diff --git a/.github/copilot-instructions.md b/.github/copilot-instructions.md new file mode 100644 index 0000000..1aee131 --- /dev/null +++ b/.github/copilot-instructions.md @@ -0,0 +1,28 @@ +# Copilot Instructions for Analysis Template + +## Project context (fill these in!) +- **Project name:** +- **One-liner goal:** +- **Primary datasets / locations:** + +## Critical rules +- **Don't update Jupyter notebooks** — I manage them myself +- Use `pixi run ` or `pixi shell` for all commands +- Summarize in chat, don't create markdown summary files + +## Quick reference + +| Task | Command | +|------|---------| +| Run Python | `pixi run python script.py` | +| Run tests | `pixi run test` | +| Add conda package | `pixi add ` | +| Add PyPI package | `pixi add --pypi ` | + +## Project structure +- **Notebooks**: `analysis/[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` +- **Data**: `data//{raw,processed,resources,results}/` +- **Paths**: Use `from myanalysis import FilePaths` (edit `_constants.py` for datasets) +- **Deps**: All in `pixi.toml` (not pyproject.toml) +- pyproject.toml exists mainly for package metadata and testing +- Run `pixi install` after pulling changes that update `pixi.toml` diff --git a/.github/workflows/build.yaml b/.github/workflows/build.yaml deleted file mode 100644 index 83e01a1..0000000 --- a/.github/workflows/build.yaml +++ /dev/null @@ -1,33 +0,0 @@ -name: Check Build - -on: - push: - branches: [main] - pull_request: - branches: [main] - -concurrency: - group: ${{ github.workflow }}-${{ github.ref }} - cancel-in-progress: true - -defaults: - run: - # to fail on error in multiline statements (-e), in pipes (-o pipefail), and on unset variables (-u). - shell: bash -euo pipefail {0} - -jobs: - package: - runs-on: ubuntu-latest - steps: - - uses: actions/checkout@v4 - with: - filter: blob:none - fetch-depth: 0 - - name: Install uv - uses: astral-sh/setup-uv@v5 - with: - cache-dependency-glob: pyproject.toml - - name: Build package - run: uv build - - name: Check package - run: uvx twine check --strict dist/*.whl diff --git a/.github/workflows/lint.yaml b/.github/workflows/lint.yaml new file mode 100644 index 0000000..3b16cae --- /dev/null +++ b/.github/workflows/lint.yaml @@ -0,0 +1,27 @@ +name: Code Quality + +on: + push: + branches: [main] + pull_request: + branches: [main] + +concurrency: + group: ${{ github.workflow }}-${{ github.ref }} + cancel-in-progress: true + +jobs: + lint: + name: Lint & Format + runs-on: ubuntu-latest + steps: + - uses: actions/checkout@v4 + with: + filter: blob:none + fetch-depth: 0 + - uses: prefix-dev/setup-pixi@v0.8.0 + with: + pixi-version: v0.40.0 + cache: true + - name: Run pre-commit checks + run: pixi run pre-commit run --all-files diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index cf9c545..f5a9ca9 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -1,102 +1,27 @@ -name: Test +name: Tests on: push: branches: [main] pull_request: branches: [main] - schedule: - - cron: "0 5 1,15 * *" concurrency: group: ${{ github.workflow }}-${{ github.ref }} cancel-in-progress: true -defaults: - run: - # to fail on error in multiline statements (-e), in pipes (-o pipefail), and on unset variables (-u). - shell: bash -euo pipefail {0} - jobs: - # Get the test environment from hatch as defined in pyproject.toml. - # This ensures that the pyproject.toml is the single point of truth for test definitions and the same tests are - # run locally and on continuous integration. - # Check [[tool.hatch.envs.hatch-test.matrix]] in pyproject.toml and https://hatch.pypa.io/latest/environment/ for - # more details. - get-environments: - runs-on: ubuntu-latest - outputs: - envs: ${{ steps.get-envs.outputs.envs }} - steps: - - uses: actions/checkout@v4 - with: - filter: blob:none - fetch-depth: 0 - - name: Install uv - uses: astral-sh/setup-uv@v5 - - name: Get test environments - id: get-envs - run: | - ENVS_JSON=$(uvx hatch env show --json | jq -c 'to_entries - | map( - select(.key | startswith("hatch-test")) - | { - name: .key, - label: (if (.key | contains("pre")) then .key + " (PRE-RELEASE DEPENDENCIES)" else .key end), - python: .value.python - } - )') - echo "envs=${ENVS_JSON}" | tee $GITHUB_OUTPUT - - # Run tests through hatch. Spawns a separate runner for each environment defined in the hatch matrix obtained above. test: - needs: get-environments - - strategy: - fail-fast: false - matrix: - os: [ubuntu-latest] - env: ${{ fromJSON(needs.get-environments.outputs.envs) }} - - name: ${{ matrix.env.label }} - runs-on: ${{ matrix.os }} - + name: Run pytest + runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 with: filter: blob:none fetch-depth: 0 - - name: Install uv - uses: astral-sh/setup-uv@v5 + - uses: prefix-dev/setup-pixi@v0.8.0 with: - python-version: ${{ matrix.env.python }} - cache-dependency-glob: pyproject.toml - - name: create hatch environment - run: uvx hatch env create ${{ matrix.env.name }} - - name: run tests using hatch - env: - MPLBACKEND: agg - PLATFORM: ${{ matrix.os }} - DISPLAY: :42 - run: | - uvx hatch run ${{ matrix.env.name }}:coverage run -m pytest -v --color=yes - - name: generate coverage report - run: uvx hatch run ${{ matrix.env.name }}:coverage xml - - name: Upload coverage - uses: codecov/codecov-action@v4 - with: - token: ${{ secrets.CODECOV_TOKEN }} - - # Check that all tests defined above pass. This makes it easy to set a single "required" test in branch - # protection instead of having to update it frequently. See https://github.com/re-actors/alls-green#why. - check: - name: Tests pass in all hatch environments - if: always() - needs: - - get-environments - - test - runs-on: ubuntu-latest - steps: - - uses: re-actors/alls-green@release/v1 - with: - jobs: ${{ toJSON(needs) }} + pixi-version: v0.40.0 + cache: true + - name: Run tests + run: pixi run test diff --git a/.gitignore b/.gitignore index 814af96..de07c2b 100644 --- a/.gitignore +++ b/.gitignore @@ -109,6 +109,7 @@ venv/ ENV/ env.bak/ venv.bak/ +.pixi/ # Spyder project settings .spyderproject diff --git a/README.md b/README.md index 604501d..d1f36e6 100644 --- a/README.md +++ b/README.md @@ -1,32 +1,185 @@ -# Analysis template repository +# 🧬 Analysis Template (pixi, notebook-first) -This contains the raw structure I usually use when doing single-cell/spatial data analysis. This template is based on ideas from Philipp Weiler's [template repository](https://github.com/WeilerP/sc_analysis_template) as well as the [scverse cookiecutter template](https://github.com/scverse/cookiecutter-scverse). +Template for single-cell/spatial **analysis** repos. If you're building a Python library, use the [scverse cookiecutter](https://github.com/scverse/cookiecutter-scverse) instead. -## Set up +> 📝 **After setup, replace this README** with project-specific docs so collaborators know what the project does. Include: a one-line goal, data locations, key notebooks to run, and who to ping. -1. Rename `src/fancypackage/`. -2. Update `pyproject.toml` to include the following information: - - Project name - - Project description - - Project-specific Python requirements - - Project author - - Project maintainers - - Project URLs -3. Update `src/fancypackage/ul/constants.py` to include any paths relevant to your analysis and that should be accessible from any script or Jupyter notebook -4. Update this README to include the relevant information about your project. +--- -## Installation +## 📦 What is pixi? + +[Pixi](https://pixi.sh) is a modern package manager that handles both **conda** and **PyPI** packages in one tool. Think of it as a replacement for conda/mamba + pip that: + +- 🔒 Creates **isolated environments** per project (like conda environments) +- 🔀 Installs packages from **conda-forge AND PyPI** together +- 📌 Locks exact versions for **reproducibility** (`pixi.lock`) +- 💻 Works **cross-platform** (macOS, Linux, Windows) + +**You don't need conda or pip installed** — pixi handles everything! + +### 🛠️ Installing pixi + +```bash +# macOS / Linux +curl -fsSL https://pixi.sh/install.sh | bash + +# Or with Homebrew (macOS) +brew install pixi +``` + +👉 See [pixi installation docs](https://pixi.sh/latest/#installation) for Windows and other options. + +--- + +## 🚀 Quick start + +```bash +pixi install # create environment (reads pixi.toml) +pixi shell # activate the environment +pre-commit install # set up code quality hooks (run once) +pixi run lab # start Jupyter Lab +pixi run test # run tests +pixi run install-kernel # add Jupyter kernel (run once) +``` + +### ☕ Daily workflow + +Once set up, your typical workflow is: + +```bash +cd your-project +pixi shell # activate environment +jupyter lab # work in notebooks +# ... do your analysis ... +exit # leave pixi shell when done +``` + +Or run commands without entering the shell: ```bash -pip install -e ".[dev,test]" +pixi run lab # runs Jupyter in pixi environment +pixi run python my_script.py # runs script in pixi environment +``` + +--- + +## ➕ Adding packages + +All dependencies live in `pixi.toml`. To add a new package: + +### Option 1: Command line (recommended) + +```bash +# Add from conda-forge (preferred for scientific packages) +pixi add numpy +pixi add "scanpy>=1.10" + +# Add from PyPI (when not available on conda-forge) +pixi add --pypi some-pypi-only-package +``` + +### Option 2: Edit pixi.toml directly + +```toml +# In pixi.toml: + +[dependencies] +# Conda packages go here +numpy = ">=2.0" + +[pypi-dependencies] +# PyPI packages go here +some-package = "*" +``` + +Then run `pixi install` to update the environment. + +💡 **Tip**: Prefer **conda-forge** packages when available — they're pre-compiled and faster to install. Use PyPI for packages only available there. + +👉 See [pixi documentation](https://pixi.sh/latest/) for more details. + +--- + +## ✏️ What to customize + +1. Update `pixi.toml` metadata: project name, description, authors, and kernel display name. +2. Rename the package directory `src/myanalysis/` to your project slug, and update the `name` in `pyproject.toml` to match. +3. Adjust paths in `src//_constants.py` to match your datasets. +4. Update `.github/copilot-instructions.md` with your project name, goal, and dataset locations. This helps AI coding assistants (GitHub Copilot, Claude, etc.) understand your project. +5. 📝 **Replace this README** with project-specific docs: what the project does, how to run key notebooks, and who to contact. + +--- + +## 📓 Data and notebooks + +- **Notebook naming**: `[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` +- **Data layout** (one folder per dataset): + - `data//raw/` — original data files + - `data//processed/` — preprocessed data + - `data//resources/` — reference data, annotations + - `data//results/` — analysis outputs +- **Figures**: `figures/` or `data//results/` +- **Import paths** via the local package: + +```python +from myanalysis import FilePaths +``` + +--- + +## 🔧 Tooling & code quality + +This template uses **pre-commit hooks** to automatically check your code before each commit. This catches common issues early and keeps code consistent across the team. + +### What are pre-commit hooks? + +[Pre-commit](https://pre-commit.com/) is a tool that runs checks on your code **every time you run `git commit`**. If any check fails, the commit is blocked until you fix the issue. This ensures: + +- ✅ Code is consistently formatted +- ✅ Common bugs are caught early +- ✅ Everyone's code looks the same + +### Tools we use + +| Tool | What it does | Docs | +|------|--------------|------| +| 🦀 **[Ruff](https://docs.astral.sh/ruff/)** | Lints (finds bugs/style issues) and formats Python code + Jupyter notebooks. Super fast! | [Rules](https://docs.astral.sh/ruff/rules/) | +| 🌿 **[Biome](https://biomejs.dev/)** | Formats JSON and JSONC files for consistency | [Guide](https://biomejs.dev/guides/getting-started/) | +| 📋 **[pyproject-fmt](https://github.com/tox-dev/pyproject-fmt)** | Keeps `pyproject.toml` nicely formatted | — | + +### Setting up pre-commit + +Run this once after cloning the repo: + +```bash +pixi shell pre-commit install ``` -## Development +Now hooks run automatically on `git commit`. To run all checks manually: + +```bash +pre-commit run --all-files +``` + +💡 **Tip**: If a check reformats your code, just `git add` the changes and commit again! + +--- + +## 🖥️ GPU notes + +| Platform | PyTorch | JAX | +|----------|---------|-----| +| **macOS** (Apple Silicon) | ✅ MPS acceleration | ❌ CPU only | +| **Linux** (NVIDIA GPU) | ✅ CUDA | ✅ CUDA 12 via `jax[cuda12]` | + +The template automatically configures the right packages per platform. Linux also gets [rapids-singlecell](https://rapids-singlecell.readthedocs.io/) for GPU-accelerated single-cell analysis. + +--- + +## 🖧 Cluster usage -This template uses: -- **Biome** for JavaScript/JSON/YAML formatting -- **Ruff** for Python linting and formatting -- **Pre-commit hooks** for code quality +For cluster usage (e.g., ETH Euler): -The package provides a minimal structure for analysis projects. Add your analysis-specific dependencies (numpy, pandas, scanpy, etc.) as needed for your project. +- 📚 General docs: https://docs.hpc.ethz.ch/ +- 🚀 Start notebooks via JupyterHub: https://jupyter.euler.hpc.ethz.ch/hub/ diff --git a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb new file mode 100644 index 0000000..99c316f --- /dev/null +++ b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb @@ -0,0 +1,1221 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "id": "7825e34f", + "metadata": {}, + "source": [ + "# 🧬 Demo: Single-Cell RNA-seq Analysis Workflow\n", + "\n", + "This notebook demonstrates a complete scRNA-seq analysis workflow using the analysis template.\n", + "\n", + "**Goals:**\n", + "1. Show how to use the local analysis package\n", + "2. Demonstrate which steps to run locally vs. on a GPU cluster (Euler)\n", + "3. Illustrate the local ↔ remote sync workflow via Git/GitHub\n", + "\n", + "**Legend:**\n", + "- 💻 **Local** — Fast, good for development, code editing\n", + "- 🚀 **GPU/Euler** — Heavy compute, model fitting, GPU-accelerated\n", + "\n", + "**Changelog:**\n", + "- 2026-01-27: Initial demo notebook" + ] + }, + { + "cell_type": "markdown", + "id": "ccefa0ea", + "metadata": {}, + "source": [ + "## Preliminaries" + ] + }, + { + "cell_type": "markdown", + "id": "5cb3d0f7", + "metadata": {}, + "source": [ + "### Dependency notebooks\n", + "\n", + "This is a standalone demo — no dependencies on other notebooks." + ] + }, + { + "cell_type": "markdown", + "id": "b9c5ff22", + "metadata": {}, + "source": [ + "### Library imports\n", + "\n", + "`autoreload` to re-load packages." + ] + }, + { + "cell_type": "code", + "execution_count": 1, + "id": "3e62f205", + "metadata": {}, + "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "f93b0838", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Project root: /Users/mlange/Projects/analysis_template\n", + "Data folder: /Users/mlange/Projects/analysis_template/data\n" + ] + } + ], + "source": [ + "import warnings\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import scanpy as sc\n", + "\n", + "# Local analysis package — edit these functions in src/myanalysis/\n", + "from myanalysis import FilePaths, qc_violin\n", + "\n", + "warnings.filterwarnings(\"ignore\", category=FutureWarning)" + ] + }, + { + "cell_type": "markdown", + "id": "30ba7210", + "metadata": {}, + "source": [ + "### General settings" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cf470e93", + "metadata": {}, + "outputs": [], + "source": [ + "sc.settings.verbosity = 2\n", + "sc.settings.datasetdir = FilePaths.EXAMPLE_DATASET / \"raw\"\n", + "sc.settings.set_figure_params(dpi=100, frameon=False)\n", + "sc.settings.figdir = FilePaths.FIGURES / \"example_dataset\"\n", + "\n", + "print(f\"Project root: {FilePaths.ROOT}\")\n", + "print(f\"Data folder: {FilePaths.DATA}\")" + ] + }, + { + "cell_type": "markdown", + "id": "08b35b33", + "metadata": {}, + "source": [ + "### Function definitions\n", + "\n", + "Any utility functions specific to this notebook go here. For reusable functions, add them to `src/myanalysis/`." + ] + }, + { + "cell_type": "markdown", + "id": "674c1607", + "metadata": {}, + "source": [ + "### Data loading\n", + "\n", + "We'll use the classic PBMC 3k dataset from 10X Genomics, available via scanpy." + ] + }, + { + "cell_type": "code", + "execution_count": 3, + "id": "4e166319", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "AnnData object with n_obs × n_vars = 2700 × 32738\n", + " var: 'gene_ids'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Download PBMC 3k (cached after first download)\n", + "adata = sc.datasets.pbmc3k()\n", + "adata" + ] + }, + { + "cell_type": "code", + "execution_count": 4, + "id": "9ad36666", + "metadata": {}, + "outputs": [], + "source": [ + "# Store raw counts for scVI (needs raw integer counts)\n", + "adata.layers[\"counts\"] = adata.X.copy()" + ] + }, + { + "cell_type": "markdown", + "id": "fedaaf0d", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Main analysis\n", + "\n", + "### 🔬 Quality Control — 💻 Local\n", + "\n", + "QC is fast and benefits from quick iteration — perfect for local development." + ] + }, + { + "cell_type": "code", + "execution_count": 5, + "id": "978b5878", + "metadata": {}, + "outputs": [], + "source": [ + "# Annotate mitochondrial genes\n", + "adata.var[\"mt\"] = adata.var_names.str.startswith(\"MT-\")\n", + "\n", + "# Calculate QC metrics\n", + "sc.pp.calculate_qc_metrics(adata, qc_vars=[\"mt\"], percent_top=None, log1p=False, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 6, + "id": "f9b50fed", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACTQAAAIrCAYAAADbKoQJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qm8TdX7+PGFa57neQqZaTCVkpAoQ6SQMlZEqEjfEqVBJUpRSYlIE9FXiMqUMmeeMpZ5vOb5uuf/etbvv/d373PPfM98P+/X67zu2efus84++xzXWns963nSORwOhwIAAAAAAAAAAAAAAACAKJA+0gcAAAAAAAAAAAAAAAAAAAYCmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAi4OrVq5x3AAAA+kigjw0AAACur6ZZDodDJSUlRfowoh7zCUirCGgCEFXSpUtn3rJnz652794dUDtdu3Y12ylRooQKtb1796oxY8aoDh06qOrVq6sCBQqozJkzqxw5cqgyZcqo2rVrq6eeekr98MMP6tSpUyE/HqTeP//8Y/s+erplyJBBf9blypVT999/vxo5cqQ6dOhQTH8Mq1evVkOGDFFNmzZVpUqV0u8vU6ZMqlChQurmm29WTzzxhJoxY4a6du1apA815ly4cEENHDhQvfvuu5E+FAAAEKf86cv6c5OxTbz1kZzP1eLFi0P2WjIWnDJliurcubO66aab9LhR+tg5c+ZUpUuX1mOJN954I+BxcFr3+++/6/MKAAAA3/gzFsiYMaPut8q14jvvvFO98MILasGCBRE71TNnzlSNGzcO+evIOEXmdeR6uMzzFCxYUPfhZf5K5p6aNGmiBg8erDZu3BjyY4lHct7q16+vDhw4oKKNdZ7R+u/g5MmTAbe5Zs2aFG16m8M8ceKEPpZvvvkm4NcFYhkBTQCi1sWLF1X37t11dHa0WrRokQ74uOGGG1S/fv3Ud999pzZv3qw7NBItLZ3df//9V3dSxo0bp9q1a6eKFSumevbsqQ4fPhzpw0eQJCcn6896z549au7cuer5559XN954oxo1apS6fv16TJ3n77//Xk8C1KlTR0+m/Prrr2r//v36/Unw0vHjx9X69evV559/rh588EHd2f7ss8/0OYB3s2bNUpUrV9bfDYLBAAAA0kYfSRY79O7dWxUvXlwHM0lQ04YNG/S4Ud7v+fPn1b59+/RYQhYVVKhQQbVp00YvnIF3iYmJ+trBXXfdpbZt28YpAwAACAHJoCP9VrlW/Mcff6gRI0boYJ5bb71VrVq1KmznXF6/VatWqm3btvp+qJw5c0a9+OKL+vq3zOvI9XCZ55HgEunDy/zVwYMHdVDX8OHDVc2aNVXDhg11Px/eXbp0SQ0aNEh/f5YvXx5T/w5+/PHHgJ//7bff+rX/hAkTVMWKFdWXX34Z1XOlQCglhLR1AAjCCsuxY8eqvn37RtW5PHfunM64NHXqVJe/lwh9WW0rnRu5SG0Narl8+bIaP368DhyR5993331hPHIEKm/evCpfvnwpHpdAnitXrqjTp0/rQYzzCnMJcvroo4+i/sQfPXpUPfbYYzqAydX3Wd67sfrA+j6PHTumnnzySb1KRb7TuXLlCvORxxYJfAzlQBsAAEBIv02yh3ojiy+M1P5ZsmTRATeehCr7bTz3kSZOnKieeeYZdfbs2RS/y5Mnj8qdO7fuX8vEiHGBWn7KRfJffvlFffXVVzq4CZ4D4uQ8AwAAIHCSfUmy87sj18FlbsNYzG1Yu3atuvvuu3XGJFn8HWoS4PHTTz+F9DVkoUGPHj3UkSNHUvxOrn9LP17mBKQPb537WbJkiQ7Q+fDDD/WCBri3cuXKmK1gMG3aNP398JeM82QOxR+PP/64368DxBsyNAGIehIFL0Eh0UI6sZJS1RrMJGkhZUWAXGyWwBDpzEp0vtyXzv26devUm2++aZsgkACYBx54QC1cuDBC7wT+TrLs2rUrxU2+m/JZSwCTZN369NNPVZEiRcznffzxx2rSpElRfbJ37typ6tWrZwtmksGrrA6XbEzGe5NV4xLMt2nTJvWf//xHp9U1zJ8/X6f4lZUVAAAAiCwZd7jquzrfrOOTunXret0/lOXY4pGUnpDMQdZgpubNm6vp06frzKdSgk5K3skiAckyJBfGb7/9dnNfCXSS1eD+XvQGAAAA/CXzG57GAnIdXDKPyvXfpUuX6iAma79VFsumphRXtJBKGy1btrQFM0kfXTLkSFk0ydwkC0Pk93Jfgp+si9YlwKlPnz5q5MiREXoHCDXJyiXjN38tW7YsbhfyAKFEQBOAqCfBFBLtHA3pFGUFgqQztaYNlYh7WYUgGWo6deqUYhVD+vTpdQmvl156SXf8pRyZQVKTygVuSdWK2CeBTJKtSEoRWjMVyWdvrHyPNtLxlgGXTKQYunTponbs2KFee+01nSo3ISHB9n2uVq2aeuutt9SWLVtUlSpVzN9Jyt1evXqF/T0AAAAA0UZWZUvpCYOMEyXjkkx4SOlmyehrJau8JXhJyne88847etGMsRK+a9euuu8NAAAARJpcH77jjjt031YWbBskSF/K0MUyyZIqmZWkDy5kQa8sYv/zzz916WjnjLbye1mwMGfOHL2fVDowvPDCC+q3334L+3tAaOTPn99c4B1o2TlruTnJkAzANwQ0AYgJshJYMt1EmgSmrF692tyWQBApiycBS76QTop06qUdg0TzywVrxI9KlSrZAnsku5Gkm41GslpEAu0MUrdaMkpJ6QtvSpcurQdlhQsXNh+bPHmynoQBAAAA0qrNmzfr8tMG6S8vX75c3XPPPV6fK4FM0ieXbKkGWQUvZesAAACAaCGLYD/55BOVOXNm8zGpahENC9MDIdU2unXrZh6/BK/IwmVZxO4L2U+yOxkkKKpv375Ru9AZ/pG5vRYtWpjb/mbRle+DZOo1SsT7MjYE8H8IaAIQtSQTkjWiXUpcWbPIhNu2bdvUmDFjzO0KFSroiOps2bL53darr76qKleubG5LAIkR9Y/4YE0zKzZu3KiijaQGtq4KkJJxb7/9tl9tFC1aVL3//vu2x954442gHSMAAAAQa/r376+z8RoBSt9995264YYb/Gpj6NChtjGjLCRYsWJF0I8VAAAASE3FgnvvvdfcPnjwoC5LF4tkEfrp06fNbVlgX7t2bb/akICopk2bmtvbt283g1gQ+9q3bx9w2TlJ2mCUMZTvSL58+UJyjEA8IqAJQNSqXr26evnll81tKcsWydJz7777ri2afuzYsSpnzpwBtSUR2HKR2xrdvXv3bq/Pk3Pw6aef6hrOZcuW1cFUUtpMgqukRrV0jn0JjGrYsKG+sC63efPm6ceuXr2q06JKlLm0LcckZRBq1aqlL6bv27fPr/dotPfwww+rcuXK6XMlqxrkQr6UUpAgritXrvjcnqxKnjJlinrooYfM9y63UqVK6fcjQTQ7d+5U0cKatUg4fy5SptD4DOT25ptv+tz266+/bj6vWLFiui53oN9pq9GjR5ulLfzRoUMH/R20vjepH+7tuyyDwtatW+tMT/JZyndEvivynfH1+yHlN4xzId8DX/jyHOtnI6UmxfHjx9WoUaN0SmU577L6SH5KIJgEO0p5TFfkvRhtSUY2w7Bhw2yv44qcR1npJAGeJUuW1P8u5TzJv4FmzZrp44nViwQAACC2SX9fsnPKRV3p4+fIkUP36cqUKaPHK9LXO3v2rNvnp6aPJKSvKIFCPXv21Blzjf6ZHIeMEe666y71yiuvhH2MIH3hhQsXmttSXk6OxV8ZMmRQgwcPtpX28KVkxapVq/RY85ZbbtHjOVkkJBNNderU0ZM0mzZt8tqGLCSyfgZy8T0Yz5GFPcbvZcGSdTJA+ugVK1bUfV0Z40owl5T7WLlypdvXlO+atCUTR1bW45DXdEWCw/r166duvvlmlTdvXn2eZAxXo0YN/bpSGjBWswsAAACEU/ny5W3bEtTkiQR1SMWKu+++W5dllrkSqRZQtWpV9cQTT+hFuK4Y/TsZLxhkHGHt+8kYIxByTDKXYZA5ESkxFwiZS7Gyjg3ckcAn6R/Xq1dPnxPpmxYsWFCPc5599lm1bNkyn147kHPh7TnWcZvMA1jHHU8//bT+3KR8tsz9yHdB+vW//vqr17kp+fyt5Hq38TrShrtMuHKebrvtNl0CTr47MuapUqWKHhNMmzYtpBmxpLygMSfob9k568Jy63l0xTpuspL3aDwuYyEgzXAAQBSRP0vGbfDgwY5r1645br75ZtvjH3/8sdd2unTpYu5fvHjxVB/X6dOnHVmyZDHbrFOnTqrbPHv2rGPSpEmO/fv3+7T/5MmTHYULF7adC1e3atWqOVasWOGxrbvuusvc/+eff3Zs3LjRUb16dY/tZs2a1fHhhx/6dKxz58513HDDDV6PtXTp0o45c+Z4bW/x4sWOkiVLem0vQ4YMjieffNJx+fJlR2rt3bvX1vYrr7zi1/PlmK3PnzFjRop9qlSpYvvcfFW5cmXzeQMHDnQE4tixY4706dOb7dxxxx2O1JD398knnzg2b97sSE5O9rjv+PHjHXnz5vX6eZYqVcoxc+ZMn/+ty/faF748x3ocly5dckyfPt2RP39+j8crf2vkc3c2ceJEr+/VVZfs+++/9/qacpO/TfL30tt5BwAAcCb9cX/7UuLHH390FCtWzGs/pUCBAo5PP/3UZRuB9pGM50rfy5fnyxihX79+jqSkJJ/6/YsWLUrVF6Vv37629n777beA25J+qPTzZMwkY1JPZFx57733ej0f6dKlczz66KOOU6dOuW0rkHPiy3NkTGX8/oUXXnCcPHnS0bZtW6/H3LVrV8fVq1c9fn/d3ZzHcfK+W7Vq5dN3R65FrF+/3ut7BwAAiFXWvo9cMw3Ec889Z2tn3bp1Lve7cuWK4+WXX7bNs7i7SX/txIkTbo/V3U3GCYEYNWqUrZ3PP//ckRqvvvqqvl4u1+A9SUxMdDzyyCO6j+7tvd13331e55ICORfenmMdt7Vv395x8eJFR69evbweb/PmzfUcmKe5KXc35++izPf06NHDp/NUvnx5x8KFCx3B4GqesVOnTuZjzZo186kdmec0rvPLPJucF09zmNZxk7ubjIWAtIIMTQCivg6zRIBLpLVh0KBBYS89N3/+fDNLi3j00UdT3aZEcnfp0kWVKFHC676yklZWBEgdZ+u5KV68uI7Ut0ZqS5S6RLnPmDHDp+PYsWOHjoY3VupKW7IyVSLbnTMkyQpWyZLkiWSTkSxPe/bssa0mllXBUp5MVhpbV1DI6m3JduXO8uXLdQrO/fv3m49JG7ICW27StkEyFY0fP161adNGRdpPP/1k3pdV4o0aNUqxj2TVsn5uW7du9druunXrdPlDQ6ArReQ7bc0aldqazXLOe/XqpVdkeFpJ//jjj6snn3xSnTp1KsX3w/m7LFnB2rZtq9566y0VSbKyQzKDnTx5Um/L3yP5dyufq/PqI/nuWz8fISvMJfOU3OTfrUFWghuPy83qhx9+0NkOjNe0vq78+7SeJ/nbJBm+ZCU5AABAqEm20AceeMCWJVL6JjJ+kD6dtX9+4sQJnUHpqaeeSpHtJpA+kpCsS7Iy1bryW15TxhqS+dM5i66MET788EO9sjkcJLOPIWvWrDq7Z6AkO6dkopVy1rJq3Z0NGzaomjVr6j6+laySliyfchwG+Rxk9bms/o5kSfeLFy/qFc7WcauUXXAe4wm5JiBjDWeyKlm+I7KK3cr6/bGWcpCsYjLumTVrlm1/2Ue+O9bzZIy9ZKwsK+YBAADgmvWatowLpP/pTOYWpE8rfVvrPIuMA6T/J9l2rKS/JnMc1hJwRv9OxgvW51v7fjLGSG0fPhjXymXMItfL5Xq3OwcOHNDZQr/++mvbWEnGAHIOpS/vfIySdVX6qJEi8wmSXWjcuHHmY3LO5Zq1dUwnfv75Z5fzNDKnJZ+VfO5W0h83Pkfn6hdS0WHChAm28yTjI3mO8zX6Xbt26XHG77//rkJBjsWaadY6z+GOZKwyrvPff//9Xiu/yPjE1XhYxj3G42RoQpoS6YgqALCyRhjLSlRrRLv1d40bN/aYjSTYGZqeeOIJ2+tv27YtbB/cuHHjbK9dqVIlx3fffec4f/68uY9E+r///vu2rDcS6b1hwwaXbVqj4DNlyqR/5sqVyzFy5EjbqoF///3X8fjjj9tev0iRIm4zIEm2J2uUvJz7zz77zLb698yZM44vvvjCUaJECXM/yRQ0b948l21WrVrV1p6sbLC+vqzUlRXicl6sxykZdSKVoenPP/90ZMuWzXzuoEGDXO63b98+2/mSFSreSEYmY/+aNWs6grVy/Pfff3eE2pAhQ2yvKasSxowZo1dmGw4fPux44403bOdPblOnTo1Yhibj30iFChX0vz1ZhWJYtWqVzm5l3b9NmzZuX9u6itzdd0pW4ks2A2M/yeQlK/tlJYd1ny+//NKWmUC+S6tXr/bpHAAAADj3TXzpS02YMMHW75E+2+uvv+44dOiQbZXx2LFjU2SafPPNN1PVRxLSZ7W2KZlL//vf/+q+kdX27dt1ViZrRlK5L338UGZokn6tta1GjRo5Qk1WaTtny2rRooVj5cqV5phZslPJKuX69evb9pPxhLVvG84MTUYfW/qwTz31lOPvv/8295MVyzI2NfYx9nO32t8525c77777boprDtbvrvHdkQxWzucTAAAgHqU2Q5Nc386cObPX69XdunWzvVa5cuUc3377rePChQvmPlJFQrL6WPd77LHHPPYpg5WlRuZGjDal8kSoSX/XOu8hN+mrL1iwwJZZVvr0LVu2tO0n14PdZX4KdYYma/9csjVZ++cyZyPzPrlz57a1KeM1V2S8YN3P1VhNTJs2zbafzNXt3r07xffwmWeese1Xo0aNVFc0cDXPKO/T+h5ljOxN586dzf1/+OEHt20H6zMF4g0BTQCiivPFRWvQinSGrb+X8lbhCmiqV6+e2V727Nkd4SIdMWsKVikhYO3kO9u5c6etNFutWrVc7uec1lMmG+TCrTt9+vSx7S+BS84kwKpQoULmPjfddFOKtLBWR48etX2m8jlJ2lmrtWvX2l7X3QVscfDgQVtJPunohyugSQJNjh8/7li+fLmjf//+OpjMeN7dd9/tsjyCQX5v7CsBM55IB9waCCapcAN1zz332N6ftxIWqSUTFFLuw3i9smXLOvbs2eN2/zVr1jjy5ctn7p8jRw59jiMR0CQ3+Rtw7tw5l/vK9/aWW26xDewkcC/QyToJ2jP2ke+S8ySL1aZNm2zfNwlUAwAACEVAkwQqWS/cSl/tr7/+cru/9PWkz2fsL31BKU/s7Tg89but4xgJ4vE03hDvvPOOrU83evTokAY0ycIGa1tyUT3UnINvZDGQO9evX3d0797dtr+UfotEQJMRpCRllt1xnrxwdaz+BDTJpIaxj4zbPJHJM+txevuuAQAAxKLUBDTJfECDBg1sbXz88ccp9luxYoVtnzp16rgtfyz91datW9v6YdbA91AENMm8gvX4HnjgAUeoycJm62tKH13euzvO/WgJJnIl1AFNxk0WCrgjQVjWhSXujtXXgCZruWj5bvizoNrTeNUX7uYZrQFK3srOWQOgJHDOWIxDQBPgO0rOAYgJUmrJVek5KVkWDtbyaeFM5fjBBx+YKVilhMN3332nsmXL5nb/8uXLq4kTJ5rba9asUYsWLfL6OiNGjFAVK1b0mCLVWuJqxYoVKfaR1z127Ji+nylTJl0yyzlVrHN6THk/Rgk6KRkxdepU2z47d+60pdm86aab3LYnKUqlhJuUJ5BUo84pTlNr2LBh+hy4usn3UtLH3nbbbfozkxS6chx9+/bVpees31tPZefk/f71119u95U0qZKKVsh5e+SRRwJ+P8ZnZXxenkpYBIOkE5ZyH8axy2dftmxZt/vfeuut6rPPPjO3z58/r89tJMhnLKUWndPXWs+flIW0lrJYu3ZtwK9n/d5XrlxZl09xp1q1ajpNrZFe2VpGEAAAIJjef/99debMGXNb+mq33HKL2/2lr/ftt9+a/X3pC7799tsBv/7x48fV0qVLzW3pf3kabwgpdWcteb17924VStY+tvBUYiIYpJyClKgwSDlvGbu5I2MUKQ9h/dw+/vhjn8okhIKUcpfSzu60a9dO93c9jUMD7Wc3btzY474vvPCCOQ6VscnevXtT9doAAADxYt++fbpPKSWPrWW9qlevrnr06JFif+s1XZnbkOvCefLkcdtf/eSTT/T1ViHxNjKmiKc+vIyprOdE+uZyPp3LLlu9+uqruq9vmDZtmtqxY4eKhDvvvFMNHDjQ7e+lLJ6UF4xEH/65557TczFSBk/mkg4fPqxCoX379j6XnZPSe8Y4unXr1rqkIAD/ENAEIGZIB+TFF180t8+dO6eeeOKJsLy29cK9r4Ef0omRACNfb506dUrRxuTJk20Xe315benU3Xjjjeb2jBkzPO6fOXNm1bFjR4/7SCfeGsh14sSJFPt8+eWX5n3psN5www1ej1WCqKydUOdjtda8TkxM1J1DT1577TUdTPTPP/94fd+hJoMyOf4LFy543O/BBx9UWbNmNbdlQOeOdbJC6ngXKVIk4OOzHpe3iaDUkiAbCewySABO7dq1vT6vbdu2tiC2b775RkXCHXfcof+NeuL8flz9G/GV9Xu/ZcsWWx16VyTYUwIfZUJr7NixAb8uAACAJz/++KN5v0aNGrqv5o1czLZeeJdFDxL8HQjpM8+dO1d99NFH+kK19SKyOzlz5rRNSEiQfCg59/1lUUoozZo1yxbQLoswvJEL/EOHDrWNq+fMmaMioWvXrl73sfazU9PHdu5nyySQJ1WrVlWnT59WJ0+eVKtXr1a1atVK1WsDAABEO7me7mn+omTJknrBpywmloUD1sUCsiBTnm8EIhmuXbum+6wGCWb3tmBc2pK5kCZNmqg+ffp4XOQci314meOQPrjh5Zdf9rgg2vD666+b92UM8P3336u01oefOXOmSkpK8jgnIwthZD5v3bp1eh4iFGRuJm/evOZ33DpWdmYNyPM2DwfANQKaAMQU6dzJxXPDr7/+qsaPHx/y1zUyy/j7HOnU+3qTDEVW27dv150vw8033+zza9evX9+8b13F7IqsnLAG1LhTuHBh876RNco6MSAdxNQe659//qlXXVg7vtaIdZkMkcxc8lrW/QzyPpwHTcEiHVTJgOPqJoM4GehYs1hJANabb76pB3ueVpFIh7xVq1bmtgxEXL036RhPnz7d3O7cuXOq3o91pXqoSbYimQywrrT21cMPP2zed/XvJBzq1q3r178PV/9G/A2gMly5ckVvS4Yr+ZvgSvbs2cP6eQIAgLRHxiWbN29OdX9OFh9IcEggZPLk3nvvVb1791ajRo3yaaJB+qDWPrqni9/BEO4+2cKFC837sqDE13FYixYtbJl/lyxZosJNPhdfFjl4GocGsprcIBlYmzZtqifY3C1CCXUWWwAAgGgiQTae5i+kcoBzv0myCknWGble72pBqDxufY70Q30xYcIEPfcjizet187jrQ8vi819PSeSEcu6kD0SffhArpUHsw8v1Uhuv/12Pd/iLitSOPrwEoDWpk0br4slLl68qGbPnm0uKpdAKAD+I6AJQEyWnrOWE3v++efV/v37Q/q6srI3XKt6DdYAISPlva/ZnqwR4dZyea4UL17cp+ORzrW7AK9NmzbZHhszZozPx2rNKCOdUGtHVDp5MmFhnQB59913dRpWY6WGXIg+evSoCrV+/frpDDiubpIRSiZ5pIO6bNkynW3LmDiRgaCUhvO0YsJadk7KKC5fvjzFPvPmzdNBUsb38YEHHgjayoZQf6ed099KyQZfOe/7999/q3Dz5d+I9d9HoEGQBimrYc14IP8mhgwZosvPyQomyUwnwW3WIDEAAIBQkjT/1qD7aOvPyQpl6UcvXrxYffrpp7r0s1xol+xM1jIDoS7Pa+1jh7uf7c9nIpM2MiESyT62nCvrODuQcai//vOf/9gWwMgkmUzASVm5Ro0a6ZKIzuNwAAAA/B9ZeFyoUCF9jVIyLb3zzjv62rjMRTgv9nTXz7T2QaNFJPvwsnjfl+xMrvr8kejDB3KtPLV9eJmXsZYolAUykulIxnoS3CQlt2VOJrWv4y9rxuDffvvNZYCVVK0wAvpkUZB1XhOA7/iXAyDmyKpTuRApGUvE2bNn1eOPP67mz58fstcsUaKE2SHxNXhKVgy7yrRjJcEJcuHdFUltb3XkyBEVCAmokZXI7jpLvlxEdub8vpyPVdKIBppKVIJ25IKyQQZGhw4dSpHlSIKYpk6dqm/G6l7pFEowUbFixVSkBnW33XabvsnKCglkknMlt549e+qL5K5WkstKc+mAGxm55L1KZ9zKWm5N3qcvWbU8kaxSxup4+Y5IGtZQrV5w/n74UyrPeTDs3FY4BOPfiL8kcFP+5siqEyv5e/H555/rm/ybluxNcgGhQ4cOtn83AAAA8dyfk4UEUtJCSqWtX79erxiXjKaRJn1sq1AvvLGeS3/LUVs/l7TSx5YJICnr3qNHD1umACmDKP1uuUmZexlPSqCTjC2tGYUBAADiWZcuXfQ1yWByXogc6nJugaAPH/p+fGpIqUMpNSfXwK1zThLAJAvD5fbaa6/pxfEyJyPBTpIJSbKHhZIx1yPHZJSd69atm20f65yWXL8HEBgyNAGISZKtREqlGX755Rf12Wefhez1JGOKQYIMJMAm1CTAJFjcpdAPVkrVUB6rBG1IMI9Eszdu3NhlR1QubK9atUqXoytbtqzOZiUXpSNJOqjWetKSTeeLL75wua+8R2v9ZElRal09LufEWmvcmtEpUFWqVLFtb926VYWKBB06l0jzlfO+MnkVbpEo5yYDQ6mnLhMu7tL4SqCiZCGQWvIy8JbsZamd5AEAAIj2/tzXX3+ty6tJn1guEEtZXlfBTBKUIpktwxn0LRlorSusQ9nHdv5c/PlMnPdPK31sYyX1li1bVK9evXRZcVdkvP/JJ5/oxQN33XWX29LPAAAA8My53Ji17HG0kH5xqVKlYq4PL9UsInEtOBL9+IYNG6pt27bpai3uFnLIIo0vv/xSNWvWTCdFWLFiRUiPSeZ0rFUWnMvOyef8888/m2PTBg0ahPR4gHhGQBOAmCRp4idOnGjLOjRw4MCQrYB17mxIoEGoOWfgkQ6bke3H31uo6wY7H6t01AI9VndpZyW6XlJ3SskI+ewlYEhS3DqTQKYRI0bo1bSR9uSTT9q25fjdsQYpSTYuCVQx/Pe//zUDvWRwJR341LLWnhaSljU19u3bp7NKvfzyy7oOuHWwmiNHDp8D7JxJ9iir1GamEuFOPxsoyTwm3wsZfElmpo8//livFLem2LWmQpaAPhnUAQAABFu09Ofef/993c+3rvSWC+pVq1bVK3aHDh2qSz1LxqaDBw+q8ePHh3UFsZRWqFOnjrktiy5S2/eUxRrynidMmKD27t3r9nPx5zNx/lzSUh9byGIACViS75GUnXvuued0uQ+jbLjV77//roOa5DsFAAAA/zgH7EgQTjSyXiuXctuBVp8wjB49Wj344IPqo48+0vM6oejDS7UIV/3XeO3DSzYkmfeRcd4ff/yhXnrpJT32chVgtXHjRtWkSRO1cuXKkB7Tww8/7LbsnGRsunLlirlfqDNGAfGMfz0AYpaki5cJfGvEs6zADYVWrVrZOhxTpkxRoSYpMq0iUQYgGo9Vgpgk85FkbZLAHykx8fbbb6tbbrnFtt/06dPNCPhIqVSpkm3bU8BdrVq1bPvL8buK7n/00UdTPVARUjrBOrkjHezUmDt3rk7v+uabb+pMWsOGDTN/57wqXoLSfOW8r5Tmc8ea1cqTUNdBDwUJZHvqqaf05yQDaglykvrgN954o22/9957L+SriAAAQNoTrv6cJ5JVR4J7rGMQKcMrF403b96sA5mkDyqBTZLBKVKTJrIi2Jql1bpQwV/Sv5Wxp2SlkjLrMl6wrui2fi7+fCbO+3v7THzpZ8diH1uyaclEx6hRo9SGDRv0+FJKmst3SILTDMeOHdMTJgAAAPCPc0bM1AYKhaMPL4uuZYFxakgmWSmR/fTTT+tKCX///bf5O/rwqSPzdDK3IfMQErAkc1FyrqVkonOwWP/+/VUoycJzY9G9ZA22fm++++478z7l5oDUIaAJQEyTCX1ZjWuYP3++XrkabJISUoKarNHWq1evVqFUsWJF2/batWt9fm5iYqIZ/R0OqTlWucgfaIkDCeyRjE4ysfHXX3+psWPH2n5vDQqKBOfVAbJqwhMJVjLMnj1b/5TPUVYNB7PcnLEKu127dua2rGqQlQuBGjdunNvVCc7l7eSz8tWaNWtSlPFwd46dUxi7c+DAARXL5D1LGbpXX31Vl7+wBnbKgPuHH36I6PEBAID4U7ly5ZD153wlGXWspeWkJHWPHj08ZmCSvrR10iQcJRmkv25dgCCrsgMlZaetgUcy0ZIrVy6X/Wx/PhPJamvt+3vqY/vaz471PraQyYhHHnlEB8dt2rRJXwcwzJw50+cFFAAAAHC94Ff6WL6QvpcsmpUF7G+99VbI+2Ft2rSxBcNIpvxAyQJsa2YgyQRqnT+x9uHlfEjfPJCxlatxlXVRflrpw0t1Evn8Jk2apLOqWucL5XMIVVUXY9xknWMx5qNkfs6Y05HFNnItH0DgCGgCEPOl56SjYr3gOmDAgJB0xAYPHmx2COVCuHSmAw3EMXjqiEsGKmtNaenE+0KOTUp/ScCKXIC1BpaEitQttnagJRLd10GGHJ+knpWLx5LK35rmVM558+bNVZkyZdRrr73mta0+ffqocuXKmduh7Kz6wrryQpQsWdLj/tbsS3LsMviRFd1G6tnatWunGASmhqxQsE62SNnGQCZ55IK/rGg2SAdd6lQbbrrpJtuA0LmetCfWfeX8OZ9D678RGSh4I/9mZQV/pHjLriUD2L59++qV4sWLF9d1v7219/rrr9vKhET6ew8AAOKPpPe3BjUF2p+T8ZtkJnXmSwZSKd9mqFatmrrtttu8PkfKKlvHJeEISJFyZg888IC5LRk2ly5d6nc7ErwlC3isJGOnu9IYUo7O16AmCQazLoCR8aO7Prav/exQl3PwxJfvz5w5c/TKaBmbOC+4cKVChQq28y2fh2RwAgAAgO+kqoJ1ke+8efN8ep5UXli4cKHOyCrzP9ZAnWBUL3Am8xPW6h+yYFsydwbCObOnpz689Mmlb+4L6etbS1A79+EDuVYe7X14qQghC0ZkXkTGpN6Cv2SO6T//+Y/tsVBfK7fOv0kQk2TUlbk8YzFO+/btQ/r6QFpAQBOAmCcXxJ9//nlz+8yZM2rBggUheR0JmDFIAIekog8kqEk6qr179/bYmZL0923btjW3Fy1apG/eSEdbAmkkMEVW85YoUUKFgzVtpkTCewvEEHJh34hUP378uC4bYQ1Okw6rDHL+/fdfHd3uS7CNTJJYA60iafLkybbte++91+vkh3VAI4MZufAe7OxMBslu5dzhdp408UZqilv/XQhJ9+pppYKUp7NOSLkjmYaswUfWfw+GokWLmvf/+ecfr6U2PvvsM58zOYWCdfDt6vss31/5zOVv2KFDh3zKMibnNyEhIWq+9wAAID5ZL8RKH82XrJDS57OWgZbFCtZAbF/7SMJaas05g5ArslDCeTLBmuEplGQxhtE/k/fTqVMnPabxh4xxrVmU7rjjDlspDCF9bOu5kwye3sg5sPbXpf/ZokWLFKVBrCXXJDDME1mAMXHiRBUp1nPg7jskpSik7IOM47dt2+ZT8Jd1bCnfOZlEAQAAgO+kP9WyZUtbKbajR496rehgvSbq3Af2ZewQCAmEsWZDlWve69at86uN0aNH28Y/ZcuW1VllrZyzrkrf3JdxinNf/8EHH/R4rdxbH14We6QmE1U4+vByXr766iudmUr6874Ef1n78OG4Vi7zOcZ5l4ArubZvXdST2nJzofq+A7GEgCYAcUE6c76sskytd9991xZwIoEZsjJYAm98JdmLJJBESiZ4i0iXi9jWxyX9/datW922vWXLFp3dxdp5C3WdYIO8rnVyol+/fur33393u78Ea3Tu3Nn2mLV0lrAG20j61Q8++MDjMchgQS5OG6SWcqTIChLrZyyrI3zJlmUNWrIGNEmAW8eOHYN+nGPGjLF16iXbz5NPPqnOnz/v9bkyKLr77rttZTxkJYukA3YmmdOMzrcMlqQjLwFI7shgUY7DICt55DvlzLoyXyat5Pg9rTgZOnSoiiTrKhnrpJyV9XsipQe9ZWcbP368OnfuXFR87wEAQPySBRnWvoz01Txd4Je+nvT5jAysMq6xLkTxt49UqlQp874E+kg2U3ckgF36pStWrEjxeDhIBilrv1MWskgfTcYI3ly6dEmfa+vYR7Kdyup0Z1K+wDqRIX3HYcOGuW1b+uGyQtz6uXXt2lUVLlzYtp/0261lEWQSQRatuCKTDD179oxouQrnjFKuvkMStGUdrz799NP6XLsj/WtZDGGQVeHOkyMAAADw7rnnnrP106RKgbt+mARsSD/t1KlTZr+0V69efo8dAiHZfcaOHWtbON+oUSMdFO+NjHneeOMN9eyzz9oC4iW7lFzXt5JgJuk/G6RvLn10T9lkZcGE9PUNTZs21ZlHPV0rnz9/forxkPU8y+IPf8pWR6IPL1mopIqB4YUXXtCBTe7I2OTDDz80t+W5Uv0jlOQ7al3MLQs9jHGfzFlKycHUCNX3HYgpDgCIIvJnybgNHjzYr+euXLnSkSFDBlsbcitevHhQj/HUqVOOu+++O8Xr3HXXXY7PPvvMsWfPHkdycrK5//Xr1x1btmxxjBo1ylG1atUUz5Pb7bffrvdx5eWXX7btmytXLsc777zjOHr0qLnPmTNnHGPGjHHkyZPHtu/rr7/usk05VmOfLl26+PS+fXnO559/bnv9zJkzO/7zn/84/vnnH3OfixcvOqZMmeIoVqyYbd8ePXqkaO/ChQuOkiVLmvukS5fO8dRTTzm2bdtm2+/48eP6/GbLls3ct2jRoo5Lly45ArV3717b8b3yyis+PW/r1q2OF154Qb936/PlM/PF6dOnHVmyZEnxHWnVqpUjVOTfTs6cOW2vV7BgQcerr77q2LRpk/4OG+ScLly40PHII4840qdPb3vOnXfe6fGcyzm07l+gQAHH2LFjHYmJieY+R44ccbz55puO7Nmz2/aVz9eVq1evpvgu9ezZ03HgwAFzn/379+t/R8ZnYn2v8r12xdrexIkTfTqPvjynUaNG5j6lS5fW79eZHLv1GDNmzOh46aWXbP+OjP3kfVn/7t18880+HSsAAICQ/oi3fpGV9HGsfR7ps73xxhuOw4cP28ZLH330ke7rWfft27ev23Z96SN9/PHHtvaKFCnimDRpkq3/Ka8tYxJ3464GDRp47fcvWrQoKF8O6UNLn9n5GJo3b+744Ycf9LE6H8cHH3zgKFu2rG1/6QvOmDHD7evIuZdzYX1Oy5YtHatWrbIdi7yvO+64w7ZfmTJlHCdPnnTZrnyG1n3lc5k5c6YjKSlJ//7atWuOOXPmOOrWrWvukyNHDo/n0ToekPZ84ctzfv/9d9uxvvXWWy73e+6552z7Sd957ty5jsuXL9vGF7/88oujZs2atn3/+9//+nS8AAAAscTa3/F1niAQvXv3tr2W9LV+/vln3ac0rFmzxnHvvffa9uvfv3+KtiZPnmzb55tvvgnqscq1fVfzN/K61jkZoy/+xRdfOKpXr27bX+YxZL7GnfPnzzuqVKlie079+vX1dXejvy1Wr17taN26tW2/vHnzOnbt2uWyXemfW/fNly+fHsNduXLFHBdI37lZs2bmPtbr0K6uaTuPAX3hy3P27dtn20fmfazzaoYPP/zQtt8NN9zg+O677/TckUHO2bJlyxwNGza07Svjq9SQfxO+zDP+8ccfLsefr732Wqrblvdr7Hfrrbc6zp07l6r3BMQiApoARJXUBDSJQYMGhTygybjI+eKLL+qLy646KhJYI4E4cnMVnGLc5CK/XCh21VEzSCfzscceS/Fc6RQXKlTIUaJEiRSBJXLr1KmTLRAlHAFNQs6Lq/eaP39+fT5cnTOZwJBAJ1cWL17s8hxKYJdcgJdz4Pw7mVhZvny5IzWcJzZkoFCuXDm3N7m47hwUZNw6duxoG4h489BDD6VoY9q0aY5QksGRdULL+ftcqlQpPVGSkJDgcp+2bdu6/QwN8n3s2rVriufK91cC0OSzlO+18++ff/55j+1OnTrV7b8v+dysj8l38Msvv4xYQNPAgQNt+2XKlEmfdzlO64D466+/dvnvWgah8r2Xf0/OvytcuLBj586dPh0rAABAIAFNYsiQIW7HJtKnc7XIxFt/2Jc+klyEdw4yMV5b+qnOizuMdqyTCxIsFK6AJiETNP369XPZVzXOmbxPGdu42kfe07x583xaoOAcQGYEGEn/N2vWrCl+J/1754UiVnK+q1Wr5vKcyhjbeVwgF+tlEiYSAU0SHOY8zjTGynL+DTLpccstt6R4T/Jc2VfOlbw/598PGDDAp2MFAACINeEKaJJFCNYgGuMm1/2lD5Y7d+4Uv7vnnntsgeeGzZs3p9hXFrzKbeTIkUE5XgmQdzWukZtclzXGKq5+L+9JFl54I9dxrcEqxk367nJOrIsFjJu8pgTPeNK0adMUz5P3In14576uLDKXeaRIBDTJnJjz3I68PxmntGnTxjancN9997l8T/KZy/6uxjsyx+JufsxXvgYdyXuR8YTzMXi6Vu9r2+3atUsxVyPzAzL2Tu37A2IFAU0AokpqA5qkY1ypUqWQBzQZtm/f7ujWrZvHoCVXt8qVKzs+/fRTvzIIvf/++247yc4d5uHDh3sMkgplQJMRYOKcNcfVTTqdzz77rMuBiXNQk/NKZXc3uUBtXY0cKOeJjUBuMjEhgyh/gpmErP51nsjwdo6CQSYCZDLJ1QDA3U0GbxJ84w9ZGeFqwsn5Jt8hWW3hi/Hjx7sc5FlvsiJdPtdff/01YgFNkm3AeQW9cZOV4FbTp0/XmbJ8+RwaN27s+Pvvv306TgAAgNQENAlZBe1Lf1/6fJKR09PYxJ8+0sGDBx116tTxqX8kgUwyLpgwYYLtcWsmz1AHNBnkPchqWl/72BIsJNmdrJmvvJFMwdIn9Na2BFJ16NAhxepyd5+LZLXy1J6MHWTVtIhUQJMYNmyYy+OT1fRWkh1WFmP4Op6Tcbi37y8AAECsCldAkxHs76qygav+qmR39TR3InMyrp4rfehgkbGENZOsL/1sycbqz4JTqTwhgTeuFvk63yRQaffu3V7blOxP3vq7Mi8jmf/lM4lUQJOQwC9X713GmlYyNyJVGXw5T/L9krlFIytVavgadCRknst6HDL+C0bbEsDnbt5jx44dAb83IJYkRLrkHQAEU5YsWXSN2vr163usORwsFStWVF988YV67733dE1iqY27adMmtWfPHl1jWY6hQIECqmDBgqp8+fKqYcOG6u6771ZVq1b1+7WeeeYZ1a1bN/XVV1/p15LXOX78uK4LnDdvXlWtWjXVpEkT1bVrV1WkSBEVSY888ohq27at+vbbb9XPP/+sazHLsUpt7Ny5c6tKlSrpc9G9e3dVtmxZr+3dddddauvWrWrmzJlq1qxZav369erw4cPq/PnzKk+ePPr91qtXT7Vu3Vrdf//9um5xOKVLl07XMs6ZM6cqVaqUql69umrcuLFq1aqVyp49u9/tNW/eXOXPn9+sB/3www+rzJkzq1CTc/nuu++ql19+Wf30009qwYIF+nu2b98+de7cOV0LXL5rJUqU0Of7vvvu08fq7/nu16+f6ty5s5oyZYqaN2+e2rx5s/5+yL8X+SxvvfVW9cADD/j1vp944gnVokUL9fnnn+t64rt379bfj6JFi+p64lKbvU2bNvpYd+3apSKlcOHCas2aNerNN9/U712+x3LtQB4/ffq0bd8HH3xQ3XPPPbpOu+y7YcMGdezYMf3vKF++fPq9NWjQQL8v+bsCAAAQLh06dNB976+//lrNnTtXrVu3TvdTZGwiY5+aNWvqvpn0waSPHKw+UrFixdSff/6ppk2bpvtIxjhD9pVxRunSpXXfr2XLlvr1pe9XsmRJlZCQoJKSknQbEyZMUEOHDlXhJH06ucnx/ve//9Xvdfv27bq/f+HCBT2WkP6/jCPuvPNOPZ4qXry4X68h46rffvtNLV26VJ+fJUuWqIMHD+pxaY4cOdSNN96ox2BdunRRVapU8alNOf/SjowNvvnmG7VixQr92cjxyrmWcyxjujJlyqhIk89Uxtzjxo3TY0f53sh3Tz57KxnP/PDDD/ozmDp1qlq5cqUeH8h5kn3lPcs4X97bQw89pAoVKhSx9wQAABBPpK/19ttvq6eeekpNnjxZz3HINVzpE0v/Uvqzco2zZ8+euj/miVwDvuWWW3Q70peTa9cyHvi/GK3gqF27tr4+Lv12mZeQfuOWLVvUiRMn9HVnuW4t12grV66s56M6duyoKlSo4NdryNzR999/r+c7pL8t80tyLT4xMVFlzZpVlStXTo8POnXqpOrWretTmzIfIf3d33//XZ8f+SnjgowZM+rr+k2bNlU9evQIaI4q2GRsIv3v0aNH6zGlvG/5Lsh5lXGSMbci51r6+f3799fzYzIm/Pvvv82xovTZ5VzJXIXMKchYJdzat2+v3n//fduYORjkc1q9erUaPny4Wrx4sTp69Kj+tyRzA3Lf3+8cEIvSSVRTpA8CAADYSQdcAuOEdNBvv/12ThEAAAAAAAAAAACANCG8KSwAAIBXq1atMoOZJMKeYCYAAAAAAAAAAAAAaQkBTQAARBlJBWuQ9K8AAAAAAAAAAAAAkJZQcg4AgChy/PhxVb58eXX27FldG3r//v2qYMGCkT4sAAAAAAAAAAAAAAgbMjQBABBBp0+fNu/v3LlTtWzZUgcziccff5xgJgAAAAAAAAAAAABpDhmaAACIoDJlyqirV6+q5ORkdfToUfPxokWLqq1bt6o8efLw+QAAAAAAAAAAAABIU8jQBABABJUtW1YdPnzYFsyUO3duNX36dIKZAAAAAAAAAAAAAKRJBDQBABBBLVq0UKVKlVKZMmVSJUuWVJ07d1arVq1St99+O58LAAAAAAAAAAAAgDSJknMAAAAAAAAAAAAAAAAAogYZmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAESNhEgfAOCry5cvq02bNun7BQsWVAkJfH0BAED8S0pKUsePH9f3q1evrrJkyRLpQwLiBmMMAACQFjHGAEKHMQYAAEiLkkI0j0FECGKGBDPVqVMn0ocBAAAQMatWrVK1a9fmEwCChDEGAABI6xhjAMHFGAMAAKR1q4I4j0HJOQAAAAAAAAAAAAAAAABRgwxNiBlSZs4a1Ve0aNGIHg8AAEA4HD582MxSae0PAUg9xhgAACAtYowBhA5jDAAAkBYdDtE8BgFNiBkJCf/7ukowU4kSJSJ6PAAAAJHsDwEI7r8pxhgAACAtYowBhO7fFGMMAACQFiUEcR6DknMAAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiRkKkDwAAgFhw5coVtWHDBpUuXTpVo0YNlTlz5kgfEgAAAIAYlpycrDZv3qwuXLigatasqbJlyxbpQwIAAAAQ43bt2qUOHz6sqlWrpvLmzRvpwwGAVCFDEwAg5MaNG6cqVKigf8aqF198UQ0aNEg9//zzaujQoZE+HAAAAAAxPt747LPPVL9+/fRYo0+fPur69euRPiQAAAAAMTwO+uWXX9Tjjz+uhgwZorp166YSExMjeowAkFoENAEAQm7UqFF6VYD8jEXnzp1Ta9euNbdXrlypLl26FNFjAgAAABDb443vvvvOvL9371514MCBiB4PAAAAgNgeB/3000/m/dOnT+uMsAAQywhoAgCE3IABA1T58uX1z1h09erVFI8lJSVF5FgAAAAAxMd4Q0rOWTHGAAAAAJCacdCZM2c4gQDiSkKkDwAAEP969eqlb7HK4XD49BgAAACA8Iv18YYhXbp0kT4EAAAAAHE0DsqYMWPYjgcAQoEMTQAA+Lly2t1jAAAAAAAAAAAA0SBTpkyRPgQASBUCmgAA8IIMTQAAAAAAAAAAIJaQoQlArCOgCQAAAAAAAIgwSs4BAAAACKYsWbJwQgHENAKaAAAAAAAAgAgjoAkAAABAMGXOnJkTCiCmEdAEAAAAAAAARBgBTQAAAACCKVOmTJxQADGNgCYAAALgcDg4bwCQhv37778qW7ZsevJ50qRJPj+vSZMm+jn+3tavX++17fPnz6uPPvpINW3aVBUuXFhftJKft956qxo8eLDauXNnQO91+/bt6rnnnlM33XSTyp07t05XXrZsWXXvvfeqL774Qr+uv5KTk9WPP/6oHnroIVW6dGmVNWtWlSdPHlW1alX1+OOPq99//z2gYwWAWMYYAwAAAEAwZciQgRMKIKYlRPoAAACIxZXS6dMTEwwAadX169dV165d1aVLl/x+7rp160JyTIsWLVKdO3dWBw4csD1+7NgxfVu7dq0aMWKEGjJkiA5u8uWClgQdvfzyy/p58p6t/vnnH3375Zdf1GuvvaYmT56sGjRo4NOx7tu3T3Xs2FEtW7bM9vjly5fVmTNn1NatW9WECRNUu3bt1Keffqry5cvnU7sAEOsIaAIAAAAQzLkMssACiHUENAEAAACAH3r37q0WL17s9zmTQJ7ExERzW7Ic+RogmzlzZre/mz9/vmrdurW6cuWK+VhCQoLOznTq1Cl18eJF/VhSUpJ65ZVXdNDT+PHjvb5mjx49UmSfypEjh8qVK5c6cuSIDngyslVJ5ikJbmrYsKHHNvfv36/uuOMO/dN6ca1QoUL6+E+fPm0+Pn36dLVr1y71xx9/qOzZs3s9XgCIdQQ0AQAAAGCMAQD/Q3oJAAC8cDXZHE0rG8aNG6cqVKigfwIAQkeyFPXq1cunYCBv2ZmkXJ0E6/h6q1y5sss2Dx06pB555BEzmClnzpy67JwEBkng0rlz59TPP/+sbrzxRvM5n332mdf3IP+nWIOZpGydBBZJewcPHlQnT55Uw4cP12XtxLVr19SDDz6oA53ckQCo9u3bm8FM8n9p//799XHK8yT4asOGDeq+++4znyOl9p544gkfzi4AxD4jUBQAAAAAAAAENAEAEFBAUzTVnh41apSe7JafAIDQOHr0qGrcuLEugRYoa0BTzZo1g1K+9KWXXjKzPmXJkkVna5IMUkZGI3mNZs2aqdWrV+vXNEjpufPnz7tsUwKLpF1DvXr11NKlS1X9+vXNx/LkyaNefPFFNWfOHJUxY0b9mByHlJ9zR8rSLV++3Nx+77331OjRo1WxYsXMx2rUqKFmz56tunfvbj72zTffqFWrVvl9bgAg1nj7f4GFDAAAAAAAIC0hQxMAAF64Cl6KpoCmAQMGqPLly+ufAIDgkwCbm2++WS1ZsiRV7VgDmqS91Dp8+LCaOnWquf3888+r2267zeW+Uibuhx9+MIOPjh075jZL0+eff66Dmoz/7yQQKWvWrC73lVJzEhxlfa4Ef7kycuRI8/6dd96pnnnmGZf7SeYmmbSvWLGi+dgbb7zhcl8ASEtYyAAAAADAE8pYA4g3BDQBABDjAU1S/mjnzp36JwAgeKT8mQTstGzZUgcPGQItgSbl04IZ0PTtt9+qpKQkM6tHnz59PO5frlw51aZNG1vmI1e++uor875kd5Kypp707dtXZc6c2Sw9N336dJfBXFu2bDG3+/Xr57FNCbyScnSGefPm6TJ6AJCWMzSxkAEAAACAP2TRGADEMgKaAADwIiEhIaoDmgAAodGlSxe1YMECc1vKuH3yySduMxt5IuXY9u3bF9SAJgnyMdSpU0cVLlzY63MkOMuwZs0a2zEJCdzauHGjy/3dkfJzd9xxh7k9Y8YMj8cq/682b97cr2OVQKmffvrJ63MAIJ4nG1jIAAAAAMAfZGwCEOsIaAIAwAsCmgAA999/v9q8eXPA2fCs5eYk+1D16tVTfVIlIMlQr149n55Tt25d2/by5ctt26tXr7ZtB9LuypUrVXJystt2q1WrpoPDvClRooQqVqyYub1s2TKfjgUAYpVRFhQAAAAAAkFGJgDxhoAmAAC8IBsTAKTdi0ANGzZUixYtUrNnz1ZlypQJuC1rQFOVKlV0WSHJZNS+fXvdbpYsWXSmIwn2kVJra9eu9djekSNHdNYnQ+XKlX06jrJly9oCdbdv3277/datW23vv2LFij61ay1Ld+HCBbV//3637fp6rM7tOh8rAKSFhRQAAAAAAABpFVdKAADwglUNAJA2zZo1S5UsWTIobVkDmiR7kWRocg7QuXLlijpz5ozasmWLGjNmjHr00Ud1iTtX2YwOHDiQIpuRr5PlhQoVUocOHdLbziXnrO0WKFBAB1r5onjx4rZtabd06dIu2/X1WJ3bdT5WAIg3mTJlivQhAAAAAAAARA0CmgAAAADAhWAFMzkHNG3atMn2u4IFC+rg2RMnTpil2hwOh5oyZYrauHGjWrBggcqfP7/tOceOHbNtO//ek3z58pkBTdYsT87t+tumlbXdixcv6qxNqW3X+Vh94Rz45ezw4cPm/atXr+obAIRL7ty5UzzG3yEA4cDfGgAAAACxgIAmAAAAAAihS5cuqR07dqQIlho8eLDq2LGjypUrl37s1KlTugzdK6+8og4ePKgf27Bhgy5LN3/+fFsJ1PPnz9vay5Ejh8/HY93XuR3rdqBtOrcTqmMNdlCaZMySzwAAwmXo0KG27d27d3PyAYTF0aNHOdMAAAAAol76SB8AAAAAAMQzybJ0/fp1c/vOO+9U69evVz179jSDmUTevHlVjx491Nq1a9VNN91kPi4ZmiZNmuRxVX3GjBl9Ph7rvteuXXPbbqBtOrcbrGNNSkry+XkAAAAAAAAAgNhGhiYAAAAACKGKFSuquXPnqr1796p9+/apgQMHpijRZlWoUCGdqalKlSrq8uXL+rHhw4frYCeDlKSzkpJ1wWBtNxRtprZdacuf5+/fv99rybk6dero+5UqVVIlSpQI+NgAwF8PPfSQbXvatGmcRABhIYH0AAAAABDtCGgCAAAAgBDKkyePat68uV/PKVu2rOrcubMaP3683t6zZ4/atm2bqly5st7OlCmTbX/nTEueWPfNkiWL7XfWdgNt07ndYB1r5syZ/Q6G8idASY7T+VgBIJTOnDmT4u8QAIQDf28AAAAAxAJKzgEAAABAFGrWrJlte82aNeZ9a6k6ceHCBZ/bPX/+vHk/e/bstt9Z2w20Ted2Q3WsAAAAAAAAAID4RUATAAAAAEShG264wbZ97Ngx836BAgVsv0tMTPS5Xeu+Ut7OytpuoG06t5s1a1aVLVu2oB8rAAAAAAAAACB+EdAEAAAAAFFIAoGsrl+/bt4vU6aM7XeHDh3yqc2kpCRbYJRzSTZru8ePH9f7++LgwYO2bU/t+nqszu36Uz4OAAAAAAAAABDbCGgCAAAAgBBLTk7WgUT+BPOcPHnStp0/f37zfsGCBW3bO3bs8KnNPXv22IKUqlatavt95cqVbQFUu3fv9qld6+vnyZNHFS9e3G27vh6r877OxwoAAAAAAAAAiF8ENAEAAABACN1yyy0qY8aMqnDhwqpt27Y+P++vv/6ybdeoUcO2Xbt2bfP+qlWrfGrTeb9atWq5bTPQdp3bdG53w4YN6urVq17bPHDggDp8+LDbYwMAAAAAAAAAxC8CmgAAAAAghIoWLaozNBlBSidOnPDped9//70t69HNN99s+33Tpk3N+3/88Yc6ffq01zZ/+ukn836VKlVSlHGToCtr4NTs2bO9timvu3TpUpfH5eqxS5cuqQULFvh1rOnSpVNNmjTx+hwAAAAAAAAAQHwgoAkAAAAAQqhVq1bmfSn3NmbMGK/PkUAia5BQjx49VEJCgm2fhx56SGXIkEHfl4xH3tqV8nEzZ840tx977DGX+3Xo0MG8/+OPP3otOyeva2RckuPp2LFjin0kGKtixYrm9qhRozy2ee3aNfXhhx/aAqIk2AoAAABAfNi5c6caPHiwuvPOO1WRIkVU5syZVa5cuVS5cuVU+/bt1eTJk/W4wB+rV69WPXv21Is3cubMqbJly6bKly+vWrdurReM+JIpFgAAANGDgCYAAAAACCEJECpQoIC5/c4776glS5a43V+yOHXp0sXczps3rxowYECK/SS7kgQ1GV5//XW3mY/OnTun2rVrZ04I5M6dWz3++OMu933iiSdUjhw59H254C/Pk+e7Iq8nr2t9r85ZnwzPPvus2+c5e+qpp9T27dvNbVfvHwAAAEDsOX/+vF6wIQsehg8frrPNHj16VI89ZNyxZ88eHXwkYyIJblq0aJHXNq9cuaLbrFOnjho/frzatm2bfh3JDisLNGbNmqWDpKSM9ebNm8PyPgEgEhwOByceQFwhoAkAAAAAQkiCh0aOHGm72H7vvfeqN954Qx07dsx8XC7iywX9u+66SyUmJpql1j766CNdts4V2d8IPpJgpfvvv1+9/fbb6syZM+aFrF9++UVfuF+/fr35vNdee80WZGUlj7/66qvmtjxPni/tGBfGpH0JzJLXswZJvfXWW27Pg0ww3HTTTeb20KFDVbdu3dQ///xjPrZlyxbVokULNWHCBPOxNm3aqHvuucdtuwAAAABiw9mzZ1WDBg3UF198YZt0l+xMJUuWVPnz57ftv3//fj0W+Prrr922KVlwZQwhbVpJ2W7J/CRjKsPGjRtV/fr1dcATAAAAoh8BTQAAAAAQYrK6WMopWIOahgwZoi+wFytWTP+UoCXZ58KFC7Zybq5KuBnKli2rL+5nypTJbPfFF1/UEwGSKUnKLEjw1N9//20+55FHHlH9+vXzeLySTalTp07mtjxf2pH2pF1p/z//+Y9+PZExY0Y1depUPQnhjpTMmz59ui2D06RJk/R7kHJyEkhVrVo1NWfOHPP3UirCeWICAAAAQGySBQ3r1q0ztyWj0vz583Vmpn379qkTJ07oBQ/PP/+8WV77+vXrqnv37mrt2rUu23z55ZfVb7/9ZitXvWHDBnXq1Cl1+PBhdejQIZ3x1QhskqCqli1b6uxNABBvrEGcABAPCGgCAAAAgDCQjExTpkzRJeQMsipZLrJLdibrCuVSpUrpsgh9+vTx2q5cjJ89e7YtmEgu+h88eNAWHJU+fXp9IX/y5Mle25R9ZT+ZSJBAJIO0J+1K+wYJxJIgJMnW5I2UjJBye7fffrvtcclUdfLkSdtjEkAl+8rKagAAAACx7ffff1czZswwt1u3bq3LzUkAkiyQMJQuXVqNGDFC/fjjj2ZQkyykcFWGeufOneq9996zZXf9+eefVY0aNczHZPGIZMydOHGi+ZiUoZPFIwAAAIhuBDQBAAAAQJg8+uijeuWxlJGTsgiSrShLliwqe/bsqnz58uqBBx7QgURSAkEClXwlZRi2b9+uPv74Y32/ePHiOmuTZFSqXr266tu3r16lLBfyjUkBX4KaZCJh06ZNatCgQapmzZoqX758OsBJsik1atRIjR49Wr+uPyXhbrjhBj1xIZMZHTp00NvZsmXT50GyNUkGqXnz5umbu7J4AAAAAGLL559/bt6XRQtffvmlLZDJmYyXZBxjWLx4sfr3339t+8h4xFoCW0pXyzjGXdZcyfRkkLHO1atXU/WeACDaWBfLudoGgFjzv6W28EjSoEqpg6VLl+pO88WLF3Vkv1xwl5UE7du316Ui/CEX/sePH68WLlyo9u7dq1cZyOrmG2+8Ubf38MMPqxw5cvjVZnJysl7JLeUeVq1apVc6S/1pmdC47bbbVOfOnXWNan9JqlcZcMydO1dt3bpVp2WVyQVZOS7vX9qV1wAAAADSgtRcEJI+fu/evfUtmCQo6KmnntK3YKpUqZJ655139C2YKdBl9bTcAAAAAMQ/mVswyMIGCUDypUSdBC1Zszw99thj+r5kjf3mm29si0es2XBdGThwoFnSWjLE/vrrrz5lmgWAWJWUlBTpQwCAVCFDkxdnzpzRHeRbbrlFjR07Vq9qPn36tI7cl5XVUgLhueee06UT3n77bZ/+Y5Cgo5deeklVq1ZNvf/++7pNCRCSgCapD/3LL7+oHj166N9LB91Xcjx33nmnnhSYPn263r58+bJ+DxKEJKsT7rrrLvXQQw+pxMREn9v9/vvvdZDViy++qAO6pKMvqx6kNMbKlSv1e5Hff/rppz63CQAAAAAAAAAA4t+RI0dsJabr1Knj0/Nk3sVK5iQMsqD71KlT5rYvGW4rV65sa9NaAg8A4pGRxQ4AYhUZmjyQznCTJk3U2rVrbY9L2QaJ9JcO+IULF/RjEjgkAT+y73fffadXHLsjwUqTJk1KsUo7V65cumMvAU9CMkHJ60uAU8OGDT1+kPv371d33HGH/mmQYyhUqJAOlJIgLIMEO+3atUuXeZDSFp5IXWk5XusKdMn4VLBgQXX8+HHdtpCMVb169dKZnAYPHuyxTQAAAAAAAAAAkDZINqbffvtNHThwQB08eFDVrl3bp+dZA5aMuQnD6tWrbb+rW7euT23Kfrt379b3ly1b5tNzACBWGfO4ABCryNDkQc+ePW3BTBJctGLFCp3xSIKN5KeUi5PsTYZp06apN954w22b48aNswUz3XrrrTqw6Ny5c7ojL0FSw4cPV5kyZTIjZx988EEd6OSOBEBJiTojmEkCmfr3768HB/I86fRLFqj77rvPfM769evVE0884fHLIc+RchVGMFPhwoXV119/rbNJyWvJMUvwlpTJMwwZMkTNnz/fY7sAAAAAAAAAACBtyJo1q2rcuLHq0qWLWb3CFzL/YlW6dGnzvlSlMMgcRZ48eXxqs0KFCuZ9WfgtpesAIF5JxSEAiGUENLkhkfkSnGR4+OGHdaCORO8b2ZcyZMig7r77bh2QZE2R+tZbb9kyIhkksEg664Z69erpEm7169c3H5NOt2R6mjNnjsqYMaN+TMrDvfbaa24/xMmTJ6vly5eb2++9956uK12sWDHzsRo1aqjZs2er7t27m49JfWlJy+qOBEUZkbsFChTQx9qxY0cz2EqOT86LrIQoUaKEfkyCn6QOtZFlCgAAAAAAAAAAwB8y1/DBBx+Y2zIfIfMxBlnQbTDmJ3xRvHhx835SUpI6dOgQHwyAuEWGJgCxjpJzHjIpWcvByXb69Ondri4YMWKEWRbu0qVL6ueff9bBP1aff/65mSJVgqEkEEme64pkg5JsR0OHDjWf+8orr+gsSc5Gjhxp3r/zzjvVM88847JNCcSS9/Hnn3+qv//+Wz8m2aRmzZqVYl8JUlqyZIm5/c4779hWLjgPACRzU4MGDfT25s2b1Y8//qjatm3rcn8AAAAAAAAAAAB3ZC7DWkGjTZs2unSd4dixY+b9/Pnz+3wi8+XLZ9uWBeUlS5b0+fnWQCpXDh8+bMuMQnYUAOEkc9rWv5WXL1/m7xCAsAhVn4eAJjesHeUHHnhA5c2b1+OJdK7PbNRgtvrqq6/M+82aNXMbIGTo27evevPNN3X0rJSemz59uurTp49tn3Xr1qktW7aY2/369fPYpqxikMxLvXv31tvz5s3T2aSc07Faj1Xe+6OPPuqxXQmkkixVRsYnyf5EQBMAAAAAAAAAAPCHzDM899xz5nZCQoJ6/fXXbfucP3/eNoHvK+d9re34wp/gp+3bt5uL3AEgHHr06JHisU2bNsXFyZd58qlTp6pOnTqpdu3aRfpwADg5evSoCgVKzrkhWYYkwl+yFP3nP//xeiLPnTvnMcpfovI3btxobrds2dJrmxJkdMcdd5jbM2bMSLGPBCRZO/XNmzf32q71tSVQ6qeffvLY7r333muWmfO13blz55LGEAAAAAAAAAAA+EwWcLdo0UJnFTEMHz5c3XjjjW6zAMhCbl857ytzJACA6CfBTPv379c/AaQdZGjyoGDBgvrmi5kzZ9q2b7nllhQl3Kzq1avnU7uS+WnBggX6/sqVK1VycrKt9J213WrVqqns2bN7bVPqSRcrVsysDb1s2TL12GOPmb8/e/as2rFjR0DHarh48aJav359isxVAAAAAAAAAAAAzmRReNOmTdXx48fNx6QSxPPPP59iX4fDYd5Ply5d2E6mTKZ7IovbpZqFqFSpkp6PAYBweeaZZ9TBgwfNbfn7afxNinWDBg1So0eP1u+xevXqkT4cAE68VTwLFAFNQfDHH3/oP6KG+vXrpwgC2rp1q61zXbFiRZ/atpalu3Dhgu4sly5d2mW7lStX9vmYpV0joEnSnro7Vn/adS6hJ+0S0AQAAAAAAAAAADxZunSprgJx5swZ87G77rpLffXVVy73t1aV8CfLkvO+WbJk8euD8SdASY7Rl+oXABAsUkbT+nc0Q4YMcfN36Omnn9Y3ANEpVH9rKDnnJ4n6T0pK0jUApVRb+/btdafa+M9BOrNTpkxJ8bwDBw6Y9wsUKOBzJ7l48eK27X379rlt15+OtLVdT236065kfbKuhHBuFwAAAAAAAAAAwErKB91zzz22Sfi7775bzZkzR2XNmtXlycqVK5dtMbg/k/1WvlS9AIBYlZBAbhMAsY2/Yn6aP3++at68ucvftWrVSn344Ye2DEqGY8eOmffz58/v8+vly5fPtp2YmGgr62btqAfarrVN52P1p12JupPOvzEgcG4XAAAAAAAAAADAWED+yiuvqNdffz3FXMt3333ncWG4LBw3+DMX4bxvoUKF+DAAxA1rOU6ROXPmiB0LAAQDAU1++vfff10+niNHDlW2bFmdvclb1L/s6yvnfa3tOK8kCLRd53ZS267xfOd2vHHODOWq9rTh6tWr+gYA4ZI7d27bNn+DAIQLf28AAAAAAPHm8uXLqlu3burbb7+1Pd6jRw81btw4r1lFypQpY94/dOiQz6978OBB2yLtggUL+nXcABBL3GW5A4BYQUBTAAFNGTNmVIULF9Yd7hMnTpjBOx988IH6+OOP1YgRI9QzzzzjdiJKnu8r532t9Z2dJ7cCbdc5CCtY7fpTt1qULFnS5323b9+uTp065Vf7AJAaQ4cOtW1v2rSJEwogLKTUMQAAAAAA8eLs2bM6C9OSJUtsjw8bNizFNTh3KleubFssLRUtsmXL5vV5O3bssLWRPn16v44dAKJZunTpbNtkaAIQ6+ip+alv3746eGn//v3q+PHjOsDphRdeMFcLSBDPs88+qz799FO3Kf6c/zMJVtrA1LRrbSuY7QIAAAAAAAAAAIjTp0+rJk2a2IKZJFPS5MmTfQ5mErVr1zbvJycnq7/++sun561atcplGwAQj/xJWgEA0YgMTX4qWrSobbtUqVLq7bffVo0aNVItWrQwsxINHDhQPfDAAzqTk9EhDyRzkfO+1prR1jZT065E51qDlly16+t/eNZ2PdW3dkWCxLyVnKtTp46+X6lSJVWiRAm/2geA1HjooYds29OmTeOEAgiLvHnzcqYBAAAAADHv0qVL6v7771erV682H8udO7eaOXOmuvvuu/1qq1atWipfvnwqMTFRb8+ePVvdeeedHp+zbds2tXv3bnO7adOmfr8HAIglGTJkiPQhAECqENAUJNLxldUDQ4YM0duSxWnSpEk6e5PIlSuXue+FCxd8blfascqePbt539pmatq1tumuXV9StXpr1xt/ApQk6Mo58AoAQunMmTMp/g4BQDjw9wYAAAAAEC8VMJYtW2ZuFypUSP3yyy+qZs2aAU3St2vXTo0fP15vf/HFF+rFF19UefLkcfuckSNHmvdlP1mkDgAAgOhFybkgd8aN0nNi8eLF5v0CBQqY940VA75w3lc6+IasWbPaAo0CbdfapvOx+tPu1atXbUFVzu0CAAAAAAAAAIC054cfflATJkywLaz+7bffAgpmMvTv31+lT/9/01wnTpxQHTp0cFvJQkraSdCToU+fPnqOBQDiibUiDwDEAwKagkhSo1auXNllCbUyZcqY948fP66SkpJ8avPgwYMesxhZ2z106JDPx2pt11Ob/rQr+zkcDrftAgAAAAAAAACAtEXmQ55//nnbYxJcVL169VS1W6VKFdW7d29ze/78+apBgwZqxYoV5mNHjx5VgwYNUt26dTMfK126tFldAwAAANGLknMesg39888/as+ePbrusq/l03LkyGHeT05ONu9bA52uX7+u6zRXrFjRa3s7duywpUAtXry47ffS7tatW1Ps60+7VatWtf1OjksieI3gJNnXl/rVzq/v3C4AAAAAAAAAAEhbvv32W7V3715zW7IqSUCRv0FF/fr10zerESNG6DmShQsX6m0JZrrtttv0AnSpcHHkyBHbQmzJDDV9+nSVM2fOVL8vAAAAhBYZmlxYsmSJTjUqgT3Nmze3lY7zJ/NRkSJFzPu1a9e27bdq1Sqf2rPuV6tWrRS/t7a7YcMGHYjlzYEDB9Thw4fdHpt06K3BVoEcqwwUZHUEAAAAAAAAAABIu2bMmGHblsXgsujb31tiYmKKtmUuZ/bs2apr1662UktnzpzR8yDWYKYKFSqoRYsWuZxrAYB4YP2bBwDxgIAmFyTrkTW70syZM306mdu2bVP79u0zt+vWrWveL1y4sKpRo4a5LR1sb06fPq2WLl1qbjdt2jTFPtbHLl26pBYsWOC13Z9++sm8Lx38Jk2aeGx33rx5OquUP+02bNhQZcqUyetzAAAAAAAAAABA/PKnukQgJKhp4sSJauXKlerpp5/Wi60lQ1PGjBn1wnNZuD5hwgS1ceNGdcstt4T0WAAAABA8BDS5UKhQIZ2S1PDNN9+oQ4cOeT2ZQ4cOtW0/+OCDtu0OHTqY93/88Ue9osCTMWPGmBmXMmTIoDp27Jhin5tvvtmWTWnUqFEe27x27Zr68MMPbYFLEmzlzHqs8t6//vprj+1K4JU1Q9Njjz3mcX8AAAAAAAAAABD/Nm/erLOGpPb26quvenwdqUYh8ypbtmzRC8ZlfkWyNM2dO1d1795dZcmSJWzvGQAiwZqpDgDiAQFNbjzzzDPm/YsXL6ouXbp4LOf2xhtv6LrLhtatW6dIW/rEE0+oHDly6PvSVrt27dS5c+dctieZll5//XVbgFGJEiVc7vvss8+6fZ6zp556Sm3fvt3cHjBggMv9JKCrXr165nbfvn31oMNdmb1OnTqZ22XLllVt27Z1ewwAAAAAAAAAAAAAAACAOwQ0ufHwww+rZs2amdu//fabuuOOO9TChQvN8muyIkCyEknw0pAhQ8x9ixUrpj766KMUbRYoUMC2gmD9+vV6xcAvv/xi1jSVus7vvPOOuv/++3U2JSGpUd966y23H2KPHj3UTTfdZMsU1a1bN/XPP/+Yj8mKhBYtWui0qoY2bdqoe+65x227o0eP1pmhjOOS9z9+/Hhd2k4kJSXpIK46deqo/fv3255HuTkAAAAAAAAAAAAAAAAEIiGgZ6UR3333nbr77rvV2rVr9fbq1atV48aNVfbs2VX+/PlVYmKiOn/+vO05Eswk6UuLFy/uNpvSunXr1NSpU/X233//re69917dZp48edSRI0fMgCkhNZ5l35IlS7o9zoSEBB1Y1LBhQ3XgwAH92KRJk/RNyudJeydPnrQ9R2pIf/HFFx7ff926ddXYsWNV7969dcCVBDX17NlT16CWMnUnTpxQly9ftj3npZdeUq1atfLYLgAAAAAAAAAAAAAAAOAOGZo8yJUrl1q6dKkuFZc+/f9O1YULF9S+fftSBDO1bNlS/fXXX6pmzZruT3j69Gry5Mnq+eef14FI1jaldJs1mKlo0aJqzpw5OluTN+XKlVNLlixRt99+u+3xY8eOpQhmkgAq2VcCqLzp1auXmjJlisqXL5/5mGSOksApazBT5syZ1ciRI9Wbb77ptU0AAAAAAAAAAAAAAADAHTI0eZEtWzZdZm3AgAG6XNuiRYvUnj171NmzZ3VAkGROkixOHTt2VLVq1fLpmyZBTSNGjFDdu3dXEydOVPPnz9cl24w2a9SoobMcSdk4Cary1Q033KD++OMP9eOPP6rvv/9el8OTjE/Jyck6OOq2225TnTt31gFN/ujUqZMuvyfHOmvWLLVz504dJCXnpnz58rpsnWRuKlOmjF/tAgAAAAAAAAAAAAAAAM4IaPJRxYoVdRBSMFWqVEm98847+hYs6dKlU23atNG3YJISewMHDtQ3AAAAAAAAAAAAAAAAIFQoOQcAAAAAAAAAAAAAAAAgahDQBAAAAAAAAAAAAAAAACBqENAEAIAXycnJnCMAAAAAAAAAAAAACBMCmgAA8OLatWspHiPICQAAAAAAAAAAAABCg4AmAAC8uHr1qk9BTgAAAAAAAAAAAACA1COgCQAAL1wFL8VqQNO4ceNUhQoV9E8AAAAAAAAAAAAAiEYENAEA4EVSUpJPj8WCUaNGqV27dumfAAAAAAAAAAAAABCNCGgCACCAknOuHosFAwYMUOXLl9c/AQAAAAAAAAAAACAaJUT6AAAAiHbxlKGpV69e+gYAAAAAAAAAAAAA0YoMTQAAeHHt2jWfHgMAAAAAAAAAAAAApB4BTQAApKEMTQAAAAAAAAAAAAAQ7QhoAgDACzI0AQAAAAAAAAAAAED4ENAEAIAXZGgCAAAAAAAAAAAAgPAhoAkAAC/I0AQAAAAAAAAAAAAA4UNAEwAAXpChCQAAAAAAAAAAAADCh4AmAAC8IEMTAAAAAAAAAAAAAIQPAU0AAHjhcDh8egwAAAAAAAAAAAAAkHoENAEA4EVycrJPjwEAAAAAAAAAAAAAUo+AJgAA0mBA07hx41SFChX0TwAAAAAAAAAAAACIJgQ0AQAQgFgvOTdq1Ci1a9cu/RMAAAAAAAAAAAAAogkBTQAAeJGQkJDisYwZM8b0eatdu7Z+D/ITAAAAAAAAAAAAAKIJAU0AAAQQ0OTqsViyevVqde3aNf0TAAAAAAAAAAAAAKIJAU0AAKTBgKYBAwao8uXL658AAAAAAAAAAAAAEE1iezYWAIAwyJQpU9yVnOvVq5e+AQAAAAAAAAAAAEC0IUMTAABeZM2aNcVj2bJl47wBAAAAAAAAAAAAQAgQ0AQAQAABTa4eAwAAAAAAAAAAAACkHgFNAAB4QUATAAAAAAAAAAAAAIQPAU0AAAQQ0JQlSxbOGwAAAAAAAAAAAACEAAFNAAB44Sp4iYAmAAAAAAAAAAAAAAgNApoAAPAiU6ZMKf8DTc9/oQAAAAAAAAAAAAAQCszGAgDgRbp06ThHAAAAAAAAAAAAABAmBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQDghcPh4BwBAAAAAAAAAAAAQJgQ0AQAgBfJycmcIwAAAAAAAAAAAAAIEwKaAADwggxNAAAAAAAAAAAAABA+BDQBABDkgKZx48apChUq6J8AAAAAAAAAvPv3339VtmzZVLp06dSkSZN8PmVNmjTRz/H3tn79ej4WAACAKEZAEwAAAZSc8xTkNGrUKLVr1y79EwAAAAAAAIBn169fV127dlWXLl3y+1StW7eO0wsAABCHEiJ9AAAARLv06VPG/8oqLncGDBigg5nkJwAAAAAAAADPevfurRYvXuz3adq3b59KTEw0t8uWLevyWp4rmTNn5mMBAACIYgQ0AQDgha8XQQy9evXSNwAAAAAAAACeMzP16dNHjR8/PqDTZM3OJOXqJGu6v9fyAAAAEJ0IaAIAwAsuggAAAAAINSlr7SkTLAAA8ebo0aOqffv2asmSJQG3YQ1oqlmzJtfxAAAA4ghh6gAAeMGkAgAAAIBQu3btGicZAJBmzJ49W918882pCmZyDmiS9gAAABA/CGgCAAAAAAAAIoyAJgBAWrBhwwbVpEkT1bJlS3X48GHz8SeeeCKg9tavX2/eJ6AJAAAgvhDQBAAAAAAAAETYlStXIn0IAACEXJcuXdSCBQvM7ezZs6tPPvlEjR8/3u+2EhMT1b59+8xtApoAAADiS0KkDwAAAAAAAABI665evRrpQwAAIKzuv/9+NXbsWFWmTJlUl5vLmDGjql69ehCPDgAAAJFGhiYAAAAAAAAgwsjQBABIC9KlS6caNmyoFi1apGbPnh1wMJNzQFOVKlVU+vTp1YwZM1T79u11u1myZFF58uRR1apVU/3791dr164N0rsAAABAOJChCQAAAAAAAIiwa9euRfoQAAAIuVmzZqmSJUsGpS1rQFNycrLO0LR9+/YUAcNnzpxRW7ZsUWPGjFGPPvqoLnEnpe4AAAAQ3cjQBAAAAAAAAKTxgKZx48apChUq6J8AAIRKsIKZnAOaNm3aZAtmKliwoCpUqJDO2mRwOBxqypQpqn79+urkyZNBOw4AAACEBhmaAAAAAAAAgDQe0DRq1Ci1a9cu/bNXr14RPRYAALy5dOmS2rFjR4pgqcGDB6uOHTuqXLly6cdOnTqly9C98sor6uDBg/qxDRs26LJ08+fPVxkyZPDrZB84cMDj7w8fPmzev3r1qr4BQLjkyJFD5c6d29xOSkri7xCAsAhVn4eAJgAAAAAAACDCIj3hOWDAAB3MJD8BAIh2GzduVNevXze377zzTvXjjz+qfPny2fbLmzev6tGjh2rZsqW699571fr16/XjCxYsUJMmTdK/C1WGKckYJQFVABAu3bt3TxFkaQ20BIBQOXr0aEjaJaAJAAAAAAAAiDBZPR1JkpWJzEwAgFhRsWJFNXfuXLV37161b98+NXDgwBTBTFZSfk4yNVWpUkVdvnxZPzZ8+HC/A5oAAAAQPgQ0AQAAAAAAAGFkzSgRLSXnAACIJXny5FHNmzf36zlly5ZVnTt3VuPHj9fbe/bsUdu2bVOVK1f2uY39+/d7/L1kQqlTp46+X6lSJVWiRAm/jhEAUuPZZ5+1lcb85JNPVIECBTipAEJOsmKGAgFNAAAAAAAAQISzMRHQBABA6DVr1swMaBJr1qzxK6DJnwClTJky6RsAhMv58+fVmTNnzO2EhAT+DgEIi1D1edKHpFUAAAAAAAAALl29ejXFYwQ0AQAQejfccINt+9ixY5x2AACAKEVAEwAAAAD46d9//1XZsmVT6dKlU5MmTfL7/K1evVr17NlTValSReXMmVO3Vb58edW6dWv1/fffu5zo9kaeM3nyZNWyZUtVvHhxlTlzZpU/f35Vo0YN1b9/f7Vu3ToVCCmp8PLLL6u6deuqfPny6XZLliyp7rrrLjVmzBh18uTJgNpdsGCBLvcg7zt79uz6PEhJho4dO6q5c+eq5OTkgNoFgFjgKniJgCYAAEIva9asXsvAAgAAIDpQcg4AAAAA/CAXvLt27aouXbrk93m7cuWK6t27t/riiy9S/G737t36NmvWLB2ENHXqVFWtWjWf2t24caPq0KGD2rZtm+3xxMREfdu0aZP68MMPVZ8+fdS7776b4iK+OxKw9MILL6R4rwcOHNC333//Xb322mu6ZEObNm18avPUqVM6kGn27Nkpfvf333/r27fffqsaNmyovvzyS1WqVCmf2gWAWOIqeCmQYFYAANIyWQRx4sQJXcq1WLFiPj3HeUGGLAIBAABAdCJDEwAAAAD4QQKSFi9e7Pc5k4vsLVq0SBHMlCdPHlWkSBGd7ckaoFS/fv0UAUqurF+/XmdLsu6bPn16fUFfsh5ZffTRR6pt27Y+rUJ+9dVXVb9+/WzBTBIIJdmfEhL+tzZGJhCkTQnA8ubs2bM6UMk5mKlAgQL6ZiXn+I477lBHjhzx2i4AxBoyNAEAkDq33HKLypgxoypcuLAej/jqr7/+sm3LYhIAAABEJwKaAAAAAMAHEgTUq1cvnY0oEFK27bfffjO3mzZtqjZs2KAzFh0+fFgdOnRIDRgwwAxskuAfKR/nKRPUhQsX1IMPPqhOnz6tt+WC/uuvv66OHz+uDh48qNv4888/dbk4w7x589SQIUM8HuvPP/+sMy8ZypUrp+bMmaPOnTunMzOdOXNGjRs3TuXKlcvcp0ePHjoTlCdPPvmkDtYydOrUSe3atUsfr9wkQ5Vkb7KWu2vXrp1yOBwe2wWAcJO/gRUqVNA/A+Hq7xp/6wAA8F3RokXNMtUSpCQLLXwhJb6ti0tuvvlmTjsAAECUIqAJAAAAALw4evSoaty4sfr0008DOlc7d+5U7733nrkt5dkkaMi6GliyNI0cOVJNnDjRfEwCfKTsmztSPm7Pnj36vgRCSak2CZzKly+fuc/tt9+uli5dqgOoDHIsEizkLmuIZGYyJtbLly+vli9fru677z6VIUMG/Vi2bNlUz5491R9//GEGNUk5PSlP545kXPruu+/MbXmNr776SgdLGW644QZdZm7YsGHmYxKQNW3aNLftAkAkjBo1Sgdkyk8AABB+rVq1smXD9TRuMkimWBkbWRdlWLPPAgAAILoQ0AQAAAAAXi56y6rdJUuWBHyeRo8ebZYXyp07t5owYYIuC+dKly5dVPfu3c3tESNGqKtXr6bY7/Lly2rs2LHm9qOPPuq21IJkbpJgp/z585vBRxIM5cqPP/6oJ+kNEsRVsGBBl/tWr17ddgwSpLV27VqX+1pfT4KYJHjLnaFDh6pGjRqZ22+88YbbfQEgEiSjngR8yk+kPmMVAAD+6tChg61s9TvvvONxzCZZnGSsZcibNy//jwMAAEQ5ApoAAAAAwAUpB9ekSRNd9k1KwhmeeOIJv0vVffPNN7bAI7l47snAgQPN+ydPnlS//vprin0keEh+Z8145Im8pqxAtpZaMEo0WEnWJEPVqlVtgUWuPPLII6pYsWLmtvW9GqT8g5S6M0jpPgmy8vUcSCm7LVu2eNwfAMJJ/o5J9j35CTJWAQDCTxaKWBdJyKKNe++9Vy+GOHbsmC3b7vDhw9Vdd92lEhMTzey2H330kS5bBwAAgOhFQBMAAAAAuCCrdxcsWGBuZ8+eXX3yySdq/Pjxfp2vVatWqVOnTpnbEiDlTeXKlW2l2GbMmJFiH2uAkFyIr1Wrltd2ra8tF/alnJuVZJFauHChX8cqZeiaN2/u8VglIMsaPOVLu1LiL2vWrB7bBYBYlSlTphSPZc6cWcUqMlYBACI1Zhs8eLAtqGnIkCG6nLcsupCfMlaSfS5cuGDuJ+XpOnbsyIcGAAAQ5QhoAgAAAAAv7r//frV58+aAMnGsXr3atl23bl2fnmfdb9myZR7b9bVNCXqylrpzbnfbtm3q/Pnz5na9evX8PtY9e/boYCl3x5onTx5VsWJFnyb7pdSfu2MFgFhmDdj09FisIGMVACBSJCPTlClTbFlwHQ6HzrIr4xK5byhVqpSaNWuW6tOnT4SOFgAAAP4goAkAAAAAXJAyBA0bNlSLFi1Ss2fPVmXKlAnoPG3dutW8L6uDJaDHFxUqVDDv79q1S5euM8hF+e3bt9syOvkiS5YsqmTJkua2tQ3nY/WnXeuxemvX1zad23VuEwBiWbwFNAEAEElS1nvfvn26jFyLFi1UiRIl9NhHsuyWL19ePfDAA2ry5Ml6AYcv2WIBAAAQHRIifQAAAAAAEI1k5a41+CdQBw4cMO/LhXVfFS9e3LyflJSkDh06ZB7PyZMn1aVLlwJu999//9X35aK/u2P1p13rsXprN9BzIG1IIJcEmgFArMuYMWOKx2TiFQCAtMyaTclfOXLkUL1799Y3AAAAxAcCmgAAAADAhWAEM4ljx46Z9/Pnz+/z8/Lly2fbTkxMNI/J2mZq2pU23R2rTKxny5Yt4GN1126gxypBXWfPnlW5c+f2+fnOAVrOpAyF4erVq/oGAOHi/PdMskjwdwhAOPC3BgAAAEAsIKAJAAAAAELo/PnztlXDvnLe19qO9X5q2nVuJxTHGux2/Qlo8icoTUranTp1yuf9ASC1hg4datu+cuWK2rRpEycWQMgdPXqUswwAAAAg6qWP9AEAAAAAQFpZAe+qxJA7zvteu3bNZZupadfaZqiONZTtAgAAAAAAAADiExmaAAAAACCEHA6HeT9dunRBbzNU7QarzVC2683+/fu9lpyrU6eOvl+pUiVVokSJMB0ZACj10EMP2U7DpEmTdNk5AAi1vHnzcpIBAAAARL2oCGg6ffq0+ueff1RiYqK6cOGCatmype13efLkiejxAQAAAAideB8PZMqUKaAMQ877ZsmSxWWbqWnX2maojtVo9/Lly0Fv1xt/ApTkGJ3PKwCE0pkzZ1KU2fQnix0ABIo+T9oQ7+MsAAAAxL+IBTSdPHlSjR07Vs2YMUNt2bLFXLErq3WTkpLM/Zo0aaJ/vvDCCylWrgEAAACITWlpPJArVy7zvkwk+Or8+fO2bWvWDmubqWnXORNIKI7VaNcIaApmuwAQTxISomLdIQAghqWlcRYAAADiX/pIvOiECRNUmTJl1GuvvaY2b96skpOTdcfauFnt3btXrVu3TnXo0EE1a9ZMd8gBAAAAxK60Nh4oUKCAeV9WR/vKed9ChQq5bDM17VrbdG734sWL6sqVK6k+Vud2Az3WrFmzqpw5c/r8XACINeEsyQkAiD9pbZwFAACA+Bf2gKYXX3xRPfnkk+aqXOeOtPNq3FOnTpn7/frrr+qee+5RZ8+eDdvxAgAAAAietDgekEkFw6FDh3x+3sGDB21lQQoWLGhuy31rtqJA23UuyWY9Vn/atbbprd1Aj7V48eI+Pw8AAABIS9LiOAsAAADxL6wBTV9++aV65513bGUHpJMtjxcrVszlyrTHH39cZcyYUd+XzvWGDRtU//79w3nYAAAAAIIgrY4HKleubN4/cOCAznzkix07dtjaSJ/ePnyrVKmSy309kbJv+/fvN7erVq3q9lj9add5P0/t+tqm877ObQIAAABIu+MsAAAAxL+wBTRJ1P+gQYNsNZr37Nmjxo0bpx577DFdPsCZrDgeP368rvV8yy236Mekcz158mT9GAAAAIDYkJbHA7Vr1zbvS9mHv/76y6fnrVq1ymUbrh6z7uvJmjVr9DG4a1cCj3LkyOF3u9b9ypcvr/LkyeP2WI8cOWILqnLn6tWrav369W6PFQAAAEjr0vI4CwAAAPEvbAFN0hk+fvy4jviXlcT//e9/Vd68eX16brly5dTChQttK5AnTZoUwqMFAAAAEExpeTxQq1YtlS9fPnN79uzZXp+zbds2tXv3bnO7adOmKfaxPiaTFvIcb3766Sfzfu7cuVXdunVtv8+QIYNq1KiRX8d6/fp1NXfuXI/H2rhxY1uGKV/aXbBggbp06ZLHdgEAAIC0LC2PswAAABD/whbQZL3A/cYbb7hcGeBJzpw5bWlT//jjj6AeHwAA7iQlJaV4TFauAQB8l5bHAxIk1K5dO3P7iy++UKdPn/b4nJEjR5r3JdtRixYtUuzTrFkzWyYk63NcOXXqlJowYYK53aFDB5WQkJBiP3ncmnlp6dKlHtv9+uuv1eHDh81tWQnurECBAnq1uOHDDz9U165d89iu9f3IJAsZmgAAAAC7tDzOAgAAQPwLW0DT5s2b9U+py3zfffcF1Ebz5s1VlixZ9CTyrl27VLjs3LlTDR48WN15552qSJEiKnPmzLoOtaxgaN++vV4F4e1ivLPVq1ernj17qipVquhBQ7Zs2XRphtatW6vvv/9el1fwlzxHjqVly5aqePHi+jjz58+vatSooetfr1u3TgVCykG8/PLLevW2rCyXdkuWLKnuuusuNWbMGHXy5MmA2gWAWHHmzBmXKb0BAGljPBAM0h83MhSdOHFCBw25G0NIn16Cngx9+vRxOTEhj/Xq1cvclufIc12R1+rYsaPZd5cgKzkmVx588EFVqlQpc7tTp07q0KFDbj/Xvn37mtv169dX9erVc7nvc889Z97fvn27euqpp5Q7r7/+ul4tbhgwYIDbfQEAAIC0Kq2PswAAABDfwhbQdOzYMZ32tFChQjogJhCyelieL86ePatCTSare/TooSpWrKiGDx+uVyccPXpUBw6dO3dOl3WQ4KMuXbro4KZFixZ5bfPKlSu6zTp16ug61VIWQl5HSilISYlZs2bpIClZfWwMRnyxceNGddNNN+ljkfINMuEgx5mYmKg2bdqkV0BLPeynn37aVrbBGwlYkvf/5ptv6tXZsqpb2j1w4ID6/fffVb9+/fRq6ZkzZ/rcJgDEGldZNLxl1gAAxP54IJhkIUPv3r3N7fnz56sGDRqoFStWmI/JWGPQoEGqW7du5mOlS5dWL7zwgtt25XeymMEgz33++ed1WwZ5DXkteU2D9OMrV67sss1MmTKpUaNG2RY4yPhk2rRpZtZCGVN89tln6o477jADf2US5YMPPnB7rPfee68t05Rki5LtLVu2mI/9888/+j0MHTrUfExe23pOAAAAAPyftD7OAgAAQHwLW0CTdKYlwt/fTEbOjA51jhw5gnRk7l9HLvrLKmdrWSEjO5FkPrKSi/z33HOPLrfgjlz8lwv21tXWQspESOYnGXhYA5RkdbMEPHmzfv16nS3Juq+s/i5WrJjO/mT10UcfqbZt26rr1697bffVV1/VEx3WAChZBS4TJtbSFLLCXNqcOnWq1zYBIBZJMKcvjwEA4mc8EAojRoxQjRo1sgUa3XbbbXo8IH33okWLqnfffVclJyfr30tW2OnTp6fo01vJc2fMmKFy586tt+W5UqpN2pI25ffyGtbAqYYNG6q3337b47FKibwXX3zR3JYFEw8//LA+FhkPyes9+eSTZjCTjGVkMcStt97qsd2JEyeq6tWrm9tz5sxR1apV0yXpChcurMqWLasmTZpk/l7egywikYxSAAAAAOwYZwEAACCehS2gSS5OGysGJAAmEH///bfOiCEXy432QkVWAFtLtElGJVnRLJmZ9u3bp9+DrB6W1c/GxXUJEurevbtau3atyzalbNtvv/1mbjdt2lRt2LBBT4ofPnxYTxJIKQUjsEkma6R8nKeMShcuXNAlIYxMIbIqWsozHD9+XB08eFC38eeff+pycYZ58+apIUOGeHz/P//8s3rttdfMbclAJZMN8v4lO5NMXIwbN05Pshgk85RkgwKAeHPkyBGfHgMAxM94IBRkcYBkU+3atattMYP0rWU8YF1IUaFCBZ0BtlatWl7blbGKlGeTLFAGaUvadC6b+uijj6q5c+fqLEzeSJZaydQk5bENly9f1uMBa2CajAmmTJmiS2p7I4FLcqzWTE1CSuHJd8NKMjMtXbpUlSlTxmu7AAAAQFrEOAsAAADxLGwBTbIq2BBoJp/333/fvF+vXj0VKlJKTVY5G1q3bq3LzUkAkgQMWcs/yCrrH3/80QxqkpJyEpTkbOfOneq9994zt9u0aaODhmrUqGE+JlmaZDW1rFo2SBk6WensjqzgltJ3QiZFvv32Wx04lS9fPnOf22+/XU8EyPEb5Fgkq5QrMjkhmZmMCZXy5cur5cuX6xrcxvuUSQ2ZsJDzYgQ1yXv3VA4DAGKVTAj78hgAID7GA6EOapL+/sqVK3U5aAlCkmxHMs6Q8UDz5s11KTbJ2Colo30l+8piiS+//FK1atVKlSpVSmXJkkX322+88Ua9+GDZsmU68EiOwVfPPfec2r59uxo2bJgOnCpYsKDO1po3b16dUfaNN97QY51OnTr53KYENf300096sYcsCJHgLcm4JUFWJUqU0GMlycokY5AbbrjB53YBAACAtIZxFgAAAOJZ2AKaJChISJCMZP5xF0zjjpRa+Pzzz83t+++/X4WK9XWkRINMClgDmZzJ6uK+ffua24sXL1b//vuvbZ/Ro0ebq5hlwkImKaQsnCtdunTRF/YNEjR19erVFPvJ6uixY8faVltL6TdX5Pgl2MkolSfBRxIM5YoEaO3atcvc/vTTT/XEhStSLsJ6DBKk5S5DFQDEKsmg58tjAID4GA/4Qt6HcZOMS/6S7EOycGHLli0665T09yVYVrInyVhAgpH8JYFGnTt3Vv/973/1eEQyvUpGV8lsJefOOtnhDykxN3ToUB2EJVmUZFyTmJioFzcMHjxYFSpUKKB2GzdurMdFO3bs0JlgZYwi3wtZXPLQQw9RZg4AAABIY+MsAAAAIGIBTTVr1tRZhKTEWoMGDdSKFSu8Pk8uwMtq4EceeUR3yuX5ssLYXeBOMMgkgqFDhw46AMmXEnXOWZ4MUorum2++sQUeyYpmTwYOHGgrv/Drr7+m2EeCh+R3Bsmq5Im8pqzMNsiq5+Tk5BT7ffXVV+b9qlWrqkaNGnlsVz6bYsWKmdvW9woA8cBVNiYCmgAgfscDAAAAABALGGcBAAAgniWE64Vk4kEy/dx99906s5CsGJYSBTfddJO6+eab1YkTJ8x9x48frwN1JNOPlCE4e/asWf5MVh1LRiBpLxSOHDliCxKSsgq+KFeunNvJ71WrVulJG0PLli29tle5cmXdppScE7JK2Xl1xLx588z7RYsWVbVq1fLarry2ZHwSR48eVX/++ae68847zd/LauuFCxf6daxShs4ojWEcq7vsTwAQa+T/H1er2w4cOBCR4wGAWBUr4wEAAAAAiBWMswAAABDPwhbQZAQHff3116pjx466nIBMSqxfv17fDPLYU089Zds2JiukRNuHH36oSxOEimRjkkkTmag+ePCgLgXhC2vAksicObN5f/Xq1bbf1a1b16c2ZT8joGnZsmUpfm9t19c2JehJzqORmUnatQY0bdu2TZ0/f97crlevns/HagQ07dmzRwdLFS5c2KfnAkA0kzJAkh3EmZQIKl++vM6o16tXr4gcGwDEmlgYDwAAAABALGGcBQAAgHgVtpJz1hSoy5cvV1WqVNHbxkprIRMVrlZayz5S0kwyEoV60jhr1qx6gqRLly7qpZdeUtWqVfPpedasRqJ06dLm/a1bt9oyKeXJk8enNitUqGDe37Vrly5dZz0n27dvt2V08kWWLFlUyZIlzW1rG87H6k+71mN11S4AxCpX2ZmEBL5K0OmoUaPCfkwAEMuifTwAAECkWP9PBADAH4yzAAAAEI/CHtAkatasqTZt2qRmzZql2rVrpwoVKqQv2jjfsmXLppo0aaI+//xznfVH7kcjOdYPPvjA3M6YMaMupeGqLFGJEiV8brd48eLm/aSkJHXo0CFzW0pwXLp0KdXt7tu3z2MJJV/btbbpql0AiJRx48bpoEv5GQjr317nv4/yt2/AgAGpPEIASHvibTwAAEAwXLt2jRMJAAgY4ywAAADEm7CWnHPWokULfRNHjhzRQTpnzpzRWZLy58+vJ4ozZMigop1Mkq9du9bcbtOmjS5dZzh27Jh5X96Xr/Lly2fbTkxMNLMrWdtMTbvSppW1XcnmJJNIgR6rv5yDqZwdPnzYvH/16lV9AwBvRo4cqTMpyc/u3bv7fcLk75n1b7pBHnvsscdUq1at+HsEIKTiuc8TL+MBAACCFdCUKVMmTiYAIFUYZwEAACBeRDSgyapIkSL6FmtWrVqlnnvuOXM7ISFBvf7667Z9zp8/b97PkSOHz20772ttx3o/Ne06txOKY/WVtRSeN1LS7tSpU36/BoC056GHHlJTp07VPyUbiL8qVqyohg4d6vb3gbTpzfTp0/Uxd+rUSWcuAZC2HT16VKUFsToeAAAgmEHM2bNn54QCAIKGcRYAAABiWURKzsWLLVu26NUOly9fNh8bPny4uvHGG92uqpdydL5y3teaetx5pX6g7TqnMw/FsQJAJElA0MyZM2MqMEiCmfbv369/WoOcJAOg/AQAAAAQf+I5KyMAAAAAAEDMZmiKNRs3blRNmzZVx48fNx9r27atev7551Ps63A4zPvp0qULyutb2wxVu8Fq01cyee+t5FydOnX0/UqVKqkSJUqE6cgApGWShc/4+5SUu4RSjmSVcPaQ3i5fvrx66623gv6agwYNUqNHj1bPPPOMql69un6sffv2+jimTZumhg0bZtt//Pjx5v5PPvlk0I8HQGTlzZuXjwAAgDSAxWEAAAAAAAARCGjq3r17UNuTYJsJEyaoSFi6dKlq2bKlOnPmjPnYXXfdpb766iuX+2fKlCmgi1PO+2bJksVlm6lp19pmqI7VV/4EKMlxOp8DAAiFI0eOmH/vr2YqqtI5rquM/39bAi1D8bfo6aef1jergQMHqlGjRqkBAwakeM0PPvhA7d69W/90fh6A2BcvfZ54Gg8AABAK169f58QCAPzCOAsAAADxLGwBTZMmTQp6xp9ITGBI+Z8ePXqoK1eumI/dfffd6qefflJZs2Z1+ZxcuXKZ9y9cuODza50/f962nT17dpdtpqZda5uhOlYAiGVnz5417zsSMimVfN3l70KtV69e+uaKBDkZwU4AEK3iZTwAAIgd48aNM/vJ7vrS0YSAJgCAvxhnAQAAIJ6lD/cLSkkzX2+enheJ4x46dKh69NFHbcFMrVq1UnPnzvUYwFOgQAHzfmJios+v6bxvoUKFXLaZmnatbTq3e/HiRdt7DfRYASBWXb58WV29elXfP3TokFo3Z4o6sne7LZgzKSlJRZpMzuzcuTMmJmkAIFbHAwCA2CPBTLt27dI/YwEBTQCAQDHOAgAAQDwKW4amBg0a+LwiWy7gyCTxgQMH1IkTJ/Rj8tycOXOqYcOGqRw5cqhwT2h369ZNffvtt7bHJVOTrPZLSPB8GsuUKWPelwlxXx08eNBWaqRgwYLmttyXICoji1Kg7TqXebMeq9Fu2bJl/WrTVbsAEIusmerk/6Qrly6pQ9vXqVK31DAfv3Tpkv7/CQAQv+MBAEBsirVMpgTsAgD8xTgLAAAA8SxsAU2LFy8O6Hl79+5VH374oRo7dqw6d+6cmjJlivrll19Uvnz5VDhIOSHJwrRkyRLb4zKRIhmbfFG5cmXzvkzKSOajbNmyeX3ejh07bG2kT29PqFWpUiX1119/pdjXW3DW/v37ze2qVau6PVajXV8Cmpxf37ldAIhF8vfaGqi57+hJVbRKPQl10gGf8jf9k08+UYMGDYrocQJALIjV8QAAIHZ5KtscjYJdmhUAEP8YZwEAACCehb3knL8kmOb9999XM2bM0Bd21q1bp5588smwvPbp06dVkyZNbMFMkilp8uTJPgczidq1a5v3k5OTzSAkb1atWuWyDVePWff1ZM2aNfoY3LUrAU3WFe++tmvdr3z58ipPnjw+PQ8AYiWgqVixYqpG+wGqUNV6ZoCqZGf6+OOPI3iEABD/IjkeAAAAAIB4xDgLAAAAsSDqA5oMLVu2VE899ZROvz1z5kz122+/hfT1ZJL6/vvvV6tXrzYfy507t5o3b5567LHH/GqrVq1athXks2fP9vqcbdu2qd27d5vbTZs2TbGP9bE9e/bo53jz008/2d5P3bp1bb/PkCGDatSokV/HKiVB5s6d6/FYASAWyf8FNukzKkeGjGbGpqxZs6rOnTtH5uAAII0J93gAAAAAAOId4ywAAABEs5gJaBL9+vUz73/55Zchfa2+ffuqZcuWmduFChXSmZruvvtuv9uSIKF27dqZ21988YXO/uTJyJEjzfuS7ahFixYp9mnWrJktE5L1Oa6cOnVKTZgwwdzu0KGDSkhIWXVQHrdmXlq6dKnHdr/++mt1+PBhc9vfgC8AiAbjxo1TFSpU0D9dZWgSEszkSJ/RzNhUp04dXZYUABB/4wEAAAAASAsYZwEAACBaxVRAk0w058yZU99fuXJlyF7nhx9+sAX+5MqVS68Ar1mzZsBt9u/fX6VP/3+n+8SJEzpo6Nq1ay73lZJ2EvRk6NOnj84C4kwe69Wrl7ktz5HnuiKv1bFjR3Xy5EkzyEqOyZUHH3xQlSpVytzu1KmTOnTokMt9N2/erIO/DPXr11f16v1fOSYAiCWjRo1Su3bt0j/dZWjS2ZkyJHjO4gQAiPnxAAAAkSBZCAEACDfGWQAAAIhWMRXQJLJly6Yv8LgLsEmtpKQk9fzzz9sek0Ch6tWrp6rdKlWqqN69e5vb8+fPVw0aNFArVqwwHzt69KgaNGiQ6tatm/lY6dKl1QsvvOC2Xfld8eLFzW15rhy/tGWQ15DXkte0rrqoXLmyyzYzZcpkm9Dfv3+/ql27tpo2bZo+P8YE/meffabuuOMOdebMGf1YxowZ1QcffODXeQGAaDFgwABVvnx5/dN9ybkEM0OT232CkBkKABC58QAAAJFCQBMAIFIYZwEAACAapaw3FsWkZJoRqJM5c+aQvMa3336r9u7da25LViUJGvIUVOSKBAxZU7WKESNGqK1bt6qFCxeagUa33Xabyp07tx4wHDlyxHbxSjJDTZ8+3VyF7oqUnJsxY4Zq2rSpDixKTk7WpeckIKlIkSK6XJIRcGRo2LChevvttz0ev5TIe/HFF9Vbb72lt2XC6OGHH1ZZsmRRBQoU0J+DNcNUunTp1JgxY9Stt97q13kCgGghGe+sWe/cZmhKZ48Fdi5Ll5rMUM6vDwAI/3gAAIBIIaAJABAJjLMAAAAQrWIqoOn99983g2ckc1EoSHCQlQQI7d692+92EhMTXZaImz17ts7U9OWXX5oXqiTgyDnoSLJ1SHDVLbfc4vW16tSpo4OkHnvsMR0wJaTtw4cPp9j30UcfVePHj9dZmLwZPny4Dl4aMmSIOWF/+fJldeDAAdt+Enj18ccf69J0ABBPrAFN+i92ugxKpU9n20f+LqaGZISSYCZrZigAQOTGAwAARMr169c5+QCAsGOcBQAAgGgVEyXnrl69qrMOvfnmm3ryQjRv3jwkr7Vjxw4VShLUNHHiRLVy5Ur19NNP61J0kqFJyrVJRiV5XxMmTFAbN270KZjJIPtu2LBBB0q1atVKlSpVSmdTksxPN954o+rRo4datmyZmjJlij4GXz333HNq+/btatiwYTpwqmDBgiohIUHlzZtX1a9fX73xxhtq586dBDMBCFk5tUiWZJP/f0zpE2QGXWdocqh0rvcJgGRlkr+jZGcCgOgYDwAAECkENAEAwolxFgAAAKJd2DI0de/e3a/9JTOSZL2QTEfr1q3TP42MRlJeQgJ0QmHz5s0qHGrXrq1vwSSBRp07d9a3YCpZsqQaOnSovgFAuMupRbIkmzX7kkMCmoRMpMv95GtBydAEAGlFrIwHAACI1YAmWQRiZH9lwQQApA2MswAAABDPwhbQNGnSJHM1tb9k4kKeKze5/9JLL6kbbrgh6McIAAguCdz8999/UwRw+nOhPZIl2a5cufK/jfQZbMFN6aI4oImJDADRiPEAAAChDWiK5GIQAEBkMM4CAABAPAt7yTkJSPL3ZjxPSqUNHz5cDRkyJNyHDQAIwOrVq9W1a9f0T3cX2qO5JJs1oMnM0OQU3JTaknOh4M/5BYBwYzwAAIBrSUlJqTo1sgikfPnyEVkMAgCILMZZAAAAiEdhy9DUoEEDvzM0ZciQQWXLlk0VLVpU3Xbbbaply5Yqf/78ITtGAEBwucuuFMmsS/6wBSvZMjRFd0BTrJxfAGkL4wEAADxnY0ptQJMsAiEzEwCkLYyzAAAAEM/CFtC0ePHicL0UACBKuLugHisX2m0l59JlcBncZNsnSsTK+QWQtjAeAADAc/BSagOaAABpD+MsAAAAxLOwl5wDACBWuC8597/7ly9fDtrrjRs3TlWoUEH/BAAAABC/XAUvSbluAAAAAEhNCVIAiCcENAEA4MaFCxfM+44MGV3ev3jxYtDOn5SJ27Vrl/4JAAAAIH65Cl4iQxMAAACAYEqXLh0nFEBMI6AJAAAfAppUhkzmXUf6TK73SaUBAwao8uXL658AAAAA0lZA09WrVyNyLAAAAADiExmbAMQ6ApoAAEhFhiZvAU3+lJHr1auX2rlzp/4JAAAAIG0FNFFyDgAAAEBqkJEJQLxJCGZjGTJkUOH8g0wqbgBAqFy/fl2dOXPG3HYkZHZ5/9SpU3qVg7uBgrWMHIFKAOId4wEAAHwfbzjjOhcAgHEWAAAAEKIMTUbaOvkZjhsAIG3yJ+tRoE6ePKmSk5PN7eRMOcz7jkzZbWUhrIFPsVRGLhznEUDawngAAJDW+drHto41AADwhHEWAAAA0qqgl5wj0AgAEGrWrEehcuzYMdu2NYgpOXMOj/vGShm5cJxHAGkP4wEAQFqWmj42/4cCAPg/AgAAAAhRybmJEycGszkAAFySbEcyQRDKrEdHjhyxbVuDmKzBTca+N954o4o14TiPANIWxgMAgLTOWx9bMjfJ77t27Zrid2RtAgC4wjgLAAAAaVVQA5q6dOkSzOYAAHBJsh0FkvHImDyQyQVvz9+9e7d535EunVOGplxKCp+ms+zboEGDqPu0vL3fQM8jALjDeAAAkNZ562MbGZw+//xzVbp0advvEhKCepkOABAnGGcBAHzlvEji0qVLnDwAMS3oJecAALAG1FSoUEH/jLXyD3///bd5PzlrPqXSWyYXMmRUyVlyu9w3ms4fJeUAAACA6CKLDcqXL6969+6d4ndZsmSJyDEBAAAAiE9nzpyJ9CEAQKoQ0AQACJloC6gxJg+8lViTVQzWIKXr2fOn3Cd7AfO+7OtwSM6m6Dp/vr5fAAAAAOEh2Zt27typevbsmeJ3mTJl4mMAAKRp//77r8qWLZtKly6dmjRpkt/PX716tf4/tkqVKipnzpy6Lbk21rp1a/X999+rq1evhuS4ASBanTt3LtKHAABpM6Dpjz/+iPQhAABiLKDGmDzwVmbtn3/+URcuXDC3k7P9L3jJcN0S0HTq1Cl18ODBqDt/vr5fAIhFjAcAALEsc+bMKR4jQxMAIC2Ps65fv666du0aUHmkK1euqB49eqg6deqo8ePHq23btqnz58/rtnbv3q1mzZql2rdvr2rXrq02b94ckuMHgGhEhiYAsc5SPye8Nm3apDuS0qlMSkpKUdNTSLYLefzatWvq8uXLOop0//79aunSpfq58jwAQPSSQJpQB9NIOTbJYCRBP8F6reXLl9u2r+cskmKf6zmKpHjOQw89pGLt/AFApDAeAACkZa6yMWXNmjUixwIAiB+xPM6ScqyLFy/2+3lyvC1atFC//fab7fE8efLoYOGjR4+amdU3btyo6tevr1asWKEqV64ctGMHgGjhnInu2LFjETsWAIjJgKaZM2eqQYMGqT179gTchnQ+JeUoAADWsmzBCv6xrkZLzpxLJWfJnWKf5Gz5VHKm7Cr91Qvmc4Id0AQA8YjxAAAAyuV1LQKaAABpcZwlmZn69OmjMysF4uWXX7YFMzVt2lS9++67qkaNGnr7yJEjauTIkeq9997T7/Hs2bOqZcuWOviL/3sBxBMJVk1MTLQ9JkGdABDLwlpy7ssvv1Tt2rXTnWrpOBpR8cLYtj7m/Lir3wMA0rZgl7U7efKkTkttSMpTSmYbUu6YLt3//e7/k4sg0Zy+VTJZVahQQf8EgEhhPAAAgHtMqgIA0to4SybaGzdurD799NOAnr9z504dqGRo06aN+vnnn81gJlGkSBEd0DRx4kTzMclENWbMmFQePQBEFwlmkux7VgQ0AYh1YQtoOn36tHrmmWfcdpwl8t+I/nfuRBu/k1uJEiXUY489pr7//vtwHToAIIpJVia5eBGs7EyLFi2ybSfl/V/QktXx9QvV2vnT1KFDh8zVD0uWLFGxkMkKACKB8QAAAJ5lzpyZUwQASDPjrNmzZ6ubb745VdfTRo8ebU7e586dW02YMEGlT+962qtLly6qe/fu5vaIESNSlGYCgFh2/PjxFI+lpuScq0XSLJwGELcBTZMnT9aZK4zO83333afmzJmjtm/frpYvX252onv27Kn27t2rtm7dqn799Vc1ZMgQXevY6GjLhLGkC33wwQfDdegAgCCIhY6u/D8jq7gMyRmzqes5Crnc99iaeerK2ZNq/4GD5mPW58Z7JisA8BfjAQAAPMuQIQOnCAAQ9+OsDRs2qCZNmuiyb4cPHzYff+KJJ/wuVffNN9+Y248++qjKmzevx+cMHDjQlqVdzgUAxIsLFy6keOzixYtBXSTNwmkAcRvQtHDhQvN+8+bNdfS9/LzxxhtV3bp1VcWKFXXH+c8//1SlS5dWlSpV0qlGhw0bpju4tWrV0s+VDm7v3r3DddgAgCCJhY6uZHqSlNOGawXKK5XO9X+VhWo1U5nzFFZFK//f/09CStXJxaFoDOYKdiYrAPAX4wEAAAAACK5YHGdJpqQFCxaY29mzZ1effPKJGj9+vF/trFq1Sp06dcrclgApbypXrqzKlStnbs+YMcOv1wSAaHbp0qWgBjS5WiTNwmkAcRvQtGnTJvP+4MGDU/y+Xr16+ueWLVt0ZLyVpDudOXOmyp8/v+58y/21a9eG4agBAMESCx3duXPn2ravFbjR7b4Fb2qkqj4+QuWv19b2uKssTd6CuaIh4AkAQo3xAAAAAAAwzrK6//771ebNmwNagLd69WrbtgRw+cK637Jly/hKAogbroKXLl++rLPwBWuRNAunAcRtQJMRKZ85c2aXHcsaNWqY99esWZPi98WLF1f9+/c3t7/99tuQHSsAIHDugnOivaMrHXtrmumkHIWVI0sur89LzpZXXc9ewNyeP3++unr1ql/BXIFkryIICkCsYTwAAIBn165d4xQBAOJ+nCXl8Ro2bKgWLVqkM0qVKVMmoHakfJ6haNGiuoSeL+S6pUGux0npOgCI5/FEUlJS2I6BeQsAMRvQdP78ed1RLViwoEqfPr3LVJ+GjRs3umyjc+fO5v2//vorREcKAEhNZ7Vfv35BKy0Xzs7v4sWLbTWmrxV0n53J2YHECzrNtVxIkaCoF154wa9grkCyV8VCCT8AsGI8AACAZ+fOneMUAQDifpw1a9YsHcwkQU2pceDAAVuVD19JEJd1kv/QoUOpOg4AiBa5c+dO8VjWrFlVpkyZwjZPw7wFgGBLUGEi0fEnTpxw+/sbbrjBvL9t2zaX+5QqVUr/4ZUsGjt27AjJcQIAAiedVVkFkDFjxqCUlrN2fkOd2UlWhBkcGTKppHxlfX7u4e1r1ZVLl/T/T1IaddKkSer999/3+fny3nx5fzJgkHMh51Zuxn0AiAWMBwAA+B9X2SDOnj3LKQIAxP04q2TJkkFp59ixY+b9/Pnz+/y8fPny2bYTExP9OiZrIJUrhw8fNu9LFnfnTO4AEMr/E5yDmgoXLpzqv0MjR45Uu3fv1j+7d+/ucV/J+jd69Gj9k79/QNpyNUR9nrAFNEmHUjrW7jrXklZUVhJ46lgb7UiH0UilCgCIHtYgm2AEIIUraGfPnj1q8+bN5va1/OWVSu/7f5GFajVXx1fMVDmzZtYr42RVnPxf5c/qMOeAJVfnzxrg5ZzxydtzASDSGA8AAPA/Mm5wRoYmAADjrMD+L82RI4fPz3Pe19X/yZ74E/y0fft25rIAhNXQoUNTPLZp06ZUtfnQQw+pqVOn6p/e2rrtttv0LRivCyC2HD16NLZLztWsWVP/lCj/tWvXpvi9pLuTjqBktpBJZVcr1ZKTk9WRI0c81gEFAESOt9Jq/qYp9ae91HjppZd0yTgjxfS1ghU97n98/UK15fNB+qcoeFMjVe2xV1SVKlVUnTp1VLFixdTPP//s93F4S8fqqTQdqVwBRDvGAwAA/I+rhXqSIQIAAMZZ/mcBkGzxvnLel7kmAPCsXbt2aubMmfonAIRb2DI0ST3k77//Xt8fNmyY+u9//5tin+rVq6t9+/apixcvqsWLF6vGjRvbfv/HH3/omsYib968YTpyAEAohLOcnCdy0ULKzV26dElnVSpcoaZKzub5/5hja+apK6eP6p8SzCSSsxdQ17PlUxku/t8kxPz581W3bt1UQkJC0DJSeSpNJ8+R1RdnzpzRQWJkaQIQbRgPAADgukyO4fjx45wiAADjLB/J4niDUf0jHPbv3++15JwseBSVKlXyO4M7AKRGly5d9Dy7oVmzZqpHjx6cVAAhF6r4nbAFNEnU5sCBA/WEsUwct2zZUr377ru6Q2do1KiRmjNnjjkx+/vvv6tcuXLpbfnjK883OqfVqlUL16EDAILAuSRasMvJBVpybdmyZTqjklEi7lrBG70+p1CtZjqYSX4aJFvTsZWLVakiBXR7UmJ19erVZnpVX3gKWPLludESJAYArjAeAADAc/ASAU0AAH+l5XGWVP0IJMuS875ZsmTx63X9CVCSY7QeJwCEmvwtl0XPhjx58vB3CEBYhKrPE7aScwUKFFB9+vQxo+alA121alX16quvmvt07NhRZc6c2ayrWblyZdW/f3/13HPP6TI+f/31l7nv/fffH65DBwAEgXNJtGCXkwu05JqUhpMAJFk5VbRESXUtX1mvZeYkK1PVx0eY2ZnMrE3nTqn9Bw7Y2g4nTyXpACDSGA8AAGKBL6Wxg4GAJgBAMKTlcZYRlCUuXLjg8/POnz9v286ePXtQjwsAoknBggUjfQgAEBsBTeLNN99UTZo00Z1rIwVo7ty5zd8XKVJEPfvss2bnW1Jzjh07Vn3wwQe6FJ11P9LjAUBsCXWwTSDtnzx5Uq1atcrcTspbRqkMmbyWmXNFsjVlzlNYFbuxpi37k3U1RKgnTIIdJAYAwcZ4AAAQ7QJdKOGvxMREnx4DAMCbtDrOkmCuQP4Pdd63UKFCQT0uAIikDBky2LYlQxMAxLKwBjQlJCTotKfDhg1TWbNm1Y+VK1fOts/rr7+uWrdubet8C7kvj0nU/bRp02zR9wCA6GctMxeK1c6BBPP89ttvKjk52dy+VqCC232NgCVrmTkrI2tT/totzMeSkpLUokWLomLCJJyrzQHAHcYDAIBoF66sp6dPn07xmCyGMCabAQDwVVodZ5UpU8a8f+jQIZ+fd/DgQVtpFLKXAIgn1r/xgrKXAGJdWAOajD+cQ4YMUceOHdMd5Nq1a6eIHJ05c6aebJV0p9KZlpt0xB9++GG1Zs0adfvtt4f7sAEAQRDO4B1v5P+W+fPnm9vJmbKr6zmLut3fVZk5V67nLq6SM/7fxSNhfQ1fJ0xCFXgUTecfQNrFeAAAEM3ClfXUVSbXa9euqYsXL/rdlrfxAwsbACD+pcVxlpTOMxw4cMDn/0N37NhhayN9+rBPkwFA2BDQBCDWRaynli1bNtW2bVtVtKjryeMnn3xS13OW2seSAlUu9Hz77bd60hcAEJvCtdrZF7t371Z79uwxt6/lLy/LF1LfcLr0Kinf/1bBbdu2zZa+25cJk1AFHnk6/3JBS1Js58yZU/8kixOAUGM8AABIy9yVpvZWstoVb+MHFjYAQNqRlsZZ1qAtycD+119/+fS8VatWuWwDAOIRAU0AYl3YApqkYzhmzBh1/Phxv54nKwQKFy6couYnACD2hLrsnD8WLlxo29YBTUFyrUB5j68VysAvT6uvPa02l89E/o8+f/68/kkWJwDBxngAAID/uXTpksvTcfnyZb9Pk7fxQzQtLAEABFdaHmfVqlVL5cuXz9yWsnveyMJDWeRoaNq0aciODwCiwfXr1yN9CAAQGwFNEh3/zDPPqOLFi6sWLVqo7777Tl25ciVcLw8ACCFXQTTuAmuiYXWwpNSWIKNDhw7pVVkHTpxRjqy51fH1C9WWzwfpn8J521fJWfOq61nymNvyWvKa4Shz4Xx+fS0vIZMbxkUs+clkB4BgYzwAAPBXPJdKu3r1ql+Pp2b8EK4yegCA8EvL4yy5ftWuXTtz+4svvlCnT5/2+JyRI0ea9/PkyaPPGQDEE+d5iLTyfwKA+BX2knNJSUnq559/Vo888oheAfD444+rxYsXh/swAABB5CpIyV3gkrE6WFaQ+To5EeyJjK1bt6ojR46oAwcO6JXRB/b9ox8/tmaeunL6qP7patsXOghqwgvqYOI58zEpOSfnIhycV1/7GkAmkxtjx47Vz5WfTHYACBXGAwAAX0XDYohYCGgCACCtjrP69++v0qf/v2muEydOqA4dOqhr16653Hfy5Mk66MnQp08fnakKAOJZIBlgASBNBjQ1b95cJSQk2KJDz549qyZOnKgaN26sSpcurQYPHqxTfgIAYourEgbuyhoYq4NXr17t8+REsCcylixZon+WKFHi/1Js39pMbxeq1UxlzlNY/3S17QsjCOrQjk0uXzPUnFdf+1NegpXbAEKJ8QAAwF/xXCqNgCYAQDCk9XFWlSpVVO/evc3t+fPnqwYNGqgVK1aYjx09elQNGjRIdevWzXxMzssLL7wQ9uPF/2PvP+DsKqv9f3ydMn0yJb0SkiChSAuEIlJExIYNUfgioGLhhyCWi9erXrlcrl4LXL0iwl+9oqIoKmKjiCIiPaGFDsGQkJ5Jm0ky/ZT/67P2Wfs8e599zpxpmfZ5v9ictvezn70nM+d5nvVZn0UIGW5isVjgNR2aCCFjnb0maLr99ttl06ZNct1118kJJ5zgv49BNrZ169bJ17/+dXnta1+rtY+vueYaaWlp2VvdI4QQMgjCQhg4KUF8hMBDMaefvoITrivTUAYy8J3zwAMP6PPZs2fLkW94u0w96q36etrhp8jBH/2mPka9DhNVks4XQS19m6RrJvvv2zkHwmAcqihSIoSMFjgfIIQQ0l/G61gWcxI4aURRzFWCEEIIiYLzLJFvfvObcsop+bU7iJmOO+44LSmHtb9Zs2bJVVddJZlMRj9vaGiQW265RSZNmsR/VISQcQ8dmgghY529WnJu8uTJuggFl4pXX31VvvGNb8jhhx9eIG568skn5TOf+Yw6Z7z97W+Xm2++mX9wCSFkDFGOo1JfwQm3jaEMZKxZs0Y2btzov0417TPgtqJK0rkiqFTzPoHzbtiwYUBiJbsXl1566YBETUNdso8QQgYK5wOEEEKISDqd9l00whQTOhFCCCGcZ0UD9/XbbrtNPvShDwWcSdra2jTJ3v3OxfrY3//+d02qJ4SQ8Uh4njEWHZoYzyCEjJigyQVipc997nPyxBNPqN3pv//7v6v7hitswiLOn//8Z/nABz6gdZ8/8pGP6GCTEELI6GYoHJXCbQzVIPbBBx8MvHZFR/2lr5J0YbGUndu9lnLEX7gHFRUVmq09EFHTUJfsI4SQoYDzAUIIIRN1obuUaIkOTYQQQgbDRJ1nQdSEMnvLli2TSy65REvRNTY26nrazJkztTTfj370I3n66adlyZIlI91dQgjZa4xFhybGMwgho0LQ5LJ48WK58sorZeXKlbJ8+XL51Kc+pVag7iB79+7d8pOf/EROPfVU2WeffeQLX/jCSHebEEJIP0rQ9TfQEG5jqAaxrqApU9UgmeqmkvtHlZUrl0ztFMlU1hWc272WcsRfuAcoxWqipnLuwXCV7COEkOGA8wFCCCETaaG7VFBhLGZQjyexGSGEjCfG4jzL+oUNjkv9ZenSpfLd735XnnvuOWltbZWenh51abrjjjvkggsukOrq6mHpNyGEjBZcpzqAv4NjDcYzCCGjTtDkAqvPb3/727Ju3TrNCvjEJz4hc+bM0c9sILt+/Xqti0wIIWTiBBqGYhC7Y8cOefHFF/3XqaZ5GOH3u6xcOZ8psZh3jhzPPPOMLhS511JuOT0TNU2bNk0ts/sKDAxXyT5CCBluOB8ghBAy3he6d+3aVfQzjPXHA2NVbEYIIeMVzrMIIWRikslkZKzBeAYhZFQLmlwF6UknnSRXX321KurNBjSsLCWEEDIxAg2DGcRadvDll18eqCEdLgkXBq5M6e4OSdZMiiwr11fJOTvHxo0bNRMOglw8DvRasD/ssrdu3dpnYGCsBncIIcTgfIAQQsh4XeguJVoaL4ImzkcIIWR0wnkWIYRMLNx4CCGEjEVGpaAJVqA33HCDvPOd75QpU6bIe9/7XnnyySd1sG1/eGkNSgghY4eRDjRYdvAvfvEL/71solLS9TNKHgfnpVTnbklU1cq0w08p+BzvHfzRb0Z+ZqQnzZR169dLZ2enCprckndDFRiIKucw0vecEEIGA+cDhBBCxnO5M3zPjXdBE+cjhBAy+uA8ixBCCCGEjDVGjaCpvb1dA80QMc2cOVM+9rGPye23364BYCs1B0488UT54Q9/qHWPCSGEkHKCGBD/LFq0SL9fjFTjXJF46a/BchyYolydnvu/f9VHJZ6U2fsfKjU1NTJ37lx55JFHpLu7u2hfS70XFRjA55deemm/yjlY2+ecc86oDvQQQiYWnA8QQgiZKOXOWlpaAq8zVZP855s3bx6BHhFCCBmvcJ5FCCETm9FU+Wi0J54QQkYnyZE8OQK6EC3dfPPNcscdd6h4Kcr+bv/995fzzjtPzj33XJk/f/4I9ZYQQshYDWJAALR48WL5z//8T//zVPO+fbYB56VS7kvFXJ26W7foox07dcmbZV5TtT7v6OiQxx57TI4//vjIvppQKeq9YtfZ29srFRUVZZWXMwEUjnn11Vf1EaX40A6Op6MTIWRvwvkAIYSQ4QDjWhvfjkbWrFnjP88mqtQ5Nt69W1+vXbt2BHtGCCFkPMB5FiGEEKOqqmrU3IxyYx6EEDKiDk3pdFrFS+eff77MmDFD3ve+98lvf/tbDfC6YiaUmrv44ovVyeLFF1+UL33pSxQzEULIGKYc9f1QKvTDpdnuvfde/7NsPOk5NA0DUa5OqaZ5ko3lv3LdvkT1tdh7Udh+11xzTWASUOxeugKoM888U48FozmDnRAyvuB8gBBCyEQvd+YKmtI1TZKpafJfb9u2TXbv9sRNhBBCSLlwnkUIIWS0C5rKjXkQQohLLBu2Qxom7rnnHnViuvXWW2Xnzp36Hk4NqzvrAv6onn766erG9La3vU2SyRE1kCKjjPXr18u8efP0+bp167R0EyFk7ABxDUQzGLAiuDDQfQYCRLNnnHGGdHV16eve5n2la7/+OS8NlpqX/yrJ1nX6vK6uTr8Ph3oyAfGSZaJbtkP4Xrr7uGXr6NBEyOhlvIyBOB8go5Hx8vtFCBk7YA3sXe96l+zatUtf90xbLKmmfaT25b/6+3z3u9+VQw45ZAR7SQgZ73AMNH7gPGv0wd8vQshIAkMR1/X1i1/8opx22mkj2idCyMRg/TCts+41xdCpp54aEC8ZeI2yOxAxnXXWWdLY2Li3ukQIIWSUlH0wQc3SpUv9fYeS++67zxczgdTkBYHPt664R0vEwVWpvyXmyqW3eYEvaGpvb5cHH3xQTjllaM5l96+trU22bt0aEDXZvXRFS2GxGIRNozV7nRAyfuB8gBBCCBHZvn27L2YCmZBDE3jllVciBU1MRCCEEMJ5FiGEkFIgFu9SWVnJG0YIGdPs9ZJzBhwjrrjiClm1apXcf//98vGPf5xiJkIImaBlH8xN6NFHHw3sM1Ql6K666ipZvny5bNy4UbKJSi0B5wIxU3frFn0sBkRPz/3fv+qj+3r1bdcH3i9Gqnm+lroz7rrrrn5fR6kycrh/wCxbw/fbrU9NCCGjAc4HCCGEjARDWeZ6IGAdzMD8ZMUffiQtLyyXbLwiIGiKgmN6QgghfcF5FiGETGzCxiKjqeQcIYSMekFTc3OzBlYfeughWblypVx++eWyYEHQJYMQQsjEo1jt5KFYsN+0aZM8/PDD0tnZqXaHvZMXijjCIgBnpqqmGfpYjLDoyV63rny0qBgqIIJKVEiqeV//M4i3tm3b1q9rKXY/7P5deeWV+hzfr9OnTw8EacqpTz3SwR1CyPiH8wFCCCEjzUiLglxBE+Yn3bu2S8tjd0m6tjlyH5dyxvRDAecFhBAytuA8ixBCSDEoaCKEjHX2mqDp1ltv1aDyddddJ8cee+zeOi0hhJAxzEAW7MOL73feeafWaa2pqdHH3qn7FRyDMnMHf/SbgXJzYUemsOjJXjftv7SoGCosguqd+hr/s0wmo30bivvhujEhMIOyc1Z6Lmqf0RrcIYSMbzgfIIQQMhrYW6KgYrjuS3PmL/TnEpnayYF9wpnV5Y7phwLOCwghZOzAeRYhhJBSUNBECBnr7DVB07vf/W6pqMjbZxNCCCF9LZgPZMHebau7u1v+8Ic/yOzZs+Xoo4+WGQsPkkzdtLLaCYuRwqIne73g9IsKxFBGWASVnjRTMlX1/uff/va3VXx1zjnnqKNS2FUpTDn3A4GZadOm6dbfIM1IB3cIIeMbzgcIIYSMBvaGKKiUwxESD4wZ+x3izyUyVY3++x0dHbqNFJwXEELI2IHzLEIIIYQQMp7ZqyXnCCGEkHIWzEsFAPoqf+C29be//U3a2tr8z3pnHCQSi5X1QyinDF1fFDg/xWKyrrVHli9fLs8//7ysWLFCxVe33HJLpKvSQEBgpqWlRbf+Bmn2VsY3IYQQQgghA8HmAkgIGM2lksMJG+4cZseOHf5+2Yoa53l1oI2dO3fKSMF5ASGEEEIIIeODVCo10l0ghJBBQUETIYSQUUepEgf22aWXXhoZwLDF9wsvvFCFQkY2USm9UxaV3YeoMnQDASXrnv7eJbrh+aaVT0lnZ6ds27ZNy0jE43F573vfG+mq1Jd4ayjZm+cihBBCCCFkINhcAOP80VwqOZyw4c5vXKFSUNBUG2jDFT4NBo7zCSGEEEIImbhQ0EQIGetQ0EQIIWTUCZhKlTjAeyhh2tvbWzKAce+998orr7ziv+6ZtlgksfdLn6JkXapzt254Pv2ot0qyqlpisZhex6JFi+SSSy6RK6+8UhobG+W+++7zhUWlhF1Dzd48FyGEEEIIIQPB5glnnnnmqC6VHHY4sn5/+tOflj179kS6Mg2XQ9NAxvkUQRFCCCGEEDI+QByFEELGMhQ0EUIIGXHCAqZSJQ7w3jXXXBMZwLCF92uvvTbgNJSNJbxycxHANem5//tXfRwOULIuWTNJNytfl+7tlUwmI8lkUmbPni3XXXddZLZ5KWHXUAce+nsuQgghhBBC9jY2T/jFL34xpkolW7/PO++8wPvZRJXzvDLwWUdHx5CceyDjfCY7EEIIIYQQMjZBVQiXrq6uEesLIYQMBRQ0EUIIGVHMiQgL7OUGJIoJni6//HIVA33xi1+ULVu2+O/3zDxYspV1kW3BNam7dYs+lkt/RFAoWXfoxdfqhuc4TzaTllgsLnPnztV9NmzYICeffHJBtnkpYddQBx76ey5CCCGEEEJI/wgHE7LxZOTzqH0HykDG+VEiKLo2EUIIIYQQMvpBZQgXCpoIIWMdCpoIIYSMKMOR/dvd3e0/zyRrpGfWYUX3hWtSVdMM3z2pHEwEtenBW/vt7mTnm/uG/ycz91ngv79x40Z55JFHBpVtHg48MOhACCGEEELI6KGzszP4hitiileMmsBDlAiKrk2EEEIIIWS8MRHWzyloIoSMdShoIoQQMqIMtKzaOeecUzDZ+I//+A9pbGyU+fPn++91zz1SJBEMDrjANengj35TH8t1YDJRkrbfT3cn/3xLTpOeOUv899vb2+XKK6+UVColQxV46G/QYSJM4AghhBBCCBkpdu/eHXiddecp8biWyi6270hD1yZCCCGEEDLeGI+ifTo0EULGGxQ0EUIIGVKiRDGlhDIDLat2yy23FEw2UB/68MMPl9mzZ+vrdN00SU3dr9/X0FcZOhMlzTr+jEh3p3JL0vVOWyzp2in+66eeekpuuOEGGSqWLl0qiURCNm/eXJZIaTxO4AghhBBCyPhjrArx161bF3idqZoUel1fdN+Rvid0bSKEEEIIIRM92XoskMlkAq97enpGrC+EEDIUUNBECCFkSLAF9Msvv7xAFOMKZforeIoS6VRUVMhhhx0WmGz84x//UJGTkU1USueiN4jEor/qSomOyi1DF+XuVI4gyicWl7WdFbJs+XItOQeuvvpqmTdv3oACEeH7+Oijj0o6nZY9e/aUJVIajxM4QgghhBAy/hirQvxXX33Vfw43pqwjYAKZ6qbIfUfrPeH8gRBCCCGEjGX6m2w9FggLmAZTEYIQQkYDFDQRQggZEmwBHbiiGIhr2traZNq0afqe7XfppZf6wpv+LL5DpNPb2yutra3+ZOOFF16Qb3zjG4H9OheeVBAgKFd0VEyoVK4oqhxBlB27cdkd0tXZKevXr9f38Yjt61//esExfQm/wvcR9xv33e79RJzAEUIIIYSQ8cdYFdK4IqVMdUNB8kWmptF/vmHDBp33jOZ7wvkDIYQQQggho4vwHKI/cwpCCBmNUNBECCFkSLAF9CuvvDIgioG4ZuvWrdLY2KjvYT84LGEg7Qpvyl18D++7cuVK+dznPicdHR3+Pt2zDpV007xBi476YtODt6ooasM/bg6coxxBlAmqAPox88Cl+nzu3LlSU1MjDQ0N8sorrwSO6Uv4Fb43uN8tLS26RYmUxmqpDkIIIYQQMrEZi0IaZEo//fTT/utMTd6NKf9es/8cTqvu/uPxnhBCCCGEEEKGlrCAiSXnCCFjHQqaCCGEDAnFFtCjxEpNTU0B16D+LL67+65atUouu+wyLalmpBrmSM+cJX06MZXrwhSFiaQyKW9ykEn1lFdiLkJQNev4M7QfzSd/WFKTZsns2bPl6KOPlsmTJ8tnP/tZWbNmjX9MX8Kv/gYxxmqpDkIIIYQQQsYajz32mLS3t/uvU41zC/ZJN8yWrMT813//+9/3Wv8IIYQQQgghY5/u7u4xI2hiwjUhpBwoaCKEEDKsA1FzZYJoBq/Djk0DZfXq1Sr42bVrl/8eBEGdr3mjX7oBwqN0d4ckayZFOjEVc2/qaz8TScWTFSpKal58TKTbU6n2CwRV8bh0vuZUSdVP9/dBWT1c49q1a4cl63rp0qXqloVHQgghhBBCRjODWeweiYXy8DnvuSc/J8jG4pJqml9wTLaiRtINs/zX9913n6RSqaJtEkIIIYQQQog/n8hmCwRMo1nQxIRrQkg5UNBECCFk2Aei7muIm+DO1NbWNuCF+CeffFIuvfRSbcNI1c9QQZDEk/oaIqJ1f7tRUp279XWUE1Mx96a+9oNwCSIpe77g9Isi3Z7Kbd8nUSGd+58m6bpp/ls7duyQT37yk/LMM8/IUPPoo4+qBS0eCSGEEEIIGc0UW+wuR+QzEgvl7jlRHvvBBx8MujMlKyOPS01e4D9H8oY7VueCPyGEEEIIIaQYUeKlsGPTaKKvihSEEAIoaCKEEDLsA1H3NdyF4M4El6aBBBTuvPNOLTO3e7cnVALpuukqBIIgyFARUTZbVtm3vpyV3P3wngmUIJbC82JOTMXad8+x+rbrg8cmKqUDoqbaKf6+L7zwghxzzDHyqU99quz7VE5gx/25MNubEEIIIYSMZootdpcj8hmJhXL3nH/5y1+ks7MzUrQUprd5X3VwMn73u99Ftjla4DyCEEIIIYSQ0UGUeKmrq0tGK0NdkYIQMj6JZeE/R8gYYP369TJv3jx9vm7dOpk7d+5Id4kQMkCs9JwJnIq9F94foh78LXCBM9PazgppeeJuFQ6ZSxIEQpsevFWfzzr+DH3fxEjuflFAYARnJYiR4LwU9RkcmhJVtdqWOTFF7d/XOWLxhGQz6cJjU93S9tf/n2x85QUtMwEnpZqaGrnuuuvkgx/8oMRisZL3FGImBHbghgUBmQU9it1j2x8BEkwiCCGjB46BCOHvFyGkOOFxsPu61Ph3b5HJZHT8jnUMfZ2slvbD3u87y0ZRveofUrFjlf/6pz/9qcyfX1iibjTAeQQhYxPOMQjh7xchZPyxZcsWOeusswLvHXbYYfKd73xnxPpECJk4rB8mLQcdmgghhOxVigmXLLP68ssvL3AWuvrqq/WzW2/1BEpG75RF0rn4LSpmCpd2g2Dp0Iuv1c3ES+WWgCvlrGSfQSRlZeZK7d/XOZr2Xxp9bLJK1m9Y72dyV1RUqLDpv//7v+WrX/1qQWaF3T+U4jvnnHO0HB/ETMAy1ktlry9dulTPgUdCCCHDywMPPKDC1P5u7373u/tsG6WJLrzwQjnooINk0qRJUltbq2LVd73rXfLrX/860n68L3DMjTfeKO94xztkzpw5UlVVJVOmTJFDDz1U3QNRCnYgYGL77//+7ypYnjx5sraLSe9JJ50k3/3ud2X79u0DapcQMr7oywEonNXrjnlHQ4k2/F02MRPonX5ASTET6JlxUOA1HGr7cl8dKbek0egaRQghhBBCyEQkyo1pNDs0EUJIOVDQRAghZK8SDirYojuENFgIB+7nr776qkydOlXdiVw1b/ecJdK14ESReELFQHBMSnd3FJR9cyl3P4iUTKxUzmel9u/rHAtOv6josdOPequKneYe9npJJpPq0rRmzRoVNb3xjW8MuFUhgABBEva55ZZbtKSff65p0/TzUsEGBFpwLB4JIYQMLwMVAPVlK/6Rj3xEjj76aPnBD36g5Ur37NmjwthVq1bJH//4R83Sw/fts88+W3a7Tz/9tBx++OHqLnLbbbfJxo0bVeC0Y8cOeeaZZ+Saa66RJUuWyCWXXBIop9QXECwtXrxYRbrLly+XnTt3arv4brvvvvtUoHvAAQcESi0RQiYm/RUluWPe0SC2cf+OoZRc77QD+jwmUz9Ny2obd9xxR1n3YCQEXK6gDIkVlZWV+kgIIYQQQshEZCRLMkety3R0dMhYheWtCSGAgiZCCCF7lXBQwRbdf/WrX6mr0Kmnnup/fvfdd6vLRHV1tQZoZ8+eLRs2bpZHnnhGNrTsEHHKrkGklOrcXdJ9CaIhlIkL7wdxE0rAlRI5DTdRfTDRU/PJH5IZh50s1TU1/sQEwfCPf/zjcu+99+p7CCAgqIx7d+aZZ/riMAibUHIOn5eqST0agj2EEDIRBU34G71o0aKytlmzZkW2Bwe/008/XW644YbA+01NTTJz5sxAmVIIlI4//ngVPPXFihUr1C3J3Tcej+v3MdyfXL73ve/JGWecIel0us92r7jiChUsuQttEC7D/QkCXmPbtm3a5k033dRnm4SQ8Ut/x6numLfU+HdvsGnTJlm2bJn/OtW8r2Qra8s61nVpwt9HfAeUugdY7DeX1qEe05cbSEBihSVYEEIIIYQQMhEZSZdYJLaFaW9vl7HKaHDcJYSMPBQ0EUIIGXbcBfBwUMGchTKZjIpvIGJ67rnnNMj5la98xbdEhSPEsuWPypp166V79w5fkAQB0Pp7fi7ZTFpiObemUkSVhytVis6ERqtvuz7w2B/xUzmCqb7K4U1+/dlyyPlXyPxFr/HdqpBdgaAwXC4QOLB7+4tf/EIfr7zyyrKDPyMd7CGEkIkqaPq3f/s3XZwpZ7v++usj20PZNnx/Gqeddpo89dRT6nqEYDq+Q/FdYMKmXbt2afm4Uo5KWPB673vfK62trfoa39X/9V//pd/VGzZs0DYefPBBLRdn/PnPf5Yvf/nLJa/9zjvv1O8nA0Kt22+/XXbv3q3uTAjGY7zQ0NDg7wPnKbhBEUImJmN5nIq/b9ls1n/dO/3Aso9NNc+XTLJan0NI+pa3vEWTPYqBRX43mWEkAglIrMD3BR4JIYQQQgiZiIxk4nCUoAnrLWMVJmETQgAFTYQQQoadUgvg5iwExwcAZweUrfnDH/7g74NALI7v6uyQTNoTLtXOXKCfQQBkYqa5p5zbZ9m3qPJwUSKnsNCodeWjgcew8KiUaKkvsVK4D8XaSk+aKY1v/qTM2u9gDfrivoDf/va36nSBoPVAgj+0biWEkL0HyqpBuGugXNtgwN/5b33rW/7r97znPSoaOvTQQ/334NJ09dVXy49//GP/PZShgyC2GFdddZW88sor+hxCqJtvvlmFU5MnT/b3ed3rXif333+/CqgM9GXdunWRbUJ8i+8rC+5jge/hhx+Wt73tbZJIJPS92tpaDdg/8MADvqgJ5fQ+//nPD+j+EELISIG/eRA0GemaZknX58vIRRGYB8QT0jttf/8z/E12vz/21mJ/f5yfkFiB7zk8EkIIIYQQMhEZyYSMKPES5iVYVxmLjOXkFkLI0EFBEyGEkGEnvLgeFtBgQIpSNcg8RtB15cqVjivTclm9dr2T2ZxVAVPH5tUBIRDETKCUi1IxoVBY5ITPn/7eJbpBOIX2m/ZfGngMi582PXiripbwGKaUYCqqD6UEUNmKWtmwbq26akDUZKAc0Jve9CZ1bupvfW5atxJCyN4DwWgsJhlHHHHEoNr73//9X789uHL86Ec/8kXCYT74wQ/KBRdc4L/+5je/qYHnMHBHvPbaa/3X5557rpZ+iwJOHBA7TZkyRV9jkQxiqCh+//vfq0DZ+P73v68B8igOOeSQQB8g0nriiSci9yWETDzGgiAff7PglGf0TlscKJkdRXgegGPy/k4id911V5+L/WAo7025zk9j4WdCCCGEEELIeAZu2lEgQYEQQsYqFDQRQggZNKUWr/EeFsEhZrIF8LCABqXTduzYoW24gc116zdIF8rhxJPqwKRfXMnKgDgIAiA8x6K/iYqKuSiV45Rk+6U6d+sG4RSERgtOv0gf6+cu1n32rH+p7NJzUa5QpehLADX9qLd6ny95k2QTVYGsbZQBgoNGqTJCYWjdSgghe48VK1b4z+fMmVNU0FMOcDX85S9/GRAeNTc3lzzmsssu859v375d/vrXvxbsA/EQPjPgqlQKnBNl4Yxf//rXWko2zM9//nP/+cEHHyynnFL6e/Gcc85RsbPhXishZGIzFgT5y5cv959nJSa9Uxb1ex6QrZok6UmzAn8H+xINDfW9KXeu4J6X4iZCCCGEEEL2PmvXru3X+4QQMhagoIkQQsigKbZojoVsBEHDn7mL4i+++KJ89KMflb/85S/+5+rM9OjjUjPvIF3Qn3X8GerAlKyZJJlUj/S2t6p4ycREJlQCpVyUynFKsv1wLmzhfcMl6EwchT5aX12HpyjBk+sUFeUa1ZcAyj6fctx7pf3gd0mqfoa+D3cmOGUgE+Pkk0/2M7QtoIDAsAVA3PfCgjNCCCHDx5NPPjlk7kwIlrvuH+94xzv6PObAAw+URYvyQfVbby10Fvzzn/PC31mzZslRRx3VZ7vuubds2SIPPvhg4HO4SN1zzz396ivK0L31rW8t2VdCyMSkv4L8kRDYPPbYY/5zLTWXzCcigHLnAenGOf7z559/vui8y65vqJMVyi3z4J53LAjOCCGEEEIIGW+sXu1VtQizZs2avd4XQggZKihoIoQQMmiKLZpjARsBTIhs3M+wGI4SacuWLZMlS5YEFvuRvbxu01bp6tgjHS3r/AV9bImqWsn0dusG9yQTE5lQCWIi100JuEEC183JxERRwiPsd+jF1+qG526wwc5loimUpMNnwC0ZZw5PrhuUtWNOUvisXNeoYmSr6mVtd7Use3yFlqNIJpN6z5955hn5xCc+oWWALKBwyy23+IGFqPcIIYTsXUETvgMHw6OPPhp4fcwxx5R1nLvfQw89VLLdctuE6MktdRduF9/7e/bs8V8fe+yx/e4rnAghliKEkP7SX4FNXw60pcRReH/hwoXy8MMPR4qSjHLnASnnWCQwQGgaNe+y6+tLgDRc4i73vHSAJYQQQgghE5WRciuFi3cx4RKETnRRJYSMVShoIoQQMmiKLZrbQvaZZ57plx7AtmDBAnnjG98ov/rVr7Q0Go595JFHZMOW7bLsyWclXtesJeYgFopyTopXVOljWEwEXIFSVJDAfS9KeBSVKe0eY1nTJppCSbrwOYo5PIWdpPBZua5RpWh57C7p2tMm67bskDnzF0pNTY0GOyBswv3Gc9xz/BxMeOb+bIYyg5sQQkhxstmsPPXUUwGHJiw2ffnLX5bjjjtOS7dVVVXp3204E11//fUlS4jCqcNAgLupqams24+FNQMBcCx6uX2Ee6Lr6FQO1dXVMm/ePP+120a4r/1p1+1rVLuEkIlJfwVK/RXYWPtwmw0HIi6//HL9DI9RQQEci4DB+vXr/fc2rnu1YI5R7jxgy8oVsmz5o+piizKcF154YdF5VznXN1j3pHICIeW6OhFCCCGEEDLeGCm30k2bNklPT0/kZ1h7oosqIWSsQkETIYSQYcMWsuH0YIP4K6+8UgfQeA8BW6O7u1vWvPqqdO/aJh0taySbSatYyDCB0qT5B0tFXZO6MYXFRGGBUlSQwH0vSngUJYKKaseET3CNCouvXIcnEHZ3Micpc56y51FiqnLw+3f06dLwlk/JEae9T4MdbnB68eLF8oEPfEBWrlypPxf72fziF79gsIEQQvYS+C7cvXu3//rGG2/UoPBXvvIVFfa2trbq4tOGDRu07Buc9vbff3+58847I9tzg+Xud2pfzJmTd/tIpVIaJDe2b98eEFENtN21a9cW7Wt/2nXbjGqXEDIx6a9Aqb8CG7QLl1kkCJQKREQFBXDs9OnT/b9zcKDd8swDBXOMvspMB5IXOjt0DoVSo26p7oFc32DdkxgIIYQQQgghZPjG2wNl3bp1gdfp2imBz+iiSggZq1DQRAghZEhwM3XDWbsYLMMhCFt9fb3vIATRDZwoQMWkyfkvp2RlgYDIhEatKx/1gwFhoREe4d4ksZgKjKKCBO574dJy1oa1aQIj4LaD99ff83PtR+fWtSq+2v3qcwExUlR5uXB/wgKmgZafC7SbrJKu/U6Rzn1fLxs2bdagBwLVCE5fddVV8qUvfUl27NgxoJ8xIYSQoSs3B373u9+poAjg+xAOR3V1dQVCoHe84x3ygx/8oKC9lpYW//mUKfmFqr6YPDn/nQvc7wW3zcG0G/6ucduFm1Ntbe2g+0oImbgMtwMQ2r3mmmtk2rRp0tbWFnAjQoIGAhR4jAoK4Fi4KFmCQaa6QaYf9dYBu7LimOr6Rn2OMT2+S1xnvb197xgIIYQQQgghE5FyS7aNlFtpOJEs1ZR30d61a5ecffbZe61fLG9HCBlKkkPaGiGEkAkLSi5s3bpVHxsbG/1M5Y9+9KMaDEVpmfb2dl3Yt8X91KRZ8tqPf0uyVfUBFyaIkVx3JlvIdz/DaxMlGXhuoqDw8eXitgmxkStGMvAaIiYIp2KJpLo0AXdf6wfcn6KCFyaKQjt2DK6tu61FettbZfVt1weus1/EYpKatr+WoOvu7NTJjN3zhx56SM4//3z5yEc+Iu985zslkUgM6D4RQgjpPytWrCh479xzz5VPf/rTsmTJEonFYuqqh2A1vkPhogcQuIZb08KFC+XUU0/1j92zZ4//HILhcgnv67bjPh9Mu+F2hqOvA1nQi7JkN+COVcyenRAy8bjgggvk6quvllWrVmlpUDzH3+uPf/zj+pm7H3D/fmzbtk3nRCDVMFdes+B4ec1xpw2oH03HnSYH7r+fbH7gN9qXRYsW6d82lBodCXC9UddMCBlb8PeXEEIIGbhT6Wgsrew6NGWSVZKumxb4HHOIpqamvdKX0X6vCCFjCwqaCCGEDDnI2sVg9f3vf7987GMfk9Wrg+KibCwh3fOOko2bNkvLz64MiJOwmZAI7kbmxOQKjUz4BMLvWem3/mQ/27Fh8ZCJqMJt2fvp7g4tb5dNp6Rp/6W+ACl8bJQgyURRVq4O14z2JJuVTG+3OlHhc9wDbACl6vojbpq+9G16bG8mJRs2bpI5s2f5weDvfOc7cvvtt8unPvUpOeSQQ8pukxBCyNA4NEFQetNNN8lZZ50V2AeiJoib8NnJJ5+sgXMTNcHx48UXX9QySOFAlL1XDuF9UVKpWHBroO26bQ5XX8sBrlflgnu7c+fOfrVPCBnd3HLLLfr3FKWXzzzzzH4f/773vU+PRzlOiJSQvHHcccf1eRySB4a2r4tFLnir/wp9wUYIIQNly5YtvHmEEEJImW5DiHUsXbpUX+/tUnLl4jpjZ6smqVNs+Lv/ta997V6ND+GewdUKrylsIoQMFJacI4QQMiS4pRewAA8XoAcffLBAzJSunSodB79LemccLC2P3eW7Grnl1yDwgdAnk+rxhU19lWZzS9L119XIbc/tR1TJOmDvQ2CEfkJ4FD5vsWMNK20395RztVwdzo/rhaMTyubFEhX6HEA0hQ2OTnBucu9FKXBuuEelujtlXcsOSdcGy/YgS+KTn/ykfO1rX9MgDSGEkOEFf2/huvSVr3xFfvrTnxaImcJAFAwRk/HKK6/IzTff7L+Gm5MrhBoK3DaHq92hapMQQooJg97znvf4AiFkKuNxIGBeg/KgViZ7OBlsX4frHhJCCCGEEDKRMbehRx99dK+XkutP6TY3kSwbrxDBVuTz4cbK7uGemVMTIYQMFDo0EUIIGbJBKkRMf/jDH+S8886Tzs7OwOfZRKV0zz1SeqctFonFC1yMwiIliIQgxqmoa1LnIrecW5RzEp6v+9uNvquRKySCCAiCI7goLTj9ogJXpmL9iBIjRbk5hUvH2X6usxIIu03ZvrZfPFkph158re9QVVHXqPvjc3WCyqRl50vL1MWpWP/CuNfWcdDJUrHlBana+ITE0nmHi7vuukseeOAB+eAHP6iZGtdccw2zJgghZBg4/PDDdesPKHP0wx/+UDKZjL6+7bbb9HsWVFZWDsi5KLxvdXW1/9xtczDtum0OV1/7a7lerOTc0Ucfrc8POOAAmTt3br/aJ4SMPiAWxe/+b37zG3nd614nt956qz6GXUl/8IMfyP/+7//6ZeRKgaQN2xftlDr2T3/6k9x4443+6/aD3iHZCq9EdSlqDzlVatrvkJ6GuXLCaW+XfY59m8w5Ml9mtGblXyTR6bnIHXTQQfKf//mfsjfuYanz9OceEkJGF83NzSPdBUIIIWRMYG5DQ+XMZI5P5bgW9ad0W0CwhCTseHxQjtej8d4RQiYmFDQRQggZNFu3btVAARbvUc7M2Lhxo6xZs0bS2azEk9Uy6/WzZdr0A4sKgyDcgXhp0vyD9bV95u4LXDGQgdcm/Alj5dvwKOIJmlzhUthJyfphLk0uYcGTfW79s75aOTq3vbDoyYDgyb2+cLk6bE9/7xJtL56s8oVO5ZTNC9+r3pkHS2rKAqla95hsfeY+rZ1twdsPfehDWtIIk59vfvObtIElhJBRwJw5c9QS/Omnn9bXjz32mP9ZQ0PePry9vb3sNt3valBXVxfZ5mDaddscrr6WQ38EShBdhQVdhJCxx2WXXeYvmuMRC/ePP/54we83SjCvWrVKHy+55JKSbeJzd59Sxz7zzDPS1tamzzMVtdKeqhRJpfrsd91BJ8uBB53sJzeseegOfc/oTFdJZVubzrHuvvtu/ft28cUXy3Dfw1J/F/tzDwkhowuOeQghhJDygJBoKF2Z+iNS6o8gKODQhITyWGLEBU1Dfe8IIRMTlpwjhBAyYGAb+tWvflXOPvts+eUvf1kQdFy3YaMOlDOplKS69vjuSxDfwNXILScHtDxa527p2Lw6IDLqq3ybKwxCGTdzRDLgzITScHg0rKwdHq3MHJyc0EeUfkM/zDkpqlScKyhy+2eCJ4CScVY2DmImO2+Y8PVFXS+uyWsrq+KoMHZe3Ne+ytEhQ7xr4YmydssOddKCqAkbnqMkUE1NjZbV+PrXv64BCkIIISPLwoUL/ectLS3+86lTp/rPd+zYUXZ74X2nT58e2eZg2nXbDLfb0dEh3d3dg+4rIYSUKm+ARyz8oyx2VACg1Gd9UexY/H175JFH/Nfp+mmRx7tlrsuZb3hteX//MG7HeTBWH65yFe49LMVg7iEhhBBCCCETkf6MocsdlxckjyVQci4hWYn5b4VjN4QQMlagQ9MAefXVV+XAAw/U4O+Pf/xjdbXoD6gb+n//939y//33q403HDFmz54tBx98sHzgAx+Qd7/73f3OlIH69uabb1ZL8CeeeEK2bdsm9fX1mtX9hje8Qft4xBFH9PNKvTIN3//+9+Wvf/2rfnHiSxGBBARWzjzzTDnnnHNkypQp/W6XEDI2QckbLNLjb82TTz4Z+AzZwlhgn7PPAkk1zZNUNi7xiirJptOSzaZ9MQ/ENxD4QFAEzPEoXErOXIdwHERO9ug6N0F0BAGSlWyD8CcsfPLKzF3kBw4gnOrYslo/Q3vY0IeeXdt84RFId3fq/q7rUZQ7lJW0q5m2j4qNIDxy+2ECLrSNc5XjrBT1GZ5DaJXp7fbFYW7ZPLf0nftZMSHY9KNPl5bH7pQZiw+X9jVPS1dXlzQ1NWkJC/DnP/9Zt6OOOkre9773aUmeWCw/CSKEELJ3gNDUwLzB2HfffQPfweWyYcMG/znmHNOm5QPueA4XJFsIG2i7YWckt6/W7oIFC/rVZlS7hBAy0IzgwWQLFzv273//u46pjdTkvCDVpViZ6/D4PzgfekXmTWvWv4OYc8G9b7gywcul3HvYn7IahBBCCCGEjGeGw7UIScqoomHAKVZicclW1Eis10uORsyYEELGInRoGgAIIkAcBDFTf0Em8kc+8hENCv/gBz+QF154QVWxaAsuGH/84x/lrLPOkqVLl8qzzz5bdrsoQXH44YfLBz/4Qbnttts0QACBEzKaYXd+zTXXyJIlS9QCvD/9/u53vyuLFy9WB5bly5fLzp07tV0snt13331y6aWXygEHHCC/+93v+n0vCCFjBwyIIeT8xS9+oX9nvvjFLxaImcyRSf+evfySrH/6IRXfVNQ1SWXDFDSioh8symOBHqIfCItQXs4ykMPORLbQj+PcR1ewYwIfbHhezKHIdYUyMRMwMRD6AAcnPMYrqnPXnQ6crxhW0g7tog+4rnDZt7mnnBuZaV3KWckNdFhfzfUJQQ27HguEuOcox7HJu99XyeQTPiC7ujP6c97Z2qZ/790ANsobff7zn5cPf/jDKpyF0JUQQsjAgFBo9erVZTsUge3bt/vP3UQCJFgY5thRDitXrgy0EY8Hp4UY30ftWwoE8N3vByRquLh97U+74f3C7RJCxj/lOgv1x4FouLjjjjv855lklaSa9oncr5gLU3j8H5wPtch6Z4z+yiuvBL4f+mJvuimFfxaumIoQQgghhJDRymiYUwykH7t27QqUnNu8ZqUmam/ctNl/zxU8EULIWIKCpgHwiU98Qu69995+H5dKpeT000+XG264IfA+3DBmzpwZcL2AQOn4449XwVNfrFixQk466aTAvghKwPFp0iSv1JHxve99T84444xAZncxrrjiChUsuQIoZIfD8SmZzJt7QdWLNm+66aY+2ySEjB3wdwJ/i66//no577zzVMgEIWaUmCXVMEc69n+zTHvde9V1yVyObJEem71v4pti5eVcwkIjPELMAxckVxgVi9vfpFjAocgFTk7ar1hMamd45eaaDzjWd1xCH+DkhMfGRYd75eim7+tfg1uWLlwewkraod2owESpsnnhexN1/dYejj304mt1w30zlyv3cztHqXajmH7UW/VeplK9+nd/3YZNBfusWbNGJ1H493D++eerex/Et+V8pxBCyETn17/+tTofwUEVTqdw8SgXV0R86KGH+s+RBOE6KD7++ONltQfhalQbUe+5+5YC4lf0oVi7EDTh2vvbrrsfAvGYOxFCJhblimH6K5oZ6mDF5Zdfrg7elhiQmrJIyzxEUWpu4I7/7TWcYL1y2Qv9UtGYl/32t78tu3/9KVcxWMI/C5amI4QQQgghY4HRIsTvbz9aWloCrze98JgmRmxY80//vS1btgx5PwkhZG9AQVM/QMAWCz8I6A+Ef//3f5e7777bf33aaafJU089pa5HmzZt0kUvLPKYsAmK2ne84x0lHZWQ4f3e975XWltb9XVFRYX813/9lyptUZ4BbTz44INyzDHH+MegfNCXv/zlkn2988475corr/RfL1q0SG6//XbZvXu3Lp61tbXpol9DQ4O/D5yn4AZFCBm74O8NSmF+/etfV6EiRI2/+tWv9Pc+TDYWl96pr5H2g98jnYvfLJtXvyQtj93li46AuS5hwyI8gJDJPguLhcJOQmGhER5NCGUiHbxOVHmleJI19QWCIms7k+r19qmulymHnCiVDVOlfu7iguvC/ua4BOGUBRrCblGuSAjtoD20W0ycZW0//b1LdDNhFDBnJbguuaIp0JfYC8dGfV7KFSrcJzuX/myyWQ2WQJzWfvC7pHfKIslGlJlbu3at/PKXv1TnP5Qf/eY3vykPPfRQvxxHCCFkIoHyaq6D0l133VXWcffcc08gi+6UU/J/81ESdPLkyf5rOLX2BZIg4AzrzknCuO/BAaScJIs//elP/vPGxsbA/AMkEolA38vpK+ZfrttJVF8JIeOfcsUw/RXNDDRYESWEQgLbd77zHZ1P2dypd+r+0l/CQid7jXkJ5ift2zfLnH3302QzlJ6DWBZOuqON8M9ib4qpCCGEEEIIGSijRYjf337ACdxlxuGnaFxg1gFL/PeQEOG6OI1V9ypCyMQjlkV9GdInUK6iFNw//vGPgs+QgYcSdKXAwg3KI/T2egH197znPXLLLbcUlHcAP/3pTwPtfeMb35B//Vcv2BzlovSf//mf3g8zFtM2IUIIg/PCHeovf/mLvq6qqtI+zZs3L3Lfgw46SBf2AL40EaSeNm1awb4QML3+9a9X4RR461vfGgg6DCVYFLT+4osXi3eEkMGD0pT4HccGd4W+BrWZqnrpnbxIemccKFnUYs4BUQyEPhgoA3uOBXjw5Lcu8B2FjvjsDb6YBsKg3vY2yfR2qcMSREmzjj+jpCgIx7hl1ax8nQmoXKxf7j52nNu/8P7opysWsvNCdAR3JPdc7rWH23OPRSACYiwX9AuOS+Fz414Va68UxfpZ7H2373Zvwvcx1tMuFS0vSMX2VyTes6fk+fH9ggA7vhuOO+44OmkQMgRwDDQ+gHvRPvvso0kHoLm5WcfbriApDALk+Hu6bNkyfV1dXa3j4KlTp/r7XHjhhX7CBd7HGL+UixGSEMwxFvshqQKBcRcE5OH2akkTF1xwgfzoRz8q2iYSNLCoZaWP0KeoBS4IYc855xz/NUpYn3DCCUXb/dnPfqaOgMbDDz8sxx57rAwl/P0iZOKCv0dYQ4E4H6W1ywF/25D0gXUTJJRdc801KtL5zW9+I1/60pf0bwrWKqYdcoJ0LTxpyPrqzoFm7bNAalblXf6WLFmioiysCaF/eI7Ax1CJh4ajTULIyMMxECH8/SKEjB+++93v+u6t2VhC9iw5D6V8JLn9Fal5JV9xCBUXFi9ePKCxPtZ9sI6FmDHWngghZG/NMejQVAbIHj7iiCMixUzl8r//+7++mAkZywgIRImZAMo6IWhgwPUiSmDQ1dUl117rBcHBueeeGylmAlhou/nmm2XKlCn6Gg4aV111VeS+v//9730xk33BRYmZwCGHHBLoA5ydnnjiich9CSEjDzSsCKT+9a9/1Qzij3/84+rydvXVV6ugqZiYKV03VbrnHKluTO2HvE965h4ZEDOFHZfsuTkOYQEezk0o9xZLVPhOTCgDBzGNJ2bSHgbcl9wyb+ZsBNyyapppcPwZkU5GOB4iIoiG3H3CpRzKcT4Ku0WZSAj9w3UWc4ay4AOuE6h7leN4lOra49+PcIm9Us5KYex8G/5xs55r50vLAk5SYYcp3Ptw34uVvshW1knP3KOk/dD3SfvB75buOUskXet9n4TB9wucASHGhXgXEyFMqP72t7+pGyF11ISQiQrG/hdddFFABIQkBoiWigmgIAwyMRP49Kc/HRAzgU996lP+vAKloM8++2x/3hHmxhtvDJS/vvjiiwvETADvuQtZOAbHRoFz/b//9/98MROcmNCnKDDmgKjL+MAHPuCXZgqDkqaf/OQn/dcoxz3UYiZCyPiivxnDjz76qP4Nw2O5YLHf/sbiEa9R3gF/JyEEPfroo2XWvH2le97RJdsp5lBbDBung6duvV7W7cg7/mENBvO7oSqREb6Po6XsBiGEEEIIIUPNWHIdKtXXl156yX+eqZ2sYiaL6xTbr79j/dHiXkUImXhQ0FQClIM79dRTtewbgrDGxz72sX7dZJRKQDayKzxCRnYpLrvsMv85ggO2OOUC8ZAFDgCyBEuBcyIj24A1OQIlYX7+85/7z+Eq5ZaGKJbViIU7w71WQsjIgtI2WODG7/UXv/hFFZggePjVr35Vfve738nKlSsjBSZQ8aca50rX/NfJnsPOlo6D3ik9sw+TTG1zQIzj4oph7DmcgExUAyFQVeN0FS+55dpAvKJa4hVV6tCERxPyuCIcCJ1csZOd01yFooIBeB/HwJkpSpxUrFRbsc/CgQfrH67TPQafr7/n5/61u8IruDHNe+P5eWFTNutfk10P2oPQCO9b+bm+gh3Wl0zKE6XFk5UBURTag/MTSv/h3BBSWd9L3cMAsZhOiHpmHy4dB79L9hx2lnTNP05SDXO0BGEY/Nt68cUXNTsE5VAR8IbwFtnrN910kzz55JOB8kuEEDLewRj/gAMOCJRpgwPTvffe64/L8YjXJ554YkB8dNhhh6k7axg4q37iE58IlLLDsY888kjAbRaOrx/+8If99+bPny+f//zni/YVn82ZM8d/jWM/97nPaVsGzoFzueXzMCc58MADI9usrKwMLJIhU2fp0qXqbGLCLrhD/fCHP9T7gjLXlpwBITYhhJSiv8IbW5DH36Fygxh2DMa1eITwEmNb/O0yujX5o1AsGjV2D8+L+sKO27B2jc7ZjG9961s67h6KIIN7H3FP8LcYSW4MXBBCCCGEkPHGWBDvm5Dp8ssvj+wrEoxdkwpXxJStmiTZRKX/+rnnngsc25/5A8tIE0JGCgqaSgCnJDhKGHV1dXL99df7JR3KZfny5ZqBbUAg1RcIAixatMh/feuttxbs8+c/5xe+Zs2apSV++sI9N4IRcNFwQYbhPffc06++IgsbpeZK9ZUQMvwgAPrqq6+q2BGDWji9odTkZz/7Wfm///s/dWCy0jFRZBNV0jtlP+lcdIrsOeIc6dz/NOmdfoBkK4NOTOUAYQzclFBKDuIZE9XgEa/hmoR9IPCB6GbOSWdJRR3K42T10YRBrmORCp5iMRXmuJjLEx7d8xdzThpIRnSxwEMxpyd8buX1opyP8IhrT1bX+/fH7tm6u28MOCyZoxIEUm5/w9dgfWlefEzunp4dOCeES+gT7r0CIVssFijB19+ACpybeqcfKJ2L3+z9m1n0Bi1H6E6SwuD7EN89CFZ/5jOf0X+jENvi3yy+19auXRsptiWEkPEAynLie9q124UD0xve8AZpaGhQkdGkSZP0tTtOh2gJCQ44Pgo4urpJCBAaWdlPJB5grgB3Vvv7inOhzBLOVQwci3E93GUBjoWjI9pCm/gc53CFUyeffLJ8/etfL3kPUNrpC1/4gv8aDk3vf//7tS+wJMb54CBpYiaUUILT35FHHlmyXUIIiVqML5XFbAvycGgqN4hhx6BE3QsvvKDCTLh5Y90Hf88QPOidli/hUIxSjrFlHbf0bdIz69CAgzf+tr7zne/U/g2mNJx7H3FPtm7dqn+bWW6OEEIIIYSMN8aC65CJrkBUX5E0jPkAwJzkiT//Oh9HiMUkXT/d3xdrODDhGIsipbHkpkUIGVqSQ9zeuOXtb3+7llbbd999+31s2L78mGOOKes47Ldq1Sp9DiFCqXbLbROiJ5SksGAG2j3hhBP8z7Egt2fPHv91uWUdcH6U0QOvvPKKiqVmzJhR1rGEkIGxa9cu/Z19/vnn/a29vb3s45HRiwV3DGjTjXMlPWmGSITLzkAwZyQQT1YEhDyueMZdwMdziJJ621tV2APBj7k9AYh3zFEoikyq1xcxQQQE8Q6w0gzh/lkfrHSc9cdem0AK/bBjTExl/Xb752IiIWsvCrSPewRB0571L8nOF/MBYSWb1c8mzT/Yvx7rb9Q1FOtLVJ/s2iCoctvrb0AlQKJSUpMX6CaZjCT2bJFk2zqJ72mRRPt2iWXzEyUXfB/huw4bnEoAgtoQ9iKAjw3PSwXdCSFkLIH5xOOPP67C49tvv91/H9/h4e9xiHngjAQx0uTJk4u2iRJxKJMNp6af/vSnvvsiREEmDDKw+INS1EuWLOmzryidhGSH8847T8cZAG277rWuCy0SP+DC1Bf//d//raXzvvzlL/tOfVh8Q511FwivrrvuOnWXJISQMFjIxuK+Lejbc3cx3s24jlqk748DkXs+lATF3+Y//OEP2j7+Nq5bv0Ea3vLpwJwqPM8w+hq7F8Mdu8tRb5Z9GudJywvL9O8nxLJw48PaFUSnfV1DsaAF3g/fQ7s35RxPCCGEEELIWCE89h2NWKJBsTH4Aw884D9ft369dHd2BuIIqaZ9JNnmrbdg7gOXpkMPzSdHjBX6mtsRQsYvFDSVAAEEZBn/x3/8hz4OFFv8B8hoLrawFAbBBgN/pKGahRuSW8bHKFbWIUx1dbVmPsPFBbhthPvan3bdvlq7FDQRMjT09PTo7+zq1at1g2gQGzJl+0OmapKk66ZLun6aipgyNflayoMlvFCPx3V/u9FzAXI+hyAIDkHmSuSKciA8MiFUprc7MOgOC3Lc80FwhOdoF2317NrmiZmQfZBzggqLlty2gPVj3d0/VXHR7lef8wVZ5lqEz8MCqagARbGghSuSgkgJJd8AHuHG5Jbfy6S69d6hVB5K9W1dsdi/fxB7WRt2X0r9LIoFTaLu5UCCKpHE45JumKWbkklLvGOHJNq3SkIFTi0S786LZ8Ps3r1bs9yxGdOnT5eFCxfKggUL9BHbPvvso2WICCFkrIG/aRAg4e8cysLed9996vKBv39TpkzRoPSb3vQmOfvss8teZIKo6cc//rGKmm688UYVIm3YsEEFQ2jziCOOUHcklIvGnKBcIHxCKW64kaCE6IoVK6SlpUWTJNBPJEfAaQ9uTf0BDpLve9/7tM8QdmGMAxc/CFghZoUDLEp9414RQkg55SGiFrfdxf9ibWBehUzn8KJ4WLwTPh/KbUJIhPUZrB/BNSlbVR9oI5yEMBTk27xLpn34q7Lu7t9JV2en9gUOenBqgnOfmxBg17J582ZNYrvooovk4osvlrPOOkv/vhcjStzEIAIhhJDRCoL6bvJ2ubzrXe+S3//+98PSJ0IIGU7RFeLGrsP37P0Olg3r1gViBhA0yasPBf5WFltrGs0JDH3N7Qgh4xcKmkrwxz/+UcU/g8XNNHbLS/TFnDlz/OepVEqtAq0/27dvl87OzgG3a4ImlPYp1tf+tOv2NapdQkjfwKkGC8wmWDLxEgKc/S3BlY0nJV03LS9eqpsm2YqaYfsx2KI6yqKBsOuPfd7d1uI7D0U5A7nuQWGhTpRbE84395RzVWS0+rbr1ckoWdckvbu363kgSkJ76oYEAVE264un7NwAQiETLKENCImUXEm2cD9NBATBFM5RyjnJvUcmksI5TOzllX6DsCwrtTMWyJRDTpQN//iViprQD1wrzos+47m1AdHVoRdfq8/t2lGaDw5WfQVNou7lUAZZCognJFM/TbfeGQd5t7a3U+J7tqq4yRM5bZNYJlW0CQTPsbmljSDyxfeiK3LCBkEtAu2EEDLagQMStqFk6dKlug0lyWRSzj//fN2GEvwNv/zyy3UjhJDBLmhHLW73lXFdalE8LN6xfQ8//HB1urM1E2RBz1hymkw5+h0FbYQTKYaCQJuJCpl+zLukZdnvZW5uXQYuvijtDFGTufvZtViSHMAcE+VHSwmawjCIQAghZDSDskuEEDKUjGaBD1i2bJkmhxnTjjhVmt4cNKrIVtZqrAjJxuCvf/2rJqZVVVUVtNffBIa9eX/GgpsWIWR4oKCpBEMhZgIIwBrIji6XcFmJHTt2+H1y2xxMu2izWF+RuV1bWzvgvvaXsJgqjFvaAo412AgZy+XiICyE+M82CJe6u7sL9i2n1Fa6qkGydVMkXettmeoGSQ5R+bhy2Pd1b5OX7viJOiNtvO9X8prjTpOm407TR1BbGZe1j9whPXvaJN3TBZ2QNNUkdR/7DI+vcY6JYsPjd+u+TXMWSkvOiWnbE3/WY60sW++e4N8fnKu3wxMBgcqaWnnhhn+VVFeHvo/jXepn7COzjzhZXrn3Fr/vc448VfuF8z9z3SXS2+mJoypqJ0nN5Bmyz7Fv0+uxe4E+NsxaqOfBZzge71ubkxe8VlpeWO6XxZOsJ1jL9nZofzK9Xs3rzq1r/WvE+fU+3/kTPTeuq/35e7VNuz7cg/3fcr6e3+1TXz87tJHp6dD20Ne9Qs0kkQb8217ovc5mJN7VJgl1ctomsY7tkujO/9yKgQkbtieeeKLAjXD+/Pn6CCcnbChdRMhYhGMeQgghE52ohfLwgvZAFrdLLYpDHIo5m4lEP/rRj8q2bdvk7rvv9veBI1Lz8WdLaup+kW1ElZYbrENquM2pR75Zph18nNS+cBvsX/U9BCEuvfRSvWcQ+5sQCdeC/mM+ivEFghi4t+Xeu1L3a7QHewghhEwsQVNjY6OWuS4HVNUghJAoRrNDKZxib7rppvzrWFxSzfMj9+2dssgXNGEtHW6z73znO/tMYOhrjD+a7w8hZPxAQdNeAHbeRn190H68FOF93Xbc54NpN9zOcPR1OARkKGnnqo4JGauY0GLM867FcvSffyqZTFayqR755rsWF3wucrFmAGOQ/YEPfEDOzO3zpmsvkc6dO6Xl4d/Lew6dId///vf1/QsvvFBL4xg49uq//Ewd66bWVcrn//Vz2hYEX8/f8WPfQaKyslLL6wCUrMHAHG2iPjSykDu3rtM2mpubpX7KPO0LuPrqq/X9ZFerdDxzt9RXJfXvzMt//qn2Df256Zm7ffEQHID+5dKL9Tn6cfShM7z+5q71Pe95j3Tu2KLHYoNYrb6qyr+uL33pSzpxABCPQphqfbF7ANcOlCPq7totT157iR4rh37ev4d4dMVaM6ZP075/6uMf1nME7rdzL+1+2mfffzh/rfgZhPcd62ByZ86EhIxFtmzxHOQIIYSQicpILJQ/+uij0tvbq48Yy19xxRXy8MMP+59nJSZdC15fVMxUjP6UoStX/JStbpDOA94qNS/dJZtf/acmjMHl+5Of/KTOc6KESK95zWuG9J4ymEEIIWQ0CZr+7d/+TTdCCBkMo9mh9JlnnpHnnntOn2Psv27TFpmW3Cdy3rBxwwbZuvxRmTd3jiZlwHH2bW97m8ZTBlNyejTfH0LI+IH1WPZyVn1FRUXZx4X3xUJaVJuDaddtc7j6SgiZGLzpTW/SATAew0A8A4EPMCEO3gPmStXa2irXXHON77jjZheomMkER8mkL9D53e9+pwJH47LLLtNMZAgk3/zmN8vu3bt1MQOiS/QLIiYInvAIcZD1xY41YSXcsgDOBRGU9Qf7WykzZHqhD3gf+1s7dq0QU6E9CDxxPERWeIRYCZ9DqGTnQJ9xLWgPG2xfsX31q1/VvtuxuD923Xh0+2OiB7cv4b65oB/4zMRTANcatS8hhBBCCCEjCRbI99tvv726UG7n/NSnPiVf+MIXgmKmWFy69jtFNq1fpyWcITwqF4iTqppmlFWGzhU/9UWmplk6Dny7rF6zRjo7O2XVqlVy2223aYJHlLh/qO/pSPyMCCGEEDeuYYF9sGTJEt4cQsiggYjn5ZdfHhH3oXPOOUdjGXiMwi0djTLYXXt2FZ03tDzxV+nq7PAr5UAAdd999w16jD+S94cQMnGgQ9NecoYwYqgRNMRtDle7Q9VmuZiAoFTJObiVgAMOOEDmzp27l3pGiEdXV5f+O9ywYYMO+PCIDe8NphxQJlkpmepGyVY3Saa6SdLVjfpaEmPsT/TR58uJR58vkDP+6x9eCnz08A9+rG5F3/mB56Rkz5dXHCLdqVy5tWxWOjo7vQNiMak95FS/HRwPMVMsnpBFp52nxy3PfYZggkhGYomkvg9e86Gvyz3/8/+pe5H9bdnW3iOp7pT0dnRIV29az29l577xzatk+oFHy47trZJJ9WopuenHvVumo1zD3b+UdG+39DTMld89vUUS1XWSQCDiuHdr/9DPmvY79PMTTnu7dLVul2wmJRs2t8hr3nSO9K7zrtnY2drqOczFYnqehSef6V+PldSzMnUA7UuuDQib3Hu7IdefTM6lCX/CUQLP+oKydzWTewL30s7R1eYdg77MOPg4qeh+1j9f+Oc3Jkj3eiXrutok3tUqMTzvbJNYeuC/myjBgYwV2+bMmaMbrMijaowTMlxAhEkIIYRMZMKZwlGlD8oteYb9Lr/8cn1+5ZVXRu5rbX3605/WOZ9b3jgbT0rnfm+UdOMcafnt98p2WypVhq4YED2ZQ1MxVt92vex8aZnEk5Uy56SzRZJVyDLz3Gk7O2XlypV6T7773e8GSuqUKh/XH9z7jmAGXsP9iaXnCCGE7E0gZnKTrI844gj+AAghYxIbX69evVrS6bQmUJ944omBuc727dtl2bJl/jGz9z9MNry6uui8wZtX3ClzpufXGO+880455ZTS85KhmjO4sFQ1IaS/jLFo+dgECtqBOBeF962uro5sczDtum0OV1/LpT8CJfQzfA8IGQogqsFgcO3atbpBDGPPB1vyJxtLSKamSTK1kyVd06wZtNiyFTUqbgmgGoyUjBXcUgjAfb7pwVtVJJSsmSTV0xfI7lef0+dTl7xFWjtTEkvA4a3LEzFN31c6t66Vmmn7yJqH7pCOnowu9mNfr50eWfX3W/z3cd5sJq3nSVTWaHvWl7TzdwlCKGsDoB2IqkS8+442Wl5Y7reFPtUddLL32V9/oUqhrSufkNYNr6gACu2hDzgf9qt+5QXZ8lw+Y1vP0dutfS3AhKPZrMQra/V4tANwzQiI4LiX//oL7Wfz4mMkXlGl7eHR9sV1rr/n59pniLmy6ZRUTJosmYzI9leelVTnbn1+8Ee/qfuHz+GC/Q27rrFHTCTeJFKLLVcrPJuVWG+nxDt3SLxjpyQ6d0pct1aJZb2fdV+0tLTIihUrCt6fMWOGXzLS3SZPnrzXBcFk/MMxDyGEEBJc/EY56a1btwZKH0SVQ4haLMdrHAsgbML74f2sLXx+yCFe0gTIJiplTe8k2fKb7+h8pxzBUbll4wYqfmpd+aiOezFfwHlmHf9eDVZMqqmS9tZtutaybds2vTY4vk6dOnVIgwjh++7eu6E6ByGEENIX7toNktGmTZvGm0YIGRCDSZ4YCmw8jcoNqG5x2GGHaYUHxGFtzH3//fcHDCqmHPNuaXrTLJ17wEE2eu4Rk3TdVP8VkjZ27dolDQ0NI3J9fZW+pvCJEGJQ0LQXwJeB0d7eXvZxKFPkUldXF9nmYNp12xyuvhIyGkGmKjJtYbFpoiV7hAvOYMAitwqXck5LaTgv1TRKtmoSlDUyHnFLIaS7O1RMY+IhPAcVdY0qZsJrCJpsQD1p/sG6CN+0/1Lp2LxaBTodW1b77doiPp6rSKe3W9u2c6loJZ6QWcefEegLzgEyqW5tG23sWf+SnguCKQinTMAE8F7HljX4CaoAy4CoyB4xETARkZuFrUGEHLUzFvj9RztWTsL6ZaDPeN8CHLUzF+j1+P3uzZXiW/mozD3l3IJACV5r/2Mx/zp69+zICaZiKn7qbW+TFd/5uGZr4/6gv2hj3d9u9IVVdj77OfUnu3zUg3tTWStpbI1z1T1MyWYk1rVbEl2t6uqkW6f3vFxHJwgcsT36aP5nb99/EDah3CAeEUDCcyymDUTsSwghhBBCChe/EaR0Sx9gsXvz5s1ajnnp0qUlF8txzMUXX6wORkhmsYVyd7/Pfvaz8uUvf1nF6nDnxbxxzrx9pOmUj8qWm6/25z5IHuhr7GzzAMwj3PcGInCKEklhrmMOTdamtpvqltqX7pRExw69BpS8fuSRR1R8j9LcYUHYQMH9Rkk7u++4vyY6KydQQQghhAwFTz75pP+c7kyEkFL0JZSJmkOUK8IZCmw8bf2D+ynETBUVFf7859577/X3zyRrJD1pRkGcxp1r2PsbV6VknyNeq+/B/enBBx+Ut771rSN2faXYm30ihIxuKGjaCyD7zdixY0fZx4X3nT59emSbg2nXbTPcLkQdUP+WU1anVF8JGSkwyLPFZ4iVIGDCI14jQ3UwZCUm2ap6LRGnwqUaT7ykpeOS1YWOS+McE+wkqmoL3H8MCHYgaDJxEDIF8B4EOxDk2Gd67yC2icVUkPP09y5RMQ7OYSIp4J4HYiScH4IlEwXhGBuoQygFTDCFfSAS2vCPm33hEARORqa3S4MEGPTDIckEV64oCn033CBCVfMM6WhZ4zkwJSs0yIG2rF8QcKEfON4VgNn1mMAoFk9KNpv2zxsOduD4nl3b1E0K/fXvm5JVxyYTOpkIDOCc8SQcn7p8hyr0CfcfAiz0x6593BKLS7amUVI1jcH3IY5LdQUETrbFunfn7lZpIAZ+4YUXdAuDwJuJm/AIsRM2lP7AhJQQQgghhPRvcd/Ae5Zo5QrOoxbL7bhLLrlEF/HhJITSc+5+EKm/9rXeQj+EQEiIWbd5mzTUT490ZSrlwmQJBRibY0xucyYTOA1k3I12LIkE8x7MLwrOnayStV010vLoY5Lu7dH58Zo1azSTG8IvjE0hQiqnPFypoA/uN9q2+25lKdxjCCGEkL0paFqyZAlvOCFkwEKZqDlEuSKcoSBc5i187kWLFkkymfTLSacmz/cT6Ys5yPrvH/lmyWY3yaZ1azRO9u1vf1sFTSN5fcUo1ic6NxEy8aCgaS+w7777+s8hrigXiC/cUiOuTSqeY4HNXJQG2m64zJvbV2t3wYIF/Wozql1ChgssQKMklAmVXPESMnSRdTsYsvGKkGDJc1vKVDWIxBNDdh3jAQhhXJFRZcNUFdyY0AaL7CYy6m1v1X2721p8hyVg7k1Y5DehD4Q3bvYzggUQIrmYgMg/f05QZqIfEx/hUc/b2iLbn7lPRT+G69YETACEfkP8ZMEBE0VB1LR1xWL/vWR1vfbXSj6Ya5RbGg5uTQtOv0iPgaBL+4u+5u6Rex+wr4mhTPxloi8LWqBN3Cu4X9n9AnBnqp48278vhutelU336vHWZ8+harXeb1z7uBY0lXJ0qqiRNLZJM4OfZVIS79rlODrhMefqlCmvRB+y4LHBztcFAaWZM2cGRE62QSCcSPBvDSGEEEJIqcVvCHNWr14tNTU1BSKdqP3xHoRMVnrOzbzGnPKhhx7y950zd66s27Jdph99ur6OSjawcbY5ybriIjyaAAkUc311nVsjBUrOPuYi6547yml1y5N/k+6OdqmoqFQBPebPEDRhntzY2KgipHKynksFfYoFGsoNVBBCCCGDBd9tTz31VMChCSLeH/3oR3L33XfLiy++qMnbiKmglOw73/lO+dCHPqTjBkLIxKMv8U7UOHYkx7buuTHPeeWVV/Tvly9oal7QZ8lq9/3U6vtl/cMPaNLGAw94j3vz+soVJBXrE52bCJl4UNC0FzjwwAP951gYw+C5tra2z+NWrlwZaAMBT5cDDjhAHn/88YJ9S9HV1aViD+Pggw8u2ldrtxxBU/j84XYJGeykFI5KJlhyN4jukA06WDKVdRFuS00qbphobksDwcrBuVjZNXMcgojJMog3/ONX3k7ZrO9aBLFOvMIryWXinVgiqaKjnl3bfacmtGGuSibeQTDAFSehXfRJn6KE3ebVuvifLw2X9fsHKiZNkVR7q8QqqiXT7QlFU117/MCDtWUBBgix0C4yrU3IhH8nuBYIueD2lKxrypV2885nJeYME1eZ4AjXMeeks/3z2L4WoHDFYgiAQICENk04lu7uzF9PXZNfjg/3FOIl3GOAffG8fu5iWX/PTZLNeE5O7v0gEcSTkqmdrFsACNF6OyJdneI95ZVuRUAJf8uwLVu2LPAZAk9wdAq7OuE5SqCgZAghhBBCyEQjvAgOYQ7EOhCJuyIdUGyxPOzKZAKnq666So477jh/v8nHnyUNU19Tsj+W8WxJHmFxkSV2uCKlqJLSOBbj9bDYKbwP5h0Y89u8Ca/DWdhuv2YcfrK0LPujX6oCGd3vfe97NamtnEzsUkEfN9DAbGlCCCEjAb73UU7VuPHGG+V973ufpFLBBDQkwGL785//LP/93/8tP/jBD9SZhBAysRhtwvv+jKGxz5e+9CWZMmWKvs4mKv1yc6VwHWVnzV+o68uIr+ERDneve93rZG8xWEHS3nSTIoSMDmJZKAVI/2+cE0D88Y9/rIr+YiA4eeyxx/qv77vvPjnhhBP6PMd+++0nq1at0ucf/ehH5Yc//GHg84suuki/6MDChQv9fUsBta17brw+/vjj/ddYAGxqavKt2rHA9+Uvf7nPdtE/ZDxYv19++WUZavDligAugCiLLlDjC/wpam1t9YVKmFy6wiWI8QZLJlktmeoGyUKsVNWgz1W4BLelBPWdg2H1bdfLzhcf8V7E4vo30hyPmg84VgVFbkk1iIVMyANRDlyGIArCcxxnj8Eyat6xKItm5dKaDzhG24ZYykROKoLKpLVUHEQ7NlC3xX8ftWHN+s5I5qDkZkybW5R7PPaBwApCIBMi2blNvBUWd6F9uDwBt2xeYL9YTJb8y08KJhk4f5TYqOBehc5lpfFwP9A/9A0BFrtOuD89+a0LCpyp7GdmTlJkEKR7Jd4NVyfbIHTaJTG8lxr83zRk4pjACYIn19kJGfcUO40fOAYihL9fhJAgyEzGIritP4TLm9lzWywvZ51i0qRJuhaCZDJbN+mZ+hpZ39ZbtJxcmFKl5/oCx2ryRqpHS1lDBFXMoclcnMyl1XV3tflG+PgdD/1GHZtsLQVi+iuuuEIuu+wyGa6fCyFk9MI5BhlP/PrXv5azzjor8rOqqip1v96xY4df7cKAI/Z1110nH//4x/v9+1OKTZs2ydFHH63PEbNhHIMQUoqDDjpI/1aglNzzzz9fcl8INT/ykY+ocQac6P65+lWZd8IZMufIU0se9/D3PiudO7ZIzeQZctz/902pe+53Est61U3e9KY36eP//u//yqc//el+/03sLxCT7q1zEUL2Lhgj4W/ZUGs5GMHfCxx11FHqooBBM7jtttv6FDS98MILAYHSaaedVrAP3jNBEywGcUzYYSnMn/70J/85gp3HHHNMwSD+lFNOkT/+8Y9+X/sSNEEEdccdd5TsKyHGrl27/JJwrmAJr8OTyoGQTVRIpgruSkHBEp5Lsoo/iGECi+n5H0IGfkQqOFInpFy5BFfIoyKlnDAUghqIlCDEgetQ146NeQemkOYWi/UQECkx0WxkK1OHRX93P3xm5wbqWOQKpDBgj8V8hyc8R2AgnDFtryEQsvJ1WiovR6Y3X+7BxYRV8WSVNC463C+1Z9eG86oYCf3JZvz+W5DCLSHnNRhTNyi4K+G6MumU9O7erk5QvXt2+NcFAZT9TFTwlEjqeRAYMQEUrgsitAIxk1MekAwB+HtUO0W3AlLdeZFTd17spIKnTHmuc7ADRqAoKlhUX19fVOyEYB0hhBBCyFgmnJUbzrJ2n5eTvQvHTMv3s3K/6eom6d7nWGn58ZeKlnQLE1XiISxyKlZazkrT2XzBXGLd9uy5m4BhSRl2jM0hwv2d/Lr3yaw586Sy5XktqQe3Jqz3XHDBBbpmNRQwW5oQQshIsGLFioL3zj33XA2WL1myxEu8zGbVhQTjgl/84hd+XOMTn/iEJoufemppMYCLJV2XA8rd7dy5s+z9CSETDzjK3XTTTZoUgO0DH/iAnHnmmUX3R0LCLbfconFZCJw6nrlbvnnlxSXPcUvvh/Uc2vYZB4tgc3jPe96jcbtvfvObAbfa4QDt2zmeeeaZYD9vuSXfzxL3gBAyOtmyxTGVGEIoaNoLYDEMf3ihOgU33HCDfOELX1AnpGJcffXV/nPsd/rppxfs85a3vEU/g6uNHWMuSVFg4Ox+fvbZZ6vNeBi8b4Km5cuXy/33319SgIUJALIOjPPOO6/ovmRigKzWKJclvIagabBkY4m8YCknXsrmxEvZZDVLxI0AWEBHGblMqtsrsRZyX8JiumUIuwv4EB0Zqd4uz0HILR0XAYQ/2AcL+HB6wiK+lXCw8gtY1HfLPWj7OeETUJcn7Ws2UL7OStOZ+AoiJusr3I5wTjxW1E9WMVEsDtFSvr8o/zblkBP9Y9pWrdDz6CNcpczdTx89FyuUhKuoa9T7BMck7/2Uth0WM7n3cN3dP9WP0A+Io0wQZSXy3LIXqd5ubR9lKSxggiBIAbkSgFHlKsgQk6ySTP003cI/g1iqMy9uMqFTNx53Syxb6KhV7O8wFs2whWloaAgInFzBU11d3VBdISGEEELIiJdkMKETjoF7UNQxCGaizNzs2bP9sgvZeEK69nuDCtRtXD3QMbLNU0xgVE5pOSQjFBNR4T3fzTY3F7N93EQSPA+LqbrnLZXEni2Ba0ew99vf/rZftqLU/WVJOUIIIaMRCJXcWAyC4WHHJoiaIG7CZyeffLLvCoLvwgsvvFDXT1CWlRAyvhkuwcxg2sX+2ExUhHb6agP7QMyEGC/OWe45ioE2rP8jeT/RVrn3gBAycWDJub1Qcg7AJvCQQw7RrD/w5je/Wd2SogbJqPH8wQ9+0H+Neqhf+cpXItuFMOrrX/+6//qnP/2pnH/++QX7IfPuHe94h9x1113+wB7K1yhHp56eHl3oW7t2rZ9x8Mgjj+jiXphnn31WXv/610tbW5u+Rvk6lLEbDmiFPLqApWWUYAmPJrIbDFlkzlRO8hyWQm5L2co6ipZGGa4ICKKejpY1Be5KVgrNBDmWVawuSclKv6zC9mfuiyyx5jUS01Jybaue9IVIbnkFN9PZHIwgDKqZNk86t67NuxnB3ilnqZprWJI1nvuRCZf6KutmGdHp7k5f1GTXWMxhqXb6vvq+JwC72b+Gead+MH8/Iq4ZYia3lMRz//evwfJ5ufvgBlvy9/km7V/tjAW+2Aqfb152m94fLb3n3As7BxmFQOzU0+64Orll7HZDCnaFNeIAAPffSURBVDfoUzQ3Nxc4OuE1ttpaz/2L7H04BiKEv1+EkPLKzRUTOBUrhYYgANZU7r77bv89uM12LTpZUpMXDMltL9ehyd036rNwe1Hl5sIuszZvcMf4GDe2/fV6eXXVSn297777almcb33rW1qSx71XruMS7q19Nm3aNHX9HkyJP0LIyMI5BhlvDk2oXoEqFvheKycgj++173//+4GYTLmJ2iw5R8jEKO/Wn/Jo1i5ivhhXD6SUWrFzue8/8cQT8vjjj6sIMxuLy8I3/r8+y81FgTXmuhdu07J16Pd73/te+eEPfzjs97Ova2Y5OkLGNuuHqeQcBU17SdAEPvnJT8q1117rvz722GM1Cw6PZsOFxR9sJnyaP3++Co+KlYeBcOS1r32tCklAPB6Xz372s2o5OGPGDH0PYqTPfOYz+mjgNb5US6lqYXNoQMyELxUohKH4RZmbn//85/K5z33OFzPhi/rhhx+WI488UoYDTrT3PrDi3bZtm7z66qsqcMPgBs/xR8hKKA6qfYTfq+r9knCe41LOaamq3hNakDGBK7DBYjkIC27ss2KCHFcMhM+0FFw6pWXoOret0+cQ5Zjzkh3TtP9S3+nJdWoKtx0pFsoBYdKhF18rT3/vEl+EhPM3LjpCAwkWUDBXKWRMQ4AFAdTOF/N/W4PnTGq5N3VmCl0jAgzuuXBfzAXKHJrcvtl1WXAC5eKwrwm00Jc5J50dCJCYuCl/L2K5KoCeCxPcrcKiM4in5r3x/D5LaZBRSCYjsZ7dvrOTL3jqbpNYd/uQiJ2QtQ+RMxYH99lnHx2j4DlKlLjjIjL0cAxEyPDB3y9Cxh5hAVMxsZK7/+WXX67Pr7zySl/0tHXrVvnOd74TSMpCUEDFTM379rtfUYKi4Tim2LFh8ZKbdBJ2y51x+MnSsvxP0tXRITU1NSpowroPkuYefPDBogIlu/dYB8L9w/ugmACKEDJ64RiITHQQT8HahsVh3v/+98uvfvWrIWmbv1+EjF76Sobo71zDPe7SSy9Vc4mhFvdbHxCbXbBggf6NQYy2alKTHHzhdwY856h97g/y+L13altY273uuuv6PYY/55xzNJ4MNyUr5zmQa2NCBCHjg/Xr1/uleSloGqOCJnwpoHTcPffcE3gfWW1wPdi8ebMKSNySMH/729/kqKOOKtkuysKddtppvrDI+jdz5kx10XHfB7BUhVNTZaVXnqgYX/ziF+VrX/ta4L3q6mqZOnWqiq/wxeye7/rrr1d71uGCE4HhAxM3/PuDYAnCJYiW7Hl7e/ug2tbqY5X1jlgpXypORUvxxJBdBxk53MVyiHxM9AMRETbXmQh47kQ9ntOW/t3z/vZZSTh30R2gFJs5JUEQZMd7QqWg+MdclmIV1ZLpbldhXCwe9wRNepqgsAPCJRMDuSIj1xGqe+cWdY2qmDRFUu2tjjtTR3GhFKys/+Un8uS3PhLoozkumZMVxEgmnML9QZm7nS8tk1gsIbFEwneucicbviAsd/9MkOV+ZiKpSMFVruRd2KVq3qkUM41LUNoQDk6+q5OVsNul2TiDlSKhTB2ETRA4YTHQnkNYDaE1GTwcAxEyfPD3i5DxH5QIL5KjDPovf/lL+e1vf6sO1cbzz78gW7dt1XF4oqqmYAzelwApyg2pL/p7TKnzh92dwg5O4fPNOPwNKmqaN2d2wJH7da97nXz0ox+VhQsXFg1QuPcc9CcoRAgZHXAMRIjIYYcdJk8//bTeCnzvwWWEv1+ETGwG4gbbVyLFYHHFUkhGgOMJvsenHfNOmXrU2wY856jcuEK2P3qbXi9i01jPRVywXDBXwLwKDFSQxLkCIeOL9RQ0jX1Bk4maPvGJT2hpOFe8FPWlefPNN2td53KAzSAsUfuy9Dv33HPVsg9feuUAF6cvf/nLKowqBoRXUO72t7Zqf+FEe/BgwIPsEwiW3A3CJXchdyBkKuoCLktZ//kkkXhyCHpPRjNRrkAQG3kORd1BoVHuvQBadq5KMqluFeiEB9cv/uwKFRTBoemA866IdHgC8YpqqahrjPwsTPMBx8qC0y8K9B2s+9uNQeciX3QV6LDvdlQMiJ/iiaR0t7bkRFT2vZEtKGeXqKr1gw2BUnURgiX3fve2t/r311ycrNSeK74CuHc9u7blnZkirgv7VDXP0J8TnK9wf8g4J5NSsZOKmxyhk269xb/7y6Gqqsp3cnI3lK9DRhEpH46BCBk++PtFyNgCC95wisbaCpwUyskCtkVyuGbDcRLHhBN3srGE3H/fvZLNuTQAjLExTu+rhFt/xEbhz/rr0BTlwlSszFxU/8P7x3o6pPXu62Xj6pc1MGLCJqx5nXrqqfKjH/1IVq9eXTJA0V9BGSFkdMAxECGi1Sh+//vf662or6+X3budJEf+fhEyISk2ti1XeDNcY99rrrlG3VSxrooxe7puqnQc9M6yji0254h3tkrds7fKxo0bdVwA4wz7m1gOMM0w4wsYXjB5gRCynoKm8SFoMh599FGtywy3JghMIBjCwtoRRxyhmW9QtsINqT+kUildmEOWIepGt7S0qDMCFqVOOOEE+chHPiLHHXec9BdYguEab7/9dl3I2rlzp5bAQ23Ut771rfKxj31Mpk+fLsMNJ9rl09XVpT83KxFnG/6tpdPFy271RTZRKZmaJkmjJFx1Y95xqapBJMHg9EQm72wEoY/j/OOLZlT9U1oklHvPLctm2KK8W2IODlDq8uS0a25L6+/5eckSc8a8Uz8YEGDhvGDDP36VLxWH0ocBJ6NiIqdieNceS1ZKNtUTEFRBOIR+QoiVTffqtbWtetIXfOF6TLAEQZOVmjOxkZuFbW0VIxz0sMxtBDkgFivmMEUmMOnefOk6K2PXCcFTq8TSAxfBJhIJHZuYwMlK2GGDCIoUwjEQIcMHf78IGVtYgMDWZRYtWtRnUAFrJVjPQGJZVOn0dO0UWbtHZP0jd+gcAKWj4dCkx4YcjsoRIIUTJvA8yi2pL6LO1VeZuXL76PLcDy+T7ratUl1TI8ccfbQf0MB4DWtK27dvl3/7t3/z3ZjCYD0I5eemTZum61D9dXAihIwMHAMREnQXQQJ4qaRu/n4RMrHpT+m5oRz7WnunnHKKvPTSS/77nQtOlNRUr/zzYKh56c+S3LVRn1dUVKjRBmLVe6Pc3EDgPIOQ0Q0FTWTCw4l2cTDZeuaZZ9Sp68knn9QBVSkHsL7IVNRIprpJxUsZCJdqmiVT0yjZZE2uVBUhQQpKtTmOP2GxDByasumUJ9aBwCf0b9WcjUxw45dhC5VOw6I9PkOpu1TnHk/YFIvJvDee75dtC5aYi0m8olIyqd6A4Aol5bx9s77TUVAQFZOqpum+GxKOQQm9zq1r9TOUk8O1oDRc1D2IwpymrFSfHRe4J7GYVNRPVrclOwbntH5BjAXC14++dWyBNWxW7zWEWnrtyYrIshmuA5YL+nL4p35Q1vWQCQaEh72dKmxCJo//CLFTqnPAzSJghsUBuFNC4H3IIYeU7Sg53uEYiBD+fhEyEYkKBuA9uF5jvgtBEx6jggp4/7/+67/kqquu0qxhCKfdsmoAiTndc4+UVPO+8tyPPj9gYVApkRFw3ZLcOQ4o1X4ppyUjnPAwEKz/Mw49QeY1VcnyO3+t9wwBDZSfA0i4Q6LcG9/4RjnqqKMCbptRgiYL+MDtoru7e68GOQgh5cE5BhlvwH0R30P4vi83WerNb36z/OUvf9HnEPIiQXgo4O8XIeOPkSqN5o6rjzzySD9+137o+0V03X9wJFrXSe3Lf/VfoxIPTCyGmv6W7iu2r90PzFWampp0HkInWEJGDxQ0kQkPJwJ5sCCI8oImYHrhhRcG5LyUqazPiZaafOclPEqSDhmk/4vgG/5xc6CUHByI4KTkOze5Dk3FnI+COxQe4x+ad1MKl4jDgr+VVYMoJ5tOq+jIjguXvHNFRN7+qYDTkQl7osrqwVkJZfK0bFxljWQyGcl0e+Ur8iXfMpHXAUGSG/Aox/kJ99SEXW6pOvfa4eT0xP98KNCOlbczEZhbmg5CqSmHnCjr77nJuU9JmXvKB8rK6CYkQKpbEq7ISR/bJN4D0V3/QKDswAMPVIETNjyHlfFEhGMgQvj7RchEz4JeunSpn/174okn6gI33oP7tbvQje9MOGH/7W9/U8cFK4EAkfTRRx+tzzMVtdIz5wjpnfIaKKoH5Gpk4DhLhogqAwf6Eju5Y/QoN6ZS7k7liJ76y9PXfkJSXe0BQZNLQ0ODfoZ7D+cmiNKjhGeXX365BhgA9h9smXtCyNDCOQYZL/z617+WD3/4w7670p133ilveYv3HdwXJsoFb3vb29TRcSjg7xchZCiwMfWePXsC5aG75yyRntmHD81Nzmal7tnfqju/cdlll8npp58+pGKu/pTis33h8j958mS58sorA/OMSy+9VOd5SKhobGykEywho4jhGgOxRhQhYwBY5MNOEuIliJieffbZshcDsxLzysKpaCnntgThUnWjSKJi2PtOJg4qClJikqypl/q5i7V8GoAzUoGDkS9mKiZcihb2QETUuOhwf3E/LNzxDvXeCztAxSBAygmO/H474iZP/BQUBzYuOkIf4frUs2ubPlrAAedHWQqIoMLuTOmu9pIl4CDE8kRgufsWi0vz4qMDTlQQFpnICOCeYrOgSficlQ1TNaihAqZ0So+vbJjilZVrWSM9u7YXCMDgzNS1Y2PgPNlsmmImMjCSVZKeNEO34C9Er8S72gKOTgmUruvaDZ+zot99cB/EhhIxyLCEaxPcmyBwwuTWdQcghBBCyPgCC+a2cG6L1hA1QdAE8AjXn23btslvfvMbufvuuwNlGFyQ0bxs+XKZ+drjZfIJZ4rE82OIsJipP85MNi7H+NsETDjGPc597gqXQDhhAo+2v7UTFki5rkzuvCR8fDlEXeukfQ/R9ifNO0DSNc2S6NwZKEMHli9fLp2dnfL5z39evvGNb8htt90m+++/v98uAg742VmQGEI0QgghZDhYsGBBoFTcXXfdVZagCQJo+54CKOdECCHlUEzgYwIk4IpwBsrVV1+tf6eQnGFipmyiUjZu2iJb7vjXspIZ+pzbxGLSPeswqVl9f+C8cLx9xzveoa9xrRAY4XGg1+TO7crZ95JLLlETB1y/e157ZElrQiYWsexg6lIRsheZaJkNq1evlscee0wef/xxefrpp8uq4a3ipbopkpo0SzJ1Uz33paqGIbGeJKTfJee0PCEchzK+44/rAhR2WgqUTiuB60yETGSgZeQkq6IpiHog3gmWm4sWRqEMG46FKCl0lvyxuTJ2bhk6OCWhpINfqi0Wl2R1Xdkl54oB16YN//iV5/oUS/jl7HzXqFhMktX1EktW+qXowvcG+9kxybom6d2zI9L1KV5V54i7YhKLx/MCrFhclvzLjwd1LYSUBf69du/yBE7t2ySxa5PEO7bpb2Bf1NXVyWGHHabiJjg0zJ8/f9ze9Ik2BiJkb8LfL0LGBuecc47v0ARnICyoz5o1S97//vfLU089FVly3UQ4sxculvVr10j37taSLkc21gauI1JUECAsZsKcZjDOSP1xiHryWxf45z3iszf0+/go51nXJSrgCPWRr8uOh2+RVx++wy/zh6xqYAInC67gOUrSISCMEn/f//73GWggZBTDMRAZL8AtHd87GzZs0NfNzc06ToCrRzGQQPX6179eli1b5pdWxVx76tSpQ9In/n4RMvoZjOtQMbchex8MpAya2yc4z8El6cEHH/TH3Nl4hXQsfrM8c/PVBeWyi+E6xBbdN5uVyvWPSdXmZwJvf/azn5V3vvOdI1Juzxz04NJ07bXX7tUyf4SQgUOHJkImEDfeeKPccIO3MNkXyJhMN8yWVMMsSdfPFElOzHI8ZBSiQQUvsIAFdyysr7v7p/7HEN3MOelsfa4l0NThqW+NrYlubNHdju9tb9OFdys355aeC2OCJMtw3vnSstB+zvNsVttHBrS5JyFjefVtnruR7T/r+DMKBFs+RUrJhR2Y7P5YKTuA+9K8+Bg9Z5Qrk5buy4m54CbVsXm1F4To7Y4UPRkZuFs5/Qu6SVHrTPYS8YTnHFjTLKnJC7z3Ut2S3L1ZxU2J3ZvUFSCK9vZ2eeihh3QDmNiefbb3N4UQQggh44uf//znGiDAYjpKniFLGa5LK1asiNwf5dSnHHWENLx5oWSrG2XHbddLz8pHpXbmAhX0IJkCYAyPOYW5mFrSRHiuEXY/wnMbP2OeMBAxU5QICa+B257th75jrF8zbR/p3LpWz2ufq/NrqkfdZMt1lXJFTXj0Ekx26zzNv/5YXDY9/5gvGMPjug2b5OilR/pCJnfhEq6aX/va12TTpk3qjoHXcNckhBBChguUPr3ooovk3//93/X1zp075UMf+pDceuutka7OEEBdeOGFvpgJfPrTnx4yMRMhZGwwENchE/YgsRJA4OOKfbCZQ1M5TkThdtva2lTE8/Wvf12rtcCh1spmb9i8RdZt2ibTE3MKXF9LUda+sZj0zD1Kk563P/FnWbNmjZ8gAuOFj3zkI8MqKIoSTMHhyu41HgFFTYRMXOjQRMYMEyWzAZMqKK+LOTLBcUnFSw2zJT1ppmQravZ6HwkptTAeBRbFIbZxy6mZsMiEOpGl52IxqaifXCDMqZ2xQEU7WkrNFxVFnM8XKsV89yLP4alGnZwQCIglKoIOTQXio5jUzthX94XjUaq9VYMH+X57+3jHWRk97z0716T5BxdcuzlElePqZAEFC1SoiMk9N+5bzknKylKES8uVTSymAioTfBEy0sR6O3Pipo2ShINTd/TvDIKbf/jDH9Q5YLwxUcZAhIwE/P0iZPTS2tqqbkwIOOLxr3/9q5Y5q6io0ACl6w4EMpV1kpq8UHonL5QtL6+Qlsfu8sVCbmYyUEcmVMutmaRzit72Vq8UtTOmNvpyaLI2ynFHcrE+mcOT65bkZk+7++F8rpuS67IEXNemqP57Ja+7fXdYt7/muovrOfTia4sKqtDO9IOOleSO1VKxY5W6bLpYOTr7OcFF8+1vf7scc8wxGpCBi8Z4HK8RMtbgGIiMJ7q7u+Xwww+XF1980X8P3zsQBaBELURPWHO/7777VPgExxMDzs8Ya6DM/VDB3y9CRj8DcR2KcmYq5tbUnzJ01oYJK+EwBzdac5yds898FTN179pWlivTgMlm5fnvf0q69rTpSySRYPwO57uLL75Y3VgHMo7v616Xuod93V9CyOhiuMZAFDSRMcNEmQhAgf2+973Pf52pqM07ME2aJdkqzwKfkNGGZTqnuzuDLkURJdv8j3KL8lFuReqwVEzsE+F4BBGTLc5D5JOsqfeOzwl0ggKk8gk7PVmZu2Jl39xriyWSfmDESshFleTr6/wQRO1+9bm+S/LlymRo2b0IoVe5uA5WhIw2Yt171LkpuWujJHZtlHhvp/8ZBE2NjY0y3pgoYyBCRgL+fhEyekin0xqIhCAGgcWXXnpJy8dYaTOA5z09PbovBDPzF75G1qx5RSSWkFmvf6+OrwvKpuXKxpkrk42tDRPxmCgJlFO+zdq0uUJfJer6EkUZcI0q5dAUVSrOEh+iEhOCgqiMnwyx5F9+EuhXudcdvp7pBxwla/50rexYu1KDME1NTfpzQjkfZJVbIMSYOXOmvkagGe5NtbW1Zf37IIQMLRwDkfEGHEVOOOEE/bcdLlc/ZcoU2bZtW0EC8UEHHST33nuvTJs2bUj7wt8vQkY3Ay2hFiVOQmnsX//61zrmveqqqwraK6cM3fXXXy9f/epX9W+Ru65piQJVDVNl+tFvL3usPhi2rvibbLr/NxLLpGTfffcNJJAsWbJEHe2QoDBUgqW+ji9HEEYIGT1Q0EQmPBNlIgAryc985jP+647Fb1FBEyGjHVvUtuCBCxboXQEQxEfZdMovl2CL+K5wCC5M9lnYvQnHV9Q1SSad8tqMxSUWiwcEQ67AKSh2kkgBVVHghhQhOjIxFvqN4EGg/cgScxEOVBFouTltK1uir1Ftldd+OftHZXYTMhpJtK6T2pf/6r/+3ve+JwcffLCMNybKGIiQkYC/X4SMfELPE088oYv1cGHatWtX4HOUloUoBuKl173udfre/fc/IJlcooKbBOG6L0UJlMIip2JCI9fNqa/sZ9vXTQqIcjoKtxkWKZXbN/++lRBNucInc2814ZTNw+A4i77251pd3GuEAMtKZ8ficTnm/31GEm3rZctLT8iGkBgt7KqFn+shhxyiAieUk1iwYIG6aBBChh+Ogch4pKWlRS644AK5/fbbS+4Hh5EPf/jDKj6AE8pQw98vQkY3/XH9CQtqrFSdHRslWHIFOqCUIOeVV16Ra6+9VudEYda1dsuGNatk+tK3FRUxlZoz9Bc3CWTOkjfIPnWZAqd8jN/PPvts2bNnj/Yb1xi+J0MlIDPo0kTI2GG4xkCFRYQJISMKMlBdql59WNKNcyXVOEdLzEmcv7Zk9KElzu6+UQUyEN+4zkvAFTjhs3iyUlK93bpwb+XbkCldP3exvxgOMVNhaTcPlJMDfhm3bEayjugIYqiOLV6tZ6Bl2gLEyhMz5dqOEhZ55eu830dXzBSvqtNFeFeclWtIHZsQQPBEUvZZNiQuyhYIjcJ9hfuUGzgoT88U3sHLzI4qS4f7TsioJd0rid2bJblrgyRb1xd8h45HQRMhhBAynsrIrVixQhN5sGiPBa5yyMbi0jX/dZJqnCvx5U9IxplfeAkGvTq3wJwCRAmUsJ85GrninzBuOTc3QLBn/Us6N8FYGfMWO75n1zadG0BEVAwc77nZdvhtmhDKdZCyz9F32wePwCsX1yPxikqZc9LZBcInK5vX3daiY3y8h3bsPkQFOtB/7I9j7bz9DZJY0APUTJsvT97+c2/f0/9VJsNRs229PHn7TdLV2amLm66gCWI1/DvAhkAHMtLh2oQNGeBY/GR5OkIIIeUyffp0ue2221Qo/fOf/1xLzGGssXv3bnVpwvfKm970Jg3GH3roobyxhExQTIQDQT3EMqWENtgPSRjg0ksvlTPPPNNvwx5NsGTvmcAHjxD4hNtGmUy4w+Hv1TPPPOOXljPxf6ZqknTNP06aGudKUx9jc3fOUE4SRCmwr8VxNj+3TKZc8N+y876fy6bnHpF5ub5h/P6zn/1Mk1Hgeve1r31N/u3f/k2+9a1v6fVHiZfwOBAhk7WFn5N7fwkhEw8qIwgZ5SS62nSr3PKcZGMJSU+a4YmbGuZKpqYpV7aKkJHFW8T2hDFYzJ936vn+Ar8vOsqRrGuSbKpHAwq2sI9jUPYBgQF1KEp1a6CgbdWTkQ5NeD/suOQSLreGcm+xZEKfQ0yFQMfOl5ZFinn0XDGRivrJ0rtnh/dWbj8VJDniIjwPu1FlutulWBE5X5hV4PiU70fUdeUFWrl+JCs1yzrYRFAY5Tk9dUWeA1RMmqI/h3D/WW6OjDqyWYl37pBk2wZJ7Nogid1bJNZHqUZCCCGEjA7a29vl6aef9gVMlr3cF+maZk3smX1Ms2x+9iGZftRbpXf6AfoZhP0morHybOYYhDmFuSKZSAjJDeYkZAv5tr+Jf7CfW3rNcAMEJlyCqAniJRMkzT3l3MCxOI/NhSCmigo2mBDKBFVRwQhXWKXXkZsn4BGvw+5L/tpA1hN5udfiCptcVISVzWqb4SBI2IHX/RzzKUtKsfJ9OCf2dUVYfgDl+DOl5dE7ZMb+h0tq0lRJ7Ikez7W1tWlwB5v2e9o0FTaZwAmBakIIIaQv4PznljslhBAXE9iY8w9EM8UENyZY2rFjh4p5IORxXYiixDommHIFPhDlwH0Wf5swR0IbJmLCI0rLrVu/XqYc9TbpmXVoUWMDmzNYbMCdM/S1b1+iJpt32HP0YeM/n5du9G3jpkBiwpw5c7TfVVVVKiKFsOm0005TlyYIwHDPBiNicp2fQF9OWoSQ8Q0FTYSMMo477jjZf//9ZeXKlQWfxbJpSe7aqJvIo5KpqJV04xxJNcyRVONskWT1iPSZkCBZ2f7MfUXLpVnZOSy4I8tZnYycQTZEOMicRgmEJ/7nQ36bLoWOS6XB+a0PEDShbSy8e2KeoFgK7kdueYqAC5JkVfATFmm56PVm05FiqXiySuLJisISdSVAWQgEBtAvEx/59zB/Vu+/GJyxUn7AZsM/fhUSNTntJpIy/ZjTdZLiippKZZYTsreI9XZKAt93ORFTvLezz2MOPPBALlgSQgghIwyyjZ977jnfdefFF1+UTKZvIXI2USGphtk5d+K5kq2s0/enzFsqmepGXyATdhwqN8MY5apNAOSJdGxsEdMyaRifm2jHBDwYJ5s4KezQpNeqzkZt+jyqXJvNN6IESniECAlJFtgPwiBvzD9JRU4QXKFPmLtEAUcqu0bPOTYRcLfFfAZAUOWWoLNrQOlvnA+f4REUE2BhPoL2XTcrtGeuVJUNU/U68TjlkBMD14jjMSfJpnu1f5NPOk86zXFz1yZJtq3XLd6TnxO6IBhy11136WaBEwibsB1++OHS3Nxc8t8AIYQQQgghxXCFR8UwwVK4jFyYsDORiXkg8Fm1apWWlsO8CKUxIWoyEZOJmiAYQmm5njlLSv7AMM62hAaMtzEPKSZUCu/bl6ApKgnCxvXTjnqzdM5bIFXrlku8t8MXN6H/Dz74oKxevVq+//3vq2tTX5QqQee6W5Xz8yGETAwoaCJklAH72+uuu05eeuklVTZD8V1sERgDh/i2l6Vi28sqx8jUTZXUpFmSqZ0smeomydQ0skQd2StYlrQFDMwhybKWI8lmdTHdhD+2CA5nIQQHXvzZFbqAj4X82un7agYznmMA7pZtQ8mFcsVB7uK/ujSpMMkVHnlZzZa5YIEAFwQcEGgo5vIEQVGhO5IEssIRSPFKRuT6rdcSHejRshG4jyXd2LLef1mvDB5EYqXETAhIWKDCLRERzuQmZK+QTkm8q1Xina2S6NypQqZER1i0VwhKOx500EG6CHDUUUfJ4sWLJZHwnNgIIYQQsndACRfMVyFieuqpp+TZZ5/VzOW+UPfh+umSbpilQqZM7VR8uUfuGy69FuUa5AqP3HJyJtaxMa5f6s13M8pq6Wo4sSKpQh1mMcaPWNT3Hi/S5xD+eM5GXX4fwo5GUSXu3HIP6/52o7aBfW1egWPyiRfeXADHhedbGPybWAng0XW3xWu7VnOW0mAG5hzZbMDR1hytrDQfzuOVv+vM3adYQUk9V5xlGd8oGR4Ogrh9xtwLjrz6eaJC0s376NadzUqse5ckd21SkVNi9yaJp6LnMSgvjO1Pf/qTvl64cKG6N6HkMMaFM2bMYIk6QgghhBBSFq5Yqa/Sc33hCnE+/OEP69wIZS/hYFRTUyP19fWyZ88eFS8BFTGtXy+1U+fI2padMv2498pUZ05RrExcuJx0KcL7moMtcN1ryyMmqSkLJdU8X5Kta6Vi60uyfvlyFWXBPQmlxTEeh9AJIqcFCxbIBRdcIPfcc498/vOfl4suuqjgXqGEH3DvuStiinK/CgvLigmjCCHji1g2G1lvh5BRB74E582bp89R+9q++CfKIvHjjz+u4iZsUHGXQxYLj1WTJF0DcRO2Zu+xmkInMrTYQDuTThW6B2ERvMhXjVdKrbQjEMRBh3/q+/7rJ791Qb50W6795sXHBF2T/PcQjMgGREPIMD78Uz/wy0wYCB5A7ASxlO/mVFGt2cSWwYwMbBMJoR11ioq4NrSVb9tzgLJghhvksHuD/RFICJSMcI5124XIqmf3dk/UVYpYTJLV9Z4DltNHy95GoARBCrtW6wMhwwbEfp1tEu/cqeIliJggYIp1785JCftm5syZatGMDcGrSZMmTYgf2EQeAxEy3PD3i5DySafT8uqrr8rzzz+vAiY84nW5c9NM3TRJNcxSERPETMXKKIRxF/VNpIOxqxFejDdhjjv+toCAK3ZyhUMYO897o1c2G8dizIxScsUW+aOCAXZem0fMOeks/3i3T+bm5M9HYnCJSuTG97FAwobbTrh9c7ZFe+G5jXvtuFZzbsIcBufB/AZCJ7f/YUFW2HEXc7cDzrui4F6svu1637kKTrgubp+tX1FuVoXlhiFy3yTJ3RslsXuzxNJ9i+QsQQyBFNvgfo0AEiGkEI6BCBk++PtFyNjCSs/BTclKm4WFMxDfIHHD3cflG9/4hnznO9+RQw45xHeuBRs3bvRdmMzVaN323bLh1dUyfenp0vLEXwJzF4sNWBygmLCpXKLmUmWPy4vMY/w51bS5svPlx/W9WCwmJ554YuDY5TnBE8RcV1xxhRxzzDHqtHrjjTf697OiokKuueaasgVJ7s8KhH9uhJDxOQaiQxMhYwAEbE8++WTdoEFcu3atL25asWKFPzgKE8OycfcuiXfvEmldW0TolBM54VGFTnS3IP0nPxgOyhKw0I4Sa3Be6mhZo45L1ZNn+yImLJZ7Jdwc4VEILNRjkRzZvDhPsq4pKJrKZvUzbAgqWGkGBCj0X3suGGHZwVFlG9BPO1f+F8gTE2ECgcX+vKOT91lezOSVqXD7BaGQuTh5/fCypvNiJa0P5wuW0C9MBMLZ2hrYcMr14T4iiID74Qq4KiZNkXRXu9d/CLdQGm/xMRpQCO+LrOzWlY8F2jWwr/W3/1kahNgvLRyXIFxq9cVLic7WnHCpfzr66upqFS6ZiAkDYEyQCSGEEDL87Ny5U1544QUVLmHDcyxIl4M6CNdOkfQkODDNkvSkmerK01+iMpTDC/KucxPed0VMNgfAo7kHuSIjX7iTzeo+GL9j7A/Bj1vmLkrEFE4GwPmsXDWSItyxNOYCaNct2+a6SuWdjLLePCOX+IDxPcp5+45Jzh02RylcR7gkt92vfN+9uZTrVAVclysj4EQbi3nltHMOTFFgzmHt4x5F/Szcsnd9grkWXKdrJ0vvzIO9pJT27Z64SR2ctkgs16cw27dvl/vvv183c/RctGhRQOTE8SQhhBBCCHGJKm3mOi4BE99gHxM7nXnmmRq4f+SRRzRmBzF9OFZnpeXWrd8gU494k/RO21823PQ16d69U8VMUWWpERMA4bmOjandsXVf6/funMnmHaDcKg1u/8JtAsR2kNzQvO9BkmqcJ4m29f76L8bduP5Zs2apwyq2ZDIphx56qDruo1Qd7qvd43LclrA+jKQaPEJAxZJ0hEwMKGgiZIyBQO78+fN1w4Cpp6dHnnnmGRU3PfbYY1qrFpmzJdsoJXSqniTp6uYIRycKnUhxMIj2BrFBsQIW4E0ktORffhIZmAAYgLuZu0GHI688AUooFCsth4E4Agpu5jKyj82NyAb26++5SdtFOTsLIFgGMoRXLnA38q6hW12OPNGVB7K396x/SQfrKE+BfVyRlYmFLOsbfbGsaPtt01vl6DJscqKTCjOVSiQlUVUTKOWH7Gsrm2ek2ls1Y0PvtbpQVWsQAvcsLDLzymoExUxapg6lLhzhUzl1tckEJyBc8sRLAxUuGZjUwpIYJeQwsUX5kMrKQhEiIYQQQoYWLCSvWrXKFy9hQzZxf0hXN3ruS5NmS6phJgbUg+5XMdGSK25yEwcwlnYzmd3yysUW53vbW/15BuYlaAfiHTy6Y2I8t3F51FgZr22OgDmIO+fBvADt4TFcEs+EVDp3yLmruvOhKEfbbG7O77tMOYJvHOuKsOxc4XuKOQqOgwut7WdzMnOrQt9xTZhbYG5iSRhhoZkJspCYoS6xOaEUsrgHPaeIxSVTP0166qeJzDpMJJOWxJ4WLU2npYrbt0msWPnuTEaztbH94Q9/0PcaGhrkwAMP9AVOBxxwwIRx/SSEEEIIIf0XOaF0HEQ0p59+uop0zj//fE3+gCOTiXbMgcl1ZJo1e47M2u9g2bDmFZl29Nule59jtO2wi6yNl5HIAJBcMeWQEwsSOWysbiWli63fu2P1YufCPoijuAkPUQKpcElpHIc5DOYcJqwyZ1ukX8R62qVi28u64X6YK5WRSqXkiSee0M3inZs2bZIvfOELWrYO9zxK0GQisra2Np27Ih4adoQihIxfWHKOjBlo1Voe+DLHvVqzZk1gg7UbFvMGgpYHqG6QTHVT7rHR22oah2SRmox9wiUOwrgl1cIZuv7Cea4kHNyGKmobcgv3wZJrHoXvWSkGazsgforFpHb6vuoQ5ZZeW3LZTwsG+LpYr6KemDQfcIx079xSEECA+Kdm2jx9H33NpnoKyrrZNSNTOlKEFYtLsrou4OBkAiubmHiZGLGcOCp0zaEyfsiEaFu1Iiceg/uTJ1wK74v+QvyESZEFaZDZHSgrkStVR4cm4v9z6+1S4VIM4qXcluhqlVjXwIVLiURCM5j23Xdff4OQac6cOSpqIkE4BiJk+ODvF5mI7Nq1SxNhsL3yyisqZFq5cqXOJcslm6iUdN00Sddjm67PJVk15H11y5lZEkS4PIIlNGD8DDETxrVWssF1VALhuUhYnAPM9RXA3dUtyRYuM1dOSQf0xURTEBFV1DUFkjmAXZNdL8brwXlIzuHVF+548wMrIVesLIV7byzb2+6lOwcwt6e+SsdZP8Ov3flguGz3YMtk9AlK6XVsl8SerZJob9HHeM+efjWBhDGUr8B4dOHChfo4Y8YMOoOScQ3HQITw94uQiYpbTg7iGStjNm3aNGlsbPTfx7zp6aefljPOOEO2bt2qDk1Yt8S6Znt7u9TV1ekjqqqgzDGSM5ctf1S6OjukqmGyHHzB14vOkaKcaJ/4nw/56/jzTv1gQHxkCRw2nndjCsBtK6pMXBh3H9BXWe9weWo3pmCxH5cXf/Yf0rFljVTUTpJELCtzZ8+WObNn+Z+b8AuOVohbwlm1qqpKjj/+ePnQhz4khx9+uCxevNhfJ7afEe795MmT5dRTT5VbbrmlZBlAQsjehyXnCCFlgUEVFt+wueCLHaKmsNAJf1z6EjohYJ3QAHZbwWeZZJVkTeDkip2qGujqNIEIOwaFQak0DJJtkGtZBMjgjcUSAdENnI569+zwDgzpeKyMm18CIQfclSxggHMERETZbIEoqXZG/vcjXLrCAiX62NZScC0QGFl7visT+p8TZLnXrCKqKLIZvQ6cwx43L7vNay8W1xJ26ubkX2O24B7gGAQsrPQD7gEETcmaeqc8nifm6tqxUYMy9XNe4wcnLCCD+4W+QpSFnwUcoShmmqBuS927Jd6ZFy152y6JpaOd0coBk0xkJLmiJQSM8B6+rwghhBAyfHR1demcz8RLtm3btq3/CS41zb54KVM3zXPx3QtlYM0xyca+wB4Ne41AAsa8GC+boMgW292F/XBGs21aqlnnGd5VYyyNecWGf/yqoFxdqXJ4bkkHt7QD2kL/1N0W84xc+WqM301MZU5OhfOIrMRi8XzOQq40NdpDqWm3nJtbKs8t+WaOsdgXgQ1XoOWWuEAfLFvbrsv6DGEWjguXntD5ROduTf7AvCTV2+XPmYbd+TWekAz+XdZPl1452Ls/vR2esMlETnBxiii5bSDjHptLbW2tv7ZiG8ROTU1Nw3cthBBCCCFk2AmXk4PrD8RMmE/g/csvv1wdgJD8gfcw/tuzZ4+6C7kluE3MBJehma89TtoPertMq5gvLY/d5Y2TSyR82LwBQiWA8TKSKSyu4Y6hw+60vktrLhkD8yGbg2BfK3eN991xvZssEh7Pq+Oqk7QdHsPnXV6rdS5i/SgGxEygt2O3IHK0Zv0maT7xPEm2rZOtzz4oG3IuVpivIj6JNWQIwhDH/OEPf6jHVldXy2tf+1oVN5199tnyjW98Qz+H6Aw/H7cMICFkfMMUeEImCPhix+IbNheUrIOoCQvbrtBpw4YNZTk6xVPdIrB73xMUfmj5uqr6vMDJET1lK2r3yuI32XuYmKaAnFDJFrMRXDDnoizEP075M2QX+0IkDJxjMV2cB1YKLd3d6Qt1/FPEk77TkbVd0I14UrLZtC/YgWWr4WY42KQAA348uuUnMFgvvMac4koH+kGnGhUaOaIr9CFZ1+iLoLwSdlknmJEjm5FsusjvXizmZztowCV3X/BoLk068chlWfsCL9yTbFb3q5+72J+M4DNct02AsuI9xwSG5ebGIZhg93aEBEveFutuH7DbEkAWjQmXEOzBI4RLcGGicIkQQggZXrCwjjkdFtxd5yVY92OBvb9kktW+cMlzX5oqkhgZIbI7NsfiO8DcwkqfARP4YxyNsTsci1CuAeNszDFskd4V97gCoHy5Ncxp3fvlPc9gzltmOTwr7RYu6QBszuEu/EPM5GYz21wG85bKxil599lUT8BlFXMaG8tDhGXlsov1Cddrx1sfw/2z/dEu2sCcwI63hBLcXyslZ/sHfgaS1eQIu1b7Ge5tsOaQap4vgk3fyHjlkSFw2tMi8fatkQlbLh0dHfLcc8/p5tLc3FwgdMIGARQhhBBCCBk75eQuuugi+cpXvqLuSyhBPHPmTBUpQcAEF9sweB/JITbHqpk8U9KptNTOWigbX35OUo3z/LgFKkFEubu6FSzCiRZzTjo7kHDgYmN3CJTClTLC4qRAkkQ267dvCQ4WI7AkBxvTW0wGc4vw+d1y3TYHQezG5jbu/MwSyjUm5CSBp5v30W3d3X+Q7s5Oefmf/5R4LKFrx1hLdjEHJ8xrH3vsMX0PTkyY48LFCevQN998s1x22WWRJeoIIeMLCpoImeBUVlYWFTqZo5OJnfAaQicsmPcFAuMxuH107xZpWx/4LBtPFoic7PlILZSTwZF3TcKrrC8AwnPXLSmWrJR4IulbkQIsziP7IOy8hAxkgMV3iHXMOckjH2iobJiin+lAXgVUdjJPEBVV0s1d4LdBuJamC2Uuu5MI9K/15cc0QIIBuS3053HspGIxzXSwtiyDGteO6/YmHbn7BJezdK+/4F8KtIPJATAxk6ETlXSvL1xCfyyAs/6em3zhmE1gLAO7WBk7MoZJ90aIlnZ5wqUSmenlgAkmysK55eIQwMEkEt8nhBBCCBk+kHCyZcuWgNsSFnjXrl1b1hytWOm4TE2TpGun+g5M2cr6UZOAYg5NGFcn65r85IB1d/9UgwRYiI8lkpLNZLwxdzbtjeVzCRWYi9h4PkrAA9yyzy5WOg3j+nCZaisLZ6Xt3Dbcsg6uC5Jb6k2F5vGEXyLCP2cuKxuCJWvHnKUgGrI2AuWys1mdX0BEhM/RPjbNsnbccQ3MudwkB8Puj1tOAucNJ2D0trfJiu983E+awL5WIg+P1q4r4Ao7Pu11YnHJ1E7RrXf6Ad57qW5JQNiEBK32bRLv2Cnx3vY+m9q5c6duTzzxROB9BMDcknXY9tlnH4r7CSGEEEJGCdu3b5cVK1aocP11r3ud/PGPf1RROsrFYSw3e/Zs3cLCGrg2QcSEudO8179H1j34Bx3nptMZOfhjV/njdYs5uK6wYbcjd94w95RzA0Ikd76CMXnUGNp3f83FVEws5e4TTpLAMRpTcOZ4lrzglo2zuY215ZbDtgoQWm0DIIk956LrukO58x+UzbNrdgVSXrzCmytkELNIVMnaLdslVT9dkw42rFml81s4MEHUZD8TvIcSdQ899JC+h/H2iy++KD/+8Y/Vxemggw7SsnWEkPFHLDuQdD1CRgDWdh8dYNCARXSIm7Bh8Rw/Gzzvb+mCKDIVtbqgnqluyj026mM2WT1qFtVJITZox8AXg1h3IAzcrAEMZMOZ0W4JCP/n7Hw9WbvdbVsDZd3sMxUb5cRDSi6TwH3f6kvbOf3JQ07I458jN6GAiArl2WzgjkCJK86qmDRFS+Oh3URljVPmzQOiJzhBRWWBu++59qzmNIUSfl6AIKPnSZnoKue85DpH+cRiUlE/OV8GLyeAOuKzN8jT37vE/xnY/bJzojwEgiN2fTgGkyk6NI1yEARLdUm8s1XiXa25UnE7vcfejkE3P3XqVA3AQLgEsZI9nzFjhloAk70Lx0CE8PeLTBywRIOSB0gkwRwL3wF4jkdsbomDfrUbS3jzK5SOq2n2ntdOHvXuua4rqZckEEwCMJdXG8vbGBvP3bLT7uc23obLrAmK3PIN7me2KG8L7hiL54MTdt+yfsKDO7Z3EyoAjrUsaJSxg/OTWx4ayRgQGoUDFMA9vwUx8iUh8okV+NzmYrg3FXVNAYelYvfD+htVUs+fe+TmWO7czuZY/lwst497X+14nNN1oxqVQOSE8XXnTn9LdOwccAlmjJsRbEFCAMbUtuH19OnTOa4mIwrnGITw94uQ8QzmTS+//LIKXmyDOKkcNmzcJOs3bJS6qbNkx/pVfvKErZmHS09b6WqM3xsXHZGbU0BUFAvMK4qVrQ4Tnn+4CROlCI/fMf62OYnNEYDGM6pq/fiNO49y+/Xkty6ITMJGJQrEEjAHyabTmlRicxnXqdXte/i68Xrd3270XaHwiP2BxpmqaiWZTMqkSfWyp22njqFtPgwBmr3GowmekIgLF6fFixfLAQccoBvWs7mWTcjYn2PQoYkQ0r8/GsmkLr5hO/bYYwOfQdluQqfw1tUVUY4sAgTiNRi/Kzi4zCSrciKnRkfs1CTZyrpRvQA/UQiXb4Bgxh0AP/mtj6hDEQa7rj2qq94PW6Mi69pAqbn8wnluwd5ZUMe5sJDuOxMlK/V9V+SER5Rkq6hr1Ndm64oMAwzo7bw26EabwBb/80ELLxBgwqHKSVP8vrtl8xBAQft9TVjMJhYTCQz6IaKCAMnK20HMhGuzQAOOde+NKwDDvuGAGNoyAVOqc4+ey64JExYrW4ESgFaaD9neFDSNIuFSz56ccKlNHxMqYGqVWLqwvGJ/wOQPg8vwhkEmS2YQQgghw8vu3bt9kVJYtLRnj1dCeCCg9Lc64KpoydvStc2SrZrk2f2PMWxMXiCcyYFAgQn+Mc7FI0Q8Vc2e8MiEQVGZ0hhvW/m04Nh8iwYe8Jm5MVmChOvQ5PYDY3+Mrb0x925/XoG5Bsbr6IObeY3P3NLcAGN0zAVwXrQRVd4Ncxg3SIA++YkXsZgvdgI4px3r9su7b716na4zlWVpI6BhblDWniuucgVXXlKHV0pbyblFufM6/36nemXUk6yS9KQZugXLNnfmBU6+2Km1T/fTdDrtr4kUcz6NEjtNmzZNYlznIIQQQggpC1QbgXMtREsvvfSSPr766qvqcFsO2VjcK7U9aaZu6576tnR37JHu9a+omEn3yaS1rDWwMTPG5ZgbIOZg5ZktucIVCwFLmsYYuy+BklVWwFgf43+s70clIITjDZZMgfNaYoPNHfCeJZ+jHZvTYDyPOUg4VgPMhRUJ1+muPX7cA3EeOMq68wvMN8JJDq4rk1s5w9q3stluLMn2DSTBd3bKP/+5SmqbJkusq0sFShCrAfzcTdAER6cXXnhBN3f9e//99/cFTtjgxsWxNiFjCwqaCCFDBgLgUD9jC4sq4N7kujpZtvHmzZvLGljGU90S37NFBFtU+Trf1alR0tXNkq0emwv2Y5WwSAm4A/O5p3zAH4jaIBuDecsGiBqUb152m4qGzAnJJxbTcnQY/EMA5A7YPbK6uK7lGmCDmqjwxUHIgkb/MJDHedUatrujYBIRtEF1Ssmh7QqUiEsFhFBWzsHbPV8X2hbzw5ay7nuYWOA9t162u9hv4io3m3nd3TcGggau8xImUHa96IcJvmwiZWXuIOxC//1ADERbubJ0mHyIXDSQfwpkoGQyEu/eFXJcah10mbh4PK6TNDgsIUACwZK5LU2ZMoWTN0IIIWQYQcJHMdESXJgGS6ayznFcapZMbbNXxjs+fpZ63KQHL5PXczBCwoOWdE5W5R2IciXmtExabk6CsnEYB5uLLMbwntDJc2FyF9nd86Gsmif4afGTKTD/MLEQsrO9km95MY/nilTtlZju2hMsfZcr+wAwH9IyedmMOjTZPia8ckVJ4f5pmelckADXjmuwthEQsDmGiY4wz8IcC5ufAa3nys+RlFhM93eDEkgWsaAERGPWthtE8eZxQecn9z4GS/mNUYP4WEyylbWSxtY4R3pdoVP3bkfglNswfi/DDB8BlzVr1ugWprq6uqjYafLkyRzDE0IIIWTCAsE4xEomXMIGUQvGVv1xr4WAaePmFtm48imZvvRtMu2AU/2xem/7Lh0D2vq/jWkxbndfAx0vOxUl8DnW6O059nVjBxhjR5V/LjYHsmQH4MYUrK82xsc5cF7MdVyRkgmjwmIoE01ZAonNQdBntIt9tVQ25g6JpBzyqR8E3HP1/VxyN+ZAel+dhA9UhcjHa7x7gbmCK1rCdWGegb6GsWPd8nQdbTs11tje0Rn491AKODo99dRTuhkNDQ0BFydsWCcnhIxexs8qFyFk1AK1MzIMsS1ZsiTwGWrewurTFTthQIqtnHIKCPQnOrbrFlbVZ6oaAmXr7Pl4WuAfbag4p61FM6Nt4AvcOs4merKSEW5WMgbNZjmKgTLK0/m2rTZYzmZ0HR6L+RjsugNxW/jHAF0X8Z2ybFFZ3RhEu4P0SJwJCQbpc046O2AtG6aqcVqglrW1j4AH7g3awH3CfQiXwsD7BQGGWKygj80HHBOYPAC0lc+mcB3RYtqula+w++NeQ8+u7RoQMvGWZpKT4QGBNxMrueKl7vICH6UEpfPnz1exkm0QLSFDpbLSC44RQgghZOjBnAXzmSjR0o4djih/gGRVTDHJc13SrckXMElOADPegbgIC/XIiMYCfb7UmueyFB4Xu1hCg4FxNRIFMA7G2Bgb2oUjkZuwsOEfN+eOyCUPVNfrYr8bTMB+Vk4iP+/I6ri8oCR2LsiAMbg7T4GTlJWpdh2cwnMTEwdhLuE5tMb02rEhgIC5jgVO7DpxbpxH3V1jcRVMWUkIN6nIAhHm8qRzgtwcKCozPFAm2xFFoR3Lrg6Lw7Sf4+3fK343qxskVd0g0jw//34mLfEuJCrsyLusInGha1fZiQpwuF61apVuUeN+EzeFxU6NjY0UOxFCCCFk3IAxK+ZarngJzjzlVgPx26mokXTdNMnUTVUHps3/fFZaHviLX5pt00O/l2lHeIImb6zutW+J0M98/7N+4rWNcTPplL7nOTjlkgYqqv3kYis1beXeXMwZ1a3iEFXZwRxacbwbZ3A/t3kR5kiW/BAej6MNi2PYseYcZY94P5yM7QqrcF6023zAsb6bku2PxGn/dVtLwInWzmuOVXiN+ZfFScIJHHaM9QOfWx9troHraV35mF8RZHV8jsxcsL8k9rRIvH2rxgpjEaXyjF27dsmjjz6qmzF16lQVNpnQCa5OGFsTQkYHjOoTQkaUqqoqWbBggW4uUFpv3brVFzdhg9gJ2YvlZDPHshkty4StaAmG2sl+RrNXgoGl6waLDpZz9qomngkPxE30pAvlufrIBjKt7Rh38Gwqfc85KJYT3wStWouJm4x8jeu8sMcG0+4kotBFKe/QBGemcPYDgh3qCFVRrUIkmyBYfWprywbzmd4ev+Rb5P3LCY42/ONXGoBB5jX6qGUpcpMLXGv3zi2OGMoTLaFfmNigLzjWO0dWWl9+rOD+WFvYEJzwgjNenxAoIoPEz9jeIfEOK0+xQ2Jdu/EveMDNNjc3q1gJ4iV3w6SLVrmEEELI8Cyib9++XTZt2qSL6fZo286dOwd9DsxRslV1kqlCee0GLzFDxUuNkq2sh+WiTFQ0WJALKLiJAJYc4WLlkz1BTtYpx5YPeGAxHAkAGDObOMke3UV3dXs1kVIsFii3BsLZ0lZWAZiACvMPNxsbjxivu0CMFTVOBya6sgxnXI+SG+MbmIOkert0XmRznfC9gUAJ16NtYE7S3e4c7znbarvWdm6eFpUUEiUgw71H+zbPwVwJ98PuW9ABd5wTT3huabXNwfetdJ2JmyB0gvDJXuu/3fKc31auXKlblNhp1qxZmtRgm72eMWOGlrkjhBBCCBmNc64tW7b47pXYVq9erfGg/oqXsolKFS+l66Z6Aqa6qZKtrAvs0/L4t7wxe6l4UK6cs7aZc0S1R4ASbLkz+vs3Ljpcx8OW7I0EZ11nt3F8bj8QruJgcQSLAdhrbCYiCh9jiRg6b8mVfgZIKEDcJCw8co/taFkTeCzm0hROUgdutQs39uMnpr+0TGIxVOao0ZgFhFbm5Oomm2AOYknXXnK456IL4RL6gM3mU2EnJ+sP4kQbH/mTTD3yWklNzsUYsxlNLEi0b/METnjs3Kkxw2KgwswDDzygm7sOj7jlvvvu6294PWmSdy2EkL0HBU2EkFEJAvPTp0/XbenSpYHPWltbA05OtrW0tPTdLjJmu9p0k51rgqXrIG7CwmNNTuhUO1kkWTUs1zdeweDVhD4YkJodqA2WMThVUVKuvJnVkbZSDhiAYh8MdDHYN5GODYwxaLVBMdq3BfOoEmmuKAilHNwshED5A6e8AvqLBXsbMOPc6oaUOw+uBfsgMOJnhVtGNjJ00yl/gR/nnnPSWX7f/ckFJjnZYNAFA3wA0ROuD25K2XSvngODeDzHuS2LPN3T6YurPLLSturJQEkI/VkgGzsnxMIg3xWWAXeCgZ9FOMualEmqSxIqWvLESypi6mwdVKk4BBxcwZKJmJgZQgghhAw9WCR3hUqueAlbT09+4XrQJeIcsRIes3iN5Ap3kZv4eONob0yvIiaMgWMxFQvlx9fij2WzvZhj1KsLU160n0cX7DGORyAhVyo6BueiVI/Eq+ok29vlu5vavMYt5RYuf6AL7DnHKMxrwiXysD3xPx/y5w4Yn1tJBsPG6dY2nnvl7PLCoXypaAu65JMuIHayz6McZL3d47l5RaFoxrKlw/fKSloHnKb89oKJKZ6QDG8nvDLWuYAK+oOAR6mSGhMGt3TdpJmFYqeedl/c5Amd2iSmj7tLBl/CYqdizk4oRQ3XbFfk5D7S3YkQQgghww2S2BHDMcGSK2Dqr3BJ24snJV07JSdc8kRM5SSuu85FJvoxLEk5vI4OML619fbCzoiuz7vJ3v742hlLY26B8Ts+w/zBYh+WBG4xAC0ZnTsX5gW1Mxb4zqnAjgskYuTA+r6N4d0kbvc67biwi6rNbcxd1s4VLhnnJl8Y5uKEa7TrM5dbS5TAa6sWgXPjGIshWd8hgLJ+IH5i1+3Gicy1SY9JhcoNonoLzAwQ35u2v+3krdubwAlbV6s/u4oCyUvYnnjiicD7KE/nCpzseX29l+BCCBl6KGgihIw5mpqadDv00EMLFu8gdDKxEwbCeI6yD66lftHSdTqY2Rp4P1NRq5mV6ZzISTMtq5sYcCiBZSaDVC4L2Aa6+WzhmAYarPSZW1LOsgCwHwav7uAbmCDKzZjGYDicwYyyEebcZIp9c2IywZT2RRfiY/kSeJtX50RW3v54Pu+N52u7Nrj2F/RjMWlefIzfR128t387vV0F5SLs3LiucOk3f4Ly0rJA0ABBBHNjKhQyOf9WexFo864Fkx8EQTDRsUxzN8PD+uQLtbIpvecos4H75parIBIqH9Eq8Y4dkujcmXNe2iHx3r7LY0aBoAJKQ2DC44qWUCoO2dWEEEIIGRowF0D5t7DDkj0fitJw/rkqajyxUlWDlqPyHJcgXoJoiUsw/SVcbsECDlHvZ1J5d16Mr8MCnYAQyHE58jOue7v8+YBl/4YX/i0wgUeIpuw9gHkDRFDhoADmC644ySsTV6XjeiRK2Dg9lvDKTtt8KN/luD9ON6dab+XdExVBpIX5SkAM9dIydXpFlrjdMwjD/ONDYPwfcF7KCbRwrJWdg+gO9woCsARK3zllH7Av+ofrsXMg+NBneW+S+3nCpa1e0tgaZgfvCkR3EDup0Clfvk5dnbrLd3815wNsTz75ZMHndXV1kUInujsRQgghpL9Y9Y2w4xJiNojhDIRsTqQC0ZKVj8O8S5MU+kFUabdSn+G9AsFMdA8D8QoXJE7AIRXjY8QDbI0e42c38dqEQCrmwTzigGP9Mbqt8VuFBztOnY/8ZIOYxCsqdT5i4/Tw3AngdeOiI7zYgMR8F1ntV0RVCXOmRRK125bNt5BoYqX1LFkCG15rbCMn1EJMxMp/u0IrjYPE8vEZvd+5fmjiBOY8m1cHXKq8BPnc/U2W4UIKQ4P6abr5P810rydu6timj/q8O2oOGQQOztgef/zxwPuooGACJ1foxHV+QgYPV9MIIeMGDAxQ3xabCzKqIWrCgPmVV17xNwQv+iLe2yHxtg5Jtm3w38vC0QdBCgicaiark1OmdopkK2ombNk6tx60DVqBlWELAzETBrMYJGPBHQEDZEG7Gc4YwGqWdW5Am1+Ez4uJsF9V43RftBQuG2HOTZbhoBOCzt3aT2R15zMqsn5JCFjCen3M26Cin/gcAil3ob+ifrIOpBFg8LK9vbbs2l3cwb5NKAw3k1qzmp1Ag4qbchm5CHog+GGTI7u/Vi7Oz6zOemIlBDa8wId3z/CIIItlebgZHPjM9nX7NiHRchAdEu/YLokOuC3lxEtdbQMqFwfHOQQCFi5cqJtNaCBmYtkHQgghZGjo7u4uECthDjDULkteebh6dVXChgxgfZ4rFScJlnQaatxFfre8gaEZvLnxP8bKNs+I/gHmE10qJk2R3t3bc6+8JAkT5zz5rQv0Nc6H5AuMod1xOkplY/6BuQPG0xiHYyxtiReYZ2DugrE6xt35ctFwhhINIGAO42Yk25gf8yE4zPol9rIZx6HJw0RTVl7CxvfmRov3KuoaNUsc+6y/56bAHEOdYp3XXjAjjyWlYK6GeZSKrVDSOicAS6V6/LIPbnJKNpBIlHdpoqBpEMTi+ncmja1xTvCzDMROu3OOTrs9N6fcoz7vh2Nse3u7/POf/9StHHcnd2toaBjMFRJCCCFkjNLb26tiacy/LMHcNowtBoommdc05eIvTZ4LU03zkCSZR5VfK/WZWwIb8YhAuebc+rx9btUYigmKjM3LbtN5SKyi2nc+8pOgczEPiIQQCwjPWSxhIOy6ZEkWbgJ1OP7gXpueS+cu+YQKi8NY6WjXPQrgXJZUjsRr/+fV2+2LqyymAjAXQGwj7CK1/Zn7dH88WtwGyRhawUOTubNeDCTVo/MiJKabOMoqa7gluK3Mdb9JVEi6YZZuvW4lBhU57ZQEEpsRFyizEgPK1mF79FHEpIKVGNyydUhmxph68uTJGjcghPQNBU2EkHFPZWWlCgiwnXzyyf77yAZAZgA2CJxgy47nu3btKtleDNmqqMHbCeFLflCYSVZLpm6KN8Cu9R7LsTgdD7gZAVjYNmETFsJTvV3+QNm1bLWFexMd2eK7HWcCIwyqrcyDa+lqWcgY9KKcBIIKNomonjzLd2gCNkA3MBhWS9bchAODavf8YazUnGtlCmwyoRnLTvt4jXJz4awOu0/mDmX3xRyj0F83IGPndqmoayqYsLhl/gxck2U4mKWrOT+55fXcjGoIs/Czc7PQxz0QL3XvlkQHrGZ3SKJjuwqZ4qmBld7DYv6iRYt84RKeY6JSU1Mz5F0nhBBCJlqWb1tbmy9YCm9YOByycyUqfcFSQLSkz+v7nQVMBkexctSBrOQcWCjHeDo8hg4LeEAcZaSd0mk4DuNpE09BpIOkC7dktoG2dL/cXC/VucebEzhgnoHNnUfE4nE/gSDvMAuRU8wTMeVK4uF6LXiBjG4LdFhgBPeibdUK/1w2vndL4ZnYyvrrUuDUFMrEhjAJAYa8SCs/NoZDE5xLLbDhzef8I/1nmFvgOtAPzNcsuEKGEPx7qm6UNLaoeU6qyxM4RQmeest3R+jL3QnlNcIiJyRv4BGZ6okES2oSQgghYxXESoo53aJ8XF+VMfp0t4VwqdoTLkG0lK5pElFxy/AQXld35xduKTokL+AR43CIa1yRUrhUnVt6DeNyjMHxeVQyBs5nMQW4NuHuIZ5iiQiYtySqa/z4QF7MlE8YMFdYbEhAwLmsssP6v98USDx35wjudbuuU5jL6Dg+V43ChFDmTgvBEWIxGMtHlfVWYjE/9pOfo8VyiRte8rpVhfDdprag/Ny2gvmGVqJQY92sXgfmaLg3rSsf80RPzlwPFSqGdI6RrJZ041zdegPlofeosEmrNnTmhE5Ifi5D6GTj6GXLgkkk1dXVgWQB9/nMmTM1rkkI8Yhl8ZeEkDHA+vXrVbkK1q1bJ3Pnzh3pLpFxCP4kIhgCgRPETRA54TkyDFKpVP/bS1T6Dk5ePecpA7JCHe245d4wcMVAGgvbrkAmPLBEJi/2MdERsoKR9ZyoqvFV9damTRZ6dm/PqfRjMu/UYBk4A4NlBAzcc7oDbQt4uE5Sbr8DpRZCWNuuAAiDbh1UW2aGk8WQr5XtldiLmvSgj1YSz4RHFkzJptOhTOqEX24C+yHAgkmC1Z22EhomCAvfQ2vX+orJEiZWdn57PW7JZiTe2ebZyMJ5SR2YtkssXY5tcBA4K6E8HARLEC5BwITnzKwgwwHHQIQMH/z9Gl2k02ldFC8mWhpMlm+hy1JdSLDU4L8ezgV00j/c0swIJEDcHxYxRY3j1bk05/xq4HiMl3Wx3AREucX0KMGTO/723ZIwj3Ncnqx8hHsON/s435A3R3AztfNzhfy5vEX/lPYnvFiPsboFIixAEU2urF7hxXjZzkn0sVC8r8GTqnzwpBxQBgN4iROZ4HlD92rczzXGGpmUxLv3BBydUM7OXsdCosCBgnkTAjJhsZMFbKqq+Pd2pOAYiBD+fhECEPOwOViUaGnPHq/82WDQRPCc25LvugTHpRGcdxWrOGFY0rUlC2Ot3cQ69tqNd1h8BEIhc2mNKp3tus9CjIPz43N/LhOLaUUK26cvrI9hkMidTXvVL9xxuF23m/wQjn1YnMCdc9hcZN3dNxaZa8RU9OTGhfw5VKj9TDoVcJ2KbC93bV6VjSLnHOk5Ri5ROt7lCp28LYZSeYMAzk1IDIgSO2FrbGykuxOZUHMMOjQRQkhooAArdWzHHHNMYGCPP75uyTpsUFaXIpbukeTuzSLYcmRRSk1L1XkCp6G0TB0pXPchK5+GwTIGvcUGlChPAGcmgJIOlvVs2cvmOoSBrtVHttrL5m5k5zG7V8so0EyFu3+qkwhT/uNY13I1nNntln3zMXetXCAELlDuZGTKISfmXZ0QpHDEUsH2vOwJqxMNrA9ArVVbt+i1QNgVtq6168NmWduY5PhuTrl+oka2OTjZddr9Mncmm3yYlWyURe24WaBH1oRaxMJ5ybOKHchkAgvwVi7ONgzEkkkOowghhJD+0tXVVSBUstJwmzdvHlASQb9dlirr1dmEjH7cbGctOaDjZq+UNMDYFnhZxMHF8LBwRxfsMa6uqFY3VbcsHUpDmKgJnzcuOtwfP2PMjPN4QYXgQrorZvKIBUVN5gCVc1P15kDeXCAsHHIDEYXiqpjOk/LirmqdewQSK/JHF7mbWVnyLz/xgy2F509JZcNUSXW1e4kAAbFWdKABcxcEXDTQoPO3QIP+U/R1XM01xgPxpAYTBQHFSHenTol1uWKngbk7oRQN1lKwReEGasIbAzWEEELI0ABRUlioZM8xBxuMy1KhcKkpL1yq9h6zFdUymnDLPluZNDcZQhMhdL3d27CfxRlsDR+vbT3dTa5wBTaWZG3iJIzlMefA+TDutoRp1/EUDkmWxOyLjhznpIAQCfGIuqagi1MuqUBFVSedpWWw4bCE5HK06163Jou0bfXH7egTkrdx/b3tbX5iOWIOFk8IzwmwL/YLx2vCYiaIkzBvsVhGfs6UlVgC8zCvVJ86Oul5RRO6EeNA+b2opBHcS4tvjIgTbCwm2eoGSWNr2if/fjYjse49QTcnPMLRqczYBIwXtm7dqttTTz1V8DmqQRQTO6HEHZIKCBlPMBJHCCHl/LFMJv2ydW984xv993fv3q3CppdfftnfUCO61CQAmY6J9q26yVbvvWws5lmr5gRO6frpKnoaS4EW15IVQhssshcbULqCIuANWjP+4FgHv86ivA2YMejFvubAhMmClWpDcMCchsJ1mm2QjjYwADaL2HANaLTnHm8TCAscYJHfBuYmgjIxEvpr/TKxkBcQCGaGh7M/bF8ftVh1JiU5tycTXrkBErWDzWWXu05YOAfuhYmZzPnJdYWyIAYeIbLCtWNCg0cLtIwZMOGBaAm/VygXBxFTFzIh+mdCiVIIKA/3mte8xt/gulRXVzdsXSeEEELGq9MSFscxTsbYGIIlbFg037Fjx5CcA9/y2Yo6yVSbYCnvsJSpbhBJVE6I0s/jHbekMhbTw26qGIu7Wc7YR8te2xjcKSmn5MoZYNyri/97duT+MWHfXAAjWaHjZs0qblmjQYPGRUfoZ1jY15LVObeovFNqrr8h5yPMJ6zPGMNjnF5sQb40WS+xwT9Pt4qygM2T+mwzm9VABsb6mA+8+LMrCgINCKogyUc1WL1d6sBkrrqRTrZZZ17kOF65IPP8gPOu6Of1khEF/wYqanXLTPJEg4XuTjmBU1eEu5MjZusLOGRje/rppws+wzzMgjRwddpnn300uQRzNjo7EUIIIbmv5UxGWltb9fsU4gc8uq63mJehbNxQoWXiQi63+ry6QbIVNWPix4KxqyUTmIOqn7BcXe+VYwuVnMZ4GzEP97WVf3PnGxZrKAbmDlb9wRX+uOv3hQdl9dyINUCchLgL5iw4f7AkneSSoiv0Grx5QrcejzE92nav2417gI4tmG8Urqdj3uMJi34VcUV5URWuq6p5hsZrwhU1rJqFzlmy2UBCtwmYNImjMu8Yi2vG/AlVLPyz5cRP3j33ksjx8xxVpa1jKAvdICmsSzTPDwmdnISBLidhAGPpMsrXGZ2dnVpdBluYeDyuhg02jsaG10gkMDOH2lrPVICQsQIFTYQQMggmTZokhx12mG5Gd3d3gcgJAwtkJhYDwotE5w7dKuRlfS8bS0i6bqpk6qdJum66pOunSbZy9AorMGi08mk2AcCCPgaqNqAMi3lMHORnS+dclvKKf6+EhDlA2WDWBtE2+bCBvoqL2lq0dF0skQjUtnYtUr2ay57QCVjWRNilCRnHGDhjER4BBEws0I65PvniKxCLBYRJOJcFUszi1URUnjCpOpeZ4Fm/av9nLPBL2Ll9d89lIjC/1F5W9BiIklwhE87vZpPgOuxeunWyUV/bLcmHax7tgibNcIB4aU+LPsbbt/fbeQk1qCFWcsVLECxyYZwQQggpH2QNbt++XUs1m4MpnqNcM8bEgwXj4YC7koqXGnKv4bLEJY3xj4nSIEwqFEnYGDfvXOQ5llopCCx4Rwl9MI6GmMl1LML42NxiVSCVE0PheIzJMWdwBUlwiqqYNLkgiGDMO/WDOvZuW7UiJ4Kqzi/iD4RAbCHrJ0ZY8obNpYDrvuQ6LXnZ395Y3527VEyaIqn2Vg2idO/cooEVzz12eS4A8ligK7i3uFc274PoC/OwwD6JpMx9wwc0YQKOvJaEQsaLu1OzSE1zhLtTRmI9HY6r066c6GmX9zrtihRLgzKjtqYSOH08rgEaiJss8QzPIXpCkgohhBAyXkA8wcS/JlZyH7FhPjZULreRc7DcPExfV04SSYz9ORjW121t3S0HbckUeYFNEFtPBwUVFnK0rXrSH/tibd+qMVRPnq3xBTwPuzrpOXMVGUBUuTmNNeTG+IgzwH3Jjw8E+tjtCZp6u/xEDFwPkjUQQzDnVcyjCsVT0aXkTKRl7dr7lixi70GkFRYzufMOzNt0LpXq8QVVrnMs2oFTLu6Z3Vcv/pP/eeBa7JogpMIcpi8R2egSOjVKGlukQ2pXqBx0XvAU62n3Z8bliBxRWQbbk08+GbkPEgdM4IRHV+xk78EtFeNuQkYDY/+bhxBCRhkQRBx44IG6GZhUrF27VlauXOkvyP3zn/+Ujo7iVu0QaCT3bBHBliNTUafCJmwZiJzqpoy6QI4Jbyx72cXEPFhwt9JnvitSNq+oR7AgrKp3RU4YpEK447orIbigC/TZrFQ2TikodZcPVATFQm7pA+s7Fuc1OyLXJ4Bghwl/3NJxQAfeXV6pO1cUBWGVl+md9SdI6LM3efDew0K/O7g3YRLawQQIAQ9zUQrfk3AGiHt/XatcZJO4ffMeveMw+A8EPJxAyKggnfLKxe3Z6ouY+lPiwAbo++23n4qW9t9/f32O7F6WjCOEEEL6V6YAbkuucAnbYLN9s4kq32WpMMO3li5LE56sL6ApLMPmBRW8sa23MI+xM8byluFs4pwoMFbH+N5vq7dLz2EBDHxuWdkQL634zoW5bGcTZGSLipmwwG9jdzgpmbOrG7QwoVEMpRUwR/GFR7FcgMARcDlOUyitgDmEP4bXxIpOv1wezufOE9yyeFj0xzwK8x43kIPz476p+ApZ3P4vqNeH/L33HLDwWkvTqdDMcZjNlcPTe5lOybq7b/TnHa6YioxjEKipqpc0NplV+DmCbJqRnhM45YRO/QnUIEizfv163e67775A0sr8+fMLhE4IyMB5jBBCCBlNIC5goqRigqWdO3cOy7kzyZpQ0khewDQR5mAYp29/5j6dJ1hCgyUKWOJ1GFszt3gHxt/uujycTREzcJOGY1r+LasJF3AstTV/ADGP7m/OsiUdLmOSrKnXeQPmHxAn2VzDH/c7pa69cbo3b5hz0tkFSegYnuO8cHzyS+tFnT/XpiV9q0DrxWXe+F6TuKsCoi7MvxDPcI/HPcB9xbwDZaot+QTzIuwbjkXo8bnbiv7qfQ71yc5pc7FIV6sx6ZBao1umfnrh55mUxLrb/SSBQDloPO+Hu5MlDmBDMloxULZuypQpBe5OrggKG2MsZG8wuqLghBAyTsGXOhbSsL3lLW/xF+Fg+wpxkwmd8FgqKBTvbZf4znap2LkmX6quZkpO5ASB0zSdfIzkpMOcmsJl5cIuQzboDrgixWI6ibBFdlfA47ZrA3VkAc974/n+oNzKq9k53T7Y8VG4+0EIhbaKl7oovF5zj3LPbSInK0WHwbpdvwYNUCatosrL5ujtLjxWJz+lf46wwLXsBmBiqYBVrnNv7fwmekKf8sIzr3Y1gjQjVncamQjduySh4qUWfYx37uhX6ThkDkC0ZOIlPMJWldkEhBBCSHn09PSoEN9cl0y4hOy+gaDS7sq6vFgp57Jk2b6SrOKPhkSCMamfJV3UjTObc1PyggXAyje4AYUwWNxPVOXLGQBNCCiyvyeWymcf9wXKr0EsZckUlo3sngtzhO7udhUTgYqaepGaes9dSsVUTlDBGQ97ZSpq8n3ReIK3gA0xkpWDiOqrLfpbQAGb66DbFwik6BzH60jkPsHz5vuNAAch+JufwVY3tUgpuz2B0htuKY6+XHnx/RXl6ARnbRM3mdAJG94nhBBChhqs+be1tQVclKLESqUSnQdLNhYvcFlyn0uiQiYqFgcwd1HMHbAW77kKYX280l+7x5i+a8dGyfT26LgeZajNPSiQbBGLqROpmyzhJRl7YxeMtVH62SpGYCweS3huR5iXePvlx83qQIQ+5BIt0CfMHczpCEIsKyWtTk+Oo1E4KQHzAlwf4gU4HgkhVoYun/jhVZhwkzcsIdz6bEnegX4mK1UwZUnk+NwtD4fy2wDiJbRh8Rdz10VMxBM0eckp+p6ePzj3wdzJJTxvGTMOTYMB/05qGiWNrS93Jz9xIDeG7u0o290p7BC3efNm3YqBpIGmpqYCsVP4kSXuyGChoIkQQkYICCzmzp2r2xve8AbfWhQip+eff97f4OSUdgaCBaXqOrbpJi0v6HuZZLVk6qZJqmGWpBtme1bwe0ngZANzKycQLjUXNbg0kY0tolsAAgPhsPjJF0DZAD2b9QVRON4G3u6+CAj0VUfZ9sNkwu0TSifkB9aecCgs0iol1DKRk1s6Tsvi5WxjfaEUBn77Ly3oI47FAN5K3LmY6AkDejvO6mCb85Tdc3uN/TDJgegJGRi4Z7Bxdfcv534NGcjkQKnFto2S3L1J4igf52aElyEUhGDpoIMO8reZM2cy+5YQQgjpJ88++6z88Y9/VHH9unXrio49+yKDbMKaZt3SeKydLJnqxgm9YE4GTnjcHwaL/wguBMQ1yALWf2+xwEI3HI2ymUxgcd8X5gRbzTuZlspydRyTwmB8jvG2W+7adSrKl6du99uJTm4ofZ78Z9nc9aUd16nSCQE23zIXWMzjNIscpeQqa3SeEi6Nh7mW9rkfyQYuCGTAMQvZ6YQUL2XXJFLTFF3Krmu3JDp3SLxzp26Jjp2aENPXasfu3bvl6aef1s0FARaUIT/ppJPkTW96E7PLCSGE9AnmSXBNamlpCYiV7LWVhxvKEnBhsolKyVTUSrYSW13ueZ1kcq/hsJRNVo97l6WBYuvfnpAIP6ec4w/QWxbzhUSdW9f5cwKMjT1BTyEQPpUCY3tXdGSCKXvujt3h9ATXVLfsHfoXLkOHGMzWFYvzjklFsKQMi024Zejc0nD6frLCd3SymI72RROzqwvbTvU6yRTdQXerWMwvKWevLT6x/p6b/PvqlQ/HXEl3UhGU62qLn5O60WbTvkAK1w7n2XHl0DSs7k5pifV2qhsqDBO0PDScUSF0cp+XdAmLRksl7typG9aTSlXQcEVO06dPD4igsNXX1zOuQ4pCQRMhhIwioGieM2eOblhQA93d3ToYcEVOmCAVI57qknjbOkm2rfMDSxA2pRpmS7phjk52hgtT7IfLCdhEQTMfslkdyNrAOOzolEmndDCKgaqVSXPFNW5Na6s57YqHUr1dBcKksADJFVi5ZeAsU8DK1eE8llHt9jVM1PtuiTzLDg+4UVmt7VygwLVjNeGUibxsUG5l88KuUWHBWJQjFfaB85TZ55pwDNeNzGxXiBW+X0MJBs6JXRsl2bZBH/HvtVxmzJgREC+hdBxKPBJCCCFkYLz00ktyww03yLJlWAQtn2y8whMt1TZJpmayL2LKRixyEjJQNHs3VGI58O8wSnCk5c/C48tcmbSwUC+q3byeqTRF+qSin1zSgZZg8EVBEftnM7qPObnanMgVWnklrD2Hqor6ydK7Z4efLe06UGnAAwvZEGp17vYCDn75CCtBUXyBWoMzyCLP3SM3uGGU605VimLl/wjpE5QrqWmUVE2jiDiJUumUxLtafYGTJ3baIfHeUHmSCCwI/cgjj8hNN90kH/rQhzTZLJFAYhEhhJCJKFbavn17QKgUFi1BrAQHpuFAZeooBVdZKxkIkyBQqsgLlTIV3ntMFhkcGHfDOdXG6Rg/Izkgai4RdGGKh5yBPDcntIP1day7I4HYLyFXdKJROOFwS7chDhAoAZ3rVxiUnVv/95sK2sI8BP0Ij7sRNzBBFs4FcZDFcgxcH+ZfuD+Yc1hZaz0G90WTr51+5xLL3f76gqRs1hMu5Vyq4skqjTsg2draxH33BFHezwP3E0nybr/0+Nz1Wxk/FVglklI7Y0GgbCApAubCVfW6Ff3rZS5PPR0SQ5UYPKoAynv0hU+Z3gHdZitxt2aNV3kmiurq6oDQKeo5RU8Tl1gW8jlCxgDr16+XefPm6XNkDcPVhpCJCiZQL7zwgi9wQjAK9urlkK5uknQjBE5zJD1p5pBOglyHJijwXXGMl2mMxfmsDqyRDRzFk9+6wBuwxmJS1Tg9cLyJfaJK2pmgxwa8VU0zfGFSmBXfuTAwOUF/zELV3KUwCfGyNRIBwU8U4dJ2hrVhJSXcvuK5WsJaxkEsJkv+5ScBcZJNMuyakW3tZmuj5JyJn3CeUtcc7gvat8yQUj+PQZPulcTuTZJs2yiJXRsk0dVW1mEQKh1wwAG+eOnAAw9UBT8hExGOgQjh79dQg1JyP/7xj+X+++/vu1RBdWPedak2J1yqrGfGL9krBMa/AfKBgKBwqExQos6r1RZ4u2LSFD/Tt3/NeSXszJnVkhvCJaCRvd3R8qovLvJLUOeSFTzHqcJlOozXLTHBEyfh3WLLefl7EzjO+RzBApTMQFJFsXMOBbgvsUTCPwfu7yEXfmtYzkVIgFSXI3DaKYncYyxdOgiz7777ygUXXCAnnHDCuM8Q5xyDEP5+TSTgmLRjx44CRyX3OcRMwyZWggijophQKe+sJHGMUclw88TVHwy8tvmEJkFgflCmUw2SCKx8WxRWTk7LSZdwf8V5IVBCAjJiE3A17SsRoLBctjcHQHwAhB2d7BxuuxAEWdLzwPDmFYnqep1DYayf7mrvIxEiKOhSUVLLGr1HmDeYQ1bk/dIy44U/G1zbEZ+9YYDXQPpFutcTNuVcnbznHb7zk4qg+pHA3l8gego7O4WFTygrPd7H8RNxjkGHJkIIGYPgixkbrNFtUrZq1SoVNz333HPy1FNPFXVxSnS16la55XmdTKXrp/sOTpm6qbnF/f4DIQ4W7yH+AXBJch2PzEUJYKG/mAjIBtYYxNpnEOPYsebYZCIeBApcsZCJgEq5DIWzHKwGtJVrs+Pdawi7HWnmQC6bAcdElWoLl6ILX7Pr2IRAhltL2xyjMAmJFFOh3GBVbcBZCSIl3KvwPY3qi92r6ADRIECmefs234Ep0d6ipRHLcV869NBD5eCDD1YB08KFC2n5TwghhAwxa9eulZ/85Cfy97//3VuoDaGC97opedel6oaCLExC9iZaguBvP4tYuM76i9coi4DsZLcsQ1+BhzknneXPJ1zUASkkkFJRUE+n3368qk4y3e0F/cG4GmN5mw8FS9p5TklYrHcDHlGl3aJAOQc/0FBybB0MEESP9bPqCqXZ3/0VgvUTBCI06x3BoVwmNSF7hWS1pBtm6Zb/B5n1giwqcNoh8Y6dkmxdF8g0R9b45ZdfrqXNIWw69thjGRAhhJBRDtbFXWelKLESxEzDJlZCydTK+ugScDlXJZaAG91AfI8xf7D8WTFy7q/ZTFHhDpyHKiHuyVVf8ErbFWvHKz9n8wSs1/flOGSusAaERNlcgoQlUYfnOf45HBCDMZejgQFHq24/OaO8xJDgXMbOjXsUdMSy8tru/MYTbHW3tgTaQTyJ7CUSFX6J6KJoiTuInTqKCJ+sxF3/k2q6urpUJIOtVKJ8sbJ29n5DQwPH+GMMriQQQsg4IJlMyuLFi3V7z3veowEqBKwef/xxeeyxx2TFihXS0dFRcBzq4iZ3b9atasMTWoM71TRPeqcsUpFTf8RNFhAwkQ4GyRiUm7DIFQhh8dzENKix7AptMND3jk+pWMmEOvY+9oMwqLe9TQe2GDBbOTebJGACAkzco05ILy1T0RACHmapqmUZnMAHBsTW31Il2LQ0Xm7x34IWUfuFy7659wjvm8jI+u3bqcZiEktU+E5Kdh3mxoT3kT1hJebsPObCFBZWRfUFoD1zvsI9LeVCVZJsRhJtG6Ri+yotddhX1qvVTT788MPlqKOO0g1KbSrnCSGEkOEBi/c/+MEP5Ne//nXkQn5v03zpmXOEZGon80dARh9FMqRdJ9UCN6QSoDQCjsEcAUkEybomZ/E9FinymfuGD/jngJgJ2daqUUK5q4oqdTuysbyWydN+5xdokbmMuUhBH8tcxC2v3Fu59fJiWgo8Xm4p8iKZ0PmPc5nURbKoMcbHPU61t/rzF0JGBMz/q+olja1pnu/kVLnpWalseV5izr/hl19+Wb7whS9o0s2VV14pTU0lgjaEEEL2Cm1tbSo8xbZ69Wp9hBPE8IqVKnKuShAo5cRJ/nOvDJwkK4fl3GQY8cUyRtZPRvCE+Km8w5IzPlBHpt4uqWyYUiAYcsEcAeNtlIwOnDbQXjYn/E9KVvJl1QJl8bQMnbev9XveG8/PxRhsfhDTpAwcj9hGoCJEQccK5wr9FTPhHBbLyLcrg/45hIVVmDthA3YuzF+8GFHwhJjTkdFW4m6SpKu8GF0k2YzEelHiDuXtIHDKPbrl7SB+GoDoqbu7W78bsBWjsrJSE+znz5+vDq0LFizQ53AWgiCKjD4oaCKEkHEIFo3xBYztjDPO0EwVlKiDuAkiJzg5RU30YukeFaVgyyRrJDVloYqbMrVT+iwr4joAWXAAFqkmkrFHBAIw8PTLKqS6C0Q+JrIBNjlwS6JBuGOL+hjYIsPYPQ5tm3hKH7EArzWwu33HKJGLVMQTVcrOBESlrtUmFXaNdn3FnKfc4zChgRsTStvZPbGydxB7+dkb6V5f+GX9ttJzuDZzo3Lbt/tbjkDJdbqKEkGVJJtVJyYVMe14pU8r0UQioc5LJmCC+A5CPEIIIYQMPy+++KLcfPPNkZ91zzxEemYfPqRliAkZCjCe9cVBOSAe0tIGyQodv29/5j5Zd/dPPdFNQWAiGgQrzF0WY+pAJnGEcAdjcT2HgwYicvMjzAlQbtsvDVHQh5gmVbiOtZGU2f/ihDOYS4iTshLhMlWs2cL2XJcqTxC2I/JQ/JwwB7Mgi7nhEjJqSFZLz9wl6lZdvfr+gFsTePrpp+WWW26Rj370oyPWRUIImWjs2rUrIFqybefOnUN6niycRrTUW16g5Dsr5URLkqBYafyTGz9ns7L+npsCAiaUlHbH73B5xdq7l2hdKPoPlHvOZgsci6ISAMKuRBajAN66fUu+/ep6jbvo+fMt+MN/rPEHhFb9ml+UlxyRSaci5jTZfidGmKuUOeFqxY5kpe80hTkE3of7kp0P84/hkS6SvQ7KcOrf2lrJyLTofeCumuqUWHe7X9IuL3oyIRScnvr/r6Knp8d3enrggQf89+PxuMyZM0dFTrZB7IRkfIigyMjBSCIhhEwAIBw55JBDdPvwhz8se/bsUdcmEzhFWTTGU51SueU53dLVjZKaskjFTVBXR+GKejDYNiemqDJrGFhjgA8hErJ0sZ/rjBQWB4VLqbniJXeQb+dWQVAus1pLG6BsRKpHxU+uUCnKtcj6ByEUnJBMTBTuE4ISUQKgUgIhvEa7GIypQ5Rc5Gd6434gEIJ7AWGT79bkOEfZuU0MFvUzsPYgnCp2j1zsXva2t6pQqtS+INa1Syp2vCIV2/8p8a5dUgoI6iBeOvLII9WNqba2zCxwQgghhAwpcJaA4D2qzFzV5me0FHGqcY6kmuerWycCvISMNOr86vybbT7gWH+MXFHXqGNWX2jkL2J6C/FYIEd5s8jMaQ1W/HxwpQl0cT7Xt2zWE14VDRZkdbyNMT6CD0XdlnC8OuR6AZWBACcoz2Eq5jx3z5EJiZIKM5wjS2GEgi8VNfXSk/KCDEVLS6gbbjrv4pTN0qGJjB4yaUns3iTJna/qVipBh+5MhBAyPOzevTsgWDIBExyXBguqEJijElyUXFclEy1RrDRxgdOPifPdMXN4zBsW7ui6O5yccmN1rOejNLSN77E/HJfCzk5lk/XmDSCqPDba3/nisvItkaLmFLG4Jh1gnB4UU+F/jgCpiBipvLJydv7iQhNLeAjsHop5YN6HKhUFl5DA/U1L7fR9NQ5UKjGdjGEwn0QJz4q+RE+O01NI7BTv2aNCqHJFTzCBMKHT/fffHxA6QdRkAic8mqNTRQWTA/cGFDQRQsgEpL6+Xl7/+tfrBrZs2aLCJnxJL1++XNK5hWcj0dUmiQ1PaFm6VP0MT9w0eYFIsqpPt6ZiZdaiHIzChEupWQk6HOs6Nrn7u45HlQ1TddCLEhDmhtQXaBsBCQyKMSFxy9CFBU92Tle0ZdcXFmEZcHRCIAaPLpgMuaUy3DJ2drzdB1cM5rpJeWInL6MUoiebjBVzX7J+6/6od51zsCrYN9UlFTtWS8W2VZJoz2eFRAnnjjnmGP13BRET6hETQgghZOSZPXu2/M///I/86le/0jEf3DtdYtm0VLSu1S0rMUk3zJRU876SatpHF/wJGQkw1s0v4sf80glW1hpj2cJgQdZfIEc5hnCWtS5+p1Ne8sWWNQXvl01IQNWXAAlj/LZVT5ZxjqxUNU6PFGL5Wczdnf414T03GJAXMHnutKXI9HSUkYidlVgiUVBWo3iJDafBbFayWSvXkdD+0KGJjCjpXknu2uCJmFpRKj06UcjYb7/95K1vfau8+93v3mtdJISQ8QgSa8OipVdffVW2bds2uFJwNU3eVjVJMgh6O6Xh6D5LSuE6lSIBuq9xczGBU/51fgzslZFL9Fm2udQ5EHdA7AAVMCzhOU/fYqaSc5tsplDMpO9ng20PoO/9oswEDiShqKhJkyVSGhex+4T7ExUjIhNN9FSjGxxX+yV66t4t8c6dmrQf6+P3CkKntf//9u4DPooy/QP4s+lAILTQqyhIVZDiiQqKoqeH3nl62MXe0VPv/NsV9ex63qlnOQv2dvbeEESkqIAFKSK9hRYggfT5f37v5p28MzuzOwm7ySb5fT/OJ7ub2dnZ2Q2+5XmfZ+VKtU2bNs1RlUQHOpnBTniM1UniiwFNRESk6sUeddRRasvPz5cvv/xSPv30U/n5558j/8dRsEFtmStnSmnbvaSk4z5iZWZ7BiJhkgFR8mhoemVgMrkzOXkFCeFYscqj6VIOup6zzhQVlJnlCKsVwuXpIidWcFx9HjrICc9DViczkMsMfIJwYFVVcBUyIunyeKADqLyukzsYTAc46aCkqmCnHHWeuiSdmd3JDJAys2XpLFZ4npmNKWPdDyobU7QodmT+Ovzww2X06NHSokWLwNeaiIiIas+QIUPUhgmFmTNnqkEYBLIXFTmzUmAgJ237OrXJim+kIi1LZehUEwVZLdTP8P0WatAoVllioppCAFAVY4AxFLLLP/sPhIfs7E0IetIBOWpg3y69UPVcPI6B/4zmbVR72MyWGpX+/nuUmUtrku1YsV1RWhK9LFwoJK36jFBZW70yPiFwCWUmzMmHcqwQr3y9QCu11YpsTNoU2cfHhAsmTHTAmP2+jCAp9Kuatu8ZLqnncczMnFy7/+FXVs+9UIQoIcpLJKVoh6QUb1dbSN0O31eTFzGePmDAADnooIPUhmBgIiKqOYwrv/jiizJjxgzPTLFBWClplYFLraS88mdFVsvwogv2Q6iG9KII/MTYvBoj37bRFcQTbs9HLRld9U113gvSj4h2tIpy2bpolspAtDMPizDQNvcZmw+FHEFZaHOjLJw7k5LZlg/3J0KVf0OWhEKRGVmThT7ncOYrLLRoW3lNsKC71HNBOVG1gp5Q4aVom6Tsyq8McMLP/ECBTkgMgQBdbFOnTnUklDj22GPl+OOPl1atWvEDiQMGNBERUUQ6daxAxLZmzRr57LPPVHDT6tWrHfshwCVj4yJJ37REStvuWRnYFI6Q18EzqvRbZXBRrEalOwDIzOyEoCJ3kJMfDKQjOh8/MRlg7u8V1OMFHRmd3hXPMffVwVF6ZTh4BVzhMR2oFC0AC4+j9jUmTVCGAgFPeE2vxrg7yMkMcNLXzLxtlo8zg5/0Y16ZtPD+EMiUuW6+pG361bfRhnSaY8eOlcMOO0w6duzoey2JiIgouWBgBf//xoZgpjlz5qgsnV9//bUUFlatVNVUGZ6yIkkt3Og9wVAZ7GRltpCKrHCgk7qfkY283LX0rqgh8iuzrDIsRc105Bzwx+A8+gYosYygIgzYh3cpd5aYKC9T7WEsUNBZVVWIX7TBfZ+JBUx+oC2OwCtd/k29p9LiyhJumOSwwpMpVrkKHkJmJt1/QWAT2uWOyQjLck2ohIwgqYCsCrVowyx7h1XP+Yu/de3nPCZeVy34SM9Szy8rKqx671aF6gchAM1vdTsmWdwLRYhqBCusS3eFA5RUoNIONdmAn+p+lNJxnt/NlBQZPHiwHHzwwTJy5Ehp29ZnZTcREQX8Z9pSiyYQyDR//vyaBS5lVWZeatKKgUuUEF0OPcVeILH5x2ne7fpQKFxerjqMRQHVgYXGOouszbLCgTvuzEmu53UedaKaW0AAFPo5ej7GvV+bgQe7FidUZZm1JD7ZmFTQUWqaf4ltI5jM//pVnpuLfo75HvD5of+2ZuorDGiimkM24aat1eYd6LTVDnZK3ZWv+hyxAp2wkPCFF16Q1157TSWRGD9+POfQdlPIqmloNFEtQzAFJtAB9SuRso2Iagf+V7Fw4UIV2PTFF1+oLE4R+4RCUtomHNj00/O32Zl/dMYiBNEse+8/drk1HbhjBuHoACC9ShiD+O6gnmhBSfid+xjhgfUSNYmAgXQ06N3n5T6GGYyl98UkCM5H/3RnkjIzIulAoqABVDrYCIFfGOh333eLdVz9fFwDlK4Lci7q93M+kM4995IuORmejTJEk48ZM0ZlY+rdu7eEuBKKqFawDUTEv6/aUFpaKvPmzVOZm6ZPny5bt27dreOhdB2yeIYDniqDnCozPGFjGQiKBX0HDMxXd1LAb5BcZSQNWE6iKuioZrACGoss9GQCjqfLJVgVFZXBTKky+IqnVDtcL6bQGZ0QOISsq7rt/v29Z7jPUAVNmeXnfN5IeHLGmFwxyzR4PyVNUjOb+P4e11H3q4JM4OC95PTa17NvR+TJqpBQcYGdWQkZl0Iq41I4gCm0mxkEMjIyZNiwYSoL0wEHHNBoswyzj0HEv694QpYKZKdAINOvv/4aPXDJDlhqKeXIuNQEGZeymXGJarefYWYnjWNwUkwex0UQUDi+KDyn4Vi84drf3ddB2z5IFqnq9IWCCKVlqHLYHr8JsOAi+j7VLgceCsmQK58Jvj/R7qgoc2Z02pVfGeiEjE7+iygwr3bSSSfJHnvs0aCv/+oExXIwQxMREcWEwJW+ffuq7aKLLlJlSp5//nkV5GTvY1mSsWmJpG/6VTr36CVrllVIu2FHOQasdemG8GrnCx1ZmDC4jcAhrHzQZeLMYB53oJGZacj8nZ540K+j76PBjoF31cgvKog4hmaWYdNl63C/eFue6jzgvlmbWe+va1qrGtmV/MrrubkzLbnvu5nXzX0N8Bx3WTz9HL8JhE1z3pON334kXTt1kFDhRpmzaLVqaOgU+/369ZNTTz1Vhg8fztq/REREDVR6erqa4MV2+eWXqxIRCxYskLVr19rb+vXrpUIFY8SG4GidPUNkbcTvK5DuW2d2MsvZZTSrLGXH7E6NHbIVoU9Qsn1ztUog6H11SeWq0mklVcE8ZoYhCIUklJpuD8oHD2byHozHymG8ftU5ldurie3zkpD88PAlajEE+kFov+vSKQhqKs4vstv76c3bVGZqqny9UGVAEvaPNtliZ1Gq+j3KNKDvEu36ob+EoKxwAJbzWqBfFZ4MCWeessrL1eQLSmKgr+QucYHALHyOsUqHUyPLslRWLKHSQkkpLggHK5ml4fBYdTKPRYFFOZ07d1Z9W2yYQBg6dKg0bdo0LscnImrssCji448/lpdeekll+nfDv+ZlrbpLaZu9pKIpMi4xcInqXnhuwicwR/VDLUnPbm20aaME4FQ38MljXzN4JzKQx/nazn5RKGBJvHAbPp68g5nUb6KWxPPcx32E8jLpetgZdglxP+FAMEstaieqNQjMbdpGbRGBTru2qezm6Rt+ltSibVW/qqhQySKwYUHFKaecIv379+eHVg0MaCIiompJS0uTAw88UKVjRwrhyZMnq8kuDQOPXXPSJaVdS1k98y0pWLVQdm5YroJpdOkG3ch0lzxzZ0/yCuJBIxj7mGXkdFYmPK5XU3tlaNI1sfE6Zsk4k3lOZlYp9c6ssojazHp/nDMmKfDaWGEdJDOTX+BTtEAovF9MFJjXAPCaeF/4iXNRn0Xle/QKgFLKSyVzzVzJm/2eFO3aJWtWhztEu3btUpHURxxxhJxxxhmy3377MRsTERFRI5KamiqDBg1Sm6msrEw2bNigJit0kJN5u7g4+CBpCkoGle4SKcjzzu6U3kQFN1UgwCmjqVSk42flbRX01FSlBqeGS7dvw4P4VVmJEJDjLJfgpLMblWACwrGaOfx9QVYjd0kJlHtTCyd8B+bFZ1W0/2C8X1BUVutO9qIJvchCl82uyuIU7s/o9n4KBuvt1wupchKWhEvVoV+AACk9SaCzQ5WX7PJc2VxVuiIKy1LngWyvujy2SvDuuG6WpDdrqW7hveA9YUHK3PvPqrxQIUnLQhapnaq0NkQrHU4NKVipSEIlhZJSUqh+hkp2Skpp+HZKyc7wYyi1GAdY7dyhQwc7YAmbDmBCaXQGLhERJQ7aBldffbV8//33kb9DuS5k8u8wUGVgIkoWGFtXCxn0omh3+7+yvauDmdRcAx6zvPsFqpR1dbIJVZdPiesgmZBSMptJRXFkWfnq2p3sTnrRQ9XiDWd5cD8qg220YDEsSElJVcFSWAhDlBSBTs3aqK00t4+k5a+QjHU/SGqhczHRjBkz1Pb3v/9dlaOjYBjQRERENc7aNGLECJW157vvvpNnnnlGfvrpJzWZtXz5crVCB4oXz1YdXAQdYUAcpebAqwRatCAgPK4Dl3TADgKLdFYmNGARsAS6ZAMas/r1TNFexx1MhNXEOlgKr6sb4O7gIL3KWU+UYB+chz4XXYZud+mALGSPMkvJIdDKvFZ+11ZL3bZaspbPkPXLF0t5WZnKyqDTP+bl5cnFF18st912GwOZiIiIyBHYjolibG5o723ZssUR4GQGPG3bVrU6LVB2p9KdIqU71eo2PxVpTaoCnCo3HeykA6EwqET1my4dDQhmQqCNf4kDBAx1jMgs5FsmrTJICgFFqrxdgNJ10bI36dJyCBrym9hAMBaCjvQkhC5pjeOir4E+k7stj9urPn+2ckDfMrJQZalgIbNkRtGWtdEnHCzLe1JCl6fDeal5hnC2V7w2SmtXlc9LUxmZcD112W292GLhczfb18ecvEBAlC6FTfW8FFzpLkdgkg5UUkFL+Fm6U0IBJqmqIzMzMyJYSW8IZsL/m4iIqPahRLVXMBNUNG0rZS06qTY5UTJR4+ilRcF2DoVUG3bNV697BgZVJ4tsjBcKUKbN9YyU1KhloiFWMJNXf8d8TGdszek1OHaJPh+YM0EfTqnsywQRM/OUZdmZY5kFlpJOKCTlTVpLWcvuklK0XULlkWMXU6ZMYUBTNbDHR0REux3YhJTtyOKDTixqwepgJvyubdu2smlTuBxb3pwPHQE2OuhHD5SbJebc3IE5+vkYjNfZmHRGJd3g9WrMBi0D5xcchAAinDMG53UwkVmiTgcNmeXx/M5F08fEympMDEQLfnKXozNfHyvR9Xl6PR+rq/PmfCCde+4pXXMy1OQi6tpjAhKfFWrb3nfffbLvvvsGvj5EREREgLZEmzZt1ObO7KTaIQUFnlmdsCGYWmV/qaaUsl0Y6ZTUnVXlrdwq0rJUYJOVbmR70sFPKutTU5HUdH6ISUhnVzXb/vbAtk9QEQJ8vLI3IbioucdAfHrz1ir7EYJy3Kt/MUFgZj4yjlZ107VqGH0SBCd5rSQ2JwdUlqTK4+C19XtFgJBeEKEhSMgvI1VFWbGjZIZ6rLQk4pq4J21wPXQZO/zENVAlttV5ptiZdfX5mBMKdjBVWoZR4jtkBFyFoS+kA7F0FlsGNCWxCgQrmUFKlQFKdqalneHfx6kUnFuLFi3sgFl3tqXWrVtzoQ0RURJCWU+Uq54zx9kWASxKaPLbVLFCqVLWsquUte4hZTld2e6mOqfapzFKmWnIigrxyHLk+xo+iyhiwXOQeRZl16qTIUr1DVRZ7oqqRLhRgpHQjs9f8m3s80XGJCyQCIUc54N+RNTgJHtRRc0xCywli1DxDknbslzSt/wWdZwKWWYPO+ywWj23+o4BTUREFLdJLAQ13XnnnXLNNdfIzp07JScnR01eIagJPzt3aCtpm36Vsja97IkJv4xHXlmczKAmDK6DChoqLQ5PHLhqYOt9dodXOTizhJtXNiS9nw5Ucjes3e9LZ10CTJhEK1nnPh+vACe9n6bPt2TbRpUid92iAuk6fLjKpKUnD/Fz5cqVDGYiIiKihMjOzpbevXurza2kpETWr1+vytlt3LjRc9uxI8YKTR8pZUUi2GSL7z5WakZEaTs76CkjW/0Uu+QX1Rbd7kXbubQwXw2Op2e3ljLcRukHR4amcKYl8FpxbQcauehSEmbpanW0yuyvWBAQbTVy+DkV9iA8XgPt8jVTX44IhGrZe6id6SglLVMFI+kAIN121xlpQfePIoKZjOuACQy8TjhLbKhycsGKvtobkwwV5VJaEP6bKC8qlJRmOSqjElZg62ulJi8Wz1ElObxgIqQqWxXK0Tl/j74Yzt8dEEV1lFnJDlAqqApQMjMsIfNSgl4+IyNDcnNzI7Z27dqpnwhcwv8jiIio/o0FYxx41qxZ8uWXX8r06dPVeLBjH6tc0rcuV5uVkqqCmspzuqi2NtvZVFeCBhEhK6kea09ElqVoCxCCqH4gVMjxOgg8Cr82+i2VcwTGwpGyooKIzK5dDj3FJyAs3MeAcEnsUu/35A5gihnMhOyxlWXqPIKfcH5EdVNmu7gyU22hpBblS9rW5RHl5dxQIeWQQw5RSSF69OhRa6fbEHBEjoiI4uqCCy5QGwKYevbsKbt27ZKysjKVBj5UUSpNlk2T0q3LpV3/kY6SaV4BPzrDEQb23cFEgIxO7udjAF5POpiTFl4l7mrKHcTkdzy/35kBUfg9jmNmaAJ39qogr4ESfF7BYe0HHyp5s9+T5k2z1OeiS8tpGDxGqv4rr7xyt64LERERUU0nu7t166Y2P2hT+gU76a06Ze1MSP+duqtEZNfWGJmeIgOd1P3MbLHSm4QHWCnuVDu5chAdQUwoWaD7A1qrvUeoctPY1z2AjiyqKEON/oB78B2TGRkt2qjgm21L56lBeAzqdx41PmYwkzofrD7GALs6WMjuk3itktaZmMLZXnepOQMMwKNk3A8PX6ImDOwMR6GQvTgDpR50UJOeUEBGpcFXPOXo4/gFDrkDq7qOOV09B0FiqkxDWbF9PVvtvb+6jtuWzg2/D5T2Tk1TAVNpzVraAWAarq0q17cQ5fqqzh3vA+8X5wf4THR5cIozfGfKiyWlWGdT0gFL+mdl8FKCMitlZWXZgUl+G7IvYdKbiIgantTUVDnggAPUVlxcrLI1Ibjp66+/Vu13U6iiKrjJZKVmGm1s758IZieKB7SDAwcCWZYUb/MvgW5D5YMxp8vmH6f5Zlb1fYm4la0L9GrhTEqp6fbiELXIwi8DbWVZNy0lM0oJSSPQCH0x9Kc8A58cAUlBgsAs43wig59wfqs+f46ZYCm+ME/n6lM5fmJRSJRS9CYs3jj00ENl9OjR0qtXL/aLaogBTUREFBePPvqoKleGoBgENCFI5tZbb5U77rhDrbZHJ3bp0qWqxBkyNu1dkCfF3Q+ICPrBoLdemWyulDaDf3SGJgTwuEvVYbICg/B6YN8dHBUkSMjkFQhV3bJ1bjh3pGzVkxRe18DMXoXrgQkVveI7SDk6fYyOfYdKjyYl0nPoEMe+aDyNGjVKXnzxRfszIyIiIkpWTZo0iRn0hEkUlDo2g5xQzs68v3Wrf9BSkExPfmnDLYQLqHJ2zkAnMwBKUjOqgl8oELRpVaAPVF47dzATIJOQzn6EIJuOIyuzJJWVOLK2qoAgPNauh2qPY7AdbW48VwdAWeXh8tlbFyFIp1IoFM6q5FpljOAnfPoYSE/LylbtdPRRzJXNbng9/XsEPqGNbwcihULqOLivg6naDDxYZU5SwVZpGZLerKVq7+tSdAh40v0Dd9m3lPQM9Rx9fARwoV+B994kt5s6l9TMpvbEC17TDOIKZ34KBza5g5lwXN3/QECZuoZGIBmCtuyMU6GQnbmWZeeqqaKsauC82BxQL6h6PEETYc2aNYsaqIQN/X4GKxEREWRmZsqBBx6oNrTLZ8+eLVOmTJEZM2ZIUZF/9plQebGk7ioW2eWfUbUirUnUgCdVRpqLCygA9A28+hO+wTVByqFZzkyr1RUR1BSHMmzu46G9ps7PspyZbo2+g8pcZVW9BzODLVSU7Az3N2JAfyCc2co7W2zVa8Yp4D6e14oavvJSY+GHK1DJ7l+FxwRqqmPHjiqACdmY9tprL/aX4oABTUREFBcIZkKwEn7q4Bidrenhhx9WwU0IbAJMNGFSqMnSL6Q0v5cUddtfJC3TEcykyzyAO0gHHQ9MWpiBTrGyFiE4CpMb0UrcmdyBUO79q5vxydwfg/04d71q2S9gyrwe0d6vhsmJ4m15avJGT1ws/+Z9KczNlX79+ql90tPTZcKECTJ+/HiVNeuWW26Jee5ERERE9WUSpXPnzmrzU1paGhH05N62bNkiFSgjVg3IfqIHv/xYKWlRA57UREwKh2lMaiAc6dxTUqXLoafajyEIB0E+OmsQ2sk6aAe/06XOEGiENrd+ni7PltmqvezMW1656rhI9RWw4Rg4lns1MYKMkEkJWZzMoKb0ZjkRJaD14gUEDOmgqZS0dNW3WTP1FcekAMo+43zdr6ODitwBRmW7CtTv8f70OSIYCRmecHysDDfL3WW17qT6M3iOXhyhg57w/odc+YzqL5nfZD2xoLMqVWXIck5I4Hdm9txBFz9U2feqDAxT77NqdbdXn6rRQyk4lHrTAUrFeiDdCFxSJTPjD1mTYgUrNW1a9d0kIiKqbrv8oIMOUhuCmWbOnKkyN+FntOAmPyllu9AQktSdm/wXF6Q3jR70pDKqcnFBY+dVhhqLHsxFANVnVS+YKVbAUg0DdDD3UYK+kTtbrCrXZvQzVfAf2umVpdz0bla5WvgR7ic5y89VPjHquYVL+YX7AOE+gsffmxFA5Xpy5bH9sjaF1GKNnF6DI7PoMpiRNMwr+gUp6T5WuVm6Pn7at29vBzH16dOHQUxxxpEyIiKKC2T50RmavLI2rV+/Xo455hh5//33pU2bNrJ27VpZvhwphmdI916zpNVBp1SmfC23JyzMAB8zOAkTA3qlLwboEfjjNTCOx/F7PRjvV+LOix6c14FQ7v3dZeNiMff3etwrc5T+qYO49CSEHwQ96VSwqUbDH5N20Lt3b7n22msj6vO6s2sRERERNVQI7sZqOWx+UC558+bNKrsTNgTlm7cR9LR9+/ZqvzayqKQW5Ytgi1raLrsq4Ckrx94a4ySMDg5CWWl3GxmcwThiB/gse+8/EY/rYB70IxyD4KGQCvjRgU8RQiE1uYG2+L6XPSbzHjy/MqgpXGLOXIyA89EZmBBwhXJtqkRcWno4CMm9otmqsLMjoQ+E81Btel+WOndkpEXJh4ricACdDhbC+ZgTGDqzEyCrrbou9iRCSObef5YKCsNr4xoDXh+3ddZbHQxVUV5WlaWp8nvoDubSpe8AmbDUe6+cINK/b3TKSySlaLukFG2r3HZUDaajVIHfpM5uTiKjDBw2DKwjOAk/9WPYUCqOiIioNuD/OZjkxYZ2NsYpdRZV3cY27+fn+7eVoy4uKC0UKS2UVJ/1BVYoRQU9mQFOFtre6Vnhn2lZUlF5m5lVGy60R80FALrdapWH28xou3YedaJnqeoal4dzBzDtRkYhZIh1Z42F9OZtqspQm6Ws7ZcscwbVIxMrsjaVm+dlqb5XCH8rRqamYOeNUnap4efZL21mjg2XzvZ9X2npKhNtcX5exO+QkXbv026277sXmXQdc1qU86J6r6JCQmVFVVupcRtbyc6ELwZBeVX0qXRfSt82H8vJyWEQUwKFLCwHI6oHVq9eLV27dlW3V61aJV26dKnrUyKiGJBOEVmb9txzT1myZIm9Kn7y5MkyceJEu5Y6SogMHz5cVm0rkTXLfpV2w47yDVAyg3t09iQEHJll5zQdAKUDknan1Fys+9U5Hrhvx3ovQY5bsPJn2br4W/U4Uv/v3LlTZRdAg+rOO++U0047TWVlCvI5EVHyYBuIiH9flHzQjnUHObkDn9DujScrJV0qsloYQU5VtyU1XRoatHP1RAIGwPe97HHPfVZ/8ULE5IJeIKGyC5WVqIAanW3IvfIaA+Rm4I9ZCgEBSS33Gqr6HroPUlqYHy4x16S5ykpUdR4eZSYqj6P3RUBRuJRd5OrmVnvvb2dlxfnrYCgv7gkBvYDDzpgUCoVLRJSXqUmPzqPGqz7L9/dN8F0V7e4z6Wulzx3BT+b7M9+/l+r2l+r9IHvxDkkp3iYpu7aFf+ogptJwnzdeUlJS1AIhr0Al/RgH0ykI9jGIEod/X7sH5erM8tFmwJN+bMeOmmbSCUZlfHIEO2U6Ap8cv8PP1Cz8Tzqh50Txo+cMvOg2ri7vbAYMlRZs8c8wFJN/5qHqlF7zDaxC+x+BSJXtdewHUYOwHOXfwnTWWr/f47jop6CfETvAq3rvDf0W87g4l4wWbVVfDQsuev7hQtXHCAdtFar+lDvYieqB8lLvwCR1v1jdTjF/l6CMSmb/qnXr1o7FH2agErZWrVqp/aju2kDM0ERERLWatQmr4s855xxZuXKl3H333SrgRv9PrWtOhnTZbx8p7thBSlUq1JSIwXAE++A+JhPM0glezAF5PbiPVdFo9OqMTX7MsnVeGZncvw8yiG/u774dLXNUtMkA+7xmvS0jhu4nc1Y1URNshYWFqoRF8+bNZerUqbL33nvH/JyGDRumgpuYqYmIiIgoOgTkd+/eXW1e0A7btm2bZ3Yn/RiyQFVnjVmoolRSd25Wm1sFVps7gp3CAU9WZvN6m4LfzGxaUVqiJh7c7WFdWk4NuodCqkSCHvDG73AM/A7BP7itg35Q5k1PUNjBTDr7FQKZKlclZzRvozIVoc+BDE44FoKJdDalaMFMOuuR2V/BIDw2/Txz5Tf208fA84q3bnBMolQdOKSCtMxAKJ1NSZWvC4UkJS1TKsrCAU/m6mUEdumsSViFHp4sQPBTigrY0tdSZ1kCrPDGueKcVPYotZI79up0d+aqeh/YhO9F6S4j01JV0BKCmZAZIh7Qf9PBSV5ZlhDM5LVIhYiIqKFApkGMFUebBMUiTr+gJ31bL6StCZXxqbLMXVBWaoYd4FThCHzKNG4jK1T4fkNckFBfoN1bvC1PtY2r2sRhaAv/+NgVkpLqbG/ZmUpj8gvi8XjMI2AoVhCTXzCTbufbr1ZRZgQn+QcWVfULwosqzH6G17nhuNECmXA8lIXTfacYb8yxyAP9Fjxfl8PD8/UxsCgE/SiU8Db7N8goRXUI35HyEhWMhNKg4SCk4qpgJXfQErbqlGeMAwQjuQOUzPvsX9UP7AETEVHcuEuX6c1rHwTPoGM6ZMgQmTdvnsyePVvd79Spk2StnCnpm36Voh4HSEWzthHBRPbK48rSCYE7KniOZdklGcwB9VgriPUq5Wgl7rDiWpdoQAPbnBCINXhvlpcz78cqb9d+4EjJ++5j6dohV5UxwTVEFDQGwjFBduONN0YNZgL9OelMTfh8WHqOiIiIqOZCoZC0bNlSbX369PHcByU39ESMO/AJP9esWaNWqAeRUrpTbbJjveNxC8EvmeFAJ8sV8KQmUpK4hJ1dDqIyw1Kscs9pWdmO1bm6/LQueeZeZODO/oqfuuycuXDCXYpaZVYtLVbt/o3z+qhzdAcz4TWzWney+wbgDurBz4LVixwl3nRglHMCIBT+LyVVUjOaqKAs83nod9irzCsnRXRJPE0v6sDkgn6v4UxRYNmvqScw8BOlNvT54LkIlkLWK9CZr354+BLPhSJm30pfPxxLv++kVl4aEbCkbyOocHdgVW+HDh3UZg6o6+AlDKw3bdo0bm+FiIioocL/L2MtLigoKPANeMJPlLbDPvGCLCIqk0jxdkkNsL+FbJpeGZ/cZfAq77MMXvygPRxuM3v3tYIEL6kgI1VeLRz0Ew7EkcpjxshMpLIppXoEBlU9D+WlrdIie4GEngsJBzeh72Gp46Rntw6fLzInpZRJCAF1lWWpq4KTfM7FslSZN8yvoF2P/oc6JyNbbcRCBnf5PBf0u3T/xB3QpLJcqWsbkpT0ygAsV1AXno++VkQ/1bJUH8Or3B7FEQLbKrMkRQQk+WVUitPCjpqUgUNmWgQs+QUrtW3bVjIywuXPqX5jQBMREcUNAmFiBcTofVasWKHKcGCyp6SkRK2aQSAOApogdecmabrgXSlt10faDx4jG+Z+bq9sxgA8ou/xMxozEMiEDoY7E1K0oCH36m9MWniVj9MlItTKZQmvvK5JtiVzsF9PxGACxTznTd99JHlz3pcuHdvLiGFDHcdBFqyLL75YBTMFYQaZgZlRi4iIiIgSA1lWOnbsqDYvyGS6adMmlabb3NBmXr9+vfp9LCHLktSibWrzWkWOLE7lzdpJeXZ4szKaJU2Qk1fwkW4Pm/cRfIT2t86YpOnsTH4lnd0ZVPWgOwKHEFykMykheAh9D1zvsvwNaiBelXOrDPQxJ0J0qTscV5doQ+CQ7ie4+xrh16jqN+hApYqyqsCZ9OatZeD590ecu36e2V/ApEXV+YRL3eF3eG28Nx2kteqzZ2OWfzAXXOAY6KfowCacH15HZ75yf066nLb+jHRgVLSAtDpRViKphRsltWCDpBZslJRdW8OBgbsJg+pYaIJU++aGvi76akRERJRYGG/GYk9se+yxh+9+WGCArKrYEOCETd92/9S3g7TBA50jAgdKCkWwVasMnpHxqTLbk6MsXmpVeTwEuSRL2z6ZhNvDkyMyHKVmZUcEM7lLPWupmU2kvGSXHfDjyGwUo52ts8pGqnoegpK6HnaGajtjEbUOaMpo0cZRlUK/Dx3EZFX+DJ9T7GB8HBfHN/dV5a9TUtU1AR2YhL6Fed8LroO5sERdl8qAJausRPXN8Jpq0YouMWcZGbKKClQglcoW5bru6FO4S+7hXHD+uu9G5tepQkJlJUYQUrEzWMnOpFRca+XdosnKylIBSlgUpn/q2+77+Jmdna3+rafGgQFNRESU0BJzfvug0TF//nwVRHPwwQerxw455BA1QYO0wYDo7oy8hdIjJU06HfkXWTR3ZrjhitUBFeXh1RRRmI170APpWHngHkg3942VrQkNbjNQSt/WZRj0KmysVtblGnRWJx20hMfdr+E12G9OxKj9yookc92PkjfzLSnatUtWLN8la1avVgPmyLCElUXbt2+X5557zg5ocmfOct/XQWawZMmSanziRERERJQoyOaiVxbut99+jt8hc9O6desigp2wYaIlCAxWphZuUpvkLbBL14WDm9qrnxVNW4ukBFljnngYFNdta3Mxgg7Y2bZ0riMLUnXa9+AXeKNLwenJAUxyoMwbHsdrm3QwE9gl2tCrqVzpjAUZWP2ss065sxvp11JBQ5Wrj8sK86NeF91fwASDKjVROWmgy+LlL/42vGMoxbiGVZMlemJC911USbrKyQt9bljQ4Sj7YAwcqzJ3ldlqty6caR8T/RfzevuV1641uCbImFCQZ28IYArtZjkcd9ASHsPkKREREdWPBQYoN4QtCAQzFRYWBg5+wlZUFJ+MMjUqg4cyyo7Ap8qf6R6PVd5ulEFQRqYi+P7eM+xf7XvZ46ov4S51hja3M3sRMg1VeJR/i8zWhLLSTdv3tMtLh1D6DoEnroxICFZCO1y3zdG+12WiNfM4ke+roiqjk8qE5B2MhzY89rOfhnNAlYvS4nAfQwV1laj3jCy0ZbsK/EvYpWXY/ROcb6s+I8KZYXG8ogLVP8FiEdW/Ki+NyHSL/VSQU3lZRDAZ9lVl9IoKHFmdoi0ub3Cl3czMSHaQUlWAUkrlbdHBS3V4yugTeQUk+QUpIaCJyA8DmoiIKG6ilZhzl6FD8A0yNM2ZM0cFNAGCcRYuXCj9+vVzpPxFKbXMdT+owXikDLasCnuAPBr3qmuvgXRzcgOdFtz3W0GMQX6zLIU7Q5O5Ulq/vjvzk55Y0auczdfwGuy3s1G17y5bp06WdT99I10xcF5ZWg4riZDdavPmzfLNN9/Ia6+9FhFU5s6cpe8j4ImZmYiIiIjqHwRT9OjRQ21uCG43szmtXLlS/cSGzKgxS9dtXS7pW5er+1YoVcqbtbWDnCqyc8VKbyK1TQ+K69tmsJIe0MdgN9rXmGww90MbW5dQQGYi7G8GEpn9AQQkufsL+rVKdxXYK59Rng2BPBiQ12Xq3MFJOvvSvAfPUwFNGNxHH0K/D3d2I7Ptr7NNmYsl/Jj9Cx3YpOHc7BXMVkXV7ytLRSDblJn9SWeIMrNd4djuLFQ4Jx28pFeXhycSwvyub61mZ6ooCwfsIXBJBzBhcL8asOIX5eHcAUvdunVT5QsQdEhERESNB/7frzM/oV0QBAKa3EFOfsFPuL1jh3/2m+oKIaAF2SerkYES7f+qjE9e2aAis0KpIKh6xAwIQhBRRvM2qh2uF0foQBpdRq5qjN8IaIrI2lRZKi4tww5A0gsNkInIXSoNbXed9RXBTIDy0vp5+vgqK6rKZhQuo22WptbvI3yeoXAgkKuMXVVfIHrWKMfzQiFpkttNnaNZQhrn4hc8hfeYkpau+gG65HV40ck8VRpcBUFZljp/3eeyy2Dj3IzSc+ij6GuiS2ZXlJephSXlxbvC5fqMrE6x+kvJG5zklS3JK1ipuE5Lu5nl3fwCktyPtWjRQgWMEsULv01ERFQnZejMbE7uMnRoID3//PMqGGrZsqpGMgaNUXajbbv2ssfYM6Q0t0/E60UbMPcLcDIDi/ATjW10KNwBU+7nxxqc9yoXp4/hLpvh9xrhSYhyKfhtnhSlpaqsTJiMGj58uCpZgOuFyaprr71WrSbyCirDNUbwEjrGuKb6muO+vu7/+te/fMsEEhEREVH9gcHD/v37q829ojwvL88OckIbEm1BLChAm9JLyCqXtIINahP5MXyczBZ2iTqVxalJy3CATILoNrVaXWyFsxdhpTIG9hGAg0FzvSBBnV9ZcUQp5yqWmgAwSzybGVRxbHfbXpecC6WGS4WhnwC67MOgix9S2YlwTOzrLnegV2jjJwbti7flqUF4lKlw9wV0hia9eAI/Uf7O77q4F2aYkzN4n3oSBhMcTdv3sCcl1PWyIrM/6ddHcNLGeeHX1eUi1GRLRbma3MB+ajV43nI1CYTXNrPVmsFM+rMxr3kioGRLVfalDZKyc7MquRgUggP79OmjgpWwIXAJ/S0EDxIRERHVFLKOIEAaWxBmGTy/Unjuza8tXxNo/4dKC0WwBUwGZSEwx68Mnk9WqGQJgtJt+/wl36qAICyO6DzqxIhxe92OdwcGYdwffQi9ANpcZGCXbENGIZfSwm2S1qylCtLRATyqrHNZcVUQVOVtbDrICcfVpaYdmYpCocrAoXBmJN02j8iAZAQfOUrHhVJUMD/6PAi+wvswy3Y7SvTp42Q2E6u0SL0W+iy4ZugPqQUflaeFY5nBXAhIcly/rGxH6T51bQq2SEoagsqK1LHQ3/r+vgnqd+6ALWTOrdNycyo4qdQzW1JEqTczYKkOg5OgWbNmdgCSe/MKUmJ5N6pryfF/DCIianRl6NyBNzpTEDI2Yd8RI0bI0KFDZcqUKfLUU0/J2rVrVeYm28qZkrH+RynpOEhK2+5ld4LcAUqxgo/cZenc982yFW5+r2X+3lEurjrBURVlkr5xsSoxF2apQfXly5erEiMzZ86Uiy66SO69917flcFmdiw0PHVgGcrK4dqffPLJ8tJLL6lOrzvgjIiIiIgaFrQZ9WQK2tkasjahnfjzzz/LTz/9pDZk//Q9TvF2taVvDpcstlIzpCyni5S16q5+SmXgT7yYJQswYIyMQHpgHoP0egBblYEoK1ZlDTCgrlcF6zINeuUy9jGzsbozqLoDb/REgDtLLIKHSgvz7exPgBXGejBft+vDZd/mSEaLtuEsRpYlGTlt7OxSZsYosy8Sq1+jJ0u8grN0yTfsg4mPzJbtZO/Tbo7IxORezewuuwe6PwM4tr7+eCwzp519jmYAlnmO+rPyyoC7W6wKFbyUtnWlpOWvVN/J6kwsom+JoL8BAwao2ywTR0RERPWxDB6qGSB7PwKbkKnVK+DJ63EETsVLCIuDSwpFsAVkpaSrzK8V6U3Uz6qtqVQg+Cm9afh+WlbcS2DrUsuaXqgACKLxmhtAO9cMZkJQPzIqubO0YqED2tk6AEmViWvXQ7WhsTBAt6XNQB8EMyEoqmxX+DzwnM6jxqvjIturOg4WRGQ1iSgVXXVBUdKtUAU24dzQJse2esoLKlgoXHouXAYb/SG8tqN8m1WhfuA80pvl2Bmr8BNBRfbzDelNsqXdQcer66UzR+lycn6wQEX3WXz3VQFclRmqykrUebizMgH6d36LP3YLLkRFmcpullK6S0KuzfFY2S6VCa0uNW3aVC1q8gpO8nocj6Wnx7fPTpRoIQv/tyOqB7CKVKfxxEpSTOwTUf3gLjtXXehgffjhhzJ58mSVockNHZ+SDgNVxqaNP37lGbiEhq8e3NcrryFahiX9HAzWmysSNHMVtLvzUp3yCubKZUw2DD76NElf/5MqiYBALvz7p1cII5AJAU2w5557quAkv2uMsn6YnMJ+ZmCZ+/dowDJDE1HyYhuIiH9fRLUJw0QbNmywA5zwE21GZHiK+dxQipS36CRlLbtJWatuaiJid+k2N1YsYyUxAoS2LZ2rBrcRvOS3ItcONKosX6Db9LqNbpaR1hlUq9rk4cAl7Ie+AyYezJXHeK5zxXOossxESNKahFdG69fTfQoNExQqy5FRrgF9FKw8dr9vr/PUx3OXrsDqZNCBSrguQTLKul/DDHbC+9X9HVx3lZmpclIDEKSlr42exND9LbPv5X4Pu1VGbttaSctfIWn5qwKXkEMQHwKXdABTz549WQKBGj32MYgSh39fVB/a+zt37vQNgPLbgvQHEqFCZXZyBz7pYKjKwCcV/JQZOHOsux3szr5kBvTrvgEWTOh90KZH6TR3MJMuy4x2sA7uN0tC230ZIxgJvzeDrMx5hrn3n60CiRBQlNGijTofvDaCliLL3lVxz2fo94vMUKoPEQqpvpRqw1cGNZnvSfc5dFk8fUyz5DfO01xQgXY/NmRxdWeyUmX8ykpUYJI6d1WOr0K9rya5Xe2ALwQ56evkznjlzuTk9T6jUkFKRdEDlRCghJ+u4K3agoUXfpmTvAKUcD8jI5wJjKght4GYoYmIiOLCDKgBM3jGr+xc0EAnrEwZN26cjB07Vt566y25/fbb1fF0kA8am1mrZkvGuvmS0b6/5E64TaQypavmXnmtVxzr8hJekwXubE1u5ipor9XGXiXuvNhl7kIp0rV9a8lc/a39O7w/bK1atZJTTz1VFixYIBs3blRl+cysV/oaT5w4Ud3H9UTGK5STw0+/UnS7E2hGRERERA0PSg3oTE5jxoxRj2HCY9GiRXaAE7YdO3ZEPteqkLRtq9VmrZghFc3aqcCm0pbdxWqSU6Pz0W1urFi2yktVkI1fEJMZwKMH2HUbX68y1iXadMCTmpgwMjLp56OPoAfPB1/xlCPgyV5NXFnaQWdhUquty8IlP9BHwIrqnF6DHfujjIMZzBTrfZj9DQQbYbJFl4kwA5p0FiizZFy0/ojX+9F9JF32DtdZvz7u68kCvVJcZ6ZSK9YN7n5UkEUevsqKVPCSysS0fU3MyQUs1ujdu7cdvISfQTMcEBERETWW9j5KTmHr2LFj4CCowsLCwBmg9OPxCIJKQbYebEX50c8RhbxUdicj25Mqd2cEPaU3kQ2/zJbVX75sB+qoYCWjpJqZldVs06Ldr8vCeWUfVdlYK6Evop+vg3J0uzm9WUtjwUPIEcCk2+O6va6zIiGzkQ6qUvMIqel2oJReZIBj6SxM5nyGGbyFjLKae0GC2V7X7XlzMQNu4zH3wm6zz6UCklTJvEwVfISyeihzjT6RChzL3+DI9ITbZiZZM8uVucACAVDuYCacd7uhR0ioZGdlUNLOyMAkM1ipvERqEwKNdNm2oBmUWO6ayBszNFG9wZUNRMlNZ/vJzc1V9bxRxkxnEPILXDIzCOlMQ0Fg/6VLl6pOl1kuQ0PZi5J2faW0fX/VifGbHHB3KvSKg+pE9gfNwuQHDeot01+WdQtmSdfKAC0TAplOOOEE+eMf/6jSh/pdSzyOYCbzutf0+hJRcmEbiIh/X0TJBhMTWG33448/yqxZs2T27Nl2FlE/5Vk5UtayuwpwqmiWG86cFIWZDdUMGPIacHeXYdMZi3Tgkzv7khnQBF7tfzPDU9cxp9uBPegzYHDdnXHI6xz0sXVGJ6+V1OZKaPfKab1a256AqFzxrZ+jM0hhFTTK6mW17mQHS7mvk7vfYq66Nt8PmKuuwXwejmNO+OjV3e5Se+7r6JWFyk+oeEdlKbkVkrpjA6Zmou6PknEjR46UffbZR/WBOBFAFBv7GNSQFRQUqCzvb7/9tsyfP1+2bt2qxtewMPLII4+UCRMmqP9fJAr/voiq+gx+QVD4u9yyZYu94T7mFGoD+i4o04fArj367SsrliyQspJwG711j36y56HjZcOSebL+h+nSbtjvJXffMY5KDmawj9knMANxzAUYVRlnS1SbHX0bFVhUGfiDACf3ggq0m81Mr+jb6LLaeF60DK/uYCyzH2OWePPqVwVZaOHVd/KqjmH2OaBp+552BiZVHg+l2kIpkpmT6zhnnS0rlJIiQ8+5XX546R4p3rHF8XoZWU0kJRSSLl06S2fXfEqiYOEE/l/SunVre8N9bF4BSsi2RNTYrE5QhiYGNFG9wY4AUXLTgTbokCCDUJAyZjUtRaefd+mll6qV43fccYdaMa4zNmlWSpqUtO8vJR0GiCDlrA9zlQJWHOjOhVcZuXgIv96H0qlXP+naItVzlTFWsKxbt06uvfZa9T6DcF/P3S31R0TJgW0gIv59ESW7oqIi+e6772T69Ony9ddfq7ZsNCgPocrStewm5S06iqREJhA3B7/NMg1oqyMoSA/+m+XfsJ8OJsKAPTIrmcfSgUDIdIRJBF3yANmO3G1/FbhjTBjooKpY5dzCpSaw8hmD8GmSmtlEPa4nJzS9khqlFRAEZU4S6DJ5Xu/RDNZyB1HpSQr8xESCV+k7d+k9rwmMaKW33SX0wGu/quCsfPV5RQ1ownvduVnS8leqQKbUXc4JCzf0NYcMGSIHHnigHHDAAczARFQD7GNQQzVlyhQ5/fTT1Xc8Wib4G264Qa677jqVAT3e+PdFVDNlZWUqqEkHOJkBT+4NgVI1tXbtWvV3qucSZsyYoRYJA4Id8ZgOespq0kSGHny4rF23Xtb+tkiatu0shVs2SPshh8mGeVOkOD/PzkbkDmRy8wru0eXe0J42y6uh3ey3IEFnifXqv+jAqYpSZCMK92O8MtfGKget+jSVQVdgHsfreX7BVKAXQ5j9Mz0/Ul5UqIKb0jKbSHlJsVgoQxcKqYxg2dnZst9++6nPa/ny5fZr4bPS++AnFnO7F4kHlZKSorIo6eAkM1jJveF88HpE5I8BTdTosSNAVD/URRCNztikG7meGZs6DFDBTZKaHmilQbVrMHscy7NDUF4iC574mxQV5EuTJk1k+PDhjl8jze8pp5wil19+uXpPzK5ERGwDESUO/76IEjMRgZJ0CGxCgBMGoKPBIoSynC6VAU5d7YUIaFevmfqKKumAxQYIisEgOMorhEutYTDZsoN/zGAlBP+YgUKwZurLanAf2YTM4CAdBGWuttZteZ1dSE9SmBmi9ISDu89gBgOB10plcz9zpTQmNnBc7ItgJ53RydxHr842A5n0+bnfszuzUpDMsmZmLK8FHu7FIO793EFWZhCX43gVFZK6Y104iCl/paSURJ+UQnbe3/3udyoTE/pQuE9ENcc2EDVEH3/8sRx77LGOrJEIXmrfvr0KjkAJXdO5554rjz/+eNzPg39fRImHv3OvLE9ewU+xMsmiv4IqBwiQ0eP1ZhBNjx497IAZHeiE/TAXsWnTJvU8CIVSZOjZk6Qiq4VYGc0RLeN4HTPTKdr3WOBgLrqAaO11dzvbrx9ici8qiNXW1+bef5YjmxP6G/teFuzfS8diktEnSsHKBZL/23xp3XUv6TP0IAkVbZeU4u2qDJwOLkMfUgcq4d9t3PaaO1mwYIG65ijnpj9Xr/2QKckdkOSVXQmZlBIR2ErUWK1OUIamyCVwREREuwFBTLWdDeiqq65SQVQIAtpjjz3khRdecKzEQn3kzDXfS/qGBVLScZCUttvbsQpcBzHpDoNu1Ju1poMyj+XoEJSXSXreL5Kx/gfp2jFXVq8udvzPvFu3bnLqqafKoYceqhrtOH8dGObGzEtERERElKzQlkXpL2wXXnihLFu2TAU2YVu8eHHE/shWmr51udosCUl58w6qLF27vsPttjUCmnRAEYJ90pvl2Jl/UtKQxShHPY6yclgZjZW/eiAdx8BAP36HwCedZUmXbwMzmAnPUftWDvKr0g+VK6cRPIXbOlBHPw90iQkEFZmPu4OKcF64b5aq0OeCICZ97nivWKFsZofCY1hNjU0HStmruUuL1SpvXAfA65n9EfN+tOAms9SF3/5BJljM61PVR/pQOnbrES4nt2216qdF07ZtW5WFCRu+T8jMRERE5AWT4ieffLI9wd28eXO588475YwzzlBBsCh99cknn8hll11mt0eeeOIJGTp0qJx33nm8qET1DEoMo3IDtmgQbIQApGjZnrAQY+XKlerfCXO8HkE2eD7G6XVAE36vszvhJ36PLD/42bZtG2m65NPw66Jocma2rFm3QdYuQ2anTlK4JU+a5naVXZvXqv6IV8nmaAsPdDvcnQ1Jw321iKO0pDJjaxO7hLSG5+mMtub8hbu9r/pLRoYm9Md8YQGKDlIq2i6de/SSZfPzVN9l0zdvhIONOh8U3nfTEsdTcV2xmQFkyJiE0qH6s9BBTPiskRkY11pn1EIw0plnnqkWiJuBSuw3EDUsLDlH9QZXNhAlt2QKsikvL5fPP/9cnnnmGc8V4RXpTaWk075S2ra3WikRdLVyEO5jbZz7meTNfk+6du4ondvnOvbFua1fv17OOussde2CrgZA6lusGmH2JqLGgW0gIv59ETUUGzZsUBMG2ObNm6fa7dGs3rRN1qxYJu0Gj1ETAnnffmwP3LtXFutVxHqFs/v3OuAoWsk4PIZgJhzHXarNLONmlnnQGaGsiorKMnPuUgqRZSLcq6m9zk2fh87uhG1n3nIVwJXTa19HmYhYq7XdopWfMwOa9Gpuc39zAYi5qlvv484W1X7f0ZKyK1/W//S1dOnUSTp36hj1M+/Zs6fKwoQgpj59+rCsA1GCsI9BDc2ECRNk8uRw5pOsrCz54osvVGY/N5TFPfjgg2X+/Pnqfrt27eys7/HCvy+i+sUca//2229Vpif8O4HsIhivP+KII1RVBfxtI6DGr3SdySvzkM4ANWz4cLEysqUiq7lUZOaEfzZpJeXZHWTjj9N2a54iWunoaBma/J5n9hPa9RshqTvWS0rRNiOAaYeEyiMzYEW7Nn5w7VFKsE2bNvLPf/5TPQ8Z9gYNGqSCzRA49vDDD6t5lGHDhsmcOXOSYi6KiKqw5Bw1euwIECU3ryCbug5yQofho48+UgMaGzdujPh9edPWUtTjIKlo1iauQU1aSsFG+enZm6RoZ6HqrJgrOAYPHmyX4KhuYJLXda3ra01EicM2EBH/vogaoh07dsisWbNUcNPMmTPVyulo1qzfIKtXr5EO/feXdYvmSvG2TY4BdwQFYRVxKJQqllWuVhMHLSHtXuVs3jYH/PX9sl0FKngJQT8I2tHlGBDMpIOS/AKHgpR4MIOcdNk5XVoP/CYakO3JDHSK9n7N8zCDmHDf3S8yA650dqjwG64K7NLXrbyoUGWxQskNZJjyKgFhwsTEwIEDVRATts6dO8f8vIho97GPQQ3JunXrVOZzjAPCDTfcIJMmTfLdHwFMffv2tTN8YDztiiuuiNv58O+LqH4JOtaOgCRkdFqzZo3nhmAcTZemQ6YgZLBF0KTOOuQX4LNm7XpZ+uti9TqZObnSbtjv7QUdQecrajrH4fk8ZMctyFOZVVOx7dparaAlr9/n5uaq9r654fcIGHv22Wc95zeQcQ/XDlm5UMqK8x9EyYsBTdTosSNAlNy8GvlBMgnVRiAO0k1feuml8uKLL9ppTDWkf0UZurkfvSzF+XmBJz2iqiiTzDVzJX39T7Ju7Ro7XSpgsAQNdDz21FNPxe29M2sTUcPFNhAR/76IGrqSkhKZO3eunb1p8+bNEYPgaD+jLY1JgR49esiq1WukU+9BkrvPIVLWoqNYmS3k5yevtoNtdKamIAP5ZhYm8zlej+vHwCwHZwYyRQuU0lmU/M7PnW1JBw1VlJVKRWmRut91zOmOrFOCkhYVZY6sSkHfs12yzpWVyQyS0uXusK8qkWeUnwhf7JCkZWRK9169JaV0l/rMok3aYDICq6oRwITsGSgrQUS1i30MakgeeOABOyAJgbJoPyCrRzTjx4+XV199Vd1G2Tlk+ogX/n0RNR56bgP/Bp100kl2cNPzzz8v77//vvTv319ycnLUYo5YdBAUsjlhPmXVmjVStHOnZLZoLf3PvlskNX23A5pi/T5UXKACmLDf2iU/SNcoAVj6fPUCBt13Q8DoqFGj5LnnnlOl4hC09NVXX6njoB9Q02u8bds2tWidVSuIklei2kBpcTkKERE1egjIcQflIFBHB+z4we8R9ISfiQpoQkN5ypQpapUEUkv37t1bDa5DSCzJXDdfunTqIKsrKiJqT1cX0q5mLZuuUq4CGur4nzga9y1atFArxq666irJyMjwvGY1FeRaExERERElI7SNR4wYobbLL79cFi1apAKbMDGAdjTa0ybHIoUVM9TgOQKcmrfpIOVFTTGdKR0P/LOjlJyjLLQr0AgBPYCgHWQr0s/D73XpN+yPx71LrlUFMpmBQDtW/Gw/jscQQISgIQQzmcc06WxJKN2m90O5uY4jj4yYfNCBRrF4TVzgtl9WKvN8S7Zvskv5hZ/zoQpmSsvMEqmokLLSEnW/rLhI1i5bYg9YIkipX79+9vEwkaOzMO23336qHBAREVE8IDu7hkn1WMFMMG7cODugCWWOVq5cqcbsiIiqQ89t3H///XLhhReqNjCCmMaOHevYD3MSfpmd8vPz1T5mdQfd11H327eR7LkvSHnzDlKW00XKc7pIRVZOOIOri27De/UzPH+PvsaO9ZVZmNZIalH4XNYt+UGKKvth7oAmBI526NBBtetRRvyPf/yjnHnmmXLKKaeovhveK64H5mD0fAXKSteUnkMxF8YTUePCgCYiIkqYIAE7tRWIY77OCSecIA8++KBMmzbN/n2X3FbSObeVlLZuJsUVZSIp1fxfZHmZZK6eIxl5v0T86rDDDpOff/5Z/va3vyUsaCuewVFERERERHUFA+RY1YsNpWPuvvtuOeqoo9Tqvs8//9wxoK5XAWM/ZG8KbV4nI0eEy5tVpGyWsuXTpbx5R8mb84EUb9toD9ybA/mgMiEJJgQslQnJDABCFiV9Wz/uVS7OnVlJBwKBfj5+Ijhp54ZwBlcEPblVlJXYt/HaCHDSAVfuTLLICoWgprRmLaWsMF9li/IKXvKa2MBP8z24348O3ML5pGZkSdcBw6RzRqFk5ubIisKtavIDmbJAZ6Q1M2nhJyY3kG3rs88+k6uvvlouuuiiGnwjiIiIokNAkrb//vsHulwIojZ98803DGgiomoLOreBhc7Y0MdxQwAQstUi4xFKciOrUcQiDqtC0ravVZusmi0VGdlSltNZStv3k4omrexjuRctuOnfd+w7VJos+VRSt6+TEOZCXMzgKmSM6tOnj/p3E0GjCFRC1lw3tPfNaxHv+QrOfxA1XiELxTiJ6gGmaiVq3BJRmm7q1Knyz3/+U7ZuddZ/LmveUXbtdVigNK5KeYk0WfyppBWES09obdq0UavKsVqhJmqjHB8RJT+2gYj490XUmJlt4vPPP18FNmHA//vvv1ePIwsrBtTT0tI8y5uBzuDUqc8gyR04StatWCobfpgm7Yb+XgpWL4oo24agI51NSUMQkw4M8ipTrUu46eebGZrMAKi5959VlVXJKB+nA5FKC7ep0nK6/JtZGk6/ppkFauf6ZXYQFfYB8zzcGZiileBTx53zgXTsN0w6dukqc99/Xop2FtplJNzlJczr3r17d7UaHWW1UVIjNzdX8vLyWBqbKEmxj0ENxfr166Vjx472/ccee0zOO++8mM9DMDT+/4afcPPNN8tNN90Ul3Pi3xcR1XRsH1P2y5YtU4FN2H788UcpL/fPyGqFUqW4+/5S2ra3Z8amCOUlqrpE+tbwggQ/yK6KEtHoA2BjiWgiqss2UEpcjkJERJRgZmm6eEEt52eeeSYiBWzajnXSZPEnqoEfU1mxNF30UUQwE1aR49g1DWZK1HsmIiIiIqpPbrzxRtUmxk+sDkY5mGOPPVZuueUWlb0JgTQYZEcJM5Su0wFMCLrBT0CQ04jhw6RrTqZkrZwpPUMbZcSQQdKtaansWr1QBRhZVrkKAkLwEQJ/dHAQAoWw6YAgPO614hmP6QAo3O75hwvVsRBU5M6qZLMsO0uUDpZKSUtXr4Hn6mO5X1Pvi0As/CwrKlCvjX3Mc8fvkGXJXKWNACkELsHGeZ/Lz09cKVu+elGyln4pG79+TWWy2jBvimTkLZSunTupyV5zEBLXFJO/CGZKTU1VgU1FRUXy3nvvqcUi+Ez23HNPmTRpktofEzi4z9IQRESUCO6ytEEnzhCQ265dO/s+Ss4RUeMLONprr73Uz0QIMrbvPgf0d/bYYw856aSTVNv6nXfekVtvvVWVyTT/zdJCVrlkLf9aspZ9pSpIRJOyc4s0+/kdz2AmvC6yR02YMEH+85//yBtvvCHXX3+9mjdJZDBToj8DImoYmKGJ6g2ubCBq3BKdrWjmzJmqc4AV3lp5s7ays/cRImmZns8JlRZJk8UfS+rOzfZjSB17ww03qBUMu4sZmogI2AYiShz+fRElN7SHL774YqmoqLAz/njBIDgmCxA4c/LJJ8vtt9+uVjI3bdo0ZrscATp4LlZDZzXNlsF/OEPKm7eX8ux2kvfzNyogyJ1lyausG5jZlPC71V88r4Kl3Bmd8Hz3cc2sS16ZnUz6+SiPV1FWrAKjvF4jnPEpXypKiyUlPVOs8jJ1PqFQijTNaSmF+VvUvjoDky7h55XpCpMcvXr1UpMqGzduVLevuuoqZpQlqqfYBqKG4oMPPpCjjz7aMb7nLifnZ+DAgfLTTz+p2yiT+uabb8blnPj3RVQ/mH2IJUuWxP34Qcb2q3MO6K+grDMyN02fPt3+90srb9JKdu05RqysFhHPTdv0q2St+FpCOlOsiFqgcMghh6h/M4cOHaqyMjW0z4CIalei2kAMaKJ6gx0BIkq0xYsXq0F51K3WKjKzpSIzshMAKUXbJaWkwL7fqlUr1UnBKgoionhhG4gocfj3RZTcsAoZwTMIpmnbtq3K+qMnA8wJAtC39UpoDNA/8MADMmbMGFWqAdsPP/wgCxYsUH/72dnZUlBQoH7m5+erY/To0cMRyFOelSNWRrOI8/rui3elqLBAspply36HjrMfX7d8iaz9baFk57SWzetWqUkHnHvPAftJxx57BXrP+tjgPr7XfmkZmZKWni6d9tjb8zVmffyGlJUUx5xIcAcwIdsVVmkPGjRITfj269dPXatoEzP6dwgimzNnDktnEyUxtoGooXj11Vdl/Pjx9n1M8KMEahC/+93vVAAUHHbYYfLpp5/WKCuU27p16+xSrUuXLo3bZB4Rxdfjjz+usiBdfvnlgUpVJtM5oJ/x7rvvygsvvKAWf9iPp6ZJeZM2EVmcUgs3OR5D30pnUm3snwERxQ/aSFj8BAxookaJHW0iqg2//fabasxv3bq1Ws9DJwCD9yh5UduYyYmoYWMbiIh/X0SNPaApJSVFDdSbK3f9VvNGaxtj4B+LD7CyWR8TAUd4XGcpCsIrk5H5GH6iFBuOjfNzBwvFOjbOzyvAKtY5RNvPDODCT5SLQ3Za9GMQrIQV2Qhc0huuL4LCqkN/JnheaWkpV1oTJTH2MaiheP755+W0006z7y9atEh69+4d6LkHH3ywfPXVV+r2qFGj5Msvvwz0PPz/Paj3339f2rcPl4Ilovrj9ddfV8FCp5xyihx//PExH6eaXU8ialg2bNhgZ86MZ0BTWlyOQkRE1EBgggOrAjABsmmTc+WCHwxM3H///dK5c2epC2Y97kSU4yMiIkoUTKpPnjxZ3n77bZk/f74KKEbGQ3R4jzzySJkwYYKaICeixgkZmdwZfzSdjcl8DNAe9msTYwLy6quvdhwTGYhQtuGggw6Sli1bqqytKFcXDQKI3EFEOojJDGqKFWwU9NiJ2A99FzOACWnhqzNB60V/Jl6fFxERUSIgKNm0u/8vIyICBN9gMh4/zQAcv8cpOl43ItodDGgiIiJyQZalf//73/LUU0/J5s2bo16f3NxcOfvss9Xq8briN5lDRESUzKZMmSKnn356RMmGvLw8tX3//fdy9913yw033CDXXXedyiZCRI1LtOCkaL+r6TEBQUkLFy5UJep++eUXKS6OXq5Nw79R+HdryJAhss8++0iyQUYq9HMQwDVgwABp08ZZiiIeavqZEBER1RRKpJqQITAoc9+srKzAz0MwQ9CSc3vvvTdLzhHVQ3//+9/tUmgI/o/1eF0rKytTZTO/++47z8UZyMY6duxYlZm1LiTrdSOi+MIi1UQIWe4QdqIkxVTIRERE1BixDUQN0ccffyzHHnusI1AgLS1NZT1ElqadO3c69j/33HPl8ccfj/t58O+LiIiIGiO2gaih+PDDD+Woo46y78+ePVtlCgwCk+o//fSTun3cccfJ//73v7icE/++iIiIqDFavXq1yv4c75JzKXE5ChEREREREVEAa9eulZNPPtkOZmrevLk8/PDDkp+frzq+O3bsUBMTvXv3tp/zxBNPJCSgiYiIiIiI6q+2bds67m/ZsiXwc8196zLzOhERERH5Y0ATERERERER1Zprr73WnjxAaQdka7roooukWbNmdlmkI488UubMmeMo24TScwUFBfykiIiIiIhI6dGjR8TiiaDlmVDmWotXBgEiIiIiii8GNBEREREREVGtWLdunbzwwgv2/b/97W/yu9/9znPfFi1aqLIP6enp6j4mHJiliYiIiIiItNzcXGnTpo19f/HixYEuzm+//aaCmrT+/fvzohIRERElIQY0ERERERERUa14+eWX7YkDZGK6+OKLo+7fq1cv+dOf/mTff+mllxJ+jkREREREVH8MGzbMvj179uxAz3HvN3To0LifFxERERHtPgY0ERERERERUa346KOP7NvDhw+X9u3bx3zOuHHj7NvffvutrFy5MmHnR0RERERE9cvYsWPt29OnT5f8/PyYz3n33Xft2/369WPJOSIiIqIkxYAmIiIiIiIiqhUISNL233//QM8ZMWKE4/4333wT9/MiIiIiIqL66YQTTpDU1FR1u6SkRP79739H3X/p0qXy5ptv2vdPO+20hJ8jEREREdUMA5qIiIiIiIgo4davXy9btmyx7/ft2zfQ83r27ClpaWn2/YULFybk/IiIiIiIqP7p0qWLCmrSbr31Vvn88889992xY4ccf/zxUlpaqu7n5OTIOeecU2vnSkRERETVw4AmIiIiIiIiSrjVq1dHTDwEgWCmdu3a2fdZco6IiIiIiEz/+Mc/JDs7W91GsNLRRx8td955p2zbtk09ZlmWfPLJJzJs2DCZN2+e/bxJkyZJ27ZteTGJiIiIklTVMlciIiIiIiKiBMnLy3Pcb9OmTeDntm7dWtauXatum1meqhtE5bZu3Tr7NspTYCMiIiJq6NjmoYYGWV1ffPFFlX0J3+/i4mK55ppr5Prrr5cOHTpIfn6+FBYWOp5z8skny8SJE+vsnImIiIgoNgY0ERERERERUcIVFBQ47usV1EGY+7qPE03Xrl0D74tSdlu3bg28PxEREVF9tWHDhro+BaK4GzdunLz33nty9tlny6pVq9Rj5eXlsmbNGsd+KSkp8te//lXuuusufgpERERESY4BTURERERERFTrmQDS09MDP9fcFyUkiIiIiIiI3A4//HC1UGHy5Mny5ptvyoIFC2Tjxo2SmZkpPXr0kNGjR8t5550nAwYM4MUjIiIiqgcY0EREREREREQJZ1mW434oFEr4a+qV2dFKzg0fPlzd3nvvvaVLly4JPyciIiKiutaqVau6PgWihGnatKlceOGFaiMiIiKi+o0BTURERERERJRwGRkZjvvVybRk7puVlRX4edUJUML5uc+RiIiIqCFim4eIiIiIiOoDBjRRvVFWVuZYSU1ERETUGJjtHrM9RFTftGjRwnG/sLAw8HMLCgrs282aNYvbObGPQURERI0R+xhEicM+BhERETVG6xI0j8GAJqo3UOta02UhiIiIiBpbe6hHjx51fRpENdK2bVvH/S1btgR+rrlvu3bt4vYJsI9BREREjR37GETx/5vSOI9BREREjdHGOM5jpMTlKERERERERERRuDuxa9euDXS9sKInLy+vRmXkiIiIiIiIiIiIiKh+YoYmqjcGDhwos2fPVrdzc3MlLY1fXyKqvTSJekUV/h3q2LEjLz0R1RoEc+gVnmgPEdVXaMO3adNGNm/erO4vXrw40PN+++03R5ri/v37x+2c2McgorrEfgYR1RX2MYgSh30MIqpL7GMQUUPrYzAihOqNrKwsGTZsWF2fBhE1cghmYmYIIqptLDNHDQXa8x999JG6rRcrxOLeb+jQoXE7H/YxiChZsJ9BRLWNfQyixGAfg4iSBfsYRNQQ+hgsOUdERERERES1YuzYsfbt6dOnS35+fsznvPvuu/btfv36MbCYiIiIiIiIiIiIqBFgQBMRERERERHVihNOOEFSU1PV7ZKSEvn3v/8ddf+lS5fKm2++ad8/7bTTEn6ORERERERERERERFT3GNBEREREREREtQJlWxHUpN16663y+eefe+67Y8cOOf7446W0tFTdz8nJkXPOOYefFBEREREREREREVEjwIAmIiIiIiIiqjX/+Mc/JDs7W91GsNLRRx8td955p2zbtk09ZlmWfPLJJzJs2DCZN2+e/bxJkyZJ27Zt+UkRERERERERERERNQIMaCIiIiIiIqJa07NnT3nxxRclIyND3S8uLpZrrrlG2rRpozI4NW/eXI444ghZtGiR/ZyTTz5ZJk6cyE+JiIiIiIiIiIiIqJFgQBMRERERERHVqnHjxsl7770nXbt2tR8rLy+XNWvWSGFhof1YSkqKXHnllfLss8/yEyIiIiIiIiIiIiJqRNLq+gSIiIiIiIio8Tn88MNl4cKFMnnyZHnzzTdlwYIFsnHjRsnMzJQePXrI6NGj5bzzzpMBAwbU9akSERERERERERERUS0LWZZl1faLEhEREREREREREREREREREREReWHJOSIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiqiMlJSW89kRERNQo2yJsBxG/S0RERETE/kLjwP4frydRTTGgiYiIKIBQKGRvzzzzDK8Z7bY333xTxowZwytJREREta6wsFCuuuoqueeeexpVO2j06NF2m37ChAm1/voUX6WlpXLHHXfI5ZdfzktLRERE1EDUdV+F4m/atGmy77778tLyehLVCAOaiIiIiGrRqlWr5JhjjpHjjjtO3SYiIiKqTe+884707dtX7rvvPhUQUpvYDqJ4+frrr9WkyLXXXis7d+7khSUiIiJqAOqyr0Lxt2XLFjnrrLNk1KhR8ssvv/AS83oS1QgDmoiIiIhq0ZNPPinvvvsurzkRERHViYkTJ9ZZUDXbQRQv1113nSxYsIAXlIiIiKgBqcu+CiUmQO3pp5/mpeX1JNotDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCKiOnfzzTdLKBRS2//93//Zj3/++ecyYcIE6dOnjzRv3lxatGghffv2lYsuukhmzZolde3rr7+Ws88+W3r37i3NmjVT59ivXz+58sorZfHixWqfTZs22e8N2/Lly2Med8GCBXL99dfL8OHDpUOHDpKRkSHt2rWToUOHquvz448/xjwGXke/Jo6hrVy5UiZNmiTDhg2T9u3bS1ZWlnTt2lX+8Ic/yNNPPy2lpaXVugYrVqyQ22+/XQ466CDp3LmzZGZmStu2bWWfffaRyy67TGbMmFGt4y1btkyd3+jRoyU3N1e999atW6vvwEknnSTPPPOM7Nq1S5IF3v/VV18t/fv3V59/y5YtZcCAAXL55ZfLd9995/u8vLw8SU9Ptz+jc889N/BrPvfcc/bz8Pnl5+dLbSoqKlKfwx//+Efp1q2bOgd8/3v06CHHH3+8vPLKK9X6Hn322Wdy/vnnq+vWqlUr9R3CdwnfqVtvvVV9J2L58ssvq/13FuQ5+PdH//7RRx9Vj1mWJW+99Zb85S9/kT333FO9d5z3oEGD5KqrrlJ/v370sW655RbHd8g8D1xbL59++qn6nuC7hn8LcZ06duyo/l3AvzlfffVVzPdMREREjRfaGLq9gfaHhnaJ2RbxM3v2bNW+HzJkiGrvo52Ofgb6LNdee23MPsrutINgzpw5ctNNN6l+Qs+ePVV7COeAPs3AgQNVe/Ldd99VbbX6YP369XLXXXfJIYccovp66Bvk5OSoth7afNVp25WUlMizzz4r48ePlz322EOys7OladOmqn0+btw4eeSRR2T79u3V6pfjuUEEeQ4e1/ssXLhQPbZjxw7Vvh4zZozqj6Jti89y5MiRcuedd6p+dKw2/NSpU+3HJ0+eHLNtj34k+lInnHCC+g7hGmFDnwbfq9tuu02WLFkS6H0TERER1Udm2+2SSy5Rj1VUVKjx3COOOEK6dOmi2tgYlz/00EPlX//6l2q3VQfmAy6++GI1VorxcrRzcbxRo0apsd5169bFva+SKOXl5fL666/LiSeeKL169ZImTZqosXBcJ7Sz//vf/8rOnTsDH293+1TueR9saB/H4znxnqPTfYAzzzzT8bh5HnhNLzNnzpSJEyfK4MGD1bi77vfhO4XX/eCDD+qk32f2RQ488ED78blz58qFF16o5gZxjTCfhfmxv//97579Eux/wQUXyN57763mFtAPxHvFnODGjRvjfj2JGgSLiKiO3XTTTWh9qO3qq6+2Nm/ebB133HH2Y37bhAkTrJKSklo/323btlknnHBC1HPLzMy07r77bmvjxo2Ox5ctW+Z73B07dlhnn322lZKSEvXY+P0ZZ5yh9veD19H7t2/fXj328MMPW02bNo167D59+lg//fRTzGuA647PCu8z1uf0hz/8wVq/fn3U41VUVFjXXnutlZaWFvN4HTt2tF555RWrtpnn8PTTT1uTJ0+2srOzfc8zFApZp59+urV9+3bP4x111FH2vq1btw78XT7yyCPt5x1//PFWbXrxxRfV9ynWZ9S/f39r7ty5UY/1888/W8OHD495rPT0dOuyyy6zioqKfI81ZcqUwH9n1XkO/s707//zn/9Yy5cvtw4++OCo54vv8DXXXOP5mrHeq/5umVatWmUdcMABgZ57yCGHWCtWrIj53omIiKjxQRsjSHvCDW2RI444Iubz0PY99dRTra1bt8atHQS//PKLNWbMmEDPxzZ48GBr6dKlvtdh1KhR9r5o69W24uJi6/rrr7eysrJivpdjjjnG2rRpU9TjvfXWW1anTp1iHqtt27bWY489Frhf3r1790DvJ8hz8LjeB5/nl19+6XjMa2vVqpX16quvxmzD+23utj1es2vXrjGfl5qaap133nlR+x5ERERE9ZXZdrv44ovVPEystj7Ggt97772Yx16yZIl16KGHxmxvNWnSxHrwwQfj0ldJpE8++cTq1atXzHNCG/Pzzz+Peqx49anc8z7Y0D6OJchz4j1HF6u9jw2vacL7Rh8oaL9v3rx5Vm0y+yIjR45UfbsrrrhCfW5+59msWTPr/fffV88vLS1V8wbR5v9yc3OtWbNmxeV6EjUkDGgiojpnNpYuvfTSiCAHBHtgkNbrf/RnnXVWrQczobHkPg8EtnTu3DkiIOfCCy+MOrCqIeDH77jdunXzDJwZNGiQtW7dukABTffcc4/juRhAR2MbHQivTkpeXp7vNUAg1eGHH+7ZGcExW7ZsGfE7vAcMXvvB5+7V2MPzvI6H7wKCa2qT+fpjx451NFQRdNOlSxfPgLH9999ffW/cXnrpJcd+QTqG+FzM79g777xj1RY0tr06WWhk4+/T3XDPycmxvvvuO89jffzxx57fvRYtWqjrmJGREfE7BPWgI1VXAU233HKLtccee0R0MPD34tVpmTRpUsTx0AnGhgkavR8+T/04tv/973/2/lu2bPHsrOB18bfhdZ2w/4YNG2K+fyIiImpc0MbQ7Q2zPYl2idkWMWGAGH0xr3a6X18CCyS82lXVbQfBnDlzPF8fx+jRo4fVrl07z3YY+mVe7e+6DmjauXOnZ3AWrgPa023atIn43YABA3wnNNDe9GqfI3ipQ4cOnv3nCy64QC0mqauApv/+97+OYC4EEOG9o+/gdV2++OILx7Fmzpxpf1/M4zRv3tzxXVq9erX9nBkzZkS0m/Xr+o0z/P73vw/0/omIiIjqE7Ptdu6556qgDLMNhHF4tCPdbWzcf+6553yPizaa1xi+ntvwCuZHkP/u9FUSCQtbvfoZ6Jtg7BptSfNxtDU/+OADz2PFs09VWwFN8ZijQ78Lnxn6bOa+5udpBrYhOGjo0KGe1xz9Ca/rhO9HtDmnRAc0nXLKKRHfd/RF3dcI3/+VK1da55xzjuNxXBv03bz6s/n5+bt1PYkaGgY0EVGdMxtLeqARDUYEAy1atMjeD5lu7r33XsdgJPaLlQkmnsaPH+9oMKBhN23aNHtQGME+aPCaA/Xm5tUQLSsrsw488EDHfieffLIKBjEHm/E+EaFv7oeGDJ4frZGKToBugO+3336qcW1GzX/22Wcqo4553L/+9a++1+Ckk05y7IuMQbgG5nngc5s4caKjcb/33nt7ZpWaPXu243jHHntsRJYoZLrCgL352aNzVVBQYNUWr88TDU4MyhcWFqp9ysvLVbCO+3p6NeoxoYGBd70PPttYHnroIUdQS21lKHv22Wcd7wfnjQxkZuAMgvLcKxL22msva9euXRGdOPN9Y3+s5Pjxxx8dHZi333474jriu4ZrXBcBTfq7h5/XXXedWlljfj8R8GW+d3Sy/AIOg04WYaWUGTT3wAMPOIK68O8D/p3AhIv5Xi655JKY75+IiIgaLzPAxG8VJ9o67sw/yLyK1aK6j4L2PwJO3BMh++yzj2rr7k47CO1c9B/0vsgM+49//MNas2aNYz8E+zz11FMR5+oVXF7XAU1nnnlmxODzyy+/bPcl4Icffoho25122mkRx3ryyScd+2Bhxa233mqtXbvWERyP/oM7UOr222+vs4Am3aZGX+6JJ55wBJ4tWLBA9QXNc8WiHz9BP0uzT4HJgTfeeMORgQnfNWS6Mr9v2F5//fVA14CIiIioPs/DYDvssMMcC1PR5sY4rxmYgfa4V2UHjA+jbWe2o1BVwDwexnpRccHcD+OomJeoSV8lkTBmbL5vXCeM+yJzv4ZgE7SpzWuINrd7kWki+lS1EdAUzzk6d/YtP+4F+Rh/N/s2sHDhwoj5MVzP2mLOJ5jzXn/+85+t+fPnOxalu89TL5TGtcK8mTm3gHkR9+d/33337db1JGpo+G0nojpnNpb0/9S90strr732mmN/pMCsDUhTb77u0UcfrRrjXtC48irN5RU0YTbW8N4RIBPNo48+6jgmBqljNVKx/elPf/INgEEjHIO7Zlk3r5W77mt/4403Rj3Xd999VwVi6P2vuuqqiH3QgNO/R8AVUm/6cQ/cu1dxJ5L7euJ6/frrr577omGPzEzm/l6pQs1JDQT5uIN/3MzSY1gpURsQhIbgKTOICxMtftChMd83JipMBx10kOP7jgkoP+i0mSX2sCFgsC4CmnTH/auvvgrc8fI616ATP/j7M1eqI5jJD/5mUG5O74sVUV6BX0RERERBJwncA7A333yz78VDuwMB/EH6aEGDZtwDtchuGg3acma21H333TepApqwat29MMYv8xKupxnYgzazOYmAQCWznYhVy36ZUeG3336zevbs6Rh895qMqo2AJh3I5VeSHG3gcePGOfb3W3Ud5LP8/vvvHceKthgKE3dmHx7nQURERNSQ52GwIWuMXwZPZGUy90XZNDd3hYo77rjD9/Uxlm5mckIQRzIFNKEdbgbDI7OOO2OoCQHw7iCcRPepaiOgKZ5zdEEDcFCNRO9z2WWXRX0/WPBhnmesMt3x4lX++vLLL/f9PPv16xex/yOPPOK5PxbuY05O74fMvl4Y0ESNVYoQESWZU089VU444QTf3x9//PEyYMAA+/7MmTNr5bzuu+8++3a7du3k2WeflYyMDM99+/TpI0899VTMY5aWlsoDDzxg3z/77LPVFs3555+vrpF5XuXl5VGfk52dLU8//bSkp6d7/j4nJ0f++te/2vfXrVsnK1asiNjvrrvusm8fdthhcsstt0R93T/84Q9y9dVX2/cfe+wx2bZtm2OfJUuW2LdHjRolaWlpvsebMGGCuvZNmzZV34GtW7dKXXnuueekV69enr9r3ry5vPjii9KkSRP7sYceeihiv9NOO82+vWPHDnn//fd9X2/58uXyzTffeD43kfA+Nm7caN9/+OGHZeDAgb77X3HFFTJo0CDH87UvvvhCvvrqK/v+JZdcImeeeabvsXD9Xn75ZenatavjO1hWViZ14e9//7sceOCBvr+/7LLLpFWrVnH5twnX3PxbGTNmjO+++Ju58sor1W38ffTt21fWrFlT49cmIiKixu3XX391tOHGjRsnN910k+/+KSkp8uijj8qQIUPsxx555JHdaqv/73//s28PHTpUTjzxxKj79+jRQ44++mj7/tKlSyWZPPjgg/Zt9GVeeeUVadmype/1/M9//mP3NbG2Am1iDf1Hs534xBNPOK69W8+ePdXzU1NT1X30He+8806pK48//ri0b9/e83ehUCjiu7Y7bWqzr9m6dWvZd999ffft1KmT6mPh+nfv3j1qv5SIiIioIUDbCO1OtMG8YA7inHPOse9//PHHsmjRIvs+2qSYc9B+//vfy//93//5vh7G0q+//nr7/tdffy0rV66UZPHZZ5/Jzz//bN/H3Mchhxziu/+f//xnNf+hmX2oZOhT1ac5OrPdHm0cHPR8E9r3++23nyxbtkzqQrdu3Xz7Vfg8Tz75ZMdjBxxwgFx44YWe+zdr1kxdU+2nn36K89kS1W8MaCKipIOglViGDRtm3960aVOCzyjcOP/oo4/s++edd55qMEVz1FFHqQZVNJ988omsXbvWEeARxEUXXWTfRoNt3rx5Uff/05/+pIKWgl5Tr+uKxvy3335b7XM1G2kI2kHHwNSiRQv79ocffigFBQW+x0JDcPHixVJYWCg//vhjzOCvRDn44IOjdmb0xIHZCMWkjDsQZ/To0dKlSxf7PiY2/Lz00ktqMgMQsOL+vBLl9ddfd7ynaB0ZQAcYn/nIkSNVsNIxxxxj/+6tt96ybyO47rrrrov5+vje6mAdHdhVW0GM1f23Ce/JnCTZnX+bEBRnDia8+uqrUfc/8sgj1d/Xhg0bZMaMGY4gMCIiIqLqeOedd6SiosK+H2sRg24H3XjjjYGD9WPBsbCABIP+5nGjMRcbROtT1DYsYsE11dCeRgBWNB07dlSTCFhEcvHFFzvamGabGgsJjjvuuJjnMHz4cDWJYvZNSkpKpC4G/Q899NCo++C9mgtxdqdNbfY1t2zZIp9//nnU/SdNmiS7du1SfY433nijxq9LREREVB/cfPPNMYO4r7nmGscY5WuvvWbfRnu/qKjIsRg0ltNPP121YREMdO2118ZcqF2bzHFwLBA352D8YJ4IbW0Exp911lmq7Z8sfar6NEdnttvN75iX/v37S35+vmzevFnmzJmjFsDUhTPOOEMyMzOjnqfplFNOCdyfrcuF/ETJiAFNRJRU0DgOEqhhrug0G82JMn36dLsxCscee2yg55kBLV7MbDVYMWtmtokG18jMDmUex8uIESNiHtO9StZ9Xd2vMXjw4EDnipWuCITxO85BBx1k3/7ll19UA/TJJ59UgRleYgVm1YZYn6tmThrs3LlT5s6dG/F9Nxuy6KAgWMuLuaKjtrIzIYAKwTFmkJ7fih3TBRdcoP5mkKXs8ssvd2RoMj93v5XZbn/5y18c96dOnSq1rW3btrLHHnvU2r9NyE5lBkTedtttMn78eBUQ6DX5hH8/0NEmIiIi2l1mmw3tn6DtfqxORvaheLTZ0N9BmxeTLGab2g8mQjDgb7ZjzQmEuoQ+gNnGN1dxR4M+0aeffqoyvepFAsjiaa7WDdovcbepEbSDwf/ahsmeWNCubdOmTVza1PgeZWVl2ffxXcJEGz4TvVjE3Qb3y8JMRERE1JBgMaWZ4dQP+gNmJp5p06bZtzH+ax4P1Rdiyc3Nlfnz56vgodtvv90xb1DXzPeD9xJkrBXty1mzZqnFGMg+pQPzk6FPVZ/m6Mw5IlTGGDt2rAoK85srSYY5oliBVO5zjPUdwN+QVheLT4iSGQOaiCipIBLb/B+3HzPyuTai+JENyMwSFK3kVnUaKWaACwZU99prL9lzzz1jbnvvvbfjff/2229RX6dz584xz9UdTe6+ru5gHGQXCnKu2FDCzu9cEcmOlboa0tYilS1WJeP6IYUoVtImUyMuWkkHkztAbcGCBRH7mMFJCHp6++23Pb9/euLCHQSVSKtXr3Z0GvbZZ5/dOh6ya2mxspeZ8F3AppmpjWtLkL+heP/bdMMNNzjuI0vT4YcfrrLDYcABpUsWLly4W69BREREFK82GwJRzPZiotpsyLSDzLEoo4YVzBj0x8QISiObkiWgyX0ddqdNjVIMZiBOdT4f976NoU2NwChzZT0Cue655x7Vn9NZsDBh4reYhoiIiKihwrh70BK7ZvsVC5K92pOYLwmyEDZZoc2JMnF1PQ5eW32qZJujQ6lCc2EBFnYgqQDGwZHhFaXd3PNTdS1WhQT334O5aMML5h2JyBsLwhNRUgnSUHLzWlkZb2vWrHGcY7RUkqYOHTpE/T3SYpoD7kuXLq3xoH6ir6t5rlDT2sTuc8VKhw8++EBNRCC1v/n6KKWH7e6771bvAWW1kKUGKx/qcuVs0MxCmFiJdg116lF0IHWDHBMz7vrKKDdnBpKZAWCJ5B7YR5aimsKKeTPLWay/Da9rrgPjvK5jQ/y3CSvxH3jgAbWK3Lx2CDLD3ww2nY4WZSUxIbO7nW0iIiIis61VkzabFq822zfffKMCu7HyGRMoKC9Qn8SzTe2+ptX5fNx9mMbSpr7rrrtUmXf0s9yfywsvvKA2vQodGa+weARZhomIiIgasljBGKZ27drZt/Py8jzbubvTxk0GKPFljr/u7vtJtj5VsrfZEfSFLFdnn322Y4E1FrlPmTJFbSh/iHY6Ap3QZh85cqTUpepeJ2aCJao5hvsRUVJBBHoyQuYcMw19UM2aNYv6+23btkk8+KXejOd1TeS5IqgHGYhuvfVW37JeCIhB/WQMMiNDlQ7mqAtm2tfqfP7FxcWe+5lZmj7++OOISRpz8L22ys15pYoN+r69bN++vVp/G27m/ubfY0P/twkl+77//nvVSfO7ZgiEvPfee2XfffdVgU2YsCEiIiKKR7utLttsaOMccsghcsABB8g///lPFdjkFcyE/tkRRxyhVu4mo2RpU7v3bSxtamQewAKRd999V8aMGeO58hkTMLNnz1YLCVD2BFmCkylDMBEREVFdBmOY7Ve0kXTwitnO3Z02bkNrsydTn6o+jYNjIfvPP/8sF1xwgbRq1cpzH4x7/+c//5EDDzxQlQWsy+oFQTOcEdHuY0ATEVEAZr3kWMFDplj7msFRI0aMUJ2Bmmxvvvlmwj9H81yxSqCm5+qXGhQNddSZxsQFAjhuu+021Sj1ilxHdihkr/Eqz1Yb/AKT3AoKChz3W7Zs6bnfSSedZHcU0Cl844037N/NmDHDzoaFjhQCumqLu7OFEg015a45Xp2/Ix3QVpOgQj+1UaoyXlCn/vnnn1croFA7/MILL1TlKb289dZbajKvLlbvEBERUePu+8SzzYbSar/73e/kyy+/dDyOMmFjx46ViRMnyqOPPqqyNiHI6aOPPpKDDjpIklGytKnNz6YxtqmREfizzz5TWV+ffvppOfHEEx3ZBjT0x5AhuLbKfBMRERElQwBP0HYkxqd1KS2znbs7bdyG1mZPlj5VfWyzd+/eXQUsIfsXys5dccUVMmjQIM9yhtOmTVPzRzWtekJE9QcDmoiIAjBTjCJIJWhk/MaNG6P+3qybm+wBCOa5IgUrSuQlCkqwXXfddWoCA6/14YcfykUXXeT4HNAQv/TSSx2pYGuLmVo3mvXr1zvu+6WqRdrZww8/3L7/+uuv27eRlUr74x//WKOUrzXlXgmxadOm3aq9ba7u0OXjgjL3d5fycwvy3XQHm9UHGDBAucVHHnlE1WFfuXKlPPHEE/L73//ecW1RWx2TMEREREQ10bp161pps0UzYcIER1/qvPPOU+0frMhFRtMHH3xQzj//fBk+fLi9ACJZJ1Hi2aY2P5vqfj7ufaN9PkH7evWxTY0gJny/kLUJ/TWUOL/zzjtlyJAhjv3QJ0M/lIiIiKghqs5chDnG3aVLF8927u60cZNBTk6OI5Pn7r6f2upTNdRx8PT0dDnssMPkvvvuk/nz56vvIEpFn3DCCZKZmemYp7n22mvr9FyJKPEY0EREFABKOWnIMvTjjz8Gum4//PBD1N/36dPHvv3bb79Vq6wbGnG7W5u4OsxzxapVpP8MChH1NQ2AQhDHkUceKQ8//LAsX75cRo8ebf9u1apVMnPmTKltCBgJ4rvvvnPcdw+Sm0499VT79hdffGGv3HjvvffqpNyc7qCaq1OCfu9Xr16taljjPd14443qPlZR9O3b1/faRIPAHXNCa88994yaBjfICiOcU0OodX/OOeeo8ovTp093BLuZQXFERERE1dGvX78atdnQRzD7P+42W1DffvutylKqIXDpscce881Qqa1Zs8Zxvzb7StGgXLYpaJsaWXhRIu3cc8+VO+64Q/WnzPZ0dT8fXFdTtDZ10BX79b1NjT7KPvvso0rM4Vo+9NBDjt+zTU1EREQNVax5CxMCwLWBAwd6tnN/+umnwMdD+xYLd//6178mTQA5gpnM/kbQNjsWW2McHNk/EVij50wS1adqrOPgWJRw8skny6uvvqo+m06dOjn6TYlcfE9EdY8BTUREARxwwAGOxuL7778f6Lq9++67UX9vlkVAoytoCTUM8KPcAlKO9u7dW5WjSjR3CYegZe4QdNS5c2fJysqSPfbYQ+655x5HYNBZZ52lri9WdKxYsSLqsRBcc+utt0Ycv7Z9/vnngfYzB8BRpq9Xr16++/7pT3+yU9GipB1SquL6/Prrr55ZnGqrDjRWvWso5REE0r3iO4pVE/i89N+O+R366quvIjJY+TGzVAG+L9Fqmm/ZsiXmMVGepK54pch1e/bZZ+XPf/6z9O/fX4444oiY+++///7yl7/8pUF1VImIiKhu2iJmmw2lj4MOwKPvY5ZmdrfZgrw2zJ49O2LCIxYELyHA25Qsg9pY1IC+UHXb1JjcwUKH//73v/LMM8+oSRZkfDWDmtzt5GjMfZHVaujQob5tapTxCxIQ5v6salOQ7xKy/iKbaY8ePWTSpEkx97/44osdfba66GsSERER1QaMwy9YsCDmfr/88otjcS+y5ni197FQ+5tvvol5PPQXXnnlFTUP8s9//tMRLBW0jZco5vuZOnVqoGChOXPmqHFwvCcsQti+fXtC+1QNcRwcc20ICENSATMQzA8Czy688EJHUFnQeYb6ri7/PojqEgOaiIgClls7+uij7fsYVNaN02iNWTR8o8ExzXrKaPQGKZWArDeAxu2SJUtUHeFEQ8AEBoI1rF4NUnrtlltuUeXh0LBE493M9ISArKefflp1djBoHmQFrC4poSHQp7ZhJQCyRUWDTgoy52hnnHFG1P3RGTnuuOMcnRczcA4rENwrMGrD8ccfb99GmY8gq2bw96Hhu4ngOxg/frz9eFlZmdx+++0xj4XOMDq3Zppdd3CdPr5mruj3W70fNCAvEcz0xX4TRfh+vfHGG2pgYcqUKYE6ZebfBgLoiIiIiGrSFkH7z9zn5ptvjnkh0dY323Zol/zhD3+o9muDu58VpA2MkrzuxRF1UZraC64FygZrL7/8sspgG427b4SMtZrZpsZK+P/973+BAo/MdjyCfNAX82tT49qhPxsNJqGQSbWuBPkuoZ+JADJ8N3A9gwRpmW3quuhrEhEREdUWc+GxH8xXaCj1hZJf5tyG2aY0x3D9IPBnx44dnu3coG282hgHx5g05i2qMw6OxQf77bdfQvtUWBRullyLNQ6OKhBB3keimNfA7zNF+UN8L1BaDgF0QYK/zDY7+ou49o1BkOtJ1BAxoImIKKArrrjCUccYmYUQlOEFwQcotxWrQdGyZUtVQkFbuHChnH766Sq1qJ9//OMfjgxByN5SGwFNaBheeeWV9n2UAEPDPFpgFzL0PPnkk/Z9RNibjfBu3brJiBEjHO8Npfeiuf/++x1BQIMHD5bahtUZ6LyZnS/3548AJARyAVZkX3LJJTGPa5aUQzCTmeEL34u6gEAss+Y3vq/Rgrkef/xxFYCjXXTRRfbtUaNGybBhw+z7KCOI1ebRrvNJJ53kyDaEVMTuoDakmO3evbvjuH51zvGZ4T3VZe1wcyWN39+POTiAziyuY7QsAwjSQsdPQ6pjIiIiopq0RZBVFZkiNZRAxiIFP2ijYIXs3Llz7ccmTJjgGWAdpB2EPoI7c2U0b731lvztb3+LeDxo2bTa7kvifaOv6LeQBX1I9B22bt1qD1pfcMEF9u/RLjSv43nnnee49m5ou2PFs+6bYFWv1/X63e9+57iPTKt+7U8sdAjSv0mkIN8lM4MpSlM8+OCDUY+JoC9MomhsUxMREVFDhnHZaG3tJ554Qp577jlHuxMLvzXcNsessQjYDPBxQzA8Sv2aC6jdY/tB2niJgqB/s4ze//3f/8n333/vuz8C5ydPnmzfP+ecc+xx60T1qdA3MOdTULlj6dKlnsfEmDLG8usyk787o5TXZ4r5IjMwDv2MaIv+Mb6P76aG+Qb3fEFDFeR6EjVIFhFRHbvpppsQ9aO27t27J+w58XDqqafar4vtwAMPtKZPn25VVFSo3xcVFVkvvfSS1bVrV8d+elu+fHnEMXfs2GHtvffejv0GDx5svf/++1ZJSYm93y+//GKddtppjv2aNWumHndbtmyZY78pU6bEfG9BnlNWVmaNGjXKsV+vXr3Uey4sLLT3W7FihfXXv/7VSklJsfdLTU31POY777zjOF67du2sxx9/3Nq6dau9D67v/PnzreOPP96xL16jtnh9nvjc3nvvPau8vFztU1xcrK5Fly5dHPs9/PDDgV4Dx+ncuXPE6wwaNMiqS6+++qrjfHJzc9VntG3bNnuflStXWpdddpkVCoXs/YYMGaK+M6affvpJfW/1Ptj/zDPPVI9r+N7jezFw4EDH6w4dOlRdYy9/+9vfIq7ZF198EfG32bdvX/X79PR0KzMz094f33+3M844w/49vvdBBHnOs88+6zhXnJeX4447zrHfoYceak2bNs1xTXft2mW9/vrrVo8ePRzXdO7cuYHOl4iIiBoftCnMvtT69esj9lm3bp3VoUMHR1tk3Lhx1uzZsx1tV7Tv0Scy90O7ZPPmzTVuB23atMlq2rSpY79LLrnEWr16tb1PaWmpNXXqVOukk07ybKdj++233yKObfZl0G6rTRdddJHj/PbZZx/rww8/VO9F+/bbb60jjjjCsR/a2G5PP/10RL/wtttuU5+bhv4U+iFt27Z17HvppZf6nuOwYcMc+6I9umjRIsdnc88991gtW7ZUv2/evHnMfjke1/ugHx9EkOecddZZ9j45OTme/WL0Uc2+OdrJF154YcS+GzdutO677z7H965jx46qrU1ERETUUJhzKnrD+D3am6tWrbL3Qzv6ggsucIzzok21ZcuWiGOi3e9ub5133nnW4sWL7X127txpPf/8847+BeYK5syZU6O+SiJ9/fXXVlpamn0O2dnZ1t13363aixpuT5o0ycrIyLD3w3zA9u3ba6VPhTa+uS+u05tvvmmPGaN/gbmlESNGON6Hvu01R5OoOTqMZZvnescdd3jud8UVV0TMj33wwQdqTN+cM/jkk09UP8rc9+2337ZqA66b+bpe8wm7s7+7j7c715OooWFAExHVufoU0IRGKYIq3A1/DOSi4W42YrHtv//+jvtr1qzxPC4GiXv27BlxXARc4LitW7f2/J1fYy1RAU2ATgQalO7zQYAIgnEQkOT+HToyjzzyiO9ro4Pk9Rw0+PH5mg1uvaGRj85QbXEHUrk/C3RazACZIBMGQQJzsGHSoK7dfPPNEeeFjmenTp2s9u3bR/wO31uvAD549913Iyap9EQEnud1HRGgZE7QuGFyBefifl5WVpZ63AyuwzZ58mRH8FhtBjQheMt9njhHbPfee6/jb82czDHfU7du3dT54zNw//5f//pXoHMlIiKixumqq65ytB3Qh0Gbo1WrVtaGDRvs/WbNmhURDIMNbXO02Zo0aRLxO7RRvAJLqtsOuuuuuyL20/0ur7YdNnc/DQFPyRTQhOCYI4880rNth+uJtrD7d4cffrhjEN90ww03ePah0B9DMI5XOxEBYO4FByZcM/Tr3M9DABMWNbjb7pg4qauApoceeiiib4Ln4TzNSaIvv/xSXWP3e2rRooWaKPLqvyJA7Jtvvgl0rkRERET1hTmngvadOZaKdiTGeN1tPmxt2rSx5s2b53tcBCZ59RvQv/CaM8FrPfnkk7vVV0mk//73vxFtafQ/cH1wzcxAL90u/v777z2PlYg+FRb8DhgwIOJ5uFYYLzYDsrAh+GrkyJF1EtCERRbu/gXa35hLmThxomMhAhZHu98Tnot9vb5H2K688kqrtiRDQFPQ60nU0LDkHBFRNTRv3lylEv3Tn/4UkeZy1apVdqm4Zs2ayVNPPSWnnHKKYz+zvrGpd+/eMmvWLFXCDSUAtOLiYnXcLVu2OPbv06ePfPHFF3LMMcfU+ueHNKdfffWVSjGblpbmSGGKsld5eXkR5cDefvttlTLVzyOPPCI33HCDpKen248hhgil21asWOEoD6ZLLqAkm5mKtDZNnDhR1Q/X7x+fE1K34qeWnZ2t6ob/61//qtaxUX7CXerP/T2qCzfddJNKMdyuXTv7MZStWLt2rWzYsMGx75gxY+Sbb75xlIFzp5GdPn26XVPcrE2O77t5HXGNL774Yvn666+lQ4cOvueHFMf4m3CXX0SpEZyjLpeB8nkozVZXJfygf//+cuaZZzoewzliM9MY429t2rRpqlSf+z0hRTP+3nTpEL0/0gxfeumltfAuiIiIqL666qqrHO0q9GHQ5kaJs/nz59uPDx8+XGbPnq3adia0zdFmM8sAoA+DsmZz5sxxlGmoaTvo73//u1x77bWOvpHud5ltO93uvu+++1S7yeyfoM+STFCGGiWlUWbD7BeibYfribawhveNNt0777zj24ecNGmSvPTSS6q/Zfah0B9DiXSznYhS5w899JAqCY7+hZ+DDz5YXn/9dcnNzXU8np+fr0qOm5/j1KlTZcCAAVJXUAIeJc01vF98j3Ge8+bNsx9HWxp9+J49e0aUZ0A5Pnf/dciQIaqENkqgEBERETVUOTk5aiwV7TrdjsQYr9nm0+1DtPH32Wcf32MNHTpUZs6cqfY1oX9hzpkA2pkoGY223O70VRLp7LPPVnMPZvsR/Q9cH/RFwmufw/bdd181Du4unZfIPhXKq3322WcR1xvXCuPFZWVl6j7mTjA3gXmXuoJ+yPXXX+94DO1vzKV8++23jlJqeE/HHXecY1/MOWFf9/eoRYsW8sADD8g999wjjUnQ60nU0FSN9BARUSAInHjjjTdUgx8Dwhgox4AxGrII4ECwBgIwunXrJvfee29EQJQfNOZfe+011TBHwAWOj8Y6gpnQSEVDHvWA0aj74x//6Bisr20I2HrsscfURMOLL76oGpuo1bxp0yY1QI73goFgBFyNHz8+ZuARGusYkEedaQTNYHB8wYIF6r1jYBpBNLieY8eOlb/85S/St29fqWuooY262g8//LD6rNBZQMMb9bHxHTj33HMdkwtBISAH2w8//KDuo7PTsWNHSQYItsJ3D7XVP/jgA/nxxx9VJxefH97ryJEj1T6HHXZYzGOhk4fOGY6DTiwClhDAhkkqdKjxGR9++OFyxhln+AZGuSHQDxNh+PvB39J3332nGvQ4HjqgCETEBJoZlFVXUE8efyO4lr/++qv9vs0OMeB7/+WXX6pJFdShxzXDxAsmYDAphiCmgQMHyrhx41RddnTmiIiIiKJB+wGDnbfffrsK9NB9GTyOwBUT2lBo66PPg/YV2ulo9yL4BoFEWJgxevRo1WYzg0vi0Q7C+aHt//jjj6tgJQR0FxYWqtdFew7BNBjEP+2001QfDY444gg1+QDPPPOMXHPNNWpBRLJAH+7OO+9Uiz3w/j/++GPVj9q8ebPqS+B6H3LIIXL++eertm0smPA49thjVZ8M7eq5c+eq9i8G/tEnw8QT+iZoo0fri5rQh1uyZIk8+eSTamHKwoUL1fcC1xwTXieddJJ6XQRa4fOrK+hjzpgxQ/7xj3+o88QgPt5327Zt1ffEhKAm9C/ffPNNFSSGgCd87zGRhEkB9LURwIRrefTRRyfVd4aIiIgoUdDexPgpFmZjngPtPrTNMRaNcV4sCEX7OohevXqpvsKnn36qAuT1nAnaZVhginYpxi8xNou5hXj0VRIJ7xvX4+WXX1aLEvQ4M+YqcC4jRoxQ8x4YK4/VdkxEnwrngOPg3LDIAQFluFboU+g5KgSN9ejRQ+rajTfeKHvuuac8+uijqk2OzxF9E/f8VqtWreR///uf+vzxfUQCAPQ3cJ2wL94zvrN4byeccEJSjPEn8/UkakhCSNNU1ydBRNRQIVoajW9Awx0D1USxIIgJQVKAxvvJJ5/Mi0ZERERERERERERENXLzzTfLLbfcom4j6AWLJomIiJIdlxwREQWElZzImrNz587A1wxR/Boi7YliwUoKZOQBZNtxlzckIiIiIiIiIiIiIiIiImroGNBERBQQ0v4jNSrSgP7zn/+MuT/KZyHlp4Y0pESxICMTanIDMjPFKtdHRERERERERERERERERNTQMKCJiCggBDMBKnU+8cQTqv6zn9LSUjn33HOlpKTEfuzEE0/ktaaoioqK5JFHHrHvX3TRRbxiRERERERERERERERERNToMKCJiCigM844w769YMECGT16tMrAVFxcbD9eVlYmU6dOlbFjx8p7771nP37cccfJ/vvvz2tNDvn5+fbttWvXygknnCDLli1T948++mgZOHAgrxgRERERERERERERERERNTppdX0CRETxsGbNGhk1alRCLubEiRPVdtJJJ8krr7wib7/9tnr822+/lWOOOUZCoZC0a9dOMjIyZMOGDY6sTDBkyBB56qmnEnJuFHbKKafIrFmz4n45unTpIl9++WXCLvOxxx4rv/zyi6Snp6sShbrUXNOmTeXf//53oGPsueeeCTm3P//5z3LXXXcl5NhERERERMkC/Qj0JxLh7rvvVotbiIiIiIho92CB+erVq+N+GUeMGCEvvPBC3I9LtYvzJEQNFwOaiKhBQIm3pUuXJuTYW7ZssW+/9tprcvXVV6tgE2Rj0iXoEMjklpKSImeddZY88MADkp2dnZBzo6qAtkR8/vozTpQ99thDpk2b5ngMgXHPPfec9OzZM9AxEvW99/pOExERERE1NLt27UpYm3r79u0JOS4RERERUWOzfPlyWbFiRUIWNVP9x3kSooaLJeeIiKoBmXTuv/9+WbJkiUyaNEkOOeQQ6dChg2RmZqrf5ebmysiRI+W6665TmXeeeOIJBjORr8MPP1ytHEAQE75HWL09Y8YMruImIiIiIiIiIiIiIiIiokYtZCG1CBERERERERERERERERERERERURJghiYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIiIkkW/w+W21tPV/8QcgAAAABJRU5ErkJggg==", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 277, + "width": 1178 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "# Use our custom plotting function from the local package!\n", + "# 💡 TIP: Edit src/myanalysis/plotting.py locally, then run again, autoreload will update automatically!\n", + "fig = qc_violin(adata, figsize=(12, 3))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": 7, + "id": "eef2cf3f", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Before filtering: 2700 cells, 32738 genes\n", + "filtered out 19024 genes that are detected in less than 3 cells\n", + "After filtering: 2638 cells, 13714 genes\n" + ] + } + ], + "source": [ + "# Filter cells and genes\n", + "print(f\"Before filtering: {adata.n_obs} cells, {adata.n_vars} genes\")\n", + "\n", + "sc.pp.filter_cells(adata, min_genes=200)\n", + "sc.pp.filter_genes(adata, min_cells=3)\n", + "adata = adata[adata.obs.n_genes_by_counts < 2500, :]\n", + "adata = adata[adata.obs.pct_counts_mt < 5, :]\n", + "\n", + "print(f\"After filtering: {adata.n_obs} cells, {adata.n_vars} genes\")" + ] + }, + { + "cell_type": "markdown", + "id": "d8be7399", + "metadata": {}, + "source": [ + "### 🧮 Preprocessing — 💻 Local\n", + "\n", + "Normalization and HVG selection are fast operations." + ] + }, + { + "cell_type": "code", + "execution_count": 8, + "id": "ed3cc9af", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "normalizing counts per cell\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/j6/fcqzqhwj6y7b1nzw3241zgjw0000gr/T/ipykernel_12501/1339639258.py:2: UserWarning: Received a view of an AnnData. Making a copy.\n", + " sc.pp.normalize_total(adata, target_sum=1e4)\n", + "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " finished (0:00:01)\n", + "extracting highly variable genes\n", + " finished (0:00:00)\n", + "Highly variable genes: 2000\n" + ] + } + ], + "source": [ + "# Normalize and log-transform\n", + "sc.pp.normalize_total(adata, target_sum=1e4)\n", + "sc.pp.log1p(adata)\n", + "\n", + "# Identify highly variable genes\n", + "sc.pp.highly_variable_genes(adata, n_top_genes=2000)\n", + "print(f\"Highly variable genes: {adata.var.highly_variable.sum()}\")" + ] + }, + { + "cell_type": "markdown", + "id": "bd7be0d6", + "metadata": {}, + "source": [ + "### 🚀 scVI Model Training — 🚀 GPU/Euler\n", + "\n", + "**This section benefits from GPU acceleration!**\n", + "\n", + "Workflow for running on Euler:\n", + "1. 💻 Commit & push your notebook: `git add . && git commit -m \"Ready for scVI\" && git push`\n", + "2. 🖥️ SSH to Euler, pull changes: `git pull`\n", + "3. 🚀 Run this section in JupyterHub: https://jupyter.euler.hpc.ethz.ch\n", + "4. 💾 Save results and push: `git add . && git commit -m \"scVI trained\" && git push`\n", + "5. 💻 Pull results locally: `git pull`" + ] + }, + { + "cell_type": "code", + "execution_count": 9, + "id": "3c7546ce", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PyTorch device: CPU\n", + "MPS available (Apple Silicon): True\n" + ] + } + ], + "source": [ + "import scvi\n", + "\n", + "# Check if GPU is available\n", + "import torch\n", + "\n", + "print(f\"PyTorch device: {torch.cuda.get_device_name() if torch.cuda.is_available() else 'CPU'}\")\n", + "print(f\"MPS available (Apple Silicon): {torch.backends.mps.is_available()}\")" + ] + }, + { + "cell_type": "code", + "execution_count": 10, + "id": "f525e3a5", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/scvi/train/_trainrunner.py:86: UserWarning: `accelerator` has been automatically set to `cpu` although 'mps' exists. If you wish to run on mps backend, use explicitly accelerator='mps' in train function.In future releases it will become default for mps supported machines.\n", + " accelerator, lightning_devices, device = parse_device_args(\n", + "GPU available: True (mps), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/lightning/pytorch/trainer/setup.py:175: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:434: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=11` in the `DataLoader` to improve performance.\n", + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:434: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=11` in the `DataLoader` to improve performance.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "05f58026e7f143fcb543adad1eec44d8", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Training: 0%| | 0/10 [00:00" + ] + }, + "metadata": { + "image/png": { + "height": 361, + "width": 1967 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "sc.pl.embedding(adata, basis=\"umap\", color=[\"leiden\", \"CST3\", \"NKG7\", \"PPBP\", \"CD8A\"], ncols=5, save=\"_overview.png\")" + ] + }, + { + "cell_type": "markdown", + "id": "122594fa", + "metadata": {}, + "source": [ + "### 🏷️ Cell Type Annotation — 💻 Local" + ] + }, + { + "cell_type": "markdown", + "id": "19bb8ada-e2bc-47d0-a0af-ae37020da868", + "metadata": {}, + "source": [ + "Let's first get the model, if we haven't already downloaded it. " + ] + }, + { + "cell_type": "code", + "execution_count": 16, + "id": "3652cb45-b174-46cc-8267-9fc8caaf65ec", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "📂 Storing models in /Users/mlange/.celltypist/data/models\n", + "💾 Total models to download: 1\n", + "⏩ Skipping [1/1]: Immune_All_High.pkl (file exists)\n" + ] + } + ], + "source": [ + "import celltypist\n", + "from celltypist import models\n", + "\n", + "models.download_models(model=\"Immune_All_High.pkl\")" + ] + }, + { + "cell_type": "markdown", + "id": "711f1dd0-77fb-4f67-af5b-22df7d0c7b1b", + "metadata": {}, + "source": [ + "Now we use the downloaded model for annotation. " + ] + }, + { + "cell_type": "code", + "execution_count": 17, + "id": "f000a6c3-ef97-4da7-9653-4320da9ded5d", + "metadata": {}, + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "🔬 Input data has 2638 cells and 13714 genes\n", + "🔗 Matching reference genes in the model\n", + "🧬 4178 features used for prediction\n", + "⚖️ Scaling input data\n", + "🖋️ Predicting labels\n", + "✅ Prediction done!\n", + "👀 Detected a neighborhood graph in the input object, will run over-clustering on the basis of it\n", + "⛓️ Over-clustering input data with resolution set to 5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "running Leiden clustering\n", + " finished (0:00:00)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "🗳️ Majority voting the predictions\n", + "✅ Majority voting done!\n" + ] + } + ], + "source": [ + "# Load and annotate\n", + "model = models.Model.load(model=\"Immune_All_High.pkl\")\n", + "predictions = celltypist.annotate(adata, model=model, majority_voting=True)" + ] + }, + { + "cell_type": "code", + "execution_count": 18, + "id": "6b16ba9f-7248-4e25-8168-f80332f85aa3", + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "cell_type\n", + "T cells 1457\n", + "Monocytes 654\n", + "B cells 332\n", + "ILC 165\n", + "DC 19\n", + "Megakaryocytes/platelets 11\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "# Add to adata\n", + "adata.obs[\"cell_type\"] = predictions.predicted_labels[\"majority_voting\"]\n", + "adata.obs[\"cell_type\"].value_counts()" + ] + }, + { + "cell_type": "markdown", + "id": "988b3e4c-06aa-4de2-951a-feaddad5d871", + "metadata": {}, + "source": [ + "Visualize the umap again. " + ] + }, + { + "cell_type": "code", + "execution_count": 19, + "id": "79c555e5-d8db-4662-9b6d-50e87bbab91a", + "metadata": {}, + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADDgAAAWKCAYAAACnpjQAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qd4VNX2NvB3SnrvgSQQeu+9I1IFFEUFFbuCDbvYBRFsYMNrQQEpYkFp0nvvvXdCSCO912n32SdkmEmmZTIhCby/75mPOTNn9jkz/LmedfZea8l0Op0OREREREREREREREREREREREREREREREREVUhelQcnIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISmOBARERERERERERERERERERERERERERERERVjgkORERERERERERERERERERERERERERERERU5ZjgQEREREREREREREREREREREREREREREREVY4JDkREREREREREREREREREREREREREREREVOWY4EBERERERERERERERERERERERERERERERFWOCQ5ERERERERERERERERERERERERERERERFTlmOBARERERERERERERERERERERERERERERERVjgkORERERERERERERERERERERERERERERERU5ZjgQEREREREREREREREREREREREREREREREVY4JDkREREREREREREREREREREREREREREREVOWY4EBERERERERERERERERERERERERERERERFWOCQ5ERERERERERERERERERERERERERERERFTlmOBARERERERERERERERERERERERERERERERVjgkORERERERERERERERERERERERERERERERU5ZjgQEREREREREREREREREREREREREREREREVY4JDkREREREREREREREREREREREREREREREVOWY4EBERERERERERERERERERERERERERERERFWOCQ5ERERERERERERERERERERERERERERERFTlmOBARBU2adIkyGQy6REZGXlTftErV67ojykeW7dudci4TzzxhH7Mvn37OmRMIiIiIiKqHoqKirBmzRq89NJL6NGjB0JCQuDq6go3NzfUrl0bvXr1whtvvIHdu3fbfYyUlBQsWLAADz/8MNq0aYNatWrB2dkZgYGBaNasGfr374+pU6fi0KFD0Ol0FscScY5h3OOoh6VYJzc3FzNnzsSwYcMQFhYm/T7+/v5o1aoVnn76aWzYsAFardbu34eIiIiI6FZjeK3t4eGBS5cuVXh+Ijw83Kbjic+U14ULF6RrfcNxWrZsicTERJvHSEhIwOzZs/Hoo4+iQ4cOCA4O1sdWderUQfv27fHkk0/i999/L9e4Yo7JETGPmEMiIiIiIrqdlOd62cnJCV5eXtK1u5gXefvtt7Fp06Zqc5zSa8IsPRQKBTw9PdGgQQMMHToU06dPR3x8fLX73YiIqPxkOmuz6URENiQ4fPzxx9LzunXr3pQbx+IY9erV029v2bLFIQkJYjJg3rx50vM+ffo4LHGCiIiIiIiqTkFBAb777jvpIRbi2EIkJ4j9RVxgi4yMDLz33nvSIh+RSGGLFi1a4PPPP5eSCUwR8cgdd9wBRzMX66xcuRLPPvssrl27ZvHzXbp0kb6nOH8iIiIiotudWOhiqHfv3vpkZXvnJ0QCQmxsrNXjPf7445g7d265khvEXIrhgh8R+2zcuFFKyrbm8OHD+PTTT7Fs2TJoNBqbjqlUKjFy5Eh88sknaNSokdUEh+joaFRUVFTUTSvIRURERERUHZQ3/jBFJCr/9NNP6Ny5c5Uep/SasPISiediHdurr74qJUBUh9+NiIjKT2nHZ4iIiIiIiIiIaoR9+/ZJVUXFQh5TN7lFdwK1Wi11XlCpVPr3jh07Ji38effdd6WOC5ZucosKrQMGDJAW0RgSnwkICJCqB+Xn5yMtLc3oGKdOncLw4cOlm+xff/11mWOI6qei6pA1hhViRfUgUT3VErFYqrTffvsNzzzzjFF3BrlcjtDQUKnThEh6KKmRIX7TTp06SYu2eMOeiIiIiMjY9u3b8b///Q/jx4+vVj/NxYsXpQRqw+SGjh07Yv369fDz87P4WRHHTJgwATNmzDDZ0U0kMYgECRHTlI6tRLz1999/Y/ny5fjxxx+lzg7miKQEMVZ5iC50hknaYgxbkjWIiIiIiG5V1uYJxDW9KAyVmppqVLBJJDSLmGHp0qUYOHBgtTmOiFfEXI6p8QsLC6UCVHl5eUYxwptvvonLly/jhx9+sDr+zf4+RERkGyY4EBEREREREdEt6b///sPo0aOl5IISrVq1wvPPP49Bgwahfv36+tfFTfC9e/fil19+wZ9//qlfzP/ZZ58hKytLWqBkirhRLtoeGyY33H///Rg7diy6du0q3RAvIW54Hz16FPPnz8fMmTOlhT7Ct99+K92g/+ijj8p0ShCLkKwxTIy47777ylXBVRDn9Nxzz+kXKomEDFFdVVSQ9fX1lV5LTk6WJgJEtVaxWEn8piI5QyRpcPEQEREREZExkSgt4gTDmKMqibhCJHDHxcXpX+vWrRvWrFkDHx8fi5/NycnBiBEjsGnTJqPX+/fvj1GjRkmxVXh4uD4uEbHU+fPnpbFFFVPxXBALgZ566impgupjjz1m8ljl7aotYqo777xTn+Dg7e0tdaYTMQ0RERER0e3K1nkCMSewe/duaW5iy5Yt0msiUUAUjTp9+rRUwKk6HOfll1/GpEmTLO4jYgIxJzRx4kR9fCASrEWxJjHXYYub9X2IiMg2chv3IyKqVkQFHnGTvOQhbswTERERERGVEF0GxGKbkuQGUQVUdEkQi/lFgkPphUYuLi7o06cPFi5cKFUwFQtjSoiF/aLDgSnTp0/HuXPnpOdiQc+8efPwzz//SB0dDJMbBGdnZ6njgUiWEDe/DaukioSCs2fPVslfoKjEWlJtyNXVVbohL7pKlCQ3CEFBQdIEgkj+KJGUlCT9pkREREREVDYR+umnn9YnTlcl0fFNVBM1TG7o3bu3FPdYS24Q5//II48YJTeILnMiEWHDhg1SF7iIiAijpGvxvEmTJlJMIRb3iJhBdIczXJxkeC4VjWVEx4wSs2fPRosWLRwyNhERERHRrU5cp/fs2VOKDURSs+G9/y+//LJGHUd0oxaFp8T8huH8znvvvacvNlXTfjciotsdExyIiIiIiIiI6JYikhoefvhhqUKoICqELlmyBK+99prRwhpzRCXSxYsXG+0rFs6INselF/v8/PPP+u0xY8aYrURamqgaJLo4lBA32M11iahMokWzWJhU4o033kDHjh3N7j9y5EijBHPxOxERERERUVkiCUBUDK3q5AZx/R4bG6t/TXQ8EN0VbOly8P3330tVUEuIWEF0vhPJ4bYQsZiIwwzjpszMTLzzzjuoqI0bN0rd8EqMGzdO6qZHRERERETlIwpEie5rohBUCVEMytEJ2zfjOE2bNpU6VpdISEjAtm3bUJN/NyKi2xUTHIiIiIiIiIjoliK6KoiF+yVEm+Dhw4eXawyR5CCqkZZISUkxWpQjXLhwQd/qWDCs1GOLBx54QKp+arhApyo6XYib8CWefPJJq5/p0qWL/rnh70xEREREdLu7++67pc5tJcRC/itXrlTJuYhrddG5wTC5YfDgwVi5ciXc3d2tfl7EQCKWKhEYGIilS5dKf5bXs88+KyVWGCZKi0QHe+Xk5OCpp57SLxyqW7euFAcSEREREZH9HRAGDRqk3xZd1+Lj42vkce666y6j7ePHj6Om/25ERLcjJjgQ0U23f/9+qSpo27ZtERQUJGWy1qpVCz169MDHH3+MqKgoq2OICQHR5rjkISohWSJucosb76J6j2iXLI4pjt29e3epApFoF20v0Zr5+eefl9oe+/v7w9XVFeHh4dLN+mnTpkktyKyZO3eu/ruMHj3a6Ld66aWXpLF9fX3h4eGBhg0b4oknnjCqskpERERERMVE1wZxjV+idu3adlcHff/99426OIjWxoZSU1ONtu2pyjNw4ECjSkI320MPPYS8vDycOnUKy5YtM0q4MCc7O1v/3M/Pr5LPkIiIiIio5mjVqhU++OADo4X4Tz/99E2v4CnmWURyQ0xMjFHyxfLly6U5DFuI7hOGSQhTp06V5j7s9dZbb+mfiySJiiwymjhxotF3E93xbOlIQURERERE5on1SIbEYv2aeJyQkBCjba1Wi1vhdyMiut3cKNFHRFTJEhMTpUQAkWhQmqh6Kh67d+/Gp59+ivHjx+Ozzz6Dk5NThY8rqqo+/PDDOHjwYJnqQ+KxZ88efPfdd/j777/LNe758+cxduxYk63MxMWqeGzevBmTJ0/Ghx9+iAkTJtg8dn5+Pl5//fUyFWJLWkqLx7x58zBkyBDpvL28vMp17kREREREt6rVq1cjOTlZvy2qehpWUC2POnXqSFVARQWeXr16lVnMI5InDP37778YOXJkuY4xadIkvPnmm9ICH29vb1QFEXc1b95celhTVFQk/cYl2rdvX8lnR0RERERUs7z77rvSPMiRI0ekbTFPIO71i/mRm5Xc0LdvX1y9elX/mij+9Mcff9g85yISMkTSQImwsDAptqoIkdw9e/ZsKbZq1KiR3eOcOXMGM2bM0G/fe++9RhVTiYiIiIjIMeydW6nq44j1aYbq16+PW/F3IyK61bGDAxHdFOfOnUPXrl3LJDf4+PhIi4bc3NyMFsx89dVX0g3pinRWEE6ePCkdt3RyQ0BAgLRIqaQaq0gYGDBggHSethBJEaL7Q+nkBjFuSYcIwwpNb7/9tpRkodForI4tModFFwfD5Aax0EksplIqjfPS1qxZI928JyIiIiKiYoaL7wVxnV8Rr732mtTlwFSlUnHtHxwcrN/+66+/pGqthYWFNo8vPi9urldVckN5u2OIRU2io14JkZxBREREREQ3iPv4omuzYTKBKIBkeB1dWcQxROcGw+QGMTchYpXyFJQ6cOAA4uPj9dujRo0qMz9RXqKDtYgnKpLcIIj5FrVaLT0XczEiKZ2IiIiIiCru9OnTRtfvYg6kJh5nxYoV+uei01u/fv1wK/xuRES3GyY4EFGlEwv8hw8frr95L5IKXnrpJanKTkZGBqKjo6V9du3aJXUkKLFlyxaMGzfO7uPm5eXhvvvuQ1pamv41sTDp7NmzUueGhIQE6SFaGYvs2fT0dOzdu9fquKIzg2jlnJqaKm2Lds6iQ4P4HmJcMXGQnZ2NdevWoUuXLvrP/fnnn/joo4+sji9aRP/333/6SQNR5Um0gRbtlsXvNGfOHCkxpMSmTZv0+xMRERER3e7279+vfy4SqUXCc2URsY3oPmdo6tSp0s3rV199FVu3boVKpUJNJZKvRVx1/PhxTJs2DU2aNMHChQv177/33nvo379/lZ4jEREREVF11Lp1a7z//vv6bXFv/5lnnpE6I1QWMQcjOjeIuYoSTzzxBBYsWACFQlGusTZu3OjQxHFHEV3ADRcrvfDCCze9GisRERER0a1IrEkS67QMYxpR5LWmHUfEDD/99JNRzGC4xqqm/m5ERLcjJjgQUaV75513cOHCBem5SCRYtWoVvv/+ezRt2vTG/xjJ5VJHBFFtVbRvLiEWz4j97fHdd9/pjyuIyQTRglksyjGsljpp0iSsXLnS5hZhIulCJDIIvr6+UmLG5MmTpU4UJUQlJNFueefOnXj00Uf1r3/22WdSVwlLRAcLQSwgElWV2rZtq39PVCN68sknsX79en33CUF8LyIiIiKi251YkH/+/Hn9trj2r+xWwKLDQ6tWrYxeS05OluIRUTlV3DgX1YFEYrW4jhcLm2oKEaN5eHigTZs2UsXZkiqwQUFB+OWXX6RkDiIiIiIiMk0kBItracNiRTNnzqyUn0skNYj4wzC5QcxfiLkYw7kEW504ccJou0OHDqgOPvnkE/1zEauI+SciIiIiIqqY3NxcjBkzxqg7dUUK0t7M44jubmINlyhoKwpPiaJMonCTIGKkKVOmoKb/bkREtysmOBBRpRIXkbNnz9Zviw4GgwcPtviZTz/9FL169dJvf/nll3Yd23CioHPnzlISgjmi+tAHH3xgdUyRnGCYcPG///0P7du3N7u/aNk8a9YsNGjQQNoW1ZlE4oI14vu/+eabZt8X3+euu+7Sb9vSeYKIiIiI6FaXlZVldCNZLMSvbGJRjahuKpIBTMnPz5eq94h4ZNCgQfD390fPnj3x+eefIyoqCtWZ4eIoQw0bNpQ62Wk0mpt+TkRERERENYUohDR37lzpzxIicdjcdba9xHiic0NJF+0SooO2WOBjj8uXLxvFPDcjtrJGdLteu3atUSVWUcSKiIiIiIjsI4oa/fzzz1Ji9vbt2/Wvi6JOTz/9dLU5zscffwyZTGbyIeItEa9069ZNKjwl5mRKum+L7m+G8Vh1+T5ERGQbpY37ERHZ5e+//0ZBQYH0XLRAfv755236nNhvx44d0nPxp0iUCAwMtPm4p06dMpokeOWVV6xWKRL7iA4L4mLXnHnz5umfi5ZiDz30kNVzERVjxQWsqNYkLF++XKosa+l8RNtoazp16iR1nhBKOkoQEREREd3ORLUcQ+WJISpCLKoRN7FFkrVI0La0YEmlUkld4MRDxAh33323lOxg2OGuOhCJIomJifDz84OnpyeSkpL0ySN79uyRHt9++y2WLl1q1M2OiIiIiIhuEB2aRdfqkgJM2dnZePbZZ6Xubo4QGxsrVSU1TG4QcxIlnaJFASpR4GnUqFHlGjczM1P/XHSls5VY4FM6LjMnPDwcW7dutXlssViphFikJOZ0iIiIiIiorCVLlmDnzp1mfxpxrz89Pd3ktXutWrWkz9vSHftmHae8RDc7b29v6bgiYdtW1fX7EBHdrpjgQESVqiRJQRCLXkS1Ulv06NFD/1x0PRAXkCNGjLD5uKUnB6x1jRDExe2dd96pTxqw9n1at25tc2tnw+8jJgaOHz8uTWyY06VLF6tjhoSE6J+XJJEQEdEN69atw5w5c6QuN2KBpru7OyIiIjBkyBAp8axRo0b8uYiIbjEiqboqjy0qiD733HPYtm2btPBfVBe9cOGC2c+IWEckQIv/Zn3//fd45plnUF2IWCcmJgZhYWHStlggtWHDBrz//vs4duyY9Nrhw4elxVIHDx6El5dXFZ8xEREREVH1JLpHL1u2TJoXEMR19S+//IKxY8dWeOxNmzYZbU+cOFFKnjYszjRu3DipK3S9evVsHtfebm2XLl2yOcFBrVbbPG5aWppUUKvEgw8+qI9ViIiIiIjImEisFo/yzgkMHz5cKuRkuB6pOhxHFGIyt95MxBUiBklNTZXmXErih6lTp2LGjBlS7DV69Ohq9X2IiMg2THAgokpvGVwiLi4ODRs2rHA75PLuL25y25pYIZIOLCU4HD16VP98//79Nn8fUaW19PlZSnCw5ca8i4tLhScbiIhuReIGxqOPPiotLDVVUUFMJn/zzTfSTY0333yzys6TiIgcTyQtG8rJybnpP7O4mS0qqIpHSUVVUZVUdHjYvHmztOCnNJGwLKq4iiqkjz/+OKoDcS6GcYmoOjR06FD069cP9913n5S8IZw/f16qRjtt2rQqPFsiIiIioupLXFvPnTtXSjIoWdT/1ltvSUU4RDEOR5kyZYqUkCysWLECf/zxh77okkh4EAWcxLnYwjCBuSriqtL+/PNPo0JPtnYLJyIiIiKislxdXaX5lICAALRs2RIdO3bEAw88UK6k6Jt5nJdffhmTJk2yuI+IF8QatR9++EGKhUSyg0hWePjhh6V5G5EkXVN+NyIiKsYEByKqVCJDtoSo+GlqMY8tRHZteYhK3SUCAwNt/pxoGWaOuIkvFscaLqCtrO/D6qdERPYRk8TDhg0zam/fqlUrKalM/O+2WFiakZEh/TdJTCSL/d955x3+3EREtwjRrUdc/6ekpEjbogNBVQsPD8eYMWOkhxAdHS0lVc+fP19KmjY0fvx4DBo0CKGhoaiu3NzcpMVFItm7JN779ddfpcRBtl4mIiIiIjKtXbt20j0okYQgZGVlSR3cRDc3R/jyyy+le10lxKIekdBQEhPt27dP6iTxxRdf2BzHlBSwEucqkiR8fHysfs5aMkTfvn2ljnfltXDhQv1z0ZXVsGs2EREREREZE4WURJL1rXIcW5MPunXrJj3EegGR2CCSHMRDdLUTxZusrR+rTt+HiIgAOX8EIqpM4qa3I9ja0riEqNBtuADH3oqvlfFdbPk+CoXCYcciIrqdfPrpp/rkBg8PDyxbtkzq2CAWkS5evFjqJjR27Fj9/u+99540wUtERLeO5s2b65+L7gIlFVKri7p16+LFF1+U/vvz33//GXWbE9WEZs2aherO19cXTz31lFGsZNi9j4iIiIiIyvrwww+lQhwl1q9fLyULV5ToVGqY3FByzT5v3jzIZDL9a6Lr2oYNG2waU1QjNXTq1ClUFdEVb8+ePfrt6tL1joiIiIiIqqfRo0fjiSee0G+LAohz5syp0nMiIqLyY4IDEVUqw+SCUaNG6bNjy/sQN+jLw7ByaHmSIww7NFj6LsLbb79t9/d55ZVXyvV9iIjIuuTkZKMqdLNnz8Y999xTprL3zJkz9VW0xf8miyQHIiK6dfTq1Uv/PC8vD8eOHavQeIsWLcJdd92F6dOnS4v4tVqtUXVS0dVt9+7dRt3rbDV8+HBpfEOi21BN0LVrV6Pt6tAtg4iIiIioOhPzFr/99huUSqX+tTfffLNC19L3338/Xn31VZPv3XHHHXj99df12+I+2KOPPmrUAduc3r17G21v2rQJVWXVqlVG2/fdd1+VnQsREREREdUMhkUPhY0bN1bZuRARkX2Y4EBElSogIED/3J4FP/aqVauW/rktN+tLpKWlmX1PVDySy+VV8n2IiMg60S5SLGQV2rVrJyXWmfPdd99JyQ4lC0nPnTvHn5iI6BYxePBgo23RzacilixZgjVr1kgVUdu3b6+veCo6MHh5eaFhw4bo0aOH1CnIHnfeeSfatm2r3xbdhqoiSVB8n0OHDtn8GU9PT6Ntw8QPIiIiIiIyrUOHDpgwYYJ+OysrC88++6zdP5foYGrJ1KlTjbpGiPmSxx57TEp2sEQkRxh2vF64cKHVz1QWEY+VaNSoEZo1a1Yl50FERERERDVH06ZNjbZZpImIqOZhggMRVaomTZron4tqp7ZSq9XSIht7NW/eXP88KSnJ5kVCx48fN/ueSG4QN89LHD582ObzKSgoQHp6us37ExHdCrILVLiQmI2jMRnSn2K7MhkuYLWU3CD4+/tjyJAh+u3S1bOJiKjmEskG9evXN+roY6lTmyVi8Y/hf19EArdISBDCwsKM9t21a5fd51yvXj39c1dXV9xM/fv3R3BwsNSR4bnnnrP5c6VjrNDQ0Eo4OyIiIiKiW8/EiRPRokUL/fa6deukuKUyuLi44Pfff5f+LLF+/XpMmzbN6ueeeuop/bYoDmJvUndFiKSK7du367cN7+cRERERERGZo1AojLZv9twLERFVHBMciKhS9erVy6jjgeGNaEvEQlOxyEZUHxLJCuVtfyyqCxlaunSpTUkV1lqSGX6fo0ePIioqyqbz+frrr6XFtD4+PmjdujVOnz5t0+eIiGoaMem4+1IKnv/9ENpO3oAB32zHiB92SX+K7RcWHpLed3TFN5FItn//fv12yeJTS3r37q1/XlKNm4iIaj6ZTIZXXnlFv52QkIDp06fbNdbHH39slBzxzDPPQKlUSs/Dw8NRt25doximPN3jDF28eFH/3HCh083QuHFjoyTuq1ev2vS5tWvX6p87OztL3ZOIiIiIiMg6cf0sOpEaLrh54403EBsbWyk/n5iTEJ0cDH3wwQdSFzdLXn/9dX0HVOHVV1+VCkpVRHk7v506dcqoeFTfvn0rdHwiIiIiIro9iCRtQxEREVV2LkREZB8mOBBRpXrwwQelzgeGlYms3cBWqVT45JNPpOd5eXnSYp+2bduW67hicY1hF4dvvvlGGsuSBQsW4Nq1axb3GT16tP65+B6TJk2yei4ZGRnS8UvaTYtjGC4iIiK6VZyMy8Sgb7fj4V/3Yc3Ja9BojZMYxPbqE9ek98V+Yn9HOXv2rJSoVsLwvwHmGO5jqYMPERHVPOPGjTNKPhCJCqIqanksWbIEP//8s37b29sbEyZMMNrniSeeMEq2E8c1/O+RLUSS3YkTJ/TbI0eOxM00YsQIoxinJHaxRPx307B664ABA+Dl5VVp50hEREREdKvp2LEj3nrrLf12ZmZmuQs9lYdIVjAsDCXmYR566CFpzsIcsQCoZK6mpIvb0KFDkZKSUu7ji1hjypQp2LlzZ7k+d+DAgTK/GxERERERkTXz58832h40aBB/NCKiGoYJDkRUqRo1aoR7771Xv71161bpRrq5yt3i9ZdeeklaqFpCtEEOCAgo97Hfe+89/fPLly9L42g0GpP7Hjt2TDova0RF8A4dOhhdEFtaAFRUVIQxY8YY3fAXxymp+kpEdKvYcSEZD87cg/OJOTbtL/YT+4vPOYJhRx3RAciwupw5ovK24SSyYTU4IiKq2VxcXDBv3jx9srVYvCMW8v/vf/+zqWLorFmzpORmw7jlp59+krqyGRLX9rVq1dJvL1++XIp/YmJibDpPUTHVMIlaVFY1jJ9uhv79+xt1jRC/kaXORtHR0dI5lsRWomOG4aInIiIiIiKyjSigZEuRDkcQ1+0iRvL19TW6nzZ27FiLn3vttdcwatQo/fbBgwelJINVq1bZfOxt27aha9eu+PDDD41iLHFO1oi5G8Okc1ZdJSIiIiIiazZv3izN6ZQQawdEgV4iIqpZmOBARJVuxowZ0mLTEt99952UKLB9+3b94iJxU1vcGBfVf3755Rf9vmKx0OTJk+067sMPP4yBAwfqt//++2/06dMHu3fv1r8mqhOJBTziddFpwRa//fYb3NzcjBY1PfDAAzh8+LD+NfG9RDJH7969jW70t2zZEq+88opd34eIqLoSnRjGLTiEvCLTSWTmiP3F5xzRySExMVH/PCQkxKbPBAUFGW3bU32OiIiqL3GNL671DTssjB8/Hm3atJE6M8TGxhrtn5aWhkWLFqFnz5549tlnpaSIEm+++aYUX5QmFtj89ddfcHZ21r+2cuVKNG3aFC+88ILUNaJ0J7mcnBysXr1aSoTu3r27dFxBxBgigdqwA97NII4nfo+SJGzRgWLYsGFS14ukpCT9fuI8f/jhB2kxk0ggLyEWKYkOekREREREVP7EbDHfoFAobspPJ5IDxDW9ITFvIhK8rSVGGCY5iKRnETOIYlBi/kcUrDJMJBfzPSJmEHGGSGzo27dvmU4MIrFj4cKFVs/ZsBiWYZc+IiIiIiKi0s6cOYN33nkHd911l1G37YkTJ5ZZG0BERNUfS4gTUaWrXbs2li1bhuHDhyM1NVV6bcuWLdJDZMkGBgZKyQWlWyGLSkJLly41So4oD3Hj/c8//0S/fv30VX527dqFHj16SAuRxOPatWv6i1qxoOjRRx81SrAwpVWrVtK4on1zfn6+9Nq///4rPby8vKSqrmKRbG5ubpnJA/F9DJMjiIhqOjFh+fqio+VObighPvfGomNY+2ovm6q2mZOdna1/buv/znp6ehptl/7vEBER1XzPP/+8FHOIZIOSRIOTJ09Kr4uHiDl8fHykpAOxgL90pzmx0EgkXBt2hytNJDWvWbNGqv5TEu+IY4nqQCUVgkSc4OfnJ3UMEo/SRAyxZMkSKfmiKoikjtmzZ+PJJ5+UFiaJTnSimqxIcggNDdUnE5bufiF+V7EPERERERHZp3PnznjjjTfw5Zdf3pSfUCRur1ixQkrULiGKMol5k2bNmplNxBD7d+nSBR999JEUPwmi6FNJ4SdXV1epE7eIoURcVHp+xPB+3IQJE/D2228bJYqbc+XKFf1zw+55RERERER0+xCJ1b///rvZ98W6LzHHY7hmoIRY2yViLiIiqnnYwYGIbopu3bph3759UucGQ2Lhz9WrV8ssKhU3ykWnBfFnRYiFQqJThLhgNSSOJyq2liQ3iBvvYkGRrZVH77nnHuzYsUOqUGRIXCyL6kWlb94PGTIEe/bsQcOGDSv0fYiIqps9l1NxPrF4UtNe5xKzsfdycfVqexUWFpY7wcHJyclo27BSNxER3Toef/xxHDlyBCNHjiyTTCcSrcX1u1iAUzq5oSSGsZTcUEIkVYvECdH5wdQiHREniLindHKD6J4gFhgdP35c6jhRlR577DFs3LgRderU0b8mfpOEhATpYZjcIJLQ58yZU6b6KxERERERlZ9IGhZd4G6WH3/8EeHh4UbzNKNHj5a63lny2muvSR0VREKEKCBlSHw2Li5OintMJTeIOGPatGnSvIzoAmdLckPprq2lj0lERERERLeH9PR0XLp0yexDzPOUTm4Q8cP06dOxYMGCm9Y1j4iIHIsdHIjopmnQoIG0YGbnzp1YvHgxtm3bJt3MFheioqpqWFiYlNAgbqQPHDiwQpW8S1+0/vHHH9JNd9FqeevWrYiJiZGqDomWxiJZQVQeFdV/RMtkW4nkhoMHD0rVWpcvXy51hxALf8SiJVGFSIzdvXt3jBkzRvqTiOhW9PveaIeN061BgN2fFwtES/AGBRERlda4cWOp45q4yS26qolr91OnTkmLZcRNb6VSKXVYaNSokXTtfv/996N9+/bl+iFFpwPRDe7zzz+X4gMR95w4cUKf2CC6IoiqpmK/5s2bo2/fvhg1apTRwqKqdscdd+DixYtSx7r//vsPBw4cQHJyshSbifbNbdu2lZK3RYzj4eFR1adLRERERHRLEHHCb7/9JnVRKN01rTKI2Gfu3LkYMGCAPtFbJF2//vrrUvKDJWIe59tvv8Wnn36KTZs2Yf369dJnRRwhEshF3CMKSomkaDFHIjreiYRwUVzK8P6drUq6RZT8TkRERERERIbE/IVYcyY6aYvE6latWknFd++++27OYxAR1XAyXekShURERERENsguUKHt5A3QaCt+OamQy3D0owHwcjXuqmCr7777Dq+++qr0XEyciiQ6W7o+GE6MHj582OZOPkREREREREREREREREREREREROR45S+VQUREREQE4FpmgUOSGwQxTmJWgd2fF51zTFV2s6T0fqKqAxEREREREREREREREREREREREVUdJjgQERERkV1yizQO/eVyCu0fLyAgQP88JSXFps8kJycbbYeGhtp9fCIiIiIiIiIiIiIiIiIiIiIiIqo4JjgQERERkV08nBUO/eU8Xewfr1mzZvrnCQkJ0GisJ0vExMQYJUgYdoEgIiIiIiIiIiIiIiIiIiIiIiKim48JDkRERERkl1AfVyjkMof8ekq5DCHernZ/vmHDhnBxcZGeq1QqnD9/3upnTp8+rX/eqlUru49NREREREREREREREREREREREREjsEEByIiIiKyi5erEwa1CHHIrzeoRag0nr0UCgU6d+6s3965c6fVz2zfvl3/vG/fvnYfm4iIiIiIiIiIiIiIiIiIiIiIiByDCQ5EREREZLcxXetWm3EeeOAB/fOFCxda3Dc1NRVr1qzRb48YMaLCxyciIiIiIiIiIiIiIiIiIiIiIqKKYYIDEREREdmtW/0ANA7xrNAv2CTEC13r+1f4b+HBBx+Em5ub9Hzbtm34448/zO778ssvIz8/X3revXt3tGnTpsLHJyIiIiIiIiIiIiIiIiIiIiIioophggMRERER2U0mk+HrB9vC3Vlh1+fF5756sI00TkWFhITg3Xff1W8/9dRTmDt3rtE+Iqlh7Nix+uQHcdwvvviiwscmIiIiIiIiIiIiIiIiIiIiIiKiipPpdDqdA8YhIiIiotvYjgvJGLfgEPKKNOVKbpj5aAf0ahTksPMoLCzEHXfcgT179uhfa9SoEbp06SIlN2zevBnp6en69z766CN8/PHHDjs+ERERERERERERERERERERERER2Y8JDkRERETkECfjMvH6oqM4n5hjdd8mIV5S54aWYT4O//Wzs7PxyCOPYMWKFWb3USqVmDhxIj744AOHH5+IiIiIiIiIiIiIiIiIiIiIiIjswwQHIiIiInIY0Rxs7+U0LNh7BetOJUKjvdEsTCmXYVCLUIzpWhdd6/tDJpNV6i+/bt06zJ8/H7t378a1a9cgl8tRt25d9OvXDy+88AKaN29eqccnIiIiIiIiIiIiIiIiIiIiIiKi8mGCAxERERFViuwCFRKzCpBTqIGniwIh3q7wcnXir01EREREREREREREREREREREREQmMcGBiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiqnLKqT4CIiIiIiIiIiIiIbg1qtRrXrl2rlLFDQ0OhVPKWNhERERERMSYhIiIiIqLqifMkjsHZICIiIiIiIiIiIiJyCJHcEBERUSm/ZkxMDMLDwytlbCIiIiIiujUwJiEiIiIioqrEmMQx5A4ah4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyG7s4EBEREREREREREREDrd3TQRqBSsqNEZCkgZdh8Q47JyIiIiIiOj2wZiEiIiIiIiqEmMS+zHBgYiIiIiIiIiIiIgcLiRYjtq1K5bgoIXOYedDRERERES3F8YkRERERERUlRiT2E9egc8SERERERERERERERERERERERERERERERE5BBMciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioyimr+gSIiIiIiIiIiIiI6Naj0WmlR0XHICIiIiIisjeeYExCRERERERVhTGJ/djBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqhw7OBARERERERERERGRw2mhkx4VHYOIiIiIiMjeeIIxCRERERERVRXGJPZjBwciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqpy7OBARERERERERERERA4naqWK/1fRMYiIiIiIiOyNJxiTEBERERFRVWFMYj92cCAiIiIiIiIiIiIiIiIiIiIiIiIiIiIioirHDg5ERERERERERERE5HAanU56VHQMIiIiIiIie+MJxiRERERERFRVGJPYjx0ciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioyjHBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqpyyqk+AiIiIiIiIiIiIiG49WuikR0XHICIiIiIisjeeYExCRERERERVhTGJ/djBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqhw7OBARERERERERERGRw2kBaCrcwYGIiIiIiMj+eIIxCRERERERVRXGJPZjBwciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqpy7OBARERERERERERERA6nhU56VHQMIiIiIiIie+MJxiRERERERFRVGJPYjx0ciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioyjHBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqhwTHGq4QrUKlzOuIT4nrapPhYiIiKhay8vLQ506dSCTyTB37tyqPh2iW0ZhfiGuno1DcmxqVZ8KERERVTManc4hDyIiSwryChF9JhYpcYxJiIiIiDEJEd18+bkFxTFJPNduERERkTHOk9hPWYHPUhXKVxfh+yMrsPj8bmQW5UmvtQysixfa3IV+dVrz74aIiIiolFdeeQUxMTH8XYgcFZPk5GPuh39j3dwtyM0sjkmadmmERz96AJ2HtOPvTERERERElSo3Mxe/ffAXNszfhrzsfOm1Fj2a4LGJD6J9f86TEBERERFR5cpKy8Zv7/+JTQt3ID+nQHqtVe9mePzjUWjTpwV/fiIiIqIKYIJDDZGSn4WjSZchl8nRJqgeXtnyKw4mXjDa52RKNF7c9DM+7fko7m3UrcrOlYiIiKi6+eKLLzBr1qyqPg2iGk1UHjq77wKUTko06dwQE0d8gTN7jWMS8f6Hwz/DuwtfQd9RParsXImIiKh60F5/VHQMIiJBdI07d+AinJyVaNyxAd4f+ikuHI4y+nFO7TqHd4dMxUf/vIEeIzrzhyMiIrrNMSYhIkdKjE7GhcOX4eTihEbt6+GdQVMQdeKq0T4ntp/BOwM/wcfL3mYxKCIiImJMUgFMcKjmclQF+GTPX1gddRAqrUZ6zVmuRJFWbXJ/HXT4/MBiDKnXQdqOyU6Bm9IZ4V6BN/W8iYiIiKoDnU6Hjz/+WHoQkX1yMnIx48Vfsf2fvdCoi2MSsaBIVWQ6JtFqdfjx1d/Q497O0OiA+KRMuLk4oVawD/8KiIiIiIio3LJSs/Ht879g19L90GqK056cXJRQFZqJSTRa/PDKHHQd3gFFBSpci0qCh7cbgusE8dcnIiIiIqJyS0/KxHfPzcSe/w5KcyCCs6uTFG+YolZp8MPLs9Hp/PcoyC3AtSvJ8PBxR3AE124RERER2YoJDtXYubQ4PL1+htS9wZC55IYSmYW5UoeHI0mXkFVU3Ja5mX84nm9zFwZGtqvUcyYiIiKqLtLS0vDoo49i9erVVX0qRDXW2csJeOulWUgrVEHWpT6U0SlQxqWbTW4okZaSjfcn/4ujV1OQm18kvda0QQievL8benZscJPOnoiIiKqaFjpooKvwGER0+zqz9zzeH/YZstNyjF43l9xQIjkmFRNHfClVT83LLp4nadq5IR6b9CA6DeY8CRER0e2CMQkRVdTxHWfw0d2fIzczz+h1c8kNJeIvJeKje77A0S0nUZBbKL3WvHsTPP7xKLS/sxX/YoiIiG4TjEnsxwSHamrmsbX45vByuz+/Lfak0faZtFi8vOUXTOkxBvc37qF/PSkvE4vO7cDOuDPQQYtOIY0xumlvhHsFVOj8iYiIiKqya8OCBQvw3nvvIS4uTv+6u7s78vKMbz4SkXm//rMTs5ftA/zc9a+p6wRAnpwN961nIbvezaHMv0G5DIW9mmHXuXij189eSsQ7Xy7Dhy8NwaDezfWvJ6dmY9mG4zh4Iho6HdChZR2MGNgaIYHe/OshIiIiIrqN/TJhPv6ZvgIFjQKQf0ckVCEekKm1cLmUBvcj8VCmFScumLNv1WGj7bP7L+KDYZ/h/b9eQ+/7u+lfT4pJwcqf10sLj2QyGdrd2QrDxg1AYBjnSYiIiIiIbmffj5+N/35Ya/fn9648ZLR9evc5vDdkKiYufhPdhnfUv37tShJW/LQex7efhlwuQ8dBbTF0bH/4h/pV6PyJiIiIajImOFQTJ5Kv4LdTm7Az7hSKNGoUaCxn+trriwOLMbR+J7gpnXE48RLGbfwB2de7PAjHkq9gwZkt+KbvM+hXp3WlnAMRERHdJgqygKx4oCgXcPYAvGsDrpW7YLmgoADdu3fHkSNH9K+5ubnhl19+waxZs7Bt27ZKPT5RTXbyXDz+XnUIB45Ho0ijQZ6ZznHaIC8UdKoHtz0XTb6vrhsEbYCXyfdEAsOMuVtxR7fGcHZS4tDJq3jny+XIu97lQTh1IQH/rD6MqW/djS5tIh307YiIiKgqiHRITQUbMJhOqSSiW9GJHWew+NuVOLr5JDRqjVTlNLtPPeS3qaXfR6dUoKBFCAoaB8L3vzNwjjPugG2NVqvDj6/+hh4jOkOhVODAuqOYPHI6CvKKK6oKp/ecx9LvVmPy8rfRpm8Lh35HIiIiurkYkxBReYikZxGTHN92Ghq1FoUGcYLD/ndJrcGPr8xBl6HtIZfLsWfFQUwZ9bVRRwgRkyz5dhWmrHwXLbo34V8iERFRDcaYxH5McKgGVl0+gLe3z4Vap630Y4lkhvVXjmBgZDu8uOlno+SGEoUaFcZvngl/V0+otBq0CKiDR5r11Sc8xOekSUkYtT394azg/wkRERFRqdXLV3YA+38Fzq4CdAbLkWQKoNkwoNMzQGQvQCarlAQHw+SGnj17Yvbs2WjcuLGU4EBEpq3eegqf/bgOWvFvWATZ4jJfbv7XUtfxh/aIE+QmWjBrIoMt/swZ2fnYefCSlLzw/vT/jJIbSuQXqjBh6mIE778AbW4RmnZpiBEvDUGnwe2k9xOjk6EqUiM0MghKJ8YkREREREQ13apfNuC753+VujKWKKzja5TcYMRJgaxBjRDw2yHIyplIlRqfjgNrj6J5t8b45IGvjJIbSuRl5+OdwVPg5esBjUaL5t0b497xd6F9/9b6CqtqlQa16gVLiRJERERERFSzLZ2xGj+9NtcoJqks164kS4ndkS0jMHX0N0bJDSVyMnIxof/HcPd2g1ajQ6vezaSYpCQJOyEqEVqNFqEiJlEwJiEiIqJbD1eCVLGMwly8v3PBTUluKBGfkyolVaQX5pjdR6PTIjm/uPLRrvgz0uPOiDZIyEvD6dQY6fUAVy880LgHXmg7lIkOREREBMQfBZY+BySfMf1riGSH08uLH0HNgHt/Bmq3rZRfrn79+pgyZQpGjx4NWSUkUhDdStIycvHlzA365AaJtX82cjk0gV6Qx6aVeUvn5mz1mInJWVi7/TSyc81XP1LrgGQXZzhdTcX+1UekR6+RXRB34RouH4+W9vEP9cWwcQPx0Hv3MtGBiIiIiKiGSrqajBkvziqzkCi/VYjFz2k9XVBUzx8ul9PKf8yYFMScjUN+ToHZfdRFaqQnZUrP9644JD36PNAN0adjceXU9XmS2n4Y/vwgjH5nBBcVERERERHVUHEXE/Dz6zcnuaFEcmwqzuy9gEITRaBKiMSHkuSHXUv3S4++o7rj0rFoKZ4RgiICcM+LQ/DAm8OljhBEREREtwomOFSyXXFnsOj8TlzNSoKPiweG1++MYfU7wUXpJL2/7OJeFGjKZuJWph1xp1Hfx/LEgCmbYo4ZbacWZOPn42txNDkKswaOh1LOjGAiIqLb1qXNwF9jAFWubfuLJIjf7gJG/w406Oew03BxccGiRYtw3333cWEB0XV7Dl/Gyo0nEHctA77e7hjUpznu7NkEztc7H6zcchIqtUG3FVuZudEvyy8qk+SgK5U3cWjpfni1q2f1EFp/T6PtHYv3Fb/u5gRVZCDiXZ0w689tOHM0ClMWv8mb90RERNWMKOlS0bIuN68sDBFVBrFAaN+qw1gze5PUic032AcDHu2DPg920ycpr561Sao8WprG393q+Gp/N7hcLv95HVx31K7OC9v+2VOmG8TcD//ChcOXMPHft1hkgYiIqJphTEJEWq0We/47iLW/bUbS1RQE1PLDwMf7otfIrvqYYPUvG6HV3rzkBuHg+mPIy8or9+e2/r3baDs5JhWz3vkdl45dwXsLX3HgGRIREZEjMCaxHxMcKtFHuxZKyQ2G9iacwx9nt2HOoJelhId9Cedwsx1OuoTjKVccNp74Tncseg+DIzugeUAE7qzTBt4u1iceiIiI6Bbq3FCe5IYSYn/xuSdXO6yTg5ubGx544AGHjEV0Kywk+vR/a7Fmyymj1w8ej8aydUfx9Uf3w8PdBYcPmVgNpLPSxUGtgTKpuONbaYorSfrEBJUHUOAng/p6eKDMA1wT1Ti6YBt05+OB2v6Wv4SJCYWC1hEoallb6iJRYqNag1OjvkSfwW3RuHkd9G3bAJ5uLpbHJiIiIiKiSqXRaPD5mBllFuAcWn8Mq37ZgKmr34ObhyuOlopZSsgK1VaPISvS2JcIvuKgXQkO5uxaegBj6r2AXvd1QcP29dFjRCe4ebo5bHwiIiIiIio/jVqDTx78CruWHdC/dvlYNA6sPYp2d7bClBXvwNnVGUe3mo5JKtO2RbsdWrRpy587cXbfefQY0RmN2tdHt3s6SfEWERERUU3F3lSVZPH53WWSG0qcSr2KyXv/glanxYFrF1AV1Fr7bvqbk5yfhQVntuDdnfPRZ9G7+PHoaoeOT0RERNWUqOC+9LnyJzeUEJ9b9rzZSvBEZL+la4+WSW4ocep8Ar6bswVqlRqnt5XdRy7CBQv/LJ0uJkGmMh1TKKOTIU/JQoEfkBMuh9pDBsiKH+J5Tn0n5HYIhTY62ep3UCSkG20XNQlFUetwo+QGrRxQeygQ4++C3/efwUdz12Hw279i7tobExZERERUNbSQQVPBhxiDiGqmJd+uLpPcUOLEjjP49a0FKCpU4fzBiyb3cT2fYvkAGi1cLqbad3I6QGMmprGXqAa7+NtV+OKx7zE6bByWfLvKoeMTERFR+TEmIbq9/fXFMqPkBkNHNp3AnPf/RH5uAS4fc1yRWFvptDopAcOREi4n4d+vV+KzMTPwUPg4/PfjOoeOT0REROXHmMR+THCoJL+f2WLx/fVXjmDFpQPIURXgVpOvLsKMIysw68T6qj4VIiIiqmxXdgDJZyo2RtJp4IrpxFAist/i1Ucsvr9x51lsXLQb6nPxZd6T6QCZmSQH5ZVkuBy9anZcmVYHxYko5AeZX4yYeWckdDl5kGWab78sy86HIi5Nv62TAYXNaxvtI17TOIvI1vhYeYUqzFi6E39utvwbEBERERFR5XWU++/HtRb32bBgGzbM3waVmU4NrqeToMjIN/t5t2MJUOSpUB3lZefjp9fnSp0qiIiIiIioajrKrfzZ8rqldb9twfq5W6F2cPJzdZCbmYfvX5olxV1ERERENRETHCpBkUaNM2mxFvdRaTX4+9wO3Mp+PbEeBeqiqj4NIiIiqkwHZlWvcYhIkptXiGiD5ABTiorUWPXvXihSsiFPzCjzvlwLyFWAPKMAyguJcD4dB/fVx+C25xJkVrqu5LUKKu7aYI5chrxudeByOArytJwyb8sycuGy84zRcbR+HtB5uBjtp1HC4nHmrNkPlebWm5ggIiKqKbQ6xzyIqObJSMrEtagkk++Jf9baIB/kBvpi7frj0ClMT1XJizTwXXIKTleN4xVZkRru+2PguTMa1d3CqYulhVVERERUNRiTEN2+UmLTkGJlniQnIxebFm7Hrez3T/6VEtCJiIioajAmsR8THCqBRiuailhvnX446VKFjqOQydHUPxyO0jm0MfpFtHbYeJmFudibcM5h4xEREVE1U5AFnFnpmLHOrCgej4gcQmtjW+NTO4o7sLjsOQ9FdDKg1RoMooMyJgXuG07A7WAUXI7FQJFpXD1V6aRE/TZ1y4yrDnCzemx1hB9kzRvAJbUQznsvQHkmFl3CA9DT3Rlum05AnmecLK0r1aVB3I7XKSwfIzUrD4fPx1k9FyIiIiIiciyNmZhEG+gNVZ82UHdoDE2zOjieq4aqbxto6oaY3F+RUwS/ZafhP/8wvNeeh8/KswiYfRCee2OkWRgnFydEtoxw2Hl3GtwW7fq3cth4yTGpOLvvosPGIyIiIiIi22jUpjvFlXZm74UK/aQu7i6o09xxa7e6De+IVr2bOWy8+IvXcPFIlMPGIyIiIrpZmODgYKIzw/gtM6GTlttUrqH1O+LPoW+hTVCkQ8YbHNke3/cbhyda3AkXhZPRe2GeAXaNmc8ODkRERLeurHhA56AqhGKc7ATHjEV0mysqVGHyvV+a7MpgJL8I8vRc6alMo4XLwUtwXXMEzvsvwHn/RbiuPQKX/Rchs5AsMeCxPvh2xydo2K6e0evyfJXV85Srr8dM3h5QhIXC6WIiBraqg6mznsc9Lw6WFioZCvP1BEq3ibbUJeK6giLr50JERESVQwOZQx5EVLMU5hfik1HflHld6+0BdbtGgJuz8RtOSinZQRMeaHZMZUYBXM+nwOVyGuSqG4nZQ5/tj2+2f+KwJIf+Y3pj6sp3pXGVTsYZ1SGRQXaNWZBb4JBzIyIiovJjTEJ0e8rPycenD393U451zwuD8M22yYhoUtsh4w18oi8+X/sBBj1xBxTKGzGJTCZDcB3zMZMlBbmFDjk3IiIiKj/GJPZTVuCzZMKyi3uwM+50pf82db2DMbJhd3x5YDHUWi1C3f2QWZRboYSC5gF1oJDL8U7n+zGu9WDpexRoitAyoC6aBUTg+Y0/YkvMiXKN2cQ/zO7zISIiomquqHhhtMMU5jh2PKLb1OpfN+LollNQBnqjKMgHKNX5oITTxQTISrUllheoII9Jtek4dZuH485HemHmG/Mhk8sQGB6A7NRsFOYXwf1UCvLahVr8vFuSQbKCsxMQHoTGnRpIXSFe+v5pjPnofhxYexSqQjWadWmIeq3q4pX3F2BvTLL0EVlJP0cz30/6PjIZGoXZd8OfiIiIiIjss/x/a3F6d9nuzpoGtQCF+bpbmga1IY9NsTmtSXST63FvZ8x8Y54URwSG+yMrJRtFBfYnOYuYxMnZCa/OHIfHJ4/CwXXHoFap0bxbY9RtHoHX+3yEE9c74dlCLEiq28JxHSaIiIiIiMi6xd+swrkDlyr9p2rcsQE6DmmHmW/Nh7ObMwLD/JGZkiXNa9hD1HRq3KE+nF2d8eacF/DElNE4vOG41CGvZc+miGgShpe6votz+23vEieKSdVpxrVbREREVPMwwcHB/j2/C5VBBpm0OCfE3RcjGnWFm8IZT6z7rkyniCA3byTnZ9l1jK8OLcWCIa9Lz/1cPTG8QWej97+741m8sOlnmxM4utVqgvo+lhc1ERERUQ3m7OHY8Vw8HTse0W1qzexN0p+KlCw4HboEVdtIqSKqnlYL5YUEKC9dK9e4IolBqhAUEYCBT9whPX/rzo+hK5UkERQRgOSrqXC9kIaCRv4mx1Lm6aB1VkAn00JW8vFAP8x6+3d8uvp9adM3yAcDHu1j9LkvPhqN179ehkNnYqRtuRrQlir+aqhHy0jUDvQp1/ckIiIiIiLHxCSGdDIZdEG+lj/o5gKdrwdkGbkWY5KQukEY/FQ/KZFBxCSlifcTo4sTo7VuztBEBkPr5QaZSg1FTKoUK5kjYpJJSyZIz/1CfKWudYamrnoX7w6ZilO7yiZwmNJ9RCcE1jYdFxERERER0c2LSRxBxCTS2q16wRjy9J3ITs/BBBMxSWi9YFyLSir3+GK6Zda7C/HewlelbRFLDHy8r9E+X6z7AG8PmmJzkkOfB7vBJ9C73OdCREREVNXMl8ohu1zNSqmUX053/f+93Xkk+oa3wteHlpdJbhBEcoO9TdsPXLuAixkJZt93VjhhZv8X8f0dYxHuabkKaphnAKb2fMzOMyEiIqIawbs2ILvRGrVC5ErAq5ZjxiK6zSVcStQ/V8alwnXtETgdvgzluTg4nYiG67ojcDoTW+5xdaJbAoAXZzyNNn1bYN7Ev8skNwjJogOEDPBfcg7uRxOLuyyU0OrglKWDazKg9lCiIMDpxntKhVQdNeHyjfMvzdXFCTMmjMTUF4eitlwBp8QcKLIKTO4bEeyLD8b0L/f3JCIiIsdh62Wi21O8QUyiJzqvWei+pqdQWIxJ5HIZXv15LJp0aoCFU/41uZ+U3CAD1PVDUDioLdRNw6AN85cSHYp6NUNh9ybQmekksWfFISTHmu9q5+bphumbJ+Hd31+WOkZYEtE0DOP/94zFfYiIiKhyMSYhuv2IbgdJVytp7ZaISZQKvDHreakrwqIvl5vcz57khhI7F+9DelKm2fc9fDzwzfbJeOu3F+Ffy8/iWPVa1cHz3zxh97kQERFRxTEmsR87ODhAdFYSfj+9FdtiTyK7KM/ucR5s3APLLu5DkdZ0qzKtTodpB5agfUgDk8kNJcy/Y93ZtFg09DW/uFAhl2NAZDv0Dm+JR9d8jeMpV8rs4yxXYmrPR1Hbs/jmfpFGjfXRR7Av4byUfNE9rBn612kDpdxBCyKJiIioarh6A82GAadN37wrl6bDiscjIrtcjU3FkuWHsf9gFHI7N4M2OQPy6ETIs/Ig02ihvFpcvdQSsVBo4JP9sHHBNqiLzMQkGi1+mbAAkS0jLA+mA2QaHdxjCiEPADQuxVGKogA3OjYAULsroFWqIVfrgLwCKWHi0rErqFU/xOzQSoUc/bs0Qc9WkXi15/u4uDYaRfUDUNAsFFpvV8gK1fCOz8SU74YhyLe4M0xRoQrb/9mD49tOS9+z05B26Dq8AxQWFk8REREREZHtok/HYOmMNTi04ZjJ90VcIq754e5qdgyFQo7B93fFpjmboFFpTO6jVmmkmCQoPMDi+WgCvaFqE2nyPW2IL1St68L5SFTZ9zRaXDl51eL4Sicl+j3cC12Hd8TL3d5D9OmyCeSuHi54e/54+AUXd5QrKijC1r9348SOM1A6KdD5rvboMrQ95HLWISMiIiIicoTLx6OxdMZqHN18Quq0UFK0qTycXJzQd1R3bP5jBzRqrcl9VIUqzHrnd7h6mI9tKkJVpMbV07H6WMLkeTo7SZ0dut/TCS91eRdxF8oWs3X3csU7C16Gt7+XtF2YX4gtf+7Cqd3n4OSslOKZToPbSl3yiIiIiKojJjhU0N74s3hh08/IUxdWaJzutZtico8x2HT1OFILss3uF5uTioxC0+2ZHcFd6WzTfgvPbjOZ3CCIBI0v9y/Gy+2HY9aJ9TicdBla3Y0L/0Xnd6KuVxB+GfgS6noHO+zciYiIqAp0esYxCQ5iHCKyy76Dl/HRlGUoLLyelOCkBGoHQlMrADh1BfI42yoVdR7aHq//Mg7bFu0ym+AgxJyNQ1KMbWOqwv0g0wLKfDM7yGRSkoNzlhq4Vlwl1dZJgcXfrMSlo9FSErXL5VTpYWjWa/Mw6q17sGjacpzZd0FaqFRi1a8bpWqqn65+D6GRjEmIiIgqi2j2pNVVbKLcRMMoIqpmdi8/gCmjvpYW4liiuJoMTVPzydK9ujXC6xOGYdv8rWYTHIRLR6/gqpWudOqGlrtEaiICoTsVA5mJc7Y1Jvn7i2UmkxuEgtxCadHT3c8Pwt/TluPCwUvQGiywWjlzg1RNdeqq96wmaxAREZH9GJMQ3R62/bMHn4/5TkqIrgiR3PDyj89iy587Le53Zu8FyJWVl6wsEqZtsXDKYpPJDUJedgFmv/cHBj7WR4pJLh6JMkr6WPHzejRsVw9TV70L/1DLnSCIiIjIfoxJ7MfSMBVQoC7Cq1tnVTi5IcwzAFN6PCo9TyvIsbp/jqoAlcFJpkC32s1s2nfRuR0W3z+dFoPnNv6Ig4kXjZIbSkRnJ+PZ9f+DSlux4IKIiIiqWGQvIMi26wezgpsDkT0ddUZEt5W8vEJM/uy/G8kNhmQyaJpHQudm/UZ47YaheOWnsVLlofxs6/FGYa6NMZAN1UjF7XRdWia0OblwCvRCm77NbRp69a8bLb5/evc5TLz3S6kakWFyg2GixvtDP4VGw5iEiIiIiMhe2ek5+GzMd1aTGwR59DXIk9JNvlc3IgCvvtAf+TkFKMwvsjqWylQMZEAbbKVLpEIObWBxJVND7t5uaN6tsdXji+5za2ZvsrjP0c0nMfmBr3Bu/0Wj5IYSUSeu4oPhn0ljERERERGRfdKTMvHl499XOLmhfuu6eO7rx5GbmWfTWFozHR4qyjvAC4061Le6n0atwbq5Wyzus3/NYUwZ/Q0uHLpssqOFSHqYeO+0Cp0vERERUWVhB4cKWBN1yOZuCuGeAXix7VC4KZ3x97kduJyZCG9nNwyt3wmjm/aGr4uHtF+Yp7/UpaEqqHQaPLRqGsa1Howh9TpY3PdqdnKFjyfGWH/lsPQbEBERUQ0l2pbe+zPw212Ayo4uU04ewIifischonLbsOU0cvMsLP6Ry6CNCILifKyUxPDYxAchV8ix6pcNUlUfL39P3PlIbwwd2x+evsUxiX+oL9KuZTjkb0ORmgOtr7vFfXR5+chv6A+0CIFIrRg38W88fl8X9OnUyOxn1Co1kq7a1kXCkqtn4rBv5WGpjTMRERE5ngYy6VHRMYio+towb5vUrcAWdRrXxuNv343CAG+sXHsMcQkZ8PVxx8B+zTFscBt4uLtAq9VKC3qyUs13uraJnTkDeVn5eKXH+xjz4QPoOsz8PEledj7SEzNRUZePRePg+mPoNKhthcciIiKishiTEN361s7ejKIClU371m0ejscnj5Ku+0XC8rWoJPiF+GLAY30w5Ol+cPN0g6pIJSU+i32qgoiFXuv1IcZ89IDFOCErLQfZaTkVjovO7ruA49tPo3Vv24pPERERUfkwJrEfExwq4ExajNV9GviE4rNej6NlYB3IZcXVSwdbSB64v3EPfHv4P1SVs2mxeG3rLKTkZ+HR5neY3c/PxROpBRWcYACw9MJeJjgQERHVdLXbAqN/B/4aU74kB5HcID4nPk9Edrl4KcnqPvV6NceEBS+icccGkF1PJrpjdA+z+w95+k4snLrYrvPRejhD6+YMeV6R9HA+fw2q+kHmk5hUGmiCvIyWLZ69nIh3p/+Hd8YOwN13tjb5MaWT0mETDOvnbWGCAxERERGRnS4ejbK6T9PODTH+h2fQuEMD/WsD+7Uwua9cLsegJ/rin69WVOjvRJ6cBW2or/k1PlotNCLJW62FPCnTKCY5d+ASPrrnC7w190UMeLSPyTFc3V3g4uZsU7cJa9bP3coEByIiIiKiSoxJWvZsihe/ewoN29XTvzboCdNropycndB/TG/89+O6Svs70Xm4QhvsK82dyDJyIE8zXn91es95fDD0U7z352vo80A3k2O4e7nCyVlpUzc9a9bN3coEByIiIqp2ilfck10K1NYzgNU6LVoHReqTGwxptFpcykiQHuK58FjzfmgdGGlyLKVMcdP+pr46uBRZhXlm3x/eoLNDjrMr/jRWXj7gkLGIiIioCjXoBzy5GghqZtv+wc2L9xefIyK75WeZv2YvoStUoUmnhvrkBkNqjRaXE1NxOSkN2uvtiR946240aGs6JnFyMZ0jr/H3QM6A5sge2QG5d7VC9sj2yO3fTFo05HLoCqArWyZIVqiGHHKzNZm/X7ANeQXmFwuJzhOOsHv5QexYss8hYxEREVHNtXPnTul6qbyPESNGVPWpE1UpW5KORVcGw+SG0t3Zok/HIOZcHHTX44aH3rsPkS0iTO7v5Opk03kpLyaUiUPElvSKCEIUcqibhqGwZ1MU9G8NrZeb8b46HX56bS6KzMQkCqUCfUeZTxwvj+3/7Ma+VYccMhYRERER0e0mN9P6PIkIBAyTGwyJjg1XTsUg9ny8PiZ5dOIDCG9cy+T+zjbGJCZPQyGHql1DqHq1gqZJBDSNw6Hu3BSqHi2gc3cx2lfM2fz4yhwpZjLFxc0FPUd2gSNsXLANhzYcc8hYRERERI7CBIcKcFZYb4Ch1pa90BQXxL+d3IgB/36IoUsnS4/+/36AOSc3wk3pjN8Gv4JxrQcjwNVL2l8hkyPcMwD1fEJwsxRoVFgVZTrxQCRjPNmyP4LdfSp8HBEaTNr9B3JVBRUei4iIiKqY6MTwwh7g8ZVA83uA0smZciXQfETx+8/vZucGIgdwTsuyuo82LqXsa1odZm8+gEGfzsY90+bjni/n4a7P5mDhziPw8HbHV1sm4cG37oFP4PWYRCFHrfrBqNUgtMxYGn935AxqAU0tg/hAJoO6ti9yBrWE8lomPNacgNPFRMjTciFPyYbLkWgoUnIhs9AeOTe/CFv2njf5nkajwei374FvsANiEp0O34z92ezCJSIiIrKfBnKHPG6GI0eO3JTjEN1qlM42zJOoigs8lb6mF53jHol8Ac+0fB1PNXsVTzQejxU/r4eXnye+2vYxRr42DF5+HtL+cqUctRuEILRukE3npUjOgtOxK8D1RG49ExnWOm83KdFBV+q7ZKflYNcyM/MkGg0efv8+ePl7oqJEfPb1sz+bXbhEREREt0dMQkT2EV0MrFGrNWVe06g1mD9pER6u8zyebfU6nmz6Cp5q9grWzN4E3yAffLtzCu59+S54+LhL+yudFKjdMBRBEQF2/1Wp2zSALsSvzOs6L3eoOjWBTmk8t5p2LQP7Vx8xG5OM+fAB/flVhFajlWISMSYRERE5FmMS+1m/yiOzfF2Kb6xb4q4szrBVazXYGH0U+69dwMHECzifHm+0X0JuOr48sBhXs5IwqfvDeK3DPegT3gLPb/wJmUV5iM1Jvel/E1cyk/TPC9RFmH96Cxad2yGdi5ezG+6IaIX4nHTp+1REjqoAqy8fxANNejrgrImIiKhKiQrx9XoVPwqygOwEoDAHcPEEvGoBrt5Vdmpbt26tsmMTVRZ/ZwVkKZnQBZpZ6J+dBw9N8cJ9sVhmx+J9OLHjDHa4FOCs3LgjXVx6Fj5fthVxaVmYcHcfPPvFGHQa0hYf3zcdORm5SLh8Iz4wVNC+LuBkptucixIFbSPgse083PZdNnorr471hUmxcWn65/m5BVjyzSqsnrURSVdTpIVOnYe2R+KVZJzceRYVIRYuid/mzkd6VWgcIiIiqrkMExx8fHwQGBho0+dq1TJd0ZHoduEf6mt1Hw+f4u4IRSo1Nh28gOMX43Fkw3Fc23QKyoRMfc5B/KVEzHjhV+l6/+lPH8ZzXz2ODgPbYMqDXyMvO196vzyUUUlQJGRAHRkEra8HNLXLLiQqoXNzhrpuEJwuJBi9Hm+wnZuVh8Vfr8TaOZuRHJsK7wAvdB3aAXEXE3B6j+nkbFuJhUt7VhxCr/scU4GViIiIiOh24V/LlpikOAlAFDra+vdunNl3AYc3Hkf8xWtG+8WeT5AW+qfGp2PMh/fjhW+fRNt+LfHZIzNQkFtQZv/y0Hq5Qxds4VzdXKANC4Ai2nguRsQbJcRczb9frcCaOZuRlpAO3yBvdL+nE2LOxePsvoqt3RJx2MF1x9DlrvYVGoeIiIjIUZjgUAGtAiOt7tM2uD4uZiTguQ0/2JSk8Ne5HRjdtDeC3Lzx3IYfkaWy3t65siw8sxWezm54ttVAPLVuBg4nXdK/l12Uj/8u7YezqMTsAPNPb8b9jXtIbd2JiIjoFiGSGaowoYHodtCkU0MovloBTat60AX7FScZXSdLy4Li2GU0e/ZOXDp2BR/e/TmSY1JRFOqJtIdbmx1zwfbDuL9rK3irdPjo7i+Qn2O+25rWzQlqw84N17u06Qwu61V1/KBzUkCmMq78I8srgs6reKGTOf9O/gfeV1MxYvxgvHXnxzh3wCAmSc/Fpt93QOnimJhk8TcrmeBARETkYDqdDFrDCwM7x7jZCQ7vvPOO9CAi22ISa5p1boTTUdfw5ozlSM7ILX5R5EgPbA5FcjY8Np+FvOBG94JFXy7D0LH9pW5rk0dOR0Feod1/FbKCIjidjYOqSW2LCQ6CJsy/TILDwk+XwMXDBUOe7oc37piES0ev6N/LSs3GhgXb4OTqBEdY/M0KJjgQERHdxjEJEdmnSadGWP3rJov7NO3cEKf3nMOk+6YhPTHT6pi/f/IvBj/dD/nZ+Zgy+huoCowLRtlDG2I9EUMb7FcmwWHuh3/B2dUZd4zugdf7fITo07H69zKSs7Bh/jY4OywmWckEByIiIgdjTGI/JjjYSNxIFwv6/zy7HefT4+Dh5IJutZsi2NUbSaI6sQlymQz3NeyGp9fNQGJehs1/KUsu7Ia/q1eVJjcIap0WPxxdhWNJUUbJDYaKtI5pmXwhIwGrog5iWP1ODhmPiIiIiOhWo9VqsX7eNqyauV66ge3h64G2/VrAL8ATGUcvQefuAm2AD0T5U3l6DmTZeZAr5Og/phfeHTxFf9M+v0Ww1WMtP3AKfnvjLCY3CDpx09wgqULM9UnzfQZzfjq5HDl9GsFz0znIdCL9oZjTlWQUhpjpPCGo1NBdTsKc9//A8e2njZIbDKkLHRSTHL6MXcv2o8eIzg4Zj4iIiGqOoqIinDp1Sr/dvj2rFRKZolFrsO63LVj5ywbEnouHh58H2t7dCR6RQciJTjG63i+hUCrQ+7HeePHrJcg0EV9ogryQe0dTeK05qX9Nq9Vhw7xtUteGiiQ3GNLJZXbtoypUYeab86VKpobJDUb7OGCxk3Bq1zkcWHsEnQa3c8h4RERERES3GtGpes3szVj960bEXUiAV4An2vVrBXdvN+RlmV5j5eSsRPd7OuPtAZOlDgi2xj4bF2xHckyKw673IZdb30dRdp+iAhX+N342di/fb5TcUHofRziy6QSObTuFNn1aOGQ8IiIioopggoONyQ0Tts/Fisv79a/lqQulhAdB3PIufdteBhk+6DIK59Ljy5XcICTmZeJEcjSqi93xZ27KcSZs+w2f7fsHAyPb4YkWd6Kut/WFV0REREREtwONRoOpD32LHf/u1b8mkg82zt8uPZdyDPIKoci7UdlHJDe8+vNYnN57wagikdbT2erxkjJzcH71Yav7iS4M0GqlG/NS5wYz9+fVEX7I71gH7gduxDmKmFTII4OgNZPk4Hz8KmQarfT80IZjuBkm3z8dPkHe6PNAd4x8fRhCIxmTEBERVYQGMulR0TEqm0huUKluLAZo146Li4nK/FtUazBp5DTsXXFI2lbXC0F6g1DExqQBretB1jQcisuJUJyP1/+rFckNb855AXuiE00mN+jHDvaCOsQLysRs/Wspcak4sdNxcxPy9NwK7XN403HcDB8M/xy+wT64Y1R33PfaMARHBN6U4xIREd2qakpMQkTWqYpU+PDuL3Bo/TGjeRKRhG1u8ZZIbnh7wcvYu+KgzckNJVLj0rDPhnkSW8kzc1E842GeLNP8OR7ZfCMpvDJN6D8Z/qG+UseI+14disCwgJtyXCIiolsVYxL72ZAeSiKxwTC5obSS62MvJzc09q2NBxr3wJK738XDzfpgZ9yNyl+2CvXwkxIoqgttmfSN8nFXONt8nNSCbKlLxv0rPsfxZNPVkIiIiIiIbjfr5mwxSm4oraRQqqefB+q3qYuhYwfg58NfYsjTd0oVQA3Js4usHi/U18umSqnyQjWUMenF52AluixsEgKdk0K/Laq7uu48C6ez8UDhjQWF8oxcuOw+D6fLN5I1dNoKxiTebjbtJyrFimSQZf9bgxc6TMDFI1EVOi4RERHVDEePHtU/DwsLQ1BQUJWeD1F1tOKn9frkBlWLCKhb1QXcXfTv65ydoG4aDtf+raWY5O4XBmHmsenoP6Y39pywfq9fFeZntB0UEYhCkVDtIIprGZDlWuhQp9PB6XKi+bcrGJN4+LjbtJ9Wo0VaQjoWf7sKL3Z8G1dOxVTouEREREREt4ol3642Sm4o4/olu3eApxSTjBg/RIpJ+jzQrcw8iS2CIgIc1hlBkCVlAAUWYhytDoqrN+ZFHB2TePp62ByTpMSl4Z+vVuDFTu8g9nx8hY5LREREZC8mONjgr7M7bPoxs1X5eLXDPfikxxg09Q+XXovJSS33X8rIRt3QJqgebhW9I1qV+zPZRfl4a/tvUvcMIiIiIqLb3cqZ623aLyc9F+OmPSZ1bohsWUd6LTE6xWgf95PmF+2UdIMY0akFmnRsYNMxXQ9fBfKLiqsjWeKkgDrI0/hYWh2cT1yF+8rDcFt7DG6rjsBtwwko49LgSJ0Glb8Kc3Z6Lr54/HuHngcREdHtRqOTO+RR2Y4cubHQgd0biCzHJFoPF2jqh5r9mTLdXfHiwlcx/n/PoE7TMOm1pFgb5kmktnQ3utENfLwPGnWo77C/DjG6y94LRsnVRskNx6Ihz8xDZekwsE25P5ORnIVpT/5QKedDRER0u6gpMQkROW6eJCs1B2/Meh4vfvcUwhvXll4TC/bLQ+mkQP9He6NBm0iH/dWIok/KIxeBInXZN3U6KE5fsZyUXUHt+5d/7VbatQx89cxPlXI+REREtwvGJPZTVuCzt40LGbZno357aDmmHVyCK5lJ8HRyRY4qv1zHahUYid9OboKb0slU97QqUdHzEL+Dj7M7MovKNzkQnZWEPQln0b12swocnYiIiIio5rty0vaqnb9MWCC1ZY6/eA0evu7ILbVIxykpF27HriG/jelFSR0VHvh7wkK4ednW9UCRXQDPtSeRdX/7ci1aMnpZq4Ms23zsJJPLKlSdyDvIS+rikJeVX+7f/eTOM2jZkzEJERHRrcwwwaF9exuuaYhuM1qtFlfPxEnPNRGBZq/rBXHV/t3cLcjMK0R8Uia8PVyQmZgGhBgnO5emTMwqPpanKxqP6YVfVh6Ce98W0K4/BnmuYzpeiwQGt40noK4XDHUtP0Augzw9R+rcIM+wPH8hl8ukjm/2Cgzzh4u7Cwpt6JRn6PzBSzh38JLNCehERERERLci0XH6WpT57galzXhxFjISM5EYnQwvf09kp+WU63jNuzfB7Pf+QGC4PxxJnpkLp10noYkIgi7YV4qtZBm5kF9NhNzCHIn0WYVc6q5gr9B6IXBycYLKVNK3BSd3npU6y0W2iLD72ERERET2YKq5jQv0bXU+Ix5RmYnQQSd1dLD1drdIABBTAidSrmDpxT344+x2i5+VWS2P6jjdajWFj4ttrcpM+ffCLjzdagCc5Ipyf/ZieoLdxyUiIiIiulWIxfm2unT0ipTcIOSKRTomAgvvTZfhtSUKiswb1YB8ZQp4b7yEmC83YMO8bVj5s5VqSAYhiSK7EIrrC5LMUmmgSM6GPToNbmfzb6DxdUNR3QCoavlAd33h1Yof1+Hh9++Dwqn8McmVU7Hl/gwRERHVHKKD7LFjx4w6OFy5cgUffvghunXrBj8/P7i4uCA8PBxDhgzBTz/9hPz88iVNEtV0crkcbp7X50lcnc3uJ0IPrVKGM1eSpOQGIUskJ3h5SBVJzY6fmQ9lbDpc+jZH/pC2OJKajdXbTmHZzjPIv6sdilpGmE2ELi9ZoQpOZ+PgtuUk3DadgMvhKKvJDULX4R3h6uECey35dhUem/SgtCipvKJP2Z7wTkRERER0K3JyUUqL8211bv9FKblBKE9yg0iGEI5vO431c7di7ezNFveXK+yLSZQX4+G0+zScdp2C8tQVq8kNQo97O8PFzXw8Zs2iacvx5JTRdsVRjEmIiIioKjDBwQZ31etYaX8BjX1r4+1OI6XuBuZu7ytkxn9Nvi4eeKbVQNwMDXxCMa3Pk5g/+DW0DTJuB+3n4mlzmsWhxEtYNOydch9/37XziMuxoX01EREREdEtrO+oHg4dT1zHexxJQODsw+h2LANvN2gCl692wP14osn9Sy/C8Qn0wgOvDzd6zfWk5eRklwtJkBdpzL6vkwGqCH8UtKuDgjYRUAcUTyTUb10Xb897CdM3T0LTzg2NzyPIG7LrSQwab1fkDGqBnOFtkd+7MfL6N0f2yPYobBQsvX/uwCV8teVjlNeRTSeQFJNS7s8RERERoIUMWsgr+KjcQi8XL15EdvaNJMz58+ejUaNGmDJlCvbu3YuMjAwUFRUhLi4Oa9euxQsvvIDGjRtjzZo1/Cum20qfB7sXP8kvMruPTizuMbFYRqYDFKJxgYkOCLLcQnQuBB7+fTzSgrxNjqtqFgZNwxCj1/xCfHDv+CG4GRp3bIAJc1/ElxsnolH7ekbv+QZ7GyV/W3L5+BVMXf1euY9/aMNxpMSnlftzREREVDNiEiKyTqFQoPf9XSvtp2rbrwVGv3uvxWSI0okB/rV8MXTszVm71bxbY7w15wV8vu4D1G9Tt2xMYqPYc/GY+O+b5T7+gXVHkXYtvdyfIyIiIsYkFaGs0KdvE48174dlF/citcC+aqOWRPqEYPmlfRb3EYkEr3ccgbSCbNT28MedddpgS+wJh51DQ59auJSZUCbBopaHH2YOeBEBbt7S469hb+F8ehyis5KljhObrh7DH2e3QaU1v0ipxMWMBER4BZT73MQxtsQcx9hWg/Bqh3vK/XkiIiIiolvB/W8Mx+Y/d5a7jbI14nZ8/dAAbJ6xzuI0XWCYPx6b+CAykrMQWi8Y3e/piG2L9hjt43w1DZqD0SjoUEdqq2zI6Woa3A5Emx0/omdjnA32hMb9RkXUolbhCHdzwSefPALvAC/p8f3ez3D5eDTiL12Dl58HdizeJ3WaULk4IXdgC+hKVS8S2wVdG0jnIyoM1W4YWu7faPu/e7Bz6T7p+z/ywchyf56IiIgcJyHBerdX0WmhPI4cOWK0vXTpUv1z0bkhODgYaWlpyM3N1b8eGxuL4cOH48cff8TYsWPLdTyimurBCfdI18bZMcnQNK5d5ppfzC/oLJTUkmsAWb4O8isJ0Pq5S8kOTrHpcL6UjMjH+mLV7nMWjx84uC2ebFsfWSnZ0nV9t+EdpIqqjhLZqg4u5BVA1SAYWm83yFQaKKNTUE8nwycr3oGHjweadWmEHw9+iYtHonDtShK8Azyx+Y+dWDN7M7QardVjRJ+KRZ0mtct9bpv/2IFti3bj6U8fxgNv3m3nNyQiIiIiqtlGv3Mvdi8/gPycG52pHSWiSRg2zLMcX9RtHo77XhkqzdOENaqFrsM6YMVPVjphl0NkqwhcORFj8rgiJnHzdEPLns0w88h0nD90CUlXU+Ad6I31v23B+vlboTORUF7aldOx0nxTea37bQs2/b4d46Y/jhE3KdGciIiIiB0cbBDi4Yt5Q15Dy0DjLFhH6BvRCmfTYi3uk1KQhSZ+YVLXhrvqd4SL0gmh7r5Wx1bKFHioSW+r+100kdwgJOSm49HV32BN1CFkFBZP4DX2C8OAum2xKeY45p3ebFNygyCmOhLzMmAPrU6Hn4+vxd/ndtj1eSIiIiKimi40MhjTNk1Eg7aRDh+7ff9WiDkXb3EfcaO8addGGDXhHvR5oBucnJ2kpIfS3E7Ew3vJUbiciINTdBo8rqRidHgteG46B5mZm+taZyVOh3gZJTeUiM0vxAsf/YFt/+xBTkauvqNDz3u7YOvfu7H8h7XQaLQobFarTHKDocI2EdDJZUiNs6/qqVisNPejv7Bh/ja7Pk9ERHS7EpVONRV8GFZL7dy5MyIiIiw+yuvo0aNlXhszZgwOHjyI/Px8XL16VerwcOjQITz88MP6fTQajdTNYePGjRX4hYhqjvBGtfDlxo/QoEEoFOfNxA+lkh7KvA0ZXK6mw3PDGXhuOguXc4mQqbVoOaw9EpKzLH42NjETbYZ1kGKSXvd1gdJJicBw60WVnN2cMfipOyzuI7rJnfFxRWGn+tD6ewJKhRRfqJrWxoV6AXj97s+l5I7crDxp/4bt6kkxybq5W7Hql402JTdIx4EOKXbGJBq1Br9MWCDFRkRERFR1MQkRVZ3IFhFSB4M6zcIcPnbTLo2RGm+5Q8GVkzHoMrQ9HnzrHvQY0RkKpQIBJuZJSnP1cEH/R62v3TKV3CBEn47Fm3dMwo4l+5CXnS+91rhDAykmWfHTOqybu8Wm5IZiOiTH2heTqFUa/PDKHOz+74BdnyciIrpdMSaxHxMcbNTQtxb+Hf4O/rjrTXQNbQJPJ1dUVMeQhuhWq6lN+6q0aqPttsH1EezuY/Ezz7QagAmdR6KZf/mqlhlKyEvDa1tnoc/f72LK3r+lhAbRSeKPM+Vb2JOjKsC+hPOoiDknN0Kns/WinIiIiIjo1tKgTSR+PjwNX237GK37NIe7l6tDkhtExR9bF9QYEufgE1i29bEiqwDuB6/Cc/M5jL2jPV54c4Q08WCOqmGwxeSEmLwCfPzCL3gofBxmvjlfOo+UuFSsnrXpxhiRgRbPXefqhAw3JxzZfBIVsWj68gp9noiIiKofww4OCoUCf/31FxYsWIAOHTpAdn2xtvizffv2WLhwIX755RejJIdx48ZBpVJVybkT3WxiEc0vx77Ctz8+g3YezvAwKJ0kyy2QujJYVWQ81yEWCDXu2NCm44t/c4Y6DGwNDx93i595YvJoqcpoeONaZvdR1w+GJtz0wiSdqzMu+Ljikwe/xuiwsZj97kJotVokXE7ExnImQGen5lQ8JpnGmISIiIiIbl/NuzXB7FPf4vN176N5t8Zw8yhbOKm8eo3sgsgWtq2rKp3c3HVYeymBwZJnPh+D5756XOqOba+oE1cx+f7p0jzJvIl/S2unos/EYutfu8o1TlZKDo5tqVhM8s/0/yr0eSIiIiJbKW3ek7An/ixe3zob6YU5Ff41nOQKvNnxXoR6+KKeTwiiMhMt7v/v+V1SUkMJ0fUhJc98RSMXhROeaNkfbkpn/Db4VSk5YfXlg9Ca7NVgXaFGhd/PbEV2UT46hTYqk3BhjegAkZqfjYqIzkpCdFYyIn3sv+gnIiIiIqrJ9q85gs8fnSG1QDasNqoN9pUW8cvyiiBPzrSpppiTixOe/fJR6aZ6aGQQrl1Jtrj/6l834qUZT+u3zx24hKw089f4rp6uGDF+MNy93DBt80R8/9Js7Ph3b5mkZXWYn9VzVYX7oeBYDP79egXys/MR2aqO0USCzsV6aJuSloPczOIuEPYSFZqSYlIQHGE5oYKIiIiKaXRy6VERhp/fv38/atUyv0jZHp999hkee+wxXL58GZGRkRg1apTF/Z999lmpm8PMmTOlbfE5kRTx6KOPOvS8iKqr3csPYNqTP+g7rLm4OUuzDrL8IhR2bghNHfPXyrKsPCgyirsglHxWxCRhtfwQ6OeJlHTzcy+y3EKs/XYVnv3ixr+1U7vO6bsqmCKSH4aN6w83Tzd8tfVjzHhxFnYt2y+KlhpRNQyx+J21gV7Q+LqjICMPf32xDIX5RQgKD4DW5iqpNzrjFYhEkAo4f/ASMlOyTCabExERUeXHJERU9bYt2o2vx/6MvKzibgYVIZITnvnsEQRGBMIn0AuZKZbXNa3+dRMem/SgfvvY1tMoyC00u7+Xv6fUUc7FzQVfb5uMGS/+ir0rDtl9vqKDw++f/AtVoQquHuUvghV7IR6qoooVaTi586x0HmLuh4iIiKxjTGI/RmI2upx5DS9s+skhyQ2C6IQw48hKqfrX4837Wd1/8YU9uJKZpN9ecHqLxWQFkZAQl50qPXdVOKFXWAt4Olf84nL5pX24mmV54ZM5c09VvF37qqgDSM233KqaiIiIiOhWFHUiGh+PnGaU3KAO80fBwHYo6tYEqnb1UdSjKQoHtoUmxHK3N0HcABeVfuRyOe59eajV/Vf8tB5JV2/EAktnrLLY9rggpwApccWtjsWN9s5D2sHFVCUjuQ3pGNerJwtrZm+SkgyMhsi0PpFR1KUBFsYkobB1BHROCthr8x87pQVFREREdPOJ5Ibw8HCLj/Jq27YtHnroIbz//vt45JFHbPrMhx9+KF1DlVi5cmW5j0tUE507eAmfPPiVPrkB1xMb5PlFUpK185k4QGWmOJJOB+eTMUYviUSBBR8vglIhx/2D21o8ttOFBCz5dhXSrqXrX1vy3aoyyQqGxIKnjKTia3c3T1d0HdoBzi5OZfbTelufOzHc578f1yE1oTjWKa+VP29ARW38fbvFZHMiIiIiolvVqd3n8NmYGQ5JbhBEcsLvUxZLccLw5wdZ3f/vL5cZXYsv+dby/YDczDxkpRbP6bh7u6HbsI5QKO2fn9Af97vVyEjOLP8HdcDaOVsqfPyNC7YZxYVERERElYEJDjaaf2oz8tVFDu8IEZeTitFNeyPcM8DivjrosPLyfv32gWsXrI6//9p5bIo+hj6L3sPbO+Yiq8h8JaPySMqz4yJZXLirzWct2+r7IyvRd9H7+Gz/v9BojVu/ERERERHdyv79ZiWKCm5U1tGE+ELVsSHg5my0n87dBUVdGkMT4GV1zP2rDksLhO595S4Ehvlb3Fd0TNjy12799vFtp62OL/bZ9s8eqW3y9Kd+lJIeSlNYqYhUeh9RJTUz2TjBwPmC5Y54YjGVTAfkFKqgah6GvP4toHO23PVBVcsbOT3rI7tfI+S1D4fWvXgh1Ox3F+KhiOcw653fy3SjICIiottDWFgYWrZsqd8+ePBglZ4P0c3y71f/Qa3SmH1fnp0P1+1nIC/ViUGWWwCXvRegjL+RnFBi19L90gKhMXd3RmC+6TkY5eUkKC9ck469bdEem2MScb1+bNtpKSFgdPg4fPXMT0YxlZ7a/HfSfweD761Ra5Bj0ImiPByxCOjn1+fh4YjnMPejvyo8FhERERFRTbJo2nLpetzRHSFER4IxH94vdVywRMQTOxfvszkmEfMqouOBKNwk5km+GTfTIecvClgV5tm3hs2wiJa9RMdu8X0WTllc4bGIiIioejp58iQ++OADdO7cWSo+5ezsjICAAHTp0gXvvvuu1N26slle0UF6W2NOOvzXEEkL13LTEeYZgBAPX8TmFHdcMOdoUhSe2/gjEnPTEZ9rvTqQGPvrQ8ukbhGO5OPijoa+tXAxIwFVQaVVY96pTVJFqHc6318l50BEREREdLPtW2nctljVLNyos4ERuRzqJmFQ7D5rcUyRLJAcmwb/UD/41/LTd1wwRSeX4XBsEvZ9tRTJiZm4FhkAeV4hFBYW9sRfTsT/Xp4j3cQ3x+l8IooahwIK0/n3suwCKOOMF0L5hfiidoMQxF9K1Cc4qMP8oA73M3HiOshLFZHV+bijsFUEXA9Fld1dIUf2gCZQ1TEeK799ODx2Xobr2SRp8uDvL5dLlZaenPKQ2e9GRER0u9NCJj0qOkZ1VL9+fRw/flx6npR0o/Mu0a1sb6mYxBRFei7cNp2ExtcdOg9XyApVkKdkm/2XLJIW0hIy4O3vhZAryciJT4e6XhB0bs6Q5RVBGZUkjVniyOYTOLDuKFLj0qRqqNZcPROLxV+vkGIfc5yiU6ESMYkZsgIVFInGhZ+CwgMQFBGA5BjL8zqVRXS/EIuJnJyd8MgHI6vkHIiIiGqCWzkmIbrdiATmfasOO3xckbSQkZSJ2g1C4eXnYTUBQMQjO5fuQ2p8uukE6lIuHo3CP9P+c3jBJDFH4hvsI517VSjIK5SSrp3dnPHAG8Or5ByIiIhqgpoWk2RlZWHChAn49ddfoS1VhD4tLQ379++XHtOnT8d7772HiRMnGnW8diR2cLCRWufYJIESQW4+0p+R3iFW990ZfxpbY07gTFos1DYkLVzISHB4coMw//QWKOUKeChd7B5Dbm4hVjn8cXYb0gsqnllMRERERFQTqIpurNLXerhA5+thcX9tkLfVLgUymQz+ob7S8/DGtcyP5aJE7qBW2JqejV1Ho3A+IQ359YKQO7QNCluEmfyMXC7DhUOXLCY3CIrsArjtuQiY2E+WXwT3beek7guG/pn+H9y83ODq4Vq8nw5w33oWrvujIBcJF2LxkujaoClObjAVfegahUjJDKXl9qhXJrnh+hdCbq8GUmeHEku+W4XcTLZhJiIiuh25ubnpn2s0lXPvmKi60Vjo3lCaSIRWxqVJ3dgszQaIuME3uPgaO6xRLSjScuByKAquO8/B5XCUUXKDsOe/gziw5gguH4+2HmsoFTi1+6zF5AbB6VwCUGh+YZLTqVjISo3xx6dL4BvkDRd344565aF0UqCi/vnqP+Tnlu2UR0RERER0qxEL7KzFAPZel/sEFnfEDmtc2+r+O5fsw4G1R6WYxFrSgpOzEkc3n6iUbtDzJv6NwHB/KcHAXkorc0i2+PuLpSiyEE8RERFRzZGeno7+/ftj5syZRskN7u7uCA8Ph5OTk/41tVqNyZMnY9y4cZV2PkxwKCW7KB9Xs5KRozK+Idw2qJ7Df/wOIQ1QxztIej6qSS+Hjt03vCUOXDuPyiA6T5xNi0WuuhCN/WrDWV7+C16tTgeFrGL/51ekUWNzTHGVNCIiIiKiW0VORi7iL11Dfk6+0estuje5saG0YSGMTAad0vI1d7s7W0qVR4WhYweY3a+gawNo/U0nVBS2rQN1reLEbUM97uuCE9vPWD9PcZP/Sio8Vh6D8+l4KJKzoUjMgsuhK/BcccxkhwgxiXHp6BUU5BagXuu60k14keTgcu4avFYcg+eq41CoAbnWdHKDIJZmyUotRtK6OaGwUXGMZpJMhvxWNxJBCnILsX/NUZu+IxER0e1ICzk0FXyIMSpbbm4uoqKiUFhYaPNnUlNvVG0XbZmJbiVZadnFMUmphfPNujV2+LE6D20P3yAfqzGJPXrf3xWnd1ufJ5HnFsJt8xnI00olLxeq4Hz4itQxzlRMcuFwFArziopjEjuSFUT3iooWXxNdLA5v4DwJERFRTY9JiMhYVmpxTCK6BJRQKBRo0rmhw3+q7iM6w8OneP5jmINjkj6juuP8wcuoDBq1FhcPR6Eovwj1W9eFwp6YxKCwlr0yU7JxbOupCo9DRER0q6opMYlGo8E999yDAwcO6F976KGHpE7WYg4lJiYGGRkZ+O233xAUdGNNxaxZs/D3339XyjkxErvucuY1vLLlV3T7400MXPwRevw5AW9vn4v4nDTp/THN+jr0h3dVOOGtjvfpt1sHReLplo65UO4Y0hCvd7i3Uro3lHY+PR5FWvsueDW6imdW56uKKjwGEREREVF1cOVUDCaNnIaRQU/h8Ubj8UDIM5j21A9IiStePDdi/F36fWW5hYDayvV+kQqyfPNVc9w8XfHM52P02617N8eIl4aU2U/r6Qp1mJ/lQzUx7v7Qtl8LPPz+fVYrpZbu5OB6OBoe607CY8MpuJxJgMyGm+tRx6PL3IS35XOCrtB4P1WoN2Ciq4PRPmHFHS9KiCQLIiIiqpkWLVoEDw8PeHp6on79+tiyZYvNnz1y5Ij+eevWrSvpDIlurkvHruDDez6XYhERkzwY8gy+fvZnpCdmlIlJHMHDxx1PTX1Yv91pUFvc9cydDhm746A2GPn6MJv3V2TmwX39CbitPwGXvRfhuv0cPJYfhvP5a7bFJOXobmHEAYVcReI1EREREdGt4PyhS3h/2Kd4IOTp4pgk9Bl89/wvyEzJkt6/d3zZOYyK8PL3xBOTR+m3u93dEf0f7e2QsbsN74ChYwfiZhDdJMrTcc+wy7cjMCYhIiKq+X788Ufs2LFDvz116lT88ccfaNWqlVEnhyeeeAK7d++W5lVKTJkypVLOiQkO4qZ9RgIeWjUd664chvr6ovtCjQrLL+3D6FVfSkkOXWs3lRIH7NHIt7ZRt4LOoY0xf8jraBtc32i/tzrdh6/6PIU217tFyCFDU/+wch1LdJo4nx6Hu5d/Anu5KZylokEeSpcKd1mobM0DIqr6FIiIiIiIHLKQ6NWeH2DX0v36FsuF+UVYP3crXu35IVLi09B5SDs06VQck8jUGiiuJz6Yo4xOhux62+PIFhGQy2X6G9bt+7fCV1s/RqP2xjHJizOewtvzx6NJpwbStkKpQOSAVlLnAkvUQcXtm4UWPZpIFYmebzfBvmqkMsDVwwUyuQzuXm6QKeQoquWJgnq+UPu42DSEPK8I8uTiCQ9zFPHpZRMhbDnfUvs0bOf4bn9ERES3Co1O7pBHZalXrx7y8m50i1q3bp1Nn9u8eTOSk5P12/369auU8yO6mc4dvITXen2IvSsO6WMSUS11zexNUqySnpSJXvd1kSqD2iOyZR394hnxp0hA+HrbZNRrWcdov1dnjsMbs19Ao/bF19miM0KDNuU7ZsueTXFq1zm81PndcsckirRcOF9NhWdGnjSB5iZikuuxVHXVsF1kVZ8CERFRtVXdYxIiuuHkrrN4vfdH2L/6iL54Un5OAVbO3IDXen8kdZrr93AvRDSpbdfPFtkyQh+TiPmSLkPb45sdnyCiyY11WeL9CXNfwmszx6H+9ThEdJAubxwkCkod2XQSr/X6wK55EjE34+zqdGOexEGJCKXprs8hVYQ4t/LGbERERLeTmhCTFBUVGSUpPPnkk3jvvffM7t+wYUO8/fbb+u2TJ0/i7NmzDj8vpcNHrIG+PLAEmYWlWg9fl5SXiRlHVuDzXo/jjQ734qHV08o1tpvSGXfWaY1vGzyDPHUR/F09EeZpvmX50Pqd0MC3Fn4+tgabrh7D2bS4ch3vaHIUKsLHxQM9ajfDPQ26SB0gPti1ABlmfpuq1tQ/HO1DihdeERERERHVZD+/Phe5mTcW1xlKjE7G75P/xas/j8VTnz6MtwdMll53OhkDra8ndD7uZT4jS8uB8mxxLOHm5Yre93eTWiGLyQC/EB8ERwSaPZf+Y3qjTrMw/DF1CfasOIhLR6KAHo0sfwGZDOrwACgS0qWFRHrluDeuDvZCYeNgeNULRJuezTGse3Nk6VSY9MdqZMivd3/T6eASlQHfdVFQplvunOByPAb5fZtJHRlMnYYitrhbnyGnhCxALOay0MXBKS5T/7xZ10ZlkkSIiIio5ujQoQPCwsIQF1d83TRv3jx8+OGH8Pf3N/sZtVptdGPf1dUVjz/++E05X6LK9OMrc6R4wZT4S4n467OleP6bJ/DEJ6Px0T1flLtTQ98Hu6P3A12Rl12AgFq+CAwLMLs4ZvCTd6Bu83D8+ekS7F11CJeORZsdWyeTQRvqC52bM2QFKsivpePkToPJNDvW6/gEeaPDgNYY+PgdyEzOwrfPzUReVj6qozZ9W6BucxaCIiIiIqKa74eX50iFn0yJORuHf6b9h6c/ewSPTnwAnz78XbnG9vTzwJ0P90KP+7pI1/YBtf0QWNvfbExy17P9Ued6THJg7RGpQ0J5HN9+uoIxiRc6DGiDQU/egaSrKfj+xVlm4zW7yRzTUa7j4Lao3SDUEWdEREREVWTZsmVISkqSnvv6+uKLL6zf/3300UelTg6BgYHSwxGJk6XJdJUxag0iEhj6LnoXWgs/g0Img5+rF9ILcqC53uHBFFe5EjKZHPmashfckd7B+P2uNxDo5m3xfA5cu4Bn13+PAo0KtwJPJ1fkqBx8kQ1Iv+Pcwa+ioW8th49NRERERHQzJUQl4rEGL0nP85r6I6dzLRTV9oRMrYXbuTR47YmHa2YRvP09kZmSra+mKuiUCqjrBUNTJwg6Vye4yeWQRyVCcyYWMoP9Sro4iK4N3gE3ui2YcmjDMXx49xdQFRbHJFoXJXLu7WBx0b9Mo4NC7F6khtPJq3CKKg5+bSEisbzu9VHUNMTodbULUORnuiqRPKcIwb8dhyLb9GSHfowQb8gHtEKuWlO2SpJWB5cDl+F8+Ub1ZSGnb0Mp0cL0yergveoUnOKzEBjmj2mbJyG8EWMSIiIiQ7GxsYiIKF5sO2tnMwTWcq7QD5SSUIRnep6RnsfExCA8PNyhP7hos/zBBx/ot4cPH44lS5ZAqSxbG0ir1eLZZ5/FnDlz9K+98847+Oyzzxx6TkQ329WzcXi6+asW93FyVkqLgkrHJKW5ebpCo9agqKDsHIeogPr11o/h4eNh8Vj7Vh3CpPumQa3SWNxPU8sPqtaRgIvTjReL1FCeugplTAqqC/GbOHwxEoCQukGYvmUSQiPNxC9ERES3qZoWkxARcPFIFJ7vMMHiTyE6Grh7u0kxie56hwdTxD5ifkNVWKqDMyB1r562aSLcPN0sHmvHkn2YOvobKba5Fbh6uKIg1/ExSe0GIZi+5WMEhZsv9EtERHQ7qmkxycMPP4w///xTej5+/HjMmDED1cFt28HhVMpVrIk6hKvZyRaTGwSNToeU/CyrY4Z6+uNKlumFPOL1aQeW4IveT5j9vMg1+WDngkpLbqjnE4IgNx8EuHpiW+wp5KkLUdkc/V2C3Xxwf5MeeKhJbwS5+zh0bCIiIiKim+n0hQRs2XsecVFJUEcGI7uJB3K63Fgsr3NWILddCPJaBCLwrzPQXLnROaCETK2B04UE6SGENa6FuPMJJjseXzkVgznv/yl1gjBHo9Hgq2d+0ic3CPJCNZwuJUHV2EwFHp0O8pJ5AmclVO3rS+eljEkts2tE0zCpMpKXn4fUZlpUYypsFlomuUFEaCoLeRhaT2dkd60N3w1XzO8kzj0rH/larekW0HIZCjvVgzIhA/L8G9/XY+dlaN2doQr3LXVQHTx2R6GWTIm7Jj2I4c8PhG8QYxIiIqKa7s0338Tvv/+ub5+8YsUK9OzZE59//jl69+4NuVwuJTZs375dSoTYtWuX/rNt2rTBpEmTqvDsiSrm1O5z2LV0H2LOx1vdV1WkRnpi2ZikNP8wP8SdK45PSrt8LBrzJi7CC98+aeE4KikmsZrcEOQNVYeG0nW9EWcl1G3rSTGJ6DBnRAbUaRomJSuLBU371xw2uejJ0Ry9kCioTgCGjR2IYeMGWE1gJyIiIiKqzk7sOINdy/Yj5lxxZ0VLRBK1qUTq0vxCfaV5ElPOHbgkda8WnSDMKcwvxDdjf66U5AbRHUJ00BYd7ZzdnHBg7VGoi2peTCKSrIeOG4ChY/vDy8/ToWMTERHRzbdt2zb98yFDhlSbv4LbLsGhQF2EN7fNwcarxxw+trnkhhIioaJLaGNpsU5jv9poFRRp9P7ehHOIzjauHupIjf3C8EKbIWjiH46conysjz6Krw4uRWpBdqUcz8vJDdkqx7RtFlMUy0d8IH0HIiIiIqKaLL9AhQ+/XoE9R6L0r6l610dOpOkOCSLRIfXexqj93SHILFQlEszdtC+xYcFWNO/WCFqNDg3aRqJR+/pG7x9cexTJJhITXA9dgU4sFIoMLHVyOshVojWg8cuqZuFQxKRK1/FaVyeoGgRB6+WKiPu64vHRvVA/PBA5GbnYsXgvvj54Gvkq40kJrZPoTmG6e0OJvJZBVhMcXDvVR66lhHa5HKr6wXA5dWPyRHTO8F59GqraPihsGCh9b0VGHtwuJOO3fV8gonFti8ckIiKimsXFxQVr1qxBr169pKpKwr59+3DHHXfAw8MDAQEBSElJQV5entHnmjdvjg0bNkifJ6ppcrPyMPn+6Ti88YTDxzaX3FBi7W+b0ahDfWjUWjRqXw8N2hjPk+z576BNiRRqcV1eOrmhhEwmvV8mwUEnKrY2xOh37pUSHbLSsrH9372Y/c5CKT6pDD6BXlKFWUdQOCkw79wMhLBjAxERERHVcNnpOVLXtuPbTjt8bGvzJKt+2YC6LSKkpGrR0aFeyzpG7+9YvA/ZaTmoDKLwbYvuTfDAW/dI3aEzU7Kw7Z89mPXO78jPdnyHBcE3yBsZydaL+trCyUWJeRf/h6AwdmwgIiK6VSQkJCA+/kYBnHbt2umfHzp0SOrscOLECWkfLy8vNG7cGCNGjJC6YSsUiko9t9suwWHSnj8rJbnBFkVaNd7btUC/3SKgjtTRoaFvLekidv7pzZV6/HVXDksPf1cvjG83DP0iWuO9gvmVcixvZze0CaqPHXGnHDLegLptmdxARERERLeEz35aZ5TcIBT4WV7Mr/VyRn4Tf7ifKZt8UB5F+SpMe/JH/XbTLo3w9vzx0o10EZMsnbHa5OdEYoX7rgvQnIyVEgLUjWtJi4NkGtPNEXRebtD5uEMV4o2CDnUBRXHyxtrjUdIj0NsdY+/rjo53d0T6nrLxmc50rofxPm5O0MnKJleUEJVMw+5oidTzlis/aX3cpSR0rY+bvuuDGNMpPlN6lLhzTG8mNxAREZWTVieDRvwHu4JjVLbIyEjpRv1TTz2FVatW6V/Pzc2VHqWrLT755JOYNm0a/P39K/3ciCrDF499XynJDbYQi3a+fPx/+u0WPZpIMUmteiFSR7ll/1tjdQydixK6AG+L+2h9PFDULBwynQ6y7Hwo4tOl5xvmb5MeAWH+eOqTh9C6d7NKS27wDfaREimOb3fMoq3BT97B5AYiIqJbNCYhut1MfejbSklusEV2eq4UE5Vo07cFJsx7CcERgVLXhv9+WFupx189a5P0CKoTiKemPCTFRJWV3OBfyw+hkUEOS3C458XBTG4gIiK6xWKS8+fP6587OzsjJCQEcXFxeOaZZ7B2bdnroj179mDevHlSh+vZs2ejQ4cOlXZut1WCQ2JuBlZe2o/q4lTqVTy+5hssufs9LDq/E1tibs6EQlpBNj7e8yf+PLvdoeP6OLvD380Ld0a0wcPN+mD2yQ2AlS5y4p+dzoZOEF/1fcaRp0pERES3sPz8fPz+++/SwqTDhw9L1VaFwMBAdOzYEXfffTceeeQRODk5VfWp0m0oPjETW/bcCBBLaGwo/KsKcgPOOPZ8zu67gDfvmIifDk/Dv1+twKENxy3ur8jMh/xMPLT1a1kdWxXqg8JOxtVYS6Rk5eHTORvQJCLY5PtyGzo/y7MKyyQ3iKQG32Bv9BjRGXe/MAgzVx8ErCQ46LxdkX1fO+g8XaVtWV4RnM8mwOVkvD55wzvAE2/99oL1kyIiIqIaKzg4GCtXrsT+/fuleGL79u2IiYlBdna21MUhPDwcAwYMwOjRo9G6deuqPl0iu109Gyd1SaguTu06h7f6fYwfD32BBR//gxPbrQc9uusJ1CbfK0mYlgHqZgYdoQtUcDl0CYrr3SFS49Iw7akf0LBUV7sy4ynlKGoSiiLRlc7dGfLcIjhfTILz+UTINNoy+3sHesEv2Ac97+uC4c8Pwq8TbhS9Mkcml0FnpVufX6gvXv7xWatjERERERFVdxePRuHQ+qopTGvKsa2n8Fa/Sfjx0Jf45c35OLPvwk05bvLVFCnRoknnhg4d1yfIW4pJej/QDcOeG4gZL/zqkJgkKCIAY6c95sAzJSIiIns7Llgj5jNsVdLZWvD19cWFCxfQvXt3pKZaLr557Ngx9OnTB4sXL8agQYNQGW6rBIed8aeh1pW94VyVUguyMefkeiw6v+umH/t8ehy8nN2QXZRf4bFkkGHu4FelLgsKuRwp+VkI87TekkxnQ9LE/CGvwUleua1MiIiI6NawYcMGPP744yYv6MXiJPFYunQpJk+ejEWLFkkJD0Q3076jUdDqyl4Fy2wIU+QFNqz6t0NqfDr+/eo/LJ1hvVKqpEAFWX4RdG7O5vfRaKGua6WisQw4H50EjwAXZBcV6bs2iN9CdIaQF+mgdTZficD9fIbxcHIZpm2eiMgWEZDL5UhNSEcdpeVEJq0c0AZ7Gr2mc3dGYfu60Hq7wX33JfgEeuGrbZMrvb0iERHRrUgDufSo6Bg3U+fOnaUH0a1q/+rDqG4So5OlhOsVP623aX9ZvgooVAEuJq73RQghNxFHuDqhsGtjuG49BXlmnv7li4cvw93LDXnZZedJtM5K5A5sDq2/h9FrBZ0ioYoMgMeG05CpbwRzCqUcX2+fjDpNwqRuLylxqajdMNTq97Ga3BDig2+2T5biHCIiIrr1YxKiW93+1UdQ3cRfSpRikrVzNt/0Y5/bfxGunq4oyKl4FwelsxLf7ZwixSEiJkmKSUFEk9oVjkkCw/zxzfZPpDGJiIioamOSzjbMX+hMrEkxp6RorKBWqzFkyBApuUHcixRdr0Unh5YtW0rdd48ePYrvv/8e//77r7S/6ID94IMP4uDBg2jUqBEc7bZKcNBoq1dyQ4n/Lh1AvrqoSo7tiOQGQQcd7v3vU4S4+8Lf1RMX0uMrnExyd4POeKPjvdKYRERERNaIaqsjRoyQLqoFcbEtWqE1bdpUung/ceKElEEsREVFoVevXti2bRsXL9FNpTYTkzhn6qB2t3BjWKOF2xnLGfIVsfH37VCJBUI2EGepjEqEqnmE2X3ksSkoahpiZSAZNM46ZKlVgOLGd9cpRMVVHZyygUI/ncnFSfJCHTz3xpW5AT+uzZsIjgiAV4AXrpyMgVqtgeKOZtCE+hTvIwO0yusVXXXFidrFf5alahiM/j2a49nXhsM/1M/6D0NEREREVANoDBbkO2xMPw/ovNwgK1JDnpQJmZXFMaZsWLAdGrVtSd0ynQ6Kq8nQNKptunuDOQo5VI1qweXgJaOXTSU3CAUd6hglNxjSBHmhoE0E3A5F33hNrcUzzV9DSN1AePh44MqpGGhNdHkoj+HPD8Rjkx6Eb1BxTENEREREVNPZet1/s22Yvw1aO2IZR3BEcoOgLlLjiSYvI7ResJTIfeXk1Qp/p3tfuQtjPrhf6qBNREREt568vBvFYNLS0qSHi4uL1Jlh6NChRvv27t1beogkh5dffll6LSsrC88//zw2btzo8HO7rRIcOoY4tq2XoxRoqia5oTIk5mVID0dQyBRmkxs2Xz2OOSc3IL0gF3V9gvBEizvRObSxQ45LRERENY/IKB4zZow+uaFt27ZYsGCBlEVsaPfu3XjkkUdw5coVFBQUYOTIkTh37hzc3d2r6MzpdtO2melWgK4ZQIG/DloX00kOngevQZltPm7QSVVzdJDZeZ+6MK98MYnyXDw0AV7QhpS9Xpdl5ML5ZIzVBAeRbKB2k5nOLhDfR6eDSzKg8dRB7VZchVWm1kGZC7ifSYMiy/QN/6SYVOkhDQPAbcc5FHSqj6L6AcUdIQwqDOlK/j+N6dPQNa9tNrlh6/qjWPT3TmRn5CLSxxOjnuqHlj2bWfzOREREtxutTi49KjoGETlOq96Ou2bV+rijsEMD6PwMkgAKVHA6HQOnqKRyjVWYV1iu/ZXn4qD184Qu0PvGi+Ki3kpFUU1t25KXdU4KqCIDLe4jkqJdj1wtk9CRGC2qnt2ofFYRzi5OZpMbNv+5E8v/twY5GXmIbBGOka8PR/OunCchIiIyxJiEqPpp3bs5qqOCcsYk1dm1csZjlri4uZhNblg/bytWztyAvKw81G9dV4pJmnRs4LBjExER3QocHZPs378ftWrVgqOoVGULYX711VdlkhsMjR8/HocOHcK8efOk7U2bNkldHDp27AhHuq0SHOr7hqJnWHPsjDuN6qS2RwAuZSZU9WlUOxcy4nE1Kxl1vIP0r+WoCjBy+aeIzk7WvyZ+O5Hw0DusJX7o/xyc5IoqOmMiIiKqKtOnT0dmZqb0vG7duti8eTP8/MouWujevbt0Yd2uXTspizg2NhYzZ87Ea6+9VgVnTbejRpHBaNc8HEdOxxq9LtMC3ld0yA0DVJ43FuTIijTwPJAAn01XTY6njgiAumEtaP09pYQAeWIGnM4lQJGSBZ3ofKCUA0Uak4v3DYVEBuHysRuVR60RC3hcdp2Dpk4g1JHB0Hm4AAVFUEanQHklCTKNFvLUHGgDPM2OoVWK1gkWAnmZDHKdDk5p1xMRRPaGaOiQXQD3vVEmPyL2U4f5QVUvEDpnJRRZ+XC6kAinc/HIbxIoJUmUxP7iN5e6N4hcCoXpJIfLl64hISoRterdSNbIzi3A4y/ORJxaXfxhdyecVxVi06Q/MTDUHx/OGw+FgjEJEREREVVPYgF80y6NcHbfhQqNo/VwQYFYmORcaprJ1Qmq9vWvd36zfVFNaGQQstNyyhWTOO85B01EIDR1gqBzc4ZMq4XOR2RHW6CQS3GDtRhJ6+UCOFm+rte5KKFzd4Ysp3IWQmk9XXA+PhUJyZmoZZDkkJGSiefbTUBKXJr+tatnYrH9373o91BPvL1gvNTVkoiIiIioOmrTtwXqt6lbrjmJm0F0PchMzqrq06h2Lh2NQlJMCoIjbiSAp15Lx/Pt3kJ6YvHcrBB9OhZb/tqFwU/1w+u/PgeZleRzIiIisk+tWrUQHm66sKY9XF1djbbr1KmDcePGWf3cRx99hPnz50OnKy7+8t9//zk8weG2u8P5Ra/H0cAnFNXJlaxEeDtbuel+GzqZEo2Biz/CI6un41hy8QKmUSu/NEpuMLQ97iS+PbT8Jp8lERERVQd///23/vkHH3xgMrmhRP369aX2aCWWLl1a6edHZGjiK0MRHlK2AqdSDQQsvYTQH47Af+l5BPxzDrW/OQhfkdzgpIA6PADqOoHQehUHmEWt66Koc6Pi5AZBJoM21A8FfZohd1ArZI/qjOwHOiNnRHsUtggrTngwI/pULNy9yxeTyHQ6KKOT4brtFNxWH4bb5pNwunRNSm4QXM5YTuLWWjifEvL0XOkhU2ukxAbX47HwXHMCchMdJ3RKOfIGNEf+HU2hjgyEprYviprWQu7wtsjt0wg6Zxl0SpmU5CAlOijFoyR5wvQKp9Prj+OxBi/hjTsm4sLhy9JrT741F3GiW0ypm/OaWr5Yl56NhVOXWP1eREREtwsN5A55EJFjffj3awipe6OwUAm5DdfoJVRNapdNbjB8v1n49U5ztok6cRVunsaTaTbFJFeT4bLzNFw3HJUSHkTityVSfGHL4EXFHSKtUtm4Xzlo/D2Qd2dz5A1rhz1yYOSrszB+6j+4eDUZWq0WL3R42yi5oXRXh3+m/+fwcyIiIqqpGJMQVU+TFr+FwHD/Mq/LFVV3D0AkXLi4O1fZ8aurA2uPYkzkC3hn8BREn4mFRq3BC+0nGCU3GFo7ZzOW/7D2pp8nERFRdVXdYxIvL+NOTaJzg1JpvXeCWHvVpEkT/faePXscfm631ezQieQreG3rbFzKvKZ/zdfFA/c06IJ/h70Dd6VLlZyXRqf9P3tnAR7F9bXxd2dd4i6EIMHdKW4FWmipu7t8tX/djZa6u1GBQktxd3fXuLvLZn1mv+feJbJZjUES7u95BrKzM3fuziYzc+4973lRadJDwpwHnHKkIAV3r/8cSxL3IKXcfZLUwvidMFgck50YDAaDwWBceLQmPZLL83CyKJ3+T163Bvn5+UhPT6997c4mrYbx48fX/nzu3LlW6ReD4Yyz+xLw/jUfouT7jZAdSoY4rwwBgoArx/bCT2/fBHVeGaQleqhPFUN1roQ6OBAhg/7KoTCNjINpeHcYLh8E/aS+sMQ52g4KHMDLReCDNSQ7ia4j7grGQTHQTezlMsGIDEjrKvUQn69QSqqxmmODYY4JguAmackd0vRiyE7nOH9TsFJDBk+IS6vhs/ok/P4+CN9lx6A4kQXOaHG6rWF4F/BOhCPU1SFE5SBIoIjqiRycIEu2VZw9ueMsnp30JpavOICsKp3L/gqBaiz+by8sZud9ZDAYDAaDwWAwLjYnd57F3Fs+R0HG+UJCIsAvxBdXPDAVn+95FxIPrgU18NFBbt8njgpCiP3kmDssZh56rQFiSdPd0DidEeL8crfbSFIKvGpLrDVCXOzeUUKcV+EyPmmOuEE/uQ+EEN/adUSzcfhMJh55ezGWL9yFoqwSt238+/Eq8ESUzWAwGAwGg8FgtEGObjmF9279HMXZNtEuGbr3D/XF7Een49Mdb100kYPZaIZRZ4KYOGMz7CCVmY9sPIFnxr+O5V+vQ6mHuGvRvOW11ZwZDAaDwWC0bXwaCBzi4uK83re+wIHkbrU0l8xT2aniDNy5/jMczE+0W19urMb27NNQyxR4cshsXEwsAo8QpWNCTmOIULuuVlwfsah9ffV6iwlfHV3lxXZGJJS5SKJiMBgMBoPR6pDBqv15CXhi648YufBZzFr2Nm5c/QH9n7x+cttP9P2WHNTS6/W48cYbMWbMGHTv3p3asXlCLK5LmKiqqmqxvjAY7jizNwHPTXkLp3adg0gglUaLId+bAOOygzj23lL4K6S44/Ub7PYxDe5iEzI0GNC3BjomCpG/KoFoEVyJGCL8Ye7mWKW1PmZOBMXNo6CdMxj6sXHQj+8B7bVDYRgW63X11eB6iU6K45lQrz4BSU4Z/cxU2MBbIRIAOe+5PXmK+8SdGgSFlAoynGElf+7u+k7ecxIeyRLyqcCiBl2VHvN/3+axL+W+SmrFzGAwGAwGg8FgtDWObzuNFy9/B2f31ZsnsQIVRZU4sOYIgqOCcPOL13hsh0b0XggRrF5U+moIScwPCG36PInsaCpCfJy700lSCyDJKq597UlMIT+RRWMYpwgCdZhraUwDY1yeW63OiD9WHfLYRkVxJfK8FHIwGAwGg8FgMBgXkkMbjuPlmXMRfzC5dh2ZMiwvrMSB1UcQ0TUM1z9z8XK3rDIJeKUcvpHe5V65IjDC36vtvBWYtxUqS6rwz0eeHeNKcktRVC/2YjAYDAaD0XaJiYmxey2VSr3eV6PR1P6s1bovFtMUmlaKsx3y8aGlNEneGRXGanx1bDU+nXgffGQqfHt8DbK13iXStDRFeucWXt4yvfMQRGgCsCnjONIqCqA1GWAUzPS9ALkGfYNjMDqiJ9RSBX4+tQnZ2vbzQFng5bnhvDOYZjAYDAaD0cKcKc7Ei7vmI8mF4xJxrdqQfpQucf4RmDfubvps0ly6dOmCxYsXN2qfo0eP1v4cGhra7D4wGN7w43N/wGSwPZs3pLyoEn+9swTP/foYfAI1+HveMuQVVoKP9fz7SdNtRDb3BnDun4VN3cNqXQkc2uFE0E3pA62kQRsSDqZeEbBKxVDuS/HYnym3jYN/iC92LzuA7MQ8mzPEtnhYxRw0Q7qg+8Q+GDK2F9Ql1fjxZDxyDQbnDZkFmLoEgdOZICl17ZpAoI4VLqo6CV7MD1jJRz6ftySqMkAenwfZOccKA8UF5UBXD9+JhLuoNtoMBoPBYLQlBBoHiJrdBoPBaBl+ePYPmE3OHQdKcsvw93tL8cS3D1BHh38+WuHSKYD8VYuq9LD6qtwej3PjfuYSK1BW2PR5EpHRgjldQiHvH4Mdh1OQnV4EfW4prOdyIC6sQECYP3oM64qBk/pBppDSz0w+uzOkOeVQ7kqCYXgsrCpZ3TG0RigPpEJSUImWRFDKnLrS1aeQA1RSMURm9w4NIg+xIYPBYDAYlwrtKSbZvXs3xo0b1+j9rr76aixfvrxV+sRgtDTfPzOfOko7ozCzGP98uAIPf3o3AsP9seTTVSjOsbk8tDZWjRJCXDSsQb60KFKpIEAUFAAuKRsig/NcM3dc9eh0SKQS7Fl2ELkp+bSAkvm8+xv5bD1HdMeA8X2oq/bCuUtR3owY6EJTmu88fmoImydhMBgMBqN9xCT9+/e3e52X5zznyxmVlXXjo35+zSvuf8kKHHK1pTjQwLmhIUQQsD3rNHgrjxeGX4cjBSmYf3YL2hukzzKxBH0CO6HEYF+NuMyoxe6csziYlwiT0LK2yW0FpUSGXkGdLnY3GAwGg8G45NiTcw7/t/UH6CxGr7YnIog71n2KryY/hDFRvXEhEQQBv/32W+3rUaNGXdDjMy5NspPy7KukOmH74r0Y98h0CF3C8NDCp3DocAr+23HW5fbUsUHawLWBrLTaEo6cIWgULtszdw6CEKh2/X63UMjO5EBc6UKQcJ7FHyyniUJdB3amlWBrEPECqg+l4MShFJz9ch0dzBcUEkgnx8Ec06AakmAFZxXBHBcKc7dgqHemQJbqRpzdTFcYTmeG74pT9PRxWqPL88cRR4eu7tvyEayI6R3VrP4wGAwGg8FgMBgtTerJDCQfS3O7zaY/d2D01cMgU8jw+Ff3Yt/qI1j/81an20pSC2EeFOuyLa6oElyV+9ihtVjw5j+QK2Xo3LcTjIdT7AzbygrKcWDNURzddNKl2KM+sowSSDNLYIn0h1Upg0hnhCSvAqKWM6asxarwPGVHnPVIVVl3AgffIA0iu4W3cO8YDAaDwWC0NseOHWMnmdGhiT+YhMxzOW632fD7dgydPghKHyUVX+/4dx+2/LWzVftl9VGBH9bT3kmN42ANDwQfoIH4YHyjRQ7zX1sMhVqOTj2jUFFsn7tVml+OfSsP49D647B4EZO0ObyIhYiIgzgEMhgMBoPBaPsEBARQF4fMzEz6ev/+/V7ve/ZsXT5LXFxci/ftkhA4lOg9V9ExCxY8vPmb2tcKcV01nvaGibfgeJHriYq2KG6QcmJa1Vlwk5hEkozkYikMvPOqt4Sbe42nbTEYDAaDwbiwzg2NETfUQLYn+/0585kWcXLwlq+++gpJSUm1r2+44YYLdmzGpUtZfrnb9/lgH1QN7ILn5i6rXSdXurb+I0/NvBywikVOSqkCVsG5yIEzun6WtnQOhifMscEQn8z2uB1xqog/kOy6nfOVijiDBX5rz8EU7oOqK/pSBwpRw75zHKrHdaNJRJzeef8lhVUASfA5b+dc42pB/+MBqwcXRcXJHCh4K0weJimU2WUQRnSFWXARt/ACbr5yOMRiFpMwGAwGg0EQwNGlOTR3fwaDUZdE4wlDtREvz3yv9rVCJXe5rSS1gLoNCBENxMoEvQmyo6kX9dQb9SYkHnbtQOeNuKEGImYgbg6tjRIiGKxWKmJwhUwqhsTCu63aduPzcyBy0waDwWAwGJcS7SkmqS9wINVPg4M9j9cSIiIiWrFXDMaFjUm0ZdV4eebc2tdEJNDaCD2i7cUN9ZHLIHSNgPhsRqPatErE0OtNSHITF7VFcYPSRwG9B6G6QqOAUWeE1dU8CYDbXr2uFXrHYDAYDEb7pD3EJFdddRW+/vpr+vOOHTtQUFCAsLAwt/skJiYiJaVu/HX8+PEt3q9LYnYoTB0ArpGDuQa+8RZjjKYxLKw7Pplwn1txA6FnQDS+mvIwJCLngcWI8Dg8P+xa9jUwGAwGg3EBsVqteHHX/EaLG2og+72463fazoXg0KFDePHFF2tfDxgwANdff/0FOTbj0iY0Jthlgongp4Z5ZE9Y1fbuCgaDazGCVexE3FAfInJwslqaWuS6TZkXSfnnBQQtjRDqAw4icC6EGRBzMPYIdbk/qV4qSy6wuVpwAC8BeBlgkdtcLtw5PIj0ZoyOCsULvz/usfJQj34xeO/Jq+D01AtWjPPzwd3Pz3HfCIPBYDAYDAaDcREI80LQ3BCDznWsL7JaId+XAOnRVIjKq6nYV6Q3QZKYC8XWU+C0F8e9ob0ybPpAPP/dg+Cyy9xuNyAiEC//8QREnPN48LKrhuGm565upV4yGAwGg8G4UAIHMo+RnJzs1fLdd9+xL4bRLgjrHNLofYgIuzWxKmSwBvq63yY8EFYXz99225EaSLFhME0cAPP0oTDPGAbzsB4QAjRoD4yaNRRPfvegx+36j+2N5+c/7nLOa+JNl+GqR2e0Qg8ZDAaDwWC0FnfccUftzzzP4+WXX/a4z9y5daJUqVTaKrlXl4TAIVTlh/HR/S52NxgN8JEq8e2UR/DXFf9DVpXrRKsapGIxxkX1waprXsOc7qPgJ1NBJZGju38kPp94P/6Y+QyrSsRgMBgMxgXmQH4iksrzmtVGUnkuDubXOSq0FkQ9PHv2bBgMtiQLmUyGn376iT0/MC7YwP3gKc5jEkuPSJrA73Q03EVivuDJi8/JuDJXqYcsKd/lLlyF3kOj3m3TFCyBao/b8B62kR3NBEwmem6IYwMVgJBJBzrxIHJ6Ln2Vcnz95LX4aO2ryDjr2ZlCKpdg/JBu+Ov9uzBjeBx8JWKoiBhbrcRHD87Ax9895LENBoPBYDAuJXgr1yILg8FoPp16RqHvmJ4teiqps0FaIZRbTkG1/CCUa49CdioTnBuxNsMev2AffLjldby/7lUkH0+H/EQGFYo4Pd/VRqgS8jHhhtH44dhH9H+1vwpKjRzdBsXi3dUv4q3lL7BTzGAwGAxGO4xJTCYTzpw5U/t6yJAh7HtkdDi6DYxFj2Hd0KaQyzxvQxybpRLP4obB3cD37QzUFLMSiWAN84dlVC8IYf5oqwSE+eHTnW/jnZUvIvGQaxe8GqRyMabePh7fHvkAY68ZCbUfiUkUiBvSFfM2vIpX/n76gvSbwWAwGIz2QnuISUaMGIFp06bVvv7tt99oPpUrfv31V/zxxx+1r2+//fZWcZbzlBbTYXh++LU4UZiGMqMW7Z1BIV1xeedB+PDwUrQ3ZJwEvnIVzbfq4heOarMBZoFHlclzopRF4On/XfzCMG/cXRegtwwGg8FgMDzxd/zOFjlJf8fvwMiIHq12whMSEjB16lRqo1bDZ599Rh/SGYwLxcOf3o3/TXgdVWXVteusYs7lwDbVKPBW6tZABsLrY/XGoE5UJ5LgynWQH8mAyMTX7m+JDoQlOoD2QVyihTStCOY4NzaDJguk6cX0x4ET+mDItAH47dVFXn12j101883eho/0A6+WOT1f51sAjBb4lOig9lVBmleJOKkchoQC8P27oLpC57EPNZbRXaOC8NYTsz1uz2AwGAwGg8FgtCUe++JePDvpTeiqWke4fCEZOm0Ael/WE3+99S/aGwq1nCYAcWIOnfvFoKpESyujkZiE0xqh3HwGpr5RsMQEARIxYOYhySiG7HQ2hNG2sZMu/Tvj1cXPXOyPwmAwGAwGo4Ug4gazuU4kOnjwYHZuGR2Sx7+6D89PfavVnRm8xuhcXGwHzwNm29xAfUbOGoLYvjFY/MFyWMMDIEQGOd+f42Dp3wXSwuPUCa8toPRRQK6UQywRo+uAGFQWV0EQBK/mSczn55m6D+qCN/579gL0lsFgMBgMxoXgxx9/RP/+/aHVamG1WvHggw9i3759eP7559GrVy+6TXZ2Nj766CN89dVXtfuFhITgvffea5U+dViBg2AVsCv7LLZknoCRN6N/cCx+mf5/+O30FmzIOAoTb4FCLIOB9+JhtY1RbTGgq184NFIFtOb2ZfNsEiwo1lfSn4v0lTiYn4h/E/fgmu6jPO7byafxdnUMBoPBYDBaD61Jj80Zx1ukrU0Zx2l7GpkSLc2RI0cwc+ZMFBUV2dk7P/rooy1+LAajPmQweP/qIziw+gjMZgt6j+yBDza9hn8+XoXd/+2HxcxD4auE0Y21MamICosVXFE5+EANIBaBK9VC7CsFH+Te1likNQIqOU3st/qrYZjSB+aCCsgOp8EwltgiE+8BG5bYYJo0I00tgrmrk+duXoBybzJEFoG+1FZUo/vgLjQxpyUmImTpJTD1DPO4jTtM3YJtHoUubJFtjUhgPZsPc0oxyHThCbJsOIEN8wdi7LUjPfYzoqv7PjIYDAaDwWAwGG0JkjS/b+VhHFhzlP7c77Je+GDza/jno5XYu/wQeAsPhUYBg7Z9zTMQqkq16D2iO6RyKczG9uUYQWKomjiqJLcMRzeewKjZQzF06gC6jqs2QnEwFdbDabDKJBCZLBAJtkQoFpMwGAwGg9ExOX68bq4lKiqKJgkxGB0BEnPsXnYQh9cfg2C1ov/Y3vhw8+tY/OEKGqsIZO5Bo4D+IsUkIoMJopJKWIN8XW+TX1r7PF6fiqJKDJjQB0s+WQVzJw9/s3IphPAAiPNK0RbQVxnoQijJLcWh9ccx7rqR6DUyzuO+kWyehMFgMBiMDklsbCzWrl2L2bNno6KiotbJgSy+vr5QqVS0qCwRP9Sg0WiwdOlShIeHt0qfOqTAodRQhQc3fYPTxRm161akHKCCgC8nP4i3LrsVFcZqBCg0mLXsbWRr3SfKXCwUYil1N+CttiSiGpLKcvF/237AlJiBWJ9+FO0dInLoERCJIIUPSgxVLrfbknkSr+1ZgFdH3gi5RGpbqS8Dji8EMvYCnASImwb0uw6QtnxyJIPBYDAYDHvydeUOzylNhbRToCtvcYHDqlWrcMstt6C6uq5iPlEXv//++y16HAajISV5ZXj5irlIPVEXk2z6fQd8AtR4Y+lzeObHh6iTg2+QD255/FcUl7p2mhMJAmRHUyGql7Rj6hwE/Xg3rickqFTJbS4Q9eDD/KCb0R+QEpuDBkjFMMcEQrE3GebYYAihvpArpLCmFkFyOhvi0rq/o5TjGXjz2o8x4ooh2LPsQLN/ASQ5FRAXVIIPcz6JIC6sgiS73G0bAumrF84W5ghfyFNsThQ1HNl4Al36x0Djr4a2vO5zNmTnkv1Q+6nxyGd3QSqzxSSVJVVY/+tWnN2fCIlUjJFXDsWEGy+DTH4+ZmEwGAwG4xJGgIguzW2DwWA0nsKsYrw8cy4yzmbbxSR+wT54e8ULePaXR+mzryZAjbu6PY7yIlthoraGXCWD2WCG0CChKPFIKt654VMMu3wg9q06jPbO/lVHaPXX+sldJIlKZLAXb2z+aycUagUe+vhOWm2VUF5UgfW/bEX8wSQq+Bg9exjGXT+qNmZhMBgMBuNSpr3EJMeOHav9mbk3MDoKeWkFNCbJTsyrXbdx/nYEhPnhnVUv4bnfHoOuUk/dBO7o8pjbsfnWhEvMAj+sJyB1TKEj8zKq/FKYOBGsDWKS+APJePfGTzFkWn/s0XsxX0oLUrVddv13gMYkMoUUpgZxSH3W/boVcqUM975/K8RiW0xSml+GdT9vRdLRFEgVMoydMwJjrhkBiZNzymAwGAzGpUZ7iUkI48aNw549e/DQQw/R/2uorKykS3369u2LBQsWYODAgWgtSH3LDscTW3+yEzfUQNwOHt/yA0oNWkRoAqGQyHBLr/FoS5Bfw6kxA7H6mtcxLqqvy6RBInzI1ZZRUUBHYMG5HVBJXD/Mi60CfCw6LEnYhWd3/mpbmb4b+HwgsOFlIH41cHY5sOIx4OsRQHHyhes8g8FgMBiXKDpzy9rHVrdwe19++SXmzJljJ25499138cEHH7TocRgMZ7x5zYd24oYaiKjh9as+QHWlHqGdgqFQyXHVdPcBH5dXZiduIEgzSyDJcZ3wL7KKnIa4dPjdmbihBokY1gAVZgT4Ysmbt2JMQTXkOxPsxA01kCqpVaVV8PXgJOENpK+aTfGQZpTaxBm1HbZCmlkKzcZ4jyG7uNK7Ck/OKi0Rln62Gj6Barf7WkwWrPpuAz657zv6+simE7i9y6P46YW/sGfZQez4Zx8+vOtrPNDvaeSlFnjVHwaDwWAwGAwGo6UhVbReu2qenbihhoriKrw6632YDCYak6g0Ssy4b0qb+hJEnAgTb7oMfyR/jV4j4hzEDTUYdEYal6j96tzp2jP/fLQCfiHu53zMRguWfbkWnz/8I319YM0Rmgz2y8sLsWf5IWxfvBfv3/4lHhr4LBW5MBgMBoPBaB/UFzgMGTLkovaFwWgJiIPcK1e+byduqKGsoAKvXDGXCgZCooOg8VPj8rsmXrQTL9LqIT6cAFFRee38BCcSYcqkPvj7nyfQtUe4g7ihBiJOJkn8KpkXifwmC9o6C99fioAwf7fbmPQm/PPxSnz31Hz6etfSA7ij62OY//oiW0yyaA/evfkzPDL0eRTntg3HCgaDwWAwGN5DhAu7d+/GunXrcN9996FXr17w8/ODVCqlbnNXX301/v77b5w4caJVxQ0dUuBwqigdhwuSXL6vsxgx/8zm2td39p2CsVF9GnUMmVji9MT1CIjC8HDPdl3u0MhU+HrKwwhX+WNr1km3254sTsNV3UZ41W6MT9u2MLTCiiyt42C7RjDh4fJTOJm5GPuz/8OWnBXoenIB4tMOAn/fAhhtVih2VGQCC28ABP7CdJ7BYDAYjEsUlbRlK42oW6g9QRDwxBNP4Mknn6Q/E0gFkR9//BGvvPJKixyDwXDHqV3nEH/QteBWV6XH8i/X1r6+9ZoRGNI/xum2Iq0B0tOZDuvlchk0uxIhP5VtV9GzR0wIBnaLhMj5WLtXaPp3wuv/PgufQA2ObKizRnfGyR1nMe1O7yYeontEuH2fM/HQbEmA73/HodqTCtXeVPqzZnMCOC8G/mWJBV59bmlWmdP1JGkqL7XQcwPEXW7BLhzdchJvXvuRU+vs3JQCvH71B3b2jAwGg8FgXIoIVg58MxfSBoPBaBxHNp10KriuL7xe+e2G2te3vXod+o7p2WhnBSJEaEjc0K7oNbI7mkNQRABe+ftpSGQSnNh+xu22RHQ87c4JXrUb0zsKbRmBF5CfVuTVtut/24qjW0/i7Rs+oUKPhmQl5FLhPYPBYDAYlzrtISYhY4gkOai+g0N6ejpee+01jB49GgEBAZDL5YiOjsbMmTPx3XffQa/Xt2qfGIzmcmDNUWTF57h8nwiv1/y4qfb1XW/fhJ7DuzXqGAq13GlM0mtkHI1LGi1yOJ4M8Y4TEO85jcj0bLz64mzwVTqc2+86B63ms86Y2s/9ASw8uLxSxPbrhLYMb+ZRkOFdTLLyuw04tu003r/1c6eOD+mns/DuTZ+2Qi8ZDAaDwWhftIeYxBkzZszAzz//jHPnzqG8vBwmkwnZ2dlYvnw5br755lonp9akw3lB7ck953GbfxN344ouwxCm8kekJhDfTX0UC85tx7yDSzzu28U3FD9Me5wm9GVVFUMtkUMqlkDKSRDtE4T/7filWf2vMumwKH4n+gbFuHRvqM9vZ7Z41S5RF5M+moW2rwiuYaw+F98W7oQMdechktfh6fITKP33dsDoxjK7NBVIWAf0nnVhOstgMBgMxiUIEWSKReRh2gvbVQ9IRBx9NmuJijB33HEHVQvXoFarsWjRIsyaxZ4LGBeGIxvrJqNcseLr9bhszggERwUgJDoYH71+Hf757wB+/GETrCo5REYLxFnFEKcXQGS2F+7G9o/BuytfhFQuoQn5Sn8lxAEayKQSRAT74oXPVjSr/6R60ob52xDeJdRlpdT6/PfZaq/aJVWMODFHk3Zq4P2UsIo5iCv1EFnOC5IqDV67Mdi1X6qD/FQuDAMjAZFzvwdxcTWkWa6dLxrDuzd9BkO1a+eZ9DNZOLzxBIZPH9Qix2MwGAwGg8FgMFoyJlny6SoMnzEIwVGBNCb5cNPr+HveMvz1dt08CYkGhKggWGJDYdUoITJbIM4pQa8AFd7593/0ubsgvQgqXyUkUjHkShlCY0Lw8hVzm/VlFeeUYtuiPVD5KjxuSzTFy79a51W7MqUMIpGoYwiRrcDcm50nEtWQdDQNJ3acwcAJfS9o1xgMBoPBYDSO5ORkVFVV1b7+448/cMMNN8Bisc/tyMnJocv69evx3nvv0aJORPDAYLTXmGTRvOUYOLEvgkhMEhWEj7e9hb/e+ReLP/A8x9F7dA+8tfQ5WMw8CjOLofZTghOLqeiBONU9O/nNJvWbxDwwW5CfmIc9yw/CYvFcWJXMeax68S+IxvSB1de5u5w4ORciC0/711EgrhZzb/4MZjcFqs7sSUD8wSTqzMdgMBgMBoOBS13g4M3AtJG34Na1H9Of/eVqPDrwCtzVZzLWpR3BiaI0t/tmVBXByJsR4xuCYKWvw/v9g2OxJvVwMz4B8MupjRBzLatuIcmH0zsPxuq0Q2gPcFYB75QctBM31CdQV+C5kbSdTODAYDAYDEYropEpMbXzIGxIP9rstkg7pL3mPgc2FDeEhoZizZo1GDZsWLP7yGA05nfRE6TC5pOX2RxF/EN8ccebN+L2R6Zj94fLkbLDfYXSrHPZdMA4rHMIAsMDHN7v3TUcO46kNPkLk+RXYPGHK2AymNCScBIOo68ahj3LDsIUGwTDwGgI/ucH+808ZClFUB7JqBU6NAX1wQyI9Gboh8cAEvsqBuJiLXzWx8O59KHxVJVqPW5zfOtpJnBgMBgMxiUNDxH4ZpoIkzYYDEbLxyT6KgOeGG2LSQLC/XH32zfhrjdvwo5/9tFKq6QF89DuEKKD6tpVSGHpFY0ECw8zEViH+iE4MtCh7R7DuuHQevducJ5Y/OFyVBS5KXLUBMRiDsNnDsbBtc0fx2gLVBbXJUK6i0mYwIHBYDAYlzItHZPk5eV53J44LTSGY8eO2b1etmxZ7c/EuYHMc5SWlqK6urp2PamcOnv2bHz77bd48MEHG3U8BuNC4I2mWFtejf8b9TL9OSgyAPe9dxvunXsrjUny09y7LScfTaPihpDoILo0pMfQrh7d4DxBBOBE0O0NIkGAZP858H07QwgPBMTnrzt6E8QpuRBn2D4PcakbPKU/jm05hY6ANzEbiUmYwIHBYDAYlzJsnqTpdDh/7xERPRq1fbmxGu8d/Bdv7l2IB/pf7nF7wWrFY1u+d/n+Nd1HQSVpnuI2S1uC9Er3D+uNJaUiHwllOYjSOE42NIYghU+zP583jNPnIYLXNa8RF1VbGQwGg9F0LMV6VO3OQdWObBjTK9ipZOCWXuNb5Czc0mtCs9t49dVX7cQNsbGx2LNnDxM3MC44pOJQYygvqsRXj/2Mb5/6DTc9P8fj9rxFwFvXfeTy/asm9odc5lzLLvI0s2DhIS7RIpmzIlMuhqCxf/bnQ3xhGhAD48DOsEQFwNqIR+7UExnITyuAz6Te0E3oUSduIEjFMPUKh/byPtTRwSUi0GpOpDJsDVYJB0FWJxBXncpF4G/7odmaCPmZPChO5cJn7Vn4LT0Jsa5lRRueYCEJg8FgtDw5+gKsyt2C5TmbkFjlvlAJg8FgXKo0NiYpyy/HZw/+gF9eWoAbn7uaruM7h9iJG+pjlojxxvvLXbZ35YPTIG0Qk1g5EfhgXxpTWKWeCzylHE+nTg4tScKhFJQXViAg3K9Zz/gkgYo46rUHiGMFg8FgMFqWjLNZ1Anp349XIuFw04uMMNonI0aMQKdOndwujeX4cUdh6O23347Dhw9Dr9cjMzOTOjwcOXIEt956q52j9aOPPorNmzc3+3MxGBc7JinJLcOHd3+NBe/8hxufvcrj9majGe/f/oXL92c9fDnEkuYVlk04mEzjB28hbtyS46mQbj1OxQ6SvWch3Xa8VtxAOL0rHia9EX7BPs16xg+NCYak3rxIm4bFJAwGg9HipJ3KsMUkn6xC8jE2T8LouLSPEdhGMDSsO03CLzF4rlxTn8WJu3Ftj8to8r7OYnS7bWZVEXV6GBjSxeE9P7kaDw+Ygc+PraRiCGdOCry16RVJm0NSeS5kXNO/8h+mPopu/pGYuuRVtDadLJ6roXqk2+SW6AqDwWAwiMDPxKNsSSL0p4pBS/idRxqlQdCtvSAJal7lfUb7ZWR4D8T5RyCp3HPVIlfE+UdiRHjzrEm3bduGefPm1b7u3Lkzdu7c2aTJBAajuZDqOz4BalSV1VXU8oZlX67F9Hsm0UQgd5a+hPTTWUg5kY5uA2Md3gv0U+GuMX3w89YTEBoOHFt4qI+kQd8rAkKA2v49Mw+RwQz9+J61q4xDYyHJKIbiaCaMo3tACNLUNdUjAqJqAxS7E8BV6r36jMmns6C7baTL9/kQH5i6BUOe6Fzw/eGm1xEUGYj7+jwFc6cAGPpFgg+zOetxpdWQn82DPLkIIisgTy6my8Vk6OUDL+rxGQwGoyOh5w34Kul3HCg9Ybc+ThOL//W8HyHy5hX1YLQOglVEl+a2wWAwGsfIK4dA5aOErsq75/QaFn2wHL+e+xwcESPEhrnd9lx6ETJzShET5Xj9JQKA656eRV0YBCtg6RkFS7cwQCal70tEIlhT8yE9nQkRf2HnSxIPp0DshcDCKSLg8z1zIVNI8ciQ59EeYDEJg8FgtByk0vi8O77EgTX2TkB9x/TEq4ufcepqxLj4tIeYpL6Dg1gsxoIFC3DTTTc5JDQPGTKEvjdx4sRa1wYicnjooYcQHx8PqdT2rMVgtAXGXjMCcpUcRp37/KuG/Pn2P/gt8Uuvtj29Ox756YUIjw11eC+iaxiufnwGln6xxm5uuwaxhKPFpFoDkckCUYnrnLUzexPBuSv05K5tkQjfHp4Hk8GMJ8e0fu5WSzCMzZMwGAxGi1FZUoX3bvsCRzaecBAWvvL3UwgI82dnuw3SHmKStkqHEzgQ7ugzCZ8fXdno/ZYk7kW4OgCpFfket40vzXYqcJh3cAnmn9nicr+LJW6owSS4T5Ryx/GiNMQFROFCUCJW2L02gsMBRRh0nAS9TOWItVQBIjFg5Z03ENIb6D7N84HS9wBF5wC5L9BjOqBoeuUmBoPBaHUMFUDOQaA8A+A4ILgXEDEEkNhfM71FMFhgiC+F1SxAGqmBLKouabUhpYsSYDhb4rDenKNF0c+nEPbUEHDtpHIdo2UhA2nzxt2NO9Z96lEk6gwiLp037q5mVRQUBAGPPPII/Z+gVCqxevVqJm5gXDTI7/PsR6Zj4XtLG73v+l+2IjAiAAUZRV45IjgTOHz52M9Y9d0GKH0UMMWF1woAxHkVkCXlg6s2Qp1aBEt0ICzRAdQxgSvTwdwjDFafBvcUTgRLlxBUh/uDcyKWtqoVMIzvDeX6ExBZXDyb18McEwizh21M3UNdChzO7kvE+OtHwdg7HPqR9vGYEKiGfmx3CAEqKA9l4EJAJiEEFwlZcUO6YPDk/h7bOJSYhbT8Uvgo5RjfvyvUijp3CgaDwWhr5OnLsTTrIE6VZ0EqEmN8aG9cGTWoyW6flWY99hYlwChY0Ns3Cj18I1xu+3HCzzheftZhfZI2HW+d+RKfDHwZcjG7hjIYDAaB4zjMuH8yln62ptEnZP2v2+AX4gudXz3HNRekpBc5CBysVis+vf87rP9tG31tHhALvqu9WMJCikN1CYNVo4BsT7zNae4Cwps9xy5OsQJn9yZQUXtbwV1M0md0D/S9rE7A7gzyfR3beho5ibnQBGgwavZQKNVNG2tkMBiMC0F2aQUW7z+J09kFkEvEmNK3O2YN7gXleRFdYynX6rH3bDpMFh79YsPRPTLY5bZvXPMhTu5wjEnO7EnAi5e/g++OfghpE/vBaD8cPHgQERGuY9em8P777+POO+9EamoqdaZuKG5oyAMPPEDdHH744Qf6muy3aNEi3HHHHS3aLwajORD3hGl3jMfqHzY1aj8SKmz+YydUvkroPBRWsgpWpJ3KdBA4kPnCD+/6GlsW7HK5b2uJG7zF1TO8J8jz+9l9Seg+xDFf7WJBBPICUbY7YdDkfug+2H1fyfd1dPMp5KXkwzfIByNnDYVC1bSxRgaDwbgQ5CTnYfX3m5B8LJWK+cZeMxKTbhkDubJp166ywgoqWLCYLOg9ugc69452eQ94Zdb7iD+Q5PDeie1n8NLMufjm0DwqmGUwOgodMhPx9t4T8e2xNTC5Sn53Qa62BFd1G+GVOMLZxO2G9KNuxQ3tnVUpB3FnnwvjirBNGYUKTgo/wYxffHvjR98+qBDbzrnIasVoQz7misoRUUDsGhs8KAfFAbf9Y0v+dUXeSWDZQ0BhvUEoqRoY8wQw8cXW+lgMBoPRdMj16vTfQH2hWkkSkLYNGHwv4OP9YCoZ7KnclAHt7hwqbqhBEqqCJEQJq8ECzkcG9ZAwyOP8Yc6rdipuqIEvM0J3tBCa0ZG29nkBfIUJIgkHkZSD/mwJFVOAFyBSSCDWyKDoEUDfZ3QM+gbH4KvJD+H/tv7QKJEDeZ4i+5H9m8PSpUuRkJBQ+zo6Ohpff/11o9r4/vvvm9UHBqMhpFrpPx+vpAMRjaEwqxhTbhvnlThCoXFMOiED9kTcQOCqDFAcTXe6L3E4kGaV0oVg7BUBq9r1oItVKYXVZKX7Ob4ngyU2GNLkAo99FpTSZm2zdeEuTHvkcuiHOwo7ajD2jYQ0tRiSksY5aDSFTj0jkXEu2yEkie3XCW+veMHtvmcy8vHa7xuQVmD7DghE3HDv9OG49/IRrdVlBoPBaDIb807h9RP/wlxvvG1/SQJ+T92Kr4bfhy4ax2p57gqAfJOwAf9m7odRqJO+DQvywehgCczWSvhKgzAkYDK6agYgsSrNqbihhjxDIXYXH8aUsMvOt2+GzlIIiUgBi1WOo+UnobcYYOCtkHIqBMp8MTywFyQcG+hnMBgdl5ueuxrLv1zX6MSZwswiTLltPP6KzwWk7qeQlArHZ/d1v2ytFTcIagX4Lq7vD0KIH4Rwf4jzy9FeIDHJZXOGo61AY5Kz2Q7ruw2KxRv/Pet239N74vHxvd8iJ6nOlZMkkt3x+g24/pnZrdJfBoPBaA6rjp7Dq/9uhOV8oRvCroR0/LjlAH558DrEBAd43ZaFF/DZ0p1YsuskFTfU0CskAHHpFdBnlyGkUzB1Wx04oS9NGDqx+xwEtQyc0QJRg8RYci3etWQ/Jt86jr42m8wozi6FQi2HiBNh/+qj0Gv1dKyQuCwFRwfRitYkAZjRviDiBjIH0ZIMGjSILo3htddew08//VRb+IkUfWICB0Zb4+YXr8GanzbTuenGzpOQ6+nq7zd63FbpZJ5k5bcb3Iob2jtbFu5C//G90Fbo1DsKGWccY5JeI7rj1UVPu92X3F8/uf875KXWzS9p/NW46+2bMOfxma3SXwaDwWgO637Zgs8f/tFuvI04vC187z98uOUNhHf2fp6ExAzfPTUf63/dCnO9nAIiYgvrHILqCh3CYkIw477J6DemFw5vOO5U3FBDyvF07Ft5mAouCCYjiUlKoPRRUgUh6aeh2gCLmacxSUinIAyZNoAJIhhtmg4pcPjq2OpGixsIISo/3NxrPH45tQlVZr3bZLyJnRwr9Cw4twMdmQqTDitTDlyQYxk4CdZ2uQLlxcn4wn+g3XtWkQh7lRG4w+yDJdwZ+AumujeDugEzPwZ2fAiUZwLqEGDgLUD3KaSUrm0bsv6PqwB9mf1BzdXA9vcBEQdMaB/20gwGox1jMQDafNs1xyeKlFuzredNQMFJQFsIGCtsr4n7T2my7f+GmLTAga+A2ElAl4mA2HPiaMWGdGh3OA4yWAp1dKlBf7wI8p4BEKo91doG9KeLoR4ejsptWag+kAdBe34fcul1MmbFaaTwm9kF6qH2FfwY7ZcxUb3x58xn8OKu+Ugqr5sYd0WcfyR1bmiuuIGwePFiu9dJSUl0aQxM4MBoaX579e9GixsIxDZyzhNXYOmXa2DQuhYMqf1UGDbd/jmZsOKbdWgKlhj7qqvOsHKAyEWYxUcEeCVw4LQmz9voXd93qkq1WLPvHHWWcIepRygk+9LQLERAbN9OSD+d5XITZ4lEnftE4+FP78b81xbTiZjAcH9cftdEWuW1xq0mo7AMD3+1FFq9/XdcbTDhqxV7IOE43Dl1WPP6z2AwGB7Qmg1IrsqHlBOjl18UxCQ2Ic/2vBHbC48iS1eIAkMZDBYeZquAPYWpMFMLXBFUEhOCldVQS0wQiYrw2uk3cH30FZgVORMSJ44/Dfk8fg0WZ+yrt8aKfgF5CFJUIFFbt/ZE+Q709BmJ4+Wek3P3lxzDxJChOFH6G5IqV8LA25Jly81qJOuDUWz2oa8tAocKkxz+0gA83P1qTA4bzH5XWhEBHHhwzW6DwWA0DlLR7ZeXFzapKmhgeACue2YWlt7wGXShrh2P/XyVGDIgxm1MwncKqhuXd4GlU3C7EjiQmGTT7xdmLojED537Rjc6Juk2sDPu/+A2/PzSAhRllSA4KhDT756EQZP61dsvCy/NeBeGavuYhFTJ/eHZPyCRSVhCEYPBaHWqyrTIOJMFqUJGnTCJAxGhulKHbX/vQXZiLoqyimlijt5Hhg1RIji7s+VWVOHal7/Hs1174YZnr/JKNPD+oi1Yuue0w/r4ojIkWvTw330OnFnApj92YOxd43FOI0LxfSMAqZgEFZCnFEN9MAviyrrr6K6lB3DZnBH4861/aZJSZUlV7fWc3JsbQq7Pj35xL8Zda0tAYrQOHTUmiYqKQr9+/XDy5En6+vDhwxe7SwyGHUR888vLCxotbiAEhvlj1sOXY8NvW2E2up5nIW7Y/cb2cipw6MiQmIS4XFwIiEgvpleU07ijBmfihp7Du1GRwvf/+x0luUQ0GIQZ90xG/3G9a7dJPp6GV658D0a9/byRtrwa3zzxK+RKGWbeN6WFPxGDwWDYQ57ZyTVOrpJRx5mamIRci7b9vRs5yfm1MQm5Xh3fctrps31eaiHu7fUU7nn3Flz71BVeiQY+feB7bP7T8XqefDSNLjVsmL8Nk28di8TDqR7b3L30AIZOG4Df3/gHG+dvQ1VZtduYJDQmGP/39f0YNWso+9VoRTpqTHIh6HAChy0ZJ/D72a1N2vea7qPhL1fjl8v/D7eu+wQWwXn2jkamQH51GXxkSrv1p4szGnW8CHUAFUukVxbSynXNRSmWQU8SYVuJWN9QZFUVe9yOE3EQmvl5yJTHkFnv4+aV75HIx+k22VINFmu646HKehX8SlKAv6623/D0ElvicORQYNi9wOmljuKG+uz5Ehj1KCDXNOszMBgMhlN4M5C0Dsg7YhMvEOS+QMxYQBkInF1iEz80CiuQvhWoyIDQ+3YIBpuAgJM5PjDzWhO0e3K8btmY4OZ6Wb9dgwUlf56FoeH2LsasiACi7N9EiGQcVP1DvO4Po21DxAor57yGg/lJWBi/A5szjts940hEHKZ2HoRbek3AiPC42kTf5nL2rOtqvgzGxWDboj2Ntl2u4fK7JyIg1A9zV7+M56e+Db5eBbn6qPxUKMkpRXQPm3tODQmHUhp1vOAR3SD0j0SlxQxyJJFgc3do7F8nESETiG2wQedamEEdI8hncjPRzFlcT3iQz5tT5EXyk58KzUUiEeOVv5/Cw4Ofd/k9OIMMgr14+Tt260i1KLGEQ+9RPTDr0elYUljgIG6oz68bD+HG8YOgkHW4kJ3BYLQBiOPWl/HrsCb3GAwkPiGD2Ao/3NV1PEKVcnyR+A90fF1MQsa8BasIMokIUrEIHKyIVFfa5auKRGb8l7MCSdoUPND1fuh4EwJlGijEMofjFxkqsSTTvoBGrKYUUaoKp/1NqDqAaouaOi+Q+IK3chDoncr+bqXn9diS+xzy9PZJHf7SagyVVOOkNhp5Jn9IOAEBcgNKDeV4/+xfdDxtdHDfpp1MBoPBaKNs/H07Ns7f3uSYJDgyEO9+dDue+3AleBexu29+GUqyShDRta54hcVsQeqJunkSq8xzIY7ofjGQVVQjLzkfQhOSnxoiV8lhdBOTNJeoHpHIS/NC3M2Jmv15iMjgpYVP4eFBzzYqMSzlRAZemj7Xbh2ZMCcJv/3G9sQVD0yjMWtDcUN9Fs79D7MemgaJBxcPBoPBaApEwPD9M7/ThKGapEZSoZRU+iaJRV899jP0Wvt5kvKpXSFEhbtsUx+gwLffrkb8wSQ8/dPDVLBFik7IlY6OpTnFFVi+94zLtgQ/JYw9Q6E8nQ9BJcUKXgsBCpu4gSDh6PummAD4Lz0FSbmh9nMR8djp3fF27TlLJCIU55Ti3Zs+xXtrX8bQaY6FTBgMT3Tt2rVW4FBYWMhOGKNNsebHzVSs1tSYhNwXXl38DN689iOXz8IqHwVK88oQGlM316yr0iMr3vu5cEKnXpHgLQJ1EWiKIKMh5F5m1LVe7lZ0jwivYhIiTmju5yEig5dJTDL4WTpG6C1kruqlGfYxCYlRJVIx+o/vjSsenIaln652EDfU58+3/6W/C94kCTMYDEZTxNbfPTMf2xfthdlomycJ7xKK2169nhYM+e6p39zOeTuDtPPjc38g8XAyHv/6fugqdQiKCIBM4ThPkhmf41Tc4IqtC3d7tZ22QkdzDOIPJnsVkxRmFtN77QebXqPOdQxGW6PDjUwuiG965RyN1GZdNiC0C5bMfhH3rPsCZaQydgMKdRW4a/1n+G/2S4jQ1FU6lYolgMX7C1tetXdJo54glfZu6DEWs7sNxwMbv6YV+FqDG3uORbGu0uN2zRU3EMgl9Y8zW6F3IW6oYbU61l7g4LJTPJB90LZ4wlQFJG8G+s5pRI8ZDAbDC8j18fjvQFmD5FNjJZC0tvmnsCwFFb8uRXV2J4ikHJQDQ+B3eWeIfesG8A1nSWJp8wdmGiJUmWHIsSl/G0P5ylTIY/0g9nF8oGe0T4hoYWRED7poTXoU6MpRbTZCLZUjTOUPTQOBaEtw5ozrySgG42Kw8tv1Td6XODMQBozvgy/3zcWL09+l1XgaUpRZjP9NehPfHfmAVlitQSaXej3YohveGUl9QwHBUuuIQFwayO2K4x1FDkT44AqF1oA5/zcTE24YjZeveM9hErquEYAzA4KYqCgcE6VEvBWCrxpWmQQiJw4YVzwwFYlKz9UJrG4SdbyF2HMu+XRNo8QN7iATJIcLS7Bz3V4IaqlbFUlFtQEHEzIxvn/XFjk2g8Fg1ECKeTx5eD6Ol9kX6Sg0VOCz+OXwlRsdrk/kci0WWen9gYzShCurXBbjPllxGrfsexVVZhkVDkwNH4QHu81AgKyuiMS2gjMNCn1YEaMudfsl+ct0qOQVtDNi8CBzsyaBDGvWdUSKNOTpjzndn/S3tzoPBSZfWuWGE1nhKzNAsHL4NW0h+vm9AB+pL/tFaQXIOSZLc9tgMBiNozkVS1W+trh9+GU98c0Ht+HZVxZBW98JwsxDkpSDoqQ8/G/SG/juyIfwC7ZdQzkxR5Poa56hRdWe5ypyjqVBklsGa5APRAYzuCrX7trukCllmP3w5bjs6mF4eaZjFdCW4soHpuLM3gSP27WEWINMjJOkn5ZIsiKQ7+XE9rN08URZQQVO7jyHIVMc3cwZDAajOZgMJloYomHCTUFGEb545EfX+0V7fl43Rftgz/JD2LviME3gUfkoMeX28bj77ZvgG2RzdCNsPpYEwUOWprFbMBU4VI/oBMHPlkPQEKtSiuoxsfBbYxM05KUUID+tcUnmJHnqy0d/xlf737PrI6Pl6MgxiVJZN9/C8y0zhslgtBQrv2n6PInK1zZPctlVw/Hx1jfx6uz3oa9yjC2yE/Pw7OS38O3hD6DxV9N1JIG+sWLjrPhctASkANRVj82g7tuvXPl+bcJsa8QkB9Yc9bhdS8QRRBT932erGyVu8DTvcmzLabp4grjRndufhH5jHF06GAwGozmQuXQiAkg+VueSQCDP8p/c922zT+72xXux45+99NpJ5v6n3TkBd711U+29irDz3/oO1y0HEfnlJuc3erzoi0d/whe734VPACsI3hp05Jiktelwn/psSWaT992Vc8bOrUBwanJpo9SgdXCKmBpz4SsrEHHDiqtfxeujb8bg0G5YetXLGBravcWPMyG6H3W4mN1tBLgWqrbsCb3F8wREJddKCbGF51qnXQaDcemiKwZOLnQUN7Qw6gjbfdBqFqA7XIDCb0+Ar6y7ngpubDybg1BlavJ+ee8dQNH80+C1rTPIw7h4EDFDN/8IDAiJpf+3hriBwWiLNBwMaQxHN52wcyuwOEnyr4FUJlr+1Tq7dZfNGe7VcUxdg2HsZ+/+UAsROTQsiEMGwl2ERzKJGPNXvYjHvrgX/cb2xjeH5qHP6B5Ot7UqZNTxjYgcaJu1b1ghsljpepGYg6ByfM4fd91Iar95xWV9PH4+WUoRWgJDddOSq5xh7BKE6olxdPLbG9KTWmZShcFgMGrI1efhw/gfkWc6hSBlNaREzVYPhZRchF2fLyJyUIrNEHPuZzTVEtuEM3EZXZVzEI8c+saugEg1LQ5ihZjjIRVb4CvTQylxH6dIRFZIRXX9Jbq8+v2nEwUi9/bMMo5HqKwKIlihEJupi0OQQgerKAfPnHgKH5/+DhWGlrvuMxgMRnuNSY5vq0s06RTiA27dEUj3nIPkRBqkh5Mh33gUkqS82oST1d/XuddxHIdRs+ss7SVZxUB9cYQThEANjNMGwjS2N4xTB8AwsS/4IE2jq4rOT/wSD39yFwaM74uvD85Dj2HdHLazhPrCODAGxsGdYYkOhLWRUx0kHhl77Ug6MX2h0HshEmktMs9mXbRjMxiMjkn6mSy8cc2HDuIGr/Ams1Kwr05Kqniv+m4Dnh7/Gq3QWoPW4Hk+wyoVwyoWwdDDvQM1cXHgVbaxnsLMpo1H5abk46bIB/DOjZ+gurLxhaQYHYPq6mqkpaXBaPS+cEtJSUntz0FBQa3UMwaj8ZhNZnrNbyqndtYJcjv1jITJjXiZuC6s+3lL7WtSJXvo9EG40Cg0CvyZ9g0e+OB2DJ7cH18feB/dBsW2+HFm3DMJI68ciql3jMeFwmVBqwtA5rnsi3ZsBoPRMUk9mYHXrprXrLGzxoQv1RU6Op//v4lvUMe3Goi7Q2uQ74XDjzOyzuXgxogH8N5tn1/UsSgGo8MLHJSSpie8L0/ejx9OrscVS9/CZX8/hwqT+wvJ2jR7y/t7+k2FnLg4XCCknAQfTbgXXf1tdpybM47jme0/41Rxurv56EbTzS8c30x5GBJOjGifYNzUYxxaGxFEGBvV2+N2XcyeHSWaxM4PgcO/tU7bDAbj0iNpHbD3U6Co9avMi5X2CTl8uRGVW+qqs4pkrWTh2JyqDVbAGF+GvHf3o+DrY7Cct3NmMBiM9gpJrmksVpEIglKGVQt34eeV+3HdS79hxjM/onBCHIxxofR9VxUg6nPDs1dBIvMckxh6h3voT71Lu9ECxZ5kiJxM/sqkErz7zGxER9ic7bb/uxfv3fo5ko6mQuQk2hSZLVTYwAmAxASIDVbbYgTElrq82obuDd0GdcYri56mCVOxEYGYPcp1rCDJKoMktwLNhVSfHTK15UTs+qGdGrX97w//jI2/b2+x4zMYjEsXktzzR/oiPHfydZypOgo/uRFBSh1i/Uqp0OH8VpCSi7MbyK1IIvLs2tmwnWx9Cf5MqysSohSLIRXzVChhu701bRSLCC6IWIFMFFSbZVCIPccRSs5ExQ1k3/pYISDecAAPHH4aD+/8DiXEZY/RIvAQtcjCYDCaF5OQJE3BTwVBJYdVLoElKpAuVnmd+NbKiaggeeWf2/HTf3tx/f9+xdXP/IqycT0g+MohziiEOKcEIov9dX774j12r296fg7EEq72uV56Mt11UqpVgPW8i13tqgANTGN6Q/CyYpxCLccbS59DSJQtqW/zgp14/7Yv6IR1TRglyCXQTe0Lw+Q+MPeOhLlnBAxje0A3azD4Bsd3Rc8R3fHCH/9HnSu7DYzFhBtHo7WRyiQYNKkfLhbf/+93bFtk//0yGAxGUxAEAZ8//CMe6P8MDm+oK+7RGBSpZU3eJvNcDv75aGXta2W1Z4GDpEwHQSEFpB7mVEiVcB+bi7bAW5tV0Xrnkv2Y4383npnwOsqKmj+2xWgfMck///wDtVoNjUaDrl27Ytu2bV7ve+xYnYvhgAEDWqmHDEbjkUgl1EmhqSz7ai1+e/Vv3Nn9cdzZ7XHqjuyObQ1ikltevIaO718oiGPQOytegH+IH329Yf42zLvjS2ScyXLpgtoUSIGpZ35+hP7cZ3RPjJ49DBcithwwwXPRqdbiq8d+xu5lBy7a8RkMRseBuF19dO83eGjQszi+1bOLTEtDxqmWfr6m9rU38/lNoVkxicmCbX/vwVW+d+D5qW+hsrSqRft2KdPWY5K2TIcTOFzeeXCT902vLMRnR1YgtSIfOi/cA7Qm+4nT7v4RGB3pOSm/Jbiiy1Csv+5NzIgdAoPFhFvXfIzHt/6A0yWZMAmWZuWZNoQIN4i4oYYon9ZX/0+JGYA53UchWuP+WDdrk1qnA1YBWPMMc3JgMBjNJ3s/kLGzmQoA7xFMjkm1umNFMBfrYUyvgHZX265yYM7WIv/jw7S/DAaD0V4Ze+0or7e1SsQwDuwM3VVDoZs9BKd6huCHZXuRmV8GvYUHH6yB/rJuqJ7SiyYcNYRUfahP90Fd0H9cb4/iBT7Ug+W9CBDpDJCdzoFmzQnIMoqhWn8CsuPp4AoqwBVW4srh3bH483swdmg36LV6PDbyRcy96TMkH0uH2Wihj9QOzZp4iPPL6x+mdqmBK6oEp7OPx2589mqIxXUxSZd8LRRHMyEy1HP/MVkgP5ML9baEFgnvx98wGtPvnojgKJt4ozlY/JXgA+slTnl4LCACDa64Gp8+8D2t4sdgMBjNYV3+JmwoqKtkVwOZYCVCB+KgUPPaE7wXpa6dbbM27wiytKU4VJSBJdm77Y5lEKSotrgXB5oFDmYHeyGSSySgyiSDkZdAx3sWGJrBUfcHV/jIDcjBGdy7710UGOoqYTIYDEZ7Y+x1I+n/VpkEpiFdYZg5BMbJ/WGcPoj+bB4RRxfDjEEwDu8G44BYul4/czCORfjjl2X7kV1QTmMSIdgHhlHdoR/X06njQcOYpPfIOPQaFVf7WpJRBNneBHCFdYmaovJqiCqqieWD8w8g5mDuG+3xc15x/1T8lvAlhk8fRKvgPTzkOXxwx1d00phMytboKgzjetLP0RCrWg7DxF5UAOIJItwggusawmLD0NpMvnUcpt8zCf4hvrgYkESyD+/6CoXEiYPBYDCawaJ5y7HmxzrHn6agPp4PkRuHanlqGaTFrosXrv91K/LSCnBix2lseG4hRB5EDooz+eDI8Tw4ERE4Xcu6U5/adQ53df8/FGWzmORSoEuXLtDp6n53N2zY4NV+W7duRVFRnWvI5MmTW6V/DEZTIKLgMdeMaPLJO7s3EQvfW0rdGQw6z64mDWMSMkfSGu4JzrjqsRn4LeELKkwmbkH393saH9/7LdJOZVLxmjcGRN5yy0vX0HNbQ3gX9y5DLcHld03EjHsnQ+OvxsWAnEMiYC8rqJtXYjAYjKbw55v/YuP8usJyZCzI2DMc1VN6QzutDwyDOkFQN72wujeQmISMtx05k4HVC3ehzWIFjm09TWOS0nzPQnMGozXpcAKHO/pMtkvGb026nXdOqI+Jb9kBDFfszD5NRQ3vHfgH9274EkcLU5rfqNUKUYMspM4+Ibiy63C7datTDzX7UBIRhyu7DIPYSerRoJCueG/sneBEHOaNuwsqia3qRUNma9MwXdeKFsnkXPx2BbDxVaAsvfWOw2AwOi5kxCLjwj6UVuc6Tv5aTTwKPj6Mou9PwlLcDtwRLFaU/HUW5vxqGFPLwVd4b8fLYDAYbYHrn5kFTizyStxgmNgHlh4RgEwCnhRPdZF1aYnyh7FPhMP6zn0cr/smJ04L9gcmijjPo+rK/alQHM+sFRuIzDykSflQ7jwH5Y6zOPjuf3h66PP44dk/8OykN5F4yLuYRHY6C7Dwzt/kBchP2T/jx/SOwrjr7UUjWxfuguJkDnz/OQLN2tPQrDsNv3+OQHkoAyIvPltNNdSJN49xWsmp//jeePqHhyCWiPHc/Meb5MpRH4eEKfodON+W0xrhsy2Z/sxbeDxx2Sv4+cW/UJhZN2HJYDAY3iJYBazL3+x2mwDqAicCKYZHBANSjoeMs0AiItdqq114o+elHm8hVWbHcRytRY9pG77G3Xt+Rb6BDIhb4SvRw1+qo8fJrA5w22a5RenU6YEnwgfBVukoSRvqUSRRZnY/GUvmiOViCyycAe+d/h1ZukwkVMWj3MQmURkMRvuCCIRFcgmM4/uA7xxCBQO11FeZcRyE6GAIXcMAqQSCTOQyJuGjA2Hu4TgnEuMsJtHbz5OIiyog3xsPxcqDUKw6BPmecw7ODQ0RQvyoo4QrSGLP9n/24MnLXsGPz/+Jp8e9hpTjjuP4llBfp+KGGqxKGcweEoO6DuyMy66yr466fdFuNBeZQooJN14Gzsk5HzK1Px7/+j7I5FIak0jruW20FJYwX1RP6omKm4fTpXpCD1hCNA4JRY8Nf5FW0C3OYYm2DAaj8ZhNZiz/aq1X25JQw9TJH1Xju6JyUnfo+4ZDkNruYeIqEwL/Oweu2nEuXpZRgYDViW7bLi+soFXAn530FkpzyuCzJREwOx+fUh7JgjS/iroWyVPcX/ukORUQV7X8HIa+So95t3+J5GNpOLHjDEvsbAaClWuRpbUYOnQooqKial///vvvKC0tdbuPxWLByy+/XPtaoVDgrrvuarU+MhhN4eYXrmmqaWejcTpPovdc1La5iDgRtvy1k8Ykv7y0AE+OeQUZZ1un2GDP4d0wbLq94/S2RfYO301BoZJj/A2j7IQTNYy4YjAe/vQuus2zvz7aLFeO5mAymPHwkOfx+xuLUZLHEm0ZDEbjMeqNWPnt+trXvK8SVbMHwjCiCyyR/uDD/WDsH42qqwfDHNP8wnfO4IM0SO8Riuuf+QWPvbcEuaO7QTepN3g/MvfRNiDz2dbzrqwEbXk1PrrnWyQdTcXJnWdRzlzmGBeB1vE6uYhE+wQhUh2IzKrWT/64ued4VBp1WJ6yH8llefCRKWlS/oVAazbS5Y+z3lsUuiPWXIlXSo9giLEIq9Wx+N6vL4LC++CLSQ9AKbGfRKgwVjfrWJxIhLlj78TV3UfiueHX4t/EPUgszYFKKsfMLkMxPrpv7XkcFh6Hf2a/gF9Pb8L6tKMw8Cb04nW4tewErtOmtn48pC8F9n4FHPoVuHkB0G1Sax+RwWC0JUxaoDzTNvji3wWQNvLBUl9iu460JCIxYHU+6G7WalCdE4OOgCVfh4LPj9peiABplAYB13aHLNJDxXEGg8FoA0T3iERQZCCKstxPgJLkICHAlmhJKqE6KUxth7FnGOSnc+2egWc9NI3aQ276fQey4nOgCVBDKnOf+EL2l+aUw9zJdTIpqYgnKXBvO6mr1NNlyaer0BjEZToot5+DcUgshMC65BmuXAfZsXSIi+qO22d0D7z2zzMOn0lbZotJiJhBUth4e0wianjhzycw4YbRuP/927Du5y1IP5sFtZ8KE28ag2GXD6wd0B8ypT++2v8e/vl4JXYvPUAnRohtKBlU9/ozV+htog6J7UsmLVtrRA41X6jVCuXRbChP54OrlxBWUVSJxR+uwKrvNuKdVS9iwPiLZwfNYDAuPKXGKpytzAAHEQYEdIVG0riYJFufi1KT+4k/uZiHlLNAIeYhE9dXX1khtQowCuLzCR0iWMFBZ9ZAI9M6bcvIi6F1InAgogiyyMUCopVl6KIpgVJsqXV8yNP7Il3rjxh1uV1eLblWEnFDFRU42EPeqzLLan9O1IYiTl2IMIXz+0KCLhwCcXDwOG5lhVxsRrlwGm+dPUnXiSBCrLor7u58L6JUdYknDM+0RDJQayYTMRgdldi+naAe3RM6Hy/vGyQeIddTD39uprhwyBLsHcZITEImOElMkpOUB58gH8hdCBNsYmQrBIXcK+sgq1wCkcEEIUADwUcJkYUHV1AOES/AarXWxiT/frzSZRt8hL/H4/CR/kCic+c0In5+bfEzVPxcn6pS5/dCbyHtvbLoaVx21XDkpd2KtT9tQVZCDjR+aky+bRyNQ2oYMXMwvtw7F/9+shJ7lx+C0WCiyUXEOa+pkPiSTOTX/x4snYNg6RQI5d5kyFKL7ZKCSQXdld9uwNy1L6PPqB5N/+AMBqPdQRIJ4w8k0evWgAl9oPL23nKe1BMZKCuoc/FxhaCQoOLK3rCE1c0BGHuHonpUDHzXJ0CWUwF5ThXCfjgMy8AI6ALkICptZVIpZLmNHxuS5VbC/7+TMPSPgDE2EBCLICnU0nEZWWZdDKU6mAVTjD+sCifjbWYe6n0ZaC1IEtEjQ5+nPxMXod6j4/Dcb48hqrtjERRG+4V8t4888gheffVV+rqsrAx33303li5dConEMZ1HEAQ89NBDOHDgQO26p556CsHBwRe03wyGJ7oP7gKfAE2zn5u9YdZDl1Mh2MbfdyAvJR++wT5QqJ0XUm1JrIKVukeQZdEHy1vtOIOn9Mcrfz9l5yhHaO65JUWgXv/vWeqIl5OcR2MS8j/53qbePh4DJ/at3XbMnBH4fPe7NCbZt/IwzCYLfTYgznkXgtK8Mvz1zhIak7y//hX0GNrtghyXwWC0DYizWeLhFDoWQmISpaZxMUnCoRRUnZ9bJiNTukk9qaunA2IOurFx8Fl5nBak81S0wtu5Yj5QDd3k3rXzxBSRiAordFP7QrXpDMSVNqftCw05H+buYTDHhcPqazuv4oIKSM/lQlJQgcMbjtOlZn6975ieeH7+4wiPdV9wimEPmydpOiIrGQXuYIxf/CIKdZ4HSprLiLA4nCrJgN7S+srf1sCHN+Gp8uPobyrDAJN98pVZFQzp/ZuAwK4O+92z/nPsy0tw23a/wGicKc2uq/NHfs1EIowNjMADPS7DyLjxQAPhhFdkHwF+vkj2inI/4JkzgJwl1zIYHR7eBCSsAvKO1YkJOCkQOQzocQXAudEHCjxQeBrIPwEYq4CqFqzSQAQWA+8EDJVA6mZAZxPzWQUOuoIIVCT2hnA+wafNIBFRR4aWQjUsDAFzukNUTzXMYDAYbZHrQ+9FRbEHgcCVg2FV2QZPBA7gFZ4TfPwWHqROCvUHts/siW9Usj3BHOYD7Yy+LquzKo5nQ3msFd3SzsP7q2BVySDSmyE+P7BUg3+IL745NA+hMY7VVJ8c+yrO7nUfk3QdFItUJxVciWji6sdmYPwNoyGRSpo0ufy/iW80ej/thG40icgVyqNZUB12f859g3ywMPM7yJWtPznDYDAuLjqLEV8kLMWWguOwnI9JFJwUs6NG46HuV7p1LzULFuwoPIHthcdRYS5FqcV9JVNCmUEBucS5tQwZ0tFZJDALYvhLfTB3wL0oNeViRe5q5BsKzm8lQpVJilKjiooIHD6PUQqtXoGBIVnoH+Q8gbTSLMfJ8nCEKash5yywCBwEEQcezj+rwSJBiUFN+yeAiC9E1A1iREAaFTrIONvn0fN+OFUZgEKzL5QSM2RiFy5C56kyyaCRmiASWSEW2dqwWkX0GCTzd2zwZNwReyvERHzOcEp2djY6depEf35py0T4hyuadabK8w14f4rNPjwrKwvR0Y6VGRkMhiMzbv4MWheVqZ1BYhJB7nm8RbNov51r2pBpA3Bq5zmYjd7HJFYxB8MVQ+wndhvCC5DtPgfzwFhY/eo58JgtkCTkQpqc59WxjIM7w9zTfSIombhVbjvnsD4owh9fH/oAwZGO1fseHfY8ko6muW2364AYpJ7MdFjfd0o/XP3klRg3cwgkThzlPHFow3G8PHMumoqgkaNqzmCX8SA59z7/HQFncExWCowIwF9p33gU1jMYjPZPdUU1vnj0J+z8dz91mCQoNQrMfmQ67n3vFojFrq/hxF10xz/7sOPfvSjJLUXyMcfxmYaUX90X5ig/52+aeQQuOk6dEgLD/TF3zcu0iujf7y9DXqotJiGFKlor7cESoIR2TCzMMf61wjBpbgXUezMgLfCcXCpTylqskjj5nHOemImHPr7T7XdwqdPeYhKj0YhBgwYhPj6+dt3IkSMxb948jB8/niY1E2HDzp07qRBiz549tdsNHDiQih3kcjZeyGh7zNLcBuN5h+jWZOjlA3Fy+xmadN/RCOkUhG8OfYCAUMd75P39nvboGNGlfwzSTjnGJES8cPXjM6jguqGY2xv2rjiEN675EBeD0Jhg/JHyNbsPMhiXAKTI3xeP/EQL0Am8baxe5avEnMdn4q63b3IQfjV0bdj29x7sWrofxTmlVHhNMEf528QGbpCdyYXyqGshc0h0EC0AcXp3PBZ/sBwFGUVuYxJyPD7Mz3VaVWYJlHuS0Jq4ikkMI7rC0sWJWMFqhfxgKqTpRU4djG589irc9/5tTh2AGO0zJmmrdDgHB4KZ937QvjkcLGjdC0tr838VJ3GbNtnpe1JdMbD+ZeDWRXUryQU4dTtuMuRgn5t2IzgRFp/6ElmQ4oQ8CBKrFaMN+fBXBYDLyAeOfQIoA4HBtwMTXgDk9pbHbilzP2GAunqoaHGMFcDJxcDw+1u+bQaD0XYg17oTfwKlDa6PghnI3gcYK4GBtzvf16wHjv0KVLaw9SS5ZnYeD4QPAiTnByjDBwBVeVSMYSqTo3xXCqxm5wlJFxNOJobv1V3AlxthzqqCIbF5tpG6wwWwmngE3eo+4GAwGIyLjSfBAa1bel7c4DWCQBNN6nNsy6mmdA/SgiqodiVDd1lXoL6tsNUKWUIBFBdA3EAQl+sAsjihvKgSPz7/J15d9Ey97llplQhP1QLJ4FbmOcf7MZkEP7svkS7fPT0fM+6bgttfu65RgoHcZOeJufURS8XgzTy18jTGhcDUNRgCqT5rtNAqtA2R5FZAeSzHY7uVJVXUdnrGPcxZjsHoyAhWAS+d+AUnylPt1hsEM/7N2okyUxVe7Xeb030rTFo8f+IHJGtrrilWhChFEIscx0lIyr6M42kSv1JtgpGXQMfLHKrlk/HpWHUwroqchqnhQ6AQE1F1Z4wJHoVMXTaMghFlRhNeOvkXBDhOJPOCCDqDDDLOgt4BNYIIR3ylRoQrq5Fn8IVFsN2bFGIz/OV6h/xLvUWCYr2aihqs9caC5GIL4qsjkawPg0ZshMXKQcIF4/aY63CmWIdMXRKqsNtlH8wCB5XEBAnHgyOt1xxXZKWhIg8rthdthUkw48Fu97psh1EHeXLhm+nB2vYiXQajfWCoJ0LwCm82J/FIg3aPbrK53TQG4sAgzi4B76baG1dYARNxCmiYSC+VwNKPOJhaIfXm2byoyqPAgXMhTi/JK8evLy+klelqIMmFh9Ydg089NzpnaPzVyIrPtVvHh/nCZ3J/HDTzOPjHDgSuOISrpw7AXdeOhKwR4uu8FNf30xqkcolLhwdTXKhrcQNBzMHcLRTyM/b9r6mcunvpQUy6eYzX/WUwGO0Pi9mCl2bOxbn99nPheq0B/3y0go5P/O/nR5zuW5pfhhemvYP0M96PLZlD1K7FDQSpGKE3DsXdlw3CpJsvo+M4pDL4jHsnI+VEOk3UIW4z79z4KSyNEPfVx9Q5AIa+EbCEaojNHGQZpVCcyoWkTE8X/9XnwGtkVCTG6UwQV7qv6FofjZ8KD/zwEHVfJWNSx7edRlMhY2PLvlgLs8GMJ797sMntXEq0h5iEiBPWrVuHcePG0UQoAhEtTJo0CWq1GkFBQSguLoZOZz+O2qdPH2zatImJGxhtEp7nL4i4gXBk4wl0VIhT+O+vLcJTPzxkd24PrD4K/xA/ZMB1XgKJWci9xw6RbZ7kxPYzdAmKDMCVD07DLS9d06iCUDlexGItKfCrT2FmMfavOkJdJRgMRsfFZDTjxcvfcSguQZw8icuktrwa//f1/S4dH16Y9jayEhzHNfhQX4/H5kOdF7+O7d8JN/7vaky4cTRkChm69IvBlQ9ORcrxdFr4gxz3/du+rBWIEwSVzK24gWCJDqBzyvWLHLY0voEaPPDhHVT0RooIkoJ+ljA/5+IGgkgE45BYSLJLqaNqQwejxR+uoC4+D396d6v1uSPRHmKStkqHFDhEagJRZmx9mzN3kF9HDiI68dkWkVp5zNF6EAskbQC2zQPOrQQqMgHeDFgMmA7giuDLsFYd67CLQrDg/YIdEFsMiIUBsZZ6EwPaeg+4+lJg75dAxl7g7tW2quTeoAzwvA1xhrB4P6jUKHKOAcNbp2kGg9FGKDzjKG6oT9EZoCIL8LOpLO04t6zlxQ0EqwBEj3Rc72ObnJX7AyEPqlGxPg3GlIpW1Xo1FkFnQfnyZIQ+Ogh+0zqjYmM6qrY2L2lWf7IYpolayCI1dDDflFkFodoMSZAC0rB6Ff0YDAbjIkIqyLirnEPDV4MJUNicd2iBaJIo5CbJRJpZZlcp1RuIVWRNRYuGyFOLIcsqg7FbMARfBU2+l6UW02p4bQVSkePPt//Fzn/3oTCrmA6UOBOPEPGAqUcYzJ0DYZWIUV1aDXl8PiSF9olKpfnldgKKRfOW4czeeMzb8Bpkcu8qkBJ7a08Qi1SzhEPVjL4Q/O1jHRFvBUglKauV2psq4gshTyz0+rslFqxM4MBgdGw25x93EDfYvV9wDLd0noRuPpEO730Uv7ieuIEggs4shY/MfjKROB2oxMSloG4dETuoJUaUmdQwCfZDhjKxFbOiRtmtI5V5OqvPx0U+wBdDHsQPyetwvNw23iQWcag2ctDq5VQ00dmvGBLO/bUuRK5FkckHVqsA3srBwEtRoJNAJTFT0YHRIoZBkMLcoH8Eso1CYhto561iVFhUtjd4LX5KW4hPBj6PGPUE/JulwYaC9Q7781YRqs0yBMp1zgUhInLeBBpm7Srei1mRMxGpjKAxSUJVGqos1YhQhCBaFe72MzIYDMaFIjTYB7kF3jtdexOTkIpyjZ2K4zgRBCfPutKz2RCCfWHVOFYvE+mMAHGEcOMSYOkRBUlqgcfnaHFOKUTVRljVLkTNFgHSlEKX+29fvAcRXUKx/R9ShbyMTrCTpFJPkIl2u8NEB8I4Mg6GepPVpRU6/PbffpxOzMUnL10LiZeVU32DPBeNIlVYXQkciJOeJ9xtk3AomQkcGIwOzvp/9uAQXw3L5V3B6S1QniuGtLgusXrDb9tw0/NXI7qHY0zywZ1fNUrcQDB18ve4jbVbiMN4CIlJug/qUvt63sbX8Nurf+PMnoTa8RlvBA/Vw2NgGGxf/dLYKwzG7sHw2RAPWY7tfirWmujSWMh41BeP/Ijvjn6Ee969BV89/jNWfrsBzWHtT5tx4/NXI6JLGBXfkSSlqrJqdOoZ6fR7YbR9YmNjceTIEdx7771Ys2ZN7frq6mq6NPzdv+eee/DRRx8hMNDRaYrBaAsQlxni/kUEshcV0fmK2o0VgLchNi/YicDIAGxftIfeU4hTkqtn/fpUlTrJm7MS0XLdPAmJcf548x/6jP/W8ue9dkXw82KehMxPtRZknoQJHBiMjs3qHza6dc5c/f1G3Pjc1QjrHOLw3nu3fu5U3EDx5n7gYhulWoFpd06wW0dcJOKGdK197ROgwW+vLUL8AZtYXOyhaN/5RmCVSVpV4EBcLEhM8uOJT3Dfe7fi0we+x7Kzjg4/dpB4qnOQy3Gz5V+vx/X/m43gqCAqviNxWHWFDp37RCOyG5snYbQMHVLgcF3cZThT4uEPsJUhl7m2Im5wluMaJJjhazV7Tqjd8b7T9j4u3osRhkIs8OmBJJk/ZFYel+uycH/FWfQy1z0MeyTnMHD4N2D4fcDppUD8asCsAyIGAcPuAfxJJaZ6dJlgS+glVctdEdwTyG981SivqKmczmAwOg4CD5iridUAUHAKiF/meZ+8Y/YCh+oiIGMXUNi0Ktoe8cJWWdbJByEPDICl3AhBawKnkaLgs6OwGi+Mq5FbeCuqdmUj6OZe8Ls8FsbkcipKaA6644Xgy4yoWJcGS7G+dr0sxgf+c7pT8QODwWBcTKbfMxk/PveH222k6cUw94qsfcYWmwHe1eOmhYf8VONFdK7EDTWQgRJFvOfqn83FWVITqQZEKgK6g7cIdHDd7Ta+Cmin94VVZROLEAQ/JcxdgqkTheKk+/N2auc5OjF/+V0TqDvC3hUHaZWNnsO644oHpyK0U7Dd9sOmD4J/iC8VSLiCTCQfD1Y4ihto58iHl0C1MwnylGI0FpkTBwgGg9G+MQs8yow6qCUyrM49hq8Tl0HK2a7fApxPBG4uOGoncEjTFuLPtB3YV3LGYdtqiwwSToBSYrvmykVm+EoMsIoAs5VMWtalqpKc1gBZNQoNvtQdoQbBi5ikv38svh72CPL1ZSg3V8NXosaMDd9DsFpq3Rg8IeVs8QvpL8+T49scGkznHR2s4MDzHHVUqN9vspVC7PqeQhwXVuRuxf/F3YYbOt2MNRkFqBTi4acw0M9p4CX0PBGXCeJo4Y6a9/eVHECEIgZ/ZqxAvqHuet7Htzse6nYTYlQsqYhAxC0NXUEaS3P3ZzAuVa6c3B8//e3atcYO6/miTWYrBLkLCYOZh+ysZ9exhjgTNxBERjPkO87A3DMSfEwIIJMAZgvEmcWQJubCMLGf+4ZlEgih/hDnu0+YIrcMxc4EmKb0AU+OUQ+pRAzxrgRaidsVJHHoj7f+RXOwciIYSQJufWVhPQ6dysTG3fGYPKI7ti7YhX2rD1Nxd++RPWhMEhxpn7g4avYwqP1UdNLYFZHdw5F6IsPpeyKT5/FCkZtYTabwThzOYDDaD2aTGZUlWig1ciw5eBofHT8CYWJdoTvtqGgoTxfCf30yva4Ske/Whbtx55s31m6TdioDi+Ytx9HNTZgn8UI9R47piYET+uLzXe8iP72QJnWq/dW4v89TMJNCEy4wh/k4iBtqkYihnRSHgIVHGl10pCGGaiOWfbGGVpklC3FxyDzn3X2V91PQwh5EfCYyWSBNK4Y0qwzb/t6D8NgQKurITy+q3X7QpL7U3YEJHdpfTBIaGorVq1fj4MGD+Ouvv7Bz505kZWWhqqqKujhER0dj2rRpuPnmmzFgwIAL0icGozkQYRqpsn1ROX/faguIOEehBXm29uQITpww/mxmTOKJA2uOYteS/Rh55RBs/msXDq49Sudv+o3pjZn3T0ZguH0x2jHXjKCCPXJ/cwURipNK4a2B1MuCVQwGo/1ACkqQZ3iljwIrvl6P31752+N407a/d+PmF6+pXZd8PI3ed07vjne5nySnDMYBLp7/623jDG/EckOmDqBLXmoBLX4hC9Lg1lf/Au9uXwsPkRfFNJoLcb9Y8fU6PPjRnXjmp4ex79EfkF3mvoi8oHYsTFIDcarY8c8+aALU+P2NxdR1iECEhYOn9sdT3z2IiK5hLf452iPtKSZpa3RYgcPq1EM4WpiCS53+wZ3xzZRHsDnjODZnnoCJt2BASGfc0nUY8M0qQGjaxZH8udysTaaLBSKI7aa9G8nhX4EjvwHFiXXrUrYCe74Arv4WGHRz3XqxBJj6FrDMheWmbxQw8mFgxaNoFXrPap12GQzGhYc4vaRttQmtLK4nA52SdxSIGGwTOWTsBpLWtq5dQmCd2tcTEn854C8HX2WCJFgJc87FdTSqwXC2lP7Pa00QDJ4rSnjClFUF7a4ch9NOhBNFP55C6GMDIQ3xXI2OwWAwWovZj1yOHf/sQcIh1zEJSdqxdAqE9fzAAMnptJqsEMi4bL3EF67SAOXeFEhKG3m/aiP0vawnXl/yP+z8dz/2rTpEK+f1HhmHSbeMxaPDXrATYZDEH1LZlFRXJQM51PbSQ7WK6gk97MUNYsCiBngZoJ/WCfLuPvDZlQFpkevzt+q7DVjy6Srk1rNVPrzhBBZ/tAIv/vF/mHDjZbXridPDPXNvxWcPfu+0LTKxPPN/s3F4yyG3/Tb2Cm+SwGHMNU5cnRgMRruk0mTAN+d2YUnacRighUxqQaSqEsOCChEgs4l4K81yZOkCUGCwt01elHAcY/yHo19wGH5N2YFvEjdCylmgrrsc1kOECpMSHLTorCq3EwKQ+V3iiGCwSu1EDkqxCbp6qrv+fnFef65wZQBdCg0V6BHoi2RtHh0zMlIxhXuMPBmqtNLbICey0v75yoy1gg8CcaOwCCKUGZWwnG+TCCMCpdXwFeuhF6QoNPvWui0QJwhyDg6V2hKtykyVMAhGlBjU0Jpk6B+Qg1ifUig4M9233KJGodnHpbiEnB8iqIivSMWCjM3gRDzk54UZFiuHs5VJePXU5/hw4PMIV9iL5BgMBuNCcsOVQ7B9fyKS0ly7EzSEXs5MAgQpLXNau15UqYdifwrEFXVFJloCkqQpO5UJK0l6Ie4FZEK35k0v3AysUu+qiw4Z3AUv/fgoNu5PxN5jqeAFAQN7RmHSgFg8vuCZVi9VxUcEAB5EAf+tPYK/7/3GLkGVxCSLPliOVxc9jcuurrOWVqjkuPudm/HNE786bSsqLgLT7piAH0784Vps382xwqHdNmm2SWlnjL2WxSQMRkehsqSKOmdu+mMHFU0ZO/uh5IY+Tt189P1CIa42wXenLVFxxTfrMe76UejSL4Yms/z1zpIm90OWUwlPo17D4py4arsgPDaULsQNNKJbmFshgaGP+8qiZMzJ1CUQ8hTX18UaBF8lBJWcivjEZfYV9wn7Vh2m4obinBKY9N45QRj6RsIwLMbuvkyKeogLq3B8XwKOveqY+HV82xk8M+F1fH1wnkPhDkb7YMSIEXRhMNo7Nzx7FfYsP+jW7fpSYdjlA/Hc/MewhYgH1h+j8yIDxvfBiCuG4InRL1/s7lGWfrkWPz73J4qyS+xikr/fX4rXlzyLETMH165X+6pwx+s34KcX/nLaFqnePf6Gy1pN4EAEFgwGo2NQVliBv97+F5v/2kkT8BvDf5+vodeDTj2j6PXon49WeNxHUqyFuKASfJj9nEsNZH5alux8LG3gxL5e960msZ+Ir6NkUmQaXD//SzNKIPJQtLClIDEJETgUFFfC5MUxSWzjjiObTuDQ+uN264iw8OimkzQm+ebQPAeRHIOBS13gIJdI8cv0J/DNsTVYkrQH5UbbAIKUE9OKc5yIw4jwOMzpNgo7ck5jQ/oxmAXb5G6vgGhM7NQP4epAhKr88OKu31Fpaj+JRDJOYrPj9I/AtXGjUaArx7M7fqWffXKnAZjTfSQ0svNVRHvPBs40Xy0tae7wf2mKzS2iIVYeWP4QUJIITHm9bv3Am4iXGbD1XaCsxopIBMSMBnwjgXXPo1WIHg50tbc+ZTAY7VjccPQnoLLxVecovBE49ivQYxaQVGcT2zqIgE6X2SmCqWOBYIUkRAnReWtHIhwgA9xitRSmXC2KfzkNobr1Fb7eYuUFVB8uQNnSRFvl6mZCHSBc3H6sBguqtmUh8MaezT8Qg8FgNBGScPLh5jeo+8DG+dtQDhH4zsEQ+yqBKj3k2aUYPKwbptw/BdvTC7HjYDIsvACSc9q7UyhGD++KkEAfhPgo8eHkt2HQGtrNdyGRSahjQ5f+MZh53xTkphTgvVu/gFQuwdhrRmLqHeOh1NhiElINaN/Kw/Rnc6dAGId2AepV3jEOjoXsdBZkiXXCg/pYQn0gBKrrXssBk7+9QMQQFwBDVz/4r0mG6pxzQUHmuWzqFuHQvsmCd2/+DFmJebj91etq119x/xRIZRL88ebi2gQk8pn7j++DgDA/fDvvP2BEZ7fniQ9uvNvQgAl90H9c70bvx2Aw2h5VZgNu2/4H4isKoFSYoJAI6OZThH7+9tc7X6kRff3yoRKbkFZdl5hSUsXj9lX/4vVJo6m4wRMyzoxu6lLqjFAfcrlUUgsh2Ikc5GJLrcCBgwhXRNTZLgtWAbn6fPo4HqkMg1hkSy6tNFfQMTeNxAdnyrPx+OH5qDTrUeNGX2DyhUngIGvQh/oUGTW1sgIZx1MxhoRzfPAn6wLlehTq1QiTV+LKkFPopKirqlRhUeBYdWfkmgMgWG0ODWbBjPV5u/FDyj8QOAFhGjPGBCRBXc9ZQiU2QyUuh79Eh0R9mEuRA+FkeSqUYoNd/+TgwVtFqLZUYVn2RjzS/VZc6hCBiU1k0rw2GAxG41EpZfjqrZvw86I9WL/9DLQ6W2VNKawQIIJEKsawgbGYNrYXtu1LxO5DKeB5AZwF6BMbhlHDuyI4SINAlRwfTHnb60TMpkCf3i32wmYiqrAGun9m5ip1rmMSsQjdBsbi8ieuQKrA49Vv10Euk2DKZT0xfXRvKM8LDoZMG4AjG0+gNeED6mIWVyQn5kFWT9xQA3GXe+PaD/HAB3fgxmevql0/5/GZkCtlNDG5pkIeJ+bQf3xv+AX70GrerpDklLudzJdkl0FS5Nx9dfiMQegxtJvHz8NgMNo+laVVeHr8a3bJ/9rhkS7dZgjVg8Kh2ZcNzixQccTzU9/GXW/f1CxxA0GaXwVJQRUsYT5O35eIRLhp3MDa1zzPIys+l/7cqVckxGIxTaIpL6yAWCqGb6APzuxNwCtXvufS7YY42pk6+cHYyQdEN31es+wUPoAUU3ItcOD91TANiYUQVNd/UYUOshMZkBRU2LkCkeTR75+e71U1cXOkHwzDnY8v8aE+2JddBlf1VMsKKrDkk1V49PN7cKnDYhIG4+Kh8Vfj0x1vY/7ri7GFJK5W6Wuf10mCP5kzIIn/pMDQ9sV7sX/1kdqCSL1GxmHEjMEIjPCHf6gf3r3pU1o8qb1APqNYIka3QbGYed9kpJ3MxNxbPodCLceUW8dh0i1jIFfaxt7ImP+pXecudpeReDgFvJNzbNSb8Oqs9/HYF/fg6sdn1q6/8bmrodQoaLX04hxbsUPymQdO7AOVnxIL5/7XKv0cM2c4FVgyGIyOIW54auyrdgXoGgN5/n9uylu45aVrvRI31KDakQDdhJ4O4yKiaiPU2xPAGS1Or+uzHr7czr0gKyGXhk+dekWB47jamIRs6xOgwYntZ/DaVfNQTYo6Te0Lq9KxQpVIa4TsVBYuFCQmWbDsAL5bsAsCCf0kbkqaCwIkGe6L9R3ZfNLle+TesPTzNbh/3u241GExSdPpcAKHzMoiLIjfgT05Z+mEq79cXStwMAu2BzHeKqCrXzhmdx9Bl1dGapFZVQQfqRJd/e2rNNzbbyo+P7rygosUTOcFF40lQKHBlhvepW4Nz+34rVa4QdiTew4/ndqAX6c/gW7+EcDEF4HkLYCxbmDlouBM3FCfXZ/YkpGnz61b1/96oN91QM4RwFAO6MqAVU8AmXtbp49dJgA3zHc7qMdgMNoRWfuaLm6owWIAUjej1SHXHYVNzardl4uqXTngS21JrpxGClknH1hKDLAU2gbppZFq6t7QlsQNFKsVZUvqOfU0F9794L/uWCF4nRnSYBXUI8IhDWVuDgwG48KRnZRH7R2PbTlFBdbyGYNgPD8QQv8N9oWxSxiirx6OKXNGYgoZwKnUISe/HL4aBWIiA+3aS3nySixopYFgV5BEGTJo3RRCooPwe9JX1Bb0o3u+sZt0oK4IH67AB5teQ1T3CNz11k04vvU0qlQyGEfFOVYIlIphGhxLXRykaY7JPpZ6IgE6Me1nL26oRcyh/IrukGdVQKx1vEc6EzfU5/fXF8GkN+LeuXWJqtPunIApt49D/IEkVFfq6SqYjjIAAQAASURBVIAVcXUgA0OmaKKy8EAjK3GQRKKXFz7VqH0YDEbb5ZeE/YivKIREYoFUIkAhNqKPn+tB/C6aUhQYfKjogAyjaCuVEAQDfkjcVruNRSBJPeZ6l8G6Z+ZwRaWDuKE+xL2AiADOp5hShwLagpU4TWgQJA+ir9flbcHavM0oNtmSewKk/ujlG40SYzYKjHl0XWdVFxwp5lFpdrTPPVkahSFBWc4KwqLEpEKZue65nTgwOBM31CDmrAiVVeLOyH1UmFAfP4kB430TsLOyJxU5qCRmWIRqfJu8qPb8DPVNtxM31IcISiJkFcgx2VcW4iBAJuLBSXiYOBOMVBRi/2HEIitUEhM2FezDiQIOXXyCcVOXwYj1sZ1DBoPBuBBknMvGiq/X48T20/R1iJmHObcMIuKQYKqbM+jTMxJTx/WmS2l5NXILKuDvq0Q0cRyoR/yj0/HvJ6su6JfnU1yBSjcCB1GpFpyLpNXIbmH45cznWLXjNN7/ZRN4oe5+sv9kOv5adQhfvnQ9IkP8cM+7t+D0rnNNjn88YRURsbt7twQCfz7Zy3kjwE/P/wmzwYzb6gmviaD88rsn4tz+JOi1Bjpx/OUjP3pM/CJ3LvXWeOhHdYW5c1BdHEaSzNKKoTxQU1jKnlGzh+LFP5/w+FkYDEb7YPG85XbiBjKuYox1P55hlUtgivKFIr2cviZjIX+986/r7UVEHECKXIggLtNB5GZY33d9Aiqu6nNeTFAPC4/AvVkI+0BFE4ZI0v6yL9fWVpcOjg5Cj6FdkX4mqzYxqteI7nR8zpW4Qdc7GFUTOoP3rXOtE1kAid650EFk4t26Nhgm9gak9mkXVj8VjGN7QrQrHuLCSrpOW16N7576Dd5i7BPh9n1DpD9kKhk4nfN72MrvNtCKsTG9onDlg9Nqq8gyGAzGhSDtdCaNSU7uPEufP32DfGoFDqSwEMGkN6Pn8DhMunksXUryylCQUQT/EF9EdrPP3brigalY+e2GC/rlqXyVja4mXkNs30747siH1D36swe+h1AvJjm49hhNxP1g0+t0PuXe926lokEibr6YOBM31EDuwV8/8StMBjN15qhh9iPT6Xdzbn8i9NVGFKQX4avHf7Zz7m5Jxl03Es/Nf7xV2mYwGBeeBe8sabK4oYaS3DIsfK9x8+hEwKDZeIYW0jNHB9JxEXFxFaQZpRC5ECKTufPAiAAIgoDFH6zAim/W0WMTwjqHUEEbca3JSy2g6/qM7kFjFDJeQ8r3qDadgbFfFCwxQTbXUjL3nV4M2elscIYLd/0vFAHfLthle0E+Krk/OZuwIdP08Xke+yZ4mGMnsVtmfA69L5L7BXHaYzAag8jqTXmAdsLunLP4v60/QG/xbiD69VE349bedRXoXPHF0ZX49fRmGPkLczEJkKsxrfNg/JO4u0n7/xzTDY9kp9cKOhrSWSbHusn3gosYAOSdBH6fBRgussjBGx47CFTlAUd+tzk3qIKBgTcDPWcCXwwCqr232q4ltC9QeMb9Nv4xwFOnmtxtBoPRBtnzEaC3VRFoF8RdiYpz0ajafuFUux0N5aAQBN7Uk7ocMRgMRmtCKgy9c+MndJCXYOodBUvvaJfbv/zodFw5ub/bNknI9vOLC7DsizUw10tGak1COgVj0OS+2PT7jibtP+f/ZtLJhoaD2IJSBiHMD4FRgfhowZPoGhOChEPJePzdf6FVOVatqEGkNUC15niDFFLA2CMM+tFd6c8kJ9bs6/4677M7Ez57mmaHTe4hRLiRoddj2c5TyCupRKCvCrMu64vRvTrhjthHUVWqpdtaxRwqbhpKJ/4bYq1ngao4lYM4Xw0yTrq3ae7UMxK/nvuiSf1mMBhtkzGrPkeRoQoatQFiTkBvvwJ093FfCSez2h9JVaEoKfCFtsqW9BMUU2aXX6+UmCCXkPEgK11d8/g7yC8bMrH7ZEctL4PZartulRkVKNT7otoso8KE5/tcBZ2QgXX5W+z2UXAmyF20m1Xlj3y9Y2XoYLkWPX0LECTX0f4RYUWB0Qf5BrJt3YeRcjyk50UZRHDBiQSIzmdEkT4RZ4ZxvonorbYJK5xRZlFhXfkA+jMZAa0wK+m+YfJyDPfNcFvHwmLlcKo6+vyZtEIjNkLeINuJuDUUmzQwCnXuFzXoeQlyK30hFQsQBA7TI0bhpX7XXhIxSXZ2Njp16kR/fmbTVPiFn3eTbSIV+Xp8Os1WYCArKwvR0a6frRgMBrDrv/14/7YvvI4dXlrwJCbfMtbtNqRS9o/P/omV366/YFVTI3tEIPaBadiyJ8HxTYMJ8t3nwLlxurv6zRuwMDnHLpGoPhEaJT5/cjY6947G2X0JeH7a2zC6SBBtDpboIBhHdLfd4tzcA2RHUyFNdT/HQRwa/kr7BqknM7H+160ozCymFW0vv2sSBk3uh9s7P1KbNOYtVo0cEeN7IfNsNiQFleD0zufBug7sjB+OfdyothkMRtuFJOXcEHY/dWGoL0bIe7bOTdoVgUvOQpFmEzi4glx59YMioR8QAcHnvDOc1gjlyXwoj+U4jO/U7seJYOwWBFOXQDq2IinUQnm2gF6bnv31UVpkYvUPm9Ac9D2DUHZVD+fXZCsgrQLstOGCFf6LjsIcqoaxZygEtQycUYAsrQTyhEKYhnYF38m1mJkr1UK5xSY4bCzlt4+wJT+5QbUjkfbFGZZAFUw9wsD7yCE2WHD95UPw9Cs34FKAxSQMxsVl68Jd+PDub2h1a294c+lzGDNnhNttSFvfPPEr1v68xet2m0vXAZ0R0TUUe5YfatL+1z0zG/996looToTZc9e+gui4CCoEeXH6uxdd5OAJ4mz9Z/q3SDyUgg2/bUVRdimCowIx/Z5J6HNZD9wR+xgM590DvYW4Y0d2D0d2ousxvhpXj6/2vdfMT8BgMNoKZpMZ14fe12Qh2cWAFKI7tOFYk+fPa2Ieq0xCC5CIXIxZtSaG8X0gBNc5z5EeUANlspyPkUR6E6TxuZAlNk980hAyN3LdM7Pw0Ed34lKAxSQtQ4dxcNCaDXh6+89eixsI355Yi+TyPPrHMyayFyZ26g9O5Gh5/uSQq3BH74n47cwW6gahsxixJvUwWoveQZ3w9pjbMDqyFxac24H40iwoJXKMieyN5Sn7Pe6/7swGmH26u3w/w2TEjj9uwqTQrsDVX19ccYNIAli9TNL6926g8Kz9uuRNgEQJWJp4s6twn0hEiR3XtLYZDEbbRW9T0bYXLIWlqNrRYfSIFwX98SIU5Fcj9NFB4GTuJwQYDAajqVSWVmHuLZ/VihvIAIXFQ2W0XxbsQsp/ByAWcxg2YxCt0k8sLOtD4pUHPrgd1z51JbVx1JZVo7pShx3/NN29zCrhYAn1PV+RQutQfaHboM547tfHMHTqQKz6fgOtOKHyUWLQpH7Y/NdOj+0v/2qd/fHEHExDuoCPDqKDI2Q45I5nfsew/jF49sGpbsUNdH+NAoK/CuJy+8p70uwy6AWBjIDDSW6pA2QyuiHEJrSmYpQ7iBvHs58uRYLBPvbYfTINmgoDJBW62gl6ES9AfiYXhiH2Nsn0bn5+gMgS5gNtWC8kyaSw6vWQJzk6VNRAzjuDweg4mAQehQYtlAoTOJGVCg9IxX9PKMQWFOT5w1CtsF1RRLbrSv20HL1FCqmYh6TB8BYRUXiiph0ypp5RFQiLUDdsmFiZjlParfZtigSX4gZClKYcJUYVdZaIVFYgQK6jooRcnR92FXRFsEoHhcRMrXlFLlOcyK1KoMeqn39ExQ5WAXEqWzUkVwRIdAgSa1HGqyCIRJBzFuh5Gbooiz2adFIHCRFPRR9qsclB3GA7B1aEyKqQb/SDxWofZ0hFAgJUdYm3+8q344mjafhk8JOQcV7ctDoIRCAiuPl+vW2DwWB4R1lBOebd8aXX4gYSs3yzaDN2aYyQijmMj+uCMd07O4ixxGIxHvnsblz/v1lY9sVaVFfoUVVWhV3/HWi1r6b7wFi88vQsjBrSFcs3HEd6dgnUKjmGdA/H9jcXQ+ShgtzitUcgdHcdj+Vp9bh7wusYPawbHvr4zlYRNxD4UF+bVK7hTbseMk4ESbrreKAGIiB/+Yr3kH46qy7mjAnE1i9XQvHHZpi6h0CWVECTiL1FpDWicncSZJXOq5zXMJjFJAxGh4JUEa0vbiAQLbE0pxLmKEeRci1mHrI8W3EHd2jHd4Ghv737gKCRo/qyzuD9FPDZnuJ0P5Lgo0gqpktDTu+Op+Ku5kAuxZXjY1wLzojjhALg6l0SxXnlKL2pPwTN+bErEorxgDnCl35GiUVCh3pcIQRqIGgUbkV5bjvsCRdJUbrhnWHsF1n7mjwZLEjNwpk3/sR3r90KqQfhREeCxSQMxoWlMKuYOjs3RoRACjwd2XiCjtWPmj0MQ6Y4FoUSS8R44tsHcOMLc7D8y7XQVxlQXlSBvSuaJj7wBiLyJQI7ksi6+oeNyErIhcZfjX5je2HrQs8Fa92JGwi5KQW4t9eTGDlrCO5+++aLKm6QKaXUUcMTJNZ8Ydo7yDhTV5gx8XAK/R4UGkWjxQ0EIkovO+925I7Bk9k8CYPRkSDz3e1J3EA4vu1Us8QNNTGPpzGt1oLM19cXN9D+0D6BOofXWO7J9yVBUlTV8sc/78iXfDQV8za8Ru/tlwosJmk6HUbgsDL5AKpMjbvoFesrsTDedtFZcG47uvmF44dpjyHaJ9huu/+S9uKb42uQq7VV+xYTG00RB57+ZTceMm0ruBmRuKWXzVViZpehdKn/R36sMAUZVa4HujuZq5Akc28fSjgqD8GkjN3AX3V2xhcFnwig0suK5A3FDTU0VdxAMHq6GIuA4fc3vX0Gg3HxIdfqgpNAziGbsEEiB0Ri78VVbQBdmsa7gWyGWyz5OlSsSkXAdXHsTDEYjFZh4/ztMFTXDd4KfipA7j6BsaBCh5ULd0FktGD51+vQpX8M3l39EkI72ccka37chAVz/0NRlq0im0QqptU7G2vzS24nxsExMPeKgFCT/coLkGaUQHkwDaLz1VivemQ6TWqacts4utSv3EoqCZFKoY3BOLI7hPAAh/WHT2XihXnL7fp3vlC2Y+6P2HG6mNOZIEsqgqlnWM2Yi1tEZsfzFRwZgHwvkomMfcIdxA01VS0qAxSQXNkHmi2JEFfbEqMUJ3JolT1D3wja9/rihvpoTWZgQhztmyzdseIe+Z5nPzrd84djMBhtFt7KY0fhEWwq2IdCQyk0EgU6+WlRxdsubUTkYBbcpcTY0BrkMBmk8AuphExpEwbQMqv1LoCkLZJ03xCdRQYfqfsJRuJGQAQIBXqNnbiBUMU7VlCTc+4H4YmrcWdNKbpriqGS1G3by68Q+Tof7C/sDF+lCArqOOEI6QtxbmgobqiBuDsQEYInFJwZYoGM51khcBZYBA5qLwQlJBG10iSn5zRQYnH7OTUSA8rNaidD1la75Px0XQZ+S12Oh7pfGlVTGQzGhYdUM60RXHvCFK5GyY29kOMrx9lDJ+m6P/cfR5+IUHx3+9UI9dHYbU/ilUXzlqEk11Y4hCQfiUjVuSZUm7Nd10V0zsMVJCYhlTxnTupLlxosZgtOfrYKZR4KN/EhbhJ0a7fxwaH1x1Gc3fpOrzTMIeeqvpPD+c8fKpGgzMvzWCNuEOQS6Kb2gRBgu//QdOO+UTD1joTiUCpkSd47Xus8iBvIhPOsR1hMwmC09+qoWxbstlVaziqBJkBN/7YbJp9qDuehzI3AQXW2GJzB/tmYjB/Vv54T14CG4ob6GPqGQXE6H9Li6kZ9huzEXDQXc7gGfIB7dzFSQINq0iw8xPkVMHYPsB/LIUJzCcDTEE4Bq8UKeZX7azh1+PSsC3FAmlMOc6xrdwgypifJd0wINcaF2Ikb6nM8uwjfLtuDJ28Y3/gOMRgMhhes/XFzo13fyDW+5jq/7Mu1tFL/OytfgH+In912Sz5dhX8/XonSfJuTkFQudbgPeQuNZch+bnad/ch0Kvaece9kutRgMphoHFHj6NwcSB/2rzpSO/dzsQgKD0BemncxRH1xQ30MTRHznae6vNqjc8Ssh6Y1uX0Gg3HxMRnN2PznTmyYvw0lOaXQBKrBiUUQ+OYnQ5HH9SbcChpNxtkcdFRoxHP+HIrIvFMrcnzbGfz59r9U3MdgeMLz7Gk74XRJRrPbSKnIxwObvoZFqHvYJsKHV3b/WStuIPCwUnFDU/+U3Ykbbu01HtM6D3L6Hnkwv6ef+we2eyrjIfVCeEEmdSmlpELGRayC5qlc3oWCc6III24eV34MRA25GD1iMBgtAbmen/gLOL0YKEsFDGWANr9diRsIvOBmAJvRKKqPFYCvbtvWngwGo/2SeMR59TmP1AsPiFPCq7Peh0BcCc7z7yer8PnDP9oNcJMJAipuaOTjtGFkFxj7RdWJGwhiDuauIaie3BtWYg359CwMnzHY6f5kMJ+83xj4ALVTcUMN6TmlgMUCXmarkscrRLb/Zba8XYqFB+eiiofyQBpkiQUQ6z2PXCkSHCcJLF5UkqLCkD4Rdq9JLjIt1k0yW0nl1HBflN8yFPqBtglk0nXlkUz4/XMEyn2ptkp9buIf08jOTsUNT//wELr0s3eCYDAY7QezYMHbZ37AZ4l/4mxlIioshcg3ZiDEpxxd/MoRqqqCQmxGick+idQZmaWB6N49DzGhZQj30SLSpxKBympwIPcMK+RiM3xkhgaXGittX0suqm77yUHPS2HiOfhKDejsU2LnKhEglzfYwyY8cAfpVx/fAjtxQw3hqioMD8mCkRe7nHggggvq1ODi0mm2iqH3YN9D2tYKxPHCBnGcIOfJClK4xP1NtNikQaHRD2ZB4nH4SuVE7CGAo+KIhmwu2I/q5hTraGcQIU5LLAwGwzuSvIxJBIUYxbf0Ae/b8PoOnM0rxGMLVtqtW/Duf/jmiV9rxQ0E4oJWk7BPK8ApZdRRwBtoHpGbmedbXroGAyfWiRrqI5FKcO2TV3p3EA+Izm+TdtoLp+cmIi6qSzyl2gYaTFhtCzl9VoDP8Cy4boh+TFytuMEOTgTDiK6wBGsa31cnlfPIuud+ewzRca6TlRkMRtvGqDfi5Zlz8cl931IXhIKMIqQcT3daWVuZWALNXudJi7KMCvhuTXNY3/B6bugd6rFP3mzj0Ddf98IEgjncF9Vju0E7tSd0I2PBB6hg8ZWjamwMSq/vi4opXTwfiAiYtyfCf8FhmCM0rsdyyLiQhCwiCO4Kj5IKrY1w1qkPcQd15dBAIGI2zug432Xo61zcUMOyHadguIhVwi80LCZhMNrJPEk94g8k4a3rPrZb99urf+OHZ/+oFTcQiONBU8QNBBrLuNmVJF32GdXD6XsyhQxzHp+JloTcmy8mumaIE1oScUNb2vPihhf/egKhMSEXpU8MBqP56KsNeH7qW/jswe9xdm+CLSY5lt4i4gbChRA3EOTK9u3MLOIFcGUexHlmHlx58wV8nlj9/UYqerlUYDFJ0+kwDg4KcctcQNIqCrAl8wSmxw6B3mLC50fsB/LrY/XCjaEGbxwf7ug9Ca+MutHtNjf3Gofc6hL8dHIjrQFXfyD+vspzuFWbhCpOiiMK9wNDE3T1q1xcpLLgMg1QmdN2kqBHPQ7kHQPMeiByMDD8PiDM+SQKg8FoJ2TuBorPob0jVlw6yS+tjsUKU2YllL2ZaITBYLQ8coV98ihXrgNI9VSF61hFVF4Nkcl+IpKIHA6tO4aRVw5FdaUOv7/3HywRpFocIC6pom4PtdCSct490lv9lTDFhbl8nw/1wbVf34OHH3E/ME+SiQozirD0i7VeTR7wUYHu+8UBFpXEJhSogVRdEpNqeFaIjYA0o7jWXaIhJBZS7UuF/GQ2Sm7pB0tQXSJrfaT5WiiS7Suzqv1UKCYCCw9YFRIIvvXaJV11lrzFiegEOldlhDzVJqYglQ1lqcXQjenq9hgmHwWuffdmJK4/Tidmeo2Iw+xHLkfnPp089o/BYLRdlmRtxNGyc1QMION4+8KfIkAp4akTQZVZjgKDBmEK5wPHORX+UPmbaveXchb4SQ3UnYBcictNCpSbVbDYZdZY4Scz0KR+o1UKrUUGjRPnAiJuqLDIIeGoLw1NzVdKLAiU65BT7U/dFvgGjg7EOcFTCqtGbISEcz0WFqWuwMnSSJh5MWROXRxsAgepiK8dACaigbpPJ0KSPhQD1K7HlorMPtAJcoe+G3gJxGLSmtlpvhK5vWXqbeI8kVcWQVaH/c0uspwMggnJVZkYGNDTc7sMBoPRSGRK94K2GqoHhkFQu45TTucWYH9qJkZ1jUFlSRUWzF3idDtBLYepbzSEmGAqlibCZElmCaRnssA5cZLwxoXujjduwJ1vuJ8nuemFOSjMKsGq7za43EacWwbBX+W2HbJNayPOLoWorxFWVd39qP6tx1ctR8WBpEZp13k/JfhIN07eIhFMvSIg2Z3UqL6SZOcbn7saZ/bGgzfz6D2qB656dDqie7hPlGUwGG2bP9/6l1bI9BbfPVlU6FA9IAx8gIKOayjPFkOeWubVtUpQeZ6zF9Te3a/qI3EiwqqB3IOqJ8U5uB3oBkXAoqwbw7HWH0tzAR3TSSyGKdYfgsZ9P8kjP2cBSLjEuaifIc4rA9fExB1JkRaqXcnQjekGNEj4lKYTN1bHZFji8CMEuL//afVGxGcWYlBcVJP6xWAwGC0Rk3iCiPLO7E1A38t6ojS/DIs/rHOCbg7eVAu/7/3bcPMLc9xuc/vr16MouwTrf92K9o5fiC8q6gmzLya8RcBNL1yNU7viIVh49B3Ti86TRHVngmsGoz3z2yt/48yeBLR3ZPKWucddTCRJ+TCN6O76/fRCiCyei6s3l4riKuoIFDfE/fw5g9FhBA5TOw/CwvidLdLWruwzmBwzEE9u/RFVJNndDd6IGwiexA2E1Ip8r9p6ZugcXB83BssO/IX8+HXU7j6YN9AlTeKDG7QpmO/bC2Vi+8SeoYZC3F0Zj3GGPCisjbOEa3HkvoAqCChzrPRx0eg1E5gx92L3gsFgtBTkupu9v0OcT1XQOVRy3clNh9ECVG7LopMYit6B1B2JwWAwWoox14zE+t+22SXeS1PzYXaToC5NyoNVIgbfKRhWHyWtiiDOKcbBdccw+PKBePmdJSid0AeomcQl1vOZxZAdT6dVFhqjVzbGBHl0UEs1Oia+OuPhT+/GrIcvx88v/oU9yw/BHKqBJcyHVpWTZZZBXFWvMl29CWhSLJvme9bMyQqAILM5IDiFCB0EM+THPVdUFVebEPznCZTNioOxu72oQpZejoCViXb5pz6BGig1ClRX6Dx/4HrV8mj6r4dC0voBUbUCB7qPVOyVe924W8bgkZev89wfBoPRLuCtPNbn76FXDmkDcUN9iLBALrYgURsKoyBBhKKSih4IFoFDYmEYyqCETG4by1FLDAiVa+3aC1NWI1ihQ2a1P/S8LYGSOCcQcYMNEYrNGugFE3zEBiq2sFg5ZFf7UTGDM4EBaT9KXY4KoxxZWiInICNQtushcSaoWeMK4hzhiQhVJRLKQxHhW3leYGGDSBmCFNVQiO1FgBarCAZeRo8r4yzUxcFVfhJZb3FiXivjBOQbfRGrKoXRKoGMbFWvAcEqQrlFCZXMApHBCp5Y9njAVE8AQsQNBkFCz0/9uwc5ZzWODv9mrwEPCwb79+nwMQmRwpBz2tw2GAyGd4yZMxLb/ib3HvcYurtJjj/PrqR0DI4IwxvXfAizk+rQgkYB/aS+9oJuiRiWrqHgw/yg2HraQeTgSdxAyIr3XBSJXDuf+OZ+XP34DPz0/J84sOaowzayxHyYicBb6mIazCLAOKk/xAXlkCTmQVzaOtXpSFwo35MA45iediIHQoCvEqqDyShr5MQxH+rbIts4Y8pt4/DAB7c3aV8Gg9H2IBUx1/3S+MRLaZEO/luaNofLaT2PLYmb4Ghg1LneRz+0k4O4gTzGW0ief73nbVojxIPAQX28gL4tqLxIXqppx8wTjzuHZkU6I2THM9AcpGnFUPICTL3DaQEOrsIA+ckcSEurm1W+dv5ri3DHfVMxdNpAdHRYTMJgXFjGzBmBPcsOtkhbpBBU14Gd8cacD2nie0vgTbXwzPhsj9twHIf//fwIrn3qSvzwvz9wZNMJtEcCw/1tbhZtiBn3TMb977OYhMHoKBh0RmyYXzd/3p6xOHHBa29Isksg+Cph6RXlVJxNipZcKH55eSEVFA6a1A8dHRaTNJ0OI3AYEtIN3fzCkeKlSMAde3LP4YUd87Ezx/tqFi1BhcmLxJrzxPiG4KaBs/BMyl4clQfbDZZP1Wfjy6KdeDZ4LAoktgoN12pT8E7JQdimfRuLCAjpCcSMAo7Mb8L+ADqPAXwjAcECdBoF+IQB/97t3bEnvwqkbgfSd6HJyHwAU5Xr9zkpEMwq5zEYHQoiUDPUWVS2ZySScvhO6YzKTc0bCHcHp5baJpkN7f+B3BPmzCqU/HEWyv7BCLylF0SukmoZDAajkQya3BcRXUORl1pYu04SnwtBJQcf28BhzWqFJD4HIosVxumD7UQAfI9I7C3RIufzNTiUUWT3HsQcLF1CaZuKXecale5nlXkO/yqqvbchJlU8r3vrRqyFEZYQTe163WgrZKkl0OxMphUeROcFBGRi2Sqxn1gmLg1kcYcgF9NrdWzfTrSC6LpftrjcljPyCPovHuYgJYyxfjSekGdUQFqsw+Ap/REQ5kerkg4Y3xcqXyU+uPMrzx9UBDz0zi3YYNHhREre+XXuzzwfqqEV87jziWBigwUqjoNOcD0JI5eKERPqOdGMwWC0H8pMlSg1VZ5PbK9bLxHxNDmfOBIYBVtSqJzjYeClyNAFIUsXAB+pEWaeQ0GlL7RlKnSJLardt6G4oQaxyIpOqnIkVobSa5fSQWAgQjUvpwuBzF3m633QM8DWtjPIccJUWpSbLLgqZgZW5K6zvWGty51xeUn0YgiKgxW8VYzcSj908xNDKqmGjtcjVKmjLhUNIe4LvhK9zUFCBHRVFlMRA2mHLDWmRnSwGCIES7VQcibohbrkJPJ+mUWFEL4KajGgt3LgrDY5AvmXbFts0dDzGasugZizUmGFxI2TQ4VZCd4qot8pcW6grVmtEKgizkqdLOr/DpyrSsbcc8kYHzwc/xd3FziRZxEFg8FgeMPwKwYjOC4CRakFdYJoZ3ghrtq/7ijKvthFK6c6wzQwxqVbnVUth7lfJ8gPpzb6i6tshNCgc+9omlDkTODA6UxQbo+HYVxPWBv2U7CC40U01uKjgsBHBEJ2JIWKyV0iArr0i0GP4d2w4dfGTcxzVXooNp7A4PumQNUrit4jhvSLgTyvDJ/O3+5xfxIPPfr5Pdjw2zYkH0vzLnm1wTbEPUMqk8Cod514TATgJKZlMBgdh8LMYurEcyFRnCuEfoh7ZwDF2bqxM28x6Ey47qkr8d/na+zWW8UcTD0dHUtp2OPkficSbAU4nA2qhVvEUJ0rBRkdk3gjwqBVMKwAGXMrqQbEEoA4vJoskGQUQRqf69TRyFt4tQzVU3uBD1TXrQtUg/dXQr01AdYgDfhgH9oPSW4ZxLnl4Ew8xEVa8PXG6hzOgd6M00uO4MV/9mPGvZPxzE8Pd3jhNYPBuHCMnDUUAeF+KMuvaHZbe1cewpl9CYg/mIwLSVUjYhISIxDh9YUQOJC4gByv++Au2Pi75zjCGSOuGAKVj61Y7pCpA2AymPH1//3ilfPF/33zAJZ9sRaZ5zwLQJwhlnBUGGJu4GpeH42/GqExdTlwDAaj/ZOXkg9dpfsC4+0Fi9mCWQ9Nw+ofNrXaMYIiA+j50msN9BmdjCG1NLKz2ZBklcDSJQSCWgGR0UwdWcXFLe/m405ffmTjCbrMfmQ6LWTCYHRIgUOZQYuvj6/BiuT90JrdJ+PIOAl1UvDkppBXXYa86sO40MT6ej9wbLSYce/uhUitJ26oseDcpOoEnUiCzTkrsGnCW0g6tRKPlx5poriBRCAPAzPn2ZKFzywDDE0IRKa+BXQaXvd67XPe7SeWA/kngSLnkygeiRgI3PA7cHoJsPVd19v1uQrQhDTtGAwGo+0h8EBxIjoMcj/4jo6B2F+Oqh3ZsBR6L4hziwgQByigHhYGzZhIiKRiVO3ORuVaR1vjjoj+VDGqorLhO9F1ZXUGg8HwhrLCCvzxxmJsWbCLDjbUhwTs8qNpEFIKYIkJhtRfDaFCB1FKPq0kahrXh5T6cWgzy2hBxiHXg/YCSdQP84OkwPtnc86LwaOYcO8T7HUGE15ZtNVO3EARiWDqFowqMQffTfG47qphWJJdCqPESRYsnVD2MIEq5nDTmzfg/hevRXWlDtsX73E4zw2RlujpUp+HPr4T3QbG1r7+9IHvvfqcCpUcCYdTUJiYDZAJem8nfM9nsvYeGYdXFj2N/44l4pe1ritXXT68J3zV9i58DAaj/WIRLDhZfoYKGUQ0Md5Kk/IjFeXwk+hrLyV6XoICox9NkK9BAEdf64xSlBT5IDyqTrjtIyWD2q6PS1wQ/GR6VJoVNDHf02XKV+ZZ2KaWGhEk9sfNMdcgVBGMNbkbkWfIh4y4g9aWQK27PJKXJMG/wqJAqNhFVdHzlBo16KQOwPWdh+LWLiMgF0uwNGsDthQtdLq9WCTUCg2IhEEjJklHNjGDbbSv5jOLavvkK9bZCRyMvARKiQmlZjUMghkqzkS/Gx4i6Hg59FR0YtufOF3w4KDnZVCLTbUODPUpMPqgzKyudZ5QS4yQc2Z6fs0CB71FCqO1rs367Cw+hG6azpgVORkdFXJeyTlsbhsMBsM9JaVa/LJgD7buPAd9j05A9yhw+WUQJ+ZA1EDELFNKocipOi8Idk3BhnOoTCi1m3uwRAfA0imIiqeFEJtDgKu/ULKd7Fg95zkviY6L8Hrb6opqfHLfdy7flxRVQb38CK786HYsX3oApqhAmtjqcDnnRDAN6QpxfjlELpJt7p17K2558RpUllZh28LdNBGoMYgEK554ZhY69axL+p13x5de7atQy6nQJC+twPa58ipsSkU3RTskuXXPD/3H9cZLC57E0s/XYMmnq1zuM/X28VBq6p5JGAxG+8ZsMuPIhuMX/LiScj2Ux3KgH+xc5KA8kQtJaePnOEiyI3EUjYqLoCKHnCRbEQo+SA2r3DHlgRbZcAK9cvI2d04RqcAqE6NzcACuH9EPt44eBMk8Ef546x8smLsU4nIDeH/XYzVEky0iYZEVEALVUO5MgCS7jF6jm/sES0QY2st7Q/C3FTOsjxCgQtWcgRCbiaueDeJaxJVXQ7k9AYpTOaie7Lqwn/xsHr0vEdb/uhW9RnTHlQ9OQ0eFxSQMxoWhMKsYf7zxDx2/dyeqJchVMpj0Jo+63bRTnp2dW4PouEivt60orsQXj/zocburH5uJVd+th9AMtwQiep7z+EyU5pdh68JdsJgbV7iQ40R4/Kt7EdGlThj49g0fe7UviRNObj+D4uw65+rGQApQPf/741g4dylWfbfB5XbT754IGRELMhiMDuMod3hj+3S4cUZYTDCe+PYBxPSOxtIv1iA/rfHCbVcCtk49I3HlA9Mw65HLIRZz+OnFv/Dfp6vRWpBiHLKTrXOfFXyUsPSIAB8ZSOf5RZU6SFILIU4vdBonkfsCmU+fducEdFRYTHKJChwqjNW4Y92nSC4/X0XTDVGaIMzpNhLfnFiLtopZ4GGwmPD/7J0FdBvH3sWvdldoycxshx1maBsoJW3KKb2mzEyv/Nqv7esrM0OKSZsUkzbQMDMzm5llWwy7+50ZGSRbZEqaZH85Orak1e5Kimd2Zv73XhUX+GLt77wdyPWTVrFRnYCDKeNxceV2QCQXmJ1Qc531CFBxENj2FSALYK/qjQHTgEN/Aps/AXTxwJDpruLjYOCtwKG/0GGIMEIdAYx7GMjfCOR6cVYiyQ1T3uz4MSQkJP5ZGMuBPTMBqx6nDSSBhncgZHgc5PEhqPx4d+f3KWeQ9PI4j/QCW0EDGpZ0r7hBpmQh2v45KRGmLWXQjU+WUhwkJCQ6TF1VPR49+3mUZvtPkmPqzUg32zDh0uGY89o8+ph9eLJXcQOBOskFgE+JbpfAQZFXDevwNM9EiNbneaCETjYplN6dWN35e+thFFf7Pr4jPRJJ95+H4vQoRIJHaaVrW5k3pzs/1bokpe6aB6ZQp9K/Pl0CVt7+MQmZEFn2/RpUl9YiJikSk28/15VcFARWkw3rfttMf9dYbDCNTgdY1u85s3ozGIur4CnvQCFCo7S4/eLR2JNdip1EKNGKXsnReOya03fSRkLiTCPPVIh3j36KGrue1MpQWBmPTE01TWpwR806kaauQZ4YBb3ds6CwuiQM2ggrLShtQukl1aA1KtaJOjtx9gmsyRKC6HDINpX7HHAM5XFu7DmI5NJw7/bPkB5ag1C5vTk3wX1R2s5zqLSEIEZh8nkOMoRi2fnvejiFbq3Kx095ixDv1WxU9DDvIMcl5+YpOvDi0NqYfOGkaQoy6I1xUIUVUyGJVVDQmy9Et2MZeQXkMh5yxlVuX2dX41h9LBVEEKEISd0IV5g9ak3ljAC5wgYb70SDU+31/BaXr8XUhEmSY6qEhESnxA33Pzkb5Y3X2xSGgZAYBSE6DNzmw2CMLvEvWSwde9kIzPliCRpGJUD0cW3N6q1QHXMTNyg4WCb2gxDR4iDd2EC6+htvO+FYiEo5ZOYgHLDdIOMR4ojHyQMvXy39bg11J/cFSb7ref04VPIiIvsmo6LOT0EtSctLi4G8sWDWHTJ/dsVDU6jw+a9PF0Ohkrdb4DDljnMx/7OlqC2vQ2xKNL3PBzkmsRisWPvrpub7jMlGnfWc6T6cTXkBiiMt7yNnTz4dk9z88rU4tPkoDm1uawzTa3gm7nj9hna9JwkJiX8uR7Ydx4tXvo3aspOzTqLdVAC23grL4ETwEa5xDkuED3vLoD7gfw7NF6SgkqRyEnfP5D6JeOqC/zZesPtYA/ezNE79NgQgodiKZb8+7/EcKcCa8/o8uo1uVQ7qLutHlORtd8KLYGwA61bDa+8VD3lhS//p9dgyGRUb2sz+i38dqZFexQ3NsAxEXqTvowkhPASWCX2gWbIf6u0FsAxPbSOGUxwph2pficdjf368+LQWOEhISJwYccOjZz2PqiCK30lS87ALBlHx7T8Vcq1P+hzWz1pKE3/PWImaUv/9bda43qgurUFEfHjAbX1BEtmm3n0+Dm05hvmfLYFCrYCTmNS2g4vvOp8WyxLTrvi0GFx053lBr5OY6s1Y/fNGdJTju3IRHhNKxxxHt2fj2I6cNtv0G9MLt/z3ug4fQ0JC4p/FgY1H8PK0d1DnPl91ikP6OZKocOXDFyOxRxyev/SNTu8zMj4cv5TOaJNgNPf97usnyZiEU7JwWAOvN7UXPkoH+7g+HvUIYlgIHEMzqFmKfHu213nEPz9ZfFoLHCTOUIHD1/uX+RU3xKrDcHnP0RgUk4FzUwbhpc3e3d/+KSzN30UTKb6Z/DD2V+Xjx8NrsLcqD3KGxbmpgzC930Qq1CAsK9jdXOwzwVKKcy3FUIgC9iqjMD8kAyZGjmWGegwpWtv5E1v7BrBzJvUQ9AunApxublBEWBA3ADjwh+d2W78AMsbjhOC0AYufAi55H5j+G7B3DrDzB0CfD4TEAIOvB0bcBqj8u1VJSEicIpA2aNe3LkHA6SbayF0J9JqC+sW5XbNPh4Dyd3Yg8vo+UKa6HPfq5ucEbOo7Q9gVPaDpH42yt7YBjq6PUesIfJ0NvMEOLozkVUtISEi0H+I240/cQNzlzv3X2cga1wejpw7DW7d80vycEOcnLSEIgQMpMmoPMgcP9ZZcWMb19Or0qThYgjW7NsN4pBT/W/gsDm48SgUFR7dl0wKecZePxGUPTKHFOISVuwPHQh8wm3F4R+N25JiiqwC26ej0J+l7/KwTiKIMX364CCte/C1gDGfrQqOwaB3SslKwfKbnuIg4/Q09dyDai/JYJeT5NTCe2xuO1Aif26kONLoIhqpQHx2CDz/4C488NQ2fPHIlFmw6hD83HEBZbQOiQkNw6bgsXHnOQIRIrkQSEqcFRqcJbxz+EA1OzzFJlNzURtzQBKnvT1LVodBM2hVXC2l3snA4WSg1DvAiA6cgg5pzQhaEgYUrL4KBXWChZH2Li208i0qLFkla/7HD+iodSrfV4tvYbbjnkrH44PAy8IIMVVYtBNGMULkVTKNIgTTTFl6OKlsIBJHBUUMs+ugq24gceFGGWoeAlw8+iVvTH0a6NpU+/r+9i8HJvQ9KGCIz8NiPDNVOLWLlvsd/VoFDHR8CVkY+EQHT0+5FumIw/r3tP1BFVoFjfU/gk/dCkiHcj+cQOTh4V/9LUjJcohQZrE45oiOMPo20yfegEhxexRTl1ioYnCaEyr2qOiQkJCQC8t3sjZ7iBncUHGIvGYnz0yIx4Jx+GDllCP533XtgDXZE/n4UtdP6QGxS4zXCNNgQ/cthj5QD6+gebcUNBLf0njZNoCD4TEPwx5JvVqG+qgEvz3sKe1YfoKKA4ztzqcvr2VeOxqX3T0Y0cYADsH7uFp/7cfSIg31oOvYbLEBTOh7jX5QhhHpPLxAFEZ8/9gMWf7MyoJdU6zFJeGwoLcQl78sdkqQw7PzgxyTOaC2EMDX9TLmSOqg358AiZ+FMajUusTuh3ngcbH1LsZPZYMFXT83CPW/fjLdXvogl367Gkm9XoqqoBpGJEZh86yRa3KSWEuUkJE4L9BV1eO7i12CoNZ7U81AfrIDqYAUEnWvunTHYOpVqQJJsfnt3Aa5/+gp88+zs5vaYrTZBZnVAVHmadRBteOOlu0/q5WpMf/gbvPLIVGT2iKfzTh8/+DVt9wnKonpE/HEAplEpsKeHuwZvggjGDsjNQOvQPCE8QAqODDTls/eITNze9xG/ztuOFN/zTk2IpAtvNXwi/TUfHwbVgVIocqth6xUDQasCY3VAkV3l0T80kX+wCBaTVeoHJCQkOsz3L/zsV9yQ3DuBXssPnjQAwy8YhOcvfT3ofYssAz4pEqJaCZnVDra0lq51dCdEQEDMrV745XEqfCPO0kQ0TJLVzpk2BpfdPxkRjes7/sYkTRza1FZg3F4EQcCH987A0u+9mLq2Qq6Uw2FrGZMQYQUpxF345XKP7Ui/OuTcATgRGPUmfPPsT7jt1Rvw7pqXsfjrlfS91JTUIiYlCpNvOxdTbp8EpVpas5eQOB0gfcLzl7xOxVGnE7tW7MdfnyyhAodvnuuaOmRihHH34H/j+V8fR2qfJPA8j08e+ibgmnhHIWk+L859kqZQ3Nn/UfDOrisSI2fsGJ7p02yRT44CU1oLrqStKJwI34IVF0qcWZzSAoc/jrc41nij0lKPSzJHoU+kKwKTY/75fwDbyo/hufUzsSB3m8fj3x5YgV+PbsBXFzyIYXE9aNJDNG/Bl5Vr0N/eovC9wpSHR+v24uGY8bAwXfT17vze//PKUMDW4CluIFj0QP5676/JWwcowwDbCVDp7fsFOLoYGHM/MPEZYNjN3X9MCQmJk0PZrq4TN2hiAHMVuh1WCfBBONmVbofFMhS27K5rN/laK6o+2wv1wCiEjEmEo6R7FzwchQawYxIRfWMWqr87iH8KMrazYdESEhJnKmSCoXXhfGuImyhJC0julUDve7iQ+rPVFoOLjmwvJMWBuH3a+ifCmRhBRQdslYG6eyryXQsQO5buxVu3fEojjt355a2/8PeMFXh96QvoM6IHrPb2OZa2vGdSUeT2PnhAICvC3j4P8rAAzNtyBFpfEzkyQKNTw9xgaeOiWl9twL51h7y+bPeq/VDrVNQNtT0wdh66pUdgPL837BkuAXprcYO8UI/6qf3gSHEtfv9SVoa/n5uBW84fgTumjMK0CYPadUwJCYlThzWVG9uIGwjhcv9tNimAj5BboHdoSL0M6ixq9IoNRYOsjooa1KwDnEyEXZRDDf/Fog12Ff1pdCigYCw+uxuSshAbYgYDHQR4H0c57CyqViXSxvaPdfuQMFCL3foCsAxDBWg1thDobWqoOQdNUrDxHJy0ysZFuS0M9U41+ugqoGEdtPm3CXJYeAVNRaixl+HVQ/+HOPlUTEkciuMNVUjWKRHn43zckcucqHKGIpojwgLvfUSuNbYxYYI0xyKOGfIwNuNsPDbodnxT+C7kMgEc430CvynxwTsiQjg7hkSWUPGEhedoggMRRMTJG5CoqINS5oBVlKPEFoEqpw4q1rvAgcB1JDH1FIH8PwkmKSTQPiQkJLxjszuxYu1hvx9PmdGKSx67FHGxLoMLtnFMos6pQ/xnu2AaGgdbso5ed6uy9dDsrwRjb2kbBZ0KPBk7+KLpT7RVU8yW6CFzdqzwaPP8HXj9xg+xeo6nQ+jsw3Ox6KvleHP5/6HH4HTYfKRD8DGhVNzgtRP0cb70KT+FUqQAxyd+xiR1lQ305mthnBRJkdQ4gqDk4OgVB0dKJHXmZmtNYMrqYO+fCD6qRWBCCnlVe4uhWX2ECh+caVEQORas3gR5XrXX9zH/06X08ySFwdc+eTktypKQkDg9WfTVii4TNyT0iENZTkWHX0+aXNYQeP1DE6qBuSFw8RMpMCXuz8T5ufkYggjloXJYh6V4bMvaAF4hejX5oM9bRLAOIK+8Djc/9A0uS4jA+KtGtzEyUZQboZh/GLZesbCO7UEFBb6uTmX2AP2eCBzeegwTrhmLJ79/AK9P/8j3tr7U0wGgY65+JDlDA6beAtXekoDCEuLgejoXEkljEgmJ7sVitHikjXmjNKcCVz06tVkUIA/SvMmZGg3nAM9Uamf/VHBHSsDldiwRKFhIqvOrsvexptV7Kzj0Ox2TEOEwMVfyNSbpckT4FTeQtlwTqqbFxO7iBoK+vI7e2uxSFLF75X4o1QrYLP6ThbqC399bSNfUbvjPNFz1yFRaICwhIXF6Qq7bu0rcEJceg4r87q/d0uhUMAexZkzMATkFh7z9hV12bLKvO/s/hovuOI+akxBDiu5CEEQ6nhp32Ug8+sU9ePfOz7tu37FhEAOYZ/AZcV4FDmQ8QtKKTlekMUnHOWX/V5AC/1pr4MmZMlPLH8TA6DScCrQWNzRhdFjx6JoZcAg8sqJS8XHVeg9xQxNhggOfVa7FcOsJKMwlEHFDR2AVgNxPtGZXnyNJoljmGTMqISFxmlF9tIt2JAMGXt/JXQQpMgtG3EAuduxm1C3sovSGVlj210D/a1d9dr4x76qEfu5xqPpE0uQIb1chMiWLkLGuIuATgTxZC1brvchIQkJCIhCkeMVYZwq4HRE5NNFrfBac/VJhJwXufkQMNF7enzODKILLq+zQl8RVGhCy+ihCf9qC0B83Q7vkQLO4oYnW4oYmDHoTdXwlbkF9U2IDHou+D2+n3+qOjCcOeG5PkJ9kwZh3LRoLkSEQtD6ce0TXd9ERQkI1kCvbJwx3xmhhmtATfEQIdR9kas3gyuqhPFyOsHn7oN5RiPrL+rsSHtwKqgwWGz5ZsBGfLuh4jLOEhMQ/n911+708KoIjDVoQBftmuxzVRi1EkcOHky6jj4crzeAYV3oBSUdwCr6n80xOBcw8aS9FRChEV5pDq+6E3CeJEHJWgILlUWETYeW5NttZ6xU4uqAXHBbX9XKVwYTX9y2lv5N0BkfjeQhg6HGNDqWHuKHl3ctgFZSodWihd2jp+TWJDggqzoHttRvw331/0a3LTaE0IcLbftxRMQ5YBCWOW+NoWkXrhIhiWwQKbZ5CtPXVK/F17lyMjB2Cm9Pvgl1UwyawVFTShIIJwajIyfR9eUeEQsYjTGFFlMqMcKUFCRoDtKwVI0LyMTikCDFyA0I5K02XGKotxGBNEeRe/w+IyNJlQsMFcHqVkJCQ8IHBYIWlVUF9m5ZGBKpqWoRjvYmTWiOs0YHQ9cWImXOYpjZod5Z7iBuaxALtxu6E4kBRp7631uIGdxHzq9e/T4txegzN8LqNo3eCf0G5D005W9QydmsXnRiThEWH0gIvPkwN09TBsA1OhRBJ0ho0sGfEwHJOLw9xAz2cSg7L6AzY+sSBqzZCtbMA6q25UByr8CvSIAXPM57+ET/9r1XqtoSExGnFtsW7umQ/pG36z+xHO7cPpWeqgi+CETc0zbF98cQPbR5X7SmG4rjnPBnRQMuNImS2tu0iaxWhrm7pCUjCwd8r9+OTB7/xeWwyd0YEDP56F3l+4H7kj/cW4tvn5+Dcf52Dhz+7y6uwQBcZgsuvHBtwXzIiBCb9nUwGkd5cy1t8Yjhsw9JhmdQPxsuHwhmj87kP8pqhU4ZAEeR3JSEhIdEaIuZtLfJtjcALqHYrZuw5rGVM4gs+LhzOwRltXaA5Fs4BqeAbk6a7k9bihib0FfV4bfqH9PceQ7yPSU40ZHzU0WLi6OQosPITI3Qj47nPH/uepkdISEicvmxbvLtL9kMEWM/++HCn9hHsOnAw4gZCyfEyzHhqFroakiJHjAa/fGImupvZr87F7NfmYsrt5+K+92/1KiwIiwnFRXed3679ilr/4oamsZc3Rl40hIr1JCROmwQHJSuHTqGGwe5/0jha7Zp8312Zi9e2/nZCzi0hJAKZYfGotjTgqL6kS/ddaa7HyoI9uEkXgnib70mSENGJyeauU4p1C8QZXa49scfc+gUw7iFAF39ijyshIXFiELsoOiuqF6BLBMIzgLq84F4T2QPIvACwG4GGUiDfM3a+s9hqo8E3+Hdq7Qx8ffe7MhBM28qhPSsRmiGxUPYMh3lnBeylJjrprs6KgmZQDESnAOvBGvAN3X9OjmIjSv5vI7hoNTSDYxAyMh6MRprIPx2oqqrCV199hcWLF+Pw4cMwGo2IjY1Fz549MW3aNPzrX/9CVFRb53UJifag1qo83DZ9ERnvciXas78Qn83fDSEtrnmhVfTncFdrAh8Z4rUwR76/EIzR90RLXFoMUvomoqZU79NBgu61A+mW5XmV2Pb3bmQp1aTC1bejnChSgULbA8vaVNvS9VfB83Ra75U4knY1ZFFFoQle6GbtFw/zuIw23wlv56HZXgSuygjz4EQI4b4LVWeu2Inpk4YhXCsVs0pInI7wIt+mJJ80GQ6RhTKAyKHYEI46q8sI4rz4Pugblox+umQYxQNQME7EK+uhZJxUWECSAVpP9vbTDcbE2GtRbTMh35SDReV/09aUyBxaixdcryQPuipgDE41zKQhrmdgLtDCVK1BfRGZU3Ml7zCcAHsED73DBo6TgWNFmOxKcCoLUlR6DNQWI5SzwCbKkWOJoakFBoeKigR0XNt+UsXYoWOtkDO8y90/TMD6Mh0YhoNTYHGoOh5Z0eVgScKP26fp3u2Q9AWCQdBgnyUVYawZKpkDTrCoc4aAB0NFBXaaxND0vkX8XbYSUxMmYFz0eAwIG4xN1WtRYikCK5NhWMRIDAofCbtgx+667TA625p6kH16m2dPVdYiUu5d+BinaEA6X40qu2ueUiFzIkphhI6zQhAr8OL+G6HlUjEwfCLGx5wNDXeCDEFOAOT/gG+xSPD7kJCQ8I42RAmFnIXdT1E7ISLc1a7sXL4X37/wc/s+Tn/Cay/bMtUGKHfmISk2FInj+qC6pAYFB4vRlRQdLaVOo5kDUr0+zzemVfikMVjOHbakliYgnGgqCqrAKTlYzukNUe05NvEbJkTGJ4OTaUEvcS9vDz+/OQ9XPDQFIWGewgkJCYnTA2eAPiFYzp42Gn1G9kTGoFTk7QtuzXnsZSNw3VOX08LPgxuP4vf3ur540VTnWbxJivetw9LAR2shc5DmXaDppUSQoDxaQVNvDOf3cRlRiABnFsF5WXrgkyJRsfmYz+MSAZnyYClsg1O8P2+yQX4sODfxn1+fh8sfmIxL772QfmZLv12NgkNFtLh0/DVjMfaSETBZ7Fj61Aw0+HIGp4YhrU/Ci1Bcq4J5Uj+ELN4H1q1oiw/XwJ6VBGdKJNayDM6/6X1kMCwuHtkbk2+ZQJOJThekMYmERPcSGqWlYi3eT3obmcOKiAujv29ZuDMowa2zV6Jf0bKzVwKYomq/wrPEnvFIzIxDRWE1io50be1W7t4CHNh4BGlZyTjVIcW6DNt1RaVUcEeSA528z7HKT//7HZfedyFUGh/GVhISEqc0fBeNSSZedxayxvZBcu8EFB8rC+o150wbjWmPX0qTa/auPog/P1mMrsbiZ41e4GQwDYgEH64AW2dHyIFaME7vbaEQHQo+NQaiWgmZ3QGmuBpl+ZUBE9i6gu//72faDpNEnXOmjcGSb1eh8EgJFbpPuv4sjJwyFA21Bqz9eSPMhiBNPYL43mUO73VvWxbsxOXhNyOlTxIuvGUiLrh5PNSn0Vq6NCY5AwUO5AL4ih5jMOuw7wiueE0EPtmzCHqLEcfqSmBxnpjizaGxPXD/kIuRU1eGR1bP6PL9H6wpwhSD/9hpgjxQtRLDAuFpQG1exyqbugJH10SkBo3gBA7OA8bcd2KPKyEhcWIITQZqW6KJOwTDAZmNKtSEocEJHKL6AENuBmSNRRcl3pN4OgNvDax07TTk9LtII+KPugU50I5NhC2njmpSqLhgSAzkMa7FdhnHIOqW/qiasQ+itWsGPv4Q7QIcpSbUl5rQsKIQkdf1gXpA97t+SHQfs2fPxn333YeGBs+CtOLiYnpbs2YNXnzxRXz44Ye48cYbpa9CosNwcg7n3XAOFs1Y4fV5kZEh8oIsvLNuJ+oXb0De0UqIIim7BHiVDIJCRrchQgfGLoJxa4NleiMUm49ACA+h7qM8nfyXgalqgPx4GTgvccLNr2VkGDi+H6b/ZxqObMvGmzd/3OXf8vFduVTYEbIpD6az2hb8k8Im1ua3FofCMgySZUCh3QFBwfne3u4EE6RzRnuxm4MbJ/LhapjHenmvBAUL43l9ED5nB+w9/fchdiePlXuOY9rZgzp6yhISEv9gMjQZOGrI9hA3EOocGsQpW9yzW1NnU6Ha6nLVVLNy3Nd3Av398pQBWFe1DhnqKg89Gak1LbGFo9wWRo+UpRyHu3vcCabxgKsqXUkLLtq2W2QzRiSlPy3P8SIDUQtUHI0Gb5aD4XgkDq5AbN9qKEIcEHgG5WYtChoiaIIDywi4KGo/Bod6LhD30VSg1B6O3eZUVFhC2xw9Sm5EGOc5IZ4ZUgNdshUrywai3sqgxqLFjrJUJOnqEaE20X3orRpYHBx6R1ZB7t5pNr7Hej4E9fCPU2Qgk4n4Oud3XJY0GAcasmF2sghTpOOc6JFIULvSiRSMAndlPonPsl+FTbB6CCS86fpkEBAr959wmqKoxQ5kQMk4kKLWgyUXAM3nZUad4wiWl2fjj+I/8UDPezEkQuonJCQkAqNSyTHx7D5YtvqQ7/YnKQIffrkSBoMFOesPg1cqwARwWHWHLa/3L2wm0Mgg8osMQoQWCFNj4Pgs3Pj81di96gDev/uLLv86j+/Ko+KJzsLJGUQnhKKY5WFNG0kT7xRHyiAvC9SrdB3WiBCa2NCGAAMqIohwxodBXlrXvuOZbNj01w5ccLPrekNCQuL0os+IHji+s3Np0JpQNZ1XIky6/mzk7Zsd8DXn3nA2npn1cLMQ+5e3SEJb10L2TRyqm7AnhsMyqW9zH+WSbzNAiBqOjFgo9xTTwkpVlQ2sLsBaeKNrKafg4LR7L7pR7i8GBAG2rCTAzQmWrWiAenM2GFtwJlXkPXz+6Pc45+ox2L/uML2f2i8Z5980HvHprjFJiFqBdx68DA+/PxfW1oVCpFt2tHQTAVf5iRiyXyLU23KbRSEk3cHdFd0oitjPO3Fo7kZ8/39z8H+/PI7hFwwO6v1ISEic2RDR7FlXjsK63zb73CY1Kxnv3vk5TYjO2Z0XUIwnKuUQI/2bpYpaNRVxyXwUmRI36iGT+uOG56Zh8/wd+PSRb9HVZO/KQ2VBVaf3Q/qe2JRolOYEJ5TrDgS+8zVjooKDo08inGkxgIIDeAFscQ3kR0qo+NAdkjaxddEuTLgmcGKRhITEqUevEZnIP9i5ZE9dRAj+9dyVdAww/uqxNHEgEFNun4R/f31/8/2ZL/2K7h6TuGMYHo3qK9IhhLSYqjImB6L/yoduZ3XzhTv54RycCcEtjYg8JsRFQFbdAPWeHPDtmLvraGIESdQZdfFQOiYhpPdPwQU3jUdsagy9Hxqpw4t/PIEXLn8Tdkvg9XS2TA8H6eP9pAKxRb7n8kg66tHt2fT23Qtz8NLcJzF4Qv8OvT+J04dT2v7qrkGTaVqCL8rNeqwp2o+91XknTNxA+DtvB65b+BbMDv9Orh0hxmlBrL2hcy7l6kig90WATAHU5p48cYPmJBWPWk/cwoSEhMQJhLcD1Uc7tw9tAjD0diCs0YHHHOQiac1RYP3rQH1R+17XDlhVx4o6VYPa0daS7oDzv3KqGRkPzfBYYluKjmLLrkfNrMMwbiqDaUsZDCsLUfHeTtT+dgyCU4Cj2gL978e6XNwgTwsN+P5Eh4CaOUdgLzvxjn0SXcM333xDRQtN4ga1Wo3Jkyfj9ttvx6WXXoqwMJdDTG1tLW666SZ88UXXF1lInFnc8J+rEJnQdkwiKFnUTxuIYz3CsOFgHvbnl8OoFGBK4mBK4ODUshAUDEROBkEugzOEAS8TwJbVQr79OBTrD1FnOLaqAaqNRxEydxs0c7dCvf6wX3FD04TEilnr8NCY5+Cwdc84iCxAiIIA1eFyhP61n7qGMg1WMHVmcDVmcFZ4CDY8PxwR8QU1mBgRirBFe1D74yZwxyr8Hk+RUwkZ3/UqPG/fnb/0Bn9FXaJaDntmFIQgok4Nlq4fK0pISJx8DHYbfj1QQ+pdPMQNhFpHCMy896Qwp8Bge1Ua/b1/WAK+HXcL+oUl0Pus7Dh6aDzFDWjcd7KqDuGcBSanEnP2lGL8t1/gcGUlfb7cGnhxVU5SBORGeiNF93S/DKCMslFxQ9Ylx5A8vIyKGwgMKyBR14Dh8UX0tROjj7YRNzSRqKhDL1UFEjUNOC+upVBfy1rbiBuaiFGZMDYmF/JG4bjFqUC2PgbbS9OxrTQdx2pikVcTgxT2BgwOmwhR5t+9h6wxOETO476F5xCnrIeRX4E5Re9gf/2fOGqYh6Xlv+Gh3S/ji5zZcApOlFtLMKfwSw9xA3m9LxNzNeMA15go4Qs168CkmChkaIwe4gZ3VKwTnKwBHx3/HGWWk7eo3ZXwoqxLbhISEr657YazEO6tOL6x0LOoRI+tO/Nw6Fg5bHERcJ7dH85eSb532OpPjrHYwRVWByFuaIRlYBneA0t/XI8HRz8L3tk9iaROh5OOfbzBVgRYA+AFxJfWYlzfBDjVDIqq6yGS63hS1JocAfP5WbD2T8SJICYlypXc10FEP4vG/jDWSXNfEhKnIwa9EbtW7OvUPvqO7oW3V76ItCzXOknp8eCcUlfN3oAbM+6nSQSEslz/cz0dwb2QiFwiWs/u5XOuRtQoYCHPE/HFlCEB983ojS1i8EaxgzdIisNt6YmYmhCN0B35CFmwByHLD4Ixtm+uZ+1vm/G/697HX58uwfzPluKHF3/BLT0fpAW45H3m7ivAJ1e+C+XMrVDtKgRXVg+uvAHyknqwdiJYb7XDAJfMJKmBkHVWH/Dj+3iIG9zhEyNQF6XFS1e+jbK8rv8OTwbSmERCovu59b/X0UJUX4WgBQeLsGPpXhzdlh1c0pCfdtgDxvd2Ai/g7xkrXWMSvnsM9Rx2R7sC71oTlRSJ0VOH0Xb/ZIob4jNc4rrOihus47NosgYVNxBYBnxaDKwT+0PQtTVzNEljEgmJ05K6qnqanNAZssb1wTurX0ZST9c6SWlOcNelS75djZt6PIDi46XNqZldjS9xgykrApX/6ukhbiCQ++TxkS9f0vJYepyHuMFj/9GhwMB0MP6MRgBc/8wVmHDtOCqS6yjLZ67Fq9d/QMcj5EZSX2/q8SC+emomfZ/Hdubgw/tnBCVuIMicPLhjvhOTZCYruLwK9D+rL02v84dRb8L/XfZml5ib/BOQxiRnYIIDIVYThp8ufgJvbv8DKwv2wNlY9B8iV8Hk6B53z2Ahx392w8wu298UUwHuajiE/nY9UDIPCOnEBaalFjjW9fE77WbM/cCmD0+84CDaNZklISFxmlG4CTAGN9Heggxg5S7BVcJwIHWc59PVR4Lfld0IbP8MSJ8IiHznEiRI2kwrlJHVYFVm8FbvC9Y+T6ugAWyYAnx9EBecImh6AREe2PM822YuXgPdhBSEDG10DxqVgKov9nadRk4EzDsrYN5VQRMciNCgq3EU+HdUbYYXYdxYgsire3f5OUh0L8ePH8eDDz7YPKi8+OKL8d133yE2tuW6yWAw4P7778ePP/5I7z/00EOYMGEC+vXrJ309Eh2COBh8sP4VfPnkTOoCRCbNCfzU/nDEeHcY4tUktUEE26q557UcUFINtlTv9XWyDhSsvHf3l+gOZr/6ByITwunv8ioj5GtaEpScUVqYLxzgc4GZK6yBedNx7Nx03MMBj4/Wgo93iZDcYSsboNzTOZcPX1zz70vpAjJxMA0EHxW46Ii8d7bOAiHMf/JSepxrUVlCQuL0YsaBbThY3YAMNhSJUZ7X0yRlocASiRiFkYoSOEagC6BWQQULH46JSeEYEzkBUxLHe7yu1rre7zGTVbUosoajXsWiHrW4dOXXeHTgePhIPG5OG0hS1VOhgbsIo96hQoElCpyMo8kN2liz19crWAF9IyoxMizf77mlKmqQZ4tFqTUbWlYHI29AqA9xQxMpIVX4bNyT+PzILuyqKWoRFggy9AtNxF39xuKS1Cz6eL5xHGblPw/Rx6DEKpBs05Y32OBUIl5loCICAgMBvZQV6KGohI6x0e33mffjgR3LoVWIcIqefQP5rFgfxxKCLMAvsRyELECPruVsMNpUWF6xCjen3xDUfiUkJM5sEuPD8cmb/8Jn367Blh25EBqL/tUKFha79zkqoXcShHoTmEov4mkvTZ1yRx4tWCFFj222bRT2eSBn4UyNRkNuBT564Gt0B2TR1ZdgWX6szHWuMl9jkmo07MnH2tSwluKbVtiGpdFkBFbvvT/sKq554jJ89t1KdFQCzdZ37PxS+voRuUhISJyy/Pz6vKCLf5ogxfxKjRLpWcm4+K7zMOX28zye37Vyf9D7qiysxl2D/o07X5/eqbUDTsHC6aMPa8KRGE77Jn8Q0Ro5jcIFOxE6PBMNPly+iUqdy3WJxclxX/j1cfz27nwc3tIyd0XoM7InrnvqcpwzbQy9v/3cQfjPxa912TIJ6cP//HgxFn6xjH4vdquDulWq95YA5Eb6pwFJsEe3nT8LhNgoaNh3vAz2NP/zUo6ecbDmVGLBZ0tx99s3d/DdSEhInEmk9EnC++tfwVdPzcKOJXtoe0aEDQq1HLYgE5Q9IAZBpJhSrfC9jcNJCyUDUVdZjy8e/wHdwVdPzkJU6zFSO6gpqaW3kw3p2z59+NvgxCc+IMkNYqgPMxKlHPZBadTMyx1pTCIhcXry439/p+OC9kCufVUhSpogMPWeC3GhW+KkIAjYuyZ4wUR5XiXuyHoM971/K2QBRAL+IAX4fDvaRf3kZN9GeTIZ9qXJoNGpYTJYwKfH+d2XNTYcL//+BH59bS6O7chpI/4g7fa4y0bS+5v+2o4Xr3wLXQWpdfjtnQWY99Fi2pc7bO1LkiBzcjJepP0Caf8pogimsh6KXXnU4PHgxuBq8cwGCxZ+sRy3vnJ9R96KxGnCKS1wICRqI/HhpLtQY2lAibGW/rxv5ec41YhQapGsjcL+moI2z93acBjP6Hd7PmhyTbKcsgy7BTjncZfj+to3TtxxQ2KAvpeeuONJSEicOEq3d+BFoqsdMpS6bkSk0PNC11MOC2DqgDtN/hqA81/U6Jcxj7qEEg7PxUmyHhve9yBq9g4HxOADmIR6O8Kn9UL933kQLcE55sXeMwjOOhsEswOsTg5GJYdM7nlMZVooVFlRsB7sYrUsKV7qBnFDe7Ed915cLPHP5o033oDV6prMHDJkCObNmweFwnPyU6fT4YcffkB+fj42bNgAp9OJ999/H1999dVJOmuJ04GEzDi89MeT0FfUUSeI8toGPDp/rd/X8Aq0ETgQ7H3jIS/pwjaoHSusYb3jEdkvCcc3HAFXE9jNs7bMe5IEV2OEaks2rKN7tHFaYsvqoN7qORFDIOkMmlWH4UiPhqNHLASNgjrFynMqIc+rhsyHM2tnuPyBKbj68UtRU6bH7+8uCPwCpxCUM4XqYDkcab4XNeLCtThnQEZ7T1dCQuIU4OdjLqdUXvDuPCOCQaU9FNX2EGhIYgKJMqYloQ4Y+GzMLc0GjzpMTbyMbm9y1sDo9C/wIsX6Tjtpa2VQcg6EqOyYVbgIqaEiOB+zfqlqPXRc2zLKMLkVvZhqfPzQ63jt6HPwt/wcr2mg2/s9N8aJEMaGGnsFrk+5F78XzaKP+YORiUjSWDF7wm0oMdehwW5FjEoHnVwJJev5htK1A5GgHo0S85Y29atWnoPBqaS/2wQORl4JFePwEDdMDDmKOHmLCFrD2jFGl4cBmlIsbhgIg9h2XCf4ECdYRTksgpwmOfiCnINT5CCX+V8UaXp+f33nXK4kJCTOLFKSIvH6C1ehptaIymoDirLL8epny30W+BPIYqpXgYMXyPW6ev1R8JFaOFOj4EyOhKhW0vGGryMITakS7biUJ4IFUiB0fCdJng5MbZn3sRNbbYBiZx7sw9LbuLqyZXq6oOrIjPEpbmjC3isO6m156C6I4PrKhy5GQXE15hRXtVkIJ+FAoh9DO7aigQqsOzKGHX5BS8KShITE6QEp/Fny3er2v44XYDFYcHjrcXoz6M20fSIQB//2FieRdJ0ZT/8Itc5/4pq/4qbvj3+CO/s/BqsvQQI57yhtYDcQloGgVaJwfyEef2M63pm9AZbWBTqCAOX2HDoPRc9fFBESHoKPNr2G8vxKmOrNtG/ShGqgaCrQaWTk5CEYNCGrXQVXwUALTH0UU3EletgHpbZ7n2xjQoU3B+3WNG2zY9le3P12uw8lISFxhkKSf15d+ByqS2tRXVyDnL35+OCejq29keBLrqASzr7JPrdhC6u7JfU5OikS4bFhyN4d3Digxodh1anC9P9MwyX3XIhDm49RJ++OQHw/nGkxfrcRYsNc6z6Ngpe0rGQMPEcyn5OQON0gyTbLZ/luSwQVB2uvSPqTq7VAmaunbT4Zk5gbLLQtIiJjMj4h67iEoiMldA2+PZD9EeGWSutaI2gvLMfi+2MfUaFEMOkFjggFbCnejQ+bOFRTjU9+ug8fT/8cdq3/a3JBJkNk70R8uu0NmoxHCv1J/6QJVUOu8ByTjLt8JPqN6Y3DW46hK3HaO57IyuWUg82rgEDSKDgGsnozmCDMBr2xY9keSeBwhnPKCxyaiFKH0tsTa7/FqcT4pCw02C3YU5UHvc01seBOJG/F4/q9OK1IHgkcWwq8ngLE9QfCUoD67nFk9YBVAld+QWw/uv9YEhISJwabASjeAlTsdaXTdJb81YBCC+hzgbpOLF46O5EiVJffRtzQhDq6CtFDt6HuSBac5tCgd8lFKBH/2DCUvb4tqEVlweqkqQ9ceMvFvrPWCtPOCvD1Nvq4ZngcnBXd62B3MmkMhZI4hSBChd9++635/vPPP99G3NAEwzC48847qcCBsG7duhN2nhKnNxFx4fT2wxPf+HZoaIQUqZAmufVWPFmcPcGMvPkclKRH4lBhJajc+tJBYPRmqHcUQF7SvgmjJhR51eDK6qlYgQ9T08J/eUENuArfaTpExKDIraK37iZrbG+s+30znbDvMTSdTgpVB3BKUuTXwJkc7n+bvBpwtWbYD1fA1q+t+4ZKweGVW6aA9ROdLSEhcWpR79BjTeVy7NRvxcCMGhisKjRY/U1Oi1AxPESZ93bgr9I/oGBCsb32GLINhzDCf7NDqTJoERfegBBly0R7nVNEqIyFgvUsilEzdq/ihubnWRvK+T2wM23nqDzfRXA0bRerSsCz/d7AD7k3Bnw1EX2YnBYkqsOQpGn5AMqtlVhXtRl1jnpEKyIxIWYcjplqUGcPh5a1gWN4mqRg5pWwi01TniKN/tVyVoRyLeO0vsoyD3GDO2RfY0OyscwwwOu5kf2xZNXFAxlK7RHoofJtSFJsDy69h+xZzdrBC51IBvwHQb6TYBMu/O1DQkIiOKIitfT23Zt/+hU3EMSI9o892FojvRFxA5/kf5GYjAGC5ewrR6G8oArZu/J8ihbaizyvkooZnBmxEHRqyBxOcEU1VPxA4MMDp6QGs00bZIE7Sl6nQu+7zsVcsxk/3/0J+qTHIqaMQVVjImXrhAxq3936MGY7NJvaiscDodaq8NQPD1IXPgkJidODquIa6vq/9rdNaKhxtXGdYcZTs6DRqbBl4U7s39COlOtWkKKkjkCKkQ6sP+xX3ECQWYNzEm26dO8ZF47vXr8BN019Hc64MNpPstUNkOdUgGloda6iCFODGfHpLcnAhKKjJXQuqa6yAfEZsbjw1okoOOh/jZsPVcPeL8GVJsEwYGuMUBwt6/CcG0kWIgYifGOyKn2Pjcl3/gQfimMuQy+ZLXChkqxRBNKUVHuqI41JJCROLNGJkfRG0hw6A3u8DEJ4CIT4tmZCTHUDuMNdW2M0/uqxKD5Wgtx9hQHXCv7xBDEmIfQ/uy8WfbUc8z7+m6YUhcWEor7K9xqOT+RcQPE4NXrRKAGzHSFhGjz53QPtP46EhMQ/FmIASMYkZO2VCBW8YRiXAuOIRJr62QTTYEP44uNQFre0PURw/Nkj30LsHYPlOYXYm1sK023DqRhCvbcUXF3w9VhWY8eK6nknj0ObjgYlbqDn7Pae/NF7XG98sulV3Pbsz4H3KbjGJMSkwp2CQ0VYMWsd6qsNSOwRF9SY5GRA1v3ZSs+k847AS2MSnOnrJKeNwIGwoeQQ1hQFH5P5T0ht2Fx2FA4/C5aXm/KgoDPYHYAslmsTAIMrsrJT9LoAqC8F5GqSwQMUbfWs/uQ0gFwVuMCYuJoXu7msF21x/QxPB+oKPK+yw4gaW9Z58QM5Zr/LgHEPAQld5EpUV+R6/0ScIRUnSUicHMzVwM4ZgK0Dg2x/HAvCwbk7qTzgamtJgoQXVJG1iBu7ASWrL3YtcAaClUEeFwJWp4B6YDQs+/y4LcmA2tlHaFPMhikRMjoeuvHJaFhRAMPaYo8mumFlIWTc6V2cSQZO0mJv5+CNRjjLyyGYzWA0GnDx8WC13VO8bTQace+99+LQoUM4evQoJk+e7Hf7+Pj45t9LS0u75Zwkzky2LtqJXUv3AhP8O/ST8SevdDlysm7rsd2RVOAPbc9YrIYDzkLPgkwhQgPTeX0RsvJIwAVXIURJb2RhmXWbtGKsDqiPlCEyPrxLFgRGXTwMVUXVtCCHTIaTiSV31DoVWJaBsc63AI+065yCpQ4gTexfd5j+TMiIpc587jVFcekxNH6UnL8yuwrWgYkQwrw7EMoLaqm4gaBdkwN5WQOs/ePhjNFSYcMFw/vg5vOHo2diNLqCysIqeq6xqdFSfyUhcZIos5Tgw+OvocHpmqQlZp5qeQNidAaaIGAV2ootWZkQqN4UP+X/AB1nRYzCBjJ3yzK+K1UsTg6CXOYhbiBJBbEqA0JYGz2WhZfT9ACSIEH2G4jjDVugZJSwCb4n/y2CEnUOLcLlvoUQZl4Bk6CEXCZHrDIJIZwWmdrRyDU2zgV5QRDleGjXHDjEOYhXRWJq4jhcnTwRcwr/wOLylRDdBiV/FC+EVu6EAAYNvBpoM70mgoUAjm1Jh2iih9J/MmqSvA46xgKD4NnmR7Am9FSWI1buKhyrduqQa4tBg6BBmT0MdXYVBuuKwZEOvhEiiCiwxaCW19FzIm23v/8DTpGFmnUghOtYQZiEhIQEiaY/sPYg0C/N74chykQ440IhI0YX9e0zsSBCAT7Jv3CLLQ4u9TM8LhSb5m+HwHf9WIiOSY6X00Kd1sIJmQ9nbH/bNI9JdGqIvECdzt0hTnoEX4v5BCEuFPYLB2B3Rcv57DpcTH8mRelQ4lacTLqLlJgwOA4Uo1Iuc4nH7U4qKFceLm92Pw0GVYgSE68dh6ufuAxp/Xw74bZn3oy4upM+LSZFGpNISJwsiDv20xf8lxa3dBXk7/uDe09u2u22v3dBoZLD7kfEIM+uhG10pt/6TZnFTp1CyVxSUq8EaHRqjIkPx67lrvQ9b3ByFs9e9Cot7icFQ5fcOxlXPnwRPnv0eyz4fKnHtjNf+pUmZ/jCGR8K88S+aB6UkPFBYjgsieHg9xdDtbf9a+DUHIW4qboGi55PknlFL6Yr8uMVkOe71oa4Uj2dwxNVns6vHtvnVXfatVVCQuLMhhS4Htma3al9yEQR8m3HISREgE+NgahWuNYgiqrBlNbS57uKyPgIrJ+7udsM8OQKDrpILWrLOyZua4Jce48kY5LCapos5HQ4cHSbp+hZGxECp8Ppt6hXxsjoWspBNyHj7pWuWruEzFiU5XrOmyX3SURDtcG3kJKI2731S63QKDicf9f5dEyS3CsBnYX0wWRMwjAyxKb6T5CQkJDoPo7uyMEzF74CY53J5zaG0Ukwjk1p87gQqoT+qn6I+mk/5DUtc1MNI5Px4kI3k0qtEpZB8bD2jUHYgsNQlHZxnZgXdi7bS5MciNghEJzeBsbshKDxXYodqlQiOTQUqsgoDMpKwr5Dvut55YKAJ4b+GyIv0nHMZfdPxqX3T8ZH983Akm9XeWz7w4u/uBLgTlOcQQi0JU5vThuBww8HV+L1bb/jVEHBcF4TG1qT4PTd+AeEXH1H9+y8wCE2C5je6rOtKwT2/waYa4HITKBkF7Dnx467mhPH8qnvAbwdsBuB2P5A78nAH3d2TuBABAiP7CV5pugSdv8EbPoIqGq80A9PA0bfC4y5L6AjloSERBdz8PeuFzf8E9DnA6FJgN63A5tMHQHtuEQYNwQuylYPiKbiBgIRK1gO1pAKG+8buz1MkhoalhXAvKsSzmovi7IiIDr+Oe49TJQKutEJMO2uBF9nA6NioUgPhWV3x1zABYMd1mN6qPsE57Iq4bkAZt66DfrZs2FYuZJIqlueZFnozj8fEf/6FzSjR3VpQW54eDjeeuutoLc/frylCCE1tf2R3hIS3vj5jXn45rnZEOQMZGNTISpY78IGlSvBwaFr/BuglY4uZ05luRPqMCW4+o45SrQHTsGhIj4UTl9pE4wM5rGZ0C0+6DU2UghVwzYsHXxcaPO1MFNrhGJPIbhKVx9NFoNT+yZ1WuDQe0QPvLrwWY/HSCTnqjkbYNSbkNInEbtXH8CanzcGbKMcPiZCyvIq8fiMe2kxktVsQ88h6Rh50VC8dNXb9PxlTgG6vw/CeF4f8LE6tw9CpMkNIetaFmzIp6E6WkVviT3j8f3Rj7qszft7xgr8/t4CFB11XQeQ/V/1yNTmqFYJCYkTx/f5nzeKG0Ra8B4nr4eGddBmvZ5XI9cSjWqHK3lNRgrtZaQU3/81dJTcgDRdNTi3YnyyP4EkB6Btv7K/NhEaZUvRT7TCiIyQGo8pCi1nRyhvxdGGWEQGIVLOM+1Hz5A+OGgg10ve2644ZQKiNMPBO2b43o+dCLpkGBpxFhU3EEZEXYs84zaIPj6HbFM4HI1vvdxai29yF2J91UbUOlyFn+4IEGAXeKLp9oJL3OD+OQiNyQsseGgZ/wWh5HVhrKfAIVVRjRGaPI96oRRFLZLkeqyp74N62WgMCD8ba6q2IJI7hlglg566Plhbu83tu5PBCRbytmqMxnMEHOQigSziOCtx3HAIvXRZOJURRQaCyHR6HxISEsFBCi1n/fc3l3Nc72Q6Dm+NwAC8QgaRU8Ax0dXGMHoTFHsL/CauucOW1NLXCBEh3p8vrQWrNwU1JqkL8pgdhSxEk4L+1gIHeUE1bIP8F/qTbZoYcHbfNmOS4uNldAxiqjcjLSsZmxfuwKY/3QyevIwHTWN7Uhc+bxBxw0v3ToG+wQK7w4m+6XEYPTCNFtpaFnU86Tt9QApm7HsPXcX8z5bijw8WojS7nN4n47Fpj12CqXdf0GXHkJCQCI7Xp3/YpeKGfwqkmKjXsEwcbGVu4U7PgalIOCsLf2885HMb5V7XOOL8myZQcQPh+qevwJ6V+yH4aIvdi4NKcyrw1ZMzseTblSg83Ha93V+xk8jIYDmrl4e4wR37wGRwJXowJjucmbEQIrW0OJQt1YMjAjIv52fPjIFtZGaLiKGpuFcUaSpElkqFcc9cjiUbDqGm2oBQhsHQ2HCs+WmzZ4LqviLYRmV6PS+Z0QrFMVf7XpJdjkNbjiFrTG+cykhjEgmJE8vXz/yIX976q0v2RVo7kspGbt0FGZPUlnff/gkOu5OOFzorcBh6/iC8usBzTFJ4pARrf91Ek5PS+qdgzS8bsYOYcPmBjEecPox4ibjhudmP0jURh82BPiN7YNj5g/DviS9i/3qXWZRXl+7iGvBpvkUGfXvE4Zvfn0BXQNZ5iFP8vI/+putEBPL5Xv3vyzDltkldcgwJCYnghUav/et9v+IGkWNgGpHk+3k5C9OIRIQvda2z2hN0MI9K8b6tgkXD5N6I+mFnt5sGbl+yB72GZeDINt+Cvb6jeiImNRrrf98C3bZK1E9M9LntNf0HQMW5RMbTrx6D/a/84WG6545wqAhMY11XyfEyfP7Y93R9uOBQ23WSf5q4IWtsb2oQsmr2eugr6qnAr//Y3lg+y02w0g7yDxZRYX+Pwek4lZHGJGe4wKHIUIU3t/+BUwm7EJy6aKCtk06nRv+OdAHh1MDUdwG7GTiyCDCUAWFJQJ+pwDn/dm1TuBVY/BQ6zaE/gVvcnNPz1gFMEP9FdSSloszLEzLggv92nbhhzRvAmtc9HyOpE0ufBaoOA5d93DXHkZCQCAz5m68nqS+nIbzVJW4gKTxebSJkQM8pCI/vAcHihHmn73aei9Mg/LIezfcVyTpE3dAXtb8dg2gN7iLXq7jhH4imfxSd1I+8qhcUKS1FpxXVVjiKOrbAQ8QdksChfVgOHkTZM8/AdtzHII/nYVi6lN6UvXoi4Y03oO7fHycakvbw0UcfNd+/6qqrTvg5SJx+kEnkb/8zh/7OOASoDpTBMiy5TTGLU0M2IGWXjQuR5EdT9SUL2JI0qLx1EKLnHISisn0uqu3F4eThyIjyu42oVaLhyqFQFNZAvTm32cFU0CphPi/LZVfuBlmMtU7oC9XaI80iB72X+EmRZWDvGw97zziIjekP8twqKA6XgmklQCBOow9+fAcsRgs2zNuGusoGxKVFY+xlIzD9P9PoNnvWHMCH9/susg2WDfO24tWFz7nOURSxe9UBKJQtDuysyY6w+ftpKoMzTkcrUZUl9YhUK6H3EpFJnIPuefvmLhM3fPPsT/j5zT89HiNFRZ889A2KjpTQz0lCQuLEkGfKRpEln/6eoaxGrMLNbVkGhHMWDNEWYb8xiV7bazkrrUEhE9ZWgYPBqaZO/e6EshZkqqra+CeQ+yx1/icl/S2F3tn1Mdhbm4zoMFd/oWbtbcQNTShZHj111aixaQDvQTTNmHgT6p17EcHJoXeSdt5zhzLIcEXS9RgcPhyri+tgtf/ukY5A3mOeLQZF9mgkqdNxReJNzc8laQbgoqRnsKLsA9gFs8drCiyRyDZ5LoQqGTssfC60rAinyMAmcC19KBmvCAxYtu3Yxr17bYK8Vs7YwYOBU5R5iEi8YRdb5qRUMjtGaPK9maHS9z4h7DiKcSdkMjke6XMz+hDReiOHzU+izFrYfJ98h0TEwYFvPkfy/sl5tX5/22vXnfICBwkJiRNH9p48Km4gkOt2prAKQkZLemHzmEQta9NIEqGCdXxfqNYdCUrkQNxSVesPwzayB/iECLcdieCKqqHYlRfUOXfUGZosjjtToyDoXIkGXGGNV1F2E/VVLWMSsfG9s3UW6lDtyPCesMbUmiDPr2lOZnjgw9thNliwkY5J6hGfGYexlw7HjS9cTbfZtmQ3Nv+1w//7TYqg4x9/rN2ZgzcevtR1rqKIHcv2Qh2i8vsaVs5CG65BfVXbOTDiNnj3Wy19cWf57NHvaCGRO0R8Tdzeydjkri48loSEhH/2rjnotcDldICINuqrj4LlGPBOL/MtLIM7X5+OkVOGwmyxYc2uVoZRpOD/YCmUxyto0dGdb0xvfmrouQPxxHcP4OMHvobFGDjhjuBN3BAIZ0okdRv3h21IKhCq9XC8JglJjn5JUK09DMbc0reR9FQPcYM7Mhn43gkY0z8dutwq/O+Gic0FQKQvyZm7rdkog6DIroBMEGAbmNLSL5Hi1FI9VNvzaN/axIqZa095gYOEhMSJg4iiukrccKI4UWk19dWdE3brIkJw77u3wFRvouskDTVGJPWMx+ipw3DT/13TvL4RSNwQbFL5M7Mebi5e3rZ4N7Th3sXtTWjyKiHrn4IGL30rxzG4/6YJ6Co+vG8GFn213OMxck307h2foTyvArf+9/ouO5aEhERgYTIRBfvDlhoGUeW//tPaOwpoFDhYBnrOZbVG0Cpgy4iEKie45NCOQorzyY2MPYihn7fktzten44hkwbgP1Nfw5bFe2FL0cLaw2V65c6IxCQ8PnZc8/2xIzLxxP0X4uOvV8Nqc0utEwSwOWXg8tt+pqfC2I+si4+cPJiKy1/49d9I75/S3JfsW3cYFQUdM6hdPnMterx7agscJM5wgcOvRzdC6ML4sX8S1s4W51cf69zrOSWw8wfg2PWA1a0wSRkKxGUBFYe6zkG98kiLe/kvNwLlrgg0vxChxUVvAkueAY4uBsTGRe2YvsC5zwP9XAsBnYYkVqx90/fzu2YCQ28GUkZ2zfEkJCQC/E26ColOOHKtS1RFji/4jkbuEoi4QaFzpdo0RStoooAek4G4gfRu5DV9EHphOgxri2AvaABvdFD3bzZUAc2wWISMiAej9OxH1P2jkdArApa9VTCsK4az6tQQMATCuK5lgUGRqkPkDX3BhaugOycJtbNb4jXbg2Dq5u/4NMO4cSOKH3oYojm4gmwigii46WYkf/wRtGedhRMBGTgtWrQIzz33XHOCQ3p6Oh599NETcnyJ05tFXy6nC4ZNhGwthKjkYM2Kay4eEsiaprsBsY+ad1EtR93Unoj9bl+3nrNIHOQCRAZTGBkc6dEQVHJol7lc8ez9k9uIG5oh4oXBqeCWH/A64UKdOs7PghDdIkgTNQrYByTBkRaFkGUHwVhanLUVagXmf7YEm/7aTtMVmiAT6mn9k5G3r5AWGnUFBQeLm51YX77qbeoK4Q2uykhvhInXjcNtr96Azx/9Dtv+3tXsAJgxMBV3vHYDRk8d3iXnVnys1O/i0F+fLsGUO85FzyEZXXI8CQkJ/xxrcF1LhLFmD3GDO6TuZIC2FEX2qOaiddIlqFknlIwBNXYtHG5F9AnKuoDhkDJZAqLZDHy3Q8RRaKBTtxS8xCoNfl+v4RzIM6qpKIBjvCco0EL7Rrd8RuZAojIcpTazR3JDk7iBMCn5ZVgcd+Ng7Y+osB6E3mFGiT0MCi4e05LGY1TURCgYz0LOPqETkaEdjaP1qzGvaBnyTXpUObSw0o6y8X1CRIK6AaFyz2LVENEOA6+EXeBoGgYnI7IAvlH4QaQXIlgZeW9NfbKbGEJkYBdYKBgeRY4oZChaXLlb08CrUOls6acylFUeIo7WsDIeB6u+xxp9X3p/SHg6Xh70L8SqwjA+5hL8UvSZx/bkfO3kfEWRpjbwIpGwtP3yDM5TP7WQp+kjnRP6dfb1EhJnCgu/8CzwYA8XUddoITm6eUxCkht8dhYMA/ugluv4QJDiR9XGoxB0KvDRoa7CyMp6j2v57sCZHAkrKfBUtPSh9gEpkOdUQLEr32uLQa7r+fhwOHonQohxLTQz1Q2QZ5dB5nDC3iO2ZWwkiuBK66DelN3sBqhQKfD7ewux6a9tHsWwxIWOJNbl7isIqkhWCCeKd//klbgW6AsOFeHlq9+lQuZAnHvD2bjhuWlUfLBz6Z7mMUnPoRl0sX3EhYPRFZD32Vrc4M6v78zH5NvPpZ+JhIRE97N/ve/kgu4kJiUKqf2SsW/NQepIHSyOKDXMQ+JhT9TR9lWZo4dmXwVYs+95eCJuiEqMQE1pi7M2KZIhYioibiC89cjlKKmqx6yF23BofyEMOeWQHylHfJQOF35+Ny64eTyUas8xyQU3TcC4y0di9ZyNmPPGXFS6JfZ0FXyUNvA2saFgvbx9UauCbVxvqFe0rJU7SF/lK4WVJjTJ8P2Pa5vTF4ZM6k8duCPiwnHVo5fgw/u+8tieGI1weVXgo3SAnAVTbwZjbtuH17mJBE9VpDGJhMSJY+GXy6SP2wd5B7yvNQSLXKXAz2/8iU1/bqMJ1E2ERuuQ1CsBefsKYPUj+m4PTesi5Pr/5avfaU5u88eUa8biiv9MwwffrsKO/QXNruQkuYGIG4YPSO2Sczuy7XgbcYM7c16bi8m3TUJCRlyXHE9CQsI/+9YFHpOQdeH2bOOMCjx3Ej08DX0yk7Bn7UHw9u5NMCDihqjESNSUtpiUZw5Kwz3v3EzFDYRXFz2HkuwyzHn3L+w60oDiHmo4wxRICgvD1f3744q+/aDkPMu0L508GBPP6oMV6w5j9geLUJ1bAbakBjJ3wUMQ8CFy2BI1kDlEqAoN3Z5s4Q8yH/XDSy7zFcLwCwfj2R8fRlh0KK56ZCo+f/z7Du1XGpOc2eskp4XAIa8+8MXUqUqcs5OurU0F/x3FWgfs+7nt40TUULgFXYpSBzgswMwrAH1wDk84usiV0HDND4CpCqjNAVRhQLyr+LfL2DPbh5O6G7tnSQIHCYnuhrQ9x/4GKrq34NMnEenAoOmAzQjs+R4wtN+1p104zMDI+1w/5WogNKXNIjQXpkTEZT3btVtGwUI9MBr6P31HqZ3K2AsNqJqxH3GPDINmUAxsefUwbfaW9BMYEtEp87NoINGS3NAecUPz52s209elzZrZbUkORNRw9913o6SkBAcOHEBxcUuhdVZWFv766y9ERkZ2y7ElziyKjnr2CaQGUrc2F5rdpbD2ioag5GAYSxwnmOC6gDgt7AlaKMpcRfTdASnkIckJosqHUIHgNgfCx4fBGR8KttJA3VJbb0bqYcXG9y5Ga+FIjoC8WN/G1cI2INlD3OCxH50K1hHp0KxvEWo3VBuwwktsJYk7PbjxKLoS4sxKxBJPX/BfVBYGt7i95pdN1L3jpXlPorasDqU55QiN1CJjYFqXntuSb1d5iGi8sfTb1ej5kSRwkJDoTiqsenx2fBH26LciSQvEyP2nhbEyESGMFUbBMzaBXGKGyi2osbvaQ1KsTxIc/MHJBMi5c3BN5n2YFGfCLavmIMfe0v/ouMCLmCGcHXv0SRgaWUzPzR3SxBARgHuhvSDW49k+r6PBaUAIp0V6SEtCXBNqeRJGxD2N9qBg1EjSjMeSsg1gGTlUcs/CqFiVsY24gUCGQzrWChknQs06mut7eFFGb3KZ0DxkIvetPOcmIpHBzMvpe9xvSUKSXA+FzPu82TZTBhVRELEE+UQCfTeEBGVL4c+eunw8svMbfD/mIYyMnIBsw3HsrGu9+Oo6Z3LzpXq0OBTU1IXpoiQgCQmJM21MIoLblwcxpwxCQiQEBQuhf4JvpXVjIhsfqgbrJiwOBGOw0tuJgBSLWsf2pGIMz5OQwdErHrA7oTzQ1tHOlhkHR6soeyE6lN7k+wuhnLsTzoRw2tGwVQawrd4PSWxY+VPbMYmh1oiDm9oxJmlMxPNHiEoBg96Ipy54BbVlLQW9/lj+w1owMgavLnwWVUXVKMutpIVOGV1UROQ+JgnE0u9W4643b+zS40pISHhSlluBL5+cSY0gTgZjpg7Hw5/dhaqSGjxz4StBpRuY+8egfjJpv1v6IEeCDuZhCYj8/RDklSafryUCss92vgV9eR3CY0PRe3jbMUlSTBieue2Cdr2PkFANdb3+qAsSQb1BBICden1ECPiYULBVLtEzH4RIjo9o2WbP6oN4ZvL/8On2N3DJPRfg4KYjbebXyJCQqw6UgC2jc+xM675XQkJCwgtFR1rSYiTarjl3BjI2WDV7fZvHyfoJuXX1OglJ5n76wlfoWChYEzAyf/XBZ3ehrLKe3iLDQ5Ce7D9FvL0s+WZVwOLaZd+vwS0vX9elx5WQkGhryvbVU7OwZYH/JEsCvdYniw9+5rjlFS3r4YydR6DZkwmXj8Kj/zqPJgKQNd2SIIRYncFutePzXW/RdeDI+HBqKNGapJ4JeOLze9u1X51WhVG94/HZir3tLuLmVSxqLsuEaWAU0CgQYRvsCFtXgrCNHauPCgZaExAVCpEk+/ACmAo9ZD7MTkjCx3MXv4aPt7yGKx+5GIc2H8Xa3zZ36KBkjVwmrZOckZwWAodQZeAB/ckkhFOiR0QCyox6VFmCdzkYYa1AprNrL0T/0QyYBuz/LXhxQxOH5wPr3wUmPg2EkgWabqA+iJifykNEtucSXEhISHQ9JMlgxxeAJbiFvW4hrLFQUakFRj0AlO0Gji0EnN2UgkBEarwNiO7T7pfyDTYYt5TBeqgGolOEIkWHkLEJUKa6XOpo2gN/eqYfEfgaK8y7KyHaBZi2tL14l8dr4Kg008QLX9iy61D26lZETe8HZWZY957wKQwZSJQ980y7xQ3NrzebUfbMs8iY/1e3DEjKysrwzTfftHk8MzMTs2bNQs+e7RMISUj4QhvhPZ6XbbAiZGcxBDkDwzmJ7foAibNdVwkcQiJCkDxhEMrtAvQNNoDngUo9FLk1sGX5j/p0/8skCQus3uyR/MBzjU6wTYvUZIKBB8wT+oKrbKDOp0yjcxCp4XT0jPV7PGdKBE2LYKwnPkln4nVnYdkPa4IWNzSxavYGZA5Kx3VPXY6YLp6wb6KqOHDUau7+AmnRWUKiG6m21eOBHZ+h0lYHBgrEizKomMBtldxHEb2S4anzP3HvpyXuQVwKDQx3FfNEa0Ow4NI78EfeXnyT/wd4xug1AaA1ZARQbg3FytI+6BNWgdQQ1/hKgKxR3OBZtOIQ7RBgQ/+w9js/V9tqsbxiHXbW7oNT5NFbl4HJ8ZPQQ+saV9XYDRDoET3Pm4gKwuS+xlgi1JyjjTiD3Pf2WAjngJkHFSu4kNHfS+wR+KNmKM4NO4o4N5GKkVdgqykTx20ulzen6JrjaXm9b+xuaRyEfFMlVlbsQ5XVgC+O50LNJSNO3QAV66RJEjGKnpAxxJHVS7y1jIdC5sTW8oO4suh/eGno7RgafWq6YZP1e4GKODq3DwkJicDofIxJZCYr2OxSMAoOtoGB2xKRJrV1/VyXLlqHxLP6o9wsoN5oA5w8UKUHSisBe3DX/va+iW3FDW4QkYPiSClkzpa2VVAr4PAjPnYMSKEOeYq8rnfvJohyFo7MGDjjQiGSMRMxUpL5fg8XjOlDi3aCFTc0sfT71egxJB1XPnwxYlNjcLLGJDn78qUxiYREN1JZWIVHz3mh3W1EVzJoosuoJiYpCl/te5e2WV88MRNWH0k2zggV6i/s4TV9QNDIob+iL2Jm7KTF9t6gaZ6iiFEXuRIb2gMpeJr/6RJsW7wbTocTA87uh8sfnNKcfklcWAOZSXQUhmi4Gwu56BEa3777+/QxVGyGj9Y1CxyCQdZKSEectzfO20aduL2Zh/QZ2QPHduT6/QzW/7EF09Puxct/Pu1VXHIqII1JJCRO/pjknwIRysWlxaI0txyGmu4zlzrVmXTdWfj7qxVBixuaWPDFMlr0e/Fd5yMhtnvW1iuDGZPszZcKYSUkuhFi9PbYOS+gLsjrVK7OCmV+HWwZET630expESgos2vgSHTVNXlFEDEqxbW2HZcWg28OfYC/Z6zAl0/MhK2bUkWJwYVcwXVoTEIE6n99ugQ7SOImL2DQ+Cw6JmkyyqsuaUmGCBaBY1B+Z3/YiQuXG3yoArWXZEBQcYhY2bnkIK/H1arhHN4T0LYYevFZqWCKq8EeyPeaHnFsRw62LtqFAxuOeBU39BvTC4e3uBLTfbHyp/XYv/4wXpn/DE3POBWRxiQd57SQ2k/NGBlwG/lJLDo3OW3YV5XfLnFDGG/DS7Unx3njpJF1BXDEd7yxX3Z8A/DdWAClC0I4Ubwd+GAgsOXz7jsPCYkzmYJ1J1fcQIh3K+oh1UeJw4CzngBCu7HQhAlOi2graEDNz0dQ/s4OlL21nd4Mq4rgKDfDWW2hxf5Vn++FYb3LTYnVyknFD05niLChflGuh/t4E+RzUbS62PeGYHKgasY+WI+f5P97/2DMW7fBdrxzaSC248dh3tY91z0FBQVeH8/NzcXw4cNx7bXXor7+1I/Zljj5TLr+bL/PyxwCFPYAiWCtX9NFQjSyF0NiHA7XWqE32l0LynKO2NtBIdeCqTP7sWBo9ZCcpa6osLmctp1y4hDBeC5Sk4VbTgZeCThjQ2E6L8v1usZiKb+JEQSG6bTLXYeQAROuHYvN8zvWHv316WLwRDjSTUQl+J74a2Lf2kO4uceDmP/Z0m47DwmJM5kf81dTcQOB+PrXWEOaC+D9wfuZfiPF/E3bWHj/7aMossgKG9N8n7iiXZM5BHPOfgqZIYmoc3imRHijxhYCB8+i3qHGrpoU2EQ5vZGUg9bihiY4RoFg2FFQjMf+WIQLP/kOl8/6DA/vfBF/lixBkaUUZdYKrK3agv/sfwPLytfS7aOVOrAyBk6BaY6tJ2hYu7fap+bPq7WQIRBqKkLxfA1JTShxRGJW9Tj8WD0GC/UD8UfNMPxYOwbHbG2Ff4X2wOK1fYbkNo/9XrgZnx9fChEizE4F8gzROFwXj5yGGGyproeWdUVYNyGDgHDOjEi5GVrOjgExZRiVuBWz8p/A4brTM4FPQkLixI1J4HCCC6QYIqkxpm5IY5DJYIiJwdEqK+pNdte8GhmTJMYAg3oDaiVtqZ0JYbCMSIdlZAbs6dEuQYAbPElZ8IeCo27X7jjTY70W1bqfmzPDJWzrDETLJSpY+rP52FFaGC8fCuvIDJqCxydH+hVosCYbzh2WiU0dHJP8+cnibivUDXZMsnPpXtzS6yH8/fXKbjsPCYkzmVn//f2kihtYjvEo6mFZFlPvvgDfHfkQaVltr4cJ5sHxHkYZreFDlbD29J+wqwg0l9TI9mNFeOKbhbj05e9w2fNf49rpb+HnT/6mBf7Fx8poEs0DI59pTqSJTorsNhdQhsydEQ8rDhDkLTdyn/YVJD060FRhY5tO5tXE8MDrGVxh2+KoP95fiB9f+d3r9ke359CCokBUl+jx0JjncHSHNCaRkJDo5JiEtI8sA1HBQVSeeD/eusoGHN2efUaIG0gPwseGwZkRDz45unmNJhAyRoZzpo3Gxr+2dei48z7uYM1XF45JNs/fgVv7PIzlM11zkBISEl3LzJd+DVrc0ETYshyweu9mGur9FVAfqmq+rzpUCabe99yULqcWw0mRfSMsx+LS+ybj28MfIKlXNxlj0zFJcOskO5fvxUvT3sYtvR7Ezb0exO39HqHX5AWHilF0tBSLZqzAfcOfpkX7hI4Y55mGRLcRN7hTPyEJvKZr+1nSdzvH9PUQN1BkMggpMeAHeCanuvPzm3/i17f/8vocETdkje0d8PjEnPD+kU8j74D3+h+J05dTVuCQV1+BV7f8isv//B/e3j4XCSH+L2IcxFn/FMIpY6BnlDijKNnucirvCMYKoLadyQ/tIXVscNs1lABLngFWvNR95yIhcaZSuuvkHj9uEKDUtX1crgFG3Af0uwqQdbGYTqEDQlMCbmZYV0zFC5Y9VVTMwNdaidVo2w1FoP7vXNiLDWBUHNQDonE649T7X5C3l5oQcU1vyFO8fK/uiED1rEPgra5iXglP9HPm/KP205qMjAzs27cPZrMZDQ0NWLVqFS655JLm53/77TdMnjwZNlsHr0EkzmgKDhfjowe+xj1DnsD3//czohJ9j0nIuqVih0tkFgwypwhZzww4u2IiJiEKiPLuliNjOYQUWaHcWww0ubw1CRuIyVyr7Ul6A6krledXUb9pgSQ3+IKRQWABUaeCvYcrtUFGXFqDsGGWERHFiUZ0TaI4GsUb7aWqqIbeuotgJnea3Ak/fvBrzPrvb912LhISZyKCKGBp2U6PxyqtWuSaowPWo5iI4ssHvNgyNVdh9+NKBKBX2GSo2LbbRCh0+GT4Y7gu5TYyQPH5+hqbBg0OFRUUEIg4o9rq31kvXB6DBFXbuOXWfL5+K6b/8Bv+PngMBXo9mORD4GVtjShIof+3eT+j0FyCCIUWZ8f0pb2kzelrst3VIZHCf/KTJBu0F1KvpHB7nVOUweQgixGuPqzcEYYj1kTk2WMguH0f7pQ6wlHl8L1gkG+JwnFz24SiIrN/N/B1FRZcn3I/ktXECVVEOGeBgmn7HqPUBvxR9BKcQvc4UElISJy65B0oxIf3fYW7B/8bc96Yh8h43wIAch0vO+4/op4trwdj7oa2Jj4aiPDRzynkEPqkwjRlIMznZsHRJwGO3vGwntULxsuHgY909VV0FOFPqNBEq21EbWDxdDDb+EJQy2EZlYGG60ai4fpR9KdlVDp4nQqWSX29C7zpKbZKHiqvh3rZARxdfwQOW8fMnEqzy6GvcIkxu4PeIzKD2q48rxLv3/0FfnnL++K1hIREx3DYHVjz88aT+vFdfOf50OjaCqujEyPx2c63cO/7t9ICI3fsCYEL8x0Jvufok3snIC0r8DrJpws34a6PfseK3cdRVFWHwjoD6ockQn/dEDjDW86ZuKa+f8+XKMkuQ3RSFEZM9p9WJ4RpaBKQfXRvOIZkQIgKsJ7QRE0DNf+g1RjuXRNDHFdFmrAdqFdjy11tuiMjFqJC7tXMqXm3VQ3gqlvS6ZooPOJ/PjL/QBGe+PZ+ZA7274RKPrfnLnqNJmFISEhIuJO9Jw/v3fUFHZP88eEihPlx7ncmRcJ8dj9YLx4O60XDYT1vkEuQLNGlCJFa2M8dDOeoPuD7p8I5JBP284fA2TuIRD9BpAK4jo5JSL9iqjehuyCpdcGOjd669RP8+fHibjsXCYkzEYvJinW/b2n361ijHdE/7oNuTT64CiNYkuqQq0fEn4cRvizH83LZwSNi7gHIS1qZVDoFqPeU4qb+vaFUt11zIWmWX+55G3e+MZ2K6bqSjIGpSMgMbI5BUiSemfw/mqJWmlOBspwKOFulrBF4J493bv+UJvQl9ojHoAlZ7Tof41D/yZ2inIFpUNfWgwmpsQBNffXxPBHTqb2LQPIPFPrdNxF+PD7jXqT39z/u4x08nr7wfzQ5VOLM4ZQUOCwv2IPL/vwfZh1ejaP6EhzRF6PMdHo5K5sYOe6NnYhSVoMzBqfN5YbeUbozpaOgnROGGz8C6oMvYJOQkAgAEak5um8gHBCS0ND3Cv/tT9JIYNT9gCqAk1x7UEcEbNuIWKH+73YIvETAuMW1mB12YRoYkuRwmiLaAuU7i2CULHTjvTtLeWAXUP76NtQvzYcgCR1aPkKjEYYVKzr/ZRGhzvLldH9dTUJCAgYOHAi1Wg2dTodJkyZhwYIFePHFF5u32bp1K957770uP7bE6c3qnzfi3iFPYMHnS2nce+7eAtSU+h+TaLeWgiMitCb8LEqqq0XIGAbOrFQ4Uzo3ASEm+H+9LEQD1fFq6ObtoZNDVNjgRdwAXoA8u5L+qjhYAoERXFWj/o5NXOnIQmyay31C5hTAFfv/nBi9CWy9dxeP7sZusaP3CFJk2jFaL+J3JQc3HWvX9nNem9utxU0SEmcaVt4BE99aQCvDnrpkVNr8OOXwavDw3jbYBRa8WwJEpSMUVXbv+4pVDcC42Ed8HkfOcLgocTzu6/kqwuRtHX9qbRrs0yfA4iDX/y1td4k5zCM9oTUckw5GxgRMbvhg9abm++GxBihUvoteiMhhefk6+vv9vacgTK6BQ+BgcXBUA0eSLIj7NBE1yEiuhEyk3U3Tz47gFElCBgeTUwELrwR5SyTFwdt23j8PGVY39EORLdLjefJ7vjUaC2sHei1OMjj8i65tggOiGINequuxrzQJctK3+kDG1OH/DtyL+SVzYeuoQchJgIhGuuImISHRlmU/rMG9Q5/Ewi+XI29/IXL25KO2sRDSF+Q6nqn3nuAmszqg3J3fPR91nH83OnPPSAhRbftAUaOAeVI/CAqOtrNMIKdVQQBTa2y/eNreseIdQaOA8aKBsPeNp+kRFAUHe98EmC4aAMGf47hMBvmxMqg2ZSNk4R6ErDxExSV2qwO9R7Q4EbYXjiRjdBNHtuW0a/tZL/8Kg/70d8eVkDhRmOrNsJpP3nUgKbq5+52bfT6vUMox7ZGpeHfNy4h0c1cOJqFUxvu+Dg7GhXXLkQLMWLLV63NCiAINF/ZuU6y/8Ivl9Pe73roJ2nDvwm9n/1Q4xg+AkB4HMTacOpM6xvWDY0RPiAEGJ85oje8UbeJyqgBEP2IBpqIebGPqKk+SJui8Go0T9IR8vALAtS4Ac/t/4w+zwYK4tBhc/sBFCERDjQHXJtxFTTVsFmlMIiEhASz6ajkeGPE0Fn+z0jUm2Z2H+krv7ZGjVwIcI3tBjGi57hd1aioesw/yL7KSCB5Bq4JjVB9A06r4l2XB906Cs0fgftVmsaPvyI6PSZhuXCch/8faw3fPz6F9nYSERNdgqDV2WADF2Hlod5Yi5sd9iP1mFyLnHYYqR+9TEBEx9yAiZ++BbmU2dMuOI/q7HZigCsVtr1zv8xhE+HDdU1fgrRX/h/BWCZ+dIaVPYIHY5gU78Pt7C4LeJxE+LPrKVWtz33u3ehWS+4IPCVznxYd07fyQEB8gQYckpA7uAdGLuMTcYAn4/4okApJ0wEDoy+vomGT2a3Nh7+D/xZOBtE7ScU651aEqcz2eWPstHMLJdwdQMFy3ixzm6ALHQp42RPcGRtwGsIqOvTaqsRDJZgQsQRTykO1sbZ0svBLAca8NIg/s+6V9r5GQkPANKfInaQYnGnLMrGuAEfcC8iAuJnWJwLgngEHTgdSzgbBOTsYYygCH/8ln42b/znvecJS4Fha5KDVi7xsM9eCYlon27kljPvHQVe/g3oxIinmD2c7Gw7C6CFVf7ZNEDo04y8sBvotSsngezooKnCheeuklTJgwofn+Z599dsKOLXHqQ9wU3r71E6+OC4EmbnSHjVDqRTBNSTutqijJoq+6UoBa3/I43yvR5z7lwcQ4q4NwI9WowJrt0GzOhcxbwoIgQL0xG0xjugEtEgqmnZUBtCbRLf5Yub8IIEkO3hBEKPcU4WRB3H8uve/CDgkVyGubYkTJhHkwLkVku2An1+urPeNeSV0uKZjyNlFEcNidWD3n5Do7SkicTqhZBUK5tiYUAhgsqeyPY8ZYmgzQhLWOw/Y18Si1eRdA84IMdfbWYwwZcq2xOGyKR40jBAanElZnOibGv4CpKR9BwQQ2wUjW9MS/+36O61P/jbOjL4OWHYaNFenYXJkOs4P0B61crWUylFnD2hT7k66ACDd21FbC0kbY4clPO/Z63FeH+t+ekGtyOfakhcRgxuh7cW7cAIiiAia7Ega7Blaeo2KG1jVD/sQY/nCIHJwiR78vFzLorWo4BVmbRA0irSDHcb8Jogw2UYE1hn74o3YENjT0wvqGXvi1dhRWNPSHIOOgU5D33XKCrIyBLIgBFtmGCGiSdEHMZYl1WFj2F9479uYpJXKQkJDoeoqPl1GXVFKg2R5kDh7qlQchP1wKNC0COnlwuZVQrzgAxtDShpMWjY8LgyMrBY5+yeAjtZ0Yk/hOM3KqGAhK30tVJAHB0dPl6io/Vu73MERMzVg8FzfZwsBz+1wQ23jDOiwVotb7e6PJDYG6AY6FIq/KQ+Dda1gGLrt/Mpgg57Xc6TemF0IbncXpmKTB/7xi03YWY0fHJDIIKs7nmIQURq39dXNQ+5aQkAgMKcJvT9GLrKPq4FbEpsXgP3MexZvLXoCqdbGkF/qP64Mf8z7Fsz89gqsfvxRDov2L3Aiq7Fqfzx3adDRgMf3P6zzHJK3ho0PgiPdcYzq+K5f+zBiQig82vIKzrhzV7PQqY2TgU2PAZ8Z73Z+QEAk+QJGTvUeAtD85A/nhopb+2A2m2gDVluMtDzSdF3mOJ/05mUN0CR7IjT7m5fsOdn6LvJaYfgQDKT6a+dKveHbKq7BbpYQ5CYkzmfyDRfjo/hkQgkhsFlUKOPv5dmUm7a3gQ2wWDEGNSc4Q+MwEOs7w+XyPBIgBxho9h2bgsgemdOhaYvDE/lCHuNakyHgkmPUPsh1xhQ+GulZjkkCQ42+Y610EKSEh0X7ConVBjQm6Cq7GDPWhSmQ6Gbw482G89vdzUKgC15UOntAfPxV+gadnPoRpj03tlLkdYd+6QzRRzx9/fbqk3fttGpOQdvf99a9gzKXDm+eDGF9iadLv1QRuM4PZpj34mvvxICwE/NBeHh6PwfbRxPiRzCMFQ31VAxWwPX/J6wG/F4lTn1PuKu/3Yxth4x0nRcxw+4DzcWHaUFRY6hGhDMHgmAxsLTtKEyX+ytkKYwBXto7wV2hvTDPmIN1phAMyyP3ZvJ7qpJ0FcArgyi+AufcAQju+57MeBY4tAzZ+0JK2EJsFjL4XGH6L57aHFwKbPgKKGi9iEwYDYx4ABl/ne/8RwcWceWB0udtKSEh0EYkjgPzVvp+Xa4DkMUBEJlBXAOS63Hc6hd0IhKcRm4H2iTFiB7hupL/a8gFg8T057xfSDtYXAtF9fW7iKAlSqOWGTN5y4UlEDlH/6gvB4gRvtKN61iHwlae+i0HYxZmw5dTBesTPZ88xUGSEQTC2bxLeUWqCYV0xwi7sQN9wmiGYzV27P9OJTWq59957sXbtWvp7cXEx8vPzkZ4ufa8SgSFuCqR4vL04o0JgS9LRSiF5A6jIgbOIACuCJ7UvIsCZyaKk5zU/cTESQlRQ8Tyuf/ZKjLlkOGpK9AiPDUWfkT2xa8U+bPxzG1b8uA4Wt4KkZogQKdCkQ6PgQJFTBabeAnu/BDjjQ+m5qqqNYPcVg601tb/KlGxCXLcbHecIrN4MzcrDsI7KhBDRUqwrM1qh2lkAeclJSueTgU5wkUn7f39zH96943MaERosxBFk01/b8cvbf9HF9ybRw1WPTMWFt0z02Hbtb5vx+7vzcWRbNr3fZ2QPuug/8bqzfO4/IcMVfSrIWViGJsPWJxaiWk7FJ4r8Wqh3FoPTe7bLteWnV9KhhMTJhLQNFyWOwC+FruSB1sXz62t74ahxMG5OHYSR0ZmYX1WGdfFboC6zY0BEGZJC6mkCAWk6K61aHNLHwyGwSNA2IEJpaS7kJ81mPR+CKkMo9lckwGxX46r00WBlwSevsTIOA8PPorcJsTasq/gYdWjrnkcSElQcjwanGgajCjrOCjnD0yL/BoeqUQxgQ46xAAPC+vg83sEyz/kPkQ880a1gWt5PakgMXhsyHQ0OC/R2I57Y9R0UrHexGzk3Du0TGBLxhpl0tO7nKAJmpxx1Ng20chtUnANDNTWYGlaAwSG19Hs4bAvDckMicuyhHq+rEzSo4z0X3Z0CA44RoWCdVIFG/j3c53KsKj+IHbU5foUzgyLSoGPrsLg0CGdbcrEAIM+Ug5WVy3BxwqX4p9OUxdHZfUhISHiy8Itl7bpWbS1yUO4rhGJfoUuI7OTpWMQdMv6wj+lNxyLN9EmC2mzDbRcMwoiJWagtq0NEfDh6D8/E9iV7sOnPbVg5ez2sJi9FqESI4aPIxqkOYoGUJMIdKoW8qAbC0RA4+rQVgZPkBuUO18KwO6zeCLa4BnyjGLnN86W1YKvbP78mytnmpDq/2/nzE2n1uZPC2rQsV+HXI1/cgw/v/TKogjH3Mcm63zfjt3cX4MhWV2Fsr+GZuPqxS3DuDed4bLtq9nr8/v5CHN+Z2yyOuOaJy3HOVaN97j8hwyU0ERQsbIOSYe8Z4xJykLS/wlqo9hS3SeMjznoSEhJdA0loOe/G8TRN1BfRSZG4+O7zMWh8FjbP34E/3l/Y6ePqy/S0WLE9CTFyhRzn/utsevuXxYor3p2Jygbvc7+KPD3kFb7nhQ16E00pyhrre0xyuDCwcY4jJgTy8pb2XqFuKYwibe9LfzyJhloDTcN87qLXUJzpmofxBZ8WC/Z4qc/0CTpnEwBiIKJZuAvO1GgIREgoCOBK9GCrGtqknboX/tJ+pdVhyTYe+2ZkePTLu7H4m1XN81S+hDN9RvUE62ZOEgz71x/G/M+W0vmsfzrSmERConsgbUCw16qknQtkmORMi4GiLvA6oSpEiZtfupYWr5IEO9L3ZQ5Ow7a/d2PTX9uwavaGoAsk2wMnZ9ttenUyICI8vyg4CNFhYCu9X6dzCg6JPVwCvwc+uh2fPvwtTVoNdv70uqcux6o5G+g1yLEdrjmxvqN64up/X4YJ14xtk0o498NFtJ8nDDi7L6598nKMvXREwHWS9hAo6VBCQiJ4SELCxOvGYcl3vmu3YlOjcfGd59EEuFVzNtI5rM5SW6rHkHMHgGWDv2YlCXPn3zie3uqq6nHXwH+jzkfKUCDI6woOFaPnkAyf2zTNr7QH9zFJ5qA0vPLXMzQ1jazvPnX+f6Gv8H6+uu0VMGf5bu8ZswOaAzXoSph6EwRtAME96S4idBBjwiGrqgPLMXjim/tpssXxXb4TeEjaBllTtxjbV3u9e+V+LPlmFS69bzL+6UhjkjNI4LC/uuCkHNcuOLGicC8eHHoJspjU5sfHJPalt7sHT8Fb2//Asvw9zekSQ2IykayLwsLc7R0+bg2jxJSkyyAXeTjAoL9dj+uNx3G+qQhhov3Ui+DwRdrZLnEDYcA0IH4QsG0GsPN7IJAjXb9LAacVmH2t54pA5SFgwcNA+X5g6juuxzZ9DCx73vP1ZXuBeXcDVYeB819qu//SPUDFofa/p/CW/ycSEhJdQNo5QNUhwORlopoUxwy+CQhvLEw+GiD2i2u86HIGKuQXgfI9QOZ5HTtnVg4MuwPY+yNgbH/SAkXW0tJbj+th2lEBvt4GNlQBzfA4D0fsYFH3b+scxKg5mmRwOogbCIbVhVD2jnDN9PuYcwkZHgs2RE5vXIwazqrg37tpezlCL0jrMhesUxVGo+na/YV03J2lIwwYMMDjfllZmSRwkAiKo42Tsu3B1iMKxkm9PBzXRAXgkANykwiF+7y9t3aLkcFucmDTn9tx4/NXo9fQzOanhl8wmN6uf/oKfPXULGyct615on3gOf0QflZfrN3k55yJs4G+ZYGXqzaCW9/iEkcmH3gvaTfy4nrYeka2tdd2Q9b4MsUxz/6bqzJAu2gvnNFa6ngqszjAVjSc1PLFkZOHNLfrF9w0gRZq/fXpUhqv7QwgaDlv+jm0cOfzx7/3eJxMzL9926fIP1CIu9++mT7206t/4PsXfvbY7uj2HLz6rw9QdKQUN714TZv9H92ejYLDRdTdr+GS/uBj3NxzGQb2zGjYkyMQuugg5FWupCZCXLqrAElCQqJrmJ52LjZVH0aRucproforg+9Ev9AUuui3wOoSUVqcCmyvSsPeGifUnAM2nqPpBBEKDRgIyK4jbkciQuVWhCpsEEUZ6q0qVJm0NLKWPLeo8BDu6uu5ABgsGk6JL0bfhsd3zEZOKyMGp43zmFwlQgdvNKUQkPd1xLAXW2vWot6hR7g8EqOjJkLVakxSV6lFfI+myXMRnIyn4o4mgQK5jYoc2uY4oXI1jA4LbEI+1KyDChPEVjNfRHThFERwTJApbCKgd5BrVs8exi6wcAosfd8GhwqXhBfiocT9HtsMUesxSKXHD/qe2GqOoftyiOS9tk59kMEuMFQcEqd2NIsQFpfPRb/Q/thR67u09fLkkQjhVBgQGQ81k0wms/y+H7vQ8p2tr1pzSggcJCQkuoemQpHOQFsmLwU6xJHNflZfiF4c+SwaJdZWNeCG4Z7Od6MuGkpv1zWOSUhRbZMAgxTFaof3xsbNPs45iEGAe92Uck8huOJaODLjIISqaXEoV1ANrqjGexodGY9sy4bDYoeTXB839VskuSK/CvL9HVtzEkIUgYXkfualCFyZZ6HN2MtaCnlIMQApBCKFY0u+XRVQ0HLxXeej6EgJvnludpsF9tdv/AiFh0tw6yvX08eIy93s1+Z6bHd4y3H89+p3cOcbN9KipNYc3HwUxdnlVNhhnNIfQqTbHA7LwJERDUdSOLRLDoKrbRFex6XH+D1vCQmJ9nHjC9OwfclulOe1vW7UhKrxyoJnaNENz/N48+aP/e4rPDaMuvYHclYmJh/EqOGKBy/q0NcVqlZhxl3T8OjMBcir8jRiUObqEb7wWMB9NCUrCIKA7Yt3Y+kPa+g8DCmemnL7uVApAosJhJQY2JVasOV6MKW1OPvKtoKu0EgdLSKqKK+DOLhl7s0rCg5iqAYyvdH7ORtsEEL9p6qS5CTSd8nzqwBy8wGXUw4naU99zMHJTDawZZ6frSiI+Pa52Rh63kC/AodL7r2QuvAOOKsvohIjUFMavFnG31+vPCUEDhISEt3DsR0u855g8Da26Mg2BCKo3rpoF67592UejxNjKHIjBfIznv4RWxbupIl3ZM5/6HkDIFfJsXXhLnQUoZUx1T+WYBy2/WxzzrQxzb9f/sAUmsxExiRLv18dMEHwyocvwqHNx/DjK797PE6Mnv533XsoPnY9pv9nGn3syydm0oJXdw5sOEJv939wG658+GKvDureroECES+NSSQkupSbX74OO1fsQ1VR2wJ6XUQITVkgAmKnw4lXrn3P776iEiJoiotXsww3iHBtw9xtdK6kI4THhNFEupenvY3SnMDiaG8wjKvt5HkBm7bnYOnqg6irNyMhLgxTLxgEpUYBtFNT4HVMEqVDZWG1T3EDQX1Ej5DdlTAN9bIOzAuInpsDmYyFmBIFMTSELpTIquuAqjrIOhiTzeRXQkjyk1JH47Abf02Iosci9QVfPjmLzg36EziQ1CAiSBl67gCExYTShIb2jElOBYGDxBkkcFCwJ++Us+vKsKpwHy5Mb7sIG6cJx7sT7oB+tBElxhqEK0OQrItGlbke28qPodLcMQUYL7ouEB0y16T7QWUkXlCOxu/aHni3agPieMtpkOrAAMNv9Xwouhdw8VvA4fmAIUBRMElgWPKs75WC7TOAgdcAYcnA8hd972fD+8DAa4G4LNf9uiLgt1uAkp3oEH0v6djrJCQkWrAZgIq9riQFVQQw5BagYB1QtrtR/CQDonsDmecDocmNK6167yIId4iwYdRDwMFfA2/r6GTBvzoSGPMwQFw7iUCD3KxBugSwSiAsjU5E1/5yFJa9nhPcln3V4GLbX2CuSG9xIG3Cmq1H/SLfF5SnGoLZCcueKsiTtHCUm0iH6vG8ql8kwi9pWYyPujkLFe/t9Lvo7LF/gwOiXYBM2X6ByekEFx8PEJU8cYfv9M44cHHtd91oIjs7G+vWrUNOTg6ioqLw+OOPB3xNa4GKWh18xLvEmU2gKEU+SgtHZgxEtQIyix1scS2ME3t6nzSWyeAIARiH6HJNJRMMreeIbQ7IGuN5s3fnUXdUUjzUmtjUGDz/8+PUhYJMfJAJkPj0WFRWNmDv4W9R18rdv/kUCsr9TmZ4EzcQlIfLYE+LgEjWkL0tsJLiItG1yMpVep+IIGIKkNtJhuEYWhDkDpl8e/jTO7Hml40w1Po/x4yBqbSQyxfEQZU4ppJigx/+7xef283672+YdMPZSO6VQO+X5pTTyT/yvRNIcoOHuMEdBQvT2ZkIn7ev+aGzrxzl97wlJCQC0+DQY2/dBpicDYhUxOHdIbfhx4J1WF6+GxbeBlbGYExUX9yeeSF66ZLoa/JNNSg01bYpTLfbW/oPvd2CPyc+hPs2/YI8Qy1MZiXKfFR41tk7NyZJC4nC7+MfxJbqHKwuPYoVBcdRaDZSAYXRqoBW5dvVTsuFoKc2HbzI44f8j7C3bpvH87vqNmPgkF44ujS8uULValShvlKLiLgGKBlS8A+wxF5U5hIDkHtZoW0joXMMO7Gs/FuMji6k90nXZBM4mr5AhA2uFAAZFRkIggysTADbmIpBEidsPItwpQWKRvEDEZI0OFWwCfI23ZPeoqYCB3JuKQoDHkjwFDc0QcwFp4fnYkNdPHi27fUj2ZfJLkeY3EZFHCTNo4kGpwFba7fgnLhMbKqsb57ja+K8uIF4sHdLkdiTA+/FrPz7IScpEF4gxzI4WwqkauzVEEQBjJso/p8I+c5d33vn9iEhIeFJsPHuHfqbS4n2W1x08FgZdu0vxLCBbQ1+EjLj8OLvT0BfWY+qomrqwEbGKWWlddh38FsYGtr2aaxVAML8n5OslRCAJSlz7RhHkPGOYl8B5IeKIUS5rqeZGiNkHUzBoPu0kdQeMuDx00bRcZaPYlSDFVxhrYcj7EV3eC7UE/e+R7+4Gyt/XBdQ4JDcOxFfP+17TEKE1mSsQc6ptbjBnW//MxuTrh9HvzdC0dESOibJ2+/qn61DUzzFDe4oOFhGZ0C3+GDzQ2ddJY1JJCQ6S1VxDdb8vJE6eSb1SsAby17Az6/Po49ZzTawHEsFUsTNOmOAq20mf7PeCo5au5D+kP0JnjrvZVQU+C6uJwSaFwlEj7gozH/iFmw8VoC1O49i87xtMK7LhrwqcEJwRFwYdfN02B3479Xv0oJVd4hTd8ydZwMt5qdtIfNtCjX4RHKLBNcvBf0vGNRmM7LvL5/4Ieh1An/ppsTswzoizefzbI0JXHVwicZsnRmKvQWwD06j/Q65PCbaaxkPyKwOKDcf89rbkKIo8vkQwdyxnbltClOJYcet/72u+f5Lc5/EQ2OfC/r9l2aX41RAGpNISHQPcmXwaaMym6NLtmli75qDOLTlGLLG9PZ6XfzyvKeo+3V1SS0V9MWmRNPr2gPrj8BU37F0eiKyOxWQNZgghmsDbGP2Oc6ccptnGnXPoRl4fMa9WPrdqoDHjk2LxRetTKDc+eH/fqbpTsY6UxtxgztfPTkTE64di8j4CHo//2ARXrn2XSrabjcyYNwV0phEQqKzkPHCml82wag3IqVvEt5e+X+Y/ZprTGK3OuicBvlbu+Xl65Da17VOQq4//RXpE2rK9Jhd+AUeHP0salsJdrt6TELmWL47+hFN/NmyaCc2z99O00mDISY5Cmn9k2GzO/Hcq/OwfbcreYaw71AJlq4+hMyzsyDOWR+0mR9Zm84a1zalbv3crZjhZ82ZQI4R81s2VIVGNIyNh4PUjQki1Mf0CF9TAqVBBnFMf1ctTyNibARgtgJ7syGztT/piKkzgj1SBL6vK3m0zXjL6ZbD7JbiSr7X1XM2oN/oXtTQr3X605TbJmH68y7xG1l/eeHXx/HEJC8G5T6QxiSnP6ecwOG81MFYkt9xVW1nWV2036vAoYkIlZbemojRhGHWRY/jqXU/YG9V+6JoGJkMgo+Jkb3KaHwaPggawY5zLaUYay2nnnZkipv8PLWW/QRg7p3Azu+Ai94C4gd4Ch0CCRzqigOnPCx5GiCLxmKABYtdPwAXvekqkP7uYqDeNWnfIRqVexISEkFiNwHVhwGnHdAlAPocIG+N598tqwD6XAr0uhiwGwBOBchbFfgH+jt3/xsloohAAocQPwrUQJAClqZik8gexGYIKN4S/OuTRwGcEoY1RW3EDU04K82QKViI9uAXZKtm7AMbrqSFtIq0UCoCoOKGdkTen3A0HGD2757tDUeJEZE39oOzwgxntQUyFQvNkFgo0zxFHvIYDaJu6Y+aWYfaiCG8IVMwkMmldp7VaqE7/3wYlvqORQ8Wsh+yv45CxA133HEH/T0mJgaPPvpos4reF4cOtSQ0kcFSaqqUviQRHGddPgpbFrQVwZLWwzYqE85MT7cEa784gPPz/1EmA68UwVlEMM621/JsfqWHE+mWBTu8ChzcXSjIrYnY2FC8/8GNeOPV+Th6zG3h0e5wiRvKqv065Ply5SGihZBNuTCNywSt52yKmG4SabhqWSErq0Tlv3rCGa4Ea3BAu7MSmiPEIQL/GASngJenvYMhk/rjwU/uRFq/RuEkQCfq/DndEUqyywMWHH36yLfUDc9fnDN5bvHXK3HXmzdSocq/J75IF2GasPX1LwQj4gdnVAi4GtcCuSxA7LeEhIQntTYjNlQdhk2wo7cuCWXWjVhXNR8CnW1xoWTUuCLpLjzY6/9QazdCx6mgazUmcQrBXZvLGRZZYUnIqfc/iZ6hCxAt7wdSVE9EGORaZ2xMTwg8i28P72tMhwDKG0LRU+W7H5gcPwFKVoHFZb+3ETc0YVQcx4CsDBw41OLQXFEYhviEGihZJ01j4BobfdKdkfSE9469hFhlOESIyAzpi3RNAtZUfg2RdB6NkHpRFeukN9d7kcHCy2EWFHAKDKyQw+pkkW+MokkMBKXVgUilldYZEUEEyYAgiQpNraEgyqgQotYYAqXK9T1dEZXX3IV5gwgm+nNGbLH1gUJeRkUVLkSEcxYkq/TNr7cJLGrtITDxLUKEQksuPhj+IPbpK1BkrkaoXIMpiUOQFea5ENAjNBHTUp7D/NLXyUjG4znyfqrtWir0aELDhvzjxQ0SEhLdx7jLR2HXCu/irM7CxxPRmn827sjxKnBoIiI2jN6aSEgMx7sf34g3//sXcnLcHDftDnDZZZCNSYOo8+5yzclkUBzvmLtea4iggQ2wuB4sjMUBrqwezkTfnxdbaYAYooJIXPzcz8NghWbVYQ+hOUnhe+HSNzD0/IF46JM7m0XPhOQ+ic2iZ18UHCpqs0jcms8e+Rbp/f3PfZDx3+JvVtGiBFJoQMYk7gUJ9t7+U+L4uFDwYWqw9ZbmdS4JCYngIcWYWxbugt1qp8mS6//YirkfLvKYmwkJ0+Cxr+7F/R/eRkUKuggttOGewiPeS0KPNxRKDj2HpgcUOJBi0Y5C0iRYloiLZTi7Tzrk2TVYO3c/5EE6h17x0MWQK+T4+hmXG7c3yudsg/q2UbD4KD7lzCL4EAZ2UosrkpBvJe566FskHSuh19qDJ2TRtvbrp3+kbSmdz6oz+i8Qtdoh81MkqzpUDkdalHejCgcPzab21Q3Is8sREaVGQc8IOKKVrgGTIEKZa4LSbczqDeKc/fri/+DgpqMoy61AWHQozr9pPHoN80yp6DuqF56b/ShN/wjm/xBxV5WQkDizxyTEbT8Y2MJqOElf4ufakGzTHkhqnDeBQxOkOL6pQJ6Q0ocU5L6It279BPkHitp1LFK425Sa/U+HrCc5h/juv2RV9WAaDbVa47A58czkVzFiyhA89MkdSMhoWY8g/WQggUHuXv9jFtLnfvbYd4hO9D/XST7rZd+vwfXPXInKwio6JiFCzw4hkvpeaf5MQqI9VJfUUBGA3eZAn5E9sPLH9Vjw+VKPOQeS1PDEdw/gwY9uR11VA0IjtQgJ69iYhCQf9BicFlDgkNy7ZZ6kvZDUBdIWkPoRkvZDUuoWfbk86Ndf9ehUOqb55NuVHuIGd3INNmj6JoM/Uhz02vT9w5+igm7C0HMHIjYtGt8+N8fvWnITZJkidEs5vQmkfokX6U1UKiCOyvJuvKhRQRyYCdmO4Prv1rA5ZYhMiUGVSukqUCa+H+T/RWNNQDMWq9cxyZvLX8De1QdRnl9JBYgX3jKRCk/cGTyhP578/gG8e+fn9DMKhDQmOf055QQOk9OH4fO9i5Fb33WOAK7lzuAmURxCcMWVVlKgSyYvOAXSQmPRKzy+XQIHBjK8dc5t+Gj3AhQavE8qzdNmIsppwZ/aTNpmqAQeH1Stx3B7+y78Tzjxg4BysvjS6jMv2Ah8Oxm4aR6Q0qigHXE7kLfO974i0omkLfAxy/YCUT0Db1fbeMG984fOiRsIK/8HnP0IENuvc/uRkDjdISKAowuAku2BxQm8HTg0F1DogOi2StbmxARlGGDzs1ip0AKaaJeAoMxPSgtJzyHCi5psl0AhmAU5kvhQsB4o3eESYZBjJQwD0s4B8olgI0h3h/jBQI/JNL3BtLnU/7asDFychhbxB4VTBF/tuqB01liBXe2PcjzhdEDc0IT1SC0ir/Y9wdWEum8kYu4dhKrP9wUUexCRhFQ06iLiX//qEoED2U9nOOuss5p/r6qqwt9//41LLvGfpvT99y0uIiNGjEBkZMeLByXOLCb96yzMeX1umwhLR5+ENuIGgsgG0X8wcIkbWjU/TJke3FHPSWMy6RIMNotLBKxUK5GaFo1UixHHdhwGQlQAKcavM/pNbiDihv/MeRRf/PsHn65/iuxKyAwWmM7rB1He4sZA3jHZs0VngeVKzwJO0+AoqA/rEf/DUTrRcjIgrkM5e/LbTBDtWX0Qj571PN5a+X/oNdS1yHvJPRf4FTik9kui/XUgDm85jvDYwAu/Zbmuse6Cz5Z5iBuIO5+gCxzTzeuUzQKH71/4GdMeu4Qu3khISPj5uxEFvLXrD/xduwfOxjFJskaPHqFt2z6bYMGvRZ/gjswI9NQO9Lq/dG0UIhUhqCVjCR/EqUKRqAnH9ZnDsKCwxeXYExEaOSmYN2BLVS7GxHgWn/ii3m7Eb0WrsbR8G+ocRkQqdJgcPxpXp0zE54c2e5hp1FvUKKoNR3JEXZvhzqTYsbgmZSqcghMbqv1P9vfpVQtzZS/kkphjuthQSYUNIZxnoT4RAqhYHoJoQqWNjF9kqLKVIdtgpokM/iDCAi1nB8cLqHW6krfq7epmcQPBxnNwCEyL5o7M+bVqoktqIsELpM9yfddpqsALpD00ddjsqIIIhgyn6ExioqoOSsZzDEvuxysbUGkXYWg8R8L++v24o2fg692BEaOg4t7A+0f/hyiFgaZCWAU5TW5wEotWN8ZEjQu4PwkJidOXC26egF/f/osmt3UVpPCUXh8HYdzjCDL5gIxJyH4VKgUyesQiwVSPnD1HAbXSNSZpMNAxkGaNBeZz+0EM8bze5WTAaw9NxafLD0Jvbr+7XHej3F0IZ6zOw5muGQcP9fZ8MHVmONKjaeE/Laotq6PJDb2HZiB7d65HP0U+/13L9+GRcf/BO6tfanZiJ2OSD+79yu/4xhGE4+3+9YchVwV22i3Lc411//zobw9xg8gyNKkwEIJW2Sxw+Oa52bjy4YuR1LPjhQgSEmcCTocT7931BVbN2RCwEIg4T78+/UPaThAjBW+kD0ihRUcGve8xCUndiUqMxNS7L8DGP7d73YbXKsAOSEReOIfQ48UY3qvFEMIfJMnnt7f/wrIf1qC+2oCoxAhMuf1cXPPvSzH79XlBFew0tX//evZK2p/8PWOFz+1Ykx1J6wtgv2IgCqvcBOSiCNYqwqmSgXdTNfMaoFrHwLrXBmVRLUqOtzXbY7PL4BzRy/cx8yr8zqvJnAJNtLEOToatdyxEtZzYf0NeoIdqbzG42vY5iFszI1ExLAaie4oTI4OtZyTsiTpE/bofXJ33glXCzuX7cM87Nwc8zqTrzoIuUovnpvzPX0AF5fwbx+NUgAj8m0T+ndmHhISEJ1Nun4Q/3l+AmlL/BakEUlBP2k0+M97786W1YKsbWsYkQeAMcp2EpB0xjGtMQoRdsanR7RI4cAoOL/7+b7x166eddg8/ETDF1WCidBBSWoxImjFZIXcTIfQaloHjuzxFCeTz3754Nx4e+x+8t/bl5rWFS+65EJ89+p3P4xIXcrPBdz/UBBHq+7p+cadp/e339xZ2XNzQyIynf8TlD07xEGxISEi0hQga3rn9M6z7bRP4AIXlZJzxv2vfw/sb/oc+I9qmNRNICptaq4LF6LttSMtKRmikjo5Jti/Z43UbWTwL3UXhKB/WgEP1ucgKC26dpKbWiDm/bcWylQfRYLAiNkaHqZMH4ZorR2DOa38EtQ/SL13x0EW4+vFLYTbb8XcAsxHd6N5Q2ewozwuuBouM7ZqShYqPBTAA9wNjb/m+xKRo7+KGJrQaKuQmgu6OULfxIJhzBvs9BumLWkP6FyJuuPWV6wMe48KbJ1IR/4tXvBVw21NlTCJxBgkcFCyHbyc/jIdWfYn91QVdss/J6UMxPK4nvti7GDVW/xdGNt7/JPGqwr345sBy7KzIofcHx6Tj+j7jsShvR1DnQlz1pqQPwxMjrkSCNhJGhxUvbZ7tc/sarmWx1MAA/RzBReecVOqJUs3HoMRuBL65EOh3KXD+S0DWFcDAa4H9v7bdlhQNX/klkLsm8DFJQbEliM+myan9QHAdmV/2zQEO/gFcNQPof0Xn9ychcTpSvhc4ttD1tx80okso4EvgQBwsU8YA2X4KrpNGu8RRYaku4QERJHg9FA/krmgRO5CKH2UokDAcSB3nSpBwhxQw7fwKMLk70RmBgnVA8VaXQCMQsQOBjImAzuWIxNdYwNf7f51ocSLqnkHgTQ44ig2oX+xdMXymIhiCXwC3HqoNKG6QKVnoJnqJXTtD0YweBWWvnrAdz+7wPpS9ekEzamSnzqNPnz4YO3YsNm/eTO8/++yzOO+886BWt1wruTNz5kwqgmji4Ycf7tTxJc4siGDgzeX/Rx3/m1w0SfG5o3fbyflgy/cnj++PAYoQ/DR7A+pMNsgsdrCFVWAq6tokOhAXP3+s/2MLjfc9tPkYvd//rD6Yetf5WPfbZsjIpD+Jn/QDy7GYdP1ZuOP1GxCdFEWL7D9/zHessLzCgNB5u2HrGw9HehQVOrB1FtiUVlgGeJ8wtvSLQO2UVEQt6poxXXshzoS+FkpIPPIDI57B+GvG4I7Xp+O86edg0/zt2PDH1jbbEtfEp75/EBvmtn2uNSThwWK0BXaaiHaJIFb9vMHjcVL4JbM6IAYoSCJOsk0s+moFlv2wlsZ5jr10RMBjS0iciaz4cR0+OLYQNWe3TMaS4vWUEN9zCCRlYG3lnz4FDnKGw7XpI/HFMd/zFdenj6JzQKNj03Bzz5GYme1eUCSC4wQwjAhexuPjo8sRrrIgSu2EnBUQo4zEeXFjcHH8BKhbjUn0dgMe3f0RSi1kAlmkBfIGZx1+L16KJWXrcaCGbO9ZmFhp0EFvViNKa4KS4zE1ZSCuTT0fqSGuBcwyawmMzga/n6NJqMcPt09GTqkT+0vLsY47CA3rew5NwfBQyexg6KcpAysjRVzBOTyTRAcFL8DgVKDGroFIOuHGHpcIEOrsakQoLF706SLMNjlsNhbgWvoAIx+40JOXke+1ZZEglLO2ETc0QY4brTBSUULTe6pz+P/83FldeQQ5piiUWXWIVpq86uw1rBaT4y/GqYBUTCQh0T1odGq8teL/8NJVb7fbfdQXF91xLhJ6xGH2wl1okdl6x+kmxPXG6p830mKno9td6yQDx/fDlNvPw6a/tgPEhdzsKn5vgm2wQLtwDxUCOJMiwKnkmDx5KO659TxEhYeg7JGptFD+nwYRFocsOwTryHTwMTqP5AbVjnywta7CYkVuFUBubpTmlvssHCUFPPcOeQIT6bhsOqbccS42L9iBrYvappuTItQnvr0fS79bHfB8iSOrwxq4ECy8cUyyutWYhH53ZEyp8L+0SMYtTfz1yRIs+WYVXpz7JEZOHhLw2BISZyJLvl2FL5+cCaMfMYK3OQYidPNVIEjmri6683y6jS9IoQ4p2Bk5ZSguuuM8LP5mZfNzIiODcUIP2HrH0CL6jxdsoo+rGmwIXXkcSWFaKli49P7JUBMjjVaOr4+d8wLK86vofhyZMShMjcRXWw7h12uOwLYv3y2XzDvEyfPapy5vTtgsOFTsV6xBqN9bhJ/mP4dsgxGHCsrx9derAEYOWzTr1axIlMtgvLA3uPmHwFa1vV5ny/QQDxWB75vcklraCJNfQQUQgSAiB/XOQqh2FVJhgswhQOYjKdUXzkgNjBN7wZYY4kpQ9YKokcNwVhoiFvk26NBXBF9DsOnP7QHFDcTEY9pjU4Pep4SExOkHSRB6a8WLeHna2wGd/QnyfQWQme1w9owHVI1zU3YnuLwKcEdcr7/s/skIjwvDH+8tgLHOHLAQ1x/LZ63FvI/+xvGdLiPaIecOoELxHT4KaL0JG0h/RAoxSTrdFQ9ehFn//Q3/dEiPxe3Ng1BRBz41FqJWRZPsmJIasIWVkLkJKUkytS9IStSdAx6n6yO3v3YDLr3vQmxZuMNrkmBYtA6Pf3UP5n20OOD52S12CD4Sl7ylBLUZk3SAP95fSIWSr8x/BoMn9u/0/iQkTkcWfrkcM56eBXOD53yNP4gh3+/vzsd/5jzmc+5q8m2T8OfHi/2mtRHGXT6SJoytmOVmgq0A5E+GgTlPBTsrw/cFrrENmy/C+XI94pRRdBxD2icy/nGnrKIeDz8xG1XVLXXAlVUGfPfjRsz7bQuMewsCrkYQ0cXVj1/SnGaXnV8Ji9sarDcqaoz4c+ebyN58HEe3Z2PmS17qXbub8Jb5KV+IEboOCxxIP8IcKYCQle7VJFiWWwaZwXsfXlse/JhkM5lDDAAR0pNx7amAtE5yBgkcCPEhEfjt0mewqyIHW8uOUhEAERV0lCkZw6mo4JzkLFz11+swO30XnSwv2INXt/yKMQl9sKpoH+y8E4Ni0nFFzzH4/dhGvLndszB+b1U+vbXHNbBJ3EC4vu85qDDr8eW+JR4Oe77oMu8AUsg7+HogbgCw4X3PYl2vB5YDSh1gCbT0gSC2EYHD812JDiTBobWAgRQl978SGP8kENMH0MYCa14PfNyYvkB2gP8nWZe7fur9R6cFDSlmnncPkHYWoPWikJaQOJPJXwdkBx7keqUu35WUIPdeuIy08YChHKjY2/a52AFAxqSW+70udokJcpb7b5+I2IFaUdcCuctd+x5+N6Bwi1kjj/tqL/nABY2UxOHN4gZKsJGJjAyqHuFQZoZJAodWsBGthCh+sOX7Sf5oRN0/Clxk8Ps83SGLYAlvvIGCm26GaDa3//UaDRLeeJ3up7O88847OPvss2nR8oEDBzB16lQqZEhObnEWs9vteO+99/D88883PzZp0iRMnz6908eXOLOIT4/F5zvfwt61B7F/3WEYeAEzj3kpLJK5khmEACaXF4zojfEDMzFqSBoeGvksbH5EDKtmb0B0SjR6XTYSm3bmwMkLGNAnEVMm9Me89xZQ1353Dm48Sm/tWSS/592bER7jisS86pGpqC6uoZPA7vGjrYvq1buL6I38OZPNap8e6vc4hlGxiFhWBMYh+EyQmHzrRGQMTKMLB4HckRQqOZQaZVAuSoG2Ie3I2l830+928q2TcGC9Z1QnK2dx7vVn44bnpyG5VwJUIUr8/OafAY9LYjZ3LvNyfeLGhGtdjtxVXtx4lceqYB3kdp3QCqbeAq7CU7RPnFxfu+EDzC78gi46SUhItEDalu8//APmmZ4RuDq5FQrWv2tqtnEfHIINcsZ7ssrdvSYg21CJFWWH2jx3cdIg3Nrz7Ob7/zdsMgZExmNe4QKAy0OI3A6HwKLCrIXepkZUiAUs42p/SXpAmbUSPxbMx4bqnfjfgEcRwmma9/V17sJmcQMREbjX4VgEEzLjTCirC4Xe5BkX7eA5lNe72v2zB09sFjcQWFlw04esTI6xmYkYnp6AbTvtPgLwRISzZoSwnv0cmfJyiCyc8OKA7QWFzIlcQySE5lSDloOFc2b01FQiXG6GIMpQ7dChwqaj56MJsSM6wwQn7xJCVFm0WF6XjAsj/BcHb7NEe7wfLRdALCgTEcLaYOJd44YYZRSC5UC9qxjYzCtQZQMVazSJK8jnZOU5DA0fjwiFlD4mIXGmQxzxZ+x7D7tX7afX+/XVDX4XjQMx4bqzMOy8gRh22Ujc8+KvcPhy67Pasex/vyNOFJHePwVbF++ikfEDz+mHc6efg1/e+BM/veq5TkKuq8ktUBEoSYgjN8Kjvz5FF8MJ1z19BXWG/evTJUE7unYFRPxNnGnJmOTb//wEc0Pb9p+rNkK7+AD4MDUUMTrI7Tyshd4T8NwxBSjYImMvMvbbt+4wzrvhHJoI53FcBYvzp4/HDf+ZRl3YSbEWKeAKRM9hGdi1Yl9QY5KaMk83XtIVKnKrYe/r3XmXwOjNzYlyTdgsdrx6/fuYU/QF1Fof87kSEmcoRLz18xvzOvRaInrieR4s6/0a+tZXrkPh4WJsWdg2xZrMdZB0lSYe++oe9B3dEz+98jsqi2pgnNgDtj5tU0qtoUrYL+gF5697qRvy2t824+2VLza314Qvn5xFxQ2CRgHT+f0ghLWMV+hMx+VDod6c4xJ/+eCSey9sFjcQOHlwYxJOzmJcVjoGJcbghw9WwBZHIlN9zzuLCgamiX2g3lMEkWEgsznAldQ2F39yOWVgS6rBp8RA1Cjp89QZ248LrTdcphXtT6nmQxRouKQ/BJUcrQLd2mDLjICg4sD4OE5cWvDr1Ac3es6DeeO86eMRGR8R9D4lJCROT1L7JuHrA+/T60tiuESK4ud/5t2EkLTG8uwycDnlEEnfIANk9WbI3NYciMCXiPfIuOTxCf/n10F8/qdLEJ0YQdu3Hcv20qL5QeP749wbzsbMF3/Bb+8u8Nh+z6oD2LP6QNCuVCRR6cGPb4dc4TLGuPH/rqaFmYu+6nhtWkcgQgsiRifpbkQQaQuQbEfc0slnaynXgy33n64RqJBZ4AUsn7mWJsGdc9UYHGsUi7ifG7mmIGlL5HsgY5JgPp8+I3vS78MfE693jUlIElRXQBzk/3vNu5hd+HmbQmgJiTMdYnI398NFHo8RobKlXwwsA2NpcjxjckB9sBKag5V0/qaJzfP9G37f9eaNKDpa6nVt9NJ7L6SJbQRSK0IM5fqN7o3Zr89FTUkt5M+FgZ3Udg6BT5cBr+tQeHspvnxiJtbP3Yo3l70Alablb/uTL1d6iBvcqbPxYHokgj1GDLp9Q4QTTeIGAhdk7ZZCLseoi4bSBIuTInAIhk5OrTGlNYDFDjE9HmJUqEvoUGcEU1gBpsJ33xOXHvyYZP+GwGOSKbedi9CowIIOiVObU1Lg0MSwuB70VmGq67DAIVkbDRWrwPS/32lOXQjErMOr6a2JBbnb8MGu+bA4gixeDcC87C1IDY3BhOQB0CnUeGTYZbi691n4K3srykx67KzIRm59WyUt2VaM6gFUB1+85B0ZcPnHwJDpgKECWPpc4JcIDmDkncC6ANEwxFmdpCkEg7kGWPe2l2M5gfL9QGjjYntkpqsY2FDqf39p4wCLHtjzo+9tiBjh4ncAW9dcJFOcVmD3TOCcf3fdPiUkTnVsDUCOn4SFYCBtgb+2ZuD1QNJIoHQHYK13JS8Q8UBkT08VKWmTKg4EJ9ByhwgZspcAWdNaBE1luzv4ZprOm/UUN5COOlwJeXwIHOW+3Ym4KBW4GHXzhb9MzkD0USx6JhIy0veia2uCKbJntAGqlM9A1P37I/njj1D80MPtEjkQcQN5HXl9VzBu3Dh88MEHeOSRR+j91atXo0ePHhg/fjxSU1Oh1+uxbt061NS0FBoMHDgQf/zxR5cILCTOTAZP6E9vxRV1mPnYN23nBki7zJNiHREi5/3/WXpcBOQFtXj4nq/bFK14Q1ArMHNHDkS3qMpl6w7jyx/Xw7lsT4dFz4JGDj5cQxdxiXtgXFosRk8dRhep7377ZurKt2LmOurER4QdJce9jEkitdCEalBSq4cz2r8YTNBwsMdroCpqKzYgznrP/PgQJl13Nk1b8Bd93ITd6sA1T1yOn/73u9/tWDkDPsh+kixYzPFSaEAWN3L3FyA6yVVcmpaVgvDYMLqA449h5w+in9/qORt9bkMKf+5971ZaBNSEIGdg7RsDZ5gcIhFdkuIFoZXXuSAiZEu+V8cRq8mGZd+vwbTHLgnmbUtInBGU51fix//+Bn6KDpC3cuMk1ScBECGCF3n48v7nGBbvDr8OW6pz8GfRblRaGhCvDsMVqcMwOtozQpnsp9K5DOHalsJPktSQEaZHilCPKrsWvNi2dc83leDHggW4p8d19L7JacGaSteYhBTEe6vjIZc8CeENsDrksNjbXteqWA79IjwLmWKU8YhVJqDS5tuhNF6VjCila3JawcghJ0YYaDtPFspa24gbms5LDp4KEoQgejLyeTgEjr6OkQmIVJj/n72zgHLieqP4zcQ3WXcXdtldWNzdXStUaUsFWuou1Nt/oe5KaaGUFqhRWtxdFneHdffdeDLzP+9lJdkkk6wApZ3fOTlEJpPJhJ2Z973v3gu1xIAoRTkiFPbHYrWkFBHyCpzVhsLAWX8xiZhFkFIDmdiMXVXhOFwTiM5q582omysicNHoY5fgIBa5P49IbJYZEtIPnsKQ8WwtOosMOp0MMsZM0y5MHAMLJ4ZKYnWxuxYgCR3kd23pOgQEBFzTZWgHert0PKvZAgcixNVV6/Bwr+dp6oIo3B/okQgwjY7JRhPke87SJqRFb9pfd2/8aTvmPb/IrdMqH6QZlvVVUifXVfM2IDgyED3HdaXu4A99eg8mPzqGuvmRxvvDm44h/6Kj0YhfsA9ttCFJdC2BYUR4+dcn0W9ST+Scy8fnj9iP9xojriQprDrc8tIN+Ol//AnRZPvMJAnBA4jYfOm7jmJqs9FCf/PA2jFJUtcEqP1Vbh3ge4/rhtyzedj5p2snPJIMMv3dO+hnNEZxNBemmABwXk7qYywL5X7nKX2aSi02LNpOGxgEBASsZJ3Obba4gf7JWVh6cyVwIA2Zbyx/DvvWHMa6HzbTGgdpPiQupx0HtnNwX936yy4qbrD4yK3JDa4+Vy2HPjUUXodzcXb/Bfz4+q+4//076WtEbLfj9z30vnZAkp24oR7SLNWnDcTlGojLHc8ZpA4V265B3ECIS4um205qRK5o271NfcM9SdyUshy0cvfXkaxSDGOnuPrHxs5xkJ7Og6zWTZyk0kjO8c9BszIxDG1DYA5W03MkqfPJMsuosKEl6DtEWJM8yddw91XEDBVEOBM4kNo3SdzwFGI64mkC6bWAMCYRELi8kGNMtxGd6O3M/gsuBQ71y3McRBWO16zJPROpqPnB7s/i3EHPDEm/f3Gx3eONi8iY5EdU1yapOdCE4zIRVhPXf/9QPzpPQpriH/96Bk2vIZ9TWlCOQxuPoTDD8dwUEO4PjmVRXujeWI8PRsLgjT+fpWlLl45luhU31DXy3/bi9fj5rT94l5MppTC6cSKvo+BSEX794C+H58mYJvNkdv08Sfu+yVB6K6Cr5hcC9r+uJy4ezcS+1a57K14e/zbueuNmcC5Mt5oDScrbsnQXFWUICAhYuXAkw1HcIBah/LpUGGP86p9jveWoDlND1z4EAb+dAFNbLyDjCD5kChlmr5qF9FWHaLIOSRUjJg1kTNI4jc6oN2LLLzupuEEUK3YqbqhDFCaGeLQSlt+1OLnrDBbP/gN3/+9W+lpJaTV27+XvAWYjg8Ccy3F5vU7mu6Pahts917ZNKAIDVCh1dY4hvSepkVCr5PXpNuS6mozZrgScRAwuIgichLGOHbja017tcJH2K9QuKyr3PHHaFUx5NVBeXdsPYRV1uzMRIcaGrTkmuZbEDdfSmGTHjh0YMGBAk983adIk/Pmne0PIptJqhv9XA73ZiM3Zx3Co6ALifBxdJDyhf2QqZm74wmNxgys0Jj3Ylsqbavn00N94euv3GLT0BXqfXDhHqgNxb9oodPMajE64Dp1F1yEMKQAnglqqwJS2/fHr+OehHPFGK2wBB2Tutt49TiYpPPxee7/yLEXBZqK22RSfBg7ZCBXcfW/SMNx2FDDxU2Dgs9YmYmcQAcSymWh18jyLuRMQ+M+Qd9BzsZMzlAGAzAMH4oA2QNrNQPcZVsFDYJJjRFZuOlB8onnbUXDEKmKqE20QkUNLCO1gTcNphPegcIjlOojEzosMqv6RMGZUQX+2HJYqA+Qp146Tp0jhmUNrc1H3jYAs0nO3akWy+32nSBZciZzu6379EPvjQsiTEj3a1/KkJLo8eV9r8uijj2Lx4sXw9fWtT2zYsGEDvv/+eyxbtqxe3EAKrlOnTsWuXbvg7y/8pgLNR6fRY/ff+3F+60mEOxtEk2I9aWDRkchGUkng7F8zc+in9MGrk971SNxA3m3s3Racj+MEsUZnhIG8JnfVbuta2FA9LBkVt3RH9dj2qJrUER8cOo1XX1mEW6Pur3dfDY8Pxc3PTUL7finoOKg9dWgNiSGO1iKo/VS0UeWLfW/j3jm3QWTxbAwhclHUIUXrEzuswm3iWuopf37u3rGUuK+2BhcOZ2Djooao1HtmWwtnrgiLD0HX4R3w3A+PUAda0jDljIriKnwwvWFsZYzyRend3VEzhLgnBtOJd5IIwkpJe7UVcakG3mtPQ5bp2hXj3EF7dyUBgf86a+dvps7InMLxb7HGJIfFTaExRB4FhdhJs44N5PjYJzgR73Sdgvn97sWcrjc6iBsIW4vW4USV87qBhGFpEoErthanQ1+bFlekL4eRNUEEjiYIuN4uIEDtvAg/KS4NvjKlw/cYHNzg7uqMIcHjsTc/G1uzL6FIW4NkdZrj54KDinFtDkJFDqTK7gEGi6Q+SaG9bz6iVRWIVFY4iBvqIGkW8UrHZBwfmQFBCjGevtQP68qjYbb53Q0sg9+K2+CFi30cCs9m1v04hiRSECZFjEKUl/1kCB89AlIdnjOyEuhZKRU3uFpGQEDgv4u2Woddf+1DxolsGs3eHNIGpNCmdiJuIIjzyyHfcJQ2dIrKqsGUVkNyMhuKDUfBOGlGqqO54gbq8j0kGdXXd4VmRDtoxnXE+9uP4pXnFuKWyBn45b3l9akVtzw/Ge16t0WnIR2Q1j8FQVGB9Fzl7a/CpIdG0zHJXa9bxX8tgVwnnKh1i7O97neHu4YuQmLnhkZaPjgxA2NCMLQDk6EdnAJDWhR18a6D/F6kIbmOaW/wf++Y1Eg6jntxyRO0MYsIy51BmqA/vP8bp68xWiPUq45Dkl1mje6rRVxaA9X605DmVrj8/HONHF8FBP7rrP1+U4ven9glvt5V2hXk+EjcQ19a8iQ+3PIGrUk0FjcQfvvgbxzccIzeN8QHOs6jNMKY0FBHXzt/E4wGU30DpNlkgTlQDUsITwM8I4Ihxfk18si7BtslQtDFGQbXPz6O3me9lTBHBsAS4gvOZjvJcY0YchAXb1Jb6ZjoofFR4+8qEcOUFg2Th+83Rvqi4tZu0PaJhzExmAodakakoPK6TrTm5gnELMTpuhNqk+DI4dZdqY3lwGidzyFNfflG2kjmKd1HdXa7TM+x/MmtAgIC/y00lRrsWr4PeRcK4BvcPAFUcrcE/O/mDz0WN7jCpbihGXz+yPd486YP6TxJXVpadHIkbn5+MlJ7JqHLkDS075dMx2HknEsaLUki9hfpc3DbrFqTxBZAkvJO7LLOkxCht6es+Nq9QXBiF8caZXM4vuM0dixLr3889aUbeZcnjuYpPZPw2h/PYNLDo10a0BXnlOKzh+ahtRHGJAIC9qz5znFMUtMryk7cYIs5TI3qAQ3zrCm9ktzuUnIt33t8N7y81Domeeb7hxzEDYTFc5bVp38yA/lN9AjiQQ3LrJq3ERazdW4hN6+C1nR4IeMonpS4MfcMdUh7kUjEuGFcV97V3jSxG45ssY5JiNEDEWFfCbggX7D9O4BLigK8vWgCh0XBwOwthlkloTcTuS9nwFVpIKp0PFc2HoN5CtVie9AWMO3NWxAU6XnSdc/R7sckPca4X0ag6Rw61EJz51bmmk1w+PrIanx/fD2qjPyRWXwoxFL8fXFfK8kSWh+t2YAvD6+iBYuhoQNx7w/7UFhlOxGciHbhXTH/7h4I9ak9aPuOBrrfA+z/vkWfzR79FRj2OhiN4+SvSzxJPfAKBNoMA863Qmzb0aVA7wes99NuAE4tB07Zx8xRxHJrIgVTO/kcP4A/aYJtYYOyM6T8TQ8CAv85KjJa9v6oPm4L7B6TbXUTahYkvYYkPxARlYRc7NXKYJuDTxSQPNH+ObMBuLQJyop98Bqgoz2x+pJgVF1KgqnKj36cvK0/qjdng62qPXYxIsjbOh9s/BMhggIiQqDFd28ZjJlVMObWQHuwEJzes+YmZzA+Uqj7RMBnSAzvcpZKA7RHi8HqzJAEe0HZORjV27LBapwrzaVRaijaXDv790pDkhji//oL2vR9KP/5Z1Rv2ABYbH5HiQTew4fD/9Zb4dWzx2VLTbjlllswevRofPvtt1i1ahVOnjxJ0xvUajVNchgyZAjuvvtudOzY8bJ8vsB/AyJCJg51v3+8oj7G19QmBOjRUBS2PSvQ+GU91SeDlVifZcyASi7FpreX0/V5AhvsA85P5XoBqQTmuGBIz+R5tj65BFXj0qwuqbbP+yigGdwW3PbzWPDyElp86jw0Da9OfsfBdaht9wT87+8XqJNRnRCCOO8syC6DIdq1yExSYYAs33UD1Jr5mzDtf7egsthzlyONBw1VAWF+6DykPQ5vbqbAsZFL7bgZ1vjUkXcOxs5l6di78qDDcnKlDE/Nm0n3I7EZIM0ES99x7WBg0lsnpEnsa+X4FHAyJ420YhGYkhr4rDsPiRPHQ2fbICAgYD/5RmAuNtQAxCIzIr0qoZSYoTdLoJKS15xfr/QNGtNqu3NHCX+NRMGYIRZZ6pvbbdFZ9CgxlCPKKwxqiZfHCRQqmWPto1tQFF7sMszuOa1Zh99yVmBT0S4wkNOUBNtLOBEYhDL98MiaEyjWWSczpQyD4fERUAaI7LZFJjK73TYqzKDnRP7rxBKTCkqxAQnqUogZ6zr9JPzHQpIc4cUYoGXtJyYmx7RBD79h1LjE4iWBxbQfJyoL8fLJLOQbrSYd1QYFZEpN/XevtsihELt2pzKzDJTicFwXNRQTI4bzblepoRT7yvdBa9YiXBmOkaE98EfOVtSYnX+fNN8EpPp41hj7T4BIPVvqLGSViwoICDSGZVl6rU5SG4hLJ6E542wiVnY2oc1oDWBOZLtMK2oNWG8FLCo5dP3agKt1uKt/zUcJ3aC2wPZz+Pa5RdTpjUwMv37De6gssZ+LSO2dRMckdc5txKV6/9rD2PprrZFTM1k5dwPufP1mVBZ77mxXXeaYUNcYIspIZUS8InfikK4Z2g6cd8OEvTnSH4b2kVDuPAtpTnn9mGTEHYPo/bHTh9PGsromZVsUKjme/NZq7kQaotv3S8XvHzVyaaTj2mAYk8PA+qtovY4IGeQn8yC2aRQT1xig3njGmrjhLYdIb6YJFu6QO0t9EBD4D3N8p3VM0lwmP9I6YxJSk1rxzbqGJ4jjp7v3SBvGJtXlGpTXpkMQp1OCJcS9k6YzAUSnwe1x79u32z1XVVZNa3Crf9sDw8B2YG0NRvRGKM7lo09KJL564of6ZE2pTIIuY7tCrBLRdAU+GKPzMYopJQKSC4XUadzld1DLUT0ihUTwOb4WqEL18BT4/uV4TG7MsNv6Y9jUgdTt2zfElwrszh++hJ/M1TCw1qthogXneDo75JfKIW7kxE3MNojwY/LDY90mHG77dTetccZ3iMGYe4firy/X1Nc8G9NtZCe0sUm9+KcjjEkEBC4fFosF3z3/E/7+eh1NESa4EtHy4RvsjZXzNuKfCjnXkZRpksQWmRSO/930AX3Olg4DU/HGn8/R8VXdeXr/+iPYu+JAiz6bCKhvf+kGVJRUNSmpwB3h8SEw6ow4f6hlghLCxp+2YdCUPvXfe8/KA/VNyrZ4+SjxxFxrj5dMLqXC9eWfr3G5XtuU69ZC7mU/7hQQ+K/TeExCGuN1HfiFsfrUYHhvz6QpDte10piEiBNIak4dIifGVA7YpLWRcQA59pG5am+bOopLWJYU8V1e69715i12z1UUV2Lhq79g/cKtEMeGwJIQZtezJmZE6BMTgE8nv1N/DJbKpegyzNEIqrXhlHKwaQk00a0Oi1xkTXKwRSQCS/YZY6kLdbBj9L1DMeCG3rWCPTWdQ7t4JBPLv1zTojSdiMQw3PT0xPr5dFcQkeT23/dCV6OjY43xD4zEym831F9fNKbPxO5UdHitcC2NSQ7ZCByIsWxQUJBH7wsP99zo618vcPj04N/48oh7Z053dA1pg135LSseXQm+P74BC1aJUVbjeLA4mV+Fexbsw4pH+jdMXoz/CFCHA1veQj4XgG2WjiBB9t2Zs0hmcjz6TMaix1Of/YAbE71hvQxtJYi7+YRPgK93AqbmR1VTyi8BRaeAkFRrVPaUH4AVTwLHfmlYd2AiMGo2kGgzmXxhM6447Ro1LQsI/NepyW/+e8UyaxpMa0AK0xrHKPsmIam9OJaprMec0nOevYekSWhLrQKosC5AWEeSM2l/vDw4D6jKaYgJEwHK4GIoAkpRfKgHjBWBMJxp5NTMcjCcdu3e/E+D1Zogj22YyJAGKaHqFgpLmR7602XNX2+VCVVrM6E7UYrAqe0g8ZM7TNpUrryEml15dm5zjJcE3kOiUb09t0E0UrdtkWoE3dW+2dv0X4Fcj6h69aQ3S00NzIWFYDUaMCoVJKGhEKs9T9RoCX5+fnjmmWfoTUDgcjDvuUX45X37SF7phSKwKjlMqRENRQ16iOHqH5O+TdtAnk7Bfjhe6fy6mLjQsRH+sEQE0qKEqFILTu7eMZoN8QU8FDgYUsMcxA226LrHQn6uGEveXoZf3l+OmkZFe8LZ/Rep2+snO9+qf+7ZBQ9DvngNPs076XLdvlvzeB0dSNzyjA5PoX3/Vjrv12IymPHw5/fhwe7P0QJ+S8g5m4es07mISYmkDVfEdeijGd9QF9W64jtxSX3w43vQeUhDEevAuiMerV/XIcy5uKEWc6ganMSzYkb/G3p7tJyAwH+FjONZ9N+ypDDIDGK0CShCnLrMLvmADBdY+idm/3cmZ5RIUXdrle0wsUYUGwp5l7EmG7BOBQ4EL7F1TBKs8EMH3zY4WeV+TBKoUGN0dDKyayoQKFfhuvgOGBOdAplYbCdueO3EB8jU1tWSFNBZZFCKSUoEixKtCvlaH5jNuWC9xFBABr1OBhPLYmPWJXRXeiNcWdVkbTrZ73zvqTApoWdliFBV14sbCHKiHHSDl9joIHCoMVejo79Nuo88Ct3VQEz2fOSXWp2myw1KqGUGyMVmum3VZgXUYgOUTkQOZPsLDWoYuWL8nPkrdhQdwXOp9yFQbk0Yq4PlWPyc9TM2F20Gi4bJFG+JN+5JmIgfL21FualRA693LF5ud4/b7ykgIPDf4MvH5mP5F/bNIJ4Kp21J7pno8fVpa2EO9YGxYwzYQDVIKA4ndn3g13eLhTSjBIve/I2KOpw1WxKhwJs3fYD3Nr5W/9xLS59EYMQC/PGJfRN/U9Mx7kt7grqztiYmgwmPfjkdj/aZRccnjSG/onZQip24oR4JA13/thCvOAymxoDMk9nIOZePqKRwKlz434oX8P49X2LHH3thJMJpERDXPgYPf3Yv2vdNrl/NwfWOv7m+dxuYEm3S0sUimOOCYI4OgNeW05DkVzqkOZCbp5CJcgEBgdq/c45D1inP5mydofJToYcHjpaeUFOhQXG2NfWWIClx73zNEcOMse0hzS6H4mwRlLXHq4g2YUjpmYgjVR6IvSL90f26nijMKIZ/mB9G3jmIHidIfaWO6vIaPDnwFWRcLIJ+SHtA0UgopZBB3yEWOw5dgqRW3EAwGc1I/zMdypQImAbFUmMoZ5C0VRfB2eAUMrBB3hDziNz0qaFOxQ11mEO9YQr1hrSQv9GUiDhsj9HRbSPovwffW4rDF6w1PrKdZvJRTr4KEZqpd2Y2fG6AF/TtQnHGV4F3/t6JDeln8NaH98I3yMehkYy4Y6/+bqOdy61/qC9NQ/r5rd8dRIU0CWjx47zfR0BA4L/DJw98S48htjSnCZKkCVzpMUlz+OHVpTBoDU6bLUlD/5ypn+CtFbPqn/vfX8/j45lzsfKb5hvAEgH1fe2fpMkHrQkZKzz21XQ8MeBlmr7UEi4dy0L+xUKaFiRTyDBn9Yt47+4vqfiajH3IuSuhYywe/eI+JNu4mR/YcBRXmgE39Lrinykg8E+F1Fhyz9n3brEqGb3xQeYtLX4K+FkYdBnWoVW2hSSw2RrssWddXKTbbuu5hmUYMUONHQgJccFoEx+MC5eKXb5XVFQBEctSQTA5PhVlldA0nlHThqDv5B4Q28yTVJZU4fH+L9fvK8mpbIgzCmEhaQRyKaA1QJxTin0m+/oOOf6lr7r8TvhcdLCduIFliDDatWidjQgA66dySGglYy/bZI068cCJXadblK6Ud74Anzz4Lbb8uguv/PIUvP3t+4VMRhM+fmAu1v+w1a6uSX6Paf+7FT+98auDqJD8v3tu4SPN3iYBzwUOzz//PL1dTa45gUO5vgbzjtu4SDihT3gKwlT+CPbygYW1YP6JTXTS0JaRsV1ogsO1gN5ihJHJJpblTl8/kVeFHedLMCApuOE9/Z7Ci6cS8GemDLa6q37McXzUowYhRz5z6zKeV23GvQfa4KBKBYWllWLcstOBvV+1XNxA0JUDX/a2ihd6zQTSvwHONfq/UXoe+HMmcOdfQFhdQ9EVzuwI7wS0HX1lP1NA4J8M+ds1eO4w4ABp/D/xG9CjNsGlJZDOFCKYsBiauwKr2CpzG6CvAhgZICKzsm6KAMHtgPZT+JfJ3k3FDc4wVPrBVN28eE9PkcZ6w1ykA6dz3yTUEiQBztXTqj7hLRI41GHKqUHB+/sQ9lR3SPwV4MwsdMdKULkhE5ZSq7uhLazWjMo1GQie0QGWcgMMGVXUaUSRGgB5ot9lSxz4t0LEDFdK0CAgcCUpKyinyQ3OkB/NhvRiETo9MAIBCaEIDlBTN9VfNh21aV20MrJvCsRbT7ucKDb2SQHna5PWEOoHrpWvZQ02Ywin26GUwhTtD20m/zH55O6zOL7jFNL6p9Y/N2PiYOx98RT2hlvs3P9ELIfbkttj9w73bqokhnjLkp10crsuWrSlHN50DMs/X91icQOBFNvubfc4ek/ohrGvTcEvX6/DobUHIdEZ6+ebs07l4p07P8V7m15DbGpUkxrPjLF+Hi0jLeYfrxFH2+4jO3n0mQIC/wWIMIkUzLWJPqjqH4pULgdtvBsaeuogl34MuNrjd8N1oIHV4bfcL3Bfwqst3haxSAKJSAIzx3/d7crZxcLKsLvkPE5UZqHUWA0vsTdEkIDjjLwigX5BHfFg0g28n7kyf6ONuKFuOxhoLNaJAqLPlslYegNMUPvoYdRLUFLoC4uFQYVRCQsnQqiiBjKxBUZOTLXFfEZ+JpZBDaug3zZM1h5ay3mwqKp/rcSoRp6eHBtFDoIGD4IfwJIopUaEyG0aOW24KbYn9tYKHMysGNnVfgjxqoZaaqTfocDgAz+JDt4SPSS1Qgu9RQItK4WP1AA5Yz0269gDePboebzfcQ785X4wsmZsLTqI5Xl/QmNxFP9Xm6uxPPcXzO74Ai5qSnCqKgNSkQS9A9PQ2b91G2yvBOQ3d7bfm7qOfwLnzp1Dly5doNFomt1ILiDQWhRmFlNnZT56jukCv1BfhEQH0cnYFd+sd2g2IhO35UUVV/SHMYf5Qj8w2WpaRN0B+ZfnvGQwh/uhJo9/O0lC25n9F+waZu5642Yc3HQMGceswsY6yDlywoOj8NcXa91uL2m8JTcyWc5anLv7NZV9aw7TiVpn4gaCJcwXrB9PKrSYgTEpDIpDmSjJKcM9KY+h3+QeGDN9OE2KO7rVRmjOWYWdb0/9BO9vfg2RiVY3tcaHMFOkn724odHn6fomQv3HQV4ncz6IKztJshMQELBy4XAGajxIoXSFpkJDDRbe/KvljQYk8dG27iLNLAdTpafpnq7g5DKYI8jNF5buMdh6LhuHMnJRWq2F7NZuEH/a4L7qiqF9UvHk7YN5l/nl3eXIPJkDU4cYR3GDDaZ2URBnFjsco2Sn86CWilDTN8ZhICIyc5BV8R/T2g1sh5wNR6FxYU5Cjp3uMEX6uhU4kDRUZ0wZ1Kle4EC0+BI9YJESYWBddCxHkxvUO7MgLbMKADU9oqHrHt3w+QB2Apj42BdY/uWj8PNVwaAzYPPinfjx9V9QZCNusa13zX9xMT7a/gYuHMnEmfTzkCmk6Du55zV5LP83jUkEBP5JEJFtY3FDY3qP7wafIG+ExYagJK8Uq+dtchhLj79/BF3XtYC7ZDfSyJpxIhtx7RuOw/fNuZ1en2efzrVblsw5k7SDZZ+6N/clrtbkRuasW+Kibcvuv/bRRIWWihsIBZeKcFfSIxh0Ux8Mv2MQFs/5Ayd2nmlYgAN1AZ9z+6f4YMvrNPXpatRViDg0pZXF6wIC1zKn956rTwStQ+ThXKzIxKKqXEMb10nTeksh4gSGEdWLbtkdBnBFFohCnIuJybHQ8mfDNbpEKsaOZen0eEtqYBHBfrgkcnENZ7ZAXHuNPfjmfrh39m282/bT/353EIKIdEZIzl+Zc1e7vm2RcSybmnA4g/O37x3zxBjPEhXkIHBwNSaZMHMUPpz+dZO2mW4HI4I5OghskJr+EPtP5GBqwkP4OfMrqHy8oNcasHHRNmpoUpLr2IdQmleOha8sxcc7/0eNTc4fvAiZUkZF8bbi8GuFa2VMYjQaceLEifrHXbt2xdXmmhM4rLq4H0YL/6RvhaEG80c/Vv/47rQR+OPcblyqLISP3AvjE3qgQ1As7ln7Ca4VRCR3koctZ4rtBA6PLzmMNZmOTqw72TTcfkmNv+NOQpHhurhUzqlxkE2CATI8p5+Gj2VfQdRIJNIYM8dAInJX4OeAfd+jVTm/wXpzBXFI//1e4KG91sdxA4AdH+GKiRtu/51IBa/M5wkIXAuYHZvKm0xlJlCVB/hYXWxaRGgHIG9/M9/MASd/c3yaT+RAXovp537Nefud9uaY9QqUHukOznJ5T+EBN7SFJFgJ7cEilP969rJ9jqpHGP3XUm2EJr0A+rPl1qJ8gh+8uoVAe8BJwgYt3DfhQ8wcir87jtCHO6Pk++MwZrmJ5bRwKJl3HJyFg9hPDlX3UMiivQVxg4CAQD3rf9wGi4vYSgJx0bTsPIuX3r2r/rmp1/XG39tOIKegAj5qBUb3S0VyXAgeX7zL6TpMXRPtxQ31uB/4MsVVYGVimKP8qUODuEwLSYlz5zxO4V70zSo8O+ekrz5kJ3B486YPUbz6EGJVElR3C4bZXw5xtQneB4pRFF+AtP4pNN7SE1qrkYhAauakuau1MIX5YJ3YjDWfLbc+Mbo9mGo9lOkZ1MmwbmL4nTs+xZf736WPSZqDJxMXHuFGfEfEDcTFVRDpCQg0oK2yFr6r+oaAEbFIiXCdekP+wkRUXmb/t3a+5hiK9DkIUTg3o/AURsSgs19P7C93fj4gmFkRjMTe2snxrNLAYPbJXx3W6S+XgIPz+pmMkWJC5CC327a5aAcUDBFKcDBYpFTcYLceMQspY4HJZttkCjMCQqpQUuCH6holRN6ApkYOf5mGigBkMCNI5lqUpaHpCmSPizA1/kEEyEKxrXgzvrmwGHqWnI9qE5HogMB+UFBjUcCf0fIWfystjrWygcED6b+FumosvnAQuwqtbkR9Q+MwJqIjVucdrRc55NX4QcKYEeddAx+ZARpWAY1RDjHMUIuNUIjNCJVVg6FJINZt9YYBJlaLj899gKeTX8ALR7/C+ZoshCqrXIo9TJyJpmcU6eUIlQdgTHgvJPvEuPxuApcfs9mMqVOn1osbBASuNmvnb3ZoUG+MUW/EM98/VP/41heup+/Lv1QI30BvjLhzEOI7xOLB7s/iSmLoElcvbvAUIgD3hH2rD9kJHF6d/I6DuIGujwPO7ruApG4JOHfAKma7kpDxDWnu4ku4cIftMqQxiEzkk5sryGTxe3d/gY+3/48+7jykPVbObRgXmZKcT2TXf4ZSBnO0P6RZTTck6TAoFa8vExI2BQRs0dSOSVpC+qqD9W7JLYE4LfeZ2J0mvxDIJarP2jOonNDOad2ITFnXBd+Rf3RKBi8tbiQYm5AMZYUJLOf8+K2QSXDTcPcJFKu/tx4rLVGB/AvKpWBDfCC2cX2t/6xjuTQJSDMqDRa19fuIDRwYo7W51BWkweqVL6YjyF+FPz9bja+eWACOiN1C/ACpBCKNp3Nd/HUbsg2j7x1ab/Sx4ut1OLzlBC33dB3WESM6tcH6IxcaRA5G634n30S9+hTE2VYBIKsQo2JoDHQdw8CYOUi0ZPmGz67yU+CJtxbjo2em4LkRb+Li0YbEB2eQhqPHiau30YLwhBCMvW84kns0nGMFBAQEVs/jFzfQYxPL2o1Jbn/xBqydvwUFmUXwC/bFyLsGIbZdNO7r8OS/ZoeSMUmdwIF8/xfHz3EQN9Rdw58/dAnxHWJoAoInkHOTpZW6G4mwgYwPWwvyfbYs3UVvfEL9D+77Cu+uf4U+7jw4jTp2Xwm6jehIU/4EBAQa0DhJyGR0ZkhzKmGKsk8jtoUkvknKre/duSwdJbmlCCJpBi2ANLx3G9WZHkMpFsD4agVk7/pD5M04iBvMn1eDO2+2S6V5967P7ZYTBftBkhYHs6xhTCOq1IA5mQlRjQ5e3kpMmDmSd7uICHzdD1twtZDIJHjtj2fhE6jGbx/8jXnP/+T2PZwHpq2N62zE1GPU3UPqj9VkTHJ020n6fLcRndB3Ug+aytMYqUxCz3WN+yYs/ioY+ifTVLw6zIlhKK3Q4OVbPsSL3z2EZ4e/Tk0C+SCijkd6vwCLyYLwNmEYN304reUJXD6IuMFkakhHIYZPV5trTuCwO999A0y5wX6iKUjpgxkdRzksV6x1LHL8U2GN3ryv217EnsirxJoTBS6XPVdUg5/j78Pdok10knwn2x4V8Ea8KB+dGGsxf755NBU3EJZb+qFPSjvcYvgVuOj8oJ3DBeEWw0toy+TgEckydGGshRanuHM2vxwUnwbeDAGCkoCudwHBqUDxqcv/ub0fAtT8rrgCAv85lAG1qQktdE2uzmkdgUPsQKDwWAtSHFwc5xQBgL7RhB/53u1vArz5t1tzoBBeNWXELtbxtZwYz8UNTRUC2FC58iL8b2wLU2ErJO64QN0vArIobxgyq1Ay/wQ4vc0AJKsaIikD76HR9L4pr4Y+JhPQbFXT/+9YSnQo+/Wse3FDLZzJegFuKdOjal0mTX0IntERjPKau3QSEBC4DBzeeMztMsQdwpYgfzXunuQYfVvhZOKV9VaCDXFdOKLHdhe1Cc5kgdlHCs1N3QBJQ8OpuKQGXtvPQVxpP/lKHPkswfxJK+IqfZNFCCd3n6kvQok1Zvhty3dwKiRFCCJwIA4OxKGUk0nAVOogbhQzSb8Xx2H4HQNRnF2KI1saXAOaS2u5HJmD1NCMSLWL/iSw3gpohiRDteEUxOVa6DpEID0xAH0e/hTx4YG4rl97RCaHI/cMv7uHNLcK5mAV/zI5/OPaKU9NhE8A/3hSQOC/RmRSOHWfNAUrEOxbBaXM5MFltePBN0d3ocUCB8KIsIk4WnkARtb5mKTSpATHiez0TBZWhCqDAmZq3WkPyzEo1UuR7OuHYkOJ3WteYgWeSZmGaC+r0NgVh8pWI0R2EnKl9RqdJDGU0fQEX3A2AxWxiIXJJjmUoFCaIJWZUFjiC2+VEWAsKDOqaPO/kQ2ATGSBj9Tx3FJjkcHAWScbirQqvHZkE17vNAnnakqgZ6U0TYOILRq+p/3vUWHxgo9EB7HNMrYUm7xhabS/xoaNRaQyEnuKMnD/jl+gMTeMNQ6W5sBLIsWM1CE4UpmBs1UF8JJIEOdTDC2rJXMsFF+JDkGyGrvPJeMWqwTDuo1ShoWJPYaPzvyIczXZdF9YxQ0cTaIgd8mpyVIrqSG/oUikgYWTIk9fgu8urcT2kqN4r9OD8JK4dtIVuHy88cYbSE933TgsIHClIY2P7qgssa+BBEcFYurLNzbZhbQ1sQSowfk2Ept5kMDDNHIU9GRMcnjzcZrq4IrT6ecx9r5hVOBAxyShvnQMJarSQezEqZusm0z2Etc+T4XafPC6lXowXGlOkgJxUR3ndRti20djzL3DEBoXTNMpCKyPowjQ2Vi1Odz89CSonAr4BQT+u8SkRFKX0Za4JhN303MHL7ZY4EC4bdb1VDBBGoPqmpb8fjkCffswGOMDwKpk4EhTP9sgbqDbQNIEXJTMdX5SxMhUKCy0N93wUckx+6HxiArlTz9Y9unKhnOU1H1dnmyfM4jbtbjaAO8/D8McF0xdRCETg2NZF+YiVpjsUnx1/zd4Yu79yDieDUt8GCxtIuzrbQxbPy5whTSXP4Hojlen0HSd/euO4PXr36PCAtvjttJHiZmfTcPeohJcyCuFl1wKHM+DbtMZiLXW8Utl/zCUjYoBJxfbCVEUpRykmoaT7JHKSsyZ/pVbcUMdhtr155zNx9xnf8SOZXvxzvpXoPCypvoJCAj8tzm61f2YpKrU/hwQEhNMj3uNqSz1bP72WsBiMyYhyW0nd9kkGTTi2PZTGHPfMI8FDqSBlFzHZ5zIom7W1yKHNh7DONXtSOgQQwV+JNmOuHRfbm56djJtZhYQEGggtl2UXWpCHeo9OSi/3sdlFLN6d45dreT8oYwWCxwIpGZF5uBNRuucBHfSBMM9JZBM9gLTT0EVvuQ58x9a+q87mOIKcJsPI6JTHArzKyDSGSCqTUHwDfLGK789TVNP+Vj63nKXaW5NobkJPGaTGV8+9j0e/3oGLh13fq4QlVeDUzcc30Sso2GXw3s09nNR97x1G90Xe1YcwJs3fVA/LiSQGpjazwtTX5mCQxuPUlGC0lsBg8bgUHskkPl+/YAUKkJvDOunQnq5Bm/f8albcUPjMQkRC3791A/Y9dc+zFn9IhXqC7Q+hw8frr8fGRmJ4OCr3/d8zXXpXaoqdLuMl8T9f+AKgwaXqpy4Qv8DCZAGIU8XwLtMuwgfzN12AbnlOpwucH/x/8ZeFqtELyGDC0MJGgpI7UQZ6M8cw1zLeLvl05GGW+6cCuirgF2fgt36HhVAlMIHyyz9scA8CqXwRQ4bgh3GNHwnfR8DxMfxj4I0LxceB1Y/YxU4+McD5VZXvsuGN3/DgIDAfxKJHAjrAuTWpqo0F6aVTmGqYKDrvdYkBk1RoxQGUoDgmi9y6PEgUHQcMBsAdSgQ3gVw04xSvSMXlSsuQt5PDonSUTGtL+O/wLZFGqmG2FsG/emy+q8hi/WGuVgHVsufhqQ/U47ib4+C8W79i0JpmBfU/SJpegNrtKB0ob24wVZkULM9F2HP9YBYLYP2SBHKFrsuArlDf8IxatlTTPkaVK7LgP+kxGavQ0BA4N9D7nnXYuI65Cr3zYflhRUoyHAck7BBrt06a9Pnreeoxq6nJgu4ykoY24U7vM8SpEbNqPbw/usoGJuihPxMIbQ8AgciOJDkVyEgzA9lBfwTsnEdYrH03eUozi6hzkPuWPntBhgTQ2HsGG3nCMiU1kCx9wLEFfYFI5lcivc3vYaq8hosnbMMv7z/F642+s5RDuKGehgRdN1jYfaWglNZJ34NZgtOZxdhzpIipFzXGaFLzSi8ZG0ocobyaD50HUJdfoakoBqyfP7xX0C4f1O+koDAfwJvfzUG39IPGTUFkCjdF8JdlYIlIvcpOJ4QoYzGg4nP4afMuSg2NJxjxCIpivUyVJvJMYSjjUTkFKA1SaExyej8gmszHhE0RiXe7/QUdpYcht5iQLw6EoNDekAp5m9G2V3yC7YULYBNbwxt3g+WV0MhNuKCJqR+r7iK1CUih+pKLwQauiAhUouDZaegt0hhsMigUXTEqaIctPE9B2+pARaOgY4l2Q7WDzRYxMjS+qFYcwrTd1cgJdBRtECEDAqxhZ4T6/YBEXvkGvwRJquEjGloMyLijAxNIPKMvvCSWscdMV4xGBU6Cn2D+qLaZMDMnb8C4mpEeuuo4IXuZ4MM5RovfHtqP7aNfwS+MiW2Fe/Ad5fm16/bW6xHqNzxOEy3ibPKYmAjcsjR7USQnPx2LE3HUImNdvNEZI6DiDnIPiHbbZsecrY6G4sy12FGm4m4liBiDXJr6TquJrt378bs2bOv6jYICDQm/4IHYxIPmg+LsktQ7CQG/nLBKZ04gbMktt71e5hyLSTFNR41vsR0T8APf+5FcXkNzm8/BVYhtRv/NGbVvI0wJYbBmBppN/HKlFZDvv8CTWazRalW4KNtb6KqtAqL3vwNyz5djcuBJK8cxg78IkpxHv/4zBVkkpqIOsiNuN4RN8KSnDKIDPy1QoKotsmgqQRG8M9vCQj8F/EP9UP/63vxuhx7Qms1dSR1TcBbK2fhoxlfI++CdS5erDHC/2g+jOlZqJqQ5pAuQ8tTbqZpJAFyzJs+Hpv2n4PeYEJKXChG9UmB0kmziy0LX/sFP77RkFRHHFb5xAh8YrjOg9tDLBXjwLqjkJ4vgPxiIdIGpOLsoUuoSImEJcZxzkVUqYXs4EXsMJhRlFUCNi4UlmSrG7ctUgMDI7mId9H8JSmqhrTQed2GHINvfHICht7aH1Wl1XjjxvftxA116Kp0WP3Ej/gp40so1Ur8/dVafPr22nqZeXX3YJROjHd4H9F264KJ0IGDRG/dPpL0uufQhVqLw6ZzcvdZLHl7Gaa9cQuuJf4NYxIBgX8i+Zfc91vJPUiQzj2fj4rC5l3bXmmCogLotTMfUckR+Omt31FeUIGTe8+2ShKGLd4Bany6azbKiyrxw6tLsPKbDbjWMOqMVHBObim9kmjTr7v5p5ZCxpMCAgL2kIb23hO6Ozjzy7Mq4bfyLKqGxlOhcx0ivQne2zKhOGffd0PMpFqDdr3b4vXlz+HTmXNRUGvGgCIWzEIDjHPtBXOeQq6C/SQMXvj1SexctpfWRNr2SMSQW/pCruSvm3373CL88t5ytAbdR3ai4nYi8iIQYUmHgak4s+8C9I3EBnZwoGPGouxS6Goc+8cIouwicBFB9XPJJM2NldpMnDisk4M4y7p/yTF4ylMTMPDGPijNL8f/bv4QOn9vOv7h/FR0woIprEDVxXya6kDGJGQM+tuHf+Obpxc6Xb0pPsSpuKEO1l+FA1tONrLN8pyjW0/itw9XUJH+tcS1MiY5dOjQPyq94ZoUONhGKboi2d+9e15mVRHM7FVIEmgi/nI13h9wN+49cxY6Fy4efl5SvPjHMZiaqPTaz6U4PHeSi8NJS5zD82G+tQ1aCh+g5/1YtOkwXjHf7XS9RsjwovlebGGeBOPCNe+qQ9IbYvoANYWA6TK5k/vFAnEDLs+6BQSudRJHAaVnAX1588UNgcmttz2+0UCfJ6yiJ00xIFUCQcnW48PB+YC2GYI4Q6VVzJA0xuO3sHozqtZl0Pva/Ej4JJxHS/AeEAmvTiEwlepgzKyG2FcGRRs/WGqMqN6ag5rdeaQLyOX7zUU6iCpbJ9lCpJQg7Olu4PQWiP0UEIlF4MwsKv6+AFbjenKUiBw0+wrh1SWEJilcTbQHi+A3Nh4iaXMvtQUEBP4t8MXX15HUxXFisTFZp3MdIhspbpw46afrzJCczAIb5geOYcCUVYMpKEf1dZ1dvo/zksGQEgrl4QZnDfmZIhjjA2GOdOKaZ7ZAteMCAkJ98ezCR/DKxLftHBts8Q32wQf3fNEk50FjmxAYejrGSLKBamiHtYNqzTEwNkWdoCir+4ePvxqTHh591QUOrEzifL/ZYApRuZzkPl1WiQGTuqLsq00wGRz3qznACzX9ydhM5NTVVlymhe8qfuFfdEok2vdtxWsmAYF/Efe/dye23vc2Mo0KuyZ5Z9g2qdchYxRo692p1banjToZL7d7H+dqTqLYUAiVWI12vp1RbqzGs4e+QY6uhDa8G8zS2oZ3+zQDZ+ToSuEr9cU9CZM93g6tuRLbi13HHHtLDPCTalFhUsHMkmYe/mvjO5L7YGRcEnK1RThXk4EguR/SfNuiSFeN787two6CdYjxK6ApBqSpv8KkRLnBC3IJi1B1Nc5Xc1DI7Scv5IwRXhJy3CTt/9bzZt3vRxIgMg2BEHMsqgxyKqrI0gZAZ5HBX6rG3EEPQ2syIkQZALGIbL8JH55chgCfPMillnp5O5EWqBVGqORGFFRa8Pulo7irTSR01R/iZv9s1LBy7NdEQuEkiaIOsk0Mx4G1+b/jK9XRxAsFY4K3xDGZjpwylIwJOlYKkYhBmLIS+bqGc82a/L24O34spK0l+BdwS01NDaZOnQqL5Z9fRxb4b8Hr/l9Lcvc2bpfJPJHd/HSzZiSHNnaIqxc4uGoONVmg3HMBQZEBeGb+Q3hp/Jx6J7/GqIa2x0tLtts5pmJCF8iO50B2Ks/pe6i4obPjfAgb6A3doHZQbjwORme0S8Eg+AT6YMLMUZdP4FBSA3FRFSwhLsTvRjNk592bgbmDiBx6ju2C8oJKSDJKYAnmSX6zsJBkNd08pE3nOCR6MD4WEPgv8uDHd9OUynIn6Z6eoPL1Quehaa22PZ2HpGHB2c9waNNxKqQjtZ6eY7uiJKcUD3z8B3INjY7hpLfCTYnsYkEZIsN88fitgzzeDtJY8/PsP+yek1wqgqmz82MJLZnU6OgxnRhoiGr0kGQU1RtnTHlmEnqM6ozM8/k4czoPoVEB6NQ5HsU5pbRZ/69VB6GPCgSrVlAhlySrhH6eqPZ8cubARTAhzh1pia5aWWqBLoBxMKcgdRv1evu6DTmffXngXRi0BgRHB0IsFkNvNOOdT5ajsFc0HUTIcishP1cMkU3NsLqsBhsWbaeNUbb7hnz38qE8fREiwOBHDDJsd1jL5u5JIy5xXyfbLiAg8N/GNj3NFSm9k9wuQ1Jymus32JwxSXMJiQnCE9/cj5cmvE1Fwq6a6N+c8oFH+6a51I1J/EN8MeGBUdekwMGW03vPoe+kHtizYj9Yy+X5MUkDb2xqy1N4BQT+jTzy+b3UoZ8Ibm0hIgb5hTIY2vjD4i0HozFCcaHc7hq1LgmBiIdbC3Ld/sP5z3FwwzEUZhRRYXiPMZ1p+uQzw15HSTNMOkjtI6FTLDo0YTuJQeFvH7TePPQtz1+HjgPb0RSGC4czaAofmb8tzCymY5LV32103jNQC0kDkshcJNbpDGCOXwSbFg+IxdQoizFxYGXOB2vRRhM+P/8ZnZsOjg4CwzDQafT4+IG50MSFgU2wMfNmADYyEGyYP8oOnMPmJTvRvl8KTbZwhSXM1+3+sIT5QdyCRNkV36y75gQO1wqHbAQOXbt2xT+Ba242LNE/HOcr83mXGR7rfoJZLW1+nLu/XIVygwaXCwkjhp9chYlteuKO1CEIVwfg6zu8MXPRAWiN9hfKfkopKrTu3QZbSs94GzWrOhhLxOMAHrOeLC4Uu9j26N+cFAeFHxCYCOTux2Ula/flXX/qBEdXXQEBAStEQNDrEWDne4DZucqUl8hegOwyxJqTZBdyq0MsA2L7A6fsi+mXC93REnBG60VrdVYclKF5kKrsRVhy/zKYqvibKQmK9gGQJweg4q8L0BwoBGewnj8kwUr4DI2B37gE+nkWNwIGztA6BRhZpBoFb++jggWRQgJluwAYLlbCUuFeQEG2v2p9BnD5akEeQfahpdIISZA13k1/rhw1O3KhP291lJBGe0MW6gVJoBLyeF/IonkmhQUEBK5pYlIjkefGMbXPhO5u16Py8XL6PFNUCXfdtv5mC3Q5pQC51WJICnGdJlCLKS7QTuAg4jh4rz0FfYcIGFLCwHrL6XPK3EqE5lZhzJ1DMemRMQiKCMCLS57A7Fs/hsGmwYfgE+iNyiYWITiRiCY3ODxPN4qcyKQwpkZAsb8hCaLjoHZ2UdZSudSpMKA18Anypp9x/uBFl8twMjHvb0S/iwtxQx27cgvh50zc4KdExXVp4BQS6xwNOQeKam8sB1V6NrwO5NKYUT4G3Nib93UBgf8y5Ni16PvnMeTPr5Cn8UWk2nVTkbM4376BY6AQq1pdQNfWuz291RGqCMT4iMH44PTfuBKcrNoKC8d/bA2QalBuVKHSSByOnB/nRBILJrVJRf+oKMy9sBhbi9OhZ63X/tHKcNwUPQ4vdByFW3ftQKbGebOQVMwiUKmFkbMfM6jshAFWkQM9bdbOaHMgQgkFMmsCoaHpF9atTPIJx5iNH0HPmuArVWJYWFuc1RxFqbGSnHbql6Prq1WWkcN8qE81vEzfoqxoLboqGgYlQ7wv4YQ+CDt1Ua73Q330Ut3r1rV7iR3FDbbvkYosMHAM1FITZAYzjKy1hFtt1qLCWINgUjsjyQLFZ/Fzxk4cKLtIP6GjfyRSfIMQ5RWITn5JSPS++pO3JOXDVdJHU9ZxtXj00Udx8aL1eiAoKAglJSVXbVsEBGyJbRflNs2g1/hubneal4sxiSf4BHg7TIC7gzSbMmU1YAMaUuTIXzhjJikOHHWbJgdCMiZR5FUitLAaY6aPxORHxtBJ7ecXPYq3p37qIHLw6tkGhaQ5v3EjEcPA2DEGIp0R0oyGv19zgBJmbxmMHaMcHOPqxyRKGUxJYZAfzap/rYPNmCQ6OZI6gluaIPJuCpFnC6HoGo+zNmM+uml6E5TbzoDRtc5YKH2VdeJSdqEIpqRQsH7O/0/ITuaB8SDloTGDburb4m0UEPi3Qo5rXx96D3clPcLv2umCG54YD4UHaT1NHZN0HdYBILdaItqE4cbxPfHJ79ubvc6msHHRNofGUXFGEW2CIY01ttRdu3O+XmB9G45f5sQwSM7mYVK3Nkjpn4J3vlqH9dtPQl97HEuMC8Y9N/XFI5/fhy1BdwM7TrvcHi7AGwae+otEz0GdYwSbXwAzSUllWcgyyiDLLKPNRQ07AohpF4WpcTOpgQhpButx10BsEBtQUqUFkoLpYsbEIGi6R8N31SlIShv6EZZ/sRqfPTTPTuRoDPeCOYi/58GitJ5jRayIpvVIC5p27m4McdjWVGjpmJqwZ8UB/P7xChzffgoihkG7Pm0R2z4K4fGh6Dq8IxI6xuJqc62PSQQE/snzJCd28hvw9Bjt3vnXy8c673qlxiRNOX+R632Sbj1q2hBMfGgU/IJ9qfD6fSdmT34hvm7HaK1BpyENdUNyjGXEzGUTVBBhnspPRYXxl5PG7vGtzZBb+l3W9QsIXMsERQbiqwPv4u7Ux2i6ii1kDlJxjl9QMOXpSZC5SWdrKqThngh7bYlqG4FxM0bgh1eXXpExyfqFW8E21xCkEcQgI659NN6/50tsWbqzfp49qWs87nr9ZjzyxX1UOKCp5DfoNvOkaopKKsHsPAYuPAjw8YKE5cBazNQ4g/O31uBEZTWQZxYiJiUSU+MepLU1/1Bf9BrXFbv/OoBy8p4+LkQgYgbmzgn47eOV+ODer/iNVzzY1y29tC4miRYaPZQq61hox7K9WPbpKnpdIpYwaNc3me7zsLgQdBvZid6/2lwLYxKO43DkyBG7BIeMjAx899132LBhA06fPg2tVovg4GB06NABEydOxLRp06BUNv9a7l8pcLg5eQDWZBx0+XqAXI0Rse4vktv4haOtfyTOluc2eRsul7ihfWAMFo97GjKx44F/UNtgbH1mCJbuy8K+jHJIGBGGpIRgcXoWKlqpkM3H4vRsDE4OrX+cw4W4fU82Zy3ENAkRA8zYAgTEAxk7gJN/WR3USRrClrcBrnkRyFeFY78Bw18HxNfcn5mAwJUTOXS+C9j/ddPfqy0BWLM1yeFyE9YJuLQJ0DcxFlEZAHg4HlTMAAEAAElEQVQ5b9RxhaW6YcDAmWUoPtAHfkmnoAwtgIixFibkfqWoySQiDP4LF1m0D0oXnIAxw77h1FysQ9nSMzAVatyKG1oDkZeECgMMtSIAAqc30zQET7GUNEMEczkQASKFddqbpF8Q8YitK4gpo4re6pDF+iDgthRIfFt3kklAQODqQwooZPKOr+jb24NmIuJkGdU2HDln7QXcjNYAJq+MOiI4xULSbc5RozxbOKl7cS3nJIWGFKiUR3KhOJKLtKHt8e7qlyCTOp5j+07sQV0zVn27Aaf2nKXF/T7ju9OCQVMnESyhPuCUDbGm5HBqkQGstKHwYe4QSlMpZDnWc8jKuevRaVBD8f5yFe3JhMBXB99DSFQgDm06hp3L0unEM3FoWvTmr/UOGtTJlRSTXDhmuHMxJFj8vWgRp7EJu7ZnNBU32K3KOmtPH5kifSHa1yBUccXGH7fhrtduosVAAQEBR/z8vfH5mBvxwJ4F8Jbp4SNzvD4mqQm2f8+kpn2hPAiVFQoMC7VAylx+18qxkV2x8NJWFBvsr+3dJU/EqoIRpmxa/LrG7H4iVixiUaL3qm+6b4yFFUGqtKB3gj/eOPkZTW6wJVuXjw/OzsMlzRhUmfndapXSxjUvDhJi9W1Hw04gyQhyxgQ/iRZhihqcKA+FjPGHhKlAviEdapkcBr0XKk1abC/dAQnjWIhvkCJYhQn9fLIwLCDd6fa1V5SghpXiiMHG1YgHPSul2yh2k75BvqOhVhihlhhQZrTuawYieEms44ufLu3AJ2dW1W4zB5XMgIu607hoM3zq6NsGL7S7CwEyFw7gArwsW7YM8+fPp/djYmLw5JNP4vHHHxf2msA/ZkxC3OxcQZzguo3o6HY9qb2TEBobTB3jmkpzG4nkBzKgG5xKlGz1z1EtL0smW7XoJ5Nh9m9PQypxPMcOvLEPUnu3pWOS0+nnqOi5z8Qe+P7oRYDHAd2UEkEFDsYIb1QNioMposGUQqznoCjnwBhJSpv9mMSSFg6mqALSAus5eOXX65HaM6l+0u9yiRvIWGvu3rfhF+yDvcczsf3gBZjMFoQqZFh67zfgeCa1mwtxYfTacBL6XgkwR/rXi7WJoIKIG+QnnadguGPdgs245bnJTW4mEBD4rxAQ5o8XfnoMr05+t8nvzTqdQ1OmroST/qT+aVi0/gBKSSN+HeSy3EnipC3JkcEIUHs1uYG+MeTyWbbnLCzxoTDHh4DzVtKUH5HeCM7fufDc3DYCCTf3w2Ov/oKzl+znI85nFOPF95Zj2ujOqCqzT4xzwMn5yGH7RAwUx/Jc7gqfIB9oKzU4uP5o/XMV5Rr8UlgAVu04f8CpZKgcm4qAxQfrXXIzTzjWgTypBdLlaoe1ihMFDq67BFYlhyXI2+r2WlgJhsdQRCIVQ6GqHZO89TsWvLzE5lULTSUhtzq6Du9A/4+TpmABAYF/F+PvH8krcCACCNt6viuIo3ZAuD/K8psuDrhc4obeE7rhlV+fglTm2Ls17PYBSOufQucrzh28CLlShr4Te2JBM5tum8rfX63Do1/cR+8b9cbLNk8ilUvwzZH3ofZTYf/aI3ROzGIywz/Mj6YJNTsJ8Cqwdv5mXP/YuKu9GQIC/1jI/OdT82Zizu2fNPm92adzwbLsFZmHHDdjeLPmpEnty4uMH5pAuZMxSXNp2y0BTw151ZpYZMO5g5fwyqR3cNuLN7gVN3iCiIyPshrSPskvIjkDcLXmiH4BatSU1+BAdoORBkkTXPP9Znqf7eImCVYmxYXSGojdJMIx5RqwwfzzES1JbyCQeqCs1rWKjEfIuKQOIpY/vOk4vdXRY0wXPP/jI1QYKeCa8+fPo7q64e9r4cKFmDJlCsxm+zpkbm4uva1ZswazZ8/G3LlzMWbMGFwurrkuhz4RKTTVwBkkPn5a2nDIPGwof6TLePoe5+u68pDkBmfihjqCveV4eGgSfrinJ76b1gNj0sJwIq9lf/D8NByQNpwqQrmmofE2yNe9S2GQqBmRqsSa9HxthFpcf2D024B/LJD+zbUlbiDUFAAXNl7trRAQ+GdDxEtBKU1/X+kZ4Jht0fQyUH4JOL3cmt4Q3B5QNk2sgJj+VtFWExD72ReyWaMcZSc6I3/7UBSl90XBroGo0Y5AwB0NbnGuqNmW4yBusKV6R/MmJZsKpzWTrjD8G5C38YNYLYO5woCKv+3FDc4wZlahZN4xcDxRcgICAtcmRLwwbvpwp68xjAg3PjUBYo8mP0W487Wbnb4mPXwR4hInx3GTBVIibqh2FH+Jy9wXP/iWIWMgKZkwdiJuqCMw3B93vDIFs1e9iDeXP4/uozsjoxnuPZyNKIAcTs1K0kxEZltFdpO01aNTYWhjPQfv+H0vtDbfm8Q9Xw7IhEDdhHOXoR0w8+NpNPb5z89W2cWDiiwcZOeb3ghmh9HiMChnpQwMCQG8byMCBxIJ6w7SqHZ4c8OksoCAgCP9whLQNaAtNmYn43BxJMr1SujMEpTqvXCoOBJ/XkjDnvw4nCwNxZHiCKzNSMXRokisyT6DZ3evvKy7dF/pRcw+vhyzj/+FIaEdEWEnVhCBo24t9eonB26NHdjkz/SRujer6OzXFS+k3gGJyAIZY6b/1kHmNo0W6znw1+x1DuIGW1bmk5oJ/0W1s15IZ4kaYljgL9VQMYCUYelNJTaiR2A24rzPIkBZiRCvGiT4lqJzcC4CFFqn4ob6z7W5P8bvLO82dlAU16dHOGwrZy+WIb+ZzEGg4eTzbTaAsRFD9AxMhUqiRI62FJ+eWV33KVDLDDTxojFHKy9g1tGvYOEuTwOuJ7AQtcrtSpOfn4/p06fXX7MtWLAAvr5CU5bAP4cBN/TGiDsHuRTs3vTMJI8ml8kyd7w6hef11v/7E5fWQLnxBMQ5ZdYTB8FohvRMPrw2noCUjHl4xlPk2pw43M1Z/RLe+PM5tB/TGTk84gYCcfU2xPuj9MZ2duIGgkUhgiZUBJPayZhExkAzsh2MMdbrc+K0R5qI6o4NxKX1ckCEE4c2HqOf0btDHJ68fTDCLpZg5WM/XBZxQ91hltGb4LX1DNR/HoRyy2l4bTwJ9R8Hmi1uIBBB/8nd/OdSAYH/OsRQon2/5Ca/b8uSXfjkgbm4XBAh18ENR/HxA3Px1QNzMdHPH2G17p/1CTxuPPimDXWfcOqswcoZ5LJYcrEQio3HMEYuwYs39QHrzZ9eMP/33Q7iBttr9V82Hacpo3yIqt3X20TVOt4r1qqSKgenb0NikFNxQ/32qWQwJDnfF3VIi3QQGfmv9UVmUsMC5KeL4JWeZf8ZMgn0fdtCN6YzjD0TYeiVCN34LjB0SwDn4hqg7+SekClktB5oL25wDhFkvjhuDm18u1pcq2MSAYF/OkNv64/BNztP6yLzI2RM4gkSqQRTX7rhio5JPNkmZ+KGOohI/J63bqNjktf+eBaJXeNRnH1lEh9p0pHFeuwnx+OWJGDwYTKYcXTrSTpm7DmmC2Z+dBfU/mos/3zNNSVuIFw8mknFKAICAq4hx/O23d00uDth7YLN+OqJBZd1TLJvzSF8NONrfPP0Qgy/Y2CT54dJykRrjUlsGXHXIDz82b1ul1v42lIHcUMdJCXiz8/r6vyXB5GFpbfK4iq7ee7GcLVpCHy4W4YjCYNB/vYTI423p1oHcX7LBCSDbupDhf7k2G4rbnDFvtWHqJiEN3niGhuT5OfnIycnh/fWVA4dsqa82hpA1Ykb5HI5oqOjoVLZ94yTz5kwYQIVOVwurjmBA2FWrynoGpLg8DxxVvv44HL8fcG5q1pjRsR2xrsDpyFIaa8ailAH4OvhD2Hp+GdxV/thmNK2HwZGulcWt5TOwcSR255qvQn7M8pwOLsC5kbKW/Nlv2hs+KOwsBxKbQQON3Tlj7gPQgUGMQ2RJU2ioMG9AiufBDb9D9AUN+2/L3FOl7g/8NLlLic1Dco4AQEBF6TdAgS5iLnio/gEUHq+9XerxQQcmg8cmAvk7AEKjgDZOwFdORDdF4jsCajCAImrYgHJGe4PRPdp8kcrOwTVJwTYwppkMFb5waxVQxbtjcqVl9yuiyXCAj6EpvumIRbBZ3gMvavZV2B1p/IAkpihPdrC5lcBAYF/JI9+NR1te7RxWoj49tlF2P77Ho+jcZ/67kHqzGlLREwwPnz1Rnwx+1ZMmdAN44d3QK9QX8jXHYK40PmgX1JQBaaCf9JVfqaA9/WUXm0dnqup0OD4jlM4s+98feG8juY6ljI2ThTEAJwTu5ikYETQ9LVOqpKoTFtXjhF3OG/oag0uHGo4135w31dY+PovqCxxdARRHculDVrOCJBKIXczZpNfLKEufrZwcgmN+nQHq5RecZcRAYF/K5/3uRF9g5NxriIEG7KTseJSGjbntMWFymBwECNf44sz5aG4WBkEvUUK1sLQ3sflmcdxqKTpyaDu0JoNmJn+PR5I/w6/Z6djTf4R/JSxC3m6Gtwc0x+TonogyTsIkSoGQUotvfnLtVCITbXt/yLcETcEE8jYpYmk+gyCVMRfT/GWpmJJ9jL4yg3wlhnpv74yHS1aG8xEwGY9phs5/vhqA2u0a953hpllUGOwb/oxWBoL8Tj4SPVOUxHI7+Qr0duJMIj4Id6nFIwboQH5Ft5iHeIU/MdRL8aMELHzc4F1i0RU3FBpVtJGVfILuaujW6OGRXbfV8ZIMTV2FL2/LHtfbcIEMUxhIXEibqjjkiYfO0tcu7wLOPndOA533303SkutblYktWHIEOeGOwICVwtyPHly3kwkdIp1Ktj94tHveFPnbBk1bQge/XI6fALtG/8jEsPw3qbX8MGW1zH5kTEYc+8wdB6a1irbL67QQrnjLFR/7IfX8oNQ/XkA8kOZ1G0utZc1IcGW6vIa65hk/wWHBkmzhzWu6l5RdqkRdjAiGL1dj0l0veKo+7VBZ7Rz1RtxR9PFhM0Zk8yZ+gkWz1mGaicu44zE9djBL9SXOm27o7GrNqM1QppTDkl+JU38aynO3NgFBATseWP5c9Tpvqms/n4Tzh92P1/QVDSVGuoy+tzIN6lD9caftmP5K7+C+3wz7u7UFtf1SEGyEYjafBGK4461JkYkwszRfTC2W9MNroZPHVjvxumK2IFp+G7tCbfpCiXlGl5JtcZgBhvmx7sOEUlaLeU3HGSyPU+srsMU6T5lzRjJv21ivQXqQ/wNtarTVfBfegTem8/bJYgSYYd+QAoskQGNFNYMzAkhMDg5H5PkhttftDYhr/xmPTzl7P4LSF9l3ywjICBw7UMa359Z8BBiUh17h4h78iczv8X+dZ71DE2YOQoPfnw3vBul8kQnR+Cj7W/i3Q2vYPLDYzD2vmHoONC9EWBLcTYmIXMTZExy9oCTMYnpypm1EhMofY2+flxIzpuXiwuHM+rrJP+7+SP88t5yOl/UGDHPmCQgzI93zFKHf+jlNZUQxiQCAu6P6f9b8QI6DGx67xYRPmWdanoztTuqyqrxWL8XMWvsbKyat5GOSf74eCWty9z07CSMmjYYMSmRULtIdCMCuXvn3I4B1/dq8mePuGuwWzPDyMRwj5rri4nBBw815Y7H1auC2f2cv8jNMuaUGIikUoh1rHORg9EMxY4zLZIOkzSOW56/jt5f8fU6j99HUqeImci/hZ49e1LBAd+tqRw+fNjhualTp2L//v3Q6XTIysqiCQ8HDhzAbbfdVr8M6R958MEHsWFDral9K+NZ1ME/jK05x3GwyLm6kuU4vLFnCYbFdIKX1L2j5YQ2PTE6vhu25xxHsa4KEepA9ItIASNiUKavRpfgeLrOVZc8mwxwxZi4bjhWkoGcmoaYF1skIga3pjQ06OhNFsxZdQq/HciBptZ5IdRHjukDEnDfAKu4I8RbDqVUDN1likG2RSoWIVgth8nCYt2JQpTWGBCgkqHMRvRgywvyXyGzmTxuElX51n/PrQcOWGPgneNq4oIBpiwAik4Ba57j/6zQ9kDGdlw2fJt+sBAQ+M8hkQOd77QKgopPARWXgFIPXb3OrwECHgSKTgC5+wBdGSBTA+FdgPCuJM+9YVkLOV6J7J9zBkltcPr5LJC9q7bJhHMtmup4B+AdhubAyMTwm9gG5b+edfoRslgfVG/NJim/rYLYVwZLpfPjOIXEG5uE9AFxoAL+kxMhj/OFqUgL3bGmOXDojpdC1TW05T+YgIDAP4odf+zF2X0XnL5mLd7PRa/x3SCTu29CH333EAy7vT/2rT6M8sIKhCeE0sYhUkwijzsRNzq1HOtyinkLB+QM5bXtHHUY5ZxMBI/r1hZn1p+Bq6OYVCbB+PtH1D/W1ejwzdM/UkcgvdZQ75Z683OTMemh0fRxSGwQpAopTHo3ln2NEFfqIC6qgiXEB6ybXcQppTDGBsCnoBq+wT4wGU3Y8Uc6LeR7B6hQXea88EOK6nxOFHwU1botbd94BGv+3g9GKqbNVg7bpjNBvfoEDKnhMCaFUOc9kc4IZUYpPvzyAezLKsRna50L8EUGM5RHchHbOYE6IdXB6Mw0qcNl8xWB5cDUWH8Td4TGuncZERD4r+MtVWBe/1txqqIAWwrOY2/xJewudt4kxJrrkhOsvHNoM34afhu2Fx/C2oI9KNKXwV/mg+GhPTE0tDttSq9DZyFN+GK755zxv+N/Ir3U8RxjYi34KWM3TU0I8qqx60ERM8TF34hEeQBebDcDMaqQZu0LhViF4WEzsDr/M6fjnnBFJ8y9uB1mksBpA0lDCFDoUKxjYKxtyCfbZAsDljbjkxZ/0uRvYsUIkvuiSO86Upq1qFBlYuEn18BPpoNYxFqb/8nn1ybmSUUWSHjECmQ/qcQGVJq96p8jYgiS9lBlUraKM0ygpAYaToIatmF9eosERVXeqKhRIzi4kk46E8h3J3tBzNNqZeKsn0yEEdVmKaKUIXi87RQk+8QgX5eFTO0OtPEpgcYkQ41Z5nb7dhQfwcDgzrgakL8Xq2CjZeu4knz22WdYu3Ytvd++fXvMmTPnin6+gICnbFmyExePZDp9jbhEf3T/N/g58yuP0uUmPDCSTgzvXXWIukwTcUPnIWn02FWaX460fin0gEqaXFvCmHuHYvffB1BRZE1cIOMb2zGOXCnDWJu0PE2VFl8/+QM2/bwdxtoxB3FLvfWF6zBuhnXsEhPuD6mFhYlHJMwZjTAl8MfQk3EJOdw4095xKjnMkX7wqdBD5aeC0WDC9t/20H9Vvl52oofGaRpEcNIcinKsc0kbVuzDpvVHXY5JWBdjHiJsmL1yFrb/vheL5/zB+1kxyRH1v8nlQBiTCAi4xyfAG++se4U6UKavPkSTE2xrBS7hgO9e+Alv/vU8tizdhbXzN6Eou5S6mo68y1pvsnWgJrUecl4gjs98vHf3Fzi27ZTD8yadCX8/vtDu2OZzBvA6XAB9ajAsKinaxITgvdnTEBXE35zvCiK4m/7OHfjise+dvt7phj5Y8MdBmMlh37dprQ40/672dEGP9xzgFxeM6vxyl++Re8nAHbsEtlcKoHTsPWDyy8BkXz2TI78dxdC1D4FZ7XjNLCvn4Le7BBInia6WSH+wAQ2JHA6vRwXA4qeCuLaRNaZdJJ6cOxMJHWNxNrMIW3KLoOseB3G5BtKMUuoKy8f2P/bQVNyrwbU4JhEQuFbYsHCby6ZWk8GEj+//BgsvfO5Rutx1j47F2OnDqCCKCHsj24aj0yCrEW1JbilNOxIxDLJOt8xsZOKDo7B58Q5Uu2goVaoVGH3PUDux9VdPLqDJSeQ7Ecgczu0v3UDF4oS49tEtuvZvCkQEovRWwqAzYNuve2j/KGn2tE2/roOM50SMqPljktp5EuLQvmv5PpfLuZqHkcoleHvdy1g9bxOWfcqfhBuZFI5yN8l8LYGMIwUEBPjxD/HFh1vewOn0cziw7ij2rT2MEztPu91tRAT1/UuL8eLix7Hp5x30mFGaW4bg6CCMunsINfsjyTh2YxKpxO0c+ttTP8WpPeccntdrDPjtg795j21tOsfhjT+fRUhM8/72A8P9cc9bt+Lb5xY5fZ2I0xe+upQaH7YGvkE+qCyp4h2TGLQ8vV2tAJNbCkugD//cdJ5rsQYnl4KrNdBgLIBIw4KViqwmhxx5joNIY4FI49n8tjPiO8TgqXkzEZsaRQWH5P9oUyAGlV2Hd8TV4FoYkxyySXAgCRk//fQTbr75Zodri65du9LXBg8ejBkzZtSLHO6//36cPn0aUqlnJo3/aoHDb2d38r5ebdRhdcYB3JDkPA6tMVJGjKExneofGy0mvLV3CZad3w2jxaq0Je53zaVHWBI+GnIfzpTl4N51n6FEV+Ugbpgz4C7E+YbUpyXcs2Afdl2wF0MUVhnwv5WnaJLCc6NT6H+YNiEqHM/ld41oDUanheN8cQ0e/OkA3Q5bSCJc3fE6MUSNJ0e0xdiqocD6zc37sPPrgfeSAE3T3S6ssMCRxcCo2cCer4AKq6rYaSNyJv//pRbhHwfEXz5XWQGBfx3qUOsNg4H8w8CJpe7fU50LHF4IlJ5peE5XClRmArnpQNf7gJLTQNZO67IEv3ggbiAQ5MQ5yFANFLi7AOK5QCUCC/I5zRQ4EEgjPKOSonpTNoyZ1uM74yODulc49BmVHosbRDIGnJFtdsqDyEsCzl0KxH8EeRtfyBN8Ubb0DLSHmn5u4q6AEFFAQODKs/q7jbyvE7d/IoIYemt/j9ZHJpv7TupR/5gICr545DvqRkGSCwh1jZF8kAlL77+PWhvu40iqmRjiMg36xoThtYfG42zvVMwa85ZDGgERNzy/6NH6Ii9xHCKOGMd32BeuinNK8fkj36GqpBp3vDqFDm4j24TRWPqmIk+/AN2w9uC83DdmsmoZBt3clzq+vXXLRw6FbuqIXesEEZcWjbvfvBUXj2Xih1c8uJ5wwtZ95zDunk9RQmIXx3akyUfSzBLID2aCMdifH0VmFopjufRmy4a5G3H3W7fi77nrkRniRYUadYhLNVBvPY9AudyhYYFMCCvOFkPf3vX1hCyzHGKte1FJdEok0vo3IylLQOA/SqpfGL3NTOmPXy8dwqwDfxPzSgrppyfJDazF/li8vyQLrxybi4MVDc0/efoSnKi6iDUFuzG7w4PYU3YIq/I345LGOuHbwTcZkyNHoLOfo+Ncvq4CGwqOu9xGDiz8lRo7cYMtBYYCZGizmi1wIHT2Hw2VxB+7SpYiT2c9D/hIgtE1YBz+zsuFmXMu8CPb5CPTo0RnbZKRiuTgQCZXOcgZM01OsIUIE4wsGfM4/zK+Eh+crzEjNaAQoUpHx2ojy8DCiel63OHMhIMkXvAJHMhWVVsUyDN6I0LmWoRh5BjUcDL4SXSo1itQYvRGlsYfuVo/WMj/mUIZQkLsa3dGVgI5Y6I1tcaYOQYmTkwnqHUWKbylJnT2TUN731gsyvwYhyt2U+VFZK0xlZkVIUfrh2qzgjctQ8AzTp48ieeesxqmkEL8okWLaPyygMC1OCYpyy+nKQ79JnuW6EOaXW1d7ciE86cPzcPmxTupiJtAmmOaS58J3fHktzNxcs9ZvDRutkNDEXHrfnHJE3QSmWDUG/H8yDdxOt0+wbUwsxgfPzAXNRVa3PzsJEgkYkSaWGTwCBzEZAI2IYJ/A8mYQsQ5FTgQWJUcw8b1wLFtJzHn9k8cxlS2YxKSrHHPW7fh+M7TWDJnGZrDhm0nsGfapyghTVQjO1AnPUlWKeRHMiGqNcXig4hc1i/ciltnXY+1CzahLL/CpaPq0e2OTcytRWKXeLTt5ph+KCAg4Jykrgn0Rlzy//xsFb54jM8IzgpxoXxhzFs4vKlhHJF3voAKFNYt2Iy3Vs3C5p93YNlnq5BxPNvakDCiI255bjIVszUm51w+di3f7/LznDUSkXqUeqdVdFeC88ga1x9RNnWupkKSgwIjA7Dk7WW0FkQgNStiuLH5UjnYsnxQjTOZoOY5NynlEhi0pgZhg82y9IjNcaiKDoLZywuo0ECcWQjGprGIbANpziLvku46ATYmBJbwQEAqgUijp8kNRODQnLOjNKcShrb84zZZjvsEHEtCGAJOA7pADvogq2BPbACUJYC8DDAnR0J6vgiiRg6q5uhA9+uODqwXOPSb3Attuifg2U//wpYD5wG1DEgNp6/pu8VCuf0cpPmuG1MNteYpAgIC/60xCbl2P7DuCHqM7uLR+uRKOQbc0NsuUejjmd9i26+7688/LRmTDJrSB498fh8GTumDVya9A22VvShA4SXHy78+VZ9up9Po8cyw1+uTDOrIv1iI9+/5kr6fCDPIWCooMgBFWU0zyWsOI+8ajH2rD+Gduz53THiz8WlM6paAe2ffhn1rDuP3j1Y067PWLdhCP6u5wgOTwUwNtG5+bhI2Ld6OymLnvW1k3zWei2pNUnsnURGKgICAZ6T0TKI3IuRa8s6fVFDtjvRVB2n6m61IOu9CIY5sOUFrE2/+9RzWzt+C5V+sRtapXJqu0G1UZ9z6/HXoMMBxHvPS8Sx6/HKFO+EWOW5nnspttsCBcNMzkxASE4Sl7y7H+dqUTSJwI2OVtfM3eyxuICloRJTBh15rTeZxBtmGK3F+IQIHNi4UnI+X89czCyHSu55n4LzkdslwpL4mNtaqyuuQSawGf7W9D01l4E19EJMaiZcmzMHelQeb/H6SzPpvIT09HeHh1vFYa0GMnu68805cvHgRcXFxDuKGxkyfPp2mOXzzzTf0MXnfkiVLcMcdd7Tqdl2TAofsavd/tDkeLOOKp7Z8j/VZ9gfJutj35pAWGItyjRFbjxvQ0XIjCiwlMCoz4OVTjS4h8TS5IUQZgJ/2ZmL72RLkV+lwJNv1BeLcbRdxZ59YBKrkSA71vuwCB7Vcgjt6xWLa/HRU6x0PMOR4PSAxELPGtUNqeK2SS3MbsOFVawdAc2i2uKGWM6uBS9uAKhfq7eAUILoXcPCHpq1X6W8VLZxczt/kLJYB4z6gMZ4CAgLNILwzkLUdqM5zv6ytuMEW8t793wCaQvvnSUIEiWxOngBENxLClV8CuBY2o1/cAER45kLDGiww5dfQizxZpBqi2nhGZXIAvVlqjOAsHMRqGVi9GVUbnLvyOcOrcwg06Y7R0LZwztIZxCKaFCENVkKzl//9/xW06YUwnK2ApaJ5BXjy2woICPz7yL/o/nq14FLzr2nfmPIBLRzbUtcs4w5GY4Ryfya91ZE2KxXlRZU4uP4oOgxsh5KcUur0oFDLqRsriYD2CffH7+sOY9/xTBRnl+J8QTmkEoY28DeGOICOnzkSKh8lFRQ0R+AgrtLDa+0xmCZ3pAIGPnzlMury8eLY2U6LQGTfEBe4e2bfhvi0GPpc2x5tsPDVXzzeb3WYogOgG9AWOiJuqEPCwNQmBJYgNVRrjjt1Tm3Mrr/2Yfff+1FdUAF/RgRTtB9YmYSmV0iLaqjjXZsu8Vj/wxaH96rSs2GM8gPr69isGqBWon9oKHaDv+BPGsQe+3K6p19bQECgEVPiu2Du8XRcsKsvOU6g+qlrcLCi0ZijljPVmXj+2AfI1dnXJo5VnsHxyrN4oM1tGB7az+61/aUXYeGppSgkZpqW0ABH0whIsgF9xInwc8YqDAzu7tFvarBoUai/CEYkRrgiEeLadIkk7170pjFXwMKZoZb4o8xYhRNVL9cLFkgaA/k8AyuBpdYGVSGxgKEpCwwGBPXEttKtkDEWB3EDgdS6JSItxCIFTXMQ1T4nE0nRzjcOAZJgWNhNTsUNBBnDQmMWu8z3tMXZmcDTs8PaikTcHWJ/TrYly6SmiQwUFthVbE1eJajkegTFO3M1IvtNSpMnxCILfTcRNpCbkRPDzEpgYEnGAwOlxIyVBRuQrdsGMFl234C8Xyrm0EZdjLPVIdBanDfiJ6n/PZO4+fm1ya88REVFNWvdRqMRt99+O/R664TS66+/js6dr07yhYCAJ5CmmtZYxhnkGpo0/BzefML+eQ8nbzmZBJxcApHOVJ/QkNwzEWUF5bQRt9Pg9ijOKaMiBjLR23FgO4x/YCR1I1326Soc2XoChRnF9RPIzvjx9V+ow6tULkUSwyA7u5Q2YjZGklkC6dEcoE8YiRfi+9LWZlkX+KuVGHxLPzomcTYhSvZZ/+t7YdobNyO2nfW4SyZdmyNwMMUEwtA7Efpah1jrFxHDnBACNkAF5cYTTsdpjdn5Zzp1p61w0UiU1DWeiqKJw2JT8A/zQ0rPROz+y3UDdF2D2MOf3dukdQsICDQw+ZGx+OPjlch3U18irsm24gZbjm0/hcf6zMKl49l2xyvSbHpow1E8s+BhDJ860O495DjdlFoKq5RC3y4UhvhAWj+RFNdg7hcr7Yw8+CDNqxePZkEsFaNtt4R6d1ciuiM3km5KRFsklSK/oBJf3WFtniDX0BI9C7OX66Sikf1S8ff6ow7ihnpEImg5FmIvGRiFDOYwfzDncqEqLEPqxF7wC/PD5s9X0bROUgsSX8int9ZAfqEE2p4xNA3UVX1Pfp6/34H8SpYIf9o85FVivTkso5SBDVRD3EiYx/ElhzpZZvHsP7AiIx85YudurdrByVCvPErrfc5I6iqI3QQE/o14Mt5o7jwJcQKeNW4OTu4606wxiTOSeybRNAjSgNtlWAc6T0KS4khqAxH9jbt/BE1DIIKAY9tPouBSMS4ccWGoCmDBy0sw+p4h1KQitl3UZW9AJefCXhO64cUxs+uNsezggCG39sPUl6cgJiWyvjG2uQIHQktTFYhb9qp5Gx3FGLWQcQVpQN722+4mrTc4OhDxHWJpUzUf5Pd86FNhTCIg0FyIscTyz1ejJNe1c3+doMlZAlzd+OLhXi9QsXUdRBxA5sHJuGTWz49TAZrdezYca/GPRo7RPUZ5VtslaT2XjmXRGhMZk9SloQ6+uR+9kXoWGXcRQRaZE//qiQUeb8eQW/q7FQQ6S2cg5yaSXqT0UV4RgYOIZSHZexrmDvHgQv0axAomC5iMAojP8icoiTwRLbAsNfBoLj+8vBSr521EUWbz9gcxE/i3EB4e3ux5EFeQuZCmzoe8/PLL+Pbbb8GS3xbAihUrBIEDIVDpDbhOiqQEKPjjhl1xtDjDQdzQEjiWQYAlGX3e3gi9XSNpDHrGBeDB4d2RX6nD4M+3oKjas8ZJkvDw+4Ec7L5Yip3n7VMeWhsJI8LvM/vgj4O5TsUNdey8UEqFEPWogoCEIcAF/gP0ZcNQBeh5XC3Gvg8ccO96AkZCMp4BsRxofx0w6FkgsA1Qch449gtQUwiUXQIKjgI68p9SBCQOAwY+C8Q0uF0JCAg0g5gBnqU48NFY3GDL2VVASAdAbnu+aIX4MHLsObUcSJ3kchHOzKJybQYVIHAG68Ubo5JA3TcS3kOi650niLCh/j3kGOzJ5olA1+EzPBbmCj1tzG8SIsB4sZLeLjs2LhL/dJorbiCTJqqerauaFRAQ+GfgF+KD3HP8E5p+wTwxjjwc3XbSQdzQUtR+Xrg9dmZ9hHIdnYem0SSGrOIq3Pv4dyivsoms7xYPU/soKLadpnHztpDi+YaFW2kDP5ksby6M1gjloWxoBrie5JRxwDdLn8Hyj1byOlwQJ4/HvrbGIBKCIgKQ1j+lSdtHkh313eJcuv+xvl4wpoRB3iitwRkkSpS1WE90IpajqQu2kG1d+s6fTt/LaE3w/+MYNN2jYE4Lh1kEKKQSjOqWjBmjeiEyyBeZT0+mzUrlBRXIu1iIC4cuURdc4nrSc2xXTH35RiT3SPT4uwsICDhyb2ovvLB3lcu0BHIxG6B27azDgHUQNzS8k8N3l35Br4DO8JbWWvF7cHlMGtrrEIGj4gG77RNxKDfn4YdLf+Cu+OtdrsfMGrGpcD6OVGyAkbW61anEfugZOAl9gm6sTw1SSfzq36Mx6yBlzPCRGsDY2Ft7cUYqcqg2kcYcESQiEaYnjcCd8QNQaspDhsZ1IgX9DKkRZQayD1iQln6RiMXRyrMQ4QwS1fzjEvL9NSTlQMLvvKMnNqaNqNArqRCDCDL42FqVQBMcRvnZO4gT8s1eOGdq2EeRSnKs5+hQJ1JdAZWUnHc5OtHt+P9IBDMRM3BiWDgRKmkCg/P/bP4yLVhRAQluoEhEFshFJrt1dvDNQ5Y2APl6awx0HVKRGGPC7SeIriRsK0Qv276/Z0/3TvRNFTfW8dJLL+HwYWtduG/fvnj22WebtR4BgSuFX4gvFSa7W6Y57F93xEHc4AkWcr3cIQoWksJArqktLCTZpZAdy6YNq2RMQppUbekxujOmvjIFF49m4qEez6Oq1HVqji1EZEDcQDf+vAOn954DOYpaQotgjg8Gq5SB0RoguVQMSZG1uV9xvgz65CCX6yNu166OVmTd3/zxHH5+4zdetzfiHvfYVw0i4/D4UNqw0ziFgg9OJIKxc6yzEweF9VPB1CYUsjPuG2xJAwKfqyFJ1PhulnsnRjKxT1I8iGBhyK39MfXlG2gTEnFU3LJkJyqKKqkz47mDF6Gp1IIRM1SAfscrU2iCg4CAQPOZ9MgYfP0kv1kbmU/ga/a0FTfYQpqKPn3wWypEIM1/9TThWsoc4IXK8e3s0jktfkocAfD18h14YJLrZFOSXjr36YXU0ZXcJwSE++PGJydgylMT6pfzJ801tdRU24+/xDqWihcsCvuuezEjwszbB+KGUZ1xMasYx87zHzNZqQiMwfq92aRI6FNjkF6mBchtSCeICisgOXbJs6YdDxFZOPisPIWaCe1h9pI6iBt8Vp10L2Yj51oPzPa42gYtu7dW6sDa7Funq69sqBOyXjLk0HGgi7OlRAxjSjiU6Y7iRLlSRhuA/y1jEgEBAfvxRuNks8b4NnOeZO+Kgw7ihpZAal0kuXpq/EP1CXV19JnYHbe/fCPOpJ+nQu+a2vQad2irdXQ8smruepw76Fqc3Roo1Ap8nj4H857/ybm4oRYiQrY1PopOjqRmS2S8dTUoyCh2OSYh1zBPz38In8yc6/GYhDT8Dr1tAKa+ciOdAyIClC1Ld6GyuGFMQpI1yPJ9J3WnYxIihBAQEGj+sXP8/SOx4JUlbpfjq8naihtsIceHj+//Br3GdaU1h5bWd20hSXBL3/0TNz87mfc4/s1TP2DjT9vr6z1ExEDeQ5Ia6ggIs6aNEmoazZm7QixhMPOju6mB3/nDl3DuwMUmbb9Bb8D+tWRkdfmpG1OS8Y70wDkqkuZ8VdT1XFRaBZGbxAy6Do0eokqN9X0uYArK6Zx5S2iuuIGcP0beNQhXi3/rmCQyMhJpaWk4evQofbx/P78Zyn8mwWFim17YlefarVLKSDAuwTOnusasvLjP7TJiEcPrpmcLW5aEOX9l0pSDxqRnlOGpXw7jRF6Vx+KGOhanZyG3wvUkuqcEqWWIJIWmHOcTxq9NbI/kMB+sP8WveiXfb9PpItzVN67hyfEfAZ92alIhrNVw9/ukfwN4u4mkJnS+HRj6EiD3AaQ27qlBicCQWQ2PLSagpgiQqQAlfzFIQEDgMqQ4NAeS1JB/EIizuYDxiyNXbs1Pn6kjdw8QnAwEpTh+LMeh9KdT0J+yVzizGjOq1mfCUmmA//VJTjbXg20SASGPdIYswira8BkWg+KmChzMV+aYLY1Uw29yG1jK9KjalA1zoU1D7b8I8h0lAY7u2wICAtc+w6cOwomdrovrpAhDYo6bA2ladwdpGHEXv1mHSCzC3OcWOe2aJQ5/703/Gnt9Ffbihlo4hRT6gcnwWnHYoXix/Is1NGK6pURozBBHBOF0nmNBgvT0zLpzJKLiQ6mYgg9S3CbCkDH3Dqt/7slvH8DdKY95vC2WUF9wLpzz6jAmhHgkcKgTN7jiry/WwDfI9eQOETl4b7uEiZ1ScNubN0OtlENe62JIiE2NwrQ3bql/bDKaUFFUBS9vBVQ8xSMBAQHPuSWxM+afSce5SucFU5JgIBa7dpshr/NhZE3YWrwX4yOG1j/XLSAODERgXUgdbAuY0sbiBhtWFaxDt4B2SPN1NiZh8Wv2/3Cxxr7Wo7FUYHPRD6gxl2Nk+Awn7zPCV6p3+EzyWCE20/KPzqLCz/0eQ7w6lL52U/QovHeGX+BAkhiIWIP05ohFgImzTtLKalMi+CDJEHk6H/hIjPAS24v46iDiAa1F5lDHCpWn4YmUycjT52Fp1jrk6FwL5BeXdMJZfQAmBJ6Cl8gMAydGjlmFctbZtb4IoV5VteIG62MjK4ac5/+KniXHd9fFabXUWK+9E8NR3EAgr8epymiaRpHBOiYkv8kTybchUN68Buf/Elu3bsUHH3xA76vVaixcuBBisXtXWwGBqwlx3OabHPXyUaLfZM/csxuzeUnTxyQWPy/ohrYDbK5ZSWKCOS4YiPDHt28sdZqERoTKH8/4BvvWHvZY3FDHbx+uqB+TUCfvwkp6c4b31kwYI7zBejte70f4ecPfIMVFjaNghBxvX5o+FmHRQdizgn9MQgTlB9YdxbDbB9Q/9/g39+OBLs94/J0s4b50IpkPIuLwRODgbsxIxnSeNJxd/9hYTHl6IlR+KsjkDU24JD0v/n/WBL26MQlxeFX5ekHl4+V2vQICAu654fHx+PurdbwmGy1xstbV6GkdatyMEfXPdRqS5tF7yadWj2hrJ26w5Zu1+9CnQwI6JUQ4reG8NH4OjmyxF9OV5Zdj7jMLaZPifW9PdXifwWDf0EmO/VINC7GehUXOWNOyxWIs/OoeRIZZ52vvuKE3nn33T/7vIiYjEqtQmWCybXwlzVph/jArZZDsOum0IYcICCwxQbSuRGBKqiHJKHKbANq1QxwefOYWnKiuxg8/bETu+QJIcyppcoNHTUSk4ahKB87HRqDSGJYD46RRV3qhEOakMJeCOuKsSlKQ6h9G+rk0BKnDFOkPJRwbfJ9f9ChvDUxAQODaHpN8N+tnl697B6ip8PVKjUl4l5Uw+N7FthJRwKcz52LHsnQq2G0KJLGtNeZJwtuEQiIVI/t0ntPG0+d+eBhBEYFuU9SISdTBjcdpCpLtmOTRPjb9TVcQvt+HXMP8/eVaj8zCbnluMiY9PBpqfxWksoYxSZtOcfRWh9FA5kkqofZT2Qs4BQQEms3tL92AVfM28KYItESQQERl23/bgxF3DrIz6GsN5r3wE7oO7+jUuZ/UMF4Y85aDmI6YRXzx2Pc0eYaYBDZGr3Xfr0v6BL479TFCoq1GG6SmMvvWj5u07ewV6t3qMjQND35yD07tOYufZ/9Bk5dogh2PwYcrxGeyYe7e1rkI22SG+MJl6v/zgBcXPy7Mn18mEhIS6gUORUXNS+761wkcxsZ3x5LT23EoPxvm8gRYqqIAsxwiqQ5i32zMGJjc7ASHKqPVtY6P3uHJmNpuCCr0Gry8axHMrOvihKk8ltd+b+OpomaZV7eGuIHgrZDg01u64Ifdmfj1QHZ9SkNyqDceHpqICZ2sRSeTB4MCY2MXCf9YYOgrwMbX8Y8j9xAw6R6r0MGdwEEd4n59Yinga414ExAQaEU6TwPSvwAMTiYmVaH8CQ2eoG00aUnETD7RQGUrOBhk73EQOBguVUJzqMhB3GALSXVgfGVUaECWt1QZIfaVQeRBXLCifWC9uIEg8sC554ojAry6h8L/uiRrUkW0D4w5Naj5lwoclO0Cr/YmCAgIXCZG3DmQFnNcNRTd8sJ1tIDaHGo8KKD3HNsFY+8bTlMCPpz+df1kNquQAlIxRFpj/UQo56bRfvOBC9B3c+2qySlkMMcFQXrBfkDaGkV7gre3F964Zwx+3HEMK/achEZvLZi0jQrGjHG9MbSLNYXAmSsR+WaWAC86wSou19EIVFui2kZQh54f3/jVo21hlY4O3w6f6abZyFPO7DuPe9++3W0s6ZhpQxDo4/7/EinqB0cJ5x0BgdZmwZBbcMPaH1Cgc2y4TPYNhRmui/qukx8aKNTbvz9c6YeBoT4oNZ2CUmyCiWVQrFcjX+sDCyeG1iSFn0IHscgqCOBjbcFWB4HD8cqzOFS+BVka10YW+8r+RqUxDibocb7mBCpNVQiUB1qFCDyfSUQOPQO61IsbCBKRpw3iHJhmxrsFybXQWOR0n8gZ+/MA2X8VZi/aqiQTmSGmaQ0MegWOwc3Rd1BnqRTfSJypzuAVOBCOacIRqy6CpD69goMYLCy0Dcq6Y0pNaqQGFNDPIekQRFxBXtOxUrp9zgQbWrMUBs7zEi0RfvD9DhGKCuRofKAzylGlU6BnYOtMBv1TnInS09Np/HJrUllZiTvvvLM+RvnDDz9Emzau06UEBP4pjLl3KNZ8vwkXz+bDnBgOC7kWlEmpY5o4swhTHxwFpbp5DR1aD8Yk/Sb3xPA7BtKGduK2R1MHbMUNNphlEiA1CooDl1w2LxEn8abSlDGJpNqAoJ+PoaZXFHTtgsHJxBDpzVCeLEacoRivLX0KCzcewqrdp6CrTb5LiQ3BjEl9MaCzdSLc7IFzd+PUPNJsc9Mzk/DLe8s92k4y/nIH68EynroZ3vTsJGxctJ13uVH3DLVzUOcbk9RN3gsICLQec9a8iMf6voTyQkczo8Su8TjfQsfovPMFdo8jE8MQ3zEGl45m8b7PFOULiz+/mOmXrUfsBA6k8enQpuNYt2Czg7jB7n3v/wXvAG/UVGpwZPNxaugQFh8CU2K00+UZCzGKsF7LjRvfoV7cQJA6SS9oDsSJlA0PhDi3xCHt09A3hURvNjxHBBFtIyDbcxbiWvEeqdmZ40Po8mKWw0039MbMpyfSMQm58jz37Vas2XiuadtEzm+XCmHsFOdSLi3OLwejdxSDMzV6yI5kwtjZxryw/guwkKdfgMhG6EEShtwidj4n1dzm5tbi3+qWKiDwT2DCzJFYt3Arsk87NwSa9sbNkDXz2tWTFIXBN/fFoJv60mbUzx6ax7usxY3obMOibbC4S85xQmvNk/gEeOOlpU/g57f+oOLDunQjkgh35+s3o8eozs0ek6T2SqJO5H9+thr/NM7sv0BTfrb/vtflMuRcSRzQPRmTEEG2MCYREGh93ln/Ch7r9yKqnKT2tO3ehtYXWkJuo8S12HZRiE6JcCr6ahIc8NeXa/HUvJkNT3EcDqw/irXzN/EmBf301u+Qe8tRXVJNDQNJYlFEYhh0Gvc9u2NnDLc7FslbqY7TmjAMg5ufm4x73rqVPo5rH43Dm49TgUOz11lWDcmBc7AkR4OzMb4QlVVBfDKL1iyvBmQo02ucMCa5XCiVDfVni4X/eus/I3CQiSWY03cGJn6+FQZtQ1GCM6lgLknB5r2+mN7RBG+bQoKntPELc7tMW/9IDInuQO8Xa2rw4aHfnS5nLk0EWP4D1FXINrDjUokWz/1xFEtm9MEzo5KRUaqBQipGfJB9A02XaH9kl/GLP47mVkBvstD31zPgSSAgAdj1GZDbShEkwalA1zuBo0uA/GZG8UjkwLHf+Jch2x3ToGoWEBC4Csi9gV6PAFk7gLwDgLEaIM6Tkd2BmP7AsZ+B0qYVfO0gqSt1kNSG40vdiBtEnh+5yXqyd9PtNSEGZYvPwpTvWVRZ9Xr7iQOScuAJsih7cZ80TAXGSwJW23qxyc3CdrdxgHZfId0XQdPaQ6yWQR7ng5rtbpywm7DrPYHxlkHdPwLGrGroTzi687XKZ3hJwHjQKCsgIHBtIlfK8cz8h6jrDXHEaczelQdw/ePjoFQ1PcUlJsW9cLZNxzj0mWBNrSu4VIwf5q6DMS0KbEit043JDGlGCWRHs926xZmDvO0Osc6m6ywhPg4Ch9Yi80Q2Pr9/LmavnIVHJvdDTkklFDIpYkLsi9WpvZOwc1l6/WNd+zDoOkeA9bbuY5HehIOMCWPMFrvJ6ztfuwlRyRH4/aMVbgtsjNa9GwWjNdBI59H3DKUiF1exqu4gEztbf9nNu0xs+2gkdnEtPhEQELj8hHv5YPnou/Hd6XT8fukoSvVaRKp8cUubzpiW3AOvn/wGxyrPO30vNS1y0wPhLVXX32c5FvMvfQKz6BCI5pkgE1ugkpYjVFmN4+WR0JskqNQrEeTlfmxxovI8Fp3bjwiVLxJ8Vfjk3PfI0uYhXlkCf95yFYctxQtQZWkoQBcZit021pPX2vtG2T0Xp4qFUqyEzuK6pkRECFKRBX4yPRgRB71FAq1FDgMrsb7Gk+JABARWoYcIVWYlxCKSbmCm+528d09hDOJ9qhGlKqeOrFZYHCz/G6WGM7g7/gV4SdRo55OAFXn8zZ1mToYMbRBSVIVIklYjTqKBgmFh5kTIMStx2uiDAqNv/fYyIhYMR7aDnJNEqLHIIGUtkJHkDXDwkwVhQNBIHC7PxvHqAxDVCyccMdKEBwJHhRJ8KCVm1NQoUW7wQpBCBbXknzd50hKIuCEqyv7/WUt58MEHkZVlHYePHz8e06dPb9X1CwhcLoh44amlT+LhWYthq2nmvJUwp8Via0kNJhrNkBNxQROJTiZjEv606zad49B3ojUhIjOnBD+e5a/tmGODwB3KcOp8TcQNpG+Qk0vp+MUT1+rmIK4xwnfjRfhsughOLoHIYAY5rJLW4LmPfo/Xfn8Gj0wZiNziSngppIhqNCZJ6ZVEEyf4OL33HBV+SGzEHtPfmUonin//eAUuHM7gfb+otpHJ3ZiEjBNG3z0Ey79c67KhzB0yhRRbf9nFuwxxOSTpcQICAleP8PhQfHngHfz2wd/Y8ONWVJXW0Gb/sfcNw+RHx+KZoa/hdLrzMYkn2Ca5mE1mvHrduy7FDYxYVJ9YaQ5uGMs4g2M47Cm/hJ8u7Eekly8iiySYc+snHh2ziJHHvOcX2T2Xf7EQFj0DuDmvpabYi2HbJYZBIZdA38gUwxaRpSG9gQ82IsBO4MAxIhj6JNuJG+qRSWDs3RaKdYfBxIdA3zGmXiRAKnWL9p/H8dd/wXvPTobKS472/VOxZv5mj5zKWZkYmu6R0LUPBeclBSwsJHoRZDUcFXvYfi8xpOCIGYqT+mC0icWYMV1xqKAcu9LP0f0uLqiA9Gw+xBX2YkdJsfuUJU4mgSk6ANLsBpOvkJggu3OigIDAvwuSJPz0dzPx9NDXHZrqCTv/TMeY+4bZOe57SkxKFPavPeL2WrVuTHLxcAZWfrsBzaU54obWhBgizX9pMV5Y9Bju/+BO2mBKUvnIdYAtqb3b8ooE68Ykg27qY5dM+dAn99B5jWWfrsKlY/wiRk8hTc0jpw3BHx+vcBBMNmVMsv33PbzLtOvTFuEJ9vtBQEDgyhKVFI6vDryLX9//Cxt/2o6acg1Nnhk3fTgVUD3SZxYuHmm+kaxfsK9dEsvLE+a4FDeIJUyTjtkHNx6lIgeyvT6Basy5/VPehDzb1Llvn/7RYUziCUScZku7vm0hlUudniuvFHKlDEa90TpvRWtxLBbP+QNn9p3Da8uepT0Naf1SsOnnHS1KT2JKq8DsOgGWpOgQIxadgbfWRQT2o+8bRs9t+93U3JpLZFLrGib9m9FoNDSFISIiAnK5YwquM0pLG3ruAgNb34zxH2jt7Bkfrb2Iahtxgy3HcivxaRMdDuq4PqkPFVC4QgQRbkruX//Y29AWxpyesGgafhxW5wdjXhcqtriaRPh51ky152IZTuRVQikTIzXcx0HcQIj0d+/09PeRfEz5ejcsjSco2k8G7l4FiFqheNH3MeChPUCfB4H7NgI3fAeIPftjsiNxOHDcuTDFztnd7H4yQUBA4DJDRAiJo4CBs4Bhs4EBzwMJwwGJAogbQmIKmr/u8C4N9/P2A4XWyCSn+MYC7acAnjqQmvXAmb/AHliMki93eyxuaAmcyf4iUiRloOp9lS/UXAgTTDk1KFtiVUMrUgMhDuA5Z0lECHmiK3zGt16DpzRKDZ9B0Qi6ox0Cbrs852uvrqEQiQVXHwGBfzM/vLLEqbiBcGrPORpN3BxIwV/M4y5HCgdjpw+rf6xsHwn94JQGcQNBKoEpKQy6oe3ASVyfK8lrpiAvWBSARSmy/isjrmyNF2zWV/HYKWff6kPIOp0LL4WMJjc0FjfQdcU0rEvTIxqaAQn14ga6iQoplh89hxnvLHFwfx16a3+8v+lVuu/4EBdWQVTNLyy8+9aB+Obw+7ju0bH4cv87eP7HRyH2IGmpMSQSdYebwn1FYQUtoAkICFxdgpVqPN9lKPZd/zgu3PoCtk96CA+l9YNKKsOtMSPBuGiFsXCOxxwRyDU7V19jGhjcs/61HSXrcLSyQcjVuGn9tnhfvNzhOmhMXqgxum9aL9Hr8OrBtXhg52I8fnAOFTcQJLYdLy5Qit2LpMl3kYgskIrM9EbEBSbW/ryoECswOHggz1o4qMUGpPgUIVxZhVBFNWJV5UhQldA0hlIjf4JN431MUy5YORVImDgpotRViLQTNzSQqT2Lpdmf0/v9gjojSObaBU7OSPFN91no4j8TPWXlSJFVU3EDgSQ6xEm1GKgshrzRfwUivmhIbRDBxElo2kS1WYEwRRrGRozFrPb3Y2abu13vIc4qcNBZJB41XdHPrf2Np8R3pi53/wS31JbeLhdLlizBzz//TO8HBQVh3jx+x0cBgX8a3/6yG3oX1+pHTuZg6fLmmQ4RpzmGJypIIhVTwW8d6sgA9yuVisE5aXDkJGLou8Sg5vruqLmhO6pv6gHtgLaw+PG7gntKcLTjxBoRNTB6q7ihjt3L9yH/UiFUShnaxgQ7iBus63I/viFNVS+Mfsvh+RF3DsK7619xe1wWF1ZC5GKcWceM+4bTxoJJD4/B1wffpU6E7sY6zug0JA17V7pOdSKUFZRTd0MBAYGrS1BEAB744C78VvQ91pqXYuH5z3HL89dB4SXH7S/d2OxrPlJ/Gnpbw7z37x+tRPqqQy6X7zm2Kx75/D7q9iniaSoyhZug7atBdkwpXj+0GjN2LsHkvQtwVlGFFuEuxo4YYjSq63irFBg/mD/VjDF7eJxrdB6j6Ul8SZ+k4T8lEppOsU4TEA6fysHsr9fR+0Nu6Qv/0IbGrsYo1Qr6u9/6xs0on5IGbY8oq7iBIGZgVomgCxKBFXEQmTmItRZIqy0QqZRg28Y4XWfHwe1w27QheO/56zFrdFeo/joARfoFB3ED/YhyLcQFTtLW6+CsY1x9n0QqdKiDJNBebf7pYxIBgWud72b97LJh8+CGY/jzszXNWu+4+0fwnt9IY/zIuwbXP1YH8AvvriaeJi8TQ6SSvDKofLxoElxjcQMhyIN1ERHDyxPfdnh+zL3DMHv1i2gNHvjgTnyR/jYmPTgKc4+8j8e+mg6RB+fpxqT1T8XB9cd4lynNL2/BlgoICLQWZM6XiKX+KJlPxyQ/nP2MJlYSQ7fbX7zB9RvdHBqkMgkG3dy3/vHSd/6k5w9X9LuuFx0beToGKsoswWcPz8OsMW/hkd6zPBI3tBRdjcFBwDHs9gG4mhh0DeIGW8i+/vTBb+l9YtjhzXM+Vfup8FPGl7jhyfFuP4+p1lGxgzsjDzJffsuzkzFn1Yt48GPX8yQtQRiTuOeXX36BSqWCWq1GQkICNm/mF9/bcuhQQw2hY8eOaG2uSYFDmcaINcf51Z+/HsiBsRkK2wCFN17udSsdgDvjqW7XId634SLy620XwGpCYMrpA/3ZMfRmzOoPttq96+rlJMxX0aQmpPRLDU4KjVlzPB9fbfEsSoiIS95Zc9rxBZMW4Dx0EHfVrByaBgx8uuGxWAp0uBGwuHdZtUPhCyQOszYf86GvBCpynL+Wdwj4YwbwXiLwbgKw9A4gk999VUBAoBVofIHqHw90uBWQNmp6YaRAm9FAYJLrdQW3A1QhDY+z+RsMUZkF+ERZBRYyzwskmrwoWPRNd+9uDjU7cmHMtnfR8RkWC2WnYFw1eM5FhvMVMObV0GJH0J3taKqCAxIRAm9JgSxEBXNB64lEFPENEwVeHYMRcHsKGJ/WS1sQ+8nhM9R5XLaAgMC/A1Jk3v33Ad5lVn+3sVkxfGTSeuZHd7l8feaH0xASYz22k0b+xdtPkE5Gp8uy/ioqdHAGJ2ZQM6odLETgXHeOFYnAiUWwyIkLXcOyvBOYLiBugiaj504Ux7efcvnapsU7sOyTVfS+RSWDrotrB9HDuUX4/gdHpyZttZ7XUYJA9oJy70WIXDTwpMaH4o7JvesfE+epgVN6u423boxvkDfSBqTC7OZ9JO60rKDC6Wun9p7DW7d9jCmh99LbW7d+hJN7zjZpOwQEBJpO46J5F/9kPJNyB7wl9k2YSrEc98ZfjzSftvSiOFBag0RVEVK9C5GqLkCkohxDgzsgTNHQKLm9eD3vZ5+vOYZBYTFYPfQp6KrCnRajbanQWs0qAlVaiMUNxxuSjOAOE2cVbpGkASJcYMCCtamViUVmeIlNkDMmiEUsPY2QZIENRcuRrbV3arox6np08+/q9HMUjAl+Mp3DUE8uNiPGqxxVJgVKDV4O35U8rjAqqKCBj1BlDe+g5HTVQRTpcyFhxHglbQb8pPapeHRbGCmeT70HEV4h6CDbglCp8zQKL8aC630dI60Z+vn220D8YVN8GlycBgT3wYNt7oOPxNfuOxrM4loRhwhlBhUMrBhOjM8dUi3EUg6Jvj6YkdIwMSTgSHZ2NmbObIgnnzt3LkJDBUdAgWuHvMIKpLtJA1i+rnkJyKSR5t63p7p8/eHP70VguD+9TwS5y99d7n6lZgtEJrOD4FozvB2M7SKpYJnCMDDHBEIzMg3mwJY1KZF0PFei9MaQsdXxHU7mNmpZ8/0mrPLQEfbw5uP45X3HfaKp1LoVCxDRhfzAJZdjkrSkcNxc61JLII0EA27o5Xas05iAMD8k90h0+77SvHJUl5PzqSMndp3Bmzd/iBtD7qFjkjlTP8EZN6l5AgICrT8m6T2+G57+/kHabGILcX1+5PN70a5vsst1DZ86AEGR1kZJcnxa8fVa3s/et/ow+l/fEwsvfg7/Cj3pHHdYxhxigjHVADQq95sCJCh6JhaGpBYI2KrczBFwHBY9swAZJ+zTNh++YxD6dk1w+hbGyNqlHvAhqtHBHKSCISEQxkhfWIIcxw+NsZAEI57Xt6afQ35RJU2LfWP5c04bihQqOV79/WmExgbjmNxMt8EZpKZnUpMkBwskxoZUCi7M36nIkDi01jFuxgj6/4jUrFzhteMcTVB1/GDr+Yt+nkQMU4K1bhmTGoXrnxjH8+0FBASudYhp0dGtJ3mXWTmXv97Fdy1/56tTnL8oAh7/+n74BHrXu32vmtv89IbLSZtOsXQc4AlkbHVyl2NtqQ7iQL5x0TaP1kXO2X995Xhe11S0fL6946B2mPjQ6PrH5BzWb3JPmgTUVOEHSbpzN0YiaRZ6rfP+rqPbTuK1G96zjknC7sO70z7H+cMko09AQOBKjkkG3tgHj389g45BbCFjlMe/mkETX1wx6p4h8A+x1sXJvLq788buv/ZTE4n5Zz6hIuCm0NTjVHOZ/9LPyGkkpHjo03vQdUTrN397gjsxyObFO6mYjKTFkjFJ47Elgfy2ry17ho4fW5LW0Zi0/g1jEmIu+MQ39/OKLJpKQqdYTHq44Zwl4Jz4+HhotQ3XK2vX8tcG6ti0aROKi4vrHw8d2mCI858WOGSWamB0U3St0JpQ6mHhujFrdkuhz+oDS3UYOFYMjmVgqQmGMbsX9h9pcCI6kFmGzFKbC1EyqepmYrU5BKqa3nA5sVM48irdNPDbIOFR0n6ysWmxpvN3XoKhscuo3BdQeTBBeP084L4NQNLIBqEDeW+vB4BpKwGFjSttHX5NaCD1jQGmLgOCeJqebZk/Bjiy1P65438A84YDR5cCmmJr0sOpv6zL7v/e820REBBoHULSrKKDtFuBNqOA1OutaQ/xg4AOtwMK62SrAyVngFKbtJ8ad7GJnHUZIm7o+bDH6TG6YudNpZcDzmBByYITdhflJEEg8NYUBM/sBEl46zjfeYwH6QVE5ECQhqkQ9lQ3+E5IgDzJD/IEX3gPiUbY092hTAuCpcoI7bGG6OcWwQBenewd98jn+09JhrJriFsFuSdYqo10mwUEBP69EHcHd40g5YWVNKKzqZBi7q6/XDutntrb0MR+8FQ2CsucN5vUYYp3LnQzpIbBEuxi0lIkgqV2GEIOi+pOsR5N2toy4PpedB/YwjEiWLzlYBWOk6oMT2rFojd/a9jutsFuHfsWLt/lkHxAJmj5JmnreOurGZj7yq3olRZb33Dro5Lj1lFd8cXzU6CU24/PiMiBNAd5SkSbULy99mX6ryeQWNetv+yye279j1vxeP+XsGXJTlQUV9HblqW78ET/l7Duhy0eb4uAgEDrMDikGxb1fgPPptyBaXHj8UTbW7Go1xu4LmoInk2Zji6+oMkEstquGXJs8ZXqUWLYggyNNVLezJpQZHAeuVwHSSHI02UjROGDn4fcD73Wn6eHVISiGmsR2M/LviG/1MhfHCbDiWqTHL5SLSIVFQhXVCFIXkOTFsSwQMXoESDR0sdqsRE+Yj3UjJ6KIXQWLb688IHdxKSEkeDRpIcwK/U5+IjjUGmQo8IgR7leDh+J69oVST4IltegyqxEltYP5UYFaswyVJoUyDf4wuxBDU7lRstB9un5muP0fht1FL7u/iLuS7gOnf2S0cE3EbfEjMLcHi+hZ2B7FGgr4GNZwbu+JHkFgsT2k9bk9yZpF0qxEf5SDfykGnhLOPQN7Ga3XJpPCF5OmYK+/j2RW+2LjMoA5GtIHcx6MmLBoFDvjSoz/6RNmdELrEgMPVOCMmMLHXL/5cyfPx8VFdYxKXEhfuaZZ5CYmOjy9txzz9m93/a122+//Sp9C4H/Mtm5xFmff5mikmro9E2vT5AJ5T0rXI9JTu9tmDPYv/Ywqi4WgSniP+ZIMksgajSRbEyJAOtKxCAVQ9/DmuZJzDF8mjgeIZO3Pcd1RbWb8ZItrpL0WJbFT2+5SYRuxKI3fqPvsyUwwt9hst8Z7y94GF+8egu6pzU4bvuqFbh9fHd8OmsKFDL7MYnSW0kda02xAagZ0Q5VN3ZD9cRO0HeMAit3PBlGtQ3H2+tetkvJ42Nm12ex80/7lKlV8zbiyYEvY9uvu6kwm4xJNv28A4/1fRGbl+z0aL0CAgKtB3GwXpzzDZ5b+Ajuees2PDP/ISzJ+QYTHxyNN/58FgHhzusW237bU2+WoK3SoiCjoTHBGaTWknEiB6Exwfhqw+vwyW1U9wEHYzzPeUfKoPIGG+MpN5A6EuunojeSgMDkFPG/oawK1dkleGniHLunZVIJ3n/uOnz28hTEScUQ55VBXFoDicYMu/A6nhMrqZPVtPVF5XWdUDMsGdVj20PTIQTmxjFujWBU/HNJLMfhwIksej+lZxIWnPkU09+Zii7DOqDT4Pa487WbsODsZ+g2ohPyMwqxM49/LosIHCyND/3EGEVlP46Qe8kx4MYGEw8CEb49/9PjGHRTH+ffRWeCuKgaorpgQnJjQR/bpiLVpTAV55SgolFtUEBA4N9F9ulcj+ZSmpNSbDaZkb7GRaoQB5xOb5jn37vigEtRbmtBxiRNbbgkKWudh3aAttq5WUZTxiRkH/48u2ljku9nWRMrbSFjAHIOcMdHO97EO+tfoWKGOvyCfWiC1OxVs+i8iC1qfxW8vN2PdeogwoZ31r+MIE/SAAFM7/AU9q6yT5/78/PVeHrIa9i5LN06JimqxPqFW/FIrxewY9lej7dFQECgdSCC2SW5c/HsgofpmISMTcgYhTxPmub9QnxcNtefPWA1S6gqqaZGC3yQ1CAisItMDMdne2ZD2mje9p9ARVGVQ5IOSd97e81LeGfdy9Qk8EriLmGHnGOObDlRL4Im4pF7Z9+GzkPT0HlIe0x78xY6Tuk0qD2yTufg2DZ+caOnkBpZn0nd7Z5L7Z2EWT8/ToVzrUFhZjE9Rwjw061bN0RGNhj6//DDDygrc22YTzCbzZg1a1b9Y4VCgbvucm3i2VzcW7b9A/FRuj8wkb9LlZPCrTv2XCzFxtOkOBIAk87xQmrNiQIczCpH1xh/5BFniitAqcZz19MwHwWeGtkWTBOiSMmiZJ/O234RSpkYI9qFIsRbgVXH8vHN1gs4ld+0yVCThcO6E4WY0CnCvnDiEwZoCvnfvOE1oMtUq7hBHQZIlUD7G4De9wNKJ8U3kw4wufkd1KFA93uB8I5W4QRTOyCI6GJNYuCDbO+y+wGJDGh/HaAtA/58EGCdpVFwwMqngTbDAP9Y/vUKCAi0LowECHOidC0+CehdXPxyFuDQfMArEAhKsaY+sG4mfEnyC7lJ5NbPtLgX0nGW1he+8cFqTChbeoaKGmyRRXuD0ze9eNQSGIUYrMbchOUl8O4XSW+2VG/PReWqi01KJuKFBQo/P4Kgae3phEXF3xdhzGw410nDVfTG6i0w5lSDbY5QwcLR7Q6YQhx7BQQE/o04cy5wVogmDmtNhTQIHVx/1OXrpGlkytMTkdg5HoWl7gfknJeThBzSTJTkpnhCJpEZjk5QlhJBwuB21ElUeol/Mjk4OhD3zbkduhq9XVoESV0wtg2pd2aV5FdCcSgH0oIqWuiXKWX4/aMV1G2jz6Qe1K2DNMYQ51PbiRLWy/14UCcCLXb3tXE2lUgl8A/1c1vE+OqJBRj8yvXEVhz+Yd7wkkkxqmcybhrSGSql477UafRukxiIE9HY6cOR1C0BPUZ3pk2UhLi0aGQct3cVbExpbhlm3/Yx3T99JnSnDhofTf/aqcCGuM5+NONr6gBCkkAEBASuHDJGiiEh9oVYwqmqXTCwzhtQTJwBn595CydL+2FIWFuIRRJY3KRflhsMqDEZaB3HIpVAa5ZCKTbZJSCYWRGKdSqYasciIttOE1LqsMhRbFBT8YAzio0qRHuVw1usp6kMdakAGlYOrUUKSaP1kc+Wilh4i/SosihQaSrDgoz5uDv+Hrvl2qgScaRQjRJjCKQSC2K8yxySGxqjkhhQYyGNOCLUWJSAzeHW7IFvi4yRQc96XlfzlnpRYQq52TL37HbMO7MWG7q5r5EFSXQosTSIy0kCRohcDwlju98q8Pn5p3F3/IsQc5U4WPIRSg3WCQR/Bng6KRVZ+gG4WCNDmfkkNKx1XEt2V7HRGxIRC7XEcZyis0hRrLdOtpPvvTRzJ55tNxlXE2vPU8tU5JfLV8u28Zjcv3Chaa7jtstHRblOlxIQuFyoPRhryKRi2tTZVPb8fQDHtp3iTTMgYxLiqlqUXUqfkx/OhG5IOypMaIxIa4TshGPzkzGRf0xCxA+G9pEQmSww1ZDzkn0DpSvC4oIx/d073E6K2yKRScBG+eOnNQfodf/grolUVLB672ksXLkX5wbGQ9QnBrKLJVAcz4e4hr8uSMZDBzccQ/eRneqfI5Pu/qG+0FbxNzh9+uC3GHbHIKh2nUHs+XwoA9QYfl1vTBzbDcq6pAsbSMOUtk8CtIEqu3GgobMXHfep155AeJAPRt89FMk9E+k2EQEIESRGJoXTpjM+irJK8MaUD/DWyln0vUVZxfhk5lw6/nA2Kf7+PV+g6/AO8A1y3rwgICBweSANM8OnDnR4ntRWyvIrXB6rnhz4CiKTwtBrXDdan+Ez9OAkYlQbzdBqDfDyVsBnxyUYukbCkGQ1o2DVLDgV/4Fa19kbrIIBo+f5HBFgaRsJS2woIKs9jxlMEF8qhCgjH4gLd3yTRgfmtDXZqPBSMb547Hs89In9mKRDUjhM649BUWy9rufkUrAhfoCYgahSA0glMHdNpI9tYcWAllyoN0ru42RiGGmpiIXE4Px7y2QSmJ2lHriAuJHf9MwkerNl4Wu/YOH7f0I/vaHW5RSRCKxMBLG50fY0+l0NWgNmdnkGb616kTaEfvP0Qpy1SeEhLruxqZHQVOlwcvcZ2qRFYEwsFcXznY9FZutn6ar1WP75ajzw4TRcTf7JYxIBgf/CPAmp97tq2ueDiPBO7bExK2zEiq/X4canJtD0ueLaMcnlhBgMNkU8HZ4Qigc+uIs24XqKXCmD2WjGbx/+Tfdt38k96L+kaf/X9/9q0viGQJIjjm0/hQ4DUhs+w0tOhQqk4ZOPD+75EsNuH0h/u6CoAKh8VRhxx0CMf2AkTWxwNiZxl8QQkRiGkXcORmqftug6rEP9c2ROyd1vSFIcXp38Lm0MJgLAnLN5+Orx+U4/k8zXvHPnZ+iSk0a3W0BA4MqhVCloukJjSPpM3fWks2MVMUsg9Yle47rW1yv4IMdjXY2OnmPq/LP/aeScycO8F36ic+Z1kO9GEvaacj5pDcixvCnJn37BvlTQRm62zHt+EX55/69WS8Ig9bEHujyLOatfpGL7b5/9EecPNaTwpPRMRHRyBB2TkNTVKg/6IhqjqdDi76/WUtHN1eSfPiZhGIamXb/00kv0cXl5OaZNm4Y//vgDEoljbZnMp9x///3Yu7dBUPj4448jKMgzM5V/vcChTbAaaZE+OJ7relIxwk+J/604iZQwH9zQLQq+HogiCMsPu7+4/PNQLhU4hPs2LebmctI7IQABXjLc3CMag5JDsPuC5xfwRAzx2JLD9Y9f++sE3cenC5qvXsoqaxSxlrUHyPcgDrsqB9hqr2DD9neBw4uAaSuAQJvIIjIJ+d0IQOPGrcM73Pr+s0FARZZVQCFTAUNeAn6eQkYibjaKAza9ZRU4HP4JMPNMPpCG6QMLgOGvuv+uAgICl5/cfW4W4ABtCZC1oyE1ho9TfwCnlwOqEMDkmSO3RFUDU7U1Tu1KoTtSDNPQaIikYmj2FcBcoqMXmJby5iUbNRd3LoIEeaK9eI01WKA9VAjd8VJwJpaKJPRnmlas8QS22ojiecfAkUK7yf48YMrXwFSggbpvBPzGxaN0yRmYspt+TtSfuvzFNAEBgatHm05xiEmNRNYp1+OH0NggfP7wd2jTJZ4Wc1Q+niXpbPx5u/tlFm2nAocQDxyDRDrnQi1W7b4hipOI6OmSHtIlgKF7PMQFFWAar1MEdBqcBr8gb+rEQVzm9tW6K3FiEapHp8ISat/cYg73RU2oN1SbzkKRV4k5t31c/9rnj3yHyLbhTpv/mWr3wjPSbJR/wV5cfXDDUWSc4BcTEC5EeuPkrmN2z33z9x4s33kC3z49BRFBvnbNOw/3fJ63oEKKVb4hPlg7fxMVXRRmFGPktMG08WDaG7fg9Rved1uoI41DC15ZQgUOa77bBJPRdQM0Kd6vnrcRd7ziIr5bQEDgirK/bB3v60qpDjXmDHx3rhTdQr0R5OX62tdglmD6jnWQMJvQMcgH1UR8DQWqRTIoxGaaoGBmxTCQ7htGBLnUDINJCp1RCqXU/riRrQ+A1iJDiLyaCiQIJLWh0qxEmLzKIVmBCB1IUoMMZtSwzuthZBm5yAwDJ8WOkm0YGz4OKrERl6r+RI0pG1UmCRRiDVg2EAajCJzFfTGXb5Rm4sRUzGEvHGjAaGFQwXpDIXU9dhNBhCRv64RqHTqLDntKt+NwxQGYWTNYzhu/XCiCwSKBziKB0s7i1ZEa1rYGydF9WScUsaXSVIpFGbMQLc2ChbMfq1WZTsGHOYsRETPQ2f9xfHh2HjI02bWCEBFNsFCZDfCVEOGEBRaOockONWYFTXqoY3vRqasucBAQELh8tGsbjohQX+TxOCOHSxh8PONr2qQ4bOpAjx01PRmTbPppO3VwI2JegrhcA+XmEzB2iIElzNeqgLOwkOSWQXYky2EMQZpXOQ9EGsYO0fVNlCKNAfL0C5A4mRQn192dh6XBN8Ab42eOpK5yjVMHXGEOVEM7JBmzvmuIX3/vx42IjAjAhYLa+o5UDE4qhiEtAsbEYHivPglJKX998P/snQWYE1cbhc/MxJN1VxZY3N1dClXqhRql7kbtr7u7UaFUaGmh0NIWKO5Q3BfdXdbd48nM/M+9WUk2uoa08z5PIJtMZibJ7szc737nnIIM1zHJjmV7kXfSX4oskJ9ehB9eWNjwQEYxvt2dgVXfrMU761+s/8wJNqsNt1/zDiriPCdckM/YPKoTgooMdExCxmnFWSV0jKpQKTDzpWvx6vSGsZg3yET4d8//QgUOy75c43Ni3Gq2YeW89W7NuRISEmeH5V+t8fk8qW2Q+ha5EXMIT3/folYFe6cEiDFheO7j1VDMWYfkEDVMFh5B609BszsH1pRwWNspYB7sZz6EZSAqWaLI9bqIvW9HCAkNxzqKUg6+ayLY7GLI9hyDmBBF9wt2AUxROZiiMpekoKWf/k2PQ6SRf8XcdSjILAJv42niTB0MEU3kuDZ4yralQegQCyE6jO4rU6GHjYobvKd32jQMuFqBg0gux+uGOoIIpY2H0efHwWBAj4bEHkKN3oy/1xzG1n9OwW7nobbZse/r1QCpB5E5DZnv+SymsQ+H0QzUuO8FaSJ6bPwLqKkwUCdcZ4jYgTQXkaam2968AS9d9Q6t08myy2BP8d20QpapY/ufu8+6wEFCQqLt6DmqK3XgL83z7vAblRSJd2/7HN2GdMK4GSNp82sgrPMzJiE1c2IGdf3TV9IG/HMB4pDdbzwR+gbhsvumoMfwrjAbA5+fJ7X9V657v/7nj+/7GrEdYpCdltvsfcpPL3QROGxZssOvuIGQe6KAXv/XUZpbjq+f/JFe57+z/gWExzYky1pMFtwz4HEX06vGEBElGY/+/c1a7Fq5D0Wni+kYVaGU03mSt2/51O8+kWuW719ciHfHvoi/vljtUXBdh9lgwervN2Ha/VP9rldCQqLtWeZnTEKOf1lpufRGDCiI2MsXz132JhWFEZGU1RS4mPhMQ8RpVz50EarL9XR+tyi7hNZMiKjjTKIOUrpd7zcWQBDxmDPV5TVY+c16OrdNUpWIQM6XQWNzyT9ViEfHPU+T3xobCh7beQon92bi+mevwq2vz8ALl7+NnOO+k9A9QcYkZ1vgcD4we/ZszJ8/H8eOHaM///nnnxg5ciTeeOMNjB49moogiLBh06ZNVAixdWtDgmufPn3wwgsvtMl+nZcCB8LDEzvj9u93U4cAT+RWmLBwt+Mi751Vx/HeNX0xpWes3/VWBJCWUG5wFOJrmuC20Nb8k+EYMCw/XIheCSH46qYBaB+pRWap/wZcvtGHSBIYWiJuIERoGzmb7v2hRetDTT6w5Hbg9nUNj51cBRS6Nh55pKBWvEHEDfl7gb3fAzf/CXSaCFz9HfD3k0C1H2FL2Ulg/WtAeYNKzCvFrRPDIyEh0QqYmtBg7lfsVLccD+h9u5o5w8r8nysYFdfq6QoVv5+C9XT1WbWVEY12v+IGRbwO9koLbAV6mj5RtTwTgp/Xtdr+mXxsRwT0W/Nh2FmI0OtIMhKL6nXZsOUGrqSm4gkJCYl/NTe/eC1evuY9n00p5IZ56zHv6QX434KHMOTC/n7XW13m/1hT11BvIK6hpDnehwW2PMNzsZox2wJqKHJ1gAOsPROh2pXh+pwIHFh/mN7duGg7jY98fvFjNO44W8O5iRvqYVkYh7WHfOFeF88C0sDvLdlAdaIExiHJbm56ziiPFiHkZtdtrvjGaSzhBUuHSFi6eR43FpbX4IVvV+HL2Q3CgS2/7fQpciEQ8cKpvZn1E8fHdpykRfy31jxP4zWf+vFBzHn0W69uinVkHMjCz2/8hoyDDjdCX2Qezva7jISExJmh3Oq/iTEmqBp6Xonj5SEIV1eBZTxfR56qjIAIBjaBR7o+j/T3UASRhdHunjCjUtiowKFUr0W41t2socymozfeToQEOmiV5VCzFjdxg8s6OTvMIg+76Nl5T8XaIAoMLOCwoeAtsMJGF1+Z21OBtMo4LMweiEqLf+Gf1ct2HDC0qZ/sb2ORg4XncLwyGixEDHCYyXqka3B/RCnjUWIpQ44xF3p7JVYUfA+7UO0QjIgszIIcA2NZnCiPwuqyDrg0+oTXPSq0aZBrazj/KFm7R3FDHUGMu7ihDpbhkV71LdYWb8RNKffDaGfwW95fyDaRYzwDA6+it8YQIUYd5HflbCOIDL21dB1tASm4N6Xo/u233+KWW26p/9mfQFFCoq0hDf2zrh2GVz762/MCNjsK1h5AEWmSnLcec//3E55b9Cj6T/SQgtqImgAc0chEJ8FU03CO4SqMUG86BkElh6iUUVEDY/V8LCKHRzom8ZBI4ILYuFm/K9RrD4OrdJ0MJn+T+9Y45gs2LNxGm3ie+eVhhMeGorzQ+7U2EX4bJnVrcAivxUKSXerEDY13SSWHYUwqQpb4NnUizqjOkHFASyDjy/du/xyvr3C4qRE2/LINp/3M9NmignB8ezq4ShMdk6RtP4GV367HGyufxdhrR8BmsePLx753afr1BBnLLP5gGdIPZvndV2lMIiFx7kAaRjzBByth6hELe4SGHqtV6WUQM8ocJSanY6+gU8E+pBtNN6jDauNxqlQPDO0G+T9HwdVYoD5UAMVpDpXTgwC595oNV24DW+1emyfuq6QxUgjTuYsbnBCSoyHklYE76rs+Qkyf3rzxYxzclNak6za22gh2f0Pdi7zSessQ39viGJDLcDosca7RcQwqiGDER+1uzOBOiIsOoQIMUgsrMVjw2dLdqCENSCS5iBfB2kQwo3qCO5QJ1akymLtGed9/q2N5l8cy8r16hfo8R/ICfnp1MU1heGbhIzBWGfHDy7/iSJmepix5giuschEiknPM2eZcHpNISJzvcByHG567Gh/c+YXXZbKP5tIbSYEjTtYvLHkMvUd397vuQFya6+dJ/CSknSnIuYcYLdUlKBEjqCd/uB9B4bqA3LpJA78zpAm2JeIGT2OSFXNbNiYhjaUkce6FJY/XP7bmh00odhK3eTun1LlykzHJka3HsfqHjXht+dOYfPNY2tQ696kf/X7vBzem4c/PVyHzkP85kMxD/sctEhISZ4bGpnS+8CduqMNisgZ0LGgKRDRB1ttakGPfq9e9jwMbz24vaTUZu/lg3PQRiIgLQ96pAjrvXZxfgS8/+RsGrdoh+q40gtt7uoX5A94hIjqf4rbnf8FvH/yF5xY/horCSvzw0iLkNCEhSRqTBIZSqcSKFSswatQo5OY6rj9IQsO4ceOg1WoRERGB0tJSGI2uNdnu3btj9erV9PVtwTka0uKbvw8X4JnfD3sVNzTGaOXxwIJ9OFrgP0Y+JdJ/PNWOzHLkVxrx6KLWVyW1BofyqnDrd7sxY1DSWdm+SsZiai9HNOixwmo8ufggRu0ZiVGWD/CU7TZkCDHNW3HeHuDgImDzu8Cy2cDqhiJ+kyg6DKyovdjufilwB5lsD4CNbwJH//C/nMK/i66EhMQZQtaMpB1568YUCtYATuBt0BNhzTy74gZ/yGI1CLm4A0p/SEPhWztR9l0aKn49ecbEDYFCUiQqfjhGRRhRs3oCxMk8QBTJXpp5JSQk/hWQ4vSnD84LeHkSz0ucznKO+x9sJ6T6F2bvW3sQJYUVeOPTlWDJodPLRC1TY4L8pOeikeKUH5cessrGq2UY2BK8O9bVQaKjyfudeusEWDtH+96MVglbov911sGabdD+470wrTxejFC9DSOmDaI/k6L5O7M+w9bfGiISvWHp7vuz33MiF+vWHMBPry3BR/d+jXlP/4TmQNwmvnj0O3p/3HUj8NG21wJ6HWlK++evPX6X0+gCc+aVkJBoe1Ss/xoBy4qI0BmgVVuxtygBatb1mGgTWBwri0ZOTfPc6IxWJfIrPV+b2nkWJwpjoFM4RA2RPtIO6iApDd4gPTtEBNFBXQJW2OBxsNM9tACT446g1KRFjZ/xkt7u+3mSVlBpV+N0TSgKjToUGXU4WRWB/aUJVPRBXn+0Iha84H4dH6fqiAtib8A7xz/Gw/ufwgcnPsSy/I/AogIKloecFWhaQ6jMBBVnQ+fwEiytSEWVl30idcq/qlPrf+ZFxuN265AxPHSsbxe/EM4EBjX49vSbEFGBJ7o+AI7xJfoAaqwN4+Ceoa5OsBISEv8uVn+/EXNnfAD5nlNAo8lXptIAxbZjYJ0cNIk73POXv0UbKP2RkOqo7/uCJAGU5JTivTvmeLxm56pMXsUNdcgz/Y1JPIxzZCxsXeP97t+hzUfx2owPaXpa/eo4FvaYYNhjQ2gaA8HSPc5N3ECX9TN7xodrYYvxnJpAIE1MQy5yCNyP707Hmzd/jB3LHSl3LWHPqoNYv+kI5i7bgTe/+hvffL4CfJj/embjZciYjTQQEUiaw7sbXgxo+3Me+Rb71vo3nlJLYxIJiXMGXZj7mMTUIwblM/rD1C8BtuQwWFMjUX1BF1Re1RuCUoYQp2ZIvkuSi7jBBZUCfGrDMZmr4aHdXuV7f9aU1SfzOFOXHMEn+k4HoMsM6AK+RweIMt/Xxgc2HmmWKJWcI+wdYmDtkwJbr2TAz3YIjMXi3YCEPO6hsaFHxxjcfnF//O+i13Bz6v14evoHeGPhNlTzdpqqSoQTgoKFXcNCUHDge7WH5mARGLOXMZkogjMD5ggZSLAfETuyR7PAFnhvGAoEcg3x1AWv0EbbV/98EtpNx8HlNUofFESa3ECEjs50G9a5RduWkJA4t1n+9Vp8+8yCgJcnTf7PXvIGSvP8mxQmdPI/Jtm5fC8KTxfj43u/xrkIuW5+59bPMeH6UWdl+0TsPWByH3r/6I6TeOPGj7BvrcOoqiVs/3MPti7diR9fWYwP7/6K/t8cDm06iu+ec6REXHjbBLyxKrAesI/u/QqHt7qebzyhDjDBUEJCou3RBVC3aAxJwznTtIWhzdkWN/ij1+huNPnuiQtexi1dHsSz0z/Aewt3QJ8SCzEqBGJEMISOcbCN7QU+3rsQva0hqXOPT3iRJgK9tPSJJr22uzQmCZiUlBTs2bMHF110kcvjBoMB2dnZLuIGar4zaxY2b96MqCjvIvz/XILDxhMluOfHvQGLG+qw8gLmbc3EW1c5Lt68MSI1AnM2pvtcpqTGglnf7q5Pcgg00eCWEe3xyfqTMNva3tH5SH415NzZcRJ4YGInhKjlWHawAA/9so8mQgCkEBaMBfx4HBWS8Lvy+eatfMltrbOTh5cAE18AQhIBTQQQFAfUBODIbvfuYlhPzytaZRclJCRagcjugKG4aa+J6wdEdAYqMoGsjYEnO3jAWhMEu9G/K6loOfuummccASj7MQ18SQDH1XOAqj/SoWwXDN2IBOg3BuaUoRvuf7JdQkLi/GTbH7vw+vUfNrnIQSYBf/94Be7/xPc1bd9xPelyvijJLcf/7vkKeoalbgmsDRBkYoNFtSiCGIDLCmvA1Lr+kGL25Q9eRF0OSEKCMq0Atg6REII8CAKJsZxAjeLcn9IqIBK3Bj+DMuIKSrYjdPbfkCs0JUmCvF+DDVy5CXyYun4nGYMVmgN5UB0swM3vz6QNNWvmb6LRxnWT5P6wR/gvsL1wzxdQ+hOHBMDqHzZh1uszEBYdioj4MFqoqyqtCej3yB9jrh3e4v2TkJBoHdpphqCiaqnX54l4ocLqmGxTyASaxhDDXYUp7SNxovoEPk7bjnxDMPhGXZZWnoNS7nscQdIbQpRGxOpqwDAiSqvUYDlAo7TRftFKgwal1ToIAgORcRQlOdb/2MRbwoQz8QrfqTQDwrOwrrArdhclY3h8BpSc+3arbCpYBBlYCBDowd5bnYuBwa5AmVkHG+3icaXYHISSAg0iZCaEqkywCyxyq8MQo+qAHNPnKLI4xozRyhrIPHRakV4kLWul34EoBx7NmIT7E3aij7ZhrJljCcL80h7I5YMQqjBRgQRZ3tepUgbeVwBT/bZljABe5PBr7ld4tEsnjIkci3Ulnt32aqwKmPkGJ/Srk4fhbEO+uxa7pbaZN5SExPnLxoXb8NbMT+h9cuRj88ogRAYDCjkYgxlspWfBmtlgwR+frsSd79zkc/29xnTHsq/W+FymMLMEz1/xNl1noJDr3isevIgKd8k1uiItH7bkCM/JcrVjGk9HAHtiOJXQ+Ts6HNhwBDUVeof7dq9EWDvHAcraaTE7D3lmKWztwjy/OIBDDx+mgbzI8zX8rFdnQKFS0KavD+/6AkJTJ7U8IKhk0I/vgtk/rGp4sEcMiekG6+WzqqNuXOjMiq/X4pZXroMuVIfY9tHQhmhoE6s/rAG4GY6VxiQSEucMAy/og5Xz1tf/bIsNgn50B4/N+PYoHWomdMLMQb3QaUAHHNqZjvm7fCclCHHhENOywQiOcULYd/mwpqhhS3avN6kO1iDkd881lXqn1LqoOl+Q4VF0GAS1Auye42BasRHJnhAOW78OLqIGkqJAxAZeEUWIahU9b3lFb4I8uwxCiAaMjYcspwyq7DI8s2AbirIcn4llVFcq5HODYcArSa2OBRsSgrDFh1F1SXfwwQ1JfoxdhMwEaoQiyBgYo2VgLIDcqIWqogpsE/oavEFqbHPTPsCU6SOpEzsfrAIfHULfv6yQbMP9mmDafVNxtpHGJBISbSe4ft+D2DkQM6i/5qzGzJev87lcjxFdaTKAL3JPFNCUbRtJvQmQqKQIXP7Ahfjq8flnJJlx14p9KOqeiLPBra9fD5lchqWf/o1PH/im1d4vGcu9cPnbrbKuPz7/Gze9eDXUWjUV2qs0SpiN/seY0phEQuL8ov+k3tj4y7Ymvebq2ZchuVsCDm48gl/f+wtngkDmYP9tkCb1/019FaV55bR+Zh/YiUwiuS/IsuD7tAdbbQDjZKhyJiHnsTdu+BDfnfwY46ePxLoFWwJ6f5fdOwVnm/NpTBIdHY2//voLO3fuxPz587Fp0ybk5OSgpqaGpjgkJiZi0qRJuO6669C7t/+k4P+cwOHZJiQ3NGbTiVK/y3y3zXeRpo5jhf4bT+p4cmoXzBrRAQoZC73FhjkbG2It25KDub4dMlqbYJUMj03pihuHtkOp3oKHF+6vFTe4ki4mwCQqoGZaL9KnyYg88PMMYMobQOkJIHFQYOkM/iBCiXiHK5OEhMQZxmoAcv8BCvcBVqNDvBTcDLfKyiyg7CRgCDwirTEip0bZ/r4wF3mZIG1Mo8jnswGjYCFa216AV4e92P9k6bmGfmsezKd8N2rVETQ+CeruZ0+9LOGdI0eOYMCAAbBYLBgzZgw2bCDOwhISTeOT++c2uxC8e9UBv8v88dnfAa3rJInzrHVWJf2YnI2cTogyoVagQJ7QOiaT735/Ji695wJazC7PL8dvH68Aa7FDt+IITINTqFsfKUy4iBu8vUUyAc6xpIrtfx/3ZIBN0oFX+56cZo2Bjw2Mg9vB3DvB8Tre6RQqlyNEo8Z9X91FkyNKcsvw7q2fBSxuIDB2od7J1fsyrSNMJJGaZBJg1mszkHeiAN2Hd8H2P3a3eL3RyZHo1L99q+yjhIRE06ixVWFz6SrsKd8KI69HtDIe4WxXmG0cIlUG6thPIE34JkFB0wcKTMEIUVjoc6Q4aebkKLQdxA9ZJSgwFyApDAjVGJBXE4pyU4MIy2SVQ6u01uvaGhMqV6N7QhF0SlenziqTCtuz28NgVVDRQ10rJAOGnkOsAjlem3y+z8ZiC2eE2jXpON8TkUTQkKipQLo+GhtyOiEluBydQk2wwwi7yFLBgpqzIVldTkUHpBZo4JWotKlhE13LmeSUHKEmBXUzzHYO5SaN+zLgcLomHJayhgYgTn4KWovDdVTB2KH0Ie6gyRSsDVq5FccN0XgxdxTiFTWIkRtQwyuRbglFO20FYtQNUc9EmMAQZbcXbCJH35e375B+niJDl3O8BwGbSlZgWX4OzIIKWpkVCs6xfrvgEHkYbfLab5LBHamTMCSyk/eVS0hInNd8+uA3Lj/T8UCJ/wRrwu5V+3EnfAsc/prj1EDvA5KWFigPfn4Hpt46HpyMQ05WMX7bsB+CRg4uIx9iWAj4+DA3wbbXMQkZj5BlA5gsyjiQBcug9rB1apTWJuNg6xQDkW1+Uc5TQkVodDDuePsmTLpxDPLTC/Hh3V+2iriBrKFmcjfwUR4cDDkWAivSplaPpxWLHbJ89/kiIkh/8cp3cf0zVyL/VCEdk5AGrJYS3zEWKT3PTsK4hMR/nfJyPZYs3Yt169OgN1iQnBSBju1iwAdrILSPhhARBGOcynvSAJlqSQ7FvgMZWPvjZuQUVwPDuvveKMc5knDM1voUh9hnT4Gb0R5lAzUwyHjIiq3QrSuHbkMFFQsQ6L9EdMaLLrUWxhSAcK7uMjtICzE6DExRyxIK6lAkRcDUr6PbRbrMLMKm9f6ZsTaRCs18EqSG/Giey3H6WHHDsZmP0EH05TRNRA5yBmyoDrJTeZCbWXACEV7U1vHIR0hdUOpfAFElh7VbHGztI6FbeQRcpe+xnj9Ije33D5dhyxJHSipXbaY3z7vL4Pa3bkSvUd1atE0JCYlzE0EQ8Pkj3zb79WRM4k/gsNyP4LqOk3sD77+aPe9eTLxhFDiOQ/r+0/RcdybITgvMPK+1CI8Lw13v3kzTo7PScvDZg60nbmhtrCYbXrn2fVz96KV0TNJjeBfsWXOwxeslTdGJnSUzQgmJswFJ6fntoxXUnMNYbURKr2TEN67JBMDedYew7MvVKMhofu9WeFwoDJXGBjH1eYBap4LpDAoIDjolTJC0BjHIh4kvETm0i4HsSJZjebUS0KqpiQiqarzX8VoRu43Hkg+WYfuf/ufUyZjkng9vQZdBDcnbEoEzePBgejvbnFcCh9/25SK7vPkNkbyfC7biGjPWHWui07cf+iSG4K4xjj+SX/fkYv4/jj/wxqRG63Dv2I54dNGBZgs4GtNa6wkUk43HlB6OE9Ivu3JgtXuu5NRAg6X8cFwnO8sNhQUHgHnNdI1QhQJmUnRq9CGTFIivxgE3/wVESgdHCYkzBvl73PMFYHKKxK3OddyaSnVOy/ZFGYKKzJEwF4kBCwtYnRx8eeBud60BF6YEo+QgC1NBOygWpmNlMO5s/sDgvIQ4LnkQ4nnDuL/E78lVFq1G2FWdoUxuiPCWOHew2Wy44YYbqLhBQqK5/DlnFUpy/Mcne8Nfsz1xbAs4IthDMw2dJHU+VNl4OpFIXFIJpBC08tsNLsIC7YYTENRytBveGdc+eTme/26tT90dU2OmTnOBojhZAtMQ78kIjMkKeW5gAjJ7pK5e3FD/+ro7LIOKfgkYft2I+vdKihxNQXG6DJZuPopsVnvA+xoIJOVi9rgXmvXaoHAddaNt/GUVZ5fi3kFP4p31LyCufUzr7KiEhIRfyiwl+Ojki6i0NZwjThtPopQ7hHh1jUt/jIwToGRtyDRGQGA4qDh77TMiVEoTiu0HAbvT37vSiq7KYmRWhKNAH+JYUmRRaVAjVGtya5CPVYVhaKQe+Wb3Jp8QtRmjO5zCnpJEmuZAUEKNUHkkKmwlKLNpEaOo9pksQBMCPDwvNFG93T44GDIuCsnaCFyd0g/by3dhVdEuRCoNSFRXOn0ujv6iIJkFGs6KAnMIrLUCBlLqcxZcqGQ8YnV6FBiCYHdKcyDvR6exwmqT0c+OpFAkhVTQ74HssdqPIKNOsEDemVJmpesrsAXRGyFMYUSown3SgQgNyASyp8+TBwejEAId592gpNyupUKYOnaUbYbBHg67KIeFd4gZyK0u4YJsp1tINB7rdg26kdTScwAi0mixM1ELXy8h8W9j0Tt/oKKoqs3GJLkn8nF4y7GA1iUGOAlBnPouvnMSvf/Tpn1YpLbANKGhfs6Y7dBuP41ucVG46rFL8eLXa3w237JVRr+JcnWQxDpbqo/rYi/bIc2itRozz1h5KHLcz7Uk0WLENMfk37IvVjdJcO0LW0KoZ3FDHQxJZBI9TiYrj+SB8bIf+9cfprfmEBwZhGoPKXRE2HHf4KfomCQ6KbJZ65aQkGg6uXnleOjRBSgrbxDdHknLwyEOEMb0qD/e8Trfxg5kuZ3Hc6A+WQRGpXBcdPsaIJDkBpvTAAZAQnwU1LvtEOceQuNcT3JpZ+sc5xCZ6RzGHMF2nibUFVRUU9EWp2Mg15NrXQ+IRNDVcLATY8KBZgoc4jrGQKlRIKlzPC68fRL+OJiNdduOuy0nM4rg5SIEhfseEcGGokZwiO98YXf12xTlLEw9Y2HuGg1BpwBjFcCJoCkM3hqDaIqEKEJQyalQj4oqag/v9CVeviYidDAO74ig5e7HewURQTTBqXb53HV+ndI79e+AR766C6n9zg0DDmlMIiHR+sx/6VfUOJ1vmoq/a+T0A6epeVJrjkmGXToQF9w8lt5f9O6f2PLbTq/HsGkPTMXbMz/F+YrFaKHvl0DSMlpDcN2W7Fy+j96aQ0hUMKo8iP2zj+bh/qFP4d0NLyI8NkBTSgkJiRZDRFWzx7+ISich76FNR+mtqewNwDTQF4ld4sFyLMoLApvXDY4IgkzOobyw9eaBAyG+YwwUGiXadUvARXdMwm8fLW8VQ7zmIIT7qDvVIobpIJJxYqdkINRpeasNYnYhmAL/BvSNUaoVTRKhkH4Nf2OYbkM74aE5d6JD73Y4F5DGJM3Hz0j73OLbrYGlK3hjaAffTspFVZYmiQL8Ta0lhavx9c2D6P21R4vw2K8HoLd4brB5YEInXN4/EZf0aT0FaYS2wZXuTEDSGhbtcTQGp+X7dot63T4DecJ57GytIA1aXn5ZiMjhtzvP9B5JSPy3ObbUVdxwpghPBbpcAkT3BKJ7Ad2uhDX5DhjTAj+ZkNSEMy1uIPAVFrpdeZwWqm7hsJw4sxfpZxtWI0PEDd3BhbvHZHslgIsEVi2XxA3nMC+88AL2799/tndD4jwn0HQFb/QhE8o+KMkpDdhJh8vzL7RI0Srx/OLZ9P6mX7fjg7u+pBHQbusy2zHrnqm4YEIfjB3oW6irOFGIQAmK0EF5vAhcqZfJDlGEemdWwM1Jlq6+G/YtNh7LtqfVT4I0FdWhfCpi8Ib6UD5NeTgX0ASrvQ5JiMjhnVmfneldkpD4T/Nzzpcu4gYCx/CIkruKG+ogj7XTVIB1cfgXwfqwuGkXWg45sWauxcbL0FvXH/d1uhSjo3piXHQf/K/7tXip1yXIN6d7XY9GbkOczlG3UbB2hGuKUGgup31LFkGOQqt3sW6pVYsSexBMvJwuT/aW3EirjlhbZiRtSHreQ4SxE3aRQZ6tAlYuHwNjwjAqJhW7KkgjEUOTEpzFDc5wjIhIhZ5u25F+INKkBzVnhYqz0iQMIl4I8SA2oCkMSjs4RkD/xGzoaHKGQJcPpH2evEOjXQ4ZK9LtOxOhNHh9FQ/WbXmCThaKCfGvQiOL9vhKiyBDgS3U5TGbaEekykjfQ91n7RBANLyDCJX6nBE3SEhItA3LvlrdpmMSci3ZmhAn/2d/eYTeX7b7KN5cvAEmq+skpKiSwTCuA2a+fyOmTOyLYX1SfK5Tfipwkw5l33Y+G3NrD6nuj5OpHB9jM/XBPDA2waPAYd1PW+j9U/sDT7jwh61d4xZhD/CN5p9sPJT7c6A6nI+2QBfqXchOHBY/uPOLNtmuhISEZ956d4WLuKFOTECb8n0JFDxRe/xjzFYwZb7nfMeO6oo737gBI68YgrHXDseTPzyAez6YSRN03FZLjpPDOsHar129uMGuAPKSZMhIUMHUMxqmbpHQJ3KoTuHgpFl2SUtwGTbJ/Ag2fFCQXoTSnHJ0HpiKgZP7YIeX4zb59JRVAuR6AazZ7kga4kXIDQLUZTxNVfV1zqC76WSYIig4VF7eE4bhKeDDNRAVMipysAWxMIcRwZr39bDFlWBJ7apxLc3PV0xEcvZwVzfWiPgwWjcMj3Udd/jCn7ihbr3nirhBQkKibfh73roWvb73GR6TpPZvjye+v5/eX/71Wnz52PdUBNAY0gh7+1s3YPJNY9F7rO99bArqoCbMR7cChiojNi3a3upjknORoDDvY5LcEwX46J6vzuj+SEj813nz5k9cxA1niok3jsatr19PxyTjpo/A0wsewqxXpjcpQae6rOaMixsI+elFKMsrR7chndFvfC/s/tu1n0UkSW7RIbAnRkDwUYdpDZhA0356d3IVNxAUciA1CWJ804wuopMj8dyvjyI0KnAT2UAE2pGJEeeMuEHiP5LgUG224UBu8w+AZOL4lhHei+I2XsDenKY1x47rGoV1x0q8Pv/SpT0QFeSY0P143SmfdY1P1p3EpX3i8dKlPXGiSI+jBe7FohEdIzCkQwRNmTBa7EgvNYD30ggUE6xEv6RQ/H3kzLpxny51TOiq5L6LSVXQYU6HT/By6gngwM8OUUBwPKAvBowtHKxEdAJ6XQ1sfIPItdEmEDcSX+TtBvL3A/F922b7EhISDZgrgdLAXOVaFZkK6HwRoIsFkobXP2xa2TIx3plEtPKoWZcDkbgdndvGDS1G3TfKUfAXAWWHEGj6R4NVyqBI1KHy70yY9rRSgtM57oDxX+aff/7Bm2++ebZ3Q+I8p6KoEqcPNz/phxTHifOPN2xWG47uPBnw+jiDBYM6x2HXiQLP26sy4uFnr0RIpKMg8OOri72ui4gqfnp1MUZePgRPzJyI0wUVyPQgoBjWIxn9OiZi1/K9sBityD6W59VtKTYlisYA71yxH7q/02Aa2A7W1Mj6iWdGb4FmVxYUmYEnYvAh/icCcoodxSeVxndzLWH4ZYPQZVBHrJm/GZVFlYhKikDBrlwU9IqFEOy0LTsP1eECqPYFVghL7p6IcdcOx/cvLgrYQaqp+CvekEhR4pTSrntSm2xfQkKigWJzAU7UuDthBnNmn31EpLk+XG5AaW0KgC9xg+N5IFqrR16No/kkVKHG7B6T0CEoEtckj6pf7o/87/1+PeFKI0pMOkSqjXS7RJxAejTlLI8CSygVOkQrqqGhnTqAiZehzKZDFe9oiKmyq2HjWGhl7sciOWNHhV0LnY9UhCJrCBK1lThWpcTcjFWwCwKE2hpOlNK3AyARPziECa7JCOSuguPBCQJEOVBmJvvq+gVolBb0jc2BTu5IYaiDONn5NaYFg2qb0mNKhTdBhrPIYVDoaNhF8pmISNX1Rr+w0VCwKsSp52JP6ec4XfM3FS7wIoMyuw6FthDYa5Mq6rDwMvq+dTILqmxqj1vzViuUkJD4d0AS3/JOBi44bgxxorvsvilen7earTi642STxjg9R3TBQW9OfAzw8Jd31TfCf7lyh9d1kaPXV6t2YmT39vjfXVNw78sLkV3gPmczqm8KuqXGY8+qA1RMQMYk3q65EzvHQTe0E8p9iMPJ6ZeMTQSd6/iBHO25aiuJgwQfqWt43GKH6mAe1AfyXPefaVhf3knHGE0ZwJhkzDXDkNIjGWt/3ESdR6OSo1CSXYKaClfxnOjPGZx8v4XVUB/OBx+iQfsu8ZgwpAt+WODZmbY1MFa7i+ed2b3yAE1ziO/oIyVPQkKiVcjILMGhw+41C0HmLm7gzCLsWl8XviIUOQ2NPdzxXNhDdR6FBKEhGtw5ayzi48gY5ZL6x701E/IJYeCTGwzwBBYwRTKOwU7jZVUMauIZhOTUHuN5kYob2EapzIzBXdzcFPSVBsx96kd6LvHlcE32UG4SoTBawSjdTQZJqoQg9/K52uyQH28QmxmGJsMe1XBucUaUM7DpAEWN6HEbbG4pTVaV5VbAnhyA+M2JiQ9eCP5QLhiGoYKOcdNH0vrZx/+8hi8fn4+NC7ehNRD8zaNLSEic1+Qcz2tRyrVcKcel91zg9XmLyYLjO081aYxDUhe8jWPIafCRL++CNlhDj08LXvM+T0LmOha8/httMH3iu/vw6NjnUZjpPoc86sohSOwcj92rDtB5khwyJvHSEEaaK8mxNu2fEziTNGVMMuH6kYjvGIe1P22myRwx7aKoYJkIJVpChz7taLrdDy8uQltRXea7jrj9zz0oyS1DVOJ5bMArIXGecGznyYDTd1oTIq695ZXpbgmS55MRHDn2znn0O3rfeUxiT46EjczzqhvGH0ylAYp9GWArW3aM9gRD5ti7+DZPInUxqFyF0y4kx0EsLPNqbjjl1vEwVBpoTXHQlH4Yd90IKFQKfLSdjEl+wJYl3muHTUOaJ/m3cN4IHGwBumSq5CzMjVxzyAXrK9N6on+y59ipKpMNN32zEwecijWBcCDHt+DivTUnMa5rDIqrzdjvZ91E1JBRokeHKB0W3z0MC3flYPHePJTpLUgM0+DaQUm4rG88ZBxL0x4I648X4575e2Gy8W7JDXNvHkRFEmda4KAnBzEAF/aKxeK9vpt/xg8bCHS5EBj5kOOB1c8DWz9o2Q5ctwDoeqHjvqkS2NEGJytWBljcY5fdKDwkCRwkJM4E+qIzfGHCABGdgU5THOKGRojniKtzU9BvzYOqazj4qjOfJHGmUHcJh7JzGMzHyiHaeNgKjVC2CwYXpEDE1V1gGRyHkq8OEivZlm1Idl6FY/1nMBqNuOmmm8A3djKUkGgigTiUeYtRJIP02XPvQWrf9l5dIZ6Y/DJO7QvcTYcUzLPmrgUXFwY+JbpholkUwRZUQLEvEz88/wv6bXiJFqM9Oec5c3JvJoqzSxCdHIW5z03HHxsPYcXWo6isMSEhJgTTxvTCxKFdwLEsbn7+GvqabUt34dXp77s12xPnt5eWPoHDW49TgQNxtSOurOC4+tO2qFXCMKIjdRVV5AY2FmOIS54fjLVxxCOvGIoNv/iemL38gQvRd1xPzPjflfTnzx6ah4yPliPkaD5siaHgQ9VgrTzkWeVga8c6/nhj1bMYMLE3vV+aV4FlX7bMYdcTcoUMNWX+xyTpB7IkgYOExBmgwOxZ/KZk/Z83tJylXuAQyLhGKSMJBAzGxHbC7J4TqbihMXbB//GKhQit3OoiqiBJABaBoY8VWYLojSRMkOYXu8jRBAPSgE/kECQ5wCawND3BuReJAw85I0AvqFFkC0a0rNpNNFBq0+G0JYq+LlJlQJ4xFD9nb8TgiA74p+wIlJz/azaS2GAlKgYPcKwIuUjejUhFCXWoZFaEqwwIUljdvicla6eNqd7avMinRN4H2WfST0U/NSdBBC+w4HzuN4NuwYPQUdcV6frdsAkWlJizkKDpQhMcRsU+j3jttfgy4yXwIN+fhwYvkaHJGfT9y2xeBQ6A/4nrM8m/KXp55syZ9CYhcT6MSRRqBayNxyQylrpqexPAEkH345NeapKomzQAZR7K9r6ACHz/wkK88fczSC8sw+li3yZT+zPzUVZjRGSYDnNfuR5L1x3Eyi1HUa03IzE2DNMm9ML4IV3AsgxueXk6fQ1pxnzzpo9ha5TEFpkQjhd/fwJbMwux68eNPrcrz60El1cOa5dY8KEa2jgqP10KxYkiOg6wR2ipwzZ9PLfSJdVN3zsC1SPiYUkOoicJ9YkKlEc4jtejrhyK7X/s9rntKx66GN2HdsYNz15FfyapBxke0uhkpXpYO3tO/alfpqSGihw+XjQbPUd0o48VHMvDmh82obVRqORUkOFvzJpxMEsSOEhInCGBg8e/Qw/laoVegF3jPdVBeaoUnL7hHMLWGCHbcRR85ySIxESDYcCxDIYPTcVd9eKGwM5Xto6uxzGbzrO4oQ5ey4EXzFCYGK/X6ky+dzPCpvDzG7+h58MXY9dBX+c1EiPneQ6ApcMBwU1UwlSboNyVDlbvEGKIMhaWLr6P53YVIK9pNCog9T6n6SfVgWzoY4MBReDtHmMvHYTud1yAHcv30e+INOSSpmBSC3zm54dx4e0T8L+pr4G3u45tBI0Clm6xsCWF0fdPklqVRwsgK9F7bV4+l/g3jUlOnjyJfv36wWBwCCEDTQKWkGhNAnFN9jYm4eQcddX2JoAtzSvD45NepsenQLHbeGQd9d6bRP5MfnhpEV76/Qk6/1J42vd5Y/+6wzBUG2mj7Ge738SyL1Zj3YItVBCX1DUBF98xiTqEk3rZrFdn0Nes/mEj3r31c7fjJxEKEFfqjQu3n3GBQ50YefSVQ6k43BdXz74MHfuk4KYXHPM+b838pElzVZ74dNcb6DygI72fdSSXJoy3NkqNgs6t+Ruznj6cLQkcJCTOAC0xCWwOROA2fNpg3P7mDW7ihjpjwfMNYlbYY3hnaiRiT4qArfY46owYqoVlRDcoNx6pH2O0Fmy1EUxJFcSoEM8L2OxgWT/X+nIZEBYMlDn6qunVqk7tGPcZzBg/fSSSuyVi14p99Joi53g+PQfFdYjB87/Oxs4Ve/HspW96NVgMFDlJlDiH+DeNSc40543AIVyrQFK4Gjnlvh1hGosb6i5Y92RVYsYQ99gRo9WO+xfsa7K4gVBmcL0Yb8yh3CpklhroxHMg1O27RiHDzBHt6c31eR4HcitoTaRHfDDGdYnGhsfG4qcd2diRWQYZy2JM5yhcPTARoRqFr3pQm7H8UCF+2H4a1w9phz5JoV4/137JoRjbOarhAYEH9v3Qso2HdwC6ODnijn/asU5rAGKEQCEH6cvnAKueAWy+lcBQtG0skISERC2yM9i8EdcPSJ0KKBtFbTmhSPL+XFvAKDmIlhY2bfMiZBEqT0ak/xrKfz0ONPqY5PFahF/XFfJoDRU7xD09FMWf7gdf6vtawyf/zevJc57Zs2fTwj9hxIgR2Lp169neJYnzlIj4cOoCUZbf0JTD6xSwdIqk0fJcpRnq9DI3cQOBDMKPbDuOSTeNcXvOpDfhpWvebVbBuKa0BorSGogkSSEqmMZUshUGsLXxyoc2HUVxTqnHffJE3XJatQLTpwygN2fMRguO7T8NhmXQqX97moAw7/hHtMhP3h8nYzHkogGYfPNY6tJqrC2sGIe1h62dB4ccOQfDhK4Q1x2HGBsGPo4UTBhwxdWQnygAV+7qWqpML4GtvQ+nHVHElheWYIUuiO5Dx74pSN/vOV2p1+huVNzgXOha9d2GBhdwIrrwILwgp0p7Qihs7SMhymVgq0208YmrMSOlZ1K9uIFw2xvXY838TR7jrpsLmSR+av4DeP+OOW6uro1Rac+tJlcJiX8rKtZzozkRAfjDuQE/kAvyy5MH4YphlyNS5dntk5Cs6Yhtfoz0auxKKD2mDrgWWYlMgHF6P0ToUIdF5FBkDkE7rR1WwXE8IskKdZTbg1DDqxHKGaFg7LCDpckP+daw+s8mRG5ClUwNEy+gnSYOO8qOwi6wkDl37njE92fLsYLLZytjeShlPMIUrtf6MoaH0tGJRPfJId1whXwjjnW5fldk2bqvq9KmRjTnvU5ERBHfZHyGSAWp6zW8tzh1J0xLmI1wZQI6BnXF8z2+wLsnnkGVzdWd3S4wVNBAkjbq3j3Zd+fvg25HYGCvFUFISEj8O4lJiaKR7ZU+GsvJ/EHjRiKCYBeQtv0ExlzTkERah7HGhBeueLtZk9H+rkn3rj6AypIqWGyBCYattcvpNEpcf/EgenPGYLPiaGkxba7tGR5L30+Xwal0TEJcW2UKGYZePICOvYhLa0lxFTmQ+jSlkKcXgyvTQ57neT5DVmagt8aUT2mHqjEJDQ9wDEzdwjGPKUL3I0cx9Zrh+OXN35GV5rnhauAFfai4oQ6TwUxdUz2hPFUM04BkiEov03p2Hsrjxeg8sGO9uIFw5zs3UeG3vZEApCUQUf8zvzyCV697n44RfaHW+U/hk5CQaDlajXuigLcRBglpU5UJMIezbuICRVYFgjaku62HrTGB3XMCInHdfvgS3PTEZTS9wRtdBnfC3/PWuz0uNKpT2AMoW9jtNVAKOo/CAuZ0AZgaIzTBar+pMv4g58LuoVrs8rEMm18BRimHGOZ5PEaGFsTkgzuVSyb26efGlbrOU/PBSogK9zQM1xUxEDkRTN2chiiCs4o0JajuG+UqTdCtOgLTwBTwsQ0NSM7ft8sIxmTDqyOehY1cIzgt1H1YZzw5/wHEtY9B/wm9sSD3C9wz6AmU1rqz2yN1MEzq5nL+Iamntg6RUO08DVWae7IsMXqRaH3sdjtuuOGGenGDhMTZIqFTHK39k4Z/b5D5A09jEt7G49iOk9TVvzGGKgOem/ZWk8QNdfg7B+z4aw9dv6d9agwRDpGGS20wEBSmw3VPXk5vLturMVEhb116xKQbx6DH8C50THJs1ykqBh5+2WBMvGEU1Do12vXw7YbdFvw5ZyWdAxl//SgsfOeP+kSHxpA5HtJYWgf5nFqa6NNzZNd6cQPh7vdvxtbfd7oJQFoCmft4ZuGjeP6yN/2uV6WVxiQSEmcCdZA3Q57W56pHLqbH5hAiwPZCl0GpWPfTljO2T+ogFUw15hYnOfQY0RUHiMChm2eDEopCBnvnOCj2tkyM5gnZ3lOwD+jkELc7Y7ZCtuckmG4dA1iJY7wjJERBbBcDqGsHfnYe/3tkPmxHMum4qQ5yviKmLESoMnhqf/x4+nPcO+gJlBc2vZ+7DtaLMF3i/OO8ETgQ9etNQ1Pw6nIvUcd+IGkC1w1OwqAUR1SjwWLH2yuPY9GeHBha2hjqgwqjFb0SQhCpU6DUye2iMUEqGdpHem6It/MCPlhzEvN3ZKHS6FCXaRQcfY3FJlDxx+X9EnDTsBSEaBomMQ/n+XbPaSte/DMNk3vE4tuZg/DQL/ux8YSrAnpslyh8cG1f+p3WY64CjM2PsQOnBC7/0tVtRKkDJr0ILHuk+euN7w/oYgC7GUjoDwyYCYQmA7m7gB1zvL9OoQNSJzZ/uxISEoETkgyoQgFz8y9sAqbdaJ/iBoK6RwS4YAV4EmHf1nAMoh/qD3ueHtYCA2rWZTdboGA5WYmg8UmoWXtmVdVnDA+nelu+gaY2xDzQnyY5cGoZomb2QOE7vp31fMFppWYil8/YIMJUAthNgEwNqKMAua/48zZg1apV+Pzzz+n9Cy64ANddd50kcJBoNpyMwyV3XYBvn/uZHm71I1Ng6h3nMhmsH5WC4DWnoDzt7kxKnPyn3jYBXQY6Bv7EBWjukz9i1fcbaIxxSyBOopyT8KJxMSSpSzx0oRrofcRVBkcEIYYkQXjAbrNj3jM/Y/lXa+onLkihRhOkpqKIsJhQTL5pDC65ezK0IQ3jmvR9p6nLm7Wjk7i5MSwD09gukDkZadhTImFPjoByVwbkTi6EJElBVlAFOxVCuKM8XgS2yoSP75tLC/Ov//0MXr/+Q+xbe6jhs2IYDL1kAB7/9j6X1xL3UX+Ry8RlzzC+G/gY56JOGKzd4hCcVoDHv7zHZXky0TPr1en4/OFv0VzIRDP5bqwWG7oN6YSL7phE3YZ2r9yP5V+v9fo6su3+TmILCQmJtiM1qBuCZCGosbsmfRp4JbSc7+N7ha3hmCnSCAHvF/TEs/SyhMk+xQ2EPqHD8FfBj9A32p+G7QBVFhXknH8HHJpc4PN5LR7p/BJyjEeRbzqNHWULXJ63iTKU2F0L4aQxnzxO77MC4rXVIGnFeeYDuDppDHaULUac2rtZBUmOsDZq7G8MSW9wRsGR5AvBLR2CJDfUvxfioEPrSg6pg4O6ewyMdjlsQu1+MzwilQYEy020FKW3KWATGMhZz98fJwoIU7rXvQpMJzH/9NO4reNH0MiCoZEFYWbK43ju8DOOfWPI++VgFcj7dRKeiAwUnADBzlARSp0IwmBVIlh+5iaSAkJkHL/bLVyHhIREg/vYhbdPxE+vLfH+J+OjNrTkw2U0Cr59z2T6c02Fno5JiONooE6sTYXsDxmTpKREQaOUw+gjhSIqWIuoEM/nOQtvx9v7NmBh+kHU2BxN9UGCDHFbqqFZkouI2FAqcr74rsl0nFJHxq50KPdkwjK4g0e3cvnRfCpuaCqWRJ2ruMEJQRTxzMo1GNexPU14e23GB1R87jwmGXnFYMz+5l6X15UXVMBs8CwYYGwCdGuPo2ZSVyoUd8EuQLfhJDQ0OfBul6dCo0Jw8wvXYO7/fkJLGpS0IRrqjttjWBdceMdERMSFYeSVQ3ymQxAxTu8x3Zu9XQkJicAZ0D8FwUEqVDdqqGHsIkTOw7HPLEJWwMNGkhzKKsHqLVCml0Je5Pt4yNl5XHfXRJ/iBsKE60fim//96CaCYyz2pk9hGC1gD+RBTIqBGBniOJZXGcDmFoMpraTH/O9OfYz9aw/j1P7TVFjWXNJ+24ErLx+CxRvT3M4ZTLkeiv0ZEOLCYfcicKDLGcyQHc3znjhhDawvgXx3RODACo7/qeS6Uk9rgHVwFUboVqdB0ClhTQqDaVA7ovauV7bQawKSPEcTH3Jg81B/JOLHxye+hDl736I1vbDoELzw62zcN+QpehluGNfZq7jOPKgdZEXVbiLAoNBzzATwXzImeemll7Bz586zvRsSElBplJgyazx+fe9Pr5+GSAo9XvjlraV0TJKQGkd/riqtxtdPzKdCX1uAKcpNRRBEWvtv1yOJig98jX1I6kJIpOd+AIvJgq8en0+Nkky15k7kOpl8JlazFZGJEbhg5jh6vax2aqo/067mBN4u4L3b51Dh2ltrnqPiZHLMr4Ok4o2+Zjge/dp1/FCcU9aisSERHT7y1V0uj0UmRGDG/66gSRrNpc/YHjSxgbyvXqO64cLbJtB5qeHTBmHzr/94fR1J9iNzLBISEm3P4Kl96bU5EYG1JURcds1jl/kUNxBIjei7535p8/0hBIXr8P2pj7Fz+T6c3JeJX9/1fo70x/Fd6Zj86CX4I6PY53J8QgTEvZmt7sHK2HnIdxyDEKaDEBNKheZMpQFsQTkYUYRoMgNBfq73TRYI7eMgdoh3fVzGwRIVBvTmwO47Wb/vpGZGxiSf73mTCgPJsZsYazwy5rlmvw8yT35O8S8Zk5wNzhuBA2HWyPbYn1OJZYc8K0v98cuuHCpwsNh53PzNTuzO8h2H3BokhWnACyJUjQvOjbhqQCLUXtwaHl54AH8eyHd5zGjl6Y1QabLh3dUnsGRfHn65Yyiigx0XysTB6GxgF0Qs3JWD+yd0wnezBuNkUQ22nCqlB6WRnSKRGh3kOe2AiBT4Zjqbktfpi9wfH3QroA4FNr4NlDRDHNNhDDDxBffHh94DHPjZe0P1sHsBle8TqYSERCvBsED7CcDRxW37kYamAOoI/7vDsYi4sTtK5x2GYGybIkw9IlD01i7I43XQDYtzFK6JI10zsBUYYK9o3fgyCunRkrMQrS2LD1O0D4Y1s/WFe0KNDfp/ChAyyZHyJItUQ5kaCsup5glmNH18NPD+RyDOJiX7gVO/C8jfQoqYrn+uCaOAjpexiOrrmNBvSyoqKjBr1ix6PzQ0FHPnzsXq1avbdJsS/36ufeIyHN99CqsLi2DqG+/+N6CSo2pqF4QtPgR5sbuD0d9z11KBA3G5fGLSS7RI0dZEJ0fSAj5xqfElcJh663govETIv3Lte9j6u6uHHXGhqHOi0FcYaMMMjWLe8CJtoiGQRAdrfIibI2BjSJ+qaGvURMsysAxqD66oCmztBCzp+w1aeRSGYe0doolaF1YyQa5MK4B6j2OiwGYhaQwbcfWjl+Ct1c8h81AW9q8/Qo87Ayb3RlIX90YkMhFBRCy+3H5MQzo0EjfUwjCo7hGPUhmDTo2euuLBi6hAgTShNcd9auAFfXHjc1e7PX717EuxYeE2r+5UpLhHJlYkJCTaHo6R4YLYK/Br7jyXx/W8EqGCEYrahIDGVNuV0PMq16QA0XHIJG31PVWFGKDJQ6jMRNdllk1EtDLU7/7IWQVmpjyKrzPegFlwPe6TBhe7yKJTSBlMdhldL18vFnDOMGCcEh1EL4dxBia7iJk7n0WqLhkXxo0GQ6UFgV/786LjOE7Wn2c+gTJrPgpMIQhXGN3ECHX7X2YlhWnf5xVHCoVjGZJBoZXJwKPx5KwIrl5Q4pzeQO67rz9K0RdAEbQyCzoHlbikTATLLeBFBmZeBqWTcMSRvKBCB02py3YVtVasRKhRYy/Fvoq/MSLqGvpYkiYBHbRdcEJ/yuv7s9QKLchemmxymnphpyIIYEq8JG6TkPi3c/2zV+HEnnTsXnnA5XF6RGMYOtnoi7/nrsPd78+kE7yzx7+AjANZbbvDjKOpRBAADSOD0e143MBVw3tB5sH1mZyL7tq4GBvyM1wer2HtqBmtQYgxBPqfcvEVaYz6cTPeWf8CdVutG5Mo0ovBGiywdot3uFyT5LsyPRTHCyA/7XyMDpzqwTE+nzfZ7Fiadgw39u+L9za8RBP7Dm5Ko2OOQVP6Ir5jrNtryD6TRiMyfvOEvKAKIUv2w9I1BrZEck3AUAG46mghuGozyOis2oNYg7gahkaH4Oc3f/fq3OqLoRcPxLWPX+b2+LWPT8OWJTu8ijKmP3UFFeVISEi0PQqFDNdPH4bPv3RNTaCXnXWDjEaQS2FVZgUU/zQ0OzpDLqmt7SNh7RwNQaugtZlRnRIRHu8wE/QFaUp5fvFjeO6yN10aioiJhSW6oa4iswBWP6ULZXYVTWlg0tzdSUl5mRhvXBNzO7oN7YSL7pxEaz+kRh0ofFQwbKmxECKDsRMiTq4+APnBLAjhOohBGsBmhyyvDGxBBf3M2JxSMHFhEKM9jM14HvID7k1GJNGAk3OwmW3g9FbICqphj/M+j8xZRMhsIomSg7OGum9iGI54MeQw909yTSuqGxIJIpR7c6gpiDcKM4uxct4GXPHQRfVutyS59UhpFURf6aAMA2uXWMi2udY3x00f6f01Es1i+/bteO2116RPT+KcYebL1+LUvgxac28q5Bj99zfrcetrM6iZ0qNjn/eaeNZakEQJcj1MGveJ87+vBn4imPbk+szzPJ655A3sX3fY5XEinKgzTiLCvjmPfkfFGm+vfZ4myhHIGOBsQPZr4y/bqCDlw62v4vjudBzZeozuz+AL+9H0Hk9Nui2BzFcQgXtjbnrhGoTHhWHh20tRkOH9nOSNkZcPwbT7p7o9Pv3Jy2lCh7fvdMbTV561z19C4r8GGQNc8/hl+PbZn9t0O0MuHkDnXQNpcH920aN48Yq3/aZPtvQcY6w24srIWeg+vAsV8bWEvWsOQldUCdQKAb1Cjm1knFdbQxJJPS06HAjWOSZSyquomL1uCoQcC8n4iZhXBAJboae3xvRMjcLhIh+GgQYTYLZATHGve9UTHgwxOgwgYgnqKmmi9ao18zfjkrsm00WImC2lRxJOH2meSHDc9BHNep3Eucd5lcVBGvbfvqo3tP5iG71QUOUooPy2N++MiBvkLEOTFr7YmIHcCu9qMJLA8PgFXT0+tyerwk3c4I3MUgOeW9owgBjVKdJfH1GbQfa7jk4xQbhlRHvMHNHes7iBwMocCQktYdHNwNwLgA1vADWFDY/3vBK49x9gzBNNX2f/m9wf4+2A3QJc9gkQ2UjpS+ypR80Gxj7VjDcgISHRbBIGAl0vA9rSqbLyNLDnC0eiix8USUGIeXgAgicmgw32HA3dFNggOZRdwqhQgBao647t5EJVBGx5elT8ehJcUMsmDEVzKyUacQyCJ7VD2FWdEDt7IGTRvt2cAsGaXdMqn6UnjAdclc9h01LBKJt+raFIDoKqu38RzL+ZihMiVs0SsPERAXmbXMUNBPJz7kbQ58lyZPm25N5770VenqOZ+KOPPkJCgmdnRQmJpiCTy/D4Tw9CGNYQ2esGx8LYz/PvW0muw73572/WnRFxg1wpp45EP76yGEU1RpgHpkB/YS/op/SCpVciBJXj3BEeF0oLzJ7Yv/6wm7jBG9lH81zSCkjjDjSBHL+9DFxYFraOrkV2hriTbk5H6ILd0P2dhqAVRxD6025o9uS4rCVt+/H6++17tcPlD1xIC+CexA0EuUaJ+JmDUHRTN+Tf0xvFM7rA2Cm03llQUMthS3Ec56kBHqkZsY4buU8ee+KpH/DQqGfo511Bik+1TLxhNL5J+4AW9poCmQAnkw+NsfE8bMEqPLToYcSnuhaIiKiBfJfTn3KNzZaQkGhbRkVNxuUJN0HNObvCMMgwRqLc4n49nGcMwbr8zrQxnYUAJWsDB5H+bLJxuCFsP64LP4hOqjJEyYxor6xAN24RSkuvgiC4C+gak6Ltgse6votJMVciSBZGhw6k2Z6kAQi1ogK1zE6FBCx4KFgb1JyNPkb+Jz87pxiEycPQJ6Q7FKwcckZO12HhSZICkQWIOKnPwocnf4Cc9VG0rh3C2GoFFQ6xhet1t1nQI0JtwImaaJRZNC4u5EQ8UGAOoaIQf/1KJlsw7kqdhOd6XonfxsxGvCaCiilI+oMvPK2XPEbEICXWo+gfbkfnoGIXcUMdRCyh4uzI0oci3xiMXGMIMvSR9Ht11OdEhHAGJCnKkKCooLckRTlCOCOOVm12WdetHW6GglV6T7CoFTOwjAiznQgcHD/3D0/B8KjGUruzi0BEMq1wk5CQaICIkp+a/yDktW7KxFHNNqgTrBcNctxG9QCfGOn1IyvJc4xJ/pqzqu3FDaQxVa0AJ5fhi9+3oarESB2pPREXHIRbJw32+NzG/HQ3cYMzVZOjYYtyjDsyDmbhy8d+qH9u8NR+9H9ZYRU0649C98sOetOuPNRscQPBFum/DnnwVMMkbGq/9lT8fNm9UzyKG+pS8lJ6OdI1PMGHa2Hpmwx7ahwYjQacWYC8WE/FDXU8NeUVPDz6Wfz8xm/UDbcOMq6Yd+xDOi5qCjKFDJNvHuP2OEmYI5P4xPE1tr1rEqBap6INa3WNshISEmeGa64ajDtuGwutU0M6uYriyk1gqt0bUIgDp3yXZ1GtyDIwXNAdxrGdYI8PgRCipmma6/U1uPf9xTBbbQE5LX91+D1anwiNcRhhyLJKwZY2pLXJDaSJ3/vFvazUCEW2I5mOHGv6TehF61wKlaJWyECmbXnaLEtcqd+e+SkikwKv0ZOak2VUNwhxYY50HLkMFWoFrINSwVYYoNx2DMpdp2hqal1jEBESyneeBJeWQ9MlKIIANr8c8i1HwZY53p9Kp8Ks167HY/PuxfzMzxCV0CAM0e7M8f6+RRGKqtrxRt1lsCiCO56LE0t30ubQxhgHt/OaskAGI0Ko/3PWxkXbXH4mKUOyRPdtNYaPcHVGHTC5D/qO64lzifN9TKLX63HDDTfQ5moJiXMFpVqJJ354gIq3mkNJruM6/PePV7S5uKGuZk5q7XOf+tGjILiOuI4x1DTJE9uW7nYTN3jj5J4MfOOUoDbkQseY5GxwbOfJ+vvEfKtuTOJJ3EAgTcPJ3Vo2n/rYhBfxyNjnqJihurzhvH/xnZPw7YmP6P9NHVNOuGGU2+MkNUOhVuDhL++iRl+NkyTuevfm+kZZCQmJM8P1T1+JmS9d55KsGTBEXEZMEjyIzJzZ+ttO/O+i12hdwh8DJ/fB10fep6YN3tJ5mkJi5zg6zqFjErWcCgZIahFJlyFmFYe3HMM7t3yGyET/onBfVBMhmJ9JEJIcx9SJG4K1wKAeQGoSQIQDMeFAt/bQjhuA2z64BY9/ex/mn/6Miv1ayolluxAu93JtbLcDJ7IgxoZ7/R7r59h7tQc/tAf4YT3Aj+wFISkamxqNSR779l7a69BUhl4yAN2HdcG5xPk+JjmbnFcJDgSS4GAIMLqxMTFBDle8X/e0/QUywSaIuO7L7ThdZvR9UDJZobfYPSY4LN7btH1dfbQIRdVmxASraJLD2C6RWHes+UX65pJd4fs9u2AzAwuuA7K3t2yjgh3I+cdx2/4pMH0BkOLkEJG2tGnr6z4NCO/gtH4e2PIesPNrQF8roIhIBYbfD4QkAcogoMtUQO2/2CMhIdEGJA4F4gYAZceB48sASzMc+BkOCIoDqr0ce6vzyNUa0P1Kv6vighTQjUpAzeamOzU3RtkhFKGXdgSr4lDwxk4INZ4dUfkKi0O62LKwhJbDi9DvKEDcYwPByDloekWhKlff4nUK1e7xya2BUOW6XpLiEDQqAdVrsgNbAQuoe0Yi7PJOdGL3v0rRbhFbnxXABxgEUn0aWP+ggBEvs4gZ2Pqf28KFC7FgwQJ6//LLL8eNN97Y6tuQ+O+yNzMfZj8TSpaOnidTI2onIUmEsafJYzE8yOG6Wm0EE0Bhxh8kyeCxCS/hpN4Iw0V9HGk/dfsYqYOlaxxt8iEJDMTxjkwQN2bV9+776gsSB0wcYUmKQ3RyFPr3aoet9U2yXvDxtBDqWSjHWuxQ5Ho/3+edchI9+8Fks+H2Rb9jRwfy+Ti+I2uiDsaeEdDuK0bkr6fARwXRYgwtvJChG9No90kDbIQGR1YcwpGtx2lE96vLnqovoJDJ9i2LvUcle2LC9aMQldjwu2TnBcz9ewcWbT6IshrHmKv9jQNxWUIsEg0CtKEaDL90ILQh51jspoTEf4Sx0VMxPHI80qr248PjS5FjMKHa5ijkRyj0iFHV0ONFvikElVYN5LAhQVZe3zBPEgDyTDEYHRKCrgrP8cM26x5UV7+C0NDX/e5PiDwcIyMvxMqCFbCJnkuApCk/WG6GVWwoEpOivIwRIGctjshckn4T3hEzkqfTdIhZO5+GtVEyRB2HquzoGuQ9xcEskO04GpHIfU9JCWTbOoUVaVVxCJKbEaIwU3GCWZBBVZvqQIQR8toUhMYQIUd2jRKLrHvxx7gHIWdlGB3VB6cNBaiyqhGpqhOIMLCLDGQuKQ6O43V9HxH5zEW2thZvhiAaIXe2UPXweWplVpRZG9zuOMbxWUTK9AjizG7vNVxmgEV0bSyLV8dhbNQk/JG/HArWUbYmqRQkucEhbnDsYd2eyBgWk+J64X89LwVLYtMkJCT+9RzYcAQ2ix18XDjs/Tq6OHOLIVrY+3aAEKqF/LC7gCEi1teYhIVIkg/omMQAxtrydFKL0Yonpr6KXR1D6dFLZgIEmQhySiCaO3KYZG2AwWqE1cZD7sFdc3GGn0YilkHNiHCE/+4YA6xfsAV3vXsTvS5O7ByPLoNTcXyn41jrmPxtueECZ/L/2RTszwE868jdIA7nT0191avoxBYfCtPoLi5jOiFCB/PwTnSsot7pcDa3We10Qp3cFr37J17/+2l0HtDRsbwg0MSFpkCEEWExDS7lNqsN81/6Fcu/WoPKEoeAIqVnEq59Yhod7xLH1+GXDWpeM4OEhESLmX7NEEy7pB/+2ZGOTx75DlWZRWCqHLV5kkggkLqTIIItrgSr91zIlavkiL15JA6S+VsP7Dmei89/24aHr3UXPzUmOimSCqt+fffP+mOwesMxWPolw94uEiw4qMtFmEj/T6PaOmsVoS7nIGqUYIwW9J/QC3e8fSNtUL0u8U7a1OiJkuxSR6ORn0O9oFXC1tuR7OwGy8A6oAO44iqP50IicpClF4BLL3CYUvGiW4KSWW/GynnrMDftfXAch9FXD6fiM4Iitwra/UUw9o6BKGt430QEqKwUILPUrstiA3u6GFxOCRiTlWYglRe4mjgSQw57gu+kP2tKBDTbMqhpiDdyT7gm/HTo3Q4X3zoeP232cw6uTUKVyTmMmzESD3x6u+/lJZrMAw88gIwMh9AzMjISpaVnvvdDQsITpNmfD9AFujERceFexyRtgUlvpkLgw1sbTJE8UVOmp8I5T47/q5s4T7Lmh0247c0boNaqqAFTSs9knD4c4NxzK0JMqQKFJGo8ecHLTXqNJ0iawqFNR+mNzJO8sfJZel4hCLyArb/vbNL6Lr3ngvqEPsf6rfj+hYVY/vXa+rSIjn1TMOGG0QiLDqFNzMMuHUjd5CUkJM481z9zJS5/8EL889dufHLfN6jxkALgglIBJMUC4SGOpnhegNJkRLsgGU44mdk5s3f1Qfz48q+45ZXpfvcnpl0ULr13Cq2RtAgGGDCpD2a9NoMey6Yn3ul1zFGaW96iTZEUUrakGoIPQQKX6ZhDEuUyoEcHQOY+B2SwCVi9Nw9fzbuNCsRHXzUMSz5c1qJ9s5msKF+3F4iLdNw0KvqdoaQCyC0GQ9IbiMDBA4702dpJKHKrQ62E0DUZp82uY1BSzyKmG8u+XBPQvskVMky6aQzu/WhWi96jxLnFeTfjZSF/EM3kqoGJ9P+imgA771qBQ3nVqDH7LnSTWkJGieeDeZm+aRE5vCDiZFHDuj67fqBzvfuMYWqKCGXdy0CGa2Rqi7FUAz/PACy1amBShCs51rR1dBjr+vOSO4B1rzSIGwhlp4BtHwPGcqDvDEncICFxtuHkQHRPoNOU5r1e5B0iBl8U7gdsgYm4zMcqIFpa7qhiOlCCwjd3ompNNoQa382u8jidx/QBNkRxRs/6RIxg3F9C72sHxYAL9ZMzfRYRbQKsOY7zhflkBUq+PhSQuEHVMwLh07sg9vHBiJjRDaz6vNONthokiaEp4oY6yPLkda2d5FBQUIC7776b3o+KisKcOXNadf0SEtbaiTufMAzM7dwnFy+4ZRz9vyy/YTKS/AXwHeNgG9cX9kFdYB/YGbaxvWHv0wGijKPCB3t8OHWVs8eHQXQe8AfAkUNZKO+V4NIIU49SBtOYLrBY7TT60ROVxQ2un4FAGmpyjzek0L3++d3geN9/56wXF1cCE8jn7QGrKfCx1FvrN2NHtmeBo6FfNKqHNcSANhY3NOwo6KQ0H6Kunwx4ftpb9bGn5Of89KZFLxNnwvrtiiKemLsMc5b/Uy9uIGQWlmPunjSUd4nApBvHSOIGCYmzDHHd7xs2BFckXlkvbiCQhve06jgcrY5DlU0DFWvFtcl70T2ksD4NgDTHJ2sK0F7uu1hrMv4KQQhMQHyoag9som+hsNwtjUCkjfcyVoScI0IHHjvKt+DJQ7OxJPdP1Ni9j4dIugLH9IOCbTyByEDBxkLP62iTvlFQQPAxQCGnuhClCXqbAgZeWSuMaGhScqQxcG4TCEQEcLoqDFZBhnxTJdYUpNHHL44fjghFCKpsKlTbGsYmZDnn9008cDi6Z+Qm1q6/YT9JYoI/NDLH561g7dByFthFFgrG5iZucEbJlKPC4nDUO1R1AO8cfx2bS39DmMICBctTUUONXVW7vw0nodFRA/B632uxbNxsvNr3amhl5+64S0JConUhQmYSPW/vneLWEFqHkBIDIcLdne6CWd7GJPHgR/eG0L8zhH6dwI/qDb5HiiPivoUc2JteP7dD3cTtgNwEKAyO/8nPZosdBWUOl+7GlJn9pxfxwQ1iPSLedhY8v77iaTqR25poa+teXhFEyP8JvDHo84fmIW2b54l7MiY0D0v1PKYjvw+dYmGPdZ/0ri6rwXOXvUlFCXVju7pUwUBxduEmztEvXPE2fnptSb24gXD6cA5+efN3OmYh6XWSuEFC4uyiViswbmw3zLx9XL24gcCW6yE7VQBZRqFXcQPBSoRSet/jjT+2HoY5QGOOLb/tpLUi5zqPalcmtEv3Qr3mCJSZ1Qg6LUBVKkCuFyGvEaApFBCULYBjZbB3c8zvkybGG9rfS1MzjdUmn9vsNrQzVE5JFo4NA1FJEbQRn2An6TO+zg3kPNvOeyJS7SqpaKCxuKEOUmvb/sduev+y+6a4OKaq9+dCm2eHuoSHspyn/2sLeMhNDetijVawpdVU3OANQavw/T4IMrY+xdUb5JyRe8JRz9v2xy6aBvTnIw2JSN6YOronnl7wEH7M+hyPz7uPuqSfa5BxYmvczga//fYb5s2bR+8nJyfjmWeeOSv7ISHhbUzSXBrmSVrWANoU9q8/ArsfATep4RfneL5eriz2PFbxJWAuOt0wZnhz9bNeg6zbEiI2CJSP7/u61ZPHK4qq8Py0N6lwhFCSU0Yfawq9x/Sov2+32fHMJW/gl7eW1osbCOn7T2PBa0uo0/f4GaMkcYOExFmG1AXGTx+FGU9f4XtBYrzXsxMQGdbg+M+xsOh0OGnlHIkOXiDGC3X1jkDM+YgooUWIwNJP/8aNHe7F/Fd+rZ//9UbPkV1pAo0zpDYVlRTpUUjXGPn+TNKA6/E5trgKsvTauldshEdxQx2nM0uwa6dDLEuSNklST0uh46CCUjB7jwFb9oPZfhDMqRwqbqB4EaM7Xuz9ZFiqUqGw0HGO2LxkBx4c8XRA4oYps8bhmZ8fxk85c2iqjydDx7PN+TwmOducd514PeNDaA23qceci3rFYXhHRxGCOQfjOlRyDgt35eDHndnIKjMgVC3HtH4JiNQ1vQigdWpsJet9ako3vLL8KM4kQaoAf7WsRmCv/+JIszBXAQd+Bgbf7mh6Js7spHk5UGIbmomQsRE4/Kv3ZTe9DfS/EQhxFNkkJCTOMrF9AGMZkEEudJraOO3P1scO6IuAsPZ+1yRYWu5yV79XVgH6jf5TfYigIu5/Q6gowlZiBCNnYT5RAVtLExSagflUJbSDYsFq5Ii6vRfKfzkOa3ZDDOW5hGF3IWyFBlQsORnQrwyrlSPs0lRwwefehfGZhkxe73y96eKGOsjrdr4hYPJcttWaDW699VaUlzuKop9//jmio6NbZb0SEnX0SIoJyAnO0j0GqqyGhIGJN46ud/PnnBpT+K5JENrHur6YZSHER8AeGQQ+SO5wX6BOdwBDYnf3n4Ysr7y+2YU0z3j7C7J2ivHaCENfr1bAnhxBB/vLvlyNZV+tQWFGEUKigjHxxjEIj/XtAucJtZNbp0anwp2Xj8Bnv29zF9uJADHgJr213vZfltO8SY5AUwxqLBYsOZTme5lhsdB9fAgiGYgSZz5vMAws3WKh+cfhnkqafjb8vJW6npLCOjnOkeNmoHTsk1J/f8uR01h3wNXh25k5y/7BZUN7IILEkEpISJx1LkkcgFxjGb7N2Eja5F2es/MMRkefRpDcvQCuZHgoGd9FeVE0wG4/BYWir9/9MPO+G38acgtcxQ2eLstMvAnrS5aDhW9xQqFFjrf7zMPhqk0os+RDxqiwujgD+6oKoOZEaGR+3l/tGYE09pP7Vp6FgiOFQIamXNQlLpD7vMhRIYLjfTgei9bqASMDvVWJf0rTMTWhN8IUQXin7z14Le0HnNTnosamQpiCpDGwtChMhAjkfbv2CItQMCJY0Q6rV3Wbp88TiFNVQVmbNkHWo2X9i+4yqpehRuyFBdk/uPzOEAFKqMIMmU2gIoc6whXBuK/zFQiRNzjYnYu0RuH9v1q4l5DwBUkkEBIigNpxgjf45GiwZQ21mItun4jUvo6alkzR8FrikiYmNRo7kzSH+EjYNSow+cV03EAaLLmCitoUhAb8jUmYAJ1dZQyDPz9fSZtYi7JKaCPo5JvGIHaY/2tcWanrsda5yZ64fV735DQseN3hnO0PUSGjN/J+GS+TUZojZVDkG2CN97xvQbuKEGoPrG5EmkrX/rTF6/P2pHCIfhpTybhPVjsJ7AwRsmxevAPjp4+Ews86PNGxT4O7+bbfd2Hn8n1el/3mfz/RcW8wcYiXkJA461xy9wXUaIE4JzcFQaeEoPR9fqkxWpBbUonUxCi/6/MmRiDnBiq0CNWBXO5zlZ4Tdvj4cIgHMqmQgDSeLvnAv+MoaV76OfcLrPtpCxW8EbHDtqW7kJ5TBqFbO4hBGvAh/ufghVZIo9m75hBGXj4EkfHheHvt83jjxo9oEyY5x8iyisG0j/H8QrE2lWlYN7CniyA74jnhhzXaHEVKX7V1uwA2gAbXld9uQGhUMOY8+h39mYyC5JmlsLX3LPSICQ/CI/dfjCDi2irR6hAjp9tvdyRikJrit99+i6wsz78HEhJng65DOjXrddPun4rkrgn0vkKtaFID/plAJmPx+8crsOKbtTQVKDwuDBfMHIeIBM9u1L7QBDnVcWJCccWDFwV0HmtNtLWGTP4oL6zApkXb22QfCk+XYPufu+n5kHznTYFlGbTvlVz/88aF27Fv7SGvy3/1+A8YP2OkJLqWkDhHuPLhi1GYWUyFAR5Jjvda2xLlckeyQ3qOx+fJHGxxdikSUhtM6rzhTyDdFEgN549PV/pdjmEZLMj9Amt/3Ew/A5VWhc2LtweckkNSHFQbDsOeGgt7UiRA6lR6M2SZxTS9oV5kHeq/BrNvz2kMHtKRplm8teY5OiYhZhWtgUdPwMJyiKnEfLGRkCOAMv/KNYehyCnGN0//FND24zrE4J4PbpGEbf9izjuBQ1SQEsnhGmSWBuaeHalT4Iah7XDfuNT6hIMq07l1gaxTcvhw7UmsO+aIjiFUGm34YM1JxAZQXGlMWn41+iU7YqYJt43ugGWH8rEvp2kq2JYwqbuXYkxjSk8Aljbcr5ydDoEDywFdpgLH/grsdXF9gMSBDT/v/9H38kQ4cWABMPqxlu2vhIRE0yEJKtXZACMDwjsC8tpBeofxQFxfYNccwNrKTfVENBUA8phWbjBsNHnsCZIiwCo5aAc7GmXLFx4/K+KGxsgi1Ii+py+suTWw5ulpc6dhewHsRYGdz9savtKCyr3FAYkbZNFqmtggiRsclOwHqk+37POvzgRKDgDR/nv0/PLFF19gxYoV9P706dNx5ZVXtnylEhKNiAsPRmxIEAoqfZ9f+FDHOYkIBC67byptqCEQNwlDlcOBVFQpILTzfO1sVwJ8iMplgpLOV7IKWAd3gni8AExwEKBTQxQEsKVVYE8XgKl2Pbbykf4bHzVdYvHFY9/TSM86aioM+PbZnxGd7NutzhMZB7JcmvNvuXQINi7bizSLGWJtTyxTK27g9BbaLOURs4061TWHYZc4Xc/74GRJGYw232NEe4QakDPgKvSwxwb7XNYW5+qcenjrMSpwIA52Ay/og11/7w9ov3qM6FIf20z4458jvrdr57F81zHcOGFAQOuXkJBoPTIrKnCoqAgKjsOI5GQEKR21nLs7T8bFCQMwc9sXqLQZ6DGcF1gEy03oElzUokZuhgmsgSROneR3Gedt1qUDe4MX7VBxLIy898nIIJkGSk6DAeGOZL13js3FsRpHSpCFl0HN2bxug3xGMtgRr6pCiMwIhAAlZh0KrSHQCyqahsCJdpqkULcOInDgan8mIzUVeGhl5cjVB7tc3idqovHZwEdxrDoLJ2tyqbBjZdFaFJgKEaeqRLAHwQmBCB+omIJkO4gM3ZYvWEaAa6geEbf5/15rbAVYWHDITRBTh05uhYmXwy5ySNHE4/Fut5zz4gYJCYm2g0zehvZsh1I/y4lax/kiMiEclz9wIa6efSn92WKywFTjmNwV1UqIXhpUeZJQlhgCJDuJni02KA5kgcspBRKiIMZHOeLoBQFiaRWYnEIweteJY9ZkA1dUDT7G+7V0JMfh4xs+xsGNDeJj4sg5938/IWRSe+DGhjkPN2wCgra4CqPTD2QhsXN8/c+3vDIdW5bsQI5T2pzb+w3XUadwISrYcUK08fR9yo/mgnFye7XHBMM8qAN0FWoY1CIsZAhQq5JjTXYEbS9A2JocDH/zRgTCqf2nfTrg8sH+m5IEH8uQZAgicCBCj95jurt8xv4S5Zw/w5Xf+k7iJskZG37ehkvvuSCg9UtISLQe2cfycGpvBpQaJfpP7FXf3HHnOzfhwtsn4IHhT0Nf0ZCGI2iVsHeKA0+aNWUcmCojZBlF4LJLqZAgEJR+RHZ1pPT0PiYhdTG/6QMcC1EhB2N3XK87p0F4IyhcR40viMiD8Oxlb+CUwQZ+aPeGhWT+r9EDFej5xMnoIqVHEubsfRtp24/T8xS59v9l5UFkk8/c2ZyE1MyczEBIKhNfqQeX5+4qTlIeZHlVsCd6NyhRnC4L6HvNTy/AwreXujym2XIKRl6ErUOkS2pUl+RovH73RZK4oY0gc2i33HILysoc3/lDDz2EcePGUZGDhMS5QvueyfR46+yi7wuSonPVw5dQ9+i6hAOLIfAU5jNBZGIEXr/hI6RtP+EyT/Ll4z/QBsqmQo710ckNY6073r6RCu5Io+uZYtilgwJa7uSeDNhb47znY0xCBA4RcWFUHHNshyPJ1B+DL+xPG3IDHZOQ36tNv/6DKbUpIRISEmeOrLQcKuQljfz9yJhEq6Iizfs+vhUX3zUZDwz/H0w1Tq6ZWjUQ5nvOFRGhQGYerTl5onFCQnPGJG2VYhQcrqN1mGn3TaU/P3HBywGLG+pgzDbID+fQW0twNt8j8/dfHXwPh7ccRebhHAiCgEXv/oGiTD9JpU2ApPYxJ3Mhdm2Y5w6UnNPF2PT8goCW7TKoI5755RFJ3PAv57wTOBBC6cHJd0NkTLAS380ajA6ROiicHDaPFVafcwKH6CCVi7jBmcIqC9pFaJBVFngD6Lxtp3H9UNcDxMhOUWdM4BCillNRSWPsvAC9xQ6tUgZ5XZGGa2Pn6/S1gKEU0EYCIx8GTq4CeB8xOARdDHDFV66PVXuf9HBJcSDLTXgOUPuYbJGQkGgdrHogbTFQSqLbay/GWKLgHQqkTiHdn4A6HEi9AEjzkcDSVFShQFDDxJ4vZBFn3rVG07dhgM/XWGHcf+YKJI2Rhbu/f0ViEOTxOpR+feicETcQBCsP0ea7wM9FqhB6UUeouzXdoePfTPpSoXXW87uI6L4tc2ZNT0/Ho48+Su/HxcXhk08+aZV9k5DwRASjQAE5/Xj6tSWTkCRQqF00PjnwDpK6JkDmNOl7cm8mjLUFHCEu3GVysA5BBvAq1n2SlyRHyEghgqET0WRyUqQTsiygjQAXFwpu90lwZU6igADi78Iig7H3x20en6PuF51ikXeyNuoyAJZ8uAyTbhrTsNsMg2FBWuT8ugO2jtEQNAo6AStPL6ZufeaRXRzNTs7vl3y+cjnMY3tAve6IS0ORP0Iig3DRHRPdHicxyIYqIzTB6vrvpH5s4g9egCy3wq/AobFabufyvagur6EuptOfuoI699XFMXuDNKA9Nu9el8eKKv1PFM19Ywmqlx7AzFeugzZY43d5CQmJllGs1+OJ1auw6fTp+r98rVyOm/r2w6MjRoBlGCRpI3BHp4l49ZDDcCFUYcSU+CNem+Rt4FDOqxDOeY/H4mQdIJM5EoH8ESGPoU35RBDgDRtNJ3Cc1Bg/zfsEBcfD6OMwNia6YeK01FKB7WUNTs8k+cFgV0Ars3rsYyJJCsmqcpfPJ1FbRW+HK2NRZAsGyzWIGxgncYMj+8HxOo5lkBRUhS7B7gKArsHt0CkoEf87+CGyjSXgGEAn8z2hLqciBw4CSBqBx1M3xWr3nPRgEuTwVykqt1lgF72d68j7FNA7JATTEm5Av/AeOF8g1yyBCDz8rUNCQsIdTWIEkF/h86NJ7BqPVz6bRR1SOVmD+uroPydpMzr9G4sLh0AOhuRPjRzjaocPAhE3qD2MSZRyWAd1hDwuEpza6ZqTZYHoMIgRIcDhdDCNBOGq/TkwTOru+SAqiIjOr/TaeF+1OhPdx0YhLcnzcTLy5zzIql2fW/LBXxhz9TCXMQlp7vcmcOAjg2Ed3sW1wVTOge8QAyEyCMpNabTRlY/QwTS2G12OfFZBuYC2ELCrRfo+glaehCK7wuH0Osu9qcZus1PnQG2Ipv47kTulaXgikLGQr2W2Ld2JW8gYIUSL65++Eoc3H4Xgx0iFCN0f/fpul8dKct0baxtDmr8KMgpx0wvXSBPMEhJngOKcUrwz6zMXJ2OSYEOcUm98/mp67EvqkoAbnrmq3pVfCNXCMqIrdQCtQwzTwTZAByE6BPLd6eBK9OCjvItpUxMikRQT2FxofKr3hlCSYuA3fYAXwATQQOTM+Bmj6u/nnSrA9q0nwA/u6rptXqytqXmHC+C454/ELu7zSSThtdOADnho5LMo3p0OhVYF25iejnNpbV2xMUTk4EngQNDsykJNlA6ih+QNxmiFal9gDVGVRdU0/cLl9bwI7ZZT4A/l0Zpe+74puO/hSzC4R9Oblc4W5+OY5OOPP8bKlQ5n4B49euD1118/o9uXkAgUck3rT+CQ0isJT//0MJK6xoNzcnI+vOVYQKK1M4kuVOMibnCmIKMICZ3ikHfSYeIRCGRM4mzERN5/jxFdz5jAISoxwmWexmVMUmOicwh1YxLnhL+2YPOSHfTahIgwb3jmSjx76Zt+067jO8bgwc8dSTZ1lAZwbv70gW+QezwPNzx3NTWekpCQaFsKMovw7q2f48CGIy7nB2KyQWoQdULf6564HPOeWdAgbuiU4l/sTK6PyXyuxeqxuT2SpJsGQHyqwyD2TOI8Jjl9JMfFZLBVIfU3PykOyR7mtnuO7EbHJA8Me7pVxQ11sHmlEC02CO1iaWofhYiu5Y1SHRpRll7o9/yQ2q897n5/JnqPdhKwn+Ocj2OSc4UAOznONfxPtqZEaNE1NthF3EDwIug6qxj9XLTnlBvx5NQukHmbPW3EqWI9SmpcJ2Yv6xNYM25LIYkZ390yCHFOMWdlegte/PMI+r+8Gn1fWo0+L67Ck4sPIrfCCER3A8IanF1bHWMZsPBmx32SyHDtfEDbyI2KNEErtA7n91GzgTs3AVGNGgWCA/j8iHPI7m+Ad7sCRUdb8U1ISEi4wduAvXOB0mOu5wTBBmRtBo45OczE9Qdi+7Teh5gyznHcCAB7ufempObCBnkXhsmi1NAMbJgssGZXkw6is4Yly7PjtvlEBSwZrSu6YxQtu6Thgv0XN/hSM8p/PobK5RkQA2gW/i9gM4jI29w668rbLNL1NReiLL/55pthMDicyL7++muEh0tiFIm2gyO/r2RwTX5tG93qrto7Roajfa92LuIG+vvqdAwRvbjd2T2JG5zXwRGhAwNBXrscuXGkAUkG2+BOEJxeK89taHoi416eI06sjv8Fx7wpTAeyfb7fwswSzHptBtgAxQCn9mXWp1TUMW76SHCVRqj2nIZm8wn6P/mZOsjJZIDAOM5b5MY7nOrIh0mSMMz9/E+a2iO0sCaHI6R3Et5Y9SzCYkJd4pU/vu9rXBF5C66MmoUrIm7Bh3d/idK8MnSPiUZskG8HbGVmFTgzD3lupd/9kOe7nuMqiqrwxg0f0fu9RnXD0z8/TAUYjWOW1ToVkrrE48bnrsZne95yi1SNqSv++PoMSmrw+ycrcF3CHXQCX0JCou0wWK24fvGv2OgkbqCP22z4fNdOvLJhQ/1jV7UbiAmxjkLr8OhMyDnR2cTTjXRbqM/ng4IepI1KgVBqLYVZ4Lyuzyaw4JtYHoxQeHcGTdEkYExUg8DhaHU6hEZ1PItAUgg8bVNEorLCq/ijZ2ghYlTVjvSG2pMuafonogyO4WnSgowVHTdGgJwVUGz1XJ/ZUXYQx2oy6H0VSxIhfL9nh0DEIQIhghBPPaG8LRhGGxmvua+sxOZPHAcYBE/nOhFK1oYgmQVamQ0GIQNL8t/F8oIF4EmaqISExH+bukOTD9qnRFNnVWdxg/OYhI8JgaVrHOxaDnYNR/+3aVg6TuBJrcXb+YZhvAt/idN2l2S3XZMXVEOz4TiYRi6tpPFSs+kk9Ht8x0OKL+3DE6kjoSxoeL3qpB6xH6QjdLX7RCxpTCLpec6MvW6k1/XbSAKdl/GOGKyBvaNjMtzSK9FtOdYOKGoAhYGBrXsidad9c9WzVORcBxl7kDEIGYvQMUnkLXSMQsYqXYekIjTaNQnOGXlWmV/hutzHZHRJbjnevuVTer//xN54cv6D1G3X5T2wLDRBKirQv/nFa/HZ7jddnFLrGqT8YTFa8Ot7f+G6xDtRlN36E+QSEhIN6CsNmD3uBRdxA4E0LP7w0iLMfaohnX7a/VMx9GJH4qN1YEcXcYMzfFIk+MQIqPbnuiQPNOa2S4YG/FUUpPto4rTxYCt9GyGRpn6m0TGQHGe9QZp0xlzTIHA7tPkY7MnRbsuRVFHw3t8jW64HV5t6Qepp5nZBMHYOhT2kaeZ9R700ym5cuB0ndqc7fqDutqwj7dTLesRQHd0PT3AVRgQtO4zgClNDEjgvQJ5ZSh/nGvUNeILUpoIi3GtPIsvA3i0Z/OBuYGOikVVgxMsvL8U387f4FctJNI+0tDQ88cQT9L5cLsf8+fOhrE2KlJA41/Bn5EPo2DuFNrY6ixsIjQVV5wLE7MkXpXnluPmFawKuyx3cdNStSXPsNcNxJiDX8m+uftbFCKkoqwTv3T4Hl4fPxJWRs3BV9K347KF5qCypQs+RXREUpm2z/SGijvfv/ILeH3LRAMz+5h7oQl23R+afiDlVu+6JmPXqDHyy8w235mWSsuEPs8GMX95aiumJd6CswLcpgISERMuoLquhYxJncQOBmM19++zP+P6FhfWPXT37EvSf1JveZ1ISwVBxr5/rSdLoa3fvqyXH4Rm14olAICK11oYYQ3ij+7DOGDFtcP3PhzYFlqTZLArLiOu49+cNJhz+a6fHp9b+uAUZB7NadXfUQQ1GuExpFbg9x8Fu3A928wGw+32n93AcC63eGFAfwktXvYMfX1nsVwwhcf5zXiY4BDJW7p8c5tJgv/xQASqNNiSGq6FTymiSwLmAnGNQWG3x+347xwTh8xsG4M7vdwfUq0qc6pxJjQlCSqQGp0vb1i27VG/FwwsP4OkLu2Fi9xiU6i246vNtOO2UQGG08vh5Vw5+2Z2DQe3C8WLqbei265m226msLUDeXiChP9D5AuDhNOD4MiL5AjQRQPfLAI2fBsi+1wMHfwlse3Yz8O1U4AnfEzISEhItoHA/oPfhIp23C2g3GlAGOZJielwLaGOA9FUt2CgLpE4GEgcH/gp1659mtQNjwCg56DflQjDWnssYQNU1HGFXdALr7NATYHGlrbBmVEEw2d0+h1ZNlWAAVisHG6JwJELYm37xqh0cCy5ECVMAy4oWHvpNeeDLzYi44fxRA7cVphJAbKX6I1mPqRSQN7N29tZbb2Hr1q30/q233ooLL7ywdXZMQsILrNEGhVGELcjzsZa1iuiX1NCgXl5hwKZNx1CjNyM2KggKrQJWgxWMwV0MRyYr/TnIkdOS1wAJpQx85wSwx3PrG10sPRLABytBTbrrINshTtwKDlXpRT7bW8lERdfBqXh6wUN49br3A5rAbCyG6DKwI6LbRaI4y3WSgA/RgK8tnNMaBHlvHGBXMjStgpzPrL1jYEkMgmZ3FhRZrgVpe3QQjEPbQwh3rIOUYf63aCMeljEY1jMFpfnleHjkMyg83dBcY9Kb8dcXq7HsqzXoM7YHLpg5AN/VeCmqCCJCNjoiQ2UVRsjyK2GP99LcaxegPOp+jbLr7/3IPJxNm8tGXTEEQy7qj62/7aQFNdLINPqqoW7F/MZcOrQH1uzzUfjhBShPOj5bs8GCh0c9i4UFX/tcp4SERPNZnJaG9PJyr8//cGA/bhs4AOFqNVQyOd4deA0WZv2FbOMumjNgFWVQMp5rU2W8BgctUeimLIOCqr0cCJAjNORZaDRXB7yfGpmGpiYYBTnkjB0yKg4g6yKN+izsoqv4gTrA+ElxGB89BoPD5fgjbx0MvOMqmgWLIRG9cE/qdCid0jpZD+JwFgIVIDQmiDNTUYIv4lTVyDQ5mi2JyIEID4jIobFAgWr/IOJw9T5YeAuUnGszyMaS3Q3v2ecWa5dxWYiBVeCoMIS8DxZE8BANtTwGCibN4/qMghL5llDEKz0L5TqHzECOJQHAfpfH1ZzN7TMx8QasK/4dlbYyzEi+D+c65JKBpIi0dB0SEhLuMDY/cxwi0LMbObY4KC2tweZNx2DQWxAbHQw2ORLG/h3cEhVEjoFdw3qPq6lbTu4QQng8dKuUQHgwUO5qfkGSDeQ5FfR6WtA6Ut1keZVQqhSork2U8IbNYsMoIRqpcePx+n2fQ7SL4HxECpHJbtK070zfsT0QHheK8gLX4zEfroMY3GDa5Am+XRRk6YXgY70L/QhCuA5FlQY6brrnw1vQb3wvFGeXUJdu5wQEkuLwx2cr8decVXSCf/hlg7D8qzUe18mabVAcL4C1e4Ln5yuNtInVF9uW7qYiaCKkHnfdCIyYNghbluyg46Tw2FCMumqo3xS4C2aOw45le30u4/z+yJjkp6w5AS0vISHRdFZ8vdZno86SD5bhiocvon/bSrUSLyx5DF+9/xfm/+O7qYRvHw3l5qMQt6TDNDjFJRVAzjB49PrxmDiwc8D72VhQVYcYrIXYswM4Tu6oM3k675itkB1z1LecmXbfhTBWG/Hbx8vp8YZAxHyjrhyCBz67HXKF3KVJRgxxr7mQrXEWEYLCUYeqn08RRTBO55iaAdGoHJ8EPrR2TCGIUB+vQMQfGZBV+z53ETYs2oYn5z/gJjZct2BL0y54SXOXl8VYGYsIjQpReXqkrTgMUSUHY7KBbUI/xHVPXQ5LIxEi2Zy9fyrEKNdzX3WNGd8t2IbScj0ef2AK/mtjkoIC/6YiiYmJzdqOlZgpXH89zGZHzfjFF19E3759m7UuCYkzQSCGSD1GNJiLkuvhzYv/ganGTOcKyOvPFaGDSqusP6f4EvMOvWQgwuPD8f6dc/wWlYh4rLEYgggOgyODUF3qmnjX2hAxwyvXvo/7Pr6VGi/lpxfS6/PywkoXseRvHy3H0k//xsApfTF82mCsnLe+zfaJiPtue/16RCdHYfLNYzH66mF0TEKEJRHxYXSehCQ8+BuTNBZ3ekNfacTDo5/F9yc/aaV3ICEh0Zg/P1/lUxy28O2lmPbAVCjVCjomefWvp/DFS0vwxwpHwz9tTvfV11RR7Wb4IFfK8cCnt2H4pQ1GS80dk7QEklBRklOGPz9fSeedCTI5hzHXDMf9n97mcv0fqIFgc+uDYloG0K29I+3CGZMZOJKBNQeO4/F57nMJ635qJTdTMraSc3TOm5hjHNvhOuZkagUYjFUPkSQ7JHgWh9xy4wiUbXYVy3ijqrQG3z73MyqLq3DvR7NwriPNk/yHBA52XnBplvfG1QMdg8Z3Vx3HFxszYHU62AUYhHBGsPlwhnBGq5BhSIcIzL9tCG6et9Pn63onhiBc6+4e8f0tgzHlw81UYNCWZJYacOf8PZh780CsTivy+n2Rc9TO0+WYeroDvut0N8bkkEJ3G81YLnsUmPY5EN2VZKsBPS5v2us7jAF6XgUc/jWw5U0VQNpSh3hCQkKi9SnyF90lAtvfB4ijpSIISBgEqAKLS/YKJwOSRzTpJfIoDeQJOtjyfEdzBgqj4KAdGgdZiBJBI+JhPFQKW74eXLgKmj7R4LQNRXuCskOIo0p/FptByhYdR8S1XVyEF6KpFUWGpDCtt9Fbc5HHaqHqEobqNVkBf1amw2U0oULZzr8T678Zu6mV19dMHebBgwfx/PPP0/vt2rXD+++/37o7JiHRCKvFhuLNaVB2igcjCLDqHOkJFFGEzCRCVSVi6pgetDDz5dcbsHjJLthJUkEt7IBuwOEMsIXl4LsluRccAsL7QYtPCIe8VuBAEhJkJwtgH+w5Oc3C8xBGdIRuDUlG8g5JGCDNOeplKjx7yZs+3ZnIpIWnQvTrK57GPQOegKW2eYm4wFm7xtKJZDrPSEQXxA1W5T5w48M1qJnYFbp1J6DMLKtPbdBP7gY0miTOLCjHwx/+jk8euQLr3vrDRdzgjCiI2L/uMLDuMEa9dAG2MNW0oasOxsIj/K9MaE40FP21G05CP6kr+KhGcZ82HroNJ8BVe05w+uDOLzH7m7uR1CUBCqWcNhU1hZE9UjC+byrW7T/l8XnNzhywJptLcsTOv/dh8JR+TdqOhIREYPx5vOGYKZLjMU3WIU05tdeoIjD6p69gF0XEanWY3q03RraXI7v2escgKKngwFONihzd8/ggFBh1iOUMULN2WEQOZUIMpsff0qSvKFmTjHhVPEot2VTcUL89GkTk+IE06wsiCwVL4nMc++6tdqbm1BgVNQYh8hBcnjABO8t2oNyagTh1DHqFjoCac50o6BXi3vgkY0nqgvu6Vaz/a3p1o2UYP3U+ku7wVcb3uL3DzS7CC73ThaeJV8AusHS/vEEEIXWyQvL52BwKPPAiB4NdATNPjv1ZCJMDJFzJE1mWSJgEOWIVVdByjvOg3q5EhjkS8cH9MTSiI1YU/lm/PEml8CX42FuxGaMjL0SipoP3D0BCQuJfi9loQcn240BqfMOwwOkYj9rj46Qx3WjT6OefrsHS3/eAd5onsfV1Fzc02TSDLudlXKL27DRMdHTyPFeBgdWPuKEOkjAw8YbR9P8Xr3rXpxlUvwk93ZpJCa+teAb3D3mKCibqENX+3bhFjRKCnAtogklUyHD6SA6evvA1vLX2eSz9ZIWLuMEZ8v3sXnmA3u81uhsObfKcPqTclw3GxsPSNR6oq7MJImS55VDtzHBzN3fbJ1Gkbq2PfHUXFTkoVAqMnzEKTWH4tEFUrB2oyIFM9B/echQ9R3Zr0nYkJCQCY/0vDrMXb9isdsxIugu8XaCJBxfdMQkRvdsBfgQOQpCjnqM8WQJFZhmsKeEQtEqwBiuiDDZc9dXDTfqKiGFGfMdY2lhZhyjnIPbqSOth5JJXrrfDruIgymtTSkURbG4Z5EdzqRiucXPSlFvH0ZSca5+4DGuW7UFGWRXadY7DhBE9ENTo/NNvYi8wczd6PFtRkYNVdJiN1IrBSaqDXcegulcIrIMHwBLX6HzGMjB1C0dhtAZxnx8E52++QwQ+uucr2nRDjr116Csa5o2Y8hqACBd91AeZ4kqv6Q6CXUBZfgW90eGIuelzMMldE6lj9uIPljXsemSwm7jBmWUrD+KaaYOQkuzfTfvfxODB/o3Qmusk+8wzz2D/fofwffjw4Xj88cebtR4JiTMBSXAuy/du/kGQKWQYc/VwOpfw6QPfUMMhZ0FDoEkIZwJiGhQIKp0KF942AZpgFV6b8SGdY/DGwAs8C5ReW/40Hhr5DOzWtjXmJa7cT015Be9ufAk/vvKri7jBGfKd7Fy2l34fPUd1xeHNvueKmgvZDhmTPDjnDsS1j4FKo6Tju6Yw9trhWPXdeuxdE5jIoSC9CCf3ZaJTv/bN3GsJCQlfbPAzJiHzwVfH3Eb//mNTonDRnZMRRWpZcAgcSC2DzAt7rEOR6+Mcd1O50KhgTJk1vklfDBF6RSdFojjHtzlEoJBGfiLU0gSpcf0zV2L9gi3IOZ6Pdj2SMObqYfRxZwZM7oO2hKnSQ9x1BIiJAIK1jqZcYjpSWglGpDNYNLHn9rducBGD1ziNSVoKb+NRlldOb75g005D1JsgJEUDmtqxVo0R7OlCJCvHou8No/HnnMDNi4lI74qHLkJch5iWvgWJc5S2kwe1EeuPl6DKqWnDE1E6BTpE6fD5hnR8vO6Ui7jhfHT9ig1WISZYhZf+TMOjiw64pTM05vZRnic2kyO0WPfoWFwzMLHNRR68IOLNv4/h930Op1N/3HxyFE73e7Ttdih/L/DZEODVOGDehcDhxU1fxxVfAuOfBXQBHhAPLWr6NiQkJFqvq5qIGwjWGiBzHXC6hW4DvBWwNa37mhY0mnO89eDazag4RNzUnYobBKMN5QtPoGLRCei35KPqjwwUvL4TFUtPQXRunlXJoEhu1Hx5hrGklaPky0MQLA1NsLJI384LjVEQoUYbnrhMR8sg8iK0g2Kb9Drj3taPsTvfkKlbeX2+jQK9smTJEupsRMjKykJwcDAtwnm63XJLQ1Pgxo0bXZ7bsGFDa70ViX85237fCevRXDBVBij0IrSFAlQlPFSlPDTkfoWIOKsdsdEh+H7+VvyycIeLuIEgyGUQeqcCKgVkh087XNjqEAMYtJCnfSzi7K5HsLf3HpNJsCWGgtd5jzonRQFNcgTe+mkdnl+zC/qZQ1EzuRusSZ4FhNfMvszrZOk3Rz/ApJvGEPsimEZ3gb1DdL24gRSwBFJX8XbcZxkYh7Srf+vmvklu4oY6SPPWJ4s2Y+Mv2xAIOc+txK3FwQhblongjbkI/z0dSW/sRtAe1+Qh4n4X9Ndh6FYdheJ4ERSnSqDecRohC/dAnut5goCQtv04ZnV7CJcE3YjHJrxAnaqaAjlOvTnrItx10TCEO4lHuHIjdGtPQrPffey1/sfWc96QkJBwpcbimPQkpWFRIUJUOkQOjo578sdJwsUcR6tCgx7v796GT/c0uPMT3/8qXkPFBXV9D3WHdsePDF0mnw9Cui0MufZgmAQTbELTxiS8yEPLiVCwrikHHCNCxdpBcgiMdiUMdiUqrWp6K7eQizL3c4KW0+KB1IepuMFor8Kf+W9ga+mbSKv+BWuLPsInJ27CmsIvIdSNxQAEy3Vor23nsh5vfR6BOGoSIYYzJKXBHzvK/8FLaR/CQsZ0tSSooxv2BwxKrd5TdBgwSNL0hiDK6fdVJ24g78Nkl8PMNzQpmXhX0XljCq0h+Ke6A9ZVdMWaim7YWNUFOZYI7KvcT7+T4RHD65f1l2ZB2FNx7h/niZCmNW4SEhKubFq0HfZT+WBrjA2lJ6cxAnkskREREa7D3K82YMniXS7iBoEDeH+pcf4a80QRVi0LU5gMpggZzMEcBOdV+kuYaCLJ3RKoSx9pEv3o3q9ps5Sva+erHr3U43Mde7fD3LT3MX56g+CYCURgYbJSQTFj9iPI4wWwNeb65uK5T/1IXUkDgYgbJt44xuNz5KNVHs5D0G97oFl3FOqNx6BbuheazScCdug+uDENM7s8gEuDb8QTk1/CtqW70BQ4jsPzi2fj+qevDNj9cM38c/9cJSFxvmKoNPhdhogb6gRH3z77M/76aLnf1xAxVf19klR5qhTqA3lQnipBdUElrObARGl12G12cLJGLQlxkfXN/PRswzCQWQXIjOTGQ2bgodZo3NKKSDPTa8v/R8UNZdUGPDFvJV5YvwvfHTiBlxZtxJQnvsKHizeDd6qzRcaH074Bn+9ZEMHaHckNhkQZapLlsAZzsMR4r5XZI1SoGRLYnMLyr9fiqamvUtOUOhI7xzttXwCX6T21nPQG9EsMb7bzK2ka4+MjYO/XEbYBqeA7xFExnjPb/9wNhVpBG0frELw4qzqzan1gDqtnk/NlTELmK9599116X6fT4fvvv6fnXgmJc5V1C7bC7sdcNT41FsERQfhi9ve0WbFxWkNzxUBni9R+7cHb7Hj/jjn4/OHvIPcxJiHpDVc9conH50ja9VeH3qNNsG0NaS6e+9T8gETK5Ps4suU4xs8Y2Wb7s2f1QdyUeh8uDbkJ/7vwVexYHph4ug4iYn/5jydx3RPT/KZi17FWmieRkGgzSBKMP+qO/cSMjtRIVs1d62KCQd39aVpZ3UQJcRiyA2mnALO7+IwYSDT1/EEEZZw3ZyIfkDpUY0gKJjH0IyKG0rwyvHT1u/jgri+x+P2/8N5tn+O6hDvo2Mt5H2NTopHQKQ5tCRGLMPklYI6dBnM8C0xJBRU31EESe5655A06PqsjqUvDmMQfJJ2i16iu9PzWov0k58jsInBbD4HbfBDcpgOQ/ZNGTSG3Lt+HoMRIDLtySMDrI5/zmvmbcK5zvoxJzkXOuwSHrDL/B8Yaix1XfrYVB/OqcDYhv1K3jmyP+TuyYLY1P1btqgGJuPSTLaj247ZAihuPTu6MS/p4P/jEhqgwpnMUFu52j/NsbY4WNC1S7c5TI/AX9xnkfDPtmwOBNCdnbXXcMjYAl37se3neDhQcAAQbENMDGD0bGHI38HogB/j/5kFFQuKMoI0GqgMTUNVjKgdYuePvuTmwsiZ3c5uPlsGW2wzFq10EG6KAqmMobXBVJAdD0z+aChZEXkDJvCOw5TQ6xtoFGLYXQDDaETG9a/3D4Td0Q+Gbu+nzZwuSYKHfnIvgiY7GJu3gWOi35vt9HSNnEXpZR2gHxlJRh2FfMfgyM0xpZeArA3PRCATLyUoUvbeHCktImoO90gzR7D/tSDA0PzXi34I6CmBYIuZp+boYDlD7ny+RkDgnyE8vohOfyq3HYO3bHkJcGGTW2ms/Gw9ZRiHMOaV4YNQzOKb2MYHKsRDbxVKnApn5GPj2cRCjQ8CwLLgaK/gQ75OojFDrbkQqPx5qOEzthCmZ+CRF9K/KSnw3KJGJzggtOL3n4+uYhy/Eja/+BINz409iKOzkdjAPmt3Zjrck43D7mzdg+GXeY0FJ/HDf8b2wbOtR8HG1LnC14gaC4GeUKgSpYI8NBldugD3Bu4sc4cjpIgTJWNpzHAjpG44i4lgx7E6T+Z4ge0pcZxs7zwaC2WDG/vVH6O2ye6fQiGhf2Hgex3KKYRcEdEmIwp0XDsV1w3pgWsd7wPAiuJrWOydKSEgETmp4BE6UlTkqa96OW41MrTeeZtE1QQUwjqZHHhyqBQ1YCJDBDp3M4rOWIGfUkLNNG5Psq9iBAnMWFQKEy/Q0JcEusiiz62CHDEqWrxcWkEb/ugJprkGGJE00hkUmQxAFdNR1wrCI4VBxKtgFG37OfhpF5gyXbdlFC3aV/w6LYMBF8Q2urk92vR137XkRIhznJptIEiPctWxGQUFPVb7M+8rtzorY2vOgH8jqTtRkYEXBekxLvIA+NiV2JFYWNrhLlVqDqMAgUqF32b6cUWFa4p3oGzYGensNdpRtQZm1BP+U7UeBSU9FKM6YBTmUPA8l57mGR96zhrPT96nnFTTFI0RuQpF5I947sREyRo4uQYnIMVZDhP/GMQPftNqbhITEvwfigk0mLmX/HIO9d3sgOrThAGqzg80sQk1xBR4Y/SyOch7OHa3glEqOwPZgDryKqU9BM0XLoKqwQ1VkBVNaVT9GuOrRS/DLm7+3aHtjrhmOuwc87tdZlUy43vPBLRjkxS21bmK599getCmLwJbrwdSYIDZy2HNZb1YJnRiWZRTD1j3B+3LZZWCcnFgPb2ma++npw9l0HNe4+asO+r0XNH0cUg8R6OnN1PGU3K5+9BLc8fZNPl9is9pwcm8mNXPp2DcFM1++DhffPRnTE+/0u7lzyJRXQuJfR3L3RFqjagp5G49APm0IbD5SX7hc766mpJHQOYUgENb+6HAzdUYMazBmoueQ2sEBU3eCYRhYVUrEXzUKfRQiPSb2HtUd468fRd2eTVYb7nzvV2QUuLqDmiw2fLdqN4wWG56a0eDq+tIHN+HmO+bC7mO8RZ4xRbKwBjuu8QXyNv30QOn7RiFkdxlEuQyMyQLGh/iDiMyWfbEalz9wIf354jsnYfX3G+ufZ0/mQ5TJIKTEuAyWNGo5nnhwKsaO6IKK4iqs+WETirNLsHHhNpre6Q+SUmQb3AVwMsvgY8PBd4qHbN8psMWOdZD1kZtSrUD73u1QdLoYVQEkzlZWteG8/jnKzp07ERfXug1qVVVVuOmmmyDUinPee+89dOzYsVW3ISHR2hQ4JfN4o6KgAvcP+x+O7/KcSnymkCtluOLBi/DLW0ubvQ4yH0PmPe4d9GR9QrXX7SlkeOCz29FnbA+vyySkxqL78C7YuGg72hoyF+EraaJxo2juiQL6fttMgELGJDUm7Pp7P70R9/OZL13n8yVEJHhqXyad5yJjkltfvx5Tbh2PmZ0f8Ls5aUgiIdG2Y5JSP479jcnangZF/x6w145JHCIHoVb4XJs+nVdELu49vp4IDJqaAPT3N+tRkOFqaBcIJP2TCJO7Dk2l+9VnTA+Mmz4CSrUShmojZo9/EXknC1xeQ2ouP766mKav3vXuzfWPE8OIu/o95rXecybYu/ogVs5bT9P9COT/jQv9n4e0wWo8/v39GH7pIJQVVNAxCRF3rPtpC6rLmjdHQb/B2vGTGKKF0CEeq7IqserWr6BSydHu6lEoXrMPpgBSJqpKqpu1DxLnB+edwCFC579oQsQEe7KbX+BVciRinvSCtuxi7dK+8Xjm4u74ZXdOswQOIWo5Hp7YCd9tz/IpbhjZKRKD2oXj6oGJiA9V+0xVeGThfizd77+ptLUgoguy3UA4XmJCpiIMndkzVAjZ+z3QcQLQY5rn57d/Bmz7CKipPREpdEDf64FJLwIRnYAy3xGu6Dyl9fdZQkLCQcIQoGBf0z8N0ondXGJ6A5xvN846SFqB+UQFatY5mj2bg1BlhbJDCG3ud8Z0pMxd3OD8/IES2MYl0UZ9gixIiZj7+6L02yPgK85eAyQRNPB6Gy06KNuHIGhSMmpW+/58RJsA/fYCsDoF1F3DETTCMXls2OW/YAaiviaijqacyu0ibIUGsMEK+tmb0/zEqka0cnzBeYhcyyBhFJDbMA/TbBJGMnR9zWHgwIG4807/k+qE48eP1yc1kEmISy9tcHSMjw9coS7x34a4xRFI04py50kIagXEMB11l2BLq2kRhmQNHSytBt8l2NGEbq6NuW9EXcw7W2kAu+9UffEmJESDssk9wXtyZiPiBj86LC7bMRlN4jGJ4ODbOz+EhThg+MJDQYW4K8185Tp8kZ7lKm5wwtI7AcN7paBvh3hccMs46oznDeIK8dqMD7B58Q7YJvdEcxE0crB6WUAJP4xKBngRbjQm81Dzz93NgcRmDprSF0MuGuD2HJk8+G7tHsxfvwel1Y4xkk6lwLRhPfHAJSOQGBqMwtO+i3FDLnZfr4SEROtwfZ/eWH7yBBgFD52WCBYYGIxKt4QBZ3iBw4HcVPRJOuzyOGmSt0IBuyhAxniv/3QMngyWCayUZ7SbcKAqDWsKlyJUZkCqqhhytuE8kCKWIt8aRtMDNDIrTXBwhUGG3oDpyQMxPqafyzNp1RvdxA3OHKxcg6ERVyNCmUh/jlaF4e0+j+GFI1+iwlpOxRZ6mxLBCudjs0gP6QZBCR3n+ZhtE1iUNUpaIOIMIkzwBU9FGyI2lSyDjM2k99tre+PqxMlYlNsQdVxkCabrJ4IDm12GcrMaeYYQnKg4jvu6JmJ4dEdMiJlKl12Su53ssYetMaiyq6ASbAiVc3BcEbjvH5l/CZaZoeJsLqcyu2hDiSUTsaooRCr64pjet4tdhEKKXZaQ+K8SGhVSPyaR7z4JUa2EGKKhRhlMWTVtgidXkGnHCiF2b+/2eiLY9qcqC9IqYcwrB0/GOo0RRdi0DHh1o2Mhx8AcKYdoNEJX26B30R0TMevV6Vj0zh/NmsQl469Zr83At8/94lPcMOTC/ugxoisuuGUswmM9J83VNca8fPW7+OevPa4C5oNZsA7rTJPmGkPED7LaBi7l4Vzw0cEQIt1TU5lqE5R7T6Ml0KadM8iid//EwCn90H9CL7fnSJPlgtd/w+8fr0BlbQMsaW6+8PaJuOWV6xCZEO63kWHQVNfrCAkJidbj4jsn458/G45lgUBqVkF5ZSj3cpxkLTbIiGhCpQQ0KoeTapW+3jSD1JkCRa83Y9fODCyYtxGiRgXGaHbeE/ovvVT3UdvJL9Xj7ucvx8jhnV0eX/bPUTdxgzOLNx3EzRcMRHyEo4aXmBiJTz+4CU+/sBillU7z0E5xeuSeObzBIsPH0K4eIUQJfmht86roOAezx7Op2KEx5L3+8OdWHE5Q0nc/tHMyrnzkYix+76/6T0R2NBtiZiGE+AgwShnEGhNs+eX4La8EYa/OoI2yRJhGhGfk2OwPtU6Fmn6pLuKGemQc7P1TId94yCXJiDTtZh7MQmyHaHQe3Q07j/ruK0iM837O/bdC5hUSEx3j3dbinnvuQXa2oy558cUX4/bbb2/V9UtItAUhtWMSX9RUGHBsh5++Gh+ERgejsrjlTYvT7puKm168Fgvf+SPgRv/GzbSzXr8eX87+3qe4YdglA+mYZPLMsQiL9v75WEwWPH/529iz6gDOBE19zyd2p+NM8uMrizFoSj/0GN7F7Tme5/Hjy4vxx2d/o6rU0SNB0uQuuWsybnrhGoREBfttbB0wuU+b7buExH8dMiYhTfNNghegsZpQzbnOSdSLnW02iKUVXl/elDFJdXkN9qw6iIVvN1/glnsiH/d86G6ksfKb9W7iBmeWfrICV8++FBG118vteybj/c0v44XL3wpIqNxW/PzW79TEgiQxDJzSF5fccwH+/Gyl+4J1wzQRMFSb8Ou7f9K+gZ4juuLaxy+DocoQ8JjEZDB77d0i4nehb6pLPc5stiHDbEPSpcPQOb8YB1Yf8JsYJfHv5bwTOEzuHgud8gj0AUbuNocusUE4mNeyi2QZy1CBQmGVGb3iQ7Ato6zJ69j8+DgczK1CZqnv1AoFx+LBiZ3o/aMF1fhlVw5yK0yIClLiqgEJGNDO0WD06fpTrSJumDUiBVtPleF4UY1fccPYzlFYeyxwBdxmoTc6s010ZW8Ju+d6FjiseRHY8p7rY1Y9sPMLoOQoMPkVYMG1vtdderx191VCQqKBkCQgJBmoamITIm8BOl0IZG1y/E3XoQ53JDx4gzQRtZ/gd/WkEbFmbTZqNudBtPhPAPCH8WApNH2iYDpWDsFghyxCBcN+/8dU4/4ShExpaPyRx2gR+/ggWE5VwppdA0bGgtdbYdhRCNFPdGhrIZjsMPzjuLgn2+VClQi5pAPMR8pgyayqT2wQrYJb+kPZd0cQPqMbNL0iG5bzJxxsqrjBeV+rrfQzauy46wIDaAdJF8mEjpexyN3YcpV5x2nN988gBX9yC4Rvv/22XuDQuXNnzJkzp9nblfjvMuqqofjsoXn1hWyW/O90HrHFhcA0rAOEYFX9YyTiXlnJQ25q9PfSqHmmrnjTrnM8Kk5XQGgX4ZhQrT0m0eQGcvOxf4zBDFlWMXUJ0gZrUF5YgW7hwdhf7L0YxFjskBe4joEYlsGCnDn451gOCne5NuO6vX5gCq6/+5L6hpwVc9fSiFBStJk8cxy6DXGMV75/YSEVNxD4IOJi7sE+hzr1+dwcrrl1EvYt2IpDVh6iwns+g1zGYeCwrtjbxAn/MwmJ5vYkcHj3t02Yv961sVVvttLHMovKcdub1+OVa9/3ue7sY2dwbCUh8R9jUEI8pg4EeMUBdNEW0WSESpsaW/I640hOUsOBrNE15dbMGNzffxh2lf8CE99w3NXJknC4qga9g3M99veI0KBv+I1+94ukLSzM+RPLC9bBIliQrCpFH12B2zrJz4nKCvAiiwqrc7MLadsX64UaG4v3Y1RUN6Trd8DM1yBckYi0Sse1lHdEHK3ehJFRM+of6ahLwPeDX8DuimM4WZMDOSuDTSzCltL1sApWRywxI9KEBvJx6ViLS8+tWZChzKalyxBTkjp4kYNMtHvtz6X9SiKQqi2GkuOxuzyLPr67/G+EymNwX+pVWFd8BMeqM8AwLGx2LQ5VhcFsbxC3H6rMwz075uPDQddhTKxjolXBymERvE1oMzALChSaGUSrvA9KSMqDt16uSlsJUrQNyXyeYMFicPg4nOuQVJC6lJCWrENCQsKVMdcOx5ePfQ9bbVIAdY325GznoVmfLi8ArFWEoPT+95WikOHUhiOwt4sCnxJNHaBJAyQReAtaubu4wQlLcghUEVpoDFaotCraiELcoNOb2LwvV8nxU84cbFu6G+UF3sczBF24FtOfupzeP7bzJHWkK80vR1RiJKbeOh6d+negz33z1I8u4oY6uOIqKLYcg717IoRIR0Ms7Dy4vHLID2fXpzKQ5mDN2jRcNud2bD6ajezccurYLc8ogeJ4AZhGaXDECbvrkFQc2JCGc5W/5qz0KHD4+N6v8dcXq10e01caaGNA3sl8KnJ4+5bPfK47h4xJLvWe8CchIdF8+k3ohXbdE5GVltuk15n/OYm7F8/Gj7/tRLW+QXSQFKZF8ZIdYDokgwlpELeJNpJ2XwKNXo9rHr/M7/p5XsDcrzdi6e97aGMKSOPSoO4QK6rBHM+iqaNMZQ1tZBEDcF5dv/EY+vdLwfad6VQ00S45Aqt2+Z6DFUQRq3efoCKHOrp2jsOi+fdix+4MnDhVBJVKhsLCKixfeRAWix28DBDkDfvjz1yEwLloNhiIkSHgg7qC23kUjKVhvGAPU6Pi8m4oClXh5HZHA9gv2w+iXWQo7ph3F7Z8tR7H/jkBVsaRwFdYMlwbpdK2n8CTF7yMV/56CgMm9aHpSOTG+zEzsQSpIQRrfLwBDnxyNGTH3X+HCjOK0dPpPXhCJmMxZWLzDUzOFOf6mOTnn3/GTz/9RO9HRkbi66+/brNtSUi0JuNnjMQ3T//Upk7UJHmtpQIHcj0uV8ppYkBSlwRkH23aeVMTpMaPWZ9j/YKtfl2qQ6NDaNMnIW37caz6dgPKiyoRnRSJqbdNQMc+KfS5Lx79vlXEDVc/eim2/r7Db6ITeQ/teiTi6D/NF5u0NX/OWelR4PDe7XPo5+hMTbkeP722BPkZRbjpuavx8f1zfa4753geBkoiBwmJNmHw1L60uTz/VAAmpU4YjmVh5qd34dcftkFf03BRnRAbjJw1u8mgwuPriOkCEQn7g1wnf/nYD/jri1WwkjFJC9n4yzZ0H9YZO/7aQ5v92/dMwvpfGhKiPWG38dj86z+Ydr/DNInQfWhnLMj9AjuW7UXGgSyotEr62f09bz1NizgTkOv8ZV+urp+jJmPKu967GRt+3orju9IhU3BgWdZN0Hdo81E8PvElvP730zTJgpxbyXDOX9gPMT/01bsldEnyWr/MyS1HjzE9AB8CB4VKjok3jsa5zrk+JjmXOe8EDlqlDA9P6oyX/2q7YvCJIv/RJv4g6Q/fb8/CTzuycXHvpjdAdo0NQrBajmOF/i/Wjxc6LqLJZzJ3i+sEwYKd2bi0Tzzeuqo33Z+WolVyeO4ShxPFa8uP4stN3h37JnaLxuzJXbAjszxgQcp3/GTM4NZCzXgpmKhCAXML4pcbU3zU/bHqfGDrh95fk7kJGHwHMOYJYOOb3pcj62A4YMJzUg6zhERL4a2Ov32ZClAGA0cWNV3cQGBlQNJwIGkYUJ4O2E2AJho49rtvgYPIA7LGjqbuVK/JpgKH1sJWZET+azshmpyOoTL/Fyy80VbvxkDEA4LBRtMGVJ3C6K2O4AnJNBGCr7aiemXz3OWsKhsK25fDRpxrK9SIzg4FE0DQI19pQc2GXMTOHghGwaJmfQ6qV3k5T4lA1V8ZUPeIoM22qu4RMO72E73dwsRM89FyBE1IRs0az99n8MR2kEVKCQ6EqL5AcApQ3QKDwuD2QJRkniFxHhEUpsP1z1xFi/eNsUfpYJjYlah9XR4XZQzMERyYUhEys9NBqsazmDn9YBbkIRoISRE0scEjxHWHXGcraod1okhj5RX7MmlTjZUBfv14OZZ+ugLDb5+A/UT8RQRcHlAeyacur850HtABCpUCJ3MdaRC+SM8rpUK/j++biz8/d3V5IA0xxLHo/k9urW+OsUfqAKXnBAbWDgg+gvtCBeC+p64EnroSb/+4DgvX7ve67PiBnXDLkO54aO1hGgXaGhB3IFJAby1OH85xeyy3tBI/bfCeVrU17TSm39UX1zx2KRa+/YfX5X54cRGNab3xuatbbX8lJP6rGGxWFBirEaxQIVqtwyenvkTPiKVIVTsJkNVA/6AsbAjvhgUHhntcj0Ymx5DIyzEw4mJkGfbDIhgRqWyHN47+iAjVTlTxaug4K+S13TSkOGwVZcg0hYFhapstffBT9m//Z+8soKO43jb+zMy6xV1JAgR3d4cihVJKS929pS7/ursL1F0opdBSo1DcXYIEQkhIQtzXd2e+c+9mk92sRuCDMr9z5pBsZmdnN+TOvPe+z/Pgt6KmRkQiYvAXdhMvq8IBIR4seKillsZEAXKJ0dtk4IU9WHD0N5j5pusVy8hoCoP3bCIHRlt9o+Aiu+4Q9PZ6xMhjMSC8C92czIyfgd3Vu1BprsC/ZT9QcUCVTY0aKKFkSV0j0PdvFRzXOtfXJOfMMXzjBHrz3ijyuNEuQYq6EnKX9Aon1dYSHKhZhGe6fwAJI8V7R/7FR9nrvL4fu8Dj5QN/YWRMJzqu9g3ric0VO3y+f/LaUsb3ggRDz91/0XKodifGR8/CytJfvP78grh5CJM5ROAiIiLnH8QNdO5DM/HNs4v971jvOy1ZorfBIpHS1IXmMNV65P29hyY9SHNL6UYgI5fxokGwKQLP/Zg7R0OyKZc2w//yzh/UzbSlAofMgRmQyqTUSTqYNDaSOPDmjQvowrArpEaZetME3PTqlfjz03/pY7xKBkvHGPDhaipkkOZXQpJfCfn6Q1TEASkHxmAB46V5NCxCgzuvH487Gxpu/ly0yud5jbl0GKbdMhH3THoW9XEhEFRyMAYzpLnlYFu5yH4mapK8QwUe4gZXNi7djpl3XoAL75iMZe/95XO/Tx7+ll47L3kgcFO0iIiIfwx1RmomoQvX0AbKp2e/1mJxg3MMuXzmQFw8pQ927M+HwWhBekoUnp36AtjUJDBy90kZRioBkuNgLS2HmqQFBeDD91fil1+8GE2E6SD06gjsPAycKgeSYhxzQwE4lH0Ks6/4gJ6nE2uiPKA5Rl1DYoTVbsf23ALUGs1Ijw7HkIHpdHNy7ZXDsWHTURSV1+DtXU33+KQcIWWZ4NtXA4oKHrXJEtgblo8kBgHyKgay1FhIjjjWFgSOQeXsruB1nmtMeeXV+FwQsGzt05CwLG3CWvzGbz4bpBbc+yU+3v8GbTgibqukwcofFm3g35dARH0+9CLbf9yAS1+6Cj/8vM3rz2+/YSzCw9xT9kRaxsmTJ3Hrrbc2fv/RRx8hJkZM6hM5N4hKjMDF905vkyt2II62Q7oZadAkzfA/v7mcjp0tFTh0GdIJEqkEx4OpSQ7k08SBV695H6u+Xe+R5jzrrgto6sA/X61FWyFpaqS+IdtLV77j8XqukMbPMZcNxwPjnoatQbjdVs5ETULMtJqLG1whzbjkM51y/ThquuWLD+7+nN42kPpFRESkbehrDTTJkTj5h0Rq8diMl1osbiCQ51523UjMmjcYu7ceh8loRVqnGDw69knA4nuuhIgAVP4EvA28fevHfseFlnJg0xFclngzjC4CcYlzfd4P+hrHvBxJYCPGF+T71G6JGDpjAN2cXP3MXGxath2Fx07hx5dbd10V5FIIUaGOHoVaA9gq/6I8J6Sm/OPjlfho3+u0znjvzk/xq7dEh4bPf+F9X+KDHa/QHoJeY7phz79Zfo9v9dMzLOjUgNp/39WOrCKaxLT0Pc+0CDLfdPs710MX7pmyKvLf4ZwTOBCuH94BahmHd/89hsJqEvXevphI4087QYQOS/ecgkrGwtDMldofVw5JaRR0BCM6IEKG5uIGJ7/uLYJOIUF5fdsbekxWOyrqzYjQyHHn2AxsPFaOrCJPEUZ8iIIKIVYdKoE5gHuEK/lCDG623oP3pO9AxzT73UqV7StuIMi8xGvv+9HRzOyPPd8DMz8A1r5Glrl970dSIAq2A5d9D8jFwVREpMVYjUDO38Cp3Q6RA0EbB9T5jvnyS0wPgG2YjY5scADg7UCtZ8HsjgBUHAHi+vpNKKhf1/LFBH/wNV7GbVsQnftWHoa9paj58wQVEjiRJmoQNjMDskTHeMQqJFD3i4E+kFjAC6Sd6cjAk8jteQq8pOmclHUy9F6VgfDiwM1XfJ0Fht2lNAlBv9X/79ReY6YJFIpOYdCMSAgscGgjJCFCMzCOpl/Ury+gyRcEWbIWmuEJUPWMOq2vfy5BioaBj7BYfTcPu6tjVZBwCmDgwyw9jojIuQRxBiWLut+/uIRO5Dgx9Ur0EDc0wjAwh3CQmJoKeeZkmdddrSYrWFMNuJPlsCd5b16UHsiDJKcEfJSOOq4xNXqwejPs4WqYB6TClhhGHQ/YGiNW/bsf4TYbqvolQ1C5LFTbecgPnoJir6fT/4zbJtN/1YomF2tfqOQy2tTSXNzghExCK1RyOuFNzAWMwzt5FTcQSA+qYBfoArAHFju4VUeoayhx6bjpwiHYcfgkjhd6JubFR4bg7jkjsfbz1Q53iHZArpK166Q9QUmSLJqxfNsh6jboj9+2HcTD983A4jeW+3XJIqkZWZuO4KklD9DfgYiISMuoNBnw6t61WJZ7AEa7YywZHBeCftFL0U1d2ph4QBr+eeKpzzAYG3MIxxOjsLWgo4fw9sKOXeh9j4SRIV07kD5mspthsB9GlNwGGySotkto8z45rp0emUWYrA4Haw9hQLjvmqTGWos/T7k2dAqIkPpPBZWyPDSsCTK5HRzbdLJkiE5SViFEmgdzsyGGFywgVZUNzoghL5+bhcWWig1YVvgTqqxN18kO6nRcnnwdElXJ9HuVRI1hkSOwrGATDPOrFAABAABJREFU6q0yaKSOuo+8ez3vPmYR0YWctYATJNSpxvV8G99xw0M2noWZl0LNmb2KG5o+szIcqFmPHiGjsLxgC5QSC01v8CbeOGmoxM7KPPSPSMX0+AnYVL7DZ3KEhecg5Xy/bjC3vkT8Mip6OmIVyVhb/jtOGo7RxzuoMzEqahq6h5wbbtg0RKONAvQ2Pl1E5D/L1U/PpU0lP76yzGe6AWMwQaiuA0I956ZZHpDXWGEz1sNOagqZhCY0cCdKIT1aDJuXeX06fJHHiYlIAHi1zG0BdMOSLZDIJbC1IJ37woaaRKkNbDJBXEl/eu03D3GDE+JOR1LuSIOwJS0KpsFpbg5xtpRIsFV6qFYdakjp8/1aZEHbqDdBqVbguhcuw/71B1GQ7Tm3ldgpDte9eDmWbTmC6um9YScXswbMvZIh33cS8oNFLXagbf+axPPz/efLQIlNwIqv1uC65y7Dr+//TQXvvvj4oW+o09/ji+6lC+AiIiIto6qkGp8+8h1W/7CBuo+SeiK9dwqO7T7RdHOpVTtu4klTv5+GIMK4y0fQf+VyKYb1dzT615TXoqDaDIbMJfnAGhGGrC1H0W+sb8f+srI6LFvmnkbphlIBxEaAKSwDDuSA6d0RgnPNxgtkDqmwxJEA7YrNYAPUvpOE6HNLa7F4+368u2ozylwMRvqmxOPpmeORHh1Bv9dplbhgUk/a+Co9VQdrnLbxmietAywh3sseSb0Ai1bi9iO7AjCHcpBGxkNXUQFpuR7GzpFexQ1OTlbUYNX+YxjbNR1//LTF0eRTZwDjZVw9kXUSR7YfQ+cBGZhz7/SAAoegbqT97EMSmK6fNxTpqVH4aekOZDc4hPfukYRLLxroJhQ5mzmba5LPP/8c1dWO/gfSUPbAAw/QzRd1de6NahkZGY1fDxo0CN9+++1pOlMREe/c+PIVtEn1p9d/Q3Wp53jdVuzN0tHaKnTY/OsOcFKuRcedcdukxnojECqtAt89v8Sn2IAIv8l40h5mTIZaIyxmK2RyKW585Uqa9nPquOf6eWq3JNo4+8vbf7Rb2obsNNQk3j7fFUHUJKRuufThmQEbmd+/+3PsXXsQj353NxXRi4iItAySkPnpI99i7aJNtGGd1CQZfVJxdFfrhGjOmkShkGHIKEeSMRFzl+aXBxzLj+7MQbehvtOPyVj412cOc4v2ojDbc+4mGMEYmVsja+dfP/MTqlzqmh4ju+Dej29FYsc4+n1IpI6KtYggr6WQmonPTIYQH+k2z8XXG8HtPw6mPnBvdf6hQmxdvgt9J/QIOPaS33nu/jx06JGC2fOnBxQ4+D33IOaIKirqcPv3tyO9Twf88s7vNPnCmWg45/4ZGDCpN84Fzuaa5GznnBQ4EC4dmIw5/ZOwt6AaRVVG3PG9b3fLs4Fg3KydzOqTgHkDHQu9E7vG4MllWbD4udGc2iPep7jByW/7WtkM3AxyGierjFTgoFVI8ePNQ/Dp+lz8uD0fRTUmhKmkmN03ETeNTMOek9V4YlnLB7F1fC8MNb+Li7j1uK+7ASFaLWDWA/t/RLtjrgO+vQToeyXQeapjoNcHdqiFvhRY/YJ/cYOTE+uB3+YDF/uPRRMREWmGsQrY9j5gbdaQ01pxA0l/SB3j+XiwTdXV+X4FDsaDFbQp/mzAWmmE4YdSj7sba0E9yj7ej+jbe0Ma3aRq1m9r+Wd6rF8hcvp63sQbtRZsu+Awhi/pAU114Ime+k2FqF2VT8UOgSBJEwRZjBqyVB0sJ3ynHDFyDoK59ZNejJQFq5RA1SOSbrzFcSxW5seu6TwmrBODYc+y2Ph4y0QORNxAnkeeLyJyLkImtqfeNJ4uLJII4Bdu/xi2hFC/z+FlLI2852wAU1AGtsR3ghD5y5BtOwZbtQG29Bjq9Ekfr9ZDeqQIkgJHUz/nMiFiiwuBgUwEuYgs+BAljP1SIa8xQrdoF2zJYbCHKMFYbJCdqPTqGjr5urGYcNUo+vXYfh3x5k/rYPdTk4zr1xFL7vrK73snk170HBPCIGjkft83ZwZ4qQBe0nCttvOQ5VVCuasAqDLQCS4icAjRKPHJI3Px7d878ev6Ayir1iNcp8K0YV1x+aT+2Pfnbiy83/95BWLYrIEIjwlFXVU91vzoeA9tRWAZWNIiYMmIwsmUKNz73jLMHN4dI3ql0UnByiAmmyrqDPjs0eAiwEnc9Xt3fIr7P7utXc5fROR8oUhfigd3vgatqgiTMm0wWSXIqw5HNX8KmcoiSGCDjLE3lhRkctIOliYOXNxpO6IjanGkOB7HSmLACyzCFUrc1schamg+ZxQpc18UJA3+rn/dLCOgxLiftOP4PN9tlXtgE1xEdA3PC4RSYoW9ISGhCQGRUt8LleQ9c4JDgNEcK8/iQG01Vpcv9PhZrj4Hb2S/gEe6PI0oeZMr5fKizSgxaaGWVPgs0WyCQ0BCPnPyWTskIO47k+eS3lHyOIn71UgC35yuKf0dH+b8jVB1LULV5JLDoMqkRKmemGK4H7/M5GgmSdekIFmZjjxjjptej5wXef9kYyVE9O3dOT2YiWw5q4SMVaB32FC6me0meo2QsaJYTUREpImL7p6KC2+fjENbj6IguwivX/+hx8fDHMmD0LMjoPQcP5j8UsiPFzbeo5LEhkBwhZVgdNEB92ObGS7xvACVSh502jN5X6MucSQijbx4MD579Ft6DF+MmD0YP73mO92MsG7xZioINw1O9yq45sPUMA7rCPUq/wniZoMFFUVVdCE6NCoEb296Hotf/w1/f74alcXVCIsJwaRrx2LOfdOx/mA+Pvxpg+dBOBbmPilUVCLL9b8mMeLiwTS1gzQ5r/95K9oD8vu2doikYo/c1Cg88PYyzBrdE0N7daA/ry4NnC5O9ll4/9d+xQ1OtizfiQX3fYW73r+hXc5fROR84URWPuaPeBz66qb7SvI31yhuiIkEYqMcKQsNP0NNHXCikHTTeBwvPDaUNoE0hyXzSBH+57QYjkPWoVN+BQ7r1h72O1bTc4wOowIHproezJYsCMN6eB2TaQOIj9pAWs/D5kfgwBitOJidjw/zPaMJduUV4epPfsKi2+YhPrTJqOn3j1dCbTGgekZm47oRSRmVVQM2VUPaKKmDjAJk1Tx4kvTj7cVZ0HOrndYVoT/thSXVt2jEyRe/b8WC5/9GbabDAJGIVOi8YU6Rx2uQ6w+h1+hu6NAzxW/KURgjwNMSxB2m3HdDMhFSEmHaxLHd6EZSNDiWoeIYkfaBpE+5fp2Tk9Oi57vun5iYKP5aRP5fIElds+6+AEe2HaNCLOKafbZC5tJ1oRrUVgTXnE8SKpwO2yMvGYKvnl7kd//hswbhq6d/8rvPxiXtcz9PhNtEVBKdFImIuDC8s/l5Kvgmjank8Yj4MLrOQ97D6h82Bk7/C8DoS4ciJEKH0pPlVCjS3hTlFOOZOa/R5L1+E3rRx6rLAotmqkprsOC+L4N6jQ1LtlLR6C2vX93m8xUROZ84ticX9416ko47Tkjd0VpxA0kAumj+VI/HGX9R1C5kbcr2K3Ag69HBzFOcCbI2HMLufw94PL5/3SHcN/pJfLDjZTqGOyFJCi2F75wMIdHLPJ1GCXvfTuC2ZNGegEAQEcar170Pkz6wCK+8qIoKHAZP60fNPbyZfjghc2Su4g5XGLMlYNN+eLjDvHzytWPoZqw30vpV7mWeU+S/yTkrcCCQArpvchhOVvqOWT5b0FvsmNMvEWuzy1Ba1zQQJIUpoZJLYLbakRqpxmUDk6moweliTIQE1wxLxUfrjns9boxWjhidDMdK/d+A1xitkJAJlXbovQ1RNk1aaOQS3D2+I92I+xD5nTj5cG3LCnBX6qHCMtk0PHrxOBoFjTe64rRgKAeO/u3YMqcBc74EQh3iEr+EJAEHWlAAHPgZmPAMEJLQptMVETlvsNQD294DrO00vockA6mjgcpjQOVRICwN0MQ6fsawACdrSojwBUmR8YPg4sb9/42t2OBTukma/uvWnET4JZ2b9i9vWRqSTWLH8Z6+b1DtMp7+vOe6tMDHKg3+tbnQphvUkAs6oOzDvT7fJ0lZsBbUwXTEu4NhIJS9yKJQ0wKJKGwITEx/BmPeZrHtRR61Detr/tB1cCQ3iOIGkXMdTsKh65DOyDVbYZzcKzjhXHUd2KPFYCoDN4xQt7jsIkiyixwCB0FwuIl6gSYjDM7wmSBRHaLErKcuxq4PVqAqrymxIS49hk4CWEwWJHWOx7SbJ9IJCSfRYVpcNLIHflq91+txY8O1CC+p9+oO1Nz1jZOwMCaFB37fPBE01EJysgKSomqwxA3EpZFfE6Zu/FqrUuCWWcPoZud5cC7uFN+/9AvaApl0eeyHe2gE9cXR16E9ECQs6iZ1gT3GsYhebrVi3Z4cuk0c2BnP3XAB4sMDJyHFhWqxfvFvQb/uym/W4voX5yEsxn/DgoiIiINaazXePPoYonRNY7VCakPnqFKEs7UI5/QOcUND4w0RNthJMgNtu7cgVALMiNmDushDOJQcjwOFl+PugX1xxLgLh40Cuuq6IEEZT48r52RQcoGFtKEyz8QXVww293tr0uRfY1MiROL7npuIAMwe4gZAxVogIdbefiDZEs2xCwz2VicgVpXt+zzteqwo/h2XpzSNqwXGcpjsCuTrw5CorgbnIswgaxFE3GAXmj4jcrllBZ5+7s1FCOQ7hhEgYb3JLzw5aShEjbVpEYEkQ0SqDJBxdhTUuo+ZcUpi3+rg6g4z8ei+98AwdiokERqSI5znMz1+MopNW3G0/pDHa5JUDiKk8JZC4aRP2EhwTNN7lhN18DkIT8QmLTB+8XUMERER/zVJ92GZOO6jwZExW4Fdh6ljthAVBkg4QG8Ec6oCDEl3cO4XhLiBIM0+BWtyOGyuyXBekB8mSUfu1FfpaZPNlt92oLqs6RobnxELuUIGs8mClK6JmH7LRAyY3Kfx53FpMZh4zRifDnzk52Rx0zVdz1tDf6mEg7V/qs80OYI9LgT2UBU4l2bi5pD1G01ok3mILlyL656fRze73Q7O5br+1fLt8Iela4JfgQNZ+P/f9/PpDcfsqHaqSaQc9OO7wh7pWCQuN1mwdlcO3aYO74onbpiEmNTA6aWRCeFY/Z0X8YYPiKvqtc9dCm2Yl2RtERERD4iD6d3DHqMOzV6JjwYT3yQaJtD15VAdhM4y4FAO6Zhu/FmvMd0w5/FLsGlzDhjmOPoM6ICkFEdqKPm7lCjkAW3dtBH+0+r1QTTDkBRSJ6zJAqHeAIEkUHgbmn3Ms0ksAqS1dlh1XuooGw/12qPYPq+bz1Oo1Bvx5cZdeGTqaDdXVgUvQLcyB3Wj0yA0rA+QQDhZjQBFJQ9FDQ9GYFCbxPltxCGlC6+QwtQ9DvCWUNqMY8dLoa11+fRlUghp8eCVcnAH3BvHopObkl5veuVKPDrleZ8NXFfcOhH/nKzCwSM+1nOsdnD5ntdrJ5OucTcNUynPzRQesSYRETn9EEf87sO74PB2R/rk2QwRNxCX7I1Lt6G2oqkeSugYB6lcQtOSOvRIpjWJs9GekNIlEWPnDce/Pu5/EzvFw2yyBkyyINd30sQrBFl/+YLUP2pdU/8CEV6TRA2yudYkRDy16NVlbXqt+PQYPPrtfJrM1141CbwI+IiYm2xE5DB/wU2ISQksrI+ID8efLWgI/m3BClz11CVBJXKIiIgAp3JLcM+Ix4Nqeg+GfhN6Yvb8qVi3eAtNr+o3sScSMhwpBpHx4XRsC2TspnIZ+7yhr2lFn5lzoaedydrse52EpLH+8vbvuOGlK+j3NqsNJXllLTq+IJdCSGiqDzyQS8EnRoPLLQr4/o7tDl6w4laTvHoVnpz5is+a5MonL6Gpqjl7vDQR1egBvQlQ+177mDypp9v3Ss25OX6LNcl5KnAgZBXV4L5F3httzjaOl+ux6eGx2HK8ErUmK9KjNOgc638iiPDw5EzqUPfFplyYXNzB40MUMFrteHiJp9LLG+0hbiCCiu25lYjSyqm4wRWzzY5f9xRRsYWUY7E73xGn2FrmDkiCgogbyORbbVMD1mnj8HJg09tAv2uBf54EmjUGuJE4AMhqSSyQABz+HRh0U3ucqYjIf5+cf9pP3ECoLwH2fu1+RxqeDnSbC8i1gCYOqPHtckPROpqPfCGJbWq0DBbSQH86Uh8CJRcY9pUjbHYnMA0T66xKCp5EOgdJeWINbHL/r1HSuRpqaxz0m9snQYgLV0CeHgJbhRG2ShM954jLu6BycTYEk8u5sIBmcDx045Kp6IQkVlhPNUsBCQBJf9CND0LsJuIBEStM/IxF2V4gZymPwvWA4PJfnPRnJQxnkD6TQRTtAxcblUT+G2QdPYUXF6xwzH6Q4t3f/207D8me42CCdC11a9YMEFtMkxECNBmdlDD4Ln8B9qzOgqHWgJRuSXRiPhD3XzYGMokEi9fsoeJsJ/FKBZhFO/BuPnn/gbExDOwJEQH3Y6sNUK/2bAh1TprsXrUfI+cMgbLZhIdZb6YLDMS9lkyCOWMqW8sFN46n4gYSGU0EGu2BYVBqo7ihOSu2HUG31FhMH9wF7/++CVab7+ttN5kKW3w1OXjBbuOx7c/dHovTIiIi3vmt6DvY0FyIJiCU02OM9giUrK1xUo3k4JC8BVZgYIUjZUAq2GGFBFrOjIFhuUjWfoUP89ybMnuEdMfNaTdAK9UiSp6MCounu6grMYpUvz9PVnnWLMeNkeijPenzOcXmaFjh6b4ZTPIDudyVm1QIkxmpUKLUpMVxfSQVI0QJvhtMCdsqN7sJHHQSFUx2C6osKtRYFAiVGemmoOkSniIG5+szguA1xYGcvloiw5CIiThU538R12D3fu3Uyc1QSS0wWB0/T9NEoXd4MsrMp1BpKUO4PAT3ZV6F947+AKO96RrNMSxmJozBnKTxqLcNwpvZz6PMXOB2bHK7UG+TQSc1e71tULAajI2e7fe8RURERFzZt+4gTezyBRULE7fswpYtlHqDrTNCufYw7BMyYQvxPoYqDpyCpMr73B5JIfg2fwH2rsmCsc5Im4eSOgc2BiINLnKljLrZWV2c50gjPmlMev+uz3w+1x4bCnO/dKJWhC0IgzdbjM6vwCE2LRrb/9pDkyWaO8YZzTas2LAfBcXV9PJ1osj/NZEPVYFXy8H6aBaYdstE2pxUW1nXukV6LxgHdGgUNzTn9w0H0T09DpOuHUNdXv01FhAxCqmVgsVmsWHXyn0YNceRzCEiIuIf4kbsU9xAmhZjo9x6VFxvKxmlAkJkGFDa4N8v4ZBjAB5/2N28bdCwjnjoqVnQaBVISg7HiZP+DYNS0vw3GnboEFgcRRtYXN+KVg06qjcvQQJMHROxAWfmYbMZYIvSUrMMKUn/3FdEr08GP2JiwvI9h90EDroILRXfKY9WgU21wRLCgZcwYOwCZHUCHPpvh8zbLg9wcmSKkAVk/ZJxQfcU/HjMu5GhE6ne+7kKcREQ8kvB1DrWODr27YCMPh2QV1SJ4oo6RHSJp2md7935KYz1TZ+rRMpRR3WS9DSqqh533f8tCpon81htkOw4CsZLsishJFKHSx680P/7FGkzTz31FN2C5YsvvsC1117b+P3Z4k4sIkLY+c9eLLyvbWnKZ4r66np8f9KxTmLSm5DeO7WxwdYfZMwlaxJ/f7EaNpd1ktgO0agsrsLCIJME2ipucIrEtyzfhRGzB9G0HVfI/cOqb9ejOLeUChzIv21hxm2T6Zouqbvaq8nZH6QRtsvgjphy/Vj8+PJSv2NdXIdot/owEBajBfvXHcSgqU0mXyIiIr55/+7P2/XvPnvncTw69cXG78nYMmzWQDq+qnUqxKZG00QXf6R29b+undq95b0+RGwRSFjRGsiY4w+ypu0UOJD1aKVG4XZfHwghKpScvN99QrqnYOjIzljxxWq0B12HdKK9BXmHClB2soKK4O7+8EYsuPdLtzkiqUyCef+bTQWDg6b2xb0jn/AQcNAU8ux88L0yvL6PCJ0Sc2Y7kpREzl/OeYHDFxtPwNYON39ngrwKPSQci+EdvSunrHYeNrsApczdbYJlGTw8JRO3jkrH6iOlVNRw6FQtvtrctmad1lBSZ8aDP+/DM8sP4n9Tu9DECcLfWcW4/6e9qGsnB/NhccC9oeuBrMNAp8mAOgrQt33xJSDbPwOGzQcmvwgsv8e7PK/3FUBkx5YfO3+LKHAQEQkGmxko3tO+n5VLs0kjlTnA7s+AgXcAaWOB3Z/7fr5UA0T5T5KRp4VAEqWErSzIRsOGHtj2hlVJAosVbDwEG08jpQmq3lGoXZkf9GvYJYFv7G2ClYobBEagjkZtgmOgHZWI8k8PwHysSTwniVEhbE4nCEYbTaFglRKavCAJdTS7MioppMnaFgsciECE19sA0eC6VZAiNLo3EN2bg1UvwFgO2AyARAUoIwGp+v9X1HDNNdfQTUSkPfnxj53gBUd7JWttiKz3gfREBU0jaE/soWrYOsbCmhg48r6gpJpOkPSf2OQ85Apxh7Db7B5NOiQV4Z65o3Dt1IHYtD8XZqsNx//ej79eXNqic7WlRoMhajQXIQi5HDaacpOHeUCa17AA74XS/HK8dt0H+GD+57jjnesx4apR9PE1P27EmzctdItIbQsZfdOgi9Bg3eLNGDStH9QhqjY3FPEyDpZ0P04aAH5avQfzJvTFPReOwCs/r/G6z5zhPZEgbXn05v71h0SBg4hIEBhteuyp3uz2mJo1QScxobciD3ESMzSM0Gj+bBOAWp6BnsgcBAEkN0DC8LC63O/HSvIRKdGh3NYkcNpfcwCvZ7+FJ7r+D6NjLsHPJ5/1eU5aSRTSNf39nnev0G6IkkegzNw0huabIhAu0SNF6dlcWW4KwZqyDMRoKj2a7M28JKBmr9Yqx9YKz9S2ZBWZbvTfzGnmTbALNnCMY2pyfGxffNcgACEZGJUWNZQSK6SuatkWGSsJsNiNWFK4BZ20LDhycfECSZyosfp2/AmRG6nAQcZKcHuXfnjv6NPI0TcJ8OIVKXiy+2UoMphQZCqHTqLGqOh+iJQ7igmtVAfeNgDHaoxI1lbR8yVOPVaBgYzhUW+XQ8Fa6f8X8lmTz9wqcKi12lBvM0AnDZx6dLYjCAzd2noMERER/yx5a/kZbXDjKuuh+3EHjANSYO4UBV7tKILYGiOU+09BcdD3YnTRsWLI5FIMmNTb68+JyJcksylkUo+kijvevR5XPHExFRdYzTZkbTqMFV94v2d2rZfMgzv5TLrzBhHQ+eNUTgleufo9fDj/c9z5/o0Yc+kw+vifa7Pw2qerYCSpGc5rlCzwGEbSJbyROTADCrUcG37Zin4Te9Gv29pYwCsksKb6F50v+mcPZo/tRRMpPnn4G6/7EMfFsOimZKNg2b/+sChwEBEJgqrSGmz8ZZv3H5Ixo2MKQEzinDfsRPjLk7l4l/0iQpsEDp1SoafCYXe2bjyKx+/7Hm8svAbzbhqDFx73be4WnxhGUx/8MXRYR0REalBRXu9zH+ZU03ovSfokY77XppwgLmuyEj3Umw96PK7tHQ/fM0sO6kzu4+nYeSOw5O3fYU+OAsOwkNfSGSvvTw5ULDVQW2fE6vnfg72hHx1/vcFYBcirfdc9fHwEuFo9FflNe/xi3PTMD9iXXdT488wOMXj43ydRtSuXpquGRodgzGXDERHnmCeMCNOgi8GA4u3ZsJNUTzLnZ7WBKa8BU+t7nquuqp4KEVsz1p9tiDWJiMiZYfEbwacN/39TSGoShQwDpzSlxrlitVjpdbW5cIAkVcxfeDOufmYurUmIyGHf2iwqJjjTFBwpwktXvoMP5mtxz0c3Y/isQfTxPz5ZhQ/u/gzmAE21wdJ1aCewHINNy7aj5+iukMqlNMnhdLPsvT/pWsaVT87BV08t8rrPpQ/Pous2LWX/hsOiwEFEJAhI4sz2P3a162dVV+leJ5C5rA1LtqK+Wo9XVz6Jyx+bjVevfd/n81O7JdHEIH+MuHgwPrzn86CN68h8ExGDtTeRieEoL/C/TkLed/OahIi8giaIua7qinqs+NV9vau1EAHGBTeMw11DH8WhLUfd5q+e/Pl+Wo8QEUN4bBjGzBveWEtEJ0VSMaG3hAqmsg7s7qPg0+KBsAajeDsPpqQSdZtPwVRzOXQBUjvOBcSa5DwWOGzKCTQ9cfYQ6sNNdWdeJT5cc5yKF+y8gE4xGlw1JBWXD0p2czYOUUkxs08C6kxWPLfcc7LmTFJvtuGRJfsRrpYhLkSBO77bBau9fRZQRksP4ePKFyBd0aB4VoYB8X2BnFU47dQWAHXFQP9rAV08sOFNIL9hkI/IAAbeDAy8ESg73PJjSzwdEUVERLxgrgXs7VNwB6S+GCjLAmJ6AomDgYItnvuwEqD7JSTn0e+hyHgdPrczyj45QJMDPA6jk4HXW0kHjeMBoW3ROoyMhWBxfz6rlSFsdkdUfJnld/Kf08no8+lp8AK4SCVNLQiU/OBEV64Oeh8ibnB4qrauIUWeEQr1wFhULzvmEB24YCsxoPLbQ4i4qhtC+sd6fT7ZpzXUby5C+MWdWvVckSaImEHa8nATEZFzjp1ZTc7YROAgcAIEL/HzJJVAuc1L/GIbsKZEwtI/nS5ue1mn9iDER+wucXz98ZWl2PHXHvC8gLSeKbjwjil0ksKVUI0SFwzpSp16Ppn8UovPlw9V08V2xg7wEoewoVHc4DKZxdQ7RAqCTAJbQjggl4CpN4MrqgTTIHAnLkRkkis0WgelVokXr3in3dw1pAopju06TjdCSKQWnfunY9eq/W06rj1MRV0T/VFQVoOaehPmje6D2DAtvli1A/tyHYlIabHhmDeqDy4e3hNHdrQ87lsiO+enAEREzgiV1nIq2HUVN4RKjVAwFmTKaqFsNt5KGCCcE8DZeVQLgJ0IubzckHdSlqC8zj3BJVd/Anuq96Fv2BD0Cp2IvdWeiThSRoEZCfeDJXFYfmAZFnd2vA4vHnoXRrvT5YfBnvoUFFlC0U8nQG+pRK2Vxb7KBOyuSIJaaYVaLoNW5l6DWQUJ9HY5NBLfTZTFJk9nu2h5KO7LnI6Pc1/xe66RsuhGcQMv8MjQRCBSDhjtFlh5Fhaeo6kQrYH0GnFEaM0KkHIWlFvUiJTV08dcsfEMCozhVFDhCykrYFh0BuZ16Iq/Sj+A0e6+4FBkysOXJ17HTWkPY1KcdzfqHH0pys1qej7RynraB0USP8i/JJ2CfM6kanJWTs5EirVlq3BZ8tWt+gxERETOP3b/G1zKc3tCRivV9jwot+eB18jpA2ydOeAMkDbCe6r19oP5+OrP7dialUfH8s7J0bh0Qh9MG97Nbb/QqBBMuHIUdUh99/aPA56nrXO824Iv0bz5rZ0EAdypGgRDXZWeNhWFxYTAFqXD8x/+TcWOLWmCZQwWsPVmrzXJ4W3H6EYgDaud+qdj39q2rQ3Zw9QBF8BziyqoSGPugxdSN9qfXluGI9tz6M9Suydh9vxpmHzdWCqgbikSafBCExGR8xnitEwMKDwgw0lmGqBrlsJCxhmOgUAaQZzDUIPBEUK1YDS+m/+y9p3Ezm3HMWpcV2zZkI1///a8pqhUMjz4xMyAibwcx+LR/83A/x75CSYvyQDRsKOq3gi7S9qkvagcSIz2LmYOMIYqy2sc6Q8ukHHrhuevxK2//u33XFNJwoXzPHge8ZN7Qth9DGaNAqRUYW3eQySYhsQFq8bPZ9Fg4CGpswChOoT8ehjVMzpDULivFTMWHrp8u7swpTlyKXU8HXvHZDz300YYTO612+HcEjz03u949+HZmHrTBK+HyDtwEjBZIYRqgYY0VCEmHHxmMtjcYnDHijzeK5ljW75gBW569So/JyciIiLSxN7VWefMx0FSaryxY8VeLHp1Gfb8e4Beg8j9NxH2koZTV8JiQjHx6tG0UfPtWxbi/xOyVvPc3Dfx+pqnqUHTWzcvbDfxO6lJDm7KphshPDYUHft1aPz+dHJ0Vy69F7ryiTlI6BiHxa//Sh8jpPVKwcX3TKfmV9v+2t3iY0sCrNGIiIg0GVSQNeMzARl3yRzD+CtHYsvvO7F+sWfvliZUjQe+uD3gsYipxsPf3I0nZ74Mi5eaJCopEhVFlY1ryl7rrhYgU8o8khrIuHXDS5fj6dmv+X1uIpmzcqmNOozpCdn6o47jVdUBNQFEGn4Ey06YurangZKSbMiMARg9dyjeuGGBR5onmbt66qJX8drqpzD91klej3HigG/TXaa6HtyubAhyqWMd3WShabTkN/PHRytxzbOXtvk9iJy7nPPdDUGYI5w1zOrjGbNMkg+aiwOyS+rx2NID2J1fjdfm9PSYLPrnYAn0lrYNru3F+6uPITlc1W7iBi0MeJZZACnpeHJirHKIGxji9Nr+ijkPJA1OqJ0mOTZjNZnFAVThTf/h/nig5cct2AGYagGF92JJRESkAanSrw9nu1Oy3yFwyLwQCE0BTm5xiJ2IsCG6K5A8AtAGjqQkyBK1iLmzN+o3FsGwvwyCmYc0Xg3N4DjotxfDXNs+wg1F5zCEze0M4/5yR6IBAygywqDsHQVWxkHeMQzmbN9R0upBcfTaYqs2ofzzrBaLALTVSkQU6FCR2CzS2IXUrCbBARE31IcYYVFbEV4U/BhI0hgiLstE5eJsD3FDIzxQ82culJnenU0ZLw3GwWDJ9/3eRERERDzGmmZfcybSvC+AlzZd0qQnKqHckgO24T7eHqGBpVMs/Zc07EsKKiE9WgzWGLzzDU8mTPqnOZz7nI06ARZ+pwz1dLUgyQfNxQHH9+XhzZsWIHv7MepI1Jz1P2/xOikU+KT5RiGIXeZdCELOXz+6I/gDJeCTot2bb8xWyHblQnLKcZ0j7/e7F5ZAG65p1+hQa7P3Rlw+aNNYG29RmCDrJonE8Z7H9sqgW63BRMXwYRpl4/v+4G4/6VM+yNpwGEa9EUr1ue90ISJyOlFxTQpNBjx0EofoKk1a5SFucEXHCqgXBFiIe6qXpnkilPDG9srt6BvWG1Pi7kaSqgd2VS1HsTEHUlaGzrphGBQxG5Hy4GKVO2vT8WKPR/D7qVXYVrkbZrsFaZpkTIwdjbf27MPemnwwpPmfAW3aMVklKDeqoJJaPQQAxZYQJLMVkLGec1AZmqG4JeN+/F28F7urcsAxLAZFdMa4mF6Qc1KsKcvE0Xrf5hAjo8Y6XsNUhpcOfYBCYzEdY5USQNkgPtDbZNDJ/LtUkzQEb7heColYo9isg5qzQM7yMNg4VFuUqLEpoAyQTjc1sT9uy7gSX+cR0Yj3ZDi7YMdvRd/jvs49vP5cxrJQSS0w2mUo1IdAKzVDJzPC2dokBY8+ykqEcWbU8DLsNobDLHA4Xu9oJBUREREJhkANp6cTWgN5adD3xfjL3ZuDCMs3ZOHZz1a4iQOO5Jfi6U//xuG8Utx/+RiP56xdtJk6pgbC3uBg7YQ0rNo533WT5GQluDrv12xvkDrk+5d+gXlkFw9xA3kFstQh+FmJkx0t9poY0bwmqS6tQU152+eryAJxIFiGoWnkhFFzhtCNOHmT9+psBiPuhh/e+0WLX3/P6oMwmyyQN3PDFRERcUdLxEjeCA/1FDe4/wFDsDdIZs0N6xHhgR341/97CP0HpeOhJ2eiT/8O+G3JDuRkl0CpkmHE2C64+LLBSErxn0jppHfvFHy48Fos/mkbNm7IhsViQ+fOcZg5qx++vedTlDdrIGLzS2CPjfBqCEHHUNLW4uVnY0dm4t5vb8PKr9dh/4ZD1HmVOHGPumQobWrqsWsv9hf4ThSaO7An/TfvVCXufWMpTT1FcrjbHI5U7yIYcUFRxcNKkop9XEuc4ggpFLD3yQBrsyN8dTHMKjtsqaH0dyTLq4bMyIFJ8m7e5GTGNaMx/+7JePjtXz3EDa7pRx8s2oCPnvDe+MOR9NdYEq/c7ILEceAzEuh1iMtxmGu4ctDFlVVERETkv8Q4LzUJccx++9aP3cQB2Tty6NoJWS+54aUrPJ6z+oeNZ6z51x+kOfeHl3+BvtrQrsl+zWuSyuJqVJedmTV0iZQD21CTjL1sON1qK+vo+oyuQTRPEsk/fvDrFh97xz97aTIgSTsXERHxDVl7PZOs+2kzeozogsd+uAd/ffovfluwArn786HSKug9/sX3TUdCRnC9W/0n9sJ7217CkjeXY/NvO2gKaObgjph15wX45JFvUXayfdaUidDqljeuxj9frkXW5iN07Bo8rT9GzB5EU3+IoSC5hvhi2s0T6b+5x0vxxEOLUEwMN8JCATKVFR8N1BuIohmweF+TZ4gIgpgGNqwfe93nZKnnY6RubMH1ixhd3Pz61Xh06gse4gYnJDno88e+x8srnmi1CR9DEoKapQQd3HL6RXUiZzfn/NV6eEYkftje5Jh6tpIaocIVg1Lo1yarHb/uKcIvuwuwLbcKdh83mD/vKsAFPWIxrkuM2+PVhtMf9xUs+wpqkF0SXKRPIKIlBrzPvook1jOOprHp2eJ9MbndSBoEqJtN0ClD3b/P2wScaEXEXMUx4K0ewPz9oshBRMQfMg0Qng5UttyVuFW4pkXE9nZsbUASoUTojHS6OTEdr4Y5JzjnN7/HjlVBOzQBqn4xtHFfMyiOboQaaxU21KxCriEb1rFW6HqokLIvGglH3cc0WYoO2pEJ9Ga1/LMDsJU6mrVaSq816dg84yCMOs+b16SDnq+rqVFi5YUH0XtlBiKLgos01gyNpxP9xr0+rgsNEIGGpbAesgTPAouRtc6BgXwuxgPlUHYPbtFGRETk/GZAzxT87eJcSRt8bI6NIghQ7shrFDdYMuNg7pvauD+pBiyhKlg6xkD17yFwVcHd89rSogGWDbp5JjU+HDNGO5ovTWYr/txyCH9tOoT9W48CQ9IgP1ICSZn7vf3vH6/EyEuGou+4Hh5Opa2BJDDYU6PpyTZPbnBDwsHcJQ5SY7NaSS6FZVAGmHWHwDXEmB7YcJguYrcHUrmETnJ5gywMKLUKGFvQ7NQcrqKeJlEIxOHWBwMyk6BRuv9cp3K46znZ+c8+HNzc8gmdE1kncWXa7fjmxIdQNHsNERGRJsJkkeig7owT+sOIlNY5dWRIlPof+0hvi4oRYBBIU73nuGQWvCc7mnlLY3Nqj9BxdGsLccoY3JA2j25O1hYfxb7aPNfLBj1f0vpUpncsCiZra8A2iB8IJEXhqD4aEVI9wqQGcAyPOGU6+oXPQNeQcTRRYnbSULoRqi152F72BvLq1yKCNUGukqLIokKlzf0+vbO2C8ZET4SVt+G5g++ixOR5vy9hBVhsLOotMmiapUs4ccy/NzUUkek18pDz9+UKEZzU2xWotwMFeh3MdilYhoeCM/o1T5kSNwoW3oK91Vv9e1oYj6PEVIgYhae5iU7GgG3QlNsEDlUWVcNrGzBQWY45oSegdhGRzAk5gaW1yVheoaK/t1GxHXEuQ5I4WpvG4XoMERER//Qd3wPrf/Y/VrUWe6gK1tRI6qLG1psgPV4GtpkzXbCQhd0JV4+mXxvrjbQpddXizdicqAXvbQAH8OPK3ZgwsBN6dXQfY+sa6gF/0EtFs+OSRlXWAvAyT5EDV1wD5eaWC8x2rToAA0lr8wIVopOLlpf3J8mvgCyr0O0xqUwCq8VHTcKTmkQJY13r5vMIXHk9GKMFgtK3wGBIz1RIm9VY2jD36/mW5TtxdKcj8a4l5OzJxVXpt+Ob3A/oYr+IiIh3EjvFU9do0ljpRpR3o59GqJK54ca4rNLxmGsR4AOTsakmmTStN93aQnJyBO69bwrdnKz9aTOONTgvu52ywQx27zHw3dPovE8jggD2VAWYnEJqgMHHhQNSDpldEzF7Zn+MH90VLMtg1l0X0I2QeyAfb9/6ETYv2456jQTSuV1g9ZIcM7xjKi4Z2AMmixV3vfIziis817qJKYdVzUJa7ymrJkF36mIe+miWJmc0PQlgiLjBBsiq7U3zWmRMTY6F8kQxuJ+bkngElRz2xBi/ZiWzZvWH3mDG+oaUUV/syy5CUWkN4qM911+kXZOBk75NseypsWBPlHiI4A5tycaulfvQd7xDDHKuItYkIiJnhr4TemLr77vO+o+bXF/HXDacfm2oM2LFl2uw+ocNOLT5qE9xwI+vLKPNtR37prk9Xl8VuCZpT/hwLb0mCholGLsdTHEV2IIyMDY7ti7fSefG2gPShGrzUZMQ0bNKq6Sf3elkyIz+HkJ+Xbh7GuCGJVtxgqQUtZAj247hqow78PXx98E5E69ERES8zuGQFMfW/J21BpPesf7KsiwuuHE83dpCh+7JuO/T29weW/HlauRltf39dBlCxBJTaaIBGatm3zONboScvSfwxo0LsOW3nbCYLOAkLE1n8DbOTbp2NAwGMx6593tUlHu5ppAkvi5pwN4jXs+D9iTsPw57307utZTz5zlFYIkIohktETeQmmvG7ZNRXVaDnX/v8bvv7lUHUF5Uich4z7pV3sp16X1rs7Bv3UH0HNkV5zJiTdJ6zvks2GuGpULaSnfmMwGZsx7fJQaLbh6CEJUUVXoLLvpgEx78eR82H6/0KW5wMv/HPVh9uNRN9VuhD94N6Uxga6NTapc4Ld6b0wUbuVswgPU+IFPaQ9zQqWkizSt2K3DgZ8e/vji0vPWvb6oGfrmp9c8XETlfSCcxumdobNc2RX6dLmr/8a3IbQmhUzpAPTDWI5Wg2FSI3459h6Ljx4AaO+ywoSqqFnvGHcP+cbn0o+QiFAiZkoqoG7qDkXIwHaxotbiBoKyXY8TiHuh6KAOhxhAoa+WIygtF/z87oec698kdJ9pyFSrig3N1UA+KhTxFB8Fqh2ANfJ3h9d7HbVtZ699jxQ+HYatqfROriIjI+cPcC/qBc00ZaAZXUAm2wc3AHq6GuY9D+OyBXArjiE5BBwTwoZ5ufixPFlHJQnbTUTiWwZgBHfHho5dArZShokaPq5/9Di98sRK7sgthDVPBmh6F+gu6o2Zuf9Re3A/68V1gTXJMPjw39w0azew6uV9FXO2CwBomh75rGAwdQ+jCMHeqGgxx/iQijAAuszQBwxssC1sn9+t3W+NDO/VLw/2f3eZT3OCkLeIGAukxGJvq596DfMZbjmPd4s1+39PGX1rfvFZTVofXr/ug1c8XETlfmBp3KSKl9ZCRgbUBaRAjNNvQxG73MuV23BTl9TnJqiScbt4/vMbnsGvjORTXaul5E1GDxc7BbOdg5SWwCRKUWEJwWB+HrPoEDIy8A91DJ1JxgyvFhj1Ylnc9smt/g5mvBS9YoOL0yFCWIV1RQ1PdYuSxuDhxHu7IeABSVootFbu8ihucyCQ8cqoiYLBJPYZKo02KYqMONRY5dJJoKFgdjDYJhCAa4ZUNCkReYKFvdmxXLogbiw7qZJjtRtgF/9cHQr3Ne61TaPR0SKq3ytFNXoWrwnLcxA30/Fgel4WeQBdJNe7e+hNKje1jLCIiIvLfZvY90+mCY1AEuRsZUo2D0mCY0hPWLvGwpUXB0jMJ+hl9YOns3226OUSQTBZ9X131JBQqOcoLK3Bb/4fwzu2fYNepCipu4EkCfRhQnwjUJQP6WMDaoBl45KEvsWvVfrdjVhZXBfVWmToDBBIOTYV9DsjlnSTvsRYBjFWA9FgpVCsOQL3yIJggUiGaQ48t+D4H4uTNWgUqoODKaiHJK4fq34NQrs9udAbPHNQR9358q09xg5O2iBvo+fACRqf7rkmIi7dt01FsXLoNdrufmmTptlafQ+WpauqOKyIi4p9rnr3Uc8wOwvWS3PgL5VVAdcP9qSHwXEZ6p5aN663hm2cX+/wZabrhNuwDuz8HTO4psMcKwG06AO7gCbBmKyTHCiFbvx+yf/dg/uVDMXFsN4/r3s5/9uL2AQ9jxRdrqDGHcLIG4R/vhnrnKcgFhtZDaVHheGTqaLx/5QxIOQ4rNh/xKm5wQuay6ByWF2R6AaEn7FCW2pGk1iKMk0FaZYW8hoe62AZllee6Bp8cTQWDruIO8n59MW/uYKQkR6LOYIY9iPX4qjrvad35tQH+D0glECJDvDaxPnXRq+2SICQiIvLf5+J7pwedLPf/kUBHXLVJcsPLKx6nST8leWW4pc8DeP+uz3BwU3bA5IP/TXsRe9dmuT1WXtggJjwD2Dslwj4gE0JsOHXqFkI04DsnwTakKwSFrF3EDd2HZ2L+gpt9ihucBCtu4DVK8GEat2uf8/c/eHo/309kHKnaxHWdJMedjpqk7GQFPpzf8kQ6EZHzjWtJTXKGSO/d4bS/xncv/NIux7n7g5sw5tJhHtezrb/vxJ2DH6GGHvXVelhM1kZxAzHZI/undkvCHe9ejycX309FVv/8ud+7uMGJWgmEugu8XGHqjeC2ZCFesEFLDGBJjVFSBXbHEXDHi9r8Xq94Yg7i0mKo0Uig1CJyLa3zUV8VZLfuXMjn9+TMV6Cv9V7riPz3OecTHDJjdXh7bm/c/t3ugMvMmbFaHC4+c4uCw9Mj8cqcnogPbYqBeWTJfhw8FfwkQJ3Jhmu/2I6eiSH47JoB0Mgl+G5rPs4WIjUyhCilyClrvfiA/E56REkgJXYWpwO5DkjoDwy9A8gYB2x8G1j9AmDzMplTtAtYfB2QPAS4fDEg9xK3ZG3jgHl0pWO14/8xNlxE5KyHVuBnIM6RYYGEgaf1JXiTDZa89pn8ZbWezmrWcgOKl+zFyNweYBuaeSrianF4cD6qY+qR37EEmUOHIFHt7vppOhJ4ETgQCo0GQ0cMAyNhUfT05oC/svAiHQSJ/0l4SaQSmmHxUA92JFMwcg6sRgq+3n96kSTc3dnaCRFItBqbAP3WUwiZfPoLKRERkXObzLQYPHbrJDzzzu8QmrnisaU1kO9oclhLvGggsv0sLAsaBawdoiDL9Z9eQ/HRAE+adQQy3DIChvVNw4M3jEe0i7PNs5+twPHCCu+vr5A6HLBVMtjiQyHNLqEN949Mfg5dh3TCs789DKlcij8/XeX/1LRSlM9OgyEzrNGplK23InR1IUI2HoZ+fDdA5d3hNBjssaEQGIY230QlRdCGqeJczwbSYDm25wSSMj1dt9sF4uiuU6L70Ewan9pnbA98snwLPlu+FRaX3yFjtkG5JRfHcsrx7JId6D22O5777WGvjhYk5rMtbFq2vU3PFxE5H5AwJshIN6IL9YIUkfC/gGfgJTDTKJ1momSLDoUWT9caCSPB6KiROJ1UmfU4WO1/8pgkHNh5BkSv5++2PkTq2fRSYCjCnycfBMd4v75FSCtxWeqjSFQPdnt8d7X7orA3VDIb9hYnoEN4BRQSGz03s10Ce0NCRoQsEU93uxfEU3XK6meQpisH1+z35g+DTQa7wEIlsULaIGZJUMZhatxYjIsZ4TgHiRoqTg2D3ffcFxFwhMui/CZ0NCEgVGbCFG2h17QJJ3OjjuO7wm746cQu3N5lFM5V6H1FG8v79nIgFBH5L9NtaGfM/+hmvHHDgoD7pnRNRF5WQcD9LN0THalxzWEZmkhHksmkhYHnl0bMHozb37kOEXFhjY+9fNW7KMh2NHTyWjnsUsAQR9LomgZGuwQwqgB7jYDKUgsemvAMeozsgmeXPUTHBbJY7A9eKYNpUBrskeqmuXhBoK7aVBjekIDHFVZCvqXlqQ2uJHSIRo1ajlIf5lT01W08VETQ4KNZKGd3LpIyT48RC1lAV4Uq0WNYF8y5fwZ1vVvw80Z8/ccOWF3rSlqT5OBwfiWeWrIdAyb3xlO/PEgbwJpjbhDxt5a1izbh/mZOiiIiIu7w5O+z+X2Q2QqomtadvUKSG064jPNllRDio8D4SHKQyyWYPL1tiQ2BIMK2vCz/69tkjoc04oBsfgiL8axJju3JxWPTX/JoyJTUmBG6IhdYkYvXVj+FXqO6uf180z7PRInm8FIGHDET8XrOQJfQCLz/0DxY6gyYPetNCKFe1padsCz4mHBw+SWND3E5ReANJvApsYDWMVeW1iEKcy4agMkTHYmqYToVVAoZDCbf80HEfCU2Uuf1Z+YAhh4EwYd5i7HehL8+W425D16IcxWxJhEROTP0HtMdt799Ld6767OA+yZ1jkf+Yfcks9PJmMuG4dY3rkFYTGjjYy/MewunjjeNx4GoKq7G/WOeoul5Ty15gM7Rk3SiMwEfFQq+g2Pt3AOVAvYeacgw6FFVWoOastb3JZCEtmufuwxthY8Ogb1zEgRdwxoQL4Arq4auqBy9B3akNQlZb/rk4W+x5K3lsDVfzxeIY/dBug29cAAeX3QvJFJJu6+TrPxmHW0yFhER8Y3H3+dpQqlRYMJVp3edhIz5hUd9i4tbMsfirSY5tPUonpz1qk8DO2Ky987mF9BlkHvv1vatQcxJhemAat89zx27JeGNJfdSEcLlqe0z15LeOxVz7ptBxYGEiPhwyJUyv2MvSSWNTIzw+rO2jNlELPLPl2sx884AxuZnMWJNch4nOBA6xeqCaoNlz3BD+fTecdh+ohK/7i1CWZ0ZRdVG/HMo+BtkV/YV1OD2b3fh76xiVBn8N3meSYZlRGJsppdFjhb+AS8/ZgK0Pm7I24q5Fji+Gtj0DpC/BRh2N3DvIaD7xb6fk78Z+PsR7z+Lb+MkH28FTDVtO4aIyH+dEndHtlZDXEXD0h3/evyMBbrMApRNi6unA95gA4IIuuFCfMfCUyQMWIV74U7SBYoX7EbkcW2juIEQcUqHwb92RVixYyL9YN2eVkWOSePUCJ2VgbBLO0Oe5nKDLmGg6hON6Ft6gdPI6Hmx6sCR8pydReRJx8QRz/IQnBZ1DagGxyLmvn7QDIlvVDqTf9UD/LtHkXMjwgjv78HPYkIQmE+IzkQiIiLBka5RQrl8F6T78sHllUOSUwLFmoNQrj1E44Gd2EIDN/WbB6TD3Cc1YI0jKfDtDkSbdQRg0ogu2JVdgBXbjlAXt5MlVdi0P/DirRNrpxhYUhwTEQc3Z+OlK97B2h83+U0y4BUcTt3SDYau4Y3iBvq4RorK6amoHhYD5cbsgK/ttz+VHLfh2P0n9aZbWyCOdAc2HEZolPeF4DYhAIYaI7b9uRuLXl2Gw9uO4oZpg/HHqzdhUnwMFLsLoFp/DCE/7oQ8p7zxaXv+PYBPHvrW6yGbR2G3FOIYYiFNESIiIj7Jrl3v8dgxi//awS4AOdawxuZ7AssoIJONwbra7hCaiR44hsMNHa5FqKxpcfV0UGUxgA90VWEYyBBgXkZQQcK4X8dOGUvx5uEnwDH+zSAOVy/zeIynajz/9AyPwyM9ZuG2jOuRquoKg01OP18ZK8W4mEF4qed8aKVqhEhV0EhUqLfKghA1OGoXhn4mAhVMVJmVKDOqMDpyEt7o/WSjuIHAMRIMCPcvMMjU9UaYLNLrzzI07gK6BFUN0lTVSJP7NwvpqKpBqqIGOyvOTAS4iIjIuU9Kl8TAOzGOe8FAEMdqS0f/8zG2rsE144+dN5ze25KG9tqKOuQeyMee1VluQl9jtLu4wRVLCAOr2vGz/esO4dVr38eqb9f7XRgVZBIYxneDPT7M3WiIuJpLHWkR9NsaA2S7mgTprWXw1H4YkORd6OZEkl/uU9xAIMkNR3fkQB3SeiG4Pwc9fZUBW5bvpDXJ0V3HccvsYfj1jRswOiYC8n0FUG48Ct3POyHNb6ozt/+1B18+/oPXY3bsm96mczLpzQFdckVEznfWLvbSNFkawCmazEHluYub5VIO/dLDvaaPSiQsHnxyFnSnYexxpbq0NijRanSy93tqJyqtkhpvuJJ3qADzhz8e0G16+YIVHo8Fk4rQPTMBD9w+Ef+7ewq6dW669inkUkyb0BPvvnApNGo5wmPDoAwLYj1C6rlexZ6qhGTLQXBr9uDywan4dMF1jeIGglwmweRhXfwedkTfNESEeKa9EjK8CRabwfhxRD2w8VDA54ucGa655hp6/XRuIiJnGyndAqeUkrVfQ33bUsmajhXcfmMvG45dK/dTQUJdVT2yd+bQ9Y7WQI7z5s0L8c9X6wJee9oLkgDkDyFciyFXjKJC5rZAaqy8rJNQqD1Nl4KFjwmFrX+nJnEDgWVgjwlDVedkbPxrN358ZSly9+fjxpevwDcnPvS7vkPMmr597mevP+vYp23rJAbRDVxEJCDrf97S+k+JcRcw9JvQE4wXxx9yf//od/Oh9nEv215UlVQHtV9Miv+aRB2qAtustjq+Lw/3j3nSp7jByfKFXmqShoQHf/QY1Q33fHQLHvj8NmQOzHD7XKfdPAGv/fsklBolopOjqAihrVz19CVYsOvVRnGDsxYbNXeo3+eNnDMEWh81UXqvlDadk1iTnL+c8wkOBGsQkw+EUzXtc5NMUEhYmPwMMBzL4NFfDsDe0EAq5RgMSA1v/L41bM2tRHpU2xo1CeRSoZVLUBuEW0MgOkSocfXQVHy6PjeY/l2f1JrtQL9rgTUv4PQgAMfXAHmbgHk/AuljgZIAToH7fgLGPw2omjks9pgD/PMkYAruwucViXencRERkQY8HC5bQGwvRyoDiSskwimZGtCXAvmbgIpsh6V1WBqQPBTQBbHw20ZI+gAjZSFY/Y+SuikdUPP7cfB1PhaZbQLKPzuAmPl9aWICoXZVPph63qeYoMvmFGyalYVqq6dLt7yDDoad/kV39hozzMeqoRkSh6ibetLv7QYbJKFysEr3WwhFRhgMexzO2TWRepzoVoyq2DqwdhbR+aFIzYoFEyGFUWrD+uH7UBtlAMMDUflhSN8TjxguDqGTO3iNJNWOSoTpcCWspzwbgFiVBKEX+l5QVQ+Jo89tLd4KLBERERFfzSikMUd2xL9DdsXJclIs+B97GMCWEQvYecj3+Xa3U1TUwlqlBx/mOeFDqg5GJuB/n/4JvmGxSyrh0DsjnpjlNGux9Y+lcwxkeRWNDS6+nBec1A6MhjXKt5tg9dgEhG4pga7eglqN70kWziL4XXRlGurAxI5xGHfFSPz+0T9BCfh8Yao3YfL14/DDS+0TT+qNHX/vpa5DL/71GHqM6IKCH7ZAeazY5/4rvlyDa5+/jE4auTLx6lH4/LHvqYteWyK5RUREfGMVPP++Cm0a5FpC0EHm3bTggDkCFbwGnTUXoFvIOAiwQSfrBikXgvSwAqwoWYWsmiwIENBF1wUTY8YhRd22Sd1giJRrIGU5WHk/k+sCcHXqHCwu+hy1Nk+RLxlei/RS3LPzM3w19G5wRDAO4IeTy8ExgedHqi2e4rou2gxsLN/h93mHysyw6U/iqs598VKv+SgzV0FvMyJKHga1xH1s7BuWjo3ltQhXGME2E1M7CZPGglEZoZYUQC2x0vdVZVGh0BiCJFUnXJN2gdfnTYy5CEfq9qHY5Ol4rpGEYFbCVT7fw4UJQ7Gr6ij9WsVZECYzQUqKoSBQsHZIGj7rcxaBgeAiyG/tMURERIKrSQL/PaHR0dMeoQGvVdA6hiupAeNyL20P1wBy/8tHtkgtGJkEgp/XlcgkeHbO640R9jKFFF2HdHbbhzcbwcv9/51bwprGwk3LdgRc9LZ0jIGg9T0HL7CAfG8+1CXVMLVDU1JsWjQumjEAK2a/Cmt6jMfP2fJayPacCKqhaNI1Y7Dk7d9xutj6+y7sXZOFl/95Ap0HpKPgx81QnPSe8Ecg6X1kYbt5stzk68bg66cXtd6Bj3E0t4mIiPgXAnlQVQNU1gDhno6hVEFAxA08jxm3TaIJOsTQgfytk3EzJ7sYSxdtw+4duXReqO/ANMy8ZCA6ZHiOW+1NREI4bQIi5+MP4vz92vUfUudRbxjqjHh8+ot4f/vLjWMImR8JJlUm76DnvXyfzolYt8u/Y2rZyv3IyinDjNsn48NXLkdJWS3q9WbERuugVrmPjT36pGLrLsd4b1EzMEazsKpIAikgr+KhKuORlhSByvJq6Gs8BQU9B3fEVY/M8noeN84egh1Z+cgv9ky4iApT467LfIuyL5zaB/sP+nZKZ6rqwPppNibJqec0Yk0iInLGsAZhqkPEOXWV/k0fgoVc+sjlwJ/ehzTOPnHhK42iINL42WVwpza97tpFm8H6SEZqCWR8lcg4mA3+76mFIJp+Y3p3wISZ/dvWjNxQV46/YiSWL/ynxc8ln7CtS7Jv5YlKDltqLDb/ugN7V2fRdKUOPZKRs8e/KRc5l3n/uwhSmbvIccqN4/D9i0uCq4W94CvdSkREJEBNEiSz50/DoKl96RhNmvLJWueRHTlY+u4fdF6CCLD7TeyNWXdNQUrXwAK5thKVFElriEAi0TvevxEvXf621/t1Qn2VHk/OfAVvb3y+8bFPHv4mKEORfC81SfdeSdixzb/5RsGOozggmHHh7VPw7pYXUXyiFMY6I2I7RFNhgyuZgzvSMTZQOkPRsWKv68wkqejSh2Z6fd51z8+j69zFuY7esOZi9etfvNzna06/dRLeuDFw8qwvxJoE5+06yX/iat0hUo1QlX/naCIwaM/kg2k9/bvaESGDq5jBahewKcf3JHGwlPpxSg0WclbtIW4gqOQcwtQyXD64bQvyHaO1QGx3d/ne6cBuAf54ADDVAmUB3CZsRqDYi4s8aZa+5EtA2gbl4LaFrX+uiMj5gKaViS5SFZA23iFgiMhw/L0S1NFAl5nA8AeBEQ8D3S85I+IGAivjoOzp38FNmqyFunc0dGOT/e5nKzfCeMDh7CzYeBj3lvndP6xEC3W1AjLW02VB1SuKii8CpU8Y95ej7KP9qPknD1yIHLI4tYe4gaAZ7nAuyutSgg0X7UdBlzLow0yoizQgp28R1ly6B+Xd9dgz8AgVN9D3wAKlqVXYcuFB1F0p90iocEIej7q5J7SjkxrPmYhGVP1jEH17b0hjfI/Hys7hUBAH8VaiyGz9c0VERM4vUromejShN0cql8C4L4ALM5lUaVjrtaXHQPDThD7yosFQrDsErti9sZRMzNg4GywytlHcQDDDjs15J2FTtqz+tYe7j7PVpf7TyOr7+He2EGQc6ruGgfltH7hq74un0lP1fhMcSEKGE7lKjoi4MEy6ejTa+jtM6+n/WtwekAmu9+/6DNVltXTyyB9k4f7EAU+RC2lMeOzHe2mDWGv59f2/W/1cEZHzgWi5NxEtg/XGROw2RsPAN927Vtnl2GqMwQlbCBRcGHpHXINw5UBEKIdScQMhUZWI6zpcjdd7v4I3er+KG9OuOyPiBoJOpsTEeP9unwMjO2BMXA+MjppBUxBc5/iNNgmK9CEw2aU4ri/B+tKDjsftJmyp2AMbubEPgIz1NOwYGT0IGonve3kyrVZmNuK3E4cw5+9v8f7+zVTYkKqO9xA3EC5LHQ6zXYqTdTrY3S50jqQGi51FilJAvPIEQqRkfk2gYUARcgN6hZbgloyBUHLeHepUEg3uzHgKY6OnQ81pG96THIMjxuKeTs8hSu67hh0Z3ROjotIRraij6Q2EarsUtXb/jcN1NinyTDqMinWPrBYRERHxRVrPlIAubaS5p07CwjCpJ4zju8M8KAOmkZkwTO8La1o0eDkHU7IOllhVUKnZIy8e7PfnxNHUKW5w3gvvWX3AfZ+wwO6gtghFs4aoev/7p/qvScgFgDeZYar2n0AULAqVHDEpUZjUOR6K1Vng8srAVtSBK6qCfHM2FGtIsl9gcVsyqUna6GgXbIPCB3d/horCSpT5ETcQ6qr0OHnYU8gfEqnDI9/eDamslT5qAqhIXURExDfpvVK9/yD7BJB/CjC7NEPW6YEjuUBZJSLiw3DZI7PQe0x39B3fs1EUlt4pFvc9NgPfLL0bXy+9G/c8Ov2MiBsIYdEhGDK9n999Bk7pg6EXDsRFd3sXHTs5uisXO/52pFbXVtbRJslg8JaQM3VEV6j9XDsZowX1W3NoctD8YY/h5zeXIyZKh/TUKA9xA2HOxQPpv/pYFlVdJDBFsLArGdhUDPQJHCq6ScDEKlGrksMepYPg0gBKBCAX3z8DMoX38wnTqfDRk5fisin9oNM4rosqhQwXjeuFT5+ah/hoL6KXBiaM6Yq+HX24fxstkOzz31g66IK+fn8uIiIi4iSjb1rA+0OpQhqUMC1YyLUjkOjCtZmVCHSb1yQthQj2fDW+tgTi9B1I3ODYMXAtQdJ+kjonYNgs/59HMOskRHTQGkiSBNT+zV75xMjGtY8P7/0Cp46XoKrE/5oTWZM6ddyzmTYyPhwPfnlHq82cyO/xn6/Wtuq5IiI432uSAJA5krkPXog+Y3ug77gejWvonfun46Ev78R3eQvw9fEPMH/BTWdE3ECISoxA/0m9/O4z/KJBGHxBX0y/ZZLf/UgKEBFpECqLq6jBXTCovNQkF0zvDYXSz3qv2YKqrBP458u1uHPQI/j1g78RmxqNDj1SPMQNhIvvmR7wPEgZ4k3cwEk5XPLAhR6CMidkPf6dTc9j1l0XQBPqqDNVOiUuvH0y3tn8Av2MfTH5urHoOtTd9KQliDXJ+ct/QuCgkHKYO8D/YEcEBu3J6iNlCPM3uJwmOkVrIW9w7m4PSNJEayGD3cSujpjqx6d1xfRenpHUEpbBNUP9X+xClFJM6xED/Plww6LzaabiGFC4MzgxBefjd5w2Grh1IzDkDiCys6OROqkFhQJJgKjw7wgiInJeE9cH8NFY4pPwDKDfTYAqwALm/wMhE1PAhXp/P4xKgvA5DpcIy8m6gMcyNqQR8CZbwFQIgtwgRbo60+NxQcKg7ioFtk0/jLWX7MXWqYdglfnuJK1blQ/TMd/OrLJELfgpITgwItfr3YVdyqPUdsrrcwVGwPqalbDy7kJE18kmInIImZyKuEcHIf6pIYh/aijCL+4ESYT/ZmL9zhKYDrUuwYGIKdT9z8wCj4iIyLkPmZiZGKDB3koSHnJKwfibsHZNV5BwsMeGNv7IHqqCaWA69DP7Q3/RQGyy2aHqHAfF+sNQ/r0Xsl25kO3MhXT/CQgutQrPAqZwwBTFwBLKwBLOwBALWHS+775dH2esdo/JLDJhbA9RwhatBa9yX3jlvQjhmmNXScAardAu2wfNpuOQFFSDK6mD7HAxtEv3Qr3yIJhq7y5OXH45JA3OEGTxd8iM/vTrO9+/gU48eXONnRVgcTwsJgQDp/bFgvu+wpmARJWeyAogdmmAk0p8Lvwv3Ps6nURKykxAYqe4FjlPkcWDUpIoIiIi4pVuoRMgYTzv4QUw2GeJxpK6DPxQmYm/9MlYZ0xAsV2DRNUgTE96H1ppKwXbp5H5XccjWuFozPeW8PBc3xn0633VRSg26HCiLhwn60NwojYMhfpQKm5wsrH8MP233maATbDhlDkEfADlXAftOI/HZKwUU+NGQcYJkLA2SFg7WJpsIFBxg94mQ7jOgDCto4n11T1rsbPU0+HISa+wFExL6AMTL0NubThKjRoYbRwVD8oZK9JVZdBb90HNWeim5UyQMY4aRACP3woXwuanJiEih+nxl+OZ7gvxQo/P6DY36SaEy/wL2leXrkOOYRdkHA+uIbmBB4tNBh8NRg0sK0uDRhaKC5N7+t1PRERExAmJgHeNjveGWcbBOLoL+FD3BVVeKUXVtHQU3TcAZdd2R8VF6ajtwMAU5v58O+dwpDaFko3FukgJpH3athBtD/U/t0NwbQAldOqfDtbP2oYQRNO96z5tSRIgDVyDpzmadu/9+FYMG9wJim05UP6bBcXGI5AUVEIm4wI27EYlRaDPuB746IGvcSY4sj0HhQEE164L3N4YNnMgFux5jTrFJ3WOp1vmoOCFee/d+SmqStqQlC0i8h9nyvVjqTDNK0WlwO5DwK6DwI4sIOsY2Np6Oh69uf5ZRCb4T9/8/+DGV65EqI8mfJIWeveCm+jX2Tv9u5cStiwn67xAbXldwFQIJ2MuHe7xmEomwaXdUsF6OQZjskK15khjgiipDRbe/xWO7vJ9fv37pGLY5EzUJ3ofN3kpgy1JHAwjOsMytAvME3vD1sGxBkHexzu3fkSbXd2eQ9LKGwjVKnH35aPw1we3YuVHt+Ofj27Dg9eOQ3SE91rPydJ3/8SBd3+HZPcxMOU1gMkC1BvBHS2EdFMWGKPvRmPixDrmMs/PTkRERMSXoG3kJUP8fjjWIByuW8KhrdlQN6tvKKfZW7XLkE7tmkjm71BsqWd6jytyuQSD+qfRrx/84g70m+jZwEvMkgKtk8Snx9D39emj3wV72s1eJAjxs1zauP60f90hVBT5f29OfIkYRs8dhg93vYqpN02gayRkrYSkVwXLW7cspIJJERER71xw47gWOeeTddthMwfgjXXPICymaY37bOHm16+Gzse9c2xqFO5873r69dHdwdckRKQVKBXCyZi5wzweU6vlmDoqA4y3Y1iswKHcxqgi8jrv3/Wp3zVmUhOS5Ax/HNvtPWXUbrXjzZsWutUgBNfvye/1treuxeKyT7G06gssqfgcd7x7PRU/+OOn137FwU1H0BrI9WlEAJMVkf8urbRWOfu4d0InHCyqxfqjng0asTo5imvbTwFMqNC7NyWFqaSY2iMOxbUmrDzkqRxtL2JC5FCRiLIg3H6CIUItw+jOUfhjfzGMVjtkHEv/DYYZveKRGulQY8kkLN69rA9uH5OOX/cUoc5kQ8cYDWb2SYBOIYVGLsF7q495HIM87625vaE4uR6o8XQmdYOTORIY2gN9GdBhJJDrR42rjgISHM1SXgnvAEx63rERtnwInNwW5AkIwM4vgInPtuy8RUTOFyQKoMelwL5vAb550z0DdJkFJAwA9KWAuR5Qhjm2sxSSfBB9ay/UrsqHYU8pBAsPSBioekRBNz65sUlfcHG080mDYI+kKDByDoLZ/5jNhsjQVdu72SHsWFG6FPn8cSDB8ZjMJIHU4v+2QL+5CIoMzyLEwltgF2zI614CtLL+twhm5OgPo7OmO47UH0BW3W6UW0ogYSRIVXVE75CBiJBFg2EZMD6SHpojWO2o+f14q7RznE6GiGu6gQ2QECUiIiLiyvUvXY7cA/mNjg2uRCSEU3dMxmKjjS6m4Z3dm4rIxAQRNzQb1gXOoRqzxYXCPKQTUSg3/qyCZnomQCoAsgMnESaX0snc7EQtNh1xTGyQflNzhEPY5gbLwKp1iMzkDeY4jcMleQlnrLMAyAvcJ5i1fVNhmzcQdc5D8gIkhdVQbssFV2eGtNwEW7h/lx5pmcMVgiwSJ5kF9IiNxoYlW6l7EmkQMlvtUKw9CHtSBGzJkRBkUjB6ExU2kMQK50sTUUl0kkPcSBzunlx8P47tzsWaHzfCUGeiTkOkyYsIUEhkNHHaaw5xuX3467uwe9V+VJ7yP5lOGguCidkOBhJh2m1YZ2Rt9D2ZQ5wuMvr4Fowndoyjk0hOfnjpFxzakh3U65OF8z8/WYWrn57bwjMXETk/UHI6TI1/CMuLXoRdcP+7Z8BiUvyj6BoyDpXm4zDZa6CTxkMjPXvFsQmqUHw38nq8f3gN/iw8AJPdBjkrwZTE7rg9czT9OcHGOy5EdoGF3e7dYMO5j06igZyVwcwDucYIpKu8i6ZUklh0Cpnm9piFt+L1I+/iQK0jXdPRo0oSFQRY7SzqrHLyHf1ZmM6A6no1BIHBV0d2oV+0Zxqf3maGlSfzWo4FYSIgECBAK7WABY94eQ2krPtcGnlNJWej116zIIXBXousmi3oEToMy4u2YWnBJuTUF9PPaVR0T8xLGY0OmliwDAsl52Xh3Asmuwnf5S3yuli9oi4OqdJ6ZCpqPZ63szYKi8pG47PhV0AjbaH4/yyD/N7I1tZjiIiIBL9Qe+JggdcFQ+LoXZgYDjQT0JLb/vpEBjY1+Vtr+nsTpAwVSQucAGW5AJsM1IHadTArtVmAIUkg0yfqbScRGhOCsZcNx/G9eUG7okpqbI6T8POnLtG7j+EhUTootUqfrqlsnQn2AGkWZB8nCZ3iqIvgxqXbaMoEaZ4h/wbDlBvGNS7akySHZ399GEd25GDdT5upG15G71SMmTccSrUCVosdv33omaSmUMtpTbLt912orag7YzUJeY8d+6XhqJ9m4ri0GKR28y1iSc5MwJ3v3dD4/VdPLcLhrUeDen2b1Y6/PltNneZFREQ8CY8NwwOf346Xr3rXo+mdk7B45Ju7MeqSocjdn4faynrEp8f6dcz8/yYhI466fX79zE9Yu2gTHYPIuDn60mG46qlLGs+djA2BII03TsMKMo9ktdj8v3bHOEy4aqTbY0a9Cf+b+gJtrlTJJbBmxMAW63ADkZyqhiynjM7juUIaiohj6n2f3OrxGvpaAz0vS7wU8OMnwcscc3Kk3JFABlvPVFqcSHKKaZMnaZQaPL0ffl+4kl4z8g4W0OvEqDlDcMmDF1J3biLy03hJkPBGXVU9Pnn4G/o1W1JFt2Ah14AX/niU/p7OZcSaRETkzHLnu9ej4EgRFdQ2Jyw2FFXNEqnbSuUp9+OFx4Zi3BUjcXDzEb9z722BjMNEYK7QyGF0qSvaQmr3ZJqeQJKJyLWQ5RhqmkVfL68EfHwkNcXyxsxpfaDVNqT7aJV46a/HcHBLNjb8vAUmgwWd+qXR6y0Zz421Rvz1+WqPYxAH7oe+vgsbft4KQ6335O2ANYnRvZ+Lrjm51HkMecBg9ij9SL3hr1mXfC7kPscX5PnEBd7Jxw994/X/nzfI/cjKr9bhovlTg9pfROR8Izo5Cvd+fAtev+FDD2ExmTt5fNF9GHrhAOTsPYH6aj297ybpKmcrKV0S8TapSZ5ehPWLt9A6QqlRYOy8EbjqqTm0BiPYrf7rC4KtYR8y30ZEIM1rNo/X7pqIMZe5CxxIms3Dk57FoS1HHfN1MRGATuNYpK+uA0orAXtzAbRA6wTXuRgn+ho97Haemv+1lpK8MuxcsZeacPz24QosX7iCJnuSz2n03KG0JiG1HcdxjWmBgagqrcEXj//QqvMhZhrP//6oz1SJcwWxJmk9/xmBg1zC4YtrB2JFVjF+2lmAkloT4kKUNNnh680n2l3g0JwqgxWF1UZw7OkLxUgKU+KpXw+2a8YBESK8cnEvuhEuWbgZ23IDO13P7B2Pl2Z7OshlxuqQOVlHvz5VY8Qn645ja24lJByDOf0SkVehx/7CWkg5BuO7xOD6ER3QLT4E2FUY+GSJwGHoncCurx1NzW1BGwsMvwc4sZ50FHvfZ8jtxO41+GMmebrF+kVMcBAR8U9kJjDoTiB/E1CR7fhbDesAJA0FQhoW1dTRju0cgIgcwi7qiNDpabAbbFSgwJLuGxfkKToY95T5PY4sxTHGMhwLVd9o6Dd7T0Ug1CaaMKHTRVBw7k54u6o3I9/ovnAZUhb4xtNS6HBOJdRYq3DCcBTH9dkotTjOgUPr4h9dj7mm4i9k1zctgBNH2GP6Q/S1JkVfhERlStDHM2ZVgDcELjxc4UJk0E1KhapXFP2MRURERFoCmRx+ecXjWP/zFqz4ai2dqI9JjcKU68bih1eWUoEDHWtqTVD/sRf6CT0ghDeMv7z3fh6usp6KHMwDM9zEDa5YuySAK6pCTVktKooqYU9pcsOzKb2IG1ywqQFpHUANpd37mRq/tyaFgt8npYkL0aMz8eLSDe4dmiwDW1IY6iPU0C7fD+2WEhg7+Xbl4KrNUB1uWkwlTUnEVYhshDsHP4LD245R8YPkRBndmkOckSZcPQp3feA5eZPRpwPdnJMw37/4C13MIJM5k64dg4LsIhzblUsn4YfOHICL752ODt2Tsez9vxAIpVZBnVf//nw1qss8G1JbApnwuuzhWXh8xss+nT3m3D+DThAFS7dhnqlN/ig46vs+QkREBOioG4YrZO9iV9VS5Ol3QxB4JKt7o2/YhYhROtyJw+UOd7RzgXhVKJ7vOxOP95qKaosBIVIllM3mPbqHpmBNqadQz5UeoY57cjknw7DIfvi3dDMOG+KoqCBVUe4mJDDzMbgk6X3IOXdXpMUFyxrFDc2RcjxUEiv0NkcTDccKUCnM0BsV2F/Z5DR90lCGNSUHsKo4C1nVRfQxjcwxnjIQEKNwNIhqJSYPcYMrctYGs51MkTIoNxfh2azvsapkT+PPTbwVfxfvxLqy/Xi19w3oGeq4xgTDtsodMPEmKrKQsmQhgsguHJdYO1gsrOyEPspKDFaVIYyzoMYuxR5Db4Tp5mPp+O6QnMZ5RhERkf8mpJnl9dVP0eb6f75ei+rSWsSlRWPKDePx5ZM/Ii/Jc5HZqiF1ge+awRwGSKs9xQ2uGPonQZ5TgeqSGlqXBFrUdUVSbYLE4KhNvMID8iKj28LmO7d97PeY0mMlsEc75tC8wdSZwBXXNI319SYqMHByU6/7kLvfvyETMeG44PpxboJjJ0QsQTbCqeMl+Obpn3B4+zFag0y8ZjRt+MrZcwIypQzDZw3C7Hun0UX2n17/DYEIidRSYfvfX6xGXWXTXF1ra5JLH5qJZy95w+c+cx+8sEXOtETE3RIKjjqu4SIiIt4Zc+kwJGXGY+k7f2L3v/vpY33H9cDMuy6gCZuEDj2CnzP//4Y0zJP5n7s+uJGOYboIDeRK9+b5bkM6Y/ufu/0ep+tQx1hDGmqIk+e/323wuS8RQby+5mkoNe7rJJ898h0VNxBYsw3yrEK6BcI1weHkkUI6D0hMO47uyqWPld81AND6b76xywGJiQEvFcBZAVvnBHAnSulcGDkmuYZv/KXJVI8I5kgz6rqft+Clvx9Hlxak5az+fiM1FGmpQ+r1L16BYbMGtGheSkRERMQ5Nr+x7lms/XETVn67jqbtJHSMxQU3jMeH93zR7gKH5lQWV9NrjFMccDpIDKImaSlmgxn/+/6exu+v6XwXChvm7xmDGdzObNh7pgEu101i3nHhtL646dpRHsfrOrgT3ZzrAKSxNHtnDk1ymHTNGCooICJJhVqBEbMH4+L7plNDpd0rHfcb/ohKDMegqf3wz1draUNz4/nU6MHU6CGEqKn5Fk+n21xqCWKWVV7tWZM8PAsvXfmOz9eb+9BMtARak7wa/P5kzUhERMQ3xGwupVsSlr77BzX5I4Zy/Sf2ojWJ0xDBWZucC5CxjojF5y+8mZrRkXkWYqLnSpfBnbBntf91km4NNUloVAgVKLvevzcnIj4cr/77lEfts/C+Lx3iBgIRTBSUkNXtFtUkeYcKsG7xZmxcshU5e/PoYy1J3fAGETQsfe9PbPtjt5sY449PVmHd4i149d8nkdE7+HWSVd+sCyhKb05i5wTc+PLlNJGC/J8TOX/5zwgcCBzLYEqPOLq5simnHOu8JDsEA7nXCjJFBquPlOGS/m2LY/ZFhwgV8quM7SpuICSFu0/mTOwaE1Dg8OnV/TGui39XwlWHSnDbt7s8kiYiNXL8fOtQdI3XeQoOAqGNA8Y9ASQNBr6bg1YTmgykDCeyauDC94Hf7wesTTfdYDhgyG0OAURLSOgLxPUGTjUtgvtFefZFMYmInHUQ8UKXlhWsZzuMlIMkxPvNpKpPNGpW5EEwer+xI4kN6n5N469ubDJMR6pgr/TiDKFgkTKzHyqsVaixVSFGngAZK6PpDYfq9nrsbpcGTgZipCwqLGXYVPkvikyei7x2BL947Q2DvR7Zeu9FAhE6rCn/A/MSb6aOqcFgr2l56k/YxZ2g6Hj2poGIiIic/ZAJA9JsQjZXiOvOgfWH3R6TZxXA7Kf5g6nWw5IZD4RpAkb72tKiqRiCTJ4MG9fU5G53v9338iIMmOpqsJwcfIPDT3PI48Z+yehSbsJBkszgo7lFUMlg6pkA9ZZcaHaXob5PlOfLWeyIXnTM4dTjsrjtytALB1KBgz9e+edx9B7bw+8+ZIH5xcvf9pgwIRPm729/CSld3Wu38ADRmYTIhHDc8NIV6DywI565+DW0FhKV7FxcuPvDG+nCjutiM/l/RBqJZt3lPzK6OT1GdKEOIMTdLxi0ocE5a4iInM9EKTpgUlwL5wfOchScFLHKJjGcK9MS+uOznFWwCnooJTYwNFGBg9FG4uMZ6KQqTI7r07j/pUnTsa/6MMotVcg2xCLHGIUoaT1YhodNCMf8TvciR18KFuXoqM2AgpPT9IY1pev9niN5bT2xCm9Q3pFkB8e5S3CktgDvHv0V+6odDUQEuYShyQ9WnqfTPRqpGRLW8RwN59/0hFzWpIwdVkGCk4YarCpxuk4LkDA8eDDgBRZGuwUvHPwB3w95OOhGz0pLFRSslYoovD2FHHunMYJuju+Bezs9jHSN4xrxX4AXyOfXtgSGtj5fROR8QyKVUOc5srmy6rv12GnxnCuxhAT4G2MYWMMZMAFCAww946FbfQyrf9iI0ZcMDfp8iTBCUk0WRTnYVM0cPm2ArAZQ7S9pcvY86NvZ04nkRDkkieGwJXtxMidpcVuOuWm7Yzu4G6gQ90F/Agcypr+57tnGxWxf/Pv9Brx6zXsebuTRyZFYsOc1uqjuSkRc4DWDqKQI3PzaVVTU7a8JKBBpPVPoYjTZbn/7Onz80NduqRXEifHyxy7G1JsmtOi4fcf3pI2xRTmBF+QJYk0iIhIY8nd6/2e3/edMQnylAky5YSxNqDQZzD4FC8Q51Mm1z11Gm4+8pXJqw9R4etmDNO3zxIF8dB+eSZuKjPVGrPhyTavOnSSBHt52lM7lHNzsmaJpN1gCChzojT/5R8KAswrUrZWPCQVXVElFcL6ao4ij9mvXvY9Ps94K+nzLCirQUh778V507HvuiPkDIdYkIiJnHplciglXjaKbK/EdY/069fuF3MAH2TC18uu1GDpzILJ3BOfi39L76OP7HA2k7Ulss3WSYRcOwKLXfm38nq2uB7NuH4SoUAgksZoX8MHyh9Cpq2fSqStEIPfmTQs8nNfJuswnWW8iroP764YHVZNEUqE3SdB+48YFbj/jDuTBOjQTvJT1XEsiZlkpUVTUx9YZkTkwgyYTkY1cxz9//Ae3ZAiS0nT1M5diwpWeAg5/DJral67llDeYjgVCEyauk4iIBIKYODz05Z3/qQ+KJG2SzRvTbpmIxW8s95mgSdLnhl/UZIR948tXIGvDYa/meCSF9Klf7qfXJDKukZqECCpI0tqqb/2vk/irSQ5sPEwFEt7W1FtiPOINcp1zFTe4QoRtr1//IT7c+cpprUme+vk+j7X8cxmxJmk9/ymBgy/mDUzG5xtPtOq5wYobnISrpVQlywvtK9zokRiC3Arvcctt4bKByW7fz+mfhE835OJUjfcYtfFdon2KG/RmG7bmVqCszoLHl+6Hxe75IZTXm3HdF9vwzQ2DaMKGWt7wXzBtDKCNB+r8KGN7z3P8u+UDtAlzPVCVC0SkO46ZORXY/xNQdQJQRQA95gAh/osAnyQODF7gQF5HRERExAVeJuD4tHIkLtNAanG/RAsyBpFXdqHJD044rQzRt/ZC7T95MOwphWDh6cSAvGsYcgYU4W/7l7CVOpo6pYwMXbS9kKnpASPveT0pSalCN5YHy/sWDzBd1Pi1+HtY+NOTilRi9u+OoLfXI9+Yg1SVuzsRcb3OM+bgWP0hmHkTQqXh9L2irGXXTUmUEvIMUXwmIiJyeph68wT8/vFK93GnqAr84SJYiYihOTY7hFA17EE2oPM6VeOYmFDvaKIktUww/YBcRR3sKRq/+widYxHXXYl9JhdhsBcsaZFQbslF1A/HoDhei9qhsbDEqcFYeagOVCJ0TSHkp9zH5wtuGOf+/Y3jqAsIcVryxqhLhvgUN+hrDdR9r7ywAu/f/TlsXtwgKoqq8Nj0l/DiX/+jjhnOySsy6R0apfObzECcjQi/vP072gJJrTiVW0IXD0jD0Mg5Q6jbYMmJUoRGh2Ds5SNaHeHadUinoAUO5HVEREREXJGzHPpGanBc75KeI7VCJ5hgsobgxV5XQiVpakSKkIfihR7344eTy7GhfAdISVJuDUf/8J6QMza8fPhVWAXHWKzklBgfMwaDwgdAb/d/r04EDRwjwN5wITNbHXXQkPhY3L1rAQx295qEZQXIGDvsdoYKHIgwwQkXxOo3eRUyl7e5giRECIhV1CFaWQ8F5zj3WoscRUYdioyV2F6ZjYER7g2tvMBjV9VebKnYCoPdiHhlHMZEj0SF+SQUxJLVa05TE0LDlqBM+U+JG0RERM4upt88Eb++sBhCM2EzH4Spm50TILH6H8tsUY7ahTTOxKX7N0hyhbXYodmSB/2INJrkQFytybBJxA1kCJUW1UB+tJw6jRJhQDANUeRMFRuzYS2JgbVjLPhQFWDjITlZAdnBQnA1TYkQBOIm68r0Wydh+YIVqCl3pAE1Z/yVo3yKG8hC7/71h1CaX06bX70tKpOfPT7jJTz328O0JnE2+ZImLE2o2s0FtTkTr3bUJEvaWJPUVtTRBWayKD/zzikYO284XVgvO1lOxd/k+/DYlpuAEBFg5qCOQQscxl0xshVnLyIi8l9GrpIjoVMcTbrxlqz59NKH3BxWY1Oj8c6m52lS0dpFm6hYi6Z2XtgfdhuP+0Y+2Wh+QQQPM++8AAMv6EMdSFtD5oAMPDD2aZ8CDOWRClhj/MznCQKkDS/tOm8nNJib7N/gbpDSnPxDhdi37iB6juzq9ji53mxcug1rFm2iQgiSVkrmI/MPF0BgWTA8H9z7G9TxPyVuEBERObuYcdtkbFq6vXVPbkEPFhEYJ3dJQHujUMtp+tDpoHlNcuEdk/Hnp6tQV6V3D90uqwbKqum6gi9xQ21lHbI2HqFpcgvv/8pD3EAgP3tq1qt48uf7qSmU01WcrFV8MP9zmPRmv27uhF/e+cPjZ0SIIVitgNx70zCkHGyd4yHbkYOq0hpUFlfRuoOkWZPU7n+/3UDXdyITIjD28uHUGb2lkPShzgMzUO7HTd2VceI6iYiISDOUGgU1b/C23qoJUeHppQ9SgxEnCRlxeHvT8/jqqUU04YAII8g8FjHQIPXJPcMfbzS/0IZrMPueadS0rqVJa07Se3fAQxOecTOqaE/2rvWfXkEE5Ee2H0PnARluj9usNppuRxIlSApdWs9UTCM1SZDr1k56je72nxI3iLQNRiAdMOcBt3y9E39lNcXYny4emNQZGrkET/2W1WJxhD/CVFJUGdp3UCLCCa2cw8hO0bh+eAf0SnI0dR4vq8et3+zCkRL3yfvJ3WLxxtxeUDVzj7XzAt745wi+3JSH+hbEvCmkLKb1jMf9EzsjNkQBZC0FFl8LCF4mWKK7Atf9DSh0wHMxgM27ACNoYnsAt/iOK201H48DCncE3i99LHDFEp/utyIiIucHNdYqHKzbg3JLKaSMlDbnF5sLITdIkXQoGpEFIdThujyhFgVdy9ErcRDyjbmooPvLkKbuhO66ftBKdOAtdvD1VjBKDn/VLEWBybuwL1WZgRNG767Y3dd1QMpB7wvQrEqCo1dU4jB7sF0/A7fXAAc+QArEoLCR6B3SpIS28hb8WbIEp8yei9sTvugHmUka3GurJYi8vgdk8adnUkpERESE8MgFz2PHX55iWHuUDtb0GPA6JRjS/MIL4KOaJZ4FgC2uhrIhIeLWN66BPjMGb/+0DuZQkuLg/54z9M/jsAQRIxl54BQqurk7jHoj5JutYFyS3ASineO9t3aSpAJ1qAoDp/TB7PnTqAspgTQtPTPndZw8XOjWKEPEDcS1sHmEJ1nE/fSRb7F84T90wiRYSCPR6EuH4brnL0NYTChWfrMOr1z9HhWKNKdj3w54fe0z9DmTpXPBt1HVToQIb298Hu3NzX3ux/GGCFJ/DJnRH88sfajdX19EROTc4nhdGRblbcfR2hJoJHJIZaeQa/DubidlJJgVNxv/FB/FsboSqCVyTIzrgctShyBaoYPJbkattR5qiRJvZ7+PQ3VHvB5nQHg/bK3cFfDcyk0qR3KCSYqCsnBEKtQYnaHCtkrfDT92nqHiCJLgkKKpBAsBMbJaKBuECr7Q22UoMetQbg6DVlqHCLmnAINcGo7XR+DylHm4OGl44+MGmwGvHXkbR+ubPjcpa4Oas0DOOeobcsmwCyx9P27HbDRvZaCThODujo8iTtn+C/BnmoKCAiQlORYgMj6+B9LIlt3XNMdaXotjN75Jvz558iQSE1tpTCIiIoK7blmI7TX1bp+EPo4JmOIgqxLA2vzvIy2qRejSA/Truz64EbXldfjiiR+C/tRNnSJh6JcIe7hDvM2YbVAcLoV6S35jfUEc6lqz+EsaSF1T5JrXJMSxkwieL75nGjr0SKGP5+w9QWuSomNN60osy1CR8D0f3UJdaZsv4n70wNf485NVPptefS2ak4aaa569FCGROvzxySrqsOqr6fT11U/Rr6eqLkdb6T2mG15d5Thee3Jdl7tx8oh/IxMCqe8e++Hedn99ERGRc4uck+VYunIvcgsqoFbJUb0pGzlLt5MmBq/ih2uemYsNv2ylTTLqUDVNUZ111xTaHEmSGYg4TR2ixGPTX8bBTd5rEpIAsebHTS0+V+IGnZSZgN2r9vvcx66WouSGXuA1TSIMV6T1ApTljq8ZOxE7ON6ndOMhcOW1YDnWayOqK/MX3OSWsEMaWR+Z/LybUzkfoYO9QxyECK0jwbVGDzavBFxRhd/39+q/T3kkDJ2LiDWJiMjZy51DHsXhrc70zNMHWUcoPHoK37/4S7sel5NysDdLaGuPY2rDNBgyvT9m3zO1sanzyI4cPDf3DRTnlrrVJBOvGUOToV2bawkWsxUL7v0SK75Y3aK6SaVTYvwVI2lNQs5j6Xt/4v27PvO6b4+RXfDyisdhNlgwK/waj5/zISqYA6Rvw85DsXwHGF6gosPnlz+K9uby1FupsDwQRFTx4Od3tPvri4iInFuQOaDfF/6Dk0cKoQnToCin2Odaq1KrxFVPzqFN/CR9jexPTCKIeQQRZTlrEpVWgUemvOAzTWjsZcNp8mdLiUmJQmRiBLI2+hdGtwWnkaI/HvzyDreEneqyGjw86TmvQvWWvr/XVj9FheznOmJN0j6cFwkOhA8u74tLFm7GjjzPeMr2JD1Kjcnd49AxWoPHlh3A8TL/DqfBQkQE7Q05ZrXRhl/3FuGP/afw+iW9cGHvBKRFafD3PSOx6Vg5Vh4qwf7CWjAQoJRx2JZbiVGdomhzkZMnlh3At1t9xzX7wmTlsXhnATbnVGDJbUMR020mIFUBq59vSkGQKIEeFwMTnnGIGwhsO/y3Ld4P5G0GUobgjBPbE7j0O1HcICJynkOEDRsqVkLwYjdhVllxrF8h3VzZUrW2aR+YsK92B7LrszAt9hJEyKLBhnM4acz1KW4gEHFDqCQc1TbPSMasYSdoh03y4WgwLtZBkkgldJdmINvmfSKjvQgkbiBwcLcVJJ+hN3GDslYelLiBC5VB1TsGmiFx4EK8R2KLiIiItBfP/fow7hr6P4+JDK6slm4EQcLBML1vi49NnEidpHRNRL+JvdAxMRIvfP03jsG3SzZbZ4bicAUsvVID3p8KZUQA7X+BkyGT5i7iBvqYnzVZIkwgjU8rv16HNT9sxP9+uAfDZw1CarckfJr1Jnat3Icty3fi6K5ccBKWOvAR56E+43q41SRv3LQAK75Yg5ZCGo/++uxf7F2TRZ01yCS+SqvEl0/92DhxRVyZxl0+Eje+fDlNeyDiB4bYg/NtW8Q4uDkb2Ttz0KlfOtqVIEpH4l702I9iI5GIyPnON8c349WsvxprEglrR2polc/LAUli+CR3KSqMDjfSWqsRXx5fj98KduGjQdcjTRsNBSfHzsrdPsUNhO2VOxEtj0Kp2fcio5UnYgAGVhuL4kodMkIi8OqQybh3/3se+5I5K4YR6P4cC5gsHKLkZmgkZkgYATZaQ/gWOJCUiFMmHaqsGqgkRq/iBvo6DJCiroSKc69JPsv9ulHcwICHhjNDKbE2fI6OD5OkvbIMT+fibELT88lPSS03MHwYRkaNR4hUTJQTERE5vbzx3g24/r4vkF3alJYmqxb8Cxx4AfJKAVad/3pBcbDJsb9Dj2R0H5aJjD6peOe2j1HqUq/4fH52Od1sYUoIHAtJtdFNOE0aeUjDTmvwJW5w1iQ1ZbW0nlj9/UY8ufg+DJraD+m9UvHFkXew4+892Pr7LupOJ5FJaOMpaZjtPaa723FevurdVjXLEoE2EWqTmuStDc/RhDtNqApfP/MTThxwzHmRGmX8lSNx/YuXU9dyIqYg9VBb/cv2rM6i4nJSf7UnwZxX9+GZePjru9r1dUVERM49vvl1G97/fr37gzIW7PhuUK49BMbiPvdiNpipE7UT4mr9w0u/4J+v1uC11U/TxnylRok1P270KW4gkKQHkgoUTOOj67WNCPjuHfmE3/04vRWR3x9ExSVdYQ+RuSc36AGFy0uyNkc1xtYbwZY3JIoGMYYScZwrr133gdt8oz0hEvbu7nN9Qoga9p5pEHQqSA67r6nEZ8Ri/OUjMe3WiQiLbrlTtoiIiEhLIILdW/s9SBNpTifpvVJoInPmwI54+7aPUHnKe2J0SyDi6PYWNxDIMatLa2hiw7/frcczyx5C3/E90bl/Or48+i62/bEbW//YheN7T0CqkNJrxaEtR6n7tyvPX/omNi1reUIGSf759YO/aULQW+ufxcw7pkAXrsG3z//c+HsiIgjyeV73wjxIZVJYfZjfCs1EF14hE3hk4+3Y/uce2kgcnx6LM12TkHWm+z6+tV1fV0RE5Nzj66d/wldPLwp6f2Od0aMm+fa5n/HPV2vx+pqnaWM+qUn+/mK1T3EDYfWPG2mCTkVR8L3MxCjwtreuwb2jnsRpJQiFg1qndPv+pSvfbZO4IbFzHMZfMQrTb5kIHRFpi4g04G4b9h+GTH4vunkIXrm4J00qUEpZurjY3uw44Rh0hmZE4t/7RmNM5yiv+9HosCCP2Tc5FJmxbXM6C4SNF/Dg4n2o1DepeHfmVeGzjSew/UQltp2owi+7C3HN59txxadbYWyYUMqvMOC7bS0XN7hSWG3EWysbFNqdJgI3rwXu2g3cvB64/whw4XuAKrzpCRnj0C4UBXYLbDEdgohTnvQ8IHUf5EVERM4vSsxFWF/xj1dxQ0sx8UasKmuKpD9Wfyjgc0Kk3uPlBU7AgVG5WHPpHhwYlosjg07i5Gw9uDsSIcRKghIgtAU2iNsSo92EItNJlJpPwWCrxzH94RYvXLsSeW13hExOFcUNIiIiZwQy+f3Opudxz8Kb0bFfGm2cZ5oVJXyYGpC4N04Ggq3WQ+KyIEsmoQmDu6fi15dvxnCV93GftfEIX3YUnNEKSVGN39cYkJmEjMhQcCUNi60+kGWXBl3nNIdEc5L0BH2to7GUNOzsW3sQS9/9k7pQkK/J5NBDE5/FY9NfhMXkqF3yDp5slbiheRzz9y8soV+TuNCFu1/D50fewYe7XsEPhR9RZzx1iLrxvAZM7o324Mg276lKbaF5o5U3bnvrWg/HWRERkfOLHeW5eCXrT7eaRC21BAyaJI37zam06PH43sWN32+q2Brw9ZMDpBTY7BzUEivClRbM7RaGT8dNRYxGBbtL6qeUtSNEZkSk0oAIhRERCgPUEjOSNVXoFFJBxQ0Eq8DBzHu/thJRxNH6aCpuIIRI/TfOSlgBErYMB2pIikUeKswVVLBB1GU6iREx8jpopBZwjOAQXtB8hqbPmGOdjzVxd8dHMD3+4v+suIGsgwgC08bt//tdiIj8d5BIOHz6+jV44Lpx6JgSBaVcCkWVBYpc91SHRgQBmiKHuzRrEfwKp+XHmmqSvasdUfZEKPBt3gKaXub1eV4WaSRVRkjL9W7iBkL/yb2pmPt0YjVb6YKsM4GB3PsTl+5l7/+FrE1HqAiB1B4PjHsaT130CqwWx3Xj6K7jrRI3uEISDxa9uox+PfLiIfh43xv4/PDbDTXJQtz53g1U6EAgTq29xwa+7w+Gw/9PNckd717v4TgrIiJyfrFl7wlPcUMDfLgGpgHBG0KQpqDXrnu/8ftV33k/rhNyf9mxb5rffZy1ETHcINcgYsqhDVMH1TDJqUMQkQ3ocmyQV/JUKKgpBE1ucF75SHoDQ5ZcGAFsflnj42wQ84JVNQbs2ZOH7OxiFB47hS2/7Wx6b8RZvGuyTyMTPjUWfMMclxPSiHXlk3P+s+IGsSYRETm7IILdD3e9itvfuQ5pPVMgV8nczIzai93/ZjXO9/9Y+LHPcZ8ImINl6IX9EZceg9MJSV548fK3G8XdLMti+1+7sXzBCmqaRGqtvz5fjXtHPYHnL3uTCrYJBzYebpW4wRUisF7y1h/067HzRuDTrLfw6cG3sGD3q3SdhKwrkIRrAqlNug3r7HEMRm8KLNYjazsNQhFyXT2y3XcDcGsJpl4iNQlZtxMRETl/2bh0W4vEDf4g4mnXRE4iWPOHwAvoMqhjcDWJlKPJo6QmIal2pxsuiGtjZUk1nSc7tieXrtXvXLHXfQel3LEFyTubXsDl/5v9nxU3iDVJ6zlvBA7OyfJL+idh2e3DcOjZKVh4ZX9I2lnlsGyve+zu59cOxHuX9aGJDlKOgUrGYWbvePw1fyS+uHYALugRhyHpEZD5GBjIcx6YlIm0KPeJhtOB2UYSFRyODX9nFeP1f7K97rfxWAWe/s1RDCzbU9gui4zkOOaGG29KeBoQ1xNQeJlIGXpX+6Q4cN6jQdtE/+scKRT+0huCEUGIiIj8pzlQ274CqyprOW36dwoeAiFnFRgRMRFSxntjoyHEjLweJTjWpxD7ovZjWcn3qLCUQsachnGz2XkFYk/tFvxW/AN+OfUNfir6wqfowqA1w6h2LEb7gtVKaTqFiIiIyJmETJZecON4fLD9ZfxW9w3+9/097k09Lbm5FgRwhZVQEEc7l8S35nGWHz16DV65cAIy5GrIwEDDcpjVqwt+ve9avPTurRh58WAMCQnxWRvJJBxunTUMCR1jodyaC1i8O/OwlXrIs9zroda4l5I0B8LqHzbiuwbRQXOIY9HHD37jeL/ftTy+0xtEPGG3N11XiOtfRu8OUOs87+/n3D/DazNWSyGJFO3NjNsnQUZcnHxAmsu6DvbeYCYiInL+8G3ullY9z9d686HaImRVF9Cv620+mmRdCJWF4KqUSyFn3WsMcjmz2DkIDOMwCQKPg/UH8dC+V1FsKoGCdYxvMtaGEJkJMs7F2ZsBFRek6Zq7hDPQ83Lo7TLYBJZeaomwodyixsG6ONTZm2qCEGngCfdFJ5fi8QNv4YF9r+ChfS+BB49QKRFXuAtEnOYmROjgJnJwUWOHyyLpJiIiInKmRQ4XTeiNr166Cv9+cReemj0MUV/vR9jyHEhKm1JsJPUCdCd4KCoFsDwgr+bBmalqqelgggBJpRGhi/Y2q0ncF3Hf3vg87v/sNiR0jKMpCMT9c8oN4/DpobfxxOL7MGL2YPQc1dVnc5FcKcPVT89td1dPb9RX67G6oaYibns/vf6b1/02Lt2OLx77gX696lv/i9bB8vfnq92+T+wUT2sS4vzXnEseuLBdGsFk8vYXGcy8cwqkMt/H7T2mG03IEBEROb9Z9Jf/dRJ7fBj4FjTvkMTP3P2ONM7aisA1SUxKFG565Up6jfGG83Jnt/HY8dce3DX4UZQXVgacyxFkEvDpcbQWUFby0ObZoSznwVobDsgT0aDjmuoIfWNgy0ygwgRv6Qwex+7aAR8u3oX77v0Ot97yOe6+7wfwUU1iaT4+gnQk+T1HPqnJoJFcmyPivJujiIiIiJwuiPkOSQlYuOc1LK//FvMX3tzur7G6WU3ywY6XqZERESiQmkQdosK0WybS1Lb/fT8fw2YNpIkIzU2pnJDx+con5pyRmqS6rBYbfnbM3f324d80XcEbRGT9zbOL23Wd5M/PVrl9n5yZQO/dSbp1c+Y+ONPjMdZoAVviPy1DcqJJ2EeQnoaa5KK7pvoVLwy8oA99byIiIuc3v7zjEHW1F7tXHUDB0VNB1ySJnRNwzbOX+qwxGmsSq52mi94x8GHUVdWfdnGWLAhhwju3fYL7xz6FW/s+iAfGPdP0g9hIoHcmmJ6d6Ua+po8FSMvThjlMqEREmnNe26NM6BqDr64bSNMDtp2obJdj1hisNG6e3PM6J5en9Yqnm5PiGhPu+2kPFQo4kXEMIjUylNc3JSh0jtHisWldqABiw7EynAmOFDsG10835Prdb8nuQjw0ORM1xtZFQjfHYLHTzy5aF8QAnNgfuOgjYNkdgLVpwYUi0wKWusDHYDig02S0O0R4EdkRONVMlUYIzwAu/a79X1NEROSc45TJ0fjTnuyo2oi+oUMc6QwBNA5kn67aXshQZyJHfwRH6vajxOK7IdUu2LC24i9kaLriYN0enA5UnBohkjAYzc3G9Wa4Osz6FXOwwInuxeiyNcXnLprB8WBa4MohIiIicjoYNWcIbe755pmfqPsOW1kPxmrzG+PL1BggO1QItqIebIOzqCt1lfW0UZ84+zTWJAO6081JSV4ZXp7zFvava0r+CUkOByZ1Q4WtScDQKSkK9102Gj0z4rExJhSSSgO0vx+AqVcirCnhNEaYMVkhO1YG+b4CsA1Jb23hxAFHQtzPb3pvJHLy1+f/4prnLqXRn+3VyGSsM0ETGlhc3nNkV9z/2e14+9aPqKOSK0qtgh4nEJIGt432hjQSJXSKQ+4+z6S91O5JeGLx/e3+miIiIuceuyodjT+uGG2BRFcCTDb36xNp3g9X6KGVmrH81CJIucmIVcTgYK33pDUnMYpoTIodh+GRQ7C1cgd+yd2JA9UFCNWQe3zPhWQzb8GCnO8xNqY3/ji1jQoZvPV0aiVmt8RWDnaoWAskDE/zFEy8FPV2KWpsKlRb3Mf7CFkYohUc8g3+F2GdfUmEamsddBIblJx38Z/jM3KVN5D5QtIc7Ph6ZNREsIxYk4iIiPz/Mv6KkfQe+NvnFuPwh3tg10hhHtcLDOs+V8/ZAUUlD14C2GEDV1YLedYpSMvqg6pJJl0zhm5OinKK8fLV7+HgpiONj8mUMqi0ClSXNiXHdezbAbe/cz069UtHeNyZSbshzqWEn99c7ne/3z9eiSufugT17VSTkEYmklRHXG0D0X9iL9qg9d5dn9HkiebNV0Q8HggijCau5O0NOX/SOJZ/qNDjZxl9OuDR7+9p99cUERE599h7OMA6CcvAHqUBm+ffyMiVTx7+Fpc9MouadLheX7xBGvtn3DYJk64bg7U/bsIfn6zCsd2+18cNdUa8d+enGDF7kN8mUj42nLguNn7P2QQwBh52GXnMUQh4lDISDraUKCTZeahjQ1GVW0KFEFx5XaOAUJBwEHp3AlQKN61hFZmD6tqBviZTXAFBFdhIynUfIko7Hc7pIiIiIi3hghvGQRehwXfP/4yju/z3KgWLt5pk6k0T6Obk5JFCvDDvLbdUM+KMTdK3a8qaapLMgRnU7b9DjxSEx56ZmiT3wEmabrDk7d/97kcEEJc9ehHqqwM30gZDeUHwvXNDpvenSRwf3f8VrC7GWLJ9eWDiw2F0EcE7YSrrIckucqtd+o7vifaG/A5jO0SjsKHR2BXy+3zoqzvb/TVFRETOPQ5s8L+O0VLIuP3xA19h7kMzaU3ir74gJGTEYvJ1YzHt5glYu2gzli9cgdz9nuu7TvQ1Bnx0/9cYMqM/NiwJnKTdGpI6x9NUubysAL1bLmN8lVPYlpoAJibCbT9GLgNS4iEo5MAJz3kiwqy7LmiPUxf5j3JeCxwIQzMi6UZEB/VmG5bvK6KCh9Zi43mkP/oHOJbBqE5RuGlkGganNf3hkteY9/EWHC93n/C22AUqbrigRywu6pOIaJ0cPRObbozjQs6Mw7RWIQHPC9geQPBhsfHYmVeFtKj2UU8ppCx0yha4l3afDaSPA/b9CJQdcSQ99LgY0MYBWz4Adn4J6Et9P7/XpUBoUqvP12jn8UtJFf4or4HJzqOXToWrIhVI+WoaUOEj0jljXJteU0RE5L/D6WhgOWU+id9LTiJc6l/5yoJFZ00P+rWMlVORw5bKNQGPb7DrES2LRT6nRb09CCFZC5AxcsTJk5BraP311xvHe5+CtkqFxOwmNyInyp6R0I4Rx2QREZGzgwGTetOtrKCCNqH8vjMHX//qO0pYtj8fklO+my/JMabILgXLORroibNnt6Gd3Rr5iaNCca77/TKfXwl8vB4z75yEkdeOQXSYBpkpTXHL0UmOawxXY4R63VEIHEvd5RizDUx7xLo1oNKpYDKYA8YSm/RmHNl2DImd4trndbVKKk4IlglXjcKgaX2x8qt1dCFEG67BuMtHIDQ6BIvfWI4/P13ltgjSnCnXj0NYTOsXQ4x6E1Z9sx6bf9sOq9lGJ+XHXDoMT8x8xeN362TglD6iK5+IiIjPmsRil8BglUIldW2SFKg4gGN4KijgZDzsPIMqkwoqqQWdQ0shIx2vAPKMu/DW0V1IUCRT4UODH6kHUkaCEZFD6ddqiQr9QwfijuPbEB9FriW+G2vKzJWYl9wBu6qzYIf3yXWObRLaqVgztJx7M5SctdHHTbwMHGOHXXA07ypYDbqHpOBAzVZo/ExPkTn7emuTe5FdYKFk3YVu3nD/PBz/DgwfgTHRU/Bfh7xvQWhbw5Sv/0siIiLtx+Bp/ehWerKc3mcv23QEP/7u6axN/ho5qwDlxqNU4OCL2oo6TJZeSkW9g6f3x9wHL0TmwI6NP68pr8X9Y56iNZArFqOFbhOvGY3hswYhKimCJhg4iXZxnD6dEBF6bWWd30Vl58LysV3Hkdi5yeCqLWjD1EGJG5yQdEDiNEvS6EjjTkikDuOuGEEFK4tf/42Kwv05Bk6/ZSJ04dpWny9p9iUJfFt+3wmbxUbT4kgax+MzXkLZyeaJSg7I/7OwaC/J3SIiIucdpOE0IE2BbUGx7c/ddCNiqkBNj+MuH06/JuPgyDlD8OG9XwY8fkH2KeqwuvOffb7nfLy4rwos4/eOltwua7omIGFkJtbtzYU93dFbwBgtkB06BfnBIiAhioobfB4jLR4oqQTjI3nVjYZ9pt44HhfefhoMAc8yxJpEROTcgNz/k600v4yaCi15+w8sX7Ci1ccrK6ikNQkxBBo6cwBNG+jYN63x5xWnqmhNUlnsvtZiNpjpNvWm8Rg0tR9iU6OosMFJdPKZSeJU65SoKKqk1x5/1JTXUdOoxI7tU5OEtVDAQZI4Rl0yFP98uQanjpfQ9ZHxV46EPFyL73/djj9W7UedwQJGbwJ3ogySnGIwdt5NaEfWZlqLvkaPFV+uxbY/d9HUJZLCQRp//zf1RVSeqvL6nGEzB7WpDhIREfnvQJJE7ba2m/e5sunXHXTL6Ou/JiFJQqPmOtZJyHwOuVZ9MP/zgMc/vi8PVz45B3tXH2g3E0DXa0By10Rs/nVHy5+sUniIG1whPxNKKgCjuyEHuQ6QNfP/OmJN0npEi7AGYkMUyIjW4NqhqVSc0Fqc4iSS4vDv4VIqZliyq8mB4uedBR7iBlf+OlCMzDitm7iBML1XPOSS0//rIuKGO7/f5eb84AvyOc3oHR/w85rcLRaxOv/RNdN6xkPREL0ZNMpQYNDNwLQ3gPFPAjHdAFU4MPYx4IGjwPWrgJDmzasM0OMSYNqbaC0nTRaM3X4Y9x45iZUVtdhQXY/380sxbNcJLJKk+37ijk+BWv/Fh4iIyPlBktL/jWxbqLSWQ835Fp/ppGGosVU1qofLLCWwCME5IBGRQ5+QIWhvyOvnGA6DR/sWDmTI3zs2B9snNamuZclaRN7YAxHzfEeMioiIiPx/EZUYQSNxLxnfA9I8LwluPA/Z7hN+xQ10NztP7+fJhMymZdtx3+gnsXbRpsaf//nJKp8N8ISNC1aie2y4m7iBQBplOJd7djIJzZqs7SpuIBD30ZeueifoiSciNAg0ppMJ9rAY/000RJzAcS2rScgk+EXzp+LuD2/Cdc/PQ0rXJDoJdf0L87C45FO8vvZpRCaEu58zy2DytWNw29vXorUUHjuFG7vfSxMktv2xG7tX7cf3L/6CW/o+6Pd3+8s7f6K6rKbVrysiIvLfYUR0U5OpK8V1WphtXGNTPhEESFiHuIEg5XjEqOuRoqtAl7CSRnGDK4WmfCQovdck5JKhkybhpMHR9MgLPHaXF8Fot0IuDdyIU2erw5Wpo51HQ4jEgFRlOTJUpUhSVIJr6ICSMTYPcYMTKcsjVlYLq51FvVWKOosEFqEGWyu3Q29nYOF9XwuqLSrwbtOpDDi2ZdfBDqoumN/pCVyZeouY3iAiInLWQUTNzpqEayY+oPA8pHtO+BU3EEhjCcFmtVNHuXtGPE5rEyfLF/zjIW5wZc0PG6lI21XcQJhw9ShaA/jCHKdG5ZRUlM/OQPXoRNi0wYsFmgsXXrlpIcydY1A/NhP147vA1CMBvMLTM4ycDxFkBDK/HjNvBEIi/TfRTLzaeY0LHlJ/XHzvdFqTkKbbpM4JVEh94ytX4ueyz/HKyic8XGZJTUKca2989Uq0lrxDBbih2z14945PsP1PR03y7XM/4/YBD/kUNxCI8II0IYmIiIgMaTbGe2DnISlp3RwGcUqNTvHdgErGSmfDKM/z1Lm1eRqOL4hw7KK7p/reoVnSpwPvNYNNBhgiWNTHsTiZLMdfOcdhljXlWAtKGcx9U2DqnQwhxn1+yQOZFIjQgS2qcBRefujfJQ5vb3wO8xfeLKY3iIiInHVEJ0fRcXr2fD9jbRA4G1ZJsgBxxb572GPY/tfuxp8ve+9PD3GDKyStp+eorm7iBsKka8cEvPdvr3S3N25eGLRokNQkgSDCA02Y/wTrSUEcpzlEwEyMtkhNcvXTc5GQEYfIcA3uvGYM/vz6Lrxx03jE7s6FNLuoUdxA6ijS1EpqmNaSuz8P13WZTxuCd/y9l9YkXz21CHcMfMSnuIHw/UtLqIGUiIiIyMAp7Z9q6eTYrlzEpPo26kjKjEehS02yf92hoMUWhlojpt/W/kLlquJqbPxlG+01aDFR4UHsE9b4Zf9JvfDe1hdx+9vXtfy1RM4rzvsEh+b8uu8UFSe0F+RQj/6yH+MyYxCiktKEiED7/7H/FG4a6d4or5ZxVABgblgYOB2Qe/CvtuQFta9KxqF/ahiOltQF/LxGd47CraPTcelHW2C0eg7EkRo57h7nfWG9TST1B+7eC2T/BZzaC0hVQJfpQIQfEUIQ3HAgF7leJqdsYHFP5wfRo/4ouuiPez6RtwEHlwKDb23T64uIiJz7dNf2RXb9AdgE7w08SlZFJ7BNvP/IL1/o7fXoqe2PQ/X7YBXcx6tqawWWF/8IrSQEtbZqmugQLHJOgVBJ0w3nmYJ4GzVN6becmmjHoqk0QYOoG3uCkYr6ThERkbObNd9thGxbDiSHi2g8PU+SzkhSgpWHoFHCThr1awzkphyMyQrW4N85mkyGvHHjAgy8oA+UGiXWuIgdvEGakNb/vNXDwY0kK8gVMhisRpwuiFDhl3f+CGpf4kqaOagjTXFwjcH0FZU8847JeGjis7CYPBesiQhh3v8uQnvTc0RXfJP7AXXqOL73BI1bJo6mcWnu4pGWQASKT130Kkq8iGACTTiRxfoNS7bRqFMREZHzmyvShuD3wn2w8u7zNCSR4GRNKFLlSsSEl0PvI70tVG6iwgdf1NgqMDV2Bv4qXg87jLS/hggH9DYZSkxleOHgC+gVKkGdrZhIBDAsWQc9SBOq/3t1kvgQKtWCBY8OqnJoJE3XQDUcX1t4FqoAqQrk50S8UW9XQM7ZIGt8LwyqLUpoJGYoOWvjgjVJeqg0K1Br83SUs7UgnSBF1RG3pv8PEvb8mZIlV+i2zrS2r5RSREQkGEhSmGz7MfBHimBPjoAglVDHTUleGU1waymkxnjt+g/w/cQFkCvlWPPjRr/7k3v2jUu3eTi4kRpAKpfAbLBQN2xbUjhsyZHg5RzqM+QwJbqP0zVjEhH25wnothS3qCZZ/NVq1E/oCmFwk8OrLSGUihzUa45AWuRouA2N0iGjbxp1zQuk+x4xayCmXDcG/7vgBdpk1RziDDv3oZlob/qM7YFv8z7ExqXbqbMrqetGXjwYMSmtT8MgC+9PznzFq0jFKW7xBUnr27RsBxWqi4iInN9cdkE//Ls1G3YfcxnxNh52lQz6YBIJvFCaV445j87Gsm/Ww6w3A9X1YOyO+uforuO00TU6OQLFuWVuhh6B0IVr/JpoMLV6KgiES0IFYxMgNCsBrEoGpjAGrl2yAseAlBw8J0BqaMq3s3SNg7TIHDjXjFyvjWaw+aXgmxmXOOndIwkvvzAXnB/B4H8NsSYRETk3WfnNunY9Hpkbf/Xa9/Fd/gJIpP/H3nmAR1GtYfjbXtN7r5CEhN5776AgighiBQsqCiKIIlJUrmDvYgERKQqIIh2U3nsg1ISQ3vv2Mvc5s2mbbEuy9PPeZ252Z86U3cWZ85/zf//HNysKZc0p++g/J9FvfE+z9a5eLuALBQ4L4xoDiUnWf/qPQ23J3EZEy1Ac3mS/2nafsd3Qd1wPzH3wQ4tJtIHR/qx42tl0GtwGq9K/Y+cm0i5msHEdcU8iRb8ai16nxzsPfGhRpGIvQZgkBh/bfIotjEWhUO5vyD3v8KaTVudXydgJcfhUlTdOFJWbmo+HXx+Bv7/eXm9++tLRa3ily2x4BXmy7QQWnOCsQcRqYXFBVrcb3KXQ+7mwwmdBZgm4Cvsu1A5BAhJr418CB+Y8iCgbQLuBrfDBlrfvK7E1jUkaz/0zm+YgGcWNSya1hVpnxIbTGXi6ewTK1fYHYSrUeui0Ghj1eoikJvXszqRclKpuXge5oZOFj3UKhYtYgO0Xcu223XYhB+M6hWLt812weNtlHEwuYAf7+VwOBrbww+yhcQjxlOKmwOUBscNNixM4VlKBs+XWE7oMHD5+DhyNJVc/ttxAbbuyFYVCuT/wEHphkO8obM/7EwamfoCtaqSwoTbnyq0PYhCxABE3EIwOejzzOHxESmMg4ooh4AjrCSduJjKuHBVGy4lVjuBaKIO0jQ/cH4ym4gYKhXJXkJNqqsDPLVOBl1sKQ6dmrMCBDXw5gLa5LxgyB1kZ9JM2ojNp4BVZr4KpLFfhv9UHMWzyALYaqT3IAC9JPCEDwTJXU199/7oj7HFuJvaECrUZ+eIgiKUiHPjzqN22pM2762Zgyb/zsOztVTjz3wV2PV/AQ/fRnfDc4onwDmr8YLoteHweej7UmV2cAalClHo+vdH7O/L7UyiUe5/mrv74qP2jmHF8LXR1nNQMxUKk5nIh72W9D87n2I8j1mX8i1IdSTStcnMwPbciZQXwFVegrHKIjIEeER5FMBg5yFS7QW0UVkYtHBiMRMpgSrwRc4Xo7NkaYp4QEVKVmbihNkSsIODYHn8jj1AJTwvoADGPjLcx4FV+JiLyKNeLUaEXgc8xsNch5fmhTF/GvicLl2O6Pl2laENWSwxRF9OTjYcOHr0wKuip+0rcQKFQ7l7yKsW03DIluOcd7z8yQj67ECE2p05SSXlRBfatO4KBE3tDUda4mIRUUWXFDUIeVH3iYPQ0PWMUfhyofSzciHlcFI+IBL9IDekV2054VRgZBop+sWCkFtwfBDwo+sTAdcNp1s3uwZeHQigSsNXtHIlJZq98FR/unItlc1Yjcf9F0yGFfPR8uAsmf/g467xwMyAJXL0f6couzoC4yGVebbxbNY1JKBQKIS7KHwteGY53P98EfZ3hIH5aIUqPXgOnkUUJGR4XxthQrDx7A4a2YSBdfUG5Fty0AnCuZ4JT6XyanWIag9M7KKKQuUnReUR78PhcNgGpdnIrEQMa4yPAeNcXP3DII9HAkIkWU1sOoHY3FzfUxijkwKhlwKu6LC4X7uEeKE2142ihNsVIvItp4Gj1MBCRg9AUf5CoaujgVnjl+X73lbiBQqHcvVgq8NNUinNLWWe5Xg93dahPqihTsZX+ybyF1MUkpt65Yu9NFTc0dJ6EuAqROQgiELcHcdd7/acpWLTtbSx/Zw2SDl9h15NnWp9Hu7ExCRFw3AwEQgH6juvutOMRAXdT/o3QmIRCoRASesRh5vKXsfipryyKHJzxLFr38T82C4IQcQPB0WcLcQftMLgNe71knpscowpSNFHZsxn0gTUxicrIQJBaCOmhZHCaWFjd08/duvuR1v718wwGDHthEJ7/+In7StxAaRp0Rq0OPnIRbgbXC0zJRs39XHApx/oEcaAqC5L/9uGLn5NYFZVHYDDaDh6OM8amuQ44E18XETafy8Key3msk4M91JU30lbB7lg5qTOyS1UorNAiwE0Mr5v0fd8sjjhgnXzErZX1jT4xzr0gCoVy1+It9GUnTO8WWrt2hJgngdaogbFOAtTNxlXgjgpN4wUOHeL7wrNXtFOviUKhUG4mVUktRpkI2s7NAD6vevLTQHJs6gT8xNFB2b8FpLuTbIocMq6Y3OTCE0LsJqOQiqok6Ya4BYS1CMaoV4Yh9UIa7hS8gjzYiQQyaO9IRQtNpQNbiy7NsWT3POSlF6CsoBw+IV5w83bF3cS5fUlN2p/8nhQKhUKIkwRBfcYVjIcGHImBqJ9hLBKCUfEh87HX/7Yfy/C5VXFDzXPLXaBkxQ2W4HEZBIrLkKryrC4FxOMZoDcy0DM8PBQ8GDK+BCp9OVz55Q5Kta1DhAwEKV/LOjbwSJYT65QDaIx8KA1E2G0aOg2S+KJIW1THtYJcn551dyDuFEKuwWJ+kt7IxbORM5Hg1g73IwzDYZemHoNCodxa3H2tV6a2hNFNCn1sMIxkP3IzNBjBzS6CICmdFTtUkXnFFIeEx4cgP71+9f/a7PhlD757/Rf2NalIOnrqMFw+dpV9r+4YVS1uILdzDXl02KDowWhIlpywX/maTCiHesLoIrbeQMBjRefBhSpsXrqTrfxKKqw6GpO07BmHT/YuYCfJiejDN9T7piUR3SwSmxiThNKYhEKhVBLn4wbxhhPQhnrB6CYBR2sAP70QvJLGF2cgvXptjxZQB8uBWvdnrTsfAvdAiAR88C7faNSxH3/nYbbYRlFOMQz6GlEEO2bXthngaipcyEYzxsoXRMdA4h2VEUYxFwyfA72YY3ZtljCIUCNwABAS4W1b4KDSAMWmOI49X3IWuNezwbjL2WfzR3/OQNsecbgfoTEJhXJ34tHAmMRRMqpikoRQnN1jKoRkjU3fbscXU35gX0e3jWDFBJePX8OdgnewFzZ8vhk7VuyBkQjp7KCtTJ4lLm9kIcW2KooV8Av3gYtHVYGSuwMak1AoFGcR3TbcqoPDncgT8x5li23kpeWbOdYQp9OKQS1g9KhTZJzLgS7SGwoBD/Ldl5p0bpJjYFXgkF8EBNh2C/1kwzS0aB2G+xEakzQeKnCowwOtA/HhtkvQOdD5awjuElPSzYTOofj7rCmxqC7RFdcwOH8XlLUmiYuzMvDvsu+R1uphkh3v1GtqLHnlmspXVX9t0zLIPPAIcJOwy+0mTaXBL1mFOFhcwQ709PZ0wROBXggUW6jMVAnPAfUY30I1dha5n9OcJCgUyt3PNcUlME1Oybk1hEuaoaNHD/Z1oTbfouvEzYTPcdyKrS5RsliEeN45IkEKhUJxhAGP98Qvc9dAG+lXLW4gGEn0Zq0/yudB0yYU0n9NVUAt4eJpSpoZ8fwguxVGU87VTPTeSMrA5y8uZZOK7hQKM4tNLzIda9+sbYTZe98Qb3a53WQl5+Dvb7az1Vu5PC46Dm6D4c8PhFeAh9V9SDWmxkKSpzoObdPo/SkUyr3FpsRLMJCufUH94hOM1HafnyT182G7yqnKUL8f7ye2LZwgAgIZTwsFyeapta67Zwc8EjKEfZ+lvgajnXMT8QLXhssEKYRXqJXDU6iAm8DcXpo8asU8PevoQJwcSHqQkMerI26o3Z6DIo0MniIlK+rgVo7rGcGB3shDB8/e9624gUKh3L0MmNgLqz7YwAqe7WF0l0HbLdYsdiHOCcZgb2g8XSA6kFQtcnCpFCWMeGEQjm8743BMcj0xDZ9M/o6NSYxSIQxBNf1lnZRU6raTJOomhLKVL2TnTJW6baH3sy+A1ga54boE0ISbBB2itFJIZQLwFNar1TVrF2n23i/Mh11uN0QIT2KS8wcvsZX/Og1th+HPDbDpJsFtQkwS1CwAbfslNHp/CoVyb7Hr132AVg/htVynHVMfHQB1iCmpvy46Fz44Mb4Qp+eCozSPA+wx+Om+eHj6SPb1pWPXzBJJGR+PanFDFezZGZOAukrkwFcbwXAYaMXkPmrbRaFSj12NgKgoyMEsjQ2S9WXKekI+4oDBKSrH8OcG3rfiBgqFcvcy8Ine+OPjTU4/bnVM8vxAuwIHEodUce30dbbC9500T1KQYRKNF2QWOdQ+uq15TOIf7guE47Zz42IGNn2zHUlHrrAOd11GdMDQSf3g7uN2U+ZJSIJuQvfYRu9PoVDuLUhBvbuFB6YMZhfCxSNXTbFGJbpwr/rihlroQzyg95KBX2i/uLc1uFwbMYxKAyY7HxwrIofRYzvdt+IGStOgAoc6+LqK8WKfaHyx21QJyFk80CaI/ds50gsv9I7Cd3uTzX8Iow79CvdVT4LWxfXSHiDoEdyN9Ivxvd2XgEPFFfgpMx+nypQQcDiIk4uxp7AMmlpf9+lyJX7MyMcvLSPQ3cNyxaT+Xi5YaP7T1W9TdKT+Sr4EeGgpwGt8ki6FQrm3UBkaX4HoVlOozUOaMgWeQm9w7Qy6OxsOOMjWpDd4PxlPjniXtmjt1olam92HvPbaa/j8888btM/WrVsxZIgpaY5Cud34hvrg4dcfwIqTKdXrGAsTm3UhTg7E9YGrqC9E5nI56PuYyf63w6DWbPXTP7/Y0qDrqj2Yf7fR9YEOt/sScGp3Iv7+eis7CS4UCxEWH4KT289Ap61J0r109Cpbcen9zW8hvptl97fOw9thxbzfG3x+iVyMN3+dCh6v8QP/FArl3qKgwnJMIvFRQB5WBr2RAz7X8jiVybFAb1V3pzXwoNTXLyAh5tm3KSZOCIo6+oo0ZTqOFlxEpDwQRFphD+LAwONorRZFzVS7Q89w4S2y7CZBEHCN7GdkGCkSS67YPJ+Rw8XlUh8EScsgFZg+o4fQC719BqOv71C710uhUCh3GsHNA/HgS0Ow8autdtvqEkLNxQ21kYqgbx4IwbkbbAJK70e7sau7PdCRTbYkDggNjUkMIV52q15bQtkqwCGBgz2TIqLfU7ZwBfg1AgBtmBsqOgXCc8MliNLKLO7XY3Qn3G6Obz+Dv7/ZhqsnUyCSihAaG8SuM1S6cFdNkJOYZNHWtxHT0bIjaudhbbHmf382+PxSVwlmrXiFjtVRKJRqinOtVP9sApo4f+sFQsg924UHob8neCmWCxJag9w7j209zVZ45QvMYxLG13qhiiqhA4xGEA02h2HA13DtlhGsrdeWigS4sPca67oH4jzHOkNUCh4I5LjuLmC4XHCMNTv6R/iyY4Bkua9hB1adcAwKhXJLiWgZhmGT+mPLj7uddkziBt3r4S7s695ju+HYttPY+cve+2aepMdDtz8mOXQyGRu2n8HV1HxIRAKEycU4ReLOWvNaSYevYMNn/2DR9jmIbmNevKqKTsPasnFLQ3HxkGHWL6806TNQKJR7i+I8Gy5pdxhkHvn4ttOIbhcJnsB8LE4b7mV3fyKCaKzAQeYmxZn/zttulJYNRqMF/L3BEZuKWAUGeeChcZ3xwMMdcV9DY5JGQwUOFpg+sDnWnUhHVmnDKjdYY2yHYET71th5vTk0Fu1C3bHi8A2cSS+BkM/FSGk+RDesD2X4agsQwlMg3WBe/eFuQFlrcJxwIasUaYVKeMiE6BTuySZb3Uy+TsvDwmTzQao0tckOui4VBiOeOZ+Kk11bQF5rUkZtMGJZZgFWZReabEWtnEvO4+LJtr0Aw3kg6xTAFwGxI4CuLwN+LZz6uSgUyt2NC99+Nbg7hXJDKbbmrWdfB4hCIOFKoDKqbsm5BRBCyzjmGETo4z0U/qIguPDdwOXcWjEG5c7h9OnTt/sSKJQmM/nDx/HPxC9QqKzVb62cnDVyAZ0c0Es5IMXbeFpAWM6wfxmxwGwguIrhzw8yVeOpZMpnT6Nlzzg2ueXKiRQIJUIExwTi/H7rDhBVgxeK0rtHpFeFssz8uXXlZDJyU/Ph7uuGhB6xNz3BZuXCdfjl3bVm67JTLFcnJN/vvNGLsTL1G4gkNRXM1UoN/vpqG7b+tNtsDrsucncZnnpvHP5ddQDXTqVAJBGix0Nd8PDrI9kEJgqFQqkiyL1+TMLhGeHevJi9L1boRHAXqa0KHJJLvRDpVlgvx1Rn5CJLRY5d995qZG14bcGBES48JUQcLZQGETQMH3K+Fgwu47e0BSjVSREsbg03gRxqo3VxQplBgnS1J5rJcsEnCUC1yFa7IKnMH25Ctd38WBHXgBslnvCU264oy+UwKNVKkKN0w6cdRiPBPQheQh8akxDowD2Fctcy5fOnsXvVfpQXWb/fGmViMJVOcdYwBHuDn5jGJld6B3pWr3/tu+fQpm886x5AqqGKZSK2uv/5A5dsHk/mIjJLCuUrK615bNzUOTrA4G29il1tBJkl0LYIsLiNPMY0JIfVQsU6RsRH0ehY+H13ElxNfSek8mLzCeSklBzkFJbBy02GVs0Cb3pM8vPbq7B6kbkoIetajsW25Dd/d/Ri/JryNQTCmqJNSo0Wq/afwZ9HzyPvla7gKLSQJOVBejobXI3erCruk/Mfxa6V+5B8JpUVW/ccY4pJgptZ/m4pFMr9iV+tsSpndT0NbvUd6szgcqBo6QdOtAd4Ci24ZKDNTcYOtHBzS8BPyQG3zjhSlbPQ7DH/I0podOweD6mLBMryynY8B+YiKnUJrPNPqQEKf77NZxe3ShvOMBCfToNO5mHuClE5W119BDKvLRYCSjXeXT8DUa3D4RfuY7vKKoVCodzhvPrdc/hv7UGoyp2Tu/XI6yPh5m0aDyP97zd+fgntB7TG399ux/VzNyBxkcA/3IdNsLcF6d+qKpxzTbcS0s8PiPCrfn/x6FXkpxfAO9gLLbo0v+nn/2L5f1j7z0mzdWyZw97xEB+4aPb8Lckvw/yHlmD51S/NijYpShX484ut2PazbeGLu68rJsx5mK3MTkQpUhcxK2ohbkwBxD2dQqFQKvEPu/2Fux3lyskUvDXsA3aeuOPQthBJhdBU5RI44GzD1BFFNASD3gB9nRxgi+QWssuCHXMRFhcM/0B3WuiC0iSowMEKI1oHYum+moqpjeWxTqF4b1R9u91B8f7sUsXB33/DkWO2j/Wo5jA+Ew6EngzW30XIRKZ/ZuczS/HWn4k4l1GjfAv2kGD20DgMb3VzBrXPlSvriRvsUao3YF1uMZ4K8mbfqwxGPHY2GUdKbSvYPAU8/BgfgRCPVkArk0UphUKhWCNKFofDRf9Bx9ivYHonQdwUeODdMvcGrd06RjXwOXyESaIg5klu6nVR7mwYhsHZs2er3z/33HMOBUyhoXeOpSyFUkWf3vFYv7WWYIdhYBByoPTjgOHX/Ls2ikyCB3EhA5my/n1z1NRhePGTJ+utJwkmZKnih5m/2hU4kInR1PPpMBpqlZG7CyATE1UD9l9M+YFNoKoiMMoPzy15At1H3ZzqRRcOXa4nbrAHGbz/b80hDHm6L/teVaHCzIEL2coctvDwc8O8DW+gRdcYPDiFutJQKBTbPNAqDh/v2g+NvmZQWuKrBJdvGndSGwQo0QAuAg14tZwc1HoeMsrdoWG3S+EnLYOLUMOKF7QMD+U6MZh64gaGFSoQ1wTLMJBz1ZByteAIzIUU+XpX6Bg+eDwGPrwKKJlDKFNJ4GPFfYEk++Rr5FAYxDhREg4fYTnrxEBcHbLVbijXi9nz8bn2n2WMUYDrZQJ41tQtsd6W4UDKE6KTVzxkpOAFhUKh3OWQWJr0kbf9/K/VNozEAcdiPg/j5ozBs/PG1tvU59Hu7FLF11N/titwCHOXo4RhYKyM9cntXFgGaGsMFerBUwMcvWMxDD+rBNwiBYye9YtNsY8QG8mojJgPZUtfyE9k19tGEmEJZ65kYvGK3biWXlC9LdTfA9PG90b31pG4GZz+N7GeuMEehVnF2L/+KPo91oN9X67S4Nmv1+FSZqULBpcDxkWEiq4hKO/oB8m5HIivlyJIz8f8jbMQ0yGKdQGhUCgUWwx6sjeWv7PasUQZJ0CEauRebnQVAxyJSdSgA0QlRgjUDIyhPtAGeUFw4hp4tdwlVK3kKBvtA01LU2CQk6mCt8wdgg0q1lABFSrAx8aDqI78m2sgxUqM0LpZnmvh6BnwNAz7PJKfz4QupwzoUuMSYfVJxDBsZeqOQ9qYFc2gUCiUuxUi0iLub7t/29/kYxEB7uPvPFwv5uk/oSe7VPHJ5O/sChwiWoXi4uErVosQ3alUxSQkPiCx142kjOptoXFBeOnzZ9BuQKub5txQV9xQjVgATcdoSHYnmq3OSc3HkU0nq+duyorK8Xqfd9k5Klv4hHhh4d9vsmK/US9TZ1UKhWKbwU/3wcr31t1Vc9/k+XNsy2lW4FAFr1gBfaCbzf14RY67NxB3ODbGEYsg4ACqzHzrcUgdSIHB9r1izYpmUCiNhQocrDCxSxh+OZQKjYOD3pYQ8DiYPSwWPAccCqSu9it5+7pK8Eq3Zvh0l+3O9J2Ev6sYHcI8cC2vAo/9cATl6poqPoSMYhVeWnUKR6+Hsc4Z7rVuvM7gl8yaSYKGcLJMUS1wIA4Q9sQNBE8BH24WlG7HSxVYk12ILI0OQSIhxgV4ogOpBEKhUO5rhFwhunsOwJ7CrbjbMMAAIUcMHaMBcxN9eRt67GayeCpuoOD69esoLTWJKcPCwvD999/Tb4Vy1zJmaFv8vfMcdHqDacDAAKh8zMUN1XA4UHsBejchhKoa8ZxQLMCzH4x3qFqbm4/9mMQr0BOdhrTFmg834m7BP8IXzTtEspX2Zg1cUK+yUlZyLuaP+QijXx2GiXMfYR0QnMmmb7c3ar9LR65UCxxWvb/BrriBQKpPEZeNupzbl4Qdy/egKLcEviHeGDqpP5twRKFQ7m/cpWLMHtIH8//ZXd3z5kvMx22IyEFt4EPINYDDYWAwcqHUCGFguJAItOy6Qo0cOSpX6Aw8uIlVEPLqj6WJuDoESUvB5TIwMhzW8aA2RNwgI1ZEdSDn9ReUIEvrAUOl0JrHYWDkqlChD4ALPxcMas5Hjp2pdmPFDex7cJGjcUOZTlRHdMGBxmBfuF2m48LfpRx6I9emIIIci3xP48PbU3FDXRiOXecOuzR1fwqF0miI6wKpeEmqtFmCUyv2sIZELMBT7zzsUPEBR2ISP38PPDKsPdZuPVW9TpbJQC8h4u/65+ApAZ4OEF9xbK6AHEG++xIq+sfWEzkw7DPO9vNDG+wK1BE4hMQGIrJVGC5ez8UrS9ZDozV/3qblFOP1TzbiybbN8MQz/SFzdcxt4qbHJEevVgscvt12uEbcUFk3XC8H2EcuRwjtwFCQ0RhPXx8II2qcOqo489957Px1L4pzS+Ef5oNhkwcgum1EEz4VhUK5F/Dwc8fkxRPx7bTlTjkeuYfzChUweMstdim1ZHXteXsOB0YhoPLmAnkGCEhIwuNC1y4K3B2nwTEYUdHbHUVTgkkgUr2bPkiEnMdECGrjCd7cJHAz82EI87Po8GM6ObFdMF9F3Fg5jBFaea2xPiMDvoqBsIxsA8Sn0qDX66DsEQptpJC9diKMkBTowdfUOaBCBY5Kg+FTh1Jxg4Ufn8YkFMrdHZP8t+ZgkxJP5e5STJgzxqG2jsQkxC07IiEMm5fuxN1CVJtwBDcPZAsyvT18EXQa81gu7WImZg99H4/NHo1HZz4Iidy5BQU3bD9jczvjJoXBywW8wnKz9RePXKkWOPz81mq74gaCh68bpK6SegXyTu06x7rMlRaUIzDSj41JSJxGoVDub3xDffD0wnH46a1VuNsg7g2k+F1JXhmEl3OhiQuwXphDq4cwxbGxMcbXA4gKqXaFYJ8YQb5g0nPBSbPsBlqbB14cTMUN9b5UGpM0FipwsEKIpxTfPt4OL/12GqpGVo0YkhAAV7EApXk5KC8qhNzDC+5+Na4NtYnp1gt7f/0JBr35wHZtWvTqh0d6R6NIocGKIzecrgbu2cwbXSK9cCGrFGUqPYR8LnxdRWgX6oEVh1JxPquswcfMLVMj5p1t8JIJ64kbarPi8A38fiIdk3pE4vVBzZ1mTXOeVMxoBCIOt7qTuzKr0KF9rik1eOTMNezuGIMAkRBGhsFrl9Lwe06xWbuV2YV4LMATH8eEgHuTbacpFMqdTYxLAqR8GU6XHGWdEe4mtIwa3T3647ryKrI0abf7chAkDkNXT1MSKOX+5syZmgGyNm3a3NZroVCaSmiQJ+ZNH4H5n22GVqtnJ1yNQhv9Rw4HivYBEG6+Vr2qz7juEEtFyErOQVF2MWs1TAbfLdFvfA/8/PZqq8lLhEFP9EbPh7ugrLAcW3/6l+0vO5MuI9sjtmMzXDuTAmWZCkKxEF5BnojvFoO1i//CjQsNf17mpuZjuGQCXL1drNpGk8+x4bPN2LJ0Fx6dNapeJaemkHwmtVH7CUSmqhbk97BVNbc2qRfSMXPAAnx35iN2EN9gMOB/E7/EnjUHzdqRiZeRLwzCK19PoragFMp9zrgOreDnIscPB47jVHoWjDpLCTkc1kmh6gnE5xsgYfNzKtdwGIi4Bgh4Bqh1fAjrCRUYeIuUELACAQ5URgFEXD14MLJWyhwYWecGaxBBgwtPhRJDTZKSgMvgegUHz0dNw4Wyf3Gt/AorQijRS6FnahJPyWNKx3AtOEoAxRoJ/MTl4Ndyp6gHF/CSKlnhBDmWtWGcPKUcPXxi8FrsIOvHolAolLsQkuwxa8UrWPLUV9DVSconcBVqcIrKwXi6WD3GoD4twOfzkJ5VjJJSBXy9XeFnJWmIVE79df7vMNpwsR44sTc6jWiPcoUGW/ZdMF0HA8iyGKi9ODCQgtXk+WIAuBqTwwNHa4DsuGNOzz3GdEZkQhhSzt9AKfjgRvvBK9gLbZsH4du1O3GNKM9tYeHaMy5nY6hoHLhjOkAjsJz8Sp6SK3aewta5v2P822MwbtYo3PaYRGiaQtTq9fjreJLZNp0LYDTpCc24mJePJ1etw9+TJsJdIoZep8d74z7FwT/NLcw3fbcDY14bjhc+eapR10ahUO4dHnp1OHxDvfH7kr9w8Yj14g56Tyk0MT4wSgTglmsgvpQHXnl9J1PRhUwoe8fU3588H6wl+3A50HjyIMipvMcLeDAEe4GbW4jiZwPNxA21yYzj4sMTM7D7xT+RdOkGjHHh9YMGhgHHUD8i4WmNgJIDvpKBkQwBccC6SVRrwdU6aF0FKB8Qx4ouqlCLuFB78uB6QwtRWa1k37QcdB/VEU8ueNTKN0ihUCh3JzEdo/H6jy/i0+e+a7Tjz+Cn+rLj4OmXM1GaXwa/cF/4BHtZbDtgYi+s+Z9t97MBE3ujTd94KMuV+G+1+di7MyAi44AoP9xISoeyVAWRVASvQA+06ZuApbN+Rd6Nhhd6TTmbimHixyB1k9YTN1RBRCS/vbcef36xBU/OexQPvTYczuJqar7dNkZ3aT2BQ9U8CXG53v3bPofOdeVkimme5PQSVjyu1eiw4OGPcHRzjUie8NfX2zDuzdFskTAKhXJ/Q+4FAZF++P2jv3HlRDLuJkghiVm/vIz1n23GhaPXoeoSUT8m0Rsh23vVIXdTxt0FaB5W/xhEzB0WAEanByfb+nOoz6PdMH7OQ43+PBRKXajAwQb9Yv1w8M1+WHs8HRtPZ+JyrnlHyhYkof+pODF+nz8b6Uk1NlrBLRLQZ+Ik+EVGV69TlpUiL+UaK3JI2mc5ccU/qhliu/dmO93zH0zAsz0i8f3eZPx2zPGkUj6XA72NiYFne0SgT4zlZCcybDJj3Tk0FHI2g5FBnoUBprqodUZ89d811vFi2sDmcAbSWgM+DWGQt2mCpdxgRI7WfhWqKop0BizLKMBbUYGs80NdcUMVq7OL0EwqxpRQy983hUK5fwiRRLCLxqBGhaEM67N+NatAeidzTXEJhbrc23oNHgJvdPHozX6HzhLHUe5uqMCBcq/Ru3MzrPt2Mv7ZnYi/LlzCRY3l/mUV2sCa5E/PAA/0GNUJ03vPReL+i9Xr2/RLwIufPGVWmaYopxjXE9PQc0wX7FlreUA+oUcsejzUGTweD9OWvoBH3ngQqxdtYJ0BHIVHJohtTEI8PH0kWveOt7hNUapkbZMbChEvEJFAcU6J3bZqpQa/vLsWfCHfaQlFYhmZQW84XR/owP4tLShDSb7jYvOinBJs/n4nK9L4beH6euKG2glFYfEhePClIY26PgqFcu/QNyaSXUpVauSoCvHy2U9grFVelEPkAbW62nweAx6jh57hQm+sEROQXCEjh4MypQiu0ppxIC6McBXWCMxIao/aKGCPS7bJuBqrwoEqZDyNmcCBIObpsCvnPHK1ueByROwxZAIdDIweGj0fGiOfSCjYRCJTkT8O24YMjRExBFluVHgg0qXI4vmVegG0bKaRyQlCxwACECeLmjYGIwfu/OZY1Ho0unhH0ZjEWrHaJuohnV3khUKhNIy+47qjVe8W2PrjbjahJOOKuTuB4HwatN1iq6u61cbX2wWd20bgxZm/4cJlk8CA3Ec7tA7HK8/2RXioyUWZUJBVhIwrWeg2qhMObDhq8VpILNN5RDvweFy888IQTBzZEcs3HsX2/RchJNM3pBK2K8kQrblZc7VGuK1PAr/YVAyJx+fZFHWPnfEg4jo3s7gtOycPHx0zT4qpizi52GJMQmYZyqwkyFZh8HZBBRj8NPs31o2PJP06A7HMghLBAbo+2JH9m1+mQLmq5tlu5BK3DOv75ZRXYN3Z85jUpQOWv7OmnrihCjL5TmKSoc/2b9T1USiUe4ceozuzS3lxBdIvZ+G17nOqi2qQ/1f0ioQ63ryIoKpdMKQn0iE9mWG2XpBWBEFWOXSBNeI7cgxSOMQWpOtPwhtu5SOCcZVCGa0HI7Xt3LO19CrSTl8Hl4x3qXUwtowik/LVJ64WN9R5BPDURhiEXHC4HNZpqC68lByU9o82EzdUw+WgLEwIryQ1uBoDYrwlmLRmKtr2a2n7Q96n0JiEQrn7GfRkH7Tt39IUk6zaj6xr9qtHV0ESVlv2aoGXO7+Jy8dNSatcLgftB7fBlM+eRnCzgOq2+RmFyLuRjy4j2uHIP5b7/R2HtEGHQa3ZMaC3fnsN498ag5UL/sDePw47fE08PhcGK0mm5LhjZz6IqNbhFrcTp+pVH2xAQ2GLgGj1rMDDHqT41LfTl0MkFWL4cwPhDCSVQgVbWEq87VYZk+SlF0KtsJ93VkXO9Tzs/GUvRr0yFD/M/LWeuKEKImaJSAhBv/E9HT42hUK5N+k9thu7lBWVIzUxDa/3nYe7hf0bjrLPB5HBCF6RgnVy0Pu5sDd/QUYJRBdzwCt1sEh4iJ/1Sk+V25nsgnoC7hZdY/DsovFo1atFkz7LvQqNSRpP47K/7yM8ZUK82CcKE7qEOtRewONgeMsA/PBgKA59NtdM3EDISDqPtfNnI/d6MjRKBbZ+9TGWvvgk1i96lxU3CEQiCCU1VllcHg9uvn6Qunvg9LZNUJWbOpuhXlLojEaHnCg6R3hi7ogW+OOFrvBxsTzq/ELvKKviBsKx1CKb55GLePjxifas+0JT+XF/Cio01t0eGsIIH/cG75Mgl2CAl0ngICZWnw1MmP0nv5QVkvycaVs1/VNGPgx0hpZCoVQi4onhJfRFa1dTMuPdQL42B3rGOffrxhAoCsXYoKcRKo2kiUR3KBqlEoUZaci+dpn9S97fbE6fPl39um3btjf9fBTKrcDTXYYnxnTBCAcmKckAMKmySZwbXv12Mj4Y/7mZuIFw5t/zrOiBVPsngzQfTPgME8JexFvDPmDFDRK5mF2q4At47CQAcUD466tt7GQzgQz8W6v0U5vAKD+07hOPl754Bh//Nw9u3paru06c+4hVcQMh6fBlm+eRuEow/69Z7HGayu+LN0JTK4GnKRDRSEOJ7dyMnbAhkN+C20Dh9v71R6DT6rDp2+0225FKTM524aBQKHcvbhIxYjyDMCq4R6215uKGKsg64sjA45iPTfF5RhBvhlKVCBo9jxURMAyHdWGoC0nzMYBXL9HHEsSDoS4GhoN83TnwuGqzayTnkgp0EPIM1aIGkudK2it1fOgMpN4LBwIeg1KdFFfLvFGirnnuKXUCpJV4oEQnNctCMjJcVjRB3Cx0Ri4KlFK4ow++6fgGuvpE05iEQqHc03gFeLAC2gGP9663jVuigPDgRXBzS6oVSUIBD4N6t8Crk/pj/kf/VIsbCKTJ8TOpePmt1UjPLEJJfikWPvoJHg+fwsYkRNwgcZGYxSQkxgmM9merb/799XYoShXs+vAgL2hUOrbaNVlE5YA8i4G40AhRsRGSPCOkuUBos2C2wurUbyZj8a65cPGQWfyczy6aYFXcQLi+8hj4hdbHNjz5Qny0ZBIem12/Uh0jJFmz9h96jMhUl2z1oj/ZPv3tikmIqCWheyz7Wi4yCQmrYMUNdj7KtktXWQH55qW7bLbb8PnmBl8bhUK5d3HxkKNFl+YYNqlG+KRqG1RP3MDC5UDZKRTqZjViOQLD40JoEEBcoAdfaQRXYwRHb8OOrQoOB8bapSH1Buj97KgiABw/f7mmorinK7jggKtnTIsF5wZWbEEEb1wO+CojK4AwQ6uH4Gwq9DJOjVDCElwO1IZy9AyR4+u/ZlBxA4VCuechjgtPzBuLPmO7OdSeCIYHPtkbk/43Ae+P+7Ra3EAgjnHHt57GtJ7vICc1D4XZxZj30GI8HmGKSYi4QeoiMSteJBDxERTtz7op/P3NdijLTYmi4fEh1a9tEdw8kB3zn/b981i0bQ6krjV5YbXFDS98/KRVcQPhyknblcU9/Nzx3qY3MfaNB9BUiJsDcYl2Bn262MklI0m52eZi8faDWqNZu0j2tdzdcgxni33rD0NRpsT2Zf/ZbEeE1xQKhVKFq6cLWvWOx8An6o+B3amc2H6GdeEh8PMrINt3FW5/nILbutOQHrnusLiBxFIgDg62EAkBOZk7MXc/+vzge1TccJ9w9epVyOVytt9yKwoRUwcHB+kX64t5f1+w5C5czdgOwXhrWBzcpUL8+eF8aFWWbw46tQoHVv8CtaICOdeumG/TmJJoojp0Qd71aygvLEBpXi67pJw8hsN/rMLI6bMR0aY9LueaEotsMSzBH7OHxVW/3zK1J347egNbE3Og0OrRIsAVE7uGoWczH6vHKKzQYOMZ2/bNFRoD3v07CaGe5jewxqDQGrD3cj6Gt6pRSjeWR/09seBaFjQOJu20d5ViWUIE+/pYSQXr4NDH0wU7Ch2vmKo0GHFdpUG2nWSvTI0OqSoNoqSNq55EoVDuTTp79oaQK8bZ0mPQMDVVTu9EjHDOgEZjIHVYu3jePQHF/QRJlE2/kIgzO/7BteNHwNQSZHK4XDTr2BWtBw1HSHzLm9LZpQ4OlHuZvrGR+GjbPptVjMcO7IipH01jJ4RnDlzAJpRYc0P4ec5qthpR8plUs22qCtPzp8dDnXDp6DUUZBYhOyWXXQ5tPI4V83/HvA1vsBOnqefT7V43qXzz5PxHq99/f/ZjNvGeJC5pVFo0axeBB6YMYe2VrUGque7744jN86hIVaHXlsG3VhXYxlJerMDp3efRZUT7Jh9ryLP9sGzOaofts1v2jMPcda/DaDTi4uEr7O/RbkBLnNh+1uFzqhVq3LiQYdf5IfNqNluVyjek6d8ZhUK5d5gSPQquAhnWpe2FwmBboMrnGmAwmCfdcDkM9AwPFVoeOBwGXA6fFRdYEjkQtGZZRJbRMvz6VeeMPEg51sVoUp4WGgOfFVKQM5OcUj7XaNYHJS8VBjGuVUigKCCuEhyodTwEyCrgJbL02TkwMlX78zG1xQC7136/QwQuZGnqMSgUyp0BcRlbPndNvfXcUiWER6+AEfLx0MxReGLWKMhlIrz05ipotZaLY5SVq/Hjyv3IWrmXFV/XRlWZINTrka6sYJu4sZEqrWQ5uPEYfp3/Oxb8NQsJPeKQklFoti953Ajq3MIHvTocT4zubBaTkKSkQ38dg1atQ2ynaDYmIX1xa2Rfz8XRv47DUy5E0ZhY6H3NE2yI8IG/7hS+W3sJnn71Cy9xVDo2aRVCG889gxHcSjfskrxSJO67iHYDWqGpDHuuP1Yu/MNqlVhLThnv/D6ddbq4cOgyNEoNOoQF4nhq5TyRA7dllVaHlLOpqCgxiVGsQWJKInJx93Fz6NooFMr9wdRvJ8Pd1w0bv9mGwsr5YtKnZ0joURV+GAGit1a1DoT4aq2iczIJ6yrE0zHglZrGYojGWeMpsCtyqHJvIPAyi8CNrJ98WhdDbq18AD9P6w2JsxkHYPic6uvgGgGu0sg64zAGPXhXMsDLKATHyEA5NMbuueEqwNPzxtpvd59DYxIK5d6LSew5GBB35nGzR7MC6SkdZrLOBZYgfe7lc9fi8rGr9ZzqqkQLpJjU6d2JrPNB5rUcdiFzGyQmee+f2Yjt1MyheZKRLwzCQ6/VOLQtrYxJDm86wRaSatG1Oeu2TCpgWyPtUqbdeYLi3BJ8P2MFXDzNnVAbA5k7uHjkarXwuSmMGtASq/44BIMF5z8CPyUXnFq/U4fBrTFnzTTodXo2JiFxW1zX5uyciaNolFpcOZFcPedlDVMbFSRy+899CoVy//D6jy/C098dm77bwTrbsEjEgK8X4CIzTVKUVQB5hYBGe1uvldwjnYKj+Tu1CngIRAKnFB+817lXYhK9Xo/HH38cCoXt8T5nQgUODhLsIcWotkHYcCrT4nZXMR+vDmjOihuUZaW4fvqkzeOlnrVtY5x8wnLyjk6jxsbFCxAQHYM2BRqA8cNFeSy0PMvODPLKaj9VEAeH1wY0ZxdHOZtRAq0DA9+ZJSp2cQZEfOEMLlSo7IoburjJ0M1Djt4eLujsLsfa7CIsSc1GRuXNn9waSBfb0TTeaKnIkUJMLCuzCjE7MgBCLjVToVAoNbR174xwaRR+z1pGvxYrBIiC4SOyULWJclvJTbmGrV9/wro1WIKIHa4cPcguXsGhGPrSdPhFRjvt/IWFhcjIMFmSe3h4ICwsDOXl5di5cyfr7FBaWgpPT0/Ex8dj8ODBcHU1OTZRKHcL4d4eGJzQHNsSLQ/gekgleG54T7i4yFCQWcg6NdjiyKYTYGwouA/8ecw0e1wHMojz9rAPENMpGvnptl3LCKTSUd3qr08tGMcujkIGrUlyjSO2w2RxBvYGvR3l6skUu+IGIu5I6BGLjkPbspUKt/ywCysXrmMnEAjEwYHD5dj8vWoTEhvEtneEzUt34ol3x4JnZWKBQqHcfxABwMTwQejkEYuXT39qsy251RD5QO26pKY7FafyFREE8FGskcBbbFksoWaEUBkEkPCsD8KXGcyfJcVaCUR8g92xeCFXD4VeyLovVK2zBI/LQCgwoEItBoc0deAW2s0nGrFufvYbUigUyj1EZKswdBnZHkc2WZ7/8PSQYcLUoay4ITO7GIkXLc+nVLH38FXwL2Vave3uX3fEouMYESTPHLgQMR2jUOzrSm7kNs8jkwrrVX999oPx7OIoFw5eZiu98ss08Fl2FpoId2jC3dlnhii1FKKUYvZzZJWYhBh1IcmqwuR8aOOsF3YSpBWBW2tuxFkxyeVjyXbFDe0HtkJ8t1h0GtYWMR2j8dfX27B60QYUZpmqqBqCXMEdEw8jqc7mwPRNtLs7W+jCEYjLw7g3R4HHozEJhUIxweVy8dTCcWg5oSsmfbnBJAwgt4jaDwyeSfCg95XDKBGAS4Rk7A2r/v2Opwf4KgZ6qfWOPk9DXBcqz59VBG6ZErKDWpQ87k/s66zuJ9truk8yJNjg2069YIhzg4WghAgdwOGDI5eBY6wca3OgUEbXIW0RGhtktx2FQqHcSxBBQbuBrXBq5zmL272DPNm+JRE3ECH11VPXbR6PuFobbNxz9649ZDEmKS0ox+t957ExiT1RL0HiYl741C/MB5M/fJxdHOX8gUsOtUuv5aDXVJwWk+xNgmDPBRg7RoNxq1U412BkxQ2CxDR0GtqWdbfuOrIDottGYP2n/2Dt4o0ozi2tmSchfQIHTanD4oLYPoWjMQkRoDjankKh3PuQedNJ/3scLXu1wJwRiwBPdyA82Hz+VSIG4+0JJN8wiR3udshcvEoDSCznIbMQZx9FzbOh55jOCIyiuVv3CwsWLMCxY8du6TmpwKEBfDC6JfQGBpvOZZl1mALdxPh6QjsEuZsmW1XlZWAYxyrhNAajwYDMy0kgKXm9kIwOJafxl/8IFIjMq26Sjp0zXBC4t8BKpC7EWcIZ7Ckqt9smV6tDsc6ALfml2FpQiu/S8822k5+6ITXKtUYjIiQihImFuKG2rdD7Nj0flxRqrGgZCYGjqggKhXJfkK/NxZ0MB1wwpETSbSLOpfVtOzfFMqnnTuPvj95nxZiOQEQQa+e9iQdmvI3wVm2d8rUSEUMVRNwwffp0LF261KJ6WCqVYtq0aZgzZw7EYuqmRLl7eP+hQTAyDHacv2q2PsjDFZ8/NgI+pGIEW3mIxCS2R3ntJsvb2EwqHjkymM7lctiqq02FDFzfaqLaWLeBbgiOOC8UZRejrLAc+/44jP9WH8TGL7eYba+yFXUUvVaP8IQQdjKHOHDYYtX7G9gKU8Q1giYUUSiU2pzLarhgjDx6ahwOSEUa08MkudQbrsIMCNnMHXPI4+hAQSR6eKVAwq8vcijTS6AyiqrbFmmkyFS5IVRmf8yHiC/UeseGP4lgQlEp1ijXCeEF2+4VgwO6OXRcCoVCudd467dXsejxL3D47xNm6wOj/TFv/Qy4eZvG9otLbd9HCSS2gYBnMRmVYCumIVVOSUyibR4AtA6z2o7P46J3p2ZwZkxCnnTi6yXs0hDEZ9Oh93OF0dPc/YE9Zrka4pOpZoJDIihxBie2n7G5neFxke0ihEeUJ7Zdz8TmLSexdf46sza8zDK4bbiAsr6RYDyl4Bgqk42tIN6fgehRQ9kK7KQyri2Wv7MGKedu4O3Vr9GEIgqFYkbS1VyTc0NdcUMVlcIHfYsw8DOKwMkrBhQqU8KNzHzMV5qtR1m4ACAig7oYGYiKDYDRCF56IfiJpvsxr0QP1435KHvEsrBZlK6DMigQpa/FgGM0QlQKyHIZCFT1n1/sGjtTwYy/J5hL6eyxxMlF0MT62mz/UF/njKtTKBTK3cbc36fj/cc+w/FtZ+oV/iHu0zI3WbWbgT1siRvsxSRalZZ1XbOHUCxA91GdcLfNk5DzRSSEOC0m4ZapINmdCIOXC4zuUnD0RvCyi6udG4pySlgxw3+rD2DTd9ux5YfdTZsn0RsQ2zkacneZXREKcb1IPpuKmctfNnN/pVAoFOJkA4EACLdcXI7D44KJDAXOXWLjiVsNmYsnBTkcheFyUNHWA5pQKTg6I+SniiHKUtWUrcrKB6KCrR8grxgcInKoZNhk6nJ9v3D48GF88MEHt/y8VODQAMQCHr54rC1eG9AM2y7kQKU1ID7QDQPifNlB8irkHp7g8fkw6J3jQmAPqVGFEblbsCJkAowc04iytyYfDwhTcfiz3TgplqB5lx5o0bMvBI1I4OsQ7sk6QVRonPN5iNtFmdr6sdqGuiMhyDl2xI48Nq6rtLieab/yrKOcKleiUKfHC6G+mH3FVEXaFv8VleOP3CKMD/By2jVQKJS7n0zVjZt+Dje+B8KlzeAu8IDGqEGK4grytdlsSo89bqe4wVPgjQiZ405ElFvj3NAQcUMVpD3Z79F5/3OKk8OZM2fMXtd+XxelUon3338fu3fvxqZNm+DtbS4UpVDuVCRCAT57bASS8wqxKykZWr0e8UF+6B0TAV6tyjLewSQm4TnkenAzCWoWgPce/QRSVwl6j+2O/hN6QGSr6oMVWvVuAZFECI3KORafMncpFCXWE67a9I13WgU84l5jD2ItTRZncW7fRajK1RgzbQQ7MG+PQ38dx97fD6PfYz2cdg0UCuXu58DlHBjkXPD41u9jZNy8dvSgM9TNPDK9VhsEOJUfjEiXQnhLFNXOl16CUIRKuqOfdzAUmgpkq3ZBzzkJLkePUp0E15XeKNFLIOOT+z8RHoigM/Ig5WnBIZmVdiDOEPrK7EvTfLT1CUoyd8nlMjAYOVDohKhQiSCXaCy2jZCFoL1nK7vnp7ClbE1LU7gDrJcpFEoNErkECzbOwvXzaWw/kggN4jo3Y93Iale79PNxtT/JSpKJmujmLLieB320H5g6iaxVhHE4mD/0fcjcZeg7rju7CMXmjg6O0LZfAgRCPiv2biwcnQHyHRdYFwd+u3BUGAzgqLSss4MwKQvcWnMwHYa0QUCkc5yCbInbdf6uUPRtjhKxABf+qxFn8wfFQf7fFfaaqxBmlMH71zPQBrpAHe6Kkn5BYMT1pxndd95A0vEC6Bc9jdFTh2HZnNV2r5GIvclv02N050Z9RgqFcm9y4Uy6SRpgK9GQA2gjPcFzdQMTEQju2avgpmbDGB9h1oxoqd1SdVD48aGX1TgpNPf1RP+YKIR4uKLsfDoOrj4A4p1aded0X5sHXrkBZQ/6wOAlMJ1SbYTgqg46vRc4kabjkPYqGaDyY+B5SQdRaZ04ijSzlzBJnGyEfECthTC1CPy8CtahwhKtwgPQLc45Qrh7HhqTUCj3HETA8MGWt3HtzHUc/ecU9Do9WnSLQYdBrc2S04lLwp0AqWz99vAP4OIpR9/HeqD32G4QikzPlIZAXNeI6KChif7WkLhIoCo3JbVaotuDHeEd5Jw8JlbcXgmvsJxd6nLt9HV2cRbHtpxmXeUefGkIfnt/vd32u37dh77jerBOEhQKhVJF0uFLgI+HTZdKDp8HxssdyLdddM5W0T3iXuMX7oPCrCIc3Hgc105dt1vMkNAQcYMqUo7s56Jh8KgZFysaGQzZ6SL4/5QCrs4IEIGDixTw9ax/gNIKIKVmPrt1n3i07h3v8Pnva+7ymKSiogKPP/44DLXELbcKKnBoBJE+ckzpYz0JTySVsYKCiwf24FbhYlAgSpGCq/Jm6FByCl2Lj7Lrq4yQ086fxcnNf+KRuaTTbD2BT1FSzF53RVEhXLx8ENezD+SubpjQJRTf701p8nUOjvfD9xM74M3157DmOBmUMsffVYxPxrZp0DEVBpP7Qo5GhyCxEK3lEqzKKcL2glKU3oaELj0DpKu0eDrIGxlqLb5Jy7ObKvxbViEVOFAoFDNURvtV7ppKoDgEXTx7V79v7dYRS1M/uu2/BAccuAu8oDIooDaaD6oEiELQ32cEeJWCPsrthwRVW7/+pMHihirIftu++RRPLPmqyRUx6goavLy8WBeHhx9+GKGhoayTA1EVf/zxx9izx9RPO3LkCMaMGYNdu3ZBQJT3FMpdQpSvF7tYw93HDV0f6IADG0xxwS2HLfFgboV8alciNnz2DxbvmgtPfw+ruxZmF+Pf3/az1Xp8Q73Rf0JPuHq5YOik/tj45dYmX1q/8T3w5q9T8eGTX2L3yv31tpNzvv7TlAYdU6HWYlfiVRSUKxHo4Yp4F1ds/W4njvxzwiF7amdDkszy0gpYgQP5++cX5o4Qltj64y4qcKBQKGYUKdWogAhu7tYnOvVGbqVTA6DR8WCEtX46B2q9EMcywiHgGVinBq2Bh0cjeuCJ+EE19y9jdwzZO7Pe3kQgUYWQq4ev1P69lQgVyrSmZFfGyGHdOW11N1n3CaOpAZ/DB5QtwBHcAMM3n5Ro6RaLV5s9DR6HWtZTKJT7m4iEUHaxho+XCzq1jcCRk9bnFbiZBeA0YCLWEiQBX7wnCZpO0TD61DhDcwxG8K9mIzsxvXqe5OSOs1j/2T9YsuvdaqcJS+SWVmDzqYsorFAh2NMVw9vFwsPPHQOf6I0tP+5u8vU+2L4Zpv3wAt4f/xn2rTtZrw0RNkz7/vkGHbdcpcHus9dQVK5EkJcrYmRybPl2B45tPY2KkgqL+xjkIlQMiDW5aNRBH+QORc9oyP+9XG+bMKucXaQX8lHe2R/KOE8wfC5EmRVwOZIDcWoZyChRYVYxHps9GvnpBfjn+512PwP5bqnAgUKh1Ka0VAWO0abJqOmeJans6EtEMLaMBic5HZyMPDD+XsTKp7odT6mH+7YUoLQcBhchuEodBk8ZikmPVBZ8GNAKDzzdB6M8njI7vsuWQsi3FUIbJQHDJ4oKPgrHJliWT/M4KGkugO8JDTi1L9yR5x0pkqEzid2EQj5aJZfhhlSMQrl5Skf3uHAsemIorTBNoVDue6LbRLCLLWEBKWZ05r8Lt3WeJPVCTW4UcZ0g8xwf7niHdRawRl5aPv5ddQClBeWsWx6Z1/AJ9mL/kkT8pvLAlMGY8tnTmP/wR/Xc+QghMYF45atnG3RMMheyf/0R9pqDov1ZR41/vtuB49vP3JZ5EkWpknWTmzjvEdbpevvy/+zus+XHXVTgQKFQzCgrrACkEvvfiiNtrND9wU6Y+O4j1e+HTRqAsQGTG308UgTEEOYLxkUC6A3gZhfBoFYga2oMjJL6Y0CKtp7IfZJBwI/JpkfX5RusU4MoIgD+LUJQeCMfFZfSgIIScCpFFyQPYdYvLzf6Gil3F1OnTkVKimmMlxSPLShwXjF5e1CBw02ix2NPIv3ieVQU3rofs3PxCbQov4hQteXKn8XZWdj8+RKMm/+hxe1H//wdh9etMnOe2L96OXqMewJvDH0QBeVarD9l35GAEBfgguR8BbR6k3JYLOBibIcQzBnegn3/vzGt0CfGF78dvYErueWsQ8SIVoGY2DUM3nLHK7quzCrE/GuZKK+lUK6MEW4r7gLTf1rvRAVCzOHg4xu5NtunOqkSLYVCuXdw4VufZHUW2er693QBRwgtY7lKaWPgggtjA90e4lxaoaeXKcmpRFeEdJVJmUwEGd4i51SuoziP9AuJKMxIa9IxCtJvICMpESHxTauCe/r06erXrVq1wpYtWxAUVFOBXSwWY8SIERg+fDhmzpyJjz4yCXr27duHr7/+Gq+99lqTzk+h3Gk8t3gikg5dZoUCtxwrHfIbSRmssODD7XMtbl8x73es+mCDmfPEj2+uxHNLnsDzHz2B0oIy/Lf6oMPVLtKSMqorrIplIgyfPACTPnycnQCe9csr6PZARzbRJu1iBjuZQKrzjHxxECuocJRVB87gi60HodDU9Om5aj1cdidDcqUQtwtSDYp8TjJJIRAL8Pviv2y2z0q2HbNQKJT7j0BXF5wslEAo00EiqF+tWq3jQ6Un4x+cSqGD7aKkWh0PDDjQGvjsQjiab+5cx+fwIOTyoTXWPV/NQV0E9sdQyBh7gVoGI8MBYxQhJ00OVy8FJC7W99XqTddHmBDZEbNaDmFfpyuzca7kIvtwS3CLQZjMhj0zxeJv4UChKbu/J4VCuTt5+Zm+uHg1G6VlFsRyCjX4l53jYsZVaiHZkwSjqwQGDzkrbuDllpi5D1Rx/VwaPn72Wyz4a5bFY3265QCW7z0BQ61E1E8278esB/vgpS+fRXlxBfavd0xIHt02HNcT06vjG4lcjJEvDsYzHzzGul28veo19BjVGZuX7kTGlSy4eMjRb3xPjHhhIPvaUVb8exLfbDkMlVZX852odHD5LxmiFOvVAzVx/hbFDVXowjxhcBODV2q5qAW/VAuPHWnsYgnimkFikle/fQ58Id+uYD07uUqKQqFQKCb8fd3Au5wLo8h2YRwigjC9ACAXg2nTzPRebwCnoAQoqQBHrQUnr7haWEfuk4Rz+5LMjiWUCC26opJziK6anmfFw227ERsFHKjdAUmxSbQg1OlhVOmhcxODEVlPz+DklbDPMMKYaSPx7Afj2ddXswpw9HIaG2t1iQlDVIBzqmnfL9CYhEK5v5ny+TN4vfdclBcr7ph5kisnkvHZC0sxZ820+rswDOvKTIoW1XZqWPrGCkz9ZjLbtyZigSOb6gulLRFFYpJzadXHIm7bo18Zhifmj2VjknfXz2DnXLb8sAuZ13Lg5u2CAY/3wvDnBrBOGY6yetGfWPX+eqiVzsszaCocLgcyNyl4PB5m/DwFPAEXW36wLVjPTqHzJBQKxRziBpScmOuYWLmRnNtHhHg1Agcyp23XFdUKhnA/GFqEmk3UGPw9oWgBGG1oMCrae0K3MQOCAo1plqS4DI+9NhSPv/Mwu5047Jzdc4F1EuowuDVCYmrycCj3dkzy559/YtmyZexrUliWFJm9lblVVODQRFTlZdCqVJB7eoLHr6km5+rtg/ELP2IFAxcP7oVeowFfJEJst964evQgNErnd5499CXsYovMSxeQl5oC3/BIs/Xn9+zCgTUr6rU36HTY++tPkHt44uOxvfF870j8sC8Ff5y0LnQg98dvJ7SHhKPH8YtpEEjl6BIbDDepeVXkIQn+7NJYNuWVYMbl+i4Qt3vOs7lUhEhpjUijudyyNXZtvCoFERQKhVJFrLw1ksprbOFvBhpj/cnJSFkMLlWcc9o5GipucON7oIN79+r37gJPdqHcuZzdsdkpxzmzY0uTBQ7Lly/H1atXcf36ddYerba4oTZkcn3x4sU4ceJEtZPDhx9+yKqOyWAehXK3QZL+1QoNvAI9wK/VryRVPz8/9D5WLliHPWsPQqPSsgk1pMLPzhV7oVXXJL84AiPgQRvpDaOLGBy1DsKUAjaRqKGc2pmI9MuZ9QY+Nn23A78u+KNee3KdX73yE/v53vrtNYybNRprF29kqxdZgwyukIQlHcPg5IGLkIuF6Ny/pdmAPLkX9Hq4K7s0lk0nL2LRxvpVf4xiPkqHNgdXlQRRWiluNc3aR7LVnKoIbxFSr43eXQSGzwOvRA2u3gi3WtVuKRQKhTC2TQI2/nkWZZ4SKLUGSARa8LgMjAwXaj0feqOFas9GInIGeDzGbNCViBs02vpjH6V1XMDIvbm3TxvszK1fOa4KAde+W2eRWoIbpR5gWMteDnguepTmuUAkLQK31rVVQeYJlFqTLXOkizeej+lVvS1EGsAuFAqFQrFOSX4pNEptvZgkNNgT3y2egOVrDuG/g5eh1RkglQgxoFcsdr25EoZKMXJDYhJdhA+MZKJXrQM/tQDcWsWDuGUqdrHH4U0nkJOaB/9wX7P1K/adwk//Ha/XXqXTY/76XfBzk2PuHzNw9VQK1n64EXv/OGz1HAIhHx9seRsVpUqc+TeRdYzoMLgNpKR6XtX1crnoO647uzSWDYcS8fHG+hVcjRIBSgc3h/vGCxBml1vcVxfsbvf4uiAP8EqzG3xdCT1i4eHrVv0+PL5+TFIXGpNQKJS6DB/UEttOXYbOTh0KYamxUm1tvp5D3Bu83FjBGzfVsoiqrMD8HikQCtBtVEfsX3fE6vl0PlK7P5a+pACcQ1nEWg7GiBBwJGLwyzXQEWEZ14Jgg1RWTTYJ/yJbh2HcrAerNzUL9GYXCoVCoVinOLeEnUvwDiK5WzVjVsR1jp0nWbiOvbeTgkgk6b3fYz3wz9KdYJroKNdY9q07jIKsJ+EdaD4PvuZ/G7H+03/qtSdzQB89/TX7+Rb+9SYuH7+G1Ys24ODG+vFLFSKJEIt3zkVxTgkS9180xSRD2kAiq8lhIsn/RNBAlsZChMw/v70KdxrtB7SEzLXmmR1mYZ6kLu50noRCodRh6LP9ceipbwHPmjEOi5SUNfq7K8k331cil6DTsHY48o9jYrYqjJ4uMMSHWdxWaj4EVh8uB4qW7nD/zyTmaN4hCmOmDa/eHN02gl0o9xfZ2dmYPHly9fwdycm6ccO8cNnNhmZVN5KMi+dxeN1qpF04x87Uil1ckdBnALo9PB4Csakz6OLljUHPT0W/p1+AWlEBsUwOvlAInkDgtGTAxrDjuy/AFwkhdXVHi979Edm2A45trJ9IVJvt332O/LRUtB44FEseaQ0hn4vfjlquyvNCBy9c+v0HXD68H3qtBlweD5oOndF97ER4BdvvMDrKp1YGomwRJBIgTi7BhQoVsjUNS+gikEl6e6m6r4WbVxcf5OUGdz4PJXUqfdTmgVoD/RQKhULwEfkhwaUdzpefumlfiMqoRJYqDYGS0Op1bdw6IUVx2akuDo4g5IrQXJaAdu5dIOHZnxyg3BlolEpcPW59Mr8hXD12iD2eSNr4379jx47s4ghs9fZZs6oFDjk5OTh58qTD+1ModwJn/jvPDsqTaglVA69Dnu2Px98ZA5HEJLglCTukMs3UbyaxFYpIVX+hSAC91uCQHW8VmigfqDpHmFX3VLcNhSgpG+KTN+rOH9uFuDiQCWMPf3cMfrIP2g9ujd8Xb7S9zxNf4tq06xjx/EDMXvkqWwF0x3LTf8N1eWD2KHy57Th2n7gCrd4APo+LvnmFeHF0N4T6ecAZkEpKS3cdtT0Q1Dm4nsDBL9yHTe4hVZqKcxsufiD3L3JuWzw+Z4zZ++6jO0HyshiqCjVUzTxQ3iMEOn9TRViOWg9pYh56D+/Z4GuhUCj3Nu2Dg/BwVBv8VX4YeilQrhHDnhaUxwUqFEJWCMHlGQGGA52e7GT5SZFRXoaT+Zlo71MjehsX1g8HChKhMliOSXQGHiR82wmxKr0QDFNzsTyxARqGi7wbnnD3LYdYbkqGJbdTcn0KrRByngyjItrg+ZiecBfSmMRpkEdWU3MFbnc1EwqFYpUTO87it/fW4fyBS+x7Dz83DJs8AOPfHsPGHYSgAA+8PW04ZkwZhHKFBq4uYggFfGgPXnTYnY2gjfaFpl04UCtZSdM6BMKkLIjO1S+EZOuWool0w+vrtoDxkMDfVY7RbePRJTwEy/ZaF9iRZ8bMZZvxbKd2GN2/NeasnQ4O7zPsWWP5Mzz02nB8O305Dqw/yiZREcFDz4e74KmF4xAQ4RyHUlLJ74cdx6w34HGh7BAM4SbiRAQzMXxYi2Ac8ZGhWGdnnsRSEq4DNtoT59ZUHiSQz/7ttOWs8N4aTRF6UCiUe5MObcIxrGMs/rx2BQYrLg58pRGCikqltRUYf08wN3LAqVBZdLQk1UhrJ+uMf+shHNt8yuo9i6OxL7rmagzg6CrjlsrqqVydEYIiJfQuohonB4Zhj8dLzYGbVIjBLw3B+LdGN6hqNsUONCahUO5pjm4+ybpCJx2+wr4nouvhzw3EY7NHV4uvSbElMqcwbekLUJQq4eolZ+cninKKbQoEbiZEWLFw7Mes6NknxAtDnu6HhJ5xWP/pJpv9//ljPsIjMx5g466562ZgwSMf4+CflmOCMdNG4PMXf8Chjceg1xkgFAvQe2w3NibxDXGOcI44Hq3+358N3i8o2h8hsUGs8IL8JjeDCXViEhJv/DDzV/a7sEbfx3rclGuhUCh3L52Ht0PP/nHYn1TIipYtwZRXAOWNL3Z+IykDqRfSzYpDTJgzBid3noOuAfmtBhvjTbWmS6y34XPg7uuGIc/0Y5+jRGhBuX9jEoZh8PTTT6OwsJB9T1wb+vbty4ocbiW0RG0juH76BP5YOAdp589We3+oy8twYtMG/PH+HOi05hOwRNRAHBDIX0LHkQ+xgojbRe71a8i8lMQmEv61ZCHWzn8Txdm2raD1Wi0rglg+fQpunDuD90Yl4N2RLRDsXnPjDpZzsaB/IDx2f48Le3ex4gaC0WDA1aOHsHruDBSkpTrlM1xXapCksGyLbAtXPg/vNwuCTyMdE+yJG+JlYjzk52n2H/rJMgX6e9n+vbcVlKG0apCLQqFQKunu1R9dPfqCzzF3wHEmieXmil83gQdG+I+Fh+DWWRz38hqMJ0NeRnevflTccJdRUVQApglWe7Uhx6koMnWMbxW9e/dmK5NUcfbszXVNoVCcycGNxzBr0MJqcUNVdYc1//sTbw37ANo6gx1CsRBeAR7VSUbj3hwFubtjE6W6ADeoukeZiRtYuBxoEgKhiQ9k35Ii2UapEIzQfl/78rFkNgmKVEyaM/J/mDlgAXJS823uQyoU/fbeejwbPw3n9iXh9R9fxHNLnmAH/6sgrgVPf/k0NlWUYeuRi6y4gaA3GLHz+GU8/cFqpOYUwRlcyylEan6xzTbaEDfWzaE2pIrpC588xQ4QNQZ74obYTtHo9mCn6vdGoxGXjl5Fp6FtoWjpg6IxsdXiBvZ4Yj4UHQOxUVCGCqX9arcUCuX+4r2hA/Fq5BAI1Y4NZFfdogxGLnQ6PnR68uzgWG1r1HOx/KJ5Mmm4zB8ftn4eIVLzkkKkoF65WoR8Zc09zBpFqvoCBZ5ID51agPw0T2Rd9UHudU9kk79XffBe3GM4MOwNzGo5mIobKBQKxUH+W3MQbw97v1rcQCACXtJnf+eB/0FfZ7xbJBLAmwiuK8fmx781xszNwBb6QHdoOkaaiRtYuFxoE4Khbe6YUzSJWQofao78CfE4WV6MU2lZ2HL+Cib/+icm/boBeWW2J6PLjTr88OdhjHtjGc5fzcKbv76CZz8YzyZRVeEX5oPJix/H9uV7WAEHETcQyF/iQvdqt7eRnWKqhtdUktJzkVVku0KgNtQdDN98KtA72BNP//gcZKEu0LgCGjdAJwMsmDOBn1vW4AnVVr1boN2AVmYxyZUTKWy1WFvs/f0wlBaSjykUyv0NEclN7dcFUkP9tAZBuREuqboq/YBNiMjB4nqGYStP1ya6TQTe3/IWAqMtP1+kFwvsnIyBpFYbptZ4CxE5CItUEOZVQFCggDBPAWGxCu8unYy12T9g8oePU3EDhUKhOMiOX/bgnQc+rBY3EAqzirFi3u+sEMBgME9kF0tF7DwJETcQHn/nEXbd7SLp0BU2niJxA5nvmTNiEUrrOAvVhYgBlr+zBpPip7ECvXfWTsdTC8bBw9/NTND83EcTWdfsfX8crk7oJw4XxN2bxCR56QXO+QyHr6Ao2/Y8iSX8I/3w7KIJcPO2Y9PUSNoPao2EbrHV78m/BfJ9kfW2+G/NAaiVt7YQJIVCubMhhefeXvUaJoxtD4GuvgCaIc4N1240WfT299fbzNbFdmqGhX/Pgn+Er+PH8bR+TxU5cKv+6MtXsCbze3asy9ExO8q9y5dffont27ezr+Pj47Fo0aLbch1U4NCI5LtdP30Do8FyMnr2lUtI3G36Ya3h5uuHR+d+gIBmMbgTyLpsXr3HFjqNGn9/8gE0SgXaKi7i0ctL8UT6SjyZvhKjE79G0S8LUV5oOTFJo1Bgz68/OeWaVY1MpszR6NDj6EWcuwmD5FIeF5/E1VRBP1xSgc5HLuLhM8lYn2v7KXG+QoWYA+cRsfccpl1KQwrtMFMolEpauXXAs2GvYbjPwzflO8lWZ9Rb5yPyx9igZ/CA/2PwFwXf1N9CxnNBc3k8uBzaJbkb0aqd+zzVqm9OhQ5rSCQSeHnVJEYXFDhnMI9CudmQRKEvXvoRRoPlPvG5vUnY+YtlZ4MqgpsHYsnud9GsfaTd8xERg62ZYk18ADQJQVCObAflA+2geKgDlP1aQF9rQN0eifscj0mUZSrMe2gJW0WPx+dCUVJz78jPKMTSTUdRUGo5Mam0Qo0v/9gPZ6B2UKBcN5koOyUPkxKm4XqiZUe8piB1lbBVqKo4tTsREyNfYidH9vx5FKX9w63+lmczczGoxxt4wHUiPnv+e6clXVEolLt/8H5yx844/vCb+LLdRDBG25lDBna7/ewiIm4waE3ih6O59atux7uFY3nnN/FJmymIlESjVCVGQYUcKp0QhSoZlDrrIvACpZR1cLB5nToetCohDHoewtw8MDI6Djwak9wUGIbjlIVCodxZaNVafPXKT2wFUUuc2nmOFUDYglSl+3DnO4hqE273fJr4IJsxiTYukBUv2KO8exBU8ZYrlR5NzQDjYF2kcqUGMz/9C3oDAw6Xa1ZxNPdGPn5593eU5Fl2ayMikJ/fXgVnoK4UT9iEOMBVxiTk19IFe+BiqAseWrICyUXFAI/DiteNQg50LoChVn4XL68c/PyKBl2Ti4cMr377XPX7Y1tPY0L4i5g95D2rlWWrINVbH3R9Ag+6P4EvpvyAvDTbIngKhXJ/wOVy8NQj3XDw86n4ZNxgSI+mQ5qhgdsVLVxTdeDaN1MwYaP4HSmkUZfWveOx/PIXWLxrLprXGT+TXMgHv8D6WLb0XB74JTXJkUxhSb2CFRwDw4odOEYGoZE+6D6opVkxHorzoDEJhXJvolKo8fWrP1stCHTkn5M4sMF2/5O49yzaPgfhCTUVs28np3cnOty2rLAc80YvYV+T70BZVlMgloztL5+zBuVFlvvyBZlF+OXdtU64YjRaDHD9XCqebzODdVJqNFZiQCKamPr1pOr3h/46jvGhL7DFwY5uPmXzkKd2JmKk/HGM9nwKX0/9GQWZt7Y4H4VCuTMh/fSn3hmDTScXYNZbQ8GkZ4NJzwJz/opJ3GBlzr4hWIpJ2g9sjV+ufokPd7yDyFZh9g9ioyCFy3Xb2+O9fNGneXMak9wk7raYJCkpCbNmzWJfCwQCrFy5EiLR7RGF0mzCBnIj8QzK8vNstjn/7w67IoGKkmJ0HfMYHnnnfXR56FHcTWhVSvy77Hvs/ukbaJUKuOnL4ao3qYgNFpRq9b6/AtvfnyOES0Rw4TX8n2+x3gCdnepCYkuWy3WIk4nZcf8qEuRidHWTYcn1HMy7lolFyVl46PQ1pKltfx+WhBurs4sw9OQVnC+/tUmeFArlziZYFoFIaXOnH5djI/koQByMkf6PIsGlHbjgOf08Yq4Eg31Hg8ehg/Z3K0Kxc1XbQnH9Srs3m9oDn8JKty0K5U7n2JbTdivibPv5X5vblWotCvgcTPzpBSw+sBCPznzQYjuGx4U+wLZQgZEIoW0ZAkZa89+Q0dcV6l6x0IXdHEcgMjBPEl6+nbYcyvIasRVJ3Knws13x58C5FBSVNb2vHeHrAYkdZzhuhQZchXlMUFpQBoMNC2SCUGL/fkQGssgkf1UCcnS7CMR3j2GTpX6YtRJLZ/6KNwctRF6aSbylauYBRmLbFUrRyheqCjU2/7ALL3eezdqhUigUStV9pndQc3R3a2H1CyHdKp3W8n3RaCBuDRx2Mei4MGh4pjLaZHLARsJqa49ofNPpOTwQ1BV8junYDDi4WOiHUrWk2jGCPQcD5CrkSCmpn7jKnkFT/97qI5Xhu2EPgOtIyVcKhUKhmCWIkISapsQkCqUGJUIBnvp5ChbvXYAxrw232I4R8GD0se2QzMhEMHrYdqgjj53yDgE22xj5jE1zAg6ZXKhsUFSqxJL31+HHN1eybnO10apszwsc2HAU5cUNEw5YIirAC8K6rhZ14JapwVHrYXARo+LBNlD0i0WGNw8GS4lgHA70EsDIBSRaA+R7airhWotJSB+BPQ+Xwwro47o2x9I3VuCn2b/hm9eW4e0RH6Ago2EuekTUTqrNvtRpNjKuZDVoXwqFcu9C7jP9u7RAD5kbZLsugV9u7l5qFxsJmFwrc87kHte2X0t8un8hhjzdF7zKey4RJnivvgDxjTpiNr0RshPZcN+WYr5eowGyc6vHcWrj7euKdz4dX30/pVAoFIpjEGcC0m+0xbafd9vcXlGiYMfDiVP0h7vm4sGXhtxVXz8p+PTRM9+wYgVNnecccWuwxZ41B1mRSFMhMUHV87EhFOWUWi3iVYVQbHs+g8RmZjEJj4vmHaIQ0ymanTsiThefT/kB745ejKLskgZdH/m3sfGrrew8SfZ1WgyKQqGY4HK56D+qI+KjvIDcQkDtPMcXazEJOSdxyfz80Pvo/3jP+u1qhRHcPOv3OlEJ4HXBcoZYkNwV3wx4oNHXTrn1ZGdnIyMjw+bSWLRaLSZMmAC12tRPmD9/Ptq0se3KejNxsB4NpYqygvxGtyHuD4f++A2nt/3DOiAQeAIBYrv1gtTNHcrShnWobifXjh1u3I4Mg7XzZqNV/8FoPXAYxHJ5o90SxgV44ocM51ZabuciQYpKCzWZebdBfy9X/N4mCslKDd5LzsKJMiXOw/Qf9S4nCHhL9QaMP5eC7+PD0dW9cd8RhUK59xjo+yA2Za9FlsZ5FZ9DJBE2txNnhe5e/dHOvQvSlNdhYPSsw4ML3w2nSg7jmuISdIyWXW9tCjhYHI4eXgOQVH4GOepM9pihkijEurSEhHfrE9opzkPu6c1WKiR9nKbC5fEg92x8IvSVK1dw8OBB5OWZhJRVamJbkA55UVHNJHtAgO1EBwrlTqEqYb0xbfQGI75fdxDrd5+FojLpRiTgYUjXWLj4uKI8v8x8BzLx6sAEK3kC1GvF5UDTLgL8jCK2Kp2zObD+aL11RpLAX8cxoS4GI4Nn/7cGo3u1xEO9W0EuaVy1AblYhBHt4/DHEetVlaTncsFp4Edv2SsOyWdSobVjktNjdGd8sPVtZFzNwtIZv+LKieTqbZaqEBlc7H9Oo7wm+ZckrL09/AO8teo1xHe7M9wHKRTK7eebXuMw8d9lOKdMMXs8kBxJjZYPA8mIrAPZZtSZ3Bos0SfItpuQgMvH3NYjMSWmD/bnXYPOqEcrj2D4il2xLHknDhWchkKnQb5KAK2F8xP6+sdias/B+C3xLE7lZEHI42FARBTGtkiAu5NFuxQKhXI/4FBMcsPyPIleb8A3q/bj793noKxMuhGL+BjSPQ4SNylUtdwQqkTXDmGncJHeQwyjix0hMRv/WK9oJ1QQmV0Ne/YkOuBbZOFadAZM7fo2hj83gF0k8sY9izzkEgxu1xybjll3xJMk5gA8LhQDW4CRi0wODba+Kw4HHdqEIOvtv6CpI9auS9/HeuD9Lb2QfikTS2eswNWTKVZjEobLgSrWG6oEXxhchOCVayE5nwfJpQK2erkliAsGqbI6+7dXEde5mc1roVAo9w+keunUrm/h0pFEMH6egJscDHE+8HO3vpPRCE629WdXxyG2kzWEYiFe/2kKnlw4Die2nWHv4/HdmsPd1w0/f7kJu48mQUOKaSTlg6uwnFDaa1ACHl84Hpt/P4bLiRkQivjo2i8Ogx5sB7krjUkoFArlVs6TaDU6/PDGr6wou8qBQCwTYeDE3hBJRfXEAncye9c5nrtF+uT6MB8Ywn2glAgx+a1VeHBQG4wc0BJikR0xgRW8AjzQ46FO2Pt7I3PIrNBpWFuHHC2GPNMPPR7qjLRLGfhu+gqzeRLi4tFUCrOK8dZQMk/yKpq1s++ITqFQ7g8+2jMPL3eazc7nOouOQ9ra3C6WivDmiql45v3xOLnjLAx6I1r2jIXMXYZf5q7Fob+PQ51XDEWwNxgrc/uPRMZj1JgO+DXpNM4X5EHM52NoeHOMaR4PF+Htqc5PaRydOnWy28aay5U95syZgzNnzrCvu3XrhpkzZ+J2QgUODUTm7mH/SxUKcW73NgQ2i4V3aI298q6fvsG5XdvM2hp0OlzYuxvu/gF3lcCBuFA0lrL8XBxYswLn9+zEo/M+hNzDs1HHeTMyAOfKVThaahKLOIMz5So4kqLpLxLARyjAwkpxw80gT6vH6NPX0MZFimUtwxEgolWlKRQKMDLgURRrC3Gi5CBUBgXcBB5w4bvjeMl+i1+Pt9APBVrLVQW44KKVaweHvlYJT4YYlwSzdd28+rELIVudgR15f0FtNL8nBohCMMBnJEQ8Mbp69qU/4T2GSCpFs45dceXowSYfK7pjV/Z4jeXo0aN45pln2Nd8Ph8vvfQS5HaElEQQYTDUiBq7du3a6PNTKLcSD38bE7aV8IV8bPlhF+J7xCIsLrh6/Qc/7sDmA+YWlxqdAX/tu4CwhzrA+MN/MIR6weBncm3g5ZWBW6KE0d3Gf58MYz2JX8SHPtgTghvOt/G1ZH3MVetNNqCWkqBqjeWk55Xgi3X7sengBXz/xlh4ujbu/jN9RE9cysxHYnpOvW2i68WQHcts8DHPH7gExkqCT228gjzZyYPvpi83G7S3Bq/M/qQMr1xTbwLotR5z0KJbDN5d9zo8/e3HwxQK5d7n135P42pJHr6+sBfFWgUiXLzhKXbBF0mWY5I41wCcz7ec5Crk8vB0nGMxibfYBaNDzQf5X28xCq9jFPv6SH4KZpz4HaU6c4VYV58ovN92NOQCMeb2ojHJbcH5OkcKhXIXxCQcHhdbftyNVr3iENw8sHr9/K+2YPdhc2cAtUaPjf8mInxMZ6h+/s/8OGodOOUqMC42kj91ejZusXk9DvSxCYKscugD6rvC8RUM+HVOoa7QoLEpqcSZ4PsZK7BzxV4s+fdduHradqKzxsyH+uBqViEuZdR3zhalFEF6Jgu6KF9W3EAwOjArePpAEtzL7M8BeQd5wjvQk3XXu2ZjUp847RU9FAdtaI07oMFDwr5XxfvAc8NFq6L47JRcNpG5Ve8WmPvH63Dztu3mQaFQ7n1IBdOvjv4P185cx8oF61BWVI7w+FBI20Zh1dr6xTBIbk+UhIfrWr3VRKEHXx7q0LnJPY8kUtbm9fcm4vXK18e2nsYH4z+Doo5YjyRpTv/hBUhkYkyZPcLhz0pxIjQmoVDuOTwdiElIYt/Wn3ajdZ94BEb5V69/79FPcPjvE2ZtiSsbcRELjglExuW7x0VMZ8epobZwXNM9BsZa/enrmUX4bNm/2Lr3Ar54dyzkssYlt77y1STcSMpA6nnnOUIf334GjAOFs0hM4hPshY8nfYvU884rElk3dpvSYRbaDWiJOWunw8WDFqmlUO53SD7Kd6eW4PLxa1j1/gaUl1SwjjJ8oQDrP9lUrz1xcgttEWz1PimRi/HAlMEOnds3xBtDn+1vtu71H1/E63iRfX3gyFW8/8kWKOu4i/bs2gzTXhgAkUiA93sMasCnpdxPMcnevXvx8ccfs69JvtWKFSvAIwUFbiMcprFSjfsUg16PH15+Bopixyx1Q+JbYejL06FTa7Bs+gumsnUNgYy63MM/UUCzWPQa/xQCmseAxzcpgg16HZRlpRBJpBBKbCcaaYxGrM8txtrsIuRodAgUCzA+wAsdXWX4t6gMf+QU4XS5ndKnDUTEAU53T2AtnNsdSoLuFvw+XgI+drRvjiAJFTlQKBTLEHeFc2XHkam+US0saOXWAcHiMOzO/wepqmtm7fkcAfp6D0WkzHkVmfVGPZIVl5CnzQafw0e4tBkCxDVJtZR7k7Tz5/DHwreafJyxcz9g+02NJTk5GdHR0dXvly1bhqeeesrmPqNHj8bGjRvZ1+3bt8eJE+aDmRTKnYpWrcVjIS+wFfYdof2g1pj1y8so1Oow4a1fbbblkgqddW1/GQP0YutZMCQRhWd5jphFeC4NwqRbNyFQ0acZdBHe5ittFCjtEOKLl/q1R1yXZuAL+NUVnMoKyiBzk9qtpqrR6bHp5EX8deICCsqVCHR3xUOdE9DG3R0ntp5hq0BdO30dzoRUk1qTuZSdMJ8Y+ZJdK2cCw+Mg5+UOMEqtV2Jy33wNsnP1E6MIXoEe+PrEh/CiIgcKhWKF3VlXsOzKURzNM8UkXX3D8UxMF3TyDsWUfRuxJ7OmqjNBLhDi854PoH9wTR+uqaj0WmzNTERSaTbEPAEGBLRAG88Q+pvdYoj9cUiI6XsP/nwW+J41Ca2NQV9UioxXP2Rfp6enIziYxpkUyu1GpVBjXNBzUJbZH3vncDhsYucby15CZokCk95eZbO9eE8SeHWc5fRxgVC1DbO6j+ByNsQn7VfNy36hDfQ+1ucc+AVK+H93BupoTyg6BsPgJQNXD/CVDPi154WrKuGpdRBeyoYwKbNRTg5VtB/YCo+/8zDiujQHj88zj0ncZWxCrC1UWh02HU3CpuMXUVSuRLC3G0Z3TUC8iwtObjuLddfScaW0gm2rkwJ6qe2rFSUXweOvSzbbkFiJxCSFWUV4OuZVm1XhynqFQdEpyPqxjmbAdb/9ZCTfUG98c+JDKnKgUChW2X/gMtZtOI7ExAw2iahd23CMfaQT4pr5Yf6Yj+pVgib3MpKo2GFQa6d9q6oKFf5ddYCt5koSlXo90hUxHZ0X81Acg8YkFMq9T0WJAo8FP2+xEJKlmKTbgx1YN57riWl4vc+7DT4fl8d1aBz+TkWbEAJ9LeF5XbrHBePJoW0R2zm6OpGRzEWReSi5h5wVBNp7/m1fvge7V+5DaUE5AqP9MXzyAIQnhODE9rOseIQ4vzkTdx9X/Jb2HbKu5WByy+m4FQRG+eHLo4saLVCnUCj3Pnt/P4QNn29G0uErbEzSYUgbPPL6A4hqE453Ry9G4j5zF04XTzneXTeDFeM5C6VSix17LiAltQBSqRD9esSiebSf045Puf0xybFjxxAQEGCzfUPnUUpLS9GqVSukpZnG6JYuXYrJkyfXa7d8+XI8/fTT1e9vtvyAChwawaWDe7H5iyUOt/cIDGarEh//64/GnO6+QOrmjtaDhkOrrMCFPbuhVlSAy+Mhsl0ndH34MfiGN87q6+WkG1iXW+zUa30pxBfvRAfin7wSTLrgPKshewg5HCxrGYH+XrRCEYVCsY6RMQ2scDnmlavzNTm4prgEnVEDT6EPmsnjIeJSizFK0yGd1V9mvITCjMZXxfAOCcMTS75iBxibQo8ePVhXBkJYWBhOnz4NDw/L1cZXrlyJiRMnVr9fu3Ytxo4d26TzUyi3ku3L/8PHz37rcMBIBpETZj2AVdtO2W5oZMCtc0j2LdcIg6C+Op+j0YMLns1kHtHRZAiuW67cfTPQBrpBMaiFuajB1gUajHBbewre7jI8+PIQFOeUYseKPWyyFl/AQ7dRnTBx7iMIj29cguzCRz/Bvj+ca8/81MJxmPD2GOxauQ8fPvGlw/sp471RPLJZTUJWLYRppfBek2S1cirbRizAwk2z0a5/y0ZfO4VCufcxGE0xCY9rHpOcys/ElhuXoNDp0MLDF6Oj4iEX0JjkXh+4D/rsTacM3Ge+9j/2NRU4UCh3DiRBhVTud5Rm7SIQ9eJgrN9hsji3Bj8lD6KT5qI40kPVdI2GLsKnXnteTgkkey+D40CykaKlD4pGNbO63ePva5CfzauucKoY1rra+YDFyrgF/3o+JIfNi4s0BlJ9dNQrQ5Gbmo/dv+2HslwFgZCP7g91xhPvPoKQGOsiAVtM/3QjDpw1fadGHqDxsD3+4rb1KiQXbcdwL3zyJMa8NgKbl+7EZy8stSm0zn2hAxiJdaE1R6mD3/cnbMYitcXeH2x5Gy17xtltS6FQ7l8MBiM71kwSimpz/uAlHFh/hK3SHd0uEv0n9LBb2IJyd0JjEgrl/mDDZ5vx7fTlDrdv0bU5wuJDsPXH3bifYLgcqIa2BUTW++TQGSDZegq+AR4Y9cowZF7Jwr+rD7DPTIFIgF6PdMET7441c8JoCLMGLcCpXeZCw6Yy7YcXMOzZ/vjziy345rVluFVIXST43453ENfZemxJoVAoBr0BHC6JScznSc7uvYCDfx6DVq1DTMco9H2sh10RGeXu5G6LSSZMmIBVq0yFaUaMGIFNm+q7kdwOgYMDZrQUS64DIpkcGoWp4o09irMykH3VdrWb+x1laQkO//Gb2TqjwYBrxw/jxrnTeOSd9xHQrOFVxju7y5wucHg80Atb8kvwxmXn2as5gpZhMOl8Kg53iYO/rcCDQqHc19QVNlThI/JnFwrF2ZCJoqEvTcfaeW9Cp1E3eH+BSIwhU6Y1WdxAWLx4MStyIB3oGzduoH///mwHPDY2trqNXq/Hp59+itmzZ1evI51zKm6g3NqIDcIAAQAASURBVG3Ed4+FxEXsUMVUArG8FCSaKmrbhPynWCcGZf/rNHIhPpcJg1wIo4sYHFKpNDkf4PGg7RRl/Xg6A/jpjrnfNRRGyIcu0hf6QHfi7QleQTkE13IBVym4OsDIr7x4y4/GGnhcGNwlKMopwbI5a8w26XUGVpxwYvsZfPzffES3jWjwdcZ3i3G6wGHwU32wZ+1BfP3qzw3aT3qhAFy1HmXdQ6ALMlUY4qh0kJ3Ng8v+dLsJRWSwbf5DS7Ai+StaNZVCoVilrrChinY+QexCoVAolHuDVr3i2GRzkvDiCFdPXQcuZdhtx4jqT1uRbr348DVW/KCL8oNRLgJXrQM/JR/8zCJwHJxHkyXmw+AiRGmfEDYOqMZghOu+jGpxA3tOgxHS/5Kg6hkDo7ttp2l9hA+Ucil42SXQilUo7+gOnZcIXA0DeWI5XA/kgFdR2wLCMgWZRfjxTfN5Ep1Wjz1rDuIkiUn2LkBEQigaSuvmgdUCB64B4GoZGIVWxBoFSoivFNg95sCJvbHz171YOtO2S6DeXWxT3EBgpAIYXEXgF9sfVyL/3uY++CF+TfkacneZ3fYUCuX+hFf7Hl+LhO6x7EKhUCiUe4PWfePZojxk3NoRSDXt+xFGIrQtbiAIeGBkYuSnF+KHOn18nUaH3Sv348S2M/h0/8JGCa8Tusc5XeDQ77Ee2PrTbiybsxq3EiJEf2fkIvx6/Ru7bnsUCuX+pcqhsy6te8ezC4VyJ7FmzZpqcYO3tzd+/PFH3CnYS/WgWODAmhUOixuqUBQX0u+ykZBkyd0/f9uofR/y84CnhUqzjSVcIkSqSo3JF1JRrDfgVqMyGvFrlv3JBQqFQqFQbiV+kdF4YMbbrFihIZD2ZD+yvzPo1q0bPv744+r3xMEhISEBvXr1wjPPPIMxY8YgMDAQM2fOhMFgeo537twZv/1mnjxAodwN/PjmSofFDVWUkeR/e9hKDJKIINt/DS5bzkP+72UIbxRBkFoAbkG51V2E59LAuQn9ZoO7FMqhraFtHQqjjyuMXnLoYgKgHNIK2ghvNtJlnShIEVcHkp3sXSP5rhsqJqhi0JN9IHOznRDVEIiTxJWTKfhg/OeoKFY0eH9xcgl8VyTC/6sT8P3+FAK+PAG3/26Aqzc6PHi/9ad/G3HlFAqFQrkvYZy0UCiUO47v3/jVYXFDFeU37I9tcyusJ7nzc8sgOXQVsh3nIdl3GYIMx8UNVbgeykTg5yfhtisVsqNZkJ7OgcvhTFYwYZCbJ/1wKzSQbj0HPrluO4UZDB4S5D/sj5xJEVC09oA2WAp1lAwFo/yRPqcNFH2awyhufOGi8mIFvmtAddraPNAzAZJaCU3CMoCnZkiJtXqubh7rL9gVPjdrH4nT/57H4ie/shuXchyMMxxtR6goUWDHL3scbk+hUCiU+xwak1Ao9yzfTlvusLihCkUD51XuBRzua9uZJyktKLcrcLbG0Mn9ISJCCycR3z0G+9cfwSeTv4PKRgx5syDfxb+/7b/l56VQKBTKXcodHJOkp6fjxRdfrH6/dOlS+Pn54U6BChwaiEapxNWjBxv8RQslUvAEzuus1cMJVY8t0dBExZtFbso15KWa21Jbg1RtPlhcjj9yinCyVIllCRFws6KKaygvhPhiSWouHHBKdoggkQCtZA2zGTpS0vAkJgqFQqFQbjbhrdri0Xn/g1ewY5UEvUPC2PZkP2cybdo0rFy5Eq6urux7ImTYv38/li1bhg0bNiA/P7+67ZNPPont27dXt6VQ7hZKC8pw+O8TDd7Po1gJvpUKdlXYSg6ytIljZCDZcxGCqzngGmsGyTllKogOX4PwqgOiCjtI5OYxCcMB1D1iwFhIDjIKuTD4yCttJyoDXjt9d26ZGrwC+33s8wcuIf1ypkPXbDQacfrfROxcsRdXT6Xg3fUzWNtiS5DPowlxhTraE3oP+/HXw6+PxC/vrm2y3SOvXAtBkRqB4b6IbBXWoH0T9yc16dwUCoVCoVAolLubgqwi1lGgofgo1OBybcxlMAy4RUq783UMjwtGJABT51gcW8euBU+hgzi1FOoYDyg6+qOsTwiKR0Yhc1p7FA2NYPvo1cckTmgOjOErQgGVFfNUnTtQ0tMdqn5xYPiNn5Y7vfs8clJrXCZsQcZDTu06x7ospJ2+jv+9PLJa5EA+k7ACEBUDwmI9ZEcz4bXiDDzXXWC/G3s88voD+GWuufudNfilGvBzbRcMi/Z0R0SwDxpC4v6LDWpPoVAoFAqFQrm3yE7Jxdk9Fxq8n1eAO24mjsYkTZ0naQgcjQ7cgjLbbUoU4DogYD+2+RQKs4sdjklO7DjLxiTZybmYs3a600QOY6aNxIp318JZRLQKQ1CzgAbtQ2MSCoVCodwLLFu2DCUlJexrLpeLN954A9HR0VaXWbNmme1fe9uECROcfn31vX4pNlGWlcCg1zf4W/INj0Rcj77Ys+KHm/INewYGo88Tk/Hn/95tcqJLaMs28A4ORUCzGJQXFmDfb8twJ1Can8t+j7bYU1SG2VcycF1VY/ccLBZgQXQgcrV67C0qhxEMOrvK8E1aHuybQpsgIcgLIT7o7+WKN6/Yt9F2lDci/JGq1OCcwrFJCQL/JolZKBQKhUJpKsSJ4cmPvkZGUiLObN+Mq8cPg6mV8Mzl8RDdsSvaDBqG4BYtwblJzzTSaR4+fDhrm7Z161ZcuHABRUVFcHFxQVBQEPr164fHH38cHTp0uCnnp1BuNkXZxTAarFfcYaMBkjSjN1bl+bPExoeiXb8W+G7dQcsCaSNj1r4u/Lwyq9V/RCdTEcnh4YnPnsQ7wxaBW6ayeSx7dBjcBiExgYjvHov0S5lsQn8VhiBPMBYSjNjCBRZ0zRyjSURg7YLI4D67zYEwKic136798pF/TrJuDznXa/r4AZF+mPrNJORcz2eFD4QW3WLwy9bDKO4YCKOLyKxqqtvOZPBLzKsOkXvm+LceQlyX5kh55hs4i6cXPoaLR68g5dyNJtuqUigUCoVCoVDuDwozi2A0NnweIi4+FM3jgrBi22mL27laBsaECDBhfuCfugpOrXF+AiMTw9A8CEZ/DzLjBugM4GYWgHc1ExytHrEdo/HwjJFY+MgnNq9D7yZE3hMtYJTWEU3zuajoEgAOw2AIzxOBUf5o1bsFEnU6/PL3MavHY8BAGWT7+yDiB7mnBLoIn0YLwcncT+6NfPiH+9psd+DPo2w127y0GseMwGh/zF0yEclGPU5dymATr1qH+2H9pO8BhWMzJUSc8sS8RxESG4j0y1kOX7f8SAZKHoy1uI2Epq+M6IlzKRqkXXRMUE7gNUEoQqFQKBQKhUK5+8nPKGzUfi26xiAkNgh/fbUNN4NWveIwbNIALHr8iyYfq9uDHdm+f+u+8Ujcl4R1n/zT6GMJLmZC090FsCTAYBh2uyOQODA/vQBeAR422+1ZexBL3/jV7Hci3/vMX15GytkbSDxwEVweFy26NMfq//0JxsH4kuwzadEEeAV6sPM1zoDEOeSYu3/bh8yr2Y7vR2MSCoVCodwDGGvldJHXycnJDdq/dvvg4GA4GypwaCASF1dweXwYDQ0TOUS26wRXH1/wBAIYdA2zSHOEosx0+ISGIbxNe1w/3fBqrrWRe3ii71PPsa+VpSU4sHoFjEbbVmS3Apmb7Q7ysZIKPHHuOrR1BB4Zah2mX07HypaRmBpmsk8h7g6ODNl3dpOhk5sM4wI8ESUV42KFc+zqpDwuZkX4Y1yAF6ZfSmvQvt095E65BgqFQqFQbgYkATckvhW7EOeriqJCaNVKCMVSyD29IJJKb8kX7+7ujhkzZrALhXKv4e7nzg641k0oYkR86JoHQh/mAwj5gFYPfloBBJezwNXq0f7RrnD198DPaw9Bx2HAkHwQDgccAwOOngFIzroV4RFHrQPfzmBxyolktIwNRvsOUTjz7/kmfUb/MG9M+exp9nVBZiFWzPu9Wsht8LLcH676PPWunWwjcTm7vfYOpj8GbxeoEwIhSbSfoOPpb7u6ExEvzHtoCQx1rJxJNaklT3+DD3e8gwlzxrDr1h1NRKEmp94xtKFuKHw0Ad6/nQOvQotWfVogoVssBj/dl02wunTsKpwBcZR4dtEE9B3XHYf/Pt6gfdv0a+mUa6BQKBTK/YANlWGDjkGhUO4kPPzd2fi/IcWWSFe9/eDWEEtF+GPuGmii/WH0dTNt0zPg6ozgVk67MC5S6DrEQHDwPOsaRzC6SKDvGgcIak1rCXgwhvvB6O0GweEkXDp2DR2HtEWLrs2RdPiK1Wsp7xxQX9xQe3sHfwTCH1MWmKqOReSV2BQ4GAWAwbJhWzVEjK2XAbpw7yY53dmLSY5tPY2Fj3xcL17MupaDjx/9FB/9Nw/Pje7Grtv45VaHxA1t+iUgvlsMhjzTj02wOrcvqeHucZll0Aa6mMVsrmIRZozohf4J0diXt6FBx2w3oFWD2lMoFArlfobGJBTKvYinnQR7a8nxbfubCrD99fU2h4oeNZTE/Zfw4Y65WPfJJlw9db1JxwpPCMXTC8exr4m7QFMEDrz8MgiPXYW2TTggruWioNZBmHgDfAddGQgefrZjkoMbj+GD8Z/XixdJMavFT36FT/YtwFOVn2vt4r8cEje0G9jKNE/yTF/4hnizzhDOQO4uw5TPn0anoW2x4bPNDdq3w8DWTrkGCoVCodwP0JiksdASJw1ELJMjumOXBu0jlMrw10fv4ddZU3Ez0et06DX+KYikMqttOKSqkR0uHdwLVUU5+1rq5o74Pv1xuyEOFYHNLVf4qWJJak49cUMVBgb48LopecjAMFiUkm33lvJBsyD81a4Z3o4KZMUNhFCxEMImVpv2E/Kxs0NzPB9iqrIUU3lsRwmqtJGmUCgUCuVOh4gZvIJDEBAdw/69VeIGCuVex8PXDZ2GtTNbx4gEUPeOh55Y6BJxA0HIhz7aH4ohrWB8shumLt2KpxasAiPlsQP3PBUDvtIIvoYBzwBwiQ7bQn+aiBvEey+xTg320Gn0eG7xRJt2yWQSwR7bf9kDRZmSfe0d5MUm4TMCHvs5idOERax005na21ibh/puDZo4f5PLgw2i2oQjqnW4zTbEaaKuuKEKsv6XeSYnCp3egC+2HbJ6HKNcCGXHIExf+gI+/nc+nn7vMVbcUDWRwRc0zUHBJ9gL351ZggemDK6eKGmoAIVCoVAoFAqFcv9CEkra9k9o0D5SNylmDVyIV7vPgaigAqILmeCXG0yLqkbcUI1MDKO/Z/VbQ4tQc3FDbeRiGKID2QQavVaP5z9+EiJJraSdOmgSfGxfrICLP/49AbVSw74N8nVH3+hAq825Oscyo1h3uap4rRHEdm5m11Fu+Turrbpr6LR6rJj/B/tao9JgRWV8YvV6uRy2wuqSXe/iqQXjqp0jiNueI3EdoaxnKAomtoI22NVULbZyPjfQ0xUbpk/EmE6mf0fhCSFoCP7hdn5DCoVCoVAoFMo9TXCzAMR3j2nQPlJXKV7v8y6m954LgfDm5N0Q920yF/DCJ09BYCO3h/S17bHxiy3QaU0FdMPigtFhUNMS6vlZxZBsPQPh4csQnEmF8MgVSLaeBj/dcTeM1n3i4UeKbNlg+TtrrIrhNSotfntvPftaWa7Cb++ts3ksEnfMWTsdH25/BxPffYSNRQmhcUGsUKUpBEb54aekTzFwYm/2fVh8w6pO+0XYdtajUCgUCuVuYN68eexz29Fl2bJlZvvX3rZnzx6nXx8VODSC7o9OhFju4nB7rVJR/fpmuDdUCRFcvLzhHRqOR+d/iIg27cHhmH5e8jc0oTVGvzkPHv7WB+GrMBoMSD9vUrumJyWiJLd+VdFbiVrqguSxk9Hz6EW0PHgeo09fxcbcYrMOcYFWjwPFFTaPc6ZciRsqDQ6XVCBLY/t3cOFx8Uxw/U753/klVkUUjpKr1ePNKxnV74f6uDWoDp3KYD+xjEKhUCgUCoVyb0Mq78vcakRD2vhgMBZEBQZSSdRViLJafUit3gCjkAOD2LwXymEAboUewsR08NMKwUsrhOh4CqT/nAavuCamsZU07+HnhmbtIvHxnvlsRZ2qAWYyCE3eL9o+Bz4hXg4JJRL3XWRfn0i8gYxIP6ge6AjViPYwhFoePCfXbxU7HW5GJgJjIwGKJxMhZFQXPD75B4ye8DWmv7UWew5cNmtDrJYvHDRfVxfymQqyinD4ahqKKkwCDmuIekVh6KT6YvP/Vh+EXtc0hz1yrd+8WjP40Ovhhon4VeXqJp2fQqFQKPcRjJMWCoVyxzH5Q9vC5rooSmr6vzqNDkZfD7u1y4y+psqgjEQExtvk9mC1bbA3ApsFsBU4W3RpzjoVEOeBKnh8HjoOaY3Fu+bCNdB2xVGCSq+vdoE4vu00lDsSITqaDE5ZLZdnhgFHZwRPDQiLbB+PpwL4FQC3kX1pgYiP4Gb+eLL5KxgbMAmzBi9kK6PWJuNqtt0qsad2nkNZYTmObT2DcjtxHkkeqkr2qc3u3/aziVv2UDXzREUXy0lCWcVlWPzP3ur3vceaXCUcRVFGYxIKhUKhOAiNSSiUe5bnP3qSdYhzlIpaOUUkJrkZEOGuUCxEq14t2NijZa+46m08PhedhrVl508kLvZjKSIAuHw8mX195J+TKCuynRPlCByGAT+7BIKUXFbwQN47ChGRewd74clmL+PRwMl4a/gH7HXV5nriDaReSLd5HLKPqkKFw3+fgKrCdr8+MNofvR/pWm/9zhV7G+QoaIms5Fz8MGtl9XtSaKshKEptz/FQKBQKhVINjUkaTeNLxdzHeAYGYdyCxdi/ajmSTxy9KecgAgp1pYuCIzTv0gM8vunn9AkNx0Oz56OiuAiKkmLIPTwhczfZs106sAdFWTXJ9bZEDlePHcI/n33Ivr5dVHj64M9xU5GjJtMcpmpJ+Vo9DpcosKOwDF/FhYLL4aDCYHBorvOyQg2tA/Zm5QYj2xmurfjVGo14P9m284Oj7C+uwCWFCrEyCUIlIjzi74HfcxyzfFuYkoU2rlIkuNAq2BQKhUKhUCj3K+HxIfh0/0L8MOtXHNt5Dobg+qIB0us1CqynCzF8DhiuERwjh3VF4OaWQHAhHdxyU8KOq7cLygrKwfC5rLuBTQEBgP6P9wK30jGOiBxIRZ2CzEKU5JXBK9Cj2rY4um0EclPz7X5GUuVo18FLmP/5FhhrD1QT+2SjBbk+WUfaNbZqj5UEHYGXC/h9W2PHEdNEAqGoWIGTZ25g2KCWmPnqEDZucHQwO+NSJkrd7Ifi5WpT/FMbUkF22ZzVcAZHN59C5rVsBEUHILh5IPo82g171lp3lajNt6//gqi2Eey/QwqFQqFQKBTK/Qnp13+ybwF+fHMlTu441/ADOFCx1N3PHSQF35YYuRoBH4Mm9a8e04/t1Ix1HiDi3tL8MngHe8LdxySSiMu+iv0pN2weTphVwcYkO37Zg4+e+YadLyBXIUjOYwXSms7NYHSXVQs0XK4DhWQaxsrHkqVzQP4nTM5DQxHLxRAIeNi1cn/1uuKd51ixwsgXB2Pq15PYdcpKF7za6APcoW3uD6OHDDAYIEgrQnpmIcodSI6yFOOQJKsV83536LoV7QNsbt994RqyS8oR4O6CyFZh6PZgRxz667hDx/7qlZ8QkRDCxjIUCoVCoVAolPuTuM7NWGHzj2/+hjP/nb8p53DzcWXjCUcZNmlA9euE7rH4ZM8C5KXlo6ywgi3+5Obtym6LbBWO8/tNRZ5sQWKSf77fic9fXIrbidRVwsZau1fuq15XtPU0jm89jTHTRuCFj59k1zkyT0LE0tnX8xyKSZQWjldWVI5V75tcIJrK3rWHWFdyMn9FYsj2g1rj5A5TQWB7fPb896xYJSDCzynXQqFQKBQKpT7UwaGReAWFYNQb76DjA2NwM/AMCoHMo8Z+2R5dHhpXbx0RNvhFRFWLGwhtBg+3eywOlwu/qGbY9eM3t1XcQNjcbQRySMKVBTbkFmNNtqkskr9QAFe+/X/OU5JuOOSAECER1bMz21NUjgJdXZ/sxnOiVkd8SUwIK3JwJBWrVG/EcxduNFmNTKFQKBQKhUK5u4lICMUHm9/GiGkjAD6v3nYjyaG3l+xfVArRrnMQbz0F0ZEr1eIGhsdFwNguEDzfDxVjO6Pikc5QdYmCwVVs1U553KwH6633DvJiE5+qxA2EB18aYvez8QU8RLaLwEc/7DYXN1Sdj3Tp63TrySfllmkAvYX+vp2uMy+3DFyN5b6+qnkwSivqiw0IW3YkYtce0ySEX5g3xDL71aLmP/wRuAX2HTHCvGviuCqO/nMSFSX293UEEk9cPHK1+v2Mn6eg72OOVSgiEzrvP/apU66DQqFQKPc4d2FlotOnT+OVV15BmzZt4OHhAZFIhLCwMPTp0weffvopsrKybu0FUSh3MNFtIvC/be+g3+M9Hd6HEfCgD/eBQSqAkWf7P/GIYE+4ebuAo7VfXZXMDjw8dZhFpzkSk1SJGwgTO7W1eSxBVgVcCjQIjQ3E11N/NhuLZ+MOhQbiA5fAK6hJdBIXcuB+AeDo6nwiIyC/zoE0mwN+Sh74mY4VOqqNVqmx6raw6dvt2L/BVIgrINIPApGgepu6TRhUfeNgCPIAIxWCcZFAGx+E6d9sAbzlds8b3Ly+QOHgn8fsVlmtvu5A207oBiODc2k1RaXeXDkVPcd0dujYRdnFWPT4Fw61pVAoFMp9zl0Yk1AoFMeJ6RiNJbvfRbdRHW/K1xbRMhQunvb7zgSegIcHXhpcb71vqA8bk1SJGwgPvWo/d4s45vmF++C76ctxu1ErNFbFC+s//QdHt5xiXwc1D2Tnd+wxa+ACCCU1sYs1gizEJPv+OAKt2jkOHDqtHldO1BS3euf36ej6QAeH9s1PL8TiJ79yynVQKBQK5R6HxiSNhgocmkir/vaTcxpD1uUkKIrteBpXEtWhC2Tu9i2VCYHN49CiVz+bbaI7dkH+jetQlpbgdlLo7o204CibbZZnFrB/xTwuHvW3LwipMBix6Ho2OthxP5gYWL8CrjPFDYTz5UqcqayoJOJy8WVcGI50iUMPd/vBUYpKwwouKBQK5W5Ea9Qgsewk/spehT8yl2F3/j/IUdt3F6JQKBSKZUY+08/kXFAXB5wMGLGQFTVwtDV9XSJuUPdvgeOlFcjTqKAXAQYxF7pIXygHtYSBVP6sQ++x3SBzq7/eEm37tUSvh7vYbEOOd+5GAcoVlhNn2KQiI8DLK4fgfAYESZkQ77sE+V+nId+SCEFKfrXQgVesgPCajSqpDAPJuUyLm4wuEhjdbPfPN/5zmv0rkUvQf0Iv2KOiRIm1Ly1HbKCPzXZju7Sst660wLkxwNWTybh6KoV9LZKI8NZvr2H5lS+Q0CPW7r6p59Nxdu8Fp14PhUKh3CrI8+W3bSfx7MLVGD9nBeYt3YbzTnLtpNy9lJaWYuLEiWjXrh2++uornD17FiUlJdBqtUhLS8PevXsxffp0REVF4X//+x/0eueOFVIodzMjnhvoUDt9pB/UQ9pC1zYSxiBPMEIujGIOK3SoC4dhkPjrf2wfmFOhBqfEdnXPIQMSIKqV3G+L3s0iMMDNcpVNXpkG3uuusH37kzsTWccCS5AYSrzvIkR7LoB/MQP8y5nw/OMyImachPf6TLicU8HlMuB7mAPXs0qIjiZDfNTU924oRjuu1ETkQHDxkLPObAR9gBt0LSy7G5RWqLHi0EWExgXZPO5wC79raS1Rhz04DrhpXz5yFclnU9nXEpkYc/+YgZ8vfoa4Ls3t7ksSkS4dqxFtUygUyt0EqT79+5K/MLXbW3i+zQzWLehyrQRLCoVCoTSM4c/VOCc4C1LY6cy/5x1yGqhyb+Dx7Cf3E3o+1Blt+iXYbDPoyT44sukkNCotbjfEdcGRmMTD1w3dR3eyezzi/P33N9tZkXZDY82GxCSOkHT4Cq6fT2Nfy1ylWLBxFn5I/BjN2kfa3ff8gUtIOWfbHZBCoVDuVBT6MuzO/ROfX30bH19+A3+kf49MlWmMhkK5U6AChybi7h9g5pDQVOq6BthDJJUhqn0nbFzyHpZOeRo/v/Y89q9ajvIiU+K/JYa+NB0t+w2yuM0/qhkGPTcVZXm5uN3ke/nbbZOkqJlcmBkRgFZyid19sjQ6jPR1h6cV1XB3dzmeCfautz5cbL8aa0NYnlWIISevoP/xSzhZaqq+FCYRYV3baAQ5MBFzzsrECoVCodzJlOvLsD5rBQ4V/YscTSaKdAW4priIv3JW43jxgdt9eRQKhXJXEhUTBA9LiSOOOH5xONCHeIGp5YZmiAuEKtgFGldAL+VAL+FAJ+ew740SPtSdzAd1Xb1c0GJSL0xZvhH9P/gBIz5aji+2H0J+mfVB/3d+fx39J1iu8tqiWwxe+XoScvJK7V+/gA/RhQyIEtPBzy5hhQ+8EiWkB67BbdVRuP56GC6bzkF2IBmS4zfquzto9ZAeSIYgw7K4m7EjjCYkp9aIJ5754DGEJ4TY3Sc7JRePBoXCVWI5xujePAwPWxA4BEQ51+p4w+dbMKXDLEzpOAtXTpom0YOiA/DpvoXw8KupcGuNa6euO/V6KBQK5VaQmVeCx+euxOer9yLxWjaupRdgy8EkPLNgNZZtMlXApji7MhGnicvN/0WKi4vRr18/rFy50my9i4sLQkNDIZPVCDnVajVmz56N8ePHU4dVCqWSlj3iIHOz3XfWB3tB1zq8vvsch8MKHZhas1U8Dge8U9fMhNi8pDRS8t/isT3cpWjp64K3hn+A8aEv4Nn417Bi3u8othFTfD11PMYoXCC5WAhekRqCHAXc/k2D/7dn0T4hEi9+9hRya/X1rcErqoDwYiaEFzLAyy0FT2OEx85M+H+TCP9Pj8F15VHItiVCmJLvkINzY0ipFAgQnlsyESGxQdA1sz2/kppVhOELHoXUxfKcCqlaOvDJ3vXWB0bZn7epQpRs262CozXgr6m/4oW2b+CVLrOrhQ4hMUH44tD7kFsQ19fl6snGiUYoFArldpJ+ORPPt56BH2atZN01SWLk9uX/4ZXOs7Huk030x7lPYxIKhdI0Og1pB7HMsgN1YyBuDIwDgt0qvAI9WJeGN4e8x8YkkxKm4bf31ttMxl+y6110Ht7O4rZ2A1th8uLHkZuaj7uB2kn+L376NAIdmMtIPpOKR14fadUZu9cjXdFnXPcmxSSOsOqDDXiu1et4tccc3EhKZ9eFx4fim+MfQiQV2t2/qogUhUKh3E1kq9Lw0eUZ2JqzBunKa8hWp+Fo0b/47MqbOFhgEq1RnAiNSRoNFTg4gYGTX27yMWTunmg7dCSEEvsJNCwcDsJatUXzrj2x4/svkHziCMoL81GcnYljf63DiplTkZdqvRM16PmpeGLxl2g9cBhCWrRkXSCGvzoT4xYsgVguh9SJoo3GInZgpEDKq/kn7MLn4c+20fAV8u3uV6I3YGv75ngi0AsulceIkAgxNyoQq1pHso4KdenqLkO01HGRg6OTFRcq1HjkbDKSKmoEC54C+59BwrtZ0yEUCoVy8/gvfzPK9JaTSE+VHkaakg4AUCgUSmN4fcrgesk+XL19kQMjl0LTuRmUw9vDrV8Cxrw2HPpuETCIOfUdILgcaOWA3kfOujhwuRx0HNoW8R+PwZzte7H34nXklFbgen4xvv/3KMZ8/huu5VgXXr/561R8c+JDtipoq94t2Ko+c/94HZ/smc9WySFJSvbg2LEh5tT6+OLzWXBbexKSwykQn05nhQ3ua09CdM36BIHIgdhCIq4Z4Hb1dMFnB95jRR/20CcXYs3U8Xi4cwKklQLnCB8PzBzZG1898yAEFio9tR/YCv7htp0fzHAwZCBJQW/0n4+0SzVOFnIP+85yogbERxQKhXKn8PY3m5FtZXL523UHceKiqWIb5f7i+eefx6lTp6rfDxgwAEeOHGFdHW7cuMH+/ffff1l3hyr++OMPvPfee7fpiimUO48pnz1tc7s+xrZbAMNl4OsqxrgxHSE6kgRuvvn4Ebe4Avyjl8Cp5WxMYpJunaLQScrHpxM+x/Gtp5GfUYi0i5n4dcEfeLHdG8i4kmX1nB/8bxLWTnsKkyo8MDhJhxHeQVi4choW75rLugl4+DnmnO1oTNIYHEmokchrErncfdzw+cH3IHEgbtBIhfjy6CIMfqpvdVIRcXV46fNn8O66GRarz5IELJK85Qjy41k2XRykZ3LA1RrY15eOXcMb/eYh81qNo5LcjmiGQGMSCoVyN7Jw7CcoyCyqt55hGHw/YwWSDl++LddFoVAodzvPLX68ycfwDfPBozMfdKyAFIlJeFx0H9URCT3i8Olz3+HkjrNsTHIjKQPL567Bi+1nsgWPrPHeptls/530yck8CUnqX/j3m1i09W3WddmRQkQ3G0eEI7XbeAV44MsjixyKZcg8FGk78IneEElM7SNahmLq15Pw9urXwLWQu0Xmkty87c/BNJSkQ5cxo+885KXVzBlZE4TXRkznSSgUyl0GiTtW3PgE5fr6hUEYMNiYuQwZNHeLcodABQ5OIKpDZ4yc/hbELo3vQClKitj+sUZpquRvC7/IaNa5Ie38WSTu3maxjbq8DL+++Sq+mTwBu3/+FiU5NYPCVfiERWDApCkY++4ijHpjDmK79QKPb0rgie7YxXGxxU3A1ccXr44fD4+61ZzqMNLHfIJBxuchtFaCkTWOllZgb1E53okKxNVerZDZpzUOd2mBKaG+FsUNVe4aH8eEQOygy0ZD5i2UBiM+Sc2pfj/Mx3aQQq5waJ3PTqFQKHc6hdo8ZGsybLY5X16TUEKhUCgUx+k7sDXmvTAItXuRrJtBqcbqPhwDA06VJkLAQ5anHMaWIShnlRHWduLAIAIinukLzvie+NdHjPUXrlhsWlihxCNzluLRoOfw9as/I8dC9dNm7SLx2nfP4eP/5mPe+jfQc0wX8CpjgL5dmkMssi0w4NcaaHYErlYP8aVcSM5kQHQ1D5xKRweGOFm4S2BwrZFZE2vk935+EdLKQXVr9OkZY/aeiDN8Q+s7wtXlzH/ncX7jScwa0gPH3nsZZz98FZtmPoUnerWzKG5gr5/LxbQfXoRQbN/xzfTB4DDKMhVWL9pQ/b6HHRtp8juRqq4UCoVyN3E+ORtJ1227lv6+88wtux7KncGhQ4dYsUIVY8eOxfbt29G5c+dqt12S5Nu3b18cOHAAnTrVPCMXLVqEkhLLIn4K5X5j0JN9MOPnKRadHIxyMRhX24khjICH4r+PQJicDX2xZTc4InIQHL4I7slLiGjjC0OkBLuy0/BnQS7UzX3qdX8Ls4rxbIvXMC74OXz3+i/IS68vwI7pGI3pP7zAxiRz/5iB7qM6VSf29xnXDQIhH0aZCNqEUKh7xUHdPRa6SF8zF7ybRVCzADa5yV7CTK+Hu5q9d/GQw8vXfiLUqS2n2CSel758BpvKV2Kbbg1+uvAZRr0ytDouqwtZP/2HF8F3QAwuzKmA+9+XwdHUiTEZBtKzuXDdV1PllVBerMDvi/+qft99dGfbxxcL0GVEe7vXQaFQKHcSZ/dewPVE26Lqv762PP9PoVAoFNuMfHEwXv12MqR2Yg9b5N3IB0/AhaGuG7QFYjtFs0Lhw5tOYu/vhyy2yU8vxFMxU1lXhx9m/oqCrPoCtxZdY9hYisQk76ydzvZxqxL7+43vYbVvfisg7nAL/prJxkW26PVwF7P3pAiUhwMxydHNJ3HlRDL7u/2j+I2NSZae/Zj9LS2JGwhCkQDTlr4A3k2IyUryy/DHxzVuSj3sxCTk9+8wuLXTr4NCoVBuJpfLzyJfUz+XuLbI4VDhDvojUCzy1FNPsSKZquVmQwUOTqJ552546cfVGP/eJxj0wqvoNnZCg49xZptjlpO5KdegUVSAMdrpUDMMVGWlOLN9M1bOfg3ZVx2v9iAUSxDTrSduNWIXV7QeNAyTvvgR0Qmt8UqYddsyOY+LF0N9660f6Ws/8f9QiQIzr2Sg9aELWJ1dyFpeO0Jndzm2dGgOT4HzA4htBaWs0IEwMdDbphPFWH9PhDgg5KBQKJQ7iTxNjZDLGvkOtKFQKBSKZQYOboMt62bg+/lj8dYz/TC5ewzkm05Dsv8KuMW1hNQMA66OAVdbv8D/iu0nWacGthlJROKbFuLEXoVBCFy8kY9ypQYqO0X+tV4SZHP12PjlVkxpPxPXTl93+OdzkYnRNybQ6nZuYTl4adYdIhyBfC5lu2AUT2iP0rFtUTKuHfBybwz79mksv/IF2veJx7gxpiRGI9f02Y21QgG5XISxo+on+ROhhj1O7TrHVnQaF/Q8/l21Hzwrg/V1ade/JT7dvxByDxmczd7fD8OgN1VQfeClITarIA2b1J+txEShUCh3ExdS7McbSQ60oTgOGd92xnIz+e6776pfy+Vy9r21SXSJRILFixdXv1epVNi6dev/2bsL6KiuLQzA/7hEJu4khCRACO5S3N0K9VKntKVCafsq1N2NljptaaFIaXEp7u4BIoS4ezIub50bksxkNAYE9rfWPDIzd+7cSV6Te+45/94ghFRhVUf/Kf4Vn+5+E8/+NAe3vzil6okrYwxnTAI+ln2w2uE2ukB3lI1tj9MFRahQa2EwmWAI8EDl0BhUDom2CjkYjSYu6LDqs3XcmCTlrOudelg3hB6PjYZ6ZGfo2wbD6OcJY6ACuq6RUA/vzAUfmoNXoAIzn5uMXy58gW7DOmHqU+PsbsvO2SfPHWv1+LDeMY7fxGDE8Z924JOHvsUdYbOxe+UBmx0bbOk9ths+2/2mS9VMZYlFCPz2KBSbk+B2JAsee9MQ8OMJeG1JttndYvvSvTVfT31yHDwcjHvYoidXuucRQsj15OLhJKfbsK425OYakxBCms6E2aPwb8lv+HjH69yYZMb8SfXex9J3HY9JzH9fs8JBxjrdtetiz7OuDss/XoPHe76A9Iu1nZSd8Qv15To7X23eQV648+Xp+Dn+c25MMol1Ebe3baDC5vOuzJMcWn8cH92/kBuTHFh71OUxCQumf7z99Wbp6Lb9z9oxyfR5ExwGZtiYxU3R9HM1hBDSnNKUSU2yDXEdjUkajgIOTSw4pi06DR2JLiPHQSBysarmVcA6Q2z46mOXUzNl+XmI370dVxvrPHFqywbsXfYbSvNy0HbLCgw9uRsirWXl2VYCYFmXKETLrVuh3RHs6/LifxYomHchHdsLy1w+xg7uMnzWPhxNTW8CKg1Vi4n8xEKs6BqNdnVavQl47PP54MN2YU3+/oQQ0twEPOcXJPgubEMIIcSxjnHhGD+uOybcNoCr7CO+XAiPdafh8fdxCCr0EKgB1qTB1hIjo0jALQhiC/n17oBBVnXTuwF6mVnQ4cr1etbNwRldoFtNNc4P7v3K5R9fRmI29r29CuKjyeBVqGuf0BsgvJQLyd4L4BkbPrvIXlkxrC1UPcNhMmuVXKTV4fcTF/HjxsNIzy1Gmq4CujZSVLQSojJEhIpWIlQGCeAXpsCn79yG4CDrgPX4R0bAL9THpeNQlqvwwayvuY4OrmrbIwpPffOwa5/TtbVkHJ1GB41Ky33tF+KDD7a+ilZ1Qibs/1MTZo/E418+4PqOCSHkOiF2oeKd6BpWxSPXxvHjtZ0Ep0yZAm9vxwE+1tnBXHJycrMdGyEtVadbYjHm/mEY//BI8Pm8qvN5rd7xeataC6h1DruQcefwQ2NgslMcSNMuANpIX7uvLy0ox0f3fe3y57iUlo9dGYWslZr1sbhJoOnjJETQQCW5pVj+0b9Y/tEapGYXISPEE/pJ3aAc2h7aqAAuCFLddY6dswe0su4gN31EV/jY6KZRTZSYCz77frMO46VKvHvnFzi33/UiWe17x+CJrx50aVu+zgi303lQ7LwMjwMZEJaYje/qUFdqoNNWHVdghD/e27wAIdFBFtsIRQKuy8TDH97t8vESQsj1QiRxvn6AVaYmhBDSOF0Gx3FjElaop7o7o6uaM9RUlFPChYxdlXAsGUc3X/1uo8U5JfjznVVY/eUGpManoyiv1GZnadZ17qNtr8EnyPpaypQnx7kcSGbzR2/N+IT7vK7qeEssHv1kFppaRUltwbDQ6GC8t/FlBLX2t9iGdbSY8exE3PfW7U3+/oQQ0tyEfOfjDSGPxiTk+uC8hyxpELmnAh2HjMCprddPBa+S3GyknjqO1l2dt+w99d9GGHRVF5HtkSu8oSwtRnM4vGYVDq/5GzAZweqhdjq2C0mt20MjlsKnpABtclMR8OIbgMK61ZenUICVXaMwJz4Vx8uUTt+LjU3eSs7i1mh1cpch0IWLRqP9FBjp64mt9QhGOOMrEsJbWPufJAs37OrdHvuKy3GqXAUpn8e9byh1biCEtFCtZJEQQAADqsJctrSWR1/VYyKEkBsZW6A+/O6B2LJ4J3efV6kBz0mXABZ8MEpMMIrrXPDnASZhVchBVFobjuAZHa4/qtpGV1u96PK5dJzeHY/Ogzo4Pf51326GXmeAkLWETs2HSSHnFvLwy1Xg6ar+lngHeKI4r2Hn5LpQBbRR1guBqn2/7iB++OcA9EITwCZAzCZBDFI+MkUaqPi2/6Yp/Dy5i/rv3vk5Eo8771rBKjj98MIS3Pv6TLTt0Qbegc670g25bQA2/PAfTmy3Dkawn4mycyCU3YKg92fpFCOkiYVwP5wJUb79MRILZcjca0PWUV1a46f4z3Fi2xmu+4bUTYr+U3px/98ihJCWaECXSAgEfBgcVNYb3IPGJE2K/VFq7MKAZq6WevbsWeTn5+P8+fPw9bW/MLpaeXm5xX0fH/q7SIg9Qa0DMGhGP+z8az93Xq+PCbbaRi8GNAo+9DIpytr3hTC/EvKT2ZCdzbMKZevCFDAqHHcN0HQIhCSl0O7z7Pz8wuFEboG+M6s2nYTBQaja5OUGjw5hKI/PQHP47tdt+OxcctUCK08pd9OHekPbIQTybfEozi2B3k5wxNfLDQtfmoEFC9cjybzzncEIUWIOJCdSLbZnndy+f+43rkpru15RXPcKZ0beOxjrf/gP5/ZdQFMJigyASFw7R9OuZxQWX/wSx7aexqVTl7nxyoCpvW0uoCKEkJag78QeWDRvMddhyJ7+k3td1WO64bWAMQkhpPmEtQ1Bv0k9sf/fI9fNt/ncvotIOZOKyE4RTrf9d+Emh38zqru6sTB3c2BjBIPeaLeYLgtCsHkcW1gQ+8P/XsV7d32BVBfGTDqtHt/N/w23PT8F7XtHuxSOYMWYNv74HxKOXUJTqVv0qUO/dvg16Wsc2XQSqefSIfeUc2MS7wDnYyZCCLkedfTsiQ3ZfzreRsFW7JImQ2OSBqMODs1oyKxHEN2rH64nhZnpLm2XeSHe6TbtBwzC2CeeRfP1ZamdbJboNIhLPIXu5w6hdWYyjHo9dv76g92XR8gk2NCjLTb2aIvHWlkmaW05X6nG3acvofv+c7jzVDKKdI6rSTEftA1r0v+AZHwe/s0rhq7O4GSAtwceCw/AA2H+FG4ghLRoMoEcsR7WwbRqIp4InT3pJJkQQprS3K8fQp/x3bmv2eIgfqmTADCPdXFw8LyArfOvPV8VVTqZ3WML65OKLB5iF4BdcdZskUz1sQuKKmrCDczoB4bjmR9moyE0bQMcPm80maDnXwk32Hq9zoBPVu12OHHyzdEP8cX+dzD1qXFOjyfhaDJemfAebg+bjVenvI/K0toqQfY8/d1sq+pT7CdSMj4GZaOiqsINjJAPdaw/Cu7sBE0rT4dVBHct3w/Dlc5yDNt/9xGdMfO5yVybaQo3EEJasgAfD0y4xX7Izl0uwcwRXa/qMZHrg7+/PwYNGoS4uDin265evdrifvfuVedahBDb5v3wKLqP7AxhfDr4eaUWz+lkQGUwH3o3HmvryT3GzmHLRkajdHS01VpCg5fjcINRaIImWAajyPGVe1cW1zCnL2Q63WbCq7di7teudTKoD4OvOyq7R9isHstCHqpbYrhuB98995vdfUSG+mLJu/di0YLbMKN3W0gPJsHtn2OQHk+F2bCuRvyBhKoxSegjeOPWj7luc848890jaEqsO8PulQdgNBotxiQ9R3XhxiQT54ymcAMhpEULjgzE0Dtvsfu8h487Js4ZdVWPiRBCbnTPL34cXYY4H+9fTZfPuTYmObvXeZh4xvxJeOTje9AcWHjBXriBYWOGH/+3xO7zrIjSj2c/w8c7Xse4h0Y4fb/Tu+Lx8vh3cVvIw3jnjs+gVmpcmidpSuzT7l19yOJz8/l89BnXnRuTsFAFhRsIIS1ZgDQUnRSWXYrNuQk90cfH+e9sQq4GCjg0I6FIhMnzX8btr38Avlll/mtJJHU8AVCNd2UywRGBUAh1edN1MKiv/LTLyL2U5HCbbp5yjPFzPTXLlvFsLypHz/3xOFvuePFXiFSMJ8IdL4qqjwyNDo+fT8Odp5ORo9bix4x8vJaYia9Sc5HF2nMTQsgNoJ/PULR37wxenRp8coEbxgROh0JE1dcIIaQpSeUSvL32Ra5KDlsoIkzOdbi93qS2u6C/mkFa+7yk1ASewf7FbbeTORCoLMPDrLqNK0wSISq6B6B4bCRKhoVDG2j9OvaZyvIbVpnI6CZ2/P4ujJjPXs7BpWz71WGZDn3bou8E1wN8rJvDgTXHcGfEHKSddzzJERIVhGl1whPqtr5cmMEmkQAlY2NgsvMjzr6Ui3fu+ByvTv4ABVlF+Pvz9VxVwb8+/Je7TwghN4Ln7x2O8bd0sPpzF+Djjs+fnYoQFypWk3pgf3Sa4nad2Lt3L55//vma+wMGDEDfvn2v6TERcr2TucvwweYFeHft/yA7lAjRkSTwc0uBciVU3pad0sypOwRA08byOhFPa7syqM7NhLI2BpR0MKKkmxAp73VH3swIGGQCm9vLPWRNNoEmEglR0sCuco5o2wU5HJsZAjxh8HHDmd3nufN4R7q2C8UtUcEQXcoHX+O8uBOr0Lr370O4K2IOspJzHG4b0aEVt8CnqWQkZOOtmZ/izVs/5sYgKz9di2+fWYwVn6zlOlYQQsiNYN73j2LoHQOsilYEtfbHe5tegV+o865i5OYdkxBC6s9N4YaPt7+O11c/59JaqKtB7unimETgfFTCOqCV5F67tVvHtpx2On/QZXAceozqXK9gBesEeFfEo8hLN+tIZ0NM9zYYdd8QNJW0+Ay8Mf1jrkN3fmYhVny8hpsnWfXZOpTkW4b2CSGkpboj/HGbIQdfcSBmt3kZHiKaJ2lSNCZpsOtj1f0NLjQ2Dj3HT8Hhf1de0+MQisSI6e28o0Tq6ZPISUp0ul2b7r2cBgyaW2VJsdNt2rvLIBfwoTTUVvxxRmk0YsqJJOzs3R5hUvsLn16KCkGARIRv0vKQpdGhKewprkCPg/EwXyf2fko2HmsVgJejLFuhEUJIS8Pn8THYbzS6K/rikvIitEYtfMX+iJBHQ8CzPelMCCGk8boN64RJj43Bqi/WwxCggKGV9UQpr1IDvroEaO04gGC6cj2dna7yjIBblhHKQD6MYrOJAb2RCzd47rxs8VqpmwR9J/Zwery7ElOwd7gfNKg9zvKBYZDFF8L374SaUEXfCT1wbOtpNAS/0oUQsZOwB5NfWok2wY4nnqO7toZYKoJW7fqYQVmmwlO3vMJVN/INth8AnP3JLPiG+GDlZ+tQlF0MZedAh/s1ekqgifSG9JL9sdThDSe4xUwsbFHtl1eW4s6XpuHe12e6/BkIIeR6JBIK8NrDY/DgpL7YcSwRKrUOMeH+GNgtCkIXJo3JzYNV6mNdjQoLC3H48GEsWbIEK1eurKkqHhYWht9///1aHyYhLUbvsd0x9oFhWP/9VggzCqGO8YWpUzuHr1F1CrQ4bxVfLkIl6+gmqr2GpPUwoSLCaJFGMMoEKB0cBFWUB1p9Gg++pva81k0hR6+x3ZweL6vYmbnzHNDG8fl1/+5tsOdECpqaPsDDpW0ERZUoyilBsJPjjOnRhguIs4VCrqooqcST/V7Cj+c+g5eDAOCT3zyMgHB/rP5yPYpZeKUJ7PvnCA6sPWYxJvn5pT9w7+u34Y4XpzbJexBCyLUilorx0h9P497XZmLv6sPQqrSI7h7JdWEVCGiehBBCmsuAyb0x4p5B2Prrrmv6Tfby90S34Z2cbrfzr31Ow8wsLNd7fHds+H4rruX1k+KcEqfdn9v1igafz4PR6KQzuJmywgrM7fsiN0/i4e1ud7tnf5yDoNYBWLNwE0rymybswQIWu1ccsDjen178Aw+8eydunTexSd6DEEKuFTFfglmt5yFXnYFzpUehM+kQLo9GO48u3LouQq4XFHC4SvrPvBuFmelIPnoI10r3cZMg8/B0uE1xdib++fgt6LWO23yFtI1FWGxHiCRSXEsevn5Ot0mqVCNKJsGZCuftlM1VGIxYlJ6Ht2PCHG73UJg/7g/1w9kKFR44k4LMJgg61C2Cy+5/lZaHZdlFiHWX4rYgH0wK8IboOkmXE0JIfbG0bxdFb/rGEULIVfTg+3ch/WImDm86CUNWEXRtAmHykAJaA4TpBRCx7g5RXk73I9CaYGQjySvnonyTCe5ZRhhMegjSc8FTaSFNKoZAaX1ePHP+ZLg56eCQkFeAuX+thbaqh4IFVQdfFGvawGdNMroO68hdENdpnVcgtUV6MQ/aGDudDhjWfphLcTg+5w7ydr7wKO1CJkJjgpFyJq1ex1hRXInVX6zHQ+/f7XACg7Wgnvb0eCSdvIzZa7eiQOV47KP3dj6OM19IxBj0Bvz+5gqs+34r2nSOwOj7hmLQrX0hENLEOyGkZQoL9MI943pd68O44bG/ojxT4/dRLTs72+n2LHjQFDZv3oyxY8fafG7SpEn48ssvERER0STvRcjN4tFPZyEzKRsnt5+F3sv5Oaney7KqKV9rgOxkJlS9wrn7JpigDLEMN5jThrmhZFAgfLbW/u6448VpXKc7RxKPX8I7t38GEwu+hfkCYqHdcENUhD9KB3XAH1hVdUwiAQw+csBogqCgEjw2rmgAnpF9OufbsPGAX6jjhUTVnRFCooOQdj6zXsdRWlCONQs3Oww6s2NgoYMZ8yci+eRl/G/021w4orHqjklYOOPnl//Evws3cmOSMQ8Mw4CpvWkxMCGkxQprG4LbX5hyrQ/jhtfUYxJCSMv2xJcPIjs5F2f3Xrhmx3Dny9MhlogcbhN/MAHv3/MVd13ekVum9UZYTDA6D47jup5dCyy04MqYhHWHY8HszCTHXeLqKsouwfrvtuL2/9kPOvP5fNzz6gzc9sIUXDp1GfOHvQGN0vG6N1fUDWOw+ajv5v/GdXNo0yUCYx8cjv6Te3HvTwghLVGgNIy7keZFY5KGo4DDVSIQCjF5/itIPXUcu5f9hvyU5Abth8fjw2RyvRNBNb5AgOKcbGQnXkRwjP2qSMc3roVe4/gkLyAyCpOfe4X7OrBNNELbdUDmxXhcbYFtYuAfEWn3+TK9AQ+dTcHu4ooGv8ffucUOAw77isuxv6QCPPAw2McDQRJRkwQc7MnX6ZFfXMF9pj+zi7CkcxvIqLogIeQGozaoUKDNBR98BEhCIOTT6QohhDQFdsH87XUv4sjGE/jppT+Rssv6HF6WUIiySh2MbvYvrotVPMsFRCwAIACEShNkp3LBt9OlgFULTbuYiYRjyWjbI8ru/n87eAJag/2L9pWd/dFXJcWCpfO4+x0HtOeqkSYeu4T6EGWVQpyUD2207ZAD33gl4+Dgz1C3qBBEBNrvrlBWVM61Mj5t43vtqm1/7HEYcDi+7QzO7I7nWlX3GtMVft7uTgMOfHXDQiEMq8R0jN22nMKWX7vgjX9ecDoZQwghLU2ZrgKXKtK5sUg7j0iIaExy3ejdu7dLlQObQmpqqs3H3d3dERkZCb2+4X9PCblZsWDB+5tfwaH1x/H1sm0442R7W+et4qwK6CuN0Ml40HsARsdZBZT1868JOLAxScqZVCSfuoyoLq3tvoYtVmGL6fk6AyT7L0LTNwao0+m5a/tQvPbUeO5rVn21dZcIxEt40EYH1HSYYOFvSXw2JGez6r0wUphVAq2nZcDDgtHEbdNteEcERtgPbpfkl+K1qR8hfv9FNNS2P/fYDTiw37msq97ZvechFAm56uPegYomCTjYU5hVzN2ObDqJfpN64tUVz3LvTQghN5LivFIuNMY6gnbo15Z+zxFCSBORe8jw8Y7Xsf/fo1w1/sxE54UUmpJIIkLiiUtIOZuGyI5VwW1bVn6yxmm4ocfIznjul8e5r3uP64bQmCBkJtYvPNAUWAcJ70D7xbMKs4vx2pQPcPFIw9bJVY9J7AUcWKfNo5tPIf7ARYjEIm6MwLpk5Kbmo7kUZBZxN9YNe+CtffHy0qcpeE0IueHoDXlQ686Dz5NBJu4OHo+uvZCrj/5fdxWxKjatu/ZAaPs4LHzoThh02nq9nnVfUJU3rJWW0WBA4qF9SD56EOOffA5t+95i8by6ogIH/16GM9s3O91Xp2GjIfesbUcskbvhamOBjWH3P+JwmznnUu2GG9hkgitTncV22jVnqLVct4bTZl0hPr6cg/A6kxzNaV9JBT5Iycbr0aFX7T0JIaQpqQyVSFEmQmvUwkfkDz9RAP4rWIMcTSZXgY+R8mXo5NkD3RR9ub+jhBBCGodVkekzvgc63tIetwY+BH2d7gc8gwle6xNRNLVdzaIcc/5GCTR2Fs+b5GLo2gdDctJ2lwK2QGjnsn3Y9/chvLJ8HvpPsqyaXVZYjiVvr8JaWSEgcVDtRsDHsPdnwNPHo2ZBjbtXw8Yk7jsSoSpSQh0XBJNb1cooQbESkgu5UHcO4yq1mgQmm10cxDwe5s8Y4nD/b834xG64gcfnweRCK+byIttjGtaa+vVpH+HS6drFl7+9vhwet3UDWtlfCMXTGSBNLEJTYJMGf7y1Eve/fUeT7I8QQq62/IpKbLuQhEqtDu0D/REb4In39/yIRLc0GNnvfwAKkQemhA7DtLCR9AO6ybCAg0gkQmBgINRqNQoKCrjHKyoq8MUXX+Cbb77Bhx9+iKeffvpaHyohLYpAIODGArHDOmLoa4vgaMmOOKUIqg7+3FUicUYZBGUaSAd3gFZpgEBpgsHB+v9qem+JxZiEBYj3rDqI11c/j16ju1psW1ymxI+rDmB9fjFM/aMhTsiFoKAcso0nYQj1gdHbraozQ1YRbr21H9yvjCG4XNW07tBeslxMZJKJoe4RAZNUBNlR26Epu5/9Qg60UbVhibqEaYWQ6o149JNZDvfz2pQPEX8goVnGJBkJWdyYJDU+o+axX1/7C8FRgbhaDqw5ir8++Bd3vTL9qr0nIYQ0pYLMQm6RLasyHd09kuvq8OaMT5BwJKmmarRPkBdmPjcZ05+ZQN98QghpojHJwGl9ENs3BneGP+rSObE5uacMyjLHRYbs0Wl02PrrLuxZcRBvrf0fug7taPF8cW4Jfnt9BfauPux0XxPnjIbMvWpQxD6Du5c7rjapmwQPf3CP3efZ/M2Cie8h8XiK3e4Pdbsk1GdMcvlcOt6Y/hHXsa7a4leXXdUxyZ6VB/F3nw2Y8ezEq/aehBDSlNT6bOQrt8Ng0sJTHAc3YTDSC2dDqztds8JWKAiCn8dc+HjcR998clVRwOEaEEml6DBoGM5s2+Tya7yDQ1GcXb/WwfaCDuu/+hh7/lwMZVkZPP0DoPAPxKXjh12ubsb2US3j/FlcOnHEhVfxEBgVjdzkRDSFbmMnQ+ruyR0LCzvUFV+hwrYi+2EQbkKEx4PWyWeOstGqWms04vZTyUiy0c4sTa2FhM+Dpp4DoIZaml2EFyKDqYsDIaRFYX9vDhbvwtmy4zA6nMYG1EYVjpTshcqgxADf4VftGAkh5EbnpnDD4Bn9uMU9dUlTSuD/+xlU9AqBOsYHJgEP4uwKtBXIkaZ33E1OF+lvN+BQs41Wj3du/wy+oT4ozS/jWhL7hvhwnSXY3wjd/F6OAw4ADMba42DVQk9sO+NCSJqPtj3a4MLhpJrHWHt6+clMyE5lwugprVqsVF51ni/Mq0Dl0LZs5ACT0AQTOyQWdDCZIEorxkMjesJTY4TBYLBZmef8oUSc3HHO7vGwCQeBSACDnVB1tdC2wVaPaVQavDDqLS7kUFfp6tOQPdwDKpnt4b7bwQzwtY7fsz42/PAf7n71Vq4yEiGEtBTs78j7m3dh2dHT0FX/TeGZENElHVJfy05Epbpy/Hr5X5TrlZjVevK1OeCWjF0ia+xlMrPXHz58GMHB1n8bm8PcuXPx+uuvQyyuKmiSlpbGhRo++eQTrnuDTqfDM888A5lMhtmzZ1+VYyLkRuLtLsOI4BBszs6y+TxPo0dl/3CAfyVsbDKhrYcC2fHFVW3d2Tm7C00ChKXWhaa0ah3Xac07wBNlRRUIjQ6CbGRH7MkqqDrvD2Zhag9o2vhBlFMO+Y7zEGYUAux2hXk11T2nLuFknXCDOU1sMBdYEKv1iOkRiQuHasck5kw8oPQWf5QOCYAmVA6e1gBpgQlu2QIIWSe96s+UUQTZgWTc+cZMiGVirmIpC7PXdWrXObvhBu79jCZunGQ0OB7nhdkYkyjLVXh+5JvIT6/9nlTLTs7lKo6z7/PVsHbRZtz+vykQCG2HQQgh5HrE/o58PfcnbPxpu9MK3UU5JVj07K+oLFXa7ahDrt6YhBBy4/AL8UHPUV1xZNMJl1/TOi4Ml8/VBnwbSq3UcGFkdx83VBRXolW7EG7e5vh/bDGpayzGJKsO4uIR2+MMc2xOIrpbJC6azZM0Bvu7xDrlsbkdW8UKj245ZTfcwLBwgyvBaxYAtNVBm82TFGUX2xyTiKQi6K7SmGTNN5tw67wJVLCRENKiGE1anC94A9kV/8J0Ze2WCDr4CtQQsEl0M3pDDnJKXobRVAE/zyeu0RG3YDQmaTDHq0ZIsxn50GMQy+Uub98U4YZqRr0eJbk50KqUKEi7jORjh+rVuj20fYear+P37HDxVSZolUp4BVmfdNYbj4dj6/7GL8/Mxg9PPIBDq5fDaLS88PNfofNOF8ESkdO20HcH+1o9ti6/1Ga4oRoLN/T0lENgtnMfkQAjfT0hszHJ0BilegNSVPaPhRBCrkeHS/bgdNkRp+EGc+fKT6BMV9Ksx0UIITcb1rqYVdexRZSvhPeGJAR/cRghnx6C39JzyNvuwgVviQim6gVIDrCFLuwCM6tylHzyMg5vOF4zJpGkOT+X7xFeO674b8kuF4PaRlSWKblARV3sGo2gVF0TbmBEueVQrDgOt92JkJ3Ohux4Fjw2XoDPL4fhvSUBy59dgvvbPYl72jyOFR+v4RYVmTu0/pjTYwqODHC6zYRHrCuGb/9zr81wA8PCCx6LT6Crvx/4ZhMKPm4yjHTzgd/ppm3LXJJfhtzLzdfqmRBCmsOHW/fg98Mna8MNALxCSyH11dq90vxv5jYUamhMcq2xcENYWJjDW1O+V3W4gQkPD8f777+P9evXc50dqs2fPx+5ubb/LhNCHHt37jT4HM4EX2m26IQtcFFqYZIKa8MNDI+HhIoyKAP4Nb+lJcWAwEnhVM8Dts9VWaXsnMv53JjkbGkldmfnV4UbzAl40IV4QDWABZ8tq4zG9W9Xc3/jfttd22pfwIOujR+3AElVrkaQjXEACzfkPBSFvHsioWnlxr3GJBVAFcZDYWc9TEX5EJ/NhPuRM3AvT4GwrQiLX1mG+9o+iVnRT+Dvz9dbzfMcXn/c8XHZCS/UNe5h6zHJ1t922Qw3mI/52veJsVjgwyqQ9xnXHSJJ04ajC7OKUWhjURMhhFzPWLhh3XdbnYYbzC374B+U5Jc263ERQsjNZsGKedwCfVc1RbjBPDScl1rAjUkuHkmuV7iBBZVj+9aOU/5bstul17GCS6yAUkC4HxpLIOTj++d+x6yYubiv7Vz8u9C6yO+hdc7nSSI6OL+WM+7hEVaPbf55h81wQzUWbmjfO9piTOIb4o3eY7tBJG7aetA5KXkoLXA+t0UIIdeT8wWvI6viby7cwIMJQuih4Gu4cIOMx4ecx0fdv5D5ZZ/DYKQxCbl6qIPDNcLj8zH9xTex7LXnYaqzEOZ6Fto+DoGRUTX3laWl9Q5psG4UZfm5MOj1VU9cqYLqMrNtK4oKsXfZb8hPu4wJTz1f87jOhQ4KbgI+vooNxzMX0qCzsfkAL3fcH2Z9Ur+5wPlnbu8mw3dxrXG2QgUpn48+CjdIBXyU6vRYk1+CHI2O6/awIa8ElWbH6kpXibpYxwhCCGkpNEYN17mhvkwwIanyPLp79WuW4yKEkJsRq2759roX8dyw1106Hec5CPnWbKPSgtfIbmbuh7KhirUOGlfr3yYcUf61z5fkuX7ROP1CVXVYVg2JBQT0V7onsAvctkLfPIMJkuQCgN3MmI/g2KKe75//HanxGZj/82M1jxucdLtg3L3c8Mz3s/HlYz/anNDuNaYrxj5k3cHowNqjDvcrqNShX4YOH7x2Py5mF0AmFqJnZBhEQgHK5k7DruUHUJxTgsykbOz/9wjUlWbBjgZUNWLVWQkhpKUoVqqw9MipmvsCkR5B7fPhEVDJXaJi2J8ENgapqg9exWAyYk/+MUwJo85y9cJW7LJbYzT29U1s1KhRePXVV7FgwQLufkVFBRYvXowXXnjhWh8aIS2OWCLCJ6/cjRcnvgdNsAdMQj7XQa50Unu7rzFIedDLAJGq6re0IgEo6mS7nJc4SwnFLucBJHX38Kp5Clt4POhaecEoE4OvquoG0WdCD4vgdFG50ul7GK+cM7NxAxPePhSZSTk144CKPn4o72V7HGSS8FE+VAI/YyH4vd3A47tzjwtS9dB/X46cvfn4dt5iZCRk4clvHq55XfV4xxGvAAUmPTYG3zz9i81ODv0n98LIewfVe0zCdB7UAS/98RRSzqRB6i5F50GxEIqE3MIfNiYpyStF+sVMHFh7jAucVGtI94emDk0QQkhzKsgq4jo31JdOo+N+f05+fEyzHNcN6wYckxBCmo7MTYoFK57luim0JAOn94F/mPk8ietrty6fSef+DY8NRUZCds04wN48iT3mcyBZyblceI/Nuzz6ySyzbZyPSfxCfTBq1hD8+MIfVoWkmMEz+2HIbf0bNCbpOborXvj9SaTFZ0DuKUOngbHc3FhxXil2Ld+PsoJybox2cN1RizEIjUkIITc6lS4TWRX/cl+zcAOfZ4KYZ0CAQAB/gQRCXtWFNqPJhHKTHrkGLTc/bjKpUKbcCG/326/xJ2hhaEzSYBRwuIZC2rbH3e9/jrWfvIeS3Gxc73xCwjD+qecsHlMEWFc/dSXoMPWF12Aw6MHj8bFn6WIUZVSdQDfUxf270Xn4aIR37MLd7+Pl5vQ1se5S3Brkg14KN3ydmou/c4u5sEFrmRj3hvjhwTA/SGx0XNC6sGBLYzIiVCrmbuYUIiHuCakNTbwXE4a1+SXI1ugQJBFhop8CC5KysCynyMVPXtWyjRBCWop05SXoTQ1rBakyOCnJRwghpN66DI7DV4few9u3fcZVmHFEUKIEv6gCRp+qxTS2CC853gfDFi1p2wVBGxUAo1wMvlIDcVI+xAk54OmNkKaWwWtzCkpGtbZaZBQT4IsPp1pO4ga1dt4Foa70i1l4f/MrUFWouYvZi+b/iqzEHDTG5sU7MO7h4ejQr6qSa8cBtRVd7YnsFI5xD43gFv6wKnzsgjoLG7AqqhNmj8LkJ8ZwC4BsTWg7o9PoEeqj4G7mPH08MPHRUTX3WVeL3SsOcFVPWdWmW6b1xhdzfuC6RLiqnhltQgi5pnYkXILWUDW5yhcYEdEjExJ3y9+r7M8P78rFe/OQQ5m+4qofL7k+zZ07F2+88Qb0Vwq47Ny5kwIOhDQQW3Dy+a438O4dXyAvpQBlwyKdvkbvxoNIVXUSKisAfE8C5W0ArVfV8zyNAR5HC+H3TxoEascLaoxuYpjkjhfHmwSAPsQb4uRcRHeLxPyfaoPNTIifAicuOunCzYIS4T7gFyshKFcj7UImPt7xOsqLKrhz/udT97GZhdrt+UbwBFWfUQAjIrqVQCCy7MDHjxBC9JYXdK+XwLhLg7WLtnCVTdkxMh1vaY+/v1jv8LDadI7gFsp2HdYRf33wD3avPMiFDdhip4mPjsbEOaMgEAgaOCbRcUGQul30FH6emPTY6Jr7FSWV3JikKKcEga39uVDFJw9+gz2rDlnt0ySXwCTgg1eprhOup0EJIaTlOPDvkXp1bjDHFmISQghpWv0n9cLH21/H+/d8iYJM19fqXCusK8HTi2ZbPMa6xLEuEPWRcTELn+x6E8W5pRBLhPj0kUUoym5c99JVn63jxiQs0M3EDWjPdSxypE3n1pjx7CT0HNWFmyfZ+/chLmzQumMrTJozGuNnjwTfxtotV8ckYTHB3M2cd4ACU54YW3O/rKgcu1cc5IIibPzSd2J3vH/3VzjoQgcKQghpifKU7HczF1ngAg7s33ABD8FCy7WufB4PCp4IEvCRZlDBCB4Mxuv/byW5cVDA4RoLiGiDB7/8AWX5edi86Aukna2tIGev88PV7vggU3hh4G33oP3AIRCJqy6gqysqcHzjv7h4YE+D9pl4eD9GP/oU9/Wu339skuM8u2NrTcDhFm8PtHeT4kKl2u722wvLkarSIEImwUftw7mb3miC0ElHhG6ecmx00sWhu6fzgAXjLhTgjmDLqkyfx4bj1iBvfJOWh+1Fzi9S/Z5diDdjnLdsI4SQ64HedKV7TwN4Ci0XaBJCCGka7XpG4/fkhVxlnY/u+xpn9l6wu63k2GVoRsTBaKO6Kb9ECfEFx8Ftk1iAipFxMPrUni8bFXKoe0RA29oX7lvjwdMZ4HEwG5KkEpQPCYfOTw5/X0/MnT4U4zu2g1hYNYwtqVBh6Zbj2CQyoOTuPuBXaCBOzIPkQg54NiqP1sU6F8z9+iHu6y8f/wFNYdPPO2oCDr3GdkNoTDAyE+1/T9jF8by0fIS1DeEWSbEbm+BmoQtH2vWKxtHNp5xOcrjCzVOOsQ9aViP/3+9PchWTln/0L47/d8bpPjb8+B/uf+sOl96PEEKuNbWudkziFVpqFW4wx/7amXdyCJDY7zBE7KiaG2mc63DNqkKhQGxsLM6cqfo7mZ7euOIthNzs4vq1xx+Xv+U6jL345yacKHO8qIYnYItbaheGSosB6THAoFFCdPoSRPlqp8GGakaJC9NkPB782wRgzuu3YdCMvhCJqwIRrOrn35+tw8m1R4Be4fZfbzJxIW9duyDurjCrBLIDl3Bw7THM/vhe7rGy3/YDrEEEzwSB1FATbmACFWUQiWx/Hh6fB+FsD2h3a7jfl5t+3o4nvnqQe44FBQIj/JGbmm/30NjiodtemIKI2DA8v/gJ7ubKmKR9r2ic3hXveJs+MXAF62zHFkGZW7D8WRzdfBLLPvwXp3eegyHIG4aYEJgUV8aSWj0E6fkQXMwEz2jEll92cp+DEEJaArWyqiNQQwRH1b/44E3vBh2TEEKaVpchcVia/h0XRH7v7i+QdDzF4fbsPNx0lYuRshDDg+/eiVum9akpjFSYXcyNSVy5jm+rmOrRTSdx31tVVbiVZfbXV9XH5p+34+EP7+G+HjSjH354YQmKsovtbr975QHMmD8RkZ0i8OKSqnVkBoPBZtC67jzJhcNJTTImYYWhJsweafHYG/88j8MbTmDZB6txbt9Fp/vYtmSPRZCbEEKuZwZT1e98NvPB45kggxHB3PU226R8AfxMApSa9BAJHFwDI7bRmKTB7P+/klxVnv4BaNd/oNPt2vYZgJje/cF3ciLXlFSlJdi/4g8kH62qlqMsK8XSBfNxYOVSVBY3LJFVlJWJgvRUxO/ZAZ5ZJbzGKC8qsLj/c8dIyGykeKsV6w14KznL4jFn4QbmjmAfyBxspxAKMCPQG43BAhqPtvJ3adsys7ZvhBByvfMT17/KdrViXWGTHgshhBBLrCrNoBnWbX7NCQorMM7fG4N6REFQfU6s1UOUkA3Z9nNcOMERdbdwi3CDOaOvO9RdW1XtMtwbyuGx4Hn5QqyXoTRXhx+WHsDeM5e55wtKKnD/W3/i57WHUFihAgR8GBUyqHtGoGJ0B65LhCtdHC6dTsXW33c5XbzjqoLM2r9VrKIQuwDOWhnbwyoj/bJgmcVjrhzL+EdGQiSxv1+FnweG3jEADcVaUfcY2QWTHrfslmFPZYmywe9FCCFXW4fg2jGJIshxRwbzPJ/BwMPxy2aVtckNQ6vVIiEhAZs2bUJlZaXLr3N3r+1qZbzKBWkIuVGFRgdjyMCOTrcb378D+ndvA77ZmESYmA33zfGQple6HG5g+BVa1rLH8UYmE4oOJuKXV5bi2JbT3EN56QWY2+dFrsJoZXwmxBcddYSznAXRh3ihYnQc0tPykXQihRuTSA1VsTqBVG8RbmAUMsfn2/xQIdBVbDUmYWMLNiYRiu2HOFiF2t9fX17vMcmER0dBKLK/nU+wNwZO74PGjEl6jemGcQ8Oh6GVP/Q9Y2rDDYxYCENUMHR92sLE46GsiLosEUJajpjuzrsV2ZPhrGMQIYSQRmGdB1hHB2fGPjAcPUd34c5brxbWhfvnl5fi5I5z3H1WtOqJ3v/D8o/XcJ3hGiI9IRMXjyZzYxKJzHFnO1flm41JxBIR3vz3BQgcjB3Y5/rj7VUWjzkLNzATHxsNvoPFuCzs3W9STzQUm+PpO6EHRtw9yKXtSwvKGvxehBBytXmKO1z5ygQ+TPAXVHVrcETOF0HMul8bLl2VYySEoQ4O15H2AwZj95JfoFHan0jrM3Um/CMioVEqoamswIkt63F0jeWJXrWA1lHIT0tpko4PFcVFWP/Fhzi0ejnUFeWoKGrcItO8lCT8Ov9xNCV3b8sqen5iIfROPvumglIU6fTwuZJudoW/WITv4lrjkXOXoa4z8eEm4OOnjq25zgyN9XuWa9/jKLllW2pCCLme+UkCESgJQa7GMmDmioTKc+jtPRBSgaxZjo0QQggw4p5B+OmlP6CutL2Ak12sn/XEWK7jQIVSw91WvbsK//x91Ma2QFTX1rh0KpWrBMRCB9pIxyFebRt/CLJKUDGiHbt6bPFcbnE5nl+0Fm2D/FBcqkRBqe1xk8HfA+rOYZAdT3P4XvEHEjC76/wm/bH7hvhY3Pfy94TBSSB51/IDXCcJuYfrf9/8w3zx4pIn8d5dX0CnteyOJPeU4fW/n4NE1vhxwqaftru0HetUQQghLUXXsGAu5BCfnQeBnWrYdZlMQEamL/5QnsWTPQbCXWzZppm0XLt27cKwYcNqAgrr1q3D+PHjXXptZmbt4rKgoKqq7ISQxpvSKw4LNx+AVm/7dzQLWj86th9CfDxRXqlGpVKLpa8tw4Z1x6y2ZYtdIjuFc2MSE/tlbgOfhSOySqAPs1+0SFCqgaBcjSweD8+/+Rda7zyN4vQClMPIFU3iGU2QH0yBoKgSmthgGL3kVS9k8wc82yWeTO4SHErMw6Eez3P3NRNDwZsSDJ7V1IIJwjqBB1vyH42GbGG21ZiEhZ+Ndr6X1bYv3YvHvri/XmMIFpB/7pfH8eF9C7mOD+Y8vN3wxurnajpdNMbmJbug71AVhLfF5OsJY6gvQqiiOSGkBek6tCMiOoQhNT6j3q/9d+Fm3P7iNEhpfpgQQprN2AeH4c93VkFvp6ATC/re+8ZM+AZ7o7y4AqpyFRYvWIatv++22lYg5KN1XCtcOp1md0xSHyzU8PK4d9CmS2sUZBSiJL9xi+qPbDyJ3SsOoin5BluOSTx93GFwUhxr62+78Ogns+pVjIp1oXvm+0fx2SOLYKzT1ZuNg9g8iStBCWds/VztddgghJCWwld2C2TCcKj1qeDBBJELgT3BlStc5ZU/wMPjUfB4NE9Cmh8FHK4jYqkMY594Fms/ew8Gnc7q+YF33seFGxiJXM6lRbMTztvcV2i7Dpj5+nuoKCpCduJFqMrLsO2nbxp9jAVpVRVTHeELhTDqLRfZ1KXXNrz1pj2+YZbtb/K0Olh/F+schwnI0ejqFXBgRvkpsKt3eyzOLMC+4gpu8dZgbw/cG+qHMKnjX96XlBosySrEZZUG3iIBpgf6oL93bcU3Rms0YkN+qUvHMjPIcnBACCHXu6F+47A25y9UGsrr9TqDSY8MdSqi3do327GRG0d+fj4WL16MtWvXIikpCQUFBfDw8ECHDh0wYcIEPPLII/D2blzHJUJuRO5ebnh+8RN4987PrS7es3DDnM/u48IN3LZyCXh6Ay4cSLS5r67DOuH9za8gL60AF48ko0ClwQfbjjs+ALEQqp6trMIN1dj1/4uZ+eCz4YaD6yy8Lq1gOpEOnoMJA42y6atwR3aOsKqGWnexT106jQ5FOSX1CjgwA6f35d5v7TebcWZPPLd4q+forlwbZb9Qy/B3XazN9sYftyE7JRde/gou2NJxgOXfV1WFCoc2OPl5XTH8LufdCAkh5Hry8bSxuO/XldCqRBDJHF/DMhj5KNdKUFLKrt3ocCAzDSMjo6/asbZ413nr5djYWIvuC6tXr3Yp4HD+/HmkpdWGKfv0aXiVckKIJR93Od6cOQqvLNtsVcCIXYd/edowLtzAeLhJue4NCYeSbH4bWUXVt9e+yFUETTh2CXnp+fh+/u9W28n3J6N8YheYbFQsZV3q5P/FQ9suCJpuEdxBJGQXsXbQQP8Y8IsrIdtxHnyNHpKEPO5mFAshbB+M4q5hDn+85YEe8LjytdeOXJRN9Lcx0OFBqxdALHTSLY8vQckDMQjr0sXi8bz0Qi5w7vC1lRqUFpQjoFX9QtLD7hyI6O5tuDHJ2X0XuIVevcd2x/jZI+AT5PiaS8rZNC5QnZuWD59AL4ycNQSxfWIstikrKsexc5lA1zYO92Vo5Ychtze8gx0hhFwLLy99Gs+NeBOl9VyYWlFSibN7L6DnKMvf96TljklsOXHiBH7++Wfs2bMHqampUCqVXKg6MjISkydPxm233YaQkKprtISQpseurz+1aDY+e/hbq3Npdh2eLapn4QbGw9udmwNIPJFic1/9JvbCa6vmIyMxG8knUpCdkoefXvyjUcfHjol1gnNG5iGFqlztcBtVhePnG6JtL8vzdzZH5ExlqZL7G6fwqxrruWrM/UPRvnc01izchPOHErnudazrwriHR8A7QOHwtcmnLmPTz9uRn1HI/TxH3z8UbXtEWWxTkFWE+P0XXZ6zIYSQloLH46NzwGc4ln0/YCqEmptTdxxy0KPqOp3RWACt9jgkEvq9dyOPSa4XFHC4zkT16I273vkUxzb8i5QTR7mgQEi7WHQfOxkRnbtabLvrj1+QeSHe5n4yL8bj6NrV6D35Vnj6+UNZWtIkAQdXOAs3NJdLxw+j77Tbau6z0IKAxxbE2n8N+7XsIxRwoYMfMvKxpaAUOpMJPT3d8ECYH27xrp5esBYhk+C16NB6HePnl3PwQUqOxe+bP7KLMNrPE9/HtYbkykIu1hnC1Sbal1QaBEqaplUcIYRcDQqRN24NmYUVWYuhNNSvXabR5OpvR3Iz++WXXzBv3jyUlJRYPF5UVIS9e/dyt08//RRLlizByJEjr9lxEnK9Yhdhvzr4HlZ9vg5HN52EwWBE50GxmPrkeHQZEmex7bdPL8aFQ7YDDie2ncGahZsxZe5YBLUOQE5hGeAk4MDOk43+9s/BOXweTDyTw0ssaqMRYqkQPJWzyHPTOvDvYUx7clzNfa8ABRcMcVSZiVUk8vR1R+r5DKz+YgMObzzOVTPqODAWU54Yi04DY+2+NiwmmAud1AerJPXHO5ZdANd/vxWDZvTjukIIr4S/2cSGyclCKPOqUZ6+Tn5uhBByHWnj54PVj96NBz59Hximsrsdu6ZUppOgvFJa85izbqGkZQkICEC/fv1w4MAB7v7SpUvx5ptvOl0s9Oqrr1rcnz59erMeJyE3m/Hd2yPCzwu/7zmBAwmpMJpM6B0VhrsHdUf3SMtr8l898aPdxT2HN5zggr1scQvrOJCRkGUz4MBX6eCx5iTUXVpBG+UPiASA3gBRWjFkhy7B6OUGTffWNt/D6O0Gdd8oyHddtOgKoVI7L/JkEtdO0Qkr9JBdLIOqh/UinJJKOQIU9guFKJViqNUSVkoP/5alYyp61TznHeh4UY9JwINALoa7l5wLHbAxydHN5uPAcejQr53d14e3D8XjXz6A+vjh+d+x/OM1Fo+tXbQFw+8eyHWFqK6yqixTwejC3IdJKkZeaj4iO1kGzgkh5HrGfmd9f+pjPNRxHsqL6jdPYtBdm7l40vxKS0vxxBNPcHMXdbGANbuxLnQvvfQSXnvtNcyfPx9CIS35IaQ5sIXz4e1D8PcX63Fi21nuse4jOmHqU+PRoW9bi20/n/0dLp9Nt7mfvasP4b8luzHi7kHc9Xy2qL6xAQdXOQs3NBfWEWLobbfU3PcO8nL6GolcDJmHDEknU7D6yw04vvU0N6/Cuh6xMUm7XvaLjbAOGU9+83C9jnHhkz/jn683Wjy25pvNGPPAMDzz/Wyu4HB18MJVrOAV+xkTQkhL4SnpgH5ha3A0cwwKDOWIFJogdNDJodJYO+9uAo1JyNVBo53rEOvSMGbO0w630SiViN+1zeE2p7ZuQK+J08Dj8yFXeCG8Y2eknT2NGxXrVFFRXAR3b5+agMNIX09sKrBf+YIt1xly5CIqDAaum0O1DQWl3O2VNsF4IiKwSY5vfX4J3k/Jsfnc5oIyvJWchbdjqio6eQj48BYKUOyk2ivz6eUcrOhKlQMJIS2LVCDD+IAZWJH9S71eFyihijTEsQ8//BAvvPBCzX2FQsEtWGLVjRITE7mFS6xCa15eHiZOnIj//vsPt9xSe5GNEFIlulskXvh1rsNvB6umuWPZXofb/LtwIxdwYIJ8PdEpOhhnkrLtbi8orIAxpAkWyhtNXKXVq+3kjnNcS2pWtYlhVX96jOqMo5tP2X0Nq+50f7snUVmqsuj2sHvFAexZeZALMLAL+E1h+597rMIN5u8XHBmAh96/m7vPKiXJPWXcoiJnlry1Em+t+V+THCMhhFwtvm5yfDzxfsxb9zaEQ2sDDNVYNq1SJ4HOIEB5oRv3mIDHQ5fAIPoh3WCViZ5++umagAOrjDpr1iysX78eYrHtLq1vv/02Vq5cWXOfVVDt2bNn8x4kITehjuFB+OCuqrGEPUU5xdw5syNs0QoLODCsG11M90gkHrcORJjcpOBJpRDqeTAZ2HjCBIFKDx540LV1/LvfEOwFo4cUfLMFRAIb59EsqK0NMEKvMIIVvZNdtFxwJDtfYTPgUFjpBneZGnKxdYDbYOAhM7O2g9vu9MtQ6XSQiaqCAcGRgeg8uANO77IslqUNckP5gDCo2noDAj5GfrEYpv+SIN+XAd6VqlE7/9rPjRPmLnyY6xTXFDb+tM0q3FBt25I9CGkThHtfn8nd9wn2hozPg7NlvzyVFkveWoUFy+c1yTESQsjVwrrdvLXmBTx9ywKXX8O65cT0cNzZhrS8MQlTXFyMESNG4PhxywIxrDM160ZdWFiIyspK7jG1Wo0XX3yR2/avv/7iCqwQQpoeC/o6CvsyeWn5OLDmqMNt/v16IxdwYKK6tEZ4bCjSzmfiRsW+HwaDoSa4zELRrMvChcO2O+8xGqUWd4U/irKiChgNtcVFtv2xBzuW7cOzP87BqFlDmuT4/l24ySrcUI11dAiNCcbtL0zh7geE+0EkEXGduJ358+1VeP7XJ5rkGAkh5GqRCgMRF/A1zubOQrLOhLYi2Dy3VBp10Fwp183jSSESWRZFJDfGmOR6VBU5JC1OYUYadBrHaduy/Dwoy0pr7ve79U7wBTd2psWgs6yK9L82wfBkraIdKNFbhhvMvX0pG2fKXU/kOrIoLd/h839mF6H8yoIm9ofigVA/l/a7p7gCO4vq176UEEKuBz4SP/TxqrqY44pwWRuu+wMh9uzcudMi3PDggw/i8uXL2LhxI9fVgXVuOHLkCNfGmdFoNLj//vuh013dCu+E3ChSTqdBq3b8309GQjbXVrja7Gn9IeDbmXAzGiE9kQae1knFB7bi1MkAXphRDJ6+aStsuzpRWPd78uB7d0Hmbr1w1lxZYYVFuKEaq1D07TOLkRpvu/pTfa38dK3D59d//x/USk1NZwlXFzEdXH8Mp3fb7i5ICCHXs5iukZhpGgPVD5XQaXk1f2Y0BgFKNFKUayQoyvOAXlO1SHRUZDRC3D2v8VGTpjZz5kyMGTOm5n51CHr79u3chHz13+TDhw9zYYYFC2oXoLFODwsXLqQfCiHXSNKJy9A7CTannEmD1mwxyqw3bgO/zphEH+AJ1dAOMAQp2Il/Vbc4kQD6qEAoh8dxzzvE40FfpxOdIKcMfLOQg87TiOKBGpR30UHV2gBVGwOKxoqQ9XwUjLKqOQyPXYXgqW2NC3hILfBBYbkHdLqqRUKsoVBxsRuSk4KhVklqtmXdLrRGy308/MHdkMhqQ1vqCE/kzeoIVawvF25girQaFA9qhYLbYmEy+/4YjSauSwbr2tYUVn22zuHza7/dXPPzEktEGDe2K+BkjChIz8eevw8i/mBCkxwjIYRcTXH929csonTF4Jn9uWAEufHMnj3bItzAwg4HDx7kujqkpqZy/7IxSvfu3Wu2WbFiBRfAJoRcOwnHLnHnzA63OZps0eX5vjdvb7HBJP6V8YMjbK6Ddak298hH93JBAUdK8ssswg3V2GOfPrwI+RmFaCz2c/j783VOAynV8zUyNymG3+Vaobxtf+6x212QEEKuZ96yAQjxmIUCI3BWa0KZ0Vjzd0tnMqDEqEaxqXadslw2DQI+jUnI1UEBhxZKcKX6jjN8s5aEYbEdMez+2ZB6XJ2J2KY+IXf2mVmXCncfy1BAezcZ/ukWgyHeDa8C+2tm40+SNUYjjpTVLuyyRWkw4pjZNrcFVXWicMXCtLxGHR8hhFwrXb36YFzgrQiVRnAV8ezxEflhiF/tghNC6tJqtXj00Udr7s+ZMwc//vgjvLws256yi/+rV6+uaduclJSEtWsdL/glhNgmkghdGhMIxbXb9Y6LwLzJ/eAltayIzKtQQ74rAYIyNQTFjjsG8Iyo+othb85Ab4D0VEbVtvbCFA3ALuSYfxZb/EJ94FVn8VN010h8svMNdB3WscHvu27RVjRWZWmlzUq15lgYJfHYpZr7Yx4fA4OvO1eN1sTjwSQS2P62m4AVdqqwEkLI9e6eBTPwxoy5aPexP4o+MyD1oifSC7yRW+CJwgwvaMqrQmpxfgF4d/Coa324LY+J1zS3ZsaqnpovFGLB6OHDh3Md4SIiIuDp6Yk+ffpgzZo1FuGGDRs2IDQ0tNmPjxDS8DEJW4AjMCuC1Htcdzz41YNwC/WpObfVdm9ds9C/LpOnDHBhXMEzW7DE3WeLYfYlgW8wwig2oayHFkYbuWdVZ0/kPtaa+1pQaYD30lyuu4PVcRj4KLjog6QL4Th3thXOnY1ARro/NBrLsVW4pwKe4trAA9O+dww+2v4618mBHWXxhGguwGGLpo0XKrsGWC0oWvdd48ckrONGanzVWM3RoqaU06k198c/OAzC+LSqBKINvIJS8LOKYDKanAa6CSHkesWKY7z+93PoNLB91d8sO392WPXruV8/eLUPr+VrAWOS/fv3c2EF8xD25s2buTFI9ZoLVgl96NChXCGn3r1712z73nvvoaSkpFmPjxBin7NF+wybVzBfP3XLtD64/8N74OZv3b2NMbpJoY9tBV33KOjiImBUyBv1I2jqeRI+3/FSQ9ahQlxnDqjTwFh8+N+riOvvuCOGPSxwsOGH/9BYuan5yEp2HN4uyCxC2oXaDhsT54x2ad9s3LTKSXiCEEKuV1G+C9De/yuYxN1xRsvHRZ0GWYZy5BmVqDTVFg4Ri3vDS/HmNT3WFqkFjEmuVzd2Of8bWEBEJDz9A1GWb//EK7R9HGTuVQv7z+zYit1Lfoa6orzmeR6fDxMr89NM3Lx94OHnj+yEC02yP4FQBIODCssJcb2h5fEhq/O41mhClgvtwuw5V+F4gVVTYot7s9RavJqUiQ35td03XOnioDYYIXUhLU0IIdebVrJI7lYtT5ON+PKTKNYWQsyXIMqtPaLd2kPIdy3cR25O69atw8WLF7mv2QKkTz/91O62Xbp0wfjx4/Hvv/9y91mHh2nTpl21YyXkRtGuVzR8Q7xRmFVsd5vuIztDKq9aXLN20Rb8/PKfqCiu5Mbf8iAFBAo5DKVKCLNLoY0NgWpgu6pqoazika2L7kYTeIaqeV5ueQv7H7PN+CVKyA+mQFhUFRwOah0ADx93rkJSU2CfpcJB9VCJmwQGvbGm9XI11r64MLOowe976UztAp8GczGAzjbLyi/FF3/swu6jSTCN7lT1uMEEvtYEvkoHQVo+hAlZ4Jl1nTi88QSMRqPTyQ1CCLke9Rnfg7tVO5aThT/jTyFZWARPiQSTY2IxIbodJDd4Z9SbGQsw7NmzB08//TR++ukn7m8aU1lZyd3qmjhxIr7//nsEBQVdg6MlhFSLG9AeCj8PlBbUznvU1Wd895rz8+XrjuKnJbtRzsYb/dqCV6aCpKCs0QuGYDBCkG19PV+YX4H2yYUond0WRaJsuy9XdlNAEyaFJEMNbbAvBGkSGBUGmORXOj4r+eCXCsHT8eEhFaPYQYVYRYkQBoMRQqHlmESr1nILdTSRChi8HXeYq+waCPfjlnNPl05fxlUrisXjITMpG4vm/YqD646B+yQ6PQwxITB5uVdto60alwgSMmvCJYfWHWv0MRJCyLUyYEpv7lbtzJ7zWP/DVmQm5nDXtkbcNRADb+0LkZjmSW5EixYtqvna3d2du2/vGptMJsOHH36IIUOGcPdVKhU3x3HHHXdcteMlhNTqMiQObgo5KkuVdr8t/Sf3qvl6xe/7sOS7HVBpjUBEOBCghqi4BLqsfO55fbsw7rzXnDEyEPz0fAhPpTgoF2hfZKdwrqOCs7CxK1iw2MPXjetKbQ/rHsc6YtadJ9GqtCjMtj+f5MwlsyB0c49J2HYs5LDo2V9xZOMJl/dPYxJCSEvm7zaWu1VTa/ajsnIJ9PrL4PN94Sa/FTLZOPB4NCYhVw/NyrVQLJzQZ8oMbP3hazsb8NBn6kzuy4N//4V9f/1utUlzhhuYNt16oSQvp8n2p1UpwQtrDVOG9YX0lLBorI7rD2lyFt5rG1b7uFKDmaeSUKZv+Gd1cyE0sCavBIszC7gwhFzAxwR/BR4O80e4rGoxl4TPR1+FGw6W2u/i4C7gI0IqwuQTSUhXa+t9nAY7FYwIIaSlCZAEczfS8hnVehhKNTBpjeCJ+RAoJOBLm+f0888//6z5+o033oBU6niy/tlnn0XXrl3h6+uL2NjYZjkmQm50AqEAtz0/Bd88/YvdSql3/G8q9/UvryzFn+/+XfMczwSI2AKg7FKuraAu1Bua7hFVz7F9awCT0AQju/7NXW/mcQvsa7o3XHmYnQELs0ohTsoDv0IDYX651WKmxOO1HQkai3U48AnyQlGO7apomQnZ+OXlpZj98b01j6XGp+N/o9+GqqK2dWd9Sd0sK7Daqpq0Y9k+rFu0hbvIL/eQYdCMfpj29HgEtKrqcufmKUe7XlG4eMR+2INNmHu1CcDsN/9CfrHlBIVJwIOB/WplF61iQmAM8IJ4b3xNyIFVJ2KTG9QnkhByI+gRFMLdSOOxv/ns1th9XA1yuZwLLbCxAgs57NixA5cuXUJZWRnXGa5Vq1ZcxVS2cKhnz55X56AIIQ6JJSLc+uwk/PTiHw7HLMyXv+7AsvXHrbozqFiHBmfYwhw2n2JnoaHocgH4attFlm4ZFIc1gVrASd6ZhRyEhXqo2yjA0/EgKGDvZT1hXFmogb+/HPl66wVU4mIgK6UQP6w9iDlTB9Q8nnQyBS+PexcalRb6boFOP67e23r8IXN3fJ2FBcO2/bGH6/SQei6dW+Q15LYBmPrUOPiFVHWr9g704hZXpZxJs7sf70AF3BVyPDNwAYpza0MjgtwS7maSimES8MFTacCrE/RgYXNCCLlRsErX7EZujjHJ8eO15yhTpkyBt7e3w+1ZZwdzyclNU9yFENKwokjTn56A395YbvN5kViIGfMncV9/+f46rPvbckzCk0mhl7HiCXwY+AarcEM1Yyt/GJQaCBOz6n2MAyb3xu6VB9BUWLiBzSWUF9kOObBO0sve/wd3vTy95rELhxPxysT3uWJQDeVsTMJCFVt/2431329F+oVMeHi7Ycjtt2Dqk2PhE1T1ezUg3A9hbYORkWA/gO7fypfrqMTGJI7C9DaPgcYkhJAbiFTSn7uRm2NMcr2igEML1nnEGKgqynFw5VLodbUL4kVSGSI6d8Wx9f/g8L8rkXH+bKPeh8cXQCKXQV1hP4Fbl0AoRLexE7Ht52+dbysSI3bAIJzd6byd2IoJ90F+4TQ6XTwO98pylHkocKZdd1yI7gQTX4Cl2YV4qU0wPK5UJ/omPa9R4QZmUoCXw+efv5iO37IKa+6X6g34IaMAK3KK8VfXKHTxqKr+NCc8AAfPpNjdz90hvvg1q7BB4YZImQhudSoyEUIIIdcCW2SruVSKygNZUMUXAuZ/hvmALM4Pbn2DIWET9q5W7nOCXbDasGED97VYLMatt97q9DUDBw7kboSQxpn65DiuI8PS9/6GzqyzgdTfE10fGYlfdsXDsPUUzi7bz10Q5tk5N2fdG8yx3w48PcC/skuxmA+RRIgKlcZiO1F6EeR7Em3uV8zCw0+MxQf3fOn0c0jkYm7xzeZfdjjd1tm1g3XfbcGsN2+r6Vyx7IN/XA436BUSKLuFQBPlA5OID1FuJWSnsjF4Rn+Hv3c/fvAbbFm8s+YxVi1q1Wfr8N/vu/DRttcQ2akqPDLj2Ul4+/bP7O5r0pzRWLb1lFW4oQaPB4MY4KtMMCnk0LcNgSg+nXuqdadwbgEZIYQQ0tK1a9eOq4hKCGkZbn9hCnf+u/KTNdDrajuMsQX2PUZ0xm+v/wWNRITDMnG99sud9/Or/mXhBa9zmdDe0haVKsvr98L0QkiOptgNKk+cMxp/n6vqIOmIVCHFqNnD8QvP8QIanokH90smsHiDxgcwCgGBFpAWAOKSqi7RK/47gQcn9IFYVDUFuPS91Vy4gREonS8oEiitu9Y5GpOwcMN7d3+Jncv21TzGfibLP/oXW3/biY93vIHw9qHc47fOm4iP7l9od19sDMfGUObhBovPr9barVob1bW1g09FCCGEXL/Onj2L/Px8nD9/nivK5Ex5ueX5go9PVZiQEHJt3P3qrVCWq7D6yw0wmHU9ZiGAbsM6cYFsLV+Ic0X2u0Mj2B8Gd8fzptIukRDmFENdrnL52OSeMox7ZAS2L93rfFsPGW6Z1gdbfq2da7DHWUHd1V+u58Zq1XMGf7y9qlHhBoYVdXI0V/zWzE+xb/VhizHJsvdXc/Mkn+x8AyFRQdzc9PRnJuKLOd/b3de0p8Zzx1vfcAPTpmvVXAwhhBBCmobz0vTkusa6ODzy7WIMf2AO+k6/Hd3HT2Znkkg6fACpp08gI/4MW/HSqPcwGQ3oOnoihtz7sEvbCyUSjH/6Bfi1ikBITHun2499fB5GPfoUPPz8HW6nlrkhBUKca98dyyY/hB/vfAbLJz6A8227cuEGbhujCatziy06KzTWKQeDg035pRbhBnMlegMej0/lFhwxo/0UeC0qxOZ/dCxE8XKbECzPaVg7thSVDrNOX0K52WCJEEIIudq0mRXI/fw4Cn44A9XZOuEGxgiozhRwz7Pt2PZNITExkWvDzHTu3Blubm5Nsl9CiGvueW0G/kxfhMe/fAB3vTIdk967E8phnbAjPgNHT6fixIUs6Lq2hnpEFxg9rKujmng86AM9YbyyeMgWrdaAB27piCcm9YWIdWvILwOvqIILAWjaBsIoFlgtJHp15XyExQSjQ792Tj/DK8vm4ZnvZ3PVQh0RiAQottO9oZq6UlNzEZ2NBXavcK0ykjbIHUV3doGqazCMHhKYpCJoI7xQOikWJzzsTxbs/Gu/RbjBHLsA//69X9XcHzyzP+5763bw+dYTJSPuGYS7X7sVm/add3ygfB5MVwY1hnD/mp/Z5TNpeHPmJ1BVNrxTBSGEEEIIIQ3x4Lt34s+0RXjs8/u5McmUuWO5Bf27Vx3E8f/O4Hh6gd3XcmfGdQYibGxikLAbD0YJD3qFGMVt/TF7RFc8MqEXRAk5EMdnQr7xNGR7Ey06CZiunGuzhURvrH4egRH+6OZXtbjfkfc/fBzzProfXjLHVUklQgHKitSQFfDglcCDTzwPiiQeJCUs2lD13mVqLQ4duMB9rdfpsf+f2kU+0qRi8J2EHORn8q0eY10g7Nn62y6LcIM5FlQwDzSMmjWE+xnZKnox9sHhmDF/ot19OZNwNBnv3vUFNHWC8YQQQkhL4O/vj0GDBiEuLs7ptqtXr7a4371792Y8MkKIM+zclnV1XnL5G8z59L6qeZLHRkNZpuQ6J7AxydkLuY53IuDBZGP+xFylWofZP87BHS9Wdc52hnUweGvN/7iOah36t3W6/TsbXsLchQ9xQQdHJHIJKkqsO8qZK80vx6ld57ivVRUqHN5g2bmiIS6dumz3uQ3f/2cRbjBXkFmETx6qLc47YfZIzLzSVaMu9nMbP3skdq882KBjPLvnAj56YCG0jQxzEEIIIaQKBRxuADIPT3QdPR5dR43Hmf82Q6dp+ou3h/9ZgdJ8JyfcV0R26QG/sHCUFxVApvACj7VvtsPD1x/RvfpyJ/xdRoy1uY2Rx8fFyA7YP+Fel97/r+zaXs8VhsYv+P8juxCbC2xXC/o1y/7ECJOk1GBfSe3izXtDfTHS19Nqu0q9ESU6PQp1DhLbTmwuLMPMk8lQG6gNMyGEkKtPnViM/O9OQZ/r+IJWNbYd2569rrHOnDlT83VMTEzN11u2bME999yD6OhoyGQy+Pn5cRMEX3zxBdRqWoBLSFPy8ldgyhNjMe6p8fjnZCo0Zt0casjE0PZta7F2SO8lRenoaKj8ALUvDypfQOvOQg/WL/9twTLkJ2RD28YPBhaI8HOHPsQL6t6tUT6lKwxeVZ3TmH4TeyI8NhR5afnwDfEGX2B/6BsSHYTe47pBIBBg3MMjbG7DQhja1r4Q39oTlUPaQt0xBEaJ/YaIm37ZXvX5dHpo1c4vZLPvSenYtjDZ2ecfe0/hwMVUm8+tXbTZ4b4vnUrFuf0Xa+6zxV49RnVhzRhqsPEYq2ZUUliBCqXz8WTNz0ciAsy6NuxZeRAvjX2H+9yEEEJI1R+NJroRQogT3oFeXIc5toB+/XdboTcbk5hkVd3V7GKX1K8UKmLhBiNr9lAnFGzwc8dXO46j8HgKpMcuQ3IqHYIri3qMIj6Kh4ci7aXuSPmgL1Le7IX2v9+OoN6tkV5WghCJF/h2+w4AMQo/DAhsDbFAgOldbS9qNMEEo9AEhbcMFaHgxk5GBw3UNvxQ1TGbBT3MO1vwDCYottseWzDCIhXcj+ZYPb7s/X9wZo/tMPS6RVvsHwiAC4cSkXSiNiAx/ZkJ6Dqso8U2PD4PFSUVKM4phdqFMYk9O5buxYJJH1hUziWEEHKTu8HGJHv37sXzzz9fc3/AgAHo27fvNT0mQkgVFiSY9vR4DL3jFqz//j8YzDtPi0VN8m1a9OxvyM+wXYTVVseDkKhAZCXnIKh1gM2QcbWY7pHoOKA915l65L2DHe5X4efh0vtv+GFbTVEoo1kovKF+fW05Lh5NtvncWidjktO74pF6PqPm/sznJ6PzoA5WY5Ly4goUZhc3qtsEK0j1+rSPuE53hBBCyI04Jrma7K/IIC3Ome1boNM0z2I9o0GPExvXuLRt4uH9SD52iKtW6qgtmcxTgSnPL4BAWPV/wx4TpiLt7CnuVq1S5oYV4+9Dvl+wy8d6vFyJYp0e3iIh2rtJca7C8feE58J//4szC7gODHWdd7Jv5kKlGrd4V53gP3T2MnYUWbcx21ZUhrtOX0KIRISsRpwonyhXYlVuMe4Kcd66khBCCGkqrBND4e/xMGnrd6GGbc9e5z+7C8Sh7g1+/0uXLtV8HRQUxLVyfvjhh/Hvv/9abMdCDXv27OFun376KVatWoWePXs2+H0JIdb+3XLKdrjhCpO7FMZgbwiyi6H3lqFwZkeYZGYX9vk86GWAQWyCtBjgVZ+o6wzQF1Vi+YXLgNA6rGCSi1Exoh08V53gXrNj2T7s+fsQDDq9w4Z2PsHeXFVVPr9qn6zyEbvQbb5wx8j2PTIWRi85uOVLEb7QRfhC3TkMbrsTIMqw7uhwZvd5riqRzF2GsLbByEjIdvh/F22kN4wKx5Val+8/jX7trNsbs84JzqSeS0dc/3bcGO21KR/i1M6qyknV2OMH1hxFaX4ZvLu0QnGZ47Aar/rXPVs0VCdUfnbvBexafgDD7xro9LgIIYQQQghpamu/3QJdnTEJT611PkfATmt5Jq5jg0Ua2IxaZ8A/xxJQG62uCjdkz+4ATUTtIh+TTIgVCefxT9ZF6PgGGNkMhJAPvthwpWVErWC5B74dWNvR4PFBfXE0LROnMmtDBiaeiRsnsZJlmapyQAHoFIAqAHBPB8R1GmTyS1U4ue4sdD/puOqrrItEbmptVwa3k3mA3oiyweEweFeNQ9iISHK+EF6bL4Gv1tsNV3caGGv1eIoLY5KUs2mI7hbJLfJ5ZcJ7iD+QYPG8yWjCnlWHuC507l5uqCipREOd2HYG+/89goHTabEnIYSQlo1dszMYDCgsLMThw4exZMkSrFy5smbRbFhYGH7//fdrfZiEkDrWLNxkHbjV6Zxec+eptDDJWNraDo0O6qxCbFuy26XvOQtZbPl1l9PF+kGt/bFg+bM19+9/+3bEH7iIxOO2u7jlpTkuBFvt0Lpj3O8xTz8Pbi6mKNtJ0TsXFm+t+3Yz2v30mMVj7D0un013ejxsm4jYMO5n8+KYt60+HxuT7Fi6jxuTyNylULmwHsyeIxtP4Mimk+gzjjrsEEIIIY1BHRxuIJkXLBepXEtGg8FmuEEslyM0Ng6D7n4A93+2CAGt29Q8JxSJMO3F1zHioccQEBkFsUyO9ePvrVe4AVfOd8uuDBbuC/VrkpTPxUrrE9dkpRo6k/OFnG5XqsUeKa20GW6odrpChZ6ebmis5Tm1HSwIIYSQ5sYuGhUtv1jvcEPN67XGqtc7WoHsRFlZWc3X7GL/6NGja8INrHvDHXfcwXVy6NSpU812aWlpGDx4MA4dOtTg9yWEWDtlVgHHHr2/B7RRASieVifcYMYk4EFndmosTs6DNsoPxjpVVC1e4y6FLtyn9n20tsMN7t5u6Do0Do9+Mgs/nfsMreNa1TwnkUnw/uZX8PiXD6BNlwjIPWXQjonjwg1WRAJUDm4Hg4d1NVh2gVxZXjWGmDhnNJwKse7yVlditvWkAas4ZHTh96fsSkvpE9vPWoUbzLFFRj1CHYelWcXX6uCJgFWK4vNhDPWDISYUhohAmMQibPltp9NjIoQQQgghpDmc3XseJqkYpjahMPXsAFPvOAj5zqul1oSrHYw5GG0rb268Uq1kSIhFuKGm24KbERq+vircwOj5MKqEMOn4UAhl6BcYgVd7jMTGcQ+jjWftObibWIzf7pmBl0YNRtsAP7hJROC7C2zP5gmAinDAUOfjSc9kceMhVimVBScmPDrK6qVuZwsQtPA4An4+Db8lZxH27Un4rroIQYX9xU+2Fg2x4ALvSmDcERa0qF7oUzfcYI4Fztl4rbFoTEIIIaS5ZGdnIyMjw+GtqWzevBkikYgr7DRp0iQsX768JtzA7rNuDpGRkU32foSQpsGKAFkpsC6UVJfgUo7j5y/ngmc0OSzqVJe9cAMLHXQb3glzv34I3536BMFtAmuec1O44ZOdb+CRj+5FRIcwbp5EKK5//WTWmY29P+uePd5O92xzIhe6XLDxR12J6QUw9IiAumsr6MK8bXYIZ+QeVeHuff8cthveYI5vPY2uw2rnlBtqK82TEEIIIY1GHRxuIFq1Ctc7rVKJftPuQETnrjafFwhF6DJyHHc7Va7EO0ftX+i2x0PAR8CVE987g32xs6gc6/NL7W7vSr8EgVnFJq3RiHkX0rlOCc7GDVI+D2OudH5Yk+ckjczmOEwmdHSX4WxFw3+WrGMEWyTqqL0cIYQQ0lQ0l0qhz3Vc6dsZ9nq2H2mUV4NeX15eGyD89ttvodPp4OXlhZ9++gnTpk2z2Hbbtm246667kJubC6VSiRkzZuDcuXPw8HCtnSohxDH1lUX99rDzZ220PwxuYhicNG7RSwBRBSBKL4LkRCoqRllXCq3LEOABpDoO/FYUV2LWm7dz7ZZtEUvFmPLEWO52KjETD737l/2dCfnQtguC7GiqxcOevh41bZonPz4GJ7afwcG1x+wfd7nG8Qdj66zM2llr1Vp8eN/XXKcEZ1ilod7junFf716+3+n20oQcRIb6ICXTxvfRZAJfe2UUpNGBX6qEfnAXQCio2cQYE4rEyut/bEoIIYQQQm5MKoEQ6Nbe4hyVLxFDoDTAIK99zAK7ns51SnDhDQR8mIQC8Ax6bnxT3qd2IZDFzJuttzLxYNIKUKzV439Dh6OTf5DNt5CKhJjVpzt325uainv/XmX/ePiAxhuQ57GBhRHSUxmQJObBJ8gLboqqoPb0Z8bj5I6zOLaltns2wz6uOKuq/YNLZSvM5hzYYqX37/4C+/454vRlrCNDz9FduK93rXBhDOMhQ0h0ILKSctFQicdqu30SQgghTal3795Ot2lMQSdzqamW1xyrubu7c8EGvd5+J11CyLXDzpWtVCphKigGz8/b5mtMuQUQpOfAJBbCEBNi9Tw/vQCCxKwmO8aygnI89vn9FgWgzLHu1DOencjdDq47hgWT3q/3e7BOcmy+hbn9f1Nwene8wwJMzjpN1FWp0mLBN+ux71QK0L62cC6vQg35rosQFNfOX3v5e6LrsI4uj0m8AjwREO7ncrcKWy4eSW7wawkhhBBShTo43CDYILk4u+lOZpvThf2O26UVavX4MSMfL1xw3kLMlumB3pBd6ZrAggk/xLXGl7Hh6Okph7CBa/7T1VqMOZqANJUGLydmYqUL4QbmkTB/eIuqckQVBudTBGqjESu7RsFXZGeixQWlegO+SmOzGYQQQkjzqzyYfc33w4IK1Vi4QSKRYOvWrVbhBmb48OFcyEEmq6ocmJ6ejoULFzb4vQkhsOigkrP/guNtxDyuxbKJna47C+TyeZDuuQD57otcVSJ2c8rFucMdS/c6fL44rxR/f74en7270um+9EFVgWZzo+8bAuGVcYBAKMDrq57Dsz/OQfs+MeBfGauYkyQVcouRHClYdwZPDXgZ+RmF+PzR710KNzAzn5sMN8+qhU1KF4LUhkoNFr48AzKZAWWtgOIYoCQKUPpVdW/gs1teCURn0mCMCbNYOMbh81Hk7oYVq50vdCKEEHLj412pit6o27X+EISQFkOvNyBX7m59jsoW8pfrISrXA1eqHhsFgF4M6EWA8covGh57ysmCRJ5KC562ajGhScKHQVG1YMecUeR8LmDtJcdjp/yKSvx84Bje3bjN6b4MfC1ESfmQJOYDIhF0IV4Y8+Aw8K90VmCVUN9e+z88vegRtO0ZVfN4NZ2fDOrWntD5VFU0tSfldCrmDXkVRTnF+Oj+hS6FG5g7XpzKdctjlOUujEn0Bny6602uUmxDFWYVY+2iLQ1+PSGEkBtHSx6TsIAD6+AQFhYGPz+/mscrKirwxRdfIDY2Fp9//vk1OjpCiC0alQYFtooHMZczYMrMgUlbu5DfpNHClJ4NsBvLSl/MgGjHaQiSs8HPKgQ/JReiPecgOnWpyX8X7Vy2z+HzBZmFWPHxGnw3/9cG7X/cI7VdG1jQ4d2NL+PJhQ8hulskeE465zkKDTw/8k2U5JfitUUbqsINNrp9K4d3gFFSW/P5rgW31nSIULkwJjEZjPhs95uQujkeIzmSk5KHLb9St2tCCCEte0xyrVHA4QaReuYkVGX2uxRcT7Qq+1Wev0vPQ/cD5/BKYiZONrCLwa7iclxW1Sai+TweZgb54OsOEdA3oljCyXIlpp1MwrJsxxVhGbmAj2ciAvFim9qUcAc35xfjO7hJ8WJCBgp1hoYfKIBF6XnQXJmoIYQQQpqLUa2H6lzDK1eYY/th+2sIFmgw98QTT6Bnz552t4+Li8Njjz1Wc/+3335r0PsSQiwdWn8c6pOXucr+trBqqCaB2cIhZ/RGiLNqxzjCDOctnIUZxTCJBDA5uTjuaFHNsvdX467wR/HtvMVIPmG/TXEtk83vRW5qfs19FnIY88AwLuRgtBFkECh1kJ+2336aX6aB7Ewu4g8kYP7Q1/DfEsehcUbuIcOsN27D3QturXmsTacIp6+L6NgKr23ajqxWQhhkPC6IYhLwoPHhobgNgNMJEB+4CFOQj8OQyl8rD0PvQsibEEIIIYSQprJ390WotLavrbMzV5HSAF6lBlo3HnQefBjkfBjc+NB5CaB1r5ou4zm5NCFOzINRKkTZLWHIva+z7UCECzOO5Vr7Xdy+2nUAQ7/4ER/8txsJpc7HQVyV19b+0EUHQhsbDOXwWGw1apFXVNvxkgWwxz8yEk99+zCMV+YONK08kPNQJ2TP7Ya8+zsi+6nuyL0vDtqgqoC0LWd2n8f8oa9jtwtVT1kHiYfev5sLXddrTNKhFT575DsoyxrXGW75h//UfFZCCCGkqRw+fJgrnOTo1lTmzp3LhRnYPvPz87nAwwsvvAChUFhT8OmZZ57Bd99912TvSQhpHFaYSKvS2t8gOx84cwGmc4kwnUsAzlwEci3nWvmVagjPp0N0PBmic6ngl1Y2y4+lssz+2q2fXvwDd0c+ju+f/x0ZCQ0rUrdn1UEU59aOZ8QSESbOGY3Hv7gfJlcKWtlxYtsZzJv6IfacsN+1zSQVQRcTyHWTm/PpfVzH7mqRLoxJwjuE4ZOHF0Fd6bhruTNsvqmpuvoQQgghNyMKONwg8i83b7td75BQyD2tK5M2hG9YuM3HV+cW47WkLGgacSLLpKi0uP1UMrRGIyr0BvyeVYA3k7LwdWrD2xlXy1DroHNy8uktFOBU/zi80CYYPLMFPzODvLnggz1syz+zC7E6z/GEhYfA+exIkc6AI800yCGEEEKqGUo1QFPNExsBQ5mDC34OsHbM5u6++26nr5kxY0bN1+fPn0dBQdMENQi5mSWfvAyezgDJvguArQv4SnXNgni+EeDrHJ9XSxMLwdPX/pJpK5FAIbcMNJnjVWig6h+F0jt7o/SuPqgc2g56Xze7C2Zs2fTLDvz00p/QXanIKjQLWNhja5u0C5l4adw7XFeLytJKrP12M354/nes+nSd3f24774M+dFMoE7YWZRVBu+VZ8HXVB1TVnKu04v/3kFeWJrxnUW4gRn9wDCIJFVVimxh45el+05gy4Ukm8+bpAIUj42AzMsNJl9Ph8dQUFiBiw2c+CCEEEIIIaQhkpMcdzZmZ9FafylMIutr7EYxjws58NUmmPQ6GISAsc7l/LZhflCUqJD3YBeUDQ6HwU8Ovs56XzyD82v4bb1rqzCb++PoKXy9+yB0Vxbm81yohSRSWs87JGUU4pnP/uEW05Qq1Vi69yQ+Xbsbf+4/DYNcBE2oO/Lu7QBtKw+L12kiFci9vyO0AfZDDukXnXcTDwj348Yktz1fG25gxj08HEIHHaxZd4lVn63lQuOOyNydV1LNuZyPS6dTnW5HCCGE1EdwcDDXUcHRrSnfSyyu7RYVHh6O999/H+vXr+c6O1SbP38+cnMbvxaCENI08yROsYGJSg2YFW51VUyPNpB5NLyrgLnWcbbnSVZ+uhbLPviH66zWGEnHU/DqlA+5r8sKy7H6yw34/rnfsO67rY3aL7dvF9ZDBQzpgGWZ32Ha0+MtHp8we6TNTtvVBAI+lr77N45vPe1w/650d2Bjp4wE5+MnQgghhNhW24+JtGgiSdOcwNYl9fBE15Fj0WP8VKz74n2knj7ZqP3xBQJ0Gj7K5nNfNkEAodpllRavJWVieU4xKq9y1VABjwcPGy2wFSIhvo4Nx+xzqTZDEuyRIrMFXPZ81yESd55xHmjRNjIoQgghhDhj0jbt31iTpmEXyhQKhVWHBmfqbpOZmWnR4pkQUn/VF3P5pUpIN5+EIdQHRl8PwGiEIKcERhEf+qGxNduLKgCNF+unaGNBkEoH94NV1c68AhSY+OgoTJ83AS/d+yUOiE0wudcJOmj0MLlJansp8HnQhftAF+oFt20XIMquDSGwBf5jHhhq9Z5s4c9fH6y2eExYUAFBbhkMgXYW8+sMEF+0PY5JO5+Jb55ejC2Ld0Bd6XyigrWW9NibCrcjmdC09oJJyIcorxKi/PoHl0ViIdfBoS7vAAWe++VxfHDvVxaTE+z7pon0graVJ8o7ezncty7QDc8feB2vPPWX0+PQNbIzHSGEkBsA18Kpkc2TG/t6QshNQyqzH+ZldB4CGKX2F9ezDmY6OWCU1i4kZMHsILEbZg7ugjtGdsf9fjwY8muLJAjUgJHNtJmtj+HpeDCJ7feOlwlFmBZjfe3CaDLhx/1HLB7jG3gwGkw13fDqYgEIqZ2aDYlp+fhg5Q6sOnYOap1Za4qHesAILUzi2p1yYyn+lV+5ciGKxkci6JdzaCixVASZjQU/fqG+eOb7R/HJQ9/a7G7HOi6UFVY43f+rK5/Fi2Pecbqd7kpQnBBCyE3sBhyTjBo1Cq+++ioWLFjA3WddHhYvXsx1dyCEXFtSN/tFmhrDL8wHk+aMwdSnxuHJfi8h5Uxao/Yn95Rh2J23WD2u1+mx4pO1aCoXDiXi67k/YeNP26BV2+7+3RCs67QzUk8ZJDLrn0dwm0A8ufAhfDHnB5vdFQwGI8qLnc/LvLpiHl4a967T7WhMQggh5EYck1wt1MHhBhHdqy8XHmhqRr0e7foPgl6rQdpZx+lUZ3g8PoY/+Bg8fKwXD6apNDjfyNZedf2SWXjVww1MD4X9ykbj/L2wqWdb3B7kg0CxkOv2UF+vJGU63YZN43SysaCJEEIIaUo8cdOeSvIkDTuXiY6Otqj0x27OuLlZVnVnEwCEkMa5ZVpv8PlVA2ueyQRhRiHEpy5DfCYNgvwyCHPLgCudERiBHpCUAHyt2QVkkwmS9DL4Lj8LYWnV+MCg03MX2suLKnBh3XF4rjoO+Y6LEMdnQ3I2C+IzmYDYTnZfwIeyf1RN8IFV5Zn3w6Pw8lfYqaRj3XHAbWcCBLYW2Gj1cNt5EQIH4YU1Cze5FG4wxzo1yC4WQH4ur0HhBqZDv7Z2nxt6+wB8eeAdjLhnEHyCvSGL9kf+Q91QNLMDKvqFweDpfALm89d+BypVDreRSISIahPQoOMnhBBCCCGkIQYNbu/wedahwR4WUtBLWbjB8tqEUcSDSm7C6P6xyC2vwGmzcAPDM/IgrAB4esvHBEW2w75CHh8fDx4LhY2iVRdy8pFVWm71OAtRwMbueFojPFKqxla2GMTAHwdPWYYb2LBLyIfeV2o5xypki4SuzBoKAHWMAjn3xXJB9YaIdTAmGTVrCL7Y9zY3zvMJ8oKHr2VnTld8+diPTrdhoe/WcU1XRZsQQgi5nsydOxdCYe010Z07d17T4yGEVBk0o1+zfCuMeiN3TT8zMbvR4QZWIOmF3+ZC5m69pijhaDKKsovRlP5duKlJww2MMN/5vG6n6GC7z41/ZCQ+2/MWBs/sB+9ABTx8bHcDd+TLx52PSTx83BHW1v5xEEIIIcQx6uBwg3D38UXnEWNwcvN6m88LxWLotdp671erUuLAqmXoNGwUTFdaIteXUCJBZNce6DFuCkLbd7C5ja2OBtcrKZ8HtYPuCCN97FR3vSLOXYbPY8OhMhjR40D9KyBdcqFNXV8vd/iLHVerIoQQQhpLoJBUTXw3RZ6Qz4PAs7ZCYn107tzZotJfdna20zbQxcWWF+d8fHwa9N6EkFrBkYHcQpVNv+yw+W2RSoTQXMiGtnNt22O2EEdQChj5Jph4JrhlaSAu5wFmQxdWKefPd//GwOl9YTSauCKo4tQi7sY9P7ajwx8D6/YgbBuEgd3aYOpT49Ghr+2FNnqz8IU5vloH93VnoA/z5rpCmPg8rrODODkfvGvUoYBVQzWfENArpFB3CIDBQwxBpQ497rGuvGSubY8ovPDrXFRqtBj51nfQG8w+OxvqOCkAkX0mA5IKAYyxEXa36RkXCg/35uk0SAghpAVhf1cae9mv5Vw2JIRcY63CfTFsRBy2/2f7urtEJobOxkUM9mtGL7F/HlxcqcLPO46gd/twm8/zjTzwK6rGNWwfAb+dheRyOVTtPVEyLBCqth6Qu8kwPDIaD3bqic7+QTb3o7czB8Mz8SBUVXVxYEEMeXwhZMml4Lv5wBhovwObzk4NJBO/zq9pge3Prm7rjcLJbeC/MsnqOZFUBJ2DRUp9J/SEI+17x+DFJU+hvLgCd7V+DPWVfcl5R/De47rZXLRFCCHkJnODjklYZ+vY2FicOXOGu5+eXtUNlxBybUV1aY0BU3tj3+rDNp+XyCXQKOtXFIkpyinBio/XIKZ7m0Z1bRgwpTemPT0e0V0jbW6jszNPcr0RZJdAotFDI7G97JENbwbGhDrcR1z/dtytJL8U90Q+Xu9jyEnJc7oN+36LzToEEkIIuUndoGOSq4E6ONxAhs56BN3GToTALKnP+Ldug+7jJjd4v0mHD7hUCdme/jPuwqR5L9kNNzDhUgm8nHQzYCeg7gI+hvp4YFaIL64VR+EGZn5CBuZfSOfaSTvyT14xipppQdRAH49m2S8hhBBiji8VQhZn3ZmpIWRxvtz+GiImJga+vrXnBtu2bXP6mpMnT9Z8LZFIEBUV1aD3JoRYemrRI5gweySEIstz+7Y9ozDpsTGQnMmA+HwW16nBnEBngnumBuJKI2vFAoQFWjy/a/l+iOxcqDZ6OO848MDXD+Dlpc/YDTcwrIoOu8BvbywiyiiG24FL8DuZgYFtgjF+1lBcK+bhhoq+rVB0bzcoe4VB0z4Ayh6heGHLXry3aofN9srm1p44j1LzcAP7rE6GKDyVHtLEEvDT88HLLLC9TXE5uodYd8kghBBCCCGkuc1/YTzGjOsCgcByTqNDXCgmjawtkGC14N/JFMj64xcgEzm+bsGCDoJKA6SXy7kxhPxCGUK+SUTU08fxETrhi2ET7IYbmCh/H0jrzO9U44EHvoEHWZ4WkavTMdonDBNG97C7L64rg8h2YoPHchRXhgr2wg3VKrv4Q2+jIIWjcAPz9sxP8d383+DM5l92QFXuuDtcQ3UZ6jgMTwghhFwvtFotEhISsGnTJlRWut7R1d3d3aL4EyHk+vDikie5bguso7S5ToNiMWrW4Abv978luyFtRFGhJxc+jOcXP2E33FAd0BBJHBdT5fF5VWGJqb0x4u5BaJY1oCIBTDz7AxX2jHDLWfCUNgr9Gk2QHEjG64Newy+vLHX6fht+2AZ1A0InrugyxP46OUIIIYQ4Rx0cbiB8gQDD7puNvlNvQ/Kxw9BpNAhsE43QdrFQV1bgxKZ10Knrf6HYaNDDKygYHn7+KC/Ir/fr5Z6OF7aU6Q1IV2mgcTLofiI8AC9HhXBfl+sNWJNXgmL9tamY6syS7EKESUV4urX9yYqtBWXN9v5+TiZaCCGEkKbi1jcYqjMFTbKfhhIIBJg5cya+/fZb7v4PP/yAWbNmOXzNH3/8UfP1sGHDIBZT9QxCmoJQJMRT3z6Cu1+dgUPrj0Or1qJdr2jE9onhquCsWbgJvAu5EMu9oXMXcN0Q+DojRJUG8MzX4nt7VgUdrowR2IL+Nl0i4BPkxVUqMsdT62GSOf5v2MtD7vD5cpUGWRmF0Oodj0nufWMm7n7lVu7rsqJy7Fy+D8qy5lmM4wpVhwAoe9d2xDC3bM9JhPh4YtZQ+4uedpy/ZPUYXw8Y2HDCztyBYlc6+Fe+T8Jzl2HMLoIxzA+QSQCtHvzsAvByS+D15OiGfixCCCE3EqpMRAi5ysRiIRdyuO+BQTh0MAk6nQGxHULRrn0w8oorsGLvGejqzis46WDGKDU6dA0PgZdcihKl2u52sguFNh9X+Dvu/FyqVSG1qBhGtcHhzN0z00fgwY//x31dWFqJrc+lQaWxETZw8JnY2IunA0xiFz67gAdVtBc8jjuvTmqOha1XfroWwW0CMekx+2ODg+uOoTHKu/ugdIA/jHIhxNlKKPYXQJZUzj2n8KVCUIQQQq7/McmuXbu4OYrqgMK6deswfvx4l16bmZlZ83VQkP11CYSQq0sik3AdlO9/63Yc3ngSBr0BcQPaccGC7JRcbkE9e6y+yosq0GNkZy5c0JB5CWdjEjbnkXY+Awa94y4OT3z5YM05fl56AXavPGBRlKmhTAIedO1DoIsKgEkuAQxGCDOKIDqXCYGNzysoVcF93UloowKgb8W6b/MhKKyAOCGHe4796mbdwdmYZMwDw+y+74G1R9FcPKg4LSGEkBYwJrmeUQeHG5Bc4YVOw0ah+9iJXLiBkbq5Y8JTz1t1d3CFxM0Nbl7e6HfrHfV+rUgqQ0zvfjafS6xU46GzKeiw9wyGH02AyklnhONlSnTadxYxu0/j/jMpmBPuD4WNrg+sE0RrJwucXCVxkAh25seMAmgdhDa0TqqpNpSYB4z2o2qphBBCrg5JGwWEgY4XDjvDXs/20xgPP/xwTcepffv24bvvvrO7LXv+119/rbk/Z86cRr03IcSab7A3xj00HFOeGMuFGxgvfwVe+P1JCKRi8A0mSEr1kBbrIK6oE25g2Hk4v/Zc3MvfEwo/T9z58nSr9xJfchzC9pBLMKir7bbNSZkFePbbtRg271vc8fFfyJ3ZFRUDo2CU2a5QdHpnPGYEPYQp3rPwzh2f47bnp0DuYd31QeHngcAIJx1uXBxqiKT2qyUpu1cFwO35Y9dxGByMSXQGg83DErBiRXWe4lfq4L3xEjwPZls+XlQG4elLEB46D+GJRPBziiGTi9F3QneHx0YIIYQQQkhz8vP3wPiJ3TBlWk8u3MAEeLvj9ftGgW821qjpaOBEgMIdCpkUjwzqbXcbnkYPj4NZVo97BSjQa0xXm6+JL8nB7L1/oc+aTzF9z89Qx1bA5K+BSWA9f8DXAGd+OYAZgQ9yY5JP7vwCD/brAJmNCqs+HjIEeLpVzZ/yrtzMnheqq4IOrhDJGz7fsuqztQ47y+m0jhdPGdxFULfxhiZCwS14qqYNlOHSO92Q80g0VHEKaCLdUN7fHxnzY5H1SDTk3nL0tPM9J4QQQq4nsbGxFt0XVq9e7dLrzp8/j7S0tJr7ffr0aZbjI4Q0XEC4P9fxevLjY2q6JgRHBuKZ72dzXRDqiy3UZ/MRM+dPrvdr/UJ90G247Q5nF48m4+UJ72JGwIN4ZuCrMBocDxT2/XMI0/0f4MYkXz3xI+58aTokNtZo+YZ4Ow1VVGPn+qohsdB2alUVbmAEfOgj/KAaGQd+iLfN1/G0BkjOZ8Ntyzm4bzoD2ZEULtxgjgWvHdE7GZM0FJsn6ja8U7PsmxBCCLlZUMDhJtKmey/c9saH4F1Z/OequEHDIRCK0GnoKAy7fzYXeKjbOcKe/rfeAbHMetHjhUoVJh5PxLr8UuhdvIi+r6QC+Vo9yg1G7C2pwLuXcjA5wAuvtAnGYG8P7sa+3tAjhgs5ONJPYfkZ7DE0IvpUoNPjbIX91HR3T9cXg9ZnaOMhFOCXzAKcd/DehBBCSFPh8XjwmdkOPHHDTivZ67jXNyJUyHTr1g1z586tuf/YY4/h3XffhUpl+fdw/fr1mDBhAgxXFvVOmjQJEydObNR7E0JcN3BaH3y07gUuv+CQVgeYVTAaff9QrlsLmwh45KN7uQpF1cQXcyG21Yb4ikenDYDUxoKfC2l5eODDv7DjZBIM1WFrkQCa9oEondTJZsjhxPYzKMkrRWWpEse3nubaG49+YCgeeOdOdB/ZGT1GdcHsj+/FZ3vfhrt3bYt4WzoPdq01sclOQMHgLobBx/GYIrekApdyiuw+36WV7e45bKGTUAsI1IDH/iz4L4lH6KdH4XEox6VjZpMsq7/ciLQLtVXkCCGE3Jy4KuFNcCOEkKYypnd7fDV3KnhsuMHGAUYT+HoTeDrHv2xu7VO1GOj+AT3wzIgBkIstxwuSci38lsZDVGh9Xf6Bd+6AqM72zMnCTNyx/Vdsz06EoToEIABMvnqYwlTgGUzg6QG+FhCVA0IlcPBiKkryy7gxyZGNJ/D7g4twZ3AAZk/rj95x4ejXqTXm3TUE3718G9w9pTCKYXnj14Y6Bkr9ISyy342CYzRBklzVRY+FJCp7eCLv8XDkzm+N4hmB0PvaD2QzWcm5yEyyP46I7R1t83GDTIiiSW2RO7sHim6NReFtccid0xPlvUOh9xQh/dkOMNh578ruPlDe0xZ/f7YeGYmWAW1CCCE3n+t9TBIQEIB+/WoLRi5duhRZWdaBybpeffVVi/vTp1sXhiGEXJ9G3zcUb/z9fL1fN+7hEdy/d70yHfe+NhPS6iDAFQI766TYHOxD79/NzbHUdWbPeTw7+FUc3nACRidFaasd/+8MygrLuTHJwbXHsPjVZZg+bwLueXUGuo/oxIW7n/jqQXyw9VV4OJkn6Tq0apyliw6C0V4YQiSEukdrNFRqfAbyM2x32mOqi3Q1Nam7FCs/WYvsS7nNsn9CCCEtx/U+Jrme8UyOSqeQG9Kmbz7DuV3bXNrWNywct73xAWTuta18dRo1ko8dhqqsFF5BIQhsHYUdv/2AhIP7YDRUJVs9fP3Rd9pt6DxijM393n4yGTuLq9oEN9ZQHw+cKldCazShi4ccaWoN0h20P+vhKYdcwMee4go0tw3dY9DdTpgiT6NDn4PxTjtXNMZ4fwW+jo2ATEBZJkIIIc1LnViMwt/jYdK6UPbQLNzge08HSGNsV92oLxZmmDp1KjZv3lzzmJ+fH/r37w8vLy+cPHkSp0+frnkuIiICBw8epNbNhFwD77z6N3Zui7e/QXoOkFF10Teqa2t8svMNuJkFhFUVKhxYe4xryRwaE4yIXm3w6dJd2HE8CQZD1e+hED9PPDS5HybeEmfzLR76eDmOJ9pfgC89mw23AykufR5WGfTi4SQYdAa07xONjIRs5KUV2N2+48D23L9n91xAQ7GAQ+EDPZ1ut/y5u9Eu1N/mc1klZRj38WKbnRwYfrkWgYuOgdeIMcvQOwZg/s+PQ2wjZEIIIeTGlJGRgVatWnFfhy9YAKGXV6P2py8pQdpbb3Ffp6enIywsrEmOkxByc5v/+b/YfSK55r5RAGhYc0kblVQ7tgrET3NmQG52Tlup0WL7hWSUqTVo4+eDaKkbFj75Mw6sOQpj9ZgkKhCz3rgNw+4caPMYpv/3M04X21/AKMwUQZRmWQlVfjQTHntTLR5Tt5ah7RejcUydx3Vw6+YXisvxJSjIrg1b1JzR88CFJvq3bgXR32dxOisHeXe1tfm5GdmFIgT+dgEGNwFyX4yEJrrOfIfeBL8f0uGxq9ju5/jlwhcIa2u7+xwLIDwU9wwMZgF3o5CPgrs7QR9gp1BVeSkqO7k5LOHGVxkQ+cIJCHQmjLh3EOZ9/yiEovp3OCeEENIytbQxyfLly3HbbbfV3B8xYgRXrEkstt1F6e2338aCBQtq7k+ePBn//PNPkx4TIaT5/W/M2zi25ZRL28YNaIcPtiyARFYbaqgsrcT+NUehLFOhdVwrBLcJwFdzf8Lh9cdrwgps/uT+t+/A4Bm1QSpzs7vOx6XTluOLhmLBhvMHE7muNB36tUXyqVQU51SFpW3pM747Fzy4dCoVleO6wGRW2MoW2ZYzEBRVNujY/rj8DddRw5bL59K570P1OK6psYAJ63g+95uHbIZMCCGE3Jha2pjkekUBh5uQsqwUy994EYUZtS0Lq7HuDqxCqMxTgU5DR6LXpFshdXecqK1WWVKMgvRUiCQSBEW3BZ9v+8QsU61FzwPxjeiN0DjsEnbzNBiz5CkU4HT/OEgdhAu2FJTikXOXoW7GkMP0QG8s7BDRbPsnhBBCqmkzK1C0/CL0uUqn3xRhoJzr3CAOde08w1VarRbz58/HN998U9OlwZZbbrkFf//9N/z9bV/MIoQ0r+KiCsx77DdkpFt3F+BXKGE8mwSfQAXGPjgcM56bZBFucKSAdSzIKoJMIkRcZDD4dhbppOWVYMqCXxzui6fRw/v3w81SDUEoFkCvtf87yhXssIru7QaDl/2L/t5yKba+9QhEDi6abz6TgBf+2mQVcuCpdPBdcR7i7MYHw8c8MAzP/jin0fshhBDSMtCFe0JIS5BXVI7Z7y5HZn5pzWOsu4FeDphkfBhNJgR4umF63064b0hPi3CDIwWZhUi7kAW5hxTtekXb7ViZUJqH8Vu+d7wzHSA9KgfPrMez1+p4SFJrFwlV9PRCzuOtAaH1PIQwRwhRoZDrvMDtwuxQJOCDn2+AQAtoZHqoQoVWIQdxZgUCf4mHQKnnOjYoe7IEiA1GE0IWJEKSXBWo0PnLoQ315DpQhGh5WHb2c4cLebb9sQcf3b+wJuRQ2SUQpaOj7G5fGawHHK994oR+ch7yxKpCW5MeG425Xz/k/EWEEEJuCC1xTDJ27Fhs2rSp5n6vXr3w/vvvY/DgwdzfUVa39MiRI3jnnXewZs2amu1CQkJw+PBhhIaGNvkxEUKaV25qPuYNftVmsSQ2t8FCCv6tfDH+4ZG49dkJFuEGR/LSC5BxMQtuCjna9oyyOya5eDQZT/T+H64V83mSipl97Iauq0n2J0KUZr8Tgz2Brf3xe/JCu98HZtPP2/HZ7O+aLeTAzHh2ItehnBBCyM2hJY5JrkcUcLhJaZRKnNq6Aed2/ofK0mJ4+vqj47BR3I0t4BFKJA5P7hrjaGklJhxPxM1ggr8Cn7cPh7udVnBMmkqDX7MKsb+4AikqDUrMKhU1BTatcbBvLMJdHOwQQgghjcEusmsulaLyYDZU5woA8+tAfB5kcb5w6xsMSRtFs51rMOfOncPixYuxZcsW7uS+vLycCzP07t0bd911F9eumc+nDkeEXEvlZSqsWX0M/208jZISJQKDFBg3qRtGjesMk8EImZu02d77yMV0zP50pdPtvH87DL7masSjG0bZOQgVQ9rYfd79YBrGtYnAvB8edfj9TCsswV+HTuNYSiYyLmRCfzwD8lN5ECjtd8arD9Ya+4/Ub+Eb3DQdewghhLSgC/evNNGF+7dvvgv3hJDmV1KhwoqtJ7HpwHmUlKsQGuCFKUM6YcKADtCbTC6HGhpiZ3YSHt67zOl20kNy8IxV10+E+ZXw+eNUTU7BIOPj8pedYJLamX8wAeJkMfh6O9c/jCbI8gGBHjCIAD1PBZNWA77GALczhZDHF4JnBHRBYmR82t7hgiO3vcXwXZyDkvEx0IbVBiHYKyb2iMWr00dA6qCDQkZCFtZ+uwXxBy7ieDdvlChsf++NQhNUwQbAhR9N2MfxkCVVBbZFEhGWpi+Cws/T+QsJIYS0eC1xTFJWVoahQ4fi+PHjFo+7ubnB19cXRUVFqKiwLETCwg0bNmxAly5dmvx4CCFXR3FeKf79eiO2/7mX61gd1jYY4x4egRH3DIJeZ2jWeZI9fx/Cm7d+jOtB5eTuMMlsd62pJt0RD2FuWb33zcIio+4birkLH3LYaTr1fAbWfrMZFw4nIu18JlQVajQlqZsEyzK+g5vCTqc6QgghN5SWOCa5HlE/1puURC5H78m3crerzV988/zfbl1+KUr1KVjRNdruNix48ER4AEb6euKlhIwmDziwdaX/FZbhgTCqUE0IIaT5sdCCNMqLuxnVehjKtDBpDOBJBBB4isGXXp3zgLi4OHz00UfcjRByffLwlOGuWbdwt6vNz5ULyDoDeI3sstDc5KdzYPCWQdUl2Oo56fk8yA5nYOfhDKjKVXh77Yt29xPu64VHendFqrsfPl94COkXMpv0OFkl1iMbT3CdHAghhBBCCLleeLnL8PDUftytLsdLaxrPX+pCR0uWtb5SOEJQpITXmgvmTRhQPsDHfriB4QEGHwP4eXYCDnwedB4mCIoBgQ4QQAa3/y5DlFHbIYJRdXB3Wk1V3dEdhTPiYPCRWXWeW3PsPNQ6PT69Z4Ld14e1DcEdL03lFhK9sHc/SsqqOi/UxY4XrGCGif3r4KOrDJCkVta+TqPDsS2nMOzOgQ4/ByGEEHKteHp6Ys+ePXj66afx008/wWisOgmorKzkbnVNnDgR33//PYKCgq7B0RJCmop3gAL3vXk7d6tLJG6+wDXjG9y4hZZNSXi5ALrYELvP85QaCPLqH25gWCcM1qFBp9Xhf789aXe7iNgw3PXKdKRdyMT7d3/Z5AEHdaUGJ7afxS1T+zTpfgkhhJAb2c2z0pxcNyJkEvTzcsOBEuuBeEv9j8hRTdc9xRU4WFKBvl7WExZlegNeTczEP3nFUBvZpf7moWMX+wkhhJCrjIUZrlaggRBC6iMyyAcdI4NwNiXH7jaSpHzW8vC6/8Z67EqB4lIxStt4w+AhAb9SC9n5PIhyaiu6HVp/HBePJKFdL+vgdVlRORbN+xU7/9rPLfppLjrt9dsJgxBCSDNif0ob++f0+v9zTAgh9RbnHYT2ikBcKM21u40kQQdZfD4kKcWQJBeBV2cOQRtqGSawxSRx/EtULwNMxbVZAW1MoFXAgXX9dkaqkMPgYz8WsuV0IhJzChAT5Gf1XEl+Kb55+hfsWXmQq1JbNLUdEONrcz9G0ZWDYWs+HWQ7vHbkgK+zPHAakxBCyE2qBY1J5HI5F1p49tlnuZDDjh07cOnSJa67g5eXF1cBlnV5uOOOO9CzZ8+rc1CEkBtWh37t0Kp9aJMXPGoI0cVs6CN8YZJLrJ80mSA+leZ0XCL3lENZprT7/PY/9uLuBTMQFmNdMKoop5gbk+z9+zBXsKm56GmehBBCbk4taExyvaEVZ+SaeDUqFNNPJkFpuFJ+qAXzFQuR6+QkdG1eiVXAQW0wYubJZJwst3+C3VR6eFKLM0IIIYQQQszNu3UQ5ny+Chqdweq6AI+FBE5ktJhvmJceMO5KcbjN7hUHrAIOqko1nhv+Bi6dSm3mIwRi+8Y0+3sQQgghhBDSkrzcdSQe2LMUOqP1AhpBgRb+XyRCWGJ/7oGvcmHhjbMpGNYNwWyG1OhmHVKQnq0AWLjCQRcHd40MpXB8PJtPJVgFHCrLlJg/9HWkxteOv+Qnc6G2E3CoWdRkYu0p2DFVdaowJ8pRw3et9SKt2L5tHR4fIYQQcr1o164dPvzww2t9GISQm8CcT2dhwaQPmnVRvyv4ah1k2+Kh6dEahiCvmrEHr0wFyZl0CNOLnO5DLBNB6aDJg8lk4kLVd7w41eLx8uIKzBv8GjITs9Gc+Hwe2vW2LkJFCCGEEPvs9KUlpHl185Tj767RGOjtQhvm6/w/oGKd80qklTaCHKtyi69KuKGLhww9FRRwIIQQQgghxFzX6FB8N28GerYN45bzGMSAXm6C3h3Q+QlRPrg1dL7OK6Jeazw+D2WFtd0a7LHVTnnzLzuuSrih08BYRHeNbPb3IYQQcv1hC1Gb4kYIITeivgGt8eugu9DTr1XtgwZAksaH1143GKIjYHSX2n29x2HLTgu2CErttzkw8U3Qy40oiTOiqJMRZVFG6KTWC5tE+Vq4HSq1ux8hjw/VUQcria5Qaa07xq3/bqtFuIGRppRAftp2ZwuB+dCHCzlcCXFU3/RA0I9JVn87uo/sjPD2oU6PkRBCyI2HxiSEEGJfrzHd8N6ml9Gh37UPA/MrNZDtvgj5uhOQ7oiHbMsZyDeccincIBQKUFZQ7nQ7VYXK6rF/v97U7OEGps+EHgiODGz29yGEEHL9oTFJw1HAgVwzXT3l+K1TG24Bfn2M9PXEq1EhuCPYB9eSiMdDqEQMrQuTrB1tfMYVOc5PwhsrXCrG93Gtm/19CCGEEEIIaYk6twnG509MQVSMH4ysUGl1RVIBH+p2fii6rRN0gdah7P6Te2HOZ7Mw7K5bcC2JJCL4hfq41NY4qqv1uOC/33ehuYXGBON/S55s9vchhBBCCCGkJerlH44fet+O7ieC4b1FDL81EigOiCHQCGAI94N6SByMCnnN9kaxAJpof/R6dSqe/OIxjGnVzu6+hbk6CIpsT2AYhSaoA4zQ+VSFvA1yQOMHFA73QNGYEKvt/b5Lh/Ss9YIhCV+I6GXFEJ53vpioXYi/1WNb7YxJFJuSodiYBGHulUSDwQjpxUIE/RQPcZZ54SgeYKy9uZ0qhjTDsrBUeGwonl/8hNPjI4QQQggh5GbUbVgnvLX2fwiJDqrX6wbN6IenFj2MPuO7N+nx8JVaCHPLICiqrNuszSaJTAx3H3cYbRSerSvKRiEme2OSptSmcwTm/fBos78PIYQQcqMRXusDIDe3xZkFOFVunZB1ZGthGXfzEQq4sMOuonJoTc1byq23wg0LokKwOrcYZXoDYuRSdHCX4p4zKU5fKxfwMSPQ2+rxAhc6P7iaUhrv74WHW/lhZU4xTperuPcc76/AzCAfeAjtV2gihBBCCCHkZrdkz3FczC6w+ZxJIkTp8Dbw+/O0xeP7/z3C3bwDFegzrjuObjnV7C2cuw7riHtfm4kdy/ZxVYYiYsMQ1i4Eb0z/2Olr3RRyDLvTOoxRkue8yqor+AI+Bs/sh0mPjcGWxTtx6fRlyNylGDSjP0bcPRAy9+u/EwYhhJBmwqprs1tj90EIITewP9ccQUZCMUS2apKJhdB2iYB093moO4VC3TkUEAmwNS2Hu/l6yzFsRBR2F12CnutNx9ILJridKEXAj6kw8QTIv7cjDF6WnSC0Pka7M4SFk1tBllTO3arx1UZMPqbAhCfuxMb081DqtWinCEBkMh8frP4Ycj85lF0CAZ7t39nebjKM7tzW5TEJ24vbmTzuZmJBdKOpZnFT6FfnkXtvNJSxiprthXw+JsfEYlaPNtii24bL59Ig95RjyMz+GHbXQEjlEtsflhBCyI2PxiSEEOLU0ndXIyspp17fqd0rDnA3/zBf9BzdFcf/OwWjoXnXbg2Y2huT5ozG7pUHoVFpENWlNRT+Hvhw1kKnr/UJ9saAKb2sHi/Js9+trj6EIgFG3jsEw+8eyHXPTjufATcvNwy9/RYMu2MAxFJWZYsQQshNicYkDUYBB9JktHojUvNUKK7Qgc/nIcRHgmBvCXh2Lmgz36bnNfj9ivQGbC8qw/RALyzPKXHabcFDyIeUz0eWxroNsiPBYiHWdI/hvu6lcKt5fFGaa8f+TWwEFCLr/9RaScVIUmrQGO4CPm4N9MZr0aGQCfjorbCuLksIIYQQQsjNorhMiXW7z+FCSi6kYhGG9IrGgK5tuPGJPUu2HnG4T32gO3T+bhDlV1q/X24pjm09hSG39ce2P/Y43I9QLITcQwaRVITCzPp1cwuJCsJH/73Gfd1pYGzN43+++7fT17Lh2Et/Pm0zZBAUGYDc1Hw0htxThtH3DcVDH9wNsUSEjgPaN2p/hBBCCCGEtGTFuSXY9PMOJJ9KgVTOQr/90GtMV4fzJCvWVI1JTAITdGF6mMQAv4wHUW7VvILRzxOqbq2g6RJm9drCYiXKV2twp28ANu86CJOAB1lCBUT52itbGBDw82lU9giCrkcIpAEeEEp5SBM77rhQMiTQIuAQ0SEM76x/ifu6X0Btd7jFfyzj/hUVKOGx8zLKh1pXROUbjPj47nGQ2JgnYWMSZwuKeEbLRVJ6f3eIS4QwZfNhkJjgKZVgZsdOeGbILRAJBOjcx35XC0IIIYQQQm50hdnF2PjjNqScTePmJAbP7I8eIzvbHZMYDAas+XZzg98vP6MQZYXl6D+lN/auOuRwW7FUxBVHEoiFKMoqrtf7RHWLxOurnuO+7j6ic83j3z/3m0tFml5Z9gyEdsYkl06lojE8vN0w/pFRuO+t2yAQCtBlcFyj9kcIIYSQKhRwIE0ip1iDw4mlMJhdaE4vUEMhF6J/ey9IxdZdBH7LLECetnFdDFj493iZ8w4QMXIJtvduj6XZhXjmQnq93iNKblnZqJrIwSKpaq2kIozxr60iZO6uYF/sKHLettmRCoMRi7MKcaFSjb+6RkHC59sOg+j0WJpdhMOlFRDyeBju44mpgd5cKIIQQgghhJAbwc4jiXjt243QmI0x1u85h9jIQHz63FR4e8qtXrPy83Uo1jsPQBsUEpsBB0avMyDphPPObtHdIvHVgXex9tvN+PLxH1EfYe2CbT4uEjsf0oe2DUHvsd1sPjf2weE4tfMcGkNZpsLqLzcg9XwG3ln3os0JAqYkvxSbftqO+IMJXCWjPuN7YOjtVLWIEEIIIYTcOFi3tY/uXwidWZGlzYt3oEO/tnh73Yvw8LYuUPT7O6ug1BmgjtVC1UkLmBX15JfxITsggTBfAEP7ILvvq9UbkFiphcfBYhjcxDDKRTDKTOCrqo5DoNLDc28GOgs88cmO5/Dj6aN4+8BOh59FHVFb7IkJjw21G+Su5n48G+LcClR2C4Y2xIMLJkguFaOTQYI+0eF2xyQXDiXCVco4f5SMj+aS3Hw9wNfzoKrU4dddx3E5txhf3TMJAjvzJIUllViz/Qzik7MhEgkxqEcUhvVtC7GdMQwhhBBCCCEtzdbfduHTh7/l5i2qbfp5OzoNisVba/4HNxvzJD+/9Ce0quqAdMNoVFpkJmQ73a7LkDi8u+FlrnjTL68srdd7tO5gHfiuOyaxp23PKIviUXXHJAuf/BmNUV5ciWUfrEZmUhZe+Wse+HbGJAVZRdj4wzYkHE/mOjoMmNIbg27ta3dehRBCCLnZ0epm0mgVaj0OJZRYhBuqlSr1OJRoXX1HazTig5T6tTezh3VBcBY1mBzgzf3LOjjU14wgH5uPj/D1dPof0AR/L7vPjfNXYLyd8EN9HSytxF/ZtqvA7i0uR+8D8XgrOQubC8qwPr8U8y6m45ZD55GkVDfJ+xNCCCGEEHItpWQWYsHCDRbhhmrnU3K55+pSKzX4482V4GlqL/TbU70wyJ60C5lO9zFkZn/uX1ED2hCPvGewzcf7TOjh9LWDb+1n/5hu74++LuzDFce3nsaOpftsPndk0wnc0+Zx/PTSnziw5ij2rDqEjx/4Bg/GPYOs5KYZFxJCCLmOmRp5I4SQFiDpZAo+uPcri3BDtfgDCfhw1tdWj1eWKbH8g3+gjtFA1cMy3MAYPY2oHKaC3s8Ek8TxgpcktQrFU+JQeH9PFN/WBQX39UDp2HbQe0qsxiQSgXVBqrp4OstfwCPsjEnqjifEmeXwXpeAwO+PIeDH41BsT8HwkbYD18yoWYPRY1QXuMIo4qN0RGRVmzobdl1IwdaztsMSu48mYdqTP+L7Ffuw9/gl7DiUgDe+2Yh7XvgNOQVlLr0/IYSQFozGJISQm8D5Q4n4+MFvLMIN1c7sPo9PHvrW6vGyonL889XGJnn/jItZTrdh3SSqOznUl6tjEpvvO8P+PMm4h0eg8+AOaAps7uPQ+uM2n9u14gDujXoCv72xHAfXHsPuFQfw3l1f4NFuz3HBB0IIITc4GpM0CAUcSKNdylHBRrahRlG5jruZ21lUjkJd47o3mHM01xkqEeGeUF/u66H/Z+8uwKO42j2A/2ddshv3ECW4uxYr0BaoUBfq3kudr26Uuhst1L2lFArFKlDc3ZNAiLtv1mXucyZENqsx9P3dZy67szOzs5uvyZw553/eEA2UflReqNdfo8Llke5DCglKOS6L8Bxg0IhFuC02zOPrIo7D/J6JeCElBvGtGOTU3E9uAg4lZituOXBCqPTQXL7Zihn7M2HnqaeYEEIIIYSc3Rb8vQdWm+egws5DOcjILnVat33Fbuiq9RCbvV8PcyY7pPneK6/x3hpEJ0scX3T7OOHx0Ev6CxUM/NVrVDeMmj7U7Wvx3WIx8oohHvcNCFJj6r0TPb4uFovxwu+P447XbkRkQjjaauVXq13WleSWYfZV78CkN7u8VnSiBM9f9gZ4apMQQgghhJCzHKtqZvfSJmGDXHLTnIPRm5fsgNFkhqmXl9lSpYC5m/fZVB0iwCznYY1rMqGSWARzSiiqruwNu0aOuC7RuHDGBcJLFyZ0hthDSKBewL7G/oZ+43th6JQBHivVDb6on8fjBIZpcMldEzy+zmYqfXnpE7j15esQHlfXj+OJqWsoeIX3oMfvO10r1OUWVeK5D5fB4qZPKqewEk++u8TrMQkhhBBCCDkbLHp/GRxuxgbV27RoG4qySpzWbfx9Gywm31Wu/WF1MwFVU4k9OwlVnZnhlw4C56NN0tTgi/tj4MQ+bl/rMbyrUBnCk5CoIEy+ra5/xh2ZXIrXVj6Dm1+4BqExdZPntgWrmNFc9uFcvH7TB24D8dmH8/DyNe+2+X0JIYSQcxEFHEibldb4LlVWWuM8mKWqHcMN3gRJxPi9f2eEnCznFSSV4BYvoYN6chGHa6NC8Gu/FMi9VH14p1s8LglzrcIQIZPghz7JiFc2zo7kDutEuCMmDL+lJGJ552RMDtaitfJMrj+HHwvLoffSgDlhtOAfmp2IEEIIIYSc5ViAwZcdzbbRldfCHq6FxCoGZ/cQUOB5SNtY9CwwXIu317wIdaBaeB4cGYSL77zQ535ypQyX3DkBr6542mt54ie+/T+3g43CYkPw6spnEHYy7O0JOzZ7nxkvXI07Xr8BvUd3Q2uVZJe5rFv22d9CtQxP2M37nX/va/V7EkIIObNxfPsshBByptuz+oDX11mod8/qg07rasp0MPdSgVd7H9hji7UKbRNP7KwbwsPgIIdaBvmlvfHmvy9AGaAU1kUHaHBlF88DgES1VgSuK4FCJce0eyfh5aVPCuFoT575+WEMcDPYKCI+DK+tehZBPipZS2VSXPzQxbhq0f/hupWPoPN092EKe5NqFJ4UVrlWY1j8zz5Y3MxiWy/tRAn2HMnzeWxCCCFnJ2qTEELOF77aJA4Hj73/OQeCq0pPTTUzFmZ+45/nIDs5+Wts52ihwrQvygAFLp95MV5cNMtrIOL5hY+5DTmwyade/+tZaIIDvL4PO68p91yIW2Zfi9tfvQFdh3RGaxU3m2yLWfLJX24ra9Q7vDkNR7e7r0ZHCCHk7EdtktbzPtUJIR3E6GOG0/ais9uhlTjfeH8uJQZmB4/vCsrQdBxTpFSCBxMi0TVAgR4ByoZQhDcqsQhf9U7CkVojlpVWwWB3oI9GhSnhgZB5CUbUd2gcztXjeJEe9RmEy3gVemlk2C02I89iQahUgisjg1Fps+HVzCKvx4t0U6J6c1Wtz8+wqUqHi3x0MBBCCCGEEHKuMdQawUtFwg0FWTVgVfNwsHvrJ2+SczYeUgMgtolY+TV4LVvn7X2qDdCEON88f+CD22C32oSZfFinQr3wTqG44akrENc1Fin9En3edGfYIKU5fz6FY3tOYOPibbCarOgyKEWo7OAtGME4HA588cQPWPLJKqdZmqKTIxEWF4Lq0hohkDHhptEoy6vAdy8u8Hq8kGjXCnf71h32+Rn2/XcQgyd7nvWVEEIIIYSQc1FttR680o/qbpK6fIO78Tw8B/Bi7wGJiggVtJHOfQBzRk8UqjsvzjgMR5PwRFyAFo8m9Uby79OE6gysKpwvLMz9xl/PIW3ncWxZskOYlbTb0FSMuGwwxM36Z5qz2R14a8U6/LrtAKz2kwN+UhVIfGkiUnaVQZ9RgpDoYFx40wXIUDvw6e79Xo8XpnE9391Hcn1+ht2HctC/e5zP7QghhBBCCDmX1Fb6HlPUHvTVBgSGOU/4+viX9wv/rv1ls1OV55iUSFz/1HQhnMD6OlSauqC2N9oQjTDR1OGt6di2bJcQJug5oiuGTh3gNazN2Kw2fPLgV0J/TdMQAquCFxgRCF25TphQ6sIZY5C5PxsL3/nT6/FY+6W5/etcK801x8In3Yak+tyOEEIIOZ9QwIG0WbhWhhqD94oM4c1m1lH4GPzfXliAocxicworsKoJr3WJw8z4CCGUUGt3oKtagcmhgZCwgUut0D1AKSwtwcIN6QV6p3UscdzZJkUPyDC+fyiUsroLbbPDgc9yS1HhJdHLKk4058+nEfm1FSGEEEIIIWeuQT3jkVtU5XWbwT3jXYIB4iqjEFxg18RyHcCLAIeYB+cARCcvvUXVRnBtCGizsszVZTVON+HZIJ9H5t+LG565EhsXbYOx1oTkPgl+3Wz3hA0+YktLzJ/1PX5/b5nL+sLMYpiNFny25y0ER9QNhDLqTcK2rCPCk0m3uJZ5FvnRxuJOUfuQEELIacD+hLZ1nhOq4EAIOQv0n9Abf3+z1uPr7N7/gAt7O61TB6ogyfZdMk5ULYLIzgF6E3iNwiXg4IvJaoPOaIa8ST+JTCzGO+MuxkMDh+OvExkw2mzoGRaBcfHJEHmZGdWbroNShKUlXv3zP/y6zTW0kGXQwzQsAr//9CiCVHWfeYTJjG8OHIbRS4Xwywf0cFnH+dEHwrWyb4gQQshZgNokhJDzqE2y9tfNHl9n9+r7jXOuchDgxyRL7cGgMwr9IE0D1KxqwtM/PoxbXroWm//YIfRJsEDDoMl9IWpln0GPYV2EpSXev2c+/vrmP5f1eemFsNtYyPpNqLUqYR3r61ny8Soh1O3J5FvGuqzzVn2iJX0phBBCzlLUJmk1GkVA2iw5SilMaOpJqEaKEI3UaV2YrHXZGrmIQ5xcisFatfCvL1KOQ4SH94pRyHB3pwg8mhiFKeFBwmfILzdhW3oVNh2pxP4sHXRG78GN1rLYHELlBs+v8zhe1DhwSC4S4YWUWI+34XsFKHFjdKjL+jEhzglod8aEaPw8a0IIIYQQQs5M10zqD6mXmUFZACI1IdxpXVCEFiK9GZKCxmAECzaIrY3hBkaW7lxJTaaUISoxHL1HdxcqLvgiU0gRFO7+ujwyIRxXPjIVNz13lTC7Ke/gsfbXTXjpqrfxxOSXMe/x75CXUYiOUFlSjaWfrPL4ekVhJZZ9+nfDc6VagTtfv8nj9t2GdMbEmy9wWT9wYl+f5zJoku9tCCGEEEIIOZNd8eAlXqsVDJ0yAHFdYpzWhUQGQVpggXy/91lTpZkyiIwWaJbuh3LbCagMVsSEadG/SywiNKq68g5eqORSaJXOk1DVi9cG4a6+g/HgwOGYkJAiVJpb/eMGvHjlW3jyojn4/IkfhAB0Ryiq1mHhjgN+v65RyPHQ5JEetx+QGINL+nZzWT+kT4LPcxnaJ9GvcyaEEEIIIeRMNf3hqRCJPQ8DHDl9KKISI5zWhUS5VmX2h0ItF/pJ+ozpgaCTkyR5w4INymZh7XqxnaNx9eOXCv0kQy7uL1RR+Oe7dXhx+ptCm+TLp39CcXYpOgJr6/z97VrvrzcJsrMqFDe/cLXH7fuN74VR04e6rB84sY/PcxlI/SSEEELOIHv27MHMmTPRr18/BAcHQy6XIyEhAWPHjsV7772HgoKCU3IeFHAgbRagkGBolyCI3aQcAlUSDEl1vZgdE6xBZAtCDgFiEe6IDUP2mL7YOaIngqRi5HlJxNa7JDwQQU1mJfIWOFh/sALbM6pRUGFGSbVFCBj8u68cGYWegwitVVRpht3hfZv8crPT82ujQ/B5z0R0Vzde9CtFItwYHYLf+6VA7abz5ProEIRIPXeq9FArMI4CDoQQQggh5CyXFBuKlx+4BHI3bYzuSZHCa80NuWQAAsM0UG7LBKdzP2uqJLcCsrSihtlVr3p0Gpbrf8T3mXMhkUlQmlvu89zGXDtCqBbhS1VpNWYOexqvXP++UNVh9z/7sfDdP3FH94ewxEsQobW2LNkhVJfwZt1vzrM9Tb1nIp7+6WEk9Ihz6shg61//+znI3QyamnL3hcJ350nXwSnoO9Z51ihCCCGEEELONp37JeGJ72ZC6mZiph7Du+B/3/6fy/rhlw2GSqtE0NwCiCrcX5tL8iSQnpBCdrQQ2gAFbr1sONb98gSWvHkneCuPinIDRD7maZoyqDtkfvSTVBRV4v5BT+D1GR9i0+Lt2PX3Pix4awlu7fogVn65Gu3t34PHYPdRLe+v/elOz2eMHIDXrp6MxLDghnVquQw3DO+HebdNh8xNP8n0iX2hUnieMKtft1j07Bzdqs9ACCGEEELImaL70FQ8/uX9kLgZI9T7gu547Iv7XNaPvnKocI/fX5qQANz0/NX4U/eD0E/CqjJUlVT73G/SLWP9ql5dmleOe/s9jjdv/Rib/tghtEl+eX0xbkmdiX9/WI/2tn7hVvA+AuPN+0mue/IK4buM6RzVsI71gVz58BTM+fNJt8H3Sx+4CAqV5+95wMQ+SOlLoWtCCCGnX3V1NWbMmIEBAwbg448/xr59+1BVVQWLxYKcnBysW7cOjz76KFJSUvD666/DZuuYCeTrtW4afUKaiQqW46IBYcguMaJSb4WY4xAdIkd0sNxtqS2JiMNzKTGYeSTHa5X5a6OC8UpqHAKaXAAeN5jwb3mNz59BuEyCp5O935Q2mO2oNdmQlq9Hpd79f2wHs2uFoEZEoP8X9b7Y7Lwf27gmIKZGBAlLht4Evd2BZJUcWi+zQoVIJfihTzJu3n8CZc3KNndRKfB9n2S/SqERQgghhBByphs7OBVLusXhz3UHcfREMRQyKcYNScWIvkluS/vK5FLc8dqNePeuzxCw4gAsXSNhTQoHL5dApDNBll4MWVYZptx1Ie599xYoVI1B48z92diz2vNMo/XCYkNw60vXet2moLQaeSVV+O7pn3BszwmX1x0OHp88+BVS+iag16juaM+S0L6wzonmxl03Uliyj+TBpDcjrkt0Q3lmd4IjgzBn2VN44fI3UVOuc3otuW8CXlz8v1Z+AkIIIWcFHuD4th+DEELOBuw6mc3YuerLNTi+74RQBe2Cq4dj0OR+bu/Ds9dvm3O9cL0f8egxVN8UD9NQNSADRDqREGyQ5kpxzcT++L/5/+cUKD50vBD7M+pmSpMYAYuE/cJ1fY+YEC3uuch1BtGmsquqkFtdjW8f/hZZB3Mb1luD5bAHyiGuteL9e+YhuW8iug5KQXsxWKyt2ubSAT0wrX93HC8ph9lmF8IOLOTgSWSoFm8+fjmeem8pdHrniaW6J0filYcvbeUnIIQQclagNgkh5Dwy8eYxwmB51iY5cTBbmHxp7LUjMODCPm7bJOpANW5+8VrMn/Wdx2Oy/pUrH52KW2dfB5mi8bp737pDyNiV6fOcWBDg+qev8LoNq2RdnFUiVLXOTXOdEdpus+Pt2+ciuU+CsLQXYyv7SS66fTwm3zYOWYdyYTVb0albrNC+8yQmJQovLJqFl695B4Yao0sg/pmfHm7lJyCEEHJWOEvaJJWVlbjwwguxe/dup/UajUao4lBeXg69vm6yeJPJhKeeekrY9tdff+2wMcgUcCDtRiYRITVG7fH1shoL8stNsNp5aFUSTAsPgrynCG+eKESGwdxQUqSTQoZJoVrcHBuGVDcXgFuq9D7/e5WLOCwbkIoED2WX9SY79mXVoLjK4tdnO5xTi4jeLQ84WG0OFFaahc+sUYgRHijzGF5oLlDtPKNQZa0VxwoNKK42C7+wwrQymKMkqJXzyCwyorSm7rOEa2VIjlIKlTWYAVo1dgzvgcUlldhepYeE43BhqBYTw7RCEIUQQgghhJBzRZBGiRlTB3t8fc++bKzbkAajyYqUpHBcdM0IyJUyfPfSb8g/kA/FgXzhZn1UciRGXD4MU+6ZiLhU19D0vrWHfJ6LIkCBDzbNQUR8uNvXc4sr8db3a7DtUDaECYKC5RBd2heK3TmQ5lU6bctmEPr62V/wztqX0FL6aj02L90JfbUB8d3j0H98LzgcDhg8VK1oHkBo6vDWdCx6fxl2/3uAnZQweGv6Q1OgDdNi6SersH/9YeHmxaBJfTHt/skN5a57jeyGH7Lm4r+fNuLwlnRhBqlh0wZhyCX9IRJRYUlCCCGEEHLuCI4IxPVPuR+8w67rNxVkY+WJdBjtNvQKjcSVd42DMkCBH+f8DvHcE3B8JYWjcyQi+8Zj9EX9cflD/RAbEeRyrN1H8xoeixyATAfYFDwcrFuB3ffneQRK5Pj2kWsRHhjg9nyOlZfjxTVrsCX3ZKhhdACknftCu6kIpm5hMCc1VueW5ekw7/PleHfQgy3+TqqMJvyXdhx6ixWpEaEYmthJGKBkOV7mc9+u0WFOz3cU5+HLQzuxuSBH+JijYhJwh3QwQsvsWPLxKhzYeAQisQhDLuovtEkiOtXtP7BnPP74+G6s2nAEh48XQioR44JBnTGsbyJNAkUIIYQQQs4podHBuPHZKz22SXb+tVeojmAxW9BlYAouuWsC1Folfnp1EYqzS4Xt2DU1CyaMnj4UU+6eiMgE136O/WsP+zwXbagG7294GUHhjW2Lpk4cyMbHD36F/et8H4u1Ib594Ve81IpJk9jkS1v+3CmEFVilhN6ju8NmtcFQ6zvg0LyyAusfWvTBcuGcORGHwRf1w/SHp0Iqkwj9JIc2p0HM+kCmDMTUeyciLDZU2I/1m/yU8xn+/X490ncdh1whw8grhngMnxBCCCGn2j333OMUbmBhhzlz5mDIkCHC3yq73Y7169fj8ccfb9jut99+Q+/evfHcc891yDlxvK9aS4S0Q7WCbelVKKl2DhOwSVQHpGjRKUyJAzoDdDYHUlRyRLop4dzUjwXleCytcRYhdyJlEuwb2cvtayaLHWsPVsBo8R0yaKprrArRwQoEB0hdjldjtEEs4hASIG248GRVIdLz9bA1KbGskovAgYPebPf5fkO6BCI2pC7gkVduws5j1XUDn5o52VfhRCwChqQGCZU1CCGEEEIIOd/p9WY8O3sR9uzLcVqvkEvx1KwpuGBkF6F6AqtqEN8tVqg64M0fH63EJw995XWbqKQIfH/8E7evFZfrcOvsn1BeXTfDgRMHD9W6dEhzK1xeunX2tRg6ZSA6909yWl9eWInsw3nCwKiug1MaQgPfz/4NC95cAtPJQHn9ebE2RGFmCXx5ZfnTGHJxf+HxP9+tw9t3zIWjWVibtX9YKMTebD0ra/3SH09gwITePt+HEELIuSUvLw+dOnUSHifOeh7SQO9/V32xVlch663ZwuPc3FzExcW1y3kSQsipVG024Y6/F2FHcb7TerVUig/HTsX4TsnI2H0CJr0JCT3iPA4Aqvf98h34+NcNLutZVwEvAjgHkBwbil9eu8Xt/jlVVbjy559RYXQzoIfnITJzENkbB9nw7MgiBx6dPBpjkpLQPbQuzFyvuKYWx0vLESCXo3dspNBOYN2PH/y3Gd9s2Q1Tk3L1CYFaBP56FBXbslByzwDYgzzPdPrVnVdhaErd35Sf0/bh6c1/w9GsQ4S1fiK/zoJmU91grHoqrRIvL30SfS7o4fH4hBBCzk3UJiGEEFfVZTV4duprOLr9mMt183MLHsOAC3sLFRnMRgsSe3YSwgnesP6H715c4HWb1AFJmLvzTbev5abl46ERz0BX6aafxIu735ohVMlL6hXvtL4ktwx5aQVQB6nRZWCy0CZhkz19+eSPWPzRSqHSQj1WmZp9ztLccp/v98HmV9BjWJeGvqG5D38ttHWaYoEQ3sG7rA8IUuOVFU837E8IIeT8cba1STZv3oyRI0c2PL/mmmvw888/u52s0Gg0YuzYsdi+fbvwXKlUoqCgAEFBbfuM7lAFB9Lh9p6ocQk3MGzc/67jNUKlgd4ald/HGx0cINyw9hZPGBui9fhaRqGhxeEGJi3fICyBKgn6JGqgUUqwP0uH/ApTQ8BAKROha6wadgePw7m1LscwmP1736QIZUO4wWJzYPdx9+EGxt16NrZoR0Y1Jg8IEyprEEIIIYQQcj57470VLuEGxmS24uXXl2Leh7cgdUCy38djJZ59YbPxePLdih3uww2MiINpYDwkuRVoPmfPN8//KiysU+D/Pr4T0UkRwuxGmxZvF2YvYqISw3HT81ejorDKbedC0QnfwQbmyoenNIQbKour8N7dn7mEGxh2w95ud22UmPRmzL7qbWFGIpVG6dd7EkIIIYQQcq56eO1yl3ADo7dacf+apVhxxS3oOijF7+MN7Z3oNuDA2hAs3MAM6+Vcka2pT7dvdx9uEA7CwSEDRCdftssdsAc4wEuA13evF5a+4VGYM2oiIuQBmLPiP6xJOw77yc6K+OBAzBw3AifKK/DZhrqOzqayq2sguiAckUcLEbw0HeXX9AB/siJ1U3eNHdwQbiiorcGzm/9xCTcw7OMW3RQP5YFKSGoagxSGGqPQJvkx+1PIPVT7JoQQQggh5Hwx57r3XMIN9dfNL01/C/P3v4Ougzv7fbyBk/r6DDgMnNTP42usil1Lww3M/FnfC0uP4V3w0Kd3IyBIhY9mfonty3fDcXIC2tjUaNw253qk7ziGBW8vdTlGXnqhX+9184vXNIQT8o8V4tNHXMMNjLu+E6a2So+XrnwbP5z4BFKZ98l+CSGEkNPps88+a3gcEBAgPHcXbqgPNLz55ptCyKE+8LBy5Upcf/317X5eFHAgHcpotiOvzOTxdXbdxwIQUrEINrsDgWopkiKVCFJ7vrCLV8oxJTwIf5ZWuX1dynG4M865bHFTuV7Oxx/VBhs2Hq6ESi52qcTAghN7T+iECgqtwSo89E7QIOZkuIHJKTUKgYWWYpUj2L6do9WtOxlCCCGEEELOAQWFVdiwKd3j6zabA+++9geUxwtgNpiF6giX3j8ZSb09DwZiVR6GTR2Irct2uX1dKpfi8pkXe9x/5eYjXs/ZoVXCHh4ASalraJphM7s+MXE2AsMDUZzlHFgoyirF27fPhUzRupvlrOz0ve/cguHTBjWe75drYLU0DhTyl77agNU/rMe0+ya36lwIIYScA4SpxNvhGIQQchbLqCzHmtxMj6+b7Xa88NNiRC7IgdVkRZdBKUKbJKFH3eB+d7rEh2NIz3hsP+Qa5GbkMgmuvNB96NrmcODPo0e9n7SIVYLg4ZDwsAU66pITTewrLcL1y35FqE6J4grnQUk5ldWYtWglZBKxx8M7VFLohkYj+O8shH+9D/pB0TClhoCXiJASHITHbpyE0V0bK9f9nL4PNt5zRwkvFaFmZDhCVjoPVKou02Htr5sx+dZx3j8vIYSQcxe1SQghBBm7M7F3zUGP3wSrAv3W7XOFQVysL6D70FRMu28SOnWN9bgPG/jfc2RXHNqU5vZ1VnF62r0T3b5mNpqxfuHWNv1kDm9Jx6NjnxfCzBWFlU6v5WcU4pXr3hMqK7RGYu943PfOLRhwYeNkV8vn/dMQoGgJdm4bF23HuOsaZ8UmhBBynjkL2iS7d+9ueHz55ZcjODjY6/ZDhw51en78+PEOOS+a2p10qJIai8//tqr0NpTWWFCptyGrxIj/DlQgo8B7Sve9bp0wKijAZb1SxOGTHgleK0KYra1ICzTDPlPzcENTrQkkMKzaQtNwA1NjaPlAonqVta3flxBCCCGEkHPBzt1ZHquh1TuUUYx9aw8Jsxctm/cP7uk3C398vNLrPk98NxO9R3d3Wa9Qy/Hsr494HIxks9lRazT7PG/eR0CBVUhoHm5oymJqLLfcEiFRQU7hBibLw6Apf6Tt6JibGYQQQgghhJwtNuRn+dxmW2UhDqw/IrRJls79C3f3eQwrPv/X6z5z7p+CnilRLutVChneeHAaOkW674g0Wq0w2nz3HfAchMoNLqXlTqq1WpDrqPG4v8XuuQ9FOI8eocK/khozAtdkIXLebkR9shNdtxY7hRuYtMoyn+drjnVfOY7aJIQQQggh5Hy36+99Prc5sP4wDmw4gqPbMrD4wxW4q/dj+Of7dV73eeH3WULF6ebUgSq89Mf/EBEf7nY/g84Eq7l1fRhN6asMLuEGp+rTJytftxSrlN003MBkHcpFa6XtcK2cQQghhJxJDh48iJKSEqxbtw5PPvmkz+11Op3T85CQkA45L6rgQDpWK5NDB3NqERwgRZhW5vb1AIkYC/t3xqZKHf4srYbebkd3tRLXRYcgROr9f9ZqhRh6U+suYjua3U3aV9LachAswXRyV6PFjhPFRpTXWMBxHCKCZEgIV0IupYwTIYQQQgg5t/GtaJSwG99zH/oa3YZ0RrchqW63CQhS4911s7F79QFsWLgFZqMFKX0TMenWsdAEu4ax60kkYkSGaFBc4dzob06ka1vludYyGywu61ReAuS+1FeSKMktE2Y4OrDxCCRSCYZc3B+Tbxvn9bsihBBy9uP4uqWtxyCEkLOZX22SZiECNjPoB/fNR9chnYV2hjuBGiW+fP56bDuQjbW7jsFitaFbYiQuGdUDASq5x7cKkMkQqlKh3GDwft4iHryPwnAOJQ++igfnKQXh7fgy5/4JU5waDpUEOqXrsTRSz5+nnshDv099myRfX4VfTuzE3oo8SEVijIvugsvj+0IjdZ50ihBCyLmF2iSEECIUZmgxFg54545P0XVwZ6GqtTvBEYH4ePvr2LFqL7Ys2QGLxYqugzpj4s1joNK4DyAzmmC1sOgqvU9+e7qwCaaaU2k9fx5f6tskBceLsOyzv3F0xzGhEviISwf7/K4IIYSc/c6WNkl4eLiw+GPx4sVOzwcMGNAh50QBB9KhPAUU/HG8yOBz/5HBGmFpicQIJQ7l1OJMpDPasf5QBfokahCkrrvAjQ2RCd9Fa7BqEEWVZmzPqHKqKsEqZrAqGSO6BQtBEkIIIYQQQs5V/frE+9yGcxM2YCEHVsXhye/cBxzqDZjQW1ha4rIxvTB/8RaPr4tLdRBXGXG6SlU/Nu4FzPz4TiT2rKtCccE1w/Hnd/+Bs9rB2Vt292TkFUOweckOvHL9e05VJfasPoAFby3Ba6ue9ThgixBCCCGEkHPB8GjfbRJlmmslBBZyWPLxKjz6+b0e92MTGg3rkygs/mL7XN2zJz7bscPzNv7OEcWdXFrRySo92e+h7xmM8qnxsEbWBauLeGDGooV4aex4JJ+c/e2SxK5YeOxAkzd1pdlR4Xb9qCuGYGXeITyxazGsjsYPtqU0E1+kb8KXI2egs9a/zltCCCGEEELORn3H9mjVfizk8Ofcv/DAh7d73EYkEmHoJQOExV9sEqSJN4/Fog+W40y0d81BPH3JK0I/SXRypLBu9JXDsW6B534db0ZNH4p/f1iPt2+f61RVYvc/+4V+kjf+eR5xqdHtdv6EEEJIR9q4cSP+97//NTwfOXIkhg0b1iHvRQEH0qFYtYSYEDkKKlzTrb5U1FrbpSJCXpkJZTUW4Z53VJAcSZFKFFaaUaFr+/E7QrnOio2HKzGye7BwnlklrRvYFKiSIEgtwT97y5zCDfUsNh5b06owqX8YxKKWz65ECCGEEELI2SChUyiGDk7Gth2Z7jdw8BDlFLt96cjWjDa/v9FsxartR7HnWD4kYjFG9UrEtRP7Y+PeTBw+4fq+nMUG5VYP53qK7F93GI+OeR5vrH8JqzJysHjzQVTeNoQ1sCDLrIBqVy4klb7bKd2HpSKuawxu7/aQU7ihXmVxNZ6/7A18d+xjiCXiDvo0hBBCCCGEnF49QiOEkMOWwhz3G9gdCF7joU2yLb3N72+sNeLfHzbgyNZ0YSDRsGkDcffEQViflYXDpaUu23OsjWTm4JCcDC546z5weAk3+Ng3YGcR9L2CUXRrV6BJHwXPAZtycnDtwgX4fvqVWJx9EAuOHQAnOTnzLPt/Qp9H/T48ZCUGVF4aiQppFBSZBgSuLoW01IK+Y3tC2y8ST6ye6xRuqFdi0uH/tv6CFRP/DyKO+kkIIYQQQsi5qcfwrsL9+tb0ebRHm0RfY8C/369HGqtcIJNgxGWDcf0z07Hrn33IPpyHMxGrSvHIBc/h9b+ew6ovV+Ovb/5r1XEGX9QPcqXMJdxQrySnDC9Nfwvz978jhNEJIYSQMwnP87Db7SgvL8f27dvxww8/YOHChXA46gYkx8XF4fvvv++w96eAA+lw/ZO1MFmqWhxYaOuY+8paK7akVcFsbRzdn1NqEkIXQ1ODUFBpQlaxESaro8lt8PbBjicRc7C6md2Urbf5mPWU7bf5aKUQQmgNtVyMEd2CkF1qdBtuqMc++5ajlUiKVCE6RE438AkhhBBCyDnp6VlT8b9nFiAto8j5BYcD4sPZENW4r5gmkbZt0P2BzEI88skSVOoawwBLNh5EUnQI3rpnKv7achRL1h9EebUeErEI4uMlkO7NhbjGhLaSyiVC2WN9tdFtKWVDjfeAQk2NAfd+tAgVoiZtErEIltQwWBOCoF16GNJSz5Xx4rvHYs6fT+H395a5DTc0vXn/7LTXMe3eSRg6dQDEYgo6EEIIIYSQc89H46bi5lW/4XCFc6CAszoQ+U0m5Pnur89ZIKEt9q8/jBenvwVdReO1+8ovVyOpdzw+WjILv+VmYMHBg6gwGiHjRFDsKEbAxiIYeoejemREXZDAyyU6Z+HA/q+eQ8LDrrWDlzsgF0ugMEthKLeBY6mFJsLTqyE/XI7cJ/t57AwqM+px/T8/o9La+N0I4324uhAEWD+Lg4eYs8PWSSEsjKm7BlWTIzB8G48XXnkIn57Y7DbcUC9bX4H/vfQJrh48HIMv7i/MQEsIIYQQQsi55vnfHsOTk+e0OFAgbmObZPfqA5h91dvQVzf2w6z4YjVSByThhd8fx6ov12DV1/+hplwHqVwKq8XaboO35CqZcH1vrHXtc1EGKNyub6q8oFKYDKppe6olUgcm45lfHsFXT//kNtxQL+tQrtBum3rPRAya3I+CDoQQQs4Yf/31Fy6++GK3r1166aX48MMPkZCQ0GHvTwEH0uFkEhEu6BmMoioL8stNwuB9lUyEzGLvA2qig+Wtfk+rzeExIKA32bE9owoX9g1Ft1i1EDbYml6Fspr2q+jA3pV9TlYZQS7lhJCBRiFGYqQSMcFyHC8y4FCu3usxWhtuYPRmOwxmB8r9+EylNVaU1lQLoYjh3YKgUdKvBUIIIWeftWvXYty4cW06xtdff41bb7213c6JEHLmCNQqMff9Gdi87RjWbUiD0WhBZLAafz71PWCyeNxv+LRBrX5PFmp48MPFqDG4VrM7UViBJz9fgV+evwl3XzECBpMFT016GUc3t71iRD2r2SYsKo0S2tAAIWQQ3yMOU++ZhOGXDsKv7yzFNy8vBGe1CzO0NmfsEwND03BDE7xMAv0FyQj6fb/H989LL0RJbhkObU7zea47/9orLJ26xmDOsqcQkxLVwk9LCCGEEELImS1cpcafl9+Mv7MzsDIrA0arFXG8Auuu+x6SamuHtEnKCyvx3KWvuw03nziQg7eueR+fbH8dj40ahVqzGbNGPY/M3SeE1xV5tbBpONQMjxDCCnA35t8OiKvsDQkIu9oOa4StobCCEVYYZVZog+QIrQqAzeRAakQYrh/UF2OSE/DF2FV4W++5DcQrHE7hhqZY0EFSaoJI5IA1pi7Y4ETCYccoMYpFJuwq91A5o4n1x49i3+x1SOzVCa8sewoR8eE+9yGEEEIIIeRsEhYbis/2vIWNi7Zh0x/bhT6D0JgQ/PnpX173a0ubpDi7FC9c/gZMetd+kozdJ/De3fPw7rrZuOP1G4V2y0Mjn0HOkXy0F7Ohrv8nIEgNVaASNrMNKf0SMe2+yRhwYW98/dwv+P3dZV6P0dpwA5N1IAc1ZToc3HTU57abl+wQFnZ+c/58Uvh5EUIIIe4UFhbCF1ZZoT1kZ2e7XR8QEICkpCTYbDZ0JBrJTE4JVkaLBRaahhZsDl6oqOD2f5giDslRqla/X3apyWtAoNZkR2GlGTEhCtgcjnYNNzRld/AwmHnIJByUcjHkUpEQbMgqcT9DbHtiIQpO1LJQxOYjlbiwX5gQzCCEEEIIIeRcIhaLMHpEF2Gpp9t2FGt/2eR2e3WgCpfeP7nV77dk00G34YZ6x/LLsOVQNkb0SkRNYSWO+hEEaA2Dzgij3gRtqAYR8WHQdArBu4s24M+CfBhvGcKS2ZAfK4Nydy7E+sawh6l7hNfj2iICYAtVQVLuvm3jsDuw5ONVEEv8b5TkphXgqYtfwZeH3mvzTLWEEELOEOz2XFtn3WuvkquEEHKaSUQiXJLUVVjqvTD2gDCIxR1NSACm3DOx1e+3fN4/Xiu3pe88jn1rD6Hv2J6oOF7aEG6op8iphW5YJGAWgZfwAFtY14ED4GwcYOPAKzjIDlXAGq2GNelkeetmauxm1GosCA5UIzwhAFoRh08f/hqLd+4Dbkxxe248++XPghVe2KLl4MSe/0jYeAe+S98FqciPKnEnq25nHczF05e8ivn736FKDoQQcq6gNgkhhDRg993HXjtSWOoVZhZh51/73H5LQRGBuPiO8a3+Bll4wl24od6BDUdwZFsGug9NRcHxonYNNzRVW6UX+krY52FhZla94ZMHv8a/P6xHR7JabMJ30JL+juN7s/DcpW9g7s43qJIDIYScK9q5TTJkyBDfm/N8uwUcpFIpIiMjYTKZUFZWJqyvra3FBx98gLlz5+LNN9/Eww8/jI5AIwbIadMvSSsEAPLLnS9mWQhgYIoWJVUW7K3QCdsEqSVIilRBq/Lvf7IFFd7LiDHs+CzgYLZ6v0neHljYIrfMJCynSrnO0uIqGAaLA3nlJiSEK31WyGAVKlh1DomYwhCEEEJOv5iYGNxzzz0t2mfhwoUoLy8XHkdERGD8+NbfoCOEnJ0e++I+2Cw2YcaipkJjgjHrm//D5qU7G2Yy6jIwWQg8dOoa69ex1273HVjYergu4FBVWoOOxDt4VJfWYNWvm7DAVAO7tskMp1IxzN0jYYkPRuDSAxDrzML9EUfTbTxgx/EUcGAObTqKHiMaB2/5o+BYkfDzaNrB4o7ObEaNyYxQlQoKCkMQQgghhJCz1JPfz8SrN3yArct2Oa0P7xSKWT8/jJVpJ7D299Ww2mzonRCNa0b1RXx4kF/H/m/LIVRNSoYtRAmRyQbl4TIoMsrBNenf3Pn3PiHgUFVSjdpegaicGAVruAIigwPKwzXgjFZAKQVn5QBrXfCAq08x8AAv4qDvHQxZUTnAaTyeiwM8yswG/JK2HwsO7kX0hgxIyz1X0xP4yko3/SAe7CzNQ59aOXZJvW+n2KVreJx9OE/4eYy4dLDXffTVetRWGRAcGQiZQubzXAghhBBCCDkTPfvLI3j52vew62/nkENUYjhmfft/+Pvbddi2fBdsVht6Du+KqfdOQnRypF/H9hTmboq9Lws4VJV0bD8Jm5SporASy+f/g+Wf/3PKJtRg1RtYn1NLHNtzArv+2Y9Bk/p63U5XWSuE2oOjgiCT+2j0EEIIIa0wc+ZMvPjii5DJ6u595eTkCKGGd955R6jeYLVa8cgjj0CpVLZ4zJY/KOBAThtWJWBIahBq4mwoKDfBZucRqJYgWC3F5qNVQkWBehW1VmQWG9E3UeO1soPOaMPuzGpU6HyXPjFaHbDYHNhzvGMvkk8X1sWQ70fQo7niKrPHgAP7fo/k1qKg0gwW8hKLgLgwJXrEqaGQ+TELEiGEENJBunTpgs8++8zv7b/77jvMmzdPeMzSxn/88Qfi4+Pp50PIeUahkuOFhY/jxMEcbPx9G0wGsxBkSOwdj6cvfgUlOXUzEDCHN6dh6dy/8PBnd+PiOyZ4PGbWoVy8c8dcHAmVAbF1A4+a3yevjwiXF1WiplyHD+6dj1PBMCjeOdzQBK+WwTAsEZp/0oTzYwOZeKX3G+IiNtjJ2+tiEbb+ubPF