Skip to content

performance issue #2

@soans1994

Description

@soans1994

hello author,

i have implemented similar fcn vgg like yours. But my fcn32 gives better results than fcn 16 and 8. why is this. Can you please check my code.

import torch
import torch.nn as nn
import torchvision.models as models
from pytorch_model_summary import summary

vgg16 = models.vgg16(pretrained=True)
for param in vgg16.features.parameters():
param.requires_grad = False
#False Total params: 185,771,904 Trainable params: 171,057,216 Non-trainable params: 14,714,688
#true Total params: 185,771,904 Trainable params: 185,771,904 Non-trainable params: 0

class fcn(nn.Module):
def init(self):
super(fcn, self).init()
self.features = vgg16.features
self.classifier = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
#nn.Dropout2d(),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
#nn.Dropout2d(),
nn.Conv2d(4096, 32, 1),
nn.ConvTranspose2d(32, 32, 224, stride=32)
)

def forward(self, x):
x = self.features(x)#/32
x = self.classifier(x)
#print(x.shape)
return x

class fcn16(nn.Module):
def init(self):
super(fcn16, self).init()
self.features = vgg16.features
self.classifier = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 32, 1)
)
self.score_pool4 = nn.Conv2d(512, 32, 1)
self.upscore2 = nn.ConvTranspose2d(32, 32, 14, stride=2, bias=False)
self.upscore16 = nn.ConvTranspose2d(32, 32, 16, stride=16, bias=False)

def forward(self, x):
pool4 = self.features:-7#512 features /16
pool5 = self.features-7:#512 features /16/2=/32
pool5_upscored = self.upscore2(self.classifier(pool5))#32 class features stride2 /32*2=/16
pool4_scored = self.score_pool4(pool4)#32 features /16
combined = pool4_scored + pool5_upscored
#combined = torch.cat([pool4_scored, pool5_upscored])
res = self.upscore16(combined)# /1
return res

class fcn8(nn.Module):
def init(self):
super(fcn8, self).init()
self.features = vgg16.features
self.classifier = nn.Sequential(
nn.Conv2d(512, 4096, 7),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 4096, 1),
nn.ReLU(inplace=True),
nn.Conv2d(4096, 32, 1)
)
self.score_pool4 = nn.Conv2d(512, 32, 1)
self.score_pool3 = nn.Conv2d(256, 32, 1)
self.upscore2 = nn.ConvTranspose2d(32, 32, 14, stride=2, bias=False)
self.upscore3 = nn.ConvTranspose2d(32, 32, 2, stride=2, bias=False)
#self.upscore16 = nn.ConvTranspose2d(32, 32, 16, stride=16, bias=False)
self.upscore8 = nn.ConvTranspose2d(32, 32, 8, stride=8, bias=False)

def forward(self, x):
pool3 = self.features:-14#256 features /8
pool4 = self.features-14:-7#512 features /8/2=16
pool5 = self.features-7:#512 features /16/2=/32
pool5_upscored = self.upscore2(self.classifier(pool5))#32 class features stride2 /322=/16
pool4_scored = self.score_pool4(pool4)#32 class features /16
pool3_scored = self.score_pool3(pool3)#32 class features /8
combined = pool4_scored + pool5_upscored #/16
#print(combined.shape)
combined_upscored = self.upscore3(combined)#32 class features stride2 /16
2=/8
#print(combined_upscored.shape)
combined2 = pool3_scored + combined_upscored
#print(combined2.shape)
#res = self.upscore16(combined)#/1
res = self.upscore8(combined2)#/1
#print(res.shape)
return res

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions