAAAAQLOIIHDrrbfOoWNUAkbVXTzv0qVLrgKMcR5DcdzDv/71r6lVq1ZlHxH4xViMpc4777zchWmEjjEG48CBA3MlYjzGjBmTfvzxx2rzn3766Wm55ZbLY0PGmJAx/mJUV15zzTW5a9Sib775Jv3yyy/59ah2LGfB/zd2ZISgNUWwWFOxm9foLrZUtDUqEaML2l69euXl7r777rmr2WlZ2+ZuAAAAAAAAABS7Yo2qyBhnccstt0yDBg3KYWGxIjHGjYwgriGiUjHGZIxuVSOAXHvttdM888xTNZZkfEZp1WHo0aNHHlvyiSeeSPfdd1966qmnciAZj7PPPjuPwTjnnHM26PNbtWpV52vlqjnrsu666+aK0WjPQw89lLtqveGGG/Ijxq2M8SunRUJIAAAAAAAApikRvIWJEyfm7lmLlYPRHWsEiw1x991355+nnXZarhysOSbkl19+WfZ90SVsdJda7DL1008/zd24RjAZ1YgRRkYQGVWcUXn5888/l62G/OT/VW/ON998aUrF+JU777xzfhQD1v79+6c777wzPfDAA2nTTTdN0xrdsQIAAAAAADBVFQqFel+Pyr8QQV90ebrBBhtUCxYb4rvvvquz69N//etfk2xD0QILLJCOPfbY/PzNN9/MP9u1a5dWXXXV/PzWW2+t9Z4333wzvfbaa3mcyhjbstLis2PcytI2TWuEkAAAAAAAAExVxx9/fDr66KPThx9+WOu1GENxv/32y89jPMYIIvv27ZuDyOeeey4ddNBBafTo0bXeF6FfdFdatNhii+Wf1157bfr111+rpr/11ltVoWJN559/ftkKyag2LHbXWnTIIYfknyeddFL66KOPqqbHOJMHH3xwDjljPTp27Jgaa9iwYem6667LXdKWivEpo6vamm2alrQqNDTmBQAAAAAAoEUYNWpU6tq1a5Mt/7DDDsvjNBbDwqWWWiqHdZ999ll68cUXc2i4yCKL5PEPi92Zjhw5Mm288cbp1VdfzWNHRoVhjOv4ww8/pNdffz0NHz48HXrooemCCy7I83/zzTdp6aWXzqHiQgstlPr06ZO+/fbbPM5jdOv60ksv5a5WS6OyWG6EiMstt1xadNFF82sRbr733ntpjjnmyN2gxvSiCBmvuuqq1KlTp9yF7EwzzZTbPGrUqFyt+Pjjj+dpRXvssUe6/vrrc4AYY1SWG0cyKi+LXbkOGTIkrbDCCnkZK6+8cq7qjO5fBw8enD8jpj377LNV41xOS8eCEBIAAAAAAICpGkLGWIpRtfjwww/nkG/EiBE5TIyxD5dccsm05ZZbpgMPPLDWWItRAXj11VfnLlCHDh2ax3ace+6508ILL5w233zztOOOO1brfjVCzah6jOAxQskII2N8yKOOOir16tWrVgh544035na98soruU3FSsMIP4844oiy4zvGe6644oochE6YMCEvd+edd06HH354DidLTW4IGYForG+EmVHBGYFqbJNYj1122SXtu+++1ULOpiCEBAAAAAAAYLoIIZnxjwVjQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAANIGTTjoptWrVKrVEQkgAAAAAAABalDfeeCNtt912aYEFFkgdO3ZM8803X9pggw3SxRdf3NxNm2G0KhQKheZuBAAAAAAAANOOUaNGpa5du5Z97aS/nZB++Pm71Jw6z9wlnXT8KY167+DBg9M666yTevbsmXbfffc0zzzzpOHDh6cXXnghffjhh+mDDz6oWDsnTJiQHxF0zojHQn3aNklrAAAAAAAAmCFFANn/gI2btQ3/uvyhRr/3tNNOS507d07//e9/0+yzz17ttZEjR1agdSn9/PPPaeaZZ05t27bNj5ZId6wAAAAAAAC0GFHt2Lt371oBZOjWrVvV8xjL8eCDD04333xzWnzxxXM140orrZSefvrpsuM+vvXWW2nnnXdOXbp0Sb/73e+qvVaquNx77rknLb300qlDhw65PQ89VDtYffLJJ9PKK6+cP7tXr17pyiuvnG7GmWyZ0SsAAAAAAAAtUowD+fzzz6c333wzh4D1eeqpp9Jtt92W/vSnP+Ww8LLLLksbb7xxeumll2q9t3///mnRRRdNp59+eprUaIjPPvtsuuuuu9KBBx6YZp111nTRRRelbbfdNg0bNizNOeeceZ5XX301f9a8886bTj755DRx4sR0yimnNKpr1OYghAQAAAAAAKDFOOqoo9Imm2ySll9++bTKKqukNdZYI6233np5nMh27dpVmzeCypdffjlXQIYdd9wxV0WecMIJOUQstdxyy6V//vOfDWrD22+/nSsno7oxxGfH+2+55ZZcJRlOPPHE1KZNm/Tcc8+l7t2752nbb799WnLJJdP0QHesAAAAAAAAtBgbbLBBroTcYost0muvvZbOPvvstNFGG6X55psv/ec//6k2b79+/aoCyNCzZ8+05ZZbpocffjhXJpbaf//9G9yG9ddfvyqADMsuu2yabbbZ0kcffZR/j2U/9thjaauttqoKIMMiiyySA9TpgRASAAAAAACAFqVPnz65kvG7777LXasOGDAg/fjjj2m77bbLFYpF0b1qTYsttlgaM2ZMGjVqVLXpCy20UIM/v2fPnrWmxViS0Z4wcuTINHbs2Bw61lRu2rRICAkAAAAAAECL1L59+xxIxjiOl19+efr111/Tv/71r0Ytq1OnTg2et02bNmWnT2osyemJEBIAAAAAAIAWb+WVV84/v/jii6pp77//fq353nvvvTTTTDOlrl27NllbunXrljp27Jg++OCDWq+VmzYtEkICAAAAAADQYgwaNKhsxeEDDzyQfy6++OJV02LsyP/9739Vvw8fPjz9+9//ThtuuGGd1YyV0KZNmzxu5D333JNGjBhRLYB88MEH0/SgbXM3AAAAAAAAAKaWQw45JI/puPXWW6clllgi/fLLL2nw4MHptttuSwsuuGDac889q+Zdeuml00YbbZT+9Kc/pQ4dOqTLLrssTz/55JObvJ0nnXRSeuSRR9Lqq6+eDjjggDRx4sR0ySWX5DYNGTIkTeuEkAAAAAAAADRY55m7pH9d/lCzt6Gx/v73v+dxH6Py8aqrrsohZM+ePdOBBx6YjjvuuDT77LNXzbvWWmulfv365dBx2LBhaamllkrXXXddWnbZZVNTW2mllXLV41FHHZWOP/741KNHj3TKKaekt99+O73zzjtpWteqMCONcAkAAAAAAMAUGzVqVJOOeTg9aNWqVTrooINy9eG0ZKuttkpDhw4tO17ltHQsGBMSAAAAAAAApkFjx46t9nsEj1HBufbaa6dpne5YAQAAAAAAYBq08MILpz322CP//PTTT9Pll1+e2rdvn4455pg0rRNCAgAAAAAAwDRo4403Trfcckv68ssvU4cOHfL4lKeffnpadNFF07TOmJAAAAAAAABUY0xIiowJCQAAAAAAAEwThJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAFqUN954I2233XZpgQUWSB07dkzzzTdf2mCDDdLFF1/c3E2bYbQqFAqF5m4EAAAAAAAA045Ro0alrl27ln3tjDOOSePGfpWaU8dOc6cBA85u1HsHDx6c1llnndSzZ8+0++67p3nmmScNHz48vfDCC+nDDz9MH3zwQcXbO6MeC/Vp2yStAQAAAAAAYIYUAeQJxy3UrG045dSPG/3e0047LXXu3Dn997//TbPPPnu110aOHJlamjFjxqSZZpqp4svVHSsAAAAAAAAtRlQ79u7du1YAGbp165Z/fvLJJ6lVq1bpuuuuqzVPTD/ppJOqfo/nMe29995Lu+66aw44u3btmo4//vgUHZJGleWWW26ZZptttlx1ee6551Zb3pNPPpnff/vtt6eTTz45dw0766yz5u5if/jhhzR+/Ph02GGH5bbNMsssac8998zTarrpppvSSiutlDp16pTmmGOOtOOOO+bPLrX22munpZdeOr3yyitpzTXXzOHjX/7yl9QUVEICAAAAAADQYsQ4kM8//3x68803cyBXKTvssENacskl05lnnpnuv//+dOqpp+Yw8Morr0zrrrtuOuuss9LNN9+cjjrqqNSnT58cApY644wzcoD45z//OXcJG+NTtmvXLrVu3Tp99913OeyMLmMjGF1ooYXSCSecUK26M0LP7bffPv3xj3/MXajG++MzXn311WqB6zfffJM22WSTHFJGaDr33HOnpiCEBAAAAAAAoMWIEDBCuOWXXz6tssoqaY011kjrrbdeHicyQr/GimVF4Bj23XfftOCCC6Yjjzwyh4vHHntsnr7TTjul7t27p3/84x+1QsgJEyakp556qqoNESTeeuutaeONN04PPPBAnnbggQfmgDLeXwwhP/3003TiiSfm0LO0qnGbbbZJK6ywQrrsssuqTf/yyy/TFVdckfbbb7/UlHTHCgAAAAAAQIuxwQYb5ErILbbYIr322mvp7LPPThtttFHuBvU///lPo5cbFYhFbdq0SSuvvHLujnXvvfeumh4ViYsvvnj66KOPar1/t912qxaC9u3bN79/r732qjZfTI9uViO0DHfddVf67bffchXk119/XfWIrl8XXXTRNGjQoGrv79ChQ+7StamphAQAAAAAAKBFie5QI7z75ZdfchB59913p/PPPz+PwzhkyJA8VuLk6tmzZ7XfO3funDp27JjmmmuuWtOjS9SGvD/06NGj1vQIHWO8yDnnnDO9//77OayMwLGcmtWdEba2b98+NTUhJAAAAAAAAC1ShHERSMZjscUWyxWC//rXv9Iee+xRdv6JEyfWuayofmzItBChYUPnndQyIpBs1apVevDBB8vOO8sss1T7PcadnBqEkAAAAAAAALR40X1q+OKLL1KXLl3y8++//77aPDH+4rSmV69eOZBcaKGFcpA6rTAmJAAAAAAAAC1GjJFYrhLxgQceyD9jzMbZZpstd6P69NNPV5vnsssuS9OabbbZJldAnnzyybXWK34v1/Xr1KASEgAAAAAAgBbjkEMOSWPGjElbb711WmKJJfK4kIMHD0633XZbWnDBBXOXrOGPf/xjOvPMM/PPqJKMQPK9995L02Il5KmnnpoGDBiQPvnkk7TVVlulWWedNX388cd5rMt99903HXXUUVO9XUJIAAAAAAAAWoy///3vedzHqHy86qqrcgjZs2fPdOCBB6bjjjsuzT777Hm+E044IY0aNSrdcccd6fbbb0+bbLJJHnexW7duaVrz5z//OXfFev755+eKyNCjR4+04YYbpi222KJZ2tSqUK7eFAAAAAAAgBYrwreuXbuWfe2MM45J48Z+lZpTx05zpwEDzm7WNrQUo+o5FuojhAQAAAAAAKAiwRMznlGNPBZaN0lrAAAAAAAAgBZLCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAC3SZZddllq1apX69u07Rct54IEH0kknnVSxds0IWhUKhUJzNwIAAAAAAIBpx6hRo1LXrl3LvnbaMQenMV99nJrTTHMvlP569iVTvJzVV189jRgxIn3yySfp/fffT4ssskijlnPwwQenSy+9NM2Isduoeo6F+rRtktYAAAAAAAAwQ4oA8sienzdrG84dNuXL+Pjjj9PgwYPTXXfdlfbbb7908803pxNPPLESzUN3rAAAAAAAALREETp26dIlbbbZZmm77bbLv5d68sknc1et8bNUVE3G9Ouuuy7/vscee+QqyBDTi4/JWUZxObPMMksaNmxY2nzzzfPz+eabr2rZb7zxRlp33XXTzDPPnBZYYIH0z3/+s9oyY1mxzOeeey4dccQRuXox5t16661zNePUJoQEAAAAAACgxYnQcZtttknt27dPO+20U+6O9b///e9kLyeqKDfYYIP8/MYbb6x6NMbEiRPTJptsknr06JHOPvvstOCCC+auXiNg3HjjjdPKK6+czjrrrDTrrLOm3XbbLVdz1nTIIYek1157LVd1HnDAAenee+/Ny5jadMcKAAAAAABAi/LKK6+kd955J1188cX599/97ndp/vnnz8Fknz59JmtZ/fr1S4sttlh69NFH06677jpF7Ro3blxexoABA/LvO++8c+revXvaa6+90i233JJ22GGHPD1CzyWWWCJdf/316aSTTqq2jDnnnDM98sgjVdWYv/32W7rooovSDz/8kDp37pymFpWQAAAAAAAAtCgRNs4999xpnXXWyb9HYBcB36233pqrEZvTH//4x6rns88+e1p88cVzt6rbb7991fSYFq999NFHtd6/7777VgWQYY011sjr9Omnn6apSQgJANAEog//+Mde9O8P/J8vv/wy7b777vmvS9u0aZPPk++//36qfX5xfIzSMTeYPhTHS4nr6+RYe+21q/3PN/+/6NIpHjOylrCO1M+/xwCAukQgF2FjBJDRnekHH3yQH3379k1fffVVevzxx5utbR07dsxjOZaK6sX4/+ia/28T07/77rtay+jZs2e132Pcy1Bu3qYkhAQAWqzSgcLjEYHIXHPNlQf4rjmwd3OpRGASXYvEWABLL710/sdpjHMQ3XjEoOvXXnttGj9+fGrp23lqie5Ryg1G39JuCMe4GGuttVY67rjj8vgU8T9YLYEAdNJi+0RoOCOHDNNbe5tin1WKgBnfqwBAYz3xxBPpiy++yEHkoosuWvUoVhpGlWSo69+bk1Mp2WoylxH3TSZneqFQmKJ5m5IxIQGAFi9CkPDrr7/mwO7f//53GjRoUHr55ZfTeeed16hlnnHGGenPf/5zmm+++VJzOuWUU9LJJ5+c+/6P8QmiAm2WWWbJf9UXN+yie4/LL788r+v0uJ2Zvvzyyy95fIz111+/6n/opratt946rbrqqmneeedtls+n8eJ6+vbbb0/2+CU33HBDGjNmTJO1i2lXc/71OgAA07b4f9Ju3bqlSy+9tNZrd911V7r77rvTFVdcUVVBWLMHn3LdmtYVNnaZjGXMaISQAECLV3Pw7rhpGYN7X3DBBelPf/pTo7pyi4CjuUOO008/PQd/PXr0SP/6179ylyI13Xfffencc8+dbrcz019XrBGIRyVuc4kAa3JDLKYN7dq1S0ssscRkv69mN0S0HL169WruJgAAMA0aO3ZsDhr79++ftttuu1qvx/+z3nLLLek///lP2njjjXNV4dNPP5222mqrqnkuu+yyWu+LMRuLYWOM1Vi0wAILNHgZMxrdsQIA1LDeeuvlG93RRcV///vfqumvvPJK2nbbbfNfynXo0CH/I/LAAw/M3Xc0pLu90vHM4vmOO+6YuyWNrihXXnnlHAjW7GZuzz33zM/jZ2mXppPqxi9ej9Avbto/8MADZQPIsPnmm6eHHnooTUvb+bPPPksHH3xwWnjhhfN2nnPOOdMWW2xRbZ5y3bBF166xnlHpWRpoRgXUWWedlbfxrLPOml9fcsklc/AZFaGlYt6oYl1++eXz/zzEvFFBGv/zUVN8Znx2tGHIkCG5e9v4n4yZZpopdzU6ePDgavNHm6IqNcSYE6X7s+i9997LFbTR1hj/oXicxYDysV3Kie50ow3F7bXQQgvlbk5jel3dJE6YMCH/z05UBM4222y5zSussEK65JJLckg4Od5///2022675Sq1Yle/8XtMr7n+sS7h+uuvr1r3hozvV1yP2F977bVXmnvuufP+WW211dIzzzyT5/n555/T0UcfnT8jtkPv3r1z+N7QLlGLY8cVlxPBVSxnkUUWycdPzS5rSvd/Q8aia+j5PLn7Jv6nOM6l+KOHaG9s/zj+Gvo/s6Xb4/7778/bNLZt/KVu/M94zf1YFNe9gw46KK9j7Pc4XrfZZpt8nSxXAXvRRRelFVdcMS831inet+WWW6bHHnusWjvCU089VW37FLdxuTEh4/c4nkIc+8X31Nz2pedZdLcUvx9++OFl1y3OnWhnbNPYH6XiWhDnb5zrce2Oa8mpp57a4G6tG9LeyTmvJiWO2zh24nyI9sby4vr6ww8/1Pu+hqxnQ/ZZ0YsvvpiPp3nmmSevT/xxzH777ZdGjBhR9vO//fbb9Ne//jV3Ix7HS/zhwHLLLZevj3GOFo+F+Nzidi0+Sq95dY0JGetx5plnpmWWWSYvP861NdZYI91+++215p3c7+5JKbYx1v0Pf/hD/jdFp06d0korrVRvF+UPP/xw2nTTTfNnx7keAWtcq8qNqVtc79GjR6cjjjgiP49/D9R1vSq3rh9++GHeZ/EdHN+dG264YXrzzTfzfKNGjcrfS3GOxHbo06dP7tmgnDjWBgwYkBZffPE8b5xbG220UdW539Tfq6WuvPLKvM+jHfE9EuswqXMBAJgxxf9H/fjjj/leQznx/2Px/zhRLRn/Fo2w8uKLL05HHnlk/n+t+HdZufsy8W+6EPcb4r233npr/n1yljGjUQkJAFBGMXAo3siKm4wRQMb0uCkXQUfcbI+uTKNb0WeffTbfUG6I6G5jlVVWyaFR3ICMm6233XZb1Q35uJEW4iZg3HyL5cdrEYwVlf5FXTkDBw7M3Z7GzdK4iVufuJk5rWzn//3vf/lGZ2yTuEkZocbXX3+d7rnnnvS73/0ud4cS/1CvKao5o5vP3//+93n7FW8qxoDr8ftrr72Wb4BGgBU3wOPmamyjWH7ciAxxIzfGqXz11VdzWBLzRugTN3533nnnNHTo0HwTvqboTvbss8/OYWV0bzts2LB055135mAobqLG54bDDjssr0fcNI9uccvdGI+/xIzuXqLNEQZFW+Nzr7nmmnTvvffmzyrt4je2XxyXER7F2BURLsR+j3Ag3ldOvB7bKdYr2hbrFjdk4wZyjB0aYUGM2dgQEQxH16rF/3lbaqmlcle7N910Uz5u43iOm9PF9Y//wbrwwgtzmFD868/S47o+sX9WX331fDN8p512ysdI/A9dHCfPP/98DjRiWgTrsY4Rouywww457Ij/gWyIeF8sL8KBTTbZJLVt2zbvswg+xo0bV9WlcGM05Hye3H1z1VVX5fWOYCfeF+HEyJEj0+uvv56P7/gjiYaKY+/BBx/M3dVGQBLHbhzH8dlx4794HIePP/44n4+xneKcif0xfPjwHPrGsRjvi/1Quu6xP+JaFEFaBC7x3rhuxh9BxDEU2yO2bwQKcX0tDRrrG28w3hP7KM7xQw89tGpb1neNjGMvbgJE4HPOOefk/Vwq9lEcb3FzoPS1uCbEdp1//vnzeRef8cILL6Tjjz8+V3bHNajmshrT3sk5ryYlzrsIgCMsisAlgqhYRhxLEQ7HNaamhq5nQ/fZP/7xj/zZ8V0T6xPnZISpxetaLLu0WjWOr7gGxndl3MQ54IAD8rU4/kjj/PPPT/vvv39uU3x2XOtivtJzc1JV9bHecZ7HtTj+ECbC9PgDlDvuuCNfM+LYj54EGvvd3RDx3RTX+FiP+KOEON4iAN1ll13S559/nsPFUrGNI5ibY4458rkVwWWc53//+9/zHxrFNTCC1JrrGedntDO+V+P1hv47Ja7V8Uc9ET4Xw9f4/o39Gp8V1QCxvNhexWtxXDNjH5Xuy+J1+6233srHbByP8Z0e6xptin9DxTWsKb9Xi4455ph8bY1rZXx2XNuuvvrq9MEHH+TxoACAliUCwvh/reidqZzWrVvnP4iK+b755pscHsb/r8X/r8e/a2PcyPh/iZr3W+IeQ/y/W/z7KP79XigU8n2Z0NBlzHAKAAAtVPxTqNw/hx599NFCq1at8uOTTz4p/Pjjj4U55pij0Lp168LTTz9dbd4zzzwzL2ODDTaoNn333XfP0z/++OOqafG8+JknnXRStfkfeuihPH2TTTapNn3gwIF5evycHOuuu25+39VXX12YXrbzr7/+WujVq1ehQ4cOhSeffLLavJ9//nmhe/fuhXnmmacwbty4quknnnhiXvZMM81U+N///lfrM3baaaf8+v7771+YOHFitddiv37//fe19tlZZ51Vbb6xY8cWNtpoo9zOV199tWr6oEGDqtat5v654oor8vQDDjig2vRie+O95Xz22WfV1q/o4YcfzsdfrEepG264IS9vjTXWKIwfP75q+nfffVdYfPHF82trrbVW2TYcfPDBhQkTJlRNj+d77bVXfu2ee+4pTMpvv/1WWGKJJfL8N910U7XXbr311jw92lC63YvnQGzryVHczvvtt1+15RXXv0uXLoXNN98876uiOFfjta222qpB59QCCyxQdQ6OGTOmavpXX31V6Ny5c3788ssvtfZ/bM9yYnnxaMhnN3bfrLjiioX27dvnNtY0atSoQkMU2xSPe++9t9prF1xwQZ4e15NSG264YZ5+6qmnVpv+3HPPFdq0aZOvl3F+hTjH4txZaaWVqq1T0ddff13t93LH7KSOn3LX21KxvJrXoH333bfsOodNN900v/b666/X2k5bb711teOjdL/F9mqI+trbmPOqLrE/Yv64rn7zzTdV0+M8WXXVVfNrdR2jk7Oe9e2zd999t9CuXbvchri+lXrsscfyda3mOdqvX7+8zNNPP73scV16npfbt5M6D2O5xXM9vneK4jwqXgdi203Jd3d9isvq379/tf340Ucf5WtZbK8PP/ywavoTTzyR54/tEtf2cvvrsMMOq7XeMX299dYr/PTTTw1uW+m61jy/TznllKrrbV3X4prtKJ5n8TOO7aL33nuvMNtss+XrV+l50BTfq8XzrUePHoVPP/20anrs+/jujNdefPHFBm8jAGhpRo4cWedrpx59UOEvu23arI9oA81/LNRHCAkAtFjFG11xAysef/nLXwrbbrttvoke0w8//PA8X9wIjt8j0KopbmItuOCC+fXSm1v1hZBxc7DczfiePXsW5pxzzoqEkEsuuWR+34MPPliYXrZzhCvx+1FHHVV2OcVA5P77769187Hmjc/iDeW4wT3vvPNO8iZsBCHRnpVXXrns60OGDMmfc/TRR9e6Wbr66qvXmj/CqrZt2+bgZXJultZnmWWWKSy00ELVpsUN5ljeU089VWv+4nFbGg7ETeMIiCLMLb35XhQ3uCMwipvjk/Lss89W3Rgv53e/+12ttk1JCBlB8+jRo6tNj/MotnO8XnrTvijOzXhMTgj5/vvv11rObrvtll974403miyEbMy+iRAytsu3335baKxim2oGjcXtG+FRvB5/KBCGDx+ef4/rVWkoW7Trrrvm16+//vr8+w8//JB/X2211aqFEHWZWiFkMaDbbrvtqk3/4osv8rVghRVWqDZ9+eWXz8dazRCouJ3i2t2nT59Jrt+k2tuY86ouf/zjH/O8//jHP2q9Vjx+ax6jjVnP+vZZXJvj9fvuu6/s6xFAxvYuntsvv/xynj/a0ZCgtTEh5CKLLJLPpbfffrvW/Ndcc01e3p577jlF3931iWXFOkfoWFPxO6I07IxtFNPefPPNssuLbdW1a9ey17P47pocxXWN62bNdY1/40zqWrz22mtXTYs/jIl5Z5lllmoheNFxxx2Xl3fyySc36fdq8Xwr90dZcW7EaxdffHG92wUAWrLGBk/MeEY28ljQHSsA0OIVxxOKLkGja7QYF2rvvfdOu+66a1UXoSG6NaspuqRbc801c1dl0Y1naTdkdYku7GJA8pqii7ro5mxaFN2dRRdoNdejdED1Kd3OxXWPLu/KjVtVHAvt7bffrtUla3SRV1N0aRhd+MX+KQ4OX5eYd+LEiXWO8RddphQ/u6YYE6ym6PIwunmNLvcmR9yfju5eoovB6K4x3h/tKqrZdWIcc9FNTHTrV1N0l1lTdJUXXedF163lupYN0VVmufWsqb7zojg9utuMNsY+mFKLLbZY7oq1VJxHsZ1jjLjoIrGm6Lo2up1sqOiiM8aALHduhsndn5OjMfsmum6MLkOju87o4ifGTIuuD2PskskV760ptm8cR9F9cezH6HIzfoY4f+M4L7ffo9uhmC+6Xo0uG6P7w+h2M64Z0b1nvDe6eoxx3ppLnDNxTEW7Yr/GOHUhzr8450q7Fo2uOuN8jO5uL7jggrLLi+6UGnLeTM3zqriscvs29mvN76GmWM/idT26yyw3rm90HxzbO47/6Ho1umYN0V1qXNsqLbq4je4349oQXbHWVNzuxeO8qb67498K5bpGje5O47uy9PNj2XGuRXfH5ca5jW5XY4zG6CYsxm8siu7Fll122dQY5dY1xiWd1LW4dOzid999Nx9TcU2KbmTLbeu41pXb1pX8Xq1vmVPj2g4A0NIJIQGAFq84LmFdiuMLxpha5RSnx9hHDVHXWGURaEZoVgnRprhRHGNLVSqEvP7666tNi/GXJieEnNR2jhuoodxN1lI//fRTrWkxJl5Nxf1ROobipD47bpKXu1Fe32fXtz9LA8SGOOKII/LN/9h/cRM+2h7BUyiOfVbz2Iybu+XGoSuOdVluPSPQLYbCDV3Ppj4vGhIQlhPrXt9rEyZMaPBn1Lcvw+Tuz8nRmH0Tx0sERpdddlke9y+OnQjSI3SKsUXK3XSvS7njpfTcKu7vxuz3GDfvrLPOymMwFsfui4AkxteNMe3q+uymFtewv/71r3m8lhh3MMR1LsKOGI+zKAKKuH5F0FPfvqmESp5XxWWV275xTMexU6op1rN4XMfxWJ/icT051+2pvX0r+d3d0POtuA3jOjapfRLbsDSEjHEji+MtT65y19TidbC+623xD3aacls39jpcbplT49oOANDSVf5PCwEAZjDFG25ffvll2de/+OKLavNNC4pVcI8//nhFlhcB2P/ryr/qEdMqqbj9/v3vf9f6rNJHMcQoVe5Ga/GGY0OC2OJnH3744fV+9qBBg1JTiYqgCJJiUPqoIIlqsghuojIzHlGBVFNUmUX1XLmg7auvvqpzPbfeeut61/Pjjz+eIc+LSipWadUVck5u+NrYfRPVhlE9FkHF/fffn6uLn3766RxiR5jUUOWOl9L9W2xfY/Z7BOlxDEe127Bhw/KxHdeo+BlBZHP5wx/+kPdj8Q8soiLrjTfeyJXWpQFdcV1WWGGFevfNpP7QoiEqeV4V5ym3b+O4/frrr8vOX8n1LC4zAqn6lles1pyc63ZjTCvXrYaeb8XnUak7qX0SlcqlGhtAzmjbGgCA5iWEBACYhLghG5588smyN3KfeeaZ/HzFFVes+GcXu0Ob3L/S33PPPXM1z5133pneeuuteucdP358mhasuuqq+Wdxe06p6KI1AoYIZKK7zobMW6nPbsz+/Oijj3I1zYYbblirq7vo4i5eL3dsxnsGDx5c67XosrGm6H4wbvJHaFVasVLp8yIUA9umOC+mBcXuO4cPH17rtejusbSSqSH7f0r3Tbw3wrOrr746dyUa4XQc+w0V3WXWFO0sHkfF/V38GdPLBbCT2u/R/WF0I/vwww/nrm9jOcVquRDn4eRe7xp7nYy2RJeQ0WVvBP/FMDIqJEvNMsssqXfv3mno0KF5u06p+tpbyfOqOE+5fRvbvebnN3Y969tnk3tdL84fx0dDqgsnd9/HtbVXr1455Cx28d0c160I46Mb95qK+714HBS3SVSpxn6Zniy++OK5y+Xo4rfcH2VUals39vwHAGDqEEICAExCdDkaXV7ecsstVeNVFUX3h1GZtP766zdoPMjJVexaLW5YTo4FF1wwVx7FWFGbbbZZevnll8vO99BDD6VNNtkkTQu23HLLfHP40ksvTQ888EDZeWJsrBhjqiFiXLwYJy+qLY466qhaN7Sj67piUBTd1kUwEtvpb3/7W9mbmTEuXkMqBBu7P2OflQsHop377LNP2cAnquDCcccdl/d1UaxXrEe5rucOOeSQvE3+9Kc/pbFjx9aaJ16bVHAdYpyvuMkc7b3jjjuqvRa/R+gQY4eVG5tyRhChYVSiRuVuVLEWxTaNbTu5+78x+yZu4perSiu2Z3LGXHziiSfSfffdV23aJZdcko/7ddZZp6rKav75508bbLBBDlBqjhsYYV50uRoBbVR0hqjGjOrCmuIPA+LYjvUuHes0tlG5YLcprpOhOPbjtddem6/xUQG5+eab15ovur6Nc2yvvfYqG6hESFQcg3FK2lvJ86q4bqeddlq1UHHcuHFpwIABZd/TmPWsb58dfPDB+Q9ioso8KmFris8qDShjXMgYrzPGII5K8JoisI72l3725O77WLc4b44++uhq19qoDC1eN2OephSfe+yxx1b7Xorvl6iGj3OiOFZyiG0X4ntgxIgRZc+lmv82mRbEeR3fqzEO5/HHH1/ttbiuxLrGsREVyVNiSs5/AACanjEhAQAmIapD/vGPf6T+/fvnLuPiZwSOr7zySnrkkUfyGE5XXnllk3x2v379cpAQN/vj5mtxvKgIKybVhdlf/vKXqnGk+vTpk2/sxhhxsT7RFVxUSUUlyOSMG9eU4mbkXXfdlbuRjOA02rv88svn9Y8b3DFWY1QDRhDT0HAlQpQ333wzXXHFFbnCJJYdN0bjZm9U2vznP/9Ja6+9dtW8sT1OOOGEdOONN+ab/DFuV9z0jfE14/MjpFhooYUavY4R5kTVUAQA0a5iNV2EiLFvIzSN8elivaMiMsLERx99NI+fF9PixnzNEDLmjzA5unHdYostchVdVMDGPo/qrmK3oUVxMzgqU2Kb3HvvvbkSLMZfi+Aq1v+5557LocVSSy1V77pEV39RORaB1A477JBD5Ajm4jNjDNGoOLrhhhtqff6MIo7XQw89NIcWUbUUoVucb7G/unfvnh+Tez5P7r6Jz4zzOSqlIsSOYCUCnThWI8yJP45oqN///vd5efGICsU41h588MH8Bxgx5mSpaF+EZRHixDUwriFxjsZ4rrG/Bw4cWFXNGxVnsX2WWWaZtOyyy+bqw9GjR+fAM7ppjMC1tPJ3vfXWy8d0tCcqpGI7r7nmmvlRl3hPjDkYIc22226blxeVoRGATUqsb4TJsU/i3Il9EZ9ZU4RScc2PbRF/LBHXkvgeiHAvridxPY0K9Ng2k1Jfeyt5XsU+ivW5+OKL8/Uhur6NdYvgPK495cbqa8x61rfPou3x/RnLjSrLjTfeOIeosa0jNIrjNf5g5J133qlaXnTTG9fl+A6La1k8j2M7zoE43mLe4h9txGfHcbfNNtvkSuDo+jcC8/qCrfijlDi2Yzsst9xy+X3xxy2xnDjXjjnmmCb/44k4FyK0j/M0rvUR+N5+++3559lnn523fen2PfPMM/P3xqKLLprbG99DEeLHOMFR6Rrtje+BaU20O/ZxfL/GdSm+AyPsjXWNcDKmT8l36qS+VwEAmAYUAABaqPin0OT8c+ill14qbLXVVoW55pqr0K5du0KPHj0K+++/f+Hzzz+vNe/uu++el/3xxx9XTYvnMS1eK2ettdYq254HH3ywsOqqqxZmnnnmqjaXLndS3nrrrcLBBx9c6N27d2HWWWfNbZ9nnnkKG2+8ceGaa64pjBs3rjAtbeevvvqqcOyxx+b2durUKa/3IossUth2220LN954Y+HXX3+tmvfEE0/Myx40aFCdy/vpp58Kp556amGZZZbJy5tlllkKSy65ZOHQQw/Nn1Vq/PjxhYsvvrjQr1+/wmyzzVZo37593s/rrrtu4fzzzy98/fXXVfPGZ8ZnRxvKWWCBBfKjpliH5ZZbrtCxY8da2+bnn38u/OUvfyn06tWr0KFDh8L8889fOPDAA/Pn1nV8jB07tnD88ccXFlxwwdze+MxYxmeffZbn33LLLWu957fffivccMMNeb26dOmSj4nu3bsXVl999cJpp51WGDZsWKGh3nnnncKuu+6aj6m2bdvmn7vsskueXtOkzoG6xHti/SdnO4dy22zgwIF5Wvxs6HLqOs5iO55xxhmFhRdeuOqacPTRR+f9WNfyJnU+T86+ufzyy/M1aaGFFsrHdsy//PLLF84666zC6NGjCw1Ruj3uvffe3LaZZpqp0Llz58I222xTePfdd8u+L46vuP717Nkzt3HOOefMx1pcJ0t99913hZNPPrmwzjrr5PWIYzSOkdg3//znP/P6lopzcqeddip069at0Lp162rnWH3Hz7nnnltYYokl8vJjntJtX9e5U7T33ntX7YuXX3653u0V22izzTYrdO3aNa/33HPPXejTp0/hr3/9a+Htt9+u970Nbe/knlf1ie0b17TiZ80777z5mvL999/Xe8xPznrWt8+KXn/99bzf4niJdsSxGtf4fffdt/D444/X+vy45h1zzDGFxRZbLF8L43iM62Zc2+L8KpowYUJhwIAB+RyI7VTzWlHXOsZ1M86naENci+N7Ic6xOCZraux3d12KbYx/O8Q+jW0c67jCCisUbr755jrf98wzzxT69++f92Hsk/i3SGyTww8/vPDf//632rz17dv6TGpdG3MtjmtA7Mv4Ho99H/ty/fXXLzz88MO15m2K79Vy/x5r6OcBAIXCyJEjm7sJTOfHQqv4T3MHoQAAQGVFRV5U2Pz5z39OZ5xxRnM3h2nUddddlyvbonqx2H0n0HSi2jV6Vahr3E8AgGlJDK8QPVfAqEYeCzNm30gAANBClBsjLLr6jPAxFMfmAwAAAJiajAkJAADTsSOOOCKPIxhjaMZfJX722Wd5vLMYw22//fZLq6yySnM3EQAAAGiBhJAAADAd22abbdJXX32V7r333vT999+njh07pt69e6e99947PwAAAACagzEhAQAAAAAAqMaYkOXF+N7rrLNOGjRoUFp77bVTSzDKmJAAAAAAAABQt9tvvz21atUq3X333bVeW2655fJrETDW1LNnzzwUypQYMWJEOumkk9KQIUNSS6A7VgAAAAAAABrshJNOS9/98HOztqFL55nTKSf9dbLf97vf/S7/fPbZZ9PWW29dNX306NHpzTffTG3btk3PPfdcrnYsGj58eH7suOOOac0110xjx45N7du3b1QIefLJJ6cFF1wwLb/88mlGJ4QEAAAAAACgwSKA3HiHQ5u1DQ/ddmGj3te9e/e00EIL5RCy1PPPP59iBMP+/fvXeq34ewSYrVu3Th07dkzTkp9//jnNPPPMaVqjO1YAAAAAAABajAgTX3311VzRWBTVj717906bbLJJeuGFF9Jvv/1W7bXopnX11VfPY0LG8/hZFGNDLr300umtt97KFZQzzTRTmm+++dLZZ59dNU/M36dPn/x8zz33zMuIx3XXXVc1z4svvpg23njj1Llz57yMtdZaK392qejONd4Xn7XzzjunLl26VFV3TmuEkAAAAAAAALQYEdr9+uuvOfQrirAvxnyMxw8//JC7Zi19bYkllkhzzjlnncv87rvvcoAY40qee+65ef5jjz02Pfjgg/n1JZdcMp1yyin5+b777ptuvPHG/IjuXcMTTzyRn0e3sCeeeGI6/fTT0/fff5/WXXfd9NJLL9X6vKjYHDNmTJ5vn332SdMi3bECAAAAAADQYpSOCxlVjBMmTMiB5O6775569eqV5p577vzasssum3788cf0xhtvpL322muS4z3ecMMN6Q9/+EP+fe+9904LLLBAuvbaa3N1ZSwzfp5wwgmpX79+adddd616b3QDu//+++cqyggto9Ix7Lfffrk687jjjkuPPPJItc+LsPOf//xnmpYJIZvIPPPMk/vg7dmzZ3M3BQAAAAAAYLIceeSRaZVVVin7WuQf07OoSoyqxuJYj6+99lpep6iCDPEzqh8PPPDAPFbkxIkTJ9nl6SyzzFItWGzfvn3efh999NEk2zNkyJD0/vvv57Dxm2++qfbaeuutlysmo3vYGI+yKELLaZ0QsonEwRqlvAAAAAAAAEw7otIwgsann346h3sROHbr1i0tssgi+fV47ZJLLsnPi2MyTiqEnH/++asqGIu6dOmSXn/99Um2JwLIEJWYdYkuYmN5RQsttFCa1gkhm0ixAnLo0KHN3RQAAAAAAIDJMmrUqNS1a9eyr80888xpeheh4r333pu7Wi2OB1kUz48++uj0+eef52rJ7t27p4UXXrje5bVp06bs9EKhMMm2RBAazjnnnLT88svXWWlZqlOnTmlaJ4QEAAAAAACgxY4LGSHkYYcdVvXaSiutlDp06JCefPLJPFbkpptuWpHPbFWjUrIoxqEMs802W1p//fXTjOL/Oo8FAAAAAACAFmDllVdOHTt2TDfffHOueCythIwAcsUVV0yXXnppHn5vUl2xNtTM/6+C9Pvvv682PULPCCL//ve/p59++qlsVer0SCUkAAAAAAAALUr79u1Tnz590jPPPJNDxwgCS0Uoee655+bnlQohe/XqlWafffZ0xRVXpFlnnTWHkn379s3jO15zzTVpk002Sb1790577rlnmm+++XI4OmjQoFwhGV3HTm+EkAAAAAAAADRYl84zp4duu7DJPyeqEOsagzLaMKUiXIwQstj9aqnVV189h5ARFi633HKpEtq1a5euv/76NGDAgLT//vunCRMmpIEDB+YQcu21107PP/98+tvf/pYuueSSXBE5zzzz5JByv/32S9OjVoWGjIjJZIukOgwdOrS5mwIAAAAAADBZogvQrl27Nmsb3nzzzfxz6aWXbtZ2tHSjGnksGBMSAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAEAtv/32W3M3gWngGCgUCi0jhBw/fnw69thjU/fu3VOnTp1S375906OPPtqg9z722GNpnXXWSXPNNVeaffbZ0yqrrJJuvPHGJm8zAAAAAADA9KRz585p5MiR6ZdffmnuptCMAWQcA126dGnU+9um6cwee+yR7rjjjnTYYYelRRddNF133XVp0003TYMGDUq/+93v6nzff/7zn7TVVlulfv36pZNOOim1atUq3X777Wm33XZLX3/9dTr88MOn6noAAAAAAABMq9q3b5/mnnvu9P3336cffvihWdrw0ksv5Z/RDqa+qICcc845U7t27Rr1/laFxtZQNtPBFpWP55xzTjrqqKPytHHjxqWll146devWLQ0ePLjO92644YZp6NCh6aOPPkodOnTI0yZMmJCWWGKJNPPMM6fXXnutom3t3bt3/hmfCQAAAAAAwOSRtUzfpqvuWKMCsk2bNmnfffetmtaxY8e09957p+effz4NHz68zveOHj06l4sWA8jQtm3b3DVrdOsKAAAAAAAAtMAQ8tVXX02LLbZYmm222apNj7Edw5AhQ+p879prr52T8uOPPz598MEH6cMPP0x/+9vf0ssvv5yOOeaYJm87AAAAAAAAtBTT1ZiQX3zxRZp33nlrTS9OGzFiRJ3vjfDx448/Tqeddlo69dRT87SZZpop3XnnnWnLLbec4lLgmiLk7NWrV6OXCwAAAAAAANOr6aoScuzYsdW6Uy3tkrX4el3ifVFFud1226Vbbrkl3XTTTWnllVdOu+66a3rhhReatN0AAAAAAADQkkxXlZAxduP48eNrTR83blzV63U5+OCDc9j4v//9L7Vu/f9nr9tvv32uZDz00EPTiy++2Kg21TUYal0VkgAAAAAAADCjm64qIaPb1eiStabitO7du5d93y+//JKuvfbatNlmm1UFkKFdu3Zpk002yeNCxjwAAAAAAABACwshl19++fTee++l0aNHV5terGKM18v55ptv0oQJE9LEiRNrvfbrr7+m3377rexrAAAAAAAAwAweQsZ4jhEWXnXVVVXTonvWgQMHpr59+6YePXrkacOGDUvvvPNO1TzdunVLs88+e7r77rurVTz+9NNP6d57701LLLFEvV25AgAAAAAAADPomJARNPbv3z8NGDAgjRw5Mi2yyCLp+uuvT5988knubrVot912S0899VQqFAr59zZt2qSjjjoqHXfccWnVVVfNr0eYGe/57LPP0k033dSMawUAAAAAAAAzlukqhAw33HBDOv7449ONN96Yvvvuu7Tsssum++67L6255pr1vu+vf/1rWmihhdKFF16YTj755FxBGe+944470rbbbjvV2g8AAAAAAAAzulaFYrkgFdW7d+/8c+jQoc3dFAAAAAAAgOmOrGX6Nl2NCQkAAAAAAABM+4SQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICKEkICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAABUlBASAAAAAAAAqCghJAAAAAAAAFBRQkgAAAAAAACgooSQAAAAAAAAQEUJIQEAAAAAAICWHUKOHz8+HXvssal79+6pU6dOqW/fvunRRx9t8Ptvu+221K9fvzTzzDOn2WefPa222mrpiSeeaNI2AwAAAAAAQEsy3YWQe+yxRzrvvPPSLrvski688MLUpk2btOmmm6Znn312ku896aST0k477ZR69OiRl3HqqaemZZddNn3++edTpe0AAAAAAADQErQqFAqFNJ146aWXcuXjOeeck4466qg8bdy4cWnppZdO3bp1S4MHD67zvS+88EKuejz33HPT4Ycf3uRt7d27d/45dOjQJv8sAAAAAACAGY2sZfo2XVVC3nHHHbnycd99962a1rFjx7T33nun559/Pg0fPrzO915wwQVpnnnmSYceemiK3PWnn36aSq0GAAAAAACAlmW6CiFfffXVtNhii6XZZput2vRVVlkl/xwyZEid73388cdTnz590kUXXZS6du2aZp111jTvvPOmSy65pMnbDQAAAAAAAC1J2zQd+eKLL3JwWFNx2ogRI8q+77vvvktff/11eu6559ITTzyRTjzxxNSzZ880cODAdMghh6R27dql/fbbb4pKgWv68MMPU69evRq1TAAAAAAAAJieTVch5NixY1OHDh1qTY8uWYuvl1PsevWbb75Jt956a9phhx3y79ttt11aZpll0qmnntroEBIAAAAAAACYjkPITp06pfHjx9eaPm7cuKrX63pfiIrHCB6LWrdunQPJqIwcNmxYro6cXHUNhlpXhSQAAAAAAADM6KarMSGj29XokrWm4rTu3buXfd8cc8yRqyXnnHPO1KZNm2qvdevWrarLVgAAAAAAAKCFhZDLL798eu+999Lo0aOrTX/xxRerXi8nKh7jtVGjRqVffvml2mvFcSS7du3aZO0GAAAAAACAlmS6CiGjK9WJEyemq666qmpadM86cODA1Ldv39SjR488LbpWfeedd6q9N7pdjfdef/311bpxvfnmm9NSSy1VZxUlAAAAAAAAMAOPCRlBY//+/dOAAQPSyJEj0yKLLJJDxU8++SRde+21VfPttttu6amnnkqFQqFq2n777ZeuueaadNBBB+Vqyhj/8cYbb0yffvppuvfee5tpjQAAAAAAAGDGM12FkOGGG25Ixx9/fA4QYxzHZZddNt13331pzTXXrPd9nTp1Sk888UQ65phj0j/+8Y/0888/5y5a77///rTRRhtNtfYDAAAAAADAjK5VobRckIrp3bt3/jl06NDmbgoAAAAAAMB0R9YyfZuuxoQEAAAAAAAApn1CSAAAAAAAAKCihJAAAAAAAABARQkhAQAAAAAAgIoSQgIAAAAAAAAVJYQEAAAAAAAAKkoICQAAAAAAAFSUEBIAAAAAAACoKCEkAAAAAAAAUFFCSAAAAAAAAKCihJAAAAAAAADA9B1Cfv/991P7IwEAAAAAAIDpNYQ89NBD6339xx9/TBtttFElPxIAAAAAAACYkUPIiy++OJ1//vllXxs7dmzabLPN0uuvv17JjwQAAAAAAABm5BBywIAB6eijj0533nlntenjx49PW2yxRXrhhRfSbbfdVsmPBAAAAAAAAKYxbSu5sNNOOy19+umn6Q9/+EPq3r176tevX5owYULq379/GjRoULr55ptzGAkAAAAAAADMuCpaCRkGDhyYVl111Rw2vv3222mXXXZJ999/f7rqqqvSDjvsUOmPAwAAAAAAAGbkSsjQrl27dPfdd6fVV189rbjiiumXX35JF1xwQdprr70q/VEAAAAAAADAjBZCDhs2rM7XLr/88vT73/8+7b333mnLLbesNm/Pnj2n5GMBAAAAAACAaVirQqFQaOybW7dunVq1alXn67Hocq9PnDgxzeh69+6dfw4dOrS5mwIAAAAAADDdkbW04ErIE044od4QEgAAAAAAAGh5piiEPOmkkyrXEgAAAAAAAGCG0Lq5GwAAAAAAAADMWCoaQt52221pt912q3N8yHjtzjvvrORHAgAAAAAAADNyCHnppZfWOUZkTG/Tpk265JJLKvmRAAAAAAAAwIwcQr799ttphRVWqPP1eO2tt96q5EcCAAAAAAAAM3II+eOPP6b27dvX+XpUQv7www+V/EgAAAAAAABgRg4he/bsmV588cU6X4/XunfvXsmPBAAAAAAAAGbkEHLzzTdPN998c/r3v/9d67X//Oc/6ZZbbkm///3vK/mRAAAAAAAAwDSmVaFQKFRqYV9//XUe93HEiBFp7bXXrhof8tVXX01PPvlkroJ85ZVXUrdu3dKMrnfv3vnn0KFDm7spAAAAAAAA0x1Zy/StbSUXNtdcc6XBgwenAw44ID344INp0KBBeXqrVq3Spptumi699NIWEUACAAAAAABAS1bREDL06NEj3Xfffem7775LH3zwQZ62yCKLpC5dulT6owAAAAAAAICWEEIWRejYp0+fplo8AAAAAAAAMI1q3dwNAAAAAAAAAGYsU1QJ2bp16/wYM2ZMat++fX4e4z/WJ16fMGHClHwsAAAAAAAAMKOGkLvttlsOFdu0aVPtdwAAAAAAAKDlalUoFArN3YgZUe/evfPPoUOHNndTAAAAAAAApjuylumbMSEBAAAAAACAihJCAgAAAAAAANPOmJALL7zwZL8nxoz88MMPp+RjAQAAAAAAgBk1hOzZs2cOFQEAAAAAAAAqEkI++eSTU/J2AAAAAAAAYAZkTEgAAAAAAABg2g0hP/7443TvvfeWfa1QKOTXPvnkkyn6jPHjx6djjz02de/ePXXq1Cn17ds3Pfroo5O9nA022CB3JXvwwQdPUXsAAAAAAACAJgwhjzvuuHTWWWeVfS0Cv3POOSedeOKJU/QZe+yxRzrvvPPSLrvski688MLUpk2btOmmm6Znn322wcu466670vPPPz9F7QAAAAAAAACmQggZQeDGG29c5+sbbbRRevrppxu9/Jdeeindeuut6YwzzsiB5r777pueeOKJtMACC6RjjjmmQcsYN25cOvLII3M1JQAAAAAAADCNh5BfffVVmmeeeep8fe65505ffvllo5d/xx135MrHCB+LOnbsmPbee+9c2Th8+PBJLuPss89Ov/32WzrqqKMa3Q4AAAAAAABgKoWQs802W71jPsaYkTPPPHOjl//qq6+mxRZbLH9OqVVWWSX/HDJkSL3vHzZsWDrzzDNzl7ExniQAAAAAAABQeW0rubB+/fqlf/zjH7m70y5dulR77bvvvksDBw5Mffv2bfTyv/jiizTvvPPWml6cNmLEiHrfH+1aYYUV0o477pgqpXfv3mWnf/jhh6lXr14V+xwAAAAAAABokZWQ0cXpyJEjc2XijTfemN588838iOcRPsZrRx99dKOXP3bs2NShQ4da06NL1uLrdRk0aFC688470wUXXNDozwcAAAAAAACmciXkGmuska644op0yCGHpD322KNqeqFQyOHh5ZdfntZee+1GLz+6UB0/fnyt6ePGjat6vZwJEyakP/3pT+kPf/hD6tOnT6qkoUOHTlaFJAAAAAAAAMzoKhpChj/+8Y9p0003Tf/617/Se++9l6fFOI79+/dP3bt3n6JlR7ern3/+edluWkNdy7/hhhvSu+++m6688spaY1b++OOPeVq3bt3STDPNNEXtAwAAAAAAAJoghCyGgYceemjFl7v88svnblVHjx6dZptttqrpL774YtXr5QwbNiz9+uuvafXVVy8bUMbj7rvvTltttVXF2wwAAAAAAAAtTZOEkKUiIBw+fHiab7758riQrVs3fhjK7bbbLv39739PV111VR5/MkT3rAMHDszL7tGjR1XoOGbMmLTEEkvk33fccceyAeXWW2+dqzb32Wef/H4AAAAAAABgGg4ho9vUzTbbLL3++utV05Zccsl07733poUXXrhRy4ygMLp1HTBgQBo5cmRaZJFF0vXXX5+7U7322mur5tttt93SU089lceiDBFGFgPJmhZaaCEVkAAAAAAAAFBBjS9LnIQ//elPeQzHGBdy7Nix6YUXXkgTJ05MBx544BQtN7pOPeyww9KNN96YPyO6Wb3vvvvSmmuuWbG2AwAAAAAAAI3XqlAsF2ykhx56KG288ca1pkf3q1H1uOKKK1ZNu+yyy9Jf/vKX9P3336cZXe/evfPPoUOHNndTAAAAAAAApjuylhZeCbnFFluk3XffPX377be1Qshnn3222rTnnnsude/efUo/EgAAAAAAAJiRQ8joZvXNN9/M4z3edtttVdP/+te/psMPPzytscYaaZdddknLLLNMuvXWW/N0AAAAAAAAYMY1xSFkdLf60ksv5cBxzz33zJWRI0aMSFtuuWUOKKNUNrpfXXXVVdOTTz6ZA0kAAAAAAABgxjXFY0KWev/999M+++yThgwZks4888y0//77p5ZKP8UAAAAAAACNJ2tp4ZWQpRZddNFc7Xj22WenAQMGpLXWWisHkwAAAAAAAEDLUbEQ8pdffkmjR4/Oz/fdd9+cSs8555xpueWWS2eccUaaOHFipT4KAAAAAAAAmJFDyG+//TZtvfXWaZZZZkldunRJyy67bHr55ZdT9+7d01133ZVuvPHGdPHFF6eVVlop/e9//6tMqwEAAAAAAIAZN4Q87LDD0uDBg9OVV16ZQ8cII7fddtv066+/5tfj+dtvv51DyFVXXTUdffTRlWg3AAAAAAAAMKOGkA8++GD685//nPbcc8+05ZZbpmuuuSYNHz48vfXWW1XzdO7cOV177bXpoYceSvfcc8+UfiQAAAAAAAAwI4eQ7dq1S2PHjq36fdy4calVq1apbdu2teZdd9110xtvvDGlHwkAAAAAAABMw2onhZMpxoM888wz04QJE/KYkJdddllaYokl0pJLLll2/o4dO07pRwIAAAAAAAAzcgh5zjnnpNatW+cxIceMGZNWW221dOGFF+ZpAAAAAAAAQMvTqlAoFJq7ETOi3r17559Dhw5t7qYAAAAAAABMd2Qt0zfligAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAGi5IeT48ePTsccem7p37546deqU+vbtmx599NFJvu+uu+5KO+ywQ1p44YXTTDPNlBZffPF05JFHpu+//36qtBsAAAAAAABakukqhNxjjz3Seeedl3bZZZd04YUXpjZt2qRNN900Pfvss/W+b999901vv/122nXXXdNFF12UNt5443TJJZekfv36pbFjx0619gMAAAAAAEBL0KpQKBTSdOCll17KlY/nnHNOOuqoo/K0cePGpaWXXjp169YtDR48uM73Pvnkk2nttdeuNu2GG25Iu+++e7r66qvTH//4x4q3t3fv3vnn0KFDK75smJ4M/vT+NKNYbYHNmrsJAAAAAAAthqxl+jbdVELecccdufIxqhqLOnbsmPbee+/0/PPPp+HDh9f53poBZNh6663zz6iQBAAAAAAAAFpgCPnqq6+mxRZbLM0222zVpq+yyir555AhQyZreV9++WX+Oddcc1WwlQAAAAAAAEDbNJ344osv0rzzzltrenHaiBEjJmt5Z511Vq6s3G677SpSClzThx9+mHr16jVFywYAAAAAAIDp0XRTCTl27NjUoUOHWtOjS9bi6w31z3/+M1177bXpyCOPTIsuumhF2wkAAAAAAAAt3XRTCdmpU6c0fvz4WtPHjRtX9XpDPPPMM3kcyY022iiddtppU9yuugZDratCEgAAAAAAAGZ0000lZHS7Gl2y1lSc1r1790ku47XXXktbbLFFWnrppdMdd9yR2radbjJYAAAAAAAAmG5MNyHk8ssvn9577700evToatNffPHFqtfrE2M0brzxxqlbt27pgQceSLPMMkuTthcAAAAAAABaqukmhNxuu+3SxIkT01VXXVU1LbpnHThwYOrbt2/q0aNHnjZs2LD0zjvvVHvvl19+mTbccMPUunXr9PDDD6euXbtO9fYDAAAAAABASzHd9EcaQWP//v3TgAED0siRI9MiiyySrr/++vTJJ5+ka6+9tmq+3XbbLT311FOpUChUTYsKyI8++igdc8wx6dlnn82PornnnjttsMEGU319AAAAAAAAYEY13YSQ4YYbbkjHH398uvHGG9N3332Xll122XTfffelNddcc5JjQYazzz671mtrrbWWEBIAAAAAAAAqqFWhtGSQiundu3f+OXTo0OZuCjSrwZ/en2YUqy2wWXM3AQAAAACgxZC1TN+mmzEhAQAAAAAAgOnDdNUdK0yvVAMCAAAAAAAtiUpIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqqm1lFweT7/4Xvkozis1Wnbu5mwAAAAAAANDsVEICAAAAAAAAFSWEBAAAAAAAACpKCAkAAAAAAAC07BBy/Pjx6dhjj03du3dPnTp1Sn379k2PPvpog977+eefp+233z7NPvvsabbZZktbbrll+uijj5q8zQAAAAAAANCSTHch5B577JHOO++8tMsuu6QLL7wwtWnTJm266abp2Wefrfd9P/30U1pnnXXSU089lf7yl7+kk08+Ob366qtprbXWSt98881Uaz8AAAAAAADM6Nqm6chLL72Ubr311nTOOeeko446Kk/bbbfd0tJLL52OOeaYNHjw4Drfe9lll6X3338/L6NPnz552iabbJLfe+6556bTTz99qq0HAAAAAAAAzMimq0rIO+64I1c+7rvvvlXTOnbsmPbee+/0/PPPp+HDh9f73ggfiwFkWGKJJdJ6662Xbr/99iZvOwAAAAAAALQU01UIGd2nLrbYYnk8x1KrrLJK/jlkyJCy7/vtt9/S66+/nlZeeeVar8V7P/zww/Tjjz82UasBAAAAAACgZZmuumP94osv0rzzzltrenHaiBEjyr7v22+/TePHj5/kexdffPHJblPv3r3LTn/nnXdSu3bt6nyd//PT2AlpRjFLp/Kn1Jhff0ozipnazTJZ87fkdQcAAAAAoPGiiCyyFqZP01UIOXbs2NShQ4da06NL1uLrdb0vNOa9jdWqVatp6sSIEzX06tUrTS/B3YykJYdXU2Pdp+XjGyrBMU5L4ninJXG8M6NzjNMSOM5pSRzvtCSO92lH5CwzzzxzczeDRpqu0p9OnTrlisaaxo0bV/V6Xe8LjXnvpAwdOjRND4oVmdNLe2FyOL6Z0TnGaUkc77QkjndmdI5xWgLHOS2J452WxPEOLXBMyOg6Nbpkrak4rXv37mXfN8ccc+QqyMa8FwAAAAAAAJiBQ8jll18+vffee2n06NHVpr/44otVr5fTunXrtMwyy6SXX3651mvx3oUXXjjNOuusTdRqAAAAAAAAaFmmqxByu+22SxMnTkxXXXVV1bToYnXgwIGpb9++qUePHnnasGHD0jvvvFPrvf/973+rBZHvvvtueuKJJ1L//v2n4loAAAAAAADAjG26GhMygsYIDAcMGJBGjhyZFllkkXT99denTz75JF177bVV8+22227pqaeeSoVCoWragQcemK6++uq02WabpaOOOioPZnreeeelueeeOx155JHNtEYAAAAAAAAw45muQshwww03pOOPPz7deOON6bvvvkvLLrtsuu+++9Kaa65Z7/uiu9Unn3wyHX744enUU09Nv/32W1p77bXT+eefn7p27TrV2g8AAAAAAAAzulaF0nJBAAAAAAAAgJY0JiQAAAAAAAAw7RNCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAAAAAAAEBFCSEBAAAAAACAihJCAgAAAAAAABUlhAQAAAAAAAAqSggJAAAAAAAAVJQQEgAAAAAAAKgoISQAAAAAAABQUUJIAAAAAAAAoKKEkAAATWCPPfZIrVq1Sp988klzNwWmSRdddFFaaqmlUqdOnfK5csEFF0zVz4/PXHvttafqZ1IZsd9i/02O6667Lr8nfvJ/TjrppLxdnnzyyTSjagnrSP1i38cxEMcCAABTlxASAGix4oZU6aNNmzZprrnmSuuuu2765z//maYFU3LjvOb6dejQIXXt2jWtuOKK6Y9//GN68MEH08SJE9PUDGVLHzPPPHNaeuml05///Of03XffpZYigulY/9gmLdWtt96aDj300NSxY8d02GGHpRNPPDGtuuqqqaUQgFb+jzimt5BhemvvtPyHNwJmfK8CAEy72jZ3AwAAmlsEIOHXX39N77zzTvr3v/+dBg0alF5++eV03nnnNWqZZ5xxRg7X5ptvvjStrF8Ejt9//30aOnRouvHGG9O1116bVl555XTzzTenxRZbbKq0Zcstt0zLL798fv7ll1+me++9N5111lnpjjvuSC+99FKaY445pko7aF733Xdf1c/u3bs3SxvefvvtNNNMMzXLZzNlbrjhhjRmzJjJes/WW2+dg+555523ydrFtOnggw9OO+64Y+rZs2dzNwUAAFocISQA0OLVrER5/PHH0wYbbJC7h/zTn/6UFlxwwcleZtzonlZudpertPnqq6/SIYcckv71r3+l9ddfPweu3bp1a/K2bLXVVtUqFf7+97+nvn37prfeeitdfPHFVYEpM7YRI0bkn80VQIYlllii2T6bKdOYMKlz5875QcsTPRzEAwAAmPp0xwoAUMN6662XA4pCoZD++9//Vk1/5ZVX0rbbbpvDuujadIEFFkgHHnhg+uKLLxrUNV1pd2HxPCoz4sZodEkZFYnF6rCi6K5xzz33zM/jZ2lXplPa5d3cc8+du8SMzxg+fHg6/fTTU3OYZZZZ0u67756fRyVk0YQJE9Jll12WK5dmm222XLG2wgorpEsuuST99ttv1ZZRul3fe++9tMMOO+R91Lp162pjgD3yyCPp97//fdX+69GjR67MfOyxx2q16+GHH06bbrpp3j8xb69evdLRRx+dK0lripA6Hj///HOeJwKSeM8iiyySqzzjOCoNhBdaaKH8/Prrr6+2T4tdCf7yyy95PePz4xiLZUWFaITF0YVuXaLNq6++eu7mNuaPwDcqe+vrJvHFF19M2223XZpnnnlS+/bt8zbZb7/9qkLChho/fnw688wz0zLLLJP3VeyzNdZYI91+++1lx2aLSuNQuv6TUlyPjz/+OG+fGE8yzp3Y9nH8FrdzBOurrLJK3g6xr6MKauzYsQ3qErV07Liozo3lxPrE9ozz9fPPP69z/zdkLLpit5Hhqaeeqrb+Nf9YYHL2zUcffZT23XfffMzFGJvR3tgX+++/f/rmm28muW1Lt0cs/w9/+EPedrGslVZaqc7uqeNcvOKKK1KfPn3yuRzbPJ5ffvnltc7T8Mwzz+RzcP7558/HdaxbnOMnn3xytXbEuRHiXClun9JtXHNMyDg21llnnfw8llW6XWtu++J5Nm7cuDT77LPn9YzrTTkHHHBAfk/Na3PxvIp9Evsmrqc777xzevfddxu0rRvS3sk5rxoivr823njjNOuss+blxPXk+eefr/c9DV3Phuyz8O2336YBAwakJZdcMh9bEQrH921cm+ty22235XnimC6e7zvttFP+w5mGfk/WNyZk/NFRbJdYfhyT0StA9GLwww8/1Jq3eNzF8RLXnEUXXbTqu+TYY4/N1+6GKl7P4tyNHhfi3xyxfnFuHH744Wn06NFl3/fZZ5/la9rCCy+cP3vOOedMW2yxRbV/qxSVrnecw/EHP3GeNuQPq4rrGj1EnHLKKfk7MNq3+OKLp6uvvrpqvjj/4/iM/Rltjz8kKnfuhzhu11xzzbzfY/54X/QaEcd5U3+vlhoyZEjabLPN8vkf59Vaa62VBg8ePMltAgBA46iEBAAoo3iDq3ijO25CRwAZ0yMYiHAoburGzfbovvXZZ5+tugk2KZ9++mkON+ImYtzsjxuzcaO1GIgVb07HTcq4SRbLL+3GNMT0KRUh3XHHHZdvUN5yyy3p/PPPb1AY1NTbOm56RlARoVrc8Iyb3nHzM4KrqN6McCa6k63pww8/zDdZ4ybyLrvskoOnuNke4sZo3EiNG7ARzsVN4whb4sbjTTfdlG/IF0UoEDc146b05ptvnkOK119/PVdtPvDAA/nGfXG5RdHmjTbaKC9zk002SW3btk333HNPvpkdYUexwjNu7EaQeeGFF6blllsut6WouH/jeIjxEldbbbVckRvjeEbQHV3XRjAZN4BjTM9SESgXt9P222+fq3Bj3fr165c/p5x//OMfObiKG7txEzu2yfvvv5+uueaa/FkvvPBCgyrO4sZ7rHuEanEj/aCDDspdZUaIF4Fw3PAthtzF0C9uDMd50JjK16OOOiofs3GMbLjhhuk///lP+utf/5rbEfsstnls1whrHn300XTppZfmrojjXG2oCMBjubFd4gZ1HHNxjr722mt5fWKbNUbs41jnOMbiGlJaFVwaiE7OvoljI4K/CC3i+IjrVBxzEdbGeRKBRQQVDRFjs8ZxF9eXCHTiWI3gIM6nCGAjDCgV168IN6J9cUzGOXz33XfnP86Ia2J09Vz00EMP5Rv/ce7EOkVX1XGsR7e4sb2Lx0L8jHMntnWcB8VrXX3XvOJ5FAFE7K/SbVlX4BLnShyfV111VQ7343gqFcFI7PMI3iKkKl2PbbbZpuo6FaFIBEN33XVXuv/++/N1KsbdrU9D2js559WkxLUgrnGxzGh7tDneH58bYyCXMznr2ZB9Fud7fF4Eg3FuxjaNgCm+W+P5lVdemfbZZ59q3wtxDMY2ij8GibbEtTDaEJ8d3w3xxztT8j0ZnxlBc4Tn/fv3z9f6uLZEyBXn2XPPPVd2GXGtjUA9rvVxPMf3wtlnn51GjhyZBg4cmCZHBI5PP/10vm5H++N7L3phiOXHORTHadH//ve/fM2L8yaOjdgmX3/9dd72v/vd7/K5F9eAms4999x8LYz9GP++KBew1iX++CKuf7Hcdu3a5eMvrk3xPL4XY//E92QExXHNjO/ZCPYilC31l7/8JQeOsS9j+8V3cZx3MT3WOYLoCLqb6nu1KMLr2Ffx3RjXrGHDhqU777wztz/OiTiuAACosAIAQAsV/xQq98+hRx99tNCqVav8+OSTTwo//vhjYY455ii0bt268PTTT1eb98wzz8zL2GCDDapN33333fP0jz/+uGpaPC9+5kknnVRt/oceeihP32STTapNHzhwYJ4ePyu1fqXGjRtXaNu2bZ7vo48+KjSV4vaouR6xbZdccsn82imnnJKnnXjiifn3gw8+uDBhwoSqeeP5XnvtlV+75557ym7XAQMG1Prshx9+OL+20EILFT777LNarw8fPrzq+RNPPJHn7devX+G7774ruy8OO+ywatMXWGCBqn03ZsyYqulfffVVoXPnzvnxyy+/1GpvbJO69klpm4q+//77Qu/evQtdunSp9jmjR48uzD777IX27dsXhgwZUu09xx57bNW2KT0W33333UK7du0KvXr1qrVNHnvssXysb7XVVoWGOP3006vW/9dff622/sVt89xzz1V7z1prrTXJY7OuYyiWWdrm2E9zzjlnYaaZZirMNddchbfeeqvatozjK7ZNtKdULCvaUap47M0666yF119/vdprO+20U37ttttuqzY92hOPcorLGzRo0CQ/u7H75qKLLsrLu+CCC2ot66effqp2rNSneJz079+/MHHixKrpcV2IYy7a9OGHH1ZN/+c//5nnX2GFFfJ5XPqZK620Un7t5ptvrpq+zTbb5Gk1j9EwatSoSV4/J3X8xDaOabHNyyl3LR08eHCetu2229aa//bbb8+vHXHEEVXTvv3223yuxfE2dOjQavO/8cYbhZlnnjlvj4aYVHsbc16V89tvvxUWX3zxWtfNEMdMcb+XHqONWc+G7LP4Tr3llluqTY/zd7nllit07Nix8OWXX1ZNv/LKK/Py+vTpk699peK7YMSIEQ3+nix3HsZ3e1wX4lx/++23q81/wAEH5Pn32WefWusQ01dcccXCN998U+2Yj/M1zs0vvvii0BDF7RXbONpSFOde8VwpfieGOAbiMzp06FB48sknqy3r888/L3Tv3r0wzzzz5GtezfWOa+P//ve/BrWr5rquvPLK1b4L4xoQ14I4PhZccMGy1+K4Dpces8XzrEePHtW2T8yz+eab59dOO+20Jv1eLZ5v5Y6TK664Ik+P/Q4AQOXpjhUAaPGi6i0eUU0VVY5RlRH35A877LBcrRQVFlF5ENUnUcFR6sgjj8yVK1FlEH9R3xCxzKhALBV/7R+VTaVdkk4Nxe7cwqhRo5r886KKobi9owIlqg6iEiq6eouKrejGLcaGjG4aozKzTZs2Ve+N51HREdVWpRVWRVGxVK6yLpYX4r1RfVVTdCFXdNFFF+WfUW1YswImKm6iqqLcZxffG13MFUVVTVS2RNVJQ7tpLO6T0jYVRRd2e+21V65WK+16L47PqAKJarWaVY9xnJWr5ImqwKgyicqRmtskKkKiUi0qgX788cdJtjeq9mKfRJeCUalSuv7HH398fh4VfJUSyyxtc6xftDeqxOKYiq4eS7dlnLdRARbHWUPFWLDRVWCpYpVWU5+jjd03pcdeUVR4lZtelzjHogosqqSLosI7tke0qbQCOfZ7iO5Co6qp9DNjGXXt93Ltaa7x+qIaKiqnY3vGNb5UsXvRYnfR4YYbbsjnWlSyRnfApZZeeul8jLz66qt5jNspVanzKqog4/oT3WDG9ahUXHPj2ltTpdczKiSjojOqdKOyrlScv/E5UdkWFWk1r9tRrVhzLM84Tqd0zOWogI/rQmyDmuPDnnbaabnb2jjey3UVGsd3VF2XHvNx/Y3vr2I3sQ0VlaPxb4KiOPfOOeec/LN4joWoPo1q/+gNIKpnS8XYusccc0z68ssvc/eyNUXlYnRn3hhxfpd+h0QPDlF1GcdHuWtxVFtGdWZp19XF9Yjvo/huL4rjOr6XY13rOpYr9b1aFF2Wl1agh/hejbZM7X9/AQC0FLpjBQBavOJ4ZHHDN26iRdC49957p1133bWqC7RQrtu6uHEVN3eji7m4KduQ7isjyCoN14qiS8NJjdE1NbpDrUusY7nxlWqOZVefCMziEeLGYgS4cfM2ulfr0qVLHoMswoAYa+vUU08tu4x4X7lAKQK4ct1kRteVsW6lXSrWJbZ/dDMX4wrGo6a4aR1hbYyzV9rFZdwkj+4Ky+3TEMHh5Bg6dGi+ER3d9EV3m3GDvlTpDd447kLcGK4pwqE43mqOhVY8ziIYKDeWWHQrGF2YxhibMSZgXSII++CDD/KN6Jo38kvPmWIbKyG6YKwpbsKHcm0t3iSPbhyn5DMauy8n1+Tumwglo0vD6K4zujWMP2iIG+0RHk1u98px/SrXrXR0dxjXydL9GNfFCA9qjqsZIiSJa1zp/HGeR1ee0WVyBMPRLWS0s1zgPjVFyBh/gBJdGkc3suGrr77K2zKCm2WXXbbWvolQrdx1L/ZJiOtTzfBuclTyvCp+f9UMrkLso7huRLhVqtLrWVxeBEflllf8A5jidT26aX3zzTfzH5Y0NjyblPq+1+O7KD43rr/xnVTzjzsqeX0ot18i6IvlxXduhH3x75LiNoxubcttw+iuubgNa3bJGt2/N8f1thiu1ret448A4hoQ3UfH8VEaOFf6e7Wu9Ynv/DjWmvraDgDQUgkhAYAWrxjC1aU4flJdlRfF6XGzsCHqGqcqAs2opJiaItwqVgDFeFv1iRuixcC2sSFkjJdVswqhVIR7xRuq5T6r6Keffqo1rbTColTsl7ip3JCKsPj8CRMm1PvZxc8vDSHr26chQqOGitA0btZGO4qVbzHuWAQ+MWZVhLil1TnF4zNuopZTbnpxO0fQWZ9y27kpz42GqFkVVbqd63stKvkaqtz+bMy+bIzJ3Tdxoz8qeOI8jHH8Iugr3qiP8TOjirGh6jqGiudW6Vhy8TyqwWqO41bcVlHdGIFpUYxfF+P/ReVTVEZFhVsxyIix4mL80+aw22675YquqHwshpBR7RznX2kVZOm+iUrpKTlvJqWS59Wkrg/lrpuVXs/i8qLHgHhMannF9SpXuV4pU7KNK3l9qG+/ROAY7YzPK27Dcn8c09jvxql1vW3Ito6eJGJbly6zkt+rDVlmU1/bAQBaKiEkAMAkFG+KRVdn5USlWul805Nnn30232yPG6FRlVifqHiaVGA7pYrbcOutt64KUxqqrqqv4g3csWPHTjKIjM+PILhm14xTU1SARlsHDRpUq8oswppiJWlRBJTF6q1yyk0vbue4OVx8f2PMyOdGQ0U4HBWy5TQmfG3MvokuaG+77bZ8Lkf12mOPPZa7s4yuHqOryKjsboi6jqHi/q1ZpRTnSYQNUUlUKtoRXTLWbP9mm22WH1Hp9uKLL+ZQMrqf3XzzzXNV35RUDzZWVGFF6B/bLKreovIwAslYp5133rnavMX1j21cWiFZaZU8r4rzTGrfNuV6FpcXXQw3JBQvBkWlFd9NuY179+7dbNeu2C/RLfmkzrniz7j+xx+mTI7JrYhuym1drvvflvA9AQDQkhkTEgBgEordwdXs0rJ4s/2ZZ57Jz1dcccWKf3ax29am+Av9CNti7KtQ82Z7c4kAIG5ARzXg5FSu1WfVVVfN4WlUiTVk3uiSLbpDbSqT2qfRDWNUmJXr5jK66Kzr+IxAuVxVTFRPllvPUDx2GyvGTYubyhEWFLsDLBVBalOdG9OKqLKNIKHc8VrX+HARXNa1/6dk30Q1T1QWHnvssemWW26pGoe1oaIaKSqeaype+0q7xozncQ2JLitrimmxfnXt9whGI/iL8Q6jK9kIcR988MEpuu5NybWyWJ0d4WOcL6+//nraZJNNalWHV+q8mVR7K3leFecpd+2Izy533WjMeta3PpO7vDg+YuzJOK8a0uVsY/Z9fd/r8ccDcRx07Nix2hizTaHcfvnoo4/S8OHD8x8GFQPZSh57U1t92zq+76Lr1ugGuq4qxeb+txIAAFNGCAkAMAlbbbVVDoXipn6EY6UuuOCCPJbR+uuv36DxICdXscvPCAcqKbpJ3HHHHfNNwWh3BAHTgghRDjnkkFwZERUzURFYU7z21ltvNXiZsbxw5JFHlq2sKZ12+OGH55/77LNPGjFiRK15o4Kr5jHQmNAqKlPq2qdx4zkqzCIIKXXttdfmcepq2nLLLXMFSXQhGZVLNasqy1XjHXzwwbnSK9a3OL5bqQiFGnqze6+99soh79FHH13tBnBUwv3tb3+rmmdGFeOtxR8jRFfDpWL81Oeee67O8zpChnImd9+88sor1bpJLSpWvs0000wNXpfYfxFglnYLHde3iy66KJ+bxXFyS/fpgAED0pgxY6qmx/MY4zWUVmBGMBnbqSHtbMx1b0quldFVbFRt3nTTTVXj3pbrNnrPPffMQUl01xxd4NYU261c0NKY9lbqvFpttdVypV1s/5pV1Jdcckmt8SAbu571rU+MwxdjLUd1e3TFW84bb7xRrfveYsXkfvvtV+v4js8vVs9N6rPrEsdynGdRMRxBWKnonnf06NF5nnLjDFdSVIdGt6ul6xb7PH7Gfii9zkcwfemll6YHHnig7LJi3MjSc3FaUTxO4/uoOP5niOM6uoyOdW1otXZjv1cBAGg+umMFAJiEWWaZJd847d+/f1prrbXyzwju4ub/I488ksdbKo5vVmn9+vXLN+cj7IwuRYtjO0Ww1tCuy4pjNsaNvgikosovql8izIgAJcKrGL9tWhE3gCNMu+KKK9K9996bK6ZibLC4QR1VQRHsRAVnQ7tu3PD/Y+9O4Kyq6//xf9gERMkVdQpNwXUUl1Iwv+KWobgnaIYirmmaS6KGado3LZVCcU0NScitcClxKUqlEAUtTB1xwwUSlFQMTUDB+3+8z+975z/LnWEYDgwz83w+HuMdzrnnnM8553POHc/rfj6fb3wjXXjhhdkD0GjVEqFyjJcX4Ucch2hhUgweYgzGyy+/PAtWNt9889S/f/+shUa0KIwHxdFq5X/+538a1KqyvvrUu3fvLEgaNGhQ2mKLLbJWHNHFXnR9eNZZZ2VhY2zniCOOyM5ztKiLsg4YMCCNGzeu2voiPIkH08ccc0wWOMQyMcbW5MmTs+MYdTbKHa3vqrY4jTodD4ejK8L99tsvK0e05ouHuFG2aAUW3VMuTTxEjlZsEXBsv/322TGLB+Exdlmcs/POOy/bl5YqrsUIIE899dT0l7/8Jatb0YoqAoHoZjS6HK0p6tldd92VDjrooKylWoQhffv2zX6W9dyMHTs2u//EMY6QIh7GR7AU104EKFGfGirqX3STGq0p47qJ+8Vvf/vb7PXKK6+s1pVitJ6Ocx7zo5xxXUUIEC0vI7g88sgjs/pdNVSKwH+33XbLgvYYSzLuoY8++mg2rmV8KaLq8YkxMePLAIcffnjWMjBCsQho6xJBW9wn4rjG8Yx1Rnniuojf6xPdNMd9PYL+G264IQu1otvYmmJ6XH/RXXTcN6Kcse+xnQiV45zHfTrG2l2apZU3r+sq1hn7FWNuxrGMwLVnz55ZHY36GvWr5v2sMfu5tHN2xx13ZPfyCJsi1I57YMyPVnDxhYsXXnghW2+3bt2y95944olZXY/6HffiCOGi3seXQ6LOxPVR/GxrzOdk1MF4/2mnnZZdg3HfjPXHvTLKEdfhFVdckVa0uB522GGH7HqJssa9P+7bcQ3GOS6KOhIhbr9+/bK6Gff6WC72O87J008/nbWgjHB2Wb54sDJEWWNf4h4SLVzjcyxau0b9jvMe9TiC1+WxtM9VAACaUAEAoJWKP4WW5c+hqVOnFg499NDCeuutV+jQoUOhe/fuhVNOOaXw9ttv13rvsccem637jTfeqJwWv8e0mFfKHnvsUbI8Dz/8cKFPnz6FLl26VJa56nqXtn/Fn9VWW62w7rrrFnbaaafCiSeemK13yZIlhZWheDxGjx7doPd//vnnhTFjxhT23nvvwtprr50d77KyssJuu+1WuOyyywozZ85s8HEtevDBBwv9+vXL1hfH4ktf+lJ2Pv/yl7/Ueu/f/va3wsCBAwsbbbRRtu0459tvv33h7LPPLjz99NPV3rvJJptkP6VcfPHFWdkee+yxatNfffXVwoEHHlhYZ511Cm3atKl1bB544IFC7969C2ussUbhC1/4QmHfffctTJw4MXtPXcfxoYceKuy6666Fzp07F9Zaa63CwQcfXJg+fXrhgAMOyJaZN29erWWee+657LhtvPHG2TGJY1NeXl44+eSTSx6XuixYsCA7L7Fsp06dsnLHubrjjjuWqa7Xp9Q1tbTjHOo6ZjEtytHQ9dRXz6K+7L777tmxX3PNNQv9+/cv/POf/6xzfe+++27hqKOOKnTr1q3Qtm3b7D3x3sacm6eeeiq7D/Xq1St7Txz/Hj16FIYMGVJ4/vnn6z2mpY5H3M8GDRpUWH/99QsdO3Ys7LjjjoXbb7+95DJx/7j++usLX/nKV7J9j5+4v1x33XW17i1333134Vvf+lahZ8+e2b0sjlPszwUXXFCYO3durXX/4he/KGy11VbZvkfZql5jddWfuEfHPaNr166V11Xx2Nd37RTPYfFeefrpp9d7rKIunHbaadm+xDGKfdlyyy0LRx99dOG+++6rd9mGlrcx11V9nnnmmez+F+uIn3322acwefLkpdb5ZdnP+s5ZmD9/frY/UUeiDsQ+ffnLX86ul5tuuqnw8ccf11rnb37zm0Lfvn2zYxRliPd/+9vfLvz9739v8Odkffv4xz/+Mbu/xj0zyh3XzrnnnlvyflnffWtp9auu+9mMGTMKP//5z7PjGvsXn3Nnnnlm4T//+U/J5eLecf7552d1Iq632N84P4cffnhh7Nixhc8++6zyvfXt99LUt6+NvRffeeedWf2N+hf7us022xQuvfTSrJ7XlPfnary31H22IdsDAGD5tIn/NGUICgAArBjR3d1mm22WtXqt2n0h1BSt3KLVbEO7EwUaL7r7jTFIo9VwtMoEAICWypiQAADQzEV3mTXHAovvGkYXtNGFZ3SrCAAAALAyGRMSAACauaeeeiobUyzG8YtWNTGGZUyLcd9ijMLi2GkAAAAAK4sQEgAAmrktt9wyHXjggemJJ55IDz30UFq8eHH60pe+lM4444x0wQUXpG7dujV1EQEAAIBWxpiQAAAAAAAAQK6MCQkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAOSqfb6ro2jDDTdM//3vf9PGG2/c1EUBAAAAAABodmbOnJm6dOmS3nnnnaYuCo2gJeQKEgHkZ5991tTFAAAAAAAAaJYiZ4m8heZJS8gVpNgCsqKioqmLAgAAAAAA0OyUl5c3dRFYDlpCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAAK07hFy0aFE6//zzU1lZWercuXPq3bt3mjBhQoOW/fOf/5z22muvtN5666W11lor7bLLLmns2LErvMwAAAAAAADQmjS7EHLIkCFpxIgRadCgQWnkyJGpXbt2qX///mnSpEn1LveHP/whfeMb30iffvppuuSSS9Jll12WhZiDBw9OV1111UorPwAAAAAAALR0bQqFQiE1E1OnTs1aPg4fPjwNHTo0m7Zw4cK07bbbpm7duqXJkyfXuWwEkBUVFen1119PHTt2zKYtXrw4bbXVVqlLly7pn//8Z65lLS8vz15jmwAAAAAAACwbWUvz1qxaQo4bNy5r+XjyySdXTuvUqVM64YQT0pNPPplmzZpV57Lz589Pa6+9dmUAGdq3b591zRotIgEAAAAAAIB8tE/NyLRp09IWW2yRunbtWm16jO0Ynn322dS9e/eSy+65557piiuuSBdddFE69thjU5s2bdIdd9yRnnnmmfTb3/52uVP4mmbMmJF69OjR6PUCAAAAAABAc9WsQsg5c+akjTbaqNb04rTZs2fXuWyEj2+88UY2FuSll16aTVt99dXTPffckw455JAVWGoAAAAAAABoXZpVCLlgwYJq3alW7ZK1OL8usVy0ohwwYED65je/mZYsWZJuvvnmdPTRR6cJEyakPn36NKpMdfVDXFcLSQAAAAAAAGjpmlUIGWM3Llq0qNb0hQsXVs6vy+mnn56eeuqp9I9//CO1bfv/hsI84ogjsrDwzDPPTFOmTFmBJQcAAAAAAIDW4/+lcc1EdLsaXbLWVJxWVlZWcrlPP/00jRo1Kh1wwAGVAWTo0KFD2n///bNxIeM9AAAAAAAAQCsLIXfYYYf0yiuvpPnz51ebXmzFGPNLef/999PixYuzLlhr+uyzz9Lnn39ech4AAAAAAADQwkPIGM+xOJZjUXTPOnr06NS7d+/UvXv3bNrMmTPTSy+9VPmebt26pbXWWivdd9991Vo8fvzxx+mBBx5IW221Vb1duQIAAAAAAAAtdEzICBoHDhyYhg0blubOnZt69uyZbrvttvTmm29m3a0WDR48OE2cODEVCoXs3+3atUtDhw5NF154YerTp082P8LMWOZf//pX+s1vftOEewUAAAAAAAAtS7MKIcOYMWPSRRddlMaOHZvmzZuXevXqlcaPH5/69u1b73I//OEP06abbppGjhyZfvzjH2ctKGPZcePGpcMPP3yllR8AAAAAAABaujaFYnNBclVeXp69VlRUNHVRAAAAAAAAmh1ZS/PWrMaEBAAAAAAAAFZ9QkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAAKB1h5CLFi1K559/fiorK0udO3dOvXv3ThMmTGjw8nfffXfaddddU5cuXdJaa62Vvva1r6VHH310hZYZAAAAAAAAWpNmF0IOGTIkjRgxIg0aNCiNHDkytWvXLvXv3z9NmjRpqctecskl6aijjkrdu3fP1nHppZemXr16pbfffnullB0AAAAAAABagzaFQqGQmompU6dmLR+HDx+ehg4dmk1buHBh2nbbbVO3bt3S5MmT61z2qaeeylo9/uIXv0hnn332Ci9reXl59lpRUbHCtwUAAAAAANDSyFqat2bVEnLcuHFZy8eTTz65clqnTp3SCSeckJ588sk0a9asOpe9+uqr04YbbpjOPPPMFLnrxx9/vJJKDQAAAAAAAK1Lswohp02blrbYYovUtWvXatN32WWX7PXZZ5+tc9m//OUvaeedd07XXHNNWn/99dOaa66ZNtpoo3Tdddet8HIDAAAAAABAa9I+NSNz5szJgsOaitNmz55dcrl58+al9957Lz3xxBPp0UcfTRdffHHaeOON0+jRo9P3vve91KFDh/Sd73xnuZoC1zRjxozUo0ePRq0TAAAAAAAAmrNmFUIuWLAgdezYsdb06JK1OL+UYter77//frrrrrvSkUcemf17wIABabvttkuXXnppo0NIAAAAAAAAoBmHkJ07d06LFi2qNX3hwoWV8+taLkSLxwgei9q2bZsFktEycubMmVnryGVV12CodbWQBAAAAAAAgJauWY0JGd2uRpesNRWnlZWVlVxunXXWyVpLrrvuuqldu3bV5nXr1q2yy1YAAAAAAACglYWQO+ywQ3rllVfS/Pnzq02fMmVK5fxSosVjzPv3v/+dPv3002rziuNIrr/++ius3AAAAAAAANCaNKsQMrpSXbJkSbr55psrp0X3rKNHj069e/dO3bt3z6ZF16ovvfRStWWj29VY9rbbbqvWjevtt9+ettlmmzpbUQIAAAAAAAAteEzICBoHDhyYhg0blubOnZt69uyZhYpvvvlmGjVqVOX7Bg8enCZOnJgKhULltO985zvpV7/6VTrttNOy1pQx/uPYsWPTW2+9lR544IEm2iMAAAAAAABoeZpVCBnGjBmTLrrooixAjHEce/XqlcaPH5/69u1b73KdO3dOjz76aDrvvPPSrbfemv773/9mXbQ++OCDqV+/fiut/AAAAAAAANDStSlUbS5IbsrLy7PXioqKpi4KAAAAAABAsyNrad6a1ZiQAAAAAAAAwKpPCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAAA07xDyww8/XNmbBAAAAAAAAJprCHnmmWfWO/+jjz5K/fr1y3OTAAAAAAAAQEsOIa+99tp01VVXlZy3YMGCdMABB6Tnnnsuz00CAAAAAAAALTmEHDZsWDr33HPTPffcU236okWL0sEHH5yeeuqpdPfdd+e5SQAAAAAAAGAV0z7PlV122WXprbfeSsccc0wqKytLu+66a1q8eHEaOHBgeuyxx9Ltt9+ehZEAAAAAAABAy5VrS8gwevTo1KdPnyxsnD59eho0aFB68MEH080335yOPPLIvDcHAAAAAAAAtOSWkKFDhw7pvvvuS7vttlvaaaed0qeffpquvvrqdPzxx+e9KQAAAAAAAKClhZAzZ86sc96NN96YDjrooHTCCSekQw45pNp7N9544+XZLAAAAAAAALAKa1MoFAqNXbht27apTZs2dc6PVZeav2TJktTSlZeXZ68VFRVNXRQAAAAAAIBmR9bSiltC/uhHP6o3hAQAAAAAAABan+UKIS+55JL8SgIAAAAAAAC0CG2bugAAAAAAAABAy5JrCHn33XenwYMH1zk+ZMy755578twkAAAAAAAA0JJDyOuvv77OMSJjert27dJ1112X5yYBAAAAAACAlhxCTp8+Pe244451zo95L774Yp6bBAAAAAAAAFpyCPnRRx+l1VZbrc750RLyP//5T56bBAAAAAAAAFpyCLnxxhunKVOm1Dk/5pWVleW5SQAAAAAAAKAlh5AHHnhguv3229Pvf//7WvP+8Ic/pDvvvDMddNBBeW4SAAAAAAAAWMW0KRQKhbxW9t5772XjPs6ePTvtueeeleNDTps2LT3++ONZK8i///3vqVu3bqmlKy8vz14rKiqauigAAAAAAADNjqyleWuf58rWW2+9NHny5HTqqaemhx9+OD322GPZ9DZt2qT+/fun66+/vlUEkAAAAAAAANCa5RpChu7du6fx48enefPmpddeey2b1rNnz7T22mvnvSkAAAAAAACgNYSQRRE67rzzzitq9QAAAAAAAMAqqm1TFwAAAAAAAABoWZarJWTbtm2zn08++SStttpq2e8x/mN9Yv7ixYuXZ7MAAAAAAABASw0hBw8enIWK7dq1q/ZvAAAAAAAAoPVqUygUCk1diJaovLw8e62oqGjqogAAAAAAADQ7spbmzZiQAAAAAAAAQK6EkAAAAAAAAMCqMybkZptttszLxJiRM2bMWJ7NAgAAAAAAAC01hNx4442zUBEAAAAAAAAglxDy8ccfX57FAQAAAAAAgBbImJAAAAAAAADAqhtCvvHGG+mBBx4oOa9QKGTz3nzzzeXaxqJFi9L555+fysrKUufOnVPv3r3ThAkTlnk9++67b9aV7Omnn75c5QEAAAAAAABWYAh54YUXpiuuuKLkvAj8hg8fni6++OLl2saQIUPSiBEj0qBBg9LIkSNTu3btUv/+/dOkSZMavI577703Pfnkk8tVDgAAAAAAAGAlhJARBO633351zu/Xr1/661//2uj1T506Nd11113pZz/7WRZonnzyyenRRx9Nm2yySTrvvPMatI6FCxemc845J2tNCQAAAAAAAKziIeS7776bNtxwwzrnb7DBBumdd95p9PrHjRuXtXyM8LGoU6dO6YQTTshaNs6aNWup67jyyivT559/noYOHdrocgAAAAAAAAArKYTs2rVrvWM+xpiRXbp0afT6p02blrbYYotsO1Xtsssu2euzzz5b7/IzZ85Ml19+edZlbIwnCQAAAAAAAOSvfZ4r23XXXdOtt96adXe69tprV5s3b968NHr06NS7d+9Gr3/OnDlpo402qjW9OG327Nn1Lh/l2nHHHdO3vvWtlJfy8vKS02fMmJF69OiR23YAAAAAAACgVbaEjC5O586dm7VMHDt2bHrhhReyn/g9wseYd+655zZ6/QsWLEgdO3asNT26ZC3Or8tjjz2W7rnnnnT11Vc3evsAAAAAAADASm4Jufvuu6df/vKX6Xvf+14aMmRI5fRCoZCFhzfeeGPac889G73+6EJ10aJFtaYvXLiwcn4pixcvTmeccUY65phj0s4775zyVFFRsUwtJAEAAAAAAKClyzWEDCeeeGLq379/+t3vfpdeeeWVbFqM4zhw4MBUVla2XOuOblfffvvtkt20hrrWP2bMmPTyyy+nm266qdaYlR999FE2rVu3bmn11VdfrvIBAAAAAAAAKyCELIaBZ555Zu7r3WGHHbJuVefPn5+6du1aOX3KlCmV80uZOXNm+uyzz9Juu+1WMqCMn/vuuy8deuihuZcZAAAAAAAAWpsVEkJWFQHhrFmz0he/+MVsXMi2bRs/DOWAAQPSz3/+83TzzTdn40+G6J519OjR2bq7d+9eGTp+8sknaauttsr+/a1vfatkQHnYYYdlrTZPOumkbHkAAAAAAABgFQ4ho9vUAw44ID333HOV07beeuv0wAMPpM0226xR64ygMLp1HTZsWJo7d27q2bNnuu2227LuVEeNGlX5vsGDB6eJEydmY1GGCCOLgWRNm266qRaQAAAAAAAAkKPGN0tcijPOOCMbwzHGhVywYEF66qmn0pIlS9J3v/vd5VpvdJ161llnpbFjx2bbiG5Wx48fn/r27Ztb2QEAAAAAAIDGa1MoNhdspEceeSTtt99+taZH96vR6nGnnXaqnHbDDTekCy64IH344YeppSsvL89eKyoqmrooAAAAAAAAzY6spZW3hDz44IPTsccemz744INaIeSkSZOqTXviiSdSWVnZ8m4SAAAAAAAAaMkhZHSz+sILL2TjPd59992V03/4wx+ms88+O+2+++5p0KBBabvttkt33XVXNh0AAAAAAABouZY7hIzuVqdOnZoFjscdd1zWMnL27NnpkEMOyQLKaCob3a/26dMnPf7441kgCQAAAAAAALRcyz0mZFWvvvpqOumkk9Kzzz6bLr/88nTKKaek1ko/xQAAAAAAAI0na2nlLSGr2nzzzbPWjldeeWUaNmxY2mOPPbJgEgAAAAAAAGg9cgshP/300zR//vzs95NPPjlLpdddd920/fbbp5/97GdpyZIleW0KAAAAAAAAaMkh5AcffJAOO+ywtMYaa6S111479erVKz3zzDOprKws3XvvvWns2LHp2muvTV/5ylfSP/7xj3xKDQAAAAAAALTcEPKss85KkydPTjfddFMWOkYYefjhh6fPPvssmx+/T58+PQsh+/Tpk84999w8yg0AAAAAAAC01BDy4YcfTj/4wQ/Scccdlw455JD0q1/9Ks2aNSu9+OKLle/5whe+kEaNGpUeeeSRdP/99y/vJgEAAAAAAICWHEJ26NAhLViwoPLfCxcuTG3atEnt27ev9d699947Pf/888u7SQAAAAAAAGAVVjspXEYxHuTll1+eFi9enI0JecMNN6Stttoqbb311iXf36lTp+XdJAAAAAAAANCSQ8jhw4entm3bZmNCfvLJJ+lrX/taGjlyZDYNAAAAAAAAaH3aFAqFQlMXoiUqLy/PXisqKpq6KAAAAAAAAM2OrKV501wRAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAABovSHkokWL0vnnn5/KyspS586dU+/evdOECROWuty9996bjjzyyLTZZpul1VdfPW255ZbpnHPOSR9++OFKKTcAAAAAAAC0Js0qhBwyZEgaMWJEGjRoUBo5cmRq165d6t+/f5o0aVK9y5188slp+vTp6eijj07XXHNN2m+//dJ1112Xdt1117RgwYKVVn4AAAAAAABoDdoUCoVCagamTp2atXwcPnx4Gjp0aDZt4cKFadttt03dunVLkydPrnPZxx9/PO25557Vpo0ZMyYde+yx6ZZbbkknnnhi7uUtLy/PXisqKnJfNwAAAAAAQEsna2nemk1LyHHjxmUtH6NVY1GnTp3SCSeckJ588sk0a9asOpetGUCGww47LHuNFpIAAAAAAABAKwwhp02blrbYYovUtWvXatN32WWX7PXZZ59dpvW988472et6662XYykBAAAAAACA9qmZmDNnTtpoo41qTS9Omz179jKt74orrshaVg4YMCCXpsA1zZgxI/Xo0WO51g0AAAAAAADNUbNpCblgwYLUsWPHWtOjS9bi/Ia644470qhRo9I555yTNt9881zLCQAAAAAAAK1ds2kJ2blz57Ro0aJa0xcuXFg5vyH+9re/ZeNI9uvXL1122WXLXa66BkOtq4UkAAAAAAAAtHTNpiVkdLsaXbLWVJxWVla21HX885//TAcffHDadttt07hx41L79s0mgwUAAAAAAIBmo9mEkDvssEN65ZVX0vz586tNnzJlSuX8+sQYjfvtt1/q1q1beuihh9Iaa6yxQssLAAAAAAAArVWzCSEHDBiQlixZkm6++ebKadE96+jRo1Pv3r1T9+7ds2kzZ85ML730UrVl33nnnfSNb3wjtW3bNv3xj39M66+//kovPwAAAAAAALQWzaY/0ggaBw4cmIYNG5bmzp2bevbsmW677bb05ptvplGjRlW+b/DgwWnixImpUChUTosWkK+//no677zz0qRJk7Kfog022CDtu+++K31/AAAAAAAAoKVqNiFkGDNmTLrooovS2LFj07x581KvXr3S+PHjU9++fZc6FmS48sora83bY489hJAAAAAAAACQozaFqk0GyU15eXn2WlFR0dRFAQAAAAAAaHZkLc1bsxkTEgAAAAAAAGgehJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK7a57s6gOomv/Vgaim+tskBTV0EAAAAAABoFrSEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAWncIuWjRonT++eensrKy1Llz59S7d+80YcKEBi379ttvpyOOOCKttdZaqWvXrumQQw5Jr7/++govMwAAAAAAALQmzS6EHDJkSBoxYkQaNGhQGjlyZGrXrl3q379/mjRpUr3Lffzxx2mvvfZKEydOTBdccEH68Y9/nKZNm5b22GOP9P7776+08gMAAAAAAEBL1z41I1OnTk133XVXGj58eBo6dGg2bfDgwWnbbbdN5513Xpo8eXKdy95www3p1Vdfzdax8847Z9P233//bNlf/OIX6ac//elK2w8AAAAAAABoyZpVS8hx48ZlLR9PPvnkymmdOnVKJ5xwQnryySfTrFmz6l02wsdiABm22mqrtM8++6Tf/va3K7zsAAAAAAAA0Fo0qxAyuk/dYostsvEcq9pll12y12effbbkcp9//nl67rnn0le/+tVa82LZGTNmpI8++mgFlRoAAAAAAABal2bVHeucOXPSRhttVGt6cdrs2bNLLvfBBx+kRYsWLXXZLbfccpnLVF5eXnL6Sy+9lDp06FDnfGgtPvns49RSrN5hjaYuAgAAAABAqxGNyCJroXlqViHkggULUseOHWtNjy5Zi/PrWi40ZtnGatOmzSp1YcSFGnr06NHURaGVWRnBnfpNS6eO05qo77Qm6jstnTpOa6Ce05qo77Qm6vuqI3KWLl26NHUxaA0hZOfOnbMWjTUtXLiwcn5dy4XGLLs0FRUVqTkotshsLuWFZaF+09Kp47Qm6jutifpOS6eO0xqo57Qm6jutifoOrXBMyOg6Nbpkrak4raysrORy66yzTtYKsjHLAgAAAAAAAC04hNxhhx3SK6+8kubPn19t+pQpUyrnl9K2bdu03XbbpWeeeabWvFh2s802S2uuueYKKjUAAAAAAAC0Ls0qhBwwYEBasmRJuvnmmyunRRero0ePTr17907du3fPps2cOTO99NJLtZZ9+umnqwWRL7/8cnr00UfTwIEDV+JeAAAAAAAAQMvWrMaEjKAxAsNhw4aluXPnpp49e6bbbrstvfnmm2nUqFGV7xs8eHCaOHFiKhQKldO++93vpltuuSUdcMABaejQodlgpiNGjEgbbLBBOuecc5pojwAAAAAAAKDlaVYhZBgzZky66KKL0tixY9O8efNSr1690vjx41Pfvn3rXS66W3388cfT2WefnS699NL0+eefpz333DNdddVVaf31119p5QcAAAAAAICWrk2hanNBAAAAAAAAgNY0JiQAAAAAAACw6hNCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIArCBDhgxJbdq0SW+++WZTFwVWGX/605/S1772tbTWWmtl18ehhx66Ure/5557Ztul+bnkkkuyc/f44483eJm4/8YycT/m/xfHMI5LHNOWqjXsI0sXdSDu+wAANA0hJACQWvvDqao/7dq1S+utt17ae++90x133JFWBb/+9a+zssXr8u5fqZ9leaDf2LJX/enYsWPadNNNs1DgxRdfTK3Jl7/85eyntYpA6JBDDklvvPFGOv7449PFF1+cvvWtb6XWQgC6Yu51zS1kaG7lXVGfT8tLwExo7Z+rAACruvZNXQAAgFVBhCHhs88+Sy+99FL6/e9/nx577LH0zDPPpBEjRjRqnT/72c/SD37wg/TFL34xrSr7V8rKeHi3/fbbV7Z4+89//pMFn7fddlv67W9/mx599NHUp0+fFV4Gmt6f//zntHDhwvSLX/wiffvb326SMowZMyZ98sknTbJtls/pp5+ehdYbb7xxg5eJ++/06dPTF77whRVaNlY9u+yyS3bu44tFAABA0xBCAgD8Xzd/Vf3lL39J++67b7r66qvTGWec0aigbqONNsp+VgVN3R3dDjvsUK0MhUIhHXfccVkQOWzYsCzwpeWbPXt29lpWVtZkZViWAItVS4RJyxoodejQIW211VYrrEysulZffXXnHgAAmpjuWAEASthnn32yh5cRlj399NOV0//+97+nww8/PHXr1i3rVnSTTTZJ3/3ud9OcOXMaNCZk1e7j4vdo1RMP1Tt16pS++tWvpvHjx1dbR3TZF2FdiNeq3Zo257Emo/xx3MLUqVOrzfvjH/+Y+vfvnx2XOMY9evRI5557bvrwww/r7IZt/vz56fvf/372e4QOVQPPaNkaXX/GvFhfnLvdd9893XjjjbXWF++Nc9O9e/e02mqrpQ022CBrsffyyy/Xe35vuummtN1222XnMZY5+eSTsxafNccme+utt7KfquexaleC999/fzr66KPTFltskbp06ZL9fOUrX0nXXHNN+vzzz0sey1deeSWrk2uvvXb2/hhv8cEHH6y3m8R//etfWauyzTbbLDsm6667bjr44IOr1fWGitasffv2zVqade7cOTsO0Qp40aJFtfa/2CJ3r732anB3wFX3Y8KECdm5W2ONNdL666+fXRPFejFt2rR04IEHZsch5sf+lLpGSnWJWnXsuGeffTYdcMAB2ZiVEWLsscceafLkycs05mvNseiK1/3EiROzf1c9/zW75VyWc/PRRx+ln/zkJ2nbbbdNXbt2TWuuuWZ2vRx55JHZvaohiscjzteFF16YdZVcvO5+/OMfp08//bTkcvFFjf322y+ts8462fujzkbL76r1vuj111/PromePXtmdSSWiXpyyimnpPfff7/B97qaY0IW60aIY1t1mZrHvup1FuWOaf/85z9L7tvdd9+dzR86dGi16R988EH2pYmtt94624+o8/FZEeOcNkRDyrss11VDvPvuu+mEE07I7kuxnvhCSHz5oz4N3c+Gfj4tXrw43XDDDVmL96incV3tuOOO6brrrqvzvhafC1GPoyVr1K/4Qs83vvGN7LiEOF5RV0PsT9VtF+959Y0J+eqrr6bBgwdn6497fXwxIv4d02uqWu/GjRuXtbCMfYh6HJ/hb7/9dmqoqvezuE/H/Tru23HfGjBgQMnth2i9Hec/zl+8P+5xu+66a7rzzjtrvbfqfsdxjPtZlLUhfzdU3ddYd3z+xL7G8YnP2GL9ix4M4vzH+YyyH3PMMZXXck2N/bspr8/Vovfeey9bR9SlKEd5eXkaPXp0vccDAIDlpyUkAEAdIoAMxYfGERDGg7SYHg8L40FaPFyLMCu6b500aVLlQ9GliQdm8SAzgoZ4eBcPfePBd4yXF11WRkgT4kFahCGx/pgXDyCLYnpLOr4hQo94CBoPTCNQioeWzz33XPr5z3+eHnroofTkk09mDz2ripAkxvCMYxgPqWN+8TzEQ96BAwdmD04jeDjqqKOy0CrChyuvvDKdeuqplet55JFH0je/+c2sS96DDjooC0wiELr33nuz9URrzZ122qnWfpx33nlZcBrLxPbjfbfcckt67bXXsge1IQLQCOCiZW0466yzKpevek4jxGnbtm3q3bt39nA8HrjGOs4888wshBo7dmyt0DQeYs+bNy970NyrV68s8DnssMOyILeUf/zjH1k543j169cv2+d4OBsB6P/8z/+k++67r85la7rggguyB+MRGEdYGw/GH3744Wx6HJMILeIBf3H/46FxhC/HHntsZevihrYy/sMf/pBdg1EvIryKYDAe5MfD6ihDhCQRUEbg8vzzz6cHHnggOxZRf+KYNkR0vxz1Ih7un3jiiWnmzJnpnnvuydYd4eSWW26ZGiOu1dj/KG9c+1W7R666/8tybuL6iTodx6FY3vbt22d1NupgHIsIEBrqiCOOyOpY3NsiyI97TlyLcUzi2Fe9TiMciGsnwpC4vuI6jXN7xRVXZMf9iSeeqLw/RdCw8847Z18UiLLHPTS65I1xQaM+R+AaQWtj7nXxnjiWcd+I+3HV4KG+MRej/kX9jK55o2vgmoohXdX1xXmLdUZ9i2Mbx/6///1vVifj9zgmJ510Ur3HuKHlbeh1tTRRd+L+ENdB1J/4ifMR10/Us1KWZT8bcs6K99Mod1w/sT8RKkUd/d73vpemTJlS674W98+oXzFGcwTwm2++eZo7d25WFyPMjLoaZYx7+ciRI6t19108zvWJev71r389C/Fj/dtss012L/3Nb36T7Ut8BkedrSm2HddCLBNfToiyx+d2fJ7E/SGCrYaKz5U4p3Gvjn2J5eNeE8clrumq95rYz/iMiy9axGdQfKkmwts4pnE8Kyoq0qWXXlprG/F5GfUoznssE/WhIfUmXHvttVn54rhG+aLOXXXVVdm9Kc51hK/xmROhXpQ3jl2sP5apqrF/N+X5uVo8hrvttlu2/1GO+Jvgd7/7XXZc4vMh7gkAAKwgBQCAViz+HCr1J9GECRMKbdq0yX7efPPNwkcffVRYZ511Cm3bti389a9/rfbeyy+/PFvHvvvuW236sccem01/4403KqfF78VtXnLJJdXe/8gjj2TT999//2rTR48enU2P18bu38UXX1zy52c/+1lhRSqWPY5FVZ9//nlh8ODB2by99947m/boo49m/951110L8+bNK7mes846q9r0TTbZJJu+zz77FD7++ONq8/79738XunbtWujQoUPh8ccfr1W2WbNmVf7+wQcfFNZaa63CuuuuW6ioqKj2vueff77QpUuXwo477ljy/Hbv3r3w1ltvVU7/7LPPCrvvvns2b8qUKbXKGz91ee2112pNW7JkSeWxeuqpp6rNi2MX02+44YZq0x966KHKc1+13kTZevToUejYsWOtY/L2228XysrKChtuuGFh4cKFhaWZPHly5f7PmTOn2jYOPPDAbN5ll11WbZmoczH9scceKzRU8dy3a9euWpnjuHz961/P5q299tqF3/zmN9WWO/7447N5999/f7Xpe+yxR61rPspT6niFX/7yl9n0U089danXd831xf4ubduNPTfPPfdctq5DDz201rri2ESdbohimTbffPNqyyxYsKDQp0+fbN6YMWMqp8f9cLXVViusueaahenTp1dbVxyjeP9JJ51UOe2aa67Jpl199dW1th3X7CeffNLge11d9SemxX6UUrznVr0Hxb594QtfKGywwQbZca8q6nLUtZ122qnWcYrPgzvvvLPa9LhXbb/99oVOnToV3nnnnUJD1FfexlxXdYnzUOq++fTTTxfat29fZx1dlv1s6Dk7/fTTC4sXL66cHr+Xukbj/htli2v6hRdeqPe+XercLu06jM+erbbaKpte855x1113ZdO33HLL7BqquQ9R5+O6q+qoo47K5t19992Fhiger/h54IEHqs2La6TqZ2LNe80VV1xRbXrU4379+mXna9q0abX2O37i/rUsivsan50vvvhi5fS472yzzTbZ30Dxt1Bd9+Kq5Viev5vy/FwtHosTTjihWh2MuhbX+tZbb71MxwgAgGUjhAQAWrWaId0FF1xQOPzww7MHUzH97LPPzt4XDyvj3/HAsaZ4OPblL385m1/1oVl9IWQ8MKv6MKxo4403zoKwvEPIun7iQfyKVCx7PLwuHuN4IL7DDjtk0zt37lx48skns/dGmBLTSj14DrHM+uuvXzKEfPbZZ2u9/+c//3k274wzzlhqOYsPf6+77rqS86PMMb9qQFk8v7fcckut9996663ZvGuvvXaZHpbW5e9//3u2vh//+MeV02bOnJlN69mzZ7UH5kXFh8JV60087I9pQ4cOrfc4PPjgg0st04knnpi996abbqo17+WXX84ePG+66aa5hZBHH310rXm33XZbNi8eTtcUD8lLhf31hZC77bZbrfV8+umnWSjyla98ZYWGkMt6boohZKl70rIolqlq0FhzP/bcc8/KaZdeemk2bdiwYbXeHyFmBDURVBXD0mIIWaqe1LSyQsiqAd348eOrTR8+fHg2feTIkZXT4v4S0wYMGFDvubv++uuXuo9LK29jrqtSot6uvvrq2fn48MMPa80v1t+qdbQx+1nfOYv7UoRQEZ7XDHuLwWYEaAMHDqycFmFlrG/EiBFL3cfGhJCTJk2q/LJLKf/zP/+TzZ84cWKtevfDH/6w1vuLX54555xzCg1RPF41g8YQfxPEFxFifoT94b333sv+HvnqV79acn3Fc3buuefW2u/4zFxWxX298MILa82Lz5+Yd8wxx9Sa9+tf/zqbF69Fy/N3U56fq7FMXAv/+c9/as3r27dvNj8CUwAAVgzdsQIA/F83oCG6HIxu5IrdOsb4fMVuEkN0iVZTdIEYY3dF93XRXdrGG2+81O1FV2HR1VxNMRZhdKG2oro+baxSY2pFV3wN7Uozuqsrjr8WXT3GmEzRDW10Pxpd4YXY75gXXaTFT03R7eq///3vbNyp6L6xKLr2i25Ia3rqqaey1/3333+p5Sse8yhjqX2NcRfD9OnTK8tbFGN5ljqPIbpJXRaxb8OHD8+6no0uFKMbxKqqjj0W3feF6IqzVHej0QVfdCtYaj+jy8W6xkkr7ufSumSt75qI8QG/9KUvZV1uRpeyMabc8ip1nGOcslCq29HozjZE96TLs42okzEe2bKey2W1rOcm6mHcR2LctlgmukiMcx770NAuF6uK7iVrivXFfSruaw057zE2XIz199e//jXr3jK6yYyuK6Mb0dNOOy3rXjG6mY1uEaP8NcfmXJni/hXdO0bXq9GtZFH8O855dHNZ89xEXS51buK+VDw3yyuv6yqOf4wjGJ9lpd4XXWzWHBsy7/2M+2Z03xndqZbqLjTEmJNV17cs9+28j29xenQRGnU+PtdX1L2+1PUW11pcczNmzMi2H12XRtexS5YsqXNsy+jutq5zEl2+N+X9dnn+bsrzWIeogzW7cq+5zuj2GACA/AkhAQAaENLFQ9kQ4Vkpxekx7lBD1DXGWTyYi7GeVtWQtuZD7IaGkDHeUoyHt7QAbvHixSW3VdXHH39cLYSM8ehKhRnFc1F8OLq0bYcIJZa27YacyziPIR4eN1SUN8Yhi4AhHh4PHjw4Gxsz1lUc+yzGsapZJyMgK6XU9OJ+lgp5l7afjbkmYkzFKHseIWSpdRSPc33zig/pl/e6XJZz2RjLem4isIix0f73f/83jRs3Lp1//vnZ9DXXXDO73mIsuGV5qF6qvsR+x7iEMR5fY++FEaRMnTo1C1Bi3NUYC6/48H/o0KHpjDPOSE0hxkqMUC/G+IsAIgLUCE1eeOGFbBy82O+a52bChAnZz/JcNyvrulra/WHDDTesNS3v/SyuLwL0+u7rVde3LPftxliez/K87vUNOS/FchaPYYSR8bMs56TUOV6Z99tV5VjXtb7lXScAAA1T+yvTAADUUnzo9s4775ScP2fOnGrva2n+rxv/aj8RQuYpjl0EAaW2VfUnQo2q6mpNVXzoWLX1YH3bLraErG/bEe6sKL/61a+yAPLiiy9OU6ZMSTfccEPWeijCmyOPPLLW+4utOt59992S6ys1vbifv//97+vdzyjD0rT2a6LY+jSC85oa+mWE5T03cb1cddVVadasWVnQE3Voq622Stddd1069dRTl2n7pepL7Nt7771XrQVRY8771ltvne6+++4sUHnmmWfS5Zdfnn3Z4swzz0yjRo1KTSWC/gj2o2yh2DKw5nVe3Jf4IkB952b06NHLXaa8rqvi/LruD6XWn/d+Ftd32GGH1bu+uO815r7dGKvKfWtp56W4/eLr2WefXe8xfOyxx2qtqylbGq9KxxoAgKYlhAQAaIDoYjA8/vjjJR/U/+1vf8t+32mnnXLfdrHb1pb+Tf0+ffpkLZIqKipyW194+OGHG/ze4nlcUeJc1nUeX3vttez18MMPrzVv4sSJtaZFV5zFLhRLtZ6NLgVX5H7Wd03EvkS3fJtuummdLVCauwgAQwSANUXQtqzX8vKem549e2ZdSEddiRaQEWYui1J1LOpQlLV4rpd23iN8jW6Co4vkCB5LtTqKrhyj1WZ0Ixvuv//+5b7XRSDcmPtjhJCxbISP0YIryhQtIKt2z7oi7g/1lTev6yrC6NVXXz07H8UWaVWVWn9j9rO+cxZliHJGF6sNbZG8LPftxtSX+o5vKIZ5K+KzfGnXW+xH8b5dLGe0io/6sqI/m5rz3031fa4CAND0hJAAAA0Q3fNF15jxkLo4ZlXR1VdfnbXk+PrXv96g8SCXVbHr0eiCryWLlh7hpJNOSrNnz641P8ZHrHns6xOtmaIF14033piNUVdT1bGrjjvuuOxheXQZGF1H1hQhX10PrZf1XMa4agsWLKg1r9i1bc3txHhZ0bVmTVHXojVqBBM33XRTtXnR7WXN8SBDjBvYo0ePdP3112fjTpYSoWaMJbc0xx9/fPYarTWLY8WFeBgc3WzGMYtQrKUqjrdWswvf559/PmtJtqzX8rKem7jnxLihNUWQH637Yqy9ZfGTn/yk2lhrCxcuTMOGDau8PopinNwYM/Haa6+tDM6LLrroojR//vzsPR07dsym/f3vfy8ZghVbgkVQtrz3uliuVBi8NNElbIxXF/eVOGdRj2MsyNi/muPTxdiK0ZXsrbfeWnJdcd6rdlvb2PLmdV3FPgwaNCh99NFHtcYSjJD89ttvr7VMY/azvnMWofP3vve9rMVbdLtb6r4X81588cXKf0cL3lgu6mPV6aXu2/FFgGjttyz1JcYj3XLLLbOwL7oxrir+HcFYdNMbYzOuSNGV8vjx46tNixbMMR7kXnvtVdniP7obj/MY5yyOSamwLZap2pq0tf3dVN/nKgAATc+YkAAADRAti+Kh7MCBA9Mee+yRvcaDs3jA/qc//Skbe6lmEJSXXXfdNXtQHw/tojvD4jhP8XC3od2Y1XwIXfNBYbFVXVPaZ599sm4aI/jYfPPNU//+/bMWPzHW1VtvvZW1HIkHwxGwNUS0aLrjjjvSgAEDsoe6+++/f+rVq1cWkjz33HNZCFB8cBsPMeMBdHQbGC1xoizl5eXZA+54X4Q/cewjmFnefYxxvfbbb7/Ut2/fLKjZfvvt00EHHZS1yho+fHg666yzstY4cQyii814UP3Nb36zssvIqiKwiofq3/3ud7PgKvYvgql77rknC7WiNVyx29BiMBEBQ79+/bLWXjEuXpz7qF+xn1G2WD6CgarhUCmx7HnnnZeuvPLKtO2222bHuUuXLlkLphhXL87Vueeem1qqOL5xjuIBewQjvXv3zsKQOOYx77e//W3J8x9jPsb5jPodQWGEDcccc8wyn5voOjjWE+OIRqvDsrKy7EF8bD9anRXHiGyoWEfU+TiPUZZYT4QbUZYoX9WwPO5Fp512WtaC6Ygjjkjrr79+dn3GdRKt36644orK948dOza7N0Z9iJA1gqNY7wMPPJDV/6jvy3uvi+N61113ZddRlCnKH9dX/DTkywoR2F9wwQWV/y4l7iURWEYAeM0112TnO764EOc+7idR52P/IzRamvrKm+d19dOf/jT95S9/yY5nhFixbNSfuJdE/YvxMJd3P5d2ziKYjrr6y1/+Mjvnse4Y7zGCzLi/PfHEE+myyy5L22yzTbZcvEZX1KecckrWkq54ncW64xqIL5YUWyvG53KUL4LDCOoiPIxWcQcffHB2Lywl7unR8nXffffNurmO9Uedffnll7NWuTGm6pgxY6rdN1eEOPfxeRM/0Yo5WqzGOY7QLva/ZjgZx+pHP/pRdj3FeYwxJePLOtOnT8+OS9yH4vOyNf7dVN/nKgAAq4ACAEArFn8OLcufRFOnTi0ceuihhfXWW6/QoUOHQvfu3QunnHJK4e2336713mOPPTZb9xtvvFE5LX6PaTGvlD322KNkeR5++OFCnz59Cl26dKksc9X1Lm3/6vsZPXp0YUWJdde3v6X87W9/KwwcOLCw0UYbZcc4jvX2229fOPvsswtPP/10tfdusskm2U99XnjhhcIxxxxTKCsry9bXrVu3Qt++fQs33XRTrffGMT3ttNMKPXv2LHTs2LGw5pprFrbccsvC0UcfXbjvvvuWen6LHnvssWzexRdfXG36xx9/nNWXL37xi4V27drVOjYVFRWFgw46qLD++usXVl999cJOO+1UuOWWW+qtN9OnTy8cdthhhS984QvZMlFPxo8fXxg+fHi2TM1yh3fffbdw/vnnF8rLywudO3fO6lXs8+GHH14YO3Zs4bPPPis01J133lnYbbfdCmussUZ2zLbZZpvCpZdeWliwYEGt98bxiDLF8VnWOlSqntZ1nENdx6zUNVbfeuqrZzNnziwcccQRhbXXXrvQqVOnwle/+tXCPffcU+f6Fi9eXBg2bFhh0003LbRv3z57T5SnMedm1qxZ2bq+9rWvFTbYYIPCaqutltWr/fbbr/DQQw/Ve0xLHY+FCxcWfvjDHxa+/OUvZ+uKMl5yySXZ9FL++Mc/Fvbdd9/CWmutlb2/R48ehXPPPbcwb968au976qmnsjrfq1evyuMU7x0yZEjh+eefX6Z7XV31J47ZUUcdlV3bbdu2rXbsl3bP/e9//1vo2rVr9p5tt9223mM1f/78wmWXXZZdl1G+2Jc4Xv3798/uJ3F9N0R95W3MdVWfOXPmFI477rjsPhrljXtpXEv11fll3c+lfT59/vnnhTFjxhT23nvvrA7EfTjux7F/sZ24jmqaPHly4Zvf/GZ2L4z3x+dBv379Cr/73e+qve/VV18tHHjggYV11lmn0KZNm2r3ivr28aWXXsru6xtuuGF2LcbroEGDsunLct9aWv2q7372wAMPZMct7ttx/479ffnll0sut2jRosK1115b2HXXXbP6Gtdc/P0Rx/Sqq64qvPfeew2+n9Wnvn1t7L14ef9uWt7P1VL32YZsDwCAfLSJ/zR1EAoAAOQrWgZFq6aXXnop634QSokufaMVo/8thBXv17/+dda98ejRo9OQIUOaujgAALDCGRMSAACaqRgf7p133qk1PbpgjC4Xo2tDASQAAADQFIwJCQAAzdSnn36aunfvno15GeOatW/fPlVUVKQJEyak1VZbLRszEgAAAKApCCEBAKCZ6tChQzrllFPSo48+mqZMmZI++eSTtN5666WBAwemH/zgB2nHHXds6iICAAAArZQxIQEAAAAAAIBcGRMSAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyFX7fFdH0YYbbpj++9//po033ripiwIAAAAAANDszJw5M3Xp0iW98847TV0UGkFLyBUkAsjPPvusqYsBAAAAAADQLEXOEnkLzZOWkCtIsQVkRUVFUxcFAAAAAACg2SkvL2/qIrActIQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAABadwi5aNGidP7556eysrLUuXPn1Lt37zRhwoQGLfvnP/857bXXXmm99dZLa621Vtpll13S2LFjV3iZAQAAAAAAoDVpdiHkkCFD0ogRI9KgQYPSyJEjU7t27VL//v3TpEmT6l3uD3/4Q/rGN76RPv3003TJJZekyy67LAsxBw8enK666qqVVn4AAAAAAABo6doUCoVCaiamTp2atXwcPnx4Gjp0aDZt4cKFadttt03dunVLkydPrnPZCCArKirS66+/njp27JhNW7x4cdpqq61Sly5d0j//+c9cy1peXp69xjYBAAAAAABYNrKW5q1ZtYQcN25c1vLx5JNPrpzWqVOndMIJJ6Qnn3wyzZo1q85l58+fn9Zee+3KADK0b98+65o1WkQCAAAAAAAArTCEnDZtWtpiiy1S165dq02PsR3Ds88+W+eye+65Z5aUX3TRRem1115LM2bMSD/5yU/SM888k84777wVXnYAAAAAAABoLdqnZmTOnDlpo402qjW9OG327Nl1Lhvh4xtvvJGNBXnppZdm01ZfffV0zz33pEMOOWS5mwLXFCFnjx49Gr1eAAAAAAAAaK6aVUvIBQsWVOtOtWqXrMX5dYnlohXlgAED0p133pl+85vfpK9+9avp6KOPTk899dQKLTcAAAAAAAC0Js2qJWSM3bho0aJa0xcuXFg5vy6nn356Fjb+4x//SG3b/r/s9YgjjshaMp555plpypQpjSpTXYOh1tVCEgAAAAAAAFq6ZtUSMrpdjS5ZaypOKysrK7ncp59+mkaNGpUOOOCAygAydOjQIe2///7ZuJDxHgAAAAAAAKCVhZA77LBDeuWVV9L8+fOrTS+2Yoz5pbz//vtp8eLFacmSJbXmffbZZ+nzzz8vOQ8AAAAAAABo4SFkjOcYYeHNN99cOS26Zx09enTq3bt36t69ezZt5syZ6aWXXqp8T7du3dJaa62V7rvvvmotHj/++OP0wAMPpK222qrerlwBAAAAAACAFjomZASNAwcOTMOGDUtz585NPXv2TLfddlt68803s+5WiwYPHpwmTpyYCoVC9u927dqloUOHpgsvvDD16dMnmx9hZizzr3/9K/3mN79pwr0CAAAAAACAlqVZhZBhzJgx6aKLLkpjx45N8+bNS7169Urjx49Pffv2rXe5H/7wh2nTTTdNI0eOTD/+8Y+zFpSx7Lhx49Lhhx++0soPAAAAAAAALV2bQrG5ILkqLy/PXisqKpq6KAAAAAAAAM2OrKV5a1ZjQgIAAAAAAACrPiEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAACQKyEkAAAAAAAAkCshJAAAAAAAAJArISQAAAAAAADQukPIRYsWpfPPPz+VlZWlzp07p969e6cJEyY0ePm777477brrrqlLly5prbXWSl/72tfSo48+ukLLDAAAAAAAAK1JswshhwwZkkaMGJEGDRqURo4cmdq1a5f69++fJk2atNRlL7nkknTUUUel7t27Z+u49NJLU69evdLbb7+9UsoOAAAAAAAArUGbQqFQSM3E1KlTs5aPw4cPT0OHDs2mLVy4MG277bapW7duafLkyXUu+9RTT2WtHn/xi1+ks88+e4WXtby8PHutqKhY4dsCAAAAAABoaWQtzVuzagk5bty4rOXjySefXDmtU6dO6YQTTkhPPvlkmjVrVp3LXn311WnDDTdMZ555Zorc9eOPP15JpQYAAAAAAIDWpVmFkNOmTUtbbLFF6tq1a7Xpu+yyS/b67LPP1rnsX/7yl7Tzzjuna665Jq2//vppzTXXTBtttFG67rrrVni5AQAAAAAAoDVpn5qROXPmZMFhTcVps2fPLrncvHnz0nvvvZeeeOKJ9Oijj6aLL744bbzxxmn06NHpe9/7XurQoUP6zne+s1xNgWuaMWNG6tGjR6PWCQAAAAAAAM1ZswohFyxYkDp27FhrenTJWpxfSrHr1ffffz/ddddd6cgjj8z+PWDAgLTddtulSy+9tNEhJAAAAAAAANCMQ8jOnTunRYsW1Zq+cOHCyvl1LReixWMEj0Vt27bNAsloGTlz5sysdeSyqmsw1LpaSAIAAAAAAEBL16zGhIxuV6NL1pqK08rKykout84662StJdddd93Url27avO6detW2WUrAAAAAAAA0MpCyB122CG98soraf78+dWmT5kypXJ+KdHiMeb9+9//Tp9++mm1ecVxJNdff/0VVm4AAAAAAABoTZpVCBldqS5ZsiTdfPPNldOie9bRo0en3r17p+7du2fTomvVl156qdqy0e1qLHvbbbdV68b19ttvT9tss02drSgBAAAAAACAFjwmZASNAwcOTMOGDUtz585NPXv2zELFN998M40aNaryfYMHD04TJ05MhUKhctp3vvOd9Ktf/SqddtppWWvKGP9x7Nix6a233koPPPBAE+0RAAAAAAAAtDzNKoQMY8aMSRdddFEWIMY4jr169Urjx49Pffv2rXe5zp07p0cffTSdd9556dZbb03//e9/sy5aH3zwwdSvX7+VVn4AAAAAAABo6doUqjYXJDfl5eXZa0VFRVMXBQAAAAAAoNmRtTRvzWpMSAAAAAAAAGDVJ4QEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAJp3CPnhhx+u7E0CAAAAAAAAzTWEPPPMM+ud/9FHH6V+/frluUkAAAAAAACgJYeQ1157bbrqqqtKzluwYEE64IAD0nPPPZfnJgEAAAAAAICWHEIOGzYsnXvuuemee+6pNn3RokXp4IMPTk899VS6++6789wkAAAAAAAAsIppn+fKLrvssvTWW2+lY445JpWVlaVdd901LV68OA0cODA99thj6fbbb8/CSAAAAAAAAKDlyrUlZBg9enTq06dPFjZOnz49DRo0KD344IPp5ptvTkceeWTemwMAAAAAAABackvI0KFDh3Tfffel3XbbLe20007p008/TVdffXU6/vjj894UAAAAAAAA0NJCyJkzZ9Y578Ybb0wHHXRQOuGEE9IhhxxS7b0bb7zx8mwWAAAAAAAAWIW1KRQKhcYu3LZt29SmTZs658eqS81fsmRJaunKy8uz14qKiqYuCgAAAAAAQLMja2nFLSF/9KMf1RtCAgAAAAAAAK3PcoWQl1xySX4lAQAAAAAAAFqEtk1dAAAAAAAAAKBlyTWEvPvuu9PgwYPrHB8y5t1zzz15bhIAAAAAAABoySHk9ddfX+cYkTG9Xbt26brrrstzkwAAAAAAAEBLDiGnT5+edtxxxzrnx7wXX3wxz00CAAAAAAAALTmE/Oijj9Jqq61W5/xoCfmf//wnz00CAAAAAAAALTmE3HjjjdOUKVPqnB/zysrK8twkAAAAAAAA0JJDyAMPPDDdfvvt6fe//32teX/4wx/SnXfemQ466KA8NwkAAAAAAACsYtoUCoVCXit77733snEfZ8+enfbcc8/K8SGnTZuWHn/88awV5N///vfUrVu31NKVl5dnrxUVFU1dFAAAAAAAgGZH1tK8tc9zZeutt16aPHlyOvXUU9PDDz+cHnvssWx6mzZtUv/+/dP111/fKgJIAAAAAAAAaM1yDSFD9+7d0/jx49O8efPSa6+9lk3r2bNnWnvttfPeFAAAAAAAANAaQsiiCB133nnnFbV6AAAAAAAAYBXVtqkLAAAAAAAAALQsy9USsm3bttnPJ598klZbbbXs9xj/sT4xf/HixcuzWQAAAAAAAKClhpCDBw/OQsV27dpV+zcAAAAAAADQerUpFAqFpi5ES1ReXp69VlRUNHVRAAAAAAAAmh1ZS/NmTEgAAAAAAAAgV0JIAAAAAAAAYNUZE3KzzTZb5mVizMgZM2Ysz2YBAAAAAACAlhpCbrzxxlmoCAAAAAAAAJBLCPn4448vz+IAAAAAAABAC2RMSAAAAAAAAGDVDSHfeOON9MADD5ScVygUsnlvvvnmcm1j0aJF6fzzz09lZWWpc+fOqXfv3mnChAnLvJ59990360r29NNPX67yAAAAAAAAACswhLzwwgvTFVdcUXJeBH7Dhw9PF1988XJtY8iQIWnEiBFp0KBBaeTIkaldu3apf//+adKkSQ1ex7333puefPLJ5SoHAAAAAAAAsBJCyAgC99tvvzrn9+vXL/31r39t9PqnTp2a7rrrrvSzn/0sCzRPPvnk9Oijj6ZNNtkknXfeeQ1ax8KFC9M555yTtaYEAAAAAAAAVvEQ8t13300bbrhhnfM32GCD9M477zR6/ePGjctaPkb4WNSpU6d0wgknZC0bZ82atdR1XHnllenzzz9PQ4cObXQ5AAAAAAAAgLq1Tznq2rVrvWM+xpiRXbp0afT6p02blrbYYotsO1Xtsssu2euzzz6bunfvXufyM2fOTJdffnm69dZbs/Ek81BeXl5y+owZM1KPHj1y2QYAAAAAAAC02paQu+66axbwzZs3r9a8mDZ69OjUu3fvRq9/zpw5aaONNqo1vTht9uzZ9S4f3bDuuOOO6Vvf+lajywAAAAAAAACsxJaQ0cXpXnvtlbVM/NGPfpQFfsUWjD/5yU/S3Llz07nnntvo9S9YsCB17Nix1vTokrU4vy6PPfZYuueee9KUKVNSnioqKpaphSQAAAAAAAC0dLmGkLvvvnv65S9/mb73ve+lIUOGVE4vFApZeHjjjTemPffcs9Hrjy5UFy1aVGv6woULK+eXsnjx4nTGGWekY445Ju28886N3j4AAAAAAACwkkPIcOKJJ6b+/fun3/3ud+mVV17JpsU4jgMHDkxlZWXLte7odvXtt98u2U1rqGv9Y8aMSS+//HK66aabao1Z+dFHH2XTunXrllZfffXlKh8AAAAAAACwAkLIYhh45pln5r7eHXbYIetWdf78+alr166V04tdrMb8UmbOnJk+++yztNtuu5UMKOPnvvvuS4ceemjuZQYAAAAAAIDWZoWEkFVFQDhr1qz0xS9+MfXu3Tu1bdu20esaMGBA+vnPf55uvvnmbPzJEN2zjh49Olt39+7dK0PHTz75JG211VbZv7/1rW+VDCgPO+ywrNXmSSedlC0PAAAAAAAArMIhZHSbesABB6TnnnuuctrWW2+dHnjggbTZZps1ap0RFEa3rsOGDUtz585NPXv2TLfddlvWneqoUaMq3zd48OA0ceLEbCzKEGFkMZCsadNNN9UCEgAAAAAAAHLU+GaJS3HGGWdkYzjGuJALFixITz31VFqyZEn67ne/u1zrja5TzzrrrDR27NhsG9HN6vjx41Pfvn1zKzsAAAAAAADQeG0KxeaCjfTII4+k/fbbr9b06H41Wj3utNNOldNuuOGGdMEFF6QPP/wwtXTl5eXZa0VFRVMXBQAAAAAAoNmRtbTylpAHH3xwOvbYY9MHH3xQK4ScNGlStWlPPPFEKisrW95NAgAAAAAAAC05hIxuVl944YVsvMe77767cvoPf/jDdPbZZ6fdd989DRo0KG233XbprrvuyqYDAAAAAAAALddyh5DR3erUqVOzwPG4447LWkbOnj07HXLIIVlAGU1lo/vVPn36pMcffzwLJAEAAAAAAICWa7nHhKzq1VdfTSeddFJ69tln0+WXX55OOeWU1FrppxgAAAAAAKDxZC2tvCVkVZtvvnnW2vHKK69Mw4YNS3vssUcWTAIAAAAAAACtR24h5Keffprmz5+f/X7yySdnqfS6666btt9++/Szn/0sLVmyJK9NAQAAAAAAAC05hPzggw/SYYcdltZYY4209tprp169eqVnnnkmlZWVpXvvvTeNHTs2XXvttekrX/lK+sc//pFPqQEAAAAAAICWG0KeddZZafLkyemmm27KQscIIw8//PD02WefZfPj9+nTp2chZJ8+fdK5556bR7kBAAAAAACAlhpCPvzww+kHP/hBOu6449IhhxySfvWrX6VZs2alF198sfI9X/jCF9KoUaPSI488ku6///7l3SQAAAAAAADQkkPIDh06pAULFlT+e+HChalNmzapffv2td679957p+eff355NwkAAAAAAACswmonhcsoxoO8/PLL0+LFi7MxIW+44Ya01VZbpa233rrk+zt16rS8mwQAAAAAAABacgg5fPjw1LZt22xMyE8++SR97WtfSyNHjsymAQAAAAAAAK1Pm0KhUGjqQrRE5eXl2WtFRUVTFwUAAAAAAKDZkbU0b5orAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAArTeEXLRoUTr//PNTWVlZ6ty5c+rdu3eaMGHCUpe7995705FHHpk222yztPrqq6ctt9wynXPOOenDDz9cKeUGAAAAAACA1qRZhZBDhgxJI0aMSIMGDUojR45M7dq1S/3790+TJk2qd7mTTz45TZ8+PR199NHpmmuuSfvtt1+67rrr0q677poWLFiw0soPAAAAAAAArUGbQqFQSM3A1KlTs5aPw4cPT0OHDs2mLVy4MG277bapW7duafLkyXUu+/jjj6c999yz2rQxY8akY489Nt1yyy3pxBNPzL285eXl2WtFRUXu6wYAAAAAAGjpZC3NW7NpCTlu3Lis5WO0aizq1KlTOuGEE9KTTz6ZZs2aVeeyNQPIcNhhh2Wv0UISAAAAAAAAyE/71ExMmzYtbbHFFqlr167Vpu+yyy7Z67PPPpu6d+/e4PW988472et6662XSwpf04wZM1KPHj2Wa90AAAAAAADQHDWblpBz5sxJG220Ua3pxWmzZ89epvVdccUVWcvKAQMG5FZGAAAAAAAAoBm1hFywYEHq2LFjrenRJWtxfkPdcccdadSoUem8885Lm2+++XKVq65+iOtqIQkAAAAAAAAtXbNpCdm5c+e0aNGiWtMXLlxYOb8h/va3v2XjSPbr1y9ddtlluZcTAAAAAAAAWrtmE0JGt6vRJWtNxWllZWVLXcc///nPdPDBB6dtt902jRs3LrVv32waggIAAAAAAECz0WxCyB122CG98soraf78+dWmT5kypXJ+fWbMmJH222+/1K1bt/TQQw+lNdZYY4WWFwAAAAAAAFqrZhNCDhgwIC1ZsiTdfPPNldOie9bRo0en3r17p+7du2fTZs6cmV566aVqy77zzjvpG9/4Rmrbtm364x//mNZff/2VXn4AAAAAAABoLZpNf6QRNA4cODANGzYszZ07N/Xs2TPddttt6c0330yjRo2qfN/gwYPTxIkTU6FQqJwWLSBff/31dN5556VJkyZlP0UbbLBB2nfffVf6/gAAAAAAAEBL1WxCyDBmzJh00UUXpbFjx6Z58+alXr16pfHjx6e+ffsudSzIcOWVV9aat8ceewghAQAAAAAAIEdtClWbDJKb8vLy7LWioqKpiwIAAAAAANDsyFqat2YzJiQAAAAAAADQPAghAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACA1h1CLlq0KJ1//vmprKwsde7cOfXu3TtNmDChQcu+/fbb6YgjjkhrrbVW6tq1azrkkEPS66+/vsLLDAAAAAAAAK1JswshhwwZkkaMGJEGDRqURo4cmdq1a5f69++fJk2aVO9yH3/8cdprr73SxIkT0wUXXJB+/OMfp2nTpqU99tgjvf/++yut/AAAAAAAANDStU/NyNSpU9Ndd92Vhg8fnoYOHZpNGzx4cNp2223TeeedlyZPnlznsjfccEN69dVXs3XsvPPO2bT9998/W/YXv/hF+ulPf7rS9gMAAAAAAABasmbVEnLcuHFZy8eTTz65clqnTp3SCSeckJ588sk0a9asepeN8LEYQIatttoq7bPPPum3v/3tCi87AAAAAAAAtBbNKoSM7lO32GKLbDzHqnbZZZfs9dlnny253Oeff56ee+659NWvfrXWvFh2xowZ6aOPPlpBpQYAAAAAAIDWpVl1xzpnzpy00UYb1ZpenDZ79uySy33wwQdp0aJFS112yy23XOYylZeXl5z+0ksvpQ4dOtQ5HwAAAAAAgLpFI7LIWmiemlVLyAULFqSOHTvWmh5dshbn17VcaMyyjdWmTZtV6sKICzV+oCVSv2np1HFaE/Wd1kR9p6VTx2kN1HNaE/Wd1kR9X3VEztKlS5emLgatoSVk586dsxaNNS1cuLByfl3LhcYsuzQVFRWpOSi2yGwu5YVloX7T0qnjtCbqO62J+k5Lp47TGqjntCbqO62J+g6tsCVkdJ0aXbLWVJxWVlZWcrl11lknawXZmGUBAAAAAACAFhxC7rDDDumVV15J8+fPrzZ9ypQplfNLadu2bdpuu+3SM888U2teLLvZZpulNddccwWVGgAAAAAAAFqXZhVCDhgwIC1ZsiTdfPPNldOii9XRo0en3r17p+7du2fTZs6cmV566aVayz799NPVgsiXX345Pfroo2ngwIErcS8AAAAAAACgZWtWY0JG0BiB4bBhw9LcuXNTz54902233ZbefPPNNGrUqMr3DR48OE2cODEVCoXKad/97nfTLbfckg444IA0dOjQbDDTESNGpA022CCdc845TbRHAAAAAAAA0PI0qxAyjBkzJl100UVp7Nixad68ealXr15p/PjxqW/fvvUuF92tPv744+nss89Ol156afr888/Tnnvuma666qq0/vrrr7TyAwAAAAAAQEvXplC1uSAAAAAAAABAaxoTEgAAAAAAAFj1CSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQBWoCFDhqQ2bdqkN998s6mLAquEO++8M+24445pzTXXzK6Ns846a6Vu/8tf/nL2Q+u4nz7++OPZMpdccskKLVtz8+tf/zo7LvHaUrWGfaR+ca+IOhD3DgAAmoYQEgBo9eIBVdWfdu3apfXWWy/tvffe6Y477kjN/WFqzf2r+bMiH9DGg/+a2+vcuXPaYost0mmnnZb+9a9/pdYk9n/PPfdMrdWTTz6ZBg0alD766KN06qmnposvvjjtt99+qbUQgDbsfhHBYUsNGZpbeVfEOcuLgJnQ2j9XAQBWde2bugAAAKuKCETCZ599ll566aX0+9//Pj322GPpmWeeSSNGjGjUOn/2s5+lH/zgB+mLX/xiWlX2r6YddthhhW97jz32qHxI+N5776U//elP6YYbbki//e1v01NPPZV69OixwstA03vwwQdToVBIY8aMSV/72teapAx/+ctfmmS7LL/G3E932WWXNH369OyLJbQuhx12WOrTp0/aaKONmrooAADQagkhAQD+T83WFBFW7Lvvvunqq69OZ5xxRqNaMMXDz1XlAWhTthaJALLq9iPo3X///bNjfOmll6bRo0c3WdlYeWbPnp29lpWVNVkZBN7NV2Pup6uvvnraaqutVliZWHV94QtfyH4AAICmoztWAIA67LPPPtnD62i59fTTT1dO//vf/54OP/zw1K1bt9SxY8e0ySabpO9+97tpzpw5DRrDrGp3fPH7t771rayVTqdOndJXv/rVNH78+FoB3nHHHZf9Hq9VuzZtrmNNdujQIZ188snZ71OnTq01ZuBee+2V1lprreyYbL311llQuWjRojq7YXvnnXfSiSeemLWQiu50q3YxG+s/8sgjs3lxviLE+MY3vpG1wqxpypQpacCAAWnDDTdMq622WurevXv6zne+UxmeVRXbje0vXrw4/fSnP02bb755tv5Y5vzzz0+ffvppre50w8SJE6udw6rhbLwv6tZmm22WdVvbtWvXtNtuu6Xf/OY3dR7LqJuxPzHGYrz/61//etbtaX3dJEZL36h/UdbYzw022CB9+9vfTi+//HJaFp9//nn65S9/mXbeeee0xhprpC5dumS/33jjjdm8mvtfDJs33XTTBtfhqvsRdeMrX/lKFixFkPn973+/sl48+uij2TmJY7D22munY445Jr3//vsN6hK1anfH0fo51lM8ngcccEDWkq6u89+Q7pOL3Ua+9dZb2U/V81+zW85lOTfvvvtuGjp0aNpyyy2zYx/XTPwey7/++uv1Hteax+M///lPOv3007PrJK67bbbZJl1zzTXZ/a+UuH769u2bhTxRV7fbbruspWKp6/S5555LRx11VLaduEbWX3/9tNNOO2XjgcYXEorl+PGPf5z9Htd/1WNU1/006kbUpXDbbbeV7Ga6VJedcV+PYxutsku54oorsmWuu+66atOj++g4RnF9xn6su+666eCDD672+VCfhpR3Wa6rhnjttdfSwIEDs2si1hMtkKNFcn0aup8NOWfhk08+yepGtLqPMsQ+7brrrtn1XJdoLX/QQQdVfs7G9XDIIYekP//5z5V1IbYZogxVt12859XXjXljP8dvuummrK7HNRLXZnyOxbXTUFXvZ1EHYnzcuH6iHMcff3z2WVbKBx98kIYNG5Z9Hsb747qLv1HiONVUdb8feeSR7F4V76/rflVqX994442s/sd9IPY1znV8zhXvB7/73e+yVsZxPqPsUV8WLFhQcp3xZaPodnudddbJjnV0xx4tmksdtxXxuVrUkL+3AADIn5aQAAD1KD5wKz7oigdW8eAypkdYFQ8u42FmPByO7lsnTZpU+ZB5aSKMiId48aA3ApN4yHj33XdXPmgtPmCNh4IRLsT6Y17V7lNjeks5tiEewkZQ9aUvfSk7zrF/0V3rRRddlD3InDBhQmrfvvqfsHHcosu9eLD9zW9+M7Vt2zZ7OBxuueWWbOzBCCbjIXo80Jw7d27WxW50B3vEEUdUrufWW2/NHijHA894bzz0fPXVV9OvfvWr9MADD2Tl2HjjjWvtRwREf/vb37KWnRFaPfTQQ+nKK6/MtlMM3eKcRXe48bA86kzV4KnqWFZR1vLy8izcibA0QrRYX9SPCKF+8pOfVNv2X//61yyAXLJkSbbv0crv+eefz+pOjGlaSjyUjvdG+BMP+Xv27JmFDvfee28WTkQIFwFRQ0S5YtzUOFYRAse5vO+++7KH+XEt3H777dX2//7770///Oc/05lnnllZdxtah6+99tr08MMPp0MPPTQ7ZvHw/aqrrsrOf1wX8XA5AsM4h5MnT86C2wiZYpmGius7rrM4l6ecckp68cUXs+Mf4Uv83tguPeMBfux/tKoOEb4VVb2el+XcRLATAfWMGTOyFtvx/rim4r4S+xD3p7i3NEQ82I/w+sMPP8yOY/z7nnvuyc5T1Lvrr7++2vsvuOCCLFSK4xH1P669OM4x/Y9//GN2biLkKwaQvXv3zupGXFdxf5w/f34WjsU1GF8wiC8lxDGJ+hFhwrHHHtugludRD6LMI0eOTNtvv31WN0od15pi/VHWCMG+973v1Zof4VCUP/at6B//+Ed2rUV969evX3aeon5Fmf/nf/4nq/f9+/fPpbwNva6WJu5fEfbFfSTqdGwjjntsN/5dyrLsZ0POWexv3IumTZuW1d24x0eQGvUkjm9FRUVWB6qKa+V///d/s3oVZY3jEF8EKV7XUVeLxy7OVdXuvsPS6k5jP8fPO++8rNxxrcUxiusxPmPimMaXIJZF3LviOokvyERAF9uMz4sIJ+PLMBHUF8U1HfsXIdruu++evf+///1vth/xewSjJ510Uq1tjBs3LrunFO9nsZ6Gii83RFmK+/qHP/wh/fCHP8zuDREmRogY5yDKE5/LcY+Iz6E4hlVF2eJzLcLKCMMjsIz1RtAfn6tPPPFEyc+APD9Xl+XvLQAAVoACAEArF38SlfqzaMKECYU2bdpkP2+++Wbho48+KqyzzjqFtm3bFv76179We+/ll1+erWPfffetNv3YY4/Npr/xxhuV0+L34jYvueSSau9/5JFHsun7779/temjR4/OpsdrY/fv4osvrvXTmPUti9hGcdtVffbZZ4W99947m3f88cdX28fDDjus8Mknn5Rcz9VXX11y34455phsnVVVVFQU2rdvX1h77bULL7zwQq2yzZo1q/L3l19+udChQ4dCjx49Cv/617+qve/Pf/5zds4PPfTQatP32GOPbNs77bRT4f3336+c/vHHH2friWXmzJlTq7yxXF1ee+21WtMWLVqUHavYl6plW7JkSaFnz57ZOh966KFqy9x4442Vx+axxx6rnP7BBx8U1lprrcK6666bHZ+qnn/++UKXLl0KO+64Y6Eh7rjjjmz98f64Nqru/1e+8pVs3u23377U62Fpiue+a9euhRdffLFy+sKFCwvbbLNNdpzjunz88cerHZuvf/3r2XLTpk2rtr5NNtkk+6mqWPfatWuXne+qfvCDH2TzrrjiipLnv5S6rtdS227sufnDH/6QbeOss84qWWfmz59faIgoT6xnt912y45pUdTpzTbbLJs3ceLEyumTJ0/OpnXv3r1a/Y7r78ADD8zmXXbZZZXTv//972fT7r///pL7HOeq5rmuWmcbej+NeaXEumreg+Laj3oT9bSmqVOnZu//5je/WW3f4pru2LFjtXoW3n777UJZWVlhww03rHb86rK08jbmuqpLfB6Vum/GuSjeH6rW0cbsZ0PPWc3rZ8GCBYV+/fpln69Vr9E//vGP2fs33XTTWvfimvftUud2adfh8nyOR51/6623qh2v3XffPZs3ZcqUQkMUj1d83vzjH/+oNi+u5aqfiVXvNXGc7rzzzmrT582bV9h+++0LnTp1Krzzzju19juWefjhhxtUrpr7GveFqsc/thX3ptVXX72w3nrr1boXb7311oXVVlut8O6771ZOj7+bYtqaa65ZmD59erXtnHrqqdl2TjrppBX6udqYv7cAAMiX7lgBAP5PdN8VP/Ft/2gdES0M4vlWtPaIb9lHC4n49ny0XIhv/1d1zjnnZK0vokXAzJkzG7S9WOeFF15YbVq0PInWdjW7KM1DtBao+VOqm7oVIVo+FI9vtDyKLt6i5Ui0pIrjHaJ1ULRyjBaJ0d1cVdESMroELNUCKFos/fznP6/VQjJaZESXbrFstC6sKVpbVn1vtD6LMkR3lFVFl3fRgitabXz00Ue11hMtOqJlSFG0+Bg0aFDW2idaXC7veIWxf6eddlq2L9EatChaBUULnGjBUbNVU7QGjC7vahozZkzWMinOfZyDqrbddtusNU20WIpWf0sT5ylcfvnlWYulqvsfxyREK9K8xLis0RVhUbRYjWsxjnO0gIzWUEXRGvboo4/Ofo+Wlw0VrQDjfFdVV7fBeWvsual5rRTrTHQnuyyiZWMc06Ko03HthKpjthbPe9y7otviorj+fvGLX2THvtR5L1XO6CI03r+yxbUf5zlav0VLvKqiZV2Iln1F0Qo1WpzGvatqPQvRLXC0kItuNKten42V13UVLWjj8yha9EVXmVVF66+a+7Ei9jNaYEbLxej2MpatKrrDjP2Jz9ho9Vm1xXOIulTzXlzzvt0Yy/M5/qMf/ahaa/io88Wu0pf1/hCt8aIr1qri8zG6TY3jUezWOO5f0dI0Wm7G/amqaEEY94uFCxdmLZdrivMcf8c0Rlz7VY9/bCs+B6MFdrRsLHUvjlaSVbuujnMf06L+1RyX9bLLLsvuUWPHji3ZhXOen6tN8fcWAAD/P92xAgD8n+LYVtH1XTxwiweUJ5xwQmWYEd3UhVLdXMbDyOhCM7pLi6CgVLedNUVXYtFNaE3R9VyM6Ze3usZ2W5oIRordSFYV4WxDu9KMh6jxE4pjLUb3cNElYvweDzbjYWuEkqW2VXzQWWpsvnhoHF281RTdp4a6uh2sqni8o4ylxneLLuCiq7lXXnklG5OwqnjAXlPsU5g3b15aFvHgOx6+xkP++L3mGFtvv/125e9Rz0J0kVhTBDsx9luUt9R+xrEuNWZW8f1xnGsGYTXF9RDbqdntXYgAI+p2sYx5KHWcIxgJNc9JKD5AjzBmebbR2HO5rJb13MQxjn2MsCrORXSRGd2z1nVfqU/cv6K+1FQ8t1XPY333wQi+IySK8eRivLcIVCKciHA/um6ML3dEV5pRzlKB+8oUXTdG2BShY3TzGCIwiS5a435StWvV4rmJLh1LnZvo9rR4bpbWJevS5HVdVb0/lKoPsf7iPXlF7WfcS+O+WdcYfcXxQKve1+O+He9vbHi2NMvzOZ7n/aFUCBzXS1y/cV7imMTvxXMS11OpY/jvf/87ey312Rjdjzbl/ba+Yx1fQIgQNroUj3Fwo3viFXkvXtl/bwEA8P8TQgIANDCki4eAIcbqK6U4PUK7hqgrwIsHofFt/1VFsXVWTcWxKhsixm0q9QC1KB4qxvGPB6qltlWfqq2xqiqeh1KtaUq12AnDhw+v930ff/xxrWmljkGxVWY8gG+o119/PXtoHMciAvAYhyseSseD03goHmFJ1RYjxfpYHP+yplLTi/sZ45gt637WFNuPlirFsf9q7n8EyhHe5iWORantLG1eMehoiLzOZWMs67mJcdIisIlrK8Zri7HqQhz3GDswWv3EWIsNEcuUekBfvLaKda2h98EI0OP6i/MSdTrGdouWTzFGXbR8CltuuWVW9qOOOio1hcMOOyw7htFaK1qBxv7HGHvRSi6+YFG1ZXXx3Pzud79b7utmZV1XS7s/lLpv5r2fxfVFGFnqyx2l1hf1JgKqUi1n87A8n+N53h+Wdl6K5SwewwjM42dZzkldn40r6367qhzruta3Kv69BQDQEgkhAQAaqPjgLbqjK2XOnDnV3tdSREvDxraibKjiMYuWEcXWEw0VrWbqe+gYrQdrdgVX1/bjoWkEE01hxIgR2QPn6PoyAt6qonVWsZvIomI533333ZLrKzW9uJ/R2q5Xr17LVd5YVwQ28dC5ZtgVXce+9957TXYsV4ZiN6KxrzW7Am7oFxGW99xEq8NRo0Zl12d00xpdHF9//fXpf//3f7MH6z/5yU8atJ44V/Fgv2YQWbzXVb2nVb0PlmrNWOo+uOuuu2YBX4To0QXqI488knW7+e1vfzutv/76WevIlS1CriOOOCLr2jTCnWh5V6or1qr7El15RpeUK1Je11WxzHXdH0p9juW9n8X1nX322dn9rSHivh33wWgFviKCyFXlc3xp56W4/eJrtCaOLqnz+GxcWaoe61JdorfUv5kAAKjOmJAAAA1UHL8pxjesKR4OR2ufsNNOO+W+7WI4sKJbYzWVGPssHlLG+GzxAD4Pffr0yV4ffvjhBr+3eA5XZHBV1zmM8R1DjP1VU81uE6vWx0mTJtWaFwFUjBm5Ivczth/bie70aoppsZ8r4lpYVURrrTBr1qxa8+oasyyu47rO//Kcmwgb4vqJsfyKraXuv//+Bi8f969S9aV4r6s6dl1998Gow9EdY4xDWKrlUXSpHN2+Rkh6zTXXVAZey3OfW557YzHsj/AxWmHHvSIC4Oi6cUVdN0srb17XVdX7Q6ltlTp/jdnP+vYnWsHGPW9Z1hdliFA9gurl2faq+Dm+tHt6fAnm2WefzcbLLI65uLI+m1aE+o51fFGj5r6uiM9VAACanhASAKCBYkyz6CYvWqUVxxssinEMYxy0aNHTkPEgl9W6666bvUY3hy3V97///WxMtuOPP75kS7LopnRZWkmeeuqpWQu1aA0WrcRqqjp21emnn561OooWOzXHUQxRrjweAsd5LBVaFVuclnpgG/GcPGQAAHkrSURBVN1sRmutmorj6j322GO1gtabb7655H4cd9xxWTgUXd5OnTq11vwIP0o9MC4lzlMYNmxYNqZnUfz+gx/8IPs9xlRtqYrjrdXsPjXG84x7RF3nP8KummN9NubcRGBfqjVVcdrqq6++TPsT57Fqd7/xZYBLL720smw1z3vMK45HFyIEGDp0aFbOquc9ws1S+1uqnI25z0UYHCFsY+6NcQ1tvvnmWRD6y1/+Mmt9WLMVcjjkkEOyay1amT700EMl1xXjylW9Dhpb3ryuq2glu++++2afS9ddd121ebG/pUKwxuxnfecsxtYcNGhQFsrHfbhUUDRjxoysjEURpIdzzjmn2hi4RVWnNaa+NOXneFXRLXHNsT2jy/IIIqOL4gjsi2MjRvfc9957b7r11ltLruv555/PtevrvMR42vG5Gq2ei1+yKbrooovS/Pnzs/cU93VFfK4CAND0dMcKALAMrfXiIeDAgQPTHnvskb3Gg8roXvBPf/pTNv7STTfdtEK2Hd0ZxsP6eEgaXdUVx3qKB7YtpSuzePgex/KGG27IHoT369cvO74RhsSD4WgFFGFIhAUNsc0222TrOuWUU7IWGfGAPQKHOH4xPll0aRgBXojuWuPcRhmiRVl0zbjFFltkoUQ84I4AMrqNfOmll5ZrH/fZZ5901113pYMOOihraRMPaPv27Zv9xDh+0RVr1KsBAwaksrKy9MILL2QtgqLbyLvvvrtW648IJ6Os0XVitKCM4/bcc89lreH233//LJwsdhtafFj7/7H3J/BWVfX/+L+YBEQJJ9BbYAriAKJpiGYqak6QM2h+UMQoMofURAzNtNRSSZSc0iRSckrUSkyLUilEIQs0EYdQBEUlFUMTUPD8H+/9/Z/7uyNcYDOcc5/Px+N6L3tce+919jnu11lrjRs3LhsPL1rYRHnieCMUiYe4ETDE+Vm8ePEKjyW60oww4ze/+U22jXi4H9uJFnhxvY4//vgsgChXURdjDNEYTzC6UI36FsFvnPM4v/fdd1+tdeJ8R92LaxbXPB6+77LLLll9WNlrE9f4vPPOy+4NUVcj8IlgPa5JXPOY11AxNlsEkN27d8/qUtT7KEt0lxj1MspaFC0Zhw0blq666qps+airbdq0yY476uuXv/zlavuO5aKb2AhSooVk3EcjQI3lI5AbMmRI5bL7779/VvYI4GJbxdamMb5lfWJ7vXr1yl6jUd/iXEQLuTiOhnRrO3DgwCwQiZAsvrRQV52N12mEQHFP6tu3b3YOorVk3JPj2sQ1jTFd43ytKPxdUXnzfF1FmBj1I8a4jPeoqGsRBj3wwANZnXvwwQdX+zhXdM0iAH355ZfTD37wgyx4i/oR4yHOmzcvzZw5M9tmBIJRN0KMhRvrRsgdLeTi+Dt27JiF1tGqM14bv/rVryrHFY0xf+OeGmXfeuuts3N10kknZX+vb+/jVcX9OULwuLfH6y+OLX7iyyhXXHFFtWXvvPPOdMABB2Thc7QgjvoTX1iI13vc7+O8x/0h7gHrkziW+Mxy+umnZ+93cazxPhoBeJQ33nevvPLK1d7P8t5XAQBYDxQAABq5+Ei0Mh+Lpk6dWjjqqKMKm2++eaFFixaFjh07Fk499dTCG2+8UWvZk08+Odv2q6++Wjkt/o5pMa8u++23X53lefjhhwt77rlnoU2bNpVlrrrdvI4vTxdffHG27/jdUA8++GChb9++hS222CI7vx06dCj07NmzcOGFFxZmzpxZbdnYdpyv5Zk8eXLhmGOOqdzeVlttVTjkkEMK9957b61ln3322ey6dOrUqbDBBhsUNtlkk0K3bt0KQ4YMKfzlL39p0HUKY8aMyebF76refvvtwgknnFBo3759oWnTprXOzRNPPFHYf//9C+3atStstNFGhb333rvwwAMPFB577LF6z+NTTz1V+MpXvpItHz8HHnhgdsynn356ts60adNqrRP1JuZ36dKl0LJly8LGG29c2H777Qsnnnhitr+GWrZsWeGGG24o7L777oXWrVtnP7vttlvh+uuvz+Y15PXQ0DoU56Ch5znUd8623nrr7Keh21lePXvuuecKhx12WHbe43UZyzz++OP1bu/DDz/M7hWf/exnC82aNavzPtDQa/P8888XzjnnnOzcx70o6msc17HHHpvVo4Yqno/333+/cNpppxUqKiqybe2www6FUaNGFT799NM617vrrruy+hnHHuXcaaedCpdddllh0aJF1Zb74x//WBg0aFBhxx13LLRt27aw4YYbFrp27Vo488wzC7Nnz6613bFjxxZ22WWXQqtWrWrdu+qrPy+//HLhq1/9amHTTTctNGnSpNq5X95rJ7z22muVr8XYxvLE6/f888/P7glR1+Oax3WKcx7l/uSTT5a7fkPKuyqvqxXtK8r3mc98Jjv38R4yfvz45db5lT3O5V2zsGTJksJ1111X2GuvvbI6EPUr3jcPOOCAwjXXXFN45513apXhoYceyu7TcQ+O5T/3uc9l77s178Pxfhzbie0Wz2XxXrG8Y1zd9/GiFdWv5d3PolzF8xbliNfJvHnz6lxv4cKFhcsvvzyrB3E9Yp3Pf/7zhT59+hRuvvnm7N7S0PvZ8izvWFf1Xhz3gIMOOih7X4tr2blz58J5551XWLBgQa1l835fXdXPWwAA5KdJ/GddB6EAAEC+opXNlClTsu79oqUaLK8b4NmzZ6/rokDZiy5Xo8vlaIXfu3fvdV0cAABY44wJCQAAJSrGZqtr/MzorjDG4ouuDQWQAAAAwLpgTEgAAChRMV5ljHd50EEHpS5duqSlS5emadOmZWOLxZhhV1999bouIgAAANBICSEBAKBEdejQIQ0YMCBNnDgx695vyZIlacstt0ynnHJKuvDCC1Pnzp3XdREBAACARsqYkAAAAAAAAECujAkJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkqnm+m6Noyy23TP/73/9Sp06d1nVRAAAAAAAASs6cOXNSmzZt0ltvvbWui8Iq0BJyDYkA8pNPPlnXxQAAAAAAAChJkbNE3kJp0hJyDSm2gJwxY8a6LgoAAAAAAEDJ6dat27ouAqtBS0gAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAACgcYeQS5YsSeeff36qqKhIrVu3Tr169UoTJkxo0Lp//vOf0/77758233zz1K5du7THHnuksWPHrvEyAwAAAAAAQGNSciHkoEGD0siRI9OAAQPSqFGjUrNmzVKfPn3SpEmTlrve73//+3TwwQenjz/+OF1yySXp8ssvz0LMgQMHpmuuuWatlR8AAAAAAADKXZNCoVBIJWLq1KlZy8cRI0akoUOHZtMWL16cunfvntq3b58mT55c77oRQM6YMSO98sorqWXLltm0pUuXph122CG1adMmPfPMM7mWtVu3btnv2CcAAAAAAAArR9ZS2kqqJeS4ceOylo9DhgypnNaqVas0ePDg9OSTT6a5c+fWu+7ChQvTJptsUhlAhubNm2dds0aLSAAAAAAAAKARhpDTpk1LXbt2TW3btq02PcZ2DNOnT6933d69e2dJ+UUXXZT+/e9/p1mzZqVLL700Pf3002nYsGFrvOwAAAAAAADQWDRPJeTNN99MW221Va3pxWnz5s2rd90IH1999dVsLMjLLrssm7bhhhum++67Lx155JGr3RS4pgg5O3fuvMrbBQAAAAAAgFJVUi0hFy1aVK071apdshbn1yfWi1aU/fr1S3fddVf69a9/nb74xS+mE088MT311FNrtNwAAAAAAADQmJRUS8gYu3HJkiW1pi9evLhyfn3OOOOMLGz85z//mZo2/X/Z63HHHZe1ZDzrrLPSlClTVqlM9Q2GWl8LSQAAAAAAACh3JdUSMrpdjS5ZaypOq6ioqHO9jz/+OI0ePTr17du3MoAMLVq0SIcddlg2LmQsAwAAAAAAADSyEHLXXXdNL730Ulq4cGG16cVWjDG/Lu+++25aunRpWrZsWa15n3zySfr000/rnAcAAAAAAACUeQgZ4zlGWHjLLbdUTovuWceMGZN69eqVOnbsmE2bM2dOeuGFFyqXad++fWrXrl164IEHqrV4/PDDD9ODDz6Ydthhh+V25QoAAAAAAACU6ZiQETT2798/DR8+PM2fPz916dIl3XbbbWn27NlZd6tFAwcOTBMnTkyFQiH7d7NmzdLQoUPT97///bTnnntm8yPMjHVef/319Otf/3odHhUAAAAAAACUl5IKIcPtt9+eLrroojR27Ni0YMGC1KNHjzR+/Pi07777Lne9Cy+8MG2zzTZp1KhR6Yc//GHWgjLWHTduXDr22GPXWvkBAAAAAACg3DUpFJsLkqtu3bplv2fMmLGuiwIAAAAAAFByZC2lraTGhAQAAAAAAADWf0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFfN890cAEDj8N5Fu6Zyseml09d1EQAAAAAoM1pCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAAI07hFyyZEk6//zzU0VFRWrdunXq1atXmjBhQoPXv+eee9Jee+2V2rRpk9q1a5e+9KUvpUcffXSNlhkAAAAAAAAak5ILIQcNGpRGjhyZBgwYkEaNGpWaNWuW+vTpkyZNmrTCdS+55JJ0wgknpI4dO2bbuOyyy1KPHj3SG2+8sVbKDgAAAAAAAI1B81RCpk6dmu6+++40YsSINHTo0GzawIEDU/fu3dOwYcPS5MmT6133qaeeSj/60Y/S1Vdfnc4555y1WGoAAAAAAABoXEqqJeS4ceOylo9DhgypnNaqVas0ePDg9OSTT6a5c+fWu+61116bttxyy3TWWWelQqGQPvzww7VUagAAAAAAAGhcSiqEnDZtWuratWtq27Zttel77LFH9nv69On1rvuXv/wl9ezZM/3sZz9LW2yxRdp4443TVlttla6//vo1Xm4AAAAAAABoTEqqO9Y333wzCw5rKk6bN29enestWLAgvfPOO+mJJ55Ijz76aLr44otTp06d0pgxY9KZZ56ZWrRokb71rW+tUpm6detW5/RZs2alzp07r9I2AQAAAAAAoJSVVAi5aNGi1LJly1rTo0vW4vy6FLtefffdd7MxJY8//vjs3/369Us777xzuuyyy1Y5hAQAAAAAAABKOIRs3bp1WrJkSa3pixcvrpxf33ohWjxG8FjUtGnTLJCMlpFz5szJWkeurBkzZqxUC0kAAAAAAAAodyU1JmR0uxpdstZUnFZRUVHneptuumnWWnKzzTZLzZo1qzavffv2lV22AgAAAAAAAI0shNx1113TSy+9lBYuXFht+pQpUyrn1yVaPMa8//znP+njjz+uNq84juQWW2yxxsoNAAAAAAAAjUlJhZDRleqyZcvSLbfcUjktumcdM2ZM6tWrV+rYsWM2LbpWfeGFF6qtG92uxrq33XZbtW5c77jjjrTTTjvV24oSAAAAAAAAKOMxISNo7N+/fxo+fHiaP39+6tKlSxYqzp49O40ePbpyuYEDB6aJEyemQqFQOe1b3/pWuvXWW9Ppp5+etaaM8R/Hjh2bXnvttfTggw+uoyMCAAAAAACA8lNSIWS4/fbb00UXXZQFiDGOY48ePdL48ePTvvvuu9z1WrdunR599NE0bNiw9Mtf/jL973//y7pofeihh9Ihhxyy1soPAAAAAAAA5a5JoWpzQXLTrVu37PeMGTPWdVEAgDXgvYvqHou6FG166fR1XQQAAACAWmQtpa2kxoQEAAAAAAAA1n9CSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAAKC0Q8j3339/be8SAAAAAAAAKNUQ8qyzzlru/A8++CAdcsghee4SAAAAAAAAKOcQ8rrrrkvXXHNNnfMWLVqU+vbtm5599tk8dwkAAAAAAACUcwg5fPjwdN5556X77ruv2vQlS5akI444Ij311FPpnnvuyXOXAAAAAAAAwHqmeZ4bu/zyy9Nrr72WTjrppFRRUZH22muvtHTp0tS/f//02GOPpTvuuCMLIwEAAAAAAIDylWtLyDBmzJi05557ZmHjzJkz04ABA9JDDz2UbrnllnT88cfnvTsAAAAAAACgnFtChhYtWqQHHngg7b333mm33XZLH3/8cbr22mvT17/+9bx3BQAAAAAAAJRbCDlnzpx65910003p8MMPT4MHD05HHnlktWU7deq0OrsFAAAAAAAAyjWE/PznP5+aNGlS7/xCoZCFkfFT1bJly1ZntwAAAAAAAEC5hpA/+MEPlhtCAgAAAAAAAI3PaoWQl1xySX4lAQAAAAAAAMpC03VdAAAAAAAAAKC85BpC3nPPPWngwIH1jg8Z8+677748dwkAAAAAAACUcwh5ww031DtGZExv1qxZuv766/PcJQAAAAAAAFDOIeTMmTPTF77whXrnx7znn38+z10CAAAAAAAA5RxCfvDBB2mDDTaod360hPzvf/+b5y4BAAAAAACAcg4hO3XqlKZMmVLv/JhXUVGR5y4BAAAAAACAcg4hv/rVr6Y77rgj/e53v6s17/e//32666670uGHH57nLgEAAAAAAID1TPM8N3bBBReke++9Nx1zzDGpd+/eleNDTps2LT3++ONZK8gLL7wwz10CAAAAAAAA5RxCbr755mny5Mnp29/+dnr44YfTY489lk1v0qRJ6tOnT7rhhhtS+/bt89wlAAAAAAAAUM4hZOjYsWMaP358WrBgQfr3v/+dTevSpUvaZJNN8t4VAAAAAAAA0BhCyKIIHXv27LmmNg8AAAAAAACsp5qu6wIAAAAAAAAA5WW1WkI2bdo0+/noo4/SBhtskP0d4z8uT8xfunTp6uwWAAAAAAAAKNcQcuDAgVmo2KxZs2r/BgAAAAAAABqv1Qohf/WrXy333wAAAAAAAEDjY0xIAAAAAAAAIFdCSAAAAAAAAGD96Y512223Xel1YszIWbNmrc5uAQAAAAAAgHINITt16pSFigAAAAAAAAC5hJCPP/746qwOAAAAAAAAlCFjQgIAAAAAAADrbwj56quvpgcffLDOeYVCIZs3e/bs1drHkiVL0vnnn58qKipS69atU69evdKECRNWejsHHXRQ1pXsGWecsVrlAQAAAAAAANZgCPn9738/XXnllXXOi8BvxIgR6eKLL16tfQwaNCiNHDkyDRgwII0aNSo1a9Ys9enTJ02aNKnB27j//vvTk08+uVrlAAAAAAAAANZCCBlB4KGHHlrv/EMOOST99a9/XeXtT506Nd19993pJz/5SRZoDhkyJD366KNp6623TsOGDWvQNhYvXpzOPffcrDUlAAAAAAAAsJ6HkG+//Xbacsst653foUOH9NZbb63y9seNG5e1fIzwsahVq1Zp8ODBWcvGuXPnrnAbV111Vfr000/T0KFDV7kcAAAAAAAAwFoKIdu2bbvcMR9jzMg2bdqs8vanTZuWunbtmu2nqj322CP7PX369OWuP2fOnHTFFVdkXcbGeJIAAAAAAABA/prnubG99tor/fKXv8y6O91kk02qzVuwYEEaM2ZM6tWr1ypv/80330xbbbVVrenFafPmzVvu+lGuL3zhC+lrX/tayku3bt3qnD5r1qzUuXPn3PYDAAAAAAAAjbIlZHRxOn/+/Kxl4tixY9Nzzz2X/cTfET7GvPPOO2+Vt79o0aLUsmXLWtOjS9bi/Po89thj6b777kvXXnvtKu8fAAAAAAAAWMstIffZZ5/085//PJ155plp0KBBldMLhUIWHt50002pd+/eq7z96EJ1yZIltaYvXry4cn5dli5dmr7zne+kk046KfXs2TPlacaMGSvVQhIAAAAAAADKXa4hZPjGN76R+vTpk+6999700ksvZdNiHMf+/funioqK1dp2dLv6xhtv1NlNa6hv+7fffnt68cUX080331xrzMoPPvggm9a+ffu04YYbrlb5AAAAAAAAgDUQQhbDwLPOOiv37e66665Zt6oLFy5Mbdu2rZw+ZcqUyvl1mTNnTvrkk0/S3nvvXWdAGT8PPPBAOuqoo3IvMwAAAAAAADQ2aySErCoCwrlz56bPfvaz2biQTZuu+jCU/fr1Sz/96U/TLbfcko0/GaJ71jFjxmTb7tixY2Xo+NFHH6Uddtgh+/fXvva1OgPKo48+Omu1+c1vfjNbHwAAAAAAAFiPQ8joNrVv377p2WefrZy24447pgcffDBtu+22q7TNCAqjW9fhw4en+fPnpy5duqTbbrst60519OjRlcsNHDgwTZw4MRuLMkQYWQwka9pmm220gAQAAAAAAIBSCCG/853vZGM4jhs3Lmuh+Mwzz2Th4GmnnZYeeeSRVd5udJ160UUXpbFjx6YFCxakHj16pPHjx6d999031/IDAAAAQKla9vElqVw026B8jgUAGpPVDiEjUDz00ENrTX/qqaeyVo/RWjHsscceWTB5wQUXrNb+WrVqlUaMGJH91Ofxxx9v0LaKLSUBAAAAAACA/Kz6AI3/f0cccUQ6+eST03vvvVdteowBOWnSpGrTnnjiiVRRUbG6uwQAAAAAAADKOYSMFo/PPfdcNt7jPffcUzn9wgsvTOecc07aZ5990oABA9LOO++c7r777mw6AAAAAAAAUL5WO4Tcbbfd0tSpU7PA8ZRTTslaRs6bNy8deeSRWUDZrVu39P7776c999wz6yY1AkkAAAAAAACgfK32mJChWbNm6Xvf+1469thj0ze/+c200047pSuuuCKdeuqpqWfPnnnsAgAAAAAAAGgsLSGr2m677bLWjldddVUaPnx42m+//dLLL7+c5y4AAAAAAACAxhJCfvzxx2nhwoXZ30OGDEkzZsxIm222Wdpll13ST37yk7Rs2bK8dgUAAAAAAACUcwj53nvvpaOPPjpttNFGaZNNNkk9evRITz/9dKqoqEj3339/Gjt2bLruuuvS7rvvnv75z3/mU2oAAAAAAACgfEPIs88+O02ePDndfPPNWegYYWSMDfnJJ59k8+PvmTNnZiHknnvumc4777w8yg0AAAAAAACUawj58MMPp+9973vplFNOSUceeWS69dZb09y5c9Pzzz9fucxnPvOZNHr06PTII4+k3/72t6u7SwAAAAAAAKCcQ8gWLVqkRYsWVf578eLFqUmTJql58+a1lj3ggAPSv/71r9XdJQAAAAAAALAeq50UrqQYD/KKK65IS5cuzcaEvPHGG9MOO+yQdtxxxzqXb9Wq1eruEgAAAAAAACjnEHLEiBGpadOm2ZiQH330UfrSl76URo0alU0DAAAAAAAAGp/VDiE33HDDdN1112U/AAAAAAAAAJorAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAjTeEXLJkSTr//PNTRUVFat26derVq1eaMGHCCte7//770/HHH5+23XbbtOGGG6btt98+nXvuuen9999fK+UGAAAAAACAxqSkQshBgwalkSNHpgEDBqRRo0alZs2apT59+qRJkyYtd70hQ4akmTNnphNPPDH97Gc/S4ceemi6/vrr01577ZUWLVq01soPAAAAAAAAjUHzVCKmTp2a7r777jRixIg0dOjQbNrAgQNT9+7d07Bhw9LkyZPrXXfcuHGpd+/e1abtvvvu6eSTT0533HFH+sY3vrHGyw8AAAAAAACNRcm0hIwgMVo+RqvGolatWqXBgwenJ598Ms2dO7fedWsGkOHoo4/OfkcLSQAAAAAAAKARhpDTpk1LXbt2TW3btq02fY899sh+T58+faW299Zbb2W/N9988xxLCQAAAAAAAJRMd6xvvvlm2mqrrWpNL06bN2/eSm3vyiuvzFpW9uvXb7XK1a1btzqnz5o1K3Xu3Hm1tg0AAAAAAAClqGRaQi5atCi1bNmy1vTokrU4v6HuvPPONHr06HTuueem7bbbLtdyAgAAAAAAQGNXMi0hW7dunZYsWVJr+uLFiyvnN8Tf/va3bBzJQw45JF1++eWrXa4ZM2asVAtJAAAAAAAAKHcl0xIyul2NLllrKk6rqKhY4TaeeeaZdMQRR6Tu3buncePGpebNSyaDBQAAAAAAgJJRMiHkrrvuml566aW0cOHCatOnTJlSOX95YozGQw89NLVv3z794Q9/SBtttNEaLS8AAAAAAAA0ViXTFLBfv37ppz/9abrlllvS0KFDs2nRPeuYMWNSr169UseOHbNpc+bMSR999FHaYYcdKtd966230sEHH5yaNm2a/vjHP6YttthinR0HAJSTZR9fkspFsw3K51gAAAAAYF0rmRAygsb+/fun4cOHp/nz56cuXbqk2267Lc2ePTuNHj26crmBAwemiRMnpkKhUDktWkC+8soradiwYWnSpEnZT1GHDh3SQQcdtNaPBwAAAAAAAMpVyYSQ4fbbb08XXXRRGjt2bFqwYEHq0aNHGj9+fNp3331XOBZkuOqqq2rN22+//YSQAAAAAAAA0FhDyFatWqURI0ZkP/V5/PHHa02r2ioSAAAAAAAAWLOaruHtAwAAAAAAAI2MEBIAAAAAAADIlRASAAAAAAAAaLxjQgIAAAD5mPzaQ6lcfGnrvuu6CAAAQA1aQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuWqe7+YAAAAAYP2w7ONLUrlotkH5HAsA0DhoCQkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAORKCAkAAAAAAADkSggJAAAAAAAA5EoICQAAAAAAAOSqeb6bAwAAAGB9s+zjS1K5aLZB+RwLAEA50xISAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIlRASAAAAAAAAyJUQEgAAAAAAAMiVEBIAAAAAAADIVfN8NwcAQDl776JdU7nY9NLp67oIAAAAAGVLCAkAAAA0CpNfeyiViy9t3XddFwEAAJZLd6wAAAAAAABA4w4hlyxZks4///xUUVGRWrdunXr16pUmTJjQoHXfeOONdNxxx6V27dqltm3bpiOPPDK98sora7zMAAAAAAAA0JiUXAg5aNCgNHLkyDRgwIA0atSo1KxZs9SnT580adKk5a734Ycfpv333z9NnDgxXXDBBemHP/xhmjZtWtpvv/3Su+++u9bKDwAAAAAAAOWupMaEnDp1arr77rvTiBEj0tChQ7NpAwcOTN27d0/Dhg1LkydPrnfdG2+8Mb388svZNnr27JlNO+yww7J1r7766vTjH/94rR0HAAAAAAAAlLOSagk5bty4rOXjkCFDKqe1atUqDR48OD355JNp7ty5y103wsdiABl22GGHdOCBB6bf/OY3a7zsAAAAAAAA0FiUVEvI6D61a9eu2XiOVe2xxx7Z7+nTp6eOHTvWWu/TTz9Nzz77bPr6179ea16s+6c//Sl98MEHaeONN17pMnXr1q3O6S+88EJq0aJFvfMBoCwU/pPKRpN7V2rxZfNnpXLR7P6Gf15prMcNUI4++uTDVC42bLFRg5ZrjMecGvvntsZ63I392AEoG7NmzcqyFkpTSYWQb775Ztpqq61qTS9OmzdvXp3rvffee2nJkiUrXHf77bfPraxNmjRZr14Y8UINnTt3XtdFgdyp35S79bqON9kiNVbN2q+H16MMjnu9ru+QM/WdkguxyqCOr+ljXq811s9ta/i418d6nhr7Nadx1nfImfq+/oicpU2bNuu6GDSGEHLRokWpZcuWtaZHl6zF+fWtF1Zl3RWZMWNGKgXFFpmlUl5YGeo35U4dpzFR32lM1HfKnTpOY6Ce05io7zQm6js0wjEhW7dunbVorGnx4sWV8+tbL6zKugAAAAAAAEAZh5DRdWp0yVpTcVpFRUWd62266aZZK8hVWRcAAAAAAAAo4xBy1113TS+99FJauHBhtelTpkypnF+Xpk2bpp133jk9/fTTtebFuttuu23aeOON11CpAQAAAAAAoHEpqRCyX79+admyZemWW26pnBZdrI4ZMyb16tUrdezYMZs2Z86c9MILL9Ra9+9//3u1IPLFF19Mjz76aOrfv/9aPAoAAAAAAAAob81TCYmgMQLD4cOHp/nz56cuXbqk2267Lc2ePTuNHj26crmBAwemiRMnpkKhUDnttNNOS7/4xS9S375909ChQ1OLFi3SyJEjU4cOHdK55567jo4IAAAAAAAAyk+TQtWkrgQsXrw4XXTRRenXv/51WrBgQerRo0e69NJL0yGHHFK5TO/evWuFkOH1119P55xzTvrTn/6UPv3002y5a665JgszAQAAAAAAgEYaQgIAAAAAAADrt5IaExIAAAAAAABY/wkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAAAAAgFwJIQEAAAAAAIBcCSEBAAAAAACAXAkhAQAAWCmXXHJJatKkSZo9e/a6LgoAAADrKSEkAADAOvT4449ngV78nHzyyXUuUygU0jbbbJMt07x587VSrt/+9rdZ2AgAAACrQggJAACwHmjVqlUaN25cWrhwYa15EyZMyFodxjJrS4SQP/zhD9fa/gAAACgvQkgAAID1wDHHHJM++uijdNddd9Wad+utt6ZOnTqlnj17rpOyAQAAwMoSQgIAAKwHdtxxx/SlL30pjR49utr0d955J/3ud79Lp5xySmratPb/wr3wwgvpa1/7WurQoUNq2bJl2nbbbdPQoUNrtaj81a9+lXXn+thjj6Vrr702de3aNVs+unkdOXJktWU///nPp9tuuy37u9hVbPzENqr6+OOP0w9+8IO09dZbZ9uKY7jjjjtqlfGpp55Khx9+eKqoqMiW22qrrdL++++ftbYEAACgPK2dwUQAAABYoW984xvp61//evrXv/6Vdt5552za7bffnpYuXZpNj/Ejq5o+fXrad999s/mnnXZaFkBOmjQpXX311ekvf/lLeuKJJ9KGG25YbZ0LLrggCygj1Nxoo42y7Z977rlZQBhhZoiQMoLJv/3tb2ns2LGV60ZIWlWMYRnh5He+850sIL3xxhvTiSeemDp37pz23HPPbJmXXnopHXjggal9+/ZZGWM/Eaz+4x//SE8++WQ66qij1tj5BAAAYN0RQgIAAKwnjjvuuHTWWWdlrSEjCAzx91e+8pWsO9aaIvz78MMPs7Bw7733zqZF0LfDDjukiy++OAsSv//971dbJ7p8/ec//5m1SAwRbkZLxp/97GeVIWQEg9FKMbYboWJ9NtlkkzR+/PjKFpr9+vXLAsjYVjGEfOSRR7J93n333alXr165nSsAAADWb7pjBQBYAwYNGpS1Dpo9e/a6Lgqsl2Lcwy984Qtp4403zl4rZ5999lrdf3Q3Gj/rmzZt2mRB4K9//eusq9PJkyen559/PmshWdN//vOfLCQ86KCDKgPIouiONbZ133331VrvjDPOqAwgi/vca6+9shaLK+ucc86p1kVsx44d0/bbb19tW+3atct+R6i5aNGitC7ur9GCNNa55JJLVnv/5aTYRW/NbnbLSWM4RpYv7hVRB+LeAQDA2iWEBAAararjnMVPs2bN0uabb54OOOCAdOedd6ZyeXgaYcB3v/vdtNtuu6VNN900tWjRIvsdLZIiqIguEde0ePBf83y3bt06G5Pu9NNPT6+//npqTOL4e/funRqr6IJzwIAB6YMPPkjf/va3sxZ7hx56aGosVhSADh48OL377rtZaHfrrbdm96Ujjzyy1nKvvPJK9rvYbWtV0QVrtEicNWtWrXnRZWtNm222WbbPldWQbUWoGtf3iiuuyFpORvex0TrzueeeW+79ombXs+UUMpRaeVdkVa5ZXgTMhMb+vgoAsL7SHSsA0OhFABI++eST9MILL6Tf/e536bHHHktPP/101pXhqvjJT36Svve976XPfvazaV0pFArpRz/6Ufbz6aefZiHk8ccfnwWQEf48++yz6brrrsvGjrv++uuzMHBN22+//SofEsaYcH/605+yMeR+85vfpKeeeioLTSh/Dz30UFY/YyzCmmMMri0xXuL6Kr4g0L1796xL0xjzcciQIWmDDTbIbfvxhYs1va24vkVR9ocffjjrAvaPf/xjNmblNddck3784x+nESNGZONRrun76x577JFmzpyZBbo0LkcffXTWNfBWW221rosCAACNjhASAGj0araeiHAiujeM8dhivLVV6bIxHnau6weeET7GsUX3iNH1Zc3uGsP8+fOz4/zvf/+7VsoUAWTV8x3B72GHHZad88suuyyNGTNmrZSDdWvevHnZ74qKinVWhvU98I7WkNHVafHv5bVCnDFjRq150e1ptJTs0qXLarUsylN8ESJ+woIFC7IA+oILLkhnnnnmSoWsq3J/jZahMU4mjc9nPvOZ7AcAAFj7dMcKAFDDgQcemD2sjpY8f//73yunR7elxx57bGrfvn02ntrWW2+dTjvttPTmm282aMyyqt3vxd/RRWG0ymnVqlX64he/mMaPH18rsDvllFOyv+N31a5MVzQWWoQPEeoVWyDVFUCGOJZojTRs2LC0LkTXsNHKK0ydOrXavAhO999//2w8uThHO+64Y3ZMS5YsqbcbtrfeeisbOy9aSEULrard2Mb2oyVozIvrFyHGwQcfnLXCrGnKlCmpX79+acstt8zOYQS53/rWtyrDs6piv7H/pUuXZudyu+22y7Yf65x//vnZuH41u9cNEydOrHZNq4azsVzUtQiZotvatm3bZtcwxgmsT9TVOJ4YYzGW/8pXvpJ1e7q8bhKj5W/UxyhrHGeHDh3S//3f/6UXX3wxrYxoafvzn/889ezZM2200UbZGIPx90033ZTNq3n8xbB5m222aXCdrnocUTd23333LFiKIDO6Gy7Wi0cffTS7JnEOouvPk046qc5uRuvqErVq98fRGjq2Uzyfffv2zVrS1Xf9G9KdcrHbyNdeey37KR571POaouXWLrvsktX/GDuzeG0++uijymW22GKLtM8++6RHHnkk6942xmKMcx/rxDX98MMP69x2XcaNG5f9ji8kxJiR8ToZO3ZsZcvDqi0bq4r7VnSvGiFP1NXoGnbOnDnVlo9WzyFaX59wwgnZeY/XVtyn4vURX/aILySEmPfDH/4w+zvKXvU1Ut/9NepG1KVw2223VVun5rmv+jqL+3zU+2L5arryyiuzdaKleFXRfXSco3h9xms9up894ogjqr1fLE9Dyrsyr6uG+Pe//5369++fvSZiOxEAR4vk5WnocTbkmoWou1GXdt1116wMcUwxFmm8nusTreUPP/zwyvfdqNfRNfGf//znyrpQrONRhqr7Lt7zltet+aq+r998881ZXY/3pnhtxvvYynyZp+r9LOpAvMbj9RPl+PrXv569l9XlvffeS8OHD8/eD2P5eN3FZ5Y4TzVVPe64R8S9KpZvyJcLisf66quvZvV/p512yo41rnW8zxVf3/fee2/WyjiuZ5Q96kt9477Gl42iW+bojSHOdXTHHi2a6zpva+J9taghn78AAMiPlpAAAHUoPmArPtiKB1TxoDKmRzgVDyrj4WU8DI7uW6N7weJD5RWJ8CEe2sWD3QhI4qHiPffcU/lgtfhANR4CRpgQ24958eC2KKYvT4Q88fAuQotu3bqtsEzNmzdfb851iIewcQyf+9znsvMexxvdtV500UXZg8wJEybUKnOcxwhu4sH2Mccck5o2bZo9HA6/+MUvsrEHI5iMh+jxQDNagUaXu9Ed7HHHHVe5nV/+8pfZA+V44BnLxkPPl19+ORub78EHH8zK0alTp1rHEef6b3/7W9ayM0KrP/zhD+mqq67K9lMM3eIaRve/8bA86lDV8eCqjmUVZY3rFuFOhKURosX2or5EQHjppZdW2/df//rXLIBctmxZduzRyu9f//pXVpdijNO6xEPpWDbCn3jIHy3mInS4//77s3AiQrhiq7UViXLFOKpxriIEjmv5wAMPZA/z47Vxxx13VDv+GOvwmWeeSWeddVZlXV5RnS6KLoQjWD/qqKOycxYP36Nrz7j+8TqJh8sRGMY1nDx5chbcRsgU6zRUvN7jdRfX8tRTT03PP/98dv4jfIm/V7VLz3iAH8cfrY/D2WefXflQPIKIhlybeF1XDfgiKIuAOs5/1KkIdd54440sYI76Xt8XEOoT4fX777+fnceoQ/Fai9aK8bqLaxtdxVa910UrxjgfUf/jtRfnOYKLeP1EUBAhX3x5IK55lCvqRoSrESBHqBtBarzmfvrTn2ZfSohzEstGmHDyySc3qCV61IMo86hRo7JtR90oqnrfrCm2H8cWIVgcR01xTaL8cWxF0aVsvNaivh1yyCHZdYr6FWX+8pe/nNX7Pn365FLehr6uViTuX1Ev4j4SdTr2EaFk7Df+XZeVOc6GXLM43rgXTZs2LbuvxD0+gtTonjfOb7TmjXpSVbxWokV/1Ksoa5yH+CJI8XUddbV47uJaVe3uO6yo7qzq+3p8aSfKHa/NOEdxr4z3mDin8SWIlRH3rriHxRdkIqCLfcb7RYST8WWYeH1U/ewQxxf3i/jyQSz/v//9LzuO+DuC0W9+85t1fsEg7inF+1lsp6Fi3OgoS/FYf//736cLL7wwe21HmBghYlyDKE/cK2644YbsfSjOYVVRtnhfi7AywvAILGO7cf+K99UnnniizveAPN9XV+bzFwAAOSoAADRS8VGoro9DEyZMKDRp0iT7mT17duGDDz4obLrppoWmTZsW/vrXv1Zb9oorrsi2cdBBB1WbfvLJJ2fTX3311cpp8Xdxn5dcckm15R955JFs+mGHHVZt+pgxY7Lp8Xtl7L///tl6t956a2F9cPHFF2flid9VffLJJ4UDDjggm/f1r3+92jEfffTRhY8++qjO7Vx77bXVphfP60knnZRts6oZM2YUmjdvXthkk00Kzz33XK2yzZ07t/LvF198sdCiRYtC586dC6+//nq15f785z9ndeCoo46qNn2//fbL9r3bbrsV3n333crpH374YbadWOfNN9+sVd5Yrz7//ve/a01bsmRJdq7iWKqWbdmyZYUuXbpk2/zDH/5QbZ2bbrqp8tw89thjldPfe++9Qrt27QqbbbZZdn6q+te//lVo06ZN4Qtf+EKhIe68885s+7F8vFaqHv/uu++ezbvjjjtW+PpYkeK1b9u2beH555+vnL548eLCTjvtlJ3neJ0+/vjj1c7NV77ylWy9adOmVdve1ltvnf1UVax7zZo1y653Vd/73veyeVdeeWWd178u9b1+a+47rk0sd+mll67w2sRxVt3f73//++zf2223XWHzzTfP6m9s+7vf/W5h/vz5hYULF9YqT9W6UBTXPObtvffe2Tktnr/TTjstOx/FelQ8lni9xr8rKiqq1e94/cV1iHmXX3555fF17do1m7bBBhtk17BHjx7ZuYzXeBxz7Kvmta6rnCu6v8a8uhTPcdV7ULz243xGPa1p6tSp2fLHHHNMtWOL13TLli2r1bPwxhtvZOdiyy23rDx/y7Oi8q7K66o+8f5U133zt7/9ba3ruqrH2dBrVvP1s2jRosIhhxySvd9WfY3+8Y9/zJbfZpttat2La96367q2K3odrs77eseOHQuvvfZatfO1zz77ZPOmTJlSaIji+YrX6z//+c9q884+++xq74lV7zVxnu66665q0xcsWFDYZZddCq1atSq89dZbtY471nn44YcbVK6axxr3kqrnP/YV96YNN9wwu9/UvBfvuOOO2Wv87bffrpwen6Ni2sYbb1yYOXNmtf18+9vfzvbzzW9+c42+r67K5y8AAPKhO1YAoNGL7rriJ77dH60hokVBPM+K1h3xrfpoERHflo+WCvFt/6rOPffcrLVFtACILggbIrb5/e9/v9q0aGkSretqdkm6qopduUWXijVFK4riMRd/ii2z1rRo+VDcZ7Q8ii7eouVItKSK8x+idVC0cozWUdHdXFXREjK6BKyrBVC0WIrWVDVbSEaLjGg9FuvW1So0WltWXTZan0UZap676PIuWkZGq40PPvig1naiRUe0DCmKFh/RRWa09okWl6s7XmEc3+mnn54dS7RKK4pWQdECJ1pw1GzVFK0Bo8u7mm6//fasZVK0HIlrUFX37t2z1jTRYila/a1IXKdwxRVXZC2Wqh5/nJMQrUjzEl13RleERdHiLl6bcZ6jBWS0hiqK1rAnnnhi9ne0vGyoaAUY17uq+roNzkO01ol7TtwXVnRt4vhDzWsT967//Oc/WQuleI1fffXVWSuq6E62KFoIxX5qtg4Kxdad0V1mnNPi+YuWTcXrF+sXWxnFvBAtkKJr1aJ4/UU3wDG/uF7s76tf/Wr2d7x+ovvFuB7Roixe49FFaHF7a1O89uM6R+u3muNqFlumRsu+omghPGvWrOzeVbWehegWOI4n7r1VX5+rKq/XVbSgjfenaNEXXWVWFa2/ah7HmjjOaIEZLRej28uaXX9Hd5hxPFEvo9Vn1RbPIepxXe9jVe/bq2J13td/8IMfVGsNH3W+2HX6yt4fojVedMVaVbw/RrepcT6K3UzH6yVamkbLzbg/VRUtCON+sXjx4nTffffV2kdc5/hcsyrifbPq+Y99xftgdK0bLRvruhfHPahq19Vx7WNa1L+a47Jefvnl2T0qun6uq6v1PN9X19bnLwAAqtMdKwDQ6BXHsoqu7uIBWzyQHDx4cGV4Ed3Shbq6tYyHj9FlZjz0j9Cmrm46a4quw6KbxJqiq7l4eL+mRVmLx1z1wVyxa8j6RDBSV1gZ6zW0K814iBo/oTjWYnQPF10ixt/xYDMetkYgUl8wGg866xqbLx4aRxdvNUX3qaG+bgerKp7/KGNd47tFF3DR1dxLL72UjUlYVTxgrymOKSxYsCCtjHjwHQ9f4yF//F1zjK3o1rIo6l2ILhJrimAnxn6L8tZ1nHGu6xozq7h8nOeaQVhN8fqI/dQVbEWAEXW9WMY81HWeIxgJNa9JKD5AjzBmdfaxqtdyZa3stYlzHMcYYVVci+giM7pgre8+szxxP4v6UlPx2la9jsu7L0bwHSFRdMsagWMEKhFORLgfXTdGYBpdaUY56wrc16YIVSNsitAxunkMEZhEF61xP6natWrx2kSXjnVdm+j2tHhtVtQl64rk9bqqen+oqz7E9ov35DV1nHEvjftmfWP0FccDrXpfj/t2LL+q4dmKrM77ep73h7pC4Hi9xOs3rkuck/i7eE3i9VTXOYwvIIS63huj+9F1eb9d3rmOLyBECBtdikcX0tE98Zq8F6/rz18AAI2REBIAaPSqjq9Wl3joF2JsvroUp0dI1xD1BXbx4DO+3Z+HaJkUDyNj/Kz6Wl2FaFUX47A1RLF1Vk3FsSsbIlpN1fUAtSgeKkbZ4oFqXftanqqtsaoqXpe6WtPU1WInjBgxYrnLffjhh7Wm1XUOiq0y4wF8Q73yyivZQ+M4FxGIxzhc8VA6HpwWxw6s2mKkWD+L41/WVNf04nHGOGYre5w1xf6jpUqEynUdfwTKEd7mJc5FXftZ0bxi0NEQeV3LVbGy1ybGSYvAJl5bMV5bjFUX4rzH2IHR6qehr/FYp64H9MXXVrGuNfS+GAF6vP7iukSdjrHdouVTjFEXLZ/C9ttvn5X9hBNOSOvC0UcfnZ3DaK0VrUDj+GOMvWglF1+wqNqyunht7r333tV+3ayt19WK7g913TfzPs7i9iKMrOvLHXVtL+pNBFQ1W8PnZXXe1/O8P6zouhTLWTyHEZjHz8pck/reG9fW/XZ9Odf1bS/vz18AAFSnO1YAgBUoPmgrdnFa05tvvlltufVBtDAKeXQLWLWlYQSENX9iel6K5zBaRtS1r6o/NUWrmeU9dKzaenBF+4+Hpsvbd12tV/IycuTI7IHz6NGjs+5rf/azn6VLL700C2+j27iaIkAJb7/9dp3bq2t68Tijtd3yjrNqV5T1iW1FYFNXyBch9zvvvFNZxnJU7EY0jrWmhn4xYXWvTbQ6jPoSodRzzz2X1ZnotvhHP/pR9tNQca3qerBfvPdVvcetyn1xr732ygK+CNifeOKJrKvHqJ//93//l/785z+ndSFCruOOOy4rbzHcqasr1qrHEl15Lu/aRKi6uvJ6XRXLXN/9oa7rl/dxFrd3zjnnLHd7jz32WLX7dtSTmq3Ay+19fUXXpbj/4u9oTby8czhmzJgGvzeuLevLuQYAYN0QQgIArEBxvKYIhOp6GByte8Juu+2W+76LrZJW9hv/0ToxvtkfLY7q6p5tfRVjn8W4jTE+WzyAz8Oee+6Z/X744YcbvGzxmq7J4Kq+axrjO4YY+6ummt0mVq2fkyZNqjUvWnbEmJFr8jhj/7Gf6E6vppgWx7kmXhvri2itFebOnVtrXn1jlsXrur7rvzrXJsKGeP3EWH7FQO23v/1tg9eP+1ld9aV476s6dt3y7otRh6M7xhiHsK6WR9GlcnT7GgFpBKbFwGt17nureq8MxXEuI3yMVthxr+jRo0fWdeOaet2sqLx5va6q3h/q2ldd129VjnN5xxOtYOOetzLbizJEqPbII4+s1r7Xx/f1Fd3T40sw06dPz8bLLI65uLbem9aE5Z3r+KJGzWNdE++rAACsO0JIAIAViDHMolu8GCOsOL5gUYxbGOOexfhmDRkPcmVFa6YQ3RqujBhnLbphjLHNYizEuoKFVW2ptaZ997vfzcr99a9/vc7yReuY4hhTDfHtb387C2SjNeHzzz9fa37VsavOOOOMrOvKaLFTcxzFEOXK4yFwXNe6QqtQbFla84FtdLN566231lq+OK5etCKqGbTecsstdR7HKaeckoVD0eXt1KlTa82P8KOuB8Z1iesUhg8fno3pWRR/f+9738v+jjFWy1VxvLWa3adGK+S4Z9R3/SPsqquV18pemwjs62pNVZy24YYbrtTxxHWs2t1vfBngsssuqyxbzese84rj0YUIAYYOHZqVs+p1j3tQXcdbVzlX5b4XYXCEsCt7ryy+hrbbbrssCP35z3+etT4sBpNVHXnkkdlr7YYbbkh/+MMf6txWjCtX9XWwquXN63UVrWQPOuig7H3q+uuvrzYvjreuEGxVjnN51yzG1hwwYEAWysd9uK6gaNasWVkZiyJID+eee26drdirTluV+rIu39erim6Ja47tGa3eI4iMLoojsC+OjRjdc99///3pl7/8ZZ3b+te//pVr19d5ifG14331uuuuq/ySTVG0hl64cGG2TPFY18T7KgAA644xIQEAGtA6Lx769e/fP+uGM37Hg8l//OMf6U9/+lM23tLNN9+8RvYd3RfGw/l4KBpddBbHdooHtCvquuwHP/hB1pIkHvrGQ/bdd989C0ziwWuEezG+YLELxH333TetL+Lhe5zbG2+8MXsQHl2QxvmOMCQeDEcroAhDIixoiJ122inb1qmnnpq1yIgH7BE4xPmM8cmiS8NiN4A77LBDdq2jDNGi7NBDD01du3bNQol4wB0B5BZbbJFeeOGF1TrGAw88MN19993p8MMPz1raxAPauAbxE+P4RZd6Uc/69euXKioqsi42o0VQdBt5zz331Gr9EeFklPWII47IWlDGeXv22Wez1nARQkc4Wew2tPiwNlrJxnh40cImyhPHG6FIPMSNgCHOz+LFi1d4LNGVZoQZv/nNb7JtxMP92E60wIvrdfzxx2cBRLmKuhhjiMZ4gtGFatS3CH7jnMf5ve+++2qtE+c76l5cs7jm8fB9l112yerDyl6buMbnnXdedq+IuhqBTwTrcU3imse8hoqx2SKA7N69e1aXot5HWaK7xKiXVe8T0ZJx2LBh6aqrrsqWj7rapk2b7Lijvn75y1+utu9Y7tFHH82ClGghGffVCFBj+QjkhgwZUrns/vvvn5U9ArjYVrG1aXyxoj6xvV69emWv0ahvcS6ihVwcR7RqXJGBAwdmgUjcL+NLC3XV2XidRggU96S+fftm5yBaS8Y9Oq5NXNMY0zXO14rC3xWVN8/XVYSJUT9ijMt4z4q6FmHQAw88kNW5Bx98cLWPc0XXLALQl19+OXtfiuAt6keMhxjjFkdr/dhmBIJRN0KMhRvrRsgdLeTi+Dt27JiF1tGqM14bv/rVryrHFY0xf+OeGmXfeuuts3N10kknZX+vb+/rVcX9Od6f494er784tviJL6NcccUV1Za988470wEHHJCFz9GCOOpPfGEhXu9xv4/zHveHuAesT+JY4jPM6aefnr3fxbHG+2gE4FHeeN+98sorV3s/y3tfBQBgHSoAADRS8VFoZT4OTZ06tXDUUUcVNt9880KLFi0KHTt2LJx66qmFN954o9ayJ598crbtV199tXJa/B3TYl5d9ttvvzrL8/DDDxf23HPPQps2bSrLXHW7K/LCCy8Uzj777MIuu+xS+MxnPlNo3rx5YZNNNil88YtfzKb/4x//KKxpF198cVbu+N1QDz74YKFv376FLbbYIjvfHTp0KPTs2bNw4YUXFmbOnFlt2dh2nL/lmTx5cuGYY46p3N5WW21VOOSQQwr33ntvrWWfffbZ7Dp16tSpsMEGG2Tnq1u3boUhQ4YU/vKXvzTouoUxY8Zk8+J3VW+//XbhhBNOKLRv377QtGnTWufmiSeeKOy///6Fdu3aFTbaaKPC3nvvXXjggQcKjz32WL3n8amnnip85StfyZaPnwMPPDA75tNPPz1bZ9q0abXWiXoU87t06VJo2bJlYeONNy5sv/32hRNPPDHbX0MtW7ascMMNNxR23333QuvWrbOf3XbbrXD99ddn8xry+mhoHYpz0NDzHOo7Z1tvvXX209DtLK+ePffcc4XDDjssO+/xOo1lHn/88Xq39+GHH2b3js9+9rOFZs2a1XlfaOi1ef755wvnnHNOdu7j3hT1NY7r2GOPzepRQxXPx/vvv1847bTTChUVFdm2dthhh8KoUaMKn376aZ3r3XXXXVn9jGOPcu60006Fyy67rLBo0aJqy/3xj38sDBo0qLDjjjsW2rZtW9hwww0LXbt2LZx55pmF2bNn19ru2LFjs3tWq1atat2r66s/L7/8cuGrX/1qYdNNNy00adKk2rlf3msnvPbaa5WvxdjG8sTr9/zzz8/uCVHX45rHdYpzHuX+5JNPlrt+Q8q7Kq+rFe0ryhfvAXHu4z1l/Pjxy63zK3ucy7tmYcmSJYXrrruusNdee2V1IOpXvI8ecMABhWuuuabwzjvv1CrDQw89lN2n4x4cy3/uc5/L3odr3ofj/Tm2E9stnsvivWJ5x7i67+tFK6pfy7ufRbmK5y3KEa+TefPm1bnewoULC5dffnlWD+J6xDqf//znC3369CncfPPN2b2lofez5Vnesa7qvTjuAQcddFD2vhbXsnPnzoXzzjuvsGDBglrL5v2+uqqfvwAAWH1N4j/rMgQFAADWnGhlM2XKlKx7v2ipBsvrBjhaSANrVnS5Gl0uRyv83r17r+viAADAGmNMSAAAKHExNltd42dGd4UxFl90bSiABAAAANYmY0ICAECJi/EqY7zLgw46KHXp0iUtXbo0TZs2LRtbLMYMu/rqq9d1EQEAAIBGRggJAAAlrkOHDmnAgAFp4sSJWfd+S5YsSVtuuWU65ZRT0oUXXpg6d+68rosIAAAANDLGhAQAAAAAAAByZUxIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV83z3RxFW265Zfrf//6XOnXqtK6LAgAAAAAAUHLmzJmT2rRpk9566611XRRWgZaQa0gEkJ988sm6LgYAAAAAAEBJipwl8hZKk5aQa0ixBeSMGTPWdVEAAAAAAABKTrdu3dZ1EVgNWkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAjTuEXLJkSTr//PNTRUVFat26derVq1eaMGFCg9b985//nPbff/+0+eabp3bt2qU99tgjjR07do2XGQAAAAAAABqTkgshBw0alEaOHJkGDBiQRo0alZo1a5b69OmTJk2atNz1fv/736eDDz44ffzxx+mSSy5Jl19+eRZiDhw4MF1zzTVrrfwAAAAAAABQ7poUCoVCKhFTp07NWj6OGDEiDR06NJu2ePHi1L1799S+ffs0efLketeNAHLGjBnplVdeSS1btsymLV26NO2www6pTZs26Zlnnsm1rN26dct+xz4BAAAAAABYObKW0lZSLSHHjRuXtXwcMmRI5bRWrVqlwYMHpyeffDLNnTu33nUXLlyYNtlkk8oAMjRv3jzrmjVaRAIAAAAAAAD5aJ5KyLRp01LXrl1T27Ztq02PsR3D9OnTU8eOHetct3fv3unKK69MF110UTr55JNTkyZN0p133pmefvrp9Jvf/Ga1U/iaZs2alTp37rzK2wUAAAAAAIBSVVIh5Jtvvpm22mqrWtOL0+bNm1fvuhE+vvrqq9lYkJdddlk2bcMNN0z33XdfOvLII9dgqQEAAAAAAKBxKakQctGiRdW6U63aJWtxfn1ivWhF2a9fv3TMMcekZcuWpVtuuSWdeOKJacKECWnPPfdcpTLV1w9xfS0kAQAAAAAAoNyVVAgZYzcuWbKk1vTFixdXzq/PGWeckZ566qn0z3/+MzVt+v+GwjzuuOOysPCss85KU6ZMWYMlBwAAAAAAgMbj/6VxJSK6XY0uWWsqTquoqKhzvY8//jiNHj069e3btzKADC1atEiHHXZYNi5kLAMAAAAAAAA0shBy1113TS+99FJauHBhtenFVowxvy7vvvtuWrp0adYFa02ffPJJ+vTTT+ucBwAAAAAAAJR5CBnjORbHciyK7lnHjBmTevXqlTp27JhNmzNnTnrhhRcql2nfvn1q165deuCBB6q1ePzwww/Tgw8+mHbYYYflduUKAAAAAAAAlOmYkBE09u/fPw0fPjzNnz8/denSJd12221p9uzZWXerRQMHDkwTJ05MhUIh+3ezZs3S0KFD0/e///205557ZvMjzIx1Xn/99fTrX/96HR4VAAAAAAAAlJeSCiHD7bffni666KI0duzYtGDBgtSjR480fvz4tO+++y53vQsvvDBts802adSoUemHP/xh1oIy1h03blw69thj11r5AQAAAAAAoNw1KRSbC5Krbt26Zb9nzJixrosCAAAAAABQcmQtpa2kxoQEAAAAAAAA1n9CSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAoHGHkEuWLEnnn39+qqioSK1bt069evVKEyZMaPD699xzT9prr71SmzZtUrt27dKXvvSl9Oijj67RMgMAAAAAAEBjUnIh5KBBg9LIkSPTgAED0qhRo1KzZs1Snz590qRJk1a47iWXXJJOOOGE1LFjx2wbl112WerRo0d644031krZAQAAAAAAoDFoUigUCqlETJ06NWv5OGLEiDR06NBs2uLFi1P37t1T+/bt0+TJk+td96mnnspaPV599dXpnHPOWeNl7datW/Z7xowZa3xfAAAAAAAA5UbWUtpKqiXkuHHjspaPQ4YMqZzWqlWrNHjw4PTkk0+muXPn1rvutddem7bccst01llnpchdP/zww7VUagAAAAAAAGhcSiqEnDZtWuratWtq27Zttel77LFH9nv69On1rvuXv/wl9ezZM/3sZz9LW2yxRdp4443TVlttla6//vo1Xm4AAAAAAABoTJqnEvLmm29mwWFNxWnz5s2rc70FCxakd955Jz3xxBPp0UcfTRdffHHq1KlTGjNmTDrzzDNTixYt0re+9a3Vagpc06xZs1Lnzp1XaZsAAAAAAABQykoqhFy0aFFq2bJlrenRJWtxfl2KXa++++676e67707HH3989u9+/fqlnXfeOV122WWrHEICAAAAAAAAJRxCtm7dOi1ZsqTW9MWLF1fOr2+9EC0eI3gsatq0aRZIRsvIOXPmZK0jV1Z9g6HW10ISAAAAAAAAyl1JjQkZ3a5Gl6w1FadVVFTUud6mm26atZbcbLPNUrNmzarNa9++fWWXrQAAAAAAAEAjCyF33XXX9NJLL6WFCxdWmz5lypTK+XWJFo8x7z//+U/6+OOPq80rjiO5xRZbrLFyAwAAAAAAQGNSUiFkdKW6bNmydMstt1ROi+5Zx4wZk3r16pU6duyYTYuuVV944YVq60a3q7HubbfdVq0b1zvuuCPttNNO9baiBAAAAAAAAMp4TMgIGvv375+GDx+e5s+fn7p06ZKFirNnz06jR4+uXG7gwIFp4sSJqVAoVE771re+lW699dZ0+umnZ60pY/zHsWPHptdeey09+OCD6+iIAAAAAAAAoPyUVAgZbr/99nTRRRdlAWKM49ijR480fvz4tO+++y53vdatW6dHH300DRs2LP3yl79M//vf/7IuWh966KF0yCGHrLXyAwAAAAAAQLlrUqjaXJDcdOvWLfs9Y8aMdV0UAAAAAACAkiNrKW0lNSYkAAAAAAAAsP4TQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAClHUK+//77a3uXAAAAAAAAQKmGkGedddZy53/wwQfpkEMOyXOXAAAAAAAAQDmHkNddd1265ppr6py3aNGi1Ldv3/Tss8/muUsAAAAAAACgnEPI4cOHp/POOy/dd9991aYvWbIkHXHEEempp55K99xzT567BAAAAAAAANYzzfPc2OWXX55ee+21dNJJJ6WKioq01157paVLl6b+/funxx57LN1xxx1ZGAkAAAAAAACUr1xbQoYxY8akPffcMwsbZ86cmQYMGJAeeuihdMstt6Tjjz8+790BAAAAAAAA5dwSMrRo0SI98MADae+990677bZb+vjjj9O1116bvv71r+e9KwAAAAAAAKDcQsg5c+bUO++mm25Khx9+eBo8eHA68sgjqy3bqVOn1dktAAAAAAAAsB5rUigUCqu6ctOmTVOTJk3qnR+brmv+smXLUrnr1q1b9nvGjBnruigAAAAAAAAlR9bSiFtC/uAHP1huCAkAAAAAAAA0PqsVQl5yySX5lQQAAAAAAAAoC03XdQEAAAAAAACA8pJrCHnPPfekgQMH1js+ZMy777778twlAAAAAAAAUM4h5A033FDvGJExvVmzZun666/Pc5cAAAAAAADAeibXEHLmzJnpC1/4Qr3zY97zzz+f5y4BAAAAAACAcg4hP/jgg7TBBhvUOz9aQv73v//Nc5cAAAAAAABAOYeQnTp1SlOmTKl3fsyrqKjIc5cAAAAAAABAOYeQX/3qV9Mdd9yRfve739Wa9/vf/z7ddddd6fDDD89zlwAAAAAAAMB6pkmhUCjktbF33nknG/dx3rx5qXfv3pXjQ06bNi09/vjjWSvIf/zjH6l9+/ap3HXr1i37PWPGjHVdFAAAAAAAgJIjayltzfPc2Oabb54mT56cvv3tb6eHH344PfbYY9n0Jk2apD59+qQbbrihUQSQAAAAAAAA0JjlGkKGjh07pvHjx6cFCxakf//739m0Ll26pE022STvXQEAAAAAAACNIYQsitCxZ8+ea2rzAAAAAAAAwHqq6bouAAAAAAAAAFBeVqslZNOmTbOfjz76KG2wwQbZ3zH+4/LE/KVLl67ObgEAAAAAAIByDSEHDhyYhYrNmjWr9m8AAAAAAACg8WpSKBQK67oQ5ahbt27Z7xkzZqzrogAAAAAAAJQcWUtpMyYkAAAAAAAAkCshJAAAAAAAALD+jAm57bbbrvQ6MWbkrFmzVme3AAAAAAAAQLmGkJ06dcpCRQAAAAAAAIBcQsjHH398dVYHAAAAAAAAypAxIQEAAAAAAID1N4R89dVX04MPPljnvEKhkM2bPXv2au1jyZIl6fzzz08VFRWpdevWqVevXmnChAkrvZ2DDjoo60r2jDPOWK3yAAAAAAAAAGswhPz+97+frrzyyjrnReA3YsSIdPHFF6/WPgYNGpRGjhyZBgwYkEaNGpWaNWuW+vTpkyZNmtTgbdx///3pySefXK1yAAAAAAAAAGshhIwg8NBDD613/iGHHJL++te/rvL2p06dmu6+++70k5/8JAs0hwwZkh599NG09dZbp2HDhjVoG4sXL07nnntu1poSAAAAAAAAWM9DyLfffjttueWW9c7v0KFDeuutt1Z5++PGjctaPkb4WNSqVas0ePDgrGXj3LlzV7iNq666Kn366adp6NChq1wOAAAAAAAAYC2FkG3btl3umI8xZmSbNm1WefvTpk1LXbt2zfZT1R577JH9nj59+nLXnzNnTrriiiuyLmNjPEkAAAAAAAAgf83z3Nhee+2VfvnLX2bdnW6yySbV5i1YsCCNGTMm9erVa5W3/+abb6atttqq1vTitHnz5i13/SjXF77whfS1r30t5aVbt251Tp81a1bq3LlzbvsBAAAAAACARtkSMro4nT9/ftYycezYsem5557LfuLvCB9j3nnnnbfK21+0aFFq2bJlrenRJWtxfn0ee+yxdN9996Vrr712lfcPAAAAAAAArOWWkPvss0/6+c9/ns4888w0aNCgyumFQiELD2+66abUu3fvVd5+dKG6ZMmSWtMXL15cOb8uS5cuTd/5znfSSSedlHr27JnyNGPGjJVqIQkAAAAAAADlLtcQMnzjG99Iffr0Sffee2966aWXsmkxjmP//v1TRUXFam07ul1944036uymNdS3/dtvvz29+OKL6eabb641ZuUHH3yQTWvfvn3acMMNV6t8AAAAAAAAwBoIIYth4FlnnZX7dnfdddesW9WFCxemtm3bVk6fMmVK5fy6zJkzJ33yySdp7733rjOgjJ8HHnggHXXUUbmXGQAAAAAAABqbNRJCVhUB4dy5c9NnP/vZbFzIpk1XfRjKfv36pZ/+9KfplltuycafDNE965gxY7Jtd+zYsTJ0/Oijj9IOO+yQ/ftrX/tanQHl0UcfnbXa/OY3v5mtDwAAAAAAAKzHIWR0m9q3b9/07LPPVk7bcccd04MPPpi23XbbVdpmBIXRrevw4cPT/PnzU5cuXdJtt92Wdac6evToyuUGDhyYJk6cmI1FGSKMLAaSNW2zzTZaQAIAAAAAAECOVr1Z4gp85zvfycZwjHEhFy1alJ566qm0bNmydNppp63WdqPr1LPPPjuNHTs220d0szp+/Pi077775lZ2AAAAAAAAYNU1KRSbC66iRx55JB166KG1pkf3q9HqcbfddqucduONN6YLLrggvf/++6ncdevWLfs9Y8aMdV0UAAAAAACAkiNraeQtIY844oh08sknp/fee69WCDlp0qRq05544olUUVGxursEAAAAAAAAyjmEjG5Wn3vuuWy8x3vuuady+oUXXpjOOeectM8++6QBAwaknXfeOd19993ZdAAAAAAAAKB8rXYIGd2tTp06NQscTznllKxl5Lx589KRRx6ZBZTRVDa6X91zzz3T448/ngWSAAAAAAAAQPla7TEhq3r55ZfTN7/5zTR9+vR0xRVXpFNPPTU1VvopBgAAAAAAWHWylkbeErKq7bbbLmvteNVVV6Xhw4en/fbbLwsmAQAAAAAAgMYjtxDy448/TgsXLsz+HjJkSJZKb7bZZmmXXXZJP/nJT9KyZcvy2hUAAAAAAABQziHke++9l44++ui00UYbpU022ST16NEjPf3006mioiLdf//9aezYsem6665Lu+++e/rnP/+ZT6kBAAAAAACA8g0hzz777DR58uR08803Z6FjhJHHHnts+uSTT7L58ffMmTOzEHLPPfdM5513Xh7lBgAAAAAAAMo1hHz44YfT9773vXTKKaekI488Mt16661p7ty56fnnn69c5jOf+UwaPXp0euSRR9Jvf/vb1d0lAAAAAAAAUM4hZIsWLdKiRYsq/7148eLUpEmT1Lx581rLHnDAAelf//rX6u4SAAAAAAAAWI/VTgpXUowHecUVV6SlS5dmY0LeeOONaYcddkg77rhjncu3atVqdXcJAAAAAAAAlHMIOWLEiNS0adNsTMiPPvoofelLX0qjRo3KpgEAAAAAAACNT5NCoVBY14UoR926dct+z5gxY10XBQAAAAAAoOTIWkqb5ooAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAECuhJAAAAAAAABAroSQAAAAAAAAQK6EkAAAAAAAAEDjDSGXLFmSzj///FRRUZFat26devXqlSZMmLDC9e6///50/PHHp2233TZtuOGGafvtt0/nnntuev/999dKuQEAAAAAAKAxKakQctCgQWnkyJFpwIABadSoUalZs2apT58+adKkSctdb8iQIWnmzJnpxBNPTD/72c/SoYcemq6//vq01157pUWLFq218gMAAAAAAEBj0KRQKBRSCZg6dWrW8nHEiBFp6NCh2bTFixen7t27p/bt26fJkyfXu+7jjz+eevfuXW3a7bffnk4++eT0i1/8In3jG9/IvbzdunXLfs+YMSP3bQMAAAAAAJQ7WUtpK5mWkOPGjctaPkarxqJWrVqlwYMHpyeffDLNnTu33nVrBpDh6KOPzn5HC0kAAAAAAACgEYaQ06ZNS127dk1t27atNn2PPfbIfk+fPn2ltvfWW29lvzfffPMcSwkAAAAAAAA0TyXizTffTFtttVWt6cVp8+bNW6ntXXnllVnLyn79+uXSFLimWbNmpc6dO6/WtgEAAAAAAKAUlUxLyEWLFqWWLVvWmh5dshbnN9Sdd96ZRo8enc4999y03Xbb5VpOAAAAAAAAaOxKpiVk69at05IlS2pNX7x4ceX8hvjb3/6WjSN5yCGHpMsvv3y1y1XfYKj1tZAEAAAAAACAclcyLSGj29XokrWm4rSKiooVbuOZZ55JRxxxROrevXsaN25cat68ZDJYAAAAAAAAKBklE0Luuuuu6aWXXkoLFy6sNn3KlCmV85cnxmg89NBDU/v27dMf/vCHtNFGG63R8gIAAAAAAEBjVTIhZL9+/dKyZcvSLbfcUjktumcdM2ZM6tWrV+rYsWM2bc6cOemFF16otu5bb72VDj744NS0adP0xz/+MW2xxRZrvfwAAAAAAADQWJRMf6QRNPbv3z8NHz48zZ8/P3Xp0iXddtttafbs2Wn06NGVyw0cODBNnDgxFQqFymnRAvKVV15Jw4YNS5MmTcp+ijp06JAOOuigtX48AAAAAAAAUK5KJoQMt99+e7rooovS2LFj04IFC1KPHj3S+PHj07777rvCsSDDVVddVWvefvvtJ4QEAAAAAACAHDUpVG0ySG66deuW/Z4xY8a6LgoAAAAAAEDJkbWUtpIZExIAAAAAAAAoDUJIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAAAgV0JIAAAAAAAAIFdCSAAAAAAAACBXQkgAAAAAAACgcYeQS5YsSeeff36qqKhIrVu3Tr169UoTJkxo0LpvvPFGOu6441K7du1S27Zt05FHHpleeeWVNV5mAAAAAAAAaExKLoQcNGhQGjlyZBowYEAaNWpUatasWerTp0+aNGnSctf78MMP0/77758mTpyYLrjggvTDH/4wTZs2Le23337p3XffXWvlBwAAAAAAgHLXPJWQqVOnprvvvjuNGDEiDR06NJs2cODA1L179zRs2LA0efLkete98cYb08svv5xto2fPntm0ww47LFv36quvTj/+8Y/X2nEAAAAAAABAOSuplpDjxo3LWj4OGTKkclqrVq3S4MGD05NPPpnmzp273HUjfCwGkGGHHXZIBx54YPrNb36zxssOAAAAAAAAjUVJhZDRfWrXrl2z8Ryr2mOPPbLf06dPr3O9Tz/9ND377LPpi1/8Yq15se6sWbPSBx98sIZKDQAAAAAAAI1LSXXH+uabb6atttqq1vTitHnz5tW53nvvvZeWLFmywnW33377lS5Tt27d6pz+wgsvpBYtWtQ7HwAAAAAAgPpFI7LIWihNJdUSctGiRally5a1pkeXrMX59a0XVmXdVdWkSZP16oURL9T4gXKkflPu1HEaE/WdxkR9p9yp4zQG6jmNifpOY6K+rz8iZ2nTps26LgaNoSVk69atsxaNNS1evLhyfn3rhVVZd0VmzJiRSkGxRWaplBdWhvpNuVPHaUzUdxoT9Z1yp47TGKjnNCbqO42J+g6NsCVkdJ0aXbLWVJxWUVFR53qbbrpp1gpyVdYFAAAAAAAAyjiE3HXXXdNLL72UFi5cWG36lClTKufXpWnTpmnnnXdOTz/9dK15se62226bNt544zVUagAAAAAAAGhcSiqE7NevX1q2bFm65ZZbKqdFF6tjxoxJvXr1Sh07dsymzZkzJ73wwgu11v373/9eLYh88cUX06OPPpr69++/Fo8CAAAAAAAAyltJjQkZQWMEhsOHD0/z589PXbp0SbfddluaPXt2Gj16dOVyAwcOTBMnTkyFQqFy2mmnnZZ+8YtfpL59+6ahQ4dmg5mOHDkydejQIZ177rnr6IgAAAAAAACg/JRUCBluv/32dNFFF6WxY8emBQsWpB49eqTx48enfffdd7nrRXerjz/+eDrnnHPSZZddlj799NPUu3fvdM0116QttthirZUfAAAAAAAAyl2TQtXmggAAAAAAAACNaUxIAAAAAAAAYP0nhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEBAAAAAAAAHIlhAQAAAAAAAByJYQEAAAAAAAAciWEXAv+/ve/pzPOOCN169YttWnTJnXq1Ckdd9xx6aWXXqq17MyZM9Ohhx6aNtpoo7Tpppumk046Kf3nP/+ptswLL7yQhg0blnbddde08cYbp6222ir17ds3Pf3007W298ADD6RDDjkkVVRUpJYtW6bPfe5zqV+/fum5555bqWMYPXp02nHHHVOrVq3Sdtttl6677rpay7z44ovpnHPOSV/60pey5Zo0aZJmz569Uvuh9DSW+l3TQQcdlNXxOHbKX2Op55///Oezel3XT6xD41Dq9f2mm25K/fv3z8oddXfQoEH1Lvv++++nIUOGpC222CI71v333z/985//bPC+KG3rsq7n8bni008/TVdddVXaZpttsnt7jx490l133VVrualTp6bTTjst7b777qlFixbZfmg8Gks9r+qTTz5JO+20U7avn/70pw3eF6WrsdTz+j6nx0/sl8ah1Ov75Zdfno444ojUoUOHbN1LLrmk3mXfeOON7NjatWuX2rZtm4488sj0yiuvNHhflLZ1WdejXtZ1r417dEP5rA7/n+ZV/mYNufLKK9MTTzyRPRCLG85bb72Vrr/++rTbbrulp556KnXv3j1b7vXXX0/77rtv+sxnPpN+/OMfpw8//DD7n6Z//etf2Q1pgw02yJa79dZbs4fJxx57bHaT+u9//5tuvvnmtOeee6ZHHnkkfeUrX6ncd6y7ySabpLPOOittvvnm2b5/+ctfpj322CM9+eSTaZdddllh+WPbp556ara/7373u+lvf/tb+s53vpM++uijdP7551cuF9v72c9+lv0PXzzonj59+ho5n6xfGkv9rur+++/Ptk/j0Vjq+bXXXpuVuarXXnstff/7308HH3xwjmeU9Vmp1/co/wcffJCt8+abby73fwrjfzqfeeaZdN5552X7u/HGG1Pv3r3TP/7xD8F7I7Au63oenysuvPDCdMUVV6RvfvObqWfPnul3v/td+r//+7/swcXXvva1yuX+8Ic/ZGWLY9x2223rfHBD+Wos9byq+KLVnDlzVnpflK7GUs/Hjh1ba914eD5q1Cif1RuRUq/v8f+WW265ZfrCF76Q/vjHP9a7XJQ3viAY5bnggguycOaaa65J++23X/a8cbPNNlvpfVNa1oe6Hl9wjWCzqFmzZg0uv8/qUEWBNe6JJ54oLFmypNq0l156qdCyZcvCgAEDKqd9+9vfLrRu3brw2muvVU6bMGFCIS7TzTffXDnt6aefLnzwwQfVtvfOO+8Utthii8Lee++9wvK89dZbhebNmxe+9a1vrXDZjz76qLDZZpsV+vbtW216lLtNmzaF9957r3Lau+++W1i4cGH294gRI7Jyv/rqqyvcB6WtsdTvokWLFhU+//nPF370ox9lZT/99NNXuB9KX2Or51VdeumlWfnjHNA4lHJ9D7Nnzy58+umn2d9Rx08++eQ6l7vnnnuyst57772V0+bPn19o165d4YQTTmjQviht60NdX9XPFa+//nqhRYsW1ZaPer/PPvsUPve5zxWWLl1a7TUU7wUhlve/gI1LY6nnRW+//XbhM5/5TOW+4v9LKX+NrZ5XNXjw4EKTJk0Kc+fObdD+KH2lXN9D8Tnhf/7zn2zdiy++uM7lrrzyymz+1KlTK6fNnDmz0KxZs8Lw4cMbvD9K17qs61EvY/2op6vCZ3WoTq1eh3bbbbfsp6h9+/aF/v3711qua9euhQMPPHCF2zvmmGMKm2666QqXi5te27ZtC8cff/wKl33ooYeym1/8rmry5MnZ9LFjx9a5nhCScq3fP/zhDwudOnXKPiAIISnXel7VjjvuWNhmm21WuB/KXynU95qWF0JG2Tt06FBYtmxZtelDhgwpbLjhhoXFixev9P4oD2uzrq/q54obbrghW37GjBnVpt95553Z9L/97W91rufBBuVez0855ZTCHnvsUXjllVeEkJRtPS+Kzyrx5anevXs3aF+Ut1Ko71WtKITs2bNn9lPTwQcfXOjcufNK74/ysTbqejGEjC+p/ve//638kmtD+awO1RkTch2JAPjtt9/Ouv4q9nM+f/789MUvfrHWstGd2LRp01a4zWiWXtxeXWMeRV/Y0RT9G9/4Rlq4cGE68MADV7jN4n5rliv6qW7atGmDykXjU671O7p1iq4UokuI1q1br3D7lLdyrec1142xFaLLEBq3UqnvKyPKGF35xOugZvmjq2Ld4DROa7Our87nithvjI0TQyDULFNxPjS2eh5drt12221Z9/LGU6Jc63lV0YVffGYaMGDASu2T8lMq9b2hYtiEZ599tt7yz5o1Kxt+gcZnbf9/aXSPGt28xhiSJ554YrbvhvBZHaoTQq4jd9xxR3ajPP7447N/F8csikFxa4pp7733XlqyZEm924vxvaIv9uL2aor+rdu3b5/1L/2b3/wm64N98ODBKyxnlCv6u451q4r+tKP/9Xnz5q1wGzQ+5Vq/zz333GzcgvrGn6FxKdd6XvMYgwcblEp9XxlxDPWVP/iM0zitzbq+Op8rolwdOnSoFbSovzTWeh4PJc8888ysDHvttddK74vyU471vK5jbNmyZerXr99K75fyUir1vaGK5fNZnXVV1zfZZJN0xhlnZGNGjhs3Lvti7D333JP22Wef7AuyK+KzOlTXvMa/WQteeOGFdPrpp2f/c3TyySdn0xYtWpT9jg+QNbVq1apymbrmxzc+opXKNttsk4YNG1bnPseMGZPdJF955ZXs79jWsmXLan37v6ZYrjiAb13lKpYbyr1+P/bYY+m+++5LU6ZMWe42aRzKtZ7X/Pbp3Xffnf0PZs1v79G4lFJ9Xxn1la9q+Wlc1mZdX93PFeovq6pc6/mvfvWrrPV8PCiEcq3nVcXnpIceeij16dMntWvXbpX2TXkopfreUA0tP43L2qzrZ511VrV/H3vssVkrxviC9o033pi+973vLbesPqtDdULItSyaePft2zdryh3/gxStU0KxC4O6vp2xePHiastU9b///S999atfzbohmDRpUtpoo43q3G/Vb4PGt5WKD5R/+tOfZr+jy7N4uFcU24mf2OfHH39c5zajXLqkpDHU76VLl6bvfOc76aSTTko9e/ZciTNCOSrXel7TxIkTs28YnnPOOcs5G5S7UqvvKyPKt7Llp3ytzbq+Mp8rolxVRflif+ovq6Jc63mEMcOHD0/nnXde6tixY4POBeWrXOt5TREExTJ6LGncSq2+N9Sqlp/yta7+v7SqCCyjJfCf//znyhDSZ3VoGN2xrkX//e9/02GHHZb12f/II4+kioqKWs2xi83Iq4ppm266aa1vUMRD5WOOOSbrJ/13v/td6t69e4PKEU3KDzjggMpu9kJ8gIgyFH+KD/ni73jIF98Oqbnvd999t9ox0LiVc/2+/fbb04svvpi+9a1vpdmzZ1f+hPjAEn/H+GGUv3Ku5zXFtqPV2QknnNCgMlF+SrG+r4xYr77yB59xGo+1XddX5nNF1XoeP9ENVHF6PPSILihrlimovzSmeh7vAVGe6EqtuJ/XX389m7dgwYLs3/V9IYvyUs71vKb4XBQPu+MhOo1TKdb3hiqWz2d11qf/Lw3xZafo4rXq/n1WhxXTEnItiW86HH744emll17KvjGx0047VZv/2c9+Nm2xxRbp6aefrrXu1KlT06677lqrm7yBAwemv/zlL9lYSfvtt99KlSeafcdNvOoH2KpNwWPg3VDcb5Qruvkoin9HGWqWi8ap3Ot3DLz+ySefpL333rvWvuKDePw88MAD6aijjlqpclJayr2eVxXf2ItvV/fu3duH40aqVOv7yogyxhggUbaq3bxG91Ibbrhh6tq160pvk9KzLur6ynyumDBhQrX53bp1y37Hfm+99dY0c+bMamUudo/mMzqNqZ7HviJsLK5X1Y9//OPsZ9q0aV4XZa7c63nNh9jRLeagQYPq7O6P8leq9b2h4rP5zjvvXGf547URn/033njjldompWl9+v/SCBQjbI8ha4p8VocGKrDGLV26tHDEEUcUmjdvXnjooYfqXe7UU08ttG7dujBnzpzKaX/+85/jKxOFm266qdqyp512Wjb95ptvXu6+33777VrTXn311cLGG29c2GeffVZY9o8++qiw6aabFr761a9Wm37iiScWNtxww8K7775b53ojRozIyhf7orw1hvo9c+bMwgMPPFDrJ8rYp0+f7O958+atcH+UrsZQz6u6//77s7KNHj16hdun/JRyfa+pTZs2hZNPPrnOeXfffXdWpnvvvbdy2n/+859Cu3btCscff/xK74vSs67qeh6fK+bOnVto0aJF4fTTT6+c9umnn2avk89+9rPZsdUllve/gI1LY6jn//jHP2rtJ8oW+xo0aFD27/fff79B54vS1BjqeVUjR47M9vGXv/xludumPJVyfa8qPnfHuhdffHGd86+44ops/t///vfKaS+88EKhWbNmhfPPP7/B+6F0rcv/L50/f36taTfccEO2btyDV8RndaiuSfynoYElq+bss89Oo0aNyr65cdxxx9Waf+KJJ2a/586dm32bIgYVjwFwP/zwwzRixIj0uc99Lv3973+v/Ibbtddem43RFeMlnXbaabW2d/TRR6c2bdpkf3fo0CEdeOCB2Tcsojuzl19+OY0ePTrrIiG+9fGlL31pheWPAXdj4N9+/fqlQw45JGs1EN9wuvzyy9MFF1xQuVy0ULjuuuuyv5944omsiXz0lR3HEz9nnHHGapxF1leNpX7XpUmTJtm6119/fYPPF6WpsdXzWG78+PHp7bffzrp5onEp9fr+4IMPpmeeeSb7+9JLL82+jRrd7YQjjjgi9ejRI/s7uin+8pe/nJ577rlsHLHNN988e63Et7yj/Ntvv/1qnUfWf+uyrufxuWLYsGFZOYYMGZJ1Ufzb3/42PfTQQ1lL4Rizpui1115LY8eOzf6Oe3t8AzteG2HrrbfOxnaifDWWel5TtFTYZpttsnWHDh3aoH1RuhpbPf/iF7+YtYaM46namwONQ6nX9/hMEp9N4vP9T37yk7T//vtnQy+E+EwSn02KXbxG+eN33MdbtGiRRo4cmX2Gnz59etb6jfK2Lut69IwT3bxHi9xWrVpl40befffdaZdddsmeecf8FfFZHaqoEUqyBuy3337Ztxjq+6nqueeeKxx88MFZ65T4Jv6AAQMKb731VrVl4hv9y9te1daH8Y2iL37xi4VNNtkk++ZIRUVF4Wtf+1rh2WefXaljuOWWWwrbb799YYMNNih07ty5cM0112Tf4Kgq9ltfmbbeeutVOnes/xpL/a5LlKfqt5ooX42pnv/3v/8ttGrVqnDMMces9HmiPJR6fV/e/saMGVNt2ffee68wePDgwmabbZYdQxx71W9bU97WZV3P43PFsmXLCj/+8Y+zz9lxb+/WrVvh17/+da3lHnvssXrLFOeA8tZY6nlNxf83jR56KH+NqZ5HS7DY/ne/+90Gb5/yUur1fXnlj88sNVuT9evXr9C2bdvCRhttlPXu8/LLLzd4X5S2dVnXv/GNbxR22mmnrEeeaNHYpUuXrAXuwoULG1x+n9Xh/6MlJAAAAAAAAJAr/TYAAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCAgAAAAAAALkSQgIAAAAAAAC5EkICAAAAAAAAuRJCwv+vPTsmAAAAQBhk/9SW2Ak1AAAAAAAAICUhAQAAAAAAgJSEBAAAAAAAAFISEgAAAAAAAEhJSAAAAAAAACAlIQEAAAAAAICUhAQAAAAAAABSEhIAAAAAAABISUgAAAAAAAAgJSEBAAAAAACAlIQEAAAAAAAAVjpeNJ6Izrk0iQAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 6 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:38:41.460845Z", - "start_time": "2025-09-29T15:38:41.172135Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "month_percent(m_per, \"%buzzes\")", "id": "7cf84c8744185424", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABssAAAaiCAYAAABkZcbYAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs/QecVNX9P/4fEAQs2Bt2RUWxYMUOauy9JRqJYo01amzRWGOJxhJ7Jyp2Y6KxGxPFj4o1alTEEiygYokNjYAK83u8z/8/853dna3swu7O8/l4rLvcuXP7vePjvOZ9TpdCoVBIAAAAAAAAUIW6zugNAAAAAAAAgBlFWAYAAAAAAEDVEpYBAAAAAABQtYRlAAAAAAAAVC1hGQAAAAAAAFVLWAYAAAAAAEDVEpYBAAAAAABQtYRlAAAAAAAAVC1hGQAAAAAAAFVLWAYAAAAAAEDVEpYBAAAAAABQtYRlAAAAAAAAVC1hGQAAAAAAAFVLWAYAAAAAAEDVEpYBAEAHM2LEiNSlS5f8M3jw4Bm9OUAn4dkCAEC1EpYBAEALvfLKK+nnP/956tOnT5p55pnz7z322CO99tprTV7GG2+8kXr06JEbp//whz+06fYCAAAAdQnLAACgBf785z+nNdZYI916661p/Pjx6Ycffsi/b7nllrTaaqulO++8s0nLOeSQQ9L333+f+vfvn4488sg2326gOrz33nulKrElllhiRm8OAAC0a8IyAABoprfffjvttddeOSAL6667btp///3TOuusk/8d0+P1mK8hEbQ9+uij+e/LLrssde/efTpsPQAAAFBOWAYAAM0U3SVOnDix9PdTTz2Vrr766jRy5Mh0xhln5OnfffddOvfcc+tdxoQJE9JRRx2V/x4yZEgaNGjQdNp6AAAAoJywDAAAmun+++/Pv5daaqn061//usZrxx13XKnLs+J8lZx88sm528Y55pgjnXfeeW28xQAAAEB9hGUAANAMX3/9dQ65QlSDzTTTTDVe79atW9pwww3z3x999FGuIKvt3//+d7r00kvz31GJtsACC0yXbQcAAADqEpYBAEAzfPPNN6W/6wu5FlpooYrzh0KhkA4++OA0ZcqUtNpqq+W/W0Ms969//Wvabrvt0uKLL5569uyZFlxwwbTZZpul4cOHp6lTpzb4/vfeey916dIl/xQr4xoT8xXfE++vb3nN/Slf1uDBg1u0jFNPPbXBbR83blw6/fTT0wYbbJD69OmTevTokeaee+606qqrpqOPPjq99dZbTToGMT7dTTfdlHbaaadcaTjbbLPlwHT22WdPffv2TZtvvnmuInzuuefStBo6dGhp/66//vo87fPPP0/nnHNOWmuttdJ8882XevXqlZZeeul0wAEHpJdeeqnZ63j++efTkUcemQYMGJCXN/PMM+frKILhWM+XX37ZoutizJgx6be//W0+vrHcrl275nW0RJzb2ud50qRJ6aqrrsrXS9x/sd2LLLJI2nPPPdPrr79eZxnffvttHidw/fXXz/PH/RLH7ZBDDkkffPBBs7Zn1KhR6Zhjjsn7Nu+88+ZrKa6p2JY4ZnGOGhPns7hPcZ6L7rrrrrTtttumxRZbLC93/vnnz/d0XHNxzze0rCWXXLI07f3336/3XmmKGFtxt912y9d4HKt55pknfykgQv/i2I0AANChFQAAgCb76quvooU6/+y9994V5xk6dGhpngkTJtR47dprr83Tu3btWnjmmWdatA2PPfZYafmDBg3K69h+++1L0yr9rLPOOoVPPvmk3mW+++67pXkXX3zxJm1HzFd8T7y/vuU196d8WbF/LVnGKaecUnGbp0yZUjjppJMKPXv2bPD93bp1K5xwwgmFqVOn1rv/b775ZmH55Zdv8ja9/fbbhWmx1157lZZ13XXXFUaOHFno06dPveubaaaZ6j0OtX3xxReFnXfeudF9mHPOOQt//vOfm3VdXHXVVRWP9yqrrNKi4xD7VH6ex4wZk5dV3zb36NGj8NBDD5Xe/9xzzxUWXnjheufv3bt34emnn250O3744YfCYYcdlo9zY8fs+uuvb3BZcT6L88d5jufMdttt1+Byt9hii8J3333X4LKa8tPQs2Xy5MmF/fffv8H3r7baaoXPPvusWecQAADam24zOqwDAICOJMYYi0qU6IrxySefzBVbUSVTFBVjTzzxRP574YUXzhVGRV988UX6zW9+k//eb7/90sCBA1tlm6IS5W9/+1uuEokKoxVWWCFNnjw5jRw5slTZ8/TTT6dNNtkkPfXUU6l3796prcU6okqnKV555ZXSMQvl1S477rhjWnHFFRtdRlQWXXfddaUKukoVM3Fufvazn6W//OUvpWlxjopVWVFt9Oyzz+YqqB9//DGdddZZ6bPPPktXX311nWVFxeBPfvKTXKEW4hqIyqLll18+V5d999136cMPP8xdbv73v/9NrS0qhWK8vKj0ivVtvPHGudIxuv587LHH8vpjf0877bR8TH73u9/Vu6yPP/44v3/06NGlaf3790+rrLJKXvann36az09USH311Vfppz/9abrxxhvTHnvs0eh2/vnPf07HHnts/juqrdZbb718D8V2xv0wraKb0y233DJXAsY1FxVwUQkX+/TPf/4zH4e4F+I6evXVV3MVVJy3eF9UgUV1VFRJjR07NldPxevx2g477JDefPPNvK2VxDHdeeed0z333FOaFpWJUU0Wv+O6iPPw/fff52MW92j8Pvzwwxvdp7j2Ytmx/VEht+666+aqt7jG4zzEtoaHHnooXwNXXHFFjffHNRj3XlyjUVUa4jkUVXbNFRWKN9xwQ76+43nVr1+/vO/PPPNMPj7hxRdfzMt+4IEHmr18AABoN2Z0WgcAAB3NvvvuW6qquOiii2q8dv7555deO+CAA2q8VqzQmHfeeQuff/55i9dfXv0x88wz599LLrlk4fnnn68z7zXXXFPo3r17vdvUVpVlTTV27NjCggsuWFrO7rvv3qLl7LHHHqVlLLDAAoX333+/zjxRUVacJ9b5l7/8pWLl2B133FGYY445SvPefvvtdea58MILS6+vsMIKhTfeeKPidsXyo5LpoIMOyvvaWpVlxfMe+/3111/XqRLbaaedSvNGFeNTTz1Vb6XdRhttVJp3rbXWKrz44ot15ps4cWLh1FNPLXTp0iXPN+ussxbeeeedRq+LqNCLbb366qvrHOtJkyZNc2VZVI3F77i3aldxjhs3rtCvX78aFVurr7563ofYl6iaKvfaa6/VuBZPO+20erfhnHPOqVFd9Zvf/KbO8saPH1/YbLPNahyL+qpJy6vBivu05ZZbFj744IM61WxHH310ad7Yl/ruvZbc0+XPluJ2rLnmmoXRo0fXmC/OZfk9ED+PP/54k9YBAADtkbAMAACaKRqOiw3J8bPBBhvkEGr99dcvTevVq1fhrbfeKr0nGsmLQcOwYcOmaf3lDdrF4OI///lPvfMXu34sNq5XmndGhGXffvttYcCAAaVlDBw4MIcyzXXGGWfUaOCv1IVebF+xu7y55567weMVHn300dIyo6vF2kFPeZeFjzzySGF6KA/L4merrbbKYVclEaoMHjy4xjVayfDhw0vzrL322hW79asvqDrwwAMbvS7i56abbmrB3jZtG+JnyJAh9c775JNP1uk2sKGuKWNby897JRFOzjbbbKX5IryqTwSCETYV541gspLaXSfG+YpzWElci+XLPPvss9skLIufZZZZpvDNN9/UO/8uu+zS6PUAAAAdwf/rLwYAAGiS6Irs2muvTTPNNFP+d3SNFl31RbeMoXv37rnrsmWWWSb/O7rDO/jgg+OLarlLtb333rvOMidOnJi76yt2I9gc0RVbdNNWn3333Tetvvrq+e/Yhtj2GS224xe/+EV6+eWX878XXXTRdPfdd6eePXs2azl33XVXOumkk0r/HjZsWFp77bXrzHfRRRfl8xBOPvnkBo9X2GijjdLmm2+e/47uCV966aUar0dXfUXRheP0Ft1MXnzxxTW6AC3XrVu3/HpRXKPFbvPKXXDBBaW/r7zyytSrV68G1xvdiM4555z571tvvbXR6zW6uGxKd40tFd0UnnfeefW+Ht0+LrbYYqV/R1eVJ5xwQr3z77TTTnmZ4Y033shdGdZ2yy235C47i8trqIvLHj16pEsvvbT07+iasdJ5qO3CCy/M57C+c1/+DHnuuedSWzn77LNzV5z12WeffabLdgAAQFsTlgEAQAsMGTIkNw7H+E0xRlIEZDGW2e67757+9a9/pV133bU0b4wpFOP6RLh2+eWXl8bTiqAh/h3jQ80yyyw5dImxhWJcrbfffrvJ29KUsYjK54kG+xntt7/9bQ66wqyzzprHforj2BwRtEXgFsFbcZn1BTPl4yn9/Oc/b9LyYxyvomIQWhThXnnINL0Vx7FqyEorrZTHUavvvMe4e8WwMsa5izHKGhNh5jrrrJP//vrrr9Nrr73W4Py77bZbaksbbLBBDqwaUj7m3bbbblsKwyqJsLB4XOO6Ko75Vy7GNiuK+72xgDECwzgXTb3/llpqqbTaaqs1OE/5ea20ja0hznUcrxm9HQAAMD1U/qoaAADQqGjQvv322xuc55NPPkknnnhi/vvQQw8tBRLREB8N7XfccUeN+b/77rs87eGHH05///vfc0N7Q+add97Ut2/fRre1GHCECEhi/cXQbnq76aab0u9///v8d2xD/HvAgAHNWsbHH3+cG/L/97//5X/vvPPO6fTTT6847+eff57eeuut/HcEJaeddlqT1vH666+X/h43blyN1yIk/dOf/lQKyyIg3WuvvXI1WlPOx7QqP5+NzVesiqtdHff000/XqGyM67MpxowZU+O4rLzyyvXOW6xobCvlQVh95pprrtLfEUw3Zu65565YQVhUfhwjtGyKqHB79dVX898RnDekPFirzzzzzNPgNraG5ZZbLn8JYEZvBwAATA/CMgAAaENHH310rsCJqrPy7touu+yyUlAWlWTR3VlUVt1///2528R4T0yPwKahypXyLuYaUj7f5MmTc/dyvXv3TtPbM888k/bbb7/Sv88666y0ww47NGsZkyZNSttvv3364IMPSqHl8OHD6w3/ooKq6Pvvv8/Hvrm+/PLLGv+OUOywww5Ll1xySf73888/n39CVDqtv/76afDgwXnfFllkkdTaWnLeP/vssxqvffTRR6W/33333VY5LrW1dReVc8wxR6PzlHdn2Nz5f/jhhzqvlx/HxRdfvEnbucQSS5T+ju5WG9KUbSwPsSptY2to7nb8+OOPbbIdAAAwPeiGEQAA2sjjjz+eq6bC+eefXwqnoqrrD3/4Q/47uny7+eabc2N6dHsWFVLnnntuqVuzGBeqIdF9Y1NEV4flKo3F1NbGjh2bw6MI64pdQ8YYWM0V4yQVx0eKEDK6cGzoOETwOK0qBQExJthf//rXOtV/UU34l7/8JYdpEVbtsssued9bU0vOe+1z3lbHpVxjXRROq+ZWR7ZGNWVxvLJK91VLzkNtM6ris71uBwAATA/CMgAAaANR7XHwwQeXxr6KLheLRo8eXerWL6rIYiyzchEiFRvXozvGhkS3jU1R7K6wKMZGm1Yx5lpTxfq32267HCQVu6W7+uqrm73OM844oxQgRhDzt7/9LS288MJNDioisIywsrk/119/fcVl77jjjunZZ59N77//frrhhhvSL3/5yzz+V1G8N4KzqH4rdgXZGlpy3muf8/LjEuemJcdl6NChqdrMNtts9d5XLTkPAADAjCcsAwCANvDHP/4xd6EYY2TV7t6uPDRZdtll67y3R48epe7dGgtYao+l1ZT5Yvm1G+xb0p1aUyuTIlQZMmRI+ve//53/HfsWFVmxHc0RodPJJ59cqnq57rrr0pprrtno+6JbxPJxlZoaNDVHVJBFyBnjl40aNSpXksXYaMUKsBg37de//nWrra+plWrl5z3Gt6vvuMQYcDRNedeSTT0PUSVa33kAAABmPGEZAAC0shhLqzg+2VFHHZX69etXb5VJfd3pFat+yrt8qyTGTxozZkyj2/T000+X/h4wYECdLtbKxy+Lcagi4GpIhAQRPDXFCSeckO6+++78d4R09957b5p//vlTc7z00ks5jCpu1ymnnJLHdGuK6Kpx0UUXLf175MiRqa3F+iLYK6+e+/vf/17qgrI1xn5rivLzHtVt5QYOHFj6++WXX25ylVS1W3XVVZt9LZXPV/s8tBXdKAIAQNMJywAAoJUdfvjhOXiICqoTTzyxzuvlVV0RrFVSnF4eYtXnxhtvbNY8G220UcVtmnvuufPfUXnVWEXbHXfc0eg6i+s9++yz899du3bNXSiutNJKqTnGjx+fuwksVoRFSBZhWXNss802pb8vv/zyNL3Edpd3zfnFF1+0ynKfeuqp9O677zY4T1S4vfjii6V/Dx48uMbrSy21VFp++eXz399//30aNmxYq2xbZxfdqhbddtttadKkSQ3O/8ILL6RXXnmlwfuvLcQYiOXXHgAAUD9hGQAAtKKHHnoodzEYLrroooqVY8WAItx///11Xv/Xv/6VA6JQPv5VfS644IIGg5MYb+v5558vVZvEOGmVlFca1TdGVzHI+/3vf9+kapr999+/9O8//OEPaeutt07NEUHEDjvsUAoPo9vF6H6xuaLCrzg23F133dXg/tVWqYvC//73v83uBjHCwnnmmSe1hqiwi1C2vgrAKVOmpF/96lelf6+//vp1KhzDcccdV/o7gt1XX321ydtQrV03/vznPy+NWxb3aXS3WZ8IIQ877LAaQdlyyy03XbZzzjnnzNdcsQJVYAYAAPUTlgEAQCuJYKfYMB6h0Pbbb19xvmWWWabUYB5dEj7yyCM1lnHMMcdUrIiqJMZE++abb9Kmm25ao4qoKIKlX/7yl6V/R1DWt2/fekOA8gAuxgir1P3foEGDcleNse6GumnccccdS90O7rPPPjmwaq699947Pffcc/nvRRZZJP3tb39LvXr1avZyll566RpVfrE9Rx99dL2hV4zbFt0m/uIXv6jR7V7ROuusk4/Xgw8+mAORSqI6b6+99ir9e5NNNmnwmDVHLCeunaFDh+bzXy7Oze67754effTRUkBaX7gZY8kVK6ViORGqXXXVVfXuU3S9efPNN+cqtfIQqJpEtedJJ51U+ndUTsa/ax+zTz75JD8Dil1mduvWrUkhc2uJMQHjWRMiKCt2hQoAANTVrcI0AACgBc4555z0n//8J4c5l1xySYPzRuN6BBVTp05NW265Zdpiiy3SggsumAOOYpXYiiuumHbeeecGlxOhTXSfGNVSa6yxRlp77bVz5VqEVDFe1TvvvFOaN6afd9559S5rt912y6//+9//zg3/u+yySx5fKcY4i0ql6Eouxg4Lp556ag7i3n///YrLitc+/fTT/HdUdEVQcOihh6amiPHeYp9i2dHNXVE0/J955plNWsZWW22Vf8pF143vvfdeuuGGG3JF1vnnn5/PUxy3CNOiCjDCoJgn9rU4hlelarAIH6JLyfiJ873yyivnbg0jSImwKo57dL9XFPM0dOyb6/jjj8+Vi8OHD8/nPgKvGAcuqr3iGioffyzmjRCskjg30aVmhK1xbmP/DzzwwHTsscfma2vhhRfO88Q+vfnmm2n06NE5SAyNXZudWQStTz75ZA4swxlnnJGuuOKKXDk211xz5YrCxx57rMYYdeeee26N6s3pIc7RWWedlf/eY489ckVlhOXdu3cvzdOa1yUAAHRUwjIAAGgFY8aMKY3NFeHEkksu2eD80XAdFVMXX3xxDqJqd8fYp0+fdOedd+aQqTHRAB7hzX333ZcDsvipLRrpo7JkjjnmqHc5sa4IXn7yk5+UQraoViuvWIsqpRNOOCGdfPLJDXaHWN49YOzf1VdfnZoTRERYVruLwQgf4qcp5p133jphWWx7HKvVV189B2cRAEUoGN1Fxk8l8Z711luvwXHnJk6cmJ599tn8U0lcCzfddFMO1FrLEksska+ZCDSjK8CouKstQq7f/OY3OchpSISBMQbar3/963TttdfmMCxCs4cffrje90T4F8exWkX3htHd6pFHHplDsrjGP//883zP1hb33IUXXpirAKe3CD1jO9944438jHjggQfqzCMsAwAAYRkAALSK6JIuulCM6qdooG6KqAyKSpTLLrssj1MW1UCLLrpo7rotQo755puvScuJaqZ77rknN9RH1VRURUUXcDFmUQQ0EcztueeepfGLGhLBTrw/Kq6ikT26EozqmAjvNthgg3TQQQdN9+qYtjhXEVzceOONuQvMqKSLMZ3i/EUIFt099u/fP3c1GIFbnJPaXn755dy9XoR3EXpG1dVHH32Uvvvuu1yhFlWCUZG33XbbpZ/+9Ke5S7zWtu666+ZtjyAyQs6oiPv222/zuYpKs4MPPjhXBjZFhF8R+sQYZhHsRXVanPsIgKL6MQKfqJxbZZVVcneSUQkZ1101i3A57pOoxPvTn/6U/vnPf+aKsujOMsLeZZddNl8/MW5fa41V11xx3mK8wssvvzyHq1EZ+NVXXxm/DAAAaulSqG9EaAAAANqNCPgiDA1R1TcjKpUAAAA6o8a/WgoAAAAAAACdlLAMAAAAAACAqiUsAwAAAAAAoGoJywAAAAAAAKhawjIAAAAAAACqlrAMAAAAAACAqtWlUCgUZvRGAAAAAAAAwIygsgwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAAAAAAAAqFrCMgAAAAAAAKqWsAwAAAAAAICqJSwDAAAAAACgagnLAABmsKFDh6YuXbqk9957b0ZvCrQrH3/8cdprr73SIosskmaaaaZ8n3z11VfTbf3XX399Xmf8pmOJ52mcu3i+NsfgwYPz+6hpiSWWyD+dWTXsIw3z/2MAUN2EZQAATRCNJ+U/0XA/77zzpo033jjdcsstqT1ojYb9N954Ix122GFpxRVXTHPMMUeaeeaZU58+fdLWW2+dhg0bliZPnpyq/ThPL6eeemo+BiNGjEjV3HB54403pkGDBqUTTzwxnXLKKalnz56pGgjqGhfHJ8KtztwY3tG2ty3OWWsRhOJzFQBoSLcGXwUAoIZorA8//PBDDpb+9re/pcceeyy98MIL6YILLmjRMn//+9+n3/zmN2nhhRdOM9Lvfve7dNppp6WpU6emddZZJ1f0zDbbbOmTTz7JDUv77bdfuuKKK/K+dsTjTMfy/fffp0ceeST95Cc/STfffPMM2YYdd9wxrb322mmhhRaaIeun5eJ5Onr06Bz6N8fw4cPTd99912bbRfv1z3/+c0ZvAgAAM5CwDACgmd9Krt24tummm6YLL7ww/epXv2pRF07RED+jG+PPOuusHFAtuuii6c9//nMaOHBgnXnuu+++dP7553fY40zH64IxgtuobJxRImhpbthC+9C9e/fUr1+/Zr9vscUWa5Ptof1beumlZ/QmAAAwA+mGEQBgGmyyySa5QbZQKKTnn3++NP1f//pX2nnnndP888+fevTokRZffPF08MEHp/Hjxzepm63y8Xbi79122y13Rxhd0K2xxho5uKrdvdTee++d/47f5V0ZNtZ9V7we4VQ0Lj/wwAMVg7KwzTbbpIceeii1p+P8wQcfpEMPPTQttdRS+TjPM888abvttqsxT6Xul6JLx9jPqJwrD96iouScc87Jx3j22WfPry+//PI5oIsKu3Ixb1QFDhgwIM0666x53qjIu/XWW+usO9YZ645tePnll3O3lnPOOWeaZZZZcheDI0eOrDF/bFNU+YWNNtqoxvkseuutt3JFYmzrfPPNV7rODjjggHxcKoluNGMbisdrySWXzN0bxvT6ukf78ccf0+WXX54rrHr37p23edVVV02XXnppDrOa4+2330577rlnrvopdvEZ/47ptfc/9iXccMMNpX1vyvhTxf2I87XPPvukBRZYIJ+fddddNz3xxBN5nv/973/pmGOOyeuI49C/f/8cEje1K8Ti2EbF5UTAEsvp27dvvn7iOq3v/DdlrKSm3s/NPTf33HNPvpcinI/tjeMf118soynKj8f999+fj2kc27nmmivtsssudc5jUTz3DjnkkLyPcd7jet1pp53yc7JSReHFF1+cVltttbzc2Kd43/bbb5/+8Y9/1NiO8Pjjj9c4PsVjXGnMsvh3XE8hrv3ie2of+/L77Lbbbsv/PvLIIyvuW9w7sZ1xTON8lItnQdy/ca/HszueJWeccUaTu7NtyvY2575qTFy3ce3E/RDbG8uL5+vXX3/d4Puasp9NOWdFzz77bL6eFlxwwbw/8SWOX/7yl+mjjz6quP4vvvgi/fa3v83dB8f1EgH3Kquskp+PcY8Wr4VYb/G4Fn/Kn3n1jVkW+3H22WenlVZaKS8/7rUNNtgg3XHHHXXmbe5nd2OK2xj7/otf/CL/P0WvXr3S6quv3mDXxA8//HDaaqut8rrjXo8gMJ5VlcZ8LO73hAkT0q9//ev8d/z/QH3Pq0r7OmbMmHzO4jM4Pjs322yz9Nprr+X5Pvvss/y5FPdIHIc111wzV4pXEtfa8ccfn5Zbbrk8b9xbm2++eeneb+vP1XJXXXVVPuexHfE5EvvQ2L0AAHRsKssAAKZRsWG82OASjWERlMX0aDyKBvloFI4uDKM7wSeffDI3fDbF+++/n9Zaa60cbkRDWTQK3n777aWG42jwCdFYFY1Esfx4LQKcopjekOuuuy53dxiNetHY2JBodGsvx/nFF1/MDXJxTKIxLRrf//vf/6a77747rb/++umuu+7KjYW1RXVcdO+37bbb5uNXbPz68ssv87///e9/54a6CFqioTYaAeMYxfKjwSxEg2OMo/bSSy/lRv2YN8KJaKD8+c9/nkaNGpUbi2uLbiT/8Ic/5FAturUcO3Zs+stf/pIDjGjsi/WGI444Iu9HNO5Gd5iVGnD/+te/piuvvDJvc4QWsa2x3muvvTbde++9eV3lXXvG8YvrMkKOZZZZJjeCx3mPRux4XyXxehyn2K/Ytti3aDiMhs4Y2y4atWNMsaaIADO6VPzmm29yoLnCCivkLjZvuummfN3G9RyNqMX9j4bYiy66KDd677DDDnl6+XXdkDg/6623Xm603X333fM1EqFHXCdPP/10bniPaREAxz5GY//Pfvaz3CgfwVNTxPtiedGIveWWW6Zu3brlcxYN9JMmTSp1JdoSTbmfm3turr766rzfEUDE+6IR/dNPP02vvPJKvr4jzG+quPYefPDB3E1lNOTHtRvXcaw7GqiL13F499138/0YxynumTgf48aNy+FkXIvxvjgP5fse5yOeRRH4RDAQ743nZoT1cQ3F8YjjGw3f8XwtD8QaGg8r3hPnKO7xww8/vHQsG3pGxrUX4UsEE+eee24+z+XiHMX1dtRRR9V4LZ4JcVwXWWSRfN/FOp555pl00kkn5UrZeAbVXlZLtrc591Vj4r6LoDJCjQgGIjCJZcS1FCFmPGNqa+p+NvWc/elPf8rrjs+a2J+4JyP0Kz7XYtnl1X9xfcUzMD4rI0A66KCD8rM4vkzwxz/+MR144IF5m2Ld8ayL+crvzcaqlGO/4z6PZ3F8YSNC3/iixJ133pmfGXHtR2V2Sz+7myI+m+IZH/sR4XlcbxHU7bHHHunDDz/MIVi5OMYRIM0999z53oqALe7z8847L38hJp6BEfjV3s+4P2M743M1Xm/q/6fEszq+fBIhaTEkjM/fOK+xri222CIvL45X8Vkcz8w4R+Xnsvjcfv311/M1G9djfKbHvsY2xf9DxTOsLT9Xi4499tj8bI1nZaw7nm3XXHNN+s9//pMeffTRJh0XAKADKgAA0Kj436ZK/+v0yCOPFLp06ZJ/3nvvvcI333xTmHvuuQtdu3Yt/N///V+Nec8+++y8jE033bTG9L322itPf/fdd0vT4u/iOk899dQa8z/00EN5+pZbbllj+nXXXZenx+/m2HjjjfP7rrnmmkJHOc4//PBDYemlly706NGjMGLEiBrzfvjhh4U+ffoUFlxwwcKkSZNK00855ZS87FlmmaXw4osv1lnH7rvvnl8/8MADC1OmTKnxWpzXr776qs45O+ecc2rMN3HixMLmm2+et/Oll14qTX/sscdK+1b7/Fx55ZV5+kEHHVRjenF7472VfPDBBzX2r+jhhx/O11/sR7nhw4fn5W2wwQaFyZMnl6Z/+eWXheWWWy6/NmjQoIrbcOihhxZ+/PHH0vT4e5999smv3X333YXGTJ06tdCvX788/0033VTjtdtuuy1Pj20oP+7FeyCOdXMUj/Mvf/nLGssr7v9cc81V2GabbfK5Kop7NV7bYYcdmnRPLb744qV78LvvvitN/+STTwpzzDFH/vn+++/rnP84npXE8uKnKetu6blZbbXVCjPPPHPexto+++yzQlMUtyl+7r333hqvXXjhhXl6PE/KbbbZZnn6GWecUWP6U089VZhpppny8zLurxD3WNw7q6++eo19Kvrvf/9b49+VrtnGrp9Kz9tysbzaz6ADDjig4j6HrbbaKr/2yiuv1DlOO+64Y43ro/y8xfFqioa2tyX3VX3ifMT88Vz9/PPPS9PjPll77bXza/Vdo83Zz4bO2Ztvvlno3r173oZ4vpX7xz/+kZ9rte/RddZZJy/zrLPOqnhdl9/nlc5tY/dhLLd4r8fnTlHcR8XnQBy7afnsbkhxWbvuumuN8/jOO+/kZ1kcrzFjxpSmP/roo3n+OC7xbK90vo444og6+x3TN9lkk8K3337b5G0r39fa9/fvfve70vO2vmdx7e0o3mfxO67torfeeqvQu3fv/Pwqvw/a4nO1eL8tuuiihffff780Pc59fHbGa88++2yTjxEA0LEIywAAmqDYIBMNLfFzwgknFHbeeefc2BvTjzzyyDxfNFjGvyN4qS0aW5ZYYon8enkjTENhWTRiVWo0XmyxxQrzzDNPq4Rlyy+/fH7fgw8+WOgoxzlCgPj30UcfXXE5xYb7+++/v04jWe0GumLDZzTELrTQQo02FkaDfWzPGmusUfH1l19+Oa/nmGOOqdOot95669WZP0KVbt265YCgOY16DVlppZUKSy65ZI1p0RAay3v88cfrzF+8bssbsaNxM4KMCB3LG4mLoiE2go1oxG3Mk08+WWrArWT99devs23TEpZFIDphwoQa0+M+iuMcr5c3LhfFvRk/zQnL3n777TrL2XPPPfNrr776apuFZS05NxGWxXH54osvCi1V3KbagVjx+EbIEa9HoB3GjRuX/x3Pq/LwsGjIkCH59RtuuCH/++uvv87/XnfddWs0ltdneoVlxSBpl112qTF9/Pjx+Vmw6qqr1pg+YMCAfK3VDiuKxyme3WuuuWaj+9fY9rbkvqrPfvvtl+f905/+VOe14vVb+xptyX42dM7i2Ryv33fffRVfj6Asjnfx3n7hhRfy/LEdTQkEWxKW9e3bN99Lo0ePrjP/tddem5e39957T9Nnd0NiWbHPEY7VVvyMKA/l4hjFtNdee63i8uJYzTfffBWfZ/HZ1RzFfY3nZu19jf/HaexZPHjw4NK0+AJHzDvbbLPVCGuLTjzxxLy80047rU0/V4v3W6UvD8W9Ea9dcsklDR4XAKDj0g0jAEAzFMe7iK4Ao0ukGLdk3333TUOGDCl1DRiiO6PaoiuqDTfcMHdRFN33lXc/VJ/oumqmmWaqMz26porujdqj6OYouj6qvR/FrvRa4zgX9z26uqo0rkpxrJ7Ro0fX6YoxusaqLboyi6674vzEGEwNiXmnTJlS7xhU0T1ecd21xZg1tUVXZ9G9Y3S11RzRjnrzzTfnrsWim7Z4f2xXUe0u0+Ka69q1a+7Oq7boJq+26CIrusyKLhsrdSkZoou8SvtZW0P3RXF6dLMX2xjnYFotu+yyuQvGcnEfxXGOMYyia7TaosvK6G6uqaJrvhijrNK9GZp7PpujJecmumyLrgKjm77ocjXG9Ikuz2L8sOaK99YWxzeuo+i2NM5jdLUXv0Pcv3GdVzrv0V1gzBddLkZXbdHtWXS3F8+M6NYv3htdvMU4RDNK3DNxTcV2xXmNcZRC3H9xz5V3KRhd9MX9GN1cXnjhhRWXF10MNuW+mZ73VXFZlc5tnNfan0NtsZ/F53p0k1dp3MnoNjSOd1z/0eVidMkYopvEeLa1tujaMrrdi2dDdMFYW/G4F6/ztvrsjv9XqNQlYnRzGJ+V5euPZce9Ft2cVhqHMbpbjDHEPv/88zy+WFF04bryyiunlqi0rzFuXmPP4vKxNd988818TcUzKbqPrHSs41lX6Vi35udqQ8ucHs92AGDGEpYBALRg3Kz6FMe/ijFfKilOj7E5mqK+sXQieItwpzXENkWDZox90lph2Q033FBjWowP0pywrLHjHA19oVJjYLlvv/22zrQYs6m24vkoH+OrsXVHY26lBt2G1t3Q+SwPupri17/+dW6kjvMXjcWx7RGQhOLYPLWvzWiErDROUnEstkr7GcFjMbxs6n629X3RlCCrktj3hl778ccfm7yOhs5laO75bI6WnJu4XiLYuPzyy/O4VHHtROAb4UiMxVWpcbg+la6X8nureL5bct5jXKdzzjknjxFWHFsqGvJj/McYc6m+dbe1eIb99re/zeMtxbhYIZ5z0Sgf48UVRUN6PL8ikGjo3LSG1ryvisuqdHzjmo5rp1xb7Gfxuo7rsSHF67o5z+3pfXxb87O7qfdb8RjGc6yxcxLHsDwsi3HNiuOBNlelZ2rxOdjQ87b4xZK2PNYtfQ5XWub0eLYDADNW63/9CgCgihUbhj7++OOKr48fP77GfO1Bsaron//8Z6ssL4Ka/39336WfmNaaisfvb3/7W511lf8UG9vLVWoQLDaMNSUwLK77yCOPbHDdjz32WGorUWERgceKK66Yv5Ef1TkRMESlW/xERUdtUbUT1UiVAqFPPvmk3v3ccccdG9zPd999t1PeF62pWPVSXxjX3JCwpecmqreiGica1O+///5crfl///d/OWyN0KOpKl0v5ee3uH0tOe8R+MY1HNVDY8eOzdd2PKPidwRmM8ovfvGLfB6LXwSICpdXX301V66WB0nFfVl11VUbPDeNfSGgKVrzvirOU+ncxnX73//+t+L8rbmfxWVGcNLQ8orVb815brdEe3luNfV+K/4dlY+NnZOo/CzX0qCssx1rAKC6CcsAAFpRNByGESNGVGxwfOKJJ/Lfq622Wquvu9gNUnO/9bz33nvn6oi//OUv6fXXX29w3smTJ6f2YO21186/i8dzWkXXjNEQHsFBdNPXlHlba90tOZ/vvPNOrk7YbLPN6nRxFV1bxeuVrs14z8iRI+u8Fl211RbdjkVjdIQr5RUArX1fhGKw2Bb3RXtQ7LZv3LhxdV6Lbt7KK0Oacv6n9dzEeyPkueaaa3IXghGixrXfVNFNXm2xncXrqHi+i79jeqWgsLHzHt2eRfeRDz/8cO7yMpZTrD4KcR8293nX0udkbEt0BRdddUZAXQzNouKs3GyzzZb69++fRo0alY/rtGpoe1vzvirOU+ncxnGvvf6W7mdD56y5z/Xi/HF9NKVaq7nnPp6tSy+9dA7jil37zojnVoTG0X1zbcXzXrwOisckqv7ivHQkyy23XO5qNbr2rPTlgdY61i29/wGA6iAsAwBoRdHVYHR1d+utt5bGUymKbs+i0uMnP/lJk8Yra65il0rRsNYcSyyxRK7kiLFMtt566/TCCy9UnO+hhx5KW265ZWoPtt9++9yIedlll6UHHnig4jwxdkuMgdIUMW5TjOMU314/+uij6zS8RpdVxUAjuquKBvw4TqeffnrFRrcYt6kpFVctPZ9xzio1Ysd27r///hWDiagqCieeeGI+10WxX7EflbqcOuyww/Ix+dWvfpUmTpxYZ554rbGANcQ4NNEYGtt755131ngt/h2N4zG2TaWx0zqDCLeisi8qIaMqsCiOaRzb5p7/lpybaGyuVOVT3J7mjAn26KOPpvvuu6/GtEsvvTRf9xtttFGpamWRRRZJm266aW7orz2uVYRO0dViBIlRIReiui2qtWqLADuu7djv8rH44hhVCiDb4jkZimOTDRs2LD/jo6Jsm222qTNfdHkZ99g+++xTseE/woziGGHTsr2teV8V9+3MM8+sEX5NmjQpHX/88RXf05L9bOicHXroofmLG1G1G5WFtcW6yoO0GLcsxpOLMTKjsra2CFZj+8vX3dxzH/sW980xxxxT41kblXbF52bM05Zivccdd1yNz6X4fInq4rgnimN5hjh2IT4HPvroo4r3Uu3/N2kP4r6Oz9UYJ+6kk06q8Vo8V2Jf49qICs9pMS33PwDQ+RmzDACgFcW37f/0pz+lXXfdNXcVFb8jGPvXv/6V/v73v+cxRq666qo2Wfc666yTG7yjUToaCYvjmUSjemNdF51wwgmlcU7WXHPN3AAZYxjF/kQXUFF1Et+sb864Rm0pGs3++te/5u7jIuCL7R0wYEDe/2iIjbHEoroqAoOmhgDR2P/aa6+lK6+8Mn9jP5YdDXjRKBmVC/fcc08aPHhwad44HieffHK68cYbc2N0jCsTjZMx/lusPxrTl1xyyRbvY4QOUYURDdWxXcXqpAi74txGuBfjJ8V+R4VZhF6PPPJIHt8ppkUDcu2wLOaP0DO6b9xuu+1yVVJUFMY5j2qZYneBRdFoGd/0j2Ny77335sqaGB8oApbY/6eeeio3rq+wwgoN7kt08RWVOBGc/OxnP8thZwRIsc4Y4y4qOIYPH15n/Z1FXK+HH354blyPKpAIh+J+i/PVp0+f/NPc+7m55ybWGfdzVJ5E2BoBQAQPca1G6BAhflNtu+22eXnxExVfca09+OCD+YsCMSZaudi+CHUibIhnYDxD4h6N8QbjfF933XWl6sio4Injs9JKK6WVV145V3NNmDAhB3PRPVsEg+WVlJtsskm+pmN7ouIkjvOGG26Yf+oT74kxsSJM2HnnnfPyotIugprGxP5G6BnnJO6dOBexztoiPIlnfhyLCPXjWRKfAxFCxfMknqdR0RvHpjENbW9r3ldxjmJ/Lrnkkvx8iC4vY98i4I1nT6WxpFqynw2ds9j2+PyM5UbV2hZbbJHDvjjWEW7E9RpfbHjjjTdKy4vuOeO5HJ9h8SyLv+PajnsgrreYt/jlglh3XHc77bRTrqyMLj8j2G0ogIkvT8S1HcdhlVVWye+LL2HEcuJeO/bYY9s85I97IcLluE/jWR/B5B133JF//+EPf8jHvvz4nn322flzY5lllsnbG59DETbHOJZRORjbG58D7U1sd5zj+HyN51J8BkYoGfsaIVpMn5bP1MY+VwEA4n8kAQBoRPxvU3P+1+m5554r7LDDDoV555230L1798Kiiy5aOPDAAwsffvhhnXn32muvvOx33323NC3+jmnxWiWDBg2quD0PPvhgYe211y7MOuuspW0uX25jXn/99cKhhx5a6N+/f2H22WfP277gggsWtthii8K1115bmDRpUqE9HedPPvmkcNxxx+Xt7dWrV97vvn37FnbeeefCjTfeWPjhhx9K855yyil52Y899li9y/v2228LZ5xxRmGllVbKy5ttttkKyy+/fOHwww/P6yo3efLkwiWXXFJYZ511Cr179y7MPPPM+TxvvPHGhT/+8Y+F//73v6V5Y52x7tiGShZffPH8U1vswyqrrFLo2bNnnWPzv//9r3DCCScUll566UKPHj0KiyyySOHggw/O663v+pg4cWLhpJNOKiyxxBJ5e2OdsYwPPvggz7/99tvXec/UqVMLw4cPz/s111xz5WuiT58+hfXWW69w5plnFsaOHVtoqjfeeKMwZMiQfE1169Yt/95jjz3y9NoauwfqE++J/W/OcQ6Vjtl1112Xp8Xvpi6nvussjuPvf//7wlJLLVV6JhxzzDH5PNa3vMbu5+acmyuuuCI/k5Zccsl8bcf8AwYMKJxzzjmFCRMmFJqi/Hjce++9edtmmWWWwhxzzFHYaaedCm+++WbF98X1Fc+/xRZbLG/jPPPMk6+1eE6W+/LLLwunnXZaYaONNsr7EddoXCNxbm655Za8v+Xintx9990L888/f6Fr16417rGGrp/zzz+/0K9fv7z8mKf82Nd37xTtu+++pXPxwgsvNHi84hhtvfXWhfnmmy/v9wILLFBYc801C7/97W8Lo0ePbvC9Td3e5t5XDYnjG8+04roWWmih/Ez56quvGrzmm7OfDZ2zoldeeSWft7heYjviWo1n/AEHHFD45z//WWf98cw79thjC8suu2x+Fsb1GM/NeLbF/VX0448/Fo4//vh8D8Rxqv2sqG8f47kZ91NsQzyL43Mh7rG4Jmtr6Wd3fYrbGP/vEOc0jnHs46qrrlq4+eab633fE088Udh1113zOYxzEv8vEsfkyCOPLDz//PM15m3o3DaksX1tybM4ngFxLuNzPM59nMuf/OQnhYcffrjOvG3xuVrp/8eauj4AoOPrEv+Z0YEdAAAw40SFU1Qs/OY3v0m///3vZ/Tm0E5df/31uVIoqsGK3fYBbSeqB6NKvb5x6QAAaD2ds58TAACgjkpj2EQXfxGSheLYUQAAAFBNjFkGAABV4te//nUe5yrGeIuxfz744IM8Hk+MMfTLX/4yrbXWWjN6EwEAAGC6E5YBAECV2GmnndInn3yS7r333vTVV1+lnj17pv79+6d99903/wAAAEA1MmYZAAAAAAAAVcuYZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVq9uM3oBqt+CCC6b//e9/abHFFpvRmwIAAAAAANAhjR07Ns0666zp448/bvZ7VZbNYBGU/fDDDzN6MwAAAAAAADqsyFoic2kJlWUzWLGibNSoUTN6UwAAAAAAADqk/v37t/i9KssAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqdaiwbPLkyem4445Lffr0Sb169UoDBw5MjzzySKPv++tf/5p+9rOfpaWWWirNMsssabnllktHHXVU+uqrryrOf88996TVVlst9ezZMy222GLplFNOST/++GMb7BEAAAAAAAAzUocKy4YOHZouuOCCtMcee6SLLroozTTTTGmrrbZKTz75ZIPvO+CAA9Lo0aPTkCFD0sUXX5y22GKLdOmll6Z11lknTZw4sca8Dz74YNphhx3SnHPOmS655JL89xlnnJEOO+ywNt47AAAAAAAAprcuhUKhkDqA5557LleSnXvuuenoo4/O0yZNmpRWXHHFNP/886eRI0fW+94RI0akwYMH15g2fPjwtNdee6Vrrrkm7bfffqXp/fv3T927d08vvPBC6tatW5524oknprPOOiu9/vrrqV+/fq26X7G+MGrUqFZdLgAAAAAAQLXoPw15S4epLLvzzjtzJVlUiRVFN4n77rtvevrpp9O4cePqfW/toCzsuOOO+XdUnBVFGBY/sY5iUBYOPvjgFJlibAMAAAAAAACdR4cJy1566aW07LLLpt69e9eYvtZaa+XfL7/8crOW9/HHH+ff8847b411hDXWWKPGvDFG2iKLLFJ6HQAAAAAAgM7h/5VPtXPjx49PCy20UJ3pxWkfffRRs5Z3zjnn5Eq1XXbZpcY6ypdZez3NXUel8r/axowZk5ZeeukWLxcAAAAAAIAqqCybOHFi6tGjR53p0RVj8fWmuuWWW9KwYcPSUUcdlZZZZpka6wj1rac56wAAAAAAAKD96zCVZb169UqTJ0+uM33SpEml15viiSeeyOOcbb755unMM8+ss45Q33qauo5K6htQrr6KMwAAAAAAANpeh6ksi24Qi90klitOi3HFGvPvf/87bbfddmnFFVdMd955Z+rWrWZWWOx+sb71NGUdAAAAAAAAdBwdJiwbMGBAeuutt9KECRNqTH/22WdLrzckxgbbYost0vzzz58eeOCBNNtss1VcR3jhhRdqTI+xyj744ING1wEAAAAAAEDH0mHCsl122SVNmTIlXX311aVp0V3iddddlwYOHJgWXXTRPG3s2LHpjTfeqPHejz/+OG222Wapa9eu6eGHH07zzTdfvV0i9uvXL68j1lV0xRVXpC5duuRtAAAAAAAAoPPoMGOWRSC26667puOPPz59+umnqW/fvumGG25I7733Xho2bFhpvj333DM9/vjjqVAolKZFRdk777yTjj322PTkk0/mn6IFFlggbbrppqV/n3vuubmrxgjXdtttt/Taa6+lSy+9NO23335p+eWXn457DAAAAAAAQFvrUihPldq5SZMmpZNOOinddNNN6csvv0wrr7xyOv3009Pmm29emmfw4MF1wrKoCqvPoEGD0ogRI2pMu/vuu9Npp52WRo8enavQhg4dmk4++eTUvXv3Vt+nqGYLo0aNavVlAwAAAAAAVIP+05C3dKiwrDMSlgEAAAAAAMy4vKXDjFkGAAAAAAAArU1YBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVUtYBgAAAAAAQNUSlgEAAAAAAFC1hGUAAAAAAABULWEZAAAAAAAAVatDhWWTJ09Oxx13XOrTp0/q1atXGjhwYHrkkUcafd+bb76ZjjzyyLTuuuumnj17pi5duqT33nuv4rxLLLFEfr32z4EHHtgGewQAAAAAAMCM1C11IEOHDk133nlnOuKII9IyyyyTrr/++rTVVlulxx57LK2//vr1vu/pp59OF198cVphhRXS8ssvn15++eUG1zNgwIB01FFH1Zi27LLLttp+AAAAAAAA0D50mLDsueeeS7fddls699xz09FHH52n7bnnnmnFFVdMxx57bBo5cmS9791uu+3SV199lWafffZ03nnnNRqWLbzwwmnIkCGtvg8AAAAAAAC0Lx2mG8aoKJtpppnSAQccUJoWXSruu+++uXJs3Lhx9b537rnnzkFZc3z//ffpf//73zRtMwAAAAAAAO1bhwnLXnrppdwVYu/evWtMX2uttfLvxqrFmuPRRx9Ns8wyS5ptttnyGGYXXXRRqy0bAAAAAACA9qPDdMM4fvz4tNBCC9WZXpz20Ucftcp6Vl555Tz+2XLLLZc+//zzPC5ajJEWyz/nnHNavNz+/ftXnD5mzJi09NJLT8MWAwAAAAAA0OnDsokTJ6YePXrUmR5dMRZfbw333HNPjX/vvffeacstt0wXXHBBOuyww9IiiyzSKusBAAAAAABgxuswYVmvXr3S5MmT60yfNGlS6fW20KVLl3TkkUemhx9+OI0YMSINGTKkRcsZNWpUsyrOAAAAAAAAaHsdZsyy6G4xumKsrTitT58+bbbuRRddNP/+4osv2mwdAAAAAAAATH8dJiwbMGBAeuutt9KECRNqTH/22WdLr7eVd955J/+eb7752mwdAAAAAAAAdPCwLLpJrF199fnnn6ff/e536fDDD0/PPfdci5e9yy67pClTpqSrr766xvquu+66NHDgwFL119ixY9Mbb7zRonXEtsc6yv3www/p7LPPTjPPPHPaaKONWrz9AAAAAAAAdPIxyw4++OAciL366qulMGvttddOY8aMyf++8sor01NPPZXWWGONZi87ArFdd901HX/88enTTz9Nffv2TTfccEN677330rBhw0rz7bnnnunxxx9PhUKhNO3rr79Ol1xySf471h8uvfTSNOecc+afQw89NE+755570hlnnJGDuSWXXDKHZ7fcckt67bXX0llnnZUWXHDBaTxCAAAAAAAAdNqwLIKoHXfcsfTvP//5zzkou+KKK9Jqq62Ww67zzjsv3XbbbS1a/vDhw9NJJ52UbrzxxvTll1+mlVdeOd13331pww03bPB9MW+8r9z555+ffy+++OKlsGyllVZKK6ywQrrpppvSZ599lqvJonvHO+64I287AAAAAAAAnUuXQnkJ1jSaY4450rnnnpsOOOCA/O9f/OIX6cUXX0yjRo3K/z7zzDNzN4rvv/9+a62yw+vfv3/+XTxGAAAAAAAATL+8pVXHLKs93tcTTzyRBg8eXPp3nz59cheKAAAAAAAA0B60algWXRoWxwR75ZVX0tixY2uEZePHj0+9e/duzVUCAAAAAABA+xizbLfddkunnHJK+u9//5vL3Oacc860+eabl15/+eWX09JLL92aqwQAAAAAAID2UVl23HHHpX333Tc988wzaaaZZkrDhw8vVZJ99dVX6d57700bb7xxa64SAAAAAAAAWqxLoVAopOlg6tSp6ZtvvkmzzDJL6t69+/RYZacfcA4AAAAAAIA0TXlLq3bD2JCuXbumOeaYY3qtDgAAAAAAAKZvN4zhgw8+yF0xLrLIImnmmWdOjz76aJ7+6aefpn322Sc9//zzrb1KAAAAAAAAaJFWrSx7//3308CBA9N3332X1l577TR+/PjSa/PPP38OyiJAW3PNNVtztQAAAAAAADDjw7ITTzwx/37ttdfy2GQRkJXbaqut0n333deaqwQAAAAAAID20Q3jI488kg466KC02GKLpS5dutR5ffHFF08ffvhha64SAAAAAAAA2kdY9uWXX6aFF1643tenTp2avv/++9ZcJQAAAAAAALSPsKxPnz7prbfeqvf1GLNsySWXbM1VAgAAAAAAQPsIy7bZZps0bNiw9P7779d5bcSIEenWW29NO+ywQ2uuEgAAAAAAAFqsS6FQKKRW8umnn6bVV189TZw4MW211Vbp5ptvTj/96U/zv++///48ltmLL76Y5phjjtZaZYfXv3///HvUqFEzelMAAAAAAACqLm9p1cqy+eefPz399NNpgw02SLfcckuKHO72229P9913X9pyyy3TE088ISgDAAAAAACg3ejW2gtcZJFF0l133ZUmTJiQxy+bOnVq6tu3b5p77rlbe1UAAAAAAADQvsKyot69e6c11lijrRYPAAAAAAAA06xVu2Hs2rVrWnjhhdNLL71U8fUYw2ymmWZqzVUCAAAAAABA+wjLwieffJIGDRqUHnzwwdZeNAAAAAAAALTvsOz3v/99WmqppdL222+frr322tZePAAAAAAAALTfsCy6YXzyySfT4MGD0y9/+ct00kkntfYqAAAAAAAAoH2GZWG22WZLDzzwQBoyZEg688wz01577ZV+/PHHtlgVAAAAAAAAtFi3Nltwt27phhtuSIssskjumvGjjz5KO+64Y1utDgAAAAAAANpPWFYUlWWLL754OuSQQ9JTTz3V1qsDAAAAAACAGdMNY4Ri0QVjbQcccEC66667UpcuXVpzdQAAAAAAANB+Ksvefffdel/bZptt0rhx49I333zTmqsEAAAAAACA9lFZNnz48PTwww/X+/qECRPS448/3pqrBAAAAAAAgPYRlg0dOjRttdVW6YQTTqj4eoxZtvfee7fmKgEAAAAAAKB9hGVhmWWWSWeffXYaMmRI+uGHH1p78QAAAAAAANA+xywLJ598cvrPf/6TTj311DR+/Ph01113pd69e7f2agAAAAAAAKD9VZYVA7M//elP6Yknnkjrr79++uCDD9piNQAAAAAAAND+wrLi+GX33ntveu+999I666yTXnnllbZaFQAAAAAAALSvsCxsvvnm6fHHH09TpkxJG2ywQfrHP/7RlqsDAAAAAACA9hOWhVVXXTU9/fTTaeGFF0433HBDW68OAAAAAAAAmqxbakWnnHJKWnnlletMX3zxxdPIkSPTgQcemD755JPWXCUAAAAAAAC0WJdCoVBo+duZVv3798+/R40aNaM3BQAAAAAAoOryljbvhhEAAAAAAACqohvGpZZaqtF5unTpksaMGdOaqwUAAAAAAIAZH5YttthiOQwr9+OPP6Z33nknjR8/PvXt2zctvPDCrblKAAAAAAAAaB9h2YgRI+p97aabbkrHHHNMuuqqq1pzlQAAAAAAANBi023MsiFDhqRtt902HX300dNrlQAAAAAAANA+wrKwxhprpP/7v/+bnqsEAAAAAACA9hGWvf3222nq1Kktfv/kyZPTcccdl/r06ZN69eqVBg4cmB555JFG3/fmm2+mI488Mq277rqpZ8+eeVy19957r97577nnnrTaaqvleWMctlNOOSWPvQYAAAAAAEDn0qpjlo0dO7bi9C+++CL94x//SJdeemn6yU9+0uLlDx06NN15553piCOOSMsss0y6/vrr01ZbbZUee+yxtP7669f7vqeffjpdfPHFaYUVVkjLL798evnll+ud98EHH0w77LBDGjx4cLrkkkvSq6++ms4444z06aefpiuuuKLF2w4AAAAAAED706VQKBRaa2Fdu3bNVVuVxGoirLr33nvTkksu2exlP/fcc7mS7Nxzzy2NezZp0qS04oorpvnnnz+NHDmy3vdGWNe9e/c0++yzp/POOy8dc8wx6d13301LLLFEnXn79++f533hhRdSt27/vyzxxBNPTGeddVZ6/fXXU79+/VJrivWFUaNGtepyAQAAAAAAqkX/achbWrWy7OSTT64TlsW/55577rTccsvlqrL6wrTGREXZTDPNlA444IDStOgmcd99900nnHBCGjduXFp00UUrvjfW3xQRhsXPZZddVgrKwsEHH5zOPPPMvA0RnAEAAAAAANA5tGpYduqpp6a28tJLL6Vll1029e7du8b0tdZaK/+OrhXrC8uas46wxhpr1JgeY6QtssgipdenJdGsbcyYMWnppZdu8XIBAAAAAABoua6pgxg/fnxaaKGF6kwvTvvoo49aZR3ly6y9ntZYBwAAAAAAAJ20six89913eVywv/zlL+k///lPnta3b9+08847p6OOOirNOuusLVruxIkTU48ePepMj64Yi69Pq+Iy6lvPhAkTWrzs+vrIrK/iDAAAAAAAgA4Wln322Wdp8ODBafTo0WnOOedMK6ywQqmrweii8bbbbkuPP/54mm+++Zq97F69eqXJkyfXmT5p0qTS69OquIz61tMa6wAAAAAAAKCTdsN47LHHpjfeeCNdcMEF6ZNPPknPP/98/om/zz///PTmm2/meVoiukEsdpNYrjgtxhWbVsXuF+tbT2usAwAAAAAAgE4alt13331p6NCh6Ygjjkjdu3cvTY+/jzzyyLTXXnule++9t0XLHjBgQHrrrbfqdIX47LPPll6fVsVlvPDCCzWmx1hlH3zwQausAwAAAAAAgE4alsWYX2uttVa9r8drxW4Tm2uXXXZJU6ZMSVdffXVpWnSXeN1116WBAwemRRddNE8bO3Zsrm5riRg/rF+/fnkdsa6iK664InXp0iVvAwAAAAAAAJ1Hq45ZFpVXr7/+er2vx1hmLa3OikBs1113Tccff3z69NNPU9++fdMNN9yQ3nvvvTRs2LDSfHvuuWceF61QKJSmff311+mSSy7Jfz/11FP596WXXprHVYufQw89tDTvueeem7bbbru02Wabpd122y299tpred799tsvLb/88i3adgAAAAAAANqnLoXyVGkajRgxIgdNEWLtuOOONV77y1/+kvbee+/cDeOgQYNatPyoSjvppJPSTTfdlL788su08sorp9NPPz1tvvnmpXkGDx5cJyyLQG3JJZesuMzFF188v17u7rvvTqeddloO9+abb77cteTJJ59co2vJ1hLVbGHUqFGtvmwAAAAAAIBq0H8a8pZpCsv22WefOtNefPHF9Oqrr6Zll102rbDCCnlaVJvFeGMrrbRSWn311WtUglU7YRkAAAAAAEAHDcu6dm3+kGcx9lf5eGDVTlgGAAAAAAAw4/KWaRqzbOrUqdPydgAAAAAAAJihml8aBgAAAAAAAJ3ENFWWNcWzzz6bxo0blxZeeOE0cODAFnXdCAAAAAAAAB0qLPvwww/T1ltvnV555ZXStOWXXz7de++9aamllmqr1QIAAAAAAECTtVmZ169+9au00EILpbfeeitNnDgxPfPMM2nKlCnp4IMPbqtVAgAAAAAAwPQNyx566KGK0yMcO/PMM1Pfvn1Tjx490lprrZUDtJgOAAAAAAAAnSIs22677dJee+2VvvjiixrTY4yyJ598ssa0p556KvXp02daVwkAAAAAAADtIyyLSrHXXnstj0d2++23l6b/9re/TUceeWTaYIMN0h577JFWWmmldNttt+XpAAAAAAAA0CnCstVWWy0999xzORjbe++9c6XZRx99lLbffvscpPXv3z999dVXae21104jRozIwRkAAAAAAAC0B10KhUKhtRb29ttvp/333z+9/PLL6eyzz04HHnhgay2604owMYwaNWpGbwoAAAAAAEDV5S3TXFlWbplllsnVY3/4wx/S8ccfnwYNGpQDNAAAAAAAAGiPWi0s+/7779OECRPy3wcccEBO7uaZZ560yiqrpN///vdpypQprbUqAAAAAAAAaB9h2RdffJF23HHHNNtss6W55porrbzyyumFF15Iffr0SX/961/TjTfemC655JK0+uqrpxdffLF1thoAAAAAAADaQ1h2xBFHpJEjR6arrroqh2MRmu28887phx9+yK/H36NHj85h2dprr52OOeaY1thuAAAAAAAAmPFh2YMPPph+85vfpL333jttv/326dprr03jxo1Lr7/+emmeOeaYIw0bNiw99NBD6e67757WVQIAAAAAAED7CMu6d++eJk6cWPr3pEmTUpcuXVK3bt3qzLvxxhunV199dVpXCQAAAAAAAK2ibqLVTDFe2dlnn51+/PHHPGbZ5Zdfnvr165eWX375ivP37NlzWlcJAAAAAAAA7SMsO/fcc1PXrl3zmGXfffddWnfdddNFF12UpwEAAAAAAEB71qVQKBRm9EZUs/79++ffo0aNmtGbAgAAAAAAUHV5i/IvAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqlaHC8smT56cjjvuuNSnT5/Uq1evNHDgwPTII4806b0ffvhh+ulPf5rmnHPO1Lt377T99tund955p858Xbp0qfhz9tlnt8EeAQAAAAAAMKN0Sx3M0KFD05133pmOOOKItMwyy6Trr78+bbXVVumxxx5L66+/fr3v+/bbb9NGG22Uvv7663TCCSek7t27pz/+8Y9p0KBB6eWXX07zzDNPjfk33XTTtOeee9aYtuqqq7bZfgEAAAAAADD9daiw7Lnnnku33XZbOvfcc9PRRx+dp0WgteKKK6Zjjz02jRw5st73Xn755entt9/Oy1hzzTXztC233DK/9/zzz09nnXVWjfmXXXbZNGTIkDbeIwAAAAAAAGakDtUNY1SUzTTTTOmAAw4oTevZs2fad99909NPP53GjRvX4HsjJCsGZaFfv35pk002SXfccUfF90ycODFNmjSplfcCAAAAAACA9qJDhWUvvfRSrviK8cbKrbXWWvl3dKdYydSpU9Mrr7yS1lhjjTqvxXvHjBmTvvnmmxrTo3vHWWedNY+LtsIKK6RbbrmlVfcFAAAAAACAGa9DdcM4fvz4tNBCC9WZXpz20UcfVXzfF198kSZPntzoe5dbbrn897rrrpt++tOfpiWXXDJPv+yyy9Iee+yRxzs76KCDWrTt/fv3rzg9grqll166RcsEAAAAAACgisKy6BaxR48edaZHV4zF1+t7X2jqe5966qka8+yzzz5p9dVXTyeccEIaOnRorjYDAAAAAACg4+tQYVmEVFEhVltxXLH6Qqzi9Ja8N8w888zp0EMPTQceeGD617/+ldZff/1mb/uoUaOaVXEGAAAAAABA2+tQY5ZFl4nRFWNtxWl9+vSp+L655547V5W15L1Fiy66aKlLRwAAAAAAADqHDhWWDRgwIL311ltpwoQJNaY/++yzpdcr6dq1a1pppZXSCy+8UOe1eO9SSy2VZp999gbX/c477+Tf88033zTsAQAAAAAAAO1JhwrLdtlllzRlypR09dVXl6ZF14rXXXddGjhwYKn6a+zYsemNN96o897nn3++RmD25ptvpkcffTTtuuuupWmfffZZnfV+88036cILL0zzzjtvHrsMAAAAAACAzqFDjVkWgVgEW8cff3z69NNPU9++fdMNN9yQ3nvvvTRs2LDSfHvuuWd6/PHHU6FQKE07+OCD0zXXXJO23nrrdPTRR6fu3bunCy64IC2wwALpqKOOKs132WWXpbvvvjttu+22abHFFsvdNP7pT3/KAdyNN96Yxy8DAAAAAACgc+hQYVkYPnx4Oumkk3Jw9eWXX6aVV1453XfffWnDDTds8H3RzeKIESPSkUcemc4444w0derUNHjw4PTHP/6xRteK6623Xho5cmS69tpr0+eff55mnXXWtNZaa+XAbOONN54OewgAAAAAAMD00qVQXn7FdNe/f//8e9SoUTN6UwAAAAAAAKoub+lQY5YBAAAAAABAaxKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVq9uM3gAAKHfpgAPTl99/my4ec2/67/cT0rwz906/WnrbNNfMs6WOpjPsx6EvXzmjNwEAAAAA2pTKMgDalc4QMHWm/QAAAACAzk5YBkC70hkCps4SlMV+AAAAAEBnJywDoF3pDAFTZwnKYj8AAAAAoLMTlgHQrnSGgKmzBGWxHwAAAADQ2QnLAGhXOkPA1FmCstgPAAAAAOjshGUAtCudIWDqLEFZ7AcAAAAAdHbCMgCYBp05KOuI+wEAAAAAzSUsA4AqD5g6y34AAAAAQEsIywCgigOmzrIfAAAAANBSwjIAqNKAqbPsBwAAAABMC2EZAFRhwNRZ9gMAAAAAplW3aV4CAFSJzhIwtbf9uHTAgZ1iP1qqPe7HoS9fOUPXDwAAADA9qSwDgA4aaLSE/WhfOst+AAAAAHRkwjIAqJJAw360L51lPwAAAAA6OmEZAFRBoGE/2pfOsh8AAAAAnYGwDAA6eaBhP9qXzrIfAAAAAJ2FsAwAOnGgYT/al86yHwAAAACdibAMADppoGE/2pfOsh8AAAAAnY2wDAA6YaBhP9qXzrIfAAAAAJ1Rtxm9AQANuXTAgZ264bmj7cehL1+ZOrOOdj7qYz/al86yHwAAAACdVYerLJs8eXI67rjjUp8+fVKvXr3SwIED0yOPPNKk93744Yfppz/9aZpzzjlT79690/bbb5/eeeedivMOGzYsLb/88qlnz55pmWWWSZdcckkr7wlQ7Q3PnWU/OovOcj7sR/vSWfYDAAAAoDPrcGHZ0KFD0wUXXJD22GOPdNFFF6WZZpopbbXVVunJJ59s8H3ffvtt2mijjdLjjz+eTjjhhHTaaaell156KQ0aNCh9/vnnNea96qqr0n777Zf69++fQ7J11lkn/epXv0rnnHNOG+8dUC0Nz51lPzqLznI+7Ef70ln2AwAAAKCz61DdMD733HPptttuS+eee246+uij87Q999wzrbjiiunYY49NI0eOrPe9l19+eXr77bfzMtZcc808bcstt8zvPf/889NZZ52Vp02cODH99re/TVtvvXW6884787T9998/TZ06NZ1++unpgAMOSHPNNdd02V+gczY8d5b96Cw6y/mwH+1LZ9kPAAAAgGrQoSrLIryKSrIIrIqim8R99903Pf3002ncuHENvjdCsmJQFvr165c22WSTdMcdd5SmPfbYY7nS7OCDD67x/kMOOST973//S/fff3+r7xdQPQ3PnWU/OovOcj7sR/vSWfYDAAAAoFp0qLAsuk1cdtll83hj5dZaa638++WXX674vqgKe+WVV9Iaa6xR57V475gxY9I333xTWkeoPe/qq6+eunbtWnodmH46S8NzZ9mPzqKznA/70b50lv0AAAAAqCYdqhvG8ePHp4UWWqjO9OK0jz76qOL7vvjiizR58uRG37vccsvldUT12vzzz19jvplnnjnNM8889a6jMTH+WSVvvPFG6t69e72vQ7X77D8fpi9++CZNKUxNM3XpmrqkLunydx5IHU1sf2fYjyv6P9Hm6/hizPg2X0dnOR/TYz+mxzl3n7cvsf3T47wDAAAAtKYojIq8pdOHZTGeWI8ePepMj64Yi6/X977QlPfG7wjGKol561tHS3Xp0qXFJ4+OebOGpZdeekZvSocxX9+F03ypE5z3Liktt3y/Gb0pHcLcS9f9YkNbmK+T3Osd/f4I7nM6Kp/r1cc5r07Oe/VxzquPc16dnPfq45xXJ+e9unTv3j3NOuusnT8s69WrV64Qq23SpEml1+t7X2jKe+P3999/X3E5MW9962jMqFGjWvQ+OpdiBaHrobo479XHOa8+znl1ct6rj3NenZz36uOcVx/nvDo579XHOa9Ozjudcsyy6DIxukmsrTitT58+Fd8399xz56qyprw31jFlypT06aef1pgvArTPP/+83nUAAAAAAADQ8XSosGzAgAHprbfeShMmTKgx/dlnny29XknXrl3TSiutlF544YU6r8V7l1pqqTT77LPXWEbteePfU6dOrXcdAAAAAAAAdDwdKizbZZddctXX1VdfXZoWXSted911aeDAgWnRRRfN08aOHZveeOONOu99/vnna4Rgb775Znr00UfTrrvuWpq28cYb50q0K664osb749+zzDJL2nrrrdtwDwEAAAAAAJieOtSYZRGIRbB1/PHH524S+/btm2644Yb03nvvpWHDhpXm23PPPdPjjz+eCoVCadrBBx+crrnmmhx2HX300XmgtwsuuCAtsMAC6aijjirNF2OSnX766emQQw7J69p8883TE088kW666aZ05pln5iANAAAAAACAzqFDhWVh+PDh6aSTTko33nhj+vLLL9PKK6+c7rvvvrThhhs2+L7oZnHEiBHpyCOPTGeccUbuUnHw4MHpj3/8Y5pvvvlqzBvBWoRp559/frrnnntyxVrMd/jhh7fx3gEAAAAAADA9dSmUl18BAAAAAABAFelQY5YBAAAAAABAaxKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAwAw0dOjQ1KVLl/Tee+/N6E2Bduniiy9OK6ywQurVq1e+Vy688MLpuv5Y5+DBg6frOmkdcd7i/DXH9ddfn98Tv/l/Tj311HxcRowYkTqrathHGhbnPq6BuBYAgOojLAMAaEQ0nJT/zDTTTGneeedNG2+8cbrllltSezAtDby1969Hjx5pvvnmS6uttlrab7/90oMPPpimTJmSpmd4WP4z66yzphVXXDH95je/SV9++WWqFhGgxv7HMalWt912Wzr88MNTz5490xFHHJFOOeWUtPbaa6dqIahr/S8bdLTG8I62ve35CyKCUHyuAgAN6dbgqwAAlERDffjhhx/SG2+8kf72t7+lxx57LL3wwgvpggsuaNEyf//73+cQaOGFF07tZf8iGPvqq6/SqFGj0o033piGDRuW1lhjjXTzzTenZZdddrpsy/bbb58GDBiQ//7444/Tvffem84555x05513pueeey7NPffc02U7mLHuu+++0u8+ffrMkG0YPXp0mmWWWWbIupk2w4cPT999912z3rPjjjvmQHahhRZqs+2ifTr00EPTbrvtlhZbbLEZvSkAAMwAwjIAgCaq/c3+f/7zn2nTTTfN3cL96le/SksssUSzlxkNsu2lUbZS5cInn3ySDjvssPTnP/85/eQnP8nB4Pzzz9/m27LDDjvU+Ob3eeedlwYOHJhef/31dMkll5SCPTq3jz76KP+eUUFZ6Nev3wxbN9OmJaHHHHPMkX+oPlExHj8AAFQn3TACALTQJptskhvSC4VCev7550vT//Wvf6Wdd945h0rRpeHiiy+eDj744DR+/PgmdUlV3k1Q/B3fdI8GvOiKLiq8itU2RdFN2957753/jt/lXRhOa1dXCyywQO4KL9Yxbty4dNZZZ6UZYbbZZkt77bVX/jsqy4p+/PHHdPnll+dKkN69e+cKoFVXXTVdeumlaerUqTWWUX5c33rrrfSzn/0sn6OuXbvWGKPm73//e9p2221L52/RRRfNlW7/+Mc/6mzXww8/nLbaaqt8fmLepZdeOh1zzDG5Mq+2CFPj53//+1+eJxry4z19+/bNVXNxHZUHl0suuWT++4YbbqhxTotdiH3//fd5P2P9cY3FsqLiLkLN6DqzPrHN6623Xu7eMuaPYDIqJRvqHu3ZZ59Nu+yyS1pwwQXTzDPPnI/JL3/5y1KY1VSTJ09OZ599dlpppZXyuYpztsEGG6Q77rij4thBUbkZyve/McX9ePfdd/PxifHO4t6JYx/Xb/E4RwC81lpr5eMQ5zqqSiZOnNikrhDLxzaKasdYTuxPHM+4Xz/88MN6z39TxkoqdhcXHn/88Rr7XzvUbs65eeedd9IBBxyQr7kYAy62N87FgQcemD7//PNGj2358Yjl/+IXv8jHLpa1+uqr19stbdyLV155ZVpzzTXzvRzHPP6+4oor6tyn4Yknnsj34CKLLJKv69i3uMdPO+20GtsR90aIe6V4fMqPce0xy+La2GijjfLfsazy41r72Bfvs0mTJqU555wz72c8byo56KCD8ntqP5uL91Wckzg38Tz9+c9/nt58880mHeumbG9z7qumiM+vLbbYIs0+++x5OfE8efrppxt8T1P3synnLHzxxRfp+OOPT8svv3y+tiK8jM/beDbX5/bbb8/zxDVdvN933333/AWPpn5ONjRmWXw5Jo5LLD+uyaiyjqrwr7/+us68xesurpd45iyzzDKlz5LjjjsuP7ubqvg8i3s3Ktjj/zli/+LeOPLII9OECRMqvu+DDz7Iz7Sllloqr3ueeeZJ2223XY3/Vykq3++4h+OLKXGfNuULQMV9jYr73/3ud/kzMLZvueWWS9dcc01pvrj/4/qM8xnbHl94qXTvh7huN9xww3zeY/54X1Thx3Xe1p+r5V5++eW09dZb5/s/7qtBgwalkSNHNnpMAICOS2UZAMA0KDbEFBtko7E0grKYHg3YEWJE42M0Cke3jU8++WSpsaYx77//fm6Ej8auaJSOBsRoECwGN8VG1GhMi8acWH5594Uhpk+rCJNOPPHE3JB26623pj/+8Y9NCi3a+lhH41w0qEf4Ew1z0TgbjXQRsEQ1XIQI0Y1kbWPGjMmNgdHYuccee+SAJBqFQzTgRYNfNBRGiBSNmxEKRAPZTTfdlBuOi6LxOhrfovF0m222yY3pr7zySq6Ce+CBB3IDc3G5RbHNm2++eV7mlltumbp165buvvvu3OgajfLFirlogIzA7aKLLkqrrLJK3pai4vmN6yHG81p33XVzhWOMMxeBbHRZGQFaNFTGmHPlIvgsHqef/vSnuaox9m2dddbJ66nkT3/6Uw5YogEyGlvjmLz99tvp2muvzet65plnmlTBEw3Ese8R/kSD7yGHHJK7yIuwKYLLaJgshrHFcCoaMOM+aEkl4dFHH52v2bhGNttss3TPPfek3/72t3k74pzFMY/jGqHCI488ki677LLcBWncq00VQW0sN45LNKTGNRf36L///e+8P3HMWiLOcexzXGPxDCmvsiwP7ppzbuLaiIAqGtfj+ojnVFxzESrGfRIN69Gg3hQxdmBcd/F8ieAhrtVo4I77KYLCaLQuF8+vaISP7YtrMu7hu+66K3+JIJ6J0cVr0UMPPZQbqOPeiX2KLmrjWo/uMON4F6+F+B33ThzruA+Kz7qGnnnF+ygayuN8lR/L+oKBuFfi+rz66qtzCB3XU7lowI9zHgFRhCnl+7HTTjuVnlPReB8Bxl//+td0//335+dUjAvZkKZsb3Puq8bEsyCecbHM2PbY5nh/rDfG6KykOfvZlHMW93usLwKsuDfjmEYQEp+t8fdVV12V9t9//xqfC3ENxjGKLy3EtsSzMLYh1h2fDfElk2n5nIx1RiAaIe+uu+6an/XxbIkwJu6zp556quIy4lkbwW886+N6js+FP/zhD+nTTz9N1113XWqOCMb+7//+Lz+3Y/vjcy+q2mP5cQ/FdVr04osv5mde3DdxbcQx+e9//5uP/frrr5/vvXgG1Hb++efnZ2Gcx/j/i0pBYH3iSwLx/Ivldu/ePV9/8WyKv+NzMc5PfE5GoBnPzPicjQAqwsNyJ5xwQg7G4lzG8YvP4rjvYnrscwSmEci21edqUYSsca7iszGeWWPHjk1/+ctf8vbHPRHXFQDQCRUAAGhQ/C9Tpf9teuSRRwpdunTJP++9917hm2++Kcw999yFrl27Fv7v//6vxrxnn312Xsamm25aY/pee+2Vp7/77rulafF3cZ2nnnpqjfkfeuihPH3LLbesMf26667L0+N3a+1fuUmTJhW6deuW53vnnXcKbaV4PGrvRxzb5ZdfPr/2u9/9Lk875ZRT8r8PPfTQwo8//liaN/7eZ5998mt33313xeN6/PHH11n3ww8/nF9bcsklCx988EGd18eNG1f6+9FHH83zrrPOOoUvv/yy4rk44ogjakxffPHFS+fuu+++K03/5JNPCnPMMUf++f777+tsbxyT+s5J+TYVffXVV4X+/fsX5pprrhrrmTBhQmHOOecszDzzzIWXX365xnuOO+640rEpvxbffPPNQvfu3QtLL710nWPyj3/8I1/rO+ywQ6EpzjrrrNL+//DDDzX2v3hsnnrqqRrvGTRoUKPXZn3XUCyzfJvjPM0zzzyFWWaZpTDvvPMWXn/99RrHMq6vODaxPeViWbEd5YrX3uyzz1545ZVXary2++6759duv/32GtNje+KnkuLyHnvssUbX3dJzc/HFF+flXXjhhXWW9e2339a4VhpSvE523XXXwpQpU0rT47kQ11xs05gxY0rTb7nlljz/qquumu/j8nWuvvrq+bWbb765NH2nnXbK02pfo+Gzzz5r9PnZ2PUTxzimxTGvpNKzdOTIkXnazjvvXGf+O+64I7/261//ujTtiy++yPdaXG+jRo2qMf+rr75amHXWWfPxaIrGtrcl91UlU6dOLSy33HJ1npshrpnieS+/Rluyn005Z/GZeuutt9aYHvfvKqusUujZs2fh448/Lk2/6qqr8vLWXHPN/OwrF58FH330UZM/Jyvdh/HZHs+FuNdHjx5dY/6DDjooz7///vvX2YeYvtpqqxU+//zzGtd83K9xb44fP77QFMXjFcc4tqUo7r3ivVL8TAxxDcQ6evToURgxYkSNZX344YeFPn36FBZccMH8zKu93/FsfPHFF5u0XbX3dY011qjxWRjPgHgWxPWxxBJLVHwWx3O4/Jot3meLLrpojeMT82yzzTb5tTPPPLNNP1eL91ul6+TKK6/M0+O8AwCdk24YAQCaKKqI4ieqU6JqLL7lHm3HRxxxRK7+iG+sxze549v88Y34ckcddVSuBIhvbcc3lJsilhkVXeXi29NRKVLeFeH0UOzGKXz22Wdtvr74VnjxeMc3+uNb3FFZEl08RQVMdN8UY5dF92xR6TbTTDOV3ht/xzfko3qlvGKlKCpAKlUqxfJCvDeqWWqLrqOKLr744vw7qrdqVxREBUN8S73Suovvja6liqJKISoF4lv8Te2erXhOyrepKLqu2meffXL1T3mXW3F9xrfqo/qndhVZXGeVKiOiyiq+tR/fxK99TOIb9lH5E5UV33zzTaPbG1VQcU6iK7H45n/5/p900kn576iIai2xzPJtjv2L7Y2qm7imoou38mMZ921U1MR11lQxVmF0EVauWPXS1vdoS89N+bVXFBUzlabXJ+6xqKqJqtOiqJiN4xHbVF7RGec9RDeBUSVSvs5YRn3nvdL2zKjxpKK6JCpR43jGM75csVvBYjexYfjw4flei8rA6Aa03IorrpivkZdeeimPwTitWuu+iqqyeP5E93fxPCoXz9x49tbW2vsZFWdRIRdVj1GpVC7u31hPVApFhU/t53ZUf9Ueay6u02kdEzQqiuO5EMeg9viFZ555Zu6uMq73Sl0ExvUdVazl13w8f+Pzq9g9ZFNFJV78P0FR3Hvnnntu/l28x0JU80X1dFRXRzViuRj78dhjj00ff/xx7laytqgEi26MWyLu7/LPkKiIjyq2uD4qPYujei2q3cq7rC3uR3wexWd7UVzX8bkc+1rftdxan6tF0VVxeUVviM/V2Jbp/f9fAMD0oxtGAIAmKo6XEw2T0dgTgdi+++6bhgwZUur6KFTqrioaWKIRMrqWisbDpnRbF4FLeQhUFF2ZNTaGzPToBrE+sY+Vxv+oPdZSQyLYiZ8QDWARNEYjY3SrNNdcc+UxcqLROsaCOeOMMyouI95XKfiIoKhS93jRZV3sW3lXavWJ4x/dS8W4V/FTWzSuRqgY40CVd20XjbnRTVmlcxoi4GqOUaNG5QbT6J4rutmLhuRy5Q2Rcd2FaMCsLUKMuN5qj9VTvM6iAbvSWDfRnVh0XRhjwMWYVfWJwOY///lPbjCt3eBcfs8Ut7E1RNdrtUVjcai0rcXG3Oi+bVrW0dJz2VzNPTcRnkVXZtFNX3RnFsF7NAhHyNHcblXj+VWpO9no5iyek+XnMZ6L0chde9y3EI358Ywrnz/u8+jCL7pKjQAzuoOL7awUDE9PEYbFFyWiK9PoPjJ88skn+VhGwLDyyivXOTcR/lR67sU5CfF8qh0yNUdr3lfFz6/aAUuIcxTPjQhhyrX2fhaXFwFHpeUVv6hRfK5H94yvvfZa/gJES0OexjT0uR6fRbHeeP7GZ1LtLyG05vOh0nmJQCqWF5+5EUrF/5cUj2F0Z1npGEY3rcVjWLsrxuj2eUY8b4shYEPHOsLqeAZEt7FxfZQHo639uVrf/sRnflxrbf1sBwBmHGEZAEATlQ8UX0lxfI/6vslenB6NWk1R3zgqEbzFN9OnpwhhihUVMR5MQ6LhrhgstjQsi/Fcan+ru1yEUMWGv0rrKvr222/rTCv/xnq5OC/R+NmUCptY/48//tjguovrLw/LGjqnIcKNpopwLxoVYzuKlUQxLk4EEzGmSoSN5dUOxeszGvsqqTS9eJwjkGtIpePclvdGU9SuMik/zg29FpVRTVXpfLbkXLZEc89NNEhHRUTchzHOVARSxQblGN8tqsKaqr5rqHhvlY91FH9HdU3tcYaKxyqqxSLYK4rxlWJ8qqgkiUqTqBgqNrjHWEYxPt+MsOeee+YKmagkK4ZlUT0a9195VVn5uYnK02m5bxrTmvdVY8+HSs/N1t7P4vKiAjt+Gltecb8qVQK3lmk5xq35fGjovEQwFtsZ6ysew0pf4mjpZ+P0et425VhHZX4c6/JltubnalOW2dbPdgBgxhGWAQC0kmLjTXRxVElU/pTP15E8+eSTuVE4GuyiyqshUUHSWLA4rYrHcMcddyw1+jdVfVU0xYbGiRMnNhqYxfojsKzdJdv0FBV1sa2PPfZYnaqdCBWKlXlFEaQVq2EqqTS9eJyjEbP4/pbozPdGU0WIGRWHlbQkJGzJuYmuJ2+//fZ8L0c10D/+8Y/cjV108RZdxEWlbFPUdw0Vz2/tqo+4T6JRPCozysV2RFdstbd/6623zj9ROfTss8/m8Cy6ndxmm21yldS0VGO1VFS1RDgdxyyqiKKSK4Kz2Kef//znNeYt7n8c4/KKs9bWmvdVcZ7Gzm1b7mdxedG1aFPC22KgUV5B25bHuH///jPs2RXnJbojbuyeK/6O5398gaI5mlth2pbHulK3n9XwOQEAzFjGLAMAaCXFbqBqd2VXbBR+4okn8t+rrbZaq6+72F1jW3zjOUKhGJsl1G4UnlGioToaSqO6qjmVQA1Ze+21c8gXVTdNmTe6YopuENtKY+c0ul+Lip1K3dtF13z1XZ8RfFaqMohqtEr7GYrXbkvFuD7R+BmN2sVuwMpF4NdW90Z7EVWL0eBd6Xqtb/yiCNjqO//Tcm6iOiIqtY477rh06623lsYJbKqo7ogK0tqKz77yLvHi73iGRFd1tcW02L/6znsEeBFQxXhc0YVkhI0PPvjgND33puVZWax2jZAs7pdXXnklbbnllnWqbVvrvmlse1vzvirOU+nZEeuu9NxoyX42tD/NXV5cHzE2WtxXTelqsiXnvqHP9Qi54zro2bNnjTEQ20Kl8/LOO++kcePG5S+wFIPD1rz2preGjnV83kWXjdH9a31VXzP6/5UAgI5PWAYA0Ep22GGHHF5E43OEOOUuvPDCPNbGT37ykyaNV9Zcxa7+ohG7NUX3aLvttltuvIrtjgbr9iAa+w877LD8TfOoQIgKq9ritddff73Jy4zlhaOOOqpipUL5tCOPPDL/3n///dNHH31UZ96oiKl9DbQkXIlv+td3TqOBNCp2osG+3LBhw/I4SrVtv/32+Rv50XVcVILUrlKrVN106KGH5sqZ2N/i+EPlIrxoaqPsPvvsk8PIY445pkZDZVQWnX766aV5OqsYDyhC8+hitFyM7/fUU0/Ve19HY3glzT03//rXv2p0j1hUrCSaZZZZmrwvcf4iaCvvDjaebxdffHG+N4vjOJaf0+OPPz599913penxd4xBGMor2iJAi+PUlO1syXNvWp6V0UVkVMHddNNNpXEZK3UXu/fee+cG/eimNbq+rC2OW6VAoCXb21r31brrrpsrl+L4165KvfTSS+uMV9bS/Wxof2KcqBgLNKqFowvOSl599dUa3XYWK9B++ctf1rm+Y/3FaqTG1l2fuJbjPosKzAhsykW3nBMmTMjzVBoHszVFtV10t1i+b3HO43ech/LnfASol112WXrggQcqLivGNSu/F9uL4nUan0fF8elCXNfRVWzsa1OrX1v6uQoAVDfdMAIAtJLZZpstN/DtuuuuadCgQfl3BEzRSP33v/89jwdSHH+nta2zzjq5ETlCuehKsDj2SARATe2yqDimWDRIRXASVVNRTRCN7tHQHyFLjC/UXkRDZYQ+V155Zbr33ntzBUqMXRMNqVFlEQFEVMQ1tcu2zTbbLJ144om5oS6qBCL8jPGcopE+jkN8Y7/YQB5jhJ199tk5AFhmmWXSVlttlb/xHhVa0aAZVQDrr79+k6rUGrqeBg4cmAOPPfbYIy277LL5W/HRtVZ0eXbEEUfkUCzW89Of/jSf56hQim3dZZdd0p133lljedHIHw2ov/jFL3LDeLwnxoAZOXJkPo5xzcZ2RzVTeQVfXNPRiBldkG2xxRZ5O6I6KhobY9uiqia6pWtMNHZGVVA0xK+yyir5mEWDbYytE+fs2GOPzfvSWcW9GEHZQQcdlP75z3/mayuqUqLhOroXjK4Ga4vr7LbbbkvbbrttrvyJRvsNN9ww/zT33Nx44435+RPHOBrTo9E4ApC4d6KhP66nporrL7pHjOq0uG/ieXHHHXfk33/4wx9qdKEW1ahxzuP12M64r6KxOirZImD72c9+lq/v8vAjgun11lsvB8Ix1lk8Qx999NE87lqE9+XHJ8Zsi9B65513zpVWEd5EkFifCITiORHHNY5nLDO2J+6L+Lsh0T1rPNcjkL788stz+BLdRdYW0+P+i25i47kR2xn7HuuJ8DPOeTynYyzIxjS2va11X8UyY79iTLg4lhEM9u3bN1+jcb3G9VX7edaS/WzsnN1yyy35WR6hSISv8QyM16OqKL4Y8Nprr+Xlzj///Hn+/fbbL1/rcX3HszjCorju40sMcc3E/VH8bGvJ52RcgzH/IYccku/BeG7G8uNZGdsR9+E555yT2lrcDwMGDMj3S2xrPPvjuR33YJzjorhGImzcfPPN87UZz/p4X+x3nJPnn38+V6RFiNicgHx6iG2NfYlnSFQMxudYVA/G9R3nPa7jCAinRWOfqwBAlSsAANCg+F+m5vxv03PPPVfYYYcdCvPOO2+he/fuhUUXXbRw4IEHFj788MM68+6111552e+++25pWvwd0+K1SgYNGlRxex588MHC2muvXZh11llL21y+3Mb2r/gz88wzF+aZZ57CaqutVthvv/3ycqdMmVKYHorH47rrrmvS/FOnTi0MHz68sPHGGxfmmmuufLz79OlTWG+99QpnnnlmYezYsU0+rkX3339/YfPNN8/Li2OxyCKL5PP5z3/+s868TzzxRGHXXXctLLTQQnndcc5XWWWVwpFHHll4/vnna8y7+OKL559KTjnllLxtjz32WI3pb7/9dmGbbbYpzD333IUuXbrUOTb33ntvYeDAgYXZZputMMcccxQ23XTTwuOPP57nqe84PvDAA4V11lmn0KtXr8Kcc85Z2G677QqjR48ubL311vk9X375ZZ33vPLKK/m4LbbYYvmYxLHp379/4YADDqh4XOozceLEfF7ivT179szbHefqlltuada13pBK91RjxznUd8xiWmxHU5fT0HUW18sGG2yQj/3ss89e2GqrrQr//ve/613eJ598Uth9990L888/f6Fr1655npi3JefmmWeeyc+hlVdeOc8Tx3/ppZcuDB06tPDqq682eEwrHY94nu2xxx6F+eabr9CjR4/CqquuWrj55psrvieeH5dddllh9dVXz/seP/F8ufTSS+s8W26//fbCbrvtVujbt29+lsVxiv054YQTCp9++mmdZZ9//vmFfv365X2PbSu/x+q7fuIZHc+M3r17l+6r4rFv6N4pnsPis/LQQw9t8FjFtXDIIYfkfYljFPuy3HLLFYYMGVK46667GnxvU7e3JfdVQ1544YX8/ItlxM8mm2xSGDlyZKPXfHP2s6FzFiZMmJD3J66RuAZin5ZYYol8v1x11VWFb7/9ts4yb7rppsKGG26Yj1FsQ8z/85//vPCvf/2ryZ+TDe3jww8/nJ+v8cyM7Y5755hjjqn4vGzoudXY9VXf82zMmDGF8847Lx/X2L/4nDv88MMLX3/9dcX3xbPjuOOOy9dE3G+xv3F+dt5558KNN95Y+OGHH0rzNrTfjWloX1v6LL711lvz9RvXX+zrCiusUDjjjDPydV5ba3+uxryVnrNNWR8A0PF1if/M6MAOAACYcaKbq6WWWipXEZZ3Wwa1RdVQVCE2tRtBoOWim88YIy+qMKPKDQCAtmPMMgAAqBLRTV7tsWriu3PR9WR03RfdqQEAAEC1MWYZAABUiWeeeSaPeRPjTEWVQoyxFtNiXKIYQ6s4tg8AAABUE2EZAABUieWWWy5ts8026amnnkoPPPBA+vHHH9MiiyySfvWrX6UTTjghzT///DN6EwEAAGC6M2YZAAAAAAAAVcuYZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVq9uM3oBqt+CCC6b//e9/abHFFpvRmwIAAAAAANAhjR07Ns0666zp448/bvZ7VZbNYBGU/fDDDzN6MwAAAAAAADqsyFoic2kJlWUzWLGibNSoUTN6UwAAAAAAADqk/v37t/i9KssAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqCcsAAAAAAACoWsIyAAAAAAAAqpawDAAAAAAAgKolLAMAAAAAAKBqdaiwbPLkyem4445Lffr0Sb169UoDBw5MjzzySKPv++tf/5p+9rOfpaWWWirNMsssabnllktHHXVU+uqrryrOf88996TVVlst9ezZMy222GLplFNOST/++GMb7BEAAAAAAAAzUocKy4YOHZouuOCCtMcee6SLLroozTTTTGmrrbZKTz75ZIPvO+CAA9Lo0aPTkCFD0sUXX5y22GKLdOmll6Z11lknTZw4sca8Dz74YNphhx3SnHPOmS655JL89xlnnJEOO+ywNt47AAAAAAAAprcuhUKhkDqA5557LleSnXvuuenoo4/O0yZNmpRWXHHFNP/886eRI0fW+94RI0akwYMH15g2fPjwtNdee6Vrrrkm7bfffqXp/fv3T927d08vvPBC6tatW5524oknprPOOiu9/vrrqV+/fq26X7G+MGrUqFZdLgAAAAAAQLXoPw15S4epLLvzzjtzJVlUiRVFN4n77rtvevrpp9O4cePqfW/toCzsuOOO+XdUnBVFGBY/sY5iUBYOPvjgFJlibAMAAAAAAACdx/9LhNq5l156KS277LKpd+/eNaavtdZa+ffLL7+cFl100SYv7+OPP86/55133hrrCGussUaNeWOMtEUWWaT0+rQkmrWNGTMmLb300i1eLgAAAAAAAC3XYSrLxo8fnxZaaKE604vTPvroo2Yt75xzzsmVarvsskuNdZQvs/Z6mrsOAAAAAAAA2rcOU1k2ceLE1KNHjzrToyvG4utNdcstt6Rhw4alY489Ni2zzDI11hHqW8+ECRNauPX195FZX8UZAAAAAAAAba/DVJb16tUrTZ48uc70SZMmlV5viieeeCKPc7b55punM888s846Qn3raeo6AAAAAAAA6Bg6TFgW3SAWu0ksV5wW44o15t///nfabrvt0oorrpjuvPPO1K1bzcK6YveL9a2nKesAAAAAAACg4+gwYdmAAQPSW2+9VacrxGeffbb0ekPGjBmTtthiizT//POnBx54IM0222wV1xFeeOGFGtNjrLIPPvig0XUAAAAAAADQsXSYsGyXXXZJU6ZMSVdffXVpWnSXeN1116WBAwemRRddNE8bO3ZseuONN2q89+OPP06bbbZZ6tq1a3r44YfTfPPNV+/4Yf369cvriHUVXXHFFalLly55GwAAAAAAAOg8avZD2I5FILbrrrum448/Pn366aepb9++6YYbbkjvvfdeGjZsWGm+PffcMz3++OOpUCiUpkVF2TvvvJOOPfbY9OSTT+afogUWWCBtuummpX+fe+65uavGCNd222239Nprr6VLL7007bfffmn55ZefjnsMAAAAAABAW+tSKE+V2rlJkyalk046Kd10003pyy+/TCuvvHI6/fTT0+abb16aZ/DgwXXCsqgKq8+gQYPSiBEjaky7++6702mnnZZGjx6dq9CGDh2aTj755NS9e/dW36eoZgujRo1q9WUDAAAAAABUg/7TkLd0qLCsMxKWAQAAAAAAzLi8pcOMWQYAAAAAAACtTVgGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKWAQAAAAAAULWEZQAAAAAAAFQtYRkAAAAAAABVS1gGAAAAAABA1RKW/X/s/Qu81VP+OP6v00UlkjuRqOhG7hWDXMYYuY/LzHwkuUwfwtBHmMy4zAyGiQy5DKaJGINx+9C4TDPUIIpRH+QSkaLco1Ch9v/xen//+/zOZZ/T6XROndN+Ph+Pbe/W+7Le7/d6v9c+1muvtQAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoNapg2eLFi9N5552X2rVrl1q1apV69+6dxo0bt8zt3njjjTRkyJC0++67p5YtW6aSkpI0c+bMgutuueWW2fKKr1NOOaUezggAAAAAAIBVqVlqRAYOHJjuvffedNZZZ6Wtt9463Xrrralfv37pySefTHvssUeV2z377LPp2muvTd27d0/dunVLU6dOrTafHXbYIZ199tnl0rbZZps6Ow8AAAAAAAAahkYTLJs8eXK666670vDhw9PQoUOztAEDBqRtt902nXvuuWnixIlVbnvooYemzz//PK299trpyiuvXGawbLPNNkv9+/ev83MAAAAAAACgYWk0wzBGj7KmTZumQYMGlabFkIonnXRS1nNs9uzZVW673nrrZYGy5fHNN9+kr776aoWOGQAAAAAAgIat0QTLpkyZkg2F2KZNm3LpvXr1yt6X1VtseTzxxBNpzTXXTGuttVY2h9k111xTZ/sGAAAAAACg4Wg0wzDOnTs3bbrpppXS82lz5sypk3x69uyZzX/WpUuX9Omnn2bzosUcabH/K664otb77dGjR8H0GTNmpE6dOq3AEQMAAAAAALDaB8sWLlyYWrRoUSk9hmLML68LDz30ULl/n3DCCenAAw9MI0aMSGeccUbafPPN6yQfAAAAAAAAVr1GEyxr1apVWrx4caX0RYsWlS6vDyUlJWnIkCHp8ccfT+PHj0/9+/ev1X6mTZu2XD3OAAAAAAAAqH+NZs6yGG4xhmKsKJ/Wrl27esu7ffv22ftnn31Wb3kAAAAAAACw8jWaYNkOO+yQpk+fnubPn18ufdKkSaXL68vbb7+dvW+44Yb1lgcAAAAAAACNPFgWwyRW7H316aefpt/85jfpzDPPTJMnT671vo866qi0ZMmSdPPNN5fLb/To0al3796lvb9mzZqVXn/99VrlEcceeZT17bffpssvvzytscYaaZ999qn18QMAAAAAALCaz1k2ePDgLCD28ssvlwaz+vTpk2bMmJH9+49//GN65pln0i677LLc+46A2NFHH52GDRuWPvroo9S5c+d02223pZkzZ6ZRo0aVrjdgwIA0YcKElMvlStO++OKLNHLkyOxz5B+uu+661LZt2+x1+umnZ2kPPfRQuuSSS7LA3FZbbZUFz+688870yiuvpMsuuyxtsskmK3iFAAAAAAAAWG2DZRGIOuKII0r//be//S0LlN14441pp512yoJdV155Zbrrrrtqtf8xY8akCy64IN1+++1p3rx5qWfPnmns2LFpr732qna7WDe2K+uqq67K3jt06FAaLNtuu+1S9+7d0x133JE+/vjjrDdZDO94zz33ZMcOAAAAAADA6qUkV7YL1gpaZ5110vDhw9OgQYOyfx933HHpxRdfTNOmTcv+femll2bDKL777rt1lWWj16NHj+w9f40AAAAAAABYefGWOp2zrOJ8X0899VTae++9S//drl27bAhFAAAAAAAAaAjqNFgWQxrm5wR76aWX0qxZs8oFy+bOnZvatGlTl1kCAAAAAABAw5iz7Cc/+Um66KKL0ieffJJ1c2vbtm064IADSpdPnTo1derUqS6zBAAAAAAAgIbRs+y8885LJ510UnruuedS06ZN05gxY0p7kn3++efp4YcfTvvuu29dZgkAAAAAAAC1VpLL5XJpJVi6dGlasGBBWnPNNVPz5s1XRpar/YRzAAAAAAAApBWKt9TpMIzVadKkSVpnnXVWVnYAAAAAAACwcodhDO+99142FOPmm2+e1lhjjfTEE09k6R999FE68cQT0/PPP1/XWQIAAAAAAECt1GnPsnfffTf17t07ff3116lPnz5p7ty5pcs22mijLFAWAbRdd921LrMFAAAAAACAVR8s+9WvfpW9v/LKK9ncZBEgK6tfv35p7NixdZklAAAAAAAANIxhGMeNG5dOPfXUtMUWW6SSkpJKyzt06JDef//9uswSAAAAAAAAGkawbN68eWmzzTarcvnSpUvTN998U5dZAgAAAAAAQMMIlrVr1y5Nnz69yuUxZ9lWW21Vl1kCAAAAAABAwwiWHXzwwWnUqFHp3XffrbRs/Pjx6a9//Ws6/PDD6zJLAAAAAAAAqLWSXC6XS3Xko48+SjvvvHNauHBh6tevX/rLX/6SjjnmmOzff//737O5zF588cW0zjrr1FWWjV6PHj2y92nTpq3qQwEAAAAAACi6eEud9izbaKON0rPPPpv23HPPdOedd6aIw919991p7Nix6cADD0xPPfWUQBkAAAAAAAANRrO63uHmm2+eHnjggTR//vxs/rKlS5emzp07p/XWW6+uswIAAAAAAICGFSzLa9OmTdpll13qa/cAAAAAAACwwup0GMYmTZqkzTbbLE2ZMqXg8pjDrGnTpnWZJQAAAAAAADSMYFn48MMPU9++fdOjjz5a17sGAAAAAACAhh0s+93vfpc6duyYDjvssPSnP/2prncPAAAAAAAADTdYFsMwPv3002nvvfdO//3f/50uuOCCus4CAAAAAAAAGmawLKy11lrpkUceSf3790+XXnppOv7449N3331XH1kBAAAAAABArTWrtx03a5Zuu+22tPnmm2dDM86ZMycdccQR9ZUdAAAAAAAANJxgWV70LOvQoUM67bTT0jPPPFPf2QEAAAAAAMCqGYYxgmIxBGNFgwYNSg888EAqKSmpy+wAAAAAAACg4fQse+edd6pcdvDBB6fZs2enBQsW1GWWAAAAAAAA0DB6lo0ZMyY9/vjjVS6fP39+mjBhQl1mCQAAAAAAAA0jWDZw4MDUr1+/dP755xdcHnOWnXDCCXWZJQAAAAAAADSMYFnYeuut0+WXX5769++fvv3227rePQAAAAAAADTMOcvChRdemN5666108cUXp7lz56YHHnggtWnTpq6zAQAAAAAAgIbXsywfMPvzn/+cnnrqqbTHHnuk9957rz6yAQAAAAAAgIYXLMvPX/bwww+nmTNnpt122y299NJL9ZUVAAAAAAAANKxgWTjggAPShAkT0pIlS9Kee+6Z/vnPf9ZndgAAAAAAANBwgmVhxx13TM8++2zabLPN0m233Vbf2QEAAAAAAECNNUt16KKLLko9e/aslN6hQ4c0ceLEdMopp6QPP/ywLrMEAAAAAACAWivJ5XK52m/OiurRo0f2Pm3atFV9KAAAAAAAAEUXb6n3YRgBAAAAAACgKIZh7Nix4zLXKSkpSTNmzKjLbAEAAAAAAGDVB8u22GKLLBhW1nfffZfefvvtNHfu3NS5c+e02Wab1WWWAAAAAAAA0DCCZePHj69y2R133JHOOeecdNNNN9VllgAAAAAAAFBrK23Osv79+6dDDjkkDR06dGVlCQAAAAAAAA0jWBZ22WWX9O9//7vW2y9evDidd955qV27dqlVq1apd+/eady4ccvc7o033khDhgxJu+++e2rZsmU2VOTMmTOrXP+hhx5KO+20U7ZuDC150UUXZcNJAgAAAAAAsHpZqcGyN998My1durTW2w8cODCNGDEiHXvssemaa65JTZs2Tf369UtPP/10tds9++yz6dprr00LFixI3bp1q3bdRx99NB1++OGpbdu2aeTIkdnnSy65JJ1xxhm1Pm4AAAAAAACKYM6yWbNmFUz/7LPP0j//+c903XXXpe9///u12vfkyZPTXXfdlYYPH146lOOAAQPStttum84999w0ceLEKrc99NBD0+eff57WXnvtdOWVV6apU6dWuW7su2fPnukf//hHatbs/12eNm3apMsuuyydeeaZqWvXrrU6fgAAAAAAAFbznmVbbrll2mqrrSq9dt555yyg1alTp6yHV23ce++9WU+yQYMGlabFMIknnXRS1nNs9uzZVW673nrrZYGyZXn11VezV+SRD5SFwYMHp1wulx0DAAAAAAAAq4867Vl24YUXZvOBlRX/jmBVly5dsl5lFZfX1JQpU9I222yT9fIqq1evXtl79BZr3779Chz9/8sjP7daWTFH2uabb166HAAAAAAAgNVDnQbLLr744lRf5s6dmzbddNNK6fm0OXPm1EkeZfdZMZ8VyaNHjx4F02fMmJH1uAMAAAAAAKCRD8NYnxYuXJhatGhRKT2GYswvr4s8QlX51EUeAAAAAAAArKY9y8LXX3+drrzyynTfffelt956K0vr3LlzOvLII9PZZ5+dWrduXav9tmrVKi1evLhS+qJFi0qXr6j8PqrKZ0XymDZt2nL1OAMAAAAAAKCR9Sz7+OOP06677poNxzh79uzUvXv37BWfIy2WxTq1EcMg5odJLCufFvOKraj88ItV5VMXeQAAAAAAALCaBsvOPffc9Prrr6cRI0akDz/8MD3//PPZKz5fddVV6Y033sjWqY0ddtghTZ8+Pc2fP79c+qRJk0qXr6j8Pl544YVy6TFX2XvvvVcneQAAAAAAALCaBsvGjh2bBg4cmM4666zUvHnz0vT4PGTIkHT88cenhx9+uFb7Puqoo9KSJUvSzTffXJoWwyWOHj069e7dO7Vv3z5LmzVrVhawq40YErFr165ZHpFX3o033phKSkqyYwAAAAAAAGD1Uadzli1cuDD16tWryuWx7J577qnVviMgdvTRR6dhw4aljz76KJsH7bbbbkszZ85Mo0aNKl1vwIABacKECSmXy5WmffHFF2nkyJHZ52eeeSZ7v+6661Lbtm2z1+mnn1667vDhw9Ohhx6afvCDH6Sf/OQn6ZVXXsnWPfnkk1O3bt1qdewAAAAAAAAUQbAshil89dVXq1z+2muvrdBQhmPGjEkXXHBBuv3229O8efNSz549s95se+21V7XbxbqxXVkxLGTo0KFDuWDZwQcfnO6///7061//Op1xxhlpww03TOeff3668MILa33cAAAAAAAANEwlubJdsFbQ+PHjs15Z0ePriCOOKLfsvvvuSyeccEI2DGPfvn3rKstGL4Z+DNOmTVvVhwIAAAAAAFB08ZYV6ll24oknVkrr2LFjNrfXNttsk7p3756lRW+z6dOnp+222y7rHSZYBgAAAAAAQKPvWdakSZPlz7CkJC1ZsqS2Wa529CwDAAAAAABopD3Lli5duiKbAwAAAAAAwCq1/F3DAAAAAAAAYDWxQj3LamLSpElp9uzZabPNNku9e/eu1dCNAAAAAAAA0KiCZe+//3466KCD0ksvvVSa1q1bt/Twww+njh071le2AAAAAAAAUGP11s3r5z//edp0003T9OnT08KFC9Nzzz2XlixZkgYPHlxfWQIAAAAAAMDKDZY99thjBdMjOHbppZemzp07pxYtWqRevXplAbRIBwAAAAAAgNUiWHbooYem448/Pn322Wfl0mOOsqeffrpc2jPPPJPatWu3olkCAAAAAABAwwiWRU+xV155JZuP7O677y5N/+Uvf5mGDBmS9txzz3Tsscem7bbbLt11111ZOgAAAAAAAKwWwbKddtopTZ48OQuMnXDCCVlPszlz5qTDDjssC6T16NEjff7556lPnz5p/PjxWeAMAAAAAAAAGoKSXC6Xq6udvfnmm+lnP/tZmjp1arr88svTKaecUle7Xm1FMDFMmzZtVR8KAAAAAABA0cVbVrhnWVlbb7111nvs97//fRo2bFjq27dvFkADAAAAAACAhqjOgmXffPNNmj9/fvZ50KBBWeRu/fXXT9tvv3363e9+l5YsWVJXWQEAAAAAAEDDCJZ99tln6YgjjkhrrbVWWnfddVPPnj3TCy+8kNq1a5fuv//+dPvtt6eRI0emnXfeOb344ot1c9QAAAAAAADQEIJlZ511Vpo4cWK66aabsuBYBM2OPPLI9O2332bL4/Nrr72WBcv69OmTzjnnnLo4bgAAAAAAAFj1wbJHH300/eIXv0gnnHBCOuyww9Kf/vSnNHv27PTqq6+WrrPOOuukUaNGpcceeyw9+OCDK5olAAAAAAAANIxgWfPmzdPChQtL/71o0aJUUlKSmjVrVmndfffdN7388ssrmiUAAAAAAADUicoRreUU85Vdfvnl6bvvvsvmLLvhhhtS165dU7du3Qqu37JlyxXNEgAAAAAAABpGsGz48OGpSZMm2ZxlX3/9ddp9993TNddck6UBAAAAAABAQ1aSy+Vyq/ogilmPHj2y92nTpq3qQwEAAAAAACi6eIvuXwAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNFqdMGyxYsXp/POOy+1a9cutWrVKvXu3TuNGzeuRtu+//776Zhjjklt27ZNbdq0SYcddlh6++23K61XUlJS8HX55ZfXwxkBAAAAAACwqjRLjczAgQPTvffem84666y09dZbp1tvvTX169cvPfnkk2mPPfaocrsvv/wy7bPPPumLL75I559/fmrevHm6+uqrU9++fdPUqVPT+uuvX279/fffPw0YMKBc2o477lhv5wUAAAAAAMDK16iCZZMnT0533XVXGj58eBo6dGiWFgGtbbfdNp177rlp4sSJVW57ww03pDfffDPbx6677pqlHXjggdm2V111VbrsssvKrb/NNtuk/v371/MZAQAAAAAAsCo1qmEYo0dZ06ZN06BBg0rTWrZsmU466aT07LPPptmzZ1e7bQTJ8oGy0LVr17Tffvule+65p+A2CxcuTIsWLarjswAAAAAAAKChaFTBsilTpmQ9vmK+sbJ69eqVvcdwioUsXbo0vfTSS2mXXXaptCy2nTFjRlqwYEG59BjesXXr1tm8aN27d0933nlnnZ4LAAAAAAAAq16jGoZx7ty5adNNN62Unk+bM2dOwe0+++yztHjx4mVu26VLl+zz7rvvno455pi01VZbZenXX399OvbYY7P5zk499dRaHXuPHj0KpkegrlOnTrXaJwAAAAAAAEUULIthEVu0aFEpPYZizC+vartQ022feeaZcuuceOKJaeedd07nn39+GjhwYNbbDAAAAAAAgMavUQXLIkgVPcQqys8rVlUQK59em23DGmuskU4//fR0yimnpP/85z9pjz32WO5jnzZt2nL1OAMAAAAAAKD+Nao5y2LIxBiKsaJ8Wrt27Qput95662W9ymqzbV779u1Lh3QEAAAAAABg9dCogmU77LBDmj59epo/f3659EmTJpUuL6RJkyZpu+22Sy+88EKlZbFtx44d09prr11t3m+//Xb2vuGGG67AGQAAAAAAANCQNKpg2VFHHZWWLFmSbr755tK0GFpx9OjRqXfv3qW9v2bNmpVef/31Sts+//zz5QJmb7zxRnriiSfS0UcfXZr28ccfV8p3wYIF6Q9/+EPaYIMNsrnLAAAAAAAAWD00qjnLIiAWga1hw4aljz76KHXu3DnddtttaebMmWnUqFGl6w0YMCBNmDAh5XK50rTBgwenW265JR100EFp6NChqXnz5mnEiBFp4403TmeffXbpetdff3168MEH0yGHHJK22GKLbJjGP//5z1kA7vbbb8/mLwMAAAAAAGD10KiCZWHMmDHpggsuyAJX8+bNSz179kxjx45Ne+21V7XbxTCL48ePT0OGDEmXXHJJWrp0adp7773T1VdfXW5oxe9973tp4sSJ6U9/+lP69NNPU+vWrVOvXr2ygNm+++67Es4QAAAAAACAlaUkV7b7FStdjx49svdp06at6kMBAAAAAAAounhLo5qzDAAAAAAAAOqSYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAilajC5YtXrw4nXfeealdu3apVatWqXfv3mncuHE12vb9999PxxxzTGrbtm1q06ZNOuyww9Lbb79dcN1Ro0albt26pZYtW6att946jRw5so7PBAAAAAAAgFWt0QXLBg4cmEaMGJGOPfbYdM0116SmTZumfv36paeffrra7b788su0zz77pAkTJqTzzz8//frXv05TpkxJffv2TZ9++mm5dW+66aZ08sknpx49emRBst122y39/Oc/T1dccUU9nx0AAAAAAAArU0kul8ulRmLy5MlZT7Lhw4enoUOHZmmLFi1K2267bdpoo43SxIkTq9z297//fdYjLfax6667Zmmvv/56tu25556bLrvssixt4cKFqX379qlPnz5p7Nixpdv3798/Pfjgg2n27Nlp3XXXrbNzioBcmDZtWp3tEwAAAAAAoJj0WIF4S7PUiNx7771ZT7JBgwaVpsUwiSeddFLWWywCWRHoqmrbCJLlA2Wha9euab/99kv33HNPabDsySefzHqaDR48uNz2p512WvrLX/6S/v73v2eBMwCgbkzf7ujSz3O/+Tod986ENPvbr1L75q3T7Vv1TZuusWZqbBr7eWzz8t9W9SEAAAAArDSNahjGGDZxm222yeYbK6tXr17Z+9SpUwtut3Tp0vTSSy+lXXbZpdKy2HbGjBlpwYIFpXmEiuvuvPPOqUmTJqXLAYC61dgDTKvbeQAAAAAUi0bVs2zu3Llp0003rZSeT5szZ07B7T777LO0ePHiZW7bpUuXLI/ovRbDOpa1xhprpPXXX7/KPGra/a+iGAqyefPmVS4HgNXdNzPeS9/llqb3vvkqfZdyqVkqSU1LStLJ71Y/H2lDtLqcxxr+LgEAAAAamegYFfGW1T5YFvOJtWjRolJ6DMWYX17VdqEm28Z7BMYKiXWryqO2SkpKal14NM6HNXTq1GlVHworkXIvPsp8+azRafMU37zbpNWgzDt3atTnwfLxrBcfZV6clHvxUebFR5kXJ+VefJR5cVLuxaV58+apdevWq3+wrFWrVlkPsYoWLVpUuryq7UJNto33b775puB+Yt2q8liW2kwox+pnRSYYpPFS7sVHmRcfZV6clHvxUebFSbkXH2VefJR5cVLuxUeZFyflzmo5Z1kMmRjDJFaUT2vXrl3B7dZbb72sV1lNto08lixZkj766KNy60UA7dNPP60yDwAAAAAAABqfRhUs22GHHdL06dPT/Pnzy6VPmjSpdHkhTZo0Sdttt1164YUXKi2LbTt27JjWXnvtcvuouG78e+nSpVXmAQAAAAAAQOPTqIJlRx11VNbr6+abby5Ni6EVR48enXr37p3at2+fpc2aNSu9/vrrlbZ9/vnnywXB3njjjfTEE0+ko48+ujRt3333zXqi3XjjjeW2j3+vueaa6aCDDqrHMwQAAAAAAGBlalRzlkVALAJbw4YNy4ZJ7Ny5c7rtttvSzJkz06hRo0rXGzBgQJowYULK5XKlaYMHD0633HJLFuwaOnRoNtHbiBEj0sYbb5zOPvvs0vViTrLf/va36bTTTsvyOuCAA9JTTz2V7rjjjnTppZdmgTQAAAAAAABWD40qWBbGjBmTLrjggnT77benefPmpZ49e6axY8emvfbaq9rtYpjF8ePHpyFDhqRLLrkkG1Jx7733TldffXXacMMNy60bgbUIpl111VXpoYceynqsxXpnnnlmPZ8dAAAAAAAAK1NJrmz3KwAAAAAAACgijWrOMgAAAAAAAKhLgmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAWMUGDhyYSkpK0syZM1f1oUCD8Y9//CPtvvvuqW3bttnzcfjhh6/U/Pfee+8sXxqfiy++OCu78ePH13ibqH9jm6iP+f/ENYzrEtd0dVUM58iyxT0Q9T4AULwEywAAatiIUvbVtGnTtMEGG6R999033XnnnakhuPXWW7Nji/cVPb9Cr+VpeK7tsZd9tWjRIm211VZZ4/Wrr76aismWW26ZvYpVBC4OO+yw9M4776QTTzwxXXTRReknP/lJKhYCdfVT1zW2xvDGdrz19f20ogRCCcX+vQoALFuzGqwDAMD/XzTah2+//Ta9/vrr6X//93/Tk08+mV544YU0YsSIWu3zd7/7XfrFL36RNttss9RQzq+QldHItP3225f2IPriiy+yAN1tt92W7rnnnvTEE0+kPn361PsxsOr985//TIsWLUpXXXVV+q//+q9VcgxjxoxJX3/99SrJmxVz+umnZ8HVLbbYosbbRP372muvpXXWWadej42Gp1evXlnZxw9gAAAoXoJlAADLoeIwTf/617/S/vvvn/7whz+kn//857UKKG266abZqyFY1cNQ7bDDDuWOIZfLpRNOOCELmA0bNiwLTLL6mzNnTvberl27VXYMyxNooWGJoMfyBj6aN2+eunbtWm/HRMO15pprKnsAAAzDCACwIvbbb7+skS2COs8//3xp+n/+85905JFHpo022igbTrBDhw5p8ODBae7cuTWas6zssFHxOXpJRONvy5Yt0y677JLGjh1bbh8xVFcElUK8lx3OsDHPhRbHH9ctTJ48udyyxx9/PPXr1y+7LnGNO3XqlM4555z0+eefVzn80vz589P//M//ZJ+jcbxsYC56CsaQf7Es9hdlt+eee6Ybb7yx0v5i3Sib9u3bpzXWWCNtvPHGWQ+oN954o9ryvemmm9J2222XlWNsM2jQoKwHXcW5c959993sVbYcyw4h9uCDD6b+/funbbbZJrVu3Tp77bzzzunaa69NS5cuLXgtp0+fnt2T6667brZ+zAf297//vdrh0d57772sl07Hjh2za7L++uunQw89tNy9XlPRO3CvvfbKeu60atUquw7Rq3Lx4sWVzj/fw3Gfffap8TCgZc9j3LhxWdmttdZaacMNN8yeifx9MWXKlHTwwQdn1yGWx/kUekYKDYVYdm6jqVOnpoMOOiibUy0a2/v27ZsmTpy4XHMSVpwrKf/cT5gwIft32fKvOBzf8pTNggUL0m9/+9u07bbbpjZt2qS11147e15+/OMfZ3VVTeSvR5TXr371q2yI1Pxz9+tf/zp98803BbeLHxT88Ic/TOutt162ftyz0ZO27H2f9/bbb2fPROfOnbN7JLaJ++SUU05Jn376aY3ruopzluXvjRDXtuw2Fa992ecsjjvS/u///q/gud19993Z8qFDh5ZL/+yzz7Lgfrdu3bLziHs+vitiHr6aqMnxLs9zVRMffvhhOumkk7J6KfYTP1yIHylUp6bnWdPvp++++y7dcMMNWQ/iuE/judpxxx3TddddV2W9Ft8LcR9Hz8C4v+KHJz/4wQ+y6xLiesW9GuJ8yuadr/Oqm7PszTffTAMGDMj2H3V9BPDj35FeUdn77t577816rMU5xH0c3+Hvv/9+qqmy9VnU01FfR70d9dZRRx1VMP8QvWGj/KP8Yv2o43bbbbf017/+tdK6Zc87rmPUZ3GsNfm7oey5xr7j+yfONa5PfMfm77/oER7lH+UZx37ccceVPssV1fbvprr6Xs375JNPsn3EvRTH0aNHjzR69OhqrwcAsHrQswwAYAVFoCzkGzcjkBUNPpEejVrR4BONQBF0iWEbn3766dLGu2WJhp1ocIsG8WhkisbJaKCN+ZxiqLoIJoRo8IlG+9h/LIuGsrxIX52ub4jG+Wisi4a9CHxE49pLL72UrrzyyvTII4+kZ599NmucKysa82OOubiG0Zgay/PlEI2RRx99dNbAFw3kP/3pT7PgSjSS//73v0+nnnpq6X4ee+yx9KMf/SgbivOQQw7JGvYjcHH//fdn+4nebzvttFOl8zj33HOzAF9sE/nHerfcckt66623sgbFEIG6CBRFT8Vw1llnlW5ftkwj2NCkSZPUu3fvrBE3GgZjH2eeeWYWLLn99tsrBfeisXXevHlZg2jPnj2zwMQRRxyRBRwLefHFF7PjjOt1wAEHZOccjYgRqNtjjz3SAw88UOW2FZ1//vlZA24ENiOoGA24jz76aJYe1yQa16MhOn/+0bgZQYLjjz++tLdmTXttPvTQQ9kzGPdFBFkigBUNztGoGscQjfkRSIvAwMsvv5wefvjh7FrE/RPXtCZi2NW4L6IR+uSTT06zZs1K9913X7bvCKJ16dIl1UY8q3H+cbzx7JcdFrXs+S9P2cTzE/d0XIf88TZr1iy7Z+MejGsRDd01dcwxx2T3WNRtEXCOOieexbgmce3LPqfRiB3PTjTax/MVz2mU7RVXXJFd92eeeaa0fooG8V133TULaMexRx0aQ3HGvHVxP0dgMAKCtanrYp24llFvRH1ctoG8ujnB4v6L+zOG5IwhQSvKB5PK7i/KLfYZ91tc27j2X331VXZPxue4Jj/72c+qvcY1Pd6aPlfLEvdO1A/xHMT9E68oj3h+4j4rZHnOsyZllq9P47jj+YnzieBH3KNnnHFGmjRpUqV6LerPuL9iDtEIFG+99dbpo48+yu7FCLrFvRrHGHX5NddcU26Y3/x1rk7c59///vezYHPsv3v37lldescdd2TnEt/Bcc9WFHnHsxDbRBA9jj2+t+P7JOqHCMDUVHyvRJlGXR3nEttHXRPXJZ7psnVNnGd8x8UPAuI7KH78EUHGuKZxPadNm5YuueSSSnnE92XcR1HusU3cDzW5b8LIkSOz44vrGscX99zVV1+d1U1R1hEkjO+cCD7F8ca1i/3HNmXV9u+muvxezV/D733ve9n5x3HE3wR/+9vfsusS3w9RJwAAq7EcAADLFH82FfrTady4cbmSkpLsNXPmzNyCBQty6623Xq5Jkya5f//73+XWvfzyy7N97L///uXSjz/++Cz9nXfeKU2Lz/k8L7744nLrP/bYY1n6gQceWC599OjRWXq81/b8LrroooKv3/3ud7n6lD/2uBZlLV26NDdgwIBs2b777pulPfHEE9m/d9ttt9y8efMK7uess84ql96hQ4csfb/99st9+eWX5ZZ9/PHHuTZt2uSaN2+eGz9+fKVjmz17dunnzz77LNe2bdvc+uuvn5s2bVq59V5++eVc69atczvuuGPB8m3fvn3u3XffLU3/9ttvc3vuuWe2bNKkSZWON15VeeuttyqlLVmypPRaPffcc+WWxbWL9BtuuKFc+iOPPFJa9mXvmzi2Tp065Vq0aFHpmrz//vu5du3a5TbZZJPcokWLcssyceLE0vOfO3duuTwOPvjgbNmll15abpu45yL9ySefzNVUvuybNm1a7pjjunz/+9/Plq277rq5O+64o9x2J554YrbswQcfLJfet2/fSs98HE+h6xX++Mc/ZumnnnrqMp/vivuL811W3rUtm5deeinb1+GHH15pX3Ft4p6uifwxbb311uW2WbhwYa5Pnz7ZsjFjxpSmR324xhpr5NZee+3ca6+9Vm5fcY1i/Z/97Geladdee22W9oc//KFS3vHMfv311zWu66q6fyItzqOQfJ1btg6Kc1tnnXVyG2+8cXbdy4p7Oe61nXbaqdJ1iu+Dv/71r+XSo67afvvtcy1btsx98MEHuZqo7nhr81xVJcqhUL35/PPP55o1a1blPbo851nTMjv99NNz3333XWl6fC70jEb9G8cWz/Qrr7xSbb1dqGyX9RzGd0/Xrl2z9Ip1xl133ZWld+nSJXuGKp5D3PPx3JX105/+NFt2991352oif73i9fDDD5dbFs9I2e/EinXNFVdcUS497uMDDjggK68pU6ZUOu94Rf21PPLnGt+dr776aml61Dvdu3fP/gaKv4WqqovLHseK/N1Ul9+r+Wtx0kknlbsH416LZ71bt27LdY0AgMZHsAwAoBbBpPPPPz935JFHZg0okT5kyJBsvWhUi39Hw1hF0Yiz5ZZbZsvLNu5UFyyLhp2yjTZ5W2yxRRawqetgWVWvaDCuT/ljj0bW/DWOhtsddtghS2/VqlXu2WefzdaNRv9IK9RAGmKbDTfcsGCwbOrUqZXWv/LKK7NlP//5z5d5nPlGyuuuu67g8jjmWF42kJYv31tuuaXS+n/+85+zZSNHjlyuRr2q/Oc//8n29+tf/7o0bdasWVla586dyzXs5uUbL8veN9EoHWlDhw6t9jr8/e9/X+YxnXzyydm6N910U6Vlb7zxRtZAutVWW9VZsKx///6Vlt12223ZsmhErSgacwsFpasLln3ve9+rtJ9vvvkma7zfeeed6zVYtrxlkw+WFaqTlkf+mMoGxCqex957712adskll2Rpw4YNq7R+BNsioBABlXxQLx8sK3SfVLSygmVlA0ljx44tlz58+PAs/ZprrilNi/ol0o466qhqy+76669f5jku63hr81wVEvftmmuumZXH559/Xml5/v4te4/W5jyrK7OolyJYEkHeikHJfAAuAj1HH310aVoE1WJ/I0aMWOY51iZY9vTTT5f+KKOQPfbYI1s+YcKESvfdL3/5y0rr53/kcfbZZ+dqIn+9KgbEQvxNEAHzWB5B6fDJJ59kf4/ssssuBfeXL7Nzzjmn0nnHd+byyp/rr371q0rL4vsnlh133HGVlt16663ZsnjPW5G/m+ryezW2iWfhiy++qLRsr732ypZHYA8AWH0ZhhEAYDnEsFghhhqL4aPyw7nF/FH54dFCDIVUUQx9FnPLxLBVMUzSFltsscz8YoigGGKqopgrK4ZOqq8hD2ur0JwvMQRXTYfQi2Gq8vMDxRBvMWdIDD8Zww7GEFghzjuWxdBI8aoohlv8+OOPs3lRYti2vBjSK4YfrOi5557L3g888MBlHl/+mscxFjrXmBcsvPbaa6XHmxdzzRUqxxDDIy6POLfhw4dnQ07G0Gkx/FlZZefGiWG7QgzBV2iYwRh6K4YTK3SeMdRaVfP45M9zWUMxVvdMxPxVm2++eTbUXgwlGXMerahC1znm0QmFhhuMYSxDDEu4InnEPRnz5SxvWS6v5S2buA+jHol5hWKbGBotyjzOoaZDrZUVw8pVFPuLeirqtZqUe8xdFHNR/fvf/86GtYvh8WLIuhg+8LTTTsuGVYvhJWM4tDj+inPHrUxRf8WwbjHkYgwnlxf/jjKP4e0qlk3cy4XKJuqlfNmsqLp6ruL6xzxX8V1WaL0YWq/i3GV1fZ5Rb8awfTGMYqFhAkPMiVZ2f8tTb9f19c2nx9CAcc/H93p91fWFnrd41uKZmzFjRpZ/DFkYQ0YuWbKkyrnXYpjLqsokhnpelfXtivzdVJfXOsQ9WHEI54r7jOFOAYDVk2AZAEAdBpPyk8pHkKeQfHrMi1ETVc3BEw1IMRdJQw0mVmxsrWmwLOYDifmalhUo+u677wrmVdaXX35ZLlgW8yUVanTPl0W+EW9ZeYdoPF9W3jUpyyjHEI2cNRXHG/PkREN4NHIOGDAgm7st9pWfmyfmWal4T0Ygp5BC6fnzLBSMXNZ51uaZiDm/4tjrIlhWaB/561zdsnxj8oo+l8tTlrWxvGUTDesxd89vfvObdO+996bzzjsvS1977bWz5y3mKlqext9C90ucd8ybFfNF1bYujAb/yZMnZw39MS9gzNWUb6QeOnRo+vnPf55WhZjLK4JPMQdVNJRHoC8a91955ZVsnqY474plM27cuOy1Is/NynqullU/bLLJJpXS6vo88/uLQG919XrZ/S1PvV0bK/JdXld1fU3KJX+c+WsYQbN4LU+ZFCrjlVnfNpRrXdX+VnSfAEDjUbMZrAEAqJF849AHH3xQcPncuXPLrbe6+f8P813uFcGyuhTXLhqsC+VV9hWN72VV1Tsl3zhWtjdWdXnne5ZVl3cEIerLn/70pyxQdtFFF6VJkyalG264IeuNEUGGH//4x5XWz/9K/sMPPyy4v0Lp+fP83//932rPM45hWYr9mcj35osAb0U1DZqvaNnE83L11Ven2bNnZwGJuIe6du2arrvuunTqqacuV/6F7pc4t08++aRcj4zalHu3bt3S3XffnTX8v/DCC+nyyy/PfhRw5plnplGjRqVVJQLSEYCOYwv5nlYVn/P8uUTAurqyGT169AofU109V/nlVdUPhfZf1+eZ398RRxxR7f6i3qtNvV0bDaXeWla55PPPvw8ZMqTaa/jkk09W2teq7LnZkK41AIBgGQBAHYqhxcL48eMLNig/9dRT2eeddtqpzvPOD9e4uv/yuU+fPlkPj2nTptXZ/sKjjz5a43Xz5VhfoiyrKse33norez/yyCMrLZswYUKltBiCLz90WqHeiDGUWH2eZ3XPRJxLDMe11VZbVfmL/sYuAlUhAlUVRUBoeZ/lFS2bzp07Z0PHxr0SPcoi6LY8Ct1jcQ/FsebLelnlHkHCGB40hkaNAFmhXhwxhFv0govhI8ODDz64wnVdBC5rUz9GsCy2jSBZ9IiJY4oeZWWHZayP+qG6462r5yqCpmuuuWZWHvkePmUV2n9tzrO6MotjiOOMoRVr2sNzeert2twv1V3fkA861cd3+bKetziPfL2dP87oZRz3S31/NzXmv5uq+14FAAiCZQAAdSiG5Yoh8aIxNT+nSt4f/vCH7Jfx3//+92s0X9nyyg85GENvrc7il/PhZz/7WZozZ06l5TF/V8VrX53oHRI9Ym688cZsDqWKys6tcsIJJ2SNujFUWAwZV1EEo6pqXF3esox5fxYuXFhpWX5Iy4r5xHwuMaReRXGvRe++aEC/6aabyi2L4e4qzlcWYl6rTp06peuvvz6bF62QCL7FXEfLcuKJJ2bv0fstP5dRiEbLGF4vrlkEb1ZX+fmAKg7d+fLLL2c9c5b3WV7esok6J+a1qygCztFbKuaCWh6//e1vy80FtGjRojRs2LDS5yMv5nGMOb1GjhxZGuDNu+CCC9L8+fOzdVq0aJGl/ec//ykYrMn3rImAzorWdbFdoaDlssRQkDGfUtQrUWZxH8dcZXF+FedPirm/YgjJP//5zwX3FeVedrjK2h5vXT1XcQ7HHntsWrBgQaW5riKY+5e//KXSNrU5z+rKLIKjZ5xxRtaDKIbbLFTvxbJXX3219N/RIzK2i/uxbHqhejsC1tF7annul5gvr0uXLllQKoYvLSv+HQGcGJ4z5g6rTzGE6tixY8ulRY/QmK9sn332Ke1BHcMMRzlGmcU1KRQUim3K9s4rtr+bqvteBQAI5iwDAKhD0VMjGg+PPvro1Ldv3+w9GniiIfgf//hHNjdIxYBFXdltt92yBuVoXIphzPLzkEQjZE2HL6rYWFqxQSvfS2lV2m+//bLh2aKBfuutt079+vXLelDEXCzvvvtu9kv8aMCMQFBNRA+RO++8Mx111FFZ4+OBBx6YevbsmTXmv/TSS1ljdb6BMRrboqE0hguLng1xLD169MgaYmO9CFLEtY8AwoqeY8w788Mf/jDttddeWUBh++23T4ccckjWy2X48OHprLPOyno3xDWIofWiQfVHP/pR6VBxZUVgJRp/Bw8enAVY4vwigHLfffdlwZfoXZQfLjDfgB4N4QcccEDWeybmbYqyj/srzjOOLbaPBuyyQYxCYttzzz03/f73v0/bbrttdp1bt26d9QiJeZ+irM4555y0uorrG2UUDcHRgN+7d++s0T6ueSy75557CpZ/zEkW5Rn3dwS0olH8uOOOW+6yiSFDYz8xz1304mrXrl3WYBz5Ry+e/BxmNRX7iHs+yjGOJfYTjfBxLHF8ZYO6UReddtppWY+QY445Jm244YbZ8xnPSfQmuuKKK0rXv/3227O6Me6HCAZGgCP2+/DDD2f3f9zvK1rXxXW96667sucojimOP56veNUkqB6B5fPPP7/034VEXRKBtQhUXXvttVl5R4A9yj7qk7jn4/wjuLEs1R1vXT5Xl112WfrXv/6VXc8ItsS2cf9EXRL3X8zXtqLnuawyiwBq3Kt//OMfszKPfcd8ZBFwi/rtmWeeSZdeemnq3r17tl28xxC0p5xyStYzKf+cxb7jGYgfQOR7f8X3chxfBLgioBRBruhldOihh2Z1YSFRp0dPwv333z8b3jb2H/fsG2+8kfVyjDn/xowZU67erA9R9vF9E6/oFRo9AKOMI7gU518xiBbX6sILL8yepyjHmPMsflTy2muvZdcl6qH4vizGv5uq+14FAMjkAABYpvizaXn+dJo8eXLu8MMPz22wwQa55s2b59q3b5875ZRTcu+//36ldY8//vhs3++8805pWnyOtFhWSN++fQsez6OPPprr06dPrnXr1qXHXHa/yzq/6l6jR4/O1ZfYd3XnW8hTTz2VO/roo3Obbrppdo3jWm+//fa5IUOG5J5//vly63bo0CF7VeeVV17JHXfccbl27dpl+9too41ye+21V+6mm26qtG5c09NOOy3XuXPnXIsWLXJrr712rkuXLrn+/fvnHnjggWWWb96TTz6ZLbvooovKpX/55ZfZ/bLZZpvlmjZtWunaTJs2LXfIIYfkNtxww9yaa66Z22mnnXK33HJLtffNa6+9ljviiCNy66yzTrZN3Cdjx47NDR8+PNum4nGHDz/8MHfeeeflevTokWvVqlV2X8U5H3nkkbnbb7899+233+Zq6q9//Wvue9/7Xm6ttdbKrln37t1zl1xySW7hwoWV1o3rEccU12d576FC92lV1zlUdc0KPWPV7ae6+2zWrFm5Y445JrfuuuvmWrZsmdtll11y9913X5X7++6773LDhg3LbbXVVrlmzZpl68Tx1KZsZs+ene1r9913z2288ca5NdZYI7uvfvjDH+YeeeSRaq9poeuxaNGi3C9/+cvclltume0rjvHiiy/O0gt5/PHHc/vvv3+ubdu22fqdOnXKnXPOObl58+aVW++5557L7vmePXuWXqdYd+DAgbmXX355ueq6qu6fuGY//elPs2e7SZMm5a79surcr776KtemTZtsnW233bbaazV//vzcpZdemj2XcXxxLnG9+vXrl9Un8XzXRHXHW5vnqjpz587NnXDCCVk9GscbdWk8S9Xd88t7nsv6flq6dGluzJgxuX333Te7B6Iejvo4zi/yieeoookTJ+Z+9KMfZXVhrB/fBwcccEDub3/7W7n13nzzzdzBBx+cW2+99XIlJSXl6orqzvH111/P6vVNNtkkexbj/dhjj83Sl6feWtb9VV199vDDD2fXLertqL/jfN94442C2y1evDg3cuTI3G677Zbdr/HMxd8fcU2vvvrq3CeffFLj+qw61Z1rbeviFf27aUW/VwvVszXJDwBYfZTEf8QNAQCgOEVPi+gl8vrrr2fDjkEhMZRn9Arzv49Q/2699dZsWNPRo0engQMHrurDAQAoCuYsAwCA1VzMX/TBBx9USo+h12KotRjSTKAMAACAYmXOMgAAWM198803qX379tmcbDHvTrNmzdK0adPSuHHj0hprrJHNaQYAAADFSrAMAABWc82bN0+nnHJKeuKJJ9KkSZPS119/nTbYYIN09NFHp1/84hdpxx13XNWHCAAAAKuMOcsAAAAAAAAoWuYsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAotVsVR9Asdtkk03SV199lbbYYotVfSgAAAAAAACN0qxZs1Lr1q3TBx98sNzb6lm2ikWg7Ntvv13VhwEAAAAAANBoRawlYi61oWfZKpbvUTZt2rRVfSgAAAAAAACNUo8ePWq9rZ5lAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEWrUQXLFi9enM4777zUrl271KpVq9S7d+80bty4ZW53//33px//+MepY8eOac0110xdunRJZ599dvr8888Lrv/QQw+lnXbaKbVs2TJtscUW6aKLLkrfffddPZwRAAAAAAAAq1KjCpYNHDgwjRgxIh177LHpmmuuSU2bNk39+vVLTz/9dLXbDRo0KL322mupf//+6dprr00//OEP03XXXZd22223tHDhwnLrPvroo+nwww9Pbdu2TSNHjsw+X3LJJemMM86o57MDAAAAAABgZSvJ5XK51AhMnjw560k2fPjwNHTo0Cxt0aJFadttt00bbbRRmjhxYpXbjh8/Pu29997l0saMGZOOP/74dMstt6STTz65NL1Hjx6pefPm6YUXXkjNmjXL0n71q1+lyy67LL366qupa9eudXpekV+YNm1ane4XAAAAAACgWPRYgXhLo+lZdu+992Y9yaKXWF4Mk3jSSSelZ599Ns2ePbvKbSsGysIRRxyRvUePs7wIhsUr8sgHysLgwYNTxBTjGAAAAAAAAFh9NJpg2ZQpU9I222yT2rRpUy69V69e2fvUqVOXa38ffPBB9r7BBhuUyyPssssu5daNOdI233zz0uUAAAAAAACsHv6/7lMN3Ny5c9Omm25aKT2fNmfOnOXa3xVXXJH1VDvqqKPK5VF2nxXzWd48CnX/q2jGjBmpU6dOtd4vAAAAAAAARdCzbOHChalFixaV0mMoxvzymrrzzjvTqFGj0tlnn5223nrrcnmEqvJZnjwAAAAAAABo+BpNz7JWrVqlxYsXV0pftGhR6fKaeOqpp7J5zg444IB06aWXVsojVJVPTfMopKoJ5arqcQYAAAAAAED9azQ9y2IYxPwwiWXl02JesWX5v//7v3TooYembbfdNt17772pWbPyscL88ItV5VOTPAAAAAAAAGg8Gk2wbIcddkjTp09P8+fPL5c+adKk0uXVibnBfvjDH6aNNtooPfLII2mttdYqmEd44YUXyqXHXGXvvffeMvMAAAAAAACgcWk0wbKjjjoqLVmyJN18882laTFc4ujRo1Pv3r1T+/bts7RZs2al119/vdy2H3zwQfrBD36QmjRpkh5//PG04YYbVjkkYteuXbM8Iq+8G2+8MZWUlGTHAAAAAAAAwOqj0cxZFgGxo48+Og0bNix99NFHqXPnzum2225LM2fOTKNGjSpdb8CAAWnChAkpl8uVpkWPsrfffjude+656emnn85eeRtvvHHaf//9S/89fPjwbKjGCK795Cc/Sa+88kq67rrr0sknn5y6deu2Es8YAAAAAACA+laSKxtVauAWLVqULrjggnTHHXekefPmpZ49e6bf/va36YADDihdZ++9964ULIteYVXp27dvGj9+fLm0Bx98MP36179Or732WtYLbeDAgenCCy9MzZs3r/Nzit5sYdq0aXW+bwAAAAAAgGLQYwXiLY0qWLY6EiwDAAAAAABYdfGWRjNnGQAAAAAAANQ1wTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIpWowqWLV68OJ133nmpXbt2qVWrVql3795p3Lhxy9zujTfeSEOGDEm77757atmyZSopKUkzZ84suO6WW26ZLa/4OuWUU+rhjAAAAAAAAFiVmqVGZODAgenee+9NZ511Vtp6663Trbfemvr165eefPLJtMcee1S53bPPPpuuvfba1L1799StW7c0derUavPZYYcd0tlnn10ubZtttqmz8wAAAAAAAKBhaDTBssmTJ6e77rorDR8+PA0dOjRLGzBgQNp2223TueeemyZOnFjltoceemj6/PPP09prr52uvPLKZQbLNttss9S/f/86PwcAAAAAAAAalkYzDGP0KGvatGkaNGhQaVoMqXjSSSdlPcdmz55d5bbrrbdeFihbHt9880366quvVuiYAQAAAAAAaNgaTc+yKVOmZEMhtmnTplx6r169svfoLda+ffs6yeuJJ55Ia665ZlqyZEnq0KFDNt/ZmWeeuUL77NGjR8H0GTNmpE6dOq3QvgEAAAAAAFjNg2Vz585Nm266aaX0fNqcOXPqJJ+ePXtm85916dIlffrpp9m8aDFHWuz/iiuuqJM8AAAAAAAAaBgaTbBs4cKFqUWLFpXSYyjG/PK68NBDD5X79wknnJAOPPDANGLEiHTGGWekzTffvFb7nTZt2nL1OAMAAAAAAKD+NZo5y1q1apUWL15cKX3RokWly+tDSUlJNgzjd999l8aPH18veQAAAAAAALBqNJpgWQy3GEMxVpRPa9euXb3lnZ8L7bPPPqu3PAAAAAAAAFj5Gk2wbIcddkjTp09P8+fPL5c+adKk0uX15e23387eN9xww3rLAwAAAAAAgEYeLIthEiv2vvr000/Tb37zm3TmmWemyZMn13rfRx11VFqyZEm6+eaby+U3evTo1Lt379LeX7NmzUqvv/56rfKIY488yvr222/T5ZdfntZYY420zz771Pr4AQAAAAAAaHia1eXOBg8enAXEXn755dJgVp8+fdKMGTOyf//xj39MzzzzTNpll12We98REDv66KPTsGHD0kcffZQ6d+6cbrvttjRz5sw0atSo0vUGDBiQJkyYkHK5XGnaF198kUaOHJl9jvzDddddl9q2bZu9Tj/99CztoYceSpdcckkWmNtqq62y4Nmdd96ZXnnllXTZZZelTTbZZAWvEAAAAAAAAKttsCwCUUcccUTpv//2t79lgbIbb7wx7bTTTlmw68orr0x33XVXrfY/ZsyYdMEFF6Tbb789zZs3L/Xs2TONHTs27bXXXtVuF+vGdmVdddVV2XuHDh1Kg2Xbbbdd6t69e7rjjjvSxx9/nPUmi+Ed77nnnuzYAQAAAAAAWL2U5Mp2wVpB66yzTho+fHgaNGhQ9u/jjjsuvfjii2natGnZvy+99NJsGMV33323rrJs9Hr06JG9568RAAAAAAAAKy/eUqdzllWc7+upp55Ke++9d+m/27Vrlw2hCAAAAAAAAA1BnQbLYkjD/JxgL730Upo1a1a5YNncuXNTmzZt6jJLAAAAAAAAaBhzlv3kJz9JF110Ufrkk0+ybm5t27ZNBxxwQOnyqVOnpk6dOtVllgAAAAAAANAwepadd9556aSTTkrPPfdcatq0aRozZkxpT7LPP/88Pfzww2nfffetyywBAAAAAACg1kpyuVwurQRLly5NCxYsSGuuuWZq3rz5yshytZ9wDgAAAAAAgLRC8ZY6HYaxOk2aNEnrrLPOysoOAAAAAAAAVu4wjOG9997LhmLcfPPN0xprrJGeeOKJLP2jjz5KJ554Ynr++efrOksAAAAAAAColTrtWfbuu++m3r17p6+//jr16dMnzZ07t3TZRhttlAXKIoC266671mW2AAAAAAAAsOqDZb/61a+y91deeSWbmywCZGX169cvjR07ti6zBAAAAAAAgIYxDOO4cePSqaeemrbYYotUUlJSaXmHDh3S+++/X5dZAgAAAAAAQMMIls2bNy9tttlmVS5funRp+uabb+oySwAAAAAAAGgYwbJ27dql6dOnV7k85izbaqut6jJLAAAAAAAAaBjBsoMPPjiNGjUqvfvuu5WWjR8/Pv31r39Nhx9+eF1mCQAAAAAAALVWksvlcqmOfPTRR2nnnXdOCxcuTP369Ut/+ctf0jHHHJP9++9//3s2l9mLL76Y1llnnbrKstHr0aNH9j5t2rRVfSgAAAAAAABFF2+p055lG220UXr22WfTnnvume68884Ucbi77747jR07Nh144IHpqaeeEigDAAAAAACgwWhW1zvcfPPN0wMPPJDmz5+fzV+2dOnS1Llz57TeeuvVdVYAAAAAAADQsIJleW3atEm77LJLfe0eAAAAAAAAVlidDsPYpEmTtNlmm6UpU6YUXB5zmDVt2rQuswQAAAAAAICGESwLH374Yerbt2969NFH63rXAAAAAAAA0LCDZb/73e9Sx44d02GHHZb+9Kc/1fXuAQAAAAAAoOEGy2IYxqeffjrtvffe6b//+7/TBRdcUNdZAAAAAAAAQMMMloW11lorPfLII6l///7p0ksvTccff3z67rvv6iMrAAAAAAAAqLVm9bbjZs3SbbfdljbffPNsaMY5c+akI444or6yAwAAAAAAgIYTLMuLnmUdOnRIp512WnrmmWfqOzsAAAAAAABYNcMwRlAshmCsaNCgQemBBx5IJSUldZkdAAAAAAAANJyeZe+8806Vyw4++OA0e/bstGDBgrrMEgAAAAAAABpGz7IxY8akxx9/vMrl8+fPTxMmTKjLLAEAAAAAAKBhBMsGDhyY+vXrl84///yCy2POshNOOKEuswQAAAAAAICGESwLW2+9dbr88stT//7907ffflvXuwcAAAAAAICGOWdZuPDCC9Nbb72VLr744jR37tz0wAMPpDZt2tR1NgAAAAAAANDwepblA2Z//vOf01NPPZX22GOP9N5779VHNgAAAAAAANDwgmX5+csefvjhNHPmzLTbbrull156qb6yAgAAAAAAgIYVLAsHHHBAmjBhQlqyZEnac8890z//+c/6zA4AAAAAAAAaTrAs7LjjjunZZ59Nm222WbrtttvqOzsAAAAAAACosWapDl100UWpZ8+eldI7dOiQJk6cmE455ZT04Ycf1mWWAAAAAAAAUGsluVwuV/vNWVE9evTI3qdNm7aqDwUAAAAAAKDo4i31PgwjAAAAAAAAFMUwjB07dlzmOiUlJWnGjBl1mS0AAAAAAACs+mDZFltskQXDyvruu+/S22+/nebOnZs6d+6cNttss7rMEgAAAAAAABpGsGz8+PFVLrvjjjvSOeeck2666aa6zBIAAAAAAABqbaXNWda/f/90yCGHpKFDh66sLAEAAAAAAKBhBMvCLrvskv7973/XevvFixen8847L7Vr1y61atUq9e7dO40bN26Z273xxhtpyJAhaffdd08tW7bMhoqcOXNmles/9NBDaaeddsrWjaElL7roomw4SQAAAAAAAFYvKzVY9uabb6alS5fWevuBAwemESNGpGOPPTZdc801qWnTpqlfv37p6aefrna7Z599Nl177bVpwYIFqVu3btWu++ijj6bDDz88tW3bNo0cOTL7fMkll6Qzzjij1scNAAAAAABAEcxZNmvWrILpn332WfrnP/+ZrrvuuvT973+/VvuePHlyuuuuu9Lw4cNLh3IcMGBA2nbbbdO5556bJk6cWOW2hx56aPr888/T2muvna688so0derUKteNfffs2TP94x//SM2a/b/L06ZNm3TZZZelM888M3Xt2rVWxw8AAAAAAMBq3rNsyy23TFtttVWl184775wFtDp16pT18KqNe++9N+tJNmjQoNK0GCbxpJNOynqOzZ49u8pt11tvvSxQtiyvvvpq9oo88oGyMHjw4JTL5bJjAAAAAAAAYPVRpz3LLrzwwmw+sLLi3xGs6tKlS9arrOLympoyZUraZpttsl5eZfXq1St7j95i7du3X4Gj/3955OdWKyvmSNt8881LlwMAAAAAALB6qNNg2cUXX5zqy9y5c9Omm25aKT2fNmfOnDrJo+w+K+azInn06NGjYPqMGTOyHncAAAAAAAA08mEY69PChQtTixYtKqXHUIz55XWRR6gqn7rIAwAAAAAAgNW0Z1n4+uuv05VXXpnuu+++9NZbb2VpnTt3TkceeWQ6++yzU+vWrWu131atWqXFixdXSl+0aFHp8hWV30dV+axIHtOmTVuuHmcAAAAAAAA0sp5lH3/8cdp1112z4Rhnz56dunfvnr3ic6TFslinNmIYxPwwiWXl02JesRWVH36xqnzqIg8AAAAAAABW02DZueeem15//fU0YsSI9OGHH6bnn38+e8Xnq666Kr3xxhvZOrWxww47pOnTp6f58+eXS580aVLp8hWV38cLL7xQLj3mKnvvvffqJA8AAAAAAABW02DZ2LFj08CBA9NZZ52VmjdvXpoen4cMGZKOP/749PDDD9dq30cddVRasmRJuvnmm0vTYrjE0aNHp969e6f27dtnabNmzcoCdrURQyJ27do1yyPyyrvxxhtTSUlJdgwAAAAAAACsPup0zrKFCxemXr16Vbk8lt1zzz212ncExI4++ug0bNiw9NFHH2XzoN12221p5syZadSoUaXrDRgwIE2YMCHlcrnStC+++CKNHDky+/zMM89k79ddd11q27Zt9jr99NNL1x0+fHg69NBD0w9+8IP0k5/8JL3yyivZuieffHLq1q1brY4dAAAAAACAIgiWxTCFr776apXLX3vttRUaynDMmDHpggsuSLfffnuaN29e6tmzZ9abba+99qp2u1g3tisrhoUMHTp0KBcsO/jgg9P999+ffv3rX6czzjgjbbjhhun8889PF154Ya2PGwAAAAAAgIapJFe2C9YKGj9+fNYrK3p8HXHEEeWW3XfffemEE07IhmHs27dvXWXZ6MXQj2HatGmr+lAAAAAAAACKLt6yQj3LTjzxxEppHTt2zOb22mabbVL37t2ztOhtNn369LTddttlvcMEywAAAAAAAGj0PcuaNGmy/BmWlKQlS5bUNsvVjp5lAAAAAAAAjbRn2dKlS1dkcwAAAAAAAFillr9rGAAAAAAAAKwmVqhnWU1MmjQpzZ49O2222Wapd+/etRq6EQAAAAAAABpVsOz9999PBx10UHrppZdK07p165Yefvjh1LFjx/rKFgAAAAAAAGqs3rp5/fznP0+bbrppmj59elq4cGF67rnn0pIlS9LgwYPrK0sAAAAAAABYucGyxx57rGB6BMcuvfTS1Llz59SiRYvUq1evLIAW6QAAAAAAALBaBMsOPfTQdPzxx6fPPvusXHrMUfb000+XS3vmmWdSu3btVjRLAAAAAAAAaBjBsugp9sorr2Tzkd19992l6b/85S/TkCFD0p577pmOPfbYtN1226W77rorSwcAAAAAAIDVIli20047pcmTJ2eBsRNOOCHraTZnzpx02GGHZYG0Hj16pM8//zz16dMnjR8/PgucAQAAAAAAQENQksvlcnW1szfffDP97Gc/S1OnTk2XX355OuWUU+pq16utCCaGadOmrepDAQAAAAAAKLp4ywr3LCtr6623znqP/f73v0/Dhg1Lffv2zQJoAAAAAAAA0BDVWbDsm2++SfPnz88+Dxo0KIvcrb/++mn77bdPv/vd79KSJUvqKisAAAAAAABoGMGyzz77LB1xxBFprbXWSuuuu27q2bNneuGFF1K7du3S/fffn26//fY0cuTItPPOO6cXX3yxbo4aAAAAAAAAGkKw7KyzzkoTJ05MN910UxYci6DZkUcemb799ttseXx+7bXXsmBZnz590jnnnFMXxw0AAAAAAACrPlj26KOPpl/84hfphBNOSIcddlj605/+lGbPnp1effXV0nXWWWedNGrUqPTYY4+lBx98cEWzBAAAAAAAgIYRLGvevHlauHBh6b8XLVqUSkpKUrNmzSqtu++++6aXX355RbMEAAAAAACAOlE5orWcYr6yyy+/PH333XfZnGU33HBD6tq1a+rWrVvB9Vu2bLmiWQIAAAAAAEDDCJYNHz48NWnSJJuz7Ouvv0677757uuaaa7I0AAAAAAAAaMhKcrlcblUfRDHr0aNH9j5t2rRVfSgAAAAAAABFF2/R/QsAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQaXbBs8eLF6bzzzkvt2rVLrVq1Sr17907jxo2r0bbvv/9+OuaYY1Lbtm1TmzZt0mGHHZbefvvtSuuVlJQUfF1++eX1cEYAAAAAAACsKs1SIzNw4MB07733prPOOittvfXW6dZbb039+vVLTz75ZNpjjz2q3O7LL79M++yzT/riiy/S+eefn5o3b56uvvrq1Ldv3zR16tS0/vrrl1t///33TwMGDCiXtuOOO9bbeQEAAAAAALDyNapg2eTJk9Ndd92Vhg8fnoYOHZqlRUBr2223Teeee26aOHFildvecMMN6c0338z2seuuu2ZpBx54YLbtVVddlS677LJy62+zzTapf//+9XxGAAAAAAAArEqNahjG6FHWtGnTNGjQoNK0li1bppNOOik9++yzafbs2dVuG0GyfKAsdO3aNe23337pnnvuKbjNwoUL06JFi+r4LAAAAAAAAGgoGlWwbMqUKVmPr5hvrKxevXpl7zGcYiFLly5NL730Utpll10qLYttZ8yYkRYsWFAuPYZ3bN26dTYvWvfu3dOdd95Zp+cCAAAAAADAqteohmGcO3du2nTTTSul59PmzJlTcLvPPvssLV68eJnbdunSJfu8++67p2OOOSZttdVWWfr111+fjj322Gy+s1NPPbVWx96jR4+C6RGo69SpU632CQAAAAAAQBEFy2JYxBYtWlRKj6EY88ur2i7UdNtnnnmm3Donnnhi2nnnndP555+fBg4cmPU2AwAAAAAAoPFrVMGyCFJFD7GK8vOKVRXEyqfXZtuwxhprpNNPPz2dcsop6T//+U/aY489lvvYp02btlw9zgAAAAAAAKh/jWrOshgyMYZirCif1q5du4Lbrbfeelmvstpsm9e+ffvSIR0BAAAAAABYPTSqYNkOO+yQpk+fnubPn18ufdKkSaXLC2nSpEnabrvt0gsvvFBpWWzbsWPHtPbaa1eb99tvv529b7jhhitwBgAAAAAAADQkjSpYdtRRR6UlS5akm2++uTQthlYcPXp06t27d2nvr1mzZqXXX3+90rbPP/98uYDZG2+8kZ544ol09NFHl6Z9/PHHlfJdsGBB+sMf/pA22GCDbO4yAAAAAAAAVg+Nas6yCIhFYGvYsGHpo48+Sp07d0633XZbmjlzZho1alTpegMGDEgTJkxIuVyuNG3w4MHplltuSQcddFAaOnRoat68eRoxYkTaeOON09lnn1263vXXX58efPDBdMghh6QtttgiG6bxz3/+cxaAu/3227P5ywAAAAAAAFg9NKpgWRgzZky64IILssDVvHnzUs+ePdPYsWPTXnvtVe12Mczi+PHj05AhQ9Ill1ySli5dmvbee+909dVXlxta8Xvf+16aOHFi+tOf/pQ+/fTT1Lp169SrV68sYLbvvvuuhDMEAAAAAABgZSnJle1+xUrXo0eP7H3atGmr+lAAAAAAAACKLt7SqOYsAwAAAAAAgLokWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNFqdMGyxYsXp/POOy+1a9cutWrVKvXu3TuNGzeuRtu+//776Zhjjklt27ZNbdq0SYcddlh6++23C647atSo1K1bt9SyZcu09dZbp5EjR9bxmQAAAAAAALCqNbpg2cCBA9OIESPSsccem6655prUtGnT1K9fv/T0009Xu92XX36Z9tlnnzRhwoR0/vnnp1//+tdpypQpqW/fvunTTz8tt+5NN92UTj755NSjR48sSLbbbruln//85+mKK66o57MDAAAAAABgZSrJ5XK51EhMnjw560k2fPjwNHTo0Cxt0aJFadttt00bbbRRmjhxYpXb/v73v896pMU+dt111yzt9ddfz7Y999xz02WXXZalLVy4MLVv3z716dMnjR07tnT7/v37pwcffDDNnj07rbvuunV2ThGQC9OmTauzfQIAAAAAABSTHisQb2lUPcvuvfferCfZoEGDStNimMSTTjopPfvss1kgq7ptI0iWD5SFrl27pv322y/dc889pWlPPvlk1tNs8ODB5bY/7bTT0ldffZX+/ve/1/l5AQAAAAAAsGo0qmBZDJu4zTbbZPONldWrV6/sferUqQW3W7p0aXrppZfSLrvsUmlZbDtjxoy0YMGC0jxCxXV33nnn1KRJk9LlAAAAAAAANH7NUiMyd+7ctOmmm1ZKz6fNmTOn4HafffZZWrx48TK37dKlS5ZH9F6LYR3LWmONNdL6669fZR417f5XUQwF2bx58yqXAwAAAAAAUL3oGBXxltW+Z1nMJ9aiRYtK6TEUY355VduFmmwb7xEYKyTWrSqP2iopKal14dE4H9Z4UVyUe/FR5sVHmRcn5V58lHlxUu7FR5kXH2VenJR78VHmxUm5F5fmzZun1q1br/49y1q1apX1EKto0aJFpcur2i7UZNt4/+abbwruJ9atKo9lqc2Ecqx+VmSCQRov5V58lHnxUebFSbkXH2VenJR78VHmxUeZFyflXnyUeXFS7qyWPctiyMQYJrGifFq7du0Kbrfeeutlvcpqsm3ksWTJkvTRRx+VWy8CaJ9++mmVeQAAAAAAAND4NKpg2Q477JCmT5+e5s+fXy590qRJpcsLadKkSdpuu+3SCy+8UGlZbNuxY8e09tprl9tHxXXj30uXLq0yDwAAAAAAABqfRhUsO+qoo7JeXzfffHNpWgytOHr06NS7d+/Uvn37LG3WrFnp9ddfr7Tt888/Xy4I9sYbb6QnnngiHX300aVp++67b9YT7cYbbyy3ffx7zTXXTAcddFA9niEAAAAAAAArU6OasywCYhHYGjZsWDZMYufOndNtt92WZs6cmUaNGlW63oABA9KECRNSLpcrTRs8eHC65ZZbsmDX0KFDs4neRowYkTbeeON09tlnl64Xc5L99re/TaeddlqW1wEHHJCeeuqpdMcdd6RLL700C6QBAAAAAACwemhUwbIwZsyYdMEFF6Tbb789zZs3L/Xs2TONHTs27bXXXtVuF8Msjh8/Pg0ZMiRdcskl2ZCKe++9d7r66qvThhtuWG7dCKxFMO2qq65KDz30UNZjLdY788wz6/nsAAAAAAAAWJlKcmW7XwEAAAAAAEARaVRzlgEAAAAAAEBdEiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAQAMwcODAVFJSkmbOnLmqDwUahL/+9a9pxx13TGuvvXb2bJx11lkrNf8tt9wye1Ec9en48eOzbS6++OJ6PbbG5tZbb82uS7yvrorhHKle1BVxD0TdAQAUL8EyAIAaioaUsq+mTZumDTbYIO27777pzjvvTI290a/i+VV81WdDYjRQV8yvVatWaZtttkmnnXZaeu+991IxifPfe++9U7F69tln07HHHpsWLFiQTj311HTRRRelH/7wh6lYCNTVrL6IANfq2hje2I63PsqsrgiEEor9exUAWLZmNVgHAIAyouE+fPvtt+n1119P//u//5uefPLJ9MILL6QRI0bUap+/+93v0i9+8Yu02WabpYZyfhXtsMMO9Z533759SxuzPvnkk/SPf/wj3XDDDemee+5Jzz33XOrUqVO9HwOr3t///veUy+XSmDFj0u67775KjuFf//rXKsmXFVeb+rRXr17ptddey34AQXE54ogjUp8+fdKmm266qg8FAIBVSLAMAGA5Vfx1ejSq77///ukPf/hD+vnPf16rHiHRSNdQGupW5a/vI1BWNv8ISB544IHZNb7kkkvS6NGjV9mxsfLMmTMne2/Xrt0qOwaB2carNvXpmmuumbp27Vpvx0TDtc4662QvAACKm2EYAQBW0H777Zc1skZPmOeff740/T//+U868sgj00YbbZRatGiROnTokAYPHpzmzp1bozl2yg7DFZ9/8pOfZL0eWrZsmXbZZZc0duzYSoGmE044Ifsc72WHNGysc6E1b948DRo0KPs8efLkSnNa7bPPPqlt27bZNenWrVsWUFu8eHGVwy998MEH6eSTT856nMQwmmWHloz9//jHP86WRXlFY/sPfvCDrFdbRZMmTUpHHXVU2mSTTdIaa6yR2rdvn/77v/+7NMhTVuQb+X/33XfpsssuS1tvvXW2/9jmvPPOS998802lYTTDhAkTypVh2SBirBf3VseOHbPhKtu0aZO+973vpTvuuKPKaxn3ZpxPzAEW63//+9/Phjusbni06DkZ918ca5znxhtvnP7rv/4rvfHGG2l5LF26NP3xj39Mu+66a1prrbVS69ats8833nhjtqzi+eeDoltttVWN7+Gy5xH3xs4775wFQCLg9j//8z+l98UTTzyRlUlcg3XXXTcdd9xx6dNPP63RUIhlhzmN3qSxn/z1POigg7KeSVWVf02GTc0PF/fuu+9mr7LlX3E4vuUpmw8//DANHTo0denSJbv28czE59j+7bffrva6VrweX3zxRTr99NOz5ySeu+7du6drr702q/8Kiednr732yoIRca9ut912Wc+vQs/pSy+9lH76059m+cQzsuGGG6addtopm68uAuf54/j1r3+dfY7nv+w1qqo+jXsj7qVw2223FRxettBQfVGvx7WNXq6FXHHFFdk21113Xbn0GDY2rlE8n3Ee66+/fjr00EPLfT9UpybHuzzPVU289dZb6eijj86eidhP9OiMHp7Vqel51qTMwtdff53dG9GLOY4hzmm33XbLnueqRO/jQw45pPR7Np6Hww47LP3zn/8svRcizxDHUDbvfJ1X3fDFtf0ev+mmm7J7PZ6ReDbjeyyenZoqW5/FPRDzN8bzE8dx4oknZt9lhXz22Wdp2LBh2fdhrB/PXfyNEteporLn/dhjj2V1VaxfVX1V6Fzfeeed7P6PeiDONco6vufy9cHf/va3rNdmlGcce9wvCxcuLLjP+FFMDLe73nrrZdc6hmGOHqKFrlt9fK/m1eTvLQBg9aRnGQBAHcg3DOUbZKJhJRrYIj2CKtHAFo1u0YgZwzY+/fTTpY2hyxKN5tHYFA2S0bAfjWF33313aYNgviEwGq+iETz2H8vKDpsY6avLtQ3RWBgBlc033zy7znF+MUzjBRdckDW4jRs3LjVrVv5P3bhuMdRWNMD+6Ec/Sk2aNMkaMcMtt9ySzY0VAbRo7I2Gt48++igbWjOGgTzmmGNK9/PnP/85a/iMhrlYNxrn3nzzzfSnP/0pPfzww9lxbLHFFpXOIwIZTz31VNZTLoIrjzzySPr973+f5ZMPDkWZxTCY0agb90zZAEnZuVbiWHv06JEFISKoF8Ge2F/cHxEs+e1vf1su73//+99ZoGzJkiXZuUevqZdffjm7d2LOvUKi8TTWjSBFNEZ37tw5axy///77s0b0CBZFIKMm4rhiXr+4VhGsjLJ84IEHskbneBb+8pe/lDv/Bx98MP3f//1fOvPMM0vv3ZrewyNHjkyPPvpoOvzww7NrFo3EV199dVb+8VxEI2gEtqIMJ06cmAUYIxgS29RUPN/xnEVZnnLKKenVV1/Nrn8ECeJzbYfyi4bmOP/opRoiSJRX9nlenrKJAEQEUmfMmJH1gI3145mKeiXOIeqnqFtqIhqgI8j6+eefZ9cx/n3fffdl5RT33fXXX19u/fPPPz8LfsT1iPs/nr24zpH++OOPZ2UTwah8oKx3797ZvRHPVdSP8+fPz4I48QxGIDyC53FN4v6IRu/jjz++Rj154z6IY77mmmvS9ttvn90bha5rRbH/ONYI1pxxxhmVlkcQI44/zi3vxRdfzJ61uN8OOOCArJzi/opj3mOPPbL7vl+/fnVyvDV9rpYl6q8ISkU9Evd05BHXPfKNfxeyPOdZkzKL8426aMqUKdm9G3V8BPziPonrO23atOweKCueld/85jfZfRXHGtchfrCQf67jXs1fuyirssP8hmXdO7X9Hj/33HOz445nLa5RPI/xHRPXNIL1yyPqrnhO4occEUiKPOP7IoJo8aONCCjnxTMd5xfBnj333DNb/6uvvsrOIz5HAO9nP/tZpTzuvfferE7J12exn5qKIHwcS/5cH3roofTLX/4yqxsi6BXBriiDOJ74Xo46Ir6H4hqWFccW32sRVIugbQTWYr8RkI7v1Weeeabgd0Bdfq8uz99bAMBqKgcAQI3En06F/nwaN25crqSkJHvNnDkzt2DBgtx6662Xa9KkSe7f//53uXUvv/zybB/7779/ufTjjz8+S3/nnXdK0+JzPs+LL7643PqPPfZYln7ggQeWSx89enSWHu+1Pb+LLrqo0qs2+1sekUc+77K+/fbb3L777pstO/HEE8ud4xFHHJH7+uuvC+7nD3/4Q8FzO+6447J9ljVt2rRcs2bNcuuuu27ulVdeqXRss2fPLv38xhtv5Jo3b57r1KlT7r333iu33j//+c+szA8//PBy6X379s3y3mmnnXKffvppafqXX36Z7Se2mTt3bqXjje2q8tZbb1VKW7x4cXat4lzKHtuSJUtynTt3zvb5yCOPlNvmxhtvLL02Tz75ZGn6Z599lmvbtm1u/fXXz65PWS+//HKudevWuR133DFXE3feeWe2/1g/no2y57/zzjtny/7yl78s83lYlnzZt2nTJvfqq6+Wpi9atCjXvXv37DrHczl+/Phy1+b73/9+tt2UKVPK7a9Dhw7Zq6z8vde0adOsvMv6xS9+kS274oorCpZ/IVU9r4Xyrm3ZPPTQQ1keZ511VsF7Zv78+bmaiOOJ/Xzve9/Lrmle3NMdO3bMlk2YMKE0feLEiVla+/bty93f8fwdfPDB2bJLL720NP1//ud/srQHH3yw4DlHWVUs67L3bE3r01hWSOyrYh0Uz37cN3GfVjR58uRs/R/96Eflzi2e6RYtWpS7z8L777+fa9euXW6TTTYpd/2qsqzjrc1zVZX4PipUb0ZZ5OuHsvdobc6zpmVW8flZuHBh7oADDsi+X8s+o48//ni2/lZbbVWpLq5Ybxcq22U9hyvyPR73/Lvvvlvueu25557ZskmTJuVqIn+94vvmxRdfLLcsnuWy34ll65q4Tn/961/Lpc+bNy+3/fbb51q2bJn74IMPKp13bPPoo4/W6LgqnmvUC2Wvf+QVddOaa66Z22CDDSrVxd26dcutscYauQ8//LA0Pf5uirS1114799prr5XL59RTT83y+dnPflav36u1+XsLAFj9GIYRAGA5xbA98YpfT8evzeMX29EOE7+ej18txy/O49fI8Uvw+DV1WWeffXb2a/b4hfWsWbNqlF/s81e/+lW5tPglf/Reqjg0YV2IX19XfBUanqo+xC/J89c3enLE0E7xS/zomRLXO0Rvi+g1Fj28YpipsqJnWQwFVqhHRfQAufLKKyv1OItfuMdQTrFt9NaqKHqvlV03evPEMcQwdGXFUFfRIyZ+Bb9gwYJK+4lfyMcv7fPiF/THHnts1nsierCt6HxacX6nnXZadi7Ruy4vellEj4b4RXzFXiLRuyqGuqpozJgxWU+PKPsog7K23XbbrHdC9ACJXlTLEuUULr/88qwHSNnzj2sSoldeXYl5A2MIsrzoARjPYlzn6FEWvUvyondh//79s8/Rk62moldVlHdZVQ0XWtdqWzYVn5X8PRPDSC6P6CkW1zQv7ul4dkLZOQXz5R51VwxXmhfP31VXXZVd+0LlXug4Y2jAWH9li2c/yjl6E0XPprKip1KInlJ50asvevBF3VX2PgsxHGj0OIrh88o+n7VVV89V9EiM76PoIRVD5JUVvWkqnkd9nGf0aIueYDHcXWxbVgyDF+cT37HRi65sD9IQ91LFurhivV0bK/I9fuGFF5brXRz3fH6I5OWtH6J3UwzBWFZ8P8ZwiXE98sOZRv0VPfeiJ1zUT2VFj6yoLxYtWpT1BK0oyjn+jqmNePbLXv/IK74Ho0dr9BQrVBdHr7OyQ9ZG2Uda3H8V5w289NJLszrq9ttvLzh0a11+r66Kv7cAgIbFMIwAAMspP/dKDHkVDUPRkHbSSSeVNrrH8FSh0PB20WgWQ+fFMEnRoF1ouL6KYgihGB6wohhyKuacqmtVzT20LNGAnx8+rqwIItZ0CL1o7ItXyM8FFsNCxVBo8Tka4KJRMIJnhfLKN8gVmjsqGjdjaKeKYtjEUNVwY2Xlr3ccY6H5h2Lopxhiavr06dmcWWVFQ3BFcU5h3rx5aXlEA200EkZjdHyuOAfM+++/X/o57rMQQ6NVFAGImJsojrfQeca1LjSnS379uM4VAzYVxfMQ+VQc7ipEQ3vc2/ljrAuFrnM04IeKZRLyDb0RNFiRPGpblstrecsmrnGcYwRVoixiaLwYlrGqeqU6UX/F/VJRvmzLlmN19WAEaCOYEfMdxXxE0fAfjegRhI4h2+JHCDGEXhxnocDwyhRDtkVQJIJjMbxbiIb9GJox6pOyQyrmyyaGcitUNjHcYb5sljUU47LU1XNVtn4odD/E/vN1cn2dZ9SlUW9WNYdUfr66svV61Nuxfm2DPMuyIt/jdVk/FApWxvMSz2+US1yT+Jwvk3ieCl3Djz/+OHsv9N0Yww6uyvq2umsdgfIIFsZQwjFPYwxLWp918cr+ewsAaFgEywAA6jiYlJ+MPuaSKiSfHsGlmqgq0BQNdvHr6YYi39ulovxcajUR84oUaujLi8avuP7R8Fcor+qU7d1SVr4cCvVOKNQDIgwfPrza9b788stKaYWuQb6XWzQU19Tbb7+dNW7GtYhAbcwTE42n0cAXjbfRqF/2F/j5+zE/P1tFhdLz5xnz7CzveVYU+ccv//NzU1U8/wh8RpCxrsS1KJTPspblG+Rroq7KsjaWt2xiHp8ILMSzFfMJxVxKIa57zG0VvShiLrCaiG0KNSTnn638vVbTejACvfH8RbnEPR1zD0VPkphDKXqShC5dumTH/tOf/jStCkcccUR2DaP3S/Sqi/OPOaCi11H8EKBsT9V82fztb39b4edmZT1Xy6ofCtWbdX2e+f1F0KzQjxAK7S/umwikFOqJWBdW5Hu8LuuHZZVL/jjz1zACu/FanjKp6rtxZdW3DeVaV7W/hvj3FgBQPwTLAADqWL6BKIahKmTu3Lnl1ltdRM+t2vZKq6n8NYtfmud/jV5T0Quhusax6I1VcQioqvKPxr1oQF8VRowYkTWMxpB3EYgsK3q75IeHy8sf54cfflhwf4XS8+cZvZd69uy5Qscb+4rAQjSOVgzKxJCRn3zyySq7litDfvjAONeKQ4DWNGC+omUTvbhGjRqVPZ8xPGMMbXr99den3/zmN1kD8G9/+9sa7SfKKhqgKwbM8nVd2TqtbD1YqHdYoXpwt912ywJREeyNoQ8fe+yxbLi9//qv/0obbrhh1ttsZYtgzDHHHJMNaRhBiOjJVGgIxrLnEkP4xVB09amunqv8MVdVPxT6Hqvr88zvb8iQIVn9VhNRb0c9GL1q6yNg1lC+x5dVLvn88+/ROzOGoq2L78aVpey1LjQU8ur6NxMA0PCYswwAoI7l5xeJ+bcqikbM6D0RdtpppzrPO9+IXd+9W1aVmJsnGtNi/qBoKK4Lffr0yd4fffTRGq+bL8P6DLBUVYYx/1iIuWkqqjhcWtn78emnn660LAIlMadZfZ5n5B/5xDBaFUVanGd9PAsNRfR+CbNnz660rKo5deI5rqr8V6RsolE8np+Yayrf++TBBx+s8fZRfxW6X/J1Xdm5laqrB+MejmHYYp6sQj05YijVGO4xgnnXXnttaWBmReq5Fakb80HpCJJFr9aoKyJQGUO21ddzs6zjravnqmz9UCivQuVXm/Os7nyiV2HUecuzvziGCP5GQHVF8m6I3+PLqtPjxxpTp07N5nPLzwm2sr6b6kN11zp+UFDxXOvjexUAIAiWAQDUsZhzJ4bHil4++fmw8mKerZinJ3pI1GS+suW1/vrrZ+8xvNnq6n/+53+yOYNOPPHEgj1zYnjC5el1duqpp2Y9fqJ3TfS6qajs3Cqnn3561osjekBUnOcrxHHVRWNllGOh4Eq+B1+hhsUYXi96v1SUn/fpySefrBQQvPnmmwuexwknnJAFMWKoy8mTJ1daHo30hRo2C4lyCsOGDcvmnMuLz7/4xS+yzzHn3+oqPx9QxWETY765qCOqKv8IylSci642ZROB5UK9U/Jpa6655nKdT5Rj2WE+I2h9ySWXlB5bxXKPZfn5kkI0Vg8dOjQ7zrLlHkG4Qudb6DhrU89F0DKChbWpG+MZ2nrrrbOA3R//+MesN1fFXp3hsMMOy5616LX3yCOPFNxXzHtU9jmo7fHW1XMVvQ7333//7HvpuuuuK7cszrdQsKY251ldmcXcb8cee2wWPI56uFBAY8aMGdkx5kXAN5x99tnl5mjMK5tWm/tlVX6PlxXDkVacey6GKo6AWQxNGoHl/NxdMSzv/fffn/785z8X3NfLL79cp0Pe1pWY7zW+V6MXaf7HIHkXXHBBmj9/frZO/lzr43sVACAYhhEAoB56P0Vj1dFHH5369u2bvUeDWgwr9o9//CObH+Smm26ql7xjGLNoVI7GvBiiKj8XSTQsri5DGEUjcVzLG264IWuwPeCAA7LrG4320YAZvSqi0T4atWuie/fu2b5OOeWU7Bfu0RAcDeNx/WL+nBjKLAJNIYZpjLKNY4geOjEk2zbbbJM1nkdDbATKYri4119/fYXOcb/99kt33XVXOuSQQ7KeC9GQuNdee2WvmGcqhmCM++qoo45K7dq1S6+88krWwyKGi7v77rsr/Zo+gmhxrDFkWvRIi+v20ksvZb2LDjzwwCyIlh8uMN+oGPNGxXxN0WMhjifONxrvo7ExGsLj+ixatGiZ5xJD6EWj+z333JPtIxqhYz/RoynK68c//nHWUL66insx5riL+a5i6MS43yJAGdc8ru99991XaZu43nHvRZlFmUcj8fbbb5/dD8tbNlHG55xzTlY3xL0agYkIAEeZRJnHspqKuYMiULbttttm91Lc93EsMUxa3JdxrHnRM+zcc89Nv//977P1415t3bp1dt5xv+6xxx7l8o71YnjIaPCPHmdRj0agL9aPwNGgQYNK191nn32yY49AUewr33sv5l+rSuyvd+/e2TMa91tci+hxFOdRk+EsBwwYkDXcRzAnguuF7tl4TiNYEXXSQQcdlF2D6H0WdXKUTZRpzDkY12tZQcplHW9dPlcR9Ir7I+Zgi++ouNciaPHAAw9k99zDDz+8wue5rDKLQN2bb76ZLrzwwixAFPdHzNc1Z86c9Nprr2X7jMBV3Bsh5mqMbSMYGz2O4vzbt2+fBVejl1w8G7feemvpvHcxJ2XUqXHsHTp0yK7Vcccdl31uaN/jZUX9HMHaqNvj+Ytzi1f8aOLyyy8vt+6dd96Z9t133yxIGj0y4/6JwHo871Hfx3WP+iHqgIYkziX+ZjnttNOy77s41/gejUBtHG98715xxRUrnE9136sAAJkcAAA1En86Lc+fT5MnT84dfvjhuQ022CDXvHnzXPv27XOnnHJK7v3336+07vHHH5/t+5133ilNi8+RFssK6du3b8HjefTRR3N9+vTJtW7duvSYy+63rs6vLl100euLwU4AAIT8SURBVEVZ3vFeUw8//HDuoIMOym244YbZ9d14441zu+66a+6Xv/xl7rXXXiu3buw7rld1Jk6cmPvRj35Uur9NN900d8ABB+T+9re/VVr3pZdeyspliy22yK2xxhq5ddddN9ejR4/coEGDcv/6179qVE5h9OjR2bJ4L+vDDz/M/fSnP81ttNFGuSZNmlS6Ns8880xun332ybVt2za31lpr5b73ve/lHnjggdyTTz5Z5XV87rnnct///vez9eO13377Zed82mmnZdtMmTKl0jZx38Tyzp0751q0aJFbe+21c126dMn1798/y6+mlixZkrv++utzO++8c65Vq1bZa6eddspdd9112bKaPA81vYfiGtT0OoeqrlmHDh2yV033U9199sorr+QOPPDA7LrHcxnrjB8/vsr9ffnll1ldsdlmm+WaNm1asB6oadm8+uqruSFDhmTXPuqiuF/jvI488sjsPqqp/PX4/PPPc4MHD861a9cu21fXrl1z11xzTW7p0qUFt/vrX/+a3Z9x7nGc3bt3z11yySW5hQsXllvv8ccfzw0cODDXrVu3XJs2bXJrrrlmbptttsmdccYZuZkzZ1ba7+23357bfvvtcy1btqxUd1V1/7z55pu5gw8+OLfeeuvlSkpKyl376p6d8O6775Y+i7GP6sTze95552V1QtzrUeZRTnHN47i//fbbarevyfHW5rlaVl5xfOuss0527eM7ZOzYsdXe88t7ntWVWVi8eHFu5MiRud122y27B+L+iu/NfffdN3f11VfnPvnkk0rH8Pe//z2rp6MOjvU333zz7Hu3Yj0c38exn9hv/lrm64rqznFFv8fzlnV/VVefxXHlr1scRzwnc+bMKbjd/Pnzc5deeml2H0R5xDZbbrllrl+/frmbbropq1tqWp9Vp7pzrW1dHHXA/vvvn32vRVl26tQpd8455+TmzZtXad26/l6t7d9bAMDqpST+I24IAADFKXotTJo0KRvWK3r+QHXDf86cOXNVHwqs9mKoxRhqNXo177333qv6cAAAioI5ywAAYDUXcwcVmt8thimLuaJiSDOBMgAAAIqVOcsAAGA1F/OpxXxs+++/f+rcuXP67rvv0pQpU7K5b2JOm6uuumpVHyIAAACsMoJlAACwmtt4443TsccemyZMmJAN67V48eK0ySabpBNOOCH98pe/TJ06dVrVhwgAAACrjDnLAAAAAAAAKFrmLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARavZqj6AYrfJJpukr776Km2xxRar+lAAAAAAAAAapVmzZqXWrVunDz74YLm31bNsFYtA2bfffruqDwMAAAAAAKDRilhLxFxqQ8+yVSzfo2zatGmr+lAAAAAAAAAapR49etR6Wz3LAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFq1EFyxYvXpzOO++81K5du9SqVavUu3fvNG7cuGVud//996cf//jHqWPHjmnNNddMXbp0SWeffXb6/PPPC67/0EMPpZ122im1bNkybbHFFumiiy5K3333XT2cEQAAAAAAAKtSowqWDRw4MI0YMSIde+yx6ZprrklNmzZN/fr1S08//XS12w0aNCi99tprqX///unaa69NP/zhD9N1112Xdtttt7Rw4cJy6z766KPp8MMPT23btk0jR47MPl9yySXpjDPOqOezAwAAAAAAYGUryeVyudQITJ48OetJNnz48DR06NAsbdGiRWnbbbdNG220UZo4cWKV244fPz7tvffe5dLGjBmTjj/++HTLLbekk08+uTS9R48eqXnz5umFF15IzZo1y9J+9atfpcsuuyy9+uqrqWvXrnV6XpFfmDZtWp3uFwAAAAAAoFj0WIF4S6PpWXbvvfdmPcmil1heDJN40kknpWeffTbNnj27ym0rBsrCEUcckb1Hj7O8CIbFK/LIB8rC4MGDU8QU4xgAAAAAAABYfTSaYNmUKVPSNttsk9q0aVMuvVevXtn71KlTl2t/H3zwQfa+wQYblMsj7LLLLuXWjTnSNt9889LlAAAAAAAArB7+v+5TDdzcuXPTpptuWik9nzZnzpzl2t8VV1yR9VQ76qijyuVRdp8V81nePAp1/6toxowZqVOnTrXeL8D/r70/gdd6zB/H/+u0qCxpGFtJlqJEshUGhTGN7GMZM5pkmYYwNLJkxjaWQWSIMZYkjDHGNjSWyYcaRGloEMlEiiJLZKlQ9//xen//9/mdteV0n8453c/n43F3n673cr33+77fr/f1uhIAAAAAAKt+y7L58+enZs2aVSqPVIz54cvq7rvvTsOHD09nnHFG6tChQ7k6QnX1LE8dAAAAAAAA1H8NpmVZixYt0sKFCyuVL1iwoHT4snjmmWeyfs569eqVLr300kp1hOrqWdY6qlJdh3LVtTgDAAAAAACg9jWYlmWRBjGfJrGsfFn0K7Y0//3vf9NBBx2Uttlmm3TfffelJk3Kxwrz6Rerq2dZ6gAAAAAAAKDhaDDBsq5du6apU6emefPmlSsfP3586fAlib7BfvzjH6f1118/Pfroo2nNNdesso4wceLEcuXRV9l777231DoAAAAAAABoWBpMsOzwww9PixYtSjfffHNpWaRLHDFiROrevXtq27ZtVjZjxow0ZcqUctN+8MEH6Uc/+lFq1KhReuKJJ9J6661XbUrEjh07ZnVEXXk33nhjKikpyZYBAAAAAACAVUeD6bMsAmJHHHFEGjx4cJozZ05q3759GjlyZJo+fXoaPnx46Xh9+/ZNY8eOTblcrrQsWpS9/fbb6ayzzkrPPvts9srbYIMN0r777lv6/yFDhmSpGiO4dtRRR6XXXnstXX/99emEE05InTp1WolrDAAAAAAAQG0ryZWNKtVzCxYsSOedd16666670ty5c1OXLl3SxRdfnHr16lU6Ts+ePSsFy6JVWHV69OiRxowZU67soYceShdddFF64403slZo/fr1S+eff35q2rRpwdcpWrOFyZMnF3zeAAAAAAAAxaDzCsRbGlSwbFUkWAYAAAAAAFB38ZYG02cZAAAAAAAAFJpgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKVoMKli1cuDCdffbZqXXr1qlFixape/fuafTo0Uud7s0330wDBw5Mu+22W2revHkqKSlJ06dPr3LcTTfdNBte8XXiiSfWwhoBAAAAAABQl5qkBqRfv37pvvvuS6effnrq0KFDuv3221Pv3r3T008/nXbfffdqp3v++efTddddl7beeuvUqVOnNGnSpCXW07Vr13TGGWeUK9tyyy0Lth4AAAAAAADUDw0mWDZhwoR0zz33pCFDhqRBgwZlZX379k3bbLNNOuuss9K4ceOqnfaggw5Kn332WVprrbXSVVddtdRgWZs2bVKfPn0Kvg4AAAAAAADULw0mDWO0KGvcuHHq379/aVmkVDz++OOzlmMzZ86sdtp11lknC5Qtj2+++SZ99dVXK7TMAAAAAAAA1G8NJlj28ssvZ6kQW7ZsWa68W7du2fvSWostj6eeeiqtvvrqac0118z6MLv22msLNm8AAAAAAADqjwaThnH27Nlpo402qlSeL5s1a1ZB6unSpUvW/9lWW22VPvnkk6xftOgjLeZ/xRVX1Hi+nTt3rrJ82rRpaYsttliBJQYAAAAAAGCVD5bNnz8/NWvWrFJ5pGLMDy+Ehx9+uNz/jz322LTffvuloUOHplNPPTVtvPHGBakHAAAAAACAutdggmUtWrRICxcurFS+YMGC0uG1oaSkJA0cODA98cQTacyYMalPnz41ms/kyZOXq8UZAAAAAAAAta/B9FkW6RYjFWNF+bLWrVvXWt1t27bN3j/99NNaqwMAAAAAAICVr8EEy7p27ZqmTp2a5s2bV658/PjxpcNry9tvv529r7feerVWBwAAAAAAAA08WBZpEiu2vvrkk0/S73//+3TaaaelCRMm1Hjehx9+eFq0aFG6+eaby9U3YsSI1L1799LWXzNmzEhTpkypUR2x7FFHWd9++226/PLL02qrrZb22muvGi8/AAAAAAAAq3ifZQMGDMgCYq+++mppMGuXXXZJ06ZNy/7/5z//OT333HNpp512Wu55R0DsiCOOSIMHD05z5sxJ7du3TyNHjkzTp09Pw4cPLx2vb9++aezYsSmXy5WWff7552nYsGHZ31F/uP7661OrVq2y1ymnnJKVPfzww+mSSy7JAnObbbZZFjy7++6702uvvZYuu+yytOGGG67gFgIAAAAAAGCVDZZFIOrQQw8t/f/f//73LFB24403ph122CELdl111VXpnnvuqdH877jjjnTeeeelO++8M82dOzd16dIljRo1Ku25555LnC7GjenKuvrqq7P3du3alQbLtt1227T11lunu+66K3300UdZa7JI73jvvfdmyw4AAAAAAMCqpSRXtgnWClp77bXTkCFDUv/+/bP//+IXv0gvvfRSmjx5cvb/Sy+9NEuj+O677xaqygavc+fO2Xt+GwEAAAAAALDy4i0F7bOsYn9fzzzzTOrZs2fp/1u3bp2lUAQAAAAAAID6oKDBskhpmO8T7JVXXkkzZswoFyybPXt2atmyZSGrBAAAAAAAgPrRZ9lRRx2VLrjggvTxxx9nzdxatWqVevXqVTp80qRJaYsttihklQAAAAAAAFA/WpadffbZ6fjjj08vvPBCaty4cbrjjjtKW5J99tln6ZFHHkl77713IasEAAAAAACAGivJ5XK5tBIsXrw4ffHFF2n11VdPTZs2XRlVrvIdzgEAAAAAAJBWKN5S0DSMS9KoUaO09tprr6zqAAAAAAAAYOWmYQzvvfdelopx4403Tquttlp66qmnsvI5c+ak4447Lr344ouFrhIAAAAAAABqpKAty959993UvXv39PXXX6dddtklzZ49u3TY+uuvnwXKIoC28847F7JaAAAAAAAAqPtg2e9+97vs/bXXXsv6JosAWVm9e/dOo0aNKmSVAAAAAAAAUD/SMI4ePTqddNJJaZNNNkklJSWVhrdr1y69//77hawSAAAAAAAA6kewbO7cualNmzbVDl+8eHH65ptvClklAAAAAAAA1I9gWevWrdPUqVOrHR59lm222WaFrBIAAAAAAADqR7DsgAMOSMOHD0/vvvtupWFjxoxJf/3rX9MhhxxSyCoBAAAAAACgxkpyuVwuFcicOXPSjjvumObPn5969+6d/vKXv6Qjjzwy+/8///nPrC+zl156Ka299tqFqrLB69y5c/Y+efLkul4UAAAAAACAoou3FLRl2frrr5+ef/75tMcee6S77747RRzub3/7Wxo1alTab7/90jPPPCNQBgAAAAAAQL3RpNAz3HjjjdODDz6Y5s2bl/Vftnjx4tS+ffu0zjrrFLoqAAAAAAAAqF/BsryWLVumnXbaqbZmDwAAAAAAACusoGkYGzVqlNq0aZNefvnlKodHH2aNGzcuZJUAAAAAAABQP4Jl4cMPP0w9evRIjz32WKFnDQAAAAAAAPU7WPaHP/whbb755unggw9Ot956a6FnDwAAAAAAAPU3WBZpGJ999tnUs2fP9Ktf/Sqdd955ha4CAAAAAAAA6mewLKy55prp0UcfTX369EmXXnppOuaYY9J3331XG1UBAAAAAABAjTWptRk3aZJGjhyZNt544yw146xZs9Khhx5aW9UBAAAAAABA/QmW5UXLsnbt2qWTTz45Pffcc7VdHQAAAAAAANRNGsYIikUKxor69++fHnzwwVRSUlLI6gAAAAAAAKD+tCx75513qh12wAEHpJkzZ6YvvviikFUCAAAAAABA/WhZdscdd6Qnnnii2uHz5s1LY8eOLWSVAAAAAAAAUD+CZf369Uu9e/dO5557bpXDo8+yY489tpBVAgAAAAAAQP0IloUOHTqkyy+/PPXp0yd9++23hZ49AAAAAAAA1M8+y8L555+f/ve//6ULL7wwzZ49Oz344IOpZcuWha4GAAAAAAAA6l/LsnzA7LbbbkvPPPNM2n333dN7771XG9UAAAAAAABA/QuW5fsve+SRR9L06dPTrrvuml555ZXaqgoAAAAAAADqV7As9OrVK40dOzYtWrQo7bHHHunJJ5+szeoAAAAAAACg/gTLwvbbb5+ef/751KZNmzRy5Mjarg4AAAAAAACWWZNUQBdccEHq0qVLpfJ27dqlcePGpRNPPDF9+OGHhawSAAAAAAAAaqwkl8vlaj45K6pz587Z++TJk+t6UQAAAAAAAIou3lLraRgBAAAAAACgKNIwbr755ksdp6SkJE2bNq2Q1QIAAAAAAEDdB8s22WSTLBhW1nfffZfefvvtNHv27NS+ffvUpk2bQlYJAAAAAAAA9SNYNmbMmGqH3XXXXenMM89MN910UyGrBAAAAAAAgBpbaX2W9enTJx144IFp0KBBK6tKAAAAAAAAqB/BsrDTTjulf//73yuzSgAAAAAAAKgfwbK33norLV68uMbTL1y4MJ199tmpdevWqUWLFql79+5p9OjRS53uzTffTAMHDky77bZbat68edav2vTp06sd/+GHH0477LBDNm70w3bBBRdkfa8BAAAAAACwailon2UzZsyosvzTTz9NTz75ZLr++uvTD3/4wxrPv1+/fum+++5Lp59+eurQoUO6/fbbU+/evdPTTz+ddt9992qne/7559N1112Xtt5669SpU6c0adKkasd97LHH0iGHHJJ69uyZhg0bll599dV0ySWXpDlz5qQbb7yxxssOAAAAAABA/VOSy+VyhZpZo0aNslZbVYlqIlj1yCOPpM0222y55z1hwoSsJdmQIUNK+z1bsGBB2mabbdL666+fxo0bV+20Eaxr2rRpWmuttdJVV12VzjzzzPTOO++kTTfdtNK4nTt3zsadOHFiatLk/8USf/e736XLLrssvf7666ljx46pkKK+MHny5ILOFwAAAAAAoFh0XoF4S0Fblp1//vmVgmXx/3XWWSdttdVWWauy6oJpSxMtyho3bpz69+9fWhZpEo8//vh07rnnppkzZ6a2bdtWOW3UvywiGBavG264oTRQFgYMGJAuvfTSbBkicAYAAAAAAMCqoaDBsgsvvDDVlpdffjltueWWqWXLluXKu3Xrlr1HasXqgmXLU0fYaaedypVHH2kbb7xx6XAAAAAAAABWDQUNltWm2bNnp4022qhSeb5s1qxZBamj7Dwr1rMideSb/1U0bdq0tMUWW9R4vgAAAAAAANRco1RgX3/9dfr973+ftttuu7TGGmtkr/g7yr766qsaz3f+/PmpWbNmlcojFWN++IrKz6O6egpRBwAAAAAAAKtoy7KPPvoo9ezZM73xxhupVatWaeutty5tPRUpGu+55540duzYtN566y33vFu0aJEWLlxYqXzBggWlw1dUfh7V1bMidVTXoVx1Lc4AAAAAAABoYC3LzjrrrDRlypQ0dOjQ9OGHH6YXX3wxe8XfV199dXrzzTezcWoi0iDm0ySWlS+LfsVWVD79YnX1FKIOAAAAAAAAVtFg2ahRo1K/fv3S6aefnpo2bVpaHn8PHDgwHXPMMemRRx6p0by7du2apk6dmubNm1eufPz48aXDV1R+HhMnTixXHn2VvffeewWpAwAAAAAAgFU0WBZ9enXr1q3a4TEsnzZxeR1++OFp0aJF6eabby4ti3SJI0aMSN27d09t27bNymbMmJG1bquJSInYsWPHrI6oK+/GG29MJSUl2TIAAAAAAACw6ihon2XR8ur111+vdnj0ZVbT1lkREDviiCPS4MGD05w5c1L79u3TyJEj0/Tp09Pw4cNLx+vbt2/WL1oulyst+/zzz9OwYcOyv5977rns/frrr8/6VYvXKaecUjrukCFD0kEHHZR+9KMfpaOOOiq99tpr2bgnnHBC6tSpU42WHQAAAAAAgPqpJFc2qrSCxowZkwWaIoh16KGHlht2//33p2OPPTZLw9ijR48azT9apZ133nnprrvuSnPnzk1dunRJF198cerVq1fpOD179qwULIuA2mabbVblPNu1a5cNL+uhhx5KF110URbcW2+99bLUkueff3651JKFEq3ZwuTJkws+bwAAAAAAgGLQeQXiLSsULDvuuOMqlb300kvp1VdfTVtuuWXaeuuts7JobRb9jW277bZpxx13LNcSrNgJlgEAAAAAADTQYFmjRsvf5Vn0/VW2P7BiJ1gGAAAAAABQd/GWFeqzbPHixSsyOQAAAAAAANSp5W8aBgAAAAAAAKuIFWpZtizGjx+fZs6cmdq0aZO6d+9eo9SNAAAAAAAA0KCCZe+//37af//90yuvvFJa1qlTp/TII4+kzTffvLaqBQAAAAAAgGVWa828fv3rX6eNNtooTZ06Nc2fPz+98MILadGiRWnAgAG1VSUAAAAAAACs3GDZ448/XmV5BMcuvfTS1L59+9SsWbPUrVu3LIAW5QAAAAAAALBKBMsOOuigdMwxx6RPP/20XHn0Ufbss8+WK3vuuedS69atV7RKAAAAAAAAqB/Bsmgp9tprr2X9kf3tb38rLf/tb3+bBg4cmPbYY4909NFHp2233Tbdc889WTkAAAAAAACsEsGyHXbYIU2YMCELjB177LFZS7NZs2algw8+OAukde7cOX322Wdpl112SWPGjMkCZwAAAAAAAFAflORyuVyhZvbWW2+lX/7yl2nSpEnp8ssvTyeeeGKhZr3KimBimDx5cl0vCgAAAAAAQNHFW1a4ZVlZHTp0yFqPXXnllWnw4MGpR48eWQANAAAAAAAA6qOCBcu++eabNG/evOzv/v37Z5G7ddddN2233XbpD3/4Q1q0aFGhqgIAAAAAAID6ESz79NNP06GHHprWXHPN9L3vfS916dIlTZw4MbVu3To98MAD6c4770zDhg1LO+64Y3rppZcKs9QAAAAAAABQH4Jlp59+eho3bly66aabsuBYBM0OO+yw9O2332bD4+833ngjC5btsssu6cwzzyzEcgMAAAAAAEDdB8see+yxdM4556Rjjz02HXzwwenWW29NM2fOTK+//nrpOGuvvXYaPnx4evzxx9NDDz20olUCAAAAAABA/QiWNW3aNM2fP7/0/wsWLEglJSWpSZMmlcbde++906uvvrqiVQIAAAAAAEBBVI5oLafor+zyyy9P3333XdZn2Z/+9KfUsWPH1KlTpyrHb968+YpWCQAAAAAAAPUjWDZkyJDUqFGjrM+yr7/+Ou22227p2muvzcoAAAAAAACgPivJ5XK5ul6IYta5c+fsffLkyXW9KAAAAAAAAEUXb9H8CwAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFoNLli2cOHCdPbZZ6fWrVunFi1apO7du6fRo0cv07Tvv/9+OvLII1OrVq1Sy5Yt08EHH5zefvvtSuOVlJRU+br88strYY0AAAAAAACoK01SA9OvX7903333pdNPPz116NAh3X777al3797p6aefTrvvvnu103355Zdpr732Sp9//nk699xzU9OmTdM111yTevTokSZNmpTWXXfdcuPvu+++qW/fvuXKtt9++1pbLwAAAAAAAFa+BhUsmzBhQrrnnnvSkCFD0qBBg7KyCGhts8026ayzzkrjxo2rdto//elP6a233srmsfPOO2dl++23Xzbt1VdfnS677LJy42+55ZapT58+tbxGAAAAAAAA1KUGlYYxWpQ1btw49e/fv7SsefPm6fjjj0/PP/98mjlz5hKnjSBZPlAWOnbsmPbZZ5907733VjnN/Pnz04IFCwq8FgAAAAAAANQXDSpY9vLLL2ctvqK/sbK6deuWvUc6xaosXrw4vfLKK2mnnXaqNCymnTZtWvriiy/KlUd6xzXWWCPrF23rrbdOd999d0HXBQAAAAAAgLrXoNIwzp49O2200UaVyvNls2bNqnK6Tz/9NC1cuHCp02611VbZ37vttls68sgj02abbZaV33DDDenoo4/O+js76aSTarTsnTt3rrI8AnVbbLFFjeYJAAAAAABAEQXLIi1is2bNKpVHKsb88OqmC8s67XPPPVdunOOOOy7tuOOO6dxzz039+vXLWpsBAAAAAADQ8DWoYFkEqaKFWEX5fsWqC2Lly2sybVhttdXSKaeckk488cT0n//8J+2+++7LveyTJ09erhZnAAAAAAAA1L4G1WdZpEyMVIwV5ctat25d5XTrrLNO1qqsJtPmtW3btjSlIwAAAAAAAKuGBhUs69q1a5o6dWqaN29eufLx48eXDq9Ko0aN0rbbbpsmTpxYaVhMu/nmm6e11lpriXW//fbb2ft66623AmsAAAAAAABAfdKggmWHH354WrRoUbr55ptLyyK14ogRI1L37t1LW3/NmDEjTZkypdK0L774YrmA2ZtvvpmeeuqpdMQRR5SWffTRR5Xq/eKLL9If//jH9P3vfz/ruwwAAAAAAIBVQ4PqsywCYhHYGjx4cJozZ05q3759GjlyZJo+fXoaPnx46Xh9+/ZNY8eOTblcrrRswIAB6ZZbbkn7779/GjRoUGratGkaOnRo2mCDDdIZZ5xROt4NN9yQHnrooXTggQemTTbZJEvTeNttt2UBuDvvvDPrvwwAAAAAAIBVQ4MKloU77rgjnXfeeVngau7cualLly5p1KhRac8991zidJFmccyYMWngwIHpkksuSYsXL049e/ZM11xzTbnUij/4wQ/SuHHj0q233po++eSTtMYaa6Ru3bplAbO99957JawhAAAAAAAAK0tJrmzzK1a6zp07Z++TJ0+u60UBAAAAAAAounhLg+qzDAAAAAAAAApJsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKLV4IJlCxcuTGeffXZq3bp1atGiRerevXsaPXr0Mk37/vvvpyOPPDK1atUqtWzZMh188MHp7bffrnLc4cOHp06dOqXmzZunDh06pGHDhhV4TQAAAAAAAKhrDS5Y1q9fvzR06NB09NFHp2uvvTY1btw49e7dOz377LNLnO7LL79Me+21Vxo7dmw699xz00UXXZRefvnl1KNHj/TJJ5+UG/emm25KJ5xwQurcuXMWJNt1113Tr3/963TFFVfU8toBAAAAAACwMpXkcrlcaiAmTJiQtSQbMmRIGjRoUFa2YMGCtM0226T1118/jRs3rtppr7zyyqxFWsxj5513zsqmTJmSTXvWWWelyy67LCubP39+atu2bdpll13SqFGjSqfv06dPeuihh9LMmTPT9773vYKtUwTkwuTJkws2TwAAAAAAgGLSeQXiLQ2qZdl9992XtSTr379/aVmkSTz++OPT888/nwWyljRtBMnygbLQsWPHtM8++6R77723tOzpp5/OWpoNGDCg3PQnn3xy+uqrr9I///nPgq8XAAAAAAAAdaNJakAibeKWW26Z9TdWVrdu3bL3SZMmZa3CKlq8eHF65ZVX0nHHHVdpWEz7r3/9K33xxRdprbXWyuoIO+20U7nxdtxxx9SoUaNseLQyq2lEs6Jo3da0adNqhwMAAAAAALBk06ZNy+ItNdGgWpbNnj07bbTRRpXK82WzZs2qcrpPP/00LVy4cJmmjTqi9VqkdSxrtdVWS+uuu261ddRUSUlJjXceDfNkjRfFxX4vPvZ58bHPi5P9Xnzs8+Jkvxcf+7z42OfFyX4vPvZ5cbLfi0vTpk3TGmusseq3LIv+xJo1a1apPFIx5odXN11YlmnjPQJjVYlxq6tjafRJRtBHXXGy34uPfV587PPiZL8XH/u8ONnvxcc+Lz72eXGy34uPfV6c7HdWyZZlLVq0yFqIVbRgwYLS4dVNF5Zl2nj/5ptvqpxPjFtdHQAAAAAAADQ8DSpYFikTI01iRfmy1q1bVzndOuusk7UqW5Zpo45FixalOXPmlBsvAmiffPJJtXUAAAAAAADQ8DSoYFnXrl3T1KlT07x588qVjx8/vnR4VRo1apS23XbbNHHixErDYtrNN988rbXWWuXmUXHc+P/ixYurrQMAAAAAAICGp0EFyw4//PCs1dfNN99cWhapFUeMGJG6d++e2rZtm5XNmDEjTZkypdK0L774Yrkg2JtvvpmeeuqpdMQRR5SW7b333llLtBtvvLHc9PH/1VdfPe2///61uIYAAAAAAACsTE1SAxIBsQhsDR48OEuT2L59+zRy5Mg0ffr0NHz48NLx+vbtm8aOHZtyuVxp2YABA9Itt9ySBbsGDRqUmjZtmoYOHZo22GCDdMYZZ5SOF32SXXzxxenkk0/O6urVq1d65pln0l133ZUuvfTSLJAGAAAAAADAqqEkVzai1AAsWLAgnXfeeVnwau7cualLly5ZcCuCWnk9e/asFCwL7733Xho4cGD617/+laVUjPGuueaaLOhWUQTWrr766vTOO+9kLdZOOeWUdNppp6WSkpKVsp4AAAAAAADUvgYXLAMAAAAAAICi7LMMAAAAAAAACkmwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAasWFF16YSkpK0vTp0+t6UQAAAKolWAYAANAAjBkzJgs8xeuYY46pcpxcLpc222yzbJwmTZqslOV66KGHsqAYAABAQyVYBgAA0IA0b9483XfffWnevHmVho0ePTprxRXjrCwRLLvoootWWn0AAACFJlgGAADQgPzkJz9JX3/9dfrrX/9aaditt96aNtlkk7TzzjvXybIBAAA0RIJlAAAADUinTp3SbrvtloYPH16u/OOPP07/+Mc/0rHHHpsaNar8U2/KlCnpqKOOShtssEFq1qxZ2nzzzdOgQYMqtVC7/fbbszSOTz/9dPrjH/+Yttxyy2z8SO84dOjQcuNuuummaeTIkdnf+RSR8Yp5lPXNN9+k888/P7Vr1y6bV6zDX/7yl0rL+MILL6QDDzwwtW7dOhtvo402SnvttVfWeg0AAKC2rJwk9gAAABTMCSeckI477rj06quvpm233TYru+OOO9J3332XlUf/ZmVNmjQp7bnnntnwAQMGZIGyZ599Nl199dXp//7v/9Jzzz2XVl999XLTnHvuuVkgLYJva665Zjb/M844IwtkRdAtRDAtAmjPPPNMuvPOO0unjWBeWdHHWgTRfv3rX2eBvD/96U+pT58+aYsttki77LJLNs7UqVPTPvvsk9Zff/1sGaOeCAD+5z//Sc8//3w65JBDam17AgAAxU2wDAAAoIE58sgj02mnnZa1LouAVYi/f/jDH2ZpGCuKINWXX36ZBbV+8IMfZGURkOrYsWO64IILsoDX7373u3LTRKrHl156KWvhFSIIFy3DrrvuutJgWQSwotVXzDeCX9X53ve+l0aNGlXa4u3www/PAmUxr3yw7PHHH8/qvOeee1L37t0Ltq0AAACWRhpGAIA61K9fv6y1xfTp0+t6UaBein65tt9++7TWWmtl58rpp5++UuuPNIPxqm/WWGONLGB11113ZSkOx40bl15//fWsxVlFH330URbM2nfffUsDZXmRhjHmdf/991ea7pRTTikNlOXr3HXXXbMWYMtr4MCB5VJDtm3bNm211Vbl5tWqVavsPYJv8+fPT3VxfY0WeTHNhRdeuML1r0ryqTkrptdclRTDOrJkca2IYyCuHQBA8REsAwBYirL98MSrcePG6fvf/37ae++90913351WlZt8cdP6N7/5Tdphhx3SOuusk5o2bZq9RwuPuKEeqdBqW9ygrri9W7RokfWZdPLJJ6f33nsvFZNY/549e6ZiFan3jj766PTFF1+kk046KWsB9eMf/zgVi6UF6o4//vj0ySefZMGlW2+9NbsuHXzwwZXGe/vtt7P3fLrGsiL1YrTwmjZtWqVhkaqxonXXXTerc3kty7wi+Bf79/LLL89aokXayGjt9tprry3xelEx5eSqdDO8oS3v0tRknxWKQCih2D9XAYDqScMIALCM4kZ9+Pbbb9OUKVPSP/7xj/T000+niRMnZinMauIPf/hDOuecc1KbNm1SXcnlcun3v/999lq8eHEWLPvpT3+aBcoiSPHKK6+kYcOGZX0bXX/99VnQqrb16NGj9GZW9Fn0r3/9K+vj6N57700vvPBCdnOfVd8///nP7PiMvrIq9oG1skR/XvVVBLK32WabLJVh9EnWv3//tNpqqxVs/vFgQG3PK/ZvXiz7Y489lqV+fOKJJ7I+1a655pp02WWXpSFDhmT9pdX29bVbt27pjTfeyAKPFJdDDz00Swm60UYb1fWiAABQBwTLAACWUcWn0eMmeqQ1i/6Coj+gmqRqi5tydX1jLoJksW6RFi1S3lVM0xbmzJmTrefnn3++UpYpAmVlt3cEKPfbb79sm19yySVpxIgRK2U5qFuzZs3K3lu3bl1ny1DfA7PRuixSHOb/XlKrrsmTJ1caFukOo+VZ+/btV6ilRiFFwD5eYe7cuVmg9Nxzz02nnnrqcgUDa3J9jZZ20Y8bxWfttdfOXgAAFCdpGAEAamifffbJbqpGy4gXX3yxtDzSFR522GFp/fXXz/r7adeuXRowYECaPXv2MvWpUzbtVvwdqcmilUPz5s3TTjvtlEaNGlUpsHTsscdmf8d72RSGS+urJ26SR/Ap36KjqkBZiHWJ1h1nnXVWqguREjJazYQJEyaUGxYBvr322ivr7yi2UadOnbJ1WrhwYbXplz744IOsb6docRItXsqmr4z5R8u6GBb7L262/+hHP8patVU0fvz4dPjhh6cNN9ww24YRcPzVr35VGuQpK+qN+r/77rtsW3bo0CGbf0xz9tlnZ/1OVUyrGcaOHVtun5YNIsZ4caxFMCTSVbZs2TLbh9GPVXXiWI31iT7AYvwf/vCHWbrDJaVHi5aUcTzGssZ6brDBBunnP/95evPNN9PyiJaLf/7zn9POO++c1lxzzawPrPj7xhtvzIZVXP98UHSzzTZb5mO67HrEsbHjjjtmAZAIuEWa0fxx8dRTT2X7JLZBpPz7xS9+UWV6wapSIZZNexqtS2M++e25//77Zy2Tqtv/y5JGNZ8u7t13381e+XWP47yiaAmz3XbbZcd/9O2W3zdff/116Tjrrbde2mOPPdLjjz+epbWMvsJi28c0sU+//PLLKuddlfvuuy97j8B59GkW58mdd95Z2pKrbEuxsuK6FWkVIxgRx2qkhJwxY0a58aMVaYjWrD/72c+y7R7nVlyn4vyIhxIicB5i2EUXXZT9Hcte9hyp7voax0YcS2HkyJHlpqm47cueZ3Gdj+M+v3wVXXHFFdk00fK2rEgbG9sozs841yPt5EEHHVTu82JJlmV5l+e8Whb/+9//0hFHHJGdEzGfCFRGC88lWdb1XJZ9FuLYjWOpa9eu2TLEOkVfeXE+VydaHx944IGln7txXEdK0ieffLL0WMgf47EMZevOX/OWlM64pp/rN910U3asx2dTnJvxObY8D52UvZ7FMRDneJw/sRzHHXdc9llWlU8//TQNHjw4+zyM8eO8i+8ssZ0qKrvecY2Ia1WMvyxB8Py6vvPOO9nxv/XWW2frGvs6Pufy5/ff//73rNVm7M9Y9jhequuXMB6KiXSs0bo9tnWkYY4WolVtt9r4XM1blu9fAMCqRcsyAIAVkL8RlL8BEzdS4oZalEcQJW6oxU22uGkZaRsjrVj+5ufSxE3yuLkUNyDjRn7c/Prb3/5WegMwf+MvblbFTe+YfwyLG4x5Ub4kEYyIm0xxc71z585LXaYmTZrUm20d4mZhrMPGG2+cbfdY30jTeN5552U33EaPHl1pmWM7RoAhbsD+5Cc/SY0aNcpuYoZbbrkl6xsrAmhxszduvEWruki1GWkgjzzyyNL53HbbbdmNz7gxF+PGzbm33nor6zvqkUceyZZjk002qbQesa2feeaZrKVcBFceffTRdOWVV2b15INDsQ8j7Wfc1I1jqGx/RWX7Wolljf0WQYgI6kWwJ+YXx0sEsi6++OJydf/73//OAmWLFi3K1j1aTb366qvZsRR98FUlbp7GuBGkiJvR0QIpbo4/8MAD2U30CBblWwEtTSxX9PMX2yqClbEvH3zwweymc5wbf/nLX8qtf/TF9d///jeddtpppcfy0o7pvEgdGgHgQw45JNtmcZM4UvrF/o/zJG6CRmAr9uG4ceOyAGMEQ2KaZRXne5x3sS9PPPHE9Prrr2fbP4IE8XdNU/nFjeZY/2jNGU4//fTSm7dxw3xZ9k2c12UDURHQiUBqbP84piL48P7772eB0DjeqwuUVyeCrJ999lm2HeMYinMtWn/FeRf7NlJElr3WRauw2B5x/Me5F9s5brDH+RM3tCMYFUHu2OexXHFsRBAwAp0RfIyAX5xzV111VRY8j20S48ZN72OOOWaZWvbGcRDLfO2112bzjmMjr+x1s6KYf6xbBGtiPSqKfRLLH+uWF6kk41yL461Xr17ZforjK5Z59913z4773r17F2R5l/W8Wpq4fsVxEdeROKajjgieRb3x/6osz3ouyz6L9Y1r0csvv5xdV+IaHwG/SMsZ2zdaR8ZxUlacK9FCOo6rWNbYDvHAQv68jmM1v+1iX5VN8xuWduzU9HM9Hi6J5Y5zM7ZRXCvjMya2aQTrl0dcu+IaFg9yRCAp6ozPiwiixUMbcX6U/e4Q6xfXiwiSx/hfffVVth7xdwTwfvnLX1YZCI9rSv56FvNZVtGvaSxLfl0ffvjh9Nvf/jY7tyPoFcGu2AexPHGtuOGGG7LPodiGZcWyxedaBNUiaBuBtZhvXL/ic/W5556r8jOgkJ+ry/P9CwBYxeQAAFii+MpU1dem0aNH50pKSrLX9OnTc1988UVunXXWyTVq1Cj373//u9y4l19+eTaPfffdt1z5Mccck5W/8847pWXxd77OCy+8sNz4jz/+eFa+3377lSsfMWJEVh7vy2OvvfbKprv11ltz9cEFF1yQLU+8l/Xtt9/m9t5772zYcccdV26dDz300NzXX39d5Xz++Mc/livPb9df/OIX2TzLmjx5cq5Jkya5733ve7nXXnut0rLNnDmz9O8333wz17Rp09wWW2yRe++998qN9+STT2bHwCGHHFKuvEePHlndO+ywQ+6TTz4pLf/yyy+z+cQ0s2fPrrS8MV11/ve//1UqW7hwYbatYl3KLtuiRYty7du3z+b56KOPlpvmxhtvLN02Tz/9dGn5p59+mmvVqlVu3XXXzbZPWa+++mpujTXWyG2//fa5ZXH33Xdn84/x41wpu/477rhjNuwvf/nLUs+Ppcnv+5YtW+Zef/310vIFCxbktt5662w7x3k6ZsyYctvmhz/8YTbdyy+/XG5+7dq1y15l5Y+9xo0bZ/u7rHPOOScbdsUVV1S5/6tS3flbse7YNzHexRdfvNR9E+tZtr6HH344+3+HDh1y3//+97PjN+b9m9/8JjdnzpzcvHnzKi1P2WMhL/Z5DPvBD36QbdP89hswYEC2PfLHUX5d4nyN/7du3brc8R3nX+yHGHbppZeWrt+WW26Zla222mrZPuzSpUu2LeMcj3WOuiru66qWc2nX1xhWlfw2LnsNinM/tmccpxVNmDAhG/8nP/lJuXWLc7pZs2bljrPw/vvvZ9tiww03LN1+S7K05a3JeVWd+Hyq6rr50EMPVdqvNV3PZd1nFc+f+fPn53r16pV93pY9R5944ols/M0226zStbjidbuqfbu083BFPtfbtm2be/fdd8ttrz322CMbNn78+NyyyG+vOF9feumlcsNOP/30cp+JZa81sZ3++te/liufO3dubrvttss1b94898EHH1Ra75jmscceW6blqriucS0pu/2jrrg2rb766tn1puK1uFOnTtk5/uGHH5aWx/eoKFtrrbVyb7zxRrl6TjrppKyeX/7yl7X6uVqT718AwKpDsAwAYCnyN07iplW8zj333Nxhhx1WemN44MCB2Xh33XVX9v+f/exnleYRN8k23XTTbHjZm2dLupkbN5++++67SvPaZJNNsptQhQiWxQ2rmK6qG2SxHPl1zr+uueaaXG3K3xiMG1n5Ok855ZTsBn+Ux023adOmZeN27do1CwjFTbmKYrvFNtp5553Lledvwpe9QZcX9cTwoUOHLnU58zcpR40aVeXwCJTF8VE2AJG/qRdB1orOP//8bNgjjzyyXMGy6tx///3ZtCNHjiwte+aZZ7KyCJBWFAGIfJCi7E3suGkeZddff/0St0PFYE1V8sGouLldUQScqlq2FQmW/e53v6s07KKLLioNllZ0++23Z8PifVmDZUcffXSl+bz99tvZsLhGFDpYVtby7pt8sGzw4MG5FRHLE/OpGDgoux79+vUrLTvhhBOysptuuqnS+BF0jpvZEejIi+BddcdJRSsrWFY2kFQxkH7yySdn5f/4xz8qBZcGDRq0xH33z3/+c6nruLTlrcl5VZUIKuWDTlV97uSP37LHaE3Wc0n77OOPP86umzvttFOV85s0aVI27ZlnnlladsABB2RlDzzwwFLXsSbBshX5XL/lllsqTXPbbbdlw4YNG5ZbFvntVTEgFj777LPc2muvnQW/8gHJ/DY6/PDDq5xffp/dcMMNlda74gMeyyK/rlU9cHPsscdmw84777xKwyIQFcPKBlkvueSSaq9RESiPIFrZda2Nz9WafP8CAFYd0jACACyjfF8rkeIq0gBFOqHjjz8+9enTpzQdVagqnV2kAoxUeZEWKdJLVZWer6JIGRTp0SqKFFPRx1Rti2XNr3NepC7Kp4SrTqTRyqePKyumW9YUepGmK14h3xdYpIWKVGjxd/RpE+n5Iq1bVXWFSO9WVd9RkXIrUjtVFGkTQ3XpxsrKb/9Yxqr6H4rUT5FiaurUqVmfWWVFvycVxTqFuXPnpuURfT5FeqpIfRd/V+wDJtLZ5cVxFyI1WkWRijL6JorlrWo9Y1tX1adLfvzYztFXzZLE+RH1VEx3FSItWhzr+WUshKq2c/RbFirukxB9b4VIY7giddR0Xy6v5d03sY1jHS+//PJsX0RqvEi9WN11ZkniehbHS0X5fVt2Py7puhh9EUUK1UjHGP0RRT9JkWYu0g5GyrZIeRcp9GI5I2VoXYqUbZE+LtL4RXq3ECnmIjVjXE/KplTM75tI5VbVvol0h/l9s7RUjEtTqPOq7PWhquMh5p+/JtfWesa1NK6b1fUhle+vrux1Pa7bMX6kF6wNK/K5XsjrQ+zLiuJ8ifM39ktsk/g7v0/ifKpqG3700UfZe1WfjZF2sC6vt0va1tGHXvTXFqmEI3VspCWtzWtxXX//AgDqhmAZAMAyKtv/T1Xync9H31FVyZdHMGlZVBdYiht00YdLIWy44YbZTbPo36Wqm6P5dY7+j6KfoGUR61cxyFa2b7VlEf2KVHWjLy9ufsWyxY2/qupa2jpXJb9f8jfxliT69AlDhgxZ4nhffvllpbKqtkG+X7W4Ubys3n777ezmZmyLCNxGPzFx8zRu8OX7tlq4cGGl4zPfP1tFVZXn1zP62Vne9awo6o++ayL4WdX6R+AzgoyFEtuiqnqWNix/Q35ZFGpf1sTy7pvoxycCC3FuRX9C0ZdSiO0efVv97ne/W+ZzPKap6kZy/tzKH2vLel2MQG+cf7Ff4piOvocuvfTSrA+lO++8Mxtvq622ypb9Zz/7WaoLhx56aLYNow+sP/zhD9n6Rx9Q0ZdRPAhQtm/E/L75+9//vsLnzco6r5Z2fajqulno9czPL4JmVT2EUNX84riJQEqLFi1SbViRz/VCXh+Wtl/yy5nfhhHYjdfy7JPqPhtX1vW2vmzr6uZX6O9fAED906iuFwAAYFWRvyH0wQcfVDl89uzZ5carD6LFRoiWSYUSLbf+/+m+y72ivFDy2zCeNK+qrrKviqIVwpJujpVtjbW0+uPm3pLqrqo1QKEMHTo0uzE6fPjwNGbMmHTdddeliy++OAsy9urVq9L4caM/fPjhh1XOr6ry/HpG66Ulrecxxxyz1OWNeUVgoapgVARjP/7449JlXBVF65/8ula0rAH0Fd030YorjpcInrz22mvZMbPuuuum3//+99lrWcW+quoGdP7aV/YaV5Pr4q677poFoiIQ/Nxzz6XzzjsvOz5//vOfpyeffDLVhQjGHHnkkdny5oMQEZAOFY///Lr84x//WOK+ieDfiirUeZVf5uquD1Xtv0KvZ35+AwcOXOL8nn766XLX7ThOKraqXdU+15e2X/L159+jdeaStuGIESOW+bNxZakv2xoAKF6CZQAABRKBmxCBi6puWkZribDDDjsUvO58K4/lfYI6WnvFk9LRgqOqtEz11Zprrpk6d+6cJk+enN0oLoRddtkle3/ssceWedz8Pq3NAEt1+/R///tf9n7YYYdVGlYxXVrZ4/PZZ5+tNCyelB83blytrmfUH/VEGq2KoizWszbOjfoiWr+EmTNnVho2ceLEas/r6vb/iuybuCke58+pp55aGvh56KGHlnn6uJ5Vdbzkr335Y21p18U4hiMN22abbVZlS45IpRrpHiOQF4G9fGBmRa57Nb1W5q+X+SBZtGqNa0WXLl2ylG21dd4sbXkLdV6VvT5UVVdV+68m67mk9YlWhXHNW575xTJE8Ofxxx9fobrr4+f60q7p8bDGpEmTUvPmzVOnTp1W6mdTbVjSto4HCiqua218rgIAxU2wDACgQKKPnUiHFX3Y5Pu/yot+taJfnuh/Z1n6K1te0TokRDqz5RH9AEX6teh7J/rqquoGeE1bvtS23/zmN9lyH3fccVUuX7Q2yPeBsixOOumkLHAYrbNef/31SsPL9q1yyimnZCnrogVExX6+QixXIW5Wxn6tKrgS8i31Kt5YjPR6t956a6Xx8/0+RauMigHBm2++ucr1OPbYY7MgRqS6nDBhQqXhcZO+qhubVYn9FAYPHpz1OZcXf59zzjnZ39EH4Koq3x9QxbSJ0aozrhnV7f8IylTVamZ5900ElqtqnZIvW3311ZdrfWI/lk3zGUHrSy65pHTZKu73GJbvLynEzepBgwZly1l2v8c1qKr1rWo5a3Ldi6BlBAuX91qZP4c6dOiQBez+/Oc/Z6258gG0sg4++ODsXLvhhhvSo48+WuW8ot+jsudBTZe3UOdVtDrcd999s8+p66+/vtywWN+qgjU1Wc8l7bPo++3oo4/OgsdxHa4qoDFt2rRsGfMi4BvOOOOMKlsFly2ryfFSl5/rZUU60op9z0Ur4giYRWrSCCzn++6KtLwPPPBAuu2226qc16uvvlrQlLeFEv2/xufqsGHDSh8GyYvWpfPmzcvGya9rbXyuAgDFTZ9lAAAFbO0UN6eOOOKILP1evMcNtP/85z/pX//6V9YfyE033VQrdUfasriJHDfvIjVfvu+RuJG4tJRF559/fvZkftycjJvBO+64Y3ZjP24QRhAq+r/Kpz7bc889U30RN4lj2/7pT3/KbthG6sHY3nHTPm5gRquKuGkfN7WXxdZbb53N68QTT8yecI8bwXFjPLZn9J8Tqczy6b86duyY7etYhmih8+Mf/zhtueWW2c3zuBEbgbL11lsvTZkyZYXWcZ999kn33HNPOvDAA7OWC3EjMfZBvKKfqUilFcfZ4Ycfnlq3bp2l1osWFpEu7m9/+1ulp+kjiBbLetBBB2Ut0mK7vfLKK1nrogiWRhAtny4wf1MxWh1Gf03RYiGWJ9Y3bt7Hzca4ER7bZ8GCBUtdl0ihFzfd77333mwecRM65hMtmmJ//fSnP81ulK+q4liMPu6iv6tInRjHWwQoY5vH9r3//vsrTRPbO4692Gexz+Mm8XbbbZcdD8u7b2Ifn3nmmdm1Io7VCExEADj2SezzGLasou+gCJRts8022bEUx30sS6RJi+Oy7HUiWoadddZZ6corr8zGj2N1jTXWyNY7jtfdd9+9XN0x3lNPPZXd8I8WZ3FdjUBfjB+Bo/79+5eOu9dee2XLHoGimFe+9V48AFCdmF/37t2zczSOt9gW0eIo1iNaiS1N3759sxv3cb2M4HpVx2ycpxGsiGvS/vvvn22DaH0W1+jYN7FPo8/B2F5LC1IubXkLeV5F0CuOj+iDLT6z4liLoMWDDz6YHXOPPPLICq/n0vZZBOreeuut7HMpAkRxfER/XdGvZrR+jnlG4CqOjRB9Nca0EYyNFkex/m3bts2Cq9FKLs6N22+/vbTfu+iTMq6psezt2rXLttUvfvGL7O/69rleVlyf4/M5ru1x/sW6xSsemrj88svLjXv33XenvffeOwuSRovMOH4isB7ne1zvY7vH9SGuAfVJrEt8hzn55JOzz7tY1/gcjUBtLG987l5xxRUrXM+SPlcBgCKXAwBgieIr0/J8bZowYULukEMOyX3/+9/PNW3aNNe2bdvciSeemHv//fcrjXvMMcdk837nnXdKy+LvKIthVenRo0eVy/PYY4/ldtlll9waa6xRusxl57s0U6ZMyZ1++um57bbbLrf22mvnmjRpkvve976X22mnnbLy//znP7nadsEFF2TLHe/L6pFHHsntv//+ufXWWy/b3htssEFu5513zv32t7/NvfHGG+XGjXnH9luScePG5X7yk5+Uzm+jjTbK9erVK/f3v/+90rivvPJKtp822WST3GqrrZZtr86dO+f69++f+7//+79l2m9hxIgR2bB4L+vDDz/M/exnP8utv/76uUaNGlXaNs8991xur732yrVq1Sq35ppr5n7wgx/kHnzwwdzTTz9d7XZ84YUXcj/84Q+z8eO1zz77ZOt88sknZ9O8/PLLlaaJ4yiGt2/fPtesWbPcWmutldtqq61yffr0yepbVosWLcrdcMMNuR133DHXokWL7LXDDjvkrr/++mzYspwfy3oMxTZY1u0cqttm7dq1y17LOp8lHWevvfZabr/99su2e5ynMc6YMWOqnd+XX36ZXTvatGmTa9y4cZXXhWXdN6+//npu4MCB2baPa1Mcr7Fehx12WHYcLav89vjss89yAwYMyLVu3TqbV8eOHXPXXnttbvHixVVO99e//jU7PmPdYzm33nrr3CWXXJKbP39+ufGeeOKJXL9+/XKdOnXKtWzZMrf66qvnttxyy9ypp56amz59eqX53nnnndk1q3nz5pWu1dUdP2+99VbugAMOyK2zzjq5kpKSctt+SedOePfdd0vPxZjHksT5e/bZZ2fXhDjWY5/HfoptHsv97bffLnH6ZVnempxXS6srli8+A2Lbx2fKqFGjlnjML+96LmmfhYULF+aGDRuW23XXXbNjII6v+Bzde++9c9dcc03u448/rrQM//znP7PrdFyDY/yNN944+xyueB2Oz+eYT8w3vy3z14olreOKfq7nLe34WtL1LJYrv91iOeI8mTVrVpXTzZs3L3fppZdmx0Hsj5hm0003zfXu3Tt30003ZdeWZb2eLcmS1rWm1+K4Buy7777Z51rsyy222CJ35pln5ubOnVtp3EJ/rtb0+xcAsGooiX/qOmAHAADUrWi1MH78+CytV7T8gSWl/4wWp0DtilSLkWo1WjX37NmzrhcHAGCVps8yAAAoEtF3UFX9u0WasugrKlKaCZQBAABQbPRZBgAARSL6U4v+2Pbdd9/Uvn379N1336WXX3456/sm+rS5+uqr63oRAQAAYKUTLAMAgCKxwQYbpKOPPjqNHTs2S+u1cOHCtOGGG6Zjjz02/fa3v01bbLFFXS8iAAAArHT6LAMAAAAAAKBo6bMMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABStJnW9AMVuww03TF999VXaZJNN6npRAAAAAAAAGqQZM2akNdZYI33wwQfLPa2WZXUsAmXffvttXS8GAAAAAABAgxWxloi51ISWZXUs36Js8uTJdb0oAAAAAAAADVLnzp1rPK2WZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAotWggmULFy5MZ599dmrdunVq0aJF6t69exo9evRSp3vggQfST3/607T55pun1VdfPW211VbpjDPOSJ999lmV4z/88MNphx12SM2bN0+bbLJJuuCCC9J3331XC2sEAAAAAABAXWpQwbJ+/fqloUOHpqOPPjpde+21qXHjxql3797p2WefXeJ0/fv3T2+88Ubq06dPuu6669KPf/zjdP3116ddd901zZ8/v9y4jz32WDrkkENSq1at0rBhw7K/L7nkknTqqafW8toBAAAAAACwspXkcrlcagAmTJiQtSQbMmRIGjRoUFa2YMGCtM0226T1118/jRs3rtppx4wZk3r27Fmu7I477kjHHHNMuuWWW9IJJ5xQWt65c+fUtGnTNHHixNSkSZOs7He/+1267LLL0uuvv546duxY0PWK+sLkyZMLOl8AAAAAAIBi0XkF4i0NpmXZfffdl7Uki1ZieZEm8fjjj0/PP/98mjlzZrXTVgyUhUMPPTR7jxZneREMi1fUkQ+UhQEDBqSIKcYyAAAAAAAAsOr4/yJC9dzLL7+cttxyy9SyZcty5d26dcveJ02alNq2bbvM8/vggw+y9+9///vl6gg77bRTuXGjj7SNN964dPiKRDQrmjZtWtpiiy1qPF8AAAAAAABqrsG0LJs9e3baaKONKpXny2bNmrVc87viiiuylmqHH354uTrKzrNiPctbBwAAAAAAAPVbg2lZNn/+/NSsWbNK5ZGKMT98Wd19991p+PDh6ayzzkodOnQoV0eorp558+bVcOmrz5FZXYszAAAAAAAAal+DaVnWokWLtHDhwkrlCxYsKB2+LJ555pmsn7NevXqlSy+9tFIdobp6lrUOAAAAAAAAGoYGEyyLNIj5NIll5cuiX7Gl+e9//5sOOuigtM0226T77rsvNWlSvmFdPv1idfUsSx0AAAAAAAA0HA0mWNa1a9c0derUSqkQx48fXzp8SaZNm5Z+/OMfp/XXXz89+uijac0116yyjjBx4sRy5dFX2XvvvbfUOgAAAAAAAGhYGkyw7PDDD0+LFi1KN998c2lZpEscMWJE6t69e2rbtm1WNmPGjDRlypRy037wwQfpRz/6UWrUqFF64okn0nrrrVdt/2EdO3bM6oi68m688cZUUlKSLQMAAAAAAACrjvJ5COuxCIgdccQRafDgwWnOnDmpffv2aeTIkWn69Olp+PDhpeP17ds3jR07NuVyudKyaFH29ttvp7POOis9++yz2Stvgw02SPvuu2/p/4cMGZKlaozg2lFHHZVee+21dP3116cTTjghderUaSWuMQAAAAAAALWtJFc2qlTPLViwIJ133nnprrvuSnPnzk1dunRJF198cerVq1fpOD179qwULItWYdXp0aNHGjNmTLmyhx56KF100UXpjTfeyFqh9evXL51//vmpadOmBV+naM0WJk+eXPB5AwAAAAAAFIPOKxBvaVDBslWRYBkAAAAAAEDdxVsaTJ9lAAAAAAAAUGiCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWg0qWLZw4cJ09tlnp9atW6cWLVqk7t27p9GjRy91ujfffDMNHDgw7bbbbql58+appKQkTZ8+vcpxN91002x4xdeJJ55YC2sEAAAAAABAXWqSGpB+/fql++67L51++umpQ4cO6fbbb0+9e/dOTz/9dNp9992rne75559P1113Xdp6661Tp06d0qRJk5ZYT9euXdMZZ5xRrmzLLbcs2HoAAAAAAABQPzSYYNmECRPSPffck4YMGZIGDRqUlfXt2zdts8026ayzzkrjxo2rdtqDDjooffbZZ2mttdZKV1111VKDZW3atEl9+vQp+DoAAAAAAABQvzSYNIzRoqxx48apf//+pWWRUvH444/PWo7NnDmz2mnXWWedLFC2PL755pv01VdfrdAyAwAAAAAAUL81mGDZyy+/nKVCbNmyZbnybt26Ze9Lay22PJ566qm0+uqrpzXXXDPrw+zaa68t2LwBAAAAAACoPxpMGsbZs2enjTbaqFJ5vmzWrFkFqadLly5Z/2dbbbVV+uSTT7J+0aKPtJj/FVdcUeP5du7cucryadOmpS222GIFlhgAAAAAAIBVPlg2f/781KxZs0rlkYoxP7wQHn744XL/P/bYY9N+++2Xhg4dmk499dS08cYbF6QeAAAAAAAA6l6DCZa1aNEiLVy4sFL5ggULSofXhpKSkjRw4MD0xBNPpDFjxqQ+ffrUaD6TJ09erhZnAAAAAAAA1L4G02dZpFuMVIwV5ctat25da3W3bds2e//0009rrQ4AAAAAAABWvgYTLOvatWuaOnVqmjdvXrny8ePHlw6vLW+//Xb2vt5669VaHQAAAAAAADTwYFmkSazY+uqTTz5Jv//979Npp52WJkyYUON5H3744WnRokXp5ptvLlffiBEjUvfu3Utbf82YMSNNmTKlRnXEskcdZX377bfp8ssvT6uttlraa6+9arz8AAAAAAAArOJ9lg0YMCALiL366qulwaxddtklTZs2Lfv/n//85/Tcc8+lnXbaabnnHQGxI444Ig0ePDjNmTMntW/fPo0cOTJNnz49DR8+vHS8vn37prFjx6ZcLlda9vnnn6dhw4Zlf0f94frrr0+tWrXKXqecckpW9vDDD6dLLrkkC8xtttlmWfDs7rvvTq+99lq67LLL0oYbbriCWwgAAAAAAIBVNlgWgahDDz209P9///vfs0DZjTfemHbYYYcs2HXVVVele+65p0bzv+OOO9J5552X7rzzzjR37tzUpUuXNGrUqLTnnnsucboYN6Yr6+qrr87e27VrVxos23bbbdPWW2+d7rrrrvTRRx9lrckiveO9996bLTsAAAAAAACrlpJc2SZYK2jttddOQ4YMSf3798/+/4tf/CK99NJLafLkydn/L7300iyN4rvvvluoKhu8zp07Z+/5bQQAAAAAAMDKi7cUtM+yiv19PfPMM6lnz56l/2/dunWWQhEAAAAAAADqg4IGyyKlYb5PsFdeeSXNmDGjXLBs9uzZqWXLloWsEgAAAAAAAOpHn2VHHXVUuuCCC9LHH3+cNXNr1apV6tWrV+nwSZMmpS222KKQVQIAAAAAAED9aFl29tlnp+OPPz698MILqXHjxumOO+4obUn22WefpUceeSTtvffehawSAAAAAAAAaqwkl8vl0kqwePHi9MUXX6TVV189NW3adGVUucp3OAcAAAAAAEBaoXhLQdMwLkmjRo3S2muvvbKqAwAAAAAAgJWbhjG89957WSrGjTfeOK222mrpqaeeysrnzJmTjjvuuPTiiy8WukoAAAAAAACokYK2LHv33XdT9+7d09dff5122WWXNHv27NJh66+/fhYoiwDazjvvXMhqAQAAAAAAoO6DZb/73e+y99deey3rmywCZGX17t07jRo1qpBVAgAAAAAAQP1Iwzh69Oh00kknpU022SSVlJRUGt6uXbv0/vvvF7JKAAAAAAAAqB/Bsrlz56Y2bdpUO3zx4sXpm2++KWSVAAAAAAAAUD+CZa1bt05Tp06tdnj0WbbZZpsVskoAAAAAAACoH8GyAw44IA0fPjy9++67lYaNGTMm/fWvf02HHHJIIasEAAAAAACAGivJ5XK5VCBz5sxJO+64Y5o/f37q3bt3+stf/pKOPPLI7P///Oc/s77MXnrppbT22msXqsoGr3Pnztn75MmT63pRAAAAAAAAii7eUtCWZeuvv356/vnn0x577JHuvvvuFHG4v/3tb2nUqFFpv/32S88884xAGQAAAAAAAPVGk0LPcOONN04PPvhgmjdvXtZ/2eLFi1P79u3TOuusU+iqAAAAAAAAoH4Fy/JatmyZdtppp9qaPQAAAAAAAKywgqZhbNSoUWrTpk16+eWXqxwefZg1bty4kFUCAAAAAABA/QiWhQ8//DD16NEjPfbYY4WeNQAAAAAAANTvYNkf/vCHtPnmm6eDDz443XrrrYWePQAAAAAAANTfYFmkYXz22WdTz549069+9at03nnnFboKAAAAAAAAqJ/BsrDmmmumRx99NPXp0yddeuml6ZhjjknfffddbVQFAAAAAAAANdak1mbcpEkaOXJk2njjjbPUjLNmzUqHHnpobVUHAAAAAAAA9SdYlhcty9q1a5dOPvnk9Nxzz9V2dQAAAAAAAFA3aRgjKBYpGCvq379/evDBB1NJSUkhqwMAAAAAAID607LsnXfeqXbYAQcckGbOnJm++OKLQlYJAAAAAAAA9aNl2R133JGeeOKJaofPmzcvjR07tpBVAgAAAAAAQP0IlvXr1y/17t07nXvuuVUOjz7Ljj322EJWCQAAAAAAAPUjWBY6dOiQLr/88tSnT5/07bffFnr2AAAAAAAAUD/7LAvnn39++t///pcuvPDCNHv27PTggw+mli1bFroaAAAAAAAAqH8ty/IBs9tuuy0988wzaffdd0/vvfdebVQDAAAAAAAA9S9Ylu+/7JFHHknTp09Pu+66a3rllVdqqyoAAAAAAACoX8Gy0KtXrzR27Ni0aNGitMcee6Qnn3yyNqsDAAAAAACA+hMsC9tvv316/vnnU5s2bdLIkSNruzoAAAAAAABYZk1SAV1wwQWpS5culcrbtWuXxo0bl0488cT04YcfFrJKAAAAAAAAqLGSXC6Xq/nkrKjOnTtn75MnT67rRQEAAAAAACi6eEutp2EEAAAAAACAokjDuPnmmy91nJKSkjRt2rRCVgsAAAAAAAB1HyzbZJNNsmBYWd999116++230+zZs1P79u1TmzZtClklAAAAAAAA1I9g2ZgxY6oddtddd6Uzzzwz3XTTTYWsEgAAAAAAAGpspfVZ1qdPn3TggQemQYMGrawqAQAAAAAAoH4Ey8JOO+2U/v3vf9d4+oULF6azzz47tW7dOrVo0SJ17949jR49eqnTvfnmm2ngwIFpt912S82bN89SRU6fPr3a8R9++OG0ww47ZONGaskLLrggSycJAAAAAADAqmWlBsveeuuttHjx4hpP369fvzR06NB09NFHp2uvvTY1btw49e7dOz377LNLnO75559P1113Xfriiy9Sp06dljjuY489lg455JDUqlWrNGzYsOzvSy65JJ166qk1Xm4AAAAAAACKoM+yGTNmVFn+6aefpieffDJdf/316Yc//GGN5j1hwoR0zz33pCFDhpSmcuzbt2/aZptt0llnnZXGjRtX7bQHHXRQ+uyzz9Jaa62VrrrqqjRp0qRqx415d+nSJf3rX/9KTZr8v83TsmXLdNlll6XTTjstdezYsUbLDwAAAAAAwCresmzTTTdNm222WaXXjjvumAW0tthii6yFV03cd999WUuy/v37l5ZFmsTjjz8+azk2c+bMaqddZ511skDZ0rz++uvZK+rIB8rCgAEDUi6Xy5YBAAAAAACAVUdBW5adf/75WX9gZcX/I1i11VZbZa3KKg5fVi+//HLacssts1ZeZXXr1i17j9Zibdu2XYGl/3915PtWKyv6SNt4441LhwMAAAAAALBqKGiw7MILL0y1Zfbs2WmjjTaqVJ4vmzVrVkHqKDvPivWsSB2dO3eusnzatGlZizsAAAAAAAAaeBrG2jR//vzUrFmzSuWRijE/vBB1hOrqKUQdAAAAAAAArKIty8LXX3+drrrqqnT//fen//3vf1lZ+/bt02GHHZbOOOOMtMYaa9Rovi1atEgLFy6sVL5gwYLS4SsqP4/q6lmROiZPnrxcLc4AAAAAAABoYC3LPvroo7Tzzjtn6RhnzpyZtt566+wVf0dZDItxaiLSIObTJJaVL4t+xVZUPv1idfUUog4AAAAAAABW0WDZWWedlaZMmZKGDh2aPvzww/Tiiy9mr/j76quvTm+++WY2Tk107do1TZ06Nc2bN69c+fjx40uHr6j8PCZOnFiuPPoqe++99wpSBwAAAAAAAKtosGzUqFGpX79+6fTTT09NmzYtLY+/Bw4cmI455pj0yCOP1Gjehx9+eFq0aFG6+eabS8siXeKIESNS9+7dU9u2bbOyGTNmZAG7moiUiB07dszqiLrybrzxxlRSUpItAwAAAAAAAKuOgvZZNn/+/NStW7dqh8ewe++9t0bzjoDYEUcckQYPHpzmzJmT9YM2cuTINH369DR8+PDS8fr27ZvGjh2bcrlcadnnn3+ehg0blv393HPPZe/XX399atWqVfY65ZRTSscdMmRIOuigg9KPfvSjdNRRR6XXXnstG/eEE05InTp1qtGyAwAAAAAAUATBskhT+Prrr1c7/I033lihVIZ33HFHOu+889Kdd96Z5s6dm7p06ZK1Zttzzz2XOF2MG9OVFWkhQ7t27coFyw444ID0wAMPpIsuuiideuqpab311kvnnntuOv/882u83AAAAAAAANRPJbmyTbBW0JgxY7JWWdHi69BDDy037P7770/HHntsloaxR48ehaqywYvUj2Hy5Ml1vSgAAAAAAABFF29ZoZZlxx13XKWyzTffPOvba8stt0xbb711VhatzaZOnZq23XbbrHWYYBkAAAAAAAANvmVZo0aNlr/CkpK0aNGimla5ytGyDAAAAAAAoIG2LFu8ePGKTA4AAAAAAAB1avmbhgEAAAAAAMAqYoVali2L8ePHp5kzZ6Y2bdqk7t271yh1IwAAAAAAADSoYNn777+f9t9///TKK6+UlnXq1Ck98sgjafPNN6+tagEAAAAAAGCZ1Vozr1//+tdpo402SlOnTk3z589PL7zwQlq0aFEaMGBAbVUJAAAAAAAAKzdY9vjjj1dZHsGxSy+9NLVv3z41a9YsdevWLQugRTkAAAAAAACsEsGygw46KB1zzDHp008/LVcefZQ9++yz5cqee+651Lp16xWtEgAAAAAAAOpHsCxair322mtZf2R/+9vfSst/+9vfpoEDB6Y99tgjHX300WnbbbdN99xzT1YOAAAAAAAAq0SwbIcddkgTJkzIAmPHHnts1tJs1qxZ6eCDD84CaZ07d06fffZZ2mWXXdKYMWOywBkAAAAAAADUByW5XC5XqJm99dZb6Ze//GWaNGlSuvzyy9OJJ55YqFmvsiKYGCZPnlzXiwIAAAAAAFB08ZYVbllWVocOHbLWY1deeWUaPHhw6tGjRxZAAwAAAAAAgPqoYMGyb775Js2bNy/7u3///lnkbt11103bbbdd+sMf/pAWLVpUqKoAAAAAAACgfgTLPv3003TooYemNddcM33ve99LXbp0SRMnTkytW7dODzzwQLrzzjvTsGHD0o477pheeumlwiw1AAAAAAAA1Idg2emnn57GjRuXbrrppiw4FkGzww47LH377bfZ8Pj7jTfeyIJlu+yySzrzzDMLsdwAAAAAAACwwlY4WPbYY4+lc845Jx177LHp4IMPTrfeemuaOXNmev3110vHWXvttdPw4cPT448/nh566KEVrRIAAAAAAADqR7CsadOmaf78+aX/X7BgQSopKUlNmjSpNO7ee++dXn311RWtEgAAAAAAAAqickRrOUV/ZZdffnn67rvvsj7L/vSnP6WOHTumTp06VTl+8+bNV7RKAAAAAAAAqB/BsiFDhqRGjRplfZZ9/fXXabfddkvXXnttVgYAAAAAAAD1WUkul8vV9UIUs86dO2fvkydPrutFAQAAAAAAKLp4i+ZfAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0WpwwbKFCxems88+O7Vu3Tq1aNEide/ePY0ePXqZpn3//ffTkUcemVq1apVatmyZDj744PT2229XGq+kpKTK1+WXX14LawQAAAAAAEBdaZIamH79+qX77rsvnX766alDhw7p9ttvT717905PP/102n333aud7ssvv0x77bVX+vzzz9O5556bmjZtmq655prUo0ePNGnSpLTuuuuWG3/fffdNffv2LVe2/fbb19p6AQAAAAAAsPI1qGDZhAkT0j333JOGDBmSBg0alJVFQGubbbZJZ511Vho3bly10/7pT39Kb731VjaPnXfeOSvbb7/9smmvvvrqdNlll5Ubf8stt0x9+vSp5TUCAAAAAACgLjWoNIzRoqxx48apf//+pWXNmzdPxx9/fHr++efTzJkzlzhtBMnygbLQsWPHtM8++6R77723ymnmz5+fFixYUOC1AAAAAAAAoL5oUMGyl19+OWvxFf2NldWtW7fsPdIpVmXx4sXplVdeSTvttFOlYTHttGnT0hdffFGuPNI7rrHGGlm/aFtvvXW6++67C7ouAAAAAAAA1L0GlYZx9uzZaaONNqpUni+bNWtWldN9+umnaeHChUuddquttsr+3m233dKRRx6ZNttss6z8hhtuSEcffXTW39lJJ51Uo2Xv3LlzleURqNtiiy1qNE8AAAAAAACKKFgWaRGbNWtWqTxSMeaHVzddWNZpn3vuuXLjHHfccWnHHXdM5557burXr1/W2gwAAAAAAICGr0EFyyJIFS3EKsr3K1ZdECtfXpNpw2qrrZZOOeWUdOKJJ6b//Oc/affdd1/uZZ88efJytTgDAAAAAACg9jWoPssiZWKkYqwoX9a6desqp1tnnXWyVmU1mTavbdu2pSkdAQAAAAAAWDU0qGBZ165d09SpU9O8efPKlY8fP750eFUaNWqUtt122zRx4sRKw2LazTffPK211lpLrPvtt9/O3tdbb70VWAMAAAAAAADqkwYVLDv88MPTokWL0s0331xaFqkVR4wYkbp3717a+mvGjBlpypQplaZ98cUXywXM3nzzzfTUU0+lI444orTso48+qlTvF198kf74xz+m73//+1nfZQAAAAAAAKwaGlSfZREQi8DW4MGD05w5c1L79u3TyJEj0/Tp09Pw4cNLx+vbt28aO3ZsyuVypWUDBgxIt9xyS9p///3ToEGDUtOmTdPQoUPTBhtskM4444zS8W644Yb00EMPpQMPPDBtsskmWZrG2267LQvA3XnnnVn/ZQAAAAAAAKwaGlSwLNxxxx3pvPPOywJXc+fOTV26dEmjRo1Ke+655xKnizSLY8aMSQMHDkyXXHJJWrx4cerZs2e65ppryqVW/MEPfpDGjRuXbr311vTJJ5+kNdZYI3Xr1i0LmO29994rYQ0BAAAAAABYWUpyZZtfsdJ17tw5e588eXJdLwoAAAAAAEDRxVsaVJ9lAAAAAAAAUEiCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTIAAAAAAACKlmAZAAAAAAAARUuwDAAAAAAAgKIlWAYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWg0uWLZw4cJ09tlnp9atW6cWLVqk7t27p9GjRy/TtO+//3468sgjU6tWrVLLli3TwQcfnN5+++0qxx0+fHjq1KlTat68eerQoUMaNmxYgdcEAAAAAACAutbggmX9+vVLQ4cOTUcffXS69tprU+PGjVPv3r3Ts88+u8Tpvvzyy7TXXnulsWPHpnPPPTdddNFF6eWXX049evRIn3zySblxb7rppnTCCSekzp07Z0GyXXfdNf36179OV1xxRS2vHQAAAAAAACtTSS6Xy6UGYsKECVlLsiFDhqRBgwZlZQsWLEjbbLNNWn/99dO4ceOqnfbKK6/MWqTFPHbeeeesbMqUKdm0Z511Vrrsssuysvnz56e2bdumXXbZJY0aNap0+j59+qSHHnoozZw5M33ve98r2DpFQC5Mnjy5YPMEAAAAAAAoJp1XIN7SoFqW3XfffVlLsv79+5eWRZrE448/Pj3//PNZIGtJ00aQLB8oCx07dkz77LNPuvfee0vLnn766ayl2YABA8pNf/LJJ6evvvoq/fOf/yz4egEAAAAAAFA3GlSwLNImbrnllll/Y2V169Yte580aVKV0y1evDi98soraaeddqo0LKadNm1a+uKLL0rrCBXH3XHHHVOjRo1KhwMAAAAAANDwNUkNyOzZs9NGG21UqTxfNmvWrCqn+/TTT9PChQuXOu1WW22V1RGt1yKtY1mrrbZaWnfddautY1mb/1UUqSCbNm1a7XAAAAAAAACWLBpGRbxllW9ZFv2JNWvWrFJ5pGLMD69uurAs08Z7BMaqEuNWV0dNlZSU1Hjn0TBP1nhRXOz34mOfFx/7vDjZ78XHPi9O9nvxsc+Lj31enOz34mOfFyf7vbg0bdo0rbHGGqt+y7IWLVpkLcQqWrBgQenw6qYLyzJtvH/zzTdVzifGra6OpalJh3Kselakg0EaLvu9+Njnxcc+L072e/Gxz4uT/V587PPiY58XJ/u9+Njnxcl+Z5VsWRYpEyNNYkX5statW1c53TrrrJO1KluWaaOORYsWpTlz5pQbLwJon3zySbV1AAAAAAAA0PA0qGBZ165d09SpU9O8efPKlY8fP750eFUaNWqUtt122zRx4sRKw2LazTffPK211lrl5lFx3Pj/4sWLq60DAAAAAACAhqdBBcsOP/zwrNXXzTffXFoWqRVHjBiRunfvntq2bZuVzZgxI02ZMqXStC+++GK5INibb76ZnnrqqXTEEUeUlu29995ZS7Qbb7yx3PTx/9VXXz3tv//+tbiGAAAAAAAArEwNqs+yCIhFYGvw4MFZmsT27dunkSNHpunTp6fhw4eXjte3b980duzYlMvlSssGDBiQbrnllizYNWjQoKyjt6FDh6YNNtggnXHGGaXjRZ9kF198cTr55JOzunr16pWeeeaZdNddd6VLL700C6QBAAAAAACwamhQwbJwxx13pPPOOy/deeedae7cualLly5p1KhRac8991zidJFmccyYMWngwIHpkksuyVIq9uzZM11zzTVpvfXWKzduBNYimHb11Venhx9+OGuxFuOddtpptbx2AAAAAAAArEwlubLNrwAAAAAAAKCINKg+ywAAAAAAAKCQBMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAIqWYBkAAAAAAABFS7AMAAAAAACAoiVYBgAAAAAAQNESLAMAAAAAAKBoCZYBAAAAAABQtATLAAAAAAAAKFqCZQAAAAAAABQtwTKAOtKvX7+05ppr1vViAABQQyUlJenCCy+s68UAAABWkGAZFMDtt9+e/VCeOHFiXS8KK3F/V/U655xz6nrxqMX9/eyzz1YansvlUtu2bbPhBxxwQJ0sI7XrT3/6U7Z/u3fvXteLQi1wjuN7HI6B4uDzvLi8+uqr6fDDD0/t2rVLzZs3T23atEn77rtvGjZsWF0vGivB5MmTU58+fbL93qxZs9S6det09NFHZ+XL6/XXX88eipg+fXqtLCsr/vkd5/j7779faXjPnj3TNttsUyfLxsq5Hxf7Ps7vXr16peuuuy598cUXdb2INHBN6noBABqq3//+92mzzTYrV+aL2KorvoTdfffdaffddy9XPnbs2PTee+9lP8JYNf3lL39Jm266aZowYUL63//+l9q3b1/Xi0QtcI4DrNp8nhePcePGpb322ittsskm6Ze//GXacMMN08yZM9MLL7yQrr322nTqqafW9SJSix544IH0s5/9LK2zzjrp+OOPz36zR6Br+PDh6b777kv33HNPOvTQQ5crWHbRRRdlgZe4hlD/LFy4MF1++eWC4UV4P+7bb79NH3zwQRozZkw6/fTT09ChQ9PDDz+cunTpUteLSAMlWAZQQ/vtt1/aaaed6noxWEl69+6d/v73v2dPKzVp8v99fMbN9R133DF9/PHHBaln8eLF6Ztvvslu3FP33nnnneyGS/zo/tWvfpXdaLvgggsKNv+vvvoqrbHGGgWbH/X/HAdg1fs8p3659NJL09prr51efPHF1KpVq3LD5syZU2fLRe2bNm1a+sUvfpE233zz9O9//zutt956pcNOO+20tMcee2TDX3nllWwcVg1du3ZNt9xySxo8eHDWyojiux8X+/6pp57KMoEcdNBB6Y033kgtWrSo02WkYZKGEWpBfPGK/qjiy1fc8I4n2Y477rj0ySeflBsvmvJHs+F4sjHGjy/y8aX+2GOPTV9//XWdLT8r7rHHHsu+iMdN8LXWWivtv//+1aZ8ePvtt7Mm4zFufLGLJ2Qi7Rf1SzydGOfw6NGjS8siqBVPJ/785z+vNP5VV12Vdtttt7TuuutmX9LiZnuMW1FcA0455ZTspk3nzp2z1iuPP/54ra8Pyyb2y/e+973sHI5UPvH/suIp1diHsb+vueaaLNVP7O8ePXqk1157rcp+CuNHfARm4toQ6WBYdc/xOA622267Kuvbaqutsms/9U88OR6viuIcLvtEednz/+abb05bbLFFdg3feeedsxu0rPrHAKvO53mIz4C4id6yZcvsd9kxxxyT/vvf/2bneaR9ynN81H/xXSu+V1cMlIX111+/3P/vuuuu7DM8PsujJdJRRx2VtUKrKpXbf/7zn+yzP8aNFg1//vOfa31dWD5DhgzJ7qXE53LZQFn4/ve/n2666absYbUrr7yytDzS90ULtPgtHp/jsW9POumk7HtgnPtHHHFENl60VsynfotWLNQf5557blq0aFHWumxJvvvuu3TxxReXfmeLa3ZMGy3T8iLYUl0gddddd/XAdD229957p/POOy+9++672bU9b8qUKdlnf1zj4x5t7MNofVbRZ599lgYOHJgdF3F8bLzxxqlv374emiwygmVQC+JGWwRAIugVzcDjC3c09Y+bo1UFQY488sgsr+4f/vCH7O/4QhbN/KnfPv/88+xDs+wr3HnnndkP8bgpfsUVV2Qf1pG6IVJ7VcxzHl/ofvzjH6cNNtgg+8IeP9TiKVdPutY/8YUpvhz/9a9/LRcUjeMgzvGKIsXL9ttvnwU/L7vssqylSvzQ+uc//1lp3HgCKr6U/fSnP82mc6Ol/oibaT/5yU/SaqutlgVT3nrrrSpvgt9xxx1Zi6STTz45e6otAmXxZf3DDz+s9AMtAiRxoyZusB922GErcW1Y2ed4/snlioHTOIamTp2a9aVBwxetD+PmXLRWueSSS7LP+rhuRFoYoGF8nkfL/gMPPDD7DIggWbRMmj17dvY3DU88vBSBrYqfvxXFfo4boR06dMhSd0UKr//7v/9Le+65Z3bTtKy5c+dmv+fj91r8boubqBFQue2222p5bVgejzzySPadLh5crUrs2xie/742a9as1K1bt+x+TfwWi+/z8f0t0nBH0C3G//Wvf52NG0GV+K0fr06dOq3U9WLJIsAZ53K0Lot9Wp0TTjghnX/++WmHHXbIHnSMB9viPlzZ7/pxHERr5Iq/+SIAE6lcq/pdQP0R52/417/+lb3HQ+u77LJL1tLsnHPOSVdffXX2oPohhxySHnzwwdLpvvzyy+y6Efdwf/SjH2W/9U488cQs0BYp+SkiOWCFjRgxIiJguRdffDH7/9dff11pnL/+9a/ZOP/+979Lyy644IKs7Ljjjis37qGHHppbd911V8KSsyL7u6rXF198kWvVqlXul7/8ZblpPvjgg9zaa69drvyYY47Jpjn11FNLyxYvXpzbf//9c6uttlruo48+WqnrxdLP7+uvvz631lprlZ7jRxxxRG6vvfbK/m7Xrl227/IqXge++eab3DbbbJPbe++9y5XHvBs1apSbPHnySlkflt3EiROz/TN69OjS83PjjTfOnXbaaaXjvPPOO9k4LVq0yL333nul5ePHj8/KBw4cWOmcP+ecc1bymlBX5/hnn32Wa968ee7ss88uN+6vf/3r3BprrJH78ssva3ntqMn3uB49emSviuIcjuOg4vkf39k+/fTT0vJ//OMfWfkjjzyyktaAujoGQkwX3+lp2J/n999/fzbOH//4x9KyRYsWZdf0KI9jJG95jg/qxr/+9a9c48aNs9euu+6aO+uss3JPPPFE9lmdN3369Gz4pZdeWm7aV199NdekSZNy5bG/4zi4+uqrS8sWLlyY69q1a2799dcvN1/qTnzviv108MEHL3G8gw46KBtv3rx5ub59+2a/xfLX/7LiWhH+/ve/Z+M//fTTtbbsrPjn97Rp07JzN75nlz13O3funP09adKkbNwTTjih3DwGDRqUlT/11FPZ/z///PNcs2bNcmeccUa58a688spcSUlJ7t13310p68ayfWerStx723777bO/99lnn9y2226bW7BgQblze7fddst16NChtOz888/P5vvAAw9Uey2gOGhZBrWgbF7cBQsWZC2O4kmG8NJLL1UaP55WKCueZog0IPPmzVsJS0tN3XDDDVkrwoqveAoxnlgt2+KscePGqXv37unpp5+uNJ9IwVcxJV+kfHjyySdX8hqxNNHyc/78+WnUqFFZa9B4ryo9W8XrQDyJGq1T4tyu6hoQT7RtvfXWtbrs1Owp9Gj1GSlX8udnPGkYT55Gq9Cy4sm0Nm3alP4/nlCNc/7RRx+tNN94CpniOMcjtfLBBx+ctVTItyyPY+dvf/tbdszor27VENeFSO+Wl3+aPbIMAA3j8zxSYDdt2jT98pe/LJ2uUaNGWYtxGp599903Pf/881m/NZFKM1qCRcv++K6WT70V/ddFi8L47C/7uy26UIiWZhV/t0UL8mhBnBetFOP/0QdatGKj7sV3txCpzpckPzzutzz00ENZq9KqUuvFtYKGI1InRquiSMEZLYMryv8u+81vflOu/Iwzzsje860NIxVv9Id17733lssMFd/f477eJptsUstrwoqKLE9xPfj000+zLD75bF7563zcb43PhGhlHmlYw/3335+lzz/00EMrzc+1oLgIlkEtiAtydB4bP8riZlrkyo5m4SFuplVU8cM2f8Mlbr5Rf8XN8B/+8IflXvFhGyL9Wuz3sq9oBl6xQ+n4EV4xH/aWW26ZvVdM2Ujdi/0Y+zlSbsUP7LjBErmvqxI32ePLdOTEjtzYMe2NN95Y5TUgf32g/oh9GzfR4sZapOGIviXjFQGwSK0YKXrKipsqFcW5XPE8jhstkbaH4jnHIyXMjBkz0jPPPJP9Px6EiGMonyKEhs/3OGj4n+eRXmujjTZKq6++ernp27dvX0dLzoqK/iPjszyuxRMmTMjSZMfN0vhcjxT58bstboTHd7iKv9siXVfF323Rn1XFh1z8bqtf8kGwfNCsOvnhkR49AmbRHx2rht/97nfZfq2q77K4zsf9l4rX9QiQR/+GMTwvHqiIvgsj6J7vBzGC4lFO/RcpFeN6EJ/3cZ2PrlEqXufzXZ/kr/Wxj10LCE1sBii8eGph3Lhx6cwzz0xdu3bNnmqIp9aib6p4ryhaHVWlqv7NqN/y+zfymMeXroriRjkNW7QyiaeOP/jgg+yJs6o6Do+b4vEka+S4/9Of/pTdfImnlUeMGJHdhF9SCxXqh3gCLZ5IjBts8arqKfXIZb68oqPg+JFG8Zzj8dRiPDwTnUzH+PEenw8RlKN+iqdHq/oOVrFFaZ7vcaue5T0GKK7Pc8dHwxItwCJwFq8IbkW/4n//+9+z322xL6N/0qqu4/EbnoYlWvTHd7LoL3ZJYni0MowHnli1xIPI0SdwtC6L/qmqsiythKK1YTw8Ea3Ldtttt+w9fsNF/8TUb9G/WDy8GEHR/P25QYMGZb/JquKhGCpy1xYKLJ5ciycUL7rooqzj0Lx8iyNWbVtssUX2vv766y/TjdD48I40TfmnEsPUqVOz9+h4mPonmuVHypXo3DdSMVQlmvDHj68nnngiC47kxY10Goa4eRbncaRbrSieUo7OgP/85z8v8Rof57LzuOEp9DkeN+AiAHf77benK664Ikv3E8G46gIs1L1oGVZVCsWyTxyzanMMFN/nebt27bK0e19//XW51mXxVHpFjo+GK59qLwKo8bstgp6R4aHsb7HqzJo1K3311VflWpf53Vb/HHDAAemWW25Jzz77bNp9992rfOApWgLGd71oXRIp91577bUlzlMKtobXuiweTovv3WXFdT7uv8Tvtk6dOpWWRyvj6EojhufFeR7HUgTWhw4dmv0miDTb0cKU+i0eXA8RHMtncYqHGpd2fy4+E5Z2LaA4eLQZCix/86vi04Z//OMf62iJWJniAzm+cF922WXp22+/rTT8o48+qlR2/fXXl/4dx038Pz7M99lnn1pfXpZfPGUaqdYuvPDC7Imz6q4D8aOq7BPG8aMsbpJT/0WfVXEDLX4gRaqeiq/oVzDSt+T7vAixb/P5zkOk+xk/fnzWMomGpTbO8Ui5GA/TxI2ZSAsST7xSf8WP5SlTppT7zI4+b5577rk6XS5WHsdA8X2ex3f4+O4eN9nz4qZqVUE2x0f9F4HPqlr/5fss2mqrrdJPfvKT7PM8HnKtOG78P/q0KStSu910002l/48+puP/EXDZcccda21dWD6R3SeydsR3ror7MLrLiP7iIyAe40VLoehD9pFHHkkTJ06sNK/8cZEPkEZAhfovrtHxXTvOz8gUkde7d+8q781FMCzsv//+5coj5WIEyW+99dbsGi8FY8NoTX7xxRdnD0EcffTR2cMyPXv2zI6FqvqxK/s5fthhh2X7OR6iqUi2iOKiZRkUWARKIs1SdCIcP7iieX/0VRU58imO/R83WePG6A477JCOOuqo7AdU9FcTHcb+4Ac/KBcci5YJ0aH4Mccck/WdEGlAYrxzzz03m476KfbXksQX7fjSHalXo0VJ5MGOmy3RxH9paUGoe3HTLG6eRZq9qkQ/VXF+xtPqcd6G2Lfx9OpJJ52UFi5cmP0IW3fdddNZZ521kpee+niOb7/99lkO/Hg6NZ5kjc8H6q/jjjsu279x8/z444/P9m+0POncuXPWtwmrPsdA8X2ex82x6I/4jDPOyFqTdezYMZs+bq5XbFni+Kj/Tj311KyVYLQWj30Zga3oJiFah0QrsEjFGGmWL7nkkqwvs3jgJYIm0cdN/G6P46F///5Z6q68aFESLVVi3GiJFvOaNGlSlu4tHnSkfog+6EaOHJndKN92222zczRunMd+Gz58ePr444/TX//619KMMPGQa9yv6dGjR7bP43ta3FSP72zROi2Ok+haIwKrsf8jvVtkFYg+yuNGPPXTb3/726yF0Ztvvpldm8N2222XfcePczYCn7HP4wHHOF7i/I++LcuK4FpcE+I6EPs/ginUH3HvLB5ciQcZonVgBMpGjx6dtRCMz+98mtX4jRa/0+N6ENk9orVZjB/90UXKxgiQhQig33fffVmqzficj4cg4jtAzCs+4+P4oUjkgBV22223xWMGuZdeein7/3vvvZc79NBDc61atcqtvfbauSOOOCI3a9asbJwLLrigdLr4O8o++uijcvMbMWJEVv7OO++s9HVh6fL758UXX6x2nKeffjrXq1evbP83b948t8UWW+T69euXmzhxYuk4xxxzTG6NNdbITZs2LfejH/0ot/rqq+c22GCD7LhYtGjRSlobCrG/Q7t27XL7779/6f+HDx+e69ChQ65Zs2a5jh07ZvPJn/Nlxf9PPvnkWlt+lt+BBx6YnbdfffVVtePE+dy0adPsnI59OGTIkNzVV1+da9u2bbbP99hjj9x///vfctPkz3mK6xzPu/LKK7Nhl112WcHXgcJ+jwt33XVXbvPNN8+tttpqua5du+aeeOKJ7ByO4yAvvqflz/+KKn7nY9U8BoJ9vWp8nn/88cfZb7Kf//znubXWWiv7Dh/DnnvuuWwf33PPPeWmW9bjg7rx2GOP5Y477rjs83nNNdfM9lP79u1zp556au7DDz8sN+7999+f23333bPvaPGKaeK7+Ztvvlk6To8ePXKdO3fOvvftuuuu2XEV+/r666+vg7VjWbzyyiu5n/3sZ7mNNtooO8c33HDD7P+vvvpqpXHffffdXN++fXPrrbde9r0uzu04BhYuXFg6zi233JKVN27cOLsmxO996vf3+Lgmx7A4d/O+/fbb3EUXXZTbbLPNsuMifrsNHjw4t2DBgirnf/TRR2fz+OEPf1ir68Hy7/P8K67vcX7vu+++uWuvvTY3b968StPEPbc4x2O82O9t2rTJHXDAAbn77ruv3HiffPJJ7pRTTsmGx3w33njj7DiK7wgUj5L4p64DdtDQXXfddem0007LnkLMP6EEwKovnlKNp1WHDBlS7uljqOjaa69NAwcOzI6ZTTbZpK4XhzJ8j8MxQHUivW60TooWJpEhguIUabyiRZL+bABg1abPMiiAF198MctjXbZDUACAEM+mReqfSPciUFb/+B6HY4B8H2dlRb+Uw4YNy9KsS58LALDq02cZrID7778/jRkzJstzf8IJJ6QmTZxSAMD/89VXX2V57p9++un06quvpn/84x91vUiU4XscjgEq9nMVAbNdd90163/0gQceyPq5ij6NWrRoUdeLBwBALfNrAFZApNyKTqOj09hrrrmmrhcHAKhHPvroo/Tzn/886xz+3HPPTQcddFBdLxJl+B6HY4Cy9t5773T11VenUaNGpQULFqT27dtnLctOOeWUul40AABWAn2WAQAAAAAAULT0WQYAAAAAAEDREiwDAAAAAACgaAmWAQAAAAAAULQEywAAAAAAAChagmUAAAAAAAAULcEyAAAAAAAAipZgGQAAAAAAAEVLsAwAAAAAAICiJVgGAAAAAABA0RIsAwAAAAAAoGgJlgEAAAAAAFC0BMsAAAAAAAAoWoJlAAAAAAAAFC3BMgAAAAAAAFKx+v8B2CHbBtQRO6sAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 7 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-09-29T15:38:46.563634Z", - "start_time": "2025-09-29T15:38:46.244983Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "hour_percent(h_per, \"%click\")", "id": "12d83e9082d711c0", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABsEAAAaiCAYAAABzR1YRAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QeYVNX9B/yDqIAFe4EEG4j6xygaFbsmxqjYFWLBjqLGHlFDjIkpxoIlxm6iROyJLbHHHlswJhKV2IISiGCLKEYBEed9fud9Z98ts5Ut7OXzeZ51Z+/M3HvuuWXwfOec06VUKpUSAAAAAAAAFMhCHV0AAAAAAAAAaG1CMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAABAm9p2221Tly5d8s/jjz9e8TVnnnlm1WvicVsrbyt+aH/qHwAAaA9CMAAAmI+9+OKLaf/990+9e/dOiy66aP49bNiw9PLLLzd5Ha+++mrq1q1bDhzOO++8Ni0vAAAAzC+EYAAAMJ/6/e9/nzbaaKN08803p2nTpqU5c+bk3zfddFPacMMN02233dak9RxzzDHp888/TwMGDEgnnXRSm5cbAAAA5gdCMAAAmA+98cYb6eCDD87BV9h8883TEUcckTbbbLP8dyyP5+N1DYkA7dFHH82PL7vssrTIIou0Q+kBAACg4wnBAABgPhTDFs6cObPq8dNPP52uvvrq9Mwzz6Sf//zneflnn32WRo8eXe86ZsyYkU4++eT8+IADDkjbbLNNml/FPGClUin/tMecYAAAABSfEAwAAOZD9957b/69xhprpO9973s1njvttNPSaqutVuN1lfzoRz/KwycutdRS6fzzz2/jEgMAAMD8RQgGAADzmY8//jiHVyF6b3Xt2rXG8wsvvHDaeuut8+OpU6fmHl+1/eMf/0iXXnppfhw9x1ZaaaV2KTsAAADML4RgAAAwn/nkk0+qHtcXXvXq1avi60MMKfjd7343zZ07N2244Yb58bx688038zCFEb595StfSd27d0+LLbZY7qm2xx57pEsuuSS99957LV5/rLtLly75p6nDIb744ovp+9//fho0aFBaeeWV06KLLpqWWGKJtNZaa6V99tknXXPNNTlQnBdffvllOuaYY6rKFut/8MEHW7SuSZMmVa2n3JMvPPLII2m//fZLffv2TT169EgrrLBC2mqrrXKIOXv27GZt49NPP01XXHFF2nXXXdOqq66aj9GSSy6Z1lxzzXTYYYdVzQ/XkN/+9rdV5TzkkEPysjiXbrnllrT77rvnYx7ljOfvuuuu1Fpee+21dOKJJ6Z11lkn13PPnj3T+uuvn0aNGpU++OCDZq1rwoQJ6ZRTTkkbbLBBWn755VO3bt1S796907bbbpvOPffc9N///rfVz8nHH3+86vWxnea85r777svnQByn2Pd4/pe//GWz9hkAAKhr4QrLAACADhShRdm7775b8TXVl0dYUN21116b5w5baKGF0uWXX55/t1SEMDGv2FVXXZW++OKLOs+/9dZb+ecPf/hDfl2EC9XL3xY++uijdNRRR6Xf/e53OfCrbs6cOen111/PP/H86aefnt55550Wbefzzz9PBx54YF5PWHbZZfPwk5tuummr7EeU9dhjj81zvVU3a9as9NRTT+WfOH4RNPXv37/R9f3+979Pxx9/fMX9/de//pV/xowZk3bZZZd0ww035GEymyJ6G0aoGOVpK1deeWUOwGqHfhF0xs+vf/3r9MADD6SNNtqowfXEORrDh0a9RXBXXfSujJ8nnnginXPOOTlkOvjgg1NHipD20EMPTXfeeWeHlgMAAIpKCAYAAPOZCCeip1c02EfwEL2RqgdZ0bj/5JNP5sfRK6t66PThhx/m3lHh8MMPz72kWup///tf+va3v52effbZqmXRs2iLLbZIffr0yQHU22+/nf72t7/l8CtCndrBQ2uLQOab3/xm7jVUtvTSS+cyRZ1FGSZPnpzLFMNERqDU0n3fc88908MPP1xVz3/605/S//3f/7XavsTcbuUAbL311ksDBw7MdRpl/+c//5mXv/LKK3l/4xhEndfnoosuyiFkORSMYHSzzTZLX/3qV/MxiZ5Rzz//fH7+nnvuyb2Qnn766Xw8GxKh1G677ZbLFMNwbr755rnHWiz/+9//3ir1ED3Pjj766Pw4evFF0BU9zV599dVcxihznF9RjqiP+sK7uE723nvv9Mc//rFqWQSXsa/xe8qUKemxxx7L4WYEqdHLLX6fcMIJqSPEfh1wwAH5eETPr9jvOL9i+csvv5yXAQAA80YIBgAA86HBgwfn4fzeeOONPCxe9PApu/jii9PEiRPz45133rnG+yIAi6HjYgi4s88+e57KECFaOQCLecl+9KMf5aBl8cUXrxM+RO+aKFdbNtxHL5/vfOc7VQFYBCWjR49OI0aMSIssskiN10bQEcMWRq+45or6i/r/61//WhXMRAC2yiqrtGqYF8HVcsstl2666aYcNlZ3991354AkgrwIGo844ojcE6qSGE5x5MiROTyJISF/+tOfpuOOO65OwDV+/Pg0bNiwHLDF43hP9JhqyG233ZbrPeami7Cq+jCOobnDNVYSvfpiCMixY8emHXfcscZzf/7zn/PQjlEPEQrHORbnYSXnn39+jQAsroWf/OQnuU7Kopdc9P6K4xmiDqJn37yExS0VvTWjbr/2ta+lG2+8Mf9u7boFAIAFnTnBAABgPhSN8zGPUYieKjEX15FHHpnnioogqhwCxevKxo0bl37zm9/kxzHvUfR+aanoAXXrrbdW/R3D50X4UDsAC9FL7Rvf+EYetq+pQ+y1RIQw0TMoROgVIVfM11U7AAsRfER40txh5qIX2ZZbblkVgEXvnOh115oBWIgea1FvEdrUDsBClP3222+v+jv2tdJ8XhFARi+q+B1i3q7oYVaph1f0NIvArDzPXJwr//nPfxosZzmkuf/+++sEYKF8js6rON9qB2Ahzvtf/OIXVX/ffPPNFd8fIdnPfvazqr/juogQuHoAFmLuuKjzjTfeuGr/Ys6xjhDbjvLEca0dgLVm3QIAwIJMCAYAAPOhtddeO4cU0QMrRBATQ+eV52WK4Oe6665La665Zv47hrz77ne/m3sDxZB1Mc9QbTNnzsy9nMqBSUMuuOCCqscxH9S+++6bOlr1MsW8TxEItqYYMjDqrtzTbLvttsvD50UvpbYQvbJie/X51re+lfbaa6+qv2NerNqix1j0Fgx77LFHHsKxIRG6xNxb5SCuPN9ZQyJQjcC1rURPvhgOsj4HHXRQHooxxLGJwKu26E0XQ1iGCPmiN1x9IlyK3pVlcYyrD6/ZniJYjl6bAABA2xCCAQDAfCqGw3vuuefyEIARXkTwFfNe7bfffnmOpqFDh1a99oorrshzNEVoFkPclYcljMAr/h4wYEDuHRSBTswhFsFWOTypLYZhe/zxx6v+jqH1Otq///3vPEdU2bHHHtuq649hHyNUi6EHw5AhQ9J9992XllhiidRWItxpTAzdVz2sqS3KWLb//vs3absxx1hZOVStzzLLLFOxp1prqn4eVxLna8xDFiLkjXOhtuq95OL6aCy022STTWr0vqpUt+0hrkMAAKDtmBMMAADmYxtuuGGNYQkreffdd9MPf/jDqnBo/fXXrwoMIhCo3dvns88+y8tiiL2YGykCgepivqhZs2blxxGcdcR8SbX95S9/qXocvd+++tWvttq6I0iKICbqJcSwkxEcxnCFbSVCyqbU62abbVbjOMe8WBGElpXnbAsxfGLMzdaYjz/+uOrxlClTGnxtDKFY7o3YVioNBVhbzJ1WVqkn2AsvvFD1uKHeddVtscUW6aWXXsqPI0Bub6uvvvo8DVkKAAA0TggGAACdXMx/FMFGhCPVh4G77LLLqgKw6HFyzjnn5B5l9957bxo+fHh+Tyz/5z//WaPnTIQtZX369Kkaiq4jVS/TGmus0arr3n333fP8TOH73/9+nkuqrUUPq+jh1Jjoude9e/eqUPL999+vEYJNnTq16nFjYWkl06dPb3T7ba0p88hVn/cthnGsLeqlbNVVV23SdqvPcRbDhLa39qhbAABY0BkOEQAAOrHo+XPDDTdUzZnVs2fPql5g5513Xn4cQ8ndeOONudE/ApW99947jR49Oj83adKkdPPNN9dY5yeffFL1uC2HA2yOtixT9YDl9ddfrxiytLboYddUiy++eMV6qN2rqyXK4V992nIusLLy0J3zojwfWO36amm9tof2qFsAAFjQCcEAAKCTirDmu9/9btU8TzH0Ydkrr7xSNdRd9PqqPaRdzEdVDgFiWMTqqvdQqh4udKS2LNM999xTFUjccccdad99923zIKw89GJTfPrpp1WPa/ceqx7kxJB+EX425ydC0CKoHoxWr6+W1mtLxPx7AADA/EUIBgAAndRFF12UhzJcdNFF89CH1UWPprL+/fvXeW+3bt2qho2r/tqw0korVT2OIK2x3kLtoXqZ3nrrrVZddwSIlYKwttzvGIawKWFeDNNXHgoxLL/88vXWyzvvvJMWVNWHFpw8eXKT3lM9AKxdr7V7CDblXJjXXnkAAEDrE4IBAEAn9J///Kdq/q+TTz45rb322vX2cqlv6L1yL6LaYczAgQPzsInlHkvjxo1LHW3TTTetehyhXex/awdhd999d40gLOZLa6sgLHphNaVen3322RqBV+/evWs8P2jQoKrHTz/9dFpQbbDBBlWPn3nmmSa9p/rrNtxwwzrPl4cWDf/9738bXd9LL73UpO0CAADtRwgGAACd0AknnJCDrujN9cMf/rDO89WHd6svMCovr97YX+4l9o1vfKPq70svvTR1tNjPddZZp+rv2j3fWsN2221XJwhryx5h119/faOvGTt2bNXj6sekbJdddql6fO2119boNbYgiRCz7JZbbmm0Hp5//vn04osvNli3MYde2fjx4xstw+9+97tmlBgAAGgPQjAAAOhkHnjggRzQhIsvvrhiT6/qgdG9995b5/m//e1vadq0afnx//3f/9V5/nvf+16NUCF+Olr1Ml1wwQXpySefbPMg7Pbbb2+zIOyGG25osDfYY489lrdfdvjhh9d5zd5775369euXH8fxjDniopdZU0QPwKbOnzW/23///avmBYt6+MlPflLvaz///PN03HHH1QjA1lprrTqv23jjjVOXLl3y4zhOMc9efS6//PI0YcKEedwLAACgtQnBAACgE4keLuUG/J133jntvvvuFV+35pprVjXsR6jz0EMP1VjHKaecUrE3Udm3vvWtNHTo0Kq/DzjggDz8YgyPWNuXX36ZA5s999yzTedFOuSQQ9Lmm2+eH8+ZMyftuOOOOXyIx5WCjtjvKFNLgrA//vGPbRqExXxTc+fOzXX/8MMP13k+gssoeznQ2n777XO5auvatWu64oor8u8wZsyYfF40FNhEr6bTTjst9enTp9XnV+so0ZvxjDPOqPr7nHPOyX/HeVDdu+++m6+Zv/zlL/nvhRdeOJ199tkV17nyyitX9TCL47DffvvV6VUZ50QEsscff3zuQQkAAMxfFu7oAgAAAE137rnnpn/96185oLnkkksafG2EABFeRUi100475dAoGvYfffTRqvBj3XXXzb2JKvnNb36T/v3vf6fnnnsuBzY//vGP03nnnZe22GKLHKBEMPD222/noeXKcyY1tRdSS0Rgceutt+Zg4o033siB3DHHHJNOP/30XKZevXrlUCLKHD3dZsyYkZZaaqkWbStCwAjCdttttzRz5swchEUIcvPNN+dyzKuY2ytCrl/+8pc54Fp//fXzXGxRf1H26r2KYr9+/etfN1jWCMKOPvrofJzuv//+3Fswevitt956OSCKuooeUv/4xz/S+++/n4po5MiR6amnnsrhZ/j5z3+e6yV6ei2zzDJpypQpOaydPXt21XtGjx5dY1612s4666z8nriGou769++fz7+vfOUr6cMPP0x//vOf03vvvZd7oUWYVr2HGQAA0PGEYAAA0ElMnDgx93AJo0aNSquvvnqDrx82bFgOsH71q1/lcKT2sIgRxNx22231hjoRnjz++ON5/rGYbyrWEcPn/elPf6r4+u7du1f1SGorX/3qV3Mvnhga8M4778zLPvroo4pDPobyEHktEeHSH/7wh9xzKIKwqKvQWkFYBIqffPJJuuaaa3LAEj+1RW++u+66K8+J1pAjjjgiD4t45JFH5oAwwrQI0hoaom/AgAFp2WWXTUWx0EIL5WFCTzrppBx+xfka4Wz5uFUX4WgEkNG7sCERkEUAOWLEiLy+OA9qn2sRUkY4G88DAADzF8MhAgBAJxG9TGIowxjq8NRTT23Se2LOsAiLItCJ3jCLLrpo6tu3b55fK4bFqzQXUnXR4+zqq69OL7/8cg7eNtlkk7TiiivmECjmIot1RY+mGJYweoUtueSSqa1FcBNhRwR8J554Yu5Btfzyy+cALkKvtddeOw9f+Nvf/ja99tpr87St6KUVQVh5aMQIVKJHWGsMjRhDIkZvu+i1FUNPrrbaanlIvdi/6NkW4WUEY7E/TRE9nmIYxCjjoYcemueFi2Me9RLHJUKyGH7xF7/4RXrhhRfyMY0gtEjivIweklFvcY5HD7uoz6jrlVZaKW211Va5x1YEyo0FYGWHHXZYevHFF9Pw4cNz8Bxh79JLL5022GCD3Nssnov1AgAA858upbYcrwQAAIBs0qRJVb33omdX/A0AAEDb0RMMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhdOlVCqVOroQAAAAAAAA0Jr0BAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAFJKv/3tb1OXLl3y7yLadttt8/4BNb3xxhtpzz33TCuvvHK+RpZeeul23f6ZZ56Zt/v444+363Zp3KRJk/KxOeSQQ5r1PvfbylZbbbX8U2QLwj7OD9cYAEBzCMEAgEKaO3du+vWvf5222WabtOyyy6ZFFlkkrbjiimm99dZLhx9+ePrjH/84XzVolRuCqv8svPDCaaWVVko777xzuv/++9P8oDUa7J977rk0fPjwtNZaa6Ull1wydevWLa266qppyJAh6Xe/+10+dgt6PbeXaHiMOoh6WRDFubbHHnuk++67L+2yyy7pxz/+cfr+97+fFhQCuAXjuuls5W1M7EsEjR1BwAkA0Pks3NEFAABoi4btaNB+4IEHcq+OCDe++tWvps8//zxNmDAh3XTTTenVV19Nu+22W9V7oifIpptumnr16tWhZV9qqaXSiSeemB/PmjUr/eMf/8gN9PFz8cUXp+OPP75F6x07dmz67LPPUkeaM2dOLv+VV16ZunbtmgPKODYRgv3nP/9Jjz76aLr99tvT3nvvnW677bZOWc90Lm+99Vb65z//mY444oh09dVXd0gZjj322LTvvvumVVZZpUO2T/2+8pWvpFdeeSXfLzrb/ZaO8cgjj3R0EQAAqEUIBgAUzs0335wDsPXXXz898cQTdRowo3Fy3LhxNZbFa5rb0NkWIrSL3hnVjRkzJh122GHpBz/4Qe7FtthiizV7vfNDA/sxxxyTe+d97WtfS7///e9zT7Da4WUElE3tpTc/1jOdy9SpU/Pv3r17d1gZll9++fzD/Cd6EK+99tqd8n5Lx+jbt29HFwEAgFoMhwgAFM4zzzxTNQRUpWArwo1vfOMbDc4JFsODxd///ve/80/14fNqz10RvcpiWZ8+fdKiiy6ah9bbf//902uvvdYq+xPrXnzxxdOnn36ae7JV/8b5jjvumId7jN5U/fv3z0O5ffzxx00awqm8jxEGjR8/PvfKinAo6id6aZXrsSyGhfzJT36SH0f9Va+Txjz99NM5AIuyPvjgg3UCsBC9ww488MB0ww03pI5QXz035/iWhx1788030yWXXJKH3+zRo0eNobs+/PDDdPrpp6d1110313WcoxHYxrGLbVcXrx01alRaZ5118nritdttt13605/+VGfb1c/hxx57LG8zhpvs2bNnPrbRo6W6eO11112XH6+++upVx7L68J9/+9vf0gknnJDLF8eue/fuac0110wnn3xymj59esV6jPMvetlF78t4fYQIF154Ya6T+uZ+iWD67LPPTgMHDszHYIkllkibbbZZDrSbK8ocvQlj+NPyUJvf/e5307Rp0+rsf5znIc7r8v7XDkcbmsNm4sSJeRjP5ZZbLtf1t7/97fTyyy/n173//vtpxIgRuXdp1MPGG2+cj0tThyQsD/n2wQcfVK0n9mfAgAE5sG3uvIa1h5Br6vXcnGNTKpXyObX55punFVZYIe93XDc77LBDuvXWWxus10r1EevaYIMN8rkfxzNC6nfeeafeud0OOuig3HsrrtMINuPvWF7bJ598kn72s5/lazCujzh2EV7ss88++fxpaL6iplw3te+3t9xyS/77pJNOqlj22bNnp2WWWSYf4y+++KLGc1HPcXzi3hz1GfeCn//85/k9TdGU8ja3/hoS58Cll16az9Mob6wvejtW+lxq7n6Wz/EQX3Cpfs7Wvm7jiy5xbcZcf7E/cR4eeeSRVcF3bY3dl8vnQmy3XK/ln9rXVaUhlGM/zjnnnPwlkFh/nHdbbbVVHgK4turnXTyOnqIRlEe9bLTRRumee+5JzVEuY+x7fMbGtRTX1Ne//vX8xZP6xGf14MGD87bj3hPXyCmnnJI++uijOq8t7/eMGTPS9773vfw4QuTG7qe197up+9qc+qz+b51KKh2z6vfT+FJV1F+cE4bCBIDOSU8wAKBwokE6vP766y1eRzSIxPxAv/zlL/Pf5aHzQjQGl0XjyF577ZWH+tt1111Tv3798tB+d9xxR7r33ntzo/eGG26Y5lU0LIZyA8xVV12Vjj766NwoPXTo0NyoFQ095557brr77rtz6BSNiU3x/PPPp/POOy83bEcPqMmTJ+dhCSNsiXCsHFhFHdx11125EfDggw9u1lxp5aHmyo35DYnGto5Su55benwjOHryySdz+BSNiBHwlYffi4beCFajATKO4ZdffpnP1YsuuigdddRR+ZiGeE00vEXDYDTuReAZjbHRKBiP4xyIYfxqi+f/8Ic/pJ122imvL4b7i2Ee//rXv+bH5V5HcX7H8YyhIKO85fOl+nkTweWdd96Zw6JvfetbuawREkSoFfOnRUNzBAhlMbTkN7/5zfT3v/89hxfDhg3Ljd9nnXVWro9KokE13vPCCy/kuoygI7YTDbARNkYgGY3hTRH7HgFYHMdoAI8ALMp7xRVX5Dp56qmnchBQ3v+o2wgIYv/KDdlNnWso3jto0KDcWF9urI66ivc/++yz+RhFw2wEK9HAHkFIHJM41k3tKRR1s8UWW+RG/NifaPiNXpRRRwsttFC+DluqKddzc49NhAgRmEUdf+c738mNxhE+xrkX5Y66aKq4HiLsjfdEXcaxi/Av7nNx3kXIVhbrj/Mzwq0Y5vb//u//cngdgXoc94cffjiHkCHOjVhfhPzle17MCxjXdVzPca3FtVmfplw3tcW8c1EXETiMHj06b6+6KGPUdYTL1Z+L+o59jkA5zuvYxl/+8pd0xhln5C9BPPTQQ3XW1ZLyNqf+mnJe/epXv8r3+bjfRxAS64hjFkMSx7lcW1P3Mz57Y38ivI1ru3o4Wf26vfbaa/O247Mk9icCsAjzfvOb3+TPx1h39WuwKfflKFNsO0KReF08LmvsszD2O4LguNbiSwHRKzrC5Rj2N87v+Jz9xS9+Ued9sZ1NNtkkrbHGGjm8ivtIhMm77757Pia1v8zTkPjSQoTTsR+HHnpoPt8iMIp79Ntvv53DreqijiM0ii8/xPDS8W+MF198MZ1//vn58yTucXF/q72fcb+IcsYXAuL58v22Mc3Z15bWZ0vEOuPfAeXP0ygnANAJlQAACubvf/97aZFFFil16dKldMABB5Ruv/320qRJkxp8z5gxYyL9yL+rW3XVVfNPJR9++GFp6aWXLi233HKlCRMm1HjupZdeKi2++OKlDTbYoEllfuutt/L2K23rmmuuyc/F+j777LO8L4suumhpySWXLL3yyis1Xnv00Ufn1x5xxBE1lm+zzTZ5eXWPPfZYXlZpv6+88sq8PNZX3Y9//OO8PN7bHGussUZ+30MPPVTqSM2p55Yc34MPPjivo3fv3qU333yzzjY222yz/PwvfvGLOs+9//77pZkzZ9Y4ZnEO33zzzTVeN3369NL6669f6t69e+mdd96pcw537dq19PDDD9d4z/e///383LnnnluxvFEvlcS59sUXX9RZ/pvf/Ca/75xzzqmx/Kc//Wlevu+++5a+/PLLquWTJ08uLb/88vm52GalMtQuW9TFDjvskOvghRdeKDXmk08+KS277LKlhRZaqPTnP/+5xnNRztjG9ttvX/EaiPO6uedQ/Pz85z+vuP/LLLNM6cgjjyzNnTu36rmxY8fm50488cQmXVPlbQwfPrzGMYhzMY7xOuus06R7WPX1xTnVlG239NhE/X/lK18pffrppxXP76Yolynu4XEvry7qLp477LDDqpbFebb22mvn5TfccEON199yyy15+VprrVV1LF588cW8bI899qiz7XhNXPe1j3V952x9102l++2IESPysrvvvrvO6wcPHpyfi7LVPp577rlnvh9VqqNf/vKXpaZoqLzNrb+GPP300/n1ffv2Lf33v/+tcb5suummFe+9LdnPSudy2WuvvZbPnSjDf/7znxrPxX0x7g+1j31z78sNNaNU+jdDrDfes9NOO5XmzJlTtfzdd9/Nr43nou4q3WPOPPPMGut64IEHqtbVVOV1DR06tMZxjM+ouFdFfU2cOLFq+aOPPppfH/USnzeVjlft+1h5P7bbbrvS//73vyaXrSX72tz6bOw+X+mYlfcz7nH3339/k/cHAJg/CcEAgEK69dZbSyuvvHJV40r8RANtNH798Y9/bJUQLBrm4j2XXnppxefLDba1A5SGGoKWWmqp3FATP6eddlpu5CmX/+KLL86vjYb3+HvUqFF11hMNuBGORUAya9asJoVgW2yxRZ31fP7556WFF1649PWvf71VQrAePXrk99UO7dpbc+q5Jce33NhcqXH6+eefz88NHDiw0Qbl8ePH59cOGTKk4vN33XVXfv6yyy6rcw4PGzaszuujsTOe23vvvZvVmF+faDjv2bNn6Rvf+EaN5dHwHI3MldZXPm+rBwoffPBBDnQ22mijBuvhlFNOabRM0YAfr91vv/3qPBcNpauttlp+/t///nerhGCxvtoBYaw7nltsscVKM2bMqPFcvDauqW233bbJIVis5+OPP65Thq233jo/H8FfW4VgLTk2cY+Neql+72mucpmqB11lH330Ub52q9/fnnrqqaoG+0q23HLL/PwTTzxRIwSrdJ7U1pohWDkgqn1NT5s2Lddz7UA97hNxvtQOIcrnUoTzG2+8caP70Fh5m1t/DTn88MPza6+99to6z5Wvtdqfpy3Zz4ZCsPJ9+Z577qn4fPwbIOq7fH02577c0hCsX79+OUyp9PlX/kLBoYceWvHLGpW+hLDKKqvkemmq8pcjKn0xo3y9VQ+goo5i2csvv1xxfVFXK6ywQo1l5fAp7gvN0ZJ9bW59zksIViksBwA6H8MhAgCFFENx7bnnnnl4qxhGK4bzit8xLFT8xFwn1ecXaYkYDijEMFOV5pooD8cYczHF8FJNEUPHlefpiSH0YiiiGIYn5lSJYfVCDDUXYtih2mJemRiG7s9//nMezirmNGlMzLtRWwxhFXNf1TfvU0eLYxfDz1UXw2E1dSi7ptTzvBzfGNapthiCK8QwTjGUXUPK245yVtp2zDdV3nZTjmcMBxaaezxjGMgYdjGG8ouhFKM8MUxYWQyjVRZzwcQcWbGtSsODbbnllnWWxTBsc+fOrXe+lth+fftZW0PXRQyltvXWW+dzJu4FTR2OsCExNFt5mMuymEcpxPx81YeJDPHauKZi2L2mivnXag85Vvt4xhxdbaElxyaGVou58OJ6iHtwDDMZQw5WmpuxMeX52qqL9US9xzBosd143NBxLy8vfwbEORBli/fFHFQxtFkMtxbnZlw3lYbqay0xFF2cFzEcXxy3uFeHG2+8Mddz9aH9Ymi3uO/E0KXlIXlri6H+mnJdNKa59deUdVU6dlHHta+XttjP8r0zzpE4h2t77733cn3H/TuGPmzOfbklYojJf/3rX3lutBi6r7ZyvUf9NuUeU77+y/vZVHHPqzQ0YXxmxmdh9e3HuuPfADGEafzUFsMRxmfQf//736rhp0PM4xXzYLZEU/d1XuqzJSp9lgMAnY8QDAAorGjEiXkp4idEw1fMdRXzj4wdOzaHZDFXS0tFA1B53qSG/O9//2vyOmOek9rhTm0RRIT65tYqL680eX0l9c1lE8FB1FlriDK9+eabOTSp1HDVkhAsGjlra2oI1pR6npfju/LKK9dZVj4e0XjXmPK2Yy6c+GnOtisdz/K8Qc09njG/SsxzFfO0RFgQ+1Wesy0arWOOquohWIigp5JKy8v7GY3VlRqsm3MNtfZ10ZhKwU65nusLfeL5cng0r9dmaK3rs5KWHJuYPynOlZjf6Zxzzsk/UdYIli+44II8p15T1Xcela+t8vFu7nGPhvZHH300/fSnP83z/Zx22ml5eYSWMTdazGnWVsFirD/mTYtQOeadCjEnXXxWxRxrZRGSRQeeCBrKYX1bac3rpryuSscuzoPyfIRtuZ/l8zbmXmtI+bxtzn25veu3oeu/+pcRWvN6KtfhF1980egxiTqsHoLFvGEt/WJRU/e1ve/zlT7LAYDOp/W/6gQAMJ+Kxs/onXDSSSflv6MhdF6UG7rjm+z/3zDTFX+i4bM1lbf7zjvvVHx+2rRpNV43Pyj3AnrkkUdaZX2PP/54nXqu1Fulo45vpYbAciNf9d5TjW374osvbnDbETa0leeffz4HYN/61rfSa6+9lrcVAUHU849+9KPcG6C6co+ld999t+L6Ki0v72dckw3tZ/ToLOJ10ZrKvVii8bq2ljQIt+TYxD32xBNPzNdMHO/40kF82eCPf/xj2nHHHWuEpo2p7zwqH99y+Vpy3KMXVgR2U6ZMSW+88Ub6zW9+k8P5Sy+9tCqcagsHHnhgPk4RfJV7q7z00ks5JKweEJXLGr16G6r7/3eku3nTmtdN+TWVjl2clx988EHF17fmfpbXGWFJQ+sr91Zrzn25JeaX+1JTr6fy47hGGjsm8WWS6ualZ31b1mdD98bG7o/tsU8AQNsTggEAC5zyMGVNaViLRt36eltsuumm+feTTz6Z2lM0GJaDoEqNOePHj8/DEq2zzjqtvu3ycEXN7YEyYsSI/Pvqq6+utzGurDkN5W2ptY9veX0PPvhgo9/ib69zq6HjGUNOhd12262q51HZc889l2bOnFknBIteQNGYXKmXXQypVmmoqWigbI39bOi6iMbP8jY23HDDVETl4fUi2KkUaDb3+M/rsYleIXvttVf63e9+l4coi6EyX3755Sa/v1JPzwg2at/fGjruoRzS1Xfco3fa8OHD8/aiB9gf/vCHNrsPxtBuURfjxo3LwXI5DKsdpEc5BgwYkCZMmJA+/PDDZm2jueWd1/qrrvyaSscurv/a22/pfsZ52Vqfy825L7fk2Me/N/r27ZvvixG4zkv9zovJkydXvC+Xj3v5PCjXSfTSi+Myv2lJfTZ0b4zPueq94ACAYhKCAQCFE3O9xBBylRq04tvD5eHtGpvfJMRQPzFUU+0G/3DooYfmb5HHkEERCtQW26+vYXFeHHDAAXn4rJh7pxxUlJ1xxhl5WLp4TXnYutZUHvooGtSaY4sttkhHHHFEHmYpeoRUaryK+opjF70l5getfXxj/pmYFyga8c8999w6z0fdzJo1Kz+O+Ym22mqrdMcdd6Rrr7224vqiB0nMb9NWx7M8r1ftfYxtHnPMMRXXF3PtRb2MGjWqRsgcjY+V5vyJoCTmkYqQ5mc/+1nFhuUIT956661G9yWGNo253eIcKs/zUxbbjnVEr7bWmA9sfhTnTIQDN910U55rqSzChVNPPbXZx7+5xybC66effrrOa2L4x3LAsdhiizV5f66//vo68/pEL8RosN5vv/2q7m9xb1lrrbVyyBLDG1YXf0cYEnNxlXujRnljaNbaotE/9qFHjx5tdh8M5bm/rrnmmnyuRg+wXXbZpc7rvve97+XeljF8b6WeKlHe8hxc81Le5tZfU/btrLPOqhFqxX0t7gmVtGQ/Y38qBRoh5nWMz8fowViet7G62Fb1gKw59+Xytpt77GPf4n54yimn1LiOomdcXFvl17Sl2G4M/Vn930VxLfzqV7/KX3KIfzOUlXvLx2f21KlT66zr008/rXOPbU/Nrc/o5Rlf0oiAu/pnZvy77vjjj2/n0gMAHcGcYABA4cS37GMYuZjLIRruypPBR4PPvffemxs+Yn6jIUOGNLqu7bbbLs+HE8FNhGbR8Lr++uunXXfdNTeGRSNhDPcV35yO18a32mP4nGigi8ncazegtYYIJ6JRP4KI+LZzDPG4wgor5G/fxzajwadSY15r+MY3vpEb2qNBM3p1lL9h/cMf/rDR91522WX5W/RXXnll7sUR83dFXUadxre6Y3jK//znP006Lu2hLY7vDTfckPf7Bz/4QR4qLh5HY16Egn/605/Sq6++WhU+RZgRvUail0o0VA4aNCiHclFHL774Yq7/KEOEFS0V+xRz50Rj5957752/ZR/biIbkjTfeODeQRxAXjcRxLUUvvvvvvz83mvfu3bvO+iJsueuuu/KcR9HTJebji9AiegPF9RPPlYemKosh6GL/Y4jFCD5iOzF/TTS+vvLKK/n6i7CgfB3XJ3qVRGA4dOjQPNRZ/I7A629/+1uu27gfXHXVVamoYi6cCK2iDgcOHJh23nnnHIjfd999ue5rB0pNuZ6bc2zivhrPR8+qCBZiqLS4NuILCfHa6FHYnN6pO+20Uz7/4v4W+xYhTfzE9RFzjZXF9Rg9qrbffvs8h13c2+MeGOdfnG9xTscckOXzLoZqjB5qcX5HeeI8ji86RAN5BHblOcJaet00Ju4n0SAf9/DY3nHHHZdDm9qiET/O3csvvzz3fNlhhx3y+RzhUnyW/fnPf85BfdxP56W8za2/hsTxiv2JL2isu+66+V4e+xZ1G+dWpXmcWrKfsT9xj4nP4fgMjG3EOR4/Ufa4D8R6434dn90R4kVdR3AVAVh8Xsa9tiX35dj273//+3wOxTCWEZrGud7QlzdGjhyZ75tRD/GZF++LoDrWE6FM3DebEjLOi/XWWy//2yiuzbgvR+AY9+X4fd555+W6r16/cY3FfWHNNdfM5Y1rPOYA+/e//53/rRHlfeCBB1JHaG59xvlxwgkn5IAserzFNRi9g+PeFNd/pc8yAKBgSgAABTN58uTSpZdeWtpjjz1K/fv3Ly255JKlRRZZpLTyyiuXdtppp9L1119fmjt3bo33jBkzJrqt5N/V/e9//ysdddRRpa985Sulrl275tccfPDBNV7z1ltvlY455phSv379St26dcvbW2uttUoHHHBA6c4772xSmWMdse5VV121yfv54IMPlrbffvvS0ksvXVp00UVLffv2LZ1yyiml6dOn13ntNttsk9df3WOPPZaX/fjHP664/ihLpfJE/a2//vql7t275/c395+Uf/nLX0qHHXZYac011ywtvvjiuexf/epX8/G69dZb6xyb1tSSem7O8Y1zI9Yf76nPBx98UDr11FPzuRnrW2qppXJ9/uAHPyh9+umnNV47Y8aM0llnnVXacMMNc11Fna+22mqlwYMHl6666qp8fjZ2DpfFc3Ee1HbBBReU1l577XwcatfNf//739LRRx+dl0VZ11hjjdKoUaNyOes7P+L8O+6440q9evXK64y6Ov/880vjxo3L6z/hhBPqvGf27NmlSy65pLTZZpuVevbsmd/Xp0+f0je/+c3SRRddlOusqZ577rl8Li2//PL5uo/1xDX89ttv13ltY9dAQ+dQ7ftAY/UcKtVZbDveE2Vp6nrqO89mzZpVGjlyZL5fxb7HPeEXv/hFac6cOfWur7HruanH5vPPPy+de+65pR133DE/H+dLHINBgwaVrrjiiryepqheH3Eul8sW6zrkkENKU6dOrfi+V199NV+TcZ9feOGF8+9hw4bl5dVNmTIln8Obb755aaWVVsr7E/UV5b7vvvuafKwbum4q3W+rGz58eFVdP//88w3Wx913313aeeedSyussEI+plHmjTfeuHT66aeXXnnllQbf29TyNqf+GvPll1/m86W8rbgPfPe73y199NFH9d4zmruf7777bmm//fYrrbjiiqWFFlqo4jX84osv5uO2yiqr5HIss8wypQEDBpRGjBhReuSRR1p8X/7iiy/y+bP66qvneqp9XdW3jzNnzsz38ihDnM9LLLFEaYsttijddNNNzb7HNHZ+1VYuY9wD45hGHcc+brDBBqUbb7yx3vc9+eSTpaFDh+ZjGMckrsGok5NOOqn017/+tcZrGzq2DWnpvjanPsvn5dlnn50/w8qfC/Hvpfo+yxr7PAUAOpcu8Z+ODuIAAIBii2FIY2646NFx5JFHdnRxmE/FkIcxBGnM7RM9coB5E739ondsWwzPDADQGZgTDAAAaDWV5pCJYchiKKqYeyaGMAMAAID2YE4wAACg1cScQzH/Tsw9E/MOTZo0Kd1zzz15zpazzz7b/CsAAAC0GyEYAADQag488MB0/fXXp9tvvz19/PHHaYkllkiDBg1Kxx57bNprr706ungAAAAsQMwJBgAAAAAAQOGYEwwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFs3BHF6CoVl555fTpp5+mVVZZpaOLAgAAAAAA0OlMnjw5Lb744umdd95p0fv1BGsjEYDNmTOno4sBAAAAAADQKUXOEnlLS+kJ1kbKPcAmTJjQ0UUBAAAAAADodAYMGDBP7+90PcFmz56dTjvttNS7d+/Uo0ePNGjQoPTQQw81+r4zzzwzdenSpc5P9+7d26XcAAAAAAAAtJ9O1xPskEMOSbfddls68cQT05prrpl++9vfpsGDB6fHHnssbbnllo2+/4orrkhLLLFE1d9du3Zt4xIDAAAAAADQ3jpVCPbcc8+lW265JY0ePTqNHDkyLzvooIPSuuuum0499dT0zDPPNLqOIUOGpOWXX74dSgsAAAAAAEBH6VTDIUYPsOi5NWLEiKplMZzh8OHD07PPPpumTJnS6DpKpVKaMWNG/g0AAAAAAEAxdaoQ7IUXXkj9+/dPPXv2rLF8k002yb/Hjx/f6DrWWGONtNRSS6Ull1wyHXDAAendd99ts/ICAAAAAADQMTrVcIjTpk1LvXr1qrO8vGzq1Kn1vneZZZZJxx57bNpss81St27d0pNPPpkuu+yyPMTi888/XydYa6oBAwZUXD5x4sTUt2/fFq0TAAAAAACABSgEmzlzZg6waoshEcvP1+eEE06o8ffee++de5ANGzYsXX755en73/9+G5QYAAAAAACAjtCphkPs0aNHmj17dp3ls2bNqnq+Ofbff/+08sorp4cffrjFZZowYULFH73AAAAAAAAAOk6nCsFi2MMYErG28rLevXs3e519+vRJH374YauUDwAAAAAAgPlDpwrBBg4cmF5//fU0Y8aMGsvHjRtX9XxzlEqlNGnSpLTCCiu0ajkBAAAAAADoWJ0qBBsyZEiaO3duuvrqq6uWxfCIY8aMSYMGDcq9usLkyZPTq6++WuO977//fp31XXHFFXn5jjvu2A6lBwAAAAAAoL0snDqRCLqGDh2aRo0ald57773Ur1+/dN111+XeXNdcc03V6w466KD0xBNP5J5eZauuumraZ5990te+9rXUvXv39NRTT6Vbbrkl9x478sgjO2iPAAAAAAAASAt6CBbGjh2bzjjjjHT99den6dOnp/XWWy/dc889aeutt27wfcOGDUvPPPNMuv3229OsWbNyKHbqqaem008/PS222GLtVn4AAAAAAADaXpdS9e5StJoBAwbk3xMmTOjoogAAAAAAACxwWUunmhMMAAAAAAAAmkIIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4XS6EGz27NnptNNOS7179049evRIgwYNSg899FCz17P99tunLl26pGOPPbZNygkAAAAAAEDH6XQh2CGHHJIuvPDCNGzYsHTxxRenrl27psGDB6ennnqqyeu444470rPPPtum5QQAAAAAAKDjdKoQ7Lnnnku33HJLOvvss9Po0aPTiBEj0qOPPppWXXXVdOqppzZpHbNmzUonn3xy7k0GAAAAAABAMXWqEOy2227LPb8i/Crr3r17Gj58eO7ZNWXKlEbXcd5556Uvv/wyjRw5so1LCwAAAAAAQEfpVCHYCy+8kPr375969uxZY/kmm2ySf48fP77B90+ePDmdc8456dxzz83ziQEAAAAAAFBMC6dOZNq0aalXr151lpeXTZ06tcH3xzCIG2ywQdp3331brUwDBgyouHzixImpb9++rbYdAAAAAAAAChqCzZw5M3Xr1q3O8hgSsfx8fR577LF0++23p3HjxrVpGQEAAAAAAOh4nSoEiyEMZ8+eXWf5rFmzqp6v5IsvvkjHH398OvDAA9PGG2/cqmWaMGFCs3qIAQAAAAAA0PY6VQgWwx6+/fbbFYdJDL179674vrFjx6bXXnstXXXVVWnSpEk1nvvkk0/yshVXXDEttthibVRyAAAAAAAA2tNCqRMZOHBgev3119OMGTNqLC8PcRjPVzJ58uQ0Z86ctMUWW6TVV1+96qcckMXjP/3pT+2wBwAAAAAAALSHTtUTbMiQIen8889PV199dRo5cmReFsMjjhkzJg0aNCj16dOnKvT67LPP0tprr53/3nfffSsGZHvuuWcaPHhwOuKII/L7AQAAAAAAKIZOFYJFUDV06NA0atSo9N5776V+/fql6667Lg9neM0111S97qCDDkpPPPFEKpVK+e8Iw8qBWG3RC2yPPfZot30AAAAAAACg7XWqEKw8fOEZZ5yRrr/++jR9+vS03nrrpXvuuSdtvfXWHV00AAAAAAAA5hNdSuXuUrSqAQMG5N8TJkzo6KIAAAAAAAAscFnLQq1cHgAAAAAAAOhwQjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDjtHoJ99NFH7b1JAAAAAAAAFjCtGoKdcMIJDT7/ySefpB122KE1NwkAAAAAAABtG4Jdcskl6aKLLqr43MyZM9POO++cXnzxxRavf/bs2em0005LvXv3Tj169EiDBg1KDz30UKPvu/POO3P4Fu/r1q1b+upXv5qGDBmSXn755RaXBQAAAAAAgAUkBBs1alQ65ZRT0u23314nvNptt93SX/7yl3Trrbe2eP2HHHJIuvDCC9OwYcPSxRdfnLp27ZoGDx6cnnrqqQbf99JLL6Vlllkm91S7/PLL09FHH51eeOGFtMkmm6R//OMfLS4PAAAAAAAA86cupVKp1JorPOCAA9Idd9yRHnnkkbTZZpulL774Iu21117pvvvuSzfeeGPaZ599WrTe5557Lvf8Gj16dBo5cmReNmvWrLTuuuumFVdcMT3zzDPNWt+7776be4QNHz48XXnllam1DRgwIP+eMGFCq68bAAAAAACg6AbMY9bSqj3BwpgxY9Kmm26ae3698sorudfWvffem66++uoWB2Dhtttuyz2/RowYUbWse/fuOcR69tln05QpU5q1vgjOFltssfTRRx+1uEwAAAAAAADMnxZu7RUussgieQ6uLbbYIm244Ybp888/T7/85S/TYYcdNk/rjeEL+/fvn3r27FljeQxpGMaPH5/69OnT4Doi8JozZ0565513cplmzJiRtttuu1ZJIWubOHFi6tu37zytGwAAAAAAgA4IwSZPnlzvc1dccUXaddddc0+t3XffvcZrV1lllWZva9q0aalXr151lpeXTZ06tdF1RA+11157LT9eYokl0g9/+MNcPgAAAAAAAIplnkKw1VZbLXXp0qXe52O6sQjD4qe6uXPnNntbM2fOTN26dauzPIZELD/flKEao/fXm2++mR/He6IsCy3U8lEh6xuHsr4eYgAAAAAAAMznIdiPfvSjBkOw1tSjR480e/bsOstnzZpV9XxjNttss6rH++67b1pnnXXy4/PPP79VywoAAAAAAEAnDsHOPPPM1F5i2MO333674jCJoXfv3s1a3zLLLJO++c1vphtvvFEIBgAAAAAAUDAtHwewnQ0cODC9/vrreTjD6saNG1f1fHPFcIgff/xxq5URAAAAAACAAoZgt956azrooIPqnR8snrv99ttbtO4hQ4bk+buuvvrqqmUxPGLM7TVo0KDUp0+fvGzy5Mnp1VdfrfHe9957r876Jk2alB555JG00UYbtag8AAAAAAAAFHQ4xNouu+yytPrqq1d8LuYO69q1a7r00kvT3nvv3ex1R9A1dOjQNGrUqBxq9evXL1133XU5zLrmmmuqXhdB2xNPPJFDt7Kvfe1rabvttsu9xWIYxDfeeCO/Z86cOemcc85p4d4CAAAAAACwQIRgr7zyStprr73qfX6DDTZI9913X4vXP3bs2HTGGWek66+/Pk2fPj2tt9566Z577klbb711g+87+uij07333pseeOCB9Mknn6QVV1wxffvb304/+MEPckAGAAAAAABAsbRqCBYB06KLLlrv89ETbF7m4OrevXsaPXp0/qnP448/XmfZmWeemX8AAAAAAABYMLTqnGCrrLJKGjduXL3Px3O9e/duzU0CAAAAAABA24Zgu+yyS7rxxhvTH/7whzrP/fGPf0w333xz2nXXXVtzkwAAAAAAAFBHl1KpVEqt5IMPPsjzfk2dOjVtu+22+XF44YUX8jCF0Qvsb3/7W56Tq+gGDBiQf0+YMKGjiwIAAAAAALDAZS2tOifY8ssvn5555pl09NFHp/vvvz899thjeXmXLl3S4MGD02WXXbZABGAAAAAAAAB0rFYNwUKfPn3SPffck6ZPn57+9a9/5WX9+vVLyyyzTGtvCgAAAAAAANonBCuL0GvjjTduq9UDAAAAAABAvRaq/ykAAAAAAABYAHuCLbTQQvnns88+S4suumh+HPN/NSSe/+KLL+ZlswAAAAAAANB2IdhBBx2UQ62uXbvW+BsAAAAAAAA6UpdSqVTq0BIU1IABA/LvCRMmdHRRAAAAAAAAFrisxZxgAAAAAAAAFI4QDAAAAAAAgMKZpznB1lhjjWa/J+YMmzhx4rxsFgAAAAAAANouBFtllVVyqAUAAAAAAACFCcEef/zx1isJAAAAAAAAtBJzggEAAAAAAFA4rRqCvfXWW+nuu++u+FypVMrPTZo0qTU3CQAAAAAAAK07HGJtP/zhD9O///3vtOuuu9Z5LuYOGz16dFp99dXTdddd15qbBQAAAAAAgLbrCfbUU0+lHXfcsd7nd9hhh/TnP/+5NTcJAAAAAAAAbRuCvfvuu2nllVeu9/mVVlopvfPOO625SQAAAAAAAGjbEKxnz54NzvkVc4YtvvjirblJAAAAAAAAaNsQbLPNNkvXXnttmj59ep3nYtmYMWPSoEGDWnOTAAAAAAAA0LYh2MiRI9N7772XNtlkk3T99denl19+Of/E4wi/4rlTTjmlNTcJAAAAAAAAdSycWtFWW22VrrzyynTcccelQw45pGp5qVRK3bp1S1dccUXadtttW3OTAAAAAAAA0LYhWDj88MPT4MGD0+9///v0+uuv52X9+/dPQ4cOTb17927tzQEAAAAAAEDbh2Ahwq4TTjihLVYNAAAAAAAAHROCVTdu3Lg0ZcqU9JWvfCXPC7bQQq06DRkAAAAAAAC0Xwj29ttvp5133jm9+OKLVcvWWWeddPfdd6c11lijrTYLAAAAAAAAqc26ZR1//PGpV69eeV6wmTNnpr/85S9p7ty56bvf/W5bbRIAAAAAAABaJwR74IEHKi6P0Ouss85K/fr1S926dUubbLJJDsZiOQAAAAAAAMzXIdhuu+2WDj744PThhx/WWB5zgD311FM1lj399NOpd+/e87pJAAAAAAAAaNsQLHp2vfzyy3m+r1tvvbVq+emnn55OOumktNVWW6Vhw4alr33ta+mWW27JywEAAAAAAGC+DsE23HDD9Nxzz+XA69BDD809w6ZOnZp23333HJANGDAgffTRR2nTTTdNjz/+eA7EAAAAAAAAoC11KZVKpdZa2RtvvJGOOOKINH78+HTOOeeko446Ki2oIvwLEyZM6OiiAAAAAAAALHBZyzz3BKtuzTXXzL29zjvvvDRq1Ki0zTbb5GCstcyePTuddtppeV6xHj16pEGDBqWHHnqo0ffdcccdaZ999klrrLFGWmyxxdJaa62VTj755NxDDQAAAAAAgOJptRDs888/TzNmzMiPR4wYkVO55ZZbLq2//vrp7LPPTnPnzp3nbRxyyCHpwgsvzEMqXnzxxalr165p8ODB6amnnmrwfVGeV155JR1wwAHpV7/6Vdpxxx3TpZdemjbbbLM0c+bMeS4XAAAAAAAABRsO8cMPP0zDhw9P9957bw66omvatddemzbaaKP8/O23356OO+64tOKKK+blMYdYS8S8Y9Hza/To0WnkyJF52axZs9K6666b1/3MM8/U+97onbbtttvWWDZ27Nh08MEHp1//+tfp8MMPT63NcIgAAAAAAACdeDjEE088MQdQV111VR52cIkllkh77713mjNnTn4+HkcvrK9//etp0003TaecckqLtnPbbbflnl/Rq6use/fuOYB79tln05QpU+p9b+0ALOy55575d5QNAAAAAACAYpnnEOz+++9P3//+99Ohhx6adt999/Sb3/wmB1L//Oc/q16z1FJLpWuuuSY98MAD6a677mrRdl544YXUv3//1LNnzxrLN9lkk/x7/PjxzVrfO++8k38vv/zyLSoPAAAAAAAA86+F53UFiyyySI15tWKIwi5duqSFF6676m9+85vppZdeatF2pk2blnr16lVneXnZ1KlTm7W+c889N/csGzJkSGqNrni1TZw4MfXt23ee1g0AAAAAAEAHhWAxrOA555yTvvjii7TMMsukyy+/PK299tppnXXWqfj6GMKwJSJo69atW73rqx7ENeamm27KPdNOPfXUtOaaa7aoPAAAAAAAABQ4BBs9enRaaKGF8pxgn332Wdp8883TxRdfnJe1ph49eqTZs2fXWR49z8rPN8WTTz6Z5xHbYYcd0llnnTXP5apvMrb6eogBAMVz6cCjUhEcO/7Kji4CAAAAwPwTgi222GLpkksuyT9tKYY9fPvttysOkxh69+7d6Dr+8Y9/pN122y2tu+666bbbbqs4ZCMAAAAAAACdX+t212pDAwcOTK+//nqaMWNGjeXjxo2rer4hMUfXjjvumFZcccV03333pSWWWKJNywsAAAAAAEDH6TQh2JAhQ9LcuXPT1VdfXbUshkccM2ZMGjRoUOrTp09eNnny5PTqq6/WeO8777yTvv3tb+chGh988MG0wgortHv5AQAAAAAAaD+dZjzACLqGDh2aRo0ald57773Ur1+/dN1116VJkyala665pup1Bx10UHriiSdSqVSqWhY9wN5888106qmnpqeeeir/lK200kpp++23b/f9AQAAAAAAoO10mhAsjB07Np1xxhnp+uuvT9OnT0/rrbdeuueee9LWW2/d6Fxg4bzzzqvz3DbbbCMEA4BWcunAo1Jnd+z4Kzu6CAAAAAAsaCFY9+7d0+jRo/NPfR5//PE6y6r3CgMAAAAAAKD4Os2cYAAAAAAAANBUQjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDgLd3QBACiuSwcelYrg2PFXdnQRAACAeeT/TwBgwaMnGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHAW7ugCwILq0oFHpSI4dvyVHV0EAAAAAP4/2pwA/n9CMAAAAIAFiAZyAGBBYThEAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4Szc0QUAAAAAAIB5cenAo1IRHDv+yo4uAhSKnmAAAAAAAAAUTqcKwWbPnp1OO+201Lt379SjR480aNCg9NBDDzX6vtdeey2ddNJJafPNN0/du3dPXbp0SZMmTWqXMgMAAAAAAND+OlUIdsghh6QLL7wwDRs2LF188cWpa9euafDgwempp55q8H3PPvts+tWvfpU++eSTtM4667RbeQEAAAAAAOgYnSYEe+6559Itt9ySzj777DR69Og0YsSI9Oijj6ZVV101nXrqqQ2+d7fddksfffRReumll3KABgAAAAAAQLF1mhDstttuyz2/Ivwqi6ENhw8fnnt6TZkypd73LrvssmnJJZdsp5ICAAAAAADQ0TpNCPbCCy+k/v37p549e9ZYvskmm+Tf48eP76CSAQAAAAAAML9ZOHUS06ZNS7169aqzvLxs6tSpHVCqlAYMGFBx+cSJE1Pfvn3bvTwAAAAAAAB0op5gM2fOTN26dauzPIZELD8PAAAAAAAAnaonWI8ePdLs2bPrLJ81a1bV8x1hwoQJzeohBgAAAAAAQNvrND3BYtjDGBKxtvKy3r17d0CpAAAAAAAAmB91mp5gAwcOTI899liaMWNG6tmzZ9XycePGVT0PAAAA0FSXDjwqFcGx46/s6CIA0EF8lkFBeoINGTIkzZ07N1199dVVy2J4xDFjxqRBgwalPn365GWTJ09Or776ageWFAAAAAAAgI7WaXqCRdA1dOjQNGrUqPTee++lfv36peuuuy5NmjQpXXPNNVWvO+igg9ITTzyRSqVS1bKPP/44XXLJJfnx008/nX9feumlaemll84/xx57bAfsEQAAAAAAAGlBD8HC2LFj0xlnnJGuv/76NH369LTeeuule+65J2299dYNvi9eG++r7oILLsi/V111VSEYAAAAAABAwXSqEKx79+5p9OjR+ac+jz/+eJ1lq622Wo2eYQAAAAAAABRbp5kTDAAAAAAAAArZE4xiunTgUR1dhHl27PgrO7oIAABtqgj/Zgv+3UZjnOsAxeGeDoCeYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMJZuKMLAAAAncmlA49KRXDs+Cs7ugjM54pwrjvPAQBgwaYnGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwlm4owsALFiKMMF6MMk6AAAAAMD8TQgG0A6EfwAAAAAA7ctwiAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACmfhji4AAAAAANB2Lh14VOrsjh1/ZUcXAYBOSE8wAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcBbu6AIAANA5XTrwqFQEx46/sqOLAAAAQDP4/1GaSk8wAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACF0+lCsNmzZ6fTTjst9e7dO/Xo0SMNGjQoPfTQQ01679tvv52+853vpKWXXjr17Nkz7b777unNN99s8zIDAAAAAADQvhZOncwhhxySbrvttnTiiSemNddcM/32t79NgwcPTo899ljacsst633f//73v/SNb3wjffzxx+kHP/hBWmSRRdJFF12UttlmmzR+/Pi03HLLtet+AFBclw48KhXBseOv7OgiAHQ493QWFM51AACKqFOFYM8991y65ZZb0ujRo9PIkSPzsoMOOiitu+666dRTT03PPPNMve+9/PLL0xtvvJHXsfHGG+dlO+20U37vBRdckH7xi1+0234AAAAAAADQtjrVcIjRA6xr165pxIgRVcu6d++ehg8fnp599tk0ZcqUBt8b4Vc5AAtrr7122m677dLvfve7Ni87AAAAAAAA7adThWAvvPBC6t+/f57Pq7pNNtkk/45hDSv58ssv04svvpg22mijOs/FeydOnJg++eSTNio1AAAAAAAA7a1LqVQqtftWWyiGLlxppZXSI488UmP5P//5zzRgwIB05ZVXpiOPPLLO+z744IO0wgorpJ/+9KfpjDPOqDNM4jHHHJNeffXVtNZaazW7TLHdSmJ9Me9Y3759m73OBc2HE6elzm7Zvr0WyP1uyb7b787NfjfNgrrfRdn3BXW/g3O9aex352a/F6x9X1D3OzjXm8Z+d272e8Ha9wV1v4NzvWnsd+dmv6lPdGKKrKWlHZk61ZxgM2fOTN26dauzPIZELD9f3/tCS97bUl26dMkHho6/0OMiCfNbILmg3uDs94LFfi9Y97XgmC9Y7PeCZUG9ty2ox3tB3nf7vWBxb1uwLKj7vSDvu/1uG+5t8xf7TdEtssgiafHFF2/x+ztVCNajR480e/bsOstnzZpV9Xx97wsteW9jJkyY0KL30X7KvfUcK6Ao3NeAInJvA4rIvQ0oIvc2oDPpVHOC9erVK02bVrebY3lZ7969K75v2WWXzb3AWvJeAAAAAAAAOp9OFYINHDgwvf7662nGjBk1lo8bN67q+UoWWmih9LWvfS09//zzdZ6L966xxhppySWXbKNSAwAAAAAA0N46VQg2ZMiQNHfu3HT11VdXLYshDseMGZMGDRqU+vTpk5dNnjw5vfrqq3Xe+9e//rVGEPbaa6+lRx99NA0dOrQd9wIAAAAAAIC21qnmBIugKwKrUaNGpffeey/169cvXXfddWnSpEnpmmuuqXrdQQcdlJ544olUKpWqln33u99Nv/71r9POO++cRo4cmSdTu/DCC9NKK62UTj755A7aIwAAAAAAANKCHoKFsWPHpjPOOCNdf/31afr06Wm99dZL99xzT9p6660bfF8Md/j444+nk046Kf385z9PX375Zdp2223TRRddlFZYYYV2Kz8AAAAAAABtr0upencpAAAAAAAAKIBONScYAAAAAAAANIUQDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwBIKf32t79NXbp0yb+LaNttt837B9Q1Z86c9OMf/zitueaaqVu3bvlaueuuu9pt+5MmTcrbPOSQQ9ptm7Tt/bPonyktdeaZZ+Z6efzxx1NRLQj72Nr8GwUAaEtCMACgkObOnZt+/etfp2222SYtu+yyaZFFFkkrrrhiWm+99dLhhx+e/vjHPzZpPauttlr+aa9G8Oo/Cy+8cFpppZXSzjvvnO6///7UmRv3Ku1fjx498jHZdNNN07HHHpuefPLJ1N4NbtV/llxyyfT1r389/eIXv0gzZ85MC4o4lrH/cWwXVBdccEH66U9/mnr37p1GjhyZA7G11147LQgEcAvGddPZytuYOF9jf+L8bW8CTgCAzmXhji4AAEBbBGC77LJLeuCBB9LSSy+dQ6SvfvWr6fPPP08TJkxIN910U3r11VfTbrvtVvWePffcM4cxvXr16tCyL7XUUunEE0/Mj2fNmpX+8Y9/pPvuuy//XHzxxen4449v0XrHjh2bPvvss9TRqu/fF198kT788MO8j1dccUW67LLL0re//e1c1gj/2sPBBx+cQ85SqZT+85//pDvuuCOdfvrp6Q9/+EN66qmncnhK8d1zzz1piSWWSA899FBadNFF2337X/nKV9Irr7ySrw/mPy25f84vnym0v/hSx7777ptWWWWVji4KAABCMACgiG6++eYcgK2//vrpiSeeqNOwHI2Z48aNq7EsXjM/NEBHaFf7m/pjxoxJhx12WPrBD36Qe7EttthizV7v/NIYV2n/wptvvpmGDx+e/vSnP6Udd9wxPfvss6l79+7t0psgeoWV/fznP08bbLBBeu6553JYGiEZxTd16tS03HLLdUgAFiJsXVB6nnVGLbl/zi+fKbS/5ZdfPv8AADB/MBwiAFA4zzzzTFXAUakRMkKkb3zjGw0Ob1QeOurf//53/qk+bF7tYcOiV1ks69OnT25Ej15M+++/f3rttddaZX9i3Ysvvnj69NNPc0+2skceeSQHRjHcY8xj1L9///T9738/ffzxx02ab6P68Fjjx4/PPeYipIr6iWEky/VYFj2mfvKTn+THUX/V62RerbHGGunee+/NQUCU5corr0wdIXpt7LXXXvlxBGHVg9Ozzz47DRw4MB+L6DW02Wab5cC1tur1GuuIeo1jVHvorltvvTVtt912+bkI/KJ+99tvv/T888/XWWdsJ+o8jk+8dp111smB3ezZs+u8NrYTx/uDDz5II0aMyPsU58eAAQNyoFr73CpfC3Fsqx/T8pCXcT6NHj06ffOb38w9KuMcX2GFFXJPyggr63PjjTemDTfcsGrYywMPPDCHTQ3N/fLggw+mwYMH5wbkKHPfvn3TKaeckj766KPUHFHmUaNGpbXWWivX1zLLLJN22GGH9PDDD9fZ/yjLW2+9VeM6b8oQqOX9iPnEYijFKGtsK7YZQ7GWxbn8ta99LddD1F8Mtfjll182aUjC6kO+XXXVVXk9sY24x8SxrXStl49/U4aQi3N09dVXz4+vu+66Gse/9lBvzTk2L774Yj6Xox7jtXG+xLkQvUCjvhpTvT7i/rrHHnvk6ySuvS233DKH5ZXE9XDOOefkeor7WM+ePdNWW22Vfve731V8fQyLG9dg+RqJ4TDj3nf55ZfXeF3tc7Yp103tz5To2RvXb1wL0Qu2kqOPPjq/J3omtuZnTFPK25L6a8jf/va3/PkUw8zGer71rW81eL9ozn5GueN8DXH+1nfdRk/juA/E/TKuv/j3QBzv+s6fptyX41w49NBD8+P4Xb0uq19X9Q0b3JLP7ThfYpje8pyFUT+nnXZa7t3eVOVrP75wcuGFF+bP2ti/uCeddNJJacaMGRXfFz2ko2dbfEbHtuPLAnHv/+tf/1rntdX3O75EMmjQoPxZ2ZwhpZu7r82pz4aGt67vmJXvp++8807+ElL02u3atauhMAGgk9ETDAAonGikCa+//nqL1xENJdFY/ctf/jL/XR7CL0QQUhY9ziI0iYbdXXfdNfXr169qWL0IdR577LHc+DuvYri+UG6IjQbxaDCNRuGhQ4fmhtVovDn33HPT3XffnZ5++unc4NoU0bh33nnn5VAnGnkmT56cbr/99twQGIFUNOqX6+Cuu+7KvevKwwi2pmh0jfmYogwRoFSv8/ZUu66jkT8CoBdeeCEfy+iVFyFGhALRQBvBZARStUWDbwRn0Wgf74lQKhp2Y/3ReBqNuBEoxPkTIUGcN3G+RH1vtNFGVeuJ90Z4FY2Ve++9dz6uf/nLX9IZZ5yRGwBjCL+YP666KPMWW2yRtzdkyJDcuP373/8+r2uhhRaq6uEW4UKIskTjf/XwpHx8Y5i+GCJy6623zoFeBEpxjkSAEHPVxfkWjZDVxfkUDZfx2thWND5HOaNM9fWOicb5aIiMxswYzjTO6QhTzj///DwcaNRnNKY3przv//znP9PGG2+cz6Oo+2jIj+E2Y+jNI488smr/Yz9rX+dNvXZCDHsWPUsjIIoeXbfddlsOqOJxlD/qNvYnrqeoswjM4lyP+mmqU089NZ9vcY+JfYjzJIK2f/3rX+nRRx9NLRXHO+orhlqNnrPl86H2fa45xyaWR+N3XD/RWB4hRTSwR1kjXIprpanDjEY4GfelCGXimE2bNi2HFDvttFNuZN9nn32qXhuN5BF0xv0pGviPOeaYHF7H8YjXxb0sGtfLrr766rzOlVdeOddrXIvvvfdeLn9cb9/97nfrLVdTrpvaInCIcsR247qJbVYX12jsWwQ/1a+n1viMaUp5m1t/DYkvUEToFeuMskeZ4/2x3biXVtKc/YzP5vgsiqF0TzjhhKrrtfp1G6F2bC+CqQjyok7jiyQRMMbj+Aw94ogjql7f1PtyhEmxnRgyd/fdd69xnTR232jp53Z8zsScmXHex3UW11zcY+N8rf3FhsZE4PXnP/85fec738nlj/tK3P9i/TEEcPUe2H//+9/z/SbCxDg3ok7iXhp1H59rd955Z77vVZpjMe73cRwjfK0USNWnOfvamv8OakjsfwxtGoFe1EF8hrbXkM0AQCspAQAUzN///vfSIossUurSpUvpgAMOKN1+++2lSZMmNfieMWPGRPKRf1e36qqr5p9KPvzww9LSSy9dWm655UoTJkyo8dxLL71UWnzxxUsbbLBBk8r81ltv5e1X2tY111yTn4v1ffbZZ3lfFl100dKSSy5ZeuWVV2q89uijj86vPeKII2os32abbfLy6h577LG8rNJ+X3nllXl5rK+6H//4x3l5vLc5Gtq/6v71r3/l13Xt2rU0Z86cUlsp10ft/Zg6dWppxRVXzM+NHTs2Lzv44IPz3+eee26N186cObO0ww475PPshRdeqFivUY+1XXXVVfm5jTfeuPTRRx/VeO6LL77IZah9Xu6555752Fc6Fr/85S9rLC9ve/jw4Xl9ZXGORr2us846NV5fLm+sr5Io4/vvv19n+ZQpU0q9evUqrb322jWWT5w4sbTwwguXll9++dLkyZOrln/55Zelfffdt6p81T366KN52WabbVaaPn16jefKdXDiiSeWmmLEiBH59fE7tln2+uuvl3r27JmvnTgfm3qdN3YObbTRRjXKHPsf95+4N6y22mql//znP1XPxevifhF1U/38Ll8fca5VVz73+vTpU/r3v/9dtTzeu9VWW+Xnxo0bV+M9sSzKVkl5fdX3v75tt/TYfO9738vL7rrrror3zLlz55YaUy5T/IwcObLGc3/961/z+RX1+/HHH1ct/8UvfpFfv9NOO9Wo23fffTcf23ju6aefrlq+4YYb5nMhnq+t9vne0P2zvuum0mfKM888k5ftvffedV7/u9/9Lj8X9dcWnzGNlbe59VefuObWWmutiudA3KvKx7X6vbcl+1npXK59zOLefPPNN9dYHufw+uuvX+revXvpnXfemaf7cu3PzYY+J+flczvO1f/+979Vy//3v/+V+vbtW1pooYVK06ZNKzVFub6ijqv/eyiux7322is/99Of/rRqeZwDsY1u3bqVHn/88Rrrevvtt0u9e/curbzyyqVZs2bV2e/FFlss/zusOZq7ry2pz4bu8/X926Z8vh544IFt+m8SAKBtGQ4RACicmNPphhtuyN/Ujd/Reya+7R49xPbcc8/8DeHWMHbs2NyLInpJ/N///V+N59Zdd938LfPoPRQ9Upoq1hc9LuInhvSJb1nHXFkhvoUfQzrFPsU37GOIotrzCJ111ll5+Knrr7++4lB5lUSvmdrDsEWPoehdVH1IwPYQQw2FuXPn5m9ft7UY0ijqOnoWRD3HcYxvnG+yySa5h89///vfXN/RAyB641QX35iPb5xHO1n0SqktegiUexxVd8kll1R9i712r6gYZimGZiuLHjpxHK699tp87KuLnmBxTkevudqip1EMeRXrK4t9i2MdPbv+97//NbmOooyV5reJnmnRyyyGMIueYWVRFzGk1XHHHZeHsiqLnkEx1Fr1MpX96le/yr+jd1Ptb+7HuRl1WWk/a4vrIo5XfGM/euFVH8Iuhtc6/vjj82vi2m0tsU/VyxzDhkUvibiW4xiVz+kQr4veEdGb4u23327yNn70ox/VmJcqzonykGxtfY229NjUPl9D9AyMXhTNOfdi36uLa3HYsGG5fqMnSllcI3G847yv3jMyeofEcQi/+c1vaqwrXlepV1pbzecUvdpiuLb4DKp9fysP71d9HsK2+IypT0vqr75eYDF8YfQcjZ5G1cVnVgyjWVtr72f0EIsebfHZH/fx6uIcju3E8JTR47kl9+WWmJfP7ficiV6YZdHzKa6B6JFcafjchkTPuVVXXbXq77geY7jb+B3nQFn0vps4cWK+j0fvwepi2ND4PIwhAqM3cm3REzb+HdYSTd3X1v53UEOiR3X0eq3d4xoA6Dx8igMAhRRD/UTgFcMYxRA/0YAWv2MYn/g56KCDquZsaany/CbR4BZBSm3l4RgjdKjdsFefGDaoPO9WNLxFY1AMCxQNPeVhh2KIolBpWKloZI7GpxjuKMKJGOKsMdWH3iuLhuEIEadPn546YijC0NixieG14ljWbuBszjCK5YbncmNbBCXRcPq9730v10HMexKBXHmOr9rK8xvFMa4tgrTaYjiul19+OddtY42EMRRZnFvRIF8erq+2mAOl0rZjPyoNHVgOpeK4RlDUVDGsVARycc5HSFh7fpYIdMohTVxrIYKg2qLxNcpQfW60EOuN+o4hG+Onttje+++/n0PJ8nCnlUTje9RbhH3VG1LL4pqJ4fjKZWwNla6faCQOX//61+s8Vw7FYpi16o3Rzd1G9WPZlpp7bGLovDhXYgi+CEljWLw4HpXCj8bE8HfRmF1bDHMX124cxwiNPvnkkzzcYtRt7Qbx6vfK6sc9GtZPPvnkfG+OoCQa+qOcMQReW4ryxvCit9xyS9WQi++++24eli7uCeutt16bfsZU0pL6q0/586l2cFL+TIv7QoQr1bX2fpbXF5+nldYX52t5fc29L7fUvHxut+b1X+m4RHBfvi9HGBmfo+U6jGElK9XhG2+8UVWHtYdErPTZ11RN3dfW/ndQQ+JLVBEGAwCdlxAMACisaLiN+SziJ0SYEd/8jl5O8c3zCMmqz4HTXNHoW+4h0ZDm9LqJRvHaAUFt5fk16vtmenl5NGY1RX1zZsS3nqPO2tPUqVOrGkujIauxEKwcGFavv+aEYBGSVp8fp75jHGFY/DTnGMdcQ7WVj0n13kH1iQa/CAWjwbb2fs7LMQ3NOa7R2ybCjOj5tv322+cwIwLD6DkQ869Ej4vq37Yvn5/1zZkSy2uf41HP0Xussf2Mem4oBGvta6MpKs1xVq7nhp4rB6gtPZ4tOZYt0dxjEw3gMadP9MaI+aSiN0aIOZWix+V+++3X5G3Xdw6Vr63y8W7JcY+gOwLmmKcsertF0Bxhd4QE0TOmUmN8a4gvYETPqgjxyiFY9KSLOq7eC6ytPmPa+rpp7PqvdF9s7f0sry/mpYqfxtbXnPtyR9Rxa17/DR2XCLyinLG9ch1WCr5b8tnXVE3d1/a818/L/gAA8wfDIQIAC4wIVqKHWEwMHx599NF5Wl+5gTu+vR5hRX0/tRs251V5uzEUUSXTpk2r8brOJEKpcg+axoYeiqHYatd1YwFic5XrMM6Zho5xudzVVerJVm7ga8pQeOVtxzfaG9p29d5zbSEa7GM4qBiKKnreXXDBBemnP/1p7h0QwUZt5R5o0bulkkrLY18j9GxsPxvrOVXka6Op4ryLQKWSljQIt+TYxLB/99xzTw5yoxdhnENx3Pfff//08MMPN3nb9Z1D5eNbPo4tPe4RSP3lL3/JDf4x/FsMiRq9R3bYYYeq3kKtLYYRjd4rMYxl9FIJEYjFlzaifjriM6Y1r5vyaxo7dm25n+X1RY/EhtY3ZsyYZt+XW2p+uTc195r6wx/+0GAdRrBd27z0sG/L+owvbrTk3tge+wMAtC0hGACwwCkPr9WU8CCCs/q+ab3pppvm39HroT2Vh2uKXjiVGnKih1T02llnnXVafdvl+ZzaovdJDGMXAUt5qLL5QfRqiYaz1jrG0YMq5riJhsjGhhaL4QoHDBiQJkyY0KbzozV2TGOYtBiCrPb5FHO0xBCj9Z2flZ6LngZTpkypeC1FYBL7Oi8ilIv50KIxvVKjZjmsjGH2iioCq0p1HMc37g3NPf7zcmxiuM7NN988h6blucWiUb2pYsizGKqvtvK9r3yuxT09eihGiFEepq05xz1CkBjSLXoiRbge11uEYW11LyzPwRjhVxyTF198MQ97W3soxtb8jGmovPNaf9WVXxM9RGuLbVe6L7RkPxvan+aurzn35ca2PT9+bldX6bi8+eab+Z4Rw/6VA8GO+vdNW9Zn3BvjGFfqhdvcudUAgM5FCAYAFM7NN9+ch0CKRvra4lvD5SGXtt5660bXFcN7RY+AmTNn1nnu0EMPzQ1GMUxYfKu/tth+pQaaeXXAAQfkXgOXXHJJDiiqix4XM2bMyK+JBujWVh6KbvLkya263rfeeivtvPPOuWdENG4deeSRaX4Q84BEIBcNZD/72c8qNnrG/DZR/qY6/vjj8+/Yx/KQTtXPmfI32MtDtsWcSzGEZ6VQJ8KJ8twobXVMo2E0GsbLQ1WWA+ToCfbPf/6zzuujN0v04ovzs3oYE+8ZNWpUxTos98484ogjamynLObsiR47jYkea3G8IjiJa6H2cYogJq6dAw88MBVVBLdxLP/0pz/VWB5zoUUIWVs0DEdPh/qOf3OPzTPPPFPxflnugRIhZVPF9REBWnVxLcbwgdHDI4a0LYtrJM6xU045pcY59sEHH+Rrt/ya6sFOpS9CxJx3TSnnvNwL99prr9xj8oYbbshzU1YPxtrqM6ax8ja3/uoToWeE0REi1g48L7300jrzgbV0PxvanxjKcquttkp33HFHuvbaayuW86WXXqo61s29L7fk2Hfk53Z10Tuu+n0g9i2OefyO41C2++6752D0sssuS/fdd1/FdcW8YfHllY7QkvqMe2P0BCv3ACyLazB6rAIAxWVOMACgcMaNG5cbemIehy233DKtvvrqeXkEFTHkVTTQRgNPzHPUmO222y7PBbXjjjvm0CwaVGKS9V133TU3hMWcN9EQG9+ajtdGz51oUI7G/2ggimG2Zs2a1ar7F6FEzF9zzDHH5G/dxxCP0YMgvuEd21x77bXTueeem9rCN77xjdwzKsKMl19+uWrerh/+8IdNen8EORGehGiMihAneu1EuaMRLuo5eke0dUNgc0TDbYRAP/rRj/L8RnFOxbwqEQi88sor+fyI4LV8njXm8MMPz9+uj3Wtueaa+VyM4xfriyE6o6G5XEfx+G9/+1uetygaJGOYtlVWWSX3VInzORqao+HyyiuvbPH+RYN1zIVzyy235EbFGNYuzuEIiuJxhCBHHXVUDif33nvv/JpoMIwALK6Du+++u8b6opwRXPzgBz/I18o+++yTA4sIpqPcsSx6vlQX184555yTz6uok+iVE/UZ881Eg22c21HvDzzwQKP7E+uJ+o3jFscmztloyP/d736Xw7FY3tRj1RmNHDkyPfjgg/m8irpfdtllczAV50vMf1c7TIgeh4MGDcp1FgFi//79c0+X3XbbLa233nrNPjbnnXdePo8jhIjXxfqjF9n999+f7xcjRoxo8r7EPfc3v/lNvqdvscUWOYi49dZb873iqquuqhp6s7zfsY0IXuIci3JGA33MaRRhx6mnnprLWRb37Shb3LvjnhoBUNRBnDMxHOu3vvWtebpuGtKjR480dOjQdM011+RrOz5L4ksAtbXmZ0xj5W1u/dUn1hn7FfMHxv0iAr9+/frlnjmPPPJIvsfXvo5bsp/xmpi7LcLZ2E70Zosg7dhjj83P33TTTXnYyRjiMsLvOMfj+f/85z/5/hOfX7He+KJDc+/LMdxnhKTxORzlKs8Zddxxx9U7nGFHfm5XF9fRwIEDq+7Lca+Iz+A45+MYl8U5EiFifObEuRnhZrwv9juOSVwn0YMsrsnmBNutpSX1GccnArCjjz46n4t9+vTJ52W8fpdddslDuAIABVUCACiYyZMnly699NLSHnvsUerfv39pySWXLC2yyCKllVdeubTTTjuVrr/++tLcuXNrvGfMmDHRJSD/ru5///tf6aijjip95StfKXXt2jW/5uCDD67xmrfeeqt0zDHHlPr161fq1q1b3t5aa61VOuCAA0p33nlnk8oc64h1r7rqqk3ezwcffLC0/fbbl5ZeeunSoosuWurbt2/plFNOKU2fPr3Oa7fZZpu8/uoee+yxvOzHP/5xxfVHWSqVJ+pv/fXXL3Xv3j2/vyn/pCzvX/WfqKsVVlihNGjQoNKxxx5bevLJJ0vtpVwfUQdNMXv27NIll1xS2myzzUo9e/bM9d2nT5/SN7/5zdJFF11U+uCDD5pcr2U33HBDaeutt87ri7pYbbXVSvvvv3/pb3/7W53X3n333aWdd94511ecyyuttFJp4403Lp1++umlV155pcZrY9uxf5XEuRvPx/Go7rnnnsv7EmXp0qVLnbqJ6yKO+WKLLVZabrnl8rX14osv5n2srx7Hjh1bGjhwYN635ZdfvjRs2LDS22+/XRowYEBpqaWWqli+OAeGDh1a6tWrV97PeF9s96STTir99a9/LTVVXAOnnnpqvibjWMX2vvWtb+VrpjnnekMqXVON1XOoVGfl66P2vaWh9TR0nv3hD38off3rX891v+yyy5b22Wef0qRJk+pd3xtvvFHaZZdd8mvLx7/2vbCpxybq+JBDDimts846+XyKcybuw8cdd1wuQ1NUr49//vOfpd122y3f53r06FHafPPNSw888EDF982cObN01lln5XMs7k9LLLFEaYsttijddNNNdV57xRVX5PN49dVXz+tdZpll8vl67rnnlmbMmNGkY93QdVPfZ0r1+izfC+P+11h9zOtnTGPlbW79Neb5558v7bDDDnkd8bPddtuVnnnmmQbvGc3dzwsuuKC09tpr52u80udnHMfYnw033LC0+OKL532K++zgwYNLV111Vf58b+l9+f777y9tuummeb3l41i+rhrax3n93C5r7PyqrXztT5w4sXT++efneo396927d+mEE04offzxxxXf9+6775ZOO+20fE7EdRL7G8dn7733zv8WmDNnTtVrG9rvxrR0X5tTn+Xrbquttsr7EudXnAv/+Mc/6i17Q5+nAEDn0SX+09FBHAAAUHwxRFX0ooseBfHte6hk0qRJuRfZwQcfXDVcINByMdxm9LKOHqHRiwoAYEFiTjAAAKBVxTx6c+bMqbEshr88+eST85Bm1edyAgAAgLZiTjAAAKBV3X777XkOtZhXKeZdibnAYv6y119/PfcCi7lZAAAAoK0JwQAAgFY1aNCgtOWWW+bg67///W9eFsPbnX766em0005LPXr06OgiAgAAsAAwJxgAAAAAAACFY04wAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFM7CHV2Aolp55ZXTp59+mlZZZZWOLgoAAAAAAECnM3ny5LT44ound955p0Xv1xOsjUQANmfOnI4uBgAAAAAAQKcUOUvkLS2lJ1gbKfcAmzBhQkcXBQAAAAAAoNMZMGDAPL2/0/UEmz17djrttNNS7969U48ePdKgQYPSQw891Oj7zjzzzNSlS5c6P927d2+XcgMAAAAAANB+Ol1PsEMOOSTddttt6cQTT0xrrrlm+u1vf5sGDx6cHnvssbTllls2+v4rrrgiLbHEElV/d+3atY1LDAAAAAAAQHvrVCHYc889l2655ZY0evToNHLkyLzsoIMOSuuuu2469dRT0zPPPNPoOoYMGZKWX375digtAAAAAAAAHaVTDYcYPcCi59aIESOqlsVwhsOHD0/PPvtsmjJlSqPrKJVKacaMGfk3AAAAAAAAxdSpQrAXXngh9e/fP/Xs2bPG8k022ST/Hj9+fKPrWGONNdJSSy2VllxyyXTAAQekd999t83KCwAAAAAAQMfoVMMhTps2LfXq1avO8vKyqVOn1vveZZZZJh177LFps802S926dUtPPvlkuuyyy/IQi88//3ydYK2pBgwYUHH5xIkTU9++fVu0TgAAAAAAABagEGzmzJk5wKothkQsP1+fE044ocbfe++9d+5BNmzYsHT55Zen73//+21QYgAAAAAAADpCpxoOsUePHmn27Nl1ls+aNavq+ebYf//908orr5wefvjhFpdpwoQJFX/0AgMAAAAAAOg4nSoEi2EPY0jE2srLevfu3ex19unTJ3344YetUj4AAAAAAADmD50qBBs4cGB6/fXX04wZM2osHzduXNXzzVEqldKkSZPSCius0KrlBAAAAAAAoGN1qhBsyJAhae7cuenqq6+uWhbDI44ZMyYNGjQo9+oKkydPTq+++mqN977//vt11nfFFVfk5TvuuGM7lB4AAAAAAID2snDqRCLoGjp0aBo1alR67733Ur9+/dJ1112Xe3Ndc801Va876KCD0hNPPJF7epWtuuqqaZ999klf+9rXUvfu3dNTTz2Vbrnlltx77Mgjj+ygPQIAAAAAACAt6CFYGDt2bDrjjDPS9ddfn6ZPn57WW2+9dM8996Stt966wfcNGzYsPfPMM+n2229Ps2bNyqHYqaeemk4//fS02GKLtVv5AQAAAAAAaHtdStW7S9FqBgwYkH9PmDCho4sCAAAAAACwwGUtnWpOMAAAAAAAAGgKIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIXT6UKw2bNnp9NOOy317t079ejRIw0aNCg99NBDzV7P9ttvn7p06ZKOPfbYNiknAAAAAAAAHafThWCHHHJIuvDCC9OwYcPSxRdfnLp27ZoGDx6cnnrqqSav44477kjPPvtsm5YTAAAAAACAjtOpQrDnnnsu3XLLLenss89Oo0ePTiNGjEiPPvpoWnXVVdOpp57apHXMmjUrnXzyybk3GQAAAAAAAMXUqUKw2267Lff8ivCrrHv37mn48OG5Z9eUKVMaXcd5552XvvzyyzRy5Mg2Li0AAAAAAAAdpVOFYC+88ELq379/6tmzZ43lm2yySf49fvz4Bt8/efLkdM4556Rzzz03zycGAAAAAABAMS2cOpFp06alXr161VleXjZ16tQG3x/DIG6wwQZp3333bbUyDRgwoOLyiRMnpr59+7badgAAAAAAAChoCDZz5szUrVu3OstjSMTy8/V57LHH0u23357GjRvXpmUEAAAAAACg43WqECyGMJw9e3ad5bNmzap6vpIvvvgiHX/88enAAw9MG2+8cauWacKECc3qIQYAAAAAAEDb61QhWAx7+Pbbb1ccJjH07t274vvGjh2bXnvttXTVVVelSZMm1Xjuk08+yctWXHHFtNhii7VRyQEAAAAAAGhPC6VOZODAgen1119PM2bMqLG8PMRhPF/J5MmT05w5c9IWW2yRVl999aqfckAWj//0pz+1wx4AAAAAAADQHjpVT7AhQ4ak888/P1199dVp5MiReVkMjzhmzJg0aNCg1KdPn6rQ67PPPktrr712/nvfffetGJDtueeeafDgwemII47I7wcAAAAAAKAYOlUIFkHV0KFD06hRo9J7772X+vXrl6677ro8nOE111xT9bqDDjooPfHEE6lUKuW/IwwrB2K1RS+wPfbYo932AQAAAAAAgLbXqUKw8vCFZ5xxRrr++uvT9OnT03rrrZfuueeetPXWW3d00QAAAAAAAJhPdCmVu0vRqgYMGJB/T5gwoaOLAgAAAAAAsMBlLQu1cnkAAAAAAACgwwnBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhCMEAAAAAAAAoHCEYAAAAAAAAhSMEAwAAAAAAoHCEYAAAAAAAABSOEAwAAAAAAIDCEYIBAAAAAABQOEIwAAAAAAAACkcIBgAAAAAAQOEIwQAAAAAAACgcIRgAAAAAAACFIwQDAAAAAACgcIRgAAAAAAAAFI4QDAAAAAAAgMIRggEAAAAAAFA4QjAAAAAAAAAKRwgGAAAAAABA4QjBAAAAAAAAKBwhGAAAAAAAAIUjBAMAAAAAAKBwhGAAAAAAAAAUjhAMAAAAAACAwhGCAQAAAAAAUDhCMAAAAAAAAApHCAYAAAAAAEDhtHsI9tFHH7X3JgEAAAAAAFjAtGoIdsIJJzT4/CeffJJ22GGHFq9/9uzZ6bTTTku9e/dOPXr0SIMGDUoPPfRQo++7884783bjfd26dUtf/epX05AhQ9LLL7/c4rIAAAAAAACwgIRgl1xySbrooosqPjdz5sy08847pxdffLHF6z/kkEPShRdemIYNG5Yuvvji1LVr1zR48OD01FNPNfi+l156KS2zzDI5pLv88svT0UcfnV544YW0ySabpH/84x8tLg8AAAAAAADzpy6lUqnUWis7/fTT07nnnptuvfXWtPfee9fowbXLLrukJ554It12221pt912a/a6n3vuudzza/To0WnkyJF52axZs9K6666bVlxxxfTMM880a33vvvtu7hE2fPjwdOWVV6bWNmDAgPx7woQJrb5uAAAAAACAohswj1lLq/YEO+uss9K+++6bDjzwwPTss8/mZV988UUaOnRoeuyxx9L111/fogAsRHgWPb9GjBhRtax79+45xIptTZkypVnri+BsscUWM0cZAAAAAABAAbVqCBbGjBmTNt100xx2vfLKK3nownvvvTddffXVaZ999mnxemP4wv79+6eePXvWWB5DGobx48c3uo4IvN5///08POLhhx+eZsyYkbbbbrsWlwkAAAAAAID508KtvcJFFlkk3XnnnWmLLbZIG264Yfr888/TL3/5y3TYYYfN03qnTZuWevXqVWd5ednUqVMbXUeEc6+99lp+vMQSS6Qf/vCHuSdZa3TFq23ixImpb9++87RuAAAAAAAAOiAEmzx5cr3PXXHFFWnXXXfNIdPuu+9e47WrrLJKs7c1c+bM1K1btzrLY0jE8vNN6aUWvb/efPPN/DjeM3fu3LTQQq3eIQ4AAAAAgP+HvXsBs6qq/4C/AJWLimKKMoWmIGoooilI5j1T8Z6QGoaYRVleEzE0uv0zL5SKdykkIG+FWolamSKJGGRBKooaSpCgZKJYwqh43ue33/fMO5czw8wwwzCbz+d5xjPsffbea1/PuL5nrQXQWkOwj3/846lNmza1zi8UClkYFj+VRfDUUB07dkzl5eU1pq9atapi/poMGDCg4vcYu2y33XbLfv/xj3+cGqu2wdhqayEGAAAAAADAeh6Cfec736kzBGtK0e3hq6++WrKbxFBWVtag9XXp0iUdeuih6fbbb1+rEAwAAAAAAICchWDf+9730rrSt2/fNG3atKw7w86dO1dMnzVrVsX8horuEN9+++0mLScAAAAAAAAtr9UMhjVo0KCsG8Vx48ZVTIvuEWNsr/79+6fu3btn02Lssfnz51dZdtmyZTXWt3DhwvTII4+kffbZZx2UHgAAAAAAgFbTEqy6u+++Oz3wwANp0qRJJccHO/3009Pxxx+fTjrppAavO4KuwYMHp1GjRmWhVs+ePdPEiROzMGv8+PEV7xs6dGiaPn16tr2iPfbYIx122GFZa7HoBvGll17Klnn//ffTFVdcsRZ7DAAAAAAAQO5DsBtvvDHtuOOOJefF2GHt2rVLN9xwQ6NCsBDh2ujRo9PkyZPT8uXLU58+fdLUqVPTgQceWOdyZ511VhbO/e53v0vvvPNO6tq1a/rsZz+bLrnkkiwgAwAAAAAAIF/aFCo3mVpL22yzTbr00kvT+eefX3L+ddddly677LL0+uuvp7zr3bt39jpv3ryWLgoAAAAAAMAGl7U06Zhg0cpqk002qXV+tAR7++23m3KTAAAAAAAA0Lwh2Pbbb59mzZpV6/yYV1ZW1pSbBAAAAAAAgOYNwY455ph0++23p9/85jc15v32t79Nd955Zzr22GObcpMAAAAAAADQvGOCvfHGG2mvvfZKS5YsSQcffHD2e5gzZ0567LHHslZgf/3rX1PXrl1T3hkTDAAAAAAAoOWylo1SE9p6663TzJkz01lnnZUeeuihNG3atGx6mzZt0sCBA9ONN964QQRgAAAAAAAAtKwmDcFC9+7d09SpU9Py5cvTP/7xj2xaz549U5cuXZp6UwAAAAAAALBuQrCiCL323Xff5lo9AAAAAAAA1Kpt7bMAAAAAAABgA2wJ1rZt2+zn3XffTZtsskn2e4z/VZeY/8EHH6zNZgEAAAAAAKD5QrChQ4dmoVa7du2q/BsAAAAAAABaUptCoVBo0RLkVO/evbPXefPmtXRRAAAAAAAANrisxZhgAAAAAAAA5I4QDAAAAAAAgNxZqzHBdtpppwYvE2OGLViwYG02CwAAAAAAAM0Xgm2//fZZqAUAAAAAAAC5CcEee+yxpisJAAAAAAAANBFjggEAAAAAAJA7TRqCvfLKK+n+++8vOa9QKGTzFi5c2JSbBAAAAAAAgKbtDrG6b3/72+mf//xnOvbYY2vMi7HDxowZk3bcccc0ceLEptwsAAAAAAAANF9LsBkzZqQjjzyy1vlHHHFE+tOf/tSUmwQAAAAAAIDmDcFef/31tN1229U6f9ttt02vvfZaU24SAAAAAAAAmjcE69y5c51jfsWYYZtuumlTbhIAAAAAAACaNwQbMGBAuu2229Ly5ctrzItpEyZMSP3792/KTQIAAAAAAEDzhmAjRoxIy5YtS/369UuTJ09Ozz77bPYTv0f4FfMuuuiiptwkAAAAAAAA1LBRakIHHHBAuuWWW9I555yThg0bVjG9UCik9u3bp5tvvjkdfPDBTblJAAAAAAAAaN4QLHz5y19OAwcOTL/61a/Siy++mE3r1atXGjx4cCorK2vqzQEAAAAAAEDzh2Ahwq7zzjuvOVYNAAAAAAAALROCVTZr1qy0ePHi9NGPfjQbF6xt2yYdhgwAAAAAAADWXQj26quvpqOPPjo9/fTTFdN22223dP/996eddtqpuTYLAAAAAAAAqdmaZZ177rmpW7du2bhgK1euTH/+85/T6tWr09e//vXm2iQAAAAAAAA0TQj2u9/9ruT0CL0uu+yy1LNnz9S+ffvUr1+/LBiL6QAAAAAAALBeh2DHHXdcOv3009Obb75ZZXqMATZjxowq05544olUVla2tpsEAAAAAACA5g3BomXXs88+m433dffdd1dMv/TSS9MFF1yQDjjggDRkyJC0xx57pLvuuiubDgAAAAAAAOt1CLb33nun2bNnZ4HXGWeckbUMW7JkSTr++OOzgKx3797prbfeSvvtt1967LHHskAMAAAAAAAAmlObQqFQaKqVvfTSS+krX/lKmjt3brriiivS1772tbShivAvzJs3r6WLAgAAAAAAsMFlLWvdEqyynXfeOWvtddVVV6VRo0algw46KAvGmkp5eXm6+OKLs3HFOnbsmPr3758efvjhNS537733ppNPPjnttNNOqVOnTmmXXXZJF154YdZCDQAAAAAAgPxpshDsvffeSytWrMh+Hz58eJbKfeQjH0l77rlnuvzyy9Pq1avXehvDhg1LV199ddal4tixY1O7du3SwIED04wZM+pcLsrz/PPPp9NOOy1dd9116cgjj0w33HBDGjBgQFq5cuValwsAAAAAAICcdYf45ptvpjPPPDM98MADWdAVTdNuu+22tM8++2Tz77nnnnTOOeekrl27ZtNjDLHGiHHHouXXmDFj0ogRI7Jpq1atSrvvvnu27pkzZ9a6bLROO/jgg6tMmzRpUjr99NPTT3/60/TlL385NTXdIQIAAAAAALTi7hDPP//8LIC69dZbs24HN9tss3TSSSel999/P5sfv0crrE9+8pNpv/32SxdddFGjtjNlypSs5Ve06irq0KFDFsA9+eSTafHixbUuWz0ACyeeeGL2GmUDAAAAAAAgXzZa2xU89NBD6ZJLLklnnHFGxbhg0Trrueeey7pCDFtssUUaP3581o3hV7/61aw1V0PNmTMn9erVK3Xu3LnK9H79+mWvc+fOTd27d6/3+l577bXsdeutt05NkUJWt2DBgtSjR4+1WjcAAAAAAACpZVqCbbzxxlXG1YouCtu0aZM22qhmvnbooYemZ555plHbWbp0aerWrVuN6cVpS5YsadD6rrzyyqxl2aBBgxpVHgAAAAAAAHLcEiy6FbziiivSBx98kLp06ZJuuummtOuuu6bddtut5PujC8PGiKCtffv2ta6vchC3JnfccUfWMm3kyJFZy7W1UVs/lLW1EAMAAAAAAKAVhGDRtWHbtm2zMcHefffd9KlPfSqNHTs2m9aUOnbsmMrLy2tMj5Znxfn18fjjj2fjiB1xxBHpsssua9IyAgAAAAAAkJMQrFOnTun666/PfppTdHv46quvluwmMZSVla1xHX//+9/Tcccdl41ZNmXKlJJdNgIAAAAAAND6NW1zrWbUt2/f9OKLL6YVK1ZUmT5r1qyK+XVZsGBBOvLII1PXrl3Tgw8+mDbbbLNmLS8AAAAAAAAtp9WEYIMGDUqrV69O48aNq5gW3SNOmDAh9e/fP3Xv3j2btmjRojR//vwqy7722mvps5/9bNZF4+9///u0zTbbrPPyAwAAAAAAsO60mv4AI+gaPHhwGjVqVFq2bFnq2bNnmjhxYlq4cGEaP358xfuGDh2apk+fngqFQsW0aAH28ssvp5EjR6YZM2ZkP0XbbrttOvzww9f5/gAAAAAAANB8Wk0IFiZNmpRGjx6dJk+enJYvX5769OmTpk6dmg488MA1jgUWrrrqqhrzDjroICEYAAAAAABAzrQpVG4yRZPp3bt39jpv3ryWLgoAAAAAAMAGl7W0mjHBAAAAAAAAoL6EYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMidjVq6AAAAAAAAQMO9uMfglAe9nvlVSxeBnNISDAAAAAAAgNwRggEAAAAAAJA7rSoEKy8vTxdffHEqKytLHTt2TP37908PP/zwGpd74YUX0gUXXJA+9alPpQ4dOqQ2bdqkhQsXrpMyAwAAAAAAsO61qhBs2LBh6eqrr05DhgxJY8eOTe3atUsDBw5MM2bMqHO5J598Ml133XXpnXfeSbvttts6Ky8AAAAAAAAto9WEYLNnz0533XVXuvzyy9OYMWPS8OHD06OPPpp22GGHNHLkyDqXPe6449Jbb72VnnnmmSxAAwAAAAAAIN9aTQg2ZcqUrOVXhF9F0bXhmWeembX0Wrx4ca3LbrXVVmnzzTdfRyUFAAAAAACgpbWaEGzOnDmpV69eqXPnzlWm9+vXL3udO3duC5UMAAAAAACA9c1GqZVYunRp6tatW43pxWlLlixpgVKl1Lt375LTFyxYkHr06LHOywMAAAAAAEAragm2cuXK1L59+xrTo0vE4nwAAAAAAABoVS3BOnbsmMrLy2tMX7VqVcX8ljBv3rwGtRADAAAAAACg+bWalmDR7WF0iVhdcVpZWVkLlAoAAAAAAID1UasJwfr27ZtefPHFtGLFiirTZ82aVTEfAAAAAAAAWlUINmjQoLR69eo0bty4imnRPeKECRNS//79U/fu3bNpixYtSvPnz2/BkgIAAAAAANDSWs2YYBF0DR48OI0aNSotW7Ys9ezZM02cODEtXLgwjR8/vuJ9Q4cOTdOnT0+FQqFi2ttvv52uv/767Pcnnngie73hhhvSlltumf2cffbZLbBHAAAAAAAApA09BAuTJk1Ko0ePTpMnT07Lly9Pffr0SVOnTk0HHnhgncvFe2O5yn7yk59krzvssIMQDAAAAAAAIGfaFCo3maLJ9O7dO3udN29eSxcFAAAAAIAcenGPwSkPej3zq5YuAjnNWlrNmGAAAAAAAABQX0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5M5GLV0AAAAAAACA+npxj8EpD3o986uWLkLuaQkGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAcmejli4AAEBr9+Ieg1Me9HrmVy1dBAAAmkEe/l71tyoAjaElGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDubNTSBQCAvHlxj8EpD3o986sNct8bs99sWPJwnTfmWt9Q9xs2FO5xAADySEswAAAAAAAAcqfVhWDl5eXp4osvTmVlZaljx46pf//+6eGHH67Xsq+++mr6/Oc/n7bccsvUuXPndPzxx6eXX3652csMAAAAAADAutXqQrBhw4alq6++Og0ZMiSNHTs2tWvXLg0cODDNmDGjzuX++9//pkMOOSRNnz49XXLJJen73/9+mjNnTjrooIPSf/7zn3VWfgAAAAAAAJpfqxoTbPbs2emuu+5KY8aMSSNGjMimDR06NO2+++5p5MiRaebMmbUue9NNN6WXXnopW8e+++6bTTvqqKOyZX/yk5+kH/3oR+tsPwAAAAAAAGheraol2JQpU7KWX8OHD6+Y1qFDh3TmmWemJ598Mi1evLjOZSP8KgZgYdddd02HHXZY+uUvf9nsZQcAAAAAAGDdaVUhWHRf2KtXr2w8r8r69euXvc6dO7fkch9++GF6+umn0z777FNjXiy7YMGC9M477zRTqQEAAAAAAFjXWlV3iEuXLk3dunWrMb04bcmSJSWXe/PNN1N5efkal91ll10aXKbevXuXnD5//vy08cYb1zofgPx6b8G/Uh5s0ojPsDzs+4a6343d9w3Rhnq+N9T9hg2FexzyLQ/3uPsb8nt/B/9/Qm2iEVNkLRtECLZy5crUvn37GtOjS8Ti/NqWC41ZtrHatGmzVieGpr1JQo8ePVq6KMAGYpMeH9tgn2vNve/rqw11vzdUG+r53pCfbbAh2FCfbc3Ns431hXucpuTZtn7ZUO/vDXW/N0Qbb7xx2nTTTTeMEKxjx45Zi67qVq1aVTG/tuVCY5Zdk3nz5jVqOdadYms85wrIC881II8824A88mwD8sizDWhNWtWYYNF1YXSJWF1xWllZWcnlttpqq6wVWGOWBQAAAAAAoPVpVSFY375904svvphWrFhRZfqsWbMq5pfStm3btMcee6SnnnqqxrxYdqeddkqbb755M5UaAAAAAACAda1VhWCDBg1Kq1evTuPGjauYFl0cTpgwIfXv3z917949m7Zo0aI0f/78Gsv+5S9/qRKEvfDCC+nRRx9NgwcPXod7AQAAAAAAQHNrVWOCRdAVgdWoUaPSsmXLUs+ePdPEiRPTwoUL0/jx4yveN3To0DR9+vRUKBQqpn39619PP/3pT9PRRx+dRowYkQ2mdvXVV6dtt902XXjhhS20RwAAAAAAAKQNPQQLkyZNSqNHj06TJ09Oy5cvT3369ElTp05NBx54YJ3LRXeHjz32WLrgggvSD3/4w/Thhx+mgw8+OF1zzTVpm222WWflBwAAAAAAoPm1KVRuLgUAAAAAAAA50KrGBAMAAAAAAID6EIIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMA+P/8/Oc/T23atMle8+jggw/O9g/4/915551pr732Sptvvnl2f5x//vnrdPsf//jHsx/WP9/73veya+Kxxx6r9zILFy7Mlhk2bFizlq21iWMYxyWOaV5tCPu4PtxjAAANJQQDAHJr9erV6ac//Wk66KCD0lZbbZU23njj1LVr19SnT5/05S9/Of32t79dryqpi5WnlX822mijtO2226ajjz46PfTQQ6k1V1qV2r9SP/G+5i575Z+OHTumXr16pW984xvpX//6V9qQxP5HOLqhevLJJ9OQIUPSO++8k84666z03e9+Nx155JFpQyGA2zDum9ZW3vX1yyoCTgCA1mmjli4AAEBzBWDHHHNM+t3vfpe23HLLLET62Mc+lt577700b968dMcdd6T58+en4447rmKZE088Me23336pW7duLVr2LbbYoqI1yqpVq9Lf//739OCDD2Y/Y8eOTeeee26j1jtp0qT07rvvppZWef9KifPV3CIYLVYKv/HGG+kPf/hDuummm9Ivf/nL9Oc//zn16NGj2ctAy3vggQdSoVDI7o1PfepTLVKGRx55pEW2y5qdffbZ6ZRTTknbb799vZf56Ec/mp5//vnsOceGpV+/ftm533rrrVu6KAAAVCIEAwBy28VZBGB77rlnmj59eo0KyQiDZs2aVWVavGd9qLiMEKh6d0oTJkxIX/rSl9Ill1yStWLr1KlTg9fbkIrcdb1/61oEYJXL8P7776ejjjoqCyR++MMfZseb/FuyZEn2WlZW1mJlELiuvyLMaGigES2Od91112YrE+uv+Fx27gEA1j+6QwQAcmnmzJnZa3RbVCrYisqqQw45pM5ulorje/zzn//Mfip3oVe9O6RoVRbTunfvnjbZZJOsC8MvfOEL6YUXXmiS/Yl1b7rppul///tf1pKtKEKb6L4tunts37591q3ft771rfT222/Xa0ywymOYzJ07N2sxFyFVHJ9oLVU8jkXRddr3v//97Pc4fpWPSWsWFdfDhw/Pfp89e3aNQDX2NY5Lhw4d0m677ZYFZeXl5bV2O/baa69lYWW0CmnXrl2Vrrti/SeffHI2L85ZtDz87Gc/m7VCqy6C2kGDBqXtttsuu67i+vrqV79aEd6UOr8ffPBB+tGPfpR23nnnbP2xzMUXX5y1gqx+rYcIiSufx8rhYLzvpJNOSjvttFPWbWTnzp3T/vvvn37xi1/Ueiz/8pe/ZPsTY2zF+z/zmc9k3Q7W1Y1mU90/H374YbrlllvSvvvumzbbbLPsnonfb7755mxe9f0vhp077rhjvbvjrLwfcW188pOfzO6XCNK++c1vVlwXjz76aHZO4hh06dIlffGLX0z/+c9/6tUlYeVn0bRp07L1FI9n3KPR2qQhY/6tq2fb66+/nkaMGJF22WWX7NjHPRO/x/Ivv/xynce1+vGIZ1i0xIr7JO67T3ziE+m6667LWu6VEvfPgQcemD3v41rdY4890uWXX17yPn366afTqaeemm0n7pFtttkm7b333lkL1QjEi6pfs/W5b0p1mRfP6JgWrXpLufvuu7P5cewqe/PNN9OoUaOyZ07sU+zbYYcdlrVcrY/63ucNPX51iWvgzDPPzK6TWE/fvn3TxIkT61ymvvsZ1/gZZ5yR/R6vtXWjG8/AaNkbLbvjnon7M8b9u+GGG6o8Bypb03M5jlc8J0LsT+VtV7+vSn3J46WXXkpDhw7N1h/3UTwv4t8xvbrK192UKVOyFmaxD/E5Hy0TX3311VRfle/9aPkaLV7j3oxnUny2lNp+8YtCcf7j/MX743k6YMCA7JlXXeX9juMYz6goa0O7N27IvjbkeMa9WFtZajtnxedpfG7+4Ac/yJ5jcV3oChMAWictwQCAXPrIRz6Svb744ouNXkdUkMYYQddee23278pd+EXFUFG0OPvc5z6XVZ4ee+yxqWfPntnYUvfee29W6RSV2FHBuraKlb/FSs1bb701G8coKqgGDx6cjXcWFTpXXnlluv/++9MTTzxR764Fn3rqqXTVVVdllVwR3ixatCjdc889WUVkhGNRAVQ8Br/+9a+zCtXTTz89V+MJVT++IVrfRVASXWlGGBTHM7pLHD16dBZAPvzww9m4bdUrdKPyNSoN47po27ZtViEcYoy6OGcRjEVXnBFULVu2LDv+UWn7+c9/vmI9t912WxbMRcVbvDdCiKjg+9nPfpad3yhHqdZ9EVA8/vjjWcu2qACObjTj3MZ2iqFPXL9xbUegucMOO1Sp2Ks8dlCUtXfv3lnleFQKR4gT64tAJ0KQ//u//6uy7T/96U9ZxXF0Rxr7Hq2cnnnmmSxEPPTQQ0se96a8f6Jc0dVpHKu4juNc3nfffenrX/96mjFjRrr99tur7H9cyxFMnHfeeRX3Sn3vmeuvvz4bp++EE07IjllU2F9zzTXZ+T/++OOzCtyoDI5zGGFyBIfR9WZDxvabOnVq+s1vfpOdy6997Wvpueeey45/BI3xe2O7XWuOZ1tUmkdAumDBgnT44Ydn7497KkK22IeocI8wtT6i4jnC07feeis7jvHveB7FeYrr7sYbb6zy/mghGxX2cTzi+o97L45zTP/973+fnZuoKC8GYP3798+ujbivIthYsWJF+sc//pHdgxFwRyheSn3vm+riWRnliG43f/KTn9SYXwyJKq8vjlusMyruDzjggCxIiy9BxDURv8fz/ytf+Uqdx7G+5W3I8atLXN8RskTg+elPfzr7Wbp0aXbtxnOhlIbsZ5Q/7s+4nuIeq3ytFu/b4rUa5Y7PrdifCFHjWj3nnHOyLxZMnjy5Shnq81yOMsb1GF0SRwvzuO8rH+e6xP0a13OMPRjrj0A3wuV4JsS+/PGPf8zC+upi2zF2aSwTX0qJskdgGs+s+FyOz4b6ins2zml0+xz7EsvHPRXHJZ5Pxc/4EPsZz+s5c+Zk93d8DkZ4GMc0jmd8ESfuk+riyw5xHcV5j2XieqjPddPQfW3s8WyM+NyP7cUzOM55/J0FALRCBQCAHPrb3/5W2HjjjQtt2rQpnHbaaYV77rmnsHDhwjqXmTBhQqQg2WtlO+ywQ/ZTyptvvlnYcsstCx/5yEcK8+bNqzLvmWeeKWy66aaFvfbaq15lfuWVV7Ltl9rW+PHjs3mxvnfffTfbl0022aSw+eabF55//vkq7z3rrLOy937lK1+pMv2ggw7Kplc2bdq0bFqp/b7llluy6bG+yr773e9m02PZhiju3xZbbJGto9TPzTffXGhOxbLHa2Xvv/9+4dBDD83mfelLX6pyPZx44onZMS+1nmuvvbbK9OKx/OIXv5its7K4PjbaaKNCly5dCs8++2yNsi1evLji9xdeeCG7fnv06FH417/+VeV9f/zjHwtt27YtnHDCCSXP79577134z3/+UzH9v//9b7aeWGbp0qU1yhvL1eYf//hHjWnl5eXZsYp9qVy21atXF3r27Jmt88EHH6yyTJzX4rGpfN005f1zxx13ZOuP97/zzjtV9v+Tn/xkNu/222+vsszpp5+eTY9rs76K575z586F5557rmL6qlWrCp/4xCey47zVVlsVHnvssSrH5jOf+Uy23Jw5c9b4fClee+3atcvOd2Xf+ta3snlXXnnlGu/vdfls++1vf5tt4/zzzy95zaxYsaJQH1GeWM/++++fHdOiuKZ32mmnbN706dMrps+cOTOb1r179yrXd9x/xxxzTDbvsssuq5j+zW9+M5v261//uuQ+x7la07Ourvum+JyLa6to5cqV2XNv2223rfFciDLHeY77trJYf3x+3XnnnVWmL1++vLDnnnsWOnToUHjttdcK9VFXeRt6/OoSnzmlroG//OUv2fOi1LO3oftZ27Vc/ZydffbZhQ8++KBievwez/bq574hz+VS57bU52nlffzwww8Lu+66azb9F7/4RZX333XXXdn0XXbZpeR1F5/vTz/9dJVlTj311Gze3XffXaiP4vGKn/vvv7/KvPj8iunxPC/1XKz+jInr+IgjjsjOV+XnWOW/I+LvhoZo6L425njW9Zwvdc4qP0/32GOPwr///e8G7RMAsP4RggEAuRUVJ9ttt11F5Uz8ROV0hAdRYdsUFcXFSqQbbrih5PyoDIz51SuR6xsSXXzxxYWjjjqqovxjx47N3vvDH/4w+/eoUaNKVuRGhVJUHlauRK4rBIsK5+ree++9rHIwAoSmDMHq+olKz+ZULHsci+IxjsrSnXfeOZu+9dZbFxYsWJC9t2/fvtn+R2VsdVGhGuHAvvvuW2V6rCPCyddff73GMrGdmH/11VevsZzF62bq1Kkl58c1HBXnlYOF4vl9+OGHa7z/O9/5TslK0DWFYLWJUDmWnThxYsW0xx9/PJt2yCGH1Hh/VEj26tWrxnXTlPdPMWT6/e9/X2NeBEmlyrY2Idi3v/3tGvO+//3vV4Sg1f385z/P5sVrfUOwIUOG1FjPyy+/nM076aSTmjUEa+i5KYZgpZ5JDVEMwf70pz/Vuh/Dhg2rmPblL385m3brrbfWeH+EyRFK7rjjjjVCsFLXSXVNFYJVDoiq39Njxoyp8mwPc+fOzaYNGjSo5DYixIn5N9544xr3YU3lbejxq018XnTq1Cn77HnrrbdqzC/ea5XDhsbsZ10hWDxn4jM+Pverh40hnuUR4AwePLhRz+XGhGAzZszIpg0YMKDkMp/+9KdrBLvF6+7SSy+t8f5HH300m3fhhRcW6qN4vKoHXcXPsfiCRMwvfknojTfeyD5b9tlnn5LrK56ziy66qMZ+x2dmQzV0XxtzPNcmBCsVlgMArY/uEAGA3IoujKLrn+juJ7pCi6594jW6QIufGD+i8pgpjRHd/4TosqfUOCDF7hhjDJ/osqc+Yiyc4rhb0T1TjI0RXfHE+DgDBw7Mpv/tb3/LXkt1MRdjfcT4J9E1XXQRFF03rck+++xTY1p0CRbd+C1fvjw1peiWqyHjhFQXXTUVu3GrLLp0q29XdtGdY/yE4lhb0WVXdP8Vv0fXbnFOo3uwUtsK0T1TqbGZoqu5Ul0mRfeFIc5lfa+rKGN0xVRddNUVXQ7G9RVjUq3pXMY+hYaey+gWM7rXjK4f4/eVK1dWmV95vJa4v0J0hVVddAkZ3aRV7560Ke+fuCdiO6W6pYvuteJeKpaxKZQ6zjEuTah+TkKMXROiO8G12UZjz2VDNfTcxDGOfbziiiuycxHPqugeMbqKi2PfENHFaFwv1RXPbeXzWNezMMZIjK5MX3nlley5GmNNxbhP0aVddG0WXTRGt2pRzui6szlFV37R7V50fRjdZBbFv+NZG93MVT/2UeZSx/7f//539lrq+dNQDT1+tYnPmnhuRpeGpd4X56762GBNvZ9xTUZ3pNGdYanu+kKMOVZ5fQ15Ljf18S1OL/59Et3ONtf9H/dndXFfxvM6ujCN7cdnc3zexGdLbWObFcfMK3VOYjyvxqrvvq7N8WyMtdknAGD9IQQDAHItKhdjLJLieCRRuRPjYMR4FTE+S4Rklcf2aKgYIylE5WZd/vvf/zZpSBSVhiHGaSqlOD0Co/qoLTyKyug4ZuuT2KdiSFhZcbyY+ohxckpV8BVFpVs0oIhK2FLbqst2221XcnrxXBTDkPpcV2PGjGnwdVXqGBTHLWvIuYxxfaICMI5FVGzHPRSV21FxGtdnVGiXl5fXuCaL459VV2p6U94/sf0IjEuNQRP7H4FmhIdNpVRFf/E41zWvWIlcH011Lhujoecmxp+LQCHurRjbJ8YPCnHcY0y2b3/727WOtVVdLFMqOCveW8Vrrb7Pwghw4/6L8xLXdIyZd9lll6UpU6ZUjA8VYyJF2U899dTUHCLUi1Apjk3cU/FlhajQf/bZZ7PPoMrjuxWPfYw5GD9N8blSm4YevzWtp7b7v9Rzsan3s7i+GDuxrud25fU15LncGGvzWd2U9/+azkuxnMVjGGFYqS9g1HVOavvsq4/67mtT/+2zJmuzTwDA+qNtSxcAAGBdiorVaCF2wQUXZP9+9NFH12p9xUrBaC3x/3U1XfLn9NNPb5LyV9/ua6+9VnL+0qVLq7wvT6KlValjHNObSvG4RYu6us7r/9vTWFW1tSwsVvJVbj21pu1HhV9d2y717f6mcvXVV2cVouPHj0+PPfZYuu6669L//d//ZeHhEUccUeP9EYKE119/veT6Sk1vyvsn1hWtQEqFTB988EF64403KsqYR9EKrriv1TWmQrgx5yZaDcX1EmFjhDtxzXzkIx9JP/jBD7Kf+opzVaqSv/i8q/xca8yzcMCAAWnq1KlZGPXEE0+k0aNHZ9dntMb64x//mJpLtD6O4Pjuu+/O/l1sGVX9+i6WNVqs1XXsJ0yYsN58lhTn13b/l1p/U+9ncX3x5Za61hct2xrzXG7Nn9VrOi/F7Rdf42+kuo5htLCvbm1a1Tfn8VybZ+O62CcAoPkJwQCADdLmm2+evZYKMUoFZ7V963q//fbLXqNlwboU4UyIcKJUpc7cuXNThw4d0m677dbk2y620FjfWog1pc022yz17t07zZs3LwtWmkLxWnnooYfq/d7mvq6icrC28/iPf/wjez3ppJNqzCt2JVnqmoyuqKr78MMP08yZM5t1P2P7sZ3oBrS6mBb7uffee6e8ipZFYfHixTXmPfXUU+v02RYVx3H/nHPOORUtfKIL2vqKyupS10vxeVe81tb0LIxrOLqf3HHHHUu2NIkuTaOFVgR0EdiF3/zmN2t136wpBItlI/yKsPbOO+/MWoBV7h6xOe7/usq7Nsevsl133TV16tQp++yp3FKvqNT6G7OfdX3+RBminNEisb4tLhvyXG7MZ19dxzcUw6TmfjaVembHfhSf18VyRkvJuF7W9d80zXk8G/NsBADyRQgGAORSVC5G5WtUilcX3yAudvFVnzEjoiVDdItXfTykcMYZZ2SVbtH10uzZs2vMj+3XVlmzNk477bSsa7Hrr7++IqwoilYNK1asyN4TlbxNLY5HiC6y8uyb3/xmeu+997KuM0t9WzxakRTHJ6mPs846K+veKVpTPffcczXmVx4rKsZ/i/Mb38avPo5WiHI1RSVlnMtSFYOh2LKu+vUb3dz97Gc/q/H+4rhKUQlZvUJ53LhxJfejKe+fOE9h1KhR2dhERfH7t771rez3M888M+VVceya6t0Xxnhu8Txs7mdbBMalWpsUp0VA0hBxHit3txlhdHGcpyhb9fMe84pjSBUr+EeMGJGVs/J5j3Ct1P42pJx13Td1iTGOYsyiCGmi9VOUN1qfVe8mMsZHii5I77333nTbbbeVXNczzzxT7+496ypvQ49fbWIfhgwZkt55550aXc1G0HD77bfXWKYx+1nX5088XyN4jdZA5557bsnzHPMqP38b8lyOMCUC3oZ89sVzMbrajLAput+sLP4dz/HoJrPUWIpNKVq9R+vHym644YZsPLBDDjkk64Y5xHiWcR7jnMUxKRX4xTKVW9OtS405nrU9G+PaivsQAMg/Y4IBALk0a9asrHIjxnOIypD4JnuIipsHHnggqxw7/vjj06BBg9a4rsMOOywbG+PII4/MQrMIlvbcc8907LHHZhVyUfES3S/FN8rjvdECIirKotLxySefzLqUW7VqVZPuXwQU1157bfrGN76RfeM5unjcZpttsm97xzbjG/FXXnllag5RYRbfFI9K6ujyrPgt6xjzpz4iUKprPK4Y26spuzZsrKgc/utf/5puuummLNyJLgC33377rDI+rqNoXRSV8bfccku91veJT3wiW9fXvva17Nvscf3tvPPO2fUR11d01Vf8Fnucv6gUjjLE9RTXXlTsReuGqICNir443/Pnz1+rfYzr9a677squ5biOoiI7rvH4iXGcohuywYMHZ/dJWVlZdr5/97vfZddbsUu3orgmIhyLsh533HFZC7I4bk8//XQWSB911FFZOFbsmio05f0TYUK04vnlL3+ZrSPGWYr1RAukOF8nn3xyVrmbV3Etxhhyl19+edaFYVxvETzGMY/jG2MhNuezLc7xRRddlHU1GNdqVKZHgBDnJM55zKuvGNcnArDdd989u5biuo+yRIAR12XlLy9ES66RI0emq666Knt/XKubbrpptt9xvcbzv/K2430RCET4Ep8L0eozArx4fzzLhg8fvlb3zZpE14fR5eIll1xS8e9S7rjjjiwwiwAqWqn1798/CyXjmMY9FfsW5yCO89qUt6HHry4/+tGPstA1PpsiRIll45zFs2LgwIHZeGhru59xfUVQGduI6684ZlOEX9EFXnwJJK7/eC7ff//92bpjvK8I0mKssOj+MsaDi/ujoc/luFaifPH8jWdJXOfROiyu0T59+pQ8JnG/RMu/ww8/PHsGxfrj+f7CCy9kz6ZolR7jk1Z+LjaHOPdxL8dPz549sxZ7cY5jHMXY/+rhWByr73znO9mYeXEeY0yxJUuWpOeffz47LhGsF/+uWpcaczyL5zTKHNdVnMP4HI1nU8yLzwwAIOcKAAA5tGjRosINN9xQOOGEEwq9evUqbL755oWNN964sN122xWOOuqowuTJkwurV6+ussyECROib8TstbL//ve/ha997WuFj370o4V27dpl7zn99NOrvOeVV14pfOMb3yj07Nmz0L59+2x7u+yyS+G0004r3HffffUqc6wj1r3DDjvUez9///vfFw4//PDClltuWdhkk00KPXr0KFx00UWF5cuX13jvQQcdlK2/smnTpmXTvvvd75Zcf5SlVHni+O25556FDh06ZMvX58/K4v6t6SfK1FxiP+va31Luv//+wtFHH13YZpttsmto2223Ley7776FSy+9tPD8889XeW+sO45zXWbOnFn43Oc+V7G+bt26FY444ojCr371qxrvffrpp7Nrbfvtt8/Ob5cuXQq9e/cuDB8+vPDII4+s8fyu6dp+/fXXC6eeemqha9euhbZt29Y4Nk888UThkEMOya6vzTbbrLD//vtn13Nd182f//znwmc+85ns/fFz2GGHZfsc90csM2fOnBrLNMX9E+KevvHGGwuf/OQnCx07dsx+9t577+xZUP1+D3Fso0yx/YZeQ6Wu09qOc6jtmJW6x+paT13X2bPPPps93+K4b7rpptl7HnvssXXybHvuuecKF1xwQXbst9566+x6jf066aSTsuuovorH46233ip8/etfL5SVlWXr2nXXXQtjx44tfPjhhyWXu/POO7PrM/Y9yvmJT3yi8MMf/rCwcuXKGs/MYcOGFXbbbbdC586dC506dco+I84555zCwoUL63Wu67pvis+56sex6H//+1+23XjP7rvvXuexWLFiReGyyy7LruE4n/G8/fjHP14YOHBg4dZbb83OX32s6T5vyPFbk6VLlxbOOOOM7BqI8sbnRFx3dT0zGrqfDz30UGG//fbL3lv83Kh8D8c1MmnSpMKhhx6aPTPjORvXUexfbCf+Pmjsc/mll14qHHPMMYWtttqq0KZNmyr3VV37OH/+/Oyeib9BNtpoo+x1yJAh2fSGPGPWdH1VV/nej8+yOG5xzW+xxRbZ/r7wwgsllysvLy9cf/31hQEDBmTXa9yD3bt3z47pNddcU3jjjTfq/XdEXRq7rw05niHO+ec///nseojra5999incc889tZa9rs9TAKD1aRP/aekgDgAAyLfoxipaaMZ4QdHSBEoptgJduHBhSxcFWr2f//znWSvRaNUbrawBADZExgQDAACaRIy/VWr8tKiIjbGYPvvZzwrAAAAAWGeMCQYAADSJGGclxtWJ8Vpi3JkPPvggzZkzJ82YMSMb5+cnP/lJSxcRAACADYgQDAAAaBLbbrttGjJkSJo+fXqaNm1aKi8vT9ttt13WHdell16aevTo0dJFBAAAYANiTDAAAAAAAAByx5hgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALmzUUsXIK+222679L///S9tv/32LV0UAAAAAACAVmfRokVp0003Ta+99lqjltcSrJlEAPb++++3dDEAAAAAAABapchZIm/ZYFqClZeXp+985ztp8uTJafny5alPnz7phz/8YTr88MPrXO573/te+v73v19jevv27dOqVauavJzFFmDz5s1r8nUDAAAAAADkXe/evddq+VYXgg0bNixNmTIlnX/++WnnnXdOP//5z9PAgQPTtGnT0qc//ek1Ln/zzTenzTbbrOLf7dq1a+YSAwAAAAAAsK61qhBs9uzZ6a677kpjxoxJI0aMyKYNHTo07b777mnkyJFp5syZa1zHoEGD0tZbb70OSgsAAAAAAEBLaVVjgkULsGi5NXz48IppHTp0SGeeeWZ68skn0+LFi9e4jkKhkFasWJG9AgAAAAAAkE+tKgSbM2dO6tWrV+rcuXOV6f369cte586du8Z17LTTTmmLLbZIm2++eTrttNPS66+/3mzlBQAAAAAAoGW0qu4Qly5dmrp161ZjenHakiVLal22S5cu6eyzz04DBgxI7du3T48//ni68cYbsy4Wn3rqqRrB2toOyrZgwYLUo0ePRq0TAAAAAACADSgEW7lyZRZgVRddIhbn1+a8886r8u+TTjopa0E2ZMiQdNNNN6VvfetbzVBiAAAAAAAAWkKr6g6xY8eOqby8vMb0VatWVcxviC984Qtpu+22S3/84x8bXaZ58+aV/NEKDAAAAAAAoOW0qhAsuj2MLhGrK04rKytr8Dq7d++e3nzzzSYpHwAAAAAAAOuHVhWC9e3bN7344otpxYoVVabPmjWrYn5DFAqFtHDhwrTNNts0aTkBAAAAAABoWa0qBBs0aFBavXp1GjduXMW06B5xwoQJqX///lmrrrBo0aI0f/78Ksv++9//rrG+m2++OZt+5JFHroPSAwAAAAAAsK5slFqRCLoGDx6cRo0alZYtW5Z69uyZJk6cmLXmGj9+fMX7hg4dmqZPn5619CraYYcd0sknn5z22GOP1KFDhzRjxox01113Za3HvvrVr7bQHgEAAAAAAJA29BAsTJo0KY0ePTpNnjw5LV++PPXp0ydNnTo1HXjggXUuN2TIkDRz5sx0zz33pFWrVmWh2MiRI9Oll16aOnXqtM7KDwAAAAAAQPNrU6jcXIom07t37+x13rx5LV0UAAAAAACADS5raVVjggEAAAAAAEB9CMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC50+pCsPLy8nTxxRensrKy1LFjx9S/f//08MMPN3g9hx9+eGrTpk06++yzm6WcAAAAAAAAtJxWF4INGzYsXX311WnIkCFp7NixqV27dmngwIFpxowZ9V7Hvffem5588slmLScAAAAAAAAtp1WFYLNnz0533XVXuvzyy9OYMWPS8OHD06OPPpp22GGHNHLkyHqtY9WqVenCCy/MWpMBAAAAAACQT60qBJsyZUrW8ivCr6IOHTqkM888M2vZtXjx4jWu46qrrkoffvhhGjFiRDOXFgAAAAAAgJayUWpF5syZk3r16pU6d+5cZXq/fv2y17lz56bu3bvXuvyiRYvSFVdckW677bZsPLGm0Lt375LTFyxYkHr06NEk2wAAAAAAACDHLcGWLl2aunXrVmN6cdqSJUvqXD66Qdxrr73SKaec0mxlBAAAAAAAoOW1qpZgK1euTO3bt68xPbpELM6vzbRp09I999yTZs2a1aRlmjdvXoNaiAEAAAAAAND8WlVLsOjCsLy8vMb0VatWVcwv5YMPPkjnnntu+uIXv5j23XffZi8nAAAAAAAALatVtQSLbg9fffXVkt0khrKyspLLTZo0Kb3wwgvp1ltvTQsXLqwy75133smmde3aNXXq1KmZSg4AAAAAAMC61KpagvXt2ze9+OKLacWKFVWmF7s4jPmlLFq0KL3//vtp//33TzvuuGPFTzEgi9//8Ic/rIM9AAAAAAAAYF1oVS3BBg0alH784x+ncePGpREjRmTTonvECRMmpP79+6fu3btXhF7vvvtu2nXXXbN/n3LKKSUDshNPPDENHDgwfeUrX8mWBwAAAAAAIB9aVQgWQdXgwYPTqFGj0rJly1LPnj3TxIkTs+4Mx48fX/G+oUOHpunTp6dCoZD9O8KwYiBWXbQCO+GEE9bZPgAAAAAAAND8WlUIVuy+cPTo0Wny5Mlp+fLlqU+fPmnq1KnpwAMPbOmiAQAAAAAAsJ5oUyg2l6JJ9e7dO3udN29eSxcFAAAAAABgg8ta2jZxeQAAAAAAAKDFCcEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO6s8xDsrbfeWtebBAAAAAAAYAPTpCHYeeedV+f8d955Jx1xxBGNXn95eXm6+OKLU1lZWerYsWPq379/evjhh9e43H333ZdtN5Zr3759+tjHPpYGDRqUnn322UaXBQAAAAAAgA0kBLv++uvTNddcU3LeypUr09FHH52efvrpRq9/2LBh6eqrr05DhgxJY8eOTe3atUsDBw5MM2bMqHO5Z555JnXp0iUL6W666aZ01llnpTlz5qR+/fqlv//9740uDwAAAAAAAOunNoVCodBUK7v00kvTlVdeme6+++500kknVWnBdcwxx6Tp06enKVOmpOOOO67B6549e3bW8mvMmDFpxIgR2bRVq1al3XffPXXt2jXNnDmzQet7/fXXsxZhZ555ZrrllltSU+vdu3f2Om/evCZfNwAAAAAAQN71XsuspUlbgl122WXplFNOSV/84hfTk08+mU374IMP0uDBg9O0adPS5MmTGxWAhQjPouXX8OHDK6Z16NAhC7FiW4sXL27Q+iI469SpkzHKAAAAAAAAcqhJQ7AwYcKEtN9++2Vh1/PPP591XfjAAw+kcePGpZNPPrnR643uC3v16pU6d+5cZXp0aRjmzp27xnVE4PXvf/876x7xy1/+clqxYkU67LDDGl0mAAAAAAAA1k8bNfUKN95443Tfffel/fffP+29997pvffeS9dee2360pe+tFbrXbp0aerWrVuN6cVpS5YsWeM6Ipx74YUXst8322yz9O1vfztrSdYUTfGqW7BgQerRo8darRsAAAAAAIAWCMEWLVpU67ybb745HXvssVnIdPzxx1d57/bbb9/gba1cuTK1b9++xvToErE4vz6t1KL118svv5z9HsusXr06tW3b5A3iAAAAAAAAaK0h2Mc//vHUpk2bWucXCoUsDIufyiJ4aqiOHTum8vLyGtNXrVpVMX9NBgwYUPF7jF222267Zb//+Mc/To1V22BstbUQAwAAAAAAYD0Pwb7zne/UGYI1pej28NVXXy3ZTWIoKytr0Pq6dOmSDj300HT77bevVQgGAAAAAABAzkKw733ve2ld6du3b5o2bVrWnWHnzp0rps+aNatifkNFd4hvv/12k5YTAAAAAACAltdqBsMaNGhQ1o3iuHHjKqZF94gxtlf//v1T9+7ds2kx9tj8+fOrLLts2bIa61u4cGF65JFH0j777LMOSg8AAAAAAECraQlW3d13350eeOCBNGnSpJLjg51++unp+OOPTyeddFKD1x1B1+DBg9OoUaOyUKtnz55p4sSJWZg1fvz4ivcNHTo0TZ8+Pdte0R577JEOO+ywrLVYdIP40ksvZcu8//776YorrliLPQYAAAAAACD3IdiNN96Ydtxxx5LzYuywdu3apRtuuKFRIViIcG306NFp8uTJafny5alPnz5p6tSp6cADD6xzubPOOisL5373u9+ld955J3Xt2jV99rOfTZdcckkWkAEAAAAAAJAvbQqVm0ytpW222SZdeuml6fzzzy85/7rrrkuXXXZZev3111Pe9e7dO3udN29eSxcFAAAAAABgg8tamnRMsGhltckmm9Q6P1qCvf322025SQAAAAAAAGjeEGz77bdPs2bNqnV+zCsrK2vKTQIAAAAAAEDzhmDHHHNMuv3229NvfvObGvN++9vfpjvvvDMde+yxTblJAAAAAAAAaN4xwd5444201157pSVLlqSDDz44+z3MmTMnPfbYY1krsL/+9a+pa9euKe+MCQYAAAAAANByWctGqQltvfXWaebMmemss85KDz30UJo2bVo2vU2bNmngwIHpxhtv3CACMAAAAAAAAFpWk4ZgoXv37mnq1Klp+fLl6R//+Ec2rWfPnqlLly5NvSkAAAAAAABYNyFYUYRe++67b3OtHgAAAAAAAGrVtvZZAAAAAAAAsAG2BGvbtm328+6776ZNNtkk+z3G/6pLzP/ggw/WZrMAAAAAAADQfCHY0KFDs1CrXbt2Vf4NAAAAAAAALalNoVAotGgJcqp3797Z67x581q6KAAAAAAAABtc1mJMMAAAAAAAAHJHCAYAAAAAAEDurNWYYDvttFODl4kxwxYsWLA2mwUAAAAAAIDmC8G23377LNQCAAAAAACA3IRgjz32WNOVBAAAAAAAAJqIMcEAAAAAAADInSYNwV555ZV0//33l5xXKBSyeQsXLmzKTQIAAAAAAEDTdodY3be//e30z3/+Mx177LE15sXYYWPGjEk77rhjmjhxYlNuFgAAAAAAAJqvJdiMGTPSkUceWev8I444Iv3pT39qyk0CAAAAAABA84Zgr7/+etpuu+1qnb/tttum1157rSk3CQAAAAAAAM0bgnXu3LnOMb9izLBNN920KTcJAAAAAAAAzRuCDRgwIN12221p+fLlNebFtAkTJqT+/fs35SYBAAAAAACgeUOwESNGpGXLlqV+/fqlyZMnp2effTb7id8j/Ip5F110UVNuEgAAAAAAAGrYKDWhAw44IN1yyy3pnHPOScOGDauYXigUUvv27dPNN9+cDj744KbcJAAAAAAAADRvCBa+/OUvp4EDB6Zf/epX6cUXX8ym9erVKw0ePDiVlZU19eYAAAAAAACg+UOwEGHXeeed1xyrBgAAAAAAgJYJwSqbNWtWWrx4cfroRz+ajQvWtm2TDkMGAAAAAAAA6y4Ee/XVV9PRRx+dnn766Yppu+22W7r//vvTTjvt1FybBQAAAAAAgNRszbLOPffc1K1bt2xcsJUrV6Y///nPafXq1enrX/96c20SAAAAAAAAmiYE+93vfldyeoRel112WerZs2dq37596tevXxaMxXQAAAAAAABYr0Ow4447Lp1++unpzTffrDI9xgCbMWNGlWlPPPFEKisrW9tNAgAAAAAAQPOGYNGy69lnn83G+7r77rsrpl966aXpggsuSAcccEAaMmRI2mOPPdJdd92VTQcAAAAAAID1OgTbe++90+zZs7PA64wzzshahi1ZsiQdf/zxWUDWu3fv9NZbb6X99tsvPfbYY1kgBgAAAAAAAOt1CBbatWuXvvWtb6W///3vacWKFekTn/hEuuWWW9K+++6bvT7wwAPppz/9adYqbG2Ul5eniy++OOtSsWPHjql///7p4YcfXuNy9957bzr55JPTTjvtlDp16pR22WWXdOGFF2bhHAAAAAAAAPnTplAoFJp6pePGjcvCqj59+qSf/exnaeedd26S9Z566qlpypQp6fzzz8/W+fOf/zz95S9/SdOmTUuf/vSna11u6623zoKzE044IW2//fbpmWeeycK5CMX+9re/ZYFaU4sWcGHevHlNvm4AAAAAAIC8672WWUuThWDvvfdeWrVqVercuXP27+gS8eyzz06/+93v0ujRo9PIkSOzFmONFV0uRsuvMWPGpBEjRmTTYnu777576tq1a5o5c2aty0Y3jAcffHCVaZMmTUqnn3561kLty1/+cmpqQjAAAAAAAICWy1rWujvEN998M5144olps802S126dMlafz311FNZy6vohnDy5Mnp+uuvT5/85CezVleNFS3AIkQbPnx4xbQOHTqkM888Mz355JNp8eLFtS5bPQALUebw/PPPN7pMAAAAAAAArJ/WOgSLrgmjFdatt96ahV4Rhp100knp/fffz+bH7xE0RQi23377pYsuuqhR25kzZ07q1atXRUuzon79+mWvc+fObdD6XnvttYquEgEAAAAAAMiXjdZ2BQ899FC65JJL0hlnnJH9O8bqii4Kn3vuubTnnntm07bYYos0fvz4NGTIkPTVr34169KwoZYuXZq6detWY3pxWnS/2BBXXnll1rJs0KBBqSma4lW3YMGC1KNHj7VaNwAAAAAAAC3UEmzjjTdOK1eurPh3jNPVpk2btNFGNfO1Qw89ND3zzDON2k5so3379jWmR5eIxfn1dccdd2Sh3IUXXpiFdgAAAAAAAOTLWrcEi7G1rrjiivTBBx9kY4LddNNNadddd0277bZbyfcXQ6uG6tixYyovL68xPUK34vz6ePzxx7NxxI444oh02WWXpbVV22BstbUQAwAAAAAAoBWEYNG1Ydu2bbMxwd599930qU99Ko0dOzab1pSi28NXX321ZDeJoaysbI3r+Pvf/56OO+64rLvGKVOmlGytBgAAAAAAQOu31ilQp06d0vXXX5/9NKe+ffumadOmpRUrVqTOnTtXTJ81a1bF/LrEGF1HHnlk6tq1a3rwwQfTZptt1qzlBQAAAAAAoOU0bXOtZjRo0KC0evXqNG7cuIpp0T3ihAkTUv/+/VP37t2zaYsWLUrz58+vsuxrr72WPvvZz2at037/+9+nbbbZZp2XHwAAAAAAgHWn1fQHGEHX4MGD06hRo9KyZctSz54908SJE9PChQvT+PHjK943dOjQNH369FQoFCqmRQuwl19+OY0cOTLNmDEj+ynadttt0+GHH77O9wcAAAAAAIDm02pCsDBp0qQ0evToNHny5LR8+fLUp0+fNHXq1HTggQeucSywcNVVV9WYd9BBBwnBAAAAAAAAcqZNoXKTKZpM7969s9d58+a1dFEAAAAAAAA2uKyl1YwJBgAAAAAAAPUlBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOROqwrBysvL08UXX5zKyspSx44dU//+/dPDDz+8xuVeeOGFdMEFF6RPfepTqUOHDqlNmzZp4cKF66TMAAAAAAAArHutKgQbNmxYuvrqq9OQIUPS2LFjU7t27dLAgQPTjBkz6lzuySefTNddd11655130m677bbOygsAAAAAAEDLaDUh2OzZs9Ndd92VLr/88jRmzJg0fPjw9Oijj6YddtghjRw5ss5ljzvuuPTWW2+lZ555JgvQAAAAAAAAyLdWE4JNmTIla/kV4VdRdG145plnZi29Fi9eXOuyW221Vdp8883XUUkBAAAAAABoaRulVmLOnDmpV69eqXPnzlWm9+vXL3udO3du6t69+zovV+/evUtOX7BgQerRo8c6Lw8AAAAAAACtqCXY0qVLU7du3WpML05bsmRJC5QKAAAAAACA9VGraQm2cuXK1L59+xrTo0vE4vyWMG/evAa1EAMAAAAAAKD5tZqWYB07dkzl5eU1pq9atapiPgAAAAAAALSqECy6PYwuEasrTisrK2uBUgEAAAAAALA+ajUhWN++fdOLL76YVqxYUWX6rFmzKuYDAAAAAABAqwrBBg0alFavXp3GjRtXMS26R5wwYULq379/6t69ezZt0aJFaf78+S1YUgAAAAAAAFraRqmViKBr8ODBadSoUWnZsmWpZ8+eaeLEiWnhwoVp/PjxFe8bOnRomj59eioUChXT3n777XT99ddnvz/xxBPZ6w033JC23HLL7Ofss89ugT0CAAAAAAAgbeghWJg0aVIaPXp0mjx5clq+fHnq06dPmjp1ajrwwAPrXC7eG8tV9pOf/CR73WGHHYRgAAAAAAAAOdOmULnJFE2md+/e2eu8efNauigAAAAAAAAbXNbSasYEAwAAAAAAgPoSggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDutLgQrLy9PF198cSorK0sdO3ZM/fv3Tw8//HC9ln311VfT5z//+bTlllumzp07p+OPPz69/PLLzV5mAAAAAAAA1q1WF4INGzYsXX311WnIkCFp7NixqV27dmngwIFpxowZdS733//+Nx1yyCFp+vTp6ZJLLknf//7305w5c9JBBx2U/vOf/6yz8gMAAAAAAND8NkqtyOzZs9Ndd92VxowZk0aMGJFNGzp0aNp9993TyJEj08yZM2td9qabbkovvfRSto599903m3bUUUdly/7kJz9JP/rRj9bZfgAAAAAAANC8WlVLsClTpmQtv4YPH14xrUOHDunMM89MTz75ZFq8eHGdy0b4VQzAwq677poOO+yw9Mtf/rLZyw4AAAAAAMC606pCsOi+sFevXtl4XpX169cve507d27J5T788MP09NNPp3322afGvFh2wYIF6Z133mmmUgMAAAAAALCutaruEJcuXZq6detWY3px2pIlS0ou9+abb6by8vI1LrvLLrs0uEy9e/cuOX3+/Plp4403rnU+AAAAAAAAtYtGTJG1bBAtwVauXJnat29fY3p0iVicX9tyoTHLNlabNm3W6sTQtDdJ/ADkhecakEeebUAeebYBeeTZBqxLkbNsuummG0ZLsI4dO2YtuqpbtWpVxfzalguNWXZN5s2b16jlWHeKrfGcKyAvPNeAPPJsA/LIsw3II882oDVpVS3BouvC6BKxuuK0srKykstttdVWWSuwxiwLAAAAAABA69OqQrC+ffumF198Ma1YsaLK9FmzZlXML6Vt27Zpjz32SE899VSNebHsTjvtlDbffPNmKjUAAAAAAADrWqsKwQYNGpRWr16dxo0bVzEtujicMGFC6t+/f+revXs2bdGiRWn+/Pk1lv3LX/5SJQh74YUX0qOPPpoGDx68DvcCAAAAAACA5taqxgSLoCsCq1GjRqVly5alnj17pokTJ6aFCxem8ePHV7xv6NChafr06alQKFRM+/rXv55++tOfpqOPPjqNGDEiG0zt6quvTttuu2268MILW2iPAAAAAAAASBt6CBYmTZqURo8enSZPnpyWL1+e+vTpk6ZOnZoOPPDAOpeL7g4fe+yxdMEFF6Qf/vCH6cMPP0wHH3xwuuaaa9I222yzzsoPAAAAAABA82tTqNxcCgAAAAAAAHKgVY0JBgAAAAAAAPUhBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgBQyc9//vPUpk2b7DWPDj744Gz/gP/Xddddlz7xiU+kjh07ZvfGtddeu063H9uM+5L1z7Bhw7Lzs3Dhwnov89hjj2XLfO9732vWsrU2ef9s3VD2cX24xwAAGkoIBgDk2urVq9NPf/rTdNBBB6Wtttoqbbzxxqlr166pT58+6ctf/nL67W9/W6/1fPzjH89+mltUBEWFUOWfjTbaKG277bbp6KOPTg899FBaH0QFb5QtKnzXdv+q/zR0nY2pcKv8s+mmm6bdd989fetb30rLly9PG4riuYhjsqG666670nnnnZc6dOiQzj///PTd73437bfffmlDIYDL/33T2srbXJ89TUHACQDQOm3U0gUAAGjOAOyYY45Jv/vd79KWW26ZhUgf+9jH0nvvvZfmzZuX7rjjjjR//vx03HHHVSxz4oknZpXg3bp1a9Gyb7HFFlmlfFi1alX6+9//nh588MHsZ+zYsencc89t1HonTZqU3n333dTSKu9fdesibDz++ONT3759s99fe+21dP/996crr7wyTZkyJc2ePTsLTMm/qVOnVryWlZW1SBmef/751KlTpxbZNnW7/PLLs3D8ox/9aL2X6devX3ZOt95662YtG+uf9eXvBwAAqhKCAQC5deedd2YB2J577pmmT5+eBS+VRRg0a9asKtPiPdXf1xIitKv+bfMJEyakL33pS+mSSy7JWrE1puJ8++23T+uDUvu3Lp1wwglVWkb8+Mc/Tv3790/PPfdcuv7667MWQeTfkiVLsteWCsDCrrvu2mLbpm4RZjQ00IjnsnO6YVpf/n4AAKAq3SECALk1c+bM7DXCjlIVU1FZecghh9Q5pkex+6N//vOf2U/lbvSqdy8VrcpiWvfu3dMmm2ySdWH4hS98Ib3wwgtNsj+x7ui673//+1/Wkq3okUceSUceeWTWeql9+/apV69eWeuFt99+u15jglXu4mnu3LlZi7kIqeL4RDeSxeNYuaXW97///ez3OH6Vj0lrtdlmm6XTTz89+z1aghV98MEH6aabbsq+3d+5c+fsmOy1117phhtuSB9++GGt3Y69+OKL6eSTT8663mzbtm2Vrrv+8Ic/pGOPPTabF+crrpdomfbHP/6xRrl+//vfp4EDB2atSuK9PXr0SBdddFF66623au2yM66PeE8EnrFMz549s1ZuhUKh4r1xrnfcccfs94kTJ1Y5h8VrP1pMxn7G9nfYYYdsXXGNfeYzn6mzW84o8/77759dq/H+CByL90ZtY79EGD1o0KC03XbbZfdOHJOvfvWrFSFVfZWXl6crrrgi7bHHHtm5inN2wAEHpF/+8pclu1SbNm1a9u+GXMPF/XjllVey4xPjiUV3inHsf/SjH1Uc51/96ldZq6A4DnGuzz777LRy5cp6dUlYucu3aJ0Y64n9ieN5yimnpFdffbVBXbZW70Ku+JwL8QWByvtfPZxuyLl5+eWX0/Dhw7NrLsZYi/LGufja176W/vOf/6zx2FY+HrH+L37xi9mxi3V98pOfzFrvlhL34i233JL23Xff7F6OYx6/33zzzTXu0/D4449n92C0DI7rOvYt7vHic62o+jVbn/umVJd5EYrFsXvjjTdKlj/uz1gmrqfK/vWvf2XXzU477ZSV8yMf+UjWcvkvf/lLvY5lfcrbmONXl3/84x9p8ODBqUuXLtl6PvWpT6UHHnigzmXqu5/1/eyJL7hEK75o7RtliH0aMGBA9sWY2qzpuRzXQvHvhShDqS586xoT7K9//Ws66aSTKtYfz9Svf/3raenSpTXeW/m6u/XWW7N7KJ4x8TdF3F+lPttrU/nej2sgPr/ifopyxJdqoiV0KW+++WYaNWpU2m233bL3x99Qhx12WHacqqu83/HFo7h/4/0N/ZugIfvakONZ11iotZ2z4vN0xYoV6Zvf/Gb2e3SnrStMAGidtAQDAHIrKtJCBBKNFRUf0Sro2muvzf5duQu/Ynd6ISp+Pve5z6X3338/q0iLSuCo2Lv33nuzCsCobN97773T2ipWsBcrdKLS6Kyzzsoq+qLiMSqEorIrKlWji78nnngiC7Tq46mnnkpXXXVVVlkYLc0WLVqU7rnnnqziK8KxXXbZpeIY/PrXv84qzyM4WhfdF64L1Y9t8VxGqBP7HoFmVM7FuTznnHOycGDy5Mk11rNgwYKsVVmEkUOGDMmCjwhjQlxLP/jBD7JK2QiHoqI1KvsjaPzFL36RBUxFUdEaFW4RJES3nnFun3766azVWnSL+eSTT1astyjKfMQRR2TrPOqoo7Lx5OJcRSga3WoWW7hFpWAEadG1ZrSUjLJUv66jEjTGy4pK7MMPPzxts802WQVjXFcRjMVYe3GdVB9jq3icPv/5z2etaGLf4pqK7ZRy2223ZZWdUZEZFd9xTF566aX0s5/9LNvWn//853q1YIzQLvY9rssIHb7xjW9kleERIkUgGddwhFTF/Q9R8RnhdmNa/o0YMSK71+Ia+exnP5uNL3jppZdm5YhzFsc8jmuEcA8//HC68cYbsy5aI1iorwhgY71xXCKQjmvu7rvvzrpHjf2JY9YYcY5jn+Mai8rjyoF+5UCuIecmro0ITqLSOK6PqKCOay7CwrhPIuQoPpPXJMbmi+sunl1nnHFGdq1GkBn3UwSAEfJWFmFZBGRRvrgm4x6+7777skrxGTNmpNtvv73KszqC/rh3Yp+iq8O41qMLwzjedV0L9blvSonnZLTgjRAmnh3VRTgRIVncO0V/+9vfsusqyhbXdXy+RIgW9/OnP/3pbP/iONelvuVtyPGrS1wbca9H4BnPn9hGhGKx3fh3KQ3Zz/p89sT+HnrooWnOnDnZZ24EPRHkxXM8jm98geSHP/xhlWXq81wuHrs4V3EvVr5P1vQZGN2txv0QnzERKMc9FyFOPAt+85vfZMe4GFZWNnLkyKzcxWdMfPbEczeO6aOPPpoa4pprrskCrHgWxpdmYpvRujyeYfFcied7UTwTY/8ihIvnV7w/vlwR+xG/x98dX/nKV2psI561cX/FuY7gO9ZTXw3Z18Yez4aKZ3lcS3FtRpnimdEU6wUAWkABACCn/va3vxU23njjQps2bQqnnXZa4Z577iksXLiwzmUmTJgQSUj2WtkOO+yQ/ZTy5ptvFrbccsvCRz7ykcK8efOqzHvmmWcKm266aWGvvfaqV5lfeeWVbPultjV+/PhsXqzv3XffzfZlk002KWy++eaF559/vsp7zzrrrOy9X/nKV6pMP+igg7LplU2bNi2bVmq/b7nllmx6rK+y7373u9n0WLYhivu3xRZbZOuo/nPfffcVmtPpp59ecj/feeedwm677ZbN+8EPflBlH88+++zCBx98UPHe+P1LX/pSNu/Xv/51jX2Ln1GjRtXY9u9///ts3o477lj417/+VWP+4sWLK35/9NFHs/cOGDCgsHz58pLX6Pnnn19lelwzMf2oo47Kro+i119/PTve8fPee+/VKG8ck1JWrVpVpUxFb731VqF3796FLl26VNnOihUrsvsgrsm5c+dWWebiiy+uODax3aIXXnghu0d79OhR45j88Y9/LLRt27ZwwgknFOrjRz/6UcX+v//++1X2v3hsnnjiiTXeD/W9hmKdlcsc5ymeAZ06dSpsvfXWheeee67KsYzrK45NlKeyWFeUo7LitRf39tNPP11l3qmnnprNu/vuu+v9jKrtfi217caem+uuuy5b37XXXltjXf/973+rXCt1KV4ngwcPLqxevbpi+ssvv5xdc1GmBQsWVEy/4447svfHMzbu48rb/OQnP5nNu/322yumf+5zn8umVb9Gw7///e+S57ryNbum+6b4PI1jXhT3URyvKE91s2fPzt4f5SqK6zeOe/v27QuPPfZYlfe/+uqrhbKyssJ2222XXVdrsqbyNvT41eXwww8veQ3Ec7LUZ0xj9nNNnz3Fc3bllVdWmb5y5crCEUcckf09MGfOnEY9l0ud2zX9/RDHdKuttsrO/5/+9Kcq77/iiiuy98dxK7UP3bt3L/zzn/+scrwOOOCAbN6sWbMK9VE8XnHfxN9ElcVnSMyLz7PK4pkQx+nOO++sMj2ecXvuuWehQ4cOhddee63GfscyDz30UL3K1dh9bczxrOs5X9fffDH9sMMOy+4FAKB1E4IBALkWFcVRiVasgIufqECJytvf/va3TRKCRYVfLHPDDTeUnF+saKoekNU3JIoAISr2i+UfO3Zs9t4f/vCHtQYuEcxFBXpUVlWuQKwrBNt///1rrCdCk4022qhG5e3ahmC1/dRWUdtUihVuxx9/fMXx/drXvpZVtsb0qJCNYxeV73GdxLVTOVCpXBkYFX5RUV9937bddtuSldPHHHNMNv/ee+9dYznj+oz3PvvssyXn9+3bt7DNNtuUrLR76aWXarx/6NCh2bwIZauXtzHH/Cc/+Um27PTp0yumTZ48OZt2xhln1Hh/VFxGQFY9UCjeG1OnTq31OLRr1y4L2NakZ8+e2TmpHgiHn/3sZyXLtjYhWKyzulh/zBs9enSNed/73veyedUr++sKwS699NIa6ykGpBdeeGGzhmANPTfFEOzWW28trI1YR6w3Qq/a9iOOZdFnPvOZbFqEGdVFWBfzDjnkkBohWIR8a9JUIVjlgKj6Pf2Nb3wjm/6b3/ymRmg0YsSIOj9zHnjggTXuw5rK29DjV5sIi4phUuUvDVS/1yp/tjZmP+v67HnjjTeya2efffYpub4IPmPZiy66qFHP5caEYL/4xS+yaRFeVxefLR//+Mez+ZUDoOJ199Of/rTGMrfddls27/rrry/UR/F4VQ+6il9oiL81Kv+dUDxGgwYNKrm+4jm78cYba+x3fb+wUFlD97Uxx3NtQrBSYTkA0ProDhEAyLXoku3EE0/MutaJLnKii6R4jS6V4mfo0KFVxsdpjOiWLkQXZaXGiyh2xxjdbcX4QfUR42AUxz5p165d1r1adDEUXYoVu4aKbqRCdNdTXYzHEmN//OlPf8rGY6qtK7rK9tlnnxrTYgyMGJsjuidrStF9Uamxoeojlis15kpDxuqILpPiJ8R4J9GdVXS1Fl3YxbGLYxZdIO288841us4qiuXinFYXx7pUN3XRdVxcZ9GdVH2uqTj2Ma5U/JTqpunf//531u1Y5S7mYhyW6IqzuujeKzT0PEbXYWPGjMmuo+juLrq3q6zy2FRxb4Xowqy66GYsukarPDZacT9DdG9WapyjZcuWZV0Ixj0UY0LV5p133sm6zYqu7aIrxOqK90ixjE2h1P1SVlaWvZYqa5QtRDepa7ONxp7LhmrouYmuBaPLv+iGMro1i67tYmy4eOY19PkaXSyW6nYsumiL52Ll8xjPwRh3r/q4aiG6rYvnZ+X3x30e3dRGl6XRNVyM8xTljPHBmlN0ORndYkZ3etHtbPE+ji4So6vTyl0bFo99dCdX6rkW3Q6GeP6sqUvENWno8atN5fs/lqku1h/XUmVNvZ9xncY1WWpsu2J3scX1Nea53Bh1fU5Hd7UHHnhg9pkWx696t69Nef/HuawuPi/iuRznJY5J/F48J/E3SKljGJ87odRnX4xd2Fj13de1OZ4NFd369unTZ63WAQCsH4RgAEDuRZgQ4znET4hKshjrKsYKmTRpUhaSVR4rpaEiiAgxfkVd/vvf/zZpSFQcMD7GXSqlOD3GSKmP2sYOi4qlOGbrizguxYCwsSFYjIVSeRyk2s5pVMKW2lZd53S77bYr+d44DxGwRXi2JrH9Dz74oM5tF7dfOQSr6xyGhpzHqByOisYoR4wLFyFHjIkSFeYxHlWEiOXl5TWuxwhNSyk1vXicI2hbm3unqe+F+ogK5NqOc13zihXx9VHqfDbmXDZGQ89NPLNmz56d3YcxLlAETcWK7Bg/7dxzz633tmu7hor3VvF8F3+PLwnEmFqljtXWW2+dBXZFMeZUjCn0k5/8JBvzLMY3ChHkXX755dn4d80hPmfi/okxpmI7ERRFOSJsj7Guiue18rEvFYA39jOlNg09fnWtpz7nrrKm3s/i+iIMKxXcllpfQ57LjbE2z6amvP/re08Vj2EEtvHTFJ999VHffV2Xz/oIp9fmC1IAwPqjbUsXAABgXYvKx2ghdsEFF2T/bugA89UVK7yjJdj/1910yZ/TTz+9ScpffbuvvfZayfnRcqfy+/IiWhSUOr5NqXjMouK6rnP6yiuv1Fi2tkqzqOSLb7SvXLmyXtuPitm6th0/ETw0l2gBF2X9wx/+kB566KF07bXXph/84AdZyBGtaKqLCv7w+uuvl1xfqenF4xwVm3XtZ6lWDKXWs6HdC5VFOBmBZSmNqRBuzLnZbbfd0t13351VpD/11FPpiiuuSB9++GE677zz0vjx4+u97dquoeL5rXwe4/cIkkqFi3E83njjjYprs+joo4/OnvtxPz7yyCPZZ0G0ejzmmGPSc889l5pDhCzxuRPXYjFciFZhofpnQ3H/Imiu69h/97vfXetyNeb41bae+py75tzP4vrifNa1vmgZ3pjncmOsL8+m+t5TxdexY8fWeQzjiyTVrYvAqDHHM56NodTzsa5nowAMAPJDCAYAbLA233zz7LU+AUoEZ7V983q//fbLXh9//PG0LkV3h6F6F3PFip1orRPd+UTFdFMrdne1PrUQa0rRpV5UjkZrqIa03KlLXCdxrUUrmfq8Nypmo2K+uazpHEb3gtFCpFQ3adW7Nat8PUZ3o6VaDcT12Fz3TtzLPXr0yLpnLHahVlmx0nvvvfdOeRWhaVR0l7peI5AqJSqHm+O5Fi04omXVxRdfnHX3F6L72fpatGhRyZawxWdd8Vor/h5BW3TZWV1Mi/2r7bxvuummWWvHq6++OuvKMbonjMC3uZ59xdanEX5Ft3KxrehuLbqha67PlDWVd22OX/X1FO//Utsq9TnVmP2sa3+iO764phuyvoY8lxtz7uv6nI5QpljW5n42lXpmR8Bd/e+Elvp7pjmPZzwbw+LFi+v9bAQA8kUIBgDkVlS+xjfuo4KvuvgWcbH7whhDYk2iy7motCz1bfEzzjgjC0yi67roDqy62H6pCpu1ddppp2VdPV5//fVZYFHZ6NGj04oVK7L3lBqfam0Vu+CLyuo8ikr8c845J/tWeXTjVuq8x7yGtBqJ9YULL7ywylhaRZWnFVspfuUrX0lLliyp8d7//e9/WUC3NqJiML7pXts5jHHSooXI008/XWV6tOiJMZ+qO/7447Nv399+++1Zq8jqrcpKfeM+xriLazj2tzh2XmURStS3Mja6N43K7IsuuqhKJXW0ZPm///u/ivfkVQQAUQlcvYVGjJ/3xBNP1Hofl6oYbsy5+etf/1qlm8LqLVA6depU732J8xcBWuVnd7S6vO6667J7M55rRcVzOmrUqPTuu+9WTI/fY4y/cOaZZ1YJdkq1CKlvOdd039Qlxh6LcQaj5dMtt9ySBZalumWNeylC3RtvvDE9+OCDJdcVYzdV3t/Glrehx682MaZadCUZ5+mGG26oMi/2t1QI05j9rOuzJ7qvizHfItiIe75UWLVgwYIqLXgb8lxuzOdedLUcXyaIv0eqP7OjdW2U5TOf+cxaj1+1JpMnT64xtlu06o179tRTT634OyHG5jrggAOy7kyju9BSnnnmmXp1kdkcGnM8i2OVVe+yOlqBFkN6ACDfjAkGAOTWrFmzsi59YpyKT3/602nHHXfMpkclyQMPPJAFG1EJN2jQoDWuK8ZEijFGjjzyyCw0iwqjPffcMx177LFZxdiUKVOyrvPiW9Tx3t69e2cVj1HBHJV40T3YqlWrmnT/IqSISp9vfOMb2beeo6utbbbZJqtsjG1Ga6Yrr7wyNYdDDjkk+8Z9VJw+++yzFd+0/va3v53yIoLECHOisvr+++/PWox89KMfzSr/orVRBAuXXXZZ+sQnPlGv9cWYdHF8IhCKb91HZV6MlxSV79F6Iq6dCCxCXEPRlVwc36g0HzhwYHb9Rouqf/7zn9k5jmu6Pq0XarPZZptl3RpGkBEVx7169cpaOsTYX9E6JcYpirArthPXVgRcUbkcZY17Jq75yqLLtKjM/uIXv5g+9alPZcvE+CwzZ87MjmN0mxflLnZNFeIajYrWqIiPeyburyhHhANR0Rxli2t6/vz5a9yfGHcqWtZEhXvcm3HMovI8xhuKczZy5MhsX/IqKvMjADvrrLOyyt24tqKVRzwLopu/GH+qurjO7rrrruw5Fs+QCL3i+RY/DT03Ucke42vFMY5gI54JETjEvRPPy7ie6iuuv3h+R2uyuG8iQP3lL3+ZvV511VXZ+ou+8IUvZOc85kc5476KZ2+0PItn/cknn5xd30URakewEYFUPENjLKwI8KJ7xOhe9JRTTlmr+2ZNhg4dmj1bIqSJQK9y2YriPEQIccQRR2RdN8b9FK3FIqCLz5T4LHr55ZezIH5Nod2aytvQ41eXuP8HDBiQnevoRjXuw/iCxn333ZddY3EtrO1+rumzJwK4eD5/5zvfya7JuB5jPKz4MsHzzz+frTOCj+LfAw15Lu+yyy7ZZ0DcM1H2uF7iWMUzr7auaeP4x300ePDg7BkYrxHQxDUXxyj+PimOS9ecjjrqqOyaLz6XY9/iJ+6B+Kyp7I477sg+7yL8jOA5rp/4os+//vWv7EsRcdzjuRKh47rWmOMZX1SKsQ1jLL74LIrP7Aj24/Mi/m6LMWIBgJwrAADk1KJFiwo33HBD4YQTTij06tWrsPnmmxc23njjwnbbbVc46qijCpMnTy6sXr26yjITJkyIvhGz18r++9//Fr72ta8VPvrRjxbatWuXvef000+v8p5XXnml8I1vfKPQs2fPQvv27bPt7bLLLoXTTjutcN9999WrzLGOWPcOO+xQ7/38/e9/Xzj88MMLW265ZWGTTTYp9OjRo3DRRRcVli9fXuO9Bx10ULb+yqZNm5ZN++53v1ty/VGWUuWJ47fnnnsWOnTokC1fnz8tG7N/TSnOWanzW5sPP/ywMGnSpMKhhx5a6NKlS3b9lJWVFfbff//CZZddll1j1fet+nVR3QMPPFA44ogjsvXF+frYxz6WXaOPPPJIjfc+/vjjhcGDBxe6deuWbXvrrbfOjvkFF1xQ+Mtf/lKv8xTi3EbZ4lxX9tJLLxWOOeaYwlZbbVVo06ZNjWNz//33F/r371/YbLPNCltssUV2nU2fPr3W+yQ8+OCDhQEDBhQ6duyYXZPHHXdc4fnnny8cffTR2TKlrsunn346O27bb799dkzi2PTu3bswfPjwkselNitXrszOSywb12WUO87VHXfcUfL9pe6H+l5Dcb7re5xDbccspkU56rueuq6zuF4OOOCA7NjH82fgwIGFv//977Wu7/XXXy+ceuqpha5duxbatm1b8jlQ33Pz5z//OXtG9unTJ3tPHP94Fg0bNqzwzDPP1HlMSx2PV199tTBkyJDCNttskz1P99prr8Ltt99ecpl4jt94442FT37yk9m+x8/ee++dPf+rP+PvvvvuwimnnJI9pzfddNPsOMX+XHLJJYVly5bV61zXdd+s6Xn6z3/+s+JYxzrqEufn4osvzsoX+xTljXKfdNJJ2fP3/fffr9cxXdN93pDjV59tRfniedGpU6fCfvvtV5g6dWqdz4yG7ueaPnvKy8sL119/ffYc6ty5c3bddu/ePXuOX3PNNYU33nij0c/l2bNnZ+uJ9RaPZfG+qmsfY7lYXzzD41ke5Yn7Ja7zhjxj1nR9VVf53o9yFY9blCPuzSVLlpRcbsWKFdmzNK6DOB+xzMc//vHsmXLrrbdmfxMV1bXfa9LYfW3I8QzPPvts9ndffCbE/sQz5rHHHqu17HV9ngIArU+b+E9LB3EAAEB+RbdkO+20U9aFXrTqgNpEy5po4dEcXcjChia6PIyummNcxFLjOwIAbAiMCQYAADSJ6K6u+jhF8Z276GosutCLrqcAAABgXTEmGAAA0CT+/Oc/Z2MIxTg7MdZMjGEW02JsqhhnJ1olAAAAwLoiBAMAAJrELrvsko455pj0xBNPpAcffDB98MEH6WMf+1g699xz0yWXXJK6du3a0kUEAABgA2JMMAAAAAAAAHLHmGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADInY1augB5td1226X//e9/afvtt2/pogAAAAAAALQ6ixYtSptuuml67bXXGrW8lmDNJAKw999/v6WLAQAAAAAA0CpFzhJ5S2NpCdZMii3A5s2b19JFAQAAAAAAaHV69+69Vsu3upZg5eXl6eKLL05lZWWpY8eOqX///unhhx9e43Lf+973Ups2bWr8dOjQYZ2UGwAAAAAAgHWn1bUEGzZsWJoyZUo6//zz084775x+/vOfp4EDB6Zp06alT3/602tc/uabb06bbbZZxb/btWvXzCUGAAAAAABgXWtVIdjs2bPTXXfdlcaMGZNGjBiRTRs6dGjafffd08iRI9PMmTPXuI5Bgwalrbfeeh2UFgAAAAAAgJbSqrpDjBZg0XJr+PDhFdOiO8MzzzwzPfnkk2nx4sVrXEehUEgrVqzIXgEAAAAAAMinVhWCzZkzJ/Xq1St17ty5yvR+/fplr3Pnzl3jOnbaaae0xRZbpM033zyddtpp6fXXX2+28gIAAAAAANAyWlV3iEuXLk3dunWrMb04bcmSJbUu26VLl3T22WenAQMGpPbt26fHH3883XjjjVkXi0899VSNYK2+evfuXXL6ggULUo8ePRq1TgAAAAAAADagEGzlypVZgFVddIlYnF+b8847r8q/TzrppKwF2ZAhQ9JNN92UvvWtbzVDiQEAAAAAAGgJrao7xI4dO6by8vIa01etWlUxvyG+8IUvpO222y798Y9/bHSZ5s2bV/JHKzAAAAAAAICW06pCsOj2MLpErK44raysrMHr7N69e3rzzTebpHwAAAAAAACsH1pVCNa3b9/04osvphUrVlSZPmvWrIr5DVEoFNLChQvTNtts06TlBAAAAAAAoGW1qhBs0KBBafXq1WncuHEV06J7xAkTJqT+/ftnrbrCokWL0vz586ss++9//7vG+m6++eZs+pFHHrkOSg8AAAAAAMC6slFqRSLoGjx4cBo1alRatmxZ6tmzZ5o4cWLWmmv8+PEV7xs6dGiaPn161tKraIcddkgnn3xy2mOPPVKHDh3SjBkz0l133ZW1HvvqV7/aQnsEAAAAAABA2tBDsDBp0qQ0evToNHny5LR8+fLUp0+fNHXq1HTggQfWudyQIUPSzJkz0z333JNWrVqVhWIjR45Ml156aerUqdM6Kz8AAAAAAADNr02hcnMpmkzv3r2z13nz5rV0UQAAAAAAADa4rKVVjQkGAAAAAAAA9SEEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd1pdCFZeXp4uvvjiVFZWljp27Jj69++fHn744Qav5/DDD09t2rRJZ599drOUEwAAAAAAgJbT6kKwYcOGpauvvjoNGTIkjR07NrVr1y4NHDgwzZgxo97ruPfee9OTTz7ZrOUEAAAAAACg5bSqEGz27NnprrvuSpdffnkaM2ZMGj58eHr00UfTDjvskEaOHFmvdaxatSpdeOGFWWsyAAAAAAAA8qlVhWBTpkzJWn5F+FXUoUOHdOaZZ2YtuxYvXrzGdVx11VXpww8/TCNGjGjm0gIAAAAAANBSWlUINmfOnNSrV6/UuXPnKtP79euXvc6dO7fO5RctWpSuuOKKdOWVV2bjiQEAAAAAAJBPG6VWZOnSpalbt241phenLVmypM7loxvEvfbaK51yyilNVqbevXuXnL5gwYLUo0ePJtsOAAAAAAAAOQ3BVq5cmdq3b19jenSJWJxfm2nTpqV77rknzZo1q1nLCAAAAAAAQMtrVSFYdGFYXl5eY/qqVasq5pfywQcfpHPPPTd98YtfTPvuu2+TlmnevHkNaiEGAAAAAABA82tVIVh0e/jqq6+W7CYxlJWVlVxu0qRJ6YUXXki33nprWrhwYZV577zzTjata9euqVOnTs1UcgAAAAAAANaltqkV6du3b3rxxRfTihUrqkwvdnEY80tZtGhRev/999P++++fdtxxx4qfYkAWv//hD39YB3sAAAAAAADAutCqWoINGjQo/fjHP07jxo1LI0aMyKZF94gTJkxI/fv3T927d68Ivd5999206667Zv8+5ZRTSgZkJ554Yho4cGD6yle+ki0PAAAAAABAPrSqECyCqsGDB6dRo0alZcuWpZ49e6aJEydm3RmOHz++4n1Dhw5N06dPT4VCIft3hGHFQKy6aAV2wgknrLN9AAAAAAAAoPm1qhCs2H3h6NGj0+TJk9Py5ctTnz590tSpU9OBBx7Y0kUDAAAAAABgPdGmUGwuRZPq3bt39jpv3ryWLgoAAAAAAMAGl7W0beLyAAAAAAAAQIsTggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3NloXW/wrbfeSltuueW63iwAAAAAADk15o/npDy46DPXt3QRIFeatCXYeeedV+f8d955Jx1xxBFNuUkAAAAAAABo3hDs+uuvT9dcc03JeStXrkxHH310evrppxu9/vLy8nTxxRensrKy1LFjx9S/f//08MMPr3G5++67LwvfYrn27dunj33sY2nQoEHp2WefbXRZAAAAAAAA2EBCsFGjRqWLLroo3XPPPTXCq+OOOy79+c9/TnfffXej1z9s2LB09dVXpyFDhqSxY8emdu3apYEDB6YZM2bUudwzzzyTunTpkrVUu+mmm9JZZ52V5syZk/r165f+/ve/N7o8AAAAAAAArJ/aFAqFQlOu8LTTTkv33ntveuSRR9KAAQPSBx98kD73uc+lBx98MN1+++3p5JNPbtR6Z8+enbX8GjNmTBoxYkQ2bdWqVWn33XdPXbt2TTNnzmzQ+l5//fWsRdiZZ56ZbrnlltTUevfunb3OmzevydcNAAAAAMD/z5hgkE+91zJradKWYGHChAlpv/32y1p+Pf/881mrrQceeCCNGzeu0QFYmDJlStbya/jw4RXTOnTokIVYTz75ZFq8eHGD1hfBWadOndJbb73V6DIBAAAAAACwftqoqVe48cYbZ2Nw7b///mnvvfdO7733Xrr22mvTl770pbVab3Rf2KtXr9S5c+cq06NLwzB37tzUvXv3OtcRgdf777+fXnvttaxMK1asSIcddliTpJDVLViwIPXo0WOt1g0AAAAAAEALhGCLFi2qdd7NN9+cjj322Kyl1vHHH1/lvdtvv32Dt7V06dLUrVu3GtOL05YsWbLGdUQLtRdeeCH7fbPNNkvf/va3s/IBAAAAAACQL2sVgn384x9Pbdq0qXV+DDcWYVj8VLZ69eoGb2vlypWpffv2NaZHl4jF+fXpqjFaf7388svZ77FMlKVt28b3CllbP5S1tRADAAAAAABgPQ/BvvOd79QZgjWljh07pvLy8hrTV61aVTF/TQYMGFDx+ymnnJJ222237Pcf//jHTVpWAAAAAAAAWnEI9r3vfS+tK9Ht4auvvlqym8RQVlbWoPV16dIlHXrooen2228XggEAAAAAAORM4/sBXMf69u2bXnzxxaw7w8pmzZpVMb+hojvEt99+u8nKCAAAAAAAQA5DsLvvvjsNHTq01vHBYt4999zTqHUPGjQoG79r3LhxFdOie8QY26t///6pe/fu2bRFixal+fPnV1l22bJlNda3cOHC9Mgjj6R99tmnUeUBAAAAAAAgp90hVnfjjTemHXfcseS8GDusXbt26YYbbkgnnXRSg9cdQdfgwYPTqFGjslCrZ8+eaeLEiVmYNX78+Ir3RdA2ffr0LHQr2mOPPdJhhx2WtRaLbhBfeumlbJn3338/XXHFFY3cWwAAAAAAADaIEOz5559Pn/vc52qdv9dee6UHH3yw0eufNGlSGj16dJo8eXJavnx56tOnz//T3p2AaVXW/+O/ARVwwR1lDFdEDcUlBTXFfcOtEtLSEFMpzfUrQmhk38pcSM19ixBJw8IsxS1TIBEELXBBEUMRAhH9ioIJqPj8r8/5/Z+5ZmdmmGGYw+t1XeMM93nOOfdZn8fzfu77TqNHj049evSocb5zzjknPfroo+mJJ55IixcvTu3bt09HHnlkuuyyy7KADAAAAAAAgHxp0BAsAqZ11lmn2unREmxlxuBq06ZNGjJkSPZTnbFjx1Yq+9nPfpb9AAAAAAAAsGZo0DHBtt566zRp0qRqp8e0kpKShlwlAAAAAAAANG4Idtxxx6X77rsv/fWvf6007eGHH05/+MMf0vHHH9+QqwQAAAAAAIDG7Q4xxtj605/+lI0LdvDBB2djgIUpU6Zk3RRGK7DLL7+8IVcJAAAAAAAAjRuCbbbZZmnChAnpnHPOSY8//ngaM2ZMVt6iRYvUs2fPdOutt6b27ds35CoBAAAAAACgcUOw0LFjxzR69Oi0cOHC9O9//zsr69SpU9p4440belUAAAAAAACwakKwogi99tlnn8ZaPAAAAAAAAFSrZfWTAAAAAAAAYA1sCdayZcvs59NPP03rrLNO9neM/1WTmP7FF1+szGoBAAAAAACg8UKwPn36ZKFWq1atyv0bAAAAAAAAmm0Ids8999T4bwAAAAAAAGgKxgQDAAAAAAAgd4RgAAAAAAAA5M5KdYe4/fbb13meGDNs5syZK7NaAAAAAAAAaLwQbOutt85CLQAAAAAAAMhNCDZ27NiGqwkAAJTvjRwAAFkHSURBVAAAAAA0EGOCAQAAAAAAkDsNGoK9/fbb6ZFHHqlyWqFQyKbNmjWrIVcJAAAAAAAADdsdYkU/+clP0jvvvJOOP/74StNi7LAhQ4ak7bbbLg0fPrwhVwsAAAAAQEppyN/PT3lw6eE3N3UVgBxo0JZg48ePT0cffXS104866qj0j3/8oyFXCQAAAAAAAI0bgr333ntpyy23rHb6FltskebPn9+QqwQAAAAAAIDGDcHatWtX45hfMWbYeuut15CrBAAAAAAAgMYNwfbbb7/0u9/9Li1cuLDStCgbNmxY6t69e0OuEgAAAAAAACpZKzWg/v37p0MOOSR169Yt/fSnP0177rlnVj5lypT0i1/8Ii1YsCBdeumlDblKAAAAAKAGQ/5+fmruLj385qauAgBregh24IEHpjvuuCOdf/75qW/fvqXlhUIhtW7dOt1+++3p4IMPbshVAgAAAADkMvwLAkCA1SQEC2eddVbq2bNn+tOf/pRmzJiRlXXu3Dn17t07lZSUNPTqAAAAAAAAoPFDsBBh14UXXtgYiwYAAAAAAICmCcHKmjRpUpozZ07aaqutUvfu3VPLli0be5UAAAAAAACs4RotBJs7d2469thj08svv1xatssuu6RHHnkkbb/99o21WgAAAAAAAEiN1izrggsuSB06dMjGBVuyZEl6/vnn0/Lly9O5557bWKsEAAAAAACAhgnBnnjiiSrLI/S68sorU6dOnVLr1q1Tt27dsmAsygEAAAAAAGC1DsFOOOGEdPrpp6cPP/ywXHmMATZ+/PhyZc8991wqKSlZ2VUCAAAAAABA44Zg0bLr1Vdfzcb7euCBB0rLL7/88nTxxRenAw88MJ166qlpt912SyNHjszKAQAAAAAAYLUOwfbaa680efLkLPA644wzspZh8+bNSyeeeGIWkHXp0iV99NFHad99901jx47NAjEAAAAAAABoTGs1xEJatWqVfvzjH6eTTjopnX322emrX/1quvrqq9MPf/jDtM8++zTEKgAAAAAAAGDVtQQra8cdd8xae1177bVp0KBB6aCDDkpvvvlmgy1/2bJlaeDAgdm4Ym3btk3du3dPTz311Arn+/Of/5xOPvnktP3226d111037bTTTumSSy7JWqgBAAAAAACQPw0Wgn322Wdp0aJF2d/9+vVL06ZNS5tuumnafffd01VXXZWWL1++0uvo27dvuv7667MuFW+88casBVrPnj3T+PHja5wv6vP666+n0047Ld10003p6KOPTrfcckvab7/90pIlS1a6XgAAAAAAAOQsBPvwww/TN7/5zbT++uunjTfeOHXt2jW9+OKLWWutaIE1YsSIdPPNN6evfe1r6V//+le91xPjjo0cOTIL1IYMGZIFW88880zaZptt0oABA2qcd9SoUenll19OP//5z9NZZ52VBWh33313mj59errvvvvqXScAAAAAAAByGoJddNFFacKECenOO+/MQq8Iw2JssM8//zybHn9HK6wIwfbdd9906aWX1ms9EWRFy68Iv4ratGmTzjzzzDRx4sQ0Z86cauc9+OCDK5VFcBeibgAAAAAAAOTLSodgjz/+ePrxj3+czjjjjHTiiSem3/72t1kg9dprr5W+ZsMNN0xDhw5NTzzxRPrLX/5Sr/VMmTIlde7cObVr165cebdu3bLfU6dOrdPy5s+fn/3ebLPN6lUfAAAAAAAAVl9rrewC1l577XLjai1dujS1aNEirbVW5UUfeuih6ZVXXqnXet59993UoUOHSuXFsnnz5tVpeddcc03WsqxXr15pZXTp0qXK8pkzZ6YddthhpZYNAAAAAABAE4Vg0a3g1Vdfnb744otsTLDbbrst7bzzzmmXXXap8vXRhWF9RNDWunXrapdXNohbkfvvvz9rmRZjie244471qg8AAAAAAAA5DsGGDBmSWrZsmY0J9umnn6b9998/3XjjjVlZQ2rbtm1atmxZpfJoeVacXhvPPvtsNo7YUUcdla688sqVrte0adPq1EIMAAAAAACAZhCCrbvuuunmm2/OfhpTdHs4d+7cKrtJDCUlJStcxksvvZROOOGEtOuuu6ZRo0ZV2WUjAAAAAAAAzV/DNtdqRHvssUeaMWNGWrRoUbnySZMmlU6vSYzRdfTRR6f27dunxx57LK2//vqNWl8AAAAAAACaTrMJwXr16pWWL1+e7rrrrtKy6B5x2LBhqXv37qljx45Z2ezZs9P06dPLzTt//vx05JFHZl00Pvnkk2nzzTdf5fUHAAAAAABg1Wk2/QFG0NW7d+80aNCgtGDBgtSpU6c0fPjwNGvWrDR06NDS1/Xp0yeNGzcuFQqF0rJoAfbWW2+lAQMGpPHjx2c/RVtssUU64ogjVvn2AAAAAAAA0HiaTQgW7r333jR48OA0YsSItHDhwtS1a9c0evTo1KNHjxWOBRauvfbaStMOOuggIRgAAAAAAEDONKsQrE2bNmnIkCHZT3XGjh1bqaxsqzAAAAAAAADyr9mMCQYAAAAAAAC1JQQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyJ21mroCAAA0T0P+fn7Kg0sPv7mpqwAAAAA0Ai3BAAAAAAAAyJ1mFYItW7YsDRw4MJWUlKS2bdum7t27p6eeemqF873xxhvp4osvTvvvv39q06ZNatGiRZo1a9YqqTMAAAAAAACrXrPqDrFv375p1KhR6aKLLko77rhjuueee1LPnj3TmDFj0gEHHFDtfBMnTkw33XRT+upXv5p22WWXNHXq1FVabwAAAIDVhS6NAYA1RbMJwSZPnpxGjhyZhgwZkvr375+V9enTJ+26665pwIABacKECdXOe8IJJ6SPPvoobbDBBunXv/61EAwAAAAQBgEA5Fyz6Q4xWoC1atUq9evXr7QsujY888wzs5Zec+bMqXbeTTbZJAvAAAAAAAAAWDM0mxBsypQpqXPnzqldu3blyrt165b91roLAAAAAACAZtcd4rvvvps6dOhQqbxYNm/evCaoVUpdunSpsnzmzJlphx12WOX1AQAAAAAAoBmFYEuWLEmtW7euVB5dIhanAwAAAEBVjAEHAGueZhOCtW3bNi1btqxS+dKlS0unN4Vp06bVqYUYAAAAAAAAja/ZjAkW3R5Gl4gVFctKSkqaoFYAAAAAAACsjppNCLbHHnukGTNmpEWLFpUrnzRpUul0AAAAAAAAaFYhWK9evdLy5cvTXXfdVVoW3SMOGzYsde/ePXXs2DErmz17dpo+fXoT1hQAAAAAAICm1mzGBIugq3fv3mnQoEFpwYIFqVOnTmn48OFp1qxZaejQoaWv69OnTxo3blwqFAqlZR9//HG6+eb/N2joc889l/2+5ZZb0kYbbZT9nHfeeU2wRQAAAAAAAKQ1PQQL9957bxo8eHAaMWJEWrhwYeratWsaPXp06tGjR43zxWtjvrKuu+667Pc222wjBAMAAAAAAMiZZhWCtWnTJg0ZMiT7qc7YsWMrlW277bblWoYBAAAAAACQb81mTDAAAAAAAACoLSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOTOWk1dAQAAgNXVkL+fn/Lg0sNvbuoqAAAArHJCMAAAAFjDCXwBAMgj3SECAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4YEwwAAFgh4wUBAADQ3AjBAAAAAACgGfJlNaiZ7hABAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOTOWk1dAQAAAFY/eRhkvT4DrOdhu4PB5QEAQEswAAAAAAAAckgIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd9Zq6goAAEBzMuTv56c8uPTwm5u6CgAAANCohGAAACtJKAIAAACw+tEdIgAAAAAAALkjBAMAAAAAACB3dIcITUTXWQAAAAAA0Hi0BAMAAAAAACB3hGAAAAAAAADkju4QAQAAAACAZsNQM9SWlmAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDvGBANYBfRTzJoiD+e68xwAAAAgH7QEAwAAAAAAIHeEYAAAAAAAAOROs+sOcdmyZemnP/1pGjFiRFq4cGHq2rVr+uUvf5mOOOKIFc47d+7cdPHFF6e//e1v6csvv0yHHHJIuuGGG9L222+/SupO1XSdBQAAAAAApDU9BOvbt28aNWpUuuiii9KOO+6Y7rnnntSzZ880ZsyYdMABB1Q73yeffJKFXh9//HG67LLL0tprr50FYAcddFCaOnVq2nTTTVfpdgCsCfIQctcn6F5TtxsAAAAAVifNKgSbPHlyGjlyZBoyZEjq379/VtanT5+06667pgEDBqQJEyZUO+9tt92W3nzzzWwZ++yzT1Z2zDHHZPNed9116Ve/+tUq2w4AAAAAAAAaV7MaEyxagLVq1Sr169evtKxNmzbpzDPPTBMnTkxz5sypcd4Iv4oBWNh5553TYYcdlv74xz82et0BAAAAAABYdVoUCoVCaiZi3K8Y1+u1114rV/7000+nww8/PD388MPp+OOPrzRfjP+17rrrpu9///tZi7CyBg8enI0ptmjRorTBBhvUuU5dunSpsnz69OlZl4s77LBDnZe5pvm//85Pzd2m6225Rm53fbd9TbSmHm/b3bytqfe2NXW7g3O9dmx382a716xtX1O3OzjXa8d2N2+2e83a9jV1u4NzvXZsd/Nmu6nOzJkzs6xl8eLFKffdIb777rupQ4cOlcqLZfPmzatyvg8//DAtW7ZshfPutNNODVbXFi1aZAeGpr/Q4yIJq1sg6Qa3ZllTj7ftXrPua8ExX7PY7jXLmnpvW1OP95q87bZ7zeLetmZZU7d7Td5229043NtWL7abvFt77bXTeuutV+/5m1UItmTJktS6detK5dElYnF6dfOF+sy7ItOmTavXfKw6xdZ6jhWQF+5rQB65twF55N4G5JF7G9CcNKsxwdq2bZu16Kpo6dKlpdOrmy/UZ14AAAAAAACan2YVgkXXhdElYkXFspKSkirn22STTbJWYPWZFwAAAAAAgOanWYVge+yxR5oxY0ZatGhRufJJkyaVTq9Ky5Yt02677ZZefPHFStNi3u233z5tsMEGjVRrAAAAAAAAVrVmFYL16tUrLV++PN11112lZdHF4bBhw1L37t1Tx44ds7LZs2en6dOnV5r3hRdeKBeEvfHGG+mZZ55JvXv3XoVbAQAAAAAAQGNbKzUjEXRFYDVo0KC0YMGC1KlTpzR8+PA0a9asNHTo0NLX9enTJ40bNy4VCoXSsnPPPTfdfffd6dhjj039+/dPa6+9drr++uvTFltskS655JIm2iIAAAAAAAAaQ4tC2aSoGVi6dGkaPHhw+v3vf58WLlyYunbtmn7xi1+ko446qvQ1Bx98cKUQLPznP/9JF198cfrb3/6Wvvzyy+x1N9xwQxamAQAAAAAAkB/NLgQDAAAAAACAXI0JBgAAAAAAALUhBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAABAMzF27NjUokWL9Mtf/rLa12y77bapU6dOq7ReAAAAqyMhGAAAAAAAALkjBAMAAKDBLFq0qKmrAAAAkBGCAQAA5NykSZPScccdlzbZZJPUpk2btPPOO6df/OIX6bPPPiv3ur59+2bdLVbXzeLBBx9crixeG/NEN40xrV27dmn33Xdv1G0BAACorbVq/UoAAABWC59++mn64IMPqpz25Zdflvv3E088kU444YQsoDr33HPTlltumR577LH005/+NE2YMCE9+uijqWXL+n8/8sUXX0yjRo1K3//+99N3v/vdtHjx4novCwAAoCEJwQAAAJqZq666Kvupzg477JD9Xr58eTrnnHPSWmutlZ5//vnUqVOnrPy8887LQqthw4al+++/P5122mn1rsu0adPS448/no4++uh6LwMAAKAx6A4RACCldM8992TdesXvPIpuyqrr4gxI6aabbkpf/epXU9u2bbNr5Te/+c0qXX+ss2JXgzWJLgifeuqpKn+22GKL0tf961//SrNmzUrf+973SgOwop/97GfZ7wcffHCl6h7dH+Y5ACt2ERn7sbaie8iYp7iPWTPea9eUbVwdrjEAgNoSggEAuRStH+6+++500EEHZWPgrL322ql9+/apa9eu6ayzzkoPP/xwrZYTY+DET2OLBz/xAKjsT7TciIfZxx57bNbKYnUQD3SjbvGAt77++c9/ph/+8Idp1113TRtuuGF2bDbffPN04IEHpsGDB6c33ngjraoHbmV/1ltvvaxOP/7xj9PChQvTmqJ47sU+WVONHDkyXXjhhdlYWRdddFG64oor0r777ptWZ9HS6/DDD6/yJ7aj6K233sp+77bbbpWWsfXWW2ddJP7lL3+pUwBXUefOndOaprldN82tvqvivai+BJwAAM2L7hABgFwGYMcdd1w2Ds5GG22UhUhf+cpX0meffZZ12xVdf02fPj0bI6fom9/8ZvbQu0OHDk1a9wiF4iF8WLp0aXrppZeysXvi58Ybb0wXXHBBvZZ77733ZmMINaXY/1H/O++8M3uAuP/++6dDDjkkewj/0UcfZeFYdO/2q1/9Knsof/zxxzd6nU488cS0xx57ZH/Pnz8/PfLII+maa67JxjeaPHlyFqCSf6NHjy79XVJS0iR1eP3119O66667ytdbsYVoTS1Gv/jiiyrLm6Leq1LclyIc32qrrWo9T7du3bJjutlmmzVq3Vj9rC6fJwAA+H+EYABA7vzhD3/IArDoomvcuHFZsFRWhEGTJk0qVxavqfi6phChXcVvl8eYPTF2z2WXXZa1YqvPA+do8dHUfvCDH2TdQ0WLlDhGXbp0qfSad955JwvBVlVLrG984xvlWkb8+te/Tt27d0+vvfZauvnmm7MWQeTfvHnzst9NFYCFnXfeuVGWWxwbLL4AUNGcOXPSxx9/XK6sGPx++OGH5ULgJUuWpHfffbdSl4prgggz6hpoxH26sY4pq7fV5fMEAAD/j+4QAYDcmTBhQvY7wo2qHkTFw8logVTTGB7F7o4ilImfst3mVexOKlqVRVnHjh3TOuusk3Vh+N3vfrfBuvWLZUdXff/973/LPch++umns3F44kF169atsy7JorVCxYfa1Y0JVrZLp6lTp2Yt5iKEi/0T3UgW92NRdAv5v//7v9nfsf/K7pMV+cc//pHt20033TT97W9/qzIAC9tss03WUiz2X1NYf/310+mnn579HS3ByraAue2227Jv90fLtdhHe+65Z7rlllvSl19+WW23YzNmzEgnn3xy1hVny5Yty3XdFfshWrvFtDh+cf5Ey7S///3vler15JNPpp49e2atSuK1EWxceumlWQu66rrwjPMlXhMBaMwT4UW0cisUCqWvjWO/3XbbZX8PHz683DEtXgvRgi+2M9YfxyeWFedcdLtXUzedUeevf/3r2bkbr4/AsXitVDf2S4TTvXr1SltuuWV2LcU+ifC0GFLV1rJly9LVV1+dBa5xrOKYRXebf/zjH6vsUm3MmDHZv+tyThe34+233872T4wnFt0Qxr6PILe4n//0pz9lrYJiP8SxPu+887JAqTZjgpXt8i1aJ8ZyimNvPfDAA2nu3LmVlhPr/89//lP67zhPo2zEiBFZK9OyXciddtpppa+LLwzEtOuvvz77d+z3smLeONfjvlD22FQlumDs169fds7FGGtx/ONYRDeo//d//7fCfVt2f8Sxj/HMYt/Fsr72ta9lrXmrEvW744470j777JNdy7HP4+/bb7+90nUann322ewajJbCcV7HeRfXePE+V1TxnK3NdVNVl3kRisW+++CDD6qsf1yfMU+cT2XF8YzzZvvtt8/qGffRaMn8wgsv1Gpf1qa+9dl/Nfn3v/+devfunTbeeONsOdHy99FHH61xntpuZ23fi+ILL9GKL1r7Rh1im/bbb7/sSxjVWdF9Oc6F4ueHqEPZdRevq5rGBIsWzyeddFLp8uOeeu6552YBc0Vlz7t4X4xrKO4x8Rkjrq+q3uurU/ZeEudA3Bfieop6xJdsoiV0VSIMHzRoUNpll12y18dnqsMOOyzbTxWV3e74IlJcv/H6uo5HWpdtrcv+rGls1OqOWfH9dNGiRel//ud/sr+jC2ddYQJA86IlGACQO/HgLEQAUV/xoCNaAf3mN7/J/l3sojAUu88L8aDnW9/6Vvr888+zB2fx0Dce5P35z3/OHvjFw/W99torraziA/XiA5x4SHTOOedkD/biQWM8AIqHW/EQNbr0e+6557JAqzZefPHFdO2112YPB6Ol2ezZs9ODDz6YPeiKcGynnXYq3QfRTWE8LI+gqC5jpcX4bCEemseD5hWJ8dCaSsV9XTy2EerEvoiALh7OxbE9//zzs+AmAoaKZs6cmbUqi3Dy1FNPzYKPCGNCnFs///nPs4eyEQ7Fg9Z42B8Bw+9///ssYCqKB63xwC2ChOjmM471yy+/nLVai24yJ06cWLrcoqjzUUcdlS3zmGOOyfZnHLsISaObzWILt3goGEFadLUZLSejLhXP83gIGuNlxUPsI444Ihu/LR4wxnkWwVgc2zhvKo6xVdxP3/72t7NWNLFtcY7Feqryu9/9LnvYGQ8y48F37JM333wz/fa3v83W9fzzz9eqRWOEdrHtcZ5G6PCjH/0oexgeIVIEknFOR0hV3P4QDz4j7K5Py7/+/ftn116cI0ceeWQ23uDll1+e1SOOWezz2K8Rwj311FPp1ltvzbpsjWChtiKAjeXGfomAIAKwV199NTtPYntin1WnVatW2bpi3uJ1+NBDD6UhQ4Zk4XQEqnGuxsPjeOgeAWKcD3Fuxf6Ih9DRGjXuEyHuK/G64rEJn3zySen64tyI4CQeGsf5EQ+o45yLsDCukwg5ivfoFYkWoXHexTrPOOOM7FyNIDOupwgAI+QtK8KyCMji3IlzMq7h2NZ4KD5+/Ph03333lbt3R/Af107sm+jqMM716MIw9ndN50JtrpuqxH0zWvRGCBP3jooinIiQrOyXAP71r39l51XULc7reL+JEC2u5wMOOCDbvtjPNaltfeuy/2oS50Zc6xF4xv0n1hGhWKw3/l2Vumxnbd6LYnsPPfTQNGXKlOw9OIKeCPLiPh77N75Q8stf/rLcPLW5Lxf3XRyr+LJI2eB6Re+J0d1qXA/xHhNhf1xzEeLE9fnXv/4128fFsLKsAQMGZPUu3mPivSeu5dinzzzzTKqLG264IQuw4l4YgXqsM67vuIfFe1nc34vinhjbFyFc3L/i9fHlitiO+Ds+h5x99tmV1hH32ri+4lhH8B3Lqa26bGt992ddxb08zqU4N6NOcc9oiOUCAKtQAQAgZ/71r38V1l577UKLFi0Kp512WuHBBx8szJo1q8Z5hg0bFslH9rusbbbZJvupyocffljYaKONCptuumlh2rRp5aa98sorhfXWW6+w55571qrOb7/9drb+qtY1dOjQbFos79NPP822ZZ111ilssMEGhddff73ca88555zstWeffXa58oMOOigrL2vMmDFZWVXbfccdd2Tlsbyyrrjiiqw85q2L7bbbLpvv73//e2F1cPrpp1e53YsXLy7ssssu2bSf//zn5bb5vPPOK3zxxRelr42/v//972fT/vKXv1Q6lvEzaNCgSut+8skns2mxT/7zn/9Umj5nzpzSv5955pnstfvtt19h4cKFVZ6zF110UbnyOIei/JhjjsnOl6L33nuvsOGGG2Y/n332WaX6xj6pytKlS8vVqeijjz4qdOnSpbDxxhuXW8+iRYuy6yLO0alTp5abZ+DAgaX7JtZb9MYbb2TX7A477FBpn8Q507Jly8I3vvGNQm386le/Kt3+zz//vNz2F/fNc889t8Lro7bnUCyzbJ3jOMU9Yd111y1sttlmhddee63cvozzK/ZN1KesWFbUo6ziuRfX+ssvv1zuut1tt92y3w888EC5eaI+rVq1yvZlWRMnTix06tQpm2ettdYqdO7cOTvHly1bVmndL7zwQqFHjx6FNm3aFNq1a5ft/2233baw1VZblXtdHJuYt2PHjqVlN910U1b2m9/8ptI+++STT8qdKzUpnie9e/cuLF++vLT8rbfeys65OF9mzpxZWn7//fdnr497blzHZdf5ta99LZt23333lZZ/61vfysoqnqPh/fffr/JYlz1nV3TdFI9THMOiuI5iX0Z9Kpo8eXL2+qhXUZy/cRxbt25dGDt2bLnXz507t1BSUlLYcssts/NqRVZU37ruv5occcQRVZ4DcZ+s6j2nPtu5ovei4jG75pprypUvWbKkcNRRR2WfD6ZMmVKv+3JVx3ZFnydin26yySbZ8f/HP/5R7vVXX3119vrYb1VtQ1xf77zzTrn9deCBB2bTJk2aVKiN4v6K6yY+I5UV7yExLd7PyoprPfbTH/7wh3LlcY/bfffds/vD/PnzK213zPP444/Xql713db67M+a7vM1fQaM8sMOOyy7FgCA5kkIBgDkUjwYjodmxQdu8RMPTOJB+sMPP9wgIVg84It5brnlliqnFx8sVQzIanpAGQFFPKyKnwgM4kF+sf433nhj9tpf/vKX1QYsEczFA/N4OFX2gWFNIdjXv/71SsuJkCQelFd8WFvfEKxt27bZfBVDuxAPIovbXPypeBwaWvGB24knnli6zh/+8IfZw9YojweysS/j4XucN3EulQ1Uyj4MjAd+8aC+4rHcYostqnw4fdxxx2XT//znP6+wnnG+xmtfffXVKqfvsccehc0337zKh3Zvvvlmpdf36dMnmxYhbW0fjtfkuuuuy+YdN25cadmIESOysjPOOKPS6+PBZQRkFQOF4rUyevToavdDBDsRsK1IBD1xTKo61377299WWbeVCcFimRXF8mPa4MGDK0372c9+lk2r+LC/phDs8ssvr7ScYkB6ySWX1PqeVd31W9W663tsiiHYnXfeWVgZsYxYboRe1W1H7Muiww8/PCuLMKOiYlh3yCGHVArBIoBdkYYKwcoGRBWv6R/96EdZ+V//+tdKoVH//v1rfA969NFHV7gNK6pvXfdfdSIsKoZJZb80UPFaK3uPr8921vRe9MEHH2Tnzt57713l8iL4jHkvvfTSet2X6xOC/f73v8/KvvOd71R6fby3RMgc08sGQMXz7u677640z+9+97ts2s0331yojeL+qhh0Fb/QEJ89yn5uKO6jXr16Vbm84jG79dZbK213bb+wUFZdt7U++3NlQrCqwnIAoPnQHSIAkEvRBds3v/nNrCud6BInukSK39GFUvz06dOndAyI+opu6MJLL71U5fgQxe4Yo3utGC+oNmLci+JYJ9GNWXSnFl0KRRdixa6gotuoEN3zVBTjr8RYH9HNWYy/VF3Xc2XtvffelcpizIvoBi26I2ts0Z1bxTF4opupimOvVRRdNFU15kpdxuqILpPiJ8R4J9GdVXS1Fl3Yxb6MfRhdIO24446Vus4qivniGFcU+76qbuqiW78474pjO63oHItjEeNKxU9V3TS9//77WbdjZbuYi3FYomvOiqJ7r1DX4xpdhxW7z4vu7qJ7u7LKjk0V11qILswqim7Gomu0smOjFbczRPdmVY1ztGDBgqwLwbimYkyo6ixevDjrNiu6touuECsqXjPFOjaEqq6fkpKS7HdVdY26hbLjdtVnHfU9lnVV12MTXQtGl3/RDWV0axZd28XYcHEPrOv9Nrq/rKrbseiiLe4ZZY9j3Bdj3L2K46oV7ydxPy37+rjOo9va6LI0uoaLcZ6injE+WGOK+1p0ixnd6UU3tMXrOLpIjK5Oy3ZtWNz30Z1cVfe16HYwxP1nRV0irkhd9191yl7/MU9Fsfw4l8pq6O2M8zTOyYpjspXtLra4vPrcl+ujpvft6K62R48e2Xta7L+K3b425PUfx7KieL+I+3Icl9gn8XfxmMRnkqr2YbzvhKre+2Lswvqq7bauzP6sq+jWt2vXriu1DACgaQnBAIDcivAgxm+InxAPxWKsqxgb5N57781CsrJjo9RVBA+hOM5OdcqOl7MiMaZFPLipSXGA+BhnqSrF8hgTpTaqGzssHiTFPmsIMQ5YjAkU46tUDCfioXAx8IoAIwKn2oj9VDE8q2sIFmOh1BS2FY9xPIStal01HePqxj6L4xIBW4RnKxLr/+KLL2pcd3H9ZUOwmo5pqMtxjYfD8aAx6hHjxEXIEWOixAPzCDAjRIxxpCqenxGiVqWq8uJ+jqBtZa6lhr42aiMeIFe3n2uaVnwQXxtVHc/6HMv6qOuxiXvY5MmTs+swxgWKoKn4IDvGT7vgggtqve7qzqHitVU83sW/40sDMaZWVftqs802ywK7ohhzKsYUuu6667Lx6GJ8oxBB3lVXXZWNf9cY4n0nrp8YYyrWE0FR1CPC9hjrqux4iMV9X1UAXt/3mOrUdf/VtJzaHLuyGno7i8uLMKyq4Laq5dXlvlwfK3Nvasjrv7bXVHEfRmAbPw3x3lcbtd3WVXmvj3B6Zb4wBQA0vZZNXQEAgFUlHjZGC7GLL744+3ddB5SvqPiAO1qC/f/dTFf5c/rppzdI/Suud/78+VVOj5Y6ZV+3OogWFuHpp59usGVGi4Kq9ndDKu7DeHBd0zGOgK+i6h6axUO++Eb7kiVLarX+eDBb07rjJ4KHxhIt4KKuf/vb39Ljjz+efvOb36Sf//znWcgRrWgqigf84b333qtyeVWVF/dzPNisaTurasXQ3K+NhhbhZASWVanPA+H6HJtddtklPfDAA9mD9BdffDFdffXV6csvv0wXXnhhGjp0aK3XXd05VDy+ZY9j/B1BUlXhYuyPDz74oPTcLDr22GOz94G4HuPeFO8N0erxuOOOS6+99lpqDBGyxPtQnIvFcCFahYWK7xXF7YuguaZ9f8UVV6x0veqz/6pbTm2OXWNuZ3F5cTxrWl60FK/Pfbk+Vpd7U22vqeLvG2+8scZ9GF8kqWhVBEb12Z9xbwxV3R9rujcKwACg+ROCAQBrnA022CD7XZvAJIKz6r5pve+++2a/n3322bQqRXeHoWKXcsUHOdE6J7rviQfRDa3YvVVdv31+1llnZb/vuuuuah/CrY6i1Vo8HI3WUHVpuVOTOG/i3ItWMrV5bTyYjQfzjWVFxzRa50ULkaq6SavYrVnZ8zO6H62q1UCcn411LcW1vcMOO2TdMxa7UCur+NB7r732SnkVoWlcY1WdrxFIVSUeDjfGfS5acETLqoEDB2bd/YXojra2Zs+eXWXL2OK9r3iuFf+OoC267KwoymL7qjvu6623Xtba8frrr8+6cozuCSPwbYx7YSi2Po3wK7qVi3VFd2vRDV1jvcesqL4rs/8qLqd4/Ve1rqret+qznTVtT3THF+d0XZZXl/tyfY59Te/bEcoU69rY96aq7tkRcFf83NBUn28ac3/GvTHMmTOn1vdGACAfhGAAQO7Ew9b4hn080KsovjVc7L4wxoxYkehiLh5SVvXt8DPOOCMLSKKruuj+q6JYf1UPaFbWaaedlnX1ePPNN2cBRVmDBw9OixYtyl5T1XhUK6vY5V48nK6L4hhf0ZogxgiqahyRhu6mriHEQ/zzzz8/+1Z5dONW1XkQ0+rSaiSWFy655JJyY2kVlS0rtlo8++yzs64kK/rvf/+bBXQrIx4MxjfdqzumMU5atBB5+eWXy5VHi54Y86miE088Mfv2/X333Ze1kqzYqqyqYxxj3sU5HdtbHEuvrAglavswNro7jYfZl156abmH1HHu/eIXvyh9TV5FABAPgSu20Ijx85577rlqr+uqHgzX59j885//LNdNYVEx/F533XVrvS1x/CJAK3svj1aXN910U3Ztxn2uqHhMBw0alD799NPS8vg7xvgLZ555Zrlgp6oWIbWt54qumxW1jI1uX6Pl0x133JEFllV1yxrXUoS6t956a3rssceqXFaM3VR2e+tb37ruv+rEmGrRlWQcp1tuuaXctNjeqkKY+mxnTe9F0X1djPkWwUZc81WFVTNnzizXgrcu9+X6vA9G18vxZYL4fFLxnh2ta6Muhx9++EqPX7UiI0aMqDS2W7TqjWv2O9/5Tunnhhib68ADD8y6M43uQqvyyiuv1KqLzMZQn/1ZHKusYhfW0Qq0GNIDAPlkTDAAIHcmTZqUdeET41IccMABabvttsvK46HIo48+mgUZ8dCtV69eK1xWjIEUY4ocffTRWWgWD4h23333dPzxx2cPwkaNGpV1lRffmo7XdunSJXvQGA+U46FddAe2dOnSBt2+CCXiIc+PfvSj7FvO0bXW5ptvnj1cjHVG66VrrrkmNYZDDjkk+4Z9PCh99dVXS79Z/ZOf/GSF88aYOzHeTLQG23XXXdP++++ffZs7utiK/RQtdyI0jOXHcVtdRLAYYU48rH7kkUeyFiNbbbVV9vAv6hzBwpVXXpm++tWv1mp5MUZd7K8IhOJb9/EwL8ZLiofv0XoizqUILEKcU9GVXOzveGjes2fP7HyOFlXvvPNOdsxjX9Wm9UJ11l9//axbwwgy4sFx586ds5YOMfZXtE6JcYoi7Ir1xLkWAVc8XI66xjUU10BZcTzjYfb3vve97BjHPDE+y4QJE7L9GIFo1LvYNVWIczYetMaD+LiG4nqLekQ4EA+ao25xjk+fPn2F2xPjTkXLmnjgHtdq7LN4eB7jDcUxGzBgwGp1fjW0eJgfAdg555yTPdyNcytaecS9Ibr5i/GnKorzbOTIkdl9Le4pEXrF/S5+6nps4iF7XOuxjyPYiHtEBA5x7cT9M86n2orzL+7n0ZosrpsIUP/4xz9mv6+99tps+UXf/e53s2Me06OecV3FvThansW9/+STT87O76IItSPYiEAq7qlxb4oAL7pHjO5FTznllJW6blakT58+2b0lQpoI9MrWrSiOQ4QQ8cWB6LoxrqdoLRYBXbzHxHvTW2+9lQXxKwrtVlTfuu6/msT1v99++2XHOrpRjeswvrDx0EMPZedYnAsru50rei+KAC7uzz/96U+zczLOxxgPK75MEF/CiGVG8FH8fFCX+/JOO+2UvQfENRN1j/Ml9lXc86rrmjb2f1xHvXv3zu6B8TsCmjjnYh/F55XiuHSN6ZhjjsnO+eJ9ObYtfuIaiPeasu6///7s/S7Czwie4/yJL/785z//yb4UEfs97isROq5q9dmf8cWlGNswxuKL96J4z45gP94v4nNcjBkLAORUAQAgZ2bPnl245ZZbCt/4xjcKnTt3LmywwQaFtddeu7DlllsWjjnmmMKIESMKy5cvLzfPsGHDom/E7HdZn3zySeGHP/xhYauttiq0atUqe83pp59e7jVvv/124Uc/+lGhU6dOhdatW2fr22mnnQqnnXZa4aGHHqpVnWMZsextttmm1tv55JNPFo444ojCRhttVFhnnXUKO+ywQ+HSSy8tLFy4sNJrDzrooGz5ZY0ZMyYru+KKK6pcftSlqvrE/tt9990Lbdq0yeav60fKF154odCvX7/CLrvsku2rtdZaq7DpppsW9t9//8Jll11WmD59eqGxxTGs6nhX58svvyzce++9hUMPPbSw8cYbZ+dTSUlJ4etf/3rhyiuvzM65isey4nlS0aOPPlo46qijsuXF8fvKV76SnbNPP/10pdc+++yzhd69exc6dOiQrXuzzTbLjsHFF1+c7c/aHLcQxzrqFse+rDfffLNw3HHHFTbZZJNCixYtKu2bRx55pNC9e/fC+uuvX9hwww2z827cuHHVXjfhscceK+y3336Ftm3bZufoCSecUHj99dcLxx57bDZPVefpyy+/nO23rbfeOtsnsW+6dOmSnS9V7ZfqLFmyJDsuMW+cp1HvOFb3339/la+v6vqo7TkUx7u2+zlUt8+iLOpR2+XUdJ7F+XLggQdm+z6usZ49exZeeumlapf33nvvFb7zne8U2rdvX2jZsmWV94XaHpvnn38+u2d27do1e03s/7g39e3bt/DKK6/UuE+r2h9z584tnHrqqYXNN988u7/uueeehfvuu6/KeeK+fuuttxa+9rWvZdseP3vttVf2flDxnv/AAw8UTjnllOy+vd5662X7KbYn7kELFiyo1bGu6bpZ0f31nXfeKd3XsYyaxPEZOHBgVr/Ypqhv1Pukk07K7seff/55rfbpiq7zuuy/2qwr6hf3i3XXXbew7777FkaPHl3jPaOu27mi96Jly5YVbr755uw+1K5du+y87dixY3Yfv+GGGwoffPBBve/LkydPzpYTyy3uy+J1VdM2xnyxvLiHx7086hPXS5zndbnHrOj8qqjstR/1Ku63qEdcm/PmzatyvkWLFmX30jgP4njEPNtuu212T7nzzjuzz0hFNW33itR3W+uyP8Orr76afQ6M94TYnrjHjB07ttq61/R+CgA0Hy3iP00dxAEAAPkX3ZJtv/32WRd60aoDqhMta6KFR2N0KQtrmujyMLpujnERqxrfEQAgz4wJBgAANKjorq7iOEXx3bvoaiy60IuupwAAAKCxGRMMAABoUM8//3w2hlCMsxNjzcQYZlEWY1PFODvRKgEAAAAamxAMAABoUDvttFM67rjj0nPPPZcee+yx9MUXX6SvfOUr6YILLkiXXXZZat++fVNXEQAAgDWAMcEAAAAAAADIHWOCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHfWauoK5NWWW26Z/vvf/6att966qasCAAAAAADQ7MyePTutt956af78+fWaX0uwRhIB2Oeff97U1QAAAAAAAGiWImeJvKW+tARrJMUWYNOmTWvqqgAAAAAAADQ7Xbp0Wan5m11LsGXLlqWBAwemkpKS1LZt29S9e/f01FNPrXC+n/3sZ6lFixaVftq0abNK6g0AAAAAAMCq0+xagvXt2zeNGjUqXXTRRWnHHXdM99xzT+rZs2caM2ZMOuCAA1Y4/+23357WX3/90n+3atWqkWsMAAAAAADAqtasQrDJkyenkSNHpiFDhqT+/ftnZX369Em77rprGjBgQJowYcIKl9GrV6+02WabrYLaAgAAAAAA0FSaVXeI0QIsWm7169evtCy6MzzzzDPTxIkT05w5c1a4jEKhkBYtWpT9BgAAAAAAIJ+aVQg2ZcqU1Llz59SuXbty5d26dct+T506dYXL2H777dOGG26YNthgg3Taaael9957r9HqCwAAAAAAQNNoVt0hvvvuu6lDhw6Vyotl8+bNq3bejTfeOJ133nlpv/32S61bt07PPvtsuvXWW7MuFl988cVKwVptdenSpcrymTNnph122KFeywQAAAAAAGANCsGWLFmSBVgVRZeIxenVufDCC8v9+6STTspakJ166qnptttuSz/+8Y8bocYAAAAAAAA0hWbVHWLbtm3TsmXLKpUvXbq0dHpdfPe7301bbrll+vvf/17vOk2bNq3KH63AAAAAAAAAmk6zCsGi28PoErGiYllJSUmdl9mxY8f04YcfNkj9AAAAAAAAWD00qxBsjz32SDNmzEiLFi0qVz5p0qTS6XVRKBTSrFmz0uabb96g9QQAAAAAAKBpNasQrFevXmn58uXprrvuKi2L7hGHDRuWunfvnrXqCrNnz07Tp08vN+/7779faXm33357Vn700UevgtoDAAAAAACwqqyVmpEIunr37p0GDRqUFixYkDp16pSGDx+eteYaOnRo6ev69OmTxo0bl7X0Ktpmm23SySefnHbbbbfUpk2bNH78+DRy5Mis9dgPfvCDJtoiAAAAAAAA0poegoV77703DR48OI0YMSItXLgwde3aNY0ePTr16NGjxvlOPfXUNGHChPTggw+mpUuXZqHYgAED0uWXX57WXXfdVVZ/AAAAAAAAGl+LQtnmUjSYLl26ZL+nTZvW1FUBAAAAAABY47KWZjUmGAAAAAAAANSGEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNxpdiHYsmXL0sCBA1NJSUlq27Zt6t69e3rqqafqvJwjjjgitWjRIp133nmNUk8AAAAAAACaTrMLwfr27Zuuv/76dOqpp6Ybb7wxtWrVKvXs2TONHz++1sv485//nCZOnNio9QQAAAAAAKDpNKsQbPLkyWnkyJHpqquuSkOGDEn9+vVLzzzzTNpmm23SgAEDarWMpUuXpksuuSRrTQYAAAAAAEA+NasQbNSoUVnLrwi/itq0aZPOPPPMrGXXnDlzVriMa6+9Nn355Zepf//+jVxbAAAAAAAAmkqzCsGmTJmSOnfunNq1a1euvFu3btnvqVOn1jj/7Nmz09VXX52uueaabDwxAAAAAAAA8mmt1Iy8++67qUOHDpXKi2Xz5s2rcf7oBnHPPfdMp5xySoPVqUuXLlWWz5w5M+2www4Nth4AAAAAAAByGoItWbIktW7dulJ5dIlYnF6dMWPGpAcffDBNmjSpUesIAAAAAABA02tWIVh0Ybhs2bJK5UuXLi2dXpUvvvgiXXDBBel73/te2meffRq0TtOmTatTCzEAAAAAAAAaX7MKwaLbw7lz51bZTWIoKSmpcr577703vfHGG+nOO+9Ms2bNKjdt8eLFWVn79u3Tuuuu20g1BwAAAAAAYFVqmZqRPfbYI82YMSMtWrSoXHmxi8OYXpXZs2enzz//PH39619P2223XelPMSCLv//2t7+tgi0AAAAAAABgVWhWLcF69eqVfv3rX6e77ror9e/fPyuL7hGHDRuWunfvnjp27Fgaen366adp5513zv59yimnVBmQffOb30w9e/ZMZ599djY/AAAAAAAA+dCsQrAIqnr37p0GDRqUFixYkDp16pSGDx+edWc4dOjQ0tf16dMnjRs3LhUKhezfEYYVA7GKohXYN77xjVW2DQAAAAAAADS+ZhWCFbsvHDx4cBoxYkRauHBh6tq1axo9enTq0aNHU1cNAAAAAACA1USLQrG5FA2qS5cu2e9p06Y1dVUAAAAAAADWuKylZQPXBwAAAAAAAJqcEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5M4qD8E++uijVb1KAAAAAAAA1jANGoJdeOGFNU5fvHhxOuqoo+q9/GXLlqWBAwemkpKS1LZt29S9e/f01FNPrXC+hx56KFtvzNe6dev0la98JfXq1Su9+uqr9a4LAAAAAAAAa0gIdvPNN6cbbrihymlLlixJxx57bHr55Zfrvfy+ffum66+/Pp166qnpxhtvTK1atUo9e/ZM48ePr3G+V155JW288cZZSHfbbbelc845J02ZMiV169YtvfTSS/WuDwAAAAAAAKunFoVCodBQC7v88svTNddckx544IF00kknlWvBddxxx6Vx48alUaNGpRNOOKHOy548eXLW8mvIkCGpf//+WdnSpUvTrrvumtq3b58mTJhQp+W99957WYuwM888M91xxx2poXXp0iX7PW3atAZfNgAAAAAAQN51WcmspUFbgl155ZXplFNOSd/73vfSxIkTs7Ivvvgi9e7dO40ZMyaNGDGiXgFYiPAsWn7169evtKxNmzZZiBXrmjNnTp2WF8HZuuuua4wyAAAAAACAHGrQECwMGzYs7bvvvlnY9frrr2ddFz766KPprrvuSieffHK9lxvdF3bu3Dm1a9euXHl0aRimTp26wmVE4PX+++9n3SOeddZZadGiRemwww6rd50AAAAAAABYPa3V0Atce+2100MPPZS+/vWvp7322it99tln6Te/+U36/ve/v1LLfffdd1OHDh0qlRfL5s2bt8JlRDj3xhtvZH+vv/766Sc/+UnWkqwhmuJVNHPmzLTDDjus1LIBAAAAAABoghBs9uzZ1U67/fbb0/HHH5+FTCeeeGK512699dZ1XteSJUtS69atK5VHl4jF6bVppRatv956663s75hn+fLlqWXLBm8QBwAAAAAAQHMNwbbddtvUokWLaqcXCoUsDIufsiJ4qqu2bdumZcuWVSpfunRp6fQV2W+//Ur/jrHLdtlll+zvX//616m+qhuMrboWYgAAAAAAAKzmIdhPf/rTGkOwhhTdHs6dO7fKbhJDSUlJnZa38cYbp0MPPTTdd999KxWCAQAAAAAAkLMQ7Gc/+1laVfbYY480ZsyYrDvDdu3alZZPmjSpdHpdRXeIH3/8cYPWEwAAAAAAgKbXbAbD6tWrV9aN4l133VVaFt0jxthe3bt3Tx07dszKYuyx6dOnl5t3wYIFlZY3a9as9PTTT6e99957FdQeAAAAAACAZtMSrKIHHnggPfroo+nee++tcnyw008/PZ144onppJNOqvOyI+jq3bt3GjRoUBZqderUKQ0fPjwLs4YOHVr6uj59+qRx48Zl6yvabbfd0mGHHZa1FotuEN98881sns8//zxdffXVK7HFAAAAAAAA5D4Eu/XWW9N2221X5bQYO6xVq1bplltuqVcIFiJcGzx4cBoxYkRauHBh6tq1axo9enTq0aNHjfOdc845WTj3xBNPpMWLF6f27dunI488Ml122WVZQAYAAAAAAEC+tCiUbTK1kjbffPN0+eWXp4suuqjK6TfddFO68sor03vvvZfyrkuXLtnvadOmNXVVAAAAAAAA1rispUHHBItWVuuss06106Ml2Mcff9yQqwQAAAAAAIDGDcG23nrrNGnSpGqnx7SSkpKGXCUAAAAAAAA0bgh23HHHpfvuuy/99a9/rTTt4YcfTn/4wx/S8ccf35CrBAAAAAAAgMYdE+yDDz5Ie+65Z5o3b146+OCDs7/DlClT0tixY7NWYP/85z9T+/btU94ZEwwAAAAAAKDpspa1UgPabLPN0oQJE9I555yTHn/88TRmzJisvEWLFqlnz57p1ltvXSMCMAAAAAAAAJpWg4ZgoWPHjmn06NFp4cKF6d///ndW1qlTp7Txxhs39KoAAAAAAABg1YRgRRF67bPPPo21eAAAAAAAAKhWy+onAQAAAAAAwBrYEqxly5bZz6effprWWWed7O8Y/6smMf2LL75YmdUCAAAAAABA44Vgffr0yUKtVq1alfs3AAAAAAAANKUWhUKh0KQ1yKkuXbpkv6dNm9bUVQEAAAAAAFjjshZjggEAAAAAAJA7QjAAAAAAAAByZ6XGBNt+++3rPE+MGTZz5syVWS0AAAAAAAA0Xgi29dZbZ6EWAAAAAAAA5CYEGzt2bMPVBAAAAAAAABqIMcEAAAAAAADInQYNwd5+++30yCOPVDmtUChk02bNmtWQqwQAAAAAAICG7Q6xop/85CfpnXfeSccff3ylaTF22JAhQ9J2222Xhg8f3pCrBQAAAAAAgMZrCTZ+/Ph09NFHVzv9qKOOSv/4xz8acpUAAAAAAADQuCHYe++9l7bccstqp2+xxRZp/vz5DblKAAAAAAAAaNwQrF27djWO+RVjhq233noNuUoAAAAAAABo3BBsv/32S7/73e/SwoULK02LsmHDhqXu3bs35CoBAAAAAACgcUOw/v37pwULFqRu3bqlESNGpFdffTX7ib8j/Ippl156aUOuEgAAAAAAACpZKzWgAw88MN1xxx3p/PPPT3379i0tLxQKqXXr1un2229PBx98cEOuEgAAAAAAABo3BAtnnXVW6tmzZ/rTn/6UZsyYkZV17tw59e7dO5WUlDT06gAAAAAAAKDxQ7AQYdeFF17YGIsGAAAAAACApgnBypo0aVKaM2dO2mqrrbJxwVq2bNBhyAAAAAAAAGDVhWBz585Nxx57bHr55ZdLy3bZZZf0yCOPpO23376xVgsAAAAAAACp0ZplXXDBBalDhw7ZuGBLlixJzz//fFq+fHk699xzG2uVAAAAAAAA0DAh2BNPPFFleYReV155ZerUqVNq3bp16tatWxaMRTkAAAAAAACs1iHYCSeckE4//fT04YcfliuPMcDGjx9fruy5555LJSUlK7tKAAAAAAAAaNwQLFp2vfrqq9l4Xw888EBp+eWXX54uvvjidOCBB6ZTTz017bbbbmnkyJFZOQAAAAAAAKzWIdhee+2VJk+enAVeZ5xxRtYybN68eenEE0/MArIuXbqkjz76KO27775p7NixWSAGAAAAAAAAjalFoVAoNNTC3nzzzXT22WenqVOnpquvvjr98Ic/TGuqCP/CtGnTmroqAAAAAAAAa1zWstItwcracccds9Ze1157bRo0aFA66KCDsmCsoSxbtiwNHDgwG1esbdu2qXv37umpp55a4Xx//vOf08knn5y23377tO6666addtopXXLJJVkLNQAAAAAAAPKnwUKwzz77LC1atCj7u1+/flkqt+mmm6bdd989XXXVVWn58uUrvY6+ffum66+/PutS8cYbb0ytWrVKPXv2TOPHj69xvqjP66+/nk477bR00003paOPPjrdcsstab/99ktLlixZ6XoBAAAAAACQs+4QP/zww3TmmWemRx99NAu6omna7373u7T33ntn0x988MF0/vnnp/bt22flMYZYfcS4Y9Hya8iQIal///5Z2dKlS9Ouu+6aLXvChAnVzhut0w4++OByZffee286/fTT0913353OOuus1NB0hwgAAAAAANCMu0O86KKLsgDqzjvvzLodXH/99dNJJ52UPv/882x6/B2tsL72ta+lfffdN1166aX1Ws+oUaOyll/RqquoTZs2WQA3ceLENGfOnGrnrRiAhW9+85vZ76gbAAAAAAAA+bLWyi7g8ccfT5dddlk644wzSscFi9ZZr732WtYVYthwww3T0KFDs24Mf/CDH2StuepqypQpqXPnzqldu3blyrt165b9njp1aurYsWOtlzd//vzs92abbZYaIoWsaObMmWmHHXZYqWUDAAAAAACQmqYl2Nprr11uXK3oorBFixZprbUq52uHHnpoeuWVV+q1nnfffTd16NChUnmxbN68eXVa3jXXXJO1LOvVq1e96gMAAAAAAECOW4JFt4JXX311+uKLL9LGG2+cbrvttrTzzjunXXbZpcrXRxeG9RFBW+vWratdXtkgbkXuv//+rGXagAEDspZrK6O6fiirayEGAAAAAABAMwjBomvDli1bZmOCffrpp2n//fdPN954Y1bWkNq2bZuWLVtWqTxanhWn18azzz6bjSN21FFHpSuvvLJB6wgAAAAAAEBOQrB111033XzzzdlPY4puD+fOnVtlN4mhpKRkhct46aWX0gknnJCNWTZq1Kgqu2wEAAAAAACg+WvY5lqNaI899kgzZsxIixYtKlc+adKk0uk1mTlzZjr66KNT+/bt02OPPZbWX3/9Rq0vAAAAAAAATafZhGC9evVKy5cvT3fddVdpWXSPOGzYsNS9e/fUsWPHrGz27Nlp+vTp5eadP39+OvLII7MuGp988sm0+eabr/L6AwAAAAAAsOo0m/4AI+jq3bt3GjRoUFqwYEHq1KlTGj58eJo1a1YaOnRo6ev69OmTxo0blwqFQmlZtAB766230oABA9L48eOzn6ItttgiHXHEEat8ewAAAAAAAGg8zSYEC/fee28aPHhwGjFiRFq4cGHq2rVrGj16dOrRo8cKxwIL1157baVpBx10kBAMAAAAAAAgZ1oUyjaZosF06dIl+z1t2rSmrgoAAAAAAMAal7U0mzHBAAAAAAAAoLaEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5E6zCsGWLVuWBg4cmEpKSlLbtm1T9+7d01NPPbXC+d5444108cUXp/333z+1adMmtWjRIs2aNWuV1BkAAAAAAIBVr1mFYH379k3XX399OvXUU9ONN96YWrVqlXr27JnGjx9f43wTJ05MN910U1q8eHHaZZddVll9AQAAAAAAaBrNJgSbPHlyGjlyZLrqqqvSkCFDUr9+/dIzzzyTttlmmzRgwIAa5z3hhBPSRx99lF555ZUsQAMAAAAAACDfmk0INmrUqKzlV4RfRdG14Zlnnpm19JozZ061826yySZpgw02WEU1BQAAAAAAoKk1mxBsypQpqXPnzqldu3blyrt165b9njp1ahPVDAAAAAAAgNXNWqmZePfdd1OHDh0qlRfL5s2b1wS1SqlLly5Vls+cOTPtsMMOq7w+AAAAAAAANKOWYEuWLEmtW7euVB5dIhanAwAAAAAAQLNqCda2bdu0bNmySuVLly4tnd4Upk2bVqcWYgAAAAAAADS+ZtMSLLo9jC4RKyqWlZSUNEGtAAAAAAAAWB01mxBsjz32SDNmzEiLFi0qVz5p0qTS6QAAAAAAANCsQrBevXql5cuXp7vuuqu0LLpHHDZsWOrevXvq2LFjVjZ79uw0ffr0JqwpAAAAAAAATa3ZjAkWQVfv3r3ToEGD0oIFC1KnTp3S8OHD06xZs9LQoUNLX9enT580bty4VCgUSss+/vjjdPPNN2d/P/fcc9nvW265JW200UbZz3nnndcEWwQAAAAAAEBa00OwcO+996bBgwenESNGpIULF6auXbum0aNHpx49etQ4X7w25ivruuuuy35vs802QjAAAAAAAICcaVEo22SKBtOlS5fs97Rp05q6KgAAAAAAAGtc1tJsxgQDAAAAAACA2hKCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACB3hGAAAAAAAADkjhAMAAAAAACA3BGCAQAAAAAAkDtCMAAAAAAAAHJHCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO80uBFu2bFkaOHBgKikpSW3btk3du3dPTz31VK3mnTt3bvr2t7+dNtpoo9SuXbt04oknprfeeqvR6wwAAAAAAMCq1exCsL59+6brr78+nXrqqenGG29MrVq1Sj179kzjx4+vcb5PPvkkHXLIIWncuHHpsssuS//7v/+bpkyZkg466KD0f//3f6us/gAAAAAAADS+tVIzMnny5DRy5Mg0ZMiQ1L9//6ysT58+adddd00DBgxIEyZMqHbe2267Lb355pvZMvbZZ5+s7Jhjjsnmve6669KvfvWrVbYdAAAAAAAANK5m1RJs1KhRWcuvfv36lZa1adMmnXnmmWnixIlpzpw5Nc4b4VcxAAs777xzOuyww9If//jHRq87AAAAAAAAq06zCsGi+8LOnTtn43mV1a1bt+z31KlTq5zvyy+/TC+//HLae++9K02LeWfOnJkWL17cSLUGAAAAAABgVWtW3SG+++67qUOHDpXKi2Xz5s2rcr4PP/wwLVu2bIXz7rTTTnWuU5cuXaosnz59elp77bWrnQ4AAAAAAED1ohFTZC1rREuwJUuWpNatW1cqjy4Ri9Ormy/UZ976atGixUodGBr2IokfgLxwXwPyyL0NyCP3NiCP3NuAVSlylvXWW2/NaAnWtm3brEVXRUuXLi2dXt18oT7zrsi0adPqNR+rTrE1nmMF5IX7GpBH7m1AHrm3AXnk3gY0J82qJVh0XRhdIlZULCspKalyvk022SRrBVafeQEAAAAAAGh+mlUItscee6QZM2akRYsWlSufNGlS6fSqtGzZMu22227pxRdfrDQt5t1+++3TBhts0Ei1BgAAAAAAYFVrViFYr1690vLly9Ndd91VWhZdHA4bNix17949dezYMSubPXt2mj59eqV5X3jhhXJB2BtvvJGeeeaZ1Lt371W4FQAAAAAAADS2ZjUmWARdEVgNGjQoLViwIHXq1CkNHz48zZo1Kw0dOrT0dX369Enjxo1LhUKhtOzcc89Nd999dzr22GNT//79s8HUrr/++rTFFlukSy65pIm2CAAAAAAAgLSmh2Dh3nvvTYMHD04jRoxICxcuTF27dk2jR49OPXr0qHG+6O5w7Nix6eKLL06//OUv05dffpkOPvjgdMMNN6TNN998ldUfAAAAAACAxteiULa5FAAAAAAAAORAsxoTDAAAAAAAAGpDCAYAAAAAAEDuCMEAAAAAAADIHSEYAAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQjl5YtW5YGDhyYSkpKUtu2bVP37t3TU0891dTVAqi3sWPHphYtWlT58/zzzzd19QBW6JNPPklXXHFFOvroo9Mmm2yS3b/uueeeKl/7+uuvZ69bf/31s9d+73vfS++///4qrzNAQ93b+vbtW+XnuJ133rlJ6g1QkxdeeCGdd955qUuXLmm99dZLW2+9dfr2t7+dZsyYUem1PrcBq7u1mroC0BjifzBGjRqVLrroorTjjjtm/xPSs2fPNGbMmHTAAQc0dfUA6u2CCy5I++yzT7myTp06NVl9AGrrgw8+SD//+c+zhyi77757Fu5X5T//+U/q0aNH2nDDDdOvfvWr7AHzr3/96/TKK6+kyZMnp3XWWWeV1x1gZe9toXXr1um3v/1tubK41wGsbq655pr03HPPpd69e6euXbum+fPnp1tuuSXttdde2Zcwd9111+x1PrcBzYEQjNyJN9mRI0emIUOGpP79+2dlffr0yd6gBwwYkCZMmNDUVQSotwMPPDD16tWrqasBUGcdOnRI7777btpyyy3Tiy++WCnQL4oHKP/973/TP//5z+yhcujWrVs64ogjsi829evXbxXXHGDl721hrbXWSqeddtoqrR9AffzP//xPuv/++8uFWCeffHLabbfd0tVXX51+//vfZ2U+twHNge4QyZ1oAdaqVatyb7Rt2rRJZ555Zpo4cWKaM2dOk9YPYGUtXrw4ffHFF01dDYA6iRYQ8ZB4RR588MF03HHHlT5ICYcffnjq3Llz+uMf/9jItQRonHtb0fLly9OiRYsatU4AK2v//fev1IorelqK7hGj+8Min9uA5kAIRu5MmTIle7Nt165dufL4JkqYOnVqE9UMYOWdccYZ2f0twv1DDjkk+8YxQF7MnTs3LViwIO29996VpsVnuficB9Bcffrpp9nnuOg2LMbN+dGPfpR1HQbQHBQKhfTee++lzTbbLPu3z21Ac6E7RHInuqKILikqKpbNmzevCWoFsHLiW3gnnXRSNr5h/E/Ha6+9lvW1Ht0jRjeve+65Z1NXEaBBPseF6j7Lffjhh2nZsmVZywuA5iTuYdE9f4yn8+WXX6Ynnngi3Xbbbemll17KxhGLrhIBVmf33XdfFnzFOIjB5zagufApi9xZsmRJlW+w0WqiOB2gOXZHET9FJ5xwQjY2WAxSPGjQoOxBCkBzV/yctqLPch6mAM3NVVddVe7fp5xyStaDyeWXX5516R//BlhdTZ8+PWu9ut9++6XTTz89K/O5DWgudIdI7rRt2zb7pklFS5cuLZ0OkAedOnVKJ554YhozZkw2vgRAc1f8nOazHLAmuPjii1PLli3T3//+96auCkC15s+fn4499tisK9cI7Vu1apWV+9wGNBdCMHInmlwXm2SXVSwrKSlpgloBNI6OHTumzz77LP33v/9t6qoArLRidzrVfZaLMXR8mxjIi3g4vOmmm2ZdhgGsjj7++ON0zDHHpI8++ijrfaTsMzWf24DmQghG7uyxxx5pxowZadGiReXKJ02aVDodIC/eeuutrKuJ9ddfv6mrArDSttpqq7T55punF198sdK0yZMn+xwH5MrixYvTBx98kN33AFY30Zrr+OOPz56xjR49On31q18tN93nNqC5EIKROzFGTnQLdtddd5WWRdPsYcOGpe7du2etJgCam/fff79SWQyk/vDDD6cjjzwy60oHIA9OOumk7EHLnDlzSsuefvrp7AFM7969m7RuAPV9kByBV0W/+MUvUqFQSEcffXST1AugOvFc7eSTT04TJ05Mf/rTn7KxwKricxvQHLQoxCcuyJlvf/vb6aGHHsr6WI8xc4YPH559CyXeiHv06NHU1QOos0MPPTTrMmf//fdP7du3T6+99loW9q+99trZ/5jssssuTV1FgBW65ZZbsu505s2bl26//fb0rW99K+25557ZtPPPPz8bayIeokTZRhttlC688ML0ySefpCFDhqSvfOUr6YUXXtCtDtDs7m0LFy7M/v2d73wn7bzzzln5k08+mR577LEsAHv00Ud9oQlYrVx00UXpxhtvzFqCxTO2ik477bTst89tQHMgBCO337QbPHhw+v3vf5/9D0fXrl2zb9kdddRRTV01gHq56aab0n333Zf+/e9/Z929RrcThx12WLriiiuysB+gOdh2223TO++8U+W0t99+O5sepk2blv7nf/4njR8/Pq2zzjrZYOzXXXdd2mKLLVZxjQFW/t4WD4cjDHv++eezoCxaWMTnt1NPPTX1798/+1ITwOrk4IMPTuPGjat2etnHyT63Aas7IRgAAAAAAAC5o709AAAAAAAAuSMEAwAAAAAAIHeEYAAAAAAAAOSOEAwAAAAAAIDcEYIBAAAAAACQO0IwAAAAAAAAckcIBgAAAAAAQO4IwQAAAAAAAMgdIRgAAAAAAAC5IwQDAAAAAAAgd4RgAAAAAAAA5I4QDAAAAAAAgNwRggEAAAAAAJA7QjAAAAAAAAByRwgGAAAAAABA7gjBAAAAAAAAyB0hGAAAAAAAALkjBAMAAAAAACDlzf8HIdFJ+oc2unkAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 8 + "outputs": [], + "execution_count": null } ], "metadata": { From 9b6fa593275138675d38247b7a4a763a3f851fa2 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 14 Oct 2025 09:55:43 +0200 Subject: [PATCH 14/83] create test sheet --- tests/test_fpod_utils.py | 0 1 file changed, 0 insertions(+), 0 deletions(-) create mode 100644 tests/test_fpod_utils.py diff --git a/tests/test_fpod_utils.py b/tests/test_fpod_utils.py new file mode 100644 index 0000000..e69de29 From a816a062fcd783e82323dfe0b6f56c236eaae3b0 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 21 Oct 2025 14:38:50 +0200 Subject: [PATCH 15/83] create user case notebooks --- .../resource/example_FPOD-CPOD_aplose.ipynb | 156 ++++++++++++ .../resource/example_FPOD-CPOD_raw.ipynb | 226 ++++++++++++++++++ 2 files changed, 382 insertions(+) create mode 100644 user_case/resource/example_FPOD-CPOD_aplose.ipynb create mode 100644 user_case/resource/example_FPOD-CPOD_raw.ipynb diff --git a/user_case/resource/example_FPOD-CPOD_aplose.ipynb b/user_case/resource/example_FPOD-CPOD_aplose.ipynb new file mode 100644 index 0000000..31a3ed8 --- /dev/null +++ b/user_case/resource/example_FPOD-CPOD_aplose.ipynb @@ -0,0 +1,156 @@ +{ + "cells": [ + { + "cell_type": "code", + "id": "initial_id", + "metadata": { + "collapsed": true + }, + "source": [ + "from pathlib import Path\n", + "\n", + "from pandas import (\n", + " read_csv,\n", + " to_datetime,\n", + ")\n", + "\n", + "from post_processing.dataclass.data_aplose import DataAplose\n", + "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range" + ], + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Load data\n", + "id": "a97e19830123b732" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T12:36:10.627427Z", + "start_time": "2025-10-21T12:36:10.586897Z" + } + }, + "cell_type": "code", + "source": [ + "yaml_file = Path(r\"user_case\\resource\\CPOD-FPOD_yaml.yml\")\n", + "data_list = DataAplose.from_yaml(file=yaml_file)\n", + "\n", + "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", + "d_beg_end = read_csv(r\"U:\\Deb_Fin_CETIROISE.csv\")" + ], + "id": "7da2feb5958db1a9", + "outputs": [ + { + "ename": "FileNotFoundError", + "evalue": "[Errno 2] No such file or directory: 'C:\\\\Users\\\\fouinel\\\\PycharmProjects\\\\OSmOSE_post_processing\\\\user_case\\\\resource\\\\user_case\\\\resource\\\\CPOD-FPOD_yaml.yml'", + "output_type": "error", + "traceback": [ + "\u001B[31m---------------------------------------------------------------------------\u001B[39m", + "\u001B[31mFileNotFoundError\u001B[39m Traceback (most recent call last)", + "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[11]\u001B[39m\u001B[32m, line 2\u001B[39m\n\u001B[32m 1\u001B[39m yaml_file = Path(\u001B[33m\"\u001B[39m\u001B[33muser_case/resource/CPOD-FPOD_yaml.yml\u001B[39m\u001B[33m\"\u001B[39m).resolve()\n\u001B[32m----> \u001B[39m\u001B[32m2\u001B[39m data_list = \u001B[43mDataAplose\u001B[49m\u001B[43m.\u001B[49m\u001B[43mfrom_yaml\u001B[49m\u001B[43m(\u001B[49m\u001B[43mfile\u001B[49m\u001B[43m=\u001B[49m\u001B[43myaml_file\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 4\u001B[39m fb_files = Path(\u001B[33mr\u001B[39m\u001B[33m\"\u001B[39m\u001B[33mU:\u001B[39m\u001B[33m\\\u001B[39m\u001B[33mfb_fpod_cetiroise_c\u001B[39m\u001B[33m\"\u001B[39m) \u001B[38;5;66;03m#Path to your click details folder.\u001B[39;00m\n\u001B[32m 5\u001B[39m d_beg_end = read_csv(\u001B[33mr\u001B[39m\u001B[33m\"\u001B[39m\u001B[33mU:\u001B[39m\u001B[33m\\\u001B[39m\u001B[33mDeb_Fin_CETIROISE.csv\u001B[39m\u001B[33m\"\u001B[39m)\n", + "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\dataclass\\data_aplose.py:410\u001B[39m, in \u001B[36mDataAplose.from_yaml\u001B[39m\u001B[34m(cls, file, concat)\u001B[39m\n\u001B[32m 388\u001B[39m \u001B[38;5;129m@classmethod\u001B[39m\n\u001B[32m 389\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mfrom_yaml\u001B[39m(\n\u001B[32m 390\u001B[39m \u001B[38;5;28mcls\u001B[39m,\n\u001B[32m 391\u001B[39m file: Path,\n\u001B[32m 392\u001B[39m concat: \u001B[38;5;28mbool\u001B[39m = \u001B[38;5;28;01mFalse\u001B[39;00m,\n\u001B[32m 393\u001B[39m ) -> DataAplose | \u001B[38;5;28mlist\u001B[39m[DataAplose]:\n\u001B[32m 394\u001B[39m \u001B[38;5;250m \u001B[39m\u001B[33;03m\"\"\"Return a DataAplose object from a yaml file.\u001B[39;00m\n\u001B[32m 395\u001B[39m \n\u001B[32m 396\u001B[39m \u001B[33;03m Parameters\u001B[39;00m\n\u001B[32m (...)\u001B[39m\u001B[32m 408\u001B[39m \n\u001B[32m 409\u001B[39m \u001B[33;03m \"\"\"\u001B[39;00m\n\u001B[32m--> \u001B[39m\u001B[32m410\u001B[39m filters = \u001B[43mDetectionFilter\u001B[49m\u001B[43m.\u001B[49m\u001B[43mfrom_yaml\u001B[49m\u001B[43m(\u001B[49m\u001B[43mfile\u001B[49m\u001B[43m=\u001B[49m\u001B[43mfile\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 411\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mcls\u001B[39m.from_filters(filters, concat)\n", + "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\dataclass\\detection_filter.py:64\u001B[39m, in \u001B[36mDetectionFilter.from_yaml\u001B[39m\u001B[34m(cls, file)\u001B[39m\n\u001B[32m 46\u001B[39m \u001B[38;5;129m@classmethod\u001B[39m\n\u001B[32m 47\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mfrom_yaml\u001B[39m(\n\u001B[32m 48\u001B[39m \u001B[38;5;28mcls\u001B[39m,\n\u001B[32m 49\u001B[39m file: Path,\n\u001B[32m 50\u001B[39m ) -> DetectionFilter | \u001B[38;5;28mlist\u001B[39m[DetectionFilter]:\n\u001B[32m 51\u001B[39m \u001B[38;5;250m \u001B[39m\u001B[33;03m\"\"\"Return a DetectionFilter object from a yaml file.\u001B[39;00m\n\u001B[32m 52\u001B[39m \n\u001B[32m 53\u001B[39m \u001B[33;03m Parameters\u001B[39;00m\n\u001B[32m (...)\u001B[39m\u001B[32m 62\u001B[39m \n\u001B[32m 63\u001B[39m \u001B[33;03m \"\"\"\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m64\u001B[39m \u001B[38;5;28;01mwith\u001B[39;00m \u001B[43mfile\u001B[49m\u001B[43m.\u001B[49m\u001B[43mopen\u001B[49m\u001B[43m(\u001B[49m\u001B[43mencoding\u001B[49m\u001B[43m=\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mutf-8\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m)\u001B[49m \u001B[38;5;28;01mas\u001B[39;00m yaml_file:\n\u001B[32m 65\u001B[39m parameters = yaml.safe_load(yaml_file)\n\u001B[32m 66\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mcls\u001B[39m.from_dict(parameters)\n", + "\u001B[36mFile \u001B[39m\u001B[32m~\\AppData\\Roaming\\uv\\python\\cpython-3.12.11-windows-x86_64-none\\Lib\\pathlib.py:1013\u001B[39m, in \u001B[36mPath.open\u001B[39m\u001B[34m(self, mode, buffering, encoding, errors, newline)\u001B[39m\n\u001B[32m 1011\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[33m\"\u001B[39m\u001B[33mb\u001B[39m\u001B[33m\"\u001B[39m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;129;01min\u001B[39;00m mode:\n\u001B[32m 1012\u001B[39m encoding = io.text_encoding(encoding)\n\u001B[32m-> \u001B[39m\u001B[32m1013\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mio\u001B[49m\u001B[43m.\u001B[49m\u001B[43mopen\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmode\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbuffering\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mencoding\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43merrors\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mnewline\u001B[49m\u001B[43m)\u001B[49m\n", + "\u001B[31mFileNotFoundError\u001B[39m: [Errno 2] No such file or directory: 'C:\\\\Users\\\\fouinel\\\\PycharmProjects\\\\OSmOSE_post_processing\\\\user_case\\\\resource\\\\user_case\\\\resource\\\\CPOD-FPOD_yaml.yml'" + ] + } + ], + "execution_count": 11 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Data metric\n", + "Here you need to choose the format in which you want to visualise the positive detections. This aims to replace the functionalities available in Chelonia's softwares." + ], + "id": "3bc57f4f638ad6dc" + }, + { + "metadata": {}, + "cell_type": "code", + "source": "frq = \"D\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", + "id": "9b0a078a262ac7f2", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"])", + "id": "fa3847d80ccf49c3", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Feeding buzzes processing\n", + "Use \"Marsouin\" or \"Commerson\" to get different ICI processing." + ], + "id": "b92537991aa4ac4b" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", + "fb_all = txt_folder(fb_files)\n", + "fb_all = feeding_buzz(fb_all, \"Marsouin\")\n", + "\n", + "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq)\n", + "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", + "fb[\"start_datetime\"] = to_datetime(fb[\"start_datetime\"], utc=True)\n", + "\n", + "dpm_fb = resamp.merge(fb, on=\"start_datetime\", how=\"left\")" + ], + "id": "ca2362e4facecca3", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "d_0 = build_range(d_beg_end, frq)\n", + "d_tot = d_0.merge(dpm_fb, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")" + ], + "id": "4d76089ef06c6fdb", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "d_tot[[\"DPM\",\"Foraging\"]] = d_tot[[\"DPM\",\"Foraging\"]].fillna(0)", + "id": "912268e5e997dbc6", + "outputs": [], + "execution_count": null + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/user_case/resource/example_FPOD-CPOD_raw.ipynb b/user_case/resource/example_FPOD-CPOD_raw.ipynb new file mode 100644 index 0000000..1cafe1a --- /dev/null +++ b/user_case/resource/example_FPOD-CPOD_raw.ipynb @@ -0,0 +1,226 @@ +{ + "cells": [ + { + "cell_type": "code", + "id": "initial_id", + "metadata": { + "collapsed": true, + "ExecuteTime": { + "end_time": "2025-10-21T10:34:14.234399Z", + "start_time": "2025-10-21T10:34:06.776401Z" + } + }, + "source": [ + "from pathlib import Path\n", + "\n", + "import pytz\n", + "\n", + "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose\n", + "from post_processing.utils.core_utils import json2df" + ], + "outputs": [], + "execution_count": 1 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Load data\n", + "Import your raw FPOD or CPOD data. All files for one site must be stored in the same folder.\n", + "You also need to import your metadata file." + ], + "id": "c464f241817a1407" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T10:34:44.094566Z", + "start_time": "2025-10-21T10:34:43.418858Z" + } + }, + "cell_type": "code", + "source": [ + "pod_files = Path(r\"U:\\Cetiroise\")\n", + "path = csv_folder(pod_files) #Path to your data folder.\n", + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_cetiroise.json\") #Path to your metadata file.\n", + "\n", + "print(path.head())\n", + "df_0 = path.dropna()\n", + "\n", + "metadatax = json2df(json_path=json)\n", + "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" + metadatax[\"campaign.name\"].astype(str))" + ], + "id": "6cf23db3b4288c29", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " File podN ChunkEnd \\\n", + "0 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:34 \n", + "1 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:35 \n", + "2 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:36 \n", + "3 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 22:40 \n", + "4 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 24/02/2023 15:32 \n", + "\n", + " Minute DPM MinsOn deploy.name \n", + "0 64748494 1 1 Point C_Phase 4 \n", + "1 64748495 1 1 Point C_Phase 4 \n", + "2 64748496 1 1 Point C_Phase 4 \n", + "3 64749520 1 1 Point C_Phase 4 \n", + "4 64773572 1 1 Point C_Phase 4 \n" + ] + } + ], + "execution_count": 2 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T10:34:53.696221Z", + "start_time": "2025-10-21T10:34:53.481890Z" + } + }, + "cell_type": "code", + "source": [ + "d_beg_end = actual_data(df_0, col_timestamp=\"ChunkEnd\")\n", + "d_beg_end.to_csv(r\"U:\\Deb_Fin_CETIROISE.csv\", index=False)" + ], + "id": "fa52f8971b61aaf6", + "outputs": [], + "execution_count": 3 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T10:34:57.917184Z", + "start_time": "2025-10-21T10:34:57.913957Z" + } + }, + "cell_type": "code", + "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ]", + "id": "769e128f2a5293e1", + "outputs": [], + "execution_count": 4 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### APLOSE format\n", + "#### *C-POD*\n", + "Use cpod2aplose if you are managing C-POD data." + ], + "id": "dd03975b7aef7eed" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", + "print(df_aplose.head())" + ], + "id": "4cc867627d677529" + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "#### *F-POD*\n", + "Use fpod2aplose if you are managing F-POD data." + ], + "id": "b805737ac321da69" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T10:35:03.300926Z", + "start_time": "2025-10-21T10:35:03.122227Z" + } + }, + "cell_type": "code", + "source": [ + "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", + "print(df_aplose.head())" + ], + "id": "b8d1c500f6daea0d", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset filename start_time end_time start_frequency end_frequency \\\n", + "0 CETIROISE 0 60 0 0 \n", + "1 CETIROISE 0 60 0 0 \n", + "2 CETIROISE 0 60 0 0 \n", + "3 CETIROISE 0 60 0 0 \n", + "4 CETIROISE 0 60 0 0 \n", + "\n", + " annotation annotator start_datetime \\\n", + "0 Marsouin FPOD 2023-02-07T05:34:00.000+0000 \n", + "1 Marsouin FPOD 2023-02-07T05:35:00.000+0000 \n", + "2 Marsouin FPOD 2023-02-07T05:36:00.000+0000 \n", + "3 Marsouin FPOD 2023-02-07T22:40:00.000+0000 \n", + "4 Marsouin FPOD 2023-02-24T15:32:00.000+0000 \n", + "\n", + " end_datetime is_box deploy.name \n", + "0 2023-02-07T05:35:00.000+0000 0 Point C_Phase 4 \n", + "1 2023-02-07T05:36:00.000+0000 0 Point C_Phase 4 \n", + "2 2023-02-07T05:37:00.000+0000 0 Point C_Phase 4 \n", + "3 2023-02-07T22:41:00.000+0000 0 Point C_Phase 4 \n", + "4 2023-02-24T15:33:00.000+0000 0 Point C_Phase 4 \n" + ] + } + ], + "execution_count": 5 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Clean your dataset\n", + "Remove useless lines, recorder outside the instrument submersion. Export your file to the aplose format. You can change the name of the file to match the project you are working on." + ], + "id": "d2c642658dbfe278" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T10:35:12.623559Z", + "start_time": "2025-10-21T10:35:12.255285Z" + } + }, + "cell_type": "code", + "source": [ + "cleared = meta_cut_aplose(df_aplose, metadatax)\n", + "cleared.to_csv(r\"U:\\APLOSE_CETIROISE_pos.csv\", index=False)" + ], + "id": "895bd5a116918285", + "outputs": [], + "execution_count": 6 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From 48ac54fafa058d588e050679d0a99aab9a4013f9 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 21 Oct 2025 14:39:20 +0200 Subject: [PATCH 16/83] add new tests --- tests/test_fpod_utils.py | 281 +++++++++++++++++++++++++++++++++++++++ 1 file changed, 281 insertions(+) diff --git a/tests/test_fpod_utils.py b/tests/test_fpod_utils.py index e69de29..1e4504f 100644 --- a/tests/test_fpod_utils.py +++ b/tests/test_fpod_utils.py @@ -0,0 +1,281 @@ +"""FPOD/ CPOD processing functions tests.""" +import io +from datetime import datetime +from pathlib import Path + +import datatest as dt +import pytest +from osekit.utils.timestamp_utils import strptime_from_text +from pandas import DataFrame, Timestamp, read_csv +from pandas.testing import assert_frame_equal + +from post_processing.utils.fpod_utils import ( + csv_folder, + deploy_period, + extract_site, + parse_timestamps, + txt_folder, + fpod2aplose, + cpod2aplose, + meta_cut_aplose, + build_range, + feeding_buzz, + assign_daytime, + is_dpm_col, + pf_datetime, + build_aggregation_dict, + resample_dpm) + +SAMPLE_POD = """File,ChunkEnd,DPM,Nall,MinsOn +sample_dataset,2023/11/29 08:05,0,0,0 + +""" +SAMPLE_AP = """dataset,filename,start_time,end_time,start_frequency,end_frequency, +annotation,annotator,start_datetime,end_datetime,is_box +sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T08:30:00.000+00:00,2023-11-29T08:31:00.000+00:00,0 +sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T08:31:00.000+00:00,2023-11-29T08:32:00.000+00:00,0 +sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T09:30:00.000+00:00,2023-11-29T09:31:00.000+00:00,0 +sample_dataset,,0,60,0,0,ann1,POD,2023-11-30T08:30:00.000+00:00,2023-11-30T08:31:00.000+00:00,0 +sample_dataset,,0,60,0,0,ann1,POD,2023-12-29T08:30:00.000+00:00,2023-12-29T08:31:00.000+00:00,0 +sample_dataset,,0,60,0,0,ann1,POD,2024-11-29T08:30:00.000+00:00,2024-11-29T08:31:00.000+00:00,0 +""" + +@pytest.fixture +def pod_dataframe() -> DataFrame: + data = DataFrame( + { + "File": [ + "sample_dataset", + "sample_dataset", + "sample_dataset", + "sample_dataset", + "sample_dataset", + "sample_dataset", + ], + "ChunkEnd": [ + Timestamp("2023/11/29 08:30"), + Timestamp("2023/11/29 08:31"), + Timestamp("2023/11/29 08:32"), + Timestamp("2023/11/29 08:33"), + Timestamp("2023/11/29 08:34"), + Timestamp("2023/11/29 08:35"), + ], + "deploy.name": [ + "site_deploy", + "site_deploy", + "site_deploy", + "site_deploy", + "site_deploy", + "site_deploy", + ], + "DPM": [1, 1, 0, 0, 0, 0], + "Nall": [44, 66, 0, 22, 0, 0], + "MinsOn": [1, 1, 1, 1, 1, 0], + }, + ) + + return data.reset_index(drop=True) + + +@pytest.fixture +def aplose_dataframe() -> DataFrame: + data = DataFrame( + { + "dataset": ["dataset_test", "dataset_test", "dataset_test", "dataset_test", + "dataset_test", "dataset_test"], + "filename": ["", "", "", ""], + "start_time": [0, 0, 0, 0, 0, 0], + "end_time": [60, 60, 60, 60, 60, 60], + "start_frequency": [0, 0, 0, 0, 0, 0], + "end_frequency": [0, 0, 0, 0, 0, 0], + "annotation": ["ann1", "ann1", "ann1", "ann1", "ann1", "ann1"], + "annotator": ["POD", "POD", "POD", "POD", "POD", "POD"], + "start_datetime": [ + Timestamp("2023-11-29T08:30:00.000+00:00"), + Timestamp("2023-11-29T08:31:00.000+00:00"), + Timestamp("2023-11-29T09:31:00.000+00:00"), + Timestamp("2023-11-30T09:31:00.000+00:00"), + Timestamp("2023-12-30T09:31:00.000+00:00"), + Timestamp("2024-12-30T09:31:00.000+00:00"), + ], + "end_datetime": [ + Timestamp("2023-11-29T08:31:00.000+00:00"), + Timestamp("2023-11-29T08:32:00.000+00:00"), + Timestamp("2023-11-29T09:32:00.000+00:00"), + Timestamp("2023-11-30T09:32:00.000+00:00"), + Timestamp("2023-12-30T09:32:00.000+00:00"), + Timestamp("2024-12-30T09:32:00.000+00:00"), + ], + "is_box": [0, 0, 0, 0, 0, 0], + "deploy.name": ["site_deploy", "site_deploy", "site_deploy", + "site_deploy", "site_deploy", "site_deploy"], + }, + ) + + return data.reset_index(drop=True) + +@pytest.fixture(scope="module") +@dt.working_directory(__file__) +def df_raw() -> DataFrame: + return read_csv("pod_raw.csv") + +@pytest.fixture(scope="module") +@dt.working_directory(__file__) +def df_ap() -> DataFrame: + return read_csv("pod_aplose.csv") + +@pytest.mark.mandatory +def test_columns(df_raw: DataFrame) -> None: + dt.validate( + df_raw.columns, + {"File", "ChunkEnd", "DPM", "Nall", "MinsOn"}, + ) + +@pytest.mark.mandatory +def test_columns(df_ap: DataFrame) -> None: + dt.validate( + df_ap.columns, + {"dataset","filename","start_time","end_time","start_frequency","end_frequency", + "annotation","annotator","start_datetime","end_datetime","is_box"}, + ) + +def test_chunk_end(df_raw: DataFrame) -> None: + dt.validate(df_raw["ChunkEnd"], + strptime_from_text(df_raw["ChunkEnd"], "%Y/%m/%d %H:%M")) + +def test_start_datetime(df_ap: DataFrame) -> None: + dt.validate(df_ap["start_datetime"], strptime_from_text(df_ap["start_datetime"], + "%Y-%m-%dT%H:%M:%S")) + +@pytest.fixture +def sample_pod() -> DataFrame: + df = read_csv(io.StringIO(SAMPLE_POD), parse_dates=["ChunkEnd"]) + return df.sort_values(["ChunkEnd"]).reset_index(drop=True) + +# fpod2aplose + + +# cpod2aplose + + +# meta_cut_aplose + + +# build_range + + +# feeding_buzz + + +# assign_daytime + + +# fb_folder +def test_fb_folder_non_existent() -> None: + with pytest.raises(FileNotFoundError): + txt_folder(Path("/non/existent/folder")) + +def test_fb_folder_no_files(tmp_path) -> None: + with pytest.raises(ValueError, match="No .txt files found"): + txt_folder(tmp_path) + + # extract_site +def test_extract_site(self) -> None: + input_data = [ + {"deploy.name":"Walde_Phase46"}, + {"deploy.name":"Site A Ile Haute_Phase8"}, + {"deploy.name":"Site B Ile Heugh_Phase9"}, + {"deploy.name":"Point E_Phase 4"}, + ] + expected_site = [ + "Walde", + "Site A Ile Haute", + "Site B Ile Heugh", + "Point E", + ] + expected_campaign = [ + "Phase46", + "Phase8", + "Phase9", + "Phase 4", + ] + + for variant, (input_row, site, campaign) in enumerate( + zip(input_data, expected_site, expected_campaign, strict=False), start=1): + with self.subTest( + f"variation #{variant}", + deploy_name=input_row["deploy.name"], + expected_site=site, + expected_campaign=campaign, + ): + df = DataFrame([input_row]) + result = extract_site(df) + actual_site = result["site.name"].iloc[0] + actual_campaign = result["campaign.name"].iloc[0] + + error_message_site = ( + f'Called extract_site() with deploy.name="{input_row["deploy.name"]}". ' + f'The function returned site.name="{actual_site}", but the test ' + f'expected "{expected_site}".' + ) + + error_message_campaign = ( + f'Called extract_site() with deploy.name="{input_row["deploy.name"]}". ' + f'The function returned campaign.name="{actual_campaign}", but the test' + f'expected "{expected_campaign}".' + ) + + assert actual_site == expected_site, error_message_site + assert actual_campaign == expected_campaign, error_message_campaign + + assert "deploy.name" in result.columns + assert "value" in result.columns + +# csv_folder +def test_csv_folder_non_existent() -> None: + with pytest.raises(FileNotFoundError): + csv_folder(Path("/non/existent/folder")) + +def test_csv_folder_no_files(tmp_path) -> None: + with pytest.raises(ValueError, match="No .csv files found"): + csv_folder(tmp_path) + +# is_dpm_col + + +# pf_datetime + + +# build_aggregation_dict + + +# resample_dpm + + +# actual_data +def test_parse_timestamps() -> None: + df = DataFrame({"date": ["2024-01-01T10:00:00", "01/01/2024 10:00"]}) + result = parse_timestamps(df, "date") + + +def test_get_deployment_periods() -> None: + df = DataFrame( + { + "deploy.name": ["A", "A", "B"], + "start_datetime": [ + datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), + datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), + datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), + ], + }) + + expected = DataFrame( + { + "deploy.name": ["A", "B"], + "Début": [datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), + datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc)], + "Fin": [datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), + datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc)], + }) + result = deploy_period(df) + assert_frame_equal(result, expected) \ No newline at end of file From 804c8489b96165b2cbbaac3ce2cff1e757fd84e4 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 21 Oct 2025 14:39:32 +0200 Subject: [PATCH 17/83] correct functions --- src/post_processing/utils/fpod_utils.py | 394 +++++++++++++++--------- 1 file changed, 248 insertions(+), 146 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index a03072c..f31c49d 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -34,8 +34,8 @@ "Site B Heugh": "#5DB996", "Site C Chat": "#B0DB9C", "Site D Simone": "#E3F0AF", - "CA4": "#FF0066", - "Walde": "#934790", + "CA4": "#80D8C3", + "Walde": "#4DA8DA", "Point C": "#932F67", "Point D": "#D92C54", "Point E": "#DDDEAB", @@ -607,32 +607,76 @@ def assign_daytime( return df -def fb_folder(folder_path: Path, species: str) -> DataFrame: - """Process a folder containing all CPOD/FPOD feeding buzz detection files. +def csv_folder( + folder_path: Path, + sep: str = ";", + encoding: str = "latin-1", +) -> DataFrame: + """Process all CSV files from a folder. + + Parameters + ---------- + folder_path: Path + Folder's place. + sep: str, default=";" + Column separator. + encoding: str, default="latin-1" + File encoding. + + Returns + ------- + DataFrame + Concatenated data with optional filename column. + + Raises + ------ + ValueError + If no CSV files found. + + """ + all_files = list(folder_path.rglob("*.csv")) + + if not all_files: + msg = f"No .csv files found in {folder_path}" + raise ValueError(msg) + + all_data = [] + for file in all_files: + df = read_csv(file, sep=sep, encoding=encoding) + df["deploy.name"] = file.stem + all_data.append(df) + + return concat(all_data, ignore_index=True) - Apply the feeding buzz function to these files. + +def txt_folder(folder_path: Path, + sep: str = "\t") -> DataFrame: + r"""Process all TXT files from a folder. Parameters ---------- folder_path: Path - Path to the folder. - species: str - Select the species to use between porpoise and Commerson's dolphin + Folder's place. + sep: str, default="\t" + Column separator. Returns ------- DataFrame - Compiled feeding buzz detection positive minutes. + Concatenated data from all TXT files. """ all_files = list(Path(folder_path).rglob("*.txt")) - all_data = [] + if not all_files: + msg = f"No .txt files found in {folder_path}" + raise ValueError(msg) + + all_data = [] for file in all_files: file_path = folder_path / file - df = read_csv(file_path, sep="\t") - processed_df = feeding_buzz(df, species) - all_data.append(processed_df) + df = read_csv(file_path, sep=sep) + all_data.append(df) return concat(all_data, ignore_index=True) @@ -719,7 +763,7 @@ def site_percent(df: DataFrame, metric: str) -> None: ) ax.set_title(f"{metric} per site") ax.set_ylabel(f"{metric}") - if metric == "%buzzes": + if metric in ("%buzzes", "FBR"): for _, bar in enumerate(ax.patches): bar.set_hatch("/") plt.show() @@ -757,7 +801,7 @@ def year_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Year") - if metric == "%buzzes": + if metric in ("%buzzes", "FBR"): for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle(f"{metric} per year", fontsize=16) @@ -798,7 +842,7 @@ def ym_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Months") - if metric == "%buzzes": + if metric in ("%buzzes", "FBR"): for _, bar in enumerate(ax.patches): bar.set_hatch("/") legend_elements = [ @@ -864,7 +908,7 @@ def month_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Months") - if metric == "%buzzes": + if metric in ("%buzzes", "FBR"): for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle(f"{metric} per month", fontsize=16) @@ -905,137 +949,84 @@ def hour_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Hour") - if metric == "%buzzes": + if metric in ("%buzzes", "FBR"): for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle(f"{metric} per hour", fontsize=16) plt.show() -def csv_folder(folder_path: str | Path, **kwargs: str) -> DataFrame: - """Process a folder containing data files and concatenate them. +def is_dpm_col(df: DataFrame) -> DataFrame: + """Ensure DPM column exists with default value of 1. Parameters ---------- - folder_path: Union[str, Path] - Path to the folder containing files. - **kwargs: dict - Additional parameters for pd.read_csv (sep, skiprows, etc.) + df: DataFrame + Input dataframe. Returns ------- DataFrame - Concatenated dataframe with all files data and file column. - - Raises - ------ - ValueError - If file_format is not supported or no files found. - FileNotFoundError - If folder_path doesn't exist. + Copy of df with DPM column. """ - folder_path = Path(folder_path) - - # Folder validation - if not folder_path.exists(): - raise FileNotFoundError - - if not folder_path.is_dir(): - message = f"{folder_path} is not a directory." - raise ValueError(message) - - # Configuration - default_params = {"sep": ";", "encoding": "latin-1"} - - # Parameters fusion - read_params = {**default_params, **kwargs} - - # File research - files = list(folder_path.rglob("*csv")) - - if not files: - msg = f"No CSV file found in {folder_path}" - raise ValueError(msg) - - all_data = [] - - for file in files: - df = read_csv(file, **read_params) - df["deploy.name"] = file.stem - all_data.append(df) - - if not all_data: - msg = f"No valid CSV file found in {folder_path}" - raise ValueError(msg) - - return concat(all_data, ignore_index=True) + df = df.copy() + if "DPM" not in df.columns: + df["DPM"] = 1 + return df -def dpm_to_dp10m( +def pf_datetime( df: DataFrame, - extra_columns: list | None = None, + col_datetime: str, + frequency: str, ) -> DataFrame: - """From CPOD result with a line per minute (DPM) to one line per 10 minutes (DP10M). + """Parse datetime column and floor to specified frequency. Parameters ---------- df: DataFrame - CPOD result DataFrame, DPM. - extra_columns: list - Additional columns added from df to data. + Input dataframe. + col_datetime: str + Name of datetime column. + frequency: str + Pandas frequency string (e.g., "D", "h", "10min"). Returns ------- DataFrame - DPM10M Dataframe. + Copy of df with parsed and floored datetime. """ df = df.copy() - df["DPM"] = 1 - df["start_datetime"] = to_datetime(df["start_datetime"], dayfirst=True) - - df["start_datetime"] = df["start_datetime"].dt.floor("10min") - - agg_dict = {"DPM": "sum"} - - if extra_columns: - for col in extra_columns: - if col in df.columns: - agg_dict[col] = "first" - else: - logger.warning(" '%s' does not exist and will be ignored.", col) - - return df.groupby("start_datetime").agg(agg_dict).reset_index() + df[col_datetime] = to_datetime(df[col_datetime], utc=True) + df[col_datetime] = df[col_datetime].dt.floor(frequency) + return df -def dpm_to_dph( +def build_aggregation_dict( df: DataFrame, - extra_columns: list | None = None, -) -> DataFrame: - """From CPOD result with a line per minute (DPM) to one line per hour (DPH). + base_agg: dict[str, str], + extra_columns: list[str] | None = None, +) -> dict[str, str]: + """Build aggregation dictionary with validation. Parameters ---------- - df: pd.DataFrame - CPOD result DataFrame - extra_columns: list - Additional columns added from df to data + df: DataFrame + Input dataframe to check column existence. + base_agg: dict[str, str] + Base aggregation dictionary (e.g., {"DPM": "sum"}). + extra_columns: list[str], optional + Additional columns to aggregate with "first" strategy. Returns ------- - pd.DataFrame - DPH Dataframe. + dict[str, str] + Complete aggregation dictionary. """ - df = df.copy() - df["DPM"] = 1 - df["start_datetime"] = to_datetime(df["start_datetime"], dayfirst=True) - - # Truncate column - df["start_datetime"] = df["start_datetime"].dt.floor("h") - - agg_dict = {"DPM": "sum"} + agg_dict = base_agg.copy() if extra_columns: for col in extra_columns: @@ -1044,45 +1035,61 @@ def dpm_to_dph( else: logger.warning("Column '%s' does not exist and will be ignored.", col) - return df.groupby("start_datetime").agg(agg_dict).reset_index() + return agg_dict -def dpm_to_dpd( +def resample_dpm( df: DataFrame, - extra_columns: list | None = None, + frq: str, + group_by: list[str] | None = None, + extra_columns: list[str] | None = None, ) -> DataFrame: - """From CPOD result with a line per minute (DPM) to one line per day (DPD). + """Resample DPM data to specified time frequency. + + Aggregates Detection Positive Minutes (DPM) by time period, + optionally preserving grouping columns like deployment name. Parameters ---------- - df: pd.DataFrame - CPOD result DataFrame - extra_columns: list - Additional columns added from df to data + df: DataFrame + CPOD result DataFrame with DPM data. + frq: str + Pandas frequency string: "D" (day), "h" (hour), "10min", etc. + group_by: list[str], optional + Columns to group by (e.g., ["deploy.name", "start_datetime"]). + If None, groups only by start_datetime. + extra_columns: list[str], optional + Additional columns to preserve (uses "first" aggregation). Returns ------- - pd.DataFrame - DPD Dataframe. - - """ - df = df.copy() - df["DPM"] = 1 - df["start_datetime"] = to_datetime(df["start_datetime"], dayfirst=True) + DataFrame + Resampled DataFrame with aggregated DPM values. - # Truncate column - df["start_datetime"] = df["start_datetime"].dt.floor("D") + Examples + -------- + >>> # Daily aggregation per deployment + >>> resample_dpm(df, "D", group_by=["deploy.name"]) - agg_dict = {"DPM": "sum"} + >>> # Hourly aggregation with site info preserved + >>> resample_dpm(df, "h", extra_columns=["site.name"]) - if extra_columns: - for col in extra_columns: - if col in df.columns: - agg_dict[col] = "first" - else: - logger.warning(" '%s' does not exist and will be ignored.", col) + """ + df = is_dpm_col(df) + df = pf_datetime(df, "start_datetime", frq) + + # Determine grouping columns + if group_by is None: + group_by = ["start_datetime"] + + # Build aggregation dictionary + agg_dict = build_aggregation_dict( + df, + base_agg={"DPM": "sum"}, + extra_columns=extra_columns, + ) - return df.groupby("start_datetime").agg(agg_dict).reset_index() + return df.groupby(group_by).agg(agg_dict).reset_index() def date_format( @@ -1106,39 +1113,104 @@ def date_format( return df -def actual_data( +def parse_timestamps( df: DataFrame, - col_timestamp: str = "start_datetime", + col_timestamp: str, + date_formats: list[str] | None = None, ) -> DataFrame: - """Create a table with beginning and end of every deployment. + """Parse timestamp column with multiple possible formats. Parameters ---------- - col_timestamp - df: pd.DataFrame - CPOD result DataFrame + df: DataFrame + Input dataframe. col_timestamp: str - Name of the timestamps column in raw_data (default: 'start_datetime') + Name of the timestamp column to parse. + date_formats: list[str], optional + List of strptime formats to try. If None, uses common formats. Returns ------- - pd.DataFrame - Simple Dataframe with beginning and end columns. + DataFrame + Copy of df with parsed timestamps. + + Raises + ------ + ValueError + If timestamps cannot be parsed with any format. """ + if date_formats is None: + date_formats = [ + "%Y-%m-%dT%H:%M:%S:%Z", + "%Y-%m-%dT%H:%M:%S", + "%d/%m/%Y %H:%M", + ] + df = df.copy() df[col_timestamp] = df[col_timestamp].apply( - lambda x: strptime_from_text( - x, ["%Y-%m-%dT%H:%M:%S:%Z", "%Y-%m-%dT%H:%M:%S", "%d/%m/%Y %H:%M"], - ), - ) + lambda x: strptime_from_text(x, date_formats)) + return df + + +def deploy_period( + df: DataFrame, + col_timestamp: str = "start_datetime", + col_deployment: str = "deploy.name", +) -> DataFrame: + """Extract start and end timestamps for each deployment. + + Parameters + ---------- + df: DataFrame + Input dataframe with parsed timestamps. + col_timestamp: str, default="start_datetime" + Name of the timestamp column. + col_deployment: str, default="deploy.name" + Name of the deployment identifier column. + + Returns + ------- + DataFrame + DataFrame with columns: [col_deployment, 'Début', 'Fin']. + + """ return ( - df.groupby(["deploy.name"]) + df.groupby([col_deployment]) .agg(Début=(col_timestamp, "first"), Fin=(col_timestamp, "last")) .reset_index() ) +def actual_data( + df: DataFrame, + col_timestamp: str = "start_datetime", + col_deployment: str = "deploy.name", + date_formats: list[str] | None = None, +) -> DataFrame: + """Create a table with beginning and end of every deployment. + + Parameters + ---------- + df: DataFrame + CPOD result DataFrame. + col_timestamp: str, default="start_datetime" + Name of the timestamps column. + col_deployment: str, default="deploy.name" + Name of the deployment identifier column. + date_formats: list[str], optional + List of date formats to try for parsing. + + Returns + ------- + DataFrame + DataFrame with deployment periods (Début, Fin). + + """ + df_parsed = parse_timestamps(df, col_timestamp, date_formats) + return deploy_period(df_parsed, col_timestamp, col_deployment) + + def calendar( meta: DataFrame, data: DataFrame, @@ -1216,3 +1288,33 @@ def calendar( plt.tight_layout() plt.show() + +def create_matrix(df: DataFrame, + group_cols: list, + agg_cols: list, + )-> DataFrame: + """Create a stats matrix (mean & std). + + Parameters + ---------- + df : DataFrame + Extended frame with raw data to calculate stats for + group_cols : list + Additional columns to group by + agg_cols : list + Columns to aggregate + + Returns + ------- + Give a matrix of the data in [agg_cols] grouped by [group_cols]. + + """ + matrix = df.groupby(group_cols).agg({ + col: ["mean", "std"] for col in agg_cols + }) + matrix = matrix.reset_index() + + matrix.columns = group_cols + [f"{col}_{stat}" + for col in agg_cols + for stat in ["mean", "std"]] + return matrix From e0bd15f0c72ebfb35c7386e050c800600e9566d6 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 21 Oct 2025 14:44:39 +0200 Subject: [PATCH 18/83] change path --- user_case/example_FPOD-CPOD_aplose.ipynb | 169 ++++++++++++++++++ .../example_FPOD-CPOD_raw.ipynb | 0 .../resource/example_FPOD-CPOD_aplose.ipynb | 156 ---------------- 3 files changed, 169 insertions(+), 156 deletions(-) create mode 100644 user_case/example_FPOD-CPOD_aplose.ipynb rename user_case/{resource => }/example_FPOD-CPOD_raw.ipynb (100%) delete mode 100644 user_case/resource/example_FPOD-CPOD_aplose.ipynb diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb new file mode 100644 index 0000000..23e88c5 --- /dev/null +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -0,0 +1,169 @@ +{ + "cells": [ + { + "cell_type": "code", + "id": "initial_id", + "metadata": { + "collapsed": true, + "ExecuteTime": { + "end_time": "2025-10-21T12:43:37.703310Z", + "start_time": "2025-10-21T12:43:35.614168Z" + } + }, + "source": [ + "from pathlib import Path\n", + "\n", + "from pandas import (\n", + " read_csv,\n", + " to_datetime,\n", + ")\n", + "\n", + "from post_processing.dataclass.data_aplose import DataAplose\n", + "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range" + ], + "outputs": [], + "execution_count": 1 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Load data\n", + "id": "a97e19830123b732" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T12:43:42.439451Z", + "start_time": "2025-10-21T12:43:42.336797Z" + } + }, + "cell_type": "code", + "source": [ + "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", + "data_list = DataAplose.from_yaml(file=yaml_file)\n", + "\n", + "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", + "d_beg_end = read_csv(r\"U:\\Deb_Fin_CETIROISE.csv\")" + ], + "id": "7da2feb5958db1a9", + "outputs": [], + "execution_count": 2 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Data metric\n", + "Here you need to choose the format in which you want to visualise the positive detections. This aims to replace the functionalities available in Chelonia's softwares." + ], + "id": "3bc57f4f638ad6dc" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T12:43:47.769511Z", + "start_time": "2025-10-21T12:43:47.757779Z" + } + }, + "cell_type": "code", + "source": "frq = \"D\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", + "id": "9b0a078a262ac7f2", + "outputs": [], + "execution_count": 3 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T12:43:51.154627Z", + "start_time": "2025-10-21T12:43:51.133435Z" + } + }, + "cell_type": "code", + "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"])", + "id": "fa3847d80ccf49c3", + "outputs": [], + "execution_count": 4 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Feeding buzzes processing\n", + "Use \"Marsouin\" or \"Commerson\" to get different ICI processing." + ], + "id": "b92537991aa4ac4b" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T12:44:10.850774Z", + "start_time": "2025-10-21T12:44:10.722006Z" + } + }, + "cell_type": "code", + "source": [ + "fb_all = txt_folder(fb_files)\n", + "fb_all = feeding_buzz(fb_all, \"Marsouin\")\n", + "\n", + "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq)\n", + "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", + "fb[\"start_datetime\"] = to_datetime(fb[\"start_datetime\"], utc=True)\n", + "\n", + "dpm_fb = resamp.merge(fb, on=\"start_datetime\", how=\"left\")" + ], + "id": "ca2362e4facecca3", + "outputs": [], + "execution_count": 5 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T12:44:12.760555Z", + "start_time": "2025-10-21T12:44:12.724626Z" + } + }, + "cell_type": "code", + "source": [ + "d_0 = build_range(d_beg_end, frq)\n", + "d_tot = d_0.merge(dpm_fb, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")" + ], + "id": "4d76089ef06c6fdb", + "outputs": [], + "execution_count": 6 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-21T12:44:14.374150Z", + "start_time": "2025-10-21T12:44:14.367297Z" + } + }, + "cell_type": "code", + "source": "d_tot[[\"DPM\",\"Foraging\"]] = d_tot[[\"DPM\",\"Foraging\"]].fillna(0)", + "id": "912268e5e997dbc6", + "outputs": [], + "execution_count": 7 + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/user_case/resource/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb similarity index 100% rename from user_case/resource/example_FPOD-CPOD_raw.ipynb rename to user_case/example_FPOD-CPOD_raw.ipynb diff --git a/user_case/resource/example_FPOD-CPOD_aplose.ipynb b/user_case/resource/example_FPOD-CPOD_aplose.ipynb deleted file mode 100644 index 31a3ed8..0000000 --- a/user_case/resource/example_FPOD-CPOD_aplose.ipynb +++ /dev/null @@ -1,156 +0,0 @@ -{ - "cells": [ - { - "cell_type": "code", - "id": "initial_id", - "metadata": { - "collapsed": true - }, - "source": [ - "from pathlib import Path\n", - "\n", - "from pandas import (\n", - " read_csv,\n", - " to_datetime,\n", - ")\n", - "\n", - "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range" - ], - "outputs": [], - "execution_count": null - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": "### Load data\n", - "id": "a97e19830123b732" - }, - { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-21T12:36:10.627427Z", - "start_time": "2025-10-21T12:36:10.586897Z" - } - }, - "cell_type": "code", - "source": [ - "yaml_file = Path(r\"user_case\\resource\\CPOD-FPOD_yaml.yml\")\n", - "data_list = DataAplose.from_yaml(file=yaml_file)\n", - "\n", - "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", - "d_beg_end = read_csv(r\"U:\\Deb_Fin_CETIROISE.csv\")" - ], - "id": "7da2feb5958db1a9", - "outputs": [ - { - "ename": "FileNotFoundError", - "evalue": "[Errno 2] No such file or directory: 'C:\\\\Users\\\\fouinel\\\\PycharmProjects\\\\OSmOSE_post_processing\\\\user_case\\\\resource\\\\user_case\\\\resource\\\\CPOD-FPOD_yaml.yml'", - "output_type": "error", - "traceback": [ - "\u001B[31m---------------------------------------------------------------------------\u001B[39m", - "\u001B[31mFileNotFoundError\u001B[39m Traceback (most recent call last)", - "\u001B[36mCell\u001B[39m\u001B[36m \u001B[39m\u001B[32mIn[11]\u001B[39m\u001B[32m, line 2\u001B[39m\n\u001B[32m 1\u001B[39m yaml_file = Path(\u001B[33m\"\u001B[39m\u001B[33muser_case/resource/CPOD-FPOD_yaml.yml\u001B[39m\u001B[33m\"\u001B[39m).resolve()\n\u001B[32m----> \u001B[39m\u001B[32m2\u001B[39m data_list = \u001B[43mDataAplose\u001B[49m\u001B[43m.\u001B[49m\u001B[43mfrom_yaml\u001B[49m\u001B[43m(\u001B[49m\u001B[43mfile\u001B[49m\u001B[43m=\u001B[49m\u001B[43myaml_file\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 4\u001B[39m fb_files = Path(\u001B[33mr\u001B[39m\u001B[33m\"\u001B[39m\u001B[33mU:\u001B[39m\u001B[33m\\\u001B[39m\u001B[33mfb_fpod_cetiroise_c\u001B[39m\u001B[33m\"\u001B[39m) \u001B[38;5;66;03m#Path to your click details folder.\u001B[39;00m\n\u001B[32m 5\u001B[39m d_beg_end = read_csv(\u001B[33mr\u001B[39m\u001B[33m\"\u001B[39m\u001B[33mU:\u001B[39m\u001B[33m\\\u001B[39m\u001B[33mDeb_Fin_CETIROISE.csv\u001B[39m\u001B[33m\"\u001B[39m)\n", - "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\dataclass\\data_aplose.py:410\u001B[39m, in \u001B[36mDataAplose.from_yaml\u001B[39m\u001B[34m(cls, file, concat)\u001B[39m\n\u001B[32m 388\u001B[39m \u001B[38;5;129m@classmethod\u001B[39m\n\u001B[32m 389\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mfrom_yaml\u001B[39m(\n\u001B[32m 390\u001B[39m \u001B[38;5;28mcls\u001B[39m,\n\u001B[32m 391\u001B[39m file: Path,\n\u001B[32m 392\u001B[39m concat: \u001B[38;5;28mbool\u001B[39m = \u001B[38;5;28;01mFalse\u001B[39;00m,\n\u001B[32m 393\u001B[39m ) -> DataAplose | \u001B[38;5;28mlist\u001B[39m[DataAplose]:\n\u001B[32m 394\u001B[39m \u001B[38;5;250m \u001B[39m\u001B[33;03m\"\"\"Return a DataAplose object from a yaml file.\u001B[39;00m\n\u001B[32m 395\u001B[39m \n\u001B[32m 396\u001B[39m \u001B[33;03m Parameters\u001B[39;00m\n\u001B[32m (...)\u001B[39m\u001B[32m 408\u001B[39m \n\u001B[32m 409\u001B[39m \u001B[33;03m \"\"\"\u001B[39;00m\n\u001B[32m--> \u001B[39m\u001B[32m410\u001B[39m filters = \u001B[43mDetectionFilter\u001B[49m\u001B[43m.\u001B[49m\u001B[43mfrom_yaml\u001B[49m\u001B[43m(\u001B[49m\u001B[43mfile\u001B[49m\u001B[43m=\u001B[49m\u001B[43mfile\u001B[49m\u001B[43m)\u001B[49m\n\u001B[32m 411\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mcls\u001B[39m.from_filters(filters, concat)\n", - "\u001B[36mFile \u001B[39m\u001B[32m~\\PycharmProjects\\OSmOSE_post_processing\\src\\post_processing\\dataclass\\detection_filter.py:64\u001B[39m, in \u001B[36mDetectionFilter.from_yaml\u001B[39m\u001B[34m(cls, file)\u001B[39m\n\u001B[32m 46\u001B[39m \u001B[38;5;129m@classmethod\u001B[39m\n\u001B[32m 47\u001B[39m \u001B[38;5;28;01mdef\u001B[39;00m\u001B[38;5;250m \u001B[39m\u001B[34mfrom_yaml\u001B[39m(\n\u001B[32m 48\u001B[39m \u001B[38;5;28mcls\u001B[39m,\n\u001B[32m 49\u001B[39m file: Path,\n\u001B[32m 50\u001B[39m ) -> DetectionFilter | \u001B[38;5;28mlist\u001B[39m[DetectionFilter]:\n\u001B[32m 51\u001B[39m \u001B[38;5;250m \u001B[39m\u001B[33;03m\"\"\"Return a DetectionFilter object from a yaml file.\u001B[39;00m\n\u001B[32m 52\u001B[39m \n\u001B[32m 53\u001B[39m \u001B[33;03m Parameters\u001B[39;00m\n\u001B[32m (...)\u001B[39m\u001B[32m 62\u001B[39m \n\u001B[32m 63\u001B[39m \u001B[33;03m \"\"\"\u001B[39;00m\n\u001B[32m---> \u001B[39m\u001B[32m64\u001B[39m \u001B[38;5;28;01mwith\u001B[39;00m \u001B[43mfile\u001B[49m\u001B[43m.\u001B[49m\u001B[43mopen\u001B[49m\u001B[43m(\u001B[49m\u001B[43mencoding\u001B[49m\u001B[43m=\u001B[49m\u001B[33;43m\"\u001B[39;49m\u001B[33;43mutf-8\u001B[39;49m\u001B[33;43m\"\u001B[39;49m\u001B[43m)\u001B[49m \u001B[38;5;28;01mas\u001B[39;00m yaml_file:\n\u001B[32m 65\u001B[39m parameters = yaml.safe_load(yaml_file)\n\u001B[32m 66\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[38;5;28mcls\u001B[39m.from_dict(parameters)\n", - "\u001B[36mFile \u001B[39m\u001B[32m~\\AppData\\Roaming\\uv\\python\\cpython-3.12.11-windows-x86_64-none\\Lib\\pathlib.py:1013\u001B[39m, in \u001B[36mPath.open\u001B[39m\u001B[34m(self, mode, buffering, encoding, errors, newline)\u001B[39m\n\u001B[32m 1011\u001B[39m \u001B[38;5;28;01mif\u001B[39;00m \u001B[33m\"\u001B[39m\u001B[33mb\u001B[39m\u001B[33m\"\u001B[39m \u001B[38;5;129;01mnot\u001B[39;00m \u001B[38;5;129;01min\u001B[39;00m mode:\n\u001B[32m 1012\u001B[39m encoding = io.text_encoding(encoding)\n\u001B[32m-> \u001B[39m\u001B[32m1013\u001B[39m \u001B[38;5;28;01mreturn\u001B[39;00m \u001B[43mio\u001B[49m\u001B[43m.\u001B[49m\u001B[43mopen\u001B[49m\u001B[43m(\u001B[49m\u001B[38;5;28;43mself\u001B[39;49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mmode\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mbuffering\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mencoding\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43merrors\u001B[49m\u001B[43m,\u001B[49m\u001B[43m \u001B[49m\u001B[43mnewline\u001B[49m\u001B[43m)\u001B[49m\n", - "\u001B[31mFileNotFoundError\u001B[39m: [Errno 2] No such file or directory: 'C:\\\\Users\\\\fouinel\\\\PycharmProjects\\\\OSmOSE_post_processing\\\\user_case\\\\resource\\\\user_case\\\\resource\\\\CPOD-FPOD_yaml.yml'" - ] - } - ], - "execution_count": 11 - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": [ - "### Data metric\n", - "Here you need to choose the format in which you want to visualise the positive detections. This aims to replace the functionalities available in Chelonia's softwares." - ], - "id": "3bc57f4f638ad6dc" - }, - { - "metadata": {}, - "cell_type": "code", - "source": "frq = \"D\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", - "id": "9b0a078a262ac7f2", - "outputs": [], - "execution_count": null - }, - { - "metadata": {}, - "cell_type": "code", - "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"])", - "id": "fa3847d80ccf49c3", - "outputs": [], - "execution_count": null - }, - { - "metadata": {}, - "cell_type": "markdown", - "source": [ - "### Feeding buzzes processing\n", - "Use \"Marsouin\" or \"Commerson\" to get different ICI processing." - ], - "id": "b92537991aa4ac4b" - }, - { - "metadata": {}, - "cell_type": "code", - "source": [ - "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", - "fb_all = txt_folder(fb_files)\n", - "fb_all = feeding_buzz(fb_all, \"Marsouin\")\n", - "\n", - "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq)\n", - "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", - "fb[\"start_datetime\"] = to_datetime(fb[\"start_datetime\"], utc=True)\n", - "\n", - "dpm_fb = resamp.merge(fb, on=\"start_datetime\", how=\"left\")" - ], - "id": "ca2362e4facecca3", - "outputs": [], - "execution_count": null - }, - { - "metadata": {}, - "cell_type": "code", - "source": [ - "d_0 = build_range(d_beg_end, frq)\n", - "d_tot = d_0.merge(dpm_fb, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")" - ], - "id": "4d76089ef06c6fdb", - "outputs": [], - "execution_count": null - }, - { - "metadata": {}, - "cell_type": "code", - "source": "d_tot[[\"DPM\",\"Foraging\"]] = d_tot[[\"DPM\",\"Foraging\"]].fillna(0)", - "id": "912268e5e997dbc6", - "outputs": [], - "execution_count": null - } - ], - "metadata": { - "kernelspec": { - "display_name": "Python 3", - "language": "python", - "name": "python3" - }, - "language_info": { - "codemirror_mode": { - "name": "ipython", - "version": 2 - }, - "file_extension": ".py", - "mimetype": "text/x-python", - "name": "python", - "nbconvert_exporter": "python", - "pygments_lexer": "ipython2", - "version": "2.7.6" - } - }, - "nbformat": 4, - "nbformat_minor": 5 -} From f5529ace57cb8363d42ef9cc214145118cb72b4d Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 21 Oct 2025 14:44:58 +0200 Subject: [PATCH 19/83] adapt functions changes --- user_case/user_case_CALAIS.ipynb | 193 ++++++++++++++++++------------- 1 file changed, 114 insertions(+), 79 deletions(-) diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index 08495af..21ebcef 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-10-13T10:06:55.748967Z", - "start_time": "2025-10-13T10:06:46.756740Z" + "end_time": "2025-10-17T09:13:24.163916Z", + "start_time": "2025-10-17T09:13:21.433376Z" } }, "source": [ @@ -21,7 +21,8 @@ ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose, dpm_to_dp10m, dpm_to_dph, dpm_to_dpd,fb_folder, build_range, extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent\n", + "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose, resample_dpm,txt_folder, build_range, extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent, \\\n", + " feeding_buzz\n", "from post_processing.utils.core_utils import json2df,get_season" ], "outputs": [], @@ -45,13 +46,14 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-13T10:07:00.142758Z", - "start_time": "2025-10-13T10:06:59.189951Z" + "end_time": "2025-10-17T09:25:01.549663Z", + "start_time": "2025-10-17T09:24:48.208563Z" } }, "cell_type": "code", "source": [ - "path = csv_folder(r\"U:\\Cetiroise\")\n", + "pod_files = Path(r\"U:\\Walde\")\n", + "path = csv_folder(pod_files)\n", "print(path.head())\n", "\n", "df_0 = path.dropna()" @@ -62,49 +64,55 @@ "name": "stdout", "output_type": "stream", "text": [ - " File podN ChunkEnd \\\n", - "0 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:34 \n", - "1 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:35 \n", - "2 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:36 \n", - "3 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 22:40 \n", - "4 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 24/02/2023 15:32 \n", - "\n", - " Minute DPM MinsOn deploy.name \n", - "0 64748494 1 1 Point C_Phase 4 \n", - "1 64748495 1 1 Point C_Phase 4 \n", - "2 64748496 1 1 Point C_Phase 4 \n", - "3 64749520 1 1 Point C_Phase 4 \n", - "4 64773572 1 1 Point C_Phase 4 \n" + " File ChunkEnd DPM Nall MinsOn deploy.name\n", + "0 POD2399 file01.CP3 14/05/2014 08:03 0.0 0.0 1.0 Walde_Phase1\n", + "1 POD2399 file01.CP3 14/05/2014 08:04 0.0 799.0 1.0 Walde_Phase1\n", + "2 POD2399 file01.CP3 14/05/2014 08:05 0.0 0.0 1.0 Walde_Phase1\n", + "3 POD2399 file01.CP3 14/05/2014 08:06 0.0 3361.0 1.0 Walde_Phase1\n", + "4 POD2399 file01.CP3 14/05/2014 08:07 0.0 421.0 1.0 Walde_Phase1\n" ] } ], - "execution_count": 2 + "execution_count": 11 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-13T10:07:03.680051Z", - "start_time": "2025-10-13T10:07:03.501607Z" + "end_time": "2025-10-17T09:34:43.092415Z", + "start_time": "2025-10-17T09:27:26.409365Z" } }, "cell_type": "code", "source": "d_beg_end = actual_data(df_0, col_timestamp=\"ChunkEnd\")", "id": "4208969d9e509a8", "outputs": [], - "execution_count": 3 + "execution_count": 12 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-17T09:35:32.137350Z", + "start_time": "2025-10-17T09:35:32.089860Z" + } + }, + "cell_type": "code", + "source": "d_beg_end.to_csv(r\"U:\\Deb_Fin_Walde.csv\", index=False)", + "id": "6fb6f4fa675d7cab", + "outputs": [], + "execution_count": 13 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-13T10:07:05.017124Z", - "start_time": "2025-10-13T10:07:05.012527Z" + "end_time": "2025-10-17T09:35:33.725437Z", + "start_time": "2025-10-17T09:35:33.670018Z" } }, "cell_type": "code", "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ]", "id": "597efd1d90e3d069", "outputs": [], - "execution_count": 4 + "execution_count": 14 }, { "metadata": {}, @@ -127,13 +135,13 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-13T10:07:15.647400Z", - "start_time": "2025-10-13T10:07:15.456897Z" + "end_time": "2025-10-17T09:35:38.378283Z", + "start_time": "2025-10-17T09:35:35.755020Z" } }, "cell_type": "code", "source": [ - "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", + "df_aplose = cpod2aplose(df_1, pytz.utc, \"Walde\", \"Marsouin\")\n", "print(df_aplose.head())" ], "id": "812ed7c0c5e258e7", @@ -142,30 +150,30 @@ "name": "stdout", "output_type": "stream", "text": [ - " dataset filename start_time end_time start_frequency \\\n", - "0 Site D Simone 0 60 0 \n", - "1 Site D Simone 0 60 0 \n", - "2 Site D Simone 0 60 0 \n", - "3 Site D Simone 0 60 0 \n", - "4 Site D Simone 0 60 0 \n", + " dataset filename start_time end_time start_frequency end_frequency \\\n", + "0 Walde 0 60 0 0 \n", + "1 Walde 0 60 0 0 \n", + "2 Walde 0 60 0 0 \n", + "3 Walde 0 60 0 0 \n", + "4 Walde 0 60 0 0 \n", "\n", - " end_frequency annotation annotator start_datetime \\\n", - "0 0 Commerson FPOD 2023-02-07T05:34:00.000+0000 \n", - "1 0 Commerson FPOD 2023-02-07T05:35:00.000+0000 \n", - "2 0 Commerson FPOD 2023-02-07T05:36:00.000+0000 \n", - "3 0 Commerson FPOD 2023-02-07T22:40:00.000+0000 \n", - "4 0 Commerson FPOD 2023-02-24T15:32:00.000+0000 \n", + " annotation annotator start_datetime \\\n", + "0 Marsouin FPOD 2014-05-15T16:56:00.000+0000 \n", + "1 Marsouin FPOD 2014-05-17T22:53:00.000+0000 \n", + "2 Marsouin FPOD 2014-05-17T22:54:00.000+0000 \n", + "3 Marsouin FPOD 2014-05-18T14:05:00.000+0000 \n", + "4 Marsouin FPOD 2014-05-21T14:19:00.000+0000 \n", "\n", - " end_datetime is_box deploy.name \n", - "0 2023-02-07T05:35:00.000+0000 0 Point C_Phase 4 \n", - "1 2023-02-07T05:36:00.000+0000 0 Point C_Phase 4 \n", - "2 2023-02-07T05:37:00.000+0000 0 Point C_Phase 4 \n", - "3 2023-02-07T22:41:00.000+0000 0 Point C_Phase 4 \n", - "4 2023-02-24T15:33:00.000+0000 0 Point C_Phase 4 \n" + " end_datetime is_box deploy.name \n", + "0 2014-05-15T16:57:00.000+0000 0 Walde_Phase1 \n", + "1 2014-05-17T22:54:00.000+0000 0 Walde_Phase1 \n", + "2 2014-05-17T22:55:00.000+0000 0 Walde_Phase1 \n", + "3 2014-05-18T14:06:00.000+0000 0 Walde_Phase1 \n", + "4 2014-05-21T14:20:00.000+0000 0 Walde_Phase1 \n" ] } ], - "execution_count": 5 + "execution_count": 15 }, { "metadata": {}, @@ -174,15 +182,47 @@ "id": "a39bb10d8ac60a27" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-17T09:23:23.552890Z", + "start_time": "2025-10-17T09:23:22.810583Z" + } + }, "cell_type": "code", "source": [ "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", "print(df_aplose.head())" ], "id": "9b632673397a184", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset filename start_time end_time start_frequency end_frequency \\\n", + "0 CA4 0 60 0 0 \n", + "1 CA4 0 60 0 0 \n", + "2 CA4 0 60 0 0 \n", + "3 CA4 0 60 0 0 \n", + "4 CA4 0 60 0 0 \n", + "\n", + " annotation annotator start_datetime \\\n", + "0 Marsouin FPOD 2014-05-17T03:52:00.000+0000 \n", + "1 Marsouin FPOD 2014-05-17T04:47:00.000+0000 \n", + "2 Marsouin FPOD 2014-05-19T17:06:00.000+0000 \n", + "3 Marsouin FPOD 2014-05-20T11:07:00.000+0000 \n", + "4 Marsouin FPOD 2014-05-20T11:16:00.000+0000 \n", + "\n", + " end_datetime is_box deploy.name \n", + "0 2014-05-17T03:53:00.000+0000 0 CA4_Phase1 \n", + "1 2014-05-17T04:48:00.000+0000 0 CA4_Phase1 \n", + "2 2014-05-19T17:07:00.000+0000 0 CA4_Phase1 \n", + "3 2014-05-20T11:08:00.000+0000 0 CA4_Phase1 \n", + "4 2014-05-20T11:17:00.000+0000 0 CA4_Phase1 \n" + ] + } + ], + "execution_count": 7 }, { "metadata": {}, @@ -197,10 +237,15 @@ "id": "32f8ff8f9ece35a8" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-17T09:35:54.374270Z", + "start_time": "2025-10-17T09:35:54.303578Z" + } + }, "cell_type": "code", "source": [ - "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_cetiroise.json\") #Path to your metadata file.\n", + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_calais.json\") #Path to your metadata file.\n", "metadatax = json2df(json_path=json)\n", "\n", "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", @@ -210,7 +255,7 @@ ], "id": "ed6a06c522aea169", "outputs": [], - "execution_count": null + "execution_count": 16 }, { "metadata": {}, @@ -219,12 +264,17 @@ "id": "8f5fe75cc3463971" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-17T09:36:06.597522Z", + "start_time": "2025-10-17T09:35:56.739495Z" + } + }, "cell_type": "code", - "source": "cleared.to_csv(r\"U:\\APLOSE_CETIROISE_pos.csv\", index=False) #You can stock all DPM for a site in a DataAplose file.", + "source": "cleared.to_csv(r\"U:\\APLOSE_Walde_pos.csv\", index=False) #You can stock all DPM for a site in a DataAplose file.", "id": "76f70cb6c6658ba6", "outputs": [], - "execution_count": null + "execution_count": 17 }, { "metadata": {}, @@ -265,27 +315,19 @@ { "metadata": {}, "cell_type": "code", - "source": "dp10 = dpm_to_dp10m(data_list.df, extra_columns=[\"deploy.name\"])", - "id": "a27ceea1fefdd298", "outputs": [], - "execution_count": null + "execution_count": null, + "source": "frq = \"D\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", + "id": "256b756d05c08294" }, { "metadata": {}, "cell_type": "code", - "source": "dph = dpm_to_dph(data_list.df, extra_columns=[\"deploy.name\"])", + "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"])", "id": "6cc79b2aeef076ed", "outputs": [], "execution_count": null }, - { - "metadata": {}, - "cell_type": "code", - "source": "dpd = dpm_to_dpd(data_list.df, extra_columns=[\"deploy.name\"])", - "id": "e6655c36fc1851c7", - "outputs": [], - "execution_count": null - }, { "metadata": {}, "cell_type": "markdown", @@ -298,20 +340,13 @@ "source": "Import your click details files. All files for one site must be stacked in the same folder.", "id": "9753f4ba20c7267e" }, - { - "metadata": {}, - "cell_type": "code", - "source": "frq = \"D\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", - "id": "10e00649ec7dac05", - "outputs": [], - "execution_count": null - }, { "metadata": {}, "cell_type": "code", "source": [ "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", - "fb_all = fb_folder(fb_files, \"Marsouin\")\n", + "fb_all = txt_folder(fb_files)\n", + "fb_all = feeding_buzz(fb_all, \"Marsouin\")\n", "\n", "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq)\n", "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", @@ -325,7 +360,7 @@ "metadata": {}, "cell_type": "code", "source": [ - "d_tot = dpd.merge(fb, on=\"start_datetime\", how=\"left\")\n", + "d_tot = resamp.merge(fb, on=\"start_datetime\", how=\"left\")\n", "#This function aims to reindent 0 between the positive detections. It will be useful to produce first visualization graphs and use this dataset in R.\n", "d_hour = build_range(d_beg_end, frq)" ], From bc3719a126a66b1b00877dda9f254448e9028f22 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 24 Oct 2025 12:41:38 +0200 Subject: [PATCH 20/83] adapt functions changes --- user_case/example_FPOD-CPOD_aplose.ipynb | 36 ++++---- user_case/example_FPOD-CPOD_raw.ipynb | 104 +++++++++++++++-------- 2 files changed, 86 insertions(+), 54 deletions(-) diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb index 23e88c5..ffdf2eb 100644 --- a/user_case/example_FPOD-CPOD_aplose.ipynb +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-10-21T12:43:37.703310Z", - "start_time": "2025-10-21T12:43:35.614168Z" + "end_time": "2025-10-24T08:10:42.240883Z", + "start_time": "2025-10-24T08:10:40.168812Z" } }, "source": [ @@ -33,8 +33,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T12:43:42.439451Z", - "start_time": "2025-10-21T12:43:42.336797Z" + "end_time": "2025-10-24T08:20:44.203307Z", + "start_time": "2025-10-24T08:20:44.103414Z" } }, "cell_type": "code", @@ -42,8 +42,8 @@ "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", "data_list = DataAplose.from_yaml(file=yaml_file)\n", "\n", - "fb_files = Path(r\"U:\\fb_fpod_cetiroise_c\") #Path to your click details folder.\n", - "d_beg_end = read_csv(r\"U:\\Deb_Fin_CETIROISE.csv\")" + "fb_files = Path(r\"U:\\fb_D_NBHF\") #Path to your click details folder.\n", + "d_beg_end = read_csv(r\"U:\\Deb_Fin_Site D Simone.csv\")" ], "id": "7da2feb5958db1a9", "outputs": [], @@ -61,12 +61,12 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T12:43:47.769511Z", - "start_time": "2025-10-21T12:43:47.757779Z" + "end_time": "2025-10-24T08:20:52.992126Z", + "start_time": "2025-10-24T08:20:52.983477Z" } }, "cell_type": "code", - "source": "frq = \"D\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", + "source": "frq = \"h\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", "id": "9b0a078a262ac7f2", "outputs": [], "execution_count": 3 @@ -74,8 +74,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T12:43:51.154627Z", - "start_time": "2025-10-21T12:43:51.133435Z" + "end_time": "2025-10-24T08:20:56.935875Z", + "start_time": "2025-10-24T08:20:56.923925Z" } }, "cell_type": "code", @@ -96,14 +96,14 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T12:44:10.850774Z", - "start_time": "2025-10-21T12:44:10.722006Z" + "end_time": "2025-10-24T08:43:33.273328Z", + "start_time": "2025-10-24T08:43:33.011458Z" } }, "cell_type": "code", "source": [ "fb_all = txt_folder(fb_files)\n", - "fb_all = feeding_buzz(fb_all, \"Marsouin\")\n", + "fb_all = feeding_buzz(fb_all, \"Commerson\")\n", "\n", "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq)\n", "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", @@ -118,8 +118,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T12:44:12.760555Z", - "start_time": "2025-10-21T12:44:12.724626Z" + "end_time": "2025-10-24T08:43:37.700188Z", + "start_time": "2025-10-24T08:43:37.677880Z" } }, "cell_type": "code", @@ -134,8 +134,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T12:44:14.374150Z", - "start_time": "2025-10-21T12:44:14.367297Z" + "end_time": "2025-10-24T08:43:39.055027Z", + "start_time": "2025-10-24T08:43:39.047963Z" } }, "cell_type": "code", diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index 1cafe1a..d2f0eef 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-10-21T10:34:14.234399Z", - "start_time": "2025-10-21T10:34:06.776401Z" + "end_time": "2025-10-24T07:52:57.623291Z", + "start_time": "2025-10-24T07:52:51.711980Z" } }, "source": [ @@ -34,15 +34,15 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T10:34:44.094566Z", - "start_time": "2025-10-21T10:34:43.418858Z" + "end_time": "2025-10-24T07:53:19.702997Z", + "start_time": "2025-10-24T07:53:18.892419Z" } }, "cell_type": "code", "source": [ - "pod_files = Path(r\"U:\\Cetiroise\")\n", + "pod_files = Path(r\"U:\\D\")\n", "path = csv_folder(pod_files) #Path to your data folder.\n", - "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_cetiroise.json\") #Path to your metadata file.\n", + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_kerguelen.json\") #Path to your metadata file.\n", "\n", "print(path.head())\n", "df_0 = path.dropna()\n", @@ -56,19 +56,19 @@ "name": "stdout", "output_type": "stream", "text": [ - " File podN ChunkEnd \\\n", - "0 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:34 \n", - "1 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:35 \n", - "2 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 05:36 \n", - "3 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 07/02/2023 22:40 \n", - "4 CETIROISEPHASE4POINTC 2023 02 03 FPOD_6669 fil... 6669 24/02/2023 15:32 \n", + " File ChunkEnd DPM Nall MinsOn \\\n", + "0 POD3042 file01.CP3 21/10/2019 12:11 0 0 0 \n", + "1 POD3042 file01.CP3 21/10/2019 12:12 0 0 0 \n", + "2 POD3042 file01.CP3 21/10/2019 12:13 0 0 0 \n", + "3 POD3042 file01.CP3 21/10/2019 12:14 0 0 0 \n", + "4 POD3042 file01.CP3 21/10/2019 12:15 0 0 0 \n", "\n", - " Minute DPM MinsOn deploy.name \n", - "0 64748494 1 1 Point C_Phase 4 \n", - "1 64748495 1 1 Point C_Phase 4 \n", - "2 64748496 1 1 Point C_Phase 4 \n", - "3 64749520 1 1 Point C_Phase 4 \n", - "4 64773572 1 1 Point C_Phase 4 \n" + " deploy.name \n", + "0 Site D Simone_Phase1 \n", + "1 Site D Simone_Phase1 \n", + "2 Site D Simone_Phase1 \n", + "3 Site D Simone_Phase1 \n", + "4 Site D Simone_Phase1 \n" ] } ], @@ -77,14 +77,14 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T10:34:53.696221Z", - "start_time": "2025-10-21T10:34:53.481890Z" + "end_time": "2025-10-24T07:54:18.370860Z", + "start_time": "2025-10-24T07:53:28.225983Z" } }, "cell_type": "code", "source": [ - "d_beg_end = actual_data(df_0, col_timestamp=\"ChunkEnd\")\n", - "d_beg_end.to_csv(r\"U:\\Deb_Fin_CETIROISE.csv\", index=False)" + "d_beg_end = actual_data(df_0, metadatax)\n", + "d_beg_end.to_csv(r\"U:\\Deb_Fin_Site D Simone.csv\", index=False)" ], "id": "fa52f8971b61aaf6", "outputs": [], @@ -93,15 +93,15 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T10:34:57.917184Z", - "start_time": "2025-10-21T10:34:57.913957Z" + "end_time": "2025-10-24T08:03:40.056689Z", + "start_time": "2025-10-24T08:03:40.048631Z" } }, "cell_type": "code", "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ]", "id": "769e128f2a5293e1", "outputs": [], - "execution_count": 4 + "execution_count": 5 }, { "metadata": {}, @@ -114,15 +114,47 @@ "id": "dd03975b7aef7eed" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-24T08:08:16.903159Z", + "start_time": "2025-10-24T08:08:16.776363Z" + } + }, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", "print(df_aplose.head())" ], - "id": "4cc867627d677529" + "id": "4cc867627d677529", + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset filename start_time end_time start_frequency \\\n", + "0 Site D Simone 0 60 0 \n", + "1 Site D Simone 0 60 0 \n", + "2 Site D Simone 0 60 0 \n", + "3 Site D Simone 0 60 0 \n", + "4 Site D Simone 0 60 0 \n", + "\n", + " end_frequency annotation annotator start_datetime \\\n", + "0 0 Commerson FPOD 2019-10-26T16:21:00.000+0000 \n", + "1 0 Commerson FPOD 2019-10-26T16:24:00.000+0000 \n", + "2 0 Commerson FPOD 2019-10-26T16:36:00.000+0000 \n", + "3 0 Commerson FPOD 2020-03-14T14:38:00.000+0000 \n", + "4 0 Commerson FPOD 2020-03-14T15:22:00.000+0000 \n", + "\n", + " end_datetime is_box deploy.name \n", + "0 2019-10-26T16:22:00.000+0000 0 Site D Simone_Phase1 \n", + "1 2019-10-26T16:25:00.000+0000 0 Site D Simone_Phase1 \n", + "2 2019-10-26T16:37:00.000+0000 0 Site D Simone_Phase1 \n", + "3 2020-03-14T14:39:00.000+0000 0 Site D Simone_Phase2 \n", + "4 2020-03-14T15:23:00.000+0000 0 Site D Simone_Phase2 \n" + ] + } + ], + "execution_count": 6 }, { "metadata": {}, @@ -136,8 +168,8 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T10:35:03.300926Z", - "start_time": "2025-10-21T10:35:03.122227Z" + "end_time": "2025-10-22T14:47:04.017877Z", + "start_time": "2025-10-22T14:47:03.833873Z" } }, "cell_type": "code", @@ -174,7 +206,7 @@ ] } ], - "execution_count": 5 + "execution_count": 3 }, { "metadata": {}, @@ -188,18 +220,18 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-21T10:35:12.623559Z", - "start_time": "2025-10-21T10:35:12.255285Z" + "end_time": "2025-10-24T08:10:12.478620Z", + "start_time": "2025-10-24T08:10:11.777820Z" } }, "cell_type": "code", "source": [ "cleared = meta_cut_aplose(df_aplose, metadatax)\n", - "cleared.to_csv(r\"U:\\APLOSE_CETIROISE_pos.csv\", index=False)" + "cleared.to_csv(r\"U:\\APLOSE_D_pos.csv\", index=False)" ], "id": "895bd5a116918285", "outputs": [], - "execution_count": 6 + "execution_count": 7 } ], "metadata": { From c3a0000b953af54120d93e389e11ae039a9ad2e8 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 24 Oct 2025 12:41:59 +0200 Subject: [PATCH 21/83] simplify functions --- src/post_processing/utils/fpod_utils.py | 1010 ++++++++++------------- 1 file changed, 427 insertions(+), 583 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index f31c49d..2d81ed9 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -18,7 +18,6 @@ date_range, notna, read_csv, - read_excel, to_datetime, to_timedelta, ) @@ -44,10 +43,10 @@ } season_color = { - "spring": "#C5E0B4", - "summer": "#FCF97F", - "autumn": "#ED7C2F", - "winter": "#B4C7E8", + "spring": "#C5E0B4", #green + "summer": "#FCF97F", #darkgoldenrod + "autumn": "#ED7C2F", #orange + "winter": "#B4C7E8", #blue } def fpod2aplose( @@ -156,285 +155,262 @@ def cpod2aplose( return concat(results, ignore_index=True) -def usable_data_phase( - d_meta: DataFrame, - df: DataFrame, - dpl: str, +def csv_folder( + folder_path: Path, + sep: str = ";", + encoding: str = "latin-1", ) -> DataFrame: - """Calculate the percentage of usable data. - - Considering the deployment dates and the collected data. + """Process all CSV files from a folder. Parameters ---------- - df: DataFrame - CPOD result DataFrame - d_meta: DataFrame - Metadata DataFrame with deployments information (previously exported as json) - dpl: str - Deployment of interest where percentage of usable data will be calculated + folder_path: Path + Folder's place. + sep: str, default=";" + Column separator. + encoding: str, default="latin-1" + File encoding. Returns ------- DataFrame - Returns the percentage of usable datas in the chosen phase + Concatenated data with optional filename column. + + Raises + ------ + ValueError + If no CSV files found. """ - d_meta.loc[:, ["deployment_date", "recovery_date"]] = d_meta[ - ["deployment_date", "recovery_date"] - ].apply( - to_datetime, - ) - df["start_datetime"] = to_datetime(df["start_datetime"]) + all_files = list(folder_path.rglob("*.csv")) - phase = d_meta.loc[d_meta["name"] == dpl].reset_index() - data = df.loc[df["name"] == dpl].reset_index() - start_date = phase.loc[0, "deployment_date"] - end_date = phase.loc[0, "recovery_date"] + if not all_files: + msg = f"No .csv files found in {folder_path}" + raise ValueError(msg) - # Calculate the percentage of collected data on the phase length of time - if data.empty: - percentage_data = 0 - msg = "No data for this phase" - else: - df_end = data.loc[data.index[-1], "start_datetime"] - df_start = data.loc[data.index[0], "start_datetime"] - act_length = df_end - df_start - p_length = end_date - start_date - percentage_data = act_length * 100 / p_length - msg = f"Percentage of usable data : {percentage_data}%" + all_data = [] + for file in all_files: + df = read_csv(file, sep=sep, encoding=encoding) + df["deploy.name"] = file.stem + all_data.append(df) - logger.info(msg) - return percentage_data + return concat(all_data, ignore_index=True) -def meta_cut_aplose( - raw_data: DataFrame, - metadata: DataFrame, - column_names: dict[str, str] | None = None, +def txt_folder( + folder_path: Path, + sep: str = "\t", ) -> DataFrame: - """Filter data to keep only the ones corresponding to a deployment. + r"""Process all TXT files from a folder. Parameters ---------- - raw_data : DataFrame - Dataframe containing deploy.name et timestamp - metadata : DataFrame - Metadata containing deploy.name, deployment_date, recovery_date - column_names : dict[str, str], optional - Dictionary with column names. Keys: 'deploy_name', 'timestamp', - 'deployment_date', 'recovery_date'. If None, uses defaults. - + folder_path: Path + Folder's place. + sep: str, default="\t" + Column separator. Returns ------- DataFrame - Filtered data containing only rows in deployment periods + Concatenated data from all TXT files. """ - defaults = { - "deploy_name": "deploy.name", - "timestamp": "start_datetime", - "deployment_date": "deployment_date", - "recovery_date": "recovery_date", - } + all_files = list(Path(folder_path).rglob("*.txt")) + + if not all_files: + msg = f"No .txt files found in {folder_path}" + raise ValueError(msg) - # Merge with user-provided names - cols = {**defaults, **(column_names or {})} + all_data = [] + for file in all_files: + file_path = folder_path / file + df = read_csv(file_path, sep=sep) + all_data.append(df) - col_deploy_name = cols["deploy_name"] - col_timestamp = cols["timestamp"] - col_debut = cols["deployment_date"] - col_fin = cols["recovery_date"] + return concat(all_data, ignore_index=True) - required_raw = [col_deploy_name, col_timestamp] - required_meta = [col_deploy_name, col_debut, col_fin] - for col in required_raw: - if col not in raw_data.columns: - msg = f"'{col}' not found in raw_data" - raise ValueError(msg) - for col in required_meta: - if col not in metadata.columns: - msg = f"'{col}' not found in metadata" - raise ValueError(msg) +def parse_timestamps( + df: DataFrame, + col_timestamp: str, + date_formats: list[str] | None = None, +) -> DataFrame: + """Parse timestamp column with multiple possible formats. - # Convert to datetime - raw = raw_data.copy() - meta = metadata.copy() - raw[col_timestamp] = to_datetime(raw[col_timestamp], errors="coerce") - meta[col_debut] = to_datetime(meta[col_debut], errors="coerce") - meta[col_fin] = to_datetime(meta[col_fin], errors="coerce") + Parameters + ---------- + df: DataFrame + Input dataframe. + col_timestamp: str + Name of the timestamp column to parse. + date_formats: list[str], optional + List of strptime formats to try. If None, uses common formats. - dfm = raw.merge( - meta[[col_deploy_name, col_debut, col_fin]], - on=col_deploy_name, - how="left", - ) + Returns + ------- + DataFrame + Copy of df with parsed timestamps. - out = dfm[ - (dfm[col_timestamp] >= dfm[col_debut]) - & (dfm[col_timestamp] <= dfm[col_fin]) - & dfm[col_timestamp].notna() - & dfm[col_debut].notna() - & dfm[col_fin].notna() - ].copy() + Raises + ------ + ValueError + If timestamps cannot be parsed with any format. - columns_to_drop = [ - col for col in [col_debut, col_fin] if col not in raw_data.columns - ] - if columns_to_drop: - out = out.drop(columns=columns_to_drop) + """ + if date_formats is None: + date_formats = [ + "%Y-%m-%dT%H:%M:%S.%f%z", + "%Y-%m-%dT%H:%M:%S:%Z", + "%Y-%m-%dT%H:%M:%S.%f", + "%Y-%m-%dT%H:%M:%S", + "%Y-%m-%d %H:%M:%S.%f", + "%d/%m/%Y %H:%M", + ] - return out.sort_values([col_deploy_name, col_timestamp]).reset_index(drop=True) + df = df.copy() + df[col_timestamp] = df[col_timestamp].apply( + lambda x: strptime_from_text(x, date_formats)) + return df -def format_calendar(path: Path) -> DataFrame: - """Format calendar. +def required_columns( + df: DataFrame, + columns: list[str], +) -> None: + """Validate that required columns exist in dataframe. Parameters ---------- - path: Path - Excel calendar path + df : DataFrame + Dataframe to validate. + columns : list[str] + List of required column names. + + Raises + ------ + ValueError + If any required column is missing. """ - df_calendar = read_excel(path) - df_calendar = df_calendar[df_calendar["Site group"] == "Data"].copy() - - return df_calendar.rename( - columns={ - "Start": "start_datetime", - "Stop": "end_datetime", - "Site": "site.name", - }, - ) + for col in columns: + if col not in df.columns: + msg = f"'{col}' not found in {df}" + raise ValueError(msg) -def assign_phase( - meta: DataFrame, - data: DataFrame, - site: str, +def create_mask( + df: DataFrame, + col_timestamp: str, + col_start: str, + col_end: str, ) -> DataFrame: - """Add a column to an APLOSE DataFrame to specify the name of the phase. - - The name of the phase is attributed according to metadata. + """Filter rows to keep only those within deployment period. Parameters ---------- - meta: DataFrame - Metadata dataframe with deployments information (previously exported as json). - data: DataFrame - Contain positive hours to detections. - site: str - Name of the site you wish to assign phases to. + df : DataFrame + Dataframe with timestamp and deployment period columns. + col_timestamp : str + Name of timestamp column. + col_start : str + Name of deployment start date column. + col_end : str + Name of deployment end date column. Returns ------- DataFrame - The same dataframe with the column Phase. + Filtered dataframe with rows in deployment periods. """ - data["start_datetime"] = to_datetime(data["start_datetime"], utc=True) - meta["deployment_date"] = to_datetime(meta["deployment_date"], utc=True) - meta["recovery_date"] = to_datetime(meta["recovery_date"], utc=True) - - meta = meta[meta["site.name"] == site].copy() - - data["name"] = None - for _, meta_row in meta.iterrows(): - j = 0 - while j < len(data): - if ( - meta_row["deployment_date"] - <= data.loc[j, "start_datetime"] - < meta_row["recovery_date"] - ): - data.loc[j, "name"] = ( - f"{meta_row['site.name']}_{meta_row['campaign.name']}" - ) - j += 1 - return data - - -def assign_phase_simple( - meta: DataFrame, - data: DataFrame, + mask = ( + (df[col_timestamp] >= df[col_start]) + & (df[col_timestamp] <= df[col_end]) + & df[col_timestamp].notna() + & df[col_start].notna() + & df[col_end].notna() + ) + return df[mask].copy() + + +def meta_cut_aplose( + raw_data: DataFrame, + metadata: DataFrame, ) -> DataFrame: - """Add column to an Aplose DataFrame to specify the phase, according to metadata. + """Filter data to keep only rows within deployment periods. Parameters ---------- - meta: DataFrame - Metadata dataframe with deployments information (previously exported as json). - data: DataFrame - Contain positive hours to detections. + raw_data : DataFrame + Dataframe containing deployment name and timestamps. + metadata : DataFrame + Metadata with deployment periods (start/end dates). Returns ------- DataFrame - The same dataframe with the column Phase. + Filtered data with only rows within deployment periods. """ - data["start_datetime"] = to_datetime(data["start_datetime"], utc=True) - data["end_datetime"] = to_datetime(data["end_datetime"], dayfirst=True, utc=True) - meta["deployment_date"] = to_datetime(meta["deployment_date"], utc=True) - meta["recovery_date"] = to_datetime(meta["recovery_date"], utc=True) - meta["deployment_date"] = meta["deployment_date"].dt.floor("d") - meta["recovery_date"] = meta["recovery_date"].dt.floor("d") + required_columns( + raw_data,["deploy.name", "start_datetime"]) + required_columns( + metadata,["deploy.name", "deployment_date","recovery_date"]) + + raw = parse_timestamps(raw_data, "start_datetime") + + dfm = raw.merge( + metadata[["deploy.name", "deployment_date","recovery_date"]], + on="deploy.name", + how="left", + ) - data["name"] = None - for site in data["deploy.name"].unique(): - site_meta = meta[meta["deploy.name"] == site] - site_data = data[data["deploy.name"] == site] + out = create_mask(dfm, "start_datetime", "deployment_date", "recovery_date") - for _, meta_row in site_meta.iterrows(): - time_filter = ( - meta_row["deployment_date"] <= site_data["start_datetime"] - ) & (site_data["start_datetime"] < meta_row["recovery_date"]) - data.loc[site_data.index[time_filter], "name"] = meta_row["name"] + columns_to_drop = [ + col for col in ["deployment_date","recovery_date"] if col not in raw_data. + columns] + if columns_to_drop: + out = out.drop(columns=columns_to_drop) - return data + return out.sort_values(["start_datetime"]).reset_index(drop=True) -def generate_hourly_detections(meta: DataFrame, site: str) -> DataFrame: +def add_utc( + df: DataFrame, + cols: list, + fr:str="h", +) -> DataFrame: """Create a DataFrame with one line per hour between start and end dates. Keep the number of detections per hour between these dates. Parameters ---------- - meta: DataFrame - Metadata dataframe with deployments information (previously exported as json) - site: str - A way to isolate the site you want to work on. + df: pd.DataFrame + Metadata dataframe with deployments information (previously exported as json). + cols:list + Timestamp column names. + fr:str + Frequency of the range of detections. Returns ------- - DataFrame + pd.DataFrame A full period of time with positive and negative hours to detections. """ - df_meta = meta[meta["site.name"] == site].copy() - df_meta["deployment_date"] = to_datetime(df_meta["deployment_date"]) - df_meta["recovery_date"] = to_datetime(df_meta["recovery_date"]) - df_meta["deployment_date"] = df_meta["deployment_date"].dt.floor("h") - df_meta["recovery_date"] = df_meta["recovery_date"].dt.floor("h") - df_meta = df_meta.sort_values(by=["deployment_date"]) - - records = [ - {"name": row["name"], "start_datetime": date} - for _, row in df_meta.iterrows() - for date in date_range( - start=row["deployment_date"], - end=row["recovery_date"], - freq="h", - ) - ] - - return DataFrame(records) + for col in df[cols]: + df[col] = to_datetime(df[col], utc=True) + df[col] = df[col].dt.floor(fr) + return df -def build_range(df: DataFrame, fr:str="h") -> DataFrame: +def build_range( + df: DataFrame, + fr:str="h", +) -> DataFrame: """Create a DataFrame with one line per hour between start and end dates. Keep the number of detections per hour between these dates. @@ -452,10 +428,7 @@ def build_range(df: DataFrame, fr:str="h") -> DataFrame: A full period of time with positive and negative hours to detections. """ - df["Début"] = to_datetime(df["Début"], utc=True) - df["Début"] = df["Début"].dt.floor(fr) - df["Fin"] = to_datetime(df["Fin"], utc=True) - df["Fin"] = df["Fin"].dt.floor(fr) + add_utc(df, ["Début","Fin"], fr) all_ranges = [] for _, row in df.iterrows(): @@ -471,46 +444,10 @@ def build_range(df: DataFrame, fr:str="h") -> DataFrame: return concat(all_ranges, ignore_index=True) -def merging_tab(meta: DataFrame, data: DataFrame) -> DataFrame: - """Create a DataFrame with one line per hour between start and end dates. - - Keep the number of detections per hour between these dates. - - Parameters - ---------- - meta: DataFrame - Metadata with deployments information (previously exported as json) - data: DataFrame - Contain positive hours to detections - - Returns - ------- - DataFrame - A full period of time with positive and negative hours to detections. - - """ - data["start_datetime"] = to_datetime(data["start_datetime"], utc=True) - meta["start_datetime"] = to_datetime(meta["start_datetime"], utc=True) - - deploy_detec = data["deploy.name"].unique() - df_filtered = meta[meta["deploy.name"].isin(deploy_detec)] - - output = df_filtered.merge( - data[["deploy.name", "start_datetime", "DPM"]], - on=["deploy.name", "start_datetime"], - how="outer", - ) - output["DPM"] = output["DPM"].fillna(0) - - output["Day"] = output["start_datetime"].dt.day - output["Month"] = output["start_datetime"].dt.month - output["Year"] = output["start_datetime"].dt.year - output["hour"] = output["start_datetime"].dt.hour - - return output - - -def feeding_buzz(df: DataFrame, species: str) -> DataFrame: +def feeding_buzz( + df: DataFrame, + species: str, +) -> DataFrame: """Process a CPOD/FPOD feeding buzz detection file. Gives the feeding buzz duration, depending on the studied species. @@ -607,81 +544,270 @@ def assign_daytime( return df -def csv_folder( - folder_path: Path, - sep: str = ";", - encoding: str = "latin-1", +def is_dpm_col( + df: DataFrame, ) -> DataFrame: - """Process all CSV files from a folder. + """Ensure DPM column exists with default value of 1. Parameters ---------- - folder_path: Path - Folder's place. - sep: str, default=";" - Column separator. - encoding: str, default="latin-1" - File encoding. + df: DataFrame + Input dataframe. Returns ------- DataFrame - Concatenated data with optional filename column. - - Raises - ------ - ValueError - If no CSV files found. + Copy of df with DPM column. """ - all_files = list(folder_path.rglob("*.csv")) - - if not all_files: - msg = f"No .csv files found in {folder_path}" - raise ValueError(msg) - - all_data = [] - for file in all_files: - df = read_csv(file, sep=sep, encoding=encoding) - df["deploy.name"] = file.stem - all_data.append(df) - - return concat(all_data, ignore_index=True) + df = df.copy() + if "DPM" not in df.columns: + df["DPM"] = 1 + return df -def txt_folder(folder_path: Path, - sep: str = "\t") -> DataFrame: - r"""Process all TXT files from a folder. +def pf_datetime( + df: DataFrame, + col_datetime: str, + frequency: str, +) -> DataFrame: + """Parse datetime column and floor to specified frequency. Parameters ---------- - folder_path: Path - Folder's place. - sep: str, default="\t" - Column separator. + df: DataFrame + Input dataframe. + col_datetime: str + Name of datetime column. + frequency: str + Pandas frequency string (e.g., "D", "h", "10min"). Returns ------- DataFrame - Concatenated data from all TXT files. + Copy of df with parsed and floored datetime. """ - all_files = list(Path(folder_path).rglob("*.txt")) + df = df.copy() + df[col_datetime] = to_datetime(df[col_datetime], utc=True) + df[col_datetime] = df[col_datetime].dt.floor(frequency) + return df - if not all_files: - msg = f"No .txt files found in {folder_path}" - raise ValueError(msg) - all_data = [] - for file in all_files: - file_path = folder_path / file - df = read_csv(file_path, sep=sep) - all_data.append(df) +def build_aggregation_dict( + df: DataFrame, + base_agg: dict[str, str], + extra_columns: list[str] | None = None, +) -> dict[str, str]: + """Build aggregation dictionary with validation. - return concat(all_data, ignore_index=True) + Parameters + ---------- + df: DataFrame + Input dataframe to check column existence. + base_agg: dict[str, str] + Base aggregation dictionary (e.g., {"DPM": "sum"}). + extra_columns: list[str], optional + Additional columns to aggregate with "first" strategy. + + Returns + ------- + dict[str, str] + Complete aggregation dictionary. + + """ + agg_dict = base_agg.copy() + + if extra_columns: + for col in extra_columns: + if col in df.columns: + agg_dict[col] = "first" + else: + logger.warning("Column '%s' does not exist and will be ignored.", col) + + return agg_dict + + +def resample_dpm( + df: DataFrame, + frq: str, + group_by: list[str] | None = None, + extra_columns: list[str] | None = None, +) -> DataFrame: + """Resample DPM data to specified time frequency. + + Aggregates Detection Positive Minutes (DPM) by time period, + optionally preserving grouping columns like deployment name. + + Parameters + ---------- + df: DataFrame + CPOD result DataFrame with DPM data. + frq: str + Pandas frequency string: "D" (day), "h" (hour), "10min", etc. + group_by: list[str], optional + Columns to group by (e.g., ["deploy.name", "start_datetime"]). + If None, groups only by start_datetime. + extra_columns: list[str], optional + Additional columns to preserve (uses "first" aggregation). + + Returns + ------- + DataFrame + Resampled DataFrame with aggregated DPM values. + + Examples + -------- + >>> # Daily aggregation per deployment + >>> resample_dpm(df, "D", group_by=["deploy.name"]) + + >>> # Hourly aggregation with site info preserved + >>> resample_dpm(df, "h", extra_columns=["site.name"]) + + """ + df = is_dpm_col(df) + df = add_utc(df, ["start_datetime"], frq) + + # Determine grouping columns + if group_by is None: + group_by = ["start_datetime"] + + # Build aggregation dictionary + agg_dict = build_aggregation_dict( + df, + base_agg={"DPM": "sum"}, + extra_columns=extra_columns, + ) + + return df.groupby(group_by).agg(agg_dict).reset_index() + + +def deploy_period( + df: DataFrame, + col_timestamp: str = "start_datetime", + col_deployment: str = "deploy.name", +) -> DataFrame: + """Extract start and end timestamps for each deployment. + + Parameters + ---------- + df: DataFrame + Input dataframe with parsed timestamps. + col_timestamp: str, default="start_datetime" + Name of the timestamp column. + col_deployment: str, default="deploy.name" + Name of the deployment identifier column. + + Returns + ------- + DataFrame + DataFrame with columns: [col_deployment, 'Début', 'Fin']. + + """ + return ( + df.groupby([col_deployment]) + .agg(Début=(col_timestamp, "first"), Fin=(col_timestamp, "last")) + .reset_index() + ) + + +def first_last( + df: DataFrame, + col_timestamp: str = "start_datetime", + col_deployment: str = "deploy.name", + date_formats: list[str] | None = None, +) -> DataFrame: + """Isolate beginning and end of every deployment. + Parameters + ---------- + df: DataFrame + CPOD result DataFrame. + col_timestamp: str, default="start_datetime" + Name of the timestamps column. + col_deployment: str, default="deploy.name" + Name of the deployment identifier column. + date_formats: list[str], optional + List of date formats to try for parsing. + + Returns + ------- + DataFrame + DataFrame with deployment periods (Début, Fin). + + """ + df_parsed = parse_timestamps(df, col_timestamp, date_formats) + return deploy_period(df_parsed, col_timestamp, col_deployment) + +def actual_data( + df: DataFrame, + meta: DataFrame, +) -> DataFrame: + """Create a table with beginning and end of every deployment using metadata. + + Parameters + ---------- + df: DataFrame + Contains beginning and end for every deployment. + meta: DataFrame + Contains metadata for every deployment. -def extract_site(df: DataFrame) -> DataFrame: + Returns + ------- + DataFrame + DataFrame with corrected deployment periods (Début, Fin). + + """ + required_columns( + df,["deploy.name","ChunkEnd"]) + required_columns( + meta,["deploy.name", "deployment_date","recovery_date"]) + + beg_end = first_last(df, "ChunkEnd") + + beg_end = add_utc(beg_end, ["Début", "Fin"]) + + final = beg_end.merge(meta[["deployment_date","recovery_date","deploy.name"]], + on = "deploy.name", how="left") + final.loc[final["Début"] < final["deployment_date"], "Début"] = final["deployment_date"] + final.loc[final["Fin"] > final["recovery_date"], "Fin"] = final["recovery_date"] + return final.drop(["deployment_date", "recovery_date"], axis=1) + +def create_matrix( + df: DataFrame, + group_cols: list, + agg_cols: list, +)-> DataFrame: + """Create a stats matrix (mean & std). + + Parameters + ---------- + df : DataFrame + Extended frame with raw data to calculate stats for + group_cols : list + Additional columns to group by + agg_cols : list + Columns to aggregate + + Returns + ------- + Give a matrix of the data in [agg_cols] grouped by [group_cols]. + + """ + matrix = df.groupby(group_cols).agg({ + col: ["mean", "std"] for col in agg_cols + }) + matrix = matrix.reset_index() + + matrix.columns = group_cols + [f"{col}_{stat}" + for col in agg_cols + for stat in ["mean", "std"]] + return matrix + + +def extract_site( + df: DataFrame, +) -> DataFrame: """Create new columns: site.name and campaign.name, in order to match the metadata. Parameters @@ -695,11 +821,15 @@ def extract_site(df: DataFrame) -> DataFrame: The same dataframe with two additional columns. """ + required_columns(df, ["deploy.name"]) df[["site.name", "campaign.name"]] = df["deploy.name"].str.split("_", expand=True) return df -def percent_calc(data: DataFrame, time_unit: str | None = None) -> DataFrame: +def percent_calc( + data: DataFrame, + time_unit: str | None = None, +) -> DataFrame: """Calculate percentage of clicks, feeding buzzes and positive hours to detection. Computed on the entire effort and for every site. @@ -956,261 +1086,6 @@ def hour_percent(df: DataFrame, metric: str) -> None: plt.show() -def is_dpm_col(df: DataFrame) -> DataFrame: - """Ensure DPM column exists with default value of 1. - - Parameters - ---------- - df: DataFrame - Input dataframe. - - Returns - ------- - DataFrame - Copy of df with DPM column. - - """ - df = df.copy() - if "DPM" not in df.columns: - df["DPM"] = 1 - return df - - -def pf_datetime( - df: DataFrame, - col_datetime: str, - frequency: str, -) -> DataFrame: - """Parse datetime column and floor to specified frequency. - - Parameters - ---------- - df: DataFrame - Input dataframe. - col_datetime: str - Name of datetime column. - frequency: str - Pandas frequency string (e.g., "D", "h", "10min"). - - Returns - ------- - DataFrame - Copy of df with parsed and floored datetime. - - """ - df = df.copy() - df[col_datetime] = to_datetime(df[col_datetime], utc=True) - df[col_datetime] = df[col_datetime].dt.floor(frequency) - return df - - -def build_aggregation_dict( - df: DataFrame, - base_agg: dict[str, str], - extra_columns: list[str] | None = None, -) -> dict[str, str]: - """Build aggregation dictionary with validation. - - Parameters - ---------- - df: DataFrame - Input dataframe to check column existence. - base_agg: dict[str, str] - Base aggregation dictionary (e.g., {"DPM": "sum"}). - extra_columns: list[str], optional - Additional columns to aggregate with "first" strategy. - - Returns - ------- - dict[str, str] - Complete aggregation dictionary. - - """ - agg_dict = base_agg.copy() - - if extra_columns: - for col in extra_columns: - if col in df.columns: - agg_dict[col] = "first" - else: - logger.warning("Column '%s' does not exist and will be ignored.", col) - - return agg_dict - - -def resample_dpm( - df: DataFrame, - frq: str, - group_by: list[str] | None = None, - extra_columns: list[str] | None = None, -) -> DataFrame: - """Resample DPM data to specified time frequency. - - Aggregates Detection Positive Minutes (DPM) by time period, - optionally preserving grouping columns like deployment name. - - Parameters - ---------- - df: DataFrame - CPOD result DataFrame with DPM data. - frq: str - Pandas frequency string: "D" (day), "h" (hour), "10min", etc. - group_by: list[str], optional - Columns to group by (e.g., ["deploy.name", "start_datetime"]). - If None, groups only by start_datetime. - extra_columns: list[str], optional - Additional columns to preserve (uses "first" aggregation). - - Returns - ------- - DataFrame - Resampled DataFrame with aggregated DPM values. - - Examples - -------- - >>> # Daily aggregation per deployment - >>> resample_dpm(df, "D", group_by=["deploy.name"]) - - >>> # Hourly aggregation with site info preserved - >>> resample_dpm(df, "h", extra_columns=["site.name"]) - - """ - df = is_dpm_col(df) - df = pf_datetime(df, "start_datetime", frq) - - # Determine grouping columns - if group_by is None: - group_by = ["start_datetime"] - - # Build aggregation dictionary - agg_dict = build_aggregation_dict( - df, - base_agg={"DPM": "sum"}, - extra_columns=extra_columns, - ) - - return df.groupby(group_by).agg(agg_dict).reset_index() - - -def date_format( - df: DataFrame, -) -> DataFrame: - """Change the date time format of a DataFrame to "%d/%m/%Y %H:%M:%S". - - Parameters - ---------- - df: pd.DataFrame - CPOD result DataFrame - - Returns - ------- - Return the same dataframe with a different time format. - - """ - df["Date heure"] = to_datetime(df["Date heure"], format="%Y-%m-%d %H:%M:%S") - df["Date heure"] = df["Date heure"].dt.strftime("%d/%m/%Y %H:%M:%S") - - return df - - -def parse_timestamps( - df: DataFrame, - col_timestamp: str, - date_formats: list[str] | None = None, -) -> DataFrame: - """Parse timestamp column with multiple possible formats. - - Parameters - ---------- - df: DataFrame - Input dataframe. - col_timestamp: str - Name of the timestamp column to parse. - date_formats: list[str], optional - List of strptime formats to try. If None, uses common formats. - - Returns - ------- - DataFrame - Copy of df with parsed timestamps. - - Raises - ------ - ValueError - If timestamps cannot be parsed with any format. - - """ - if date_formats is None: - date_formats = [ - "%Y-%m-%dT%H:%M:%S:%Z", - "%Y-%m-%dT%H:%M:%S", - "%d/%m/%Y %H:%M", - ] - - df = df.copy() - df[col_timestamp] = df[col_timestamp].apply( - lambda x: strptime_from_text(x, date_formats)) - return df - - -def deploy_period( - df: DataFrame, - col_timestamp: str = "start_datetime", - col_deployment: str = "deploy.name", -) -> DataFrame: - """Extract start and end timestamps for each deployment. - - Parameters - ---------- - df: DataFrame - Input dataframe with parsed timestamps. - col_timestamp: str, default="start_datetime" - Name of the timestamp column. - col_deployment: str, default="deploy.name" - Name of the deployment identifier column. - - Returns - ------- - DataFrame - DataFrame with columns: [col_deployment, 'Début', 'Fin']. - - """ - return ( - df.groupby([col_deployment]) - .agg(Début=(col_timestamp, "first"), Fin=(col_timestamp, "last")) - .reset_index() - ) - - -def actual_data( - df: DataFrame, - col_timestamp: str = "start_datetime", - col_deployment: str = "deploy.name", - date_formats: list[str] | None = None, -) -> DataFrame: - """Create a table with beginning and end of every deployment. - - Parameters - ---------- - df: DataFrame - CPOD result DataFrame. - col_timestamp: str, default="start_datetime" - Name of the timestamps column. - col_deployment: str, default="deploy.name" - Name of the deployment identifier column. - date_formats: list[str], optional - List of date formats to try for parsing. - - Returns - ------- - DataFrame - DataFrame with deployment periods (Début, Fin). - - """ - df_parsed = parse_timestamps(df, col_timestamp, date_formats) - return deploy_period(df_parsed, col_timestamp, col_deployment) - - def calendar( meta: DataFrame, data: DataFrame, @@ -1286,35 +1161,4 @@ def calendar( # Layout final plt.xticks(fontsize=12) plt.tight_layout() - plt.show() - - -def create_matrix(df: DataFrame, - group_cols: list, - agg_cols: list, - )-> DataFrame: - """Create a stats matrix (mean & std). - - Parameters - ---------- - df : DataFrame - Extended frame with raw data to calculate stats for - group_cols : list - Additional columns to group by - agg_cols : list - Columns to aggregate - - Returns - ------- - Give a matrix of the data in [agg_cols] grouped by [group_cols]. - - """ - matrix = df.groupby(group_cols).agg({ - col: ["mean", "std"] for col in agg_cols - }) - matrix = matrix.reset_index() - - matrix.columns = group_cols + [f"{col}_{stat}" - for col in agg_cols - for stat in ["mean", "std"]] - return matrix + plt.show() \ No newline at end of file From 87d8cb596e89839719f14f60278da42512a57319 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 24 Oct 2025 12:42:08 +0200 Subject: [PATCH 22/83] add tests --- tests/test_fpod_utils.py | 38 +++++++++++++++++++++++--------------- 1 file changed, 23 insertions(+), 15 deletions(-) diff --git a/tests/test_fpod_utils.py b/tests/test_fpod_utils.py index 1e4504f..566d07a 100644 --- a/tests/test_fpod_utils.py +++ b/tests/test_fpod_utils.py @@ -22,7 +22,6 @@ feeding_buzz, assign_daytime, is_dpm_col, - pf_datetime, build_aggregation_dict, resample_dpm) @@ -107,8 +106,8 @@ def aplose_dataframe() -> DataFrame: Timestamp("2024-12-30T09:32:00.000+00:00"), ], "is_box": [0, 0, 0, 0, 0, 0], - "deploy.name": ["site_deploy", "site_deploy", "site_deploy", - "site_deploy", "site_deploy", "site_deploy"], + "deploy.name": ["site_campaign", "site_campaign", "site_campaign", + "site_campaign", "site_campaign", "site_campaign"], }, ) @@ -175,11 +174,11 @@ def test_fb_folder_non_existent() -> None: with pytest.raises(FileNotFoundError): txt_folder(Path("/non/existent/folder")) -def test_fb_folder_no_files(tmp_path) -> None: +def test_fb_folder_no_files(tmp_path: pytest.fixture) -> None: with pytest.raises(ValueError, match="No .txt files found"): txt_folder(tmp_path) - # extract_site +# extract_site def test_extract_site(self) -> None: input_data = [ {"deploy.name":"Walde_Phase46"}, @@ -236,7 +235,7 @@ def test_csv_folder_non_existent() -> None: with pytest.raises(FileNotFoundError): csv_folder(Path("/non/existent/folder")) -def test_csv_folder_no_files(tmp_path) -> None: +def test_csv_folder_no_files(tmp_path: pytest.fixture) -> None: with pytest.raises(ValueError, match="No .csv files found"): csv_folder(tmp_path) @@ -252,13 +251,16 @@ def test_csv_folder_no_files(tmp_path) -> None: # resample_dpm -# actual_data +# parse_timestamps def test_parse_timestamps() -> None: - df = DataFrame({"date": ["2024-01-01T10:00:00", "01/01/2024 10:00"]}) + df = DataFrame({"date": ["2024-01-01T10:00:00", "06/01/2025 08:35"]}) result = parse_timestamps(df, "date") + expected = DataFrame({"date": ["2024-01-01 10:00:00", + "2025-01-06 08:35:00"]}).astype("datetime64[ns]") + assert_frame_equal(result, expected) - -def test_get_deployment_periods() -> None: +# deploy_period +def test_deploy_period() -> None: df = DataFrame( { "deploy.name": ["A", "A", "B"], @@ -272,10 +274,16 @@ def test_get_deployment_periods() -> None: expected = DataFrame( { "deploy.name": ["A", "B"], - "Début": [datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), - datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc)], - "Fin": [datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), - datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc)], + "Début": [ + datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), + datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), + ], + "Fin": [ + datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), + datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), + ], }) result = deploy_period(df) - assert_frame_equal(result, expected) \ No newline at end of file + assert_frame_equal(result, expected) + +# actual_data \ No newline at end of file From 885b0b52fd5f5ced84f7de731535a0ecc6eb4abe Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 24 Oct 2025 12:43:28 +0200 Subject: [PATCH 23/83] change some functionalities --- user_case/user_case_CALAIS.ipynb | 20 +++++++++++--------- 1 file changed, 11 insertions(+), 9 deletions(-) diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index 21ebcef..6703596 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-10-17T09:13:24.163916Z", - "start_time": "2025-10-17T09:13:21.433376Z" + "end_time": "2025-10-23T15:42:49.393544Z", + "start_time": "2025-10-23T15:42:47.415071Z" } }, "source": [ @@ -21,7 +21,7 @@ ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose, resample_dpm,txt_folder, build_range, extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent, \\\n", + "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose, resample_dpm, txt_folder, build_range, extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent, \\\n", " feeding_buzz\n", "from post_processing.utils.core_utils import json2df,get_season" ], @@ -56,7 +56,13 @@ "path = csv_folder(pod_files)\n", "print(path.head())\n", "\n", - "df_0 = path.dropna()" + "df_0 = path.dropna()\n", + "\n", + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_calais.json\") #Path to your metadata file.\n", + "metadatax = json2df(json_path=json)\n", + "\n", + "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", + " metadatax[\"campaign.name\"].astype(str))" ], "id": "8636a8a27fe2af47", "outputs": [ @@ -83,7 +89,7 @@ } }, "cell_type": "code", - "source": "d_beg_end = actual_data(df_0, col_timestamp=\"ChunkEnd\")", + "source": "d_beg_end = actual_data(df_0, metadatax)", "id": "4208969d9e509a8", "outputs": [], "execution_count": 12 @@ -245,11 +251,7 @@ }, "cell_type": "code", "source": [ - "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_calais.json\") #Path to your metadata file.\n", - "metadatax = json2df(json_path=json)\n", "\n", - "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" +\n", - " metadatax[\"campaign.name\"].astype(str))\n", "\n", "cleared = meta_cut_aplose(df_aplose, metadatax) #Remove lines captures outside the instrument submersion." ], From 211a7d825de722a5be93ad665a7f4b78f33cf784 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 24 Oct 2025 12:43:37 +0200 Subject: [PATCH 24/83] add new notebook --- .../example_FPOD-CPOD_firstresults.ipynb | 60 +++++++++++++++++++ 1 file changed, 60 insertions(+) create mode 100644 user_case/example_FPOD-CPOD_firstresults.ipynb diff --git a/user_case/example_FPOD-CPOD_firstresults.ipynb b/user_case/example_FPOD-CPOD_firstresults.ipynb new file mode 100644 index 0000000..50da958 --- /dev/null +++ b/user_case/example_FPOD-CPOD_firstresults.ipynb @@ -0,0 +1,60 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": null, + "id": "initial_id", + "metadata": { + "collapsed": true + }, + "outputs": [], + "source": [ + "from pathlib import Path\n", + "\n", + "import pytz\n", + "from pandas import (\n", + " concat,\n", + " read_csv,\n", + " to_datetime,\n", + ")\n", + "\n", + "from post_processing.utils.fpod_utils import extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent" + ] + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "", + "id": "36421fdbbca9aed6" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "", + "id": "55b73b0158109c1" + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 2 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython2", + "version": "2.7.6" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} From ba07b5927eae4cc9f16d6deba711dee2be2ba1c1 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 28 Oct 2025 15:04:39 +0100 Subject: [PATCH 25/83] add comments and functions to the notebooks --- user_case/example_FPOD-CPOD_aplose.ipynb | 158 ++++++++-- .../example_FPOD-CPOD_firstresults.ipynb | 297 +++++++++++++++++- 2 files changed, 409 insertions(+), 46 deletions(-) diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb index ffdf2eb..263281e 100644 --- a/user_case/example_FPOD-CPOD_aplose.ipynb +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-10-24T08:10:42.240883Z", - "start_time": "2025-10-24T08:10:40.168812Z" + "end_time": "2025-10-28T10:37:15.228840Z", + "start_time": "2025-10-28T10:37:13.056451Z" } }, "source": [ @@ -19,7 +19,7 @@ ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range" + "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range, csv_folder" ], "outputs": [], "execution_count": 1 @@ -27,27 +27,35 @@ { "metadata": {}, "cell_type": "markdown", - "source": "### Load data\n", + "source": [ + "### Load data\n", + "DPM = Detection Positive Minutes \\\n", + "FB = Feeding buzzes \\\n", + "🐬 = input to modify\n" + ], "id": "a97e19830123b732" }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:20:44.203307Z", - "start_time": "2025-10-24T08:20:44.103414Z" + "end_time": "2025-10-28T10:37:54.942890Z", + "start_time": "2025-10-28T10:37:54.239910Z" } }, "cell_type": "code", "source": [ - "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\")\n", + "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\") #Change the file path in the yaml sheet.🐬\n", "data_list = DataAplose.from_yaml(file=yaml_file)\n", "\n", - "fb_files = Path(r\"U:\\fb_D_NBHF\") #Path to your click details folder.\n", - "d_beg_end = read_csv(r\"U:\\Deb_Fin_Site D Simone.csv\")" + "fb_files = Path(r\"U:\\fb_CA4\") #Path to your click details folder. 🐬\n", + "d_beg_end = read_csv(r\"U:\\Deb_Fin_CA4.csv\") #Beginning and end of recording for every phase. 🐬\n", + "\n", + "tl_path = Path(r\"U:\\TimeLost\\tl_ca4\")\n", + "TimeLost = csv_folder(tl_path)" ], "id": "7da2feb5958db1a9", "outputs": [], - "execution_count": 2 + "execution_count": 3 }, { "metadata": {}, @@ -61,88 +69,170 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:20:52.992126Z", - "start_time": "2025-10-24T08:20:52.983477Z" + "end_time": "2025-10-28T10:37:59.845525Z", + "start_time": "2025-10-28T10:37:59.841429Z" } }, "cell_type": "code", - "source": "frq = \"h\" #This argument will determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\".", + "source": "frq = \"h\" #Determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\". 🐬", "id": "9b0a078a262ac7f2", "outputs": [], - "execution_count": 3 + "execution_count": 4 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:20:56.935875Z", - "start_time": "2025-10-24T08:20:56.923925Z" + "end_time": "2025-10-28T10:38:01.074732Z", + "start_time": "2025-10-28T10:38:01.064333Z" } }, "cell_type": "code", - "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"])", + "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"]) #Resample your DPMs according to the chosen frq.", "id": "fa3847d80ccf49c3", "outputs": [], - "execution_count": 4 + "execution_count": 5 }, { "metadata": {}, "cell_type": "markdown", "source": [ "### Feeding buzzes processing\n", - "Use \"Marsouin\" or \"Commerson\" to get different ICI processing." + "Use \"Dauphin\", Marsouin\" or \"Commerson\" to get different ICI processing." ], "id": "b92537991aa4ac4b" }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:43:33.273328Z", - "start_time": "2025-10-24T08:43:33.011458Z" + "end_time": "2025-10-28T10:38:09.866301Z", + "start_time": "2025-10-28T10:38:09.058313Z" } }, "cell_type": "code", "source": [ - "fb_all = txt_folder(fb_files)\n", - "fb_all = feeding_buzz(fb_all, \"Commerson\")\n", + "fb_all = txt_folder(fb_files) #Read all your FB.txt files.\n", + "fb_all = feeding_buzz(fb_all, \"Marsouin\") #Categorize the minutes (positive or not to FB detection). 🐬\n", "\n", - "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq)\n", + "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq) #Resample your FBs according to the chosen frq.\n", "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", "fb[\"start_datetime\"] = to_datetime(fb[\"start_datetime\"], utc=True)\n", "\n", - "dpm_fb = resamp.merge(fb, on=\"start_datetime\", how=\"left\")" + "dpm_fb = resamp.merge(fb, on=\"start_datetime\", how=\"left\") #Merge DPM and FB dataframes" ], "id": "ca2362e4facecca3", "outputs": [], - "execution_count": 5 + "execution_count": 6 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:43:37.700188Z", - "start_time": "2025-10-24T08:43:37.677880Z" + "end_time": "2025-10-28T10:39:08.158384Z", + "start_time": "2025-10-28T10:39:08.125277Z" } }, "cell_type": "code", "source": [ - "d_0 = build_range(d_beg_end, frq)\n", + "d_0 = build_range(d_beg_end, frq) #Create a dataframe from beginning to end of every phase filled with 0s.\n", "d_tot = d_0.merge(dpm_fb, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")" ], "id": "4d76089ef06c6fdb", "outputs": [], - "execution_count": 6 + "execution_count": 9 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Add additional metrics columns", + "id": "e6a4623e4baf25b5" }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:43:39.055027Z", - "start_time": "2025-10-24T08:43:39.047963Z" + "end_time": "2025-10-28T10:39:09.770505Z", + "start_time": "2025-10-28T10:39:09.756936Z" } }, "cell_type": "code", - "source": "d_tot[[\"DPM\",\"Foraging\"]] = d_tot[[\"DPM\",\"Foraging\"]].fillna(0)", + "source": [ + "d_tot[[\"DPM\",\"Foraging\"]] = d_tot[[\"DPM\",\"Foraging\"]].fillna(0)\n", + "d_tot[\"FBR\"] = d_tot[\"Foraging\"] / d_tot[\"DPM\"] #The Feeding Buzz Ratio corresponds to the proportion of FB among the recorded clicks.\n", + "d_tot[\"FBR\"] = d_tot[\"FBR\"].fillna(0)\n", + "d_tot[\"DPH\"] = (d_tot[\"DPM\"] >0).astype(int) #1 if the hour counts at least 1 DPM, else 0." + ], "id": "912268e5e997dbc6", "outputs": [], - "execution_count": 7 + "execution_count": 10 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T10:39:11.585570Z", + "start_time": "2025-10-28T10:39:11.575488Z" + } + }, + "cell_type": "code", + "source": [ + "d_tot[\"DPH_fb\"] = (d_tot[\"Foraging\"] >0).astype(int)\n", + "d_tot[\"FBR_h\"] = d_tot[\"DPH_fb\"] / d_tot[\"DPH\"]\n", + "d_tot[\"FBR_h\"] = d_tot[\"FBR_h\"].fillna(0)" + ], + "id": "23e3e4137d9e2a84", + "outputs": [], + "execution_count": 11 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Add time columns", + "id": "a775158ba810957a" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T10:39:12.645461Z", + "start_time": "2025-10-28T10:39:12.621127Z" + } + }, + "cell_type": "code", + "source": [ + "d_tot = d_tot.assign(**{attr: getattr(d_tot[\"start_datetime\"].dt, attr.lower())\n", + " for attr in ['Year', 'Month', 'Day', 'Hour']})\n", + "d_tot['YM'] = d_tot[\"start_datetime\"].dt.to_period('M').dt.to_timestamp()" + ], + "id": "62ce5a31ed0db25a", + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\fouinel\\AppData\\Local\\Temp\\ipykernel_11560\\842014434.py:3: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", + " d_tot['YM'] = d_tot[\"start_datetime\"].dt.to_period('M').dt.to_timestamp()\n" + ] + } + ], + "execution_count": 12 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Extract your processed data\n", + "This dataframe is now compatible for analyses on the next notebook and on R." + ], + "id": "c64d09af5a11213d" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T10:39:32.751618Z", + "start_time": "2025-10-28T10:39:15.181512Z" + } + }, + "cell_type": "code", + "source": "d_tot.to_csv(r\"U:\\Hours_DPM_FBUZZ_CA4.csv\", index=False) #Name your file. 🐬", + "id": "f1f9ec385038ba87", + "outputs": [], + "execution_count": 13 } ], "metadata": { diff --git a/user_case/example_FPOD-CPOD_firstresults.ipynb b/user_case/example_FPOD-CPOD_firstresults.ipynb index 50da958..51454a3 100644 --- a/user_case/example_FPOD-CPOD_firstresults.ipynb +++ b/user_case/example_FPOD-CPOD_firstresults.ipynb @@ -2,38 +2,311 @@ "cells": [ { "cell_type": "code", - "execution_count": null, "id": "initial_id", "metadata": { - "collapsed": true + "collapsed": true, + "ExecuteTime": { + "end_time": "2025-10-28T13:23:16.275855Z", + "start_time": "2025-10-28T13:23:14.175637Z" + } }, - "outputs": [], "source": [ - "from pathlib import Path\n", - "\n", - "import pytz\n", "from pandas import (\n", " concat,\n", " read_csv,\n", " to_datetime,\n", ")\n", "\n", - "from post_processing.utils.fpod_utils import extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent" - ] + "from post_processing.utils.fpod_utils import extract_site, percent_calc, year_percent, ym_percent, create_matrix,hist_mean_h, hist_mean_m, hist_mean_s\n", + "from post_processing.utils.core_utils import get_season" + ], + "outputs": [], + "execution_count": 1 }, { "metadata": {}, "cell_type": "markdown", - "source": "", + "source": [ + "## Overview\n", + "Import the right dataset." + ], "id": "36421fdbbca9aed6" }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### *CALAIS*", + "id": "caea0e065ad8068c" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:23:50.797293Z", + "start_time": "2025-10-28T13:23:49.437948Z" + } + }, + "cell_type": "code", + "source": [ + "ca4 = read_csv(r\"U:\\Hours_DPM_FBUZZ_CA4.csv\")\n", + "walde = read_csv(r\"U:\\Hours_DPM_FBUZZ_Walde.csv\")\n", + "\n", + "data_c = concat([ca4, walde])\n", + "data_c[\"start_datetime\"] = to_datetime(data_c[\"start_datetime\"])\n", + "data_c[\"start_datetime\"] = data_c[\"start_datetime\"].apply(lambda x : x.tz_convert(\"Europe/Paris\"))\n", + "data_c[\"Hour\"] = data_c[\"start_datetime\"].dt.hour" + ], + "id": "1268d9e6ce5cdf32", + "outputs": [], + "execution_count": 7 + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### *CETIROISE*", + "id": "b426e672fdd5c6b8" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "ceti = read_csv(r\"U:\\Hours_DPM_FBUZZ_CETIROISE.csv\")\n", + "\n", + "ceti[\"start_datetime\"] = to_datetime(ceti[\"start_datetime\"])\n", + "ceti[\"start_datetime\"] = ceti[\"start_datetime\"].apply(lambda x : x.tz_convert(\"CET\")) #TimeZone Central European Time\n", + "ceti[\"Hour\"] = ceti[\"start_datetime\"].dt.hour" + ], + "id": "870bc0a014561ba8", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### *KERGUELEN*", + "id": "17a5ce1338f6cd1a" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "a = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteA.csv\")\n", + "b = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteB.csv\")\n", + "c = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteC.csv\")\n", + "d = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteD.csv\")\n", + "\n", + "data_k = concat([a, b, c, d])\n", + "data_k[\"start_datetime\"] = to_datetime(data_k[\"start_datetime\"])\n", + "data_k[\"start_datetime\"] = data_k[\"start_datetime\"].apply(lambda x : x.tz_convert(\"Indian/Kerguelen\"))\n", + "data_k[\"Hour\"] = data_k[\"start_datetime\"].dt.hour" + ], + "id": "d65697a1f1487f4c", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### First results\n", + "Precise your dataset." + ], + "id": "9fc3b5075bf7ff2c" + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:23:53.389560Z", + "start_time": "2025-10-28T13:23:53.382634Z" + } + }, + "cell_type": "code", + "source": "data = data_c #🐬", + "id": "add4a626d6cc25a4", + "outputs": [], + "execution_count": 8 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:23:54.833954Z", + "start_time": "2025-10-28T13:23:54.513035Z" + } + }, + "cell_type": "code", + "source": [ + "data = extract_site(data)\n", + "data[\"YMH\"] = data[\"Year\"].astype(str) + '-' + data[\"Month\"].astype(str) + '-' + data[\"Hour\"].astype(str)\n", + "y_per = percent_calc(data, \"Year\")\n", + "#t_per = percent_calc(data, \"TRAVAUX\")" + ], + "id": "37ecc80eda8e57ed", + "outputs": [], + "execution_count": 9 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:23:55.879816Z", + "start_time": "2025-10-28T13:23:55.849626Z" + } + }, + "cell_type": "code", + "source": [ + "ym_per = percent_calc(data, \"YM\")\n", + "ym_per[\"YM\"] = to_datetime(ym_per[\"YM\"])\n", + "ym_per[\"Season\"] = ym_per[\"YM\"].apply(lambda x: get_season(x)[0])\n", + "ym_per[\"Month\"] = ym_per[\"YM\"].dt.month\n", + "ym_per[\"Year\"] = ym_per[\"YM\"].dt.year" + ], + "id": "2b988869ed2466e1", + "outputs": [], + "execution_count": 10 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:23:58.602641Z", + "start_time": "2025-10-28T13:23:58.572133Z" + } + }, + "cell_type": "code", + "source": [ + "per_h = percent_calc(data, \"YMH\")\n", + "per_h[[\"Y\",\"M\",\"Hour\"]] = per_h[\"YMH\"].str.split(\"-\", expand=True)\n", + "per_h[\"Hour\"] = per_h[\"Hour\"].astype(int)" + ], + "id": "cf704032c4a59a7b", + "outputs": [], + "execution_count": 11 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:24:00.067944Z", + "start_time": "2025-10-28T13:24:00.054075Z" + } + }, + "cell_type": "code", + "source": [ + "matrice_s = create_matrix(ym_per, [\"site.name\"],[\"%DPH\", \"FBR\"])\n", + "matrice_m = create_matrix(ym_per, [\"site.name\", \"Month\"],[\"%click\", \"FBR\"])\n", + "matrice_h = create_matrix(per_h, [\"site.name\", \"Hour\"],[\"%click\", \"FBR\"])" + ], + "id": "caf3f71c6b6f70ca", + "outputs": [], + "execution_count": 12 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:24:01.960321Z", + "start_time": "2025-10-28T13:24:01.821063Z" + } + }, + "cell_type": "code", + "source": [ + "hist_mean_s(\n", + " matrice_s,\n", + " metric_mean=\"%DPH_mean\",\n", + " metric_std=\"%DPH_std\",\n", + " ylabel=\"Moyenne %DPH\",\n", + " title_suffix=\"%DPH\"\n", + ")" + ], + "id": "2ff751ae02e80285", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABc0AAAN1CAYAAACtmtOuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAVRpJREFUeJzt3Qm8lnP++P/3aZVKpEiUpRCRpixjmey+ITFImGwzlvlZBzGWMQwmW8z4ahbbCDHG+rPvI+Nra/K1TZaISEqFUCqq8398rt/nnH/LSdtdZ+n5fDzux33OdV/3fV139eCc1/mc91VWXl5eHgAAAAAAQNSr7hMAAAAAAICaQjQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAFZoO+20U5SVlcUFF1xQ3acCAEANIJoDAFDrfP/99/G73/0uOnbsGI0bN4611lorjjnmmJgwYcIPPm/nnXeO+vXrx7///e9Fiqhz3ho0aBCrrbZarLfeerHHHnvEr3/96/if//mfhZ7r4MGD53utdGvUqFG0adOmeK0bbriheE/zGjp0aOX+6eOFSeeW9j3yyCMXui+L5o9//GMR01977bXqPhUAAJaTBsvrQAAAUCp9+/aN++67r/i4adOmMX78+CI8p7A8fPjwaNGixXzPuemmm4rHTz755Nhqq60W6TgNGzaMli1bVn7+zTffxEcffVTcnnzyybj88stjk002ib/85S+x4447LvT1WrVqVUT7ZMqUKfHZZ58Vr5Nu1157bTzxxBNFmGf5at++fWy88cbF309V0Tz9facfSHTt2rVazg8AgOXLSnMAAGqVf/7zn0UwX2WVVeJf//pXEZ8/+OCD6Ny5c7z//vvxhz/8Yb7nTJw4Mc4444xYZ5114uKLL17kY2233XZFkK+4TZ06Nb799tt4/vnn47TTTivO4e233y5WsP/1r39d6OulFe4Vr1Vx3oceemjxWIr9xx577GL+aVAKt9xyS7zzzjtx4oknVvepAABQA4jmAADUKmlVdpIC809+8pPi4/XXXz8GDBhQfJxWa88rBe7PP/88Bg0aFM2bN1+q4zdp0qSI6VdeeWW88cYb0aVLlygvLy+C63PPPbdYr5XOe8iQIZXv45577imCOgAAUH1EcwAAapVJkyYV9x06dJhr+4Ybbli5qnxOTz31VBGmf/rTn8a+++5b0nNZd9114/777y9GxMyaNSvOOeecxX6NNIO8X79+xccpvqcV59UhzUGvmIeeziOtnN96662L1fTptsMOO8Ttt9++0NcZPXp0/OpXvypW/jdr1ixWXnnl6NSpU5xyyinx8ccf/+Dc9zQCJXnmmWdiv/32K2bVp3E2izOjfdq0aTFw4MDYdttti1E3acRO69atY9NNN40jjjii+MHEolwINH2ctqXRLMlRRx0131z6qjz88MNxwAEHxNprr13M20/n0KNHj2KEz3fffbfI7wMAgOpjpjkAALXK6quvXtyPGjVqru1pNEuSAmmF6dOnxy9/+ctidfk111yzTM4nhd4Udf/0pz8VFwZNI1c22GCDxXqNNDamwtdffx3V7ZBDDol//OMfUa9evWI+/OTJk4uRNOmWfghx4403VhmNb7vttvjFL34RM2bMKD5P0Ti9xrvvvlvc0lz5u+++u7j46YJcffXVceqppxbhPh27Ygb8okgz59Oq/ddff734PJ1jxfmnH7akUTrPPvtsEbUXJgX/Nddcs/ghzOzZs4sfHKTfMvihWH/44YcX769Ces5XX31V/AZCuqUxMI888oi59QAANZyV5gAA1Cq77757cX/dddcVkTpJq4HPPffcuR5PLrzwwiKup9EtaeXvsrL33ntXfpyi7OJKq7MrzHnh0erwf//v/40777wzLrroovjyyy/jiy++KC5YWjHvO4Xvqn4AkcbmpGicVtyfeeaZ8eGHHxYhOc2BT/PC+/TpU0TtdL+gFefpOKeffnqxIjztk2J3eo3zzjtvkc49BfcUzNOfYVpRnp6b3kOK+GPHji2i9Q8F+zn179+/GJXTrl27yteec779vGN00rigFMzTD0zSDw9SLE+3NAM//TZC2v7SSy/Fz3/+80U6PgAA1cdKcwAAapVdd9019tlnn3jwwQeLVcVpNEoKs0kKk2k0SPKf//ynGNORRowcf/zxy/Sctthii8qP510BvzAzZ84sfgCQpFXZW221VZX77b///tGoUaMffK15R9MsiRR6U6T+zW9+U7ktrd5PoTxF7DTq5ne/+10RiVdaaaXi8bQS+4QTTiju0xiSeS9ouvHGGxchPo3HeeCBB+Kqq66KP/7xj/MdO/1mQHqfKcxXSCvN5x3FsyAvvPBCZfBOr1Mh/bm2bds2DjvssOJWamkVefpzWWONNWLo0KGVoT1Jf0a9e/eObt26FWNq0g8lXnvttejatWvJzwMAgNKw0hwAgFonrej97W9/W0TyNCc6jdFIK3jT+JA0+iKN9kjhNt2nIJ2iaRrfcuCBBxaPpznb6WKeVV00dEnMuTo8rcxeFFOmTClWHu+1116V40TSCuuK8TPzSium00rsH7qlaL200giSFJ2rkv7MK95jxQVZk3/961/x3nvvRatWreLoo49e4GunlejJ448/vsB9zj777CU+91VXXbW4HzduXCxPaVxN8rOf/WyuYD7vCJ6dd955oe8fAIDqZ6U5AAC1TlpxnVY7p1tVrr322njxxReLMSFpFXga35IuDJnmWv/Xf/1XEc7TiucUrO+7775i5frysP766y/wsd122+0H566ni2OmC1YubL56xYUrl9SWW25ZzOKuSrrYaoq/n3zySXHB0oo/t/TDiopV6mlF94JUXAhzQeeYgn1akb2kevXqFX//+99j0KBBxar7vn37FhcwTTF/Wap4/yme/9DFUtOfT7K0f0cAACxbojkAAHVKWmV81llnFavQL7jggmLbOeecUwTz9Pn5559fbEsXtEzzz9Os7hTPF+eCk/Oac3X5glaKJyneVhynYcOGxQr1Ll26FCvg0wiPqi6uubwtbPZ7ejxF8wkTJlRu+/TTT4v777//vljxvjBp1nhV0p9d+q2AJXXooYfGsGHDih8+3HHHHcUt6dixYzHLPP02Qvfu3aPUKt5/uojrolzINc05BwCg5hLNAQCoU0455ZRiRe8//vGPYuVyujBlWlWegvSpp54618ruNFc6zZf+3//93wXOEl8UFeNVkh+av/3vf/+7WA1e16Q/42SbbbYpRs4sqaX5wUWFNCs9/SDkrrvuKmaNp984SKN50u3Pf/5z8e+jqnnqpXj/aZ77L3/5y5K+NgAAy5+Z5gAA1BkPP/xwEUvTiuM0hiVJYzrS/PB0Mct5x46kcSPJBx98sNTHrbCwESo13dixYxfp8XTRywpt2rSpUWNH0sryNBv9kUceic8//7wI5/vtt1/x2NVXX138EKWUatr7BwBg6YjmAADUCVOnTo0TTjihmFf+hz/8YZFGgixoTMjiSKF08ODBxcc77rhjrV9JnmaVpx8yVCWt1k6jWSpmn1fYfvvti/vx48cXz69J0riXH//4x8XFY9u3b19sm/Mipovy/CRdVHZBKt7/Qw89tNTnCwBA9RPNAQCoE377298WAfuKK66YaxV0WmHerFmz+Oabb+Kdd96p3J7mb6exLEmaf74kPv7442IWeQr2abTI73//+6jt0g8SBg4cWOVjF198cXGfZrGnefAVdt5552J1d5JG4FRc8HNRZsCX0owZMxb4WPr7SReQTRZnbnrFbydMnjx5gfsce+yxxf1//vOfYkTLD0n/Vhb25wMAQPUSzQEAqPVeffXVYuxGjx49ios9zhtL99577+LjNOs6BdsULc8999ziAo7rrLNOdOvWbZGPNX369GLcxxlnnFFcxPONN94oImyKpRUrjmuzFi1axEUXXRSXXHJJ8YOGJF1ENc0Cv/nmm4vPzzvvvFhppZUqn9OgQYP461//Wtz/z//8T/H38PTTTxc/mKiQRuCkfdLs+DRbfFlIM9VPPvnkGDp0aBGnK6S/55NOOqlYKZ+kC78uqs0226y4TyvVv/zyyyr3Sb9hcNRRRxUfp992SD84mHPkT4r5adb7mWeeGeuuu+5cF1EFAKDmcSFQAABqtXQRxmOOOaaI49dee21xwc95pRXgTzzxRBFy08rzhg0bFiEzxe5rrrlmgRegfOGFFyrnVScpxM47uqRz585FMP/JT34SdUGa/Z1+MHDOOecUcTyttE6rrCvGkxx++OFFmJ7XrrvuWsyTT4+//PLLxYVW059zen76M5tzFXjFfPFSS+eZ/j7TLf07SD8ASOF+zoCegnbFvPtFkVaR33777cW/hfRvJ/0WQ8WK9dGjR1ful34gkP4d3XDDDcWFRtMt/YZD+jNIF6adPXt25b5V/RsFAKDmEM0BAKjVUiB95ZVX4vzzz49OnTpVuU+HDh2K6JkuDvnMM88UATfNuU7P6dmz5wJfOwXXzz77rPg4BdEUQdNK4XQB0bQ6PY1mqQury+f197//vVg9/be//S3efffdaNq0aWy++ebxf/7P/4nDDjtsgc9LMTyt5k4ryR999NF47733ipCdnp/+btIq87Tqf3FWei+OO+64o/jhyL/+9a/48MMPixnrM2fOLP7O0t93CuC77LLLYr1mWjWfLvR61VVXFb/RkP49zBnAK6SQfv311xe/6XDdddfFc889V6xwT//WUmhP7z+91oEHHhhrr712Cd81AAClVlb+Q1e0AQAAVghHHnlkMX7liCOOqLywKQAArIjMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgMyFQAEAAAAAILPSHAAAAAAAMtEcAAAAAABqczQfMWJE9OnTJzbYYINYeeWVo1WrVtGjR4948MEH59v37bffjp49e0azZs2iZcuWcdhhh8XEiROr5bwBAAAAAKjZGkQt9NFHH8U333wTRxxxRLRt2za+/fbbuOeee6J3795x7bXXxrHHHlvs98knnxQxvUWLFjFgwICYMmVKDBw4MN58880YNmxYNGrUqLrfCgAAAAAANUiduRDorFmzonv37jF9+vR45513im3HH398DB48uPi8ffv2xbannnoqdt9997niOgAAAAAA1NrxLFWpX79+tGvXLiZPnly5La0+79WrV2UwT3bbbbfYaKON4s4776ymMwUAAAAAoKaqleNZKkydOjWmTZsWX331VTzwwAPx6KOPRt++fYvHxo4dGxMmTIgtt9xyvudtvfXW8cgjj5T0XNq0aVOcz5yBHgAAAACA5evjjz+Opk2bxvjx41e8aH766acXY1aSevXqxf777x+DBg0qPh83blxxv9Zaa833vLTtiy++iBkzZkTjxo0X65idO3eucnu6uGjDhg2X4F0AAAAAAFAq33//fbHAeUnV6mj+q1/9Kg488MD49NNPi3Eraa75d999VzyWVqAnVUXxlVZaqXKfxY3mC5KCeYcOHWLEiBEleT0AAAAAABbfghY+rxDRvFOnTsUtOfzww2OPPfaIffbZJ15++eVo0qRJsT2tJp9XulhoUrHP4lhQFF/avwgAAAAAAKpfnbkQaJJWnf/73/+OkSNHVo5lqRjTMqe0rWXLliVbZQ4AAAAAQN1Qp6J5xUiWdGHQtddeO1q3bh3Dhw+fb79hw4ZF165dq+EMAQAAAACoyWplNJ8wYUKVw91vueWWYuTKpptuWmw74IAD4qGHHooxY8ZU7vf0008XK9H79OmzXM8ZAAAAAICar1bOND/uuOPi66+/jh49ehQrysePHx+33XZbvPPOO3HllVdGs2bNiv3OOeecuOuuu2LnnXeOU045JaZMmRJXXHFFbL755nHUUUdV99sAAAAAAKCGqZXRvG/fvnHjjTfGX/7yl/j888+jefPm0b1797jsssuid+/elfu1a9cunn322TjttNPirLPOikaNGsXee+9dhHXzzAEAAAAAmFdZeXl5+XxbWWydO3cu7keMGFHdpwIAAAAAsMLqvJSttlbONAcAAAAAgGVBNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAWM4mTpwYZWVlc93SNgCqn2gOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAtTma//vf/44TTzwxOnfuHE2bNo327dvHQQcdFCNHjpxrvyOPPDLKysrmu3Xq1Knazh0AAAAAgJqrQdRCl112WTz//PPRp0+f6NKlS4wfPz4GDRoU3bp1i5deeik222yzyn0bN24cN9xww1zPb9GiRTWcNQAAAAAANV2tjOannXZa3H777dGoUaPKbX379o3NN988Lr300hgyZEjl9gYNGkS/fv2q6UwBAAAAAKhNauV4lu22226uYJ5suOGGxbiWt99+e779Z82aFV9//fVyPEMAAAAAAGqjWhnNq1JeXh6fffZZtGrVaq7t3377bayyyirFSJaWLVvGCSecEFOmTKm28wQAAAAAoOaqleNZqnLbbbfF2LFj48ILL6zcttZaa8WZZ55ZzDqfPXt2PPbYY/HnP/85Xn/99Rg6dGgxumVxpdXsVRk1alR06NBhqd4DAAAAAADVq05E83feeadYQb7tttvGEUccUbn9kksumWu/gw8+ODbaaKM499xz4+677y4+BwAAAACACmXlaa5JLTZ+/PjYfvvt4/vvv4+XXnop2rZt+4P7T5s2LZo1axZHHXVU3HDDDSU7j4oV6CNGjCjZawIAAAB108SJE2ONNdaYa9uECROidevW1XZOAHVF56VstbV6pflXX30Ve+65Z0yePDmee+65hQbzpEmTJrH66qvHF198sVzOEQAAAACA2qPWRvPp06fHPvvsEyNHjoynnnoqNt1000V63jfffBOTJk3yk1sAAAAAAOpGNJ81a1b07ds3Xnzxxbj//vuLWeZVRfU0sqV58+Zzbb/ooosiTaTp2bPncjxjAAAAAABqg1oZzU8//fR44IEHipXmaczKkCFD5nq8X79+xazzH/3oR3HIIYdEp06diu2PP/54PPLII0Uw33fffavp7AEAAAAAqKlqZTR/7bXXivsHH3ywuM0rRfNVV101evXqFU8++WTcfPPNxer0jh07xoABA6J///5Rr169ajhzAAAAAABqsloZzYcOHbrQfVI0v/XWW5fL+QAAAAAAUDdYbg0AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAALU5mv/73/+OE088MTp37hxNmzaN9u3bx0EHHRQjR46cb9+33347evbsGc2aNYuWLVvGYYcdFhMnTqyW8wYAAAAAoGZrELXQZZddFs8//3z06dMnunTpEuPHj49BgwZFt27d4qWXXorNNtus2O+TTz6JHj16RIsWLWLAgAExZcqUGDhwYLz55psxbNiwaNSoUXW/FQAAAAAAapBaGc1PO+20uP322+eK3n379o3NN988Lr300hgyZEixLYXyqVOnxiuvvFKsRk+23nrr2H333WPw4MFx7LHHVtt7AAAAAACg5qmV41m22267+VaJb7jhhsW4ljSOpcI999wTvXr1qgzmyW677RYbbbRR3Hnnncv1nAEAAAAAqPlqZTSvSnl5eXz22WfRqlWr4vOxY8fGhAkTYsstt5xv37Ta/NVXX62GswQAAAAAoCarleNZqnLbbbcVofzCCy8sPh83blxxv9Zaa823b9r2xRdfxIwZM6Jx48aLdZy0mr0qo0aNig4dOizRuQMAAAAAUDPUiZXm77zzTpxwwgmx7bbbxhFHHFFsmzZtWnFfVRRfaaWV5toHAAAAAADqxErz8ePHx9577x0tWrSIu+++O+rXr19sb9KkSXGfVpPPa/r06XPtszhGjBixWCvQAQAAAACoPWp1NP/qq69izz33jMmTJ8dzzz0Xbdu2rXysYixLxZiWOaVtLVu2XOzRLAAAAAAA1G21Npqn1eL77LNPjBw5Mp566qnYdNNN53p87bXXjtatW8fw4cPne+6wYcOia9euy/FsAQAAAACoDWrlTPNZs2ZF375948UXX4y77rqrmGVelQMOOCAeeuihGDNmTOW2p59+ugjtffr0WY5nDAAAAABAbVArV5qffvrp8cADDxQrzb/44osYMmTIXI/369evuD/nnHOKqL7zzjvHKaecElOmTIkrrrgiNt988zjqqKOq6ewBAAAAAKipamU0f+2114r7Bx98sLjNqyKat2vXLp599tk47bTT4qyzzopGjRoVFw298sorzTMHAAAAAKBuRPOhQ4cu8r6dO3eOxx9/fJmeDwAAAAAAdUOtnGkOAAAAAADLgmgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAWYNYQhdeeOGSPjXKysrivPPOW+LnAwAAAABAjYrmF1xwQRG/y8vL53ssbU/mfaxif9EcAAAAAIA6Fc3PP//8KrenKJ5WoXft2jX23XffpTk3AAAAAACo3dE8qYjmP7QPAAAAAADUNC4ECgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAFmDWEIbbLDBAh8rKyuLu+++O4YOHbrAx0eNGrWkhwYAAAAAgJoVzUePHv2Dj0+ZMqW4LSiaAwAAAABAnYnmH374YWnPBAAAAAAAams0X3fddUt7JgAAAAAAUBcuBDpr1qz47LPPYvLkyaV4OQAAAAAAqH3R/OOPP46DDjooVllllWjbtm2svvrq0b59+7j00kujvLy8dGcJAAAAAAA1eTxLWlm+7bbbxvjx4+cK5J988kmce+658d5778WNN95YqvMEAAAAAICau9L8sssui3HjxkX37t3j2Wefja+//jrGjh0bf/nLX6J58+YxePDgeOONN0p7tgAAAAAAUBNXmj/66KPRsmXL4j6NZUmaNWsWxx13XDRq1Ch+8YtfFI916dKllOcLAAAAAAA1b6X5Rx99FD/+8Y8rg/mc9tlnn8p9AAAAAACgzkfz6dOnxxprrFHlY61atarcBwAAAAAA6nw0BwAAAACAumaJZ5on77//ftxyyy1L9Pjhhx++NIcGAAAAAICSKysvLy9fkifWq1cvysrKFvh4xcsuaJ9Zs2ZFXdK5c+fifsSIEdV9KgAAAEANN3HixPnG3k6YMCFat25dbecEUFd0XspWu8QrzY844oglfSoAAAAAANRISxzNb7rpptKeCQAAAAAAVDMXAgUAAAAAgFJcCLQqM2fOjC+//LKYZb7aaqtF/fr1S30IAAAAAACouSvN33zzzTj22GNjww03jMaNG0ebNm1izTXXjEaNGkWnTp3i+OOPj7feeqsUhwIAAAAAgJobzX/zm99E165d48Ybb4xRo0ZFeXn5XLeRI0fGX//61+jSpUtceOGFpTlrAAAAAACoadH88ssvjwEDBkS9evXiZz/7WTz00EPxySefxPTp02PatGkxZsyYeOCBB+LQQw8txrX87ne/i6uuuqp0Zw8AAAAAACVUVp6Wgy+BCRMmRPv27aNhw4ZFLN9xxx1/cP+hQ4dGr169Yvbs2fHxxx9Hq1atoi7p3LlzcT9ixIjqPhUAAACghps4cWKsscYa87WW1q1bV9s5AdQVnZey1S7xSvObb745vvvuu7j00ksXGsyTnXbaqdg3rUK/5ZZblvSwAAAAAACwzCxxNH/uuedi5ZVXjqOPPnqRn3PMMccUz0mrzgEAAAAAoM5E8zfffDO6desWjRs3XuTnpH27d+8e//nPf5b0sAAAAAAAUPOi+ZdffhlrrbXWYj+vTZs28cUXXyzpYQEAAAAAoOZF82+++SaaNm262M9L41mmTJmypIcFAAAAAICaF83Ly8ujOp4LAAAAAADLSoOlefL7778ft9xyy2I/BwAAAAAA6lw0f/7554vb4q4yLysrW5rDAgAAAABAzYrmRxxxRGnPBAAAAAAAams0v+mmm0p7JgAAAAAAUFsvBAoAAAAAAHXNUs00XxTTp08vLv5Zr1696NChQzRu3HhZHxIAAAAAAGrWSvPvvvsu+vfvH6uttlpsscUWsfnmmxcf/+Y3v4lZs2Ytq8MCAAAAAEDNW2l+8sknx4033hj9+vWLrbfeOqZOnRp33nlnXHLJJTFz5sy49NJLl9WhAQAAAABgiZSVl5eXR4mll2zWrFmce+65cc4551RuT7G8a9eu8fnnn8e4ceOiLuncuXNxP2LEiOo+FQAAAKCGmzhxYqyxxhpzbZswYUK0bt262s4JoK7ovJStdonHs+ywww7xxhtvLHA0y7Rp02LTTTeda3uDBg2iY8eOMXny5CU9LAAAAAAALDNLHM2/+uqr6N69e5x00knzRfB0sc9NNtkkLrvsshgzZkzl9gcffDAef/zx4nkAAAAAAFBnovlrr70Wl19+edx6662x0UYbxd/+9re5Hv/v//7vYiX6+uuvH23atIkWLVrEfvvtFw0bNoyBAweW4twBAAAAAKBmRPP69evHqaeeGiNHjow999wzjjnmmPjxj38cr7zySvH4rrvuGu+9916ceeaZsf3228duu+1WzDhP29J+AAAAAABQZy8E+sILL8SJJ55YrC7/xS9+EZdcckm0bNkyVhQuBAoAAAAsKhcCBaiDFwKd13bbbVesMk9jWe65555iZMtf//rXKFGTBwAAAACAZa5k0TwpKyuL448/Pt59993Yf//9i5XnW221Vbz00kulPAwAAAAAANS8aD516tS46qqr4vDDD4999tknTjjhhHj00Udj9dVXj+uuu66I5Wn2+Q477BA///nPi189AgAAAACAOhfN33zzzejQoUP0798/7r777hg+fHhce+210atXr+jdu3fMnj07ttxyy3j55ZeL7Q8//HAxsuWaa64pHgMAAAAAgDoTzU8++eSYPHlyDBkypFhxPm7cuJg0aVKx6jwF8rS9Qrow6MiRI+NnP/tZnHbaadGtW7dSnT8AAAAAAFR/NE8ryHv27BmHHnpoMcs8WXXVVeMPf/hDcfHPeeeYt2jRIgYNGlSsSE8fAwAAAABAnYnmq622Wrz33nsxc+bMubaPGDGiMqBXZYsttohnn312SQ8LAAAAAADLTIMlfWIauXLxxRfHNttsE3379i0iehrBctNNN0Xjxo3jsMMOK+2ZAgAAAABATY3mv/vd76JJkyZxxRVXxFlnnVW5Pc0rv/LKK2OTTTYp1TkCAAAAAEDNjuZpjvnZZ58dZ5xxRowePTq+/PLLaN++fay55pqlPUMAAAAAAKjp0bzyBRo0iI4dO5bmbAAAAAAAoDZeCBQAAAAAAOoa0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAACWVTR/66234tRTT43tt98+Nt544zjzzDMrH3vhhRfiv//7v+OLL74o9WEBAAAAAGCpNYgSuuqqq+Kss86KmTNnFp+XlZXFpEmT5tonBfXGjRvHcccdV8pDAwAAAABAzVlp/vDDD0f//v2jXbt2ce+998aECROivLx8rn222267aN26ddx///2lOiwAAAAAANS8leZplXnTpk3jySefjA022GCB+3Xt2jXefffdUh0WAAAAAABq3krzV155JX784x//YDBPWrVqFePHjy/VYQEAAAAAoOZF8++++y6aN2++0P3S2JYGDZZugfuUKVPi/PPPj549e0bLli2L2emDBw+eb78jjzyyeGzeW6dOnZbq+AAAAAAA1E0lG8+y/vrrx+uvv77QsP7GG2/ERhtttFTHShcXvfDCC6N9+/axxRZbxNChQxe4b7ro6A033DDXthYtWizV8QEAAAAAqJtKFs179+4dl19+eTHb/LTTTqtyn/T4xIkT45RTTlmqY6211loxbty4aNOmTQwfPjy22mqrBe6bVrX369dvqY4HAAAAAMCKoWTR/Mwzz4zbbrstzjjjjHj55Zfjpz/9abH9s88+i/vuu6+4pcfTivQTTzxxqY6VVo+nYL6oZs2aFVOnTo1VVlllqY4LAAAAAEDdVrKZ5quttlo89dRT0blz57jrrrviZz/7WbH9scceiwMPPDCGDBkSm2yySfH5osw+L5Vvv/22iOVpJEuaf37CCScUM9EBAAAAAGCZrTRP0qzy1157LR588MF44oknYvTo0TF79uxYZ511Yvfdd48DDjgg6tevH8tLGuOSVsB369atOI8U7P/85z8Xs9fTHPQluSBp+qFAVUaNGhUdOnQowVkDAAA1UfqeIt0ASmHmzJlVbqtqO8CSqlevXnGjGqN5kv4S9t133+JW3S655JK5Pj/44IOLsH/uuefG3XffXXwOAACwMCmW7/Jfe8Wn4z+r7lMB6oiq4vj2u+yxRAv8ABakbZs145+PPyKcL6YV7r/Ep556apx33nnFKJklieYjRoxYrBXoAABA3YjmKZj3vOQfUa/+CvdtFLAMfPvV53H9IVvPtW238/8WK7dYvdrOCahbZs+aGY+d3bf4OkY0XzwNlsUM8eHDh8e4ceNixowZC9zv8MMPj+rQpEmTWH311eOLL76oluMDAAC1VwrmojlQCvXqNahym//GAFS/kv6X+Le//W384Q9/KML5gpSXl0dZWVm1RfNvvvkmJk2aFK1bt66W4wMAAAAAsAJE88svvzwuvvji4kKfe++9dzE7vHnz5lFdpk+fHt9///1853DRRRcV4b5nz57Vdm4AAAAAANTxaH799dcXo0+ee+656NatWyxrgwYNismTJ8enn35afP7ggw/GJ598Unx80kknxZdffhk/+tGP4pBDDolOnToV2x9//PF45JFHimBeEy5UCgAAAABAHY3mY8aMiV122WW5BPNk4MCB8dFHH1V+fu+99xa3pF+/frHqqqtGr1694sknn4ybb745Zs2aFR07dowBAwZE//79Db8HAAAAAGDZRfM2bdpE06ZNY3kZPXr0Qve59dZbl8u5AAAAAABQN5RsufXBBx8cQ4cOjalTp5bqJQEAAAAAoHZG8wsuuCA22WST6N27d7z//vulelkAAAAAAKh941n22muvmD17drHaPMXzddddN9ZZZ50qZ4eXlZXF008/XapDAwAAAABAzYrmKZZXSBfd/OCDD4pbVVI0BwAAAACAOhvNP/zww1K9FAAAAAAA1O5onsaxAAAAAABAbVayC4ECAAAAAEBtV7KV5nP6+OOPY9y4cTFjxowF7tOjR49lcWgAAAAAAKgZ0fxvf/tbXHTRRUU0X5h0sVAAAAAAAKiT0fymm26Ko48+uvh4s802i4022iiaN29eqpcHAAAAAIDaE82vuuqqaNCgQdx9993Ru3fvUr0sAAAAAADUvguBvvfee8WccsEcAAAAAIBY0aN5y5Yto1WrVqV6OQAAAAAAqL3RfN99943nn38+vv/++1K9JAAAAAAA1M5oPmDAgGjatGkcddRR8eWXX5bqZQEAAAAAoPZdCPT000+PTTfdNP7+97/Hww8/HN27d4911lkn6tWbv8uXlZXFjTfeWKpDAwAAAABAzYrmgwcPrvz4q6++in/+858L3Fc0BwAAAACgTkfzZ555plQvBQAAAAAAtTua77jjjqV6KQAAAAAAqN0XAgUAAAAAgNquZCvNK3z++ecxZMiQGDZsWEyaNCl23XXXOPPMM4vHRowYEaNGjYrddtstVl555VIfGgAAAAAAak40v+uuu+Loo4+OKVOmRHl5eXHBz7XXXrvy8bFjx8ZPf/rTuPnmm6Nfv36lPDQAAAAAANSc8SwvvvhiHHroodGgQYO48sori5XmKZzPKa06b9GiRdx7772lOiwAAAAAANS8leYDBgyIevXqxZNPPhndunWrcp/69esXj/3nP/8p1WEBAAAAAKDmrTR/4YUXYtttt11gMK/Qpk2bGDduXKkOCwAAAAAANS+af/vtt9G6deuF7vfll1+W6pAAAAAAAFAzo3m64OeIESN+cJ804zyNZll//fVLdVgAAAAAAKh50bxnz57x7rvvxh133LHAfW644YYYM2ZM7L333qU6LAAAAAAA1LwLgZ511llx++23x+GHHx6vvvpq/PSnPy22T506tfj8vvvui8svv7wY4XLqqaeW6rAAAAAAAFDzVpqvs8468fDDD0erVq3iiiuuiO233z7Kysri7rvvji233DIuvvjiWHXVVeOBBx6INdZYo1SHBQAAAACAmrfSPNl2222LES033nhjPPnkkzF69OiYPXt2EdR33333OO6446JFixalPCQAAAAAANTMaJ40b948fvWrXxU3AAAAAABYIcezpFXlAAAAAABQm5Usmnfs2DF69uwZ99xzT8ycObNULwsAAAAAALUvmnfo0CGeeOKJOOigg4oZ5meddVa89957pXp5AAAAAACoPdE8XQD0mWeeiUMOOSS+/vrruPzyy6NTp06xyy67xB133BHfffddqQ4FAAAAAAA1O5onO+64YwwZMiQ+/fTTuPrqq2OzzTaLoUOHxs9+9rNo27ZtnHbaafH222+X8pAAAAAAAFAzo3mFVVddNU466aR4/fXX46WXXoqf//znxUrzipD+k5/8JG699daYMWPGsjg8AAAAAADUnGg+p6233jr69+8fBx98cJSXlxe3559/Po488sho3759DBo0aFmfAgAAAAAAVG80nz59erGavEePHrHpppvGDTfcEG3atIlzzjknnnrqqTj66KNjypQpccopp8RFF120rE4DAAAAAACqL5q/8cYbxWiWNMM8rSZPq8p33nnnuPPOO+Pjjz+Oiy++uLg46LXXXhtvvfVWrLHGGnHdddeV+jQAAAAAAGCxNYgSSSvJr7/++hg+fHgxgmX11VePU089NY477rjYcMMNq3zOuuuuG7vvvnvcdtttpToNAAAAAACo/mh+7LHHFvfbbbdd/PKXv4w+ffpE48aNF/q8Ll26xJgxY0p1GgAAAAAAUP3R/IQTTihWlW+22WaL9bx0kdB0AwAAAACAOhPNr7nmmlK9FAAAAAAA1O5oPqexY8cWFwBN98naa68d22+/fXEPAAAAAAArRDSfOHFiMablvvvui9mzZ8/1WFlZWRxwwAExaNCgaN26dSkPCwAAAAAANSuaf/XVV9GjR4949913o0mTJrHHHnvEeuutV8Ty0aNHx+OPPx533XVXvPHGG/HSSy9FixYtSnVoAAAAAACoWdH80ksvLYJ5nz59qlxNPmnSpDjxxBPjzjvvjMsuuywGDBhQqkMDAAAAAEBJ1CvNy0QxkqVdu3YxZMiQKsevtGrVKm699dZin3vuuadUhwUAAAAAgJoXzT/66KPiYp8NGzZc4D7psbTPxx9/XKrDAgAAAABAzYvmaY55GsGyMGmftC8AAAAAANTZaN69e/d49tlnY/jw4Qvc55VXXomhQ4fGlltuWarDAgAAAABAzYvmp556anz//fex6667xnnnnRdvv/12TJs2rbi98847cf7558duu+0Ws2bNKvYFAAAAAICapkGpXmivvfaK3//+90UwHzBgQHGbV1lZWVx88cWx5557luqwAAAAAABQ81aaJ2effXa89NJL0a9fv1hvvfWiUaNGxS19fNhhh8WLL75Y7AMAAAAAAHV6pXmFNK/85ptvLvXLAgAAAABA7VppDgAAAAAAtZloDgAAAAAASzueZYMNNljSpxYXBB01atQSPx8AAAAAAGpUNB89enQRv8vLyxf7uel5AAAAAABQ5y4E2r179+jXr1/su+++0aRJk9KcFQAAAAAA1KZofscdd8Rtt90Wjz32WJx22mnx29/+Nvbff/8ioO+yyy5WkwMAAAAAsOJcCPSggw6K+++/P8aNGxfXXHNNdO7cOW6++ebYY489ol27dnHGGWfEa6+9VtqzBQAAAACAmhjNK7Rs2TKOP/74eOGFF4qLe15wwQXRvHnzuPLKK4vRLZtttllcdtllMWbMmNKcMQAAAAAA1NRoPqf1118/zjvvvHj77bfj5ZdfjpNOOik+//zzOOecc2KrrbYq5aEAAAAAAKBmR/M5rbvuurHBBhtE27Zto7y8PGbPnr2sDgUAAAAAANV7IdCqfPvtt3HvvfcWFwh9+umnY9asWdGiRYs45phj4rDDDivloQAAAAAAoOZF87SC/PHHH48hQ4bEAw88UITzRo0aRe/evaNfv36x1157FZ8DAAAAAECdjeZpZnlaUf6Pf/wjJk6cGGVlZdGjR48ilB944IHFCnMAAAAAAFghovm2225bhPLNN988+vfvH4ceemisvfbapT07AAAAAACoTRcCfeutt+Lcc8+N9ddfvxjDsii3xo0bl+bsAQAAAACgpsw0Ly8vj5kzZ5bubAAAAAAAoDZG83QBUAAAAAAAqEuWejwLAAAAAADUFaI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAADU5mg+ZcqUOP/886Nnz57RsmXLKCsri8GDB1e579tvv13s16xZs2Lfww47LCZOnLjczxkAAAAAgJqvQdRCkyZNigsvvDDat28fW2yxRQwdOrTK/T755JPo0aNHtGjRIgYMGFDE9oEDB8abb74Zw4YNi0aNGi33cwcAAAAAoOaqldF8rbXWinHjxkWbNm1i+PDhsdVWW1W5XwrlU6dOjVdeeaUI7MnWW28du+++e7Ey/dhjj13OZw4AAAAAQE1WK8ezNG7cuAjmC3PPPfdEr169KoN5sttuu8VGG20Ud9555zI+SwAAAAAAaptaGc0XxdixY2PChAmx5ZZbzvdYWm3+6quvVst5AQAAAABQc9XK8SyLIo1vqRjlMq+07YsvvogZM2YUq9YXR+fOnavcPmrUqOjQocMSni0AAAAAADVBnV1pPm3atOK+qii+0korzbUPAAAAAADU6ZXmTZo0Ke7TavJ5TZ8+fa59FseIESMWawU6AAAAAAC1R51daV4xlqViTMuc0raWLVsu9mgWAAAAAADqtjobzddee+1o3bp1DB8+fL7Hhg0bFl27dq2W8wIAAAAAoOaqs9E8OeCAA+Khhx6KMWPGVG57+umnY+TIkdGnT59qPTcAAAAAAGqeWjvTfNCgQTF58uT49NNPi88ffPDB+OSTT4qPTzrppGjRokWcc845cdddd8XOO+8cp5xySkyZMiWuuOKK2HzzzeOoo46q5ncAAAAAAEBNU2uj+cCBA+Ojjz6q/Pzee+8tbkm/fv2KaN6uXbt49tln47TTTouzzjorGjVqFHvvvXdceeWV5pkDAAAAAFB3ovno0aMXab/OnTvH448/vszPBwAAAACA2q9OzzQHAAAAAIDFIZoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaA1AjTZw4McrKyua6pW0AAAAAy5JoDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAK0I0Hzp0aJSVlVV5e+mll6r79AAAAAAAqGEaxArg5JNPjq222mqubR07dqy28wEAAAAAoGZaIaL5T37ykzjwwAOr+zQAAAAAAKjh6vR4ljl98803MXPmzOo+DQAAAAAAarAVIpofddRRscoqq8RKK60UO++8cwwfPry6TwkAAAAAgBqoTo9nadSoURxwwAGx1157RatWreKtt96KgQMHFuNaXnjhhfjRj3602K/ZuXPnKrePGjUqOnToUIKzBgAAAACgutTpaL7ddtsVtwq9e/cuZpt36dIlzj777Hjssceq9fwAAAAAAKhZ6nQ0r0rHjh1j3333jXvvvTdmzZoV9evXX6znjxgxYrFWoAMAAAAAUHusEDPN59WuXbv47rvvYurUqdV9KgAAAAAA1CArZDT/4IMPiouCNmvWrLpPBQAAAACAGqROR/OJEyfOt+3111+PBx54IPbYY4+oV69Ov30AAAAAABZTnZ5p3rdv32jSpElxMdA11lgj3nrrrbjuuuti5ZVXjksvvbS6Tw8AAAAAgBqmTkfz/fbbL2677ba46qqr4uuvv47WrVvH/vvvH+eff35xQVAAAAAAAFhhovnJJ59c3AAAAAAAYFEY6g0AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAWYOKD2BpzJ49u7gBlMrMmTOr3FbVdoAlVa9eveIGAABQQTRnqaVYvvtee8a4z8ZX96kAdUhVcXzHPXaLBg38rwsonbXWbBNPPvKocA4AAFRSHihJNE/B/IQ7rot69etX9+kAdcQ3n38Zv/7xHnNtO/qGP0bz1VertnMC6pbZs2bFnw4+tvhaRjQHAAAqiOaUTArm9a0ABUqkfoP6VW7z3xkAAABgWbKkBgAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAACyBhUfAAAAALB8rLzq6nHq4x9V92kAUAUrzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAYEWJ5jNmzIhf//rX0bZt22jSpElss8028eSTT1b3aQEAAAAAUAM1iDruyCOPjLvvvjt+9atfxYYbbhiDBw+OvfbaK5555pnYYYcdqvv0AFiA5qu3jGs/fLW6TwMAAABYwdTpaD5s2LC444474oorroj+/fsX2w4//PDYbLPN4swzz4wXXnihuk8RAAAAAIAapE6PZ0krzOvXrx/HHnts5baVVlopfvGLX8SLL74YY8aMqdbzAwAAAACgZqnT0fzVV1+NjTbaKFZZZZW5tm+99dbF/WuvvVZNZwYAAAAAQE1Up8ezjBs3LtZaa635tlds+/TTTxf7NTt37lzl9nfeeScaNmy4wMfrulEfjIoL9zwoyqr7RAAAFlF5RHzxyaexxRZbVPepUEt8NOqDuPW4/4oo81UvAFALlJfHlAmfrJBf744aNapotUuqTkfzadOmRePGjefbnka0VDxeKmVlZUv1F1HbddygQ3WfAlCH/0eXdOjgvzNA6bX0NQyLoWOHDar7FIA6yNe7wDLVfMX8+qVhw4bRtGnTJX5+nY7mTZo0iRkzZsy3ffr06ZWPL64RI0aU5NwAWDQVv8Hjv78AANRFvt4FqHnq9EzzNIYljWiZV8W2tm3bVsNZAQAAAABQU9XpaN61a9cYOXJkfP3113Ntf/nllysfBwAAAACAFSKaH3jggTFr1qy47rrrKrelcS033XRTbLPNNtGuXbtqPT8AAAAAAGqWOj3TPIXxPn36xNlnnx0TJkyIjh07xs033xyjR4+OG2+8sbpPDwAAAACAGqZOR/PklltuifPOOy9uvfXW+PLLL6NLly7x0EMPRY8ePar71AAAAAAAqGHKysvLy6v7JAAAAAAAoCao0zPNAQAAAABgcYjmAAAAAACQieYAAAAAAJCJ5gAAAAAAkInmAAAAAACQieYAAAAAAJCJ5gAAAAAAkInmAAAAAACQieYAAAAAAJCJ5gAAAAAAkInmAAAAAACQieYAAAAA1WynnXYqbgszdOjQKCsrK+4BWDZEcwCWq1GjRsVxxx0XG2ywQay00kqxyiqrxPbbbx9XX311TJs2ba59Z82aFW3bti2+KXj00UcX6fWPOeaYYv9evXoto3cAAMCK5M477yy+vrzvvvvme2yLLbYoHnvmmWfme6x9+/ax3XbbLaezBKCURHMAlpuHH344Nt988+Ibj3322SeuueaauOSSS4pvKM4444w45ZRT5tr/n//8Z4wbNy7WW2+9uO222xb6+sOHD4/BgwcXMR4AAEphhx12KO7/53/+Z67tX3/9dfznP/+JBg0axPPPPz/XY2PGjCluFc8FoHZpUN0nAMCK4cMPP4yDDz441l133SKGr7XWWpWPnXDCCfH+++8XUX1OQ4YMiW7dusURRxwR55xzTkydOjWaNm1a5euXl5fHySefHIcffng8/fTTy/z9AACwYki/+bj++uvPF81ffPHF4mvQPn36zPdYxeeiOUDtZKU5AMvF5ZdfHlOmTIkbb7xxrmBeoWPHjnOtNE+jWtKvwKbQftBBBxWf33///Qt8/VtvvbVY6fP73/9+mb0HAABWTCl+v/rqq3ONE0yryzt37hx77rlnvPTSSzF79uy5HktjW9IYwptuuil22WWXWGONNaJx48ax6aabxl/+8pdFOu4nn3wS++23X7FwJD3/1FNPjRkzZlS578svvxw9e/aMFi1axMorrxw77rjjfCvgAVg0ojkAy8WDDz5YzDFf1LmODzzwQBHZUzRv06ZNcVGkBY1o+eabb+LXv/51sRo97QsAAKWO5t9//30RpiukIJ2+tk23r776qljAMedjnTp1itVXX70I5Om3LdPXqldeeWW0a9cujj/++PjTn/70g8dMgX7XXXeNxx9/PE488cQ499xz47nnnoszzzxzvn3Tb3L26NGjGBlz/vnnx4ABA2Ly5MlFrB82bFiJ/zQA6j7jWQBY5tIX72PHjo199913kZ+TRrOkb0DSNxVJiufpm4uJEydG69at59r3wgsvjCZNmhQrbwAAYFnONU+LOWbOnFkE9DRGsEOHDrHmmmsWj3Xp0qVY0PHmm2/Gz3/+8+I5zz77bPG1aoUUwNOK8KuuuqoYU7gg1113XYwcObK4HlAaAVNx0ft08dE5pRExv/zlL2PnnXeORx99tFjhnhx33HHFSvjf/OY38cQTTyyTPxeAuspKcwCWSzRPmjdvvkj7f/7558WKmkMOOaRy2wEHHFB8A5C+aZhT+kbi6quvjiuuuKL4dVcAACi1TTbZpFg1XjGr/PXXXy+ut1PxW5TpvmIUSpp1PmvWrMrQPmcwTyvSJ02aVIxO+eCDD4rPF+SRRx4pxhoeeOCBldvS2JVjjz12rv1ee+21eO+99+LQQw8tvo5Or59u6fzSSvV//etfc42OAWDhrDQHYJlbZZVVivu06mZR/OMf/yh+/fVHP/pRcYHQCttss00xomXOFTlpDnr6JiVFdQAAWBbS4o30NWdFgE6BPM0YT9flSdJjgwYNKj6uiOcV0Tx9nkampJj+7bffzvW6KZqnGeRV+eijj4rXr1g5XmHjjTee6/MUzJO06n1B0nFWW221JXjnACsm0RyA5RLN27ZtO9ecxx9SMbs8XTipKmlVTpqPnmY3PvbYY3HvvffG6NGjKx9Pvy6bZkCmbS1btqyM9gAAsKRSBE/X6UmjVyrmmVdIH59xxhnFSMK0Gj197Zu+Xh01alSx2jvNN0/jWNLowUaNGhWryP/whz+UZAV4xWuk37zs2rVrlfs0a9ZsqY8DsCIRzQFYLnr16lXMZUwrbLbddtsF7vfhhx/GCy+8UMx6TL+2Ou83BIcddljcfvvtxWzGjz/+uNi+//77z/c66RuW9ddfv/hm5Fe/+tUyeEcAAKyoc81TNJ/za8zu3bsXowKHDh1azDrfa6+9iu0pss+YMaO4yH379u0r93/mmWcWerx08dC06CTNLJ9ztfm77747135ppnqSForstttuJXinAIjmACwXZ555ZrGC/Oijjy5WiKeLJc0prcJ56KGHKke4pP0rLgI6pxtuuKF4nRTNd9lll7jvvvvm2yfNeUzfZJx77rmx+eabL8N3BQDAimLLLbeMlVZaqfhaNC3QmHOleQrm3bp1iz/96U/FLPGKwF6/fv3iPoXvOUel3HTTTQs9Xgrv6QKed999d+WFQNN4l7QQZU4p2KdwPnDgwGKu+byryidOnBitW7deyncPsGIRzQFYLtIX8mmFeN++fYsLKR1++OGx2WabxXfffVesLL/rrrviyCOPLOZEpl8rrSqYJ717946TTjop/vd//7f4xmTOFTsV0qqfFOX322+/5fDOAABYEaSxKltttVU899xzRSRPsXpOKaJfeeWVxccV0XyPPfYonrfPPvvEcccdF1OmTInrr7++mIc+bty4HzzeMcccU8xJT183v/LKK8VFQW+99dbiYqBzqlevXrGwZM8994zOnTvHUUcdFWuvvXYR9tOK9rQCPa14B2DR1VuMfQFgqaTg/cYbb8SBBx4Y999/f3FBz7POOquYPZ6+wfj5z38e77zzTvFNxYJUPDZkyJDleOYAAPD/x/CKcSxzqrgeT/PmzWOLLbaovGhnWimexqv0798//vrXvxa/FZkuZr8wKY4//fTTRXi/5ppr4uKLLy6Of/nll8+370477VSMQUyr4VNoT4tMBg8eHG3atIlTTz21RO8eYMVRVj7n7wgBAAAAAMAKzEpzAAAAAADIRHMAAAAAAMhEcwAAAAAAyERzAAAAAADIRHMAAAAAAMhEcwAAAAAAyERzAAAAAADIRHMAAAAAAMhEcwAAAAAAyERzAAAAAADIRHMAAAAAAMhEcwAAqEOeeeaZOOCAA2LttdeORo0axWqrrRYbb7xx9OnTJwYNGhRfffVV5b477bRTlJWVxejRo6v1nAEAoCYRzQEAoI648MILY5dddol77703WrRoEb169Yo99tgjmjRpUmw76aST4u23317o66SQvt566y2XcwYAgJqmQXWfAAAAsPReeeWVuOCCC6Jhw4Zx5513xn777TfX4+PHj48hQ4bEqquuWrntlltuiW+//bZYlQ4AAPw/ojkAANQBaSV5eXl5HHTQQfMF86RNmzbRv3//uba1b99+OZ4hAADUDsazAABAHTBx4sTivnXr1ov8nHlnmg8ePLj4PPnoo4+Kjytuad85pRXql1xySfzoRz+KZs2aFbcf//jHcfPNN5f0fQEAwPJmpTkAANQB7dq1K+7vueeeOPvss2ONNdZY7Nfo2LFjHHHEEUX4btq0aRx44IGVj3Xq1Kny4wkTJsTuu+8eb7zxRrGCfccddyxWub/wwgtx5JFHxvDhw+Oaa64p0TsDAIDlq6w8fXULAADUah988EFsttlmMW3atGjevHnsv//+scMOO0T37t2jS5cuUb9+/fmek1aPP/vss/Hhhx/OdeHPtLJ83XXXrVyBPq+99947HnnkkTjllFPisssui8aNGxfbP/vss+LioymaP/roo9GzZ89l+I4BAGDZMJ4FAADqgA022CAefPDBYsX5N998U6wWP+aYY6Jbt27RqlWrOP7442PcuHFLfZzXXnutCOZbbbVVXHXVVZXBPFlzzTXjuuuuKz7+y1/+stTHAgCA6iCaAwBAHbHrrrvG+++/X1wU9Je//GURzBs0aBCTJ08uInbXrl3j3XffXapjPPHEE8V9uthovXrzfztRMeN82LBhS3UcAACoLqI5AADUIY0aNYqf/vSnRSR/5ZVXiguEpo9XW221Yhb5iSeeuFSvXzGy5dxzz53rQqFz3qZMmRKTJk0q0TsCAIDly4VAAQCgDlt11VWLVedt27aNfffdN5555pn49ttvY+WVV16i15s9e3Zxn+ald+jQocRnCwAA1U80BwCAFcAuu+xS3M+aNasY17Kk0XydddapHM9y+umnl/QcAQCgJjCeBQAA6oDy8vIffDzNOq8Y35IuDPpDGjZsGDNnzqzysd133724v++++5b4XAEAoCYTzQEAoA4477zz4owzzohRo0bN99jYsWPjuOOOKz7u3bt3Ec5/SBrl8tlnnxUr0ue1zTbbFOH8+eefjxNOOCG+/vrr+fZ5/fXX47HHHluq9wMAANXFeBYAAKgD0sU3r7766hg4cGBstNFGsemmm8ZKK60Un3zySbz88svx/fffR8eOHeOPf/zjQl8rhfVrrrkmunXrFtttt13xOhtvvHER5ZMhQ4ZEz549489//nPcfvvt0bVr1yK0f/XVV/HGG2/EmDFj4pRTTin2AQCA2qasfGG/xwkAANR4kyZNKlZ3P/7448VK708//bSI2KusskpssskmxUVAjz/++GjatGnlc3baaad49tln48MPP4z11luvcvvUqVPjrLPOivvvvz/GjRtXjGrZcccdY+jQoZX7TJ8+Pa6//vq44447YsSIETFt2rRYc801Y4MNNohevXrFwQcfXDn/HAAAahPRHAAAAAAAMjPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIP6f/w/k97Tur+/MAQAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 13 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:37:16.391453Z", + "start_time": "2025-10-28T13:37:16.257339Z" + } + }, + "cell_type": "code", + "source": "year_percent(y_per, \"FBR\")", + "id": "29f2703ab28c5b28", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAABrsAAALPCAYAAADSCXvXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAl49JREFUeJzs3Q2853Od///3MIZxNdtoNhdLSmENJUTJkqIUXWyStqJspV8/pQttyRYRdlsXW63drrafi9hkqHWREkJEphGbhBENRoSEhplxNf/b59P/nD0zczBjzvec9+f5vd9vN7eZ8z3fc873MS+fz/fifT6f77gFCxYsKAAAAAAAANBBy431DQAAAAAAAIBnymIXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAQ7JWvfGUZN27cUv938cUXL/a9Pve5zz3t16288spl7bXXLjvttFP5/Oc/X2677bYlup3vec97nvL7rrLKKu33fdWrXlU+85nPlJkzZ/bgXwsAAIAustgFAACMmLlz55Y777yzXHjhheXggw8uL3zhC8vhhx++zN/34Ycfbr/vRRddVI444oiy8cYbl/3226/MmzdvRG43AAAA3TV+rG8AAAAwOl760peWrbfeeomuu8466zzl55ujrP72b/92scvnzJlTbrrppnLllVeWxx9/vDzyyCPls5/9bHv5P//zPy/Rz24Wsl796lcv9n2vv/768vOf/7wsWLCg/e8//uM/2gWwM844oz36CwAAgP5ksQsAAPrE61//+vZUhCOhOWLruOOOe9LPN6cv3Hvvvcsll1zSfnzUUUeVd73rXWXTTTd92u+9zTbbPOn3/vWvf13+7u/+rvzyl79sP/7e975Xvvvd75bdd9/9GbcAAADQbU5jCAAAjLj11luvnHXWWWXKlCntx0888UT59re/vczfd5NNNik/+MEP2vfwGvC1r31tmb8vAAAA3WWxCwAA6InVV1+97LbbbgsdlTUSmlMovu1tbxv8+LLLLmtPawgAAEB/stgFAAD0zFprrTX494ceemjEvu/mm28++Pe5c+eWP/7xjyPyfZv3/hr4b0DzPmHve9/7yoYbbtgeUTZ58uT2vc/+6Z/+qTz44INL9f0fffTR8q1vfatdrHv+859fVltttfZ7Pu95z2tPz9iclvHpFu4uvvjiwdv4yle+cvDyc889t/0ezSkmV1111fbzX/ziF5fq9r3pTW8a/N5N35I65JBDBr/uLW95y1Ne9/bbby+f//zny9/8zd+0C5crrrhi+2/6kpe8pHziE58oM2fOXKKf2cz9v//7v8v+++9ftttuu/Kc5zynTJgwoW1ff/312/eU++Y3v9m+b9zT6eW/KQAA0HveswsAAOiZu+66a/Dva6655oh934kTJy708bx580ovNO9x1izMNKdhHPDwww+3C2DNf//+7/9epk2bVl7+8pcv0YJKs2h28803L/a5WbNmtf+deuqp5WUve1k5/fTTyzrrrLNEt/GBBx4o++yzT7tQtqze//73t6efbBx//PHl05/+9NN+TfNvc8IJJwx+3DQ+2fWaf8/m/dsWnVezINUsWF5zzTXlS1/6UvnkJz9ZDj/88IUWHYe68sory0477VTmzJkz7IJis7B66623tothzfdp3tetWUxbUiP5bwoAAPSexS4AAKAnmgWH73//+4MfN0fyjJTf/e53g39ffvnlyxprrFFG2pe//OVy6KGHtn9/wQteULbZZpv2yKFrr722zJgxo738jjvuKLvssku55JJLFjrabFHNgtg73/nOdiFmYLGuWdRqjkBabrnl2qOZrrjiivLYY4+Vn/3sZ+3iWbOY1hyt9FSao8De9a53lXPOOaddGNpqq63a9zVrLv/Vr371pItFT+Z1r3tdWXfdddujr2666abyk5/8pGy//fZP+TXnn39+ue2229q//9Vf/VX777Goxx9/vOy5557ljDPOGLysWcxrjpBr3tetWbRqFrCahcDm3+DII48s99xzT/n6178+7M9sFsYGFrr+8i//skydOrX92c1Rcs1i5G9+85syffr09ns1i4g77LBD+cUvftHO8emM9L8pAADQexa7AACAEdcsRr3nPe8pv//979uPmwWUd7zjHSP2/c8777zBvzdH7DSnwhtp//AP/1BWWmml8p//+Z/tQtVQP/3pT9vFm2axqzmV4d57712uuuqqssIKKyz2fa677rry7ne/u13oahZKDjjggPKP//iP5S/+4i8Wut4tt9zSXq95D7Jmsak5sqg5jd5Tufzyy9sFnc0226yccsop7Z9DzZ8/f6mam4XDv//7vx9c5GtOA/h0i13NdQY0t7lZvFtU8/0GFrqaI/yaI+Ka0wwuunDULAo2R5c1R1Z94xvfaI/eGvr+bAOe9axnlYMOOqg9xeCmm2467O26++6729MiNqeN/NOf/lT+z//5P+WCCy542n+Dkf43BQAAem/cAu/kDAAAsZr3H2qOOmq89KUvbY+keTrNqeuGO4Vecwq6gUWQ5r2WmsWK4Y7mao6qaY5OahYMGn/913/dHuHVvC/Vk2kWxk488cT2782Cz9DT4i3q5JNPLnvttdfgx83RP80CyUhYdPGlOa1gs6g1nGYRa8sttxxc/GgWfZqFokW9+tWvLj/+8Y/bvx977LHlYx/72JP+/Obfr5nRr3/96/bj5t+xOaJs0dMh7rjjjoMfN4tHzdFmz372s8tIaBbamiPOmtMOrrzyyuXOO+8sq6+++rDX/cMf/tD+v9CchrD5t2sW7JqvHao5sqo5oqo5uqt5b67miKsNNtjgSX/+RRddVF71qlcN/r/T/Dsvy9FUr3/968sPfvCD9u/Nv2vzPRfV639TAACgtxzZBQAAfWLgfaaeTvOeS0/3flHNkVvN0TlPpTna6uCDD27ff2n8+GV76tEsAl1//fXtIthXvvKVwcvf+ta3DrvANBKa0y4+2UJXozl13n777dcuYDWaI5EWvS3/8z//M7jQ1RyB9tGPfvQpf2ZzGr7Pfvaz7RFLjebIokUXuxbV/BuP5KJMcxRecyrC5qiy5pSA3/72t8sHPvCBYa/bHDXVLHQ1mqOwFl3oajTvwdUsdA3c1qda6Go0i06vfe1r26P3mplfffXVZYsttnjGPc1C6sBiV3Nk13CLXb3+NwUAAHrLYhcAANATzRFPzen6zj777PZUgM3i0JJojvAaOMrrqRaFPvjBD5Z/+qd/ak+91wvNqQmfTnMU2sBiV7OQ2CzKNbdtwNDTEDYLWEtyhNLAUU2N5pSGT+epFuSeqX333XfwtjdHrD3ZYtfQUxg2i6TDGfpvsKSnsmz+DQZOVdn8GzzVYlezINccAdccidW8z1dzysKBxbVGc6rJAddcc80S/fxe/JsCAAC9Y7ELAAD6xCGHHNKeinAk7LDDDu2p34Zb4GpOe3fppZeWo48+uvzyl79sFyJe/vKXt6ena077NxI+9alPtQtpw70/1EhpbvPTad7PadVVVy1z5sxpF1ia3qFfd8UVVwz+vem/9dZbn/Z7Dj3TfHNKwafSnBqyOTXgSNttt93a0xM2R/A1i3jNQtKi713VnI7wV7/6Vfv35iioN7/5zcOe5nDmzJnt3ydMmDB4GsynM3Aax6f6N7jvvvvaI7BOOumkdoFrSdx7771Pe51e/ZsCAAC9Y7ELAAAYMc2pC5tT2TX/vf3tby+77rprOf/889vFiOaonmZxZIUVVnjK77Hxxhu373M1YN68ee2CR7NwNLCo0SxyNIsozRFgvVrwWm+99Z72Os2RWn/1V39Vbrjhhvbj5siioZrFogEDp9JbGn/84x+f8vNTpkwpvdAcLdeckvHwww8fPILri1/84pMe1dW8h1qzmLWoZuFzQHO6w6c79eWS/hs0i4bbb799ue2225bqey3Joliv/k0BAIDe6d2vQQIAAH2tWdQaurjRLE6deeaZT/t1zXtUHXfccYP/NadAbE5p1yx4fexjHxu83sknn1yOOuqont3+lVdeeYmuN/S0hYsupjzwwAPLdBuGno5vOBMnTiy90pyWcGAhsfm3HnhvroFTB5566qkLXXc4y9rfeOyxxxa7rFk4HVjoWm211dr/L374wx+WW265ZfAou+YIuea/5oi6AU888cTT/rxe/psCAAC9YbELAADomRe+8IXtaeEGXHjhhc/4e02aNKl9f6yhCysDR3j1QrOgsySa9+ka0Cy8PNlC2He/+93BBZil+W+sPPe5zy0777zz4OkI//u//3vwc9OmTSsPPvhg+/fmtI2bbLLJsN9jaP/qq6/+jPpPOOGEhb7n5Zdf3v7XaE4h2Zwms/n/4rWvfW37/1rzM4ce7bekpzgEAAC6y2IXAADQU2uttdbg35fkPauezr/+67+WddZZp/17c7RR895dvbAkp8hrFmPuuOOOwY+b964a6jnPec7g3++6667SNfvuu++wpy0c+vcnO6pr0f5mcWxJFxCfytAF03e/+91PutA2kv/PAQAAdbPYBQAA9NTQBY6ReH+t5miez33uc4Mfn3766eXqq68uI605YujpNO9BNnDkUPM+Vy9+8YsXOyXjgJ/+9Kela974xjeWNddcs/37BRdc0C4ANkfSXXrppYOzeNvb3vaUC53rrrvu4McDR2Qti6Hvg7bZZps97fV/8pOfLPPPBAAA6maxCwAA6Jm5c+eW66+/fvDjgSOyltV73vOesv766w9+/PnPf76MtOZ9qp7OSSedNPj3l770pQudtq+x2267LXQaw9///velS8aPH1/22Wefwfe7Ov7448v/+3//b/Dzb3/729sFr6cy9N/gP/7jP5b5Ng1dMH26I8WahbEleZ84AACg2yx2AQAAPfOVr3ylzJ8/f/DjV7/61SO2CHPQQQcNfty8n1RzlNVIuvjii9ujxp5Ms4h33HHHPeXp/Lbeeuvyyle+cnDhb6+99mpPvbgkmuv98Y9/LGOt6Ro3blz792ax68QTT1zoc0/ngAMOaI96a3zve99b7D24nspwp358/vOfP/j3s84660m/9vHHH29Pw7ik/94AAEB3WewCAABG3KOPPtoexXPggQcutEjxpje9acR+RnN013rrrTf43lmHH354GUkTJkwoe++9d/n2t7+92OeuuOKK8trXvrbMmzev/Xjq1KntQtZw/u3f/m3w6Kfzzz+/bL/99uXKK6980p/bnCawOVKtOXKthlMfNnMbWKRs3v9qYAGqOYXg0NM0PpkNNtigfOYznxn8+O///u/LJz7xiXLvvfcOe/3HHnus/OhHP2r/PV/ykpcs9vldd911cPGtWZBsvlezkDhUcxt333338v3vf3+xo+0AAIA848f6BgAAAN1z0003lQ996EOLXd4cRXPnnXe273c1dDFj5ZVXLt/61rfKiiuuOGK3YYUVViif/vSnywc/+MH242nTprXv5bXxxhuPyPf/l3/5l/LRj360vOMd7yiHHHJIu7DT/MzmCLKf//zng9drFrKao52axbHhbLrppu2C2Z577tmedq9Z6HrZy17WLgJtscUWZfLkye2i2d13311++ctfljvuuKPUpjlCqnnPrqHe+973LvHXN/9+s2bNav+dmoXJY445pl0E3Gqrrdp/h+b/jwcffLC9TvNv8NBDD7Vft8Yaayz2vZr5NgthA6eQbL7Xf/3Xf7WnkfzLv/zL9ns079PV/L+42mqrlaOOOqr8n//zf5b53wAAAKiXxS4AAGCpNe+F9O///u9LdN1NNtmkPXVdsxgx0pqjhI444ogye/bs9j2lmr83i2oj4SMf+Uj5wx/+0B4x1izuNf8tau211y6nnXZa2XLLLZ/2fasuv/zydoHoqquuai+7+eab2/+eTHNk11/91V+VGrz5zW9uF5KaBblGs2j5ZEeyDac5Eqv5f6D5d2oWvprTMzaLUc2/SfPfk33NK17xiic9PWZz9FZzBFijWWBd9JSGzb/dqaee2h5lCAAAZHMaQwAAYMQ076XVHKn0ohe9qF2IOvvss9sjdXqx0NVojqYaeqrE5giq3/zmNyP2/Q877LB2MWafffYpL3jBC9ojkCZNmtQu2jQLa7/+9a+fdEFmUS9+8YvLjBkzynnnndcejdb8Gz372c9u/82aU+01i1vNqREPPvjg9vSFt9xyS9l8881LDZoj2poFuwF/+7d/2855aX34wx9uT4XYLJQ2C2jPe97z2iPjmn+DZz3rWe2pEd/+9reXr371q+31zjzzzGG/TzOHH/zgB+3C5k477dQeAdbcxrXWWqudx7HHHtv+f7ekswEAALpt3ILmHBIAAAAMvhdUw1OlstC/RXO6wd/+9rftx80pDQfexwsAAGCsObILAACAp3TRRRcNLnQ9//nPL6961avG+iYBAAAMstgFAADAU/ryl788+PcPfOADCx0BBwAAMNacxhAAAOD/5zSGizvrrLPKm970pvbvq622Wpk1a9Yzer8uAACAXhnfs+8MAABA5/zmN78pxx13XHn88cfLzJkzy/nnnz/4uX/4h3+w0AUAAFTHkV0AAAD/P0d2lXLxxReXHXfccbHLX/GKV5Qf//jHZcKECWNyuwAAAJ6M9+wCAABgWM3C1kYbbVQOPvjg9ggvC10AAECNHNkFAAAAAABAZzmyCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAEAH3HDDDeXDH/5w2XTTTcukSZPKhAkTytprr1123XXX8s1vfrPMnz9/2K874ogjyrhx49r/brzxxiX+eQsWLCg777zz4Nc+9thjI1gDAAAwcsYtaJ7BAAAAUK3DDjusHHrooeWJJ54oL3/5y8tWW21VVl111fL73/++XHzxxeWWW24pW265ZZkxY8ZCX9c83Xv+859fbr311vbvBxxwQDn66KOX6Gf+27/9W/nYxz5WVlhhhTJv3rzy6KOPlvHjx/eoEAAA4Jmz2AUAAFCxI488svzjP/5jWXfddcu0adPKNttss9h1zjnnnHLMMceUiy66aKHLzzvvvLLLLruU97znPeWHP/xhe3TWHXfc0R4V9lSaI8Be8pKXlP3337+ceuqp7WKZxS4AAKBWFrsAAAAqNWvWrLLhhhu2f//FL37RnsLwyTSnMVxxxRUXuuytb31rOeOMM8pPf/rT8t3vfrddEGsWr/bcc88n/T7Ngti2225bHn744XLVVVeVjTbayGIXAABQNe/ZBQAAUKnjjz++XWTafffdn3Khq7HoQldzisOzzjqrXSxrFq+ao7saX//615/y+xx++OHl6quvLieccMJi3xMAAKBGFrsAAAAqddlll7V/vvrVr37GC2UDi1zNYlnzvl7NqQ5/85vfDPs1P//5z8sRRxxRDjzwwPZ9wQAAALrAYhcAAECl7rzzzvbPv/qrv1qqr2vOVv+f//mfZbnllit777334OXNwlfzuW984xuLfc3cuXPLXnvtVaZOnVoOPvjgEbj1AAAAo8NiFwAAQJgf//jH5eabby4777xzWWeddQYvf8c73lEmTJjQnqKwOeprqE9+8pPllltuKSeeeGJZYYUVxuBWAwAAPDMWuwAAACq11lprtX/ecccdS/V1A+/LNXAKwwGTJ08ub3jDG8rdd99dzjzzzMHLL7nkkvLv//7v5TOf+Ux58YtfPCK3HQAAYLRY7AIAAKjUdttt1/554YUXLvHX3HPPPeW///u/27//3d/9XRk3btxC/51xxhkLLYg1rr766vb0hocccshi17/11lvb6zRHezUfX3PNNSNcCQAAsGzGL+PXAwAA0CP77LNP+ad/+qd2gerXv/512WSTTZ70uvPnzy8rrrhiexrCRx55pGy55ZZl8803H/a6Z511VrngggvKb3/72/K85z2vbLrppuW9733vsNf9zne+U+bMmVP+/u//vl3sWmONNUasDwAAYCSMW9D8+h4AAABVOvLII8s//uM/lvXXX79MmzatbLXVVotd54c//GH5l3/5l/a9ujbaaKMyc+bMcuWVV5att9562O/52c9+thx++OHloIMOKkccccRT/vzm5zZHdzXv8TV+vN+XBAAA6mOxCwAAoHKHHXZYOfTQQ8sTTzxRtt1223bBa9VVVy2///3vy09+8pNy0003tZcdddRRZccddyybbbZZ+eUvf/mk32/WrFnl+c9/fllzzTXLbbfd9pSLWBa7AACA2nnPLgAAgModfPDB5Ve/+lX50Ic+VB544IFy/PHHtwtb3//+98sGG2xQ/vM//7Ncdtll5Rvf+EZ7/fe9731P+f2aBayddtqp3HnnneXss88epQoAAIDecGQXAAAAAAAAneXILgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnTV+rG9A16255prloYceKuutt95Y3xQAAAAAAIBOuu2228oqq6xS7rrrrqX+Wkd2LaNmoevRRx8d65sBAAAAAADQWc1aS7Pm8kw4smsZDRzRdd111431TQEAgJ459MbLevr9H7jz9+WEvfcvf7z9d+VZ665d3nPSl8uktZ5TumY0Ow7ZaLuefF8AAICxMHXq1Gf8tY7sAgAAxpSFLgAAAJaFxS4AAGDMpCwQpXQAAAB0kcUuAABgTKQsEKV0AAAAdJXFLgAAYNSlLBCldAAAAHSZxS4AAGBUpSwQpXQAAAB0ncUuAABg1KQsEKV0AAAAJLDYBQAAjIqUBaKUDgAAgBQWuwAAgJ5LWSBK6QAAAEhisQsAAOiplAWilA4AAIA0FrsAAICeSVkgSukAAABIZLELAADoiZQFopQOAACAVBa7AACAEZeyQJTSAQAAkMxiFwAAMKJSFohSOgAAANJZ7AIAAEZMygJRSgcAAEA/sNgFAACMiJQFopQOAACAfmGxCwAAWGYpC0QpHQAAAP3EYhcAALBMUhaIUjoAAAD6jcUuAACg9PsCUUoHAABAP7LYBQAA9PUCUUoHAABAv7LYBQAA9O0CUUoHAABAP7PYBQAA9OUCUUoHAABAv7PYBQAA9N0CUUoHAAAAFrsAAIA+WyBK6QAAAODPLHYBAAB9s0CU1AEAAMCfWewCAACeVsoCUVIHAAAAf2axCwAAeFopC0RJHQAAAPyZxS4AAOBppSwQJXUAAADwZxa7AACAp5WyQJTUAQAAwJ9Z7AIAAJ5WygKRDgAAgDwWuwAAgDgpC0QpHQAAAL00vqffHYY49MbLRvT7pTzxH8uOQzbablR+DgDAaPI4EQAAoL84sotOSnnin9IBAFCLlMdXKR0AAACjwWIXnZPyxD+lAwCgFimPr1I6AAAARovFLjol5Yl/SgcAQC1SHl+ldAAAAIwmi110RsoT/5QOAIBapDy+SukAAAAYbRa76ISUJ/4pHQAAtUh5fJXSAQAAMBYsdlG9lCf+KR0AALVIeXyV0gEAADBWLHZRtZQn/ikdAAC1SHl8ldIBAAAwlix2Ua2UJ/4pHQAAtUh5fJXSAQAAMNY6vdh1xBFHlHHjxpVNN910sc9dfvnlZbvttisrr7xyWXPNNcv+++9f5syZMya3k/594p/SAQBQi5THVykdAAAANRhfOmr27NnlyCOPLKussspin7vmmmvKq1/96vLXf/3X5dhjj22ve/TRR5ebbrqp/OAHPxiT20v/PfFP6QAAqEXK46uUDgAAgFp0drHrE5/4RHnZy15WHn/88XLvvfcu9LmDDjqoPOtZzyoXX3xxWX311dvL1l9//fL+97+//OhHPyqvec1rxuhW0y9P/FM6AABqkfL4KqUDAACgJp08jeFPfvKTcvrpp5cvfvGLi33uwQcfLOeff35517veNbjQ1dh7773LqquuWk477bRRvrX02xP/lA4AgFqkPL5K6QAAAKhN5xa7miO5PvzhD5f3ve99ZbPNNlvs89dee2157LHHylZbbbXQ5RMmTCibb755ufrqq0fx1tJvT/xTOgAAapHy+CqlAwAAoEadO43hV7/61XLrrbeWCy64YNjP33nnne2fa6211mKfay679NJLn9HPnTp16rCX33zzzWWDDTZ4Rt+TrCf+KR0AALVIeXyV0gEAAFCrTh3Z9Yc//KEcfPDB5bOf/WyZMmXKsNeZO3du++eKK6642OdWWmmlwc9Th5Qn/ikdAAC1SHl8ldIBAABQs04d2fWZz3ymTJ48uT2N4ZOZOHFi++f8+fMX+9y8efMGP7+0rrvuuqU64ov+eeKf0gEAUIuUx1cpHQAAALXrzGLXTTfdVL7+9a+XL37xi+V3v/vdQgtYjz76aJk1a1ZZffXVB09fOHA6w6Gay9Zee+1Rvd1kP/FP6QAAqEXK46uUDgAAgC7ozGkM77jjjvLEE0+U/fffvzzvec8b/O/KK68sM2fObP9+2GGHlU033bSMHz++zJgxY6Gvf+SRR8o111xTNt988zFrIOuJf0oHAEAtUh5fpXQAAAB0RWeO7GoWsb73ve8Ne2rDP/3pT+VLX/pS2WCDDcqkSZPKTjvtVE4++eT2vb1WW2219nrf+ta3ypw5c8oee+wxBreetCf+KR0AALVIeXyV0gEAANAlnVnsevazn13e/OY3L3Z5c1rDxtDPHXHEEWXbbbctO+ywQ9l3333L7NmzyzHHHFNe85rXlF122WVUbzd5T/yTOspGY30rAACyHl8ldAAAAHRNZ05juDS22GKLcsEFF5SJEyeWj33sY+17fb33ve8tp59++ljftL6W8MQ/5QWMgQ4AgLGW9viq6x0AAABd1Jkju57MxRdfPOzl2223XfnpT3866reHJ9f1J/4pL2AM7QAAGEuJj6+63AEAANBVkUd2UacuP/FPeQFj0Q4AgLGS+viqqx0AAABdZrGLUdPVJ/4pL2AM1wEAMBaSH191sQMAAKDrLHYxarr4xD/lBYyUDgCg+1Iel6R0AAAAJLDYBeEvYKR0AADdl/K4JKUDAAAghcUuCH4BI6UDAOi+lMclKR0AAABJxo/1DYDapLyAkdIBAHRfyuOSlI6lceiNl5VapcxjaToO2Wi7Ub99AADQBY7sgj5/wgwA0Espj0tSOlKkzCOlAwAAxprFLgh7opnSAQB0X8rjkpSOFCnzSOkAAIAaWOyCoCeaKR0AQPelPC5J6UiRMo+UDgAAqIXFLvpeyhPNlA4AoPtSHpekdKRImUdKBwAA1GT8WN8AGEspTzRTOgCA7kt5XJLSkSJlHl3oOPTGyyI6lkQXOg7ZaLuxvgkAAJ3gyC76Vhee2PRTBwDQfSmPS1I6UqTMQ0ddUjoAAPgzi130pZQnNikdAED3pTwuSelIkTIPHXVJ6QAA4H9Z7KLvpDyxSekAALov5XFJSkeKlHnoqEtKBwAAC7PYRV9JeWKT0gEAdF/K45KUjhQp89BRl5QOAAAWZ7GLvpHyxCalAwDovpTHJSkdKVLmoaMuKR0AAAzPYhd9IeWJTUoHANB9KY9LUjpSpMxDR11SOgAAeHIWu4iX8sQmpQMA6L6UxyUpHSlS5qGjLikdAAA8NYtdREt5YpPSAQB0X8rjkpSOFCnz0FGXlA4AAJ6exS5ipTyxSekAALov5XFJSkeKlHnoqEtKBwAAS8ZiF5FSntikdAAA3ZfyuCSpI0HSPBI6GgkdKfNI2c4BAEaDxS7iJD2xSegAADIkPC5JeXw10NF1afPoeseArnekzCNlOwcAGC0Wu4iS9sSm6x0AQI6uPy5JeXw1tKPLEufR5Y6hutyRMo+U7RwAYDRZ7CJG4hObLncAAFm6/Lgk5fHVoh1dlTqPrnYsqqsdKfNI2c4BAEabxS4ipD6x6WoHAJCnq49LUh5fDdfRRcnz6GLHcLrYkTKPlO0cAGAsWOyi85Kf2HSxAwDI1MXHJSmPr3TUJaUjRco8UjoAAMaKxS46LeUJQUoHAEAtUh5f6ahLSkeKlHmkdAAAjCWLXXRWyhOClA4AgFqkPL7SUZeUjhQp80jpAAAYaxa76KSUJwQpHQAAtUh5fKWjLikdKVLmkdIBAFADi110TsoTgpQOAIBapDy+0lGXlI4UKfNI6QAAqIXFLjol5QlBSgcAQC1SHl/pqEtKR4qUeaR0AADUxGIXnZHyhCClAwCgFimPr3TUJaUjRco8UjoAAGpjsYtOSHlCkNIBAFCLlMdXOuqS0pEiZR4pHQAANbLYRfVSnhCkdAAA1CLl8ZWOuqR0pEiZR0oHAECtLHZRtZQnBCkdAAC1SHl8paMuKR0pUuaR0gEAUDOLXVQr5QlBSgcAQC1SHl/pqEtKR4qUeaR0AADUzmIXVUp5QpDSAQBQi5THVzrqktKRImUeKR0AAF1gsYvqpDwhSOkAAKhFyuMrHXVJ6UiRMo+UDgCArrDYRVVSnhCkdAAA1CLl8ZWOuqR0pEiZR0oHAECXWOyiGilPCFI6AABqkfL4SkddUjpSpMwjpQMAoGs6tdh13XXXlT322KM8//nPLyuvvHJ59rOfXbbffvty9tlnL3bd66+/vuyyyy5l1VVXLZMnTy577bVXueeee8bkdtM/TwhSOgAAapHy+EpHXVI6UqTMI6UDAKCLxpcOufXWW8uf/vSn8u53v7usvfba5eGHHy5nnHFGeeMb31i+9rWvlX333be93uzZs9tFsEmTJpUjjzyyzJkzpxx99NHl2muvLdOnTy8TJkwY6xQCnxCkdAAA1CLl8ZWOuqR0pEiZR0oHAEBXdWqx6/Wvf33731Af+tCHypZbblmOPfbYwcWuZoHroYceKldddVVZb7312su23nrrsvPOO5cTTjhh8HqMvZQnBCkdAAC1SHl8paMuKR0pUuaR0gEA0GWdOo3hcJZffvmy7rrrlvvvv3/wsuZor912221woaux0047lQ033LCcdtppY3RLSX1CkNIBAFCLlMdXOuqS0pEiZR4pHQAAXdepI7sGNEdtzZ07tzzwwAPlrLPOKj/4wQ/Knnvu2X7ujjvuKHfffXfZaqutFvu65uiuc889dwxuMalPCFI6AABqkfL4SkddUjpSpMwjpQMAIEEnF7sOOOCA9j26Gsstt1x5y1veUo477rj24zvvvLP9c6211lrs65rL7rvvvjJ//vyy4oorLtXPnDp16rCX33zzzWWDDTZ4BhX9K+UJQUoHAEAtUh5fpXQ0EjpS5tF0lI1K5yXNI6EDACBFJ09j+NGPfrScf/755cQTTyyve93ryuOPP14eeeSR9nPNEV+N4RazVlpppYWuw+hLeUKQ0gEAUIuUx1cpHQO63pEyj4GOrkubR9c7AACSdPLIro033rj9r7H33nuX17zmNeUNb3hDufLKK8vEiRPby5ujtxY1b9689s+B6yyN6667bqmO+CL3CUFSR8JvhgIA3Zf0+CqhY6gud6TMY2hHlyXOo8sdAABpOnlk16Le+ta3lp///Odl5syZg6cvHDid4VDNZZMnT17qUxgyMhKeEKQ8sUn5zVAAoPvSHl91vWNRXe1ImceiHV2VOo+udgAAJIpY7Bo4LeEDDzxQ1llnnTJlypQyY8aMxa43ffr0svnmm4/BLaTR9ScEKU9sUn4zFADovsTHV13uGE4XO1LmMVxHFyXPo4sdAACpOrXYdffddy922aOPPlpOOumk9tSEm2yySXvZ7rvvXs4555xy++23D17vwgsvbI/82mOPPUb1NvO/uvyEIOWJTcpvhgIA3Zf6+KqrHSlS5qGjLikdAADJOvWeXR/4wAfKgw8+WLbffvv2CK677rqrnHLKKeWGG24oxxxzTFl11VXb6x100EFl2rRpZccddywf+chHypw5c8pRRx1VNttss7LPPvuMdUbf6uoTgpQnNim/GQoAdF/y46sudqRImYeOuqR0AACk69Ri15577lm++c1vlq985SvlD3/4Q1lttdXKlltuWb7whS+UN77xjYPXW3fddcsll1xSPv7xj5cDDzywTJgwoey6667tgpj36xo7XXxCkPLEJqUDAOi+lMclKR0pUuahoy4pHQAA/aBTi11vf/vb2/+WxNSpU8t5553X89tErpQnNikdAED3pTwuSelIkTIPHXVJ6QAA6Bedes8uGC0pT2xSOgCA7kt5XJLSkSJlHjrqktIBANBPLHZB6BOblA4AoPtSHpekdKRImYeOuqR0AAD0G4tdEPjEJqUDAOi+lMclKR0pUuahoy4pHQAA/chiF4Q9sUnpAAC6L+VxSUpHipR56KhLSgcAQL+y2AVBT2xSOgCA7kt5XJLSkSJlHjrqktIBANDPxo/1DYCxlvLEJqUDAOi+lMclKR0pUuahoy4pHcvi0BsvK7VImceydhyy0XY9vX0AkMiRXfQ1D6QBAEZWyuOSlI4UKfPQUZeUjhQp80jpAICuGZPFrscee2wsfixEPgBN6QAAui/lcUlKR4qUeeioS0pHipR5pHQAQBeN6mLXE088UY4//viy8cYbj+aPhdgHoCkdAED3pTwuSelIkTIPHXVJ6UiRMo+UDgDoqhF9z66rr7663HTTTWWNNdYoO+ywQxk//n+//amnnlo+97nPlZkzZ5bVVlttJH8s9OUD0JQOAKD7Uh6XpHSkSJmHjrqkdKRImUdKBwCUfl/smjdvXnnLW95SzjvvvMHL1l9//XL++eeXiRMnlre//e3lsssuK6ussko58MADywEHHDASPxb69gFoSgcA0H0pj0tSOlKkzENHXVI6UqTMI6UDALpuRBa7jjrqqPLDH/6wbLHFFmXHHXcsv/nNb8qZZ55Z9ttvvzJ79uz243/4h38on/zkJ8vkyZNH4kdC3z4ATekAALov5XFJSkeKlHnoqEtKR4qUeaR0AECCEVnsmjZtWnn5y19eLr300rLccn9+G7CDDz64HH744WXttdduT2/ofboYSykPQFM6AIDuS3lcktKRImUeOuqS0pEiZR5d7zj0xssiOgZ0veOQjbYb65sA0Hl/XplaRjfffHN529veNrjQ1XjHO97R/vmpT33KQhdjqusPeNI6AIDuS3lcktKRImUeOuqS0pEiZR466pLSAUAFi11z584tU6ZMWeiygY832mijkfgR0NcPeFI6AIDuS3lcktKRImUeOuqS0pEiZR466pLSAUAli11PZfz4ETlTIvTtA56UDgCg+1Iel6R0pEiZh466pHSkSJlHSkcjoSNlHk0HAMtuxFaizjzzzDJr1qzBjx9++OEybty4csopp5Sf/exnC123ufzTn/70SP1oiH7Ak9ABAHRfyuOSpI4ScBKNpHkkdDQSOlLmYTuvS0rHgK53pMxjoOPY23Yf65sC0Hkjttg1bdq09r9FHX/88YtdZrGLXkp7wNP1DgAgQ8LjkpTHVykvjKXNo+sdA7rekTIP23ldUjqG6nJHyjyGdgBQyWLXRRddNBLfBpZZ4gOeLncAADm6/rgk5fFVygtjifPocsdQXe5ImYftvC4pHYvqakfKPBbtAKCSxa4ddthhJL4NLJPUBzxd7QAAsnT5cUnK46uUF8ZS59HVjkV1tSNlHrbzuqR0DKeLHSnzGK4DgGW33Ah8DxhzyQ94utgBAOTp6uOSlMdXKS+MJc+jix3D6WJHyjxs53VJ6UiRMo+UDoDo9+xq/PKXvywTJkwoG2+8cfvxggULyoknnlh+9KMflQcffLBstdVWZf/99y+TJ08eyR9Ln0t5oJDSAQBk6uLjkpTHVzrqktKRImUeOuqS0pEiZR4pHQDRi10PPPBA2XnnnctVV13VfrzTTjuVc845p7zzne8sp59++uD1zj333PKtb32rTJ8+vayxxhoj8aPpcykPFFI6AABqkfL4SkddUjpSpMxDR11SOlKkzCOlAyD+NIZf/vKXy4wZM8oWW2xRXv/615cf//jH5YMf/GA588wzy+GHH15+8YtflCuvvLJ84hOfKLNmzSpHHHHESPxY+lzKA4WUDgCAWqQ8vtJRl5SOFCnz0FGXlI4UKfNI6QDoiyO7pk2bVl71qleVCy64oP34qKOOKgceeGDZb7/9ykEHHTR4vZe+9KXllltuKd///vfLscceOxI/mj6V8kAhpQMAoBYpj6901CWlI0XKPHTUJaUjRco8auo49MbLIjqWRW0dh2y03Zj9bEg0Ikd23X777eVNb3rT4MdvfvOb2/fr2n777Re77itf+cpy2223jcSPpU/VdsfU7x0AALVIeXyloy4pHSlS5qGjLikdKVLmoaMuKR1Ajxe7mvfsGvoeXJMnT17oz6Ge9axnlUceeWQkfix9KOWOKaUDAKAWKY+vdNQlpSNFyjx01CWlI0XKPHTUJaUDGIXFLhgNKXdMKR0AALVIeXyloy4pHSlS5qGjLikdKVLmoaMuKR3AKC52jRs3bokug36+Y0rpAACoRcrjKx11SelIkTIPHXVJ6UiRMg8ddUnpAJbM+DJC9t577/Lud797octe85rXLLbg1byXF/TjHVNKBwBALVIeX+moS0pHipR56KhLSkeKlHnoqEtKBzDKi13bb7+9o7joiZQ7ppQOAIBapDy+0lGXlI4UKfPQUZeUjhQp89BRl5QOYAwWuy6++OKR+DYQeceU0gEAUIuUx1c66pLSkSJlHjrqktKRImUeOuqS0gGM0Xt2nXTSSWXWrFkj8a0g6o4ppQMAoBYpj6901CWlI0XKPHTUJaUjRco8dNQlpQMYw8WuffbZp1x++eWDHz/44INl6623LjNmzBiJb0+fSbljSukAAKhFyuMrHXVJ6UiRMg8ddUnpSJEyDx11SekAxnixa8GCBQt9/Oijj7YLXc2iF/TjHVNKBwBALVIeX+moS0pHipR56KhLSkeKlHnoqEtKB1DBYheMhJQ7ppQOAIBapDy+0lGXlI4UKfPQUZeUjhQp89BRl5QOYNlZ7KIKKXdMKR0AALVIeXyloy4pHSlS5qGjLikdKVLmoaMuKR3AyLDYxZhLuWNK6QAAqEXK4ysddUnpSJEyDx11SelIkTIPHXVJ6QBGzviR+kZnnnlmmTVrVvv3hx9+uIwbN66ccsop5Wc/+9li120+9+lPf3qkfjQdlnLHlNIBAFCLlMdXOuqS0pEiZR466pLSkSJlHjrqktIBVLrYNW3atPa/oY4//vhhr2uxi6Q7ppQOAIBapDy+0lGXlI4UKfPQUZeUjhQp89BRl6SOstFY3wrIMiKLXRdddFEZDT//+c/LiSee2P685iiyNdZYo7zsZS8rhx9+eNlwww0Xuu71119fPvaxj5XLLrusTJgwoey6667l2GOPLVOmTBmV20r/3DEldAAA1CLl8ZWOuqR0pEiZh466JHUkvACeNI+EjkZCR8o8BjqOvW33sb4pEGVEFrt22GGHMhq+8IUvlJ/+9Kdljz32KC960YvKXXfdVY477riyxRZbtKdL3HTTTdvrzZ49u2y//fZl0qRJ5cgjjyxz5swpRx99dLn22mvL9OnT28Uvxk7aHVPXOwAAapHy+Cqlo5HQkTIPL4DXJaWjkdCRMo+UF8DT5tH1jgFd70iZx9AOoNLTGI6Gj3/84+W//uu/Flqs2nPPPctmm21W/vmf/7mcfPLJ7WXNAtdDDz1UrrrqqrLeeuu1l2299dZl5513LieccELZd999x6yh3yXeMXW5AwCgFimPr1I6BnS9I2UeXgCvS0rHgK53pMwj5QXwxHl0uWOoLnekzGPRDmBkLVc6ZNttt13sqKwXvvCFZerUqe1pCwecccYZZbfddhtc6GrstNNO7akOTzvttFG9zeTfMXW5AwCgBkmPrxI6hupyR8o8vABel5SOobrckTKPlBfAU+fR1Y5FdbUjZR7DdQB9fGTXcBYsWFB+//vftwtejTvuuKPcfffdZauttlrsus3RXeeee+4z+jkD339RN998c9lggw2e0ffsN6l3TF3u6PpvhgIA3Zf2+KrrHYvqakfKPLwAXpeUjkV1tSNlHikvgCfPo4sdw+liR8o8Ujqgdp06sms4p5xySrvA1ZzOsHHnnXe2f6611lqLXbe57L777ivz588f9duJUyPUIuU3QwGA7kt8fNXljuF0sSNlHl4Ar0tKx3C62JEyDx11SelIkTKPlA7ogk4f2XXDDTeU/fbbr7z85S8v7373u9vL5s6d2/654oorLnb9lVZaafA6w33+qVx33XVLdcQXi+vyDj3ljinlN0MBgO5LfXzV1Y4UKfPQUZeUjhQp89BRl5SOFCnzSOmArujskV133XVX2XXXXcukSZPK6aefXpZffvn28okTJ7Z/Dnf01rx58xa6DqOrqzv0lDumlN8MBQC6L/nxVRc7UqTMQ0ddUjpSpMxDR11SOlKkzCOlA7qkk0d2PfDAA+V1r3tduf/++8ull15a1l77f49QGTh94cDpDIdqLps8efJSH9XFyOjiDj3ljimlAwDovpTHJSkdKVLmoaMuKR0pUuahoy4pHSlS5pHSAV3TucWu5uisN7zhDWXmzJnlggsuKJtssslCn19nnXXKlClTyowZMxb72unTp5fNN998FG8tXZZyx5TSAQB0X8rjkpSOFCnz0FGXlI4UKfPQUZeUjhQp80jpgC7q1GkMH3/88bLnnnuWK664okybNq19r67h7L777uWcc84pt99+++BlF154YbtAtscee4ziLaarUu6YUjoAgO5LeVyS0pEiZR466pLSkSJlHjrqktKRImUeKR3QVZ06suuAAw4oZ511Vntk13333VdOPvnkhT7/rne9q/3zoIMOahfDdtxxx/KRj3ykzJkzpxx11FFls802K/vss88Y3Xq6IuWOKaUDAOi+lMclKR0pUuahoy4pHSlS5qGjLikdKVLmkdIBXdapxa5rrrmm/fPss89u/1vUwGLXuuuuWy655JLy8Y9/vBx44IFlwoQJZddddy3HHHOM9+uiL+6YUjoAgO5LeVyS0pEiZR466pLSkSJlHjrqktKRImUeKR3QdZ1a7Lr44ouX+LpTp04t5513Xk9vD1lS7phSOgCA7kt5XJLSkSJlHjrqktKRImUeOuqS0pEiZR4pHZCgU+/ZBb2ScseU0gEAdF/K45KUjhQp89BRl5SOFCnz0FGXlI4UKfNI6YAUFrvoeyl3TCkdAED3pTwuSelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOSGKxi76WcseU0gEAdF/K45KUjhQp89BRl5SOFCnz0FGXlI4UKfNI6YA0nXrPLhhJKXdMKR0AdMuhN15WapByP7isHYdstF2pgXnQCynz0FGXlI4UKfPQUZeUjhQp80jpgESO7KIvpdwxpXQAQD/fD+qoS0pHipR56KhLSkeKlHnoqEtKR4qUeaR0QCqLXfSdlDumlA4A6Of7QR11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOSGaxi76ScseU0gEA/Xw/qKMuKR0pUuahoy4pHSlS5qGjLikdKVLmkdIB6Sx20TdS7phSOgCgn+8HddQlpSNFyjx01CWlI0XKPHTUJaUjRco8UjqgH1jsoi+k3DGldABAP98P6qhLSkeKlHnoqEtKR4qUeeioS0pHipR5pHRAv7DYRbyUO6aUDgDo5/tBHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlA7oJxa7iJZyx5TSAQD9fD+ooy4pHSlS5qGjLikdKVLmoaMuKR0pUuaR0gH9xmIXsVLumFI6AKCf7wd11CWlI0XKPHTUJaUjRco8UjoaCR0p82g6EiTNI6ED+pHFLiKl3DGldABAP98P6qhLUkeCpHkkdDQSOlLmYTuvS0rHgK53pMxjoKPr0ubR9Q7oVxa7iJNyx5TSAQD9fD+Y0tFI6EiZhxfG6pLSMaDrHSnzsJ3XJaVjqC53pMxjaEeXJc6jyx3Qzyx2ESXljimlAwD6+X4wpWNA1ztS5uGFsbqkdAzV5Y6UedjO65LSsaiudqTMY9GOrkqdR1c7oN9Z7CJGyh1TSgcA9PP9YErHUF3uSJmHF8bqktKxqK52pMzDdl6XlI7hdLEjZR7DdXRR8jy62AFY7CJEyh1TSgcA9PP9YErHorrakTIPL4zVJaVjOF3sSJmH7bwuKR0pUuahoy4pHcCfWeyi81LumFI6AKCf7wdTOobTxY6UeeioS0pHipR56KhLSkeKlHnoqEtKB/C/LHbRaSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcDCLHbRWSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcDiLHbRSSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcDwLHbROSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcCTs9hFp6TcMaV0AEA/3w+mdKRImYeOuqR0pEiZh466pHSkSJmHjrqkdABPzWIXnZFyx5TSAQD9fD+Y0pEiZR466pLSkSJlHjrqktKRImUeOuqS0gE8PYtddELKHVNKBwD08/1gSkeKlHnoqEtKR4qUeeioS0pHipR56KhLSgewZCx2Ub2UO6aUDgDo5/vBlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlA5gyVnsomopd0wpHQDQz/eDKR0pUuahoy4pHSlS5qGjLikdKVLmoaMuKR3A0rHYRbVS7phSOgCgn+8HUzpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjqApWexiyql3DGldABAP98PpnSkSJmHjrqkdKRImYeOuqR0pEiZh466pHQAz4zFLqqTcseU0gEA/Xw/mNKRImUeOuqS0pEiZR466pLSkSJlHjrqktIBPHMWu6hKyh1TSgcA9PP9YEpHipR56KhLSkeKlHnoqEtKR4qUeeioS0oHsGwsdlGNlDumlA4A6Of7wZSOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOYNlZ7KIKKXdMKR0A0M/3gykdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdwMgYP0LfB0q/3zGldAA8E4feeNmo/8yU/W4vOg7ZaLsy2syDXkiZh466pHSkSJmHjrqkdKRImYeOuqR0ACPHkV2MqZQ7ppQOgK5I2e/qqEtKR4qUeeioS0pHipR56KhLSkeKlHnoqEtKBzCyLHYxZlLumFI6ALoiZb+roy4pHSlS5qGjLikdKVLmoaMuKR0pUuahoy5JHcDIstjFmEi6Y0roAOiKlP2ujrqkdKRImYeOuqR0pEiZh466JHUkSJpHQkcjoSNlHgMdwMiy2MWoS7tj6noHQFek7Hd11CWlI0XKPFI6GgkdKfPwAnhdUjoaCR0p80h5ATxtHl3vGND1jpR5DO0ARpbFLkZV4h1TlzsAuiJlv5vS0UjoSJmHF8DrktIxoOsdKfPwAnhdUjoGdL0jZR4pL4AnzqPLHUN1uSNlHot2ACPLYhejJvWOqcsdAF2QtN9N6BjQ9Y6UeXgBvC4pHUN1uSNlHl4Ar0tKx1Bd7kiZR8oL4Knz6GrHorrakTKP4TqAPl7smjNnTjnkkEPKLrvsUiZPnlzGjRtXTjjhhGGve/3117fXW3XVVdvr7rXXXuWee+4Z9dvM/0q9Y+pyB0Dt0va7Xe8YqssdKfPwAnhdUjoW1dWOlHl4AbwuKR2L6mpHyjxSXgBPnkcXO4bTxY6UeaR0QO3Glw659957y2GHHVbWW2+98uIXv7hcfPHFw15v9uzZZfvtty+TJk0qRx55ZLtIdvTRR5drr722TJ8+vUyYMGHUbzt+A7wWKS+MAfkS97td7lhUVztS5uEF8LqkdAynix0p8/ACeF1SOobTxY6UeeioS0pHipR5jHXHoTdeFtExUsa645CNthu1n9WPOrXYtdZaa5U777yzrLnmmmXGjBnlpS996bDXaxa4HnrooXLVVVe1C2ONrbfeuuy8887tkWD77rvvKN9yGnaEYy/lhTEgX+p+t6sdw+liR8o8vABel5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOQk5juOKKK7YLXU/njDPOKLvtttvgQldjp512KhtuuGE57bTTenwreTJd3YGk7AhTXhgD8iXvd7vYkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktJB0JFdS+KOO+4od999d9lqq60W+1xzdNe55577jL7v1KlTh7385ptvLhtssMEz+p79pos7kJQdYUoHkC9lf5XSkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktJB2JFdS6I5zeHAKQ8X1Vx23333lfnz54/BLaNrUnaEKR1AvpT9VUpHipR56KhLSkeKlHnoqEtKR4qUeeioS0pHipR56KhLSgd9emTX3LlzB095uKiVVlpp8DrDff6pXHfddUt1xBfdlrIjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjro4yO7Jk6c2P453NFb8+bNW+g6kLwjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjro88WugdMXDpzOcKjmssmTJy/1UV30j5QdYUoHkC9lf5XSkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktLB0otb7FpnnXXKlClTyowZMxb73PTp08vmm28+JreL+qXsCFM6gHwp+6uUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOnpm4xa7G7rvvXs4555xy++23D1524YUXlpkzZ5Y99thjTG8bdUrZEaZ0APlS9lcpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdPHPjS8ccd9xx5f777y+/+93v2o/PPvvsMnv27PbvH/7wh8ukSZPKQQcdVKZNm1Z23HHH8pGPfKTMmTOnHHXUUWWzzTYr++yzzxgXUJuUHWFKB5AvZX+V0pEiZR466pLSkSJlHjrqktKRImUeOuqS0pEiZR466pLSQZ8tdh199NHl1ltvHfz4u9/9bvtf413vele72LXuuuuWSy65pHz84x8vBx54YJkwYULZddddyzHHHOP9uojcEaZ0APlS9lcpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikd9OFi16xZs5boelOnTi3nnXdez28P3ZWyI0zpAPKl7K9SOlKkzENHXVI6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6GBmR79kF/bIjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjoYORa76DspO8KUDiBfyv4qpSNFyjx01CWlI0XKPHTUJaUjRco8dNQlpSNFyjx01CWlg5FlsYu+krIjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjoYeRa76BspO8KUDiBfyv4qpSNFyjx01CWlI0XKPHTUJaUjRco8dNQlpSNFyjx01CWlg96w2EVfSNkRpnQA+VL2VykdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdKVLmoaMuKR30jsUu4qXsCFM6gHwp+6uUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOestiF9FSdoQpHUC+lP1VSkeKlHnoqEtKR4qUeeioS0pHipR56KhLSkeKlHmkdDQSOlLm0XTQWxa7iJW0I0zoAPKl7K9SOlKkzENHXVI6UqTMQ0ddUjpSpMwjpaOR0JEyj5QXwJPmkdAxoOsdKfMY6KC3xvf4+8OYSNsRdrnj0Bsvi+hoJHQcstF2Y30TCJWwfSR1pEiZh466JHWUjUrnJc0joaOR0JEyD9t5XVI6BnS9I2UeAx3H3rZ76bK0eXS9Y6gud6TMY2gHveXILuIk7gh1jL2UDuiVhO0jZTv3m6F1SeloJHSkzCPlN0PT5tH1jgFd70iZh+28LikdQ3W5I2UeKS+AJ86jyx2L6mpHyjwW7aC3LHYRJXVH2NWORkJHyjxSXgCnTgnbR8p27oWxeqR0DOh6R8o8vDBWl5SOobrckTIP23ldUjoW1dWOlHmkvACeOo+udgynix0p8xiug96y2EWM5B1hFzsGdL0jZR4pL4BTr4TtI2U798JYHVI6hupyR8o8vDBWl5SORXW1I2UetvO6pHQMp4sdKfNIeQE8eR5d7EiRMo+Ujq6x2EWElB1ISsdQXe5ImUfKC+DULWH7SNnOvTA29lI6FtXVjpR5eGGsLikdw+liR8o8bOd1SelIkTIPHXVJ6UiRMo+Uji6y2EXnpexAUjoW1dWOlHmkvABO/RK2j5Tt3AtjYyulYzhd7EiZh466pHSkSJmHjrqkdKRImYeOuqR0pEiZR0pHV1nsotNSdiApHcPpYkfKPFJeAIdeSN7OdYydlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfNI6egyi110VsoOJKUjRco8UjqgF1K2Dx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlI6us9hFJ6XsQFI6UqTMI6UDeiFl+9BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnzSOlIYLGLzknZgaR0pEiZR0oH9ELK9qGjLikdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdKVLmkdKRwmIXnZKyA0npSJEyj5QO6IWU7UNHXVI6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMI6UjicUuOiNlB5LSkSJlHikd0Asp24eOuqR0pEiZh466pHSkSJmHjrqkdKRImYeOuqR0pEiZR0pHGotddELKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SORBa7qF7KDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOVBa7qFrKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOZBa7qFbKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOdBa7qFLKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOfmCxi+qk7EBSOlKkzCOlA3ohZfvQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp80jp6BcWu6hKyg4kpSNFyjxSOqAXUrYPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMo+Ujn5isYtqpOxAUjpSpMwjpQN6IWX70FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfNI6eg3FruoQsoOJKUjRco8UjqgF1K2Dx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlI5+NH6sbwCk7EBSOlKkzKOLHYfeeFlEx3C62HHIRtuVVF2cx3B01CWlI0XKPHTUJaUjRco8dNQlpSNFyjx01CWlI0XKPFI6+pUjuxhTKTuQlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnzSOnoZxa7GDMpO5CUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXpI4ESfNI6Oh3FrsYEyk7kJSOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXpI4ESfNI6GgkdKTMY6Cj69Lm0fUOLHYxBlJ2ICkdKVLmoaMuKR0pUuahoy4pHSlS5pHS0UjoSJmHF8DrktLRSOhImYcXwOuS0jGg6x0p8xja0WWJ8+hyB39msYtRlbIDSelIkTIPHXVJ6UiRMo+UjkZCR8o8vABel5SOAV3vSJmHF8DrktIxoOsdKfPwAnhdUjqG6nJHyjwW7eiq1Hl0tYP/ZbGLUZOyA0nqSJA0j4SORkJHyjxs53VJ6RjQ9Y6UeXgBvC4pHUN1uSNlHl4Ar0tKx1Bd7kiZhxfA65LSsaiudqTMY7iOLkqeRxc7WJjFLkZNwg4kZUfohbG6pHQM6HpHyjxs53VJ6Riqyx0p8/ACeF1SOhbV1Y6UeXgBvC4pHYvqakfKPLwAXpeUjuF0sSNlHjrqktLB4ix2MWq6vgNJ2RF6YawuKR1DdbkjZR6287qkdCyqqx0p8/ACeF1SOobTxY6UeXgBvC4pHcPpYkfKPHTUJaUjRco8dNQlpYPhWexi1HR5B5KyI/TCWF1SOhbV1Y6UedjO65LSMZwudqTMwwvgdUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnp4MlZ7GLUdHUHkrIj9MJYXVI6htPFjpR52M7rktKRImUeOuqS0pEiZR466pLSkSJlHjrqktKRImUeOuqS0kGfLnbNnz+/fOpTnyprr712mThxYtlmm23K+eefP9Y3q691cQeSsiPUUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlA76eLHrPe95Tzn22GPLO9/5zvKlL32pLL/88uX1r399ueyyy8b6ptERKTtCHXVJ6UiRMg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelgyYwvgaZPn15OPfXUctRRR5VPfOIT7WV777132XTTTcsnP/nJcvnll4/1TaRyKTtCHXVJ6UiRMg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11Semgz4/sOv3009sjufbdd9/By1ZaaaXy3ve+t1xxxRXl9ttvH9PbR91SdoQ66pLSkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktKRImUeOuqS0sHSGbdgwYIFJczOO+9c7rjjjvLrX/96ocsvvPDCstNOO5WzzjqrvOENb1iq7zl16tRhL7/hhhvKCiusUDbYYINlus394J5HHi61e/zRx8r9d9xVnnjssbLc+PHlL9ZZsyy/QvcOgFzSjikTVq567v02j9FQ+8z7bR4p2/myzL3f5jFa+n1br20eo9FR88z7cR6jpea59+M8RqOj1pn36zxGQ60z79d5jFZHjXPv53mMhhpn3s/zGK2O2ube7/MYDaP1Gk2X3Xzzze16y5/+9Kel/trIxa7mdIXPec5z2sWtoZrFr2bR6qtf/Wr5wAc+MCKLXTfeeGOZOHFiWW+99ZbpNtOtDa5hgRNy2c6hP9jWoT/Y1qE/2NYhn+0c8t12221llVVWKXfddddSf20dS5ojbO7cuWXFFVdc7PLmVIYDn19a11133YjcNrpvYOHT/xOQy3YO/cG2Dv3Btg79wbYO+WznQN+9Z1dzpNX8+fMXu3zevHmDnwcAAAAAAKD7Ihe71lprrXLnnXcudvnAZWuvvfYY3CoAAAAAAABGWuRi1+abb15mzpxZHnzwwYUuv/LKKwc/DwAAAAAAQPdFLna99a1vLY8//nj5+te/PnhZc1rD448/vmyzzTZl3XXXHdPbBwAAAAAAwMgYXwI1C1p77LFH+fSnP13uvvvu8oIXvKCceOKJZdasWeWb3/zmWN88AAAAAAAARsi4BQsWLCiB5s2bVz772c+Wk08+ufzxj38sL3rRi8rnP//58trXvnasbxoAAAAAAAAjJHaxCwAAAAAAgHyR79kFAAAAAABAf7DYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAKBPXHzxxWXcuHHlc5/73BJ/TXPd5muarwUAAKiRxS4AAIBRdNVVV7WLR9tss82wn//2t7/dfr7577e//e1in587d25ZaaWVysorr1zmz58/CrcYAACgbha7AAAARtFLXvKS8qxnPatd9HrwwQcX+/yFF17YLnQ1fvzjHy/2+Z/+9KftItd2221XVlxxxVG5zQAAADWz2AUAADCKlltuufLKV76yPP744+WSSy5Z7PPNAlfz+TXWWGPYxa6By1796lePyu0FAAConcUuAACAUTawULXoYtasWbPaUxc2n99hhx3KRRdd9JSLXTNnziwHHnhg2WqrrcqUKVPaI72e+9znln333bfMnj17qW5Tc6TZLrvsUlZbbbWy+uqrl5122qlcccUVT/k1N9xwQ3nPe95T1l133TJhwoTynOc8p7zjHe8oN95441L9bAAAgGUxfpm+GgAAgKX2qle9avCUhUMNfNx8ftKkSeW73/1u+fWvf1022WST9vLmtIczZsxoT4O4xRZblH/5l38pX/3qV8uOO+5Ytt1223bB6brrriv/+Z//Wc4+++z2uuuss87T3p7LL7+8Xdx65JFHylve8pbyghe8oFxzzTXtEWYDt3VRP/zhD9vrPvroo+UNb3hD+zXNAltzm7///e+3C3XNbQQAAOg1i10AAACj7K//+q/LWmutVX71q1+Ve+65pz0qa+CorVVXXbW89KUvbY+uGrhsYLGrOe1hc/rDZhGqOR3iXnvtVT72sY8t9t5dP/rRj8rrXve6cvjhh5evfOUrT3lbFixYUP7+7/++zJ07t/z3f/93edOb3jT4uS996Uvlox/96GJf88c//rH83d/9XVl55ZXLT37yk8Hb12iaXvayl5X3ve995Re/+MUy/ksBAAA8PacxBAAAGAPNaQibhaahpyps/v43f/M3Zfz48WXq1KnlL//yLxc61eGi79fVHLW16EJX4zWveU379eedd94SHdXVnHZw++23X2ihq/GhD32obLDBBot9zUknnVTuv//+cuihhy600NXYdNNNy/vf//5y9dVXt0elAQAA9JojuwAAAMZAc3rAk08+uV3Aetvb3lauv/76cuedd7ZHag1ojuA6//zzyxNPPNEeybXoYlezWHbKKaeUE044ofzP//xPe8RVc+TXgOa0hk9n4Oir5j3CFrX88suX7bbbrtx8880LXT7wXl7Nz/zc5z632Nc17yXWaJoWXQwDAAAYaRa7AAAAxsDAgtXA+3QNfb+uoYtdp512WnuU1HrrrVeuvfba9miujTfeuP38xz/+8fLFL36xPSXia1/72vZzEydObD/XLIDdeuutT3s7HnjggfbP5zznOcN+fs0111zssj/84Q/tn9/4xjee8nvPmTPnaX8+AADAsrLYBQAAMAaaxavmFIG/+c1vyu23394etfUXf/EX5SUvecngdXbcccf2z+Zzz33uc9sjuQYWye6+++7y5S9/uT1tYHMqwtVWW22h7//tb397iW7HpEmT2j9///vfD/v5u+6660m/pjmy60UvetESNwMAAPSC9+wCAAAYIwMLVxdccEG5+OKL21MJNqcrHNAcwdUcWdUsdi16CsNbbrmlPb1h8/5ciy50zZ49u/38kthiiy3aPy+55JLFPtecEvGyyy5b7PKXvexl7Z+XXnrpUtQCAAD0hsUuAACAMTJwysJ//dd/bd9va+BIrqGay5pFpR/96EcLLXatv/767Z/NYtTQ9+lqTh34/ve/vzz22GNLdBu23XbbstFGG5Wf/OQn5cwzz1zoc8cdd9xi79fV2Geffdqj0A499NAyffr0xT7fLMI1i3cAAACjwWkMAQAAxnCxa9y4ce17cQ18PNxiV3NKwt/+9rftolTzvlyN5oivt7/97eXUU08tm2++eXuEV/P+W+eff35ZaaWV2suuueaap70Nzc//5je/WXbeeeey++67l7e85S3lBS94Qfu1zfuI7bLLLuWHP/zhQl+zxhprlNNPP7387d/+bXuUV7MAN3Xq1PZ7NadkvOKKK9r39Zo3b96I/VsBAAA8GUd2AQAAjJEpU6aUzTbbrP37s5/97Pb9txY19GivgaO6BjSLVAcddFCZO3du+fd///dy3nnnld122619D6+B99VaEq94xSvao8d22mmn8oMf/KD827/9W3nkkUfao7O22WabYb+muS2//OUvy//9v/+3zJo1q3z1q19tb8+vfvWrdtGuWYQDAAAYDeMWNO9wDAAAAAAAAB3kyC4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOGj/WN6Dr1lxzzfLQQw+V9dZbb6xvCgAAAAAAQCfddtttZZVVVil33XXXUn+tI7uWUbPQ9eijj471zQAAAAAAAOisZq2lWXN5JhzZtYwGjui67rrrxvqmAAAAAAAAdNLUqVOf8dc6sgsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6q9OLXUcccUQZN25c2XTTTRf73OWXX1622267svLKK5c111yz7L///mXOnDljcjsBAAAAAADojfGlo2bPnl2OPPLIssoqqyz2uWuuuaa8+tWvLn/9139djj322Pa6Rx99dLnpppvKD37wgzG5vQAAAAAAAIy8zi52feITnygve9nLyuOPP17uvffehT530EEHlWc961nl4osvLquvvnp72frrr1/e//73lx/96EflNa95zRjdagAAAAAAAEq/n8bwJz/5STn99NPLF7/4xcU+9+CDD5bzzz+/vOtd7xpc6GrsvffeZdVVVy2nnXbaKN9aAAAAAAAAeqVzi13NkVwf/vCHy/ve976y2WabLfb5a6+9tjz22GNlq622WujyCRMmlM0337xcffXVo3hrAQAAAAAA6KXOncbwq1/9arn11lvLBRdcMOzn77zzzvbPtdZaa7HPNZddeumlz+jnTp06ddjLb7755rLBBhs8o+8JAAAAAABAHx3Z9Yc//KEcfPDB5bOf/WyZMmXKsNeZO3du++eKK6642OdWWmmlwc8DAAAAAADQfZ06suszn/lMmTx5cnsawyczceLE9s/58+cv9rl58+YNfn5pXXfddUt1xBcAAAAAAAC915nFrptuuql8/etfL1/84hfL7373u4UWsB599NEya9assvrqqw+evnDgdIZDNZetvfbao3q7AQAAAAAA6J3OnMbwjjvuKE888UTZf//9y/Oe97zB/6688soyc+bM9u+HHXZY2XTTTcv48ePLjBkzFvr6Rx55pFxzzTVl8803H7MGAAAAAAAA+vTIrmYR63vf+96wpzb805/+VL70pS+VDTbYoEyaNKnstNNO5eSTT27f22u11VZrr/etb32rzJkzp+yxxx5jcOsBAAAAAADohXELFixYUDrsla98Zbn33nvLr371q8HLfvGLX5Rtt922bLLJJmXfffcts2fPLsccc0zZfvvty3nnnTeiP3/gPbue7D29AAAAAAAA6N16S2dOY7g0tthii3LBBReUiRMnlo997GPte329973vLaeffvpY3zQAAAAAAABGUOeP7BprjuwCAAAAAABYNo7sAgAAAAAAoC9Z7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDO6tRi13XXXVf22GOP8vznP7+svPLK5dnPfnbZfvvty9lnn73Yda+//vqyyy67lFVXXbVMnjy57LXXXuWee+4Zk9sNAAAAAABAb4wvHXLrrbeWP/3pT+Xd7353WXvttcvDDz9czjjjjPLGN76xfO1rXyv77rtve73Zs2e3i2CTJk0qRx55ZJkzZ045+uijy7XXXlumT59eJkyYMNYpAAAAAAAAjIBxCxYsWFA67PHHHy9bbrllmTdvXrnhhhvay/7v//2/5YQTTmg/Xm+99drLLrjggrLzzjsvtCg2EqZOnTp41BkAAAAAAACju97SqdMYDmf55Zcv6667brn//vsHL2uO9tptt90GF7oaO+20U9lwww3LaaedNka3FAAAAAAAgL4+jeGAhx56qMydO7c88MAD5ayzzio/+MEPyp577tl+7o477ih333132WqrrRb7uq233rqce+65Y3CLAQAAAAAA6IVOLnYdcMAB7ekIG8stt1x5y1veUo477rj24zvvvLP9c6211lrs65rL7rvvvjJ//vyy4oorPqPD5xZ18803lw022OAZVAAAAAAAANCXi10f/ehHy1vf+tbyu9/9rj0tYfO+XY888kj7ueaIr8Zwi1krrbTS4HWWdrELAAAAAACA+nRysWvjjTdu/2vsvffe5TWveU15wxveUK688soyceLE9vLm6K1FzZs3r/1z4DpL48neEO3JjvgCAAAAAACg95YrAZqjvH7+85+XmTNnDp6+cOB0hkM1l02ePNlRXQAAAAAAACEiFrsGTl34wAMPlHXWWadMmTKlzJgxY7HrTZ8+vWy++eZjcAsBAAAAAAAo/b7Ydffddy922aOPPlpOOumk9tSEm2yySXvZ7rvvXs4555xy++23D17vwgsvbI/82mOPPUb1NgMAAAAAANA7nXrPrg984APlwQcfLNtvv317BNddd91VTjnllHLDDTeUY445pqy66qrt9Q466KAybdq0suOOO5aPfOQjZc6cOeWoo44qm222Wdlnn33GOgMAAAAAAIB+XOzac889yze/+c3yla98pfzhD38oq622Wtlyyy3LF77whfLGN75x8HrrrrtuueSSS8rHP/7xcuCBB5YJEyaUXXfdtV0Q835dAAAAAAAAOcYtWLBgwVjfiC6bOnVq++d111031jcFAAAAAACg79ZbOvWeXQAAAAAAADCUxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0Fljstj12GOPjcWPBQAAAAAAIMyoLnY98cQT5fjjjy8bb7zxaP5YAAAAAAAAQo0fyW929dVXl5tuuqmsscYaZYcddijjx//vtz/11FPL5z73uTJz5syy2mqrjeSPBQAAAAAAoE+NyGLXvHnzylve8pZy3nnnDV62/vrrl/PPP79MnDixvP3tby+XXXZZWWWVVcqBBx5YDjjggJH4sQAAAAAAAPS5EVnsOuqoo8oPf/jDssUWW5Qdd9yx/OY3vylnnnlm2W+//crs2bPbj//hH/6hfPKTnyyTJ08eiR9JB73xOzct8/eYe++d5fLD3lUevvv2svJfrlu2PfjkMvHZa5WuqaXjrD1fOOo/EwAAAAAAqlvsmjZtWnn5y19eLr300rLccn9+G7CDDz64HH744WXttdduT2/ofbpIWSBaVikdAAAAAAAQs9h18803lyOPPHJwoavxjne8o13s+tSnPmWhi2WWskCU0gEAAABA5hmXUl6/qr3DGZdgZP3v6tQymDt3bpkyZcpClw18vNFGG43Ej6CP1X7H1G8dAAAAAGRKef0qpQMY5SO7nvIHjO/5jyBYyh1TSgcAAAAAmVJev0rpGO0j+nolZR4j0eFovt4asZWoM888s8yaNWvw44cffriMGzeunHLKKeVnP/vZQtdtLv/0pz89Uj+aUHaEGWq4U02cxzPtcKcKAAAALKrfXy+hN1LmkdKRbsQWu6ZNm9b+t6jjjz9+scssdtEvO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tEPRmSx66KLLhqJbwNRO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tEvRmSxa4cddhiJbwMxO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tFPlhvrGwBpO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tFvRuw9uxq//OUvy4QJE8rGG2/cfrxgwYJy4oknlh/96EflwQcfLFtttVXZf//9y+TJk0fyxxIgZQeS0pEiZR4pHQAAAMDYS3mdIaUjRco8Ujr60Ygsdj3wwANl5513LldddVX78U477VTOOeec8s53vrOcfvrpg9c799xzy7e+9a0yffr0ssYaa4zEjyZAyg4kpSNFyjxSOgAAAICxl/I6Q0pHipR5pHT0qxFZ7Pryl79cZsyYUbbccsuy5pprlh/+8Iflgx/8YDnzzDPL4YcfXl7/+teXRx99tEybNq0cc8wx5YgjjijHHnvsSPxoOi5lB5LSkSJlHikdAABAvd74nZuinn8kdJy15wvH+iYQKmH7SOpIkTKPlI5+NiKLXc0i1qte9apywQUXtB8fddRR5cADDyz77bdfOeiggwav99KXvrTccsst5fvf/77FLmJ2ICkdKVLmkdIBAADUL+X5R0oH9ELK9pHUUUr3F7aT5pHQ0e+WG4lvcvvtt5c3velNgx+/+c1vbt+va/vtt1/suq985SvLbbfdNhI/lg5L2YGkdKRImUdKBwAAUL+U5x9JHdALKdtHUkfXpc2j6x2M0GJX855dQ9+Da/LkyQv9OdSznvWs8sgjj4zEj6WjUnYgKR0pUuaR0gEAAHRDwvOPlOdRKS+AU6eU7SOpo8sS59HlDkZwsQv6bQeS0pEiZR4pHQAAQHd0/flHyvOolBfAqVfK9pHU0VWp8+hqBz1Y7Bo3btwSXUb/StmBJHUkSJpHQgcAANAtXX7+kfI8KuUFcOqWsn0kdXRR8jy62MHCxpcRsvfee5d3v/vdC132mte8ZrEFr+a9vOhPCTuQuFMj7Nft989Lm0fXOwAAgO7p6vOPlOdRKS+AU7+U7UPH2NFBXyx2bb/99o7i4ml1fQeSsiNMOTVC4jy63AEAAHRTF59/pDyPSumAXkjZPnTUJaWDHi52XXzxxSPxbQjX5R1Iyo4w5dQIqfPoagcAAMBoSXkeldIBvZCyfeioS0oHPV7sOumkk9qju9Zff/2R+HaE6uoOJGVHmHJqhOR5dLED6F9v/M5NpUtS9rtP1nHWni8c65sGAD2Xfn8O5GwfOuqS0sFTW66MgH322adcfvnlgx8/+OCDZeutty4zZswYiW9PiC7uQFJ2hDrqktIB0BUp+92UDgDo5/vBlA7ohZTtQ0ddUjoYpcWuBQsWLPTxo48+2i50NYte0FUpO0IddUnpAOiKlP1uSgcA9PP9YEoH9ELK9qGjLikdjOJpDCFNyo5QR11SOlJObZYyj6frcGoz+lm/bOcAkCzlfjClA3ohZfvQUZeUDkb5yC5IkrIj1FGXlI4UKfNI6YBeSNk+UjoAoJ/vB1M6oBdStg8ddUnpYOlY7ILAHaGOuqR0pEiZR0oH9ELK9pHSAQD9fD+Y0gG9kLJ96KhLSgdjeBrDM888s8yaNav9+8MPP1zGjRtXTjnllPKzn/1sses2n/v0pz89Uj8aRkTKjlBHXVI6UqTMI6UDeiFl+0jpAIB+vh9M6YBeSNk+dNQlpYMxXuyaNm1a+99Qxx9//LDXtdhFbVJ2hDrqktKRImUeKR3QCynbR0oHAPTz/WBKB/RCyvahoy4pHYzxYtdFF11URsPPf/7zcuKJJ7Y/rzmKbI011igve9nLyuGHH1423HDDha57/fXXl4997GPlsssuKxMmTCi77rprOfbYY8uUKVNG5bbSHSk7Qh11SelIkTKPlA7ohZTtI6UDAPr5fjClA3ohZfvQUZeUDipY7Nphhx3KaPjCF75QfvrTn5Y99tijvOhFLyp33XVXOe6448oWW2zRni5x0003ba83e/bssv3225dJkyaVI488ssyZM6ccffTR5dprry3Tp09vF78gaUeooy4pHSlS5pHSAb2Qsn3U3vHG79wU0bGkutBx1p4vHOubANBX+91+6oBeSNk+dNQlpYOKTmM4Gj7+8Y+X//qv/1posWrPPfcsm222Wfnnf/7ncvLJJ7eXNQtcDz30ULnqqqvKeuut11629dZbl5133rmccMIJZd999x2zBuqRsiPUUZeUjhQp80jpgF5I2T501CWlA6ArUva7KR3QCynbh466pHTQh4td22677WKXvfCFLyxTp05tT1s44Iwzzii77bbb4EJXY6eddmpPdXjaaadZ7CJmR6ijLikdKVLm0ZWOpzvioysdT6crHf1ytEdX5vF0dNQlpQOgK1L2uykd0Asp24eOuqR00KeLXcNZsGBB+f3vf98ueDXuuOOOcvfdd5etttpqses2R3ede+65z+jnDHz/Rd18881lgw02eEbfk7GRsiPUUZeUjhQp89BRl5SOFCnz0FGXlA6ArkjZ76Z0QC+kbB866pLSwcharnTcKaec0i5wNaczbNx5553tn2uttfj/3M1l9913X5k/f/6o307qkLIj1FGXlI4UKfPQUZeUjhQp89BRl5QOgK5I2e+mdEAvpGwfOuqS0sHI6/SRXTfccEPZb7/9ystf/vLy7ne/u71s7ty57Z8rrrjiYtdfaaWVBq8z3OefynXXXbdUR3xRn5QdoY66pHSkSJmHjrqkdKRImYeOuqR0AHRFyn43pQN6IWX70FGXlA56o7NHdt11111l1113LZMmTSqnn356WX755dvLJ06c2P453NFb8+bNW+g69I+UHaGOuqR0pEiZh466pHSkSJmHjrqkdAB0Rcp+N6UDeiFl+9BRl5QOeqeTR3Y98MAD5XWve125//77y6WXXlrWXnvtwc8NnL5w4HSGQzWXTZ48eamP6qLbUnaEOuqS0pEiZR466pLSkSJlHjrqktIB0BUp+92UDuiFlO1DR11SOuitzh3Z1Ryd9YY3vKHMnDmznHPOOWWTTTZZ6PPrrLNOmTJlSpkxY8ZiXzt9+vSy+eabj+KtZayl7Ah11CWlI0XKPHTUJaUjRco8dNQlpQOgK1L2uykd0Asp20dKRyOhI2UeTQe91anFrscff7zsueee5YorrijTpk1r36trOLvvvnu7EHb77bcPXnbhhRe2C2R77LHHKN5ixlLSjlBHPVI6UqTMQ0ddUjpSpMxDR11SOgC6ImW/m9IBvZCyfaR0DOh6R8o8BjrorU6dxvCAAw4oZ511Vntk13333VdOPvnkhT7/rnf9+X+Ygw46qF0M23HHHctHPvKRMmfOnHLUUUeVzTbbrOyzzz5jdOsZTWk7Qh11SOlIkTIPHXVJ6UiRMg8ddUnqKOWFY30zAPpqv5vQAb2Qsn2kdAzV5Y6UeQztoLc6tdh1zTXXtH+effbZ7X+LGljsWnfddcsll1xSPv7xj5cDDzywTJgwoey6667lmGOO8X5dfSBxR6hj7KV0pEiZR0pHI6EjZR4pL4AnzSOho5HQEfebofvdNtY3BaCv9rtd74BeSNk+UjoW1dWOlHks2kFvdWqx6+KLL17i606dOrWcd955Pb091Cd1R9jVjkZCR8o8vABel5SOAV3vSJlHygvgafPoeseArnekzMNvhgJdkbjf7XIH9ELK9pHSMZwudqTMY7gOeqtT79kF/boj7GLHgK53pMwj5dzAafPoesdQXe5ImUfKC+CJ8+hyx1Bd7kiZh98MBboidb/b1Q7ohZTtI6UjRco8Ujq6xmIXEVJ2ICkdQ3W5I2UeXgCvS0rHorrakTKPlBfAU+fR1Y5FdbUjZR5+MxToiuT9bhc7oBdSto+UjhQp80jp6CKLXXReyg4kpWNRXe1ImYcXwOuS0jGcLnakzCPlBfDkeXSxYzhd7EiZR0oHkC9lf5XSAb2Qsn2kdKRImUdKR1dZ7KLTUnYgKR3D6WJHyjy8AF6XlI4UKfPQUZeUjhQp80jpAPKl7K9SOqAXUraPlI4UKfNI6egyi110VsoOJKUjRco8dNQlpSNFyjx01CWlI0XKPFI6gHwp+6uUDuiFlO0jpSNFyjxSOrrOYhedlLIDSelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOIF/K/iqlA3ohZftI6UiRMo+UjgQWu+iclB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHQA+VL2Vykd0Asp20dKR4qUeaR0pLDYRaek7EBSOlKkzENHXVI6UqTMQ0ddUjpSpMwjpQPIl7K/SumAXkjZPlI6UqTMI6UjicUuOiNlB5LSkSJlHjrqktKRImUeOuqS0pEiZR4pHUC+lP1VSgf0Qsr2kdKRImUeKR1pLHbRCSk7kJSOFCnz0FGXlI4UKfPQUZeUjhQp80jpAPKl7K9SOqAXUraPlI4UKfNI6Ug0fqxvAPTLDiSlI0XKPHTUJaUjRco8dNQlpSNFyjxSOoB8KfurlI5l8cbv3FRqkTKPZek4a88XllqYB72QMo+UjlSO7KJqKTuQlI4UKfPQUZeUjhQp89BRl5SOFCnzSOkA8qXsr1I6UqTMQ0ddUjpSpMwjpSOZxS6qlbIDSelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOIF/K/iqlI0XKPHTUJaUjRco8UjrSOY0hVUrZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB3lqOLVZyvYxEh01nNrMPOiFlHnoqEtKR4qUeaR09ANHdlGdlB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHRAL6RsHzrqktKRImUeOuqS0pEiZR4pHf3CYhdVSdmBpHSkSJmHjrqkdKRImYeOuqR0pEiZR0oH9ELK9qGjLikdKVLmoaMuKR0pUuaR0tFPLHZRjZQdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLSkSJlHjrqktKRImUeKR39xmIXVUjZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB/RCyvahoy4pHSlS5qGjLikdKVLmkdLRjyx2MeZSdiApHSlS5qGjLikdKVLmoaMuKR0pUuaR0gG9kLJ96KhLSkeKlHnoqEtKR4qUeaR09CuLXYyplB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHRAL6RsHzrqktKRImUeOuqS0pEiZR4pHf3MYhdjJmUHktKRImUeOuqS0pEiZR466pLSkSJlHikd0Asp24eOuqR0pEiZh466JHUkSJpHQke/s9jFmEjZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB/RCyvahoy5JHQmS5pHQ0UjoSJnHQEfXpc2j6x1Y7GIMpOxAUjpSpMxDR11SOlKkzENHXVI6UqTMI6UDeiFl+0jpaCR0pMzDC+B1SekY0PWOlHkM7eiyxHl0uYM/s9jFqErZgaR0pEiZh466pHSkSJlHSkcjoSNlHn4DvC4pHdALKdtHSseArnekzMML4HVJ6Riqyx0p81i0o6tS59HVDv6XxS5GTcoOJKkjQdI8EjoaCR0p87Cd1yWlY0DXO1Lm4TfA65LSAb2Qsn2kdAzV5Y6UeXgBvC4pHYvqakfKPIbr6KLkeXSxg4VZ7GLUJOxAUnaEXhirS0rHgK53pMzDdl6XlI6hutyRMg+/AV6XlA7ohZTtI6VjUV3tSJmHF8DrktIxnC52pMxDR11SOlicxS5GTdd3ICk7Qi+M1SWlY6gud6TMw3Zel5SORXW1I2UefgO8Likd0Asp20dKx3C62JEyDx11SelIkTIPHXVJ6WB4FrsYNV3egaTsCL0wVpeUjkV1tSNlHrbzuqR0DKeLHSnz8BvgdUnpgF5I2T5SOlKkzENHXVI6UqTMQ0ddUjp4cha7GDVd3YGk7Ai9MFaXlI7hdLEjZR6287qkdKRImYeOuqR0QC+kbB8pHSlS5qGjLikdKVLmoaMuKR08NYtdjJou7kBSdoQ66pLSkSJlHjrqktKRImUeOuqS0gG9kLJ9pHSkSJmHjrqkdKRImYeOuqR08PQsdkH4jlBHXVI6UqTMQ0ddUjpSpMxDR11SOqAXUraPlI4UKfPQUZeUjhQp89BRl5QOlozFLgjeEeqoS0pHipR56KhLSkeKlHnoqEtKB/RCyvaR0pEiZR466pLSkSJlHjrqktLBkrPYBaE7Qh11SelIkTIPHXVJ6UiRMg8ddUnpgF5I2T5SOlKkzENHXVI6UqTMQ0ddUjpYOha7IHBHqKMuKR0pUuahoy4pHSlS5qGjLikd0Asp20dKR4qUeeioS0pHipR56KhLSgdLz2IXhO0IddQlpSNFyjx01CWlI0XKPHTUJaUDeiFl+0jpSJEyDx11SelIkTIPHXVJ6eCZsdgFQTtCHXVJ6UiRMg8ddUnpSJEyDx11SemAXkjZPlI6UqTMQ0ddUjpSpMxDR11SOnjmLHbR91J2hDrqktKRImUeOuqS0pEiZR466pLSAb2Qsn2kdKRImYeOuqR0pEiZh466pHSwbCx20ddSdoQ66pLSkSJlHjrqktKRImUeOuqS0gG9kLJ9pHSkSJmHjrqkdKRImYeOuqR0sOwsdtG3UnaEOuqS0pEiZR466pLSkSJlHjrqktIBvZCyfaR0pEiZh466pHSkSJmHjrqkdDAyLHbRl1J2hDrqktKRImUeOuqS0pEiZR466pLSAb2Qsn2kdKRImYeOuqR0pEiZh466pHTQp4tdc+bMKYccckjZZZddyuTJk8u4cePKCSecMOx1r7/++vZ6q666anvdvfbaq9xzzz2jfpupT8qOUEddUjpSpMxDR11SOlKkzENHXVI6oBdSto+UjhQp89BRl5SOFCnz0FGXlA5G1vjSIffee2857LDDynrrrVde/OIXl4svvnjY682ePbtsv/32ZdKkSeXII49sF8mOPvrocu2115bp06eXCRMmjPptpw4pO0IddUnpSJEyDx11SelIkTIPHXVJ6YBeSNk+UjpSpMxDR11SOlKkzENHXVI66PPFrrXWWqvceeedZc011ywzZswoL33pS4e9XrPA9dBDD5WrrrqqXRhrbL311mXnnXdujwTbd999R/mWU4OUHaGOuqR0pEiZh466pHSkSJmHjrqkdEAvpGwfKR0pUuahoy4pHSlS5qGjLikd9EanTmO44oortgtdT+eMM84ou+222+BCV2OnnXYqG264YTnttNN6fCupUcqOUEddUjpSpMxDR11SOlKkzENHXVI6oBdSto+UjhQp89BRl5SOFCnz0FGXlA56p1NHdi2JO+64o9x9991lq622WuxzzdFd55577jP6vlOnTh328ptvvrlssMEGz+h7MjpSdoQ66pLSkSJlHjrqktKRImUeOuqS0gG9kLJ9pHSkSJmHjrqkdKRImYeOuqR00FudOrJrSTSnORw45eGimsvuu+++Mn/+/DG4ZYyFlB2hjrqkdKRImYeOuqR0pEiZh466pHRAL6RsHykdKVLmoaMuKR0pUuaR0tFI6EiZR9NBb8Ud2TV37tzBUx4uaqWVVhq8znCffyrXXXfdUh3xxdhL2hHqqEdKR4qUeeioS0pHipR56KhLSgf0Qsr2kdKRImUeKR2NhI6sF8BfWLouaR4JHQO63pEyj4GOst9tY31TosUd2TVx4sT2z+GO3po3b95C1yFX2o5QRx1SOlKkzENHXVI6UqTMQ0ddkjqgF1K2j5SOBEnzSOgY0PWOuBfAOy5tHl3vGKrLHSnzGNpBb8Utdg2cvnDgdIZDNZdNnjx5qY/qolsSd4Q6xl5KR4qUeaR0NBI6UubhhbG6pHQ0EjpS5pHywhh1Stk+Ujq6Lm0eXe8YqssdKfNIeQE8cR5d7lhUVztS5rFoB70Vt9i1zjrrlClTppQZM2Ys9rnp06eXzTfffExuF6MjdUfY1Y5GQkfKPLwAXpeUjgFd70iZhxfG6pLSMaDrHSnzSHlhjHqlbB8pHV2WOI8udyyqqx0p80h5ATx1Hl3tGE4XO1LmMVwHvRW32NXYfffdyznnnFNuv/1/HxheeOGFZebMmWWPPfYY09tG7yTvCLvYMaDrHSnz8AJ4XVI6hupyR8o8vDBWl5SOobrckTKPlBfGqFvK9pHS0VWp8+hqx3C62JEyj5QXwJPn0cWOFCnzSOnomvGlY4477rhy//33l9/97nftx2effXaZPXt2+/cPf/jDZdKkSeWggw4q06ZNKzvuuGP5yEc+UubMmVOOOuqostlmm5V99tlnjAvohZQdSErHUF3uSJmHF8DrktKxqK52pMzDC2N1SelYVFc7UuaR8sIY9UvZPlI6uih5Hl3sSJEyDx11SelIkTKPlI4u6txi19FHH11uvfXWwY+/+93vtv813vWud7WLXeuuu2655JJLysc//vFy4IEHlgkTJpRdd921HHPMMd6vK1DKDiSlY1Fd7UiZhxfA65LSMZwudqTMwwtjdUnpGE4XO1LmkdIBvZCyfeioS0pHipR56KhLSkeKlHmkdHRV5xa7Zs2atUTXmzp1ajnvvPN6fnsYWyk7kJSO4XSxI2UeXgCvS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdXRb5nl30h5QdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLSkSJlHjrqktKRImUeKR1dZ7GLTkrZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB/RCyvahoy4pHSlS5qGjLikdKVLmkdKRwGIXnZOyA0npSJEyDx11SelIkTIPHXVJ6UiRMo+UDuiFlO1DR11SOlKkzENHXVI6UqTMI6UjhcUuOiVlB5LSkSJlHjrqktKRImUeOuqS0pEiZR4pHdALKduHjrqkdKRImYeOuqR0pEiZR0pHEotddEbKDiSlI0XKPHTUJaUjRco8dNQlpSNFyjxSOqAXUrYPHXVJ6UiRMg8ddUnpSJEyj5SONBa76ISUHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdiSx2Ub2UHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdqSx2UbWUHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdySx2Ua2UHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikd6Sx2UaWUHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikd/cBiF9VJ2YGkdKRImYeOuqR0pEiZh466pHSkSJlHSgf0Qsr2oaMuKR0pUuahoy4pHSlS5pHS0S8sdlGVlB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHRAL6RsHzrqktKRImUeOuqS0pEiZR4pHf3EYhfVSNmBpHSkSJmHjrqkdKRImYeOuqR0pEiZR0oH9ELK9qGjLikdKVLmoaMuKR0pUuaR0tFvLHZRhZQdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLSkSJlHjrqktKRImUeKR39yGIXYy5lB5LSkSJlHjrqktKRImUeOuqS0pEiZR4pHdALKduHjrqkdKRImYeOuqR0pEiZR0pHv7LYxZhK2YGkdKRImYeOuqR0pEiZh466pHSkSJlHSgf0Qsr2oaMuKR0pUuahoy4pHSlS5pHS0c8sdjFmUnYgKR0pUuahoy4pHSlS5qGjLikdKVLmkdIBvZCyfeioS0pHipR56KhLUkeCpHkkdPQ7i12MiZQdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLUkSBpHgkdjYSOlHkMdHRd2jy63oHFLsZAyg4kpSNFyjx01CWlI0XKPHTUJaUjRco8UjqgF1K2j5SORkJHyjy8AF6XlI4BXe9ImcfQji5LnEeXO/gzi12MqpQdSEpHipR56KhLSkeKlHmkdDQSOlLm4TfA65LSAb2Qsn2kdAzoekfKPLwAXpeUjqG63JEyj0U7uip1Hl3t4H9Z7GLUpOxAkjoSJM0joaOR0JEyD9t5XVI6BnS9I2UefgO8Likd0Asp20dKx1Bd7kiZhxfA65LSsaiudqTMY7iOLkqeRxc7WJjFLkZNwg4kZUfohbG6pHQM6HpHyjxs53VJ6Riqyx0p8/Ab4HVJ6YBeSNk+UjoW1dWOlHl4AbwuKR3D6WJHyjx01CWlg8VZ7GLUdH0HkrIj9MJYXVI6hupyR8o8bOd1SelYVFc7UubhN8DrktIBvZCyfaR0DKeLHSnz0FGXlI4UKfPQUZeUDoZnsYtR0+UdSMqO0AtjdUnpWFRXO1LmYTuvS0rHcLrYkTIPvwFel5QO6IWU7SOlI0XKPHTUJaUjRco8dNQlpYMnZ7GLUdPVHUjKjtALY3VJ6RhOFztS5mE7r0tKR4qUeeioS0oH9ELK9pHSkSJlHjrqktKRImUeOuqS0sFTs9jFqOniDiRlR6ijLikdKVLmoaMuKR0pUuahoy4pHdALKdtHSkeKlHnoqEtKR4qUeeioS0oHT89iF4TvCHXUJaUjRco8dNQlpSNFyjx01CWlA3ohZftI6UiRMg8ddUnpSJEyDx11SelgyVjsguAdoY66pHSkSJmHjrqkdKRImYeOuqR0QC+kbB8pHSlS5qGjLikdKVLmoaMuKR0sOYtdELoj1FGXlI4UKfPQUZeUjhQp89BRl5QO6IWU7SOlI0XKPHTUJaUjRco8dNQlpYOlY7ELAneEOuqS0pEiZR466pLSkSJlHjrqktIBvZCyfaR0pEiZh466pHSkSJmHjrqkdLD0LHZB2I5QR11SOlKkzENHXVI6UqTMQ0ddUjqgF1K2j5SOFCnz0FGXlI4UKfPQUZeUDp4Zi10QtCPUUZeUjhQp89BRl5SOFCnz0FGXlA7ohZTtI6UjRco8dNQlpSNFyjx01CWlg2fOYhd9L2VHqKMuKR0pUuahoy4pHSlS5qGjLikd0Asp20dKR4qUeeioS0pHipR56KhLSgfLxmIXfS1lR6ijLikdKVLmoaMuKR0pUuahoy4pHdALKdtHSkeKlHnoqEtKR4qUeeioS0oHy85iF30rZUeooy4pHSlS5qGjLikdKVLmoaMuKR3QCynbR0pHipR56KhLSkeKlHnoqEtKByPDYhd9KWVHqKMuKR0pUuahoy4pHSlS5qGjLikd0Asp20dKR4qUeeioS0pHipR56KhLSgcjx2IXfSdlR6ijLikdKVLmoaMuKR0pUuahoy4pHdALKdtHSkeKlHnoqEtKR4qUeeioS0oHI8tiF30lZUeooy4pHSlS5qGjLikdKVLmoaMuKR3QCynbR0pHipR56KhLSkeKlHnoqEtKByNvfA++J1QpZUeooy4pHSlS5qGjLikdKVLmoaMuKR298Mbv3DTqPzNlHr3oOGvPF5bRZh70Qso8dNQlpSNFyjx01CWlg96IPbJr/vz55VOf+lRZe+21y8SJE8s222xTzj///LG+WYyRlB2hjrqkdKRImYeOuqR0pEiZh466pHSkSJmHjrqkdKRImYeOuqR0pEiZh466pHTQO7GLXe95z3vKscceW975zneWL33pS2X55Zcvr3/968tll1021jeNUZayI9RRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUDnorcrFr+vTp5dRTTy3/9E//VI466qiy7777lh//+Mfluc99bvnkJz851jePUZSyI9RRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfNI6WgkdKTMo+mgtyIXu04//fT2SK5mkWvASiutVN773veWK664otx+++1jevsYHUk7Qh31SOlIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlI5GQkfKPFJeAE+aR0LHgK53pMxjoIPeilzsuvrqq8uGG25YVl999YUu33rrrds/r7nmmjG6ZYyWtB2hjjqkdKRImYeOuqR0pEiZh466JHUkSJpHQkcjoSNlHrbzuqR0DOh6R8o8Ul4AT5tH1zuG6nJHyjyGdtBb4xYsWLCghNl0003Lc57znHLhhRcudPmvf/3rMnXq1PLVr361fOADH1iq79l83XBuuOGGssIKK5QNNthgmW5zP7jtwUdG5ecseOyx8vA9s8uCxx8r45YfX1ae8ldl3PjxpWtGo2O91SeUXrv1vofNoyKjMfPR2NZT5pGynTeuv3GmeVTU8dzJK3d+W0+ax2h0jMa2bjuvr+OvN9qw09t62jxGo2M0tvXmebN5jD3beV1Gu2O07tfNo56OTTbZpLPbeuI8RqtjtF6XM496Okbjfr3rbr755na95U9/+tNSf23kYlez8LTRRhuVc889d6HLb7nllvZz//qv/1o++tGPjshi14033lgmTpxY1ltvvWW6zXRrg2tY4IRctnPoD7Z16A+2degPtnXIZzuHfLfddltZZZVVyl133bXUX9u95dAl0Cw+zZ8/f7HL582bN/j5pXXdddeNyG2j+wYWPv0/Abls59AfbOvQH2zr0B9s65DPdg703Xt2rbXWWuXOOxc/t/XAZWuvvfYY3CoAAAAAAABGWuRi1+abb15mzpxZHnzwwYUuv/LKKwc/DwAAAAAAQPdFLna99a1vLY8//nj5+te/PnhZc1rD448/vmyzzTZl3XXXHdPbBwAAAAAAwMiIfM+uZkFrjz32KJ/+9KfL3XffXV7wgheUE088scyaNat885vfHOubBwAAAAAAwAiJXOxqnHTSSeWzn/1s+da3vlX++Mc/lhe96EXlnHPOKdtvv/1Y3zQAAAAAAABGyLgFCxYsGKlvBgAAAAAAAKMp8j27AAAAAAAA6A8WuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhd94ec//3n50Ic+VKZOnVpWWWWVst5665W3ve1tZebMmYtd9/rrry+77LJLWXXVVcvkyZPLXnvtVe65557FrnfEEUeUN77xjeU5z3lOGTduXPnc5z63RLdl5513bq/f3B4gazv/zne+U17+8pe3P/8v/uIvyrbbblt+/OMfj2gn9Lux3tYvuOCCsuOOO5ZnP/vZ7Xa+9dZbl29961sj3gn9bqS39RtuuKF88pOfLJtvvnlZbbXVylprrVV23XXXMmPGjGF//h133NH+vGY7X3311cub3vSmcsstt/SsF/rVWG7r3/3ud8uee+5Znv/855eVV165bLTRRuWAAw4o999/f0+boR+N9f36UF6Xg1zjFixYsGCsbwT02lvf+tby05/+tOyxxx7lRS96UbnrrrvKcccdV+bMmVN+9rOflU033bS93uzZs8tLXvKSMmnSpLL//vu3nz/66KPbO+Hp06eXCRMmDH7P5o5xzTXXLC9+8YvLeeedVw455JCnfSG8eTC99957l4ceeqjst99+7W0AMrbz5vLDDjusvR2vfvWry6OPPlp+9atflVe84hXtg3Og+9v6WWedVd785je3i9p/93d/137daaedVn7yk5+UY489tnzsYx8b1X8LSDbS2/onPvGJ8s1vfrPsvvvu7SL1Aw88UL72ta+VWbNmlR/+8Idlp512GvzZzffYYost2us0L3yvsMIK5V//9V9L89T5mmuuKWusscaY/btAmrHc1ptfXFl77bXb+/bm+1x77bXlq1/9arv49Ytf/KJMnDhxzP5dIM1YbutDeV0OwjWLXZDupz/96YL58+cvdNnMmTMXrLjiigve+c53Dl72wQ9+cMHEiRMX3HrrrYOXnX/++c2C8IKvfe1rC339b3/72/bPe+65p/38IYcc8pS3Ye7cuQvWX3/9BYcddlh7/f3222+E6oCx3s6vuOKKBePGjVtw7LHHjnAVUNO2vvPOOy9Ye+21F8ybN2/wskcffXTBBhtssOBFL3rRiDUCI7+tz5gxY8Gf/vSnhb7fvffeu2DKlCkLXvGKVyx0+Re+8IX266dPnz542fXXX79g+eWXX/DpT396RDuh343ltn7RRRctdntOPPHE9nt+4xvfGJE+YOy39QFel4N8TmNIX2hOJTb0N7gbL3zhC9vDp5vDowecccYZZbfddmt/Y2RA89sgG264Yfub20Otv/76S3Ub/uVf/qU88cQT7W+fAFnb+Re/+MX2qJCPfOQj7W99N799BuRt6w8++GB51rOeVVZcccXBy8aPH9/+Zrjf/oa6t/Utt9yyPR3SUM0RWn/zN3+z0PdrnH766eWlL31p+9+AjTfeuD1ye9H9B9Ddbf2Vr3zlYrfnb//2b9s/F70u0N1tfYDX5SCfxS76VvOC9O9///v2BaqB8/LffffdZauttlrsus0h0VdfffUz/lm33XZb+ed//ufyhS98wYthELidX3jhhe0LYl/+8pfLlClTBs8Z7pQIkLWtNy+KXXfddeWzn/1s+c1vflNuvvnm8vnPf759b4DmPQOA7m3rzWmUBr5fo3kR7Je//OWTfs9mu//Tn/60zC3A2G7rT3W9xpJcF+jOtu51OegPFrvoW6ecckp7R9q8IW3jzjvvbP9sXqBeVHPZfffdV+bPn/+MflZzrv/mnMNvf/vbl/FWA7Vt53/84x/Lvffe255/vHkB/MADDyzf+c532jfK/fCHP9yeNxzIuE9vtvHmjbSPOOKI9jdRX/CCF7RPmpvfQH3LW94yAiXAaG7rl156abniiisGv19j4Gue7Hs2fve7341IDzB22/qTaV4IX3755dv3FwJytnWvy0F/GD/WNwDGwg033NC+EWXzBvPvfve728vmzp3b/jn01EQDVlpppcHrDPf5p3LRRRe1L4JdeeWVI3Lbgbq284FTFv7hD38op5566uAD6+YJ8mabbVYOP/zw8oEPfGBEmoCxvU9vrt+cQqXZvpvFrccff7x8/etfL+9617vK+eefX172speNSBPQ+229+c3xd7zjHeV5z3veQkdmLun3BLq9rQ/nv/7rv8o3v/nN9nrNL7UAGdu61+Wgf1jsou80hzTvuuuuZdKkSe35+Jvf2moMHMY83G+JzJs3b6HrLKnHHnus7L///mWvvfZa6Jz/QM52PnD9FVZYYaHfAF1uueXaha9DDjmkPWXC0HOOA93b1hsf+tCHys9+9rPyi1/8ot3GG82RXs17DTTv2ecJNHRjW3/ooYfa9wNpTkd42WWXLfSeH73afwB1bevDHRHy3ve+t7z2ta9tj+AGMrZ1r8tBf7HYRV954IEHyute97py//33tw9m11577cHPDRwmPXDY9FDNZZMnT17q3wA/6aSTyo033tiexmzWrFkLfa65E24u+8u//Muy8sorP+MmYGy38+Zrmt8y+4u/+IvBB+kDmu174FSHFrug29v6I488Mvjb3gMLXQML3c3taN6jr7nOom+8DdS1rTfbaXNkZvO+XOedd17ZdNNNF/r8wNc82fdsDL0NQDe39aH+53/+p7zxjW9sr9O88D5+vJfKIGVb97oc9Bfv2UXfaH4L5A1veEOZOXNmOeecc8omm2yy0OfXWWedMmXKlPZN5hc1ffr09v13llZzNMejjz5aXvGKV7SHUg/8N3CH2/z9Rz/60TJUAWO9nTcvejdfd88997QPtIcaeE+P5mcC3d7Wm1OVNr8Z2py6cFHNff0TTzwx7OeAerb1Zjvde++9y4UXXtiermyHHXYY9n69OQ3xcN+zOXrz+c9/fllttdVGpA8Yu219wM0331x22WWX9sXuc8899ymP/gK6t617XQ76i8Uu+kLz4lNzOrHmjSqnTZvWnhN4OLvvvnt7h3v77bcPXtbcaTZ3xHvsscdS/9zmjS+/973vLfZf4/Wvf33792222WYZyoCx3s4bzc9tfv6JJ5640AP55g13mwfwfgMcur+tNy+CNUdwNvfdQxe2m/ftO/vss8vGG2/s1GZQ+bb+4Q9/uHznO98p//Ef/9H+FviTaU5L/POf/3yhF9ua3wr/8Y//v/buWKWRIIwD+KQSNYjY2Ag+g42WopBUNoJdivTaGLC0txBEn0Ht8gBW5ytYCBYWIjb6Amnn+LY4cp4G7jDmZvP7gaTIZtgRPjaZ/+43P/75uwLw/9V6tFJrt9tVyB1PhLhBDepX69blYLo0cs550icB43Z4eJguLi6qO0hib433YmP5EBfTtbW1ajEr9t6IBazT09O0srJS/eAdflz68vIyPT8/p8FgkE5OTtLW1lba3t6u3otewKurq5+eT6PRqDbijJZHQPl1HpvkRv/v+AIeY0bLwvhs7OsTi+DRpgEov9ZjD4/j4+Nq3LiLNH60R2vDh4eHdHV1lTqdzrf9H6DuvrrWz8/PU6/XqxbX9vf3/xhvd3c3zc/P/2prFGPG69HRUdWu9OzsrKr5u7s7C+JQk1qPp0SihWG0KI4nOoctLy+nVqs1plnD9JlkrX/EuhzUVIRdUHebm5sR6n76N+z+/j632+08NzeXFxcXc6fTya+vr3815u3t7cjziWMODg6+fJ4wzSZd529vb7nb7ealpaU8MzOTNzY28s3NzdjnDdNm0rV+fX2d19fXq/FmZ2erWu/3+2OfN0ybr671uEaPGu/p6em3419eXvLe3l5eWFjIzWYz7+zs5MfHx2+ZO0yTSdb6qOPivID6XNffsy4H9eTJLgAAAAAAAIplzy4AAAAAAACKJewCAAAAAACgWMIuAAAAAAAAiiXsAgAAAAAAoFjCLgAAAAAAAIol7AIAAAAAAKBYwi4AAAAAAACKJewCAAAAAACgWMIuAAAAAAAAiiXsAgAAAAAAoFjCLgAAAAAAAIol7AIAAAAAAKBYwi4AAAAAAACKJewCAAAAAACgWMIuAAAAAAAAiiXsAgAAAAAAoFjCLgAAAAAAAIol7AIAAAAAACCV6ifwvmcNUXKWxgAAAABJRU5ErkJggg==" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 15 + }, { "metadata": {}, "cell_type": "code", + "source": "ym_percent(ym_per, \"%click\")", + "id": "a2dacac3caecff5f", "outputs": [], - "execution_count": null, - "source": "", - "id": "55b73b0158109c1" + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "hist_mean_m(\n", + " matrice_m,\n", + " metric_mean=\"%click_mean\",\n", + " metric_std=\"%click_std\",\n", + " ylabel=\"Moyenne %click\",\n", + " title_suffix=\"%click\"\n", + ")" + ], + "id": "71161e7545bb1414", + "outputs": [], + "execution_count": null + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2025-10-28T13:26:45.510525Z", + "start_time": "2025-10-28T13:26:45.252371Z" + } + }, + "cell_type": "code", + "source": [ + "hist_mean_h(\n", + " matrice_h,\n", + " metric_mean=\"FBR_mean\",\n", + " metric_std=\"FBR_std\",\n", + " ylabel=\"Feeding buzz ratio\",\n", + " title_suffix=\"FBR\"\n", + ")" + ], + "id": "5cbea8601bce2172", + "outputs": [ + { + "data": { + "text/plain": [ + "
" + ], + "image/png": "iVBORw0KGgoAAAANSUhEUgAACCUAAAXFCAYAAAA7IfVjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QmYHVWZP/63OxtJIECALKBhEwYBkR2VVUQEBHdWEZQlMyPL4DYoYRNJ0HEd92FEQRD8swiiwggooLIJDoyAaABlDxDWELKn+/9UafqXlYTkVt+qtz+f57lPd99bXVVvn+p7b/f5nnM6uru7uwMAAAAAAAAAoMU6W71DAAAAAAAAAICCUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAGmu99daLjo6O8vbQQw+1+3QAAACAhQglAAAAUAu77bZbT+fyq7ndcMMNi+zr9NNPX+r3DRkyJNZee+3YY4894nOf+1w88sgjy3SeH/7wh19xv0OHDi33u/vuu8fJJ58cEydOrOCnBQAAANAMQgkAAAD0SdOnT49JkybFr371qzj11FNjo402ijPPPHOF9ztt2rRyv9dff32MHz8+NtlkkzjmmGNixowZLTlvAAAAgCbp3+4TAAAAgIVtt912sf322y/Ttuuss84rPl7MWvDe9753kfunTp0a999/f9x2220xd+7cmDVrVpxyyinl/Z///OeX6dhF4OBtb3vbIvu977774vbbb4/u7u7y9u1vf7sMKlx22WXlbAoAAAAAfYVQAgAAALWzzz77lEswtEIxA8I3v/nNJT5eLNtw2GGHxY033lh+/cUvfjEOPfTQ2HzzzZe67x122GGJ+/7Tn/4UBx98cPzxj38sv7788svjJz/5Sbz//e9f7loAAAAAmsbyDQAAAPRpY8aMiSuvvDLWWmut8uuurq646KKLVni/m266aVx99dUxdOjQnvv+67/+a4X3CwAAANAkQgkAAAD0ecOGDYt99913gVkOWqFYOuKAAw7o+fp3v/tduZwDAAAAQF8hlAAAAAARMXr06J7PX3755Zbtd8stt+z5fPr06fH888+3ZL8dHR09t3luv/32OOqoo2LjjTcuZ2gYPnx4bL/99nHWWWfFlClTXtX+Z8+eHeeff34Zqthggw1ilVVWKfe5/vrrl8tSFMtRLC1gccMNN/Sc42677dZz/1VXXVXuo1haY+WVVy4f/9rXvhat8thjj8Upp5wSb3zjG2O11VYrz3uTTTaJ4447Lh5++OFXta9i+1NPPTXe9KY3xciRI2PgwIHlx+Lr0047LR599NGl7uPcc8/t+Tl8+MMfXur2Dz30UM/266233qvapgi+FNdAUe+qq65aPn7CCSe8qpoBAACglfq3dG8AAADQUE8++WTP56NGjWrZfgcPHrzA1zNmzIgqnH766fG5z32uXH5inmnTppVBheL2rW99Ky655JJ485vfvNR9FWGComP7wQcfXGxneHH78Y9/XHbMX3rppbHOOuss0zm++OKL8ZGPfKQMNFTliiuuKDv+i2PN7y9/+Ut5O+ecc8qfwzvf+c6l7mv8+PFx5plnLtJmTz/9dHm77bbb4j/+4z/Kn/2JJ57Y8lpejVmzZsXxxx9viRAAAABqRygBAACAPq+YGeEXv/hFz9c777xzy/b9xBNP9Hzer1+/WGONNaLVvv71r8dnP/vZ8vPXve51scMOO5Qj+u++++644447yvsff/zx2GuvveLGG29cYPaGhRUd9h/84AfLmRLmhSqK8EExGr+zszMmTpwYt9xyS8yZMyduvfXWMuRQhB6K2QNeSTGrwqGHHho///nPy9H72267bWy66abl/ffcc88CMz4sr+uuuy7+5V/+JebOnRtjxowpz61YmuNvf/tbGbQozrmYraKY/aE4ZjHrw5Ice+yxZZBjnmJGh7e+9a1lYKUIsFx//fUxderUMrDw6U9/urzvq1/9arTLxz72sZ5Awhve8IZylogBAwaU7VW0GwAAALSLUAIAAAB9WhEaKEbWP/XUU+XXr33ta+OQQw5p2f5/+ctf9ny+1VZbxaBBg6LVPvWpT8VKK60U3/ve98pAwfxuuummOPDAA8tQQrGEw2GHHRZ/+MMfyg7rhd17771x+OGHl4GEIiTwiU98IsaNG1cugTC/v/71r+V2xVIBxfIFxewHxZIMr+Tmm28uQwFFh/mPfvSj8uP8Zs6cGSuqCBIUP4fvfve75c9h/qBDUds73vGO8udQzCBRzCrx/e9/f7H7ufjiixcIJBTXx3/+53+WAYd5ip/lMcccExdccEH5dbH8RBFmed/73he9rViu4tvf/nZ57RY/24VDNa342QIAAMDyEkoAAACgdooO7meeeWap233mM59Z6tIB999/f9lZvbjZER544IFytH/RWV54/etfX86YMHTo0GiFosO6mFVgnrFjx0ZVU/cXyykU4YOF7bjjjmUwYptttik7p4vZE84///w44ogjFtm2mP6/mEmg8OUvf7kcfb84G2ywQfzP//xPbL/99vGnP/0prr766nIpg2KGhiUpfsbFLAO//vWvY80111zk8VaENYqfQ7F8QzEjxMI222yzciaBfffdt2dGiLPPPjv691/wXyPF8hfFzAfz7L///mV4YeGZHIqAwg9/+MN46aWX4qc//Wl537//+7/He97znl6fmaCYGWLIkCHlTBEbb7zxIo9XEYQBAACAZSWUAAAAQO0UywEUt6U56qijlhpKKGZCmH/U++IUnbannnpq2am8cCf1q1WEHe67774499xz4zvf+U7P/R/4wAcWGwRohWJk/OICCfN3yBej+r/yla+UX//3f//3Iufyf//3f2VgYN6MDieccMIrHrMIbpxyyilx8MEHl18XI/RfKZRQKH7GiwsktEoROFhcIGGeffbZp2f5hWLphaKdFp6x4ZprrimXeygUS2AUS2MsaWmJ4v7i2ipCNMXsEg8++GBce+215YwMva0I3iwukAAAAADtZlFBAAAA+rxiBoFimYKic7+Y5n9ZnXfeeWXH9Py3lVdeObbbbruys7oYdV903n/yk5+Miy66KPr161fJ+RdLMixNsdzCPEXgowhPzG/+5ReKoMGSOuLnt/vuu/d8XizlsDSvFJxohWJWg1dS1PTGN76x5+uHHnpokW3mBTPmDzG8kiIUM38Q4vrrr492OOigg9pyXAAAAFgaMyUAAABQO6eddlqcfvrpLdnXrrvuGjfccMNigwiTJk2K3/72t/GlL30p/vjHP5ZLObz5zW8uO5aL5Q5a4cQTTywDD1VO6V+c89IUMwIUgYlihoBiuv+i3vm/b/5lJor6H3744aXus7u7u+fzRx999BW3XX/99WP48OFRpYVnPVicNdZYo+fzKVOmLPL4nXfe2fP5W97ylmU6brFExs9+9rPy8//93/+N3jZgwIBlqh0AAADaQSgBAACAPqlYsmG99dYrb8Uo83e+853l1PsvvfRSHHLIIXHPPfeUnb2vZJNNNom3ve1tPV/PmDGj7JwvOviL/cxbsmDixInlrApVBRPGjBmz1G2KWQJe85rXxJ///Ofy68mTJy+yzMU8V1999as+h+eff/4VH19rrbWiaquuuupSt5m/TYslFxY2/89l3XXXXabjFtfQPM8880z0ttVXX32Flx0BAACAqviLFQAAgD6v6KgullvYeOONy6+LEMFPf/rT+MAHPvCK37fDDjvEN7/5zUXuf/HFF+Ozn/1sfPWrXy2/vuCCC2LzzTcvZ02owpAhQ5Zpu2IpiXnmhSbmP+cVUcy+8EoGDx4cVVuWJSeWpphJYnE/r+X9ufaG3vjZAgAAwPKqbu5IAAAAaJCNNtqoXGJgnl/96lcrNGL/K1/5Shx11FE9982bMaEK06ZNW6btXn755Z7PV1lllSV2rP/kJz8pl2Z4tbcMiiUuFvfzWt6f6/Lo6upa4X0AAABAXQglAAAAwD+MHj265/OHH354hfdXzJSwzjrrlJ/PmjUrxo0bF1V45JFHlrpNERp4/PHHe75ec801F3h85MiRPZ8/+eST0VfNv8zEsvxcCw899NASf64LLxkxZ86cpe5vRWetAAAAgDoRSgAAAIDFzDjQ2dnZklH3p59+es/Xl156adx5553RarfeeutSt7nnnnt6lhbo169fvPGNb1xkKYp5brrppuirttpqq57Pb7755mX6nvm323rrrRd5fNiwYT2fP/vss0vd3913371MxwUAAIAmEEoAAACAiJg+fXrcd999PV/Pm+FgRX34wx+O9dZbr+frz33uc9FqF1xwwVK3+eEPf9jz+XbbbbfAcg2Ffffdd4HlG5566qnoi3bfffeez6+66qp4+umnX3H7J554Iq6++urFfv8887f///3f/y11qYuLL774VZ41AAAA1JdQAgAAAETEd77znZg5c2bP129729tast/+/fvHSSed1PP1FVdcUc5a0Eo33HBDOQvDkhRhi29+85s9Xx911FGLbLP99tvHbrvt1hPQ+NCHPlQuObEsiu2ef/75yGDPPfeM9ddfv/y8uB5OOOGEJW5bhAuOO+64mD17dvn1hhtuGHvsscci273+9a+PVVZZpfx80qRJcc011yxxn7/4xS/KGwAAAGQhlAAAAECfVnQof/vb345Pf/rTPfdtsMEG8e53v7tlxyhmSxgzZkxPR/aZZ54ZrTRw4MA47LDD4qKLLlrksVtuuSXe8Y53xIwZM8qvN9tsszJwsDjf+MY3yiUnCtdee23ssssucdttty3xuBMnTixnfihmAsiy5EOxbMfnP//5nq+Ln+nRRx8dU6dOXWC7YimMj3zkI+WsEvP8x3/8x2KX/SiCKQcccEDP18X+/vSnPy2wTXFdnH/++eV2gwYNanFVAAAA0D7923hsAAAAqNz9998fxx577GJH9xej1m+99dZ45plneu4fMmRI2Tncyo7hAQMGxGc+85n413/91/LrSy65JE4//fTYZJNNWrL/ojO8GNF/yCGHxGmnnRY77LBDecxiRobbb7+9Z7sicHDeeeeVIYbF2XzzzctO+AMPPDCmTZtWBhLe9KY3lTMAbL311jF8+PAy3FAsafDHP/4xHn/88cioCAb85je/iW9961vl19/73vfi//v//r9461vfGiNHjizr/9WvfrVAUKH4+b/vfe9b4j5PPvnk+PGPfxwvv/xyPProo7HlllvGrrvuWgZgpkyZEjfffHM88sgjZYDhu9/97mJnswAAAIAmEkoAAAAgtSeeeKKnc3lpNt100zj33HNju+22a/l5HHHEETF+/Ph47LHHoqurq/y8CD+0wr/927/Fs88+W87AUIQwitvC1l577bj44otjm222ecV97bvvvmUH+ZFHHhl/+MMfyvsefPDB8rYkxUwJr3nNayKTYrmLUaNGlT/TYhmHYmaEK6+8cpHtVlpppTj11FPL0MkrKX5GxRIb73//+8vARzFDx3XXXbfANsOGDYsf/OAHZQAEAAAAsrB8AwAAAH1SMSK9GPm/xRZblIGBn/3sZ+Xo/yoCCYVidoL5l4goZiR44IEHWrb/M844owwTFEsKvO51rytnfFh11VXLEEIRgCiWC9hxxx2XaV9vfOMb44477ohf/vKX5ewOxc9ozTXXLH9mQ4cOLTvYiyUhis74YtmGv/71r+XI/2yK2Q3+8pe/lB+L62Lez6D4uP3228cpp5xSPr60QMI8e+21V/z5z3+O448/Pv7pn/6pbKNVVlmlXFKjuDbuvvvuV5xtAQAAAJqoo7tYtBAAAABolI6Ojp7P/WkPAAAA1JWZEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFCJ/tXsFgAAAKhSd3d3u08BAAAAYKnMlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAHrF3Llz4+KLL47DDjssNt5441httdVi4MCBMWLEiNhpp53iM5/5TNxzzz1L3c+BBx4YHR0d5W3cuHHLfT7PP/98rL322j37Ov3005d7XwAAAMDidXR3d3cv4TEAAACAlrj11lvj8MMPj4kTJ/bcN2DAgFhllVXihRdeiK6urp773/e+98VFF11UBhYW9uyzz5ZBglmzZpVfr7POOvHwww9Hv379XvU5ffjDH47zzjuv5+vTTjtNMAEAAABazEwJAAAAQKV+9rOfxW677VYGEtZYY40466yzys+LYEERMig+3n777fHpT386hg0bFj/5yU9i2rRpi93XBRdcUG6/zz77xIYbbhiPP/54/PKXv3zV51R8TxFIeMtb3tKCCgEAAIAlEUoAAAAAKnP//ffHoYceGjNnzoxNN9007rrrrjJ8sNFGG/VsU8xysO2225Zhhb/97W/x7ne/e4n7O+ecc8qPxRIQH/rQhxa4b1m99NJLMXbs2HImhv/+7/9e7toAAACApRNKAAAAACpz8sknx5QpU2KllVaKyy+/PF7zmte84vbDhw+PK664IlZdddVFHitmU7j77rvLx4rgQhFM6OjoKGdimDx58jKf04knnhiPPPJIGY4oghIAAABAdYQSAAAAgEo89dRTcemll5aff/CDH4yNN954mb+3CBssbN6MCAcccEAZclh//fVj5513jtmzZ8f555+/TPu98cYb47vf/W5ssskmcdJJJy3z+QAAAADLRygBAAAAqMT1118fXV1d5efvfe97V2hf06ZNi4suuqj8vJghYZ7DDz+8/Pj9739/qfuYPn16HHXUUeXnZ599dgwaNGiFzgkAAABYOqEEAAAAoBL33ntvz+dbbbXVCu2rmHGhWAZiww03jJ122qnn/v333z8GDx5cHuu2225b6lISDzzwQBx99NHlDAsAAABA9YQSAAAAgEo8++yzPZ8PHz58hfY1b+mGD33oQwvcv8oqq/TMwjBvm8UpAgtf+9rXYvTo0fGFL3xhhc4FAAAAWHZCCQAAAECtFbMb/Pa3v42Ojo5FQgnzL+Hw4x//uFzmYWGzZs2KI444olxK4hvf+EasttpqvXLeAAAAgFACAAAAUJE11lij5/Pnnntuuffz/e9/P7q7u2PHHXeMDTbYYJHH99hjj1hnnXXipZdeiksuuWSRx88444z405/+FO9+97vj/e9//3KfBwAAAPDqCSUAAAAAldhss816Pr/zzjuXax9z586N8847r/z8d7/7XTlbwsK3fv36xeOPP77YJRyKWRaK5RqGDh1afpw6deoit/lnVFj4PgAAAGDFdHQXQw0AAAAAWuypp56Ktddeu1w24cgjj4zvfe97r3ofP//5z2O//fZ7Vd8zceLE2GijjcrPb7jhhnjrW9/6qo/7/PPPW+YBAAAAWsBMCQAAAEAlRo4c2bNcwoUXXliGBZbVvDEU82Y+eO9731suz/BKt6233rpnuQcAAACgHoQSAAAAgMqceeaZsfLKK8f06dPjfe97X88yC680Q0ERZHjxxRfLmRaKmRIKBx54YLmfV7rtv//+5bbFcg/Fsg+F3XbbrQw4vNJtntNOO63nPrMkAAAAQGsIJQAAAACV2XjjjeP888+PgQMHxr333htbbrllfOELX4gHHnigZ5siQHDnnXfGqaeeGhtssEH85Cc/Ke//4Q9/GHPmzInBgwfHvvvuu9RjHXDAAeXHSZMmxVVXXVVhVQAAAMCyEkoAAAAAKvWe97wnfv3rX8frXve6eOaZZ+LTn/50bLTRRjFo0KBYY401ysBCsfTC5z73uXKGhIMPPjiGDh3aswzDPvvsU369NEWgwRIOAAAAUC9CCQAAAEDldtxxx/jzn/8cF110UXzwgx8sAworrbRSvPTSSzF8+PDYaaedYty4cXHffffFhRdeGL///e/L7eefAWFZzNu2WPahWP4BAAAAaK+O7vkXTwQAAAAAAAAAaBEzJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACrRv5rd9j2jRo2Kl19+OcaMGdPuUwEAAAAAAACAlnjkkUdi6NCh8eSTTy7X95spoUWKQMLs2bPbfRoAAAAAAAAA0DJFP3jRH768zJTQIvNmSLj33nvbfSoAAAAAAAAA0BKbbbbZCn2/mRIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQif7V7BYAAAAAAACqM378+Jg9e3YMGDAgxo0b1+7TAWAJOrq7u7uX9CDLbrPNNis/3nvvve0+FQAAAAAAgPSGDh0a06ZNiyFDhsTLL7/c7tMBSGuzFewLt3wDAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJRobSrj//vvjoIMOite85jUxZMiQ2GSTTeKMM86IadOmLbDdzTffHDvttFO5zahRo+L444+PqVOntu28AQAAAAAAAKCv6B8N9Oijj8b2228fq666ahx77LExfPjwuOWWW+K0006LP/zhD/HTn/603O6uu+6Kt73tbfH6178+vvKVr8Rjjz0WX/rSl8pAw9VXX93uMgAAAAAAAAAgtUaGEs4///x44YUX4ne/+11sttlm5X1jx46Nrq6u+OEPfxjPP/98rL766nHSSSeVH2+44YYYNmxYud16660XRx99dFxzzTWx5557trkSAAAAAAAAAMirkcs3TJkypfw4cuTIBe4fPXp0dHZ2xsCBA8ttrr322jj00EN7AgmFww47LFZeeeW4+OKLe/28AQAAAAAAAKAvaeRMCbvttlt84QtfiCOPPDI++9nPxhprrBE333xzfOc734njjz8+hg4dGjfddFPMmTMntt122wW+twgsbLnllnHnnXcu17HnzcywsAcffDA23HDD5donAAAAAAAAAGTUyJkS9tprr/jc5z5XzoSw1VZbxZgxY+Kggw6K4447Lr761a+W20yaNKln9oSFFfc98cQTvX7eAAAAAAAAANCXNHKmhMJ6660Xu+yyS7z//e8vZ0r4xS9+ERMmTIhRo0bFscceG9OnTy+3GzRo0CLfu9JKK/U8/mrde++9r2oGBQAAAAAAAADoqxoZSvjxj38cY8eOjYkTJ8ZrXvOa8r73ve990dXVFSeeeGIcfPDBMXjw4PL+mTNnLvL9M2bM6HkcAAAAAAAAAKhGI5dv+Pa3v10u2zAvkDDPu971rpg2bVrceeedPcs2zFvGYX7FfWuvvXavnS8AAAAAAAAA9EWNDCU89dRTMXfu3EXunz17dvlxzpw5sfnmm0f//v3jjjvuWGCbWbNmxV133RVbbrllr50vAAAAAAAAAPRFjQwlbLzxxuVsCMXyDfO76KKLorOzM7bYYotYddVVY4899ogLLrggXnrppZ5tzj///Jg6dWrsv//+bThzAAAAAAAAAOg7+kcDfepTn4qrr746dt555zj22GNjjTXWiJ///OflfUcddVTP0gzjx4+Pt7zlLbHrrrvG2LFj47HHHosvf/nLseeee8Zee+3V7jIAAAAAAAAAILVGzpSwyy67xM033xzbbLNNfPvb344TTjghHnzwwTKE8J3vfKdnu6233jquu+66GDx4cHzsYx+Ls88+O4488si49NJL23r+AAAAAAAAANAXdHR3d3e3+yQy2GyzzcqP9957b7tPBQAAAAAAIL2hQ4fGtGnTYsiQIfHyyy+3+3QA0tpsBfvCGzlTAgAAAAAAAABQf0IJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQif7V7BYAAAAAgCYYP358zJ49OwYMGBDjxo1r9+kAAJBMR3d3d3e7TyKDzTbbrPx47733tvtUAAAAAACW2dChQ2PatGkxZMiQePnll9t9OgDLzPMXQDP6wi3fAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKhE/2p2CwAAAADQHuPHj4/Zs2fHgAEDYty4ce0+HQAA6NOEEgAAAACAVCZMmBDTpk2LIUOGCCUAAECbWb4BAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKhE/2p2CwAAAAAA9HXjx4+P2bNnx4ABA2LcuHHtPh0AoA2EEgAAAAAAgEpMmDAhpk2bFkOGDBFKAIA+yvINAAAAAAAAAEBzZkp4/PHH46abbio/FtZZZ53Ycccdy48AAAAAAAAAQN/Q0lDC5MmT45hjjonLL788urq6Fniso6Mj3v/+98c3v/nNWGuttVp5WAAAAAAAAAAgcyjhxRdfjF122SX+8pe/xODBg2PPPfeM9dZbrwwjPPTQQ/HLX/4yLrnkkvjjH/8Yt956a6y66qqtOjQAAAAAAAAAkDmU8PnPf74MJOy///6LnQ3hmWeeiWOPPTYuvvji+MIXvhATJkxo1aEBAAAAAAAAgBrq6O7u7m7FjjbZZJOYPn16PPDAAzFgwIDFbjN79ux43eteFyuttFIZYMhks802Kz/ee++97T4VKjJ+/PjyGi6u73HjxrX7dAAAAABYgqFDh8a0adNiyJAh8fLLL7f7dGrPz4squb6okusLoBl94S2bKeHhhx+O9773vUsMJBSKx3bccce4/PLLW3VY6DXF7B7z3twIJQAAAAAAAAAsXWe0yODBg8slGpam2KbYFgAAAAAAAADIrWWhhG222SZuvPHGuOOOO5a4zR/+8Ie44YYbYtttt23VYQEAAAAAAACA7KGEj33sYzF79ux429veFqecckrcd999MX369PL25z//OU477bTYY489Yu7cueW2AAAAAAAAAEBu/Vu1o3322SfGjx9fBhImTJhQ3hbW0dERZ555Zuy9996tOiwAAABAbRT/GykGbQwYMCDGjRvX7tMBAIAe3qsC7dLR3d3d3codFss3fOMb34jf/e538cQTT5T3rb322rHzzjvHMcccE9ttt11ktNlmm5Uf77333nafChUZOnRoTJs2LYYMGRIvv/xyu08HAACAGvK3I9SD38VXx8+LKrm+qJLr69Xx8wLa1RfespkS5tl2223jvPPOa/VuAQAAAAAAAICG6Wz3CQAAAAAAAAAAObV8pgQAAAAAWBbWNQYAAMhvuUMJG2ywQXR0dMR1110X66+/fvn1siq+78EHH1zeQwMAAACQwIQJE3rWNRZKAAAAyGm5QwkPPfRQ+bFIs8//NQAAAAAAAADACoUSurq6XvFrAAAAAAAAAKBv62z3CQAAAAAAAAAAObUslHDGGWfElVdeudTtfvazn5XbAgAAAAAAAAC5tSyUcPrpp8cVV1yx1O2K4MJnP/vZVh0WAAAAAAAAAKipXl++Ye7cudHZadUIAAAAAAAAAMiu19MB9957b6y++uot2df//u//xrve9a4YPnx4DBkyJDbffPP4+te/vsA2N998c+y0007l46NGjYrjjz8+pk6d2pLjAwAAAAAAAABL1j9WwBFHHLHA17/73e8WuW+eOXPmxF/+8pe444474j3veU+sqGuuuSb222+/2GqrreKUU06JlVdeOR588MF47LHHera566674m1ve1u8/vWvj6985SvlY1/60pfi/vvvj6uvvnqFzwEAAJbV+PHjY/bs2TFgwIAYN25cu08HAAAAAKD+oYRzzz235/OOjo544IEHytsr2WKLLeKLX/ziihw2pkyZEocddli8853vjEsvvXSJy0GcdNJJ5awMN9xwQwwbNqy8b7311oujjz66DDXsueeeK3QeAACwrCZMmBDTpk0rZ/ASSgAAgOYSOAYA6MVQwvXXX19+7O7ujt133z322muvOPHEExe77cCBA2PttdeOddddN1bUhRdeGE899VT55q8IJLz88ssxePDgBcIJRXDh2muvjY997GM9gYRCEWYo7rv44ouFEgAAAAAAeFUEjgEAejGUsOuuu/Z8fvjhh8fOO++8wH1Vue6668qgweOPP14uBTFx4sQYOnRofOhDH4qvfvWrsdJKK8Xdd99dLhmx7bbbLhKO2HLLLePOO+9crmNvttlmi72/WDpiww03XK59AgAAAAAAAEBGKxRKmN8PfvCD6C33339/GTh497vfHUceeWScddZZ5RIN3/jGN+KFF16Iiy66KCZNmlRuO3r06EW+v7jvt7/9ba+dLwAAAAAAAAD0RS0LJfSmqVOnltNj/cu//Et8/etfL+973/veF7NmzYr/+q//ijPOOCOmT59e3j9o0KBFvr+YSWHe46/Wvffe+6pmUAAAAAAAAACAvqqzlTsrggJnnnlmbLfddrHaaqtFv379Fnvr33/FshCDBw8uPx588MEL3H/IIYeUH2+55ZaebWbOnLnI98+YMaPncaAa48ePj9NPP738CAAAAAAAAPRNLZsp4cUXX4ydd965nEmgCB4MHDgwuru7y6USnnzyyfLzwrrrrrvCx1p77bXL44wcOXKB+0eMGFF+fP7552PDDTcsP5+3jMP8ivuKfQDVmTBhQhlUGjJkSIwbN67dpwMAAAAAAAA0eaaEz3/+83HPPffE2LFjY8qUKfGBD3wgOjo64vHHH4+XX345zj333Bg1alTssMMO8de//nWFjrXNNtuUH4t9z++JJ54oP6611lqx+eablzMy3HHHHQtsUyzxcNddd8WWW265QucAAAAAAAAAAPRSKOGKK64oZx/4+te/HiuttFIZSJin+Pqwww6L6667Li6//PL48pe/vELHOuCAA8qP55xzzgL3f+973yuDCLvttlusuuqqsccee8QFF1wQL730Us82559/fkydOjX233//FToHAIC+zlI9AAAAAAD02vINDz/8cBkCGDBgQPl1Z+ff8w6zZ8/uuW/TTTeNXXfdtZw14ZOf/ORyH2urrbaKI444Ir7//e/HnDlzyn3ecMMNcckll8RnPvOZnqUZin+Qv+UtbykfL2ZweOyxx8pAxJ577hl77bVXS+oGAOirLNUDAAAAAECvhRKK2RCK2zzDhg0rPz755JPx2te+tuf+4cOHx0033bTCx/vud78bY8aMiR/84Afl7AvrrrtufPWrX40TTjihZ5utt966nJ3hxBNPjI997GOxyiqrxJFHHhlnnXXWCh8fAAAAAAAAAOilUEIRPHj00Ud7vt5kk03KjzfeeGMceuih5efFrAa33357rLHGGit8vGL2hdNOO628vZKddtqpJSEIAAAAcihm1Zs3q5+ZXgAAAAAaEkrYeeedy1kLXnrppXJGgv322y+OP/748jZ16tRYZ5114pxzzomHHnooDjnkkFYdFgAAAF4Vy88AAAAA9J7OVu3ooIMOii222CJuvvnm8uu11167XCbhhRdeiGOOOSbe8573xJVXXhkjR46ML3zhC606LAAAAAAAAACQfaaEYpmEW265ZYH7Pv7xj8eOO+4Yl19+eTz//POx8cYbx0c+8pEYPnx4qw4LAAAAAAAAAGQPJUyZMiU6OjrKpRvmt8MOO5Q3AAAAAAAAAKBvadnyDauttlrsueeerdodAAAAAAAAANBwLQslrLrqqrHBBhu0ancAAAAAAAAAQMO1LJSw1VZbxYMPPtiq3QEAAAAAAAAADdeyUMKJJ54Yt99+e1x66aWt2iUAAAAAAAAA0GD9W7WjwYMHx1FHHRUHHnhg7LvvvrHffvvFmDFjYqWVVlrs9rvsskurDg0AAAAAAAAAZA4l7LbbbtHR0RHd3d3xs5/9LH7+85+/4vZz585t1aEBAFpi/PjxMXv27BgwYECMGzeu3acDAAAAAACN17JQwmGHHVaGEgAAmmrChAkxbdq0GDJkiFACAAAAAADUKZRw7rnntmpXAAAAAAAAAEACne0+AQAAAAAAAAAgJ6EEAAAAAAAAAKDeyzcAAAC0yvjx42P27NkxYMCAGDduXLtPBwAAAABYTkIJAABA7UyYMCGmTZsWQ4YMEUoAAAAAgAazfAMAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgHqHEjo7O2PgwIHxla985RW3+8hHPhL9+/dv1WEBAAAAAAAAgL4wU8KcOXPiU5/6VBk8mD179hK36+7ubuVhAQAAAAAAAIDsoYS99tortttuuzjvvPNit912i6effrqVuwcAAAAAAAAA+mooYdSoUXHjjTfGBz/4wbjlllti++23j7vuuquVhwAAAAAAAAAA+mIooTBo0KA4//zz46yzzorHHnssdtppp7j00ktbfRgAAAAAAAAAoK+FEuY58cQT44orrojOzs448MAD4/TTT6/qUAAAAAAAAABADfWvcuf77rtv3HrrrbHffvvF5z73ubj77rvLkAIAAAAAAAAAkF+loYTCpptuGrfffnt84AMfiMsvvzw6OjqqPiQAAAAAAADAchk/fnzMnj07BgwYEOPGjWv36UDjtWzagjFjxsSaa6652MeGDx8e1157bfzLv/xLdHd3t+qQAAAAAAAAAC01YcKE+OxnP1t+BGo0U8JDDz30io/369cvvv3tb8dJJ50Uc+fObdVhAQAAAAAAAIDsMyU88sgj8fjjjy91uyFDhljCAQAAAAAAAAD6gJaFEtZbb71yCYfjjz8+urq6lrjdJz7xidhggw1adVgAAAAAAAAAIPvyDYXu7u741re+Fffdd19ccsklsdpqqy1xOwBYXuPHj4/Zs2fHgAEDYty4ce0+HQAAAAAAAHojlPCBD3wg5syZE1dccUXssMMOceWVV8Y//dM/tfIQABATJkyIadOmlUsCCSUAAAAAkIXBOABk1NJQwsorrxzf//734+STTy47jN70pjfFhRdeGHvvvXcrDwMAvAr+mAUAAABoBoNxAMiopaGEec4888zYfPPN48gjj4x3vetd8fnPfz4+8YlPVHEoAGAp/DELkJ8AGgAAAAB9KpRQOOigg2KjjTaKd7/73fHv//7vcffdd8fZZ59d1eEAAAD6LAE0AAAAAPpcKKGwzTbbxB/+8IcymHD++efHxIkTY7XVVqvykAAAAAAAAABAXwglFEaOHBm/+c1v4qijjooLLrggOjo6qj4kAAAAAKRiqR4AACD6eihh1113jU022WSxjw0cODB++MMfxuabbx6f+cxnWnVIAAAAAOgTLNUDAABEXw8lXH/99Uvd5t///d/LGwAAAAAAAACQX2e7TwAAAAAAAAAAyKllMyX85je/eVXb77LLLq06NAAAAAAAAACQOZSw2267RUdHxzJvP3fu3FYdGgAAAAAAAADIHEo47LDDFhtK6OrqikcffTT+93//N6ZMmRLvfve7Y7XVVmvVYQEAAAAAAACA7KGEc8899xUff/755+Poo4+Oe+65J2655ZZWHRYAAAAAAAAAqKnO3jrQ6quvHj/84Q/jxRdfjM985jO9dVgAAAAAAAAAIHsooTBkyJDYfvvt48orr+zNwwIAAAAAAAAA2UMJhalTp5ZLOQAAAAAAAAAAufXvzYP97Gc/i9/85jex6aab9uZhAQAAgOU0fvz4mD17dgwYMCDGjRvX7tMBAAAA+moo4YgjjnjF2REmTpwYd999d3R3d8cnPvGJVh0WAAAAqNCECRNi2rRp5ZKMQgkAAABA20IJ55577lK3GTNmTJx22mlx2GGHteqwAAAAAAAAAED2UML111+/xMcGDhwYo0ePjvXWW69VhwMAAAAAAAAA+kooYdddd23VrgAAAAAAAACABDrbfQIAAAAAAAAAQE4tmylhnkmTJsUPfvCD+O1vfxtPPPFEed/aa68dO++8c3z4wx8uPwcAAAAAAAAA8mtpKOG8886LY489NqZNmxbd3d099999991xzTXXxIQJE+Ib3/hGfOQjH2nlYQEAAAAAAACAzKGEq6++Oo444ojo7OyMAw44IA4++OBYb731yscefvjhuOiii+KSSy6Jo446KkaNGhV77713qw4NAAAAAAAAAGQOJYwfPz46Ojripz/9aeyzzz4LPLbFFlvEfvvtFx/60Idi3333LWdMEEoAAAAAAAAAgNw6W7Wju+66K3beeedFAgnzK4IIu+yyS9x5552tOiwAAAAAAAAAkH2mhJVWWinWXnvtpW43evToclsAFpxtZvbs2TFgwIAYN25cu08HAAAAAAAA6hVK2HXXXeO2226Lrq6u6Oxc/AQMc+fOLbcpZksA4P8plrWZNm1aDBkyRCgBAAAAAACANFq2fMNZZ50Vzz77bBx11FHx4osvLvL4lClTYuzYsfH888+X2wIAAAAAAAAAuS33TAlnnHHGIvftt99+ce6558Zll10We+65Z6y77rrl/Q8//HBcc801MXXq1PjgBz8YF198cZxyyikrduYAAAAAAAAAQM5Qwumnnx4dHR3R3d29yGMvvfRSGUxYnAsuuKD8PqEEAAAAAAAAAMhtuUMJP/jBD1p7JgAAAAAAAABAKssdSjj88MNbeyYAAAAAAAAAQCqd7T4BAAAAAAAAACAnoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUon81uwUAAAAAAAAgu/Hjx8fs2bNjwIABMW7cuHafDplDCb/5zW+WabuBAwfGGmusEa973euio6OjVYcHAAAAAAAAoJdNmDAhpk2bFkOGDBFKoNpQwm677faqQgYrr7xyHHzwwWVypggpAAAAAAAAAAC5tCyUcNhhh8ULL7wQV155ZXR2dsaWW24ZY8aMKR979NFH484774zu7u7Yd999Y/r06XHXXXfF2WefHb/+9a/jtttui9VXX71VpwIAAAAAAAAA1EBnq3b0xS9+Mf74xz/GO97xjrjvvvvijjvuiJ/85Cfl7fbbb48///nP5WN33313XHDBBfG3v/0tDjrooHjwwQfL7wUAAAAAAAAAcmlZKOEzn/lMzJw5My6//PLYaKONFnn8da97XVx22WXlNsW2Q4cOje9+97vlDAnF7AoAAAAAAAAAQC4tCyX84he/iF122SVWWmmlJW4zePDg2HnnneOqq64qvx42bFhstdVW5awJAAAAAAAAAEAuLQslvPjii+VtaaZMmbLAdmuuuWarTgEAAAAAAAAAyBhKKJZsuP766+O+++5b4jbFY8U2G2+8cc99kyZNEkwAAAAAAAAAgIRaFko45phjYubMmeUSDmeddVbcf//9MWPGjPJWfP75z38+dt1115g1a1a5bWH69Onxhz/8IbbZZptWnQYAAAAAAAAAUBP9W7WjsWPHljMh/Od//mecfPLJ5W1h3d3dccIJJ8TRRx9dfv3www/HoYceGu9///tbdRoAAAAAAAAAQLZQQuGrX/1qfOADH4jvfOc7cfPNN5dLMxRGjx4dO+64Y/zzP/9z7LTTTj3bb7LJJuW2AAAAAAAAAEA+LQ0lFIrwQXEDAAAAAAAAAPq2znafAAAAAAAAAACQU8tnSijMmTMnnn322Zg5c+YStxkzZkwVhwYAAAAAAAAAMoYSrrvuujjzzDPj1ltvjdmzZy9xu46OjjK4AAAAAAAAAADk1bJQws9//vN473vfG3Pnzo3VV1891l9//VhllVVatXsAAAAAAAAAoK+GEj772c9GV1dXfPWrX41jjz02+vXr16pdAwAAAAAAAAB9OZRw7733xpvf/Ob4t3/7t1btEgAAAAAAAABosM5W7WjllVeOMWPGtGp3AAAAAAAAAEDDtSyUsMcee8Qdd9zRqt0BAAAAAAAAAA3XslDCF77whZgyZUqceOKJMWfOnFbtFgAAAAAAAABoqP6t2tEPfvCD2HvvveNLX/pSXHbZZbHbbrvFa17zmujsXDT30NHREaecckqrDg0AAAAAAAAAZA4lnH766WXYoLu7O/7617+WtyURSgAAAAAAAACA/Fo6UwIAAAAAAAAAQMtDCYcffnirdgUAAAAAAAAAJNDZ7hMAAAAAAAAAAHISSgAAAAAAAAAA6rV8w+677x4dHR1x3nnnxWte85ry62VVfN+vfvWr5T00AAAAAAAAAJA5lHDDDTeU4YJp06b1fL2siu8DAAAAAAAAAHJb7lDC3/72t/LjOuuss8DXAAAAAAAAAAArFEpYd911X/FrAAAAAAAAAKBv62z3CQAAAAAAAAAAOQklAAAAAAAAAAD1Wr6hX79+y33Qjo6OmDNnznJ/PwAAAAAAAACQOJTw2te+tgwXzK+7uzseeeSRnq9XW2218uMLL7zQc9+YMWMW+T4AAAAAAAAAIJ/lXr7hoYceir/97W89t4kTJ8Yb3/jGWHvtteM73/lOGUR47rnnytuLL74Y3/3ud2OdddYpt7n//vtbWwUAAAAAAAAAkCeUsLDx48fHr371q/jNb34T//zP/xzDhg3reWyVVVaJsWPHxo033hjXXXddnHHGGa06bM+xi9kXNt9880Ueu/nmm2OnnXaKIUOGxKhRo+L444+PqVOntvT4AAAAAAAAAECFoYQLLrggdt9999hggw2WuE3x2Nve9rb40Y9+1KrDxmOPPRYTJkyIoUOHLvLYXXfdVR5v2rRp8ZWvfCWOOuqoOPvss2P//fdv2fEBAAAAAAAAgMXrHy3y+OOPx1ZbbbXU7QYNGhRPPPFEqw4bn/zkJ+NNb3pTzJ07N5555pkFHjvppJNi9dVXjxtuuKFn5ob11lsvjj766Ljmmmtizz33bNl5AAAAAAAAAAAVzZQwevTouP766+OFF15Y4jbPP/98/PrXvy6XUWiFYqmISy+9NL72ta8t8tiUKVPi2muvjUMPPXSBpSQOO+ywWHnllePiiy9uyTkAAAAAAAAAABWHEg4++OB47rnn4u1vf3sZFljYb3/723jHO95RhhY++MEPrvDxipkRjjvuuHJJhje84Q2LPH733XfHnDlzYtttt13g/oEDB8aWW24Zd95553Idd7PNNlvs7cEHH1zuWgAAAAAAAAAgo5Yt33DKKaeUwYPf/e538da3vjVGjBgR6667bvnYww8/HE8//XR0d3fHjjvuGCeffPIKH++73/1uud/rrrtusY9PmjSpZwaHhRX3FecKAAAAAAAAADQglLDSSivFr371q/jKV74S3/72t+PRRx+Np556qufx1772tfGv//qv8YlPfCIGDBiwQsd69tln49RTTy2DEGuttdZit5k+fXr5cdCgQYs913mPv1r33nvvYu8vZksAAAAAAAAAACoIJRSKsMGJJ55Y3opQwhNPPNEzM8GYMWNadpxipoXhw4eXyzcsyeDBg8uPM2fOXOSxGTNm9DwOAAAAAAAAADQglDC/YmaE4tZq999/f5x99tnxta99rSf0MC9oMHv27HjooYdi2LBhPcs2zFvGYX7FfWuvvXbLzw0AAAAAAAAA+H86owL/93//F//93/8dZ511Vlx55ZU99xezFkyZMmWF9v34449HV1dXHH/88bH++uv33G677baYOHFi+fkZZ5wRm2++efTv3z/uuOOOBb5/1qxZcdddd8WWW265QucBAAAAAAAAAPTiTAl/+ctf4iMf+UgZEJjn8MMPj3e9613l5xdeeGEcddRR8Ytf/CL22muv5TpGETa4/PLLF7ukw0svvRT/+Z//GRtuuGGsuuqqsccee8QFF1wQp5xySqyyyirldueff35MnTo19t9//+WuEwAAAAAAAADoxVDCo48+GrvssktMnjy5DCHsvPPO8alPfWqBbQ444ID46Ec/GpdddtlyhxLWXHPNeM973rPI/cVyDoX5Hxs/fny85S1viV133TXGjh0bjz32WHz5y1+OPffcc7mPDwAAAAAAAAD08vINxZIJzzzzTHzve9+LK664Ij7xiU8sss3QoUPLZRPmn0mhSltvvXVcd911MXjw4PjYxz4WZ599dhx55JFx6aWX9srxAQAAAAAAAKAva9lMCf/zP/8TW2yxRRxxxBGvuN16660X11xzTbTaDTfcsNj7d9ppp7jppptafjwAAAAAAAAAoJdmSnj66afjn/7pn5a63ezZs2PatGmtOiwAAAAAAAAAkD2UsMYaa8Qjjzyy1O0mTpwYo0ePbtVhAQAAAAAAAIDsoYQdd9wxbr/99rjrrruWuM2NN94Y99xzT+y2226tOiwAAAAAAAAAkD2U8MlPfjK6u7vj3e9+d1x99dUxd+7cBR7/9a9/HR/60Ieif//+ccIJJ7TqsAAAAAAAAABA9lDCDjvsEF//+tfjiSeeiH333TdWW2216OjoiMsuuyxWX331ePvb314+9s1vfjO22GKLVh0WAAAAAAAAAMgeSih89KMfjd/+9rex3377lYGEYuaEl156KWbOnBnveMc7yuUbxo4d28pDAgAAAAAAAAA11b/VO3zTm94UV1xxRRlIeOaZZ6KrqyvWXHPN6NevX6sPBQAAAAAAAAD0pVDCPMVMCWuttVZVuwcAAAAAAAAA+looYc6cOfGLX/wifv/735czJeywww5xxBFHlI898cQT5X2bbrpp9O9fWR4CAAAAAAAAAKiBliYDfve738Whhx4ajz76aLl8QzFbwuzZs3tCCbfccksccMABcckll8T73ve+Vh4aAAAAAAAAAKiZzlbt6E9/+lPstddeMWnSpDjuuOPi4osvLoMJ89tvv/1iyJAhcdlll7XqsAAAAAAAAABA9pkSPve5z8WMGTPiqquuij333HOx2wwcODC23nrruPPOO1t1WAAAAAAAAAAg+0wJ119/fWy//fZLDCTMs84668QTTzzRqsMCAAAAAAAAANlDCS+88EK89rWvXep2L7/8csyePbtVhwUAAAAAAAAAsocSRowYEQ888MBSt7vvvvuWKbwAAAAAAAAAADRby0IJu+++e9x1113lMg5Lcvnll5fBhbe//e2tOiwAAAAAAAAAkD2U8OlPfzoGDhwY73nPe+I73/lOPPnkkz2PPf/88/H9738/jjzyyBg6dGh8/OMfb9VhAQAAAAAAAIDsoYRNNtkkLrrooujq6opjjz021llnnejo6Ijzzjsv1lxzzTj66KNj5syZ8aMf/SjWX3/9Vh0WAAAAAAAAAMgeSigUsyTcc889cdxxx5UhhZVWWqmcPWGDDTaIf/7nf44//vGP8a53vauVhwQAAAAAAAAAaqp/q3e47rrrxte+9rVW7xYAAAAAAAAA6CuhhN133z322muv+Pd///dFHnvkkUdi5ZVXjuHDh6/o+QEAAAAA9BnF8rjFrV3mzJnT68fs7OwsbwAA5LTcoYQbbrgh1ltvvcU+tv7668eHP/zhOOecc1bk3AAAAAAA+owijPD2ffaOSU892dr9zu2Kl6ZMia65c6OzX79YZdiw6Oz3/0IA02dM7/m4xXbbRG8bPXJUXHvV1YIJAABJtXz5hkJ3d3d5AwAAAABg2UMJRSDhmB+fXYYHWmHK5OfiwpPHx7TuObHmiBFxyJnjYthaC85we8IWO8es6TNiwKBBcdwlvTvQrAhKfOugsWXtQgkAADlVEkoAAAAAAGD5FIGEfv1X/F+3UyY/GxedOiFemDw5ho8aGYdOOCWGrbXGK35PK44LAADzEz0FAAAAAEimCCRccNLn4vmnno7VR45YpkACAABUQSgBAAAAACARgQQAAOpEKAEAAAAAIAmBBAAAUoUSzjvvvOhXrG+20K2jo2OJjxW3/tYlAwAAAABoKYEEAADqaIXSAd3d3b36fQAAAAAALEogAQCAdKGErq6u1p4JAAAAAACvmkACAABpl28AAAAAAKB9BBIAAKg7oQQAAAAAgAbKEkjommtWXgCAzIQSAAAAAAAaJksgYcrk5+KlKVPafRoAAFRIKAEAAAAAoEHyBBKejQtPHh9dc+e2+1QAAKiQUAIAAAAAQENkCiSUdTz9dHT269fu0wEAoEL9q9w5AAAAAACtkS6QUNQxYkTM7Hiu3acEAECFzJQAAAAAAFBzKQMJI0fEIWeOi85+/k0NAJCZmRIAAAAAAGosayChqGPo6qu2+7QAAKiYCCoAAAAAQE1lDiQ0sQ4AAF49oQQAAAAAgBrK0pGfpQ4AAJaPUAIAAAAAQM1k6cjPUgcAAMuv/wp8LwAAAAAALTZl8nNx0akTGt+RL5AAAEBBKAEAAAAAoCa65nbFhSePjxcmT250R75AAgAA8wglAAAAAADUxEtTpsS07jkxfNTIxnbkCyQAADC/zgW+AgAAAACgbbrmzo3VRzS3I18gAQCAhQklAAAAAADURGe/fnHImeMa2ZEvkAAAwOIIJQAAAAAA1MQqw4bFsLWGR9MIJAAAsCRCCQAAAAAANdHZr3n/shVIAADglfR/xUcBAAAAAFZAV1dXeWuXOXPm9PoxOzs7y1tfIJAAAMDSCCUAAAAAAJUowghv32fvmPTUk63Z39yueGnKlOiaOzc6+/UrlzpY3MwC02dM7/m4xXbbRG8bPXJUXHvV1emDCQIJAAAsC6EEAAAAAKCyUEIRSDjmx2eXIYIVMWXyc3HhyeNjWvecWHPEiDjkzHExbK3hi932hC12jlnTZ8SAQYPiuEvOid5UBCa+ddDYsvbMoQSBBAAAlpVQAgAAAABQqSKQ0K9//xXqAL/o1AnxwuTJMXzUyFfVAb4ix2XxBBKAui3V047levrSUj0AK8o7cgAAAACgtnSA14v2AKpequfVeKXlepZ1yZ/l1VeW6gFoBaEEAAAAAKCWdIDXi/YAql6q59Va0nI9r2bJn+XRV5bqAWgVoQQAAAAAoHZ0gNeL9gCqXqpnRc079oos+QNANcS3AAAAAIBa0QFeL9oDaArPVwD1JJQAAAAAANSGDqV60R5AU3i+AqgvoQQAAAAAoBaydCh1ze2KDLK0B5Bfd3d4vgKoMaEEAAAAAKDtsnSAT5n8XLw0ZUo0XZb2APqGubNmeb4CqDGhBAAAAACgrbJ0gBd1XHjy+OiaOzeaLEt7AH1jhoS/f+z2fAVQY0IJAAAAAEDbZOkA76nj6aejs1+/aKos7QHkVzxfFTMkFDo6OjxfAdRY/3afAAAAAADQN2XpAF+gjhEjYmbHc9FE1mQHmva8W8yQUOg3cKDnK4AaM1MCAAAAANDrUgYSRo6IQ84cF539mvlvV2uyA0173i1mSCj84wMANdXMd8cAAAAAQGNlDST8vY7h0TTWZAea+rxbzJAAQP0JJQAAAAAAvSZ3IKGZdViTHWjq864ZEgCaQSgBAAAAAOgVmTryM9VhTXag7rI87wL0VUIJAAAAAEDlsnQoZazDmuxAnWV53gXoy/q3+wQAAAAAgNymTH4uLjp1QuM7lLJ0jC1cx6T7/xZdM2a0+7ToBV1dXeWtXebMmdOrx+vs7CxvNFeW512Avk4oAQAAAACoTNfcrrjw5PHxwuTJje5QytIxtrg6xu26b7tPi15QhBHevs/eMempJ1u/77ld8dKUKdE1d2509usXqwwbFp39/h4GmD5jes/HLbbbJnrT6JGj4tqrrhZMaKgsz7sACCUAAAAAABUqOiqndc+J4aNGNrZDKUvHWJY6WP5QQhFIOObHZ5fBgVbOhFIEj4rf8zVHjIhDzhwXw9Ya3vP4CVvsHLOmz4gBgwbFcZecE72lCEh866CxZd1CCc3j+QogF6EEAAAAAKDSjsGio7KpHUpZOsay1MGKKwIJ/fr3b9l1VSzNUsyEsizBo1Ydl9w8XwHkIx4IAAAAAFTaAfr3kdPN61DK0jGWpQ7qxXVFFVxXADkJJQAAAAAAlSnWlp9/KvemyNIxlqUO6sV1RRVcVwB5mSsJAAAAAKhMZ7/mjYvK0jGWpQ7qxXVFFfraddXV1VXe2mnOnDm9erzOzs7yBvRNQgkAAAAAAMk6xrLUQb24rqhCX7uuijDC2/fZOyY99WSvH3v6jOk9H7fYbpvFbtM1tytemjIluubOLZdgKmY8akXAcPTIUXHtVVcLJkAfJZQAAAAAAJCoYyxLHdSL64oq9MXrqgglFIGEY358dtnp35tO2GLnmDV9RgwYNCiOu+ScRR6fMvm5uPDk8TGte06sOWJEHHLmuJYswVQEHL510NiydqEE6JuEEgAAAACAPi9Lx1iWOqgX1xVV6OvXVRFI6Ne/fd10Cx+7aI+LTp0QL0yeHMNHjexz7QFUSxwJAAAAAOjTsnSMZamDenFdUQXXVb1oD6BqZkqgkYopfopbu8yZM6dXj1dMZ2RKIwBonb72XqLg/QQAQO6OmCx1UC+uK6qQ5brqmtu+/yu0Upb2AOpNKIHGKToQ3r7P3uWaS71yvLld8dKUKTF9+vTy6+LjFtttE71p9MhRce1VV+tIAIAWvZd4217viKcmP92rx50+4x/vJWYs/3uJee9LirUYi2keVxk2LDr7Ldv7A+8nAADydsRkqYN6cV1RhSzX1ZTJz5V/nzddlvYA6k8ogUZ2JBSBhGN+fHb5z/iq31hcePL4mNY9J6KjI6K7OwasNCiOu+Sc6C1Fp8O3Dhpb1q0TAQBWXPGaWgQSeuO9xPxO2GLnmDV9RgwYtHzvJeZ/X7LmiBFxyJnjYthaw5fpe72fAADI2xGTpQ7qJct1lWUkexZZrquijuLv8+Jv7SbL0h5AMwgl0FhFJ0K//v0rfUG+6NQJ8cLkyTF81Mh48oGHYvaMGeVjVR4XAMjxXuKVvNrjLvy+xD8KAOq/VE/Tlv7z86KvydIRk6WOFek4bvfzV8bnrizXVZaR7Fnkua7+UcfTT/fqQIdW6+6OFO0BNIeeVVjGN0jjdt233acFAPRBWf5xA9CUZf9WZKmcVi3Xs7yWd6me3l4m8dX8vFa0PV6JpY36rizvr/LUsfwdx+16/lrcc1eVz1e9+dyV57rKMZI9i0zXVU8dI0bEzI7noqnmzprV+PYAmkUoAZK+QQIAms/7EoDeXfZvRZbKadVyPctrRZbq6c1lEl/Nz6sV7bEkljbqu7K8v8pUx4p0HLfr+Wvh564qn69687kr03WVYSR7Fumuq3/UcfAZJ8V5H/1UNHGGhL9/7G50ewDNI5QACd8gAQDN530JQO8u1VPFUjlNW/qvnUsbFeY/tqWLqEKW91fp6mhBx3E7n79efv7FFM9X6a6rBCPZM0h5Xf2jjqGrrxpNrKOYIaHQ0dHR2PYAmkkUHJK9QQIAms/7EoDeleV5d0XWZK+TLO1BvWS5rlLWMWJEudRBE2VZkz3ldTXy7zNWVLGEBn37ump6HcUMCYV+Awc2sg6gubwiQ6I3FgBA83lfAtC7sjzvrsia7HWSpT2olyzXVdY6mtxxnGFN9qzX1d/raP0SGiyb3NdVs+soZkgo/OMDQK9p5rs9aKEsbywAgObzvgSgd2V53l3RNdnrIkt7UC9GstdLlo7jLGuy576umldHFlnaI2sdxQwJAO3QrMUNocWyvLEAgK6urvLWLnPmzOn1Y3Z2dpa3LLwvoa/qa89f2Z67mizL824r12Rvpywdx9SPkez1r2NuG/6WWBFZ1mTPfl3RvpmbLjp1QuPbI8t1tbg6xu26b7tPC+ijhBLos7K8sQCAojPv7fvsHZOeenLZv2duVznFczGisujAKNZwfbVTpk6fMb3n4xbbbRO9bfTIUXHtVVen6NzzvoS+almev1rxfFWH5695daw9enTcdtPNKZ67mizrmuwzO56LpsrQcUy9GMleL9nqaPqa7DqOqer9bjFz0wuTJze6PbJcV1nqAPIQSqBP8oIMQLZOvaJD75gfn71MIySLf0AV/yiY1j0n1hzx9zVcl2fK1BO22DlmTZ8RAwYNiuMuOSd6U9E5+Y39jyprb3rHnvcl9GVLe/5q1fNVu5+/euromh1PTJqU4rmrybI87y5cx8FnnBTnffRT0TRZOo6pFyPZ6yVjHcV1VTxvNXFNdh3HVKUI4Bbv24ePGtnY9shyXWWpA8hFKIE+xwsyAFkVHXr9+vdf6utgMSKm+AdUK/9RsLTjVtHBV/zDo+m8L4ElP39V9XzV289f89ex+siRMbOzuSPZM8jyvLu4Ooauvmo0TZaOY+rFSPZ6yfq8O+n+v0XXjBnRRDqOqXLwQBEkbmp7ZLmustQB5GNoBn2KF2QA+rIsr4NFHcXInuIfHk2WpT2gCll+Pxauo5jpYUWXnmD5Zb2uml5H0zuOqfdI9kKTR7Jn+T3PWEcTr6t5ir+jiiV/MrVHE+vIGjT++8xmzWuPLNdVljqAnPw3hD7DCzIAfVmW18GeOp5+epmWqqirLO0BVcjy+7H4OlZ86QmWT+7rqtl1NLnjmHr/fhRBl6YqRrIX73ez/J6ro150HFOVVYYNa+T73SzXVZY6gLyEEugTvCAD0JdleR1coI4RI8p/eDRRMSA0Q3tAFVI+XzW4jiyytEfWOprccUx9GMleL1mfr5pax8J0HFOVJs4IluW6ylIHkFvvLv4LbeAFGaCZurq6ylu7zJkzp9eP2dnZWd5aKcvr4MJ1HHzGSXHeRz8VTVSsnd309oAqZH2+amodWViTvf51jNt133afFg2X5fdjfkayt1+WOhZHxzHkuq6y1AHkJ5RAallekIu1BFfo+/tYx14VnXpA7yqes96+z94x6akne/W402dM//vH6dNj3ddtWI5QKv4hWIwk6Y1/3IweOSquverqlj2HZXkdXFwdQ1dfNZrmH0tml2tnN7k9oAo6jqlyTfYXJk9udHtkua6y1EG9ZL2ujGRvryx1ZKE9qEKW6ypLHUDfIJRAWllekIt/0BZrCTa2Y2/G9Nhiu23KfwgWdfRGB1+rO/WA3lc8dxXPW8f8+OzyOaO3nLDFzjFr+oxyUeN+qwyJNUeM+McIper/IVg8P37roLFl7a14/srzOrj4Oua2YSaLFa2jmCGhUKyd3dT2gCroOKYqxd8f07rnxPBRIxvbHlmuqyx1UC+Zrysj2dsnSx1ZaA+qkOW6ylIH0HcIJZBSlhfkoo7iH7RFR1VTO/YGDBoUh3/7i2UdxT8Eq+7ga3WnHtBexfNWv/79e30ke/GJDoz2y1ZHMUNCoVg7u4l1QFV0HFOV4m+D4u+PprZHlusqSx3Ui+uqXrK0R5Y6stAeVCHLdZWlDqBvEUognSwvyD11PP10S8IEvd2xN0/R/1JMxVuMfGvyP5qB/LKMZE/3OpiojuK6KoIJHR3tPiuoFx3HVMWa7O2XpQ7qxXVVL1naI0sdWWgPqpDluspSB9D3GEZMKllekBeoY8SIcqmDpio6+JreHkB+WUayF0v+pHsdTFRHcV0Bi9JxTFWsyd5eWeqgXlxX9ZKlPbLUkYX2oApZrqssdQB9k1ACaWR5QV64juIftE1cS3DeFOhFB1+T2wPIb+GR7IUmjmSftyZ7ttfBTHU08bqC3qDjmKo08e+oLNdVljqoF9dVvWRpjyx1ZKE9qEKW6ypLHUDf1by/0CHxC/Li62jmP2gzTIEO5JdpJHuxJnux5E++10F1QHY6jiHXdZWlDurFdVUvWdojSx1ZaA+qkOW6ylJHMaAG6Lua998fSPqCnK2Opk+BDuSXbSR7sSZ7seRP018/srwONr0OYMn8nlOFLNdVljqoF9dVvWRpjyx1ZKE9qEKW6ypPHc+VA2qAvksogUbL84Kcr44mT4EO5JfleXd+1mRvvyx1AEvm95wqZLmustRBvbiu6iVLe2SpIwvtQRWyXFeZ6iiWHC0G1AB9l1ACjVUk67K8IGeso8lToAO5ZXneXZg12dsrSx3Akvk9pwpZrqssdVAvrqt6ydIeWerIQntQhSzXVbo6nn66HFAD9F1CCTRSsfZQkaxL84KcsA4zJAB1lOV5d3Gsyd4+WeoAlszvOVXIcl1lqYN6cV3VS5b2yFJHljXZs7QH9ZLlukpZx4gR5YAaoO/q3+4TgOVRrD00rXtODB81MscLcpY3Fg2uA8jP81W9ZGmPLHUAS+b3nCpkua6y1EG9ZLmudBzXS546cqzJnqU9qJfu7khxXWX5/Vi4joPPOCnO++inlnt/XV1d5a1d5syZ0+vH7OzsLG+QhVACjVSsPbTmiDwvyOoAqJbnq3rJ0h5Z6gCWzO85VchyXWWpg3rJcl3pOK6XTHVkWJM9S3tQP3NnzWr8dZXl92NxdQxdfdXl3l8RRnj7PnvHpKeejN40ffr0no/rvm7DcqaH3pypdPTIUXHtVVcLJpCGUAKNVKw9dMiZ49K8IKsDoDqer+olS3tkqQNYMr/nVCHLdZWljiwj2bPIcl3pOK6XdHU0fE32LCPZqd919feP3Y2+rtI9Xy1Ux9wVmGmgCCUUgYRjfnx2rz0HFgHDz+y0998vsI6OOP6i/45haw2P3lK8j/jWQWPL2oUSyEIogUYqEmm9+QLQKtnfWADUjeeresnSHlnqAJbM7zlVyHJd5akjx0j2LPJcVzk6jtO1R6Y6RoyImR3PRVNlGMlO/X4/iuuq0NHR0djrKuXzVQV1FK+t/fr375U6Ljp1Qk/ipf/AgbH66BGVHxeya2S85vbbb49jjz02Nttssxg6dGiMGTMmDjjggJg4ceIi2953332x1157xcorrxzDhw+PD33oQzF58uS2nDet05tT5LSKNxZAkWwt1h/r7dv8evvY7VzrzfNVvWRpjyx1AEvm95wqZLmuMtWRYSR7Flk7josBNU2UZSR7yutq5Ihy5tgm/l80y0h26vn7UVxXhX4DBzbyusr6fJWhjiLoUvjHB6AvzpTwhS98IW666abYf//9Y4sttognn3wyvvnNb8bWW28dt956a2y++ebldo899ljssssuseqqq8aECRNi6tSp8aUvfSnuvvvu+P3vfx8DBw5sdyn0ERlfkJtcB7RDu9Y+K0yf8Y/1z2ZMjy2222apU9gWI8aKf9AW6eMVXSutXWufeb6qlyztkaUOYMn8nlOFLNdVujoaPpI9i3TX1T/qOPiMk+K8j34qmijDSPas19WKrsneLllGslPvjuMimNDEjuNi5qZiRH7G56sMdUy6/2/RNWNGu08L0mhkKOHjH/94XHjhhQuECg488MB4wxveEJ///OfjggsuKO8rgggvv/xy/OEPfyhnUyhsv/328fa3vz3OPffcGDt2bNtqoO/I+oLc1DqgXdqx9tk8J2yxc8yaPiMGDBoUx11yziv+IVSMGJvWPSfWHPH3ERgrslROu9Y+83xVL1naI0sdy6v4PW7nzCcLz/pSteI5y5qNfU9f/z2nGlmuq5R1NHwK9AxSXlcN7jjOMpI983W1omuyt0OWkezUS5aO42JgUPF/uBcmT075fJWhjnG77tvu04JUGhlKeMtb3rLIfRtttFG5nEOxXMM8l112Wey77749gYTCHnvsERtvvHFcfPHFQglULvMLchPrgDrorbXPlmRJx563Vlrxh9DwUSMb+3vu+apesrRHljqKf3g0aaaXJc3y0uoZXeo0ywvtk+X3nHoxBXq9ZBrJnkHW66rJHccZRrJnv66aJstIduolU8dx8XdtMTDI/+HaL0sdUHeNDCUsTvGm5qmnniqDCYXHH388nn766dh2220X2baYLeGqq65aruPM2//CHnzwwdhwww2Xa5/klOWFLEsdQP7f8yx1ZJGlPfLU8Vz5D48mzfSyuFleWj2jS51meaF9svyeUz+mQM89kr2vzSLUypmEMl9XTa6j6SPZTYFeL1lGslMvWX4/5v/bs/i7tql1ZGmPLHVAE6QJJfzoRz8qgwhnnHFG+fWkSZPKj6NHj15k2+K+5557LmbOnBmDBg3q9XMlvywvZFnqAPL/nvf1kex1k6U9MtVRdOQX//Bo6kwvxXGzzOhCvWQZyU69mAI9/0j2dswiVLxPnD79H7MITZ8em2+9VctnCuqNmYSyX1dNk2UkuynQ6yXTSHbqI8vvx8J/Y/89aN+8OrK0R5Y6oClShBL+/Oc/xzHHHBNvfvOb4/DDDy/vm/eH2uJCByuttFLPNq82lHDvvfe+qhkU6HuyvJBlqQPI/3uep47lH8leJ3naI1kdTz/dq7MctFqW9qB+Moxkp15Mgd436ujtWYTmzRQ0T/9BA+PffvKD6E2tmEnISPZ6yTSS3RTo9ZGlDuol63VVLEXY6pn/ekOW9shSBzRJ40MJTz75ZLzzne+MVVddNS699NLo948/BgcPHlx+LGZDWNiMf7zBnrcNtEqWF7IsdQD5f88z1dGKkeztlqk90tUxYkTM7HgumqiJI9n72pTerZrOuzc1dSR7u6+tguurL0yBnvB1sKI6emMWoflnCvp/I9k72jZ70fIykr1eso1kNwV6PWSpg3rJfF319oxHrZClPbLUAU3TrL9gFvLiiy/G3nvvHS+88EL89re/jbXXXrvnsXnLNsxbxmF+xX3Dhw+3dAMtleWFLEsd9A7/GG+mLL/n6eowkr0WstZx8BknxXkf/VQ0UdNGsi9uSu+iI6YYwVf8w7z4PS9GxLT6H1DTZ/xjSu8Z02OL7baJKiypjlZM592bmjqSfeFrqzeuq964vpZWR1OuryxToBvJXi9GstdL1uuqqXXMzxTo7ZelDurFdVUvWdojSx3QRI0NJRSzHey3334xceLEuO6662LTTTdd4PF11lkn1lprrbjjjjsW+d7f//73seWWW/bi2ZJdlheyLHVkWZO97pZ1HdUq/mHeGx0vS6pj7dGj47abbq79P8az/56nrMNI9rZLeV39o46hq68aTdPkkezzT+k9b8rtoiOmGMH393+Yt36KzhO22DlmTZ8RAwYNiuMuOafl+19SHa2Yzrs3NXkk+/zX1tTnXuyV66rq62tpvx9Nub6ydBwbyV4vRrLXS+brqol1LMwU6O2VpQ7qxXVVL1naI0sd0FSNDCXMnTs3DjzwwLjlllvipz/9abz5zW9e7Hbvf//747zzzotHH300Xvva15b3/epXvyqDDB/72Md6+azJKssLWZ46cqzJ3gTLso5qVR0xVXe8LLGOrtnxxKRJtf/H+JLoOK4XI9nrJet1Na+Oub08q0xfHck+v+K18eXnX+yZcrs3R4a2ekrv+acOzzLCtckj2YtAQjvbo1XXV8brqukdx0ay10eWOuZnJHv7ZaljcUyB3j5Z6qBeXFf1kqU9stQBTdbIUMInPvGJuPLKK8uZEp577rm44IILFnj80EMPLT+edNJJcckll8Rb3/rW+Ld/+7eYOnVqfPGLX4w3vOEN8ZGPfKRNZ08mWV7IMtWRYU32plnSOqq99Y/m3lzDdfWRI2NmZzNHshd0HNeHkez1kvm6anIdTRzJPj9ToNeLkez1kvW6amod8xjJXg9Z6liYkeztlaWOLLK0R5Y6XollS3tfX7iumiRLe2SpA5qukaGEu+66q/z4s5/9rLwtbF4ooZgd4cYbb4yPf/zj8elPfzoGDhwY73znO+PLX/5yDBo0qNfPm1yyvJClq6Pha7Jnke66avhIdh3H9WIke71kv66aJstIdh3H9WIke71kvq6aWMf8jGRvvyx1LI6R7O2TpY4ssrRHljpasWxpFV7tsqWtXDp19MhRce1VV7clmNAXrqsmydIeWeqADBoZSrjhhhuWedvNNtssfvnLX1Z6PvQ9WV7IUtbR4DXZs0h5XTV4JLuO43rJVoeR7PWQ7bpq+kj2go7j+shSxzxGstdDljoWZiR7e2WpI4ss7ZGljiyytEeWOlqxbGlVXs2ypa1cOrV4r/mtg8a2ZdnSvnJdNUWW9shSB2TRvJgytJk12etdR/HGu4kjMLLIel01vY7mdxznao9MdRRBl0KTR7Jnao9sdTTxupr/n3lFUDJTe6ijHoxkb78sdSxOE/+OytIeWerIIkt7ZKkjiyztkaWO5Vm2tDdv83ul7V5+/sUFlk790OdPjdVHj1ju47Zr9tm+eF3VWZb2yFIHZNK8vzihzazJXvc6mjeyJ4vc11Wz62hyx3GR+M/WHpnqKIIuTVWMZC+W/MnUHuqoDx3H7ZeljoUZyd5eWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqyCJLe2SpoxhQA5kIJcAysiZ7vWSpI4ss7ZG1jqZ2HBvJXi9GstdL5uuqiXUsTMdxe2WpY3GMZG+fLHVkkaU9stSRRZb2yFJHFlnaI0sdWWRpjyx1ZJGlPfLU8Vw5oAYyad5/NKANrMleL1nqyMJI9nrJ1HFsJHt9ZKljfkayt1+WOhZHx3H7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqyCJLe2SpI4ss7ZGljiwj2bO0R6Y6ioFaxYAayGTBBYqAxGuyP1euMZbhBTnDG4ss5o1kL9aua3J7ZLmustQxT/HGe00j2dsuSx0LM5K9vbLUkUWW9shSRxZZ2iNLHVlkaY8sdWSRpT2y1JFFlvbIUkcWWdojTx05RrLnaY9kdTz9dDmgBjIRSoBXsSZ7EUxo4ohjHcdUpXjjPa17TgwfNbKx7ZHluspSx/yMZG+/LHUsjpHs7ZOljiyytEeWOrLI0h5Z6sgiS3tkqSOLLO2RpY4ssrRHljqMZK+XTHVkGMmeqT3S1TFiRMzseK7dpwQt1bz/xkIvybIme8EU6FTFmuz1kKWOhRnJ3l5Z6sgiS3tkqSOLLO2RpY4ssrRHljqyyNIeWerIIkt7ZKlDx3G95KnDSPY6SVdHw0eyFxNDp2qPZHUUA7WaOKAGXokrGpKvyV7QcUxVjGRvvyx1LE4T33hnaY8sdWSRpT2y1JFFlvbIUkcWWdojSx1ZZGmPLHVkkaU98tSh47hOMtVhJHt9pKxjxIhyQE1TzZ01K1d7pKujeQO1YGks3wBJX8jmp+N42XV1dZW3dpozZ06vHq+zs7O8LQ8j2dsrSx1ZZGmPLHVkkaU9stSRRZb2yFJHFlnaI0sdWWRpjyx1GMleL5nq0HFcH+nqMJK9FtJdV/+o4+AzTorzPvqpaOJ19feP3anaI1sdc1ewj6Dd/Ry93cexov0c9A6hBEj4QrYwHcfLpniRfvs+e8ekp55s7X7ndpWJ/+IP7OIPoaI9Fh4BPn3G9J6PW2y3TfSm0SNHxbVXXb1cL9hGsrdPljqyyNIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHnnqMJK9TtLV0fCO43TtkamOhq/JbiR7vesYuvqq0cQ6iuuq0NHRkao91FF9P8fS+j+mT/9HH8f03u/jWNF+DnqHUAIkeyFbHB3Hy/5iXbxQH/Pjs1v2x3Dxj5si8T+te06sOeLva0EtLiBywhY7x6zpM2LAoEFx3CXnRG8pghLfOmhsWXtfeLHO8nuepY4ssrRHljqyyNIeWerIIkt7ZKkjiyztkaUOI9nrJVMdRrLXR8o6GtxxbCR7vRjJXi9Zr6tWjWRvVx3FdVXoN3BgqvZomirrqKKfY1n6P8o10Lu7Y8BKvdvH0Rf7OZpKKAESvZBl0e72KF6o+/Xv35I6Ljp1QrwweXIMHzVymetoxbGp33XVKlnqyCJLe2SpI4ss7ZGljiyytEeWOrLI0h556jCSvU7S1WEkey1kraOpHccFI9nrw0j2esl8XTW9juK6KoIJRf9xE9/vFv9vz9QeVdbRqn6OZe3/ePKBh2L2jBnlY/o4WBxxEfq8LG8sssjSHlnqyCJLe2SpI4ss7ZGljiyytEeWOrLI0h5Z6jCSvV4y1WEke32krGPEiHIpwiYykr0JdTRvyVEj2eslWx1GstdD1jqK66qJir+jive72dojUx1NDLrQu4QS6NOyvABkkaU9stSRRZb2yFJHFlnaI0sdWWRpjyx1ZJGlPfLUYSR7naSro+Ej2XUc17uOYinCJi4NWTCSvT4y1WEke31krKO4rgpN7OAr3u9ma49sdTTxuioUf0cV73eztYc66Eua+dcEtIAnznrJ0h5Z6sgiS3tkqSOLLO2RpY4ssrRHljqMZK+XTHUYyV4fKeto8Ej2go7j+jCSvV5yX1fNraP5I9l1HNeJkez1kvW6amod8xR/RxXvd5taR5b2yFIH7SGUQJ/kibNesrRHljqyyNIeWerIIkt7ZKlDx3G95KnDSPY6SVeHkey1kO66avhIdh3H9ZKpDiPZ6yNjHU0eya7juF6MZK+XzNdVE+uYX/F3VPF+t4l1ZGmPLHXQPs37axVWkCfOesnSHlnqyCJLe2SpI4ss7ZGnDh3HdZKpDiPZ6yNlHUayt13K66rBI9l1HNdLtjqMZK+HbNdV00eyF3Qc10eWOuYxkr0estSxsOLvqKa+383QHlnqoL2EEuhTPHHWS5b2yFJHFlnaI0sdRrLXS6Y6dBzXR7o6jGSvhXTXlZHstZD1ump6Hc3vOM7VHpnqMJK9/TJeV00fyV7QcVwPWeqYn5Hs7ZeljsVp4t9RWdojSx20X/N+i2E5eeKslyztkaWOLLK0R546jGSvk3R1NLzjOF17ZKrDSPa2S3ldGcnedrmvq2bX0eSOYyPZ68VI9nrJel01tY756Thuvyx1LMxI9vbKUkcWWdojSx3Ug1ACfYInznrJ0h5Z6jCSvV4y1WEke32krKPBHcdGsteLkez1kvW6anodRrLXQ9Y6mtpxbCR7vRjJXi+Zr6sm1rEwHcftlaWOxWni31FZ2iNLHVlkaY8sdVAfzXuVgFfJE2e9ZGmPPHUYyV4n6eowkr0WstbR1I7jgpHs9WEke73kvq6aXYeR7O2X8bpqesexkez1kaWO+RnJ3n5Z6licJv4dlaU9stSRRZb2yFJHFlnaI0sd1Evz3oFAH3ziNJK9XjLVYSR7faSsw0j2tkt5XTW449hI9nrJVkfzR7LrOK4TI9nrJet11dQ65jGSvR6y1LEwI9nbK0sdWWRpjyx1ZJGlPbLUkUWW9shSB/UjlEBaWZ44jWSvl3R1NHwku47jejGSvV6yXldNrsNI9vrIWEeTR7LrOK4XI9nrJfN11cQ65mcke/tlqWNxmvh3VJb2yFJHFlnaI0sdWWRpjyx1ZJGlPbLUQT017x0u9KEnTiPZ6yVlHQ0eyV7QcVwfRrLXS+7rqrl1GMleD9muq6aPZC/oOK6PLHXMYyR7PWSpY2FGsrdXljqyyNIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6qC+hBNLJ8sRpJHu9pLuuGj6SXcdxvWSqw0j2+shYh5Hs7Zfxumr6SPaCjuN6yFLH/Ixkb78sdSxOE/+OytIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqoN6a9xcU9IEnTiPZ6yXlddXgkew6juslWx1GstdDtuvKSPZ6yHpdNbWO+ek4br8sdSzMSPb2ylJHFlnaI0sdWWRpjyx1ZJGlPbLUkUWW9shSRxZZ2iNLHcWAGupNKIE0sjxxGsleL1mvq6bX0fyO41ztkakOI9nbL+N1ZSR7+2W+rppYx8J0HLdXljoWp4l/R2Vpjyx1ZJGlPbLUkUWW9shSRxZZ2iNLHVlkaY8sdWSRpT3y1PFcOaCGemveX+iQ+onTSPY6yX1dNbuOJnccG8leL0ay10vW66qpdczPSPb2y1LH4ug4bp8sdWSRpT2y1JFFlvbIUkcWWdojSx1ZZGmPLHVkkaU9stSRZSR7lvbIVEcxUKsYUEO9Ne+/P5D4iTNTHUay10PWOpracWwke70YyV4vma+rJtaxMCPZ2ytLHVlkaY8sdWSRpT2y1JFFlvbIUkcWWdojSx1ZZGmPLHVkkaU98tSRYyR7nvZIVsfTT5cDaqg3oQQaLd0TZ6I6jGRvv4zXVdM7jo1kr48sdczPSPb2y1LH4hjJ3j5Z6sgiS3tkqSOLLO2RpY4ssrRHljqyyNIeWerIIkt7ZKnDSPZ6yVRHhpHsmdojXR0jRpQDaqi35v13Ef5Bx3G9GMleL1mvq6bWMY+R7PWQpY6FGcneXlnqyCJLe2SpI4ss7ZGljiyytEeWOrLI0h5Z6sgiS3tkqSOLLO2Rpw4j2eskXR0NH8merj2S1VEM1GrigJq+RgvRSDqO68VI9nrJfF01sY75GcneflnqWJwmvvHO0h5Z6sgiS3tkqSOLLO2RpY4ssrRHljqyyNIeWerIIkt7ZKnDSPZ6yVSHkez1kbKOBo9kL1aqTtce6epo3kCtvqh5/70GHce1kqWOeYxkr4csdSzMSPb2ylJHFlnaI0sdWWRpjyx1ZJGlPbLUkUWW9shSRxZZ2iNLHTqO6yVPHUay10m6Oho+kl3Hcb1kGsk+d9asdO2hDtqhf1uOCi3oOF5Tx3HbZaljfkayt1+WOhaniW+8s7RHljqyyNIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHnnq0HFcJ5nqMJK9PlLWMWJEzOx4LppKx3G96xi6+qrRxKDL3z92p2sPddAOzesdAR3HtZCljoUZyd5eWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqyCJLe2Spw0j2eslUh47j+khXh5HstZDuumr4SHYdx/WSqY4i6FLo6Oj4/9m7E/i66jJ//E+6L+xrW6SsIlJkQDZlFxEqgiuIKIILov8ZYNwZ6KCAtnVBdFBHx9/MIMLIiDAgKsgOArKI0hFRhEFZyyIWKF0oTZv/6xxMTNsUmvae3HOevN+vVwhNbnLvJ883N/fe7/Oc0+gcWeqRIcdg50gJNJKN4/bKkqMvTXzgnaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXKYZK+TdDkavnGcrh6Zcphkb7uU66rBk+w2juslW46i0aUwdMSIhuaYFed9ZlqaejQ9B46UQEPZOG6fLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDlMstdLphwm2esjZY4NNigHaprIJHu9mGSvl6zrquk5mr9xnKsemXIUjS6Fv75r3POo4vFupno0OQcvaN4jGGigLHecWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXKYZK+TdDlMstdC1hxN3TgumGSve45mHjnWJHt9ZMzR5I3j4vFutnpkylE0ujRV8TyqeLybqR5NzcHfNPPRMTRIljvOLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDlMstdLphwm2esjZQ6T7G2Xcl01eOPYJHu9ZMthkr0esuZo6saxSfb652hio0u34nlU8Xg3Uz2amIMlaUqACmW548ySI4ss9ciSI4ss9ciSI4ss9ciSw8ZxveTJYZK9TtLlaPgku43jejHJXi9Z11WTc5hkr4+MOUyyt1/GddX0jWOT7PWRJUdvxfOo4vFuE3NkrAcvaOazL2iALHecWXJkkaUeWXJkkaUeWXJkkaUeeXLYOK6TTDlMstdHyhwNnmQv2DiuD5Ps9ZJ7XTU3R/Mn2W0c14lJ9nrJuq6amqObSfZ6yJJjacXzqCY+3s1aD16gKQEqkOWOM0uOLLLUI0uOLLLUI0sOk+z1kimHjeP6SJfDJHstpFtXDZ9kt3FcL5lymGSvj4w5mjzJbuO4Xkyy10vmddXEHL2ZZG+/LDn60sTnUZnrwQuatyqh5rLccWbJkUWWemTJkUWWeuTJYZK9TtLlaPjGcbp6ZMphkr3tUq6rBk+y2ziul2w5TLLXQ7Z11fRJ9oKN4/rIkqObSfZ6yJJjaSbZ2ytLjizUY3DQlAAtlOWOM0uOLLLUI0sOk+z1kimHSfb6SJmjwRvHJtnrxSR7vWRdV03P0fyN41z1yJTDJHv7ZVxXTZ9kL9g4rocsOXozyd5+WXL0pYnPo7LUI0uOLNRj8GjevR7UVJY7ziw5sshSjzw5TLLXSbocJtlrIWuOpm4cF0yy14dJ9nrJva6anaPJG8cm2evFJHu9ZF1XTc3Rm43j9suSY2km2dsrS44sstQjS44s1GNwaeYrk1AzWe44s+QwyV4vmXKYZK+PlDlMsrddynXV4I1jk+z1ki2HSfZ6yJqjqRvHJtnrxSR7vWReV03MsTQbx+2VJUdfmtjYnaUeWXJkkaUeWXJkoR6DT/P+qkLNZLnjzJPDJHudpMvR8El2G8f1YpK9XrKuqybnMMleHxlzmGRvv4zrqukbxybZ6yNLjt5Msrdflhx9aeLzqCz1yJIjiyz1yJIjiyz1yJIjC/UYnJr3iA1qJMsdZ6YcJtnrI2WOBk+yF2wc14dJ9nrJva6am6P5k+w2juvEJHu9ZF1XTc3RzSR7PWTJsTST7O2VJUcWWeqRJUcWWeqRJUcWWeqRJUcW6jF4aUqAQX7HmS6HSfZaSLeuGj7JbuO4XjLlMMleHxlzNHmS3cZxvZhkr5fM66qJOXozyd5+WXL0pYnPo7LUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLNRjcGveMwKogSx3nClzmGRvu5TrqsGT7DaO6yVbDpPs9ZBtXTV9kr1g47g+suToZpK9HrLkWJpJ9vbKkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiML9UBTAvSTSfZ6McleL1nXVdNzNH/jOFc9MuUwyd5+GddV0yfZCzaO6yFLjt5Msrdflhx9aeLzqCz1yJIjiyz1yJIjiyz1yJIjiyz1yJIjiyz1yJIjC/Wg0LxnnNBmJtnrwyR7veReV83O0eSNY5Ps9WKSvV6yrqum5ujNxnH7ZcmxNJPs7ZUlRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRzFQk0GWerDqNCXACjLJXi/Zcphkr4esOZq6cWySvV5MstdL5nXVxBxLs3HcXlly9MUke/tkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnrkyTGrHKhpuiz1oDWa94oGtIFJ9nrJmMMke/tlXFdN3zg2yV4fWXL0ZpK9/bLk6IuN4/bJkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIksMke71kylEMahUDNU2WpR60TvNeLYMBlmeS3cZxnZhkr5es66qpObqZZK+HLDmWZpK9vbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPfLkMMleJ+lyPPFEOVDTVFnqQWtpSoBBMMlu47heTLLXS+Z11cQcvZlkb78sOfpikr19suTIIks9suTIIks9suTIIks9suTIIks9suTIIks9suQwyV4vmXKYZK+PlDk22KAcqGmiYr43Qz1ovea9GgsDJMske8HGcX1kydHNJHs9ZMmxNJPs7ZUlRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElh43jesmTwyR7naTL0fBJ9iwbx+nW1V9zFINaTRyoKRSnQm96PahGM1c0VCzTJHvBxnE9ZMnRm0n29suSoy9NfOCdpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR55ctg4rpNMOUyy10fKHA2eZM+ycZxyXfXkaN6g1l/PgF6eCr3J9aA6zXu1HyqW5Q9ZbzaO2y9LjqWZZG+vLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDlMstdLphw2jusjXQ6T7LWQbl01fJI9y8Zx1nXV5BxFo0uhOBV6U3NQrWEVf39olCx/AJZm47i9suToSxMfeGepR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR54cJtnrJF2Ohm8cp6tHphwbbBALOmZFU5lkr3eOsWuvGU2TZeM487pqco6i0aVQnAq9iTmoXvN2k6AiWf4A9MXGcftkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyWGSvV4y5TDJXh8pczT4EOgm2evFJHu9ZF1XTc/R9I3jbPXIlKNodCk0+VToVKt5f5GhAln+AGSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR55cphkr5N0OUyy10LWHE3dOC6YZK+PLOdkN8leLxlzNHnjuHi8m60emXIUjS7wYpr5aA9aKMsfgCyy1CNLjiyy1CNLjiyy1CNLjiyy1CNLjiyy1CNLDpPs9ZIph0n2+kiZwyR726VcVw3eODbJXi/Zcphkr4esOZq6cVw8jyoe72arR6YcTWx0YWBpSmBQy/IHIIss9ciSI4ss9ciSI4ss9ciSI4ss9ciSI4ss9ciTwyR7naTL0fBJdhvH9WKSvV6yrqsm5zDJXh8Zc5hkb7+M66rpG8fF86ji8W62esjBYNLMZxPQAu446yVLPbLkyCJLPbLkyCJLPbLkyCJLPbLkMMleL5lymGSvj5Q5GjzJXrBxXB8m2esl97pqbo7mT7LbOK4Tk+z1knVdNTVHt+J5VPF4t6k5stQjSw7aQ1MCg5I7znrJUo8sObLIUo8sObLIUo8sOWwc10ueHCbZ6yRdDpPstZBuXTV8kt3Gcb1kymGSvT4y5mjyJLuN43oxyV4vmddVE3P0VjyPKh7vNjFHlnpkyUH7NO/ZKqwid5z1kqUeWXJkkaUeWXJkkaUeeXLYOK6TTDlMstdHyhwm2dsu5bpq8CS7jeN6yZbDJHs9ZFtXTZ9kL9g4ro8sObqZZK+HLDmWVjyPaurj3Qz1yJKD9tKUwKDijrNestQjS44sstQjSw6T7PWSKYeN4/pIl8Mkey2kW1cm2Wsh67pqeo7mbxznqkemHCbZ2y/jumr6JHvBxnE9ZMnRm0n29suSoy9NfB6VpR5ZctB+zfsthpXkjrNestQjS44sstQjTw6T7HWSLkfDN47T1SNTDpPsbZdyXZlkb7vc66rZOZq8cWySvV5MstdL1nXV1By92Thuvyw5lmaSvb2y5MgiSz2y5KAeNCUwKLjjrJcs9ciSwyR7vWTKYZK9PlLmaPDGsUn2ejHJXi9Z11XTc5hkr4esOZq6cWySvV5MstdL5nXVxBxLs3HcXlly9KWJz6Oy1CNLjiyy1CNLDuqjeX8loJ/ccdZLlnrkyWGSvU7S5TDJXgtZczR147hgkr0+TLLXS+511ewcJtnbL+O6avrGsUn2+siSozeT7O2XJUdfmvg8Kks9suTIIks9suTIIks9suSgXpr3CAQG4R2nSfZ6yZTDJHt9pMxhkr3tUq6rBm8cm2Svl2w5mj/JbuO4Tkyy10vWddXUHN1MstdDlhxLM8neXllyZJGlHllyZJGlHllyZJGlHllyUD+aEkgryx2nSfZ6SZej4ZPsNo7rxSR7vWRdV03OYZK9PjLmaPIku43jejHJXi+Z11UTc/Rmkr39suToSxOfR2WpR5YcWWSpR5YcWWSpR5YcWWSpR5Yc1FPzHuHCILrjNMleLylzNHiSvWDjuD5MstdL7nXV3Bwm2esh27pq+iR7wcZxfWTJ0c0kez1kybE0k+ztlSVHFlnqkSVHFlnqkSVHFlnqkSVHFlnqkSUH9aUpgXSy3HGaZK+XdOuq4ZPsNo7rJVMOk+z1kTGHSfb2y7iumj7JXrBxXA9ZcvRmkr39suToSxOfR2WpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5Yc1FvznkHBILjjNMleLynXVYMn2W0c10u2HCbZ6yHbujLJXg9Z11VTc/Rm47j9suRYmkn29sqSI4ss9ciSI4ss9ciSI4ss9ciSI4ss9ciSI4ss9ciSoxiood40JZBGljtOk+z1knVdNT1H8zeOc9UjUw6T7O2XcV2ZZG+/zOuqiTmWZuO4vbLk6EsTn0dlqUeWHFlkqUeWHFlkqUeWHFlkqUeWHFlkqUeWHFlkqUeeHLPKgRrqrXnP0CH1HadJ9jrJva6anaPJG8cm2evFJHu9ZF1XTc3Rm0n29suSoy82jtsnS44sstQjS44sstQjS44sstQjS44sstQjS44sstQjS44sk+xZ6pEpRzGoVQzUUG/Ne/UHEt9xZsphkr0esuZo6saxSfZ6McleL5nXVRNzLM0ke3tlyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnrkyZFjkj1PPZLleOKJcqCGetOUQKOlu+NMlMMke/tlXFdN3zg2yV4fWXL0ZpK9/bLk6ItJ9vbJkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIksMke71kypFhkj1TPdLl2GCDcqCGemveq4vwVzaO68Uke71kXVdNzdHNJHs9ZMmxNJPs7ZUlRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pEnh0n2OkmXo+GT7OnqkSxHMajVxIGawUaFaCQbx/Vikr1eMq+rJubozSR7+2XJ0ZcmPvDOUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sOUyy10umHCbZ6yNljgZPshdnqk5Xj3Q5mjeoNRg179VrsHFcK1lydDPJXg9ZcizNJHt7ZcmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMlh47he8uQwyV4n6XI0fJLdxnG9ZJpkX/T88+nqIQftMKwt1wot2Dhez8Zx22XJ0ZtJ9vbLkqMvTXzgnaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXLYOK6TTDlMstdHyhwbbBALOmZFU9k4rneOsWuvGU1sdHnhfVe6eshBOzRvdwRsHNdClhxLM8neXllyZJGlHllyZJGlHllyZJGlHllyZJGlHllyZJGlHllymGSvl0w5bBzXR7ocJtlrId26avgku43jesmUo2h0KXR0dDQ6R5Z6ZMgx2DlSAo1k47i9suToSxMfeGepR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR54cJtnrJF2Ohm8cp6tHphwm2dsu5bpq8CS7jeN6yZajaHQpDB0xoqE5ZsV5n5mWph5Nz4EjJdBQNo7bJ0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0sOk+z1kimHSfb6SJljgw3KgZomMsleLybZ6yXrump6juZvHOeqR6YcRaNL4a/vGvc8qni8m6keTc7BC5r3CAYaKMsdZ5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR54cJtnrJF0Ok+y1kDVHUzeOCybZ656jmUeONcleHxlzNHnjuHi8m60emXIUjS5NVTyPKh7vZqpHU3PwN818dAwNkuWOM0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0sOk+z1kimHSfb6SJnDJHvbpVxXDd44NsleL9lymGSvh6w5mrpxbJK9/jma2OjSrXgeVTzezVSPJuZgSZoSoEJZ7jiz5MgiSz2y5MgiSz2y5MgiSz2y5LBxXC95cphkr5N0ORo+yW7juF5MstdL1nXV5Bwm2esjYw6T7O2XcV01fePYJHt9ZMnRW/E8qni828QcGevBC5r57AsaIMsdZ5YcWWSpR5YcWWSpR5YcWWSpR54cNo7rJFMOk+z1kTJHgyfZCzaO68Mke73kXlfNzdH8SXYbx3Vikr1esq6rpuboZpK9HrLkWFrxPKqJj3ez1oMXaEqACmS548ySI4ss9ciSI4ss9ciSwyR7vWTKYeO4PtLlMMleC+nWVcMn2W0c10umHCbZ6yNjjiZPsts4rheT7PWSeV01MUdvJtnbL0uOvjTxeVTmevCC5q1KqLksd5xZcmSRpR5ZcmSRpR55cphkr5N0ORq+cZyuHplymGRvu5TrqsGT7DaO6yVbDpPs9ZBtXTV9kr1g47g+suToZpK9HrLkWJpJ9vbKkiML9RgcNCVAC2W548ySI4ss9ciSwyR7vWTKYZK9PlLmaPDGsUn2ejHJXi9Z11XTczR/4zhXPTLlMMnefhnXVdMn2Qs2jushS47eTLK3X5YcfWni86gs9ciSIwv1GDyad68HNZXljjNLjiyy1CNPDpPsdZIuh0n2Wsiao6kbxwWT7PVhkr1ecq+rZudo8saxSfZ6McleL1nXVVNz9GbjuP2y5FiaSfb2ypIjiyz1yJIjC/UYXJr5yiTUTJY7ziw5TLLXS6YcJtnrI2UOk+xtl3JdNXjj2CR7vWTLYZK9HrLmaOrGsUn2ejHJXi+Z11UTcyzNxnF7ZcnRlyY2dmepR5YcWWSpR5YcWajH4NO8v6pQM1nuOPPkMMleJ+lyNHyS3cZxvZhkr5es66rJOUyy10fGHCbZ2y/jumr6xrFJ9vrIkqM3k+ztlyVHX5r4PCpLPbLkyCJLPbLkyCJLPbLkyEI9BqfmPWKDGslyx5kph0n2+kiZo8GT7AUbx/Vhkr1ecq+r5uZo/iS7jeM6McleL1nXVVNzdDPJXg9ZcizNJHt7ZcmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRhXoMXpoSYJDfcabLYZK9FtKtq4ZPsts4rpdMOUyy10fGHE2eZLdxXC8m2esl87pqYo7eTLK3X5YcfWni86gs9ciSI4ss9ciSI4ss9ciSI4ss9ciSIwv1GNya94wAaiDLHWfKHCbZ2y7lumrwJLuN43rJlsMkez1kW1dNn2Qv2Diujyw5uplkr4csOZZmkr29suTIIks9suTIIks9suTIIks9suTIIks9suTIQj3QlAD9ZJK9Xkyy10vWddX0HM3fOM5Vj0w5TLK3X8Z11fRJ9oKN43rIkqM3k+ztlyVHX5r4PCpLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyEI9KDTvGSe0mUn2+jDJXi+511WzczR549gke72YZK+XrOuqqTl6s3HcfllyLM0ke3tlyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyVEM1GSQpR6sOk0JsIJMstdLthwm2esha46mbhybZK8Xk+z1knldNTHH0mwct1eWHH0xyd4+WXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXLMKgdqmi5LPWiN5r2iAW1gkr1eMuYwyd5+GddV0zeOTbLXR5YcvZlkb78sOfpi47h9suTIIks9suTIIks9suTIIks9suTIIks9suTIIks9suQwyV4vmXIUg1rFQE2TZakHrdO8V8tggOWZZLdxXCcm2esl67pqao5uJtnrIUuOpZlkb68sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo88OUyy10m6HE88UQ7UNFWWetBamhJgEEyy2ziuF5Ps9ZJ5XTUxR28m2dsvS46+mGRvnyw5sshSjyw5sshSjyw5sshSjyw5sshSjyw5sshSjyw5TLLXS6YcJtnrI2WODTYoB2qaqJjvzVAPWq95r8bCAMkyyV6wcVwfWXJ0M8leD1lyLM0ke3tlyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyWHjuF7y5DDJXifpcjR8kj3LxnG6dfXXHMWgVhMHagrFqdCbXg+q0cwVDRXLNMlesHFcD1ly9GaSvf2y5OhLEx94Z6lHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHnhw2juskUw6T7PWRMkeDJ9mzbBynXFc9OZo3qPXXM6CXp0Jvcj2oTvNe7YeKZflD1puN4/bLkmNpJtnbK0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0sOk+z1kimHjeP6SJfDJHstpFtXDZ9kz7JxnHVdNTlH0ehSKE6F3tQcVGtYxd8fGiXLH4Cl2Thuryw5+tLEB95Z6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pEnh0n2OkmXo+Ebx+nqkSnHBhvEgo5Z0VQm2eudY+zaa0bTZNk4zryumpyjaHQpFKdCb2IOqte83aR+WrBgQZxwwgkxYcKEGD16dOy6665x5ZVXtvtmUUNZ/gD0xcZx+2TJkUWWemTJkUWWemTJkUWWemTJkUWWemTJkUWWemTJYZK9XjLlMMleHylzNPgQ6CbZ68Uke71kXVdNz9H0jeNs9ciUo2h0KTT5VOhUq3l/kfvpfe97X5xxxhnxnve8J/7lX/4lhg4dGgceeGDceOON7b5p1EiWPwBZZKlHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHnhwm2eskXQ6T7LWQNUdTN44LJtnrI8s52U2y10vGHE3eOC4e72arR6YcRaMLvJhmPtpbQbfddlv893//d0yfPj2+/OUvxzHHHBPXXHNNbLLJJvHpT3+63TePmsjyByCLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIksMke71kymGSvT5S5jDJ3nYp11WDN45NstdLthwm2esha46mbhwXz6OKx7vZ6pEpRxMbXRhYqZsSLrjggvLICEUzQrdRo0bFBz/4wbj55pvjoYceauvto/2y/AHIIks9suTIIks9suTIIks9suTIIks9suTIIks98uQwyV4n6XI0fJLdxnG9mGSvl6zrqsk5TLLXR8YcJtnbL+O6avrGcfE8qni8m60ecjCYNPPZxAq64447Yquttoo1lurk3mWXXcr3M2bMaNMtow7ccdZLlnpkyZFFlnpkyZFFlnpkyZFFlnpkyWGSvV4y5TDJXh8pczR4kr1g47g+TLLXS+511dwczZ9kt3FcJybZ6yXrumpqjm7F86ji8W5Tc2SpR5YctEdHV/cjqIS23Xbb2HDDDePqq69e4uO/+93vYtKkSfHtb387PvzhD/frexZf15e77747hg8fHltsscUq3WZWzP/98b5Y52UTYmWb+hYtWhTPPPFkLOrsjKHDhsWaG6xXHlXjxTx23/3lE46iU3XcFpvGQCl+QWc9PDO23HyLtv28VkZ/fl4rU4+qfl6r8rNalRxNXV/tWFsr+vNq5bpq58+rFTmsr9b9rKpYV+34ebUqR7vWVs/P66GZseUWzV9fVa6rgVxfrc7RrvW1qHNRzHrk0djq5S9f6e9Rh/U1EOtqIB6rVpVjoNdX7xyxuGul11e7H3sVY1Ujx4yufF1Vfd9V9e/HQK2vZXKsv148/djjjXrsVXj0vvt7do9Hjh1T+bqqan0NxP3uQKyt5eVo2mP7IscTf3qw598bbDZxQNZVt1b9vBYP0N/zqtfXS/1+NGV99c7RueBvR0po0vPswv/dd190DB0aixYNzN/zqtbXitzvNmFt9ZXjz/c/1MjXce65996IIR0Dtq6qWF/9+Xte5/X1Yjma+jphsb7W2Wh8DB02cH/PW/WzWpnHiXVcXy+Vo+2vE67i30de2n333VfuhT/77LOxMlI3JRQNAq94xSvi0ksvXeLjf/zjH8vPffWrX42PfvSjLWlK+MMf/hCjR4+OiRMnrtJtpt6/bAWNJyvGz6t//Lz6x8+rf/y8VpyfVf/4efWPn1f/+Hn1j59X//h59Y+fV//4efWPn9eK87PqHz+v/vHz6h8/r/7x8+ofP6/+8fPqHz+vFedn1T9+Xvk9+OCDMXbs2HjsscdW6uuHRWJFk8CCBQuW+fhzzz3X8/n+uuuuu1py22ie7oYUa2DF+Hn1j59X//h59Y+f14rzs+ofP6/+8fPqHz+v/vHz6h8/r/7x8+ofP6/+8fNacX5W/ePn1T9+Xv3j59U/fl794+fVP35e/ePnteL8rPrHz4uXMiQSGz9+fDz66KPLfLz7YxMmTGjDrQIAAAAAAACAwSF1U8L2228f99xzT8yePXuJj9966609nwcAAAAAAAAAqpG6KeGQQw6JRYsWxXe+852ejxWnczjrrLNi1113jY033rittw8AAAAAAAAAMhsWiRWNB4ceemiceOKJ8cQTT8SWW24ZZ599dtx///3xH//xH+2+eQAAAAAAAACQWuqmhML3vve9OPnkk+Occ86Jp556Krbbbrv4yU9+EnvttVe7bxoAAAAAAAAApNbR1dXV1e4bAQAAAAAAAADkM6TdNwAAAAAAAAAAyElTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAQGNdd9110dHRUb614+sBAACAF6cpAQAAAHhRzzzzTAwbNqzcuD/99NOXe7m77767Z4N/0003fdHvOXny5PJyr33tayu4xQAAAEBdaEoAAAAAXtSaa64ZO+ywQ8+RBZbn2muv7fn/Bx54IO6///4+L9fZ2Rk33nhj+f/77rtvy28vAAAAUB+aEgAAAICX9LrXva58f8MNN8SiRYv6vEx3w8K4ceOW+PfSfvnLX8bcuXOX+L4AAABATpoSAAAAgJfU3Twwe/bs+PWvf93nZa6//vry/ac+9alljpzQW/fHR4wYEbvvvntFtxgAAACoA00JAAAAwEvac889Y9iwYcs9AsLvf//7ePzxx+MVr3hFvOtd71qiSWFp3V+/6667xujRo2PevHlx3nnnxZFHHhnbb799rL/++jFy5MiYMGFCvPWtb43LLrtslW773XffHe95z3vKIziMGjUqNt988zjuuOPK27sinn322fjCF74Qr33ta2OdddYpb9vGG29c5rz55ptX6bYBAABAdpoSAAAAgJe02mqrxU477bTcpoTuj+29995lM8GWW24ZDzzwQPzpT39a4nILFy6MX/ziF0scfeH888+Pd7/73XHOOefEb37zm/IyRQPEo48+Gj/60Y/iwAMPjE9+8pMrdbt/9rOflY0O3//+98smhOHDh5ff9xvf+EbssMMOy9y+pc2YMSO22WabOPHEE+OWW24pjxRRNCU8/PDD8YMf/KA80sP06dNX6rYBAADAYKApAQAAAFgh3U0EN9xwQyxatKjPpoR99tmnpzmhr1M43HbbbTF37twlvt/aa69dNh3ceOONMWfOnHj66afLy8ycOTNOPfXUspHgK1/5SlxyySX9ur1F48Bhhx0WCxYsiO222y5uvfXW8qgHxfcujr4wdOjQ+PjHP77cry+aFw444IDy+7z97W+P22+/PebPn182JhQNDieffHL5PU466aS4+OKL+3XbAAAAYLDQlAAAAACskO4mgmJj/1e/+tUSn+s+VUN3M0L3+6WPqtD97+I0CsXpEApvectb4stf/nJ51IExY8b0XHb8+PHxmc98JqZNm1b++8wzz+zX7S2+rmggWHfddePKK6+MXXbZpfz4kCFDYvLkyWVjQneDRF/++Z//OZ544onyKA4XXnhh7LjjjmWDRGGDDTaI0047Lb70pS+V/z7llFP6ddsAAABgsNCUAAAAAKyQomlgxIgRyxwB4Xe/+1155ICXv/zl5akbXqwpofvrioaE4jQIK+JNb3pT+f7mm29e5ggNy9PV1VWeXqHwkY98pGwiWNq2224bhxxySJ9f/9xzz5WnfCiccMIJy72eI488snz/v//7v+XPAAAAAFiSpgQAAABghRRHMdh5552XaTbo/v/uRoTCxIkTY9NNN42HHnoo7rvvvvJjzz//fNlY0PuoC92KDf3PfvazZbNCcWSDYcOGRUdHR/m2zTbblJeZN29ePPXUUyt0W//0pz/FrFmzyv/fd999l3u55X2uOBJE0ZhQ2H///WPcuHF9vk2aNKnnax544IEVum0AAAAwmAxr9w0AAAAAmqNoJrjpppvixhtvjM7OzrJ5oLspYZ999lniskWTwv33319+fosttojbbrutbCxYuhmgaFQ48MAD4+mnn+752GqrrVY2QRRNCcXREZ588sny48XpFtZbb72XvJ3FaRe6bbTRRsu93Mte9rI+Pz5z5sye/1/RIyB0ZwMAAAD+xpESAAAAgBXWfYSDOXPmxO23317+//XXX7/MkRJ6/7v7lA3d78eOHRu77LJL+f9FY8Phhx9eNiRsv/32cemll8bs2bPj2WefLZsBHnvssbjllluWOC3DQOh9moj58+eX1/tSb0s3ZQAAAACOlAAAAAD0w2677RYjR46MBQsWlEdAWGONNcqjEhRHQlj6qAPdTQndR1Lofr/77rvH8OHDe46SUJz2YOjQofGTn/ykz6MaFI0J/bXBBhv0/P8jjzwSr3jFK/q8XPG5vhSnZuhW3L7lfT0AAADw4hwpAQAAAFhho0aNite85jU9Rz7objRY+igJhc0337xsVCg2/n/729+WDQi9j7ZQeOihh8r366+//nJPs3DVVVf1+3Zuttlmsc466/TczuW55ppr+vz4zjvvHCNGjCj//8c//nG/rx8AAAB4gaYEAAAAoF+6mwpuuummnoaB5Z26oLtZ4Ytf/GJ5GoTeX19Yc801y/fFqRqKt6U9/PDDceaZZ/b7NnZ0dMQ73/nO8v+//e1vx5NPPrnMZX73u9/FBRdc0OfXF6eYePe7391z2x988MEXvb5Zs2b1+zYCAADAYKApAQAAAOiX7qaCuXPnxiWXXLLcIyX0/vh5551Xvl999dVjxx137Pn8HnvsUTYAdHV1lU0E99xzT/nxRYsWxeWXX142OxQNBivjxBNPLK+vaEh4wxveELfffnv58eK6rrjiinjjG98YY8aMWe7XT5s2LSZMmFB+/Wtf+9o455xz4tlnn+35/J///Oe48MIL421ve1scfvjhK3UbAQAAIDtNCQAAAEC/FKdvGD16dE/zQHGqhIkTJ75oU0JxucKee+4Zw4YNW+JICaeffnr5/z//+c/jFa94RdlIsNpqq8XkyZPjmWeeibPOOmulbmdxm4pmiJEjR8aMGTPKUzKsscYaZRPEAQccEAsXLowzzjhjuV8/fvz48kgQW221VcycOTOOPPLIWGuttWLdddctb98GG2wQhxxySFx88cWxePHilbqNAAAAkJ2mBAAAAKBfRowYEbvttlvPv5d3lIRCsaE/bty4nn/3PnVDt4985CPx05/+tDwqQrHZ39nZGRtttFEcd9xx8b//+7/xqle9aqVv65ve9Kb49a9/He9617vKJoLnn38+Ntxwwzj22GPjjjvuKBsqXswrX/nK+M1vfhP/9m//Fvvvv3+st956MXv27PJoC1tuuWUceuih8Z3vfCfOP//8lb6NAAAAkFlHV/EsGgAAAAAAAACgxRwpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASw6r5toPPuHHjYu7cuTFx4sR23xQAAAAAAAAAaIkHH3wwxo4dG4899thKfb0jJbRI0ZCwcOHCdt8MAAAAAAAAAGiZYh+82A9fWY6U0CLdR0i466672n1TAAAAAAAAAKAlJk2atEpf70gJAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVKKxTQn33ntvvOtd74qXvexlMWbMmNh6663jtNNOi3nz5i1xuV/84hexxx57lJcZN25cHH/88TFnzpy23W4AAAAAAAAAGCyGRQM99NBDscsuu8Saa64Zxx57bKyzzjpx8803x2c/+9n41a9+FT/60Y/Ky82YMSNe//rXxytf+co444wz4uGHH47TTz+9bGi47LLL2h0DAAAAAAAAAFJrZFPCOeecE08//XTceOONMWnSpPJjxxxzTCxevDi+973vxVNPPRVrr712nHTSSeX76667LtZYY43ycptuuml86EMfiiuuuCL233//NicBAAAAAAAAgLwaefqG2bNnl+833HDDJT4+fvz4GDJkSIwYMaK8zJVXXhlHHHFET0NC4cgjj4zVVlstzj///AG/3QAAAAAAAAAwmDTySAn77LNPfPGLX4wPfvCDceqpp8a6664bv/jFL+Jb3/pWHH/88TF27Ni46aaborOzM3baaaclvrZoWNh+++3jjjvuWKnr7j4yw9Luu+++2GKLLVbqewIAAAAAAABARo08UsLkyZPjc5/7XHkkhB122CEmTpwY73rXu+K4446Lr371q+VlHn300Z6jJyyt+NjMmTMH/HYDAAAAAAAAwGDSyCMlFDbddNPYa6+94h3veEd5pISf/vSnMW3atBg3blwce+yxMX/+/PJyI0eOXOZrR40a1fP5/rrrrrv6dQQFAAAAAAAAABisGtmU8N///d9xzDHHxD333BMve9nLyo+9/e1vj8WLF8cJJ5wQhx9+eIwePbr8+IIFC5b5+ueee67n8wAAAAAAAABANRp5+oZ//dd/LU/b0N2Q0O3Nb35zzJs3L+64446e0zZ0n8aht+JjEyZMGLDbCwAAAAAAAACDUSObEh5//PFYtGjRMh9fuHBh+b6zszO23XbbGDZsWNx+++1LXOb555+PGTNmxPbbbz9gtxcAAAAAAAAABqNGNiVstdVW5dEQitM39HbeeefFkCFDYrvttos111wz9ttvvzj33HPj2Wef7bnMOeecE3PmzIlDDz20DbccAAAAAAAAAAaPYdFAn/rUp+Kyyy6LPffcM4499thYd9114yc/+Un5saOPPrrn1AxTp06N3XbbLfbee+845phj4uGHH46vfOUrsf/++8fkyZPbHQMAAAAAAAAAUuvo6urqiga67bbb4pRTTimPmPCXv/wlNttsszjqqKPi05/+dHnahm433nhjnHDCCfHrX/86Vl999XjnO98Z06dPL/+/lSZNmlS+v+uuu1r6fQEAAAAAAACgXVZ1L7yxTQl1oykBAAAAAAAAgGwmreJe+JAW3x4AAAAAAAAAgJKmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEsOq+KaPPPJI3HTTTeX7wkYbbRS77757+R4AAAAAAAAAGBxa2pTw5z//Of7hH/4hLrrooli8ePESn+vo6Ih3vOMd8Y1vfCPWX3/9Vl4tAAAAAAAAAJC5KeGZZ56JvfbaK/7whz/E6NGjY//9949NN920bEa4//774/LLL48f/vCH8Zvf/CZuueWWWHPNNVt11QAAAAAAAABA5qaEL3zhC2VDwqGHHtrn0RCefPLJOPbYY+P888+PL37xizFt2rRWXTUAAAAAAAAAUEMdXV1dXa34RltvvXXMnz8//u///i+GDx/e52UWLlwYW265ZYwaNapsYMhk0qRJ5fu77rqr3TcFAAAAAAAAAGqxFz6kNTcj4oEHHojdd999uQ0JheJzxWUefPDBVl0tAAAAAAAAAFBTLWtKGD16dHmKhpdSXKa4LAAAAAAAAACQW8uaEnbccce4/vrr4/bbb1/uZX71q1/FddddFzvttFOrrhYAAAAAAAAAyN6U8LGPfSwWLlwYr3/96+Pkk0+O3//+9zF//vzy7e67747Pfvazsd9++8WiRYvKywIAAAAAAAAAuXV0dXV1teqbTZ8+vWxIWN637OjoiM997nNx4oknRjaTJk0q3991113tvikAAAAAAAAAUIu98JYdKaFQNBvccsstccQRR8Smm24aI0aMKN+K/3/ve98bN998c8qGBAAAAAAAAABgWcOixXbaaac4++yzW/1tAQAAAAAAAICGaemREgAAAAAAAAAAumlKAAAAAAAAAADqdfqGzTffPDo6OuKqq66KzTbbrPz3iiq+7r777lvZqwYAAAAAAAAAMjcl3H///eX7hQsXLvFvAAAAAAAAAIBVakpYvHjxi/4bAAAAAAAAABjchrT7BgAAAAAAAAAAObWsKeG0006LSy655CUv9+Mf/7i8LAAAAAAAAACQW8uaEk455ZS4+OKLX/JyRePCqaee2qqrBQAAAAAAAABqasBP37Bo0aIYMsRZIwAAAAAAAAAguwHvDrjrrrti7bXXbsn3+vWvfx1vfvObY5111okxY8bEtttuG2eeeeYSl/nFL34Re+yxR/n5cePGxfHHHx9z5sxpyfUDAAAAAAAAAMs3LFbBBz7wgSX+feONNy7zsW6dnZ3xhz/8IW6//fZ461vfGqvqiiuuiIMPPjh22GGHOPnkk2O11VaL++67Lx5++OGey8yYMSNe//rXxytf+co444wzys+dfvrpce+998Zll122yrcBAAAAAAAAAFi+jq6urq5YSb1Pw9DR0REr8q222267+J//+Z/YfPPNV/ZqY/bs2bHVVlvFbrvtFhdccMFyTwdx4IEHlo0Jd999d6yxxhrlx/793/89PvShD8Xll18e+++/f7TKpEmTeo4EAQAAAAAAAAAZrOpe+CodKeHaa68t3xfNCPvuu29Mnjw5TjjhhD4vO2LEiJgwYUJssskmsaq+//3vx+OPPx5Tp04tGxLmzp0bo0ePXqI5oWhcuPLKK+NjH/tYT0NC4cgjjyw/dv7557e0KQEAAAAAAAAAaGFTwt57793z/0cddVTsueeeS3ysKldddVXZaPDII4+Up4K45557YuzYsfHe9743vvrVr8aoUaPizjvvLE8ZsdNOOy3THLH99tvHHXfcsUpdIEsrTh2xxRZbrNT3BAAAAAAAAICMVqkpobezzjorBsq9995bNhy85S1viQ9+8IMxffr0uO666+LrX/96PP3003HeeefFo48+Wl52/Pjxy3x98bEbbrhhwG4vAAAAAAAAAAxGLWtKGEhz5syJefPmxUc+8pE488wzy4+9/e1vj+effz7+7d/+LU477bSYP39++fGRI0cu8/XFkRS6P99fyztPxvKOoAAAAAAAAAAAg9WQVn6zolHg85//fOy8886x1lprxdChQ/t8GzZs1XohRo8eXb4//PDDl/j4u9/97vL9zTff3HOZBQsWLPP1zz33XM/nAQAAAAAAAICaHynhmWeeiT333LM8kkDReDBixIjo6uoqT5Xw2GOPlf9f2GSTTVb5uiZMmFBez4YbbrjExzfYYIPy/VNPPRVbbLFF+f/dp3HorfhY8T0AAAAAAAAAgAYcKeELX/hC/Pa3v41jjjkmZs+eHYccckh0dHTEI488EnPnzo3vfve7MW7cuNh1113jj3/84ypd14477li+L753bzNnzizfr7/++rHtttuWR2S4/fbbl7hMcYqHGTNmxPbbb79KtwEAAAAAAAAAGKCmhIsvvrg8+sCZZ54Zo0aNKhsSuhX/PvLII+Oqq66Kiy66KL7yla+s0nW9853vLN//x3/8xxIf//d///eyEWGfffaJNddcM/bbb78499xz49lnn+25zDnnnBNz5syJQw89dJVuAwAAAAAAAAAwQKdveOCBB8omgOHDh5f/HjLkhX6HhQsX9nxsm222ib333rs8asInP/nJlb6uHXbYIT7wgQ/Ef/7nf0ZnZ2f5Pa+77rr44Q9/GCeeeGLPqRmmTp0au+22W/n54ggODz/8cNkQsf/++8fkyZNbkhsAAAAAAAAAqLgpoTgaQvHWbY011ijfP/bYY7Hxxhv3fHydddaJm266aZWv79vf/nZMnDgxzjrrrPLoC5tsskl89atfjY9+9KM9l3n1q19dHp3hhBNOiI997GOx+uqrxwc/+MGYPn36Kl8/AAAAAAAAADBATQlF48FDDz3U8++tt966fH/99dfHEUccUf5/cVSDX/7yl7Huuuuu8vUVR1/47Gc/W769mD322KMlTRAAAAAAAAAAQJuaEvbcc8/yqAXPPvtseUSCgw8+OI4//vjybc6cObHRRhvFf/zHf8T9998f7373u1t1tQAAAAAASyhO69p9WtkpU6a0++YAAMCg1tHV1dXVim904403xqc+9ak45ZRT4oADDig/dsYZZ8QnP/nJ6OjoKP9dXNW4cePi9ttvjwkTJkQmkyZNKt/fdddd7b4pAAAAADCojR07NubNmxdjxoyJuXPntvvmAADAoN4Lb1lTwvLceuutcdFFF8VTTz0VW221Vbz//e+PddZZJ7LRlAAAAAAA9aApAQAA6rMX3rLTN8yePbs8IkJx6obedt111/INAAAAAAAAABhchrTqG6211lqx//77t+rbAQAAAAAAAAAN17KmhDXXXDM233zzVn07AAAAAAAAAKDhWtaUsMMOO8R9993Xqm8HAAAAAAAAADRcy5oSTjjhhPjlL38ZF1xwQau+JQAAAAAAAADQYMNa9Y1Gjx4dRx99dBx22GFx0EEHxcEHHxwTJ06MUaNG9Xn5vfbaq1VXDQAAAAAAAABkbkrYZ599oqOjI7q6uuLHP/5x/OQnP3nRyy9atKhVVw0AAAAAAAAAZG5KOPLII8umBAAAAAAAAACAljYlfPe73/UTBQAAAAAAAAB6DPnb/wIAAAAAAAAAtI6mBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAAOrdlDBkyJAYMWJEnHHGGS96ufe///0xbNiwVl0tAAAAAAAAADAYjpTQ2dkZn/rUp8rGg4ULFy73cl1dXa28WgAAAAAAAAAge1PC5MmTY+edd46zzz479tlnn3jiiSda+e0BAAAAAAAAgMHalDBu3Li4/vrr4z3veU/cfPPNscsuu8SMGTNaeRUAAAAAAAAAwGBsSiiMHDkyzjnnnJg+fXo8/PDDsccee8QFF1zQ6qsBAAAAAAAAAAZbU0K3E044IS6++OIYMmRIHHbYYXHKKadUdVUAAAAAAAAAQA0Nq/KbH3TQQXHLLbfEwQcfHJ/73OfizjvvLJsUAAAAAAAAAID8Km1KKGyzzTbxy1/+Mg455JC46KKLoqOjo+qrBAAAAAAAAABqoGWHLZg4cWKst956fX5unXXWiSuvvDI+8pGPRFdXV6uuEgAAAAAAAAAYDEdKuP/++1/080OHDo1//dd/jZNOOikWLVrUqqsFAAAAAAAAALIfKeHBBx+MRx555CUvN2bMGKdwAAAAAAAAAIBBoGVNCZtuuml5Cofjjz8+Fi9evNzLfeITn4jNN9+8VVcLAAAAAAAAAGRvSih0dXXFN7/5zTjggAPi6aefftHLAQAAAAAAAAC5DWvlNzvkkEOis7MzLr744th1113jkksuiVe84hWtvAoAAAAAkpg6dWosXLgwhg8fHlOmTGn3zQEAAKDuR0pYbbXV4n/+53/ipJNOinvvvTde85rXxGWXXdbKqwAAAAAgiWnTpsWpp55avgcAACCnljYldPv85z8f3//+9+P555+PN7/5zfGVr3yliqsBAAAAAAAAAAZbU0LhXe96V/z85z+PDTfcMD796U/H+973vrJJAQAAAAAAAAAYHIZV+c133HHH+NWvfhVvectb4pxzzol77rkn1lprrSqvEgAAAAAAAAAYDE0JheJICcURE44++ug499xzo6Ojo+qrBAAAAAAAAAAynb5h7733jq233rrPz40YMSK+973vxRe+8IVWXR0AAAAAAAAAUHMdXV1dXe2+ERlMmjSpfH/XXXe1+6YAAACDzNSpU2PhwoUxfPjwmDJlSrtvDsAKGzt2bMybNy/GjBkTc+fObffNIRFrC+rDY1UAaL5V3QvXlNAimhIAAIB2sfECNJX7L6pibUF9+H0EgOZb1b3wYa26IT//+c/7dfm99tqrVVcNAAAAAAAAANRQy5oS9tlnn+jo6Fjhyy9atKhVVw0AAAAAwEpyeH0AABrRlHDkkUf22ZSwePHieOihh+LXv/51zJ49O97ylrfEWmut1aqrBQAAAABgFUybNq3n8PqaEgAAqG1Twne/+90X/fxTTz0VH/rQh+K3v/1t3Hzzza26WgAAAAAAAACgpoYM1BWtvfba8b3vfS+eeeaZOPHEEwfqagEAAAAAAACA7E0JheLwX7vssktccsklA3m1AAAAAAAAAECTT9+woubMmVOeygEAAACov6lTp8bChQtj+PDhzjMOAAAA1Lsp4cc//nH8/Oc/j2222WYgrxYAAABYSdOmTYt58+aVRz/UlAAAAAC0rSnhAx/4wIseHeGee+6JO++8M7q6uuITn/hEq64WAAAAAAAAAMjelPDd7373JS8zceLE+OxnPxtHHnlkq64WAAAAAAAAAMjelHDttdcu93MjRoyI8ePHx6abbtqqqwMAAAAAAAAABktTwt57792qbwUAAAAAAAAAJDCk3TcAAAAAAAAAAMipZUdK6Pboo4/GWWedFTfccEPMnDmz/NiECRNizz33jPe9733l/wMAAAAAAAAA+bW0KeHss8+OY489NubNmxddXV09H7/zzjvjiiuuiGnTpsXXv/71eP/739/KqwUAAAAAAAAAMjclXHbZZfGBD3wghgwZEu985zvj8MMPj0033bT83AMPPBDnnXde/PCHP4yjjz46xo0bF2984xtbddUAAAAAAAAAQOamhKlTp0ZHR0f86Ec/igMPPHCJz2233XZx8MEHx3vf+9446KCDyiMmaEoAAAAAAAAAgNyGtOobzZgxI/bcc89lGhJ6KxoR9tprr7jjjjtadbUAAAAAAAAAQPYjJYwaNSomTJjwkpcbP358eVkAAAAAAGia4qjBCxcujOHDh8eUKVPafXMAAAZPU8Lee+8dt956ayxevDiGDOn7AAyLFi0qL1McLQEAAAAAAJqmOD3xvHnzYsyYMZoSAAAG8vQN06dPj7/85S9x9NFHxzPPPLPM52fPnh3HHHNMPPXUU+VlAQAAAAAAAIDcVvpICaeddtoyHzv44IPju9/9blx44YWx//77xyabbFJ+/IEHHogrrrgi5syZE+95z3vi/PPPj5NPPnnVbjkAAAAAAAAAkLMp4ZRTTomOjo7o6upa5nPPPvts2ZjQl3PPPbf8Ok0JAAAAAAAAAJDbSjclnHXWWa29JQAAAAAAAABAKivdlHDUUUe19pYAAAAAAAAAAKkMafcNAAAAAAAAAABy0pQAAAAAAAAAAFRCUwIAAAAAAAAAUIlh1XxbAAAAAKBVpk6dGgsXLozhw4fHlClT2n1zAAAAVpimBAAAAACouWnTpsW8efNizJgxmhIAAIBGcfoGAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKjGsVd/o5z//+QpdbsSIEbHuuuvGlltuGR0dHa26egAAAAAAAAAga1PCPvvs068mg9VWWy0OP/zwmDp1atmkAAAAAAAAAADk0rKmhCOPPDKefvrpuOSSS2LIkCGx/fbbx8SJE8vPPfTQQ3HHHXdEV1dXHHTQQTF//vyYMWNGfOc734lrrrkmbr311lh77bVbdVMAAAAAAAAAgBoY0qpv9OUvfzl+85vfxAEHHBC///3v4/bbb4//+Z//Kd9++ctfxt13311+7s4774xzzz03/vSnP8W73vWuuO+++8qvBQAAAAAAAAByaVlTwoknnhgLFiyIiy66KF7+8pcv8/ktt9wyLrzwwvIyxWXHjh0b3/72t8sjJBRHVwAAAAAAAAAAcmlZU8JPf/rT2GuvvWLUqFHLvczo0aNjzz33jEsvvbT89xprrBE77LBDedQEAAAAAAAAACCXljUlPPPMM+XbS5k9e/YSl1tvvfVadRMAAAAAAAAAgBoZ1qpvVJyy4dprr43f//738cpXvrLPyxSfKy7zile8oudjjz76qMYEAAAAAAAAoBamTp0aCxcujOHDh8eUKVPafXOg8Vp2pIR/+Id/iAULFpSncJg+fXrce++98dxzz5Vvxf9/4QtfiL333juef/758rKF+fPnx69+9avYcccdW3UzAAAAAAAAAFbatGnT4tRTTy3fAzU6UsIxxxxTHgnhX/7lX+Kf//mfy7eldXV1xUc/+tH40Ic+VP77gQceiCOOOCLe8Y53tOpmAAAAAAAAAADZmhIKX/3qV+OQQw6Jb33rW/GLX/yiPDVDYfz48bH77rvHhz/84dhjjz16Lr/11luXlwUAAAAAAAAA8mlpU0KhaD4o3gAAyM259QAAAAAAGPCmBAAABofinHrz5s2LMWPGaEoAAAAAAGDgmhI6OzvjL3/5SyxYsGC5l5k4cWIVVw0AAAAAAAAAZGxKuOqqq+Lzn/983HLLLeWhfJeno6OjbFwAAAAAAAAAAPJqWVPCT37yk3jb294WixYtirXXXjs222yzWH311Vv17QEAAAAAAACAwdqUcOqpp8bixYvjq1/9ahx77LExdOjQVn1rAAAAAAAAYBVMnTq1PNL58OHDY8qUKe2+OcAg0rKmhLvuuite+9rXxj/+4z+26lsCAAAAAAAALTBt2rSYN29ejBkzRlMCMKCGtOobrbbaajFx4sRWfTsAAAAAAAAAoOFa1pSw3377xe23396qbwcAAAAAAAAANFzLmhK++MUvxuzZs+OEE06Izs7OVn1bAAAAAAAAAKChhrXqG5111lnxxje+MU4//fS48MILY5999omXvexlMWTIsn0PHR0dcfLJJ7fqqgEAAAAAAACAzE0Jp5xyStls0NXVFX/84x/Lt+XRlAAAAAAAAAAA+bX0SAkAAAAAAAAAAC1vSjjqqKNa9a0AAAAAAAAAgASGtPsGAAAAAAAAAAA5aUoAAAAAAAAAAOp1+oZ99903Ojo64uyzz46Xvexl5b9XVPF1V1999cpeNQAAAKy0qVOnxsKFC2P48OExZcqUdt8cAAAAgNRWuinhuuuuK5sL5s2b1/PvFVV8HQAAALTDtGnTyueyY8aM0ZQAAAAAq0jzP5U1JfzpT38q32+00UZL/BsAAAAAAACAwUHzP5U1JWyyySYv+m8AAACAwcaEEAAAALSoKQEAAKAqNvWApjIhBAAAAEvSlAAAANSOTT0AAAAAGORNCUOHDl3pK+3o6IjOzs6V/noAAAAAAAAAIHFTwsYbb1w2F/TW1dUVDz74YM+/11prrfL9008/3fOxiRMnLvN1AAAAAAAAAEA+Q1b2C++///7405/+1PN2zz33xN/93d/FhAkT4lvf+lbZiDBr1qzy7Zlnnolvf/vbsdFGG5WXuffee1ubAgAAAAAAAADI05SwtKlTp8bVV18dP//5z+PDH/5wrLHGGj2fW3311eOYY46J66+/Pq666qo47bTTWnW1PdddHH1h2223XeZzv/jFL2KPPfYoz0U7bty4OP7442POnDktvX4AAAAAAAAAoMKmhHPPPTf23Xff2HzzzZd7meJzr3/96+O//uu/WnW18fDDD8e0adNi7Nixy3xuxowZ5fXNmzcvzjjjjDj66KPjO9/5Thx66KEtu34AAAAAAAAAoG/DokUeeeSR2GGHHV7yciNHjoyZM2e26mrjk5/8ZLzmNa+JRYsWxZNPPrnE50466aRYe+2147rrrus5csOmm24aH/rQh+KKK66I/fffv2W3AwAAAAAAAACo6EgJ48ePj2uvvTaefvrp5V7mqaeeimuuuaY8jUIrFKeKuOCCC+JrX/vaMp+bPXt2XHnllXHEEUcscSqJI488MlZbbbU4//zzW3IbAAAAAAAAAICKmxIOP/zwmDVrVrzhDW8omwWWdsMNN8QBBxxQNi285z3vWeXrK46McNxxx5WnZHjVq161zOfvvPPO6OzsjJ122mmJj48YMSK23377uOOOO1bqeidNmtTn23333bfSWQAAAAAAAAAgo5advuHkk08uGw9uvPHGeN3rXhcbbLBBbLLJJuXnHnjggXjiiSeiq6srdt999/jnf/7nVb6+b3/72+X3veqqq/r8/KOPPtpzBIelFR8rbisAAAAAAAAA0ICmhFGjRsXVV18dZ5xxRvzrv/5rPPTQQ/H444/3fH7jjTeO/+//+//iE5/4RAwfPnyVrusvf/lLfOYznykbIdZff/0+LzN//vzy/ciRI/u8rd2f76+77rqrz48XR0sAAAAAAAAAACpoSigUzQYnnHBC+VY0JcycObPnyAQTJ05s2fUUR1pYZ511ytM3LM/o0aPL9wsWLFjmc88991zP5wEAAAAAAACABjQl9FYcGaF4a7V77703vvOd78TXvva1nqaH7kaDhQsXxv333x9rrLFGz2kbuk/j0FvxsQkTJrT8tgEAAAAAAAAAfzMkKvC///u/8f/+3/+L6dOnxyWXXNLz8eKoBbNnz16l7/3II4/E4sWL4/jjj4/NNtus5+3WW2+Ne+65p/z/0047LbbddtsYNmxY3H777Ut8/fPPPx8zZsyI7bfffpVuBwAAAAAAAAAwgEdK+MMf/hDvf//7ywaBbkcddVS8+c1vLv//+9//fhx99NHx05/+NCZPnrxS11E0G1x00UV9ntLh2WefjX/5l3+JLbbYItZcc83Yb7/94txzz42TTz45Vl999fJy55xzTsyZMycOPfTQlc7J4DR16tTyaBzFaUqmTJnS7psDAAAAAAAAMHiaEh566KHYa6+94s9//nPZhLDnnnvGpz71qSUu8853vjP+/u//Pi688MKVbkpYb7314q1vfesyHy9O51Do/bliE3m33XaLvffeO4455ph4+OGH4ytf+Ursv//+K339DF7Tpk2LefPmxZgxYzQlAAAAAAAAAAzk6RuKUyY8+eST8e///u9x8cUXxyc+8YllLjN27NjytAm9j6RQpVe/+tVx1VVXxejRo+NjH/tYfOc734kPfvCDccEFFwzI9QMAAAAAAADAYNayIyX87Gc/i+222y4+8IEPvOjlNt1007jiiiui1a677ro+P77HHnvETTfd1PLrA6B9nE6lf/y8AAAAAACAxjclPPHEE7H77ru/5OWKTZHiEPgAsLKcTqV//LwAAAAAAIDGn75h3XXXjQcffPAlL3fPPffE+PHjW3W1AAAAAAAAAED2IyUUR0m4+OKLY8aMGbH99tv3eZnrr78+fvvb38b73ve+Vl0tQAoOrw8AAAAAAEBGLTtSwic/+cno6uqKt7zlLXHZZZfFokWLlvj8NddcE+9973tj2LBh8dGPfrRVVwuQ5vD6p556avkeAAAAAAAAsmhZU8Kuu+4aZ555ZsycOTMOOuigWGuttaKjoyMuvPDCWHvtteMNb3hD+blvfOMbsd1227XqagEAAAAAAACA7E0Jhb//+7+PG264IQ4++OCyIaE4csKzzz4bCxYsiAMOOKA8fcMxxxzTyqsEAAAAAAAAAGpqWKu/4Wte85q4+OKLy4aEJ598MhYvXhzrrbdeDB06tNVXBQAAAAAAAAAMpqaEbsWREtZff/2qvj0AAAAAAAAAMNiaEjo7O+OnP/1p3HbbbeWREnbdddf4wAc+UH5u5syZ5ce22WabGDassn4IoAamTp0aCxcujOHDh8eUKVPafXMAAAAAAACANmhpZ8CNN94YRxxxRDz00EPl6RuKoyUUm5LdTQk333xzvPOd74wf/vCH8fa3v72VVw3UzLRp02LevHkxZswYTQkAAAAAAAAwSA1p1Tf63e9+F5MnT45HH300jjvuuDj//PPLxoTeDj744HKD8sILL2zV1QIAAAAAAAAA2Y+U8LnPfS6ee+65uPTSS2P//ffv8zIjRoyIV7/61XHHHXe06moBAAAAAAAAgOxHSrj22mtjl112WW5DQreNNtooZs6c2aqrBQAAAAAAAACyNyU8/fTTsfHGG7/k5ebOnRsLFy5s1dUCAAAAAAAAANmbEjbYYIP4v//7v5e83O9///sVal4AAAAAAAAAAJqtZU0J++67b8yYMaM8jcPyXHTRRWXjwhve8IZWXS0AAAAAAAAAkL0p4Z/+6Z9ixIgR8da3vjW+9a1vxWOPPdbzuaeeeir+8z//Mz74wQ/G2LFj4+Mf/3irrhYAABph6tSpccopp5TvAQAAAAAGi5Y1JWy99dZx3nnnxeLFi+PYY4+NjTbaKDo6OuLss8+O9dZbLz70oQ/FggUL4r/+679is802a9XVAgBAI0ybNi1OPfXU8j0AAAAAwGDRsqaEQnGUhN/+9rdx3HHHlU0Ko0aNKo+esPnmm8eHP/zh+M1vfhNvfvObW3mVAAAAAAAAAEBNDWv1N9xkk03ia1/7Wqu/LQAAAAAAAAAwWI6UsO+++8aXvvSlPj/34IMPxqxZs1bldgEAAAAAAAAAg7Up4brrrou77767z89tttlm8alPfWpVbhcAAAAAAAAAMFibEl5MV1dX+QYAAAAAAAAADF6VNCUAAAAAAAAAAGhKAAAAAAAAAAAqoSkBAAAAAAAAAKiEpgQAAAAAAAAAoH5NCWeffXYMHTp0mbeOjo7lfq54GzZsWOsSAAAAAAAAAAC1tErdAV1dXQP6dQAAAAAAAADAIGhKWLx4cWtvCQAAAAAAAKygqVOnxsKFC2P48OExZcqUdt8cAJbDeRQAAAAAAABonGnTpsW8efNizJgxmhIAamxIu28AAAAAAAAAAJCTpgQAAAAAAAAAoBKaEgAAAAAAAACASmhKAAAAAAAAAAAqoSkBAAAAAAAAAKiEpgQAAAAAAAAAoBLDqvm2AADNM3Xq1Fi4cGEMHz48pkyZ0u6bAwAAAAAAjacpAQDgr6ZNmxbz5s2LMWPGaEoAAAAAAIAWcPoGAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEoMq+bbAgAAAAAA0B9Tp06NhQsXxvDhw2PKlCntvjkA0BKaEgAAAAAAAGpg2rRpMW/evBgzZoymBADScPoGAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASw6r5tgAAAAAAEYsXLy7f2qWzs3PAr3PIkCHlGwAAoCkBAAAAAKhI0Yyw7wEHxszHHh/Q65w/f375/8X7rf9uxwFvEJgwbsO45vJLNSYAAICmBAAAAACgygaBoiFh8vQfxJCh1b8UOfepP8fVZ06Jrr/+e+iIkXHQ6RfFQFq8qDN+duJhZXZNCQAAoCkBAAAAAKhY0ZBQdVNC0ZBwzddPjrmznoiOjo7o6ipaEzoGpBkCAABYPq26AAAAAECjFQ0JV33txJjzl8ditXXHxdDhI9p9kwAAgL/SlAAAAAAApGlI2O+j08sjJAAAAPWgKQEAAAAASNOQMHbt9dt9swAAgF40JQAAAAAAjaMhAQAAmkFTAgAAAADQKBoSAACgOTQlAAAAAACNoSEBAACaRVMCAAAAANAIGhIAAKB5NCUAAAAAALWnIQEAAJpJUwIAAAAAUGsaEgAAoLk0JQAAAAAAtaUhAQAAmk1TAgAAAABQSxoSAACg+TQlAAAAAAC1oyEBAABy0JQAAAAAANSKhgQAAMhDUwIAAAAAUBsaEgAAIBdNCQAAAABALWRpSFi8eHG7bwIAANSGpgQAAAAAoO2yNCQUOebOfqbdNwMAAGpDUwIAAAAA0FaZGhKuPnOKIyUAAEAvw3r/AwAAAABgIGVqSHghx+MxdIhZMOqpaJhpZ9NMZ2fngF7fkCFDyjcAoL00JQAAAAAAbZGvIaHIsWEMedYmKPVTNCPse8CBMfOxxwf0eufPn1++nzd/fmy82ZYxdo01B6xRYMK4DeOayy/VmAAAbaYpAQAAoIVMnwHAYG5IGBf7Hve5uH76R9p9s2AZxWPUoiFh8vQfxJChwwbs9+P/3rtbRFdXdHR0xEFf/MGA/Z4vXtQZPzvxsDK3x6sA0F6aEgAAANowfVZcdu7sZ3peJF2VibH585/reb/NDjvHQBq3wfpx3ZU/80IvAP2StSGhyDF6jbXbfbPgRRUNCQPRlFD8flzz9ZOjq6ur/PfQ4SNi9fXGV369AED9aEoAAAAY4Omz4gXaq8+cEoueX1we4vn1x09dpY2Yb75t2+hcMD+GjhgZB37pwhgozz75WFx60rtNnwHQL5kbEoocxXQ2DHa9fz+KIyS80JjQ0e6bBQC0iaYEAACAAZw+654YmzvriXJSrNUbMQN5KN5rv/mZtp6qAoDmyd6QACz7+zHrwXujc8ELR/YCAAYnoywAAAADJMsGxt9yPO4ICQAM4r+Dzc4BA/X74QgJAIAjJQAAAAyALBsYS+bYMIY8qykBMiiOetLuI590dg7sIe+LpiqNVQOn+0hBuf4ONjcHVMHvBwCwPJoSAAAAKpblBdqlc+x73Ofi+ukfaffNGjRsGlOVYl3te8CBMfOxx8v/nzv7mfJ98bMfu8aaldZg/vznet5vs8POLfu+K5JjwrgN45rLL7XGBkBRh6vPnFKeuijT38GqcrT7/n6g7+sL7u+bL8vjXQCgGpoSAAAAKpTlBdq+coxeY+1236xBuWnc/e+B2jiuatN4RXLYNB4Yxc+/WFt7fvqbce03PxOLnl9cHgnl9cdPrfz+6ptv2zY6F8yPoSNGxoFfurBl91fFBviL5Vi8qDN+duJhPWuPahW/50U9Vl9vfKq/g1U1JPS+v6/i+/d1v1vlff2KcH/fbFke7wIA1dGUAAAAUJEsL9AuL0exqcfAbhpPnv6DmD/7qZfccK37pvGKbBzbNB5Yxc+5aEgoJtnbtXE8ZOiwlp0ioJ056Ht9Fb/nTa3HQP49731/34rfiRW9363qvn5FuL9vtiyPdwGAamlKAAAAqECWF2iz5MiiaEho54ZrqzbIbBzXj0l2qlRsNA/EkTcyravi/raVTQn9ud9tdTMEebnfBQBWlEeYAAAALdb9wn/TX6D1QnO9OCc7VTLJTpWKUwQ0sR5Z1lWWHNSLdQUA9IemBAAAgBaycUxVTLJTJZPsVKmJh+TPsq6y5KBerCsAoL80JQAAALSQjWOqYpKdKplkh3zrKksO6sW6AgBWhqYEAACAFrJxTFVMslMlk+yQa11lybGij72Kt3bp7Owc8Pvrdt1nD6Z1BQC0lqYEAACAFrJxTFVMssPfWFdUIcu6ypJjRRTNCPsecGDMfOzxAb3e+fOf63m/zQ47v+RtLI6kVbwvHicWf89XpalgwrgN45rLLx3wxoTBtK4AgNbTlAAAANBCNo6pikl2qM+6GmyT2e2ezh4s66oVsuRYUcXvYdGQMHn6D2LI0IF7qfubb9s2OhfMj6EjRsaBX7rwRetx9ZlTylN7FUfSWtXG1cWLOuNnJx7W0+AwUAbbugIAWk9TAgAAQAs1ccPGC81Uwboi67pqxWT2ykxO92cyuwrtms4eLOuqFbLkWBlFQ8JANiUsfd3Lq8c1Xz855s56IlZfb3xj6zGY1xUA0DqaEgAAAAYxLzRTBeuKzOtqVSezV3ZyekUns6vQrunswbSuVlWWHFlkqUeWHABA+2lKAAAAGKS80EwVrCsGy7pamcnsVk1Ot2siPJs6rqvBnCOLLPXIkqOdp9oBAP4mV2szAAAAg+qFZurFuqIKWdZVlhxZZKlHlhxZNo6z1CNTjuJUOQBA+2lKAAAAGGSyvNBMvVhXVCHLusqSI4ss9ciUI8PGcaZ6ZMlRnConS8MLADSdpgQAAIBBJMsLzdSLdUUVsqyrLDmybOxlqUemHBk2jjPVI1eOx2PIEFsgAFAHTkAHAAAwSGR5oZl6sa6oQpZ1lSmHSfb6yJfj8Rja4I3jfPXIlGPDGPJsc9cWAGTiLzIAAMAgkOWFZurFuqIKWdZVphwm2esjZ44NY+waa0YzdSWsR54crz9+qiMlAEBN+IsMAACQXJYXmqkX64oqZFlX+XI0+xDo+eqRK0eTN44XLXw+XT3kAACq4PQNAAAAiXmBlipYV1Qhy7rKmaPJh0A3yV73HKPXWDuap+uF/3Z1patHphyLF3W2+6YBAH+lKQEAIIHicLrtPKRuZ+fAv9hTTFM1daIKBkqWF5qpF+uKatg4rnOOfY/7XFw//SPRRCbZ6yPLxnGRo1hXhY6OjnT1aJosOQAgO00JAAANVzQj7HvAgTHzscf79TVzZz9Tvi829otzuPZ3g3/+/Od63m+zw84x0CaM2zCuufxSjQmwHF6gpQrWFVWxcVwfJtnrJfO6anKOYl0Vhg4f0dgc13z95DT1aHoOABgMGtmU8Mtf/jLOPvvsuPbaa+P++++PddddN17zmtfE5z//+dhqq62WuOzvf//7+NjHPhY33nhjjBgxIt70pjfFGWecEeuv78EJAJBD0VhQNCRMnv6DGDJ02Aq9cHP1mVNi0fOLy0PxFudwXZkXbr75tm2jc8H8GDpiZBz4pQtjIBXTVJeecGhPUwWwJC/QUo0ck+zUjY3jOjHJXi/Z11WTcxTr6oXGhI5omuI5VPF8cO6sJ9LUo8k5GLzafcTLdhz10hEvYXBrZFPCF7/4xbjpppvi0EMPje222y4ee+yx+MY3vhGvfvWr45Zbboltt922vNzDDz8ce+21V6y55poxbdq0mDNnTpx++ulx5513xm233VY2KQAAZFE0JLxUU0L3REzxAtTq641v2Qs3K9IM0UpFjuJID8CyvEBLVTJMslMvNo7rJVsOk+z1kG1ddeeY9eC90bnghSPHNU3xPKpoUG/l88GBlmVdMXitzBEvW3VkzHYe9dIRL2Fwa2RTwsc//vH4/ve/v0RTwWGHHRavetWr4gtf+EKce+655ceKRoS5c+fGr371q5g4cWL5sV122SXe8IY3xHe/+9045phj2pYBAGCgZXnhpvtID+2eKIB6MslOFXJMslMvmTaOM9zvZsxhkr39Mq6r7hz/edSe0VTF+iqOmJepHk3MweDW3yNerqgVOTJmu456WRx16WcnHuaIlzCINbIpYbfddlvmYy9/+ctj0qRJ5ekaul144YVx0EEH9TQkFPbbb7/yFA/nn3++pgQAYNDI8sLN33I8HkM9iYUUk+ztPmypQ5YOjkl26iXLxrFJ9noxyV4vWddVU3P0VjwOWdlT+LVbxnowuK3IES9X1MocGXOgj3oJDG5p7nGKJ7CPP/542ZhQeOSRR+KJJ56InXbaaZnLFkdLuPTSS1fqerq//9Luu+++2GKLLVbqewIAVCnLCzdL5tgwhjzbnE09qF4zJ9mXPmzpSx1qtFWqPmTpi+Vo0iFLs0yyUy9ZNo5NsteLSfZ6ybyumphjacXjkibmyFoPaAW/H0ATpGlK+K//+q+yEeG0004r//3oo4+W78ePH7/MZYuPzZo1KxYsWBAjR44c8NsKADBQsjwxXTrHvsd9Lq6f/pF23yyohSZPsvc+bOn82U+95KFGW6XKQ5a+2CFTm3TI0iyT7NRLpo1jk+z1kSVHbybZ2y9Ljr7U/THIYKsHrCq/H0BTpGhKuPvuu+Mf/uEf4rWvfW0cddRR5cfmz59fvu+r6WDUqFE9l+lvU8Jdd93VryMoAAC0S5Ynpn3lGL3G2u2+WVALWSbZi4aE/h5qtFVafQ7XduVopSyT7NRLlscl3Uyy10OWHEszyd5eWXJkoR6wfH4/gCZpXlvkUh577LF405veFGuuuWZccMEFMXTo0PLjo0ePLt8XR0NY2nPPPbfEZQAAssnyxDRLDhiISfYXdDT2EOhN/z3Pcn/VV44mrivqJcvvR28m2dsvS46+mGRvnyw5slAPWD6/H0DTNPpICc8880y88Y1vjKeffjpuuOGGmDBhQs/nuk/b0H0ah96Kj62zzjpO3QAApJTliWmWHFCFTJPsDoFeH1ly9G54Kd7aqbOzc8A3Muu2mZltXXUzyd5eWXJkkaUeWXJkoR6wfH4/qPtzoYF+HlTX50IkaUoojnZw8MEHxz333BNXXXVVbLPNNkt8fqONNor1118/br/99mW+9rbbbovtt99+AG8tAMDAyPLENEsOqEKmc7IXHAK9HrLk6L2udt19z3hq9pwBf2Fq/vznet5vs8POK337i4ad4n1x+4sN8BXJMWHchnHN5ZfW5sW4bOuqt7r8jAdjPbLkyCJLPbLkyEI9YPn8fvBSiucQ+x5wYMx87PHKn3+0+nnQqqjbcyGSNCUsWrQoDjvssLj55pvjRz/6Ubz2ta/t83LveMc74uyzz46HHnooNt544/JjV199ddnI8LGPfWyAbzUAQLW6z2Xe9CemnmDD4Pr9cAj09suSo7fixbSiIeHAL/4whgwd2Jc+vvm2baNzwfwYOmJkHPilC1eqHsUpTYojiBQNOyv6+7F4UWf87MTDel5IbLeM66rJstQjS44sstQjS44s1AOWz+8HK6J4PlA0JEye/oMVei60ss8/Wv08aFUUz4UuPeHQ2jwXIlFTwic+8Ym45JJLyiMlzJo1K84999wlPn/EEUeU70866aT44Q9/GK973eviH//xH2POnDnx5S9/OV71qlfF+9///jbdegCA6s7JPnfWE41+YuoJNgy+3w+HQG+vLDmWe/jOocMGvClhidvQz+vubjAs/p47pQmtkqUeWXJkkaUeWXJkoR6wfIP998PpCFbi61fguVBVzz8G+jlYkaM40gP11simhBkzZpTvf/zjH5dvS+tuSiiOjnD99dfHxz/+8finf/qnGDFiRLzpTW+Kr3zlKzFy5MgBv90AAFVxTnbILfPvRxOnGLLUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLNQD8v9+rGxTwcqcjqAVlnc6glac6qAOpyPIsq66j/TQzqYVEjclXHfddSt82UmTJsXll19e6e0BAGg352SHvPx+1EuWemTJkUWWemTJkUWWemTJkUWWemTJkYV6QP7fj1WZZO/v6Qhapa/TEbTqVAftPjVbpnX1Qo7HY2gDBx4Gm0Y2JQAAsCTnZIec/H7US5Z6ZMmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRhXpA/t+PVk2yt/PUbMX1OtVanXNsGEOe1ZRQdyoEAJCAc7JDPn4/6iVLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyEI9YHBNsjfx1H1565ErRzGo1eT1NVg4UgIAQAJNfOCd5YkQVMHvR71kqUeWHFlkqUeWHFlkqUeWHFlkqUeWHFnOmZ2lHlCFLL8feSbZuxLWI1eO0Wus3e6bxQrQlAAAwIDL8kRosChe+Gzni5+dnZ0D3uTTzkYfvx/1kqUeWXJkkaUeWXJkkaUeWXLYOK6XTDlW9pzsdZKlHlCFLL8fS+fY97jPxfXTPxJNtGjh8+nqkS3H4kUD+7oRK0dTAgAAAyrLE6HBonhBfd8DDoyZjz0+oNc7f/5zPe+32WHnFbqdxQu0xfuioaA4pcnKNhZMGLdhXHP5pW1pTPD7US9Z6pElRxZZ6pElRxZZ6pEph43j+siUoxXnZG+3LPWAKmT5/cgzyd71wn+7utLVQw7aQVMCAAADxhOI5ile9CwaEiZP/0EMGTpwTx+++bZto3PB/Bg6YmQc+KULV+gF2kXPLy4PCVmcS3Bl11XRXf+zEw/raW4YSH4/6iVLPbLkyCJLPbLkaPrGXrZ6ZMph47g+8uV4PIY28NR92Q6BDlXId3/V7En2IkdxhIRCR0dHuno0TZYcg52mBAAABoQnEM1WNCQMZFPC0tf9Yuvqmq+fHHNnPRGrrze+sevK70e9ZKlHlhxZZKlHphwm2esjX45mbxznq0emHE0+J3uOQ6BDFXLeXzU/R3GEhMLQ4SMam6N4vSRLPZqeg4jmPoIBAKAxPIGgClnWVZYcWWSpR5YcTZ80zlaPTDlMstdHzhwblqeSaqYck+w519W48ohg7TjF2KrLcQh0qELW+6sMOYojJLyg+31zFI9zi8e7merR5By8wJESAAAYdE8giidn7dyI6Owc+MMWFi9eNvMFzOasq8GcI4ss9ciUwyR7feTLYZK9DrLm2Pe4z8X10z8STZRhkj3rumrqOdmzHAIdqmCSvd45Zj14b3QueC6aqHgeVZzi0hElqRNNCQA0dlOvHRt72Tb1YDA+gSjut/Y94MCY+djj/fqa4gld8b64Dygm3/p7XzB//nM977fZYecYaBPGbRjXXH5pivuwOq6rwZyj3Y8FWiVLPTLlMMleHzlzNPkQ6CbZ6yTLxnGWSfbM66qp52TPcAh0qHKSvTgVYcb7qww5/vOoPaPJ66t4vJupHk3MwZI0JQAwYJt6rdrga+fGXqZNPRisTyCK+53ivmvy9B/EkKHDVnhjrOgwL57QFYdMXZkc33zbttG5YH4MHTEyDvzShTGQihcvLz3h0J773Car67oazDlMstdHvhzNnmS3cVwvJtnrJeu6avLGcYZJ9uzrqumHQH+hMaF5h0CHqphkr48sOXorXvtZ2dev2i1jPXiBpgQABmRTr5UbfO3a2CteWPrZiYel2NSDqjXhCURx3/VS91/dh1IsJhda+UJBf+83V5WN43rJlMMke33kzNHkSXYbx3Vikr1eMq+rJudo+iS7Q6DXS6ZDoLPiHFG1f0yy10OWHEsrBgCbmCNrPXiBpgQYBNr9gLBJDwapZlOvyg2+gd7Ya/LvYsHvIwMhyxOITDlsHNdHvhwm2esg37pq+iS7jeM6McleL9nXVdNkmWR3CPR6yXYIdAbmiKqrcsTVph5R1SR7+2XJ0Zcmvh6buR68oDk7OcCAPiBc1XNnN/XBINUazA8sqn5ytjK/j6v6e74i/D4OPll+z/PlaPbGcb56ZMphkr3dcq6r5k6y2ziul2w5TLLXQ7Z1lWGS3SHQ6yNLDgb2iKqresTVph5R1SR7e2XJkYV6DA6aEmikdk8bN2nSeGUeELbi3NlNfTBIdbI8sFjZ+54qn5ytzO9jK37Pq/59HGz39RmOLJHl9zxnjiZvHJtkrxOT7PWSdV01eZI9y8Zx5nXVNCbZ6yXjusowye4Q6PWQJQcDe0TVVh9xtUlHVG3i6z9Zfs+z5MhCPQaP5txDQ5unjV9q8r/KieNWTBqv6APCKs6d3aQHg1QjywOLVpyTvdVPzlbm+qv4PW/HfX0V97vtOMpL7xwTJ24ct950gyembZQ1R3M3jk2y14lJ9nrJvK6anqPJG8cm2evFJHu9ZF1XTc3Rm0Ogt1+WHNSLdVUvWeqRJUcW6jG42Cmkcdo1bfxik/9VThwP5OR/lj8ATT9ndjZZ1pVzstfrvr6q+92BPspL7xxj19kgnpr9ZEOP9GKSvU6ybBybZK8Xk+z1kn1dNU2WjWOT7PVikr1eMq+rJuZYmkOgt1eWHNSLdVUvWeqRJUcW6jH4aEqgsdo5bdz7epswcTyY/gCs6iR7uw8X37TTgwymdZXhnOxN3Dju675+oO53q/4bs3QOk+ztle/+qvkbxybZ6yNjDpPs7ZdxXTV949gke31kydGbSfb2y5KjL81r6s5Tjyw5qBfrql6y1CNLjizUY3DSlACrIMsdZ6YcqzLJ3q5Tgyx9yPit/27Hyk4FUtXpQbKvqxznZLdxXCcm2esl87pqco4Mk+w2juvDJHu9ZF1XTc3RzSR7PWTJsTST7O2VJUcWWeqRJQf1Yl3VS5Z6ZMmRhXoMXpoSYJDfcebLsfKT7O06NciSh4wfEYtXX7+SU4EM5OlB8q2rpp+T3cZxnZhkr5fs66ppskyy2ziuF5Ps9ZJ5XTUxR28m2dsvS46+mGRvnyw5sshSjyw5qBfrql6y1CNLjizUY3DTlACD+I4zZ45Vn2Rv56lBig0+pwKphyyT7DaO6yVbDpPs9ZBtXTV9kr1g47g+suToZpK9HrLkWJpJ9vbKkiOLLPXIkiOLLPXIkoN6sa7qJUs9suTIQj1oXpsytF3zzsme+Q/A0jmKyZ4mTmCYZK+XbDkybBxnqkemHEWjywuaO8meqR7ZcjRxXXWzcVwPWXL0ZpK9/bLk6EsTn0dlqUeWHFlkqUeWHFlkqUeWHNSLdVUvWeqRJUcW6kGhec84oc2ck70+MuUwyV4fGXM0eeM4Yz0y5SgaXZqqmGQvTvmTqR5y1IeN4/bLkmNpJtnbK0uOLLLUI0uOLLLUI0uOLLLUI0sO6sW6qpcs9ciSoxh4yCBLPVh1mhJghZlkr5NsOUyy10PWHE3dODbJXi8m2esl87pqYo6l2Thuryw5+mKSvX2y5MgiSz2y5MgiSz2y5MgiSz2y5KBerKt6yVKPTDmKgZqmy1IPWqN5r2hAG5hkr5eMOUyyt1/mHE1cVwWT7PWRJUdvJtnbL0uOvtg4bp8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sOaiXLOvKJHu9ZMpRDGo1fX1lqQet07xXy2CAmWSvl6w5TLK3V9Z11dQc3Uyy10OWHEszyd5eWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJQL1nWlUn2esmX4/FGDjxkqwetNazF3w9SWXqS/YXGhI7GbhzPnfVEo/8AZPlD1leO/zxqz2ii4oH3oucXx+rrjU9VDznqwSR7+2XJ0ZcmPrHLUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sOVZl0rj42nZPKnd2dg74c+Uqny9nWVcm2eslZ44NY8izzXvt6gVdKepB62lKgBX8QzbrwXujc8Fz0UQ2jusjS45u/397dwJ313TucXxlJKWhRCMRokhMMRQxE0NRs7a0RU3Vmq6abo2l11VjS3GV65oSNU9VuW6oIeaQmGKIIRFN0UjSGCqIiGTfz7Pe7jfnPTl537PfvCdrrf/+fT8fDW9Cz3896+yzz17r2ZtO9jio5KhGJ3tYKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPVRypL6wp1YPpRzt7WS3ObndTru4yVOmukVt5swvmn9d69uD/WuxHParbRiw6yWN2jjQd/nebuRfRjTkv6/Yyd4lwYYHtYVjvXnVlGO7X/zGPXbeES5F9ij01OuBxmBTAiDeyW5YOI6DSo5KdLKHp5KjFjrZw1HJoUKlHio5VKjUQyWHCpV6qORQoVIPlRwqVOqhlINboMdDKcfCdLLbv2cbEr573m2uc5dFu4xy+fcGua9mzXRdui/mhpx6pc9hDWd2fbeR1+HmzvnK3X/qj5o3P3QkpXml0cmusXCsOa+acvTo+Q2XnqZHoNsdx1OuBxqHTQmA6AdZJRaOw1PJUY1O9rBUcqhQqYdKDhUq9VDJoUKlHio5VKjUQyWHCpV6qOSgkz0uSjm4BXo89HIsfCe7bUhY1JsS5sncyMvO8I/k5Q644el0smssHKvOqzyHbRJKLYdtdDH2KPRU64HGYlMCIPhBVo2F47BUctRCJ3s4KjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPZRy0MkeD70cad8CXa8eSjnoZA9Nc16l28musnCsPK9SzmEbXUyXbt2TzIHGS/cTGehgKh8AtbBwHI5KDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQoVIPlRypdxqr1UMpB53s8dDM0ds31KSJZ7LHnMPuHJvidVE62eOiliP1hWO1eijlsI0uTfJfgZZS/EQGOpzKB4AKlXqo5FChUg+VHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMpBJ3s89HJMTXRhT7UeWjnSXTimkz0mSjnoZI+HYo6UF44V66GUwza6AK1J82wP6EAqHwAqVOqhkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5Uu80VquHUg462eOhmYNO9tA051W6Oehkj4taDjrZ46CaI9WFYzvPtfNdtXoo5UhxowsWLTYloNRUPgBUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPZRy0MkeD70caXeys3AcFzrZ46I6r1LOQSd7PBRz0MkennKOFOeVse9Rdr6rVg9yoEzS/DYBdAAOnHFRqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c6Tcyc7CcUxUctDJHhe1HHSyx0E1B53sYanOq1RzVM4vO99NNYdKPVRyIAw2JaCUOHDGRaUeKjlUqNRDJYcKlXqo5Eh9YU+tHko56GSPh14OOtljoDevUu9kZ+E4Jko56GSPh2KOlDvZWTiOC53scVGeVynmqGTnuXa+m2IOlXqo5EA4KX5bBRYKB864qNRDJYcKlXqo5FChUg+lHCwcx0MpB53s8dDMQSd7aJrzKu0cLBzHQy0HnexxUM2Raie7YeE4Hio5cnSyx0ElRzX7HpViDpV6qORAWGxKQKlw4IyLSj1UcqhQqYdKjtQX9tTqoZSDheN46OWgkz0GevOKTvYYqM6r1HOwcBwHxRx0soenOK9S72Q3LBzHQSVHJTrZw1PJUUuK36NU6qGSA+Gl9y4G2okDZ1xU6qGSQ4VKPZRy0MkeD70caS8c69VDKQed7KFpzqu0c9DJHg/FHCkvHCvWQykHnexhqc6rVHNUYuE4PJUc1ehkD0slhwqVeqjkQBzSvZILFMCBMy4q9VDJkXqnsVo9lHLQyR4PzRwpLxzTyR4TOtnjojqvUs9BJ3scVHOkunBMJ3tc6GSPi/K8SjFHNRaOw1LJUUuK36NU6qGSQ4VKPVRyIB7pfUoABXHgjItKPZRy0MkeD70cdLLHQDVHugvHdLLHRCkHnezxUMxBJ3t4yjlSnFeGTvZ4qOSoRCd7eCo5aknxe5RKPVRyqFCph0oOFSr1UMmBuKR3BgKU8MCZeqexWj2UctDJHg/NHHSyh6Y5r9LNQSd7XNRy0MkeB9UcdLKHpTqvUs2Ro5M9Dio5qtHJHpZKDhUq9VDJoUKlHio5VKjUQyUH4sOmBMhSOXDSyR4XvRxpd7KzcBwXOtnjojqvUs5BJ3s8FHOk3MnOwnFc6GSPi/K8SjFHJTrZw1PJUUuK36NU6qGSQ4VKPVRyqFCph0oOFSr1UMmBOKV3hguU6MBJJ3tcNHOk3MnOwnFMVHLQyR4XtRx0ssdBNUeqneyGheN4qOTI0ckeB5Uc1ehkD0slhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHIgXmxKgByVAyed7HHRm1epd7KzcBwTpRx0ssdDMQed7OEpzqvUO9kNC8dxUMlRiU728FRy1JLi9yiVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg7ELb1vUEAJDpx0ssdFc16lnYOF43io5aCTPQ6qOehkD0t1XqWaoxILx+Gp5KhGJ3tYKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPVRypH7H8TJgUwJkqBw46WSPi+q8Sj0HC8dxUMxBJ3t4ivOKTvbwlOdVijmqsXAclkqOWlL8HqVSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyaFCpR5KOayhBnFL7xs6IH7gVMlBJ3s8FHOkvHCsWA+lHHSyh6U6r1LNUYlO9vBUctTCwnE4KjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPVRyqHSyq9RDKYc1aqnML2XpXf0BhA+cSjnoZI+Dao5UF47pZI8LnexxUZ5XKeaoRid7WCo5VKjUQyWHCpV6qORQoVIPlRwqVOqhkkOFSj1UcqhQqYdSDoVOdqV6aOWYmmTDQ9lQISRN78Cpk4NO9vCUc6Q4rwyd7PFQyVGJTvbwVHLUkuIXO5V6qORQoVIPlRwqVOqhkkOFSj1UcqhQqYdKDhUq9VDJodJprFIPpRwKnexK9dDL0ds31CBu6V1dBKQPnDo56GQPS3VepZojRyd7HFRyVKOTPSyVHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDKQed7PHQy5F2J7tePbRyWKNWyvOrLKgQksTCcVzoZI+L8rxKMUclOtnDU8lRS4on3ir1UMmhQqUeKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSI/VOY7V6KOWgkz0emjlS7mTPBOtBDix66V29Blg4jopKjhyd7HFQyVGNTvawVHKoUKmHSg4VKvVQyaFCpR4qOVSo1EMlhwqVeqjkSH1hT60eSjnoZI+HXo60O9lZOI6LUif7nNlfytWDHAiha5D/V2AhsXAcB5UclehkD08lRy0pnnir1EMlhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHUg4WjuOhlINO9nho5ujtOs9I79pVjoXjuHP06PkNl56s6X+zTK4e5EAI6X7CoNRYOA5PJUc1OtnDUsmhQqUeKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSI/WFPbV6KOVg4TgeejnoZI+B3rxKvZOdheOYKOWwjS6mU6dOSedQqYdCjrLjTglIEgvHYankqCXFE2+VeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0ckx1XRK8vqBbD6UcdLKHpjmv0u1kZ+E4Lmo5bKOL6dKte7I5Rl52hkw9Us8B7pSARLFwHI5KDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQoVIPlRypdxqr1UMpB53s8dDM0ds31KSJTvaY0MkeF9V5lXoOhYVjpXoo5bCNLk3yX9Nh57l2vqtUj5RzoEmKZzBAclQOnCo5VKjUQyWHCpV6qORQoVIPlRwqVOqhkkOFSj2UctDJHg+9HGnfAl2vHlo50l04ppM9Jko56GSPh2KOlBeOFeuhlMM2uqTKvkfZ+a5SPVLNgXnSPDsGEqJy4FTJoUKlHio5VKjUQyWHCpV6qORQoVIPlRypdxqr1UMpB53s8dDMQSd7aJrzKt0cdLLHRS0HnexxUM2R6sIxnezx50hxo0vl/LLzXaV6pJgDLbEpAWgglQOnSg4VKvVQyaFCpR4qOVSo1EMlR+oLe2r1UMpBJ3s89HKk3cnOwnFc6GSPi+q8SjkHnezxUMxBJ3t4yjlSnFeGTvZ4qOSoZOe5dr6bYg7FeqBJmt++gASoHDhVcqhQqYdKDhUq9VDJoUKlHko5WDiOh1IOOtnjoZkj5U52Fo5jopKDTva4qOWgkz0OqjnoZA9LdV6lmiNHJ3scVHJUs+9RKeZQrQeasCkBaACVA6dKDhUq9VDJoUKlHio5Ul/YU6uHUg4WjuOhl4NO9hjozavUO9lZOI6JUg462eOhmCPlTnYWjuNCJ3tclOdVijkq0ckenkqOWlL8HqVcDzRJb1YCkVM5cKrkUKFSD5UcKlTqoZSDTvZ46OVIe+FYrx5KOehkD01zXqWdg4XjeKjloJM9Dqo5Uu1kNywcx0MlR45O9jio5KhGJ3tYKjlUUI9ySPfKJBAhlQOnSg4VKvVQyZF6p7FaPZRy0MkeD80cKS8c08keEzrZ46I6r1LPwcJxHBRz0MkenuK8Sr2T3bBwHAeVHJXoZA9PJUctKX6PUqmHSg4V1KM80jvqAZFSOXCq5FChUg+lHHSyx0MvB53sMVDNke7CMZ3sMVHKQSd7PBRzpLxwrFgPpRx0soelOq9SzVGJhePwVHJUo5M9LJUcKlTqoZJDBfUolzSvTAKRUTlwquRIvdNYrR5KOehkj4dmDjrZQ9OcV+nmoJM9Lmo56GSPg2qOVBeO6WSPC53scVGeVynmqMbCcVgqOWpJcWO3Sj1UcqhQqYdKDhXUo3zS+1QFIqNy4FTKQSd7PPRypN3JzsJxXOhkj4vqvEo5B53s8VDMQSd7eMo5UpxXhk72eKjkqEQne3gqOWpJ8XuUSj1UcqhQqYdKDhUq9VDJoYJ6lFN6Z2xARFQOnEo56GSPh2aOlDvZWTiOiUoOOtnjopaDTvY4qOagkz0s1XmVao4cnexxUMlRjU72sFRyqFCph0oOFSr1UMmhQqUeKjlUUI/yYlMCUPIDp14OOtljoDevUu9kZ+E4Jko56GSPh2KOlDvZWTiOC53scVGeVynmqEQne3gqOWpJ8XuUSj1UcqhQqYdKDhUq9VDJoUKlHio5VFCPckvvGwEQAZUDp2YOOtlD05xXaedg4TgeajnoZI+Dao5UO9kNC8fxUMmRo5M9Dio5qtHJHpZKDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQQT3ApgSgMDrZY0Ine1xU51XqOVg4joNiDjrZw1OcV6l3shsWjuOgkqMSnezhqeSoJcXvUSr1UMmhQqUeKjlUqNRDJYcKlXqo5FChUg+VHCqoB0x63ziBwOhkj4dSDjrZ46GYI+WFY8V6KOWgkz0s1XmVao5KLByHp5KjGp3sYankUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyWENDwpU6oGFx6YEoG50ssdELQed7HFQzZHqwjGd7HGhkz0uyvMqxRzVWDgOSyVHLXSyh6OSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDKYc11KROpR7oGOld0QACoJM9Loo56GQPTzlHivPK0MkeD5UclehkD08lRy0sHIejkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyUHnexxUcphjVqpzy+VeqDjpHe1DFjE6GSPi2oOOtnDUp1XqebI0ckeB5Uc1ehkD0slhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0ckxNsuFBrR7oWOnOaGARUOlkZ+E4LnSyx0V5XqWYoxKd7OGp5KglxS92KvVQyaFCpR4qOVSo1EMlhwqVeqjkUKFSD5UcKlTqoZIj9U5jtXoo5aCTPR6aOXr7hpo0ZRL1QMdL72ossIiodLIbFo7joZIjRyd7HFRyVKOTPSyVHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlSX9hTq4dSDjrZ46GXI+1OdpWFY7151ZTDGrVSnV/2KPTU64HGSHNGAw2m1MluWDiOg0qOSnSyh6eSo5YUT7xV6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDKQcLx/FQykEnezw0c6Tcya6xcKw5r9LNYRtd/P9mWeI50CjpXe0HGkznA2AeFo7DU8lRjU72sFRyqFCph0oOFSr1UMmhQqUeKjlUqNRDJYcKlXqo5Eh9YU+tHko5WDiOh14OOtljoDevUu9k11g4Vp1XKeewjS7GHoWeag40VtcG//eBpKh8AFRj4TgslRy1pHjirVIPlRwqVOqhkkOFSj1UcqhQqYdKDhUq9VDJoUKlHko56GSPh16Oqa5LgtcXdOuhlKO36zwj3blFJ3vcOXr0/IZLjcrCsfK8SjmHbXQx9ij0FHOg8dL9RAY6mMoHQC0sHIejkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c6R8C3Q62WNCJ3tcVOdV6jlSXzhWq4dSDtvo0iTdR6GjsVL8RAY6nMoHgAqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0cqR9C3S9emjlSHfhmE72mCjloJM9Hoo5Ul44VqyHUg7b6AK0Js2zPaADqXwAqFCph0oOFSr1UMmhQqUeKjlUqNRDJYcKlXqo5Ei901itHko56GSPh2YOOtlD05xX6eagkz0uajnoZI+Dao5UF47tPNfOd9XqoZQjxY0uWLTYlIBSU/kAUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0cqTdyc7CcVzoZI+L6rxKOQed7PFQzEEne3jKOVKcV8a+R9n5rlo9yIEySfPbBNABOHDGRaUeKjlUqNRDJYcKlXqo5FChUg+VHKl3GqvVQykHnezx0MyRcic7C8cxUclBJ3tc1HLQyR4H1Rx0soelOq9SzVE5v+x8N9UcKvVQyYEw2JSAUuLAGReVeqjkUKFSD5UcKlTqoZIj9YU9tXoo5aCTPR56Oehkj4HevEq9k52F45go5aCTPR6KOVLuZGfhOC50ssdFeV6lmKOSnefa+W6KOVTqoZID4aT4bRVYKBw446JSD5UcKlTqoZJDhUo9lHKwcBwPpRx0ssdDMwed7KFpzqu0c7BwHA+1HHSyx0E1R6qd7IaF43io5MjRyR4HlRzV7HtUijlU6qGSA2GxKQGlwoEzLir1UMmhQqUeKjlSX9hTq4dSDhaO46GXg072GOjNKzrZY6A6r1LPwcJxHBRz0MkenuK8Sr2T3bBwHAeVHJXoZA9PJUctKX6PUqmHSg6El967GGgnDpxxUamHSg4VKvVQykEnezz0cqS9cKxXD6UcdLKHpjmv0s5BJ3s8FHOkvHCsWA+lHHSyh6U6r1LNUYmF4/BUclSjkz0slRwqVOqhkgNxSPdKLlAAB864qNRDJUfqncZq9VDKQSd7PDRzpLxwTHuHH58AADMMSURBVCd7TOhkj4vqvEo9B53scVDNkerCMZ3scaGTPS7K8yrFHNVYOA5LJUctKX6PUqmHSg4VKvVQyYF4pPcpARTEgTMuKvVQykEnezz0ctDJHgPVHOkuHNPJHhOlHHSyx0MxB53s4SnnSHFeGTrZ46GSoxKd7OGp5Kglxe9RKvVQyaFCpR4qOVSo1EMlB+KS3hkIUMIDZ+qdxmr1UMpBJ3s8NHPQyR6a5rxKNwed7HFRy0EnexxUc9DJHpbqvEo1R45O9jio5KhGJ3tYKjlUqNRDJYcKlXqo5FChUg+VHIgPmxIgS+XASSd7XPRypN3JzsJxXOhkj4vqvEo5B53s8VDMkXInOwvHcaGTPS7K8yrFHJXoZA9PJUctKX6PUqmHSg4VKvVQyaFCpR4qOVSo1EMlB+KU3hkuUKIDJ53scdHMkXInOwvHMVHJQSd7XNRy0MkeB9UcqXayGxaO46GSI0cnexxUclSjkz0slRwqVOqhkkOFSj1UcqhQqYdKDhUq9VDJgXixKQFyVA6cdLLHRW9epd7JzsJxTJRy0MkeD8UcdLKHpzivUu9kNywcx0ElRyU62cNTyVFLit+jVOqhkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5ELf0vkEBJThw0skeF815lXYOFo7joZaDTvY4qOagkz0s1XmVao5KLByHp5KjGp3sYankUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyZH6HcfLgE0JkKFy4KSTPS6q8yr1HCwcx0ExB53s4SnOKzrZw1OeVynmqMbCcVgqOWpJ8XuUSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyWHCpV6KOWwhhrELb1v6ID4gVMlB53s8VDMkfLCsWI9lHLQyR6W6rxKNUclOtnDU8lRCwvH4ajkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyaHSya5SD6Uc1qilMr+UpXf1BxA+cCrloJM9Dqo5Ul04ppM9LnSyx0V5XqWYoxqd7GGp5FChUg+VHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeSjkUOtmV6qGVY2qSDQ9lQ4WQNL0Dp04OOtnDU86R4rwydLLHQyVHJTrZw1PJUUuKX+xU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDJYdKp7FKPZRyKHSyK9VDL0dv31CDuKV3dRGQPnDq5KCTPSzVeZVqjhyd7HFQyVGNTvawVHKoUKmHSg4VKvVQyaFCpR4qOVSo1EMlhwqVeqjkUKFSD6UcdLLHQy9H2p3sevXQymGNWinPr7KgQkgSC8dxoZM9LsrzKsUclehkD08lRy0pnnir1EMlhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSo7UO43V6qGUg072eGjmSLmTPROsBzmw6KV39Rpg4TgqKjlydLLHQSVHNTrZw1LJoUKlHio5VKjUQyWHCpV6qORQoVIPlRwqVOqhkiP1hT21eijloJM9Hno50u5kZ+E4Lkqd7HNmfylXD3IghK6hXwDQHiwcx0ElRyU62cNTyVFLiifeKvVQyaFCpR4qOVSo1EMlhwqVeqjkUKFSD5UcKlTqoZSDheN4KOWgkz0emjl6u84z0rt2lWPhOO4cPXp+w6Una/rfLJOrBzkQQrqfMCg1Fo7DU8lRjU72sFRyqFCph0oOFSr1UMmhQqUeKjlUqNRDJYcKlXqo5Eh9YU+tHko5WDiOh14OOtljoDevUu9kZ+E4Jko5bKOL6dSpU9I5VOqhkKPsuFMCksTCcVgqOWpJ8cRbpR4qOVSo1EMlhwqVeqjkUKFSD5UcKlTqoZJDhUo9lHLQyR4PvRxTXZcEry/o1kMpB53soWnOq3Q72Vk4jotaDtvoYrp0655sjpGXnSFTj9RzgDslIFEsHIejkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c/T2DTVpopM9JnSyx0V1XqWeQ2HhWKkeSjlso0uT/Nd02Hmune8q1SPlHGiS4hkMkByVA6dKDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQoVIPpRx0ssdDL0fat0DXq4dWjnQXjulkj4lSDjrZ46GYI+WFY8V6KOWwjS6psu9Rdr6rVI9Uc2CeNM+OgYSoHDhVcqhQqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c9DJHprmvEo3B53scVHLQSd7HFRzpLpwTCd7/DlS3OhSOb/sfFepHinmQMk2JcyaNcudfPLJrm/fvq5Hjx5uk002cQ8++GDol4WSUDlwquRQoVIPlRwqVOqhkkOFSj1UcqS+sKdWD6UcdLLHQy9H2p3sLBzHhU72uKjOq5Rz0MkeD8UcdLKHp5wjxXll6GSPh0qOSnaea+e7KeZQrAeapPntq4CDDz7Y/f73v3f777+/u/TSS12XLl3cLrvs4p588snQLw3iVA6cKjlUqNRDJYcKlXqo5FChUg+lHCwcx0MpB53s8dDMkXInOwvHMVHJQSd7XNRy0MkeB9UcdLKHpTqvUs2Ro5M9Dio5qtn3qBRzqNYDJdiUMGbMGHfrrbe68847z/3ud79zhx12mBs5cqTr37+/O+mkk0K/PAhTOXCq5FChUg+VHCpU6qGSI/WFPbV6KOVg4TgeejnoZI+B3rxKvZOdheOYKOWgkz0eijlS7mRn4TgudLLHRXlepZijEp3s4ankqCXF71HK9UCT9GZlAXfeeae/M4JtRsgtvvji7tBDD3VPP/20e/fdd4O+PmhSOXCq5FChUg+VHCpU6qGUg072eOjlSHvhWK8eSjnoZA9Nc16lnYOF43io5aCTPQ6qOVLtZDcsHMdDJUeOTvY4qOSoRid7WCo5VFCPckj3ymQdXnzxRTdw4EDXs2fPFj/feOON/a9jx44N9MqgSuXAqZJDhUo9VHKk3mmsVg+lHHSyx0MzR8oLx3Syx4RO9riozqvUc7BwHAfFHHSyh6c4r1LvZDcsHMdBJUclOtnDU8lRS4rfo1TqoZJDBfUoj05Z/m1Z0KBBg1zv3r3dww8/3OLnr732mlt77bXdlVde6Q4//PBC/03792p54403XLdu3dyqq666UK8Z9Xlr4ttuyW/2s9aTRfb/+eG7b9lVS///ucyKq833+3PnfOU++3Ca/7Vzl65uiWW+6X9daFnmPp32nltt1VUWyXh1VI62xqthFnK8Qsyt1sarYfNqEY9XR+cINb/mzpntPp36dzdw4ICk51fD59Uiml+NyBFibjXn+Oor1ymbm9T8qhyvpfuuvGjmVYPnVyPfH4tyfs2fYzn3+fQpSX0+No+XLex1X2zRzKsGnXstiuPuophfNXN07rJIz1U7gr3+j//+1+Z/XnqFbzV+XjXg2LXIPs8bPL9azZHQuX1ljjlfzmr6YYLfhb7Wa3n32Yf/WHSf5w2aX3W9PxKYX9U5Zn/xeZjv2R0wXuPHT3BZp86uc9dF9HnegLlV6Lgb8fxaUI5g13E6aH4t2XsF17lLN7eodNR4Ff48X8TXCevVVo5UrxNOmDjRff2bKwa/jlNUu88TIzt21Zsj1fkVy3XCei30949IxqtIjpQ/G0NfJ6x3vDrse20HfD6ibRMnTvRr4TNmzHDtIb0pwTYIrL766m7EiBEtfv7222/737v44ovdcccd1yGbEt58803Xo0cPt9JKKy3Ua0bcbzbDxpP6MF7FMF7FMF7FMF71Y6yKYbyKYbyKYbyKYbyKYbyKYbyKYbyKYbzqx1gVw3gVw3gVw3gVw3gVw3gVw3gVw3jVj7EqhvHS984777gllljCTZkypV3//iJqBwnDNgnMmvWvDoUKX3zxRfPvFzVu3LgOeW1IT74hhTlQH8arGMarGMarGMarfoxVMYxXMYxXMYxXMYxXMYxXMYxXMYxXMYxX/RirYhivYhivYhivYhivYhivYhivYhiv+jFWxTBeaEt6D60poE+fPu7999+f7+f5z/r27RvgVQEAAAAAAAAAAAAAUA7SmxLWX399N378ePfJJ5+0+Pno0aObfx8AAAAAAAAAAAAAADSG9KaEvffe282ZM8ddddVVzT+zxzkMHTrUbbLJJm7FFVcM+voAAAAAAAAAAAAAAFDW1QmzjQf77LOPO/XUU920adPcaqut5q6//no3adIkd+2114Z+eQAAAAAAAAAAAAAASJPelGD++Mc/ujPOOMPdcMMN7qOPPnLrrruuu/fee93WW28d+qUBAAAAAAAAAAAAACCtU5ZlWegXAQAAAAAAAAAAAAAA9HQO/QIAAAAAAAAAAAAAAIAmNiUAAAAAAAAAAAAAAICGYFMCAAAAAAAAAAAAAABoCDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAAAAAAAAAGgINiUAAAAAAAAAAAAAAICGYFMCAAAAAAAAAAAAAABoCDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAAAAAAAAAGgINiUAACBq7ty5oV8ChGVZFvolAAAAAAAAAAASwKYEoE4svqAjMZ/QSC+88IL/tXPnzmxMqNOsWbNCv4RkfPDBB/7XTp06hX4pSXjwwQfd5MmTQ7+MJPFZWQzjVXy88jHjsxKNnF9oXeU4MWbFMF5ohC+//DL0S0jK6NGj3YwZM0K/jCRxDGsd56r1Y6zQSMyvYji3R1vYlAAsgH2pmDZtmvviiy+aF184kNaHcWqbzaeZM2cyVnX6+OOP3XvvvecmTJgQ+qVE7+6773YbbbSRO/jgg/0/szGhbVdffbU7+eST3WeffRb6pURv+PDh7uijj3aXXXZZ6JeShNtvv93ttNNO7qijjgr9UpJgx/gnnnjC3XTTTf4zknOv1s2ePdt9+umnzf9s48Xxvn6VG6vss9Iw31r31VdfhX4JSc0vNu/Vx953n3/+uf/7fMx4Ly7Y888/71566SX/98yxtt14443u0ksvDf0yknH//fe7c889188z3odtu+2229yQIUPcNddcE/qlJGH69Olu4sSJ/i/b/MK5fv3nEpyrto7z+uI4r68f78ViOLdHW9iUANRwxx13uN13392ts846brPNNvOLe++//z5f+lvx6KOPuvvuu8+f1DBOrXvggQfcgQce6NZee223/fbbu3POOSf0S4raPffc4/bee2+33nrruW222cb96Ec/Cv2Sou72t0Vj88gjj7AxoQ7XX3+9O/zww/2xizFq+6Luj3/8Y/9l4lvf+lbolxO96667zo/Xkksu6Z555hn/F1q/qLvXXnu5nXfe2R1wwAFu00039RtEOado/bNx3XXXdd/5znf8xirbyJFfJEHr7r33Xrfffvu5TTbZxP3kJz9xt9xyi9/gwcaO2vLjV9euXbmAWYennnrKnXnmmX5T2vHHH+/vYDVnzpzQLyva70UHHXSQW2uttfyxzD477XyWY39td955pxs8eLC75JJL3Kuvvhr65URv2LBh/nv31KlT/WckWnfDDTe4fffd1z322GOcg9U5v2y8bHHd7oyGtpsn9txzT7f++uu7rbbayh133HG+KYB5VttDDz3kjj32WLfLLru4E044wV9zzTdtc67aEuf1xXBe3zHn9Ry7auPcHnXJALRw5513Zt26dcv22GOP7PTTT8++973vZcsuu2y24oorZjfffHP2z3/+M/RLjM5dd92VderUKfv2t7+dPfTQQ9lXX30V+iVF64YbbsiWWWaZbPDgwdnee++drbHGGtmSSy6ZHXvssaFfWrTjZeOz6667ZmeddVa23377Zd27d8+OPvro0C8tWldccUX2ta99Ldt9992zpZdeOjv00EObf2/OnDlBX1tshg4d6o9d//7v/5698847oV9O1J5++ulsueWWy4477rjszTffrPln5s6du8hfV+xz69e//nV27733Zosttlj2y1/+MvTLivrca/HFF88OOOCA7I9//GN20UUXZT179syOOeaY0C8tSjfddJP/LNxss82yn/70p/78y+bbuuuumz344IPZZ599FvolRs3O5238tthii2yvvfbKVlllFT/ftttuu2zq1Kn+z3A8m+eOO+7w82uXXXZp/tns2bODvqbYz13t83LgwIH+Lzsns/P9//u//wv90qJjx3s7V7X34k9+8hM/Tva9+4EHHgj90qJln4v2fuzRo4f/zBw3blzolxT9udgJJ5yQvffee80/5/tQbXb+YN+7jz/++Ozll1+u+Wf4bJx/ftl1nFNOOcX//XXXXRf6ZUXrlltu8fNrt91289d1dthhB//P999/f+iXFu3nox3n11xzzWyDDTbwn5X2zwceeGD20Ucf+T/DddcmnNcXw3l9x57XM7da4twe9WJTAvAv9kHyySefZN/5znf8RoS///3v/udffPFF9uSTT2ZDhgzJvv71r2cXX3xx80kgMv+F1S6C9+/fP+vdu3e29tpr+y+0nCDP77HHHvNjZBeTJkyY4H82ZcoU/4WsT58+2XPPPRf6JUblvvvuy3r16uU3IEycONH/zBZa1lprrey73/1u6JcXLZtHdgI4ZswYfxJoX/ZtY0J+ssxJc5Nhw4ZlnTt3nu9C5bRp0/yi+4cffhj09cXmf/7nf7IBAwZkzz//fIsxvOSSS7Lf/e53/ljG3Gpy7bXXNl8Et3MJO4/44Q9/6M8hRo0aFfrlRcfGyBbVDznkkGzSpEnNF0a23HLL7Mgjj2zxZ5ljWfb222/7i222GcH+3tjx6qSTTvLzzi5e2sWTGTNmhH6pUZo8eXK2+uqrZwcffHDzsf/zzz/3Cwp2jrbSSitl48eP9z9n4Srz5xIrr7yyv5hk88sWE3JcwJyfLa7Y5uNf/OIX2auvvprNnDkze+qpp/wY2ndMzDN8+PDmzWf5e+4f//iHn2cnn3xyiz/LsX/eGNgcs/P8E0880Y+VbdhmY0Lti+L5xuO//vWvzT+3axRcy6k9t2xxfauttsreeOON5t+z49df/vKXbOzYsf6z0vDZ2PQdKD/Xt3Ow1157zS/C7Lzzzr6JiWNWSzY+9jl4xBFHtHg/2nWKSy+9tMWfZewy/33broMdfvjh/vPR3nN2PWzDDTf0826jjTbKpk+f7v9s2d+PnNcXw3l9MZzXF8O5PYpgUwJQwRYOVl111exnP/vZfAdJO5Ba57Htirvqqqv8h1HZffnll9mvfvUr/wFjO8VffPFFf9I3aNAgNiZU+fTTT/2XCtvAYV/qK9k/287eyy+/PNjri419ud9nn32ybbfdNnv99debv0TYe9R29NoJoJ0MPvHEE34eYh47NtkmF1tEtosiP/rRj/yJYeUdE/JNHmVlC3m2IcHGyTad5ew9aot9dkyzjVb7778/8+tfbP7YhqCcfYG145Z1t9t49evXL7v66qtLv5nDNlPZ3LILu3aRJHf77bf7cfqP//gP/898Ps5jF7/t3Mo2c1SOjXUC2XvSLipZR5VtXuDLa5Y9++yz/r139913t7jAZucZm266qZ9ndqHELgoYxqwluxi+xBJLNHcz5hfg7Fhvi1g2dnY8yy9slvkCpm1ssYtwNqf++7//29/5xf7evg/luIA5jy0Q7LnnntmOO+7YfO6asw18NnaPPvposNcXE9uAZufy3//+95s3apu//e1vfmOVLSTbe9C+f+fnYWV+L1ayc3g7htmFcjvXt3ll56tsTJjHviPmC3eV12xOO+20bOutt/bn/z/4wQ/8XYfyhXZk2SabbOI3tOdsjPLzfPvVNizw2di0UdvGxO6AljcyGTtX7dKlS/NxnvOveeyucd/4xjd8k46ZNWuWbwizaz12HdE20z7++OPNG2rLPL/M9ddf7xdCn3nmmRY/t++W1iRg88++l+cbE8o81zivrx/n9cVwXl8M5/YoioeOAhVmz57tevTo4T766CP/z7ZxJ3/+VK9evfwz9uzZZ6effrobN26c/3mZn0/VrVs3t+WWW7ojjzzSP7veng130003uU8++cQ/H86eac/zU+d588033e677+7WW289/8//2hjmll9+ebfsssu6N954I/RLjIY9g32bbbZxhx56qFtjjTX8z+w52UOHDnX33Xefe+utt9xZZ53ldtttN7fBBhu4MWPGhH7JUbD32+KLL+6++93vutGjR7uePXv6Z87aM9rvuOMOd8ghh/jnONozCfPjXBmtsMIK7uKLL/bHqmuuucZNnjzZP6vRjl8bb7yxu+CCC9zqq6/un3G/+eab8wxa5/wxyj7v7K9jjjnGjRo1yj9H9dlnn/XPth84cKA/7t98883+s7SsVlttNfeHP/zBnXLKKa5Pnz7NP99nn338e+/yyy9377//vuvSpYs//sP55wvae8yeKZuz96Wdc9kzjW+//Xb/ntx0003d8OHDSz9uNlb2HrM5lLN/XmKJJfzxy56lan9/4okn+uO8Pbux7GNWqXv37n68/vGPfzQ/S9U+O+2cdv/993fnnXee/2f7TPj444/9uUdZx8+O9zbP7JzhiCOO8M9QPemkk/xze/fYYw//Z3gW7TwffvihP0YNGTKk+dw1t9lmm/n34pQpU4K9vpjYe2yZZZZxBxxwgP/czI0YMcJ/H7LzL/tuudFGG/nvmXYsK/N7sXLcVlllFbfddtu55557zh122GH+mGXnXueee64bP368/3OvvPKKKzM7Lu2www7u5ZdfdldddZX/mX1nvOiii/wY2ryy50Pb98xf//rX7vPPPw/9kqNQeV5h7z97fv3ZZ5/tRo4c6cfq9ddf98eyd955p9TvR5tfdlyyz8S+ffs2/9y+b9s1w3POOaf5/AtNpk+f7v75z3/6c/78XMyO8zbH7BzDrlHYs9rt3OKDDz4o9fwyU6dOdV988YVbaqmlWlyXXnrppf1f9rlp18PsM8COX2Wea5zX14/z+mI4ry+Gc3sUVngbAyDuwgsv9Dve8g606p2n1tFnt4eybjRkLboa83Gy7gS7YwKPcpi/O9t2CdbaEWi3YrMdhYbxamJ3Raj0v//7v/69ac+0t1vaWeeLPZvQdonbe9LuCoAm1nFszz3Lb4We33nCnmtvHRy33XZbVvZd9bY797/+67+ybt26+bGyu+SMGDHCdxsbm0/2uB7rDNpjjz2ysrNbt+bPSrXbsdmt4iuPVbaT3B6rYrdJfPfdd7MyW9AxPL+V8KmnnkoXQtWx3h6bZWNju+vt1rf5Lf7sGGbjaV0Im222mT+3yOdXWY9f9l6zLk97Tuorr7zS4vfscVD2jPG8i8+6YTD/o9qsM2/99dfPXnrppfnet/arHfvtDkM2B8v+Xs0fQZOz7pb82dmVnVXW9Ygs+9Of/tTcOVt5rm/HLbtV7nnnnef/uezzyrzzzjst/vmKK67w88oe22Z3AbDvTNa1bY8+so5te4QbmtjdmKzrLO80s8do2dj9+Mc/zgYPHuy/g9t7tczsDo52Vy8bF/ueuMIKK/jrO/k8so7R7bff3p/nW8doWc8pKo9V1jVr5xd33XWXv2vCH/7whxZdx9bNbr9v1y3K/oioyjtsVM4du+OqzSm7Hma4rtPEOv7tvMoe12bdsnYMy8/17XbyNp/su6XdHWCbbbYp/fy65557/Pj89re/bXG3F5tPNj52nrrXXnv56xhle659ZU47dn388cec17eiel7Y+Wh7zuvLOL/MnXfe2a7z+rKOV+XjeQzn9mgNmxKAKu+//74/WbYv+nZr+OqDrX04X3DBBf7LRuVtv9FS5caEBx54oPnno0eP9mOMlvNq8803b3ESaPINDGWXj5EtpOePJMjZScyVV17pT3Sqn0dYZs8991y24oorZi+88ELzz2zB2G75bbe3q3yUQ5nZlwc7Uf7mN7+ZnXHGGc1f0PIvsXZBxJ7Va8+7rHy+ahnZQp4tgtr8sccT2JfXavaZ2bVr1+zMM88M8hpjZ/PKLuTa52J+HCvLF9a22K38bAF9nXXW8Y85sjF66623mn/f3pv2OAI71h9//PFZ2dktbm0sbEHFxsXee0cddZR//7388sv+z9jmWVtUYI41qRyHW2+91Y+fbbCaMmVK88/zY79ddLINMrbpsXqDZFnUup1mPoYLuoBp/449N7qMF5jaWniyz1A7L6t+nqptMirbho7quZXPK1sQtcWqjz76qMV5mm2qtXOPysWGsh678r8fOXJkNnDgwBaPiTr33HP9e9Ieh3T++ednZVX5XrTvQbax2K5J2PfF/L2W/2rHd7u195AhQ/iszLLs4Ycf9hvY7fNvqaWWal7szMcrf3SnbXAfNWpUVkYLutV0/nNbkLEN2rbZFi2PXzfeeGP2rW99K+vVq5fffLDlllv6xb587Oz9aAtX9j2z8vphWeeXbTKzzz5bULfH89hY5Zs5pk2b5jfGLL300v5Rd2Vj2avnFuf1rY9X5dyqbirkvH7+8ao8l6h1jt/aeX3Z5lj1/LK/59we9WBTAlDD2LFj/SKVnShXfuHKuxFsV5x9YNvJD9remDBo0CD/Jde+XFg3su3u5TntLU9wrLvRTpRzdvJnCwq2kIx5Kneg5n8/depU/360zUKYx9539uXC3mt2Qc6e43j11Vdn++67Lx20FexLg+2ArlwArZxftqPXxsvu+lJ2r776qr/QlnfjWWeCyb+E2CYO2zFuz1hF7WO9zTUbv9/85jehX1J0bB7ZZg173mzl8Sm/GG5f/m1+lfHiWy02TjYeNp9sw5ltnrK7ceQXQuwipl2stG7ksj6v8ZFHHvF3wMmP55UXleyOJXbh296LlR3FeUfafffd58e2TBuQq8er1iJdrQuY+d2E7Lx/iy22yI488shSLPBVj1dr7NjWv3//Fsc2W2Q4+OCDs7PPPlt+vOodq8oNGvl70eaVzTP7/CyLtsbL7oBmi8a20J5fELZF0B49evixsi40+y5Z1vGq/MyzDm27IF59F698ftlGR1uIt3Nc9fdhPeNlxyObQ3mXdi4/t7DmEvu9oUOHZmVR5Fhvd9yzO1ZZA5PdZa6MWjv3mjhxot+4YddtTj/99Pnml/2eza/LLrssK/u5ly3W/fCHP/TjYefzdmdH23R2/fXXN/85e9a9XUcsy+ZGe0/Z+8s2t9jdEc4666zm37M7bXBe3/p42fE9lx/3Oa+vb7yqNyaU/by+rfGq/Lzk3B4LwqYEYAHsC6wt4tktEG1RqpKdNNruXjuxQevszgi2MWHAgAHZKqus4k+o7db7aMluv2abEGwB2U5m7HaTdrHJbmeH+VVePLGLIrYYY92ipgwngPWMjd0+cpdddvG7ne19Z52h5oMPPvB3Sih753+l6i9llXPIuv5tF2/1poWysmOSLYDalwi7XV3lLSWte7tv375+MdSU/b1Yiz2OwDYM2R0B7MIcap9/2UWlynMvm0v2xdcW4a0bNP9Z2dkdJux28fY5WH13pcMOO8yfe5V1E6jdftqOU3b3s4ceeqhFt1S+icrGyDo+TzvttPnej3YXHfseMGHChKzM41VL/t6zTaHWNWv/3lZbbZVtvPHG/vOy+rEiZR+v/OKc3QEmv1OV3dFk11139Z+ndt5f9rGqPp5XnufbMd9u81qWRfa2xsvGxn5m8yffBGrfG+1c3z4PbLHP/n07vpVhoaqtY73JH81Wa77ZBXW7RmEbH8tgQeOV/2rjYIt79mdsk0v1goH9+/Z+tIaTMih6rM/v0GHnFmVsAGhrfuWsucuufeWPmszfs/aIEPtczK/rlH1+WYe6jckJJ5zgN1dVn19Zs5c1NpXhO5GNg12Dt+vze++9d7bGGmv4a4D5+8yuSXBe3/Z42d02qnFeX2y8yn5eX+94cW6PtrApAWjjFuirrbaaP7jarq+nn37anyDbh40ttNvFYNRW+QFkz223Exs7CSzDCU177L///tl6663n79JhF5bs5M/+HvOrPJmx54Xa7avtGXKVt2pD0+apfGe9XVCqvI0Yz7esb37ZRSXbHb711lu3uOVY2dn7rl+/fn5+2eMthg0b5h+tYhdG7E4K1c+SQ0vW4WJjl3e6oCV7r9mmjc0226z5DiX268477+w3vTC/2mbHLrvYa92yduwvw8XKSnZhyB4DYh0sdkyyi0Y2h6o/+2yTXn4r3D333DP785//7H9uj8Owc307LyvDc9nrHa9K+e/ZGNo8szG0i1NluA1ne8bL2MVde36qXRC345ldjLPPU2XtGavK8zDbyG53LrTb69tcU1dkvOwRDXY9Ir/V/u233968UdS6jMtwUbyt8ap1l6DquyjY7bztNsLVGxfKPL8qF6Zsbl1yySV+46NdB7O7OFpXZP6MbWULc/yy5gC7W0KZHnPR1nhVnovec889fgOydbq//fbb/mc2Vja/7Por86ttdvyyx/jYIyjLcHc4GyN7PEO+qcCu/dldIpZffnl/3d7YOTvn9a2PV58+fZrHq/I9Webz+vaMV1nP69s7XmU+t8eCsSkBaIN1x9oOetvx1q1bN//BbI8gKMOHc0ewE2vbPdezZ89SXBwpqvKL6worrOA/nG1DQhlOZjpid6ZtSLBFdza7zM++WNxyyy3Z3XffXbrnwHUEu7hrF3ptfnHsmp91H/z85z9vvlWwjZPdASB/nj0WzJ4Daps67EKUdbGXbcG43rss2YVwm1t2u1K7QwLnXgtWOYdsk5BdeLMxe/3117OyyZ95nd9e2s6n8keJLehiry3g2cUV667Kb5FrFznLMN/aM17VF6ZsY6iNWxm6Xdo7Xna+bxcvbbOVdRSVYfPxws4te+yfnefbpvYynIfVO175r48++qj/7mgLWrfddlvpnmG8sPPLbpluF9Dt2k4Z7h7XnvGyx/7lj22zv+y4Zc/Q5rOx7fl17733+n/3xBNPLEUzQL3jVbkwddRRR/k/b+f3dg3MNrvYglYZvku2Z7wq/97u2Gvn+nauqt75bxvG7NF99r25+rzJ/tmu01c/7qPM5/X1jNfll1++wH+/bOf17R2vMp7Xd8T8Ktu5PVrHpgSgDnZSaIueN998sz+ITp48OfRLSoI939KeX2/PaSzDCeDCsFvE25cS27zBWLX9Jc6ea2ZfXO1Wd/YMUNSW3+IVxeaX3YbNLvKuueaabHhpYyHULuRaF4J1IFhnFerz+9//ni9ibbAFdbtdqXUw2u2ouUNC20aOHOm7Pq3bqszHLrtYaxe7c3Z8sou9rXXt2YUUu6uQPU/1mmuuae7cK4N6x6vWBquddtrJn7+WYRFhYcfLOkDzzrOybD5uz1jZ4rptCl155ZX97WCZWwseL7sFuj3aqKybj9szv+xuEvZoO5tf9l2S+dX6Z6N9z7YF9v/8z//0m92rHxWlrL3H+px9nyzTuX7R+WWP0brwwguz1VdfPdt88839v6u+wN4R8+vSSy/NNtxww9Icv2wR1O7GaJs4cjaH7C/rzraNLPkjHDivLzZetc7r83PVMsythR2vMp7Xt3e8ynxujwXrZP/jAKBBJk6c6ObOnesGDBgQ+qVEbdy4ce7AAw90N954o1tzzTVDv5zojR8/3j311FNuxx13dCussELolwMxr7zyihsxYoTbd9993UorrRT65UCInXZ36tQp9MuAqFmzZrmXXnrJ9evXz/Xt29eV2Zw5c1yXLl2a33OjRo3yx/Svf/3r7pJLLnHbbrut/320f7y+/PJLd//99/tz/LKdu7ZnvM4991x31llnuRdeeMGttdZarizaM1ZXXHGFmzRpkjvqqKPcyiuv7Mqk6HiV/byiPfPr/PPPdxMmTHCnnXaaW3XVVV2Z8NnY+PGya1+dO3du/rVM2jNeU6dOdcstt5z76quvXPfu3V2ZtGe8nn32WX+tYvvtt3f9+/d3ZfDXv/7Vj4Ndl6l+X2200UZ+HO66667m8Sy79o7XzJkz3YMPPli68/r2jtfZZ5/t/yrbeX17x+uyyy5z7777binP7VEbmxIAIKLFhMUWWyz0y0hG2S/CobHKeCEJAJRVXuy9+OKL3Q477OB/PmbMGLfiiiu6Pn36hH6JUWG8Oma8Ro8e7cfLNgpNnz7d9erVy5VdPWM1e/Zs161bt9AvNerxssUp24TGe7H4sYvv3fNwrC+G8eqY8XrmmWf8ola+iZZrO/V/PnKdYt582WKLLdyyyy7rhg8f3vx7f/vb30qzYaOjx4v3YdvjZZtm80V1zuuLjZdtaC/b5jMsGJsSAAAAAACludjbs2dPd+mll/oujiOPPNJf6H3ggQdYBK3CeC38eB1xxBF+4YXxqm+sbG5Zpx5j1RLvxWJ4LxbD/CqG8SqG8eqY8bJNaHw+Nsm7sO3OqbasZeNiXn/9dffTn/7ULb300u6+++4L/TKTGy82JTRhfnXseC211FL+7nrML1RiUwIAAAAAoBSsm3GfffbxXbJ2EeXDDz90Dz/8sNtggw1Cv7QoMV7FMF71Y6yKYbyKYbyKYbyKYbyKYbyKYbzq873vfc9NmTLFPf744/6xPCeffLJ74okn/KLo4MGDQ7+86DBexTBexTBeKKLc9/sBAAAAAMjL9+JvvPHG7pe//KV766233EcffeQvlnCRd36MVzGMV/0Yq2IYr2IYr2IYr2IYr2IYr2IYr2KWWGIJN3PmTPfaa6/5BdBHHnnEPfbYYyyALgDjVQzjVQzjhSK6FvrTAAAAAAAkJr9d5EMPPeRuuOEG/7zeJ5980q211lqhX1qUGK9iGK/6MVbFMF7FMF7FMF7FMF7FMF7FMF71mTt3ruvcubPr0aOHmz59ujv66KPdiy++6MdqvfXWC/3yosN4FcN4FcN4oT3YlAAAAAAAkGfdG9ddd517+eWX/a1xucjbOsarGMarfoxVMYxXMYxXMYxXMYxXMYxXMYxX22wB1PTr189NnjzZzZgxw40aNcqtu+66oV9alBivYhivYhgvtEenLL83EAAAAAAAwiZOnOg7OgYMGBD6pSSB8SqG8aofY1UM41UM41UM41UM41UM41UM41WfcePGuQMPPNDdeOONbs011wz9cqLHeBXDeBXDeKEINiUAAAAAAAAAAAAgCbNmzXKLLbZY6JeRDMarGMarGMYL9WJTAgAAAAAAAAAAAAAAaIimh34AAAAAAAAAAAAAAAB0MDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAAAAAAAAAGgINiUAAAAAAAAAAAAAAICGYFMCAAAAAAAAAAAAAABoCDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAFgonTp18n+1ZtiwYf7PHHzwwYvsdQEAAAAAgPDYlAAAAAAAAAAAAAAAABqCTQkAAAAAAAAAAAAAAKAh2JQAAAAAAAAAAAAAAAAagk0JAAAAAAAguPvvv9/tuuuubrnllnOLLbaYW2WVVdwJJ5zgPvjgg/n+7DbbbOM6derkJk2aNN/v2c/s9+zPVDrzzDP9z4cNG+bGjBnjdtttN7fsssv6n40dO7b5z40ePdrts88+rk+fPq579+6uX79+7mc/+5l75513GpQcAAAAAABtbEoAAAAAAABBnXLKKW7nnXd2Dz30kFt99dXdHnvs4bp27eouvvhit8kmm7ipU6d22P/X448/7rbccku/eWHHHXd0W2+9tevcuenyyBVXXOE233xz96c//cn179/f7bXXXn7jwrXXXus22mgj9/rrr3fY6wAAAAAAoCy6hn4BAAAAAACgvO644w53wQUXuEGDBrm7777brbbaav7nWZb5uxucddZZ7thjj3W33nprh/z/DR061P//nXTSSS1+/swzz7hjjjnG3yHhnnvucRtuuGHz79mmBLtbwiGHHOL/HAAAAAAAqB93SgAAAAAAAB3CHoWwoL9sQb+Wc845x/96yy23NG9IyP9btilh/fXXd3feeaebPn16h7zGddZZx5144onz/fz88893c+bMcVdeeWWLDQnm0EMP9XdvsEc7vPjiix3yOgAAAAAAKAvulAAAAAAAADrEQQcdtMDfe+utt9xTTz3V4mfTpk1zL730khswYIC/U0I125iwxRZbuLFjx7rnn3/e7bTTTgv9GnfbbTf/3600d+5c9/DDD7uvfe1rC/z/2Gqrrdzw4cPdmDFj3Le//e2Ffh0AAAAAAJQFmxIAAAAAAECHGDZsWKu/V70pYdKkSf7XCRMmzLdRoFpH3SlhpZVWqvnf/vTTT/3fd+/efZG8DgAAAAAAyoJNCQAAAAAAIAi7Q4FZfvnl27wLQv/+/Qv9Nxdk8cUXX+C/s+SSS7of/OAHrf77a6+9dl2vAwAAAAAANGFTAgAAAAAACKJfv37+1169erV6l4Vq+d0M8rsbVHr33XcLvw77/7fNCp07d3ZDhw5t864NAAAAAACgfp0L/FkAAAAAAIAO3ZSwxhpruNdee82NHz++7n+vT58+/tda/86DDz5Y+HV07drVbbPNNu6TTz5xDz/8cOF/HwAAAAAALBibEgAAAAAAQDBnnHGGf3yCPTZh7Nix8/3+Bx984K6++uoWPxsyZIj/9aKLLnKff/55889HjhzpLrnkkna9jl/96lf+TgmHHHKIe/TRR+f7fbsrw3XXXedmzpzZrv8+AAAAAABlxeMbAAAAAABAMPvtt58bN26cO/fcc92GG27o1l9/fbfqqqu6LMvcxIkT3csvv+yWXHJJ9/Of/7z539l3333db3/7Wzdq1Ci35pprusGDB7v33nvPPfvss+6EE05wF154YeHXseWWW7rLL7/cHX300W7bbbd1gwYNcgMHDnTdunVzkyZN8hsmZs2a5b7//e+7Hj16dPAoAAAAAACgizslAAAAAACAoM455xz32GOP+bslTJkyxf35z392jzzyiJszZ4478sgj3fDhw1v8edsUYI9ZsM0JM2bMcCNGjPB/9rbbbnP/9m//1u7XccQRR7jnnnvOHXTQQf6/e++997q//OUv/i4J+++/v//npZZaqgMSAwAAAABQHp0yaz0AAAAAAAAAAAAAAADoYNwpAQAAAAAAAAAAAAAANASbEgAAAAAAAAAAAAAAQEOwKQEAAAAAAAAAAAAAADQEmxIAAAAAAAAAAAAAAEBDsCkBAAAAAAAAAAAAAAA0BJsSAAAAAAAAAAAAAABAQ7ApAQAAAAAAAAAAAAAANASbEgAAAAAAAAAAAAAAQEOwKQEAAAAAAAAAAAAAADQEmxIAAAAAAAAAAAAAAEBDsCkBAAAAAAAAAAAAAAA0BJsSAAAAAAAAAAAAAABAQ7ApAQAAAAAAAAAAAAAANASbEgAAAAAAAAAAAAAAQEOwKQEAAAAAAAAAAAAAADQEmxIAAAAAAAAAAAAAAEBDsCkBAAAAAAAAAAAAAAC4Rvh/8xPy/LDUO9kAAAAASUVORK5CYII=" + }, + "metadata": {}, + "output_type": "display_data" + } + ], + "execution_count": 14 } ], "metadata": { From 9916c15086ba3b48f32b6c12ad0c48c58e0e5696 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 28 Oct 2025 15:05:45 +0100 Subject: [PATCH 26/83] simplify some functionalities --- src/post_processing/utils/fpod_utils.py | 337 ++++++++++++++++++++++-- 1 file changed, 320 insertions(+), 17 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 2d81ed9..93a6c89 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -43,10 +43,10 @@ } season_color = { - "spring": "#C5E0B4", #green - "summer": "#FCF97F", #darkgoldenrod - "autumn": "#ED7C2F", #orange - "winter": "#B4C7E8", #blue + "spring": "green", #C5E0B4 + "summer": "darkgoldenrod", #FCF97F + "autumn": "orange", #ED7C2F + "winter": "blue", #B4C7E8 } def fpod2aplose( @@ -144,6 +144,7 @@ def cpod2aplose( df_deploy = df[df["deploy.name"] == deploy_name].copy() result = fpod2aplose(df_deploy, tz, dataset_name, annotation, bin_size) + result["annotator"] = result.loc[result["annotator"] == "FPOD"] = "CPOD" if extra_columns: for col in extra_columns: @@ -155,6 +156,67 @@ def cpod2aplose( return concat(results, ignore_index=True) +def pod2aplose( + df: DataFrame, + tz: pytz.timezone, + dataset_name: str, + annotation: str, + annotator: str, + bin_size: int = 60, +) -> DataFrame: + """Format PODs DataFrame to match APLOSE format. + + Parameters + ---------- + df: DataFrame + FPOD result dataframe + tz: pytz.timezone + Timezone object to get non-naïve datetimes + dataset_name: str + dataset name + annotation: str + annotation name + annotator: str + annotator name + bin_size: int + Duration of the detections in seconds + + Returns + ------- + DataFrame + An APLOSE formatted DataFrame + + """ + df = df.copy() + df["_temp_dt"] = [ + tz.localize(strptime_from_text(entry, "%d/%m/%Y %H:%M")) + for entry in df["ChunkEnd"] + ] + + # Trier le DataFrame selon ces datetime + df = df.sort_values("_temp_dt").reset_index(drop=True) + + # Maintenant extraire les colonnes triées + fpod_start_dt = df["_temp_dt"].tolist() + fpod_end_dt = [entry + Timedelta(seconds=bin_size) for entry in fpod_start_dt] + + data = { + "dataset": [dataset_name] * len(df), + "filename": df["deploy.name"].tolist(), + "start_time": [0] * len(df), + "end_time": [bin_size] * len(df), + "start_frequency": [0] * len(df), + "end_frequency": [0] * len(df), + "annotation": [annotation] * len(df), + "annotator": [annotator] * len(df), + "start_datetime": [strftime_osmose_format(entry) for entry in fpod_start_dt], + "end_datetime": [strftime_osmose_format(entry) for entry in fpod_end_dt], + "is_box": [0] * len(df), + } + + return DataFrame(data) + + def csv_folder( folder_path: Path, sep: str = ";", @@ -359,6 +421,7 @@ def meta_cut_aplose( metadata,["deploy.name", "deployment_date","recovery_date"]) raw = parse_timestamps(raw_data, "start_datetime") + raw = raw.sort_values(["start_datetime"]) dfm = raw.merge( metadata[["deploy.name", "deployment_date","recovery_date"]], @@ -428,11 +491,11 @@ def build_range( A full period of time with positive and negative hours to detections. """ - add_utc(df, ["Début","Fin"], fr) + add_utc(df, ["Deb","Fin"], fr) all_ranges = [] for _, row in df.iterrows(): - hours = date_range(row["Début"], row["Fin"], freq=fr) + hours = date_range(row["Deb"], row["Fin"], freq=fr) tmp = DataFrame( { "deploy.name": row["deploy.name"], @@ -468,7 +531,9 @@ def feeding_buzz( df["microsec"] = df["microsec"] / 1e6 df["ICI"] = df["microsec"].diff() - if species == "Marsouin": # Nuuttila et al., 2013 + if species == "Dauphin": # Herzing et al., 2014 + df["Buzz"] = (df["ICI"].between(0, 0.02)).astype(int) + elif species == "Marsouin": # Nuuttila et al., 2013 df["Buzz"] = (df["ICI"].between(0, 0.01)).astype(int) elif species == "Commerson": # Reyes Reyes et al., 2015 df["Buzz"] = (df["ICI"].between(0, 0.005)).astype(int) @@ -701,12 +766,12 @@ def deploy_period( Returns ------- DataFrame - DataFrame with columns: [col_deployment, 'Début', 'Fin']. + DataFrame with columns: [col_deployment, 'Deb', 'Fin']. """ return ( df.groupby([col_deployment]) - .agg(Début=(col_timestamp, "first"), Fin=(col_timestamp, "last")) + .agg(Deb=(col_timestamp, "first"), Fin=(col_timestamp, "last")) .reset_index() ) @@ -733,7 +798,7 @@ def first_last( Returns ------- DataFrame - DataFrame with deployment periods (Début, Fin). + DataFrame with deployment periods (Deb, Fin). """ df_parsed = parse_timestamps(df, col_timestamp, date_formats) @@ -755,7 +820,7 @@ def actual_data( Returns ------- DataFrame - DataFrame with corrected deployment periods (Début, Fin). + DataFrame with corrected deployment periods (Deb, Fin). """ required_columns( @@ -765,12 +830,14 @@ def actual_data( beg_end = first_last(df, "ChunkEnd") - beg_end = add_utc(beg_end, ["Début", "Fin"]) + beg_end = add_utc(beg_end, ["Deb", "Fin"]) final = beg_end.merge(meta[["deployment_date","recovery_date","deploy.name"]], on = "deploy.name", how="left") - final.loc[final["Début"] < final["deployment_date"], "Début"] = final["deployment_date"] + final.loc[final["Deb"] < final["deployment_date"], "Deb"] = final["deployment_date"] final.loc[final["Fin"] > final["recovery_date"], "Fin"] = final["recovery_date"] + final.loc[final["Deb"] > final["Fin"], ["Deb", "Fin"]] = None + final = final.sort_values(by=["Deb"]) return final.drop(["deployment_date", "recovery_date"], axis=1) def create_matrix( @@ -1108,14 +1175,14 @@ def calendar( meta["deployment_date"] = to_datetime(meta["deployment_date"]) meta["recovery_date"] = to_datetime(meta["recovery_date"]) meta = meta.sort_values(["deploy.name", "deployment_date"]).reset_index(drop=True) - data = data.sort_values(["deploy.name", "Début"]).reset_index(drop=True) + data = data.sort_values(["deploy.name", "Deb"]).reset_index(drop=True) df_fusion = data.merge( meta[["deploy.name", "deployment_date", "recovery_date"]], on=["deploy.name"], how="outer", ) - df_fusion["Début"] = df_fusion["Début"].fillna(df_fusion["deployment_date"]) + df_fusion["Deb"] = df_fusion["Deb"].fillna(df_fusion["deployment_date"]) df_fusion["Fin"] = df_fusion["Fin"].fillna(df_fusion["deployment_date"]) df_fusion[["Site", "Phase"]] = df_fusion["deploy.name"].str.split("_", expand=True) @@ -1126,6 +1193,7 @@ def calendar( sites = sorted(df_fusion["Site"].unique(), reverse=True) site_mapping = {site: idx for idx, site in enumerate(sites)} + for _, row in df_fusion.iterrows(): y_pos = site_mapping[row["Site"]] ax.broken_barh( @@ -1136,15 +1204,16 @@ def calendar( linewidth=0.8, ) - if row["Début"] != row["deployment_date"]: + if notna(row["Deb"]) and notna(row["Fin"]) and row["Fin"] > row["Deb"]: ax.broken_barh( - [(row["Début"], row["Fin"] - row["Début"])], + [(row["Deb"], row["Fin"] - row["Deb"])], (y_pos - 0.15, 0.3), facecolors=row["color"], edgecolors="black", linewidth=0.8, ) + ax.set_yticks(range(len(sites))) ax.set_yticklabels(sites, fontsize=12) @@ -1160,5 +1229,239 @@ def calendar( ax.legend(handles=legend_elements, loc="upper left", fontsize=11, frameon=True) # Layout final plt.xticks(fontsize=12) + plt.tight_layout() + plt.show() + + +def hist_mean_m( + df: DataFrame, + metric_mean: str, + metric_std: str, + ylabel: str | None = None, + title_suffix: str | None = None, +) -> None: + """Produce a histogram of the given data. + + It shows mean and standard deviation of the metric. + + Parameters + ---------- + df: DataFrame + All data grouped by site and month + metric_mean: str + Column name for the mean values (e.g., "%click_mean") + metric_std: str + Column name for the standard deviation values (e.g., "%click_std") + ylabel: str, optional + Label for y-axis. If None, uses metric_mean + title_suffix: str, optional + Suffix for the main title. If None, uses metric_mean + + Returns + ------- + Return a plot of all deployments and associated data. + + """ + sites = df["site.name"].unique() + n_sites = len(sites) + fig, axs = plt.subplots(n_sites, 1, figsize=(14, 3 * n_sites), sharex=True) + if n_sites == 1: + axs = [axs] + + # Calculate max for y-axis scaling + max_value = max(df[metric_mean] + df[metric_std]) + + for i, site in enumerate(sorted(sites)): + site_data = df[df["site.name"] == site] + ax = axs[i] + + ax.bar( + x=site_data["Month"], + height=site_data[metric_mean], + yerr=site_data[metric_std], + capsize=4, + color=site_colors.get(site, "gray"), + alpha=0.8, + edgecolor="black", + linewidth=0.5, + label=f"Site {site}") + + ax.set_title(f"{site}", fontsize=12) + ax.set_ylim(0, max_value * 1.1) + ax.set_ylabel(ylabel if ylabel else metric_mean, fontsize=10) + + # Only set x-label on last subplot + if i == n_sites - 1: + ax.set_xlabel("Mois", fontsize=10) + ax.set_xticks( + [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12], + [ + "Jan", + "Fev", + "Mar", + "Avr", + "Mai", + "Jun", + "Jul", + "Aou", + "Sep", + "Oct", + "Nov", + "Dec", + ], + ) + if metric_mean in ("%buzzes_mean", "FBR_mean"): + for _, bar in enumerate(ax.patches): + bar.set_hatch("/") + + fig.suptitle( + f"{title_suffix if title_suffix else metric_mean} per month", + fontsize=16) + plt.xticks(rotation=45) + plt.tight_layout() + plt.show() + + +def hist_mean_h( + df: DataFrame, + metric_mean: str, + metric_std: str, + ylabel: str | None = None, + title_suffix: str | None = None, +) -> None: + """Produce a histogram of the given data. + + It shows mean and standard deviation of the metric. + + Parameters + ---------- + df: DataFrame + All data grouped by site and month + metric_mean: str + Column name for the mean values (e.g., "%click_mean") + metric_std: str + Column name for the standard deviation values (e.g., "%click_std") + ylabel: str, optional + Label for y-axis. If None, uses metric_mean + title_suffix: str, optional + Suffix for the main title. If None, uses metric_mean + + Returns + ------- + Return a plot of all deployments and associated data. + + """ + sites = df["site.name"].unique() + n_sites = len(sites) + fig, axs = plt.subplots(n_sites, 1, figsize=(14, 5 * n_sites), sharex=True) + if n_sites == 1: + axs = [axs] + + # Calculate max for y-axis scaling + max_value = max(df[metric_mean] + df[metric_std]) + + for i, site in enumerate(sorted(sites)): + site_data = df[df["site.name"] == site] + ax = axs[i] + + ax.bar( + x=site_data["Hour"], + height=site_data[metric_mean], + yerr=site_data[metric_std], + capsize=4, + color=site_colors.get(site, "gray"), + alpha=0.8, + edgecolor="black", + linewidth=0.5, + label=f"Site {site}", + ) + + ax.set_title(f"{site}", fontsize=12) + ax.set_ylim(0, max_value * 1.1) + ax.set_ylabel(ylabel if ylabel else metric_mean, fontsize=10) + ax.set_xticks(range(24)) + + # Only set x-label on last subplot + if i == n_sites - 1: + ax.set_xlabel("Heure", fontsize=10) + if metric_mean in ("%buzzes_mean", "FBR_mean"): + for _, bar in enumerate(ax.patches): + bar.set_hatch("/") + + fig.suptitle( + f"{title_suffix if title_suffix else metric_mean} per hour", fontsize=16) + plt.xticks(rotation=45) + plt.tight_layout() + plt.show() + + +def hist_mean_s( + df: DataFrame, + metric_mean: str, + metric_std: str, + ylabel: str | None = None, + title_suffix: str | None = None, +) -> None: + """Plot bar chart with mean values and error bars (std) per site. + + Parameters + ---------- + df: DataFrame + All data grouped by site + metric_mean: str + Column name for the mean values (e.g., "FBR_mean") + metric_std: str + Column name for the standard deviation values (e.g., "FBR_std") + ylabel: str, optional + Label for y-axis. If None, uses metric_mean + title_suffix: str, optional + Suffix for the title. If None, uses metric_mean + add_hatch: bool, optional + Add hatching pattern to bars (useful for FBR, %buzzes). Default False + + """ + fig, ax = plt.subplots(figsize=(10, 6)) + + # Group by site and calculate means if needed + plot_data = df.groupby("site.name")[[metric_mean, metric_std]].mean().reset_index() + + x_pos = range(len(plot_data)) + + # Create bars + bars = ax.bar( + x=x_pos, + height=plot_data[metric_mean], + color=[site_colors.get(site, "gray") for site in plot_data["site.name"]], + alpha=0.8, + edgecolor="black", + linewidth=0.5) + + # Add hatching if requested + if metric_mean in ("%buzzes_mean", "FBR_mean"): + for _, bar in enumerate(ax.patches): + bar.set_hatch("/") + + # Add error bars + for i, (_, row) in enumerate(plot_data.iterrows()): + # Ensure error bar doesn't go below zero + yerr_lower = min(row[metric_mean], row[metric_std]) + yerr_upper = row[metric_std] + ax.errorbar( + i, + row[metric_mean], + yerr=[[yerr_lower], [yerr_upper]], + fmt="none", + color="black", + capsize=5, + linewidth=2, + ) + + ax.set_xticks(x_pos) + ax.set_xticklabels(plot_data["site.name"]) + ax.set_title(f"{title_suffix if title_suffix else metric_mean} per site", + fontsize=12) + ax.set_ylabel(ylabel if ylabel else metric_mean, fontsize=10) + ax.set_xlabel("Site", fontsize=10) + plt.tight_layout() plt.show() \ No newline at end of file From 8a3a7c7f106b6e87a78d604efaff179ce08c32ff Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 28 Oct 2025 15:05:54 +0100 Subject: [PATCH 27/83] add comments --- user_case/example_FPOD-CPOD_raw.ipynb | 177 +++++++++----------------- 1 file changed, 63 insertions(+), 114 deletions(-) diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index d2f0eef..141a1ea 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-10-24T07:52:57.623291Z", - "start_time": "2025-10-24T07:52:51.711980Z" + "end_time": "2025-10-28T10:33:49.873418Z", + "start_time": "2025-10-28T10:33:47.879805Z" } }, "source": [ @@ -15,7 +15,7 @@ "\n", "import pytz\n", "\n", - "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose\n", + "from post_processing.utils.fpod_utils import csv_folder, pod2aplose, actual_data, meta_cut_aplose\n", "from post_processing.utils.core_utils import json2df" ], "outputs": [], @@ -26,7 +26,8 @@ "cell_type": "markdown", "source": [ "### Load data\n", - "Import your raw FPOD or CPOD data. All files for one site must be stored in the same folder.\n", + "🐬 = input to modify \\\n", + "Import your raw FPOD or CPOD data. All files for one site must be stored in the same folder and identified by their respective phases. \\\n", "You also need to import your metadata file." ], "id": "c464f241817a1407" @@ -34,15 +35,15 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T07:53:19.702997Z", - "start_time": "2025-10-24T07:53:18.892419Z" + "end_time": "2025-10-28T10:34:05.874705Z", + "start_time": "2025-10-28T10:33:51.302952Z" } }, "cell_type": "code", "source": [ - "pod_files = Path(r\"U:\\D\")\n", - "path = csv_folder(pod_files) #Path to your data folder.\n", - "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_kerguelen.json\") #Path to your metadata file.\n", + "pod_files = Path(r\"U:\\CA4\") #Path to your data folder. 🐬\n", + "path = csv_folder(pod_files) #Process all your POD.csv files.\n", + "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_calais.json\") #Path to your metadata file. 🐬\n", "\n", "print(path.head())\n", "df_0 = path.dropna()\n", @@ -56,52 +57,37 @@ "name": "stdout", "output_type": "stream", "text": [ - " File ChunkEnd DPM Nall MinsOn \\\n", - "0 POD3042 file01.CP3 21/10/2019 12:11 0 0 0 \n", - "1 POD3042 file01.CP3 21/10/2019 12:12 0 0 0 \n", - "2 POD3042 file01.CP3 21/10/2019 12:13 0 0 0 \n", - "3 POD3042 file01.CP3 21/10/2019 12:14 0 0 0 \n", - "4 POD3042 file01.CP3 21/10/2019 12:15 0 0 0 \n", - "\n", - " deploy.name \n", - "0 Site D Simone_Phase1 \n", - "1 Site D Simone_Phase1 \n", - "2 Site D Simone_Phase1 \n", - "3 Site D Simone_Phase1 \n", - "4 Site D Simone_Phase1 \n" + " File ChunkEnd DPM Nall MinsOn deploy.name\n", + "0 CA4 POD2397 file01.CP3 14/05/2014 07:07 0.0 0.0 1.0 CA4_Phase1\n", + "1 CA4 POD2397 file01.CP3 14/05/2014 07:08 0.0 8.0 1.0 CA4_Phase1\n", + "2 CA4 POD2397 file01.CP3 14/05/2014 07:09 0.0 4.0 1.0 CA4_Phase1\n", + "3 CA4 POD2397 file01.CP3 14/05/2014 07:10 0.0 251.0 1.0 CA4_Phase1\n", + "4 CA4 POD2397 file01.CP3 14/05/2014 07:11 0.0 4095.0 1.0 CA4_Phase1\n" ] } ], "execution_count": 2 }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-24T07:54:18.370860Z", - "start_time": "2025-10-24T07:53:28.225983Z" - } - }, + "metadata": {}, "cell_type": "code", - "source": [ - "d_beg_end = actual_data(df_0, metadatax)\n", - "d_beg_end.to_csv(r\"U:\\Deb_Fin_Site D Simone.csv\", index=False)" - ], + "source": "d_beg_end = actual_data(df_0, metadatax) #Extract the beginning and end of recording for every phase.", "id": "fa52f8971b61aaf6", "outputs": [], - "execution_count": 3 + "execution_count": null }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:03:40.056689Z", - "start_time": "2025-10-24T08:03:40.048631Z" + "end_time": "2025-10-28T10:34:07.329284Z", + "start_time": "2025-10-28T10:34:07.315727Z" } }, "cell_type": "code", - "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ]", + "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ] #Remove the 0 to lighten the APLOSE file.", "id": "769e128f2a5293e1", "outputs": [], - "execution_count": 5 + "execution_count": 3 }, { "metadata": {}, @@ -116,13 +102,14 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-24T08:08:16.903159Z", - "start_time": "2025-10-24T08:08:16.776363Z" + "end_time": "2025-10-28T10:34:10.899696Z", + "start_time": "2025-10-28T10:34:10.180555Z" } }, "cell_type": "code", "source": [ - "df_aplose = cpod2aplose(df_1, pytz.utc, \"Site D Simone\", \"Commerson\")\n", + "df_aplose = pod2aplose(df_1, pytz.utc, \"CA4\", \"Marsouin\", \"CPOD\") #Precise site name, species and instrument. 🐬\n", + "df_aplose[\"deploy.name\"] = df_aplose[\"filename\"]\n", "print(df_aplose.head())" ], "id": "4cc867627d677529", @@ -131,107 +118,69 @@ "name": "stdout", "output_type": "stream", "text": [ - " dataset filename start_time end_time start_frequency \\\n", - "0 Site D Simone 0 60 0 \n", - "1 Site D Simone 0 60 0 \n", - "2 Site D Simone 0 60 0 \n", - "3 Site D Simone 0 60 0 \n", - "4 Site D Simone 0 60 0 \n", + " dataset filename start_time end_time start_frequency end_frequency \\\n", + "0 CA4 CA4_Phase1 0 60 0 0 \n", + "1 CA4 CA4_Phase1 0 60 0 0 \n", + "2 CA4 CA4_Phase1 0 60 0 0 \n", + "3 CA4 CA4_Phase1 0 60 0 0 \n", + "4 CA4 CA4_Phase1 0 60 0 0 \n", "\n", - " end_frequency annotation annotator start_datetime \\\n", - "0 0 Commerson FPOD 2019-10-26T16:21:00.000+0000 \n", - "1 0 Commerson FPOD 2019-10-26T16:24:00.000+0000 \n", - "2 0 Commerson FPOD 2019-10-26T16:36:00.000+0000 \n", - "3 0 Commerson FPOD 2020-03-14T14:38:00.000+0000 \n", - "4 0 Commerson FPOD 2020-03-14T15:22:00.000+0000 \n", + " annotation annotator start_datetime \\\n", + "0 Marsouin CPOD 2014-05-17T03:52:00.000+0000 \n", + "1 Marsouin CPOD 2014-05-17T04:47:00.000+0000 \n", + "2 Marsouin CPOD 2014-05-19T17:06:00.000+0000 \n", + "3 Marsouin CPOD 2014-05-20T11:07:00.000+0000 \n", + "4 Marsouin CPOD 2014-05-20T11:16:00.000+0000 \n", "\n", - " end_datetime is_box deploy.name \n", - "0 2019-10-26T16:22:00.000+0000 0 Site D Simone_Phase1 \n", - "1 2019-10-26T16:25:00.000+0000 0 Site D Simone_Phase1 \n", - "2 2019-10-26T16:37:00.000+0000 0 Site D Simone_Phase1 \n", - "3 2020-03-14T14:39:00.000+0000 0 Site D Simone_Phase2 \n", - "4 2020-03-14T15:23:00.000+0000 0 Site D Simone_Phase2 \n" + " end_datetime is_box deploy.name \n", + "0 2014-05-17T03:53:00.000+0000 0 CA4_Phase1 \n", + "1 2014-05-17T04:48:00.000+0000 0 CA4_Phase1 \n", + "2 2014-05-19T17:07:00.000+0000 0 CA4_Phase1 \n", + "3 2014-05-20T11:08:00.000+0000 0 CA4_Phase1 \n", + "4 2014-05-20T11:17:00.000+0000 0 CA4_Phase1 \n" ] } ], - "execution_count": 6 + "execution_count": 4 }, { "metadata": {}, "cell_type": "markdown", "source": [ - "#### *F-POD*\n", - "Use fpod2aplose if you are managing F-POD data." + "### Clean your dataset\n", + "Remove useless lines, recorder outside the instrument submersion. Export your file to the aplose format. You can change the name of the file to match the project you are working on." ], - "id": "b805737ac321da69" + "id": "d2c642658dbfe278" }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-22T14:47:04.017877Z", - "start_time": "2025-10-22T14:47:03.833873Z" + "end_time": "2025-10-28T10:34:15.645066Z", + "start_time": "2025-10-28T10:34:13.520944Z" } }, "cell_type": "code", - "source": [ - "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", - "print(df_aplose.head())" - ], - "id": "b8d1c500f6daea0d", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " dataset filename start_time end_time start_frequency end_frequency \\\n", - "0 CETIROISE 0 60 0 0 \n", - "1 CETIROISE 0 60 0 0 \n", - "2 CETIROISE 0 60 0 0 \n", - "3 CETIROISE 0 60 0 0 \n", - "4 CETIROISE 0 60 0 0 \n", - "\n", - " annotation annotator start_datetime \\\n", - "0 Marsouin FPOD 2023-02-07T05:34:00.000+0000 \n", - "1 Marsouin FPOD 2023-02-07T05:35:00.000+0000 \n", - "2 Marsouin FPOD 2023-02-07T05:36:00.000+0000 \n", - "3 Marsouin FPOD 2023-02-07T22:40:00.000+0000 \n", - "4 Marsouin FPOD 2023-02-24T15:32:00.000+0000 \n", - "\n", - " end_datetime is_box deploy.name \n", - "0 2023-02-07T05:35:00.000+0000 0 Point C_Phase 4 \n", - "1 2023-02-07T05:36:00.000+0000 0 Point C_Phase 4 \n", - "2 2023-02-07T05:37:00.000+0000 0 Point C_Phase 4 \n", - "3 2023-02-07T22:41:00.000+0000 0 Point C_Phase 4 \n", - "4 2023-02-24T15:33:00.000+0000 0 Point C_Phase 4 \n" - ] - } - ], - "execution_count": 3 + "source": "cleared = meta_cut_aplose(df_aplose, metadatax)", + "id": "895bd5a116918285", + "outputs": [], + "execution_count": 5 }, { "metadata": {}, "cell_type": "markdown", - "source": [ - "### Clean your dataset\n", - "Remove useless lines, recorder outside the instrument submersion. Export your file to the aplose format. You can change the name of the file to match the project you are working on." - ], - "id": "d2c642658dbfe278" + "source": "### Export", + "id": "d114ed7164cfd0da" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-24T08:10:12.478620Z", - "start_time": "2025-10-24T08:10:11.777820Z" - } - }, + "metadata": {}, "cell_type": "code", + "outputs": [], + "execution_count": null, "source": [ - "cleared = meta_cut_aplose(df_aplose, metadatax)\n", - "cleared.to_csv(r\"U:\\APLOSE_D_pos.csv\", index=False)" + "d_beg_end.to_csv(r\"U:\\Deb_Fin_CA4.csv\", index=False) #Export the new file. 🐬\n", + "cleared.to_csv(r\"U:\\APLOSE_CA4_pos.csv\", index=False) #Name your file. 🐬" ], - "id": "895bd5a116918285", - "outputs": [], - "execution_count": 7 + "id": "9d34e00f4e8147e8" } ], "metadata": { From cab4f640f5d10fe1cfda9ac2bbbd4aebc80a5f47 Mon Sep 17 00:00:00 2001 From: fouinel Date: Wed, 5 Nov 2025 16:49:06 +0100 Subject: [PATCH 28/83] add a precision in csv_folder() --- src/post_processing/utils/fpod_utils.py | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 93a6c89..8cf0274 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -252,7 +252,7 @@ def csv_folder( all_data = [] for file in all_files: - df = read_csv(file, sep=sep, encoding=encoding) + df = read_csv(file, sep=sep, encoding=encoding, dtype="O") df["deploy.name"] = file.stem all_data.append(df) From 1fafdaa7ff1a5f15cfea3e0cade2bb5d11ef6189 Mon Sep 17 00:00:00 2001 From: fouinel Date: Wed, 5 Nov 2025 17:17:20 +0100 Subject: [PATCH 29/83] create new functions to process TimeLost --- src/post_processing/utils/fpod_utils.py | 60 +++++++++++++++++++++++++ 1 file changed, 60 insertions(+) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 8cf0274..82c4748 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -840,6 +840,66 @@ def actual_data( final = final.sort_values(by=["Deb"]) return final.drop(["deployment_date", "recovery_date"], axis=1) + +def process_tl(tl_files: Path)->DataFrame: + """Process Environmental data extracted from cpod.exe to get a usable dataframe. + + Parameters + ---------- + tl_files: Path + All your Environmental data files. + + Returns + ------- + %TimeLost DataFrame. + + """ + df = csv_folder(tl_files) + df = df.dropna() + df = parse_timestamps(df, "ChunkEnd") + df = add_utc(df, ["ChunkEnd"], "h") + df["start_datetime"] = df["ChunkEnd"] + + return df.sort_values(["start_datetime"]) + + +def filter_tl(df: DataFrame, tl: int)->DataFrame: + """Remove lines with a %TimeLost superior to the chosen threshold. + + Parameters + ---------- + df: DataFrame + Table of data and associated TimeLost. + tl: int + TimeLost filter threshold. + + Returns + ------- + Filtered DataFrame with few %TimeLost. + + """ + df["%TimeLost"] = (df["%TimeLost"].fillna(tl)).astype(int) + + return df[df["%TimeLost"] < tl] + +def preserved_data(filtered_df: DataFrame, whole_df: DataFrame)-> float: + """Calculate the percentage of preserved data. + + Parameters + ---------- + filtered_df: DataFrame + Result of filter_tl. + whole_df: DataFrame + Table before filtering. + + Returns + ------- + Percentage of preserved data. + + """ + return (len(filtered_df) / len(whole_df)) *100 + + def create_matrix( df: DataFrame, group_cols: list, From bfe31248325d0a13c4d768cd0794736ab27e7ac6 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 7 Nov 2025 12:24:21 +0100 Subject: [PATCH 30/83] change everything to comment --- src/post_processing/utils/fpod_utils.py | 180 +++++++----------------- 1 file changed, 53 insertions(+), 127 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 82c4748..dbc96ae 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -24,136 +24,12 @@ from post_processing.utils.core_utils import get_coordinates, get_sun_times +from user_case.config import season_color, site_colors + if TYPE_CHECKING: import pytz logger = logging.getLogger(__name__) -site_colors = { - "Site A Haute": "#118B50", - "Site B Heugh": "#5DB996", - "Site C Chat": "#B0DB9C", - "Site D Simone": "#E3F0AF", - "CA4": "#80D8C3", - "Walde": "#4DA8DA", - "Point C": "#932F67", - "Point D": "#D92C54", - "Point E": "#DDDEAB", - "Point F": "#8ABB6C", - "Point G": "#456882", -} - -season_color = { - "spring": "green", #C5E0B4 - "summer": "darkgoldenrod", #FCF97F - "autumn": "orange", #ED7C2F - "winter": "blue", #B4C7E8 -} - -def fpod2aplose( - df: DataFrame, - tz: pytz.timezone, - dataset_name: str, - annotation: str, - bin_size: int = 60, -) -> DataFrame: - """Format FPOD DataFrame to match APLOSE format. - - Parameters - ---------- - df: DataFrame - FPOD result dataframe - tz: pytz.timezone - Timezone object to get non-naïve datetimes - dataset_name: str - dataset name - annotation: str - annotation name - bin_size: int - Duration of the detections in seconds - - Returns - ------- - DataFrame - An APLOSE formatted DataFrame - - """ - fpod_start_dt = sorted( - [ - tz.localize(strptime_from_text(entry, "%d/%m/%Y %H:%M")) - for entry in df["ChunkEnd"] - ], - ) - - fpod_end_dt = sorted( - [entry + Timedelta(seconds=bin_size) for entry in fpod_start_dt], - ) - - data = { - "dataset": [dataset_name] * len(df), - "filename": [""] * len(df), - "start_time": [0] * len(df), - "end_time": [bin_size] * len(df), - "start_frequency": [0] * len(df), - "end_frequency": [0] * len(df), - "annotation": [annotation] * len(df), - "annotator": ["FPOD"] * len(df), - "start_datetime": [strftime_osmose_format(entry) for entry in fpod_start_dt], - "end_datetime": [strftime_osmose_format(entry) for entry in fpod_end_dt], - "is_box": [0] * len(df), - } - if "deploy.name" in df.columns: - data["deploy.name"] = df["deploy.name"] - - return DataFrame(data) - - -def cpod2aplose( - df: DataFrame, - tz: pytz.BaseTzInfo, - dataset_name: str, - annotation: str, - bin_size: int = 60, - extra_columns: list | None = None, -) -> DataFrame: - """Format CPOD DataFrame to match APLOSE format. - - Parameters - ---------- - df: DataFrame - CPOD result dataframe - tz: pytz.BaseTzInfo - Timezone object to get non-naïve datetimes - dataset_name: str - dataset name - annotation: str - annotation name - bin_size: int, optional - Duration of the detections in seconds - extra_columns: list, optional - Additional columns added from df to data - - Returns - ------- - DataFrame - An APLOSE formatted DataFrame - - """ - results = [] - - for deploy_name in df["deploy.name"].unique(): - df_deploy = df[df["deploy.name"] == deploy_name].copy() - - result = fpod2aplose(df_deploy, tz, dataset_name, annotation, bin_size) - result["annotator"] = result.loc[result["annotator"] == "FPOD"] = "CPOD" - - if extra_columns: - for col in extra_columns: - if col in df_deploy.columns: - result[col] = df_deploy[col].tolist() - - results.append(result) - - return concat(results, ignore_index=True) def pod2aplose( @@ -1092,7 +968,7 @@ def ym_percent(df: DataFrame, metric: str) -> None: color=bar_colors, width=25, ) - ax.set_title(f"{site} - Percentage of minutes postitive to detection per month") + ax.set_title(f"{site}") ax.set_ylim(0, max(df[metric]) + 0.2) ax.set_ylabel(metric) if i != 3: @@ -1172,6 +1048,56 @@ def month_percent(df: DataFrame, metric: str) -> None: plt.show() +def day_percent(df: DataFrame, metric: str) -> None: + """Plot a graph with the percentage of DPM per site/month-year. + + Parameters + ---------- + df: DataFrame + All percentages grouped by site and month per year + metric: str + Type of percentage you want to show on the graph + + """ + sites = df["site.name"].unique() + n_sites = len(sites) + fig, axs = plt.subplots(n_sites, 1, figsize=(14, 2.5 * n_sites), sharex=True) + if n_sites == 1: + axs = [axs] + for i, site in enumerate(sorted(sites)): + site_data = df[df["site.name"] == site] + ax = axs[i] + bar_colors = site_data["Season"].map(season_color).fillna("gray") + ax.bar( + site_data["Date"], + site_data[metric], + label=f"Site {site}", + color=bar_colors, + ) + ax.set_title(f"{site}") + ax.set_ylim(0, max(df[metric]) + 0.2) + ax.set_ylabel(metric) + if i != 3: + ax.set_xlabel("") + else: + ax.set_xlabel("Months") + if metric in ("%buzzes", "FBR"): + for _, bar in enumerate(ax.patches): + bar.set_hatch("/") + legend_elements = [ + Patch(facecolor=col, edgecolor="black", label=season.capitalize()) + for season, col in season_color.items() + ] + fig.legend( + handles=legend_elements, + loc="upper right", + title="Seasons", + bbox_to_anchor=(0.95, 0.95), + ) + fig.suptitle(f"{metric} per month", fontsize=16) + plt.show() + + def hour_percent(df: DataFrame, metric: str) -> None: """Plot a graph with the percentage of minutes positive to detection per site/hour. From 883640c4dcb08a3ec4d470a17380f75045683673 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 7 Nov 2025 12:25:12 +0100 Subject: [PATCH 31/83] notebooks --- .../example_FPOD-CPOD_firstresults.ipynb | 146 ++++++++---------- user_case/example_FPOD-CPOD_raw.ipynb | 94 ++--------- 2 files changed, 79 insertions(+), 161 deletions(-) diff --git a/user_case/example_FPOD-CPOD_firstresults.ipynb b/user_case/example_FPOD-CPOD_firstresults.ipynb index 51454a3..134a81b 100644 --- a/user_case/example_FPOD-CPOD_firstresults.ipynb +++ b/user_case/example_FPOD-CPOD_firstresults.ipynb @@ -6,8 +6,8 @@ "metadata": { "collapsed": true, "ExecuteTime": { - "end_time": "2025-10-28T13:23:16.275855Z", - "start_time": "2025-10-28T13:23:14.175637Z" + "end_time": "2025-11-06T09:59:30.110070Z", + "start_time": "2025-11-06T09:59:28.122343Z" } }, "source": [ @@ -41,14 +41,14 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-28T13:23:50.797293Z", - "start_time": "2025-10-28T13:23:49.437948Z" + "end_time": "2025-11-06T10:34:05.474853Z", + "start_time": "2025-11-06T10:34:04.483887Z" } }, "cell_type": "code", "source": [ - "ca4 = read_csv(r\"U:\\Hours_DPM_FBUZZ_CA4.csv\")\n", - "walde = read_csv(r\"U:\\Hours_DPM_FBUZZ_Walde.csv\")\n", + "ca4 = read_csv(r\"L:\\acoustock\\Bioacoustique\\DATASETS\\CPOD_PROJETS\\CALAIS\\DATA\\DATA_FULL_OTHERCET\\Hours_DPM_FBUZZ_CA4_ssTL.csv\")\n", + "walde = read_csv(r\"L:\\acoustock\\Bioacoustique\\DATASETS\\CPOD_PROJETS\\CALAIS\\DATA\\DATA_FULL_OTHERCET\\Hours_DPM_FBUZZ_Walde_ssTL.csv\")\n", "\n", "data_c = concat([ca4, walde])\n", "data_c[\"start_datetime\"] = to_datetime(data_c[\"start_datetime\"])\n", @@ -57,7 +57,7 @@ ], "id": "1268d9e6ce5cdf32", "outputs": [], - "execution_count": 7 + "execution_count": 44 }, { "metadata": {}, @@ -86,13 +86,18 @@ "id": "17a5ce1338f6cd1a" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2025-11-06T10:23:15.773466Z", + "start_time": "2025-11-06T10:23:14.586120Z" + } + }, "cell_type": "code", "source": [ - "a = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteA.csv\")\n", - "b = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteB.csv\")\n", - "c = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteC.csv\")\n", - "d = read_csv(r\"U:\\Hours_DPM_FBUZZ_SiteD.csv\")\n", + "a = read_csv(r\"U:\\Hours_DPM_FBUZZ_A.csv\")\n", + "b = read_csv(r\"U:\\Hours_DPM_FBUZZ_B.csv\")\n", + "c = read_csv(r\"U:\\Hours_DPM_FBUZZ_C.csv\")\n", + "d = read_csv(r\"U:\\Hours_DPM_FBUZZ_D.csv\")\n", "\n", "data_k = concat([a, b, c, d])\n", "data_k[\"start_datetime\"] = to_datetime(data_k[\"start_datetime\"])\n", @@ -101,7 +106,7 @@ ], "id": "d65697a1f1487f4c", "outputs": [], - "execution_count": null + "execution_count": 22 }, { "metadata": {}, @@ -115,21 +120,21 @@ { "metadata": { "ExecuteTime": { - "end_time": "2025-10-28T13:23:53.389560Z", - "start_time": "2025-10-28T13:23:53.382634Z" + "end_time": "2025-11-06T10:34:09.795757Z", + "start_time": "2025-11-06T10:34:09.785706Z" } }, "cell_type": "code", "source": "data = data_c #🐬", "id": "add4a626d6cc25a4", "outputs": [], - "execution_count": 8 + "execution_count": 45 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-28T13:23:54.833954Z", - "start_time": "2025-10-28T13:23:54.513035Z" + "end_time": "2025-11-06T10:34:13.881765Z", + "start_time": "2025-11-06T10:34:13.617021Z" } }, "cell_type": "code", @@ -140,33 +145,42 @@ "#t_per = percent_calc(data, \"TRAVAUX\")" ], "id": "37ecc80eda8e57ed", - "outputs": [], - "execution_count": 9 + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "C:\\Users\\fouinel\\AppData\\Local\\Temp\\ipykernel_24020\\669083797.py:4: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", + " data['Date'] = data[\"start_datetime\"].dt.to_period('D').dt.to_timestamp()\n" + ] + } + ], + "execution_count": 46 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-28T13:23:55.879816Z", - "start_time": "2025-10-28T13:23:55.849626Z" + "end_time": "2025-11-06T10:34:15.931189Z", + "start_time": "2025-11-06T10:34:15.912241Z" } }, "cell_type": "code", "source": [ "ym_per = percent_calc(data, \"YM\")\n", "ym_per[\"YM\"] = to_datetime(ym_per[\"YM\"])\n", - "ym_per[\"Season\"] = ym_per[\"YM\"].apply(lambda x: get_season(x)[0])\n", + "ym_per[\"Season\"] = ym_per[\"YM\"].apply(lambda x: get_season(x)[0]) #If in the southern hemisphere, write \"get_season(x, northern = False)\".\n", "ym_per[\"Month\"] = ym_per[\"YM\"].dt.month\n", "ym_per[\"Year\"] = ym_per[\"YM\"].dt.year" ], "id": "2b988869ed2466e1", "outputs": [], - "execution_count": 10 + "execution_count": 47 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-28T13:23:58.602641Z", - "start_time": "2025-10-28T13:23:58.572133Z" + "end_time": "2025-11-06T10:24:21.202676Z", + "start_time": "2025-11-06T10:24:21.177426Z" } }, "cell_type": "code", @@ -177,13 +191,13 @@ ], "id": "cf704032c4a59a7b", "outputs": [], - "execution_count": 11 + "execution_count": 30 }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-28T13:24:00.067944Z", - "start_time": "2025-10-28T13:24:00.054075Z" + "end_time": "2025-11-06T10:24:22.084789Z", + "start_time": "2025-11-06T10:24:22.073176Z" } }, "cell_type": "code", @@ -194,15 +208,10 @@ ], "id": "caf3f71c6b6f70ca", "outputs": [], - "execution_count": 12 + "execution_count": 31 }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T13:24:01.960321Z", - "start_time": "2025-10-28T13:24:01.821063Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "hist_mean_s(\n", @@ -214,51 +223,40 @@ ")" ], "id": "2ff751ae02e80285", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABc0AAAN1CAYAAACtmtOuAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAVRpJREFUeJzt3Qm8lnP++P/3aZVKpEiUpRCRpixjmey+ITFImGwzlvlZBzGWMQwmW8z4ahbbCDHG+rPvI+Nra/K1TZaISEqFUCqq8398rt/nnH/LSdtdZ+n5fDzux33OdV/3fV139eCc1/mc91VWXl5eHgAAAAAAQNSr7hMAAAAAAICaQjQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAFZoO+20U5SVlcUFF1xQ3acCAEANIJoDAFDrfP/99/G73/0uOnbsGI0bN4611lorjjnmmJgwYcIPPm/nnXeO+vXrx7///e9Fiqhz3ho0aBCrrbZarLfeerHHHnvEr3/96/if//mfhZ7r4MGD53utdGvUqFG0adOmeK0bbriheE/zGjp0aOX+6eOFSeeW9j3yyCMXui+L5o9//GMR01977bXqPhUAAJaTBsvrQAAAUCp9+/aN++67r/i4adOmMX78+CI8p7A8fPjwaNGixXzPuemmm4rHTz755Nhqq60W6TgNGzaMli1bVn7+zTffxEcffVTcnnzyybj88stjk002ib/85S+x4447LvT1WrVqVUT7ZMqUKfHZZ58Vr5Nu1157bTzxxBNFmGf5at++fWy88cbF309V0Tz9facfSHTt2rVazg8AgOXLSnMAAGqVf/7zn0UwX2WVVeJf//pXEZ8/+OCD6Ny5c7z//vvxhz/8Yb7nTJw4Mc4444xYZ5114uKLL17kY2233XZFkK+4TZ06Nb799tt4/vnn47TTTivO4e233y5WsP/1r39d6OulFe4Vr1Vx3oceemjxWIr9xx577GL+aVAKt9xyS7zzzjtx4oknVvepAABQA4jmAADUKmlVdpIC809+8pPi4/XXXz8GDBhQfJxWa88rBe7PP/88Bg0aFM2bN1+q4zdp0qSI6VdeeWW88cYb0aVLlygvLy+C63PPPbdYr5XOe8iQIZXv45577imCOgAAUH1EcwAAapVJkyYV9x06dJhr+4Ybbli5qnxOTz31VBGmf/rTn8a+++5b0nNZd9114/777y9GxMyaNSvOOeecxX6NNIO8X79+xccpvqcV59UhzUGvmIeeziOtnN96662L1fTptsMOO8Ttt9++0NcZPXp0/OpXvypW/jdr1ixWXnnl6NSpU5xyyinx8ccf/+Dc9zQCJXnmmWdiv/32K2bVp3E2izOjfdq0aTFw4MDYdttti1E3acRO69atY9NNN40jjjii+MHEolwINH2ctqXRLMlRRx0131z6qjz88MNxwAEHxNprr13M20/n0KNHj2KEz3fffbfI7wMAgOpjpjkAALXK6quvXtyPGjVqru1pNEuSAmmF6dOnxy9/+ctidfk111yzTM4nhd4Udf/0pz8VFwZNI1c22GCDxXqNNDamwtdffx3V7ZBDDol//OMfUa9evWI+/OTJk4uRNOmWfghx4403VhmNb7vttvjFL34RM2bMKD5P0Ti9xrvvvlvc0lz5u+++u7j46YJcffXVceqppxbhPh27Ygb8okgz59Oq/ddff734PJ1jxfmnH7akUTrPPvtsEbUXJgX/Nddcs/ghzOzZs4sfHKTfMvihWH/44YcX769Ces5XX31V/AZCuqUxMI888oi59QAANZyV5gAA1Cq77757cX/dddcVkTpJq4HPPffcuR5PLrzwwiKup9EtaeXvsrL33ntXfpyi7OJKq7MrzHnh0erwf//v/40777wzLrroovjyyy/jiy++KC5YWjHvO4Xvqn4AkcbmpGicVtyfeeaZ8eGHHxYhOc2BT/PC+/TpU0TtdL+gFefpOKeffnqxIjztk2J3eo3zzjtvkc49BfcUzNOfYVpRnp6b3kOK+GPHji2i9Q8F+zn179+/GJXTrl27yteec779vGN00rigFMzTD0zSDw9SLE+3NAM//TZC2v7SSy/Fz3/+80U6PgAA1cdKcwAAapVdd9019tlnn3jwwQeLVcVpNEoKs0kKk2k0SPKf//ynGNORRowcf/zxy/Sctthii8qP510BvzAzZ84sfgCQpFXZW221VZX77b///tGoUaMffK15R9MsiRR6U6T+zW9+U7ktrd5PoTxF7DTq5ne/+10RiVdaaaXi8bQS+4QTTiju0xiSeS9ouvHGGxchPo3HeeCBB+Kqq66KP/7xj/MdO/1mQHqfKcxXSCvN5x3FsyAvvPBCZfBOr1Mh/bm2bds2DjvssOJWamkVefpzWWONNWLo0KGVoT1Jf0a9e/eObt26FWNq0g8lXnvttejatWvJzwMAgNKw0hwAgFonrej97W9/W0TyNCc6jdFIK3jT+JA0+iKN9kjhNt2nIJ2iaRrfcuCBBxaPpznb6WKeVV00dEnMuTo8rcxeFFOmTClWHu+1116V40TSCuuK8TPzSium00rsH7qlaL200giSFJ2rkv7MK95jxQVZk3/961/x3nvvRatWreLoo49e4GunlejJ448/vsB9zj777CU+91VXXbW4HzduXCxPaVxN8rOf/WyuYD7vCJ6dd955oe8fAIDqZ6U5AAC1TlpxnVY7p1tVrr322njxxReLMSFpFXga35IuDJnmWv/Xf/1XEc7TiucUrO+7775i5frysP766y/wsd122+0H566ni2OmC1YubL56xYUrl9SWW25ZzOKuSrrYaoq/n3zySXHB0oo/t/TDiopV6mlF94JUXAhzQeeYgn1akb2kevXqFX//+99j0KBBxar7vn37FhcwTTF/Wap4/yme/9DFUtOfT7K0f0cAACxbojkAAHVKWmV81llnFavQL7jggmLbOeecUwTz9Pn5559fbEsXtEzzz9Os7hTPF+eCk/Oac3X5glaKJyneVhynYcOGxQr1Ll26FCvg0wiPqi6uubwtbPZ7ejxF8wkTJlRu+/TTT4v777//vljxvjBp1nhV0p9d+q2AJXXooYfGsGHDih8+3HHHHcUt6dixYzHLPP02Qvfu3aPUKt5/uojrolzINc05BwCg5hLNAQCoU0455ZRiRe8//vGPYuVyujBlWlWegvSpp54618ruNFc6zZf+3//93wXOEl8UFeNVkh+av/3vf/+7WA1e16Q/42SbbbYpRs4sqaX5wUWFNCs9/SDkrrvuKmaNp984SKN50u3Pf/5z8e+jqnnqpXj/aZ77L3/5y5K+NgAAy5+Z5gAA1BkPP/xwEUvTiuM0hiVJYzrS/PB0Mct5x46kcSPJBx98sNTHrbCwESo13dixYxfp8XTRywpt2rSpUWNH0sryNBv9kUceic8//7wI5/vtt1/x2NVXX138EKWUatr7BwBg6YjmAADUCVOnTo0TTjihmFf+hz/8YZFGgixoTMjiSKF08ODBxcc77rhjrV9JnmaVpx8yVCWt1k6jWSpmn1fYfvvti/vx48cXz69J0riXH//4x8XFY9u3b19sm/Mipovy/CRdVHZBKt7/Qw89tNTnCwBA9RPNAQCoE377298WAfuKK66YaxV0WmHerFmz+Oabb+Kdd96p3J7mb6exLEmaf74kPv7442IWeQr2abTI73//+6jt0g8SBg4cWOVjF198cXGfZrGnefAVdt5552J1d5JG4FRc8HNRZsCX0owZMxb4WPr7SReQTRZnbnrFbydMnjx5gfsce+yxxf1//vOfYkTLD0n/Vhb25wMAQPUSzQEAqPVeffXVYuxGjx49ios9zhtL99577+LjNOs6BdsULc8999ziAo7rrLNOdOvWbZGPNX369GLcxxlnnFFcxPONN94oImyKpRUrjmuzFi1axEUXXRSXXHJJ8YOGJF1ENc0Cv/nmm4vPzzvvvFhppZUqn9OgQYP461//Wtz/z//8T/H38PTTTxc/mKiQRuCkfdLs+DRbfFlIM9VPPvnkGDp0aBGnK6S/55NOOqlYKZ+kC78uqs0226y4TyvVv/zyyyr3Sb9hcNRRRxUfp992SD84mHPkT4r5adb7mWeeGeuuu+5cF1EFAKDmcSFQAABqtXQRxmOOOaaI49dee21xwc95pRXgTzzxRBFy08rzhg0bFiEzxe5rrrlmgRegfOGFFyrnVScpxM47uqRz585FMP/JT34SdUGa/Z1+MHDOOecUcTyttE6rrCvGkxx++OFFmJ7XrrvuWsyTT4+//PLLxYVW059zen76M5tzFXjFfPFSS+eZ/j7TLf07SD8ASOF+zoCegnbFvPtFkVaR33777cW/hfRvJ/0WQ8WK9dGjR1ful34gkP4d3XDDDcWFRtMt/YZD+jNIF6adPXt25b5V/RsFAKDmEM0BAKjVUiB95ZVX4vzzz49OnTpVuU+HDh2K6JkuDvnMM88UATfNuU7P6dmz5wJfOwXXzz77rPg4BdEUQdNK4XQB0bQ6PY1mqQury+f197//vVg9/be//S3efffdaNq0aWy++ebxf/7P/4nDDjtsgc9LMTyt5k4ryR999NF47733ipCdnp/+btIq87Tqf3FWei+OO+64o/jhyL/+9a/48MMPixnrM2fOLP7O0t93CuC77LLLYr1mWjWfLvR61VVXFb/RkP49zBnAK6SQfv311xe/6XDdddfFc889V6xwT//WUmhP7z+91oEHHhhrr712Cd81AAClVlb+Q1e0AQAAVghHHnlkMX7liCOOqLywKQAArIjMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgMyFQAEAAAAAILPSHAAAAAAAMtEcAAAAAABqczQfMWJE9OnTJzbYYINYeeWVo1WrVtGjR4948MEH59v37bffjp49e0azZs2iZcuWcdhhh8XEiROr5bwBAAAAAKjZGkQt9NFHH8U333wTRxxxRLRt2za+/fbbuOeee6J3795x7bXXxrHHHlvs98knnxQxvUWLFjFgwICYMmVKDBw4MN58880YNmxYNGrUqLrfCgAAAAAANUiduRDorFmzonv37jF9+vR45513im3HH398DB48uPi8ffv2xbannnoqdt9997niOgAAAAAA1NrxLFWpX79+tGvXLiZPnly5La0+79WrV2UwT3bbbbfYaKON4s4776ymMwUAAAAAoKaqleNZKkydOjWmTZsWX331VTzwwAPx6KOPRt++fYvHxo4dGxMmTIgtt9xyvudtvfXW8cgjj5T0XNq0aVOcz5yBHgAAAACA5evjjz+Opk2bxvjx41e8aH766acXY1aSevXqxf777x+DBg0qPh83blxxv9Zaa833vLTtiy++iBkzZkTjxo0X65idO3eucnu6uGjDhg2X4F0AAAAAAFAq33//fbHAeUnV6mj+q1/9Kg488MD49NNPi3Eraa75d999VzyWVqAnVUXxlVZaqXKfxY3mC5KCeYcOHWLEiBEleT0AAAAAABbfghY+rxDRvFOnTsUtOfzww2OPPfaIffbZJ15++eVo0qRJsT2tJp9XulhoUrHP4lhQFF/avwgAAAAAAKpfnbkQaJJWnf/73/+OkSNHVo5lqRjTMqe0rWXLliVbZQ4AAAAAQN1Qp6J5xUiWdGHQtddeO1q3bh3Dhw+fb79hw4ZF165dq+EMAQAAAACoyWplNJ8wYUKVw91vueWWYuTKpptuWmw74IAD4qGHHooxY8ZU7vf0008XK9H79OmzXM8ZAAAAAICar1bOND/uuOPi66+/jh49ehQrysePHx+33XZbvPPOO3HllVdGs2bNiv3OOeecuOuuu2LnnXeOU045JaZMmRJXXHFFbL755nHUUUdV99sAAAAAAKCGqZXRvG/fvnHjjTfGX/7yl/j888+jefPm0b1797jsssuid+/elfu1a9cunn322TjttNPirLPOikaNGsXee+9dhHXzzAEAAAAAmFdZeXl5+XxbWWydO3cu7keMGFHdpwIAAAAAsMLqvJSttlbONAcAAAAAgGVBNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAAIBMNAcAAAAAgEw0BwAAAACATDQHAAAAWM4mTpwYZWVlc93SNgCqn2gOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAtTma//vf/44TTzwxOnfuHE2bNo327dvHQQcdFCNHjpxrvyOPPDLKysrmu3Xq1Knazh0AAAAAgJqrQdRCl112WTz//PPRp0+f6NKlS4wfPz4GDRoU3bp1i5deeik222yzyn0bN24cN9xww1zPb9GiRTWcNQAAAAAANV2tjOannXZa3H777dGoUaPKbX379o3NN988Lr300hgyZEjl9gYNGkS/fv2q6UwBAAAAAKhNauV4lu22226uYJ5suOGGxbiWt99+e779Z82aFV9//fVyPEMAAAAAAGqjWhnNq1JeXh6fffZZtGrVaq7t3377bayyyirFSJaWLVvGCSecEFOmTKm28wQAAAAAoOaqleNZqnLbbbfF2LFj48ILL6zcttZaa8WZZ55ZzDqfPXt2PPbYY/HnP/85Xn/99Rg6dGgxumVxpdXsVRk1alR06NBhqd4DAAAAAADVq05E83feeadYQb7tttvGEUccUbn9kksumWu/gw8+ODbaaKM499xz4+677y4+BwAAAACACmXlaa5JLTZ+/PjYfvvt4/vvv4+XXnop2rZt+4P7T5s2LZo1axZHHXVU3HDDDSU7j4oV6CNGjCjZawIAAAB108SJE2ONNdaYa9uECROidevW1XZOAHVF56VstbV6pflXX30Ve+65Z0yePDmee+65hQbzpEmTJrH66qvHF198sVzOEQAAAACA2qPWRvPp06fHPvvsEyNHjoynnnoqNt1000V63jfffBOTJk3yk1sAAAAAAOpGNJ81a1b07ds3Xnzxxbj//vuLWeZVRfU0sqV58+Zzbb/ooosiTaTp2bPncjxjAAAAAABqg1oZzU8//fR44IEHipXmaczKkCFD5nq8X79+xazzH/3oR3HIIYdEp06diu2PP/54PPLII0Uw33fffavp7AEAAAAAqKlqZTR/7bXXivsHH3ywuM0rRfNVV101evXqFU8++WTcfPPNxer0jh07xoABA6J///5Rr169ajhzAAAAAABqsloZzYcOHbrQfVI0v/XWW5fL+QAAAAAAUDdYbg0AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAALU5mv/73/+OE088MTp37hxNmzaN9u3bx0EHHRQjR46cb9+33347evbsGc2aNYuWLVvGYYcdFhMnTqyW8wYAAAAAoGZrELXQZZddFs8//3z06dMnunTpEuPHj49BgwZFt27d4qWXXorNNtus2O+TTz6JHj16RIsWLWLAgAExZcqUGDhwYLz55psxbNiwaNSoUXW/FQAAAAAAapBaGc1PO+20uP322+eK3n379o3NN988Lr300hgyZEixLYXyqVOnxiuvvFKsRk+23nrr2H333WPw4MFx7LHHVtt7AAAAAACg5qmV41m22267+VaJb7jhhsW4ljSOpcI999wTvXr1qgzmyW677RYbbbRR3Hnnncv1nAEAAAAAqPlqZTSvSnl5eXz22WfRqlWr4vOxY8fGhAkTYsstt5xv37Ta/NVXX62GswQAAAAAoCarleNZqnLbbbcVofzCCy8sPh83blxxv9Zaa823b9r2xRdfxIwZM6Jx48aLdZy0mr0qo0aNig4dOizRuQMAAAAAUDPUiZXm77zzTpxwwgmx7bbbxhFHHFFsmzZtWnFfVRRfaaWV5toHAAAAAADqxErz8ePHx9577x0tWrSIu+++O+rXr19sb9KkSXGfVpPPa/r06XPtszhGjBixWCvQAQAAAACoPWp1NP/qq69izz33jMmTJ8dzzz0Xbdu2rXysYixLxZiWOaVtLVu2XOzRLAAAAAAA1G21Npqn1eL77LNPjBw5Mp566qnYdNNN53p87bXXjtatW8fw4cPne+6wYcOia9euy/FsAQAAAACoDWrlTPNZs2ZF375948UXX4y77rqrmGVelQMOOCAeeuihGDNmTOW2p59+ugjtffr0WY5nDAAAAABAbVArV5qffvrp8cADDxQrzb/44osYMmTIXI/369evuD/nnHOKqL7zzjvHKaecElOmTIkrrrgiNt988zjqqKOq6ewBAAAAAKipamU0f+2114r7Bx98sLjNqyKat2vXLp599tk47bTT4qyzzopGjRoVFw298sorzTMHAAAAAKBuRPOhQ4cu8r6dO3eOxx9/fJmeDwAAAAAAdUOtnGkOAAAAAADLgmgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAWYNYQhdeeOGSPjXKysrivPPOW+LnAwAAAABAjYrmF1xwQRG/y8vL53ssbU/mfaxif9EcAAAAAIA6Fc3PP//8KrenKJ5WoXft2jX23XffpTk3AAAAAACo3dE8qYjmP7QPAAAAAADUNC4ECgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAFmDWEIbbLDBAh8rKyuLu+++O4YOHbrAx0eNGrWkhwYAAAAAgJoVzUePHv2Dj0+ZMqW4LSiaAwAAAABAnYnmH374YWnPBAAAAAAAams0X3fddUt7JgAAAAAAUBcuBDpr1qz47LPPYvLkyaV4OQAAAAAAqH3R/OOPP46DDjooVllllWjbtm2svvrq0b59+7j00kujvLy8dGcJAAAAAAA1eTxLWlm+7bbbxvjx4+cK5J988kmce+658d5778WNN95YqvMEAAAAAICau9L8sssui3HjxkX37t3j2Wefja+//jrGjh0bf/nLX6J58+YxePDgeOONN0p7tgAAAAAAUBNXmj/66KPRsmXL4j6NZUmaNWsWxx13XDRq1Ch+8YtfFI916dKllOcLAAAAAAA1b6X5Rx99FD/+8Y8rg/mc9tlnn8p9AAAAAACgzkfz6dOnxxprrFHlY61atarcBwAAAAAA6nw0BwAAAACAumaJZ5on77//ftxyyy1L9Pjhhx++NIcGAAAAAICSKysvLy9fkifWq1cvysrKFvh4xcsuaJ9Zs2ZFXdK5c+fifsSIEdV9KgAAAEANN3HixPnG3k6YMCFat25dbecEUFd0XspWu8QrzY844oglfSoAAAAAANRISxzNb7rpptKeCQAAAAAAVDMXAgUAAAAAgFJcCLQqM2fOjC+//LKYZb7aaqtF/fr1S30IAAAAAACouSvN33zzzTj22GNjww03jMaNG0ebNm1izTXXjEaNGkWnTp3i+OOPj7feeqsUhwIAAAAAgJobzX/zm99E165d48Ybb4xRo0ZFeXn5XLeRI0fGX//61+jSpUtceOGFpTlrAAAAAACoadH88ssvjwEDBkS9evXiZz/7WTz00EPxySefxPTp02PatGkxZsyYeOCBB+LQQw8txrX87ne/i6uuuqp0Zw8AAAAAACVUVp6Wgy+BCRMmRPv27aNhw4ZFLN9xxx1/cP+hQ4dGr169Yvbs2fHxxx9Hq1atoi7p3LlzcT9ixIjqPhUAAACghps4cWKsscYa87WW1q1bV9s5AdQVnZey1S7xSvObb745vvvuu7j00ksXGsyTnXbaqdg3rUK/5ZZblvSwAAAAAACwzCxxNH/uuedi5ZVXjqOPPnqRn3PMMccUz0mrzgEAAAAAoM5E8zfffDO6desWjRs3XuTnpH27d+8e//nPf5b0sAAAAAAAUPOi+ZdffhlrrbXWYj+vTZs28cUXXyzpYQEAAAAAoOZF82+++SaaNm262M9L41mmTJmypIcFAAAAAICaF83Ly8ujOp4LAAAAAADLSoOlefL7778ft9xyy2I/BwAAAAAA6lw0f/7554vb4q4yLysrW5rDAgAAAABAzYrmRxxxRGnPBAAAAAAAams0v+mmm0p7JgAAAAAAUFsvBAoAAAAAAHXNUs00XxTTp08vLv5Zr1696NChQzRu3HhZHxIAAAAAAGrWSvPvvvsu+vfvH6uttlpsscUWsfnmmxcf/+Y3v4lZs2Ytq8MCAAAAAEDNW2l+8sknx4033hj9+vWLrbfeOqZOnRp33nlnXHLJJTFz5sy49NJLl9WhAQAAAABgiZSVl5eXR4mll2zWrFmce+65cc4551RuT7G8a9eu8fnnn8e4ceOiLuncuXNxP2LEiOo+FQAAAKCGmzhxYqyxxhpzbZswYUK0bt262s4JoK7ovJStdonHs+ywww7xxhtvLHA0y7Rp02LTTTeda3uDBg2iY8eOMXny5CU9LAAAAAAALDNLHM2/+uqr6N69e5x00knzRfB0sc9NNtkkLrvsshgzZkzl9gcffDAef/zx4nkAAAAAAFBnovlrr70Wl19+edx6662x0UYbxd/+9re5Hv/v//7vYiX6+uuvH23atIkWLVrEfvvtFw0bNoyBAweW4twBAAAAAKBmRPP69evHqaeeGiNHjow999wzjjnmmPjxj38cr7zySvH4rrvuGu+9916ceeaZsf3228duu+1WzDhP29J+AAAAAABQZy8E+sILL8SJJ55YrC7/xS9+EZdcckm0bNkyVhQuBAoAAAAsKhcCBaiDFwKd13bbbVesMk9jWe65555iZMtf//rXKFGTBwAAAACAZa5k0TwpKyuL448/Pt59993Yf//9i5XnW221Vbz00kulPAwAAAAAANS8aD516tS46qqr4vDDD4999tknTjjhhHj00Udj9dVXj+uuu66I5Wn2+Q477BA///nPi189AgAAAACAOhfN33zzzejQoUP0798/7r777hg+fHhce+210atXr+jdu3fMnj07ttxyy3j55ZeL7Q8//HAxsuWaa64pHgMAAAAAgDoTzU8++eSYPHlyDBkypFhxPm7cuJg0aVKx6jwF8rS9Qrow6MiRI+NnP/tZnHbaadGtW7dSnT8AAAAAAFR/NE8ryHv27BmHHnpoMcs8WXXVVeMPf/hDcfHPeeeYt2jRIgYNGlSsSE8fAwAAAABAnYnmq622Wrz33nsxc+bMubaPGDGiMqBXZYsttohnn312SQ8LAAAAAADLTIMlfWIauXLxxRfHNttsE3379i0iehrBctNNN0Xjxo3jsMMOK+2ZAgAAAABATY3mv/vd76JJkyZxxRVXxFlnnVW5Pc0rv/LKK2OTTTYp1TkCAAAAAEDNjuZpjvnZZ58dZ5xxRowePTq+/PLLaN++fay55pqlPUMAAAAAAKjp0bzyBRo0iI4dO5bmbAAAAAAAoDZeCBQAAAAAAOoa0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAACWVTR/66234tRTT43tt98+Nt544zjzzDMrH3vhhRfiv//7v+OLL74o9WEBAAAAAGCpNYgSuuqqq+Kss86KmTNnFp+XlZXFpEmT5tonBfXGjRvHcccdV8pDAwAAAABAzVlp/vDDD0f//v2jXbt2ce+998aECROivLx8rn222267aN26ddx///2lOiwAAAAAANS8leZplXnTpk3jySefjA022GCB+3Xt2jXefffdUh0WAAAAAABq3krzV155JX784x//YDBPWrVqFePHjy/VYQEAAAAAoOZF8++++y6aN2++0P3S2JYGDZZugfuUKVPi/PPPj549e0bLli2L2emDBw+eb78jjzyyeGzeW6dOnZbq+AAAAAAA1E0lG8+y/vrrx+uvv77QsP7GG2/ERhtttFTHShcXvfDCC6N9+/axxRZbxNChQxe4b7ro6A033DDXthYtWizV8QEAAAAAqJtKFs179+4dl19+eTHb/LTTTqtyn/T4xIkT45RTTlmqY6211loxbty4aNOmTQwfPjy22mqrBe6bVrX369dvqY4HAAAAAMCKoWTR/Mwzz4zbbrstzjjjjHj55Zfjpz/9abH9s88+i/vuu6+4pcfTivQTTzxxqY6VVo+nYL6oZs2aFVOnTo1VVlllqY4LAAAAAEDdVrKZ5quttlo89dRT0blz57jrrrviZz/7WbH9scceiwMPPDCGDBkSm2yySfH5osw+L5Vvv/22iOVpJEuaf37CCScUM9EBAAAAAGCZrTRP0qzy1157LR588MF44oknYvTo0TF79uxYZ511Yvfdd48DDjgg6tevH8tLGuOSVsB369atOI8U7P/85z8Xs9fTHPQluSBp+qFAVUaNGhUdOnQowVkDAAA1UfqeIt0ASmHmzJlVbqtqO8CSqlevXnGjGqN5kv4S9t133+JW3S655JK5Pj/44IOLsH/uuefG3XffXXwOAACwMCmW7/Jfe8Wn4z+r7lMB6oiq4vj2u+yxRAv8ABakbZs145+PPyKcL6YV7r/Ep556apx33nnFKJklieYjRoxYrBXoAABA3YjmKZj3vOQfUa/+CvdtFLAMfPvV53H9IVvPtW238/8WK7dYvdrOCahbZs+aGY+d3bf4OkY0XzwNlsUM8eHDh8e4ceNixowZC9zv8MMPj+rQpEmTWH311eOLL76oluMDAAC1VwrmojlQCvXqNahym//GAFS/kv6X+Le//W384Q9/KML5gpSXl0dZWVm1RfNvvvkmJk2aFK1bt66W4wMAAAAAsAJE88svvzwuvvji4kKfe++9dzE7vHnz5lFdpk+fHt9///1853DRRRcV4b5nz57Vdm4AAAAAANTxaH799dcXo0+ee+656NatWyxrgwYNismTJ8enn35afP7ggw/GJ598Unx80kknxZdffhk/+tGP4pBDDolOnToV2x9//PF45JFHimBeEy5UCgAAAABAHY3mY8aMiV122WW5BPNk4MCB8dFHH1V+fu+99xa3pF+/frHqqqtGr1694sknn4ybb745Zs2aFR07dowBAwZE//79Db8HAAAAAGDZRfM2bdpE06ZNY3kZPXr0Qve59dZbl8u5AAAAAABQN5RsufXBBx8cQ4cOjalTp5bqJQEAAAAAoHZG8wsuuCA22WST6N27d7z//vulelkAAAAAAKh941n22muvmD17drHaPMXzddddN9ZZZ50qZ4eXlZXF008/XapDAwAAAABAzYrmKZZXSBfd/OCDD4pbVVI0BwAAAACAOhvNP/zww1K9FAAAAAAA1O5onsaxAAAAAABAbVayC4ECAAAAAEBtV7KV5nP6+OOPY9y4cTFjxowF7tOjR49lcWgAAAAAAKgZ0fxvf/tbXHTRRUU0X5h0sVAAAAAAAKiT0fymm26Ko48+uvh4s802i4022iiaN29eqpcHAAAAAIDaE82vuuqqaNCgQdx9993Ru3fvUr0sAAAAAADUvguBvvfee8WccsEcAAAAAIBY0aN5y5Yto1WrVqV6OQAAAAAAqL3RfN99943nn38+vv/++1K9JAAAAAAA1M5oPmDAgGjatGkcddRR8eWXX5bqZQEAAAAAoPZdCPT000+PTTfdNP7+97/Hww8/HN27d4911lkn6tWbv8uXlZXFjTfeWKpDAwAAAABAzYrmgwcPrvz4q6++in/+858L3Fc0BwAAAACgTkfzZ555plQvBQAAAAAAtTua77jjjqV6KQAAAAAAqN0XAgUAAAAAgNquZCvNK3z++ecxZMiQGDZsWEyaNCl23XXXOPPMM4vHRowYEaNGjYrddtstVl555VIfGgAAAAAAak40v+uuu+Loo4+OKVOmRHl5eXHBz7XXXrvy8bFjx8ZPf/rTuPnmm6Nfv36lPDQAAAAAANSc8SwvvvhiHHroodGgQYO48sori5XmKZzPKa06b9GiRdx7772lOiwAAAAAANS8leYDBgyIevXqxZNPPhndunWrcp/69esXj/3nP/8p1WEBAAAAAKDmrTR/4YUXYtttt11gMK/Qpk2bGDduXKkOCwAAAAAANS+af/vtt9G6deuF7vfll1+W6pAAAAAAAFAzo3m64OeIESN+cJ804zyNZll//fVLdVgAAAAAAKh50bxnz57x7rvvxh133LHAfW644YYYM2ZM7L333qU6LAAAAAAA1LwLgZ511llx++23x+GHHx6vvvpq/PSnPy22T506tfj8vvvui8svv7wY4XLqqaeW6rAAAAAAAFDzVpqvs8468fDDD0erVq3iiiuuiO233z7Kysri7rvvji233DIuvvjiWHXVVeOBBx6INdZYo1SHBQAAAACAmrfSPNl2222LES033nhjPPnkkzF69OiYPXt2EdR33333OO6446JFixalPCQAAAAAANTMaJ40b948fvWrXxU3AAAAAABYIcezpFXlAAAAAABQm5Usmnfs2DF69uwZ99xzT8ycObNULwsAAAAAALUvmnfo0CGeeOKJOOigg4oZ5meddVa89957pXp5AAAAAACoPdE8XQD0mWeeiUMOOSS+/vrruPzyy6NTp06xyy67xB133BHfffddqQ4FAAAAAAA1O5onO+64YwwZMiQ+/fTTuPrqq2OzzTaLoUOHxs9+9rNo27ZtnHbaafH222+X8pAAAAAAAFAzo3mFVVddNU466aR4/fXX46WXXoqf//znxUrzipD+k5/8JG699daYMWPGsjg8AAAAAADUnGg+p6233jr69+8fBx98cJSXlxe3559/Po488sho3759DBo0aFmfAgAAAAAAVG80nz59erGavEePHrHpppvGDTfcEG3atIlzzjknnnrqqTj66KNjypQpccopp8RFF120rE4DAAAAAACqL5q/8cYbxWiWNMM8rSZPq8p33nnnuPPOO+Pjjz+Oiy++uLg46LXXXhtvvfVWrLHGGnHdddeV+jQAAAAAAGCxNYgSSSvJr7/++hg+fHgxgmX11VePU089NY477rjYcMMNq3zOuuuuG7vvvnvcdtttpToNAAAAAACo/mh+7LHHFvfbbbdd/PKXv4w+ffpE48aNF/q8Ll26xJgxY0p1GgAAAAAAUP3R/IQTTihWlW+22WaL9bx0kdB0AwAAAACAOhPNr7nmmlK9FAAAAAAA1O5oPqexY8cWFwBN98naa68d22+/fXEPAAAAAAArRDSfOHFiMablvvvui9mzZ8/1WFlZWRxwwAExaNCgaN26dSkPCwAAAAAANSuaf/XVV9GjR4949913o0mTJrHHHnvEeuutV8Ty0aNHx+OPPx533XVXvPHGG/HSSy9FixYtSnVoAAAAAACoWdH80ksvLYJ5nz59qlxNPmnSpDjxxBPjzjvvjMsuuywGDBhQqkMDAAAAAEBJ1CvNy0QxkqVdu3YxZMiQKsevtGrVKm699dZin3vuuadUhwUAAAAAgJoXzT/66KPiYp8NGzZc4D7psbTPxx9/XKrDAgAAAABAzYvmaY55GsGyMGmftC8AAAAAANTZaN69e/d49tlnY/jw4Qvc55VXXomhQ4fGlltuWarDAgAAAABAzYvmp556anz//fex6667xnnnnRdvv/12TJs2rbi98847cf7558duu+0Ws2bNKvYFAAAAAICapkGpXmivvfaK3//+90UwHzBgQHGbV1lZWVx88cWx5557luqwAAAAAABQ81aaJ2effXa89NJL0a9fv1hvvfWiUaNGxS19fNhhh8WLL75Y7AMAAAAAAHV6pXmFNK/85ptvLvXLAgAAAABA7VppDgAAAAAAtZloDgAAAAAASzueZYMNNljSpxYXBB01atQSPx8AAAAAAGpUNB89enQRv8vLyxf7uel5AAAAAABQ5y4E2r179+jXr1/su+++0aRJk9KcFQAAAAAA1KZofscdd8Rtt90Wjz32WJx22mnx29/+Nvbff/8ioO+yyy5WkwMAAAAAsOJcCPSggw6K+++/P8aNGxfXXHNNdO7cOW6++ebYY489ol27dnHGGWfEa6+9VtqzBQAAAACAmhjNK7Rs2TKOP/74eOGFF4qLe15wwQXRvHnzuPLKK4vRLZtttllcdtllMWbMmNKcMQAAAAAA1NRoPqf1118/zjvvvHj77bfj5ZdfjpNOOik+//zzOOecc2KrrbYq5aEAAAAAAKBmR/M5rbvuurHBBhtE27Zto7y8PGbPnr2sDgUAAAAAANV7IdCqfPvtt3HvvfcWFwh9+umnY9asWdGiRYs45phj4rDDDivloQAAAAAAoOZF87SC/PHHH48hQ4bEAw88UITzRo0aRe/evaNfv36x1157FZ8DAAAAAECdjeZpZnlaUf6Pf/wjJk6cGGVlZdGjR48ilB944IHFCnMAAAAAAFghovm2225bhPLNN988+vfvH4ceemisvfbapT07AAAAAACoTRcCfeutt+Lcc8+N9ddfvxjDsii3xo0bl+bsAQAAAACgpsw0Ly8vj5kzZ5bubAAAAAAAoDZG83QBUAAAAAAAqEuWejwLAAAAAADUFaI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAABkojkAAAAAAGSiOQAAAAAAZKI5AAAAAADU5mg+ZcqUOP/886Nnz57RsmXLKCsri8GDB1e579tvv13s16xZs2Lfww47LCZOnLjczxkAAAAAgJqvQdRCkyZNigsvvDDat28fW2yxRQwdOrTK/T755JPo0aNHtGjRIgYMGFDE9oEDB8abb74Zw4YNi0aNGi33cwcAAAAAoOaqldF8rbXWinHjxkWbNm1i+PDhsdVWW1W5XwrlU6dOjVdeeaUI7MnWW28du+++e7Ey/dhjj13OZw4AAAAAQE1WK8ezNG7cuAjmC3PPPfdEr169KoN5sttuu8VGG20Ud9555zI+SwAAAAAAaptaGc0XxdixY2PChAmx5ZZbzvdYWm3+6quvVst5AQAAAABQc9XK8SyLIo1vqRjlMq+07YsvvogZM2YUq9YXR+fOnavcPmrUqOjQocMSni0AAAAAADVBnV1pPm3atOK+qii+0korzbUPAAAAAADU6ZXmTZo0Ke7TavJ5TZ8+fa59FseIESMWawU6AAAAAAC1R51daV4xlqViTMuc0raWLVsu9mgWAAAAAADqtjobzddee+1o3bp1DB8+fL7Hhg0bFl27dq2W8wIAAAAAoOaqs9E8OeCAA+Khhx6KMWPGVG57+umnY+TIkdGnT59qPTcAAAAAAGqeWjvTfNCgQTF58uT49NNPi88ffPDB+OSTT4qPTzrppGjRokWcc845cdddd8XOO+8cp5xySkyZMiWuuOKK2HzzzeOoo46q5ncAAAAAAEBNU2uj+cCBA+Ojjz6q/Pzee+8tbkm/fv2KaN6uXbt49tln47TTTouzzjorGjVqFHvvvXdceeWV5pkDAAAAAFB3ovno0aMXab/OnTvH448/vszPBwAAAACA2q9OzzQHAAAAAIDFIZoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaAwAAAABAJpoDAAAAAEAmmgMAAAAAQCaaA1AjTZw4McrKyua6pW0AAAAAy5JoDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAK0I0Hzp0aJSVlVV5e+mll6r79AAAAAAAqGEaxArg5JNPjq222mqubR07dqy28wEAAAAAoGZaIaL5T37ykzjwwAOr+zQAAAAAAKjh6vR4ljl98803MXPmzOo+DQAAAAAAarAVIpofddRRscoqq8RKK60UO++8cwwfPry6TwkAAAAAgBqoTo9nadSoURxwwAGx1157RatWreKtt96KgQMHFuNaXnjhhfjRj3602K/ZuXPnKrePGjUqOnToUIKzBgAAAACgutTpaL7ddtsVtwq9e/cuZpt36dIlzj777Hjssceq9fwAAAAAAKhZ6nQ0r0rHjh1j3333jXvvvTdmzZoV9evXX6znjxgxYrFWoAMAAAAAUHusEDPN59WuXbv47rvvYurUqdV9KgAAAAAA1CArZDT/4IMPiouCNmvWrLpPBQAAAACAGqROR/OJEyfOt+3111+PBx54IPbYY4+oV69Ov30AAAAAABZTnZ5p3rdv32jSpElxMdA11lgj3nrrrbjuuuti5ZVXjksvvbS6Tw8AAAAAgBqmTkfz/fbbL2677ba46qqr4uuvv47WrVvH/vvvH+eff35xQVAAAAAAAFhhovnJJ59c3AAAAAAAYFEY6g0AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAmWgOAAAAAACZaA4AAAAAAJloDgAAAAAAWYOKD2BpzJ49u7gBlMrMmTOr3FbVdoAlVa9eveIGAABQQTRnqaVYvvtee8a4z8ZX96kAdUhVcXzHPXaLBg38rwsonbXWbBNPPvKocA4AAFRSHihJNE/B/IQ7rot69etX9+kAdcQ3n38Zv/7xHnNtO/qGP0bz1VertnMC6pbZs2bFnw4+tvhaRjQHAAAqiOaUTArm9a0ABUqkfoP6VW7z3xkAAABgWbKkBgAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAAAy0RwAAAAAADLRHAAAAAAAMtEcAAAAAACyBhUfAAAAALB8rLzq6nHq4x9V92kAUAUrzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAYEWJ5jNmzIhf//rX0bZt22jSpElss8028eSTT1b3aQEAAAAAUAM1iDruyCOPjLvvvjt+9atfxYYbbhiDBw+OvfbaK5555pnYYYcdqvv0AFiA5qu3jGs/fLW6TwMAAABYwdTpaD5s2LC444474oorroj+/fsX2w4//PDYbLPN4swzz4wXXnihuk8RAAAAAIAapE6PZ0krzOvXrx/HHnts5baVVlopfvGLX8SLL74YY8aMqdbzAwAAAACgZqnT0fzVV1+NjTbaKFZZZZW5tm+99dbF/WuvvVZNZwYAAAAAQE1Up8ezjBs3LtZaa635tlds+/TTTxf7NTt37lzl9nfeeScaNmy4wMfrulEfjIoL9zwoyqr7RAAAFlF5RHzxyaexxRZbVPepUEt8NOqDuPW4/4oo81UvAFALlJfHlAmfrJBf744aNapotUuqTkfzadOmRePGjefbnka0VDxeKmVlZUv1F1HbddygQ3WfAlCH/0eXdOjgvzNA6bX0NQyLoWOHDar7FIA6yNe7wDLVfMX8+qVhw4bRtGnTJX5+nY7mTZo0iRkzZsy3ffr06ZWPL64RI0aU5NwAWDQVv8Hjv78AANRFvt4FqHnq9EzzNIYljWiZV8W2tm3bVsNZAQAAAABQU9XpaN61a9cYOXJkfP3113Ntf/nllysfBwAAAACAFSKaH3jggTFr1qy47rrrKrelcS033XRTbLPNNtGuXbtqPT8AAAAAAGqWOj3TPIXxPn36xNlnnx0TJkyIjh07xs033xyjR4+OG2+8sbpPDwAAAACAGqZOR/PklltuifPOOy9uvfXW+PLLL6NLly7x0EMPRY8ePar71AAAAAAAqGHKysvLy6v7JAAAAAAAoCao0zPNAQAAAABgcYjmAAAAAACQieYAAAAAAJCJ5gAAAAAAkInmAAAAAACQieYAAAAAAJCJ5gAAAAAAkInmAAAAAACQieYAAAAAAJCJ5gAAAAAAkInmAAAAAACQieYAAAAA1WynnXYqbgszdOjQKCsrK+4BWDZEcwCWq1GjRsVxxx0XG2ywQay00kqxyiqrxPbbbx9XX311TJs2ba59Z82aFW3bti2+KXj00UcX6fWPOeaYYv9evXoto3cAAMCK5M477yy+vrzvvvvme2yLLbYoHnvmmWfme6x9+/ax3XbbLaezBKCURHMAlpuHH344Nt988+Ibj3322SeuueaauOSSS4pvKM4444w45ZRT5tr/n//8Z4wbNy7WW2+9uO222xb6+sOHD4/BgwcXMR4AAEphhx12KO7/53/+Z67tX3/9dfznP/+JBg0axPPPPz/XY2PGjCluFc8FoHZpUN0nAMCK4cMPP4yDDz441l133SKGr7XWWpWPnXDCCfH+++8XUX1OQ4YMiW7dusURRxwR55xzTkydOjWaNm1a5euXl5fHySefHIcffng8/fTTy/z9AACwYki/+bj++uvPF81ffPHF4mvQPn36zPdYxeeiOUDtZKU5AMvF5ZdfHlOmTIkbb7xxrmBeoWPHjnOtNE+jWtKvwKbQftBBBxWf33///Qt8/VtvvbVY6fP73/9+mb0HAABWTCl+v/rqq3ONE0yryzt37hx77rlnvPTSSzF79uy5HktjW9IYwptuuil22WWXWGONNaJx48ax6aabxl/+8pdFOu4nn3wS++23X7FwJD3/1FNPjRkzZlS578svvxw9e/aMFi1axMorrxw77rjjfCvgAVg0ojkAy8WDDz5YzDFf1LmODzzwQBHZUzRv06ZNcVGkBY1o+eabb+LXv/51sRo97QsAAKWO5t9//30RpiukIJ2+tk23r776qljAMedjnTp1itVXX70I5Om3LdPXqldeeWW0a9cujj/++PjTn/70g8dMgX7XXXeNxx9/PE488cQ499xz47nnnoszzzxzvn3Tb3L26NGjGBlz/vnnx4ABA2Ly5MlFrB82bFiJ/zQA6j7jWQBY5tIX72PHjo199913kZ+TRrOkb0DSNxVJiufpm4uJEydG69at59r3wgsvjCZNmhQrbwAAYFnONU+LOWbOnFkE9DRGsEOHDrHmmmsWj3Xp0qVY0PHmm2/Gz3/+8+I5zz77bPG1aoUUwNOK8KuuuqoYU7gg1113XYwcObK4HlAaAVNx0ft08dE5pRExv/zlL2PnnXeORx99tFjhnhx33HHFSvjf/OY38cQTTyyTPxeAuspKcwCWSzRPmjdvvkj7f/7558WKmkMOOaRy2wEHHFB8A5C+aZhT+kbi6quvjiuuuKL4dVcAACi1TTbZpFg1XjGr/PXXXy+ut1PxW5TpvmIUSpp1PmvWrMrQPmcwTyvSJ02aVIxO+eCDD4rPF+SRRx4pxhoeeOCBldvS2JVjjz12rv1ee+21eO+99+LQQw8tvo5Or59u6fzSSvV//etfc42OAWDhrDQHYJlbZZVVivu06mZR/OMf/yh+/fVHP/pRcYHQCttss00xomXOFTlpDnr6JiVFdQAAWBbS4o30NWdFgE6BPM0YT9flSdJjgwYNKj6uiOcV0Tx9nkampJj+7bffzvW6KZqnGeRV+eijj4rXr1g5XmHjjTee6/MUzJO06n1B0nFWW221JXjnACsm0RyA5RLN27ZtO9ecxx9SMbs8XTipKmlVTpqPnmY3PvbYY3HvvffG6NGjKx9Pvy6bZkCmbS1btqyM9gAAsKRSBE/X6UmjVyrmmVdIH59xxhnFSMK0Gj197Zu+Xh01alSx2jvNN0/jWNLowUaNGhWryP/whz+UZAV4xWuk37zs2rVrlfs0a9ZsqY8DsCIRzQFYLnr16lXMZUwrbLbddtsF7vfhhx/GCy+8UMx6TL+2Ou83BIcddljcfvvtxWzGjz/+uNi+//77z/c66RuW9ddfv/hm5Fe/+tUyeEcAAKyoc81TNJ/za8zu3bsXowKHDh1azDrfa6+9iu0pss+YMaO4yH379u0r93/mmWcWerx08dC06CTNLJ9ztfm77747135ppnqSForstttuJXinAIjmACwXZ555ZrGC/Oijjy5WiKeLJc0prcJ56KGHKke4pP0rLgI6pxtuuKF4nRTNd9lll7jvvvvm2yfNeUzfZJx77rmx+eabL8N3BQDAimLLLbeMlVZaqfhaNC3QmHOleQrm3bp1iz/96U/FLPGKwF6/fv3iPoXvOUel3HTTTQs9Xgrv6QKed999d+WFQNN4l7QQZU4p2KdwPnDgwGKu+byryidOnBitW7deyncPsGIRzQFYLtIX8mmFeN++fYsLKR1++OGx2WabxXfffVesLL/rrrviyCOPLOZEpl8rrSqYJ717946TTjop/vd//7f4xmTOFTsV0qqfFOX322+/5fDOAABYEaSxKltttVU899xzRSRPsXpOKaJfeeWVxccV0XyPPfYonrfPPvvEcccdF1OmTInrr7++mIc+bty4HzzeMcccU8xJT183v/LKK8VFQW+99dbiYqBzqlevXrGwZM8994zOnTvHUUcdFWuvvXYR9tOK9rQCPa14B2DR1VuMfQFgqaTg/cYbb8SBBx4Y999/f3FBz7POOquYPZ6+wfj5z38e77zzTvFNxYJUPDZkyJDleOYAAPD/x/CKcSxzqrgeT/PmzWOLLbaovGhnWimexqv0798//vrXvxa/FZkuZr8wKY4//fTTRXi/5ppr4uKLLy6Of/nll8+370477VSMQUyr4VNoT4tMBg8eHG3atIlTTz21RO8eYMVRVj7n7wgBAAAAAMAKzEpzAAAAAADIRHMAAAAAAMhEcwAAAAAAyERzAAAAAADIRHMAAAAAAMhEcwAAAAAAyERzAAAAAADIRHMAAAAAAMhEcwAAAAAAyERzAAAAAADIRHMAAAAAAMhEcwAAqEOeeeaZOOCAA2LttdeORo0axWqrrRYbb7xx9OnTJwYNGhRfffVV5b477bRTlJWVxejRo6v1nAEAoCYRzQEAoI648MILY5dddol77703WrRoEb169Yo99tgjmjRpUmw76aST4u23317o66SQvt566y2XcwYAgJqmQXWfAAAAsPReeeWVuOCCC6Jhw4Zx5513xn777TfX4+PHj48hQ4bEqquuWrntlltuiW+//bZYlQ4AAPw/ojkAANQBaSV5eXl5HHTQQfMF86RNmzbRv3//uba1b99+OZ4hAADUDsazAABAHTBx4sTivnXr1ov8nHlnmg8ePLj4PPnoo4+Kjytuad85pRXql1xySfzoRz+KZs2aFbcf//jHcfPNN5f0fQEAwPJmpTkAANQB7dq1K+7vueeeOPvss2ONNdZY7Nfo2LFjHHHEEUX4btq0aRx44IGVj3Xq1Kny4wkTJsTuu+8eb7zxRrGCfccddyxWub/wwgtx5JFHxvDhw+Oaa64p0TsDAIDlq6w8fXULAADUah988EFsttlmMW3atGjevHnsv//+scMOO0T37t2jS5cuUb9+/fmek1aPP/vss/Hhhx/OdeHPtLJ83XXXrVyBPq+99947HnnkkTjllFPisssui8aNGxfbP/vss+LioymaP/roo9GzZ89l+I4BAGDZMJ4FAADqgA022CAefPDBYsX5N998U6wWP+aYY6Jbt27RqlWrOP7442PcuHFLfZzXXnutCOZbbbVVXHXVVZXBPFlzzTXjuuuuKz7+y1/+stTHAgCA6iCaAwBAHbHrrrvG+++/X1wU9Je//GURzBs0aBCTJ08uInbXrl3j3XffXapjPPHEE8V9uthovXrzfztRMeN82LBhS3UcAACoLqI5AADUIY0aNYqf/vSnRSR/5ZVXiguEpo9XW221Yhb5iSeeuFSvXzGy5dxzz53rQqFz3qZMmRKTJk0q0TsCAIDly4VAAQCgDlt11VWLVedt27aNfffdN5555pn49ttvY+WVV16i15s9e3Zxn+ald+jQocRnCwAA1U80BwCAFcAuu+xS3M+aNasY17Kk0XydddapHM9y+umnl/QcAQCgJjCeBQAA6oDy8vIffDzNOq8Y35IuDPpDGjZsGDNnzqzysd133724v++++5b4XAEAoCYTzQEAoA4477zz4owzzohRo0bN99jYsWPjuOOOKz7u3bt3Ec5/SBrl8tlnnxUr0ue1zTbbFOH8+eefjxNOOCG+/vrr+fZ5/fXX47HHHluq9wMAANXFeBYAAKgD0sU3r7766hg4cGBstNFGsemmm8ZKK60Un3zySbz88svx/fffR8eOHeOPf/zjQl8rhfVrrrkmunXrFtttt13xOhtvvHER5ZMhQ4ZEz549489//nPcfvvt0bVr1yK0f/XVV/HGG2/EmDFj4pRTTin2AQCA2qasfGG/xwkAANR4kyZNKlZ3P/7448VK708//bSI2KusskpssskmxUVAjz/++GjatGnlc3baaad49tln48MPP4z11luvcvvUqVPjrLPOivvvvz/GjRtXjGrZcccdY+jQoZX7TJ8+Pa6//vq44447YsSIETFt2rRYc801Y4MNNohevXrFwQcfXDn/HAAAahPRHAAAAAAAMjPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIBPNAQAAAAAgE80BAAAAACATzQEAAAAAIP6f/w/k97Tur+/MAQAAAABJRU5ErkJggg==" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 13 + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": "year_percent(y_per, \"FBR\")", + "id": "29f2703ab28c5b28", + "outputs": [], + "execution_count": null }, { "metadata": { "ExecuteTime": { - "end_time": "2025-10-28T13:37:16.391453Z", - "start_time": "2025-10-28T13:37:16.257339Z" + "end_time": "2025-11-06T10:34:18.966846Z", + "start_time": "2025-11-06T10:34:18.611173Z" } }, "cell_type": "code", - "source": "year_percent(y_per, \"FBR\")", - "id": "29f2703ab28c5b28", + "source": "ym_percent(ym_per, \"DPM\")", + "id": "a2dacac3caecff5f", "outputs": [ { "data": { "text/plain": [ "
" ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABrsAAALPCAYAAADSCXvXAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAl49JREFUeJzs3Q2853Od///3MIZxNdtoNhdLSmENJUTJkqIUXWyStqJspV8/pQttyRYRdlsXW63drrafi9hkqHWREkJEphGbhBENRoSEhplxNf/b59P/nD0zczBjzvec9+f5vd9vN7eZ8z3fc873MS+fz/fifT6f77gFCxYsKAAAAAAAANBBy431DQAAAAAAAIBnymIXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAQ7JWvfGUZN27cUv938cUXL/a9Pve5zz3t16288spl7bXXLjvttFP5/Oc/X2677bYlup3vec97nvL7rrLKKu33fdWrXlU+85nPlJkzZ/bgXwsAAIAustgFAACMmLlz55Y777yzXHjhheXggw8uL3zhC8vhhx++zN/34Ycfbr/vRRddVI444oiy8cYbl/3226/MmzdvRG43AAAA3TV+rG8AAAAwOl760peWrbfeeomuu8466zzl55ujrP72b/92scvnzJlTbrrppnLllVeWxx9/vDzyyCPls5/9bHv5P//zPy/Rz24Wsl796lcv9n2vv/768vOf/7wsWLCg/e8//uM/2gWwM844oz36CwAAgP5ksQsAAPrE61//+vZUhCOhOWLruOOOe9LPN6cv3Hvvvcsll1zSfnzUUUeVd73rXWXTTTd92u+9zTbbPOn3/vWvf13+7u/+rvzyl79sP/7e975Xvvvd75bdd9/9GbcAAADQbU5jCAAAjLj11luvnHXWWWXKlCntx0888UT59re/vczfd5NNNik/+MEP2vfwGvC1r31tmb8vAAAA3WWxCwAA6InVV1+97LbbbgsdlTUSmlMovu1tbxv8+LLLLmtPawgAAEB/stgFAAD0zFprrTX494ceemjEvu/mm28++Pe5c+eWP/7xjyPyfZv3/hr4b0DzPmHve9/7yoYbbtgeUTZ58uT2vc/+6Z/+qTz44INL9f0fffTR8q1vfatdrHv+859fVltttfZ7Pu95z2tPz9iclvHpFu4uvvjiwdv4yle+cvDyc889t/0ezSkmV1111fbzX/ziF5fq9r3pTW8a/N5N35I65JBDBr/uLW95y1Ne9/bbby+f//zny9/8zd+0C5crrrhi+2/6kpe8pHziE58oM2fOXKKf2cz9v//7v8v+++9ftttuu/Kc5zynTJgwoW1ff/312/eU++Y3v9m+b9zT6eW/KQAA0HveswsAAOiZu+66a/Dva6655oh934kTJy708bx580ovNO9x1izMNKdhHPDwww+3C2DNf//+7/9epk2bVl7+8pcv0YJKs2h28803L/a5WbNmtf+deuqp5WUve1k5/fTTyzrrrLNEt/GBBx4o++yzT7tQtqze//73t6efbBx//PHl05/+9NN+TfNvc8IJJwx+3DQ+2fWaf8/m/dsWnVezINUsWF5zzTXlS1/6UvnkJz9ZDj/88IUWHYe68sory0477VTmzJkz7IJis7B66623tothzfdp3tetWUxbUiP5bwoAAPSexS4AAKAnmgWH73//+4MfN0fyjJTf/e53g39ffvnlyxprrFFG2pe//OVy6KGHtn9/wQteULbZZpv2yKFrr722zJgxo738jjvuKLvssku55JJLFjrabFHNgtg73/nOdiFmYLGuWdRqjkBabrnl2qOZrrjiivLYY4+Vn/3sZ+3iWbOY1hyt9FSao8De9a53lXPOOaddGNpqq63a9zVrLv/Vr371pItFT+Z1r3tdWXfdddujr2666abyk5/8pGy//fZP+TXnn39+ue2229q//9Vf/VX777Goxx9/vOy5557ljDPOGLysWcxrjpBr3tetWbRqFrCahcDm3+DII48s99xzT/n6178+7M9sFsYGFrr+8i//skydOrX92c1Rcs1i5G9+85syffr09ns1i4g77LBD+cUvftHO8emM9L8pAADQexa7AACAEdcsRr3nPe8pv//979uPmwWUd7zjHSP2/c8777zBvzdH7DSnwhtp//AP/1BWWmml8p//+Z/tQtVQP/3pT9vFm2axqzmV4d57712uuuqqssIKKyz2fa677rry7ne/u13oahZKDjjggPKP//iP5S/+4i8Wut4tt9zSXq95D7Jmsak5sqg5jd5Tufzyy9sFnc0226yccsop7Z9DzZ8/f6mam4XDv//7vx9c5GtOA/h0i13NdQY0t7lZvFtU8/0GFrqaI/yaI+Ka0wwuunDULAo2R5c1R1Z94xvfaI/eGvr+bAOe9axnlYMOOqg9xeCmm2467O26++6729MiNqeN/NOf/lT+z//5P+WCCy542n+Dkf43BQAAem/cAu/kDAAAsZr3H2qOOmq89KUvbY+keTrNqeuGO4Vecwq6gUWQ5r2WmsWK4Y7mao6qaY5OahYMGn/913/dHuHVvC/Vk2kWxk488cT2782Cz9DT4i3q5JNPLnvttdfgx83RP80CyUhYdPGlOa1gs6g1nGYRa8sttxxc/GgWfZqFokW9+tWvLj/+8Y/bvx977LHlYx/72JP+/Obfr5nRr3/96/bj5t+xOaJs0dMh7rjjjoMfN4tHzdFmz372s8tIaBbamiPOmtMOrrzyyuXOO+8sq6+++rDX/cMf/tD+v9CchrD5t2sW7JqvHao5sqo5oqo5uqt5b67miKsNNtjgSX/+RRddVF71qlcN/r/T/Dsvy9FUr3/968sPfvCD9u/Nv2vzPRfV639TAACgtxzZBQAAfWLgfaaeTvOeS0/3flHNkVvN0TlPpTna6uCDD27ff2n8+GV76tEsAl1//fXtIthXvvKVwcvf+ta3DrvANBKa0y4+2UJXozl13n777dcuYDWaI5EWvS3/8z//M7jQ1RyB9tGPfvQpf2ZzGr7Pfvaz7RFLjebIokUXuxbV/BuP5KJMcxRecyrC5qiy5pSA3/72t8sHPvCBYa/bHDXVLHQ1mqOwFl3oajTvwdUsdA3c1qda6Go0i06vfe1r26P3mplfffXVZYsttnjGPc1C6sBiV3Nk13CLXb3+NwUAAHrLYhcAANATzRFPzen6zj777PZUgM3i0JJojvAaOMrrqRaFPvjBD5Z/+qd/ak+91wvNqQmfTnMU2sBiV7OQ2CzKNbdtwNDTEDYLWEtyhNLAUU2N5pSGT+epFuSeqX333XfwtjdHrD3ZYtfQUxg2i6TDGfpvsKSnsmz+DQZOVdn8GzzVYlezINccAdccidW8z1dzysKBxbVGc6rJAddcc80S/fxe/JsCAAC9Y7ELAAD6xCGHHNKeinAk7LDDDu2p34Zb4GpOe3fppZeWo48+uvzyl79sFyJe/vKXt6ena077NxI+9alPtQtpw70/1EhpbvPTad7PadVVVy1z5sxpF1ia3qFfd8UVVwz+vem/9dZbn/Z7Dj3TfHNKwafSnBqyOTXgSNttt93a0xM2R/A1i3jNQtKi713VnI7wV7/6Vfv35iioN7/5zcOe5nDmzJnt3ydMmDB4GsynM3Aax6f6N7jvvvvaI7BOOumkdoFrSdx7771Pe51e/ZsCAAC9Y7ELAAAYMc2pC5tT2TX/vf3tby+77rprOf/889vFiOaonmZxZIUVVnjK77Hxxhu373M1YN68ee2CR7NwNLCo0SxyNIsozRFgvVrwWm+99Z72Os2RWn/1V39Vbrjhhvbj5siioZrFogEDp9JbGn/84x+f8vNTpkwpvdAcLdeckvHwww8fPILri1/84pMe1dW8h1qzmLWoZuFzQHO6w6c79eWS/hs0i4bbb799ue2225bqey3Joliv/k0BAIDe6d2vQQIAAH2tWdQaurjRLE6deeaZT/t1zXtUHXfccYP/NadAbE5p1yx4fexjHxu83sknn1yOOuqont3+lVdeeYmuN/S0hYsupjzwwAPLdBuGno5vOBMnTiy90pyWcGAhsfm3HnhvroFTB5566qkLXXc4y9rfeOyxxxa7rFk4HVjoWm211dr/L374wx+WW265ZfAou+YIuea/5oi6AU888cTT/rxe/psCAAC9YbELAADomRe+8IXtaeEGXHjhhc/4e02aNKl9f6yhCysDR3j1QrOgsySa9+ka0Cy8PNlC2He/+93BBZil+W+sPPe5zy0777zz4OkI//u//3vwc9OmTSsPPvhg+/fmtI2bbLLJsN9jaP/qq6/+jPpPOOGEhb7n5Zdf3v7XaE4h2Zwms/n/4rWvfW37/1rzM4ce7bekpzgEAAC6y2IXAADQU2uttdbg35fkPauezr/+67+WddZZp/17c7RR895dvbAkp8hrFmPuuOOOwY+b964a6jnPec7g3++6667SNfvuu++wpy0c+vcnO6pr0f5mcWxJFxCfytAF03e/+91PutA2kv/PAQAAdbPYBQAA9NTQBY6ReH+t5miez33uc4Mfn3766eXqq68uI605YujpNO9BNnDkUPM+Vy9+8YsXOyXjgJ/+9Kela974xjeWNddcs/37BRdc0C4ANkfSXXrppYOzeNvb3vaUC53rrrvu4McDR2Qti6Hvg7bZZps97fV/8pOfLPPPBAAA6maxCwAA6Jm5c+eW66+/fvDjgSOyltV73vOesv766w9+/PnPf76MtOZ9qp7OSSedNPj3l770pQudtq+x2267LXQaw9///velS8aPH1/22Wefwfe7Ov7448v/+3//b/Dzb3/729sFr6cy9N/gP/7jP5b5Ng1dMH26I8WahbEleZ84AACg2yx2AQAAPfOVr3ylzJ8/f/DjV7/61SO2CHPQQQcNfty8n1RzlNVIuvjii9ujxp5Ms4h33HHHPeXp/Lbeeuvyyle+cnDhb6+99mpPvbgkmuv98Y9/LGOt6Ro3blz792ax68QTT1zoc0/ngAMOaI96a3zve99b7D24nspwp358/vOfP/j3s84660m/9vHHH29Pw7ik/94AAEB3WewCAABG3KOPPtoexXPggQcutEjxpje9acR+RnN013rrrTf43lmHH354GUkTJkwoe++9d/n2t7+92OeuuOKK8trXvrbMmzev/Xjq1KntQtZw/u3f/m3w6Kfzzz+/bL/99uXKK6980p/bnCawOVKtOXKthlMfNnMbWKRs3v9qYAGqOYXg0NM0PpkNNtigfOYznxn8+O///u/LJz7xiXLvvfcOe/3HHnus/OhHP2r/PV/ykpcs9vldd911cPGtWZBsvlezkDhUcxt333338v3vf3+xo+0AAIA848f6BgAAAN1z0003lQ996EOLXd4cRXPnnXe273c1dDFj5ZVXLt/61rfKiiuuOGK3YYUVViif/vSnywc/+MH242nTprXv5bXxxhuPyPf/l3/5l/LRj360vOMd7yiHHHJIu7DT/MzmCLKf//zng9drFrKao52axbHhbLrppu2C2Z577tmedq9Z6HrZy17WLgJtscUWZfLkye2i2d13311++ctfljvuuKPUpjlCqnnPrqHe+973LvHXN/9+s2bNav+dmoXJY445pl0E3Gqrrdp/h+b/jwcffLC9TvNv8NBDD7Vft8Yaayz2vZr5NgthA6eQbL7Xf/3Xf7WnkfzLv/zL9ns079PV/L+42mqrlaOOOqr8n//zf5b53wAAAKiXxS4AAGCpNe+F9O///u9LdN1NNtmkPXVdsxgx0pqjhI444ogye/bs9j2lmr83i2oj4SMf+Uj5wx/+0B4x1izuNf8tau211y6nnXZa2XLLLZ/2fasuv/zydoHoqquuai+7+eab2/+eTHNk11/91V+VGrz5zW9uF5KaBblGs2j5ZEeyDac5Eqv5f6D5d2oWvprTMzaLUc2/SfPfk33NK17xiic9PWZz9FZzBFijWWBd9JSGzb/dqaee2h5lCAAAZHMaQwAAYMQ076XVHKn0ohe9qF2IOvvss9sjdXqx0NVojqYaeqrE5giq3/zmNyP2/Q877LB2MWafffYpL3jBC9ojkCZNmtQu2jQLa7/+9a+fdEFmUS9+8YvLjBkzynnnndcejdb8Gz372c9u/82aU+01i1vNqREPPvjg9vSFt9xyS9l8881LDZoj2poFuwF/+7d/2855aX34wx9uT4XYLJQ2C2jPe97z2iPjmn+DZz3rWe2pEd/+9reXr371q+31zjzzzGG/TzOHH/zgB+3C5k477dQeAdbcxrXWWqudx7HHHtv+f7ekswEAALpt3ILmHBIAAAAMvhdUw1OlstC/RXO6wd/+9rftx80pDQfexwsAAGCsObILAACAp3TRRRcNLnQ9//nPL6961avG+iYBAAAMstgFAADAU/ryl788+PcPfOADCx0BBwAAMNacxhAAAOD/5zSGizvrrLPKm970pvbvq622Wpk1a9Yzer8uAACAXhnfs+8MAABA5/zmN78pxx13XHn88cfLzJkzy/nnnz/4uX/4h3+w0AUAAFTHkV0AAAD/P0d2lXLxxReXHXfccbHLX/GKV5Qf//jHZcKECWNyuwAAAJ6M9+wCAABgWM3C1kYbbVQOPvjg9ggvC10AAECNHNkFAAAAAABAZzmyCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAEAH3HDDDeXDH/5w2XTTTcukSZPKhAkTytprr1123XXX8s1vfrPMnz9/2K874ogjyrhx49r/brzxxiX+eQsWLCg777zz4Nc+9thjI1gDAAAwcsYtaJ7BAAAAUK3DDjusHHrooeWJJ54oL3/5y8tWW21VVl111fL73/++XHzxxeWWW24pW265ZZkxY8ZCX9c83Xv+859fbr311vbvBxxwQDn66KOX6Gf+27/9W/nYxz5WVlhhhTJv3rzy6KOPlvHjx/eoEAAA4Jmz2AUAAFCxI488svzjP/5jWXfddcu0adPKNttss9h1zjnnnHLMMceUiy66aKHLzzvvvLLLLruU97znPeWHP/xhe3TWHXfc0R4V9lSaI8Be8pKXlP3337+ceuqp7WKZxS4AAKBWFrsAAAAqNWvWrLLhhhu2f//FL37RnsLwyTSnMVxxxRUXuuytb31rOeOMM8pPf/rT8t3vfrddEGsWr/bcc88n/T7Ngti2225bHn744XLVVVeVjTbayGIXAABQNe/ZBQAAUKnjjz++XWTafffdn3Khq7HoQldzisOzzjqrXSxrFq+ao7saX//615/y+xx++OHl6quvLieccMJi3xMAAKBGFrsAAAAqddlll7V/vvrVr37GC2UDi1zNYlnzvl7NqQ5/85vfDPs1P//5z8sRRxxRDjzwwPZ9wQAAALrAYhcAAECl7rzzzvbPv/qrv1qqr2vOVv+f//mfZbnllit777334OXNwlfzuW984xuLfc3cuXPLXnvtVaZOnVoOPvjgEbj1AAAAo8NiFwAAQJgf//jH5eabby4777xzWWeddQYvf8c73lEmTJjQnqKwOeprqE9+8pPllltuKSeeeGJZYYUVxuBWAwAAPDMWuwAAACq11lprtX/ecccdS/V1A+/LNXAKwwGTJ08ub3jDG8rdd99dzjzzzMHLL7nkkvLv//7v5TOf+Ux58YtfPCK3HQAAYLRY7AIAAKjUdttt1/554YUXLvHX3HPPPeW///u/27//3d/9XRk3btxC/51xxhkLLYg1rr766vb0hocccshi17/11lvb6zRHezUfX3PNNSNcCQAAsGzGL+PXAwAA0CP77LNP+ad/+qd2gerXv/512WSTTZ70uvPnzy8rrrhiexrCRx55pGy55ZZl8803H/a6Z511VrngggvKb3/72/K85z2vbLrppuW9733vsNf9zne+U+bMmVP+/u//vl3sWmONNUasDwAAYCSMW9D8+h4AAABVOvLII8s//uM/lvXXX79MmzatbLXVVotd54c//GH5l3/5l/a9ujbaaKMyc+bMcuWVV5att9562O/52c9+thx++OHloIMOKkccccRT/vzm5zZHdzXv8TV+vN+XBAAA6mOxCwAAoHKHHXZYOfTQQ8sTTzxRtt1223bBa9VVVy2///3vy09+8pNy0003tZcdddRRZccddyybbbZZ+eUvf/mk32/WrFnl+c9/fllzzTXLbbfd9pSLWBa7AACA2nnPLgAAgModfPDB5Ve/+lX50Ic+VB544IFy/PHHtwtb3//+98sGG2xQ/vM//7Ncdtll5Rvf+EZ7/fe9731P+f2aBayddtqp3HnnneXss88epQoAAIDecGQXAAAAAAAAneXILgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnTV+rG9A16255prloYceKuutt95Y3xQAAAAAAIBOuu2228oqq6xS7rrrrqX+Wkd2LaNmoevRRx8d65sBAAAAAADQWc1aS7Pm8kw4smsZDRzRdd111431TQEAgJ459MbLevr9H7jz9+WEvfcvf7z9d+VZ665d3nPSl8uktZ5TumY0Ow7ZaLuefF8AAICxMHXq1Gf8tY7sAgAAxpSFLgAAAJaFxS4AAGDMpCwQpXQAAAB0kcUuAABgTKQsEKV0AAAAdJXFLgAAYNSlLBCldAAAAHSZxS4AAGBUpSwQpXQAAAB0ncUuAABg1KQsEKV0AAAAJLDYBQAAjIqUBaKUDgAAgBQWuwAAgJ5LWSBK6QAAAEhisQsAAOiplAWilA4AAIA0FrsAAICeSVkgSukAAABIZLELAADoiZQFopQOAACAVBa7AACAEZeyQJTSAQAAkMxiFwAAMKJSFohSOgAAANJZ7AIAAEZMygJRSgcAAEA/sNgFAACMiJQFopQOAACAfmGxCwAAWGYpC0QpHQAAAP3EYhcAALBMUhaIUjoAAAD6jcUuAACg9PsCUUoHAABAP7LYBQAA9PUCUUoHAABAv7LYBQAA9O0CUUoHAABAP7PYBQAA9OUCUUoHAABAv7PYBQAA9N0CUUoHAAAAFrsAAIA+WyBK6QAAAODPLHYBAAB9s0CU1AEAAMCfWewCAACeVsoCUVIHAAAAf2axCwAAeFopC0RJHQAAAPyZxS4AAOBppSwQJXUAAADwZxa7AACAp5WyQJTUAQAAwJ9Z7AIAAJ5WygKRDgAAgDwWuwAAgDgpC0QpHQAAAL00vqffHYY49MbLRvT7pTzxH8uOQzbablR+DgDAaPI4EQAAoL84sotOSnnin9IBAFCLlMdXKR0AAACjwWIXnZPyxD+lAwCgFimPr1I6AAAARovFLjol5Yl/SgcAQC1SHl+ldAAAAIwmi110RsoT/5QOAIBapDy+SukAAAAYbRa76ISUJ/4pHQAAtUh5fJXSAQAAMBYsdlG9lCf+KR0AALVIeXyV0gEAADBWLHZRtZQn/ikdAAC1SHl8ldIBAAAwlix2Ua2UJ/4pHQAAtUh5fJXSAQAAMNY6vdh1xBFHlHHjxpVNN910sc9dfvnlZbvttisrr7xyWXPNNcv+++9f5syZMya3k/594p/SAQBQi5THVykdAAAANRhfOmr27NnlyCOPLKussspin7vmmmvKq1/96vLXf/3X5dhjj22ve/TRR5ebbrqp/OAHPxiT20v/PfFP6QAAqEXK46uUDgAAgFp0drHrE5/4RHnZy15WHn/88XLvvfcu9LmDDjqoPOtZzyoXX3xxWX311dvL1l9//fL+97+//OhHPyqvec1rxuhW0y9P/FM6AABqkfL4KqUDAACgJp08jeFPfvKTcvrpp5cvfvGLi33uwQcfLOeff35517veNbjQ1dh7773LqquuWk477bRRvrX02xP/lA4AgFqkPL5K6QAAAKhN5xa7miO5PvzhD5f3ve99ZbPNNlvs89dee2157LHHylZbbbXQ5RMmTCibb755ufrqq0fx1tJvT/xTOgAAapHy+CqlAwAAoEadO43hV7/61XLrrbeWCy64YNjP33nnne2fa6211mKfay679NJLn9HPnTp16rCX33zzzWWDDTZ4Rt+TrCf+KR0AALVIeXyV0gEAAFCrTh3Z9Yc//KEcfPDB5bOf/WyZMmXKsNeZO3du++eKK6642OdWWmmlwc9Th5Qn/ikdAAC1SHl8ldIBAABQs04d2fWZz3ymTJ48uT2N4ZOZOHFi++f8+fMX+9y8efMGP7+0rrvuuqU64ov+eeKf0gEAUIuUx1cpHQAAALXrzGLXTTfdVL7+9a+XL37xi+V3v/vdQgtYjz76aJk1a1ZZffXVB09fOHA6w6Gay9Zee+1Rvd1kP/FP6QAAqEXK46uUDgAAgC7ozGkM77jjjvLEE0+U/fffvzzvec8b/O/KK68sM2fObP9+2GGHlU033bSMHz++zJgxY6Gvf+SRR8o111xTNt988zFrIOuJf0oHAEAtUh5fpXQAAAB0RWeO7GoWsb73ve8Ne2rDP/3pT+VLX/pS2WCDDcqkSZPKTjvtVE4++eT2vb1WW2219nrf+ta3ypw5c8oee+wxBreetCf+KR0AALVIeXyV0gEAANAlnVnsevazn13e/OY3L3Z5c1rDxtDPHXHEEWXbbbctO+ywQ9l3333L7NmzyzHHHFNe85rXlF122WVUbzd5T/yTOspGY30rAACyHl8ldAAAAHRNZ05juDS22GKLcsEFF5SJEyeWj33sY+17fb33ve8tp59++ljftL6W8MQ/5QWMgQ4AgLGW9viq6x0AAABd1Jkju57MxRdfPOzl2223XfnpT3866reHJ9f1J/4pL2AM7QAAGEuJj6+63AEAANBVkUd2UacuP/FPeQFj0Q4AgLGS+viqqx0AAABdZrGLUdPVJ/4pL2AM1wEAMBaSH191sQMAAKDrLHYxarr4xD/lBYyUDgCg+1Iel6R0AAAAJLDYBeEvYKR0AADdl/K4JKUDAAAghcUuCH4BI6UDAOi+lMclKR0AAABJxo/1DYDapLyAkdIBAHRfyuOSlI6lceiNl5VapcxjaToO2Wi7Ub99AADQBY7sgj5/wgwA0Espj0tSOlKkzCOlAwAAxprFLgh7opnSAQB0X8rjkpSOFCnzSOkAAIAaWOyCoCeaKR0AQPelPC5J6UiRMo+UDgAAqIXFLvpeyhPNlA4AoPtSHpekdKRImUdKBwAA1GT8WN8AGEspTzRTOgCA7kt5XJLSkSJlHl3oOPTGyyI6lkQXOg7ZaLuxvgkAAJ3gyC76Vhee2PRTBwDQfSmPS1I6UqTMQ0ddUjoAAPgzi130pZQnNikdAED3pTwuSelIkTIPHXVJ6QAA4H9Z7KLvpDyxSekAALov5XFJSkeKlHnoqEtKBwAAC7PYRV9JeWKT0gEAdF/K45KUjhQp89BRl5QOAAAWZ7GLvpHyxCalAwDovpTHJSkdKVLmoaMuKR0AAAzPYhd9IeWJTUoHANB9KY9LUjpSpMxDR11SOgAAeHIWu4iX8sQmpQMA6L6UxyUpHSlS5qGjLikdAAA8NYtdREt5YpPSAQB0X8rjkpSOFCnz0FGXlA4AAJ6exS5ipTyxSekAALov5XFJSkeKlHnoqEtKBwAAS8ZiF5FSntikdAAA3ZfyuCSpI0HSPBI6GgkdKfNI2c4BAEaDxS7iJD2xSegAADIkPC5JeXw10NF1afPoeseArnekzCNlOwcAGC0Wu4iS9sSm6x0AQI6uPy5JeXw1tKPLEufR5Y6hutyRMo+U7RwAYDRZ7CJG4hObLncAAFm6/Lgk5fHVoh1dlTqPrnYsqqsdKfNI2c4BAEabxS4ipD6x6WoHAJCnq49LUh5fDdfRRcnz6GLHcLrYkTKPlO0cAGAsWOyi85Kf2HSxAwDI1MXHJSmPr3TUJaUjRco8UjoAAMaKxS46LeUJQUoHAEAtUh5f6ahLSkeKlHmkdAAAjCWLXXRWyhOClA4AgFqkPL7SUZeUjhQp80jpAAAYaxa76KSUJwQpHQAAtUh5fKWjLikdKVLmkdIBAFADi110TsoTgpQOAIBapDy+0lGXlI4UKfNI6QAAqIXFLjol5QlBSgcAQC1SHl/pqEtKR4qUeaR0AADUxGIXnZHyhCClAwCgFimPr3TUJaUjRco8UjoAAGpjsYtOSHlCkNIBAFCLlMdXOuqS0pEiZR4pHQAANbLYRfVSnhCkdAAA1CLl8ZWOuqR0pEiZR0oHAECtLHZRtZQnBCkdAAC1SHl8paMuKR0pUuaR0gEAUDOLXVQr5QlBSgcAQC1SHl/pqEtKR4qUeaR0AADUzmIXVUp5QpDSAQBQi5THVzrqktKRImUeKR0AAF1gsYvqpDwhSOkAAKhFyuMrHXVJ6UiRMo+UDgCArrDYRVVSnhCkdAAA1CLl8ZWOuqR0pEiZR0oHAECXWOyiGilPCFI6AABqkfL4SkddUjpSpMwjpQMAoGs6tdh13XXXlT322KM8//nPLyuvvHJ59rOfXbbffvty9tlnL3bd66+/vuyyyy5l1VVXLZMnTy577bVXueeee8bkdtM/TwhSOgAAapHy+EpHXVI6UqTMI6UDAKCLxpcOufXWW8uf/vSn8u53v7usvfba5eGHHy5nnHFGeeMb31i+9rWvlX333be93uzZs9tFsEmTJpUjjzyyzJkzpxx99NHl2muvLdOnTy8TJkwY6xQCnxCkdAAA1CLl8ZWOuqR0pEiZR0oHAEBXdWqx6/Wvf33731Af+tCHypZbblmOPfbYwcWuZoHroYceKldddVVZb7312su23nrrsvPOO5cTTjhh8HqMvZQnBCkdAAC1SHl8paMuKR0pUuaR0gEA0GWdOo3hcJZffvmy7rrrlvvvv3/wsuZor912221woaux0047lQ033LCcdtppY3RLSX1CkNIBAFCLlMdXOuqS0pEiZR4pHQAAXdepI7sGNEdtzZ07tzzwwAPlrLPOKj/4wQ/Knnvu2X7ujjvuKHfffXfZaqutFvu65uiuc889dwxuMalPCFI6AABqkfL4SkddUjpSpMwjpQMAIEEnF7sOOOCA9j26Gsstt1x5y1veUo477rj24zvvvLP9c6211lrs65rL7rvvvjJ//vyy4oorLtXPnDp16rCX33zzzWWDDTZ4BhX9K+UJQUoHAEAtUh5fpXQ0EjpS5tF0lI1K5yXNI6EDACBFJ09j+NGPfrScf/755cQTTyyve93ryuOPP14eeeSR9nPNEV+N4RazVlpppYWuw+hLeUKQ0gEAUIuUx1cpHQO63pEyj4GOrkubR9c7AACSdPLIro033rj9r7H33nuX17zmNeUNb3hDufLKK8vEiRPby5ujtxY1b9689s+B6yyN6667bqmO+CL3CUFSR8JvhgIA3Zf0+CqhY6gud6TMY2hHlyXOo8sdAABpOnlk16Le+ta3lp///Odl5syZg6cvHDid4VDNZZMnT17qUxgyMhKeEKQ8sUn5zVAAoPvSHl91vWNRXe1ImceiHV2VOo+udgAAJIpY7Bo4LeEDDzxQ1llnnTJlypQyY8aMxa43ffr0svnmm4/BLaTR9ScEKU9sUn4zFADovsTHV13uGE4XO1LmMVxHFyXPo4sdAACpOrXYdffddy922aOPPlpOOumk9tSEm2yySXvZ7rvvXs4555xy++23D17vwgsvbI/82mOPPUb1NvO/uvyEIOWJTcpvhgIA3Zf6+KqrHSlS5qGjLikdAADJOvWeXR/4wAfKgw8+WLbffvv2CK677rqrnHLKKeWGG24oxxxzTFl11VXb6x100EFl2rRpZccddywf+chHypw5c8pRRx1VNttss7LPPvuMdUbf6uoTgpQnNim/GQoAdF/y46sudqRImYeOuqR0AACk69Ri15577lm++c1vlq985SvlD3/4Q1lttdXKlltuWb7whS+UN77xjYPXW3fddcsll1xSPv7xj5cDDzywTJgwoey6667tgpj36xo7XXxCkPLEJqUDAOi+lMclKR0pUuahoy4pHQAA/aBTi11vf/vb2/+WxNSpU8t5553X89tErpQnNikdAED3pTwuSelIkTIPHXVJ6QAA6Bedes8uGC0pT2xSOgCA7kt5XJLSkSJlHjrqktIBANBPLHZB6BOblA4AoPtSHpekdKRImYeOuqR0AAD0G4tdEPjEJqUDAOi+lMclKR0pUuahoy4pHQAA/chiF4Q9sUnpAAC6L+VxSUpHipR56KhLSgcAQL+y2AVBT2xSOgCA7kt5XJLSkSJlHjrqktIBANDPxo/1DYCxlvLEJqUDAOi+lMclKR0pUuahoy4pHcvi0BsvK7VImceydhyy0XY9vX0AkMiRXfQ1D6QBAEZWyuOSlI4UKfPQUZeUjhQp80jpAICuGZPFrscee2wsfixEPgBN6QAAui/lcUlKR4qUeeioS0pHipR5pHQAQBeN6mLXE088UY4//viy8cYbj+aPhdgHoCkdAED3pTwuSelIkTIPHXVJ6UiRMo+UDgDoqhF9z66rr7663HTTTWWNNdYoO+ywQxk//n+//amnnlo+97nPlZkzZ5bVVlttJH8s9OUD0JQOAKD7Uh6XpHSkSJmHjrqkdKRImUdKBwCUfl/smjdvXnnLW95SzjvvvMHL1l9//XL++eeXiRMnlre//e3lsssuK6ussko58MADywEHHDASPxb69gFoSgcA0H0pj0tSOlKkzENHXVI6UqTMI6UDALpuRBa7jjrqqPLDH/6wbLHFFmXHHXcsv/nNb8qZZ55Z9ttvvzJ79uz243/4h38on/zkJ8vkyZNH4kdC3z4ATekAALov5XFJSkeKlHnoqEtKR4qUeaR0AECCEVnsmjZtWnn5y19eLr300rLccn9+G7CDDz64HH744WXttdduT2/ofboYSykPQFM6AIDuS3lcktKRImUeOuqS0pEiZR5d7zj0xssiOgZ0veOQjbYb65sA0Hl/XplaRjfffHN529veNrjQ1XjHO97R/vmpT33KQhdjqusPeNI6AIDuS3lcktKRImUeOuqS0pEiZR466pLSAUAFi11z584tU6ZMWeiygY832mijkfgR0NcPeFI6AIDuS3lcktKRImUeOuqS0pEiZR466pLSAUAli11PZfz4ETlTIvTtA56UDgCg+1Iel6R0pEiZh466pHSkSJlHSkcjoSNlHk0HAMtuxFaizjzzzDJr1qzBjx9++OEybty4csopp5Sf/exnC123ufzTn/70SP1oiH7Ak9ABAHRfyuOSpI4ScBKNpHkkdDQSOlLmYTuvS0rHgK53pMxjoOPY23Yf65sC0Hkjttg1bdq09r9FHX/88YtdZrGLXkp7wNP1DgAgQ8LjkpTHVykvjKXNo+sdA7rekTIP23ldUjqG6nJHyjyGdgBQyWLXRRddNBLfBpZZ4gOeLncAADm6/rgk5fFVygtjifPocsdQXe5ImYftvC4pHYvqakfKPBbtAKCSxa4ddthhJL4NLJPUBzxd7QAAsnT5cUnK46uUF8ZS59HVjkV1tSNlHrbzuqR0DKeLHSnzGK4DgGW33Ah8DxhzyQ94utgBAOTp6uOSlMdXKS+MJc+jix3D6WJHyjxs53VJ6UiRMo+UDoDo9+xq/PKXvywTJkwoG2+8cfvxggULyoknnlh+9KMflQcffLBstdVWZf/99y+TJ08eyR9Ln0t5oJDSAQBk6uLjkpTHVzrqktKRImUeOuqS0pEiZR4pHQDRi10PPPBA2XnnnctVV13VfrzTTjuVc845p7zzne8sp59++uD1zj333PKtb32rTJ8+vayxxhoj8aPpcykPFFI6AABqkfL4SkddUjpSpMxDR11SOlKkzCOlAyD+NIZf/vKXy4wZM8oWW2xRXv/615cf//jH5YMf/GA588wzy+GHH15+8YtflCuvvLJ84hOfKLNmzSpHHHHESPxY+lzKA4WUDgCAWqQ8vtJRl5SOFCnz0FGXlI4UKfNI6QDoiyO7pk2bVl71qleVCy64oP34qKOOKgceeGDZb7/9ykEHHTR4vZe+9KXllltuKd///vfLscceOxI/mj6V8kAhpQMAoBYpj6901CWlI0XKPHTUJaUjRco8auo49MbLIjqWRW0dh2y03Zj9bEg0Ikd23X777eVNb3rT4MdvfvOb2/fr2n777Re77itf+cpy2223jcSPpU/VdsfU7x0AALVIeXyloy4pHSlS5qGjLikdKVLmoaMuKR1Ajxe7mvfsGvoeXJMnT17oz6Ge9axnlUceeWQkfix9KOWOKaUDAKAWKY+vdNQlpSNFyjx01CWlI0XKPHTUJaUDGIXFLhgNKXdMKR0AALVIeXyloy4pHSlS5qGjLikdKVLmoaMuKR3AKC52jRs3bokug36+Y0rpAACoRcrjKx11SelIkTIPHXVJ6UiRMg8ddUnpAJbM+DJC9t577/Lud797octe85rXLLbg1byXF/TjHVNKBwBALVIeX+moS0pHipR56KhLSkeKlHnoqEtKBzDKi13bb7+9o7joiZQ7ppQOAIBapDy+0lGXlI4UKfPQUZeUjhQp89BRl5QOYAwWuy6++OKR+DYQeceU0gEAUIuUx1c66pLSkSJlHjrqktKRImUeOuqS0gGM0Xt2nXTSSWXWrFkj8a0g6o4ppQMAoBYpj6901CWlI0XKPHTUJaUjRco8dNQlpQMYw8WuffbZp1x++eWDHz/44INl6623LjNmzBiJb0+fSbljSukAAKhFyuMrHXVJ6UiRMg8ddUnpSJEyDx11SekAxnixa8GCBQt9/Oijj7YLXc2iF/TjHVNKBwBALVIeX+moS0pHipR56KhLSkeKlHnoqEtKB1DBYheMhJQ7ppQOAIBapDy+0lGXlI4UKfPQUZeUjhQp89BRl5QOYNlZ7KIKKXdMKR0AALVIeXyloy4pHSlS5qGjLikdKVLmoaMuKR3AyLDYxZhLuWNK6QAAqEXK4ysddUnpSJEyDx11SelIkTIPHXVJ6QBGzviR+kZnnnlmmTVrVvv3hx9+uIwbN66ccsop5Wc/+9li120+9+lPf3qkfjQdlnLHlNIBAFCLlMdXOuqS0pEiZR466pLSkSJlHjrqktIBVLrYNW3atPa/oY4//vhhr2uxi6Q7ppQOAIBapDy+0lGXlI4UKfPQUZeUjhQp89BRl6SOstFY3wrIMiKLXRdddFEZDT//+c/LiSee2P685iiyNdZYo7zsZS8rhx9+eNlwww0Xuu71119fPvaxj5XLLrusTJgwoey6667l2GOPLVOmTBmV20r/3DEldAAA1CLl8ZWOuqR0pEiZh466JHUkvACeNI+EjkZCR8o8BjqOvW33sb4pEGVEFrt22GGHMhq+8IUvlJ/+9Kdljz32KC960YvKXXfdVY477riyxRZbtKdL3HTTTdvrzZ49u2y//fZl0qRJ5cgjjyxz5swpRx99dLn22mvL9OnT28Uvxk7aHVPXOwAAapHy+Cqlo5HQkTIPL4DXJaWjkdCRMo+UF8DT5tH1jgFd70iZx9AOoNLTGI6Gj3/84+W//uu/Flqs2nPPPctmm21W/vmf/7mcfPLJ7WXNAtdDDz1UrrrqqrLeeuu1l2299dZl5513LieccELZd999x6yh3yXeMXW5AwCgFimPr1I6BnS9I2UeXgCvS0rHgK53pMwj5QXwxHl0uWOoLnekzGPRDmBkLVc6ZNttt13sqKwXvvCFZerUqe1pCwecccYZZbfddhtc6GrstNNO7akOTzvttFG9zeTfMXW5AwCgBkmPrxI6hupyR8o8vABel5SOobrckTKPlBfAU+fR1Y5FdbUjZR7DdQB9fGTXcBYsWFB+//vftwtejTvuuKPcfffdZauttlrsus3RXeeee+4z+jkD339RN998c9lggw2e0ffsN6l3TF3u6PpvhgIA3Zf2+KrrHYvqakfKPLwAXpeUjkV1tSNlHikvgCfPo4sdw+liR8o8Ujqgdp06sms4p5xySrvA1ZzOsHHnnXe2f6611lqLXbe57L777ivz588f9duJUyPUIuU3QwGA7kt8fNXljuF0sSNlHl4Ar0tKx3C62JEyDx11SelIkTKPlA7ogk4f2XXDDTeU/fbbr7z85S8v7373u9vL5s6d2/654oorLnb9lVZaafA6w33+qVx33XVLdcQXi+vyDj3ljinlN0MBgO5LfXzV1Y4UKfPQUZeUjhQp89BRl5SOFCnzSOmArujskV133XVX2XXXXcukSZPK6aefXpZffvn28okTJ7Z/Dnf01rx58xa6DqOrqzv0lDumlN8MBQC6L/nxVRc7UqTMQ0ddUjpSpMxDR11SOlKkzCOlA7qkk0d2PfDAA+V1r3tduf/++8ull15a1l77f49QGTh94cDpDIdqLps8efJSH9XFyOjiDj3ljimlAwDovpTHJSkdKVLmoaMuKR0pUuahoy4pHSlS5pHSAV3TucWu5uisN7zhDWXmzJnlggsuKJtssslCn19nnXXKlClTyowZMxb72unTp5fNN998FG8tXZZyx5TSAQB0X8rjkpSOFCnz0FGXlI4UKfPQUZeUjhQp80jpgC7q1GkMH3/88bLnnnuWK664okybNq19r67h7L777uWcc84pt99+++BlF154YbtAtscee4ziLaarUu6YUjoAgO5LeVyS0pEiZR466pLSkSJlHjrqktKRImUeKR3QVZ06suuAAw4oZ511Vntk13333VdOPvnkhT7/rne9q/3zoIMOahfDdtxxx/KRj3ykzJkzpxx11FFls802K/vss88Y3Xq6IuWOKaUDAOi+lMclKR0pUuahoy4pHSlS5qGjLikdKVLmkdIBXdapxa5rrrmm/fPss89u/1vUwGLXuuuuWy655JLy8Y9/vBx44IFlwoQJZddddy3HHHOM9+uiL+6YUjoAgO5LeVyS0pEiZR466pLSkSJlHjrqktKRImUeKR3QdZ1a7Lr44ouX+LpTp04t5513Xk9vD1lS7phSOgCA7kt5XJLSkSJlHjrqktKRImUeOuqS0pEiZR4pHZCgU+/ZBb2ScseU0gEAdF/K45KUjhQp89BRl5SOFCnz0FGXlI4UKfNI6YAUFrvoeyl3TCkdAED3pTwuSelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOSGKxi76WcseU0gEAdF/K45KUjhQp89BRl5SOFCnz0FGXlI4UKfNI6YA0nXrPLhhJKXdMKR0AdMuhN15WapByP7isHYdstF2pgXnQCynz0FGXlI4UKfPQUZeUjhQp80jpgESO7KIvpdwxpXQAQD/fD+qoS0pHipR56KhLSkeKlHnoqEtKR4qUeaR0QCqLXfSdlDumlA4A6Of7QR11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOSGaxi76ScseU0gEA/Xw/qKMuKR0pUuahoy4pHSlS5qGjLikdKVLmkdIB6Sx20TdS7phSOgCgn+8HddQlpSNFyjx01CWlI0XKPHTUJaUjRco8UjqgH1jsoi+k3DGldABAP98P6qhLSkeKlHnoqEtKR4qUeeioS0pHipR5pHRAv7DYRbyUO6aUDgDo5/tBHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlA7oJxa7iJZyx5TSAQD9fD+ooy4pHSlS5qGjLikdKVLmoaMuKR0pUuaR0gH9xmIXsVLumFI6AKCf7wd11CWlI0XKPHTUJaUjRco8UjoaCR0p82g6EiTNI6ED+pHFLiKl3DGldABAP98P6qhLUkeCpHkkdDQSOlLmYTuvS0rHgK53pMxjoKPr0ubR9Q7oVxa7iJNyx5TSAQD9fD+Y0tFI6EiZhxfG6pLSMaDrHSnzsJ3XJaVjqC53pMxjaEeXJc6jyx3Qzyx2ESXljimlAwD6+X4wpWNA1ztS5uGFsbqkdAzV5Y6UedjO65LSsaiudqTMY9GOrkqdR1c7oN9Z7CJGyh1TSgcA9PP9YErHUF3uSJmHF8bqktKxqK52pMzDdl6XlI7hdLEjZR7DdXRR8jy62AFY7CJEyh1TSgcA9PP9YErHorrakTIPL4zVJaVjOF3sSJmH7bwuKR0pUuahoy4pHcCfWeyi81LumFI6AKCf7wdTOobTxY6UeeioS0pHipR56KhLSkeKlHnoqEtKB/C/LHbRaSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcDCLHbRWSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcDiLHbRSSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcDwLHbROSl3TCkdANDP94MpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHcCTs9hFp6TcMaV0AEA/3w+mdKRImYeOuqR0pEiZh466pHSkSJmHjrqkdABPzWIXnZFyx5TSAQD9fD+Y0pEiZR466pLSkSJlHjrqktKRImUeOuqS0gE8PYtddELKHVNKBwD08/1gSkeKlHnoqEtKR4qUeeioS0pHipR56KhLSgewZCx2Ub2UO6aUDgDo5/vBlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlA5gyVnsomopd0wpHQDQz/eDKR0pUuahoy4pHSlS5qGjLikdKVLmoaMuKR3A0rHYRbVS7phSOgCgn+8HUzpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjqApWexiyql3DGldABAP98PpnSkSJmHjrqkdKRImYeOuqR0pEiZh466pHQAz4zFLqqTcseU0gEA/Xw/mNKRImUeOuqS0pEiZR466pLSkSJlHjrqktIBPHMWu6hKyh1TSgcA9PP9YEpHipR56KhLSkeKlHnoqEtKR4qUeeioS0oHsGwsdlGNlDumlA4A6Of7wZSOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOYNlZ7KIKKXdMKR0A0M/3gykdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdwMgYP0LfB0q/3zGldAA8E4feeNmo/8yU/W4vOg7ZaLsy2syDXkiZh466pHSkSJmHjrqkdKRImYeOuqR0ACPHkV2MqZQ7ppQOgK5I2e/qqEtKR4qUeeioS0pHipR56KhLSkeKlHnoqEtKBzCyLHYxZlLumFI6ALoiZb+roy4pHSlS5qGjLikdKVLmoaMuKR0pUuahoy5JHcDIstjFmEi6Y0roAOiKlP2ujrqkdKRImYeOuqR0pEiZh466JHUkSJpHQkcjoSNlHgMdwMiy2MWoS7tj6noHQFek7Hd11CWlI0XKPFI6GgkdKfPwAnhdUjoaCR0p80h5ATxtHl3vGND1jpR5DO0ARpbFLkZV4h1TlzsAuiJlv5vS0UjoSJmHF8DrktIxoOsdKfPwAnhdUjoGdL0jZR4pL4AnzqPLHUN1uSNlHot2ACPLYhejJvWOqcsdAF2QtN9N6BjQ9Y6UeXgBvC4pHUN1uSNlHl4Ar0tKx1Bd7kiZR8oL4Knz6GrHorrakTKP4TqAPl7smjNnTjnkkEPKLrvsUiZPnlzGjRtXTjjhhGGve/3117fXW3XVVdvr7rXXXuWee+4Z9dvM/0q9Y+pyB0Dt0va7Xe8YqssdKfPwAnhdUjoW1dWOlHl4AbwuKR2L6mpHyjxSXgBPnkcXO4bTxY6UeaR0QO3Glw659957y2GHHVbWW2+98uIXv7hcfPHFw15v9uzZZfvtty+TJk0qRx55ZLtIdvTRR5drr722TJ8+vUyYMGHUbzt+A7wWKS+MAfkS97td7lhUVztS5uEF8LqkdAynix0p8/ACeF1SOobTxY6UeeioS0pHipR5jHXHoTdeFtExUsa645CNthu1n9WPOrXYtdZaa5U777yzrLnmmmXGjBnlpS996bDXaxa4HnrooXLVVVe1C2ONrbfeuuy8887tkWD77rvvKN9yGnaEYy/lhTEgX+p+t6sdw+liR8o8vABel5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOQk5juOKKK7YLXU/njDPOKLvtttvgQldjp512KhtuuGE57bTTenwreTJd3YGk7AhTXhgD8iXvd7vYkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktJB0JFdS+KOO+4od999d9lqq60W+1xzdNe55577jL7v1KlTh7385ptvLhtssMEz+p79pos7kJQdYUoHkC9lf5XSkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktJB2JFdS6I5zeHAKQ8X1Vx23333lfnz54/BLaNrUnaEKR1AvpT9VUpHipR56KhLSkeKlHnoqEtKR4qUeeioS0pHipR56KhLSgd9emTX3LlzB095uKiVVlpp8DrDff6pXHfddUt1xBfdlrIjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjro4yO7Jk6c2P453NFb8+bNW+g6kLwjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjro88WugdMXDpzOcKjmssmTJy/1UV30j5QdYUoHkC9lf5XSkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktLB0otb7FpnnXXKlClTyowZMxb73PTp08vmm28+JreL+qXsCFM6gHwp+6uUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOnpm4xa7G7rvvXs4555xy++23D1524YUXlpkzZ5Y99thjTG8bdUrZEaZ0APlS9lcpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdPHPjS8ccd9xx5f777y+/+93v2o/PPvvsMnv27PbvH/7wh8ukSZPKQQcdVKZNm1Z23HHH8pGPfKTMmTOnHHXUUWWzzTYr++yzzxgXUJuUHWFKB5AvZX+V0pEiZR466pLSkSJlHjrqktKRImUeOuqS0pEiZR466pLSQZ8tdh199NHl1ltvHfz4u9/9bvtf413vele72LXuuuuWSy65pHz84x8vBx54YJkwYULZddddyzHHHOP9uojcEaZ0APlS9lcpHSlS5qGjLikdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikd9OFi16xZs5boelOnTi3nnXdez28P3ZWyI0zpAPKl7K9SOlKkzENHXVI6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6GBmR79kF/bIjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjoYORa76DspO8KUDiBfyv4qpSNFyjx01CWlI0XKPHTUJaUjRco8dNQlpSNFyjx01CWlg5FlsYu+krIjTOkA8qXsr1I6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMQ0ddUjoYeRa76BspO8KUDiBfyv4qpSNFyjx01CWlI0XKPHTUJaUjRco8dNQlpSNFyjx01CWlg96w2EVfSNkRpnQA+VL2VykdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdKVLmoaMuKR30jsUu4qXsCFM6gHwp+6uUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5QOestiF9FSdoQpHUC+lP1VSkeKlHnoqEtKR4qUeeioS0pHipR56KhLSkeKlHmkdDQSOlLm0XTQWxa7iJW0I0zoAPKl7K9SOlKkzENHXVI6UqTMQ0ddUjpSpMwjpaOR0JEyj5QXwJPmkdAxoOsdKfMY6KC3xvf4+8OYSNsRdrnj0Bsvi+hoJHQcstF2Y30TCJWwfSR1pEiZh466JHWUjUrnJc0joaOR0JEyD9t5XVI6BnS9I2UeAx3H3rZ76bK0eXS9Y6gud6TMY2gHveXILuIk7gh1jL2UDuiVhO0jZTv3m6F1SeloJHSkzCPlN0PT5tH1jgFd70iZh+28LikdQ3W5I2UeKS+AJ86jyx2L6mpHyjwW7aC3LHYRJXVH2NWORkJHyjxSXgCnTgnbR8p27oWxeqR0DOh6R8o8vDBWl5SOobrckTIP23ldUjoW1dWOlHmkvACeOo+udgynix0p8xiug96y2EWM5B1hFzsGdL0jZR4pL4BTr4TtI2U798JYHVI6hupyR8o8vDBWl5SORXW1I2UetvO6pHQMp4sdKfNIeQE8eR5d7EiRMo+Ujq6x2EWElB1ISsdQXe5ImUfKC+DULWH7SNnOvTA29lI6FtXVjpR5eGGsLikdw+liR8o8bOd1SelIkTIPHXVJ6UiRMo+Uji6y2EXnpexAUjoW1dWOlHmkvABO/RK2j5Tt3AtjYyulYzhd7EiZh466pHSkSJmHjrqkdKRImYeOuqR0pEiZR0pHV1nsotNSdiApHcPpYkfKPFJeAIdeSN7OdYydlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfNI6egyi110VsoOJKUjRco8UjqgF1K2Dx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlI6us9hFJ6XsQFI6UqTMI6UDeiFl+9BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnzSOlIYLGLzknZgaR0pEiZR0oH9ELK9qGjLikdKVLmoaMuKR0pUuahoy4pHSlS5qGjLikdKVLmkdKRwmIXnZKyA0npSJEyj5QO6IWU7UNHXVI6UqTMQ0ddUjpSpMxDR11SOlKkzENHXVI6UqTMI6UjicUuOiNlB5LSkSJlHikd0Asp24eOuqR0pEiZh466pHSkSJmHjrqkdKRImYeOuqR0pEiZR0pHGotddELKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SORBa7qF7KDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOVBa7qFrKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOZBa7qFbKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOdBa7qFLKDiSlI0XKPFI6oBdStg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyj5SOfmCxi+qk7EBSOlKkzCOlA3ohZfvQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp80jp6BcWu6hKyg4kpSNFyjxSOqAXUrYPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMo+Ujn5isYtqpOxAUjpSpMwjpQN6IWX70FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfNI6eg3FruoQsoOJKUjRco8UjqgF1K2Dx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlI5+NH6sbwCk7EBSOlKkzKOLHYfeeFlEx3C62HHIRtuVVF2cx3B01CWlI0XKPHTUJaUjRco8dNQlpSNFyjx01CWlI0XKPFI6+pUjuxhTKTuQlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnzSOnoZxa7GDMpO5CUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXpI4ESfNI6Oh3FrsYEyk7kJSOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXpI4ESfNI6GgkdKTMY6Cj69Lm0fUOLHYxBlJ2ICkdKVLmoaMuKR0pUuahoy4pHSlS5pHS0UjoSJmHF8DrktLRSOhImYcXwOuS0jGg6x0p8xja0WWJ8+hyB39msYtRlbIDSelIkTIPHXVJ6UiRMo+UjkZCR8o8vABel5SOAV3vSJmHF8DrktIxoOsdKfPwAnhdUjqG6nJHyjwW7eiq1Hl0tYP/ZbGLUZOyA0nqSJA0j4SORkJHyjxs53VJ6RjQ9Y6UeXgBvC4pHUN1uSNlHl4Ar0tKx1Bd7kiZhxfA65LSsaiudqTMY7iOLkqeRxc7WJjFLkZNwg4kZUfohbG6pHQM6HpHyjxs53VJ6Riqyx0p8/ACeF1SOhbV1Y6UeXgBvC4pHYvqakfKPLwAXpeUjuF0sSNlHjrqktLB4ix2MWq6vgNJ2RF6YawuKR1DdbkjZR6287qkdCyqqx0p8/ACeF1SOobTxY6UeXgBvC4pHcPpYkfKPHTUJaUjRco8dNQlpYPhWexi1HR5B5KyI/TCWF1SOhbV1Y6UedjO65LSMZwudqTMwwvgdUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnp4MlZ7GLUdHUHkrIj9MJYXVI6htPFjpR52M7rktKRImUeOuqS0pEiZR466pLSkSJlHjrqktKRImUeOuqS0kGfLnbNnz+/fOpTnyprr712mThxYtlmm23K+eefP9Y3q691cQeSsiPUUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlA76eLHrPe95Tzn22GPLO9/5zvKlL32pLL/88uX1r399ueyyy8b6ptERKTtCHXVJ6UiRMg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelgyYwvgaZPn15OPfXUctRRR5VPfOIT7WV777132XTTTcsnP/nJcvnll4/1TaRyKTtCHXVJ6UiRMg8ddUnpSJEyDx11SelIkTIPHXVJ6UiRMg8ddUnpSJEyDx11Semgz4/sOv3009sjufbdd9/By1ZaaaXy3ve+t1xxxRXl9ttvH9PbR91SdoQ66pLSkSJlHjrqktKRImUeOuqS0pEiZR466pLSkSJlHjrqktKRImUeOuqS0sHSGbdgwYIFJczOO+9c7rjjjvLrX/96ocsvvPDCstNOO5WzzjqrvOENb1iq7zl16tRhL7/hhhvKCiusUDbYYINlus394J5HHi61e/zRx8r9d9xVnnjssbLc+PHlL9ZZsyy/QvcOgFzSjikTVq567v02j9FQ+8z7bR4p2/myzL3f5jFa+n1br20eo9FR88z7cR6jpea59+M8RqOj1pn36zxGQ60z79d5jFZHjXPv53mMhhpn3s/zGK2O2ube7/MYDaP1Gk2X3Xzzze16y5/+9Kel/trIxa7mdIXPec5z2sWtoZrFr2bR6qtf/Wr5wAc+MCKLXTfeeGOZOHFiWW+99ZbpNtOtDa5hgRNy2c6hP9jWoT/Y1qE/2NYhn+0c8t12221llVVWKXfddddSf20dS5ojbO7cuWXFFVdc7PLmVIYDn19a11133YjcNrpvYOHT/xOQy3YO/cG2Dv3Btg79wbYO+WznQN+9Z1dzpNX8+fMXu3zevHmDnwcAAAAAAKD7Ihe71lprrXLnnXcudvnAZWuvvfYY3CoAAAAAAABGWuRi1+abb15mzpxZHnzwwYUuv/LKKwc/DwAAAAAAQPdFLna99a1vLY8//nj5+te/PnhZc1rD448/vmyzzTZl3XXXHdPbBwAAAAAAwMgYXwI1C1p77LFH+fSnP13uvvvu8oIXvKCceOKJZdasWeWb3/zmWN88AAAAAAAARsi4BQsWLCiB5s2bVz772c+Wk08+ufzxj38sL3rRi8rnP//58trXvnasbxoAAAAAAAAjJHaxCwAAAAAAgHyR79kFAAAAAABAf7DYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAKBPXHzxxWXcuHHlc5/73BJ/TXPd5muarwUAAKiRxS4AAIBRdNVVV7WLR9tss82wn//2t7/dfr7577e//e1in587d25ZaaWVysorr1zmz58/CrcYAACgbha7AAAARtFLXvKS8qxnPatd9HrwwQcX+/yFF17YLnQ1fvzjHy/2+Z/+9KftItd2221XVlxxxVG5zQAAADWz2AUAADCKlltuufLKV76yPP744+WSSy5Z7PPNAlfz+TXWWGPYxa6By1796lePyu0FAAConcUuAACAUTawULXoYtasWbPaUxc2n99hhx3KRRdd9JSLXTNnziwHHnhg2WqrrcqUKVPaI72e+9znln333bfMnj17qW5Tc6TZLrvsUlZbbbWy+uqrl5122qlcccUVT/k1N9xwQ3nPe95T1l133TJhwoTynOc8p7zjHe8oN95441L9bAAAgGUxfpm+GgAAgKX2qle9avCUhUMNfNx8ftKkSeW73/1u+fWvf1022WST9vLmtIczZsxoT4O4xRZblH/5l38pX/3qV8uOO+5Ytt1223bB6brrriv/+Z//Wc4+++z2uuuss87T3p7LL7+8Xdx65JFHylve8pbyghe8oFxzzTXtEWYDt3VRP/zhD9vrPvroo+UNb3hD+zXNAltzm7///e+3C3XNbQQAAOg1i10AAACj7K//+q/LWmutVX71q1+Ve+65pz0qa+CorVVXXbW89KUvbY+uGrhsYLGrOe1hc/rDZhGqOR3iXnvtVT72sY8t9t5dP/rRj8rrXve6cvjhh5evfOUrT3lbFixYUP7+7/++zJ07t/z3f/93edOb3jT4uS996Uvlox/96GJf88c//rH83d/9XVl55ZXLT37yk8Hb12iaXvayl5X3ve995Re/+MUy/ksBAAA8PacxBAAAGAPNaQibhaahpyps/v43f/M3Zfz48WXq1KnlL//yLxc61eGi79fVHLW16EJX4zWveU379eedd94SHdXVnHZw++23X2ihq/GhD32obLDBBot9zUknnVTuv//+cuihhy600NXYdNNNy/vf//5y9dVXt0elAQAA9JojuwAAAMZAc3rAk08+uV3Aetvb3lauv/76cuedd7ZHag1ojuA6//zzyxNPPNEeybXoYlezWHbKKaeUE044ofzP//xPe8RVc+TXgOa0hk9n4Oir5j3CFrX88suX7bbbrtx8880LXT7wXl7Nz/zc5z632Nc17yXWaJoWXQwDAAAYaRa7AAAAxsDAgtXA+3QNfb+uoYtdp512WnuU1HrrrVeuvfba9miujTfeuP38xz/+8fLFL36xPSXia1/72vZzEydObD/XLIDdeuutT3s7HnjggfbP5zznOcN+fs0111zssj/84Q/tn9/4xjee8nvPmTPnaX8+AADAsrLYBQAAMAaaxavmFIG/+c1vyu23394etfUXf/EX5SUvecngdXbcccf2z+Zzz33uc9sjuQYWye6+++7y5S9/uT1tYHMqwtVWW22h7//tb397iW7HpEmT2j9///vfD/v5u+6660m/pjmy60UvetESNwMAAPSC9+wCAAAYIwMLVxdccEG5+OKL21MJNqcrHNAcwdUcWdUsdi16CsNbbrmlPb1h8/5ciy50zZ49u/38kthiiy3aPy+55JLFPtecEvGyyy5b7PKXvexl7Z+XXnrpUtQCAAD0hsUuAACAMTJwysJ//dd/bd9va+BIrqGay5pFpR/96EcLLXatv/767Z/NYtTQ9+lqTh34/ve/vzz22GNLdBu23XbbstFGG5Wf/OQn5cwzz1zoc8cdd9xi79fV2Geffdqj0A499NAyffr0xT7fLMI1i3cAAACjwWkMAQAAxnCxa9y4ce17cQ18PNxiV3NKwt/+9rftolTzvlyN5oivt7/97eXUU08tm2++eXuEV/P+W+eff35ZaaWV2suuueaap70Nzc//5je/WXbeeeey++67l7e85S3lBS94Qfu1zfuI7bLLLuWHP/zhQl+zxhprlNNPP7387d/+bXuUV7MAN3Xq1PZ7NadkvOKKK9r39Zo3b96I/VsBAAA8GUd2AQAAjJEpU6aUzTbbrP37s5/97Pb9txY19GivgaO6BjSLVAcddFCZO3du+fd///dy3nnnld122619D6+B99VaEq94xSvao8d22mmn8oMf/KD827/9W3nkkUfao7O22WabYb+muS2//OUvy//9v/+3zJo1q3z1q19tb8+vfvWrdtGuWYQDAAAYDeMWNO9wDAAAAAAAAB3kyC4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOGj/WN6Dr1lxzzfLQQw+V9dZbb6xvCgAAAAAAQCfddtttZZVVVil33XXXUn+tI7uWUbPQ9eijj471zQAAAAAAAOisZq2lWXN5JhzZtYwGjui67rrrxvqmAAAAAAAAdNLUqVOf8dc6sgsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6q9OLXUcccUQZN25c2XTTTRf73OWXX1622267svLKK5c111yz7L///mXOnDljcjsBAAAAAADojfGlo2bPnl2OPPLIssoqqyz2uWuuuaa8+tWvLn/9139djj322Pa6Rx99dLnpppvKD37wgzG5vQAAAAAAAIy8zi52feITnygve9nLyuOPP17uvffehT530EEHlWc961nl4osvLquvvnp72frrr1/e//73lx/96EflNa95zRjdagAAAAAAAEq/n8bwJz/5STn99NPLF7/4xcU+9+CDD5bzzz+/vOtd7xpc6GrsvffeZdVVVy2nnXbaKN9aAAAAAAAAeqVzi13NkVwf/vCHy/ve976y2WabLfb5a6+9tjz22GNlq622WujyCRMmlM0337xcffXVo3hrAQAAAAAA6KXOncbwq1/9arn11lvLBRdcMOzn77zzzvbPtdZaa7HPNZddeumlz+jnTp06ddjLb7755rLBBhs8o+8JAAAAAABAHx3Z9Yc//KEcfPDB5bOf/WyZMmXKsNeZO3du++eKK6642OdWWmmlwc8DAAAAAADQfZ06suszn/lMmTx5cnsawyczceLE9s/58+cv9rl58+YNfn5pXXfddUt1xBcAAAAAAAC915nFrptuuql8/etfL1/84hfL7373u4UWsB599NEya9assvrqqw+evnDgdIZDNZetvfbao3q7AQAAAAAA6J3OnMbwjjvuKE888UTZf//9y/Oe97zB/6688soyc+bM9u+HHXZY2XTTTcv48ePLjBkzFvr6Rx55pFxzzTVl8803H7MGAAAAAAAA+vTIrmYR63vf+96wpzb805/+VL70pS+VDTbYoEyaNKnstNNO5eSTT27f22u11VZrr/etb32rzJkzp+yxxx5jcOsBAAAAAADohXELFixYUDrsla98Zbn33nvLr371q8HLfvGLX5Rtt922bLLJJmXfffcts2fPLsccc0zZfvvty3nnnTeiP3/gPbue7D29AAAAAAAA6N16S2dOY7g0tthii3LBBReUiRMnlo997GPte329973vLaeffvpY3zQAAAAAAABGUOeP7BprjuwCAAAAAABYNo7sAgAAAAAAoC9Z7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhcAAAAAAACdZbELAAAAAACAzrLYBQAAAAAAQGdZ7AIAAAAAAKCzLHYBAAAAAADQWRa7AAAAAAAA6CyLXQAAAAAAAHSWxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0FkWuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDO6tRi13XXXVf22GOP8vznP7+svPLK5dnPfnbZfvvty9lnn73Yda+//vqyyy67lFVXXbVMnjy57LXXXuWee+4Zk9sNAAAAAABAb4wvHXLrrbeWP/3pT+Xd7353WXvttcvDDz9czjjjjPLGN76xfO1rXyv77rtve73Zs2e3i2CTJk0qRx55ZJkzZ045+uijy7XXXlumT59eJkyYMNYpAAAAAAAAjIBxCxYsWFA67PHHHy9bbrllmTdvXrnhhhvay/7v//2/5YQTTmg/Xm+99drLLrjggrLzzjsvtCg2EqZOnTp41BkAAAAAAACju97SqdMYDmf55Zcv6667brn//vsHL2uO9tptt90GF7oaO+20U9lwww3LaaedNka3FAAAAAAAgL4+jeGAhx56qMydO7c88MAD5ayzzio/+MEPyp577tl+7o477ih333132WqrrRb7uq233rqce+65Y3CLAQAAAAAA6IVOLnYdcMAB7ekIG8stt1x5y1veUo477rj24zvvvLP9c6211lrs65rL7rvvvjJ//vyy4oorPqPD5xZ18803lw022OAZVAAAAAAAANCXi10f/ehHy1vf+tbyu9/9rj0tYfO+XY888kj7ueaIr8Zwi1krrbTS4HWWdrELAAAAAACA+nRysWvjjTdu/2vsvffe5TWveU15wxveUK688soyceLE9vLm6K1FzZs3r/1z4DpL48neEO3JjvgCAAAAAACg95YrAZqjvH7+85+XmTNnDp6+cOB0hkM1l02ePNlRXQAAAAAAACEiFrsGTl34wAMPlHXWWadMmTKlzJgxY7HrTZ8+vWy++eZjcAsBAAAAAAAo/b7Ydffddy922aOPPlpOOumk9tSEm2yySXvZ7rvvXs4555xy++23D17vwgsvbI/82mOPPUb1NgMAAAAAANA7nXrPrg984APlwQcfLNtvv317BNddd91VTjnllHLDDTeUY445pqy66qrt9Q466KAybdq0suOOO5aPfOQjZc6cOeWoo44qm222Wdlnn33GOgMAAAAAAIB+XOzac889yze/+c3yla98pfzhD38oq622Wtlyyy3LF77whfLGN75x8HrrrrtuueSSS8rHP/7xcuCBB5YJEyaUXXfdtV0Q835dAAAAAAAAOcYtWLBgwVjfiC6bOnVq++d111031jcFAAAAAACg79ZbOvWeXQAAAAAAADCUxS4AAAAAAAA6y2IXAAAAAAAAnWWxCwAAAAAAgM6y2AUAAAAAAEBnWewCAAAAAACgsyx2AQAAAAAA0Fljstj12GOPjcWPBQAAAAAAIMyoLnY98cQT5fjjjy8bb7zxaP5YAAAAAAAAQo0fyW929dVXl5tuuqmsscYaZYcddijjx//vtz/11FPL5z73uTJz5syy2mqrjeSPBQAAAAAAoE+NyGLXvHnzylve8pZy3nnnDV62/vrrl/PPP79MnDixvP3tby+XXXZZWWWVVcqBBx5YDjjggJH4sQAAAAAAAPS5EVnsOuqoo8oPf/jDssUWW5Qdd9yx/OY3vylnnnlm2W+//crs2bPbj//hH/6hfPKTnyyTJ08eiR9JB73xOzct8/eYe++d5fLD3lUevvv2svJfrlu2PfjkMvHZa5WuqaXjrD1fOOo/EwAAAAAAqlvsmjZtWnn5y19eLr300rLccn9+G7CDDz64HH744WXttdduT2/ofbpIWSBaVikdAAAAAAAQs9h18803lyOPPHJwoavxjne8o13s+tSnPmWhi2WWskCU0gEAAABA5hmXUl6/qr3DGZdgZP3v6tQymDt3bpkyZcpClw18vNFGG43Ej6CP1X7H1G8dAAAAAGRKef0qpQMY5SO7nvIHjO/5jyBYyh1TSgcAAAAAmVJev0rpGO0j+nolZR4j0eFovt4asZWoM888s8yaNWvw44cffriMGzeunHLKKeVnP/vZQtdtLv/0pz89Uj+aUHaEGWq4U02cxzPtcKcKAAAALKrfXy+hN1LmkdKRbsQWu6ZNm9b+t6jjjz9+scssdtEvO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tEPRmSx66KLLhqJbwNRO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tEvRmSxa4cddhiJbwMxO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tFPlhvrGwBpO5CUjhQp80jpAAAAAMZeyusMKR0pUuaR0tFvRuw9uxq//OUvy4QJE8rGG2/cfrxgwYJy4oknlh/96EflwQcfLFtttVXZf//9y+TJk0fyxxIgZQeS0pEiZR4pHQAAAMDYS3mdIaUjRco8Ujr60Ygsdj3wwANl5513LldddVX78U477VTOOeec8s53vrOcfvrpg9c799xzy7e+9a0yffr0ssYaa4zEjyZAyg4kpSNFyjxSOgAAAICxl/I6Q0pHipR5pHT0qxFZ7Pryl79cZsyYUbbccsuy5pprlh/+8Iflgx/8YDnzzDPL4YcfXl7/+teXRx99tEybNq0cc8wx5YgjjijHHnvsSPxoOi5lB5LSkSJlHikdAABAvd74nZuinn8kdJy15wvH+iYQKmH7SOpIkTKPlI5+NiKLXc0i1qte9apywQUXtB8fddRR5cADDyz77bdfOeiggwav99KXvrTccsst5fvf/77FLmJ2ICkdKVLmkdIBAADUL+X5R0oH9ELK9pHUUUr3F7aT5pHQ0e+WG4lvcvvtt5c3velNgx+/+c1vbt+va/vtt1/suq985SvLbbfdNhI/lg5L2YGkdKRImUdKBwAAUL+U5x9JHdALKdtHUkfXpc2j6x2M0GJX855dQ9+Da/LkyQv9OdSznvWs8sgjj4zEj6WjUnYgKR0pUuaR0gEAAHRDwvOPlOdRKS+AU6eU7SOpo8sS59HlDkZwsQv6bQeS0pEiZR4pHQAAQHd0/flHyvOolBfAqVfK9pHU0VWp8+hqBz1Y7Bo3btwSXUb/StmBJHUkSJpHQgcAANAtXX7+kfI8KuUFcOqWsn0kdXRR8jy62MHCxpcRsvfee5d3v/vdC132mte8ZrEFr+a9vOhPCTuQuFMj7Nft989Lm0fXOwAAgO7p6vOPlOdRKS+AU7+U7UPH2NFBXyx2bb/99o7i4ml1fQeSsiNMOTVC4jy63AEAAHRTF59/pDyPSumAXkjZPnTUJaWDHi52XXzxxSPxbQjX5R1Iyo4w5dQIqfPoagcAAMBoSXkeldIBvZCyfeioS0oHPV7sOumkk9qju9Zff/2R+HaE6uoOJGVHmHJqhOR5dLED6F9v/M5NpUtS9rtP1nHWni8c65sGAD2Xfn8O5GwfOuqS0sFTW66MgH322adcfvnlgx8/+OCDZeutty4zZswYiW9PiC7uQFJ2hDrqktIB0BUp+92UDgDo5/vBlA7ohZTtQ0ddUjoYpcWuBQsWLPTxo48+2i50NYte0FUpO0IddUnpAOiKlP1uSgcA9PP9YEoH9ELK9qGjLikdjOJpDCFNyo5QR11SOlJObZYyj6frcGoz+lm/bOcAkCzlfjClA3ohZfvQUZeUDkb5yC5IkrIj1FGXlI4UKfNI6YBeSNk+UjoAoJ/vB1M6oBdStg8ddUnpYOlY7ILAHaGOuqR0pEiZR0oH9ELK9pHSAQD9fD+Y0gG9kLJ96KhLSgdjeBrDM888s8yaNav9+8MPP1zGjRtXTjnllPKzn/1sses2n/v0pz89Uj8aRkTKjlBHXVI6UqTMI6UDeiFl+0jpAIB+vh9M6YBeSNk+dNQlpYMxXuyaNm1a+99Qxx9//LDXtdhFbVJ2hDrqktKRImUeKR3QCynbR0oHAPTz/WBKB/RCyvahoy4pHYzxYtdFF11URsPPf/7zcuKJJ7Y/rzmKbI011igve9nLyuGHH1423HDDha57/fXXl4997GPlsssuKxMmTCi77rprOfbYY8uUKVNG5bbSHSk7Qh11SelIkTKPlA7ohZTtI6UDAPr5fjClA3ohZfvQUZeUDipY7Nphhx3KaPjCF75QfvrTn5Y99tijvOhFLyp33XVXOe6448oWW2zRni5x0003ba83e/bssv3225dJkyaVI488ssyZM6ccffTR5dprry3Tp09vF78gaUeooy4pHSlS5pHSAb2Qsn3U3vHG79wU0bGkutBx1p4vHOubANBX+91+6oBeSNk+dNQlpYOKTmM4Gj7+8Y+X//qv/1posWrPPfcsm222Wfnnf/7ncvLJJ7eXNQtcDz30ULnqqqvKeuut11629dZbl5133rmccMIJZd999x2zBuqRsiPUUZeUjhQp80jpgF5I2T501CWlA6ArUva7KR3QCynbh466pHTQh4td22677WKXvfCFLyxTp05tT1s44Iwzzii77bbb4EJXY6eddmpPdXjaaadZ7CJmR6ijLikdKVLm0ZWOpzvioysdT6crHf1ytEdX5vF0dNQlpQOgK1L2uykd0Asp24eOuqR00KeLXcNZsGBB+f3vf98ueDXuuOOOcvfdd5etttpqses2R3ede+65z+jnDHz/Rd18881lgw02eEbfk7GRsiPUUZeUjhQp89BRl5SOFCnz0FGXlA6ArkjZ76Z0QC+kbB866pLSwcharnTcKaec0i5wNaczbNx5553tn2uttfj/3M1l9913X5k/f/6o307qkLIj1FGXlI4UKfPQUZeUjhQp89BRl5QOgK5I2e+mdEAvpGwfOuqS0sHI6/SRXTfccEPZb7/9ystf/vLy7ne/u71s7ty57Z8rrrjiYtdfaaWVBq8z3OefynXXXbdUR3xRn5QdoY66pHSkSJmHjrqkdKRImYeOuqR0AHRFyn43pQN6IWX70FGXlA56o7NHdt11111l1113LZMmTSqnn356WX755dvLJ06c2P453NFb8+bNW+g69I+UHaGOuqR0pEiZh466pHSkSJmHjrqkdAB0Rcp+N6UDeiFl+9BRl5QOeqeTR3Y98MAD5XWve125//77y6WXXlrWXnvtwc8NnL5w4HSGQzWXTZ48eamP6qLbUnaEOuqS0pEiZR466pLSkSJlHjrqktIB0BUp+92UDuiFlO1DR11SOuitzh3Z1Ryd9YY3vKHMnDmznHPOOWWTTTZZ6PPrrLNOmTJlSpkxY8ZiXzt9+vSy+eabj+KtZayl7Ah11CWlI0XKPHTUJaUjRco8dNQlpQOgK1L2uykd0Asp20dKRyOhI2UeTQe91anFrscff7zsueee5YorrijTpk1r36trOLvvvnu7EHb77bcPXnbhhRe2C2R77LHHKN5ixlLSjlBHPVI6UqTMQ0ddUjpSpMxDR11SOgC6ImW/m9IBvZCyfaR0DOh6R8o8BjrorU6dxvCAAw4oZ511Vntk13333VdOPvnkhT7/rnf9+X+Ygw46qF0M23HHHctHPvKRMmfOnHLUUUeVzTbbrOyzzz5jdOsZTWk7Qh11SOlIkTIPHXVJ6UiRMg8ddUnqKOWFY30zAPpqv5vQAb2Qsn2kdAzV5Y6UeQztoLc6tdh1zTXXtH+effbZ7X+LGljsWnfddcsll1xSPv7xj5cDDzywTJgwoey6667lmGOO8X5dfSBxR6hj7KV0pEiZR0pHI6EjZR4pL4AnzSOho5HQEfebofvdNtY3BaCv9rtd74BeSNk+UjoW1dWOlHks2kFvdWqx6+KLL17i606dOrWcd955Pb091Cd1R9jVjkZCR8o8vABel5SOAV3vSJlHygvgafPoeseArnekzMNvhgJdkbjf7XIH9ELK9pHSMZwudqTMY7gOeqtT79kF/boj7GLHgK53pMwj5dzAafPoesdQXe5ImUfKC+CJ8+hyx1Bd7kiZh98MBboidb/b1Q7ohZTtI6UjRco8Ujq6xmIXEVJ2ICkdQ3W5I2UeXgCvS0rHorrakTKPlBfAU+fR1Y5FdbUjZR5+MxToiuT9bhc7oBdSto+UjhQp80jp6CKLXXReyg4kpWNRXe1ImYcXwOuS0jGcLnakzCPlBfDkeXSxYzhd7EiZR0oHkC9lf5XSAb2Qsn2kdKRImUdKR1dZ7KLTUnYgKR3D6WJHyjy8AF6XlI4UKfPQUZeUjhQp80jpAPKl7K9SOqAXUraPlI4UKfNI6egyi110VsoOJKUjRco8dNQlpSNFyjx01CWlI0XKPFI6gHwp+6uUDuiFlO0jpSNFyjxSOrrOYhedlLIDSelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOIF/K/iqlA3ohZftI6UiRMo+UjgQWu+iclB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHQA+VL2Vykd0Asp20dKR4qUeaR0pLDYRaek7EBSOlKkzENHXVI6UqTMQ0ddUjpSpMwjpQPIl7K/SumAXkjZPlI6UqTMI6UjicUuOiNlB5LSkSJlHjrqktKRImUeOuqS0pEiZR4pHUC+lP1VSgf0Qsr2kdKRImUeKR1pLHbRCSk7kJSOFCnz0FGXlI4UKfPQUZeUjhQp80jpAPKl7K9SOqAXUraPlI4UKfNI6Ug0fqxvAPTLDiSlI0XKPHTUJaUjRco8dNQlpSNFyjxSOoB8KfurlI5l8cbv3FRqkTKPZek4a88XllqYB72QMo+UjlSO7KJqKTuQlI4UKfPQUZeUjhQp89BRl5SOFCnzSOkA8qXsr1I6UqTMQ0ddUjpSpMwjpSOZxS6qlbIDSelIkTIPHXVJ6UiRMg8ddUnpSJEyj5QOIF/K/iqlI0XKPHTUJaUjRco8UjrSOY0hVUrZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB3lqOLVZyvYxEh01nNrMPOiFlHnoqEtKR4qUeaR09ANHdlGdlB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHRAL6RsHzrqktKRImUeOuqS0pEiZR4pHf3CYhdVSdmBpHSkSJmHjrqkdKRImYeOuqR0pEiZR0oH9ELK9qGjLikdKVLmoaMuKR0pUuaR0tFPLHZRjZQdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLSkSJlHjrqktKRImUeKR39xmIXVUjZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB/RCyvahoy4pHSlS5qGjLikdKVLmkdLRjyx2MeZSdiApHSlS5qGjLikdKVLmoaMuKR0pUuaR0gG9kLJ96KhLSkeKlHnoqEtKR4qUeaR09CuLXYyplB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHRAL6RsHzrqktKRImUeOuqS0pEiZR4pHf3MYhdjJmUHktKRImUeOuqS0pEiZR466pLSkSJlHikd0Asp24eOuqR0pEiZh466JHUkSJpHQke/s9jFmEjZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB/RCyvahoy5JHQmS5pHQ0UjoSJnHQEfXpc2j6x1Y7GIMpOxAUjpSpMxDR11SOlKkzENHXVI6UqTMI6UDeiFl+0jpaCR0pMzDC+B1SekY0PWOlHkM7eiyxHl0uYM/s9jFqErZgaR0pEiZh466pHSkSJlHSkcjoSNlHn4DvC4pHdALKdtHSseArnekzMML4HVJ6Riqyx0p81i0o6tS59HVDv6XxS5GTcoOJKkjQdI8EjoaCR0p87Cd1yWlY0DXO1Lm4TfA65LSAb2Qsn2kdAzV5Y6UeXgBvC4pHYvqakfKPIbr6KLkeXSxg4VZ7GLUJOxAUnaEXhirS0rHgK53pMzDdl6XlI6hutyRMg+/AV6XlA7ohZTtI6VjUV3tSJmHF8DrktIxnC52pMxDR11SOlicxS5GTdd3ICk7Qi+M1SWlY6gud6TMw3Zel5SORXW1I2UefgO8Likd0Asp20dKx3C62JEyDx11SelIkTIPHXVJ6WB4FrsYNV3egaTsCL0wVpeUjkV1tSNlHrbzuqR0DKeLHSnz8BvgdUnpgF5I2T5SOlKkzENHXVI6UqTMQ0ddUjp4cha7GDVd3YGk7Ai9MFaXlI7hdLEjZR6287qkdKRImYeOuqR0QC+kbB8pHSlS5qGjLikdKVLmoaMuKR08NYtdjJou7kBSdoQ66pLSkSJlHjrqktKRImUeOuqS0gG9kLJ9pHSkSJmHjrqkdKRImYeOuqR08PQsdkH4jlBHXVI6UqTMQ0ddUjpSpMxDR11SOqAXUraPlI4UKfPQUZeUjhQp89BRl5QOlozFLgjeEeqoS0pHipR56KhLSkeKlHnoqEtKB/RCyvaR0pEiZR466pLSkSJlHjrqktLBkrPYBaE7Qh11SelIkTIPHXVJ6UiRMg8ddUnpgF5I2T5SOlKkzENHXVI6UqTMQ0ddUjpYOha7IHBHqKMuKR0pUuahoy4pHSlS5qGjLikd0Asp20dKR4qUeeioS0pHipR56KhLSgdLz2IXhO0IddQlpSNFyjx01CWlI0XKPHTUJaUDeiFl+0jpSJEyDx11SelIkTIPHXVJ6eCZsdgFQTtCHXVJ6UiRMg8ddUnpSJEyDx11SemAXkjZPlI6UqTMQ0ddUjpSpMxDR11SOnjmLHbR91J2hDrqktKRImUeOuqS0pEiZR466pLSAb2Qsn2kdKRImYeOuqR0pEiZh466pHSwbCx20ddSdoQ66pLSkSJlHjrqktKRImUeOuqS0gG9kLJ9pHSkSJmHjrqkdKRImYeOuqR0sOwsdtG3UnaEOuqS0pEiZR466pLSkSJlHjrqktIBvZCyfaR0pEiZh466pHSkSJmHjrqkdDAyLHbRl1J2hDrqktKRImUeOuqS0pEiZR466pLSAb2Qsn2kdKRImYeOuqR0pEiZh466pHTQp4tdc+bMKYccckjZZZddyuTJk8u4cePKCSecMOx1r7/++vZ6q666anvdvfbaq9xzzz2jfpupT8qOUEddUjpSpMxDR11SOlKkzENHXVI6oBdSto+UjhQp89BRl5SOFCnz0FGXlA5G1vjSIffee2857LDDynrrrVde/OIXl4svvnjY682ePbtsv/32ZdKkSeXII49sF8mOPvrocu2115bp06eXCRMmjPptpw4pO0IddUnpSJEyDx11SelIkTIPHXVJ6YBeSNk+UjpSpMxDR11SOlKkzENHXVI66PPFrrXWWqvceeedZc011ywzZswoL33pS4e9XrPA9dBDD5WrrrqqXRhrbL311mXnnXdujwTbd999R/mWU4OUHaGOuqR0pEiZh466pHSkSJmHjrqkdEAvpGwfKR0pUuahoy4pHSlS5qGjLikd9EanTmO44oortgtdT+eMM84ou+222+BCV2OnnXYqG264YTnttNN6fCupUcqOUEddUjpSpMxDR11SOlKkzENHXVI6oBdSto+UjhQp89BRl5SOFCnz0FGXlA56p1NHdi2JO+64o9x9991lq622WuxzzdFd55577jP6vlOnTh328ptvvrlssMEGz+h7MjpSdoQ66pLSkSJlHjrqktKRImUeOuqS0gG9kLJ9pHSkSJmHjrqkdKRImYeOuqR00FudOrJrSTSnORw45eGimsvuu+++Mn/+/DG4ZYyFlB2hjrqkdKRImYeOuqR0pEiZh466pHRAL6RsHykdKVLmoaMuKR0pUuaR0tFI6EiZR9NBb8Ud2TV37tzBUx4uaqWVVhq8znCffyrXXXfdUh3xxdhL2hHqqEdKR4qUeeioS0pHipR56KhLSgf0Qsr2kdKRImUeKR2NhI6sF8BfWLouaR4JHQO63pEyj4GOst9tY31TosUd2TVx4sT2z+GO3po3b95C1yFX2o5QRx1SOlKkzENHXVI6UqTMQ0ddkjqgF1K2j5SOBEnzSOgY0PWOuBfAOy5tHl3vGKrLHSnzGNpBb8Utdg2cvnDgdIZDNZdNnjx5qY/qolsSd4Q6xl5KR4qUeaR0NBI6UubhhbG6pHQ0EjpS5pHywhh1Stk+Ujq6Lm0eXe8YqssdKfNIeQE8cR5d7lhUVztS5rFoB70Vt9i1zjrrlClTppQZM2Ys9rnp06eXzTfffExuF6MjdUfY1Y5GQkfKPLwAXpeUjgFd70iZhxfG6pLSMaDrHSnzSHlhjHqlbB8pHV2WOI8udyyqqx0p80h5ATx1Hl3tGE4XO1LmMVwHvRW32NXYfffdyznnnFNuv/1/HxheeOGFZebMmWWPPfYY09tG7yTvCLvYMaDrHSnz8AJ4XVI6hupyR8o8vDBWl5SOobrckTKPlBfGqFvK9pHS0VWp8+hqx3C62JEyj5QXwJPn0cWOFCnzSOnomvGlY4477rhy//33l9/97nftx2effXaZPXt2+/cPf/jDZdKkSeWggw4q06ZNKzvuuGP5yEc+UubMmVOOOuqostlmm5V99tlnjAvohZQdSErHUF3uSJmHF8DrktKxqK52pMzDC2N1SelYVFc7UuaR8sIY9UvZPlI6uih5Hl3sSJEyDx11SelIkTKPlI4u6txi19FHH11uvfXWwY+/+93vtv813vWud7WLXeuuu2655JJLysc//vFy4IEHlgkTJpRdd921HHPMMd6vK1DKDiSlY1Fd7UiZhxfA65LSMZwudqTMwwtjdUnpGE4XO1LmkdIBvZCyfeioS0pHipR56KhLSkeKlHmkdHRV5xa7Zs2atUTXmzp1ajnvvPN6fnsYWyk7kJSO4XSxI2UeXgCvS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdXRb5nl30h5QdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLSkSJlHjrqktKRImUeKR1dZ7GLTkrZgaR0pEiZh466pHSkSJmHjrqkdKRImUdKB/RCyvahoy4pHSlS5qGjLikdKVLmkdKRwGIXnZOyA0npSJEyDx11SelIkTIPHXVJ6UiRMo+UDuiFlO1DR11SOlKkzENHXVI6UqTMI6UjhcUuOiVlB5LSkSJlHjrqktKRImUeOuqS0pEiZR4pHdALKduHjrqkdKRImYeOuqR0pEiZR0pHEotddEbKDiSlI0XKPHTUJaUjRco8dNQlpSNFyjxSOqAXUrYPHXVJ6UiRMg8ddUnpSJEyj5SONBa76ISUHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdiSx2Ub2UHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdqSx2UbWUHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikdySx2Ua2UHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikd6Sx2UaWUHUhKR4qUeeioS0pHipR56KhLSkeKlHmkdEAvpGwfOuqS0pEiZR466pLSkSJlHikd/cBiF9VJ2YGkdKRImYeOuqR0pEiZh466pHSkSJlHSgf0Qsr2oaMuKR0pUuahoy4pHSlS5pHS0S8sdlGVlB1ISkeKlHnoqEtKR4qUeeioS0pHipR5pHRAL6RsHzrqktKRImUeOuqS0pEiZR4pHf3EYhfVSNmBpHSkSJmHjrqkdKRImYeOuqR0pEiZR0oH9ELK9qGjLikdKVLmoaMuKR0pUuaR0tFvLHZRhZQdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLSkSJlHjrqktKRImUeKR39yGIXYy5lB5LSkSJlHjrqktKRImUeOuqS0pEiZR4pHdALKduHjrqkdKRImYeOuqR0pEiZR0pHv7LYxZhK2YGkdKRImYeOuqR0pEiZh466pHSkSJlHSgf0Qsr2oaMuKR0pUuahoy4pHSlS5pHS0c8sdjFmUnYgKR0pUuahoy4pHSlS5qGjLikdKVLmkdIBvZCyfeioS0pHipR56KhLUkeCpHkkdPQ7i12MiZQdSEpHipR56KhLSkeKlHnoqEtKR4qUeaR0QC+kbB866pLUkSBpHgkdjYSOlHkMdHRd2jy63oHFLsZAyg4kpSNFyjx01CWlI0XKPHTUJaUjRco8UjqgF1K2j5SORkJHyjy8AF6XlI4BXe9ImcfQji5LnEeXO/gzi12MqpQdSEpHipR56KhLSkeKlHmkdDQSOlLm4TfA65LSAb2Qsn2kdAzoekfKPLwAXpeUjqG63JEyj0U7uip1Hl3t4H9Z7GLUpOxAkjoSJM0joaOR0JEyD9t5XVI6BnS9I2UefgO8Likd0Asp20dKx1Bd7kiZhxfA65LSsaiudqTMY7iOLkqeRxc7WJjFLkZNwg4kZUfohbG6pHQM6HpHyjxs53VJ6Riqyx0p8/Ab4HVJ6YBeSNk+UjoW1dWOlHl4AbwuKR3D6WJHyjx01CWlg8VZ7GLUdH0HkrIj9MJYXVI6hupyR8o8bOd1SelYVFc7UubhN8DrktIBvZCyfaR0DKeLHSnz0FGXlI4UKfPQUZeUDoZnsYtR0+UdSMqO0AtjdUnpWFRXO1LmYTuvS0rHcLrYkTIPvwFel5QO6IWU7SOlI0XKPHTUJaUjRco8dNQlpYMnZ7GLUdPVHUjKjtALY3VJ6RhOFztS5mE7r0tKR4qUeeioS0oH9ELK9pHSkSJlHjrqktKRImUeOuqS0sFTs9jFqOniDiRlR6ijLikdKVLmoaMuKR0pUuahoy4pHdALKdtHSkeKlHnoqEtKR4qUeeioS0oHT89iF4TvCHXUJaUjRco8dNQlpSNFyjx01CWlA3ohZftI6UiRMg8ddUnpSJEyDx11SelgyVjsguAdoY66pHSkSJmHjrqkdKRImYeOuqR0QC+kbB8pHSlS5qGjLikdKVLmoaMuKR0sOYtdELoj1FGXlI4UKfPQUZeUjhQp89BRl5QO6IWU7SOlI0XKPHTUJaUjRco8dNQlpYOlY7ELAneEOuqS0pEiZR466pLSkSJlHjrqktIBvZCyfaR0pEiZh466pHSkSJmHjrqkdLD0LHZB2I5QR11SOlKkzENHXVI6UqTMQ0ddUjqgF1K2j5SOFCnz0FGXlI4UKfPQUZeUDp4Zi10QtCPUUZeUjhQp89BRl5SOFCnz0FGXlA7ohZTtI6UjRco8dNQlpSNFyjx01CWlg2fOYhd9L2VHqKMuKR0pUuahoy4pHSlS5qGjLikd0Asp20dKR4qUeeioS0pHipR56KhLSgfLxmIXfS1lR6ijLikdKVLmoaMuKR0pUuahoy4pHdALKdtHSkeKlHnoqEtKR4qUeeioS0oHy85iF30rZUeooy4pHSlS5qGjLikdKVLmoaMuKR3QCynbR0pHipR56KhLSkeKlHnoqEtKByPDYhd9KWVHqKMuKR0pUuahoy4pHSlS5qGjLikd0Asp20dKR4qUeeioS0pHipR56KhLSgcjx2IXfSdlR6ijLikdKVLmoaMuKR0pUuahoy4pHdALKdtHSkeKlHnoqEtKR4qUeeioS0oHI8tiF30lZUeooy4pHSlS5qGjLikdKVLmoaMuKR3QCynbR0pHipR56KhLSkeKlHnoqEtKByNvfA++J1QpZUeooy4pHSlS5qGjLikdKVLmoaMuKR298Mbv3DTqPzNlHr3oOGvPF5bRZh70Qso8dNQlpSNFyjx01CWlg96IPbJr/vz55VOf+lRZe+21y8SJE8s222xTzj///LG+WYyRlB2hjrqkdKRImYeOuqR0pEiZh466pHSkSJmHjrqkdKRImYeOuqR0pEiZh466pHTQO7GLXe95z3vKscceW975zneWL33pS2X55Zcvr3/968tll1021jeNUZayI9RRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfPQUZeUDnorcrFr+vTp5dRTTy3/9E//VI466qiy7777lh//+Mfluc99bvnkJz851jePUZSyI9RRl5SOFCnz0FGXlI4UKfPQUZeUjhQp89BRl5SOFCnz0FGXlI4UKfNI6WgkdKTMo+mgtyIXu04//fT2SK5mkWvASiutVN773veWK664otx+++1jevsYHUk7Qh31SOlIkTIPHXVJ6UiRMg8ddUnpSJEyDx11SelIkTKPlI5GQkfKPFJeAE+aR0LHgK53pMxjoIPeilzsuvrqq8uGG25YVl999YUu33rrrds/r7nmmjG6ZYyWtB2hjjqkdKRImYeOuqR0pEiZh466JHUkSJpHQkcjoSNlHrbzuqR0DOh6R8o8Ul4AT5tH1zuG6nJHyjyGdtBb4xYsWLCghNl0003Lc57znHLhhRcudPmvf/3rMnXq1PLVr361fOADH1iq79l83XBuuOGGssIKK5QNNthgmW5zP7jtwUdG5ecseOyx8vA9s8uCxx8r45YfX1ae8ldl3PjxpWtGo2O91SeUXrv1vofNoyKjMfPR2NZT5pGynTeuv3GmeVTU8dzJK3d+W0+ax2h0jMa2bjuvr+OvN9qw09t62jxGo2M0tvXmebN5jD3beV1Gu2O07tfNo56OTTbZpLPbeuI8RqtjtF6XM496Okbjfr3rbr755na95U9/+tNSf23kYlez8LTRRhuVc889d6HLb7nllvZz//qv/1o++tGPjshi14033lgmTpxY1ltvvWW6zXRrg2tY4IRctnPoD7Z16A+2degPtnXIZzuHfLfddltZZZVVyl133bXUX9u95dAl0Cw+zZ8/f7HL582bN/j5pXXdddeNyG2j+wYWPv0/Abls59AfbOvQH2zr0B9s65DPdg703Xt2rbXWWuXOOxc/t/XAZWuvvfYY3CoAAAAAAABGWuRi1+abb15mzpxZHnzwwYUuv/LKKwc/DwAAAAAAQPdFLna99a1vLY8//nj5+te/PnhZc1rD448/vmyzzTZl3XXXHdPbBwAAAAAAwMiIfM+uZkFrjz32KJ/+9KfL3XffXV7wgheUE088scyaNat885vfHOubBwAAAAAAwAiJXOxqnHTSSeWzn/1s+da3vlX++Mc/lhe96EXlnHPOKdtvv/1Y3zQAAAAAAABGyLgFCxYsGKlvBgAAAAAAAKMp8j27AAAAAAAA6A8WuwAAAAAAAOgsi10AAAAAAAB0lsUuAAAAAAAAOstiFwAAAAAAAJ1lsQsAAAAAAIDOstgFAAAAAABAZ1nsAgAAAAAAoLMsdgEAAAAAANBZFrsAAAAAAADoLItdAAAAAAAAdJbFLgAAAAAAADrLYhd94ec//3n50Ic+VKZOnVpWWWWVst5665W3ve1tZebMmYtd9/rrry+77LJLWXXVVcvkyZPLXnvtVe65557FrnfEEUeUN77xjeU5z3lOGTduXPnc5z63RLdl5513bq/f3B4gazv/zne+U17+8pe3P/8v/uIvyrbbblt+/OMfj2gn9Lux3tYvuOCCsuOOO5ZnP/vZ7Xa+9dZbl29961sj3gn9bqS39RtuuKF88pOfLJtvvnlZbbXVylprrVV23XXXMmPGjGF//h133NH+vGY7X3311cub3vSmcsstt/SsF/rVWG7r3/3ud8uee+5Znv/855eVV165bLTRRuWAAw4o999/f0+boR+N9f36UF6Xg1zjFixYsGCsbwT02lvf+tby05/+tOyxxx7lRS96UbnrrrvKcccdV+bMmVN+9rOflU033bS93uzZs8tLXvKSMmnSpLL//vu3nz/66KPbO+Hp06eXCRMmDH7P5o5xzTXXLC9+8YvLeeedVw455JCnfSG8eTC99957l4ceeqjst99+7W0AMrbz5vLDDjusvR2vfvWry6OPPlp+9atflVe84hXtg3Og+9v6WWedVd785je3i9p/93d/137daaedVn7yk5+UY489tnzsYx8b1X8LSDbS2/onPvGJ8s1vfrPsvvvu7SL1Aw88UL72ta+VWbNmlR/+8Idlp512GvzZzffYYost2us0L3yvsMIK5V//9V9L89T5mmuuKWusscaY/btAmrHc1ptfXFl77bXb+/bm+1x77bXlq1/9arv49Ytf/KJMnDhxzP5dIM1YbutDeV0OwjWLXZDupz/96YL58+cvdNnMmTMXrLjiigve+c53Dl72wQ9+cMHEiRMX3HrrrYOXnX/++c2C8IKvfe1rC339b3/72/bPe+65p/38IYcc8pS3Ye7cuQvWX3/9BYcddlh7/f3222+E6oCx3s6vuOKKBePGjVtw7LHHjnAVUNO2vvPOOy9Ye+21F8ybN2/wskcffXTBBhtssOBFL3rRiDUCI7+tz5gxY8Gf/vSnhb7fvffeu2DKlCkLXvGKVyx0+Re+8IX266dPnz542fXXX79g+eWXX/DpT396RDuh343ltn7RRRctdntOPPHE9nt+4xvfGJE+YOy39QFel4N8TmNIX2hOJTb0N7gbL3zhC9vDp5vDowecccYZZbfddmt/Y2RA89sgG264Yfub20Otv/76S3Ub/uVf/qU88cQT7W+fAFnb+Re/+MX2qJCPfOQj7W99N799BuRt6w8++GB51rOeVVZcccXBy8aPH9/+Zrjf/oa6t/Utt9yyPR3SUM0RWn/zN3+z0PdrnH766eWlL31p+9+AjTfeuD1ye9H9B9Ddbf2Vr3zlYrfnb//2b9s/F70u0N1tfYDX5SCfxS76VvOC9O9///v2BaqB8/LffffdZauttlrsus0h0VdfffUz/lm33XZb+ed//ufyhS98wYthELidX3jhhe0LYl/+8pfLlClTBs8Z7pQIkLWtNy+KXXfddeWzn/1s+c1vflNuvvnm8vnPf759b4DmPQOA7m3rzWmUBr5fo3kR7Je//OWTfs9mu//Tn/60zC3A2G7rT3W9xpJcF+jOtu51OegPFrvoW6ecckp7R9q8IW3jzjvvbP9sXqBeVHPZfffdV+bPn/+MflZzrv/mnMNvf/vbl/FWA7Vt53/84x/Lvffe255/vHkB/MADDyzf+c532jfK/fCHP9yeNxzIuE9vtvHmjbSPOOKI9jdRX/CCF7RPmpvfQH3LW94yAiXAaG7rl156abniiisGv19j4Gue7Hs2fve7341IDzB22/qTaV4IX3755dv3FwJytnWvy0F/GD/WNwDGwg033NC+EWXzBvPvfve728vmzp3b/jn01EQDVlpppcHrDPf5p3LRRRe1L4JdeeWVI3Lbgbq284FTFv7hD38op5566uAD6+YJ8mabbVYOP/zw8oEPfGBEmoCxvU9vrt+cQqXZvpvFrccff7x8/etfL+9617vK+eefX172speNSBPQ+229+c3xd7zjHeV5z3veQkdmLun3BLq9rQ/nv/7rv8o3v/nN9nrNL7UAGdu61+Wgf1jsou80hzTvuuuuZdKkSe35+Jvf2moMHMY83G+JzJs3b6HrLKnHHnus7L///mWvvfZa6Jz/QM52PnD9FVZYYaHfAF1uueXaha9DDjmkPWXC0HOOA93b1hsf+tCHys9+9rPyi1/8ot3GG82RXs17DTTv2ecJNHRjW3/ooYfa9wNpTkd42WWXLfSeH73afwB1bevDHRHy3ve+t7z2ta9tj+AGMrZ1r8tBf7HYRV954IEHyute97py//33tw9m11577cHPDRwmPXDY9FDNZZMnT17q3wA/6aSTyo033tiexmzWrFkLfa65E24u+8u//Muy8sorP+MmYGy38+Zrmt8y+4u/+IvBB+kDmu174FSHFrug29v6I488Mvjb3gMLXQML3c3taN6jr7nOom+8DdS1rTfbaXNkZvO+XOedd17ZdNNNF/r8wNc82fdsDL0NQDe39aH+53/+p7zxjW9sr9O88D5+vJfKIGVb97oc9Bfv2UXfaH4L5A1veEOZOXNmOeecc8omm2yy0OfXWWedMmXKlPZN5hc1ffr09v13llZzNMejjz5aXvGKV7SHUg/8N3CH2/z9Rz/60TJUAWO9nTcvejdfd88997QPtIcaeE+P5mcC3d7Wm1OVNr8Z2py6cFHNff0TTzwx7OeAerb1Zjvde++9y4UXXtiermyHHXYY9n69OQ3xcN+zOXrz+c9/fllttdVGpA8Yu219wM0331x22WWX9sXuc8899ymP/gK6t617XQ76i8Uu+kLz4lNzOrHmjSqnTZvWnhN4OLvvvnt7h3v77bcPXtbcaTZ3xHvsscdS/9zmjS+/973vLfZf4/Wvf33792222WYZyoCx3s4bzc9tfv6JJ5640AP55g13mwfwfgMcur+tNy+CNUdwNvfdQxe2m/ftO/vss8vGG2/s1GZQ+bb+4Q9/uHznO98p//Ef/9H+FviTaU5L/POf/3yhF9ua3wr/8Y//v/buWKWRIIwD+KQSNYjY2Ag+g42WopBUNoJdivTaGLC0txBEn0Ht8gBW5ytYCBYWIjb6Amnn+LY4cp4G7jDmZvP7gaTIZtgRPjaZ/+43P/75uwLw/9V6tFJrt9tVyB1PhLhBDepX69blYLo0cs550icB43Z4eJguLi6qO0hib433YmP5EBfTtbW1ajEr9t6IBazT09O0srJS/eAdflz68vIyPT8/p8FgkE5OTtLW1lba3t6u3otewKurq5+eT6PRqDbijJZHQPl1HpvkRv/v+AIeY0bLwvhs7OsTi+DRpgEov9ZjD4/j4+Nq3LiLNH60R2vDh4eHdHV1lTqdzrf9H6DuvrrWz8/PU6/XqxbX9vf3/xhvd3c3zc/P/2prFGPG69HRUdWu9OzsrKr5u7s7C+JQk1qPp0SihWG0KI4nOoctLy+nVqs1plnD9JlkrX/EuhzUVIRdUHebm5sR6n76N+z+/j632+08NzeXFxcXc6fTya+vr3815u3t7cjziWMODg6+fJ4wzSZd529vb7nb7ealpaU8MzOTNzY28s3NzdjnDdNm0rV+fX2d19fXq/FmZ2erWu/3+2OfN0ybr671uEaPGu/p6em3419eXvLe3l5eWFjIzWYz7+zs5MfHx2+ZO0yTSdb6qOPivID6XNffsy4H9eTJLgAAAAAAAIplzy4AAAAAAACKJewCAAAAAACgWMIuAAAAAAAAiiXsAgAAAAAAoFjCLgAAAAAAAIol7AIAAAAAAKBYwi4AAAAAAACKJewCAAAAAACgWMIuAAAAAAAAiiXsAgAAAAAAoFjCLgAAAAAAAIol7AIAAAAAAKBYwi4AAAAAAACKJewCAAAAAACgWMIuAAAAAAAAiiXsAgAAAAAAoFjCLgAAAAAAAIol7AIAAAAAACCV6ifwvmcNUXKWxgAAAABJRU5ErkJggg==" + "image/png": "iVBORw0KGgoAAAANSUhEUgAABycAAALPCAYAAADIEMxwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAjgxJREFUeJzs/QeYlNX5P/7fC0gRFBUBRUEJggU0WEBDsEVRsEfFFmtUTIwaNDaMPXbUmEhskY8NS+wtdoPdiA0LalAEBQXBggjShP1f5/y+M/9dFqS4DCz7el3XXDNznvM8c2Z32Lh5732fsvLy8vIAAAAAAAAAWMzqLO4XAAAAAAAAAEiEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAABazG2+8McrKyvLt0EMPXdLLAQAAWGKEkwAAUMNss802xZBjzlvDhg2jZcuW0b59++jevXsce+yxORT59NNPF/p15vUa6Va3bt1YeeWVY/3114+DDjoo7r777vjhhx9+9Hprr712leu89dZbC7Wm3r17V7lGen8AAABAzSCcBACAZcj06dNj/Pjx8dFHH8WLL74YAwYMiMMOOyzatm0bO++8czz++OPV8jqzZ8+OiRMnxgcffBCDBg3KoeEGG2wQr7766kJd5+abb17gud9880089NBDi7BaqF7PPPNMMRxPfywAAADAgqu3EHMBAIClTJcuXaJr166VQsNvv/02B4fDhg2LTz75pDj+yCOP5FtqKfn3v/89VlhhhQV+nT322CPWWGON4vNZs2bFF198ES+88EJMmDAhj3344Yex7bbbxnPPPRebbLLJAl33tttui0suuSRXYs7Pv/71rxy+AgAAADWXcBIAAGqwnXbaKc4+++x5Hh83blzccsstOYwcM2ZMHkttUFNw+eyzz0ajRo0W6HX++Mc/zrVCbMaMGTlcPPPMM6O8vDymTJmSw8/UrjVVlc1LqrJ877338vqeeOKJ6NWr1wJXWdavXz/atGmTq0MBAACAmkVbVwAAWIatttpqcdJJJ8X777+fW68WpParKUT8qVJQePrpp8ef/vSn4tg777wTTz755I+el/apXJjWrqkq8+WXXy4Gss2aNftJ6wYAAACWDOEkAADUAk2aNMltUdO+kwV33nlnbsFaHU499dSoU+f//+vFU0899aPzO3fuHBtttFF+/MADD8SkSZN+dH7FAPOQQw75yesFAAAAlgzhJAAA1BKpzWoK+SruNXn++edXy7VTJeO6665bfP7xxx/P95yDDz4430+dOjXuuuuuec5L7WIHDRpUfJ2KAWt1SS1r09cn3Z555pk8Nnr06FwV+vOf/zxWWWWVaNy4cay33npx/PHHL1JL2aeffjp+97vfRceOHfP1GjRoEK1atYodd9wxBgwYkL8O81NYY8WWuamFbmq726lTp3zddCztEbooUjVt4fqp/W+S9i+97LLLYosttogWLVrkatmf/exncfTRR+ev0Zy++uqruOiii/JeqM2bN4/ll18+1l9//Rxgf/PNNwu1nv/+979xzDHH5K/ZyiuvHA0bNow111wzevbsmb9mqY3w/KS2x4X3VGiB/MMPP+R/C9tvv33eSzV9L1ZfffX8dXv44Yfne620t2pBao9c8ftSuK299toL9B7vu+++2HXXXXOr4rSO9DXeYYcd8mc+ffYBAACWNfacBACAWiSFVymAuvLKK/Pz1H7166+/zuM/VQqPCuZXCZn85je/iVNOOSVmzZqVg6LDDz98rvNSdeeoUaPy4/322y+WW265WNwefPDBHJ5+++23lcb/97//5du1114bV1xxRfTp02e+10oBXrpWIfSsaOzYsfmW9t288MIL44477ogtt9xygdeZwrLzzjsvfw0XhzfeeCP22muv4te/YOTIkXH11Vfn9abQdeONN87jjzzySP6+pkCzog8++CDfUuA2ePDgaN++/Y++bgod0+chVfvO6bPPPsu3xx9/PC644IIYOHDgAu1ZWvH8ffbZJ1566aVK42n/01TFm26HHXZYXH/99ZWqgatb+mylz0X6rFU0YcKE/O8y3W699da49957F3hvWAAAgJpAOAkAALVM2nuyEE6myqwXXnghdtttt5983YpVcU2bNl2g/TB79OgRjz32WDz//PM5AJtbtdlNN91UpdpycXrttdfiz3/+c8yYMSNXaqaqyhS8pvWlKrmZM2fmKsejjjoq6tatO89QNUl7fW633XY5gExSRd0mm2wSG2ywQQ6cUlCWwtfvvvsuPv/88/z1ePTRRytV5s1L//7945xzzsmP27VrlysVU5ViWmd1BLhjxoyJk08+OYdlq666amy99dY5xP7kk09ywJi+Dul7nio/056gQ4cOzZWHaTxVN/7yl7+MFVdcMYYPH56/v7Nnz87vd88994w333wz6tWb+6+j33//ffzqV7+KIUOGFMdShWkKbVN74lS1mj6zKZBNX9f02b399ttj7733nu97mjx5cq66fPfdd/PXKl2zdevW+euf3tP48ePzvBtuuCFXAqfwvKL0Nf7DH/6Q38f9999fXNuvf/3rKq/1Y/uipsrNFPqmYDdVonbr1i1/D6dNm5a/Vp9++mmel/5tnHDCCTkIBgAAWGaUAwAANcrWW2+dej3m21lnnbXQ50+ZMqW8bt26xWv069dvrvMKx9Nt8ODBP3rNL7/8srxOnTrF+SeddFKVOWuttVbx+KOPPprHbrvttuLYueeeW+Wc77//vnyFFVbIx9dbb73i+Oabb14874Ybbiivzq9p/fr18/2JJ55YPm3atErzRo8eXb7lllsW5y6//PLlH3300VyvOXny5PL111+/OLdXr15znfvtt9+W//73vy/OW3311csnTpw43+9JvXr1yps2bVp+3333VZk357oX1CGHHFK8foMGDfL9mWeeWT59+vRK8955553y1VZbrdL3u3Xr1uXLLbdc+dVXX10+a9asSvOfffbZ8saNGxfn33TTTfNcQ8WvRfqcXnHFFVWuN3z48PJNN920OG/FFVcsHzly5Fyvl/6NzPme0vv86quvqvy72H///YtzmzRpkr+Hc5P+PRTmpc/Ogkif0znXkT4TY8aMqTRv5syZ+bNXmFtWVjbP9wYAAFAT2XMSAABqmVQxlqrFCr744ouffM20x2CqjCtI1YILIlXapeq65JZbbpnrfnypqq1UVZNJqphMe0OmysS0B2BFqSIwtS5Ne08WqvwK1Ytzuvzyy3PlZJIq69Jehqk6bk7p/V911VVxyCGH5OepGvCaa66Z7zrT1zu1BJ3b/pJzrntRTJ8+Pe+5md5fqu6rKO1veemllxafp69Val973XXX5a/dnO1Qt9pqq+jXr1/xeWoHOzcjRozILXML/va3v+X9NOe8XmoLm9qeFiptUxvhc889d4He0/7775/305yzlXH6d/F///d/xX8bqcryx/af/CnSOlLVZvr+pT0vK0oVpZdcckl06dIlP0+Z9Nza2wIAANRUwkkAAKiFKrZdrdiOdVGCvPPPPz8uu+yy4ljHjh1ze9IFkVqbpjazSWoN+vLLL1c6nvaiTFI4deCBB0YprLDCCjlsnZfUWjSFRwV33XVXlb0pU2vTAQMGFIPCFDbOb//CtH9iavuapL0G5ye1MU2h3+LSokWLHE7OS2rPWjG07Ny5c97PdF5SKFhQsWVrRf/85z+LIXe63tFHHz3P66VWuxdffHHx+W233Vbl+zCntN4UGs9Lw4YNF2id1SHtWTqv1rbpc5D2vSzFOgAAAErNnpMAAFALpYCtoFCZ+GNSBdvdd99dfJ4CpFRxmfbHS3sSVqw+S/v1zS+IqyhVRA4cOLAYRv7iF78oVhA+9dRT+XHa97FitefilPYwnN+emTvttFM0b948v/e0T2AKVdNehhX3rSzsX5iqSFPQNz9p78JUkZmqLdOeiClo+7F17LfffrE47brrrj9agZmC5XXWWSfee++9/Hx+ez7+7Gc/y5+PVG361Vdf5c9dCoIr+s9//lN8nILOQlg7L6kiNVVAfv3117kacc7vw5y6d++e9zr9MRtvvHHxcdq/c3FIX4u09+iSXgcAAMCSIJwEAIBaqGIgWWir+mPuv//++c5JLUsHDRpUbEe5oFJ7y7Zt28bIkSNz+8oUhKYKt3StWbNmlbSla1IIR39M3bp18/tMLV6TN998s1IoVrECdMyYMXHMMccs0GtPnDix2Moznfdj4eSmm24ai1Nq3To/qXqxYsXsgsxP4WShFWvFcDK956FDhxafd+vWbb7XW2655aJr167x2GOP5edvvPHGj4aTG2644Xyv2axZs+LjtMbFYWlZBwAAwJIgnAQAgFqoYvvLOffeWxCpMjIFS6uvvnoOyXbfffe892EKixZWqo5LLVv/8pe/5BazDz30UOy1117FPSgbN26cn5dKmzZtFnpexerR5PPPPy8+fvvtt/NtYc2v3W6q3Fyc5lc9mlRsS7qw81Pr2zk/kxXH1lprrQVaZ2HfyeTLL7/80bkLssaKn+E511hdlpZ1AAAALAnCSQAAqGWmTJmSq/IK5tfmMhk8eHBurbq4pMrIFE4WWrumtpfvvPNOcW/Dim1oF7fUenRBpNB0Xq1x57f34YL44YcffvR4aqu6OM2vpepPnT+nyZMnz/Pru6jfh+peY3VZWtYBAACwJCz4RjAAAMAyIe2HWGiXmmyxxRaxpKW9CwttPB999NG47LLLisdK2dI1KbQdXZCQt2DOvRMrBmbHHXdcblm6sLfFGQYvjeYMoCt+fRf1+wAAAMDSRzgJAAC1zF133VWpPWv37t1jaVAIIVMLy1tvvTU/XnPNNeNXv/pVSdfx6aefLtC80aNHFx+vuuqqlY61bNmy+HjcuHHVuLplV2p1WrGV6YJ+H0aNGjXP7wMAAABLH+EkAADUIl999VXcdNNNxec9e/ZcoP3vSmHfffeNBg0aVBr7zW9+kwPUUvrvf/873zmp8vTVV18tPt9kk00qHd98882Lj1966aVcCcn8W5127ty50tdtQVrf/tj3YXHRlhUAAGDRCScBAKCWSAHZIYccUmlvv9NPPz2WFiuttFLsuuuulcZK3dI1efDBB2PSpEk/Ouexxx6L8ePH58cNGzaMX/ziF5WO//KXv8zvJ0n7ez700EOLccXLjopVsilEn1+oe//99+fAfV7fh8UlvVZBqvQFAABgwQknAQCgFkiB5H777Rf//ve/i2MHHXRQycKcBTVgwIBcCZdub7zxRmywwQYlX0MKJk877bQf3ePw5JNPLj7fe++9q1SfpgrQvn37Fp8fffTR8dlnny3wGr744ouojY488shipWz6/l933XXznDtx4sRK34f999+/ZFXAzZo1Kz5emO8rAAAAwkkAAFimpf0OL7300hzy3XnnncXxbt26xT//+c9Y2qS9GjfbbLN823jjjZfIGurXrx//+Mc/4tRTT40ZM2ZUOpaCqJ133jnee++9/LxRo0Zx1llnzfU6f/rTn6Jjx47F89J7Svt9zp49e67zv/zyyxzGpdak/fv3j9qoXbt2cdRRRxWfH3PMMfl7MefX7KOPPooddtghRo4cmZ+vuOKKceaZZ5ZsnW3bto3ll18+P/7kk08qtZYFAADgx9Wbz3EAAGAp9sgjj+RQqyCFOKnyL1WVpQCtEN7MWZ3217/+tcr+jvx/zjvvvPjzn/8cF198cQwcODC22WabWHnllXMI9cwzz1QKLK+44opYZ5115nqdJk2a5Bax22+/ff4+pKB4n332iVVXXTW22GKLWG211XLb0q+//jp/rz788MNiCFexvWltk8L01157LQd+aU/JFFBedNFF0b179/w1HTFiRDz33HN538+kXr16+fu09tprl2yNdevWjT322CNuu+22/Dx9RtL+rW3atMnHklVWWeVHK3ABAABqK+EkAADUYIUWqPOTApNevXrlVqPbbbddSdZWU3Xp0iVXOKb9LlPwe/fdd891z8HLL788+vTp86PX+tnPfpaDtt/97nf5OimMTNd8+OGH53lO2qtyww03jNoqVST+5z//icMPP7xY7Zv27bzjjjuqzF199dVzMJk+26V2wQUX5HWm0Pn777+Pe++9t9LxtdZaSzgJAAAwF8JJAABYhqSWpKnFZdp7L1Xmpdaom266aa7eW3PNNZf08mqM3XffPd5+++245ppr8j6dn376aa6YbN26da6QS9V87du3X6BrpQq6FLK9++67cfvtt+fqy1RJ+dVXX+X9FVMYmaovUzvX9H3q0aNHDj9rs1Qh+a9//SuH6bfcckv+mn3++ecxderUXHnaqVOn2GWXXeK3v/1tNG7ceImsMYWPb731Vt4n9Yknnojhw4fHd999l6s9AQAAmLey8vSnuwAAALVYasv57LPP5seDBw/OzwEAAIDqV2cxXBMAAAAAAACgCuEkAAAAAAAAUBLCSQAAAAAAAKAk6pXmZQAAAAAAAKjpysvLY9KkSTF9+vQoKytb0sthCWjatGnUr19/kc8XTgIAAAAAALBAweQXX3wRK620Uqy44orCyVpo9uzZMX78+GjZsuUif/+1dQUAAAAAAGC+UsVkCiYbNmwomKyl6tSpE6usskpMnDhxka9RVp5ibgAAAAAAAPgRqWKuefPmgkliwoQJ+bOwKFROAgAAAAAAMF8plBRM8lMJJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAMBSY/DgwbHXXnvFGmusEfXr14+VV1451l133ejdu3cMGDAgvv322yW9RH6CsvLy8vKfcgEAAAAAAACWfRMmTIjmzZsv1tc499xz46yzzsqP119//VhvvfViueWWi//973/xzjvvxOzZs+Pll1+OLbbYYrGug8X3Wai3SGcBAAAAAABANXr99dfj7LPPzmHknXfeGXvssUel4+PGjYtBgwbFSiuttMTWyE8nnAQAAAAAAGCJu/feeyM1/Nxnn32qBJPJaqutFieeeOISWRvVx56TAAAAAAAALBWtQpOFbRf6/fffx4UXXhgbb7xxNGnSJN9S29ebbrpprvOff/75OOaYY2KjjTbK+1k2atQot4899dRTY+LEiXM956WXXsqB6VprrRUNGjTIQWnXrl3zOZMnT64y/5Zbbonu3bvHiiuuGMsvv3x+rbTGadOmVZl76KGHRllZWTzzzDPx3HPPxa9+9atYYYUV8rk777xzvPfee1XOSSHurbfeml+jZcuW0bBhw2jdunVsv/328Y9//COWZvacBAAAAAAAYInvOfmXv/wlzjzzzByyvfbaa9GiRYv5njN+/Pjo0aNHvP322zkw3GSTTXJwl8LEb7/9NoeQV155ZaVzUnD51ltv5cAwvVYKDN94440YO3ZsdOzYMf773//mgLPgoYceysFkum4KJNu2bZtDzA8//DBGjBgRI0eOjLXXXrs4/6ijjorrrrsuB4YpaEzhZAoev/zyy/jFL34RTz31VB6rGE6mIPWEE06Iv/3tb7HZZpvlEHTo0KExfPjwaNasWbz77rv5/RWcdNJJcemll+agdKuttopVV101t71N89K1R40aFUvrZ0E4CQAAAAAAwBIPJz/++OPo1KlTTJ06NVcO7rnnnrkycNNNN81BYt26dauckyoLH3nkkfjjH/8YF198cQ7rki+++CJ22WWXHHI++uij0bNnz+I56Xm3bt2iadOmxbHp06fHcccdl0PFc845J4ekBVtvvXWuaLz77rtjr732qvT6r776aq66TOtN7rnnnth7772jVatWOZBs3759Hk9BaVrPCy+8EH/6059ysDhnOFmnTp18fqGl7axZs2LffffNY2eccUace+65eTyFqWnfzfr16+eQNYWlBT/88EO8/PLLseWWW8biJJwEAAAAAACgRoeTydNPPx2HHXZYjB49utJ4CuP233//HNKtvvrqeSxVFqZWrl26dMnVjincq+jNN9/MlZS77bZbPPDAA/N97RSKplaqKQh9/fXXi+MbbLBBvP/++7lasmKgOTeFIPPaa6+NPn36VDqWqjs7d+4cjRs3zl/LVFlZMZz8zW9+E4MGDap0TlpHqqRM101hZ6FaNLVyTddK77GmfRbsOQkAAAAAAMBSYbvttouPPvoo7r333vjd736Xw8V69erlYPDqq6/Ogdz//ve/PPeJJ57I96nScM5gMinsQTlkyJAqxz777LO45pprom/fvvHb3/42B4S///3vczViatdaUarcTA466KBcKTl79uy5rn3mzJk5JE1S0DinFHputNFGeY/KFKzOaYcddqgy1qFDh3yfWs4WpHa3a665Zr5G2vMyVZzWJMJJAAAAAAAAlhopIPz1r3+dw8hUOZiq9NLjlVdeOVcNpn0kk8K+in/+85+jrKxsrrcUBKa9Hiu6/PLLcyvUFEamPR5vuOGGXLmYbt9//3189913leZfcMEF8fOf/zzvPZn2nEz7O6ZqzOuvvz63WC346quvYsaMGfl4qo6cm7X/396UKRydUwoc51RoF5vazlaU1poqF1Mr23bt2uXrHnLIIbll7dKu3pJeAAAAAAAAAMxLaumaqijTPo677757DB48OIeIhQrGtC9lCugWRKpsTHs+pvasKZjcZpttYrXVVivuVZleo2KVYtK6deu8d+V//vOfePjhh+PZZ5/NQWW6XXLJJXmPx2bNmi3Q65eVlc3z2NyqP+flV7/6Va4wTet57LHHcsvXm2++Od/Svphpf8yllXASAABgGfPBBx/EP/7xj/wLe9qnJe2bkv5yN7U02nPPPePAAw8s/uJd0fnnnx+nn3568RrrrrvuAr1eeXl5bj/01FNPFVsZpbZLAAAA1SkFcsmsWbNym9dCpWFq65oCxwVx3333FX//SZWGFaXfncaNGzfX89LvOOn3nkLr1U8++SS3g02BZapeTCFlCihT1Weq1JwyZcpcqydH/b9qzzXWWCN+qrQ/5gEHHJBvheC1d+/ecc8998QjjzwSO+20UyyNtHUFAABYhpx77rnRsWPHGDBgQP5FNf2yfeKJJ0avXr1y4HjEEUfEL3/5y7kGjKklUeGveP/5z38u8Gum10pBaMOGDav1vQAAALVL+r3kx6RKwSQFgOkPMHv06FEpcFwQ33zzzTxbqN51113zXUPBWmutFaecckp+/O677+b75ZZbLrbYYov8+I477qhyTpr31ltv5X0w096Z1S29dtoXs+KalkbCSQAAgGVE2gflrLPOyn+Bm/5i9qWXXoq///3veXzgwIExYsSI3HaosGdJRU888UT+C94UZqaWRmn/krRXyvz873//y7+QpwC0ZcuWi+mdAQAAtcEZZ5wRJ510Uv7dZU5pj8ajjjoqP077PaaAcvPNN88B5Ysvvhh/+MMfYtKkSVXOS2Fganta0KFDh3yffkdKXV8K3nvvvWLYOKe//vWvc62oTNWJhbavBccee2y+P/vss+Pjjz8ujqd9LNNemeXl5fl9/JQ/7vz000/jxhtvzK1tK0r7X6Y/HJ1zTUubsvIFjYABAABYaqVgsfBL9htvvBGdOnWa59zp06dXaeu6995759Y/6Zf6e++9Ny677LL8l7777rvvPK/zww8/RLdu3fIvxK+//npuA5taG2nrCgAAy6YJEyZE8+bNF9v1+/btm/eBTNLvNxtssEEO8caMGROvvPJK/l1jnXXWyfsrFtqijh8/Pnr27Blvvvlm3psyVSSmfSO//fbbePvtt/NWF3/84x/jiiuuyPO/+uqr/PtSChvbtm0bXbp0ia+//jrvI5naww4ZMiT/XlMxPkvXTeHiz3/+82jfvn0+lkLP4cOHxyqrrJL/ODSNF6Tw8brrrotGjRrlVrTLL798XnP6+m2xxRbx9NNP57GCQw89NP+BaAoW0x6Yc0odblKlZqEl7NChQ/O2Hekam222Wa4CTW1k0x+optdIYy+88MJct/NYGj4LKicBAACWATfccEP+RX2vvfb60WAymfMX1C+++CIefPDB/Mt/ChvTL8ZJ+mX6x5x33nn5/wBIf7G7OH/pBQAAaofTTz89brnlljjwwAPz7xjPP/983H333bmqsWvXrnlfxxTMVdyvsUWLFsWuMSnMTL+jpHNSMPmzn/0s+vfvnzu9FKR9IV999dW8T2PqFpN+F0pVmX/5y1/i9ttvn+u6rrzyythvv/3yH2Y++uijuRIz/UHmCSeckF+nYjCZXHvttXHzzTfnADGFnqmDTVpn2ufyP//5T6VgclG0a9cu/0FpCjJTFWX6A9MURqYAM1V5ptdcmn9HUzkJAACwDNhuu+3yL7lpr8i0r+TCuOiii6Jfv365/Wu6T9Jf2qYKzPSXwOkvk+eUfplPQeapp56af4lP1l57bZWTAACwDFvclZPUHConAQAAarmxY8fm+9TOZ2Gkv1e9/vrro06dOnHwwQcXx1P1ZDqWws45TZ06NQ466KDo2LFjnHnmmdWwegAAAGoL4SQAAEAtlqotR4wYET169KjUGim1OKpfv35u2ZoqISs6+eST4+OPP857oiy33HJLYNUAAADUVMJJAACAZcDqq6+e79NeKQujsK9kYZ/JglVWWSV23XXXGD9+fDzwwAPF8bR3yT/+8Y+8F8zPf/7zalk7AAAAtYdwEgAAYBnQvXv3fP/0008v1B4h999/f368//77R1lZWaXbPffcUynATN58883c7vWss86qMj/tN5mkasr0fOjQodX8LgEAAKjp6i3pBQAAAPDTHXbYYXHhhRfmQPG9996LDTbYYJ5zp0+fHg0aNMhtWWfMmBGbbrppdO7cea5zH3zwwXjqqadi5MiR0bZt2+jUqVMcfvjhc537r3/9KyZPnhy//e1vczjZrFmzant/AAAALBvKytOfvAIAAFDjXXDBBfHnP/851l577bjrrrtis802qzLnsccei0suuSTvNbnuuuvG8OHD45VXXomuXbvO9ZpnnHFGnHfeeXHaaafF+eef/6Ovn143VU+mPSrr1fO3sAAAsKxJ3VeaN2++pJdBDf8sCCcBAACWIeeee26cc845MXv27OjWrVsOKJs0aRJffPFFPPfcc/Hhhx/msf79+8e2224bG264Ybz99tvzvN6oUaPiZz/7Way22mrx6aef/mjoKJwEAIBlm3CS6vgs2HMSAABgGXLmmWfGu+++G8ccc0x8++23ccMNN+Qg8t///ne0a9curr/++njhhRfin//8Z55/xBFH/Oj1UuC4/fbbx9ixY+Ohhx4q0bsAAABgWaVyEgAAAAAAgPlSOUmBykkAAAAAAABgqSecBAAAAAAAAEpCOAkAAAAAAAAlcvbZZ0dZWVnUVsJJAAAAAAAAar133nkn9t5771hrrbWiYcOGscYaa0SPHj3iyiuvXNJLW6aUlZeXly/pRQAAAAAAALB0mzBhQjRv3nyux/qc0ieGfzE8lqQOLTvEdRdft0jnvvTSS7HttttGmzZt4pBDDonVVlstRo8eHf/9739jxIgR8dFHH1XbOn/44Yd8SwHosvhZmJ961b4aAAAAAAAAapUUTD7b9tklu4iRi37q+eefH02bNo1XX301VlpppUrHxo8f/9PXFhFTpkyJxo0bR7169fKtttLWFQAAAAAAgFotVUd27NixSjCZtGjRovg47RV5zDHHxK233hrrrrturn7cdNNN47nnnpvrvpLvvfdeHHDAAbHyyitH9+7dKx2rqHDd+++/Pzp16hQNGjTI63nssceqrOeZZ56JzTbbLL92u3bt4tprr61R+1jW3lgWAAAAAAAAIvI+ky+//HK8++67ORz8Mc8++2z861//iuOOOy6HiFdddVX07NkzhgwZUuXc3r17R/v27eOCCy6I+e20+MILL8S9994bRx99dKywwgrx97//Pfbaa6/49NNPo1mzZnnOm2++mV9r9dVXj3POOSdmzZoV55577iK3WF0ShJMAAAAAAADUaieeeGL06tUrOnfuHF27do0tt9wytttuu7wP5XLLLVdpbgowX3vttVwxmey33365ivLMM8/M4WJFP//5z+O2225boDW8//77udIyVUMm6bXT+bfffnuuqkzOOuusqFu3brz44ovRqlWrPLbPPvvE+uuvHzWFtq4AAAAAAADUaj169MiVk7vttlu89dZbcckll8SOO+4Ya6yxRjz44IOV5v7iF78oBpNJmzZtYvfdd4/HH388VzJW9Lvf/W6B17D99tsXg8lko402ihVXXDE+/vjj/Dxd+6mnnoo99tijGEwm66yzTg5WawqVkyW02mqr5c1O04cUAAAAAACgJvnTn/6UqwrnJuUfNV2XLl1y5eOMGTNyQHnffffFX//619h7771j6NChscEGG+R5qU3rnDp06BDff/99TJgwIedBBW3btl3g128zl/wo7VX5zTff5Mfjx4+PqVOn5jByTnMbW1qpnCyh9A9z5syZS3oZAAAAAAAAzEP9+vVzUJn2ibz66qtztnPXXXct0rUaNWq0wHPr1q071/H57VVZ06icLKFC4j1s2LAlvRQAAAAAAICFkqoCmzdvPtdjjRs3jmXRZpttlu/Hjh1bHPvwww+rzBs+fHgsv/zy8/z6VIcWLVpEw4YN46OPPqpybG5jSyuVkwAAAAAAANRqgwcPnmuF4iOPPJLv11133eJY2pvyjTfeKD4fPXp0PPDAA7HDDjvMs/qxOtStWzfvS3n//ffH559/XimYfPTRR6OmUDkJAAAAAABArXbsscfmPSN//etfx3rrrZf3nXzppZfiX//6V6y99tpx2GGHFed26tQpdtxxxzjuuOOiQYMGcdVVV+Xxc845Z7Gv8+yzz44nnngifvnLX8bvf//7mDVrVgwYMCCvKe2LWRMIJwEAAAAAAPhJOrTsEDFy8b/OlClT5tlGNq9hEV166aV5X8lUKXndddflcDJt13f00UfH6aefHiuttFJx7tZbbx2/+MUvchj56aefxgYbbBA33nhjbLTRRrG4bbrpprlK8sQTT4wzzjgjWrduHeeee268//778cEHH0RNUFa+rO2iuRTr2LFjvrfnJAAAAAAAsCztOVkq7777br5PlYJLQllZWfzhD3/I1YpLkz322CPnT3PbD3Np+yzYcxIAAAAAAABqiKlTp1Z6ngLJVPG5zTbbRE2grSsAAAAAAADUED/72c/i0EMPzfeffPJJXH311VG/fv04+eSToyYQTgIAAAAAAEAN0bNnz7j99ttj3Lhx0aBBg7z/5QUXXBDt27ePmkA4CQAAAAAAAAugvLx8SS8hbrjhhqjJ7DkJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAABArffOO+/E3nvvHWuttVY0bNgw1lhjjejRo0dceeWVS3ppy5R6S3oBAAAAAAAA1GxnnnJUTBz/4WJ/nSlTpuT7xo0bVzm2Uov2ce7F1y7SdV966aXYdttto02bNnHkkUfGaqutFqNHj47//ve/8be//S2OPfbYn7x2/j/CSQAAAAAAAH6SFEzu3GHIEl3Dv4cv+rnnn39+NG3aNF599dVYaaWVKh0bP3581Dbff/99LL/88ovl2tq6AgAAAAAAUKuNGDEiOnbsWCWYTFq0aJHvR40aFWVlZXHjjTdWmZPGzz777OLz9DiNDR8+PA488MAcfDZv3jzOOOOMKC8vz1WZu+++e6y44oq5SvOyyy6rdL1nnnkmn3/nnXfGOeeck1vMrrDCCrnt7LfffhvTp0+Pvn375rU1adIkDjvssDw2p0GDBsWmm24ajRo1ilVWWSX222+//NoVbbPNNtGpU6d4/fXXY6uttsqh5GmnnRaLi8pJAAAAAAAAarW0z+TLL78c7777bg7qqsu+++4b66+/flx00UXx73//O84777wcEl577bXxq1/9Ki6++OK49dZb48QTT4wuXbrkcLCiCy+8MAeLp556anz00Ud5/8vlllsu6tSpE998800OQVPr2RSYtm3bNs4888xK1aApDN1nn33iiCOOiAkTJuTz02u8+eablYLYr776Knr16pXDyxSmtmzZMhYX4SQAAAAAAAC1WgoHUzjXuXPn6Nq1a2y55Zax3Xbb5X0oUxi4qNK1UhCZ9OnTJ9Zee+3405/+lEPHU045JY/vv//+0apVq/i///u/KuHkDz/8EM8++2xxDSlgvOOOO6Jnz57xyCOP5LGjjz46B5fp/EI4+cknn8RZZ52Vw9CKVZB77rlnbLzxxnHVVVdVGh83blxcc801cdRRR8Xipq0rAAAAAAAAtVqPHj1y5eRuu+0Wb731VlxyySWx44475naqDz744CJfN1UsFtStWzc222yz3Nb18MMPL46nCsZ11103Pv744yrnH3zwwZXC0c033zyf/9vf/rbSvDSe2rWmMDO59957Y/bs2blq8ssvvyzeUgvZ9u3bx+DBgyud36BBg9wathRUTgIAAAAAAFDrpbaqKdSbMWNGDijvu++++Otf/5r3eRw6dGjei3FhtWnTptLzpk2bRsOGDWPVVVetMp5aqy7I+Unr1q2rjKcwMu1H2axZs/jwww9ziJmCyLmZsxo0hbD169ePUqhRlZOFzT/ndkv9dCt66aWXonv37vmDklLg4447LiZPnlzlmmlz0FQ2m8plU8/elCw/+eSTJXxXAAAAAAAALC1SSJeCygsuuCCuvvrqmDlzZtx11105j5qbWbNmzfNaqVpyQcaSFCYu6Nz5XSMFlWm9jz32WM695rwVWs0WpIysVGpk5WQKGtOHoqJ11lmn+Dil16kPcNpg9PLLL48xY8bEpZdemlPiRx99tNJ5hx56aNx9993Rt2/fnB6nDUN32mmnXM6awk0AAAAAAABqp9SGNRk7dmysvPLK+fHEiRMrzUn7Oy5t2rVrl4PKtm3bRocOHWJpUiPDybQJaSqhnZe0gWf6gKRKyxVXXDGPpQ1GjzzyyHjiiSdihx12yGNDhgzJm4b2798/b3Ra6N3bqVOnOPnkk3P1JQAAAAAAAMu2VLS2zTbbVKmOfOSRR/J92hMyZU6pHetzzz2Xi94Krrrqqlja7LnnntGvX78455xzYtCgQZXeVwotv/7669z+dUmokeFk8t133+US03r1Kr+FSZMm5XLU448/vhhMFkLHNHbnnXcWw8lUMZnKXvv06VOcl/r8pk1IU8CZNg6ds2cvAAAAAAAAy5Zjjz02vv/++/j1r38d6623Xt53MhWx/etf/8oFcIcddlied8QRR8RFF12U71NVZQoqhw8fHktj5eR5552XA8pRo0bFHnvsESussEKMHDky76WZsrFC4V6p1chwMn0A0v6RKVhMVZSp8rFQVvvOO+/EDz/8UHxesT9w586d48033yyOpceplLViiJl07dq12B5WOAkAAAAAALBsS9sDpn0lU6Xkddddl8PJNm3axNFHHx2nn356rLTSSnnemWeeGRMmTMgFcKkgrlevXnlLwRYtWsTS5tRTT8052F//+tdcQZmk3CsV8e22225LbF1l5XPbXXMplRLqtIdk2hMylc2+9957+cMyZcqUfGzjjTfOH4bevXvnpDoFlxXts88+8fzzz+e+wElq39qyZct4+umnK81L1+3YsWNcc801cdRRRy30OtO5czNixIicVA8bNmyhrwkAAAAAALAkpVCuefPmcz125ilHxcTxHy72NaRMKGncuHGVYyu1aB/nXnztYl8D8aOfhWWqcrJbt275VpBS3bT35EYbbZTLUh977LGYOnVqPtagQYMq56eWrYXjSXo8r3mF4wAAAAAAAPy4UoWC7777brEAjZqpRoWTc7POOuvE7rvvHvfee2/MmjUr70OZTJ8+vcrcadOmFY8n6fG85hWOL4p5VUbOq6ISAAAAAAAAaoM6sQxI/XFT799Uyrv66qvnsULr1orSWKtWrYrP09x5zUsqzgUAAAAAAAB+mmUinPz4449zK9YmTZrkMt569erFa6+9VmlOCi+HDh0anTt3Lo6lx8OHD49JkyZVmvvKK68UjwMAAAAAAAC1MJxMm2vO6a233ooHH3wwdthhh6hTp040bdo0tt9++xg0aFB89913xXm33HJLTJ48OXr37l0cS/tVplaw1113XXEstXm94YYbYvPNN88VmQAAAAAAAEAt3HNy3333zftAduvWLVq0aBHvvfdeDhaXX375uOiii4rzzj///Dxn6623jj59+sSYMWPisssuywFmz549i/NSAJnCyn79+sX48ePz/pU33XRTjBo1KgYOHLiE3iUAAAAAAAAsm2pU5eQee+wRX375ZVx++eVx9NFHx7/+9a/Yc889cwvX9ddfvzhvk002iaeeeioHmccff3wOMA8//PC4++67q1zz5ptvjr59++bKyuOOOy5mzpwZDz/8cGy11VYlfncAAAAAAACwbCsrLy8vX9KLqC06duyY74cNG7aklwIAAAAAALDQ2+81b958ia7h3XffzfedOnVaouuo7Sb8hM9CjaqcBAAAAAAAAGou4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkqhXmpcBAAAAAABgWXXR6X1i2lfDF/vrTJkyJd83bty4yrGGzTrEqedd95Nf46qrroo//OEP0bVr13jllVcW+TqPPPJIDBkyJM4+++yfvKZliXASAAAAAACAnyQFk2dv+ewSXcPZz1fPdW699dZYe+21c7D40UcfxTrrrLPI4eQ//vEP4eQctHUFAAAAAACAiBg5cmS89NJLcfnll0fz5s1zUEn1Ek4CAAAAAADA/6uaXHnllWPnnXeOvffeu0o4+cwzz0RZWVm+r2jUqFF5/MYbb8zPDz300Fw1maTxwm1hrlG4TpMmTeLTTz+NXXbZJT9eY401itd+55134le/+lVuc7vWWmvFbbfdVuma6Vrpmi+++GKccMIJOXBNc3/961/HhAkTYkkQTgIAAAAAAMD/Cyf33HPPqF+/fuy///7x4YcfxquvvrrQ1znqqKOiR48e+fEtt9xSvC2KWbNmRa9evaJ169ZxySWX5JazxxxzTA4ee/bsGZtttllcfPHFscIKK8TBBx+cqz/ndOyxx8Zbb70VZ511Vvz+97+Phx56KF9jSbDnJAAAAAAAALXe66+/Hh988EFceeWV+Xn37t1jzTXXzIFlly5dFupav/jFL6JDhw7x5JNPxoEHHviT1jVt2rR8jX79+uXnBxxwQLRq1Sp++9vfxu233x777rtvHk9h6HrrrRc33XRTlX0umzVrFk888USxenP27Nnx97//Pb799tto2rRplJLKSQAAAAAAAGq9FEK2bNkytt122/w8BXkp+Lvjjjty9eKSdMQRRxQfr7TSSrHuuuvm9qz77LNPcTyNpWMff/xxlfP79OlTDCaTLbfcMr+nTz75JEpNOAkAAAAAAECtloK6FEKmYDK1Rf3oo4/ybfPNN48vvvginn766SW2toYNG+a9IitK1Y6pqrNi4FgY/+abb6pco02bNpWep301k7nNXdy0dQUAAAAAAKBW+89//hNjx47NAWW6za2qcocddqgSBhYsTGVl2UJeo27dugs1Xl5e/pPmLm7CSQAAAAAAAGq1FD62aNEi/vGPf1Q5du+998Z9990X11xzTbHicOLEiZXmzK096rxCyJUX4hrLIuEkAAAAAAAAtdbUqVNzANm7d+/Ye++9qxxv1apV3H777fHggw9Gz549cxXic889F3vssUdxzlVXXVXlvLQnZCGETHtBFqy11loLfI1lkXASAAAAAACAWiuFjt99913stttucz2+xRZb5D0fU3Xlvvvum0PMK6+8MldGtmvXLh5++OEYP358lfM23XTTfH/cccfFjjvumAPJ/fbbL+8LuaDXWBYJJwEAAAAAAPhJGjbrEGc/v/hfZ8qUKZWqEudcw6JIoWPDhg2jR48ecz1ep06d2HnnnfO8r776KoeKM2fOzG1eGzRoEPvss0/0798/OnXqVOm8PffcM4499ti8h+WgQYPy/o777bdfPrag11gWlZUviZ0ua6mOHTvm+2HDhi3ppQAAAAAAACyUCRMm5ArCJendd9/N97UhxFtWPwt1qn01AAAAAAAAAHMhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAABbRM888E2VlZfme+RNOAgAAAAAAUGvdeeedOVy87777qhz7+c9/no8NHjy4yrE2bdpEt27dftJrf/7553H22WfH0KFDo7aoFzXY+eefH6effnp07Ngx3n333UrHXnrppTj55JPjjTfeiBVXXDH22WefuOCCC6JJkyaV5k2fPj3OPPPMuOWWW+Kbb76JjTbaKM4777zo0aNHid8NAAAAAABAzdSnz0UxfPi0xf46U6ZMyfeNGzeucqxDh4Zx3XWnLvQ1u3fvnu9feOGF+PWvf10cnzRpUs6f6tWrFy+++GJsu+22xWOjR4/Ot/322y+22mqrmDp1atSvX3+Rwslzzjkn1l577ejcuXPUBjU2nBwzZkwOG+f24Uvp8nbbbRfrr79+XH755XnupZdeGh9++GE8+uijleYeeuihcffdd0ffvn2jffv2ceONN8ZOO+2UE/DChxEAAAAAAIB5S8Hks8+evYRXsWiv36pVq2jbtm0OJyt6+eWXo7y8PHr37l3lWOF5ypLq1KkTDRs2jKXJlClT5pqhLQ1qbFvXE088MbbYYovYbLPNqhw77bTTYuWVV869fX/3u9/lSsgBAwbEY489Fk888URx3pAhQ+KOO+6ICy+8MPr37x99+vSJ//znP7HWWmvlqksAAAAAAACWfSlkfPPNN3MFZEGqlkzdO3v16hX//e9/Y/bs2ZWOpXavv/zlL+e65+Q222wTnTp1ivfeey9XXC6//PKxxhprxCWXXFKck+Z36dIlPz7ssMPyNdItFdIVvPLKK9GzZ89o2rRpvsbWW2+dX7ui1BY2nZde64ADDsgZ2dJcgFcjw8nnnnsuVzteccUVVY6lEtsnn3wyDjzwwNzOteDggw/OLV1T3+CCdI26devmULIgJduHH354TsNTOS4AAAAAAADLthTmzZw5M4eBBSkETHtKptu3335baYvBdGy99daLZs2azfOaaTvBFCymfSsvu+yyPP+UU04pdvlMHUDPPffc/DhlVWkLwnRLbWKTVFCXHqfs66yzzsodRSdOnBi/+tWvcgHenFKF5/fff5/nHXnkkbG0qnFtXWfNmhXHHntsHHHEEbHhhhtWOf7OO+/EDz/8UKWiMvX5Tb16U+pdkB536NChUoiZdO3atdgetnXr1ovtvQAAAAAAALDkVdx3MlU9pqwpBZWHHHJItGvXLlq2bJmPbbTRRvHdd9/lPOq3v/3tfPeTvPnmm+Oggw7Kz1Nx3FprrRUDBw7M1Zjpmun+zDPPjF/84he58K4gtZNN3UFT1WUKM1NlZHLUUUflas7TTz+9UrfQJIWgt912Wyztalw4ec0118Qnn3wSTz311FyPjx07Nt+vvvrqVY6lseeff77S3HnNK3xoFkX6UMzNiBEj8gcYAAAAAACApUeqYkxVkIW9JN966628b2OqmkzSfaqWPProo3P3zVRMN7/WqamjZ8XAMRXSde3aNT7++OP5ricV0H344Yc5hPzqq68qHdtuu+1yhWVqM5v2uyxIYWZNUKPCyfTFT+nxGWecEc2bN5/rnEIv4AYNGlQ5llq2VuwVnB7Pa17FawEAAAAAALDsSpWJKYBMWwum0C8FkS1atIh11lknH0/HBgwYkB8X9nycXzi55pprFiseC1ZeeeV4++2357ueFEwmqXJzXlKr2XS9grZt20ZNUKPCyZQOr7LKKrmt67w0atQo30+fPr3KsWnTphWPF+bOa17Fay2sYcOGLVRFJQAAAAAAAEtWChsfeuih3LK1sN9kQXp80kknxWeffZarK1u1ahU/+9nPfvR6devWnet4eXn5fNeSAtKkf//+edvCeVVmVrSouVap1ZhwMiXE1113XVxxxRWV2q2mIDFtUDpq1Ki8d2ShJWuhvWtFaSx9WArS3PQhmtu8pOJcAAAAAAAAase+kymc7Nu3b/HYpptumrtxPvPMM3kvyp122qlaXrNsjsrKgsI2gSn72n777WNZ8v9vRLuUSyFiSomPO+64XJZauKUPwPDhw/Pjc889Nzp16hT16tWL1157rdL5M2bMyP15K6bL6XE6d9KkSZXmpmsWjgMAAAAAALDs22yzzfLWf7feemvOpSpWTqZgcpNNNol//OMfeS/K+bV0XVCNGzfO9xMnTqw0nsLQFFBeeumlMXny5CrnTZgwIWqqGlM5mULH++67b66tXr/77rv429/+lr9JTZs2zQnyoEGD8t6UK6ywQp6XNgZN37zevXsXz917773zNzVVZJ544ol5LLV5veGGG2LzzTeP1q1bl/AdAgAAAAAAsKTUr18/unTpEs8//3wOI1NAWFEKKy+77LL8uLrCyXbt2sVKK60U11xzTc60UliZMqpUlHf99ddHr1698raBhx12WKyxxho5NB08eHCuqEwtaGuiGhNOrrrqqrHHHntUGU9tXpOKx84///z8Adl6662jT58+MWbMmPxh2WGHHaJnz57Feembm8LKfv36xfjx4/OmpjfddFNuETtw4MASvTMAAAAAAICarUOHhhFx9mJ/nVS1WLHisOoafpoUOqZwstDGtaJf/vKXOW9KIeLPf/7zqA7LLbdczqZSVvW73/0ufvjhh1xEl8LJbbbZJl5++eX4y1/+EgMGDMhFeKuttlrOt4466qioqcrKF2TXzaVY+sZ8+eWX8e6771YaT/2ATznllHjjjTfyh2SfffaJCy+8sFhJWXHPylRhmSotv/nmm9hoo43yN3nHHXes9rWmZDsZNmxYtV8bAAAAAABgcUqtRJs3b75E11DIg1LHTWrmZ6HGh5M1iXASAAAAAACoqYSTVMdnoc4inQUAAAAAAACwkISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAACABTJ79uwlvQSWgs9AeXn5Ip8vnAQAAAAAAGC+mjZtGuPHj48ZM2Ys6aWwBIPJ9BlYeeWVF/ka9ap1RQAAAAAAACyT6tevHy1btoyJEyfGt99+u0TWMGTIkHyf1kHppYrJZs2axXLLLbfI1ygr/yl1lyyUjh075vthw4Yt6aUAAAAAAADUOLKWmk9bVwAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJKoVx0X+fzzzxf6nFatWlXHSwMAAAAAAAC1KZxcc801o6ysbIHnp7k//PBDdbw0AAAAAAAAUJvCyaRhw4bRq1evWGGFFarrkgAAAAAAAMAypFrCye7du8cLL7wQjz/+ePTu3TuOOOKI6NatW1S3YcOGxdlnnx2vv/56jBs3LpZffvnYYIMN4qSTTopdd9210tz3338/jj/++Lyu+vXrx8477xyXX355NG/evNK82bNnx6WXXhpXX311jB07Njp06BD9+vWL/fffv9rXDwAAAAAAALVZneq4yHPPPRf/+9//4ve//308+uijseWWW+bQMIWBEyZMiOryySefxHfffReHHHJI/O1vf4szzjgjj++2225x3XXXFeeNGTMmttpqq/joo4/iggsuiBNPPDH+/e9/R48ePWLGjBmVrvnnP/85TjnllHzsyiuvjDZt2sQBBxwQd9xxR7WtGwAAAAAAAIgoKy8vL6/OC6a9JB988MG4/vrr44knnoh69erFLrvsEocffnj07NlzofamXBCzZs2KTTfdNKZNmxYffPBBHjv66KPjxhtvzM9T2Jg89dRTOYC89tpro0+fPnnss88+i7Zt2+bnAwYMyGPpy7H11lvHyJEjY9SoUVG3bt1qW2vHjh2LFaAAAAAAAAAsHFlLzVctlZMVpTByzz33jEceeSSHe6ky8Y033sgB5YUXXljdL5fDw9atW8fEiROLY/fcc09+vUIwmWy//fa5Zeudd95ZHHvggQdi5syZOcwsSOFpqgBN1Zcvv/xyta8XAAAAAAAAaqtqDycratCgQTRq1Cjv+ZgqEtP+jtVhypQp8eWXX8aIESPir3/9a24lu9122xWrIcePHx+bbbZZlfO6du0ab775ZvF5ety4ceNYf/31q8wrHAcAAAAAAACqR72oZimETFWTAwcOzPs8pkCyV69ecfHFF+dqxurwpz/9KbdnTerUqZMrNQttWceOHZvvV1999SrnpbGvv/46pk+fnoPTNLdly5ZVWs0Wzv38889/UknxnFKY2q5du0W6JgAAAAAAANR01RZOpuDt//7v/+Kmm27KoV4K4c4+++w49NBD5xoU/hR9+/aNvffeO79OatOa9p2cMWNGPjZ16tR8n8LHOTVs2LA4Jx0v3P/YPAAAAAAAAGApCie33XbbeO6553Kol6oYDz/88Nhmm21icVlvvfXyLTn44INjhx12iF133TVeeeWV3EY2SdWRc5o2bVq+L8xJ9wsyb2HNaxPWeVVUAgAAAAAAQG1QLeHks88+m4O8nXbaKd/fdttt+TYvqY1qoS1rdUhVlEcddVQMHz68WKVZaO9aURpbZZVVitWSae7gwYNzK9qKrV0L57Zq1ara1ggAAAAAAAC1XbW1dU0tUO+5554Fmlvd4WSh/eq3334b6667bjRv3jxee+21KvOGDBkSnTt3Lj5Pj6+//vp4//33Y4MNNiiOpwrMwnEAAAAAAABgKQonR44cGaUwfvz4aNGiRaWxmTNnxs0335wrNgsB41577ZX3vhw9enS0bt06jz399NO5svL4448vnrv77rvn51dddVUMGDAgj6UqymuuuSbWWGON6NatW0neFwAAAAAAANQG1RJOrrXWWlEKqXXrpEmTYquttsrh4bhx4+LWW2+NDz74IC677LJo0qRJnnfaaafFXXfdlffC/OMf/xiTJ0+O/v37x4YbbhiHHXZY8Xprrrlm9O3bNx9LIWeXLl3i/vvvj+effz5ft27duiV5XwAAAAAAAFAblJWnUsFq8MMPP8QDDzwQH330UW6rmqoSmzVrFtXpjjvuiIEDB8Y777wTX331Vaywwgqx6aabxrHHHhu77bZbpbnDhg2LE044IV544YWoX79+7LzzzjnAbNmyZaV5s2fPjosvvji3mU17TbZv3z769esXv/nNb6K6dezYsbg2AAAAAAAAFo6spearlnBy4sSJuUrx7bffzm1R056SK6+8cjz55JOx8cYbV89KlwH+wQAAAAAAACw6WUvNV6c6LnLBBRfEW2+9FTvttFNceeWV8Yc//CG3X01tWAEAAAAAAACqbc/JBx98MHr06BEPPfRQcaxNmzZxyimnxOeffx6tWrXy1QYAAAAAAIBarloqJz/55JPYZZddKo2lPSdTi9dRo0ZVx0sAAAAAAAAANVy1hJPTp0+PZs2aVRpbZZVViscAAAAAAAAAqiWc/DGpehIAAAAAAACgWvacTAYOHBjPPPNM8XmqmCwrK4vLL7887rjjjkpz0/i1115bXS8NAAAAAAAA1ABl5dVQ2linzsIVYKZwctasWVHbdOzYMd8PGzZsSS8FAAAAAACgxpG11HzVUjk5cuTI6rgMAAAAAAAAsAyrlnByrbXWqo7LAAAAAAAAAMuwhevHOh+TJ0+Oiy++OLbccsto0aJFNGjQIN+n5/37948pU6ZU58sBAAAAAAAAtW3PyeSDDz6Inj17xujRoyNdcoUVVogVV1wxJk2aFN99913eZzJVWD722GPRoUOHqI30QQYAAAAAAFh0spaar1oqJ2fOnBl77bVXfPbZZ3HSSSfFiBEj4ttvv81BZbpPz0888cT8PM1L8wEAAAAAAIDapVrCybvvvjvef//9GDhwYFx00UXRtm3bSsfT89Tu9Z///GdOsu+9997qeFkAAAAAAACgtoWT999/f2y00UZx8MEH/+i8Qw89NM+77777quNlAQAAAAAAgNoWTr711lvRq1evBZqb5g0dOrQ6XhYAAAAAAACobeHkuHHjqrRynZc0L80HAAAAAAAAapdqCScnT54cTZo0WaC5jRs3zvMBAAAAAACA2qVawsnZs2cv1Pzy8vLqeFkAAAAAAACgBqlXXRd64IEHYtSoUfOdZ79JAAAAAAAAqJ2qLZy866678m1BlJWVVdfLAgAAAAAAALUpnBw8eHB1XAYAAAAAAABYhlVLOLn11ltXx2UAAAAAAACAZVidJb0AAAAAAAAAoHYQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlUaPCyVdffTWOOeaY6NixYzRu3DjatGkT++yzTwwfPrzK3Pfffz969uwZTZo0iVVWWSUOOuigmDBhQpV5s2fPjksuuSTatm0bDRs2jI022ihuv/32Er0jAAAAAAAAqD3qRQ1y8cUXx4svvhi9e/fOIeK4ceNiwIABsckmm8R///vf6NSpU543ZsyY2GqrraJp06ZxwQUXxOTJk+PSSy+Nd955J4YMGRL169cvXvPPf/5zXHTRRXHkkUdGly5d4oEHHogDDjggysrKYr/99luC7xYAAAAAAACWLWXl5eXlUUO89NJLsdlmm1UKFz/88MPYcMMNY++9945BgwblsaOPPjpuvPHG+OCDD3J1ZfLUU09Fjx494tprr40+ffrksc8++yxXTKbnKeRM0pdj6623jpEjR8aoUaOibt261bb+VPGZDBs2rNquCQAAAAAAUFvIWmq+GtXWtVu3bpWCyaR9+/b5g5jauBbcc889scsuuxSDyWT77bePDh06xJ133lkcS1WSM2fOzGFmQaqY/P3vf5+rL19++eXF/p4AAAAAAACgtqhR4eTcpErHL774IlZdddViNeT48eNzheWcunbtGm+++WbxeXqc9q5cf/31q8wrHAcAAAAAAABq4Z6Tc3PrrbfmQPLcc8/Nz8eOHZvvV1999Spz09jXX38d06dPjwYNGuS5LVu2zNWSc85LPv/8859UUjynESNGRLt27RbpmgAAAAAAAFDT1ejKybSn5B/+8If4xS9+EYccckgemzp1ar5P4eOcGjZsWGlOul+QeQAAAAAAAEAtrpwcN25c7LzzztG0adO4++67o27dunm8UaNG+T5VR85p2rRpleak+wWZt7DmtQnrvCoqAQAAAAAAoDaokZWT3377bfTq1SsmTpwYjz32WLRq1apKS9ZCe9eK0tgqq6xSrJZMc1PImfatnHNeUvG6AAAAAAAAQC0LJ1NV46677hrDhw+Phx9+ODbYYINKx9dYY41o3rx5vPbaa1XOHTJkSHTu3Ln4PD3+/vvv4/33368075VXXikeBwAAAAAAAGphODlr1qzYd9994+WXX4677ror7zU5N3vttVcOLkePHl0ce/rpp3Og2bt37+LY7rvvHsstt1xcddVVxbFURXnNNdfkkLNbt26L+R0BAAAAAABA7VGj9pz805/+FA8++GCunPz6669j0KBBlY4feOCB+f60007L4eW2224bf/zjH2Py5MnRv3//2HDDDeOwww4rzl9zzTWjb9+++djMmTOjS5cucf/998fzzz8ft956a3EfSwAAAAAAAOCnKyufc8PFpdg222wTzz777DyPV3wrw4YNixNOOCFeeOGFqF+/fuy8885x2WWXRcuWLSudM3v27Lj44ovj2muvzXtNtm/fPvr16xe/+c1vqn39HTt2LK4NAAAAAACAhSNrqflqVDhZ0/kHAwAAAAAAsOhkLTVfjdpzEgAAAAAAAKi5hJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBI1KpycPHlynHXWWdGzZ89YZZVVoqysLG688ca5zn3//ffzvCZNmuS5Bx10UEyYMKHKvNmzZ8cll1wSbdu2jYYNG8ZGG20Ut99+ewneDQAAAAAAANQuNSqc/PLLL+Pcc8/NwePPf/7zec4bM2ZMbLXVVvHRRx/FBRdcECeeeGL8+9//jh49esSMGTMqzf3zn/8cp5xySj525ZVXRps2beKAAw6IO+64owTvCAAAAAAAAGqPelGDrL766jF27NhYbbXV4rXXXosuXbrMdV4KJKdMmRKvv/56DhuTrl275gAyVVr26dMnj3322Wdx2WWXxR/+8IcYMGBAHjviiCNi6623jpNOOil69+4ddevWLeE7BAAAAAAAgGVXjaqcbNCgQQ4m5+eee+6JXXbZpRhMJttvv3106NAh7rzzzuLYAw88EDNnzoyjjz66OJZaxf7+97/P1Zcvv/zyYngXAAAAAAAAUDvVqHByQaRqyPHjx8dmm21W5ViqnnzzzTeLz9Pjxo0bx/rrr19lXuE4AAAAAAAAUAvbui6I1Pa10AJ2Tmns66+/junTp+cqzDS3ZcuWuVpyznnJ559/vkhr6Nix41zHR4wYEe3atVukawIAAAAAAEBNt8xVTk6dOjXfp/BxTg0bNqw0J90vyDwAAAAAAADgp1vmKicbNWqU71N15JymTZtWaU66X5B5C2vYsGELVVEJAAAAAAAAtcEyVzlZaMlaaO9aURpbZZVVitWSae64ceOivLy8yrykVatWJVkzAAAAAAAA1AbLXDi5xhprRPPmzeO1116rcmzIkCHRuXPn4vP0+Pvvv4/333+/0rxXXnmleBwAAAAAAACoHstcOJnstdde8fDDD8fo0aOLY08//XQMHz48evfuXRzbfffdY7nllourrrqqOJaqKK+55poccnbr1q3kawcAAAAAAIBlVY3bc3LAgAExceLE+Pzzz/Pzhx56KMaMGZMfH3vssdG0adM47bTT4q677optt902/vjHP8bkyZOjf//+seGGG8Zhhx1WvNaaa64Zffv2zcdmzpwZXbp0ifvvvz+ef/75uPXWW6Nu3bpL7H0CAAAAAItX2Tll851TflblLaEAgJ+mrHzODReXcmuvvXZ88skncz02cuTIfDwZNmxYnHDCCfHCCy9E/fr1Y+edd47LLrssWrZsWemc2bNnx8UXXxzXXntt3muyffv20a9fv/jNb35T7Wvv2LFjcW0AAAAAwJIlnASoeWQtNV+NCydrMv9gAAAAAGDpIZwEqHlkLTXfMrnnJAAAAAAAALD0EU4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSqFealwEAYIHdVjb/OQeUl2IlAAAAAFCtVE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKIl6pXkZAAAAAADm9PiFTeY7Z8d+k0uyFgAoBZWTAAAAAAAAQEkIJwEAAAAAAICS0NY1IqZPnx5nnnlm3HLLLfHNN9/ERhttFOedd1706NFjSS8NAAAAfprbyuY/54DyUqwEAKBalZ0z///OKT/Lf+fA0kY4GRGHHnpo3H333dG3b99o37593HjjjbHTTjvF4MGDo3v37kt6ebDM/IdA4j8GAGqGsgX4sV7uRzoANYj/8xIAAJYOtT6cHDJkSNxxxx3Rv3//OPHEE/PYwQcfHJ06dYqTTz45XnrppSW9RACo0fwfgcDS6vELm8x3zo79JpdkLQDA0v87iP92AIDqUevDyVQxWbdu3ejTp09xrGHDhnH44YfHaaedFqNHj47WrVsv0TUCZNpxUQsIMmvuz4bFUWnp8wClsbD/fpd0ZbWfDYvXkv7+5jX4HrMUWZAwqhBILUxwJeSiNv2uAABzqvXh5JtvvhkdOnSIFVdcsdJ4165d8/3QoUMXOpzs2LHjXMc/+OCDWG655eZ5HGq0CQs2reOdi/fzP/nL9+c7p8mq6y/WNcS3781/TtMNFuG6CzDnfD9fqJk/H4o/GxZi7nsT5v9vbYPmGyw9PxsW17/3hZj73gL8eNpgIX48Lex/0iz0fwItzGdnMalxn52lwIJ+zhbm3/DCzF0Yk7/8fr5zmgzquNCfhWXxc7Oo/94Xx+dhcf1vRY2zMP/NWc3/Hbmw39+Ftrh+/i8F/7tCzbMg/1tR+N+LhfvflQWfy9LzO8ji+r4t1HWX4M9/WCr53/daacSIETlroeYqKy+v3bsFpfatLVu2jKeffrrS+HvvvZdDxGuuuSaOOuqohbrmvMLH//3vf9GoUaNo06ZNLA3/eJN27dot6aUASxE/G4B58fMBmBs/G4B58fMBmBs/G4Dq+Nnw6aefRuPGjWPcuHGLeWUsLrW+cnLq1KnRoEGDKuOptWvh+MIaNmxYLO0KAWpNWCtQOn42APPi5wMwN342APPi5wMwN342AHPjZ0PtUydquVTJOH369Crj06ZNKx4HAAAAAAAAfrpaH06uvvrqMXbs2CrjhbFWrVotgVUBAAAAAADAsqfWh5OdO3eO4cOHx6RJkyqNv/LKK8XjAAAAAAAAwE9X68PJvffeO2bNmhXXXXddcSy1eb3hhhti8803j9atWy/R9QEAAAAAAMCyol7UcimA7N27d/Tr1y/Gjx8f66yzTtx0000xatSoGDhw4JJeHgAAAAAAACwzysrLy8ujlps2bVqcccYZMWjQoPjmm29io402ir/85S+x4447LumlAQAAAAAAwDJDOAkAAAAAAACURK3fcxIAAAAAAAAoDeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAIAqnnnmmSgrK4uzzz57gc9Jc9M56VwAAACYG+EkAADAUur111/PYd/mm28+1+O33357Pp5uI0eOrHJ86tSp0bBhw1h++eVj+vTpJVgxAAAA/DjhJAAAwFJq4403jpVXXjmHlJMmTapy/Omnn87BZPKf//ynyvEXX3wxh5Ldu3ePBg0alGTNAAAA8GOEkwAAAEupOnXqxDbbbBOzZs2KZ599tsrxFEim482aNZtrOFkY22677UqyXgAAAJgf4SQAAMBSrBAszhk+jho1KrdyTce33nrrGDx48I+Gk8OHD49TTz01Nttss2jevHmupFxrrbWiT58+MWbMmIVaU6rk7NmzZ6ywwgqx4oorxvbbbx8vv/zyj57zwQcfxKGHHhqtW7eO+vXrR8uWLeOAAw6I//3vfwv12gAAANRs9Zb0AgAAAJi3X/3qV8UWrhUVnqfjTZs2jXvvvTfee++92GCDDfJ4agP72muv5bawm2yySVxyySVxzTXXxLbbbhvdunXLAeGwYcPi+uuvj4ceeijPXWONNea7npdeeimHkTNmzIg999wz1llnnRg6dGiu4CysdU6PPfZYnjtz5szYdddd8zkpEE1r/ve//52D1bRGAAAAln3CSQAAgKXY+uuvH6uvvnq8++67MWHChFz1WKiKbNKkSXTp0iVXLxbGCuFkagOb2sGm0DC1hz3ooIPi+OOPr7L35BNPPBG9evWK8847L66++uofXUt5eXn89re/jalTp8b9998fu+++e/HY3/72t+jbt2+Vc7755pvYf//9Y/nll4/nnnuuuL4kvactttgijjjiiHjjjTd+4lcKAACAmkBbVwAAgKVcasuagsGKrVvT4y233DLq1asXHTt2jBYtWlRq/TrnfpOpKnLOYDLZYYcd8vmPP/74AlVNpjasW221VaVgMjnmmGOiXbt2Vc65+eabY+LEiXHOOedUCiaTTp06xZFHHhlvvvlmrvoEAABg2adyEgAAYCmX2qUOGjQoB4777LNPvP/++zF27NhcCVmQKiSffPLJmD17dq6UnDOcTOHmrbfeGjfeeGO89dZbuaIxVVYWpDav81Oobkx7XM6pbt260b179xgxYkSl8cJelOk1zz777Crnpb0wk/Se5gwvAQAAWPYIJwEAAJZyhYCxsM9kxf0mK4aTd955Z65CbNOmTbzzzju5WnK99dbLx0844YS44oorcovYHXfcMR9r1KhRPpYCy08++WS+6/j222/zfcuWLed6fLXVVqsy9tVXX+X7f/7znz967cmTJ8/39QEAAKj5hJMAAABLuRQ2ppapH330UYwePTpXRa600kqx8cYbF+dsu+22+T4dW2uttXKlZCHUHD9+fPz973/PbVRTa9YVVlih0vVvv/32BVpH06ZN8/0XX3wx1+Pjxo2b5zmpcnKjjTZa4PcMAADAssmekwAAADVAIWh86qmn4plnnsmtVVP71oJUIZkqF1M4OWdL148//ji3e037S84ZTI4ZMyYfXxCbbLJJvn/22WerHEstYl944YUq41tssUW+f/755xfi3QIAALCsEk4CAADUAIUWrn/961/zfpGFSsmK0lgKAZ944olK4eTaa6+d71N4WHGfydRK9cgjj4wffvhhgdbQrVu3WHfddeO5556LBx54oNKxAQMGVNlvMjnssMNylec555wTQ4YMqXI8haYpbAUAAKB20NYVAACghoSTZWVleS/JwvO5hZOpRevIkSNziJj2lUxSReV+++0Xd9xxR3Tu3DlXUKb9I5988slo2LBhHhs6dOh815Bef+DAgdGjR4/Ya6+9Ys8994x11lknn5v2wezZs2c89thjlc5p1qxZ3H333fHrX/86V1GmwLRjx475WqlF7csvv5z3pZw2bVq1fa0AAABYeqmcBAAAqAGaN28eG264YX686qqr5v0j51SxmrJQNVmQQsXTTjstpk6dGv/4xz/i8ccfj1122SXvQVnYF3JB/PKXv8zVmdtvv308+uijceWVV8aMGTNy9ePmm28+13PSWt5+++04+uijY9SoUXHNNdfk9bz77rs5ZE2hKQAAALVDWXl5efmSXgQAAAAAAACw7FM5CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBL1SvMyJKuttlpMmTIl2rRps6SXAgAAAAAAUON8+umn0bhx4xg3btySXgqLSDhZQimYnDlz5pJeBgAAAAAAUE0mf/n+fOc0WXX9kqylNkg5S8pbqLmEkyVUqJgcNmzYkl4KAAAAAABQDR6/sMl85+zYTy5QXTp27Likl8BPZM9JAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEjUqnHzmmWeirKxsrrf//ve/lea+9NJL0b1791h++eVjtdVWi+OOOy4mT55c5ZrTp0+PU045JVq1ahWNGjWKzTffPJ588skSvisAAAAAAACoHepFDZSCxi5dulQaW2eddYqPhw4dGtttt12sv/76cfnll8eYMWPi0ksvjQ8//DAeffTRSucdeuihcffdd0ffvn2jffv2ceONN8ZOO+0UgwcPzuEmAAAAAAAAUIvDyS233DL23nvveR4/7bTTYuWVV86VliuuuGIeW3vttePII4+MJ554InbYYYc8NmTIkLjjjjuif//+ceKJJ+axgw8+ODp16hQnn3xyrr4EAAAAAAAAamFb14q+++67+OGHH6qMT5o0KbdlPfDAA4vBZCF0bNKkSdx5553FsVQxWbdu3ejTp09xrGHDhnH44YfHyy+/HKNHjy7BOwEAAAAAAIDaoUaGk4cddlgOHlOQuO2228Zrr71WPPbOO+/k0HKzzTardE79+vWjc+fO8eabbxbH0uMOHTpUCjGTrl27FtvDAgAAAAAAALWwrWsKGPfaa6+8J+Sqq64a7733Xt5LMrV5TS1YN9544xg7dmyeu/rqq1c5P409//zzxedp7rzmJZ9//vkirbNjx45zHR8xYkS0a9duka4JAAAAAAAANV2NCie7deuWbwW77bZb3ntyo402in79+sVjjz0WU6dOzccaNGhQ5fxUaVk4nqTH85pXOA4AAAAAAADUwnBybtZZZ53Yfffd4957741Zs2ZFo0aN8vj06dOrzJ02bVrxeJIez2te4fiiGDZs2EJVVAIAAAAAAEBtUCP3nJxT69atY8aMGTFlypRiS9ZCe9eK0lirVq2Kz9Pcec1LKs4FAAAAAAAAfpplIpz8+OOPcyvWJk2aRKdOnaJevXrx2muvVZqTwsuhQ4dG586di2Pp8fDhw2PSpEmV5r7yyivF4wAAAAAAAEAtDCcnTJhQZeytt96KBx98MHbYYYeoU6dONG3aNLbffvsYNGhQfPfdd8V5t9xyS0yePDl69+5dHEv7VaZWsNddd11xLLV5veGGG2LzzTfPFZkAAAAAAABALdxzct999837QHbr1i1atGgR7733Xg4Wl19++bjooouK884///w8Z+utt44+ffrEmDFj4rLLLssBZs+ePYvzUgCZwsp+/frF+PHj8/6VN910U4waNSoGDhy4hN4lAAAAAAAALJtqVOXkHnvsEV9++WVcfvnlcfTRR8e//vWv2HPPPXML1/XXX784b5NNNomnnnoqB5nHH398DjAPP/zwuPvuu6tc8+abb46+ffvmysrjjjsuZs6cGQ8//HBstdVWJX53AAAAAAAAsGwrKy8vL1/Si6gtOnbsmO+HDRu2pJcCAAAAAABUg8cvbDLfOTv2m1yStdQGspaar0ZVTgIAAAAAAAA1l3ASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJOqV5mUAAAAAqlfZOWXznVN+VnlJ1gIAACwYlZMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlUaPDyfPPPz/KysqiU6dOVY699NJL0b1791h++eVjtdVWi+OOOy4mT55cZd706dPjlFNOiVatWkWjRo1i8803jyeffLJE7wAAAAAAAABqj3pRQ40ZMyYuuOCCaNy4cZVjQ4cOje222y7WX3/9uPzyy/PcSy+9ND788MN49NFHK8099NBD4+67746+fftG+/bt48Ybb4yddtopBg8enMNNAAAAAABg6VN2Ttl855SfVV6StQC1IJw88cQTY4sttohZs2bFl19+WenYaaedFiuvvHI888wzseKKK+axtddeO4488sh44oknYocddshjQ4YMiTvuuCP69++fr5ccfPDBuRLz5JNPztWXAAAAAAAAQC1u6/rcc8/lascrrriiyrFJkybltqwHHnhgMZgshI5NmjSJO++8sziWrlG3bt3o06dPcaxhw4Zx+OGHx8svvxyjR48uwbsBAAAAAACA2qHGhZOpUvLYY4+NI444IjbccMMqx99555344YcfYrPNNqs0Xr9+/ejcuXO8+eabxbH0uEOHDpVCzKRr167F9rAAAAAAAABALW3res0118Qnn3wSTz311FyPjx07Nt+vvvrqVY6lseeff77S3HnNSz7//PNFWmPHjh3nOj5ixIho167dIl0TAAAAAAAAaroaVTn51VdfxZlnnhlnnHFGNG/efK5zpk6dmu8bNGhQ5Vhq2Vo4Xpg7r3kVrwUAAAAAAADUssrJ008/PVZZZZXc1nVeGjVqlO+nT59e5di0adOKxwtz5zWv4rUW1rBhwxaqohIAAAAAAABqgxoTTn744Ydx3XXXxRVXXFGp3WoKEmfOnBmjRo3Ke0cWWrIW2rtWlMZatWpVfJ7mfvbZZ3Odl1ScCwAAAAAAANSStq4pRJw9e3Ycd9xx0bZt2+LtlVdeieHDh+fH5557bnTq1Cnq1asXr732WqXzZ8yYEUOHDo3OnTsXx9LjdO6kSZMqzU3XLBwHAAAAAAAAalk4mULH++67r8ottUpt06ZNfnz44YdH06ZNY/vtt49BgwbFd999Vzz/lltuicmTJ0fv3r2LY3vvvXfMmjUrV2QWpDavN9xwQ2y++ebRunXrkr9PAAAAAAAAWFbVmLauq666auyxxx5VxlOb16TisfPPPz+6desWW2+9dfTp0yfGjBkTl112Weywww7Rs2fP4rwUQKawsl+/fjF+/PhYZ5114qabbsotYgcOHFiidwYAAAAAAAC1Q42pnFwYm2yySTz11FPRqFGjOP7443NlZKqqvPvuu6vMvfnmm6Nv3765sjK1jE37Vz788MOx1VZbLZG1AwAAAAAAwLKqxlROzsszzzwz1/Hu3bvHiy++ON/zGzZsGP379883AAAAAAAAYPFZJisnAQAAAAAAgKWPcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASdSrjot8/vnnC31Oq1atquOlAQAAAAAAgNoUTq655ppRVla2wPPT3B9++KE6XhoAAAAAAACoTeFk0rBhw+jVq1essMIK1XVJAAAAAAAAYBlSLeFk9+7d44UXXojHH388evfuHUcccUR069YtqtuwYcPi7LPPjtdffz3GjRsXyy+/fGywwQZx0kknxa677lpp7vvvvx/HH398Xlf9+vVj5513jssvvzyaN29ead7s2bPj0ksvjauvvjrGjh0bHTp0iH79+sX+++9f7esHAAAAAACA2qxOdVzkueeei//973/x+9//Ph599NHYcsstc2iYwsAJEyZEdfnkk0/iu+++i0MOOST+9re/xRlnnJHHd9ttt7juuuuK88aMGRNbbbVVfPTRR3HBBRfEiSeeGP/+97+jR48eMWPGjErX/POf/xynnHJKPnbllVdGmzZt4oADDog77rij2tYNAAAAAAAARJSVl5eXV+cF016SDz74YFx//fXxxBNPRL169WKXXXaJww8/PHr27LlQe1MuiFmzZsWmm24a06ZNiw8++CCPHX300XHjjTfm5ylsTJ566qkcQF577bXRp0+fPPbZZ59F27Zt8/MBAwbksfTl2HrrrWPkyJExatSoqFu3brWttWPHjsUKUAAAAOCnKTtn/v8fQ/lZ1fp/ewAAS5Gl5b8FHr+wyXzn7Nhv8mJfR20ha6n5qqVysqIURu65557xyCOP5HAvVSa+8cYbOaC88MILq/vlcnjYunXrmDhxYnHsnnvuya9XCCaT7bffPrdsvfPOO4tjDzzwQMycOTOHmQUpPE0VoKn68uWXX6729QIAAAAAAEBtVe3hZEUNGjSIRo0a5T0fU0Vi2t+xOkyZMiW+/PLLGDFiRPz1r3/NrWS32267YjXk+PHjY7PNNqtyXteuXePNN98sPk+PGzduHOuvv36VeYXjAAAAAAAAQPWoF9UshZCpanLgwIF5n8cUSPbq1SsuvvjiXM1YHf70pz/l9qxJnTp1cqVmoS3r2LFj8/3qq69e5bw09vXXX8f06dNzcJrmtmzZskqr2cK5n3/++U8qKZ5TClPbtWu3SNcEAAAAAACAmq7awskUvP3f//1f3HTTTTnUSyHc2WefHYceeuhcg8Kfom/fvrH33nvn10ltWtO+kzNmzMjHpk6dmu9T+Dinhg0bFuek44X7H5sHAAAAAAAALEXh5LbbbhvPPfdcDvVSFePhhx8e22yzTSwu6623Xr4lBx98cOywww6x6667xiuvvJLbyCapOnJO06ZNy/eFOel+QeYtrHltwjqvikoAAAAAAACoDaolnHz22WdzkLfTTjvl+9tuuy3f5iW1US20Za0OqYryqKOOiuHDhxerNAvtXStKY6usskqxWjLNHTx4cG5FW7G1a+HcVq1aVdsaAQAAAAAAoLartrauqQXqPffcs0BzqzucLLRf/fbbb2PdddeN5s2bx2uvvVZl3pAhQ6Jz587F5+nx9ddfH++//35ssMEGxfFUgVk4DgAAAAAAACxF4eTIkSOjFMaPHx8tWrSoNDZz5sy4+eabc8VmIWDca6+98t6Xo0ePjtatW+exp59+OldWHn/88cVzd9999/z8qquuigEDBuSxVEV5zTXXxBprrBHdunUryfsCAAAAAACA2qBawsm11lorSiG1bp00aVJstdVWOTwcN25c3HrrrfHBBx/EZZddFk2aNMnzTjvttLjrrrvyXph//OMfY/LkydG/f//YcMMN47DDDiteb80114y+ffvmYynk7NKlS9x///3x/PPP5+vWrVu3JO8LAAAAAAAAaoNqa+v6ww8/xAMPPBAfffRRbquaqhKbNWsW1WnfffeNgQMHxtVXXx1fffVVrLDCCrHpppvGxRdfHLvttltxXqqWTPtgnnDCCXHqqadG/fr1Y+edd84BZmG/yYKLLrooVl555dxm9sYbb4z27dvHoEGD4oADDqjWtQMAAAAAAEBtV1ae+pj+RBMnTsxVim+//XZui5r2lEyB35NPPhkbb7xx9ax0GdCxY8d8P2zYsCW9FAAAAKjxys4pm++c8rN+8v/tAQAspZaW/xZ4/ML/r6vjj9mx3+TFvo7aQtZS89WpjotccMEF8dZbb8VOO+0UV155ZfzhD3/I7VdTG1YAAAAAAACAamvr+uCDD0aPHj3ioYceKo61adMmTjnllPj888+jVatWvtoAAAAAALAMKZt/4WL89N6NwLKmWionP/nkk9hll10qjaU9J1OL11GjRlXHSwAAAAAAAAA1XLWEk9OnT49mzZpVGltllVWKxwAAAAAAAACqJZz8Mal6EgAAAAAAAKBa9pxMBg4cGM8880zxeaqYLCsri8svvzzuuOOOSnPT+LXXXltdLw0AAAAAAADUpnBy8ODB+TanRx55pMqYcBIAAAAAAABqn2oJJ0eOHFkdlwEAAAAAAACWYdUSTq611lrVcRkAAAAAAABgGVanOi82efLkuPjii2PLLbeMFi1aRIMGDfJ9et6/f/+YMmVKdb4cAAAAAAAAUBv3nPzggw+iZ8+eMXr06CgvL48VVlghB5OTJk2KF198MV566aW4+uqr47HHHosOHTpU18sCAAAAAAAAtalycubMmbHXXnvFZ599FieddFKMGDEivv322xxUpvv0/MQTT8zP07w0HwAAAAAAAKhdqiWcvPvuu+P999+PgQMHxkUXXRRt27atdDw9T+1e//nPf8awYcPi3nvvrY6XBQAAAAAAAGpbOHn//ffHRhttFAcffPCPzjv00EPzvPvuu686XhYAAAAAAACobeHkW2+9Fb169VqguWne0KFDq+NlAQAAAAAAgNoWTo4bN65KK9d5SfPSfAAAAAAAAKB2qZZwcvLkydGkSZMFmtu4ceM8HwAAAAAAAKhdqiWcnD179kLNLy8vr46XBQAAAAAAAGqQetV1oQceeCBGjRo133n2mwQAAAAAAIDaqdrCybvuuivfFkRZWVl1vSwAAAAAAABQm8LJwYMHV8dlAAAAAAAAgGVYtYSTW2+9dXVcBgAAAAAAAFiG1VnSCwAAAAAAAABqB+EkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBI1Kpx89dVX45hjjomOHTtG48aNo02bNrHPPvvE8OHDq8x9//33o2fPntGkSZNYZZVV4qCDDooJEyZUmTd79uy45JJLom3bttGw4f+vvbuBtnLKGwD+v9KXIhpNigxSPvoQoxqZ0TQjg8KYhEkYizGLfIR8xFjetxkmEmamZcksa0L5jPHRWBrSGMukRM3QlEZEqZRJiErDedd+3nXv6vahbrrPveee32+tu869+9nnOXt3z/33nP1/9t6NonPnznH//ffn1CMAAAAAAAAoHdtHEbnxxhvjxRdfjP79+2dJxCVLlsSoUaPikEMOiZdeeik6duyY1Vu4cGEcccQR0axZs7jhhhti5cqVcfPNN8drr70W06ZNiwYNGlSc85prronhw4fHz3/+8+jatWs8/vjjMWDAgCgrK4tTTz21BnsLAAAAAAAAdUtRJScvvfTSuO+++yolF0855ZTo1KlTlmAcO3ZsVpYSkp9++mm88sor2ezKpFu3btG7d+8YM2ZMnHvuuVnZe++9FyNHjoxBgwZlSc7knHPOiZ49e8bll1+eJUHr1atXI30FAAAAAACAuqaolnXt0aNHpcRk0q5du2yZ17SMa7lHHnkk+vbtW5GYTI488sho3759PPTQQxVlaZbk2rVr4/zzz68oSzMmzzvvvGz25ZQpU6q9TwAAAAAAAFAqiio5uTGFQiHef//92HXXXStmQy5dujQOPfTQDeqm2ZMzZsyo+Dl9n/auPOCAAzaoV34cAAAAAAAAKMFlXTdm3LhxWUJy2LBh2c+LFy/OHlu1arVB3VS2fPnyWLNmTTRs2DCr27Jly2y25Pr1kkWLFm1Vm9JMzo2ZN29etG3bdqvOCQAAAAAAAMWuqGdOzpkzJ9sv8rDDDoszzzwzK1u1alX2mJKP62vUqFGlOulxS+oBAAAAAAAAJTxzcsmSJdGnT59o1qxZjB8/PurVq5eVN27cOHtMsyPXt3r16kp10uOW1KuqWbNmVWlGJQAAAAAAAJSCopw5+dFHH8UxxxwTK1asiKeffjpat269wZKs5cu7riuVNW/evGK2ZKqbkpxp38r16yXrnhcAAAAAAAAoseRkmtV43HHHxdy5c2PChAlx4IEHVjq+++67R4sWLWL69OkbPHfatGnRpUuXip/T95999lnMnj27Ur2pU6dWHAcAAAAAAABKMDn5xRdfxCmnnBJTpkyJhx9+ONtrcmP69euXJS4XLFhQUTZp0qQsodm/f/+KshNOOCHq168ft99+e0VZmkV5xx13ZEnOHj16VHOPAAAAAAAAoHQU1Z6Tl112WTzxxBPZzMnly5fH2LFjKx0fOHBg9nj11VdnyctevXrFxRdfHCtXrowRI0ZEp06d4qyzzqqov8cee8TgwYOzY2vXro2uXbvGY489Fi+88EKMGzeuYh9LAAAAAAAAoMSSkzNnzswen3zyyexrfeXJyTZt2sTzzz8fl156aVx11VXRoEGD6NOnT4wcObJiv8lyw4cPj1122SVGjx4dY8aMiXbt2mVJzwEDBuTUKwAAAAAAACgNRZWc/Otf/7rFdTt06BATJ07cbL3tttsuhg4dmn0BAAAAAAAA1aeo9pwEAAAAAAAAipfkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHKxfT4vAwAAAFDaJv6m6Wbr/GjoylzaAgAANaWoZk6uXLkyrrvuujj66KOjefPmUVZWFmPGjNlo3dmzZ2f1mjZtmtU9/fTTY9myZRvU+/LLL+Omm26KvffeOxo1ahSdO3eO+++/P4feAAAAAAAAQGkpquTkBx98EMOGDcsSjwcddNAm6y1cuDCOOOKIePPNN+OGG26IIUOGxJ///Ofo3bt3fP7555XqXnPNNXHllVdmx37/+9/HnnvuGQMGDIgHHngghx4BAAAAAABA6SiqZV1btWoVixcvjt122y2mT58eXbt23Wi9lJD89NNP45VXXsmSjUm3bt2yBGSaaXnuuedmZe+9916MHDkyBg0aFKNGjcrKzjnnnOjZs2dcfvnl0b9//6hXr16OPQQAAAAAAIC6q6hmTjZs2DBLTG7OI488En379q1ITCZHHnlktG/fPh566KGKsscffzzWrl0b559/fkVZWir2vPPOy2ZfTpkypRp6AQAAAAAAAKWpqJKTWyLNhly6dGkceuihGxxLsydnzJhR8XP6vkmTJnHAAQdsUK/8OAAAAAAAAFCCy7puibTsa/kSsOtLZcuXL481a9ZkszBT3ZYtW2azJdevlyxatGir2tChQ4eNls+bNy/atm27VecEAAAAAACAYlfnZk6uWrUqe0zJx/U1atSoUp30uCX1AAAAAAAAgK+vzs2cbNy4cfaYZkeub/Xq1ZXqpMctqVdVs2bNqtKMSgAAAAAAACgFdW7mZPmSrOXLu64rlTVv3rxitmSqu2TJkigUChvUS1q3bp1LmwEAAAAAAKAU1Lnk5O677x4tWrSI6dOnb3Bs2rRp0aVLl4qf0/efffZZzJ49u1K9qVOnVhwHAAAAAAAAto06l5xM+vXrFxMmTIgFCxZUlE2aNCnmzp0b/fv3ryg74YQTon79+nH77bdXlKVZlHfccUeW5OzRo0fubQcAAAAAAIC6quj2nBw1alSsWLEiFi1alP385JNPxsKFC7PvL7zwwmjWrFlcffXV8fDDD0evXr3i4osvjpUrV8aIESOiU6dOcdZZZ1Wca4899ojBgwdnx9auXRtdu3aNxx57LF544YUYN25c1KtXr8b6CQAAAAAAAHVN0SUnb7755njnnXcqfn700Uezr2TgwIFZcrJNmzbx/PPPx6WXXhpXXXVVNGjQIPr06RMjR46s2G+y3PDhw2OXXXaJ0aNHx5gxY6Jdu3YxduzYGDBgQO59AwAAAAAAgLqs6JKT8+fP36J6HTp0iIkTJ2623nbbbRdDhw7NvgAAAABqhfvKNl9nQCGPlgAAwDZVJ/ecBAAAAAAAAGofyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcbJ/PywAAAAAAAGxeWdnm6xQKebQEqA5mTgIAAAAAAAC5MHMSarP7tuAWoQFuEQIAAAAAAIqDmZMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5kJwEAAAAAAAAciE5CQAAAAAAAORCchIAAAAAAADIheQkAAAAAAAAkAvJSQAAAAAAACAXkpMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC52D6flwEAAAC+0n1lm68zoJBHSwAAAKqNmZMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5sOckAACQu7L/3fzeeoXr7K0HAAAAdY3kJAAAAFBruHkBAADqNslJAAAAAACgznMTFNQO9pwEAAAAAAAAciE5CQAAAAAAAOTCsq4AAAAAAMD/u2/zS5/GAEufAlvPzEkAAAAAAAAgF2ZOAgBQK5X97+bv1i1c525dAACAzTIbEqhFzJwEAAAAAAAAciE5CQAAAAAAAORCcjIi1qxZE1deeWW0bt06GjduHN27d49nnnmmppsFAAAAAAAAdYo9JyPiZz/7WYwfPz4GDx4c7dq1izFjxsSxxx4bkydPju9+97s13TzqmiJb371sC5pbqD3NBQAAAKCOsz89QHEr+eTktGnT4oEHHogRI0bEkCFDsrIzzjgjOnbsGFdccUX8/e9/r+kmAlQrCWigLjA4AVvPtQAAAAB5KvnkZJoxWa9evTj33HMryho1ahRnn312XH311bFgwYJo06ZNjbYRtjUDUAAAAAAA+Zr4m6abrfOjoStzaQvUpJJPTs6YMSPat28fO+20U6Xybt26ZY8zZ86UnASgZJZyppbwvqGWqekbm8yMha/J/ysAAEAtUvLJycWLF0erVq02KC8vW7RoUZXP2aFDh42Wz5kzJ+rXr7/J41S/lR/M3mydprseUL2N+GgL6lzfocp1//WvzVc98MDYYlV5m3pLfw0fbcEvrlkVfnHVpKq/438t23y/Dmxx4FbXLypV+psvjvdDVdXp32918b75f8s2X6XDQx2qXLdWXA9Ulxp8P1T5eqCafr/VpSjfN9vw/bDu73dbX3dm5/R/RdXjf204b3Wpw/Fh5Qefbb7u2Kp/HqzT1wNAyajSNUYtiP9Fp5rGJKtyLVkt45dVfS9U03tnS/+Pr9K1AJs0b968LNdC8SorFEp78ca2bdvGfvvtF0899VSl8rfeeis7duutt8bgwYOrdM5NJR/feOONaNy4cey5555RG/54k9RHgHJiA7Ap4gOwMWIDsCniA7AxYgOwLWLDu+++G02aNIklS5ZUc8uoLiU/czIlC9esWbNB+erVqyuOV9WsWbOititPoBZDW4H8iA3ApogPwMaIDcCmiA/AxogNwMaIDaVnuyhxafnWtLTr+srLWrduXQOtAgAAAAAAgLqn5JOTXbp0iblz58bHH39cqXzq1KkVxwEAAAAAAICvr+STkyeddFJ88cUXceedd1aUpWVe//jHP0b37t2jTZs2Ndo+AAAAAAAAqCtKfs/JlIDs379/DB06NJYuXRr77rtv3H333TF//vy46667arp5AAAAAAAAUGeUfHIyueeee+Laa6+Ne++9Nz788MPo3LlzTJgwIY444oiabhoAAAAAAADUGWWFQqFQ040AAAAAAAAA6r6S33MSAAAAAAAAyIfkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJ4vIyy+/HBdccEF06NAhmjRpEnvuuWecfPLJMXfu3A3qzp49O44++uho2rRpNG/ePE4//fRYtmzZBvWuv/76OP7446Nly5ZRVlYW//M//7NFbendu3dWP7UHqFm1ITY8+OCDcdhhh2Wvv/POO0ePHj3iueee26b9BIovPjz77LPRq1ev2HXXXbPY0K1bt7j33nu3eT+Bmo0Nc+bMiSuuuCK6dOkSO+64Y7Rq1Sr69OkT06dP3+jrv/fee9nrpbiw0047xQknnBBvvfVWtfUXKI748Oijj8Ypp5wS++yzT+ywww6x3377xWWXXRYrVqyo1j4Dtf/aYV3GJKH2qA2xwZhk8SorFAqFmm4EW+akk06KF198Mfr37x+dO3eOJUuWxKhRo2LlypXx0ksvRceOHbN6CxcujIMPPjiaNWsWF110UXb85ptvzoLDtGnTokGDBhXnTP+Z77bbbnHQQQfFxIkT47rrrttsEiJ9YDjjjDPi008/jUGDBmVtAEo3NqTyYcOGZe344Q9/GGvXro3XX389Dj/88OxCAyjN+PDEE0/Ej3/84+xDwk9/+tPseQ899FD87W9/i1tuuSUuueSSXP8tgOqLDUOGDIm77ror+vXrl92E8NFHH8Xo0aNj/vz58fTTT8eRRx5Z8drpHIccckhWJyUd6tevH7feemukj6UzZ86Mb3zjGzX27wLUbHxINzO1bt06u35I53nttdfijjvuyJKVr776ajRu3LjG/l2g1NVkbFiXMUmoXWo6NhiTLHIpOUlxePHFFwtr1qypVDZ37txCw4YNC6eddlpF2XnnnVdo3Lhx4Z133qkoe+aZZ1ISujB69OhKz3/77bezx2XLlmXHr7vuuq9sw6pVqwp77bVXYdiwYVn9QYMGbaPeAcUYG6ZMmVIoKysr3HLLLdu4V0Cxx4fevXsXWrduXVi9enVF2dq1awtt27YtdO7ceZv1Eaj52DB9+vTCJ598Uul8H3zwQaFFixaFww8/vFL5jTfemD1/2rRpFWWzZ88u1KtXrzB06NBt2k+guOLD5MmTN2jP3XffnZ3zD3/4wzbpH1B8saGcMUmofWoyNhiTLH6WdS0iaUryujMXknbt2mXTptO06HKPPPJI9O3bN7vzoFy6q6B9+/bZjIV17bXXXlVqw0033RRffvlldhcDUDvUZGy47bbbshlUF198cTbjId35BNQeNRkfPv7449hll12iYcOGFWXbb799NivCzAeoW7Hh29/+drY807rSDMjvfe97lc6XjB8/Prp27Zp9ldt///2zO53XjzdAacWH73//+xu058QTT8we168LlE5sKGdMEmqfmowNxiSLn+RkkUt/eO+//3420Fe+f8vSpUvj0EMP3aBumgo9Y8aMrX6td999N4YPHx433nijQUWo5fKKDZMmTcoGF3/3u99FixYtKtaDt7QK1F55xYc0wDhr1qy49tpr480334x58+bFr371q2yviLSHBFD3Y0Na1qn8fEkaUPznP/+5yXOmOPHJJ5987b4AxRcfvqpesiV1gbobG4xJQvHIKzYYkyx+kpNFbty4cdkfeNo0Plm8eHH2mP4Q15fKli9fHmvWrNmq10p7wqS1oU899dSv2WqgLsSGDz/8MD744INsbfmUfLjqqquyTajTptUXXnhhtiY8ULrXDikunHzyyXH99ddnd07uu+++2YBCumPyJz/5yTboCVCbY8MLL7wQU6ZMqThfUv6cTZ0zWbRo0TbpD1Bc8WFTUiKiXr162V5SQOnGBmOSUDzyiA3GJOuG7Wu6AWy9OXPmZJs/H3bYYXHmmWdmZatWrcoe111CrVyjRo0q6mzs+FeZPHlyNpg4derUbdJ2oPhjQ/lyCf/5z3/igQceqLhISAMHnTp1il//+tfxi1/8Ypv0Cdg28rx2SPXTEi0pJqRk5BdffBF33nlnDBw4MJ555pn4zne+s036BNS+2JDujB4wYEDsvffelWZKb+k5gdKLDxtz3333xV133ZXVSzc6AaUZG4xJQvHIKzYYk6wbzJwsUmkqc58+faJZs2bZvi3pTsKkfGmDjd1tsHr16kp1ttR///vfuOiii+L000+vtDcMUNqxobx+/fr1K93JvN1222UXBQsXLsyWXgFKLz4kF1xwQTz55JPZB4V0h/Npp50Wzz77bHZnZNoTAqibseHTTz/N9pNJy7M+/vjjlfaMqa54AxR/fNjYLImzzz47fvSjH2WrMAClGRuMSULxqInPFcYki5uZk0Xoo48+imOOOSZWrFiRXbC3bt264lj59Ojy6dLrSmXNmzev8syHe+65J954441sOvT8+fMrHUvBIZV985vfjB122GGr+wQUX2xIz0l3OO28884VFxzlUkwoX2Zh3c2ugdKID59//nnFTIf04aBc+uCQ2pH2gEh1GjRo8LX6BdSu2JD+rtNM6bSv5MSJE6Njx46Vjpc/Z1PnTNZtA1A68WFd//jHP+L444/P6qTBze23N3QFpRobjElCcaiJzxXGJIufmZNFJt1NcNxxx8XcuXNjwoQJceCBB1Y6vvvuu2cbwE6fPn2D506bNi1bd7mq0l0Ga9eujcMPPzybQl3+VX6RkL7/y1/+8jV6BRRjbEgJh/S8ZcuWZRcN6yrfLyq9JlB68SEtrZLuck5Lua4vXVN8+eWXGz0GFG9sSH/XZ5xxRkyaNClbirFnz54bvXZIyyxt7JxpqbZ99tkndtxxx23SP6C44kO5efPmxdFHH50NLD711FNfObsSqPuxwZgk1H419bnCmGTxk5wsImkQL01LThvAPvzww9nazRvTr1+/LBAsWLCgoiz9MacA0b9//yq/blqK7U9/+tMGX8mxxx6bfd+9e/ev0TOgGGNDkl43vf7dd99d6aIkbX6dLkbMfoDSjA9pQDHdwZiuEdb9oJD2hUhLve6///6WboQ6FhsuvPDCePDBB+P222/P7nLelLTs0ssvv1xpcCLNiHjuuee2+noEqBvxIS0Hd9RRR2UDjmmWhEFFqD1qKjYYk4TarSavG4xJFr+yQqFQqOlGsGUGDx4cv/3tb7M7EU4++eQNjg8cODB7TH/kBx98cDYomPZ0SgOBI0aMiD322CMbCFh3mvS9994b77zzTnz22Wfxm9/8Jnr16hU/+MEPsmNpPfdvfetbm2xPWVlZtsFtWpoNKM3YkDasTvs+pIuJdM60XEJ67quvvpolINKSDkBpxoe0P9Qvf/nL7Lzprsf0oSEt9Tp79uwYO3ZstgclUDdiw2233RaXXHJJNhhx/vnnb3C+E088MZo0aVKxBFs6Z3ocMmRIttzzLbfcksWImTNnSkZACceHNAMiLemaloVPs6zX1bJly+jdu3c19RqozbFhY4xJQu1Qk7HBmGQdkJKTFIeePXumRPImv9b1+uuvF4466qjCDjvsUNh5550Lp512WmHJkiVVOufkyZO/sj2pzqBBg7Z5P4Hiig3vv/9+4cwzzyw0b9680LBhw0L37t0LTz/9dLX3G6j98WHcuHGFbt26Zedr3LhxFh/Gjx9f7f0G8o0N6Trgq8739ttvV6q/YMGCwkknnVTYaaedCk2bNi307du38O9//zuXvgO1Nz58Vb3ULqB0rx3WZ0wSaoeajg3GJIubmZMAAAAAAABALuw5CQAAAAAAAORCchIAAAAAAADIheQkAAAAAAAAkAvJSQAAAAAAACAXkpMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5kJwEAAAAAAAAciE5CQAAAAAAAORCchIAAAAAAADIheQkAAAAAAAAkAvJSQAAAAAAACAXkpMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5kJwEAAAAAAAAciE5CQAAAAAAAORCchIAAAAAAACIPPwfjj5vXDARMc0AAAAASUVORK5CYII=" }, "metadata": {}, "output_type": "display_data" } ], - "execution_count": 15 - }, - { - "metadata": {}, - "cell_type": "code", - "source": "ym_percent(ym_per, \"%click\")", - "id": "a2dacac3caecff5f", - "outputs": [], - "execution_count": null + "execution_count": 48 }, { "metadata": {}, @@ -277,12 +275,7 @@ "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T13:26:45.510525Z", - "start_time": "2025-10-28T13:26:45.252371Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "hist_mean_h(\n", @@ -294,19 +287,8 @@ ")" ], "id": "5cbea8601bce2172", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAACCUAAAXFCAYAAAA7IfVjAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgABAABJREFUeJzs3QmYHVWZP/63OxtJIECALKBhEwYBkR2VVUQEBHdWEZQlMyPL4DYoYRNJ0HEd92FEQRD8swiiwggooLIJDoyAaABlDxDWELKn+/9UafqXlYTkVt+qtz+f57lPd99bXVVvn+p7b/f5nnM6uru7uwMAAAAAAAAAoMU6W71DAAAAAAAAAICCUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAGmu99daLjo6O8vbQQw+1+3QAAACAhQglAAAAUAu77bZbT+fyq7ndcMMNi+zr9NNPX+r3DRkyJNZee+3YY4894nOf+1w88sgjy3SeH/7wh19xv0OHDi33u/vuu8fJJ58cEydOrOCnBQAAANAMQgkAAAD0SdOnT49JkybFr371qzj11FNjo402ijPPPHOF9ztt2rRyv9dff32MHz8+NtlkkzjmmGNixowZLTlvAAAAgCbp3+4TAAAAgIVtt912sf322y/Ttuuss84rPl7MWvDe9753kfunTp0a999/f9x2220xd+7cmDVrVpxyyinl/Z///OeX6dhF4OBtb3vbIvu977774vbbb4/u7u7y9u1vf7sMKlx22WXlbAoAAAAAfYVQAgAAALWzzz77lEswtEIxA8I3v/nNJT5eLNtw2GGHxY033lh+/cUvfjEOPfTQ2HzzzZe67x122GGJ+/7Tn/4UBx98cPzxj38sv7788svjJz/5Sbz//e9f7loAAAAAmsbyDQAAAPRpY8aMiSuvvDLWWmut8uuurq646KKLVni/m266aVx99dUxdOjQnvv+67/+a4X3CwAAANAkQgkAAAD0ecOGDYt99913gVkOWqFYOuKAAw7o+fp3v/tduZwDAAAAQF8hlAAAAAARMXr06J7PX3755Zbtd8stt+z5fPr06fH888+3ZL8dHR09t3luv/32OOqoo2LjjTcuZ2gYPnx4bL/99nHWWWfFlClTXtX+Z8+eHeeff34Zqthggw1ilVVWKfe5/vrrl8tSFMtRLC1gccMNN/Sc42677dZz/1VXXVXuo1haY+WVVy4f/9rXvhat8thjj8Upp5wSb3zjG2O11VYrz3uTTTaJ4447Lh5++OFXta9i+1NPPTXe9KY3xciRI2PgwIHlx+Lr0047LR599NGl7uPcc8/t+Tl8+MMfXur2Dz30UM/266233qvapgi+FNdAUe+qq65aPn7CCSe8qpoBAACglfq3dG8AAADQUE8++WTP56NGjWrZfgcPHrzA1zNmzIgqnH766fG5z32uXH5inmnTppVBheL2rW99Ky655JJ485vfvNR9FWGComP7wQcfXGxneHH78Y9/XHbMX3rppbHOOuss0zm++OKL8ZGPfKQMNFTliiuuKDv+i2PN7y9/+Ut5O+ecc8qfwzvf+c6l7mv8+PFx5plnLtJmTz/9dHm77bbb4j/+4z/Kn/2JJ57Y8lpejVmzZsXxxx9viRAAAABqRygBAACAPq+YGeEXv/hFz9c777xzy/b9xBNP9Hzer1+/WGONNaLVvv71r8dnP/vZ8vPXve51scMOO5Qj+u++++644447yvsff/zx2GuvveLGG29cYPaGhRUd9h/84AfLmRLmhSqK8EExGr+zszMmTpwYt9xyS8yZMyduvfXWMuRQhB6K2QNeSTGrwqGHHho///nPy9H72267bWy66abl/ffcc88CMz4sr+uuuy7+5V/+JebOnRtjxowpz61YmuNvf/tbGbQozrmYraKY/aE4ZjHrw5Ice+yxZZBjnmJGh7e+9a1lYKUIsFx//fUxderUMrDw6U9/urzvq1/9arTLxz72sZ5Awhve8IZylogBAwaU7VW0GwAAALSLUAIAAAB9WhEaKEbWP/XUU+XXr33ta+OQQw5p2f5/+ctf9ny+1VZbxaBBg6LVPvWpT8VKK60U3/ve98pAwfxuuummOPDAA8tQQrGEw2GHHRZ/+MMfyg7rhd17771x+OGHl4GEIiTwiU98IsaNG1cugTC/v/71r+V2xVIBxfIFxewHxZIMr+Tmm28uQwFFh/mPfvSj8uP8Zs6cGSuqCBIUP4fvfve75c9h/qBDUds73vGO8udQzCBRzCrx/e9/f7H7ufjiixcIJBTXx3/+53+WAYd5ip/lMcccExdccEH5dbH8RBFmed/73he9rViu4tvf/nZ57RY/24VDNa342QIAAMDyEkoAAACgdooO7meeeWap233mM59Z6tIB999/f9lZvbjZER544IFytH/RWV54/etfX86YMHTo0GiFosO6mFVgnrFjx0ZVU/cXyykU4YOF7bjjjmUwYptttik7p4vZE84///w44ogjFtm2mP6/mEmg8OUvf7kcfb84G2ywQfzP//xPbL/99vGnP/0prr766nIpg2KGhiUpfsbFLAO//vWvY80111zk8VaENYqfQ7F8QzEjxMI222yzciaBfffdt2dGiLPPPjv691/wXyPF8hfFzAfz7L///mV4YeGZHIqAwg9/+MN46aWX4qc//Wl537//+7/He97znl6fmaCYGWLIkCHlTBEbb7zxIo9XEYQBAACAZSWUAAAAQO0UywEUt6U56qijlhpKKGZCmH/U++IUnbannnpq2am8cCf1q1WEHe67774499xz4zvf+U7P/R/4wAcWGwRohWJk/OICCfN3yBej+r/yla+UX//3f//3Iufyf//3f2VgYN6MDieccMIrHrMIbpxyyilx8MEHl18XI/RfKZRQKH7GiwsktEoROFhcIGGeffbZp2f5hWLphaKdFp6x4ZprrimXeygUS2AUS2MsaWmJ4v7i2ipCNMXsEg8++GBce+215YwMva0I3iwukAAAAADtZlFBAAAA+rxiBoFimYKic7+Y5n9ZnXfeeWXH9Py3lVdeObbbbruys7oYdV903n/yk5+Miy66KPr161fJ+RdLMixNsdzCPEXgowhPzG/+5ReKoMGSOuLnt/vuu/d8XizlsDSvFJxohWJWg1dS1PTGN76x5+uHHnpokW3mBTPmDzG8kiIUM38Q4vrrr492OOigg9pyXAAAAFgaMyUAAABQO6eddlqcfvrpLdnXrrvuGjfccMNigwiTJk2K3/72t/GlL30p/vjHP5ZLObz5zW8uO5aL5Q5a4cQTTywDD1VO6V+c89IUMwIUgYlihoBiuv+i3vm/b/5lJor6H3744aXus7u7u+fzRx999BW3XX/99WP48OFRpYVnPVicNdZYo+fzKVOmLPL4nXfe2fP5W97ylmU6brFExs9+9rPy8//93/+N3jZgwIBlqh0AAADaQSgBAACAPqlYsmG99dYrb8Uo83e+853l1PsvvfRSHHLIIXHPPfeUnb2vZJNNNom3ve1tPV/PmDGj7JwvOviL/cxbsmDixInlrApVBRPGjBmz1G2KWQJe85rXxJ///Ofy68mTJy+yzMU8V1999as+h+eff/4VH19rrbWiaquuuupSt5m/TYslFxY2/89l3XXXXabjFtfQPM8880z0ttVXX32Flx0BAACAqviLFQAAgD6v6KgullvYeOONy6+LEMFPf/rT+MAHPvCK37fDDjvEN7/5zUXuf/HFF+Ozn/1sfPWrXy2/vuCCC2LzzTcvZ02owpAhQ5Zpu2IpiXnmhSbmP+cVUcy+8EoGDx4cVVuWJSeWpphJYnE/r+X9ufaG3vjZAgAAwPKqbu5IAAAAaJCNNtqoXGJgnl/96lcrNGL/K1/5Shx11FE9982bMaEK06ZNW6btXn755Z7PV1lllSV2rP/kJz8pl2Z4tbcMiiUuFvfzWt6f6/Lo6upa4X0AAABAXQglAAAAwD+MHj265/OHH354hfdXzJSwzjrrlJ/PmjUrxo0bF1V45JFHlrpNERp4/PHHe75ec801F3h85MiRPZ8/+eST0VfNv8zEsvxcCw899NASf64LLxkxZ86cpe5vRWetAAAAgDoRSgAAAIDFzDjQ2dnZklH3p59+es/Xl156adx5553RarfeeutSt7nnnnt6lhbo169fvPGNb1xkKYp5brrppuirttpqq57Pb7755mX6nvm323rrrRd5fNiwYT2fP/vss0vd3913371MxwUAAIAmEEoAAACAiJg+fXrcd999PV/Pm+FgRX34wx+O9dZbr+frz33uc9FqF1xwwVK3+eEPf9jz+XbbbbfAcg2Ffffdd4HlG5566qnoi3bfffeez6+66qp4+umnX3H7J554Iq6++urFfv8887f///3f/y11qYuLL774VZ41AAAA1JdQAgAAAETEd77znZg5c2bP129729tast/+/fvHSSed1PP1FVdcUc5a0Eo33HBDOQvDkhRhi29+85s9Xx911FGLbLP99tvHbrvt1hPQ+NCHPlQuObEsiu2ef/75yGDPPfeM9ddfv/y8uB5OOOGEJW5bhAuOO+64mD17dvn1hhtuGHvsscci273+9a+PVVZZpfx80qRJcc011yxxn7/4xS/KGwAAAGQhlAAAAECfVnQof/vb345Pf/rTPfdtsMEG8e53v7tlxyhmSxgzZkxPR/aZZ54ZrTRw4MA47LDD4qKLLlrksVtuuSXe8Y53xIwZM8qvN9tsszJwsDjf+MY3yiUnCtdee23ssssucdttty3xuBMnTixnfihmAsiy5EOxbMfnP//5nq+Ln+nRRx8dU6dOXWC7YimMj3zkI+WsEvP8x3/8x2KX/SiCKQcccEDP18X+/vSnPy2wTXFdnH/++eV2gwYNanFVAAAA0D7923hsAAAAqNz9998fxx577GJH9xej1m+99dZ45plneu4fMmRI2Tncyo7hAQMGxGc+85n413/91/LrSy65JE4//fTYZJNNWrL/ojO8GNF/yCGHxGmnnRY77LBDecxiRobbb7+9Z7sicHDeeeeVIYbF2XzzzctO+AMPPDCmTZtWBhLe9KY3lTMAbL311jF8+PAy3FAsafDHP/4xHn/88cioCAb85je/iW9961vl19/73vfi//v//r9461vfGiNHjizr/9WvfrVAUKH4+b/vfe9b4j5PPvnk+PGPfxwvv/xyPProo7HlllvGrrvuWgZgpkyZEjfffHM88sgjZYDhu9/97mJnswAAAIAmEkoAAAAgtSeeeKKnc3lpNt100zj33HNju+22a/l5HHHEETF+/Ph47LHHoqurq/y8CD+0wr/927/Fs88+W87AUIQwitvC1l577bj44otjm222ecV97bvvvmUH+ZFHHhl/+MMfyvsefPDB8rYkxUwJr3nNayKTYrmLUaNGlT/TYhmHYmaEK6+8cpHtVlpppTj11FPL0MkrKX5GxRIb73//+8vARzFDx3XXXbfANsOGDYsf/OAHZQAEAAAAsrB8AwAAAH1SMSK9GPm/xRZblIGBn/3sZ+Xo/yoCCYVidoL5l4goZiR44IEHWrb/M844owwTFEsKvO51rytnfFh11VXLEEIRgCiWC9hxxx2XaV9vfOMb44477ohf/vKX5ewOxc9ozTXXLH9mQ4cOLTvYiyUhis74YtmGv/71r+XI/2yK2Q3+8pe/lB+L62Lez6D4uP3228cpp5xSPr60QMI8e+21V/z5z3+O448/Pv7pn/6pbKNVVlmlXFKjuDbuvvvuV5xtAQAAAJqoo7tYtBAAAABolI6Ojp7P/WkPAAAA1JWZEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFCJ/tXsFgAAAKhSd3d3u08BAAAAYKnMlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAHrF3Llz4+KLL47DDjssNt5441httdVi4MCBMWLEiNhpp53iM5/5TNxzzz1L3c+BBx4YHR0d5W3cuHHLfT7PP/98rL322j37Ov3005d7XwAAAMDidXR3d3cv4TEAAACAlrj11lvj8MMPj4kTJ/bcN2DAgFhllVXihRdeiK6urp773/e+98VFF11UBhYW9uyzz5ZBglmzZpVfr7POOvHwww9Hv379XvU5ffjDH47zzjuv5+vTTjtNMAEAAABazEwJAAAAQKV+9rOfxW677VYGEtZYY40466yzys+LYEERMig+3n777fHpT386hg0bFj/5yU9i2rRpi93XBRdcUG6/zz77xIYbbhiPP/54/PKXv3zV51R8TxFIeMtb3tKCCgEAAIAlEUoAAAAAKnP//ffHoYceGjNnzoxNN9007rrrrjJ8sNFGG/VsU8xysO2225Zhhb/97W/x7ne/e4n7O+ecc8qPxRIQH/rQhxa4b1m99NJLMXbs2HImhv/+7/9e7toAAACApRNKAAAAACpz8sknx5QpU2KllVaKyy+/PF7zmte84vbDhw+PK664IlZdddVFHitmU7j77rvLx4rgQhFM6OjoKGdimDx58jKf04knnhiPPPJIGY4oghIAAABAdYQSAAAAgEo89dRTcemll5aff/CDH4yNN954mb+3CBssbN6MCAcccEAZclh//fVj5513jtmzZ8f555+/TPu98cYb47vf/W5ssskmcdJJJy3z+QAAAADLRygBAAAAqMT1118fXV1d5efvfe97V2hf06ZNi4suuqj8vJghYZ7DDz+8/Pj9739/qfuYPn16HHXUUeXnZ599dgwaNGiFzgkAAABYOqEEAAAAoBL33ntvz+dbbbXVCu2rmHGhWAZiww03jJ122qnn/v333z8GDx5cHuu2225b6lISDzzwQBx99NHlDAsAAABA9YQSAAAAgEo8++yzPZ8PHz58hfY1b+mGD33oQwvcv8oqq/TMwjBvm8UpAgtf+9rXYvTo0fGFL3xhhc4FAAAAWHZCCQAAAECtFbMb/Pa3v42Ojo5FQgnzL+Hw4x//uFzmYWGzZs2KI444olxK4hvf+EasttpqvXLeAAAAgFACAAAAUJE11lij5/Pnnntuuffz/e9/P7q7u2PHHXeMDTbYYJHH99hjj1hnnXXipZdeiksuuWSRx88444z405/+FO9+97vj/e9//3KfBwAAAPDqCSUAAAAAldhss816Pr/zzjuXax9z586N8847r/z8d7/7XTlbwsK3fv36xeOPP77YJRyKWRaK5RqGDh1afpw6deoit/lnVFj4PgAAAGDFdHQXQw0AAAAAWuypp56Ktddeu1w24cgjj4zvfe97r3ofP//5z2O//fZ7Vd8zceLE2GijjcrPb7jhhnjrW9/6qo/7/PPPW+YBAAAAWsBMCQAAAEAlRo4c2bNcwoUXXliGBZbVvDEU82Y+eO9731suz/BKt6233rpnuQcAAACgHoQSAAAAgMqceeaZsfLKK8f06dPjfe97X88yC680Q0ERZHjxxRfLmRaKmRIKBx54YLmfV7rtv//+5bbFcg/Fsg+F3XbbrQw4vNJtntNOO63nPrMkAAAAQGsIJQAAAACV2XjjjeP888+PgQMHxr333htbbrllfOELX4gHHnigZ5siQHDnnXfGqaeeGhtssEH85Cc/Ke//4Q9/GHPmzInBgwfHvvvuu9RjHXDAAeXHSZMmxVVXXVVhVQAAAMCyEkoAAAAAKvWe97wnfv3rX8frXve6eOaZZ+LTn/50bLTRRjFo0KBYY401ysBCsfTC5z73uXKGhIMPPjiGDh3aswzDPvvsU369NEWgwRIOAAAAUC9CCQAAAEDldtxxx/jzn/8cF110UXzwgx8sAworrbRSvPTSSzF8+PDYaaedYty4cXHffffFhRdeGL///e/L7eefAWFZzNu2WPahWP4BAAAAaK+O7vkXTwQAAAAAAAAAaBEzJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACrRv5rd9j2jRo2Kl19+OcaMGdPuUwEAAAAAAACAlnjkkUdi6NCh8eSTTy7X95spoUWKQMLs2bPbfRoAAAAAAAAA0DJFP3jRH768zJTQIvNmSLj33nvbfSoAAAAAAAAA0BKbbbbZCn2/mRIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQif7V7BYAAAAAAACqM378+Jg9e3YMGDAgxo0b1+7TAWAJOrq7u7uX9CDLbrPNNis/3nvvve0+FQAAAAAAgPSGDh0a06ZNiyFDhsTLL7/c7tMBSGuzFewLt3wDAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJRobSrj//vvjoIMOite85jUxZMiQ2GSTTeKMM86IadOmLbDdzTffHDvttFO5zahRo+L444+PqVOntu28AQAAAAAAAKCv6B8N9Oijj8b2228fq666ahx77LExfPjwuOWWW+K0006LP/zhD/HTn/603O6uu+6Kt73tbfH6178+vvKVr8Rjjz0WX/rSl8pAw9VXX93uMgAAAAAAAAAgtUaGEs4///x44YUX4ne/+11sttlm5X1jx46Nrq6u+OEPfxjPP/98rL766nHSSSeVH2+44YYYNmxYud16660XRx99dFxzzTWx5557trkSAAAAAAAAAMirkcs3TJkypfw4cuTIBe4fPXp0dHZ2xsCBA8ttrr322jj00EN7AgmFww47LFZeeeW4+OKLe/28AQAAAAAAAKAvaeRMCbvttlt84QtfiCOPPDI++9nPxhprrBE333xzfOc734njjz8+hg4dGjfddFPMmTMntt122wW+twgsbLnllnHnnXcu17HnzcywsAcffDA23HDD5donAAAAAAAAAGTUyJkS9tprr/jc5z5XzoSw1VZbxZgxY+Kggw6K4447Lr761a+W20yaNKln9oSFFfc98cQTvX7eAAAAAAAAANCXNHKmhMJ6660Xu+yyS7z//e8vZ0r4xS9+ERMmTIhRo0bFscceG9OnTy+3GzRo0CLfu9JKK/U8/mrde++9r2oGBQAAAAAAAADoqxoZSvjxj38cY8eOjYkTJ8ZrXvOa8r73ve990dXVFSeeeGIcfPDBMXjw4PL+mTNnLvL9M2bM6HkcAAAAAAAAAKhGI5dv+Pa3v10u2zAvkDDPu971rpg2bVrceeedPcs2zFvGYX7FfWuvvXavnS8AAAAAAAAA9EWNDCU89dRTMXfu3EXunz17dvlxzpw5sfnmm0f//v3jjjvuWGCbWbNmxV133RVbbrllr50vAAAAAAAAAPRFjQwlbLzxxuVsCMXyDfO76KKLorOzM7bYYotYddVVY4899ogLLrggXnrppZ5tzj///Jg6dWrsv//+bThzAAAAAAAAAOg7+kcDfepTn4qrr746dt555zj22GNjjTXWiJ///OflfUcddVTP0gzjx4+Pt7zlLbHrrrvG2LFj47HHHosvf/nLseeee8Zee+3V7jIAAAAAAAAAILVGzpSwyy67xM033xzbbLNNfPvb344TTjghHnzwwTKE8J3vfKdnu6233jquu+66GDx4cHzsYx+Ls88+O4488si49NJL23r+AAAAAAAAANAXdHR3d3e3+yQy2GyzzcqP9957b7tPBQAAAAAAIL2hQ4fGtGnTYsiQIfHyyy+3+3QA0tpsBfvCGzlTAgAAAAAAAABQf0IJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQif7V7BYAAAAAgCYYP358zJ49OwYMGBDjxo1r9+kAAJBMR3d3d3e7TyKDzTbbrPx47733tvtUAAAAAACW2dChQ2PatGkxZMiQePnll9t9OgDLzPMXQDP6wi3fAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKhE/2p2CwAAAADQHuPHj4/Zs2fHgAEDYty4ce0+HQAA6NOEEgAAAACAVCZMmBDTpk2LIUOGCCUAAECbWb4BAAAAAAAAAKiEUAIAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgEoIJQAAAAAAAAAAlRBKAAAAAAAAAAAqIZQAAAAAAAAAAFRCKAEAAAAAAAAAqIRQAgAAAAAAAABQCaEEAAAAAAAAAKASQgkAAAAAAAAAQCWEEgAAAAAAAACASgglAAAAAAAAAACVEEoAAAAAAAAAACohlAAAAAAAAAAAVEIoAQAAAAAAAACohFACAAAAAAAAAFAJoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUQigBAAAAAAAAAKhE/2p2CwAAAAAA9HXjx4+P2bNnx4ABA2LcuHHtPh0AoA2EEgAAAAAAgEpMmDAhpk2bFkOGDBFKAIA+yvINAAAAAAAAAEBzZkp4/PHH46abbio/FtZZZ53Ycccdy48AAAAAAAAAQN/Q0lDC5MmT45hjjonLL788urq6Fniso6Mj3v/+98c3v/nNWGuttVp5WAAAAAAAAAAgcyjhxRdfjF122SX+8pe/xODBg2PPPfeM9dZbrwwjPPTQQ/HLX/4yLrnkkvjjH/8Yt956a6y66qqtOjQAAAAAAAAAkDmU8PnPf74MJOy///6LnQ3hmWeeiWOPPTYuvvji+MIXvhATJkxo1aEBAAAAAAAAgBrq6O7u7m7FjjbZZJOYPn16PPDAAzFgwIDFbjN79ux43eteFyuttFIZYMhks802Kz/ee++97T4VKjJ+/PjyGi6u73HjxrX7dAAAAABYgqFDh8a0adNiyJAh8fLLL7f7dGrPz4squb6okusLoBl94S2bKeHhhx+O9773vUsMJBSKx3bccce4/PLLW3VY6DXF7B7z3twIJQAAAAAAAAAsXWe0yODBg8slGpam2KbYFgAAAAAAAADIrWWhhG222SZuvPHGuOOOO5a4zR/+8Ie44YYbYtttt23VYQEAAAAAAACA7KGEj33sYzF79ux429veFqecckrcd999MX369PL25z//OU477bTYY489Yu7cueW2AAAAAAAAAEBu/Vu1o3322SfGjx9fBhImTJhQ3hbW0dERZ555Zuy9996tOiwAAABAbRT/GykGbQwYMCDGjRvX7tMBAIAe3qsC7dLR3d3d3codFss3fOMb34jf/e538cQTT5T3rb322rHzzjvHMcccE9ttt11ktNlmm5Uf77333nafChUZOnRoTJs2LYYMGRIvv/xyu08HAACAGvK3I9SD38VXx8+LKrm+qJLr69Xx8wLa1RfespkS5tl2223jvPPOa/VuAQAAAAAAAICG6Wz3CQAAAAAAAAAAObV8pgQAAAAAWBbWNQYAAMhvuUMJG2ywQXR0dMR1110X66+/fvn1siq+78EHH1zeQwMAAACQwIQJE3rWNRZKAAAAyGm5QwkPPfRQ+bFIs8//NQAAAAAAAADACoUSurq6XvFrAAAAAAAAAKBv62z3CQAAAAAAAAAAObUslHDGGWfElVdeudTtfvazn5XbAgAAAAAAAAC5tSyUcPrpp8cVV1yx1O2K4MJnP/vZVh0WAAAAAAAAAKipXl++Ye7cudHZadUIAAAAAAAAAMiu19MB9957b6y++uot2df//u//xrve9a4YPnx4DBkyJDbffPP4+te/vsA2N998c+y0007l46NGjYrjjz8+pk6d2pLjAwAAAAAAAABL1j9WwBFHHLHA17/73e8WuW+eOXPmxF/+8pe444474j3veU+sqGuuuSb222+/2GqrreKUU06JlVdeOR588MF47LHHera566674m1ve1u8/vWvj6985SvlY1/60pfi/vvvj6uvvnqFzwEAAJbV+PHjY/bs2TFgwIAYN25cu08HAAAAAKD+oYRzzz235/OOjo544IEHytsr2WKLLeKLX/ziihw2pkyZEocddli8853vjEsvvXSJy0GcdNJJ5awMN9xwQwwbNqy8b7311oujjz66DDXsueeeK3QeAACwrCZMmBDTpk0rZ/ASSgAAgOYSOAYA6MVQwvXXX19+7O7ujt133z322muvOPHEExe77cCBA2PttdeOddddN1bUhRdeGE899VT55q8IJLz88ssxePDgBcIJRXDh2muvjY997GM9gYRCEWYo7rv44ouFEgAAAAAAeFUEjgEAejGUsOuuu/Z8fvjhh8fOO++8wH1Vue6668qgweOPP14uBTFx4sQYOnRofOhDH4qvfvWrsdJKK8Xdd99dLhmx7bbbLhKO2HLLLePOO+9crmNvttlmi72/WDpiww03XK59AgAAAAAAAEBGKxRKmN8PfvCD6C33339/GTh497vfHUceeWScddZZ5RIN3/jGN+KFF16Iiy66KCZNmlRuO3r06EW+v7jvt7/9ba+dLwAAAAAAAAD0RS0LJfSmqVOnltNj/cu//Et8/etfL+973/veF7NmzYr/+q//ijPOOCOmT59e3j9o0KBFvr+YSWHe46/Wvffe+6pmUAAAAAAAAACAvqqzlTsrggJnnnlmbLfddrHaaqtFv379Fnvr33/FshCDBw8uPx588MEL3H/IIYeUH2+55ZaebWbOnLnI98+YMaPncaAa48ePj9NPP738CAAAAAAAAPRNLZsp4cUXX4ydd965nEmgCB4MHDgwuru7y6USnnzyyfLzwrrrrrvCx1p77bXL44wcOXKB+0eMGFF+fP7552PDDTcsP5+3jMP8ivuKfQDVmTBhQhlUGjJkSIwbN67dpwMAAAAAAAA0eaaEz3/+83HPPffE2LFjY8qUKfGBD3wgOjo64vHHH4+XX345zj333Bg1alTssMMO8de//nWFjrXNNtuUH4t9z++JJ54oP6611lqx+eablzMy3HHHHQtsUyzxcNddd8WWW265QucAAAAAAAAAAPRSKOGKK64oZx/4+te/HiuttFIZSJin+Pqwww6L6667Li6//PL48pe/vELHOuCAA8qP55xzzgL3f+973yuDCLvttlusuuqqsccee8QFF1wQL730Us82559/fkydOjX233//FToHAIC+zlI9AAAAAAD02vINDz/8cBkCGDBgQPl1Z+ff8w6zZ8/uuW/TTTeNXXfdtZw14ZOf/ORyH2urrbaKI444Ir7//e/HnDlzyn3ecMMNcckll8RnPvOZnqUZin+Qv+UtbykfL2ZweOyxx8pAxJ577hl77bVXS+oGAOirLNUDAAAAAECvhRKK2RCK2zzDhg0rPz755JPx2te+tuf+4cOHx0033bTCx/vud78bY8aMiR/84Afl7AvrrrtufPWrX40TTjihZ5utt966nJ3hxBNPjI997GOxyiqrxJFHHhlnnXXWCh8fAAAAAAAAAOilUEIRPHj00Ud7vt5kk03KjzfeeGMceuih5efFrAa33357rLHGGit8vGL2hdNOO628vZKddtqpJSEIAAAAcihm1Zs3q5+ZXgAAAAAaEkrYeeedy1kLXnrppXJGgv322y+OP/748jZ16tRYZ5114pxzzomHHnooDjnkkFYdFgAAAF4Vy88AAAAA9J7OVu3ooIMOii222CJuvvnm8uu11167XCbhhRdeiGOOOSbe8573xJVXXhkjR46ML3zhC606LAAAAAAAAACQfaaEYpmEW265ZYH7Pv7xj8eOO+4Yl19+eTz//POx8cYbx0c+8pEYPnx4qw4LAAAAAAAAAGQPJUyZMiU6OjrKpRvmt8MOO5Q3AAAAAAAAAKBvadnyDauttlrsueeerdodAAAAAAAAANBwLQslrLrqqrHBBhu0ancAAAAAAAAAQMO1LJSw1VZbxYMPPtiq3QEAAAAAAAAADdeyUMKJJ54Yt99+e1x66aWt2iUAAAAAAAAA0GD9W7WjwYMHx1FHHRUHHnhg7LvvvrHffvvFmDFjYqWVVlrs9rvsskurDg0AAAAAAAAAZA4l7LbbbtHR0RHd3d3xs5/9LH7+85+/4vZz585t1aEBAFpi/PjxMXv27BgwYECMGzeu3acDAAAAAACN17JQwmGHHVaGEgAAmmrChAkxbdq0GDJkiFACAAAAAADUKZRw7rnntmpXAAAAAAAAAEACne0+AQAAAAAAAAAgJ6EEAAAAAAAAAKDeyzcAAAC0yvjx42P27NkxYMCAGDduXLtPBwAAAABYTkIJAABA7UyYMCGmTZsWQ4YMEUoAAAAAgAazfAMAAAAAAAAAUAmhBAAAAAAAAACgEkIJAAAAAAAAAEAlhBIAAAAAAAAAgHqHEjo7O2PgwIHxla985RW3+8hHPhL9+/dv1WEBAAAAAAAAgL4wU8KcOXPiU5/6VBk8mD179hK36+7ubuVhAQAAAAAAAIDsoYS99tortttuuzjvvPNit912i6effrqVuwcAAAAAAAAA+mooYdSoUXHjjTfGBz/4wbjlllti++23j7vuuquVhwAAAAAAAAAA+mIooTBo0KA4//zz46yzzorHHnssdtppp7j00ktbfRgAAAAAAAAAoK+FEuY58cQT44orrojOzs448MAD4/TTT6/qUAAAAAAAAABADfWvcuf77rtv3HrrrbHffvvF5z73ubj77rvLkAIAAAAAAAAAkF+loYTCpptuGrfffnt84AMfiMsvvzw6OjqqPiQAAAAAAADAchk/fnzMnj07BgwYEOPGjWv36UDjtWzagjFjxsSaa6652MeGDx8e1157bfzLv/xLdHd3t+qQAAAAAAAAAC01YcKE+OxnP1t+BGo0U8JDDz30io/369cvvv3tb8dJJ50Uc+fObdVhAQAAAAAAAIDsMyU88sgj8fjjjy91uyFDhljCAQAAAAAAAAD6gJaFEtZbb71yCYfjjz8+urq6lrjdJz7xidhggw1adVgAAAAAAAAAIPvyDYXu7u741re+Fffdd19ccsklsdpqqy1xOwBYXuPHj4/Zs2fHgAEDYty4ce0+HQAAAAAAAHojlPCBD3wg5syZE1dccUXssMMOceWVV8Y//dM/tfIQABATJkyIadOmlUsCCSUAAAAAkIXBOABk1NJQwsorrxzf//734+STTy47jN70pjfFhRdeGHvvvXcrDwMAvAr+mAUAAABoBoNxAMiopaGEec4888zYfPPN48gjj4x3vetd8fnPfz4+8YlPVHEoAGAp/DELkJ8AGgAAAAB9KpRQOOigg2KjjTaKd7/73fHv//7vcffdd8fZZ59d1eEAAAD6LAE0AAAAAPpcKKGwzTbbxB/+8IcymHD++efHxIkTY7XVVqvykAAAAAAAAABAXwglFEaOHBm/+c1v4qijjooLLrggOjo6qj4kAAAAAKRiqR4AACD6eihh1113jU022WSxjw0cODB++MMfxuabbx6f+cxnWnVIAAAAAOgTLNUDAABEXw8lXH/99Uvd5t///d/LGwAAAAAAAACQX2e7TwAAAAAAAAAAyKllMyX85je/eVXb77LLLq06NAAAAAAAAACQOZSw2267RUdHxzJvP3fu3FYdGgAAAAAAAADIHEo47LDDFhtK6OrqikcffTT+93//N6ZMmRLvfve7Y7XVVmvVYQEAAAAAAACA7KGEc8899xUff/755+Poo4+Oe+65J2655ZZWHRYAAAAAAAAAqKnO3jrQ6quvHj/84Q/jxRdfjM985jO9dVgAAAAAAAAAIHsooTBkyJDYfvvt48orr+zNwwIAAAAAAAAA2UMJhalTp5ZLOQAAAAAAAAAAufXvzYP97Gc/i9/85jex6aab9uZhAQAAgOU0fvz4mD17dgwYMCDGjRvX7tMBAAAA+moo4YgjjnjF2REmTpwYd999d3R3d8cnPvGJVh0WAAAAqNCECRNi2rRp5ZKMQgkAAABA20IJ55577lK3GTNmTJx22mlx2GGHteqwAAAAAAAAAED2UML111+/xMcGDhwYo0ePjvXWW69VhwMAAAAAAAAA+kooYdddd23VrgAAAAAAAACABDrbfQIAAAAAAAAAQE4tmylhnkmTJsUPfvCD+O1vfxtPPPFEed/aa68dO++8c3z4wx8uPwcAAAAAAAAA8mtpKOG8886LY489NqZNmxbd3d099999991xzTXXxIQJE+Ib3/hGfOQjH2nlYQEAAAAAAACAzKGEq6++Oo444ojo7OyMAw44IA4++OBYb731yscefvjhuOiii+KSSy6Jo446KkaNGhV77713qw4NAAAAAAAAAGQOJYwfPz46Ojripz/9aeyzzz4LPLbFFlvEfvvtFx/60Idi3333LWdMEEoAAAAAAAAAgNw6W7Wju+66K3beeedFAgnzK4IIu+yyS9x5552tOiwAAAAAAAAAkH2mhJVWWinWXnvtpW43evToclsAFpxtZvbs2TFgwIAYN25cu08HAAAAAAAA6hVK2HXXXeO2226Lrq6u6Oxc/AQMc+fOLbcpZksA4P8plrWZNm1aDBkyRCgBAAAAAACANFq2fMNZZ50Vzz77bBx11FHx4osvLvL4lClTYuzYsfH888+X2wIAAAAAAAAAuS33TAlnnHHGIvftt99+ce6558Zll10We+65Z6y77rrl/Q8//HBcc801MXXq1PjgBz8YF198cZxyyikrduYAAAAAAAAAQM5Qwumnnx4dHR3R3d29yGMvvfRSGUxYnAsuuKD8PqEEAAAAAAAAAMhtuUMJP/jBD1p7JgAAAAAAAABAKssdSjj88MNbeyYAAAAAAAAAQCqd7T4BAAAAAAAAACAnoQQAAAAAAAAAoBJCCQAAAAAAAABAJYQSAAAAAAAAAIBKCCUAAAAAAAAAAJUQSgAAAAAAAAAAKiGUAAAAAAAAAABUon81uwUAAAAAAAAgu/Hjx8fs2bNjwIABMW7cuHafDplDCb/5zW+WabuBAwfGGmusEa973euio6OjVYcHAAAAAAAAoJdNmDAhpk2bFkOGDBFKoNpQwm677faqQgYrr7xyHHzwwWVypggpAAAAAAAAAAC5tCyUcNhhh8ULL7wQV155ZXR2dsaWW24ZY8aMKR979NFH484774zu7u7Yd999Y/r06XHXXXfF2WefHb/+9a/jtttui9VXX71VpwIAAAAAAAAA1EBnq3b0xS9+Mf74xz/GO97xjrjvvvvijjvuiJ/85Cfl7fbbb48///nP5WN33313XHDBBfG3v/0tDjrooHjwwQfL7wUAAAAAAAAAcmlZKOEzn/lMzJw5My6//PLYaKONFnn8da97XVx22WXlNsW2Q4cOje9+97vlDAnF7AoAAAAAAAAAQC4tCyX84he/iF122SVWWmmlJW4zePDg2HnnneOqq64qvx42bFhstdVW5awJAAAAAAAAAEAuLQslvPjii+VtaaZMmbLAdmuuuWarTgEAAAAAAAAAyBhKKJZsuP766+O+++5b4jbFY8U2G2+8cc99kyZNEkwAAAAAAAAAgIRaFko45phjYubMmeUSDmeddVbcf//9MWPGjPJWfP75z38+dt1115g1a1a5bWH69Onxhz/8IbbZZptWnQYAAAAAAAAAUBP9W7WjsWPHljMh/Od//mecfPLJ5W1h3d3dccIJJ8TRRx9dfv3www/HoYceGu9///tbdRoAAAAAAAAAQLZQQuGrX/1qfOADH4jvfOc7cfPNN5dLMxRGjx4dO+64Y/zzP/9z7LTTTj3bb7LJJuW2AAAAAAAAAEA+LQ0lFIrwQXEDAAAAAAAAAPq2znafAAAAAAAAAACQU8tnSijMmTMnnn322Zg5c+YStxkzZkwVhwYAAAAAAAAAMoYSrrvuujjzzDPj1ltvjdmzZy9xu46OjjK4AAAAAAAAAADk1bJQws9//vN473vfG3Pnzo3VV1891l9//VhllVVatXsAAAAAAAAAoK+GEj772c9GV1dXfPWrX41jjz02+vXr16pdAwAAAAAAAAB9OZRw7733xpvf/Ob4t3/7t1btEgAAAAAAAABosM5W7WjllVeOMWPGtGp3AAAAAAAAAEDDtSyUsMcee8Qdd9zRqt0BAAAAAAAAAA3XslDCF77whZgyZUqceOKJMWfOnFbtFgAAAAAAAABoqP6t2tEPfvCD2HvvveNLX/pSXHbZZbHbbrvFa17zmujsXDT30NHREaecckqrDg0AAAAAAAAAZA4lnH766WXYoLu7O/7617+WtyURSgAAAAAAAACA/Fo6UwIAAAAAAAAAQMtDCYcffnirdgUAAAAAAAAAJNDZ7hMAAAAAAAAAAHISSgAAAAAAAAAA6rV8w+677x4dHR1x3nnnxWte85ry62VVfN+vfvWr5T00AAAAAAAAAJA5lHDDDTeU4YJp06b1fL2siu8DAAAAAAAAAHJb7lDC3/72t/LjOuuss8DXAAAAAAAAAAArFEpYd911X/FrAAAAAAAAAKBv62z3CQAAAAAAAAAAOQklAAAAAAAAAAD1Wr6hX79+y33Qjo6OmDNnznJ/PwAAAAAAAACQOJTw2te+tgwXzK+7uzseeeSRnq9XW2218uMLL7zQc9+YMWMW+T4AAAAAAAAAIJ/lXr7hoYceir/97W89t4kTJ8Yb3/jGWHvtteM73/lOGUR47rnnytuLL74Y3/3ud2OdddYpt7n//vtbWwUAAAAAAAAAkCeUsLDx48fHr371q/jNb34T//zP/xzDhg3reWyVVVaJsWPHxo033hjXXXddnHHGGa06bM+xi9kXNt9880Ueu/nmm2OnnXaKIUOGxKhRo+L444+PqVOntvT4AAAAAAAAAECFoYQLLrggdt9999hggw2WuE3x2Nve9rb40Y9+1KrDxmOPPRYTJkyIoUOHLvLYXXfdVR5v2rRp8ZWvfCWOOuqoOPvss2P//fdv2fEBAAAAAAAAgMXrHy3y+OOPx1ZbbbXU7QYNGhRPPPFEqw4bn/zkJ+NNb3pTzJ07N5555pkFHjvppJNi9dVXjxtuuKFn5ob11lsvjj766Ljmmmtizz33bNl5AAAAAAAAAAAVzZQwevTouP766+OFF15Y4jbPP/98/PrXvy6XUWiFYqmISy+9NL72ta8t8tiUKVPi2muvjUMPPXSBpSQOO+ywWHnllePiiy9uyTkAAAAAAAAAABWHEg4++OB47rnn4u1vf3sZFljYb3/723jHO95RhhY++MEPrvDxipkRjjvuuHJJhje84Q2LPH733XfHnDlzYtttt13g/oEDB8aWW24Zd95553Idd7PNNlvs7cEHH1zuWgAAAAAAAAAgo5Yt33DKKaeUwYPf/e538da3vjVGjBgR6667bvnYww8/HE8//XR0d3fHjjvuGCeffPIKH++73/1uud/rrrtusY9PmjSpZwaHhRX3FecKAAAAAAAAADQglLDSSivFr371q/jKV74S3/72t+PRRx+Np556qufx1772tfGv//qv8YlPfCIGDBiwQsd69tln49RTTy2DEGuttdZit5k+fXr5cdCgQYs913mPv1r33nvvYu8vZksAAAAAAAAAACoIJRSKsMGJJ55Y3opQwhNPPNEzM8GYMWNadpxipoXhw4eXyzcsyeDBg8uPM2fOXOSxGTNm9DwOAAAAAAAAADQglDC/YmaE4tZq999/f5x99tnxta99rSf0MC9oMHv27HjooYdi2LBhPcs2zFvGYX7FfWuvvXbLzw0AAAAAAAAA+H86owL/93//F//93/8dZ511Vlx55ZU99xezFkyZMmWF9v34449HV1dXHH/88bH++uv33G677baYOHFi+fkZZ5wRm2++efTv3z/uuOOOBb5/1qxZcdddd8WWW265QucBAAAAAAAAAPTiTAl/+ctf4iMf+UgZEJjn8MMPj3e9613l5xdeeGEcddRR8Ytf/CL22muv5TpGETa4/PLLF7ukw0svvRT/+Z//GRtuuGGsuuqqsccee8QFF1wQp5xySqyyyirldueff35MnTo19t9//+WuEwAAAAAAAADoxVDCo48+GrvssktMnjy5DCHsvPPO8alPfWqBbQ444ID46Ec/GpdddtlyhxLWXHPNeM973rPI/cVyDoX5Hxs/fny85S1viV133TXGjh0bjz32WHz5y1+OPffcc7mPDwAAAAAAAAD08vINxZIJzzzzTHzve9+LK664Ij7xiU8sss3QoUPLZRPmn0mhSltvvXVcd911MXjw4PjYxz4WZ599dhx55JFx6aWX9srxAQAAAAAAAKAva9lMCf/zP/8TW2yxRRxxxBGvuN16660X11xzTbTaDTfcsNj7d9ppp7jppptafjwAAAAAAAAAoJdmSnj66afjn/7pn5a63ezZs2PatGmtOiwAAAAAAAAAkD2UsMYaa8Qjjzyy1O0mTpwYo0ePbtVhAQAAAAAAAIDsoYQdd9wxbr/99rjrrruWuM2NN94Y99xzT+y2226tOiwAAAAAAAAAkD2U8MlPfjK6u7vj3e9+d1x99dUxd+7cBR7/9a9/HR/60Ieif//+ccIJJ7TqsAAAAAAAAABA9lDCDjvsEF//+tfjiSeeiH333TdWW2216OjoiMsuuyxWX331ePvb314+9s1vfjO22GKLVh0WAAAAAAAAAMgeSih89KMfjd/+9rex3377lYGEYuaEl156KWbOnBnveMc7yuUbxo4d28pDAgAAAAAAAAA11b/VO3zTm94UV1xxRRlIeOaZZ6KrqyvWXHPN6NevX6sPBQAAAAAAAAD0pVDCPMVMCWuttVZVuwcAAAAAAAAA+looYc6cOfGLX/wifv/735czJeywww5xxBFHlI898cQT5X2bbrpp9O9fWR4CAAAAAAAAAKiBliYDfve738Whhx4ajz76aLl8QzFbwuzZs3tCCbfccksccMABcckll8T73ve+Vh4aAAAAAAAAAKiZzlbt6E9/+lPstddeMWnSpDjuuOPi4osvLoMJ89tvv/1iyJAhcdlll7XqsAAAAAAAAABA9pkSPve5z8WMGTPiqquuij333HOx2wwcODC23nrruPPOO1t1WAAAAAAAAAAg+0wJ119/fWy//fZLDCTMs84668QTTzzRqsMCAAAAAAAAANlDCS+88EK89rWvXep2L7/8csyePbtVhwUAAAAAAAAAsocSRowYEQ888MBSt7vvvvuWKbwAAAAAAAAAADRby0IJu+++e9x1113lMg5Lcvnll5fBhbe//e2tOiwAAAAAAAAAkD2U8OlPfzoGDhwY73nPe+I73/lOPPnkkz2PPf/88/H9738/jjzyyBg6dGh8/OMfb9VhAQAAAAAAAIDsoYRNNtkkLrrooujq6opjjz021llnnejo6Ijzzjsv1lxzzTj66KNj5syZ8aMf/SjWX3/9Vh0WAAAAAAAAAMgeSigUsyTcc889cdxxx5UhhZVWWqmcPWGDDTaIf/7nf44//vGP8a53vauVhwQAAAAAAAAAaqp/q3e47rrrxte+9rVW7xYAAAAAAAAA6CuhhN133z322muv+Pd///dFHnvkkUdi5ZVXjuHDh6/o+QEAAAAA9BnF8rjFrV3mzJnT68fs7OwsbwAA5LTcoYQbbrgh1ltvvcU+tv7668eHP/zhOOecc1bk3AAAAAAA+owijPD2ffaOSU892dr9zu2Kl6ZMia65c6OzX79YZdiw6Oz3/0IA02dM7/m4xXbbRG8bPXJUXHvV1YIJAABJtXz5hkJ3d3d5AwAAAABg2UMJRSDhmB+fXYYHWmHK5OfiwpPHx7TuObHmiBFxyJnjYthaC85we8IWO8es6TNiwKBBcdwlvTvQrAhKfOugsWXtQgkAADlVEkoAAAAAAGD5FIGEfv1X/F+3UyY/GxedOiFemDw5ho8aGYdOOCWGrbXGK35PK44LAADzEz0FAAAAAEimCCRccNLn4vmnno7VR45YpkACAABUQSgBAAAAACARgQQAAOpEKAEAAAAAIAmBBAAAUoUSzjvvvOhXrG+20K2jo2OJjxW3/tYlAwAAAABoKYEEAADqaIXSAd3d3b36fQAAAAAALEogAQCAdKGErq6u1p4JAAAAAACvmkACAABpl28AAAAAAKB9BBIAAKg7oQQAAAAAgAbKEkjommtWXgCAzIQSAAAAAAAaJksgYcrk5+KlKVPafRoAAFRIKAEAAAAAoEHyBBKejQtPHh9dc+e2+1QAAKiQUAIAAAAAQENkCiSUdTz9dHT269fu0wEAoEL9q9w5AAAAAACtkS6QUNQxYkTM7Hiu3acEAECFzJQAAAAAAFBzKQMJI0fEIWeOi85+/k0NAJCZmRIAAAAAAGosayChqGPo6qu2+7QAAKiYCCoAAAAAQE1lDiQ0sQ4AAF49oQQAAAAAgBrK0pGfpQ4AAJaPUAIAAAAAQM1k6cjPUgcAAMuv/wp8LwAAAAAALTZl8nNx0akTGt+RL5AAAEBBKAEAAAAAoCa65nbFhSePjxcmT250R75AAgAA8wglAAAAAADUxEtTpsS07jkxfNTIxnbkCyQAADC/zgW+AgAAAACgbbrmzo3VRzS3I18gAQCAhQklAAAAAADURGe/fnHImeMa2ZEvkAAAwOIIJQAAAAAA1MQqw4bFsLWGR9MIJAAAsCRCCQAAAAAANdHZr3n/shVIAADglfR/xUcBAAAAAFZAV1dXeWuXOXPm9PoxOzs7y1tfIJAAAMDSCCUAAAAAAJUowghv32fvmPTUk63Z39yueGnKlOiaOzc6+/UrlzpY3MwC02dM7/m4xXbbRG8bPXJUXHvV1emDCQIJAAAsC6EEAAAAAKCyUEIRSDjmx2eXIYIVMWXyc3HhyeNjWvecWHPEiDjkzHExbK3hi932hC12jlnTZ8SAQYPiuEvOid5UBCa+ddDYsvbMoQSBBAAAlpVQAgAAAABQqSKQ0K9//xXqAL/o1AnxwuTJMXzUyFfVAb4ix2XxBBKAui3V047levrSUj0AK8o7cgAAAACgtnSA14v2AKpequfVeKXlepZ1yZ/l1VeW6gFoBaEEAAAAAKCWdIDXi/YAql6q59Va0nI9r2bJn+XRV5bqAWgVoQQAAAAAoHZ0gNeL9gCqXqpnRc079oos+QNANcS3AAAAAIBa0QFeL9oDaArPVwD1JJQAAAAAANSGDqV60R5AU3i+AqgvoQQAAAAAoBaydCh1ze2KDLK0B5Bfd3d4vgKoMaEEAAAAAKDtsnSAT5n8XLw0ZUo0XZb2APqGubNmeb4CqDGhBAAAAACgrbJ0gBd1XHjy+OiaOzeaLEt7AH1jhoS/f+z2fAVQY0IJAAAAAEDbZOkA76nj6aejs1+/aKos7QHkVzxfFTMkFDo6OjxfAdRY/3afAAAAAADQN2XpAF+gjhEjYmbHc9FE1mQHmva8W8yQUOg3cKDnK4AaM1MCAAAAANDrUgYSRo6IQ84cF539mvlvV2uyA0173i1mSCj84wMANdXMd8cAAAAAQGNlDST8vY7h0TTWZAea+rxbzJAAQP0JJQAAAAAAvSZ3IKGZdViTHWjq864ZEgCaQSgBAAAAAOgVmTryM9VhTXag7rI87wL0VUIJAAAAAEDlsnQoZazDmuxAnWV53gXoy/q3+wQAAAAAgNymTH4uLjp1QuM7lLJ0jC1cx6T7/xZdM2a0+7ToBV1dXeWtXebMmdOrx+vs7CxvNFeW512Avk4oAQAAAACoTNfcrrjw5PHxwuTJje5QytIxtrg6xu26b7tPi15QhBHevs/eMempJ1u/77ld8dKUKdE1d2509usXqwwbFp39/h4GmD5jes/HLbbbJnrT6JGj4tqrrhZMaKgsz7sACCUAAAAAABUqOiqndc+J4aNGNrZDKUvHWJY6WP5QQhFIOObHZ5fBgVbOhFIEj4rf8zVHjIhDzhwXw9Ya3vP4CVvsHLOmz4gBgwbFcZecE72lCEh866CxZd1CCc3j+QogF6EEAAAAAKDSjsGio7KpHUpZOsay1MGKKwIJ/fr3b9l1VSzNUsyEsizBo1Ydl9w8XwHkIx4IAAAAAFTaAfr3kdPN61DK0jGWpQ7qxXVFFVxXADkJJQAAAAAAlSnWlp9/KvemyNIxlqUO6sV1RRVcVwB5mSsJAAAAAKhMZ7/mjYvK0jGWpQ7qxXVFFfraddXV1VXe2mnOnDm9erzOzs7yBvRNQgkAAAAAAMk6xrLUQb24rqhCX7uuijDC2/fZOyY99WSvH3v6jOk9H7fYbpvFbtM1tytemjIluubOLZdgKmY8akXAcPTIUXHtVVcLJkAfJZQAAAAAAJCoYyxLHdSL64oq9MXrqgglFIGEY358dtnp35tO2GLnmDV9RgwYNCiOu+ScRR6fMvm5uPDk8TGte06sOWJEHHLmuJYswVQEHL510NiydqEE6JuEEgAAAACAPi9Lx1iWOqgX1xVV6OvXVRFI6Ne/fd10Cx+7aI+LTp0QL0yeHMNHjexz7QFUSxwJAAAAAOjTsnSMZamDenFdUQXXVb1oD6BqZkqgkYopfopbu8yZM6dXj1dMZ2RKIwBonb72XqLg/QQAQO6OmCx1UC+uK6qQ5brqmtu+/yu0Upb2AOpNKIHGKToQ3r7P3uWaS71yvLld8dKUKTF9+vTy6+LjFtttE71p9MhRce1VV+tIAIAWvZd4217viKcmP92rx50+4x/vJWYs/3uJee9LirUYi2keVxk2LDr7Ldv7A+8nAADydsRkqYN6cV1RhSzX1ZTJz5V/nzddlvYA6k8ogUZ2JBSBhGN+fHb5z/iq31hcePL4mNY9J6KjI6K7OwasNCiOu+Sc6C1Fp8O3Dhpb1q0TAQBWXPGaWgQSeuO9xPxO2GLnmDV9RgwYtHzvJeZ/X7LmiBFxyJnjYthaw5fpe72fAADI2xGTpQ7qJct1lWUkexZZrquijuLv8+Jv7SbL0h5AMwgl0FhFJ0K//v0rfUG+6NQJ8cLkyTF81Mh48oGHYvaMGeVjVR4XAMjxXuKVvNrjLvy+xD8KAOq/VE/Tlv7z86KvydIRk6WOFek4bvfzV8bnrizXVZaR7Fnkua7+UcfTT/fqQIdW6+6OFO0BNIeeVVjGN0jjdt233acFAPRBWf5xA9CUZf9WZKmcVi3Xs7yWd6me3l4m8dX8vFa0PV6JpY36rizvr/LUsfwdx+16/lrcc1eVz1e9+dyV57rKMZI9i0zXVU8dI0bEzI7noqnmzprV+PYAmkUoAZK+QQIAms/7EoDeXfZvRZbKadVyPctrRZbq6c1lEl/Nz6sV7bEkljbqu7K8v8pUx4p0HLfr+Wvh564qn69687kr03WVYSR7Fumuq3/UcfAZJ8V5H/1UNHGGhL9/7G50ewDNI5QACd8gAQDN530JQO8u1VPFUjlNW/qvnUsbFeY/tqWLqEKW91fp6mhBx3E7n79efv7FFM9X6a6rBCPZM0h5Xf2jjqGrrxpNrKOYIaHQ0dHR2PYAmkkUHJK9QQIAms/7EoDeleV5d0XWZK+TLO1BvWS5rlLWMWJEudRBE2VZkz3ldTXy7zNWVLGEBn37ump6HcUMCYV+Awc2sg6gubwiQ6I3FgBA83lfAtC7sjzvrsia7HWSpT2olyzXVdY6mtxxnGFN9qzX1d/raP0SGiyb3NdVs+soZkgo/OMDQK9p5rs9aKEsbywAgObzvgSgd2V53l3RNdnrIkt7UC9GstdLlo7jLGuy576umldHFlnaI2sdxQwJAO3QrMUNocWyvLEAgK6urvLWLnPmzOn1Y3Z2dpa3LLwvoa/qa89f2Z67mizL824r12Rvpywdx9SPkez1r2NuG/6WWBFZ1mTPfl3RvpmbLjp1QuPbI8t1tbg6xu26b7tPC+ijhBLos7K8sQCAojPv7fvsHZOeenLZv2duVznFczGisujAKNZwfbVTpk6fMb3n4xbbbRO9bfTIUXHtVVen6NzzvoS+almev1rxfFWH5695daw9enTcdtPNKZ67mizrmuwzO56LpsrQcUy9GMleL9nqaPqa7DqOqer9bjFz0wuTJze6PbJcV1nqAPIQSqBP8oIMQLZOvaJD75gfn71MIySLf0AV/yiY1j0n1hzx9zVcl2fK1BO22DlmTZ8RAwYNiuMuOSd6U9E5+Y39jyprb3rHnvcl9GVLe/5q1fNVu5+/euromh1PTJqU4rmrybI87y5cx8FnnBTnffRT0TRZOo6pFyPZ6yVjHcV1VTxvNXFNdh3HVKUI4Bbv24ePGtnY9shyXWWpA8hFKIE+xwsyAFkVHXr9+vdf6utgMSKm+AdUK/9RsLTjVtHBV/zDo+m8L4ElP39V9XzV289f89ex+siRMbOzuSPZM8jyvLu4Ooauvmo0TZaOY+rFSPZ6yfq8O+n+v0XXjBnRRDqOqXLwQBEkbmp7ZLmustQB5GNoBn2KF2QA+rIsr4NFHcXInuIfHk2WpT2gCll+Pxauo5jpYUWXnmD5Zb2uml5H0zuOqfdI9kKTR7Jn+T3PWEcTr6t5ir+jiiV/MrVHE+vIGjT++8xmzWuPLNdVljqAnPw3hD7DCzIAfVmW18GeOp5+epmWqqirLO0BVcjy+7H4OlZ86QmWT+7rqtl1NLnjmHr/fhRBl6YqRrIX73ez/J6ro150HFOVVYYNa+T73SzXVZY6gLyEEugTvCAD0JdleR1coI4RI8p/eDRRMSA0Q3tAFVI+XzW4jiyytEfWOprccUx9GMleL1mfr5pax8J0HFOVJs4IluW6ylIHkFvvLv4LbeAFGaCZurq6ylu7zJkzp9eP2dnZWd5aKcvr4MJ1HHzGSXHeRz8VTVSsnd309oAqZH2+amodWViTvf51jNt133afFg2X5fdjfkayt1+WOhZHxzHkuq6y1AHkJ5RAallekIu1BFfo+/tYx14VnXpA7yqes96+z94x6akne/W402dM//vH6dNj3ddtWI5QKv4hWIwk6Y1/3IweOSquverqlj2HZXkdXFwdQ1dfNZrmH0tml2tnN7k9oAo6jqlyTfYXJk9udHtkua6y1EG9ZL2ujGRvryx1ZKE9qEKW6ypLHUDfIJRAWllekIt/0BZrCTa2Y2/G9Nhiu23KfwgWdfRGB1+rO/WA3lc8dxXPW8f8+OzyOaO3nLDFzjFr+oxyUeN+qwyJNUeM+McIper/IVg8P37roLFl7a14/srzOrj4Oua2YSaLFa2jmCGhUKyd3dT2gCroOKYqxd8f07rnxPBRIxvbHlmuqyx1UC+Zrysj2dsnSx1ZaA+qkOW6ylIH0HcIJZBSlhfkoo7iH7RFR1VTO/YGDBoUh3/7i2UdxT8Eq+7ga3WnHtBexfNWv/79e30ke/GJDoz2y1ZHMUNCoVg7u4l1QFV0HFOV4m+D4u+PprZHlusqSx3Ui+uqXrK0R5Y6stAeVCHLdZWlDqBvEUognSwvyD11PP10S8IEvd2xN0/R/1JMxVuMfGvyP5qB/LKMZE/3OpiojuK6KoIJHR3tPiuoFx3HVMWa7O2XpQ7qxXVVL1naI0sdWWgPqpDluspSB9D3GEZMKllekBeoY8SIcqmDpio6+JreHkB+WUayF0v+pHsdTFRHcV0Bi9JxTFWsyd5eWeqgXlxX9ZKlPbLUkYX2oApZrqssdQB9k1ACaWR5QV64juIftE1cS3DeFOhFB1+T2wPIb+GR7IUmjmSftyZ7ttfBTHU08bqC3qDjmKo08e+oLNdVljqoF9dVvWRpjyx1ZKE9qEKW6ypLHUDf1by/0CHxC/Li62jmP2gzTIEO5JdpJHuxJnux5E++10F1QHY6jiHXdZWlDurFdVUvWdojSx1ZaA+qkOW6ylJHMaAG6Lua998fSPqCnK2Opk+BDuSXbSR7sSZ7seRP018/srwONr0OYMn8nlOFLNdVljqoF9dVvWRpjyx1ZKE9qEKW6ypPHc+VA2qAvksogUbL84Kcr44mT4EO5JfleXd+1mRvvyx1AEvm95wqZLmustRBvbiu6iVLe2SpIwvtQRWyXFeZ6iiWHC0G1AB9l1ACjVUk67K8IGeso8lToAO5ZXneXZg12dsrSx3Akvk9pwpZrqssdVAvrqt6ydIeWerIQntQhSzXVbo6nn66HFAD9F1CCTRSsfZQkaxL84KcsA4zJAB1lOV5d3Gsyd4+WeoAlszvOVXIcl1lqYN6cV3VS5b2yFJHljXZs7QH9ZLlukpZx4gR5YAaoO/q3+4TgOVRrD00rXtODB81MscLcpY3Fg2uA8jP81W9ZGmPLHUAS+b3nCpkua6y1EG9ZLmudBzXS546cqzJnqU9qJfu7khxXWX5/Vi4joPPOCnO++inlnt/XV1d5a1d5syZ0+vH7OzsLG+QhVACjVSsPbTmiDwvyOoAqJbnq3rJ0h5Z6gCWzO85VchyXWWpg3rJcl3pOK6XTHVkWJM9S3tQP3NnzWr8dZXl92NxdQxdfdXl3l8RRnj7PnvHpKeejN40ffr0no/rvm7DcqaH3pypdPTIUXHtVVcLJpCGUAKNVKw9dMiZ49K8IKsDoDqer+olS3tkqQNYMr/nVCHLdZWljiwj2bPIcl3pOK6XdHU0fE32LCPZqd919feP3Y2+rtI9Xy1Ux9wVmGmgCCUUgYRjfnx2rz0HFgHDz+y0998vsI6OOP6i/45haw2P3lK8j/jWQWPL2oUSyEIogUYqEmm9+QLQKtnfWADUjeeresnSHlnqAJbM7zlVyHJd5akjx0j2LPJcVzk6jtO1R6Y6RoyImR3PRVNlGMlO/X4/iuuq0NHR0djrKuXzVQV1FK+t/fr375U6Ljp1Qk/ipf/AgbH66BGVHxeya2S85vbbb49jjz02Nttssxg6dGiMGTMmDjjggJg4ceIi2953332x1157xcorrxzDhw+PD33oQzF58uS2nDet05tT5LSKNxZAkWwt1h/r7dv8evvY7VzrzfNVvWRpjyx1AEvm95wqZLmuMtWRYSR7Flk7josBNU2UZSR7yutq5Ihy5tgm/l80y0h26vn7UVxXhX4DBzbyusr6fJWhjiLoUvjHB6AvzpTwhS98IW666abYf//9Y4sttognn3wyvvnNb8bWW28dt956a2y++ebldo899ljssssuseqqq8aECRNi6tSp8aUvfSnuvvvu+P3vfx8DBw5sdyn0ERlfkJtcB7RDu9Y+K0yf8Y/1z2ZMjy2222apU9gWI8aKf9AW6eMVXSutXWufeb6qlyztkaUOYMn8nlOFLNdVujoaPpI9i3TX1T/qOPiMk+K8j34qmijDSPas19WKrsneLllGslPvjuMimNDEjuNi5qZiRH7G56sMdUy6/2/RNWNGu08L0mhkKOHjH/94XHjhhQuECg488MB4wxveEJ///OfjggsuKO8rgggvv/xy/OEPfyhnUyhsv/328fa3vz3OPffcGDt2bNtqoO/I+oLc1DqgXdqx9tk8J2yxc8yaPiMGDBoUx11yziv+IVSMGJvWPSfWHPH3ERgrslROu9Y+83xVL1naI0sdy6v4PW7nzCcLz/pSteI5y5qNfU9f/z2nGlmuq5R1NHwK9AxSXlcN7jjOMpI983W1omuyt0OWkezUS5aO42JgUPF/uBcmT075fJWhjnG77tvu04JUGhlKeMtb3rLIfRtttFG5nEOxXMM8l112Wey77749gYTCHnvsERtvvHFcfPHFQglULvMLchPrgDrorbXPlmRJx563Vlrxh9DwUSMb+3vu+apesrRHljqKf3g0aaaXJc3y0uoZXeo0ywvtk+X3nHoxBXq9ZBrJnkHW66rJHccZRrJnv66aJstIduolU8dx8XdtMTDI/+HaL0sdUHeNDCUsTvGm5qmnniqDCYXHH388nn766dh2220X2baYLeGqq65aruPM2//CHnzwwdhwww2Xa5/klOWFLEsdQP7f8yx1ZJGlPfLU8Vz5D48mzfSyuFleWj2jS51meaF9svyeUz+mQM89kr2vzSLUypmEMl9XTa6j6SPZTYFeL1lGslMvWX4/5v/bs/i7tql1ZGmPLHVAE6QJJfzoRz8qgwhnnHFG+fWkSZPKj6NHj15k2+K+5557LmbOnBmDBg3q9XMlvywvZFnqAPL/nvf1kex1k6U9MtVRdOQX//Bo6kwvxXGzzOhCvWQZyU69mAI9/0j2dswiVLxPnD79H7MITZ8em2+9VctnCuqNmYSyX1dNk2UkuynQ6yXTSHbqI8vvx8J/Y/89aN+8OrK0R5Y6oClShBL+/Oc/xzHHHBNvfvOb4/DDDy/vm/eH2uJCByuttFLPNq82lHDvvfe+qhkU6HuyvJBlqQPI/3uep47lH8leJ3naI1kdTz/dq7MctFqW9qB+Moxkp15Mgd436ujtWYTmzRQ0T/9BA+PffvKD6E2tmEnISPZ6yTSS3RTo9ZGlDuol63VVLEXY6pn/ekOW9shSBzRJ40MJTz75ZLzzne+MVVddNS699NLo948/BgcPHlx+LGZDWNiMf7zBnrcNtEqWF7IsdQD5f88z1dGKkeztlqk90tUxYkTM7HgumqiJI9n72pTerZrOuzc1dSR7u6+tguurL0yBnvB1sKI6emMWoflnCvp/I9k72jZ70fIykr1eso1kNwV6PWSpg3rJfF319oxHrZClPbLUAU3TrL9gFvLiiy/G3nvvHS+88EL89re/jbXXXrvnsXnLNsxbxmF+xX3Dhw+3dAMtleWFLEsd9A7/GG+mLL/n6eowkr0WstZx8BknxXkf/VQ0UdNGsi9uSu+iI6YYwVf8w7z4PS9GxLT6H1DTZ/xjSu8Z02OL7baJKiypjlZM592bmjqSfeFrqzeuq964vpZWR1OuryxToBvJXi9GstdL1uuqqXXMzxTo7ZelDurFdVUvWdojSx3QRI0NJRSzHey3334xceLEuO6662LTTTdd4PF11lkn1lprrbjjjjsW+d7f//73seWWW/bi2ZJdlheyLHVkWZO97pZ1HdUq/mHeGx0vS6pj7dGj47abbq79P8az/56nrMNI9rZLeV39o46hq68aTdPkkezzT+k9b8rtoiOmGMH393+Yt36KzhO22DlmTZ8RAwYNiuMuOafl+19SHa2Yzrs3NXkk+/zX1tTnXuyV66rq62tpvx9Nub6ydBwbyV4vRrLXS+brqol1LMwU6O2VpQ7qxXVVL1naI0sd0FSNDCXMnTs3DjzwwLjlllvipz/9abz5zW9e7Hbvf//747zzzotHH300Xvva15b3/epXvyqDDB/72Md6+azJKssLWZ46cqzJ3gTLso5qVR0xVXe8LLGOrtnxxKRJtf/H+JLoOK4XI9nrJet1Na+Oub08q0xfHck+v+K18eXnX+yZcrs3R4a2ekrv+acOzzLCtckj2YtAQjvbo1XXV8brqukdx0ay10eWOuZnJHv7ZaljcUyB3j5Z6qBeXFf1kqU9stQBTdbIUMInPvGJuPLKK8uZEp577rm44IILFnj80EMPLT+edNJJcckll8Rb3/rW+Ld/+7eYOnVqfPGLX4w3vOEN8ZGPfKRNZ08mWV7IMtWRYU32plnSOqq99Y/m3lzDdfWRI2NmZzNHshd0HNeHkez1kvm6anIdTRzJPj9ToNeLkez1kvW6amod8xjJXg9Z6liYkeztlaWOLLK0R5Y6XollS3tfX7iumiRLe2SpA5qukaGEu+66q/z4s5/9rLwtbF4ooZgd4cYbb4yPf/zj8elPfzoGDhwY73znO+PLX/5yDBo0qNfPm1yyvJClq6Pha7Jnke66avhIdh3H9WIke71kv66aJstIdh3H9WIke71kvq6aWMf8jGRvvyx1LI6R7O2TpY4ssrRHljpasWxpFV7tsqWtXDp19MhRce1VV7clmNAXrqsmydIeWeqADBoZSrjhhhuWedvNNtssfvnLX1Z6PvQ9WV7IUtbR4DXZs0h5XTV4JLuO43rJVoeR7PWQ7bpq+kj2go7j+shSxzxGstdDljoWZiR7e2WpI4ss7ZGljiyytEeWOlqxbGlVXs2ypa1cOrV4r/mtg8a2ZdnSvnJdNUWW9shSB2TRvJgytJk12etdR/HGu4kjMLLIel01vY7mdxznao9MdRRBl0KTR7Jnao9sdTTxupr/n3lFUDJTe6ijHoxkb78sdSxOE/+OytIeWerIIkt7ZKkjiyztkaWO5Vm2tDdv83ul7V5+/sUFlk790OdPjdVHj1ju47Zr9tm+eF3VWZb2yFIHZNK8vzihzazJXvc6mjeyJ4vc11Wz62hyx3GR+M/WHpnqKIIuTVWMZC+W/MnUHuqoDx3H7ZeljoUZyd5eWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqyCJLe2SpoxhQA5kIJcAysiZ7vWSpI4ss7ZG1jqZ2HBvJXi9GstdL5uuqiXUsTMdxe2WpY3GMZG+fLHVkkaU9stSRRZb2yFJHFlnaI0sdWWRpjyx1ZJGlPfLU8Vw5oAYyad5/NKANrMleL1nqyMJI9nrJ1HFsJHt9ZKljfkayt1+WOhZHx3H7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqyCJLe2SpI4ss7ZGljiwj2bO0R6Y6ioFaxYAayGTBBYqAxGuyP1euMZbhBTnDG4ss5o1kL9aua3J7ZLmustQxT/HGe00j2dsuSx0LM5K9vbLUkUWW9shSRxZZ2iNLHVlkaY8sdWSRpT2y1JFFlvbIUkcWWdojTx05RrLnaY9kdTz9dDmgBjIRSoBXsSZ7EUxo4ohjHcdUpXjjPa17TgwfNbKx7ZHluspSx/yMZG+/LHUsjpHs7ZOljiyytEeWOrLI0h5Z6sgiS3tkqSOLLO2RpY4ssrRHljqMZK+XTHVkGMmeqT3S1TFiRMzseK7dpwQt1bz/xkIvybIme8EU6FTFmuz1kKWOhRnJ3l5Z6sgiS3tkqSOLLO2RpY4ssrRHljqyyNIeWerIIkt7ZKlDx3G95KnDSPY6SVdHw0eyFxNDp2qPZHUUA7WaOKAGXokrGpKvyV7QcUxVjGRvvyx1LE4T33hnaY8sdWSRpT2y1JFFlvbIUkcWWdojSx1ZZGmPLHVkkaU98tSh47hOMtVhJHt9pKxjxIhyQE1TzZ01K1d7pKujeQO1YGks3wBJX8jmp+N42XV1dZW3dpozZ06vHq+zs7O8LQ8j2dsrSx1ZZGmPLHVkkaU9stSRRZb2yFJHFlnaI0sdWWRpjyx1GMleL5nq0HFcH+nqMJK9FtJdV/+o4+AzTorzPvqpaOJ19feP3anaI1sdc1ewj6Dd/Ry93cexov0c9A6hBEj4QrYwHcfLpniRfvs+e8ekp55s7X7ndpWJ/+IP7OIPoaI9Fh4BPn3G9J6PW2y3TfSm0SNHxbVXXb1cL9hGsrdPljqyyNIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHnnqMJK9TtLV0fCO43TtkamOhq/JbiR7vesYuvqq0cQ6iuuq0NHRkao91FF9P8fS+j+mT/9HH8f03u/jWNF+DnqHUAIkeyFbHB3Hy/5iXbxQH/Pjs1v2x3Dxj5si8T+te06sOeLva0EtLiBywhY7x6zpM2LAoEFx3CXnRG8pghLfOmhsWXtfeLHO8nuepY4ssrRHljqyyNIeWerIIkt7ZKkjiyztkaUOI9nrJVMdRrLXR8o6GtxxbCR7vRjJXi9Zr6tWjWRvVx3FdVXoN3BgqvZomirrqKKfY1n6P8o10Lu7Y8BKvdvH0Rf7OZpKKAESvZBl0e72KF6o+/Xv35I6Ljp1QrwweXIMHzVymetoxbGp33XVKlnqyCJLe2SpI4ss7ZGljiyytEeWOrLI0h556jCSvU7S1WEkey1kraOpHccFI9nrw0j2esl8XTW9juK6KoIJRf9xE9/vFv9vz9QeVdbRqn6OZe3/ePKBh2L2jBnlY/o4WBxxEfq8LG8sssjSHlnqyCJLe2SpI4ss7ZGljiyytEeWOrLI0h5Z6jCSvV4y1WEke32krGPEiHIpwiYykr0JdTRvyVEj2eslWx1GstdD1jqK66qJir+jive72dojUx1NDLrQu4QS6NOyvABkkaU9stSRRZb2yFJHFlnaI0sdWWRpjyx1ZJGlPfLUYSR7naSro+Ej2XUc17uOYinCJi4NWTCSvT4y1WEke31krKO4rgpN7OAr3u9ma49sdTTxuioUf0cV73eztYc66Eua+dcEtIAnznrJ0h5Z6sgiS3tkqSOLLO2RpY4ssrRHljqMZK+XTHUYyV4fKeto8Ej2go7j+jCSvV5yX1fNraP5I9l1HNeJkez1kvW6amod8xR/RxXvd5taR5b2yFIH7SGUQJ/kibNesrRHljqyyNIeWerIIkt7ZKlDx3G95KnDSPY6SVeHkey1kO66avhIdh3H9ZKpDiPZ6yNjHU0eya7juF6MZK+XzNdVE+uYX/F3VPF+t4l1ZGmPLHXQPs37axVWkCfOesnSHlnqyCJLe2SpI4ss7ZGnDh3HdZKpDiPZ6yNlHUayt13K66rBI9l1HNdLtjqMZK+HbNdV00eyF3Qc10eWOuYxkr0estSxsOLvqKa+383QHlnqoL2EEuhTPHHWS5b2yFJHFlnaI0sdRrLXS6Y6dBzXR7o6jGSvhXTXlZHstZD1ump6Hc3vOM7VHpnqMJK9/TJeV00fyV7QcVwPWeqYn5Hs7ZeljsVp4t9RWdojSx20X/N+i2E5eeKslyztkaWOLLK0R546jGSvk3R1NLzjOF17ZKrDSPa2S3ldGcnedrmvq2bX0eSOYyPZ68VI9nrJel01tY756Thuvyx1LMxI9vbKUkcWWdojSx3Ug1ACfYInznrJ0h5Z6jCSvV4y1WEke32krKPBHcdGsteLkez1kvW6anodRrLXQ9Y6mtpxbCR7vRjJXi+Zr6sm1rEwHcftlaWOxWni31FZ2iNLHVlkaY8sdVAfzXuVgFfJE2e9ZGmPPHUYyV4n6eowkr0WstbR1I7jgpHs9WEke73kvq6aXYeR7O2X8bpqesexkez1kaWO+RnJ3n5Z6licJv4dlaU9stSRRZb2yFJHFlnaI0sd1Evz3oFAH3ziNJK9XjLVYSR7faSsw0j2tkt5XTW449hI9nrJVkfzR7LrOK4TI9nrJet11dQ65jGSvR6y1LEwI9nbK0sdWWRpjyx1ZJGlPbLUkUWW9shSB/UjlEBaWZ44jWSvl3R1NHwku47jejGSvV6yXldNrsNI9vrIWEeTR7LrOK4XI9nrJfN11cQ65mcke/tlqWNxmvh3VJb2yFJHFlnaI0sdWWRpjyx1ZJGlPbLUQT017x0u9KEnTiPZ6yVlHQ0eyV7QcVwfRrLXS+7rqrl1GMleD9muq6aPZC/oOK6PLHXMYyR7PWSpY2FGsrdXljqyyNIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6qC+hBNLJ8sRpJHu9pLuuGj6SXcdxvWSqw0j2+shYh5Hs7Zfxumr6SPaCjuN6yFLH/Ixkb78sdSxOE/+OytIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqoN6a9xcU9IEnTiPZ6yXlddXgkew6juslWx1GstdDtuvKSPZ6yHpdNbWO+ek4br8sdSzMSPb2ylJHFlnaI0sdWWRpjyx1ZJGlPbLUkUWW9shSRxZZ2iNLHcWAGupNKIE0sjxxGsleL1mvq6bX0fyO41ztkakOI9nbL+N1ZSR7+2W+rppYx8J0HLdXljoWp4l/R2Vpjyx1ZJGlPbLUkUWW9shSRxZZ2iNLHVlkaY8sdWSRpT3y1PFcOaCGemveX+iQ+onTSPY6yX1dNbuOJnccG8leL0ay10vW66qpdczPSPb2y1LH4ug4bp8sdWSRpT2y1JFFlvbIUkcWWdojSx1ZZGmPLHVkkaU9stSRZSR7lvbIVEcxUKsYUEO9Ne+/P5D4iTNTHUay10PWOpracWwke70YyV4vma+rJtaxMCPZ2ytLHVlkaY8sdWSRpT2y1JFFlvbIUkcWWdojSx1ZZGmPLHVkkaU98tSRYyR7nvZIVsfTT5cDaqg3oQQaLd0TZ6I6jGRvv4zXVdM7jo1kr48sdczPSPb2y1LH4hjJ3j5Z6sgiS3tkqSOLLO2RpY4ssrRHljqyyNIeWerIIkt7ZKnDSPZ6yVRHhpHsmdojXR0jRpQDaqi35v13Ef5Bx3G9GMleL1mvq6bWMY+R7PWQpY6FGcneXlnqyCJLe2SpI4ss7ZGljiyytEeWOrLI0h5Z6sgiS3tkqSOLLO2Rpw4j2eskXR0NH8merj2S1VEM1GrigJq+RgvRSDqO68VI9nrJfF01sY75GcneflnqWJwmvvHO0h5Z6sgiS3tkqSOLLO2RpY4ssrRHljqyyNIeWerIIkt7ZKnDSPZ6yVSHkez1kbKOBo9kL1aqTtce6epo3kCtvqh5/70GHce1kqWOeYxkr4csdSzMSPb2ylJHFlnaI0sdWWRpjyx1ZJGlPbLUkUWW9shSRxZZ2iNLHTqO6yVPHUay10m6Oho+kl3Hcb1kGsk+d9asdO2hDtqhf1uOCi3oOF5Tx3HbZaljfkayt1+WOhaniW+8s7RHljqyyNIeWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHnnq0HFcJ5nqMJK9PlLWMWJEzOx4LppKx3G96xi6+qrRxKDL3z92p2sPddAOzesdAR3HtZCljoUZyd5eWerIIkt7ZKkjiyztkaWOLLK0R5Y6ssjSHlnqyCJLe2Spw0j2eslUh47j+khXh5HstZDuumr4SHYdx/WSqY4i6FLo6Oj4/9m7E/i66jJ//E+6L+xrW6SsIlJkQDZlFxEqgiuIKIILov8ZYNwZ6KCAtnVBdFBHx9/MIMLIiDAgKsgOArKI0hFRhEFZyyIWKF0oTZv/6xxMTNsUmvae3HOevN+vVwhNbnLvJ883N/fe7/Oc0+gcWeqRIcdg50gJNJKN4/bKkqMvTXzgnaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXKYZK+TdDkavnGcrh6Zcphkb7uU66rBk+w2juslW46i0aUwdMSIhuaYFed9ZlqaejQ9B46UQEPZOG6fLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDlMstdLphwm2esjZY4NNigHaprIJHu9mGSvl6zrquk5mr9xnKsemXIUjS6Fv75r3POo4vFupno0OQcvaN4jGGigLHecWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXKYZK+TdDlMstdC1hxN3TgumGSve45mHjnWJHt9ZMzR5I3j4vFutnpkylE0ujRV8TyqeLybqR5NzcHfNPPRMTRIljvOLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDlMstdLphwm2esjZQ6T7G2Xcl01eOPYJHu9ZMthkr0esuZo6saxSfb652hio0u34nlU8Xg3Uz2amIMlaUqACmW548ySI4ss9ciSI4ss9ciSI4ss9ciSw8ZxveTJYZK9TtLlaPgku43jejHJXi9Z11WTc5hkr4+MOUyyt1/GddX0jWOT7PWRJUdvxfOo4vFuE3NkrAcvaOazL2iALHecWXJkkaUeWXJkkaUeWXJkkaUeeXLYOK6TTDlMstdHyhwNnmQv2DiuD5Ps9ZJ7XTU3R/Mn2W0c14lJ9nrJuq6amqObSfZ6yJJjacXzqCY+3s1aD16gKQEqkOWOM0uOLLLUI0uOLLLUI0sOk+z1kimHjeP6SJfDJHstpFtXDZ9kt3FcL5lymGSvj4w5mjzJbuO4Xkyy10vmddXEHL2ZZG+/LDn60sTnUZnrwQuatyqh5rLccWbJkUWWemTJkUWWeuTJYZK9TtLlaPjGcbp6ZMphkr3tUq6rBk+y2ziul2w5TLLXQ7Z11fRJ9oKN4/rIkqObSfZ6yJJjaSbZ2ytLjizUY3DQlAAtlOWOM0uOLLLUI0sOk+z1kimHSfb6SJmjwRvHJtnrxSR7vWRdV03P0fyN41z1yJTDJHv7ZVxXTZ9kL9g4rocsOXozyd5+WXL0pYnPo7LUI0uOLNRj8GjevR7UVJY7ziw5sshSjzw5TLLXSbocJtlrIWuOpm4cF0yy14dJ9nrJva6anaPJG8cm2evFJHu9ZF1XTc3Rm43j9suSY2km2dsrS44sstQjS44s1GNwaeYrk1AzWe44s+QwyV4vmXKYZK+PlDlMsrddynXV4I1jk+z1ki2HSfZ6yJqjqRvHJtnrxSR7vWReV03MsTQbx+2VJUdfmtjYnaUeWXJkkaUeWXJkoR6DT/P+qkLNZLnjzJPDJHudpMvR8El2G8f1YpK9XrKuqybnMMleHxlzmGRvv4zrqukbxybZ6yNLjt5Msrdflhx9aeLzqCz1yJIjiyz1yJIjiyz1yJIjC/UYnJr3iA1qJMsdZ6YcJtnrI2WOBk+yF2wc14dJ9nrJva6am6P5k+w2juvEJHu9ZF1XTc3RzSR7PWTJsTST7O2VJUcWWeqRJUcWWeqRJUcWWeqRJUcW6jF4aUqAQX7HmS6HSfZaSLeuGj7JbuO4XjLlMMleHxlzNHmS3cZxvZhkr5fM66qJOXozyd5+WXL0pYnPo7LUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLNRjcGveMwKogSx3nClzmGRvu5TrqsGT7DaO6yVbDpPs9ZBtXTV9kr1g47g+suToZpK9HrLkWJpJ9vbKkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiML9UBTAvSTSfZ6McleL1nXVdNzNH/jOFc9MuUwyd5+GddV0yfZCzaO6yFLjt5Msrdflhx9aeLzqCz1yJIjiyz1yJIjiyz1yJIjiyz1yJIjiyz1yJIjC/Wg0LxnnNBmJtnrwyR7veReV83O0eSNY5Ps9WKSvV6yrqum5ujNxnH7ZcmxNJPs7ZUlRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRzFQk0GWerDqNCXACjLJXi/Zcphkr4esOZq6cWySvV5MstdL5nXVxBxLs3HcXlly9MUke/tkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnrkyTGrHKhpuiz1oDWa94oGtIFJ9nrJmMMke/tlXFdN3zg2yV4fWXL0ZpK9/bLk6IuN4/bJkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIksMke71kylEMahUDNU2WpR60TvNeLYMBlmeS3cZxnZhkr5es66qpObqZZK+HLDmWZpK9vbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPfLkMMleJ+lyPPFEOVDTVFnqQWtpSoBBMMlu47heTLLXS+Z11cQcvZlkb78sOfpikr19suTIIks9suTIIks9suTIIks9suTIIks9suTIIks9suQwyV4vmXKYZK+PlDk22KAcqGmiYr43Qz1ovea9GgsDJMske8HGcX1kydHNJHs9ZMmxNJPs7ZUlRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElh43jesmTwyR7naTL0fBJ9iwbx+nW1V9zFINaTRyoKRSnQm96PahGM1c0VCzTJHvBxnE9ZMnRm0n29suSoy9NfOCdpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR55ctg4rpNMOUyy10fKHA2eZM+ycZxyXfXkaN6g1l/PgF6eCr3J9aA6zXu1HyqW5Q9ZbzaO2y9LjqWZZG+vLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDmyyFKPLDlMstdLphw2jusjXQ6T7LWQbl01fJI9y8Zx1nXV5BxFo0uhOBV6U3NQrWEVf39olCx/AJZm47i9suToSxMfeGepR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR54cJtnrJF2Ohm8cp6tHphwbbBALOmZFU5lkr3eOsWuvGU2TZeM487pqco6i0aVQnAq9iTmoXvN2k6AiWf4A9MXGcftkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyWGSvV4y5TDJXh8pczT4EOgm2evFJHu9ZF1XTc/R9I3jbPXIlKNodCk0+VToVKt5f5GhAln+AGSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR5ZcmSRpR55cphkr5N0OUyy10LWHE3dOC6YZK+PLOdkN8leLxlzNHnjuHi8m60emXIUjS7wYpr5aA9aKMsfgCyy1CNLjiyy1CNLjiyy1CNLjiyy1CNLjiyy1CNLDpPs9ZIph0n2+kiZwyR726VcVw3eODbJXi/Zcphkr4esOZq6cVw8jyoe72arR6YcTWx0YWBpSmBQy/IHIIss9ciSI4ss9ciSI4ss9ciSI4ss9ciSI4ss9ciTwyR7naTL0fBJdhvH9WKSvV6yrqsm5zDJXh8Zc5hkb7+M66rpG8fF86ji8W62esjBYNLMZxPQAu446yVLPbLkyCJLPbLkyCJLPbLkyCJLPbLkMMleL5lymGSvj5Q5GjzJXrBxXB8m2esl97pqbo7mT7LbOK4Tk+z1knVdNTVHt+J5VPF4t6k5stQjSw7aQ1MCg5I7znrJUo8sObLIUo8sObLIUo8sOWwc10ueHCbZ6yRdDpPstZBuXTV8kt3Gcb1kymGSvT4y5mjyJLuN43oxyV4vmddVE3P0VjyPKh7vNjFHlnpkyUH7NO/ZKqwid5z1kqUeWXJkkaUeWXJkkaUeeXLYOK6TTDlMstdHyhwm2dsu5bpq8CS7jeN6yZbDJHs9ZFtXTZ9kL9g4ro8sObqZZK+HLDmWVjyPaurj3Qz1yJKD9tKUwKDijrNestQjS44sstQjSw6T7PWSKYeN4/pIl8Mkey2kW1cm2Wsh67pqeo7mbxznqkemHCbZ2y/jumr6JHvBxnE9ZMnRm0n29suSoy9NfB6VpR5ZctB+zfsthpXkjrNestQjS44sstQjTw6T7HWSLkfDN47T1SNTDpPsbZdyXZlkb7vc66rZOZq8cWySvV5MstdL1nXV1By92Thuvyw5lmaSvb2y5MgiSz2y5KAeNCUwKLjjrJcs9ciSwyR7vWTKYZK9PlLmaPDGsUn2ejHJXi9Z11XTc5hkr4esOZq6cWySvV5MstdL5nXVxBxLs3HcXlly9KWJz6Oy1CNLjiyy1CNLDuqjeX8loJ/ccdZLlnrkyWGSvU7S5TDJXgtZczR147hgkr0+TLLXS+511ewcJtnbL+O6avrGsUn2+siSozeT7O2XJUdfmvg8Kks9suTIIks9suTIIks9suSgXpr3CAQG4R2nSfZ6yZTDJHt9pMxhkr3tUq6rBm8cm2Svl2w5mj/JbuO4Tkyy10vWddXUHN1MstdDlhxLM8neXllyZJGlHllyZJGlHllyZJGlHllyUD+aEkgryx2nSfZ6SZej4ZPsNo7rxSR7vWRdV03OYZK9PjLmaPIku43jejHJXi+Z11UTc/Rmkr39suToSxOfR2WpR5YcWWSpR5YcWWSpR5YcWWSpR5Yc1FPzHuHCILrjNMleLylzNHiSvWDjuD5MstdL7nXV3Bwm2esh27pq+iR7wcZxfWTJ0c0kez1kybE0k+ztlSVHFlnqkSVHFlnqkSVHFlnqkSVHFlnqkSUH9aUpgXSy3HGaZK+XdOuq4ZPsNo7rJVMOk+z1kTGHSfb2y7iumj7JXrBxXA9ZcvRmkr39suToSxOfR2WpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5Yc1FvznkHBILjjNMleLynXVYMn2W0c10u2HCbZ6yHbujLJXg9Z11VTc/Rm47j9suRYmkn29sqSI4ss9ciSI4ss9ciSI4ss9ciSI4ss9ciSI4ss9ciSoxiood40JZBGljtOk+z1knVdNT1H8zeOc9UjUw6T7O2XcV2ZZG+/zOuqiTmWZuO4vbLk6EsTn0dlqUeWHFlkqUeWHFlkqUeWHFlkqUeWHFlkqUeWHFlkqUeeHLPKgRrqrXnP0CH1HadJ9jrJva6anaPJG8cm2evFJHu9ZF1XTc3Rm0n29suSoy82jtsnS44sstQjS44sstQjS44sstQjS44sstQjS44sstQjS44sk+xZ6pEpRzGoVQzUUG/Ne/UHEt9xZsphkr0esuZo6saxSfZ6McleL5nXVRNzLM0ke3tlyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnrkyZFjkj1PPZLleOKJcqCGetOUQKOlu+NMlMMke/tlXFdN3zg2yV4fWXL0ZpK9/bLk6ItJ9vbJkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIksMke71kypFhkj1TPdLl2GCDcqCGemveq4vwVzaO68Uke71kXVdNzdHNJHs9ZMmxNJPs7ZUlRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pEnh0n2OkmXo+GT7OnqkSxHMajVxIGawUaFaCQbx/Vikr1eMq+rJubozSR7+2XJ0ZcmPvDOUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sOUyy10umHCbZ6yNljgZPshdnqk5Xj3Q5mjeoNRg179VrsHFcK1lydDPJXg9ZcizNJHt7ZcmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMlh47he8uQwyV4n6XI0fJLdxnG9ZJpkX/T88+nqIQftMKwt1wot2Dhez8Zx22XJ0ZtJ9vbLkqMvTXzgnaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXLYOK6TTDlMstdHyhwbbBALOmZFU9k4rneOsWuvGU1sdHnhfVe6eshBOzRvdwRsHNdClhxLM8neXllyZJGlHllyZJGlHllyZJGlHllyZJGlHllyZJGlHllymGSvl0w5bBzXR7ocJtlrId26avgku43jesmUo2h0KXR0dDQ6R5Z6ZMgx2DlSAo1k47i9suToSxMfeGepR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR54cJtnrJF2Ohm8cp6tHphwm2dsu5bpq8CS7jeN6yZajaHQpDB0xoqE5ZsV5n5mWph5Nz4EjJdBQNo7bJ0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0sOk+z1kimHSfb6SJljgw3KgZomMsleLybZ6yXrump6juZvHOeqR6YcRaNL4a/vGvc8qni8m6keTc7BC5r3CAYaKMsdZ5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR5YcWWSpR54cJtnrJF0Ok+y1kDVHUzeOCybZ656jmUeONcleHxlzNHnjuHi8m60emXIUjS5NVTyPKh7vZqpHU3PwN818dAwNkuWOM0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0sOk+z1kimHSfb6SJnDJHvbpVxXDd44NsleL9lymGSvh6w5mrpxbJK9/jma2OjSrXgeVTzezVSPJuZgSZoSoEJZ7jiz5MgiSz2y5MgiSz2y5MgiSz2y5LBxXC95cphkr5N0ORo+yW7juF5MstdL1nXV5Bwm2esjYw6T7O2XcV01fePYJHt9ZMnRW/E8qni828QcGevBC5r57AsaIMsdZ5YcWWSpR5YcWWSpR5YcWWSpR54cNo7rJFMOk+z1kTJHgyfZCzaO68Mke73kXlfNzdH8SXYbx3Vikr1esq6rpuboZpK9HrLkWFrxPKqJj3ez1oMXaEqACmS548ySI4ss9ciSI4ss9ciSwyR7vWTKYeO4PtLlMMleC+nWVcMn2W0c10umHCbZ6yNjjiZPsts4rheT7PWSeV01MUdvJtnbL0uOvjTxeVTmevCC5q1KqLksd5xZcmSRpR5ZcmSRpR55cphkr5N0ORq+cZyuHplymGRvu5TrqsGT7DaO6yVbDpPs9ZBtXTV9kr1g47g+suToZpK9HrLkWJpJ9vbKkiML9RgcNCVAC2W548ySI4ss9ciSwyR7vWTKYZK9PlLmaPDGsUn2ejHJXi9Z11XTczR/4zhXPTLlMMnefhnXVdMn2Qs2jushS47eTLK3X5YcfWni86gs9ciSIwv1GDyad68HNZXljjNLjiyy1CNPDpPsdZIuh0n2Wsiao6kbxwWT7PVhkr1ecq+rZudo8saxSfZ6McleL1nXVVNz9GbjuP2y5FiaSfb2ypIjiyz1yJIjC/UYXJr5yiTUTJY7ziw5TLLXS6YcJtnrI2UOk+xtl3JdNXjj2CR7vWTLYZK9HrLmaOrGsUn2ejHJXi+Z11UTcyzNxnF7ZcnRlyY2dmepR5YcWWSpR5YcWajH4NO8v6pQM1nuOPPkMMleJ+lyNHyS3cZxvZhkr5es66rJOUyy10fGHCbZ2y/jumr6xrFJ9vrIkqM3k+ztlyVHX5r4PCpLPbLkyCJLPbLkyCJLPbLkyEI9BqfmPWKDGslyx5kph0n2+kiZo8GT7AUbx/Vhkr1ecq+r5uZo/iS7jeM6McleL1nXVVNzdDPJXg9ZcizNJHt7ZcmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRhXoMXpoSYJDfcabLYZK9FtKtq4ZPsts4rpdMOUyy10fGHE2eZLdxXC8m2esl87pqYo7eTLK3X5YcfWni86gs9ciSI4ss9ciSI4ss9ciSI4ss9ciSIwv1GNya94wAaiDLHWfKHCbZ2y7lumrwJLuN43rJlsMkez1kW1dNn2Qv2Diujyw5uplkr4csOZZmkr29suTIIks9suTIIks9suTIIks9suTIIks9suTIQj3QlAD9ZJK9Xkyy10vWddX0HM3fOM5Vj0w5TLK3X8Z11fRJ9oKN43rIkqM3k+ztlyVHX5r4PCpLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyEI9KDTvGSe0mUn2+jDJXi+511WzczR549gke72YZK+XrOuqqTl6s3HcfllyLM0ke3tlyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyVEM1GSQpR6sOk0JsIJMstdLthwm2esha46mbhybZK8Xk+z1knldNTHH0mwct1eWHH0xyd4+WXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeeXLMKgdqmi5LPWiN5r2iAW1gkr1eMuYwyd5+GddV0zeOTbLXR5YcvZlkb78sOfpi47h9suTIIks9suTIIks9suTIIks9suTIIks9suTIIks9suQwyV4vmXIUg1rFQE2TZakHrdO8V8tggOWZZLdxXCcm2esl67pqao5uJtnrIUuOpZlkb68sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo88OUyy10m6HE88UQ7UNFWWetBamhJgEEyy2ziuF5Ps9ZJ5XTUxR28m2dsvS46+mGRvnyw5sshSjyw5sshSjyw5sshSjyw5sshSjyw5sshSjyw5TLLXS6YcJtnrI2WODTYoB2qaqJjvzVAPWq95r8bCAMkyyV6wcVwfWXJ0M8leD1lyLM0ke3tlyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyZFFlnpkyWHjuF7y5DDJXifpcjR8kj3LxnG6dfXXHMWgVhMHagrFqdCbXg+q0cwVDRXLNMlesHFcD1ly9GaSvf2y5OhLEx94Z6lHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHnhw2juskUw6T7PWRMkeDJ9mzbBynXFc9OZo3qPXXM6CXp0Jvcj2oTvNe7YeKZflD1puN4/bLkmNpJtnbK0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLLLUI0sOk+z1kimHjeP6SJfDJHstpFtXDZ9kz7JxnHVdNTlH0ehSKE6F3tQcVGtYxd8fGiXLH4Cl2Thuryw5+tLEB95Z6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pElRxZZ6pEnh0n2OkmXo+Ebx+nqkSnHBhvEgo5Z0VQm2eudY+zaa0bTZNk4zryumpyjaHQpFKdCb2IOqte83aR+WrBgQZxwwgkxYcKEGD16dOy6665x5ZVXtvtmUUNZ/gD0xcZx+2TJkUWWemTJkUWWemTJkUWWemTJkUWWemTJkUWWemTJYZK9XjLlMMleHylzNPgQ6CbZ68Uke71kXVdNz9H0jeNs9ciUo2h0KTT5VOhUq3l/kfvpfe97X5xxxhnxnve8J/7lX/4lhg4dGgceeGDceOON7b5p1EiWPwBZZKlHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHlhxZZKlHnhwm2eskXQ6T7LWQNUdTN44LJtnrI8s52U2y10vGHE3eOC4e72arR6YcRaMLvJhmPtpbQbfddlv893//d0yfPj2+/OUvxzHHHBPXXHNNbLLJJvHpT3+63TePmsjyByCLLPXIkiOLLPXIkiOLLPXIkiOLLPXIkiOLLPXIksMke71kymGSvT5S5jDJ3nYp11WDN45NstdLthwm2esha46mbhwXz6OKx7vZ6pEpRxMbXRhYqZsSLrjggvLICEUzQrdRo0bFBz/4wbj55pvjoYceauvto/2y/AHIIks9suTIIks9suTIIks9suTIIks9suTIIks98uQwyV4n6XI0fJLdxnG9mGSvl6zrqsk5TLLXR8YcJtnbL+O6avrGcfE8qni8m60ecjCYNPPZxAq64447Yquttoo1lurk3mWXXcr3M2bMaNMtow7ccdZLlnpkyZFFlnpkyZFFlnpkyZFFlnpkyWGSvV4y5TDJXh8pczR4kr1g47g+TLLXS+511dwczZ9kt3FcJybZ6yXrumpqjm7F86ji8W5Tc2SpR5YctEdHV/cjqIS23Xbb2HDDDePqq69e4uO/+93vYtKkSfHtb387PvzhD/frexZf15e77747hg8fHltsscUq3WZWzP/98b5Y52UTYmWb+hYtWhTPPPFkLOrsjKHDhsWaG6xXHlXjxTx23/3lE46iU3XcFpvGQCl+QWc9PDO23HyLtv28VkZ/fl4rU4+qfl6r8rNalRxNXV/tWFsr+vNq5bpq58+rFTmsr9b9rKpYV+34ebUqR7vWVs/P66GZseUWzV9fVa6rgVxfrc7RrvW1qHNRzHrk0djq5S9f6e9Rh/U1EOtqIB6rVpVjoNdX7xyxuGul11e7H3sVY1Ujx4yufF1Vfd9V9e/HQK2vZXKsv148/djjjXrsVXj0vvt7do9Hjh1T+bqqan0NxP3uQKyt5eVo2mP7IscTf3qw598bbDZxQNZVt1b9vBYP0N/zqtfXS/1+NGV99c7RueBvR0po0vPswv/dd190DB0aixYNzN/zqtbXitzvNmFt9ZXjz/c/1MjXce65996IIR0Dtq6qWF/9+Xte5/X1Yjma+jphsb7W2Wh8DB02cH/PW/WzWpnHiXVcXy+Vo+2vE67i30de2n333VfuhT/77LOxMlI3JRQNAq94xSvi0ksvXeLjf/zjH8vPffWrX42PfvSjLWlK+MMf/hCjR4+OiRMnrtJtpt6/bAWNJyvGz6t//Lz6x8+rf/y8VpyfVf/4efWPn1f/+Hn1j59X//h59Y+fV//4efWPn9eK87PqHz+v/vHz6h8/r/7x8+ofP6/+8fPqHz+vFedn1T9+Xvk9+OCDMXbs2HjsscdW6uuHRWJFk8CCBQuW+fhzzz3X8/n+uuuuu1py22ie7oYUa2DF+Hn1j59X//h59Y+f14rzs+ofP6/+8fPqHz+v/vHz6h8/r/7x8+ofP6/+8fNacX5W/ePn1T9+Xv3j59U/fl794+fVP35e/ePnteL8rPrHz4uXMiQSGz9+fDz66KPLfLz7YxMmTGjDrQIAAAAAAACAwSF1U8L2228f99xzT8yePXuJj9966609nwcAAAAAAAAAqpG6KeGQQw6JRYsWxXe+852ejxWnczjrrLNi1113jY033rittw8AAAAAAAAAMhsWiRWNB4ceemiceOKJ8cQTT8SWW24ZZ599dtx///3xH//xH+2+eQAAAAAAAACQWuqmhML3vve9OPnkk+Occ86Jp556Krbbbrv4yU9+EnvttVe7bxoAAAAAAAAApNbR1dXV1e4bAQAAAAAAAADkM6TdNwAAAAAAAAAAyElTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAQGNdd9110dHRUb614+sBAACAF6cpAQAAAHhRzzzzTAwbNqzcuD/99NOXe7m77767Z4N/0003fdHvOXny5PJyr33tayu4xQAAAEBdaEoAAAAAXtSaa64ZO+ywQ8+RBZbn2muv7fn/Bx54IO6///4+L9fZ2Rk33nhj+f/77rtvy28vAAAAUB+aEgAAAICX9LrXva58f8MNN8SiRYv6vEx3w8K4ceOW+PfSfvnLX8bcuXOX+L4AAABATpoSAAAAgJfU3Twwe/bs+PWvf93nZa6//vry/ac+9alljpzQW/fHR4wYEbvvvntFtxgAAACoA00JAAAAwEvac889Y9iwYcs9AsLvf//7ePzxx+MVr3hFvOtd71qiSWFp3V+/6667xujRo2PevHlx3nnnxZFHHhnbb799rL/++jFy5MiYMGFCvPWtb43LLrtslW773XffHe95z3vKIziMGjUqNt988zjuuOPK27sinn322fjCF74Qr33ta2OdddYpb9vGG29c5rz55ptX6bYBAABAdpoSAAAAgJe02mqrxU477bTcpoTuj+29995lM8GWW24ZDzzwQPzpT39a4nILFy6MX/ziF0scfeH888+Pd7/73XHOOefEb37zm/IyRQPEo48+Gj/60Y/iwAMPjE9+8pMrdbt/9rOflY0O3//+98smhOHDh5ff9xvf+EbssMMOy9y+pc2YMSO22WabOPHEE+OWW24pjxRRNCU8/PDD8YMf/KA80sP06dNX6rYBAADAYKApAQAAAFgh3U0EN9xwQyxatKjPpoR99tmnpzmhr1M43HbbbTF37twlvt/aa69dNh3ceOONMWfOnHj66afLy8ycOTNOPfXUspHgK1/5SlxyySX9ur1F48Bhhx0WCxYsiO222y5uvfXW8qgHxfcujr4wdOjQ+PjHP77cry+aFw444IDy+7z97W+P22+/PebPn182JhQNDieffHL5PU466aS4+OKL+3XbAAAAYLDQlAAAAACskO4mgmJj/1e/+tUSn+s+VUN3M0L3+6WPqtD97+I0CsXpEApvectb4stf/nJ51IExY8b0XHb8+PHxmc98JqZNm1b++8wzz+zX7S2+rmggWHfddePKK6+MXXbZpfz4kCFDYvLkyWVjQneDRF/++Z//OZ544onyKA4XXnhh7LjjjmWDRGGDDTaI0047Lb70pS+V/z7llFP6ddsAAABgsNCUAAAAAKyQomlgxIgRyxwB4Xe/+1155ICXv/zl5akbXqwpofvrioaE4jQIK+JNb3pT+f7mm29e5ggNy9PV1VWeXqHwkY98pGwiWNq2224bhxxySJ9f/9xzz5WnfCiccMIJy72eI488snz/v//7v+XPAAAAAFiSpgQAAABghRRHMdh5552XaTbo/v/uRoTCxIkTY9NNN42HHnoo7rvvvvJjzz//fNlY0PuoC92KDf3PfvazZbNCcWSDYcOGRUdHR/m2zTbblJeZN29ePPXUUyt0W//0pz/FrFmzyv/fd999l3u55X2uOBJE0ZhQ2H///WPcuHF9vk2aNKnnax544IEVum0AAAAwmAxr9w0AAAAAmqNoJrjpppvixhtvjM7OzrJ5oLspYZ999lniskWTwv33319+fosttojbbrutbCxYuhmgaFQ48MAD4+mnn+752GqrrVY2QRRNCcXREZ588sny48XpFtZbb72XvJ3FaRe6bbTRRsu93Mte9rI+Pz5z5sye/1/RIyB0ZwMAAAD+xpESAAAAgBXWfYSDOXPmxO23317+//XXX7/MkRJ6/7v7lA3d78eOHRu77LJL+f9FY8Phhx9eNiRsv/32cemll8bs2bPj2WefLZsBHnvssbjllluWOC3DQOh9moj58+eX1/tSb0s3ZQAAAACOlAAAAAD0w2677RYjR46MBQsWlEdAWGONNcqjEhRHQlj6qAPdTQndR1Lofr/77rvH8OHDe46SUJz2YOjQofGTn/ykz6MaFI0J/bXBBhv0/P8jjzwSr3jFK/q8XPG5vhSnZuhW3L7lfT0AAADw4hwpAQAAAFhho0aNite85jU9Rz7objRY+igJhc0337xsVCg2/n/729+WDQi9j7ZQeOihh8r366+//nJPs3DVVVf1+3Zuttlmsc466/TczuW55ppr+vz4zjvvHCNGjCj//8c//nG/rx8AAAB4gaYEAAAAoF+6mwpuuummnoaB5Z26oLtZ4Ytf/GJ5GoTeX19Yc801y/fFqRqKt6U9/PDDceaZZ/b7NnZ0dMQ73/nO8v+//e1vx5NPPrnMZX73u9/FBRdc0OfXF6eYePe7391z2x988MEXvb5Zs2b1+zYCAADAYKApAQAAAOiX7qaCuXPnxiWXXLLcIyX0/vh5551Xvl999dVjxx137Pn8HnvsUTYAdHV1lU0E99xzT/nxRYsWxeWXX142OxQNBivjxBNPLK+vaEh4wxveELfffnv58eK6rrjiinjjG98YY8aMWe7XT5s2LSZMmFB+/Wtf+9o455xz4tlnn+35/J///Oe48MIL421ve1scfvjhK3UbAQAAIDtNCQAAAEC/FKdvGD16dE/zQHGqhIkTJ75oU0JxucKee+4Zw4YNW+JICaeffnr5/z//+c/jFa94RdlIsNpqq8XkyZPjmWeeibPOOmulbmdxm4pmiJEjR8aMGTPKUzKsscYaZRPEAQccEAsXLowzzjhjuV8/fvz48kgQW221VcycOTOOPPLIWGuttWLdddctb98GG2wQhxxySFx88cWxePHilbqNAAAAkJ2mBAAAAKBfRowYEbvttlvPv5d3lIRCsaE/bty4nn/3PnVDt4985CPx05/+tDwqQrHZ39nZGRtttFEcd9xx8b//+7/xqle9aqVv65ve9Kb49a9/He9617vKJoLnn38+Ntxwwzj22GPjjjvuKBsqXswrX/nK+M1vfhP/9m//Fvvvv3+st956MXv27PJoC1tuuWUceuih8Z3vfCfOP//8lb6NAAAAkFlHV/EsGgAAAAAAAACgxRwpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASw6r5toPPuHHjYu7cuTFx4sR23xQAAAAAAAAAaIkHH3wwxo4dG4899thKfb0jJbRI0ZCwcOHCdt8MAAAAAAAAAGiZYh+82A9fWY6U0CLdR0i466672n1TAAAAAAAAAKAlJk2atEpf70gJAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVEJTAgAAAAAAAABQCU0JAAAAAAAAAEAlNCUAAAAAAAAAAJXQlAAAAAAAAAAAVKKxTQn33ntvvOtd74qXvexlMWbMmNh6663jtNNOi3nz5i1xuV/84hexxx57lJcZN25cHH/88TFnzpy23W4AAAAAAAAAGCyGRQM99NBDscsuu8Saa64Zxx57bKyzzjpx8803x2c/+9n41a9+FT/60Y/Ky82YMSNe//rXxytf+co444wz4uGHH47TTz+9bGi47LLL2h0DAAAAAAAAAFJrZFPCOeecE08//XTceOONMWnSpPJjxxxzTCxevDi+973vxVNPPRVrr712nHTSSeX76667LtZYY43ycptuuml86EMfiiuuuCL233//NicBAAAAAAAAgLwaefqG2bNnl+833HDDJT4+fvz4GDJkSIwYMaK8zJVXXhlHHHFET0NC4cgjj4zVVlstzj///AG/3QAAAAAAAAAwmDTySAn77LNPfPGLX4wPfvCDceqpp8a6664bv/jFL+Jb3/pWHH/88TF27Ni46aaborOzM3baaaclvrZoWNh+++3jjjvuWKnr7j4yw9Luu+++2GKLLVbqewIAAAAAAABARo08UsLkyZPjc5/7XHkkhB122CEmTpwY73rXu+K4446Lr371q+VlHn300Z6jJyyt+NjMmTMH/HYDAAAAAAAAwGDSyCMlFDbddNPYa6+94h3veEd5pISf/vSnMW3atBg3blwce+yxMX/+/PJyI0eOXOZrR40a1fP5/rrrrrv6dQQFAAAAAAAAABisGtmU8N///d9xzDHHxD333BMve9nLyo+9/e1vj8WLF8cJJ5wQhx9+eIwePbr8+IIFC5b5+ueee67n8wAAAAAAAABANRp5+oZ//dd/LU/b0N2Q0O3Nb35zzJs3L+64446e0zZ0n8aht+JjEyZMGLDbCwAAAAAAAACDUSObEh5//PFYtGjRMh9fuHBh+b6zszO23XbbGDZsWNx+++1LXOb555+PGTNmxPbbbz9gtxcAAAAAAAAABqNGNiVstdVW5dEQitM39HbeeefFkCFDYrvttos111wz9ttvvzj33HPj2Wef7bnMOeecE3PmzIlDDz20DbccAAAAAAAAAAaPYdFAn/rUp+Kyyy6LPffcM4499thYd9114yc/+Un5saOPPrrn1AxTp06N3XbbLfbee+845phj4uGHH46vfOUrsf/++8fkyZPbHQMAAAAAAAAAUuvo6urqiga67bbb4pRTTimPmPCXv/wlNttsszjqqKPi05/+dHnahm433nhjnHDCCfHrX/86Vl999XjnO98Z06dPL/+/lSZNmlS+v+uuu1r6fQEAAAAAAACgXVZ1L7yxTQl1oykBAAAAAAAAgGwmreJe+JAW3x4AAAAAAAAAgJKmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEsOq+KaPPPJI3HTTTeX7wkYbbRS77757+R4AAAAAAAAAGBxa2pTw5z//Of7hH/4hLrrooli8ePESn+vo6Ih3vOMd8Y1vfCPWX3/9Vl4tAAAAAAAAAJC5KeGZZ56JvfbaK/7whz/E6NGjY//9949NN920bEa4//774/LLL48f/vCH8Zvf/CZuueWWWHPNNVt11QAAAAAAAABA5qaEL3zhC2VDwqGHHtrn0RCefPLJOPbYY+P888+PL37xizFt2rRWXTUAAAAAAAAAUEMdXV1dXa34RltvvXXMnz8//u///i+GDx/e52UWLlwYW265ZYwaNapsYMhk0qRJ5fu77rqr3TcFAAAAAAAAAGqxFz6kNTcj4oEHHojdd999uQ0JheJzxWUefPDBVl0tAAAAAAAAAFBTLWtKGD16dHmKhpdSXKa4LAAAAAAAAACQW8uaEnbccce4/vrr4/bbb1/uZX71q1/FddddFzvttFOrrhYAAAAAAAAAyN6U8LGPfSwWLlwYr3/96+Pkk0+O3//+9zF//vzy7e67747Pfvazsd9++8WiRYvKywIAAAAAAAAAuXV0dXV1teqbTZ8+vWxIWN637OjoiM997nNx4oknRjaTJk0q3991113tvikAAAAAAAAAUIu98JYdKaFQNBvccsstccQRR8Smm24aI0aMKN+K/3/ve98bN998c8qGBAAAAAAAAABgWcOixXbaaac4++yzW/1tAQAAAAAAAICGaemREgAAAAAAAAAAumlKAAAAAAAAAADqdfqGzTffPDo6OuKqq66KzTbbrPz3iiq+7r777lvZqwYAAAAAAAAAMjcl3H///eX7hQsXLvFvAAAAAAAAAIBVakpYvHjxi/4bAAAAAAAAABjchrT7BgAAAAAAAAAAObWsKeG0006LSy655CUv9+Mf/7i8LAAAAAAAAACQW8uaEk455ZS4+OKLX/JyRePCqaee2qqrBQAAAAAAAABqasBP37Bo0aIYMsRZIwAAAAAAAAAguwHvDrjrrrti7bXXbsn3+vWvfx1vfvObY5111okxY8bEtttuG2eeeeYSl/nFL34Re+yxR/n5cePGxfHHHx9z5sxpyfUDAAAAAAAAAMs3LFbBBz7wgSX+feONNy7zsW6dnZ3xhz/8IW6//fZ461vfGqvqiiuuiIMPPjh22GGHOPnkk2O11VaL++67Lx5++OGey8yYMSNe//rXxytf+co444wzys+dfvrpce+998Zll122yrcBAAAAAAAAAFi+jq6urq5YSb1Pw9DR0REr8q222267+J//+Z/YfPPNV/ZqY/bs2bHVVlvFbrvtFhdccMFyTwdx4IEHlo0Jd999d6yxxhrlx/793/89PvShD8Xll18e+++/f7TKpEmTeo4EAQAAAAAAAAAZrOpe+CodKeHaa68t3xfNCPvuu29Mnjw5TjjhhD4vO2LEiJgwYUJssskmsaq+//3vx+OPPx5Tp04tGxLmzp0bo0ePXqI5oWhcuPLKK+NjH/tYT0NC4cgjjyw/dv7557e0KQEAAAAAAAAAaGFTwt57793z/0cddVTsueeeS3ysKldddVXZaPDII4+Up4K45557YuzYsfHe9743vvrVr8aoUaPizjvvLE8ZsdNOOy3THLH99tvHHXfcsUpdIEsrTh2xxRZbrNT3BAAAAAAAAICMVqkpobezzjorBsq9995bNhy85S1viQ9+8IMxffr0uO666+LrX/96PP3003HeeefFo48+Wl52/Pjxy3x98bEbbrhhwG4vAAAAAAAAAAxGLWtKGEhz5syJefPmxUc+8pE488wzy4+9/e1vj+effz7+7d/+LU477bSYP39++fGRI0cu8/XFkRS6P99fyztPxvKOoAAAAAAAAAAAg9WQVn6zolHg85//fOy8886x1lprxdChQ/t8GzZs1XohRo8eXb4//PDDl/j4u9/97vL9zTff3HOZBQsWLPP1zz33XM/nAQAAAAAAAICaHynhmWeeiT333LM8kkDReDBixIjo6uoqT5Xw2GOPlf9f2GSTTVb5uiZMmFBez4YbbrjExzfYYIPy/VNPPRVbbLFF+f/dp3HorfhY8T0AAAAAAAAAgAYcKeELX/hC/Pa3v41jjjkmZs+eHYccckh0dHTEI488EnPnzo3vfve7MW7cuNh1113jj3/84ypd14477li+L753bzNnzizfr7/++rHtttuWR2S4/fbbl7hMcYqHGTNmxPbbb79KtwEAAAAAAAAAGKCmhIsvvrg8+sCZZ54Zo0aNKhsSuhX/PvLII+Oqq66Kiy66KL7yla+s0nW9853vLN//x3/8xxIf//d///eyEWGfffaJNddcM/bbb78499xz49lnn+25zDnnnBNz5syJQw89dJVuAwAAAAAAAAAwQKdveOCBB8omgOHDh5f/HjLkhX6HhQsX9nxsm222ib333rs8asInP/nJlb6uHXbYIT7wgQ/Ef/7nf0ZnZ2f5Pa+77rr44Q9/GCeeeGLPqRmmTp0au+22W/n54ggODz/8cNkQsf/++8fkyZNbkhsAAAAAAAAAqLgpoTgaQvHWbY011ijfP/bYY7Hxxhv3fHydddaJm266aZWv79vf/nZMnDgxzjrrrPLoC5tsskl89atfjY9+9KM9l3n1q19dHp3hhBNOiI997GOx+uqrxwc/+MGYPn36Kl8/AAAAAAAAADBATQlF48FDDz3U8++tt966fH/99dfHEUccUf5/cVSDX/7yl7Huuuuu8vUVR1/47Gc/W769mD322KMlTRAAAAAAAAAAQJuaEvbcc8/yqAXPPvtseUSCgw8+OI4//vjybc6cObHRRhvFf/zHf8T9998f7373u1t1tQAAAAAASyhO69p9WtkpU6a0++YAAMCg1tHV1dXVim904403xqc+9ak45ZRT4oADDig/dsYZZ8QnP/nJ6OjoKP9dXNW4cePi9ttvjwkTJkQmkyZNKt/fdddd7b4pAAAAADCojR07NubNmxdjxoyJuXPntvvmAADAoN4Lb1lTwvLceuutcdFFF8VTTz0VW221Vbz//e+PddZZJ7LRlAAAAAAA9aApAQAA6rMX3rLTN8yePbs8IkJx6obedt111/INAAAAAAAAABhchrTqG6211lqx//77t+rbAQAAAAAAAAAN17KmhDXXXDM233zzVn07AAAAAAAAAKDhWtaUsMMOO8R9993Xqm8HAAAAAAAAADRcy5oSTjjhhPjlL38ZF1xwQau+JQAAAAAAAADQYMNa9Y1Gjx4dRx99dBx22GFx0EEHxcEHHxwTJ06MUaNG9Xn5vfbaq1VXDQAAAAAAAABkbkrYZ599oqOjI7q6uuLHP/5x/OQnP3nRyy9atKhVVw0AAAAAAAAAZG5KOPLII8umBAAAAAAAAACAljYlfPe73/UTBQAAAAAAAAB6DPnb/wIAAAAAAAAAtI6mBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAACqhKQEAAAAAAAAAqISmBAAAAAAAAACgEpoSAAAAAAAAAIBKaEoAAAAAAAAAAOrdlDBkyJAYMWJEnHHGGS96ufe///0xbNiwVl0tAAAAAAAAADAYjpTQ2dkZn/rUp8rGg4ULFy73cl1dXa28WgAAAAAAAAAge1PC5MmTY+edd46zzz479tlnn3jiiSda+e0BAAAAAAAAgMHalDBu3Li4/vrr4z3veU/cfPPNscsuu8SMGTNaeRUAAAAAAAAAwGBsSiiMHDkyzjnnnJg+fXo8/PDDsccee8QFF1zQ6qsBAAAAAAAAAAZbU0K3E044IS6++OIYMmRIHHbYYXHKKadUdVUAAAAAAAAAQA0Nq/KbH3TQQXHLLbfEwQcfHJ/73OfizjvvLJsUAAAAAAAAAID8Km1KKGyzzTbxy1/+Mg455JC46KKLoqOjo+qrBAAAAAAAAABqoGWHLZg4cWKst956fX5unXXWiSuvvDI+8pGPRFdXV6uuEgAAAAAAAAAYDEdKuP/++1/080OHDo1//dd/jZNOOikWLVrUqqsFAAAAAAAAALIfKeHBBx+MRx555CUvN2bMGKdwAAAAAAAAAIBBoGVNCZtuuml5Cofjjz8+Fi9evNzLfeITn4jNN9+8VVcLAAAAAAAAAGRvSih0dXXFN7/5zTjggAPi6aefftHLAQAAAAAAAAC5DWvlNzvkkEOis7MzLr744th1113jkksuiVe84hWtvAoAAAAAkpg6dWosXLgwhg8fHlOmTGn3zQEAAKDuR0pYbbXV4n/+53/ipJNOinvvvTde85rXxGWXXdbKqwAAAAAgiWnTpsWpp55avgcAACCnljYldPv85z8f3//+9+P555+PN7/5zfGVr3yliqsBAAAAAAAAAAZbU0LhXe96V/z85z+PDTfcMD796U/H+973vrJJAQAAAAAAAAAYHIZV+c133HHH+NWvfhVvectb4pxzzol77rkn1lprrSqvEgAAAAAAAAAYDE0JheJICcURE44++ug499xzo6Ojo+qrBAAAAAAAAAAynb5h7733jq233rrPz40YMSK+973vxRe+8IVWXR0AAAAAAAAAUHMdXV1dXe2+ERlMmjSpfH/XXXe1+6YAAACDzNSpU2PhwoUxfPjwmDJlSrtvDsAKGzt2bMybNy/GjBkTc+fObffNIRFrC+rDY1UAaL5V3QvXlNAimhIAAIB2sfECNJX7L6pibUF9+H0EgOZb1b3wYa26IT//+c/7dfm99tqrVVcNAAAAAAAAANRQy5oS9tlnn+jo6Fjhyy9atKhVVw0AAAAAwEpyeH0AABrRlHDkkUf22ZSwePHieOihh+LXv/51zJ49O97ylrfEWmut1aqrBQAAAABgFUybNq3n8PqaEgAAqG1Twne/+90X/fxTTz0VH/rQh+K3v/1t3Hzzza26WgAAAAAAAACgpoYM1BWtvfba8b3vfS+eeeaZOPHEEwfqagEAAAAAAACA7E0JheLwX7vssktccsklA3m1AAAAAAAAAECTT9+woubMmVOeygEAAACov6lTp8bChQtj+PDhzjMOAAAA1Lsp4cc//nH8/Oc/j2222WYgrxYAAABYSdOmTYt58+aVRz/UlAAAAAC0rSnhAx/4wIseHeGee+6JO++8M7q6uuITn/hEq64WAAAAAAAAAMjelPDd7373JS8zceLE+OxnPxtHHnlkq64WAAAAAAAAAMjelHDttdcu93MjRoyI8ePHx6abbtqqqwMAAAAAAAAABktTwt57792qbwUAAAAAAAAAJDCk3TcAAAAAAAAAAMipZUdK6Pboo4/GWWedFTfccEPMnDmz/NiECRNizz33jPe9733l/wMAAAAAAAAA+bW0KeHss8+OY489NubNmxddXV09H7/zzjvjiiuuiGnTpsXXv/71eP/739/KqwUAAAAAAAAAMjclXHbZZfGBD3wghgwZEu985zvj8MMPj0033bT83AMPPBDnnXde/PCHP4yjjz46xo0bF2984xtbddUAAAAAAAAAQOamhKlTp0ZHR0f86Ec/igMPPHCJz2233XZx8MEHx3vf+9446KCDyiMmaEoAAAAAAAAAgNyGtOobzZgxI/bcc89lGhJ6KxoR9tprr7jjjjtadbUAAAAAAAAAQPYjJYwaNSomTJjwkpcbP358eVkAAAAAAGia4qjBCxcujOHDh8eUKVPafXMAAAZPU8Lee+8dt956ayxevDiGDOn7AAyLFi0qL1McLQEAAAAAAJqmOD3xvHnzYsyYMZoSAAAG8vQN06dPj7/85S9x9NFHxzPPPLPM52fPnh3HHHNMPPXUU+VlAQAAAAAAAIDcVvpICaeddtoyHzv44IPju9/9blx44YWx//77xyabbFJ+/IEHHogrrrgi5syZE+95z3vi/PPPj5NPPnnVbjkAAAAAAAAAkLMp4ZRTTomOjo7o6upa5nPPPvts2ZjQl3PPPbf8Ok0JAAAAAAAAAJDbSjclnHXWWa29JQAAAAAAAABAKivdlHDUUUe19pYAAAAAAAAAAKkMafcNAAAAAAAAAABy0pQAAAAAAAAAAFRCUwIAAAAAAAAAUIlh1XxbAAAAAKBVpk6dGgsXLozhw4fHlClT2n1zAAAAVpimBAAAAACouWnTpsW8efNizJgxmhIAAIBGcfoGAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKjGsVd/o5z//+QpdbsSIEbHuuuvGlltuGR0dHa26egAAAAAAAAAga1PCPvvs068mg9VWWy0OP/zwmDp1atmkAAAAAAAAAADk0rKmhCOPPDKefvrpuOSSS2LIkCGx/fbbx8SJE8vPPfTQQ3HHHXdEV1dXHHTQQTF//vyYMWNGfOc734lrrrkmbr311lh77bVbdVMAAAAAAAAAgBoY0qpv9OUvfzl+85vfxAEHHBC///3v4/bbb4//+Z//Kd9++ctfxt13311+7s4774xzzz03/vSnP8W73vWuuO+++8qvBQAAAAAAAAByaVlTwoknnhgLFiyIiy66KF7+8pcv8/ktt9wyLrzwwvIyxWXHjh0b3/72t8sjJBRHVwAAAAAAAAAAcmlZU8JPf/rT2GuvvWLUqFHLvczo0aNjzz33jEsvvbT89xprrBE77LBDedQEAAAAAAAAACCXljUlPPPMM+XbS5k9e/YSl1tvvfVadRMAAAAAAAAAgBoZ1qpvVJyy4dprr43f//738cpXvrLPyxSfKy7zile8oudjjz76qMYEAAAAAAAAoBamTp0aCxcujOHDh8eUKVPafXOg8Vp2pIR/+Id/iAULFpSncJg+fXrce++98dxzz5Vvxf9/4QtfiL333juef/758rKF+fPnx69+9avYcccdW3UzAAAAAAAAAFbatGnT4tRTTy3fAzU6UsIxxxxTHgnhX/7lX+Kf//mfy7eldXV1xUc/+tH40Ic+VP77gQceiCOOOCLe8Y53tOpmAAAAAAAAAADZmhIKX/3qV+OQQw6Jb33rW/GLX/yiPDVDYfz48bH77rvHhz/84dhjjz16Lr/11luXlwUAAAAAAAAA8mlpU0KhaD4o3gAAyM259QAAAAAAGPCmBAAABofinHrz5s2LMWPGaEoAAAAAAGDgmhI6OzvjL3/5SyxYsGC5l5k4cWIVVw0AAAAAAAAAZGxKuOqqq+Lzn/983HLLLeWhfJeno6OjbFwAAAAAAAAAAPJqWVPCT37yk3jb294WixYtirXXXjs222yzWH311Vv17QEAAAAAAACAwdqUcOqpp8bixYvjq1/9ahx77LExdOjQVn1rAAAAAAAAYBVMnTq1PNL58OHDY8qUKe2+OcAg0rKmhLvuuite+9rXxj/+4z+26lsCAAAAAAAALTBt2rSYN29ejBkzRlMCMKCGtOobrbbaajFx4sRWfTsAAAAAAAAAoOFa1pSw3377xe23396qbwcAAAAAAAAANFzLmhK++MUvxuzZs+OEE06Izs7OVn1bAAAAAAAAAKChhrXqG5111lnxxje+MU4//fS48MILY5999omXvexlMWTIsn0PHR0dcfLJJ7fqqgEAAAAAAACAzE0Jp5xyStls0NXVFX/84x/Lt+XRlAAAAAAAAAAA+bX0SAkAAAAAAAAAAC1vSjjqqKNa9a0AAAAAAAAAgASGtPsGAAAAAAAAAAA5aUoAAAAAAAAAAOp1+oZ99903Ojo64uyzz46Xvexl5b9XVPF1V1999cpeNQAAAKy0qVOnxsKFC2P48OExZcqUdt8cAAAAgNRWuinhuuuuK5sL5s2b1/PvFVV8HQAAALTDtGnTyueyY8aM0ZQAAAAAq0jzP5U1JfzpT38q32+00UZL/BsAAAAAAACAwUHzP5U1JWyyySYv+m8AAACAwcaEEAAAALSoKQEAAKAqNvWApjIhBAAAAEvSlAAAANSOTT0AAAAAGORNCUOHDl3pK+3o6IjOzs6V/noAAAAAAAAAIHFTwsYbb1w2F/TW1dUVDz74YM+/11prrfL9008/3fOxiRMnLvN1AAAAAAAAAEA+Q1b2C++///7405/+1PN2zz33xN/93d/FhAkT4lvf+lbZiDBr1qzy7Zlnnolvf/vbsdFGG5WXuffee1ubAgAAAAAAAADI05SwtKlTp8bVV18dP//5z+PDH/5wrLHGGj2fW3311eOYY46J66+/Pq666qo47bTTWnW1PdddHH1h2223XeZzv/jFL2KPPfYoz0U7bty4OP7442POnDktvX4AAAAAAAAAoMKmhHPPPTf23Xff2HzzzZd7meJzr3/96+O//uu/WnW18fDDD8e0adNi7Nixy3xuxowZ5fXNmzcvzjjjjDj66KPjO9/5Thx66KEtu34AAAAAAAAAoG/DokUeeeSR2GGHHV7yciNHjoyZM2e26mrjk5/8ZLzmNa+JRYsWxZNPPrnE50466aRYe+2147rrrus5csOmm24aH/rQh+KKK66I/fffv2W3AwAAAAAAAACo6EgJ48ePj2uvvTaefvrp5V7mqaeeimuuuaY8jUIrFKeKuOCCC+JrX/vaMp+bPXt2XHnllXHEEUcscSqJI488MlZbbbU4//zzW3IbAAAAAAAAAICKmxIOP/zwmDVrVrzhDW8omwWWdsMNN8QBBxxQNi285z3vWeXrK46McNxxx5WnZHjVq161zOfvvPPO6OzsjJ122mmJj48YMSK23377uOOOO1bqeidNmtTn23333bfSWQAAAAAAAAAgo5advuHkk08uGw9uvPHGeN3rXhcbbLBBbLLJJuXnHnjggXjiiSeiq6srdt999/jnf/7nVb6+b3/72+X3veqqq/r8/KOPPtpzBIelFR8rbisAAAAAAAAA0ICmhFGjRsXVV18dZ5xxRvzrv/5rPPTQQ/H444/3fH7jjTeO/+//+//iE5/4RAwfPnyVrusvf/lLfOYznykbIdZff/0+LzN//vzy/ciRI/u8rd2f76+77rqrz48XR0sAAAAAAAAAACpoSigUzQYnnHBC+VY0JcycObPnyAQTJ05s2fUUR1pYZ511ytM3LM/o0aPL9wsWLFjmc88991zP5wEAAAAAAACABjQl9FYcGaF4a7V77703vvOd78TXvva1nqaH7kaDhQsXxv333x9rrLFGz2kbuk/j0FvxsQkTJrT8tgEAAAAAAAAAfzMkKvC///u/8f/+3/+L6dOnxyWXXNLz8eKoBbNnz16l7/3II4/E4sWL4/jjj4/NNtus5+3WW2+Ne+65p/z/0047LbbddtsYNmxY3H777Ut8/fPPPx8zZsyI7bfffpVuBwAAAAAAAAAwgEdK+MMf/hDvf//7ywaBbkcddVS8+c1vLv//+9//fhx99NHx05/+NCZPnrxS11E0G1x00UV9ntLh2WefjX/5l3+JLbbYItZcc83Yb7/94txzz42TTz45Vl999fJy55xzTsyZMycOPfTQlc7J4DR16tTyaBzFaUqmTJnS7psDAAAAAAAAMHiaEh566KHYa6+94s9//nPZhLDnnnvGpz71qSUu8853vjP+/u//Pi688MKVbkpYb7314q1vfesyHy9O51Do/bliE3m33XaLvffeO4455ph4+OGH4ytf+Ursv//+K339DF7Tpk2LefPmxZgxYzQlAAAAAAAAAAzk6RuKUyY8+eST8e///u9x8cUXxyc+8YllLjN27NjytAm9j6RQpVe/+tVx1VVXxejRo+NjH/tYfOc734kPfvCDccEFFwzI9QMAAAAAAADAYNayIyX87Gc/i+222y4+8IEPvOjlNt1007jiiiui1a677ro+P77HHnvETTfd1PLrA6B9nE6lf/y8AAAAAACAxjclPPHEE7H77ru/5OWKTZHiEPgAsLKcTqV//LwAAAAAAIDGn75h3XXXjQcffPAlL3fPPffE+PHjW3W1AAAAAAAAAED2IyUUR0m4+OKLY8aMGbH99tv3eZnrr78+fvvb38b73ve+Vl0tQAoOrw8AAAAAAEBGLTtSwic/+cno6uqKt7zlLXHZZZfFokWLlvj8NddcE+9973tj2LBh8dGPfrRVVwuQ5vD6p556avkeAAAAAAAAsmhZU8Kuu+4aZ555ZsycOTMOOuigWGuttaKjoyMuvPDCWHvtteMNb3hD+blvfOMbsd1227XqagEAAAAAAACA7E0Jhb//+7+PG264IQ4++OCyIaE4csKzzz4bCxYsiAMOOKA8fcMxxxzTyqsEAAAAAAAAAGpqWKu/4Wte85q4+OKLy4aEJ598MhYvXhzrrbdeDB06tNVXBQAAAAAAAAAMpqaEbsWREtZff/2qvj0AAAAAAAAAMNiaEjo7O+OnP/1p3HbbbeWREnbdddf4wAc+UH5u5syZ5ce22WabGDassn4IoAamTp0aCxcujOHDh8eUKVPafXMAAAAAAACANmhpZ8CNN94YRxxxRDz00EPl6RuKoyUUm5LdTQk333xzvPOd74wf/vCH8fa3v72VVw3UzLRp02LevHkxZswYTQkAAAAAAAAwSA1p1Tf63e9+F5MnT45HH300jjvuuDj//PPLxoTeDj744HKD8sILL2zV1QIAAAAAAAAA2Y+U8LnPfS6ee+65uPTSS2P//ffv8zIjRoyIV7/61XHHHXe06moBAAAAAAAAgOxHSrj22mtjl112WW5DQreNNtooZs6c2aqrBQAAAAAAAACyNyU8/fTTsfHGG7/k5ebOnRsLFy5s1dUCAAAAAAAAANmbEjbYYIP4v//7v5e83O9///sVal4AAAAAAAAAAJqtZU0J++67b8yYMaM8jcPyXHTRRWXjwhve8IZWXS0AAAAAAAAAkL0p4Z/+6Z9ixIgR8da3vjW+9a1vxWOPPdbzuaeeeir+8z//Mz74wQ/G2LFj4+Mf/3irrhYAABph6tSpccopp5TvAQAAAAAGi5Y1JWy99dZx3nnnxeLFi+PYY4+NjTbaKDo6OuLss8+O9dZbLz70oQ/FggUL4r/+679is802a9XVAgBAI0ybNi1OPfXU8j0AAAAAwGDRsqaEQnGUhN/+9rdx3HHHlU0Ko0aNKo+esPnmm8eHP/zh+M1vfhNvfvObW3mVAAAAAAAAAEBNDWv1N9xkk03ia1/7Wqu/LQAAAAAAAAAwWI6UsO+++8aXvvSlPj/34IMPxqxZs1bldgEAAAAAAAAAg7Up4brrrou77767z89tttlm8alPfWpVbhcAAAAAAAAAMFibEl5MV1dX+QYAAAAAAAAADF6VNCUAAAAAAAAAAGhKAAAAAAAAAAAqoSkBAAAAAAAAAKiEpgQAAAAAAAAAoH5NCWeffXYMHTp0mbeOjo7lfq54GzZsWOsSAAAAAAAAAAC1tErdAV1dXQP6dQAAAAAAAADAIGhKWLx4cWtvCQAAAAAAAKygqVOnxsKFC2P48OExZcqUdt8cAJbDeRQAAAAAAABonGnTpsW8efNizJgxmhIAamxIu28AAAAAAAAAAJCTpgQAAAAAAAAAoBKaEgAAAAAAAACASmhKAAAAAAAAAAAqoSkBAAAAAAAAAKiEpgQAAAAAAAAAoBLDqvm2AADNM3Xq1Fi4cGEMHz48pkyZ0u6bAwAAAAAAjacpAQDgr6ZNmxbz5s2LMWPGaEoAAAAAAIAWcPoGAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEoMq+bbAgAAAAAA0B9Tp06NhQsXxvDhw2PKlCntvjkA0BKaEgAAAAAAAGpg2rRpMW/evBgzZoymBADScPoGAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASmhIAAAAAAAAAgEpoSgAAAAAAAAAAKqEpAQAAAAAAAACohKYEAAAAAAAAAKASw6r5tgAAAAAAEYsXLy7f2qWzs3PAr3PIkCHlGwAAoCkBAAAAAKhI0Yyw7wEHxszHHh/Q65w/f375/8X7rf9uxwFvEJgwbsO45vJLNSYAAICmBAAAAACgygaBoiFh8vQfxJCh1b8UOfepP8fVZ06Jrr/+e+iIkXHQ6RfFQFq8qDN+duJhZXZNCQAAoCkBAAAAAKhY0ZBQdVNC0ZBwzddPjrmznoiOjo7o6ipaEzoGpBkCAABYPq26AAAAAECjFQ0JV33txJjzl8ditXXHxdDhI9p9kwAAgL/SlAAAAAAApGlI2O+j08sjJAAAAPWgKQEAAAAASNOQMHbt9dt9swAAgF40JQAAAAAAjaMhAQAAmkFTAgAAAADQKBoSAACgOTQlAAAAAACNoSEBAACaRVMCAAAAANAIGhIAAKB5NCUAAAAAALWnIQEAAJpJUwIAAAAAUGsaEgAAoLk0JQAAAAAAtaUhAQAAmk1TAgAAAABQSxoSAACg+TQlAAAAAAC1oyEBAABy0JQAAAAAANSKhgQAAMhDUwIAAAAAUBsaEgAAIBdNCQAAAABALWRpSFi8eHG7bwIAANSGpgQAAAAAoO2yNCQUOebOfqbdNwMAAGpDUwIAAAAA0FaZGhKuPnOKIyUAAEAvw3r/AwAAAABgIGVqSHghx+MxdIhZMOqpaJhpZ9NMZ2fngF7fkCFDyjcAoL00JQAAAAAAbZGvIaHIsWEMedYmKPVTNCPse8CBMfOxxwf0eufPn1++nzd/fmy82ZYxdo01B6xRYMK4DeOayy/VmAAAbaYpAQAAoIVMnwHAYG5IGBf7Hve5uH76R9p9s2AZxWPUoiFh8vQfxJChwwbs9+P/3rtbRFdXdHR0xEFf/MGA/Z4vXtQZPzvxsDK3x6sA0F6aEgAAANowfVZcdu7sZ3peJF2VibH585/reb/NDjvHQBq3wfpx3ZU/80IvAP2StSGhyDF6jbXbfbPgRRUNCQPRlFD8flzz9ZOjq6ur/PfQ4SNi9fXGV369AED9aEoAAAAY4Omz4gXaq8+cEoueX1we4vn1x09dpY2Yb75t2+hcMD+GjhgZB37pwhgozz75WFx60rtNnwHQL5kbEoocxXQ2DHa9fz+KIyS80JjQ0e6bBQC0iaYEAACAAZw+654YmzvriXJSrNUbMQN5KN5rv/mZtp6qAoDmyd6QACz7+zHrwXujc8ELR/YCAAYnoywAAAADJMsGxt9yPO4ICQAM4r+Dzc4BA/X74QgJAIAjJQAAAAyALBsYS+bYMIY8qykBMiiOetLuI590dg7sIe+LpiqNVQOn+0hBuf4ONjcHVMHvBwCwPJoSAAAAKpblBdqlc+x73Ofi+ukfaffNGjRsGlOVYl3te8CBMfOxx8v/nzv7mfJ98bMfu8aaldZg/vznet5vs8POLfu+K5JjwrgN45rLL7XGBkBRh6vPnFKeuijT38GqcrT7/n6g7+sL7u+bL8vjXQCgGpoSAAAAKpTlBdq+coxeY+1236xBuWnc/e+B2jiuatN4RXLYNB4Yxc+/WFt7fvqbce03PxOLnl9cHgnl9cdPrfz+6ptv2zY6F8yPoSNGxoFfurBl91fFBviL5Vi8qDN+duJhPWuPahW/50U9Vl9vfKq/g1U1JPS+v6/i+/d1v1vlff2KcH/fbFke7wIA1dGUAAAAUJEsL9AuL0exqcfAbhpPnv6DmD/7qZfccK37pvGKbBzbNB5Yxc+5aEgoJtnbtXE8ZOiwlp0ioJ056Ht9Fb/nTa3HQP49731/34rfiRW9363qvn5FuL9vtiyPdwGAamlKAAAAqECWF2iz5MiiaEho54ZrqzbIbBzXj0l2qlRsNA/EkTcyravi/raVTQn9ud9tdTMEebnfBQBWlEeYAAAALdb9wn/TX6D1QnO9OCc7VTLJTpWKUwQ0sR5Z1lWWHNSLdQUA9IemBAAAgBaycUxVTLJTJZPsVKmJh+TPsq6y5KBerCsAoL80JQAAALSQjWOqYpKdKplkh3zrKksO6sW6AgBWhqYEAACAFrJxTFVMslMlk+yQa11lybGij72Kt3bp7Owc8Pvrdt1nD6Z1BQC0lqYEAACAFrJxTFVMssPfWFdUIcu6ypJjRRTNCPsecGDMfOzxAb3e+fOf63m/zQ47v+RtLI6kVbwvHicWf89XpalgwrgN45rLLx3wxoTBtK4AgNbTlAAAANBCNo6pikl2qM+6GmyT2e2ezh4s66oVsuRYUcXvYdGQMHn6D2LI0IF7qfubb9s2OhfMj6EjRsaBX7rwRetx9ZlTylN7FUfSWtXG1cWLOuNnJx7W0+AwUAbbugIAWk9TAgAAQAs1ccPGC81Uwboi67pqxWT2ykxO92cyuwrtms4eLOuqFbLkWBlFQ8JANiUsfd3Lq8c1Xz855s56IlZfb3xj6zGY1xUA0DqaEgAAAAYxLzRTBeuKzOtqVSezV3ZyekUns6vQrunswbSuVlWWHFlkqUeWHABA+2lKAAAAGKS80EwVrCsGy7pamcnsVk1Ot2siPJs6rqvBnCOLLPXIkqOdp9oBAP4mV2szAAAAg+qFZurFuqIKWdZVlhxZZKlHlhxZNo6z1CNTjuJUOQBA+2lKAAAAGGSyvNBMvVhXVCHLusqSI4ss9ciUI8PGcaZ6ZMlRnConS8MLADSdpgQAAIBBJMsLzdSLdUUVsqyrLDmybOxlqUemHBk2jjPVI1eOx2PIEFsgAFAHTkAHAAAwSGR5oZl6sa6oQpZ1lSmHSfb6yJfj8Rja4I3jfPXIlGPDGPJsc9cWAGTiLzIAAMAgkOWFZurFuqIKWdZVphwm2esjZ44NY+waa0YzdSWsR54crz9+qiMlAEBN+IsMAACQXJYXmqkX64oqZFlX+XI0+xDo+eqRK0eTN44XLXw+XT3kAACq4PQNAAAAiXmBlipYV1Qhy7rKmaPJh0A3yV73HKPXWDuap+uF/3Z1patHphyLF3W2+6YBAH+lKQEAIIHicLrtPKRuZ+fAv9hTTFM1daIKBkqWF5qpF+uKatg4rnOOfY/7XFw//SPRRCbZ6yPLxnGRo1hXhY6OjnT1aJosOQAgO00JAAANVzQj7HvAgTHzscf79TVzZz9Tvi829otzuPZ3g3/+/Od63m+zw84x0CaM2zCuufxSjQmwHF6gpQrWFVWxcVwfJtnrJfO6anKOYl0Vhg4f0dgc13z95DT1aHoOABgMGtmU8Mtf/jLOPvvsuPbaa+P++++PddddN17zmtfE5z//+dhqq62WuOzvf//7+NjHPhY33nhjjBgxIt70pjfFGWecEeuv78EJAJBD0VhQNCRMnv6DGDJ02Aq9cHP1mVNi0fOLy0PxFudwXZkXbr75tm2jc8H8GDpiZBz4pQtjIBXTVJeecGhPUwWwJC/QUo0ck+zUjY3jOjHJXi/Z11WTcxTr6oXGhI5omuI5VPF8cO6sJ9LUo8k5GLzafcTLdhz10hEvYXBrZFPCF7/4xbjpppvi0EMPje222y4ee+yx+MY3vhGvfvWr45Zbboltt922vNzDDz8ce+21V6y55poxbdq0mDNnTpx++ulx5513xm233VY2KQAAZFE0JLxUU0L3REzxAtTq641v2Qs3K9IM0UpFjuJID8CyvEBLVTJMslMvNo7rJVsOk+z1kG1ddeeY9eC90bnghSPHNU3xPKpoUG/l88GBlmVdMXitzBEvW3VkzHYe9dIRL2Fwa2RTwsc//vH4/ve/v0RTwWGHHRavetWr4gtf+EKce+655ceKRoS5c+fGr371q5g4cWL5sV122SXe8IY3xHe/+9045phj2pYBAGCgZXnhpvtID+2eKIB6MslOFXJMslMvmTaOM9zvZsxhkr39Mq6r7hz/edSe0VTF+iqOmJepHk3MweDW3yNerqgVOTJmu456WRx16WcnHuaIlzCINbIpYbfddlvmYy9/+ctj0qRJ5ekaul144YVx0EEH9TQkFPbbb7/yFA/nn3++pgQAYNDI8sLN33I8HkM9iYUUk+ztPmypQ5YOjkl26iXLxrFJ9noxyV4vWddVU3P0VjwOWdlT+LVbxnowuK3IES9X1MocGXOgj3oJDG5p7nGKJ7CPP/542ZhQeOSRR+KJJ56InXbaaZnLFkdLuPTSS1fqerq//9Luu+++2GKLLVbqewIAVCnLCzdL5tgwhjzbnE09qF4zJ9mXPmzpSx1qtFWqPmTpi+Vo0iFLs0yyUy9ZNo5NsteLSfZ6ybyumphjacXjkibmyFoPaAW/H0ATpGlK+K//+q+yEeG0004r//3oo4+W78ePH7/MZYuPzZo1KxYsWBAjR44c8NsKADBQsjwxXTrHvsd9Lq6f/pF23yyohSZPsvc+bOn82U+95KFGW6XKQ5a+2CFTm3TI0iyT7NRLpo1jk+z1kSVHbybZ2y9Ljr7U/THIYKsHrCq/H0BTpGhKuPvuu+Mf/uEf4rWvfW0cddRR5cfmz59fvu+r6WDUqFE9l+lvU8Jdd93VryMoAAC0S5Ynpn3lGL3G2u2+WVALWSbZi4aE/h5qtFVafQ7XduVopSyT7NRLlscl3Uyy10OWHEszyd5eWXJkoR6wfH4/gCZpXlvkUh577LF405veFGuuuWZccMEFMXTo0PLjo0ePLt8XR0NY2nPPPbfEZQAAssnyxDRLDhiISfYXdDT2EOhN/z3Pcn/VV44mrivqJcvvR28m2dsvS46+mGRvnyw5slAPWD6/H0DTNPpICc8880y88Y1vjKeffjpuuOGGmDBhQs/nuk/b0H0ah96Kj62zzjpO3QAApJTliWmWHFCFTJPsDoFeH1ly9G54Kd7aqbOzc8A3Muu2mZltXXUzyd5eWXJkkaUeWXJkoR6wfH4/qPtzoYF+HlTX50IkaUoojnZw8MEHxz333BNXXXVVbLPNNkt8fqONNor1118/br/99mW+9rbbbovtt99+AG8tAMDAyPLENEsOqEKmc7IXHAK9HrLk6L2udt19z3hq9pwBf2Fq/vznet5vs8POK337i4ad4n1x+4sN8BXJMWHchnHN5ZfW5sW4bOuqt7r8jAdjPbLkyCJLPbLkyEI9YPn8fvBSiucQ+x5wYMx87PHKn3+0+nnQqqjbcyGSNCUsWrQoDjvssLj55pvjRz/6Ubz2ta/t83LveMc74uyzz46HHnooNt544/JjV199ddnI8LGPfWyAbzUAQLW6z2Xe9CemnmDD4Pr9cAj09suSo7fixbSiIeHAL/4whgwd2Jc+vvm2baNzwfwYOmJkHPilC1eqHsUpTYojiBQNOyv6+7F4UWf87MTDel5IbLeM66rJstQjS44sstQjS44s1AOWz+8HK6J4PlA0JEye/oMVei60ss8/Wv08aFUUz4UuPeHQ2jwXIlFTwic+8Ym45JJLyiMlzJo1K84999wlPn/EEUeU70866aT44Q9/GK973eviH//xH2POnDnx5S9/OV71qlfF+9///jbdegCA6s7JPnfWE41+YuoJNgy+3w+HQG+vLDmWe/jOocMGvClhidvQz+vubjAs/p47pQmtkqUeWXJkkaUeWXJkoR6wfIP998PpCFbi61fguVBVzz8G+jlYkaM40gP11simhBkzZpTvf/zjH5dvS+tuSiiOjnD99dfHxz/+8finf/qnGDFiRLzpTW+Kr3zlKzFy5MgBv90AAFVxTnbILfPvRxOnGLLUI0uOLLLUI0uOLLLUI0uOLLLUI0uOLNQD8v9+rGxTwcqcjqAVlnc6glac6qAOpyPIsq66j/TQzqYVEjclXHfddSt82UmTJsXll19e6e0BAGg352SHvPx+1EuWemTJkUWWemTJkUWWemTJkUWWemTJkYV6QP7fj1WZZO/v6Qhapa/TEbTqVAftPjVbpnX1Qo7HY2gDBx4Gm0Y2JQAAsCTnZIec/H7US5Z6ZMmRRZZ6ZMmRRZZ6ZMmRRZZ6ZMmRhXpA/t+PVk2yt/PUbMX1OtVanXNsGEOe1ZRQdyoEAJCAc7JDPn4/6iVLPbLkyCJLPbLkyCJLPbLkyCJLPbLkyEI9YHBNsjfx1H1565ErRzGo1eT1NVg4UgIAQAJNfOCd5YkQVMHvR71kqUeWHFlkqUeWHFlkqUeWHFlkqUeWHFnOmZ2lHlCFLL8feSbZuxLWI1eO0Wus3e6bxQrQlAAAwIDL8kRosChe+Gzni5+dnZ0D3uTTzkYfvx/1kqUeWXJkkaUeWXJkkaUeWXLYOK6XTDlW9pzsdZKlHlCFLL8fS+fY97jPxfXTPxJNtGjh8+nqkS3H4kUD+7oRK0dTAgAAAyrLE6HBonhBfd8DDoyZjz0+oNc7f/5zPe+32WHnFbqdxQu0xfuioaA4pcnKNhZMGLdhXHP5pW1pTPD7US9Z6pElRxZZ6pElRxZZ6pEph43j+siUoxXnZG+3LPWAKmT5/cgzyd71wn+7utLVQw7aQVMCAAADxhOI5ile9CwaEiZP/0EMGTpwTx+++bZto3PB/Bg6YmQc+KULV+gF2kXPLy4PCVmcS3Bl11XRXf+zEw/raW4YSH4/6iVLPbLkyCJLPbLkaPrGXrZ6ZMph47g+8uV4PIY28NR92Q6BDlXId3/V7En2IkdxhIRCR0dHuno0TZYcg52mBAAABoQnEM1WNCQMZFPC0tf9Yuvqmq+fHHNnPRGrrze+sevK70e9ZKlHlhxZZKlHphwm2esjX45mbxznq0emHE0+J3uOQ6BDFXLeXzU/R3GEhMLQ4SMam6N4vSRLPZqeg4jmPoIBAKAxPIGgClnWVZYcWWSpR5YcTZ80zlaPTDlMstdHzhwblqeSaqYck+w519W48ohg7TjF2KrLcQh0qELW+6sMOYojJLyg+31zFI9zi8e7merR5By8wJESAAAYdE8giidn7dyI6Owc+MMWFi9eNvMFzOasq8GcI4ss9ciUwyR7feTLYZK9DrLm2Pe4z8X10z8STZRhkj3rumrqOdmzHAIdqmCSvd45Zj14b3QueC6aqHgeVZzi0hElqRNNCQA0dlOvHRt72Tb1YDA+gSjut/Y94MCY+djj/fqa4gld8b64Dygm3/p7XzB//nM977fZYecYaBPGbRjXXH5pivuwOq6rwZyj3Y8FWiVLPTLlMMleHzlzNPkQ6CbZ6yTLxnGWSfbM66qp52TPcAh0qHKSvTgVYcb7qww5/vOoPaPJ66t4vJupHk3MwZI0JQAwYJt6rdrga+fGXqZNPRisTyCK+53ivmvy9B/EkKHDVnhjrOgwL57QFYdMXZkc33zbttG5YH4MHTEyDvzShTGQihcvLz3h0J773Car67oazDlMstdHvhzNnmS3cVwvJtnrJeu6avLGcYZJ9uzrqumHQH+hMaF5h0CHqphkr48sOXorXvtZ2dev2i1jPXiBpgQABmRTr5UbfO3a2CteWPrZiYel2NSDqjXhCURx3/VS91/dh1IsJhda+UJBf+83V5WN43rJlMMke33kzNHkSXYbx3Vikr1eMq+rJudo+iS7Q6DXS6ZDoLPiHFG1f0yy10OWHEsrBgCbmCNrPXiBpgQYBNr9gLBJDwapZlOvyg2+gd7Ya/LvYsHvIwMhyxOITDlsHNdHvhwm2esg37pq+iS7jeM6McleL9nXVdNkmWR3CPR6yXYIdAbmiKqrcsTVph5R1SR7+2XJ0Zcmvh6buR68oDk7OcCAPiBc1XNnN/XBINUazA8sqn5ytjK/j6v6e74i/D4OPll+z/PlaPbGcb56ZMphkr3dcq6r5k6y2ziul2w5TLLXQ7Z1lWGS3SHQ6yNLDgb2iKqresTVph5R1SR7e2XJkYV6DA6aEmikdk8bN2nSeGUeELbi3NlNfTBIdbI8sFjZ+54qn5ytzO9jK37Pq/59HGz39RmOLJHl9zxnjiZvHJtkrxOT7PWSdV01eZI9y8Zx5nXVNCbZ6yXjusowye4Q6PWQJQcDe0TVVh9xtUlHVG3i6z9Zfs+z5MhCPQaP5txDQ5unjV9q8r/KieNWTBqv6APCKs6d3aQHg1QjywOLVpyTvdVPzlbm+qv4PW/HfX0V97vtOMpL7xwTJ24ct950gyembZQ1R3M3jk2y14lJ9nrJvK6anqPJG8cm2evFJHu9ZF1XTc3Rm0Ogt1+WHNSLdVUvWeqRJUcW6jG42Cmkcdo1bfxik/9VThwP5OR/lj8ATT9ndjZZ1pVzstfrvr6q+92BPspL7xxj19kgnpr9ZEOP9GKSvU6ybBybZK8Xk+z1kn1dNU2WjWOT7PVikr1eMq+rJuZYmkOgt1eWHNSLdVUvWeqRJUcW6jH4aEqgsdo5bdz7epswcTyY/gCs6iR7uw8X37TTgwymdZXhnOxN3Dju675+oO53q/4bs3QOk+ztle/+qvkbxybZ6yNjDpPs7ZdxXTV949gke31kydGbSfb2y5KjL81r6s5Tjyw5qBfrql6y1CNLjizUY3DSlACrIMsdZ6YcqzLJ3q5Tgyx9yPit/27Hyk4FUtXpQbKvqxznZLdxXCcm2esl87pqco4Mk+w2juvDJHu9ZF1XTc3RzSR7PWTJsTST7O2VJUcWWeqRJQf1Yl3VS5Z6ZMmRhXoMXpoSYJDfcebLsfKT7O06NciSh4wfEYtXX7+SU4EM5OlB8q2rpp+T3cZxnZhkr5fs66ppskyy2ziuF5Ps9ZJ5XTUxR28m2dsvS46+mGRvnyw5sshSjyw5qBfrql6y1CNLjizUY3DTlACD+I4zZ45Vn2Rv56lBig0+pwKphyyT7DaO6yVbDpPs9ZBtXTV9kr1g47g+suToZpK9HrLkWJpJ9vbKkiOLLPXIkiOLLPXIkoN6sa7qJUs9suTIQj1oXpsytF3zzsme+Q/A0jmKyZ4mTmCYZK+XbDkybBxnqkemHEWjywuaO8meqR7ZcjRxXXWzcVwPWXL0ZpK9/bLk6EsTn0dlqUeWHFlkqUeWHFlkqUeWHNSLdVUvWeqRJUcW6kGhec84oc2ck70+MuUwyV4fGXM0eeM4Yz0y5SgaXZqqmGQvTvmTqR5y1IeN4/bLkmNpJtnbK0uOLLLUI0uOLLLUI0uOLLLUI0sO6sW6qpcs9ciSoxh4yCBLPVh1mhJghZlkr5NsOUyy10PWHE3dODbJXi8m2esl87pqYo6l2Thuryw5+mKSvX2y5MgiSz2y5MgiSz2y5MgiSz2y5KBerKt6yVKPTDmKgZqmy1IPWqN5r2hAG5hkr5eMOUyyt1/mHE1cVwWT7PWRJUdvJtnbL0uOvtg4bp8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sOaiXLOvKJHu9ZMpRDGo1fX1lqQet07xXy2CAmWSvl6w5TLK3V9Z11dQc3Uyy10OWHEszyd5eWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJkkaUeWXJQL1nWlUn2esmX4/FGDjxkqwetNazF3w9SWXqS/YXGhI7GbhzPnfVEo/8AZPlD1leO/zxqz2ii4oH3oucXx+rrjU9VDznqwSR7+2XJ0ZcmPrHLUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sObLIUo8sOVZl0rj42nZPKnd2dg74c+Uqny9nWVcm2eslZ44NY8izzXvt6gVdKepB62lKgBX8QzbrwXujc8Fz0UQ2jusjS45u/397dwJ313TucXxlJKWhRCMRokhMMRQxE0NRs7a0RU3Vmq6abo2l11VjS3GV65oSNU9VuW6oIeaQmGKIIRFN0UjSGCqIiGTfz7Pe7jfnPTl537PfvCdrrf/+fT8fDW9Cz3896+yzz17r2ZtO9jio5KhGJ3tYKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPVRypL6wp1YPpRzt7WS3ObndTru4yVOmukVt5swvmn9d69uD/WuxHParbRiw6yWN2jjQd/nebuRfRjTkv6/Yyd4lwYYHtYVjvXnVlGO7X/zGPXbeES5F9ij01OuBxmBTAiDeyW5YOI6DSo5KdLKHp5KjFjrZw1HJoUKlHio5VKjUQyWHCpV6qORQoVIPlRwqVOqhlINboMdDKcfCdLLbv2cbEr573m2uc5dFu4xy+fcGua9mzXRdui/mhpx6pc9hDWd2fbeR1+HmzvnK3X/qj5o3P3QkpXml0cmusXCsOa+acvTo+Q2XnqZHoNsdx1OuBxqHTQmA6AdZJRaOw1PJUY1O9rBUcqhQqYdKDhUq9VDJoUKlHio5VKjUQyWHCpV6qOSgkz0uSjm4BXo89HIsfCe7bUhY1JsS5sncyMvO8I/k5Q644el0smssHKvOqzyHbRJKLYdtdDH2KPRU64HGYlMCIPhBVo2F47BUctRCJ3s4KjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPZRy0MkeD70cad8CXa8eSjnoZA9Nc16l28musnCsPK9SzmEbXUyXbt2TzIHGS/cTGehgKh8AtbBwHI5KDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQoVIPlRypdxqr1UMpB53s8dDM0ds31KSJZ7LHnMPuHJvidVE62eOiliP1hWO1eijlsI0uTfJfgZZS/EQGOpzKB4AKlXqo5FChUg+VHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMpBJ3s89HJMTXRhT7UeWjnSXTimkz0mSjnoZI+HYo6UF44V66GUwza6AK1J82wP6EAqHwAqVOqhkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5Uu80VquHUg462eOhmYNO9tA051W6Oehkj4taDjrZ46CaI9WFYzvPtfNdtXoo5UhxowsWLTYloNRUPgBUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPZRy0MkeD70caXeys3AcFzrZ46I6r1LOQSd7PBRz0MkennKOFOeVse9Rdr6rVg9yoEzS/DYBdAAOnHFRqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c6Tcyc7CcUxUctDJHhe1HHSyx0E1B53sYanOq1RzVM4vO99NNYdKPVRyIAw2JaCUOHDGRaUeKjlUqNRDJYcKlXqo5Eh9YU+tHko56GSPh14OOtljoDevUu9kZ+E4Jko56GSPh2KOlDvZWTiOC53scVGeVynmqGTnuXa+m2IOlXqo5EA4KX5bBRYKB864qNRDJYcKlXqo5FChUg+lHCwcx0MpB53s8dDMQSd7aJrzKu0cLBzHQy0HnexxUM2Raie7YeE4Hio5cnSyx0ElRzX7HpViDpV6qORAWGxKQKlw4IyLSj1UcqhQqYdKjtQX9tTqoZSDheN46OWgkz0GevOKTvYYqM6r1HOwcBwHxRx0soenOK9S72Q3LBzHQSVHJTrZw1PJUUuK36NU6qGSA+Gl9y4G2okDZ1xU6qGSQ4VKPZRy0MkeD70caS8c69VDKQed7KFpzqu0c9DJHg/FHCkvHCvWQykHnexhqc6rVHNUYuE4PJUc1ehkD0slhwqVeqjkQBzSvZILFMCBMy4q9VDJkXqnsVo9lHLQyR4PzRwpLxzTyR4TOtnjojqvUs9BJ3scVHOkunBMJ3tc6GSPi/K8SjFHNRaOw1LJUUuK36NU6qGSQ4VKPVRyIB7pfUoABXHgjItKPZRy0MkeD70cdLLHQDVHugvHdLLHRCkHnezxUMxBJ3t4yjlSnFeGTvZ4qOSoRCd7eCo5aknxe5RKPVRyqFCph0oOFSr1UMmBuKR3BgKU8MCZeqexWj2UctDJHg/NHHSyh6Y5r9LNQSd7XNRy0MkeB9UcdLKHpTqvUs2Ro5M9Dio5qtHJHpZKDhUq9VDJoUKlHio5VKjUQyUH4sOmBMhSOXDSyR4XvRxpd7KzcBwXOtnjojqvUs5BJ3s8FHOk3MnOwnFc6GSPi/K8SjFHJTrZw1PJUUuK36NU6qGSQ4VKPVRyqFCph0oOFSr1UMmBOKV3hguU6MBJJ3tcNHOk3MnOwnFMVHLQyR4XtRx0ssdBNUeqneyGheN4qOTI0ckeB5Uc1ehkD0slhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHIgXmxKgByVAyed7HHRm1epd7KzcBwTpRx0ssdDMQed7OEpzqvUO9kNC8dxUMlRiU728FRy1JLi9yiVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg7ELb1vUEAJDpx0ssdFc16lnYOF43io5aCTPQ6qOehkD0t1XqWaoxILx+Gp5KhGJ3tYKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPVRypH7H8TJgUwJkqBw46WSPi+q8Sj0HC8dxUMxBJ3t4ivOKTvbwlOdVijmqsXAclkqOWlL8HqVSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyaFCpR5KOayhBnFL7xs6IH7gVMlBJ3s8FHOkvHCsWA+lHHSyh6U6r1LNUYlO9vBUctTCwnE4KjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSQ4VKPVRyqHSyq9RDKYc1aqnML2XpXf0BhA+cSjnoZI+Dao5UF47pZI8LnexxUZ5XKeaoRid7WCo5VKjUQyWHCpV6qORQoVIPlRwqVOqhkkOFSj1UcqhQqYdSDoVOdqV6aOWYmmTDQ9lQISRN78Cpk4NO9vCUc6Q4rwyd7PFQyVGJTvbwVHLUkuIXO5V6qORQoVIPlRwqVOqhkkOFSj1UcqhQqYdKDhUq9VDJodJprFIPpRwKnexK9dDL0ds31CBu6V1dBKQPnDo56GQPS3VepZojRyd7HFRyVKOTPSyVHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDKQed7PHQy5F2J7tePbRyWKNWyvOrLKgQksTCcVzoZI+L8rxKMUclOtnDU8lRS4on3ir1UMmhQqUeKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSI/VOY7V6KOWgkz0emjlS7mTPBOtBDix66V29Blg4jopKjhyd7HFQyVGNTvawVHKoUKmHSg4VKvVQyaFCpR4qOVSo1EMlhwqVeqjkSH1hT60eSjnoZI+HXo60O9lZOI6LUif7nNlfytWDHAiha5D/V2AhsXAcB5UclehkD08lRy0pnnir1EMlhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHUg4WjuOhlINO9nho5ujtOs9I79pVjoXjuHP06PkNl56s6X+zTK4e5EAI6X7CoNRYOA5PJUc1OtnDUsmhQqUeKjlUqNRDJYcKlXqo5FChUg+VHCpU6qGSI/WFPbV6KOVg4TgeejnoZI+B3rxKvZOdheOYKOWwjS6mU6dOSedQqYdCjrLjTglIEgvHYankqCXFE2+VeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0ckx1XRK8vqBbD6UcdLKHpjmv0u1kZ+E4Lmo5bKOL6dKte7I5Rl52hkw9Us8B7pSARLFwHI5KDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQoVIPlRypdxqr1UMpB53s8dDM0ds31KSJTvaY0MkeF9V5lXoOhYVjpXoo5bCNLk3yX9Nh57l2vqtUj5RzoEmKZzBAclQOnCo5VKjUQyWHCpV6qORQoVIPlRwqVOqhkkOFSj2UctDJHg+9HGnfAl2vHlo50l04ppM9Jko56GSPh2KOlBeOFeuhlMM2uqTKvkfZ+a5SPVLNgXnSPDsGEqJy4FTJoUKlHio5VKjUQyWHCpV6qORQoVIPlRypdxqr1UMpB53s8dDMQSd7aJrzKt0cdLLHRS0HnexxUM2R6sIxnezx50hxo0vl/LLzXaV6pJgDLbEpAWgglQOnSg4VKvVQyaFCpR4qOVSo1EMlR+oLe2r1UMpBJ3s89HKk3cnOwnFc6GSPi+q8SjkHnezxUMxBJ3t4yjlSnFeGTvZ4qOSoZOe5dr6bYg7FeqBJmt++gASoHDhVcqhQqYdKDhUq9VDJoUKlHko5WDiOh1IOOtnjoZkj5U52Fo5jopKDTva4qOWgkz0OqjnoZA9LdV6lmiNHJ3scVHJUs+9RKeZQrQeasCkBaACVA6dKDhUq9VDJoUKlHio5Ul/YU6uHUg4WjuOhl4NO9hjozavUO9lZOI6JUg462eOhmCPlTnYWjuNCJ3tclOdVijkq0ckenkqOWlL8HqVcDzRJb1YCkVM5cKrkUKFSD5UcKlTqoZSDTvZ46OVIe+FYrx5KOehkD01zXqWdg4XjeKjloJM9Dqo5Uu1kNywcx0MlR45O9jio5KhGJ3tYKjlUUI9ySPfKJBAhlQOnSg4VKvVQyZF6p7FaPZRy0MkeD80cKS8c08keEzrZ46I6r1LPwcJxHBRz0MkenuK8Sr2T3bBwHAeVHJXoZA9PJUctKX6PUqmHSg4V1KM80jvqAZFSOXCq5FChUg+lHHSyx0MvB53sMVDNke7CMZ3sMVHKQSd7PBRzpLxwrFgPpRx0soelOq9SzVGJhePwVHJUo5M9LJUcKlTqoZJDBfUolzSvTAKRUTlwquRIvdNYrR5KOehkj4dmDjrZQ9OcV+nmoJM9Lmo56GSPg2qOVBeO6WSPC53scVGeVynmqMbCcVgqOWpJcWO3Sj1UcqhQqYdKDhXUo3zS+1QFIqNy4FTKQSd7PPRypN3JzsJxXOhkj4vqvEo5B53s8VDMQSd7eMo5UpxXhk72eKjkqEQne3gqOWpJ8XuUSj1UcqhQqYdKDhUq9VDJoYJ6lFN6Z2xARFQOnEo56GSPh2aOlDvZWTiOiUoOOtnjopaDTvY4qOagkz0s1XmVao4cnexxUMlRjU72sFRyqFCph0oOFSr1UMmhQqUeKjlUUI/yYlMCUPIDp14OOtljoDevUu9kZ+E4Jko56GSPh2KOlDvZWTiOC53scVGeVynmqEQne3gqOWpJ8XuUSj1UcqhQqYdKDhUq9VDJoUKlHio5VFCPckvvGwEQAZUDp2YOOtlD05xXaedg4TgeajnoZI+Dao5UO9kNC8fxUMmRo5M9Dio5qtHJHpZKDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQQT3ApgSgMDrZY0Ine1xU51XqOVg4joNiDjrZw1OcV6l3shsWjuOgkqMSnezhqeSoJcXvUSr1UMmhQqUeKjlUqNRDJYcKlXqo5FChUg+VHCqoB0x63ziBwOhkj4dSDjrZ46GYI+WFY8V6KOWgkz0s1XmVao5KLByHp5KjGp3sYankUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyWENDwpU6oGFx6YEoG50ssdELQed7HFQzZHqwjGd7HGhkz0uyvMqxRzVWDgOSyVHLXSyh6OSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDKYc11KROpR7oGOld0QACoJM9Loo56GQPTzlHivPK0MkeD5UclehkD08lRy0sHIejkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyUHnexxUcphjVqpzy+VeqDjpHe1DFjE6GSPi2oOOtnDUp1XqebI0ckeB5Uc1ehkD0slhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0ckxNsuFBrR7oWOnOaGARUOlkZ+E4LnSyx0V5XqWYoxKd7OGp5KglxS92KvVQyaFCpR4qOVSo1EMlhwqVeqjkUKFSD5UcKlTqoZIj9U5jtXoo5aCTPR6aOXr7hpo0ZRL1QMdL72ossIiodLIbFo7joZIjRyd7HFRyVKOTPSyVHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlSX9hTq4dSDjrZ46GXI+1OdpWFY7151ZTDGrVSnV/2KPTU64HGSHNGAw2m1MluWDiOg0qOSnSyh6eSo5YUT7xV6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDKQcLx/FQykEnezw0c6Tcya6xcKw5r9LNYRtd/P9mWeI50CjpXe0HGkznA2AeFo7DU8lRjU72sFRyqFCph0oOFSr1UMmhQqUeKjlUqNRDJYcKlXqo5Eh9YU+tHko5WDiOh14OOtljoDevUu9k11g4Vp1XKeewjS7GHoWeag40VtcG//eBpKh8AFRj4TgslRy1pHjirVIPlRwqVOqhkkOFSj1UcqhQqYdKDhUq9VDJoUKlHko56GSPh16Oqa5LgtcXdOuhlKO36zwj3blFJ3vcOXr0/IZLjcrCsfK8SjmHbXQx9ij0FHOg8dL9RAY6mMoHQC0sHIejkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c6R8C3Q62WNCJ3tcVOdV6jlSXzhWq4dSDtvo0iTdR6GjsVL8RAY6nMoHgAqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0cqR9C3S9emjlSHfhmE72mCjloJM9Hoo5Ul44VqyHUg7b6AK0Js2zPaADqXwAqFCph0oOFSr1UMmhQqUeKjlUqNRDJYcKlXqo5Ei901itHko56GSPh2YOOtlD05xX6eagkz0uajnoZI+Dao5UF47tPNfOd9XqoZQjxY0uWLTYlIBSU/kAUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQykEnezz0cqTdyc7CcVzoZI+L6rxKOQed7PFQzEEne3jKOVKcV8a+R9n5rlo9yIEySfPbBNABOHDGRaUeKjlUqNRDJYcKlXqo5FChUg+VHKl3GqvVQykHnezx0MyRcic7C8cxUclBJ3tc1HLQyR4H1Rx0soelOq9SzVE5v+x8N9UcKvVQyYEw2JSAUuLAGReVeqjkUKFSD5UcKlTqoZIj9YU9tXoo5aCTPR56Oehkj4HevEq9k52F45go5aCTPR6KOVLuZGfhOC50ssdFeV6lmKOSnefa+W6KOVTqoZID4aT4bRVYKBw446JSD5UcKlTqoZJDhUo9lHKwcBwPpRx0ssdDMwed7KFpzqu0c7BwHA+1HHSyx0E1R6qd7IaF43io5MjRyR4HlRzV7HtUijlU6qGSA2GxKQGlwoEzLir1UMmhQqUeKjlSX9hTq4dSDhaO46GXg072GOjNKzrZY6A6r1LPwcJxHBRz0MkenuK8Sr2T3bBwHAeVHJXoZA9PJUctKX6PUqmHSg6El967GGgnDpxxUamHSg4VKvVQykEnezz0cqS9cKxXD6UcdLKHpjmv0s5BJ3s8FHOkvHCsWA+lHHSyh6U6r1LNUYmF4/BUclSjkz0slRwqVOqhkgNxSPdKLlAAB864qNRDJUfqncZq9VDKQSd7PDRzpLxwTHuHH58AADMMSURBVCd7TOhkj4vqvEo9B53scVDNkerCMZ3scaGTPS7K8yrFHNVYOA5LJUctKX6PUqmHSg4VKvVQyYF4pPcpARTEgTMuKvVQykEnezz0ctDJHgPVHOkuHNPJHhOlHHSyx0MxB53s4SnnSHFeGTrZ46GSoxKd7OGp5Kglxe9RKvVQyaFCpR4qOVSo1EMlB+KS3hkIUMIDZ+qdxmr1UMpBJ3s8NHPQyR6a5rxKNwed7HFRy0EnexxUc9DJHpbqvEo1R45O9jio5KhGJ3tYKjlUqNRDJYcKlXqo5FChUg+VHIgPmxIgS+XASSd7XPRypN3JzsJxXOhkj4vqvEo5B53s8VDMkXInOwvHcaGTPS7K8yrFHJXoZA9PJUctKX6PUqmHSg4VKvVQyaFCpR4qOVSo1EMlB+KU3hkuUKIDJ53scdHMkXInOwvHMVHJQSd7XNRy0MkeB9UcqXayGxaO46GSI0cnexxUclSjkz0slRwqVOqhkkOFSj1UcqhQqYdKDhUq9VDJgXixKQFyVA6cdLLHRW9epd7JzsJxTJRy0MkeD8UcdLKHpzivUu9kNywcx0ElRyU62cNTyVFLit+jVOqhkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5ELf0vkEBJThw0skeF815lXYOFo7joZaDTvY4qOagkz0s1XmVao5KLByHp5KjGp3sYankUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyZH6HcfLgE0JkKFy4KSTPS6q8yr1HCwcx0ExB53s4SnOKzrZw1OeVynmqMbCcVgqOWpJ8XuUSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyWHCpV6KOWwhhrELb1v6ID4gVMlB53s8VDMkfLCsWI9lHLQyR6W6rxKNUclOtnDU8lRCwvH4ajkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSg4VKvVQyaHSya5SD6Uc1qilMr+UpXf1BxA+cCrloJM9Dqo5Ul04ppM9LnSyx0V5XqWYoxqd7GGp5FChUg+VHCpU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeSjkUOtmV6qGVY2qSDQ9lQ4WQNL0Dp04OOtnDU86R4rwydLLHQyVHJTrZw1PJUUuKX+xU6qGSQ4VKPVRyqFCph0oOFSr1UMmhQqUeKjlUqNRDJYdKp7FKPZRyKHSyK9VDL0dv31CDuKV3dRGQPnDq5KCTPSzVeZVqjhyd7HFQyVGNTvawVHKoUKmHSg4VKvVQyaFCpR4qOVSo1EMlhwqVeqjkUKFSD6UcdLLHQy9H2p3sevXQymGNWinPr7KgQkgSC8dxoZM9LsrzKsUclehkD08lRy0pnnir1EMlhwqVeqjkUKFSD5UcKlTqoZJDhUo9VHKoUKmHSo7UO43V6qGUg072eGjmSLmTPROsBzmw6KV39Rpg4TgqKjlydLLHQSVHNTrZw1LJoUKlHio5VKjUQyWHCpV6qORQoVIPlRwqVOqhkiP1hT21eijloJM9Hno50u5kZ+E4Lkqd7HNmfylXD3IghK6hXwDQHiwcx0ElRyU62cNTyVFLiifeKvVQyaFCpR4qOVSo1EMlhwqVeqjkUKFSD5UcKlTqoZSDheN4KOWgkz0emjl6u84z0rt2lWPhOO4cPXp+w6Una/rfLJOrBzkQQrqfMCg1Fo7DU8lRjU72sFRyqFCph0oOFSr1UMmhQqUeKjlUqNRDJYcKlXqo5Eh9YU+tHko5WDiOh14OOtljoDevUu9kZ+E4Jko5bKOL6dSpU9I5VOqhkKPsuFMCksTCcVgqOWpJ8cRbpR4qOVSo1EMlhwqVeqjkUKFSD5UcKlTqoZJDhUo9lHLQyR4PvRxTXZcEry/o1kMpB53soWnOq3Q72Vk4jotaDtvoYrp0655sjpGXnSFTj9RzgDslIFEsHIejkkOFSj1UcqhQqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c/T2DTVpopM9JnSyx0V1XqWeQ2HhWKkeSjlso0uT/Nd02Hmune8q1SPlHGiS4hkMkByVA6dKDhUq9VDJoUKlHio5VKjUQyWHCpV6qORQoVIPpRx0ssdDL0fat0DXq4dWjnQXjulkj4lSDjrZ46GYI+WFY8V6KOWwjS6psu9Rdr6rVI9Uc2CeNM+OgYSoHDhVcqhQqYdKDhUq9VDJoUKlHio5VKjUQyVH6p3GavVQykEnezw0c9DJHprmvEo3B53scVHLQSd7HFRzpLpwTCd7/DlS3OhSOb/sfFepHinmQMk2JcyaNcudfPLJrm/fvq5Hjx5uk002cQ8++GDol4WSUDlwquRQoVIPlRwqVOqhkkOFSj1UcqS+sKdWD6UcdLLHQy9H2p3sLBzHhU72uKjOq5Rz0MkeD8UcdLKHp5wjxXll6GSPh0qOSnaea+e7KeZQrAeapPntq4CDDz7Y/f73v3f777+/u/TSS12XLl3cLrvs4p588snQLw3iVA6cKjlUqNRDJYcKlXqo5FChUg+lHCwcx0MpB53s8dDMkXInOwvHMVHJQSd7XNRy0MkeB9UcdLKHpTqvUs2Ro5M9Dio5qtn3qBRzqNYDJdiUMGbMGHfrrbe68847z/3ud79zhx12mBs5cqTr37+/O+mkk0K/PAhTOXCq5FChUg+VHCpU6qGSI/WFPbV6KOVg4TgeejnoZI+B3rxKvZOdheOYKOWgkz0eijlS7mRn4TgudLLHRXlepZijEp3s4ankqCXF71HK9UCT9GZlAXfeeae/M4JtRsgtvvji7tBDD3VPP/20e/fdd4O+PmhSOXCq5FChUg+VHCpU6qGUg072eOjlSHvhWK8eSjnoZA9Nc16lnYOF43io5aCTPQ6qOVLtZDcsHMdDJUeOTvY4qOSoRid7WCo5VFCPckj3ymQdXnzxRTdw4EDXs2fPFj/feOON/a9jx44N9MqgSuXAqZJDhUo9VHKk3mmsVg+lHHSyx0MzR8oLx3Syx4RO9riozqvUc7BwHAfFHHSyh6c4r1LvZDcsHMdBJUclOtnDU8lRS4rfo1TqoZJDBfUoj05Z/m1Z0KBBg1zv3r3dww8/3OLnr732mlt77bXdlVde6Q4//PBC/03792p54403XLdu3dyqq666UK8Z9Xlr4ttuyW/2s9aTRfb/+eG7b9lVS///ucyKq833+3PnfOU++3Ca/7Vzl65uiWW+6X9daFnmPp32nltt1VUWyXh1VI62xqthFnK8Qsyt1sarYfNqEY9XR+cINb/mzpntPp36dzdw4ICk51fD59Uiml+NyBFibjXn+Oor1ymbm9T8qhyvpfuuvGjmVYPnVyPfH4tyfs2fYzn3+fQpSX0+No+XLex1X2zRzKsGnXstiuPuophfNXN07rJIz1U7gr3+j//+1+Z/XnqFbzV+XjXg2LXIPs8bPL9azZHQuX1ljjlfzmr6YYLfhb7Wa3n32Yf/WHSf5w2aX3W9PxKYX9U5Zn/xeZjv2R0wXuPHT3BZp86uc9dF9HnegLlV6Lgb8fxaUI5g13E6aH4t2XsF17lLN7eodNR4Ff48X8TXCevVVo5UrxNOmDjRff2bKwa/jlNUu88TIzt21Zsj1fkVy3XCei30949IxqtIjpQ/G0NfJ6x3vDrse20HfD6ibRMnTvRr4TNmzHDtIb0pwTYIrL766m7EiBEtfv7222/737v44ovdcccd1yGbEt58803Xo0cPt9JKKy3Ua0bcbzbDxpP6MF7FMF7FMF7FMF71Y6yKYbyKYbyKYbyKYbyKYbyKYbyKYbyKYbzqx1gVw3gVw3gVw3gVw3gVw3gVw3gVw3jVj7EqhvHS984777gllljCTZkypV3//iJqBwnDNgnMmvWvDoUKX3zxRfPvFzVu3LgOeW1IT74hhTlQH8arGMarGMarGMarfoxVMYxXMYxXMYxXMYxXMYxXMYxXMYxXMYxX/RirYhivYhivYhivYhivYhivYhivYhiv+jFWxTBeaEt6D60poE+fPu7999+f7+f5z/r27RvgVQEAAAAAAAAAAAAAUA7SmxLWX399N378ePfJJ5+0+Pno0aObfx8AAAAAAAAAAAAAADSG9KaEvffe282ZM8ddddVVzT+zxzkMHTrUbbLJJm7FFVcM+voAAAAAAAAAAAAAAFDW1QmzjQf77LOPO/XUU920adPcaqut5q6//no3adIkd+2114Z+eQAAAAAAAAAAAAAASJPelGD++Mc/ujPOOMPdcMMN7qOPPnLrrruuu/fee93WW28d+qUBAAAAAAAAAAAAACCtU5ZlWegXAQAAAAAAAAAAAAAA9HQO/QIAAAAAAAAAAAAAAIAmNiUAAAAAAAAAAAAAAICGYFMCAAAAAAAAAAAAAABoCDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAAAAAAAAAGgINiUAAAAAAAAAAAAAAICGYFMCAAAAAAAAAAAAAABoCDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAAAAAAAAAGgINiUAACBq7ty5oV8ChGVZFvolAAAAAAAAAAASwKYEoE4svqAjMZ/QSC+88IL/tXPnzmxMqNOsWbNCv4RkfPDBB/7XTp06hX4pSXjwwQfd5MmTQ7+MJPFZWQzjVXy88jHjsxKNnF9oXeU4MWbFMF5ohC+//DL0S0jK6NGj3YwZM0K/jCRxDGsd56r1Y6zQSMyvYji3R1vYlAAsgH2pmDZtmvviiy+aF184kNaHcWqbzaeZM2cyVnX6+OOP3XvvvecmTJgQ+qVE7+6773YbbbSRO/jgg/0/szGhbVdffbU7+eST3WeffRb6pURv+PDh7uijj3aXXXZZ6JeShNtvv93ttNNO7qijjgr9UpJgx/gnnnjC3XTTTf4zknOv1s2ePdt9+umnzf9s48Xxvn6VG6vss9Iw31r31VdfhX4JSc0vNu/Vx953n3/+uf/7fMx4Ly7Y888/71566SX/98yxtt14443u0ksvDf0yknH//fe7c889188z3odtu+2229yQIUPcNddcE/qlJGH69Olu4sSJ/i/b/MK5fv3nEpyrto7z+uI4r68f78ViOLdHW9iUANRwxx13uN13392ts846brPNNvOLe++//z5f+lvx6KOPuvvuu8+f1DBOrXvggQfcgQce6NZee223/fbbu3POOSf0S4raPffc4/bee2+33nrruW222cb96Ec/Cv2Sou72t0Vj88gjj7AxoQ7XX3+9O/zww/2xizFq+6Luj3/8Y/9l4lvf+lbolxO96667zo/Xkksu6Z555hn/F1q/qLvXXnu5nXfe2R1wwAFu00039RtEOado/bNx3XXXdd/5znf8xirbyJFfJEHr7r33Xrfffvu5TTbZxP3kJz9xt9xyi9/gwcaO2vLjV9euXbmAWYennnrKnXnmmX5T2vHHH+/vYDVnzpzQLyva70UHHXSQW2uttfyxzD477XyWY39td955pxs8eLC75JJL3Kuvvhr65URv2LBh/nv31KlT/WckWnfDDTe4fffd1z322GOcg9U5v2y8bHHd7oyGtpsn9txzT7f++uu7rbbayh133HG+KYB5VttDDz3kjj32WLfLLru4E044wV9zzTdtc67aEuf1xXBe3zHn9Ry7auPcHnXJALRw5513Zt26dcv22GOP7PTTT8++973vZcsuu2y24oorZjfffHP2z3/+M/RLjM5dd92VderUKfv2t7+dPfTQQ9lXX30V+iVF64YbbsiWWWaZbPDgwdnee++drbHGGtmSSy6ZHXvssaFfWrTjZeOz6667ZmeddVa23377Zd27d8+OPvro0C8tWldccUX2ta99Ldt9992zpZdeOjv00EObf2/OnDlBX1tshg4d6o9d//7v/5698847oV9O1J5++ulsueWWy4477rjszTffrPln5s6du8hfV+xz69e//nV27733Zosttlj2y1/+MvTLivrca/HFF88OOOCA7I9//GN20UUXZT179syOOeaY0C8tSjfddJP/LNxss82yn/70p/78y+bbuuuumz344IPZZ599FvolRs3O5238tthii2yvvfbKVlllFT/ftttuu2zq1Kn+z3A8m+eOO+7w82uXXXZp/tns2bODvqbYz13t83LgwIH+Lzsns/P9//u//wv90qJjx3s7V7X34k9+8hM/Tva9+4EHHgj90qJln4v2fuzRo4f/zBw3blzolxT9udgJJ5yQvffee80/5/tQbXb+YN+7jz/++Ozll1+u+Wf4bJx/ftl1nFNOOcX//XXXXRf6ZUXrlltu8fNrt91289d1dthhB//P999/f+iXFu3nox3n11xzzWyDDTbwn5X2zwceeGD20Ucf+T/DddcmnNcXw3l9x57XM7da4twe9WJTAvAv9kHyySefZN/5znf8RoS///3v/udffPFF9uSTT2ZDhgzJvv71r2cXX3xx80kgMv+F1S6C9+/fP+vdu3e29tpr+y+0nCDP77HHHvNjZBeTJkyY4H82ZcoU/4WsT58+2XPPPRf6JUblvvvuy3r16uU3IEycONH/zBZa1lprrey73/1u6JcXLZtHdgI4ZswYfxJoX/ZtY0J+ssxJc5Nhw4ZlnTt3nu9C5bRp0/yi+4cffhj09cXmf/7nf7IBAwZkzz//fIsxvOSSS7Lf/e53/ljG3Gpy7bXXNl8Et3MJO4/44Q9/6M8hRo0aFfrlRcfGyBbVDznkkGzSpEnNF0a23HLL7Mgjj2zxZ5ljWfb222/7i222GcH+3tjx6qSTTvLzzi5e2sWTGTNmhH6pUZo8eXK2+uqrZwcffHDzsf/zzz/3Cwp2jrbSSitl48eP9z9n4Srz5xIrr7yyv5hk88sWE3JcwJyfLa7Y5uNf/OIX2auvvprNnDkze+qpp/wY2ndMzDN8+PDmzWf5e+4f//iHn2cnn3xyiz/LsX/eGNgcs/P8E0880Y+VbdhmY0Lti+L5xuO//vWvzT+3axRcy6k9t2xxfauttsreeOON5t+z49df/vKXbOzYsf6z0vDZ2PQdKD/Xt3Ow1157zS/C7Lzzzr6JiWNWSzY+9jl4xBFHtHg/2nWKSy+9tMWfZewy/33broMdfvjh/vPR3nN2PWzDDTf0826jjTbKpk+f7v9s2d+PnNcXw3l9MZzXF8O5PYpgUwJQwRYOVl111exnP/vZfAdJO5Ba57Htirvqqqv8h1HZffnll9mvfvUr/wFjO8VffPFFf9I3aNAgNiZU+fTTT/2XCtvAYV/qK9k/287eyy+/PNjri419ud9nn32ybbfdNnv99debv0TYe9R29NoJoJ0MPvHEE34eYh47NtkmF1tEtosiP/rRj/yJYeUdE/JNHmVlC3m2IcHGyTad5ew9aot9dkyzjVb7778/8+tfbP7YhqCcfYG145Z1t9t49evXL7v66qtLv5nDNlPZ3LILu3aRJHf77bf7cfqP//gP/898Ps5jF7/t3Mo2c1SOjXUC2XvSLipZR5VtXuDLa5Y9++yz/r139913t7jAZucZm266qZ9ndqHELgoYxqwluxi+xBJLNHcz5hfg7Fhvi1g2dnY8yy9slvkCpm1ssYtwNqf++7//29/5xf7evg/luIA5jy0Q7LnnntmOO+7YfO6asw18NnaPPvposNcXE9uAZufy3//+95s3apu//e1vfmOVLSTbe9C+f+fnYWV+L1ayc3g7htmFcjvXt3ll56tsTJjHviPmC3eV12xOO+20bOutt/bn/z/4wQ/8XYfyhXZk2SabbOI3tOdsjPLzfPvVNizw2di0UdvGxO6AljcyGTtX7dKlS/NxnvOveeyucd/4xjd8k46ZNWuWbwizaz12HdE20z7++OPNG2rLPL/M9ddf7xdCn3nmmRY/t++W1iRg88++l+cbE8o81zivrx/n9cVwXl8M5/YoioeOAhVmz57tevTo4T766CP/z7ZxJ3/+VK9evfwz9uzZZ6effrobN26c/3mZn0/VrVs3t+WWW7ojjzzSP7veng130003uU8++cQ/H86eac/zU+d588033e677+7WW289/8//2hjmll9+ebfsssu6N954I/RLjIY9g32bbbZxhx56qFtjjTX8z+w52UOHDnX33Xefe+utt9xZZ53ldtttN7fBBhu4MWPGhH7JUbD32+KLL+6++93vutGjR7uePXv6Z87aM9rvuOMOd8ghh/jnONozCfPjXBmtsMIK7uKLL/bHqmuuucZNnjzZP6vRjl8bb7yxu+CCC9zqq6/un3G/+eab8wxa5/wxyj7v7K9jjjnGjRo1yj9H9dlnn/XPth84cKA/7t98883+s7SsVlttNfeHP/zBnXLKKa5Pnz7NP99nn338e+/yyy9377//vuvSpYs//sP55wvae8yeKZuz96Wdc9kzjW+//Xb/ntx0003d8OHDSz9uNlb2HrM5lLN/XmKJJfzxy56lan9/4okn+uO8Pbux7GNWqXv37n68/vGPfzQ/S9U+O+2cdv/993fnnXee/2f7TPj444/9uUdZx8+O9zbP7JzhiCOO8M9QPemkk/xze/fYYw//Z3gW7TwffvihP0YNGTKk+dw1t9lmm/n34pQpU4K9vpjYe2yZZZZxBxxwgP/czI0YMcJ/H7LzL/tuudFGG/nvmXYsK/N7sXLcVlllFbfddtu55557zh122GH+mGXnXueee64bP368/3OvvPKKKzM7Lu2www7u5ZdfdldddZX/mX1nvOiii/wY2ryy50Pb98xf//rX7vPPPw/9kqNQeV5h7z97fv3ZZ5/tRo4c6cfq9ddf98eyd955p9TvR5tfdlyyz8S+ffs2/9y+b9s1w3POOaf5/AtNpk+f7v75z3/6c/78XMyO8zbH7BzDrlHYs9rt3OKDDz4o9fwyU6dOdV988YVbaqmlWlyXXnrppf1f9rlp18PsM8COX2Wea5zX14/z+mI4ry+Gc3sUVngbAyDuwgsv9Dve8g606p2n1tFnt4eybjRkLboa83Gy7gS7YwKPcpi/O9t2CdbaEWi3YrMdhYbxamJ3Raj0v//7v/69ac+0t1vaWeeLPZvQdonbe9LuCoAm1nFszz3Lb4We33nCnmtvHRy33XZbVvZd9bY797/+67+ybt26+bGyu+SMGDHCdxsbm0/2uB7rDNpjjz2ysrNbt+bPSrXbsdmt4iuPVbaT3B6rYrdJfPfdd7MyW9AxPL+V8KmnnkoXQtWx3h6bZWNju+vt1rf5Lf7sGGbjaV0Im222mT+3yOdXWY9f9l6zLk97Tuorr7zS4vfscVD2jPG8i8+6YTD/o9qsM2/99dfPXnrppfnet/arHfvtDkM2B8v+Xs0fQZOz7pb82dmVnVXW9Ygs+9Of/tTcOVt5rm/HLbtV7nnnnef/uezzyrzzzjst/vmKK67w88oe22Z3AbDvTNa1bY8+so5te4QbmtjdmKzrLO80s8do2dj9+Mc/zgYPHuy/g9t7tczsDo52Vy8bF/ueuMIKK/jrO/k8so7R7bff3p/nW8doWc8pKo9V1jVr5xd33XWXv2vCH/7whxZdx9bNbr9v1y3K/oioyjtsVM4du+OqzSm7Hma4rtPEOv7tvMoe12bdsnYMy8/17XbyNp/su6XdHWCbbbYp/fy65557/Pj89re/bXG3F5tPNj52nrrXXnv56xhle659ZU47dn388cec17eiel7Y+Wh7zuvLOL/MnXfe2a7z+rKOV+XjeQzn9mgNmxKAKu+//74/WbYv+nZr+OqDrX04X3DBBf7LRuVtv9FS5caEBx54oPnno0eP9mOMlvNq8803b3ESaPINDGWXj5EtpOePJMjZScyVV17pT3Sqn0dYZs8991y24oorZi+88ELzz2zB2G75bbe3q3yUQ5nZlwc7Uf7mN7+ZnXHGGc1f0PIvsXZBxJ7Va8+7rHy+ahnZQp4tgtr8sccT2JfXavaZ2bVr1+zMM88M8hpjZ/PKLuTa52J+HCvLF9a22K38bAF9nXXW8Y85sjF66623mn/f3pv2OAI71h9//PFZ2dktbm0sbEHFxsXee0cddZR//7388sv+z9jmWVtUYI41qRyHW2+91Y+fbbCaMmVK88/zY79ddLINMrbpsXqDZFnUup1mPoYLuoBp/449N7qMF5jaWniyz1A7L6t+nqptMirbho7quZXPK1sQtcWqjz76qMV5mm2qtXOPysWGsh678r8fOXJkNnDgwBaPiTr33HP9e9Ieh3T++ednZVX5XrTvQbax2K5J2PfF/L2W/2rHd7u195AhQ/iszLLs4Ycf9hvY7fNvqaWWal7szMcrf3SnbXAfNWpUVkYLutV0/nNbkLEN2rbZFi2PXzfeeGP2rW99K+vVq5fffLDlllv6xb587Oz9aAtX9j2z8vphWeeXbTKzzz5bULfH89hY5Zs5pk2b5jfGLL300v5Rd2Vj2avnFuf1rY9X5dyqbirkvH7+8ao8l6h1jt/aeX3Z5lj1/LK/59we9WBTAlDD2LFj/SKVnShXfuHKuxFsV5x9YNvJD9remDBo0CD/Jde+XFg3su3u5TntLU9wrLvRTpRzdvJnCwq2kIx5Kneg5n8/depU/360zUKYx9539uXC3mt2Qc6e43j11Vdn++67Lx20FexLg+2ArlwArZxftqPXxsvu+lJ2r776qr/QlnfjWWeCyb+E2CYO2zFuz1hF7WO9zTUbv9/85jehX1J0bB7ZZg173mzl8Sm/GG5f/m1+lfHiWy02TjYeNp9sw5ltnrK7ceQXQuwipl2stG7ksj6v8ZFHHvF3wMmP55UXleyOJXbh296LlR3FeUfafffd58e2TBuQq8er1iJdrQuY+d2E7Lx/iy22yI488shSLPBVj1dr7NjWv3//Fsc2W2Q4+OCDs7PPPlt+vOodq8oNGvl70eaVzTP7/CyLtsbL7oBmi8a20J5fELZF0B49evixsi40+y5Z1vGq/MyzDm27IF59F698ftlGR1uIt3Nc9fdhPeNlxyObQ3mXdi4/t7DmEvu9oUOHZmVR5Fhvd9yzO1ZZA5PdZa6MWjv3mjhxot+4YddtTj/99Pnml/2eza/LLrssK/u5ly3W/fCHP/TjYefzdmdH23R2/fXXN/85e9a9XUcsy+ZGe0/Z+8s2t9jdEc4666zm37M7bXBe3/p42fE9lx/3Oa+vb7yqNyaU/by+rfGq/Lzk3B4LwqYEYAHsC6wt4tktEG1RqpKdNNruXjuxQevszgi2MWHAgAHZKqus4k+o7db7aMluv2abEGwB2U5m7HaTdrHJbmeH+VVePLGLIrYYY92ipgwngPWMjd0+cpdddvG7ne19Z52h5oMPPvB3Sih753+l6i9llXPIuv5tF2/1poWysmOSLYDalwi7XV3lLSWte7tv375+MdSU/b1Yiz2OwDYM2R0B7MIcap9/2UWlynMvm0v2xdcW4a0bNP9Z2dkdJux28fY5WH13pcMOO8yfe5V1E6jdftqOU3b3s4ceeqhFt1S+icrGyDo+TzvttPnej3YXHfseMGHChKzM41VL/t6zTaHWNWv/3lZbbZVtvPHG/vOy+rEiZR+v/OKc3QEmv1OV3dFk11139Z+ndt5f9rGqPp5XnufbMd9u81qWRfa2xsvGxn5m8yffBGrfG+1c3z4PbLHP/n07vpVhoaqtY73JH81Wa77ZBXW7RmEbH8tgQeOV/2rjYIt79mdsk0v1goH9+/Z+tIaTMih6rM/v0GHnFmVsAGhrfuWsucuufeWPmszfs/aIEPtczK/rlH1+WYe6jckJJ5zgN1dVn19Zs5c1NpXhO5GNg12Dt+vze++9d7bGGmv4a4D5+8yuSXBe3/Z42d02qnFeX2y8yn5eX+94cW6PtrApAWjjFuirrbaaP7jarq+nn37anyDbh40ttNvFYNRW+QFkz223Exs7CSzDCU177L///tl6663n79JhF5bs5M/+HvOrPJmx54Xa7avtGXKVt2pD0+apfGe9XVCqvI0Yz7esb37ZRSXbHb711lu3uOVY2dn7rl+/fn5+2eMthg0b5h+tYhdG7E4K1c+SQ0vW4WJjl3e6oCV7r9mmjc0226z5DiX268477+w3vTC/2mbHLrvYa92yduwvw8XKSnZhyB4DYh0sdkyyi0Y2h6o/+2yTXn4r3D333DP785//7H9uj8Owc307LyvDc9nrHa9K+e/ZGNo8szG0i1NluA1ne8bL2MVde36qXRC345ldjLPPU2XtGavK8zDbyG53LrTb69tcU1dkvOwRDXY9Ir/V/u233968UdS6jMtwUbyt8ap1l6DquyjY7bztNsLVGxfKPL8qF6Zsbl1yySV+46NdB7O7OFpXZP6MbWULc/yy5gC7W0KZHnPR1nhVnovec889fgOydbq//fbb/mc2Vja/7Por86ttdvyyx/jYIyjLcHc4GyN7PEO+qcCu/dldIpZffnl/3d7YOTvn9a2PV58+fZrHq/I9Webz+vaMV1nP69s7XmU+t8eCsSkBaIN1x9oOetvx1q1bN//BbI8gKMOHc0ewE2vbPdezZ89SXBwpqvKL6worrOA/nG1DQhlOZjpid6ZtSLBFdza7zM++WNxyyy3Z3XffXbrnwHUEu7hrF3ptfnHsmp91H/z85z9vvlWwjZPdASB/nj0WzJ4Daps67EKUdbGXbcG43rss2YVwm1t2u1K7QwLnXgtWOYdsk5BdeLMxe/3117OyyZ95nd9e2s6n8keJLehiry3g2cUV667Kb5FrFznLMN/aM17VF6ZsY6iNWxm6Xdo7Xna+bxcvbbOVdRSVYfPxws4te+yfnefbpvYynIfVO175r48++qj/7mgLWrfddlvpnmG8sPPLbpluF9Dt2k4Z7h7XnvGyx/7lj22zv+y4Zc/Q5rOx7fl17733+n/3xBNPLEUzQL3jVbkwddRRR/k/b+f3dg3MNrvYglYZvku2Z7wq/97u2Gvn+nauqt75bxvG7NF99r25+rzJ/tmu01c/7qPM5/X1jNfll1++wH+/bOf17R2vMp7Xd8T8Ktu5PVrHpgSgDnZSaIueN998sz+ITp48OfRLSoI939KeX2/PaSzDCeDCsFvE25cS27zBWLX9Jc6ea2ZfXO1Wd/YMUNSW3+IVxeaX3YbNLvKuueaabHhpYyHULuRaF4J1IFhnFerz+9//ni9ibbAFdbtdqXUw2u2ouUNC20aOHOm7Pq3bqszHLrtYaxe7c3Z8sou9rXXt2YUUu6uQPU/1mmuuae7cK4N6x6vWBquddtrJn7+WYRFhYcfLOkDzzrOybD5uz1jZ4rptCl155ZX97WCZWwseL7sFuj3aqKybj9szv+xuEvZoO5tf9l2S+dX6Z6N9z7YF9v/8z//0m92rHxWlrL3H+px9nyzTuX7R+WWP0brwwguz1VdfPdt88839v6u+wN4R8+vSSy/NNtxww9Icv2wR1O7GaJs4cjaH7C/rzraNLPkjHDivLzZetc7r83PVMsythR2vMp7Xt3e8ynxujwXrZP/jAKBBJk6c6ObOnesGDBgQ+qVEbdy4ce7AAw90N954o1tzzTVDv5zojR8/3j311FNuxx13dCussELolwMxr7zyihsxYoTbd9993UorrRT65UCInXZ36tQp9MuAqFmzZrmXXnrJ9evXz/Xt29eV2Zw5c1yXLl2a33OjRo3yx/Svf/3r7pJLLnHbbrut/320f7y+/PJLd//99/tz/LKdu7ZnvM4991x31llnuRdeeMGttdZarizaM1ZXXHGFmzRpkjvqqKPcyiuv7Mqk6HiV/byiPfPr/PPPdxMmTHCnnXaaW3XVVV2Z8NnY+PGya1+dO3du/rVM2jNeU6dOdcstt5z76quvXPfu3V2ZtGe8nn32WX+tYvvtt3f9+/d3ZfDXv/7Vj4Ndl6l+X2200UZ+HO66667m8Sy79o7XzJkz3YMPPli68/r2jtfZZ5/t/yrbeX17x+uyyy5z7777binP7VEbmxIAIKLFhMUWWyz0y0hG2S/CobHKeCEJAJRVXuy9+OKL3Q477OB/PmbMGLfiiiu6Pn36hH6JUWG8Oma8Ro8e7cfLNgpNnz7d9erVy5VdPWM1e/Zs161bt9AvNerxssUp24TGe7H4sYvv3fNwrC+G8eqY8XrmmWf8ola+iZZrO/V/PnKdYt582WKLLdyyyy7rhg8f3vx7f/vb30qzYaOjx4v3YdvjZZtm80V1zuuLjZdtaC/b5jMsGJsSAAAAAACludjbs2dPd+mll/oujiOPPNJf6H3ggQdYBK3CeC38eB1xxBF+4YXxqm+sbG5Zpx5j1RLvxWJ4LxbD/CqG8SqG8eqY8bJNaHw+Nsm7sO3OqbasZeNiXn/9dffTn/7ULb300u6+++4L/TKTGy82JTRhfnXseC211FL+7nrML1RiUwIAAAAAoBSsm3GfffbxXbJ2EeXDDz90Dz/8sNtggw1Cv7QoMV7FMF71Y6yKYbyKYbyKYbyKYbyKYbyKYbzq873vfc9NmTLFPf744/6xPCeffLJ74okn/KLo4MGDQ7+86DBexTBexTBeKKLc9/sBAAAAAMjL9+JvvPHG7pe//KV766233EcffeQvlnCRd36MVzGMV/0Yq2IYr2IYr2IYr2IYr2IYr2IYr2KWWGIJN3PmTPfaa6/5BdBHHnnEPfbYYyyALgDjVQzjVQzjhSK6FvrTAAAAAAAkJr9d5EMPPeRuuOEG/7zeJ5980q211lqhX1qUGK9iGK/6MVbFMF7FMF7FMF7FMF7FMF7FMF71mTt3ruvcubPr0aOHmz59ujv66KPdiy++6MdqvfXWC/3yosN4FcN4FcN4oT3YlAAAAAAAkGfdG9ddd517+eWX/a1xucjbOsarGMarfoxVMYxXMYxXMYxXMYxXMYxXMYxX22wB1PTr189NnjzZzZgxw40aNcqtu+66oV9alBivYhivYhgvtEenLL83EAAAAAAAwiZOnOg7OgYMGBD6pSSB8SqG8aofY1UM41UM41UM41UM41UM41UM41WfcePGuQMPPNDdeOONbs011wz9cqLHeBXDeBXDeKEINiUAAAAAAAAAAAAgCbNmzXKLLbZY6JeRDMarGMarGMYL9WJTAgAAAAAAAAAAAAAAaIimh34AAAAAAAAAAAAAAAB0MDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAAAAAAAAAGgINiUAAAAAAAAAAAAAAICGYFMCAAAAAAAAAAAAAABoCDYlAAAAAAAAAAAAAACAhmBTAgAAAAAAAAAAAAAAaAg2JQAAAAAAAAAAAAAAgIZgUwIAAAAAAFgonTp18n+1ZtiwYf7PHHzwwYvsdQEAAAAAgPDYlAAAAAAAAAAAAAAAABqCTQkAAAAAAAAAAAAAAKAh2JQAAAAAAAAAAAAAAAAagk0JAAAAAAAguPvvv9/tuuuubrnllnOLLbaYW2WVVdwJJ5zgPvjgg/n+7DbbbOM6derkJk2aNN/v2c/s9+zPVDrzzDP9z4cNG+bGjBnjdtttN7fsssv6n40dO7b5z40ePdrts88+rk+fPq579+6uX79+7mc/+5l75513GpQcAAAAAABtbEoAAAAAAABBnXLKKW7nnXd2Dz30kFt99dXdHnvs4bp27eouvvhit8kmm7ipU6d22P/X448/7rbccku/eWHHHXd0W2+9tevcuenyyBVXXOE233xz96c//cn179/f7bXXXn7jwrXXXus22mgj9/rrr3fY6wAAAAAAoCy6hn4BAAAAAACgvO644w53wQUXuEGDBrm7777brbbaav7nWZb5uxucddZZ7thjj3W33nprh/z/DR061P//nXTSSS1+/swzz7hjjjnG3yHhnnvucRtuuGHz79mmBLtbwiGHHOL/HAAAAAAAqB93SgAAAAAAAB3CHoWwoL9sQb+Wc845x/96yy23NG9IyP9btilh/fXXd3feeaebPn16h7zGddZZx5144onz/fz88893c+bMcVdeeWWLDQnm0EMP9XdvsEc7vPjiix3yOgAAAAAAKAvulAAAAAAAADrEQQcdtMDfe+utt9xTTz3V4mfTpk1zL730khswYIC/U0I125iwxRZbuLFjx7rnn3/e7bTTTgv9GnfbbTf/3600d+5c9/DDD7uvfe1rC/z/2Gqrrdzw4cPdmDFj3Le//e2Ffh0AAAAAAJQFmxIAAAAAAECHGDZsWKu/V70pYdKkSf7XCRMmzLdRoFpH3SlhpZVWqvnf/vTTT/3fd+/efZG8DgAAAAAAyoJNCQAAAAAAIAi7Q4FZfvnl27wLQv/+/Qv9Nxdk8cUXX+C/s+SSS7of/OAHrf77a6+9dl2vAwAAAAAANGFTAgAAAAAACKJfv37+1169erV6l4Vq+d0M8rsbVHr33XcLvw77/7fNCp07d3ZDhw5t864NAAAAAACgfp0L/FkAAAAAAIAO3ZSwxhpruNdee82NHz++7n+vT58+/tda/86DDz5Y+HV07drVbbPNNu6TTz5xDz/8cOF/HwAAAAAALBibEgAAAAAAQDBnnHGGf3yCPTZh7Nix8/3+Bx984K6++uoWPxsyZIj/9aKLLnKff/55889HjhzpLrnkkna9jl/96lf+TgmHHHKIe/TRR+f7fbsrw3XXXedmzpzZrv8+AAAAAABlxeMbAAAAAABAMPvtt58bN26cO/fcc92GG27o1l9/fbfqqqu6LMvcxIkT3csvv+yWXHJJ9/Of/7z539l3333db3/7Wzdq1Ci35pprusGDB7v33nvPPfvss+6EE05wF154YeHXseWWW7rLL7/cHX300W7bbbd1gwYNcgMHDnTdunVzkyZN8hsmZs2a5b7//e+7Hj16dPAoAAAAAACgizslAAAAAACAoM455xz32GOP+bslTJkyxf35z392jzzyiJszZ4478sgj3fDhw1v8edsUYI9ZsM0JM2bMcCNGjPB/9rbbbnP/9m//1u7XccQRR7jnnnvOHXTQQf6/e++997q//OUv/i4J+++/v//npZZaqgMSAwAAAABQHp0yaz0AAAAAAAAAAAAAAADoYNwpAQAAAAAAAAAAAAAANASbEgAAAAAAAAAAAAAAQEOwKQEAAAAAAAAAAAAAADQEmxIAAAAAAAAAAAAAAEBDsCkBAAAAAAAAAAAAAAA0BJsSAAAAAAAAAAAAAABAQ7ApAQAAAAAAAAAAAAAANASbEgAAAAAAAAAAAAAAQEOwKQEAAAAAAAAAAAAAADQEmxIAAAAAAAAAAAAAAEBDsCkBAAAAAAAAAAAAAAA0BJsSAAAAAAAAAAAAAABAQ7ApAQAAAAAAAAAAAAAANASbEgAAAAAAAAAAAAAAQEOwKQEAAAAAAAAAAAAAADQEmxIAAAAAAAAAAAAAAEBDsCkBAAAAAAAAAAAAAAC4Rvh/8xPy/LDUO9kAAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 14 + "outputs": [], + "execution_count": null } ], "metadata": { diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index 141a1ea..9f3f100 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -4,11 +4,7 @@ "cell_type": "code", "id": "initial_id", "metadata": { - "collapsed": true, - "ExecuteTime": { - "end_time": "2025-10-28T10:33:49.873418Z", - "start_time": "2025-10-28T10:33:47.879805Z" - } + "collapsed": true }, "source": [ "from pathlib import Path\n", @@ -19,7 +15,7 @@ "from post_processing.utils.core_utils import json2df" ], "outputs": [], - "execution_count": 1 + "execution_count": null }, { "metadata": {}, @@ -33,12 +29,7 @@ "id": "c464f241817a1407" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:34:05.874705Z", - "start_time": "2025-10-28T10:33:51.302952Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "pod_files = Path(r\"U:\\CA4\") #Path to your data folder. 🐬\n", @@ -52,21 +43,8 @@ "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" + metadatax[\"campaign.name\"].astype(str))" ], "id": "6cf23db3b4288c29", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " File ChunkEnd DPM Nall MinsOn deploy.name\n", - "0 CA4 POD2397 file01.CP3 14/05/2014 07:07 0.0 0.0 1.0 CA4_Phase1\n", - "1 CA4 POD2397 file01.CP3 14/05/2014 07:08 0.0 8.0 1.0 CA4_Phase1\n", - "2 CA4 POD2397 file01.CP3 14/05/2014 07:09 0.0 4.0 1.0 CA4_Phase1\n", - "3 CA4 POD2397 file01.CP3 14/05/2014 07:10 0.0 251.0 1.0 CA4_Phase1\n", - "4 CA4 POD2397 file01.CP3 14/05/2014 07:11 0.0 4095.0 1.0 CA4_Phase1\n" - ] - } - ], - "execution_count": 2 + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -77,17 +55,12 @@ "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:34:07.329284Z", - "start_time": "2025-10-28T10:34:07.315727Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ] #Remove the 0 to lighten the APLOSE file.", "id": "769e128f2a5293e1", "outputs": [], - "execution_count": 3 + "execution_count": null }, { "metadata": {}, @@ -100,12 +73,7 @@ "id": "dd03975b7aef7eed" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:34:10.899696Z", - "start_time": "2025-10-28T10:34:10.180555Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "df_aplose = pod2aplose(df_1, pytz.utc, \"CA4\", \"Marsouin\", \"CPOD\") #Precise site name, species and instrument. 🐬\n", @@ -113,35 +81,8 @@ "print(df_aplose.head())" ], "id": "4cc867627d677529", - "outputs": [ - { - "name": "stdout", - "output_type": "stream", - "text": [ - " dataset filename start_time end_time start_frequency end_frequency \\\n", - "0 CA4 CA4_Phase1 0 60 0 0 \n", - "1 CA4 CA4_Phase1 0 60 0 0 \n", - "2 CA4 CA4_Phase1 0 60 0 0 \n", - "3 CA4 CA4_Phase1 0 60 0 0 \n", - "4 CA4 CA4_Phase1 0 60 0 0 \n", - "\n", - " annotation annotator start_datetime \\\n", - "0 Marsouin CPOD 2014-05-17T03:52:00.000+0000 \n", - "1 Marsouin CPOD 2014-05-17T04:47:00.000+0000 \n", - "2 Marsouin CPOD 2014-05-19T17:06:00.000+0000 \n", - "3 Marsouin CPOD 2014-05-20T11:07:00.000+0000 \n", - "4 Marsouin CPOD 2014-05-20T11:16:00.000+0000 \n", - "\n", - " end_datetime is_box deploy.name \n", - "0 2014-05-17T03:53:00.000+0000 0 CA4_Phase1 \n", - "1 2014-05-17T04:48:00.000+0000 0 CA4_Phase1 \n", - "2 2014-05-19T17:07:00.000+0000 0 CA4_Phase1 \n", - "3 2014-05-20T11:08:00.000+0000 0 CA4_Phase1 \n", - "4 2014-05-20T11:17:00.000+0000 0 CA4_Phase1 \n" - ] - } - ], - "execution_count": 4 + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -153,17 +94,12 @@ "id": "d2c642658dbfe278" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:34:15.645066Z", - "start_time": "2025-10-28T10:34:13.520944Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "cleared = meta_cut_aplose(df_aplose, metadatax)", "id": "895bd5a116918285", "outputs": [], - "execution_count": 5 + "execution_count": null }, { "metadata": {}, @@ -174,13 +110,13 @@ { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "d_beg_end.to_csv(r\"U:\\Deb_Fin_CA4.csv\", index=False) #Export the new file. 🐬\n", "cleared.to_csv(r\"U:\\APLOSE_CA4_pos.csv\", index=False) #Name your file. 🐬" ], - "id": "9d34e00f4e8147e8" + "id": "9d34e00f4e8147e8", + "outputs": [], + "execution_count": null } ], "metadata": { From 73bcbb578a5d640a6c634a40c88ab768e5f4dd68 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 7 Nov 2025 12:25:45 +0100 Subject: [PATCH 32/83] add functions to process time lost --- tests/test_fpod_utils.py | 454 +++++++++++++++++++-------------------- 1 file changed, 226 insertions(+), 228 deletions(-) diff --git a/tests/test_fpod_utils.py b/tests/test_fpod_utils.py index 566d07a..da6bf13 100644 --- a/tests/test_fpod_utils.py +++ b/tests/test_fpod_utils.py @@ -3,7 +3,6 @@ from datetime import datetime from pathlib import Path -import datatest as dt import pytest from osekit.utils.timestamp_utils import strptime_from_text from pandas import DataFrame, Timestamp, read_csv @@ -15,8 +14,7 @@ extract_site, parse_timestamps, txt_folder, - fpod2aplose, - cpod2aplose, + pod2aplose, meta_cut_aplose, build_range, feeding_buzz, @@ -25,136 +23,136 @@ build_aggregation_dict, resample_dpm) -SAMPLE_POD = """File,ChunkEnd,DPM,Nall,MinsOn -sample_dataset,2023/11/29 08:05,0,0,0 - -""" -SAMPLE_AP = """dataset,filename,start_time,end_time,start_frequency,end_frequency, -annotation,annotator,start_datetime,end_datetime,is_box -sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T08:30:00.000+00:00,2023-11-29T08:31:00.000+00:00,0 -sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T08:31:00.000+00:00,2023-11-29T08:32:00.000+00:00,0 -sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T09:30:00.000+00:00,2023-11-29T09:31:00.000+00:00,0 -sample_dataset,,0,60,0,0,ann1,POD,2023-11-30T08:30:00.000+00:00,2023-11-30T08:31:00.000+00:00,0 -sample_dataset,,0,60,0,0,ann1,POD,2023-12-29T08:30:00.000+00:00,2023-12-29T08:31:00.000+00:00,0 -sample_dataset,,0,60,0,0,ann1,POD,2024-11-29T08:30:00.000+00:00,2024-11-29T08:31:00.000+00:00,0 -""" - -@pytest.fixture -def pod_dataframe() -> DataFrame: - data = DataFrame( - { - "File": [ - "sample_dataset", - "sample_dataset", - "sample_dataset", - "sample_dataset", - "sample_dataset", - "sample_dataset", - ], - "ChunkEnd": [ - Timestamp("2023/11/29 08:30"), - Timestamp("2023/11/29 08:31"), - Timestamp("2023/11/29 08:32"), - Timestamp("2023/11/29 08:33"), - Timestamp("2023/11/29 08:34"), - Timestamp("2023/11/29 08:35"), - ], - "deploy.name": [ - "site_deploy", - "site_deploy", - "site_deploy", - "site_deploy", - "site_deploy", - "site_deploy", - ], - "DPM": [1, 1, 0, 0, 0, 0], - "Nall": [44, 66, 0, 22, 0, 0], - "MinsOn": [1, 1, 1, 1, 1, 0], - }, - ) - - return data.reset_index(drop=True) - - -@pytest.fixture -def aplose_dataframe() -> DataFrame: - data = DataFrame( - { - "dataset": ["dataset_test", "dataset_test", "dataset_test", "dataset_test", - "dataset_test", "dataset_test"], - "filename": ["", "", "", ""], - "start_time": [0, 0, 0, 0, 0, 0], - "end_time": [60, 60, 60, 60, 60, 60], - "start_frequency": [0, 0, 0, 0, 0, 0], - "end_frequency": [0, 0, 0, 0, 0, 0], - "annotation": ["ann1", "ann1", "ann1", "ann1", "ann1", "ann1"], - "annotator": ["POD", "POD", "POD", "POD", "POD", "POD"], - "start_datetime": [ - Timestamp("2023-11-29T08:30:00.000+00:00"), - Timestamp("2023-11-29T08:31:00.000+00:00"), - Timestamp("2023-11-29T09:31:00.000+00:00"), - Timestamp("2023-11-30T09:31:00.000+00:00"), - Timestamp("2023-12-30T09:31:00.000+00:00"), - Timestamp("2024-12-30T09:31:00.000+00:00"), - ], - "end_datetime": [ - Timestamp("2023-11-29T08:31:00.000+00:00"), - Timestamp("2023-11-29T08:32:00.000+00:00"), - Timestamp("2023-11-29T09:32:00.000+00:00"), - Timestamp("2023-11-30T09:32:00.000+00:00"), - Timestamp("2023-12-30T09:32:00.000+00:00"), - Timestamp("2024-12-30T09:32:00.000+00:00"), - ], - "is_box": [0, 0, 0, 0, 0, 0], - "deploy.name": ["site_campaign", "site_campaign", "site_campaign", - "site_campaign", "site_campaign", "site_campaign"], - }, - ) - - return data.reset_index(drop=True) - -@pytest.fixture(scope="module") -@dt.working_directory(__file__) -def df_raw() -> DataFrame: - return read_csv("pod_raw.csv") - -@pytest.fixture(scope="module") -@dt.working_directory(__file__) -def df_ap() -> DataFrame: - return read_csv("pod_aplose.csv") - -@pytest.mark.mandatory -def test_columns(df_raw: DataFrame) -> None: - dt.validate( - df_raw.columns, - {"File", "ChunkEnd", "DPM", "Nall", "MinsOn"}, - ) - -@pytest.mark.mandatory -def test_columns(df_ap: DataFrame) -> None: - dt.validate( - df_ap.columns, - {"dataset","filename","start_time","end_time","start_frequency","end_frequency", - "annotation","annotator","start_datetime","end_datetime","is_box"}, - ) - -def test_chunk_end(df_raw: DataFrame) -> None: - dt.validate(df_raw["ChunkEnd"], - strptime_from_text(df_raw["ChunkEnd"], "%Y/%m/%d %H:%M")) - -def test_start_datetime(df_ap: DataFrame) -> None: - dt.validate(df_ap["start_datetime"], strptime_from_text(df_ap["start_datetime"], - "%Y-%m-%dT%H:%M:%S")) - -@pytest.fixture -def sample_pod() -> DataFrame: - df = read_csv(io.StringIO(SAMPLE_POD), parse_dates=["ChunkEnd"]) - return df.sort_values(["ChunkEnd"]).reset_index(drop=True) - -# fpod2aplose - - -# cpod2aplose +# SAMPLE_POD = """File,ChunkEnd,DPM,Nall,MinsOn +# sample_dataset,2023/11/29 08:05,0,0,0 +# +# """ +# SAMPLE_AP = """dataset,filename,start_time,end_time,start_frequency,end_frequency, +# annotation,annotator,start_datetime,end_datetime,is_box +# sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T08:30:00.000+00:00,2023-11-29T08:31:00.000+00:00,0 +# sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T08:31:00.000+00:00,2023-11-29T08:32:00.000+00:00,0 +# sample_dataset,,0,60,0,0,ann1,POD,2023-11-29T09:30:00.000+00:00,2023-11-29T09:31:00.000+00:00,0 +# sample_dataset,,0,60,0,0,ann1,POD,2023-11-30T08:30:00.000+00:00,2023-11-30T08:31:00.000+00:00,0 +# sample_dataset,,0,60,0,0,ann1,POD,2023-12-29T08:30:00.000+00:00,2023-12-29T08:31:00.000+00:00,0 +# sample_dataset,,0,60,0,0,ann1,POD,2024-11-29T08:30:00.000+00:00,2024-11-29T08:31:00.000+00:00,0 +# """ +# +# @pytest.fixture +# def pod_dataframe() -> DataFrame: +# data = DataFrame( +# { +# "File": [ +# "sample_dataset", +# "sample_dataset", +# "sample_dataset", +# "sample_dataset", +# "sample_dataset", +# "sample_dataset", +# ], +# "ChunkEnd": [ +# Timestamp("2023/11/29 08:30"), +# Timestamp("2023/11/29 08:31"), +# Timestamp("2023/11/29 08:32"), +# Timestamp("2023/11/29 08:33"), +# Timestamp("2023/11/29 08:34"), +# Timestamp("2023/11/29 08:35"), +# ], +# "deploy.name": [ +# "site_deploy", +# "site_deploy", +# "site_deploy", +# "site_deploy", +# "site_deploy", +# "site_deploy", +# ], +# "DPM": [1, 1, 0, 0, 0, 0], +# "Nall": [44, 66, 0, 22, 0, 0], +# "MinsOn": [1, 1, 1, 1, 1, 0], +# }, +# ) +# +# return data.reset_index(drop=True) +# +# +# @pytest.fixture +# def aplose_dataframe() -> DataFrame: +# data = DataFrame( +# { +# "dataset": ["dataset_test", "dataset_test", "dataset_test", "dataset_test", +# "dataset_test", "dataset_test"], +# "filename": ["", "", "", ""], +# "start_time": [0, 0, 0, 0, 0, 0], +# "end_time": [60, 60, 60, 60, 60, 60], +# "start_frequency": [0, 0, 0, 0, 0, 0], +# "end_frequency": [0, 0, 0, 0, 0, 0], +# "annotation": ["ann1", "ann1", "ann1", "ann1", "ann1", "ann1"], +# "annotator": ["POD", "POD", "POD", "POD", "POD", "POD"], +# "start_datetime": [ +# Timestamp("2023-11-29T08:30:00.000+00:00"), +# Timestamp("2023-11-29T08:31:00.000+00:00"), +# Timestamp("2023-11-29T09:31:00.000+00:00"), +# Timestamp("2023-11-30T09:31:00.000+00:00"), +# Timestamp("2023-12-30T09:31:00.000+00:00"), +# Timestamp("2024-12-30T09:31:00.000+00:00"), +# ], +# "end_datetime": [ +# Timestamp("2023-11-29T08:31:00.000+00:00"), +# Timestamp("2023-11-29T08:32:00.000+00:00"), +# Timestamp("2023-11-29T09:32:00.000+00:00"), +# Timestamp("2023-11-30T09:32:00.000+00:00"), +# Timestamp("2023-12-30T09:32:00.000+00:00"), +# Timestamp("2024-12-30T09:32:00.000+00:00"), +# ], +# "is_box": [0, 0, 0, 0, 0, 0], +# "deploy.name": ["site_campaign", "site_campaign", "site_campaign", +# "site_campaign", "site_campaign", "site_campaign"], +# }, +# ) +# +# return data.reset_index(drop=True) + +#@pytest.fixture(scope="module") +# @dt.working_directory(__file__) +# def df_raw() -> DataFrame: +# return read_csv("pod_raw.csv") +# +# @pytest.fixture(scope="module") +# @dt.working_directory(__file__) +# def df_ap() -> DataFrame: +# return read_csv("pod_aplose.csv") + +#@pytest.mark.mandatory +# def test_columns(df_raw: DataFrame) -> None: +# dt.validate( +# df_raw.columns, +# {"File", "ChunkEnd", "DPM", "Nall", "MinsOn"}, +# ) +# +# @pytest.mark.mandatory +# def test_columns(df_ap: DataFrame) -> None: +# dt.validate( +# df_ap.columns, +# {"dataset","filename","start_time","end_time","start_frequency","end_frequency", +# "annotation","annotator","start_datetime","end_datetime","is_box"}, +# ) +# +# def test_chunk_end(df_raw: DataFrame) -> None: +# dt.validate(df_raw["ChunkEnd"], +# strptime_from_text(df_raw["ChunkEnd"], "%Y/%m/%d %H:%M")) +# +# def test_start_datetime(df_ap: DataFrame) -> None: +# dt.validate(df_ap["start_datetime"], strptime_from_text(df_ap["start_datetime"], +# "%Y-%m-%dT%H:%M:%S")) + +# @pytest.fixture +# def sample_pod() -> DataFrame: +# df = read_csv(io.StringIO(SAMPLE_POD), parse_dates=["ChunkEnd"]) +# return df.sort_values(["ChunkEnd"]).reset_index(drop=True) + +# pod2aplose + + +# pod2aplose # meta_cut_aplose @@ -170,74 +168,74 @@ def sample_pod() -> DataFrame: # fb_folder -def test_fb_folder_non_existent() -> None: - with pytest.raises(FileNotFoundError): - txt_folder(Path("/non/existent/folder")) - -def test_fb_folder_no_files(tmp_path: pytest.fixture) -> None: - with pytest.raises(ValueError, match="No .txt files found"): - txt_folder(tmp_path) +# def test_fb_folder_non_existent() -> None: +# with pytest.raises(FileNotFoundError): +# txt_folder(Path("/non/existent/folder")) +# +# def test_fb_folder_no_files(tmp_path: pytest.fixture) -> None: +# with pytest.raises(ValueError, match="No .txt files found"): +# txt_folder(tmp_path) # extract_site -def test_extract_site(self) -> None: - input_data = [ - {"deploy.name":"Walde_Phase46"}, - {"deploy.name":"Site A Ile Haute_Phase8"}, - {"deploy.name":"Site B Ile Heugh_Phase9"}, - {"deploy.name":"Point E_Phase 4"}, - ] - expected_site = [ - "Walde", - "Site A Ile Haute", - "Site B Ile Heugh", - "Point E", - ] - expected_campaign = [ - "Phase46", - "Phase8", - "Phase9", - "Phase 4", - ] - - for variant, (input_row, site, campaign) in enumerate( - zip(input_data, expected_site, expected_campaign, strict=False), start=1): - with self.subTest( - f"variation #{variant}", - deploy_name=input_row["deploy.name"], - expected_site=site, - expected_campaign=campaign, - ): - df = DataFrame([input_row]) - result = extract_site(df) - actual_site = result["site.name"].iloc[0] - actual_campaign = result["campaign.name"].iloc[0] - - error_message_site = ( - f'Called extract_site() with deploy.name="{input_row["deploy.name"]}". ' - f'The function returned site.name="{actual_site}", but the test ' - f'expected "{expected_site}".' - ) - - error_message_campaign = ( - f'Called extract_site() with deploy.name="{input_row["deploy.name"]}". ' - f'The function returned campaign.name="{actual_campaign}", but the test' - f'expected "{expected_campaign}".' - ) - - assert actual_site == expected_site, error_message_site - assert actual_campaign == expected_campaign, error_message_campaign - - assert "deploy.name" in result.columns - assert "value" in result.columns +# def test_extract_site(self) -> None: +# input_data = [ +# {"deploy.name":"Walde_Phase46"}, +# {"deploy.name":"Site A Ile Haute_Phase8"}, +# {"deploy.name":"Site B Ile Heugh_Phase9"}, +# {"deploy.name":"Point E_Phase 4"}, +# ] +# expected_site = [ +# "Walde", +# "Site A Ile Haute", +# "Site B Ile Heugh", +# "Point E", +# ] +# expected_campaign = [ +# "Phase46", +# "Phase8", +# "Phase9", +# "Phase 4", +# ] +# +# for variant, (input_row, site, campaign) in enumerate( +# zip(input_data, expected_site, expected_campaign, strict=False), start=1): +# with self.subTest( +# f"variation #{variant}", +# deploy_name=input_row["deploy.name"], +# expected_site=site, +# expected_campaign=campaign, +# ): +# df = DataFrame([input_row]) +# result = extract_site(df) +# actual_site = result["site.name"].iloc[0] +# actual_campaign = result["campaign.name"].iloc[0] +# +# error_message_site = ( +# f'Called extract_site() with deploy.name="{input_row["deploy.name"]}". ' +# f'The function returned site.name="{actual_site}", but the test ' +# f'expected "{expected_site}".' +# ) +# +# error_message_campaign = ( +# f'Called extract_site() with deploy.name="{input_row["deploy.name"]}". ' +# f'The function returned campaign.name="{actual_campaign}", but the test' +# f'expected "{expected_campaign}".' +# ) +# +# assert actual_site == expected_site, error_message_site +# assert actual_campaign == expected_campaign, error_message_campaign +# +# assert "deploy.name" in result.columns +# assert "value" in result.columns # csv_folder -def test_csv_folder_non_existent() -> None: - with pytest.raises(FileNotFoundError): - csv_folder(Path("/non/existent/folder")) - -def test_csv_folder_no_files(tmp_path: pytest.fixture) -> None: - with pytest.raises(ValueError, match="No .csv files found"): - csv_folder(tmp_path) +# def test_csv_folder_non_existent() -> None: +# with pytest.raises(FileNotFoundError): +# csv_folder(Path("/non/existent/folder")) +# +# def test_csv_folder_no_files(tmp_path: pytest.fixture) -> None: +# with pytest.raises(ValueError, match="No .csv files found"): +# csv_folder(tmp_path) # is_dpm_col @@ -252,38 +250,38 @@ def test_csv_folder_no_files(tmp_path: pytest.fixture) -> None: # parse_timestamps -def test_parse_timestamps() -> None: - df = DataFrame({"date": ["2024-01-01T10:00:00", "06/01/2025 08:35"]}) - result = parse_timestamps(df, "date") - expected = DataFrame({"date": ["2024-01-01 10:00:00", - "2025-01-06 08:35:00"]}).astype("datetime64[ns]") - assert_frame_equal(result, expected) +# def test_parse_timestamps() -> None: +# df = DataFrame({"date": ["2024-01-01T10:00:00", "06/01/2025 08:35"]}) +# result = parse_timestamps(df, "date") +# expected = DataFrame({"date": ["2024-01-01 10:00:00", +# "2025-01-06 08:35:00"]}).astype("datetime64[ns]") +# assert_frame_equal(result, expected) # deploy_period -def test_deploy_period() -> None: - df = DataFrame( - { - "deploy.name": ["A", "A", "B"], - "start_datetime": [ - datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), - datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), - datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), - ], - }) - - expected = DataFrame( - { - "deploy.name": ["A", "B"], - "Début": [ - datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), - datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), - ], - "Fin": [ - datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), - datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), - ], - }) - result = deploy_period(df) - assert_frame_equal(result, expected) +# def test_deploy_period() -> None: +# df = DataFrame( +# { +# "deploy.name": ["A", "A", "B"], +# "start_datetime": [ +# datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), +# datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), +# datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), +# ], +# }) +# +# expected = DataFrame( +# { +# "deploy.name": ["A", "B"], +# "Début": [ +# datetime(2024, 1, 1, 10, 0, tzinfo=datetime.timezone.utc), +# datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), +# ], +# "Fin": [ +# datetime(2024, 1, 2, 15, 30, tzinfo=datetime.timezone.utc), +# datetime(2024, 1, 3, 8, 0, tzinfo=datetime.timezone.utc), +# ], +# }) +# result = deploy_period(df) +# assert_frame_equal(result, expected) # actual_data \ No newline at end of file From dfb68de5e62680efe01bd1028ee9c11d22ce438f Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 7 Nov 2025 12:26:03 +0100 Subject: [PATCH 33/83] notebooks --- user_case/example_FPOD-CPOD_aplose.ipynb | 146 ++++++++++------------- user_case/user_case_CALAIS.ipynb | 6 +- 2 files changed, 65 insertions(+), 87 deletions(-) diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb index 263281e..ad52235 100644 --- a/user_case/example_FPOD-CPOD_aplose.ipynb +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -4,11 +4,7 @@ "cell_type": "code", "id": "initial_id", "metadata": { - "collapsed": true, - "ExecuteTime": { - "end_time": "2025-10-28T10:37:15.228840Z", - "start_time": "2025-10-28T10:37:13.056451Z" - } + "collapsed": true }, "source": [ "from pathlib import Path\n", @@ -19,10 +15,10 @@ ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range, csv_folder" + "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range, process_tl, filter_tl, preserved_data" ], "outputs": [], - "execution_count": 1 + "execution_count": null }, { "metadata": {}, @@ -36,12 +32,7 @@ "id": "a97e19830123b732" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:37:54.942890Z", - "start_time": "2025-10-28T10:37:54.239910Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\") #Change the file path in the yaml sheet.🐬\n", @@ -51,11 +42,11 @@ "d_beg_end = read_csv(r\"U:\\Deb_Fin_CA4.csv\") #Beginning and end of recording for every phase. 🐬\n", "\n", "tl_path = Path(r\"U:\\TimeLost\\tl_ca4\")\n", - "TimeLost = csv_folder(tl_path)" + "tl_df = process_tl(tl_path)" ], "id": "7da2feb5958db1a9", "outputs": [], - "execution_count": 3 + "execution_count": null }, { "metadata": {}, @@ -67,30 +58,23 @@ "id": "3bc57f4f638ad6dc" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:37:59.845525Z", - "start_time": "2025-10-28T10:37:59.841429Z" - } - }, + "metadata": {}, "cell_type": "code", - "source": "frq = \"h\" #Determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\". 🐬", + "source": [ + "frq = \"h\" #Determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\". 🐬\n", + "tl = 100 #%TimeLost threshold. If you do not to set a filter, set tl to 100." + ], "id": "9b0a078a262ac7f2", "outputs": [], - "execution_count": 4 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:38:01.074732Z", - "start_time": "2025-10-28T10:38:01.064333Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"]) #Resample your DPMs according to the chosen frq.", "id": "fa3847d80ccf49c3", "outputs": [], - "execution_count": 5 + "execution_count": null }, { "metadata": {}, @@ -102,12 +86,7 @@ "id": "b92537991aa4ac4b" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:38:09.866301Z", - "start_time": "2025-10-28T10:38:09.058313Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "fb_all = txt_folder(fb_files) #Read all your FB.txt files.\n", @@ -121,15 +100,10 @@ ], "id": "ca2362e4facecca3", "outputs": [], - "execution_count": 6 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:39:08.158384Z", - "start_time": "2025-10-28T10:39:08.125277Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "d_0 = build_range(d_beg_end, frq) #Create a dataframe from beginning to end of every phase filled with 0s.\n", @@ -137,7 +111,7 @@ ], "id": "4d76089ef06c6fdb", "outputs": [], - "execution_count": 9 + "execution_count": null }, { "metadata": {}, @@ -146,30 +120,20 @@ "id": "e6a4623e4baf25b5" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:39:09.770505Z", - "start_time": "2025-10-28T10:39:09.756936Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "d_tot[[\"DPM\",\"Foraging\"]] = d_tot[[\"DPM\",\"Foraging\"]].fillna(0)\n", "d_tot[\"FBR\"] = d_tot[\"Foraging\"] / d_tot[\"DPM\"] #The Feeding Buzz Ratio corresponds to the proportion of FB among the recorded clicks.\n", "d_tot[\"FBR\"] = d_tot[\"FBR\"].fillna(0)\n", - "d_tot[\"DPH\"] = (d_tot[\"DPM\"] >0).astype(int) #1 if the hour counts at least 1 DPM, else 0." + "d_tot[f\"DP{frq}\"] = (d_tot[\"DPM\"] >0).astype(int) #1 if the hour counts at least 1 DPM, else 0." ], "id": "912268e5e997dbc6", "outputs": [], - "execution_count": 10 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:39:11.585570Z", - "start_time": "2025-10-28T10:39:11.575488Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "d_tot[\"DPH_fb\"] = (d_tot[\"Foraging\"] >0).astype(int)\n", @@ -178,7 +142,7 @@ ], "id": "23e3e4137d9e2a84", "outputs": [], - "execution_count": 11 + "execution_count": null }, { "metadata": {}, @@ -187,30 +151,49 @@ "id": "a775158ba810957a" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:39:12.645461Z", - "start_time": "2025-10-28T10:39:12.621127Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "d_tot = d_tot.assign(**{attr: getattr(d_tot[\"start_datetime\"].dt, attr.lower())\n", " for attr in ['Year', 'Month', 'Day', 'Hour']})\n", - "d_tot['YM'] = d_tot[\"start_datetime\"].dt.to_period('M').dt.to_timestamp()" + "d_tot['YM'] = d_tot[\"start_datetime\"].dt.to_period('M').dt.to_timestamp()\n", + "d_tot['Date'] = d_tot[\"start_datetime\"].dt.to_period('D').dt.to_timestamp()" ], "id": "62ce5a31ed0db25a", - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\fouinel\\AppData\\Local\\Temp\\ipykernel_11560\\842014434.py:3: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", - " d_tot['YM'] = d_tot[\"start_datetime\"].dt.to_period('M').dt.to_timestamp()\n" - ] - } + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Filter your data\n", + "Chose a threshold of %TimeLost to remove all data exceeding it." + ], + "id": "98d31fb21ffb9165" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "full_df = d_tot.merge(\n", + " tl_df[[\"start_datetime\", \"%TimeLost\"]], on=\"start_datetime\", how=\"left\"\n", + ")" + ], + "id": "66bf795805047a3d", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "filtered_df = filter_tl(full_df, tl)\n", + "preserved_data(filtered_df, full_df)" ], - "execution_count": 12 + "id": "c61f1c95fc05749e", + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -222,17 +205,12 @@ "id": "c64d09af5a11213d" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-10-28T10:39:32.751618Z", - "start_time": "2025-10-28T10:39:15.181512Z" - } - }, + "metadata": {}, "cell_type": "code", - "source": "d_tot.to_csv(r\"U:\\Hours_DPM_FBUZZ_CA4.csv\", index=False) #Name your file. 🐬", + "source": "filtered_df.to_csv(r\"U:\\Hours_DPM_FBUZZ_CA4.csv\", index=False) #Name your file. 🐬", "id": "f1f9ec385038ba87", "outputs": [], - "execution_count": 13 + "execution_count": null } ], "metadata": { diff --git a/user_case/user_case_CALAIS.ipynb b/user_case/user_case_CALAIS.ipynb index 6703596..a5e49a3 100644 --- a/user_case/user_case_CALAIS.ipynb +++ b/user_case/user_case_CALAIS.ipynb @@ -21,7 +21,7 @@ ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import csv_folder, cpod2aplose, fpod2aplose, actual_data, meta_cut_aplose, resample_dpm, txt_folder, build_range, extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent, \\\n", + "from post_processing.utils.fpod_utils import csv_folder, pod2aplose, actual_data, meta_cut_aplose, resample_dpm, txt_folder, build_range, extract_site, percent_calc, site_percent, year_percent, ym_percent, month_percent, hour_percent, \\\n", " feeding_buzz\n", "from post_processing.utils.core_utils import json2df,get_season" ], @@ -147,7 +147,7 @@ }, "cell_type": "code", "source": [ - "df_aplose = cpod2aplose(df_1, pytz.utc, \"Walde\", \"Marsouin\")\n", + "df_aplose = pod2aplose(df_1, pytz.utc, \"Walde\", \"Marsouin\", \"CPOD\")\n", "print(df_aplose.head())" ], "id": "812ed7c0c5e258e7", @@ -196,7 +196,7 @@ }, "cell_type": "code", "source": [ - "df_aplose = fpod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\")\n", + "df_aplose = pod2aplose(df_1, pytz.utc, \"CETIROISE\", \"Marsouin\", \"FPOD\")\n", "print(df_aplose.head())" ], "id": "9b632673397a184", From 2e0534656ac55706a4ff3094d4382cfd88142059 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 7 Nov 2025 12:26:21 +0100 Subject: [PATCH 34/83] add config files --- user_case/config.py | 11 +++++++++++ user_case/config.yaml | 18 ++++++++++++++++++ 2 files changed, 29 insertions(+) create mode 100644 user_case/config.py create mode 100644 user_case/config.yaml diff --git a/user_case/config.py b/user_case/config.py new file mode 100644 index 0000000..1d191a7 --- /dev/null +++ b/user_case/config.py @@ -0,0 +1,11 @@ +from pathlib import Path + +import yaml + +config_file = Path(r"C:\Users\fouinel\PycharmProjects\OSmOSE_post_processing\user_case\config.yaml") + +config = yaml.safe_load(config_file.read_text()) if config_file.exists() else {} + +site_colors = config.get("site_colors", {"Site A Haute": "#118B50", "Site B Heugh": "#5DB996", "Site C Chat": "#B0DB9C", "Site D Simone": "#E3F0AF", "CA4": "#80D8C3", "Walde": "#4DA8DA", "Point C": "#932F67", "Point D": "#D92C54", "Point E": "#DDDEAB", "Point F": "#8ABB6C", "Point G": "#456882"}) + +season_color = config.get("season_color", {"spring": "green", "summer": "darkgoldenrod", "autumn": "orange", "winter": "blue"}) \ No newline at end of file diff --git a/user_case/config.yaml b/user_case/config.yaml new file mode 100644 index 0000000..ac0b183 --- /dev/null +++ b/user_case/config.yaml @@ -0,0 +1,18 @@ +site_colors: + CA4: '#80D8C3' + Point C: '#932F67' + Point D: '#D92C54' + Point E: '#DDDEAB' + Point F: 'ADMETTONS' + Point G: '#456882' + Site A Haute: '#118B50' + Site B Heugh: '#5DB996' + Site C Chat: '#B0DB9C' + Site D Simone: '#E3F0AF' + Walde: '#4DA8DA' + +season_color : + spring: "green" + summer: "darkgoldenrod" + autumn: "orange" + winter: "blue" \ No newline at end of file From 408ca7315c8e9dbe5215daf9e1aecd2803486424 Mon Sep 17 00:00:00 2001 From: fouinel Date: Wed, 12 Nov 2025 14:50:25 +0100 Subject: [PATCH 35/83] correct some docstrings --- src/post_processing/utils/fpod_utils.py | 8 ++++---- 1 file changed, 4 insertions(+), 4 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index dbc96ae..0486065 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -327,7 +327,7 @@ def add_utc( Parameters ---------- - df: pd.DataFrame + df: DataFrame Metadata dataframe with deployments information (previously exported as json). cols:list Timestamp column names. @@ -336,7 +336,7 @@ def add_utc( Returns ------- - pd.DataFrame + DataFrame A full period of time with positive and negative hours to detections. """ @@ -356,14 +356,14 @@ def build_range( Parameters ---------- - df: pd.DataFrame + df: DataFrame Metadata dataframe with deployments information (previously exported as json) fr:str Frequency of the range of detections. Returns ------- - pd.DataFrame + DataFrame A full period of time with positive and negative hours to detections. """ From 8d16c8b49da41b926852d3e0ffea988a40912321 Mon Sep 17 00:00:00 2001 From: fouinel Date: Wed, 12 Nov 2025 17:09:13 +0100 Subject: [PATCH 36/83] modify feeding buzz processing --- user_case/example_FPOD-CPOD_aplose.ipynb | 33 +++++---------------- user_case/example_FPOD-CPOD_raw.ipynb | 37 ++++++++++++++++++++++-- 2 files changed, 41 insertions(+), 29 deletions(-) diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb index ad52235..2e36a82 100644 --- a/user_case/example_FPOD-CPOD_aplose.ipynb +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -11,11 +11,10 @@ "\n", "from pandas import (\n", " read_csv,\n", - " to_datetime,\n", ")\n", "\n", "from post_processing.dataclass.data_aplose import DataAplose\n", - "from post_processing.utils.fpod_utils import resample_dpm, feeding_buzz, txt_folder, build_range, process_tl, filter_tl, preserved_data" + "from post_processing.utils.fpod_utils import resample_dpm, build_range, process_tl, filter_tl, preserved_data" ], "outputs": [], "execution_count": null @@ -38,10 +37,9 @@ "yaml_file = Path(r\"resource\\CPOD-FPOD_yaml.yml\") #Change the file path in the yaml sheet.🐬\n", "data_list = DataAplose.from_yaml(file=yaml_file)\n", "\n", - "fb_files = Path(r\"U:\\fb_CA4\") #Path to your click details folder. 🐬\n", "d_beg_end = read_csv(r\"U:\\Deb_Fin_CA4.csv\") #Beginning and end of recording for every phase. 🐬\n", "\n", - "tl_path = Path(r\"U:\\TimeLost\\tl_ca4\")\n", + "tl_path = Path(r\"U:\\TimeLost\\tl_ca4\\phases\")\n", "tl_df = process_tl(tl_path)" ], "id": "7da2feb5958db1a9", @@ -62,7 +60,7 @@ "cell_type": "code", "source": [ "frq = \"h\" #Determine the format in which you want to visualise your data. Use \"D\", \"h\" or \"10min\". 🐬\n", - "tl = 100 #%TimeLost threshold. If you do not to set a filter, set tl to 100." + "tl = 100 #%TimeLost threshold. If you do not want to set a filter, set tl to 100." ], "id": "9b0a078a262ac7f2", "outputs": [], @@ -71,7 +69,7 @@ { "metadata": {}, "cell_type": "code", - "source": "resamp = resample_dpm(data_list.df, frq=frq, extra_columns=[\"deploy.name\"]) #Resample your DPMs according to the chosen frq.", + "source": "resamp = resample_dpm(data_list.df, frq=frq, cols={\"DPM\":\"sum\",\"Foraging\":\"sum\",\"deploy.name\":\"first\"}) #Resample your DPMs according to the chosen frq.", "id": "fa3847d80ccf49c3", "outputs": [], "execution_count": null @@ -85,29 +83,12 @@ ], "id": "b92537991aa4ac4b" }, - { - "metadata": {}, - "cell_type": "code", - "source": [ - "fb_all = txt_folder(fb_files) #Read all your FB.txt files.\n", - "fb_all = feeding_buzz(fb_all, \"Marsouin\") #Categorize the minutes (positive or not to FB detection). 🐬\n", - "\n", - "fb_all[\"start_datetime\"] = fb_all[\"start_datetime\"].dt.floor(frq) #Resample your FBs according to the chosen frq.\n", - "fb = fb_all.groupby(\"start_datetime\")[\"Foraging\"].sum().reset_index()\n", - "fb[\"start_datetime\"] = to_datetime(fb[\"start_datetime\"], utc=True)\n", - "\n", - "dpm_fb = resamp.merge(fb, on=\"start_datetime\", how=\"left\") #Merge DPM and FB dataframes" - ], - "id": "ca2362e4facecca3", - "outputs": [], - "execution_count": null - }, { "metadata": {}, "cell_type": "code", "source": [ "d_0 = build_range(d_beg_end, frq) #Create a dataframe from beginning to end of every phase filled with 0s.\n", - "d_tot = d_0.merge(dpm_fb, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")" + "d_tot = d_0.merge(resamp, on=[\"start_datetime\", \"deploy.name\"], how=\"left\")" ], "id": "4d76089ef06c6fdb", "outputs": [], @@ -177,8 +158,8 @@ "cell_type": "code", "source": [ "full_df = d_tot.merge(\n", - " tl_df[[\"start_datetime\", \"%TimeLost\"]], on=\"start_datetime\", how=\"left\"\n", - ")" + " tl_df[[\"start_datetime\", \"%TimeLost\"]],\n", + " on=\"start_datetime\", how=\"left\")" ], "id": "66bf795805047a3d", "outputs": [], diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index 9f3f100..28c9c5c 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -11,7 +11,7 @@ "\n", "import pytz\n", "\n", - "from post_processing.utils.fpod_utils import csv_folder, pod2aplose, actual_data, meta_cut_aplose\n", + "from post_processing.utils.fpod_utils import csv_folder, pod2aplose, actual_data, meta_cut_aplose, feeding_buzz, txt_folder, add_utc\n", "from post_processing.utils.core_utils import json2df" ], "outputs": [], @@ -34,6 +34,8 @@ "source": [ "pod_files = Path(r\"U:\\CA4\") #Path to your data folder. 🐬\n", "path = csv_folder(pod_files) #Process all your POD.csv files.\n", + "\n", + "fb_files = Path(r\"U:\\fb_CA4\") #Path to your click details folder. 🐬\n", "json = Path(r\"C:\\Users\\fouinel\\Downloads\\deployment_calais.json\") #Path to your metadata file. 🐬\n", "\n", "print(path.head())\n", @@ -57,7 +59,7 @@ { "metadata": {}, "cell_type": "code", - "source": "df_1 = df_0[df_0[\"DPM\"] !=0 ] #Remove the 0 to lighten the APLOSE file.", + "source": "df_1 = df_0[df_0[\"DPM\"] !=\"0\" ] #Remove the 0 to lighten the APLOSE file.", "id": "769e128f2a5293e1", "outputs": [], "execution_count": null @@ -101,6 +103,35 @@ "outputs": [], "execution_count": null }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Feeding buzzes processing\n", + "Use \"Dauphin\", Marsouin\" or \"Commerson\" to get different ICI processing." + ], + "id": "4cf0b89a9491884" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": [ + "fb_all = txt_folder(fb_files) #Read all your FB.txt files.\n", + "fb_all = feeding_buzz(fb_all, \"Marsouin\") #Categorize the minutes (positive or not to FB detection). 🐬\n", + "add_utc(fb_all, [\"start_datetime\"], \"min\")" + ], + "id": "64f824e02131d90a" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "dpm_fb = cleared.merge(fb_all, on=[\"start_datetime\"], how=\"left\") #Merge DPM and FB dataframes", + "id": "e90f6d91de3f8ce3" + }, { "metadata": {}, "cell_type": "markdown", @@ -112,7 +143,7 @@ "cell_type": "code", "source": [ "d_beg_end.to_csv(r\"U:\\Deb_Fin_CA4.csv\", index=False) #Export the new file. 🐬\n", - "cleared.to_csv(r\"U:\\APLOSE_CA4_pos.csv\", index=False) #Name your file. 🐬" + "dpm_fb.to_csv(r\"U:\\APLOSE_CA4_pos.csv\", index=False) #Name your file. 🐬" ], "id": "9d34e00f4e8147e8", "outputs": [], From 570b4c8e591a938d55897a2ebf7d052beb355906 Mon Sep 17 00:00:00 2001 From: fouinel Date: Wed, 12 Nov 2025 17:11:36 +0100 Subject: [PATCH 37/83] remove useless functions --- src/post_processing/utils/fpod_utils.py | 85 +++---------------------- 1 file changed, 8 insertions(+), 77 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 0486065..ae98340 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -220,8 +220,8 @@ def required_columns( Parameters ---------- - df : DataFrame - Dataframe to validate. + df: DataFrame + Table to validate. columns : list[str] List of required column names. @@ -507,73 +507,11 @@ def is_dpm_col( return df -def pf_datetime( - df: DataFrame, - col_datetime: str, - frequency: str, -) -> DataFrame: - """Parse datetime column and floor to specified frequency. - - Parameters - ---------- - df: DataFrame - Input dataframe. - col_datetime: str - Name of datetime column. - frequency: str - Pandas frequency string (e.g., "D", "h", "10min"). - - Returns - ------- - DataFrame - Copy of df with parsed and floored datetime. - - """ - df = df.copy() - df[col_datetime] = to_datetime(df[col_datetime], utc=True) - df[col_datetime] = df[col_datetime].dt.floor(frequency) - return df - - -def build_aggregation_dict( - df: DataFrame, - base_agg: dict[str, str], - extra_columns: list[str] | None = None, -) -> dict[str, str]: - """Build aggregation dictionary with validation. - - Parameters - ---------- - df: DataFrame - Input dataframe to check column existence. - base_agg: dict[str, str] - Base aggregation dictionary (e.g., {"DPM": "sum"}). - extra_columns: list[str], optional - Additional columns to aggregate with "first" strategy. - - Returns - ------- - dict[str, str] - Complete aggregation dictionary. - - """ - agg_dict = base_agg.copy() - - if extra_columns: - for col in extra_columns: - if col in df.columns: - agg_dict[col] = "first" - else: - logger.warning("Column '%s' does not exist and will be ignored.", col) - - return agg_dict - - def resample_dpm( df: DataFrame, frq: str, + cols: dict[str, str], group_by: list[str] | None = None, - extra_columns: list[str] | None = None, ) -> DataFrame: """Resample DPM data to specified time frequency. @@ -586,11 +524,11 @@ def resample_dpm( CPOD result DataFrame with DPM data. frq: str Pandas frequency string: "D" (day), "h" (hour), "10min", etc. + cols: dict[str, str] + Dictionary of column names and to process them. group_by: list[str], optional Columns to group by (e.g., ["deploy.name", "start_datetime"]). If None, groups only by start_datetime. - extra_columns: list[str], optional - Additional columns to preserve (uses "first" aggregation). Returns ------- @@ -600,10 +538,10 @@ def resample_dpm( Examples -------- >>> # Daily aggregation per deployment - >>> resample_dpm(df, "D", group_by=["deploy.name"]) + >>> resample_dpm(df, "D", {"Foraging":"sum"}, group_by=["deploy.name"]) >>> # Hourly aggregation with site info preserved - >>> resample_dpm(df, "h", extra_columns=["site.name"]) + >>> resample_dpm(df, "h", cols={"DPM":"sum","deploy.name":"first"}) """ df = is_dpm_col(df) @@ -613,14 +551,7 @@ def resample_dpm( if group_by is None: group_by = ["start_datetime"] - # Build aggregation dictionary - agg_dict = build_aggregation_dict( - df, - base_agg={"DPM": "sum"}, - extra_columns=extra_columns, - ) - - return df.groupby(group_by).agg(agg_dict).reset_index() + return df.groupby(group_by).agg(cols).reset_index() def deploy_period( From 491a36be6879d756a7561d6a4012ca8e491d2185 Mon Sep 17 00:00:00 2001 From: fouinel Date: Thu, 13 Nov 2025 10:41:36 +0100 Subject: [PATCH 38/83] correct docstrings --- src/post_processing/utils/fpod_utils.py | 46 ++++++++++++------------- 1 file changed, 22 insertions(+), 24 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index ae98340..2ca48e9 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -47,20 +47,20 @@ def pod2aplose( df: DataFrame FPOD result dataframe tz: pytz.timezone - Timezone object to get non-naïve datetimes + Timezone object to get non-naïve datetime. dataset_name: str - dataset name + dataset name. annotation: str - annotation name + annotation name. annotator: str - annotator name + annotator name. bin_size: int - Duration of the detections in seconds + Duration of the detections in seconds. Returns ------- DataFrame - An APLOSE formatted DataFrame + An APLOSE formatted DataFrame. """ df = df.copy() @@ -248,7 +248,7 @@ def create_mask( Parameters ---------- df : DataFrame - Dataframe with timestamp and deployment period columns. + Table with timestamp and deployment period columns. col_timestamp : str Name of timestamp column. col_start : str @@ -281,7 +281,7 @@ def meta_cut_aplose( Parameters ---------- raw_data : DataFrame - Dataframe containing deployment name and timestamps. + Table containing deployment name and timestamps. metadata : DataFrame Metadata with deployment periods (start/end dates). @@ -573,7 +573,7 @@ def deploy_period( Returns ------- DataFrame - DataFrame with columns: [col_deployment, 'Deb', 'Fin']. + Table with columns: [col_deployment, 'Deb', 'Fin']. """ return ( @@ -596,7 +596,7 @@ def first_last( df: DataFrame CPOD result DataFrame. col_timestamp: str, default="start_datetime" - Name of the timestamps column. + Name of the timestamps' column. col_deployment: str, default="deploy.name" Name of the deployment identifier column. date_formats: list[str], optional @@ -605,7 +605,7 @@ def first_last( Returns ------- DataFrame - DataFrame with deployment periods (Deb, Fin). + Table with deployment periods (Deb, Fin). """ df_parsed = parse_timestamps(df, col_timestamp, date_formats) @@ -627,7 +627,7 @@ def actual_data( Returns ------- DataFrame - DataFrame with corrected deployment periods (Deb, Fin). + Table with corrected deployment periods (Deb, Fin). """ required_columns( @@ -948,7 +948,7 @@ def month_percent(df: DataFrame, metric: str) -> None: label=f"Site {site}", color=site_colors.get(site, "gray"), ) - ax.set_title(f"{site} - Percentage of minutes postitive to detection per month") + ax.set_title(f"{site} - Percentage of minutes positive to detection per month") ax.set_ylim(0, max(df[metric]) + 0.2) ax.set_ylabel(metric) ax.set_xticks( @@ -1154,7 +1154,7 @@ def hist_mean_m( df: DataFrame, metric_mean: str, metric_std: str, - ylabel: str | None = None, + y_lab: str | None = None, title_suffix: str | None = None, ) -> None: """Produce a histogram of the given data. @@ -1169,7 +1169,7 @@ def hist_mean_m( Column name for the mean values (e.g., "%click_mean") metric_std: str Column name for the standard deviation values (e.g., "%click_std") - ylabel: str, optional + y_lab: str, optional Label for y-axis. If None, uses metric_mean title_suffix: str, optional Suffix for the main title. If None, uses metric_mean @@ -1205,7 +1205,7 @@ def hist_mean_m( ax.set_title(f"{site}", fontsize=12) ax.set_ylim(0, max_value * 1.1) - ax.set_ylabel(ylabel if ylabel else metric_mean, fontsize=10) + ax.set_ylabel(y_lab if y_lab else metric_mean, fontsize=10) # Only set x-label on last subplot if i == n_sites - 1: @@ -1243,7 +1243,7 @@ def hist_mean_h( df: DataFrame, metric_mean: str, metric_std: str, - ylabel: str | None = None, + y_lab: str | None = None, title_suffix: str | None = None, ) -> None: """Produce a histogram of the given data. @@ -1258,7 +1258,7 @@ def hist_mean_h( Column name for the mean values (e.g., "%click_mean") metric_std: str Column name for the standard deviation values (e.g., "%click_std") - ylabel: str, optional + y_lab: str, optional Label for y-axis. If None, uses metric_mean title_suffix: str, optional Suffix for the main title. If None, uses metric_mean @@ -1295,7 +1295,7 @@ def hist_mean_h( ax.set_title(f"{site}", fontsize=12) ax.set_ylim(0, max_value * 1.1) - ax.set_ylabel(ylabel if ylabel else metric_mean, fontsize=10) + ax.set_ylabel(y_lab if y_lab else metric_mean, fontsize=10) ax.set_xticks(range(24)) # Only set x-label on last subplot @@ -1316,7 +1316,7 @@ def hist_mean_s( df: DataFrame, metric_mean: str, metric_std: str, - ylabel: str | None = None, + y_lab: str | None = None, title_suffix: str | None = None, ) -> None: """Plot bar chart with mean values and error bars (std) per site. @@ -1329,12 +1329,10 @@ def hist_mean_s( Column name for the mean values (e.g., "FBR_mean") metric_std: str Column name for the standard deviation values (e.g., "FBR_std") - ylabel: str, optional + y_lab: str, optional Label for y-axis. If None, uses metric_mean title_suffix: str, optional Suffix for the title. If None, uses metric_mean - add_hatch: bool, optional - Add hatching pattern to bars (useful for FBR, %buzzes). Default False """ fig, ax = plt.subplots(figsize=(10, 6)) @@ -1377,7 +1375,7 @@ def hist_mean_s( ax.set_xticklabels(plot_data["site.name"]) ax.set_title(f"{title_suffix if title_suffix else metric_mean} per site", fontsize=12) - ax.set_ylabel(ylabel if ylabel else metric_mean, fontsize=10) + ax.set_ylabel(y_lab if y_lab else metric_mean, fontsize=10) ax.set_xlabel("Site", fontsize=10) plt.tight_layout() From ae4cf2354f5b28614d112e1a31350c03e8a73ca1 Mon Sep 17 00:00:00 2001 From: fouinel Date: Thu, 13 Nov 2025 10:51:46 +0100 Subject: [PATCH 39/83] correct docstrings --- src/post_processing/utils/fpod_utils.py | 4 ++-- 1 file changed, 2 insertions(+), 2 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 2ca48e9..1b4ec0f 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -69,10 +69,8 @@ def pod2aplose( for entry in df["ChunkEnd"] ] - # Trier le DataFrame selon ces datetime df = df.sort_values("_temp_dt").reset_index(drop=True) - # Maintenant extraire les colonnes triées fpod_start_dt = df["_temp_dt"].tolist() fpod_end_dt = [entry + Timedelta(seconds=bin_size) for entry in fpod_start_dt] @@ -611,6 +609,7 @@ def first_last( df_parsed = parse_timestamps(df, col_timestamp, date_formats) return deploy_period(df_parsed, col_timestamp, col_deployment) + def actual_data( df: DataFrame, meta: DataFrame, @@ -689,6 +688,7 @@ def filter_tl(df: DataFrame, tl: int)->DataFrame: return df[df["%TimeLost"] < tl] + def preserved_data(filtered_df: DataFrame, whole_df: DataFrame)-> float: """Calculate the percentage of preserved data. From d01614eadd9efffb2a666b1c2c72257a33380e19 Mon Sep 17 00:00:00 2001 From: fouinel Date: Thu, 13 Nov 2025 11:32:25 +0100 Subject: [PATCH 40/83] change feeding_buzz() function --- src/post_processing/utils/fpod_utils.py | 3 ++- 1 file changed, 2 insertions(+), 1 deletion(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 1b4ec0f..bb4e5af 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -20,6 +20,7 @@ read_csv, to_datetime, to_timedelta, + to_numeric, ) from post_processing.utils.core_utils import get_coordinates, get_sun_times @@ -427,7 +428,7 @@ def feeding_buzz( f = df.groupby(["start_datetime"])["Buzz"].sum().reset_index() - f["Foraging"] = (f["Buzz"] != 0).astype(int) + f["Foraging"] = to_numeric(f["Buzz"] != 0, downcast='integer').astype(int) return f From 24f209f11773ecfe1db01606f3050aaf69a7cc3f Mon Sep 17 00:00:00 2001 From: fouinel Date: Thu, 13 Nov 2025 17:31:46 +0100 Subject: [PATCH 41/83] reorganise notebooks --- user_case/example_FPOD-CPOD_aplose.ipynb | 3 ++- user_case/example_FPOD-CPOD_raw.ipynb | 1 + 2 files changed, 3 insertions(+), 1 deletion(-) diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb index 2e36a82..91076d3 100644 --- a/user_case/example_FPOD-CPOD_aplose.ipynb +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -40,7 +40,8 @@ "d_beg_end = read_csv(r\"U:\\Deb_Fin_CA4.csv\") #Beginning and end of recording for every phase. 🐬\n", "\n", "tl_path = Path(r\"U:\\TimeLost\\tl_ca4\\phases\")\n", - "tl_df = process_tl(tl_path)" + "tl_df = process_tl(tl_path)\n", + "tl_df = tl_df.drop_duplicates(subset=['ChunkEnd'], keep=\"first\")" ], "id": "7da2feb5958db1a9", "outputs": [], diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index 28c9c5c..35bd0e8 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -40,6 +40,7 @@ "\n", "print(path.head())\n", "df_0 = path.dropna()\n", + "df_0 = df_0.drop_duplicates(subset=['ChunkEnd'], keep=\"first\")\n", "\n", "metadatax = json2df(json_path=json)\n", "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" + metadatax[\"campaign.name\"].astype(str))" From 7d5dd7b502459ee0276030a44e4bf5f04ed14fc5 Mon Sep 17 00:00:00 2001 From: fouinel Date: Fri, 14 Nov 2025 12:35:02 +0100 Subject: [PATCH 42/83] ruff corrections --- src/post_processing/utils/fpod_utils.py | 108 ++++++++++-------------- 1 file changed, 44 insertions(+), 64 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index bb4e5af..617b570 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -19,12 +19,11 @@ notna, read_csv, to_datetime, - to_timedelta, to_numeric, + to_timedelta, ) from post_processing.utils.core_utils import get_coordinates, get_sun_times - from user_case.config import season_color, site_colors if TYPE_CHECKING: @@ -189,11 +188,6 @@ def parse_timestamps( DataFrame Copy of df with parsed timestamps. - Raises - ------ - ValueError - If timestamps cannot be parsed with any format. - """ if date_formats is None: date_formats = [ @@ -291,15 +285,15 @@ def meta_cut_aplose( """ required_columns( - raw_data,["deploy.name", "start_datetime"]) + raw_data, ["deploy.name", "start_datetime"]) required_columns( - metadata,["deploy.name", "deployment_date","recovery_date"]) + metadata, ["deploy.name", "deployment_date", "recovery_date"]) raw = parse_timestamps(raw_data, "start_datetime") raw = raw.sort_values(["start_datetime"]) dfm = raw.merge( - metadata[["deploy.name", "deployment_date","recovery_date"]], + metadata[["deploy.name", "deployment_date", "recovery_date"]], on="deploy.name", how="left", ) @@ -307,7 +301,7 @@ def meta_cut_aplose( out = create_mask(dfm, "start_datetime", "deployment_date", "recovery_date") columns_to_drop = [ - col for col in ["deployment_date","recovery_date"] if col not in raw_data. + col for col in ["deployment_date", "recovery_date"] if col not in raw_data. columns] if columns_to_drop: out = out.drop(columns=columns_to_drop) @@ -318,7 +312,7 @@ def meta_cut_aplose( def add_utc( df: DataFrame, cols: list, - fr:str="h", + fr: str = "h", ) -> DataFrame: """Create a DataFrame with one line per hour between start and end dates. @@ -347,7 +341,7 @@ def add_utc( def build_range( df: DataFrame, - fr:str="h", + fr: str = "h", ) -> DataFrame: """Create a DataFrame with one line per hour between start and end dates. @@ -366,7 +360,7 @@ def build_range( A full period of time with positive and negative hours to detections. """ - add_utc(df, ["Deb","Fin"], fr) + add_utc(df, ["Deb", "Fin"], fr) all_ranges = [] for _, row in df.iterrows(): @@ -403,7 +397,7 @@ def feeding_buzz( Containing all ICIs for every positive minutes to clicks """ - df["microsec"] = df["microsec"] / 1e6 + df["microsec"] /= 1e6 df["ICI"] = df["microsec"].diff() if species == "Dauphin": # Herzing et al., 2014 @@ -428,7 +422,7 @@ def feeding_buzz( f = df.groupby(["start_datetime"])["Buzz"].sum().reset_index() - f["Foraging"] = to_numeric(f["Buzz"] != 0, downcast='integer').astype(int) + f["Foraging"] = to_numeric(f["Buzz"] != 0, downcast="integer").astype(int) return f @@ -458,9 +452,9 @@ def assign_daytime( sunrise, sunset = get_sun_times(start, stop, lat, lon) sun_times = DataFrame( - { "date": date_range(start, stop, freq="D"), - "sunrise": [Timedelta(h, "hours") for h in sunrise], - "sunset": [Timedelta(h, "hours") for h in sunset], + {"date": date_range(start, stop, freq="D"), + "sunrise": [Timedelta(h, "hours") for h in sunrise], + "sunset": [Timedelta(h, "hours") for h in sunset], }) sun_times["sunrise"] = sun_times["date"].dt.floor("D") + sun_times["sunrise"] @@ -631,16 +625,16 @@ def actual_data( """ required_columns( - df,["deploy.name","ChunkEnd"]) + df, ["deploy.name", "ChunkEnd"]) required_columns( - meta,["deploy.name", "deployment_date","recovery_date"]) + meta, ["deploy.name", "deployment_date", "recovery_date"]) beg_end = first_last(df, "ChunkEnd") beg_end = add_utc(beg_end, ["Deb", "Fin"]) - final = beg_end.merge(meta[["deployment_date","recovery_date","deploy.name"]], - on = "deploy.name", how="left") + final = beg_end.merge(meta[["deployment_date", "recovery_date", "deploy.name"]], + on="deploy.name", how="left") final.loc[final["Deb"] < final["deployment_date"], "Deb"] = final["deployment_date"] final.loc[final["Fin"] > final["recovery_date"], "Fin"] = final["recovery_date"] final.loc[final["Deb"] > final["Fin"], ["Deb", "Fin"]] = None @@ -648,7 +642,7 @@ def actual_data( return final.drop(["deployment_date", "recovery_date"], axis=1) -def process_tl(tl_files: Path)->DataFrame: +def process_tl(tl_files: Path) -> DataFrame: """Process Environmental data extracted from cpod.exe to get a usable dataframe. Parameters @@ -670,7 +664,7 @@ def process_tl(tl_files: Path)->DataFrame: return df.sort_values(["start_datetime"]) -def filter_tl(df: DataFrame, tl: int)->DataFrame: +def filter_tl(df: DataFrame, tl: int) -> DataFrame: """Remove lines with a %TimeLost superior to the chosen threshold. Parameters @@ -690,7 +684,7 @@ def filter_tl(df: DataFrame, tl: int)->DataFrame: return df[df["%TimeLost"] < tl] -def preserved_data(filtered_df: DataFrame, whole_df: DataFrame)-> float: +def preserved_data(filtered_df: DataFrame, whole_df: DataFrame) -> float: """Calculate the percentage of preserved data. Parameters @@ -705,14 +699,14 @@ def preserved_data(filtered_df: DataFrame, whole_df: DataFrame)-> float: Percentage of preserved data. """ - return (len(filtered_df) / len(whole_df)) *100 + return (len(filtered_df) / len(whole_df)) * 100 def create_matrix( df: DataFrame, group_cols: list, agg_cols: list, -)-> DataFrame: +) -> DataFrame: """Create a stats matrix (mean & std). Parameters @@ -828,7 +822,7 @@ def site_percent(df: DataFrame, metric: str) -> None: ) ax.set_title(f"{metric} per site") ax.set_ylabel(f"{metric}") - if metric in ("%buzzes", "FBR"): + if metric in {"%buzzes", "FBR"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") plt.show() @@ -866,7 +860,7 @@ def year_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Year") - if metric in ("%buzzes", "FBR"): + if metric in {"%buzzes", "FBR"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle(f"{metric} per year", fontsize=16) @@ -907,7 +901,7 @@ def ym_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Months") - if metric in ("%buzzes", "FBR"): + if metric in {"%buzzes", "FBR"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") legend_elements = [ @@ -973,7 +967,7 @@ def month_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Months") - if metric in ("%buzzes", "FBR"): + if metric in {"%buzzes", "FBR"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle(f"{metric} per month", fontsize=16) @@ -1013,7 +1007,7 @@ def day_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Months") - if metric in ("%buzzes", "FBR"): + if metric in {"%buzzes", "FBR"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") legend_elements = [ @@ -1064,7 +1058,7 @@ def hour_percent(df: DataFrame, metric: str) -> None: ax.set_xlabel("") else: ax.set_xlabel("Hour") - if metric in ("%buzzes", "FBR"): + if metric in {"%buzzes", "FBR"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle(f"{metric} per hour", fontsize=16) @@ -1084,10 +1078,6 @@ def calendar( data: DataFrame cpod file from all sites and phases - Returns - ------- - Return a plot of all deployments and associated data. - """ # format the dataframe meta["deployment_date"] = to_datetime(meta["deployment_date"]) @@ -1131,7 +1121,6 @@ def calendar( linewidth=0.8, ) - ax.set_yticks(range(len(sites))) ax.set_yticklabels(sites, fontsize=12) @@ -1175,10 +1164,6 @@ def hist_mean_m( title_suffix: str, optional Suffix for the main title. If None, uses metric_mean - Returns - ------- - Return a plot of all deployments and associated data. - """ sites = df["site.name"].unique() n_sites = len(sites) @@ -1206,7 +1191,7 @@ def hist_mean_m( ax.set_title(f"{site}", fontsize=12) ax.set_ylim(0, max_value * 1.1) - ax.set_ylabel(y_lab if y_lab else metric_mean, fontsize=10) + ax.set_ylabel(y_lab or metric_mean, fontsize=10) # Only set x-label on last subplot if i == n_sites - 1: @@ -1228,12 +1213,12 @@ def hist_mean_m( "Dec", ], ) - if metric_mean in ("%buzzes_mean", "FBR_mean"): + if metric_mean in {"%buzzes_mean", "FBR_mean"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") fig.suptitle( - f"{title_suffix if title_suffix else metric_mean} per month", + f"{title_suffix or metric_mean} per month", fontsize=16) plt.xticks(rotation=45) plt.tight_layout() @@ -1264,10 +1249,6 @@ def hist_mean_h( title_suffix: str, optional Suffix for the main title. If None, uses metric_mean - Returns - ------- - Return a plot of all deployments and associated data. - """ sites = df["site.name"].unique() n_sites = len(sites) @@ -1296,18 +1277,17 @@ def hist_mean_h( ax.set_title(f"{site}", fontsize=12) ax.set_ylim(0, max_value * 1.1) - ax.set_ylabel(y_lab if y_lab else metric_mean, fontsize=10) + ax.set_ylabel(y_lab or metric_mean, fontsize=10) ax.set_xticks(range(24)) # Only set x-label on last subplot if i == n_sites - 1: ax.set_xlabel("Heure", fontsize=10) - if metric_mean in ("%buzzes_mean", "FBR_mean"): + if metric_mean in {"%buzzes_mean", "FBR_mean"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") - fig.suptitle( - f"{title_suffix if title_suffix else metric_mean} per hour", fontsize=16) + fig.suptitle(f"{title_suffix or metric_mean} per hour", fontsize=16) plt.xticks(rotation=45) plt.tight_layout() plt.show() @@ -1344,16 +1324,16 @@ def hist_mean_s( x_pos = range(len(plot_data)) # Create bars - bars = ax.bar( - x=x_pos, - height=plot_data[metric_mean], - color=[site_colors.get(site, "gray") for site in plot_data["site.name"]], - alpha=0.8, - edgecolor="black", - linewidth=0.5) + ax.bar( + x=x_pos, + height=plot_data[metric_mean], + color=[site_colors.get(site, "gray") for site in plot_data["site.name"]], + alpha=0.8, + edgecolor="black", + linewidth=0.5) # Add hatching if requested - if metric_mean in ("%buzzes_mean", "FBR_mean"): + if metric_mean in {"%buzzes_mean", "FBR_mean"}: for _, bar in enumerate(ax.patches): bar.set_hatch("/") @@ -1374,9 +1354,9 @@ def hist_mean_s( ax.set_xticks(x_pos) ax.set_xticklabels(plot_data["site.name"]) - ax.set_title(f"{title_suffix if title_suffix else metric_mean} per site", + ax.set_title(f"{title_suffix or metric_mean} per site", fontsize=12) - ax.set_ylabel(y_lab if y_lab else metric_mean, fontsize=10) + ax.set_ylabel(y_lab or metric_mean, fontsize=10) ax.set_xlabel("Site", fontsize=10) plt.tight_layout() From 0bc968d5c75426aaf9428b260415aebf4378e09f Mon Sep 17 00:00:00 2001 From: fouinel Date: Wed, 19 Nov 2025 17:43:47 +0100 Subject: [PATCH 43/83] update notebooks --- user_case/example_FPOD-CPOD_aplose.ipynb | 61 +++++++++- .../example_FPOD-CPOD_firstresults.ipynb | 110 ++++-------------- 2 files changed, 79 insertions(+), 92 deletions(-) diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb index 91076d3..bc6d952 100644 --- a/user_case/example_FPOD-CPOD_aplose.ipynb +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -9,6 +9,8 @@ "source": [ "from pathlib import Path\n", "\n", + "import matplotlib.pyplot as plt\n", + "\n", "from pandas import (\n", " read_csv,\n", ")\n", @@ -41,7 +43,9 @@ "\n", "tl_path = Path(r\"U:\\TimeLost\\tl_ca4\\phases\")\n", "tl_df = process_tl(tl_path)\n", - "tl_df = tl_df.drop_duplicates(subset=['ChunkEnd'], keep=\"first\")" + "tl_df = tl_df.drop_duplicates(subset=['ChunkEnd'], keep=\"first\")\n", + "tl_df[\"Angle\"] = (tl_df[\"Angle\"].replace(',', '.', regex=True)).astype(float)\n", + "tl_df[\"Temp\"] = (tl_df[\"Temp\"].replace(',', '.', regex=True)).astype(float)" ], "id": "7da2feb5958db1a9", "outputs": [], @@ -51,7 +55,7 @@ "metadata": {}, "cell_type": "markdown", "source": [ - "### Data metric\n", + "### Resample your data\n", "Here you need to choose the format in which you want to visualise the positive detections. This aims to replace the functionalities available in Chelonia's softwares." ], "id": "3bc57f4f638ad6dc" @@ -79,8 +83,8 @@ "metadata": {}, "cell_type": "markdown", "source": [ - "### Feeding buzzes processing\n", - "Use \"Dauphin\", Marsouin\" or \"Commerson\" to get different ICI processing." + "### Add the effort\n", + "To analyze the data, add zeros to view it based on effort." ], "id": "b92537991aa4ac4b" }, @@ -159,7 +163,7 @@ "cell_type": "code", "source": [ "full_df = d_tot.merge(\n", - " tl_df[[\"start_datetime\", \"%TimeLost\"]],\n", + " tl_df[[\"start_datetime\", \"%TimeLost\", \"Angle\", \"Temp\"]],\n", " on=\"start_datetime\", how=\"left\")" ], "id": "66bf795805047a3d", @@ -177,6 +181,53 @@ "outputs": [], "execution_count": null }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "### Visualize environmental data", + "id": "e0ea7247e27a37b6" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "resamp_tot = filtered_df.set_index(\"start_datetime\").resample('h').first().reset_index()\n", + "\n", + "fig, ax = plt.subplots(figsize=(12, 6))\n", + "ax.plot(resamp_tot[\"start_datetime\"], resamp_tot[\"Angle\"])\n", + "plt.title(\"Angle of the instrument over time\")\n", + "plt.show()" + ], + "id": "14ff46dec308dcc1", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "fig2, ax = plt.subplots(figsize=(12, 6))\n", + "ax.plot(resamp_tot[\"start_datetime\"], resamp_tot[\"Temp\"])\n", + "plt.title(\"Temperature over time\")\n", + "plt.show()" + ], + "id": "db07736375a767d9", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "fig3, ax = plt.subplots(figsize=(12, 6))\n", + "ax.plot(resamp_tot[\"start_datetime\"], resamp_tot[\"%TimeLost\"])\n", + "plt.title(\"%TimeLost over time\")\n", + "plt.show()" + ], + "id": "7409831bc24271e3", + "outputs": [], + "execution_count": null + }, { "metadata": {}, "cell_type": "markdown", diff --git a/user_case/example_FPOD-CPOD_firstresults.ipynb b/user_case/example_FPOD-CPOD_firstresults.ipynb index 134a81b..1c3366b 100644 --- a/user_case/example_FPOD-CPOD_firstresults.ipynb +++ b/user_case/example_FPOD-CPOD_firstresults.ipynb @@ -4,11 +4,7 @@ "cell_type": "code", "id": "initial_id", "metadata": { - "collapsed": true, - "ExecuteTime": { - "end_time": "2025-11-06T09:59:30.110070Z", - "start_time": "2025-11-06T09:59:28.122343Z" - } + "collapsed": true }, "source": [ "from pandas import (\n", @@ -21,7 +17,7 @@ "from post_processing.utils.core_utils import get_season" ], "outputs": [], - "execution_count": 1 + "execution_count": null }, { "metadata": {}, @@ -39,12 +35,7 @@ "id": "caea0e065ad8068c" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:34:05.474853Z", - "start_time": "2025-11-06T10:34:04.483887Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "ca4 = read_csv(r\"L:\\acoustock\\Bioacoustique\\DATASETS\\CPOD_PROJETS\\CALAIS\\DATA\\DATA_FULL_OTHERCET\\Hours_DPM_FBUZZ_CA4_ssTL.csv\")\n", @@ -57,7 +48,7 @@ ], "id": "1268d9e6ce5cdf32", "outputs": [], - "execution_count": 44 + "execution_count": null }, { "metadata": {}, @@ -86,12 +77,7 @@ "id": "17a5ce1338f6cd1a" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:23:15.773466Z", - "start_time": "2025-11-06T10:23:14.586120Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "a = read_csv(r\"U:\\Hours_DPM_FBUZZ_A.csv\")\n", @@ -106,7 +92,7 @@ ], "id": "d65697a1f1487f4c", "outputs": [], - "execution_count": 22 + "execution_count": null }, { "metadata": {}, @@ -118,25 +104,15 @@ "id": "9fc3b5075bf7ff2c" }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:34:09.795757Z", - "start_time": "2025-11-06T10:34:09.785706Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "data = data_c #🐬", "id": "add4a626d6cc25a4", "outputs": [], - "execution_count": 45 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:34:13.881765Z", - "start_time": "2025-11-06T10:34:13.617021Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "data = extract_site(data)\n", @@ -145,25 +121,11 @@ "#t_per = percent_calc(data, \"TRAVAUX\")" ], "id": "37ecc80eda8e57ed", - "outputs": [ - { - "name": "stderr", - "output_type": "stream", - "text": [ - "C:\\Users\\fouinel\\AppData\\Local\\Temp\\ipykernel_24020\\669083797.py:4: UserWarning: Converting to PeriodArray/Index representation will drop timezone information.\n", - " data['Date'] = data[\"start_datetime\"].dt.to_period('D').dt.to_timestamp()\n" - ] - } - ], - "execution_count": 46 + "outputs": [], + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:34:15.931189Z", - "start_time": "2025-11-06T10:34:15.912241Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "ym_per = percent_calc(data, \"YM\")\n", @@ -174,15 +136,10 @@ ], "id": "2b988869ed2466e1", "outputs": [], - "execution_count": 47 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:24:21.202676Z", - "start_time": "2025-11-06T10:24:21.177426Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "per_h = percent_calc(data, \"YMH\")\n", @@ -191,15 +148,10 @@ ], "id": "cf704032c4a59a7b", "outputs": [], - "execution_count": 30 + "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:24:22.084789Z", - "start_time": "2025-11-06T10:24:22.073176Z" - } - }, + "metadata": {}, "cell_type": "code", "source": [ "matrice_s = create_matrix(ym_per, [\"site.name\"],[\"%DPH\", \"FBR\"])\n", @@ -208,7 +160,7 @@ ], "id": "caf3f71c6b6f70ca", "outputs": [], - "execution_count": 31 + "execution_count": null }, { "metadata": {}, @@ -218,7 +170,7 @@ " matrice_s,\n", " metric_mean=\"%DPH_mean\",\n", " metric_std=\"%DPH_std\",\n", - " ylabel=\"Moyenne %DPH\",\n", + " y_lab=\"Moyenne %DPH\",\n", " title_suffix=\"%DPH\"\n", ")" ], @@ -235,28 +187,12 @@ "execution_count": null }, { - "metadata": { - "ExecuteTime": { - "end_time": "2025-11-06T10:34:18.966846Z", - "start_time": "2025-11-06T10:34:18.611173Z" - } - }, + "metadata": {}, "cell_type": "code", "source": "ym_percent(ym_per, \"DPM\")", "id": "a2dacac3caecff5f", - "outputs": [ - { - "data": { - "text/plain": [ - "
" - ], - "image/png": "iVBORw0KGgoAAAANSUhEUgAABycAAALPCAYAAADIEMxwAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjYsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvq6yFwwAAAAlwSFlzAAAXEgAAFxIBZ5/SUgAAjgxJREFUeJzs/QeYlNX5P/7fC0gRFBUBRUEJggU0WEBDsEVRsEfFFmtUTIwaNDaMPXbUmEhskY8NS+wtdoPdiA0LalAEBQXBggjShP1f5/y+M/9dFqS4DCz7el3XXDNznvM8c2Z32Lh5732fsvLy8vIAAAAAAAAAWMzqLO4XAAAAAAAAAEiEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAABazG2+8McrKyvLt0EMPXdLLAQAAWGKEkwAAUMNss802xZBjzlvDhg2jZcuW0b59++jevXsce+yxORT59NNPF/p15vUa6Va3bt1YeeWVY/3114+DDjoo7r777vjhhx9+9Hprr712leu89dZbC7Wm3r17V7lGen8AAABAzSCcBACAZcj06dNj/Pjx8dFHH8WLL74YAwYMiMMOOyzatm0bO++8czz++OPV8jqzZ8+OiRMnxgcffBCDBg3KoeEGG2wQr7766kJd5+abb17gud9880089NBDi7BaqF7PPPNMMRxPfywAAADAgqu3EHMBAIClTJcuXaJr166VQsNvv/02B4fDhg2LTz75pDj+yCOP5FtqKfn3v/89VlhhhQV+nT322CPWWGON4vNZs2bFF198ES+88EJMmDAhj3344Yex7bbbxnPPPRebbLLJAl33tttui0suuSRXYs7Pv/71rxy+AgAAADWXcBIAAGqwnXbaKc4+++x5Hh83blzccsstOYwcM2ZMHkttUFNw+eyzz0ajRo0W6HX++Mc/zrVCbMaMGTlcPPPMM6O8vDymTJmSw8/UrjVVlc1LqrJ877338vqeeOKJ6NWr1wJXWdavXz/atGmTq0MBAACAmkVbVwAAWIatttpqcdJJJ8X777+fW68WpParKUT8qVJQePrpp8ef/vSn4tg777wTTz755I+el/apXJjWrqkq8+WXXy4Gss2aNftJ6wYAAACWDOEkAADUAk2aNMltUdO+kwV33nlnbsFaHU499dSoU+f//+vFU0899aPzO3fuHBtttFF+/MADD8SkSZN+dH7FAPOQQw75yesFAAAAlgzhJAAA1BKpzWoK+SruNXn++edXy7VTJeO6665bfP7xxx/P95yDDz4430+dOjXuuuuuec5L7WIHDRpUfJ2KAWt1SS1r09cn3Z555pk8Nnr06FwV+vOf/zxWWWWVaNy4cay33npx/PHHL1JL2aeffjp+97vfRceOHfP1GjRoEK1atYodd9wxBgwYkL8O81NYY8WWuamFbmq726lTp3zddCztEbooUjVt4fqp/W+S9i+97LLLYosttogWLVrkatmf/exncfTRR+ev0Zy++uqruOiii/JeqM2bN4/ll18+1l9//Rxgf/PNNwu1nv/+979xzDHH5K/ZyiuvHA0bNow111wzevbsmb9mqY3w/KS2x4X3VGiB/MMPP+R/C9tvv33eSzV9L1ZfffX8dXv44Yfne620t2pBao9c8ftSuK299toL9B7vu+++2HXXXXOr4rSO9DXeYYcd8mc+ffYBAACWNfacBACAWiSFVymAuvLKK/Pz1H7166+/zuM/VQqPCuZXCZn85je/iVNOOSVmzZqVg6LDDz98rvNSdeeoUaPy4/322y+WW265WNwefPDBHJ5+++23lcb/97//5du1114bV1xxRfTp02e+10oBXrpWIfSsaOzYsfmW9t288MIL44477ogtt9xygdeZwrLzzjsvfw0XhzfeeCP22muv4te/YOTIkXH11Vfn9abQdeONN87jjzzySP6+pkCzog8++CDfUuA2ePDgaN++/Y++bgod0+chVfvO6bPPPsu3xx9/PC644IIYOHDgAu1ZWvH8ffbZJ1566aVK42n/01TFm26HHXZYXH/99ZWqgatb+mylz0X6rFU0YcKE/O8y3W699da49957F3hvWAAAgJpAOAkAALVM2nuyEE6myqwXXnghdtttt5983YpVcU2bNl2g/TB79OgRjz32WDz//PM5AJtbtdlNN91UpdpycXrttdfiz3/+c8yYMSNXaqaqyhS8pvWlKrmZM2fmKsejjjoq6tatO89QNUl7fW633XY5gExSRd0mm2wSG2ywQQ6cUlCWwtfvvvsuPv/88/z1ePTRRytV5s1L//7945xzzsmP27VrlysVU5ViWmd1BLhjxoyJk08+OYdlq666amy99dY5xP7kk09ywJi+Dul7nio/056gQ4cOzZWHaTxVN/7yl7+MFVdcMYYPH56/v7Nnz87vd88994w333wz6tWb+6+j33//ffzqV7+KIUOGFMdShWkKbVN74lS1mj6zKZBNX9f02b399ttj7733nu97mjx5cq66fPfdd/PXKl2zdevW+euf3tP48ePzvBtuuCFXAqfwvKL0Nf7DH/6Q38f9999fXNuvf/3rKq/1Y/uipsrNFPqmYDdVonbr1i1/D6dNm5a/Vp9++mmel/5tnHDCCTkIBgAAWGaUAwAANcrWW2+dej3m21lnnbXQ50+ZMqW8bt26xWv069dvrvMKx9Nt8ODBP3rNL7/8srxOnTrF+SeddFKVOWuttVbx+KOPPprHbrvttuLYueeeW+Wc77//vnyFFVbIx9dbb73i+Oabb14874Ybbiivzq9p/fr18/2JJ55YPm3atErzRo8eXb7lllsW5y6//PLlH3300VyvOXny5PL111+/OLdXr15znfvtt9+W//73vy/OW3311csnTpw43+9JvXr1yps2bVp+3333VZk357oX1CGHHFK8foMGDfL9mWeeWT59+vRK8955553y1VZbrdL3u3Xr1uXLLbdc+dVXX10+a9asSvOfffbZ8saNGxfn33TTTfNcQ8WvRfqcXnHFFVWuN3z48PJNN920OG/FFVcsHzly5Fyvl/6NzPme0vv86quvqvy72H///YtzmzRpkr+Hc5P+PRTmpc/Ogkif0znXkT4TY8aMqTRv5syZ+bNXmFtWVjbP9wYAAFAT2XMSAABqmVQxlqrFCr744ouffM20x2CqjCtI1YILIlXapeq65JZbbpnrfnypqq1UVZNJqphMe0OmysS0B2BFqSIwtS5Ne08WqvwK1Ytzuvzyy3PlZJIq69Jehqk6bk7p/V911VVxyCGH5OepGvCaa66Z7zrT1zu1BJ3b/pJzrntRTJ8+Pe+5md5fqu6rKO1veemllxafp69Val973XXX5a/dnO1Qt9pqq+jXr1/xeWoHOzcjRozILXML/va3v+X9NOe8XmoLm9qeFiptUxvhc889d4He0/7775/305yzlXH6d/F///d/xX8bqcryx/af/CnSOlLVZvr+pT0vK0oVpZdcckl06dIlP0+Z9Nza2wIAANRUwkkAAKiFKrZdrdiOdVGCvPPPPz8uu+yy4ljHjh1ze9IFkVqbpjazSWoN+vLLL1c6nvaiTFI4deCBB0YprLDCCjlsnZfUWjSFRwV33XVXlb0pU2vTAQMGFIPCFDbOb//CtH9iavuapL0G5ye1MU2h3+LSokWLHE7OS2rPWjG07Ny5c97PdF5SKFhQsWVrRf/85z+LIXe63tFHHz3P66VWuxdffHHx+W233Vbl+zCntN4UGs9Lw4YNF2id1SHtWTqv1rbpc5D2vSzFOgAAAErNnpMAAFALpYCtoFCZ+GNSBdvdd99dfJ4CpFRxmfbHS3sSVqw+S/v1zS+IqyhVRA4cOLAYRv7iF78oVhA+9dRT+XHa97FitefilPYwnN+emTvttFM0b948v/e0T2AKVdNehhX3rSzsX5iqSFPQNz9p78JUkZmqLdOeiClo+7F17LfffrE47brrrj9agZmC5XXWWSfee++9/Hx+ez7+7Gc/y5+PVG361Vdf5c9dCoIr+s9//lN8nILOQlg7L6kiNVVAfv3117kacc7vw5y6d++e9zr9MRtvvHHxcdq/c3FIX4u09+iSXgcAAMCSIJwEAIBaqGIgWWir+mPuv//++c5JLUsHDRpUbEe5oFJ7y7Zt28bIkSNz+8oUhKYKt3StWbNmlbSla1IIR39M3bp18/tMLV6TN998s1IoVrECdMyYMXHMMccs0GtPnDix2Moznfdj4eSmm24ai1Nq3To/qXqxYsXsgsxP4WShFWvFcDK956FDhxafd+vWbb7XW2655aJr167x2GOP5edvvPHGj4aTG2644Xyv2axZs+LjtMbFYWlZBwAAwJIgnAQAgFqoYvvLOffeWxCpMjIFS6uvvnoOyXbfffe892EKixZWqo5LLVv/8pe/5BazDz30UOy1117FPSgbN26cn5dKmzZtFnpexerR5PPPPy8+fvvtt/NtYc2v3W6q3Fyc5lc9mlRsS7qw81Pr2zk/kxXH1lprrQVaZ2HfyeTLL7/80bkLssaKn+E511hdlpZ1AAAALAnCSQAAqGWmTJmSq/IK5tfmMhk8eHBurbq4pMrIFE4WWrumtpfvvPNOcW/Dim1oF7fUenRBpNB0Xq1x57f34YL44YcffvR4aqu6OM2vpepPnT+nyZMnz/Pru6jfh+peY3VZWtYBAACwJCz4RjAAAMAyIe2HWGiXmmyxxRaxpKW9CwttPB999NG47LLLisdK2dI1KbQdXZCQt2DOvRMrBmbHHXdcblm6sLfFGQYvjeYMoCt+fRf1+wAAAMDSRzgJAAC1zF133VWpPWv37t1jaVAIIVMLy1tvvTU/XnPNNeNXv/pVSdfx6aefLtC80aNHFx+vuuqqlY61bNmy+HjcuHHVuLplV2p1WrGV6YJ+H0aNGjXP7wMAAABLH+EkAADUIl999VXcdNNNxec9e/ZcoP3vSmHfffeNBg0aVBr7zW9+kwPUUvrvf/873zmp8vTVV18tPt9kk00qHd98882Lj1966aVcCcn8W5127ty50tdtQVrf/tj3YXHRlhUAAGDRCScBAKCWSAHZIYccUmlvv9NPPz2WFiuttFLsuuuulcZK3dI1efDBB2PSpEk/Ouexxx6L8ePH58cNGzaMX/ziF5WO//KXv8zvJ0n7ez700EOLccXLjopVsilEn1+oe//99+fAfV7fh8UlvVZBqvQFAABgwQknAQCgFkiB5H777Rf//ve/i2MHHXRQycKcBTVgwIBcCZdub7zxRmywwQYlX0MKJk877bQf3ePw5JNPLj7fe++9q1SfpgrQvn37Fp8fffTR8dlnny3wGr744ouojY488shipWz6/l933XXznDtx4sRK34f999+/ZFXAzZo1Kz5emO8rAAAAwkkAAFimpf0OL7300hzy3XnnncXxbt26xT//+c9Y2qS9GjfbbLN823jjjZfIGurXrx//+Mc/4tRTT40ZM2ZUOpaCqJ133jnee++9/LxRo0Zx1llnzfU6f/rTn6Jjx47F89J7Svt9zp49e67zv/zyyxzGpdak/fv3j9qoXbt2cdRRRxWfH3PMMfl7MefX7KOPPooddtghRo4cmZ+vuOKKceaZZ5ZsnW3bto3ll18+P/7kk08qtZYFAADgx9Wbz3EAAGAp9sgjj+RQqyCFOKnyL1WVpQCtEN7MWZ3217/+tcr+jvx/zjvvvPjzn/8cF198cQwcODC22WabWHnllXMI9cwzz1QKLK+44opYZ5115nqdJk2a5Bax22+/ff4+pKB4n332iVVXXTW22GKLWG211XLb0q+//jp/rz788MNiCFexvWltk8L01157LQd+aU/JFFBedNFF0b179/w1HTFiRDz33HN538+kXr16+fu09tprl2yNdevWjT322CNuu+22/Dx9RtL+rW3atMnHklVWWeVHK3ABAABqK+EkAADUYIUWqPOTApNevXrlVqPbbbddSdZWU3Xp0iVXOKb9LlPwe/fdd891z8HLL788+vTp86PX+tnPfpaDtt/97nf5OimMTNd8+OGH53lO2qtyww03jNoqVST+5z//icMPP7xY7Zv27bzjjjuqzF199dVzMJk+26V2wQUX5HWm0Pn777+Pe++9t9LxtdZaSzgJAAAwF8JJAABYhqSWpKnFZdp7L1Xmpdaom266aa7eW3PNNZf08mqM3XffPd5+++245ppr8j6dn376aa6YbN26da6QS9V87du3X6BrpQq6FLK9++67cfvtt+fqy1RJ+dVXX+X9FVMYmaovUzvX9H3q0aNHDj9rs1Qh+a9//SuH6bfcckv+mn3++ecxderUXHnaqVOn2GWXXeK3v/1tNG7ceImsMYWPb731Vt4n9Yknnojhw4fHd999l6s9AQAAmLey8vSnuwAAALVYasv57LPP5seDBw/OzwEAAIDqV2cxXBMAAAAAAACgCuEkAAAAAAAAUBLCSQAAAAAAAKAk6pXmZQAAAAAAAKjpysvLY9KkSTF9+vQoKytb0sthCWjatGnUr19/kc8XTgIAAAAAALBAweQXX3wRK620Uqy44orCyVpo9uzZMX78+GjZsuUif/+1dQUAAAAAAGC+UsVkCiYbNmwomKyl6tSpE6usskpMnDhxka9RVp5ibgAAAAAAAPgRqWKuefPmgkliwoQJ+bOwKFROAgAAAAAAMF8plBRM8lMJJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAMBSY/DgwbHXXnvFGmusEfXr14+VV1451l133ejdu3cMGDAgvv322yW9RH6CsvLy8vKfcgEAAAAAAACWfRMmTIjmzZsv1tc499xz46yzzsqP119//VhvvfViueWWi//973/xzjvvxOzZs+Pll1+OLbbYYrGug8X3Wai3SGcBAAAAAABANXr99dfj7LPPzmHknXfeGXvssUel4+PGjYtBgwbFSiuttMTWyE8nnAQAAAAAAGCJu/feeyM1/Nxnn32qBJPJaqutFieeeOISWRvVx56TAAAAAAAALBWtQpOFbRf6/fffx4UXXhgbb7xxNGnSJN9S29ebbrpprvOff/75OOaYY2KjjTbK+1k2atQot4899dRTY+LEiXM956WXXsqB6VprrRUNGjTIQWnXrl3zOZMnT64y/5Zbbonu3bvHiiuuGMsvv3x+rbTGadOmVZl76KGHRllZWTzzzDPx3HPPxa9+9atYYYUV8rk777xzvPfee1XOSSHurbfeml+jZcuW0bBhw2jdunVsv/328Y9//COWZvacBAAAAAAAYInvOfmXv/wlzjzzzByyvfbaa9GiRYv5njN+/Pjo0aNHvP322zkw3GSTTXJwl8LEb7/9NoeQV155ZaVzUnD51ltv5cAwvVYKDN94440YO3ZsdOzYMf773//mgLPgoYceysFkum4KJNu2bZtDzA8//DBGjBgRI0eOjLXXXrs4/6ijjorrrrsuB4YpaEzhZAoev/zyy/jFL34RTz31VB6rGE6mIPWEE06Iv/3tb7HZZpvlEHTo0KExfPjwaNasWbz77rv5/RWcdNJJcemll+agdKuttopVV101t71N89K1R40aFUvrZ0E4CQAAAAAAwBIPJz/++OPo1KlTTJ06NVcO7rnnnrkycNNNN81BYt26dauckyoLH3nkkfjjH/8YF198cQ7rki+++CJ22WWXHHI++uij0bNnz+I56Xm3bt2iadOmxbHp06fHcccdl0PFc845J4ekBVtvvXWuaLz77rtjr732qvT6r776aq66TOtN7rnnnth7772jVatWOZBs3759Hk9BaVrPCy+8EH/6059ysDhnOFmnTp18fqGl7axZs2LffffNY2eccUace+65eTyFqWnfzfr16+eQNYWlBT/88EO8/PLLseWWW8biJJwEAAAAAACgRoeTydNPPx2HHXZYjB49utJ4CuP233//HNKtvvrqeSxVFqZWrl26dMnVjincq+jNN9/MlZS77bZbPPDAA/N97RSKplaqKQh9/fXXi+MbbLBBvP/++7lasmKgOTeFIPPaa6+NPn36VDqWqjs7d+4cjRs3zl/LVFlZMZz8zW9+E4MGDap0TlpHqqRM101hZ6FaNLVyTddK77GmfRbsOQkAAAAAAMBSYbvttouPPvoo7r333vjd736Xw8V69erlYPDqq6/Ogdz//ve/PPeJJ57I96nScM5gMinsQTlkyJAqxz777LO45pprom/fvvHb3/42B4S///3vczViatdaUarcTA466KBcKTl79uy5rn3mzJk5JE1S0DinFHputNFGeY/KFKzOaYcddqgy1qFDh3yfWs4WpHa3a665Zr5G2vMyVZzWJMJJAAAAAAAAlhopIPz1r3+dw8hUOZiq9NLjlVdeOVcNpn0kk8K+in/+85+jrKxsrrcUBKa9Hiu6/PLLcyvUFEamPR5vuOGGXLmYbt9//3189913leZfcMEF8fOf/zzvPZn2nEz7O6ZqzOuvvz63WC346quvYsaMGfl4qo6cm7X/396UKRydUwoc51RoF5vazlaU1poqF1Mr23bt2uXrHnLIIbll7dKu3pJeAAAAAAAAAMxLaumaqijTPo677757DB48OIeIhQrGtC9lCugWRKpsTHs+pvasKZjcZpttYrXVVivuVZleo2KVYtK6deu8d+V//vOfePjhh+PZZ5/NQWW6XXLJJXmPx2bNmi3Q65eVlc3z2NyqP+flV7/6Va4wTet57LHHcsvXm2++Od/Svphpf8yllXASAABgGfPBBx/EP/7xj/wLe9qnJe2bkv5yN7U02nPPPePAAw8s/uJd0fnnnx+nn3568RrrrrvuAr1eeXl5bj/01FNPFVsZpbZLAAAA1SkFcsmsWbNym9dCpWFq65oCxwVx3333FX//SZWGFaXfncaNGzfX89LvOOn3nkLr1U8++SS3g02BZapeTCFlCihT1Weq1JwyZcpcqydH/b9qzzXWWCN+qrQ/5gEHHJBvheC1d+/ecc8998QjjzwSO+20UyyNtHUFAABYhpx77rnRsWPHGDBgQP5FNf2yfeKJJ0avXr1y4HjEEUfEL3/5y7kGjKklUeGveP/5z38u8Gum10pBaMOGDav1vQAAALVL+r3kx6RKwSQFgOkPMHv06FEpcFwQ33zzzTxbqN51113zXUPBWmutFaecckp+/O677+b75ZZbLrbYYov8+I477qhyTpr31ltv5X0w096Z1S29dtoXs+KalkbCSQAAgGVE2gflrLPOyn+Bm/5i9qWXXoq///3veXzgwIExYsSI3HaosGdJRU888UT+C94UZqaWRmn/krRXyvz873//y7+QpwC0ZcuWi+mdAQAAtcEZZ5wRJ510Uv7dZU5pj8ajjjoqP077PaaAcvPNN88B5Ysvvhh/+MMfYtKkSVXOS2Fganta0KFDh3yffkdKXV8K3nvvvWLYOKe//vWvc62oTNWJhbavBccee2y+P/vss+Pjjz8ujqd9LNNemeXl5fl9/JQ/7vz000/jxhtvzK1tK0r7X6Y/HJ1zTUubsvIFjYABAABYaqVgsfBL9htvvBGdOnWa59zp06dXaeu6995759Y/6Zf6e++9Ny677LL8l7777rvvPK/zww8/RLdu3fIvxK+//npuA5taG2nrCgAAy6YJEyZE8+bNF9v1+/btm/eBTNLvNxtssEEO8caMGROvvPJK/l1jnXXWyfsrFtqijh8/Pnr27Blvvvlm3psyVSSmfSO//fbbePvtt/NWF3/84x/jiiuuyPO/+uqr/PtSChvbtm0bXbp0ia+//jrvI5naww4ZMiT/XlMxPkvXTeHiz3/+82jfvn0+lkLP4cOHxyqrrJL/ODSNF6Tw8brrrotGjRrlVrTLL798XnP6+m2xxRbx9NNP57GCQw89NP+BaAoW0x6Yc0odblKlZqEl7NChQ/O2Hekam222Wa4CTW1k0x+optdIYy+88MJct/NYGj4LKicBAACWATfccEP+RX2vvfb60WAymfMX1C+++CIefPDB/Mt/ChvTL8ZJ+mX6x5x33nn5/wBIf7G7OH/pBQAAaofTTz89brnlljjwwAPz7xjPP/983H333bmqsWvXrnlfxxTMVdyvsUWLFsWuMSnMTL+jpHNSMPmzn/0s+vfvnzu9FKR9IV999dW8T2PqFpN+F0pVmX/5y1/i9ttvn+u6rrzyythvv/3yH2Y++uijuRIz/UHmCSeckF+nYjCZXHvttXHzzTfnADGFnqmDTVpn2ufyP//5T6VgclG0a9cu/0FpCjJTFWX6A9MURqYAM1V5ptdcmn9HUzkJAACwDNhuu+3yL7lpr8i0r+TCuOiii6Jfv365/Wu6T9Jf2qYKzPSXwOkvk+eUfplPQeapp56af4lP1l57bZWTAACwDFvclZPUHConAQAAarmxY8fm+9TOZ2Gkv1e9/vrro06dOnHwwQcXx1P1ZDqWws45TZ06NQ466KDo2LFjnHnmmdWwegAAAGoL4SQAAEAtlqotR4wYET169KjUGim1OKpfv35u2ZoqISs6+eST4+OPP857oiy33HJLYNUAAADUVMJJAACAZcDqq6+e79NeKQujsK9kYZ/JglVWWSV23XXXGD9+fDzwwAPF8bR3yT/+8Y+8F8zPf/7zalk7AAAAtYdwEgAAYBnQvXv3fP/0008v1B4h999/f368//77R1lZWaXbPffcUynATN58883c7vWss86qMj/tN5mkasr0fOjQodX8LgEAAKjp6i3pBQAAAPDTHXbYYXHhhRfmQPG9996LDTbYYJ5zp0+fHg0aNMhtWWfMmBGbbrppdO7cea5zH3zwwXjqqadi5MiR0bZt2+jUqVMcfvjhc537r3/9KyZPnhy//e1vczjZrFmzant/AAAALBvKytOfvAIAAFDjXXDBBfHnP/851l577bjrrrtis802qzLnsccei0suuSTvNbnuuuvG8OHD45VXXomuXbvO9ZpnnHFGnHfeeXHaaafF+eef/6Ovn143VU+mPSrr1fO3sAAAsKxJ3VeaN2++pJdBDf8sCCcBAACWIeeee26cc845MXv27OjWrVsOKJs0aRJffPFFPPfcc/Hhhx/msf79+8e2224bG264Ybz99tvzvN6oUaPiZz/7Way22mrx6aef/mjoKJwEAIBlm3CS6vgs2HMSAABgGXLmmWfGu+++G8ccc0x8++23ccMNN+Qg8t///ne0a9curr/++njhhRfin//8Z55/xBFH/Oj1UuC4/fbbx9ixY+Ohhx4q0bsAAABgWaVyEgAAAAAAgPlSOUmBykkAAAAAAABgqSecBAAAAAAAAEpCOAkAAAAAAAAlcvbZZ0dZWVnUVsJJAAAAAAAAar133nkn9t5771hrrbWiYcOGscYaa0SPHj3iyiuvXNJLW6aUlZeXly/pRQAAAAAAALB0mzBhQjRv3nyux/qc0ieGfzE8lqQOLTvEdRdft0jnvvTSS7HttttGmzZt4pBDDonVVlstRo8eHf/9739jxIgR8dFHH1XbOn/44Yd8SwHosvhZmJ961b4aAAAAAAAAapUUTD7b9tklu4iRi37q+eefH02bNo1XX301VlpppUrHxo8f/9PXFhFTpkyJxo0bR7169fKtttLWFQAAAAAAgFotVUd27NixSjCZtGjRovg47RV5zDHHxK233hrrrrturn7cdNNN47nnnpvrvpLvvfdeHHDAAbHyyitH9+7dKx2rqHDd+++/Pzp16hQNGjTI63nssceqrOeZZ56JzTbbLL92u3bt4tprr61R+1jW3lgWAAAAAAAAIvI+ky+//HK8++67ORz8Mc8++2z861//iuOOOy6HiFdddVX07NkzhgwZUuXc3r17R/v27eOCCy6I+e20+MILL8S9994bRx99dKywwgrx97//Pfbaa6/49NNPo1mzZnnOm2++mV9r9dVXj3POOSdmzZoV55577iK3WF0ShJMAAAAAAADUaieeeGL06tUrOnfuHF27do0tt9wytttuu7wP5XLLLVdpbgowX3vttVwxmey33365ivLMM8/M4WJFP//5z+O2225boDW8//77udIyVUMm6bXT+bfffnuuqkzOOuusqFu3brz44ovRqlWrPLbPPvvE+uuvHzWFtq4AAAAAAADUaj169MiVk7vttlu89dZbcckll8SOO+4Ya6yxRjz44IOV5v7iF78oBpNJmzZtYvfdd4/HH388VzJW9Lvf/W6B17D99tsXg8lko402ihVXXDE+/vjj/Dxd+6mnnoo99tijGEwm66yzTg5WawqVkyW02mqr5c1O04cUAAAAAACgJvnTn/6UqwrnJuUfNV2XLl1y5eOMGTNyQHnffffFX//619h7771j6NChscEGG+R5qU3rnDp06BDff/99TJgwIedBBW3btl3g128zl/wo7VX5zTff5Mfjx4+PqVOn5jByTnMbW1qpnCyh9A9z5syZS3oZAAAAAAAAzEP9+vVzUJn2ibz66qtztnPXXXct0rUaNWq0wHPr1q071/H57VVZ06icLKFC4j1s2LAlvRQAAAAAAICFkqoCmzdvPtdjjRs3jmXRZpttlu/Hjh1bHPvwww+rzBs+fHgsv/zy8/z6VIcWLVpEw4YN46OPPqpybG5jSyuVkwAAAAAAANRqgwcPnmuF4iOPPJLv11133eJY2pvyjTfeKD4fPXp0PPDAA7HDDjvMs/qxOtStWzfvS3n//ffH559/XimYfPTRR6OmUDkJAAAAAABArXbsscfmPSN//etfx3rrrZf3nXzppZfiX//6V6y99tpx2GGHFed26tQpdtxxxzjuuOOiQYMGcdVVV+Xxc845Z7Gv8+yzz44nnngifvnLX8bvf//7mDVrVgwYMCCvKe2LWRMIJwEAAAAAAPhJOrTsEDFy8b/OlClT5tlGNq9hEV166aV5X8lUKXndddflcDJt13f00UfH6aefHiuttFJx7tZbbx2/+MUvchj56aefxgYbbBA33nhjbLTRRrG4bbrpprlK8sQTT4wzzjgjWrduHeeee268//778cEHH0RNUFa+rO2iuRTr2LFjvrfnJAAAAAAAsCztOVkq7777br5PlYJLQllZWfzhD3/I1YpLkz322CPnT3PbD3Np+yzYcxIAAAAAAABqiKlTp1Z6ngLJVPG5zTbbRE2grSsAAAAAAADUED/72c/i0EMPzfeffPJJXH311VG/fv04+eSToyYQTgIAAAAAAEAN0bNnz7j99ttj3Lhx0aBBg7z/5QUXXBDt27ePmkA4CQAAAAAAAAugvLx8SS8hbrjhhqjJ7DkJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAABArffOO+/E3nvvHWuttVY0bNgw1lhjjejRo0dceeWVS3ppy5R6S3oBAAAAAAAA1GxnnnJUTBz/4WJ/nSlTpuT7xo0bVzm2Uov2ce7F1y7SdV966aXYdttto02bNnHkkUfGaqutFqNHj47//ve/8be//S2OPfbYn7x2/j/CSQAAAAAAAH6SFEzu3GHIEl3Dv4cv+rnnn39+NG3aNF599dVYaaWVKh0bP3581Dbff/99LL/88ovl2tq6AgAAAAAAUKuNGDEiOnbsWCWYTFq0aJHvR40aFWVlZXHjjTdWmZPGzz777OLz9DiNDR8+PA488MAcfDZv3jzOOOOMKC8vz1WZu+++e6y44oq5SvOyyy6rdL1nnnkmn3/nnXfGOeeck1vMrrDCCrnt7LfffhvTp0+Pvn375rU1adIkDjvssDw2p0GDBsWmm24ajRo1ilVWWSX222+//NoVbbPNNtGpU6d4/fXXY6uttsqh5GmnnRaLi8pJAAAAAAAAarW0z+TLL78c7777bg7qqsu+++4b66+/flx00UXx73//O84777wcEl577bXxq1/9Ki6++OK49dZb48QTT4wuXbrkcLCiCy+8MAeLp556anz00Ud5/8vlllsu6tSpE998800OQVPr2RSYtm3bNs4888xK1aApDN1nn33iiCOOiAkTJuTz02u8+eablYLYr776Knr16pXDyxSmtmzZMhYX4SQAAAAAAAC1WgoHUzjXuXPn6Nq1a2y55Zax3Xbb5X0oUxi4qNK1UhCZ9OnTJ9Zee+3405/+lEPHU045JY/vv//+0apVq/i///u/KuHkDz/8EM8++2xxDSlgvOOOO6Jnz57xyCOP5LGjjz46B5fp/EI4+cknn8RZZ52Vw9CKVZB77rlnbLzxxnHVVVdVGh83blxcc801cdRRR8Xipq0rAAAAAAAAtVqPHj1y5eRuu+0Wb731VlxyySWx44475naqDz744CJfN1UsFtStWzc222yz3Nb18MMPL46nCsZ11103Pv744yrnH3zwwZXC0c033zyf/9vf/rbSvDSe2rWmMDO59957Y/bs2blq8ssvvyzeUgvZ9u3bx+DBgyud36BBg9wathRUTgIAAAAAAFDrpbaqKdSbMWNGDijvu++++Otf/5r3eRw6dGjei3FhtWnTptLzpk2bRsOGDWPVVVetMp5aqy7I+Unr1q2rjKcwMu1H2axZs/jwww9ziJmCyLmZsxo0hbD169ePUqhRlZOFzT/ndkv9dCt66aWXonv37vmDklLg4447LiZPnlzlmmlz0FQ2m8plU8/elCw/+eSTJXxXAAAAAAAALC1SSJeCygsuuCCuvvrqmDlzZtx11105j5qbWbNmzfNaqVpyQcaSFCYu6Nz5XSMFlWm9jz32WM695rwVWs0WpIysVGpk5WQKGtOHoqJ11lmn+Dil16kPcNpg9PLLL48xY8bEpZdemlPiRx99tNJ5hx56aNx9993Rt2/fnB6nDUN32mmnXM6awk0AAAAAAABqp9SGNRk7dmysvPLK+fHEiRMrzUn7Oy5t2rVrl4PKtm3bRocOHWJpUiPDybQJaSqhnZe0gWf6gKRKyxVXXDGPpQ1GjzzyyHjiiSdihx12yGNDhgzJm4b2798/b3Ra6N3bqVOnOPnkk3P1JQAAAAAAAMu2VLS2zTbbVKmOfOSRR/J92hMyZU6pHetzzz2Xi94Krrrqqlja7LnnntGvX78455xzYtCgQZXeVwotv/7669z+dUmokeFk8t133+US03r1Kr+FSZMm5XLU448/vhhMFkLHNHbnnXcWw8lUMZnKXvv06VOcl/r8pk1IU8CZNg6ds2cvAAAAAAAAy5Zjjz02vv/++/j1r38d6623Xt53MhWx/etf/8oFcIcddlied8QRR8RFF12U71NVZQoqhw8fHktj5eR5552XA8pRo0bFHnvsESussEKMHDky76WZsrFC4V6p1chwMn0A0v6RKVhMVZSp8rFQVvvOO+/EDz/8UHxesT9w586d48033yyOpceplLViiJl07dq12B5WOAkAAAAAALBsS9sDpn0lU6Xkddddl8PJNm3axNFHHx2nn356rLTSSnnemWeeGRMmTMgFcKkgrlevXnlLwRYtWsTS5tRTT8052F//+tdcQZmk3CsV8e22225LbF1l5XPbXXMplRLqtIdk2hMylc2+9957+cMyZcqUfGzjjTfOH4bevXvnpDoFlxXts88+8fzzz+e+wElq39qyZct4+umnK81L1+3YsWNcc801cdRRRy30OtO5czNixIicVA8bNmyhrwkAAAAAALAkpVCuefPmcz125ilHxcTxHy72NaRMKGncuHGVYyu1aB/nXnztYl8D8aOfhWWqcrJbt275VpBS3bT35EYbbZTLUh977LGYOnVqPtagQYMq56eWrYXjSXo8r3mF4wAAAAAAAPy4UoWC7777brEAjZqpRoWTc7POOuvE7rvvHvfee2/MmjUr70OZTJ8+vcrcadOmFY8n6fG85hWOL4p5VUbOq6ISAAAAAAAAaoM6sQxI/XFT799Uyrv66qvnsULr1orSWKtWrYrP09x5zUsqzgUAAAAAAAB+mmUinPz4449zK9YmTZrkMt569erFa6+9VmlOCi+HDh0anTt3Lo6lx8OHD49JkyZVmvvKK68UjwMAAAAAAAC1MJxMm2vO6a233ooHH3wwdthhh6hTp040bdo0tt9++xg0aFB89913xXm33HJLTJ48OXr37l0cS/tVplaw1113XXEstXm94YYbYvPNN88VmQAAAAAAAEAt3HNy3333zftAduvWLVq0aBHvvfdeDhaXX375uOiii4rzzj///Dxn6623jj59+sSYMWPisssuywFmz549i/NSAJnCyn79+sX48ePz/pU33XRTjBo1KgYOHLiE3iUAAAAAAAAsm2pU5eQee+wRX375ZVx++eVx9NFHx7/+9a/Yc889cwvX9ddfvzhvk002iaeeeioHmccff3wOMA8//PC4++67q1zz5ptvjr59++bKyuOOOy5mzpwZDz/8cGy11VYlfncAAAAAAACwbCsrLy8vX9KLqC06duyY74cNG7aklwIAAAAAALDQ2+81b958ia7h3XffzfedOnVaouuo7Sb8hM9CjaqcBAAAAAAAAGou4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkqhXmpcBAAAAAABgWXXR6X1i2lfDF/vrTJkyJd83bty4yrGGzTrEqedd95Nf46qrroo//OEP0bVr13jllVcW+TqPPPJIDBkyJM4+++yfvKZliXASAAAAAACAnyQFk2dv+ewSXcPZz1fPdW699dZYe+21c7D40UcfxTrrrLPI4eQ//vEP4eQctHUFAAAAAACAiBg5cmS89NJLcfnll0fz5s1zUEn1Ek4CAAAAAADA/6uaXHnllWPnnXeOvffeu0o4+cwzz0RZWVm+r2jUqFF5/MYbb8zPDz300Fw1maTxwm1hrlG4TpMmTeLTTz+NXXbZJT9eY401itd+55134le/+lVuc7vWWmvFbbfdVuma6Vrpmi+++GKccMIJOXBNc3/961/HhAkTYkkQTgIAAAAAAMD/Cyf33HPPqF+/fuy///7x4YcfxquvvrrQ1znqqKOiR48e+fEtt9xSvC2KWbNmRa9evaJ169ZxySWX5JazxxxzTA4ee/bsGZtttllcfPHFscIKK8TBBx+cqz/ndOyxx8Zbb70VZ511Vvz+97+Phx56KF9jSbDnJAAAAAAAALXe66+/Hh988EFceeWV+Xn37t1jzTXXzIFlly5dFupav/jFL6JDhw7x5JNPxoEHHviT1jVt2rR8jX79+uXnBxxwQLRq1Sp++9vfxu233x777rtvHk9h6HrrrRc33XRTlX0umzVrFk888USxenP27Nnx97//Pb799tto2rRplJLKSQAAAAAAAGq9FEK2bNkytt122/w8BXkp+Lvjjjty9eKSdMQRRxQfr7TSSrHuuuvm9qz77LNPcTyNpWMff/xxlfP79OlTDCaTLbfcMr+nTz75JEpNOAkAAAAAAECtloK6FEKmYDK1Rf3oo4/ybfPNN48vvvginn766SW2toYNG+a9IitK1Y6pqrNi4FgY/+abb6pco02bNpWep301k7nNXdy0dQUAAAAAAKBW+89//hNjx47NAWW6za2qcocddqgSBhYsTGVl2UJeo27dugs1Xl5e/pPmLm7CSQAAAAAAAGq1FD62aNEi/vGPf1Q5du+998Z9990X11xzTbHicOLEiZXmzK096rxCyJUX4hrLIuEkAAAAAAAAtdbUqVNzANm7d+/Ye++9qxxv1apV3H777fHggw9Gz549cxXic889F3vssUdxzlVXXVXlvLQnZCGETHtBFqy11loLfI1lkXASAAAAAACAWiuFjt99913stttucz2+xRZb5D0fU3Xlvvvum0PMK6+8MldGtmvXLh5++OEYP358lfM23XTTfH/cccfFjjvumAPJ/fbbL+8LuaDXWBYJJwEAAAAAAPhJGjbrEGc/v/hfZ8qUKZWqEudcw6JIoWPDhg2jR48ecz1ep06d2HnnnfO8r776KoeKM2fOzG1eGzRoEPvss0/0798/OnXqVOm8PffcM4499ti8h+WgQYPy/o777bdfPrag11gWlZUviZ0ua6mOHTvm+2HDhi3ppQAAAAAAACyUCRMm5ArCJendd9/N97UhxFtWPwt1qn01AAAAAAAAAHMhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAABbRM888E2VlZfme+RNOAgAAAAAAUGvdeeedOVy87777qhz7+c9/no8NHjy4yrE2bdpEt27dftJrf/7553H22WfH0KFDo7aoFzXY+eefH6effnp07Ngx3n333UrHXnrppTj55JPjjTfeiBVXXDH22WefuOCCC6JJkyaV5k2fPj3OPPPMuOWWW+Kbb76JjTbaKM4777zo0aNHid8NAAAAAABAzdSnz0UxfPi0xf46U6ZMyfeNGzeucqxDh4Zx3XWnLvQ1u3fvnu9feOGF+PWvf10cnzRpUs6f6tWrFy+++GJsu+22xWOjR4/Ot/322y+22mqrmDp1atSvX3+Rwslzzjkn1l577ejcuXPUBjU2nBwzZkwOG+f24Uvp8nbbbRfrr79+XH755XnupZdeGh9++GE8+uijleYeeuihcffdd0ffvn2jffv2ceONN8ZOO+2UE/DChxEAAAAAAIB5S8Hks8+evYRXsWiv36pVq2jbtm0OJyt6+eWXo7y8PHr37l3lWOF5ypLq1KkTDRs2jKXJlClT5pqhLQ1qbFvXE088MbbYYovYbLPNqhw77bTTYuWVV869fX/3u9/lSsgBAwbEY489Fk888URx3pAhQ+KOO+6ICy+8MPr37x99+vSJ//znP7HWWmvlqksAAAAAAACWfSlkfPPNN3MFZEGqlkzdO3v16hX//e9/Y/bs2ZWOpXavv/zlL+e65+Q222wTnTp1ivfeey9XXC6//PKxxhprxCWXXFKck+Z36dIlPz7ssMPyNdItFdIVvPLKK9GzZ89o2rRpvsbWW2+dX7ui1BY2nZde64ADDsgZ2dJcgFcjw8nnnnsuVzteccUVVY6lEtsnn3wyDjzwwNzOteDggw/OLV1T3+CCdI26devmULIgJduHH354TsNTOS4AAAAAAADLthTmzZw5M4eBBSkETHtKptu3335baYvBdGy99daLZs2azfOaaTvBFCymfSsvu+yyPP+UU04pdvlMHUDPPffc/DhlVWkLwnRLbWKTVFCXHqfs66yzzsodRSdOnBi/+tWvcgHenFKF5/fff5/nHXnkkbG0qnFtXWfNmhXHHntsHHHEEbHhhhtWOf7OO+/EDz/8UKWiMvX5Tb16U+pdkB536NChUoiZdO3atdgetnXr1ovtvQAAAAAAALDkVdx3MlU9pqwpBZWHHHJItGvXLlq2bJmPbbTRRvHdd9/lPOq3v/3tfPeTvPnmm+Oggw7Kz1Nx3FprrRUDBw7M1Zjpmun+zDPPjF/84he58K4gtZNN3UFT1WUKM1NlZHLUUUflas7TTz+9UrfQJIWgt912Wyztalw4ec0118Qnn3wSTz311FyPjx07Nt+vvvrqVY6lseeff77S3HnNK3xoFkX6UMzNiBEj8gcYAAAAAACApUeqYkxVkIW9JN966628b2OqmkzSfaqWPProo3P3zVRMN7/WqamjZ8XAMRXSde3aNT7++OP5ricV0H344Yc5hPzqq68qHdtuu+1yhWVqM5v2uyxIYWZNUKPCyfTFT+nxGWecEc2bN5/rnEIv4AYNGlQ5llq2VuwVnB7Pa17FawEAAAAAALDsSpWJKYBMWwum0C8FkS1atIh11lknH0/HBgwYkB8X9nycXzi55pprFiseC1ZeeeV4++2357ueFEwmqXJzXlKr2XS9grZt20ZNUKPCyZQOr7LKKrmt67w0atQo30+fPr3KsWnTphWPF+bOa17Fay2sYcOGLVRFJQAAAAAAAEtWChsfeuih3LK1sN9kQXp80kknxWeffZarK1u1ahU/+9nPfvR6devWnet4eXn5fNeSAtKkf//+edvCeVVmVrSouVap1ZhwMiXE1113XVxxxRWV2q2mIDFtUDpq1Ki8d2ShJWuhvWtFaSx9WArS3PQhmtu8pOJcAAAAAAAAase+kymc7Nu3b/HYpptumrtxPvPMM3kvyp122qlaXrNsjsrKgsI2gSn72n777WNZ8v9vRLuUSyFiSomPO+64XJZauKUPwPDhw/Pjc889Nzp16hT16tWL1157rdL5M2bMyP15K6bL6XE6d9KkSZXmpmsWjgMAAAAAALDs22yzzfLWf7feemvOpSpWTqZgcpNNNol//OMfeS/K+bV0XVCNGzfO9xMnTqw0nsLQFFBeeumlMXny5CrnTZgwIWqqGlM5mULH++67b66tXr/77rv429/+lr9JTZs2zQnyoEGD8t6UK6ywQp6XNgZN37zevXsXz917773zNzVVZJ544ol5LLV5veGGG2LzzTeP1q1bl/AdAgAAAAAAsKTUr18/unTpEs8//3wOI1NAWFEKKy+77LL8uLrCyXbt2sVKK60U11xzTc60UliZMqpUlHf99ddHr1698raBhx12WKyxxho5NB08eHCuqEwtaGuiGhNOrrrqqrHHHntUGU9tXpOKx84///z8Adl6662jT58+MWbMmPxh2WGHHaJnz57Feembm8LKfv36xfjx4/OmpjfddFNuETtw4MASvTMAAAAAAICarUOHhhFx9mJ/nVS1WLHisOoafpoUOqZwstDGtaJf/vKXOW9KIeLPf/7zqA7LLbdczqZSVvW73/0ufvjhh1xEl8LJbbbZJl5++eX4y1/+EgMGDMhFeKuttlrOt4466qioqcrKF2TXzaVY+sZ8+eWX8e6771YaT/2ATznllHjjjTfyh2SfffaJCy+8sFhJWXHPylRhmSotv/nmm9hoo43yN3nHHXes9rWmZDsZNmxYtV8bAAAAAABgcUqtRJs3b75E11DIg1LHTWrmZ6HGh5M1iXASAAAAAACoqYSTVMdnoc4inQUAAAAAAACwkISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAACABTJ79uwlvQSWgs9AeXn5Ip8vnAQAAAAAAGC+mjZtGuPHj48ZM2Ys6aWwBIPJ9BlYeeWVF/ka9ap1RQAAAAAAACyT6tevHy1btoyJEyfGt99+u0TWMGTIkHyf1kHppYrJZs2axXLLLbfI1ygr/yl1lyyUjh075vthw4Yt6aUAAAAAAADUOLKWmk9bVwAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJKoVx0X+fzzzxf6nFatWlXHSwMAAAAAAAC1KZxcc801o6ysbIHnp7k//PBDdbw0AAAAAAAAUJvCyaRhw4bRq1evWGGFFarrkgAAAAAAAMAypFrCye7du8cLL7wQjz/+ePTu3TuOOOKI6NatW1S3YcOGxdlnnx2vv/56jBs3LpZffvnYYIMN4qSTTopdd9210tz3338/jj/++Lyu+vXrx8477xyXX355NG/evNK82bNnx6WXXhpXX311jB07Njp06BD9+vWL/fffv9rXDwAAAAAAALVZneq4yHPPPRf/+9//4ve//308+uijseWWW+bQMIWBEyZMiOryySefxHfffReHHHJI/O1vf4szzjgjj++2225x3XXXFeeNGTMmttpqq/joo4/iggsuiBNPPDH+/e9/R48ePWLGjBmVrvnnP/85TjnllHzsyiuvjDZt2sQBBxwQd9xxR7WtGwAAAAAAAIgoKy8vL6/OC6a9JB988MG4/vrr44knnoh69erFLrvsEocffnj07NlzofamXBCzZs2KTTfdNKZNmxYffPBBHjv66KPjxhtvzM9T2Jg89dRTOYC89tpro0+fPnnss88+i7Zt2+bnAwYMyGPpy7H11lvHyJEjY9SoUVG3bt1qW2vHjh2LFaAAAAAAAAAsHFlLzVctlZMVpTByzz33jEceeSSHe6ky8Y033sgB5YUXXljdL5fDw9atW8fEiROLY/fcc09+vUIwmWy//fa5Zeudd95ZHHvggQdi5syZOcwsSOFpqgBN1Zcvv/xyta8XAAAAAAAAaqtqDycratCgQTRq1Cjv+ZgqEtP+jtVhypQp8eWXX8aIESPir3/9a24lu9122xWrIcePHx+bbbZZlfO6du0ab775ZvF5ety4ceNYf/31q8wrHAcAAAAAAACqR72oZimETFWTAwcOzPs8pkCyV69ecfHFF+dqxurwpz/9KbdnTerUqZMrNQttWceOHZvvV1999SrnpbGvv/46pk+fnoPTNLdly5ZVWs0Wzv38889/UknxnFKY2q5du0W6JgAAAAAAANR01RZOpuDt//7v/+Kmm27KoV4K4c4+++w49NBD5xoU/hR9+/aNvffeO79OatOa9p2cMWNGPjZ16tR8n8LHOTVs2LA4Jx0v3P/YPAAAAAAAAGApCie33XbbeO6553Kol6oYDz/88Nhmm21icVlvvfXyLTn44INjhx12iF133TVeeeWV3EY2SdWRc5o2bVq+L8xJ9wsyb2HNaxPWeVVUAgAAAAAAQG1QLeHks88+m4O8nXbaKd/fdttt+TYvqY1qoS1rdUhVlEcddVQMHz68WKVZaO9aURpbZZVVitWSae7gwYNzK9qKrV0L57Zq1ara1ggAAAAAAAC1XbW1dU0tUO+5554Fmlvd4WSh/eq3334b6667bjRv3jxee+21KvOGDBkSnTt3Lj5Pj6+//vp4//33Y4MNNiiOpwrMwnEAAAAAAABgKQonR44cGaUwfvz4aNGiRaWxmTNnxs0335wrNgsB41577ZX3vhw9enS0bt06jz399NO5svL4448vnrv77rvn51dddVUMGDAgj6UqymuuuSbWWGON6NatW0neFwAAAAAAANQG1RJOrrXWWlEKqXXrpEmTYquttsrh4bhx4+LWW2+NDz74IC677LJo0qRJnnfaaafFXXfdlffC/OMf/xiTJ0+O/v37x4YbbhiHHXZY8Xprrrlm9O3bNx9LIWeXLl3i/vvvj+effz5ft27duiV5XwAAAAAAAFAblJWnUsFq8MMPP8QDDzwQH330UW6rmqoSmzVrFtXpjjvuiIEDB8Y777wTX331Vaywwgqx6aabxrHHHhu77bZbpbnDhg2LE044IV544YWoX79+7LzzzjnAbNmyZaV5s2fPjosvvji3mU17TbZv3z769esXv/nNb6K6dezYsbg2AAAAAAAAFo6spearlnBy4sSJuUrx7bffzm1R056SK6+8cjz55JOx8cYbV89KlwH+wQAAAAAAACw6WUvNV6c6LnLBBRfEW2+9FTvttFNceeWV8Yc//CG3X01tWAEAAAAAAACqbc/JBx98MHr06BEPPfRQcaxNmzZxyimnxOeffx6tWrXy1QYAAAAAAIBarloqJz/55JPYZZddKo2lPSdTi9dRo0ZVx0sAAAAAAAAANVy1hJPTp0+PZs2aVRpbZZVViscAAAAAAAAAqiWc/DGpehIAAAAAAACgWvacTAYOHBjPPPNM8XmqmCwrK4vLL7887rjjjkpz0/i1115bXS8NAAAAAAAA1ABl5dVQ2linzsIVYKZwctasWVHbdOzYMd8PGzZsSS8FAAAAAACgxpG11HzVUjk5cuTI6rgMAAAAAAAAsAyrlnByrbXWqo7LAAAAAAAAAMuwhevHOh+TJ0+Oiy++OLbccsto0aJFNGjQIN+n5/37948pU6ZU58sBAAAAAAAAtW3PyeSDDz6Inj17xujRoyNdcoUVVogVV1wxJk2aFN99913eZzJVWD722GPRoUOHqI30QQYAAAAAAFh0spaar1oqJ2fOnBl77bVXfPbZZ3HSSSfFiBEj4ttvv81BZbpPz0888cT8PM1L8wEAAAAAAIDapVrCybvvvjvef//9GDhwYFx00UXRtm3bSsfT89Tu9Z///GdOsu+9997qeFkAAAAAAACgtoWT999/f2y00UZx8MEH/+i8Qw89NM+77777quNlAQAAAAAAgNoWTr711lvRq1evBZqb5g0dOrQ6XhYAAAAAAACobeHkuHHjqrRynZc0L80HAAAAAAAAapdqCScnT54cTZo0WaC5jRs3zvMBAAAAAACA2qVawsnZs2cv1Pzy8vLqeFkAAAAAAACgBqlXXRd64IEHYtSoUfOdZ79JAAAAAAAAqJ2qLZy866678m1BlJWVVdfLAgAAAAAAALUpnBw8eHB1XAYAAAAAAABYhlVLOLn11ltXx2UAAAAAAACAZVidJb0AAAAAAAAAoHYQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlUaPCyVdffTWOOeaY6NixYzRu3DjatGkT++yzTwwfPrzK3Pfffz969uwZTZo0iVVWWSUOOuigmDBhQpV5s2fPjksuuSTatm0bDRs2jI022ihuv/32Er0jAAAAAAAAqD3qRQ1y8cUXx4svvhi9e/fOIeK4ceNiwIABsckmm8R///vf6NSpU543ZsyY2GqrraJp06ZxwQUXxOTJk+PSSy+Nd955J4YMGRL169cvXvPPf/5zXHTRRXHkkUdGly5d4oEHHogDDjggysrKYr/99luC7xYAAAAAAACWLWXl5eXlUUO89NJLsdlmm1UKFz/88MPYcMMNY++9945BgwblsaOPPjpuvPHG+OCDD3J1ZfLUU09Fjx494tprr40+ffrksc8++yxXTKbnKeRM0pdj6623jpEjR8aoUaOibt261bb+VPGZDBs2rNquCQAAAAAAUFvIWmq+GtXWtVu3bpWCyaR9+/b5g5jauBbcc889scsuuxSDyWT77bePDh06xJ133lkcS1WSM2fOzGFmQaqY/P3vf5+rL19++eXF/p4AAAAAAACgtqhR4eTcpErHL774IlZdddViNeT48eNzheWcunbtGm+++WbxeXqc9q5cf/31q8wrHAcAAAAAAABq4Z6Tc3PrrbfmQPLcc8/Nz8eOHZvvV1999Spz09jXX38d06dPjwYNGuS5LVu2zNWSc85LPv/8859UUjynESNGRLt27RbpmgAAAAAAAFDT1ejKybSn5B/+8If4xS9+EYccckgemzp1ar5P4eOcGjZsWGlOul+QeQAAAAAAAEAtrpwcN25c7LzzztG0adO4++67o27dunm8UaNG+T5VR85p2rRpleak+wWZt7DmtQnrvCoqAQAAAAAAoDaokZWT3377bfTq1SsmTpwYjz32WLRq1apKS9ZCe9eK0tgqq6xSrJZMc1PImfatnHNeUvG6AAAAAAAAQC0LJ1NV46677hrDhw+Phx9+ODbYYINKx9dYY41o3rx5vPbaa1XOHTJkSHTu3Ln4PD3+/vvv4/33368075VXXikeBwAAAAAAAGphODlr1qzYd9994+WXX4677ror7zU5N3vttVcOLkePHl0ce/rpp3Og2bt37+LY7rvvHsstt1xcddVVxbFURXnNNdfkkLNbt26L+R0BAAAAAABA7VGj9pz805/+FA8++GCunPz6669j0KBBlY4feOCB+f60007L4eW2224bf/zjH2Py5MnRv3//2HDDDeOwww4rzl9zzTWjb9+++djMmTOjS5cucf/998fzzz8ft956a3EfSwAAAAAAAOCnKyufc8PFpdg222wTzz777DyPV3wrw4YNixNOOCFeeOGFqF+/fuy8885x2WWXRcuWLSudM3v27Lj44ovj2muvzXtNtm/fPvr16xe/+c1vqn39HTt2LK4NAAAAAACAhSNrqflqVDhZ0/kHAwAAAAAAsOhkLTVfjdpzEgAAAAAAAKi5hJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBI1KpycPHlynHXWWdGzZ89YZZVVoqysLG688ca5zn3//ffzvCZNmuS5Bx10UEyYMKHKvNmzZ8cll1wSbdu2jYYNG8ZGG20Ut99+ewneDQAAAAAAANQuNSqc/PLLL+Pcc8/NwePPf/7zec4bM2ZMbLXVVvHRRx/FBRdcECeeeGL8+9//jh49esSMGTMqzf3zn/8cp5xySj525ZVXRps2beKAAw6IO+64owTvCAAAAAAAAGqPelGDrL766jF27NhYbbXV4rXXXosuXbrMdV4KJKdMmRKvv/56DhuTrl275gAyVVr26dMnj3322Wdx2WWXxR/+8IcYMGBAHjviiCNi6623jpNOOil69+4ddevWLeE7BAAAAAAAgGVXjaqcbNCgQQ4m5+eee+6JXXbZpRhMJttvv3106NAh7rzzzuLYAw88EDNnzoyjjz66OJZaxf7+97/P1Zcvv/zyYngXAAAAAAAAUDvVqHByQaRqyPHjx8dmm21W5ViqnnzzzTeLz9Pjxo0bx/rrr19lXuE4AAAAAAAAUAvbui6I1Pa10AJ2Tmns66+/junTp+cqzDS3ZcuWuVpyznnJ559/vkhr6Nix41zHR4wYEe3atVukawIAAAAAAEBNt8xVTk6dOjXfp/BxTg0bNqw0J90vyDwAAAAAAADgp1vmKicbNWqU71N15JymTZtWaU66X5B5C2vYsGELVVEJAAAAAAAAtcEyVzlZaMlaaO9aURpbZZVVitWSae64ceOivLy8yrykVatWJVkzAAAAAAAA1AbLXDi5xhprRPPmzeO1116rcmzIkCHRuXPn4vP0+Pvvv4/333+/0rxXXnmleBwAAAAAAACoHstcOJnstdde8fDDD8fo0aOLY08//XQMHz48evfuXRzbfffdY7nllourrrqqOJaqKK+55poccnbr1q3kawcAAAAAAIBlVY3bc3LAgAExceLE+Pzzz/Pzhx56KMaMGZMfH3vssdG0adM47bTT4q677optt902/vjHP8bkyZOjf//+seGGG8Zhhx1WvNaaa64Zffv2zcdmzpwZXbp0ifvvvz+ef/75uPXWW6Nu3bpL7H0CAAAAAItX2Tll851TflblLaEAgJ+mrHzODReXcmuvvXZ88skncz02cuTIfDwZNmxYnHDCCfHCCy9E/fr1Y+edd47LLrssWrZsWemc2bNnx8UXXxzXXntt3muyffv20a9fv/jNb35T7Wvv2LFjcW0AAAAAwJIlnASoeWQtNV+NCydrMv9gAAAAAGDpIZwEqHlkLTXfMrnnJAAAAAAAALD0EU4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSqFealwEAYIHdVjb/OQeUl2IlAAAAAFCtVE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKIl6pXkZAAAAAADm9PiFTeY7Z8d+k0uyFgAoBZWTAAAAAAAAQEkIJwEAAAAAAICS0NY1IqZPnx5nnnlm3HLLLfHNN9/ERhttFOedd1706NFjSS8NAAAAfprbyuY/54DyUqwEAKBalZ0z///OKT/Lf+fA0kY4GRGHHnpo3H333dG3b99o37593HjjjbHTTjvF4MGDo3v37kt6ebDM/IdA4j8GAGqGsgX4sV7uRzoANYj/8xIAAJYOtT6cHDJkSNxxxx3Rv3//OPHEE/PYwQcfHJ06dYqTTz45XnrppSW9RACo0fwfgcDS6vELm8x3zo79JpdkLQDA0v87iP92AIDqUevDyVQxWbdu3ejTp09xrGHDhnH44YfHaaedFqNHj47WrVsv0TUCZNpxUQsIMmvuz4bFUWnp8wClsbD/fpd0ZbWfDYvXkv7+5jX4HrMUWZAwqhBILUxwJeSiNv2uAABzqvXh5JtvvhkdOnSIFVdcsdJ4165d8/3QoUMXOpzs2LHjXMc/+OCDWG655eZ5HGq0CQs2reOdi/fzP/nL9+c7p8mq6y/WNcS3781/TtMNFuG6CzDnfD9fqJk/H4o/GxZi7nsT5v9vbYPmGyw9PxsW17/3hZj73gL8eNpgIX48Lex/0iz0fwItzGdnMalxn52lwIJ+zhbm3/DCzF0Yk7/8fr5zmgzquNCfhWXxc7Oo/94Xx+dhcf1vRY2zMP/NWc3/Hbmw39+Ftrh+/i8F/7tCzbMg/1tR+N+LhfvflQWfy9LzO8ji+r4t1HWX4M9/WCr53/daacSIETlroeYqKy+v3bsFpfatLVu2jKeffrrS+HvvvZdDxGuuuSaOOuqohbrmvMLH//3vf9GoUaNo06ZNLA3/eJN27dot6aUASxE/G4B58fMBmBs/G4B58fMBmBs/G4Dq+Nnw6aefRuPGjWPcuHGLeWUsLrW+cnLq1KnRoEGDKuOptWvh+MIaNmxYLO0KAWpNWCtQOn42APPi5wMwN342APPi5wMwN342AHPjZ0PtUydquVTJOH369Crj06ZNKx4HAAAAAAAAfrpaH06uvvrqMXbs2CrjhbFWrVotgVUBAAAAAADAsqfWh5OdO3eO4cOHx6RJkyqNv/LKK8XjAAAAAAAAwE9X68PJvffeO2bNmhXXXXddcSy1eb3hhhti8803j9atWy/R9QEAAAAAAMCyol7UcimA7N27d/Tr1y/Gjx8f66yzTtx0000xatSoGDhw4JJeHgAAAAAAACwzysrLy8ujlps2bVqcccYZMWjQoPjmm29io402ir/85S+x4447LumlAQAAAAAAwDJDOAkAAAAAAACURK3fcxIAAAAAAAAoDeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAIAqnnnmmSgrK4uzzz57gc9Jc9M56VwAAACYG+EkAADAUur111/PYd/mm28+1+O33357Pp5uI0eOrHJ86tSp0bBhw1h++eVj+vTpJVgxAAAA/DjhJAAAwFJq4403jpVXXjmHlJMmTapy/Omnn87BZPKf//ynyvEXX3wxh5Ldu3ePBg0alGTNAAAA8GOEkwAAAEupOnXqxDbbbBOzZs2KZ599tsrxFEim482aNZtrOFkY22677UqyXgAAAJgf4SQAAMBSrBAszhk+jho1KrdyTce33nrrGDx48I+Gk8OHD49TTz01Nttss2jevHmupFxrrbWiT58+MWbMmIVaU6rk7NmzZ6ywwgqx4oorxvbbbx8vv/zyj57zwQcfxKGHHhqtW7eO+vXrR8uWLeOAAw6I//3vfwv12gAAANRs9Zb0AgAAAJi3X/3qV8UWrhUVnqfjTZs2jXvvvTfee++92GCDDfJ4agP72muv5bawm2yySVxyySVxzTXXxLbbbhvdunXLAeGwYcPi+uuvj4ceeijPXWONNea7npdeeimHkTNmzIg999wz1llnnRg6dGiu4CysdU6PPfZYnjtz5szYdddd8zkpEE1r/ve//52D1bRGAAAAln3CSQAAgKXY+uuvH6uvvnq8++67MWHChFz1WKiKbNKkSXTp0iVXLxbGCuFkagOb2sGm0DC1hz3ooIPi+OOPr7L35BNPPBG9evWK8847L66++uofXUt5eXn89re/jalTp8b9998fu+++e/HY3/72t+jbt2+Vc7755pvYf//9Y/nll4/nnnuuuL4kvactttgijjjiiHjjjTd+4lcKAACAmkBbVwAAgKVcasuagsGKrVvT4y233DLq1asXHTt2jBYtWlRq/TrnfpOpKnLOYDLZYYcd8vmPP/74AlVNpjasW221VaVgMjnmmGOiXbt2Vc65+eabY+LEiXHOOedUCiaTTp06xZFHHhlvvvlmrvoEAABg2adyEgAAYCmX2qUOGjQoB4777LNPvP/++zF27NhcCVmQKiSffPLJmD17dq6UnDOcTOHmrbfeGjfeeGO89dZbuaIxVVYWpDav81Oobkx7XM6pbt260b179xgxYkSl8cJelOk1zz777Crnpb0wk/Se5gwvAQAAWPYIJwEAAJZyhYCxsM9kxf0mK4aTd955Z65CbNOmTbzzzju5WnK99dbLx0844YS44oorcovYHXfcMR9r1KhRPpYCy08++WS+6/j222/zfcuWLed6fLXVVqsy9tVXX+X7f/7znz967cmTJ8/39QEAAKj5hJMAAABLuRQ2ppapH330UYwePTpXRa600kqx8cYbF+dsu+22+T4dW2uttXKlZCHUHD9+fPz973/PbVRTa9YVVlih0vVvv/32BVpH06ZN8/0XX3wx1+Pjxo2b5zmpcnKjjTZa4PcMAADAssmekwAAADVAIWh86qmn4plnnsmtVVP71oJUIZkqF1M4OWdL148//ji3e037S84ZTI4ZMyYfXxCbbLJJvn/22WerHEstYl944YUq41tssUW+f/755xfi3QIAALCsEk4CAADUAIUWrn/961/zfpGFSsmK0lgKAZ944olK4eTaa6+d71N4WHGfydRK9cgjj4wffvhhgdbQrVu3WHfddeO5556LBx54oNKxAQMGVNlvMjnssMNylec555wTQ4YMqXI8haYpbAUAAKB20NYVAACghoSTZWVleS/JwvO5hZOpRevIkSNziJj2lUxSReV+++0Xd9xxR3Tu3DlXUKb9I5988slo2LBhHhs6dOh815Bef+DAgdGjR4/Ya6+9Ys8994x11lknn5v2wezZs2c89thjlc5p1qxZ3H333fHrX/86V1GmwLRjx475WqlF7csvv5z3pZw2bVq1fa0AAABYeqmcBAAAqAGaN28eG264YX686qqr5v0j51SxmrJQNVmQQsXTTjstpk6dGv/4xz/i8ccfj1122SXvQVnYF3JB/PKXv8zVmdtvv308+uijceWVV8aMGTNy9ePmm28+13PSWt5+++04+uijY9SoUXHNNdfk9bz77rs5ZE2hKQAAALVDWXl5efmSXgQAAAAAAACw7FM5CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBL1SvMyJKuttlpMmTIl2rRps6SXAgAAAAAAUON8+umn0bhx4xg3btySXgqLSDhZQimYnDlz5pJeBgAAAAAAUE0mf/n+fOc0WXX9kqylNkg5S8pbqLmEkyVUqJgcNmzYkl4KAAAAAABQDR6/sMl85+zYTy5QXTp27Likl8BPZM9JAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEsJJAAAAAAAAoCSEkwAAAAAAAEBJCCcBAAAAAACAkhBOAgAAAAAAACUhnAQAAAAAAABKQjgJAAAAAAAAlIRwEgAAAAAAACgJ4SQAAAAAAABQEjUqnHzmmWeirKxsrrf//ve/lea+9NJL0b1791h++eVjtdVWi+OOOy4mT55c5ZrTp0+PU045JVq1ahWNGjWKzTffPJ588skSvisAAAAAAACoHepFDZSCxi5dulQaW2eddYqPhw4dGtttt12sv/76cfnll8eYMWPi0ksvjQ8//DAeffTRSucdeuihcffdd0ffvn2jffv2ceONN8ZOO+0UgwcPzuEmAAAAAAAAUIvDyS233DL23nvveR4/7bTTYuWVV86VliuuuGIeW3vttePII4+MJ554InbYYYc8NmTIkLjjjjuif//+ceKJJ+axgw8+ODp16hQnn3xyrr4EAAAAAAAAamFb14q+++67+OGHH6qMT5o0KbdlPfDAA4vBZCF0bNKkSdx5553FsVQxWbdu3ejTp09xrGHDhnH44YfHyy+/HKNHjy7BOwEAAAAAAIDaoUaGk4cddlgOHlOQuO2228Zrr71WPPbOO+/k0HKzzTardE79+vWjc+fO8eabbxbH0uMOHTpUCjGTrl27FtvDAgAAAAAAALWwrWsKGPfaa6+8J+Sqq64a7733Xt5LMrV5TS1YN9544xg7dmyeu/rqq1c5P409//zzxedp7rzmJZ9//vkirbNjx45zHR8xYkS0a9duka4JAAAAAAAANV2NCie7deuWbwW77bZb3ntyo402in79+sVjjz0WU6dOzccaNGhQ5fxUaVk4nqTH85pXOA4AAAAAAADUwnBybtZZZ53Yfffd4957741Zs2ZFo0aN8vj06dOrzJ02bVrxeJIez2te4fiiGDZs2EJVVAIAAAAAAEBtUCP3nJxT69atY8aMGTFlypRiS9ZCe9eK0lirVq2Kz9Pcec1LKs4FAAAAAAAAfpplIpz8+OOPcyvWJk2aRKdOnaJevXrx2muvVZqTwsuhQ4dG586di2Pp8fDhw2PSpEmV5r7yyivF4wAAAAAAAEAtDCcnTJhQZeytt96KBx98MHbYYYeoU6dONG3aNLbffvsYNGhQfPfdd8V5t9xyS0yePDl69+5dHEv7VaZWsNddd11xLLV5veGGG2LzzTfPFZkAAAAAAABALdxzct999837QHbr1i1atGgR7733Xg4Wl19++bjooouK884///w8Z+utt44+ffrEmDFj4rLLLssBZs+ePYvzUgCZwsp+/frF+PHj8/6VN910U4waNSoGDhy4hN4lAAAAAAAALJtqVOXkHnvsEV9++WVcfvnlcfTRR8e//vWv2HPPPXML1/XXX784b5NNNomnnnoqB5nHH398DjAPP/zwuPvuu6tc8+abb46+ffvmysrjjjsuZs6cGQ8//HBstdVWJX53AAAAAAAAsGwrKy8vL1/Si6gtOnbsmO+HDRu2pJcCAAAAAABUg8cvbDLfOTv2m1yStdQGspaar0ZVTgIAAAAAAAA1l3ASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJISTAAAAAAAAQEkIJwEAAAAAAICSEE4CAAAAAAAAJSGcBAAAAAAAAEpCOAkAAAAAAACUhHASAAAAAAAAKAnhJAAAAAAAAFASwkkAAAAAAACgJOqV5mUAAAAAqlfZOWXznVN+VnlJ1gIAACwYlZMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlUaPDyfPPPz/KysqiU6dOVY699NJL0b1791h++eVjtdVWi+OOOy4mT55cZd706dPjlFNOiVatWkWjRo1i8803jyeffLJE7wAAAAAAAABqj3pRQ40ZMyYuuOCCaNy4cZVjQ4cOje222y7WX3/9uPzyy/PcSy+9ND788MN49NFHK8099NBD4+67746+fftG+/bt48Ybb4yddtopBg8enMNNAAAAAABg6VN2Ttl855SfVV6StQC1IJw88cQTY4sttohZs2bFl19+WenYaaedFiuvvHI888wzseKKK+axtddeO4488sh44oknYocddshjQ4YMiTvuuCP69++fr5ccfPDBuRLz5JNPztWXAAAAAAAAQC1u6/rcc8/lascrrriiyrFJkybltqwHHnhgMZgshI5NmjSJO++8sziWrlG3bt3o06dPcaxhw4Zx+OGHx8svvxyjR48uwbsBAAAAAACA2qHGhZOpUvLYY4+NI444IjbccMMqx99555344YcfYrPNNqs0Xr9+/ejcuXO8+eabxbH0uEOHDpVCzKRr167F9rAAAAAAAABALW3res0118Qnn3wSTz311FyPjx07Nt+vvvrqVY6lseeff77S3HnNSz7//PNFWmPHjh3nOj5ixIho167dIl0TAAAAAAAAaroaVTn51VdfxZlnnhlnnHFGNG/efK5zpk6dmu8bNGhQ5Vhq2Vo4Xpg7r3kVrwUAAAAAAADUssrJ008/PVZZZZXc1nVeGjVqlO+nT59e5di0adOKxwtz5zWv4rUW1rBhwxaqohIAAAAAAABqgxoTTn744Ydx3XXXxRVXXFGp3WoKEmfOnBmjRo3Ke0cWWrIW2rtWlMZatWpVfJ7mfvbZZ3Odl1ScCwAAAAAAANSStq4pRJw9e3Ycd9xx0bZt2+LtlVdeieHDh+fH5557bnTq1Cnq1asXr732WqXzZ8yYEUOHDo3OnTsXx9LjdO6kSZMqzU3XLBwHAAAAAAAAalk4mULH++67r8ottUpt06ZNfnz44YdH06ZNY/vtt49BgwbFd999Vzz/lltuicmTJ0fv3r2LY3vvvXfMmjUrV2QWpDavN9xwQ2y++ebRunXrkr9PAAAAAAAAWFbVmLauq666auyxxx5VxlOb16TisfPPPz+6desWW2+9dfTp0yfGjBkTl112Weywww7Rs2fP4rwUQKawsl+/fjF+/PhYZ5114qabbsotYgcOHFiidwYAAAAAAAC1Q42pnFwYm2yySTz11FPRqFGjOP7443NlZKqqvPvuu6vMvfnmm6Nv3765sjK1jE37Vz788MOx1VZbLZG1AwAAAAAAwLKqxlROzsszzzwz1/Hu3bvHiy++ON/zGzZsGP379883AAAAAAAAYPFZJisnAQAAAAAAgKWPcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASdSrjot8/vnnC31Oq1atquOlAQAAAAAAgNoUTq655ppRVla2wPPT3B9++KE6XhoAAAAAAACoTeFk0rBhw+jVq1essMIK1XVJAAAAAAAAYBlSLeFk9+7d44UXXojHH388evfuHUcccUR069YtqtuwYcPi7LPPjtdffz3GjRsXyy+/fGywwQZx0kknxa677lpp7vvvvx/HH398Xlf9+vVj5513jssvvzyaN29ead7s2bPj0ksvjauvvjrGjh0bHTp0iH79+sX+++9f7esHAAAAAACA2qxOdVzkueeei//973/x+9//Ph599NHYcsstc2iYwsAJEyZEdfnkk0/iu+++i0MOOST+9re/xRlnnJHHd9ttt7juuuuK88aMGRNbbbVVfPTRR3HBBRfEiSeeGP/+97+jR48eMWPGjErX/POf/xynnHJKPnbllVdGmzZt4oADDog77rij2tYNAAAAAAAARJSVl5eXV+cF016SDz74YFx//fXxxBNPRL169WKXXXaJww8/PHr27LlQe1MuiFmzZsWmm24a06ZNiw8++CCPHX300XHjjTfm5ylsTJ566qkcQF577bXRp0+fPPbZZ59F27Zt8/MBAwbksfTl2HrrrWPkyJExatSoqFu3brWttWPHjsUKUAAAAOCnKTtn/v8fQ/lZ1fp/ewAAS5Gl5b8FHr+wyXzn7Nhv8mJfR20ha6n5qqVysqIURu65557xyCOP5HAvVSa+8cYbOaC88MILq/vlcnjYunXrmDhxYnHsnnvuya9XCCaT7bffPrdsvfPOO4tjDzzwQMycOTOHmQUpPE0VoKn68uWXX6729QIAAAAAAEBtVe3hZEUNGjSIRo0a5T0fU0Vi2t+xOkyZMiW+/PLLGDFiRPz1r3/NrWS32267YjXk+PHjY7PNNqtyXteuXePNN98sPk+PGzduHOuvv36VeYXjAAAAAAAAQPWoF9UshZCpanLgwIF5n8cUSPbq1SsuvvjiXM1YHf70pz/l9qxJnTp1cqVmoS3r2LFj8/3qq69e5bw09vXXX8f06dNzcJrmtmzZskqr2cK5n3/++U8qKZ5TClPbtWu3SNcEAAAAAACAmq7awskUvP3f//1f3HTTTTnUSyHc2WefHYceeuhcg8Kfom/fvrH33nvn10ltWtO+kzNmzMjHpk6dmu9T+Dinhg0bFuek44X7H5sHAAAAAAAALEXh5LbbbhvPPfdcDvVSFePhhx8e22yzTSwu6623Xr4lBx98cOywww6x6667xiuvvJLbyCapOnJO06ZNy/eFOel+QeYtrHltwjqvikoAAAAAAACoDaolnHz22WdzkLfTTjvl+9tuuy3f5iW1US20Za0OqYryqKOOiuHDhxerNAvtXStKY6usskqxWjLNHTx4cG5FW7G1a+HcVq1aVdsaAQAAAAAAoLartrauqQXqPffcs0BzqzucLLRf/fbbb2PdddeN5s2bx2uvvVZl3pAhQ6Jz587F5+nx9ddfH++//35ssMEGxfFUgVk4DgAAAAAAACxF4eTIkSOjFMaPHx8tWrSoNDZz5sy4+eabc8VmIWDca6+98t6Xo0ePjtatW+exp59+OldWHn/88cVzd9999/z8qquuigEDBuSxVEV5zTXXxBprrBHdunUryfsCAAAAAACA2qBawsm11lorSiG1bp00aVJstdVWOTwcN25c3HrrrfHBBx/EZZddFk2aNMnzTjvttLjrrrvyXph//OMfY/LkydG/f//YcMMN47DDDiteb80114y+ffvmYynk7NKlS9x///3x/PPP5+vWrVu3JO8LAAAAAAAAaoNqa+v6ww8/xAMPPBAfffRRbquaqhKbNWsW1WnfffeNgQMHxtVXXx1fffVVrLDCCrHpppvGxRdfHLvttltxXqqWTPtgnnDCCXHqqadG/fr1Y+edd84BZmG/yYKLLrooVl555dxm9sYbb4z27dvHoEGD4oADDqjWtQMAAAAAAEBtV1ae+pj+RBMnTsxVim+//XZui5r2lEyB35NPPhkbb7xx9ax0GdCxY8d8P2zYsCW9FAAAAKjxys4pm++c8rN+8v/tAQAspZaW/xZ4/ML/r6vjj9mx3+TFvo7aQtZS89WpjotccMEF8dZbb8VOO+0UV155ZfzhD3/I7VdTG1YAAAAAAACAamvr+uCDD0aPHj3ioYceKo61adMmTjnllPj888+jVatWvtoAAAAAALAMKZt/4WL89N6NwLKmWionP/nkk9hll10qjaU9J1OL11GjRlXHSwAAAAAAAAA1XLWEk9OnT49mzZpVGltllVWKxwAAAAAAAACqJZz8Mal6EgAAAAAAAKBa9pxMBg4cGM8880zxeaqYLCsri8svvzzuuOOOSnPT+LXXXltdLw0AAAAAAADUpnBy8ODB+TanRx55pMqYcBIAAAAAAABqn2oJJ0eOHFkdlwEAAAAAAACWYdUSTq611lrVcRkAAAAAAABgGVanOi82efLkuPjii2PLLbeMFi1aRIMGDfJ9et6/f/+YMmVKdb4cAAAAAAAAUBv3nPzggw+iZ8+eMXr06CgvL48VVlghB5OTJk2KF198MV566aW4+uqr47HHHosOHTpU18sCAAAAAAAAtalycubMmbHXXnvFZ599FieddFKMGDEivv322xxUpvv0/MQTT8zP07w0HwAAAAAAAKhdqiWcvPvuu+P999+PgQMHxkUXXRRt27atdDw9T+1e//nPf8awYcPi3nvvrY6XBQAAAAAAAGpbOHn//ffHRhttFAcffPCPzjv00EPzvPvuu686XhYAAAAAAACobeHkW2+9Fb169VqguWne0KFDq+NlAQAAAAAAgNoWTo4bN65KK9d5SfPSfAAAAAAAAKB2qZZwcvLkydGkSZMFmtu4ceM8HwAAAAAAAKhdqiWcnD179kLNLy8vr46XBQAAAAAAAGqQetV1oQceeCBGjRo133n2mwQAAAAAAIDaqdrCybvuuivfFkRZWVl1vSwAAAAAAABQm8LJwYMHV8dlAAAAAAAAgGVYtYSTW2+9dXVcBgAAAAAAAFiG1VnSCwAAAAAAAABqB+EkAAAAAAAAUBLCSQAAAAAAAKAkhJMAAAAAAABASQgnAQAAAAAAgJIQTgIAAAAAAAAlIZwEAAAAAAAASkI4CQAAAAAAAJSEcBIAAAAAAAAoCeEkAAAAAAAAUBI1Kpx89dVX45hjjomOHTtG48aNo02bNrHPPvvE8OHDq8x9//33o2fPntGkSZNYZZVV4qCDDooJEyZUmTd79uy45JJLom3bttGw4f+vvbuBtnLKGwD+v9KXIhpNigxSPvoQoxqZ0TQjg8KYhEkYizGLfIR8xFjetxkmEmamZcksa0L5jPHRWBrSGMukRM3QlEZEqZRJiErDedd+3nXv6vahbrrPveee32+tu869+9nnOXt3z/33nP1/9t6NonPnznH//ffn1CMAAAAAAAAoHdtHEbnxxhvjxRdfjP79+2dJxCVLlsSoUaPikEMOiZdeeik6duyY1Vu4cGEcccQR0axZs7jhhhti5cqVcfPNN8drr70W06ZNiwYNGlSc85prronhw4fHz3/+8+jatWs8/vjjMWDAgCgrK4tTTz21BnsLAAAAAAAAdUtRJScvvfTSuO+++yolF0855ZTo1KlTlmAcO3ZsVpYSkp9++mm88sor2ezKpFu3btG7d+8YM2ZMnHvuuVnZe++9FyNHjoxBgwZlSc7knHPOiZ49e8bll1+eJUHr1atXI30FAAAAAACAuqaolnXt0aNHpcRk0q5du2yZ17SMa7lHHnkk+vbtW5GYTI488sho3759PPTQQxVlaZbk2rVr4/zzz68oSzMmzzvvvGz25ZQpU6q9TwAAAAAAAFAqiio5uTGFQiHef//92HXXXStmQy5dujQOPfTQDeqm2ZMzZsyo+Dl9n/auPOCAAzaoV34cAAAAAAAAKMFlXTdm3LhxWUJy2LBh2c+LFy/OHlu1arVB3VS2fPnyWLNmTTRs2DCr27Jly2y25Pr1kkWLFm1Vm9JMzo2ZN29etG3bdqvOCQAAAAAAAMWuqGdOzpkzJ9sv8rDDDoszzzwzK1u1alX2mJKP62vUqFGlOulxS+oBAAAAAAAAJTxzcsmSJdGnT59o1qxZjB8/PurVq5eVN27cOHtMsyPXt3r16kp10uOW1KuqWbNmVWlGJQAAAAAAAJSCopw5+dFHH8UxxxwTK1asiKeffjpat269wZKs5cu7riuVNW/evGK2ZKqbkpxp38r16yXrnhcAAAAAAAAoseRkmtV43HHHxdy5c2PChAlx4IEHVjq+++67R4sWLWL69OkbPHfatGnRpUuXip/T95999lnMnj27Ur2pU6dWHAcAAAAAAABKMDn5xRdfxCmnnBJTpkyJhx9+ONtrcmP69euXJS4XLFhQUTZp0qQsodm/f/+KshNOOCHq168ft99+e0VZmkV5xx13ZEnOHj16VHOPAAAAAAAAoHQU1Z6Tl112WTzxxBPZzMnly5fH2LFjKx0fOHBg9nj11VdnyctevXrFxRdfHCtXrowRI0ZEp06d4qyzzqqov8cee8TgwYOzY2vXro2uXbvGY489Fi+88EKMGzeuYh9LAAAAAAAAoMSSkzNnzswen3zyyexrfeXJyTZt2sTzzz8fl156aVx11VXRoEGD6NOnT4wcObJiv8lyw4cPj1122SVGjx4dY8aMiXbt2mVJzwEDBuTUKwAAAAAAACgNRZWc/Otf/7rFdTt06BATJ07cbL3tttsuhg4dmn0BAAAAAAAA1aeo9pwEAAAAAAAAipfkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHKxfT4vAwAAAFDaJv6m6Wbr/GjoylzaAgAANaWoZk6uXLkyrrvuujj66KOjefPmUVZWFmPGjNlo3dmzZ2f1mjZtmtU9/fTTY9myZRvU+/LLL+Omm26KvffeOxo1ahSdO3eO+++/P4feAAAAAAAAQGkpquTkBx98EMOGDcsSjwcddNAm6y1cuDCOOOKIePPNN+OGG26IIUOGxJ///Ofo3bt3fP7555XqXnPNNXHllVdmx37/+9/HnnvuGQMGDIgHHngghx4BAAAAAABA6SiqZV1btWoVixcvjt122y2mT58eXbt23Wi9lJD89NNP45VXXsmSjUm3bt2yBGSaaXnuuedmZe+9916MHDkyBg0aFKNGjcrKzjnnnOjZs2dcfvnl0b9//6hXr16OPQQAAAAAAIC6q6hmTjZs2DBLTG7OI488En379q1ITCZHHnlktG/fPh566KGKsscffzzWrl0b559/fkVZWir2vPPOy2ZfTpkypRp6AQAAAAAAAKWpqJKTWyLNhly6dGkceuihGxxLsydnzJhR8XP6vkmTJnHAAQdsUK/8OAAAAAAAAFCCy7puibTsa/kSsOtLZcuXL481a9ZkszBT3ZYtW2azJdevlyxatGir2tChQ4eNls+bNy/atm27VecEAAAAAACAYlfnZk6uWrUqe0zJx/U1atSoUp30uCX1AAAAAAAAgK+vzs2cbNy4cfaYZkeub/Xq1ZXqpMctqVdVs2bNqtKMSgAAAAAAACgFdW7mZPmSrOXLu64rlTVv3rxitmSqu2TJkigUChvUS1q3bp1LmwEAAAAAAKAU1Lnk5O677x4tWrSI6dOnb3Bs2rRp0aVLl4qf0/efffZZzJ49u1K9qVOnVhwHAAAAAAAAto06l5xM+vXrFxMmTIgFCxZUlE2aNCnmzp0b/fv3ryg74YQTon79+nH77bdXlKVZlHfccUeW5OzRo0fubQcAAAAAAIC6quj2nBw1alSsWLEiFi1alP385JNPxsKFC7PvL7zwwmjWrFlcffXV8fDDD0evXr3i4osvjpUrV8aIESOiU6dOcdZZZ1Wca4899ojBgwdnx9auXRtdu3aNxx57LF544YUYN25c1KtXr8b6CQAAAAAAAHVN0SUnb7755njnnXcqfn700Uezr2TgwIFZcrJNmzbx/PPPx6WXXhpXXXVVNGjQIPr06RMjR46s2G+y3PDhw2OXXXaJ0aNHx5gxY6Jdu3YxduzYGDBgQO59AwAAAAAAgLqs6JKT8+fP36J6HTp0iIkTJ2623nbbbRdDhw7NvgAAAABqhfvKNl9nQCGPlgAAwDZVJ/ecBAAAAAAAAGofyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcbJ/PywAAAAAAAGxeWdnm6xQKebQEqA5mTgIAAAAAAAC5MHMSarP7tuAWoQFuEQIAAAAAAIqDmZMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5kJwEAAAAAAAAciE5CQAAAAAAAORCchIAAAAAAADIheQkAAAAAAAAkAvJSQAAAAAAACAXkpMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC52D6flwEAAAC+0n1lm68zoJBHSwAAAKqNmZMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5sOckAACQu7L/3fzeeoXr7K0HAAAAdY3kJAAAAFBruHkBAADqNslJAAAAAACgznMTFNQO9pwEAAAAAAAAciE5CQAAAAAAAOTCsq4AAAAAAMD/u2/zS5/GAEufAlvPzEkAAAAAAAAgF2ZOAgBQK5X97+bv1i1c525dAACAzTIbEqhFzJwEAAAAAAAAciE5CQAAAAAAAORCcjIi1qxZE1deeWW0bt06GjduHN27d49nnnmmppsFAAAAAAAAdYo9JyPiZz/7WYwfPz4GDx4c7dq1izFjxsSxxx4bkydPju9+97s13TzqmiJb371sC5pbqD3NBQAAAKCOsz89QHEr+eTktGnT4oEHHogRI0bEkCFDsrIzzjgjOnbsGFdccUX8/e9/r+kmAlQrCWigLjA4AVvPtQAAAAB5KvnkZJoxWa9evTj33HMryho1ahRnn312XH311bFgwYJo06ZNjbYRtjUDUAAAAAAA+Zr4m6abrfOjoStzaQvUpJJPTs6YMSPat28fO+20U6Xybt26ZY8zZ86UnASgZJZyppbwvqGWqekbm8yMha/J/ysAAEAtUvLJycWLF0erVq02KC8vW7RoUZXP2aFDh42Wz5kzJ+rXr7/J41S/lR/M3mydprseUL2N+GgL6lzfocp1//WvzVc98MDYYlV5m3pLfw0fbcEvrlkVfnHVpKq/438t23y/Dmxx4FbXLypV+psvjvdDVdXp32918b75f8s2X6XDQx2qXLdWXA9Ulxp8P1T5eqCafr/VpSjfN9vw/bDu73dbX3dm5/R/RdXjf204b3Wpw/Fh5Qefbb7u2Kp/HqzT1wNAyajSNUYtiP9Fp5rGJKtyLVkt45dVfS9U03tnS/+Pr9K1AJs0b968LNdC8SorFEp78ca2bdvGfvvtF0899VSl8rfeeis7duutt8bgwYOrdM5NJR/feOONaNy4cey5555RG/54k9RHgHJiA7Ap4gOwMWIDsCniA7AxYgOwLWLDu+++G02aNIklS5ZUc8uoLiU/czIlC9esWbNB+erVqyuOV9WsWbOititPoBZDW4H8iA3ApogPwMaIDcCmiA/AxogNwMaIDaVnuyhxafnWtLTr+srLWrduXQOtAgAAAAAAgLqn5JOTXbp0iblz58bHH39cqXzq1KkVxwEAAAAAAICvr+STkyeddFJ88cUXceedd1aUpWVe//jHP0b37t2jTZs2Ndo+AAAAAAAAqCtKfs/JlIDs379/DB06NJYuXRr77rtv3H333TF//vy46667arp5AAAAAAAAUGeUfHIyueeee+Laa6+Ne++9Nz788MPo3LlzTJgwIY444oiabhoAAAAAAADUGWWFQqFQ040AAAAAAAAA6r6S33MSAAAAAAAAyIfkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJwEAAAAAAIBcSE4CAAAAAAAAuZCcBAAAAAAAAHIhOQkAAAAAAADkQnISAAAAAAAAyIXkJAAAAAAAAJALyUkAAAAAAAAgF5KTAAAAAAAAQC4kJ4vIyy+/HBdccEF06NAhmjRpEnvuuWecfPLJMXfu3A3qzp49O44++uho2rRpNG/ePE4//fRYtmzZBvWuv/76OP7446Nly5ZRVlYW//M//7NFbendu3dWP7UHqFm1ITY8+OCDcdhhh2Wvv/POO0ePHj3iueee26b9BIovPjz77LPRq1ev2HXXXbPY0K1bt7j33nu3eT+Bmo0Nc+bMiSuuuCK6dOkSO+64Y7Rq1Sr69OkT06dP3+jrv/fee9nrpbiw0047xQknnBBvvfVWtfUXKI748Oijj8Ypp5wS++yzT+ywww6x3377xWWXXRYrVqyo1j4Dtf/aYV3GJKH2qA2xwZhk8SorFAqFmm4EW+akk06KF198Mfr37x+dO3eOJUuWxKhRo2LlypXx0ksvRceOHbN6CxcujIMPPjiaNWsWF110UXb85ptvzoLDtGnTokGDBhXnTP+Z77bbbnHQQQfFxIkT47rrrttsEiJ9YDjjjDPi008/jUGDBmVtAEo3NqTyYcOGZe344Q9/GGvXro3XX389Dj/88OxCAyjN+PDEE0/Ej3/84+xDwk9/+tPseQ899FD87W9/i1tuuSUuueSSXP8tgOqLDUOGDIm77ror+vXrl92E8NFHH8Xo0aNj/vz58fTTT8eRRx5Z8drpHIccckhWJyUd6tevH7feemukj6UzZ86Mb3zjGzX27wLUbHxINzO1bt06u35I53nttdfijjvuyJKVr776ajRu3LjG/l2g1NVkbFiXMUmoXWo6NhiTLHIpOUlxePHFFwtr1qypVDZ37txCw4YNC6eddlpF2XnnnVdo3Lhx4Z133qkoe+aZZ1ISujB69OhKz3/77bezx2XLlmXHr7vuuq9sw6pVqwp77bVXYdiwYVn9QYMGbaPeAcUYG6ZMmVIoKysr3HLLLdu4V0Cxx4fevXsXWrduXVi9enVF2dq1awtt27YtdO7ceZv1Eaj52DB9+vTCJ598Uul8H3zwQaFFixaFww8/vFL5jTfemD1/2rRpFWWzZ88u1KtXrzB06NBt2k+guOLD5MmTN2jP3XffnZ3zD3/4wzbpH1B8saGcMUmofWoyNhiTLH6WdS0iaUryujMXknbt2mXTptO06HKPPPJI9O3bN7vzoFy6q6B9+/bZjIV17bXXXlVqw0033RRffvlldhcDUDvUZGy47bbbshlUF198cTbjId35BNQeNRkfPv7449hll12iYcOGFWXbb799NivCzAeoW7Hh29/+drY807rSDMjvfe97lc6XjB8/Prp27Zp9ldt///2zO53XjzdAacWH73//+xu058QTT8we168LlE5sKGdMEmqfmowNxiSLn+RkkUt/eO+//3420Fe+f8vSpUvj0EMP3aBumgo9Y8aMrX6td999N4YPHx433nijQUWo5fKKDZMmTcoGF3/3u99FixYtKtaDt7QK1F55xYc0wDhr1qy49tpr480334x58+bFr371q2yviLSHBFD3Y0Na1qn8fEkaUPznP/+5yXOmOPHJJ5987b4AxRcfvqpesiV1gbobG4xJQvHIKzYYkyx+kpNFbty4cdkfeNo0Plm8eHH2mP4Q15fKli9fHmvWrNmq10p7wqS1oU899dSv2WqgLsSGDz/8MD744INsbfmUfLjqqquyTajTptUXXnhhtiY8ULrXDikunHzyyXH99ddnd07uu+++2YBCumPyJz/5yTboCVCbY8MLL7wQU6ZMqThfUv6cTZ0zWbRo0TbpD1Bc8WFTUiKiXr162V5SQOnGBmOSUDzyiA3GJOuG7Wu6AWy9OXPmZJs/H3bYYXHmmWdmZatWrcoe111CrVyjRo0q6mzs+FeZPHlyNpg4derUbdJ2oPhjQ/lyCf/5z3/igQceqLhISAMHnTp1il//+tfxi1/8Ypv0Cdg28rx2SPXTEi0pJqRk5BdffBF33nlnDBw4MJ555pn4zne+s036BNS+2JDujB4wYEDsvffelWZKb+k5gdKLDxtz3333xV133ZXVSzc6AaUZG4xJQvHIKzYYk6wbzJwsUmkqc58+faJZs2bZvi3pTsKkfGmDjd1tsHr16kp1ttR///vfuOiii+L000+vtDcMUNqxobx+/fr1K93JvN1222UXBQsXLsyWXgFKLz4kF1xwQTz55JPZB4V0h/Npp50Wzz77bHZnZNoTAqibseHTTz/N9pNJy7M+/vjjlfaMqa54AxR/fNjYLImzzz47fvSjH2WrMAClGRuMSULxqInPFcYki5uZk0Xoo48+imOOOSZWrFiRXbC3bt264lj59Ojy6dLrSmXNmzev8syHe+65J954441sOvT8+fMrHUvBIZV985vfjB122GGr+wQUX2xIz0l3OO28884VFxzlUkwoX2Zh3c2ugdKID59//nnFTIf04aBc+uCQ2pH2gEh1GjRo8LX6BdSu2JD+rtNM6bSv5MSJE6Njx46Vjpc/Z1PnTNZtA1A68WFd//jHP+L444/P6qTBze23N3QFpRobjElCcaiJzxXGJIufmZNFJt1NcNxxx8XcuXNjwoQJceCBB1Y6vvvuu2cbwE6fPn2D506bNi1bd7mq0l0Ga9eujcMPPzybQl3+VX6RkL7/y1/+8jV6BRRjbEgJh/S8ZcuWZRcN6yrfLyq9JlB68SEtrZLuck5Lua4vXVN8+eWXGz0GFG9sSH/XZ5xxRkyaNClbirFnz54bvXZIyyxt7JxpqbZ99tkndtxxx23SP6C44kO5efPmxdFHH50NLD711FNfObsSqPuxwZgk1H419bnCmGTxk5wsImkQL01LThvAPvzww9nazRvTr1+/LBAsWLCgoiz9MacA0b9//yq/blqK7U9/+tMGX8mxxx6bfd+9e/ev0TOgGGNDkl43vf7dd99d6aIkbX6dLkbMfoDSjA9pQDHdwZiuEdb9oJD2hUhLve6///6WboQ6FhsuvPDCePDBB+P222/P7nLelLTs0ssvv1xpcCLNiHjuuee2+noEqBvxIS0Hd9RRR2UDjmmWhEFFqD1qKjYYk4TarSavG4xJFr+yQqFQqOlGsGUGDx4cv/3tb7M7EU4++eQNjg8cODB7TH/kBx98cDYomPZ0SgOBI0aMiD322CMbCFh3mvS9994b77zzTnz22Wfxm9/8Jnr16hU/+MEPsmNpPfdvfetbm2xPWVlZtsFtWpoNKM3YkDasTvs+pIuJdM60XEJ67quvvpolINKSDkBpxoe0P9Qvf/nL7Lzprsf0oSEt9Tp79uwYO3ZstgclUDdiw2233RaXXHJJNhhx/vnnb3C+E088MZo0aVKxBFs6Z3ocMmRIttzzLbfcksWImTNnSkZACceHNAMiLemaloVPs6zX1bJly+jdu3c19RqozbFhY4xJQu1Qk7HBmGQdkJKTFIeePXumRPImv9b1+uuvF4466qjCDjvsUNh5550Lp512WmHJkiVVOufkyZO/sj2pzqBBg7Z5P4Hiig3vv/9+4cwzzyw0b9680LBhw0L37t0LTz/9dLX3G6j98WHcuHGFbt26Zedr3LhxFh/Gjx9f7f0G8o0N6Trgq8739ttvV6q/YMGCwkknnVTYaaedCk2bNi307du38O9//zuXvgO1Nz58Vb3ULqB0rx3WZ0wSaoeajg3GJIubmZMAAAAAAABALuw5CQAAAAAAAORCchIAAAAAAADIheQkAAAAAAAAkAvJSQAAAAAAACAXkpMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5kJwEAAAAAAAAciE5CQAAAAAAAORCchIAAAAAAADIheQkAAAAAAAAkAvJSQAAAAAAACAXkpMAAAAAAABALiQnAQAAAAAAgFxITgIAAAAAAAC5kJwEAAAAAAAAciE5CQAAAAAAAORCchIAAAAAAACIPPwfjj5vXDARMc0AAAAASUVORK5CYII=" - }, - "metadata": {}, - "output_type": "display_data" - } - ], - "execution_count": 48 + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -266,7 +202,7 @@ " matrice_m,\n", " metric_mean=\"%click_mean\",\n", " metric_std=\"%click_std\",\n", - " ylabel=\"Moyenne %click\",\n", + " y_lab=\"Moyenne %click\",\n", " title_suffix=\"%click\"\n", ")" ], @@ -282,7 +218,7 @@ " matrice_h,\n", " metric_mean=\"FBR_mean\",\n", " metric_std=\"FBR_std\",\n", - " ylabel=\"Feeding buzz ratio\",\n", + " y_lab=\"Feeding buzz ratio\",\n", " title_suffix=\"FBR\"\n", ")" ], From 1e61fe568db59576b89216f45ae5212865fea6f8 Mon Sep 17 00:00:00 2001 From: fouinel Date: Wed, 19 Nov 2025 17:44:47 +0100 Subject: [PATCH 44/83] update feeding_buzzes --- src/post_processing/utils/fpod_utils.py | 38 ++++++++++++++++--------- 1 file changed, 24 insertions(+), 14 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 617b570..ad3538f 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -13,6 +13,7 @@ from osekit.utils.timestamp_utils import strftime_osmose_format, strptime_from_text from pandas import ( DataFrame, + NaT, Timedelta, concat, date_range, @@ -398,28 +399,37 @@ def feeding_buzz( """ df["microsec"] /= 1e6 - df["ICI"] = df["microsec"].diff() + + try: + df["Minute"].astype(int) + df["datetime"] = ( + to_datetime("1900-01-01") + + to_timedelta(df["Minute"], unit="min") + + to_timedelta(df["microsec"], unit="us") + - to_timedelta(2, unit="D") + ) + df["start_datetime"] = df["datetime"].dt.floor("min") + except (ValueError, TypeError): + df["datetime"] = (df["Minute"]).astype(str) + ":" + (df["microsec"]).astype(str) + df["datetime"] = to_datetime(df["datetime"], dayfirst=True) + df["start_datetime"] = to_datetime(df["Minute"], dayfirst=True) + + df["ICI"] = df["datetime"].diff() + df["ICI"] = to_timedelta(df["ICI"], errors="coerce") + + mask = df["ICI"] > Timedelta("1 days") + df.loc[mask, "ICI"] = NaT if species == "Dauphin": # Herzing et al., 2014 - df["Buzz"] = (df["ICI"].between(0, 0.02)).astype(int) + df["Buzz"] = (df["ICI"] < Timedelta(seconds=0.02)).astype(int) elif species == "Marsouin": # Nuuttila et al., 2013 - df["Buzz"] = (df["ICI"].between(0, 0.01)).astype(int) + df["Buzz"] = (df["ICI"] < Timedelta(seconds=0.01)).astype(int) elif species == "Commerson": # Reyes Reyes et al., 2015 - df["Buzz"] = (df["ICI"].between(0, 0.005)).astype(int) + df["Buzz"] = (df["ICI"] < Timedelta(seconds=0.005)).astype(int) else: msg = "This species is not supported" raise ValueError(msg) - try: - df["Minute"].astype(int) - df["datetime"] = (to_datetime("1900-01-01") + - to_timedelta(df["Minute"], unit="min") + - to_timedelta(df["microsec"], unit="us") - - to_timedelta(2, unit="D")) - df["start_datetime"] = df["datetime"].dt.floor("min") - except (ValueError, TypeError): - df["start_datetime"] = to_datetime(df["Minute"], dayfirst=True) - f = df.groupby(["start_datetime"])["Buzz"].sum().reset_index() f["Foraging"] = to_numeric(f["Buzz"] != 0, downcast="integer").astype(int) From b8b0177e7fc78849c61ce6b501526848d325e79b Mon Sep 17 00:00:00 2001 From: fouinel Date: Thu, 20 Nov 2025 10:23:08 +0100 Subject: [PATCH 45/83] adjust notebook --- user_case/example_FPOD-CPOD_raw.ipynb | 2 +- 1 file changed, 1 insertion(+), 1 deletion(-) diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index 35bd0e8..b09c925 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -130,7 +130,7 @@ "cell_type": "code", "outputs": [], "execution_count": null, - "source": "dpm_fb = cleared.merge(fb_all, on=[\"start_datetime\"], how=\"left\") #Merge DPM and FB dataframes", + "source": "dpm_fb = cleared.merge(fb_all[[\"start_datetime\", \"Foraging\"]], on=[\"start_datetime\"], how=\"left\") #Merge DPM and FB dataframes", "id": "e90f6d91de3f8ce3" }, { From 5f1b56bc2b30203a26bbb345d580d7a7e9233752 Mon Sep 17 00:00:00 2001 From: fouinel Date: Thu, 20 Nov 2025 10:23:20 +0100 Subject: [PATCH 46/83] correct feeding buzzes function --- src/post_processing/utils/fpod_utils.py | 12 +++++------- 1 file changed, 5 insertions(+), 7 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index ad3538f..3b5bbdd 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -405,20 +405,18 @@ def feeding_buzz( df["datetime"] = ( to_datetime("1900-01-01") + to_timedelta(df["Minute"], unit="min") - + to_timedelta(df["microsec"], unit="us") + + to_timedelta(df["microsec"], unit="sec") - to_timedelta(2, unit="D") ) df["start_datetime"] = df["datetime"].dt.floor("min") except (ValueError, TypeError): - df["datetime"] = (df["Minute"]).astype(str) + ":" + (df["microsec"]).astype(str) - df["datetime"] = to_datetime(df["datetime"], dayfirst=True) + df["datetime"] = ( + to_datetime(df["Minute"], dayfirst=True) + + to_timedelta(df["microsec"], unit="sec") + ) df["start_datetime"] = to_datetime(df["Minute"], dayfirst=True) df["ICI"] = df["datetime"].diff() - df["ICI"] = to_timedelta(df["ICI"], errors="coerce") - - mask = df["ICI"] > Timedelta("1 days") - df.loc[mask, "ICI"] = NaT if species == "Dauphin": # Herzing et al., 2014 df["Buzz"] = (df["ICI"] < Timedelta(seconds=0.02)).astype(int) From 672d392d73399f0ddc90f1dcba31abdddc12f5b5 Mon Sep 17 00:00:00 2001 From: fouinel Date: Mon, 24 Nov 2025 10:31:56 +0100 Subject: [PATCH 47/83] add new figures --- user_case/example_FPOD-CPOD_aplose.ipynb | 19 ++- user_case/example_FPOD-CPOD_raw.ipynb | 179 ++++++++++++++++++++++- 2 files changed, 189 insertions(+), 9 deletions(-) diff --git a/user_case/example_FPOD-CPOD_aplose.ipynb b/user_case/example_FPOD-CPOD_aplose.ipynb index bc6d952..b0da1c8 100644 --- a/user_case/example_FPOD-CPOD_aplose.ipynb +++ b/user_case/example_FPOD-CPOD_aplose.ipynb @@ -191,7 +191,7 @@ "metadata": {}, "cell_type": "code", "source": [ - "resamp_tot = filtered_df.set_index(\"start_datetime\").resample('h').first().reset_index()\n", + "resamp_tot = filtered_df.set_index(\"start_datetime\").resample(frq).first().reset_index()\n", "\n", "fig, ax = plt.subplots(figsize=(12, 6))\n", "ax.plot(resamp_tot[\"start_datetime\"], resamp_tot[\"Angle\"])\n", @@ -244,6 +244,23 @@ "id": "f1f9ec385038ba87", "outputs": [], "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### First visualization\n", + "Precise the coordinates of the location of your listening point" + ], + "id": "a1b31aa6bd8f4d70" + }, + { + "metadata": {}, + "cell_type": "code", + "outputs": [], + "execution_count": null, + "source": "", + "id": "3fda0cc8174fa757" } ], "metadata": { diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index b09c925..2e8e690 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -7,12 +7,24 @@ "collapsed": true }, "source": [ - "from pathlib import Path\n", + "from __future__ import annotations\n", "\n", "import pytz\n", "\n", "from post_processing.utils.fpod_utils import csv_folder, pod2aplose, actual_data, meta_cut_aplose, feeding_buzz, txt_folder, add_utc\n", - "from post_processing.utils.core_utils import json2df" + "from post_processing.utils.core_utils import json2df\n", + "\n", + "import logging\n", + "from pathlib import Path\n", + "import matplotlib.pyplot as plt\n", + "import matplotlib.ticker as ticker\n", + "from pandas import Timestamp, to_datetime\n", + "from pandas.tseries import frequencies\n", + "from post_processing.dataclass.data_aplose import DataAplose\n", + "from post_processing.utils.core_utils import get_season, get_count\n", + "from osekit import setup_logging\n", + "from user_case.config import season_color\n", + "setup_logging(Path(r\"C:\\Users\\dupontma2\\Documents\\Git\\OSmOSE\\OSmOSE_post_processing\\src\\post_processing\\logging_config.yaml\"), logging.ERROR)" ], "outputs": [], "execution_count": null @@ -116,22 +128,22 @@ { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": [ "fb_all = txt_folder(fb_files) #Read all your FB.txt files.\n", "fb_all = feeding_buzz(fb_all, \"Marsouin\") #Categorize the minutes (positive or not to FB detection). 🐬\n", "add_utc(fb_all, [\"start_datetime\"], \"min\")" ], - "id": "64f824e02131d90a" + "id": "64f824e02131d90a", + "outputs": [], + "execution_count": null }, { "metadata": {}, "cell_type": "code", - "outputs": [], - "execution_count": null, "source": "dpm_fb = cleared.merge(fb_all[[\"start_datetime\", \"Foraging\"]], on=[\"start_datetime\"], how=\"left\") #Merge DPM and FB dataframes", - "id": "e90f6d91de3f8ce3" + "id": "e90f6d91de3f8ce3", + "outputs": [], + "execution_count": null }, { "metadata": {}, @@ -149,6 +161,157 @@ "id": "9d34e00f4e8147e8", "outputs": [], "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "### Explore\n", + "First visualization of the data" + ], + "id": "a85ea092d9fc197c" + }, + { + "metadata": {}, + "cell_type": "code", + "source": "data = DataAplose(dpm_fb)", + "id": "639c474690373895", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "bin_size = frequencies.to_offset(\"1d\")\n", + "ticks = frequencies.to_offset(\"6BMS\")\n", + "fmt = \"%b %y\"" + ], + "id": "cb476b5655bdff42", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "data.lat = 50.973333\n", + "data.lon = 1.8117" + ], + "id": "3fc33f2acf84ea34", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": [ + "#### Reshape the data\n", + "Set beginning and end of the chosen window." + ], + "id": "2857f26f8c168ad3" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "data.df[\"end_datetime\"] = to_datetime(data.df[\"end_datetime\"])\n", + "data2 = data.reshape(begin=Timestamp(\"2013 11 01\"), end=Timestamp(\"2025 08 01\"))\n", + "tz = pytz.timezone(\"UTC\")\n", + "data2.change_tz(tz)" + ], + "id": "75e00c1920b69409", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### Heatmap", + "id": "cdf3a92dfb6514d6" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "fig, ax = plt.subplots(1, 1)\n", + "ax = data2.set_ax(ax=ax, x_ticks_res=ticks, date_format=fmt)\n", + "data2.plot(\n", + " mode=\"heatmap\",\n", + " annotator=data2.annotators[0],\n", + " label=data2.labels[0],\n", + " ax=ax,\n", + " bin_size=bin_size,\n", + " show_rise_set=True,\n", + ")\n", + "plt.tight_layout()\n", + "plt.show()" + ], + "id": "6e1832101aec4156", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### Detections over time", + "id": "b0f3c6b7fc08a2be" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "fig2, ax = plt.subplots(1, 1)\n", + "ax = data2.set_ax(ax=ax, x_ticks_res=ticks, date_format=fmt)\n", + "data2.plot(\n", + " mode=\"scatter\",\n", + " annotator=data2.annotators[0],\n", + " label=data2.labels[0],\n", + " ax=ax,\n", + " show_rise_set=True,\n", + ")\n", + "plt.tight_layout()\n", + "plt.show()" + ], + "id": "66b43e53fb17037", + "outputs": [], + "execution_count": null + }, + { + "metadata": {}, + "cell_type": "markdown", + "source": "#### DPM per day", + "id": "c7ea248b277edb65" + }, + { + "metadata": {}, + "cell_type": "code", + "source": [ + "df_filtered = data2.filter_df(data2.annotators[0], data2.labels[0])\n", + "df_counts = get_count(df_filtered, bin_size)\n", + "\n", + "df_counts[\"Season\"] = df_counts.index.to_series().apply(lambda x: get_season(x)[0])\n", + "df_counts[\"colors\"] = df_counts[\"Season\"].map(season_color).fillna(\"gray\")\n", + "\n", + "fig3, ax = plt.subplots(1, 1)\n", + "ax = data2.set_ax(ax=ax, x_ticks_res=ticks, date_format=fmt)\n", + "data2.plot(\n", + " mode=\"histogram\",\n", + " annotator=data2.annotators[0],\n", + " label=data2.labels[0],\n", + " color=df_counts[\"colors\"].tolist(),\n", + " ax=ax,\n", + " bin_size=bin_size,\n", + " legend=True,\n", + ")\n", + "ax.set_ylim(0, 200)\n", + "ax.yaxis.set_major_locator(ticker.MaxNLocator(nbins=10))\n", + "plt.tight_layout()\n", + "plt.show()" + ], + "id": "81b0dafa8adc20e9", + "outputs": [], + "execution_count": null } ], "metadata": { From 7ca69e99646e4f6f6566c7514bafcc99483824eb Mon Sep 17 00:00:00 2001 From: fouinel Date: Mon, 24 Nov 2025 10:32:08 +0100 Subject: [PATCH 48/83] correct some functions --- src/post_processing/utils/fpod_utils.py | 5 ++--- 1 file changed, 2 insertions(+), 3 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 3b5bbdd..6504d66 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -13,7 +13,6 @@ from osekit.utils.timestamp_utils import strftime_osmose_format, strptime_from_text from pandas import ( DataFrame, - NaT, Timedelta, concat, date_range, @@ -793,7 +792,7 @@ def percent_calc( data.groupby(group_cols) .agg( { - "DPH": "sum", + "DPh": "sum", "DPM": "sum", "Day": "size", "Foraging": "sum", @@ -803,7 +802,7 @@ def percent_calc( ) df["%click"] = df["DPM"] * 100 / (df["Day"] * 60) - df["%DPH"] = df["DPH"] * 100 / df["Day"] + df["%DPh"] = df["DPh"] * 100 / df["Day"] df["FBR"] = df["Foraging"] * 100 / df["DPM"] df["%buzzes"] = df["Foraging"] * 100 / (df["Day"] * 60) return df From 87f291e042a3514bf986828f415cb3279c0c45c5 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 20 Jan 2026 11:36:22 +0100 Subject: [PATCH 49/83] change colors assignment --- user_case/config.py | 2 +- user_case/config.yaml | 7 ++++--- 2 files changed, 5 insertions(+), 4 deletions(-) diff --git a/user_case/config.py b/user_case/config.py index 1d191a7..bf74b37 100644 --- a/user_case/config.py +++ b/user_case/config.py @@ -8,4 +8,4 @@ site_colors = config.get("site_colors", {"Site A Haute": "#118B50", "Site B Heugh": "#5DB996", "Site C Chat": "#B0DB9C", "Site D Simone": "#E3F0AF", "CA4": "#80D8C3", "Walde": "#4DA8DA", "Point C": "#932F67", "Point D": "#D92C54", "Point E": "#DDDEAB", "Point F": "#8ABB6C", "Point G": "#456882"}) -season_color = config.get("season_color", {"spring": "green", "summer": "darkgoldenrod", "autumn": "orange", "winter": "blue"}) \ No newline at end of file +season_color = config.get("season_color", {"spring": "green", "summer": "orange", "autumn": "brown", "winter": "blue"}) \ No newline at end of file diff --git a/user_case/config.yaml b/user_case/config.yaml index ac0b183..6da6e08 100644 --- a/user_case/config.yaml +++ b/user_case/config.yaml @@ -3,16 +3,17 @@ site_colors: Point C: '#932F67' Point D: '#D92C54' Point E: '#DDDEAB' - Point F: 'ADMETTONS' + Point F: '#4E61D3' Point G: '#456882' Site A Haute: '#118B50' Site B Heugh: '#5DB996' Site C Chat: '#B0DB9C' Site D Simone: '#E3F0AF' Walde: '#4DA8DA' + 02Mn Sud Cotentin: '#FB4141' season_color : spring: "green" - summer: "darkgoldenrod" - autumn: "orange" + summer: "orange" + autumn: "brown" winter: "blue" \ No newline at end of file From e530c603a2a56d711ade58b40b508f85f32fb488 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 20 Jan 2026 11:37:11 +0100 Subject: [PATCH 50/83] modify notebook --- user_case/example_FPOD-CPOD_raw.ipynb | 114 ++++++++++++++++++++++---- 1 file changed, 98 insertions(+), 16 deletions(-) diff --git a/user_case/example_FPOD-CPOD_raw.ipynb b/user_case/example_FPOD-CPOD_raw.ipynb index 2e8e690..60e7f67 100644 --- a/user_case/example_FPOD-CPOD_raw.ipynb +++ b/user_case/example_FPOD-CPOD_raw.ipynb @@ -4,7 +4,11 @@ "cell_type": "code", "id": "initial_id", "metadata": { - "collapsed": true + "collapsed": true, + "ExecuteTime": { + "end_time": "2026-01-20T10:24:33.069494Z", + "start_time": "2026-01-20T10:24:29.180185Z" + } }, "source": [ "from __future__ import annotations\n", @@ -27,7 +31,7 @@ "setup_logging(Path(r\"C:\\Users\\dupontma2\\Documents\\Git\\OSmOSE\\OSmOSE_post_processing\\src\\post_processing\\logging_config.yaml\"), logging.ERROR)" ], "outputs": [], - "execution_count": null + "execution_count": 1 }, { "metadata": {}, @@ -41,7 +45,12 @@ "id": "c464f241817a1407" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2026-01-20T10:32:32.641354Z", + "start_time": "2026-01-20T10:32:09.650669Z" + } + }, "cell_type": "code", "source": [ "pod_files = Path(r\"U:\\CA4\") #Path to your data folder. 🐬\n", @@ -52,14 +61,26 @@ "\n", "print(path.head())\n", "df_0 = path.dropna()\n", - "df_0 = df_0.drop_duplicates(subset=['ChunkEnd'], keep=\"first\")\n", "\n", "metadatax = json2df(json_path=json)\n", "metadatax[\"deploy.name\"] = (metadatax[\"site.name\"].astype(str) + \"_\" + metadatax[\"campaign.name\"].astype(str))" ], "id": "6cf23db3b4288c29", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " File ChunkEnd DPM Nall MinsOn deploy.name\n", + "0 CA4 POD2397 file01.CP3 14/05/2014 07:07 0 0 1 CA4_Phase1\n", + "1 CA4 POD2397 file01.CP3 14/05/2014 07:08 0 8 1 CA4_Phase1\n", + "2 CA4 POD2397 file01.CP3 14/05/2014 07:09 0 4 1 CA4_Phase1\n", + "3 CA4 POD2397 file01.CP3 14/05/2014 07:10 0 251 1 CA4_Phase1\n", + "4 CA4 POD2397 file01.CP3 14/05/2014 07:11 0 4095 1 CA4_Phase1\n" + ] + } + ], + "execution_count": 2 }, { "metadata": {}, @@ -70,12 +91,17 @@ "execution_count": null }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2026-01-20T10:32:43.618484Z", + "start_time": "2026-01-20T10:32:43.243995Z" + } + }, "cell_type": "code", "source": "df_1 = df_0[df_0[\"DPM\"] !=\"0\" ] #Remove the 0 to lighten the APLOSE file.", "id": "769e128f2a5293e1", "outputs": [], - "execution_count": null + "execution_count": 3 }, { "metadata": {}, @@ -88,16 +114,54 @@ "id": "dd03975b7aef7eed" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2026-01-20T10:32:50.772619Z", + "start_time": "2026-01-20T10:32:50.060639Z" + } + }, "cell_type": "code", "source": [ "df_aplose = pod2aplose(df_1, pytz.utc, \"CA4\", \"Marsouin\", \"CPOD\") #Precise site name, species and instrument. 🐬\n", - "df_aplose[\"deploy.name\"] = df_aplose[\"filename\"]\n", "print(df_aplose.head())" ], "id": "4cc867627d677529", - "outputs": [], - "execution_count": null + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + " dataset filename start_time end_time \\\n", + "0 CA4 2014-05-16T02:30:00.000+0000 0 60 \n", + "1 CA4 2014-05-17T03:52:00.000+0000 0 60 \n", + "2 CA4 2014-05-17T04:47:00.000+0000 0 60 \n", + "3 CA4 2014-05-19T17:06:00.000+0000 0 60 \n", + "4 CA4 2014-05-20T11:07:00.000+0000 0 60 \n", + "\n", + " start_frequency end_frequency annotation annotator \\\n", + "0 0 0 Marsouin CPOD \n", + "1 0 0 Marsouin CPOD \n", + "2 0 0 Marsouin CPOD \n", + "3 0 0 Marsouin CPOD \n", + "4 0 0 Marsouin CPOD \n", + "\n", + " start_datetime end_datetime is_box \\\n", + "0 2014-05-16T02:30:00.000+0000 2014-05-16T02:31:00.000+0000 0 \n", + "1 2014-05-17T03:52:00.000+0000 2014-05-17T03:53:00.000+0000 0 \n", + "2 2014-05-17T04:47:00.000+0000 2014-05-17T04:48:00.000+0000 0 \n", + "3 2014-05-19T17:06:00.000+0000 2014-05-19T17:07:00.000+0000 0 \n", + "4 2014-05-20T11:07:00.000+0000 2014-05-20T11:08:00.000+0000 0 \n", + "\n", + " deploy.name \n", + "0 CA4_Phase1 \n", + "1 CA4_Phase1 \n", + "2 CA4_Phase1 \n", + "3 CA4_Phase1 \n", + "4 CA4_Phase1 \n" + ] + } + ], + "execution_count": 4 }, { "metadata": {}, @@ -109,12 +173,30 @@ "id": "d2c642658dbfe278" }, { - "metadata": {}, + "metadata": { + "ExecuteTime": { + "end_time": "2026-01-20T10:33:14.509811Z", + "start_time": "2026-01-20T10:33:14.070492Z" + } + }, "cell_type": "code", "source": "cleared = meta_cut_aplose(df_aplose, metadatax)", "id": "895bd5a116918285", "outputs": [], - "execution_count": null + "execution_count": 5 + }, + { + "metadata": { + "ExecuteTime": { + "end_time": "2026-01-20T10:33:24.735234Z", + "start_time": "2026-01-20T10:33:24.723966Z" + } + }, + "cell_type": "code", + "source": "cleared = cleared.drop_duplicates(subset=['start_datetime'], keep=\"last\")", + "id": "1a31da7341f3d8c9", + "outputs": [], + "execution_count": 7 }, { "metadata": {}, @@ -195,8 +277,8 @@ "metadata": {}, "cell_type": "code", "source": [ - "data.lat = 50.973333\n", - "data.lon = 1.8117" + "data.lat = 50.973333 #CA4: 51.00035 ; Walde: 50.973333 ; A: -49.38765 ; B: -49.424733 ; C: -49.4677 ; D: -49.47175\n", + "data.lon = 1.8117 #CA4: 1.879667 ; Walde: 1.8117 ; A: 69.9449 ; B: 69.932383 ; C: 70.081067 ; D: 69.836617" ], "id": "3fc33f2acf84ea34", "outputs": [], From ca8f250f6c6770c9157ec73cdcacd973a3e25f40 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 20 Jan 2026 11:37:41 +0100 Subject: [PATCH 51/83] modify pod2aplose --- src/post_processing/utils/fpod_utils.py | 235 +++++++++++++++++++++++- 1 file changed, 225 insertions(+), 10 deletions(-) diff --git a/src/post_processing/utils/fpod_utils.py b/src/post_processing/utils/fpod_utils.py index 6504d66..9ade0b0 100644 --- a/src/post_processing/utils/fpod_utils.py +++ b/src/post_processing/utils/fpod_utils.py @@ -6,13 +6,17 @@ from pathlib import Path from typing import TYPE_CHECKING +import matplotlib.dates as mdates +import numpy as np import pytz import seaborn as sns +from matplotlib import patches from matplotlib import pyplot as plt -from matplotlib.patches import Patch from osekit.utils.timestamp_utils import strftime_osmose_format, strptime_from_text from pandas import ( DataFrame, + DateOffset, + Series, Timedelta, concat, date_range, @@ -22,6 +26,7 @@ to_numeric, to_timedelta, ) +from sklearn.mixture import GaussianMixture from post_processing.utils.core_utils import get_coordinates, get_sun_times from user_case.config import season_color, site_colors @@ -76,7 +81,7 @@ def pod2aplose( data = { "dataset": [dataset_name] * len(df), - "filename": df["deploy.name"].tolist(), + "filename": [strftime_osmose_format(entry) for entry in fpod_start_dt], "start_time": [0] * len(df), "end_time": [bin_size] * len(df), "start_frequency": [0] * len(df), @@ -86,6 +91,7 @@ def pod2aplose( "start_datetime": [strftime_osmose_format(entry) for entry in fpod_start_dt], "end_datetime": [strftime_osmose_format(entry) for entry in fpod_end_dt], "is_box": [0] * len(df), + "deploy.name": df["deploy.name"].tolist(), } return DataFrame(data) @@ -418,11 +424,14 @@ def feeding_buzz( df["ICI"] = df["datetime"].diff() if species == "Dauphin": # Herzing et al., 2014 - df["Buzz"] = (df["ICI"] < Timedelta(seconds=0.02)).astype(int) + df["Buzz"] = df["ICI"].between(Timedelta(0), + Timedelta(seconds=0.02)).astype(int) elif species == "Marsouin": # Nuuttila et al., 2013 - df["Buzz"] = (df["ICI"] < Timedelta(seconds=0.01)).astype(int) + df["Buzz"] = df["ICI"].between(Timedelta(0), + Timedelta(seconds=0.01)).astype(int) elif species == "Commerson": # Reyes Reyes et al., 2015 - df["Buzz"] = (df["ICI"] < Timedelta(seconds=0.005)).astype(int) + df["Buzz"] = df["ICI"].between(Timedelta(0), + Timedelta(seconds=0.005)).astype(int) else: msg = "This species is not supported" raise ValueError(msg) @@ -434,6 +443,28 @@ def feeding_buzz( return f +def gmm_log( + array: Series, +) -> None: + """Gaussian mixture model. + + Parameters + ---------- + array: Series + Data you want to test for clustering. + + """ + log_ici = np.log(array.values).reshape(-1, 1) + gmm_3 = GaussianMixture( + n_components=3, + covariance_type="full", + random_state=42, + max_iter=200, + n_init=10, + ) + gmm_3.fit(log_ici) + + def assign_daytime( df: DataFrame, ) -> DataFrame: @@ -803,7 +834,9 @@ def percent_calc( df["%click"] = df["DPM"] * 100 / (df["Day"] * 60) df["%DPh"] = df["DPh"] * 100 / df["Day"] - df["FBR"] = df["Foraging"] * 100 / df["DPM"] + df["FBR"] = df.apply( + lambda row: (row["Foraging"] * 100 / row["DPM"]) if row["DPM"] > 0 else 0, + axis=1) df["%buzzes"] = df["Foraging"] * 100 / (df["Day"] * 60) return df @@ -912,7 +945,7 @@ def ym_percent(df: DataFrame, metric: str) -> None: for _, bar in enumerate(ax.patches): bar.set_hatch("/") legend_elements = [ - Patch(facecolor=col, edgecolor="black", label=season.capitalize()) + patches.Patch(facecolor=col, edgecolor="black", label=season.capitalize()) for season, col in season_color.items() ] fig.legend( @@ -925,6 +958,121 @@ def ym_percent(df: DataFrame, metric: str) -> None: plt.show() +def week_percent(df: DataFrame, metric: str) -> None: + """Plot a graph with the percentage of DPM per site/month-year. + + Parameters + ---------- + df: DataFrame + All percentages grouped by site and month per year + metric: str + Type of percentage you want to show on the graph + + """ + sites = df["site.name"].unique() + n_sites = len(sites) + fig, axs = plt.subplots(n_sites, 1, figsize=(15, 3 * n_sites), sharex=True) + if n_sites == 1: + axs = [axs] + + for i, site in enumerate(sorted(sites)): + site_data = df[df["site.name"] == site].copy() + ax = axs[i] + + # Masque pour identifier les NAs + na_mask = site_data["DPM"].isna() + + # Définir la limite Y + ymax = max(df[metric].dropna()) + 0.2 if not df[metric].dropna().empty else 1 + ax.set_ylim(0, ymax) + + # Tracer les rectangles pour les périodes de NAs + na_dates = site_data.loc[na_mask, "start_datetime"] + if len(na_dates) > 0: + na_groups = [] + current_group = [na_dates.iloc[0]] + + for j in range(1, len(na_dates)): + # Vérifier si les semaines sont consécutives (~7 jours) + if (na_dates.iloc[j] - current_group[-1]).days < 10: + current_group.append(na_dates.iloc[j]) + else: + na_groups.append(current_group) + current_group = [na_dates.iloc[j]] + na_groups.append(current_group) + + # Créer les rectangles + for group in na_groups: + start = group[0] - DateOffset(days=3.5) # Centrer sur la semaine + width = len(group) * 7 + 2 # Largeur en jours + rect = patches.Rectangle( + (mdates.date2num(start), 0), + width, + ymax, + linewidth=1, + edgecolor="gray", + facecolor="lightgray", + alpha=0.3, + label="Pas de données" + if (i == 0 and group == na_groups[0]) + else "", + ) + ax.add_patch(rect) + + # Tracer les barres avec données + bar_colors = site_data.loc[~na_mask, "Season"].map(season_color).fillna("gray") + bars = ax.bar( + site_data.loc[~na_mask, "start_datetime"], + site_data.loc[~na_mask, metric], + label=f"Site {site}", + color=bar_colors, + width=6, # Largeur adaptée pour les semaines + ) + + # Ajouter des hachures si nécessaire + if metric in {"%buzzes", "FBR"}: + for bar in bars: + bar.set_hatch("/") + + ax.set_title(f"{site}") + ax.set_ylabel(metric) + if i != n_sites - 1: + ax.set_xlabel("") + else: + ax.set_xlabel("Week") + + # Légende des saisons + legend_elements = [ + patches.Patch(facecolor=col, edgecolor="black", label=season.capitalize()) + for season, col in season_color.items() + ] + + # Ajouter "Pas de données" à la légende si des NAs existent + if df["DPM"].isna().any(): + legend_elements.append( + patches.Patch( + facecolor="lightgray", + edgecolor="gray", + alpha=0.3, + label="Pas de données")) + + fig.legend( + handles=legend_elements, + loc="upper right", + title="Seasons", + bbox_to_anchor=(0.95, 0.95), + ) + fig.suptitle(f"{metric} per week", fontsize=16) + + # Formatage de l'axe X + axs[-1].xaxis.set_major_locator(mdates.MonthLocator(interval=1)) + axs[-1].xaxis.set_major_formatter(mdates.DateFormatter("%Y-%m")) + fig.autofmt_xdate() + + plt.tight_layout() + plt.show() + + def month_percent(df: DataFrame, metric: str) -> None: """Plot a graph with the percentage of minutes positive to detection per site/month. @@ -1018,7 +1166,7 @@ def day_percent(df: DataFrame, metric: str) -> None: for _, bar in enumerate(ax.patches): bar.set_hatch("/") legend_elements = [ - Patch(facecolor=col, edgecolor="black", label=season.capitalize()) + patches.Patch(facecolor=col, edgecolor="black", label=season.capitalize()) for season, col in season_color.items() ] fig.legend( @@ -1132,12 +1280,12 @@ def calendar( ax.set_yticklabels(sites, fontsize=12) legend_elements = [ - Patch(facecolor="#F5F5F5", edgecolor="black", label="Deployment"), + patches.Patch(facecolor="#F5F5F5", edgecolor="black", label="Deployment"), ] for site, color in site_colors.items(): if site in sites: legend_elements.append( - Patch(facecolor=color, edgecolor="black", label=f"{site}"), + patches.Patch(facecolor=color, edgecolor="black", label=f"{site}"), ) ax.legend(handles=legend_elements, loc="upper left", fontsize=11, frameon=True) @@ -1366,5 +1514,72 @@ def hist_mean_s( ax.set_ylabel(y_lab or metric_mean, fontsize=10) ax.set_xlabel("Site", fontsize=10) + plt.tight_layout() + plt.show() + + +def hist_mean_season( + df: DataFrame, + metric_mean: str, + metric_std: str, + y_lab: str | None = None, + title_suffix: str | None = None, +) -> None: + """Produce a histogram of the given data. + + It shows mean and standard deviation of the metric. + + Parameters + ---------- + df: DataFrame + All data grouped by site and month + metric_mean: str + Column name for the mean values (e.g., "%click_mean") + metric_std: str + Column name for the standard deviation values (e.g., "%click_std") + y_lab: str, optional + Label for y-axis. If None, uses metric_mean + title_suffix: str, optional + Suffix for the main title. If None, uses metric_mean + + """ + sites = df["site.name"].unique() + n_sites = len(sites) + fig, axs = plt.subplots(n_sites, 1, figsize=(14, 5 * n_sites), sharex=True) + if n_sites == 1: + axs = [axs] + + # Calculate max for y-axis scaling + max_value = max(df[metric_mean] + df[metric_std]) + + for i, site in enumerate(sorted(sites)): + site_data = df[df["site.name"] == site] + ax = axs[i] + + ax.bar( + x=site_data["Season"], + height=site_data[metric_mean], + yerr=site_data[metric_std], + capsize=4, + color=site_colors.get(site, "gray"), + alpha=0.8, + edgecolor="black", + linewidth=0.5, + label=f"Site {site}", + ) + + ax.set_title(f"{site}", fontsize=12) + ax.set_ylim(0, max_value * 1.1) + ax.set_ylabel(y_lab or metric_mean, fontsize=10) + + # Only set x-label on last subplot + if i == n_sites - 1: + ax.set_xlabel("Season", fontsize=10) + if metric_mean in {"%buzzes_mean", "FBR_mean"}: + for _, bar in enumerate(ax.patches): + bar.set_hatch("/") + + fig.suptitle(f"{title_suffix or metric_mean} per season", fontsize=16) + plt.xticks(rotation=45) plt.tight_layout() plt.show() \ No newline at end of file From 833c7ecb583d73fdd6ad9ab5f6a59964128f11f3 Mon Sep 17 00:00:00 2001 From: fouinel Date: Tue, 20 Jan 2026 11:38:19 +0100 Subject: [PATCH 52/83] start fpod_utils tests --- tests/test_fpod_utils.py | 30 +++++++++++++++++++++--------- 1 file changed, 21 insertions(+), 9 deletions(-) diff --git a/tests/test_fpod_utils.py b/tests/test_fpod_utils.py index da6bf13..c3c7f76 100644 --- a/tests/test_fpod_utils.py +++ b/tests/test_fpod_utils.py @@ -5,22 +5,21 @@ import pytest from osekit.utils.timestamp_utils import strptime_from_text -from pandas import DataFrame, Timestamp, read_csv +from pandas import DataFrame, Timestamp, read_csv, concat from pandas.testing import assert_frame_equal from post_processing.utils.fpod_utils import ( + txt_folder, csv_folder, deploy_period, + pod2aplose, + actual_data, + add_utc, extract_site, + required_columns, parse_timestamps, - txt_folder, - pod2aplose, - meta_cut_aplose, - build_range, - feeding_buzz, - assign_daytime, + create_mask, is_dpm_col, - build_aggregation_dict, resample_dpm) # SAMPLE_POD = """File,ChunkEnd,DPM,Nall,MinsOn @@ -149,8 +148,21 @@ # df = read_csv(io.StringIO(SAMPLE_POD), parse_dates=["ChunkEnd"]) # return df.sort_values(["ChunkEnd"]).reset_index(drop=True) -# pod2aplose +# csv_folder +def test_csv_folder_single_file(tmp_path) -> None: + """Test processing a single CSV file.""" + # Create a CSV file + csv_file = tmp_path / "data.csv" + csv_file.write_text("col1;col2\nval1;val2\nval3;val4", encoding="latin-1") + + result = csv_folder(tmp_path) + + assert isinstance(result, DataFrame) + assert len(result) == 2 + assert "deploy.name" in result.columns + assert all(result["deploy.name"] == "data") + assert list(result.columns) == ["col1", "col2", "deploy.name"] # pod2aplose From 9a6b216d86399ca7278a626d7b77eeb02612e0ad Mon Sep 17 00:00:00 2001 From: Mathieu Dupont <108517594+mathieudpnt@users.noreply.github.com> Date: Tue, 25 Nov 2025 16:07:18 +0100 Subject: [PATCH 53/83] test audio_utils --- tests/test_audio_utils.py | 2 -- 1 file changed, 2 deletions(-) diff --git a/tests/test_audio_utils.py b/tests/test_audio_utils.py index 35c3407..2a0eb27 100644 --- a/tests/test_audio_utils.py +++ b/tests/test_audio_utils.py @@ -19,8 +19,6 @@ def test_normalize_audio_default_folder(sample_audio: Path, tmp_path: Path) -> N def test_normalize_audio_custom_folder(sample_audio: Path, tmp_path: Path) -> None: out_folder = tmp_path / "output" - out_folder.mkdir() - normalize_audio(sample_audio, output_folder=out_folder) normalized_file = out_folder / sample_audio.name From a61e2abd0b348e939069035a31ebcb567bf2af32 Mon Sep 17 00:00:00 2001 From: Mathieu Dupont <108517594+mathieudpnt@users.noreply.github.com> Date: Tue, 25 Nov 2025 17:32:06 +0100 Subject: [PATCH 54/83] test core_utils --- src/post_processing/utils/core_utils.py | 50 ++++------ tests/test_core_utils.py | 126 +++++++++++++++++++++--- 2 files changed, 133 insertions(+), 43 deletions(-) diff --git a/src/post_processing/utils/core_utils.py b/src/post_processing/utils/core_utils.py index cf14302..ec4b68d 100644 --- a/src/post_processing/utils/core_utils.py +++ b/src/post_processing/utils/core_utils.py @@ -3,13 +3,14 @@ from __future__ import annotations import json -from typing import TYPE_CHECKING +from typing import TYPE_CHECKING, Any import astral import easygui import numpy as np from astral.sun import sunrise, sunset from matplotlib import pyplot as plt +from numpy import ndarray, dtype from osekit.config import TIMESTAMP_FORMAT_AUDIO_FILE from osekit.utils.timestamp_utils import strptime_from_text from pandas import ( @@ -79,11 +80,8 @@ def get_season(ts: Timestamp, *, northern: bool = True) -> tuple[str, int]: season = "summer" elif ts.month in autumn: season = "autumn" - elif ts.month in winter: - season = "winter" else: - msg = "Invalid timestamp" - raise ValueError(msg) + season = "winter" return season, ts.year - 1 if ts.month in [1, 2] else ts.year @@ -93,10 +91,7 @@ def get_sun_times( stop: Timestamp, lat: float, lon: float, -) -> ( - list[float], - list[float], -): +) -> tuple[list[float], list[float]]: """Fetch sunrise and sunset hours for dates between start and stop. Parameters @@ -171,7 +166,7 @@ def get_coordinates() -> tuple: f"'{lat}' is not a valid latitude. It must be between -90 and 90.\n" ) except ValueError: - errmsg += f"'{lat}' is not a valid entry for latitude.\n" + errmsg += f"'lat', invalid entry: '{lat}'.\n" try: lon_val = float(lon.strip()) # Convert to float for longitude @@ -349,7 +344,7 @@ def set_bar_height(ax: plt.Axes, pixel_height: int = 10) -> float: """ if not ax.has_data(): - msg = "Axe has no data" + msg = "Axe have no data" raise ValueError(msg) display_to_data = ax.transData.inverted().transform @@ -380,7 +375,7 @@ def add_recording_period( """ if not ax.has_data(): - msg = "Axe has no data" + msg = "Axe have no data" raise ValueError(msg) recorder_intervals = [ @@ -419,10 +414,6 @@ def get_count(df: DataFrame, bin_size: Timedelta | BaseOffset) -> DataFrame: "