57l91R6PAYf00jK8v3EL1hzLFKrxqWVSXNajOx4aPVwIOxBCCDmzsLGnfow/9XkMQgg5VykDlHh56ZM4tvcENv+xAxaTBV0Hd0bUsBTcN28xSqv1DdvuPVGIn9fvxewbJ2HKoO4ej3mktARPrvwbBydqwfFaiE0cRAbA2DUU4gojQpamw6HhYQ+SolBhQplRj8eKt6DgocZqd4ylkwIwAmKLDZDUdSc2DTcIlRxObmvqEuD7w4p4wM7BIRWh8M4UJD+xB4rMGpiSte63Z+/hdX4l9qL3PxJinsOhx9dANDsWjkD3XaLyg7WQZzhXutixco/HgAP7WX334gJsW75bGCSl0ioxccYY3PzSNdCGeA55EEIIOT2oTUIIId6pA9V4fdWzSN91HFuW7oTVbEX3YV0QmRCOpy95BZXF1Q3bHtqUhsUfrsAT3z+IMVcP93jMjN2ZeOu2T4Sqzb6UF1SgrKACH8/88tT9qE7lvSaOw+5/D7R4N9Ym8RRwSNtxDN+9tAA7V+2Fw8EjIEiNSbeMxc0vXi38PAkhhJzbbZLt27cjOjoap0Lz92Hjql5//XVhAtmpU6cKAQfm8ccfx+WXXy5UemhPFHAgp51WKYE2rvHm99oD5U7hhqb2ZekQFCBFSIDrQJv0/Focym282e9LUaUZK3eVwnEGdpLKJJxQ9aEtWLWLoiofMyC54ak6TY3BhvWs1PTJUs2M3QFklxhRWm3GmJ4hFHIghBByVkhPT8d9993X8HzOnDkYPtzzTThCyLkvqVe8sNS7p9/jTuGGemzwyvv3zhcGHCX3SXB5nQ1y+f7l34Sb49J+cbCygEP9gByu2TU3D2x8dwX2Pf0bzIaWX7e3FC8Wwdw5zOs2loRgOBRSiExWRFSaUewl4CCqNkJS1DjLqTsxKVHC7Kct5bC5r7J3sKgYN/68EHpL4/elt1jx09792Jydg19vupZCDoQQQggh5KzUuV+SsDBsgMrlr33rFG6ox0K+z//4N3p0ikRSZIjL61/tX4Zlx/8CF8BBYw5HjVEFh5wHAgBZJeBIlCH/ta7gFXX3+b9GEX5aOhd6o8M1TcAqKCgB1iUgsvHgRO7DDcIqNhuSr1FCTV52BEigGxSKsN9PoOCBnnA0q97NghQhYjXKHZ77fKTFZtiivVdOSKyQ4mieDtovClH5YBw4qfNnFBVbEfxWrst+dg9tksNb0/HExNkw6Rsrk7MZU5d8sgp7/zuI9za8DE2wH2EPQgghhBBCzjBdBqYIC2O323Fr6kyncEM9q8WGN2Z8iC6DkhGd5DqIce4jX2PxByv8ft9l8/4RqkSwsPeZJihC2+bKEsGRQTAb0lu8n93mftzc/vWH8dRFc4TK4/Vqq/RY9MFy7F17EO+umw21liaDIoSQc1l0dDTi4uJO6zlMmjQJzz//PJ577jnheW1tLb755hs88cQT7fo+vgq8EnJKVegsqNR7r76QWWRwes6qMLCB9y0JN9Q708INEjGH1GgVLugZApXc83+erB/B28RFrC+BVcNojTCN+w6B/dk6p3BDUwazA7sza2C2ur/pTwghhJwp2A25GTNmwGCou54YM2YMZs2adbpPixByBtm39hAy92d7fJ2FHJZ8vNJpXWVJNWaOeBrfz64LNzDytGI2Mqnuwp1zN9GoA5KC6lMSbhDOWyUFpD6qrolEUMWH4Lonr8C8D+9BRJCHgTk8j6Bd+RBLPLdZVBol4nu07sZK79HuZ6N9+d+1TuGGprIqqzD71xVCSWZCCCGEEELOZpuPZiG7pNLj6yzk8OvGfU7r9LZyfH/sARhk72J890O4sMdB3D7qP1zSezckYhsgBqzhdlgTLA3hhnpm3gqxwl5XYaE5dskv54T9OfvJpVm4geEsXkst1OGdt7HEKiEvNCD2/QPQbC8BZ6kbwBMiU2Dm0KH4Zcp1CFO4n32Uc/CIWVCIgMOer/+1MgW65UhgDZWh5KYEmK0yWMxi2KwiYTGbJDBo1KieGOGyb+8L3LdJ2KyyTcMNTbFw90f/9wX0boIphBBCCCGEnE1YJYeirFKPr7OQw7LP/nFaV5pXjrv6PNqicEO9My3cEBwZiJtfvAZv/vsCAsM8V2mTyCRCJWtP2L6RnUJbdQ69L+jhdv1HD3zhFG5oKnNfNj558CsYdM4V6gghhJCOMHPmTEhOVn1l1q5d2+7vQQEHckYp17m/CGuqosk2PM9j/aFKv/Y7G4zpGYxeCRpolBJc0CME0cFyp44CjVKMIV0CcdnQSEwdHIGoINcwglTCYXBqIMzWlqc3pGIO8eEKl/UGsx2l1d4bFMVVFqzaXYrdx6thY6UdCCGEnPesNiN0+nxU1WQK/7Lnp9snn3wilGtjFAoF5s+fD47zoxOeEHLeOLjpqM9tDm9Jd5pF59ELnsPRrRlO2wgzmIq9/H4Ri2Dp4jqQpqNwJltd4MKHeZtewR2v3oCEThH4+tFrcEHvZIia/J5MjQnDB/ddjtVHPsHi8m8waLJrieSgcC2e/fURVJW4zu7kC9t3/I2jXdZnlldgV773ctYrszJxXad7hCobJoP7QUeEEEJOA76NCyGEnGf2nij0uc2+E43XxnaHBQuzHkK17YjLREndogsxtc9u4TkfZPPYK8gu+UVSD+0FFnzw0Zbg9GJwXrppeIdrwEFkqgs0yMpMiPjlOJKe3o7kp3fg7+nX45HhI5EaHIaFF92IsbHObZIewRH4ZuI1WLf9M2x64TkMj3StrheuUOOTkZcjX8Oh+O5kODSss5WDw84CDhJh4R11X0bVxRFwKBq/mNCYYIy5ZoTLMY/vy0LGrkyv38N/P2/CdXH3CEGIM22QFiGEnNeoTUIIIS1yaFOaz20Ob2ncxqg34aERzyDroGt1tLMNCyx8ceg9zHj+aqHy9zvrZmPgpL5O/cmpA5Px5r/PY6XpZ/xW9AV6jermcpyw2BA8t+AxlBd6Dq97EpkQjlFXDHFbUS7rkPfv+J/v1uG62Lvx2aPfwGo5N8bSEULIOeEcbJMEBgaie/fGSUJyc9v/OqB1U7wT0kGa3qT2pOkm+7N00Bm9V3w4WwQHSKFls6qepJSLMaxrEIwWO/Qmu1DdIUjd+Dp7PrxbMCprrSioMMHm4BF0cv9dx2o8VlvwFm5g7yd1MwsrCzj4WxEju9SEoioLenZSIy5MCXF92WpCCCHnBRY+rKg6iuy8NSgu2wNe6MGuw3EiRIYNQELcOIQEdTvlwYLi4mKhRFo9VhqtS5cup/QcCCFnPonUdzNZ3KQSAhtMn5fuOgDJkhLq3Hhxw5wSCsXhIpwKIqsdsuxKWJI8zxY0MDUOMaGBDc/Z4w/uvQzFlTrkllZBq1agS2y4U5WG11Y+i6PbM7Bx0TaYjRahhLXZaMaca99r8SxBmpAAzF76JJRq19B1QY3OryoVJrsdy+f/g63LduHON27EmKuHQyprbEcRQgghhBByppN4mQG0cZvGNsmfBe9DZ/McBk4OL0VUUCWKpSqvx+TE9T2mru0YSZUZDq3n/eWVHOS5EtT0ssEhd35NuDVkc/1Mmp0Vzu/vAAaP7YWQqOCGdYnaYHwz4Wrk19Ygp7YKIXIlugaHO1Vp+OnCG7CrNA9/56bD4rCjb2g0qiutuH/BMhisVti7ev/cvFIMfb9AaLZWCoHrl5c+CZnctQ1RklMGf7AKD0s+WYXNS3fg7jdnYNT0oX61MwkhhBBCCDlTSHxVg262zes3fShUcDgXDJ82ENqQxqoNCd3j8PqqZ1GcXYqiEyUIitAioUenhte1oRq8t/5lHNhwBFuW7oDNakf3YV1Qll+BZ6e+1uLJmEKig/Hy0icglrj+DEr9bJMYa034/f3l2LSkrk0y4rLBbo9HCCGE1LNYLMjKykJmZiZGjx4Ntdp9VdXmAgICGh47/JhssaXojho5o0QGy4Bs79uwgf1/7ymD1eGApRVVCs5ELAPQK77xP/amlDKxsHgLRrCFKa4yY/PRqha/P6v6MLZnCAKU7n8lKGQtK/ZitjqwO1OHw7l6ITRRf36EEELObdW6bOw7/AVq9fluX2dhh6LSncISoI5F3x53IlDjOsteR3nppZdQXV03m3hsbCz+97//nbL3JoScPYZNHYAvnvzB6zZcVCCuH/ccTGU61B7y8DvPjw4Af7ZpT8qdubDGBoKXuV73y6VizLxilNv9IoM1wuJJtyGpwsJs+XMn3rrtEyHw1hKB4Vp8vP01RCW4r2oRHuD7JgpntoOz1oWzywsq8MaMj/DV0z9hzp9PIbnPqft7QwghpIn2mF3o3Lj9RwghfhvTMwmfrtzi8XVOaoc6oRy3rH4JkOvRM3g/VD6aFl0iC1FcmeJ1GyGfzbn5vevgELihGIbekTDHu4YFxEZAVQSIHCKEbJHCHO6ANZCHKYwHz6raNavcwGi2lkFWZHJap1DLcduc692eW2yAVlg8GRgeJyzMirR0vLz67yYfzOvHrvuIchFCooIwd9ebCI1uDFg0xV5vidLccrxy/fuISgzHnOVPCwOjCCGEnAbUJiGEkBYbOnUgfnnjD6/bmI1W3JR0vzCAv7q05pz4llVaJW556VqPVRXY4knv0d2Fhfnn+3WYP+u7Fr9/eFwo5u56A0HhjRNRNRXcwjYJC2TMvvodxHSOwivLn0ZcanSLz4kQQsi53yZZt24dxo8f3xBQWLZsGaZMmeLXvvn5jWMloqKi2v3cWjZqmZAOFqCQIDak2fQ+zVTpbdCb7WdduIF1DkQFyRCmcR7sH6SWYGT3YIRpZW1+j/R8fav2s9p45FeYvf5cQpqdtz9MVgc2HK5ArencqLJBCCHEs9KKQ9i6+3WP4Ybm2HZse7bfqXD8+HF8/vnnDc/nzJkDlcr7DH6EkPMTm3ln+KWD3L5mC9dAN6UPdoWrcDw+GPkD4qG7tB+sMa43lcWVBp/vJa5sWYWDtlLUmnERp0T/lBin9b2TovHpQ1eiT3Lbb27/9OqiFocbGNYBsnnxDo+vdw0PQ68o9+GHegF7SoVZX5sPKnrkgudQmuvfzEaEEEIIIYScbt07RWJY13i3r4lVVoSNL8SJ0AwUSSohlpWA43xff0tEdvi6TBdeb74Nz9otNijzrVDqVVDnAxI9ILLUBRuURYAmu676AsPxHBQlYmgyJAjZKYG0wjldIBOJMTU0CROOOfeH9BzZFW+tfgGpA5LRVp9u2ea8wuo74SDPMaKiqApblu70uE3XwZ2R2LNxplZfrOEq1IyOx9HOAbjr/z5GWeW5MeiLEEIIIYSc+3qN7NYwWN+TI1vThaoGZ1u4QSqXYvSVw9BtaN2kTfX6jOmBd/57CUm92z5Z0s+vLmrVfqwKxvYVezy+zn4mMSmRLT5uwbEiPDTyGVSX+66UTQgh5PzTvXt3p+oLixcv9mu/I0eOICcnp+H50KFD2/3cqIIDOeMMSAmEg69GYWXLynSdydjt87G9QhCkrgsJ6E02GMwOyKUiaFXt85+hxeZAmc7a6v3zykzoGus6K2qNwYYTxQahKkNr2B3Av/vK0T9Ji4QIZavPjxBCyJlduWH3gY9ht7fsbzfbnu03bMCTHV7J4Z133oHNVhe4S01NxYwZMzr0/QghZ7cnv38Qc657DztWNt5Itoeoob+wOysp57StI1AJw7iuUK8+AklR44182YkKcAYLeJXnILPicBFOFVYuet6+dxDfLVZ4nltahaIKHcIC1UiKCmmX96goqsTRbRmt3n/1Txsw/WHX2SBOHMjG0rl/QXY8C6KxYXCwWWCbEVebEfRfntvjGmqMuLnzTMz6+n6Mv2F0q8+yWBfpAAEAAElEQVSPEEJIy7Ext36Mu/V5DEIIOd+8desUPP71MmxLz3VaH9S/FGJ1XdUyRimxwuKQQCny3jdQWhMIziAC1J7v8/O2+hIO9SsASZkVsR+lwTwwBQ4pD6uGh40Vo+YASS0gMXFCqIE9ZwGJplfqYiuH4MNiSA5kwq60QyaR4JffXkRcWChwxVXISy9AWX4FwmJDENfFOYTdWnnV1ThSWuq0jtOLwcs9T8Ikz9RDcaIuoL7mpw2Yes9El22O7T2BpZ/8BZPR7L7KRRO8iEPlJakwdQ9rWMeOPumNr/H6jZdgUm/ngVSEEEI6FrVJCCGkdV5cNAsvXvkWDqw/cs58hQqVHF+lfYDw2FDheW5aPsoLKhHeKRSxndunukH2kTzkphW0qZ9k0i1jXdan7zoutEnsbBBWK9SU6XBD/D149pdHMXya+0m+CCGEnJ9tkoiICAwfPhxbttRVlP35558xe/ZsxMR4v1/3/PPPOz2/8sor2/3cKOBAzjgSMYdhXYNQrbcKVQXsDh4lVWbUGBtv2rcnlUyEuHAFckqMMHVQVQh2VKPZLlSfcDh4oRpCeGDbKzY0VVXb+nBDfUCiuZxSI3Zn1vic2ckXtj87DhOskSJAIYZIqHdNCCHkbMdm6d53+IsWhxvqsf3Y/qOHzAbXQX8bKioq8O233zY8f+aZZyAWOw9QJoSQplQaJV5d/rRww3jT4u2wmKxYazagtsZDVQaRCKZ+8QhYdbBhFefgEfBfBnSTu7mEIhjlnjxIi+tmy4lOjsC460Zh1df/oaKwskN+GDarHcVZJTi48SjsVht6juyGwX3aN1x2dNuxNu1fW1nrsm7ll6vx/j3zhHYUE5lRhIrJCTAnaes2sDugOlyJkBVZkNRYPB7bZrXh9Zs/AkQcOvdLQmxqFP0tIIQQQgghZyytSoH5D1yFA9lFWHvgOCw2O3auWIuKSOd+AJ7noHMooOWNQhVpd6x2MY5mRUNklcAht7jtGUzWhGJiZDcs3LkHZbpaSCus0K4vQeDWMvBSMaqTA1DTmQffZF+7EjCH8QjIAhTlLOHgelzOZIV6b4nQPmIK80uwpTYLdt6BgVEJ6NelF9rT7qJCOCR178XZ6ypKiExiOPQO8G7CHeIqKyI/y2p4rqtwbZMs+WQVPnnwK78r1VWPT3IKN9Qz8w7M+nkFRNXj0SUshNokhBBCCCHkjKYN1eDdtbNxaHMati7bJfQrrFu4BSXZHVMtOaFnHIZNHYhVX/3XYVUhTAYzCo8XYfvy3cI4Jla1od+49m2TsMoWbVFbqXdZt/DdPzF/1vetqp7dlMVoxeyr38FzCx5Fp64xiE2NhkgkatMxCSGEnBsefvjhhoCDwWDALbfcguXLl0Mmcz/Gec6cOVi4cGHD88suuwyDBrV/gI4CDuSMFaiWCovNzuNYoYeBRG2UHKlEt7gAoZJCz04a6IysWoFRCFeIxRyig2XYe8L1hnZrbE2vdnquUYoxqHNgQ1WH1mLBiR3HqlHehuoNTIDSedBVrcnWLuGGpupDDgqpCMlRSnSJUXfYYFZCCCGnRkXVUdTq89t0DLZ/RVUaQoO7oSPMmzdPuABnoqOjccMNN3TI+xBCzj1dBqYIS43ehK/un+t1W3u4Bo4AOUS1jYEvWX41Ahfth6l3DCyJIYCYg6SkFoqDhZDl1AUZrnxkKm54errQWXDbnOuRdSgXyz77GycO5ghBi6GXDMAH93/eLp/n2Wmvw2F3wCEVwRqlQXLfRDz37m1I6VxX1aG1WBlqVvGiLdUbmNhms7ZmH87F+/fObwg3MIpsHWLmH4Q1SA5HgBSSSjPEev/aQryDx2s3fCA8Do8LxWX/dzGufnwa3cAnhJCOxH6Ft/XeElVwIIScx3onRAkLq5a2av6XECHY6fVqqwIqiRXltgCESmpdQg7sUnrtxl6wysRwaHnAJAEnddQtIoAzA/f1G4G7ug+DVqbA/waNQeb+bKFNki0D1NMS0ffyQXi8Zo9TuKEBB9Qm8pDWAmKj671+xZ4cIdzgkHGouj8Gt51YAEeTX+w9ReF4a+hVSIyMbNP3lFVViZl/L8eB0mKgvt+VzY5n5yGyAKJqKXizHQ5W/ULMQ1pmQsC2SgT+UwpJdWN1h7iuzm2SY3tOtCjcYFdKYOgd4fF1m92BJ9/4GcHLMxCZEI4rHrxEqGJH/SSEENKBqE1CCCFt0nNEV2EpyirBb+/82SHf5owXrsZVj04T+kTufO0mZOzOxPJ5/yA3vQABQWohiPDZo42T2bXFrPEvOfU5dBmUgmd+eRgxyVFtOm7O0Xy8cv17yNyX3abjxHVxriRxeEsa5j3+HdqLzWLDC5e/KTyOSooQ+qgu/7+L2+34hBBCzs42yTXXXIOvv/4aq1atEp7/+++/GDVqFF5//XWMGTNGmDiQ3R/bsWMHXnnlFSxdurRhX1bp4ZNPPumQ86KAAznjsRu+HSUuTCGEG+pplBL0SdQ0PC+sbN1s1P7QGe3470AF4kLl6J+shUTc8lQsq26x8Uglak1tr24hFnHQm2xQK+p+LbCgR3uGG5oyWR04nKtHjcGOwamBHfMmhBBCTonsvP/a5zj5azok4GC1Wp0upO+//35IpW0LFxJCzj+1BrNf9wwcMglEcG5DSKqMCNhwHGCLGxfdMV4IN9RL7NkJ//fRHQ3P1y+smymhKXYuls7hMHWPhD1QCc5ig+JYKeSHiiAyNw7Oac7ucEA/PB7GXlHg5RLsYQGL937BZcN74clrxkMpa/nvR4POiFkTXkJhZjHaSiaXCmEJNtCHWTr3LyGQ4Y60ygywxQ32/ZhSg2FO0AojupQZlZDn1lXLqFeaV44vnvwBeWn5eOzL+9t87oQQQgghhHSk2ioDKwHgsr7SokKYXI9aKGGxSqAVG6EQWeuqSjtkOJ4TjQOWGDgUJ3fgOfAWsbCwK2fOyuH6pP5CuKFecp8EPDj3robni9IOgV/j5eQ4QBcPqPN4SA0cOB4Q6UxQ7M2FLLNudteKxzvBPIi1e5w/wyFHKS7/9X3ckpaEB965FTJFyytfV5tNuHHJb8iv1bmcFwtlsBaF2MKqSYghNokR+F8+QlbluD2WRCoW2gosEF1fvaEls6Ra4gMBife+HlNyXUiFtX0+e+xb5B8rwoOf3On3exBCCCGEEHI6uKss0F4un3mxEG6olzogGQ/Pu6fhOQs7tJem4QYmfedx3NrlQVz2wEW4+60ZkLain6SqtFroJ2mPCt0isQhlBRUIiwlpaJN0lKITJUKguzirFPe8fXOHvQ8hhJCzw6+//opx48Zh9+7dwnMWZpgwYQLUajVCQ0NRUVGB2lrnyeJZuGHFihWIjW3bhIqeUJ0hcsaTSUWQOhcXaDeFFd4DDJW1FnS0vHIzNh+tgqMVaYLcMpPf4QZWMcJbhqK4yoLV+ytQUl33nVTW+p4FNTpYjojAlnc41MsrN2FvZg2O5ulOyXdNCCGkfVltRhSX1V3YtlVx6W7heO1t9erVyM+vqzDBEsV33NE4aJgQQvwVGqiG2tdAG4cDvFYJh6JlN7/X/brZ6+tHtztXReDZDKkXdkXtuFTYorTglVI4ApUwDIxH9RV9YQ+QezyWbnxnGAbGCeGGhuOJRfhj+2E8OH+Jy419f/zz3Tq/ww1JfeIhbfLezW36Yzvu7vMYDmw4IjxP23HM5zHHXDMCfcf1bHhuDVWi6IH+KLuhO3QjY6EbHYeS23uj+LZesKtc33vV1/9h7iNf44c5C3F8f5Zfn4MQQgghhJBTLTwuBPKDPHijcwDYzotwojYURrsEFl6KMpsWeZZQ5JlCcSAjCVt2dGsMN7jgwEuBPzKPen3vvcWFPs/PIedh1YpgVlmhXHMYmkV7GsINls7Kk+EG9yzxciw8uB0vXfU2WmPB4YOu4YYmeDFrR9W1dXqrgxG+zvPnWfvrZqFNcuRkdTp/2iTjbxiF3qO7172XyI+K1c22+fPTv/DJSz/j6/nLcTyjbVVSCSGEEEII6SiRieFe7++3xb/frff6ev31eUdh1Z//+GglXrn+/Vbtv3zev36HG1IHJkPsJRT97/frcU/fx4UqFszR7b7bJBfOuADdh6WitX5/bxk+f/IH/PjK78g5mtfq4xBCCDm7abVabNiwAXfddRdEosa/VXq9Hjk5OS7hhmnTpmHXrl3o27dvh50TBRzIGU/EcUiMUHXIsUuqnQfVswE9bNB9Wn4tThQbYDC3rXqEROzHzWwA5TortqZVCYP9c0qNQmUGfxRUmHxuo5SJMCBFi3G9QzG2VyhiQjwPeGLvuz29GjY7L1R08CVAKcbI7sEY1zsEsla2Y06UGHEkz4C1ByuxfGcxqg2+gxWEEELODCZzBXi+fSotseOYzW2f1aK5xYsXNzyeOHEioqOdy3oSQog/5DIJpozu4XUbjudgHtoZhmn9YRrWGbyfKe2df+9zem6x2vDXtqP4ctk2LFq3H8VFVU6vm7tFwpJUN5tocw6NHPrRKU7rVNq6WY9sISqYukd4PI/t6bl46uH5+OC++Vjz0wZYLf5dl29ctNXnNtHJEXjy+wcxd8cb+Gjraxg2daDXihCzr3obFpMFUrnvsEh8t1i8vfpFfLLjdQTEBKF0Rg/Ywhpneqpnidei7Lq6QUfNLf5gBb59/lfc228Wrou7G7lpNKiIEELaCxtP2h4LIYSc75QBSoy/dCSwyHXWVLNDgmO6cByrCkX6wVgc2ZmA9Uv74cDmzrAqfN/nX593wum5yWrD0oNH8OnGbViw5wAKqzyHBxqc/F1t18pQOySaFU9owF0U6XN340gt1h7Lwswvf8OLK1dj2aE0WO3+Te60MjPd+wYckBAWjPenXoLf7r0FH65/GYMme+54ra3SC20Su83uV5skqXcC3l03G+9vmoMQg0OoIueNLK9G+NcSrkTxzd2Q+dowvKMpxMv6NEz642dMnPUWckvKfb4vIYQQ/1CbhBBC2ocmOAAXXD28Q77OnX/vdXpuMpjxz/frhAH3q75aI1RZa4v6fhJfNi3eLrQFPnzgC6G6NmsT+GODH/0krC/juQWP4qOtr+K9DXPQb3zjxE3N1ZTrMPvqd+BwOITK176wihcfbn4Vb//3olMlDH+xqnUL3lyCb577BXf0eAQ3JT+A0ty6wDohhJDzq02iUqkwf/58HD58GLNmzcKgQYMQEhICiUSCsLAw9O/fH48++qhQ3WHp0qWIiorq0PPpmGglIe2sa6xaCCNUG2ztetym/90XVZqxO7MGZmvjQE3Ov3yCRyqZCDVG/y54WQWF+gH/B3NqMaxLEEI03i9U7Xbfv7miQ+RICK+7gNWqJAhQsP/sPVeusNp55JYZheoMzQMgzcUE14UlgtRSdIvTYH+WHx0dXlhswJr9FZjcPxSqDkp+E0IIaT92u/dKSC1ls/sO7rX0Zgy7oK534403tuvxCSHnl7uvGIFdR3Jx3N2NdJ4HZwdsMsCmEoMPC4chWQvtkgOQ6H0EBZpUcvtvdwZe+fZfVNU2VrSRyDhI+sRCub9u0L2ph/ebBNbYQNi1Cohr6n6nRqdE4vieLJi6hvn8jP+lZyPw7wwsm/cPPn/iB8xe8oRwY9wbk97334LRVw7HhBtHC49T+iYiNtV72KyqtAbrftuCEZcOxsGN3meTHXnFEOHfLgNTcNnPd+P1NRs9bmvppIEpUQtFVt2AInfKCypxV+9H8VPOZwiJCvbxyQghhBBCCDl1bn/1ehwYcwT5Uh1wRQA4aWMHhs0gRs7eTrBUeizX4FHTXgYWLJj91xpUGRvv0YhkHBDg/RhiY+O5mFKCYdPKIKmp61+I6hmDElR73d/UORC1Mzrhr6I8oCgPP+3ejxitBvOuvRxdI7y3ZQxW3/1GU7t3xdTu3RraDtFJ3kMXZfkVQoU51iZJ33nc67YjLx8s/NtzeFdcd+dEvLtrL0yp7kPpjGpPEaqHRqJySiLsKpEQwKjHS0Q4HgNc9MkX2PjkgwhWtnxwEiGEEEIIIR3lrjdm4PCWdBQe96+qc0v6dJtWjf7koa+grzY0rBP7OaGUJ9HJkTi+178KzhsWbWuotMb2m7PsKSGc0NZ+kgtnjMEFV9UFRLoPTUVkPJuQ6pDH7YtOlGD7ij0YcdlgZB3K9bidSMRh+KWDhMd9x/TE5TMvxk+vLkJbFGeV4JYuD2JB4ecICFK36ViEEELOTl27dsWbb755uk+DKjiQs4NUIsLonsHoHqeGoslN+7YK18qEfytqrdiWXuUUbmCaXEO3ir/hhubYeWw+WulyPs0Fqn0ndYNUzttU+RpgJWxjQ6dwhVD9wdt3F6Kp+/6YUh9hiJbYmua9s4MQQsiZQSz2XBWoNSTilnfCe7NlyxYUFRXVHVsiwZQpU9r1+ISQ84tWrcD8p6/FnZcNQ1igqkmwgQdnA4xhHIyRIlg1HGxqDuYYBUrvHgRDL89VE5i+Y+tm6dmbkY8nP1vuFG5gbDwP08B4mLpFCgOP7CE+biZznFCtoR4LNzAOIejsnUMhdRrQ8/TFr0BX6VxqsrmUfkk+j5vSL9Hpefou7wOEmIxdmZh8+ziERHsOGQydMkAITNTbnOO7dLKxS4jPbew2B1668m2f2xFCCPED304LIYQQBIUH4oONc3Bd0AQEzjTA8V4VHPOqYX1Nh+L/Yt2GG5oGDzwZHt1J+HfziRw8vmSlU7iBcVh4cF66FVh7SGJo8j4iDrbQxjZJ9h9HfJ6Dw+Ha11FQo8MdPy9Crdl730PPcO9tLnfb+NsmueTuCxEUEehxm9FXDUOnro2DnfasPoigVcchLXJtR/Hs/6xGFN2SgrJrkmFXO4cbmjIGSTHrs199niMhhBA/UJuEEELaTWh0MD7c/Aqu/d9l0IZp2u24fcf2Ev7dtmI33rrtE6dwA2O3tm7sVT1/ww3NFWYW46mL5sBs9B5g6NzfuQ/En238bZNMu38yNCGeE+fjbhjlFODes+YA2oPVbMWbt37cLscihJDzHrVJWs3z6GVCzjBSsQjd4gJw8cAIIejQViIOSIqsm/0mo0Dvq2rwKccqKRzK0eFwbq2wuAsQ1J+/J1IJh7gw504NMfvgPrBt2Pc9rEsg5G4CJZGBMgzp4nxT39HWNEgTrFKH40z7gRBCCHGhkIeA49rncpLjxJDL23em7OXLlzc8HjVqFIKDaSZuQkjbaNQK3D19BFZ8eC9uu3gwxFZAZAcsQRzsSjfX2WIO1ZNSYIl1f6NfrpRh6r2ThMdfL98Ou91zwNnUJ7Zu8IsfN/I5i+s24irfVXIkVUaXSgpfPfMzvnn+F2HZv/6wyz7T7psEzkvpu+DIQIy+cqjL5/aFbaMN0eDF3x9HULjW5fVh0wbi6Z8edlpntfvRySH2LzDPZqFi5Z8JIYQQQgg5k7Br5NtfuQG/HfkcVyaPA36phfjvGshy3FcpE+s5cF7yASqJFNd36ys8/mzTdo/3+SU6ETg3Y3rYseUlInC883U216TdolpXDU7v+VqdvaWj0n0boaS2Fh/tXoN5x/7G58f+wf6qbJdtbupZd/6exARocGFiitM6mR9tEplChuCIQDy34BFoQ10HFLF2zqyvH3BaZ7XYIDLZoNpfIgQ/wJoUDtRV/AsATJ0UcAT4nriKWWcu82s7QgghhBBCTnXw+s7Xb8LvJV9h6j11/RttodIqcfEd44XHP73yu1M1hzNBSU4Zvn72F3z97M/47sUFOLItw2WbafdN9nqMmM5RGDS5X4v7SVi7JSwmBM/++ggCgp3HybF+mbHXjcSj8+91Wm+z+K5w56+ty3a127EIIYSQ1qCAAzkrscH/bRUbooBcKhIujgsrfZcLOx2yS01Iy9cLy8YjlVizvxwGc2NHgEYpQd9E94OlxCJgSGqgS6AhOsT3bNsxIXIYLXZsP1YDs9X1u5ZJRSiuMqOgwgTbyUFYoU2qObQHnbH9LroJIYR0DKlEiciwAe1yrMjw/sLx2tPGjRsbHg8fXlfykxBC2kutoa4N4RABVm/5axGHmmk9YR6UAnuQyunm87jrRwkz75itNmw56H0GIV4thz0sAPIT5V634wwWSItcBzcpj5YCXgIUjOKQa1npZZ/9jR/n/C4sj419ATOHPYWygoqG11kFhXvevtnt8VQaJZ5b8BikMucBPCMvdw48uDPyiiEoyirBqze8LwQtmtN2jsKGvVlYv+MYTOa66WT7d4rxeVxZrg7+Ki+o9HtbQgghHtDMRIQQ0mH01fqGx0HL0iEpdq4aYJfysGgBka5ugD37pcxJHBApbRCprZCobbiyZzcEyGSoMZmwNTvX43tx4CDViyEvFkFaxQkLe6wsFkNkd+6DENeYIctvvO4WmRwIeT8PsLhpj/A8HIUKwCJ2eUkksyOwZwWW6tbim8w1+CpzNe7Z/qmwVJgbP2v/qGjMGjbK7XlrZHJ8PHkqxCLn7tBRfrRJRk0fgvxjhXh9xkeoKXetyBAYrsWmxduxeemOhhldew7vAodMjNqRCRA5ALGtbuFFvBBwaAm7XISaZtU0CCGEtAK1SQghpMPoaxrbJK0hEosw+dZxkKvkqCyuEiYeOhP9/t4y/PTqInw/+zc8OPxpPD7+RdSUN7Z5+o7piZueu8rtvqwP6NlfHnGZKGrk5UO8vifbfuTlg5F9JA9v3Pwxaiudv2s21o1NDrV+4VYhiGA52U/SY3hXtBfewTcclxBCSFt+oVKl69aigAM5K2mUrje7Wyq33IS1ByuEwIA/AeCoYLkQGjidWGWDTUcqnaobJEepMKZnMOJCFVDKRFDLxUiOUmJ871BEBLqGGdh2AQrP31+YRoowrQy7j9dAb3I/q1JumQk7j9VgW3o1Vu4uw5HcWiSEK4SqGO2luPrMDJ0QQghxlhA3rl2+koTYupk52ovNZsOOHTsang8aNKhdj08IIYkxIcKXYGeX3F4qGDBWFQdbYjhM43vBFhPccPN51VdrhJvhpYWVflVEGz59KEJPVABuKjTUU+7NA+emGprIaIVm/Ym66VHdUO3IhbTcueyzO0e3H8PTF78Ce5NqCVc+MhXvrZ+NsdeOQER8GGJSInHlw1Pw2Z630Ht0d5djTLhpNKKTG0smNzdocl90G5KKN27+CEVZpU6vOdRyGMf2wOK8crz08Qo8+fYSXHrvPHy7eBuuGdgbEi8/CzbQSnXYe0Ckqe0rd/u9LSGEEEIIIadap26xDY/FBivCftiPoCVHoThcCl6vhyUYcLACzxIxuFpOCAyIlHZwEh6sICcbdP9T5m5c/e+3KDE0DuDnwcMuc8CmrlvYY7aOmdilM7QmGaQ1HMQW99femo254Jo1OxS7ahExKxOqvysgqrSB0/MQH7dDvJkDX+lmUiaOh7ZrJSQq14mQWBWHx/d84zSz6wMDh+KXy6/BxSmpQsWGxMAg3N1vEFZeezMGRLkGoSffNhbhnUI9frdsIFFS7wS8esMHKM1134ZY9tk/QpvlhcvfxPVx9+C3t5cKFfqs3SNYSXKnbW2tKErOQinrD51o+Y6EEEIIIYScIp26NrZJWsNhd2Dxhyvw6JjnUVlc7dc+LBjAAhGn0761h/D85W84rbvlpWvxxt/PCW0J1taI6xKN6564HPP2vo3UAckux7jkrgsREl3XX+TOmGtHIK5LDOZc8y4qCt1PxvTHRyuFNslzl76OGzrdI3yX0+6fDK4dB29toyoOhBBCTiPJ6XxzQlqLDdI/kF0LWxsrObAB/PuydNAqJajxUTGgX5IGVbUKbE3376K6o9Sa7CioMCMujPVM1AnRyITFH6yiw8juwdieUY3KWuekbWSQDIM6BwrVE0qqvdStboL9DI7m64UBWZ3CFELVifagM9hxOLdWCHMEB0iFyhMiHwPHCCGEnHohQd0QoI5FrT6/1cdg+4cEtd9sEkx6ejqMRmPDcwo4EELa20Wje2DuLxtgRQsqj4lEMA/pDPHy3eCsdQGBnCP5+OqxbxGfGoKc4iqPu0rEIsx682bsH9cHLzz4BWrHdoYjsLHyDWe2QbEvH5JqEywJIZCU1UKkd76mVx4qhrjGBH3/WFg7BQrBDEmRDqq9BVAc83/g/4kDOdj65y6nGYZ6jeouLP5QqhV489/nMfvqd5CxK9PptRGXDcYT383Esb0ncHDjUafXeJkEprE9wDfrvGDVNOb9shE2mx1XcKH4zVoCSJzT6SI24OuXo27DH56k7TiOkuwy2Kx2dB+WiuGXDoJY3PawPSGEnE/YANfmg1xbcwxCCCGuJt06Ft88/yusJ2fUZL8vlRkVENcYUXlBX+ffpRoHIHf/CzWtuhRz0zYhRqtBnr4GNrZt08teBWC381AbpHh1+iRs/XUr5jz/PSov6Qx7cGM/BWeyIWBLLnjODN3AYCgy9ZBWNrZJROV2WM3h4NPU4BycEJmwe+jWkIeYIFZ4DnYfqcnDtvIMDAvr0rBuWGwnYfGHOlCNN/99AS9f/Q4y92c3fgaOw+irhuHxr+7H4a3pSN953Oex7EoxyhQOzJ3zi9CfMeTGkfg7v8BpG74VzQiJHtidX4B0fQVsDgcGxsVgXOdk6ichhJAWojYJIYR0nIvvGC9Uf7bbPF+7+4P1E7DB+SFRQago8txPogxQ4InvZ2L1DxvwwX3zcTod2pSGfesOCdUb6g24sI+w+EMbqhH6SVibJPtwXsN6kYjD2OtG4rEv7sPe/w4i65DnSntNVZfpMPfhr3H/+7dh4MS+2PnXXrSHA+uPIH1XJniHQ5jQavDF/SFqViGPEEKId9QmaT0KOJCzEhvcMyBFi+3tEDYorrKgW6wKNfneByb9u7cMEsmZMcC+sLIu4MDCBRJxy89JJRdjbK8QVOgsKKuxwmJ3IFgtESo+SCUiFFW2vHpCeoEBKVEqtJecMuegBKtOMbRLkBB2IIQQcuZgHb99e9yJrbtfh93e8r8fYrFc2L95Wc62OnToUMNjhUKB+Pj4dj0+IYRo1Ao8ddckvPjZSpjYzKFefo9Jml7aSsSwJYRDeqyoYdWmP3Zg+g/34/O/d3k8hii9GHckPQCZQgppiQ5BC/bAFqOFnYUczDY4glSw9IyBRXayme/gIcmrhGrTcYjMjW0dWW61sPDsdDmuRQP+m9qydKcQRrCYLJArWz5bUlRiBObueAMHNx7BwU1pQnnlrkNShJv/Ko0S6TtcBxJZO0e6hBua+vq3zbgpOQrR8/egdlAUzPEa4fMpMqqg3lMMsaEFYRQAK79Y3eycw/Hi4v8hpW9ii45DCCGEEEJIRwgKD8SDc+/Cu3d9Cr7JdX3NsCg4l1vmAbX3a+GVuUdxW59hmHtwh3O4oZ4YMKitmPDpV1CVm1AxORyWcBN4qRWyAjMCdlXBnChDyc3R4OsrSNt5BOypRNiP2ageE4WqCdHgZWwgjANiIyCtFEEdYII6pQYypQ12mwi6kgDoStSQBvu+x7Sh9DCGhqa2uk0SlxotzKbKBiUd2ZqBSoUdXcd0xZCeqVBK5W7bJE3ZAqUouywBtf1CwEtFQhvs5RN7cNOEC4BmAQeuZU0RYXteBHx/ZH/Dus+3AfFBgfjsqsuQGua5+gQhhBBCCCGnSlhsKB748HZ89MAXThXWWuO/nzdiyj0XYtH7KzxuY9SbcFPi/RA3m+DodGH9JH0u6NHqNklC9zh8cfA97FlzAGnbj6G2yoCeI7ui3/hekClkwiRMLTVv1neYdu+kdgs4LP6o8efx65tL0KlrDGYvfVJoTxFCCCEdjQIO5KwVG6LAmF5i7MiogsHsaNOxbH4M6rE5AJvlzJgyrlJvxbKdJbDaeEglHBLClegSo4ac3URvAYuNR36FCVX6urvrYlFddQx/q0E0d7zIIBzD3rYfh1tGiwObj1ZiQp9QKGQ0ayohhJxJAjUJGND7/7D7wMctCjmwcAPbj+3f3k6cONHwOCgoqN2PTwghzKSR3REVrsXjP6xAganW/ZfC85DVOLcjHFql83O7A9zuHEhPlMGaFOZyCHF5LZRbT0BnaZwFiQ1XkhbUCItxcIIQbnAi4mCLD0FtgBya5QfBNbtIF2bDbkOHw6EtaZgeehtqq/QIDNNg8m3jce0Tl0EbomnRcWrKa7H21004vjdLeK5QyTHhxtFI6Z/ksq2tk+t305SD4/Dbwi1QW3hI/m2chbW9FGWV4snJc/DlofeE2ZUIIYQQQgg53S66bRxiUiLxynXvNcx0aoluNhGRyHdvoMVhh1Vpdx9uOIkNuC8TGeBIdABJIY37xiig768BmvdPiDnUDgqBvkcgeDE7gcbQhV3JIyKpFCEh+qbvAFWQEYHRNag2sIrODvA8q/TgPky+b+NhXD58EQw1RgRFBAqzx14z6zIEBKnREvmJYnxdXY60qjJg/zGoD8swPaUn+is897fYtFLkPtILttAmg5hEHGpTNPgyax/UASI4ahvbYNJawKp1+grc4wGJoe5fXuq6cU5VNW775XesvOsWaOQtH0BFCCGEEEJIe2OD6WNTo/HqDe+jurSm1ccxGy2+L5h51qegw5li59/7sCLwZhhrTQiJDm5ok7BJnFqisqgK/3y/Tqj4zai0Sky6ZSzC41oebLZb7Vg+/x9IpGKhOnV7y00rwBMTZ+OLQ+8J1boJIYSQjnRmRBoJaaWQACkm9AlDmLZts/rrjO1/UdeR9Ca7EG5g2L/HCg1Yd7ACpiYDnnzJLzdhS1pVQ7iBYWOesktNyCioFYIKra2u0VFYICOrxNhhxyeEENJ64SE9MWzAkwhQx/q1PduObc/26wiFhYUNjyngQAjpSH26xGLx07dgYGKzgAHD81BU8M4VHBg35ZpP7M+Gem0G1KvThMoLomojxMU1QgUGzfJDEHm41neoZDB39zxTjiNEDUuy92BAa+SlFQjhhvrSxwveWoKHRz6L6jL/OzD+/WE9Xpz+VkO4gTEZzFj++b/489O/IJU3G4Ul9R10tou4Fg9oaomqkmqs+mpNhx2fEELOOXw7LYQQQjxiM4Z+efh9dB3ZFbbkKEDVbDCNn79Lj5SX+viVzsOhdrgdc8R7mUGVV4ldeiODgvQN4QaZyIYQuR5RSh2iVTp0Cq9A104liAuoQVxANUIVekhEru2hvMXHhHBD/XX6z68txiMXPAddpYfwuRu/ZOzD/euW1IUbTtLbLPg+bQ++DM+HSOU+GVIxKdY53NCEFQ6ok5x/Bpydg5gFFzzgTIC0ClDlA1Id5zbcUK+4Vo/FBw77/nCEEELqUJuEEEI63IAJvfHV4ffRuX/bqh8f29M4gd3ZIPtQrhBuYCoKK/HjnN/x+LgXoK/xcvHfzB8fr8RrN33YEG5gWDvnj49WYv3Crd6Kh3tkNdsQFtsYSm9vJTll+O+njR12fEIIOedQm6TVKOBAznp2Bw+ztfUlA9gYGZ2xhfWBz0B6sx2Hcv27ce/geezP9pxqrjU5EKRuXWiE/Sx6dFIjSN0xBWIKK/2fGZwQQsipxSoxjB4yG0P7/w9R4YPAcc6XmhwnRlTEIOF1tl1HVG6oV1vb+DeRAg6EkI5mMVgg3liB4IMmyMttkBh4yKp4BOTzkLm57JbkVTg9D44MRNbhXGGckCynApp/jiJw0V5oVxyCPL3EpfqC03snhgozhXpj7YCAg6eZe7557he/trVarJj32Lcey1afOJCD7kO7OK3jTg5e8kZUY0R5QSXueO1GJPfpmL8zW/7c2SHHJYQQQgghpLWMdgfKeyTA3iMeyqpmwWCeA0zeuwOjlVpkFDq3U1yIeI8TqvocdCN2vu4PCa5rKCnFFoTIDZCL7Q3HkIgcUEqskIuswjq11IoolQ5SUZN+nGo7JP+59odkHczFjy8vhD+MNite3fWfx9cP1ZQi9vERLuvZ16kb4r2NlW/UYeb0UUiJOjnjKgdIzBwktQDX5GOwx2ydzMBB5ODAcRwcfhTYXnMs0/dGhBBCCCGEnEIGnRG6yqYV2lomKikCOUfycLbL2H0Cv7z+h1/bsiDEV0//5PH1tB3H0GNE11ZXpL7rjZvQqZt/kxO21JZl1E9CCCGk43XMCGRCTqH9Wbo2VWBgJY4N5tYHJM4krCpDnwQNpF5mS2JKqiwwWbx/ZlYNIiVKhcxiA5t4tkXUcgnG9Q4QKk1YbA6hukR7TbbX0nMhhBByarGO2NDgbsJitRlhNlfCZjdBIlZALg+GVNKykpyt9fnnnwsLIYScCh+8tRK5WeVgxXjlVXaYIuRwyNxfk4sLKiGucB6Iw2b4MelbF+Tlm1c5cMPhxzbtZfWPG3Dvu7dArnQ/m2m9bct3o8pHuWpWIYKVt2YVHRx2B6SZxTBHBnrcntMZISqpO2Z8t1jM2/s2CjOLUVlcjYdGPoP20hFlnQkh5JxG93IIIaTDvfnRX8gvrBIeK0t56OJ42AKapA50EkBh8RhQqC6wwmAwA96KoXkKMbRwRlEOPJRKq/BvoMzkMRwhE9th5cVw8CIh0x2iMKLYoAH0DihnF4Ezu/8D8/e3a3HnGzdBIvXeDvo7JwM1Fu/tsPLBgbjo9vH4+5v/4HDUvZ9DLoZD6buN1TUhHHeNHoyc0ioU1+hw8zcLIbZwEFtYSKLuWBxLSzTh4Fz/bHJSu/Ad81ZRXbqCtUkc50afFiGEnDLUJiGEkA739u1zUZzlvSqcNxVFlbAYrTgXsCrQt825DiKR97FbGxZubagA4YlILMaFMy7A6h82eJwwypNuQ1NxzazLkJdRiOKsEjw5eQ7ai536SQghpGWoTdIqFHAgZzU2CD+/wvvFXj12A/zk/WeBWAQEKMSoNpwdg1PY+XqZuFXAXjdaHD4DDiY/Kl6YrTz6JGqQGqNCQbkZVrsDJdUWlOt8NyiU8rr3VyvEUEOMyGA5itqp8kJIQOsqSxBCCDn1WJjhVAUaCCHkdCkprsaWjekNz9lwE0WZGeZgGewKUcNUpiKOg7ywAty2jIZtlQEKRCZGIOtgTqvfX1xtbJdt/KHUKGDUeW9/sZvxFUVViE6K9LpdxcnBV963qcSDc+/CdU9dgY2/bxNmM9pcpce+/HLXja02yLcdaxhbFd6pbqbU6ORIYRkwsQ92/7Mf7aHHMOfKEoQQQgghhJxOeQWV2L7nRMNzNnY+7IADlV1FMIecvEK2iCCpkCEmsQIKmR4WuwQFukDIRGpEW4ORWVkNETjYlbzn2u+8l/UnB+w3XJALTzm3+7KHbFyOSmrxWflBKrLDbK87IVblIWyjGYa5hRBVeO7XYbPGVpfpEBod7PXYJUbfFbFLjbV47Iv7cdNzV2Hjom3CrLSbNhxEJnv7ZoUymosO0Aj/xocHCcvAhFjsys53G2wQ8CzA3vhVijQWSMLMECnrPitv42CvksFWqkD/2Gif504IIYQQQsipknUoF/vWHvK5nUgiEgb92yyNZc0CgtQIitAiL70QZwN1kBr6Ku+VKqpKqmGoMQqfzZvywkqf71dZVIl3176Em1+4BhsXb4fJYBLaJpn7sn3uGx5X108SlxotLF0GpSB953G0h+7UT0IIIeQUoIADOavVGG1+zeivkIpcBvUHq6Uo82Ow/pnCV7ihnkzie7oklYfZZN2FFJQyMVKiVcJjtcLoM+DA3j1U41xDuWusGiVVZqeASWvFhSmEVDKbIZwQQgghhJDTLfNYCRx25wtdzgEoyi1wSDjYT157h2floSqzpHEbEYduQztj/7ojbXp/aXY5OFMieIXnILAsrRj2ADmssaz6AQdpUU2rQg++wg2MSMT5vGnfNIDgdZv4MOHfiE5hmP7wFOFx2FdrcGTRNtg6R8LB3sdmhyS3HNKMIohOznQkkUmQOiDZ6Vg3PXsV9v13CHZbGwPuHDBhxmhqkxBCiL+/NvnGgZqt/tVLMxsRQohXGZklLv0kYisQdtABqxKwBHIIiavGyItKUGtvDBr3jyxATEVfzN9eVwWNAweJTgSbxuEacmCrLBwcaje/lDkefGO22znFUD+Q384BIh6cpK6jQ1erQGCI7zaJiL1xE/bVxV7DDYxEKoZK63vCjWh1XQDBmxi1Vvg3MiEcVz4yVXgs3twZ/65fA5uX3VUOCVJDnNs8D4wbhru+WwS7u46Spqt4QBxohjTW+fvhJLwQeBArHbisaxdqkxBCiJ+oTUIIIR0vY3emz23EEjE0wWqnys4iMYduw1Oxc+VenC18hRsYmUIKhdp7lev6vg+f25zsJ2ETOV392DThsVwp8xlwYBNssX2auvmFq/H8ZW80VKdrLdYPNO6GkW06BiGEnE+oTdJ6vkc5E3IGE7OyDH5wV7HgVIQbWNWFUykiUAaFTOx7oFCgDKqTAQZPEiKUrQpZsAvZeja7AzmlRpTXWNA5WgWp71PzacPhSizbUYq9mTUwmM+O6huEEEIIIeTcJZd7njdAZOMhNdghrbU5hRsY3sFjz+qDbR5wz9l5qDYe83ixrs2thLlbJKqvHgDDqM4wjEpB9VX9oZvUHQ5F+895MGTKAGiCA3xvd3F/hMZ4n1H14tvHu6yzGC2Q5pRBueYQ1Iu2Q710F+R7shrCDfU37uuxqg9/f7sWR7dl4JpZl0IdVBfebjUeeGDQk7g8+BZ8PPNLlLmrJkEIIYQQQsgppPDSJpEagTBej96XZDiFGwQiBwrC9iA5Oa9xlZ2DtFoEsZ4DZ4GwsMfSKhE4i0gIOjhjo/GbhRsY9px1QXA8VLwEIpUNIq0FIrVNWCpMSjjcVTFwObrzNo4K350UI68YAqW6sU3gycROqQiRew9CXJPax2Wd2WaHrIYD1zjprDMHEGZufP9qswkL0g7ggL4IN184AGp5s3B6k+IXPHg4gm2QRHsOf3BqK2699ilMD70Ncx/+GhVFvmd9JYQQQgghpCMpVL4H87O+kKbhBoZNHnUqwg1ylfMkrR1tzDUjIJH67n8ZfdUwqAO991lcdPsEl3VWk6fGSKPAsMZEdk2FDiu/XI2cI/m48tFpUPjRXvKGBSRu6/IQpofdhnmPf4eq0uo2HY8QQgjxhCo4kLNaSIAUCpkIJouf5Q1OsWC1BGU63xeW7YHlCrrH+R5IxLDqB30TtdiaXuW2AgY776QI14voILXvXxnBAXXbHC8y4HBuLWxNZrMVt1PRBZuDx4kSIwoqzbigRzAClPSrjBBCCCGEnB69+sYjiM06VOll1p7Kjr25K82rQsCKgzD3jIE1PpiljiEuq4X8SBESbxuNvdnFLvtYOwVDN7kHtEv3t9vM2GxGoltevNavbdlsTTM/vhOzr34HDjfhjJ4ju2LybeNc1qcOSPJ57O7DUoV/f3vnT3z/0gIYm4QfZMr26chg5aWXfLIKm/7Yjvc2vIyoxIh2OS4hhBBCCCEtNaBPPALUctTqzW5fjx5dBJHU80V/5+QCZJ6IhsNRNykSx3MQm9lycoOTu4p4wGEWgZc3qfDgLtzQFA90iwvGvsoCp9UmmwwnKkLQO7LI6/42R+OsSbbjNtjTvAfEVRolbnruavhDLpbgpSET8dDGP+Fw01EyIioBlyf1dFnfPSYCnIODohiwBvGwsYyE6GTWwwRIqzn07xIjbPvJnq34eO9WGG2NE26poqWwFzogNp38vkUOqKMMUIYZwKscMEEMMy8Gz8pieGCcEITaDTlY/OEKbF6yQ2iThMf5rpJHCCGEEEJIRxg4qa8w8VDTe/FnkrguMTi+N+uUvBerUnHD09P9Dobc//5tePv2uUKFtuYGX9QPF1w1zGV9Zz/6SXqO7Cb8+92LC7DgrSUwGy3tHvjQVdRi4bt/YvOSun6SkCjvk1oRQgghLUUVHMhZjQ3U7xqjxpmqo8INzStDsODByO7BCNE0m/nHi6hgOUZ1D0a4tvHCVSrmhEoLI3sEQ+ImjRCklgqhEm+SI1XILjVif5bOKdzANHvaZmarA/uydO17UEIIIYQQQlpAKhXjuhkjPG/gcAD5ztUbOoKkXA/1+gwE/bAdQd9thWbFQXB6s9twQz17WACsCa0bBKPUOM/w03VwCt789wV07u/7xnq9kZcPwRt/P4e+YxsHDWlDNbhm1mV4/a/nIFO43mTvMbyrz/e49P6LsHz+P5g/6zuXDhVWAaI9leVX4NNHvmnXYxJCyDmFb6eFEEKIR3K5FNdfMcTj6yHdm1VuaEYmsyMs1HMoW2QDJDpAUgNhYL/IJAbHBudbfYQbGInDJdxQr1yvQUGN1uOuNgcH28lB/ryNh/Fjg9c2SY/hXfDWmheQ2LMT/DUtqTu+mXA1BkfENawLVajwQO/h+GrCVZCJXctSD03phOSIEIgcHOQVIqgKOCgLOeFfRZkIYiuH64f3xVcHd+GtnRucwg2MwWGFJdwBXsZDqrIidmQ+wnqVCSGHAK0JYVo9ojU6yMSe+5fsoY39NMXZpZj/v+/9/syEEHLeoTYJIYR0OBY0nv7wlDP2m+6ocEPzNkmvUd3w9n8vCYEKf026ZSxeXvqE0J6pFxIVhBnPX42X/vifMFmUu+BDTEqk1+Neev9k/PLGH/h+9m9O4QbGbGjffpKC48X48umf2vWYhBByTqE2SavRtOfkrJccpRJm9D+ap4fd0djjKZeKhAH2Tde1BBvsPzg1UNifBSnMFjv2nGjfwfQKqQgma8urT9RPcCqTcOjRKQBJkd5LlnkSppVhVA+ZEBRg3xWrhiFmpSC8GNhZi42HK2F0UzUjJUqJmBA5/tlbjlOlpNoCvckOtcL1op4QQgghhJBT4crrhsJktODn7zbBbG4chBIapkHNtkOwGoxe9+e1aoCVBLY5gIpqcCcv+DUhAXhuwaPQVxsglUtRdKIEH8/80u/zsiT5Di9oRneBOWsLWsqoqwsOBEVocdcbM4Sb8K3Rb1wvYWEljFkYISw2BFKZ91D1Uz8+hFkTXkJFYaXLaywcMWhyX8xIfgCnytZlu1BeWInQaJqdiBBCCCGEnB4zrhkGi9WGnxfvgMXS2CYJDwuASOa7j0TMue+nCFEp8cFlU6DTmyGXiJFurMCcjWuFoANYxQeVm4oKHA+OlXsA61vx/t7pZRGIVGnBifMhFvaBUHXa6hDD7GBdmBxsR20wfGqAbafVbZskJDoI975zC8ZdNwqtcUFMkrCUGvUw2ayIUmsgFXnub2D9Re/cMAV3fvE7ymsNQsULrkkW4b4JQzEgKRb/9/Ofnt+U5UO0dsR1LYZE6fodikQ8wgJqUVSjhcNNJQdxhfN3sWnRNtSU64TAOCGEEEIIIafDLS9dC5vFhkUfrIDV3Hi9GhEfhpKcslYfNyQ6GM/8/BCqy2qhUMlwbE8WvnqmfQfTh8aEoLygosX71bdJWL/G/R/cjtHTh7bq/YdOGSgsFUWVsJiswvEkUs9DOkUiEZ799VE8OXmO0A5o7vZXbkBKv0Q8O+11nCrrft0sVKNQa1s3fo0QQghxhwIO5JzQJUaNpAglCirMMNscwmD36CA5NqdVobS65cnTqGAZenbSQKtq/E8kPV/fzmeNVoUbmrLYeBzI1gmVGwJV/ldvaI6FQeR+7h6gkGBc71BklRiRV24SghFalRhJESqhKkSV3gq92XuZ6PamN9so4EAIIYQQQk6rG28bjUuvHISN645CV2NCbFwIho1MxePjX8DBUteB+AwfoATfLREIUDautNnB5RZjZP9OuP3VGxHfLbbhJVZKuEWkvkPAZaXVkHWJgLlzOHiFBKIaE+RpJZDmVsLXZKxMVUmNELroPiwVnbo2nmtLBYUHCos/2Hcyb+9bWPbZP1i/cIsQjEjpm4Bp903GwIl9cXhLGkpznUPXpkStsHA8D0V6FeSF7de+c9gdKMwspoADIYS4wca1+hjb6lNb92+JjIwMfPPNN1i/fr3wuLKyEnK5HOHh4Rg0aBCmTJmC66+/HlJp6+/DEUJIR7njxlG4atpArN+Sjlq9GfGsTTIwGR8dz0GeMdPjfixQUFukBmcHeAn7xc0J5d8ndUvFY2NHISEkqGHbzZtyGx5z4MCzroCGZgcPTuwA13Q8vo9GhVjkQKbBDA6hUIitQkUIk13SELrgjYBoZj44g+c/BhWFVfjgvs/RbUgqopO9z2LqTbjS/2rhXaLC8PtDN2HB1v3452AGjFYrusdE4Prh/YQKD5vzs1FmdK440Zwqwgip2nOVBjYXlVpmgc7sPCsso1ztXJXDarEJlRwo4EAIIWd/m4QQQs5WLAh85+s34arHpmHT4u3CxE0JPeIw+OL+uKfv48g61NiW8IdILMIFVw3DHa/diKjEiIb121fuafdzb024oXml5/fvmSdUuo7oFNbq44RE+T+JUuqAZMzb9zb+nPsXNv2xXQhGsPdnFa57j+6ObSt2Q1dRi1OFVYkoyyuHugcFHAghpDlqk7QeBRzIOUMqESEhQulc3SFS2aqAQ7Ba6hRuMJrtOJx76i78WoJN7ppRYMCgzv4NBmoPLBDRNVYtLK7nc+rv8MglrjMYEUIIIYQQcqpptEpcPK2/0zp2M/ngxqMu2/IKGfi+qawh4/yCRAxHUgy6X3OBU7ih4HgRfnh5YYvOR1zhexC/LUQFa1znhuf2EDWsiaGQZZRAve6YXyEHFjBY+M6feGT+vThVWBjipueuEpbmTE3KK9sCZSi9oRsssQGNG0xMgOJ4FcJ+SYfY6HlAUUsEhtFMqYQQcjarra3FQw89hK+//ho8G+nbhMVigU6nQ2ZmJhYsWIBnn30W3377LcaNG3fazpcQQjwJ1CoxbXJfp3UjwiZhQe5nHvcpLQiCSacQOgx5joNmfRbU+0ow/vVuTuGGjIpyfLZ7h/POFhGgrJvIiVVtcAo3MOxXqpdGhVpRd+3Og4PRLnN6TahcIAckEwMgXuK9ujYbPLXog+V44IPbcaqEa9R4YOJwYWnOaPPdzlCpzT63kUts0DXbTLa3FopNNS7bUriBEEIIIYScCdi9+yl3T3Rad+n9k/HhA1+0eGKh/uN7O4Ub0ncdxx8frcSZiFVSWPLxKtz1xk2n7D3DYkJw25zrhaU5s8F3e6O9Ay6sKjkhhBDSnmhUMDmnxYQokBLV8nQoCwxYWXLgpOxSo3Af/lRjM/T4o6CiruzZmUCjlPh93u1Bq5QgUE2z5hFCCCGEkDPTuOtGYtq9k1zW83ERruGGJn76aQtMpsYyzqu+WuMy4NIX2bFSwOqluhrPg1c5DyKqZ0mNgLl7FKR+lnrbsGgbzhRJvTpBIhWDF3Movq2nc7jhJFNKEEpndGuX9+syKKVN1SsIIeScxrfT0oFqampwwQUX4KuvvnL6W8sqN3Tq1AmhoaFO2+fm5mLixIn46aefOvbECCGknQwOHiss7tTWKHBwW7LTjHKWxGAhCPzjK7/Damlsk/x66IDrASwcYGUdAjwgcv8L21szRirxXQ1a0t2/ygobz6A2SffQcIhYOQovRCbff+D4Zt+jZKcewa/kCtU2mmIztEYmhLf2dAkh5Nx2FrRJCCHkXDflnokYf8OoFu/3/ezfYLc1Xvyu+nINTgepzL/5ozcu2oozRUq/RCF0cKr0v7B3iypQEELIeYXaJK1GAQdyzuuTqMGIbkGQSfy/cLM5eBRXNs76abA0hh1OpZhgGfok+E64sixGSwc7dRSZRIS4MNeSyR3FZLXj331lOJpXC7P19PycCCGEEEII8ebBuXdhzrKnoAluMjAnwvuN3tpaE3buPNHwvCSnrMVfsshiR8C6jLoGQ3N+VF4z9YzCxJsvwN1v3+xz21M9G5A3wZFBGH3VMOh7h8EW5lzlrylzvBbG5DZWwuOA4uxS3NXnUfz06iLUVHifWZYQQsiZ57bbbsOePXsang8ZMgR//fWXULUhJycHZWVlyMrKwqxZsyAWi4Vt7HY7br/9duzevfs0njkhhPiHDWq5Nv4+3JrwOCzZQdDr5KgqV+PIrgRsWdULZpNz6NkWVHd/v6qkGnv/O9SwPl/nWjWAYxfEBhFg5uB+7AwndOK6675g6xwO3/02l8yYgNvmXHdWtUliArS4MD7F6zaig77D5LUGBYxGGYxGqfCvIVQN2Oq+TPb/DT1CUXpLT2y7JBqXzvse8zftQI3pzJkQixBCCCGEEEYkEuHJ7x/E8wsfgzLA//FEZfkVOLipsUJ2cU7paflCL3/wYrfVpL1Vlz7dYjtHY1Cz6n4dhRNxOLE/G/cOmIXf3vkT+hrDKXlfQggh5z7/IoaEnOUig+QYmBKILWlVfu/TtIKDQnp6skBRwQoEa6RAdq3X7YLUklOavPWld4IGhRVmWO0dH7qw2HhYbHYcydPjRLEB3TsFoLjKAoPZDrlUhIRwJaJD5D5nSyKEEEIIIaQjDb1kAB6Zfy9mX/1O3YqTAyS9MTYZoBMU0bqB+LLsCmiX7Ie5ZzQscUFsdBOkhdUQl+hgHNE4U6s7jiAVhl05DNGxoZj/+Hdet+08wPuxTrUHPrgdy577yOd2xu4hUGZWt/6NeKC6tEZYvn72Z6z44l/c9OxV2Lp8F0pzyxEaE4xJt4zF8EsHNQyKJYSQ80p7zHbagbeX1q9fj0WLFjU8v+yyy/Dbb79BKnUedJqQkIA333xTqPRw+eWXCwEHs9mMxx57DP/991/HnSAhhLSjXkGDcWGcGk/9+pfX7URGW8Njo87Y8DhM5b5athBysLE+FE/VGFjIgXf+dc5CDw4OBpMMKoUFoma/7B1sH2EBxkb2gfoi4Otnfzmr2iSvjJqErelZqJE3fp/1NJl2qNaJwfcRg4t0/73ZHRyqDUrwfON3YYuUw5KohCzLiPLpqTD0rqvaYDSbUFZsQlrxRvy2+wAeju6C7T9uRmleOSI6hWLSreMwbOpAYWAZIYScd87wNgkhhJwv2Jim0dOHoaZch/fvme/3fkZdY4A3OCIIp8P460fDZDDjh5cXet0udUASziSsT+rWLjNhaVItvCPwDh6VxdXCcnxvFlZ++S+ufuxSbF6yAxVFVYiID8NFt4/HkIv7n1Fj2wgh5JShNkmrUcCBnDciAmXCgHd/Z/kPVDX+59EpTIG0fD1OtcggGWRSsfAvG7TvSVKk+44FT8pqLMguMcJgsQvhjfhwpfD9tNeFJKviEKqVoqhJFQx3pGKuRSGIPgkaGK12ZBS4T/uarDz2ZDrPmMq+t3CtDMO7BUEsogtlQgghhBBy+gydMgCakADoKmoBvRHQNqno4EZSckTDYzZI/vf3lrndziGTwB6iAmd3QFymB9dselRJpQGSjcfR9N2skRrfJ8zzGDCuF+RSCfqO7Yl9axtnb23usvsnoyX2/ncQq75eI4QAwmJDMPnWceg/oXe7tUkCw7ToProbNmTleN1OHe7H99DEQ5/djby0fPz+3nK3rxdnleKdOz91Wrdl6U4MvqgfXlz8P8jkvmdpJYQQcup88cUXDY+DgoLw7bffuoQbmpo6dSpmzpyJ999/X3i+du1aZGdnCwEIQgg5G0zo2Rlq+X/Qmz3fu1cdKml4nNgrvuHxld164ocD+9zuw7Mx/A42c6eno3LgWdeMMFi/kZhzCOGG5s0A0clAhKVcgT5BSRAN4NB9WCqObM3weN6XtqBNwipi76lMx19F21Fmrka4IggXRQ1Fv+BUtJdwlRrj00OwyZCPmhQx7HIOshoHAtPsCMhiEQ4Ojq+10D5sgV7h3P9ks3MoqAiGg3f9Qh/7YSYOpxXhm5xjdZ/l5KhbIWgCIKeyGk9v+wsRS+pmus3YlYlNf+zAiMsG47kFj0Iipa5hQgghhBBy+oy5egQ+e+RbITDgC+svSOgZ1/B84i1j8Nc3p3aiCZFYhM7964ILyX0TkLkv2+O2l95/UYvaJDv/2ou/v1uHShYCSAjDxbdPQO/R3dFewuNCkdQ7AWk76toOnqgDVdBX+1914cnvZ2L/+sNY8flqt6/nHi3Au3d91vA8fedxbFy0DRdcPRxP//QQTQZFCCHEbzRVBzlviEQcenYK8DvcEKJpLMusUUqQEqXEqaRRiYVwA9M/WQu1wv1sn/FhCiSEuy/hZnfwqDZYoTs54xK7QN59vBobDlcip8yEshor8srN2Hy0ClvTq+FwtN/0EyEBzmWt3ekSrUJylBIquX+/ijKLDUJliJYqrbHgUI5z8IEQQgghhJBTTaaQ4bY51wuPuQLvpZS794hB586RDc+T+yTgkjsnOG3DS0QwjEhGzTUDob+oJ2qn9EbN1QNg6hHt9ph2rQKWhBBYYwLrghA+yiX3iYsQwg3MrK8fQFRi3eygzU25eyLG3zDa7WtGsxUZeWXIKa6sOwe7Ha/P+BCzJryE1T9swP51h7Hmp414YtLLePnad2G3eZr1teX6xsX43Oaue6dg4gczEHDnKNSO7wJTlwjwYs8hiyUfr8SWP3e1+Fx2rNqL7174tcX7EUII6VgrVqxoeHzdddchMNB3xaTbbrvNpQoEIYScLdRyGR6YONzj65IyA1T76wIO/cb1RHy32IbX+kVF44quPZy2Z4PreTEPSDnwFh8Vy5p1P4hFdoQG6l3CDQxbx4FHT1tPoW+HeeK7mcIAHXeuePASjLpiqNvXjDYLMnRFyNWXC8/tDjtePvwtntj/GdaU7Mb+6uNYXbwLs/bNxeuHf4BDSGK0j15dYxF8yI6EpRYk/2ZG3F9WaIRww0mVYtzhuAy3JvbEmDArkhVlkNusyC4NhcnqJnBndWDZE7/j35ICOMQ8rBoHLGEOWMIdMIfYYVM5hJ+JqXMwbEFyp13Z7Kk/vdJYtYgQQgghhJDTISBIjRueudKvbQdd1A/RSY39JH3H9BQGyZ9Kgy/u1/D4mZ8fQUh0sNvtrv3fZUKFAneMtUZk7s9GYWax8NxqseL5y9/A05e8irW/bBIml/rn23V4dMzzwgRKbGxXe2FBcV/uffcWTLp1LCI99AE1t+iDFdi2fHeLz2X9b1vw29t/tng/Qggh5y+apoOcVxIilGAVeA/n1MJgcX+TWibhMKiza2dm7wQNFDIxjhcaYPKzCkRbGEx2LN9ZAhHHISpYjsEpWpTpWCDBBIvNAY1CgsRIJWJCFG6DDUdya5FVYmyokKBRihGkliC3zH1AoKjSjCN5tegZr4HNzsPB80IlhtZKjFAiLb8Wdg9fFeuTOF5sbNF3WWtq/WCn7FITenQKgERMuS5CCCGEEHL6TLt3EmQKKb6f/RsKiyuAyBCXbUJC1Hjif1PdVg+ITIzAHx+tQEVpDWondoc9Uuu0Da+SwTQkEbxcAuWeXGGdPUAuBCFsMYF1I4XYgCGDBZKiGliTw9yfqINH4Y9bMP2j1cL5jrhsCJ5d8Bj2rjmI/37ZKMzmk9AjDlPvmYRhUwe6DTZ8+sdmLNl0CLXGujZISmwoethE2PTjBrdvuWHhVvzUcxFmvHA1jHoT7Fa70NnRWtf07435W3bAYnffjlBLpfh24XaU1xjrpn/oHCYsxkGdoFl5RKh80VzWwbrvtDVWfLEaN794jRB0IYSQ8wX7q9PW2jwdVY+zqKgI5eV1g12ZIUOG+LVfSkqK0/PCwsJ2PzdCCOlIt4weAKVMgnmrt6GourZupd0BRUYFAlefgMhiF4IEj35+n8u+b104GQmBgfj+wF6UGQ11vYz1t9wtIvAiHpys2T1/XigO5/IbXaMyuQ031BNxPIqjD+CqTQcgF8swKqwPXtr2FHZ8vQvrFmyGQWdEUu94oY01+CLXgUQGmxkfp/+DZXm7obfXtUm6aqLRNVCLjeXuK1GsLtmFpIBoXBs/AQaTBXaHAxqV+wmm/DHlioH4/edtsDfrKHGIAIcCiOtqw9HED2HQVQvrY9RsqUa34GL8daIHaizOE2/J8nmc2HQcORdFwBrkcJ7GTgzY1TwcUh7SahEsUWpIqpz7g5bN+xs3PDOdqjgQQs4rZ3KbhBBCzlfXP3UFVFolfn59McrzK9xuwyZcevizu13WP/3jQ4hLjcayef+gprzjJzo9uOEopofdBoVajguuHIaXlz6J7St2Y/3CLTDWmpDSLxGX3jcZAy7s47KvvlqPL5/6Cf/+sF7YlkkdmIyohHBs9TCR0qqv1ggTXrEQNwtGOOwOqANb308y7b7JWDr3L+E4nqphz3vsW9RW+V/BgVVkaK2lc1fh6senURUHQsh5hdokrcfx7Rn7I+Qswf5nX6GzoqjKLMzuX2u0QyLmEBeqQEqUCkq555mG2MD/Y4UGHMo5eeP/FGHj8od1DUJEoPOsO+7Ob9PhSiEM0VISEYfgAAlKa+r2ZVUjUiLrqiyw0m8tVVhhwvaMajY26owwpmcIQjRuZj0ihBBCCCHkFHM4HDiyLQObtx7HnrQiFBRWQ62WY9y4Hrhi+iCEhnquPmez2vDdbxvx6b9eZsixO6BduFsIKugu7QNHgPt2hLigqi740CQIzJmsUG/KhOxE46BPht3Af23lM+g1ynuJZKvNjrve/g17swvBn2xacWzsjY3dhABUm45DcbRupqLmAoJUSOmXJMxYxMR3j8Xl/3cxpt47qVVtklVH0vHY0lWwNgs5cGY7lMUOcJzU+a4Sa7vwgKjWjOBfdoM7GRhvL/P2vi10ThBCyLksLy8PnTp1Eh53u/N5SDVBbTqeVVeFo1/MFh7n5uYiLi6uXc7TaDRi8+bNwvnm5+fj0ksvRa9evVr0+Zj3338fDz30ULucEyGEnEps8P6+7AJsWrEbBxdsR+nBPKiD1Jhww2hc9n8XITjS8+9vs92Gj3Zuxcd7t7q+yEIO0rrrb1UeB1mhGFWDbYD05LU1x4MTORARpINSVld9ujkx54BY5HotrhYr8Gqfe9FNm+j1s5ntVty+eT6O1hY0e4VHkMIoTMDkiVYUgJDtvbE7PV94nhITiusm9Mf00b3RGqv/OoC3X14qhBxsCqB8sBi6VBEkSjuu7b0DCon776DGLMfv6QPAn2ysiPQclHvFiPxkB469NxS8l9y0uJZD9PwjUB6vC0409fXRDxDXxXe1O0IIOZudLW0SQgg537GKzoc2pwnVxvatPYjirFJoQgIw4cYLhDYJG3zvicVkwTfP/3LKKwIEBKvx1r8voHP/JK/bsUmcHhrxDE4cyGnxe4REByE6ORKHNqUJz5P7JmD6Q1Mw+dZxrTpnFpp47555HkMOp9qP2Z8iopOHybcIIeQcQW2S9kEVHMh5iQ2MCdXKhKWlWEUFFo441dh15o6Malw0IBxiL3ffMwr0rQo3MDYH3xBuYPQmO/Zn61BRa8WgztoWDyiKDlFgQl8JMgoMyCk1nvagA6veQQghhBBCyJlAJBKh5/CuwtJSEqkEe4qcwwcuxCJYksLAy8Qeww2MIzQAgb/uhjUxBA6FFOIakxBs4Nzc6DbpzXjluvfxQ9ZciCWeQ+HzV2zFnvxCoEm2mBcBdjEgsgKGwQmQHysFZ3N9DzZLUH24gck5ko8PH/gCaTuO4/Gv7kdLXdS9C7pEhOHrTTvw54a9sBotUGZUQVZhh3FQgvOMp8zJsINDI4c5NRyKoyVoTxIZ3YYhhJxnTgbH2nyMDqBUKjFhwoQW77dmzRqn5wkJFFwjhJydxCIRBiTFYcADccADl7ZoX7lYgh3Fee5fdHDgzXXXvVwNB4uWA3RSQGsFpA6IxA7IhGCD+/4GDrzbcAOjt5vw2pHv8PWQZyHiPN/w/2T3GjfhBhac4L2GG5gaRy1yCrJQ36A5XlCOV77/F2k5JXjqxpb/3ZgwuTdSUiPxy6Kt+FadBqOqrh3UJbTYY7iB0crNSFRWILskDJIyCSRlYoiMFpji1V7DDYxD7oAiq8bta9QmIYScd87gNgkhhJzvWD9Dnwt6CEtLsUrJB9YfwalWW6nHqze8j6+OfOB1u/mzvm9VuIGpKKwSlnqZ+7Lx9u1zhePd+84tLT7eRbePR5dBKVjw1hKhGp7N6r7q9akipX4SQsj5htokrUbDfQlpBbP19KRaLTYeBRV1ZcvccTh4HM3Tt/v75pWbUFRladW+AQoJ5FLRaQ83qGQi/D97ZwEdxfW28WdmXeJukBDc3Z1CS6lBlbrbv9TdW1raUrevLtDSUiqU0kJxirsTIELcdV1n5jt3NslmsxIhgQD3d84cdkfvzIbde+/7Pu8ToqbJRBQKhUKhUCiUc4Mag6XJfQSlDPbUwFVwBIUUXHQQlGklUO/LdwkPAlTxqSiqwvble/xutzmc+Hb9Ht+5SkQ4IHNd054SgZaw6vsN2Lf2EFpDl4hwJG4qRdS7exD/f4cQtiYPXJjGXz5VfVstvWPQliR2j0NSD1oplUKhUM52V9gPP3QHsGUyGSZNal31PAqFQjnbqbI2Y0wiA2zhxNGNAfRSMKwAqZQXixHZnL7n6yVs4PhLibUKe6uO+91usTmwOMuHs4QonGhmIg9pbyN+++8Q9me4XB1aSnKXaJjHqurFDYT4YHfCkj86OQxQpSkhK5OKz1CZUQlHVGCXb5blERxlhPBiOPiXIiBcrIGgcN1PSr9OiE2ObtU9UCgUCoVCoVAoHY2act+i3vYm/0QRDmw44ne7scaEf75c0+bX/f39v5G+N6tVxxJnaSIsONPihh7DUgO6BVIoFAqF0hAqcKBQWoFG6b9aaXtTGcCdobja1m5Cgpwy8ykc23Sgo73pFq9psQMFhUKhUCgUCoXSUUmICmlyH9ZghdCMSjhEcNASju1I97tt9f50OPkACUlE5CABeHXL3fRWfL0WrYHneVEg4bFOIw8scCD7hKjQllz71Ew6JqFQKOcfAsCc4tKwWmpxcbFo7RxoaU8+//xz7Nu3r/79zJkzERLS9G8yhUKhnIt0Cmr6+09idfX/BeLIoHGCTNFLJK7xgp2TwO70jrU0Zxb/uD7f77YVu47BKTpENESATBROME3GUJw1MvBm32OkpVsOozXYOQ5LT/pPgGoOjMUB9YFisCb/rg9KlQ2dUksRGWsAxqqB8WoIj4VD+D4WQicprnt65im1gUKhUM5K2nhMQqFQKJSOQ1yXti1S1BLS9570u231go0Q2il5a8VX61p1nMVkxYbFW3GmoWMSCoVyXkLHJK2GChwolFaQHN22iS4tweH0nyxUZfQvfjhVTNbWqXiJq8SZcryoQ8Iy6BR15j4zCoVCoVAoFAqlrblifL/AO9idkGdXgDU17cTG6lomSDZU+XeNO5xb0vQJWDSrXY0pPlmG1mAxWGCoMno2wWhr+sA21EdrQtSYfP3YtjshhUKhnKcMHz4cSUlJAZf2YteuXXj00Ufr30ulUsydO7fdrkehUCgdnet69Q+4nXEAiioyQc8BQQ4wKhJjEESRQ+0e0FlUsDqkEBrk/jQnDagqwHjiaE4pYPEMf0qYuusysHOBBd7WtGC/2wrLdWgNOrsVBodnm4v0TVctLSkKF/+VVJgRtjQNEoMN6nQ9pNXe989KOMQmVkEi8fEEo6UI+jwFE64d1ar2UygUCoVCoVAoHZGL75xyxq5tqPaMOTTkxO7MdrtucXZpq47Tleths7Q8LtOWhMWEYPTlw85oGygUCoVydkEFDhRKK4gMliPlDIkcIoJkfrex7ehQoJC17uuCZRlIz/A3DccLyK+oTdqqqQGOHwfSTwDm1rtSUCgUCoVCoVAoZ5KRfZNxyZg+vjfyAjQ7c+CMCwUfFHjcwtZYIC1pmY1zv/G9/G6TS5vhdsfzkOdUoqWERvtPNAqEUqOEQuXpGKE42fT1JTVt50Rn0pmx6dft4uvcYwX497sNWPvjJtS0MkGKQqFQKKeXo0eP4pJLLoHVaq1fN2/ePHTv3p1+FBQK5bzlgs6puKxrT98bBSA4m4E9mgciHWDkdUWQmEZiBgZ6qwqVJg30FqW4GG2KgNcVeKCvtpvf7TIyJslVIlxhwpCIPEyNP47JcenoF1qIEJkFTl4iukc0bId4XgEwHwqBPUfj99zhQWq0hiC5AnLWc6yUXhkjijv8YdSpULYrCGG/HkHkogOQlbuE5gwPRCzL89o/OMTsW9xQi15hxZYKl4vEiepyLMk4hD+zjqLaeuYduCkUCoVCoVAolNYw/upRGDNzuN/tTDvmUA2Y2NvvNpncf17XqRIW3Ton0aBwLSTNid+0I9WlOuxeuV98nXUwB/9+ux7rf94SUCxCoVAolPObwGVKKBSKXwZ2CUaIRoqsEjMMFpe7QWSQTHR32JPVsgSh5kK63omRKtSYHLA7eWiVUqgV7g5oXLgC6UX+q6meCp0iWybo0FucouuDQsoiSC1FtdG/bXJzYRmgf3IQlHIJjuQaYGyBq0RNhQHYuwHIbzDxz7JA9x7AmLFAUZFL9GAxA9ogoGdPIC7+lNtMoVAoFAqFQqG0Fy/ePg29U2KwZN0B5BRXiRVJh/ZIwswRPfHWz6/DMGsIGIYVE4B8ljdwcNBsyWyRUYFULsWYK4bhxJ4smGpMSOwRj+ikyPrtk/ql4ocN+wKeQ5leASaAM50/pt40oUX75xzNR0l2mSiMSOweL06Y1yHPqQJjtkNQy/2385h3JSSlRoH7P7gN2lANvnn2JxRmFDe7PTtX7MOahRuxb+3h+nUyuRQX3TEF9753C7Zn52PZ/mOoMpqREB6Cq4b2xaDOdExCoVDOcoRmluJu6hwNXBTi4uJwOjl06BCmTZuG8vLy+nWzZs3CE088cVrbQaFQKB0Nkiz0weQZGBQdj4VH9yNbVy2OLcYmdMY1KX3xyp4VqJrgcDuj1X6fcxwLqdRzPMALLKxO16DFapdCJXFCJvM9/2+pCcWYhFQcrimAyWlDijYKMUq3GHrigFTsqlqBPpG5DdwigBiVEVFKI47rYlBqDQbHM2BFZwcBgsDAZJfBUhoMZQAztxmj/Ccx+eLkoVyU5VUgLDYUSdpQZOndQmviJPFvZl9c2PUoVDJPd26TToltfw6AelcB5Kl24J4IIIQFCp1QbeLw5H2zYRkVg3d2bUae3iWaVqmbrsa6tTwNn+1Lw44Sd5xEIZHi+u4D8PTgCdi74gDWLtoEfYUB8amxuPiuKeg53L+YhEKhUM7HMUl7k5GRge+//x6bNm0SX1dXV0OhUCAqKgpDhw7FjBkzMHv2bMhk7Zc8S6FQKGcLLMvihV8exR8frsDyz1ah+GSpWIR1yLQBmHzDOLx108ftcl0SJ+g/vjeO7cwQHaQ790lCRFxY/XbiUrDq+w3tcu0LWhgnyTyQjYqCKkQmhCO6U6T4jNrCsfqhz+6G0+7Egpd+QWmue86sKbb+uQs/v7kUR7eeqF9HClRd/r+LcOvrs7Fj+V6s/2mz6Mqd2C0OM+6Zim6Du5xymykUCuWMcpaNSToSjCA0rlFCoVBaisPJi5P5UgmpPiTgz51l7fIQY0JkMNv5ekGFa50c/VOCRLGDzcFjxd7mdxybCwkCTOwbjlCN50QJLwgoqbaJ7ZFLGcSHK2F1cDiQbUCVwT0hT0TAzuZrEQLSKUqJwV2CxeddbXSI93yy1IzSGt+T9yHmamjsJgwoS4PS4kf1q1b7dnMgIofxE10PgEKhUCgUCoVC6cAYzFbIJBIoFTLYrXZMHfgorMO7uOdMWNdSByMA8oxyqLe1zCp51GXDkH+8AAXprsR+EiwYfvFgPPDxHYjpHIWKwkpc9NAncMT7dltgTXZE/LCvxQIHIqz4bO98JPdJ8ljvdDixffleFKYXITgiCGOvHIHSnHJ89L+vcXxnRv1+6mAVzHrPyqT2TqHQX9QTkHirP2QFNQj+5xgY3nvKZMbdU/HQZ3eJr4/vyhQn2v/44G/sXXMo4D0otUpYje7K33UIEgaYMxpFSu9rzR4xAC9cPjngeSkUCqWjUVBQgKQk1/d1z9tehDwo9JTOZzfU4Ph3r4qv8/PzkZiYiNPF5s2bcemll0KnczvuTJgwAStXroRKdWbcXSkUCqWjorNZRZcClUwGg8mKUW99BHPPRoWPiKCAFSCXO8X6Q40hEUubRQYJeMSG6aFSueMMPM+gplyLkTH9kcMXIN9cJa6XMCzGRXfHM30vFYUOlbZivH/ifr/T+qSLv6MiGQ5BKl6PFxiXwMIhhSJTDo3VCXulAuYaT7cGTZUZP711OxJTPYV2Tt6JAzX7UG4rg1aqxZCwYcjdW4RP5nyD9D1Z9ftVP9MP5d0UXu2Sshy6hpchTqsDY2NQdTgShRkxkBTWQDulEsxAb0eLmQnjcX+3mWKMZn9pMQx2G/4sX4HDevf1Gj1Z173bgpBd4tuhoku6E5I3D3itv/KRS3Dvu7f4OS+FQqF0TM7GMYnRaMRDDz2E7777Tsw3CAS5twULFmDSpElt3g4KhUI5WyHfncYaE+RKGRQqBSqLq3Fdwt3tcq1xV41Exp4slOS48rOIM8LoK4bhgY9uR3hsmFh86a5+j7b5dRVqBb5Jex8xnaI81tttDmxdugulOaTgU4jYvuxDufj0oe+QuT+7fj9VkBIWg3eMojVc++TluPPNG8HzPNK2p4tCjx9e/RXHdrjjMv7EIVaTzee2iPgwVBZVe62f/cxM3P769W3SbgqFQjldnI1jko4IdXCgUNoAmdQ9E08S75UyMhne8oqkgYgIkqFU51nFh1Cqs2PT0WoMTQ3GoVwD2gMyh7I7Q4cLBkTUW7iV6+zYk6WD1e6+z0M5rus3zgFqK3EDIa/cihC1FF3jNAjTugQXROTQWOAQbqrEgMIDCLW4A9B+8SVuIBw/DoRHAP36t0nbKRQKhUKhUCiU9iJITeqMupAr5QjqHou6aWrSg2dIt513pbXUF1BVtazSG6lItGP5Ho8gK88L2PH3XtEd4fFv7sfHD3yDkNwy6C7sDkcnz4kaSYUJISuOt8q9gVQCen32+/jq0Hv163avOoB3bv8/VBW7J7xJEhHJGHLY3GMnR7QWlTFBAB8CeV41JAbX5Lk8rwYhy47CPCTR1VaGAWu0ic4Nqn2FPsUNhH++XIOug1JwyT1T0WuEq5opqVDUlMDBl7iBoJvYGSYf4gbCzzsPomd8FK4e1i/guSkUCqVDc5aW11m0aBHuuOMO2GzuoCtJIFq+fDkVN1AoFIoPQhTuMUmQRglNrBxmNBI4CIDAM7DZpJDLObAscVBwbeKcDBx2KXiOBQ8W+WURUFgFKFUO0WHBrFdhdPdYbDZ69rs5gcfG0uPI0Jfi+X6X4o+Cr6GUBnaKjlUZkG8OE68tYQSESIxICatGUJL7O7+6MBjHN3WBsUQJRUYZ5Dtz8Wb+h/hk55v1+xys2Y+FOd/C4HS7ei/O/RGV39pQucfd/2f7yqBWlCMiKBR6ixIOp7T+vh2cBMdK43CsNB7KIhbBR51QHM+HcooZzEDfYoSlhZvQNSgB02KHY0isy/WtgunrQ+AguMaDtddilQZ0iregrDIYVpunm93JrhIkR8ghq/SMtfz+/t9IHZjcYkc9CoVC6VB08DGJXq/HxIkTsX//fo/1xLkhOjoaZrMZlZVuFyCS0DR16lQsXLgQ119PEz4pFAqFQHKZgsK09Q8jPDa0TRP6667Rf0IvbP5th8d6zsmJ64io4H8f3Y737/6iXT4Um9kmulK8958rwZWw6bft+Oj+r6CrcOeLffzA1+CcvNiuhrTls/hl/jLRWWHCNaPRd0xPcV3m/pwmBQ7+xA0EX+IGws9vLBVjMuOvGnWKraZQKJQzSAcfk3RUfNRHoVAobSFGOFW6xKiQEqNC93g1JvcL9xASNIYk+G87UePh7NDWGK1cvYhAb3Zi+4lqrzaR/B8/OUBNMjA5qNn7niyxeCRVJUYqoZKzHq4NY7I2N0/c0BRHDrsUHhQKhUI5q+A4DosXL8aVV16JTp06iQlIQUFB6N69O2677TbR3plCoVDOZXoNSvW5vmGxUMYRePww88GLcem903D9s7Pw5aF3RetifxXkyvMr8ezF81CQXgTW5kTYX2kI++UgNDvyoN6Vj9A/jyJi8UFI9f4nr5si50g+9q8/LL5O35uFl66Y7yFuIDjsznpxAxekQM3MftDN6g/TmBSYxnVB9ezBMEzuBqHWtUFWakDIimMI/2YX5o4djLAf90K9p8CvuKGOPz9e4fH+ghvHiQGTlsLLWZj7Rwfc54etnsFtCoVCobQv5LfuxRdfxI033ughbrjsssuwYsUKaDS+k00pFAqF4knPxBgfj4QBBAbgGditUlhMtYtRDptFLoob6mEF3NR3JC5JGI1bu03G37NvRQFb6PcxF1qq8OCeH6BzuNzmAqGWuJP4Q2Vm9AsrQZDCc6wSlqDHsEsOImbLbmi2ZYPheJzYnYW07SfE7VnGTHye9bGHuIHggAPBd7EIukoKJkECxZfhUP5fOMImC0iKqUbvzsVIiqoSgykCGZLxogRBPPbNkeMQ8steqE4WgZnq6SDRmKUFnnNbF8UOR4hM41fcUIdC7kRCTBUU8kYFtVgGxqFhvq/14T8B20KhUCiUU4PELBqKG4YPH45Vq1bBYDAgLy8PFRUVyMnJwRNPPAGJRFIfA7n99tuxb98++vgpFArFjxihS7/Op/xsrn7sMrHY0U0vXo0vD72Dkwdz/e5LnK+fm/EGyvIq2u0zObz5WL0rw8GNR/H67A88xA0Eu9XhJW5oDmTs8PCX9zR7/z8+8oyTTL9zMoLC2mfe7A86JqFQKJTzEipwoFDagZ6JblVwa4kLV2BgSjD6dAqCkxdgsgXufJ6OHPwqo2vCO73IBK4NDSpSY9VIiVUjJtSzYpA/yLNo6JAhYRmM7hlWL3LoVXoMUqGNGqjXA2ZT8/cnH0RBPvDfRmDtGmDfXv8OERQKhUJpF7KysjBs2DDMnj0bf/zxh1jNyGq1ihbPGRkZ+P777zFhwgRR/KDTtYEYjkKhUDogd942pcl9ZLnuym++IJV3Hvy/u3Dba7NRXVKD8gL3/r6GH40nzGXlJmj2FEC7Kx/yAtf3LReigmlsKqpuHIbK20aiZtYAWFMjm31fxOq4rjpQQ5eGxghSFrpL+sBJnBsawjKwdY+CYXJXj9XXkyDF7AkYNLFPs9qRm1YAfZU7aKDSqvDGv88jMiEcLcERrYGgCGyumVlWiRqztUWJubtW7se7d36G16//QHxWNeX0945CoZwZGKFtltMFGTeQCqhz5871WE+cHH7//Xcole7q5BQKhUIJzIOjxgXYWpvUL7AQeIno0OCLy3v0wmuTL8Ajo8ag1FmJSpsx4BmJm4ODbzr0yQkspAwHlcSOZG2VlwigDmmQgIRbOZ9jkpXFy8GJCgXfhN4mg+L9UEh6ugpiEV+KEJkZ0UoDukeVoldSkYcE/dFBYzDzghHoPbIb0F0OKPw0qpZMYyGsnFuooZWp8OaAuxEmd42BfIkb6mBZICLUMwmKYXnYU1Wwpaq89s/Ylw2ruflidZ7nRac/4rhHxiS/vvMX9JXt40BOoVAoZ/uYhBRjInGMOi6//HJs2bIF06ZNg0zmLqrYuXNnzJ8/H3/++We9yIEIsh977LH2axyFQqGc5dz08jWnfI4Lb5+Ehz67Gze/fA1y0wphqA6cP8S3ZTKVH+rGJD/N+71Nr3fnmzdixp0XiA5uzeHY9nRRcFdHaFQIXvv7GYRENr/AbXNJ25YujjOaC2nX1j934e3bP8W8Gz7AHx/8A2NNC3K/KBQK5Twak3RkAkfRKRRKqwhWS5EYoURBZevsvUgx0VCNzMOhoSNArJsJxdWtr7ra+Dl1i1OjU5Rrwnxwl2D8d7QKZlvT98ucOA7kniRZVEBkFIJ798G0gZEoKtEh9mBJm7TPfbFmasHsduDfFUBxgwpRxBF67x5g4iSgW/e2bReFQqFQvCgoKBDFC4WF7op+ffr0wZAhQ+B0OrFt2zax0hGBBA2Ki4uxbt060eGBQqFQziV6JEdj4tCu2Lgn0+d2ttIIaV6V3+PVwSp06d+p/n1NuR6cWgrDiASY+0eB18oh0dugPlCGoJ1FYO1NVwNyxAZDP60XIJfU5/FwERqYJnWHrXcsQpYfafIcUplUTODf9ueugPtZe0SDD/GfhGpPjYRzTz56dYkTKzBNum6MuP7JBXPw4OhnUVHg/9nUsfKb9di7+qAotOgxrCsuuXcaFmR+gpVfrcUnD36LZtFMCzxp3WCsCYjo4oVL36wPcBA2Lt6KhS//gqcWzqEWzhQKhRLoO1SvF10a/vvvP4/1r7zyiujoQKFQKJSWMSQqERPjU7GxiEyS+8ApuIMOPghTqNAt1C2GrrIHSkYR6pP5i80hSNQEFvjaBAli1EbIGCfUUv/CabEdU4HcVwQITqZ+TOLknTisOxjwOGkUA0UwuU0BWqkVEQqTx+2GRFoRrjDDoh+LO3qPwoyUHuL6ZxY9hIf+9yo8veq8YcBg8daD2Hw8Fw4nhwGd43DNyP5YNPI5LCvciq9O/hXweLXKDpblRfG6RMGBlQiwTgxGycRgyAqsCFtYDNUBQ331W7bWBa8piLiauPtl7D3ZaEyyBM/+/DBGXTq0WeehUCiU84Wvv/66/nVoaCgWLFjgIWxozCWXXII5c+bggw8+EN9v3LgRubm5ogCCQqFQKJ4MuaA/Bk7uiwPrm449+IK4Nid0ja1/ryv3dG87U0hlEpj0Zuxf17r7akyfMT1wzeOXY/Tlw8T3z//yKB4a/VyTImWGZfD7+39j98r9cDo49B3bS3S7+DHnM/z+3nJ8/+IvbdK+umuRcUlzqCyuxrMXv+7htrHh5634/sXFeOHXxzDswoE+jyOxp+Zeg0KhUCinB+rgQKG0E0NSg5ESrfKan5dJGESH+J+UIJCEf7nU/d9TJu0YHajYMIX4L8e1jSSMOC7UiRsISrkEk/tFiM8oEKFWHZTbNgGFBUBJCXDkMPDrL2BPHENikKRBzaM2ICIS0OuAvFzA0ESFoY0bPMUNdRAV8YYNwNEjwPFjQG4ueYhAViawbCnw5efA118Ca1YDZaVt2XoKhUI577j//vvrxQ1BQUFiNaMjR46IQYFFixaJ7g4ffvghWFKqDsD27dvx6quvnuFWUygUSvvw6r0X47IJfSFtmIgiCAgzOzBeKgcTwAZu+h1TRFeCOpQJISi7tT+MoxNEcQOBC1bAMD4J5Tf3Ba9wVY7zBynIapzQzUPcUA8DOGODYZjUrcl7GnnpENEpgkyWB8LeJaLJc5F9YpOj6sUNhKjECHxx4B2oggIL32QKKb5+6kfsX3cYR7YcFyfx7+zzCP5bsg2DLuiP5iIvMYE1uquu+mJQpzgcLy7HphPZKK4JPCZ56+aPPcQNDS2p513/Af7+fDVWfL1OdHggFYzW/7RZFHRcKLsWl2huEKurZuxzJyJRKBTKKSO00dLO1NTU4IILLvAQN8jlcixcuJCKGygUCuUU+HTsLMxK6QdpwyJCvIC4bA5T9dEeDgaNmd1tEBQSd502raF5Ic0yqxaVVrXf7UanHDxc4xdJM8rfsUqArT0dyzIYMWMwnIIDQjN+oMj5VVIHIhuJG+qIDjJiVl9jvbiBEJcSg88XvQ6FM3AciatW452/t2BnZj725RThu//24rJ3FmLDkWwMDmu62BLJ25FInZCqnKK4oSGORCXKnkyGpZ/Lrbz/BX1wxFSAbeXpKLMGFo+8PvsDD3FDHcQBYu5172HV4c1YXbIN+6rT4OQ5/J59CDPXfItuS+ah3+/z8diOZTheQ+MkFArl/BmTrFixov71ddddh5CQkCaPue2227xcICgUCoXim1eWPolJs8d4CXZDooIxaEq/gI/t0vsuFAXOdSjUrtjImUQilWD4xYPEOX+SkN8WdOqZWC9uICR2i8Nn++ZDpgg8JpFIWHz15I84sOGoGCdZ/OZS3NbzIbEwVFPPtqUMvXAADv2Xht3/7hcFDIF49ap3PMQNdViMVrwy622s/HYdVn6zDvvWHhLjJOT1/UOfxEWya3FZ8E2Yf9snyE3Lb9P2UyiU85wOPibpyDBCW/3aUSgUnxD3hdIaG8kjQniQDEEqV+f3cK4BmcVmr/2jQuQY1SMUkgaz3XuzdMgrb50bRFshlzII18oRESxDQYUVOrOzTc47ZUAEgmufSR1ZJWYcyvGfuDM8ZwcSdMS+2ceM/GVXAH/9KSZutQlKJWC1us+flASMmwBoXRP79ej1wOKfmn9dkljryz6NrL9gKpDSpQ0aT6FQKOcXJ0+eRGpqav3733//HbNmzfK5LxE1vPTSS+JrjUaDiooKKMl3PoVCoZyDVNQYsetoHnheQP9u8egUGyau/+h/X2P5Z6u89ieT4y/9/gTkDSavH1+yAv8cPuH3GtpdRQhd43LI8YW9UxgMU3sFLrMgCAj+5whkxb7HAmGxoeg5PBX9xvXBv9+uQ94xt1tPHVyIErxSBuPYFHBRjfrsjVAdKIR2Zx4WZHyMuC4xHtuWvL0MXz31I1oTXPhw61zMGfUchGa6MxhGJkA/0X+VvRCVEjqLa0zCMgwm9EzBS5dPQXSw5/3lHisQRRbNQZAwcAyKgTlUDsbGQZ1WCVmtAyEJWrz0++MYcfHgZp2LQqFQfLmqJZH5EwC9bnkRcm3oKT0ku7EGxxa4RMn5+flITExs04dusVhEcQNxe6uDJBUtXboUkyZNatNrUSgUyvlKidmAbSU5IH4Bw6OT0EkbJibjPL1jBZZkHfLaf1pSd3wy7grIWLeQ+qVZb+HvCyvBJboKMXkieAgIpAyHvmFFiFPr69eT7nmVXQ2dU038HsR1EoZDglJX7/7gC0cVcGgqoJkqRZdbItFraAp6BPfE6uINKLOX11/fJZYQwAlk0MOIoYJqhxrhchM0Uv+iZhYsXuj9CULl4R7rf8hZhYU5//o+SAAqd0fBXuEtzCYC958fvgYPHZoPIUA+Es8zyCsLA+MZnhFhGF58QtJMC8K3VUJ+bxJ0cI0XJAyL8dG98HSfyxGu8ByTZO7Pxn1DnvR5PckEBWRzgsBGuz9TFjKUGmWwOOQwW+Vw8q5tRNjy1dhrMCY2xf8NUCgUyjkwJikpKUFcXFz9+2+//dZLvOALk8kEbYNY9VtvvYUnn/T9/UuhUCgUF2V55WIiPmHAxD6I6RwFnucx/5ZPsG7RZq/HNPHa0Xj6xwchkbj7r89Mfw17VgV2cmtvIhMj0H1oFwyc2Ae/vrsc5fmVp3xOmVyKRXmfIyzaU2T3zbM/iaKFFp9PIcOHW+bi/mFPoy0grgqaEDWMNab6OMy4K0dgzid3IjgiyGPfo9tO4OGxz7eorcSluzFKjQLzVjyHfuN6tcEdUCiU85GzZUzS0fExbUWhUNoShczTpaCOfp2DkBihRE6ZBSYrJwoIkqJUiCUJJg1m0x1OHoW1iSZnErtTQEmNTVza0iFhf5YeRqsTTk5AiFqKlFg1usSoYLVzyCgye4jPWAjoU3jIt7iBQCIGxCEhNBSobsrAuZnUiRvqzp+XByz5xXUNotTunAz06Olyk2iJqMKXuKFuPXGCSEwCAtiPUigUCsWbhtVWyUDBn7iB8PDDD2Pu3LlwOp1iMGDXrl0YP348fawUCuWcJDJUi4vH9PZa/+Cnd+KCG8dh5dfrUJJbjtDoEEy7eQKGXjjQY0xSbbJgdVpmwGuY+kUjZH0uGD9ub1yYOlBxVhcMI4ogwn7eC8aHQ0N1SQ22/7VXXMgEdkMcscEwj+gMZ7RrMrs51VSlFSYxqWr+raQaTwFsZhu6DkrBZfdfhKsfvwxVJTVY+uE/ojCkDolMAi6AewRxl1j1/X+iYKIoswTNQbujEJxGBtPQOJeoug5yXZapFze4VgnYcOwk9h3NwaDt5dBIpRhzxQhMvWUC9q893KzrWZODUXFV93onDoJucieoD5Uj4q8scTL/7Vs/wU/5X3iIXCgUCuVcZc6cOR7ihujoaKxevRoDBgw4o+2iUCiUc4lYdRBmdfGs4EnGHG+NmoGrUvtjSeZBFJn1iFJqcGVqf4yNTfYYk1QUVWHH8n3QpiugeyUJUHorpwUeqDOKcAoSHKhKwnGdA+EKVxKMzqZEbJARUtY9N88JElh5GVQS74SW+mtvYpGySoHgCCJSKMcJI1l2gYUUUoYBy/Di8XVuECRMYOOlqLarRCGFMsC5CTx4vLbnJ6zJFGB1OtE/MgY39xmMG7pMRY3diOVFWz3GN1JIUXE42Ke4Qbx3jsffuzMQVahGWQ/vIlt1GGrkYBoZ8SlkDgQprVDIXGMebggD56AwWDhLvdsGJ/DYXH4I6TvT0CUoDGqpAqMiBmByzAixAqov2GFyyF8OAdPIvZuHA5EaB8xOB0LUZljtMtSYVLBxAh7f+Rc2XzoH0loXVgqFQjkXIcLqtWvXislPxJl62DB39exAVDeKgysUvsR/FAqFQmlIdKcoTLtlosc6lmXx9A8Pio7W/363HhWFVYiID8OFt07CoMme45eSnDLsXe27v3s6qSioFJdtf+6GVN42aZ8OuxNzr34X2YfzxPhAzxHdcPkD03Hr3Guhr9Bj5TfrPdwiiCCCHOP3fDYHtizdJRatInGdU4Vcu07cUBeH2fjLNuxdcwgJ3eKgDlJi3JWjMOXGcaLrdkvwJW4gWE02zL/lYyzI/ET8O6FQKBTKmYEKHCiUM0iYViYugTDbOXB+cuHbE6mEEUUHvmhL25cqo7uzWG1yojpLj3KdHUNSg5ESo0Z+hRVWBwe1XIJOpZlQVGQFPmFpCTB6LLDib7QbDjtQXuZ6XVQEHDwI9G5D1a7dDuzcAYwd13bnpFAolDOAwcmhyOaAieOgkUgQr5AhqFFCaltCXBjqqFNC+yM4OBhRUVEoLi4W35eV1X6vUygUynlG71E9xCUQBdU6ODj/Sf0EQSUFp5FDqrf53M7YAx9ffx6ZFLauUVAeK4E2VA2zwQrex4CITGA3FDfoL+4NeFhMM66Bix9RBWO2Q37SVdmIWCfXkbY9XVwObjyKR7+6F1fMmS5Wb6op1YmihcriKix5+6+A93B023HcPf8mvDzr7WbdM2li6LocaPcWw9wnCrxGDtZgg2FEAqD0PW2jY3nscxgRtLlQrDq15J1lmHazZ3DGF44IJcqv7wVB3uj3mGFgHhAN1sEj/O+T0FUYsODFX3DXWzc26x4oFArF73ec4FpOhVM9PhDE9e2bb77xGCeQBKN+/TyD2BQKhUJpP4ZFJ4lLIIh4mIwL5GkWhD2RC/M1EbCNDAJkDJhqJ8yMBryDhTbK7KEZtnIyFJlDwTkZ6Ks0iNEavc5dY1dCpbRDyrjGHeRnhxfLLTGQVAdBNoVBsNadTFMHDyc0EgGSBoIJArm+UuJEqNwCk6V5bqG7SvKhs0WKr3eXForLnpJBeGXMlbgyaQLWle6F3mFCvCoSGYccWFgQOLHqQE4Rbu96Md4sWgzEe48pbDYpTIflQB/3OrXChlC1xeP5SVhyfxxYRoDNSc7DQCW1I1hhA8cAGUa9uN/BmnQsLVyPUYqePtsju0PrJW5o+LwUEid4QQaN0iEuHM/AbDPhy/SNuL/n5GY9QwqFQjkbxyQqlQpTpkxp8XHr16/3eN+5s39nUAqFQqE0DXF0IEsgCtKLPZL8TxfBEVoYqlzFmhrjDCAyaCmHNx+rf03iI2S55vHL8MiX9+LqJy7Hhp+2QF9lQGL3eOQcycPfX6wJeD7ipHDLK9fgg3u+9L8TGSKcwiM1VBlxfGeG+Hrf2sP47b3lGHXpULQVJTnlYjzouqeuaLNzUiiU85OOPCbp6FCBA4XSwZF7JOmcHoiTglYlQWGl7+Sk9oaIGmJDFUiMVKJHgsa9wZ236h+inCVJrcRV4YQ7UaldMZuAEyfa9pxHjwDEWnTgoLY9L4VCobQzZHJla40R3xVW4N8KHRpq5Ugcc3pkCG5NiMSYUK1HJb62ID4+vv51dnZ2wH0tFgsqK92WnQkJCW3aFgqFQjmXCFY1IymHF8Da/E+my3MqYRqd4ulQ4AdHQigGaLWITAjH1j93Nbm/aWRyI3FD7bx43W9Qo0sydieCV58A08CZoTErv1mHkZcOwejLhuGG566sX7/o9d+bbI9URlwVhmPidWOwcfHWJvevP67GhuCtBeJrc68Iv+KGOogYImhHofia2FBvXNL0tQwj4rzFDQ0wDopGyMZ8SIwOLHl7mfgZzHzw4mbfA4VCoZxNEDe3J554wmPdt99+S8UNFAqF0gEJCnPHCaQ5NgTPL4IgBQQ5C1ukCtVP9RW3GcsYqEKtkCpcgmgyJrCbZTCbFBAEFhabHDK12yFNxjgRr9R7uDqQ4QMLHknqXsiwpCBUudZPqwTRvcEfKokTQVIrbJwUaql/FwfSxgqDy4muIQvS9mNK51SMT0zBTckX1q//+KjbdcgfUgmLyReOxuY7d2Cr9Bj4S7VgtQycThZ6nQbVVVrwsQxkvFV0vWAY4rDtKW5oiEzCiwWxGIYXxQ2+9iu1VmLvEE/nP04jheOWCIT3IwISq/hsOYGFnZeILhv17WXJsyQ+FUy9sEKrtOHHvH8Rp9FiZtLwJu+ZQqFQzqcYzIcfflj/XiaTYdKkSWe0TRQKhXK+jUlOFwMn9REdpg/9l4YzwZJ3/sLIS4ei37heuOmlq+vXf/H4wiaPJW7YxBmDxHh2rzzge6c2TtYtzCjGXj+ucq3lm2cWITw21Mv9g0KhUCinB+qhQ6F0cFQKCSKCArs8BCJcK0WQqmXVsnVmJ4qqzoy4oY7sMh/WyZ06NX1gp9oKFRMmAqPGNCuBqk0wGICYmLY9J3FxINXIi4uAkhKgiaq5FAqFcqY5ZDBj4u4TuOpAFv4p9xQ3EMj7v8t14nayH9m/LRk5cmS9RSRxZiDVWP3x1VdfwU4cc8hvZXg4+vfv36ZtoVAolHOJzhGh6JcQuK8rL7PC2TUeXGSw17b+E3qjc6coyPOqAl+owe/Gid2Z2PHP3ibb5gxVgYvS+q9kQfKNOB6swQpWZ4HyYBFCfz0IWYmhyXP7qkA08pIhTR43coZrn2d+fBB3vHF9qwR9vKrpMSCv9hRAFGaUoMew1IDHWHqEBz6phIWla1j92/975DvkHM0TqzelbT8Bp6PtKkJRKJTzBKGNlnZg8eLFHsJoMpZ46qmn0LVr1xYtH330Ufs0kEKhUCj1pPTrjJR+nvEBxgmwZh6KfBOkZjMkWhs4VoC+QoOawiDoirWoKQiGqUKD0ZFdkKwNQ2l1iMc5YhuJGxqSbz6GApv/MQlD0vGb6OoHy6wwOJVu8bUPimtCYbYrfG5bdOyg17oJvVICX7R2HzIOeeHLh3Fj14uRnR2PjBPxyM6KQ2VFMHiezJ8x4G2uMYVabgfbxL1IJRw0MnvAe87nS9H9xu7ia0eEAvr5XdDpBhvkLC+enxxLnjcRfChY/6KPemcHqRPzj/yJXGMFdpXl4UBFIZz8GbA8p1AoZzdtPCYhsYeCgoKAS3vy+eefY9++ffXvZ86ciZAQz983CoVCobQ93YemIrF7XKuPH3bRQMSmRLfoGOLe3NBZ4Uzw9xerWx0nIXNtc5c9jdnPzsLpIvtQLpL7BnYIbCnv3f05CrOKcWhTGo7vygBHc7coFMo5FCfp6FAHBwqlg2OycghWSVFpCDzZ6wsyYRyikSG71NLiY8+As5oHBouPZP7QMCA5BcjxU5VbLgd692ngA608vTcSHeO6LhEjtBV//Oa+B5UK6Nff5epwuoQbFAqF0kz+qzLgtiPZMHPNCzKeMFlxxf5MfNc3BRPCvavUtYbU1FTMnj0bixYtEt/ffvvtUCqVmDFjhsd+P/zwg0el1ueeew4azemvukGhUChnC4WZxRhYxeBorV7AC16A0qKAs2eCuLBVRii2nwBjdUCpUSCpR4JYYUhzAnBeNxh8kA9HiNqJGdLLlRXrxFWco2mBr9CEEMDVa2YR+tuhgA4TvshL8w5Ipw5IFgMRu/894LeK08V3X+C6KssiODyoVbbVTDO0zdJqd+XZOgZP6S8mMh3f5Vk5tQ6B2Ck1gcc+AnDv4CfrPwtSqeiqRy/F1Y9f1nQDKRQKpYPzxx9/eLzneR5ZWVktPk9VVRMCPgqFQqGcMicNFYh5dQQOLrZBlmWGcp8BxDzB2k2FiueTIdPyorsA6XoLggNOGwunjsQHGATJ5ejMhmLP8ULwshDotXoEh1igZO1QsIE73hEq/Sm1W8LwsPEyVDvUCJOZvab1q4wa7MuuLdrkg4xqt/toHf07xWFYl0TsPuk7gTZco8LMYS5HC4lEAmF6MvitJ33uy1mkYGQcJCrvkZ5C4oBWSoQPgui4UGNTQiZpeqAy5pnR4I868N8kBfr3LwXL+h4PKSRO8dy8wMDOSXzG6UVRhITDZWv/DwaLK6QdqwrC3b1G4tYew5psC4VCobQHw4c37SrTmrmg5rBr1y48+uij9e+lUinmzp3bLteiUCgUiid5xwpEkUNBenGLHw2JG4RGh/iNKwRCCOBEfTrI9REnGTCxD3qN7IZjOzJ8HhMeF4Zpt0wQX0ukEmiC1TidTLpuDDYs3oqcI/ltcj4SH7mj1yPgnK7xUFRSBGY/PROX3ud22qNQKBRK+0AdHCiUDgqxGduXpcPqAxXILmu5QEGjYNE1Tt0qcUN7ImUZRAXLm97PX+LNuPFARKSfcj4KYPcuoLRWYKCrwWmFTFZNvqDtz1mHxQLs2gls29q216BQKJRThDgxtETcUAfZnxzXlk4OxJnhoosuEl/r9XpccsklojvDLbfcgptvvhk9evQQ/yXuDSTx9IUXXvAICFAoFArFjcPuwFu3fIzbejyEDc//gbBfjkFa6Tm+kFgFBOULkDYwgOPDtbCO6YlOvRNxxZzp+OfLNfUTECG/7AdjtvusOkFGAEQUIU8vc52oGZpe1mhrUtTM2Jxg7G5xgzpYhcEXNO3cownxPen+6Ff3elQAIm4LxuGJ0N08CLYHx+KDjbtwNN81Jsk/UYSWILAMTJO6wz4oBYwz8H2pD5R6r2QZPLlwjt9jFAXGJtugKPB0t2goNKkqqcGXT/6Ar578ocnzUCgUSp2bTlss7UF6ejr9kCgUCqWDY+UceHTX75ix5v/wK3ccuqujUfF0Moo/7gHzQC0qXk8BE8TWCwfIvyShXqbkIA2xomdkBG7qMQC/7yVybYB1SJC1JwkGqwKyZqiKVdJTczCzOqXicMXoVKLIGgKdQwmzUw6rIwIy+0T8d6w7HJz/WnRBct/ODvOun4YuvTVArA0IdhAdB5wKQAhhoYiU4+0NW5BW4hpXnawJIMQTGDj1CjitUg9niliVHokaPUIVVgTLbYhUmtEluAoqSdOFuCRqGeb8+xi0QwGZ1NdcoSA+eyXrRLDMhlC5FVFKE6KVRrA+JPWkPQKx66ilxGLAq/vW4P3Dm5psC4VCoXT0MUlLOHr0qBjvsFrdBS/mzZuH7t1dzjkUCoVCaR8sJitevvJt3Nn3Uaz/aUuLj+8yujum/u9CrFn4X+sa0E61T7VhGgya3K/VcZKnfpiDhK6xXuulcqlY+OqrpxYh+3CuuK7gRCFOJ0qNEo99fV+bnrNO3EAoz6/ER//7Gj+/sbRNr0GhUM5dzpUxyZmAOjhQKB2Uw7kG5JZ7V+RsLiYbj/Si1ieMSlighXmqzcLJCyjX28U+eKDv3aQIH1VdDx8C9uwG7HbvbSRKYDC4lox0YMRIl+DhdOJwACeOt/91jhwG+vYDqN0ohULpAJBKRHOO5bVY3FAHOe7BY3nYMKyHWHH6VFGpVFixYgUWL16Me+65BwaDAYcPHxaXhkRGRuKff/5pVrUlCoVCOV/56L6vsPYHd9KIKrMaysxq2BODwKVGw5kYBWmjIQvp4/NSQIjV4HCoDMd2HIM8PgSyIpcrAysICPn7KAwX9Qav9eyvMxYHgtYcA1ubUK/WqmA2BBZsSww28dyOhFC/+yjSyzwmfcx6C/atPQSWZURheaAqP4359Z2/8ONrv4nnIDgi1dBd2QdcrZNEvs6A/N1p+GtPGp68fCKCwrVoCZYRyXB0jhDHSwo9YA0jM1bev4/KjCqoj5Z7H2+wYvX3G8QEJz4pClynKAgahSjwYAsqoN1bCkvPcL/XV+ToIC9tehz52/t/4/I50xGd5EN8TqFQKGcJR44cOdNNoFAoFEoTPL9vOVYUuMQJDeFi5Kh5PgUM63s+inShicjhJF+Ak6UFEFIZMJVyMDUyCLwEufsSETLcAigDC4AVrBqFZgYRau8+skBS7wUhoNlynjEMlTYt1DKXE0K+LRR6q1I8FiiBMlgKq54UhPJ9kstSe3qt+yrjP3yTsRnmCDvYiNq2WCVw5qvhsEiRW6MTlz8OHcXLF01GqMJHrMXjRhgYKjUIDTWJ9xKpNEEjc/h0UwhTWFBlU8MpSHyfSgDKLQJ2mjdhRJdMhCjJuImBiZNB51DDIUhFcYO0kasDuW6QzA4Zy6PQHOzxPHjxOXs/n8/TtuHGroMRpWrZmItCoVDawkUhLi7utD7IQ4cOYdq0aSgvd88FzZo1y8OpmkKhUCjtw1s3f4ytS3f53MZKWPB+YuTWXtGw9I/HrnA1dlWWQHLNAKgOFkF5wntePxBBYVoYqpouXNRSjNUm7F/vGT/3xaTrxnq8J2OghS8vwW/vLYfV1KDyVW0SmNPuRFFmibis/GadKDRoaZzkVLGarPj32w2u2lpEoMGyYAwWMA1ECvX3I2fAD1ACCgZsph1MSfNF7j/O/RUz7rlAdPKmUCgUSvtAHRwolA6IzcEjpxWuDW1JQoQSWqX/r4j4sKZdGAIRSNyglLPoEttIBZyW5nIu8CVu8MXOHUBQkNhRPW1UlAN795yeaxERB4VCoXQAttYYccLUekEe4bjJim01bTMxw3Ec3nnnHTz44IOiuMEfFRUVYkDgo48+apPrUigUyrlGeUElVvuoKCQm3hcYILGx3uIGBnCoAIeWgV3LwBGlhKVHOAzTe8M8qkv9fhKdBSG/7YNmUwbkWeWQn6yAemsWQpfshbTc/Xsw+fqxiE2J9tvGybNdAgT19mzR+cEXbI0Fqv3eFsqEQOKG2OQoXHy3pzvbHx/+I7oX1IkbyNG6GT3qxQ0ez0IA5i/biMTJvUQhRXPgFVLYu7rvV2IHlJWAxCLUu1SwVg4h67IR/sdxn5U6jmw5hp/fWgbH8O5wDkiBEKYF5DIIWhW4nkmQJCYhZKPv50HcOSL+yGheWzke6xdtbta+FArlPEdoo4VCoVAo5x35pmr8k+9fjMYzgYttuIQHrh8RRiEA8TYI0a4EHLtJjqM7UsE3Ua9jWMQE5FX2g87qLRLgeAl6aib7NZSrtKpRZg0CJ7Aw2JWosqihs6ogYXiwtW1nFU5IFL4TaFKCw3BND8+Kqt9mbsbHx9fBzHnGSRQaG8J7ViA4Vg9W4jo3Lwh4+d/16B/uXVXV614cEugqtGLbgmQNkpR8PFO11H+MxmSXo8K+HdnOHxGpMkHO8pCzHEKlViSpqqFmrV7ihoYoJU5oGpyfDNk4noXV7l2vz8Hz+Dsvrcl7o1AolLYekxBxQ2JiYsClLdm8eTPGjx+P0lK3k+eECRPw448/0g+XQqFQ2pnctHy/4gaCP3GDcVQyjBO7ggt35z1xERoYJ3eDaZjbHbo5XHTbJITHhfndPvn6cWgvOvdOxJQbPc//wyu/4se5v3mKGwiC7+fz3l2fo+9Yb+F2e7Llj51YtvoAbNMGwDa5H2wT+8A6fRDsA5IhkGq/tTivDYH950Q458XA+VI07AsS4JgbDSHct6C7MXarA5t+3dGOd0KhUM4ZaJyk1VCBA4XSASmpsYkTt2cKqYRBj3gNxveJQHK00kMjoFVKMKpHKEb0CEOXGNUpXUcmYcSlIRFBMozrHQaFrMFFSZShNcKBrCyX08HporLy9F3L0np3DgqFQmlLvi+saKPznPp3qMPhwOWXX44nn3xSFDDI5XI89thjOHjwICwWC3Q6HdavXy9WNiKQ9w899BDuu69tLSopFArlXGDH33v9Ts4TBB9CYqcScKoZ8DLG7TrAuN6b+8XA2s2dvM9wAuQnKyErrAFjtoNXy8EFu5OGtKEaXPvUFfho+zxMv3MK5MpaEQEDdOqViPnrXsIzix7G9DsmQ1ptQchfhyHPKCeWca7dbE4ojxSJ61mb/4o7IVHBUAd7jmsGTuqDdza84lF1x25z4Od5f3jsZ08OBRfmf0xEEp3W5uRjxj3T/O7j8fxig11Weg2QOAGlDlCXAuoSAapyAdrdxX5tSDP3Z4PrEgMh2rejhaBVQm2UI+bLg9DsK4W80AhFtg5hf2ch9ouDkOqbKSgHUF3qcuWgUCgUCoVCoVDag/XFJwJo3AI7J9ThtUukA4LcNWawWJQ4mes/+V8tCcKkmMvw0+S7ECZchX2FXZBXE4YifSjs1v64rdM83Nb1foTbZqG8xj12cPIsqmwqlNs1CFFYRDEDqXLaWV2JSzofwbVd9+Pa1H2YGJ+BKKUBCREKaGWeBaXGJXTGTzOuRZDc7XpncdrxTaanyFjKcogL0iEhWI/oYBMSepSj68gcRHauEp8RETlsSc/F1T36+n9I5HEIQE15MDijtMnnSlwWnLz3Tia7DJyTgcDsh5Tx/HzIawkjIE6pr72gf7S1AgcynrI6ZbCR83K+E4wqrDROQqFQzm0WLVqEqVOnirGMOiZNmiS6UxM3awqFQqG0L9uWtTxPyRmuhnVgvN/tliGJ4II93a39ERYTgqufuBwf75iHC24aD6nM1S9mGAZdBnTGR9tfxzM/Poixs0bgVIhMCIdS424TOf+w6YMwf+2LUGnccRuT3oxf3/2rRefmnBwObTqGSbUFq04HaUYrHIO6QGjQdkglYuzEProHBIaB85ZQcHeGAcENxhrE9XukGo63YyGom1e4qrq0ph3ugEKhUCh1eJe8oFAoZ5xAlUTbG6WMwfDuodCqXF8Pg7qEoH9yMKx2HjIpA7nUnXDTPzkIFQYH9ObmW3Q1xMEJmD44ElVGBzheQIhahmC1j6+lkhLAbGr5BcrLgCnXA3I5cOhgYPeH4GBATybXzxKKioB1a4DUrkCnzp5OFTabS2whkQBRUafXxYJCoZxXGJwcVla0TXLjiooa8XxB0uZVRPDFK6+8Ik7sE8jk/qpVqzBunLuqhFKpFCf/yfLxxx+LLg+Ezz//HGPGjMGNN97YBndCoVAo5wYOm29HhDoklQbwDaoGEfcGTsGIE8A+YRmYh3eCMqPMdf74EBgndYdQJ1wgtsGDkiDLqURqTg1e/OlhxCa7BBGPfnkv7v/gNlSX1EAbphEtmet4+It7cGTrceQfL0LQxgwIm7MgyCWiwIFpxrhKV67H0urvcXDDUbHiUNdByejc27uC0sENR1BT7jlecMQ0bat8JK8Ev318O4LCNPjzk5X17g++iO8Wh0w/2+qfajPcILjkmIDb+ZgwyI/kIuKvLLQGR5wcxgsisHKIHpk7l+KSTn0xIbYr2AYZTPoqA3KO5IvClG5DukBCxiYUCoVCoVAoFEoLsHNcgK2MKBpoKhnf54ggzAGUKhAUYYQ1hEG1XYVQmcXjXKGyWFzf+UkEyyIQLAPmj7wUZueFqLCaECpXIVjuTpR5bOh1uGVjHoos6WISPy/23hmEyO3QSJ2QsU4kKmrQOcid+EK69QkaHeLUemwv4bDi+vnYUpgDG+dE38hYpIaGezV7e3kWDA63jR4RTsQF6b0cESRSAVHJ1eLritxwHCouxa+3XodwpQo/ph2AyeHwrB7Ikda6bj7eGUkCK4EfKgQUGYJFtwW5hCNSE9G5wc5JMTwqB2wAWQq57xCpBTqnJsA+gigSsdkkMNmVMFn8u4nv/XYb3qw+hCnXj8PQCweKiVh11NhNyDGVQCmRoXtQIliGxkkoFMrZA/mNe+mllzB37lyP9Zdddhl++eUXMdZBoVAolDMfJ/GFtZd/V2oRhoG1Vww0O/MC7pbYPQ4v/f4EwqJDxPdPLZiDBz+9EzVlegRHaKEJcfepn/v5Ydyc+j+UFxChc8vRVxmxpOhL7Ft7WLznHsO7IqFrnNd+O//Z5+3c0AzS92SJYonwmFD889XagOeI7xaLoowStBZBLoWzp383JT4yGM4eEeCv8T8mETrJwF0YBOnSpnPItizdieKTpbjgxvEYNKWfx5ikukyHvGMFUGmV6Da4i8c2CoVCoTQPKnCgUDogYVp3ks/pxuoQcLzABNLfiwhyTRxLWAYapXdCisMptFrcUAfpvsWHNzEJ42h+FVEPSBIN6SAOGQr0HwAUFwEZGUB+nksEQJBKgaQkIDsbpwQRUQQSULQ1NTWuJTMTiI4BLp7hutft24DMDMBZ+7loNMCAgUC//qevbZRmU1SyC1l5K2AwFoiDmaiIfkhJuhARYT3oU6ScFRTZHODaSJNHzlNsc7Ra4KDX6/H+++/Xv3/zzTc9xA2NmTNnDvbv34/vvvtOfP/yyy/jhhtuoBMLFAqFUkvP4V0DPgtpThkcPRPEqjcEngX4JmYYeK0MvFwiihoMF/Qklm5e+ziSI3DSwWHBS7/g5pevQc/h3cT1SrUCcV28E/d15Trknyiqf89wPBhL4IqgjWFZBmOuGB5wH7PBnUhUf61at4hAKGRSsCyL216bjeuevgIHNqZh/U+bseffAzDWuETcZHJ7yLQB2LruEBDfP6BAWVrsX1ioCVHDaLICanelJfK5ODQMBJYBywmQmgWwJBlMqwJjbXlwRndpJGpuiBMzk/TQ4Xi+Dsvzj2BYZCd8MeY6MGYnPntkATYs3iLaMxOikiIw++mZuPS+C1t8PUr7s27RJix5+y/kHM2HRCrB8OkDcdVjl6HvmNNrG045h6lLnjzVc1AoFArlvKNfuP+qp82BOAD48HAAZDwUGhs69ysGKxFQagtBpV0LrdQqJtdbORl2GJXIqtmOB3oq0DvU1Q61VI5OWu9k+yp7NVhNpjin5BI3uJGyPJLUNeik9l3Vk1xvWHQOlFLgopTuAe/H5PRMAgpWWL3EDQ2JSKpBVUEIFFIJJCyLZ0ZOwJzBo7CjKA+/H0/DlrxcGGtjGkFyOSZp45D++O+IX6wIKBwx2Ml2RnxORjsZe7h37hTkbFJ0omKdCFQuxZyrhn2jFsz+Apge6uJ3P8bCofyrI1hn5bHux80YfEE/vPLnU7DLOHySvgwbSg/AIbhEMrHKMNyUcgFmxJ9aZVtK+2A0/g6b6Rso+ONgIINEORkyzd2QyAfRR045L8ckVqsVt912GxYvXuyx/o477hCLNUlJbJtCoVAopwWS6N9S+KCm3Rl4bdP7FGQU47vnf8Ytr1yLLv07i+tUWpW4NKYwo7jV4gYCETUo1AqMu3JkwP0sBv8FnAIhU8oglUlx73u34qaXrsaBDUexZuF/2L/+cH1RKBLfGDK1P7Ys3dWqa9Rfq3s8rI2cshvDTwsF5IFz3fjJGqAZAoeTB3PFhdzP8IsH4aXfHofZYMH/PfwdNv+2A06Ha0wSnxqDG1+8GlNvmtDCO6KcDv75cg3++GgFCo4XQqaUY9SlQ3D145eh+5BU+gFQzssxSUeCjn4olA5IqEaG8CAZqgz+E06YdvzeKtPZUaG3Y2SPUMSE+u9YHys0nvK1CqpsSI1VB94pPNyVvO+KSDSflAaT3zKZy+mALKTyU1kpQCq6RkYCa1aj1SgUQJ++QE4OUFWJMwK5l40biKc2UNpIyWwyAdu2ktkwYFjgpC3K6YPjHNi5fz5q9O6queTPu6zigLj063kbkuL9J2ZTKB0FU8BKei3HeArnW79+Pcxmly29Wq3G3Xff3eQxTz31VL3AISsrC2lpaejTp0+r20ChUCjnEr1H9RAr72fsPelzO3FIUO87CfPgLqLIQSDzxQ0yWURHB5L7QzQMPMDaAZZnxIl7W48Yn+KGOuypUdixZC8OTnwJ81Y8hwET/X83f/f84lMeGP23ZDum3zEl4D5d+nfyWqfIqoJxbGeP+27M5H7uAAgJPIy6ZIi42K12HN+VCZ7jxef83Ix5EHQWyLIr4UiN8ns+RVqx17qQyCBcMediUVRgPF5ELAFFkYQtmIU9iPFony1EgELHQ+Zs+W+uZYAWNTf5TjLbXZGHF/f8A/vDu3Bit6czRHl+JT7639cw1pgx+5mZLb4upX2wmKx4bMJLyNjn/j9O/h63/rkb25fvxVMLHsDk6+mYhEKhUCgUypljZFQKugVHIUPvx1FAYETxLs94C4/JXCtP1L6+cLKI6lQtihvqVwkS1DjcFTxDlFZsKTuGXRXZ+Hr0zRgY7u3yVscveX+KQgV/hMtd81X+kEucOK7fir6hkwLu1z041uO9Rh644BK5v5AYA6b2cI9JtHI5LkjuKi4WhwMHy0rE8VS/6Bg8MeYF2C4NhskpQCvzfW5xDtscJEaniMiBYQQIAoMIhQY3dRkJk1AMvSNwEhA5JhBVW6LBFEmg3qWDdgsZc3m7WbACh+SjBVBdpwBfxsO+wSZWm/3o0W9w4jYrsoxuETyhxFqNt4/9CrPThqs7jQ94fcrpw8pZkFZ8O3pItsFdBo0DZ10BzroaitCPIVVdTD8SynkFKeREXBr+++8/L/fqF1988Yy1i0KhUM5Xhl00EPFdY1GU6dtRgEy9i0LnBm7SrLnpwkJMM/Yh/fRty3bjwPojeHv9SwETrb997uemzxfoUrwgzgmPmxVYEJxSK7RoKWMbFJgizhOk4BRZyBx1OoknMECPYV0xZ8Qz4hx1awiPC8PVj12KX1YdhKGJfQUtGUk2sU9Qyx3gdq3YLwobDm8+hrxjhR7birJKMf+WT0T3ikvvndbic1PaB5POhDmjnkP+cffnZTPbsPGXbdi6dBde/O1xjLxkCH38FMoZhPpxUigdlGFdQ6BR+E766RKjalUOT4RWCpmkeZZXpP99MNsgWmD6o9p4au4NBJO1GYk1QcFAkndCUZP07uPf2SEuHkhIcIkdCgtafu7EROCyK4Abb3aJJkJctnBnjJxsb3FDQw7sB2oTfylnFvJ/ateBdz3EDY05euIH5BZswLY9r2Plhruw+r//4WDaN6LTA8UTk7kURaW7UFq+H06u5XaIlFNDQ75P2xDtKZwvkzja1EJECs2xaO7RowfCwsLq3x8/frzV16dQKJRzkecXP4LoTpE+t816eAaQXwnl6oOQZJaAtQv1gmQibLCHApwG4JQApwYcIYBDDQwe1xvyvgmBL8wycCSGiQ4An8z5JuCu6Xv996mai7/gREOSeiRg4OS+HuukNVYoMvyLnKVWJ64c6XlMHXKlHP3H98bASX1hqDLi6NYTcIQrwVRWgzebvMd7ggDlrhzIity1TkfOGIz3N8/ForzPxWql8amxYAQBbEkN7BoG9mDWW3zBMLCFSmCPbPp3sjH6Gf6FF4SVBWk4mpHrd/ui136Dvqqp0ALldMDzPJ6Y8oqHuMFjO8fjvbs+x/LPVmHOyGcwXXEdrgi7Be/e+Rlyj9ExSWPyTxRi4y9bsX35HtgsdEzSGJLD2BYLhUKhUM5PPhh+FaKVJKHeE9LLvbnLKBj1cjjtrEdtJBLb4HiWpOD7POfEyK6IiQssDiDdaK3cDgvnwOuHVgTcN9+SE3C7jG06BlJtb3pM0iMkFgPD3EILl6hCgFpiR5jMjFCZGQrWM1EqKtGAK/v7jpOoZDKMTEjCyMQkVJ4sR3pWDrjpWpSZtbA6vevjkWdcYg6CyekuijUtvhd+HHc7Vk99CMOjOkHF+heC1GHjpX5rWVXuD0Nkzyp0mpSH0EsZxHyXi4iFBZAVux31EozlGBRXgIirGKjvUkP7nBahf4ZBPkOBNZX7vcQNDfn25CqYnd7ufJTTDydw+CP7cVHc4BsnbLonsKl0LZ4/8hpu3nUv7t7zEL7J/gEl1tLT3NqOT7UtB1n6tcgzboOTp2OSs3VMUlNTgwsuuMBD3CCXy7Fw4UIqbqBQKJQzBHFnfvn3xxEaHeLTGfrKRy71EDcQFCfKmjzv5J6dIVM0ryZ1nRtAIE4e8j8v35Zxkt4ju6ProJQWnVcqk2DKjb5FxiqNUixwNWBCHxScKBJdhlvKpOvG4MOtr+GHk5+IzuTxsaFNHsMUNy2iYPNb7oBNWPXdBi9xQ0O+e+4nOofcQbDbHHiwkbihIQ67E/Nv/QR/frIS9w5+AhfJr8OsyNvEgl7FJ+mYpDHZR/KwYfFW7FyxT3y2lLNzTNIRoQ4OFEoHRa2QYFK/cOSWW1FYaYWTFxCiliIlRgW7g8fJ0pZbf4UHyWF12OBoZoVsk41Dhd6BqBBv22VCgKKrzUYh8xFkqK4mJSoAkpwaE+NaN2488NefgKEFCTFkX4276pJPWuu6oA0CiH3z77+SGSe0O61xsGgIqeK6bi3QtSuQ2pXMiLVl6ygtoLL6GKp16QH34QUnjqb/UP/eyVlQWLIVJWW7MaT/Q4gM73XeP/PyqqNIO/EjTBb3wEEqUSGl0zR0Tb5MrJRAaX/iFTIQ3RzXBh1pKQPEKWStPt7pdIvuWmLRrNFoUE1+d8gg1UEHWhQKhdIQkjD/+f638e+3G7D59+1iZRkyeX3pfReiLLccf+AfsBY7WI6HlANYJ+BUAU7SBW/8U8wAvBJIeWA8jv57GIYaU+CHzbpOQCa003akixPnvlBqWp6o35iQqGCvdeS6pTllCI0JRY+hrspIj351Lx6b+JLoSFB/7KpM6ATA1j3CQ0wgqbIg+J8TqLq7FOEDA0/4p+eXoPTm3rB1cU+8syYHVLkWKCqdkOgskJ8ohcTgmYgTkxwNXbke9wx4XLSgrj82owj2QYHFCJZBiVBmtmwsZO+rDbidYwTYemog3eEWYdThCJOjekgEHlvyB6ZOHIxLUntALaNjkjMFqSR1YpdbHOoLm8UuTtTX4dSZ8e+36/Hfkm2Yt+JZ9B1LxyTbdhzHh/OXitW3pCU6SMuN0IZqcM0Tl1O3EgqFQqFQ2ojU4Cgsm3IPfs/djzWFx2HlnegTGofZXYbiRGWl6OJgN5OEewEMS0TXDFg5B4ncd8IKZ5VgYO8k7HZI4GiiflNd9z5NV4xjumL0ConzuZ9C4r9fK2eckPpwmGiMSuo9Jsk0lKDUWoMIhRY9gxPFda8OnIk7tn2HcpsBrMAjXqmDlNx3LcEyG2ycBOU2LXiwkKjs0As1CIGn+0NjjhUXoeqVZARLOfBgUGAKgUZqF50cWIaHnZNCZ1fCznsGhZI04aiw1WD2liUotFRByjgxLb5+OOeTSrsW1XYVFA4OKoVDHCuaitRQyhxIHNogSWSCBDEPCyh8tgIhj5eD10qgGCdF8PNkXOJ5AVbLQvO0Bo6cwHOLFs6Gp/ctwYSoAZiR1BtKaevnIimnxuGaPUhgdnmsk5C/WbE2IwMePDjBiLSKd5Ftcv39mzgz1pdtwo7K3Xi65yNI1bYsue5cJF2/BbsrPoHF6U7KUrDBGBB+E/qHX3dG20ZpGRaLBTNmzMDu3bvr14WEhGDp0qWYNCmwww+FQqFQ2peUfp3x1eF3seKrddi2bBccNqfoNnDZ/y7E8Z3ec6yyUqMocrD1iPZ5PuXREgyZOR4HF29vdhtIgSRSZIUUYvKFQiVvlzhJ1sEcMR4SmRiOrrVxjqcWzhGL59SUeccBfOF0cNBV6KEOUgXcL92Pm3hTEIeN4pNlmHf9hyjNLYcgYYHpgwMmtElWVYCbpgUi/ecUsP+0rlgTud9AGKpNeH32Bxh35UhMuHqUWAyLcmYgsY48P+KGOkiBsk8f/NbjPSkMtXHxFsxf91L9/4vzGSJq+PrpH1GWV+HhPH/jC1fjijnTz2jbKOcGVOBAoXRgZFIWXePU4tKQcl3g6kL+yC61IDZULgoXmovZ7n/fuDAlynSnlgyaGNGgE0sCEls2ASUNlMGhocCIUUByMjDrKmDXTuBYWvNOXlYGxAaYuLdYgP82tq7hRDixauWpiQ5aQltcp6jQtWzf5hKMdPOdJEZpW4zmEjidFqhVUZDLtDiZu7LV5+J4Ow6mfYVxw+fCYCoQwzghwSmQBAiina0uF0QIYraUQSbTIjqif/092h1G7D/ymbi9MUQIkpG9DBxnR8+uV5+Blp9/BEklmB4Zgr/LmzeBEYjpkaHi+VpLTJ0grtbNgfwdNSV0sVqtKCO/FbXExfkOVFMoFMr5TFCYVrT1JUtDjNXG+td8rMsNR67jYQ3z4RrQgB937Me4LklYvy9wcrW0VF//upxMivkROBAbYzK531okUgkmzR5b/55UtP/4ga9xbEdG/brOvRNxzzs3Y9hFg/B/e97CN88sEqvwkC46w/EIXZkO53YlbKnh4uQ5CWDIc2vEvtqJXVkBJzjLjSY8u2u7h7iBwGtkMPWWQb48C6q9vivBhMaE4NWr3vGqECVIBAi+hOQN4CI14DRySEz2FtlUeytXPGEatwVAxZWdUDMxFkQVuQblWLNxFeZu24g3J0zDjNQezb4+pfWQ4JfZYEVC11gxAf+X+X+2+lwWoxVv3fwxPj3yLk4UVYiVyvp1ioW8BQLTswHy/2r30VwUlekQFqzG6IEpkMtc91itN+PJj5fhQGYxEKIABrscJyVlBvD/pePb536C3WrHLa9ce4bvogNxnlYWolAoFErbEKZQ487uY8SlIYV695iE9FMF3tVX5WwSCAIDiYwDU+tjL/AAZ5GCN0vx7aG9uHJYF+yrORzwumaHO/m92KzzK3AYFjYQeWZvFwcJwyFe6RoXBELCyNA72D0mOVqTh3eP/4VjerdzVqo2Fg/3uARDI7ril/H34vOM5SiyrYSkgbihDoWEQ5TCiFKbK0Ep05CHJLX/OEmxWY9ny7fCkUDE43VCdEZ0amjo1uArVBEkleH5g79AqP2xdwpSHKmOR7+wIp/DQr1DgTKrRtzPwgLZX3SDYJMgZXo2gvs1/DxdSEMZJL3H4uQNHJxWAdr7SBsb3rP7IgzLQJPEw95EyGpTSTpW5ORh3sE1eGvYZbgggcZJTgdFliLYODtilNFQS9VYXfo3LlG5CrkxYCCHDGzDogFgIRUkGKSqxOZagUMdZs6Cz7K+xYu9nsUxXQmkLIt+YQmQs+fYmETgUGTeDaOjBCppOBI1o8TvC4LRUY0lea/B7twNaaMynjZej10Vn0KAEwPCbzxDre+AdPAxyZw5c7Btm9vRJDo6GqtXr8aAAQPOaLsoFAqF4iI0KgTXPztLXBrir1K/dkMmJHorLH3jIKhcv9+MyQ7V4WKo9hfit5M69BnTA/vWBh6TNIQkD/sTOIy+fBhy01rvvKvUKDBu1vD690e2HBNdIzL2ZdevI8Wv7v/gNvQb1wuf7X0Lnz+2UEwQbw4Ze08iLsUdy29McXYpvnrSXQC0JcjkUrx500f170nMRnYoB47BXXzGqtjCSkiKasDOt8IxN5qoQ733+dcAyY6WFx1uLtv/2iMunz+6AE//MEeMPVHan9y0fLGwU0K3OGiC1Vjy9rJWn4sIVd6+7VO8ve4lnDyYC6lcKjqISGtjCOcKHMdhz6qDotApIj4Mwy4aWH+P5QWVeOHyt5C13/09UYeuwoBPH/pWdAuf9fCMM9DyDkoHH5N0VM6t/1UUynlCZLAMSjkLq73pyj8NIS4QoVoZCqqab0+qknl35uroFKVEWr4RjlaW7k6NVUOjrE1m1dUAy5cBtkZtI+4Iq/8FJk0GMjKA/LzmX2DfHiA4CEhulFBEHCwKCoATxwCj96R5k0RGAdknT5+4oa0hFco3rAfUGiDB9wCIcuqUVR5C+sml0BtcdoAsK0Vs1DBU67NO6bw2ew3Wb3sUPO+K1MikGnROnIxuKZeDqYvYncVUVZ/AoePfieKGOsg9du8yU7zPvYc+adIBIyd/jejkoJB7W0VS2p5bEyLbROBwa0LEKR0/Zow7yF1eXo7169djypQpAY9ZtmwZ7MSNhwR/FQoMHTr0lNpAoVAo5xMDJ/cVbZlJlR6htjynxAEITRTA1Fts6N8nARv2EzGa732kxTpIq8z178mkmT8uun0yFr68RHSXaA1EuBERF1bv2vD45Jdh1ntOXJPAwAuXvYVnFj2IFV+t9Rl0kNZYId1b5LX+u+d/RlRSBIZP95ygJsnPe9ccwk/ZGSg3ue+1MbrJnaA9UAam0Zir9+geWP/TFi9xg0igcqmt2a8W5UEDLMP8968YOw9FmqczR9X0BNRM8U4EM9hteGjdP4jVaDEklo5J2ottf+3Ggpd+ESfYCXKlDBOvGyMKefxB3DZsnTRgnDxU6QawDs95B0HCIL2zFpNf+hI2zrUtTKPC9eMG4u4LRoiCh7Od3Udy8cbXa1DUoI8bGqTCfdeOxWUT++HhD5YiLdtbeMRFB8E4tReC/jqEX9/5CzMfuhjB4UGnufUUCoVCoZw/TEhIQbBcAb298ViAAW+XgLezEPN+ORaCk/RRXP2UCosZ3ZQjsQ/+k4mMdrnoWlBHtNL/b/rE6AlYXrQCdsFTPBwqtUDCuFL/RXG0n27S6MiroZa6+tnp+iLM2fs1LJznubKMJXh033eY2/9arCzZiDzzYUQo/MeHiMhBwTph46X48uGFCLlDicEX9PfYx+K0Y3v5SSzK2IdqpwlSoemQMcfXzT8zGBaegr+L9taLG+rIM4eL1+0ZUoogmeuzIc4PZTYtiiwhEMQK/S6kBZVApyBE9vHvLscqGcTMl8McrxZFDHUZAeSZul65H6xcxoN18uAFtsl70NmtmLP9NyyZfCv6hcc3ee+U1rG7ag/+LPwLBRZX8p+clWNk+AgUmAtgUbjig3JIPcQNdZDiNYPVNYiSWlBO7CIbUGwtwYz1r6PS6vq7jVBocHPqSNzZbew54e5cYNqBraVvw+R0jzuUkjAMi7ofqUHTsCj3ZZgdaQiS+I9THqj6Ab1CZ0HOehbRo3Q8fv/9d3zzzTf174ODg7F27Vr069fvjLaLQqFQKE0z8pIhUGmVYlGYhpBxiHpPAVT7CsGFu36LJVXm+gJBJDH4qscubZHAISI+3O824rr927vL4bA3YVPnB1JpXRNCrLmB47sy8PSFr4mJ4A3J3J+Npy+ci2d/ehi/vvtXiwpPffbI92I8qf/43h7rLUYL9q87gqUfrYCxKddvH5Bk67+/WOO1XppXAcbqgLNHPPhIl/CbMdkgyS6FNKNYHEEw+62QPVgM7uoQ8GPVxH4PTKYdkr8MYFe1Io+sFegrDXh51tv4ZOcbolMIpX1Y//MWLHrtt3pBEhH0TLlhHPKbcG9oChJ3uTb+LjhrC0eHx4bi6scvw1WPehaMO1vZtmy3WBCuorCqfh25x/vevxVjZg4Xvw/8ibzq+HHur5hxzwVQqLyLJ1AozeXsz4SkUM5DyORcr0RX57KlEEHBwJTmBdhVchZRIf4rw0slLEb1DG1pXoxIXJgC/ToTK+Fa9u3zFjfUQWaqidNCS8QNBHK+1atcYoY6jhwGflwI/LsCyM5uRcPjgUGDgSr3D/hZCXmmB/a7hCUVFS7RA8FkAk4cd7lkVFef6VaetZSU78Wegx/WixsIPO9EUel2cJzn4LY11IkbCA6nCZk5y3Ho2Hc429Eb87HrwHse4oa6ezya/iOOZfzSpLiBwAtOlJTtbceWUhoyJlSLHhpSPa319NQoMTq0wW9CK+jevTtGjBhR//7BBx+E2ew/YbSiogJPPfVU/furrroKGuLOQ6FQKJRmIZPLcMPzV4qv2arayV5xVrjpwUFKXDgeu3aiz13ZGjO0G93uCaSSSp8xPQM6TLz29zOQylvuAjThmlG4440bPCbaGosb6uCcHObf+mnAgAOvkolLQ4j18ktXvIXDm93uU7++uxzXJd6DFy9/C+ty3f1Fn+fUyGBN9XR3GHxBP8x8cLrfyVdJjQWMJXDZUtZgA2tsmSgkeHk56Wj53a7ZUAWJ0e0AyMsY1Ez2XynWyfP4/MBuFKQXiVbXFpO1Prjz73cbsOLrdeI2Susn7V+e+Xa9uIFgtzqw+vuNsJm9nTs4jRRFd3VDzisDUXx3dxTd3xPZ8wah8uKE+pQ18m/1pT1hHhRXL24gVJss+PTf7Zj3x/qz/uM6drIEj7291EPcQKgxWETRwye/bPYQN/ASwKkESHFj8nz4UDUcncPFAOC2P3efgTugUCgUCuX8QSWV4X/9R/nfQWBEdwDBSUKhnoOPRGVn3Nh5ps/DrE4pCvWuJBhCt6Bo9A3zL8oNlgXj4e5zwPCeAgGtpK6/zYAnC0nIb9CdJq/7hUzB+Ojr69d9nbXGS9xQh0Nw4r30hTisy4BG2nRfXilxQDDzqFhehucvfVNMVKrjq/TNmLTqPTywczG2V6VDqXaAkfKw2gOLHOycROzzjInqhttTu8HhzAMLb6FFqTUIR/Rx2FOdhH3Vidhfk4hCS5iHuEHId0Kx/iRiag6JThvkPFKGE5fGZQ3VXYRacYMbMp5kXD2w2v1dS6ARKcczsNjdYzYHz+ObEzuQby7FSWOh6DBAqLKXY0flBmyv3IAKm29HPUrTbC7fgk8yP6sXNxDsvB2bKjbDzjtxyBoFFgzYAIWbJAwwKzSr9rP2hGHdsZZKmwnvp63D/COrzvqPptRyGGsLn/YQNxCsXDU2l8zD9vKvUWo9iQiJAZESPaIkOoSwJrDw/L/j4M3INzavqjLlzOF0OvHEE094rPv222+puIFCoVDOEtRBKlzzxOV+txNBg7TCJC6N3Y97jeyOm1++plnX6T40Fcl9kvxuj0qMwEu/Pw6WdJ5ayIx7puLaJ9338N0Li73EDQ3nl+fd8GGLXbVJgvSz019H5gFXjpYgCPjhlV/FOMlLM+fjwIYjLW73qMuGYtxVIz2SrxsiKdNBsfkYlH/vgXLFPihWH4CsVtxQB3vSAdlbFVBcmgf5hbmQvGiEcEINLsHl1n06IM/0t/f+Ru6xApw8lCsWxyIUnyzFym/WiUtJjmf+DKX5LP98Nd644UOPRHxSMO2fL9eCc7asqLQv6sQNhKqSGnzx+ELR4flsh/yffPXqd73+f5F7JM/zu+cXNyluqHO62P3vgXZsKeV8gDo4UChnKcnRanEC/Ghe8x0UyIRvuJa4P0gQGSxHZrEZ+RUWNMhL8KBfclCTlU4iguSY3D8CGw5X+j2P7+Nk7nMTR4WszMAHkH1aA3lIG9YBrAQglZxqK3W3CNJOuRyIiHSdY83ZP0EqUpAPLP7Z9VomA0hir07nGWVJTHK5Z6hphZfGCAKP8sojqKw5Lg6CIsL7IDKMKM4FpKUvPu3eUoUlW8W/VSJ+IM4FiXFjEKz1P8g90+gNeXA4LdCqY+HkbDiZ9y/yi/4L+NxyCtY2+/w6g7ctPKV9IN/lH/fqhCv2Z8Lckh+CWtQSFh/16tQmlbXeffddTJgwQbTKS0tLw+jRo/Hdd99h0CDPqtm7d+/GTTfdhNzapFJSEen1118/5etTKBTK+cYVD0yHwAv45oN/oEuIEKsSSSwCOJX/73SFVIK+CTEY2y0Zw3sm4edVe7Hq371w6K2QZ1dCfrJCtBAmSKQS3PfeLU3+RgyY0Aef7n4LD4x4Bg5r4MT+hvQb564WZDXbsHXproD72/1M6tu6RsHaLx5chKZepKE8UgzlcVcygtPBYd71H4j3Y6g2eogoeFUzqqSqpGClLDQhanQblIKaMj1ev+4Dv/sTtwflsVJYBif63Ye0j3xejig5dJMiYU9UgbVw0O6qhmafzlXptvExx82I+KwAlXclkLKbHtvUO3UIX1Dssc7SNRi8JvD9rT2ZgewZi8TrqYKUYhWqoswS0bZWvBeGwfCLB+GJ7/6HkNpKSxQ3xMHjv/ST2J1TKA5bx3VLxsguneB0OPHFYwvEQFFzIGKUggd7wt6okAKvlqJqRiJ4pQRRf+TBnhwKe7J/R5Ul2w5BvjMfjsIaRMaH48LbJgUMvJ1JyLMhVcfMBgs69UqEsdqIX99ZjqWZBXAEcI1Z/O8eMT+SFP61hQNOMlSu/Y5inALkekDWKRzynErRKYO4zJzvMIIgLqd6DgqFQqFQfHFPX1exi4/2boFJaFCtlHQnHd7CBoJaKkPviGiMVCRhYGhv/FW4HutLD8Di5KC3KcWlLk1eyrB4qu+FTT78PiG98WzKC3jsj88hj9ZDEBggtbJBmTmSnk2WetsBkSR1n/rXBocF2yr8JwrJJRwYxoxQmR1SXx32RpCrOX8zA2YBlk4snvjvJ9j1WugdVtFRjSdtbPB8JBIBeqscEpaHTOo9x2d3KqBigvBAFwsmhS0Ab0/Dpz2AKocaq6p6Yll5P/D1N8zA6pSBlUFMufYF94erQqsiXoCKtYtuF3WQn367IIGjCVcJsRsmumO4XR0UNg5mOSOejwhBiC7CyklhccpQbRQ7b/XHBymtOGLZirv3kHlpIEiqQM9gQO8oqHemYMCgb8gQXN/pHqilp1ag5VyEFzik6fci23QMEkjQM3gwumh7w847sDj/V7/Hkc/3sDUCl/L5UARwISB0V+jQU1OMIlsYdA2cHNyOIm6W529An3Ai5jEiSBqFvqHTEKHohI46JimxZsHBWxGhSIKNq8b+qsXINqzwKRyqPQrpNYvRX1WFYEnDYlo2hAkmlDuDYRbc1VErbMeRigtwvtORxySLFy9GdoOCfCzLioWZGhZnag6k4BNZKBQKhXL6ufGFq0Qx7k/z/vAbQ2gMmetP7puEXiO6iS4Qv7//N/77dTucPhwYZAoZ7n33libPOWLGELy74RU8PvkVsWBTc+k/rlf96+rSGuxvwlWiuffYGCKaIAV5eJ4X3RoshpYXBpXIWGhDNeg6MEWMI7x35+dNHsM4yLMI/Dy4UA3sw1IhBDfIi3I4ITtWKIoi2ps1P/yH1Qs2iq/J/YVEBYv3Vze/T1yTx8wagce+vg+ahm2kuD4/Jye6DRzddgIyuRQjLhmCvmN6ig4hXz/942l/SkveXgZdhUG8fnRSJC66YwoSu3k7nXcEyP/HjH3ZsJltYiyHCBqWvLMM6xZt9pu6ReJSf368stnXIOcfO9NdqPR8pSOPSTo6jNDcaCeFQumQcLyAXek1KKlpuhOZGKHEsG4uq+M6bA4eR/IMKKiw1hfjDNVI0StRi9iw5lsEVRsd2H6iRjxfcxjdMxQxoQq308L33zb7WpTTTHg4MOsqEuGgj74W4jCw59BHMJo8K8oGazshpdOFOJj2VYd4Volx49Cn+w0orzoMq60GKkU4oiL6gWXdgSGHwwyGlUAqOT2WYMVle5B+cilM5rqBICsmrglCK0VMAejeZRa6Jl/S5uel+Oa/KgNuO5LdIpEDETd81zcFE8Kb5yzUHD7//HPcf//9Hgl9AwYMQO/evSGRSHDkyBEcOOBWiSsUCvz111+YNm1am7WBQqFQzjdsFhuee/wH7Cyshi2UhTHRf2WbK4f0xdyZUz3WVZVU48snf8CmX3fAYXMJFHqO6Ibb5l6HwRf0b3Y7yOTlyzPno6Zc36z939nwsiiOqGvDtfF3o6VYBiXCMsR3soTiSBE0OwKLLovv6Q9HXOAkmZivD0FR0DJLZIFlYLiwB+zJ3rbVivRyaNdlQD8pEuW3JLlKYjbcnmlC/NuZkJh998+4IAmMk8LhSFCANXHQbK2BIsvb+cLYNxTF9/dosq1dH9gJponuQ7fBKfh4xxuiSITiIruiGvcvWoacSk/nvb7xMbgjOhnvXvV+sx+VbnQUym7o4n8HjkfKCwdgHJ0Ma4+ogOfS7MxH0PZ8CDIJBCmLy2+bjHveuRm7/tknVveJ6RwlWofXfZakz0YCWiRQp1QrTpu7xcKXl6CwNjhV1xanwMN41XAEsqkkjg28lIE5ziUM8YUq24TIHw6Kr8m9nyuW1C2hoKAASUkucUu/616AXOPpRNNS7KYaHF48V3ydn5+PxET/Ai4KhUKhnJ9YnA7c9+H32MLoiHEDOHcOtBc39xmIV8d5JvyWWvR4++hqrC0+Bgfv6gcPCk/CQ72mYFhkcrPbsed4Pp76v+XQmawYc/V+RCR6ukI15o4u7yBB3V18XWypwqzN8/3uG64wIkZlhFrqgJx1imn6RKTACaxP34JiSxB0Cx2wHuShezIBkHmO08jUGTleFGM0wOlgoZQ6oVbaRbEDOb/FIYOTl+DSqCO4t9NWn+3boeuM9/InNRAQCAiBGXK1dxiaW2EGN18HeZyAvr/wkPrRMtt4l8iBCBT0DRLbAyOAsTHQqG0eroEGmxzHymMQrLIiTGWBVOL6nFlGgELiBHmKRBAhZ30PTpI13fBQt5cDug2cb5RY8/F99luosns6DXRWd0e/0Kn4JvuHgMcrWTtuDj+BUeqagPuVcxIs0iWhhlOjwq6BzqkW3TiOlMWCF1jR9WNCeDquiDuMcJkJFkGGfEcYCpyhomvIkPBZGBd1K/JNW2HhqhEki0eCejhYxj0mMXFmyBgZFBL/rvZtyaGaddhc9jNqHCXiezlDXF+sRJYEBZwBzTGjpTVQs76LO5D/10WOMDjqa1wyGBX9CHqFzsL5xtkyJpk1axaWLl16yud56aWX8PLLL7dJmygUCoXSOkgy85NT5+L4Trdzmj+ufuxS3P32zR7rSnPLxTgJKcRUJ1DoN74X7ph3A/qMbnqevY49qw/i9eveF+dcm8MXB95Bl/6dxdfEReDOPo/gfILXKGCd3A+Q+xZXyw7mQJbp6rOdafpP6I131r/cJoUjzxWIK8hLV8xHWV6Fx3ryf2fidWPw8f1foyNw3dNX4Ibnr8KO5XugrzQiLjUGQ6b2F8WtDeMkcqUMCtXpiZMQF/Wf5/2Okpxy8b1ULhWLj9UVIGsryJ/rI1/ei+l3TMH5xtkyJvFFRkYGvv/+e2zatEl8XV1dLeZWRUVFYejQoZgxYwZmz54NGSmo3c5QgQOFco6w/lAldGZvNW8dRLQwtlcYZFLfk692Jw+zjYNUwkCrlLZabFFYaUVBpRWlAQQXGoUEUwdGuDtdZMbthwWAxTsp5pyB3GtMDFBa6umQcLZAXBy6N3/QdDa6MZSU70NB8RbY7DpRCJAYPw7REf3BNApYcLwDm3e+IIocfKFQhMJmCzwhfzphGImHeIC4O/TufoN4n7kF62uFBgwiwnoitfMMhIWkis+C3INSGY6YyMGQSNqmQ1JYsqNW/HH6/g+MHvo8QoMDJGtR2pRDBjPmHMvDCVPTFRd6apSic0P/oLavMrBs2TLcddddKC93Dcb80bVrV/z0008YNmxYm7eBQqFQzkduH/McTpod0A8MhzXBewJuUEIsvrz9SmgUvhMG9FUGlOaUixVq4rrEtKoNxL534y/bsGHxFuxZ5Uow9kXn3on4+og7AZxUvL8m9k7RLrW5cEEK6K4eHDAZOviPA5BWmf1uNwyNQfUlqX63y0pNiPvM/30EgvS4HJ1CYe0RDV4jh8zswODwMGQs2QlTVzUKn+vut+2aPTWI+/AkTgVnsAzZrw8EAlg5K3KN6PTW0Wad7/lfHsWEq0fhXIX8DW7+fadYrammtAYxydHihC8RAzQOWFjsDsz4eAGKdQaf54qXKcG8tL4+t6ypAr8FD/WCpXtgh4zI33IhhIXD3inwBKwyoxJSGwNnQqg4DmbMdqizKyHdlyu6i4jnSgjHnE/uFK21l336r1iNitzjkGn9cd3TM9F9SBds+WMXasp0iO4cJdqNyxVtMyb599v1ePfOz3xuE+RSGK8cGvB40bkhjIEtPEAQyckj4Z3dYO2kyjKDz/e/XR8kPC8n7q9to4n7X6jAgUKhUCiB4QUBF33wDXKNBji0PHiVdydoZFwSvp8xC0qp775Fjd2MInMNQuQqJKj9uzoFwmpz4N9dx3FUtxlc8r9+94tTpuKuru4xiZVzYMbG12DmbD737xNWjFC595wbCTc4eVLv3d3vtnMSnDQRsTODykoVnH6SdcixJFG8oasBzzOwWeSQSDkolO6YU5DEigX9f4SC9V+o5o2cC7Df6HbwUnxfAVW+GZKLVEC4BGy5gJ5ViTjyf4fFqo+dHucRe6P/zippn4mXo9qubtLNof6aLBGA+E7I4AQGZo589i7rByIUqRsSSRgOGklgR8C7ujyBviGDca7i5J3YUbUXm8t3wOA0IFoRhcnRY9E/1O00UoeVM+Pt4w/D4PQUXNcRIotButFS51vi002FfL5jg/JwZ7jLZdcfh2xKbDDHwsTJYeblyLOEo1AfglJTkPh5v9h1JXoHeSedVXAa7LQkQ0Y+W/Fvwv33rJHGYFT0EzioM2JVyX8otVWIbh0DQ/tgVuJF6KyJx/7qvTA49YhURGFAyCBIGxSOOhX2VP2DVcUNxyQCgiUWqFk7oiVGKBgn9LxSXBojY5xIkPl+5nXoOSWqOHdBIQYsZiX/iBB5x3SyON/HJH379sXRo82bFwkEFThQKBRKx4AIE27u+oBXsnVDhl44AK/8+ZTf+c6acp14PHE0JsViWiu2WP/TFmz4eQsO/pfmd7/eo3vgwy2v1b836c24Nu4u0W3hXEUiZdFrZHcc3XpCTCq3D0qBM1A8yuaAasU+MHUVg88wb61+oUWFwc427DYHNi7einU/bYah0oCEbnGYcfdUDJzU12tffaUBd/R5RIwj+ILEGYtPeoqxzySk0FJDd5XYlGg8/PndyNh7En9/sUYUObESFiNmDMbsZ2YhqUc8tizdJT6H+K6xottLWxUB+/Xd5fjyiYU4XZD7WpDxMWKTo3E+cbaMSRpiNBrx0EMP4bvvvmvSJZ7c24IFCzBpEil20X5QgQOFco5AnBOIgwJxUmgImZztkaBB93iNaFt1ujiUY0BWiXcij0zCYEyvMIRpG3XWd+0E9u/DOYFGAyiVQGWly/UgOQUYMBCIiiK/BMC/K4FK/wOaDkmnzsD0iwGDATh6BMjNATgOiI4hs29AbMe002oIzzs9nAvq4DgH9h76CBXV3hOIsVFDMLDPvWBZdyexsGT7KTs0ENEEEVV0RFhWDp53D1hlUg16d78eCbGeyWR6YwFM5hLIpGpRHNFYCNIYnuewYdsTsNlPr/gjIXYMBvS+47Re83yHdHK31RjxXWEFVlboUJvHJiJlgOmRobg1IQKjQ7XtWl3AbDaLnekVK1aIjg0VFRWiAj46OloUNFx++eW49tprIZW2TWCKQqFQKEBlcTVeuPQN0W7UHq+FaWAMnOFKqAQW910zGTfMGA1JbTWS08GH930pTgo2JjgiCPPXvojUAZ6VWD9/bIFoBd1czEOSYB3kTt7xheJoMTTbswM6LZTP7glrN+/kKcbqRPTCNCiKWubeQIhJjoJKq0TOkXyx4su4K0fi6scvE++ZTJLeuWoxjmgCnJcX0Pnxo5CVn1ogo/i2VBiHRfpv54IsBO9s3tho3FUj8eKSx1CcXYpln/yLnf/shdPBoc+YHrjigenoObwbzobJeV+BK6vZhudmzMMhH8GmydePxVML59RX8iEs2XMYL/21NuC1VFlmMGq1mDUkLdJBdbgQskKdz8n03Gf6wp6oCXi+8JWFkFrksPSLDbif1MRD6vDu45E2aNYeqw8EuVzcvCdHiZ27TC4TxUp1hEYFY86nd2L8VZ5jkhP5Zcgrr0GoRoXB3RKa/H4hz//6pHtEe2hfkNaYLhsEQeO/QpLA8zB0loBXBu7Hhv+ZAc0hl9j20nun4cH/uwvnE2fjxD2FQqFQzg2IAPSexX/iRFkFeKkATiVAYAWopDI8OXocbuo/8LSNSUhf56/Cj3CwZp3XNo0kBDenvI4opWfC8dvH/sQf+Tu89g+SWtA/wn/VUNKtshOrKTBw8CzyzaGw8645L5NdBqPNO1G6Dp4n3X/3MyHT1laLAgqVHRKJu78WyL2hjp26zng3f7L4OskajNBXy5B3IB8KlRzjrx6Fa564HMl9ksQ+/bPTX0fkJwWQN5HfUO1QodoRuK9aB0mm10jsYr2pUIlNlHxUc3IPhwsbJ4FdkIqJ4hLWfX9KURgR2GV4WNg43Jh8P0yOXOTpf0KFeRMEcAhTDkWn4BsQovAWAnQ0OMEBCeM9JrFwVrxx7ANkGL2F7hOjxuDuLjd7zOVuLV+JZUX+ndnDJCaES40IlVrEv88KhxYnrdGodLodDBlIoWUNeCFuP6JqHTUaYxcY/GUMRaEzRBSnWAU5is1abCtOEd2hb0vcjstiDvttR7Y9HEWc776oILDYrksRHSEaopJwCJLycAjueGuwNAQ3Jt+KgaGeApdyazr0jmKoJKGIU/VrMk7i4K348MQtsPHu4goyxoGRqjwkSms8ahAYeDmO2GJgEdxFIoJYMyKkgQszOAQWhY4Ij3V9Qq/FiOg5OJ+gYxIKhUKhnClIUZfnL3kDuWkFHuuVGgXueftmXHz3BR5zve0Jz/N486aPsOFn7358RHwY3tnwChK7eeb6vHP7/2HV9xtwLpDQNVZMrM4/USQ+/4nXjMY1T16OpB4JKMwsxjMXvYasPp38ujfUodh6HJKSjlHk9OI7p4jV8PNPFOLPj1eKjh0CL2DAhN64fM50dB1I+skdG4fdIcYAGkMcDJ6aNhfpe7K8tvmaY/9l/jJ8/fSPbSo6ON2QPE4i/vdaL2HFttW53tf9n33s6/sw7KJBHvue2J0pxv3CYkLRdyzJ3QocuzDpTLgu8R5YTb6LK7QXs5+Zidtfvx7nE2fbmESv12PixInYv3+/x3ri3EDyrEgOViXJhW2ARCLBwoULcf317ffZ0owuCuUcQSFjMbFvOMp1dhRX28RqReFaGRIilJCcRmFDHf2TgxAZLMPJUgtqTA5IWQbx4UqkxqqhUfpQFA4cBOTnARVnOPG/LtHV6d8Nwy8keaRnL5eYQS53RRUadxy0WhIdaN75goJcgoKOgN0OlJYAK/5xva6DtC8rExg1Gug/ALDZgOoql7AjMsr7/k8zDocJJ/P+RX7xZtjtejFZPzFuDLp0ni46GRDST/7hU9xAKCnfKx7fNXlG/bqyitZV0G1I54SpYuJOdt6q0+pm0BwaihsIDqcJB9O+hkymER0tDMYCHD6+ADX6LA+XCLKtT4+boFT47pBVVqeddnEDwWDMP+3XPN8hA6YxYUHiYnByKLY5YOQ4aCUSxClkCGojVXlTqNVq3HfffeJCoVAolNNDRFwYPt39FvatPYQdf+8F5+TRd0wPMTHd12Rle/PQZ3dj0JR+WP75amQdyBET/kmC9MwHpyO6k3floxuev1Jse/bhvGadn9cqTnkfkuwd9fNxGIbHwjg0Fs5IFVQyKZSHyqFcmw1ZZdOuSA0hlfEvvvMCXPXYJVBpVeA4Tpxcagip+lQUzgGB5i5ZBpaeWiSo2IDVppoienEOHNFK2Dq7k1jqCNlY0mxxA8Gst+DQpjQxOGQxup9LSXYZ1i/aggc+vgOX3X8hDNVG5B7Nh1wlR9dBKactWOQPXYUeS97+C6u/34Cacj1CIoNw4a2TxEAKqcJF+PKJH3yKGwik0lb3Iam48pFL6tf9l960u4YjVg253uUmSNwUDPEhUG87CeVxV8Wia564DHaLHX98tALyMmuTAgdZqQWqvJrAAgdBgMTpewzojA+BPTUKigyXE56/yi8kGNNQ3EAgz+312R+I4iRSqel4fhle+2ktjua6qy8p7BwuiInGYw9djrBo11ivMbtW7PMrbiCQlsuyymDv71+4JCuoBuJDAKVvJ5o6OLX7Oy/rYA7OZ4iDSFMuIs05B4VCoVAozSEuJAjL7r4Rm7JysDkzB5wgYFinBEzt2RWyRv3i0zFHdlnCg0jVDsKeqpUot+VBzqrQJ2QshkdcimCZZwIy4a7UqdhblYVck6craYJW18S1XOGICptadDto6OYgaeqH1GVmUA8vMFBLZZBKnXA2cAaOlDctvI6QmRCrDMUVScNwffJYKK+Q+RyTxKXEoKKwCjHN0C0ESSNQ7WjeuEjK8BipKce0oEIkyFxxmHKnAhuMcVhvJP1YBlKWh50TwHo9l6Y7HFbegkrLNuwvnQNOcMd5LMYCFBn/Qp/IV5AYdCXMTj3KbQWQsUrEKVPatchLczA5q7GncgnSdKth5QxQS8LQJ/RCDI24GkqJq9L/wpxffIobCBvLt6KLNhlTYybUrzum3ys+s1iZDgnyamhYG5wCi3JnsCi2iZS5k/DJ7UfJjYiUGXHYlIgCO3EXAa6In4EqmxnrTLmYqqlCRCORg5VnsNWqRiWnEt9ztX/XoQorxiTkIK0iClMiTgS890RZDYq5EA+Ri7tdPFJVZdhncBc/IK4eSokdjkZ/DnqnDl9kfYLHuj+NrkHdUWo5hk2l76PcllG/jwAlEtSTMTXuHmikvh3y0g07PcQNhGHKfHSSecdOglg7BimKsMuaBCdc/4da+5dU1aCd5yN0TEKhUCiU0wmpUP7loXexa8V+7Fl1QJwHJXOaoy8f1mbV15sLmRt/+ocHMXz6YPzz5RpRdKEJUWPSdWNwxZzpCI/1Lrx0+7zZOLw5DUVZZ7byvTpIBYvJKs4Xt5TY5CjMuGcaZj08Qyw45GtMktA1DqW5FUCjQli+CEuMgL6DCBzMBgt2rtiHV696B3arO/mdOBWs+WETHv/2flxw43jRCST/eBFUQUqx8NWZHpNUFFVhyfxlWPvDf6KTenhcGKbfPhlXP34pNCGugeFH//vKp7iBQOJ8PYZ3FWMrdZAiWKfKrXOvRUlOOVZ8uUYcU59ufIkbxPUcLy4NqSyqxksz38b7m+eix9BUHNl6HB8/8DVOHnQ74pGCZ+T/993v3IzgcLerW0OIk/jpFjcQaJyk48dJbrvtNg9xw/DhwzF37lzRoUEmc8W8cnNz8emnn+K9994Tv1vJcvvtt6Nnz54YPLh9HC+pwIFCOceICpGLS0eACBrI0iyIIODSy4GDB4Djx0jpbYB8OToCWwK3KePGA737AEsWA9WBLV69CA0Dxo4DYmNdyf0Efx3E5nYchw0Ddu/uGCIHgx5YvcpT3NCQ7duA4mKgIN8tDiFiDiJc6eNtFdYUDocZhSVbRZcAqUSB2OhhCA9tWUVWu8OIHXvfgNFc7D6v04Ts/NXILSSKc/LLT5wUAqtx8wrXI7Xz9PrKO3wT+zeHyuqjGDXkWSTEjMS2vW+A509/57FlCMjK+RtadRx27J8Ph8MzmEWeYWnFfpRXHcWIQY8jLKSr1xmstjMz4JNImk48pLQfRMxwugQNFAqFQukYkEnSIVMHiEtHgAgaGld990dQmBbv/fcqlry9DCu/WS/a2pLJX4vBdzINa2l6rNKcfYjIIXhHsbg8vuABXHjTBNyU+j+UtEDcwGkVSJ7YC/97+xYM6BoPqcTVd208aV9/zeakRQjAnW/cgK+e+hHlBZ4VOZqLxMIh8d00GIdEwDA8EpxaAlmZFSFbyqDO8D/O4eUSWPvGwtYjGrxSConehkwLh1evfd9D3FDfVEHApw9+g/3rDmHXyv31E/vE4vf6Z2dh+h1TWtx2fZUBaxduQvbhXKiD1Zhw7Wj0Htm9ReeoLq3Bw+NeQFGmu9ouSbD/8dfNWJibD3uU1vVZnSyFPFIDaYXvSpzLPv1XDMbUBSEcjSa2fSE0/ogZBuaRKZDnVol/l7tXHcAHm+di4nVjcP9978M42DvBrg7W6IB2fxVYpwD1viKYB8f73E9qCTzBau8eUy9waClkMv+neX8grHcC7v7gNxgsnmMom1yCf6oqsGvaS/j4qwfQY5j3mIQEAJpCfqwIXHQwuFhvkQSjt0CxNweyLt1gCwo87yKrcie8KbXNnBehUCgUCoXSJpA+04SuKeLSEdrSN3S8uDSHULkGXwy/D4uy/8Pywj2ocZiglcqhljRdkMkJFlV2jVciNxEsBKRR/+39EbNwcWI/TPz3HZTb3PPAVQ7PKve+iJP0wMtx12NASny9U4bfMQnpn2YCQU0MHa/rdAO+PPkbahyBRR6Ey0JyMSvUU7AeJbXhmtAcxMvM+LE6lUQEIAXvFaZxuVi4+9kseGglNqiJEwQjiMn7RnsmDpT96iFuaHAGHK14Gbuqj+Kw/gictdX/w+VxmBR9DQaGTURLqbGbsLxgH3JMZdBKVbgwvj96h7SsQqPRUYFfch+B3uFOUDNz1dhduRj7qv6EVSD6dhkqbCyUrAY2XgYZy0ECQfzTIPdNllUl6z0EDhwc6K0qRLTMPa6TM5wodiCJQWZe4SG0IZBn3kdTiAqnBlZegUO6I3i215OotvXCxqL/IYI1IV7iEF0MKjkJCpwyGHkFrIJM/Dt2CJL6z0otdWBEdB400sCugzKGh5JxeLggNCRKbhA/a1dbBSgl/sfwnMBhZcnfuF4+E3/lPwZHo78DBlYUmlbgw/T9uDVlHuJV3slyeoenyF/D2JAs8z9OUbIc4qV65DldyYcmXoFwBHZwsPLe9yplXSIRCoVCoVAop09YMPKSIeLSEdpCEt7J0hyI6OHDba/jl7eWiU4OhiqjKIow6cw4Xbyy9AmMvnw4ZobfKlb1bwl9RvfAnW/egN6je9QXP/I3JiHV88mcrxAaWHn94Lzr8ckNH4qFeM40pEDXvNkfeIgb6iBOBO/c8X/Y/PsO7F65Hw67axyZ1CMeN798DSZeO6bF16su02H19xtRcKIQ2jAtptw4rsUuEcRd4JFxL3jEmaqKq7Ho9d/x2/t/g3M4IVPKYDUGzpta9slKD4EDcYI4VXavPCA6vk+4ehSevXgenLXPrKNCHB1+eWsprn/2Sjxz4WuiO3hDyN/Fqu83YuuyPXh/06uig2JjyvLPTOFpUoSO0nHZtGkT/vjjj/r3l19+OX799dd6YUMdnTt3xvz58zF+/HhcccUVosDBZrPhsccew4YN7eP+QwUOFAql40BEDsOGuxYibCBuDn/9eXqunZzicl8gpHQBqluo9KypBv7+y+XiQJL6+/X3vy+xCDp+PPD5ZHIgIQnolOwSfBCXBPJMiGigwNPK7rRgasagISfb873RCGzZ7HJ1GNz8gVtJ+T4cTPsKHOfuiOUUrEVkeB8M7vs/SKX+Oz0WSwUqqtPA8xwKS7Z7iBsawvPN7+habdWwWqugUkWK72XSU58INpgKkF+8CSlJ0zB+xCvYe+hTGEwd22mgWpeJjOxlXuKGxu4Pew59hMmj3/YSFlisrUuKO1XiooeeketSKBQKhUI5O9GGakSLVLKQicG07el4auqrPveVp5fB2j8h4PnkLUjmnnjtaEy9YZz4evyVI7Hknb+aPIZXy2Ea0wWOxDAcZBnc/c6viArV4M4ZI3DVRP+ZQmPjUrAsx7eLmQgnIKZEwJALB4jLiq/WYdOv28SqLtGdI7F39aFm3xdJiidODc11a+BVMtRc0Rd8qLvf7VTKQOr2yNh4BK/QiaIQr+N4AVuW7vJYR9wd3rvrczH4ctWjlza7zf8t2SZacTecHP7jw3/EgNRzix+BUu1fRFucXYr9647A6eCwesEGD3EDwTw0CZYhtZPKHAcHxwHJ4bAkhUK7Nh2KnCrvc54sFYMndc4EYfqmRdcSX3k+Eha27tFQHSxE5r5srFm4CZfcMxULf34e9y/+FYeivMdJjINHzA8nxc+RELwpRxRimAfFwxnlCvzICnRQlJrhTI09ZdeTQBxYfwRfLN/mJW5wN5ZBZZ9ovDhzPn48+amXcwx5jk1B/rYU29PhTIqAMyVabDNrc0KaXQ55RikYBwft3lLYUvxbCRNBjjLDnaQ0oZkiq3MW8qdzqpWFqIMDhUKhUM4jQmRq3N99urhYOTsO16Tjm+y3mjzOwZOUdG8xg8UR2E1PaCCAuDxpAKYnuAoWTYvvjUXZ7v71xqpuuC1hJ2Ssf7Ht//0Whd3HliAmPAh3XTEKl433X/xoyLQBOPbLdgQN8P9DLxUi0U07AG/17431ZZuxs3Iv7LwdkYoIHNJ5OqBFSKy4PMS/G99YTRm2mqKRbQ+CSuoEGVJw4vOqFRELEigEp5iELwGPaLledHuoQ8JwCGIPwckHSmriUG1ZBacQXb+myl6M3ws+hI23YETEdDSXFYX7Me/IUth4d4LNTzlbMCmmD14bcC3kEv8h/iJLGY7oMiEIThSbl3iIGzxaK1jBiMIBJ0JkpFiNCaW2YFF8UIcMPDiBQZGlCGanBera+EgnhQOCw7donTxDJWuHmfeO5RBHkb6aImRbo5BvOYEdlTsxNmoMLkz6AesKn0ap7aT4iTgggYlTiMIE8jdqFJP2GbEtdU4OxLGjOdTt7wsippAwvCiaIP825XhyRHcIO8t14AST+GwYUQjiahN5R4Q7aqYM32W/g6d7fQgJ45lMV271nCNIktU0WRMtWmJCjiMMTkEiCkdCJWYESXwXRCDiEj3vHcNKCXIngp2X0DEJhUKhUCgtIjQqBPe8czPufvsm2Cx2MVn+1avfPS1PccZdF4jiBsK4K0di5TfrWnT80W0n8Mj4F0Un61vnXhdQ2DF4an9sSyuEfUgXv/vEKGUYNqKb6Mrx9xdrsGXpTjhsTkQnRWDvmubHSdoK4sIRCM7BYduy3R7r8k8UiQ7JJL5z0e2Tm30t8uw//t/X9UIJwm/vLReLJj214AFIZf7HJPknCnF40zFwHI+/Plvlt4iWrTYGQ+IpTZGxLxtOh7P+uuqgpkX4TUFcw7f8sRMTrhmNT3e9ITokkLhSR2bbsj3iZ9JY3NAQY7URr1z5Nr499qGXe0dRlmfM6nTR3GJ05ywdfEzy9ddf178ODQ3FggULvMQNDbnkkkswZ84cfPDBB+L7jRs3iu4ORADR1vgf0VMoFMqZhHxJtqdFFjk3WSIiXc4NU6cRea5rG3EcULUyiZ04T2zbCuzf53s7SfonAoq6a/nDYQeW/SkmvGDAQGDWVcC1s4GLLwG698BZxb69gLV51WfLKw5j/+H/8xA31FFRdRSHj3/v8zin04r9Rz7Hhu1PifscTf8BNfpMtBUs6/7Rtli9E45aw7GMX5CW8bM4KT9uxCsY2OceyGW+LcI6CoUl25rchwggiko9E8sIOkMOTjcqZSQS4sae9utSKBQKhUI5NwiUxE6Q1ligSPM/ESjPKoes1L9LASthIZVL0W1IFzz61b14ZtFD9RWFrnjwYoREBu4b8nIp9DP6wtEp3JWVUUt5jQlvLFqPn9b6HpOQ6ixXhHSFtNahzBfaHdWwZFaLVXWIBfR1T12B/9szX5wMnbfiOUya3X59LOO4FA9xQ0McSaGwDPTtHhCIBS/9ApO+eRWmti3b5Zrs9zE5vOPvvaJNsi9MOhNevfod3NptDt6/+3N8/L+vcGKX55jEGalxixsaI2FhmtgVgtT35yKTu4MFlr/TwNgDTPhzxD3Dz6Zg97P9ZM7X+OLxhZApZPjrxYfw3uTpiDYwpCSqKGzQ7q1E4ntp0B7xdGNTp5UjctFBRP/fTkR/sgMRvx2FPK/pirqMj6pSzYVXy+AIVmDlrsDFAvgQFUqdDtFmuTGZ+0/6PY7k9elHxaHowUEofGYESmenwhzugHznCWj+OQhFWpEobiCo0iqhSvMj2HHyCP8rs97JIrF7HCbXCpcoFAqFQqFQWopSIhfz7w3OpoWiZRbvqqMGiwI2h/+kExYsJKwE/cISMG/wFeJSl/xwc+ooBMvcCeo6pwqLiv0Xk9mfnoI9x1PF16VVBrz27Wr8scF3wk+1vQIXPjYO1askqFjuOw5k4yTYXKHFPbu+AAMprki4GG/0fwHvDpyLp3o+iNHh/aFgHZCzTjDgMV5bAkkTIaUxGneiChlCETeHOurcCkiCeJjM5CFuqEPFNN2f1bK+k0zWlvwIezOdnLeW78ZPOZ+iW3AeugSXQy23QSlzQCrhsKH0CN479rfP4wwOE15P+wL3752LBTnf4r+yD1BlSw94LSKLqcuSIM8kWmEQk/Y99mEEKFknpKw7WV/LZAU+LyNAQgYmPoiUGTBIm4v+mnysK30Pa0sWAEwQrkhejH6Rc1HBd0K5I1hM5rfxUug5JZyCVPxsLJw7VmODDAYu8P8Nst0u+P8/QM5X5wwR+M9HgIq1IVhiQIFpnehWQe7RJZAQxPcy8X4FyFkOJmcR0vTehdTyzPmiuKaO5og0WIYXXSxsghQMI0GuPRJm3jvRhDyfci4Ijkb3GypPQYq2+YlsFAqFQqFQKHWQsUFTcZJThcRJyPx071Hd8cyPD+LhL+6p33b145dCHdS63C3iGvDWzR9j9YKNPh2hyXYifpDklEHiJ/mesdih+3MXHp/8MhRqBW568Wp8sf8dfJv2AV7/51mMmDEYZxPfPLMIdlvz5ujJcyPFoxqKG+rYuHgrvnryR5/H6Sr0eHbGPNze62G8f88X+Oj+r5Bz2L8QvUWQMVytezmhsqhtcrfevPljfPvcTwiJCsGCjI/x0Gd3Qd0gjtLRIE4dO5Y3XbS5IL0Ye1Yd8FqffaiNPo8W0HVQCsZc4RIuUTomK1asqH993XXXISTE2+W8MbfddpuXC0R7QB0cKBRKxyUy0uXqYA9sMdtiYuOAKRe43BB8QVwYLr0MWLsWqGrQkSUT+6Q9xJGgOUn9vfsAitrOfmYGcGA/UFl7PqXSdV98gMlLvQ7YuQOYVDvxSI5dswrQNZ040qEgIo3MTKCv/2pNZABxLHMxcvLXBDxVcdku4AgDJ2eGQh6KxLixCA/thn2HP0VFdYAKtKeI2VoOhcL14222tJVaVxDvt6BoC4YNfATxMSMQFz0cR078gPwi70HW2USNLgtJ8Z5JPHb76bXrCw1OFUUjbeG4QaFQKBQK5fyl5/Cuom2qxehbsKvedhKs0QZrnzgIGnntpLcDimMlUO3379A1cHJfPP3Dg4iIC/O5PSoxAm+teRFv3PChR0UeiUwiTugTW2hb71jwwf7dzb74awdmjusHlcKV+LBm4X9Y8vYy5Bx1tSv1kk7IuiYKzkYVKtWHdIj+zjXBmXesEN+/sBgPfXa3+D59bxZeu/b9ZlXCb20Suz05POA+1t6xUO0rbCL5pNExJhs2/7YjYHUinufxyQPfYPnnqwOea+0Pm+C0c6I1dlRCOC68fTJ6jeiGFy57C4c3H3OdSyGBwDKQWJxebQ+EoJDC1jUSyuPeYw5SNYhMAhNKD+YjPBOouqoHBFkje20ekAfoehM3gjo4Jy9WXPr32/V4c9XzmDWsD2Y+0Rtv3/Ep1nz/X8C2iudqILKQFVSLAgZBKRPToUiBVb62aayDOHkA8syWj6XsiSGi64UzNrjZxwhKKY5tT8fkRkIcXbnBr7ih4poesPSOcK+UMLD0ioClWxiifj4OVaZb5EH+9iJ+T4cxVw/j0Fg4o9QAx0N1ogrBWwshL3Y5IPYb10sULrV3EJBCoVAoFMq5Tc+gFNi4INjInLjEd8J4jU0Jk1MJCevq23M8A71FCZ1ZBcbAgiXJ+uEOj5pSo6NSMW/QVQhXeAsjCImaMHw16iY8tfcP5JhccY1fSwbBxGlwS+IxaFmX2NtgVmLdnv5Ysm4MBMFTrPv5H1txydjekNdW2NxRuR4by/5Bqa0QUAFDt4Qi+xM9yqPUiBtsg0Zqg5NnUWoNRr4pDHZeiixjCb7JWoeHe14inuOkMRNfZ3+KKnsFlLX9TSULRMuaFjSHSzxjO6S1vNh7dT0YXpQ88FCSDqwPSIX+pnC5Qnhj5c04pt+JAaH+K8jyAod/iv4P+6rWoHuDXILuQeVI08ei3BYECctjWcEeVFqd0NltiFeF4KrkwegdGotX0z5DuiFHFH4kqyshY7gm64iJtcAEdyFIkqyvkdhg5DzHmkTwUWmrQJzKJTi3OJt2pGYZgZgD+oRcJ0JmEl0TtlX8jgPVa3Bj8lz0DbsIvUOnYXHuhzii31wvQiEiBJvoUuL+G4uSGVDEBaM7W+7zPknCf7Yj8Pgyz0q2uw7magUujc8VJjUgWVkJbe3fD9mH/C2Qv5eGsghyT4LAwwmJeO+5pnT0C/FM4jFxelh4OdSsXbxONRc4fiGeXWARwtpQwblimhwkyLDFIZg1I1xiEgUQxN3BwKlEJ4mG7Y9TDcGEuBchYV3zFRQKhUKhUCitoe/YnmKxJqePZPdTEU8Mv3gQnlzwAILDfRd7SuqRgDf+fU4UKhRluWMSpC1KjQLGatc8bCC+efYnTLlhHCRS1+CBzP///v7fKMwoFt8T12Td7kw4iqvhTIkBH6wC43BCkl8JWWYJGJsDGXtP4uc3luKOedfXV/1/88aP/LoSdFSIS/SuFfswduYIv/s47A68e+dnWPfj5oDnWv75KlSV1cBUY0ZscjQuvmsKkvsk4ekLX0Pm/ux2aL1Ll12aU464LjHi24Z/E6cC+bsmny+Jk7y97iVccs80TL9jCuZe8x62/uld3PVsgrjUD7tokJcI5XQy9MIBeGrhnPr/g5SOR0lJCSrr8lkBDB/ePDFKaqqryEUdxcWu79W2hgocKBRKx0Uqdbkp+HNDIGg0wP+zdxfgUVxrH8D/M+u7cVcSgrsWL5QibZG2ULev7rftrbu7l7a37i5QWrQClCLF3SFEiLut787M95xZIpu1yAYIvL/v2afJ7NjO5rvMmXP+5zUFvmmVgwmnjQQS4oGY2MDrR0YBF10MFBUC5eWuihKsjI5OD1RXA38sdf3XF6cTyMkGevUGdmwH1q9zf7+FFQ2QdRgYO861v0ULWr7dicbiv3PhcO6igOGGekWljTNx5hetRnRkX1RUuZejDraKqv2IDO8u/6xS6uFjMtQ2cQoWbNv9Ps4Y/Qp4XoG+PS5BUckGeXlHUSi0EISO+1viec/bC70u9phVcejb8yqkp5ziJZcJIYQQEhQsTDDthkmY99Zir++zcQPJ5WZU/LAZQpRrYJCiygyu6ZSMR4XHhskz/LBBzxkDA5fo7DYoHZ/sfhM7/tmDrB25ctBi9LnDER4ThiP7C/Cfz5agoMroc3ujxYZVO7Jw1ohe+Pa5efjiiR/c3hcWHUHqygLUjY+BLUUL3iIgZEMVdAfd21fLv12Nm1+/Wg5VsIfT7L9Bwy5gk0vljNTJlQz8EUM1kNQK/xUMvKgq8R8U//KJH32GG5TDVdDM0ECRyEOslLBm6UY41rDAOrDkk+UYftZgOdxg7h2JmvHJsKW7BuOrSswIW1uI0M2ugf0C+3wBCJHeyyrvWLmnIeBgiDBAt78A8e9tQ/XMHrClukY/sXFYCrvrsooaFkBwDVZqqj5k4IzQwRkfKofuxbxqPHfpm/LsRKyKyO1vXotVP62DzdzyyQY4QYJ2yxGYxneDnY27aVJVhI2N4m0CQvMaZ1TShWphqfPfJrFlRKNuck+3fQUkSVBUW6DSeLZJEjLiGgI+TZn7xbiHG5pS8qg8rxuS3tyCppOrsusauqlYfolKHpwgul3r+z67DWddQ22S+mvV/O+wtdq7PSGEENKZhaoMODN+FP4sXoVEXS0MysZ7NDbQusahRV51b+TVOKFWuu6R7U42cIADnIAiTwvRygMaAXFdNLj5zJE4LTod3ULjAh67f2QyFk36DzaUZyOzthQGlQYTE3ohXKWDw5mJu17/ETsz1XA4vXc3V9dZsG5XDiYM7Y4lRT/ir5L5bu+bNbWIvxcoMSuxpcI1SMWbJQVbcXvPs1HtqMTbh16BVXR/ds4GdBu9zGjfXI2g9jK4v75eASfPrK/ifYcCagQdYpW+q/QxFU7flfhMTv9tElbJYFvVXx7HV/EiBoQXYl9tgjyTvyBasbpsE2qsrH3B4cecLTgnNRWHrTkIUVqRrKuWb6GlFgQy2N9Q81stdg28FV84ULevIeCg4kPgFP0PjJFYktjb8ibnFa6woFbQwSzU4Jf813Bbj/+B53icl3IDtuzeBqfke4bZKJUJVaIBWU4Racoqt2oIDolHriMK5WIIlBDl8EFzRiEG2ZYYt/Oyiwq3IFGsqha9dEVu3wn7mUUtOEmQwwZuIQeI8rEdogJKzvNvMkodjwp7MUyCGhreiXxHOIyiGiGs8dYEaxVrOB5KjkMI70Si6gjKnFpstiagTGBtRg61okF+sQovrEoF+4Qmpwo6VtWEk3B52j3oH0HV5OTvjNokhBBCSLtExkdg0uWn448v/va5TkRsmDyAPpC4LjG45IHzMWRSfznAEEjf0b3wxcF3sHXZTnlCppAIA8acNxz6MD2O7MvHPROeRG2F73v0yqIqbF2+C6edNRgf3PulHG5oqrrUdY+uPFIuv3xhg9+vefYSFGYW49HpL8iTKnVGgfpJ3r/7S6/hBnZr7xyuh31KGKQYJbhyJ/76cxuUm83y3fDC9/+QK1p0WLjhKBYuqQ84hEToA36e1mD7evHKt/HB1lflwfh3/O8GrF+0WZ4oqqP4m2AtGFh1lObY9asorMKx8MxvD2L0TN+VIE8lJ3KbJDw8HMuWLUN+fj4KCgpw2mmntWi7qir3vyNN/STgQUYBB0LIiW34aUBtLXA40/O9IUOBQYOBVf+4ggCBqjb4qSDgU2KS69VURIQrcBAICyOYzcDGxgH5rcaOw/5ByDsS/HDD6DGuahRsv+xp9+7d6DChvmfbFAQHslsYbvCmo8MNDMc1DrJKjB+BWmNwS3ZZbVUoLt2MpISRUCg06N39Iuw+8BU6QqghFQP7Xod9h35AZfWBDjmGBAl1pgKEGpLhFGzIPvIHyqtcs9l2tC7JEyncQAghhJCguv6lK1CcW4a18zd6zDB01ZMX4bzbz8br17+Pfxds8rufgeP7yOu21qAJ/eRXU116J8PsDDzAv8ZkQWleOb56+iev7yuMAiKW+J/lhj1cLTpcjBXfrQluuAHAne/diPK8CnmmJYnj8MvPawJvxAaSC61/oJzQ1fcALovRgl/fXer5BgcYHjVAc4777KXq8Wo4NtlR90AdYIdc5rd2VAIqz81wW88Rr0fF7O6wJxoQvTAbnC3wd8Y1qbDQVNPSyxMvGSt/p2KoFlJkONTevhYOYGO85JBD/XlnloG3OFAzvQ8cXZpUDxFEmPeVYN2SrRg7YzgM4QZc99zleP+eL9AaqrxKODTpgJfAM6tqUTOtJ6J/2IXuQ7vi/s9ux5xbP5JnEPKGVcAwju3aunADO4eCGihqbXA6BeQdKJA7yUy1Zsx9fSH2rPXe/jEO8z2YjhHCNHIlB/0B7w/9+WYdHBf8dzqFGwghhBASVDdkzEaZtRKbq/ZCzTuhVbgGfZudGlyVPgsTBozGQ2sXYWXZITbCWg7i8tUKKIrU4GxH7yNtCow0dMel6S2bia9pu2dUbIb8akqt6oH9ORFwOP2HYmuMVpTbirGs5Fef68Tra1FiCYHJ6b0zvNZpQYm1Bv9W/OkRbqi33hyDs0ML/N4+rjN7Tn51ffq1KLUVwyxYIEoitlT97nN7i6RBnaBFqMJ7X41ZVKPMT8AhQuW7TWIVjNhS6aVNchT7XMn6GuRZogBeRGp4LcK1VuRVR8hVDbZV70FaqAlxWiPUnKvdwSoMsMH2qqZJXa9VKdwvmugjmMCCB/USDecgq+ZTv8EJZ5NqC43HYzi3sEB9yKHanoPDdVvRLXQoDMpQnJ1wARYVuQf167EgAqv+wJQJoagQDIjkzfJnt0sKVIr6hmoPZkkNtSRAefS6mAUNdKrBmN3lvzhi+xY5ppyGAIPRoQEHK9QKV42GbtoSn4EX9p2IEusNcf88dsHVHpJgRYWtCNGaRPn73VgxFybHDsSoTHKYxiaqUCdo8Httb5wXvrvhe2JnredYJQb3A8cqrZhiyMWfpjSUyyEHFxbssEkcBIlDjaBHjcBhRuIMCjcQQgghJKhuf+c6lOWXY+uyXW7LOZ7DrW9cg/EXjcbLV72DbSvc329u2JRBOPe2s1p1bHZfxLZjr6bS+qbCXBu4kltdRZ088U3zcENrsCAEGwA/783FQQ83PPTVHcjekydPCGS3OfD7p8vRUfz1k1SX1Xg9tqQAzA8nwjnGVVGsnnNcKJRrjdC/WCRPDrRhsZ/Ji4OkaT/JGZeMxfy3lwR1/4e352D3mn3oP66PXIH98kcuwNfP/IxgY7f6vUf1xL0f34oXLn8LWTtz0RHY32pRdgkSu8bLQSBW5Z1NqHYsXP30JRRu6CR0Oh0mTZrU6u1WrFjh9nsamzi8A1DAgRByYuN5YPIUoP8A4NABwGwBwsKA3n2AyKMDMqZMBX76EahqnA3SQz/3AUHtFh4OGI2B1zl0UJ4Rs10WLwS0gWf6bLXNmwCHo7HCRXwCUOIqK+2TXg9YLK6n0/VCQ4E6P7MWsX03K0vUVH7RKjgcwR0oFWyxUY3hmC5JE3CkYCUsVt/p7bY4lLNADjjIx0g+Qw5V7Dn4DUTRc4ATC0EIQtsaTXWmPGzd9S5GDn0IW3a+jTpj4FLSrXWk4G/5xapr2B1G1AU5EOJNWGga0lMmIyVxbIcfixBCCCGnFpVahafm3S8/1Fz29SpUl9ciuVsCzrlhElJ6usLQT82/H9f2vquhrLE3597W+nCDP13iIlBV57/qV2pcJP768h+IbQgENMVmQWIz7gfbpw99C1ONqwOCzbw0sE8y1tZYIYb7PlaSwGbDdJ9lNKlbvN9yxGHRoRg7y/dAroXv/wlzree11Fyo9Qg31FOdpob+Vj3Mc8wQDCpUTkv3uf+60YkwbC+D5nAZHGlNggXNSRI0h8t9lvGtN/O2qVj62XJk+qo6UI8/+rI6od1fAu22PNRcMBBCVLMqEQoe1v6JeG+lK+DAzP7vdCjVCrx/z5deS497m1nI3D8OkpfKCfUciaGwpYQhc2s2nr7gVby24ik8fM7zyN2b77GuvUsEJIP7DLuBcCY7QlZlyT/Pn7NEfrHqGmyWLn8dBM6owH/bzmjWJvc/q1Gv07ph1p3T5ZLnpAn2/6ztnVmIKjgQQgg5xal5FZ7sfyt2VR/CyrJNqHOYkayLw9SE0UjUuQbtfzDxIpz92mcoMNYAAgdO9ByVfdnowUE9r9T4COzPLQ24zsbKf+RJcfyJ09Uhu857wIF1R1y26mOMTCjwuX25oMVyYyKmhHpvk202R+OgLbzpXqHkJPxa8FVDaEKvCEGythec4iYoee9tqCOOaPRRKsBL7Ll642dSKjKw28SWeK9IF6qMRK+wYT7Pf3PFAnAwQsu7rpQgKeCU2L4av8dQZf39tyRXJIjUWqCPtaPaqodW6UCsxrOfxSKooVRYvQ7S9xZCYMtMguf3wIFD37DGfpL0sCtRYFwAm1Dm9fNY5YoCbKv6M65/eZ4Iz0ny+bFKC2vLvpEDDsyUhPOg4FT4rZCFHFx9WSwYYBVVMDo1ECQ2sVZlQ5ijQnQfcOVa33UN7VDKVQ6Yg5Y4mE0VyLG+h4f73I//bvkAxbZS1/WQeFidSiToa5GkqZWrZ/jDQ4TQ7BqaRQ3UvIB/y3/FuvLf0Ct0KKzOPFTYj7iFI3QKhxxYKneGYLstAcnKWkTxVoQpXNfDG/Y3O1Rbij9Nje1P198LhwqHAd0M3TE1YSpGRLUuyHTSozYJIYQQ0m46gxYv//mEXA3h7+9Ww1hjRmqvJEy7cTIS0l2D5l9Y+giuSLsVlcXVPoMKrQ03BJLUPUGu7OBPco9EuQJDe9067AGvz8rbgwVE5tz2ccOz9vCYUPQ8rRsObvI/yW9sajTK8io8Pqe/Pqr4tFgMmzLQ5/ssvOHw8vlsl0Z5hBvqOceGyO9rv/MzXi9IWFWFIZMGNPx+4T0z8Pf3a1pUOaQ1vnjiR7nvgvm/py6GSquSK4ALXiYd0xo0bQq8sLbHvnUH8fxlb+L5RQ/j7vGPoyQ3uGPQmO9f/AU/vjwfo2YOR+6ePBRkBhgTGAT9x/XGBXfPwLhZrvFv5ORsk0iShDlz5jT8rlKpMHFix1Q1p4ADIaRzSEhwvXyZMgVYuMA1+L45VuWhS5BTYn36AgV+bpINBtcxl7W9MkEDFkKoDyIEU9N92u2ucAMLjTQrIeQWNplyluuz5ea4ghtxca5gBPuc3qposKewY09n/5J53WVmzkIczHIvS32iiYnsh7DQLvLPLFRQXrUXKUnjcThnIUQxeN+LyVyE0vKdiItxNShSk8YjMX4kDh6ej+KyTbDZa6HVRMoD+FllhK2732vzsSzWChzOWYRRQx7A7gNfo7hsMyQp+GXVWlJdQ6nQwSn4H5jnS1ryZPTMOB8KhRq8l1liCSGEEEKCic3Ywl6+Hsw/9uPdeGjqs6gp9wz/XvHYBRg8sQ0V5fyYNX4Adhz2/bA6OTYcI/t0weIHv2v3sYzVpoYgQjA13Sc7Bnug2z9pGHb6WF+jUuDVBy9B5MOXy7MBOR1O9BvbGz2HZ+CZC1/Hv79t8jqjD6sUofZSipf54vEf8O3z87y+p73Q/8B3zXQNzB+ZYRwSCyi9D2Rq+HynxSP61ywoBhghxHrvDNAcLIOixnM22NHnDm8o182qTWxfsRvTb5yMd3ICl3tWHSpB6NpscA4R1t5xnuGGJvaajdi2KxtDBnRtCOWcecXp8sN7VsGEzeAUkxwtVydgZYxfvLLx4SVj9xfeqF8nPRKa/Fo5kPLTawvw+sqn5UoOa+ZvhMRGK7FBSCoFhIgWhPzZ+hzAWZ3QHCqDbkchFCb3GYRZdY1AQhRKBCpkzZu8t/0uuu9cXPH4BdDqNHIHCyGEEEJIRxoQ0UN+eaPgebxx2Qzc9PkvqHV4DrC4a+pYDOqSGNTzOf+MgXjpy2U+3++aFIXBPZOxJjOrYTB4hNIMPSszxtoDggY1gk4enK5WOJv11jeO8BZEDtVOC6rsdVD5ueWaX9sFJQ4dzgorQKzSdQ1qBRVWmeKxpDbFbV026z0LCTStCGEWjDhiMaJnSC/YBO8ViRWcHsMT3oJewaHcvBoSBERqhyFE3RcFOc/jkHGbl22UmJl8i/xfb1aWfITNlfPcmhQKzgmlxMmD+euvBQcJOoUdBoW9IYDhFDkYlHaEKGwNg+JdwQLXtXRCgTpRCz1vkwfHN72VdkDhETioc2rhZFO0NjMs8jTEaFxhGptgwUHjfui116HOOAdqzupW/cEmqeSX5+gL76P2HU2OV2TZh1zjYaSFuCbNOjN+Gk6LGo/5Bb9gS9V21DgsiNZEY0biWPQOAdaXPut1n/J1kOorRriLUpoQBSN4sRzrKxZjzrD/4PX9c7GhYjd6hpUiQs0+j9QkUOJb808kByTkz370HCAh27geGt4hV2hg/z/Arrkg8XIwQsGqBipscCAMeU4eRRAxXue/ymKC0gwDZ4dJcgXCx8ZejtExs6Hk1VBw1CYhhBBCSMcaOmmA/PJGqVLi8Z/vxaPTX/A6odBNr16F7kNcz56DZfqNU/xWImbH6zEsAx/c+2W7j1VdUuPrlrbN2DPxphMJsf4l9soYlOZzpn19qA4v/fF4w/Nvto9BZ/RDWr8UPDLtBbn/oDmVWom7PrgJPBv35cU7//kEC977w/P8lIB9WtOguCf2vubHShwtmNZhzrxiHGKSouSfTTUm7Fq9HzNumYrvXvil3ZN8NbXjnz3I2XME6f1c48Que2iWPOHZF499j3ULNqOuyoT4tBicc/0k6MJ0ePvWj9t8rOxdR7D00xV4a81zePPmD7FxiWd7sr1EUfLad9acRqeGzeK/QqMv1z53GWbdNU3uh6N+klPDBx98gK1bG6u2zJo1C+FsIvAOwEksTkEIIScDsxnYsxvIznIN3o+OcVVuSHXddAQV+59OX4P6FQpXVYndu4H84M+O3+EGDwYOHHAPi4SEAqePB7r4uJYs7LB7l+v61x5NxyYlAUOGAimpXjcpr9yHjdtfxYmC4xSQJPc77sjw7hg28E6oVSHIyfsLB7N/g9MZ/IFd9XhOhT49LkFC3DBo1O7/8NfU5cJqq5JDDuGhadi2+wMUlW5sd2WKAX2uw54D36CkvOPLxXnHWoCtvxWJiuiJkUMe9CjTTAghhBByPJUXVmLhe39g9S8bYLfY0X1oV3mQuK8H/u0hiCLuf38R/tnu2SbRqpV49cZpmH/v19j+9x50Nud/cTPm7j6EalPjg/2UmHA8fvlkjOjlvU3CZs+Z+8YiLHz/D5Tklsn3iUMmD8DlD8+WH+57s2HJVjw240Wv73FRHCIXuh6W+1NzUw1Ku3VB3Sg/gXz2nRyuQcKneyBqlDBN6AZ7WpRr2k7GIUC7rwShW/Ig2t3bJOzcn55/PwzhBrl8MAtj1HcOVV08EM6jYQlvd9Rs76yigW6Xa1aemhl94UiN8HmOghIIqTHirttnYnK/nohmFfyaOLjlMCqLquXZoboNSsdTs1/F2l8b2yQVF/WDI8X/A0z9lkKErcpp+H3UzGG45+Nb8eo172LtnhxYBqfAmRDm+jwBxuYoyoyImLez3X1KdWOSUHWW7wocnE1A8mubwNvdO0mGThmIl492JBF3+fn5SE11PQsYPPtxqA2+/+5awm6qxvZfXIPX8vLykJLiPkCREEIIIY2Kquvw/frtWLH3MGwOAf1T4nH56ME4LSP4/346nQLunfMb1u1qvL+rp9eq8Mo90/GTeSFKbTuQoqtGirpSDhW47UPikWeLQp45ErmmqMaB6RIH6ejL4lBCknj0iS5ClNb/ZDlsZn+2bbLKJM+rX+ZkFQzcj8kG/7MZ9v2ZlTwZe6sXwSo2VkWIUCXh7KR7kKL33r5zig6sKf8Vmyr/QK2jQo4ZdA8ZjAlxFyLN0NfrNgdr12BBQf0gfQkqjg17l+TPwAIIbCC8TXQNZLcJCtQK3gPLKhaIOBp6YIPovVUeULAh9ZwEk1Mlf342sJ7dTNcPuK+wG2ARDBCbxQL6hPXDrd3ugFahw8rSn7G67BfYRVdbLUZVKwdW1JxTPmd29nq+5RNDsW2KHBFuQYsqexwu6nIVeoeNgF7JqjQ0yjNnwuisRqQ6DvGaVCwrvAeF5g0+988qG9SJ9eFpCXGKWoQrzA1/h+xvLd4wBf1insYnWXNwxLwTChZE4IBQ3oJEdXWA8weEJvNJljtCmhzPdcwIhQlqTnCrysC+LxY60XCuGXJtkhpqzgEdJ2CszntVjKYW1aWjUtQjI2Q0zkt9OuD6pyJqkxBCCCHHT3FOKRb873esW7gZDpsTfUb3xHm3n43+Y3sH/Vh2m0MOVHgb1G8I18vVuT999Dvs33AInc0lD5yPRR/+6TZRVGrvZNz/+e3oM9J78N1utePHl3/D4o//QkVhFXiew4hpQ3H5oxf43Gb5t6vx0lVve31PSFXB+KHvZ+f1Qm7MgaIgOBPE8goOouDehhs5fSge+/EeeRD+V0/9hLmvL4TV3PrKCS0VEqHHLW9eizHnDkdoZOOEVWyY9f6Nmagpq0ViRpzr+5j0NHb+E3jyV38mXDwa//3gZjmgsm/9QXQm7Nwf++Ge430ap1ybZOPGjUhM9D+JRUf1o7BjT5gwAVar67mAUqnEnj170LNnzw45HgUcCCGkrdiTz717XIP6WdUDlnRN7woMGQLs2gkc7Fw3HQ169gLGTwDyjgBmCxAa4goptGQgObsm7B8wFvJQux66+7Jl17soKTteg+q9Bxx6dbsARlMRFLwK8bFDERPl6nTILfgbew58fUzPJSVhLPr2ugI1NVnYe+h71BobyxfrtbFy1QO7w7PkdGvptNFyRYfOhH03A/tcB5XS9+yzhBBCCCGnAqcg4qe/t2PuPzuRW1wFlVKBSUN74JpzhuPH+77GPz+tQ2c04+YpuOXt6+QB71VGM5Kjw+VgA3sYH4goiqitqINaq5ZnMvLnkWnPY9Pv3mf458I4RC5tQcDhumqUpyShZpL3YHc9/c5yxP3Q2EYUQjRwxofII2JUBTXg7QJUGiWue/5yuVSw1qDFuAtGYtAEVzjjl7cWe8xEZR6aDOPoo9UKm18a9vxfFBH91daGqgbVswfAGR/qcW4iD1hjAKHJorIrMAABAABJREFU5VIpFLh4YH88euYE7F65Fx/c84U8m1C95O4J8nVmsxXVqxvTBaaR/h+YRvy2D9os96qBSd3ikaWUYDq9W0O7U+6+YCPS/HzlhjVZ0O1uWUlliecgqRXg7AK4o5UiGj6/mkfJDQPhiPfevoj4Iwdh/xZ6PLS/95NboQtpQaWJUxANJiKEEEJOHSzk8OOy7fjl7x3IK6mWq66deVpPXD19BL6q+gUbKndDr7BhUvR+j3BDPYfEY3Fxf9Q53e+tBIGD2a6GKLlmGY3QmNEvxvf9H6tmYBKaVWGTJHmwP6vYwHGS3IWh4gWovQQAmjoj7mycm3Qxso0bYRHqEKlOQqp+UIsm3BElEWahFipOA43C//3ij7n3I8+8Ux7cHsLb3K4RC3/UCRrUCTpI4FHt0MLRpDpAU0rO6RZqUHCCW8WGxsshydUEdHLFjPplQIktDNmWGGh5Na5OPxtF1kJoeA2GRY5Aj1DXIIVVpfPwV8k3bvsLUVgQyoISTcIjYbylxd1Jlc4QWI5WImgaSmC1DpScGkMiz8bkhOtxyLgTiwu/RKktv2G9OE08wvgjUMF//4ZR0MiVLBKVVQhXeA/IaJUZ+L1SDSUvuX2WDE2Jz7/b+u+IfTesiVEj6FEtGNzeZ99rpNJ90iwtZ0eYwsc1kiRM0JX5PSY71ty6nkgPnYrJif+FivdfefBURW0SQggh5NTBQg7z5yyRwwDF2aXyIPgzLhmLSx48D+/e+Rm2/uWrZvSJ7dKHZsnVwVk1a2OVESm9khr6CwIRBAG1FUZo9eqAz7DvGP2IzwCIkKiC8dPAAYfQ67LBFze2MdrDEKaXqyYf2ZsPfZgeEy4Zg76jXG2SL5/8Ed88OxfHCvtbYuGc6168XK6u8PEDXyPvQGNfAftOKgorYakLXP0tkLS+Kcjd29jeOdFxPIep/3cG7nzvBrk/jhzbNklLdETdAxZkmDhxIsrKGoP5r7zyCu6//350FO+1MAkhhATGnj726+96CYIr4MCWmUxAZmbwr6BGA9g6LoHagFVuYAEFFtZoJZujFnklq1BVkykP0o+LHoTkhFFQKDQe69bUZuNEwqo3GHSJyOhytvy7INghiuwGnENm9oJjfi55RatgtpbJ11IU3ZPObHmwtCfcoNPGQqXUuYUvOtrIIQ8hOrJjUp+EEEIIIZ2NUsHj8slD5Zfd4YRSoZBDAKyCweq564N+vPDYMHlmmnq2rlGw9kuEEGNgo4mgya6AdlchFLXta7dUl9VCo1LizMHdW71tVUkNlny8DPs2HJLLLo+eORwTLxsLjc6zTcJm2vFFqpXg3O2Asr/3AUSMUCJAOCQgpKwMNRNTGisyeBGyzf0eXmG0ya+m2GxW3Qan48J7Zsq/2yw2OB1OuYTwdy/M89indk8JTMOSIWm8PN5jp6Lg4UgIheKw655fUWH2CDhIHGCJZ4P83Td3CAK+3bYD+XllKLrtVzjs7p0TBZmeA8v0u4phGpbI/jC9XgNFtQWabPdwA5OfVw7TFcPdQvVynbf6Z69eLquy1Ajt/lIk90iESqvCgYpKOKM0UJid0GTXoH48kKhTwTYgBfaMWJbaYKkgqLLLod2ZD97sCn4IkQaE7qiGsT9gT9A1fI+KGhvCVuUjdHOJ27Hf3fgieg1v/d8mIYQQQsjJSKlU4Iqzh8kv1iZhoWsWAsg3l2DjYVc1uURNjd8B2ypORKza6BFwUDSrvFBt08NiT4ZOXeCxD3bv6BAVcAocLE6V/LNaIcCgssvVARySoqHsmRr+qzcwRkctVLwGPcNOR2tV2mvwZ/FaZBpzoeZVGBk9CONihkLFe7YtiiwH5OoHYbzVY8A7C2VEKCxwSEqU2kN9hhsYVoFB1aTygiApIEqSXI2ADdRnN9V2gUeMxujxXbDjJmhr5euUY4lBsq4vpiacI78nilaIkgNOSZArNzRnFjRyBYeGigjsOJICGs77Na6/x7dIKhgFHeySZ1um/uyckh2bKhegwlaIXbX7IDb53lg1ilpHPkJV1a5gtB9yRQaIPsMNjNWZhURVAsqExop07LNUC3pEKUxewwgsiMHOX63oDrOoR62QJwdLWNURdtXZNdfxrjZHPfaOz3CDvAKHYqcWySrf55rvDMOF6Z8gVpvh/4MTQgghhJwi1BoVLnngPPnFwg6sX4C1SbJ25nZIuCEqMRKVRZ7PuYOturQGWr0GEy4a3epty/Mrsfijv5C5LRsavQbjZo3E+ItGQaVWeQyAPrjJdz+JosgB/ogdYhffA9j5XFvQwg2MqdaMYVMG4qJ7z5V/Z5UaWAVvq8mKuW8sxLFks9jx02sLcGR/ATYu2Sr31TSV3yTs0F7tCTewcITTIaDgUBGOVbjh0z1vIrVX8jE5Hjkx7Ny5E1OnTnULN8yePbtDww0MBRwIISQYWCCgXlGhPFNm8LVgyptgCHMv+dtSpRU7sW3XexDExge2peXbkZmzECMG34sQg3tpJJ478f4J2rJrDnheDbUqBFZbpXzNw0LSYLPXHJfzqajahxOZxVoOUdW2v5e2iInqT+EGQgghhBAf1KrG++ttK3Z7PGgNBqnJPk1ju8Lav8k9vgby77YesQhdsheq0rZXG0vsGtem7db+uhEvXP4W7NbGgPC/v23Ct8/Pwyt/PYHEjHi39VUa3wOEGMvXFoS+7Hsd63dWsDFEqkorQtcXoW5Mktf1tAeroDvYsg6PByY/A61Bg9CoEJTlVcgdMd2HdkVNeZ3HupxTaBz944N5SBK0RwMOuj3FsPV1vwYOg2e4oal/ygqQHKaEujxwB4Wizo6IRQdRPb2nK0zQBF9nQ+Rv+xuCB03Zu8d6DUWwdeUBUE0qOXB2JzQHy6DfcAScU8QRmwmOSwehVNFYOYIFEyKW5UKXWQPj2f0hhTSZ0VSpgKNHPJzJkdCv3AfTmAw4E11tGpUEKFiWwWaDYX0udPvLPc53zKzTKNzQWuwatvd/joL/P2eEEEII6eA2yfbqg5CO/iMerWqs+uVLvLYWWeZYz30qBVgdfMNAdYkTUWPXQatwQMU75dtE1xB+DiqFhHCFDQaVAwerYhCutcqD0Jvf0Xtb1ly0po1tkvIteOvgV3BKjffPGyp3YG7e73iq/x2I1bhXiVNyKmg5m88B72y5nrPLQQJ/Be1YFQGnyEPZpIoDuyZOFuyQwwIcdAqH36BJvKYG+ZYI3LZpDsZHFuOc2AIoJDa5EQ+FcjB0XC2sCHHbhkUHKh0hiFCaGipIsIoMKskCLe9wBZfl4yvkagfVgg5mkd2fe/8w7P6fnXdTWabNkMAaLfVJBkkOf7h+ahlWVSKQJHUVyiyNAQf2V8XCJTWiDqG8tTHEIUEONljlwAkHQSiAKEXKf5MN10UO3Cihbhb00LFrEqCrb6MlHlMU+QjhPdtgZlEJo/oSCje0FrVJCCGEkFMq7FBv67KOqdzgsLlPUNpRmvdntNRfX/+D169/Xw4F1FvzywZ8/+IveOnPxxGT1NgmYf0PSrXSrU+lOc1PlbDcl+Dn/eCHPW4efD90oVq5mkN5QSV4BS9PDmU1HYNJgb1Yv2gLTmRF2aVQawO1coPnrGsmUrjhOLdJNm7ciMRE93GYHWn16tWYOXMmamoax09OmDAB33zjXuWxIwSY04AQQkirmd3LzQaNrf0lrVokxL2EbktYrJXY2izcUI8FBbbsehuS1Phg3WQuQYjB++Cf400U7UfDDYyEWmPOcT6jE5kEm+PYhD/CQ7tiSP9bj8mxCCGEEEI6O1YSN9jYg+7aCtcge3tqhHu4oQlWTcB4Zs92PaeLT/cc2BRIUVYJnr/MPdxQj5WlfnLWK27lWPMPFiK9v6s0rC+ONQ6YXjVCsrp/GskpwfKFGba5jW20qEU5iPg9F7yxsU3EWZ0IXVuIuG+8D+z3hT2kZ+EG+ViShENbsryfX2wIJK3/4LgzIRSi2jWoSVlukoMBbu/rA5wMx8E0MKbF567NrkLs51sRsu4I1LnV0GRVIWx5FmK+3AZlpfdBRc5InVxJwtslkuc9FV0VGyJ+2o6orzYjZE02eIcAR4wOhZf3RqnCfdCQEK5BxeweqDm7h3u4oQlJr0btOf0awg312JgsXqWBbUgaoHR/bNp3TC889NWdLb4WhBBCCCGnskJzY+U3FkwIiN0QesE1uZFOCjXCItbJg+WtAqtXwObxV8iD+5sOmGeD/LuGV8LqVMMmeN4v20X/99Cs2aDhGwO0LZVnLsZbB790CzfUK7SW4pX9n7gtyzGWIlyVIVew8MegsEHloyJCU6xKBatc0aTZc7SyBQ+rqJT34w8LUIQrzbgofitmxKw7Gm5gRAjOrRitz0SCstpjOycUKHeGocxuQK1TjQjejFD5nEU5iMD+ywb2syCKACUUTSpNNFdf+aC5+kADw7avDwmYRc9KfU2xz28RVS1qn7IwgqvaRf0xBfk4rBqGUdShTtDKr1pRB6vEAheuk5ArXIiVHtdS7SWgwCo8BOKAAl9WDsR+WyTskqtN4pA4HLJHYJd0HkbHP9yCT0MIIYQQQopzSoN+EVgF7bpKY6v6VdoqqbvvUIEvmduz8dp177mFG5pWCHjhsreaLctD1wFpfvepXlEH7WflrGHh/oZDlJer//acnCkYLHVWOdzAiILos5+EAHaLHcaqwBMLBMPwqYNw53s30GU/zhITE5GSkuL3FSzffvstpkyZ4hZumDhxIhYvXgydzr0SZ0c48abPJoSQzs7Y9plKg2bUaCA3ByhqQ/mpnTuBAYPcq1J4UVt3BLkFf6POmC9XOGDBAF9YoIFVeNCow7Hv0A+oqjnU+vMip5yIsO4w6OOQFD8KMVH92tX4I4QQQgg5lZTllbd5W1GrhL17PIS4MHk0iLKgCursMsDZ+PDa2s//g3UxXItbfr0Xq15agH3rW3/v/+PLv2HGLVOhCNAmObjlMBZ98Bdy9hxBZVG135mTsncdwbblu+RyzB/e92WLz8v2qw325Xaoz9KAT+AhVYqw/WmDVO4+RIbdqUasKkD42kLYkgxs5ArUhSbw9o6o7tfkoK1cT781H8oyIywDEuGMZ7OvKgLOfyJp/H8PzSlMDoSsz4ek4CEmRUOMj4QwLBJirRn8kVLAYYeo4iEpFTCPToc9PbLhHOXBWEKTU5ZcP7PgiLLSfTKBmtOTfQc8WDCjTzhC8rxfJpFnn8v3jEZiiAa2HnEYFhWB5Ix4TLpyPIZMGkBtkjZqTcCHEEIIISeH7OrGMDCbuT+QSkdjpzgPETqlEyqFAEHFoY4XYLWpYVA17lOvtEFztIIDq8jABvc3vfNj2z/a73wsKPwXhZYsGJR28EdvSgSJh1VQQqvwXqWs2BqKT7NWYnL8qID3fwfrsvFH8RrkW0pQZauGU/I9gD3TmIt9tYdhcXJ4+8Dv2FuTj66GakwLMG6JnQKrHiAEvKdyVWxg14MFAlg4hG3Lrj4b4s8fHbxv4GyIVrgGv5QJIXLFhXoZujKcFpbrde9s0P5AXR5K68Lkyg3NscoMrNKBQeG9ryhcYZUrHxglrfwdeLtT9/URmwYP6r9HhgUOwhQWn5UpLKJaPi+bGLiCgwAeKs4p7y+Et4GDCBtUsIuu9pC3z1yPHd/R7BTYtWd/+02rOEg+gjxNsb/lI/YofFsZJlc/GRqejlBVInrHTsUow+CA2xPvqE1CCCGEnHoqjg6ODxqOTZjauged931+G+a+vlDun2itb575GWdcPCbgervX7seSj5fJkzqV51fIYQBfdq3eJ/ersMHwnzz0DQ5tzW7RuWjmVkH1Vy0cE0MhxijBlzuh+rsOfE3gAC/p5DhgwPi+SO4Wj6lXT8SA0/sc7zPqtDpbm0SSJDz55JN49tln3Zafe+65+PHHH6HVep9gLNgo4EAIIcHm9P5Q/JgSBOCMM4FFC4C6VqZlLRbgSC7QNcPnKodzl+LA4Z9btdvtuz+AKDndKjkQ4otKFYIxwx+hC0QIIYQQ0gb+ygn740gMh3lCL0DVOKDdmRIJ24AUGJbvhaLaNShEiAo07T9g0avwwJf/wYNTnkXpkdYFLsryK7D1r5047ewhPtf5+pmf8dVTP7Vqv0+c/wocdgfEJmGNlpDqJLdqDf5wggRt3rEJvavKTOBsTrlqhi8szMDb3DsZ1HnV8otx3DAAlu6hfo/D21r/1FXSquE4rRdgcD3gFFSAaWAYLPFJENgijgPnlKA0cVDVNRnaxH5QuIIO8jIJYE1IzaEy9/3zgLmf/8oSopqDoJGg9DJRbQvG2CFkVAbe+uTuFn9mQgghhBDSyOQATDYVDBoHJI6XB937GoTO3rNJrvApm/U+QmNtmKGf3RvqVUY41XzDDWK0xgSdorHNw7bUSE5YRZU8wL8ez1vxYO8r8ObB11DrbBzgzmo/2EUe1ZYQhKls0Ctd+zI5VSizhqBGDltUYnt1FoZEdvP5tX6d8xt+KfizVV/703v+hyorUGtXQckBFkHt99owbJC8K8Dhm1gfDOYkqPj6Cgeui8h+ZlUU2ID9EdpsxCuNbtsVOsOx05YsV8PI0Phvu7HB+omqahQ4ojzeswk80kNcleh8CectMIlan0kGyUeKu2m4wLXO0bAKFCh2hCNOVetRCcMsqFEpuCqWVzhDkKSqkkMavrDQSy9tkVu1CMACh8Sj0hkiH8sXyU81BqUkNoQyrKLaZwCkXpE9Qv4vC4NUOvpgVtoLftcnhBBCCCHeOb1UMWiXNgxOFhwC7v/idjw2/UVUFntWQ/OHVVzYt+EQ+ozs4XOd9+/+Ar/MWdyq/d438SlYzTZIrQxrsDCD5tfWfQbS+SV3S8Abfz99vE+DHGNWqxXXXnstfvjhB7fl119/PT744AMolccudkABB0IICbYQNgvmcZZ1GNi7BzC1sQSVn+3KK/e1OtzACH4qPBDSnF7rf7ASIYQQQgjxLS619fdSolblEW6oJ+nVME3sjdBft8kzjHD2wB0Df3+xEotXHkBFYVWbvqqyfN+zK21YvKXV4QbGZvYy0r0T45widHtKYB6a7HMd3Q7/Vf3UtWzIjp9jCIDS2rpKao64ENhGdoek00BpEeWgQU1XBeyRnNskrZKSgyMcEDUAG0flFnKQVzj6MyfBMqYn7INtUGWWQrO/CBL7Q1QGTin4DDK04CMl90wKvBIJjKVV5NIc7dDe7QkhhBByzCXpw/FHQRiSImvAhtbXCjqvM+07JfYeC1Bz4DnRPdzQhFLtaoNEqs1u4YZ6bBst74BZYMP4XTeBfxRuxiIsgNFZ47G+mhfhVAjIMkbLxxVEtp17W6jM6nvwzrqK7a0ONzA20Qa9WkKCoUr+HGzAfZXTgBiV75B0uSPE58B/NqMie8sVamBVGlzXwlsFhNP1WYhWuvf9sOOnqGrk4MI/ph4IUQVuMxl4z3XMggopmiq/QQ1GzbM6Cd4D567xVZ4nL0qsMkXjjT2r/tA0hGCXVMi3R0HP26HmnHIzwiKoXJUvIMrr14k6lDnDEKes9Xp96gQNVOzcvLzHghNRSqO8va+GhK8ACvtb3G+MQw9DmfwdOaGARVRBx3uflKDSoUeZwxVANztVCFP5noiMtAK1SQghhJBTUlv6SYJtyafLUPRwKWrKa9u0PavIAB8Bh+Xfrm51uIGxGFs2mRMhTFq/VLoQp1ibpLa2Vq7S8M8//7gtf/rpp/HEE0/gWGvBfGWEEEJapWcv70+QfQllD0WDrKKi7eEGxuCa1cab3PxlON4iw3sfl+NGRfSGQR8PtSoEEWHdMKD3NUiIHd6hx1TwjeWhTyVREb2O9ykQQgghhHRaZ107EVwr2iSJ3eJh7xHnNdxQTwrRwpnqmqVTfThARQZBRO4vm9scbmBiUzxnBK03/52lCDaJ42DvGg3jpF6oO6cvTKO7wumjUoVKo0L/ccenTTLkzP5I6p6A8JhQ+RyeumkmzujX1eu6+i0F0O13r3zQnMIsQuPraxIBXRmgjfRf4aGeYFCjelZ/1FwwENYUPWzRChhTVKhLVsAe7h5ucNtOCzj1rjyDqHC9JK7JhFg8B0nJgjYa2AemwjSln7yCoibA4CtJgpexb7Jmk7t6NaRXSuCVCCGEEEKIVxd0HQRR4pFfGYGCugh59vsqwYBaQSsP8GYv9nO1YJAHgau4LnIlBX/NGI4Tofcz+z3bllWAqB8sf8iY6zXcUI8dL0JtgVYhQKd0Ht2WnQ27WZQQq3XNpO/NosK/2/zNs5CGQekKNzC5tij5erAQQhRvQndVKXqpi9FFWSl/kEJbpMc+tLwOSdoMKHhRPn8lL0HB+Qo3iBiiy/EINzQVpzTCKShgOVpJw58u+mGIUidArwhDuqEvZqfchS764YhUmVv0+QUvQQY2ToNFH5pjy0vtIVByusZl4OSqF+44mEUNagQdbJISaoUoBwqUvCh/ryrOiUJHOCqEEPlas78Ptm+bqJT/Llm1BH/VHVjIQcN5b1yw8EXTChOe5x+OlRU9sbM2GdnmaGyt7YKDpjg4xKahDQ65lmisq+0Gk0ODAmM4smuiMSDCdwURQgghhBDi3znXT2rVJYpPjw36Jd2/PrPN4QYmJiXa53vz3259uCGYwmPD0HVg2nE59vCpg5DQNU7uJxl8Zn889PWdGHRGvw49pkZ/ao7d6j+uz/E+BXIMVVdXY/LkyW7hBrVaja+++uq4hBsYquBACCEdUcFh+GnApo2B142PB86fDSxeCOTnnzjfRXExkJzC/pXyeKuqJhPHU3REb4hSkEvJtQgnBxoM+ji3paEhKSgu29yhR05OOB0FxatxsuA5JXheDafgvcOD4xTokjzxmJ8XIYQQQsjJIjEjHpc/OhvfPjcv4LqDJ/bDq8ufws3P/oBtmYV+13XGh0F1pBKafSWwDkqGpPH+WEm7uwi81TVzZt2IBJgHxkIwqKCsscGwqxz6nWXgHb5HmHM8h11r9skD+HUhjQNZ6u399wCCSVQrYDyrD5xxofLAenmsTUo4rP0SoNteAP3mI27rD5nUHzVlbe+UaCteweO+z2/3mHkq4Z892P7sQlh7xULUq6CotUK3txTKisADjFTFtdAkh0NhA+xhgFPj+vhKM6CugRwQ4KMjMPXmKfjzw7987kdScKid2RdCpHsohE20KmrlqVP9YpOUsqBD/XqscoTCxKpHuH4X1IDCNVYNYqRBDjqEbClBzZldfO5Tk1sH3qID1J5/pzqFApxKAaPD+yAltVKBC04f6P+kSYvIVV/aObFQe7cnhBBCyLHXIywW1/cchU8Prseu8iR0DSuXC3Cx2fbZq6luIcPxaL8n8eDOV5BpzPGxRw4a3n8AgnHN7C+hxq6DTukj7dqEVuGAXVTKs/ezsING4ZSPIUlK5Jp3oV94KtReJiE6UJeFtlDxTmjrb2yPckpKHDbHYlbkdkQoGuurhfE2xCvr4BSV2G5xv+/tFdYf5bZCqHjfN0pKTkCaqgy9tUWIVgRuG3RTl+OgJQEpat+VKzioMCbxKUxQuA/+ilXr8HvBArnaAu/n5s0qKmERNfI11/BOue3BKnywl7dEtF1iFQ804J1ajI4eie3VrkEWdlEhf9fsVf83wapZsKoYzatIsPdZmIUFEVglkeZhBhZ20HGBK5BrOTusorrJ8QCzqIbo54+yyqGHg6W1OeCIJaqhEsc+ANvq+iBKYYbZaUehNQJmQeN+PIUK56Z07ARbpwpqkxBCCCGnpu5DuuK828/Gb//7PeC642aPxBM/34ubB9+H7F3u/QHHi0KpwNZlO9FtcDrUGvc2lOAUcGDTYRxPLGRwYNOxHz+m0anx8Hd3ISzKfWImrUGDHSv3dOhxx5w/An9/twYnC12IFqIgwmbx3h7Sh+pw1rVnHPPzOhl1hjaJxWLB9OnTsWnTpoZl4eHhmD9/PiZOPH5j+KiCAyGEdIShw4CJk4Ao32laxMQAU892/aw8wfJmO3cAC38D7Havg8+Pp/QuU2Gz+X7A3lG6JJ/hEW5gJKkFU3+2gyDaodWEoVe3C3GiUfDuD9xbIiIsAyOG3IdRwx6EWh3m9e9rUN8bvF5rQgghhBDSctc8cynu++w2pPspH9t7ZA889uM98s8aXeCZOuun1LcPTYfCqQDnmnqzyfsSlGUm6NfnwpYSgvyHTkPVjAzYuoTCGa2FtWs4Kmd2Q8mNA+XAg8/DiBK+f2E+Hpj8DCwmz3LJSj+VJtrCNDYDjvhQeZC+PNKFO/riOViGJMPay/3edPZd01Fe0PbqFG01645zvJbVZg+g1YW1CPv7MCIW70fo6pwWhRsYFlaBU4TSAuhLgLAjQOgRQFfuCjdwTgm2ajtiz+iPKx67wOd+bN1jPMINMjY4rAVfFxvz0zQEwbZxhgEOw9F9qDjYDY1VHexdYxGyvggRFd4fvCtqbYj+9RBC/twDRbH7rL2DeiTh/Ycuxgf3XYgIA0tVeIYbnr/+HCQ06yAhhBBCCCGt89CgyXh22DTEaFLwd35P2AXPG8NUfV+cl3Kf6z6M999PwvkqCdaMU+RRbdeBb6wJ5mefgJIXEKkxQ6t0hRvk5ZwTvxX+htcOvAaH6BmUULSxn4QNwPfmjNCDbuGGpkaHZCFFVdnknDlMiJ0Ki+C9TcKqFXRRl2OYPhsDdXkNQYJAWKWDveZE5Ft9V65IDLsRqmbhhsZ+Ek6ujuBPpdOAckcocqwxKLWHwQnF0eoH3s/QIbr+JkyCFRHqbhgTfZ4cVBCghE1SwyRqYBZUsAqu9ZqHG5piYQgWMGABB5uokEMS8n8lZYuuD/vuwpVmudoCOwerpEKWhV0L7+0Gm6BEjqmx/aZoUkZuQHg3vDjwbtzR+2GU2NI8wg0aXoXnB12OaA21SQghhBBC2uM/71yPO969Ack9En2uwyoAsL4UVhWbDWI/UbAQwxeP/4BHp78Ah93hMUkUmxDpeGHHPvf2s1FVeuwngrr0oVke4QZGZMnlDlRbYUTfUT0x/cbWVQY5FnShnv0cgbC/+7fWPIfnlzwCfZjnRGMsMPLE3Hu9Xmtycrrjjjvw77//NvweFxcnV3I4nuEG5gQbUUsIISeRnj1dL5PJFRQoLATKStmocCAtHUjt0lgvmP2c42tmouOkvBzYsR04bYTb4riYQcgrbCxF5ImDVhMJq63xgXtwcOjV7QLERPaB2VoW5H17Hqt+6IxKaUB66mR0T5/pdc3QkFQolTo4nd47H4KhuGwrhg+8CwcOz8WJJD52CEzmYtTU+f/bjY7sg+7p50KjDkOIobHhOH7kc8gvWoPS8u0QRQGR4d3kyg0GffwxOHtCCCGEkJPfWddMlF9l+RUw11mw4+89OLj5MNRalTzTzLApA+WH9szoAV2xfleu3/0pC6ogRBng6BorzxTCBsVLvCTP0s9wToDT6WHtEY2yS7tDah5EYAPVOcARp0fled0R+x2bt9K3/RszMX/OElz+yGy35SNnDMOyr1f5Pk+VQi6PXFEYOIQgGtRwdI12BRu84TiYR6ZDe6AUPM/h5tevRo+hGagobGzviDoVbL3iIIRrwVmd0Bwqg7KyZQEDX1gHBQt6MGHRobjg7hm47OFZXtftOSwDWr0GVrOt1cdRmOzQ7y6FeVB8Y/u0/hwECZoqQW4drdpwCE9cf6bPqiD2DD/h/pZkwn30PQh6VxUHNhZIUnJwGCSoTWzEjxKcUoELLWHYWmzBTqUVzigteLMDhp1lCF1XCGWdq9Mn5K+9GHbxaFz81EWIiQhBl4TIhv3Pe/oa/LpmF9bszoEgihjSPRkXjh+I5JjwFpw0IYQQQggJ5NKMofKryFwDu2hGqW0ziq2HoeI06B02BukhgxrWHRLRF3trM/3O/s9mzfdXxYFVAmAVElwz+Qe+EXWICoSprD6bA4eMh7CidAXOSjjLbfnwyP74t2Kbz/0qOSVCFHpUO90H/HBebnzDeAvS1RV+z3OgLh/5jijw4HFR6tWI0ybAJHgOJlJCQIamFGpeQLTC2HCtXHf1/hXbw1BsCcMnltNxXuwODArJB3/0Gir5aCSF3YTE8Ju8bhur6wMFp4ZZksCLEnS8+wAs9r3VClqUOcNQ43ANvqkVNIiSTH6/z7omA/+3VW3F5V0ux7LSJVA1VG7gIEgKCBARxrtXxvD196GQv4XGb4L95AQPFfxXDmfbyJ9LaUKFMwxKTpKjGWmGacg27oJNPAQt74RDUqDMFoIiawScTdLeY2IGYGbSmYjRRCBJ1xh8+GHcPViQvxnryw9ChIihkRmYlToSCTrfQRNCCCGEENJy5952FmbeOtXVT1JrkasiHN6RA51Bi/EXjcbA8X0b1h1+1mC5X+JEsn3Fbvz+6QrMvLWxTcLzPEacMwTrF23xuZ1ap4YuRIOasrqgV5a4+6ObEREbBlM1e1h/TIZuISohApc8eL48AZU3fUb1kM+NBUM6ytr5G/B/T12CxR8vx4nk7OvOxIZFW1B4uMTvehMuHiP//0Jclxgkdm0cl/XZvjlY8tEybFm2Q267DZnYH9NvnoLYFD/9PuSkMm/ePHz66acNv4eFhWHZsmUYMGAAjjcKOBBCSEczGFyvSDaIop/3dXr0BLZsAcwdfPPXWvv3eQQcuqZOQUHxOoii95kyUxNPR3Rkb2zf+1HQTiMxbiR6ZpwvD3wXRaf7XWyQqFVh6N39EkSEpUOtDkVNbY5cTYANulcofKe0lQoNUpMmIPuI77J2HMe3q9KDKDqgUuk75HO3R1rKJJRV7AoYcAg1JCM6spfHcrUqBBldzpZfhBBCCCGk49Q/hEzrk+JznRnj+uLLRRtRWet9YD5faYKyqAa2Yeluy9l4l+bjhmonpHqGG5pgIQdL9wg4orRQVXpWaGhq6SfLPAIOF94zE//8tA4Om/fZT6ffNAXdh2bg9evfQyDOuKOVG/yQtEpMvncG/u/Ws5GYES+HRepZ+8TDNKarK8hev2xQMtSHyhCy8lCrSsZGJ0XixpevQu+R3WEI1yNzW44c1ug7ppdHCeqmDOEGTL3mDCx47w+f6yhUCggO7w/2VZUW6EoFOPU8BLWrzaG0SlBapIbzt9sFhEaFyIEYiT3hbkZSep8tiv1tKKyAg03y42dCKZ9jzzhA0ALKo3+WLOQgKiTwDgm8U8Ss285G5A9rUf7Kb753zprcXeMxtLdnNZPIEB2uPXuE/CIdRApCM/bEaQYTQgghpI0S9SxAGo60EO8TCTGT4sfit8LlMDq995PUVetRAh4Jid6DzOw2lVVvYCLUFvABbsbl9Vlwm/f/7H5V2SqPgMP5yVOwsXInnJL3e+wZSWcgXhOND7N+dFvuGvDu3o5JVNX4HeTPJKhqMCZ6Ms5KmIEoTSyMzYIT9WJUdXK4gQUdtE1CBlZJAS2LOfg4DqtksKq6O5L1Ebgy7Vz0C09DjFqEyb4XPKdBiGYoeM53P4lWEYFuoVNwsHYxjKJWruTABvtzbMj+0WoHlc5IFFrDIRwt3caCCZUOPaLV3tugRqcaVrHxmA7JAYMyRL6GrIICq9DBPo8ouQILohQ4ZG4TlVAp3Pu22H7skgoayeEz6NL0L4mFHJScU64uwSIOE+OmwuQMwaIi/4HzbiEpGBjR3WM5q9JwbbeJ8ot0EGqTEEIIIac89ly7vjqyv6rXbFD3/LeXwFTTvgmMgm3JJ8vdAg7Mxfefh41Lt8kVnr256N6ZCIkw4MP7vgraecy6cxouuu9cuc+pNK8cHSGpewKufvoS9BvTC0q1Elk7c+XKGn1H94RS5Xuoc0xSFCZcPBorvlvjcx3W3+L00U/SEnabE2ExJ1ZFAzZZ1qw7psFutgcMOLDJuwZN8By3GJ0YiauevEh+kVOvTeJ0OnH//fe7Lfvss89OiHADc/xq1RBCCGmkUgHTpwMhISfWVTGbAYf7w/YQQxKGDbwDKpXnuSbGjUDfXlcgIW44QkN8D55qrajIXg2z+vO8ErHR/RFsdkctVCqdXGGADbxnx4iJ6uM33FCvV8ZsxEU3zjTVVExUP4wYwm4EWlY+25twFrqQz+nEuHlgemVcIIc/UpNOlwMc/rAACCGEEEIIObGFGrSYc99sxEWGeA03GP7e77qj1Qe+P7YmeZazdcN2xHGwJwdu/xTnlEEU3R/QdxuUjifn3is/nHfbLcdhyv9NwC1vXI0zLxuLLn2SA+4fLSxb3O+C0+RwA6MP1WHwxH6wJ4fDNC7DLdxQz94jFuYRaWgNVnEiMj4cyd0TEREbjuFTB2HwxP5+ww31bnr1Kgyb6r1NMmrGMLy49NGGah3NcdUmsDFdaqMIXaUAXaUIlbkx3MD06ZEgP+RmZYu9UZb5COuzGXZFQGX0c/IsJOOnT6G+QkjD6kpAWViFW1+6Et0Hd8U5N0zy+dnkz8dx8jqEEEIIIeTEFq4KxeN9bkeEKszjPUutBrm7krBjRwbsDpXXsIJD4iEe7fpmoQVFgIADu4XUKAIPbim1lXos6xGahnt6XQe9Quu+T3CYEj8WV6adhwlxI5CojXV73+xUyefqdu4t6DsQJB7pIQPlcAMTogxDmr6Hx3oRCpPXShHsupgkVwWM5lhY4LuyEbBKapTZKpGki0CiLhoqRSwidBMQph3lN9xQb3TcXUjUDXGdLxQwiRoYRR3MkgbJhsmYmvQ8bJL7d1flNKDEFgK72BiQd0ocqhx6lMkp6Ubp+q6I0cQhw8A+N4tO8PJ1qb9+NinwvI4saMH+TtxJ8j5MotZr81A6WvmhaR+PjrOjTtDi0i7/h0RdEqYmjPF7XBbHmBQ/OuD5EUIIIYSQ44sNkn9u0cMIDzCI3d/z6I5QeLjYY9mA0/vgoa/vhC7EvU3CKlGzqhX/99TF8sz+8WnubZL2GDJpQMOEWiww0n1IVwRbYWYxUnomyufN+iROO2uwXGXDX7ih3p3v3ShPGOXNpCtOx6M/3t2uc2PVtNlEYj2GZeCEwAH3fHyr3Hc17abJfldVqZWYejWN3SKefvjhB2RnZ7tViHnwwQfRvXv3Vr3efvttdASq4EAIISeKqGjg0ssB9o9GUYFroA3PA5ajs4MmJwNGI7Ddd9njDgleKD3/qYiN6oczx7yGotJNqDPmQ6HQIDH+NHmm/nojBt+HHXs+RnnVnmZbt74KAauS0FS3LtPkygHBVluXi/iYwa3ejoUuhg28E+WVe1BQ/C9s9hrotbHy4P+I8G7yOgP7XIdd+7+A1GxGp+jIPrBYK2G2+E7SpiW7BuP0zJiFyqr9EHxUzzhW+vW8CmkprtmEdNpo9Op2IfZn/uR13W5p0xEa0oKBZYQQQggh5LjrlRaH+a9dj+UbD2LbwQJAEKEprUPd1mxw04Zi6KSByDIo8e0fvtsk8p2+7+INbjghcLuAVQ1gD9OaGzl9GL7P/xArf1iLnD15csWDMy4Zg9ReR+89VcDLfz2Bl696G9v/3uM2mw07yfoqBKwqRUvomoUMLn1oFla9/YtrVJQPtj7x0G/NA+doeTW3g1uyMHTyQLSWRqfBC0sewabft2PZN6tQU1aLpIx4nHPjZPQa7mqT3PX+jXjnP596lGgeOSwDh2NCUVTuvVQ1+4izznENVLr2ucuwZ+1+2K3uQXjtnmJYBiWh+ZSn7DfeyQIO7KJzcBpYFYajb4oSlJU2iKFav0O6mld3YOs++t9zMe08V9UFFghhnTVfPuk+O249NttTUrcEP0cgHclblZe27IMQQgghp4buoel4f9iz+Ld8Cw7UZYFlnU2Vocg2SujRjce4jHQ4IuOxpuIPKDixYQb/pgPdGbasJXMOSWy9AEKV3gc3jY4ejMERvbG6bAsKLMUwKPU4PWYYEnVx8vs6hRbP9L8Lbxz8HPtqD7uOBx61Dj3C1azfx9UmybNHQpA4v4GMQ9Z49A53DxmcGTcLn+e84rZMefTGyQmFxz5trK6DxEMLJ1QQ5eu1xZiKf2p6osgR0bBepjEPfcNbP2BHxeswLeUtHDGtQ2btn7CJtQhXpaB3+LmI1rrCGFd0uQLfH/me1XVo2K5O0KGrYSRKbdmodlTCIVe5aN6u4DAx7kz55/OSLsE7mS/BKbFq341qnTqEKaw+m2jsb8IiqOT/svXUnPNo88XVZ8VCGbWiHiF80+of9VGRZufD8Tg/+T4Mihov/55mSMKFKVMxN/9Pr8f+v/RzEathVd7J8UBtEkIIIYS0Rv+xvfFt7vv4+/u12L8x03UXz/OoKq2BQsnjtLOHyM/Il3664phd2IhYzxA4M/HSsRg5fahctSD/YKHcn3Lm5eOQ2NU1WRObJOrVFU/ihcvnYP+GQw3b8QreZ+UHf5qHKS57eBaevfgNBNuhLVnoOczVr9EahjA93vjnaaxbsBkrvl8DU7UJKT2TMOPmKeg6wDUh1Y0vX4lPH/4WYrN087jZI7Br9T7UlHnvJ2HXrL6Kxg0vXoFHpr3g0ddyLLHzeezHu3H67FHy7+x6XfDf6Zj31mKv69/02v8hMr6x3UeOrRO5TfLLL7+4/c4mnTt82PUMozUqKyvRESjgQAghJxKFAuje3fXyhgUcdmx3TUd0LPTo4XPADqtskJI41uemGnUYRgy5F3WmAlRWHZQTzDFR/eF0mpGd9wdKy3dClFiJYh5O4WiIwwueV3lUR2AVHdgDZEkK7r/ePB94FiJf2OdjVR98VZdg1yo2qj/yilahzlgApVInV7xgVSKMpiJs2PYqbPZqj+1YqCE60pUwDg9Nk6tB7D34HWrqGtOTYSFd5OoOWUd+9whQcBybEcp98FF7dE+f2RBuqJfR5WzodbHIPvIHqmpYAw8IC01D19SzkJzgupkmhBBCCCGdg0qpwNlj+sgvbwpKq/Hdn9t8Nkk4SYKy3AZnrJ8qDmxWf4cA7WHP+9/mplzle0YZrV4jz0Dkb7alV5c/JZcwZh0OCqUCw88ejKqSGsx7cyE2Ld0uP4B22kXUaXynMnRqFUb3ca/GMOjMAXDO89+BIamVcMSHQZ0f+HPWY6WW24p1soycNlR+eTP9pilyZwfreDmyvwAh4XpMvGycPPvR4Zwy3PPUT6isdi+9zZqDt11zBvr2TJR/7zOyB17643G8f/fnOLS1sU3Su2cy+o8eiM827YbQrGNAp1JCPW8HOJsDti4RECLUUFSYoDtYJf+dlF7rp1KdBCis7otuv2Acpp3jCjfUu/LxC5HaKwlz31h4tNMJ6D2yBy68ZyYmXEQzpRJCCCGEdCZqXoUz4kbJrwYjG38stERiVcVfENlM/N5m3JcAs6AGDzvUfio0sNtWk1MNjdLpN1wwJsb37PwsxDA1wXc/SYwmEi8MuAdZxjwcrMuGglNgWGQ/1DjLsbxkKfbV7YIkaZFpz0AvjfcBBKzCwk5LP1wQ3tttefeQfnCIvBxqqO/GsUtKaDinHF6oFXWIVLjf3zvBwyi52hwba9PxV1V/r9e/rVi/TVrIWPnlzeT4yRgSMQSrylehxFoCvUKP0dGj0SO0B3JNOXjz0OtwOOs8wg2XdbkCqfou8u89Qnvj9u73Y27+tyiwHGlYL1nXC0Mj0rGtigWf3b9PFadFqYOHQ1LCISjkAAOrSqGACCUnIKKh0cHJ66j9lZhj4ZbY/6BvpCvcUO+q9HORqk/EgsIVOGzMk5f1Ds3A+cmTMDrGe7U9QgghhBByYmITCrG+B1/9D6zK9LEMOEz200/CKk6zAfy+sLDDO+tewIHNh3FgYyZUGqXcT8AqJbDB8FuX7ZRvnwVBgM3se7LVsOhQ9B/n3iZhFag7grod/SQKhQLjZo2UX95cfP95GH/RaCz9ZLlcGYN9LnZ9Wd/Hvg2H8Mg5z8NYbfKoivHfD25Cl96uCbbYJFXPLnwIH933lTwBVz1WPaLv6J6Y98aihkm26ulCdbDU+R4b11p3fXBjQ7ih3i1vXIOuA9Pwy5zFyNqRKy8bML4PLr7vPLnSNyHeHDx4ECcyTmr+/02EEEJObCzgsH6d9/eSkgFRAIo9y5O5YTOgsqmP/NHpgFkXAKH+S6+1l9lShlXrH5XDDr4qAPTqdoHH8qV/3+gxmL99OEwY9QIMeleS+VizO4zIK/gHxWVbIAg2OSCQlnImIsO9h11qjfmwWiuh1UQgLNT1YL/WmIfcvOWoqN7fEChJS5mEPQe+QUXV3nafo1YTiTNGvyxXrPDF6WQdAZIc4CDkeDKbzfj000+xYMEC7NmzB+Xl5QgJCUG/fv1w7rnn4vrrr0dUVBR9SYQQQkgbfPbrenw471+v741JjEa1rQZrY/3cq0tA9MYShCz2PwNIdFIk3t3wImKSXSWPO0pOUQUufu4bOH3MWHTrzNG4cbr7g2K27ojb5wTcd+jSvVDntSzgwB6Sf531P8R1CV7J6NaoqjZh4V878c+6Q7A7nOjdPUGu3FAfbmju8I4clBdUyiWpMwa6AiD780rxw8rt2JrJKv3xGNs3HZdMGIw3Lngdu9fs97qfivO7wzzINcttcwoToGoyJis5OgwLnrwWCi9VPeqZj3YSsI4dcnzk5+cjNTVV/nno9Meg0bdvZiibuRpbFz8n/5yXl4eUlJSgnCchhBBCOq9fC37G78ULvL7XTT8MhVYHiqyZCFX6ntHf5DCg2qGERuFAuLpZqvaoaHU0nuj7BMJU3mdMDZY8Uy42FlyMPrp8t+U2UYn5lYNxWvztmJk01e09q2DB/TuuBwcRCvYZOQlxyjokaVztD7Y8WVkFHe85AVK+LQLflYySB/M3peQU+Hzk04hSd+zn9aXGUY1/ylZie/U2OEUHuhq64cy4SUgzpHtdP8+cI28TpY5Gks51/1lkOYBtVb+h0LwXPKdERshIDImciS9z3kK+xdUGZcGGEKX1aKUGCeG8BVpWeo61yyBCz9t8/t2EqtJwVuo8uQ/GF7OT/d1x0DWrTk6OHWqTEEIIIaSjfXDvl5j35iKv77EAQXl+BQ4fHWTuCwsbOGzO+qJiXiV1i8c7G15EWFTHjt1iEwfdNeYRj8oG9W5/+zqc/59z3JZVl9Xgovgbgnoeaq0K3+d9KAcPjofyggos+uAvrF+8BYJDkAML595+thxq8ebglsPypFoJ6bFI6+tqk+xddwC//e937Ft/SP6OR88cLu/j0ekvIGd3YyCirTIGpeHDba/5XcdUa5arPOgM7lU3yLFDbZLgoIADIYR0RllZrqBDaYnr9+hoYMBAoFdv1/REv8wFyst9bz/1LCDFdWOFokJgw3pWK6jxffbeuHFA+LEpT1VbdwRbd/0PZmuZW+WG9NQp6JVxgdcHxas3PIE6k/vD/vZIjB+JIf1uxsmoujYb67e+DFH0nbYORK0KwWmD7kF4mPebdkJOJH/99ReuvvpqFBUV+VwnIiICb7zxBq699tpjem6EEELIyeKv9Qfw3dLN2JvlapP0So/DFecMw1lj+kAQRVzw0sfYK7rPFiqTJIRsL8eHN1+MfqN7geM5bFu2C589+h1y9+Y3DPRnlRb+8871DaWUO9qenGI8+PFiFFbUNizTqpW4asow3DJjtNc2yewHPkZOrdH3Tp0CIr/dAp51ULTAWddMxH2f3YaT0e61+/HA5GfgsHkOrmLdJXVjkmAckQgh3DUAiHNKUFg4KJuMM4sO1eP9/8xGz+TjEwAhLUcP7gkhhBByLGyoWItlJUuRZ3ENGkrXZ2BKwjQMixwJpyjgjq3Po8aRD73SBr7J7TzrQim3hODRvveib0QSeI7Hrpod+KXgFxRbXZNH8eAxMGIgruxyJaI1HRu4rre/NhM/ZL+JROVuaHgnSh2hOGjNwLSkGZidMs3rNk/uuhPVzsZ+FRZq6KErQYjC1RfAQUIYb0EYb4aCE1FhD8FWYxfsMqXCKXlWsZueOA639bgYJ6PMul34NPt5CA0TZ0nydWYVHFgVDANng0Fhk6t5KDkntJzDI+SgVcRiQtL7CFN3PR4fgbQCtUkIIYQQciz8/vnfmM9my9/papOwwfCsQsDY80fAbnPguj53oSSn8X69KdY38taa55DeLxUKJY+18zfiy6d+kisrMGxw+pjzTpODBaxa9bGwY+UevHjFHFQUVTUs04Vo5QrK7HN5c0nSjagsbnkV60AuuHsGbnn9apyMNv2+DY/NfAmij8m2WiKuSwxeWfYEkrt7n5iKnDioTRIcFHAghJDOzG53PY3XNJsFhi3783cgJ8d9OZvlcuw4oG8/z31VlAMWKxAeBoQen9l5KqoOoM6YB6VSi7iYwfKgel+27noXxWVbW30MhUIjV0hoxCEpfiQG9L4WCkXbSy+f6KpqMrHv0A+ors1qWMaqQ2SkTcO+Qz/CbDkalmlWsUGnjUFc9ECkJo2HWn18EtKEtMZPP/2Eyy+/XC6hWK93794YNmwYRFHEunXrkNPkfxsfe+wxPPvss3SRCSGEkDYymm1yqd3QZrPAiJKEux/7BCvKi2CP04MTRKgLTYhfXYj7Hr9cHszfXOa2bNRWGpHSI+G4VDFgn2PTgTxkFVUgRKfBhIEZCNX7nt3mvts/wArBd0lhzb5ihKxuvP+upw3RwmpsHLnPAh1T/u8MuaSwSn3ytkl2rtqLD+/7Cgc3N1buGHB6H1x0/7l4787PUJRbBmeElj2sBCQO1n4JiBzRFQmpMRg/IAPnj+qHiBCqytDZHtwPmxacCg5bllAFB0IIIYR4Z3aajs6Wr3db7hSdeHjHJ9hftxshSteM/FanEpXWGDzY9yKckzzQoz2Qa86FWTAjQZuAKPWxr/7KzmFXzT4UWEpgUOowPHIQ9H6qJb9z8FlkmtyrN7MKBPHqWsQo66DiRbAJWLPNMdhW3QWVDoMcdIjRsuoQjf0kLNBxVuJo3Nr9Qig4z+DDyeJQ3S4sLvwKhdbG58PdQvrhjJgZWFr0HmqdZVBClEPY7DpFKs1I0IQjTBWPZMMZSA89F2oF9ZN0BtQmIYQQQsixVFdllAMJhjD3NonNasfDZz+HXav2uS1noYH7v/gPTp890qM9cHBLFsy1ZqT2Tj5mwYam2JiKLX/uQMGhYoRGhWDMecOh8/Nc/o7Rj2D/hkOtPk7zfhKFUoGZt0zFLW9eDYXi5G2TsJDDxw9+g+xdR+TfWVt2yKT+mHXnNLx580eobBIuqRefHidXiGDBmanXnOHxd0ZOTNQmCQ4KOBBCyMnMZAIOHQQsFiA0FOjR0zMM0UkdODwPh3MXt2objToCo4c9BIu1Qq5qwPNKxMcMhl4Xh1OF0VQIq60KWk0UQgyuRK/TaUVB8b8oKt0o/xwakoIuyRMRGd7teJ8uIa2yb98+DB8+HGaza7bomJgYfPHFF5g+fbrbQ4FPPvkEd9xxB2w2VyfeDz/8gEsuuYSuNiGEENIByvIrsOK7Nagpq0FiRjzOvHwcDOGGk+Jaf3DPF/h61Q5YhnfxeE+VX43QP/bLwY7ms+u88c8zKDhUJHdUaHRqeRam+LRTpypBzp48+SE9uxYpPZMayiX/+cVKrJq7DlaTTS73PPO2s9BrOLVJOiN6cE8IIYSQE0mhuRpLC3egxmFBF320HGwwKE+OfpKf8j7F2vJlPt6VoICISpseh+oaK+Ml6aLwv2G34IilAFnGAmgVaoyJGYgYTSROFUWWXBidNYhUxyJG4+onsQpGbK9ajn21/8Ip2pGg64bhUecgUUdtks6I2iSEEEIIOZEUZZXg7x/WwlhlREqvZEy8bCx0zSaN6qxeve5/8rP91kjtlYTX/n4Kh7ZmI3tnLnShOoydNeK4BDqOl8M7clBTViv3m7EXU1tZh98/XYG1v22Cw2pHr9O649zbzkLXAWnH+3RJG1CbJDgo4EAIIaTTViRYt+UFv+uoVaGwO4zyf5MTRqFrl7PkqgSEkJPThRdeiHnz5sk/h4SEYMOGDejbt6/Xddl6bH0mLi4OWVlZMBhOjsGWhBBCCDk2tq3YhQcmPwNnpA623vEQwnXgbA5oDpXLAQcOQHhsGOoqjYiIDcPkqybgwntmIDK+fbPZE3Kiowf3hBBCCCHHxp6abfgo6xW/61TbUpFVxyNKE4pzEofhkrRxiFT7rp5NyMmA2iSEEEIIIcfG6nnr8cxFr/tdJzyG9ZPUITopSq5AMPu/0xEWRZXRyMmN2iTBoQzSfgghhJBjKjK8O6IieqOyer/X99XqMIwf+RzUKnpQT8ipoKqqCvPnz2/4/emnn/YZbmAuuOACnHPOOVi6dClKS0vx1Vdf4dZbbz1GZ0sIIYSQk8GQMweg98gecvll5bocj/djkqPwyZ43qVwwObVJkuvV3n0QQgghhBAPfcIGIVmXhgJLrterE6WOwauDnoOaV9PVI6cuapMQQgghhHQYVqE6rW8Kcvfme30/qXsCPtn9BlRqFX0L5NRFbZI249u+KSGEEHJ8DR1wG6Iienks12ljMGLwvRRuIOQ4czhF1JqdqDQ65P+y3zvKP//8A1F07V+hUOD6668PuM1ll13W8PPcuXM77NwIIYQQcvJ6dsGD6DvGs02S1C0eL/3xGIUbCCGEEEIIIR2G53jc3O1BdNF383gvTpOEW7s9QuEGQgghhBBCSIdRKBV4Yemj6DY43eO99H6pcj8JhRsIIW1FFRwIIYR0Wqw6w6ihD6KqJhOl5TsgSgIiw7ohLmYweF5xvE+PkFOSJEkor3Ugq8SMokobms61ygFIjNIgI16PmDAVOI4tCY4jR440/NynTx+Eh4cH3GbAgAENP2/cuFEOSPA85X8JIYQQ0nIRseGYs+Y57Fq9DxuXbIXgFND/9D4YOX2oHLok5FTHSa5Xe/dBCCGEEEK8C1dF4t5ez+FQ3V7sq90BCSK6h/RBn7DBcgCCkFMdtUkIIYQQQjpWXGoM3t/yCrYt34Utf+2UZ6sfPGkAhk8dFNQxIYR0VtQmaTsKOBBCCOn0IsO7yy9CyPFVbXJgc2YN6iyC1/fZuKTCSpv8CtUpMLx7OCIMwSlFWFdX1/BzdHR0i7YxGAwNPxuNRuTk5CAjIyMo50MIIYSQU8uA0/vIL0IIIYQQQgg5HnqE9pVfhBBCCCGEEHKssSDD0MkD5RchhAQLTdtACCGEEELarbTahlV7qnyGG5pj67H12XbBEBER0fBzTU1Ni7apqKhw+72goCAo50IIIYQQQghplnRuz4sQQgghhBBC2oPaJIQQQgghhJDjidokbUIBB0IIIYQQ0u7KDesP1kAQWzf6iK3PtmPbt1ePHj0aft6zZ49bRQdf1q9f7zfwQAghhBBCCCGEEEIIIYQQQgghhBBCCCHk2KKAAyGEEEIIaTNJkrA5s/Xhhnpsuy2ZtfJ+2mPcuHHQarXyzw6HA++++67f9Z1OJz788EO3ZRaLpV3nQAghhBBCCCGEEEIIIYQQQgghhBBCCCGkfSjgQAghhBBC2qy81oE6i9CuK1hrccr7aQ+9Xo8bbrih4fennnoKf/75p9d1WZjijjvuwP79+z1CD4QQQgghhJDg4aTgvAghhBBCCCGE2iSEEEIIIYSQzob6SdqOAg6EEEIIIaTNskrMQbl62UHYzxNPPIHU1FT5Z7vdjunTp+Ouu+7C9u3bYbVaUVtbi7/++guTJ0/GBx98AIPBgKSkpIbtNRpNu8+BEEIIIYQQQgghhBBCCCGEEEIIIYQQQkjbUcCBEEIIIYS0icMpoqjSFpSrV1hpk/fXHrGxsVi4cCESEhIaKjK8/fbbGDJkCHQ6HcLDwzF16lSsWLFC/v3HH390CziwZYQQQgghhJAgkqTgvAghhBBCCCGE2iSEEEIIIYSQzob6SdqMAg6EEEIIIaRNLHYRwRpqxPZjcbQv4MAMGjQIGzduxOzZs32uM378eGzdulWu8FBdXe0WkCCEEEIIIYQQQgghhBBCCCGEEEIIIYQQcvwoj+OxCSGEEEJIJ+YUgzuTqlMIzv5SU1Mxb948ZGVl4ffff0dOTg4kSUKXLl0wefJk9OnTx3U8pxP5+fkN2zWt5kAIIYQQQghpP05yvdq7D0IIIYQQQghpa3uC2iSEEEIIIYSQ44XaJG1HAQdCCCGEENK2G0meC+qVUyqCu7+MjAzcdtttPt8/cOAArFar/HNoaKgcjCCEEEIIIYQQQgghhBBCCCGEEEIIIYQQcvxQwIEQQgghhLSJTs2DRRKCMaEqxwE6FX9Mv4nly5c3/Dx06FBw7CQIIYQQQgghwSMFocFAFRwIIYQQQggh7WlPUJuEEEIIIYQQcrxQm6TNju0oMkIIIYQQctJQKXkkRmmCsq+kSI28v/a44447MHv2bIwbNw6VlZUB158/f37Dz+ecc067jk0IIYQQQgghhBBCCCGEEEIIIYQQQgghpP0o4EAIIYQQQtosI14flKvXNQj7WblypRxaWLt2rVt1Bm+2bNkir88oFApceuml7T4+IYQQQgghhBBCCCGEEEIIIYQQQgghhJD2oYADIYQQQghps5gwFUJ1inZdwTCdUt5Pe82YMaPh57feeguS5L3utNlsxnXXXdfwOws3pKWltfv4hBBCCCGEEHecFJwXIYQQQgghhLQFtUkIIYQQQgghxxO1SdqOAg6EEEIIIaTNOI7D8O7hUPBcm7Zn2w3rHibvp71uueUWaLVa+ed///0XN9xwA2pra93W2b9/P8aPH4+dO3fKv0dFReGVV15p97EJIYQQQgghhBBCCCGEEEIIIYQQQgghhLSfMgj7IIQQQgghp7AIgwqjeoZj/cEaCKLUqnAD245tHwysCgMLK9x5553y75999hl+++03jBgxArGxscjMzMS6desaKjvo9XrMmzcPSUlJQTk+IYQQQgghpBnWPmhFG8Gr9m5PCCGEEEIIOXVRm4QQQgghhBByPFGbpM0o4EAIIYQQQtotLkKD8f0isTmzBnUWIeD6YTqlXLkhWOGGenfccQecTicefPBBOBwOVFRUYOnSpR7r9e7dG9988w2GDRsW1OMTQgghhBBCCCGEEEIIIYQQQgghhBBCCGk7CjgQQgghhJCgYGGFSQOjUV7rQFaJGUWVNjSda5XjgKRIDbrG6xETpgLHFnSAu+++GzNmzMD//vc/LFu2DLm5ubDb7YiJicHw4cNx8cUXyy+VKrjhCkIIIYQQQkgzrEHQ3gIMVMCBEEIIIYQQ0p72BLVJCCGEEEIIIccLtUnajAIOhBBCCCEkaFhoITZcLb8cThEWhwinIEGp4KBT8VAp+WNytXv06IG33nrrmByLEEIIIYQQQgghhBBCCCGEEEIIIYQQQkhwUMCBdDjRYkHt4sUwb9oMKBUIGT8BoZPOBKekPz9CCCHkZMbCDMcq0EAIIf5YrHb89fde7N5XAKWCx+gR3TFmRDcoFPS/UYQQQgghhJCOZzbb8OfyPdi3vwgqlQJjR3XHyBHdwPMdU92SEEIIIYQQQpoy1Zjw11ercHDLYag1Kow5fwROO3uwPHkdIYQQQsiJiEaYkw5l2bkTebfeBqGiomFZzbxfoM7IQJePP4IqOZm+AUIIIYQQQkiH2bU3H48+Ox81tZaGZYv/3IWuaTF49ZmLEBsTSlefEEII6SCsi5yT2r8PQgjpzLZtz8UTz86H0WhrWLZ46Q706B6Pl569EFFRIcf1/AghhJCTGbVJCCEE2PTHdjx38Rsw1zXpJ/l4GXqP6I7nFj2M8JgwukyEEEIItUlOODRdJekwQnU18m662S3cUM+elYW8W26BJIr0DRBCCCGEEEI6RGWVCQ89Nc8t3FAvO7ccjzzzC115QgghhBBCSIcpLa3Fo0/94hZuqHcoswRPPPsrXX1CCCGEEEJIhyk8XIynZ7/qFm6ot39jJp679E26+oQQQgg5IVEFB9Ih7Lm5KJ3zthxy8MV2KBPGVaugHzwYNQsXwZGfB0VUNMJnzoAqKYm+GUIIIYQQQkib5R0owMef/QOjyXMgUb2Dh0uwZXsuuqdEYvk3q1GSW4bIhAhMvvJ0xCRH09UnhBBC2otVb5DaWcKhnZsTQsjxkrs3Dx99shIWi93nOnv2FmD3nnwkpUThj9V7UVpeh5ioEJx1eh/ERFJlB0IIIaTdqE1CCDmFZe/KxUcPfA2bnzbJ9hW7cWhrFqKTIrHs61UoL6hEbGqM3E8SGR9xTM+XEEIIOSlRm6TNKOBAgspZUYHCRx6BadXqFnVeVn7xJQq23w3Jam1YVvb224i6+mrEP3B/i44pSRJMa9bCum8feJ0OoZMnQZWY2K7PQQghhBBCCOmcygsr8eq1/8PWv3bCMbI3EBXqd/3vPl2BfZ/8BYfN0bDs88e+x6UPno9rn7usRccURRGblm5D1s4j0IVqMW72SMQkRbX7sxBCCCGEEEI6n9IjZXKbZPvfe+Ac0QcIN/hd/7Of12HLwQI4nELDsg++X4PrLhiFay8c3aJjCoKAjUu2IWd3HgzheoybPQJRCZHt/iyEEEIIIYSQzqcoq0Ruk+xava9F63/68HfYsXI3nI7GNslnj3wr95FcfP95LdqH4BSwftEWHNlXgJAIPcZdMAqRceFt/gyEEEIIIRRwIEEjWq04cs21sB061OJtzOvXey4UBFR+9hmU0VGIvv56v9tb9uxBwT33wJF7pGFZyUsvIWL2bCQ88Tg4lap1H4IQQgghhBDSaVmMFjww6WnkHShs2UQJCmDz2n1Q2RzgmrwnCiK+e+EXuZrD+f85x+9+9m04hBcufwvF2aUNyz6450tMv2kybptzLRQKRbs+EyGEENKpSQDX3goMVMGBENKJmGpMuO/Mp+UBRS0hqDis33vEc7kg4uOf/kV0pAHnThrodx+71+zDi1e+jdIj5Q3L3r/7c5z3n3Nw06tXgef5NnwSQggh5CRBbRJCyCmmtqIO9058EmV5FS3eZstfOzyWsbDDxw9+g6jESEy+crzf7bet2IVXrn5Xrv5Q7/27v8AFd8/AdS9cDo5r2gNDCCGEnGKoTdJmFHAgQVO7eHGrwg2BVHzxBfSjRqHq629Qt2IFJLsduoEDEXnlFTCMHo2q775D+XvvQ7LZ3DcUBFT//DOgVCDxySeDdj6EEEIIIYSQE9tfX61yCzdwlXWQmlVwYGMknToegoYDeA4IT4CtSwQ0ewugzmwMKTA/v7YAvc8ZjJ8Wb8PazYfhFAT075mEi6YPw6Bu8Zj/9hJ8/+J8OO1Oj5mKFrz3B1RqJW5545oO/tSEEEIIIYSQE8XST1e4hRu4qjpIfio4CBr/4YNvF2xGzzA95r25CBuXbIXoFNFvXG/Mvms6eo/oLi//6dXf3GZalZQKODgOc99cBLVWheuevzxIn44QQgghhBByolv4wZ+tCjcE8uMrvyKpe4Lc9tj8+3a5ovXACX1xwX9nIGNQmtyPwt4TnKLbdg67Ez+8/Cs0eg2ufPzCoJ0PIYQQQk4dFHAgQVO7eElQr6ZQVo7cSy+D5HA0LDNv3Ci/wGZBFRof2HtT/eNPcgUIdUpKUM+LEEIIIYQQcmJa+eNat98VeaUQ0+Pl8HN9uMERykNUuQ8ikkK1sI7sBkmrgmZ3QcPyIrsTNz/yPZxC44P5zbuOyC/NoSIodnnOtNrU/HeX4qL7z0V0YlSQPiEhhBDSycglk4KwD0II6aRtEj6vFEJqHKDwDDJIHKsq538m07yiKtx59nOQqkwNy7b8uUN+8Qperj5XT4gJg7NXEsTYMIDjwJls+H7BZlx437kIiwwJyucjhBBCOh1qkxBCTvE2SXvl7M7Df8c9BklsfECzcck2+cXxnNtyb75/8RfM+u80GEL1QT0vQgghpNOgNkmbUV1a0m6O4mKUvf02LDs9S5a1V9Nwg5sA4QaZKCLvxpvkyg+EEEIIIYSQk1fpkTJ89uh3OLQ1y205Z3VAuTUTcLraD6KK8wg3NGXrnwJRq5J/lhQ8bMO7uYUb3NbtkQgh0vdMrPLxnCIePvt5uaIDIYQQQggh5ORVlF2Cjx/8Rh780xRntYPfedh7n4alWXVqHwQfbRK3cENSFOxje0OMC5fDDYxk0MDSMwn3PvmTz30QQgghhBBCTg4FmUX48L6vUHCoOOj79hViCBRuYOxWBx6b/iIkiWawIIQQQkjrUMCBtEvdihU4fNbZKH/vfYjGxhmEThT27GxU/zL/eJ8GIYQQQgghpIOsmrsO1/S8E9+/OB9Wk+cAIb6iFqqVO6DYnwcBTv87U/BwpMfIPwopUYDaf9FDZ9e4gOeXvesIVny3JuB6hBBCCCGEkM5p+bercW2vu/DTq7/BZvGccIkvr4Fi9S7wh/LBlVaBK64EvysLijW7wZkDhBxsDnBGq99VJJ6DfUg6wHuvBrGvoBIr1x9s3YcihBBCCCGEdBq/f7YC1/X5L+a+sRAOm4+JZI+j3Wv2Y/2iLcf7NAghhBDSyVDAgbSZo6gIBXffA8nWslmGjpfquXOP9ykQQgghhBBCOkDh4WK8eMUcOOz+gwucQ4AiuxiwB36wLx2t4CC2oFyyFKpr0Xku/XR5i9YjhBBCTjacJAXldTzl5uZCr9eD4zh88cUXx/VcCCEnnty9eXjlmncDVm3jHE7wOcVQ7DgMxa4s8CzkIElQHi7xu50qqwRcgFlRWfUGqF3tGF8WLd/l931CCCHkZHUytEkIIcSfzG3ZeOOmD9wqvJ2IqJ+EEELIqYraJG3nfzpKQvyo/PbbDgs3qLp0gePIkaDsy1FQIP/XeuAgrLt3g9NoEHL6OCjCw4Oyf+IfK0lXtA44slyCvU5CaBcOGTM4hHf1PpsUIYQQQgghLTV/zhI4Hf4HEjUPOgTCH51BNTk9BrmBVg4wiKlecXZpQ0dD5vYcaPVqnHb2YBjCDS3anrSPIAj497fNWPnjWphqzEjvm4LpN09Baq9kurSEEEIC/htyzTXXwGKx0JUihHg1941F7RpIpDpQCDFCDyHVVUmuqS4GDcr3uvo3/JH0moDrFJXWyv89sPkwsnfmQheixWnnDIG+haFt0j5OUcRf+zOxdN9BGG129IyLwaVDByA9KpIuLSGEEEIIaZefX1sgj8vpCMk9ElBwqDgo+6rvJ9m34RBy9+RBH6aT+0l0IdQmORacDidWzV2P1fPWw2qyotugdLmfJLFr/DE5PiGEENIWFHAgbVa7cFHQr55h3FhEXHwxtH364vBZZwFi+xPGirAw5F55FcybNzcs47RaRF5+OeLuvQecQtHuYxDvHGYJax4WUb6zcVnJZgmZv0jofz2HPldSERlCCCGEENJ2K3/6t3UbcAFCtpKEsf3SMOPlq5E0tCuuvOcLtsgnZV5Fiw6rj9DjrrGPYu+6gw3LtAYNZt81Hdc8e6k8IzTpGMZqEx6Z9jz2rT/UsGzLnzvwy5wluPGVq3DRvTPp0hNCSEdij/ba+3jvOE5AeNttt2HlypXH7wQIISe8NfM3tGt71hLQbMiEkFMGZ3ocJL0aY6cOwrlTBiFByeOWL/8JvA9b4Ep1BrUC/xn5EA5sOtywjIUcLrr3XFz5xIXUJulAVWYLrvvuF+wpdg3oYtZk5eKLDVvx2Fln4Mrhgzvy8IQQQjp5m4QQQgJZt7BxLFSwjJs9AtNunIKQCD3uHP1oUPbJ+kRuHfaAPBFUPRZyuPTBWbjs4VlBOQbxrqqkGg+d9RyydjZO67X5jx34+fWFuOv9mzDthkl06QghpCNRm6TNaHQxaRPRaoWzvDzoVy/6xpsQNnUq1KkpiLz0kqDs01lR4RZuYCSrFZWffYaSF18KyjGId1vfktzCDU3t/lRC4b9UzpMQQgghhLSNuc6C2nLXLKQtIfEcxMgQwM9MRpwIXPHylRhz3mlIT43BtDP6+1632gRFfssCDmVHyt3CDYzVZMN3L/yCTx76tsWfgbQeK83dNNxQT5IkfHT/V9jy1w66rIQQQrxWbrjlllvw0Ucf0dUhhPhUW1kHU7W53VeIhRyUJTXQbjgE3d97cNPZQzB2aAa6DUzHxMvGBtxeUVAZsLpc8bJdbuEGxmK04qunf8JXT/3U7s9AfHtwwR9u4YZ6oiTh2d//xqbcfLp8hBBCCCGkzQPX2X19sF3/whU47azB6DOyJ8aef1pQ9pm964hbuIEx11rw2aPf4fsX5wflGMS7F6982y3cUI9VI5xzy4fYv9GzD4UQQgg5EVDAgbSJPfcI6+kL+tUTLY2dAfGPPoroG64Hp9c3rtCGmU1Fo9Hne1U//ABHieeDZdJ+lgoJeX/7DzAcnCvCVCzhwI8i9nwuIv8fCaLg2sZcJqEuX4LoaNxHXZ6Eir0SrJUUjCCEEEIIOdXl7S+A2JqyywoeHM/JIQaO3XM2Lc0gSfIyTgIs1sbZTx+4ZSounj4MGrV78UNFURW0a/aDa+Hx2UN6X+a/vQTVZTUt/xykxUpyy7D2F/8z6v4yZzEKDxfjp1d/kwd2rf11ozyolSnNK0dBZpFcurnekf0F2Lv+IKpK6TsjhJCW4Ni/sUF4HUslJSWYNGkSPvzww2N6XEJI55OzO08OzgYbC0PXu//z23HubWdBrVX5XJ9zClDu8z1InqsywrY3z+f7c19fCFONqR1nTHzJrqjCP5nug7iaYn89X27ahvyDhfjxFVebhM3AKx6tbl56pExukwhNAiy5e/PkNgm1Iwkh5ORtkxBCSEsd3uE5aD3YbZJHvvuvPMO/qmk/iY+hWxLHQQozQAo3QFLwPvfZ3A8vz4fFFPygBmHBklxsW77L56Vg/Wy/vrMUufvy8cNL8/H10z9j49JtDW2S4pxSV5ukyRjBnD2uNkltRR1dYkIIaQFqk7Sd+ygNQlqI12qCf614Hpru3WHLypZvhtVpaYi77z5E33wzTGv/heSwQzdgAKp/+w0V738QnGM6naj7809EXXVlcPZHGlTsAaTGcUBelW0HllwhNinrKUEdBqjDAePR/hZNBBA3zPV71dFJbzkeSBoLDLqNhyGh9aEXQgghhBDS+al16tZt4BDAsZmMQrSuUSTys1hX52T9HaVSwSMtMQJ5BwrA8TySuyfgrmsn4tqLRmPzzlw4BRF9eyRiyesL8HOzigxt5bA58O+vmzDtxslB2R9ptGft/oAhmE1/bMc1Pe90G5gWFhOKsKgQ5B8skn+PjA/HkEkDcGRfPjK35cjLFEoFxs4agVvfuBoxydF02Qkh5CSxaNEi3HTTTSgqcv0bQAgh/mha2yZpARZkSOoWLwdrFUrWJknEHe/egKufvkQelMIGuvcd00sOJfz2v98btlNlFoNzCHD2SoJk0LoWOgW56pxq1xG/4Wyr2YZ1C7dg8pXjg/55TnWbjxQcbXX69s/uQzh4yddubZLw2DCERBhQcMj171F0UiQGT+yPrF25yN55RF6mVCkw7oJRcpskKiGyQz8HIYQQQgg5ddokuhAtYrtEy20Sds+Z1C0Bd390C6557jLs+Hu3POt/v3G98c2zc/H7pyvkbdidrJSWAKlLHKA+Gs52CuAKy8FlFgQMirFJojYt3YbxF44O+uc51e1ctS/gOqvmrcfyb1e7LWP9IlqDFkVZJfLvsSnRGDihr1yFI3evK2Cv0qgw4eLRuOX1qxEeE9ZBn4AQQsipjAIOpE1Y+EDTsydsB30P6lHExEAoL2/5PjMykHvlVXAWF8u/q1JSEHXNNYi68gqEnX0WrPv2ofz9D2BcswZ8aCgUEeGQHM6G9dtKNPmu8ECAyv0SCv9llRSA6H4ckkYDnCJwqICFEAKSWznui+y1rlc9WzWQt7zZZiJQsBqo3Cdi0ns8dLEUciCEEEIIOdWk90tFSs/EhkHo3sQkR6G8oFL+md0xqg6XwD4oreH35jJCdLhj0H2oKKySf0/qnoCL7j0XM26egjPH9MLBLYfxzf1fYcufO+TBJqHRIbBb7A3rt5W5zneFBwLsXXcAGxZvhdMhoP+43hg5fSh4PnCDg282Q5Q30tEKck3VltfJr3pVJTVY8d0at3XYwLJVP6/DwU2ZeHv9i4iMC6evihBCWvjsp9WOwWSpO3bswL333ovly90fQt144434+OOPO/4ECCGdUo9hGYhPi5Urh/kSmxqNsryKFu8ztXcybhlyPyqLq12/90rCxQ+cj7OvnYgJF4/Bvg2H8OnD38phB9YmCYsOgdVsR2VRFZS5ZVDklkEK18uzpfJ1Fjn00N6qcwTYtXofNv2+TR7MNWB8X5x29uAWtUkUfOC+C4fV4VEJpKasVn7VY23O5gOOWPto5Q9rcXDzYbyz7gWERYfSV0UIIZ24TUIIIW3RZ1QPRCVGyu0BXwK1WZpL6ZWEG/rejeqj96NpfVNw6UOz5ED0GZeMxe61+/HhfV9h58o9CIlkbZJQmJNjUaFsFrZQKiB1iYek14Lfkemr6EMDcx1VcPBn6+4j2LQjV247DOmXihGD08FxXFD6SVibpDnWLwI0VrIuy6/waJOwCbyWfb0Kh7ZkYc7a52AINwQ8FiGEnJKoTdJmFHAgbWLZvQeKaP+zVKpSklsccOBDQmDPzHRb5sjPR8lzz8n/1Q0bioJ77gUcjTdVYl1wSl1pevQIyn5ONnajhHVPiSjd0nSpBH0CMPZZHhHd/d8oxw4GFFpA6MA2iKUc2P+9hCF3UsCBEEIIIeRUs39jpvzg3l/AgQ0mqg84MKoDxRBiwiAke85uGcpxKPjyH3C2xjJkhZnFmHPrRyg9UoauA9Lw8v+9Iw9sr2esNgXls6T1Sw3Kfk42rLzx0xe+hp3/7G1Y9tOrv8nBk2d+fQBpff1ft8Fn9pfLZjvsAUrLtYHEBiopeRTllMmz5974MlUFJISQzuzqq6+WQw71DAYDXnvtNdxyyy0UcCCE+LRv/SF5Zn1/g4VYm6WlAQdDuB6Ht7sqhtXLO1CI169/DxUFlXL7hv3ctEpZ8zYJe1LO1Zhb/a2l96c2iTdVpTV4avar2PvvgYZlP77ymxxEYW2SlJ5Jfq/rmK5pUPI8nGJDGWsPukOuMEtbsXbr/LeXyFU+CCGEnJxyc3PRp08fWCwWfP7557jmmmuO9ykRQk4Qe9cdlCd68hdwCI8La3HAwRChlwerN8Vm62d9I1XF1dCH6TDn1o/dArp1VifELn7ui2PCgagwoLLJTKdepPdLadE5nmrKK414+OVfsS+zcfLfb+ZvRNfUaLz00CwkJ0T43X741EHgeS5gtev2YH8jC9//Uw7CEEIIIcFEAQfSKpLTicKHHkbtokUB17Vub+wUDEQ0+q6iUPnll+B++MEt3BAsyoQEhJxxRtD3ezJY/3TzcIOLuRhY9YCIsz7noQn3HSxQh3DoOo1D5i8dO6VF1iIJ/a4VoQ5tSckIQgghhBDS2TnsDrx4xRysnrdB/l0IYeWOOSiMdq8DjppiZZC1aw/A2SUGjow4SCEaOdCgzCmDmFUKzul90MkPL82HUq1yCzcES1K3ePkBM/H05KxXsHvNfq8DeB6c+iw+3fOm3xmBImLDMfXqM7D442U+15F4wDgwCsZh0RB0CqiLLQhfUwpNsfcZbMUwLex9U+BMjWLTsYKz2vHz6j243GKHoQPKgRNCCDn2pk+fjnfffRfp6el0+QkhXtmtdjx7yRtYv9DLA/RmDmx0n9jJH5OfYMJXT/8EroMGpbAZWQeO7xv0/XZ2bNDW4zNfxIFNhz3ey9tfILdJPtnzJnQGrc99JISFYHq/Xvht1z7vKzhFhK0rbPe5soDDJQ+eD61e0+59EUIIObEIgiAHGli4gRBC6llMVjxz4WvY/EfgcVms4leLcICp2neb5LPHvpcrmjWvPiYlRgEBKgmwdTg/AYceQ7ui9wianLY51v6797l5OOwloJKdV4F7np2Lr968Bhq17+GfiRnxGHfBKLkidUf6+fWFmP3f6VBrqZ+EEEJI8NCIYNIqZXPmtCjcEFSSBMka/DIAvF6P5NdfA6dQBH3fnV3lAQklm32/b6sCspcE7kgZdCuH1DM7trqC6AD+vkuCw0i1QQkhhBBCTgUfP/CNHG4wD4hD6fWDUXL7aSi5fThKbxgM06D4gNtzEqDKLYf+770wLNwG/Z+7oD5Y7DPcwLDn9azUbrCxGVof/vauFpURPtXsWr3Pa7ihXkVhFf788p+A+7ltzrUYN3uk1/dYoCHvnn4ovqEHjEOiYOkdjpozEnDksYGonJzouX6kHubJ/eFMj5HDDYykVaMuPQb/ef4nmK2eIRtCCCGS6x/S9rzk+s0di/1bfMYZZ+Dvv//GokWLKNxACPHrvbs+b1G4IZjYQCLBEfzAdWhUCB76+s6g7/dksHXZTq/hhnqlR8qx4tvVAffzzLRJmNijq8dyziYg9ueDUBe3vuKGt3DMg1Oegc1ia/e+CCHk5NM52iS+3HbbbVi5cuVxOz4h5MT0zu2ftCjcIGvp/4QFWM9pd8rtEg8qVeBdq32vExEbhvu/+E+LTvFU8++Ww17DDfUKiquxokm1OV/u+/RWDOvgibZYRe5Hpr0Aewf0pRFCSOfXudskxxMFHEiLiWYzqr7/odNdMVahIeXdd6AfPQp8aCgUMTGIuOxSpM+bC/2wYcf79E5IResC/w9i4b+B1+GVHEY9zmPKxzwUHThxUG02sP/7U/N/xAkhhBBCTiWmGhOWfrIcteO7oHpadzhj9A3vOaP1qDm7G2omnnizLY+/cDQe/+keDDqjn1zCOSoxEufdfjbe2/wyzUrkw/pFgQeMrVvoJ5V9FJst6Mm59+F/m16CSuPeiVJ6WVfY0kO8bldxfheY+oS7LbMNzwB8zIS0P6sEPyw5toPcCCGEBM+CBQvkcAMLORBCiD/VZTX486vAQdsTzZSrxuOR7/6LAaf3kdsk0UmRmH3XdLlN0n2I5+B70rI2SUvW0alU+PCS8/HztZchcmMxQjYXI3JxFlJe2wz9vsqgXeq96w7it3d/D9r+CCGEHP/KDbfccgs++ugj+ioIIW7KCyux4rs1J85VsQYO2XIWG6bfNBkPfnUH+o7pJbdJYlOiceE9M/G/zS+ja/8ux+RUO5u1m7NasE7gCh26EB1e+v0xvLXmObkyYEfZsXIPlvipqE0IIYS0lu8aRYQ0Y9m5E6LR2Omui3HtWkRecQXSPv/8eJ9Kp8GqIgQiOVuwjiSheCNQto0lydChspdK6H+DRLPfEkIIIYScxHavPQCjhoNxVLLPdUwjkqDfVQpVeftnwQyWdQs24dzbzsJrK5463qfSabDZoAKu4wi8jiiK2LhkG3b+s8dtZgtHpBrGwVF+t62emADDvhr5ZyFcDzHaexii3oK/d+G62aMDnhMhhJxKWOUk9mrvPuoVFRUFXD8lJaXVx0hNTW31NoSQU9OuVfs6pLpbR1s1dz2m3zwVb/zzzPE+lVOuTcIGqG5YtFWuUhf5R26HVOKot+ST5bj4/vM6bP+EENIZBbtNciyUlJTgkksuwT//dL5QJSGk4+34ew8EZ8fdU7YWV1QBKSMJ4H3PscwVlmP5tyWYduNkzFnz3DE9v87M2YLvWfBTnbxxHQH//rZJDkWzKqZSBw7gYpOUnf+fczps/4QQ0hl1xjbJiYICDqTl5FInbcRuZMXAN1UdwuFAyUsvIeT0Rcfn+J1QdH+W2PX/fUf385/qNRZKWPuIiNpcHBO2KsBpAVSNk/gSQgghhJCTjSTBPDAO4Pzfi7J1wlfkuC2TH9q2p03TDg67Ex/c+yXe3/LKcTl+Z8RmcfplzmL/64zq6ff9/IOFeOK8l5F3oNDjPWtGKBBgpiJLt9CGn8XIwA2Nkoo6OAURSgUVyySEkI4yYsSIgOscr3/vCSGnhvb8bwxrxhyv/4myWez46P6vMGft88fnBDppm2TRh3/5X2dUL7/v5+zJk9skRVklOBaO1XEIIYR0nEWLFuGmm25qUbibEHJqOtGee3B2J7jMAkg9vU8eweWVgqs1wwrg4we/wavLnjzm59hZ9e+VhKUr2eRNvvXrlej3/czt2Xhq1qsoyS3DsUBtEkIIIcFEve6kxbQDBgDKNmRiOA6h5/hOZ3JqdYd/C/bDh1H7+7EpzWvetg21S5fCvGXLCdewaAnBLiF+uARNhO91OAXQ7TzO7z5W3X/swg0MrwGUmmN3PEIIIYQQcuz1Gd0TUqQu4HpCmPuNIa/gMW627wGRaq0KHUHiOAhJUXD0ScY+oxXrAjyIDsoxJQm71+zDyh/XYs+/B9AZ2a12jJoxFKFRvismqNRKzLhlqs/3rWYbHpz6rNdwg0wM3FbjmmT0hbjwgOuHGjQUbiCEkObYs7FgvAgh5ATRf1zvQHlrn/evo2YO9/m+Rtfx/SRsts7tK3YdkzbJzlV78c9P/2Lv+oPojKx2B8ZeMAr6ML3fduQ5N07y+b6pxiS3SY7lAJ+IFrRbCCHklNNJ2iQ7duzA5MmTMXPmTLdww4033tjhxyaEdC4Dx/dp03aszTH87MG+39e3fcANn1cKfkcmUG1sXGi0gNuXC/5gXsOi7St2Y9/6ju+3YJWdd6zcI7dJDmzKRGdks9gwaWwvaFUKn+votCrMmDTA5/u1FXV4+Oznj1m4gaE2CSGEdN42yYmIKjiQFlOEhEDbuzesu3e36qqFjB+P5BdfQJFKhZrffnP7fzZFbKwcgBBKSzv8myj4792om7EciS88D74DQhWm9etR/OxzcpiinjotDfGPPiJfgxNd9lIRmb9IqGb39gEKOAx/AAhN9d2Lk79SgsnHOKKOEjuQBS/a0LNECCHklGE2m9G7d2/k5eXh888/xzXXXNPibf/44w989tlnWL9+vVweWq/XIzU1Feeccw6uv/569OjRo0PPnRDiEhYVioy0eOyC0+8l4U12t9/Hnn8aHvr6TijV72HlD/+6BZFjU6PhtDtht9YE9TILUSGwj+gBNBmo9MA7S3HO7iN44JapUCp9P5Ruq01/bMd7d32G/IONnaCpvZPxn3eux1A/D7lPBOw7WfLxMvz67lLk7M7zW3GD4zk8+PWdSEiP87m/Fd+uRumRco/ljmgNakfGw5akd4Uc/FRx0O+tdg84sNPx0+QY2sf7DFWEEEKCZ+PGjUhM9D8zHSGEdKSohEgk90h0u+duifEXj8Z/P7gZr1z9DlbP2+D2Xnx6LCxGi1xloaM9MPVZTLt+Eu743w1QdECbZP2iLXj/7s9ReLhxUH96v1T5eAPH98WJTBQl/PL3Dvy8fDuyCyvlGeL4ISnQ7C6EssLoEaJ/9Ie7EZMU5XN/f375DyqLqnAsDT6z/zE9HiGEkOC5+uqr5ZBDPYPBgNdeew233HILPv74Y7rUhJAGcV1ikZAei+Kc1g1aP/Py03HLG1fjxSvnYP3CLW7vJXVLQG1FLWzmtl9orrwGivIaSKzCMceBcwpe1/vv6U9g5i1Tcduca8HzwZ+XefUvG/DRfV+6XZ+MQWm46/2bAlaFPt4EQcBv7/6Ohe//Ibc5WV+IGGkAWOU4tfsQTzY86tn7zkWEn1D20k9XoLo0uH1fgQyZfGL3RRFCCOlcKOBAWsUwZkyrAg6qrulIfP45ufJDxMUXQTd8GOw5OeBUKmh79YZlxw5Ufv55274FhYLd3bVqk9pFi8AplUh66UUEk2X7duTddDMku3sHhD03F3m33Y4un3wCw6iROFFteVNE1oImg4cCBL60Ef4bGYXrcMzVZAHmEgn6eAo5EEII8e6uu+6Sww2tYTKZcNVVV2H+/Pluy202G6qqqrBz5068+eabeP7553HffffRpSfkGBgdG4dddf7TtPpdjQ+uuw50PbhWqBSYectZGHRGPxQdLoFSpUT3oV2xbcUuLPjfH206F4WSh+BsMs3/UaJBA/uY3kCzmXXYbfaSv/dApVLi/punIJh2/LMHT5z7EpwO9zZS3v4CPDb9Bby64in0G9MLJ6rXrn8Pf36xsuF3f9XwJFFCRGyY3/2tX+zeQcNUT0hE5fS0hlADJ4qQfDVtBBGRK5oMWtMoAfZVs/W9NTkkIHvJdpRferrfQU6EEELah4UbUlJS6DISQo4bdp86YEK/VgUceg7vhv+8fb1cxeH8O6Zh6ORBKMoukX9n761fsBlLP1vRpvNh7RyhWRvA7/mLEhZ/vEyenfXWN1s+8UNLbPlrB56c9QpEwb2NlLMnDw+f/RzeWPUseg3vhhP1e33ioyX4s8lssuxTiGnRcKZEQr/yAFQFjQFo9hkj4yNa3SbpaPs3HERVaQ0iqZIDIYR0atOnT8e7776L9PT0430qhJATEKtO0G9s71YFHPqO7imHG1gVsgvvnokRZw9BcW6Z3CbpM7IH/v5xLZZ/s7pN56NUK+C0N7ZJuGbtAY/zF0T89r/foQvR4voXr0AwrVu4Gc9d/LocXm4qa0cuHpzyDOasfR4ZA9NwooYbnr34Daydv9Gt/aaoMEK7bCec6bEQj7ZB+LJaKHJKEfv4hX73ueE4tEl2r94nV44Iiw495scmhBBy8qGAA2mxsnfeRcVHH7XqiqV+8AGqvvsO1XPnwll69Oaa42A4fRxCJ01C4f33t/0baGW4oV7NwoWIvfMOqJKSECxlb7/jEW5o4HSibM4cGEZ9F7Tjybu1Sqg+5BpcE9kTUKj9D+yvzZGQvVSCuQTQRElIGs0hqjeH6sNwDze0QPYSCQkjfB9PEoJbEodTA1KAyausFcCqB0RM/ZQHr6SQAyGEEHcvv/wyPvnkk1ZdFqfTiRkzZmDlysYBtwMGDMDgwYPl4MOKFStQXV0Nu92O+++/X17/oYceoktPSAf6+MFvsOjV36A/KwPmwQle19HtKoW6uHF2zWcXPIi5byzCH5+vQFWJa6YanucwYvpQjD5vOBZ98Febz8dbuIFxspn8/ZQNXrxiF667eAyi2cw7QfLF4z94hBvqOexOfPnkj3jlrycQTGyW2cPbc+TZS3sMy4BKrfK7fvauXPz+2d8oK6hAdGIkRs8cLg/o2rvuoFu4oSV+/3yFHFbxpfm1MPeOQOVM905hzskBnASp2VfF2QXEf5MFba6pYZlGEGHjeUjNQw71TR8RKNueg0envYD3trwMBQvkE0IIASe6Xu3R3u0JISSY3vvv51j68bIWr69Q8Hh6/gP49rl5+Ovrf1BTVisvZ/fQo88djhHThuD3z/9u8/m0JtzQ1KIP/8QVj18gV8kLls8e/d4j3FDPbnXg66d/wnMLH0YwmWrN8mAlFvToOSxDDrL7k7k9G398/jcqi6vlNsmY84ajx9AMbMwsdAs3uFHwsIzuBuW8reCaBLH/+GyFPBgs2N9NSweOeVOYWYLHZ76Id9a/KFfFI4QQ0nnaJOx/t8844ww8+eST8n8JIcSXObd8hOXftjyMwEINj/98r9yHsPzbVag9Wp2MVXQbO2sEhp81uM3hBibQPaovLORw6cOzYPBTgaC1Pnv0O49wQz2ryYZvnpuLJ366F8FkqjEha+cRKFmAfVhGwEp5BzYfxl9frpSDybEp0XKbpNvgrtiwaItbuKEpzuaA6kAhwF5N/P7ZCtw+5zqfx3I6/FdDD9akX00d2VcgB9/fXPVsUI9NCCGdWWdpk5yIKOBAWsRZXo7yVoYbFLGxyJoxE3A43N+QJJhWrYZlx05Izd9rCzZwRBTl/baIIKDoqaeQ/MorUER4n2HHWVkJ09q1kOwO6AYPgqab71mF5HXX+S9ZYNm2DY6CAqiSk9FeolPC7k8lZC2U4Dg63kYdDnSfxaHvVZxcoqy5HR+IOPij+/U5PJ/9LkHjf5Ihr8xl/q91dH8OBauDF3LQhAHW8sDr1R2BfNzUifTgnhBCSOMMfE8//bT8aq0XXnihIdzAykF/++23OO+88xreN5vNuPvuu/HR0XukRx55BBMnTsTIkSdu1SZCOrPSI2WY+8ZC+efwP7KgqLbBNCwRYqhaXsYb7TBsLUbIuvyGbWKSo3B1jzs8BpawB9ysBPOetQd8DsCpJ/EcbN2i4UiNkMPaqsJaaA6VgWvyEFepUrgG1Ct4cN3TICZG+t2n0ynizWd+xkNPXoSQCO8hh4paEzbsPQKnIGJQ9ySkxfveZ2leOXav2e/3mNtX7EZVSXXAWUZbwm5z4LOHv5XLG5vrLPKyiLhwzL5rOi596HyvA2n+d+dn+PXdpW7Lfn3H9Xt4gGoM3pTlVfh9v9/oXti0dFvD7zXjEz3W4dj/OThITgkSL0FpAXgbB12WHSHbq9zWjTHaUBCpdOUaWPPTbT8AV22CotKIrEojNizeijHnntbqz0QIIYQQQk5sBZlF+O3d31u1TVRSJK7seqvHIBDWDmGDV9jslv6ql7UUG0zjtLd88AoLHLx92ye4+6ObfQ4oqiiqwtZlO+VzHXB6HyR18x4yr782Bzcf9ntMdn9urDb5bAO1hs1iw8cPfIM/v1wJi9EqL4tKiMAFd8/Axfc3Prupx67xWzd/iCWfLHdbPv/tJfINvfKSEYDa90AkSa+GMzUSqiOVDctK8wO0Scb0wo6VexAs0UlRKGnBLL0HNh2Wv7dhUwYF7diEEEI63oIFC5CamkqXmhDiV/buIx73tIFExIfjirRbPfpCBKeAVT+vC9o9q0qjgsPW8jFg7D7+3Ts+xZ3v3QidQet1nfKCCmxbvlu+nx84oS8S0uP8TrCUszvP7zH//XUTrGYbtHpNi8/T5/mbrPjovq+w7OtV8j7r+6Quuu9cua/EW4WG169/H3999Y/b8nlvLmJdTwiJDGn1OZQFbJP0xr71bObc4IjrEouirJKA67H+ql2r98ntSEIIIaQ9KOBAWqRm0SLPoEIAQpn/B61ijWv21HYTBHB6vfxfyea6aQyEBSyyL7kEaV9/DVVc4w3w/7N3F+BRXVsbgL/xTNw9hJBAILi7u7s7BQrUywUq0BYpLaWU0lKjuBVoaSnuDsXdg0YIcU/G5z77hMgk45mg6/2f+Uvm6JzhhrPO3mstrVKJ+K/nIe3PP3U6Mjg0aQK/r7/SWbfgc2RmmpVcoc7MhPF6puY5NUuD2GLJ04p04MZKLXITgHpTdCcT3d9WMrmhKHlhV2WzST2MLw/pxMONVVqocmATdm6AUyCriGp63bwEB9sclxBCyMstJSUFw4cPx86dOy3eNjExkev6kG/ZsmU6yQ2Mvb09fvvtNy7RYe3atdzDNZbkcOCAZQ8WCSHm2b/2WMEDeHbH63Q6Fo5nYqHyYpNxeBAm5YBXrDJPUmzh5BN9MlMKOz3oo3axQ3q3CGicCx+uyyt5IbtBEJx33oQoMS/jmCU3sHbK2uAAKCT6H8QXd2LrWby39xIWHJ4JVy+XgvcVShXmbziMbf/dgFKVl5jBHm43qVoeX4zqCHc9k4+y0wo7DRjCfkdlp+eUOsGB7WdWv2+5SfxFpSWkc9WR2IDDO4vH6iz7e9GOEskNReVXsbWEh7/xJJIu49piw9f/FAws5IYaTqLgaXngqXkQZQBCGQ8aD0fIKnpAerswy9pfpoR7JX9cvZNXIUkn6lKpITn/oOBHNlGNEhwIIeQp9systBN3bTDxlxBCbIFNRLE0GcFUYm56UiZsgSU3SJ3suORulrxgjiObTiLqZgwXkzgVmUzDkgd+fGsZ9q89yk16YlgSc6PudfG/ZZPg7FGy60NWqumYhCWa52TklDrBgU0M+qznPFzYf1XnfdaVgXX9Y7HJ+PkjdJZt/OZfwxPBtEAqu2ZGEhy44zrb6YzxsA4QxnQd3w5/Lthm0SQvY9hkLhdPZ5OJJPkxCSU4EEJI2cQkcXFxJlcPDAy0+BCU3EAIMQer/G+phEfGq4la83xeH3bfa+8khVKhhFJuXvI1Sw54dCMG8w98rpN4zZIHFk1cgkN/nCgYF2KduZv0aoDJSyfqjSkyzYhJWHzDEitKm+DAOiOwbs5sEn/xMalfPliJjKRMjJo9SGfZutmbSyQ3FP1nxtR4lT6mYpJuE9pjy487DXb/tlRARV8u7mRd9Ew5ueUMJTgQQkg+GiexGiU4ELOok1Ms+FslZCVJn+mV1eZYPpNe+SgKse9/AIGTExSPHnHdHLRaDWSXr5RYN/vkSUSNHoOQv/4EXyrVWSb09gbfwQGabMM3yzyJBCJ/f5RW4iVtieSGoh7s1KJiXy1cKhROt7nzp+0Hgct35htdLnbmocksPk5M10CdVzypVNIiAefygNQTyDXRySHtfumPRwgh5OXGJhusWbOGSzaIjY3VSUhgyQjmWLlyZcG6tWvXxsCBAw2uu2jRIvz999/c+gcPHsTt27cRHh5ug09CCCmKTVIpjqcFRAk5pa5eaqhzQ3pX3eSGgmX2YmR0jYDb+gvgP22/nKtQgyeWcBPf+QoN1ELj98z81CxEpeVg9sDvIJFKEHfvCdfJILVJBVxLTS/xzOPEtYeY9P1mrP54MMQi3VDeO9gLEqkY8tzCJO3iWAKGR4A7Suvc3sslkhuK2vbLXvR+rysCK+Z1TNBoNPhn0Q6rj8eiGX392TqOMp7VzBI5pm/6ELP7LzB6XQyRV/LUSXC4cfwWymflwsfTGQl2ImilYq6ToCA2FeKbseCnF/49vHf5ocXHI4QQQgghL760BPMn/tgiJrFUbqblD+MfXI3CnIELuc7Q8Q8TuPto1qXt3qWHJZ61/Lf1HD7u/CV+OPklBELdZAC/Cj4QiYVQGvnMbBKSqw06yrFufMWTG4pXQO35dmf4BHsVTGJik3qM4XFJCMaT1fky3c/WcXRrk9VNP1n/HuYOWWSTJAdWWTe0Vnmue56++Liou5cKE7AJIYTYVoMGDUyuY4vuTIQQok+aBckIpu7Py0J+x2dLRJ6/jy8HLeTu2xOikuDu54aM5MwS3RhYwvTxv09zic0Lj84Cn687BhNQ0Y+La7TFCmEV5erlDGd3yzslFHds8+kSyQ1FbfxmC3q81RHuvm4FXbG3/mxZN0BzdBrTxujygDA/TFv9DuaN+NEmSQ7n9lxGWO3yXNI7+46MibxIMQkhhJDSMz7jgpCnRAEBJq+FqFw5+HzyMeyqVH5prlvuhQvIOnIEiocPkXvpkt7khnyKe/eQ9vc/Ou/lXLiA+G+/1T/jpgindu0gcDZcMdRcD/dqLVonJ0GLTOMd2Czm1wTwa2h6PZ+6PHRew0fESB7Epf/oyHhoOrmBYesYC1gIIYQ8QyoZkBUPpEfn/Zf9XMZkMhnq1q2LkSNHFiQ3SKVSLuGhfv36Zu9ny5YtBX82ltzAuLu7o3PnzgU/b9q0yapzJ4QYZ6z1cL7AcH+89cMYBIWbn1zMKpHqowhxh8bF8AQXrVQEeXjehBmOo33BvkSZxiev8FIywU/LmxB/5fANnN11ETF34nD5RnSJ5IaiImOSsOvUTZ3B0itHb3BVStmDe73nyeNBKxGhxaCmBts8W2L/Gv0VhoqeU9F1Ht+Lx5OHxrv7ldgHu/4VvJDVuToyhzZCxqCGyGlWEWq3vApOzfs1Qu221U3up2GXOlhx+wcM/bQvvBNNPLzXAIIiDQE1eqq3Prz0CFn7r0K6/QLst5yF/T9nYXcqUie5gUmMNiNwIYSQ14XWRi9CCHkB+JYvcv9vQHBEIN79aWzB5PrSxCTPyoX9V3B+72UuJmGTdIonNxTFugcc/es/nft/NvF+2cfrwDeQ5J0fk7Qe1gJiSen7XO8zEZOwiU8H1hVWimIVYZMfpxrdRvTAxD28Sg1RVGE3jrbDmqNaU9NjYc16N8SKW4swaFovOLiU7MZnKfbdmEpuYOIfWRaDEULIK41iEkLIK8ScOKNCjWC8/+t4uPm6vjQxydndl7gkZhaTXDlyo0RyQ1E3Tt7mkq/zsSJLFw5cxfJP/+CSOoxpO6xFiWTtsohJWDIB6z6R7/7lhzbr3pev8xttUbFOBZPrtRrYFMtvLsKA//Xgui+U1t2LD00mNzBPHiSU+liEEPLKeAVikkePHnFFZdk9AysY+6xQBwdiFuduXRH/zTdGOyX4zpgOx+bNkbJ2ndlXVRQUBFVSErS5lmfxPg/xc+dCGR0Nh1YtET9nDhR3TbcCZjJ27oQ6KxNeb70FaY0a0MhkyNi+HZmHDkOrVEBasyZc+/eHyNv4pC15munfVHLjz+lLJbAV0PBTvsHJU2qFFtlPAIEYcPDlQerJQ9VRPPjU1eLQ+xpu0lBZU2UDyizWRaLsj0UIIUQPVpko9T4QcwpIvMGyzgqX8fiAVwQQ2Ahwq8CelpVJgsPFixcLfm7WrBmWLVuGSpUqYenSpWbv48yZMwU/t23b1uQ2LVq0wObNm7k/79u3DzNmzLDq/AkhhrUb3gLLPlkHhcxw8sD7v4xHzVZVseFr3cRkYwLD/RD/MLHEfpUBLia3VQa6Qnr1Sd4PRW7VBTI1RGlyKF1LtjnmZcsgPntX7/4UFTxKvKflAZqnz9v5amD+N38jYftl1G1fHYvfWY7o24/17ksrFEAb4getnwcgEmL3o3SkzvgLI0c0Q6WKvlyL54PrjuH0zgvcw3Y2Oafz2LZw8zb+uc2ZTJMWb3odY2SNQqEMKxIbCXlQlfeEOsgd3QN98NGXQwwnpsgUXEKFnb2Yq5jqFejBtYKuGBWFkX/9ZfDZjzCHdQQp3Kcw2XDsy61lpNpRRnIWZDnyUre5JoQQQgghL5b2I1th1ecbjVa+nLxsEqo0rIgVMzaYvd/gqoGIvRNnVnVVlZs9lBU8uYRcQXouxHeTwH/GVVnnj/6Jm3BUrVllLH53OR7ffRoT6YtJgn0BHw9AKMD26wlInvEXRoxqgdBQb2TnKrDrxA2cuvIQao0WtSsHoEfL6nB10u2ibVVMYsY6RYnvJkBR0Qeap0nVxUmuxoLHuvfxgM5j2uL938Yb3JdMqUJsWjocJGL4Ojtxk9De+Good72md/8az0JKXBo30at4VVtCCCGlx8YO/PzyOpcSQsizxir2r/9yM5fUa8jUVW8jtGZ5/PKB+ZMPK9QM5u7xWReFl8HcId9j4NReqFi3An5+f4XZk+m3/LgLCdFJGPnFAARHBCE7Iwf7Vh3B+X2XueTtmi2rouOY1nB2dyp1vJEan4aywIZGuk3oiHcWv2FwHTY+wZKeHZyl8Azw4DrujftmOCo3qoRZ/b7Fs5AcV4aT1wghhDxTarUao0aNQu5zmONNCQ7ELDyxGHbVqiL3zFm9y527d4dDs2bcn0X+/lBGRZm1X/fRo+BQvz6Sl69A5v790MpksKtWDfJ796DJML+12jOjViNl5UqkrF7N0oDN306rRfaRo8j57xR858xG0g8/QhkTU7A4++gxJP30M+yqVIGkcjhce/WCvZ4q0yxpwFQ6lkOR5ylSL8ApCDbr4pBwQXeeatHEhusrtXiwQwvF06/NtSIQMZyPgOY8eFbnof4UHs5/p4Wm9J2YjeIJAEHpk44JIYRYIyMWuP4nkB2vfzn7RyThWt7LwQeo2h9wNt0lyhoVKlTAnDlzMGjQIIurjty6dQsqVeHkgIiICJPbFF3nyhXDHaEIIdaT2IsRVicEN07eMfhgnyU3MGwCiakKnfkGTOmFinVC8Nd323Byy1ko5UqENwjDFRchTPWd0bkzz8yCVqMB7+kEEnG6EoJcNVROImjE/LwOAUmZEFy8C56BQQKtSKCzb5WUdRLIn1Gf96ZGLcHGBVvx54KtBjuXaQV8aOpUApwKJ+ewAY//Tt3FxUuPMHliGyyb+BsSowsrkLIuEqu/2IjQWiHc4EfH0a1RtUm4VZ00fCv4FPzZP9SH+z7MrSCqDHDVTW4o9rlO5OTojYjYA/tVn23EnhUHkZmazb1XqV4ohn/WH4261UXTcuUwq21bzDx0CKpisZwgFxAXG2uwv2rg3zIziCQiiCT0uIUQQhieVsu9SqO02xNCiK3YO0tRoWZ5rouBPj0mdeSSGxh2D5yZkmXWfgd/3AeBlfy4mOTUtvNcAkVE40q4ffYuZNnygi4IOc1DoQjVrdiaW7cc7E/ch+T+s+sippSrsH7u31whJIMxCUtuqFkRcChMVlCrNTh+7A7On3uI9z/ugoV/HkNSWt69O3Py8gP8tvE4qmcoUNnXDR3HtCm4nkX5hnjj+onbRs+RrVO0q4a7nxtSjEyw4ak0cNh7HbKGIVCWcweexnW8HAUk12IhuVWY2M4mP+mTJVfgh0Mn8c+lG8iU531vNQP98HbLRmgeVh4Nu9bFxIWj8Nv/VkOjLttqUPZOUkpuIISQMopJWHJDYGAgXV9CyHPh6OaA8tXL4f7lR3qX9/uwO/d8n/EO9kL0rbxu96aw5+ge/m5cTHJ6xwWoVRouQZfdd7OiQi8aVrBqzaw/uTFglphgLpbAceyvU1wHu/d+Gc8lgRRNVmCfffn0P7gxo7BaIVxRKH1dEli8EXn+vtFjsaSCfCyOdPZwMqvzgSns4148oH8sOjs9m+tksX/NUeRk5k1Crdo0HCNnDkTtNtXRvE9DLvl6xafrjSbJ2IKjDTrYEULIq+JlHyeZNGkSDh8+/FyOTaU7iFkeT/6fweQG1oXB76u5BZMHnTq0N2ufDk2awK1/f0gqVoT/V3MRfvYMKl+9gvJ/rAff/gW/0bEkuaEIrUKBJ59O10luKLpP2fXrSN/8Nx4NH4GYDz6AVqWCOiMDycuW40H/ARDueNv4AfhASOfCSZzsO6nYz3bVsVnyQswR3V+WGpUWxz/W4PYfhckNTFokcPJzDe7vyLtW5Tvx0XUDH9XG8uBVy/BvH5fQ0p1jQDPWQeL5ts8jhJDXUnIkcH6J4eSG4th6bH22nQ1JJBJs2rQJd+7cweDBg61qqfrgwYOCP3t7e3Nt1kwpOqCRnp6O1FSqSkGIrc3qv8BgckNQZX98+PuEgp+b9Wlo1j7ZxPf2w1twD/ynrXoH/6avxk7ZH1h4dDbsEwsn2hgijilSpYclLaToVu0RKDSQJMshjcuF3ZMcCK9HGUxu4NZPzesawO64lQ6AhjUAKPprjAeo3CVI61LR4EQibvtyPjrJDUXJZEp8M2+bTnJDPjZowSZr7Vp2AO83m455I3/kqn6yh+6sK8ak+tNwfp/xJC6hSIAOI1sW/MwqhvZ5vyvMpaxY+NBfn+T0bBy7qDtwoJAr8UnnL7nBl/zkBoZ9ls96zsP+tUe5n4fUrImjY8figyZN0NA3AOJsHuwSALtkHtj/5aueoTXawcGUFv0bQSAofZtrQgghhBDy4mCTZti9paHkhpDq5fDO4rEFPzft3cCs/bLYpdXAJqhUNxSfrHsfWzPWYGfuenx78AvwBYUP0XPrB5dIbuAIBchpHgaVt/EKo2XBaEwS6K2T3FBUTq4CM5fu1UluyMfKTVyU8rFt9WG82/gTfDfuV+7apyWmY92XmzGp3lRcPXrT6HmJ7URoN6xFwc8CoQC93+ls8vPw5SrYH42E0+YLsN9/Ew57rnN/LkhueCohKglnd18q0bXhjTWbsfr0xYLkBuZyTBzeXL8Fu6/nxbJ93uuKtQ9+xojPB3ATjQx1y2ZdPUqD/Z0ihBBCCCGvXvXk6d2+MpjcwAr+vPntiIKfm/U2b5ykzZBmaNKzPio3qIjpGz7Etsy1XEzyzb7PTBZgfd4sSW4oKicjl+tMp68Tg0qhws1Tkdj2615MqjcNi99ZVtCRYc3MPzGhzhTcOm18fFvqaIdWg5oW/CyWiNDzrU6wlZg7cbh8+LrOe7lZufhfm5nY+vOeguQGhiWpfNzpS5zcmjfnb9C0Xlh97ycMm9GPS6zXGYN6io2vB1UpXZHCVgMLPz8hhJCX995jwoQJWLJkyXM7ByopSEzKvXIFmfv2GVyujI5G9rFjcGzVCgnfzOc6HBjDs7eH16SJcB8xAjyRCFq1GlmHDyPn3HnwBHw4NG/x4ic4lIJWaV4Lg8xduxHv4YGsg4egfPy44H+wnk7LkOSov9VY9Td4sPfRvfsM7cFHVqwGdzbZJvAo3g0i+pCW6+yglxa4/IsW5dpoIZTyYOfOQ5Wh7AWk3dPizp9axP2nhUYFeEQAFfvwkXhZi/R71p0rXwJUGUZ5W4QQ8lw6N1xZy1r6WLYdW59tV3e8zTo5SKVS9O/fv1T7iI8vTNLw8TE+0Tafl5fuJIOkpCS4ubmV6jwIIYWuHL2BMzsvGrwk0bce4+LBa6jZKgK/frAK//6822TlVVaRqPe7XbjJLiw4/2/rOVw7fouboM8qa7okZONxhgwaZ/3twXi5Skhu67Y91kbHcROMeK7Ouu9rNNA+imUzeYyel+ReEnIblIfGQQityPB6ssqeUJ6NhShefxKG1t/T6HGUYjH4TvbgZRqfxM+q/Lh4OePIxpNIik2BOcbNGw53X93ff+w6P777BP/+ZPx7YTTO+idBFfUoTvdc9q8+gqvHbhoc4GBVmFr0awSxnRg+jo54u1Ej7nUjJh5rj1zA0RsPoNZoUTvEH8Na1sHFnw5gi759sVBLwOequxqrlDr4o94mPwMhhBBCCHm5nNt7GZcOXjO4/MHVKFw7cYvrOPDj20ux8/f9JiuvsknuPd7qyCUFq5QqnNhyFjdP3YFILETjHvW4STFs4o1GLIA83EgnNT4Psmr+cDxovKvBM+XrYXCRSsqHQl+r6HwiIZSh3pDceMwlXzt5OHL3/ClPirVdg/6JOBO+G8VVRy1qwNSeeHwvntufKfxcJfi5xo/FKuE27FKn4Oc/L1zF5VjdRIh8Gq0WX+4+jLaVQyESCOAV6IHhn/fnXrfORGLz9ztwbvclLrm8RssILgni0B8n8Oi6nkJZZnB0deA+LyGEEEIIebWc3n6BG8MwhCVjR164j/LVgvD9m0uwd7XxSsvOno4YNXMQur7ZnruPViqUOP73Ga6THOtS3LRXfS4mYd0SXkUskcEcbFzDwcWei/HSEotUfTWAXcu3fhgDB2fdeW9DZ/RF3IN4btzFFlhMUqt1tYKft/2yF3cvFhbxK9654qd3l3NFv1j8yToOsq4O7HXjv9tcTHJh3xUuJqndphr6vN8NO5fuR/RN8zqAFMfisb4fdrP6sxFCCHn+4uPjMXDgQBw5cuS5ngclOBCTMnbsMGOdnZBdvYqUFStMrqvNyQHf2Rk8sRjy+/cRPXEilI+iCpYnL10GULVLTuq69Xn9xYrwzVwIieoekh1GQCaqzL3nXhmoNJCPoFb6q/3UnMhHSGct7v6rweOTQK7uPCyLiIsVgnq4y3gygiobOPCWBg6+gF8jHoLb87hkB9dQHhp8VPJ87X2B2xutS3CwcwHsjYzzEEIIKQPs36nrf1qe3JCPbce2b/Qee+KDF0FmZqZOwoQ5HB0ddX7OyDD9gIsQYr5Dfxw3a51zuy9iy+JdJtdlk4RcPJ255IYHVx9xlVifPEwsWL7xm3+5aqnOKZnI6BYBjRNrpaCb3OC88yb4imLdGLRaaO9HQ2svBc/NmYtrtDI5kJzGShyYPC82cd7hcCRSe7L7fOO/E3OreOlNcODupO3E+t8vulepGDCS4KCRCKEIdsf6AxfB42kgMnFGEU3CMXBKT67SU4nPxePh7R/fQNfx7fDvT3twasd5JBtKmDBjUMHZUTfpZM/KQwbXVTmL8bCOC/ovXQOfAA+0DQ1FjyqVIRWJEBHog7lDS1Zy9RzZUufvkcLfEZmNAyCr6M5NHhMm5sDhfBwcLsSXuCYsIcQzwN3kZyCEkNcqXiht6+Tn2HqZEELyHdpgXkxyeMMJ7FhiPLmByUrNhrufG9f5i01C+rz3Nzpd1jbM21JQ3V/l68wlUhujDHB9Yb4sLTtvseGMbbWd6SJFKh8XLsGB+evbrdAY6RaRr3rzKhg4tSeXsF4cm8TDuv71mNQRW3/ejdM7LyAlznTChCFO7rrPgf65dMPo+olZ2Rg77BsE5/LRtFcDtB7UlEvAZlVyP13/fon1hSKhWckY+rj5ucLd98X5+0AIIc8dxSSEkNcsJmFdjveuMp7cwGQmZ8MjwJ27V755OhIz+85H8uPCDvWsq7OhjmOvG3YtzIlJarWuioHTeqNeh5ollrHYj3US7/VOFy4mObvrIlLjS3aQsDYm2b3C8DhJfie6txt8DO9yHmjauyFaDmjCdZaIaBzOvYpTypU4sPaYVefmGegBV28Xq7YlhJBX0ksWk2zfvh3jx49HXFwcnjcqdU5MUmdkml4nNRUpq1abfTWTfvoZ6owMRI15Qye5oXCHpif/vBYM/GJyy92KsKR+qFv+Q/TcxkfbXwQGkxvyOZfnoc57AnTbKED1N3mm5kvpxwOCWutumFM4D8ygjAdA3H/AhYVa7B6lQWaU4V+4LiE8VOhmXZCUkwCcmm2k8hMhhBDbS70PZBd2PLAK2z5Vf0WJ50Eul1uc4CAS6Q7cK83s2EQIMU9WuvFOA0xaYjrXetdca2b9iYyUTHzUcY5OckM+jVoDYVou3P64AMcDkZBEJkJ8NwkOR+/Bfe15iBKyDO88Jxfa2Hhoox4DCckWxTfi6FQIE0wnSWns9Ncr4O6kFYW/g3I8+UisLkJcEwniGomREi6EwpEHyPX/nmJ36jl1g5A6pC6yW4Yhq0EwMjtHIG1gHSi9i2U7A6jfuTa2pK7EouNz9CY3FBVSPRjv/zoeG6J/w4iZA/WuI3qQZHQfAh4PbepX0nkvMaZwIlhR2VXdET2tNtLaB+GaLB0H7t3HJ3v3ofPK1XiUZngyU6W6oWg3vAX359yKbkgcXg2ycA8uuYFRedkjvVMoUntULNGgO+5+PL4e8aPRz0AIIYQQQl4+2WmmY5LUhHSTnRuKWv3FRi6O+bjTHJ3khnza/Ak05hSEeJFG+9h5qwwnLvPMGI/lFRkbMTWRqGnvBtiStgrfHZmlN7mhqLDaIfjw94nYGPs7BlnZeU0oFqJZ7wY678WZMY52+95jrnPgt2N+xvia/0P8o0SjyRot+je26vxYldUFY3+xaltCCCGEEPLiykrT39G5qMTYFLOSG/K7H6+Z+SeSHqfg0y5f6iQ3FKxjxqT+14GpmIQlMP+bvhrzD3yhN7mhqPB6oZiy/C1silvKdW+zhsRejIbddGOfJAPjJEWx5HrWOfCbkYsxsc4U7rs3pE67GmjU3Xh8Zcj9yw/xw6TfrdqWEELI83P58mW0a9cO3bt310luGDdu3HM7pxfpkSd5QUlCK5hch3Vj0GSbvpnOp4qPR9LPv0D1RH/LXosIX99GJPLT+/GwfVM8GjUaGXv2mr1d5UF8NJ/Hh0+9p78FeIBAtwiqXlIvQOys+57EwkJArHvE8U81RgOhOh/wEDHKZNFaveLPAWl3KcgihJBnJubUi7UfG2CVSopW0yCEPH/lKgeY9b9dea753WTYRPS1s/9CyhPjVTt5ai3s7iTCaX8knPfdgd3NBGiF/LyqpE8JRLb9XSFKMB1bCVNyDS7jxeU9yE4PESCtkghKp6e/1/g8yDwESKomQo6fbleKfLm1A5FbJ6hEhViNsx0yO1eB2kU3cDi/9zJGVXoX0zrOxsl/z8Jcw2f0w5xtH6F22+rg83ncS2wngvheAvhGElqCspVwkAhLdE0oTukuQcKQitCKSj72iE5Px4Qt/3IDOIb8b/kkDJreF+ndKgIC/Y9Ocqt5QVbRrcT7p7adR9Qt61o3E0LIK4f9qtWU8kWPeQghL0lMolFpoDSjI1m+qJuxWDfnb6QnGZ8cL0zIZDNqjK4jSTadgPGscJFSvOGJMgKZ6SJFwsfmd1c4te0cRlV8B590+RKnd5w3e7s35g7BzH+mokbLCK7rHOviJxKbHm/yD/WBxF43nvKQmB5gEWYWFtSIjYzDzH7fGl3/k3Xvod/k7laNkxz76xTiHpSyIAkhhLwqKCYhhLwiylUONLkOq7rPijeZ6+7FB1g/dzPX9aG0+MLXdwri0c2nMLLiO5je/Suc3XPJ7O0mLhyFGZs+RNWm4QUxCes8bkpgRT9uPMXUOImpePTLQQsNLmfn89mfk9Hr7U6wxsH1x5EUazrpghBCXgsvSUwycuRIHDhQ2FHUwcEBv/zyC5YsWYLn5fW9uyBmc+ndm0tgMIjHg30D3Wo15sg5f84m34LH2LHg2dvjtaTRcN0zck6dQux77yHus8/N3tS3Pg8t5gvQbx8f/fbzEdCMZ1ZywrGpGqgVhb8x7b0sP+2sGCDOyDxW1ubONZRv9S/muNM08k0IIc+ESgYk3rDNvhKv5+3vBcBu0vOpjFQcNNaxQSLRP3GYEGKdzm+0MfpQlz30rdqkssX7vXLE/N9hrGNCZvPySBpbH0njGiBxfANktA2F2lmCwR/1hkRqJGaykP3lJ8bbTKo1kF5LMLiY9ygecokK2X4GJufweUjtHgZNsQEHlrghq+FvcL9asRC51XWXs8GStMQMXNh3BZ/3/gY/vbcc5mLVVb/Z9xl2KTZwrwZd6oCn0sB+3w0IY1LyKr/mfya5EpKLj5Dy91lM7/41lEW6VHj6u5fYd0YTX73JDfnuJCXjhL5ugkUS3Pz61YZaanyCU3YtH73vs/bShBBCXg0sIS7/NWoUq8hBCHkddRnXjkvKNUQoEqBygzCL93vp0DWT6/BzlRA9MpwwwIzu1Rgiie4El+eJFx0PyPUnoAtyVOBnGH4GxMtVQHTfjNbRT6lVeTHJ2d2XuFjh92lrzd6WdaFbcGgmdis3YLdiA2q3q27WRKCZfb+FWlXYqa9cgvFOnvxMBewidZM2Is/fx7XjNw1uw2Lg4Iggq8ZJWIXZc3suW74hIYQQQgh5YXUZ346bdG4Im/AeVqu8xfu9eMB0TGKOYTP6cXHR60itVCMtIR2nd1zAJ52/xKrPN5q9bYt+jfH9sTkFMUn15qbHuu5dfsQlJ2iKJMJ7+JcsxmTKteO3cPvcPYPLRWIRylUxnVijD4uXzu+7YtW2hBBCnr+uXbvi2rVrmDBhwnM9D0pwICYJPTzg+8UXrCSq3uXe//sfpHXrWPg3jw+e2DYT/8TB5VD+jz/g3LUreKK8B/hCP79n09lBJALPzu6F6SKRtmkTMnbvsWgblkzAXmG9zCsDlHgZ2DlUgyu/apD9RAuBlV9j4mXjT+WzYq1PUtCan5BOCCGkNGTptvuly/Yjz3ghvg9HR8eCP2dlZZm1TfH1nJycbH5ehLzOPAM88PaPb+h9eM/eY1VuwhuEWrRPNllEVKwTgLHkhtR+1ZFbyx/a/G1EAsgifJDavzoCm1XC98fnoOWAxgUP8H3Le3OJF9YQpsrgdMzA5HutFi4HHkCQkzeBhn0GllxRNAGEp1QhR2o8aUxrJ0ROVU+d9xSBrlwSgzGKEA+jy7f8uMuiqqn53TfYq8ekjnk/y5SwP3wbjv9ehPTwLdgfuAnHvy9Acv0xt5wlU4wMewfLPl6HhKhE2DmUDEpkIaarFZ2JiTG6PCrZdNVYtbudVS2rCSHkdcHTam3yIoSQ582vgg/eXDBS7zIWk7yzeCxCmlREbhVv5FTzhdK78NmCISwhQWgkKbcogYrPdZfTu0ymQUR4IBYem41mfRoWxAas0wB79l/WRHYiLiYpGv/wFCrwLt0BElN1EpeRkQ3+1XuwP3Ad/LSSXSd4OXLYH7oJXpHkAUttmv8vLhy4atE2LB5h32OPSeZVJz21/TxGhL2NlTM2cFVJPW6nQxxroBOHRgu3PQ/A0xMjXDaRdP/4bpzBZRoRHzkRXsiqH4DccA9oBbrftSWVewkh5FVGMQkh5FURXCUQY+YO0buM3Yu//9ubCK4aZNE+7ewlRhO5LVGtaWUsODyTSyLOjw0CKvoZTcqwFbGemOR5Yt3Dr5+8XaYxybHNp7muEau/2ISUJ6kluszZqhBY7N0nsJaWxkkIIeSlikl4PB5atWqFQ4cOYfv27Shf3vLESVt7Mf5lJy881z69Ebx6FRzbtWUlibmJ/dL69RH4269Qp6UhavgIi/bn2Lw5HJo0tsm5JcyfD7vwSghY8C3CL15A+PlzqHjoIBxbtUKZ4vNhX7cuXPr2ZeWdLd7coUVzrvuFraX+8UfBn7VKJVJWr8G9bt1wM6Iq7jRqjCdzvoTycd7EoKI8qvJQfZx55yNLAm5v1GLPaA1UudadJ8/Ebx+JC6zmVbPsAyRCCCFsVqf+SnxWU8lfiMvq4VE4eTcpKcmsbRITdSsL+vr62vy8CHnddXuzPeYf+ByNutflHlYLxULUalMNc3d/gicPEvBxpy8t2l+TnvVQq1U1s9bNbhgEtZtU7zKNvRjzNx9GWO0QTN/wIbZnr8PWzDVYc/8n1O1QE9ZyPBMLt39uQhyVnjchSKOF5H4q3P+8Afsr8VB7OkFVPxSVJvdAm3nDoCz24F7lavphdt3hTXTfMOPhP+vyYMrWXwqTrhVKFf7YfR4Dpq1A45EL0emtX7Bw3WEkpJSc/FO7TXWuylM+frYcophUCOPSwCs2OScxJhkb5m3BuOqToVToicfMeHAuMBGPuTroT14oip+jPxas0aKKyW0JIYQQQsjLpc97XfH1numo37k2l5zAXvU61MTX+2fgspsAb/1zEJltw5DVqgJSB9RASr/qUDkbvi9v0b8RarSoavK4GgcJNL6uEOYCwlwteKq8F1+hhTBHC4GKh4WLdiK8Xig+/+t/2J69lotJVkUuRo0WEShLLJmiZosItBvRssSEetaFjX/zIXinr4F38TZ4Z66Df+kOeOlZ4Oco4LDjMlo52EN85wlEkfGQnojkkpwFqSUTHyy1rUhMIs+VY+M3/2JU+LvoKByAAX5jsWTKam4SUHENu9TBgCk9zTpGQlQS1n25mYtJWEKH1+obcDwTB56sMEYQx2TC84+bsL+erHcfAhMxmIun/sTt7Fq+SHizHtI7V0Rmi2CkdQtH/Jv1kFup8JlWjZZl+90TQgghhJBnb9C0Xvhyxyfc2AMbI2FjJQ0618a8fTNw/cRtzB38vUX7az24Gao3t81946JJvyOicThm/jMVO3LWYVvWWqy8/QMqN7S8050luLGi1tXQdngLq5J8G3WrWybnVTQmyc2W4Y+v/uGSpFlMMjBgPJZ+tBapCekltmvetxF6vdPZrGOwsbE1s/7E2GofmowtDLE2JjFnkmy15jROQgghL5OtW7dyyQ0syeFF8WKUnScvBbsaNSAJC0PuhYtQp6Qg9+xZPHn4EKpiE/pMEQUGwndmXkeI5N+XQiszXlnUFHVKKtJ37IRL1y7cxH3WxUB2+w6UcYYr21iK5+QEnlgETXJKXlICy4jSaJBz6hT3soa0Vi1Iq9dA0k8/wZbkd+4g59w57hqwayG/XZgVzJJRUteuRcbOnVzCCvs+i6o8hA+VQoObq8zL+FLLgJij1p2nb0MelDlaPNqjRdwpLTQqwL0KIHYG4v4DcpPzkiAsLQzuVgnwqkEJDoQQ8kwIxLbdn9A23Z1Kq0qVwoctcXFxUKvVEAiMt1SNjo7WSZAo2gWCEGI77EE4q1J04+QdZCRn4tLBa4i6EYOUJ6Yr7RfFqgaxjhAKmRKbv98BpTyvG4I+Wj4PsspeRvcXJ9Li6L5LaNG+FuLux2PHkv14dDMG8Q8TUBp291K5F7s7d3RzgFAoQFpKFmTNKkPt68qtc+bOY+6FrrUhPv8Aokd58Rk/13QSdu0G4ag5pSdX4ZQRpGSb3EaYbHqd+1eicO52NO7FJuPvA5fxIDoZ+XfoqZm52LDnAvaduo3fpg9AkI9u2+SRMwdy30v+OZmSk5mLk1vOlnhfeicN8mDj3XRahJRHdno29qw8jLO7L3KDH5UbVoSDiwNObTuHpIws8DsHQmOkgpX9tZLxcNWm4QivX7aDNoQQQggh5PmIaFwJ5/Zcxq1Td5CZmo1zey/jsrsQsZ4ln2mofJ2Q1rsa3DdcBl+ue38eHBGIid+NQmZKFrb+vBsqpeGOBWofF25cgt2V8tQAX8+qj3PlOLvnEup3rMVV2Nz1+35E3YpFclzJSfzWcvZw5M4jIymzYJhErVJz18AY1mEO7FX8fQCNqwajnETMdYKzpXuXH3JdHKJuxuDfn3Yj5nZh0afU+HT8uWAbDm88ie+OzuK67xU1bt4wKGQKs88pRazCdmk8FGODwc9Uwe3fmxAnqcBTqCHMMF4chCXLZKZmYc+KQ9x11Go03KQwO0c7LiZh51pcThVPZLStUOJ9rVSEtK6VwJfdQONK5RBSrZxZ508IIYQQQl4u7Pkze55963QkstNzcGbXRUReeIDUeMvGSSrUDMa4b4YhKSYZu5YdKHUHsNg7cbh85DpqtqyK6NuPsfP3/YiNjENGchZsxcXLmTtPFkflxyQqhYq7BtZq3KM+3H1dsXPpAdg6Jjm/7zKibsZyscXje4WdEFLiUrkk7CObWEwyG16Bup2z31o0BopchdnnxK4Hi1OtUb9zLW68bdeyg7hw4EpBNw7WPfy/beeRpicJwxwNu9ZBYEU/q7YlhBBiXJwZ86IDAwMtvoxBQZZ1gnoWKMGBmEWrUiFmwkRknzyp876lyQ18Z2e4jx0LoZcXeAIBAhZ+h9j3P4BWXrqKzY8nT0by77/nTea3oh2L0M8PKgP/w5fWqwv/r+dB5OeLx59+iowt5k20MYrHg0u3bhCXKwehlyeX6KGMjS39ftlgR2oqHg0bbnydlBTEffY5yq9fV2KZVzUebnJTqMxkRfcbt8qAnSuwZ6QGuUUKYydcQKnwRUDjmdSYhhBCnhk7F+uy0fRh+5FYVwHC1sLCwiCRSCCXy6FUKnHnzh2dpAd9btwobN9ZvXr1Z3CWhLx+lAolPukyt0S7XEuTG5zcHbkqR67eLlzL34/XvYevhnyvvwsAq5YqFUErNhE683n4bOQPqOLnibsXH8AanoHuSIpJ0busduuqmLrqHbj7uWLm9zuw/3SknnPgQ1GvAvhZuRAkZ8HhWiLkoXlJEPoI+Dx0qR4Ov2b14Bngjj8XbEVidDKEj9Oh8jfcTs3uuvF2xEpvR9xrHIw3v/2r8E1x3iSsohOxktOzMW/FASz+qLBjQ75qzSqbneDAqJwkkFXxhSrAlZslxT6Dw40kZDTzg0aq/7urHxgA50QFRtd9T2fS0IX9V3XWc3DSIrOF/olBovhsSK/qxsRiqQjTN3xg9rkTQsgrjz03Km3r5LLvvEwIIWZhnQA+6jgHN/67U/Ce2lGMBHfDBSA0ThLkRnjD4eJjnUk5A6f1hrOHE1cNc8rKtzF/1GKjSQ7m+KTzl6hYJ4Sb3GQND383JD/WnxDBKsROXfkWd76z+i/AyX9LJhlbSiQWouWAxlxs5l3OC39/vx1JsfpjIks9uZ+Aae1nGV2HdYX76d3lmL31oxLLqjWrYlaCQ0o3PyT38udiwnwZrb3hcC4Vfr/dN7otu6bsOx8d/i7SkzINxiTF/0nMamRksJnPg7ptGD6aO8HkuRNCyGuDYhJCyCuEdQKY0nYmIs/r3mtamtzg5uuCQdN6w8nNkXt9+PsEfDfu11InOfyv9ReoWKcCIi8YvxfWhyUssNhAX5Iv06BLbUxZ8RYcXR0wo8c8nNtzCaUlkYrRrE8DdBrTGn4VfPDPDzstHnMy5NGNGC5+NObJw0T88uFKfLZpst6YxJKkC60Vz98a96jHJUe81+RTLoE/34V9eYkO1rJ3lnLfFSGEkLIZJ2nQoIHp1Ut7vBcEJTgQs2Ts2lUiucEamowMxH/xBbKPHOGSG1j3Brvq1aG4dw9aVh3Z1TVvor/a8gf58lu3rDonnliMCtu3IfvECa47hVatgsDJGaIAf9hVqwa78HBuPVVqKjJ37YYtuA4YwCU3MG6DBnE/yyMjoXwSj/g5s6GMjkFZy71wAbI7d2BXqZLO+161AakndBIPbMnOE2gyk4fDH+gmN9iCRmmbObaEEELMJLQDvCKAhGulv2ReVfP29wJg3RpYQHDs2DHu5+PHj5tMcDh6tLCl0YvUro2QV8n+NUdLJDdYgz2sXTD2F5zZfRHTVr8NpUyB8AZhiL4VC7VawyVAJDxKhFqVd2PJVVplD/VNtOnl5Sr1JjewDhDsgQPPyEMEO3sJVt35kauGc/PUHa4KqqOrI3yCPbmOAuWr5k1gSU7LxuFz94ycBA/Kin4QJEfC/noSMhv4Qemnv6PM0Aa14OeS1+Gg97td0OOtjnh4LRpxqZmYu+c0nqQUTrDJJ7kVD8k9wzfxahcpMjtWBcTFut7weNCwpw9aLfhF7tfP3ohC1JNUlPPV7eJQr2NNuHo5Iy0xA6YoAl2R1S4cEBYeU+1mD3llH3jsjEJyR39oHEU625Tj2eGHzp3xfo2pBgdL8jkfjwFfrkZm4wBoHJ9OXFNrIL2VDJe9D8B/+vek4HxylXkjMYQQQggh5JXDKloWTW5g5BU8dCa36yMP89RJcEhPzMA3I3/E+b2X8OHSidz9f6X6oYi5E8dNKGKJD08exEOjzoshBAkZeYOgRu4zuXUAq5MbHFzsseb+Tzj+9xncPhNZEBuxxAPWtaJc5QBuvfhHiVxnAVvo+0E3uPnkJWX3n9wdfd7rggfXovDkQQIWv7PMYLKFOcwdxD2z8wISohK5z1m82iibOJWVZriDXWZdVyT3ybsuxWXXc0NScgC8Nuof6/EP88GU5ZMwqd40neQGU1Se9lC7S42uk+4uAd/pxXjGRgghhBBCbGv7L3tLJDdYI/VJOuYO+R4X9l3G2z+N5cKNSvVC8fjuE+5emsUCrFu1VmP55EhrkhsYFy8XrH34C479dQqR5+9Bo2ExiRO8gjy5okj53QBiIuNw3kQXOXMNnNoLzu554ySDPuqNfpO7c+MkrNvCj28vRdrTOMsa5l471qE65Ukq3IuNkzTpVR9SRzvkZslQFspVCcB7P4/D+Jr/00lusAVZlgwiO91xGUIIIcQalOBAzJL212abXqmsQ4dwv1dvKB8+LJEA8aw5dewIgYMDnDt04F6G5J4/X+pOE3xHR7gNGwqvd9/VeZ/H53OJFOxlX3sz0jZtQvr2HVDFx3MdGcqK4v6DEgkOfAEP1cfzcGZu2WRxsSSElFtAduF4jk2pS/cVEUIIsVRgI9skOLD9vED69+9fkOCwbt06jBs3zuC6ycnJ2LWrsKpfr169nsk5EvK62b38oE33xx6S37/8ELGRuh0Jsoo9yOWpNJDcS4a8ku6El6KEcRkQpus+ZJaHeUEW4Qe1lyM3GUkUmwa7K7EQxZWMeVoPbgaxnRgt+zfmXoZcuB4NlYkKSmqfvO4LPLUW3muvI6VLKGRVPPISLdiEfTsJRjSqjbdaNSqR3BVaszxCAayvF4a/j13F7rO3kZyUgay78bC7+QTiR8Zjk9waASWTG4pgSQ48BddkoUBUXMkEB5FYhNFfDsHC8b8aPZ5GLEBWG93khsIPxIeyShACF15EbrgLZOUcwVNpYX8jFT65Alzzq851rDCH49k4OJx/AkWgE7QCPkQJ2RBkKw2uL8+hoIQQQgqwEfJSVyZ6NSoNEUJezZhEKzLdUdjQOgfWHcPNU5Hc5BljMQk/SwZBXBrU/rr3zQU0WggjTbemN6bdsBbcfXjrQU25lyEXD16DxopJTlwQ8HQzNlmq/+QeGPSR7vMTgVCAsFoh3ItNYNr+6z4c2XQSyXGpXKJ6WWCfJSbySYkEB5aEPnLWQK7DgyFpHX2N7jujhRc8/n0MvqxkDMcKNZ3bc9ni6rBaoXkdrGVKFQz35SOEkNcMxSSEkFfILhuPk+xecQiXDl/nkoyLKqv7b2PaD28BsUSEtkObcy9DLu6/Uuqq1C6eTlxyQ///9dB5XygSIqx2CPeq3rwKtv2yF0f/+g8pLCaxcRJAPpbw/vhefIkEBwdnewz/rD+WTF2DsnJy6zlkJJufcG1JnKWUKSF1oMRrQggpi5jkzJkz8PPLS/x71VGCAzGL8kmc7fdZLLnheeA7O8Nz4kSz1jXrBpnP57pQcEkJT9cXeHnBoWlTOHfqCIcGDcC3tze6C4GzMzzGjuVe2afPIGrkSJQVgXNeJnJxwe354PE1uLZca/NEBEU6EH2gbAamRY6Ao3+Z7JoQQoghbhUABx8gO976a8S2dwt5oa7xgAEDMG3aNOTm5uLIkSNYv349hgwZonfdd999l1uPadKkCWrWrPmMz5aQ14O5k9EtUTy5wRCH09FQlHOFVl/FGZUGjicf6byV3bA85NX8dTsrBLpB6e8Kh2N3IbmbqPMgffAnvW0Wk4gkIjh7OiEzOQt8mRqef9+Ba7gPaoxqhlZ9GqJecCCkYuOVc1wdpRjTuQH3Orv7Ij7pMtes81Ow6rXG8HjQ8rTgFfkYjvYSvat2GdsWIrEQqz7fyFWJ1Xu8it5GEypY4oOygheczsXC6VzhPtjfpCN/nTL1cXRPXaOFJMp0Qj7rPOFdztOifRNCCCGEkJc3JhEm55jcTphkeJ3iyQ2GSM7chax5ZWg8ij3TV2sgOXcPgjTT52GIu68rBkztad7KZsQkEqkYYqmYS9TIj2G8Aj1Qv2NtNO/XCDVaVOESvI1x9XLBsBn9uNfxf05jZt9vUVYcXfWP2fR6uzN3nmtn/YnEGN3vXiPiQRamv1tewTpSAWQhDrC/WXLCEKuGe2LLaYvPVZiSC55SDa3IcBzk4+IITyfj41CEEEJeLqWdyEsIeXUkRhvusGyt4skNzwOLF/p+2N2sdc35lWjvJAVfwEd2ek7B71DvYC806FwbzXo3QPUWEVwyhTGs29yILwZwr4N/HMdXQxehrLDucfqwBAyJvQTr524uVYc7faJuxuLUdtt05yvON8SbS2wnhBBSNvz8/BAYGPhaXF7zSn2Q157I2+eVuwaicuUQvGYNJBXMm1BpX6cOeCLjN7iiwECoU1J07qjViYnI2LIFGTt2mkxuKHHMunUg9Cmbay/09oZ9gwYGl5dry0fnNXy0WsSDvbdtj11Wz2DKd+JBIDHeDpwQQoiN8XhA1f6AwPjAtEFsO7Y9288LxMfHBx9//HHBz2PGjMHKlSt11mFJDePHj+eSHxgej4d58+Y983Ml5HXhEeD+3I4tTJPBbfN1iKLTdG5mhU8y4frvDYgfF05YUXk56iY3FMXnIbtJBa7zAFOucgC+OzobfiHm3fPXjgiEQGA8jPeXSpCRlKkz8Jl2Ox5HP96MM/N2m0xuKK5Wm2pw9TZd+1PLfo3r66RQXJFf936ezqhR0XCGcvsRLbH63mLMP/AZ3P1KVqtVeep/6K+zDuugoe98NcY7YVir0xssMYNaLxNCSAGNjV6EEPIC8NQTk7AuZ/wM3W5uxUmvmZfEYAyb1G538Dokx25B+DARgphkiK5FQ7rzIoRR1ieDh1Qvh++OzoJ3kHlJujVbVeWefxjjFeTJVXwtGpOw5JCdS/fjv61nTSY3FFevYy04uJTNhP2gygGoVJf1sYPBxOs1D37C13s+hZu383MZJ2Hd+OShHsiuHwRZFR9IIlOMrt+/YXUI+DT8SwghBSgmIYS84jHJyy6sTggXk3joGQPQp2brqibXcfd3Q1ZaYcI1k/AoEdt/3Yvzey+bTG4ormHXOrBz0F+sqbQq1AxG+apBBpf3mNQR6x7+gjnbP4azh+NLkUDXfUIHk3EjIYS8VigmsRo94SJmceltXkXRl4nnm2/CLryS2esLPTzg3MN4xrAyNtbgsoxt27iODJbgCYXwevcdlAW2X7Z/o8fn8+BVg482i/lwr2yjA/OBoFa2v5H1rAFUe4NukAkh5LlwDgBqDLM8yYGtz7Zj27+Apk6disaNG3N/lsvlGD16NCpVqoThw4ejX79+CAgIwO+//16w/owZM9CsWbPneMaEvNo6jGxV5sfQCvnIrRmA1IF1kDy2MVKG1kN2g2BopCIIU3LgtuUGPFZfgOvf1+C+9iLc/7wK8WPdqv6yyr7GDyISQBHqxf1x6Ix+XJKDubzcndC2seEYhj0vTth1weDy3csP4ubpSLOPx52uWMRVTTVFXollRWvzEhiKvorSasErMkl1Qr+m4PON38Pz+XzUal0dP5z8EhXr6Can89SmH77zVCVnxQqEArQc0AS2VrttdQz/zPS1IoQQQgghr05MwrqTuey5A55cpXcb+7PRJWIGa3E5xU/SIDl7D3b/RUJ8MxZ8mbJU+xw5cyACwsxvae9XwQdNetU3fI58HmLuGG4LvfXnPbh32bLu3nb2Egydbvv7bDbhZvTsQSbXEwgEqNu+Fr4/8SWXEMLwlVrYRWYZ3Y6fo4Ld/Wy9y1i3uhb98p45GaMIcEHK8LrI7BCO3HpByGlSHqpynuBnKfSu37xyebzRxvD3QwghhBBCXm4dRrbGq2bMnMHwLW9+1dXgKoGo37m2weWsc0PMbcMxyV/fbUf0bcNzu/RxcLbHoGm2nzfHxkdGzx5scj02ptGwSx0sPDYH5arYZlydxVnN+5qOSSzVtFd99P2gm833Swgh5PVECQ7ELC7duoLvYLo65suCZ2cHp7ZtLN7Od/p0ODTRMxGGz4dDixaAWm10+/S/N1t8TNe+feE7cyZ4EttkAws8PeE3ZzZc+5k/ICD14qHtLwK0/oGPqqN5KN/Z+kQCvwZAUBs+PEwnVRtl5wk4+AGe1YF6U3hoMZ8PoR0lOBBCyHPjURGoOx5wMLPzEFuPrc+2e0FJJBLs2bMH3bsXJjhGRkZi7dq12Lx5M1JT81qBCoVCzJ49GzNnznyOZ0vIq6/jqFZcK96yTG5I71oVOSyhwdmOyxbQ2oshqxmA9J41oHbIS+ISZMghjs2AMDVX7364bU1Qu9hB6miHRt3qWnyeU8a1Rx091XwEfB6aeLuAn2B88tSe5QctPmbPtzph0qLREOmpaqT0dUJmy1BkNw+Fll2zIsu0fC1yvbRIr6hFaoQW6ZWAHD/A3cMBn7/ZCZ2aVDH7HHyCvfDzuW+w4PBMriV0uxEtIXpoulKt+GHJ6qZNetZDm8HNEFbbvG5+xqplsVbL1VtUwdSVb2Puzk8srkZLCCGvOh5LbrPBixBCXgRdxreD2K7kPbEoPgvuGy5DevEx182Bn62A+EEKXLbegOPpaLyonNwcUK9jTYu3+9+ySYhoEq530k3d9qb3xxKvLdV/cneMmzccwqfd8ErLM9Adn6x/D837NjJ7G/9QXyy5vADf7P+Mi0n6mnim5XIkCXy5/jZELQY0RpuhzRAcEWhwe5WbFBmdK3NxafEkEj5fDLu7qfDnixHo7oz6oYH4enAn/DiqJ0QC21wjQgh5VVBMQgh5lXSb2B5CsfFCpi8T1j2adZG21Eer30F4/ZKd2IQiAWq1rmaya8Hu5YcsPubQ6X0xavYgCES2ud/2DvbE9E2TLRonYgWzll5biK/3TOdiktIUcmo9uBnaD28B/zATRbtM8Ary4MZJWAGoT/94HzP+nMzFhoQQQgpRTGK9V+euh5QpdVYWNNn6K828jNyGDuFuWrUaDXgWtOrlS6Uot3wZsv/7D+nbtkOTmQFx+RC4DuiP5OXLTW6vjLOuFbXbwAFw7d0LyStWIvPQIShjYqBOSrJqXzypNC8Zwwqe1Xnci3GvrMGFhZYNMDsGAHUn513vJrP5OPGJBim3rDoVtPmBBwc/ytEihJAXCuvE0Og9IPUBEPMfkHgD0BYZyOXxAa+qQGAjwC0kr9T4C87JyQlbt27lEh1Wr16NkydP4smTJ1xF8eDgYLRp0waTJk1CRETE8z5VQl55aQnpkOfIy2z/ubUCofZ20rtM4yRBdpMQOO+7bXI/PLnpCqp8mQp93+8GlUIFjUbD/U4xl4NUjB8/64/Tlx9h/8lbyM6Ro3ygB3q0rYG109aY3D4hxnRSgD693+mCruPaYdP8rTi94wLiYpMQXcMXyqBibaO1XKMGLrkhszygKZLvoRHnJTgo3cRoWLu8VedRo0UE92LCvt+Ob45chMpLf1tmQUo2RI90P29Q5QC8s3gsV6119raPMKP717h78YFV57L47Nfw8DWvbTYhhBBCCHn5JcemQGGgY4IgUw6nEw+5l9nYY5HnmMPVb3J3yHMUXJIuuz82l6OrAxYenYWzuy/hyKaTyMnMRUi1cugyrh2WTDUdkyRaGZMMmNIDPd7qgI3f/Iuzuy4h/lEC0kwkeBvi6OKAuh0sT+5garepzr2YgMsn8c35o0CxznSOZ1Lg8bf+qrCsC8SkhaO5zhAsSXp696/x4GpUifVya/pzHQD1YUfTeLvgr8/GwNlBatXnIIQQQgghL5+ER0ncuILNPOeYZMDUnsjNlEHoLrQoJnH2cMIP/83Fqe3ncWzzKeRmyRBaszw6j22LH99aanL7pFjrYpKhn/ZF7/e6YOPXW3BuD4tJkpCeZF1Mwj5DnXZ5cYUl2HViieX5yeWBlfywbo5lxXZZt+zx84dDKBLi693T8Wm3rxB9y7KuFnknAyy78T2kDqYLfxFCCCHWoNnBxCxahcJ2f+nc3eE+ZvRzu/LCgACkrFiJyMZNcLd1GyT+9BM0cssmSjk0bgz/uV8i8Mcf4T35Q4iDgiDyNt0yTehjZlVrPXhiMTzfHI+QDX/AsWVLq/ejio5GwrxvUFqhPfhoOONpwGOGSgOBtr/wIfXM28DOjYda7/AhsPI+98FO67YjhBBSxtjDJ/cKQI2hQMsZQOMPgPqT8v7Lfq4xJG/5c0huOHz4cF6Co1aLUaNGWbRtx44dsW7dOjx48AC5ubnIzs7GjRs3sHjxYkpuIOQZUcht99DezdeVSzDIp+UBssrG79WV5dyhsS9ZrbU4yV0TichaLYI1fKyfuxl9vcZgWMgkrJ/7N5QK04kRRR9gN6pVHtMndcJX/+uJNwc1g5+XMzz93U1ua846hrCJT8Nm9MOPp+ai0he9SiY3cCeX98r11k1uKOp+aiq+OXEMpcW+w5mDWkH0pOQAgvBJBpx23QDv6eAM+2dnyKd9uHN383EtuBYTF46CpFhFVHPtX32kdB+AEEIIIYS8VJRmJDOby8PfDb3f7YLnxa+CD1bO2MjFJCNC3+KSBtQq4x2qi2JJ2g271OE6mX2xeQpGzhwIr0CPMo9J7OztMPKLgVh8+itUbVLZ6v08vB6NFdM3oLQm1WyCBc4N4b4jDo6nU+CyPx5Bs2/C79f74Km1JTovjJw1EItOzOEmMzHe5bwwYcFIvZ1BFCHuJrsQ7jl+vdSfgRBCCCGEvJ4xiVeQJ3pO6oTnxT/UB79PWcPFJKMqvYO/vtsGtdqymKRJj/qYtuodLiYZ/ll/LtbwMCPe8PCzvnCRvaMUo+cMxk9n5yGsrvVdou9eeIC1s/5CaY2aNQhvLhhp1twtPp+HN74aiu+OzuYS1/NjwzfnD4fIms4gWuDEP2esOGtCCCHEPJTgQMwi9PKC0Ld0banEoaHwm/8NQv/dApF/APguLs/+6vN4UMXGApq8atKq+Hgk/bgY0ePfhKaUSRwuvXoBJlr/uvbpjdJSJSUhfcuWUu0jY8cOJP2+tFSfWaPW4spvprO5+SKg8Rd81JwggNip8I5ao9Liv881UMusPb512xFCCHmGhHaAgzfgEpT3X/YzIYRYybe8F9euuDRCagTjkz/exy/n58GnvBccnO2597USEbRSE8kLfB7UzqYrY7KOAcIn6QaXS+8kIOFKFDSavBvpxOhkrJj+Bz7rOQ8qZemSODqMamWyylHH0a1RWk9SMrHnrOFuFqx7g8LEV7X58jX8+evuUn1mhVyJ5e+vgtP2a3D+5zKkZx5xL+d/r8B5+zXwc/MGeyRSMWb9+xFGzx5c8J1z28sUmN1/AVe11hqWTAAjhJDXFtfWxwYvQgh5AfiH+cLJLW8SiLXC6oTgsz8ncxP0fYO9Yef47J+VsIn2cffjuQIQzJOHiVj60VrM7PetRROKrI03Oo1pg9J6fO8JTmwp3USaHb/txdafd5fqM8ty5Fg/cQ08NsfC77f78F4fDbsHJbuh2zlIMHfnpxg2vR+kjoVxZW62DHMGfqe3M4hWYHoIV1W0cyohhBD9KCYhhLxCylUJhL1T6Tp4VW4Qhi/+mYLvT8yGb4g39/z8WWPjGI/vFcYk7M+//W815g5ZxHW9Lo1OY0zHJLYYJ2FJ0+f3XC7VPv5etAO7lh0o1WfOzsjBmpmbTM7dsneW4pv9n2PQtF6ws5cUvJ+Vlo0vB38PpZWdQdQqG3YUIYSQVxXFJFajBAdiFp5AALfBg0t1tVQJCUhZtgyRbdoifs4caNINT/opMwYGRHNOn8a9du0R9eabyNi9B1orHmiL/Py4DgvGJHy7AIroaJ331OnpUDx8CHVWllnHyT51CijlIAOTuGABoseNt7h7Rb7HJ4DcBOPruFYCuqzjI7BlyUlWsceBXBPFbY3xb2L9toQQQggh5OXDWuV2Hd+uVPtIiknGH3P/xtDgifj5/RXcg1+Gp1QXJEEbwzPjAS/rGOC05ybEt+MBVeE+eXIlpBeiYHf8nt7tzu25jBGhb2NGj6+5iTrWPNAOCPNDvw8LO1Po8+vkVUiIStR5Lz0rF1FPUpGda95E//+uPzD6rFzDCv0Yz/2GRsjDj7P/4D6vJd0rijr21ymkxufFlcLkbEivxHIvYWJhbFWlUSWsursYjbrVLbH9kU3/IS3RuvbRTIMudazelhBCCCGEvHwkUgk6v9G2VPtgCc6rv9iEoeUn4ZcPV0KWZWUFoFLQPk22Lu6/ree4mOSzXvPw37ZzBZONLFG+ahB6vmW8CuxP7y1H0uMUnfcykjMRExmH3Kxcs45zescFlBZLOv/x7WWY2fdbq5OXD/1xnDt3Y2q0iMDqez+hXoeaJZYdXHcMmaklEyIYUYLpMaPGtcMsOFtCCCGEEPKyY8kNHUa2KtU+4h8lYsWnf2B4+be4pAK5meMCtmQo1jj6539cTPJF3/k4s+uiVfuuVDfUZFI1iwNS49N03ktPysiLSbLNi9FY/FRaGrUG3437lUswsDbJYd/qI8jJMB5H1WlXA6vvLkbNVlVLLNu76jBySxGX1mxVzeptCSGEEFOs6C9EXldCT49Sba/JzIT8luEqn88bS8Bgr+wjR+HQsgWCfvwRPLFlmcpe774LoY8v4ufNgzYnb7JUUbLr1xE1ajRC/t3CHSvx+0XIPHgQUKnAE4ng1LEjvD94H6KAAKPnaSsssSN52TJ4TZpk8bapt00PbrDisVIvntXbGyL1AjyrUX4WIYQQQsjrxs3HtVTbZ6Zkca/ieGoNxA9ToahgOOYRpGRDmFLyHl8fnkoDx+P3oDn7CCpPR/A0WggTMrnjGJMYk8y9Tm0/j6a9G2DGxg8hEJrIFChm/PwR8Cnvjd+nrtE7MHHrdCSmtJuF3y59i9iUTPyy+QROXL4PtUYLiUiAtg3CMbFvU/i4Oxk8RlKM7mSk4nhmPocX5Kq4xI5/Fu3EgCk9Yak75+6ZPoaQb7DdtDnbG2ufHVbL+vbThBDy+rBFBwbq4EAIeXG4eDmXavv0xAzu9aJKiEriXmyyTqtBTfHx2nfB51v2LP6tH8bAP9QXSz9eB6W8ZDLzteO38FGH2fj5/DeIuhmDVZ9txJmdF7iEA1Y9ttXAphgzdzDcffXfxzOJ0aWonlQM+6zbft2LXm93tnhbc2IKoUQINwPdCI1tb3c1DsoAw63xKjo7obyPu5lnSgghrzOKSQghrxYXT8PP7s3BigblFw56EbEEDPY68c8ZtB/ZElOWv2Wyc3VxHyx5EwEV/bDq841Q6SlcdfnwdXzUaQ5+PjsPdy89xKrPNnBjFSzxgnVfazukOUbNGQRXL8P348ULSZUGS+yo274muoy1PKH+znnTMYlYKoKLp7PV2xtSqV4F+Jb3tnp7Qgh5fVBMYi2aIUzMotVokPTzL6/N1WJJDkm//mrVtvZ1autNbsinjI1F8u9L8WjwEGTu3cslNzBapRIZ27fj4aDB3DqG2FWzbfZr6oaNUGdnQx4ZCeXjx2Zvp1GbHlwWSKxbZgxPCLRaSL+6CCGEEEJeN6yi5h9f/V3ifa2AD3mYF3IahSCnfnkofa2bcCS9GA2wTg76aLSwPxtl8T75chXEsWkQxaWbTG4ojj283/jNv7BGlUYVjVZdenz3CdYv2YexX27A0Yv3uOQGRq5UY+eJGxj35QYkphquFhrh72l0sipfzYNQfxHSAnb3MyBMyzvHbb/sRbZCgciEJMSlG69+WpTKjNbHYiPttY0tM0YkFmL+gc+t2pYQQgghhLy8FHIlNs237h79ZXR4wwkuGdlSbPIRm+iiL7kh36MbMdg4bws+bPEZl+DNkhsYFsfsWXkI7zebUaKialFhdSrAlriYRK5AZHwS4tPN67bNKM3o8seSNqyJSSQPUiC9qH+sSCpTY/G0QWaeJSGEEEIIeVXIcuTY/P0OvC72rTqC7b/utXg7lqRdqW4FvckN+e5ffoQN87ZgcsvPcHb3pYKuErJsOXb8vp+LVYx1awu1cQGkbb/s4bqOP7weXaLjnTFKmbJUMYnEzrpxEpYIMmf7J1ZtSwghhJiLZgkTs8iuXTM66d5mzKgEJHAzXLXHllI3boJWYXkrtgyWtGBC2oYNUKfrz4hWJSYi8YcfDW5rX68eILCsiqsx6oQE3GnSFPe798DdNm3xYMBAZB09anI7earpffs3NbwsoJllGdaMwA7o8DsPjgGWb0sIIYQQQl5u10/eRvJj3ZtQlZcTMvrWQW7TMCjCfaGI8EN2x6rI7FwNGollDQtZdwbnndchStNt5cvPkMHxwG2IowqP7eqtP4mCx+fZ/IG2Wm0g6cKIY5tPm1xn45mbyDaQBPEkORNL/z1lcNuGTSpDEm14shFLfnA5kQCoDCR1qDVw3x3N/VFjJ8CNqo5o8s2v6PbrGrRatBSDlm/AyfuPTH6G1Dgj5/BUs14NDC5jXTIsZe8sxe/XvoN3OS+LtyWEkNcSGxy2xYsQQl4ArMpnepL5CbnW4gtMxxVuPi7PJCb596fdBRN9bB2T/PPDTuRmyfQui7sfjz+++sfgts16N7C4iqshaqkQl4PFaDbnV/RctAat5/2O4Us24ez9GJPbpj4xHZM0NRKTNOvd0Oi2DqcewWXLNUgiEyFIyoYwLgO+1+Lx9+wx8HZ1NHlsQgghFJMQQl4tF/ZdQVaaiepCNsA3I65w89XfcZsvsO1UxC2Ld1m13bHNhsc48v313TaDxaKibz82muDedmgz2NLdiw/Q32csxlX/EIMD38SUtl9w42KmpJgVkxiOO5qaiEkMdTZccfsHg53qCCGEFEPjJFajBAdiFo2RjgS25Nq3r8l1RAEBKLdqFRzbtAHf3h58Bwc4degA/4XfsdJANjsXdXIyFFYkdWhlMtP7NpDckC992zYkLVkCVaruBC51WhpSVq6C0NcXNiWXF/xRduUKoidMRMYu40FCnOnxCTgHG/4+XMN48G9i2Wm2/I4H5/L0a4sQQggh5HVUfOKLRipCVrvK0EpFJdZVezshu1Uli48hSshCP3sXuPxzmUtqcN52Da4bL0DyULdaTlB4AL7eMx0Nu9bhqtSwSe+tBjbBR2vehS0lxaYgOdb8Sj355DmF9/f6aBwkSBXrT5rWCAClFNh8/hpWHz6PjFzd656elIG/vtuO8pEpEMbrmdyl0cLh+H247r4Hv99vQRSvmzAiSsiF77LbkN7NgEbMR/yoasiq7wuZpjCR42JMHMau+wf7bxtujcwmWZ3fdwWmBFcNMrgsolEl1GlfA5b4/vhsBIT5WbQNIYQQQgh5NcgMTMa3tdaDm5tcJ6RGML7c8QnqdazJxSQOLvZoM6QZpq1626bnwhINWAxg65iEyUzJ65SgFfK5znzFsUqt//y4E9npuhO4krNysPLEJfDGN0Ra5zDkhrlDa+XQkEYiQNKQasip5Qt5keTy8w9j8caKzTh256HBbZUKJZf0YkqFGsEGl9VsVRXVm1cxur0oLgNO+yPh9udluP57DctWvA9ff3eTxyWEEEIIIa8eQwnCttaif2OT61RuEIaZW6aiTrvqXEzi6OqA9iNa4sPfJ9j0XKJuxiInU3ecwRzGulzny0rNNpmUve3XvSWOnxyXis0LdxgshmWtol3wLh26jiltZ+LSoWsG18/NluGGGUkQFWoajknqd6rFfZfmYonmv16cD0+KSQghhDwDlpW0JK8tSWgoIBQCKtPtdq3Fc3CAONR0W2Ghrw8cGjbgXsVl7NiBrP0HbHZOfLHlrbjsIiJKf2CNBonfLUTSTz/D9/PP4dqnN7JOnEDsO+8+m2QTjQZP5s6FU7t24IlKThjTarRQGM/R4KhlxkcVGk7n48zXGsSabhgBj6qARxVKbiCEEEIIeV2FVAviqgZpNHnVQ+XhvoDYcEir9nWBytMRwqS8STPmcHJ3RGAlfwhXZUOYZPjBtkeAO+q2r8m9itu76jDO770MWxFJSt6Pm1KxjvG4SuNQMs5hV1XpwCb45N3Dq6HFt1uPYvHuk/hiQHt0qVMZp3ecx5yBC7k22Izz/Xgoy7lBXsETWrGA64IhuRkPQVbecvvIdJSbdwm55Z2gchVDmK6A3YNM5EcJWfX9oPR10HuOaq0WX+4+hDaVKoCvJ5GdDU6YM6iRa2Kdz/6cjHkjfsR/W8+Z3FetNtUQUs3wQAAhhBA9WDMfAw19zFba7QkhxEZCqpcr82vJOjP4V/AxuZ5XgAcadK7NvYrbsWQfrh679VxjkjATMQkjq+QNWTU/qD3yYgJhbBqkl2Mhjs0bfFAqVPj5vRVY8ekfmLLiLTTv2wj7rkbio/W7IFepAUc+EOGN3AhvCBOy4b75BgQ5hROCzJFV3x8qL3u9y1RqDeZuO4SdH47S2y2CTS4za9KUiQq7bFLYV0MX4ezuSyb31bBLHfhXsHEBLEIIedVRTEIIeYVUqFH2MYl3OU/4BJvuYMwmuDfpUZ976etOffus4QJGlmDjQkKR/oJNxoTVDsG+1UdKdWyFTIkfJv2OpR+txcdr30OjbnVxaMMJzB+1mItXyhpLePj5/RVYcnmB3uXZadlQKdWlSuRgsc6c7R/jy8Hf4+KBqyb31axPA0puIIQQS1FMYjWaLUzMIvTygkMz27bXKs6+fj249OwJnkRidD3XPoa7PLj27m2z85FUqQKtWg3l48cF72lVKq6rgkZh+KG1Q4sW4Ds52eQctHI54qZPR/qu3YgxJ7mBJaHYiDoxCVnHjhlsc21veowFDv6Gl2mVSuQc24fw4NWo12UbBDwjn40HVB1Nv64IIYQQQl5n3uW8uOqW+VQB+tsfF2XOOkXVblsdHUa1gkBo/GF5p9GtDS7rOKqVyeOY23iOVc1hk/gTopMK3lOr1FwFVUWRSj7FNepeF1JHuxLvq9ztofRzzmuDWXyZfWFyQ1EyhQqfrt+N/SeuYVb/BQXJDdzn0ALiR6lwOhQJ5z23YH82CmJ5yYf60oeZcLqUDGmR5AYmq7bxQZLH6Zk4eT9K7zI7ewk3+csUXyOTw9g1PLfnMqo3j0CPtzoZbZ3N/k6M+HyAyeMRQgghhJBXF0uGrtLY8k5xlqjXqTY6jm7NTeIxptMYwzFJ+5HmxCTmBSU1WlZBWkI6EmOSC95TqtRIzczl/mtIs971IZYaLiCV3TgE2S3DCpIb8uO3zM4RkIV7l0gkmDvkexw8eAlT1z1NbihG5e2AtG55341AaP5YQk513WMV9yg5jevmoA/rmsGS5E1dZ98Qw8dQyBRcgnztNtXRbUJ7buzFEKFYiKHT+xk9HiGEEEIIebWFVA9GaK3yZXoM1rm605g2JmOGTm+0Mbis/fCWJo9j7N63qNrtanDxSNLjwm7XKqWKGydhXdUMYQnSIolt5lDlZORy4yNH//qPK5hkKrmBb0FMYsqDq1G4ffau3mXOns6wd5IaPxc+Dz7BngaXy3PlXLfs+p1qo/PYttz8LENEdiIM+cTwnD1CCCGvLq1WW/AaNWrUMzsudXAgZrMLD0f24cNlc8XYQ95PPoHQzQ1e77+PhHnz9K7m2KYNHFsZvhHWGnmgXuKQzs7QZhhurayMjcW9Dh25P4vDwiAKCIDs0iWo09PBE4vh1KkjPCdOhCQkpGAb+f37iBo9BprMTNgM6+awcCG0JpIb/ObMhrRBA0SPHsOduy2wpAo2+UlSqRI8xo2DS9cuBctCuvJwfXnJiVH53CoBbhX13/lmHjiAuM+/gDqpcKJWhL0jkjzeQZxqqM66Eleg7mQ+fOpa2WOaEEIIIYS8MkJqBOPiQcPteIvTmptJ8HTiyaSFo+Dh54bhn/fHyhkb9K7XckBj1GlXw+B+NGqt6fN6uoqTmwMyjVTOibkTh1GV3i2oFusV5IEbJ+9wFUAlUjFaDmyCYdP7wa/IJP4HVx/ho45zdFpVK8q5IadBOajdn04e0mjBl6nA4wu5Z9VaHqA2kmeu1mixePNhrlqRMdPWvIPweqGY1n62zgQog/t1Np7cznw0aD7sLyZwgzZDPumD5n0aFSxjgyx/fPWPwW0jmoQjuEqg3mVH/vwPi99eirTEwpiQtdEW24mQkazb9cPdzw2Tl05E9eZVTJ4vIYQQQgh5tVWoHoyb/90pk32ziSfj5w+Dq6cLBn/cB+u+3Kx3vXbDW6BaM8P3plozOt+wwUiGTdDPTDHc9e7epUcFMUn5RhXh2LUGzscnIztXATuxEB0bVMa4bg3h5+FcsM3diw/wcac5UBjobqD0duI6N+jF4yG7SQjED1PAL5I8zaqSLv7rMJQOhuMtRZALPj76OUJcnbmYKCUu1eR1UDuZ7uL9xk9/QaAEqvh4YHy3JmhZI5R7XyAQoMPIVti8cLvRLnB+IfqTrg+sO8ZVY81ILhxPYonqLJGh+HfiGeiBKcsnoUrDiibPlxBCCCGEvNpCqpXDvUsPy2TfrNDPmLlD4OjigH4fdsOfC7bpXa/L2LaoVDfvvlgf06MkLG4xIybhATdP3SmISVhXBndfV1w9dpMbA2H3z22GNMewGX3hGeBRsNnN05H4tOtcKPUUZCpNN4Xln/7BFaEyZva2j+AZ4I6PO87RGX8ojXcaf8KNYYXXD8Xwz/pzyQiMWCJC26HNse3XvQa3rd+5ts61KWr38oNYMmW1zjiVvbOUKwZVvOsD6+wxddXb3HdACCGEPCuU4EDMpsk23ka3NJx7dIe4XF4rNY/RoyD09ETykiWQR0Zy7wk8POA2cCA8J04Aj28401VSMczsY3LJDXw+eCIR1ymhANu/RgNNkeQHxd273KtgW4UCGVu3IevIUQSvWc11I4if+xVyz59HWVBG6a9aWpQiKhqu/foh5N8tSP/7H2Ts3gXZ7dvQZpvo+mCMOu/GXH7rFh5Pnoy0jRtRbtVK7sa5Uj8eHp/QIvV2yc2EUqDO+/q/p5xz5xDz3vuASjeQ0OZkwSPnK4S854B0h97cxDDPanz41AF4AkpuIIQQQgghgKzIpH1hQgbUnsarZQqfpJt92VhlGg9/d+7PQz9lD8PdsfGbfxF9K7Zgknv3CR0w+JPeRisXla8WZPYx2UNjNmDAKhWpilT8YQ+PNWoNl8hQtEoPe+WT5yqwd+VhnNlxAd8dncVVEPrpveW4eSovhmK0Aj6yGwVDVtU3r23E01EFdjyNvYhLdBAoAA17MmAiGeShWg5TTanj7sWj3dAWWHJlAfdg/Ojm//DgShRk2UXirSIEGXKoPO2N7zRVxg103L3wALP6LUDdDjXx9e7p3KKBU3vi9I4LuH/lkd5qqu8sfkPvLi/sv8JVgGXXuCh2nuw1es4gqFUabtIXmzhWq3VV8I3EoYQQQgzjabXcqzRKuz0hhNgSq25ZVlhXMZbcwIyaPYibQLLp262IjYzj3mMxSs+3OmHA1J5G92NRTJKSxU2oZ7ECq4JaPCbJTs8bX9BIRbgU5AjNw7xzye/29u/xazh+9T6WTxuIjLvx+Om9Fbhz7p7RY8qrmGgPLRRAHuYJ6fUnOm8/VOaytGSjmz5UydCmWjX8fnUBdi87iGN/n8bDq1E6neiKEmQqoHYxnnitUWm563PtSRLeXboV7T288O3nw7hlQz7tg7O7LyLqZsmiU2yi1qTvR+vd5+kd57nKr/mJJvnYJC0Wb479ehj3d439mSVas26G5nbdIIQQootiEkLIq0Yu059IbAv9J3fnkhuY8fNHwDfEB399tw1x9+O591iM0uudLlzyg6kkDEtiEtZpgcUf7Ll88ZiEjX0UTaYufv+8Y8k+nNl5Ad8fn434R0lY/O4y3L9ccszAFvKvgzFP7iegUde6+P3ad9i19CBO/HuGi0nYmI612BgJ+z82/vNJl7lo2b8xpm/8kFs2/IsBOL//Ch7f1Y2fGFcvZ0xYMFLvPo9tPoUFY38p8T673iz5/s0FI5Gdlg2BSMDFJDVaRFBMQgghVqKYxHqU4EDMJvLzLZOr5dylC/xmzdJ5z6V7N+6liImBVqGEODCA65rAaGQypG/ZgvR/tkCVnMx1VnDt1xfOnTtDUqEC7Bs0QM6ZM+YdXKOBtHZtOHfqCGV8PJfUkLpuvdnnrklPx6PBQ6Bh3RWe92Dr04fbAkdHuI8Yzr00cjmSfvoJyctXlEgosAa7rrHvf4DARd9DKOWh5Xd83FqnxYOdWsjTAJ4QCGjGQ8RwHlwq6H/YnvTbEqPnkvvPElTZ0wc8Hk0gIoQQQgghuryCCtvoim/FQx7uCwj03zfyU7IheqKnOg7XsqDIjzwe2g5rjrd/HKOzWsdRrbnX43tPuIo8rEuCUJQXQudmy7jkgv1rjnAVeNiyzm+05bo7hNYsjyqNKuokGhjD9t2gS2007FKXqzCanpyJ7Uaq7RTHjv92w4+Rk5mr87lUng5I71IFWntxic/OQhfubp21gJbJABFbh1fqbhj5E24cXVl1p+7ci00kWvXZBvzzw06dwQluvYsJSGtvuJ22IE0Guwe6SSrn917G/NGLMWXF23BwccCCwzOx/svN2LPyMFf5VCQWolnfhhg6vZ/B7g2sEm7x5IaiDq4/jqXXFpr8vIQQQggh5PXjFai/8qVFisUkbPJIh1GtS0w86TKuHZeIzWISdv/qH+rLJUgz7P6fJRWzLgDsPjigoh+6jmuHZn0aIqJRJVSoGWz2pB6WbN20VwOu20BafDpS49Owc+kBnXVy6wRB4yzVeS//IyRl5GDozDXQHL4DSWSCiciCdXIznqTAFD8WdzwzhmDyj+3s7oQBU3pyr9ysXKz4dAP+/Xl3iTjA/ko8MpsbmXylAXjFQod9SQlY+MlafDB3GHechUdnY92czdi76jCXpC6SiLjYkMUkgRX1d6pYO2dzieSGws+pxZFNJ/DzuW9Mf2BCCCGEEPLa8S6jmKTrmx0was4gndV6TOqI7hM7IJZNntdq4Rfqw3UyY7LTs7Fz6UEc+uMYV8wpKNwfXce3R5Oe9bkE3aDKAQUFpExhnRZaDWrKxTLpiRlIepyCPSsOmf1xWEfpN2tPKdF1wOYsCEpcvVhnvt7ci12rZR+vx/Yl+wo6V5QG61DtHbwG478ZDjdvF3x/fA7Wz9mMfWuOcEnqhjqAF7V29l8G96/RaLkEiEXH55T6XAkhhJDS4GkNPUEjpBhVUhLutm7DdSuwlqRKFXi+OR6yGzfBt5fCqUMHLinBXOrMTESNHgPZtWslljm0bIGgxYuhfPwYj4aPgCohwbydsm4E/52EwNUVMe++h8y95k8melb4Tk7QZBa2Kdan3KpVcGjYoMT7GTt3IvbDyTY9nwq7dkISUth2jHVbUGbmdW4QSHhGu4Dcrlff5E1/+c1/QVq1qk3PmRBCCCGEvPwSopMwvMJbBZNSFOXckdOiYokkB36mDA57b0CQVbJKZ0TjSlyFIVb1395Jiub9GhmcdKJPRkomprSdqXeyUNPeDTBj44eIiYzDlDZfIDXevA4SrBLRlrRVkDrYYXr3r7iuBKWhEQmQOqQOtFKR/hXY7fjTJAderhJOO68jZWjNvIQHAzyyVBAuNZ5Ivujkl9wARHF7Vh7Ct2N+LnmeYj7iR1eD0k9PJw61Bp4bb8P+TmrJZTxg7f2f4RPspZMokpmaxX2nYrsiSR3FpCdloJ+3/s4ORS299h2CI8yvfEsIIaRQTEwMgoLyfoe2Cp0EO5FzqS6PTJmBw/fy/h2Jjo5GYKD+BDZCCHkWWLLBqErvGpycbo6araui85i2eHg9Gg7OUrQc0MTgpBN9UhPSuXjj0Y2YEsvYpKCP176Lh9eiubiFJT+YQygSYFvWWi6pe0q7mbh08JpOZ7jUofUBkaDwPfb/uIBCdz+8HAWcd9+EMDlvYpHa2xlqbxduHIafkA5BfDoy24dDWd74pCzpuSjYXyz2+frXQFw54138/vpgGCr7l+w9t+3Xvfhh0u8l3tdIBEgcVh0qLz2d5bSAQAbw8xpd63C4/BjbNnwCDz+3gvdYBwyW4GAqJmGTr4aUmwBTVt9bDL8Q8/9eEEIIKUQxCSHkVcbiiHHV86r3W6t+59poPbApom7FcgWLWg1sovO83RSWgPC/1l8UdJsrqv3Ilpiy/C1EXriPae1n63SqNsbOXsLFJMx7zabjxsnbeNG4eDlzCRjGLL/5PYLCA0q8//f3O/DLhyttdi5sXOnPJ0vh7OFUMiZxtodYYmB8CEDs3TgurjVlQ+wSnZiHEEKI+SgmsQ0qkU7MJvT0hNcHH5Tqirn26QPnTp3g/eEH8JwwwaLkBibhm2/0Jjcw2UeOIuG7hRAFBqL8X3/CY9w4CDzMyFzWarmJ94zyScmWXS8CltzAkxhuk2xXtare5AYm7d9/Te7f2L71Sd+6VednvoAHiSvPaHIDwzpKmJPRrM0tbDFHCCGEEEJIPu8gT4z4fEDBz+KoFDj/fRGSS9EQxqZBGJUC6Ym7cPr3st7kBqbj6DZoPagp3pg7hKucY0lyA/Pz+ysMVkI98c8ZrP5iE1ep6Odz87h2zi6ehQ+XDWEJG7LsvPNNjE4u9RcuD/cynNzAFLltZ+sJk3MgiTR+XPX+SK5NtCFVm4brTW5gWKcLffgKDXxWXofjmThIinRwkzxKh/faG/qTG7iTBvavParzFqtkyyoiGZtIxMhz9P+9KC7/+yCEEEIIIaQo1kWBxRGl0Wl0G7Qd2pyLSQZ91Nui5Abmx7d+15vcwBzecALr5/6NkOrl8Mv5eej7flc4uRtPCmBUSjXkuQq9MYmGxRZmJDdwy+zFyOhUBWpHO+S2rQ5ZiwgoKwdAGe4PefMqyG1fA+JHacZPRqOF5G5iyXPcfwcivuFhzUZhQXqTG4zGJHI1PNddg/3FJzoxCU8FCHL1JzcwSmc7HPrjuM57LDmEYhJCCCGEEFLWylcNQt8PupVqH53HtEH7ES25mGTg1J4WJTcw37/5m97kBmbfqiP4a8E2VKxTAT+fn4deb3fmkihMYd2g2QR9JjE6CS8iltwgEBqOSRp2raM3uYHZu/qwyf2zDtXmYuNKhzee1B+TGEluYOQ5ebGfKbJsmdnnQwghhJQFSnAgFvEYMxoB3y3gOjFYik3Cd+3X1+orrs7IQPq27UbXSVmxApFt2yF9y7/wev89hO7cAZ7Y+AQXtlzolXezLvLxxoucYMJ3LlnxTlIxDIE//2RwO3Vyisl9uw0ehAo7d8B91CizziVz127Ef/UVci9dgrlY54/EHxebXI99H+LQULP3SwghhBBCXi9Dp/fF1FVvo3y1vMrQ/BwFpJdj4Lj/JhwP3eYmwvCednjQ172h3fAWVh87LTEdRzf9Z3QdNploROjbOPTHCYydNwy/X/2Om3xvjMReDGePvElHHv6lr4ajDHQ1vdLTyUj8DBn3R+cD9yCK01/d1eHEI0gepsKrnCdXjbS40Frl8dmfhrvGpSUYrmjEJhS573yAd1Xe2DlpJCbmusNnxXXYPdC/jcZOiNzq/tgWE4fvNh3BjYfmJ6kr5EqjbZeLVooKDPc3e7+EEEKM0Ght8yKEkBfI6DmDMXnpRARHWN5RpkbLCK46qrWSYpNxYstZo+us+mwjRlZ8B8f/OYM3F4zErxfng2+kWxtj7ywtuNf3DHDXWcaTqwBNsRjLyO5YkkN2+who3EpOYtK62EMd4gvhY8Pd7uxuPIEgs2TCsTBVhogbaZCKS07WqRbkg/nDuhrcZ1qC4eMJZCq47bmPDxwDsf39kRhQoxqErHOD/rCSw5ersGflYfz2v9W4e+kBzCXPlWPdl5tNrufgYm9x4gshhBADKCYhhLyCJiwYifd+GY/ASpYVcGLqdqiJJr3qW33suPvxOLPzotF1lkxdg9GV38PZXZfw1g9jsPjMV+DxjMckbIyETdDXF5O8SMpVCYREWnIeWkSTcExb/Y5VMUm+ETMHYNmN77mEeHPs/H0/fp+6Bg+u6i/KpU9utgzrv/rb5HqseJd3OU+z90sIIcQIikmsZn7qHyFPOXfpwr2U8fGIm/EZso/qVs4sQSCAa/9+cBs6FElLlkB+8xb49lI4degIp3ZtwROa99dQfu8etDLT2aHqJ0+Q+N13kF2/Ds9JkyAJD4fs6lWD62sVCq4jgWu/fnDp3QeZ+/a/kN+1MjYW5f/ejNwLF5F7+TJ33RzbtIZTmzbgCQxPmGIdLQx1vcgnLh/CddNwHTgAKStNt0RTPHyIFPZatRqOrVsjYOF34NvZGd0m7rPPkf7PPyb37dy5M4Ru1OKMEEIIIYQY1n54S+6VGJOM+aMW4+JB4/e7QpEAXce3R7cJ7bHmi014cC2Km8DTsn8TNOpeFwIj99NFPbwWDaUir4KQMfGPErkH+PcuP8SAKT25ZIx7lx7qnayvFQshy1Hg8IaT3EPrjqNa4+xu8xOJ9bFkGqjkdjz3X75CDbdNVyEPdYeMdYCQCCBIyYX91XiuwwPzOPIJl7BxYf8V3D57FyKxiBsIadStLvhGKqn6hnhzbbONKVfBD6Ge7ugxuBV2zNOf2C6v6IXspqGAkI9ItRKR+y9g3f4LaFsnDHPe6Azx08EPQ9jfleIVjfRh34ODs73J9QghhBBCyOur05g23CshOglfDf0e147fNro+64bWfUJHdHi/C37echL3HyfDUSpBhwbhaFajgskEhHz3r0RxlTrNmXT0ywcruRim+8QO3CQcY/fkORm5XEJE8z4NuZjk8uHrBcv4SjVEj1KhDHnaMduMU1U7SSDIMRCZOElhf+4u5Om53D0+niaE82RK2F2Lg/Si/u4UTMKOa/j7559x8H4UbsQmQCISol21MDQLL2/0GrKY5PG9vNjHkOBQP1TwdkffxtXxz0njMabkThIeRqXh4bUo/PXdNrQe3BRTV75dMCHLkLlDFuHkv8YTVJgOI1txideEEEIIIYQY0u3N9ug6vh3X7WBmv29x59x9oxdLbCfiuimwIlBLp61D9O1YOLo5oM3g5qjfqZbJBIR8dy89hFZrehSCdXj48e2liLoZw3WLCKjkh5jbjw2un5GchdM7L6BhlzpcTHLzVCReRCzGWnN/MY5s+o9Ldrazt0Pzfo1Qr0NNo9eQxSTJjw10rX6KxW3lKgegy7h2OLDumMlzYWNQ7LXp263oMKoVPvx9gsnxrln9vsW5PZdN7pvFu2wMiBBCCHmeKMGBWE3k4wPnjh1NJjj4zZ3LVfd50LsPoCqcDJSxcxckEVVQbulSCN1NZ9/ypSUrhRqTuWcP9zJH3MxZSPh+EZcoIPT1heqJ+VVAnyWW1OA+bCjAXmZiiRuZu3cb3qe9PZy75VU2koSEwLFNG2QdPGj2/rMOHcKTWbPhP/dLvcvVaWlI/PkXs5IbJJUrw+eTj80+NiGEEEIIeb15BXqged9GJhMcPl7/PjKSMvFmrSk6k4FYl4XKDcLw5c5P4OzuZPJ4EgsnmLAH0PoeQit9HJFTvxyUgS4AjweeQo2Zq/fg1+nrIVRpuOpESbGmO7EZIn6cDmV5EzGWFhAkZEF6tbCNNE8L2N1N4V4G920nQp/3DFdG1afzG21xavt5o9VJW/RvzP25Qo1g1G5XHRf36yapK32ckN08DNAzaenAhbtwdz6Kj4a0Mdh5Y9XnG81KbgivH4px84eb8akIIYQQQggBvIM80bRXQ5MJDp//9T88kPAwePY6aIpMBtp9+hZqhvlj0fu9uYQHU/RVCjVm17ID3MsURYATpm3cDfG1SxAK+BCOqAvZ9hsQpeRyy6UXoqDyd4FWYpthRbW3KxyP34X9mUdQezpyleyECZngmdG1R8rnY2TLuhbHJBeKxRhFuXo5o3HPvCq21YN9UcfXCxeeJOpdVxSdBnFUms57LLZ093XjKunqkxqfhuWfrDcruYFVfh395WCT6xFCCCGEEMIm1HuX8+JiElMJDmwc5PaZe9w4SdEEhQNrj6FW66qY9e80SB1Nz8uys7csJvn3p93cyxyz+i/gig8JxQK4+bhy99EvGnbtpE5SrriVJbqMbYfrJwzHjay7N0vuYGq0iEDFuiGIPG9+t7i9Kw/D09+d6zioT9LjFK7bgznJDTVbVcXwz/ubfWxCCCGkrBgusUiIGZy7doHI39/gcnFICMTBwYibPl0nuSGf/MZNPJ4y1axrzToxiILLlc33olRCnZQEVXx8XnIDnw++Q2H7ZFFAACQVK3KTj54XgYsLdy0t5dC0CURBQQaXe4waBYGjY8HPgT8sgiQiwqJjpG/Zgrvt2uNmlQjcadgIT+Z8idzr15F9/jzu9x+A1NWrTe5DFByM8uvXcZ+TEEIIIYQQc7FqQ+zBryFswryrtzN+mPS73kqnt87cxYI3fjHrWJXqVSh1S16FvzPSe1SFMsi1IL7QigXIDPPAg0aBSEhM55Ib+AI+pE6FXdL8KvggOCLQrGNIbiVw1U8N0mi5qqgu26+BpzJd/TWfm4+LVZ+/Ybc68Ap6Wu1Vj0Ef9dKpTjp3xydc14uiZNX99SY3MGwoZvPxK+g6fRnqvLUQraf+im//OoLbd2Jx+ch1TKr3Ebb/us/keZavGoQFh2dS9wZCCLEl9kuaDZqX6kVfCSHkxdZxdGu4ersYTaLlhXjh2z8O6yQ35Lt89zG+XGVeZ+mqTcO5+3Jbyq7jh+RB1ZAR7IykrBw8Sc9CjLcEaaNrg1fVh1tHmJaLypHJCHVzMuv3skBlYqWn9/ask5zocTpETzLMSm5gcYWbryss1bR3A6PbDZneF2JJYXXS36YMQiUFH1CqC1dSa2B3MwGuO27pbWLBJm0NLT8R7fn90d/nDW7y0N3LD3HhwBVMrDcNu1ccMnmeYbXLY/7+zyB1MN4xmxBCiAUoJiGEvAa6jGsLJ/fCeT/FVW9eBfIcBZZ+tFZv94VLh65j8bvLzToWm/xu7FilochVcEkNidHJ3H8FQgHsHArHDgIr+XEdDp4n/1AfOLlZ/vlbDmgMF0/DhbZGfD6A+7z5vjsyixsXsgTrLje43AQuJhnoPw7LPl6He1ce4dyeS5hUdyoOrj9uch9VGlbEV7s/hcSMBHxCCCFmopjEapTgQEqFb2eHoGVL9SYeSCqGIej335G6fh2gLvIQuJjsEycgjzTdWkyTmQlpjZrP5hvTaKBVq1Fu3VpU2LkTofv3ocK2rQjdu4fr8PA8uPTrC77E8hvIjJ07oYw23Ho6Y++eEl0iKvy9Gd6ffAyhn595B9FooIyJ4Qad1enpSF27Fg/79kPU0GFQGTl2UQInJ/Dt7c07HiGEEEIIIU+xikJf75kB3/JeJa5JhZrBmLP9Y2z5cZfRlsn/bT2Hx/dMd3HLTstB5YYVzb72GrEASl9HKL0cCuYAZTcLAYo8pC5K7W6P3Jp5CeQsGUOr0eL7E3Ow4tYirL67GEuvLcTym9/D3c/4hB42Sch51029SQ78bDlc/rwEh7NRFiU3MF3Ht4dQZHnF1v1rjnIDEoYc/fM/nZ/ZMZZcXoDx84dz3SwYZaCr4edBAkAFLR6nZHDzYNOycrHu4AUMmbMGH/T4imvRbQ42KEMP7QkhhBBCiKXY5BY2AYR1mCuuUr1QrhLq+n2GO5oxB8/fwZOUTJPHykrLtigmMUXpIUVG6/J6izupeEBW7wj8cP5rrLzzA9b+9zU2fTMWm74YDjcjlV15uUrwFcaPK0g2/Vn16T6hIwQC/fGUMbuXHUTqE8PVX4t3exOLhNj48zuYWikcIRfj4bLzFjxXnofzgbsG4yiVQoWEqLzYIy0xA5u+3YqJtadgWvvZSDazQ5+zpzPEdpZVxCWEEEIIIcTVywVf7foU7n4li0FFNK6Ez/6ajM0Ltxu9UIfWHzerY0J2umXjJKWhVqm5zto/nf0aqyJ/xIpbP2DZje/x8/lv4OhWWLT2WeoxqRPXOcNSrAhTepLhOOjwJt2YxM7eDituL8KILwbA1cwkd4VMiaSYvLGYlCdp2DBvCybU+h8+7vwlUuPTzdoHO5ZIXJj8TQghhDxPtuklS15rkpAQhO7ciaxDh5B96jT3IJx1DXBs0QI8Ph85Z8+Z3Efa33/Dc9IkbpK7PunbtiHus8+hzc1rh/wsaGUyyC5fgceY0QXviYOCELxmNR6NGAlVXNwzOxeHJo3h9e67Fm+nzsxE4vffG11HcfceMvfvh+z2bWQdPgKtSgX72rXgNmQIPEaMgCo1FffatYcmOxtlieuQQQghhBBCiBVY5f2Vd37EiS1ncOXIDa77Qf3OtVGvQ03uQfPVIzeMbs+SH3YvP4iB03oZrN7Plv/49lLuAbEpGhEf2U3LQ1bZi+vOwPDTZbC7nQS1h/GH7vLK3nA4m5ckLMuW4+6FB+j5VqeC5UHhAVhwaCb+12Ymkh8bniQjis+C27oLkFfygtLfhUtGFkenQXI3CTw9nSxMadClNoZ82sfi7TJTs7Dqsw1G14m88ACndpzH7TN3cWbXRW7QglWU6jGpI/pP7oH0pAx0nLECSj3nreUXefEAnubpi30PjhJkNasAl103zTpXcztkEEIIscTTLgylQi0cCCEvvrBaIVh9bzGO/30a147f4ipvNuxaB7XbVudikgu3Y4xur9ZosX3HWQzt3ZhL4tZn26978csHK6GUm45JzJVT09do5+oMmRw3lLnoGxZa8F5YgCeWTO6HCfP/RHKOTGd9fqYMTvtuQd6kClCkI4IOpQrCh4lWdWEYMKWHxdtlJGdizaw/ja5z4+RtnN93GZcPX8e5vZe5ZPMaLSLQ462OGPJ+N6QlpmOA7ziUtZCqhrtxE0IIsRbFJISQ10N4/TCsffATjv55CjdP3YFQJEDjHvW5jgsMGzsxRqlQcV3Her3T2WBHsb+/34Hfp62BqminszKWnpiBmNuP0WZI84L3KtYOwfwDn2Nq+1nITM56ZufSalBT9H6vi8XbsXhi3Zebja5z8cBVXDp0jeu2cOHAVe55Wq3W1dB9UkcMm9EPCdHJGFZ+IspacATFJIQQYnsUk1iLpzVWxpIQG4hs0waqx6aTAXhSKVy6d4fX1CmQX7sGxcOHELi6gu/sjOhx4412gSgrLj17wH/evBLvq9LSENmkKde5oCwIAwIgsLeH0NsbLn16w7ljR66zgiVUycl4NHwEFPfvm3XtSySPCIXwmzMbrr16IXriJC6BpSyV37QR0ho1yvQYhBBCCCHk9dTfdyzSEkxXp2GtjtuPaIU3vh6CW6ci8fhePNcyWOJghxndvjLaBSKfls9DWp+qUPo7613OU+dNwDfG45eT3AR9psvYtvhgyYQS66Q8ScXAgPFlNueTtT6W2Iu5KrQdR7dBsz4NLK6UmvQ4BZNbfY7Hd013x5BIxZDn6pZ5ZQMw01a/g1YDm2LSws04fTNKZzm7jGq7vA4OBReM0QICBXvgwVbSwm39BQiy5CbP4deL8xFas7wFn5AQQog+MTExCArKGwxtVX4C7IT6C5qYS6bKxOGHv3J/jo6ORmAgJaQRQl4+Ld9ejOxi97vFORy+A9ekHHQc3RqjvxyEa8du4cnDRLh6u4Av4GFmn2/NikkskTywKhRBxquBDm1aCx/3bF3i/SfRSRjQdkZeQjVLso5Nh/hBMngaLdSeTpA1DQeKd4BTqmH3320IEjJMnltARV+IJCJ4l/NE5zfaoknP+uDzLWtMH/8oEf9r/Tl3HU0R24lKJLSz43/6x/to2qsBPmgxg0teKSssEWbZjYVcUjshhJDSoZiEEEJK6mI3mEtiMMXBxZ67/x4xayCuHL7OdSlz93WFUqbEl0OMF1gtKwOm9MS4ecNKvB995zHGVH6vzI4bGO7PjVP4hnhz16Rx93oWd29g3cPZOEmSGV3dRGJhie+IjZ189tf/0KBzbbzV4CPcOXcPZYUVD2OdMnzLe5fZMQgh5HVBMYltUAcHUuYcmzZD2p/Gq+MwbIJ92qZNSN+yBVpFkQf9bGL/c0huYHh2UmTs3YuMnbugycyEJCwUrgMHQlKhAhxbtULWwYNlclyndu3g+/FHZq3LBjRyTp+BMi4OQk9PrtsDTyDAk9lzzEpu4PahrzOGSoW46TMgrVkT7iNHIuvwYRtU3NPP8+23KbmBEEIIIYSUmXoda2L/mqMm12MdE7b9sge7VxzkHtbnE4gEZk0k0kiEyGkQaDC5gWGdBtjMfEOPwHk5Cp1lEgcJ9p2/g73nbyNbpkSYvwf6taiBcr5uqNOuBi7su4Ky0HpQU4yeM9isdTUaDS4duo7E6CQuIaJWm2rcxKNFE5eYldzAFE9uYFgVqG9GLkaVRpUwtF2dkgkOEkCr76kGD1CLnyY58HlQu9qZTHAY+/UwSm4ghJCywP79LO3zJKrPQwh5BTSKCMaB85GGV1BrIIzLQI5MiX9+2IntS/ZZFZNYiqc0XcRJIhTg4B/HcWzzKeRmyRBaIxjdJnTgkqLr+Hjg+tHbJbYRJGXCfvdlKEO8ofZx4e7RWVKD8H48+GZ0xWM6jmqNwR+b10VOrdHg9J1oJGVkwcfVCQ0qBnETj74b94tZyQ2Mvm59rFvG3CHfY/W9n9D3g25lluDAznXCdyMpuYEQQsoCxSSEEMKp26EmTm0/b/JqZKfn4K/vtuHfn3frxiRCywog2RJLRt6/9iiO/32KG0tgHfRYTBJUyR+V6lbAnfPmzY2yVPcJHdHHzI4NrDP1hf1XkBqfDp9gL9RoGcHd588f/ZNZyQ2MvgQU9nlnD1iAdQ9/4WKSr4YuQllg5/rO4rGU3EAIIWWBYhKrUQcHUubkkZF40KcvtErbtU1+VsShoVDcK5b9yuPBe8oUuPbtg8j2HaDNMF1pqCjWlUKdlmZ8HQ8PVDx6hEtUYIMWhjKAs06cwJOZs6CMKpzoI/Tzg+fEiXgyaxaXpFBa9o0bQxxcDor7D5Bz9qxNB5V5dnYI/GERHFu0sNk+CSGEEEIIKS7ywn280+gT7gFzWWBdG3LrB0NeyQcqJz60QuMVfIx1cZBeiIHD6aiChAnXye3wIFk35uDzePjfgFboVDUEIyu+g5wMPQnLRjh7OCEjOVPnPaWvEzROduDlKiGKTYOXvzvWPfqFS1QwFpOc3nEei99ZpjNpiD28Hzq9L75/8zdoNFqbJKj4BHvjjkiLM/IcrmmFlgco7Yt1biiGpwIEKsBl82WIErP1riN1tMMXf0/hkkUIIYSUQWWi4Ddt08Hh0W/cn6mDAyHkZXXl7mOMm7cRagP3x+I78XA4YbtJOVoBH4oKHlB7OHLJE6KoVIjiS45l5FTzRnqnMKP7qvlfAhJO3C1R2fO9n8ehQdc6GB3+LpcsbgkXL2ekJxofW2FVUlffXczFIsZikgNX7mL+P4cRl1oY4wR6uGB845pY3OFr2EKDLnW4ZO6H16Jw/WTJhI7SYBVyZ/4zFTVbVbXpfgkh5HVGMQkhhJR0+fB1TGk7s0wSp8saS66Oux+v8x5LuJi8dCKqt6iCN6p+AIWJjnnFuXo7I81EZ7mgcH8sv5mXUGAsJjm88QR++99qnUSGgIp+GDClBxaOz3umVVqNe9SDu68b7l95iJunCpPnZWHuyK7lB6WPI3hqLST3U+Bw/jFEyTlm79vZw5GLSao1q2KTcyWEEEIxia1QggN5JjIPHEDslKnQ5ph/A/W8CdzdoU4xnEXr1KkTso8dgyZb/0QZg8RioGiHCgMcW7eCMvYxlyDCk0rh3LEjPMa+AUloKLc858JFRI0c+cwTR1gCBTumOimp1Pty7tYNAd/Ot8l5EUIIIYQQYsyRP//D/FGL9XYKKK3sFmFQhHpxf+Ym3QtMJDgoNeCBtXLQxU/Lhes/V8GX5SUq84c3RKK9/qpI7Dl6N7ETzi89BHmOZZ9JLBUXPOxX+jkju3kFqN3sC88jSw77Uw/RqmoI14Eh6mYslwjQckATDJjaE4EV/QoGRKZ1mF1miSP6qF2kcO1cHemedkgQmkjo1gCS+By4brxkMA+CtZX+8PcJZXGqhBDy2tKZTBQ03jYJDtFLuD9TggMh5GW2878bmLNyHxTF7p9FUSlwOBwJntp0NwVzKH2ckN0mHFo7kc77wicZcDhwC3xF4fG1Ah6ShteEyrMwHijKJ00J/tKzepfx+Tw069MIp3acgyLXsnEKib0E8hzTSRFNezdA1I0YxNyJg72zFK0GNsXAqT25CU7MiZsP8c7vW/QmjvA0WrhsvgZxnG5yty2w47PKtsUTx63R+50umLRotE3OixBCSB6KSQghRL9dyw7gx7eW6u0U8KJy8XRCepL++26WeN2sdwP8t+0clHLLPhMb82Ad6kxp3q8R7l16yI2VOLo6oM2QZhgwpSdX6Ik5ufUsvug9X3/iCBuYKKN8Ev8wX8RGeCC+gkvJhSo13LbegiQq3ax9DZzWC2O/Gmr7kySEkNcYxSS2UXJGBSFlwKltW1Q8fAg+n3wMSZUXPOOTx4ND8+ZQp6YaXS1z927LkxsYM5IbmKxDhyG/c4frmMASQ9L/+QcPBwxEzsWL3PKkn34qdXKDtF49i7dRxcXZJLmBcenZ0yb7IYQQQgghxJSW/RtjffSvePPbEQipUc5mF0ztKi1IbmB4ZjysltxNhjCuSGUglQaS2wlw3XKNS25gE4XqDmmCJAfDLZ/Zs/I9Nx9anNzA5Cc3qDwdkNG5ik5yA6NxlCCrbSUcvnIfj27EcA/mczJzucGPtxt8xHXEYFZ9sbHUyQ3Vmle2aH1Bei4yN5xB7tE7plfmaWF/JspYkwe0HdbcouMTQgghhBBirS6NI7Dz2/F4t39zVBRLILkeB6ftV+F44LbNkhs0DmJktatcIrmBUfk6I7tlJZ33WIVP9z+vQ1xs4ouAz0PrCuXAW3ne8LE0Whz96z+LkxsYc5IbmBP/nEH07cdcTMISCnYs2Ye3GnyEB1cfcct/2nXSYFcM1mkvu2Fewp0x1ZpZFpMwrHqsLZIbmDZDm9lkP4QQQgghhJjCCv6wzs1vzB2CoMr+L/QFYx0aGnerazC5gdGoNTj61ymLkxsYc5IbmGN/neKSG5istGxs/XkP3m74MaJuxXLvrfpso+GuGGYmN0Q0DoelHshy9Cc3MEIB0jtW5GIic7QZTDEJIYSQFxMlOJBnRuDsDPcRI+AxetQLd9W9pk2D7xefw/eLLxC6d0/exPsybMsm8PCwajuWUBE9dhySV65C9smTpTsJBwf4TPkfnhdhYCAcmjV9bscnhBDy+snJyUG5cuW49qErV660ah+TJ0/mtm/VqpXNz48QUvac3Z3Q78Pu6PVWZ5vtUxHiqfMz39TcHi2gDHCD886bcFtzHq6bLsF91Vl81KsF3v92JN7/dTxW3V2MRpPamwxJWPeF0lQ9yqkTCIgMJFHweMitXzIRhE0qmtpuJjZ/vx1Xj95EaTi5O2LUrEFWbSuKzzJrHcmDFKPtpWu2rGrV8QkhhBBCCLGGq5MUIzrVx8CICrA/8xDCRNP3tZaQh/sAYqHB5apAV6iKJTgLspXw2HQdcxo3wPTebfBF33bY/dEbaK9xBE9lm8QLQ/GANTJTsvQuo3MAAQAASURBVPC/NjOxYeleXI+KN7quMsgFGqnh6+Hm44Ihn/bF81KhZjAqN6j43I5PCCGEEEJeP24+rhj0UW90HNUGL5r/LZuId38aiw+WTMDahz+jehk/v3dw0d/JzpS0hHRMbvUZNs3fgvtX8pKvreUV5IEBU3pYvF1udV+Tye+yMHeT+6nSqCIq1Ai2+PiEEELIs0AJDuSZc+rQAXwXA1mkz0nSokVQREXDtW8fiIOCwDMzi9VaLn37WL0tS3JI+Prr0idg5OTArkYNODRpjOch4LsF3ARRQggh5Fl57733EB0dbfX2R48exaJFi2x6ToSQ56PlwCZc+2Fb0Ip1EwR4KvYyXK2HLYdECHm4NwRZcgiTc8BXqLH80/VIiEpCpzfawLe8NwTm3CuXIibo8GY7KIONP9xWu9tD5V7yAX9WWg5+/XCV1ccu3E82l2BQvbnlXf7E8VkQPjE+GczxRJThhTxg+sYPLD4uIYQQC2k1tnkRQsgrhlXtl0jFNt+vMtDNjHVc9b6/cswSyHffQp/6VeHn6lTm4yQdR1lfPIJ1T/j10/WmV+TxoCkWs+nuJwv1OtRE5QZheNbY+MiMjR8+8+MSQshrh2ISQgjRq8PIlhAZSY5+Hn7732ruHr3zG23g6e8OgaBspzW2G9HC6m3TEjLw+7R1pT4HlizRqHtdi5MMVO5SM9YxnsDBuol/uoHGSQghpMxRTGI1SnAgzxzfzg6+M2awO6UX5uprZTKkLF+OBwMHIWP3bsPtw2yAZ28Pt8GD8dxptVA+eoSARYsgCgx8pod2bNsW9jVqPNNjEkIIeb3NmzcPS5cutXr7GzduoE+fPlCr1TY9L0LI8+HgbI+3fhhjk4RbQVquzs9sjzzF00SGomGFJq+7A1+jv/tCbqYMG+ZtwftNZ+DY5lPgR6UAGuMTOsXRaVZXJer6VifAjAlLxRM4bEmr0SIhOglf/DOFq1JkLoWfE1K7V4bKy8Fgi2fHk1GQRKcb3EergU1QoUZ5a06bEEIIIYQQm3SXe3PBSNtfSXNCHANxAOvWtnb2X5jc8nMc/+c01CoW1JQN1lGu45jWepexW3ylnwvkFb2hCHKD1kDcJkiXAUrjz2l4MhUEWQqDy9UqNZcsMXvbR3D305/4UVY6jGyFwEr+z/SYhBBCCCGEFO3kMHbesBfqgmSmZmPlZxswpe1MnNx6FkqFqZbZ1vPwdytV0rWtKOUqKHIVmLvrUy5OMhdPbjpe45tYp+ubHeBTzsvsYxJCCCHP2ouVikleGy7dukLo7oak35Yg5/RpvCjkN24g9v0PyjT5wuvddyDy9QXf2RmajAw8T1q1GgInJ66K0bMiqRgGv1kzn9nxCCGEvN5Y0uLMmTO5l7VOnTqFHj16IDk52abnRgh5vjqOag13X1f88fU/uHr0psXba1gXhkreUHs45CVI83gFc4m4JAc1u98uXL/4HTfPwMT8W2ciMav/Aq5aqqRFKNfpQS+1BnZXH8Mab8wdAl9vVzgIBchWGZkQpNbkTRoqQ2xCEZvcpVGbV51bHuKGtK7hgIDPXVPuMj69ljyFCpL7KbC/Eg9xXKbBfVSoGYx3Fo+10ScghBBiFPs3srSFRMqwEAkhhDxP3Sd0gGeAO5fofOPkbZvsUxifCbW7g/F1nhi+V2aunbjFvcqyg8PYecPhH+rHdbGQ5xYmICj9XZDTpAI0ToUd93g5CkjPPoLkfpLOPlgnPLs7SZBV9TF4HLubCeCptSZjEndfN25i0bMSXj8UExeWQYILIYSQkigmIYQQg/q81xVeQZ7YNP9f3Dod+cJcqcuHr3OvsopJWPGr8fNHICg8ECKJ8JnGAvqoVRp4+LlBli03exvpnWQoA10Mr6DRwi7S8Nh2RJNwjJs31NJTJYQQYg2KSaxGCQ7kuXFo0oR7qTMzIbt5E9ETJ0Gbnf1ifCMmKqWaJBYDCt2qQKKgILiPyasSGz3+TS6x4LkmOIhEyD55EjHvvQdldHSZH07g4QHPtybBtVcv8O2Nt0EjhBBCbCElJQXDhw/Hzp07rd7Hjz/+iMmTJ0OpLLsKIYSQ56d+p9rcKystG3fO3cPnvb8x6wGyPMQD2S3CAKFudwMu0YHlOmgAbdFFvMK5mfmP40XRqSa7Gzgcvw+NnRDKYHfdhUo1HA9FQpicU2I7tVSInJo+0NT0g1ythjAhBw6X4iCJykBgJT/0n9ITKrkK07vOhZeTANkehROHihM/TAE/t+x+/0nsxfjv33PY/tteJD82fj0YLZ+HjLahXHJDPp3hDbEQGg9nqPzlEKbLwc9RlKjINPyz/mg7rAXs7CW2/CiEEEIIIYRYpXH3etwrMzULN09HYlbfb3Um/FtKcvNJXpL00yJO2mI3zYLkLIjizRuXYDFJaYgkIijluvFEUOUADJzaEzkZufis5zw4ezohMTpv0o3KyxFZ7Srr3O9z52EvRk6LMPDUGogfpegsczzxCEpfJ6g9So45COOz4HDa+NiHvbMUB9Ydw/bf9iEzJQtlzaucB4bP6I+2Q5tDbCcu8+MRQgghhBBiSvM+DblXRkomrh2/hTkDF5a4j39erI1JNFIR5JV9gXAfKJQqCJKyYXczDsKELJSvFoSBU3shJS6VGxNy8XRGUqxunPEsObk7YseS/dw4iSWxIEvmzq7lC7W7/vlX9lee6O1m5xvizY2TtB7cFCKxqFTnTgghhJQ1npabgUHI88eSHOK/nvdCdXSwFefu3eH5ztuIHj0GythYvBAEAkBtvH2zLQWvXwf7OnWe2fEIIYS8vtjt7Zo1a/DJJ58gtsi/u/b29sjJyZsMvGLFCowaNcrgPq5du8YlNuzdu1fv9i1btsThw4fL9HMQQp692+fu4bfJq3D1mOGODioPB2T0qG646xvrRKDSQCPl503MKToDn0XfWkCQJYfrxovgqcxLrFZ6OUIR6gmtmA9Bcg4kkYlctdIS5+Zmh6SBVaFxKjl5v3/VShjToCY+6jAHiTF5E4i0Qj4yukZA5etcYn1+ei5ctl4DP6dsBjK0Ah7U5d2h4mkhTMqBMM10pwhZmDvSu1Y2ug5PBQhlee2ZnfbcgDCxcJLST2e/RqW6oTY5f0IIIYbFxMQgKCiI+3MrvzGwEzqV6nLJVJk4HLec+3N0dDQCAwPp8hNCXlk3/ruN36asKVVHBwVLyG4ext3v57WXKxKUKNVwOHEfkruJpT/ZgpZq5ukxqSO6TeiAjzrO4SYTFZfZrjJUQW4Gt+en5sBly+US72vEAuTW8IUswhtqBzEEmXLY3UiA9OoT8JXGYy6BSAC18tmNkyy99h2CI/L+jSSEEFJ2KCYhhBDrXTl6A79PXYNbZ+6+lJdR5W6PrI4R0EpLTt4f1qw6utUMw8ed5iAt8TkWpC1CKBZApWe8xxxqexHSO4RBEexaEPfxFGrYX46D44moEp3F2Rur7vwI/1Df0p84IYQQoygmsQ3q4EBeGHZVqiB41UoooqOhjIvj/vvk0+l4FWRs24acCxegelGSG5hnmNxgFxFByQ2EEPIaUmjkyFZlQqlVQsQTwUHoBDG/bCtmy2QyNGnSBBcvXix4TyqVYsmSJVi6dCmOHDlich9fffUVZsyYAXWRfysHDBiAVq1aYdKkSWV27oSQ5y+8Xii+OzILsXfjuIo90bdisWji7zrryKr6GU5uYHg8SG4+Rm6DcnqW5f3H7kKM2ckNjCgxi3uZktqtkt7kBubP63dwZekxZD5NbuBOR6WB8/YbkEX4QF7FB2onCdexQXQ/CRq+Bkl9KwNCPkTx2XC48ATiJ7apaJpd2w9ZDQKhtX86wKDVQhyVDpd997jJSIaonQ13m8inffrVaCVCZLYNh+vGC6yyA9dumZIbCCGEEELIiy6icTgWHZ+DmDuPkRyXigdXovDTe3lJXuYSP0jmJvXIauuZSC8ScN3oWLcz0eP00p2sheXTtv68B8f/OY2UuLSSuxIJoApwNbq9xs0ealcpBGm5Ou+z5G+Hc7Hcy1LPMrmhVptqlNxACCGEEEJeeDVaRODHU18h6lYsUuPTuO7XS6aswcuAhSjZbcL1Jjcwa49fxZFvtyPrBUluYKxNbmAEOUq4b7kJlasdlD6OeV3votL1FshiGnapQ8kNhBBCXiqU4EBeOOKgIO7Fl5TtBMhn7YVKbrAA38UFmnTrBzoEfr4IWPidTc+JEELIi9094bEsGtczL+JhTiS0RUa7eeAhxL4iIpxqw98uCLyiFQRtmOBQNLmhWbNmWLZsGSpVqsQlOJjj9OnTBckN7u7uWLRoEYYNG4aVK1fa/HwJIS+mgDA/7qVvwo7SxKQbLZ8HWQ0/wyvwAHm4F6Q342FLCn9HKH0dja7z0EsEj+Kno9ZAejWOexV0gRhcFWrnwnhM6eOAnBrecD74EE5nHpfqPLPqBSCreXCxk+BxFYaS+1eF5/or4MtUOosd3RyRlZrFJV+YwivynWkdJFCUd0cwBPhk3XulOm9CCCGEEEKepcBK/txLkauweFsWk8jDfQyvwOcht0ZA6RMcrKAvuYHhuk3wTT8nYokQz4OThyMyk61P+A6o5Idpq9626TkRQgghhBBSlspVDuBemSm2KXz0LKgCXaExUSgp3tMeDnj5OHs6ISMpU+8y1iHbVJfs4KqBmLx0YhmdHSGEEFI2jJSdJOT5sqteHSJqOf/cCNzc4PHmm6iwdStE5fRUnzWDXc2aCN26FeLgYhOYCCGEvJIS5fH48/FKbI/fiAc5d3SSGxj28/2cO9xyth5bv6xUqFAB69evx9GjR7nkBktJJBJ88MEHiIyM5JIbCCGvp2rNKsPD3033TVNzbniA1k5/daB8Kj9naMS2nZjDqvOYXMfXERohH1l1fRA/qhriJtRC0oBw5IYWJm2k9Kqkk9xQVEab8pAHOll9jhoRH9kNAw0vd7FDTs3C1siu3i4YNqMflt9YCO8gT0jupXDtlY3h6eZGoFq/hvjt0rfwCfay+rwJIYSUglZrmxchhLymarauBlcvZ4u2UXk5QmsvNr5OgAu0ghdniJAnU4JnKplDrQE/w/ikHVtz83XFiC8GYPmN7+HmYzzZ3ZC6HWril3Pz4BlQPN2cEELIM0ExCSGElEq9jrXg4GL/UlxFlYeDTdZ5kXgGuGP0nMFYcWsRnD2sG59p1L0uFp/+2uqYhhBCSClRTGK1F+fpJSHF8Ph8eL1DFW2eF+8pU+D9wfsQ+Xj/n737gI+i2ts4/uxueiGE3nvvvUpTLDRBAREr9t5fy7Xr9Xrt3mu5NgTsigUVpKgIiKAU6R2pCQRISO/J7r6fGcySJW2TbNgk/L7vZ97MzJ45Mzvr1T3JeeYvswJDQPF/EClMSM+esoWXfQIUAKDqiM7Yr++PfKaEnDiP2hvtjPbGcd5kBBNmz56tXbt2aerUqWWqEnHDDTfo4MGDeuWVV8wKDgDOXDY/m658fLLbPv+YEkoXezoJ08uTiSw5jpIb2R06dl1XJYxprexmNZRbL0QZHWor7vJOih/TygwvlBSUSOtVTHWKEmS1riVnCcGOjPZ1XOu3/ucaXf3UFPOX7o/OvlcBTin0j6iiD7ZL1lOKPHQZ0E4h4cFlvmYAAADAlwIC/XXZIxNLd5AHlRCMKmqV6S+ERiW2wF3Him0TsP+4rFmnJJor2N1v3WiOCWvWjdCjX9wjq1FpopS6ntVRwWGMSQAAAFA1BYUE6tKHLlJVYFSs9kabyuTe6bfosocvVo1a4Xr407tk9WS8d4puQzqZnyMAAFVNJfr1JVBQxPjxavD0U2Y1gdPNVrN6JFdrXX2VQs86S/6lqKJgCQlR+LkjXdvBnTurxccfKbhHj1KdO38fAIDqy6jEsOjYt8p1njKrtARGe+M4b1ZyCA4O1uTJk2Wzlf3J6GPGjFG9evW8dk0AqrYxN56r2167VuG1Tkz8D9x6WHIUHWLwj0ooscqANSlDloyS/51ZmqfxBO5NkHKL/8W80+ZUTv3Cn06U1ruBUvqcrJ5QlOxGJVeKONWke8eaTy1t0KlxiW2dQX7mT+OJUMZThfJ07N9WL/7ypHr7hyh88R5Zk7PyHWQEPCS/jIIFNkb0alPq6wUAeBnVGwCgXC66c7RueukqhdX07Emjtvh0KddeYhtPQtLhtUv//b+sgjYekt+RwgPl1sR0Ba8q+0MyJv/fheo1sqsatPT89z0RdcLV54KTfxPpNrSTXvjxcbXt1bJU5x58Ub9StQcAVADGJABQLpc+OEHXPXuZQmqc/uBu3t9mPOF/IL7Eh1D574+XL0x5YLx6ntO1VNWmazWMVK9zurq2e5/bXc8ueEStupdi/pfFokET+pb6egEAXsaYpExOzBwAKrHISy5RxIQJSvv1V+XGxysnKlrHZ82UcirgST0WiwJatFBgu3bKiY2Vfd06VQnGJE57wT9YRF42VfX/8Q9zPX3dOh247HKPuqtz000FKi8Ed+umFp9/pqy9e5Vz+LBy444r9pVXlHus8KcqhfTrp5DeJyckAQCqJ6fTqSVx80sdbshjHLc0br4mNZpWpmoLAHA6TLh9lEZdd7ZWL9iglPhU7bHk6qPV22U/JehgO5aisKW7ld6vmTK7Fl3pIHjLkQIT8fNYrBY169BIzTs107HoOCUfT/HoGm3pOQrdeFRpvYs4b2aOcmsHFduHUdWhLMx/fVsschYS/Jh4z1jd9NLV5vrvuw7oxne+KbYvW0KG+dN4SmpwqPv1dhncQa//8W8d2Bal2EPxOmK169WFq5VgBEYK+ZvF4C4t1LF5/TK9JwAAAKAymXTvOI29+Tytnr9OqYnp5nfib1+bL0ch38GNKgeBe+KU1b7o78KB22KKfM1qs6pph8Zq3qmJYvYeVcrxVJ0OxpNUw37cpqx29ZXdrp7sYYGyZuQo4K9YBe44ImsxQXJjHGUMSwq7H8bTTq95Zqq5/se8P/XYhc95dD1XP32pWUEjv+7DO+t/a1/Qvi0HFXcoXscPx+u9Bz5SchH3yAg3tOjc1KPzAQAAAJWZUcVh/O0XmH8nSUtK195NB/T9mwvNvxV7mzEmMcYjzTo2UdTOQ+bfZTxhS8lSwJ44ZbcpPERgSc9W4C7vPXjPrW+jsoLzxN/OTzXt6Ut1+aMnKvMt+/J3PTPlFY/6vPZfU81K4/kZIYd31nc3778xHomNPq53H/hYaYlphfYxYupgNW5T9srcAAD4EgEHVAnWgACFjzxZDSDy8suUOPtLZe7YIWtwsMLPO0+WwAAlz5+v3IQEZe/Zq9zDh0t1jhoTJsivTh0lfPCBsvft89q1WwIC5MzOVkWw1aurZtOnmxNCj8+cpZSff5YzM1NBXbqY9yhizBhX25BevRTYto2ydv9VZH/WsDDVvfNO1brqyiLbBLZqZS5mn3366NCddypz2za3NqFDh6jxSy955T0CACq3w5lRSsiJK1cf8TlxismMUqPgZl67LgDwtsDgQA25uL9re9KEgZqzfIv+io5VSFCAzundVoHRiVoWHqHk5HRtsvrpsKNgKDtwV6yCNhU+mWj0DSMVHBak795YoAPbDpX6Gmss2SenVUrvVl+ynSzYGJSRK7/V0Uq6oPgnjdprBsqS5Sw2cOaX5v6U17pNa+v5Hx9TdmaOvnplrlZ+t0Y5Wbnq0L+NGQwZOmmgq+2Ats3UrE5NHYxLLLL/elGpuu3N6zXulvOLbNO8U1NzMXTv2kr3vzVXu6Pd/1s0rEdr/fO6C4p9vwCA0/hUovL2AQBQUEig2/frCXeM0vz3FpthB+NJqsMmD5LdbtevX/6u5JQMbfbz05HcQsYkO48qcEfhk3qMCUuGeW//pANbo7x21/0C/JSbXfJDqyx2p4K2HzEXTzVoUU/P//yY0hLTzTHJH3P/VG5OrjoNbKeL7hyjQeNPPq2076ge5hgmNup4kf3VqB2m65+7QqOuO6fINi27NDMXQ6eB7fX0pJd0YFv0yfdhseisif11/8zbPH4fAIAKwpgEALwmOMwYd5wck1x054kxiRFCMCrODb1kkLLTs7T86z+UkpCmvZv2K+FIUqnD3ZlpmZo/fbH2bT5Y6msM+W2P+e/+7NZ1JSN08LfAtGwFLtoma6b3H6bbuG0DvfDzE4qPSTDHJKvnr5c9164uZ3XQxXeNUf8xJx8OO3hCX0XWj1DC0aLvS816NXTji1fp3CuHFdmmVbfm5pJXAfvpyS8releM25jECDfcN/0Wr71PAEAZMSYpM4uzIqKUgI857XbtGnyWHIlFT5zJL6hzZ0VOvVQxjz7mtWsIO3ekak6cqLg331Tm5i2qKKFnDVbooMGKGH+h/GrXLrZtxuYtOnjttXKkFHwKbFCvnmo+Y4asQcU/1bUw6WvXKn3tn7L42RQ6ZKiC2rcrdR8AgKrpp2PfaW/6rnL30yqkvc6td6Eq0vDhw7Vs2TJzfebMmZo2bVqpjp81a5auueYac33YsGFaunRphVwngOoh1+7Q2L73Kb5RuJzB/rKmZClo+1H5RyUWWr3B+EX38CmD9cYd75f73PawAGW2q60hlw3W2DH99eElr2t7erLiLu9U/IEOp/xTJHtwEQEHh1OhB7JU8wv3Snf9R/dSr5HdNPLKoapR270S3Kk27Dusm977RulZBSv/DGjUQP+7Y7L8A0r/LIa1O6O06a8Y+flZNaRbS7VsWPzYCABQcaKjo9W06Ykg2vD60xRkCytXf5n2VC09Ostcj4qKUpMmTbxynQBQ3eXk2jWqxz1KbVpTjiB/2VIyzWCD/+HCJ9L0GtlVfc7roXcf+Mgr58+bUHPe1cP131vfU8yeinlSqmHguD7qeU5Xc0wSHln8f3c2Lt2qR8f+W5npWQVe63N+d/1z7kPy8yvdmMT4U+v6X7Zo+x+7zKoPA8b1VtP2jUv9PgAA3sGYBAAqh8yMLE2IuEr2XPcHJxVlwNje6tCvrWY9/nm5z21UhLO3qK1zrh6mUaP76NXznzWrHVSUsy7urx4jumjkFUMUGhFabNs1izboiQkvKKeQv5MYY5sn59wvq/XkQ6w8HZOs/XGjdq3do4CgADNI0ah1g1K/DwCAdzAm8Q4qOKBasthsqnnRRYqfObPEtn4NGqjRSy8q6qabvXLuoG7dVOemGxV+zomn+6T9urxCAw5pv60wl9hXX1Xde+9V7WuKnqwZ3LWLWn45W8ffn6HkBQvkSEtTYJs2qjn1UkVOmWLet7IwKjkYCwDgzJLtyNK+9N1e6Wtf+i6zvwBroFf6AwBf87NZNXpgZ819a1GJbRu0qKv/m3mr7j/7Ka+cu2vXFrrskYlm8MCwum8b7f1wqazpOXKE+Bd5XOChNPk7Q5Ulp+xG7jlfJQfjSaqBiZI1017guFXz15nL+w9/opteuloX3lp09YUeLRvps7umauaSP/Xjpl3KzM5V24Z1NGVQN03s31XWfE9UKo0+7ZuaCwCgknE4JIuj/H0AAErN38+mUf07aOHMJSW2bdSmge5++0bdNfhRr9zprkM66vJHJ6r3ud1dTxStyIDD73PXmsv7//hEt/73Wo2+vujqC92Hd9ZrfzyrL1/63nyybHZGtlr3aKELb71A518zotiKdkUxjul1TldzAQBUMoxJAMBngoIDNXTyQC35bEWJbZt2aKzb/nuNbu37kFfO3atPG135+GTz+7+hfb82FRpw+O2bVeYy/cGPddfbN2rkFUOLbNv3/B567fd/mWOSFXNWm0GHtr1bafxto3TuVUVXbShpTGL0aywAgEqGMUmZUcEB1VZOTIz2XTxR9oSEQl/3q1dPkVdeocjJk5UbG6u948r/1Ghb3bpqu3SJHOnpyty8WbJaZQ0L0/4pl0r2ghOBKkJAq1YK7tpVNSdNVEjfk6WXi0rwluWX9QAAGBKy4zT7cMlhQk9d0uhaRQZU3BO3qeAA4HSL2XtUt/Z5UKmJaYW+XrdJbV101xiNuu5sHd5zRLd54Rf39VvU1Ud73jTPaTypx8/fTwFB/rr7rEeVOKiRks4+UbK4gFyH6n6+Q5lndTDLNjtsUq4ZcpCsOZIty1xV4MZoBa+PKvYamnduovZ922j09SPVeVD7YtsyJgGAav5korpXeaeCQ+yH5joVHACgdA7uOKQ7+v9D6SkZhb5ev3ldXXzXGJ1/7Qjt23RA9wx9vNy3uEm7hpq54zUlH0/R7nV75fd3hTYj0H26isq36NLUfPLrmBtHmj+Lw5gEAKofxiQAUHns3XRAdw16pNAKaoaGrerr4rvH6Pxpw7X9j9168Lx/lvucLbs207sbX1ZibJL2bNgv/0B/M0Tw0PnPlLtvj6+hWzN16t9OY246V217tSq2LWMSAKh+GJN4BxUcUG35N2yoZrNm6vADDypr507XfktIiGpfe63q3Hara3J/zuHDXjmnPTZWUbfepvRVq+TMzDyx02qVX926yj12zPhWqoqWvXevuSR9951qTp6kBk8/XWSIgXADAKA8cpw5Xu4v26v9AYCvGb+Yf/6nx/TC1W/owLZo1/6Q8GBd+tBFmvqPi1z7crNzvXLOo/tj9di457T+l83Kzjzx72mjKkLtxrXkWHFIjgCbUgY2kmwnyxtb03JU6/u/FLQ3UY4Gx5Tdrr6sdinglFyGJTNHgTuOlHgNB7ZGm8uPs5Zq/G0X6PbXryuyLWMSAAAAoOI069BY/170qF665k1F7Tz5d5DQiBBd/ugkTb5vnGtfjpfGJNG7YvTo2H/rz583ucY5VptVdZrUVmxUnE6H/VuizGXhjF806d5xuumlq4psy5gEAAAAqDitujXXswse0UvX/U+H/zr594XwyFBd9eQUTbhjlNfHJPs2H9QjY5/Vup82KTfH7hqT1G1WR7EHT8+YZN+mg+byw3s/6/JHJmraPy8tsi1jEgAACkfAAdVaUPv2avXdt0pft15Zu3bJGhqqsBHDZQsLK1D1wBoRIUdSUrnPmbZsmfsOh0O5R0+UXg7u1UuO1FTlxsXKHl94ZQlvSvzyKwW276BaV1xe4ecCAJx5/C3+Xu4vwKv9AUBl0K53a03f8qo2L99uhhyMiUQDxvZScFiwW7sWXZopOCxIGal/B6XLYdX8dW7bDodTsVEnSi8PyQ5R4uJYRUdalZiWIb/jmQrZcVwW+4kwdvAf+8yyDdlt6pqVHPJYkzMUsnSXrBmlC7d99+ZCte7RQqOuO6fc7wsAUAUZD/so7wM/TtPTvgGguuo0oJ1mbP+vNi7dalZ0qFErTP3G9FJwqFGy7STje7tR/S0vKO3VMYndYYYbjGcxdTmro1ISUnU8JkEpx1NV0b56Za7a9Gypcy4fUuHnAgBUQoxJAMDnug7pqFk7X9P6X7bo0O4YRdQJV/8xvRQYHOjWrl3vVvLzt7lCCeWxev76gmOSg3GyWC3qclYHJcelKP5IglLiC6/A7U2f/Otrte7ZUkMu7l/h5wIAVEKMScrs5CMbgWospFdPRV46RRHjxhYINxisQUGqOWlihV9Hxrp1qnv3XQobMUKnS8JHH522ss8AgDNLqF+4LCq8SlBpWWVVqF/B/0YDQHX6Bf7Ym87ViEsHFwg35FV1OH9axY8TtqzcqZsemayzazVQxK/RCt0a5wo3GCwOp0JW7lGNr9cpeNU+Bf15UKE/bVf4NxvkF59epnPOeW2+F98BAAAAgLLoPryzxt18noZdMqhAuMFQo1a4zrl8aIXeXONPFdt+36mbXrpavc7uqtNlzms/nLZzAQAAACi8SkGvc7qaY5KhkwYWCDcYIuvX1LApgyr09jkdTm3/Y7du+c816jqk02n7qOb8lzEJAAClRQUH4G9177pLWTt3Ke233wrcE0tQkAKaNZVfg4ZK+/XXct2z6DvulOzlTxt7KvvAAdmPH5dfnTqn7ZwAgDNDgDVQLUPaam/6rnL31SKkrdkfAJzJrnvucu3felAblmwt8FpgSIAatWmg2g0jtXbRxnL98v7xCS+YTysqjjUtW4HbT5aLLm856LTkdIXWCPFKfwCAKoQnEwFAlXLzK1fr4I5obV2xs8BrQSGBatyuofm01XU/by7zOey5Dj0y+lk5HMWPSbxp55o9ysnOkX+Ad6uRAgCqAMYkAFCl3P7adTq0K0Y7Vv9V4LWg0EA17dDYfGCUUaGuNIzHPNnr15AjLEg5Wbl6aPS/pNzTNybZunKn+XBaI+gBADjDMCYpMwIOwN+sAQFq+s7bSvnlFyXN+Va5x47Jv2FDs7JD6NCh5pdMe2qaDlx2mbJ2lWMi52kMN7jYbKf/nACAM0Kn8J5eCTh0Du/hlesBgKrMmDD03KLH9Nuc1frpw6VKOJqk+i3qavT1I9X73G7mmCQ1MU13DnpEUTsOlfk8JYUbKoLVRgFJAAAAoLIzJgq99MuTWv71Kv300TIlxSarUev6GnX9SPNpq4bk4ym6Y8A/dHjP0TKf53SGGwzGWMpqZUwCAAAAVHZhNUP1yq9Pa9ns37X4k1+VfDxVjds20Jgbz1X3YZ3NNvFHEnTnwEd09ECsR33m1gtXZv/WctQ4WV07MzNHgRsPKuCvYzodbDYr4QYAAEqJgAOQj8VmU41zzzWXwtjCQtX8ww909PkXlDx/vpxZWZX+/gV16iS/yEhfXwYAoJpqFNRUkf51lJATV+Y+avnXUcOgpl69LgCoqmx+Ng2bPNBcivrl/stLn9I7//eBfv3yD+Vk5ZT5XLkRQcroUl+59cMlh1OB++IVtP2YrNneDWV3OauDgkODvNonAKCKcDgli7P8fQAAThs/fz+NuHSwuRSmRu1wvfLrP80xyfKv/lBujg8e6lRKvUZ2NcdaAIAzEGMSAKhyjMprI68Yai6FqdUgUq8u/6feuneWVn67Rvbcosck9pohSh/RUTplPOAM8jdDD7I7FbDPs6BEefQd3bPCzwEAqKQYk5QZAQeglGw1a6rRv59V/YceVPaBA8rYsEFHn/13pb2PEZdM9vUlAACqMeMJeCPqjNb3Rz5TrrP0k2z9LP4aXmc0T6wAgFKIrBehhz68U7e+eo0O7zmijUu3afpDH5fqHma2q6Pkc9pI+Sor5DSJUHrPRqr53Tb5JWR47TMZc9N5XusLAAAAgO/Vbhiphz+5W0n/TVbM3qP686dNmvXY56qsLrztAl9fAgAAAAAvqtukth6ffZ8SjiXpyL5jWvXDn/rkma8LtMvq0rhAuMHt9W5N5L8vVpYK/nQuumN0BZ8BAIDqh3qsQBnZIiIU3K2bIi66SJbgk2XMKhNLSIgiL77Y15cBAKjm6gbW1/n1JphhhdIw2hvHGccDAErPeHJqh35tdf41w+Uf6Pm/g3NrBhUIN+RxhAUqaXQHeetZ2UbFiRGXDvJSbwCAqsbpdHhlAQBUThF1avw9JhlRaSskGNc4cFwfX18GAMBHGJMAQPV/IFTH/ifGJFare0zBabEot0mtYo93hgXJXiesQq+xdqNI9RjRpULPAQCovBiTlB0BB6CcbOHhirxs6mm5j5aAgFK1r3XFFaU+BgCAsmgS3EIXNpiqSP86HrWv5V/HbG8cBwAon5p1IzT6+nM8bp/RpUGh4YY89shgZTevWehrAUGlC7NdfPcY2WyVc6ITAAAAAO+o06iWzrt6+Gm5nQHBpfubxyX3X0jlUAAAAKCaa9iyvkZMPct9p81S7N9CXEoZ1g4MDSxV+0sfvKhU7QEAwAkEHAAvqHfvvap5ySWStWL/JxXSv7+C+/T2rG2/fqpz6y0Vej0AAORnVGKY3GiaxtWfolYh7WQ5pZinVVa1Cmlvvj6p0TQqNwCAF938ytU6b9pwjybu5DSsUXKbBuGF7u9zfg916N/Wo2vqfV53XfrQBI/aAgAAAKjabn/jOp192SkTiirAoAv7qE3Plh61HTCutybeM7bCrwkAAACA793z7k0aMmmAa9uS65AlNbP4gxxOWZMzSnWeYZMGqEWXph61HTKxv8bdel6p+gcAACf4/f0TQDlYbDY1fPop1b7heiXPXyBHaorsSUlKnP2lV++rIyVFzWbN1PH3pitx9mzlxsZKNpsC27aVMzfXfN2/YUPVnDRRERdeSPUGAMBpZ0ysbRTczFyyHVlKy01VjjNb/pYAhfqFKcBauidaeNPSpUvLdfy0adPMBQAqIz9/P90/4zZd9vDFWjb7d6UnpysxNlmLZi4p2NjhKLE/i8NZ6H6j3xd+flyf/3uOFry/WAlHk+Tnb1OLLs2UnZWj9KR01W9RV6OuO0fnXD7EvC4AwBnM+M9JEf9NKVUfAIBKLyDQX//4+C5d/ugkLf/qD2WkZuh4TKJ+/miZV8+TnpKhl5Y8qc+e/cYc7xjjHr8AP7Xo3FRZGVnKSMlUw9b1Nfr6kRoxdTAV5QDgTMeYBADOGIHBgXp89n06sC1Ky79epcy0TEXXCNSC7VFFHuN3KEHW9OxSnSc9JVOvLHvaHJMsnLlEKfGp8g80xiTNlJmeaY5JGrdtqNE3jNTwKYNkreCH5QIAKjnGJGXGTAPAiwKaNlWdm240151OpxyZmUr+fq7X+rdFRsoaFKS6d9yuOrfdaoYorMHB5j4AACobI8wQEOC7QAMAnIkat2lohhwMDodDGamZ+vXL393aBO5PUG4JVRwC9icUuj+ibg0Fhwbpmmem6qqnLlFaYrqCQgMVEBTgxXcBAAAAoKpq1qGxLn90orluz7UrNTFVf8z902v9R9SpodAaIbr+uSt0zb+mMiYBAAAA4KZ5p6bmYsjJtSvhlW/1x+YDBe6SJSVTQWv2lWlMEh4ZphtfvErX/ftypSamKTg82Ax9AwAA7yEiCFTkE6yff16NXnxRtrp1vdJnxPjxJ/u3WuX3d+ABAAAAAE5lPBXokc/u1gOzblfNuicDDcFbj8qSkVPkDfM/mCj/2LRCXxt5xTDXus1mU43a4YQbAABFczq9swAAqiSbn01PfnO/7pt+i8Jrh3mlz5FXDD3ZP2MSAEBJGJMAwBnN38+ml++doIeuGakadqeUlStrcoYCN0YpdOFmWTNKV73BMPLKfGMSP5sZeCDcAAAoEmOSMiPgAFRwyCFi3Fi1WfyzwkaeU2J7W716Rb4W0qePwj3oAwAAAADyhxzOvWqYPt7/P/Ub3fPEvsxc1fx+m6wpWQVuVEOHTRGLdhZ6A3uN7OrqAwAAAAA8YYQQLrj2bH2y73/mmKIktRvVKvK1/mN6qec5JfcBAAAAAHn8/Gy66Oxu+vatmzX4WKrC5m5Q4JZoWbNzixiTRBZ584ZM7K8ugztwcwEAOA38TsdJgDOdNSBATd94QxkbNihp7jzZk5MV0LyZ/OrXV/befbL4+SlsxHAF9+yp4+9NV/ysWbLHx5vHWoKCFHHhhar/0INmOwAAAAAorcDgQP1r3sPa8tt2/fLZCqUnp6tJm8YKHdxKexKSFeBn0/AurdWleX19Wr+R5rw2X8nHU8xjg0ICde7Vw3XTS1eagQkAADzmcBj/zwt9AACquuCwYD3/4+PauGyrln2xUumpGWravrFZbS5q52EFBPlr8EX91aZnC3305Jf6/n8LlZJworJccFiQGZK4/vkrzAdLAQDgMcYkAIC/hUaE6pWlT2vd4s369cvflZmeqRadmiosMlTROw8rMCRQQyYOUMuuzTTz0c80752flJaUbh4bUiNYY24YqWufvYz7CQAoHcYkZWZxOqnxDVQ2zuxsZWzaJGduroI6dpQtIsLXlwQAAADgDJKdma0dq/+SPdeudr1bmb/4BwDAE9HR0WratKm5PizsEgVZy/ffkExHmpalzjbXo6Ki1KRJEz4IADgDZGVkmWMSh92h9n3bKCQ82NeXBACoIhiTAAC8ISMtU7vW7JExtbJ939ZmaBsAAMYkpw+PgwcqIUtAgEL69PH1ZQAAAAA4QwUEBajb0E6+vgwAAAAAZ3AVuu7DOvv6MgAAAACcoYJDg9R9OGMSAAB8hYADAAAAAAAAAMD7jOLB5S0gTAFiAAAAAOUZTzAmAQAAAOArjEnKzFr2QwEAAAAAAAAAAAAAAAAAAAAAALyDCg4AAAAAAAAAAK9zOhxyylHuPgAAAACgrOMJxiQAAAAAfIUxSdlRwQEAAAAAAAAAAAAAAAAAAAAAAPgcFRwAAAAAAAAAAN7ndJ5YytsHAAAAAJR1PMGYBAAAAICvMCYpMyo4AAAAAAAAAAAAAAAAAAAAAAAAn6OCAwAAAAAAAACgYp5M5KCCAwAAAAAfYUwCAAAAwJcYk5QZFRwAAAAAAAAAAJCUmpqqN998U+edd57q16+vgIAA82fv3r31yCOPaPfu3dwnAAAAABWGMQkAAAAAX6osYxIqOAAAAAAAAAAAznhLlizRVVddpejoaLd7cezYMXNZt26dXnjhBT322GPmL/FtNtsZf88AAAAAeA9jEgAAAAC+tKQS/Z2ECg4AAAAAAAAAgIopvex0lHNxnpZPZtGiRRo1apTbL+39/PzUuHFjhYSEuPbl5ubqiSee0C233HJargsAAABAOTAmAQAAAOBLjEnKjIADAAAAAAAAAOCMdfjwYV122WXKysoyt8PDw83yy4mJiWbgISUlRQsWLFC7du1cx7z33nt69913fXjVAAAAAKoLxiQAAAAAfOlwJfw7CQEHAAAAAAAAAIDXOR1OrywV7eGHH1Z8fLy5HhQUZFZzuPXWWxUaGmrus1qtuuCCC7RmzRp1797ddZxRgjk1NbXCrw8AAABA2TAmAQAAAOBLjEnKjoADAAAAAAAAAOCMFBMTo08++cS1ff/992vgwIGFtq1Ro4a+/vpr+fv7m9vHjh2jigMAAAAAxiQAAAAAqqyYSvp3EgIOAAAAAAAAAADvczq8s1Sgzz//XLm5ua5KDbfddlux7Vu3bq2LLrrItf3ZZ59V6PUBAAAAKAfGJAAAAAB8iTFJmRFwAAAAAAAAAACckRYuXOha79evn+rXr1/iMePGjXOtr127VgcPHqyw6wMAAABQvTEmAQAAAOBLCyvp30kIOAAAAAAAAAAAzkjGL97zDBgwwKNj+vfv77b9+++/e/26AAAAAJwZGJMAAAAA8KW1lfTvJH5e7xEAAAAAAAAAcMZzOpxyWpzlug9OZ/mOL86RI0cUHx/v2u7YsaNHx7Vs2VJ+fn7Kzc01t3fs2FFh1wgAAACg7BiTAAAAAPAlxiRlRwUHAAAAAAAAAMAZJzo62m27SZMmHh1nhBvq1avn2q6I0ssAAAAAqj/GJAAAAAB8KboS/52ECg4AAAA4I6Snp6tDhw6KiorSzJkzNW3aNI+Oy8jI0Mcff6wffvhB69atU1xcnLm/Tp066tOnjy688EJdfvnl8vf3r+B3AAAAAFQtWc504/FE5etDma71mJiYEtt7+st3w7Fjx9y2a9eu7fGxtWrV0uHDh831/FUgAAAAAFQejEkAAAAA+BJjkrIj4AAAAIAzwl133WWGG0rjp59+0tVXX13oRCqjL2OZM2eOnn76ac2ePdsMPAAAAAA4YY1+8eqt6NevX4ltnE6nx/2lpqa6bYeFhXl8bP62p/YDAAAAoHJgTAIAAADAlxiTlB0BBwAAAFR7zz//vKZPn16qY+bNm6cJEybIbreb21arVb179zarQBiTpjZv3qyNGzear+3bt09DhgzRsmXLPJp0BQAAAMD3srOz3bZLU5Utf9ucnByvXhcAAACAMwNjEgAAAAC+lF2J/05CwAEAAADVlhFEeOqpp8ylNOLi4nTFFVe4wg09evTQRx99pC5duri1W7lypS6//HLt379fmZmZmjhxonbu3KmQkBCvvg8AAACgqmjQoEGpK6d5wqiqVrduXfn5ee9X2qdWe7BYLF7rGwAAAIBvMCYBAAAA4EuMSbyDgAMAAACqpfj4eF155ZWaP39+qY996aWXlJSUZK43b95cv/zyiyIjIwu0GzRokBYvXqyePXsqOTlZ0dHReuedd3TPPfd45T0AAAAAVY0RQGjSpInX+62IPgMCAty2S/OEofxtg4KCvHpdAAAAAMqOMQkAAAAAX2JM4h1WL/UDAAAAVArGU1g//PBDdevWzS3cUJqqCl988YVr/dFHHy003JCnVatWuuWWW1zbc+bMKdN1AwAAADi9atSo4badlpbm8bGpqamu9dDQUK9eFwAAAIAzA2MSAAAAAL5UoxL/nYSAAwAAACpGdraUEC8dO3rip7FdwTIzM9W7d29dffXVOnTokLkvODhYH330kfr27etRH0eOHNH+/ftd22PGjCnxmKFDh7rWt2/fXqZrBwAAAHB61alTp0AVOE/lb1uvXj2vXhcAAACAMwNjEgAAAAC+VKcS/53Ez+s9AgAA4MzldEqHD0tbt0j7953YzmOxSC1bSp26SI0andiugIDD+vXrXdtnnXWW3n//fbVr107Tp0/3qI+MjAxdcsklZkDi6NGjatiwYYnH2Gw213pKSkoZrx4AAADA6dSiRQu37cPGWMYDubm5OnbsmGu7SZMmXr82AAAAANUfYxIAAAAAvtSiEv+dhIADAAAAvCM2VlqyWEpIKPx1I+ywd++JJTJSGnGOVLduhdz9Vq1a6ZlnntGll14qSymDFC1bttQXX3xRqmPWrVvnWufprQAAAEDVULduXdWuXVvHjx83t3ft2uXRcXv37jV/eZ+nc+fOFXaNAAAAAKovxiQAAAAAfKluJf47idXrPQIAAODMEx0lff9t0eGGUxntjPbGcV4UGBio2bNnm1+4p06dWupwQ1k4HA7NnDnTtT1gwIAKPycAAAAA7+jbt69rffXq1R4dc2q7Pn368HEAAAAAYEwCAAAAoMrpW0n/TkLAAQAAAOWv3LBooVF/rHTHGe2N44zjvSQ4OFiTJ0+WzWbT6fL6669r9+7drm3j/AAAAACqhvPOO8+1/ttvvykxMbHEY+bOneta79SpU4WUXgYAAABwZmBMAgAAAMCXzqukfych4AAAAICyczqlJYtLH27IYxy39JcT/VRBa9as0UMPPeTa7tatmyZNmuTTawIAAADgufwB6ezsbDPAXJw9e/Zozpw5ru0rr7yS2w0AAACgzBiTAAAAAPClyZX07yQEHAAAAFB2hw9LCQnlu4Px8VLM4Sr3KezatUvjxo1TZmamuR0QEKD33ntPFovF15cGAAAAwEPGU4XyV2H75z//qcWLFxfaNiUlxQw05+TkmNsRERG6/vrrudcAAAAAyowxCQAAAABfalJJ/05CwAEAAABlt22Ld+7e1q1V6lPYuXOnzjnnHB09etS179VXX1W/fv18el0AAAAASu/ZZ59VWFiYuW78Un7MmDF67rnnlJSUZO5zOp368ccf1bdvX23YsMF13NNPP606depwywEAAACUC2MSAAAAAL70bCX8O4nFaZwVAAAAKK3sbGnWDONbbPnvnVH1YNq1RhmECvschg8frmXLlpnrM2fO1LRp08rUz59//qlRo0YpNjbWte+hhx7Sv//9b69dKwAAAIDTa+7cueZTh4zyy3mMkswNGjRQYmKi0tLS3Npfdtll+uSTT/iYAAAAADAmAQAAAFDlza1kfyehggMAAADKJi3VO+EGg9HPKV+EK+uX+WHDhrmFGx544AHCDQAAAEAVN27cOM2bN09NmzZ17bPb7Tp06JDbL+2tVqvuu+8+ffjhhz66UgAAAADVEWMSAAAAAL40rpL9ncSvQnsHAABA9ZWT4+X+TiaAK6PXXntN99xzjxwOh2vfM888o0ceecSn1wUAAADAO84991zt2LFDH3zwgebMmaNt27aZ4ebAwEC1aNHCrAp34403qkuXLtxyAAAAAF7HmAQAAACAL51bif5OYnE6vfXYXQAAAJxREuKl2V94r79LLpUiI1VRjC/Zy5YtM9dnzpypadOmeXScEWi4++679frrr7uVYHvrrbd0ww03VNj1AgAAAAAAAAAAAAAAAMCZhgoOAAAAKJvQMMlikbyRl7VapdDQSvdJGKXWrrzySn322WeufaGhofr88881duxYn14bAAAAAAAAAAAAAAAAAFQ3Vl9fAAAAAKqogACpZUvv9NWi5Yn+KhGj0Nmp4YZ69epp6dKlhBsAAAAAAAAAAAAAAAAAoAIQcAAAAEDZderinbvXuXOl+xQeffRRt3BDixYttGLFCvXp08en1wUAAAAAAAAAAAAAAAAA1RUBBwAAAJRdo0ZSZGT57mCtWlLDRpXqU1iyZImee+4513bz5s3166+/qk2bNj69LgAAAAAAAAAAAAAAAACozgg4AAAAoOwsFmnEOZKfX9mON44bfvaJfioJh8OhW265xfxpCA4O1rx589S0aVNfXxoAAAAAAAAAAAAAAAAAVGtlnIkGAAAA/K1uXen8C6RFC6Xc3FJ8E/U7cZxxfCXyzTffaOfOna7tJk2a6I033ihVH2+//XYFXBkAAAAAAAAAAAAAAAAAVG8EHAAAAFB+TZpKF06QliyWEhJKbl+r1onKDZUs3GD44osv3LZ3795tLqVBwAEAAAAAAAAAAAAAAAAASo+AAwAAALzDCCtMniLFHJa2bpH27ZOczpOvW61Si5ZS585Sw0aSxVIp7/y2bdt8fQkAAAAAAAAAAAAAAAAAcEayOJ35Z50BAAAAXpKdLaWlSTnZkn+AFBoqBQRwewEAAAAAAAAAAAAAAAAAhSLgAAAAAAAAAAAAAAAAAAAAAAAAfM7q6wsAAAAAAAAAAAAAAAAAAAAAAAAg4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAABVQHZ2tq8vAQAAAAAAAAAAAACACkXAAUCFT8BZsGCBbr/9dg0ePFj169dXUFCQgoOD1ahRIw0ZMkT33XefVq5c6XGfFovFo8Xf31/h4eFq1qyZeW7jGpYsWSKHw1Hm95OWlqY333xTY8eOVZMmTcz3YpyjVatWmjp1qmbPni273a7yGj9+vNt7mTRpUrn7BAAAAFDQk08+6fre3aJFi0JvkbE/r43R/nSLi4vTtGnT9Nlnn532cwMAAAAAAAAAAAAAcDr5ndazAThjZGZm6r///a+5xMTEFNrG2G8sv/32m1555RV1797dbD9s2DCvXENubq5SU1PNJSoqygxRGOEEI5jw6quvljo0MG/ePF177bWKjY1125+VlWWeY9++ffr888/VsWNH82e3bt3KdN1Hjx7V/Pnz3fZ99913OnLkiBo0aFCmPgEAAABUTe+//74eeOABxcfHa/jw4b6+HAAAAAAAAAAAAAAAKhQVHAB43apVq8zJ/Q899FCBcENoaKiaNm2qhg0bmhUW8tu4caM5Yefhhx+W0+n06FxG9YTWrVsXuhhBhpo1axY4Jjo6WpMnT9Zll11mVpjwxMcff6wLL7zQLdxgtVrVuHFjsypFftu3b9fAgQP1xx9/qCw+/PBDM5xhMJ4QazC2p0+fXqb+AAAAAFRd119/vRluAAAAAAAAAAAAAADgTEDAAYBXff/99xoxYoR2797t2te1a1f973//0549e8xKBwcPHtThw4eVkpKipUuXmkGDvIn8hn//+9+64447PDrfxRdfrL/++qvQxajakJCQoLS0NK1YscLsMzAw0HXsZ599pksuuaTEMMWuXbt03XXXudoZfRjXaIQdjLCEUVnBeE+33HKL65j09HRNmDBBycnJKq2ZM2e61o3ry/Pee+/J4XCUuj8AAAAAAAAAAAAAAAAAAACgKiDgAMCrlRumTJmijIwMc9vPz0+vvPKKNmzYYE7+b9WqlVt7IygwbNgwffLJJ/rxxx9Vo0YN12tvvvmm20T/8ggJCdGgQYP02muvmdfYrFkz12vfffednn322WKP/+c//+mq9GBUbZg3b55ZnaJWrVquNkZVCiPE8fLLL7v2HT16VP/5z39Kda1G1QejAoQhICDADFIY5zQYIYr58+eXqj8AAAAAAAAAAAAAAAAAAACgqiDgAMArjFCDUYkhMzPT3LbZbPrmm290zz33uCboF2fkyJH6+uuv3do+8MADSkxM9Oon1L17dzNMERER4RZg2Lt3b6HtjaoNc+fOdW1feuml5rUWxXi/Xbp0cW3PmTOnVNc3Y8YM1/rAgQPVsmVLDR061LXv7bffLlV/AAAAAAAAAAAAAAAAAAAAQFVBwAGAV7z00ktuIYHHH39c48aNK1UfRnDg+uuvd23HxcVVyIT+9u3b69VXX3VtZ2Vl6cUXXyy0bWxsrJKSklzbQ4YMKbZvi8Wis88+27X9119/lSok8sUXX7i2L7roIvPn5Zdf7tq3YMECHThwwOM+AQAAAAAAAAAAAAAAAAAAgKqCgAOAcjOqNrz++uuu7UaNGumhhx4qU1+PPPKIWxWHJUuWVMgndPXVV6tdu3au7Q8//NAMGJzKCD/kV1ib4jgcDo/bfvXVV0pOTnYFJSZOnGiuT548WcHBwa7+3n333VJdAwAAAFCZHDlyRM8//7xGjBihevXqyd/f36yw1rlzZ91www1avny5R/0Y342NimnTpk0zQ8w1a9Y0vzc3b95cY8aM0ZtvvqmUlBRVRU8++aQ5JjCW/K655hrX/hYtWpj77rzzTtc+YywVHR3t8XnatGnjOvbBBx907Z81a5Zr/9ixY137Fy5caAaxjXMHBgaqVq1aGjx4sJ599lkzHF5a27Zt06OPPqp+/fqpQYMGCggIMP+Z6NOnjzmm3Lx5c6n7BAAAAAAAAAAAAABUbQQcAJTb/Pnz3SazXHvttebElLJo1qyZWQ3i008/VVRUlBYtWlQhn5Ax8ee6665zbaenp+vHH38s0K5hw4YKCQlxm9BTHKfTqZ9//tm13aVLF4+vacaMGW6VIpo0aWKuG5O9JkyY4NYuJyfH434BAACAyiA7O1uPPfaYWrZsaU5eX7p0qTmOyM3NNYO+xmT36dOna+jQoRo/fryOHz9eZF+rV69W7969dfHFF+uDDz7Qrl27zMprRvj64MGD5hjl9ttvV+vWrc3J+tXZlVde6TYeyV8VrjirVq3Snj17XNtXXXVVkW2N+2q8PmrUKH377bdmVTnj80xISNDKlSvNoLoRlsg/pilOamqqWb2va9eu+te//qU1a9bo6NGj5jjH+Gfizz//NEMwPXr0MAMsRnsAAAAAAAAAAAAAwJmBgAOAcjMmD+V37rnnlqu/e+65R1OnTnVN8K8o559/vtt2YU+K9fPzMydX5TFCEB9//HGRfRqTc4yJWfnDHp7Yu3evli1b5vZk1vzy92M88daYVAQAAABUFUYltNGjR+uZZ54xJ8vn/75tVICrXbu2W/vvv/9ew4cPV2JiYoG+vvvuO/O1DRs2uO03nvzfuHFjsyJEHmOyvPHdOn91gqrAqIxghDOM5dT3mLc/r4JD3759zQoWeT7//HOPzmGEyvP06tXLrKBRGCM0YYQbPvroI9e+8PBw83Oz2WyufUZIxQiRG9UcimMEGYwQy/vvv+9W8S4sLMwMvBs/8xivGwEWo0qEMQ4CAAAAAAAAAAAAAFR/BBwAlJvx9NQ8wcHBGjBgQJW4q506dXKbkLN+/foiQws1a9Z0bRuTe2655RatW7fOnJxlTNb6/fffdemll5pPpM1z3nnnmU8l9YTxVFlj4lDeZKHJkye7vX7OOeeoefPmru233367FO8UAAAA8K3bbrtNixcvdm0bE/SNifhG1YVDhw4pLi5OmzZtMisE5NmyZYvuvPNOt342btxofu82voMbjO/pL7/8sjlp3liio6PNPr/66it16NDBddwLL7yg9957T1WF8b7/+usvc8nPqGqQt9+ogFFYFYe1a9e6VWYojN1u1+zZsws9/lRGhbovv/zSXDeqZhjnzfvcjh07Zo6XgoKCXO0fffRR/fTTT0Wed9KkSW5jr8suu8ys2GAEJIzKECkpKebrV1xxhauN8c+G8bkbxwMAAAAAAAAAAAAAqjcCDgDKxXii5q5du1zbxpNDAwICqsRdNZ7sajwhNM/+/fsLbdeyZUtzgk5ewMAIIhgBA2NyjxHoCAkJ0aBBg/TFF1+4nkJrVKEwnjqbP0BRlLynkua55JJLFBoa6tbGYrFo2rRpru0lS5a43XcAAACgslq1apVmzpzp2u7Xr585CX/KlCnmd+k8Xbt21bx589wqqBnV0/K+9xrfw41J73kVIIzv8sZE+HvvvdesbJDH+I4+ceJE8xwjR4507b/77rvNig7VkXFfjDGDp1UcfvnlF1dFBGP8YoQMipKdnW3+NCpwrFixQsOGDXOdy6g08fDDD+uHH35QYGCg63My7nX+6gx5Xn31Vf3222/mutHH9OnT9cknn5gVJPJff48ePcyKEfmD3UbFO4LeAAAAAAAAAAAAAFD9EXAAUC7GUzazsrJc23Xr1q1SdzR/ZYbiJjv16dNH27dv180331xsf8aknIceekjPPPOMa4JPSYwnoh48eNC1fc011xTaztifN+nHmDT0zjvveNQ/AAAA4Ev//e9/XetGoMEIBuf/Hp6f1WrVW2+95QpNG9978ybrG5PojaoOeT799FO1aNGiyPMaoWHjXBEREeZ2enq63njjDVVHRhh7yJAhHgccjHuXv/Jc/oBIYRo3bmweU9QY5+yzz3arZrdt27YCVRxycnLMgEOe6667zlyKc9NNN7lVcjCqdVDFAQAAAAAAAAAAAACqNwIOAMolLS3NbbtOnTpV6o7mr5SQkZFRZLt169bp/PPPd3tiqPGkU2Oij/Ge8wcPjHCDUcni1Ak9Rcn/NFvjuMGDBxc5acmYOJRn1qxZrqfXAgAAAJWRMandqGyWZ/LkycWGEgwNGzY0J7Ub1Rduu+0282n+hvxVz4x9RX1vzs+oMGBUisjzzTffqLrKHwQwgiBGyKAwxhhizpw5ru2rrrqqxL7vv/9+V1CkKHfeeafb+OrLL790e/3HH3/U4cOHXdu33367PHHrrbe61vft26cNGzZ4dBwAAAAAAAAAAAAAoGoi4ACgXGw2W5W+g/kDAnlPiT3Vt99+q0GDBmn58uXmdqtWrcynlyYmJio6Otqs/GBM1HnhhRdUo0YNs42xf9SoUfruu++KPX9CQoLZf0nVG/Lkf8JpfHy8Zs+e7eE7BQAAAE6/9evXu4Wix44d69Fx77//vhkYNiouXHjhhea+vO/jhp49e3p8DfmDEFu3bjW/R1dHRngkf4WFoqo4GJUwkpKSzHUjtDB+/PgS+7700ktLbBMeHu4WyP7111/dXs//+RnjyG7duskTffv2dRur5e8HAAAAAAAAAAAAAFD9+Pn6AgBUbXkT+vOkpqaqKsmb2GOoWbNmgdf/+usvTZ06VVlZWeZ2//79tXDhwgJtGzRoYD7V1Jh8NWLECMXExMhut5tPQ92xY4f5FNrCGEGJvJCFMcmnpKenXnTRRYqMjDSDEQajooQnT1wFAAAAfGHnzp1u2927dy9TP8b366NHj7pVYjh1An1R8ldqMyqu7d+/36zsUN0YY5Rx48bpq6++Mre/+OILPf3004WOQfJMmjRJQUFBxfbbrFkz1a9f36NrMD7fuXPnmut79+5Vdna2K5xghF3yfw5t27b18J3JHFvlMfoFAAAAAAAAAAAAAFRfBBwAlEtISIjq1KmjuLg4czsqKqpK3VGjCkNxAYcnn3zSFUAw3qsxkaqwdnnat29vPil12LBh5nZycrJefvllvfTSS4W2nzFjhmvdYrFoyJAhpao68fvvv2vTpk0eP/0UAAAAOJ3yhxIMxtihLI4fP14gqJw/rFwa1bWCg+HKK690BRx27dqldevWqVevXq7XjfHJ/PnzXduehKWbNm3q8fnr1avnFkowPre8sHf+z9DhcGjPnj0qi+r8+QEAAAAAAAAAAAAAJCs3AUB5derUybVuTKLJzc2tEjfVCGXExsa6tjt06OD2ek5OjhloyD9ZqFGjRiX2O3ToUFfAwZC/j/yMYIIx4SiPcd+MST4lLfmfQJtXxQEAAACojPKHc/NCw2VR1jBDYdLS0lRdjRo1SrVr13ZtG+Hr/IyxSd5n0qJFC48C1uHh4R6f/9TPN68Snjc/w+r8+QEAAAAAAAAAAAAACDgA8IL8k2LS09O1cePGcvU3e/ZsjR492qx6sH79evPpnhVh9erVbtv9+/d32zbCGvnDBEZwwVMjRoxwre/bt0+pqanFVm8oj08++aTQ/gEAAABfCw0Ndds+NazrqeDgYLftt956S06ns0zL+PHjVV35+/vr0ksvdRtbGe85z6effupav+KKK8wqcqUNqRQnJSWlyM8//2dojL3K+vnNmTPH4+sBAAAAAAAAAAAAAFQ9VHAAUG4XXHCB2/a3335brv6Mp4ouWLBA999/v3r16qWffvpJFWHp0qVu24MHD3bbTkxMdNuuWbOmx33XrVvXbTs5OdltOzs72wwm5LnuuutKNannnXfeces7/0QlAAAAoLKIjIwsUEWtLPJXJTAcP368XNdVnRmV5/IcOHBAa9ascd2zX375pdB2xSnNvT5y5IhrPSgoSHXq1Cn0M+TzAwAAAAAAAAAAAAAUhYADgHIzggGtWrVybb///vvKysoqU19Hjx51C0gYk2DOOeccr39KxvXNnDnTtd2iRQsNGjSo2EDD4cOHPe4/ISHBbbtWrVpu23PnznWb3DVlyhSVxuTJkxUYGOjafvvtt0t1PAAAAHA6dOjQwW178+bNHh1nPKXfGAfccMMN+ve//62GDRu6VQNYt26dx9dgVDs7tbJAdWZUR2jbtq3b2MOwcOFC2e12V5t27dp51N/OnTvNgLYnNmzY4Frv3LmzW4WI9u3bu9b37t2rpKQklSY4kb8SBQAAAAAAAAAAAACg+iLgAKDcjEkrd911l2s7JiZGL730Upn6euqpp9zCEddff738/Py8/inNmDHDLWAwbdo0t8k3hubNm8vf39+1XZpKEsuXL3etN2vWzHx66annz2M81fTss88u9ZNwx4wZ49pev369Vq1aVao+AAAAgIpmVGTL/13YmGTvCaOim1FtYPr06Zo1a5YCAgI0cOBA1+s///yzx6GFe++9VzVq1DBDx71791Z8fLyquyuuuKJAwGHevHmufVdddZXHfRnhBuN+exLyzl8lb+TIkW6vDxkyxLXucDj03XffeXT+lStXmgGX4OBgM5Tx8ccfe3ztAAAAAAAAAAAAAICqh4ADAK+46aabzEBA/qDCokWLStXHN99841aJwJiE9MADD3j9E9q9e7dbv0bAIH9AI09YWJiGDh3q2jYm4BhPLy2JETb48ccfXdtjx44tUAki/72ZOHGibDZbuSYtGajiAAAAgMrGCCaMGzfOtf3555+bVduKk5iYqK+++sq1fcEFF5g/L730Ute+5ORkj0LVe/bs0QcffOCagG9UATi1ulplZ7We/NWNp1UM8o8VNm7cqH379rnGIMZnUtoKcp7c61dffdUtrH7qeMUIaBtjrDxGZY6MjIwS+3388cfNn0bfxliuW7dupbp2AAAAAAAAAAAAAEDVQsABgFcEBgaaE4fyJt/k5ORowoQJeuONN8ync5bEeDKrMWEp/4Sdt956y+uTj4zJPcYEqdTUVNe+F154QTVr1iy0/f/93/+51o0JNcZEoOImZEVHR2vy5Mmu92FUgLjnnnvc2hj3yW63u7ZLO7ko/wSh/Pfniy++MCeDAQAAAJWJUUEhfzDBmPhe1MR243v07bffboYRDMb44uabbzbXjeMaNWrkavuvf/1LX375ZZHnNc5ljDGMCgR5KiJAXdFCQkLc3pMnWrVqpcGDB7u2//GPf7ju6ejRo1W7du1SXcOSJUv09NNPF/n6/Pnz9dxzz7m2jVBLly5d3NoYYy4jGJ9nx44dZiWJ/J/PqZ599lktXrzYtX3++ecTcAAAAAAAAAAAAACAao6AAwCvGTZsmBloyJOZmak77rhD3bt3N6sLGJP/84uPj9fs2bN11lln6YYbbjBDEfmDBZdddplXrispKUk///yzOSGqT58+2rt3r+u1W2+9Vddcc02RxxphiPxPijUCEj169ND//vc/1wQhg7FuvMfevXubT4nN/7TRNm3auPU5a9Ys13r9+vXN+1YWxpNXjTBFHmOSWN7TaQEAAIDKYsCAAeb37jzGd/OBAwdq4cKFys3Nde3/888/NWrUKH3yySeufcZ4omPHjq5QtfFdOi9UbYSGje/qxqR5Y7J8HmNcMXfuXPXv319r16517R85cmSZw8W+VK9ePdf6Rx995BbWLs6VV17pFobOY4QKyuKJJ54wx1S7du1y7Tty5IgeeeQRM9yeN54zKvH95z//KbSPJ598Uh06dHBtG5U6jH8+jIBE/vFgXvjB6DtPaGhokf0CAAAAAAAAAAAAAKoPizP/49IBwAuMSfbGBKb09PQCrxlP7YyIiDAn5RgBh1P/FWSz2cwngz788MNF/4vLYnGth4eHu034yc+YIGOEG4ylMHfddZdefvll85zFMYIaY8eOdXtyaJ66deuaxx87dqxApQojtPHuu++67fvtt980ZMgQ1/Ztt93mFgoprRUrVpgBkTzG5K9t27aVuT8AAACgIhjfqS+66CIz1JBfUFCQ+Z3aqExw6vf2c8891wwqGMGG/IxKb0bwIX9VtLyxhjG53vhubpwvv27dupnBCuNchU26f+qpp8z15s2ba//+/QXatGjRQgcOHHBN9DeOOV2MULMRBMhf0cEYAxkV5owQeV7g41RGCLtBgwZuFRKMCnAxMTFmWLo4RpAkfxC8c+fO2rp1q2u7Tp06ZrU6I+CQf0xnfJ7ff/+9+dkVxQhIGEHyffv2ue03PmfjfaWlpZljxVNfM8LxF154YbHXDQAAAAAAAAAAAACo+qjgAMDrrr76aq1fv14TJ050CyMYEhMTzYlBx48fLxBuMJ7iumrVqmLDDadKSUkxKyYUthw8eLDQcEPXrl3NiVLG0z9LCjfkTdJZtGiR+fRQYz2/2NhYc1JP/nBDZGSkOenq1HCDYcaMGW7b5X2C7ODBg9WyZUvX9vbt27Vs2bJy9QkAAAB4m/E92vgO/uCDD7oFFowgQlRUlNv3dmMMYQQYjInyp4YbDLfccosWLFigdu3aFRhrGGOAU8MNRiUD4ztyYeGGqsAIU4SFhbm2jSC5EcIwggr5q8edyhiXjBkzpsD4o6RwQ2GMsHf+YHVcXJx5/vxjOmOctXLlymLDDQbjczPGfZMmTXIbLxqBDeOfhVPDDe3bt9cvv/xCuAEAAAAAAAAAAAAAzhB+vr4AANWTMWnFeMqoEWaYM2eOWWnAeOLn0aNHzVCCn5+fOeGmbdu2GjRokDm5pVevXl69BuOJosZEoNq1a6tDhw7q0aOHxo8frz59+pS6LyMI8cwzz+j22283K1QYE3yMSglGUMN4YqoxWcp4Kux5551nBjyMyhKnMp5E+uWXX7q2GzVq5DZJqKyuuOIK/fOf/3Rtv/322xo2bFi5+wUAAAC8yRgDPPfcc2ZA4cMPPzRDxMYEfeM7tVGVwAjujhgxQjfddJM5qb04xiR64/v4N998ox9++EF//PGHOdYwKsUZVRzatGljfteeNm2aOfG+KjOqJ6xZs0bPPvusli5dar5P4142bNjQXDfGVEUxwh3GeCz/dlnUr1/fDIl8+umn5nho8+bNZhDBGAf1799fl112mS6++OIiq0mcyjjOGBtt3LhRX3zxhRlgMMaORp9GAMOoPNG3b1+zzwkTJpjvFwAAAAAAAAAAAABwZrA4T32EOgAAAAAAAKq85cuXa+jQoa4Q+s6dOz06btasWbrmmmtc2/zqCAAAAAAAAAAAAABwunj2aD0AAAAAAABUKZ999plr/aqrrvLptQAAAAAAAAAAAAAA4AkCDgAAAAAAANVMVlaWvvjiC3PdZrNp2rRpvr4kAAAAAAAAAAAAAABKRMABAAAAAACgmpk1a5bi4+PN9fHjx6tx48a+viQAAAAAAAAAAAAAAEpEwAEAAAAAAKAKS0tLU05OjrnucDg0e/Zs3Xfffea2xWLRgw8+6OMrBAAAAAAAAAAAAADAM34etgMAAAAAAMDfvvnmGz3wwAMVcj8++eQT9e/f3+P2q1ev1qhRo1S/fn2zakNqaqrrtZtuukn9+vWrkOsEAAAAAAAAAAAAAMDbCDgAAAAAAACUUnJysvbs2VMh9y0jI6NU7Vu1aqWsrCwdPHjQbf/w4cP14osvevnqAAAAAAAAAAAAAACoONYK7BsAAAAAAAAVrGnTpmaYoWbNmgoJCVGXLl30wgsvaMGCBQoLC+P+AwAAAAAAAAAAAACqDIvT6XT6+iIAAAAAAAAAAAAAAAAAAAAAAMCZjQoOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOf8fH0BAAAA8J7c3FwdOXKkQm5pgwYN5OfH10cAAAAAAAAAAAAAAAAAQMVghhoAAEA1YoQbmjZtWiF9R0VFqUmTJhXSNwAAAAAAAAAAAAAAAAAAVm4BAAAAAAAAAAAAAAAAAAAAAADwNSo4AAAAVFN/LGiqhvVs5eoj5phdA0ZFee2aAAAAAAAAAAAAAAAAAAAoCgEHAACAaqp+PasaNSpfwMEhp9euBwAAAAAAAAAAAAAAAACA4liLfRUAAAAAAAAAAAAAAAAAAAAAAOA0oIIDAABANWV3OsylvH0AAAAAAAAAAAAAAAAAAHA6UMEBAAAAAAAAAAAAAAAAAAAAAAD4HAEHAAAAAAAAAAAAAAAAAAAAAADgc36+vgAAAABUDIec5lLePgAAAAAAAAAAAAAAAAAAOB2o4AAAAAAAAAAAAAAAAAAAAAAAAHyOCg4AAADVlFG/wfi/8vYBAAAAAAAAAAAAAAAAAMDpQAUHAAAAAAAAAAAAAAAAAAAAAADgc1RwAAAAqKbsTqe5lLcPAAAAAAAAAAAAAAAAAABOByo4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfM7P1xcAAACAiuGQ01zK2wcAAAAAAAAAAAAAAAAAAKcDFRwAAAAAAAAAAAAAAAAAAAAAAIDPUcEBAACgmnJIspe7ggMAAAAAAAAAAAAAAAAAAKcHFRwAAAAAAAAAAAAAAAAAAAAAAIDPUcEBAACgmnLIaS7l7QMAAAAAAAAAAAAAAAAAgNOBCg4AAAAAAAAAAAAAAAAAAAAAAMDnqOAAAABQTdmdTnMpbx8AAAAAAAAAAAAAAAAAAJwOBByquISjidq3+aACQwLVoX8b2Ww2X18SAAAAgDNIakK8jkcdlH9QkBq2aSeLlUKBAAAAAAAAAAAAAAAAKBsCDlVUUlyy3rhzhn77+g/l5tjNfXWb1NbUhy/WuJvP8/XlAQAAAKjm0hIT9MuMt/XX2j/ksJ8Yk9SoW08DJl6qriMYkwAAAAAAAAAAAAAAAKD0CDhUEduPxmrNwWjZLFb1bVBfL45+Qfu3RLm1iY0+rtdufU8ZKRm65P7xPrtWAABQOTj+XsrbBwAYju79S4d2bpPV5qfGHTpq7qvPK+FwtNvNSY49ph/ffk25WVnqecE4bhwAAAAAAAAAAAAAAABKhYBDJRebmqZ758zXqgMnJw5ZJAV3ClbtXVZZswtOO/zo6S815qZzlZmWpb2bDigoJFAdB7SVnz8fNwAAAIDSSTkepx9ee0GHdmw7udNikZzOIo9Z8cXH6jLCGJOk6vjBA/ILClKjth1ktdm4/QAAAAAAAAAAAAAAACgSM94rsVWL1uu2pYuVHOo+CciYRpTepY4cQTbV/3B7geOMYMOD5z6tv9bvlz3Xbu6r1TBSUx+6SBPuGHXarh8AAPiWQ07ZzW8O5esDwJlr95rfNf+1F5Wbne3+QjHhBkNWeppmP/2wWfXB6TgRyg6rVVsDLr5U3c9lTAIAAAAAAAAAAAAAAIDCEXCoZDLSMuV0OPXu/R/qiz82KHlSu0LbOS1OpXeoqej7esiakauQrfEKX3NMtvRc8/Wda/a4tY+PSdCbd81QekqGLnv4Ytf+fZsP6Jv/ztefP26Uw+FQt2GddNGdY9Sxf9sKfqcAAAAAKqPszAwzwLB45jvatmxxmfs58tcut+3U+OP6efqbysnKVJ+xF7n2H9u/V+vmf68DWzaY523WuZt6jR6v+q3alOt9AAAAAAAAAAAAAAAAoOqxOJ0lPHoTp8XK79do9ovfaeuKna59xy5tr4xOtQu0dVqdchrRFIv7fltKtupP3yaL0yKnzSL/Yxmy5p54WmqewOAAfX7oXYXVDNXK79bomSmvKCf7RCgij9Vq0d3v3KTzrh6u3JxcBQYHevvtAgCAChIdHa2mTZua6ytX11XDhu6VoEorJsauQf1izfWoqCg1adLEK9cJoPLZtWqF1n7/jWL+OjkmqQgBwcG66e0PFRAUrJ2//6b5r78kh919TGKxWnXBrfeo/cAhcjjs8g9gTAIAAAAAAAAAAAAAAHAmIOBQCXzz3x/01j2zCuw/elUnZbapWaByg9O/YLjBxQw0WGWRRdb0HIWtOarIxVGy2E/mWO5592YNnTRAU5vepMy0rML7sUgWi8WsJtG8UxNdeOsFGnvzueb29lW7lZOVo1bdmiuiTo3yvXkAAOBVBBwAlMXq777S8k8Ljkkqyqjb71OL7r303q3XKDcnu4hWFlksRlEHp+o0a6GeF4xV17PPl8NuN0MYjtxc1W3RSsFh4aftugEAAAAAAAAAAAAAAFCxjDoA8KG4w/F69/6PCn0t4EhawYCDrZhwg8HPKtmNhpIjxF/Jw5oop36I6n28Q5a/Mw5x0cf104fLig43mCc6MZHIcGBbtF6/fboWzVqiuEPHFR+TaO73D/TX8CmDdNt/r1FoRGip3zsAAKhYRuzR4YU+AFRvSceO6rfPPjyt50yNP64tS34qJtxgcCqv3mDcwf366d03tHnxj0qOO6b0pBNjEj//AHU4a7hGXH29AoJDTs/FAwAAAAAAAAAAAAAAoMIQcKhAdrtdP334q+a/95MO7T6iGrXDdPZlQzT+tgtUo/aJp4z+OGup7LlGIqGgsDVHlDywkWTLl2goLtyQv83Jgg3K6FBLGW1rKmTXiUlAf8xbqxadm5b6/exau8dt26jiYAQldq/bqzdXP6eAoIBS9wkAAACg4thzc7V12c/a/MuPSjx6RCHhNdRp6Nnqfu5oBYWFmW22LP1JTufpjTPtWbtK4bVrl/q4I3t2uW0bAYktS37Usf17dNkzL8vmxxAXAAAAAAAAAAAAAACgKrM48x7TD68yQgtPTnxRf8z9s8BrDVrW0yvLnlbdJrX14Pn/1LqfNhXZT0qveoq/sLVkPZFscPg7JWtJJzc+WPckRMjmONX73H0ykLc4AqzKGdZIHaf0UZdurXRh245qHuFeeQIAAJwe0dHRatr0RJDxt9V11bChUf6p7GJi7DqrX6y5HhUVpSZNmnjlOgFUPHtujr594Z/av3FdgdciGzbSlCefV2jNSH3+xIM6tGNrlf9I/AOD1LRzNzVs214dzxquiHr1fX1JAAAAAAAAAAAAAAAAKKWSpsqjjL57Y2Gh4QbDkX3H9N9b3lVOdo62rthZbD/h646pwXubFbrhmGyJWbKl5pZ88kIiK/bwiqmukNo9Uvv+1VMHJzTWoqwYvbxmhYZ/Ol3/WPqj7I7T+xRYAADgziGL7OVcjD4AVE1r531baLjBkBBzWItnvKWc7KwCVRGqqpysTO1dt1orvvhI0++43nx/TsYkAAAAAAAAAAAAAAAAVYqfry+guvr+rUXFvr5mwXotmL5YWelZJfYVeChVgd/8Za7bQ/0UfU93OYoKLDgkSyETEf0SSz5PaWU2C1XMtW0kP2uBfMVn2zepRmCg/jFwmNfPCwAAAKB4RqG+TT8vKLbNnrWrtHnxj7Ln5FTD2+nUhkU/KCishgZfcrmvLwYAAAAAAAAAAAAAAAAeooJDBcjOzNah3TGFvubwsyq9Sz0lntVMX27eqdyIwFL1bUvLVYP3t8vveGYhnf+9FCJs7VF5W8LIhgXCDfl9vHWDUrK9H6wAAACecTi9swCoerLS05Qce6zYNg67XVuW/KTqbP3C783KDgAAAAAAAAAAAAAAAKgaCDhUgKyMbFmtBW9tZutair2xj5LPa6P0Po21IdShuGt7KemcVnIWLLpQpMCYdDV5cb2afr5HI/1qq+aig6rxyyFZHEbthoIdha4/puB9ySX2O/DCvrrw1vM9vo60LjWLfz0nRysPHfS4PwAAAADeYc/OkSwlDzJiD+wt13n8A4PUrGsPeUvb/oPV9RzPxyQlyUpL06HtW73WHwAAAAAAAAAAAAAAACoWAQcvy0jL1IPn/VMOh3sphZz6YUoc207OID/3AywWZXRvoNTBzUp1HotTuqh/D715xxUaFdJAtRcdVN3PdirgUKqrjV98piLn71Odr//yqM8BY3rpjjeu180vX63I+hGu/TY/mzoOaFegvdOv5AlTuafcBwAAcPrYZfHKAqBqyc5I19fPPiY5K74ES7eR5+vih55Q8249vdJfm74DdN6Nd2jIZdMUHF7Dtd9q81ODtu3L1KfdbvfKtQEAAAAAAAAAAAAAAKDinTLbHuW14L3F2v1nwaegpvVpJNmKzpOk92io0NWHZM32bPJNxwFt1evcbnpy4ovavW6vIuqEK/xwlkL/t0m5Yf6S1SJbSrYZhPBU4/YNzZ8T7xmr8bdfoK0rdyo7M0etujVX7YaReuWGt7Tg/V9c7YP3piqj7clJR6eyWSzqUe9EnwAAAABOj/WLflDswf0Vfp7GHTqrUfvO+u6lfynu4H4zkGAEvbPSToauS6tWo8bmz37jJ6nX6PGK2bVd9pwc1W3RSqE1IzX/9Ze0/belHvdnBiNaty3z9QAAAAAAAAAAAAAAAOD0IuDgZYtmLSl0f2aryGKPcwbYlN20hoL2JBT6usViUXjtMDVp10jnXz1ch3bH6KmJLxVoF14rTCnxZZtQ9M69H+h/a18w1/38/dR9WGe31+9+5yY57E7Xe4xYeqTYgMN5Lduocb6nrgIAAACoeFuX/lwxHVssCg4PV61GTdR5+Egd27dXc195tkCzwLBwZaWmlOkUSz6YrqlP541J/NW0cze31y+47R45nU7tWLHMo/7aDzzLDEYAAAAAAAAAAAAAAACgaii6pADKJO5QfBF32uLBp1H0x2FM4kmOS9F5Vw1Tw9b1Nful7wttZ4YbPDhVYXav26eda/cUc3lW/d+MW/XG6ufUaWA7RWxOUuSiw4W27Vynnp4ddl7ZLgQAAHiFXRavLACqltT44xXTsdOpjORkdT37fIVGRGrDonmFNitruMFweOc2xUUdKPJ1q9WmMXfer8ueeVkNWrczQxdFadCmnc657pYyXwsAAAAAAAAAAAAAAABOPyo4eMG233fqy5fnatUP65STlVNoG/+YFOU0iSiyD5vVolvvnaDPH/xU6ckZRbb78Kkv1XFAm+IvyKkyO7TrsNr3aV1sG+P1f/3wsO4a9Igc30cpdFOCks6qp5z6QbJm2FVzQ4Iee/wcRQYFm+2Tj6dowfu/aOPSLeYEpN4ju+n8a0YorGZo2S8UAAAAgEv09i1aO2+O9m/4U/bc3DLdGavNT4OmXKFV33yunMzMItutmP2x6jRpXmF3P+HwIdVpWnz/Ddu218X/eFKfPnqfEo/EFPpezrr0SgWGnBhzpCcnafPiRYresdWsjteiey91HnaO63UAAAAAAAAAAAAAAABUDgQcymnpFyv03JWvy55rL7Zd6PojSiwm4DCic2tNvfoCzf7H58X2Ex+ToD8XbSrVNTotUm6tE2EDv/gMWYoJQIRFhnnU5zf/+UEHdxwy14P3p5pLfm/fOVOxd8fqq5e/1+E9R91eW7NgvT599hs9O/9hte9bQlgDAACUmdMpOYwvAuXsA0DltnXZYi16679yOh3l6qf9wLPU78KJ+uPLT4ttlxIXq/SkRFWUoDDPxiRr5n5TaLjB4LDnaumH76vbyAu0du4cJce6j0n2rV+rVXNma+LDT6tei1ZeuW4AAAAAAAAAAAAAAACUn9ULfZyx0pLT9coNb5cYbjAE7T6usLWHC32tY+N6emLSyBN9JqWX2FdmepZH12fMR0zp30hH7uito7f0NJcjt/dWSr+GhRZ5CAjyV7dhHT3qe9GsJcW+fmhXjF679b0C4YY8RlWHR8c95/F7AQAAAFBQRkqyfn7vTc/DDZbCQ08N2rTTOdfdIntOjnJzskvsxmhXEfwCA9WwXQeP2m5d+nOxr8cd3K9fZrxdINyQxwhpzHn+KdlzK+a9AAAAAAAAAAAAAAAAoPSo4FAOv3yyXBmpmR617XJWB13xyCTZ2tbVl39s1v5j8QoPDtTonh10QY92CvA78VE069hYB7ZFyxsSR7VSWu8GbvvsEYFKOq+lciODFLlon9tr2Zk5urLVbZrywARNundcsX3HRR8v//UdS9KSz37TqOvOKXdfAACgILss5lIe5T0eQMVXb/AkkGBo0qmLBk26TBarVZsWL1JizGGzWkLHISPUbsBg2fz8zXYR9eor6VjhoYCKlpuVpel3XK9+4yer16iixyRGKMEbVSRS449r1x8r1PGs4eXuCwAAAAAAAAAAAAAAAOVHwKEcDu44VGKbll2b6dkFj6hOo1qufT1aNCqy/dibztObd81QeWXXDy0QbsgvtW9Dha47qoBY94oRiceS9c7/faiU+FRd88zUIo+v3biWYqPKH3L48cNlBBwAAACAMko4XPKYpH7rtppw/2MKizw5JmnSsUuR7buNHKXln87y2WeSlhCvJbPeUXZGugZcPKXQNkYYI7hGhDKSk8p9vi1LfibgAAAAAAAAAAAAAAAAUElYfX0BVVl2RslPSs3KyHYLN+SXlpyuP3/aaC7GumHcLeep3+iehbYPCg30+NrSu9crsM9pLBbJaXzqNunozd11/OK2yq4XUqDt7Be/U/yRhCL7P3/aCHnDluXb9c1/fvBKXwAAwJ1dVq8sACqv7MwMj6oi5A835JeZlqr9G9dp/6b1rr56jxmvZl17FNrePyhIp8uqb75QRmpKka93GT7SK+c5uGWDNv403yt9AQAAAAAAAAAAAAAAoHyo4FAOgR4EDhx2R4F9Odk5ev+hTzR/+mJlpGaa+4LDgsxKBtc/f7me/vZB87V57/yoqB2H5Ofvpxq1w2W1WRWz96hH12YPDygQbjDnJ1ry7bRalN61rjLa11KdT7Yr6GCy66XcHLuWfr5SF989xq2f7MxsJRxN0gXXjtCvX/2ug9tLfmJsSd5/+BONvGqoatQKL3dfAAAAwJnEL9CDMYmj4JgkNydHyz56X1uW/mQGIAwBwcFm9YYhU6/WxQ89oU0/L9SmxYuUEHNIVpufgsON7+sW5WSeGMNUtNycbO36/Td1P3eU2/6c7CxlJCWp28gLtHv1SiUeiSn3uZZ9PFMdBg9XYEjB8DcAAAAAAAAAAAAAAABOHwIO5RAeGVZim5DwYPNnamKaFs1coo3LtmrX2j06fti9OoIRdPjmvz/o6MFYPfn1/Rp383mq07iWnr76NR3tUkf7u9aTPdRftuRGCtl0TKF/xsiaU3CiUh5b8olJSi6WU8IN+TgDbEoY31oNXl/v1uTgjmjXevLxFH3wxBf6+aNflZ6SYYYtep/bTU07NNYf36+VvZAgh6eyM3P088fLdfGdo8vcBwAAAHAmCgmvUWKbvEn7GSnJ2rL0Z0Vv36Ijf+1SelKiW7vsjAytnfuNUuOPa8yd96vnBeMUGllLP7z2onIyM8zldIs/HOVaN653xeyPtf23Zea1WG02Ne/WU7WbNNfedavlLCTI4Smjv50rfzVDEwAAAAAAAAAAAAAAAPAdAg6l5HQ6lZ6croDgAHUb1qnE9t2Hd9aW37brsQufN0MOJVkxZ7W2rtxphhueuuY1HZ7cQfZaJ0ISBntksFKGNVdm+9qq/dlWWbPthfYTsvGYUvs3OrmjiHBDntxawcpqGaGgfUmufT+8+7PsuQ5d++/L9H/Dn3Cr1mBUplizcMOJfs3yEOXzzX/mafyt58vmZyt/ZwAAwOR0WuRwlvAlwIM+AFS+MUl2Rrr8AgLVpFNXrf7uq2LbN+3cTQe3bNR3L/3LPK4kO1YsU5+xF5kVHX747wty2Asfc5wO6+Z/L3tOrgZOmqrPn3jArVqDcV371q+VxWKV01n2cEOetfPmqMvZ58pqZUwCAAAAAAAAAAAAAADgKwQcPJSdlaOvX5mnee/8qGMH4+Tnb1PHAe1Ut0ltxUYfL/QY/wA/nXP5ED10/jMehRvy/PzRMoXVDFXcoCZu4Yb8chqEKWVwU0Us2V/o6wHH0hW6JkZpfRt6fN7c2kFSvoCDYeGMX3Rga5RbuMGNF8INhqP7Y/XtGwvMyhUBQQHe6RQAAACoRnKys8wKC5sWL1Lq8TizgkGjdh0VUrOm0hPdqzHk8fMPULv+g/XlPx82KzR4atvyJeZPX4Yb8mz8ab6O7d/jFm7IzxvhBkNCzCFt/nmROg8fKb8AxiQAAAAAAAAAAAAAAAC+QMDBAznZOXps3L+17ufNrn25OXZtXr69yGP8A/31j4/v1KZft5cq3GBIOp6inTuilNGndrHt0rvWVY1fD8hiLzxlELlon/yPZyilfyMzvJC/VWHPYram5xbaz/bVu3U6vH3vB3r3/o/Uf0wvTf3HxerYv+1pOS8AANWVXRZzKW8fAHwvNztb3zz7hKK3b3HtM8IH+bdPZVR4GHv3g9q/cV2pwg2GjJRkxR7Yp8oiZvfO03Ken9//n36Z9Y5a9eqnARdPUf1WbU7LeQEAAAAAAAAAAAAAAHCC9e+fKMbCGUvcwg1FCY8MVd8LeuiqJy7Rh3ve0JCJA7Tp162lvreNWzdQVoif5Ff8x+MM9pc9xL/YNmFrj6j+O+vldyRFTj/J6X9icRjr+eYrWjJyFbQroYgTle76nQEWOUKtrsOM++Iph92h379fq/uGPa7VC9aX7sQAAABANWVUMSguzJAnKCxcLXv20eBLrtD1r09X6979PDruVDXrN5TDXngAuioKDAvzuK0RHPlrze/6/PEHdGDzhgq9LgAAAAAAAAAAAAAAALgj4OCBBdN/9qSZUhLSdO5Vw3XpPybI6XAqLTldh/86qtKwWCwafcNI9RrYseTGDqes2fZimzitUuwVHZXdLNy9bINFJwIPf++LWHpQ1lyHyiO7fbASHmmqo5910LFPOiju7TZKG19LgycPKHVfOdm5evXGt2XPLf79AQCAotmdVq8sAHxv0+JFHrXLTE1R13POV58LJ5oT9bMz0pV4JKZU57JYrep69nlq3LGLqou2/QaX+pjcnGz99N4bcjrKN04CAAAAAAAAAAAAAACA5/xK0faMdXiP5yGFGY98qtdve88MO1isFjPo4KnMpuFqfNNAPfTHckW0C5Lf8kzlhAW55RLyC9yXKGtW8QGA9C51lNmmZpGvO61ORc7dq/A1Rb9Hq9UiRwnvI7NvmBIfaCr5n7xae4MApVzTQAfq11CdhbUVd/C4SiPuULxZxWHguD6lOg4AAACobpKOeh5S+PWjGVr0v/8oK90Yk9jkdJQuNFy/ZWst/N+rCgwNNRLYkrOUJd0qgBG6KE/QIDstVcERNZWRlFiq45KOHtGBLRvVolvPMp8bAAAAAAAAAAAAAAAAnuORvB6IqBPu8Q09su+YGW4weBpuMFo5b+qlozd11Tql6vf9UVr41x5lNAySPchpvn4qP4tF4SuiSuw7tXe94htYLbLYi7/OIZMGqm7T2kVfv01KvrWR5C+FB2SqXkiKagenyWY5MZFqydGduuCzKQqpEazSiilFuAQAAACoroLDa3jcNvFojBluMJQm3BAScSIYfWTPbh3cslG7V60sNtxg9Tt9efkOg4cqNLJWmY/ftWqF+l04UX6BgRUaLgEAAAAAAAAAAAAAAED5EHDwwMgrhqmitO/bWlesfEgHmwYV+rrT36KAYPePqWXdSN3btasCYlJL7D+3RoDHbYypS45Qq5wBJ6swdB3SUfdNv1n/+e0ZDZ08UH7+NtdrzTo2kV+An7L6hSuorkOd6hxV21pxalIjSc0jEtS1XowahxlPSHVqufOA3l7/ojyR2TxMsZe0VMyN7fVd8HGtizns0XEAAMCdQxY5ZC3nUlQtKQCnU8ehZ1dY3006dtFZU69WejHVDfwC3McVtZs004CLLtHp0KxLN517w+2a+vQLattvkKw2m9t15N8uTtTWTbr8X6+U+vxG0CPmr52lPg4AAAAAAAAAAAAAAACld/oeuVmFjb/9Av300TLF7PV+NYFGbRvok/Wbim3jHxag16eMUlJGphrVDFevFo21/Os/POrfLzlbuXVD3PY5LU45rcbPE9sNRrbR8UbZSh9RQ456/pLdqcA1qWq0JEv3vX+LgsOCzeWxL+5VYmySju6PVVBYkD58crYObo+WpZ2/2tSKlZ/V/emuVotUPyxVTlkUlZagmnWLf+qscT2xU1opZcDJqhPLs2K1/MvPNLFjZz0/8nxZLUyyBAAAwJmn9+jx2rFimVLiYr3ed0T9Btr40/xi2/gHBevC+x5RZmqKIurVV6N2HbVt+RKvXUOtxk0Ufyi60KoS5998l/wDgxRRr4EuvO9hM4iRHHvM3Lf88w91PPqgR+dIPBJTpioQBzZvMJduIy/QyOtvk4UxCQAAAAAAAAAAAAAAQIWhgoMHatQO1yu/Pq3BE/rKYsza96L+lw3WgYSin5RqSMrMVER4kMb26GCGGwwNW9cvse/AkADdNfk8t30Oq1MOP8lp+/vTtzq1p9VxpU6pfSLcYLBZlDUgXPvuq6UbbnxGX770vaJ2HjJfqlk3Qu37ttEXz3+rX7/83dwX2S23QLghv7ohqQrIyFXUzuIrMSQNa+gWbsjv6+1b9e6fa0p8zwAAIN9/92WRvZwLFRyAyiG0ZqQufep5terVV/JyZZUW3XuXGJzISE5SeK3a6njWcDPcYKhZv0GJfQcEB2vwlCtKbFdYuMFghBk+euhu/fnDt0o4ctgVemjQpp1WfvWp9qz1LPhtslgUHx2lstr080KtX/B9mY8HAAAAAAAAAAAAAABAyQg4eKhOo1p68psH9Nba59VvdE/VqBOu8jrr4v7qPrSTR20dOblu2216tFSdJsU/ffTyRybpqnMHaGCLpicrN9jc50P5RWTLL9S9b5cAqw5fXkPvPPiRru14t56c+KIyUjN07GCsFn+y3NUsrJ2j2OuwWZ0K2HZI237fVWz1hqShxU+Q+nDjeuU6ij8XAAAAUF3VqFNPFz34hC5/9hU179ZLweHlH5N0GDxMjdq296itw+n+XdwIOgTXiCj2mEGTL1efcRPVuEPnMl+jUTVi6YfTNePumzTvP88rJytTCTGHtGvVilL1k5GcrMO7tqs81i2cKydjEgAAAAAAAAAAAAAAgArjV3FdVz+/fPabXrr2f8rJynHtswfblNo3UjmRAXL6+ckZGChHaKBsSdkKW3dMQX8lFvp8VavNqgm3X6A6YaHq3KCeth45VuR5bUlZ+ubez9Tj6/td+7as2KG46PgijwkMCdRFd42Wv82mdy+ZoNeW/64Z69Yp22l3a2cEHIpjVHXI7hmqwHVpWjFntZ7JelUDxvaRw35ycpM1oOQnyGb/Gau41seLfD2ndpByawUW28eRtFTtT0xQm1q1SzwfAACQ7E6ruZRHeY8H4F1blv6sn959Qw57ESHlUrDabOp5wVjVqFtPtZs00/Hog8W2X/Pd1xpz58kxyYHNG8zKDsVVb+h+7mj5+ftr4sNPacUXH2v9wrly2N3HJB5zOrXz9+VyOOxq3L6TuV0aGSlJSk9JVnkkHT2i5LhYRdQruaIeAAAAAAAAAAAAAAAASo8Zax7a9ecevXD1G27hhsQRdbXvpe46dnVLJVzYWImj6ytpRE2ldwxVerc6Ojatk+Iuba/C5gUaAYEZj3xmrl8/oE+x566x4rB+n7Naf23Y59r33ZsLiz0mKz1Lu//ca66nxaWoyR9xCsoqOJHI6l9yRQR7gwDX+ur563V4zxG313N2lTxByb4lV1+9Ms+tekR+Fg8nJ33/+gLt21L8xCsAAACgOjq0c7t+fPs1r4QbDEbQ4LfPPzLX+144scT2O1Ys0/FDUa7t9QvnFds+OyNDcQf3m+uZaakKCg2T1Vb+jP3uVSuVfDyuTMeu++G7cp9/3YLvSgyDAAAAAAAAAAAAAAAAoGwIOHhozmvzZc89OZE/pU+kYq9oIWeQrcAdtUc45Ag6ERxI71JbScOaFNrntt93KXp3jMZ0aq+u+3OkfFURTA6nwn87rBorY8zNX7/83fXSztV/lXjNO1b/pblv/6jLm9+iGY98qoz49AJtnPaSqy9YE90nUCXHpbhtp31dfBWI7C25ytnpOHH/isgx+B3Pkv+xjGL78YvL1PynvtON3e7T05e8rOzM4s8LAMCZziGLVxYAlcO6+d/J6Sw5oFwaUVs3KTnumDoPO0c1PKhKsPuPFa71I3t2ldj+yJ7d5nVPv/06rZj9sXKzs+QN2elpZTrOG+GQdfO/16z7btUPr70oe+7JADwAAAAAAAAAAAAAAADKr/yPzzxDrPt5s9t2/NhGxba3h9llzTyRH0np10ARyw7J4ig4uz/xaKKatG2o5jtTFf/FX0rrVU+5NQNlS8lR6IZj8o8/OQFo07JturnX/Tp+OEHJx91DBoU5su+o5r71o5x/V0cI3RavxAYhbm1ykwMUUDezyD4sybkKXJt68n2F2mStH6wOA9pqxx+7zX2ZS3OV9mW2QiefrPTgan/MoYSniu7fdR5JNZfEKHZKqyLbGK/nTbFc/tUfCgoN1AMzby+xbwAAAKA6OLh5Q4X0m56UpBp16ikkvIaSjx0ttu3+zRu084/flJaYoMyU5BL7jj8crfUL58rb/IOCVad5S8UdOFnl7nQzKloEhoRo5PW3+ewaAAAAAAAAAAAAAAAAqhsqOJRBTp0AZTd1DwqcyukvOW0nggWO8ADl1g4q0MZisahe87rmeqtuzeWXkmMGIWp/t1c1f4lyCzcYtq7cqT0b9ivxWJIcp1Z7OIXVatG+zQdd4QZDjd+Pypru/sTSnMRAObKK/scg7JNYWbKdSu8RrsNPttbB97vorV6HteHB+nJc1VLOvxMHSS9n6vi96cr8LUe5MQ7l7LEr+Z1MxV6VJntUwWu1WAs+DbrG78dU8+dDZuUKNw6nai4+rIgV7pOtFn+8XLHRx4u9DwAAAEB14SyqHFo5WKxWhdeuY67Xbd6yxPaHtm9R3MH9ykhOchtrFMZq8/OoykNZrF/wvbLSUhUYGlqu915eW5b8pPSkxHL3AwAAAAAAAAAAAAAAgBMIOJwiauchbVy6VTF73SfT9zy7i2vd6V+G21ZI9YY+53dXvaYnJhONvfk8M/DgLedcMVRbV+xw2+eXlK0G72+XLSFfcMJhUUZUmHTQIeWevEZbTLZq/OewQhYmKmVYpI4+0FJZHcJcr8dkpejA6BoKenOg/AJPFALJWpmr+P/L0LGLUhV7eZpSZ2bLkVj4pCenwyk//4IFRGrPi1Kzf21Q5KJoha86ppo/RqvZsxtUe+7BAm2NkMeaBevLdoMAADgDOGSVvZyL0QeA0+t4dJSitm5S0inVFJp16e71c7Xu3U+hNSPN9e7njvZq352Hna2Y3TtVUVLiYpWVlqZajZvKarOV+ninw1Gm4/Kz5+Zq/ybGJAAAAAAAAAAAAAAAAN5ScIb5GcqojvD2fR9ox6rdrn3dh3fWLa9OU+vuLXTRnaO1+NPlxmNT5RebJWtKjhzh/kV3aP97MW7ysXT5H890e7lG7XDd/Mo013aLzk118ytX6+17PyjxSajFMUISgy/qqwuuHaGfPlxW4PWgqFQ1e36d0jvWUlbjUFlyHArdclwBsZmy17TJ3jRQlgyH/PZkyuKUHMFWHZ/WWCqk4oJhR6101e8crJB1KaW+1twc92oSefyPZ6nWgmgP+/j7JgMAgGph/fr1mjFjhpYvX64DBw4oPT1dDRo0UMuWLTV+/HhNmTJFjRo1qrDzL168WB988IFWrlypmJgYWa1WNW7cWD179tSVV16pCy64wNwHVISobZu17KMZOrr37zGJxaJmnbtpxLQbVadpc/UaPV67V6302vlCImpq6BXXurbrt2qjIZdN0/JPZ5WzZ4vaDzxLHQYN0+ZfflRFiz8UVbYDLRY57OUfTzhyCx/XAAAAAAAAAAAAAAAAoPQszvLMpq8mtv2xS/ef/aSyM3MKvBYaEaL//PaMGUB4fPzzWjl3rbJa11TcRU2U0TG4yD6tqRb5Z1jltFs0MiFYh979XenJGfIP9NewSwbqiscmqXGbhgWO27x8u+a8Pl9bV+w05tuofvO62vb7Lo/fS+ueLbR/c5TsufYyBySatG+otMR0s8LC0b7B2n9JrWKPCV6XrAYv7JMvvLXuBbXp0dIn5wYAoDKKjo5W06ZNzfUZv3VQnYbFBDI9EBeTo2vPOlEVKioqSk2aNFFFSEpK0u23366PP/642HZBQUF64okn9H//93/y8/NeVjchIUFXXXWV5s2bV2y74cOHmwGIZs2aee3cQF644et/PWZWBDhVUFi4pv7zJdVq1FhfPfOoDmzeUOqbZlR/iPlrl3IyM+QXEKj2g4Zo4MSpiqhXv0Dbg1s2af3CuYr5yxiTWBReq4657qm6LVop7uB+s0JCWVisVtWs31DZGemy2vzMn1npaaqspr3ylmo3PvHvXQAAAAAAAAAAAAAAAJQPFRwkvf+PTwoNNxjSktL14VOz9fjs+zTlX1P0XZ1s5TQIk1HKwZpulyPEPR9isToUEpylwLrZstgkm6z/z95dQEdxvW0Af2Y12bgHSHB3d/cWKFVK3d2pC+1Xb6lRp06FKrS4u7s7BIu7brI6852Z/AkJyUo2m5CE53fONrszd+7MTujuTvY+90VEo8Z4/uUPEVCkVQITel+9w19Ip0HtYDFZkJmYpQQbMpOyHbaVDALsI/whRWuBXDvUawoQt+eM5/8a5MFTfnoEhQfiuifHKxUWpu1a6XKbog5BKGoeAN9TblZxkItBeCFWI58rhhuIiIjqPjlcMHLkSOzevbvM8oCAAISEhCAzMxNGY/HgZpPJhBdffFFp+9dffymDr6sqLy9PCS7s37+/zPLw8HDlZ0ZGRsmytWvXYuDAgdi+fbtSWYLIW9bP+qnCcIPMVJCPrf/+iSsffRq9r76h0gEHlVqNwIgojLz3Eeh8faE3+EGj0zls37hjZ9isZhRkZSAl7gQKsjIrtb/0M6dQFVq9Hn7BIeg18TqYjYXY+OfPqK2adO7GcAMRERERERERERERERERERGRF132FRxSz6bj1mYPuzhLgN5Xh4Qb2sDSMKBksQQJdn8JtgARklpCtChAaF4IMyzlugjT+eOHvvcj1i/M6a42/LsNb934MUS789lObaP9YX00DPBRXVhol6CZkwvt945DEZWVOzYcWXc2ctpGMqmgOqdB7Du7oTaVrRwRGBaAvEw3gw+VENO6AaatfA0RMc7PJxER0eVcweH7je0Q3sDxIGZ3ZCRbcO/AI9VawWHSpEn4559/Sh7LYYe33noLvXv3VgIMdrsd69evV6o2lA5BvPHGG5g6dWqV9z958mQlLHHeLbfcgtdffx0tWrRQHp86dUp5/Msvv5S0GTBgADZs2OCVgAVRVlICfnrqQecnQhCg0Wphs5S/1ijNNygY1sJC2Kzl2/mHhuGmNz9AYHik0z6ObFqHJZ9/BEnyrAJDbSNXwJBDIt4WFtMYN0x9WwljEBEREREREREREREREREREZF3XJYBB3mQ3NYFu7B+9hakxWfi4IbiQXvOmGMDkXFrR6dtGre1ID08z+H64VEd8EH3mx0fl82uhC0yErOcH393H1jeiQZUFQ+o03yXBe0/ueWWdxrUFlFNI5VQwIpf1yEjwfl+lH0FqHHuq/aAtlSQ4iJSpg4o0iB03hkEb0gus05QCZBEL/0TE6BUbJjw4GgMv2UQfAyOK2EQERFdrupawGHz5s1KWKB02OGPP/6ASlX+s0dRUZFSaUGuniDz9fVFUlISgoODPd6/XJFh2LBhJY8ff/xxfPrppxW2lQMVr732WsljORQhHy+RJ0S7HSd3bsXxrZuQl5GO5OOur0ncIYcYnFVcaDdwKK587BmH6+02K7556E4U5ZW/nvCGmHYdERgRCb+QUBzZsKbS1SE846UScv/rK6p5S3QZfQXaDhgCrY7XJERERERERERERERERERERETepMFlJi8rHy9f+Q6Obj9Zqe1MzVwMnFNJSAvOU4bOOLI29TB+/vRfqHLsaNa5MfpN6Am1Rl2yfueyvS7DDTLbjcEOww3K+usCofk3F0LZYgoQ1CoMndQfva7ohjveuBF71xzCe7d+ipw0x6EMdb4dIXNSkT25QYXrJbMKKCp+DqbmgUCpgENQeAByM7wzU6p8nn4/9zVCozk7KhERkbtESYBdEqrcR3WaMWNGyX1/f3/lcUXhhvOBhmnTpikhh/OBhyVLluCmm27yeP8ffPBByX25YsOHH37osO2rr76KdevWYfXq1cpjucoEAw7kicK8XMx5+1WknYnz+gl0FRg4tmUDQhs2ghxzj2jaHM2794RKdeGaJG7X9moLN8jUGg3aDRiCJl26Y+CNt+HsgT1Y9NmHMBsLqmV/hsBgFObleKUvQa3BQ9/8Ct+AC1X9iIiIiIiIiIiIiIiIiIiIiMi7LruAw4d3f1XpcIPCxdg+QStCcHE2RUiY+cW/0MSZlcdyJYWXfn8CHQe2g81qw5/vz3V5GJJegNjN13mjUA1yH2kIa5EK2lQL/NdlQZNrw/61h5WbzkeLa58Yh9F3DnUabjgveG4aCluHwNTZF4KmeOZTSZRHZmmAXG3JyRFKVWqQn1vL7s2wZf5OeMOYu4Yy3EBERFQP7d69u+T+1VdfjZAQ52HGPn36lHkcF+f5APGMjAwsXbq05PGDDz4IrVb+bOPYM888UxJwOHDgAA4dOoQOHTp4fAx0eVr8+YfVEm5wt3LEpr9nlTyWqymMf+J5NGjVRqnesH3e7Grd/9kDe5WbRqdHz/HXoHX/gdUWbgiKjEJIwxic2bvLK/11GzOO4QYiIiIiIiIiIiIiIiIiIiKianZZBRwSTyZj6wLPBrfoz+WhoL/j9ZJNAOwSoHaShBAlpXrDeekJmXh53Lv4atf7+Hf6IhzceNT1gVyYXNUp4+AQWGzFv97sSVEI/TUZQcsylMcWk1UJU6z+fSMEQYAkT9/qQuDSdJgiW0PSSoAgAVYVcNGMzq1EX7Qc2Qn9JvTCqDuG4NfX/3H9dDQq2G1yWsKxsIYheHLGAy77IiIiorrn4MGDSE9Px5EjRxAWFuayfX5+2epQoaGhHu97xYoVEMULn0MmTJjgcpsRI0YolSTk6hGyf//9lwEHqpSM+LM4u39PrTlreelpmPPuq7j9/c+xZc4fSI07USP7tVnM2Prvnzi8cY1X+w1p0EgJbbTs1Q/tBw/D+t9+crmNIKggKQlux+Q+h91xnxePlIiIiIiIiIiIiIiIiIiIiIhwuQcc9q877NZg/oroT+dAk14IW4ShwvWCSYJmZyFsffwc9qHZXwhVpq3MssL8Ivzx7n9YPWuDW8chFEoQzlkgNdY5bCM/Rau9VBJCo0LWXY2gTbfAsPtCxYa0+AwYAn1RmFc8QM8Zv4NZ0KaZYI2suHqELt+K5++6Ch16toRfoAGn9p+FIcBFpQnAZbghqkkEPlr7uhLEICIiosqxQ6XcqqKq27sjIiJCubnjv//+K/O4e/fuHu93x44dJfeDg4PRpk0bl9vodDp069YNmzdvVh6f/0nkrvjDB2rdyTIbjdg2928cWreqxvedl5YKna8vLP8LDVWFSq3G8HseRMNWbaHz8UXq6Tjo/Rxfn53nKtwQHN0Qk157p8rHR0RERERERERERERERERERESuXVYBh6oMkpe3DJt9BBmTO8Ae4lN2ncWO0LnHobUYkdfBB5J/BWUWTCIMPxVXULjYprnbYbWUDT5UxBqsRca1MZB8DAhBocN2RWYtpIuqK8hyJkSUCTjI3Ak3yAQRiP7+CFLuaQtrVNmQhybThMgfjuLl13dCb9DDP9iAzKRsVNVVD43Bve/fAl9/10EJIiIiqv82btyI5557ruTxgAED0LdvX4/7O3z4cMn9du3aub1dq1atSoINR4+6UYGLqBRBubKofU5s3wypVEWTmuSNcINMtNsx562p0Pr4KqEJY3ZWlfvsMW4iBky6DVqfsteARERERERERERERERERERERFQ9LquAQ/eRnaBSCRBFz6o4aHLMiPpuDwrbh8PUMhRQC9Al5cOwNw3qQqvSJuC5eBTeGwFbVwOgKh68pDlQCMOPGdCcNFfYr81qd7lvW4AG8c+3gy1cDxRJ0Obb4R9Qvj+LVY38wooH35jb+UPUq6AyezZwSZtlRsyH+1DYLgRFbYKVZT5xuUp1BzkAoeyj0KzcvCE/p6DCcIMoivjzvblYNnMNjDlGhDUKxfVTJmDojf2h1Wm9sm8iIqL6QJRUyq2qfVwKctUtu92OzMxMbN++Hb/99htmz56tfA6QxcTE4Ndff63SPhISEkruy/25q1GjRmX6kI+V1abIXU06d5WT18Vl12oRu831NUldYTUVKTdvMBmNFYYb5DDIljl/4vD61bAUFSIgLBw9JlyLtv0GKZUkiIiIiIiIiIiIiIiIiIiIiMgzl1XAIbJxBAZP6o+1f27yuA/BLsHvQLpyq4jmrAWBUxNhj9BADNdAlW2HOqU4/OBIwxZROLXvrNM2WVc2KA43FB8FsrMCUGjUwy/ADI3GDhSJKFTrYbbKv1Ins8JWcYyiIAF+h7OVW3U7fTAe+9YdQufB7UsGDWYmZeG+zk8jP6ugpF1uRj6m3fEF/vtsMT5a+zp8/Ti7KhERUXVITk522aYyQQFnli1bhiuuuKLCdVdddRU+++wzNGnSpEr7SEtLK7kfFhbm9nahoaEl9202G/Ly8hAUFFSlY6HLR0iDRmjZsw9O7tiK2iQ4Khppp+Mu9WHUOulnTyPhyEE0atuh5JokNy0Vvz7/OMyFxpJ2Rfl5WPL5h9i7dAFuePUdaHXnr92IiIiIiIiIiIiIiIiIiIiIqDIuzZS8l9BT39yP1r1alFuu0Xk366FOt0F7xKSEG6TWWkjDfCF116OiSZDlcINfkKHCfiSNgIIugcgbEl6cLijFbNYhKyMAaSnBSMsNgaVA7TTcoDtdCFWRZ9UbLoUzB87hmWH/hztbP4atC3cpsyM/1vfFMuGG0k7sOoWvn/ypxo+TiIiotrJD5ZXbeb1790ZsbKzTm7ecPVtx+NPf3x/NmjVTggVVVVBQUKZfd13ctnQ/RO4Y89CTiGjSrNxylebS5c/lcIPOt+JrksuZfF7++r8X8NNTD+DM3l1K5YbfX3m6TLihtOQTx7Bh1swaP04iIiIiIiIiIiIiIiIiIiKi+uKyCjhsW7wbj/R6Acd3XJiZ1D/ED1c9PAa/xn2BgFD3B7a5Qw42iDOiIH0dDemVcEgfREKa1QDSiPIDh4y5hdDqyw5oyhkZgTOfdkTKMy2BAAEqvQhBZy8XdCgmwGdfvtPjCVycgbooKS4Vr10zDX+++x/SE7Kctl3523oY8wpr7NiIiIioesgBB61Wq1SECA8PLxMm+PTTT9GuXTtMnz69SvuwWCwl9+V9uevitlar82pdRKXJlRtmvfiUUhngPB8/f3S/4irc8+n3lzRkYCkqhFrj/v8Ll5Ps5CT8N+1NbPvvbxTm5jhte2D1MljNpho7NiIiIiIiIiIiIiIiIiIiIqL65LIJOOxeuR+vXT0NCceTyywvyDZi2U9rkJWSg0c/vwcqleMKCJUhxWqUQANa6cquiNRAeilMqehwMavZpgQuZDmjIpBxRyzsgWUHGAkqQNDJVRjKhxyCZ6ehoxRa4fGELM5AwIbskseGgPL7rwpJL8A0Jgh5/9cIue/GwnhvBOwNvTc4SrSLmDN9oct28jk8ezjBa/slIiKiC7Zv3474+HinN2957LHHlDCD3Gd6eroSeHj++eeh+d8M93Ko4KmnnsI333zj8T7k6lDnCYJ3PgMSOXNq9w7M/+gd5KSWvSYxGQtwYPVymI35GHbn/Zf0JNptVuj9qhb8Dm/ctMLlgqrs5afOULcqRoh2G3YvXeCync1iUQIRRERERERERERERERERERERFR5ZUsG1GM/vvw77DZ7hevMRRb8+vo/eHP+CwgMC8Dvb8/BgQ1HqrQ/6eZAwN9xfkS6OxhYU4SLh9LJgQtRKyDrmgYOt1XG32kkSLYLW+tPF8DnXCH6Lrbh1kdGYaMtEQcOxCF3bwoMy9KhP1MEvUGHjgPbYcA1vWHMMWLJD6uRdDIFVWWP1CDvrViIDS+EOWydDDBNCIHfF6nwWZELb8jNcF6h4jydnrPOEhERyeRIpF0SqtzHeQ0aNFAqKtQEeV+lNW7cGO+99x6GDx+O8ePHl1RNeOaZZ3D11VcjKiqq0vvQ6XQwmUyVrsJwcVsfH59K75suTxv/+BmSVPr/qgvkGf+3zvkTE6a8CENgELb+9xeSjx/FpWA2FlRp++gWrdB1zHicO7AHSSeOwZidBUkUlZtW74NG7TqgVe9+KMrLw/5VS5GXnoa6oijPvWsbVsIgIiIiIiIiIiIiIiIiIiIi8sxlEXBIPJmMYzvinLbZtmgXFn67AllJ2Rh8Qz+07dMS/3zoenbOikhyrmGIiwoJDTVAOx1wxFJuVWGnQIgBLn41agmwFd8VzHZE/nlOub/q1w3KrWGLaKjiUhBSahNzoQW7lu/D7hX7y8xYXFX5LzQsE264cIwCjI9GQRNnguaUGTXBP9gPzbs0qZF9ERERUc0bPXo0Xn31VUydOlV5LFd5mDlzplLdobICAwNLAg5Go9Ht7eR9lubnV1yBi8iZjHNnkH7ujNM2J3duxf6VS1GQnYn2A4cpQYE9Szy7JrmUDq5ZgYNrVyIoIgoFmRnlghxn9u7Cmb27K6xKVx/4BgQiLCb2Uh8GERERERERERERERERERERUZ10WQQc5KoIrsjj/T998NuSxyq14+oLLukEQO/G9g4qPIi+avf2I0owHMpF+LxE+JwtLLMqKc5xZQZvhhusbX1gb+0kzKEWYBofDP/PUp324xdsQFGBCaKt4hltZVq9BjpfHYw5ZZ9raTe+cDVUqir87oiIiOoRESrlVtU+apvHHnsMr7/+Omy24rTn2rVrPQo4hIeHIy2teOb4rKwst7cr3dbX1xcBAQGV3jddfkxuVEUQ7Xas+O6LksdCXf5cK0nITXNWLa72hRv0/gGwGI0Oq2zIVFotNGoNLKYih236XX9zNR0hERERERERERERERERERERUf1Xh0fMuC+6WSQ0WjdDA/8j2h0PanFFMElAqs3FDiQg3lrhKl1y8UzCzugTitD8mb2I+exEuXBDdSpqGYy029rh3Ct9Ef9yH+Tc5LpagrW9wen6EbcMwouznnAabpA17dAY7y+bCh8/H4f9TH7uapfHQ0RERHVbUFAQ2rVrV/I4Pj7eo36aNm1acj8pKcnt7RITE0vuN2rUyKN90+UnOLphpQMLkuj5NQlVTvvBIzD2wSechhtk0c1a4toXX4dGp69wfafho9Ft7HiefiIiIiIiIiIiIiIiIiIiIiIPXRYBh6DwQAy8rm+N7lNY6GKG1p0mCCn2Clf5nCqE/rTz0ELQsjRo8l2EKLwsb0BDpN/WHqaWIYBWBUmnhjXSeXhBJtgrnp01unkkvt3/EV749XHE7Tnjuh+VgDa9WuK301/i9v+bhJjWDRARE4Yeo7pgxu5pSj9ERER0gV1SeeVWnSwWC44fP46lS5fCaHRddes8f3//kvuih4PAS4ck5GNwV+m2HTp08GjfdPnxDwlFix69L/Vh0EVCGjTCnR9/jSseeQqpp064PD9ySKVR2/a49/Pv0ffayUpwJSAsHE279sTtH3yB0Q/wmoSIiIiIiIiIiIiIiIiIiIioKjS4TDzw4e04uu0EUk6n1cwO/8kHevoAXSqoNpBhg/BZttPNI787i8QXW0EMKP8rGtmwJW56cDDeXTe93DpboA5FrUMhaVTQJRXA51wevMEa7ouckeWrNdhzdUCs8zCGdmfxYEVRq4JpWAyswxujUA9IQYFYVpSCW8xRsBRZ3K6qIQdWbnv1BuVGREREdde6deswfPjwkoDCwoULMW7cuEpXUYiOjvZo/7169Sq5n5KSolSCiI2NdRnI2Lt3b4V9ELky7M77kXoqDvmZ6XX+ZLXuOxDNuvbAshmfoq6Rqy9odDrYLBaoVCqc2r0DgWERsFrcuCYRi0PqfsEhGHDjrcqNiIiIiIiIiIiIiIiIiIiIiLyn3gYciowmrJ61AZvm7YDVbEWbni3wyl9PYcPsrVj+81pkp+YivFEoMhKzqmX/ghXA8+nARH9I4/yBRhogVwRWGCHMzoeQ5XymYX18EWJfPYqcKyKR3zcEokENXaIJQasykHMkDrZ3b0FwRCBy0osDDJJaQPaVzWHsHAmohJJ+tKlGhP17HNqMoio9n4KeUWX6PU8yq2HL1kETUvFgIKHQDp+F2RB1KiQ92B7mJgFyLAIQgVPZ2Zi2cSPmHT2Kp7q1dHkM0U0jqvQciIiILjciBOVW1T6qi1xBoXT1hf/++8+tgMORI0dw7ty5ksd9+vTxaP8jRoxQBjeXDlg89NBDTrdZtWoViooufK4aPXq0R/umy4PFVITD69cgbtc2iDYrGrRqi6ueeQnHNm/AoXWrUJSXq8z+n5+Zgbom8dhhtOjZB3o/P5grUX2lNrBZzMpNlpkYj/W//Yijm9ah62jXrz9BkVE1cIREREREREREREREREREREREly9BkiQJ9UzyqVQ8N+qNctUaNFo1nv3pEQy/eZAykE0e0HZfpyk4cygetY1ao0JodAgykrIgieV/RYIgYOiN/bHmz03K48yrWqKwS2SFfanyLYj+Zi/URTaPjyft1nYwtQqpeKVKgr55PjRB1rLHmGNDwLtJ0B4qQsaEJsgd2tBh/9e2aYvURxci5Yzz2Wx7je2KF2c9gYAQf+Xx2awc/L5nH3acS4RapcKQFk0xuVsnhPv5efI0iYiI6ryEhISSKgTvr+uF0Gh9lfrLSjHj+SE7lPtyhYOYmBh4U//+/bFlyxblvsFgwIkTJ9CwoePPDLIbbrgBs2fPLnm8Y8cO9OzZ06P9jxkzBsuXL1fut23bFvv374dWq3Uaili9enVJezlsQVSRrKQEzH5rarlqDWqNBlc+9oxSAUGSwzWCgB+fvB85Kcm17kSq1GqlUoGjAIYgqNC67wAc27IB9UGnEWOUag7GbOch+OY9euPKR5+B3mAo+V3vXb4ISceOQqVRo0X33kpfhsCgGjpyIiIiIiIiIiIiIiIiIiIiovpDhXro/677oFy4QWaz2jHtzi9x9nC8Em6QTXz0Cu/uvIqTHMshjKsfvQK/nfkase0aVRhukMm5lDOH4xHdLBK2YD0KOzmubiAG6GDsXrWZRlUmu+OVogDzyUAIf5rh808mfOZlwf+jZITcdUoJN8jVJfJ7Vxy+OO+/g4dhtLkOYOxYuhf/d+0Hyv0lR4/jiu9/wY/bd+NASir2JiXj0w1bMPbbn7EvKaXyT5KIiIhq3JNPPllyv7CwEHfccQcsloorQ8neeuutMuGGiRMnehxukE2ZMqXk/tGjR51WcHjzzTdLwg2yp59+2uP9Uv0mf1af98Fb5cINMrvNhsWff6gEGgSVSgkudx093rsHIFTtokQOYXS/ciLu/2omAiMcX0dIkoictBSlCkV9cGDVMtitrq9JTu3ajoXT31PuH96wBj8/8wj2LFmA1FMnkHz8KDb++QtmTnkIqafjqv+giYiIiIiIiIiIiIiIiIiIiOqZehdw2Lf2EE7tO+twvd1mxx/vzi15PO7+kRh1x5BK7cM/xA9+QcWzdV5cXaDHqC6oCp2PDg9+cgd0PlrsWXnAadvT+8+h5+guKGoTCqicD2IKmdChSsdlOOC8soLMf3U6/H7OgN936dCvyYNgLQ5n2IJ0EA0ap9tKWhUyJLNbx7J/3WEsnrcZT89fCqu9fPAi12TGQ7PnwexGYIKIiKg+EyUV7FW8yX1Up0mTJmHs2LElj1euXImBAwcqQQL7/97n5cHi27dvV8IMU6dOLWkrV3r48ssvK+y3adOmysDx8zdnFRzGj78wuPyHH35QHh86dKhk2ZkzZ3DXXXfh1VdfLVnWq1cvZRlRRc7s263M6u+IHHLYMX9OyeNuV4xHm36DKnUyffwDoNH7lFkm/1tv3r0XYtt3rNIvRqPXY+ht9yj/7yUevfD/QkVS406gWVf3QkYhDb1bAaY6mAry3P4dH9mwBsu+ng6xgmuSovw8zPvwrQrXEREREREREREREREREREREZFjzked10H71x922WbtX5vQvl8rxLRpiPb92uC5nx5Fn3E98Nakj11u26xTY0xb+SoMgQbkpOXCL9AXaq0Gao0KWp0W7932WZWOvzC/CH9Pm4+2fVopA4pcWfjNCogDXQ8UEvQa+PjpYTK6FyK4mO/xbOjP5sHcJLDi9YcyoUsyVrhOZXZvUI/KJLp9PO/MXAhrb8dVK9KNhVh69AQmdmzndp9ERER0afz1118YNmwYdu/erTzesWMHRowYAT8/P4SFhSErKwsFBQVltpHDDYsXL0ajRo2qvP+ffvoJw4cPx4EDxeHSRYsWKTd532q1GmlpaeX2/ffffyvriCqScOSgyxNzcN1KRDRphtCYWDRs1RbjnngOzXv0wpIvXF+TRDVvietefhNanR6FeTnQG/yVCnUqjRpqjRbzP3qnSr8Ys9GI3UvmIyiqoVvt969a6nZlCLVWC7vVivpgxfdfOg0w5Gek4+TOrWjdZ0CNHhcRERERERERERERERERERFRXVbvKjioNa4HmslVHD5/9Ac8P+pNXBt6J76e8jMGTOyFbiM6udz29MFziD+aCJ1ei8jYcPgF+cHHoFfCDbJOg6o+oH7uF0vwzi3T3W6vSyk74K8iqvhcDL95oMfHJEhAxKwjMOxPB+wXggiC1Q7/7ckIn3Pc4bZqow0+J3Kd9q+PL4A20+T28eSGFZ9vZ/YmJrvdHxERUX1khwA7VFW8Oa8S5Q2BgYHYsGED7rvvPmWQ9nlGoxHnzp0rF26YMGECdu3ahS5dqlY567zw8HClYkTpSg6yzMzMcuEGuXKDfKxyhQgiR1RuhF9Emw2rfvwa/7zxEr64+0Zs+ONntO0/BA3btHe5berpOOQkJ0Gj0yEwPBJ6gwFaHx8l3CCLaVe16m2yXYvmYvkM969J3GG3WdGmr+fXJLWN1eT6+iX5xLEaORYiIiIiIiIiIiIiIiIiIiKi+qLeBRz6jOteqfZWiw3/Tl+IN274CDe/dK3rDSTg7Zs+dVhdYfgtgxAcUXGVA4UbYwSzkrORk1o2ECCpBBg7hiPzmlbIuL4N8vs2gOhTPHDK52QONFlFTvvM/2sfti/Zi0atGsBTeqjQ/6wdLb49hLC/jyH8z6No+NEuhC46DcHuvNpE6PJ4wOagQoMoIWRZfKWOxdX+ZDo3wi5ERFQ5+9YdwrfP/oIvn/hRqYhks9p4CskrDAYDvv32Wxw+fBjPPvssevbsidDQUGg0GiWA0K1bN0yZMkWp7jB//nxER0d79czL+1iwYAFWrlyJu+++G61atYK/vz90Oh1iYmJwzTXXKFUbtmzZgubNm3t131T/NOvas1Lt5YoGO+bNxuLPP0Tfa290vYEkYeGn0xyu7jB0JHz8/FEV+ZkZKMrPgzdlJyUi4ehhBEZEedyHXAEiqkVLaHR61AXnQydEROQ9qbsk7PtKxJ7PRSSskyC68TciIiIiIiIiIiIiIiIiIqo7NKhnWnRpiojYMKTHZ1Zquy3zd+Lqx66EIdCAwrxCp20zk7Kwf91hdBlafmZUva8O4x8ajT/e+Rf2igb0e/Cdqy1Ij/Rb28MW5luyrKh9GHKHxCL872PwOZ2LsDnHkX5Le4iG8gNoglafhT6xABkogFrr+aD/N+Y+i0atGuL2lo/CL6Vy2/qeykf0zGPIvK45rCEXBiOpcy0In38GfkdyKtffkSwUtQ5x2mZ4qxaVO0giInIoNyMPr149DYc3X5iJeu7nSxARE4bX5z6HVt054Ls2EiVBuVW1j5rUpk0bTJvmeOC2u86cOePRdiNGjFBuRFXRsHVbGIJDUJiTXantjm3ZgG5jJ0Ct1cFutThtm5eeiqTjR5V9XUyu5tB55BXYsWAOJNFByPgSkY9bEDzP2V/30hswBAZh5tMPV+Eo5Ne1mhkM26Jn7xrZDxHR5cCUJWHjyyKyj15YdvJfCYYoYOA7KgQ1r9nPrURERERERERERERERERUPepdwEE2+fmr8fmjP1R6uxW/rEV0swic2nfWZduE40nlAg6iKOLdWz/D2j83wVvkYTcZk9uWCTeUrNNrkHFjW0R/uQe6FCOiv9mLgp7RKGwbBkmtgi65AAE7kqGPzy/Zxm61e3wsO5buQ9OOjT3eXg4xGN7ejaJWQbCF6JVwg+F4DgQPxlz5701H4aimMBkqDmz0iGmIPo1jnPZhMVuxcc5WnD4YD79AXwyZ1B8Nmns+mywRUXU7visO875cqoQM1Bo1+ozrgYmPjEFk4wiP+ks+lYoNc7bCXGhBi25NlSpIanXFr6v/d+0HZcIN56UnZOLFsW/hh8PTERTupIIREdFlpuf4q7H+t58qvd2h9asQGB6B7OREl23lNhcHHETRjgUfv4eTO7agtpIkz0MXZ/buQqfhY6p6BPAWlUYD0VZxNaPGHbugQcs2Tre3WSw4vnUjMhPjoTf4oW3/wQiMiPTa8REReVvWEQkn/5OQeUSCSgs07CegxdUCDBGehQvyEyQkbpBgtwChrQVE9wEEVcV9XRxuOK8wFVj/rIixP6ug9WfIgYiIiIiIiIiIiIiIiKiuq5cBh1F3DMX3L8xCUYGpUttlp+ZizB3D8PWUmS7bBoT6l1u24pd1Xg03yMzNg2CN8nO4XtKpYewehaB18VAXWBG0Nl65VYf1s7fghmcmVKkPQQIMx3OrfCwqi4gOy5Oxv38YrJFlwx9ysOHza8Y73X73yv1495ZPkZOeV7Lsp1f+wOg7h+HJGfcrA4eJiGqTRd+uwGcPfwdRvDAo8+zhBMz7aile+3sKel3R3e2+rBYrPrn/G6z8dT0k6UJ/QeEBStCrIMeIkOhgjL59KIbfMgjHd8bh4MYKRhL9T25GPpb8sFoJGMrysvJx5mA8dD5aGAJ9sWHONuRn5aMwz4SgiACENwrD0Bv7MxBBRPVapxFjsPnvWcoA9soozM1FhyEjsPHPX1y29fEPKLfswKpltTrcUFXHt25CpxFjUVsEhIYjN618ebsmnbth/JPPO9321J4dWPLlJzDlX7gm2fjHL+g86goMv+t+qFS8JiGi2uXEHBF7v5TK5MTyTks4OVfCgLcERHZzv0KP3SxhxzQJ8WtK9ydBHwylIoPVCPiGA03HCmg8QkD6PlQYbjjPlAWcWSah1XXFAQdzroS8M4BaD6h95BAFYM6TYC9C8T4iBMQOE6ALZCCCiIiIiIiIiIiIiIiIqLapdwEHuYrCR/d8Velwgyy6SQSuuG8E/po2F1kpOQ7b+Qf7KbNcX2zhjOWV26HgevJQU7Mgl93IbeSAQ3WTz6k8GLYmqNQqdBvRCbuW73PYJnPHOTTccQ6mlsEwNQ0ARKCJSYVrPx+Op1YsRnxeLsIMBkxs2QZXxDZHSEggBEHA2cPxeHXi+zAXlR1sJg8aXvrjavj6++Dh6XfVwLMkostZ8ulUHNl6AhqtWnm9CwgpDs5lJGZi6Y9rELfvDDKTsmAymgFBwOkDZyt8zzAbzXhp3LsYfcdQPPjxHSX9OPPZw98robyKggryTZZwPBkH1h/B/K+XoTCv0GWf25fsxoQHR2HGlJ+x+o+NsJisTtt/88wvuO3VG3DTi9e47Js8J0IFO1RV7oOIKvn/jWjH0i+nVzrcIAuMiEDXMeOxa9FcFJUa+H4xn4BANO3SrdzyfcsX1+tfl9VswqF1q2pkXyq1GjHtO+Hcgb0O21QUbgiKjEab/oOwcPr7yMtIh19wMNoNHIqWvfrBEFh8fZd6Og7zP3oHdqu1XHWLfcsXQefri8E331kNz4qI6IKCRAlZRyWoNAKieqCk+kFhqoTTSyTknpJQlCmHEYr/fpV7quKzZysE1k2R0OxKO7o8rILWz3VoYOcHEuJXl7/AMecU35TjSwDS90qImyeVLHMmeauEJqMkJYQhBydEp5ckEvZ+JaHTPQJaT+LnXSIiIiIiIiIiIiIiIqLapN4FHFbN2oB1f3s2Y+nYe4bD188H0ze+iQe6PuswJCFBwvGdp9BpULsyy08fOFep/UU0CoXOV4fkuNQyM3JftDO3yVUl8rMKUF2ad2mCzKRsl+3UGhXsNrFK+xLtIm55+TrsXX3AaV/yV+a+J3OUm6QCjt3ZCk9vXFmy/lRONnYkJeLNM/PRbVEaxkwahF3L95cLN1w8S/qtU69HYFj5GXGJiKoqNyMPH983A1sX7Cx57df76jDu/lFo2CIKX0/5GXabvdL9Lv95LU7uPY1nf3wYRQVmRDUJR2TjiHLt0hMylbbuOrHLwSimixTmF+H50W/i2I44t9pbzVb8+PLvCAzzV547EVF9cnD1CsTt3OrRtp2GjYbeYMCNr7+P3158EjazPKq0ApKE1FNxaNi6bZnFGfGVuyYJjIiCSqVSBuqXrurjKbmqhKmgOCxXHcIbN4UxO9NlO0GlgiRW7ZpEEiX0v/5mxB/cV6lzI5/L5TM+K3mcnZSAhMMHseLbL5TzLVfoOLlza7lwQ2l7ly5En6snKf8WiIi8zZQlYecHIpK3nf+7kwS1D9DyakGpbnDgWwmSBy+hpxcDOadE9HhagK1QgF+D4koJFytIknCugnCDI1lH3GtnMwLrnhaRc9K99qIF2Pe1BF2QiKZjGHIgIiIiIiIiIiIiIiIiqi3q3bd38uB0T50faNqgeTS+P/gxopqWHxgqM+YU4uVx7yD+WGKZ5YZA30rtLz0hC4knUhyHG+QBQqdzXfYTkW3DPe/egs+3vYvwRqGoLlc9NAYRsWEu21U13HDe4u9XVaqvnKENYOxS8fGZm/rjcHd/zHprDo5uP+G0H3nW8Z1OKkcQEXnKYrYqIYDN83aUee2XQ1f/froIXzz+o0fhhvNO7TuLh3o8jylDXsWtzR7BC2PfwtkjCWXaKMEKu3dep0vLTsl1O9xQ2nfP/4YTe9wLUVDliZLKKzciqpx9K5d4fMrOD6QPaxSLOz74Ev4hFX++lUME/777GnJSy1YQkGf+r4y89FTkpCZXOdzgGxCAwbfejZve/BC+gcGoLl1Hj0NAWMXXaaVVNdyg9CGJ2L9qqVeCH6XP95bZvyP9zCmXlSrOHXRcOYKIyFM2k6SEAJLlHF6plze7CTj2p4T9MzwLN5yXfRRYeZ+EtU+IWDRZxIYX7MhPKPs6mrRJqtSEHu4qzIDb4YbS9n0lKcEMIiIiIiIiIiIiIiIiIqod6t2ItXNHyoYOKmPr/J3KT3kAi0anQW56nsO2cnWHOZ8sKrNsyKT+8DY54KBNdlyVwV+vwx+/PI/Jz1+NRi2iMWPPBxh8Qz+o1N791V5xzwgMvXEARt42GBqtGjXBbrO53VYSgNyB0U7b5PcIg93XvWM/5iIEQURUWXvXHMSzI/4PcXvP1MjJk9/Ldi3fhymDX0XiyeSS5Vaz+6+tlZGV7LrCT0WMuYV4uMfzuL/L0zi1v2bODRFRdctKKhsuq4xTu3eUDNCXP9MXFTi+JjEXGrFnyfwyy9r0G4Sa5uPnjzs/noFeE65FaMNGuOODz9GyZ1+lioI3dR0zDi179UWHoSMgCDVzKStW4prE21JOHr9k+yai+ke+PkjdKWHdUyLyaupjtwikbAPWPC7CmHIh0SA6LmBTJUUZnm1nyQNW3CNh+X125J1l0IGIiIiIiIiIiIiIiIjoUqt3AQf/YD+Pt102czU+e+Q7XB18B25seD9MRrPT9pv+21bm8fVTJlS6ioM7wv88Ck1aYbnlQT56fH3TREQG+CuP/5o2Fw92fxbr/9ni1dm52/RqgSnfPajcD40OwY3PX43qptaoMfj6fm63Fw0a2ML0TttIOjUsDQxu9ffvp4vxy//97fb+iYgcsdvteOeW6Xh2xOs4vLnmByrmZebjtzdnlzxW11BIrbJOHziHB7o+i1uaPYRjOz2YdpUqZIfglRsRVY6PwfNrkgOrl2HFt1/g8zsn4btH7obd6nwU6IntW8o87nnVtdDqnX8u9ibfgEBc88JrMAQGKY+3zPkTv77wBE7u3OqVKgrnNWrbHiPufki5HxgeiW5XXIXqptZq0bK3+9ck3rZ93mxsm/vPJds/EdUfol3CltdErH9WRNbRmt+/ORs48lupkg3V9fGyilUhck8Cy+6UsPhmO3LiGHQgIiIiIiIiIiIiIiIiulTqXcBh2OQBHm+blZKLBV8vR2F+kVvtzUWWMo+jmkSg85D28DZNvgXR3+xF2F9H4bcnFYb9abirVXOsePIu9Goaowxevb3Vo/j+hVnISMjy+v6ve2pCmceCUP0DHUfdNhgDr+mDph1j3Wov2Nz7Fluwuv8F9a9v/IOjrORARFX01/vzsOaPTZf0PK77ewv2rj2IVb9vwKy356A2Szubgcf7vYxjO+Mu9aEQEXmsTf/BHm+bl56G/auWwmo2udXeZikbyg6JboiGrduhJsghg3s+/U7ZX2FuDr595C5s/vs3GLO9f03Sc/y15QLR1a3jsNFo3XcgQho0xKWy8Y+fkX729CXbPxHVD4d/lpC44dIew7lVEtL2iTi7wo5jf1UxiVDNjMnAygck5Jys3cdJREREREREREREREREVF/Vu4DD1Y9dAa2Ppkb21apH83LLzIVlQw/eIkiA38lMdA0+gqvu3w+h2wx8e+oGzI1/C6/c9yKS41Kr7TkOuq5PmWUb5mytcr96Xx1uefk6+AWVr6gg7++xL+9V7r/8x1MIjiyeDdYZldkO32O5TttoMk3QJxgrdZxPDX4Vb988nUEHIvKI3WbH/K+WXvKzZzVb8ezw1/HerZ8hOyUHtZ1cheitGz/GtsW7sWrWBhzbwYoOHp9LSeWVGxFVTo/xV0OlqZlrkqjmLcsts5qdV6Lzlj1L5uOr+27Bgk/ew++vPI38jPRq2U+D1m3RvEevMsuOb91Y5X61Pj7oc80k5efF2g4YgmF33KuEu8c98Tx8AgJxqcx6eQoWf/4hUk/x/ZCIKs9ukRA3/9IP1LebgHVPStj+DmBx/uebWkGyA1veFJG0RcLZFSKyj1/6c0hERERERERERERERER0uaiZUTc1KCQqGBGx4Ug6kVLt+xr/wCgknkzGom9W4OyRBBgCDZCkavrCUyWh88cmRI6wlywSYcfx/E1o8AqQmuKDrK3e+3UKKgH9J/bClO8ehEZbtt+iAvdmk3VEq9fitTnPoNfYbrjxhaux5veNOH3gHHwDfDBkUn+06NK0pG3TDrGYsecDLPh6GdbP3oqigiIUZBthMpYftBWyIhFFLQMBdcUVJkJWJClBkcqwWWxY++cmbJi9Fc/9/CiG3zSw8k+YiOqsM4fisW/tIWVwY/dRnRHTqkGltk+KS0FmUrZXj8k3wBcmowmSWL8H2KScTsMr498teRwRE4pHP78H/Sf2vqTHRUTkjoDQcPgFh1TbgP/Suoy+EllJCdi/cgmykhKhN/hBUNVcMEm027wSNqiQICgVFEbf/yhUqrIVGyymql2TaHR6XP3sVDTu2AW9J16PIxvXITPhHHS+BrTtPwjhjS9ck0Q1a4Hbp32GvcsW4cT2LUrVjKK8XNgs1RNuv5jdasWRjWtxbMtGjH/iObTq079G9ktEtUNOnISM/RIEFRDVS4B/w8pV1cw/5/1AgdYPsFZu/og6qeAcsOml85VAJRiigO5PCWjQhwFgIiIiIiIiIiIiIiIiouokSNU2Iv/SubHhfciqgRmqG7drhPijiaiJMxg93opO7zmeibUoWcDGMQZArNwX3Y74+Onx8bo30Kp7+SoVUye+h60Ldjndvuvwjti/7rAyC/d5KrUKHW/ui8G3D8Sgvh0Q6le+eoMr+9cfxtNDX3O4Pr9bGDJvbA6b74UBUILFjtAlCQhZnYyq0Plo8fu5GQgKv3SztxJRzcjNyMN7t32Gncv2lSyTQw79ruqJ52Y+Ar8gP4fbGnONWPzdKqz5cyNy0vORHp/hteNq2DIab8x9DjnpeZj11hzsWXVAWa7RqmGzXgjA1SZyFR75fHorkNFjVGdM/edp+AVW/j3kcpGQkIDY2Fjl/ourhiI4uvzM5JWRk2LCuyPWKvfj4+MRExPjleMkqu++uPsmmI351b6fsJjGyEyMR41clNQwOWxw0xvTyoQNzvvnrVdw7sBep9vHduiMhCMHIYkXrknk8EfTzt3Rpv8gNO/eC74eVGY4s3cX5rzr+JqkOmn1Pnhgxs9KkIWI6jdTloRtb4lI21NqoQDEDAZ6PqeC1uD47z+WfAmnFkqIXy3BnAsUeTFvF9AYGPCWCoVpwJFfRaT/75JJ0ACSDbWSLvh/IQ8vvVVG9wX6vaqCxtc7f4MjIiIiIiIiIiIiIiIionpewUFmLzWovjqdO5KImhJzvdXpet8GEsIH2pGx3ju/UrlCwrfP/oIPVv2fUpVCni1cDiis/WszjLmFTrf18fPBvjUHy4yxMrYPhXliaywwAAu2boR2+2aMbtsKL48agnB/9wfnZCRkOl0fsCcT/oezUdAxBNYwH6jzrfDfmwl1UdUH/lpMViyfuRY3PHNVlfsiotrLbrfjxSvexoldp8osl18LN8/bgakT38fHa9+ocNv0hEw8M+w1JMWlevWYmrSPwb3v3YreV3aDSqVCE3nG7iEdkJeVr7xeG3OMeGb468jLrP6BtJVVkF2Ah6ffBb2vDke2ncDSH1ZXqdrRrhX78fp1H2Laile9epz1lfyJyC6PhKtiH0Tkwf879poZ5SlXHaivLEWFWP/7TFz7QvE1idVcXLXh6Kb1sJodh79lWh9fxB/aX265RqfD6b07lZtao0HrfoMw7I77KhV0yM9yfk0iU6nVEO3eDx/K5+Dw+tXoNnaC1/smotpDtEpY/6yI3LKXJMoA/YR1cvUEEYM/KFvZ5jxjioS1T4oo9O4lCYKaA53uVyG6d3H4OyAWiOqhhjlXgt0M5ee6KRKsBah1bEagx5Tiz8SZhyScWVq1/lK2AlvfFDHwnYp/B0RERERERERERERERERUNfUy4BDTugFy0/Muyb5NTQNR2DEcol4DQ44F+m2JUBc4Dye4w9DY9WBQ38beHYK4d80hfHzf19j433bkZxUoX2C7MyhVDkOUVtA5HJnXtQJUFwZYWkURiw4fw+GUNPx952QE+bo3u3RYo1CXbXzUWgi7XA868sSZw/HV0i8R1R4LZywvF24o7cD6I9iz+gC6De9Ubt1H937t9XCDrDCvCH3H9yi3PDA0QLkhNhyfb30Hv705G+v+3qwEsgyBvsp2l5pcWeLrJ3/CtFWv4Yp7RiiVgT575LsqzZ4qV644uPEIOg5sB3ORWakqlJuRjwYtopQKD3IIhIjoUgtp0BBpp+Mu9WFU20D7miJXS1g+4zMc374JZqNRHlXrVrUKq6ni90Cr6cK1it1mw5ENa5B+5hQmv/EB9Ab3qgMFhIa5bKPWaKvtvGcm8JqEqL47PkcqH24oJXUnkHFQQnjH8kHW7e96P9wgk0MMDfqU358+qHiZIVLAiC8lHP5FQsJ6CaIV0BgAm/M5MmqEfCy7P5Ew7HMVmo9XIbiFiL1fVq2cQ/IWIPuYhJA2AmxFEpK3SDDnAQExAiJ7FIdAiIiIiIiIiIiIiIiIiMgz9TLgMO7+UTi06ViN7lPUqpAxuS3MzYNLlilDavpFI2ThKfjvTatS/5YcAfpI51++WnMr/vJUq9fCai4bsvD190FRQdkgQkWW/LC65L4nM25LKgE5Y5uWCTeUdjorG7N27cMtbdth0bcrsWnudpgLzWjVozmuengs2vVpVaZ958Ht0bBFlNMBxC26NMHhLcdRHQwBvtXSLxFdOrkZeUg5naa8Vq74dR1mf7TA5TZr/thYJuCwd81B/P3hPOxavq9ajlGtcT1gv2GLaDw381E8OeN+pdKOHHC4pclDysD/S00UJcz5ZKFSdWLCg6Ox9u9N2L/2cJX6XD97K04fOIefXvkD+dnGkuXRTSPw1LcPovvIzl448rpPlFTKrap9EFHldRl5BVZ898UlP3W1Jdyg0mgg2spWtdD5+sJS5DyMJ1+DHFizvPQCrx9bRvxZ7F+1FB0GD8e+lUtwcsdW2K1WRLdoja5jxiG6RdlrksaduyIgLAL5mekO+wxv3BTJJ46iOsjnjYjqF3OOBGMKoNJKOL1Iwsn/XG8Tv1pEeMcLFQRSd0k49oeIjPLFa7xCcKNYQUBjAX1eEdDTLMFqBNQ+EhZNKr5/qUkicGK2hLBXBbS6XoVzq+3IOlK1PuUgR8YBCYdmln6OEvwaAr2eUyGiC0MORERERERERERERERERJ6olwGH4TcPxKb/tmHT3B01ts/s8S3KhBtKqFXIntAC2owi6BM8H2SavECDgKctDteLEhBwpRqpSyVI1gtfoPaf2Auv/PUUdi7bh81zt8NqsaFNr5YYemN/3N7iUZgKzahORS2DYQ/QOW3z9879WHfjD8hKzi5ZdvZwAlb+uh53vjkZt7x8XclyeQa8Rz+/B69OfF+ZFfxiTTvEYsIjY6ot4DBs8oBq6ZeIal5mcja+eeZnbJizDTZL2QGXrsivTwOu6YM+V3bHjKd/VgbvV6deY7u53Vbno1NuZw/HI7RBSK0IOMjOhz9OHzyH1DOOB4S6S36d/++zxeWWp5xJx9Sr3sMnG95E6x4tqrwfIiJPdRw2Cid3bMHpvbsu+5PYut8gXPHoUzi9Zxfidm5TQhcNWrVBq1798P1j9yiVFC61/SuXYMf8OSjKyy1ZlplwDofWrcTgW+9GrwnXlixXqdQYdtf9WPDxu5DE8lX0Ipo2R8dhI6st4NCm/+Bq6ZeIal5huoR9X0pI2CABlSzKeWoh0HCAhKgeAnZ/IiJuvvcDYKVF93Z/sL5aL0CtB3LiAJ+w2hFwkKXsLD5HOSclFFX9kgRpeyVkVZDbNiYBG14QMfwLuVoEQw5ERERERERERERERERElSVInkzLXwfY7XYs+Go55n+9FPFHkyCoBGh1GuWnf7Afeo7pirF3D8OW+buw9MfVyMvMh0oloPeV3TH4+n4IDA9AeEwoXhr7NrJScpzuyxagQ/KTPRxWKZD5HspA+GzPB91r/CX0/r0Qfs0r/nUZ7TqYJS0K5wYg6ycftOzWHP2v7oXdK/fjyJbj0Og06Du+J656eAyimkQo23x079fKcy/NGuYDY6cwiDo1dCmF8DuUCcHu+T+Rgu6RyLympdM2aquImDe2Olw/8rbBeOaHh6HWXJgucN/aQ/j5//7CgfXF0+35+OnRdXhHmArMykzq1aH3ld3w9sKXqqVvIqr5qg2P93vJaTUYV+SKD3II67vnfkV1kqs3fLv/YzRu20h5XGQ04fDmYxDtohJYCwwLgMVsxdlD8UoIrFmnxjiw4QimTniv2kNslSG/D10/ZQL+fM+N6WjdIKgFSE7enwZe2wevzX4Gl6OEhATExsYq96esGImg6KrN9J2bUoSPR61U7sfHxyMmJsYrx0l0OZAH7u9dthB7ly9CTkqynNaFWiNfk6jgY/BD02490XHoKJzYtgmH1q6EyVigrGvevTda9+kPn4AA+IeG4583XoKpoHYE1tzhGxAIrY8Popq3QovuvXFm/26knDwOtVaLFj37oOvocQgIC1faLvrsAxzdtO5SH7Jy3isKK5zXafgYjLzvYSXccN7Z/Xux+Z9ZSDp+pKSyQkz7zrAUFSLh8IFqOc5Wffrjqim8JiGqD0xZElY9LKLQ80sSJUTQ/g4BB76t3j/tqTTAmJ9V8G9Y/Hcva6GEzENKsQKEtgd0/gLsFgl5p4srPQQ1kytKAJumihAdz9VR47T+QNMxAk7M8dL5kgudOQmmNB4hV7RgNTQiIiIiIiIiIiIiIiIiXO4Bh8Nbjyszae9ctlcZ/Kk36JGbnleu3aDr++LlP56EWq2GzWpDTloufP194BfkV6bd4u9W4pMHvnG6T2OncGRd29ppG6HIhphp2916DjofLSwma7nl+kgRvRebodfb5bFRCrskwCRqlXCDzKAOwEvtvsWir1fhy8d/xMW/Xr8gA95e9BI69G+DtPgMPNH/ZWQkZkFSC8i4pgWMXSLKBDVUBRZE/HkcvqfLn0N3FDULRNrdHZ220aYY0fDL4pm9nVXlePG3J8otz0jMhDG3EMd3xuGDu7+CJJeyqAaj7hiCx7+8Dz4GfbX0T0Q168eXf8cf71Z9oH1wZJDy/lGdVGoVZp35CiHRwZg59S/M/2opCvOKSt4vGrePQfq5jJJKDaENgmEymkva1BZywLC6XqMdadG1KRq1aoBx949C9xGdcLlgwIHo0ks4egi7F83D2QN7lc/jGq0WRfnlP0+3GzgUVzwyRRlcb7dZUZibC52vAXqDoUy73UvmY83Mb2vwGchBPh9YzSaPtvULCcX9X/6E3YvnYd1vP5Zb7+MfgOteegPRLVohJzUFf0x9BoW5zkPltaUqx5gHy1+T5GWkw2oqQuKxI1j53ZeQpEpOw+6mTiPGYPidD0Cjc14hj4jqhr1fijgxu+qfj/XBgLmaX0Ll0MKE2SpoA4AD30k4tUCCrbB4nUoPBDYGClMAy/+yeL7hgKUAsHv2NlJ95D931eQliQAEtZDPj4DmEwREdmU1ByIiIiIiIiIiIiIiIqLLLuCwatYGTLvzCyXY4I673roJN790rct2C79ZgZ9f+8vhIFa3Ag4mG2Le3+72gNmJj4xV9lmavomEjvPk70dFaAQRkiTApkwXV/YL0uBfemPVxzvK9Wtp4A9TyxD4BPritffuxNB2LZEen4GHez6HUwMjUdA7uuJjN9uVAII2s/LfTMv/uJKe7AZbmOPZo0MWnkLgthSXfX266S3EH0vCkh9WITkuFUERgRh562CMuHUw7mn/pBJ0qAx5pvOOg9vhwLrDTtvJg2NnHvusUn0TUe02OeZ+ZCZlo664++2bkXQyGUt/WnOpD6XO6jiwLd5Z8jJ8/XxQ3zHgQHRpHVizHCu++cLtQe5Db78XPcZd7bLd7iULsHXOHxUGJapDYESkEsDY9t/fHm3fqnd/nNi+2eF6ncGAcY89i2bdeiI3NQW/vvgELIWV+zx/Kdz67nSknTmFA6uXIS89DYagYLQfPBxt+w/Cj08+6EEoREDDtm2RdLS4CoQj4Y2b4I4PvqzSsRNR7TJvoh2WmnlJ94ouDwvIPgacW1Vv/oxY4yK7AwPfVUGtY9CBiIiIiIiIiIiIiIiI6LIIOORm5OHmxg9WWPmgIqJBBemaRmj9UC+oBBUGRDbHxMad4a+teIb+vKx8zP54IfIy8iGKIpZ8v6pknS1Ah+Qne5SpfHAx38OZCP/nmFvH1n9iL7z+33M4tPkYFny9DHF7z8DHT48+t3bCwcH/utz+wHjAknDhWEQfDbKuaQ1zs+Ay7ZqEBeOja8fikU5PI+HZHoBGDktULGBrMsIWnIYnipoHIe3WdoC2fP8BKUUI+WYvBJvrf4ZRTSKQeja9wtnN3Q21XEytVsHuYturHh6Dx76416P+iah2GqOZBLGGqwlUxZBJ/bHub8eDRMk94TGhmLH7AwSFB142AYenVoxCYLTjkKE78lKK8MmoFcr9+Ph4xMTEeOU4ieqjguwsfPfI3RDtNre3kasZNGzTDiqVCk279ED7QcOg9ak4jCVXeNi56D+YjUZlHwfXFP+/WR3a9B+M8U88h4TDB7F3xWJknDsDna8vYtp3wo55s722n9BGsRj78JP4/eWncamotVrYre5dRwaERyA/o/w1iVyFQxI9uyZRqdUQ7XanbXpOuBZDbr3bo/6JqPYRrRLmjK6eai/VJXYEEH/hT2HkIb8GwMhvVdD5M+RARERERERERERERERE5IgG9cTymWvdDjeYWxuQ/mITiAEaJKacUJatSj6Gr46ux/cDbkG74AuVDOT8x6y35uCfD+ejML+oZLlaq4bdWjwIRZNvgeFQBgo7RVS8Q1FCwNak4vvnv790Mq524qNXKD879G+j3Er79PhuJJvOONy28HjZcIMs87o2sDQJKtf2bGYOHvpjPkztQ5VwQ0BAIXx8LDCZdMjPN5Ttt22oxwEH31O5iP7hIHKHxqCodYgSBFHlWxCwKxVtzlmR6ka4QVZRuEHmabhB5ircoNVpSn4fRFQ3mQrNmPv5EqX6S8rpNPgHG6DWaSC6+Z5RG2Qm151qE7VZRkIWPnvke0z9a8qlPhQiqqcOrl5eqXCDzFSQj1O7iiu9ndyxVanScN3LbyI8tkmZa5LN/8zCrkXzYDVduCYRVGpIovOB8RUSBLlTp026jRmv/Ixp31G5lRa3YyuykhLgDVmJ8Zj30Tu4lPxDwpCb5rqinKyicIPM03CDzFW4QaPVocuoKz3un4guPVuRhBNzJJxeIsGYDOgCAEEDSJV7y7ikitIu9RHUD/Lvf+9nEnq/xIADERERERERERERERERUb0POJw5HO925Ybz4YaLZZiNuH/zH1g55jHo1cXrf339H/z6xj/l2srhBkEQlMFGspCFcbD762BudlGQwC4iZPEp6OPzix+7GMt/11s3ofuITg7XD4u8Fr+f+9jh+pQfyj42N/KvMNxwXnpBISIG6NGn32EEBl4YLJWf54tjR2ORnR1QfNiaqn3xqk8sQOSsoxB1Kkg6NVSFVggiYI8JRW2g1qhht5UdWKTz0eKF355A47aNLtlxEVHVFBlNeH7UGziytTjMJsvLLKh1p9Uarkf28CgUdA+FpFNBH1+IoHWpCNhdHGwIjSpbgYc8t2HOVmQkZiK8UdhlcRrtkkq5VbUPInJPRsI5r1SB+O/913H39G+h1hRfk2z44+cKqyYo4QY3wgrlN3TSXhAw9LZ70Khte4dN+lwzCUu+dHxNUlnGrExcSjaLGbVBRZUcNHo9xj/xPIKjLoTwiahusRolrH1KRM6FSxJY8lDn6HlJ4jXxayV0fkiCTwhDDkRERERERERERERERET1OuDgF1i24oAjxqEhFYYbzksz5WNxwiFc06QLCnKMmPXdUuT3iAZUgP5cHnSphSVtz4cbZCqLiIhfDsHcPAiFHcMh6tTQphfBb3eqUuHBHTc+dzVufulap206B/eH0ZaHJSm/wSKaSpbbi4DET4HsZWW/HDW1ch4gCAgxou1VaVBryg5yCggsQrceJ7BrR2vk5vpDf+5/AY0qks8T5BuAoPAAZCRmoTaQww13vX0Tzh6Kh7nIgtY9WuCKe4YjhIOKieq0P9/9r0y4oTYyNfVD4uNtIBouvDcVtQksvq1NReSfZ8sFsMhzkijhxO7Tl03AgYhqlt7g3jWJK3npaTixfTPa9h+Mwrxc7F4013HjyoYbXOh33U3oMe5qp23aDx6Oovw8bPzz11oTDvCUb1AwjDm1o1KSHG4YdNMdSDt7GnarFQ1atUHHYaNgCHQcWCei2u/wL1KZcENd5eW3m8uaaAVyTwE+PS71kRARERERERERERERERHVTvUm4DB08gD899lil+1MHfxcttmWfhqjotvh3m//xtl7OhbPivo/+jO5CPvvONQF1nLbya18TuUqN08c3e7eN979wseiW8ggzN3wBxb/sxTWNCBrGSAWVDDzm9r5rMvN2ieWCzeUbKqW0KJVEnbvbI3ALSnwpuimkbBarC4rWpwnqARlUGp16jigLW5+0XnAhIjqDrvdjiU/rEJtJr+qpdzdoky4obTcoVEwHMpFRlIWtHotrOby7z1UeTOenon0+EyMvWc4dHptvT6FIgSIklDlPojIPXIgYf/KpV45XfGH9qNZ1x6Y/dYrsNtsNfYrSD55zK12cgiiw5CRWP/7TziwahnqouDoBrAUXgiw1waNO3ZB76tvuNSHQUReIlolnFlaP5IB5hxAUAMSs9deseczEa2vF9B0rACVlp+3iYiIiIiIiIiIiIiIiEpzPvq9DolqEoFW3Zu7blhcPMCp7Qt345Hf5mKvUf72tuyXjOamQUi7pQMklfe/fCwquFCRwRUftR866wcjZYaAjDlCxeEGALpEx5UXtHorQiKdV2YIDc1H1M6zGNiyKW6dej08NfCa3rjxuYm4fsoEvDbnGdz9zk3ITCo/U6o8BlPs6QP7DYGwj/eHKkKD5395FL2v7O7xvn389AiOdD7rqY9Bj+adm3i8DyKqffKzCpCd6lngrKYUtguENdLHaZvcwZEoyi/Co5/dDeGi9yRvatS6AWLbNoLeoIdaq0Z9lnQyFZ8/+j1eGPMmzEV1e+ZxIqpdghs0RFiMdz5Txu3chjnvvIb0s6dRk6ymIrfb+vj7o+2AIagJKrUGTbt0R59rJnncR+u+A9Fr4vXoMf4aXP3cVPS5epJSIcP1vtUY/+QLiO3YxeN9a/R6+AQEOG2j8zUgNCbW430QUe1jygYseagX7Gagy8PVOxA/oDHgHwOo9MVhivos/xyw62MJG14QYbfUjxAMERERERERERERERERkbfU+QoOKWfSMGPKTGxZsAui3Xl6wRDoC7+DhSjq53ywe8HuLGyTEh2ut0UaUNg+DH4HM+BNlRlgX5hfhDdu+BCSi+9AH73nSnySdRr5Qvlzo9XZLs5vlCOvf/DKvrj1nsmwWW1Y9O0KjwYM3/5/k9Cs04Xn99nD35VrI7bRwf5SONDwwmzaVknAvwnbcHbtQXiiVY/m+GDVa1jx8zp8+cSPDtuNuHUw/INdV/cgorqhIMeI5TPXFpfWqcVjRSwNDW608UXDlgG48r6RiGoagb8/nI/dK/Z7Zf/BkYGIbdMIY+8ejuE3D4RGq8Evr/+NX1//p0r92hvrYOtlgKQWoDlUBM0h9wN8NenA+iOY9dYc3P32zaiv7BBgr2KeVe6DiJzLTknC2p+/w+k9uyBJzq9J9AY/mIsK4eqDvDEnW7nVtIgmzdxuW1SQj0WfTnPeSBAw+OY7sfmfWbBZLB4fV/9Jt6DP1TfAajFj34olMBU4D2pXdBwDJ9+GkAaNShYt/Xq6W5tKkoRdC/9Fmodhkwat2+H6l17H3uWLseH3mQ7bdRw6EjofX4/2QUS1jyVPwpllbsyyUUf4NQRaXauCfyMJx/8SkbbHO/3qQ4DAxkCzcQJihwtQqQXsmyHi+F+1+ELOi9J2A8f+lND+dn7mJiIiIiIiIiIiIiIiIqoXAYeMxEw8NWgqMhKzXLZt3681eozugp/fnQ31teGwh10YRF+aJtkMu8X1oJKidt4POKScTUNuRh6CwgNdtl3xy7oKKyCU1rhdDDb9swWNLCYcH9oAoqHsczYXaCCai2fGc0QyA9fcPgE7l+/Df58tQkFOISpr9B1DMevtOUiPz0RogxDl8cVjJaVoDezvRgIBZafoEwUJh2PToJrsC/X3lZ9lO27fGViKLLjqkTE4tvMkVv66vlybjgPb4oEPb6t030RUO+1ffxivXT1NCTnUdiqz3XUbkx1nD6fAmGtEj1FdoNVrvRJwkEN/s858DZ2PrmTZtkW78Nsbsz3uUzKoUPhsFGx9/EuWya/c6hMmGN5OhjrDjrCGochIyERtseSH1UoITw53EBF5IjctFX+++hwKc3Nctm3UtgNi2nXAtv/+rrUnOyc1BaaCAqU6gysH16xw+bzDYhrj+NaNSnUCjwMOgoBuY8fj1J4d2LNkASyVqDJxXsdho7Dxj1+Qn5WBgNBw5bG7lZEkUUTyyePwVOqpE7Db7eg54Rqkno7D8S0byrVp3LEzBt58h8f7IKLaJXWXhM2virBV/k8otVbeacBWJKFBHwGCoELanqqHN7QBwLg/VVDrLrweJ6yTqjfcIAA+YYDJu3/Sq5JTCyS0u1WCUA3VYomIiIiIiIiIiIiIiIjqIkGSp6Oso7547AfM+3Kpw/XyYPqbX7oWbfu0QpueLfDRPV9h6U9rYInVI/2lprBHXBjUeT7cEPH2GeR3j4GxR7TTfevjchD5+2F4m1zF4dPNb2Pbwl2Y+8USHNl6AlqdBn2v6okbnp6A1j1aKO1eGvcOdixxf7o8u0GDwi5RMLUMgaQSoEvMh/+uFDR81IagiWVDBaXlzbej8faO2LF0r8t9aHQa2Cy2ksdBEYFo2DwKR7adKNe2da8WOL4j7sLxPRQC8VonwQ6TCM3NiRDyK/8FercRnfDMjw8jIiZMCWos+X4lkk+lKTOXj7ptCAbf0I8DW4nqiZz0XNzZ+nEYc+vGSCKbvwbnpnWH3ckE+2HzEhC6JAkTHhyNx7+6D4/0fgHHd154/awKvyADnpxxP4beOEB5fHf7JxF/1HEFI1eMbzeCrVvFVSnUKTZMi7we3Qd2xG3NH0F+VgFqi1lnv0ZkbDjqi4SEBMTGxir3H1p+BQKjXFcKcSYvtRBfj16i3I+Pj0dMTIxXjpOovlj+zWc4sHq5w/UB4RHofdX1aNimHSKbNseizz7A0U3rUJtFNW+FyW9Mw4ltm7Bn2UKkxp2AWqNFy1590XPCtcrzkP39+ouIP3ygRo6paZfuOLNvt8t2KrUaov1CgNA3KBhB4ZFIiSsfUIhu0brC5dWhWbeeGH3/Y/ALCcXpPTtxYPUy5KWnwy84GB2GjkSr3v2VYyeiuq8oQ8LS20XYKp/FunTcrHzX+gYBXR5WYfndduR6VtSmwpBDz2cFxAxSQRIlLLlVhDEZ1UMFDHxHQFh7AYtuEmGrRZn4q/5TQR/MgAMRERERERERERERERGRrM5OVyznMlb86nxgUFZydkm4Qebj56P81MWb0fCx4yjsFwRTBz/lS1zfffnw3Z4HQQR0KUa4+o5Tl1o934Ke2n9WmXl898oLs3PbbXas/XMTNv27DVP/eRr9JvSE3XohSOAOdaENAVsSlVtpmV8Cvt0E6BqXH11riZeQ8aUNqZnOww0+fnqYjOYy4QZZbnqecquIHG4IDAtAXma+8lgc6GLwpY8KUm9fCKsqf973rDqgDKYdffsQPPbVfeg1pmul+yCiumHpD6u9Fm6Qq7sc3HgU1UlTYEPExgykDK54cL0my4yg9WnK/ZW/rVcq83gr3CCTz9XbN03Hf58txvVPT6hSuMHW1sdhuEFmj9Zg9oFNGHhFL7y77BU80f9l2K2uK1hUN3n2bvl9rL6SJAGiJFS5DyKqmN1mwxEXYYX8jHTEtO+I8NgmymOtT/E1SW0mVxz4773/w7mD+0qWyaGBIxvX4sS2zZj4zMto2rWHUpWgprgKN2j1PrCaTWXCDbKi3BzlVhE53ODjHwBTQfE1SXWSQw3fPXq3Ujli+F0Ponn3XtW+TyK6NE4tlLwWbghtD2R5f26NclQ6KBU+XTm9VIJvhOi1cIPMmg9seVVCeBc7WlwlVF+4QSYCJ/+Tq1CoMOg9AWuekJRll5wKUNffSxIiIiIiIiIiIiIiIiKiSnMyZ3TtZjFZUJjn+hvjnNQLg1madiyezVgm2CT4bchB2IxEhH2TCMPW4nCDzHAwHYLJSYBAlJTqB9WldLihNKvFhg/u/ALmIjM6DGjrlX3Zs4D4u6zI+sUGe07xdH3yz+xfbEi4ywJ7pus+5HCDJ0RRVGYPV+jdGDzpThtH+7KLSvWO6Q9843EfRFT77V17yCv9qDVqTPnuQahUQqUHy5+nN5StEuSI/++nELI4EYKp7IBMn7h8NPr4KNTG4vejogITfvm/v1AdDm85jk/ur9rro7W/n8s2O4rO4LVrpqFNjxZ4Z9FLSqWfi0U0Dsddb99UZpmoVSG/dzSS7+uExCe6IfW2dihsF+rOJLMutevbUqmURETkCavJBJvZ9WdhY052yf2wRheuSWqz0uGG0mxWC5Z89QnsNqtSlaK2kMMNnpDfu3W+vqgJcvhi/8qlWP3TjBrZHxFdGml7vFMoVaUtrmxQaaU2cXfQvDvhhvNhhEMzq6cQbMY+YM9n1V9kNmUbsOUNO8I7qjDwHZVSQeJihmigw52oMRGdy/7eiIiIiIiIiIiIiIiIiC53dXZEn95Xj+DIIOSk5TptF9kkQvm5ZcFOfPn4j271rbKICPv3ODJvaANJqy67UpQQsigOmhzH3/627NYUrbo3R1JcKvZ5abDtefnZRqz7ewti2zT0Wp9iLpD5mV25CVpAsqJGFGQbofPRKveFkxZIPZwPLBJOWKq8z5W/rsdtr96ABs2jqtwXEdU+pfIFVdL/6l6IbdMIPcd2xfbFe1y2l4MQI24bjDvfmIzs1FzsWrEPP738h1v7kg85fH4iQpanoLBjEESdCvr4QvjEF1b4HlBd8rMKqtaBznVmUtIL2DJ/Jw5tOYbuIzvj93MzsHHOVpw+GA+drxZDbuiPxm0bKQE4+fVarihhN2iQemcHWKMvBChsYb4wtQqBYX86wuecgODhOChJLWCrLQt9XngbwY3DMLRnB9zVvReaBYegvhChUm5V7YOIKqYz+MLHzx8mo/PX0MCISOXn8W2bsH7WTzVyOqOat0Jk02bITEpE0lHvXpMU5ubg5I6tCIn23jXJpVKUnweV+qJrvmp2YPVy9L1uMgJCK67gRER1m7euSWKGCghqqkJENzvSXV+SQFADTccKaH8HYMoSkLxFwuGfvR8YsHmnYF6FLM7/xOc1CWuAnFtEpZLDhNkqJKyVkHdWDoRIiB0uICBGBdEm4cwysXorSvxP+l5g7jgRPqFAo8FAq+tU8G/IxAMRERERERERERERERFdvur0iLWxdw93uj6ycTjeu+0z3Nz4Qbx+/YdKBQR3+cblIOq7ffDfkQx1lgnqHDMM+9MQ+eMB+O9Nc76tvy9G3jYENzw9AdVBHvB59lBClfvx9fcpN9C/psIN51lMxTtUzct32k44YgZOWWFuaIAl2gDJw+95JUnCxn+3ebYxEdV6bfu0qnIfAaH+uOvNycr9YZMHurVN91Gd8ehn9yAyNhxterbAHgeVeJxRm+wI2JmFoM0ZFYYbPKXWuP9Wr7k41FeZ/Zwwud3m66dm4o/35uKN6z/CqlkblGpLHQe0VcINMpVKhf+b84wSZMwa17xMuKG0ws4RKOgZ7dHx2gI0OPdCR6Te1RJ5HYNxLtCOX47vx4i/fsSvh/Z61CcRXX5UKjU6DB3htE1QZBTmf/QOvnnoTiyc/r4yi39N0Pn6oMPQUehxRfVck2QlJiArqerXJDpfAwIjL234uKZ+J+dJoqgERIiofgr1QnEbfTDQ4Y7iP3zEDnXvDyDRfYCujwgwRKgQ2kZA8vbqr4bgLjl84XbbGpqKZfenEo78JmLzqyLOrZZgzgUiuqiUcINMpREw4E0BuvJF56qFJAJFGcDJf4Glt4k4vfh/ZWaJiIiIiIiIiIiIiIiILkN1toKD7MbnJmLrwp04czC+3DpBEJB2LkO5eUqbaULI0tMIwelKbXdgwxE8P+oN3Dr1elSHglwjAkL8Pd7eP9QPrbo2w/71h5F8KhWXSkRsONLji38/qi1FkGbnQby+gm+O023I36RF7ss9IPoXV3zQZJkQtD4ZQZtTKr1fk9Fx9Q0iqrvyMvOVWf89JVdh6H1ld9z7/q1K9QbZsR0n3dp257J9mNTgXjw381EMvr4fUs96/t7jbfLxrPlzk1tt7XYRfkEGGHMdByzum3YrRJuIOdMXlamipF1fANM9NkjBDj5a2CToFucpd49tP6ncSlv60xp0GtwOL/z6OLKSs/HaNR8go7AQhe1DnR5zfp9oBOxw772gTe+WiNt7BjaLDal3toSlkaFcG1GS8OqGlWgfFoEe0cX/DuoyuyQot6r2QUSO9bnmRpzaswvZFQ32FwTkpl2az9vxhw7gnzdfQu+rqueaxGTMhyB4npf3CQhARONmiD+0H5aiapwO3IXAiCjkpdf878hqch0MJKK6x5Ql4dwqz7eXX1Yb9AM6P6iCf6Piz2BZx9wLKiRvBuZfK6LvqwIa9lOhyPncHDUqZigQ7+55kQCNL2ArctykyyOAzQScmO151YfMA/Kt9LmVcHqRhMjuQO8XBRiTBWx+TYKl+BLGa0LaATnHAcnuPOyw6yMJwS0lhLTmZ3EiIiIiIiIiIiIiIiK6/AiSPKV9HZafXYDf3piN5T+vRUGOUZl9Wm/QOx2cWR/4GPQwFdbtgfpPffMAfpr6B3LSLnxbLPb0gTghAFIzLVAoQbXeiAxDFIytwyvsI3h1IkKXnqvUft+Y9zz6TehZ5eMnotrlx5d/xx/v/ufRtg1bRmPc/SNxw9NXKQG58+5q+zgSjidXqq+Rtw7GgY1HkHom3aNjCQwPQF6G86o2lREUEYjAMH/EH01yq/3bi1/E6t83Yt1fW2Cz2pTzofXRouuwjkplIvmn7PTBc3ik1wuwmi+U/rF18IHx9YaA4aIpWu0SfKenQrfKveel1qpht9pR1DIYabe3d9k+9o2tUNncn+HU3MAX56Z2dtpmfIs2+GJU9cx6Xt0SEhIQGxur3L9n6QQERJUPclRGfmohfhi7QLkfHx+PmJgYrxwnUX1SmJeLrXP+xOH1q2EuNEKt0UCl0cJqcjI6sx7Q6n1gNdftgfpjH34Ka37+FmajsUb3e/3Lb6FJ5641uk8iqn57vxRxYrZnf2bzjwFaXAW0vuHCZ2n5T3aLJouVDis0Gw8kbwFMmR4dilK1wJsD+33CALUOMLp5aTVomoAzS4GEdVJxEEAAVDogqifQZpIKEZ2Lr9myj0tY9YgIyf2CrZWqOuEshFATmo4V0Ov5Ol18l4iIiIiIiIiIiIiIiOjyq+AgkysZPPTJnbj3/VuQm5GvDLh8aezbqGsatYxGQKg/jl40o7UjdTrcIAC3vHI9hkzqB6vFhi8e+6FklWqnSbmdV9gqCMb7Kg43yHKGNkTA1hRocyxu7Tq6aQT6jOtexSdARLXRsplrPN426WQKvnvuN5w7nIhnfnxYWZaZnF3pcINs5W/r4eOn9+g45GzFdwc+xn0dn0JeZgG8ITc9Dw9Pvws/vDjLrapGRXkmvPDL45jy3UMwFZjgF2yAWq0uP2iqY2P0m9AD62dvLVmmOWRCwEPnYBkXBGsvP0ANqA+ZoF+QA/UZ916nZXK4QSa4E1qwSxBE98MNsqKWAS7bbE+uYCb2OkiUBOVW1T6IyDlDYBCG3/UAhtx2N4ry8pB84hjmf/xOnTttwQ0aQW8wIDXuhFvt63S4QRAwYNKtaNmrH4w52djw+8wa23VIwxg07tSlxvZHRDXnzDLP5xApSAD2fSX/FNH9qeJB7cZkyaNKDKcXAmofDw9EAMb8CiyZ7LyKQmXIQYs+rwrY96XkVuhCtAroO1WA/XlJOQZdgFzdovxnUrm6QXSv4jCHt13qcIMsfX+dnpOGiIiIiIiIiIiIiIiI6PINOJyn1WkR3jAUXz7+I+qSgdf2wekDZ5F4IqXG9ilqVBANGqiKbFBZKzco1Bn5y2ZJdP3la6tuzfDHO/9i1puzlcBBo1YNkHii4kHEBT0jnHemElDQPQIhqxNd7jcgxA+v/P00VCrOfkdUX8QfS8Rf78/Dur83eyX4JYck5IoH+9cdcjtwVhGT0bNjkWsqbZy91WvhhvNCo4Px/aFPcG3oXUpVBmfk83jmUDyimoQjMOxCEODAhiNY9tMaZCZnIbxRGMbePRzHd50qt70q3QafmZnKrar05/KhzrfAHqBz2Mb3WBaESr6VCW68V6nkkV1ERJWk1mjhHxqGA6uX1alz17rvQKSePomcZNefqeuLyGYtsPnvWdj0168IjmqAoKho5KZW/zWZb0Agxj/xXJmKUURUt+WdkXD0DwnxayWI7md6HYqbL0HrLyJ1l4TsY573Y/c0gyYBiWsE2Iq8O7jeL1LAmJ+B+VdJkFx8fpf3nXsa8GsA6IMuvF6m7ZVwZqkEU5YEQ6SAZlcKyD6OeotvFURERERERERERERERHS5qjcBB9nSH1dj+5I9qCuCI4Ow8b9typfHnjLHBsAW4gNVoRU+p3LLDdqMbdsI8UeLByrZAnTIGxaLwg7hkHRqCKINhrgsBCxPgDbD+TffY+8ZjqzkbOgNeuh0WmyevwNFBRe2CW8UCmNeIYryHfejUquUgTwndp8uWZZyJl352aBFFDITs2AxWUvWtevbCpreTXHc6nygrz3Q8cBXWWTjcAy/aSCuemQsImLCUFUWsxUndp2CJIpo0a0ZfP08nRaRiKri2M44PDfydRTmeWla0f/5+4N5uJS2LNyJ0AYhymuuM1q9Blaz87CCzMegR8v/vVaNvHUQlv7kuNKFSiXgw7u/Uu77+vtgxC2DcMebkzFjykys+m1DufdcnY8W1Ul+TwvckIjsK5tV3MAmImhj5QfjGo7kymUJlJCcI7o9GbDfbIdaU756BRGRM/tWLMHZg/vrzEkyBAXj+LZNxSm7aiB//g+ObohsL4QnOg0fg4LsTGh9fJXQctzObWWqSPiHhcNcUOC0soSgkiNsAtJOXQgy5qQWh63l48zLSINou/D+2qhtexRkZSE3rWrhh6DIKLQbOBRdRl2phGCqymaxIPV0nPJ7i2zWHFo9r0mILoWMgxI2PCd6rdLBeUd/v7Qz96fskKANAKz5ztsJGkByfUkCjR8Q1BzQ+KoQM1RE/Gonz08FbHtLXi8p2zUdLaD9ncDuj4GEdaW3k3B6kaQcQ31lM0GZSKSi6hVERERERERERERERERE9Vm9+Rrwu+d/q/FBqZZGeuRfGQ5TZ39IggCfQwUIXJIB3RnX0+SpNSrkpOV6vG9zjD+yrmoBa5RfyTJVvgXBK87Cf19xaEAWEhWkBBzkcEPaPZ1gD9JD62dBQJNs+IQVQRgK2G+Ngm1hAdQ/ZEEwl/+SuW2fVnj6u4fKLCvML8LmeTuQl5GPRq2iseLXdVj39xanxyzaHU/RlxyXise/uk8JfRTlF6F55ybKgNxnlyzF8UOHnfaryXE8U7oc8Pjx8HR4gyiK+OOd/zD388XISc9TlhkCfXHlvSNx9zs3KVVEiKjmfHzv114PN9QG+9cdRuseLZwGHJq0j8HoO4fiu+d+c9nfyNsGwz+4+L3ihmcnYt0/W8oE1EoTS4Xk5DYLv1mBTfN2IDslp8L2pUNp1SVwazJEvRp5gxop4bzS73lh8+KgTygOwbXv3wbXPTEOK2etV6oi+QUZ0Gdcd8yc+me5PrVZFgTszER+7/AK9ynI1Y3+Oo5NA7Zj8PX9UJdJkgqipKpyH0TkntU/fYM9SxfUndMlCCjMrfg13lskSYJ/SGiVAw6x7Tth9AOPlVlmLjTi5I6tMBUUILRRDPYuX4RTu7Y7Px5RdJgvz0lJwpgHH4fO1wCr2YzIps0R0aQZFkx/v0oBB7mP26d9Dm8QRTu2zP5Tea6m/OJrEr2fH7qMvAL9J90KtabeXOIT1Xry69vOad4PN9QGqTuBoBZAlpM/xwS3AhoOEHB4puswRrMrBGh8iwfpt71JQNImCXZHf8op9acjmxE4+Z+EhPWAyUGBOHcCFjUloivQYoKAsyskFCQBugAgui9w6AfP+pOfc8o2oEHdviQhIiIiIiIiIiIiIiIiqrR6Mfrh9MFzNR5uKOwRiPSnGgO6C4P+jJGhMA4OQdhX8fDf4HygkN3meLC/K5ZIA9Ju7wBJX3ZWaTFAh6xrW0GwS/A7mKEsy0ktPg65coMcbtAFmhHWKR0qtQjV+aE9egm4zgCpjRp4Nh32AA0szXyVAZ4RKSpM+e5BZCRlKbN3ZyZlISI2XBkwO/LWwcoX+mv/2oz1s7eiqlb+ug6fbnq7+DmarVjxyzpIO+OAxo63UQsCOhTpUdFwKa1Og0c/vwfe8vkj3yuDfUuTB1fP/ngBEk4k4c15L3htX0Tk3OGtx3Fq/9l6eZrk0MDBTUeh1qpht9orfG17ePpd6D6yM8yFFsx6aw7stvLtZF2GdsADH91R8rhx20Z4Z8nLmHbHF0g+lerW8TgKN9Sk4HUJCNiegsL2oRANWmiyTDAczVLe786Lad0AR7adwOg7hqLfVT2hVhe/R+5dcxB7Vx8s12fk76dh91WjsFNImeWqIhuif4qDPqUIa/7cVOcDDkRUc1LiTtStcIOsmqo2XKyqIQrfwCCMvO8R5GWk48iGNUp/gRGRaDdoGDoMGaGEFg6tX+0y3OCOwxvWYtKr7yj3rRYzDq5dCUuh0ek2glqN4MjoCkMcGp0ew+96AN6yfMbnOLRuZZllZqMR2+fNRk5KMiZMedFr+yIi59L3Afnx9fMsyeEDOdwgqAGpgksNlQ7o+qgKEZ0FiBYRx/6UIDn4M1dUT6DTfRcqEAS3FDDwPRV2vCei0L1LEofhhtrGryGQdQxoPl6FBn3l81f8vFO22pF5yLM+z62W0KAfKzgQERERERERERERERHR5aVeBByW/rC6RvcnGlTIeCK2TLihhFpA5kMx8DlkhCarema2VmaxvijcUFruiMYwHMqAIAHxx5IhalQo7Fg8S3Vw60zoNTaoBEmesLVkXJNNUsHeUQfjJ7HIDAtSnofSl1XAmyvmIfH5TRBLDaD94cVZiIgNQ3p8RpXCGqUlxRV/s31yz2m8MuFdZCYVz17uf0MLFPSKrHCbcfpoTJ17F/54+18s/2WtEjgQBAHdRnbCHf83Ce37tfHKsZ07mlgu3FDa1gW7sHvVAXQf0ckr+yMi5/atLT9gvSY0aB6JrsM7Ycv8HchJK541ubrI4YbIxuHITc+DuchSEli4840b0XFgO+Xxba/egOufnoCVv67H/nWHkHw6TXkNDI0Oxqjbh5QZ6H9exwFt8fOJz7FrxX7MmDITZw8noC5QF9kQsCvN4frlM9cqP+XQWXTTCLw+93mlGtCkZydi35pDSiCvNJVFRKOvj8PUxA/53UOV91VdYiECt2dAZS5+XzPmFqKus0NQblXtg4hcO7hmOU+TA5mJVRsBbCkqxLIZnyH5xFElzHDe+lk/ISAsXAk+lF5eFTmpycrP5JPHMHfam26FM9r0GYAht9+LrXP+UAISVpN8TaJC0y7d0P+GWxDdsrVXji3tzKly4YbSjm/bhMSjh9GobXuv7I+IXPw/ucs7rzuV5dcIiOwCJG4ELNV7SaKEGwzRgCkLEOVLEgGI7AZ0vEeFsPbFnxE73adCu1slnFkmIX2fBKNc8EYADOFA0zEqpfqAoCr7eTKyq4Arf1chZQew9wsRBXXjksSlM4vl/0o4/rcE/0bAgLdUCGwqoM1kFTZP9ezfi9VYM2FEIiIiIiIiIiIiIiIiotqkXgQcUs86HvBYHQqGhEDycRwwgEaFghGhCP7HzanoKkFSAYXtw8ouVEnQB5kgqCRYjVrYQn1gaeQPfUKBMqBT9NNB0qqhCzLBz9+Mi75XVoIOWkGEIArQtlIDuRcamLUSNjbOQeCkCIT8Ln9LXUyeLTzltHfPe3BEIIy5Rrx4xdvIScstWR4xOw66lELkDYhWnptMl2RE8NpEHNy7BW/+fRjvLn0F975/C7KSc2AI9EVQeKBXj02uJuFOBQoGHIiq19nD8fj0oe9wYMORS3KqW/dsiSnfPgjrF/fgrRs/weZ5O6p1fxmJWfh2/0cQ7SICQvwQ3iis/KzWfj6Y8OBo5eYuOQTRukdzxB+tqP5N3ZdyJh0vjHkT3x/6BL3GdFVCIHM+WaicxxLyW50E+Jw1KreKyO918vuSX5BfzR08EdVZuek1e01yObFbrUg6drjcctFuR26ad6+5DIFBKMzLxb/v/h9MBflubXN083oU5uXgmuf/D0NuuwfG7Gzo/fzgG+Dda5JD61a5bHN4/WoGHIiqWc5JCbunix7PyF9V4Z2Ans+q0e0JCZumikitevEap4oygLE/CbBbBegCAd+w8uFXja+AllfLN/f7lUMPwS2kehNuuFhBIrD+WRFjflah0UABLa8BTs4tvgapDNEKWAslaA0MHRMREREREREREREREdHlo14EHIIjg2t0f5ZmvpVq4xdkQJMOMTh9IB5F+UVV2rekUSkBipK+G+XDv2E+VNrib0jlCaotuXqI0Vrgf18Sq4qsgDw4NqqgXLihNLUgQaO6UKWhtLzx4QhclAF1rs3jY7cbNMgdHIX8nuGw+2mhzTAhcHMaArelQxAljLxtCJbNXFsm3CCTK1EEb0hG0MZk2IN0gChBk3ehOsbBjUcxc+qfePCjO9CgeRSqw8XHVJFTB85yICxRNUo5k4anh76G3Az3BhtWh67DOig/tTotXv/vOexdcxAf3v0VUs+mV8v+5AH5mYlZ6D6yc6W3PX3gLP75eAG2zNsJq9mKNr1b4upHr8Cg6/oq6/OzCyCK9Xc20OzUXCz7aS0yk7KUcMPFGrZsgMzETJgLi6tjVGT/usO4Ifo+PPvTwxg2eSDqIvlXLEpVGwxVj/+ZEHmVX1DNXpNUlt7PH6GNYpBx7qxSYYAq1n7wcBxYvdztcMN55w7ux9Z//8TAybcjOLpBtZxed6pJpJ09pVS80PkaquUYiC53+QkS1k4RYb10lySI6lH82U6tEzD4fTVSd0rY8b6oBBGqg2QDTNkCwjtV/jNl9gkJx/+RkLxZgmgHwtoBLa8tHvAvq+4KFJea/Ds5u1xC3hkJcfPKrw9oUhyEkM+xI6k7gQXXiuj9koCYwRVUkiUiIiIiIiIiIiIiIiKqh+rFN2Oj7xjiso1G570sh2AWK9XGmFuIw5uPVzncIFNZRKhzzMp9/9g8BDbJKwk3KPsVAH2wGZonDJD8VSXbGA5nwifQ7PyYBSf/ILQqGPsFeXzctiAt4p/uiKwrYmGN8IVo0MDc2B/pk5sj+f42kNQCeo7pgp3L9zk+PgnQ5FjKhBvOW/bTGpiLnD+/qohuFumyTdyeM5gc8wC+ffYXZdZvIvKuv96fe0nDDWq1CkNvHFBmWddhHZUqAX3Gda+2/cpVadyxfvYWTBn6Ksb73YIJAbfhwe7PYcXP61CQY4S5yKIM1n/jho/wzTO/KO1DG4TAx0+P+mzZT6srDDfIkk4ko2mHWKg1TioyAUo45J2bP8XKWeur6SiJqL5oP3iEyzaC2vlrTnUyGwuQfPwoww0uNOvSA2f37/HoHO9ftQx2W/lrFW8Jiox22Sbl5HF889Ad2PDHz5BE19etRFQ5R2dJlzTcoNIAjQaUDRpE9RQw9hcVonpW3341bmamzq0WsfoxO+aMseO/K+1Y+YCIcyvkaqOA3QSk7QE2TxVx8Mfi1yffSEClRb0Wt0AON1ScGM4/C4S0lqtZOO/Dbga2vCYhYQNf14mIiIiIiIiIiIiIiOjyUGcDDgc2HMHr13+Ia8PvwtSr3kdETKjT9jaL55UHLmbY6no2f8NW17Nresp/ZwoEjQj/hgWOG0VrIF7pX/IwcG08BLm8gwtW0fE/CdHf8wFZ6dc3gy3cp8J1he2CkTMkGoc3H/N4EI48gDfldBqqS+sezd1qZzKa8c9HCzD9gW+q7ViILler/9h4Sfd/5X0j4R/sV265j0GPtxa8iPdXTHU7jOCuqCYRaNOrpct2M6bMxJuTPsaB9UeUMIPJaFKqP1Rk9scLsG/dIfj6+WD4TXWzKoG70uMzna4/sesUXpv9NPpP7OWyr4/u+RqpZ6vvfYaI6iZ51v65H7yJL++ejIXT34NfiPNrEsnOEGxtl3j8CCTJs2uSorxc5Gc6f++pioim7l2TWIqKsH3uP1g9k9ckRN4k2SXEr7m0pa1aXgtofMtXUpCXDf5AjYHvCdB495IEAbFAcAvX1Rt2fyJi25sSMg8CogWwyXN8ODhdR36VkHlYgs5fQMzQqlUbq+0KU5yvzz4O9HtDQIPiQntObXtLQlEmQw5ERERERERERERERERU/9XJgMOCGcvx9NDXsPHfbcjPKkBeZj7SE7JqbP++h4zQH3YcLtCeLoJhR1617T9wcxL87VkQ1M6/WBeHXxiIq80yQX3Q6LJvo9nxbN7aJM8qJFiDdTB2DHHaJndgFOw2EZ0Hd4CnfPwqDlB4w97VByvVftnMtUg4nlRtx0N0uZGrohTmVb0Kjqd6X9kND358h9M23Ud0xjd7P0TbPq28tt/QBsEQ5PI6TuxdcxBzpi+qVL8Lv1mh/LzzrZvQqFUD1FeFBc7/zYiiBKvFhmGTy1bmcBSUvL3lY3j/js+RkVRznzmqSpRUXrkRUXm7Fs3DP2++hLid22AyFqAoPw/G7Lrz+kAVE+12xLTr6PHp0eqrrzpS4pHKXZPsW74EeekM5xF5i91SPJP+pdJwINDpXuefyxr0UWHUdyqlKoC3+IS5bpO8VULc/MqFP04tKG7f+X4BBtcFauosW6Hz9ZINUKkExAxxHfSQgyOLJkvY8b4IU/alDdsQERERERERERERERERVac6N2It+XQqvnjsB0huVCOoDucHmka+fwbRpyVc/PWjz/58RL19CkI1Tqgm2CUEHnAxBZzMr+yvV5qT77S5XRSQb6o4JKDKtcGw3bPQhiXaF1A5/6LWFuaDFv1b4op7h8MQUPnpBlv3bKHMdC7/uzh3NBGnD5yF1WJ12F4URZw9koCzh+OVgdOuGHNdfCN9Efk41vyxqVLbEJFjao0a0c0i3T5Faq3nFWdKi4gJwwerXsPbC1+Czkfnsn1000h8vuUdfL71HTw8/S6MvHVwlfZ/fOcpZCZnO22z8Jvlle733OEE5WdIZBA+3fQWbnh6AgLDApRlWh8t6gOtTgOdzvVz0eq1SsDOHXJVjJW/rsdTg6YiO7X6KjURUe2XlZSAtb9+f+kO4Hz4TRDgE1D8+k3e0bBVW3QeORYaD4IKDdu0h19wiFKVLjPhHDLOnYHd5riSoCjalXbyTb7virnQdWC9NLkSxdHN6yu1DRE5JldJ8Al3/wwJGu+cTXnw/9DpKgx4Uw2V1vUgeP9GAkZ+o8bwL1To+oiAmGFV23/mIcCc6/xvcHELKv9HsLwzxX36hgsY8aUKra4XoP1fIVK160uvOkHQAoIbf3lVaeVrDff6lAMRZ5ZKWPO46PL3QkRERERERERERERERFRXeenr1pqz+LtVygDDmqbVa3DXWzdh1O1DkJGYhaDwQGXg66n8DKw9ewz/fr4Y+UvPQRdvKheIqEoYQ6NVw2Yt/y2ncNbx4P2SNvFl20i7LLDPM0IRiK7aAAEAAElEQVQ98UJlh5J1Vgm5WwRI7Sr4stwqIuyreAg2z56HyuT6W1pBlNCuWwtoVCq8Pvc5vHb1NBTmuzdbu3yOb3nlOiz6dgX+/mAekuJSleXBkUEY/8Ao3Dr1emVw9HlzP1+COZ8sQMqZdOVxWMMQTHzkCtz4/ESoVBV/89ykQywqqyCncgOQiMi5cfePwg8vznK4Xg5A3PPuLWjTswVWzdqAn1/7q8qnND0hs2Tgf2W07d1KuckBKjlIdWL3aY/2L29/cvcphI3r4bDN2f+FFSrDL8hQcl9+P7v/g9tx37TbUGQ04aHuzyHppBshulpMrVHhkc/vwd7VB7D2r80O28mBuq7DOiAnvXIBvpTTafjzvbl46JM7UdvJUUyxXByz8n0QUVn7Vy6RR4/X+GlRa3UYfOudaNtvMAqys2AIDIJ/aJgyQD5u13bsXjwPxpzsigMRVThelUYD0clA/fpCvq4Ib9xEuT9xykuY//G7sJpN7m6NftfeiD1LF2DnwrnISy++JpEDD11Hj0Pva26ASlV8TSJfH+5aNBe7F89HfmbxNYl/WDi6X3EVeo6/xmH1prCYxpV+Tmaj48qDRFR5zccLODzT8eupfwzQ8R4BoW0ExC0Ucez3qp/lwlTAx3lRzAqFdRCUW3OLhLwzIvI8uySBaAVy44DI7o7b5J2pfL/nwwwyn1BBCWN0eViCzShh6d0S7MUvj3WWSgP0eFpA4noJSY4vSaALBMI7AYZI+bXf/ffqggTg+N8SOt3Hz+pERERERERERERERERU/9S5Cg5nDp67JPu1mm3477PFymDIll2bKeEGWfOAcNzdcQD++uBl3Hrj6JKBsHIwYcikfpj46Ngq7VcUK/5yU9hRBKQ4H2SkWli+YoP9kzzY3suBeKw4/CDZJIjrTbA9kQm/V5MQ9mU8dKf+V63AKsKwOQfRr8TBsNt59QdnfM4WQJNpdtpmZOPmSrhB1nVYR/wS9wXufe9W+Pi5njl11B1DcWLXKUx/8NuScIMsJy0Xv705G2/f9ElJyOSbZ37Bl0/8WBJukGUmZePHl3/Hh/d8Va5vebuVi7djYUEikh7tiMTHOiJzfBNYQ10fV2zbRi7bEJH7rn3iSnQa1K7CdfJr75vzX8DQSf0R1TQCy2aucdqXf7AfGraMdmu/6//Z4vGvSQ5Xvbv0FfQZ52Q0kBsVBmQ2q015XlOGvIrbmj+MJwa+gsXfrYQhsPJVb4beOKDcMnkwZX5WQZ0PN8jkigxfPPo9igpMyvuxI/J7tK+/Lxo0i0KbXi0qtY/lP6+9ZNWkiOjSSz939pLs1261YM/iBfDxD0Bk0+ZKuOH8wPfeE6/HnR99jR7jroaPX/GoUbVGg7YDhqDziKpdk0h2N6eVruNa9x1Ucr9p1x649/PvMXDy7UqwxJUuo6/EuUP7sfqnb0rCDTI5cLLp79+w5IuPS5at/mkG1v36Q0m4QVaQmYH1v/2Ild9/Wa5vuSLE4Q1rcGrX9ko/p9BGlQ9qE5FjbSYJCK34kgT6EGDgOyrEDlXBNxI456LQmi4I8GvgxtmWgIT1nn/uVOsEDPlQhaieHnehVBiQ2S0STi0SsfpROxZNtmPN43acXiJCW34eDZdihwkVXpMUZQGmOh5ukIk2YNdHkpIvFJwUGGx1nQC1XkBAYwFBzSu3j9NLeD1CRERERERERERERERE9VOdq+DgyUBOb0mPz8S6v7coVRwu5hdoUGa/vvudm5GXVQBffx/4GPTKLP67VuxH/NFEj/bpqFqFIAHqaRmwvx0J+JbPqQjLCqDaXHEFBHFpkXKD/AVrqbFK8lfL/muzlZskdykWL6sq+VhDl8Qj7daWFa7XQcBYfbQyUPT8bKXyjOI3PjcRcz9fDJPReTgiqnE4Zr09x+H6DXO2YefyfWjQLBJzPlnosN2Kn9dh/AOj0b5va+Vx3L4zeO6xL7F/dAREgwZoWhxeMTcJQN6AaET+dhx+hyqYIfd/+lzZzelxE5Frp/afxYpf1iE7LQfRTSLxxDf3Y8vcHVj03UplFn05dDb85oGY9NxEZZC6LPVMurLOGfm1+eP1b+DDu7/E8Z2nnLaVB8lXhfx69taCF5FwPAnbF+/G4u9XuV11QQ5udBzUDhaTBS+Pfxd7Vx8sWScHtQ5vPqZUrqis2LYNyy1b+dt6fPf8b6gv5OpH2xbtRtOOschIyERBTuGFAVoqAeMfHI0735xcsuyN+c/jliYPw2Zxb4Zy+d+QyWhSAhK1mV0SlFtV+yCisvS+Fyrh1LSc1GSc2L4FbfoNLLfOx98fQ2+/F4NuvhOmgnzoDAZodXoU5efh3IG9yraeuBwCXXKVimZdu5e5JjEEBaPPNZOwc9FcJVzijH9IqBJkcOTopnXoMuoK6P38sXfZIoft9q9cii6jrlQCLLKUuBOY+8GbMGZnefS8mnXv5dF2RHRB9gkJZ5dLMOcC/g2BXs8LSNwAnFooKdUVNH5Ak1EC2k4WYIgqfv0oiAeKMpyfRUsuMPxLAZtfkSssOG9rc6/ApUNyhYTBH6iRd1ZCyjYJcQsl5Rjd2jYMSqjDViRhw/MiMg5cWCc//4wDEvzKX144JwABFeSvTi8WceD7+vOeI1e/SN4CBLcEjMmAtVShT0EFtLxWQLvbLnzWHvCugCU3S5DczBWas+UQogRBzc/rREREREREREREREREVL/UuYDDkEn9sfr3jZds/7tW7qsw4FB6tu6QyKAys4R/tPZ1TH/gG2yet6NS+9LqNLA6GWipOmCG8GgK7DcEQhpkAHwECCctUM3Ph7C81Lemjjj5wlSoOFfhscAdGZC0KmSOi4Xor73wHNOKEPHnKXwdtwXzWvyOJ795AN2GdypZ37JbM2QkOh/Mk5mU5TAIct6MKTPRf2Jvl4Ozlv+0Rgk4ZCZn47kr3sKB+1sWhxsuIj+XtFtbI/bdPdDkVTzYqf58JU9UM84eScCG2VuVQEGzTrHYs/oQll9UieGPd//F7f93I36N+1KpaKDRVvA25ubYDpVahba9W7kMOLTo2hSeKDKakJuep4QU5CBGTOuGSDie7Ha4QXbD0xOg02vxw0u/lwk3lCaHOeT3GnnAvbteGPMm9L56JQTQcWBbtOjSBLM/dhwAqw0CQv2VChOVdeZgPP7v32dhzC1UwoZ+wX4YNnkAoppElGkXGhWCL7a9g2eGv46CbNfnMiDEDz5+PpU+HiKqH9r0H4QT2zdfsv2fPbCnwoDDeXLlBr/gkJLHvgGBuPH197Fsxmc4s3dnpfal0elgszgf3F8fiDYbln49Hdvm/oPRDzyGmHYdS9bJYQM5IOJMrly1wcW1xuqZ3yK2/YVrHUcOrl2B4Xc+gLyMNMx+6xWYC91/jy/nMginEHlT7mlJqZZgNwFBLeQwAHBuZdk2R34FOt0nYNyfaog2CSqN4Pk1iaq4IkTeGef/rwZXrthYCWuhpAQp9MGAxldAYBNBCVMUxLv/2iAHN+TnuP+bsuGG0oxJUKo4lB7A75QErHlCgkpnV+5HdAYCmgg4Oad2v2bJVTfk81lZOSeBge8JMGUCBYmALgCIHSHAEFH2H4pfpArDvxCx7hkJNjfOpU+oXB2C4QYiIiIiIiIiIiIiIiKqf+pcwKHv+B5o3681Dm857rU+1Vo17FY3p0dz47tWURSRFFc8wKVBiygl8KDVV+5U63y0eGvhi5gx5WdlBnNHhHNWaD7KBORbLRe0OQ0B29MRc2t3HDkWD226Cb4n80q+95fP2UtXvoPnf34UQ28coCy76uEx2Lpwl8M+m3VqDHVFA5wvEn80CcmdUl22y0gqDlMs+HoZEhtpYQ/UOWwrhxzy+kYidHnFg5U/uucrTH7hmjKBDSIqr7CgCG9c/xF2Ld/n8vSIooSZr/6pvLYOv6nigZ3RTSPRqFUDJJ5wPEu1PLg9tk1DTHhoDBZ8vdxh+Ennq8PR7SeU/Q6+vq8SqpDDChUGK/4n7Vw6Zr76F9b9vRkWk1UJqw28rg/ufGMy/vlovlv/BDRaNa57arzyGmK1WLHk+4tGVV3Ebrej+8hO2LPqoFuzbIt2qaQyxZ5VB5RbbedJuOG8DXO24oVfH3fZrkWXZvhg5Wt4uOfzLs/j6DuGlszwXZuJkkq5VbUPIiqrZa9+iGreEqmnTnrt1KjUaoh2d69JXL/WS6JYUrEhOKqBUmFADmNXhkavx3Uvvo7l336B7CT3A3p1QWSzlkg7Xf73l52ciH/enorxjz+HVr37Kcu6jhnnNOAQ3bK1W7+TjLOnERRRXHHKmYKs4mu7PUsXVi3cAGDZ19PRa8J1iGl/IbBBROVZC0Rsmioh3XmWSSGJwP5vJPg3ktBoUMWfB+XqBIao4goHjvjLbaKBlhMFnFni+DVE7QNkHJRgt4hoNAQQLQK0/vL7huPPogVJEg79WBzWkKsIqHRA7BABHe4WcOwv92a0UGmBtjcJaHW9CjaT5PQYFQIQ0RVunUOFBIj/K9iZulO+1e5wg8yTcMN5ctWPns+4/lwd2laFQe+LWPOY5PJvkE2vqP3XI0RERERERERERERERESXRcBBpVLh7UUv4aN7v8bmuduVQadVNXRSf4y5axg+f/R7ZSC8M/Js3A5nDQcw78ulmPPJQiSfKv4WO7JxOK64Zzg2/rvNrWPR6NSY/Pw1mPTsVfD198XNL1+Ht278GPWFyiYh978jCMotrHC9zWLD2zdNx5zpi/Dw9LvQa2w3XP3YFZj7+ZJybUOigvDyH09iy3zXs9DKA1WLCopctouICVN+yr8vc9sAl+3NTRy32b1SHjR8EI9+fo8S1CCi8v9fzv5oAX5+7S+Yiyo3M/Q/H853GHCQB51fP2UCPn3oW4fbX/vkOOX9pGmHWDz48R1KmKyiAe2WIosSgACW46N7v1IGmPj6+2D4zYNwyyvXlbxmnJd6Nh1PDHgZmUnZJcvkSjxr/tiEDXO2Ka9xrox/cDRue/V6hEYXz7ydHp+J3Ix8p9sU5Ztw/we3Q++rw/GdcXjvts/dCjpcLipT3WLFL+tcnrvgyEDc+MI1XjgyIqqr5AoJ1730BpbN+BRxu7Z7ZZb89oNHoHW/gVj94wzkpDi/JinMy4Uo2qFSlQ8syK9huxfPx+4l85CXnqYsC4yIQsdho3Bqt3sV5dQaLfpedyN6jLsaWr0P+l57I5Z88RHqk5yURIfrRKsV8z96Gw1bt8Pwux5Aq1790GnEGBxYtaxcW//QMFz56NM4snGty33Kvxub1fVnnoCw4ipDJ7ZVvUqI/Ds/vWcXRt3/KDoNH13l/ojqG/n/y6O/Szj8iwSxksVq5KBAo0EVB8cElYDW1wvY+6Xj9wd5vXztEtIG6HS/gAPfVtxWriZx8j/laLHj/eKfGj+gyUgB7W4T4BtWdpB7QaKE1Y+JMF+4JFGe29kVEs6tlSBZXT+3ltcC7W5VwSekuG9jsuvqDNYCoMcUlfKWmH1MwvZ3eD1S9vy4fz7OypegLpr7hAFtJjHgQERERERERERERERERPVTnZyS1z/YD6/NfgY/n/wCz/70CB786PYq9TfilkHoMrQDpnz3EAJC/Jy23bl8H965ZboSZHhh7Ft4ethr+O7535B8OhXfPPMLvnjsh5JwgyztXAZ+fu1v2G3uzZBns9gx+s6hSrhBNuSGfnj8q/uUGcPdIX+J7g1yBYlbp16PV/95GkGRAW61j2nT0K2+jQ7CDaUd3XYCz454HdPu+AJLvl9Vdl++Okx89Ap8s/dDNGkfi5G3D3Frvy26NnU523bvcd1LBinD7vrLZ8Euuhws8eUTPxb3R0RlfPP0z/j2uV8rHW6QndxzGrkZeQ7Xj39gFCY9c1WF/8/LoalrnxhX8li+/96KqWjaMRYqtZO3xf+9JMiVDxZ9uwKP9X2x3P/bP039o0y4oTR3wg2y/hN7lYQbZHqD3q3t5HYxrRti2E0DGW64iHxe3HV8V5zr39FVvZTqTER0efMNCMTVz07FPdO/xZiHnsTgW+6qUn/tBw1F005dMfqBx6DzNThtG7dzG5Z++Ql2L56Hf956BX+9/gI2/PGzEmhY9eMMrP3lu5JwgywvPRWb//5NqergDrvNik7DxyjhhuJjG4Zhd95f8tglL1W40ej06Hf9Lbjq6Zfg4+/vVvugqGi3+rYUuQ4/Jx0/opzbxZ9/iMPrV5fdl16vBEBue/8zhDRohA5DRrq136jmrVy2ad69l/KzINs7VfokScTK779CQXZxtToiumD3dAkHv698uEGWeQiwFTn+u4Fc+aDltRW8HgpAmxsFtLjqwrVH25vkWfsFBDRx7y91NiMQN0/C6kdEFKWXPYb935YNN5TmTrhBFjP4QrhBpnbvkkSpNhHYWEDMEA68v1hArPvnRA6IuBI7FNAF8jwTERERERERERERERFR/VTnKjiUFt00Urllp+ZgxtO/eNRHs06NkZWcgztbP14mmODMhtnblNt5+9cdxpxPFsDuYrC7u/6aNg8Nm0dh0PV90aBZFCY8OFoJYayfvRWZSVnYs+oA9q09VG678EahCI4MUgb+VoVKJeCF357AoGv7KMGN3DTnM4fLLCYreozsjIRjSS4rVMghDneYC81Y8eu68vsqsijVO25/7QblcXjDUGXwasJx5/vuOrQjJBH48z1l6sMKvXnDx7j7nZthMpphOJyNvEENnPZpOORg1EApol1UQhp3vjnZZVuiy0VSXAr+/XRxlfpwNcv+fdNuwxX3jsCyn9YgPSETYQ1DlQBZk3YxZdqZi8z49f/+xpmD8ZXavxxkkAMaU/+aojwuzC/C+n+2oip8DHq061N24GNYgxC069sKR7aecLhd885NENOq+PVKDnX4BRncCpNdDuTzMe5+9wadng/RuRIYHoi6QoQAURKq3AcRORYc3UC5yYGC9bN+8uhURbVohezkJCz9enqZYIIzcsWA0lUDEg4fxM6F/0G0uReoc2Xrv38hMCISbfoNRGB4JLpfcZUyiP/41o3KQPmz+3cj8ejhctvJ1SK0Pj7IjD9bpf0LKhXGP/UCWnTvhczEeJgKClxuY7OY0bxbL+xZusBpO7VWC7vVvVG+VpOpwuoMNrMZJ3dsQb/rb1IeB0VGKefL1e+vaZdusJmLsGvRPIdt5k57E/0n3eL2MbpDtNtwcM0KpRoHERXLOyPh1PzqrTLQ7TEVWlwl4cxSCUUZgCESaDpWKDfYXQ5KHPpJQn4lXzoLU4ED30no/VJxf+ZcCUmbqnbMWj8gpHXZZf4NBQS3BHJOOt4upC1giCg+DrVOUMIOcvUJKg6tNBvn/mdqdwIlDDcQERERERERERERERFRfVYnKzicl5mcjQUzlmPVrA2IbdfIoz5a9WiBD+/5yu1wgyNKhQYvfS++6JsVSlWIO1s9ho/u+Qo2q02p4NB3fHeo1Sr4+OnRtndLNOkQq4QamrSPwe3/Nwlf756GRz+/u8r7F0UJa/7cqNxf9/cWt7db+mPZWU0rIh+zRqtGVcmDlRd9u7Lk8QMfOq/i0ahVA3Qb0Qn3vHMznphxv8NjsJqt+O65X5X7vidyoT/rONyhyf5/9u4DvKmyDQPwc7LapntvWkrZZe9Z9h4yFRBFZTjRXxwgCCgKggMVBypbQUDZsvfem0IppQW6995Jzn99J3aEzKYpUHzv64omJ2flpCQ5yft8bxHsLqeatL8PwmNNmo+Q/4oDvx+rUpcB1m3Byd34CPos/PTKgnGY/vtUTFr4vFa4gdm6ZA9unAg3az9Y2Kq0kwQL27HXkKro+1J3oUvRw4ZNHWCwQ8/Idwfh0J8nsHv5Qdy5FIXQ0R1QU3gGuFt6wG8N7Pn3r2/6Z4TOz7Q1Ps8w4/MQQv47ctJScWXfLtw5d0oIOpjD1bcW9v/2g8nhBn0sFW5gruz9B8f+WIFlb07EgWU/QqVSwkouF7oLsJdr1mXCq049uPjVgq2LK9z8A9D5uRfw/ILF6DZ+YpW3z7pNRJw6Jly/feq4ycuxIn5j3AODwHFVPxXOSk7S2F7XcYbPxdgx8mvQGN1emITuE6aAE4n1BjWOr1sFS0uPq1yYk5Cn3b19VfsShxX0S2yMf4B1CODQdIoI7WaK0GSSSOdI/hEbeaSbd0qCmCM8SnLVj6UwDeBNG1NCr6BBnM7HpbMbRSmOdazgcH+/CtE7VciM5OHTETUGC55Up+avc7D1Mv1kx7ez8Xl9u1AImRBCCCGEEEIIIYQQQgghhDy9amQHB6VCiR+nrsCuZQeF6+aSO9jgyIYqDm1XjVjQYM/Kw5Bay9DpmTb4ZMRXKMjVHP7O3c8Vs/9+D7UaqIs3WcEv60Cw4qN1Vdr2yc3nEBuZgPxs00cALyooNjqPvbMdOg1rW6nghD5HNp7EmBnDhOvtB7XCkNf7YvtPe4XbvAjg/m2owYqFZ6x9WxjFm3H3dYGiRGmw4wLD5vZaEY6kF+ujMEhztG5pUj68Vt6GqNi0rh22jtoFy4T8l904aWb1zr9G/G+wxfZl12/GCyH1Ya8lKTFpcHRzEC5iidjs96V2A1ti8kNhrfTEDPz87moc//s0eJV2AZbUSoJm3ULw/evLUJhfVDa9bsvaqCnqtw3G4uPzhOPm5OGAyMv3EH39AdbM3YDMZHV4xBz+DXyFzg0j3hlkcL6Ii3dx8I/jyMnMhX89X4SObg+v2h5IjNZdZNymX3PUbxOMmoJnHRyq2IGBrYMQok2pKMGBZT8j7OgBoRjfXNZ2dgjX0SHgScHzKlzdvxsSK2vUatwUOxZ/IRTgP9y1Ych7M+Hs5VPWpaD9iOdwZtP6Km07/NRxdBrzAooL8kxepqTI+HDhcnsHBLVqg7sXyrvymYuFL1oNfEa4zrpd3LvaBzcO79Oaz9reAf3fnFZ2287ZGbxK/2eGqvxN6WNlS+ckhFSUer1qAYd6oyz3GSnqH/P3RVUCFKQBUjvAyunfoUzMfAnx7QKETNR8XPkpPK7+qEKcnqwZJwU8WgAXv+ShLHt74OFcHzWGe3MOIa9wQtdPmQMvdKrIigZuLGPhEfPXax8IBA/lEPyM4VBd2k0eMYd4FOeyQIz6eYj4CyhI0T2/T2fAsTZ9Rn8SrVq1Ci+99JLR+UQiEWxtbeHr64vmzZtj8ODBGD16NCSSGvlVvUmOHDmC7t27C9cDAgJw7949vccuNDRUmJ8QQgghhBBCCCGEEEIIIf9dNfJXExZuYJ0bir0doPCwA6dUQXYvA+LcInVVuom/Czft2ghn/rmIJ93uZQewb/URFFUoXq3YyeDjwQuwIvw7iMXqEUDHTB8mdHb48qUfdRbEmkKlUuG1Fu+jRY8QWFJ+dgE+XPMWzu+5IlyviqR7KTi/5zJa920uhBfeWPIKsro7YmvaTeS4ceCKedTLsMV7oQNQv1GdsuWuHbtl8jbEeQr4/BSGwgA75DdwFgoFrKNyYHM7s1Llnt3HdK7koyPk6RZ9/b7Zy0qtpQhuEWiR/WBdJOLvVq2Dj6O7Q1mYquPQ1ji+yXixpJOHI3qO64L4u4lwcLFHr/Fd0by75uttdloO/td1NuIjE/Wup6RIgQt7r2hNv3MpGjVFXla+ENYrFdKpgXC5djQMRzacMnu9MeFxWPruamxa/A/mbv4A9VoFadxfUlyChS8s0QrcsWDF+DmjhOcx8rLmcew4tI3wHkaqz507d4TClmPHjgnXMzIyYGVlBXd3d7Ru3RoDBw7EmDFjIJVKLbZNhUIBe3t7FBYaL4quyNHREZmZmRbbD1Lz7P/1RyHcUFXe9Roi+tJ5POmu7N0pXJQl2qHm7JQkbPvyM7z41Y9loeJOo5+HvYub0JnCXCqlAqvffR1+jZvAkory89H/jXfx4PoVlBRpn2NVRkZSPO5du4yAJupzkt6T3xBCIbdPH4fi33W7+vmj+0tT4BFY/l4UGx6GR61Bx9BHvk1CnlTsPCDb/FMSiK0sV2CuLOZRYFpzSN04wOrf5nbWLhy82gCJJuS3bNwBv1AOefE8rJw4BPTl4N5U8zEVpvM4/JYK+QZOmfgSIOmc9vSM26gxSvJ4yD1KQwjsOEC4JJ1TIt78UxLk3AMuf8fj9gYlOn3GwamOSOu5PzNPhXh1E9UyYSuBxhOABweBrKgKd3CAX1egzYc1uiEv+fd715ycHISHhwuX9evXY9GiRVi5ciVatGhBx4gQQgghhBBCCCGEEEIIIf95NS7gkBqXhu1/nUTG6GZQulUYgbIzD6uIFNgfuYv2A1siuHkgXLycYSWX4ce3V6Agp7xojY2wPfSNfshIqhlFaWyEcEMdB1hx7untF9B5WDuNkcBrh9RC1DXNX+w5EYeR0wZj8+KdRkcZL8wrwukdFyG1kqKkqMQCjwSIuHAXP/9vVZXDDaVFsR8NmI/AEH8MfK0PfpdH4IZ9JuCm/kGel3G47ZmPN+5sw6/ucrR1VxdEiyWV/yHY+n6ucDFHi55N0LKnZYuyCKnJYu8kVGlk/pLCEix68Qf8evXrKu8LK0S0d7FDTnqu2cv/s3Qvoq4/QGpsOmwd5bCytUJRnuFiya4j2+PVr180OM/m73YaDDdUN7aPd6/dR1xEQrVuJ6Chn87p7H26KgGHUqzDxpvtpuOnCwsR3Lw2cjPz8M8v+7Hxq23ISdN+3tn77aqPN+DzXR+hqKAI927EwMpahrYDW+rd1ycZyzmq+KoV35mZlayU3NxcvP3220JBDys4rKi4uFgo/omKisLGjRsxa9YsrF69umz0z6q6detWpcMNhGQlJ+LmsYMGD0Rwmw5wqxUAO2cX4f3iyJplGsX0IrEErQYORXp8XI04oLqCDRWlxT7AvauXULt5q7JpwW074OKurUiPi9WYlx2PNkNH4vy2TUIYwJDiwgJEXTwHkUQClUIBS4gLD8OR35dXOdzAFObkYNPnH8M9IAghPfvg2r5dwrGoKC02Btu+/BwjPvoUvvUbCtNEInU4/VEJatkGvg0aPdJtEvIky44GSnLMX551Kji/SIVeP1f937JICoitAaW5H0c44M5mHpl3VOpODraASAaojDTZ9O/Bodmrhr8fub2RNxhuqG6+oUDmHSAvvnq34xCg+/Ny8HAR4k9VvaNOfiJwYAqP3stVcAwQoTibx93tLPigu0ME68pxfTnQ9UtOuD/rHg+JNQefDhzs/alzQ00yZcoUneGGoqIipKam4ubNm2WdDK5evYoePXrg3LlzqFu37mPYW0IIIYQQQgghhBBCCCGEkCdHjQs4HNh8FukDG0BlZ6V5h4hDUQMP4f9J0cn4bPv0sru6P9dJGIk55nacMMJ2t2c7ws3XFR/0/hRPi6tHwjQCDnOHf6kVbmBYR4cjf55Em37NTe5ewcINUiuJMFK4JRz/+wwsiRWfLvrjb6RNq6Xz/gJlCaZf2IYt7V6GvZMt2g5oiT8XbMGj0LJXE8zd8sEj2RYhNYUlAlPR1x/gxslwYaT/qmKdFLYu2W3WsqwQe9187dcTKxsZigp0VxTJ7W0w/J2BRte9b9URPC4sDDdp0Xh4BXrg6MZT+Oy5xdWzHY7DwCm9hev3wmKw9ftduLDvqlDw0axbYzwztT+2fq/93LDgnaJYoVUIrw9775s16Av8eP4LTOs2B3F3DIc22HpnDVwg7IeNnTV6jO0ihFdI9cjOzka3bt1w+fJljemsc4OHhwfy8/ORlpZWNj0mJga9e/fGmjVrMHbs2Cpvv+J2ZTIZ/P39TVrOwUHdvYX8N4UdPWT0NSgnLRVD35tZdrth1x6IOH0CmYnxsLZzQP2OXYTww5+z38fTIubm9bKAAzs+Wxd+qhVuKL3v9qljqNWkGe5f0/y3rw8LN1gy5BB5ruohuopS7kfh8Iqleu8vKSzA3p8XY8y8r2Fta4vaLVrj4s6teBSCWrTBoP+Vnx8TQlhoq+pHISOcdSng4Vyfq/Jn4oBeHKL+MTNVqgJu/a69rKGQg9QOCH7G+H7f2/MIkq76cECLN0WwceNwb68K57+opn0RAUGD1Mci8y6PO5t4JF9Sb8ujBYegIUDUdh27J1V3rzAVrwROzODR/VseR95RIc9YjlwFHHufpZUBiRwI6K0Or5CaZelS/Z8NSu3btw/jxo0TAg+sQ9yoUaNw6dIliETUqYMQQgghhBBCCCGEEEIIIf9dNS7gcC45RTvcUEFRXTdkJWiOmCmzlgkFrA9LjS0vlqvpxOLyH71unLiF68du6Z03OS4NwWPboviuG5CRj7zWzihqZANRsRLy8xmwPZMJ7qHmDqGjOwqdLw6tO17loIOpBamVkdvHxeD9cQVZGNh7KrxjRej3cg80bF8Pt85EoLr1fqEbbGytq307hNQkvsFeVeqaUOp+WIxFAg6j3x+KY3+dRnqi5br6sHBDUNMAoWhfpSwf8dPd3xUfrXsHvsHeBl8jWQgrxQLvUSKJCCpF5UccZYGA2UMX4uON7yL8XCSqy6SFz6NWA1+c2n4enz27WCP8cuD3YxCJRRj38QihC0Pk5WjIrKRIup+CjKSsSm8rLT4dC57/rizcUFTLHsU+doCCh83tdEhyNKu/WLiBKcgtxM5f9+P8nsv49sRncPdzrfLjJppeeukljZBB27ZtMW/ePKFDg1QqFabdv38fP/74I7755hsolUrh8vLLL6NBgwZo2bJllQ5pxW2zbe7Zs4eeImJU7K0bRucpytd8n5PKrNA4tKfWfHkZ6U/NEa9YiHf/+hUkRN7WO29WchK86jYAJxKB//c115hGXbpDqVDg9unjFgs6PEoZCfH4aeIYyB2d0LRnX3jUroPk6LvVvt3G3XsJf3+EkHIOtdRF44r8qh0VNrJ+VQMOTINxHOJO8CiyYKNRFm5wDAKyotkH/PLpci+gwxwRbL04g+ckYatUKK78x24tnFhd3F9pPHDiI5Wwr+m3+GoMUXCw9eYQc4TH2c9V4BWaAQ+2/40ncMiNAzKjeIhlQG48zDo2+QkQtmE03FDq37dH9nd6dxuPxPM8eiwRwdqFujg8Tfr06YNVq1Zh0KBBZZ0cdu7cicGDBz/uXSOEEEIIIYQQQgghhBBCCHlsalzA4R6MFLJwHKQtjY+8m5GUibi7iagJPALckXw/xeA8vvV88OPbK5ASk4qE6GS98+U290B2qD82WmdBNaYuUKsAsC0vKCroZI+MLB94fBENq8gCjWXfW/66cNmz4iC+nmh8BLJHSeFjvGCnxNsKmZfTsH7hVrj5uqBemzqIOF+9BUXeQZ7Vun5CaiIWOuv/cg9s/ErHMJiVIHewzIj6rGD9m2Of4vvXf8PlgzfKQlgObvYozCtEcYF5w7umJ2RgVcT3OLPjIvJzClC7SS20G9gSYrHY4HIrZv6J9V9YpstMs9BG8Kvni4N/HBP2QWYtRadhbXH7/F3ERyYa7ZLxQa9P4VXbA5bCts+KX5uENsLwtweidZ9myM3Mw4Jx3+ns7MHCIesXbMWayCXwqOWOXcsOYvFk899/rh4OQ4mrNdJG1keJV/nwp5n9a8P2SjKcd0aBU+kunkp+kIqVH/+JD1a+iZpExYuES1XXUV2OHTuGzZs3l90eOnQo/vrrr7JgQ6mAgAAsWrQIXbt2xTPPPCMEHIqKijBt2jQcPnzYYgGHqoYlyH9HVrLx8wgrufFhlrNTU5CVrP+z+5PE0cPL6ONm8xxcsVToXpGZZLx68/bJo5XaBxaGGPDmNPR/411c2bcThwx0THiS5Wdl4szmDXBwc4dHYB0k36vecxJHdzonIeRhEhsOgX05RG6pWuG81NYyheYsbNDtWxEufatCypXy6TJHQFGgvxODMcXZQP+1HBJOAopCwKkOB6926o5thlz9icedv2ERnq0BuTuH+wd4KAsBsTXg2xlIC4PRQv/MO8DRaSpYOcFixOzrIw7waAnUGyGCR0sORZk8zi3QDDeUYuGMW2t5DFzPggUi3NmswpUl5v/dpF4zf9/z4oGwVTxavUsBh6fNwIEDERQUhKioKOE2BRwIIYQQQgghhBBCCCGEEPJfV+MCDmIbGZBheJ7gNnWMrifxXopZo1oz7IdgNrr1o8AKS+dseg8f9p6H7LQcnfM4ujsIhbnG5LbyRMZA9bERahX9CzXCDaVUjhIkzQqCzzu3IclU/7rrU8er7P6Oz7TF15OWaowAWFklbWxR9IwTFCE2bGhASC7lw3pTBiRhhWatT5SrgNJVanievPIhA1Pj0mHnZAuplVRnUa0lBDb2R+OO9atl3YTUdC9++iwuHbyGyMv3zFpebm8jhAUshXVUWLhvNuLvJiLmdrzQYaJhu7pCwOH9np8IgYDKykzJRnFhCYZNHWDyMhnJWdj0zQ5YyvC3B6H9oFYY+e4ghJ0Mh4OrPVr0bAKlUoXdyw7izwWbkZmcrXd59lqZk1G1ThulWLBsyc1vkJabDw8HOzjb2iAzJQtfv/IzCvOK9C6nVCix89cDaD+4NdbM3VClfVDaSJDyQmMoHR4KxYk45LX0BM9xcN2uv2PF0Q2n8Ob3rwh/fw8/b4yzh2OV9u+/aNmyZWXXnZycsHr1aq1wQ0VsVNO33noL3377rXD7yJEjQncHFoAw15Ur5VWELVq0MHs95L9FZCSsxngG1TU6jzowYOaHao4TPkc/Cs7evhj49gf4a95HKMrL0zkP60qw75fvq3U/nDzVHZA4jkPdth1rbMChYsDF2s4BIrEEKmX1dKTwDAoWLoQQbU0mc0i+zCPbvFMSSO0BrzaWO7IOARy6LRYjJ4YXugXIHACXhuqAw+GpKmSZkYUqSGW1/BzqjjS9ID4/hUfkZsu9v9QbJYJnKw51R6uQHgYhrMBuqxRA1A5eCA+wIIbe/UkCCi3U7MjWG+i+RCR0ypC7s2PMoTBdHW4wFCJRlQBRO3l4tABu/fFo3nv1eXCAR/M3WScJzeeUPQ4W3LB2pvDDw3IKS5CYVYi8YiVsZWJ4OVrD3trwd4iPQ5MmTcoCDvfumfnCRAghhBBCCCGEEEIIIYQQ8pSocQGHBv4euBOfanCe7l2bGF2Pg6ud2ftgY2eN/GzN7gaWwAp1pFYSWNtawzPQHb2e74q+E7rB1tEW83fPxOwhXyA9MVOrYJQVoBrDizlkda+lvs4uciVgp9Q/v60Yub1c4PS3ekTZ4Ba1y+5zcLGHtdzKYEGqIYWjnFE4wa3CFA6KdnbIbW0L+XdJ8LtjJXRXOLn5XNlI6sbIj2chK0Cz4LQirkAJ+TnNX8zvhcWgOrEiYkKI/i4OS84swPg6byA1tvLVKiOmDdYqMrcEFuaqGOiysbPBiP8Nxvyx6mLqypJZVa5o4thfp1FSbJkCx8Gv9UH9tsH4ZORXOLXtvNANgWEhh1HvDcFzHz5jUqeIonwzh4utQOltB25qJ3T/7FehFlciEqG1jyeSvj2CwntpRpfft+YI1s0vH+XfXCzEoBVuqCC/mTscj8ZAkqX7/Y0FVtj7cOnf3t5Vh7Fp8T9CtwuGvXf71fNBrQa+aNKlIToObQOxxHgRdHVS8Zxwqeo6qsuuXbvKrj/33HNwdDQeEnnppZfKAg6lXSDGjx9v1vajo6ORlaUOqDAUcCCm8qgdjMxEw8NO123bweh6bOzszT7oMmsbFBfkozrOScRSKaRW1nDw8EDj0F5o3LUHZDZyDJ8+F1u//AwF2eX/bhh7Vzeha0N1Y90OStk5uwj7qSypnrCyg4cX3GsF4O7Fc9UaJKnu7g0BTZpX6/oJqckk1hx6/cJh53M8iowMpKFLgzGsG4DlPyfZ+3Owr9CYVCoH6o3kcH6hea9FokrWcccc4sGbNx6IlrqjAIdA4MRMJRLOsA+W6ulWzjwajOFQdxSHmyYEBljAoKo4sbojxj+jVMIXY5wEcGsCZEQACt3ZPQ3RO3mErXi84QaGBV6EgMa/jfaidqpw5y8e2ffVt+Xe7G8IcKjFwb0ZB58O7LH/90IP7PvE01Fp+P30fey7mQRlhYFqxCIOfRt74vn2AegQ5Cp89nkSVOz26OzsbLH1JiUlYeXKlcK5182bN4XzHzs7OwQHB6NHjx6YMmWK0D3CmLi4OCxfvhx79uzB3bt3kZGRIYTU69Spg759+2LSpEnw9fVFdUtNTRWC8Ww/rl27JuyHXC6Hu7s72rZtK3TDGD16NCSSGvezByGEEEIIIYQQQgghhBBCKqhx3/SP7tIMO87e1Hu/j6sDuoSUF+MbGq27Qbu6CD97p9L7UB3hBoYVoi45PV/3fa3r4PeoH3FkwyncOBEOsUSEdgNb4bcPfwfijK+7INgZKvm/v2qz3+0MhBtK5YaWBxy2/rAbHQa3Lruvsj/+KZ0lKA6RQ+UmRolGuKECMYfCqV5YHPo+PBycEReZgJNbzgnFtS4+zvj5nZUoKtBdaGu/Pw15PZ2h8NZduOqwOQWiAgv9Qm+iA38cwysLxsLKRn8xLSH/ZRKpBF/s/RgTG/+v0sue++ciRrw9QAiAVbcuI9qhdpNaZUXspgoM8Yd3kGellsnNMKGyhlO/BhvrJMSOzQc9P9EKc7FuQMtnrBW6VWQkaRaoVgfHFv64080PySnlQQaFSoUzsQkQ9a8N13W5egMFpcwJweiS39DV8AwiDgUNXWB/RnfRskgsKgtIrpz1p1boIuleinC5uO8qtny/S+jCNG/7dKGjD9GWmJiItLTyvwtWjGIKVkBTUUKC4SJzQy5fvlx23cHBQWvdhOjTos9ARJw+brDjQUBT4x1B3GoFwj0wCCn31KP1VkZ1hBsY34YheHbOAp33+dRriEk/rkD4yaNIiAgXOg8EtWqLgyt+xqNwee8OBDYrP67V1VWP40QY9/nXkDs4Ij0+DpHnTwtBCtal4tDKX6qt20J1uHHkADqOHgex5MkbqZqQJ4FYJkKXL1Q4MKXyryfxp4DgZ3hIbKq/ONq/B4fwP3nkVO6UBM71ARu3yu1fse7modrYao0cNqmcw5H/qZD70PgSLFBy9Sf2eHiUmLq9KrBxAwrSgIzw8mm8Akgp/yhoFOsk8SRggRXZv/nIqz+rELFR80nIT1Bfks7xuPM3Dzs/oPN8kRCc+a+4EZeFdzdeQUSS7m6ELOyw63qicKnnaYdvRjdHiO/j78YXHl7+B9q0aVOLhDwWLVqEuXPnorBQs2NuZmYmLly4IFy+++47fPbZZ3jvvff0rmvBggWYN28eCgo0vxNPSUkRLmfOnBG2NWfOHHz44YeoLlu3bsWLL76I7GzNQWxYaINdIiMjsW7dOsyePRt//fUXBdgJIYQQQgghhBBCCCGEkBpMhBqmSaAX3nmmi877xCVKjPL2gVhk2sOauGAcJFLdIyuz6Y96AC+RiDM64nmfF7vh3d9exds/T0a91kF4cMuEdAMb7c7moSwLZ/zH+xJXK2T08hauXz5wHRlJ5d0jTC3a5WUcst7yQcqvdZE1zQ8FL3kY3k8JsDf1RlkI5ZmpA5CemIGf3l6hN9zAiPJU8JgTBeuL2Wyo6fLpmSVwWhkPxy0pOpfjjBzzqshJz8X5PVeqbf2EPA0CGvqh94uhlV7u9oW7+HjIQlSXkuISHFp3HB8P/QIf9P4UdZoHCp1lKmPM9GGV3q5ffR+j87Cw2YLdM43Ot+3H3QY71exffcSkfarqe2FUsD2UekYMVdnKkNvx0RX/81Ljnw9UMv0dFzoMbiV0MYq5HYc/FxjvfpEYnYzpfeehILd6gpGmUIGzyKU6sG4NBw4cwKpVq/D555+jTZs2Ji3HRuisyMrKyiIBh+bNmz8xo7eSJ59foxChaFwXTiRCSPfeJv89dR07AaIKI/ZWxAIEj/rv0tg5iVRmhSbd+6DPlKnoNfF1uPr6Izv50VR9Rl+6gMK88mJFRw/D5xbm4nkVbv8bYHHx8UWL/oORnZqCw6uqJ9xQnc9xflYmHly/Wm3rJ+Rp4FxPBL9ulf93mHYDODW7+gZSUBbzuLdXhRMzlDj2vgouDQCnug/NZGS3G4yt/Nd+FbtH6MOOV8d5xue7s4nXCjdUdG8vHokC1mTo8TdfsAjfLpwQqsm8y2uFG3TJjYXw96MsekoOgBHH76Rg9C+n9YYbHsbmY/Oz5R6ngwcPCt0VGJlMJnStqyrWmWH69Oll4Qa2XtaxYcKECejTp48Q8GaKiorw/vvvCyEGXV5++WV89NFHZeEGFxcXDB48WJg+ZMgQ4TbD7mfbY9utDqdOncLIkSPLwg1su4MGDRL2Y9SoUWjSpLyTLusw0b17d6HrBCGEEEIIIYQQQgghhBBCaqYa18GBGd+tBU59vxdXi/JQ4mEPTqmCLDodNjcSse63s3AoUGLE/wYZXU+zbo3x+a6Z+GXaakRd+7eXO4CG7evije9fgbOHA479fQYFOYW4e+0+Tm45W62Pq0WP8h9iSiXeS8atM3eEwEWLnk1g52RrViGMJKPCSF3sN818VkRVYnAZvkSEtAG+cDiZDHGBEjkZeXD2dBLu6/dyD/z0zkqj28340B/Frewq7LPxH1Tv55X/qDh/zGKc3Hpe70jaKmV5MYEkXQGPBfeh8JDCrUcAchNyUHIyGZxC/zadPRyRnlge3KiOkAMhxLB3f30V1nJr7Fl+ECXFphcNXj9+C0f/OoXQUR0teoiz03Mwve9nuHOxfDTt67gl/H/IG/0gkYhxbvclJMekoVhH8EpmLcXLn49Fj7G6w3iGdBzaGs6ejgY7K/jX98Vnzy02ui723mWIosR4Jx+Gr0IdjNJehuJahkfCLKjvBocDURCVVH+XHVliHhQecsPzJOjuoiF3sMGLnz4nXN+z4rAwGqYp0uIzcOD3Yxj8Wl8z9vjpZmNjg549e1Z6uUOHDmncDggIsEjAoUWLFsKon7///jt27NiBK1euCGEKJycnobND//79MXHiRPj4GA8ikf+GtkNHIuLMSaQ+uKcxnVepcHzdKshs5GjeZ4DR9QQ2a4ln3v8YR/9YgbTY8qG5feo3Qs+XX4WVXI47Z0+huLAQSdGRiLp4DtWpVkhzrWmZiQlIvBsBsVQq3M/2qdSjDGCw4EFxfj6sbdXnFyHd+wjHujqkx8WWXd/x9XxEX7moe0b2+PW8Jzh7+yAnIwOKQsNBN9YZIi9TM7xlSYW5j2B4dEJquLYzOEhtWcE9L4zsb6qkC0D8aRV8Olh2/JDCDB7H3lMhq0KDn9Rr6kBD8HD1a2/CGR75KYBKx1gQYiug6asc/LpW/jXavxuHKz8a7qxg68XjnO5aaA0lRr4SURn+Woo8RGoPNH5R/ZxG7+Ir1X3iwSEetftzT33nhim/X0R+sWnnuqXY/Gy5jVM6PJZODtu3b9cINLDwt5eXV5XWuXr1avz2229lt1kw4IcffoCnZ/mANazzAgsjbNmiDu9//PHHGDp0KBo1alQ2z7fffouVK1eWBSTYvr311lsaIfPi4mJhPhaCUCqV+PXXX9GyZUuLBx0++OADYf0MO14///yzVth93759GDFiBHJzc4VzOxbaYI+bEEIIIYQQQgghhBBCCCE1T40MOBzfdAbR/1yBepwpbStn/Yk+E7rB3rm8sF6flj2b4JcrX+HOpSih0N0zwB2BjdXD1ZWOfG1ta4XigqIq7fNzM4bh3M5LGkGKitg2Bk7pXXY7KzUbiycvxentF6D6tyOBtdwKAyf3wqRF4yGWiIWwASu4zM82PjK09f1sSFLyoXCXCwP88XlioEgEWOkuKGU1OqoCCXgrEXJbuMDzSjbcfF2Ewt99q47g9vlIOHk6IlNHES4b9dVKboWsWiKNcIOpYvLTUKwowZ7fDukNNzAVww0VSVJKMP2l55Cdnov5R781uC2v2p7VGnDwb+Bbbesm5GkhkUow9ceJeGHuKFzYe1UILuxZcUjvv/GK/vj0b7Qf1Ao7ft6H3csPIiEqGU4eDuj1fFcMf2cgnNzVxQlKhRJxkYlCMMo32MtgMeY3k5ZqhBsq2v7jHoP7w95DFp+YB3dfV5hDKpPi/ZVvYM6wL1FSpF3t07pvc/z99fay94Wq8q7jiYS7+kfdZu9NhXnmv/8p7WTGW0BIROCtJaxtBqqb3flE5Dd113u/OKMQ1ne0C0wbd6qPN5e8Inw+uLDvKo79dapS2z2769JjCzjwPAcVz1V5HU8KFiz57rvvym5LpVJhZE5LBBzCwsJQu3ZtrQ4RrPCHXc6cOYOFCxdizpw5QnENIbdOHNUKN1R0fN1KNOrSTQg6GFO7RWvhknj3DvKzM+Ho7gVXP/U5Scr9aOG1VGZtDUVh1c5J2o8ci9unjiEjvrx4vyK2r0169Cm7zYru9/3yPaIuXygr4pdaWaN5v0Ho/Nx4iERi2Lu5Q2JlBUVR1fbNFGz/WBggPzsLYUcOIDn6LmwcHFDw70i+FXEiMSRSKUqKDAf+9MlIiIOypARX9u3UH25g9AbeOKHLBQuH7F1a/rqli4ObR7UGHFx8H123JEJqKrGMQ+v3OIS8zCPxPI+Uqzzu7TZt2ZureXg05xG5lUf0bh75iYC1CxDYl0PdERxkDurPUioFj9w4QCQB7HwNf746v1Az3FCGByI3/3tFD1tfoPv3HGxczAtdiK04tPlAhNOfqHSGPbzbA7c3WK4jgtwLwjHTuz/WgNK8l/KninszoMXbItj5AwlnecQdr9wTwAIxtfvjqcXOE97deKXS4YZSbLlpG69izztdLBrefPXVV3VOLykpQVpaGq5evYp799SfJ8ViMWbMmIH33nuvSttUqVRCWKHU8OHDsXHjRq3H5e7ujj///BMdOnQQzotYeOD777/H0qVLhfvT09Mxa9assvlZEHz06NFa22PBB3Z+5O3tjRdeeEGYxpYbP3485BVCsVWRn5+PkydPlgXldYUbGNaZ4ptvvsHkyZOF2//88w8FHAghhBBCCCGEEEIIIYSQGqpGBhz2rT5i8P6igmIcWX+yUsWEdVsGlV3PzczDgue/w7ld5UVvVdFmQAu88vlYDJrcG9P7zkNsRILG/XJ7G8z+exrc/dQFscVFJfiwzzzcvaJZMFWYX4RN3+5EXlY+pi1/XZgW1CQAN06Gm7QfLjsikTKuMXgrMTgFBz7WGnxgATgxr1Wjo8yRgleqfwxX2kvRfUxnXDl0AwvGfSfsR0ViiQhKhUr4oaxFzxA8//EoIRzy2ZUdWvugVIkgFhn+sfFSejT6LpoB8cf3hTBGpfHAP7/sx0vLJ8JqegeEy4vAy0SQxebD6UQi7K6kC7Ox433z9G1Ul8AQf4R0alBt6yfkacPCCCyYwC49xnbGe93nGl2Gvda81+MThJ+9UzYtJSYNfy7YgsPrT+Krw3NxaO0JbPtxtzCSPuMT7IVR04ZgUIVQWcWuOae36Q9WGZN0PwWntp7H0Df6mb2ONv1a4PtTn2PjV9twcss5lBQpENyytrBOFuIwNdxg6ygX3i8MSYjWH25gxyk+0kClkQnEOcXqNxVDBSIlSogKKjFMbhVYxebA8dB9ZPXQHvFfVFACt79u63zfsXexh0ctN3zQ+1PhvbCyWMDmaZGQoPkZRhc/P79q2z4rtrl06VLZ7WHDhsHR0bxRVpOTkxEfH192+8CBA2XXWXERGzWVFdJUDDyw2x9++KEQhli1atUjHbmePHnCjpb/zehSXFAgdHgI6a79fqOPV526ZddZEf+uJV/h/jXLnJMEt+mATqPGCqGLTfNnIytJ8zXeSm6Loe/PEgIEDAsG/DVvpkZXidLp57f9LTy+Xq+8Jvw7cPX1R1JUJKpbo649cPfiOez58RsoHgrGsUADr1IK7zmsK0aHEc8h4U4EjqwpH724Mthx/+HlZ6EoNjeAx+Pq/t3oOHocHDw8kZ2s+z3X3s0DCZHVd07iGRQsXAghprF24YRgQmBfwC9UhRPTjX/2zrgNHH5bhcw7miPm31zDC6Pmh37DCWGJu9t4FKq/joC9P1B/DIfa/bVDCDkxPBKr0KwnLw5IPA3UHmj+Onw7c+ixRITb63nEn+KhUgAu9Vn3CA4Rf/Emhxukdsa7OLBjpY+tH5CnO5P3n2PlzP4+eRx5h1d386gk/uk5JdHpdFQaIpKq1kX1dlIOzkSlo0Md8wYs0OWXX34xeV4WDpg2bVqVt3n27FnExKgH7ZFIJEKBv77zFhYSePfdd4UwAps3IiKi7D7WASIvT93hMDQ0VGe4oSK2jsWLFwthidTUVGzYsEGjM0VVlO5HaZilsLBQZ8CBYfvJzvWCgoKEC5ufztsIIYQQQgghhBBCCCGEkJqnRgYcSotUqzqPPrOHLhRGELeU4GaBuH8rFv8s3QdHD0fIbKwgs5LA1dcFjTs2QN+XuqG4oBirPl6PC/uuICs1B4nRyXrXt3fVETw7fRicPRzg6KGvj4U2q9hceK64huyOvshv7Abki6CIkwHOKois1L908goRlAVi4N9wA+MptRE6YnzQ61OdI4qzcEOzbo0x+69pcHC1F6YFNQvA59HaI52zUaRVKg4ikeFfw3NbyCDvaAfZSfN+nDx1+y42b/gD2d5sOzJhWmFdByTWdYDjiST0zbSHV6AHdv1muDDtYV6B7ug8oj12/LRXCNIYKix+b8UbZu07IQRoFtpYGDU/7KTxgr+K4YaK2Ovo/7p8LAQeKmJF+9+99iuSH6Tg5c/Hatx389TtKndH+P2TjRjyel+TfkBPjknFjRPhQueb5j1CyjpOBLeojY/WvlM2+qJIJEJ6Yga+evknk/djyBt98ef8LYZn0tEkw9HNHsEtg+DgYlf1gENuMWT3MlFc21nvPDbhqeAUxrt1WIrD8TjIHuQgt40Xin3swClVsAlPh925REhYIEOHMzsuYEK9qchJN+89KaRTQzwt2rZta3QeVkBSHc6dOycU35RiBTjz5s0ze31XrlzRmsZGL2Wjpvbv319YP8NGVF2xYgW++uorFBSou2atWbNG6PYwd67xIBZ5euVlpBufx8xR+XmVClsWfoLEyPIis6ryqB2ElAf3hKJ7O2cXyKzlEEulwnX/RiFo3K0XivLzcHzdKty/flUIWOSk6j8nuXZgN9oOHQGptQ3kTvpf5y3F3tUN9Tp0xt/zZkGl1A7GsXADCzYMmPo+bOzU5yTOPn44+vty8Lx57zPmhxvU7l27jKhL54QwiC61m7eCjaMTbh49WKn1Onl5I6hlG+G5ZF0m9LG2sxe6SBBCzOPdTgSnekpkmvBSXDHcUFFuLHD4TR75D72c5sQAFxbxKEhVodF4zZBD6nXTAwT63FjBmxxwyEvkkXaDBycGPFpysHJUn8e4NODQYa76Oq/iwYk45CXwODffxJ3jgDpDOYSvNTK/jrtlToBzPUBiTQGHUrFHgORLPIq1mxaZxK3J0x3M/ePMfYutx5IBh8pYuXIltmzZInSNK+1AYI7t27eXXe/Zs6fQWcGQUaNGCed5LAxQeg7E7Nu3r+w6Oz8yxcCBA8u65B0+fNhiAQfWbcLDw0MILrBww+DBg4XgRtOmTbXmZQH4mTNnWmS7hBBCCCGEEEIIIYQQQgh5fGpkwMHd3xVR1+4bnccclw9dt2i4gRGJRZgU8q5WwZ9/A1+8ueQVRF9/gNlDFiI/R3fhy8PYevatOoJzuy9pdXkwRppSANdtkXDZFgmIOeQ2dUbixLpQFej+U5ArOaxZNh3r5v6lM9xQ6uqRMKQnZpYFHGwd5OjRtiV24OFf+TkUK8WQQQGR9kCFGor7OpgVcGBH+d5wPxQXaXaaKJXV2RO9Bg7FuZnlHSZ4EQeVlRiiIgW4CvVPNnbWKC4sgbOnI3qND8XwdwbC2cMRY2YMw4lNZ5GZnIXEeylCJ4gHt+KE+UNHd8To94fAr55PpfedEFJu7MwRmDlgvsFDwopsWLGNPg+HGyrasHArBkzqJYSdSomlVX9bZCG1ucO/xNzN7+sNOeRl5eHbV3/Fsb/PQKVUv+hIZRL0ebEbXv/uJcis1cEshoUbmKJ804osrWxkePWbCUKHCvb4D/x+rNL7f3HfVViKw9H7SPO2B2+tfWytilSwP6UeWfJRsr6fLVwqw9xwg7XcCgMm9cTjIgQL+aoVM1V1eUtgHRMGDRokFLOUmj9/PurVq2f2OksLb0pNnToV33zzjdC9oaLAwEB8+umnGDJkCHr16oWsrCxh+meffYaxY8dWaR9IzcYK7jMSyruA6GLnYt45SfTVixYNNzCsEH7NB2+pO+tU4FYrEL0nvYGEyAhs++ozKPR8htYVwgg7chC3Tx/X6vJgaSxE8fyC73Bs3Uqd4YaKgYKi3NyygAP7f1CrNrh74Sweh6LcHIOhr5YDn8GVvf8YXY/U2lp4/liQJKRbL7TsPwQ29g5oN+xZRJ47LYRRspITERd+ExmJ8ZBZ26BBp65oM3iEEIYghJiv4TgOp+cYKdBnH5UMzPJwuKGim6t51O7Pw8at/POWyALf1LFOEWfmKdH+Y83PNRUVZ/O48JUKcSfLg88iGY/aAzg0f52DSMppnHcxivKPYgZJbIAWUzkE9OWEjhRxlTslQXEWkFSFLhaVwY4361BRE5gbbpDIgdr9H/9n+uqSU1iCvWEGWoFUwp6wRGF99tZSi6xP3+cAhUKB3NxcPHjwAMePHxfOQ6KiopCZmYkpU6YgJSXF7CL9mzdvll1v06aN0flZJwRd5zSsE0Sp3bt3Izo62ui6wsPLuwxfv34dlsTO12bNmiVcZ8esWbNmqFOnDnr37i1cevToAScndScyQgghhBBCCCGEEEIIIYTUfDUy4ND3pR44u/OS3vutba3Q7blOZq37xGbjxS8ya6lQ9G4SDlj72Sadd8WEx+Gz5xbjQViMSeEGXswhL8QVBcGOWJNxD0WqHNiKOHBmjDYu/Kyp5FEvV4bGvoE4GKcdlJCIRPi6zyC4eTjh4oFrRtd5af81BDb2L7v97sBnsHvf11BoDRHOQcmLINI1dHgFKk/zfkwsqOeAYjdrg/OsvX4VHf1coXCUIaOXH3JbuoFnAYcCBewupMDpYBwkuSXo+1J3vPHdy1rLO7jYC4XRGvv77yjrhBDLaNuvBVr2aopLBl5/DIUbjGGdGvavPorxc0aVTWvRI6Ryr/F6nNp2Hkc2nEJ3He9FSqUSHw1cIHSLqKikWIGdvx1AZkoW5m7+QGu5vOx8o9tl+7468ge4eqtH0h78Wt9KBxwsTZqaD9c/ryOnUy0UBbsA7H1LoULPRkH4YERPpI+Oxy/vrdHbiaOm+/D3t+Ds+fQUWbAuCsZGALW0a9euoU+fPkKRT6nhw4fj/fffr9J6n3vuOaGQhxUSseDERx99ZLDzSuvWrbF06VKMGTOm7N8yG111+fLlVdoPUnOFdOuNBzf0v0dZ2dqiXnvzzknunD1tdB7WfcHQ6P0PO7tlo87pqQ/uYef3XyLxboTJ4YZSrDifFddXlYuvvxAYuX9NM3jEiMQSDJz6PuSOjrh/XbvzigaeF+apWNTf46VXEXXpvBDIeNSMdbS5um+X8LiNad5nILqO0x4BWe7giKa9+mlt05QuUoQQ0/h1FcGtiRKphup0q9BtgVcC9/fzaDCm/N+tZ2sOnIQHX8Wi+5hDgH93Hr6dtV8TVAoexz5QIeOhhnmqYuDuVnWXgPYfay9Xkmf8wYqtgQF/sk4Q6u9HWBeHuGOVPEjV0xBMi283oMXrIuTGAVd/ViHDstnCJ0b7ORxkDk/ve0NiViGUVezEWIqtJym70GIBB31YpwRWjM8urAvBpEmTMHToUOzZo+6GO3v2bPTr1w+tWrWq9LqTksrDHj4+5g2+wsIXeXl5ZbePHj0qXCojLU3/gBPmmD59uhCa2LBhQ9m0u3fvChd2nsaC6u3atRO6Ozz77LNCxz1CCCGEEEIIIYQQQgghhNRcNTLg0OmZNmg/uBXO7Lio8/7nPx4pdBAwhykjZDfvHoKX549FXlY+Pur/OYoKdC/DugIo7aTgSlQQF+j+ZTrsRPnIVoYUe9gg6aWGUDirC/eFcaQD6yMjrRCeq25BlqI/IMGLgII6DlDZiCFLLIAsuXzIveLcInxarz3a1wrA72FX8CA7Swg/dPUPxOst26Gdz7+BBR3FOSqZCAV17cFLOFjfz9Mq4HGztsPc5kMx+8pWqB7+dZrVF+kfSFDAZSphjmJv4899RHoqXns2FF/J46F0LB8pXWUjQXYXb+Q3dIbPjzfQ7+UeJm+Xwg2EWN7sv6fh/R6f4M6lKK37mnRpiJunI6BUmPdawaTEav7gbm1njeAWQUJXlqr655d9GgGHkuISHN90FofWndAKN1R0cut5fPXKTyjMK8KtsxFIj8+Am58rHFzsjG6z8/B2ZeEGRiI18kL7iEjTCuCy/TZUrIuDnQyDxoZiyrP9ILe3gU8nBzTt2uipDTiEdG7wWLdv6Q4OLNzg5+eHR4WNzMkKVEq7JjChoaH4448/qrzugIAA4VIZrFBm7ty5uH1b/W94165dVEz8H1a/Y1eEHTuksyif6TR6PKRWhkO3+iiKjQcNglq0QfsRz6EgNwdbvphbqbDDwx7cMK9zjyXCDUxJYQF6vjwFd86dwdX9u5CdkgyOE6F2i1Zo+8xo+NZvqJ7RSGDg35k0bjm4uaPXK69j/7IfTVz+0UmLvY9GXXvgyt6dBucL6d7b5HVSuIEQy+v0uQhH3lEhS/uUBB4tgWT2NlCFl5eC8gynQGoLONWBVvjAHHe3q+DbufycQFnMI/YojwcHeIPrjznEQ2KjREkekBoGFGUAtp7qzgzG1OqJsnADIxY6QTxZr7+cmAUvgCYTRZDYcLBxB1xDOGREPFn7aSluIU9vuIHJKzb/OwFdcossuz5TyGQyrF27Fv7+/sjPzxcGUWFdHdi0yqoYLJDLzft+vOL5l7lycnJgSSzAsH79euGcbMmSJULggh2nUiyAfurUKeHCwuvjxo3Dt99+C1dX8zqqEUIIIYQQQgghhBBCCCHk8aqRAQdWSP7K/HG4cvAGCvO1i3/++WU/er8QChev8iJPU9VtFYS9qw4bnadOs0Dh+mvfTsC3U37V6rSQ09kPec09obJVF8/L7mfB4UQMrO5Xvp+8SiJC4suNoHSy0rpP4WqNpJcbwu+ry+CU2j/EZrd3R1p/fyidyov4bSKy4L4hCrLUIqQlZGDhuO/x88VFmNisNbKKCiETiyGXls/PNOsWgvi76hHAWJ1j+iBfZPb0FAIBAiWP7e456FlYACfr8l+8h9ZqjgA7F6y5exqH790UfmySXc+DfH8GCmZ4Adb6Ox7IDuk4VhzQuk8zDHq1D3b+sh/n92iP4ioy4YdIO5kV1iTc0Qg3VKRws4bD/zqUPc+EkMeDhdUWH/8U+1YdEV6b0xMy4e7viv6v9ETP57tgwbjvhNCAudz9yn/oLi4qwcwBn+sNN0itpULHCEWxaUOp3rkYhWXT/xDCCbUa+GLRhB+QFp9h0rJ7V2q+DyVGJwsXY+o01xyhkL2Gufm6IDUuHY+LSCyCSqkuOhAVKoBCBXZ9vxuXdlzEogOz4V3bEy17NcHGL7cZXA8LQ5jS7chUXrU98Pril3D1yA1s+2mvyc9rZbh4O8PehGAK0Y0V87zyyisoqjCifPfu3bFjxw7Y2JhQXVcNWOFw3759ywIOiYmJiI2NFQqRyH+PSCxGl7ETEBceBkWxduD58p4dqN+xizDKfmV51q6D8JOGR8n1DAqGR2CQcJ3tx5HVv6GmyklLxe6fvsXYeV+hzZARKMzNgUQm0wqI+DduilvHDZ+rsW4NDTqFwkpuWzaNdTlw8fHDxV3bcPfCWfB81bs51G7RGs1698elXdsMdvIwRGYjx/VDew3O4x4YJOw7IeTxkdlz6PGDCNG7edzfy6OQFft7AbUHcKjVm8OpWSoknDF//ay4vpSyiMfR97Q7K5QSW7HuC+rOD6ZIvwVc/00FuQdg6wOcW8ALYQVTRD+UvWJdDkzhVFezmN65PmDlBBRl4rHhJNDoiMGOX+RmIPGcCqHfiCB35+DZikPkZsMBBxbwUFjulAR2fkCzVzkkXeIRyU6HqqGuXu4JSOVPd8DBVmbZYL+d1eMZKMDFxQUDBgzA33//LdyubMeEUra25Z+BCgrM+4N9OBixe/duoaPEk2DYsGHCJTU1Ffv27cOBAwdw+PBh3LtX3p2YDcLDQvE3b94UAg9WVtrfqRNCCCGEEEIIIYQQQggh5Mmmv7r8Cbd8xlqd4QaGFYGumfuXWevtNb6rUESpDxsNe+Dk8hE087Pytbo2pD7bCDmd/MvCDUxxgCNSxzRGQX2XSu9TXjM3neGGUqyrQ14T7dGoHF9ugeQxdTTCDUxBPUfETW0MhYO63Xrk5WiEnbotFO2xcMLD4QZGUuHHwpTRtYSAQ1m4gRFzOJoei6HrVqJIqVkk2tylFhaEPAOPMbfgOfY2nBfEwupCHqzX6S+4FUcUQnZYe6SvKV++gAW7Z6HT0LaYv2smFh/7FFIrzbbxttcywBUbLlrqERiEA3fvGpznrguPAiMj4bKC6OJC410/CCHms7KxwuDX+uKHs19g3YOl+O7k50J3FalMirEzR8BabmXWCMYiEYc+E7qV3d7+4x5cORymd/7aIbXw2Y7psHMqLxYwpCC3EBsWbcOPU1fgwz7zTA43VEVmsuYoi2KJGKOmDcHjVBpu0PVePW/0N8L1lr2aok5z/YEyW0c5VkV8j2krXrPYfgW3qI0OQ1rj1W8m4PN/ZkAis3zmc+CkXsIok09CB4eqXh4lVowye/ZsPP/88xrhhiFDhggdEyoW7DwOQUHqgvJSycnGw0fk6XXsjxU6ww1MRkIczm7eYNZ6G3frBYmBQiyJVIYmPfqU3S7KFfq7PZGcvU0rzk+ICEdSVKTw/m1j76Cz+4VIZPw1lQUc1n70LpQKzXMSv0Yh6Pf6OxYJN/R8+TUMnz4XdVq1w6iP52P0nAUm7dvDApu1xL0rlwzOk5WUCKXC8DmJoqREuBBCqg8b5b/ucBF6/SLGoI1idP9ejMB+IojEHBq9IIJI99gJwiANxjoJBPQpnyniLx5pN/TP71wX6DRPBImJg7KX5ALh63hc+pbH8Q9MDzdURWG6ZkhALONQd+TjLbCvGG6oKDcWODtP/b7g3R6wN9DcS+YADFwvQrO3LLdfLvU5+HQSocVbYnT+TFQt39LWGfJ0hxsYL0driEWWeZwSEQdPB/M6cFn6XMPc84yKHQsSEhJMWubhIISTkxMkEskTfc7j5uaGsWPHYsWKFYiOjsadO3eErhf169cvm+fSpUtYvXr1Y91PQgghhBBCCCGEEEIIIYT8hwIOqfHpOLfLcCHIoXXHUVSgOwBhbLTwacteFQpftXDAWz9OLBvxm7XB3vz9bo1Z8pu4ozhQzyitIg6ZfYOEEERlFNZ3MjpPQT3NeXwaeONee/3Lsc4FmaHeZbdvn4/UO++uZQex4+d9wvUSFxmyunnqnfe+Mg/zlm3Sml5SpIBKxZd1pCjysYPoZDFsliSBSy4vxhGVAPJj+bCbGQeuWPNH8ebdG2PIG5qjhYV0bghlieYv1eJ8BRyP6v8Bz8vWDl38AqCo0MZclwKFAtHpukMYZ3dexHs95mKgzVgMlI/DWx0+wtGNpwyujxBiecHNa2PBnpkIaKRZPMm6Fkz//S0htKZP11Ed4BlQPlzqzl/3G9xWxIW7cPZ0woaE3+DfwBdPos3f7sT5PZc1pg1/ZyBGvzdE9/tadeOMd7koDdh9uu1DreeRYR0QWLCEHfvLB65bbNdYqKLi9UX7ZwuhB0vxq++D56Y/Y7H1/VcUFhYKRSrz5s3TmM46OWzatAnW1o+v2KjUw90jWHcq8t+UlZyIB2GGR+4PO3ZQq9DeFKzAv/ekN3WG9di03lPegtxR/Vmfrf/qAc1zkmphJDioi6t/LeRnm15NywIO+rCOGGFHD5i0HhYuObxKs8seoy+MooXjIKpQ1FdRYPNWaNKzr8Y0n3oNoFJV7rXAwd0TvvUbGw1cFBfkIytZ3UnvYZHnz2D9nA/w3fPDhMufsz/AnXN0TkLIo+bSkEOXL0Swe6ihk40H0H42B79u+l8/A3pzsHEtvz/qH8MdBFJvAHa+wJAtIsjLv9J5otxeDyRf1nwcDcZyCB7OGT0/qBZGtpl6Hci4w4MTceiyQPt5ZGSOQOcFIsgcOKRonm5ViWfr8uve7TmEfimCg+VOSYR11Rv19Acc7K2l6NtY/3eVldG3sZewvsclt0JolRXwm6N58+Zl1y9evGhSwNzHx0cIRrRu3VoIC7DPm82aNSub58wZ09rUnD17Fhs2bBD+n5KSAkvKzs7GhQsXEBERofP+4OBg/O9//xMec0hISNn0I0eOWHQ/CCGEEEIIIYQQQgghhBDyaNTIgENKTFpZsbyhkbOzUrU7ABjDQgubvt2pe/08cHDtceGHH+ba0ZtIjU3TmCWvmeEf1FR2MhQGO1dqn2wdjY9UzFcoOBKJRWg3dyDSjLQhz2ldPqKXzFqm93is/2JLhWVchKCGIVsjw1CQW6A1+rZnHU9k9qyF+GmtkDS5KRJfbYbUhnWBX4pg984D2H0Qgx+9xuLPidMxaFwP2Nipixi9gzwxaeHz+HzXTMge6tZQWkT6MNd/YuC8NxZckWahUQsvb6wbPhq1XUzopMEDo9duwC9nzmtM3vL9Lswa/AWuHikf6T387B189txirJ5j3ii9hBDzsaDTshuLsfj4PHy45i3M3z0Tf0T/hB5ju+DtnydphBgqOvbXaRz680TZ7bg7iUa3FRsRL7wOfXfyM7h4GQ+fPWpKhRKfjv4GxUWaBZyTFo3H6sgf0LB93Ue6P6zLhjE3T90W/u/h74ZfrnyF2X+/h74TuqPn810w9ceJWHvvJ+E5vnMpCie3nLPMfllL0bJXE433upJiBZ55qz+GTe0PmU3VC1ri7yTgzqVoPG7sE4sKXJUuhj9xWbZgpV+/fli/fr3G9E8++QTLli3TGEHUUoqLixEbG4uMDNMLsNPS0vSOkEr+W7JTkllFmMF5ivLyUJSfV+l1q5RKXNq1rey8oyI27eaxQ2W3H1y/gvysTFQ3KxsThwv/l0gsQd02HYRjYCqxVPfrr1KpwLnt2iFqQ64f2qcVaLBxcICti/F/s8998iVe/PJHhHTvXdZJw9nbB6HjX8Ez738M8UOvR2KJFA7uHibvm2+Dxhg9ez4cPb1Mmv/3D9/GxZ3bNKad2/Y3tn31GeLCb5ZNi799E9u/no+zW83rZkgIMZ9HCw79VovQ7VsR2n7EoeuXIgxcJ4J/NxFavwdY66lTvr+PR9xx9Wu9sphHvu48k4acOHVXhF4/i4TC+yeNqhg4NVsFXln+HsaKpVu8JUL/P0Rwqvdo90dkwkfItBvqfbX15tB3hQjt54gQ2I9Drd4cWr3LYeCfIrg24pAWpkKCaXXeRomtAPcW5bd5FQ+Weas/mkOdodDfFaQSsu8DWVH4T3i+fcATtR5zHT16tOx6o0aNzFpHt27lnSoPHDiAdD2Dt5Q6deoUMjMzhfnCw8Ph56ceeKBnz55l87DQQn6+ZhdjXZ9RJ0+ejOeeew7t27fH1KlTYSkffPABHB0d0aZNG0yfPt3gvKzj38CBA8tu5+RU/vcBQgghhBBCCCGEEEIIIYQ8fpavFHsEnDwcjM4jlUlg72w8GPCw87sv4+Zp3SNBlYYaLh+8Loz2nJWSrbMzgjFKR3WRjKkUl+KBgDoG57GJyhL+X7dlbbz0+VjEBMiA/TcMLqOSq59+sUSMkuISLH13FazkVugysj1qN6mFrd/vxubvdiL5QWr5MrbG/2RKZByObzqLPi+W/6DG5E5ogmxlvtaxyOpXG6qTMjjvv49Pey1Ex6FtEX3jPoryi4RgRPPuIeg4tI3OcENmShZS47R/qGMRDNddsXA+mACnIQ3w7JwRaOzugcbu5QGUdn5+OBsbq/+B8EChQokvj56Ag7UVxjRvitS4NPzy3hq9i/wx7290e7YjAhrpGPKPEFKtQjo1EC4V7V9zDEn3dY8ayIJsC8Z9h28m/oz2g1vBxt4a+dmGg2Hs9TDmdpzQVYAF6Z5EhbmFmDlgAb48OEerq0XSPcuOoGiMnZMcGUnq9yd9xFJx+XWJGF2GtxMuFbH3JxY+tJSSwhK81vIDzN38vhBs+OGt5UiMTi67n3VqajugBSRSiRBmuxcWU+ltsL+vTd/+g8Yd61tsv59mrKCmT58+OH++PFQok8mEYMP48eMtvj0WamjSpImwXebDDz/EF198YdKyFUdBtbe3R2BgoMX3j9QMckfjoWWJzAqySgYDmMjzpw12M7h/7TJiw8Pg16Ax8rMNv85aSmWCGl7B9dBlzIvITNTfVe1hrGMC28aRNb9Bam2Deu07w8XHTwh6XNy1DXkZhovzHqZSKnD34lnU79BFY7pUZvx8bdP8j1G3bQckR9+FsrgEMrkctUKaIbhNB61wA5ObkYaCbO1zw4pcff3RevBweAYFwz2gfHhu7+D6SIhUh/30URQXCcfF2s4OjUN7Ct1DTvyp/5zkxPo1qN++M5y8ntDh3Ql5SrEifndhwHPNQSGidwGF5V+raGAF7SwMILEBvDuqi9pZQMCQvAQeObGAxApQPpmnJCjJBU7OUqHzgvLP+oyNG5BvPFduURI5UJxleghCJOHg3w3wr9B5gxVuX1qswt3tlov+KouAfa/w6Pw5j+Ic4MoPKo2Ai9wT8GrLgRMDyZd45DwwYyMq4M4mXgjdPO06BLminqcdIpLKOyBUVn1Pe7QPMmFAlGqyceNGhIWVD6by7LPPmrWeAQMGoFatWnjw4AGKiorw/vvvY/ny5TrnZX/bc+fO1dim9N/A6auvvoqvv/5a6FjHwg9vv/02fvvtN73b/eGHH3Dt2jWNLnyW0rFjx7Lre/bswc2bNw0GQC5dKu/83KCB5vdEhBBCCCGEEEIIIYQQQgipGWpkwMG7tieadGmI68dv6Z3H0cMBn4z8GrVDamHglN7wq2taccfRv08bnYeN+s0CDt51tLs1iHNLoLI3HGAQ5Rr5tfohdpdTkNG7FlR2ukc0FecUo7WVExz6+aDrqI5oFtoIkkzN0YV1kSarfwlnP1T99PbKsunr5m+Gi7cz0hO0RzOWJhn/9VyWVIg0O81lT9y9j1sPhRsqyungA/vziSjILMTBtcfKpudl5WP38oM49vdpLNz3Meq3CS67T1GiwJvtZugtSOZlHFRD7CB6VYYfE9bCKdUWfTNb4blaXeBiZY/3O3fGuL/+QpFSqWNhdmDKb/58+hxGNw3B3pVHhBHSDdn56wG8/u1LBuchhDwa+1YdNjpPUUExjm48Dc5IdxqGBZzYxaOW2xMbcGCuHL6B8HN3oFSosPPX/Yi5HQ+RiEN6YvWP8F1RYV6R0SKwdgNbakxLjU/H9h/34MSWc0LQzcHVHpGXLd8JgT1/s4cuFF7TFSWar+spsWnCa3nn4e0wa+O7WPHROpzaptnNxxQX91214B4/vQoKCoQRNiuGG9jonFu2bEH37t2rZZu+vr5QKBRlt/fu3WtSwCErKwv79u0rux0aGgqxWLNwj/x3uPr5wzOoLpKi7uidx8beAVsXfQqPwCA0690fjh6mjdh/+8xJo/NEnDkhBBycPJ+cInbvug2EIvwGHbvCp34j4XW+Ml0rDq/6tez2mU3rYevkjLxM0zusPCw3XfOc6O7FcyaFLkoKCzS6ZBTn5+Pq/t24feo4Rs2eLzyfpViXiLUfvYuSIgOfCzgOxUWF2P/bD5A7OqFR1x5oNfAZyB0c0XXcS/j781lQVnhN0ufM5vXCsqw7Bc+qovXheVw7tBddx04wuk5CSPW7t8d4UbyiAIg5CHAm9Fm9soStj4eNh7pI/knFOh1k3uWFsEPUPzxy43gh+1FsOA9mccYCI+yYe7XTfL/KT+YRuYVH3EleWF5mD2Tqzx2aTZEHnJihgoK9hTz0Z8LCDlE7ePj3ADrO43D1Jx6JZyu/jcQLj6of2+PFPnN8M7o5Rv9yGvnFhr+300UuE+Pr0c0q9dnFUtj3sitXrtToeFCnTh2zg97s/GTBggUYN26ccHvFihVCN7wvv/wSDg4OGh303nrrLaHLA2NjY4MZM2aU3V+7dm0h1PDNN98It1n4nJ27LV68GO7u5Z0yCwsL8e2332LWrFll01hnvl69esFSBg8eLOxPdHS0sA/sNjtmXbt21ZivpKRECGzs379fuC0SiSwatCCEEEIIIYQQQgghhBBCyKNTIwMOzLiPR2LmgPl6i81TY9OFCysu3PztP3jzh4kY/Gofo+styDFesJqdrh4N7H6Y9uj/8uvJyPK207ssl18CmzuVK9IRFavgteoWEic01Ao5iHJL4LnqFm7HqUdUPb/nCn7/ZCO+2DsLDd3ccStV/2jdjqf/Ha1ax2+dusINjP35dKSOrGWwk4Pj8RS4hWqOeLb12k2DjxEiDnnN3OF4VHdHBRZ0WDThBywP+7ZsGusSoW80ct6KQ/ECL6hCrJGgVBf0phXnYN39IziQeAU/tX4NLXx8sGbkSHx+5AiuJVUYJo/VCinZ7+7lP2rGZ+fgy8/+RElYhfn0iL/7iIcjJITolRxjPOxVilepC250vSZqrbdCZxtLYEX82Wk5Fl3n4sm/IOrafTxOxkIgrGOQb7C3EMa4cyla6Lax5btdKC4srrZj/XC4xZATm8/i9PYLmLhwHMbPHoUVM9cJ77MmewJqiVQ8J1yquo7qxIpqTp06VXbbw8NDCBE0ayYMgVwtWOHSoEGDsH79euH2lStXcPjwYaOBinnz5iEnp/zf6pQpU6ptH0nN0GHkGGz76jPwKt3F5jlpKcKFdVy48M8W9Jn8FkK69za63pIC/cHgUoW56nOStFhzhnSuHgl3woX/R1++gFN/r8OIGZ/C2ccPGfEGuqaV4rVfNKsSbmDsXd00bt88erBK6yvMy8Xen7/D+IXflU0LP3lUK0ihheeR8+95GZv33Na/cPvUMTz7yUL4NQrBiI8+xeHVvyHlvuFAHwtnHFr5S9m6DM8bb+rDIoRUs/xKNFETsksmnpMUlDcgswipnbrzgiWdm69CVhQeKxYeMaRWLw5yDw5pYbwQyGBBjMgtgKqkfJ6KnRUe9f7FHAJij/Fo/gaHxhM4XP9NheTywelJBSG+jvhlfCtM+f1ipUIOLNzAlmPLWxrrgqAP666QlJSEs2fPCh0SStnZ2eH333+HtbW12dsdO3assN7vv/9euP3rr79i3bp1QkDb09MTKSkpOHLkSNm5DTs/Wrp0KYKDyweWYRYuXIgbN26UhbzXrl2Lv//+G507d4a/vz+Sk5Nx4cIF4f+l2DpWr14NS2KhDRaw6Nu3rxBUj4qKEh5L48aNUbduXbi6ugqPiZ1XpqaWf4cwe/Zs6uBACCGEEEIIIYQQQgghhNRQNTLgsO3HPVg2/Q+jI+mXUql4LHljGYKaBqBxx/oG52XzsIJGQy4fvI7o6w/ww1va7b3lV5KR38QDJXpCDo6H74NTGBhtUw+r2Fz4f3kJuS3dURCs/sHN5k4W7C4lCwGIilgx6MyBCzB2/jDMyU+ASq79NMtvZsLhVOV/DReVqOD5ezQSJtYBJNpDCzodTIRbshJdRrQXbl/YdxWbFu/AAW8FEGj4h0Klnczg/Q9uxWH9wq1IupcsFMEaKtxVjHIUwg26JBdlYvHtrVjY/CW09vXFyuEj0Or7n8qKCCoGGyr6Z/Uh2D4w/mu/g5u90XkIIY+Gq7eT3sCWTjzgV88bsRHGR3e2pKIKBf2W8rjDDcY0DW2EMTOG4c1203H7/F08qdhnjV+mrcGzHz6Djze+i2d9J5sUhmSa9wip9v2r6TZt2oTly8s/T7ERRdkIok2aNKn2bb/xxhtlAQeGjex58uRJeHvrHg2fjRBaOnop07FjR6HzBPnvurBjM05uXKs33PAwNt++X5fAPaA2PIM0i8cexuaJvnLR4Dz3rlxEyoN7QmH8kygrKRFbv5yHhp1DcWrj2ke+fRsHRwS1aidcj7p8Hhd3bsOD65UIqemRfO8uzu/YgqzEeGSlJCH5nnmVu1nJSTiyehkG/286/Bs3xfDpc/HLay8aXe7K3n/AiYwP8c66hxBCngxWzkBJZbLMPGDnB+SakA2zpIoF/ZbyuMMNxni0AuqOAPZPViJTf0Omx45XAJe/49HoJaDDJyL8M1JlcvcOjxaPviPB49Slrjs2TumAdzdeQUSS8e/w6nvaC50bqiPcwPzyyy+Vmr9ly5ZCGKFVq1ZV3vZ3330nhBDmzJmD/Px85ObmYufOnVrzOTk54bfffsPIkSO17mOdH9gy06dPF8ISrEMCC2YcPKg7NMoCCGvWrBFC65bWo0cPocvfyy+/LIQZmLCwMOHyMBYSYZ0cpk2bZvH9IIQQQgghhBBCCCGEEELIo2G8MuIJc3j9SSFYUJhn4i95/+J5HluX7DI6X71WQUbnyc3Mw5xhi5Cfoz3Mmkihgtu6MMgvJ4KrMFpYXU9XfPFMH3jcM384PFGREg6nE+H5+23h4nAmUSvcUCohKglH5+2E3zc34HA6GVyRel+kSQVw23IP3r/dBsdGKzeD3eUM+H95C3YX0wEW1lDxsI7Khefyu/D4KwavLZ4Aa7kVti7ZjRn9PsOFvVchzjD+fEkyjc+zfMZa/PPLfmEE7bR43UXL7FEpBhgOGZxMvoXoZPWopo7WVqjl5ASOZ9EG3T/8ciUqyJLyoVIaL2Dr9Xyo0XkIIdVHpVKhMF/9etJ5mLqwUWkjgcJeBlMGom83sBWWXv4SL3767CN7mooq+Z72JChxlyOviQfyG7pCZSWu9PKJUUn4ePAXT3S4oaINC7ci4mIUnnlrgEnzsxEwh7/z+IvfVVB3cKjSRc97Y1WxkTfff/99jWkrVqywSLiBHf/SS2BgoM552KijEyZMKLsdHR2N1q1b448//kBBQflnvFu3bglFNOzCPk+WBjHYvrL1k/+mG0cO4OgfK6AoruQ5iUqFy3v+MTqfR+06RucpyMnG9q8/r9Q+sODEgLfeg9TK/BGBKyM9Lga3ThzBo8ZxInSfMBkSqRTnd2zGli8+sUi4odSxP5bj6oHduHf1EvKz1N3izBFx9mRZpwW5kxPsXFxNWs6UUE2jLj3M3i9CSNWx7nCKQvXnBr9OlV/evxuHXr9waPjCo3s2TC2Yf5rkJQDHPuSf6HBDRTdX8sh5ANQZYuJnUBELcPz3Pq+ysMLed7riz0ntMaCJF8QizWMgEXEY2MRbuH/PO12qLdxgiEgkEorwfXx80LVrV0ydOlXoKMe6IVgi3FDqvffeQ2RkJD755BMhoM2CB1KpFM7OzsLt+fPnC/frCjdUDDl89dVXiIiIEDoisOVYFwi2HvYY6tevL5xXsdDDnj17qiXcUIp14WP7wcIWAwYMEAIcNjY2kMlk8PPzE7o6LFq0SJiHwg2EEEIIIYQQQgghhBBCSM3G8aWVWjXEaJ9JyEg0r4jExcsJG+INj3D6fs+5uHJYe+Qnc6hkYihcrDFrzVT07tVSmLbqh6346fA+KNxkEKeXwO5oBiSp1TBM3r/FfRWfXlbYy1XDs126XnZ83/llCjoMbi10WHgh+M2yQEBhLXskv2ygYFGpgu/iixDnVv1Y8LYiFG4JMDpf7V95vDhkMOLuJOCiXRF2qdL0zmt3MRnuf0caXaebrwsWHZgN//q+ld5vQkjVsGDXnwu24PCfJ4SAg4u3M+qMb4ddCbEo9lOPYizKKYLt5STYn47TG/IKaOSHrJRsZKZkm70vrr4uKMgpQH62dhBOFwl7v6gQinsc2Gt4ugnvrwpHK2QMCkZxrfIiEBbos72QAIejD6qpFP7J0OmZNrh29CZyMvIMzicSi/Dmklcw+NU+eBxiY2OFQg+m88ZXYO1etc5ChSk5ODFa3WUhJiZGKByxBBYkGD9+vEaRT+3atSu9HlYMxC4VVQweBAQE4N69ezqXZaOPsi4MD49AygpkWNFOTk4OMjM1/13Y29tj3759aN9e3a2K/Pewz9c/TRyDwlzzgsuOHp6YuES7E1xF62ZNQ8Kd27Ckoe/PQnBr9d/t8T9X49zWv/A0snN1Q5/Jb6F281bISIjDiv+9yp40PKlcfPzR9pmRyExKRNLdCKOdO0zh4OaBkR9/BmcvH4vsIyHEdDmxPMLX8og5zAuBARt3wLk+EH+ickfRIQgoTAWKzT8lgdxTvbzCtFMScGKAf7ynJLByAYrSH+8+POn8ewAJp40/r+z5bDWNQ+3+NW5sG4vLKSxBUnYhcouUsLMSw9PBGvbW0se9W4QQQgghhBBCCCGEEEIIIcQACWqQrT/sMjvcwIglhkeYTo5JtVi4gREVK9GxWXBZuOHn8BNY4hMGxVjvsnmyRnvCcVsKeqV74aVPn8PUjjOhVFTPL8rVEW6ouN7M5CwENVUHC3YvO6jR7cD6QQ5sLyUhr6WnznU4HXxgkXCDoEgFFPOAzHCZbfzVeHx6chmyQj1RUNsOvJMVeKkUXDEndHMoJYvLhcs/0RrLOrjZIy8zX+u5So1Lx5vtZmDhvo/RoG1dyzweQohR92/GYFq3OchKzSmbFusqwXVRFvBvuIFR2Vshp2stlHjbwWVTuM7Xxfs3Y6t0xOs0DxRGbE2LM60yR2YthYOrvfD68Sj51fcRQlkskDVgYk/8/c0OHFx73OAyKmsxUsc2htJJc+RvXiZGbkc/QCyC4yHdheRPIht7GyGIYqpT2y8Iz60hwc0DMXfLB/AMcMeToLQLQ1XXUR02b96suR2VCnfvVr6jR3q6+f92rKyssHv3bsycOROLFy8WukowxcXFQphDV9eHX375BY0aNTJ7m6TmO7v1L7PDDYxIbPicJD0+zuLhhuA27cvCDSc3/oHz2zfp7HpQu0VrtB/5HP6c9Z5JXQKeRPmZGUKnCubqgT1PdLiBSY+PwZ6fFpu1rNzRSejk8fBzlZ2ajHUfvYtRs+fDI9B4h0JCiGVkRvI48q4KJeWnJChIUV8qKzuqavvCQhWsAN7UcIPYCpDaAYX6x32oFva1ABs3wCGAQ9AgDmGrVYg7hv8UiRxQ5Js+fwxrjGTkLdqlAdDhUxHk7k9z/Nx0LMxAgQZCCCGEEEIIIYQQQgghhJCapUYN47Xzl/1VWr513+YG72cF+pUhFhs+fA3aBmP2X9OE61vvX8PisMNQ8A/9CinikDXMAyFL+qJe6zoYNKU3LMXFxxmPkkrFY+/Kw8L1B7fjtPdn+104746CJL38F3ZpfC5c/7oNh1PxFtsPTgGITxoeXZuLKUaOmyMefNQEWV09UexvC6W9BCprHiobBUTZhbC6lw3XzXfhvfQGxIVKrYJkfUEUNmL716/8bLHHQwgxbsmbyzXCDSqpCJm9a7NqTZ3zF9Z1QUF91yof2tDRHTB38/sYNnUARvxvEBbsmYXJX76AqGv3TV5HcWHJIw83MLG343HtSBgK8wtRq5Efrh27aXSZvOZeWuGGinJbe0EprxkjYfrV88ZXh+YguIXpHQOMhRsYmdzqiQk3POkiIiLwJJBKpVi0aBGioqIwZ84cdOnSBR4eHsJ0Z2dnIcwwceJE7NmzB8eOHaNwA0HY4aqdkwQ2a2Xw/vzsygW6K3Ys0cW3QSMMeOs94fq1g3twZtN6neEFnlchuG17eNeph8ahvWAprAj/UVIplQg7qu7KkhFftdDik04ik+kNohTm5WLv0u8e+T4R8l928RvNcMOjEtAH6DBXhLojONQbzSH0axEaTxAh54Hp62DdJh51uIFh+5hyBVAWq8MOKVfxn+IQAHRbzMGhMk3MTMgfSmxA4QZCCCGEEEIIIYQQQgghhBBSo9WYDg7Z6Tm4F2Z+gYrUSophbw/Qe39uZh5Ob79QqUKiTsPa4tjfZ/TOM+LdQbCxsxGuL4s4ZXB9yyNOY0xQK0xa9DwehMfh8sHrWvP0er4rmvcIwdmdF1GQW4jrx26hqKBYb+EmC0wcWncC1YmVeiqcZMJ1aWYxUmJShev2TrZa87LSK/uzibA7mwilvQy9xnZBx25tse/+YaSJbOHk4Yi7V6KRnWb+iLgSmQRNujRAn4F98XnOVpSIdfzyq+LBbc1D8th6gFi7IIyXiqCSl8D7ixt6u16oFIZ/Ub4XFoMbJ24hpHNDsx8LIcQ0sRHxuHpEs/tOQQNX8NaG3+Lym3lAHm5+FQ/rfjBp4XihmL3TM23Lpv/24R+oKVgwbf/qo8J7mkhkPPNY0NBIKEQsQkF9F9hdTsKTZvBrfWFloy4EbdY9BO0GthQe8zdHP8FfX+/A2s83GX1tNwX/hI8U/iS5ceNGta3bnOfB398fc+fOFS6E6JObnobMpASzD5BEZoUW/Qbpvb8gNwdRF8+bvD6h60LLNoi6eFbvPG0Gj4DUylr4d6Grc0NF57dvRpPufdB9wiRkJMQhLly7u12Tnn3hXbe+sJ8lRYWIuxUGRYnucxL3WoFw9PRC5Hn950zVITddfU5iZWtndN7G3XujVuOmQigiPysTtk7OSLgbgeI8w4FpQ8RSKfwahqBRaE/s/WmxELqoDiVFRQbvT46+i8S7d+BVhzrLEVLdMu/ySL/16I+z3BNoMlEEG3cOfqHl329cXlJzuvCwcUCid/IQiQGuRg3DUnnBI9h5l7q5kGcrDl5t2WPm0GMJj/A/VQhf9+8XbYQQQgghhBBCCCGEEEIIIYT8x9WYgIMpoyYzcgcbYQT9h4veZ6yditohtXQukxqXhmnd5yI+MtH0/eF5XNhneGi53z/5C91Gd0JCfhYislMMzhubn4monFQEO7hjwZ6ZOLPjIvavOYKMpCx41fZA/1d6onn3EGHevhO6C/+/fT4SswZ/odV5wifYC/N3zRTur86AQ2YXT2R280KJhzrEIUvIxwO5lXC9+5jO2LVMPXLqw9hP7pKcYgwe0xVNuzZC9+c6CdOXvLlMZ7CjMr46NBeNO9YXriduSsUvqfvB17Eq33ayApJl6Uj3cNMZbiilcLVCXlNn2F3N0LrP2tZKCJgYExuRQAEHQh6B+LvaxfRKh/J/9/ooHY3Po4uNnTV6jO2CcbNGwN1Pu+Bf30jKT7IDa44idFQHJN03/F6lshIbXRdv9WR+tGjWrTGCmtbC8U1ncetMhNA5o9MzbYQg4gtzRgshwqkdZyIrJbtK25FKn6zHr+I54VLVdRBCKheekdnYoLhA85xELJFi8DsfwNnbV+cy2SnJ2PDJDGSnmB4SY10XYsKuGZzn1F9rUad1O2QkxCMz0XA4g3U8yExKhJOnF0bPno/I86dx8/hh5GdnwdnTWwg3sMJ9hgUhmLjwm9j61WcozNF8/XTx8cMzH85GTNj1Rx5wyMtSd8Fo2CkUt46rO8zp06xXP3gH10ejLupzrL1Lv8f9a5ertP0x876CZ+06wvX02Ac4u2UjLE1mI0dhrvFgOAuqUMCBkOqXq93EslpJ5EBAbw4Nx3OwcdXxWa0GFslH7eLh0xGIO4anlmdLDnY+QNwJHqk3eCiLOfh04iG15dBkohgBfXgcerPqnUC4J+uUhBBCCCGEEEIIIYQQQgghhJBKqzE/eTm6OSCwsb8wMr4+HAetcAOjKFZg9/JD6DysnTBKdUXJMan4ZPiXlQo3lNK1rYoe3IrD/ZsxEAfYm7Q+BRu2jhU/icXCaOAVRwRn0hMzcP14uPA4m3RthPptgrEsbDFObD4rdAsQiUVo26+F0FlCIpUgK61qRZqGJI8MRFaol8a0Ym85tiET/mdO4L3undGmX3Oc33NF5/JtB7QQwg2lFCUKHPi9ar9iB7eoXRZuYEYP6otttbYg3SUVKm8puCwlRFcLwamAwvcDja6vMNBOK+Bg6yjH7L/fw+JJPxsNOdg5a3exIIRYnoOr9ujM4lzdI0lXJMotqfS2WGeeiQvGCa+x+jQNbSx0BHhUPGq5IfmBeqTqqnRy8KztIXQ7KinSf1ykKflQOqtDbYbmeRJ9PmaxVljS1ccZsza8i5BODeBTxwsb4n7Fe93n4sbJcLO3I5I85cPOEvIfZ+fiCidPb8NdHDhOK9zAKBUluH54P4JatdMZbtiy6NNKhRtKlRQaPidJvhclhBZMDeDxKnW3AZFYjHrtOwuXinLSUxF/+5ZwXuXXqAl8GzTChG9+wp0zpxAfwc5JxAhq2QbBrdsL1+3dPPCo3TlzEmc2b0C7YaPh37ip3hBI3bYdhXBDqZLiIoSfOlqlbXvXa1AWbmDYPlzZtxNFVegI8TBrO3sMnTYTO779Qug6YXBeE7pYEEKqzsrh0R3FBuOAxhNEEEn0h1Ddm3GI3PLoUg42HkBBctXWwSsAh1pAvER9/Wl0cubD78W8cOw6zhXBpSEHh1ochmwW4fBbKqSbf0ry1HfCIIQQQgghhBBCCCGEEEIIIU+/GhNwYIa9PRCLJy/Ve7+hAVXP776MC3uvoE2/FsLtjKRMfPf6bzi17bzJ3SHMkZ9TiPpyP3hbOyChUH/gwNXKFkH2bjrvK8grFLobHF53AoqS0oIjEaQyCYoKistGEx8zYxg8A9zLlou+9qAaHhFQ6CfXCjdU9OPFsxjVMARzNr2HH6euxIE/jpUVzLLi2d7ju+L1717SWCYvKx/5OYaLswyxklthxtq3NabJrKSY+vNkfP7cYihvaxY7cwrjBV5snqahjRDQ0E8Y6bt+mzro+XxXyO1thA4Vfy7YondZexc7tO2v/lsjhFQvFvbyr++DmNvxZdNswtOQ1as2eJn+jgPy65WrwBGJOAx9vZ/BcENpgMu/gS9iwqt/GFfWUebznTOEwFX09Rh8O2WpwfdCQw6vP4kX5o7G8hlr9c5jeykJhfW0u1aUEmcWwuquduebJ4Gu9/q0+AzMHDgfSy9/Ce/anhBLxJix7m2MD3oDKqV5nThcvZ3xROE58FXtwEAdHAgpw4r6W/QfgsOrfjHwb0b/CzHrZMCK7VnRPZObnob9y35E9KXzJneHMAcLQbj4+kPu6GSwIJ4FOBw9dH/OL8rPx4FlPyLizAmolOpzEk4kglgigaK4WOgo0Khrd7QdOgr2ruXnNWmx9/E4sM4VjUN7YtgHs3Fwxc+4deIoVEp1xaxEKkPj7r3R7YWJGssU5uRAUVRk9jal1jYY8MY0zWlW1uj5yuvYveRroeOGOWqFNIeztzcUJSXwqdsADTt3g9TaGg07h+Lizm16l2PPd60mzc3aJiGkctyaAnJPIL/yObVK4cRA8FDD4QbGpzNg6w3kGW7cYxFSO6DrVxyKs4DMKB6XF5u/rgeHgYbjgJur8Z/BgiHHPlShz3IR5O6c8Ny2myXC7ufN7wyos6sHIYQQQgghhBBCCCGEEEIIITVIjRrTa8DEnhg2dYDZy+//XT0aJyukf6/HXJzccq5aww2MXz1v5GflQ77D8K/cY4JaQSbSLsRlhU5znlmE/auPloUbGFZ4ycINDCts3fnrfrzZbgZiI8oLfK1sZKgO2R0Mj8LKjujGWzdgZWOFd397Fese/Cx0PWCBhz9jluJ/v74q3PdwZwQW1DBXUX4Rwk5pD2/XZXg7LDowG637NtOYbnfNeAGu3ZUMtOjRBFN/moT3VryOwa/1FcINDPs7dPfTX+TLioRl1tVz/Akh2sWmE794XggglBIVKeFwTH/ISxaTDXlY5boeNO7UQHitMkYkEuHTbR/CK7A8cFZdj7swrwiTmkzDJyO+QnpCBqxtzX8dTbqXgtVzNxicxzo6E7bn43XvT5ECztvvgNMRwrBzqnpHm27PdUR1YN2Ytv2wp+y2h78bOgxpbfb6eo0PtdCeEUKeVC36DUKz3v3NXj7s2CHh/4V5udjwyXREXTxXreEG9n7h6OGJ4oJ8o10cmvcdJHRdeBhbbsvCTxB+koUElBrTWbiBYeu/sncn1s58V+gYUUoiezyfidm+hR05IAQB+r3+P0z+aSWGvPsRhkz7CJOXrkavV16DRCrVWMbazk4IP1QlSJIQeVtresNOoRgx81PUCmmmbjtYSYHNW6LXxDfQ77V30LRXP+ExMa0GDoOtk/5gXadnxwsBFEJI9eNEHJpO4aD1YdjC3JsBYhM+8ovEHDrPF8HGvfq/VSzJBfa+wOPMPB7F2YBI86W1UvLigPA/YXESufpSVf7dUC1KcoC728o/C9j5cvDSbvhksoA+FHAghBBCCCGEEEIIIYQQQgghNVuNCjgwE+Y9JxRLmiMzWd1BYc/yQ3hwq/pH1mYjQbNQwp/zN6PktzuwPZKucz6/exxeb9BF532XDlzD5YPXTdpeZnIWlry1vOx2m/4tIJHqH73cXApn40U/NyLKR2p1cncUggadh7WDo5uDzvmLeR4uU9oh7q1mePBRa8S93gTZbT3Bi03/UXbxpF/wfOBr+GbSUkRfL99+066NsGD3LLz4yeiyaQ6nUiDO1OzqUJH8RgbkSUXo90oPrftyMnIRff0BXvliHJp1a6xxn4uXkxCIeOZN84veCCGV13FoG8zZ9L7QyaGU3fkEOO+4A3F6gUYRvu3FBLhuuAnOQMCNFSg97PrxW3ir/Qykxut+La/Ir643loUtxrRlr8G7jmeVn1KfYC8MnNxbCM25eDsJhVMVi2FZJ4LVczbA1qlqVTuKIvXI1oY4HbgHl03hsLqXCa5QAVFusXBMPVZeg1VcjjAPe++Z8tUL+GLvLKyP/QW1Gvmhqo6sPwVHd93vIVV1avt5jdtv/zQJTh6OlV5Pu4Et0aq3elT2J4UKnEUuhBDNwECn516AWGJeBWdBdpbw/6v7dyMzsfqH1uZEYiiVSpz++08U5OjvKMe6LrQdMkLnfVGXzyMuPMyk7eVlpOPw6l/Lbtdp2VY4Zo9DQmRE2XUWBKjbriPqtu0IGzt7vaEIV/9aVdrmrh++xm9vvIz9v/2AtNjysGVAk+YY9fHnaDtkZKXWJ5JIhE4UD2PPZVpcDLqOewm+DRprdeLo8+pUNO3ZtwqPhBBSWf7dRegwRwQ7XwsdOx0vncmXgENvqFCYYTwY5xDIod9qEVpN4yDX34TTZPYBQO0BHOz8AGuXfyeqNDsRhC0HrCr/MVqDSv9XNZXCSYBmb3Do+pUIg/6yzPMScwSQVfHx6RN3UvM5bT1NBJnutyuDfLuyIAx9fieEEEIIIYQQQgghhBBCCCE1W40bzvHm6QhhxGpzeNdWdx44uO641n0qGymKajuDF4sgTcqBNDmvyvuqVCjxdseZSItPB8cDbj/Gwu5gOnJ7uEDpJoU4QwHbw+mQ3sxH+uh0YdTohx3+82Sltnn5wHUkRCfBu7Yn7J3t0H1sZ6H7gyWJs0qMzpN2w/RirezCQjy/fhNuurH1qkf5VtrLkOZvj7xmbvBceQsiheHRZhlW7Jv0IBW7lx/E/jVH8NG6d9BlRPuy+/euPFz+GAqU8P0+HAmT66LES92VoZTt9Qx4rryL3i+Ews2n9Fd7oDC/CEvfXY0Dvx8t655h72yLoW/0Q7PuIcLI7k27NoREWuP+WRHy1IQc2Mj7t89H4uuJP+PejRjIb6TA5kYKFG5y8BIOkvQCiIr1v57IbKQIahqI8LN3dN4ffzcJP72zErM3TjO6P6xTDdun799YVuXCpoBGfhj+zkC8+s2LGOM3Rd0qR4fU2HRIrSQoMSGoUBU2EenCRR8W7lv72Sb8Ef0jbB1t0XNsF9w8pT2idWVlpegvzK2KtDjNx+Ls6YRBU3rjj3l/m7S83MEGAyb2wkufj3lsRbyEkEcr7lYYlArjn4l1cfRQV5mGnziCR0GlVODPWe8hK8VwR7m8zAzkZ2fp7AgQfvJYpbYZfekCctJTYe/iBrmjE+q06YDIc6fwqBl7zA8HBjZ+MgOpMeVBabPwPLJTk3HtwB6EHT2Iwf+bjjqt2pUFKG4eO1ip1TXr1Q9yh/Jq2uLCAhxe9Zvw96MoUZ+T2Ng7oEX/IfBvFAIruR38GjbW2YmDEFL9/EI5+HYVIf0WcG6BCrmxlV8H69DgEAhkaDepFOTEAFd/5tHuI+OfOyU2HLw7AJe+rXqnILZP9cdwaPY6h39G6T+nKkhVd3FQmfc2aTG8Arj1B4+B6zlIrDnU6sUh807Vj0OxOqdocfnlzY8E1m5A7YHA7fWmLS+1A4IGcwh5mc5HCCGEEEIIIYQQQgghhBBCSM1X4zo4VByxurIGTOol/D87Lad8fRyQ0602Ul9uhZxewcjtHoSM55ohfXQTKB3M6xRRUUJUEooLy3/VtQ7Ph9tPsfD8NBpuS2JgcyMPKhUvzFexkF6lUv9YnJuVV+njEx9Z/qsoGz1cam3e6LL6OJxNMTqP9RHTO2QsPHIcN5OSdd5XGOSIzB6VH/mbFdcufGEJslLVxbBFBUVIvKe531aJBQj49Bp8fgiHy85YuG6LQa3PrsHn5wiIC5Vo2L5e2bzs+Zg9dCF2/rq/LNzA5GTkYduPe3Bx31W07NmEwg2EPGasuLxB27qYvGh8WaE5+680NR+yxDyD4QamuKBEb7ih1Kmt55GemGHS/pzbfRklRVWs7OGB09svYHLTafj5f6uQm2n4faF2k1rwCnTXmMZCD371fCC1suz7gSFsP/f9G7Dr/WKosF9PKvY+ffmQulvS3lWH8XKjd0wKNwx+rS8WH5+H9XG/Ch0rZI/w+JpKxXMWuRBCNPH6kmYmaPLvqPr5BropWFpGQhxUCsPhN5VSieyU8s/kJUWFQkE+U5SXW6nt8bwKWUnl5ySD3/kQIvGjDwEbe8wVHV79W9XDDQ9RlpRg5/dfoShf/d5dmJ+H3AzjnaAq8g6ur/EcbV4wBzcO7ysLN5SGMy7v3o7YW2GoFdKUwg2EPGbsPMS1EYemU8z7yk1ZqD/cUCr2CI+iLNPeixJO8+CVqLK4o8Del1S4+rMKivImeTo51QVs1GOMlBFbAXb+6s4KjwoLIzw4oD5OQQM52D+5pyTC8556Q72vUf+osOcFlUnhhrojOXRfou5S0XSyCCIJfXYnhBBCCCGEEEIIIYQQQgghNV+NCzg0bFcXUlnlfw195q3+qN8mWLhecXTlnO51UNDUGxBrHgqFlz0yhjeGyurRjHxpJZfh90/+wnN+kzHY7nkMdXhBGIHcxdOp0uuyc1Z3QWDEYjHe/fVVk5ct9pCjMNABCif94Q6be7mwP6c/5OB4NBFuCtOeo5yiImy/afiX+5w2nuBFlf+BlgUR9qxQd21gRb26CnvZWm1vZsF1Zxxc9sbDKr78V/qG7euWXT/zz0VcPqguftVl128HEHPb9FAHIaR6tenXAu/+9iqsbaseVNPVnSc2wrQuNRUDbpbY7u5lxkd9zssqwOrIH/D5zo/w2jcT8NriCfAK9EBsRHzVwxaVdPO0umuDja01vjw4B11HdYBY8mSOKH1o7XGsm78ZX738E2LCjb+eewd54qXPnkNIpwbC4yOE/Lf41msITlT5U6k2Q0bAvVagcP1JHGFfLJXi5IbfsXTKeHz/wkgseelZ7P/tB9i5uFZ6Xda29mXX2WPt+bLp5ySWYm1nZ9J8rHNFxGntLn+WUFJYIHRyYKQyq8o97xwHr7rlAYc7504hLvym3tkv796hEVIhhDxevp05tHyHg0hm+XWz7gh58abNqyzPQ1mkK0L0bhO2WQgMXCdC5/kiNHuDQ/M3OaEjQW6Meh2PUlqY+v9SWw7dFovg2wXgntBvQ1kY48YKFS5+zZvU/cPeH2j8Ege3EHWXCkIIIYQQQgghhBBCCCGEEEKeFo9+GM0qsnOyFYoKH5hQfMiwEaOHTR2A/q/0FG4XF5UgK0XdT15pb4XCRg8NKVeBysEahY08Ib9s4q/GZrJztsOPb61A+LlIjS4Oe1YcEsIKLI9RmcYVVw+HoX5rdZiD6fV8Vxz4/Sgu7r+mdxmhU0LPAJR4/1sExPOwis6C8+5oSNO0h+bz/OMuZMmFyOzqCaWD+td6SUYRnI4kwulQAkI/H2vSvt7PyERBiZHRZO2kUDjIIM0sQmVFXFQfU5FIhK6j2uPgH6YVLjXv3hi1Q8qH9ju49rjRzhlsngmfPlfpfSSEVM21Yzdx68wdIfzWblBL+AZ7C9P7vdwDXUa0wxttZyDujmmBBFPZOspNmq9+mzqPvIuRi5eT8JrXtn8L4TJn2CLE3K7e9zF9xNLyIk5HNwd8vOFdpMan4+6Ve0L4Y+WsdYgJfzz79rC0hHTs//2YSfO27N1U6JBk72xa4Swh5Okjd3SCg5s7spLLu7AZ4h4YhFYDhqJxaM+y7giFOeVd5Z4ENg6O2PPzt0i5F6VRnH/twB5Y29mjsiclD8Kuwa1WQNntpr36IezYIcTf1l+gb2n1O3Qxab70+FgoK9HtobKSotTnJBKZDMGt2yPi7EmTlqvdvBWcvXzKbt88rg5vG+qcweZpP/zZKu4xIaTSoo8BcZcAiRVQvz/grA6z1Rkqgn8PHvsnq5Bf3tjGIqTlY1sY5NKAFb6b33lIi+GmeAJrF4ATc/DuAHiDw7EPlMh7TGNCcBVyZdYuHDp+KkZ+Mo+su4CimMf13/jHtm8PY/t1d4cJM3KAV1ug9fsiSOUUbCCEEEIIIYQQQgghhBBCCCFPnxoXcGDkJhSWegS4Y+mlRVrFh/duPEB+TqFwvSjYBTDSGaCwrmu1BxycPR01wg0V5WbkwaeOF+Lvmv5L+Paf9mLktMFCgWupkM4N9QYcWLghZUxDzS4WHIeiICckTwiB5/JrkDwULuB4wGVvHJz3x6PY20b4rVyWkC9Md/dzxcDJvbS2k5WajdS4dDh5OMLV21mYJpdqd1XQRVSshDnO77mChOgkeNf2xJgZw3F62wXk52gHNiryr++DD9e8pTEtOzVb98ws29FDDjSxwrrCwwj/LBZvPz8e3oGeZu0vIcR0cZEJmDf6G6FYvtTSaasROroDpi1/HdZyK9g62uKVBePw6civLHZoazX0RZ1m6oIlYxxcy0evthROxIFX6S9Q6jOhe9n1pPspOL3jAh4XD383rWluPi5wcnfAG22nPzHhBqYov0TokmGIT7AX/vfLFDTvHoKaguc54VLVdRBCtMlsjJ+TOHn5YNz8b2Btq3lOkhwdBUVx5cO71Unu4KARbqioMDcHzt6+yEgwvQL0yt5/0LL/YI1pvvUbPrKAg6OHJ0K699aanp+VidyMdNg6OQsXRmZtU637cvfCWWSnpgihmHbDn0XUlQtQFBl+/l39aqHvq29rTCvI0XNOUsHJjX8gPuImek58A45u+sP8hBALSYkA/noRSK7w2rb3I6DJKGDw94DUGjJ7DiEvczg333IhA6e6gH0t0z6jWTnC8oxkJgL7VeicGsMj6TweG1sv7WlyDw5WTix48uSEGxhFvvEACeva0Pp9Dm5NntA2FIQQQgghhBBCCCGEEEIIIYRYQI38NUxkJJTA+AZ76RxZuWLRP19hZGl9TJmnqnLSDI/eysIN7y57DVZyK5PWxwpaM5PVXSpK9X6hq975M3sFaoYbKlDZSpHdxU/vspyKF4INCicrZHfygsOwRvhs/0yNol62/5+M/ArP+kzGqy3exxi/KZjebx7Cz99BkKsL6rtrF8BWZH03C+J880ZULcgpxNzhXwrXAxr6YeH+j4WuHhXJbGTwCnQXujZM/WkSfrywEG6+rhrzeAfp+EW8nhRY6w184AL0twU/QI6LneMw4eTnuHIr3Kz9JYSYJi8rDx/0+lQj3FDa4eDIhlP4Yvz3ZdO6DG+H0e8Nscih5TiuUp1aUmLTYGkswKdPow710GNs57LbERejDIYhqtslPcG6E5vPIurqfYtuy8XbWRhc3Nzn1SPA8HsREx+ZiA/7zMPnYxYjL5tVHxFCiJHXJl8/rXCD8LpjwvnMo5abkWHw/ozEePR59W2ITQwoszBEYV6uxrSQbtqBg+rg7OOL4TM+hZW8fHjztLgYbP1yHpa++gJ+/3Aqfnn1RWz+Yi6SoiPhHlAbzt7lnRIsrSg/D/8s/kK47hEYhJEfzRMCDBWx7g4slFErpBl6T35LCMaUBjBKOXmqu1QZxPOIvnwRK6ZOQvztW5Z9IIQQTfnpwJohmuEG4d+hCri2Adj2RtmkgN4iBA+z0Gu/CGj8kulf5+Unw+JsDbxkujcH/ELLH2vG7cd3PsIkXtC9/ZhDPHIse0oCG+OnFHpxIsBa86sonXJigCP/43F2vgqKgsd7bAkhhBBCCCGEEEIIIYQQQgipLjWyg4Oi2Hixe9PQRmXX74XF4ODa48hJzxVGX7ZzliM3Ix+SVOPFiZLUPFQnsUSMzBTjI3E6ezhi4b6P8WGfT1GUX2x0fqmVZuGRZ4AHglvWRuSlaI3pxZ5ylHiVF/7okh/iBuedUUKY4WF5DZ2QMjIISid1+CIVwIiD2/FBUReMadpU6J7wTudZyEjK0ihAvrjvmnBh3Sk6Tg1FhL7B/5QqOB2MQVWwItqrR8LQrFtjNGhbF79e/Ro3T99GXGSiEMRo1bspJFLD/xRYR4rdyw+WT7DlgC/cACftAIzKV4yPbyzDtgaLIGK/UBNCLG7vqiNIfsBecXQ7ueUcrh2/CRdPJ6HwfdKi8fAK8sT3r/9m9jatbGT436+vosuI9iYv4+LlpHFb4WQNhZscXJECsthsoetNZQ2a1Auuvi5Y9/kmxEYkCNNs7KzRa3woJi0cB1mF13+ZtWlFqNXl9oW7yEzJgpO75rCxxzadsdg2RGKR8F7KCjrFUolJnxEeNm7WcFjbmjZ6t0qpEkI06YmZ+OrQXCEc8SRjb92qKnZgeIwZGUKeaCqVkSGWAfg1bFJ2PeV+NMJPHhWK/p08fSCzsUFxgeHOYo+KSCxB0UNhBC08L3QgGDHjE2xaMAfKkhLD83McxBKJVuCDFfanxT5AdcqIj8P62e8jdPwraBzaE+ns9pwPUVihAwLPqxB9+YJwYd0p/Bo1QUZC9XUWSoi8jfiIcPjUawDfBo0w4eufEBsehuzkJNg4OCKgSXOIxIbD9U179sWt44dN2p5KqcSmL+bgzRUbnvj3KkJqrEurgRz153GdbmwC2r8KWDsD9l5oMdUOcm8Vrv1k/ocrsTXQ5kMRfDqY/u/alKL5yqr7DAeJHAhfxyP33w4IElsgsC+HJpM4iCTl+yeSGWn3UM1SrwIl+SpI5Zrfz8Qes9w+CV/9iP59lOy68Y8IWhq/AvAlph0rXgk82M+jKINH1y+rf2AWQgghhBBCCCGEEEIIIYQQQh61GhdwKC4sRsxtw4UnbETUPi92g1KhxDeTl2LfqiM655NFp0OUUwSVvf7OCDbXE1Gd2D6awsHNHo3a18P3pz7H251moTCvSO+8Tbo21Nm94os9szCpyTRkJGWWTVPJpSZ1seClInBFmvtaEGiPxAn1AYnmj8RZRUWYefAA5DIpwhcc0Ag3PIx1d4h/ewO6vtkZp9wUKLEqX5c4qwiu26NhE208AGLM4ilL8eYPE9G4Y33Y2FqjUYf6wsVU9dsEY+S7g/H3NzvUE/rb6gw3lCp0V2LvrdPo36hTlfedEKLt5NZzRg/LtNA5ZcGE0Gc7okHb4CodSqVShc7D21ZqGa9ADzTuVB9Xb9xDVu86KA4oDzyw9x/70zGQXzd9SFUnD0f0n9gTjm4O6PV8VxxefxK3zkQIIY7Ow9rCxk6zSJ91phFJRFApzKiwsZA5w77EnL+nwcWrfBRqQ+9hlcUCB+zCAgfmsrKxQq/xXbFy1p8mvy9fO3oTF/dfQ+s+zczeLiGk5iouLEBWUoLR7jCNurBzEgX2/LRYCDc8qVRK08JhNvYOQgeC5z5ZhA1zP4SiWH/wmhXsS62staaP+vhzrH7vDRRUCBtUB7b+PT9/KwRJwk8c1Qg36Oo2wS4seMBCCLwJ4RVz7F36HXq89Cp86taH1Noafg0aA+xiIr+GIWjWZyCu7ttp0vzF+fm4feo4GnTS382PEFIFt/79fkAvHljWS31VKgeajIS11SwAVRjmn3Us7VK5+R1qcXCuzzopwCKs3YDAfhykdhwC+/O4v49HRgQvBCn8unKQWGuGLzxbszfFx5pxwMmZPDrM4WHlVL5vikLLrZ817WChhkL9GXyjJDIOPj04hK1hCWXTlkm6AKRc5eHejIJshBBCCCGEEEIIIYQQQggh5OlS44aXP7XtPApyDf8K6ezpBA9/N6yY+afecAPDRs523H1bGElbF/nZGMjic/Qur5KIUBjoiMIgJyhtJAYDF1XhW9dbGJ3609Ff4/XW0w0WhopEHMbMGK7zPlYQu/L2d3jx0+cglqmL8yWZxn/RFeWXaIUbmIxevlrhhoq+O3UaRzaehike/HACr2e6wOOPcLhuj4Ln6lvwX3QRtjfTYQlxdxIxo+9nGGI/Hi/WfRN/fb0DipLKjfI95asX8MHqNxHULABopV2s9bAziWFV2GNCiCFF+aYXyBcVFAvvBb9/8leVDirrDJCbabzzT0UlxSXIKipG2rMhGuEGhoXrsvoEI6+pp9ZyEpn2e4pXbQ98sXeW8FqeHJOKtzvNxIJx32Hrkt1Y8dE6vNzwHcwZtgh52fkahftt+7XA43Tz1G280/ljoZNDqTrNAk1eXiIVo89L3WDnJK+mPQTO7b6M+2ExeOat/pVa7uiGk3jS8TxnkQshRFPEmZMGi/sZe1d32Do54+gfy5+McEMVR/F38w8QujZs++ozrJs1zeDj50QitHtmlM772DF5+btf0WHUWKFzRLXieZzc8AciL5jWOSgu/Caa9R5QbbuTHheDvz+bie9fHIkV70zBpV3boFKZFqwr1euV19D31bfh4utv0vx3TXzshBAzlFSiQr4kH7i0Br7h/SGTpJl9uJWFgKKSzX+UxTyK9X+1pZdIx3gYdn5A6JciIdyQl8Dj4KsqnP+CR+Rm4MZvwJ4XVDg9VwlFQXmaQSrn4PF4T0mQcgU4PFWF4uzy/XKqY/r7okjGulMAUsMNUKsk/oy6G0adIZVbLuYwtVsjhBBCCCGEEEIIIYQQQgghT58a18EhNc54wXtOWg7GBb6G1FjjPxpLE3Ph8udV5DfzRlEdF0AsgiQ5FzZXE2H1QPdo0KzOL6eLP3JbeYO3/vcQlighD0uF44FoiErUQ62JpWJMWvi8ELQoLjBcAGVo5Nfuz3XC/7p8jJKiEoPzyh1s8Ob3r6BN3+Z652EjmVvbyqAsVhfSSDKKYBWdhaLajnqXsb2SLAy2V5HKSoyC+prFug+7l5UJPxcprBIM73ep05vOwik5GyV6AieWEn83Cb++vwbXjoZh7ub3hfCIPrmZebh86AaUJQo0bF8PvceHCs/HgO+mGh18UGptvDsGIcQ8dVsG4fb5u5VahnWTsbG3QUFOJSuC/iW3t4G9i3Z3HEOObjyNmzZKg52CcjvVgjwsGZyS1whTOHk6ou+E7sLrL3v9aTeoJcRiMYoKivBh708RG5GgMwT46aivsXDvx2XTZqydinGBryM3Iw+PS0JUEjYu2obJX74g3B44uRf++mq70W4Jju4OmLb8dXQY1AqKpVNw5p+LiI9MxPaf9iLpforF9u/68Vv4sM884bpffR/h+CdGG++skWfm3xIhpObLTTd+npGXlYlfX59g0rzVSSyRoNsLE3FwxVKz18ECC8FtO2D9nA+NdnuwsrVFr4lvwL9xU73zSK2sIBKJTe4cURVpsQ8qNf/di2eF4EV17xvrGHF49W+IDQ/D4HemC8dYn4LcHMSEXYNKqYRPvYYI6d4b9Tt0EYISxohlMgvvOSGkjHczILlyAxtI8u+icb3vcfnmJ2YdSJkDINVs2mYU67CQZ7gRqk6qEsDKFajdl93i4BrCwbudehCPknweR6epkPfwKQkPxB4FlCUqdP68/LuW9nM47BrLQ/H4TkmQEwNE/M0j5GX1N1x1hnC4s9l4twQrZ6DtDA5ebURoVcIj/hSEcEfEJr5KHRselnyRXdQ7Y18LUBYB+UnGl1NULoNPCCGEEEIIIYQQQgghhBBCSI1Q4wIO7v5uRucpKVYg+YHpvzKKs4tgf/yecGFsHeVClwh9v3Fm9quD/OYPjbgtFQvTFM7WcPszTOgO0W9Cd4x4ZxDWfb7JrICDT7AXXpk/FkvfXW0w3NB5eDu0G9gKoaM7wMZWf2cBVhQ7a/AXuHLohsZ0591RSJ4QApVcuyBfmpQHh+OxWtNVMhFgQmcKiYMVkGDar60pMY+2+IsVyh7445hQQPwwVnS7bPpa/LN0Hwr/HSmedcfoMLQN3v31VdThvBEJw2Gb0Lotq23fCfmvG/J6X+z89QB4vnKjVbLCQPZvWaXSXk4kFkGl1F/d0mt8V8isTAsuseL7k1vOYduPu1HQ08/wPsmlKApwgnVUhsb0zKQsuPm4aHUVOLz+lM5wQ6lL+6/h5pkINGpfT7gtt5fjt2tf4/Mx3+LGiXA8LjuW7kNMRDx4FY+mXRvh1a9fwM//W6X1XLABxkuf1qyUbHz/2q/ITBqN/q/0ROdh7YTpa+ZuNLo9Fvpj752VDc3F3o6HnZMter8Qiv1rDI+4HtjItNGzCSFPH3tX4+ckypJi5KSZX/loZWuH4oJ88CojlZdGsI4EzfsOwrF1q1BSWInRxv/FOgV0GfMC9v36g8Gif1ZwX7tFa9Rr3wlSK/3nJGwfNi2YLXRLeFREYhamMK1TQk6q5QJ0prhz9hRunzmBBh27at2nVCiEDiDXD+6Dolh9TsKCEHXbdkTvyW8Kzw3rCmFIvXadqm3fCfnPazsRuLqu0oehtvdaXL71iRAG0MKyTgZe9gP7ceDEpnUeyI3nEX+CVxfxm6koDbD14RA0UKQdmtB/SoKEU0BmJA+nYPW+WjmI0Hc5j9OfqpD+6F7+tURu5pF5Vykce48WHJpOBq79og5m6FOUAVz4igUjVAjsK4JfKJvK4dqvxt9XpHaAohDgK5mZy3mgDrPU6gk8OGh4XgfTm+MRQgghhBBCCCGEEEIIIYQQUmPUuIBDhyGt4ehmj6zUnGrbhl89H9w+H6nzvhIXG+1wQwXFAY4orOMM+wc5wsjOty/cRf22dXF+9+VK78eyG9/g/J4rSDHSiYJ1Gej3Uneh0JcV7e9ZcRBJ91Ph7OWEPi+EosuI9kKXglUfb9AKNzDS1AJ4LL+O7C5+KGjsCl4qhii/ROjcwMINoiLNH20nfzkeFw/dQEKeAsW2+v+EZGIxunduimO3DReIPk67fjugM+Dw7au/Ys+KQxrTWBEuK1hmo3q/vuoVTItZCtjqKSyIV+DkmmPovLyp0IWDEGJZXkGeqNs6CBGV7OJQlF+M6X9MxfovtuDejZiyYENQswBEXorWu5yVXIbnZ48yun5FiQJL3lgmvH6UFu7zA4xXnKhKuwE95NT28+g6qj2OrD+FrNRseNfxwrG/Thld34lNZ8oCDoybrysWH5uH+zdjhM4XUisp8rLysG7+5kcWLivMK8KZHReF62d3XhLChG/9NBFhJ2/j6hH1yLc5abllobKKnZu+mbQUihIlBr/apyy8UGQkOJifbX53Bfa+mpedD4lULGxXF/a+OmBSTzzpeJ6DirWequI6CCHaReOHV/2KovzqG4raycsHSXcjqrQOsUSKwrxcJN+LgleduogJu16p5Vkx/Uvf/IzwU8dQkJ1lcN7iwgI0Du0pBDIiz5/BjSP7kZOaCjsXF2E66wDBujYcW7fSIuEG1pUi+spFPLh+FTyvvxqYhS0Cm7XEnXPG3z8fl+sH9+gMOOz9+VvcOnFEYxo7vhFnTiA7NRndJ0zGps/LuzbpEnnhDIJatrH4PhNC2IfseoBXEyCxcq+tYkU6Oswqxo01MuTcV0/jJIBjIAsF6F9OIgcajDX+uUxZzOPi1zzuHzDencAU8Sd5eLflEXOYR3EOYOfHujQYD03EHisPODByTw49fxQjK4pHRgQPsQwozOIRvg4W7YRgSEmeOnzBJJzmIbUHWr3LIeUKkHJd/ZiKs9TdEyoqSAbOf8GzF2EE9lOHPaRy9fqMbc9o+089irMBlYK9Fwub1UkkBQL702d1QgghhBBCCCGEEEIIIYQQ8vSpcQEHNnr269++hIUvLNE5ArclRF6O0ntfQYjx0VoLQtxhE5mBI+tPCpdOz1S+oKRh+7qQyqSIj0w0Om/cnQQolUosGPcdjm48rXEfC1Y0794YH/81TatgvyJpRiFct0eC/+cuVDIxREUKoQvFw1hR6ahpQ4SLz5nT+Pa05vYqGlSvPqYMa41rO64gM9lwQZSp7F3thAJYS9F1fGPvJGDvysN6l7l75R6SriZhWqNR+DrxL62QgzIPSI6xxxq3BOQsX4+PJ4yEtcS0Ud8JIbolP0jBg/B4oSi+QdtgzBm2qNLhBkZub4Nuozui59guiL5+H3lZ+UJoYHrfeQaXY8X0yhLjw27+9M4q7FqmOcSmOLMACg87g8tJMnQX40dfu49xAa9pFNmzQIYxef8W9+fnFODk1nPITs2Bdx1PtBvQEgEVug70n9gT147eFLoeffXyT3iU2LFf9uFarLn7Axxc7LF8xlqsX7hV7/xr5mxA35e6C58DQkd1xNYfdlfr/p3fdRlvLHkFS17/TevzBusC8vbPk4TgCCHkv0lqbY3QF17Bvl+WlLedsbDk6Mq/zz1MqSjBzWOHhEudNu0rvbxfg8bC/zMTDQzT/S82D+uSsGPxAiHgUCr53l1EXTovhAwGvDkNYUf1n5OYytrOHq0GPiNcjq9bhXPb/tY7b8Mu3dBmyEjE3LyOwlzLhOTZ9i21LiZDx/FNfXBPK9xQUWJkBIry8tDz5ddwcMXPeue7fnCv8Dfa4+XXIJHSOQkhVfvHeh9IiwRsnADvFsDaUZUONwhsnOHXwwZ+PdRdDkryAXs/4NBbhtMICvYR34S3nEuLeaHDgqVk3AZ2jlGBr5D7ZUX3xpTkq/ehJJdH3Al1OMLej4NXW8AxqHwFdYbwQsAgL0GFi1/jkSrJAa7/xmPAOhGktiJc+VGFO3/rP3bXl/Oo1ZuHSMzBtytwz9gpSRWfhoQzQPM3gctLtNfFnoPW73OwdqaAAyGEEEIIIYQQQgghhBBCCHn61LiAA9NjbBfYOdvhj3l/4daZOxZfv1Kh/0dllY3xohDlQ/Oc3Hoeds62yM0wfYTXYVMHCv93cLU3Oq+jmwM2ffOPVrih1JXDYfhx6gphRGpjOBUPcaH+It6C3EKkxqUJRZ1TWrfB+bg4nHzwQGu++m5umBkais3ztlgs3MBGULdkuIFxcNM+viyUwrphGHJ4/Um8t/w1oGcC0EcONLVCkac1Ml0ckZNvDd6bA7yBtbiP87tWY23vMXC3sbXovhPyXwk2sI4qF/ZeKasfdfVxRlp8hlnr6/l8V2HkfaZ2k4Cyrgul3Rz04llg7IoQCNAnPTEDu5cd0Jouv5qE7N76Aw6SlDzIEnS/tmWmZGtNUymND8PKAhl/f7MDa+ZuFF63S7n5uuDdZa+hTd/mwm2xWIwWPZpg65LqDQsYCjnsXXFYOK67lmsGQ3Qdi4v7rqLD4NYY9d7gag84lBQrhG0FNamFTd/uxOUD14TpzXs2wfC3ByKkUwPUBOyfTVVrr6undJuQmq9J9z6wsXPAmc0bkBRl+XMSXqW7g4y57p4/A5mNHMUF+SYv03LAUOH/NvbGz0ms7e1xdutGjXBDRfeuXsKR35ehpND8DjulWOeM/OwsyB0c0X7kGMRHhCP2lnanOo/addB13Es4/fc6ywQSOE4ICVgy3MDY2DtoTWNdM4wJP3kU3V54xeh81w/tQ2JUJEbN+kzntgghRqRHA//8D4g6Uv7JyN4HyIk379A1H1d2tbTDAQsD5BlbHQ8kXeRRq6f+gva8RB73LBhuYArTdeyKCZ0hVEXArbUq3PqDh7LslISH3BNo84EIHi3Vj4OFBTxbAeF/co/lkyfrlMACIf49gOhdhrfPOk2kXAY8WwP1x3C4t7t695d1kqjVWwTHOsCdv1VIvqwONni24lB3JAfXRhRuIIQQQgghhBBCCCGEEEIIIU+nGhlwYNr2byFcWLF9ckwa3u4485FsV5xuvCBH10jcxYUlwojPpnSdePaDoej+XCfheqdhbbHkzWUozCvSO3+PsZ2x7Yc9Btd5att5WAKv4pESmy4EHKwkEqx4Zhi23LqFjTeuIyYrG262cgxv1AjPhjTByXUnsf6LLVXa3qDJveFeyw1xkQnYt0r/CKbmSoxOxpQW76H/yz0xYFJPyKxlJgVB8jLzsHzGOiBbBfydi7zbIsRPCwR0LBqRmYr3T+3Eqp6jLb7/hDzNIi5GYVq32Vqvf+aGG9z9XDF25nCt6aZ0RGBuX7hrMOBwducljU4LpeQ3klFUxwVFQc5a93FFCjjujYSlPQiPxcE/tAsjU+PSMeeZRVh8fB7qt65TNn3PyqqPpm2ubT/tweo5G4RQhjE56eogiEctd7Qf3BpndlwwGGDLTc81u9sT6xbi4GoHV29nNOpQ36x1EEKefsFt2guXnLRUZCYlYOMnM/Akq0xoosPIMcJjY+q174wjq5dBUaL/tbpBx1Cc2/aXwXVGXjgLS+BVKuSmpwkBB6nMCiNmzsPNowdx/fA+5KSmwNbZBY1De6FJj95Cx4iLO7dVaXvN+gyEvYsrUmPuC6ECS0uPi8Xv099Gkx59hX0WS6QozMszKehxbO1Kk7aRci9K6Dgy9L1Hc95MyFPjwRlgzVBAUR4aFpgbbnAKADq9ozVZZOK3c+nhLOCg//6E0zxgQvjgUciIBKL+0f4snp8EnPhIhR4/iMoCHkx1hwUMifiLx9WlPFTGT0lQnM32k4ODvwgerZRIvqh/XmsX3QERU8kcAakccG/Kwb2pOqhPCCGEEEIIIYQQQgghhBBCyH9BjQ04lGKF9kc2nHpk25PfSEF2twBAor8g1vZKkta04oJiDH61D8LP3cGdS9HCNLFEhAbt68HWgY2kWgTfYG8MmNwL9VqVF52y+57/eBSWTf9D57Z863pDWaJE0v0Ug/vNCoTFUrEwb1W5eDmVXZeKxRgdEiJcHrZp8T9V2463M95Y8jIkUglGeRofmdQcLHgSdfU+fnx7BY5sPIkv9n6MWg39jC7HjvuJLeUFWpm9PQzOfyQ2ClHZ6QhycLHIfhPytEu8l4xp3ecYDHdVRoehrdFzbBdsW7JbKHhvGtoIbfo1h0gkEi5yexvk5xgOsDl7ORp9PdHXGcf5/+zdB3hTZRsG4Cc73XtvWkbZUMreUPbeIqCo4AYVQRREEXCioD8qijJlyFL23nvPFlpoKaV776aZ/3VObNqQ3abM9/bK1eTkOyMpJjnN+3zvttsoae6N0mbeULjagCNTQBybDfsLKeDnPlQsZQVJMckG75OVy9jw2WebP9Qsy3qQg9rAvM8Z64rEyEg0/v5VlX89H831V78ci6uHbxj8NzL+05Hse+6htSdQHVETukAgNN216UmnBIe91HQbhBDjHNzcEXP88YXFzCUrL0fzPgOREnMDWUmJ7DKeQADvsHoQiGygkEnh6uuHpj37wjO4jmY9Ztb/1kNG4vSmtXq36+oXAGlpCUryjFdxSktLAS4XUNas+pbD4cLOuTI4yHRVaNqzD3upiunKdnn3vzXal6OHJ3pMfJ3t3rBkYu0EluXScmTei8ehP39B3NmTGDbzc7j5mT4ncfLywe1T5ofA7144g8KsTPYxEULMkBOvP9xQXeGDgUZDgbM/q1tshXQCQnuwry88IQc8kXrGfmPElX+O0UthRoH+o1KQYPg+5nHGblChzezKz5ml5p8WWITpeGCq40RJmvnbsw+oPOamr3Nx5F2lwd9bo4kcpJ9XIaV6pyQI6csBh0ufxQkhhBBCCCGEEEIIIYQQQsjz56kPONw8eQu/fbj6ke2PVyaH874E5PcLZb+Efpj9mWQI0/XPtskUWv5y8Vs8iE1BcX4pfOp4wtnDeMFsRUcHsZ0I67/aqpm5nJlx3KeOFzKTsvDnJ+vMOnZrhRuYTgq9Xu4KryAPrfvSCouw6dpNxOfkQqTkIKY4HzY12Negt3qz4QalUon8rELUtuhTsVg7bzPGzh6O36evRklBqcGx9VuH4cDqytlbJWH2xjfOAY7duo06bdpb85AJeWYtn7UOkmLDhURKsQAKd3tAqQI/sxAcE0X0F/ZcxZltlbP9b/xuGwLD/TD334/gX9cHjTrUx4W9V41uo0FkmNH761XpiKAv5GB/OY29qDgA57/JScW2Ilg/3sDM6Gy8sunM9ouQy+TsayzDzdcFhTlFVj0GvoCH/pOjsO1n4x2GzBXSJJDtpHDtWDTS4jPYDg3ztn+EHyb9hrSEymAhE1Z5cfZwDHm3L8rLuiMnLQ9XD9+0aF8OrvYYP2ekVY6bEPJ8uH/jKk5ueHTnJDXBFNJP+G4JcpIfQFpWCmdvHzbAYE5HB6GNDc5v24zSgnx2GYfLhZOnN9u94tRG/YFsHTUMNzDsXFxw/dBetkuDo7v2OQlTwH/j8D7kpqWCx+MhL62as6z/p0WfgezjlEnLIS0z3c2vph5EX2ef44j+g3Fi3SrIyg1/UvAMCsbNw5aFQe9du4RmPfta4UgJeQ4cmGO9cAMjbg9wq0pHmVOLAc9GwAvrAJdguDQAsq8Z34RLA+Pd51zqM3+nsqwTAk9YO8EIU90Qko+r0FqlAue/v63ZuAHFKdY9BiY0EtQbSNhune251Aecw4DMKyqUpKkgcuGg/TwOLv2gQml65TiBnTrcUGcAF4E9VDiep0SOZackEDkDDV6kcMPT6OjRo+jWrZvJcXw+HzY2NnBzc0NISAi6dOmCcePGITTU8N8WTCkqKsL27duxZ88eXLt2DcnJySguLoadnR28vLzQsmVL9O7dGyNHjmSXEUIIIYQQQgghhBBCCCGEPKme+oDDv0v2PPJ92l3PBK+wHMVtfFEe4swGHQSpRbC/kAbbmGyD62Ulq2c0Dajvp/d+JqzAzADuFeyhM2v04Lf7YMDrUYg+HcvOVn1m23ns/P0gHrXc9HysnrsRf83bhLGzhuOluaPZ5esuX8O8A0chr1qw9Fpj2MTlwWNdLLgyywqZ6kWGoqSgBJt/2IHuYzvCM9AdmUmGn1tr2bv8MF76YjSmr3gb80f/ALmeUMjYT4bBt46X1jJ1cTXP6LZjTsYCFHAgxCTm//2TWyo7pFSlEvAgiQyBLNAN4P1X3COTQxiXAdG1JE1w4GFyqVxnWdKtFHzcex7+iF6EcZ+OMBpwYAJlkX1bGD3u8DZ12ZBD3MV4o+OqHqO03PqVRB4BbiY7MijkCraTQ0XAoddLXa0eFmReP60VbrB1tGEDC6+ET8WD2MpCVWcPR0xcMBZeQe5IjkuDg4sd2g1qBRt7dbxOZCNi3z8sVZRbjMToB2jauSGedioVh73UdBuEEOMu77FS5eQjUJSjniLbzT9A7/1MQEAhl8HRwws8vvbpYkT/IWjeewBS425BLpUi9vQJRB979Ockxbk5OL1xLc5sXo8Oo8ahzVB1Z4VLu7bh2Jo/oTI1VbeZfOrWR0l+Hrvd8I5dYOvkrAl31KYbh/ai3fAx6PXGFOxZ8j2UCt1zEuZx27u6Wbzt1NhbFHAgxBwl2cDt3dZ9rvSlCDKjgTXDgLfOotFLAhz7wPDrl0Mg4NnS+C48m3PgGAIUqhuHmkVZ87kwdNh6AaUZJvYrU3dW4Pz3p5TgPhzc/NOycIYpTGcFa4UbBPZAnQEc7B2vrBLEUEHsCjSZDIhduChOUUHoBPi254AvVn+G5ttwYOvJQY6FwZPyfKD4AeAabp3jJ08euVzOBhKYS2JiIo4cOYLPP/8co0ePxpIlS+Dubv65bElJCebPn49ffvkFhYW6k8QUFBSwl7i4OGzYsAHvv/8+5s6di7fffpsNhBJCCCGEEEIIIYQQQgghhDxpnvqAQ8yZuMeyX3FiAXtha/44HHZ2blOYGbL1ObH1HNZ/uQV3Lt/TFGz2m9QTL346AkJRZdCBx+exxZb5WQX4fNh3eJyUShX+mrcZXsGecO4ehs/3Hdb7VW1ZPRfkDgiB+z/GC36r4vK5iLsQz14Yf368Fo3aN3gkAQemUwQT4ugwpDUWn1rABizO7bzEFuo2al8PQ97tx94Xf/0+25Wh4kHbXitAUSfDXzxypEq436+FKREJeQYx/w/K9AQSmNfb0m7hUHg4aN8h4EPayA8qER825xIs2ld6YhaOrD+FPq90x6tfjtXbEYeZzX/23++DyzU+Wyrjk3VTMb3HXL0BA6YDAVOcXzVsoVSoatRRh3muHt7HB8vewHsdP2VDDIb41fXRhADKSiTgCXiwc7I12rnmceByOYia0BXth0Tiq7E/QlJarvOavWjyUsxY9Q4bBNQn9W6VqVQtsPO3/c9EwIEQ8mik3Yl9ap5qQ0Xxt08fx/l/NyHrvvqchCnmbxbVF22GjtYKOjDXAxo2QVFuNv799gs8Tiqlku2c4ejpBbGtHY6uXma1bTNdG5jfa8Xv9sS6FfCp2+CRBByK83JRVlyEBu07w8nDCxd3/oN7Vy5CqVTAr0EjtOw7CKERrZF657bF22a6cBBCzFCUxnxafzRPVW48ELMNni1GouEEDmJW654jiFyAdp9xNd0OjGHGHZumhERP5tmxDlCUBKiqnG6pahBwYI6rXN1oVMO5LtDyPQ4Ov6sy+hQyQQwuT/14ZKUq8IQq8G0B+ZN1SgJwgZC+HHi3Ac7NV+l0ppDkAhe+YZ53IGyo/nNGJvhQHfHbVXANp7Dx027s2LFwcND+O4ZKpYJMJkNeXh6SkpJw48YN9jbj77//ZrtA7N27F82bNze5/UuXLmHYsGHsdqp2h2jcuDHq168Pe3t7NvTA7OP2bfVnh/z8fEydOhX79+9nAw/MGEIIIYQQQgghhBBCCCGEkCfJUx9wEAgf70NgZ+JWmfdFZe+XdduT7/r9ABa/8btOwea6L7ci7lI85u/4mA02VHV2xyV25u0nwaaF28Cz72p0Hrri5h5w2Z8EXol5x6xkuyFUYsIF145Fg8vjQqmo3QIDpljAxl7MXq/fKhSz1r2nM4b5EvK7l5dowg0Ml30ZKG7rCpVA/5fZjsezceVwIjKmZcEryKP2HgAhzwAnD0e9/7/LA9x0ww1VyEI9IYxJBa9IYtH+zu68yAYcxswcikYdGmDbz3sQdzEBAhGfDTQNeqs33P3MmyHZL8wHS698hz1/HMbxzWdQVixBaPNgDHqzN359f6XeThLVwbyfvL/sdVzcdw1XDt1gX7taRjVFq17NUF4mReu+LXBmx0WD6zPHw7h34z4+7rsAOakPVSXVEg6XA5UZgcAK/V/vhSk/v4YFLyzSCTdUtfrzjejxYie9IRShjbBax3rnkmVhGULI8+1pmvm2cdeeejtQHFmpfU7CFPIzHRIyExMweNostuC/qrsXzurtLPA4XNy+FWIrF+Yx4YmqFHI5km/dBIfDtVqHCEOY51ogFGm6SAx8f6bOGCbssO/XHy3edvyl82g9ZBQcqtH9gZDnih1z3l5lVoPaFrcHaDoSjSZy4dFchbv/KpF/B+CJAL9OHIQO5sDGzbxCd8cgDnr9wUXCThWSj6vYLgYu9TgIG8LBxYVKrXBDTTDH1GIKB2lngMyrKrYTg3ckB14RHMjLVPBqqUKG4VMS9ngYeXEqnJip1AlK1BoLf631RnDQ7E0uTs1W6IQbNFTAzRVK+HfR/3mAV71TEuTGPqJ/f6RWLViwAMHBwUbHMAGExYsXs10YmKBDRkYGoqKicPHiRQQFBRlc7+TJk+jTpw/bwYFhZ2eHmTNn4vXXX4eHh+7fH2/evInp06ez4QnGrl27MGrUKOzYseOp+jxLCCGEEEIIIYQQQgghhJBn31MfcGg7oBW2/rirVrZdGuaE4lYekDsIwc8vh+OFTIgTi6q1rXqtQtH3tR7s9YLsQmz/ZR8OrT2BlLvMrID6MYWrJ7acRdfRHbSWMwWzT4qkWylIvVc5Q5hefC4kwY6wi9YzfWAVYjsRJCXlRsMsTOFubWIKhB1cjBdHXdx3FfFXE7WWiZIl8PkpHumvh0BpX+V/K6UKDqdz4bH+AXIUwCvhU7Hqzv/MLpYm5Hnk6OqAdgMjcOrfC1rLZcGGu6SwOBx2DO9GskX7Y0JUFZp0CmcvNT3+0TMGs5cKJ/85hzuXa14w36JHY4z8cDAie6tncWzTryV7YUSfjsXsgV/h4t6rbJcdpiuDospjq9BhaGsMfrcPpOUyzOr/1SMLNzAsCTcwBrweBblMjpNbzxkdl34vE7fP30XDtvV07uMLqlekkRyXhh1L92PgG73wNFOqOOylptsghBhXJ6I1rh9UF4o9yXzrhaNh5x6aAMOVfbtw6+RRFGQYPieJv3gO8ZcvIKxVG63lMsmTc06Smch0frPOaxVfJIK83PA5CU8ggFxq+H5rqNMyEgKxOnRt7PeSm/LA4m0XZWdhxXuT8er//oSdk3MNjpKQZ5yDNxDWA7h78NHsT1E5IYRnCw48W9Ss0FjkzEH4OOZSuez+ASUKtf+UUS3erYF6o7hskIHh24G5qK9nXVPh+AyFOtigAht60NchIqAbB3UGcCCXPOJwA8OSUxIO1MdZpmKDHMYU3Qfy76rgHKb7fsQ8D9VReA+4t0eJkL6muwmSp5ujoyPmzJmD9u3bo3///pBKpcjOzma7PzAhBn3dW5KTkzF06FBNuCE0NBS7d+9GvXq658UVmK4OzJgpU6ZgyZIl7LI9e/bg+++/x4wZM2rxERJCCCGEEEIIIYQQQgghhFjmqf+GbMi7fWHrYGPWWD3fBeml4gIZ4+ohfXJDFLf0gKSuE4ojPZH6VmNkjQi16LtQ5tiY2b+/PTgHYlsRMu5n4e3Imexs0yl30kx+sfrtyz9jx9J9KCupLCBKT8w0a9+SAHsUtPdCYaQH5PYCPNaCVSPPfZ2mQfhq7yyj4QZGTcMNXC6HLZbV96VghbSEDGz6fgdKCksNjjm367Le5XY3ChHy/nV4/ZEI5z3pcN2agqCPo+H9RyI4/32hL5XI8PX4/9XocRDyPHh53gtsF4eqVCIzMnnV6OoTrqco3trWf/WPVbYzctogTbihqrM7L2Fa189wfvcVNtzAqAg32DrawN3fFc26NsLHf03Bpxs/YGdmPL7pDLKSjQfPzBHWPBgB4X6wtpe/GMO+PzCvm1VDKIaUFpbpXf7gdkq1j2HJO3/g/i3LAjOEkOdTy36D2cJ4q56UWJHI1o49xhGz5oEvECAvPRVrZk7F2S3rjYYbKuz68RtcP7wPsiqF/eas92jVbJZrrzp1MXTm50bDDYyahhuY7gxNo/oaHZObkoxLu7ZBKtH/3sZIuGxkWnQTZOXl2PfL4mqvT8hzo/unj+7PZgGta30Xseut0w2g/guV4YaqmG4RRz9QIoPJqf+3q4pwA98OEHsAni2BtnM4aPMph+3ulnRQZZVwg0s9wCEAVtd0MgcOAUwQg/nbl+nxMgN/SiqyPI+mcWmhCsWp1MnhedGzZ082bFDh9OnT2Lhxo96xTEiBCUEwXFxcsH//fqPhhgrM30WZbhHt2rXTLGM6R+Tk1PzvA4QQQgghhBBCCCGEEEIIIdby1AccfOp4Ye62GWzxuilhLULM2mZezwCUNNU/w35Ra08UdvQ2azsdh7fBhtTf8e6S12DnaMsu+2HSr2zIwVyychl+eusPTG46jS2+Ly0qw54/Dhlfx02ElClNkDq1CXKG1UH26DAkzW6J7KEhUJnxPFnCK8gd9UXGOx5AroT4XqHBuxOu32e7M9QWFy8ndB7ZDkuvLsTUXyfjo9Xvssv0Sb2bjt+nr8aUdp8gL7NA7xiF3HChLVemguPJHHj8nQK37ekQZugWQN04cQtKpRnfjBPyHMtOyYVSof3/CddAAbvWmCLTY6pigmf9/uuuU1uK8oqt0r2B4RXsqbMs5mwcPh/+ncHXJqbw/9UvX8TCw5+j+9hObLiBce3IzRofT92WIfj+2Bf49eI34PKt85GiWbdG+GLbR3hx9nD2to29GF5BHkbXYT4DBBoIWZgTjjCECYvs/HU/nmYqlXUuhBDj3PwCMOiDT8wKL3gGmXdOYi3hnbri9aWr0O2lSZquAPt+XYziXPOL2ORSKQ789j+smfEuCrMzUVZchJgTR/CkcPHxYy81kXHvLgTmhlSqwc7ZBfXbdcZL3/2MqNfeRu83psLGUf85SV5aCo6uXoYNn05nn2t9VMrqv78x7t+4UqP1CXkuFDJB2Udw7i50AJq/WKu7kOSqUHDPOtuy89JdlnlVibNzlQafLnkJ0OJtLrp8z0NAN65m4olMK7wUuTYEuv7IRY+lXKv9ldOrFdDpGy7qj1FvUOQIiF2Nr8PhAw7++u9Tyqt/LEywImEHfSCvEUkhkHkbSL6k/sncfoK9/fbbaNq0qeb2okWLdMZcvHgR//xTOZHCV199hTp16pi9D+bvAt99953mdlFREdasWVOj4yaEEEIIIYQQQgghhBBCCLGmpz7gwHD2cNLMWG2MscL0CioeB4Vt9XxbW0VhR1+ozMgJtOzZFDt+2YdNC7ezRfzJcam4fPAGqiP9XiZbwMrMuF1WXNnN4WEKGz5S32iE8sCHQgd8Lgo7eLMhB2tq2rUR+roHAEaef/trWeCVyIxu59rRGPiGGn/eqysvo4B93uaP/gEntp5Djxc7YV3SUkS91MXgOkm3UvDzlD/13tekU3iNjocp2jY00zghRO3sDt1ZiYV3Mow/PTIFBPeytbq0OHs6offLXWHvrA6ZVSWyEWL2xg/g4uVcq0878/+7OZ1umMCeMXwBD1KJdiebxOgHmN59rqZbgyG7/ziou9CMItyG7eth/o6Z+PH0fPQc3xkCkUDzvL7w8VAsPDKX7VQkshHBxUN/kaYlJnw+CgsPfY52A1tVOUwO+k+OMrpe6/4t4Rngrve+Ru3r1+iY4qwUTiGEPPtsHBzNSgTJZcY/F5vNzE4QgY2b48renbi4YyuyH9xHVlIiUm7HVGuXeWmp2LnoG8SeOs6GHp4UgU2aIbRVm5ptRKVCatxt2Lvpfz+pqZL8PMSeOY6di79G/KXzaNwtCq//uhINOnQ2uA7zuzq2+g+99/k1aFSj41EqFNb7t0jIsypubw1WrvIabe8FtBgPiBx0hwnsgNGrAVsT1fM1JC02b5y9gQL9ClwB2G4GVeXdUeHEDJXJDgcJO5XVeivzaAZ0/IqLbv/jILAHhz0GhtgNCB/PQZeFXPDFHAhsOWxWpKaaTOag83c8eLeuPDgOj4OQ/sYP1q8jB2JX/WPca/aSjbw4CjhYjPlMdu848Pd44Jtg4Jc2wB/d1T+Z2xsnqO9/AtPczDkw052hwvnz55GZqd3Nd8mSJZrrHh4emDhxosX76dChA7p06YL+/fuzAYlu3brV8MgJIYQQQgghhBBCCCGEEEKsp/amzX+EVGZ+GZWeaLpzgtTTBkr7/74tNUDmKoIowBnSpHyDY3h8Hn56c1nlghlrUKdpEGoi4dp9dvZ/Y4raeELhYnjmUaYDhcuhZDgouCgrMhyUMBdTkDt8SCesHrgHGT0DAJ72l7niO3lw3WF6mkCmaHfw233x6wcrUVuY0MK8kd/j47VT0XV0e9w4bvy5PLn1PHLS8uDm46K1vNOItlj20V/sDPPVJbIVVntdQp4H+mbd5+WWQBidAmkjPTM0K1WwOZ8AjkyBAW/0wohpA9lt+NTxhEAowKtfj2O731zcdxUKhRLNujTEgNej4BlovDOANTAdY+ycbFFSUGp03NSlk/HL1OXsa5U+zOOZ1e9LrLq7hO08wVg7f7NO6EGf9ATtYghGRFRT7F1+2Oh6sefvYu2CLRj0Vh/MWPkOPlj2BiQl5ezj4XK1M5Lth0Rih4luB0GNA1CUU4zctDzd4+nVDGNmDtG73vAPBuDqkRt6Q4LewR6Y8vMkg/sc/E5fHNt4xuzPCg8TP+2v1yoOVOakMk1sgxBizv8r5r3OFOVkWW1/fKEIcqlux7AKXB6P7dZQ4dhfy+ERbP7svvqk3Y2Fi6+JClgzMR0lZJKan5M4eXqjSbdeuLTrX6hq0ClNIZOhea/+OLl+FWoLEzLZ9t18DJz2MUIjWiP5VrTR8bdPH0eX8a+qAzRVMMGIkxtWo7TA8DmpKTz+M/HnAEJqj6IGIaC2bwGRrzJpIsA1BOAJgO6fApdXAfGH1e8ZIZ2BVhMBR1/UNlsPgCcGFCZeciM+BC5+C5Sk6r9fKQNOzFSi7xoueEL1Z8SYlUp2uSklafo7JSQZb1KK7GhAuVaJsKEctJnNRaRMBXk5ILAFOA91KfVtCyTuM749p3qAJBMo1/Py6dMOqDdK/2ff8Bc5yLqmQvZ1/cGQFu8a/swcNoyL1NPVf39ifnfEAqlXgX/eALIM/N1PpQBitqkvHuHA0KWAb/Mn6inu16+f5jpzLnv48GGMGTOGvc10hd25c6fm/j59+kAorN5569GjR61wtIQQQgghhBBCCCGEEEIIIdb3THRwCKjvC9eHitD1zXxtzqz5HDPrH3sbmf3/4W4RzCZlzWwQHV6EsmEuUPgZD1AYU5xfYvT+kmZuxjfA46Ckias63GCFekU7R1t29u7XOreB//eX4HT4AWxvZMP+Qjq8/rgJ75W3wJWZ/hK3bkQo7J3tUNuYLwWXzViDorxitiuGqd/h/egHOsuZYul522fC2UO7yMgSy2b8Ve11CXkeNGxXT+9y8dUk2JyIBS+zUF0UpFSC/yAXtgejIUjMhleQB178dAR8Q70R2MCP/f+V4eLphLGfDMMPx77Ajyfn45UFYx9JuIEhFAsRNcH4e0ZknxaI6NkUA9/sbXRcbno+Dq89wV4vLyvHya3nzDoGZ0/d16uOw9qY7JyjkCtx6+wdfDPhf/hh0lL2+XRwsdcJN1QECbgPFRg9TFIo0RtuYLTu11Lz+3qYUCTA/J0f490lryG0eTD7vuMd4okXZw/HkvNfw8Pf8Htf4w4N0Gl49Wf17jisbbXXJYQ8X9wDgyF+qAj9YVw+3yoF/RUade1pcpb+h2Ul1rwzjbTMeGjPXNZ6LkQ2thDb2yOiv/6gnLm86oRBZPcozkmUOL5mOUoLClCcm2MydJGbkqyzXCASY8iMTyG2r/505bUZ5CDkmRDQunrrudYBOn0AuIUCHvXU4QaGgxfQZQbwyl7g1X1A91mPJNzA4NtwENTT+Gd1306AZzMeQgcaH1eWCSQfVf/xTFasQtpZ845BpKdxXkB3Dmw8ja+nkgM5N4Fz81S4vFgJroADoT1HJ9zAqDvC9J85Zfn6ww0M3/YccB+auKMCT8R0duCi+bscONUB+LaAnS/Q6GUOevzMNdi9geEVwWHDE9Xl34kCx2ZjAkQr+hkONzyMGceMZ9Z7gvj4+MDfvzJQevz4cc31mJgY5ORUfn5gujAQQgghhBBCCCGEEEIIIYQ8a56JgANfwMfgt/tYPBt4BeZr2XJ/B5SFOoNTKgc/V6J38mIVF1Dx1D+X2WRBPqguu25VXL72U6rwF6DwlyAUfRmAsgnuKHvVAwW/h6DoYx+oRJZ/QRnaLBg29oanblMKTf9KlULefw+KKYyp/qydTJeKziPV39C+NHc0xk7qA4/jqfDcEAf3fxNgc68Qto62eGvxRKNFr+5+rmjTvwX++PjRFP1nJefg1pk4cHmmnyuxnf5uGGEtQrAi9ie88f1L7Kzjzbs3ZguUzfXPT7sRfy3RouMm5HnCdFlhOh/oI0jKhd2BaLhuuQSHDedgezwWdsXl6DOxGxafmq/TdeVJwLxGGuriw3TCmfbnm+z12+fvmNzW5UPqKUPLiiVG39uq6jlet+CBWbfzyPbgPfS+ZQjT7eHUv+cN3h8U7o+R0wcZ3UZGkuFZy5d/vFYrxKdQKNjX68KcIvY2E34Y9FZvLL38HbYVrMaa+J/x8hdj4ORuvJh408LtOL7ZzKorPb+bnuM64WnGdG+wxoUQYhpfKETzqL5Gxyjlcqs+ldFHD0BgY6uznMP77/N+LfGqU5d9vNbC41c/AM4TCBDWWn1O0mnsS2jZdxA4DwXxRHb26PbSZIBj+PXMydMLAY2a4NSGNXgU8jPSkHU/0egxVe10oY9PWH288uPv6DzuFQQ2aY7Axs0Q1LSl2cdwfvsW5KbqhicIIf9pMgqwMXFuwanyWiiwA1q+BLyyD7Bzf+KexsavceBgoLGoQwDQ6gP1a2fubdMzf2RcUv+UlQIqMxsTBPXSfb1TyoGArkxYwbxtxG9TIf284eNzDuMgbKjxbZQamevi2lIV5GWV21cqVCjNUkFaqF7GdK2oO4yLXn/yMHQXD/3W8tDwJS6EjsZfy2PWKJF2BtXC/G6YIAgxs3PDhnGAzPjkMDqY8cx6zPpPkNDQUM31lJQUrYBDVREREY/0uAghhBBCCCGEEEIIIYQQQh6F6le3P2HGzByC5DupOLDqmM59zCzPhmbrL2nqgYKuAVC4/Fc0olSBl18Kuav6JvsVJvNFa9UvWzlAiViFks7ucLDnwmNdLBxc7DD47b64F52E0/+oC0CV9lwULvCHyl23YEfW0QHFXA4cFqRa9Dj5Qh7bhcAQYWopZF66RU5aY9IqZ1xluib0nxyF45vPQFJSjpLCUpTkmzcj68A3e8HdV/1EcTgcTPp2PEZMG4gTW86hpKAUQQ390aZ/SzYIwVyWvPunzrEz+5+z+UNcPRyNvIwC48ctFkAqkcEaivNL0XZABE5vu2BwDDMTfIM2dQ3ezxz78PcHsBfGv//bgwt7r7DXFV4CSPo6QV7fBhy5CoJzxRAdKgS3rPKb/71/HsbbP71ilcdDyLOG6Xow99+PMKvfAhTllei8Fsza8D7aD4pkC+KZAngmDGFjb4MnFfN68cPxL7B18S42KJCZlA1Xb2f0eqkrhn8wAM4e+sMcxji42sPJ3QEF2eoAgCEBDfzQ99XuWstKi8owo+dcxF6It2ifu34/gA5DdGeyTUjPQblMgWwTr+PGlJdJcXjdSfR9rTs2fP0vu6+cVHW3h6ZdGuLFWcPRsmdTi7bJvKetnruxWsdTN6IO5mya9kT/uyKEPHnajRiLvPQ0xJ6unGW3gqOHJwqzjHcQs5RcKmX6KWhuM7P5MwX+aXdice/qRdQKtiBfxTZSshZbZ2c07NQNd86dhlwmhaS42OwuES37DYato/p9lMvlodvLkxE5eATunDsFaVkZ21kjpEUEe59SqcCxv5aru0BVwXTeGPj+x7h35RIkxcbfV5lgh/p5rzl5uQTBTVsg8dplg2NcfPzgERRi8H4bewdEDhzGXhjnt23G/euGt6dFpcLNIwfQ+cWJlh88Ic8DkT0wZh2wbjRQXqh9n8AWGL0GCOsJlOYCknzA3gsQ1n4XmOoSOXHQ/X9cxG1SIXGPCmXZgNgdCOnLQb0RHJNF+nq36azOdZiqJ3cMAYJ7a29fWqzC0feUKLDslATxO5Twbq0d5GP+1lR0Xx2YkOSi2uQlwIMjKgT2BG79pULCThXK/2tA59kCaDiBC4/mlj1P5QUqdlvV4doQaPc5lw1WEBOY9/Z/3rA83FCBWe/fN4E3T5sVPnwUXF3/++M0gOzsbM311FTtvyV7eRnvzEgIIYQQQgghhBBCCCGEEPI0emYCDlwuFzNWvIOBb/TGvhVHkJOWCw9/d7aoc8Xs9XoDDsUtPJE3KOyhDXGgdLUDr0gGhR0PYFrTG5pJjgsUN3eFwwUXcO7k4cqh63D2rCxSLY9y0htuqCBrbw95kBD8++YVyPiGeWPF7A1GxzieSUdJC8MzBTLdKWxv/fftLDMDeJGEnVmcuTBmRH2BK4duGN0HX8jHiPcHYOKCF3Tuc/FyZmfYZty5nIBFk3/DjRMxbMCh25j2kJbLcT/6AbsNJmAw8M3e8PB3Ywt+TWG2MeXnl7Bn+WF2GzUJO/jU8cQLHw/Fhb1XISvXv50XZw9n/12Zq0XPJuzP8s4OKH7fBxBUfiEqa2EHyQhXOMxOBj9ZanImc0IIEN6mLv689SP2/HGIDQ8pFUo07dwQA97oxQaQKoIDzOVpYOdoi/FzRrIXpgCHCYY9rEX3Jjj01wmj22nZQ13kz+Px0OeV7vj7221GO+QsPjFPp0h/1Zy/LQ43MO7HqGd5Zo7/+vEY7LkciyOZWUgvUReh8sRKCDsGw/5MEjgKM6dyrSLjfiY+G/It+9pc1fVjMbh54hZm/jUV3cZ0MHt7J7eeY8N7lghpEoipv05Co/YNLFqPEEIYXB4PA6bOQIveAxB9/BBK8vPg5OGFJt174fDK36wecHgYU5z/IOYGexy1xdnLB6f+tm6XA1l5OTqOmcBeGOvnzEBqrPbsxA/j8vloPXgE2o98Uec+exdXtOgzkL2edjcW+35ZjNS42+w6DTp0gby8HDnJSeruD5Ft0SyqH7tO6p3bJo9VILZhAwE3Dh9AbuoDKGTVPydx8vJGm2GjkXTzOpQK/d092g0fo/czgyFBTVvgxLqVZo+v7X+ThDz1gtoD71wELq0E4pm/W6iAkM5AxETAyU89xtZVfXkKCB04aPwKc1F/ptf3+uLZkoPkY8YL8r3+mzCeKbwP6s3B3a2Gx9t6Ad1+4oL3UBfTG7+rLA43MArvq38yx591Fbh/QIn084Akxzq9akszgBMzlchSz1+hkXkFyLquZAMHfh3Nf11mnkulhbk453pAy/c4cAt/JhrvPhqJJ4CsWzXbRmYMkHgSCHkyuvjZ2VX+rSMnp+IfOFBSoh3icHNze6THRQghhBBCCCGEEEIIIYQQ8ig8MwGHqgWxzKWq0OYhOsWSKi4HBT2CDG6HyxXA4VgqCtt7QGFn+GlS8YGCjr6wuZOHmDNx6PtaD819srami25l7ezBv296erkGbcJw+9xdk+NsEorgfCAZ+VH+Ovdxy+Tw/OsOOFW+dw5sqD2u66j2JgMOP51ZgLot6hgds+fPQ1j8+m9QKit39iA2FWI7EeZtn4nm3RrrdNkwxSfUiw1E2Dnb4asXf0R1+dXzQcN29dnrc/+dgUWTliIrufKLQltHG7z8xRj0fbXyd2mOoHB/NBzTDCdGl2mFGyoo3QUomu0H5zfvsb8DV2+Xaj8GQp4XLp5OGPvJMPbyLDFUqMgU7zOhvIrOBQ9juj50f7Gy2OKFT4bh8sHruHP5nt6xM1a9wxb5MzNQRkQ1ZYMhUokU+1YeqdZx2znZ4uqRm/jxzd8RJwaKO2vPKK3gc1HW3Bdydzs4b48Bp8p7gDmyknN13q8rMO8nTCegDkMi2Q4f5ijIfmimXTO8t3Sy5j3iWaBUcdhLTbdBCLGMX4OG7KUqz+BQJMfcrPWn8kH0dTTuFlUr2/ap2wBpZoQALOXmF6B1u367TkYDDsz76Pivf4J7QKDR7V7ZtxOHV/ym1bEhN+UBhDa2GDbzc53fkZOn6RmQnT292fCEQCTGvqXVPydhOkt4BqvPqQZN+xgHl/2M4rzK80KRnR06vfASwjt1s2i7XiGh8A6ti/T4O2aNt3N5OoqyCXmsHLyArh+pL8/BOUlQFAfRKys7FzzMxhPw71q5bqOXOci6qkJBgp6xHkDkRxwkH1GBw1XBK5IDW08OZKUq3D9Qva4GTMeI9AsqXF6sRIm+pqiW56y1FKWqdMINFVQKsPv1accFl5kQxQySfMsfZ+R0LpzD6DO4RS78Yb3tPCEBB4lEornOTHCg73rFOKHQvHNkQgghhBBCCCGEEEIIIYSQp8UzF3DQp//kntjw9T9ayyRhzlDaGe6uwI6p6wqlyPRsaTJ3kea6s4cjBCIB2xVAJTS9rsqMNvPMd85VO0OY4rrvAcQJhSjs4I3yAHtw5ErY3cyF48l0CPK0Z7JmZv+uiimc3frjLs0s3Q/r/XI3g+GGzAfZOL/7CrJTcrD+q3+0wg0VmJm05w5fiFkb3oN/PV94B6uDDc26NmI7VKTeTTf4uCoCB9t+3ouayE3NQ+yFu6gfGYbI3s2x5t7PuLDnKlLj09nfX7vBkbCxE1dr214fNgbSLxq8X+kvhCzCDsKLJej1ctcaPApCyLOovEwKB1d7vQEHJny1YPcnENuKUF5WznbCYbpCLDwyF1sW7WSDZVkPcuDgYofOI9uzr2kfRc1jZzZlcLkcdB7ZDmM+GoKSAnXHBUs17hiOWf2/hESpRPHEVgbHyfydUB7mBnFctkXbv302zuj9hTlFOPXvBZ0uDmUlEhxcfQyH1p1AcV4J/Ov7ov/kKNw+Z15xZ4X6kaHPVLiBEPJkaRbVF5d3G+66Y032Lm7g8vgGuwJUB4fLhdBWuyOQtTwcyGjctQeu7tuBvDR9latA06h+BsMNBZkZSLx2CYXZWTj/72b1bOsPkZaVYtvC+eg/dTpcfPzg6K4+Jwlu1hIObh4oyjHcaa1Jj96a8ERNMMeXmZjAhhxCI9ogpHkrJFy5iMLMdNg6OSO0VRs2RFEdrv4BZgccGnWxLNRNCHn2KcoBgT30BhwEDkCnr7ls5wa5RAWeQN0VotuPXMRtUiFhtwqSbEDoyIQg1N0Wjn1Q+TrMhBwCenBQdyigqKzdtohbOAenZimhrH4DHaOyjc/5wXaKSDsD+HXUXi4vUyFxrwpJh1SQFQMOQUDoIC7yLGwq4N4UFG6wlKQQuFWz92WNWzvU2xM74nErKCjQXHd2dtZcd3LS/hsx093B0fHxHy8hhBBCCCGEEEIIIYQQQog1PRcBB6aIfuCbvbDj1/2aZQpb4+EGhtJWAI5MCRXfeFCB6YxQwdbRFh+tfhdfj/sR/DsSKOoZL0rhx5n+RpepTb1xwrKZUm3vFLAXU356axkOrzuBkR8OQvtBkWzh7LcH52DhK7/g4r5rmsJYoViAfpN64o3vX9LZBlNo++Oby3Bo7QkoFaanyivOL8HHfRawswW26NEYby6aiOBGAXj/t9fZwlmpRPdb6qZdGrL7Z9y5pGdaQAuUFUvw5Ys/YmXsT+wxMDOftR0QAWu4VZZmcow83AZ9G7REw7b1rLJPQsjT69qxaOz4dR/iryZCbCdmAw4PbqfoHVtWJMG+FUcwf+8ipNxJA1/AQ4ehrTFm5lCMnzOSvSjkCoADTGk3C3EX47XWZ0JnR/8+jZw0A1OxmuAd7IG0hAz2Nbq8kRcg0J41Uud4G3haHHDIrNJNx5CM+9pFp3mZBZjRYy4Sox9oljEhvVP/nLdo3z51vDD77w/wrGHexqtMXF7tbRBCas7V158tJo8+dqjWn04bR0f0fnMq9v26GEqFwirbVCmVSI21sErTTMxxxhw7hMhBwxHSohXbYWHknC+x95fFSLpR2dmHLxShee/+6DRW95xEJpFg328/Ie7MSahUps9JyooKsXn+p2yaPLhpC3R7+XW4+vohavI72PbdPCjkuuGQoKYt0LBzd/a5YMIJNSEtLcHu/y3Ey9//wt7m8ngIa9UG1pCZoP0ZwJAm3XtpukgQQp5fGZdUiN+mRME9QGALyEqAYv2nJJAVAQk7VUg7q+6ewBUA/p05aPAiB40mctFoIqBUqNguCgffUOp0dWBenpMOqNiQQHXY+wH591S1Fm5gmHNspRnMB+TKCUvKclQ49r4SRZWnJGy4I+W4Ze0k7AOANrNNT5ZCHlKYqm6vYQ3MdorSnoiAQ15e5bm7q2tlx6Xg4GCtcdnZ2QgJ0e6uSAghhBBCCCGEEEIIIYQQ8rR7br41m/LzJK0ZnwW5ZSbX4eeWwe6qiW82VYDjqcquA4Hhfugysh2WXvkOrUv8AOaLXQO4GTIIzpeYPA6mCL82G9PfPHkbnw35lp0BnOHq7YIvd8/C8luLMWr6IDRoHQbvOl5IuH6fLa5lAg1VffPSEhxYfcyscENVTHji8sEb+KDzp0iOS0Xzbo2x6MQ8dBgSCS5P/U/TzdcFEz4bha/2zIJQpA6liGxq3nad6RRx6cB1WBuPY/p/qWadGmL6iretvm9CyNNl5ZwN+LDb5zi28QyS49Jw98o9g+GGitfMf/+3hw03MOQyBbvuex1m4+qRm+wyHp+HM9sv6oQbqrpx/BZCmwVZdKxMl50vts/E5QPX2NsKO9Ovw0ozxuisIzf9PvLwe8CPb/ymFW6wVIM2YZjy82v47ep3mq5ChBBSW/q89T7CItvW+hPs6h+Ihp26YdzXP8Knbn2rdXDQ0wzBah7E3MDWb+bi2oHd7G0HV3eMnD0fL3//KyL6D4FXnTA4enoiI+EuGxKRS6Va6+/88RvEnj5uVrhBi0qFxGuXseGzGSjITEdI8wiM+uxr1GkZCc5/n+3t3dzRYfR4DP1oDnh8Pvtc8PmmA/Om5CQnIfmW+j3cmpjuHaYENWuJqEnvWH3fhJCny7WlShz/UImUE0BxMpAXZzjcUOHuVhUbbmAwQQOmY8Ght5TIvvlf5zgeB8nHVDrhhqoyL6s7HFjCMwJoN5eDbPUpSa0x522E/1BDo4vfaocbLOXWGIj4gIOo37iw9ajNvwA+o6Sm/7ZqkfJiPG4KhQIxMTGa202bNtV7nXHp0qVq76e8vJzdFyGEEEIIIYQQQgghhBBCyJPmuQk4MD5Z9x6+3jcbHYe1QZiNA+yKdWflrMr+cgZcDqWAIzX87aYwsxz21ypnkz6/6zL7M6hhABav+ASj0BxQ6lYCCSQcuP6QDY4ZX5y26NkE9SJrf2bN32esQXZKZaBj8w87sfG77bh9/i6SYpJx/VgMFr3+G6a0n4WC7EJ2zL0b93Fi89ka7bcorwR/zdvMXq8XEYrPt87AtoLV2Jz5J9YlLcX4z0ZCKK4saG0/JBLWkHgzCdbWydN0AdnbI4ayXSMIIc+vSweuYe38LVbZFtP14ftXf4FSqX5DObbpjMl1vEO82DCEOepG1GG7RDi6ObBdIBi8Iu2gmz68YtNjdNYx0RWCkZ6YwXYMOvnPOSTdesAGOmpi+op3MPDN3rCxf6hK6Znq4MCp4eVxPwpCni2DP5yNYTM/R2irtnD28QPPCoXyD7t3Sd3FxiMwGGPnf4+GXXroHcfl883eP1Pw7xFcy7MDq1Q4svJ3lBYWaMJ9F7ZvxqVd/7LBhtzkB3gQfR37l/6EDZ99BEmJugAx7W4sEi5fqNGuywoLcO6fjex133oNMPSjz/Duyo14c9laTF6yHG2HjdZ6rkKtFFTJTroPa6vTspXJMV3HvaIOrRBCnlupp1WI+9s6H/QUEuDid5V/4Hpw1PR2nZhJ6M18GXIJB8LHciGw5dRq2I7BNeM0qShFhfsHlEg5qUJ+vBLpNXsLQptZXNQZyAXfhsIN1SK0g1WJ7PG43bx5E6WlpZrbkZGVfwv18/NDaGio5vbBgwervZ+lS5fCzc0NAwYMwMKFC9nAAyGEEEIIIYQQQgghhBBCyJPguatoiIhqhs82f4jlt37EsnfHwlagv6BHFJ8Pu8uZEOSWw3fJTfAKpDrFN+KEYvj+cBWcKgGG41u0i/0/GjAKa9q/hfYIhofMDgFwxmt1umJHnxn4dO7r6DyyHVr1aQ5bR/2FlbYONpj0zTj41PFGbWM6MOxdfoS9vm/lEez6/YDecQnX7uPHt5ax14/XMNxQgdmOpLTySzSxrQhO7o7g6im6GTltEHt/TTHPrbUNC4iEs8DW4P2RbnXQyNnf6vslhDxdtv2816rbS0/M0nSlKSsy3aHIztkWn235EJ6B7ibH3rmUgFn9FuDKwetw9nRil4nuZoMjNR4SFMdkwlLM674pWxfvxtfjf8Lc4QvxZquZmtBFdXiHeMK/nk+11yeEkOoKadEKQ6bPxquLf8Owj+eCL6z5Z9uq4s6d0rrd96338cIX3yGwcTPYubjCycsH7UeMZQv3+77zAeq26YDgpi3AF4v1bk9kZ4eOYybAybP2z0kUcjnboYFx/eAezfWHZSTcwZEVv7HX485qP97qunWK6UpXOYuxQCyGraOT3iBA5KDh4Bk4l7SE0Mb65yRNo/pCaGtrNKziHshUFhNCnmd3/7Gw440JRUlA1jX1Z3N5ZV22QSInDtrN4cLG9CkJ8m4Bx6crkROjgqCWa8/N2X7sOuD8lyqc/lSJw28zieLq788hELDzpmBDjTj6AhwrTSTC5QMOj/8ccceOHZrrIpEIXbp00bp/6NChmuuHDh2CRCKp1n7+/fdfFBQUYNeuXfjll1/YfRFCCCGEEEIIIYQQQgghhDwJnruAQ1UtA/2w4bUxGNCkAQT/zagvLJLB6eB9eKy7pQkuiJNLEDz3Enx+iYbzoVS47E1G4BeX4bfkBngy7S+Ey4olyEzKQk5anmZZQxd//K/vJOwd9An+7Tsd/RQN8FHEHLY48/imM7i49yrKiiRw83MFh6v+UpPD4SCyT3N8f2wuwpqHwMnN4ZE8J6nx6ezPbUv2GB136p/zyErOgaTEOjN7ycplKCkw4xtwAMGNAjBvx0y4+bpoLefxuTrLDBEI+VbrBFFVYUIevL/PATdbpnNfC+cgfNtijNX3SQh5+jChAWv78+O1bDgtKNx0iKpOkyC0G9gKq+OX4Ms9s9CkU7jR8UyI4Jf3V6LneHVRBVemhP2JRHV7AD2EibkQJVR2BDIHEzQIaOBr0TrSsofChxYa/v4AvUE6Qgh5lAIbN8UL875DvXadwOXx2WU1nVlfVi5BYXYmSvIrz0l864dj5KcL8MbS1Xjtp2VsB4K/587EzsXf4M65U0i8fgVyiQT2rm7gcNT7Z34yxfBj5n4L94Agttj/UchPT2V/Xtm70+i42DMn2G4PMivNNiwvL4dUYjooyPAKCcWQD2fDzvnhcxKBzjJD+CIR6kS0hrVJioogstU/m3VAo6bo9+6HVt8nIeTpkxdn/W1e+0XJdjZwMCND5VQH8O/CQb8NXHT8mgvXhsbHq5TA1Z9VCIpCrXEMBuwtnJNCUcO3oPqjKNxQY2JHIHwArKLBAPX2HiOFQoHff/9dc5vpruDiov3ZYuLEiezfjhn5+flYvny5xfu5evUqjh49qrk9duzYGh03IYQQQgghhBBCCCGEEEKINakraJ5j9TzdsXBYX3w9pDekcgUOrziKH3/Q31ve9m4hezFGLpPjxeC32OuhzYMxesYQdBvTQXN/YU4RZkTNQ26VAARDpVIhJyUXbQdE4KUvRrOzZLv7umru96v7aGYPY2bPZr5Iu3P5nsluD3cuJ7CP0RqYDhaObuZPw9e8W2OsTfwVZ3ZcRNKtFNg726HT8Dawc7LFgdXHsOv3g4i/es/gzN5D3u0LZ4/qF2jlZeRj59IDOPnvObbAtl6rUPR4sRO+f20p+7t1PgRI2zlA3kAMyFQQnitG3QhPOK0xPJMqIeT5IbQRWn2b8VcTsfCVX+Du5wouj8u+TuvDdMCJekkdVODxeGjQOgxxF+NNbr8otxhBDf0Q2NAfSTHJsLmVCW6ZDCWt/CH3VofwuCVS2NxMh+2lFHAsmMXUwc0e7v5uuHbkJh4FphCECTcMeacvnnUqcKBScWq8DUJI7fIMroOB733Edg9QyGS4fmgfjq5Wd0yrjvLSUix7+xX2uledumg9ZATqtak8J2GCD5sXfIqywgKddYtzc9ixbYaNZgv1qxbru/hYFkSrLiZIIZNIkJOcZLLbQ2ZiAjyDQ6yyX7GDI0Q25n9eD24egUk/r0D8xbPITU2B2N4B9dp2YDs/RB89xHagyE5KZM/19Gk1YCjEdtWfipz5XV07sBvxF89BLpfDJ6we6rfvjL2/LNL7u2UwXTgMhR8IIc8XnrB2QhNMZwNbL+ZDN/tBUi++LRAYpf6MyeVx4FJXhfw7prdfnge4NODAzk+FkhTrHrvQGRA6AdnX8GhwgfCxHIT0p8C1VUS+BsRss852HrPvv/8eDx480NyeOnWqzpiGDRti2LBh2LJlC3t71qxZ6N+/P4KCgszaB/O54Y033tDctre317sfQgghhBBCCCGEEEIIIYSQx4W+RfsPn8uFrVCADkMiwf2vi0K1qLSLTb8cuxgbv6v8gm33soM64Yaqzu68BKFYqBVuYHQe2Q5iO7HBXZaFOSN7RD1kvNQIOYPDIAmsXseH3PQ8TGk/y6yxApGAPS6mc4Ixg97qjYBwP6NjosZ3gUAosOhYeXweOg5tg7GfDGP34eLlzD53/SdH4ZeL32D57R8R3rauTmHvmI+G4LVvxqG6Eq7fx+Sm07B67kYkXLuP5Lg0HF53ErP6f6X53XIUgOhkEez+yILdqmwIbkvYMRUdMgghz7eOQ6w/W3OF7JRcOLk7GHwvc3R3wJWDN9gwW+aDbFw7Eo1yMzsh5KUXYNT0wZrbosQ8uG6+AbflF+C26hLcVl6E3YVkTQckcxXlFOPq4ZuGGkJYFfM+z7w/vL5wQu3vjBBCLMTl8djieKZIHv/NylstVV5QMxLuYMcPX+Hynh2aZUxRvKECeMad82cgsrXV6UTQoENX8IW1UBFbFYeD/MwM/D33Y7OG8/kCNGjXWdN1wpCIfkPg7G08NN64a0+Lu2fw+HzUa9sRbYeNRvNe/dhwhkAoYq9P+PZ/eOn7X+BVJ0xrHYHYBm2Hv4D2I19EdaXH38Gq6e/g7Na/kZWUiLzUZMQcP4x/vv7c6O82+thBFGZnVXu/hJBnh1+n2guxlmYAYjfD94ucgcxLzOQZKpRmqJB5RQWlbiNMvaSFQL2R1j92af6jCzf4dwX6ruGi8av0Z1mrCe4EeBjvTGiSZ0MguCMep8OHD+PTTz/V3B4+fDg6deqkd+zChQvh6Oio6eIQFRWFu3fvmtyHVCrF+PHjce7cOc2yOXPmwMPDwyqPgRBCCCGEEEIIIYQQQgghxBqe+w4OD2OK0A3N+l9dK2avR8/xneHq7YJT2/R3h6jq1D/nEfjxUK1lTKGqvpodFY+DrNH1IalXGYgoZ2ZlbeEJ+4vpcNmZYNG8y8zjN4eDqz2adg5H9KnbUMj1zxJetfvE0Cn98H6nT5GfVaj3/nFzRsDa/MJ88NPpL9lOE0xHCrGdCK37tmC7PVQXM/vqvFHf630c5qzL/G5Hfjio2vsnhDwbBr/bF3v+PISivBK99zOBLaY4NS/TcIGiMXkZBRj+Xn/s/vMQyookWvdlJmVj/phFsHO2RUl+qUXbdfF2RkB93dm7eaVmViNVE0/Ag0KmqPF2WkY1xacbp7EBuecF84mmpp9qHkHuhBDyEKZQ3dqprxNrVyC8U1fY2Dvg7oWzRseqVErcvXAOEf0rQ20MDhueq+WuLioVbp88atZQWydn+NRrgPvXr7DHbIyLrx8Gd5uFvz+fCUlJsc79bv6BaDNkFKzNzS8A475ajPS7cci8fw9CsRghLSLZAEl1KZUK7Fj0FSTFRRavq1Iq2Y4TLfoMrPb+CSHPhrrDOUjcr4Jc/ykJbNwBhQyQVu+UBJJsZh9Awi5AoX1KgpJU4PQcJfh2MLh/Q8SugNjFSHuIWsLhAaqan5LApz3Q9lPuf++pxGqYYOjQpcCKfoDMwn9UDIEdMOTXmgVMayAlJQU//vgjFi1axHZXYISEhGDp0qUG1wkODsaqVaswYsQIdTfeO3fQokULzJgxA6+//jo8PT111tm/fz8++ugjXL16VbNs4MCB+PDDD2vpkRFCCCGEEEIIIYQQQgghhFQPBRwekpueD2uTyxQ4sPo4Rs8YDKnE9CzZzJiUu2mQlcvhG+rFdiU4tumMTpEqI797oDrcwFWB514Orls5OAIlVFIuyjydwc/1huNp63cNGDa1P0Q2Ipzbddnk2HO7L7PjfzrzJf6avxnH/j7NzhZu52SLXi91xYuzh8PJXT3jWG2o27IOe7GGSweusx0bqsvcWdIJIc82zwB3fL3/U0zvMRelhWU69+dl1Py9aMviXUbvtzTcYOtgg84j2rI/qxOOqOnzlZaQUe31+UI+Rrw/AOM/H/VchRsIIU+vkgLDHd+qSy6T4taJo2jZdyDkMplZ4/PSUqCQy+Hs7Qu+QIDbp45BLmXi1E+GVgOHsR0UEi6bDpEnXLmAZlF98cL873Fu6wbEnj0JhUwGsb0DGnXpgbbDxkBsb19rx+odVo+9WEPCpQsozMqs9vpyKZ2TEEIAez8OOn/DxbHpSih0T0lQll3zZ+nOFhOvRxbWoQscAL8OHHCFAN8GkOs57tpi4wGU1uDPa1wBUH8MBw0nMBOYULihVvg2B8b8BWwYZ1nIgQk3MOsx69eCWbNmwcHBQW8nhdzcXDaYcOvWLXZilAqhoaHYvXs33N3djW57yJAhWLduHSZOnIjS0lIUFxez3Ri++OILNuxQr149iEQiZGVl4fz588jI0D6vZsIRf/31FziPKdhBCCGEEEIIIYQQQgghhBBiCAUcHuIZaPyLo+rKuJ/F/qwXEYqEa/eNjt2/6ij+mrdZ0ymh76s9IJfqFiEpBVwUR3gBPCUEdYvBtamcSo5jowTXrwylb7rC7komeGXGZzS1hJO7A1Z/vhF/f/sv3P0qO0cYopSrj8unjhemL38bU3+djNLCUraTAl/wdP0TjLsYX6P160ZYJ2hBCHn6McEuSbFucO1JNXH+C2y4oSC7EJKSR1vc6hvqXaOAwzf7P0XTzg3xPFKpOOylptsghDxajm4etbLdwmx1Ubx3nTDkpSYbHXtt/26cXL+KvW7j4IimPftCUmJ5x4DawYGNgwOOr12Bs1vWs50cTFEp1Ockrr5+6PvONERNfhdSSRnEdvbg8p6u8FtGwp0are9VJ8xqx0IIeboJHaE33PCkavo6BzwRB2U5Kigecd7OIaBmAYduP3Hg2kBPa1ZiXaHdgYm7gX/eALJumR7v2VDduaGWwg0MJoBgLj6fj9deew0LFiyAq6vpv7kyRo0ahSZNmuCDDz7A3r172WVMF4gLFy6wF32Y7g5fffUVXnnlFbOPjRBCCCGEEEIIIYQQQggh5FF6uqrLH4HuYzti2Yw1Vp9p383Hhf05+O0+2LfiiNasXA/LTKqcJq8otxgbv9vGhgMeJvOyhUrMB9+3RCvcUBXHUYXil7zgtLT6XQeqUnnzkTOYD2VrX0h4QFF0OXj/CMG9a/j5atShgdZtoUgAoYcTHgelUgkuV/2F8u3zd/DPT7tx9Ug024G+ZVRTttNEWPMQg+uLbITV3jfTjSOyT+19YUoIeboc23gaSqXh94InSbcxHTDk3b7s9fsxyVDI9L/n1BYur/oF9sPf6//chhsIIU+vhp274+SG1Wz3BGuyd1afkzTvPQC3Th41OrYoRx3QZpQVFeLcP3/D2csHTwYVe0wMaVkZezHFr0Ejrdt8oZC9PA4qpRKc/85JUmJv4fKe7Ui5dZNdFtwsAi37DYJHYLDB9flCUbX37eoXgMDGzaq9PiHk2fLg8NNxPsII7gPU6a9+7SxIYF5L8dRoMJbCDY8UE1Z46wyQeBK4sAy4tZNJOlbez+UDDQYAka8BwR3B/lHwMRAKhbC3t4e3tzcaNWqELl26YPjw4extS4WHh2PPnj2Ijo7Gli1bcObMGbYrRE5ODsrKytgOEsx2IyMj0bdvX3Y/zP4JIYQQQgghhBBCCCGEEEKeVBRweIiDiz1eXzgBP739h9WeZC6Xg6gJndnrYS1C8NbiifjlvRVGQw4P0ztzNVMYy1WB62I8jFHe2QGq5engSGv2xbWymRiyeZ6ATeWMc0o/AZQ97MBfnAPe3mK96zXv3hiP2+F1J/DP//Yg9vxd8AU8BDcJxN0r96CqUlx8YNUxHFl3EjP/moouI9vp3U7rfi3w2/TVWuuZw9HNAZ9unKYJVxBCSHF+yVPzJFw+dAM7lu5D3ZZ1ILKtflFldYhshbh65KbZ45naFObtlemYM3RKP0SN74LnGvN2VdO6taen7o2QZwbTkaDT2JdxdLUVz0l4fIR36sZe963XAJ3HvYLjfy23aBv5GdYJTT8OQU1bPO5DQPSxQ7iydycy7t0Fj8+Hu38gMu5pd4i7eWQ/bp04jAHvf4ywVm30biekRSQbgKnOv6uB731U7eMnhDx7ZE/PKQnSLwDx25Vwrc8BX/xo982zATKvWL6eazhQdwQHgd3pb0GPHHNiGNJJfZEUAkVpQHkxILIHHHwAsWOt7bpr164W/c3XmpigBHMhhBBCCCGEEEIIIYQQQgh52lHAQY+Bb/bGlsU7kXKnBr3nqxg1Ywg8Az00t5lZsBu2r4ftP+9juwgIRAK4+7ni7M5LRrfj6GaPwpzKEIEwvQQ8mQQcnvH9q+x4ULjxwU+TVfsxqIQcyD710Ao3aPA4kL/nBu51CTipurPMlhVJNNcVCgXO776CtPgMOLo7oMOQSNjY26A2/Tx1Of793x7NbZlUjjuXEvSOlcsU+O7lJWjRvTEbSqhQmFuEv77YjAOrjxkNN7h4OWHan2+xgYrYC/EQigVoPziS/TdV0cWDEEIYgeH+T9wToXAUQxriBpWAB15eKYSJOeAoVCjIKsRPb6mLbH3CvODu74bs5JxHckwcDgeycvNnMJ+/6xM079aY7RZECCFPs4j+Q3Bp9zYUZVd2UqiJtsNGw+6/Dg6MyIHD4N+gEa7u34WMhLtsNwNbR2fcu3rR6HZE9g4oLy7C00ZSUnkexXTGuHflIgoyM2Dr5ISwVm0hENduteyBZUtw/eDeymOQyXTCDVWPb/f/FuL1X1dBZGurWV5aWIAzm9cj5vhho/uyd3VD1KS3EXP8CDIT48EXCFG3TQc07dlH698AIYQ4BD49z4EkB7i8SJ3edQgARC5Aed6j2Tcz+b/KgqZKXRZx4N6IA67g8XQGIA9hwgy1GGgghBBCCCGEEEIIIYQQQggh1kcBBwN6jO2M1XM31vgJHvfpCLw0d7TO8noRofhw+Vua2yvnbDAZcHDxckZ5mRTlpeqODRwlYHchE+WtTH9JxylToiaU3ewAJyNJCh4HigEO4P+u++2yk7s6KHBh31UsmrQUWVWKYm0dbNjnZ9h7/VEbrh+P0Qo3mIN5jvetPIqR0wZqwg0fdJ6D+zHJRtfzr++LOZumIaRxINr0a1mj4yaEPPs6j2iLX99ficKc6heJqrgccCzsKKN3OxwOSjvUgTTMQz3T5X/KWgfD7tgdCFILNMvS7maAy3s0M5Ay+5GUlJs93tbRBk06hVO4gRDyzAjv0AXnt22u8XY6vfAyWg8ZobPcp2599lLh2F/LTQYcnNw9kFMuYQv0nyY2DupzpvhL53Bg2c8oycvV3CeytUPHMRPQvHftnJMkXr2kFW4wh0xShpgTh9Gi9wBNuGHDnOnIS0s1up6bfyAGTfsErr7+qNOydY2OmxDy7AvswcG1pSrIn6JODoyiBzA52Ye1MPtRGm+cqkXoCLg1pHADIYQQQgghhBBCCCGEEEIIITVBPdIN6P96Tzi42NXoyRXZCDFq+iCzxnoGuJseE+SBSd+M11rmvDcFnAyF0fUEN0rAyzc+pmKWbIPqm57RVFlXqLPMvbkf3Jr6IvbCXXw25FutcAOjtKgMv36wEnMGf4PkOOPFOtWx6/cD1Vov4Xqi5vqGr/4xGW5gFGYXIj+zsgiYoZArcGzjaXzSbwEmNf0An/T/Esc2nWE7WRBCnm9CsRAzVr3DdvGxNNRQ0sIHWS+1QMaUdkh/uw0KosIgd6n+zNNlbYIhreupFW5g9yUWoLhHAyictTvtKBVKNkxg41C7s10z+7HEwDd6wcaudo/pqaPiQFXDC7MNQsjj0axXfwhtKmfwrw5m/Zb9B5s11sHN9DmJo4cXOo7WPiexLiOvOcbOV4xw8fWHvYsrkm9HY/v3X2mFGxjlpSU4tPxXbP/hK+Snp8HarlkYbqiQdf+e5jrTucFUuIFRVlTIhiEe7ghx6+RRbF7wKVZNfwf/fDMXd86fhkpZsxA8IeTpx7fhoPVHXHCewulPmK4KAnvmMdT+fiwRNowDnpA+PxNCCCGEEEIIIYQQQgghhBBSE0/hV5iPhqu3CxbsnoXPh36L3PT8am2j+9hOENuJcSkxBekFRfBytEdEsJ/eIEGX0e3ZQn9jM1X3mdgNnUe0Y8f8NW+TZqzTrynI/zSA7aKgQ66C/YZss4634/A2aDewFe5evofysnIIxAI4ezghvE1dLE85iOswXuzDKa+cRTy/swfye3gjzscGrdcvhXMRIGrpBKcz+o/lzI6L7CVqQhd8sOwN8AXW+af5ILZ6oYmKAlmlUsl2czBHYU4xG9T49fJ38K/rA2m5DJ8N+QYX913TjEm8+QAX9lxBZN8WmPvPdAiElhU2E0KeLUy3l5/OLMDmH3bgzLaLkJSVQylXGg035A1qAGmwS+VCAQ9ljTwhCXOF69YYCDKKLToGpYiPcibcYAifC0kjH9idStBaXFpYhnf+9wrO7ryMi/uu4nFj3j8mzn/hcR8GIYRYlaO7B4bO/Azbv/8SZQ8VrZurYefu4PH5eBBzgy3sd3DzgF+DhnrHhnfsihNrV0IuMzxVdZPuvVCnZSRk0nKc/3cz5FLzO+2YI7xTVwQ2bsYW9zPb5gkEsHV0hm+9cBxfuxwZCXct3mZeajKWvj4eQhsbKBVyg+PunDvFFv4zj7Hna2+By7XO9OB5aSnVWk8oVp+TKOQyxBw/bNY6pQX5+OfruXjpuyVw9PCErFzC3mZ+/xWykxKRcPkCQlu1xaAPPgaX94imQSeEPJH8OnHQfQkXcRtVSDujgqIcUD0l+SdZMRAxDUg6BGQ9/lMShPTnoOF4CjcQQgghhBBCCCGEEEIIIYQQUlMUcDCCKez/K/EXHN90FjuW7kP0qVizn1jfUC80nNQJ/RetQmJ2nmZ5kJszPhnYDZ3qBWuW3buZhFtn76DT8LY4sPqY3u0xBfEdhrZmr4+eMRgD3ojCugVbsfG7bRBdKYHTtykoes0LSo/KgnluhhSOv2dAeLOUvS22FUFSqr8AiQldDH9vABq1r4+o8V107s+/LsX1rL+NPmbuCfV+MkcFIr+nt/b6DgAm1oHMQwT37YYLfJjHb+tgg3f+9yqsobpdOLqMaq8p4C3MKTJ7PSZ0su1/e/D2T69gzecbtcINVTEhh7++2EzFuIQQhDUPwczVU9hnojC3CGMD3kB5mf7C0rLGntrhhipUIj4KeobCfa3+1x1DZH7ObIjB6JgA/fvcv+oY4q9Vdrwxl8JOCKW9ENxSGXhFNSuMjejVDK9/Nx4hTYJqtJ1nlUqlvtR0G4SQx8e/QSNM/nkFYs+cwLUDu5F2x/xzEldffzYYsHzqZORnpGkt7/Hqm2yQoEJmYgLS4+MQ1rodbp/Sf04SFtkOIc0j2Ovthr+AFr0H4vTmdbiyZ7vZx8QXiSAvN3ROwkVEv8HwqhOm9/6mUf1w4LefUF3SsjLTg1Qq3Di0DyJbO3QZ9wqsQWRnX6316rXtxP6UFBdDWqY+1zIHM/bq/l3o/OJEnNywRivcUFX8xbM4v20z2g4bXa3jI4Q8O1zrc9D2U3VhviRXhV1jlFDK8FS4twfIu/14j8G7LdDsdS4cgyncQAghhBBCCCGEEEIIIYQQQog1GK9oJOwM+z1e7ISe43SL/g0V1A9/rz8mbnwXM3Yc1Ao3MO7n5OPtNdtwPuEBslNy8GH3zzG56TQsmryULe7n8XlwdGfSAGpiezE8AtzZIvvfpq3Gg1h1OMDO0RZZyZXdEMRni+A++S6cP0+C40+pcJ6TBPfX49FQ7s4e/5zNH+KP6B8QUN9Xb7jhrcUT2XCDISfnHQXnguGCIIdiIZZ8+Qkm/fuuTrihqtx+vpB6iIw8g8DuPw6hILsQ1sB0EcMISAABAABJREFU0bBU8+6N0axrI/a6jb2YDYZY4uyuS2z3BuZxGLN72UHIpE9JxQAh5JFwdHXAKwvGGry/tInh11eG3MMO5d72KA9yRkGfesgd0Zj9WR7oDIM16lwzinC4+j8uMOEGhUxhev2K43O1Rf6gcORMjEDeqKbIeTkCeUMaQeZRvTBax6Gt8fXe2RRuIIQ88/hCIRp16YEG7TubNV7s4IhWA4ehw+gJ2PvLD1rhBkZuajK2fv05UuNuoTArExs+m4E1H03Bgd+XsOEGDo8HsUPlOYlAbAMHdw8U5+bg2F/LkZeu7pImtrdHUXamyePxCglDeKduGPzhbEz47n9w9vLRGcPhctFz0lsGww2M+AtnTDxuB4xd8AO6jK95WPra/t0oLy2BNTCdMSzFBEl86zVgrwttbdlOFpZgOjTIJBLcPHLA6DgmNKNUmv9eTgh59oldOWj40tNTqJ8X+3g7TgT0BDp9xaNwAyGEEEIIIYQQQgghhBBCCCFWRB0czNRhSCR+mbocMqnc4JgXPhmGl78YDS6Xi5eXbYJcof8bVmb5j/tOQfjjaSTHaRcbKeQKFGYXoWXPpmzhaEFWISTFEmQ9yEbs+bvY/ss+TPvjTURN6IK0+AytdTlKsN0cqmrZowkmfzdBc/uXS9/iyPqTOLHlLMqKJQhtFoyBb/ZCUMMAg48rKzkHp/69AMFuFeTT3aHsYKtVEMuJkaB8/gPMLPsCgk/bAPon+lbjclDYwQPu/yYbHCIrl+HS/mvVCic8rOvo9vjprWWQSkwHCbhcDjoOb8s+v6VFZTi/+zLbwaFZ98Y4t/OS2ftkin3T4tNNdn7IzypE+r1MBNT3M3vbhJBn37D3+sPJwxHrvtyKpFvar5UKZ7HJ9Yu7hEDhWVmUyrxrldd1h+hONhz3xYHzUNKBn1Vscpu8LP2vZxaFG1xskDe8MVRi7Y8esgAn5A9rDOetNyHIMr+QlC/g4dWvx5k9/nmlUnHYS023QQh5MtRt0wFH1/wJldJwJWf7UePQdugoNjCwbtY0KBX6X6sVMhk7u39hVgYKMrXPK1QKBSRFRQhuHsF2jCgvKYZMUoai7Cy2y8OVvTvR950P2MBFfka6yeMOadkKHUZVvmZP+PZ/uHXyKOLOnYJcKoVXSCia9erHdpYwhNlPwpWLRvfDHPPm+bPh5OmFmpKVS5B08xrqtlZ3dquJ8I5dcGTV71DKDZ9LVmB+b/XbdUKvye+yAYt7Vy5CKpEgoGETJF67bPY+lQo5G2Qx1fmBCa0wF0d3T7O3TQh59oW/yIXYVYlb61QoMfznmyeC6jFmtLgCoMmrNHcMIYQQQgghhBBCCCGEEEIIIdZGAQczuXg5Y9DbfbBl0U6997v7uWLY1H5suCGrsBjn7xn/BvjKgzR4p+WAZ+D+ywev613OBCC+m/gzVn/+NwqyjRfQM5w8nLRuM90I+r7ag72YK/5qIpQKJThlgOCLLCj9+FC2tgF4HHBvSsC9LWXHlUGBu/dTARdjCQdA5io0uU+5BUWzxlw/fstkuCEiqik6j2iHFj2bwCfEC2sXbMHGb7exIYcKXD4XSrl2IZnMXQi5uwC8fDmE6eWa5UGN/CEQmTfD6toFW/HuklfZjhyEEFKB6bxTNyIErzZ8X+tJ4UjkUAkMvXOoyT0doK8cnQk5lGaXwO6iuhNQBV5BGfgp+ZD7ORvcpjjGdPGqKSVtA3XCDRVUQh5K2gXCefsts7fXslcz+NfVnQGcPN3u3LmDlStX4vjx4+z1vLw8iEQieHh4oFWrVujfvz9eeOEFCCycydwcSqUS27dvx9q1a3H+/HlkZmay+/bz80O7du0wYcIEdO5s3uz5hNQWBzd3NO3ZF9f279J7v6OHJ1r0HsAWyRdkpiPtbqzR7T2I1n/OUSHx6iWDxfO7fvoOJ9evQklBvsnjtnFw1LotEIvRtGcf9mKuzHt3mcSVyXFMQX/W/XuwBkPhEEslRV83GW4IadEKYZHtENysBRzcPHB60zpc2vkPG7SowPxejYVbqnLzDzK768OZLRvQ7aVJEIptzBpPCHk+hPTlwrGOAoffeNxH8uTybQ/YeVMYmBBCCCGEEEIIIYQQQgghhBBro4CDBSZ/Nx48Pg/bluxBeZm6qJ/RoHUYPlozBc7/hQmKJJX3GaMU8cAznVHQoVKpkJ6YZXIcl8dF97EdUVNCsXZhDDdFDu4/+g+cX2i6U4KpMRwOB+Ft68IabhyPMTkm6VYKzu66hIsHrgEqsN0tHlY13CD1FyNngj/KGlfOkC66UwK3v1IgvlOC4vxS+IZ6I7hxABJvPjC670N/HWdnaP/h2Bds+IQQQipEn9ItSrW5nYWSSMOzW0PJFH4aLrApa+IN20spOl0c7E7cRVGfhlA664atxJcfQJCiW7zK43OheCj4ZfCwRDyUhxgPv0kDnaGwE4BXYvp9hDFgcpRZ48jTobi4GFOnTsWKFSvYzzlVSaVSFBUVISEhARs3bsTs2bOxatUqdOvWzWr7T0pKYoMTp0+f1loukUhQUFCAmJgY/PnnnxgxYgR+++03uLq6Wm3fhFiq+8TJ4PH5uHZgN9uFoYJvvXD0e3caxPb27G1JifldcapFpdLp/KAPc6xMp4ea4glMh6SticPhwiesvlW2lXLrpskxOclJ4PJ4uH/9ChsguXtB95zE3HADQ1JSDDf/QLj4+CIvLdXo2JuH97P7H/Xpl+ALH+3zTAh5suXcYM4tTIfLHhcO7/F2cKgzkLo3EEIIIYQQQgghhBBCCCGEEFIbKOBgAaY7w6RvxmHMzCE4v/sKJCUShLWsg/qtQrXGeTnZw0YoQJnUcJEmR6oAr7By1v+akvraQ+4oYgtDhQ8K2fJWz0B3vNv2Y9g62LAdCga93Ruu3sYLTPVp3CkcTu4OZnWMcDydjYLOnkbHhGfykW3k/oheTRFQ3w/WwIQ8TMlKzmEv5pD6ipD6WV0o7bT/1ymva4e0WWHwWXAHsefvstsb+8lwfDl2sclt3rmUgD1/HMLQKf3MOgZCyPPh6hHdYkjbK2koC/eA0l5/IIrD/mcYs57CUQx+gXo26KadG6LHuM7wDvGEisfBtqPXcfjyXcigAi+vDKLYDPCzi/Vuy9xwA7tfJihn6vWYw4HSxryAQ5NO4WjTv6XZ+3+uqTjqS023UYsKCwvRtWtXXLlyRWs50z3B09MTpaWlyMmpfJ9+8OABoqKisHr1aowdO7bG+2e217FjR/Zn1bAls+/y8nLk51cGfDZv3oy7d+/i5MmTsLOzq/G+CakOLpfHzrbfZugotsOCXCaFV5268ArRPidx8vQCXyBk73+c7F3dseajKRDa2KJ++05o3qs/bJ0Mdw0yJLBRU4hs7VBeap3ghqOnNwozDXcoCm3Vmu2IYQ0crvHuS4zCrEz2Yi0pt6NRVlSI1kNGYd+vps9J0uJuI+bEYTTtYX5XDULIsy/7eu2HGzwjgMDuHLYTAtM99N5uIOWEecGFxxluYI7bk05JCCGEEEIIIYQQQgghhBBCCKkVFHCoBgcXe/R4sZPB++1EQgxs3gAbz98wOMYmJhtcqfnFoYaUBzgiv1cdyD0qZ93m50vgePAe0u+qC2RykIe1C7Zg17IDWHhkLoLCDc/+nXD9PvatOILs1Fx4+LuhzyvdEdwoACM/HIw/Zv5l8nhsEorhcDYbRW3d9d4/rkEzLDjaC2u+2ITVn2/UuZ/Z1/QVb8MSmQ+ycXDNcWSn5LKhjrotQ7B/1VGc3nYBUol5M4GbK3+Er064oYJKyEXuGD/4zrvDBhy6jemAgqxC/D59NWRSudHt7lt5hAIOhBAtRXm6BZwchQq8UgWUzEs+U3NeUXeuAvi5ZVA625h8Fjlslwc1jwA39Huth+Z2RNfGOMsbpTODfk1xma5HcgXAN1LgqVRpwg1M56CmXRsiPSETGfezICtXv4byBTx0Gd0eU36exIYOybNh4sSJWuGG1q1bY968eWyHBoFA3UXq/v37+Pnnn/HDDz9AoVCwl1deeQUNGjRAy5bVryxTKpUYPXq0JtzABBumTJmCGTNmwNfXl112/fp1fPzxx9i9ezd7++rVq5g0aRLWrVtXw0dOSM3YOjqhYefuBu8X29mjXruOiDl++LE+1QUVIYK8XJzZvB43Du3DqM++gouP4UBzxr14RB87iJL8fDi6e6Bxtyi4+QUgov8QnN60tsbHFNF/MLpOmIQT61fh/L+bdO73CApB1OR3LdomE05gnuuSgjw4unvCPTAY0UcPIv7yea1OG48K0+2hODcHjbv2ZIMOJzeshlJu/Jzk5tGDFHAghGiR6s86WxUTbAjpV/HZngfP5ips6VXzv5fVFE8MeDQFilOBkrTKMAVXAAT24KDFFA772ZEQQgghhBBCCCGEEEIIIYQQYn0UcKgl7/XqiMuJqbibqdsZgJ9dCsdj92u8D6m3HXJGhUMl0C4YlTuLkTusAdw23YL4XuWsw/mZhZg/+gcsu/6DzraYYtb/vfMndvy6T2v5lkU7Mfy9/njjh5dRVlSGjQu3Q1ZuvEDHe0UCIhuF4ZqHFDmSUnaZp60dXmkUgTeatmZvj58zEq37tcTOX/chMSYZtg5idB3dAd3HdoTIRv/M5Pqs+uxvrPtyKzvLX21TirgoaeVkdIwk3B4yDyHcfNSdMoa82xfScimWzTAeDslJybXqsRJCnn6B9X1xYY/2jPbFHYOhdLEFT8FmGrQCDkpHG3DKZFDZqAvC9eFll4BXVNk9KPbCXZ0xTMee/KxCqz0OHp8LSJUQ382BpIHhmbBF93LBLVO/vwx5py8mfTuevV6YW4Trx2LY1/lGHRpoXl+JeZisSk3zKlbOu2g5fvw4tm7dqrk9ePBgbNq0SRNsqBAUFIRvv/0WnTt3xpAhQ9iAA9NdYdq0aThy5Ei19890gThz5ozmNhOgeO+997TGNG3aFDt37sRrr72G5cuXs8vWr1/PjmPCGIQ8ybqMewVpd2KRl5aCJ0VxXi52/+97vPilnnMSpRL7f1+Cm0f2ay2/uGMrWg8egY4vvARZuQSXd2+DwkSxPiOwcTNk3r8HSZH6fc3ezR2t+g9hgxKMTi+8hNCINrh+cA9yU5IhtLVFeMeuqN+uE/hCodmP6fi6lbi4fStUqsdfkFuBKbq1c1a/Z0YOHAZZeTnOmAiHMIEIQgipyjGAg6wrtdvFIfe29va5Ag74toBc/eckq+DwLO/2UH8UB40mqoMX5QUqZF1Tn3e5NwHErhRsIIQQQgghhBBCCCGEEEIIIaQ2UcChhpiOB6WFpfCv7wtnj8rid2dbMda+MRprTl3B1kvRyCgsgqejPYZFNMLhV1agsMx0QY4phR0DdMINGlwOCjsHagUcGIk3HyD6dCwata+vE2R4ONyguW/xLviG+eDleWMwZEpfbFuyF3/N22zwuPg8Hr4bNQxl5VJcuJsIR1d7dG3ZCPyHZtuu3yoU9f98C9W16/cDRo/D2pR2PKj4pr/EDu1WD15BHprb/nXVM0Abw8yiTgghVfWbHMW+/mpeg0R8lIdVdsdhX40srDWyu5RisksE06Go6n5rSiFXF3vanUmC1M8JSgfdEBunVAq7U+rgX4PWYRg3Z4TmPkdXB3Qc2sZqx0OeLH/88YfmurOzM1atWqUTbqhqwIABePfdd7F48WL29tGjR9nuDkwAojoWLlyoud6pUyedcEPVQuGlS5fi1KlTiI2NZZfNnz8f27dvr9Z+CbEmJqicdf8eZBIJXP38YePgqLnP1skZL8xfiMu7t7PdBIrzctQdEbpG4cKOrZCWWbF61ALp8XFslwavkFCt5ee3bdYJN1S9z9nHF51fnMgGFJiQA7PMEB6fj/5TZ6CssAApt2PY56JORCS4XO3zJ996DdhLdV3esx0XjBzH4+JbP1wTcGC4+hrumFHBwa3yHIYQQhh1BnIQv712Aw7lBbrLgnpad7+WhhuYEEODsZV//xE5ceDf2WqHQwghhBBCCCGEEEIIIYQQQggxgQIO1XR88xm2e0DSLXWxqEDIR8fhbfDmoolw8VQHHRzEIrzVoy17qUo4+i7bCaEmlCIeyusYn8Va5mMPmYsYgjyJ1vKvJ/wElUIFZ09HRE3oip4TOmPrj7rFrOX+dijo6IOyMCd8lHUNx3YrMTGiJV6aOxo8Po99/PqM/HAgvn35Z1w9fJMtuGJsax2Gyd9NQJNO4bAGZrsbv9tm8Xq+Yd5o0b0Jrhy6jtT4DIvW5RbJIZADMmP/1yhUmPT+cK1Frfu1gKu3M3LTtcMmVXUcRsW7hBBtgQ388OqXY/HnJ+vULy8uNgDTDcEYkQC2F5NR2sIX4FUZq1DC7mwSxHHZWsMLsgpxevsFtB8UqVk2YtpAHN14GjmpeVb9lfCKpXDZdAMlbQIgqecOMAE9OdPZIRsOF1MQ6OOGvrN7YOCbvSC2Nb+TDzGBeRuuaW1YLda07d69W3N9zJgxcHIy3imJMXHiRE3AoaILxPjx6o4flrhy5Qqio6M1t6dMmWJ0PBO8mDp1Kt56Sx3O3Lt3L/Lz89lgBiGPy62TR3Fm83pNhwaeQID6bTui60uTNEEHG3sHdBj1InupqqQgH1f37cTjsnPR11AqFWwRfqMuPdCgQxc2LGDMgd9/RsqtGLTsNwidxr7MpI9w/t9NugM5HEQOGo4di75CcsxNzWLfeuHoMv7VGgUaqmKO/+KOfyxez8XXD4GNmiLhykUUZWdZvD6HwzXZLaLjmAlat8NatYXYwVHTzUKfum3aW3wshJBnm3MYBw1f5iBmZe19IJRkA+kXVPCOrAwU1H+Bg+QTKpRb95TEOC7gGAiE9OcgdBAHPCF1aSCEEEIIIYQQQgghhBBCCCHkcTFRKUn0ObD6GOaN+kETbmDIpHIcWX8K07rMQXG+7ozYVY34cJDWDP/VoRTy2C4NpqjEutX46QmZyLifhdgL8Vjy7p94t80nyHqQozWmqIU7Ut5uguKWHlA4CiG14+PfmFsYvnY9tt+6hXGfjsCczR+iTs8GyI3yQdbwQNhObo7Xfn0Fu347gCuHbmjCDYzb5+/io17zcPPkLVjDg9hUiwMKDJGNEL0ndgNfYHm2hytTQXxUuzj4YW0d/dG2TWPN7fKychzZcAqNmWCHkV/Xnj8O486VBBRkGy44IoQ8f8bMHIrPt34Idz9XcGRmTDuqUsH2YgrcVl6C/clE2FxJhf2Je3BfcQl2l1P1rrLt571at9393PDDsS8Q0asZrI1XIoXj4Xh4LLsAtxUX4bHsPBwP3MWCNe9hecxijJw2kMINz5H09HTk5FR+/mjdurVZ64WGas/4npaWVq39MwGFCnw+H3379jW5zsCBAzXXZTIZduzYUa19E2IN1w/uxe7/LdSEGxgKmQwxJ45g49yPTXZnaD1kBOxdH18XsfyMNBRmZSLtTiwO/vEL1s+ejtICw4FghkqpQPSxg1j7yQeIO3cKnV54ie3S4BkcqhUeYEIMl/fs0Ao3MFLjbmHTvFlIu6vuxFJT2Un3UZRjeUBBZGOL8E7d2S4T1WEq3BDUtCX8wyvPSZjuHrdPH4d/g0ZG17t+YDcyE++hzEgIghDy/Gn0EhdtP+NA7Fp7+7j7r/brmp03B90Wc+HZEo9Ml4Vc9F7BQ70RXAo3EEIIIYQQQgghhBBCCCGEEPKYUQcHC8mkMiz7aI3Rwvvtv+zD2E+GGRzDdHhYdGIefv1gJU7/ewEKuRlFqw/hlcrAKZNBZSMwPEiuBC9fu3uD3mO+rS6KkjkLUdDZC8XNXCBztwFHpQJHDnCUlZX5cqUSH+3dj/aBgTjrK8XBoc5QqNSzLTPlSDdl0XBtag/nY7ohD1m5DMtmrsWPJ+ejphQyuUXjVUIOlN3tkNwVeGv3YnDCysBN5IAjsWwWQpfNaZA0cYDMS3d2cTeRLeZ3rSx8PLrxFBZN/g2lhWUmt5uemIm3Ij4Ch8NBy6immPD5KDRsW8+iYyOEPJs6DGnDXvIy89Fr+lLIHA13NxAk5YPLBCFkCthe0R9oeFjchXidZb6h3vh672ykJWRgxez1bFDLmjgKJdvRgREY7ofIPs2tun1SSaXisJeaqOn6hjDdGg4ePIjk5GSkpKQgMrKyk4gxeXnaU/mKRNXr+HHhwgXN9caNG8POzs7kOv7+/vD19UVqqvr/r9OnT1erewQhNSWTluPEupUG789+cB/XD+1DqwFDDY5xcHXHmLnf4ujqZYi/dB4qpfGi+dqWk5Jk9lilQo49P/+AwEbNkB5/B1n372nuy0tNwfE1f2qFrauSS8txcv1qjPx0QY2PWSm37JykQm5aCjbMmY7aYOfiiqhJb2tuRx87hEN//gpZuenzwry0VKz56F22Q0RwsxZoP2ocvEPr1spxEkKeLgFduQjoCpRmKLDrBet3+Mq7rbvMIZCDLt/zUJyiwvXflEg5gVrjXBfwbEEdGwghhBBCCCGEEEIIIYQQQgh5UlDAwUIX911DXkaB0TEHVh81GnBILyrGydx01Ps4CgPmDUfy4Vj87+0/LDoOjkIF2xtZKGnta3CMTVwOeGXmFd2Uhdgj9c36UNpW/pNgvq9W8VTgyACuvPKLXqlCgZmH9+PgA92iWAUXyBoZDH6eFPbXtQsQGTGnY5FyNw1+YT6oCf/6vnD2dEJ+pvHfBUMZLIDsKy/AnY9idokt0NkWmOAMwewMcOPURbYVbBzEKCvSXwDEL5TD57M4+C3sghsuJSiWlUPM46G1rzNsRBJ8dXs5Amw9odpWhBOzj1r8uJhCrEv7r+H6sRgs2PUxWnRvYvE2CCHPJhdPZ4yJbIg1sbqvvSyFEnYXky3erlBsOCjnU8cLn6x7D6HNQ7Bp4TYUZBexyzlcDvh8Htu9yFw29mKUFWu/tvqGemH+jo/B5VJDqeeRjY0NevToYfF6hw8f1rodFBRUrf3HxMRoroeHh5u9Xt26dTUBh9u39VTjEfIIJFw6D0mJ+pOtITHHDhkNOBRmZyLp5jWEtGiFiP7DkJ4Qh2OrLTsneZzk5eXY8/P3SLhcGVaqYCjcUCEp+jqKcrPZkEdNuAUGQWxnb/J38TBpqfHuGgy+SAy5iVCCb/2GbLhDJikDTyiEV3AolEoFti2cDzf/QMjKyxF/8Syq0yHi3tVLeBBzEyNmzYNfg4YWb4MQ8myy9eIhuI8CiXusu12u0PB99n4ctJvLxa2/VLizWQVpRZMZLnNeAqjMPSXhAjwBoCjXXuwQAHSYR+cjhBBCCCGEEEIIIYQQQgghhDxJKOBgIVPhBmNjJDI5Ptt3CNujb7OdECp0CA6Ea7g3cm+lW3QsjqceQBrkCJmXvc59vDwJnA4lmrUdFZeDtFfraoUbNDiASqCCSgFw/pvBWQUVTiQb33ZulC94PDlK2zpCJeZCeK8MdofzwCtU4I0W0xE1vgtGfzQEXkEeqA6BUIABr0fhr3mbjT82ASBboA436HDhQTbfC8IJyZpODo3a18e9m8Znj2VCDl3v2mP5gklILs3GglurkFgSC/yXk4gvTgXaAXjbGdyfmb4WlmO6XcwdvhBTfn4NnUa0ZR8vIYRMe2cQyr7fgq2xCVCKKl/XuMXlsD+aAEG6OoBgiQ5DWpscM3rGYAyd2g83T9yCVCJDWItgOLo5YM/yw9j752EU5RUhJy0f8nL91UXdXuiAKT9Pwv6VR3Hz9G3w+Dy07R+BziPp9Y1Yhila/vHHHzW3BQIBunXrVq2nkekcUbUzg7n8/Pw015OSzJ9xnhBrKsk3/RmztFD/OYlMIsH+3/+H2DMnKrs2cDgIadYSdk7OKCmo3ufXx+H+9SvVW1Glwor330DjrlGIHDQcDm7VCzoIhCI06dEbF7ZvgTUFNGyCtPg4k+OCmjRnO1HkpiZj5+KvkRp3S3Nf1a4W1cV0u/j3u3no+dpbCItsBx6f/nxACAEiZ/CglCqQdNh6nRz8OhrvnsB0u2w4noP6o1XIvs509QRc6gFCeyBhhwr39qogKwYkuYBSpn8bwb05aPYGhx2bE60CT8CBb3vArzMHXD51byCEEEIIIYQQQgghhBBCCCHkSUIVChbyDjZdkC+yEWLVZ3+jYbt6aNW7OftFLOOD7XtwIO6uzvhTiUnwndgQgo8z2M4M5uKWK+C+9iZKInxQ0swLCkcRuCUy2N7IhP2FVLO7NxQ3c4HC2ch0eUzIgc90cvjvC18OUM4kHgyOV0EZwUdWu2DNotIOzigY6QW3/z0AzhZix9L9OLH1HH44NhcB9SsLBS0x7tMRSIx+gJNbz+ncxxPwoJApoOxiB3ga+WfuwoN0uAuKiu0hdxQgJ7cEjgIlTMUJfEO9IeTxsDJxFxJLDARThjlAFSMF54jpGVr1KSkoxVfjfsLyWeuxYPcnCAo3v/iSEPLsmj1tON4vLceqv48hM6cQYcFe8FVw8d26q3j4VZ/L46Jlz6a4uO+qwa4Kw97rb9Z+hSIBu62qBr/Vh70w7sc8wBcjv0fSrRTN/cz7X/exHfHBsjcgFAvZfZm7P2JFVio8Y6SlpZkcY0lYwFJLly7F5cuXNbeHDh0KJycni7dTWlqKkpISzW03Nzez13V1ddVcz83NtXjfhFiDk6enyTEcLhenNq5lZ99nCuErzkl2LPqKnZ1fi0rFLnNwr174+HFRyM3vJKQv6HFl7w7cOXcKo+d+C2cv72ptp8PocchJTtLbSYLL40GpMHLeZMCDmBtmjXP29gFfIMCJdSuRl1r5/mtNkuIi7Fz8DZy9fDDs48/h4lO9czdCyLOlzWweWrynxO11QFm2Ci51ORA6qHDxO0BVOZ8Hi8MDPFoAmRf1b0tgB9QdZl7AgCfkwKuV9rK6IzioO0J9Pf+uCmfmKlFctbEdFwjuxUHE+xxwBRzUH0VhBkIIIYQQQgghhBBCCCGEEEKedBwVMxUuMZtSqcTL9aYgLSHDrPEB9X3x2dbpKHYRYsiKtUbHum+6A/urWdq/IA6Hna24NmUPCkBeL1/jgxQAr5zLXlVxVVCKDR8T31kCnvihb7QryJTw/uguhEnl7M3ABn4YO2s4WvVuBid3R3ZZXmYB0u9lwsHFDv71jB8X89xcOnAd+1YeQW5aHjz83dDnle6oHxmKK4dv4m/+WVwRGZ9dubRQhOxUl8oFShVc9yTDba/+IiEbBxtsSP4NRYIyjDuzAEpjlaPR5eBOyURNie1EWHj4c9SPDKvxtgghz6a7V+/hn59249L+a0ydKlp0b4yhU/ohrGUIfpm6Ajt/OwClovK12d3PFZ+sew9NOoVb7RiY1+Qrh24g9kI8hGIB2g+OhE8dL6ttn5jfmSAgIIC97v/jR+C7Wh4AqEqeW4Dkqd+YPb62PrecP38eXbp0gUQiYW/z+XxER0ejXr16Fm8rMzMTXl6V/zaXLFmCt99+26x1P/74Y3z99deaY5DJDEwTTEgtYorml73zCopzc8wa7+YfiMEfzkJZUSHWfzrd8h0y4Yhn+LTRPTAYrQePQHDzCNjYO7DLSvLzUJCZARtHR7h4mz4nSbx6CTePHUJpQR4c3TzQpHtveIbUQVL0DVzYtgmpcbeteswiO3u8vnQVirKzseKDNx7J70doY4vRn38Nz+A6tb4vQsjTKTdWhbtbVMi4rGInx/CK4LDhBadQ4PIiFe7tUQFV/lxk6wW0ncOFW0PrhQ6Y1+SMC0BenAo8sbo7hJ03hRoIIYQQQgghhBBCCCGEEEIIeZpQwKEaLh+8jlkDvoJcat6MoW6+Lmj6xwtYcUX/DNoVbG7nwmuNdQtfzJHTxw+5A/zNDjiI7hVCEiKG0la3MwKHp4TQQ114aIjdgVy4/aYdHhCIBOg2pgNKi8pwZvtFKOTqmU7rtQrFq1+O1Zk13FxfxfyNPWkGpgk0FHD4j9equ3C8mK2zfNI34zBq+mAcSDyPr+9tMH4AChW4vapOHVh9TNjlw+VvoddLXa2yPULI8yUrOQcntpxFWZEEQY380W5gK/D4vMd9WKSWAw5+i2daJeCQ8p66oP9xBRyYIEO3bt2QlVUZBP32228xffr0Gj9HjN9++w2TJ082a905c+Zg3rx5mtuUFSaPC9Mx4N/v5kOlNK9DANOdoU7L1ri2f1etH9vTii8QIrxTV5QWFrDPr0qprsL1qVsfnca+jICGTaq1XaYDQuyZE1Y91h6vvInmvfvj2sG9OLhsCR4VpjNIv3emoUGHLo9sn4SQZ0dJugopJ1SQSwDnOhz4tGX+jkThA0IIIYQQQgghhBBCCCGEEEKINt0KdWKSi5cTWxRqbsAhJzUPt6/fMzlOKXw8hab213JNBhw4Cg7b2cA2Oheem+KR09cP+T18dMeJTBdYSZra6yyTlcuwf9VRneVxF+PxSb8v8cW2j9C6bwtYKsK1rsmAQ1mJSO/yvB4+egMOnUe2w7af9+K3zRuBOc7GD0BmvSJPpoDyh0lL0bhjA/iGelttu4SQ5wPT4WbY1P6P+zDIU47pouDjo/v+X5uuX7+OXr16aYUbhg0bVu1wg75QAhMirMm2arI+IdVl5+zy3zmJeQGHouwsZCUm0BNuhFwmxY3D+3WWp92JxZYFn2LYx3MR2LiZxc9hYJPmVg841G3THhd3/oMT61fhUWJCH3t/WQS/Bo3g4Ob+SPdNCHn6MZ0U6o2kz02EEEIIIYQQQgghhBBCCCGEEOPUU/ITi6yc8zfKS8stWqfkeprJMcL00sfymxCllcHuaq7B+7nFMrhvuYeAb6/Ae00cuBIF3HY8gG10/iM5Pqabw9Jp1Svc6ebZFN5iFyPb5qK0UKz3Pqm/HeQOAq1ldZoG4fa5O1jy7p+QnisGitWzuhp0ugzWfi52LtUtuiKEEEL0Ulnp8h8m3ODv72/0Yk0nTpxA586dkZGRoVnWpUsX/PXXXzXarlAo1Lotk8nMXrfqWJFIROEG8tgwhe1yqdSidSTFRbV2PM86hVyOY2uWV2vd8I5dYO/iarVj8Q6rh3tXL+HYmj+hlJsXurf2c3H90N5Hvl9CCCGEEEIIIYQQQgghhBBCCCGEPB8o4GChorxinN15yeIn2ut+CRweKqbTolTB4Xy6ye3IHUWQ+thD4aC9Lb6gZt0fvFfFw57pVqDUntHYS8JDwMJoOJ/KgCC3MtTBlavguzQWPktjIUoqBUcOcJh6vyLTTUHEN4otPr4Ht1MQczbOrLGS0nIcWHMM677cikOrTuCLuuPgJdbttCCXcZH5wAUqlfn/G4yZORRrF2xhr3MkKuAfI0ViUhU4G40XkQU19EerXpbNAht3iWbeJYQQ8uxbu3YtoqKiUFBQoFnWrVs37Nq1CzY2NjXatqOjo9btkpISs9ctLq78HGNnZ1ej4yCkuorzcnH/xlWL17NxdIRApL97mTVwebXTkc7G0QlPgszEeGSa2QVDKilD9LFDOLv1b8SdPYVBH3wCe1c3qxxH68EjcO6fv2EtHkEh8G/YxKJ1MuLvWG3/hBBCCCGEEEIIIYQQQgghhBBCCCFVma5GJ1oKc4qgVJiYtV+PRi3D0K9ra7y/ax8g0C2od9mTCGGW4dn+pZ52KOwaDGnQf8U9KhVEiflwPHofguxSeAa644vtM/F6s2lQyC0/Pq5MCZ+V8ZDuTEa7LwehTkQIWnj7IO2faPwv+7TedTgqwP5mPvKjQsAr4ULF/GviAMpSHri2Cv07kinhsDsb1ZGXbrpjxIHVx/DLeytQnF9ZqGhjL8bL34yF/RBPXMiNYyeibuIUgo//PQ0Z8yAMEKaVgl+knqVZZCPEK1+ORb1WdZB484FmDGdVIVS2XGCIPcDjVK5coADn21xw7hieEZrL5bDbvHniFi7uv2bOU6A+LhsjQRlCCCFEC/PeVOX9qVpqur5lVCoVPvvsM8ybN09r+aBBg/D3339DLNbfeckSTEDC1tYWpaXq7lm5uYY7WT2s6lhPT88aHwsh1VFWVMieD1jKt35DhHfqhoPLfq6VJ97V1x/93v0Qa2ZOhUpp+TlJVQ279IB7QBD86ocjNe42263gSVCan2dyDNPdgOn2IC2r7NAntLFFp7EvswETJpzCvLL6NWiEQyuWmt2FgS8Soev4V+Hs7Yv8dNMdAs3B4XLReezLuHvxHJJjbpi9Hl9Ye0EZQggh5Gn28ssvY9WqVZruc0ePHtW6f+XKlZg4caLW+U9tkEgk2LNnDxsQv3LlChITE1FYWMieC3l4eKB58+bo3r07xo4dCxcXw91vCSGEEEIIIYQQQgghhBBCHgcKOFjI1duZLXYvL5OavxIHqBtRB04ZUoSujkNGUxeU1XeGisuFOLEQjmfS2J+GyDxtkfNCY6iEVWZE5XBQHuKCbB8HuK+7gdT4DNjYidBxWBsc23gG1SXMLgd/ezwmvzaKvV3yogt+/WAl5FL9RTdKPgdydxt12uG/+kdlphgc7zJwxA8VNSkBt5+SIUyq7ARhCa8gD6P3n9t1Cd9N/Fnni8GyYgl+fXs5PnF5D7PGvMAu27JoJ8SHHqC0r7/B7TkfS0fX0e3RuGM4ur3QAY6uDrh3M0lrDPuwf8mHiunU0M0WKjsOOMly4FipuqOFAR7+bnh94QS0HxSJc7svwxIte1g2uyohhBDytGCKcJhinw0bNmgtf/XVV7F06VLw+db76BocHIyYmBj2empqqtnrpaSkaK77+xv+HEFIbWI6AXB5fCgV5hXGM5jxHgHBEIrF4AuEkMssOJ8xU/aD+7BzcUWdlpGIv3iuRtuSS6WIHDiMve7i44cT61ZCqTAQon6EHDyMB5vizp3Cgd+X6Cxnwg6Hlv+KQdM+Qb93prHLzv2z0XS4gcNBeIcu8GvQEPXbd4bYzh7pd83rbGeKo4cnur40CcHNIxBz4ohF6wY3a2mVYyCEEEKIdclkMixatAg//PADMjIydO4vKipiLwkJCdi6dSs+/PBDzJgxAx9//LFVwuSEEEIIIYQQQgghhBBCCCHWQAEHC9nY26DL6PbYv/Ko+U+ykI/vXlbPksrhcuCeYP4swYzCzkHa4YYqVGI+ijoGwnVbLBQKJSZ9Mx7Rp2KRnaJ/HwKRALJyI5X3AM7vvoLs1Fy4+7rCzskOIz4YiA1f/6N3LEehYrsyQFRldmclB4pUG3BsFODYy9ngg0rKBScNsDtTgOpgAiJhLUKgkCvA4+t/LtYu2GJ01rO18zej25gOkJbLsP6rrXDNLYLUU4ziCHedsW4nM7Fo2kvoMKS11nK/MG+2g4L0oYALJ1sBbCoya45rB1d7fL1vNgLD1UWRoU2DYAlXH5pVjRBCyLOHmU2U6dJw7NgxreVz587FnDlzrL6/8PBwTcAhLs78YuGqYxs1amT14yLEHDb2Dqjbuh1iz5ww+wljzkN2L1movs6pvc4sTOeGruNfQ9qdWJQW6O/AZk444+650ygtLICtoxNsHBzRNKovru7diceJ6YDh5hfABi24PP3nJGe3/m14AyoVzm39G3Uj20EmkeDC9i1G98fl8zH4w1mo0yJSa7mLnz97n7mdH/SxcXTCiFnz4eLjy972DKmDWyfNP8e1dXKu9r4JIYQQUjuY0MKQIUNw40ZlVybmcx9z7tOwYUM4OTmhpKQEt2/fxrVr19i/ozIh8y+++AJ79+7F9u3b4eXlRb8eQgghhBBCCCGEEEIIIYQ8dtzHfQBPo4nzX4B3sPFuAlXJyysLT1RKy9qOK+wEKA82XjwiCXWBez1vtsMBc/nx9AL0n9QTYjsRe7+tgw17e9Wd/8E31PSXVMwx3jxxi71+9O9TOL3tvMGxTAcDu+gcQOdhcaAq40OZJWY7OqjyhRA9KEV1iGyFcPdzxSDH8egjHIOX6r6DTQu3s0GFCjlpebh19o7R7dyPScaD2BRcPxaDguwicJSAz8q78P/hJhxPZ8DuRi6cjqcj8Ovr8NmRrBNuYGz9cbdOuMFSRbnF+OalylldOw1vCx7f/P8V89L1F4oRQgghOlRWutSy/Px89OzZUyvcIBQKsXr16loJNzAiIysLhpniHqnU9Pt7cnIy0tLS9G6DkEet87iJsHfTDeoaopBVfnY2FgquCabTgp2zC5y9fTB2/vdo3C0KfKH6nERoY4tmvfph0pLlsHdzM7ktpVKB1Fj1OQnTXeD+tSt4nAQiMWzs7fHjhOFYNHYwlr//Bi7t2gZFlZBBQWY6shITjG4nI+EuCrMzcf/GVZSXlhgdKxTb6IQbGJd2/lOjcAOjrLAA+5b+qLldr20ni4IvJfl5Ndo/IYQQQqwrNjYW7dq104QbBAIBPvjgAyQmJiI6OhqbNm3CH3/8gfXr1+PKlStsGGL8+PGa9c+fP48+ffqgtLR6f78lhBBCCCGEEEIIIYQQQgixJgo4VAPT2WDxqQUY+GZv1Nbkp26+LuALeFDaCpiptowP5nHR/bXu4HLVv07PAHe899vr2JqzApsy/sDmrD/Z276h3mjcoYFZ+2eKW3b9fgALXliMpFspRsc6HUsBV6I0WQDpeEa3LbopTLcEHo+LM9svoqxYwi5Ljc/A7zPWYPaAryCTqgu1zA0dxF1K0Gyngs29Ynitvwff3+PguSkRopRSSMtkOoVfZSUSg50sLBV3MR63z6sDGS5ezhg2tb/Z666YvR5XDlfOxEYIIYQ8zcrKytC/f39cuHBBs4yZWZSZQbRqwY219erVS+sYDh06ZHKdHTt2aH1WYkIZhDwuju6eGDtvIZr26FNr+2ACFIY6FejTqGvl/xNOnl7o/cZUvL18A95cthZv/bEOPV99C44envCrF27eBjkcXN6zHXuWfI+8NOPnJLWJLxKxXeniL52HvLycXZaXmoyjq5dh28L5bEcHhtyMoFRFyEEmKTM5rmJfVTGhiAs7tsIaUm5HIyspkb3u6O7BBlDMdXTNn0i+HW2V4yCEEEJIzRQVFWHgwIHIzMxkb3t4eOD48eP4/vvvERgYqHed4OBgNlD+7bffapZdvXoVH374If06CCGEEEIIIYQQQgghhBDy2FHAoZrcfFww5efXMOnb2im8c/NxBV/IB7dYCiiURsfyVMAL7+gWowiEAjh7OLE/Kwx6uw9bnGOMQMhH/dZhWPbRX2YdqzCzFF6rYiDILjcYcnA8lQ676FxYigkulBZpBxIqXDl0Azt+2c9e9whwg7Onk8ntLZz4MwqyC03OThrSNFBnzMW9V1FSYL1ZzO5eURcTMV77ZhzGfjIMQnHl78qQ8jIpvpnwPyjk6kIqQggh5Gnu4PDuu+/i9OnTmtuenp5sJ4du3brV6n5btGiB+vXra24zxT/GyGQy/PTTT1oBCS8v052xCKlNDm7uiJr8DtoMG10r27d3dgWXxzdrLJfLQ8t+g3SW8wUC2Do6gcev3E7LvrrjdNYTiuARFIKT61fjcWOCBjKJ/nOSe1cu4sZh9TmJk6c3xHb2Jre366eFkBrYXlXM439Y1ZCFNWTei9dc7/byZEQOGg6ewPQ5ibxcgj1LfoBKafxclRBCCCG177PPPsOdO3c0nfCYYHbbtm3NWnf69OkYOXKk5vbvv/+O27dv19qxEkIIIYQQQgghhBBCCCGEmIMCDjXUdXQHWBuHy0HcpXhISsrBK5NDHJ9ndHz/iHDYi0U6HQf0qdM0CC/MHGp0TM/xXRB9KtaiYn7x/SL4f3cZnmtiYXsrD7wCKXiFUtjE5sNr1W24b7uH2rBr2QH2J1/AR/9JpmdRlssUWDFrPVr0aGx03KA3e+ssKyk0PcuqJa4fj8HJf85BLpOz3Tcmzn8BG9P/QJ9XTBd05qTm4cyOi1Y9HkIIeVSyknPw+/TVeDH4TQxzexkfdJmDIxtOmfU+Rp4tW7ZswZ9//qm57ejoiIMHD6JZs2aPZP/vv/++5jrTwWHevHkGx7755ptahT7Tpk2r9eMjxFyNOvew+pPFhH3T4+Mgl5pXTN+oW08IhOadk3iH1UMLEyGHxt2ikHTjKmTlpoMAj9v1g3vZn3yhEI27V3aHMUQhk+LM5nXwrd/Q6Dh9HRWkpdYLXDOSbl7D3Qtn2S4UTEil84sT8cZvaxDeqavJdQuzMpB47bJVj4cQQh4VWUoKMr76Cne6dkNsm7a4/9LLKNy7j34Bz6BiaRnu5qfhelYi+5O5/SxJTU3FkiVLNLc/+OADtGnTxqJtMF0c+P+FURUKBZYuXWr14ySEEEIIIYQQQgghhBBCCLGEedNxEoM8/N3gHeKJ9HvqFuA1xXRtkEvlWsscjyVC6ucApZ1QZ7yXoz2aFnDwVuRHiL9yD0KxEB2GtcaoDwezYQZ9XlkwFjYOtlg5ex2USu0CpLYDIvD2TxOx/b/OCJZg+h3Y38xlL49Kclya5vrY2cMRe/EuLu67ZnSdwpwitOkfgdT4DL2/t65jOqDva7pFYsGN/GFNR9afZC+u3s6Y+utktB8cCTtHW0z74y1cPRJt8t9U0q0UwHhWhRBCnjj3biZhRo+5yM8q1Cy7ceIWe7m0/xqm/fmmyS47xAJsB4YaPp+1lDuRy+XsbKFVLV++HE2aNKnxtqv+GwoKCkJiYmXXpKpeffVVtnjn6tWr7O05c+YgISGBnQE1ODiYXRYdHY2PPvoIu3bt0qw3dOhQREVF1fg4CbEWFx9f2Lu6oTg3xyrb4/L5UMq1z0mMcXD3hIu3L1Z/NAVZ9++xQYd6bTuw3QDc/AP1rtP95ckQ2dnh7JYNwEOhiLqt26PrhFdxYftWPA3y0lI019uPehEZ8XfwIOaG0XVK8vPQZtgYFGVnoSgnS+f+Rl16oGHn7jrL3QP0n+NVV8zxw+zF3sUVvd6YipDmEWwXin7vfIikG9dRkm/83C43NRkhLVpZ9ZgIIaS2lUVHI+mVV6EsKNAsKz13jr2UvDAGPp99Rr+EpxwTuDyXHod1t47hUNI1KFSVHYd4HC56BjXHCw06o413vaf+/JPpuMB0m2MIBAKtELe5mHMfpotDZmYmOnbsyHarI4QQQgghhBBCCCGEEEIIeZwo4GAFn6x7D+91nA2lovLLMkt5Brpj0Fu9sWbeZp2AAz+/HO5rb6CoQwDK6rsDfC5EQh66NwmF7f4ELP/0D81YSWk5Dv11Aie3nMOsDe8jolczCEUCnf29MHMI+kzsir3LjyDpdjJbWN99bEc0bFdfczyPm62jDUpNdE1wdLXXXGce5/wdH2NC6DvIfJBtdL3C7CL8fOFr7Ph1PxsyKMotRkADP/SfHIWuo9vr/XKzQeu6qBtRB3cuJZjdiUP1UIBEn9z0fHwx8nssPPwZGncMZ5c5eziaDDjYO9uZdRyEEPIk+WbC/7TCDVXtW3kErXo3q5XuSOTJs2HDBty7V9nhielmxAQJmIslpkyZwl6qg5mldPPmzejatSuSk5PZZStXrmQvnp6e7OylOTnaBeMNGzZkgxiEPGn6vfshNn3xSY264Th6eKFFnwE4uWG1WeMFIhFCW7VluywcX7tCs5y5HX3sEOLOnsLAD2YisHEz8Pi65yQdRr6IZj364ObRg2yhvNjeHuEdu8InTH1O4ujugcdNaGsHaWmJ0TFiewfNdSbcMXzWF/j9rYkoLcg3uh6z3XFfL8a1/btx+9QxlJeVws0vAE179mUDIvrOSfwbNmZDIznJSeY9AA4XqFLUaUhxXi62fTcPo+d+o3n+bRwdTQYchLa25h0HIYQ8IZj3ydQPp2uFG6rKX78B9h07wqGH9bsjkUcjOjsJM0+sxJ38yklRqmLCDvsSL7OXus4++LrTy2jkrj+Q+TTYtm2b5nrbtm3Z85jqWLdunRWPihBCCCGEEEIIIYQQQgghpGYo4GAF4W3q4sfTC/DN+J+0OgpYIjMpG7EX4lFeUq73fn5BOVx234U4Lg2On7RBLL8Qm8tvgNdMBsfhvnDdkQautLKYqbxMijmDvwGXx2W7MoyZOZQ9zqpcvJzxwsf6WwC0G9SKLbI3VIRa28Lb1sXUXyZj1oAvkZOaZ3Bc97GdtG7z+Dx41/E0GXA4v/cK+7PPq93x4qzhZh/X9BVvY3r3uSjINv28mBNuqKCQK7Duy634cvcs9na3MR1x+/xdg+MFQj46Dbes3TwhhDxuMWdiEX9V/0z6FXYs3U8Bh+fE1q3aM7MrlUrEx8dbvJ3c3Jp1jgoNDcWxY8cwfvx4nD59WrOcmb30Yb1798Zff/0FZ2fnGu2TkNoQ0LAJRn3+Dfb9sgj5GdU7JynMykDmvXgo/psF2Bi3gEDkPHjAFuYbwgQdtn71OThcLsJatUWboaPgVSdMawzTeaLtsNF616/bpj0Or/wN5SXGAwa1xa9BQ3R/5Q1snjcbZUWGP/+Hd+qqdZsJczh6eJoMONy9eBYKuQyNu0Wh3YgXzD6uvu9MY8Ms5SaCFywzwg0VFHI5zv+7GYM/VJ+TNGjfGSeTDL9v84UihEW2M3v7hBDyJGC6NEirhGz1yVu/gQIOT6lTKbfw7uHfUCrX//fVhzEhiPF7fsD/ur+ODn7qSUeeJkVFRbh2rbKTbZcuXR7r8RBCCCGEEEIIIYQQQgghhFgL12pbes41iAzDits/YUv2cvx88Rt8uPwti7dxYstZo/eX1rdHyox6iOEVQPHfzKwKZwHyBvmwy5UC3Rk+ma4Sp7ddwLQuc3Bu92Wzj4XphtBucCQeNbGtiA0dLDoxD6HNgzFxvuFCHxcvJ4yYNlBneY+HQg/6MF0Y1i7YgpfC3sHa+VvMPr6QxoH45dI38Aq2/myyF/ddQ2mRumNF71e6wa+uj8GxQ6f0YwMqhBDyNLl3I8kqY4j5mI8L1rjUhri4uCfmV1mnTh2cPHmSDV2MGTOGvW1rawuxWIyQkBCMHTsWe/fuZS/u7o+/yxUhhvg3aIhXf1qGN5etxbivFqHna29b/GTdOnnUrHE5D5jXa/NeIFRKJe6cP40Nc2bg/o2rZh+LQCRGSPNHf04iEIvRrFc/jP7sa3gG1UGH0eMMjmUCGi37DtJZznSiMCX9bhzObF6PP959DRd2aIe+jPEKCcX4b35i921t8ZfOsaELRtOovnDy9DI4ttXAobCp0r2CEEKeBuVxd8wY8+R8TiWWdW6wJNxQgRnPrMes/7S5deuWVveuiIiIx3o8hBBCCCGEEEIIIYQQQggh1kIBBytzdHVAvZZ10Gl4W9jYi622XearqsyJQVCJ9P/KJHXtUdDdcNG9TCrHoslL2U4B5rh/Kxn7lh/GoyYpLcfePw/jh0lLEX06Fsc3nQFPwNMZF9TQHz8c+wIe/rpFPT3GdUKdpkFm7U+pVGHlnA04vP6k2cfoGeDOdnKAbp5Ei4oLyD0EUDiZ1yiF+UKS6bzBsHO0xcLDn6FV72bgcCp3ZOtog/FzRuK1bwwXWRFCyJPK1tHW9BgHm0dyLP9n7z6go6jaMAC/29J7DymE3nvvvQpKkSaoqCgq2MWKgiiCovjbRQURERQEpPcuvYXeEyAhBUjvyWb3P3fibnaTbUk2NN/nnD3Znblz587spEz2++4HuuNOnTol/e6r6GPq1Kml+jZcf+WK5aohOuL37eDBg7F48WKpkkRWVhZycnIQFRWF33//XareQHSvcPHwRGD1WqjdriOUKgfcLdQF+dj849dSwoMtblyJwrm95itEVJaC3Fwc37QOW+f9gNizp3Dh4D7IFKXvSfzCIzBi6idw9fIuta5h157wqRJq0/7E+di1cB4uHtpn8xhF4kGfZ1+CvYmx6Cp4iOSF4VNmILxhY6M2ji6u6DDiUXQYznsSIrr3yF1d7dKG7i7i7/63ds8vc3KDjtjurd2/GiUL3Avi4uKMXgcGmk9MJCIiIiIiIiIiIiIiupfYFnlNZSYCNAe90A+LZ6ywy9nLreOGgmDLCRPpXfzgvfGG2fVJcSk4sPYo2ttQmWHND5uk4H9LQmtXQewF4w/S7GXT/B3Sw5xrZ68j6sRVaQwlOTo74tMt7+PL537Enr8PSVUsrJn3ziLkZOSgTuuaqNm0mtX2Tbo0QK8xnbH5t12l1mmVMqQP8UdmLx9ovFXSMofzWfBYfRPu1Qqh7OcMma8c2puFUK/NhXpVNpAH+If5wtOveAZUvxBfzFg/WTrHF49Gw9HZAc16NISzG4N/ieje1Lp/Myn5Lycz12ybLsPb39Yx3ffEr/KKxujcWzE+RGRABKg36d0PR9auvGvOS9qNRKmKQ0ST5lbbiiQDa2VkvINDkBJ/3Y4jNNj/5nXSw1IVi6TYa/AKDCq1zsHZRUoO2PzTN4g6cgharfV7kl0Lf0FOWhqCa9eFf3iE1fbiHNZq0wEXD+yBvXgFBUtj1/HwC8Cw9z5G0vUYKeFEVNWo2qiJ9JWI6F7k1r0bZI6O0OaZD4T36Nfvto6JKu5AwgVcTI2vUB8XU+NwMOEi2gTXvmfeEpGUbcjX1/7VnYiIiIiIiIiIiIiIiO4EVnCoRGM/HIlBE/tBrqj4aS7wsz7zan6Ao9V2cZcTbNrfpWPRVtu07tcMU1dMwp0gZlSb+84iszOrefp54P2lr+O3qG/x1IzRVvtLvHoT/3v2RzzX/A2Ma/QK4qMTrW4z/vPHoXJUGY9LDtyaFI704YH65AZBXdcZbtPd4fCcO+QRSsjc5ZBXV8HhBXc4fukDOMuQl52PJZ+uRHZGjlGfIomj28gOUmIKkxuI6F4mqtMMe/1Bs+u9/D2k5EAiIrKfzmOeRJNed9fP1tQE2wIQE6MvW21Tq3U7PPDSG7gTRNLC7kXzza4XlR0GTXoP477+2aZqB6kJcVJCxIJJE7HgjReQfuum1W26j30GMrn9buvzc7JxaPVyqYqFId+QMNTr0AU1W7ZhcgMR3dOU3t7weewx8+v9/eH9yKjbOiaquMXndtmpn9tfOaoiFCUqTOWW+P1NRERERERERERERER0r2KCQ2WeXLkcE756Er9e/BrO7hWbdV+RrrbeSCnHlU8b4fqrtZAf6Gg28N/WsVvj5OqIhCjzFSMqW9ylBJzdf8Fim4AwPzTuXK9M/V49HYsn6ryEI5siLbYT5/KZTx81WpbdzhO5LUqfY3+3TDiqCk32o6ivgupJV6QnZUhJG690fg8XDl/CT2/8hg9HzMbXE3/G+UOXynQMRER3q0ffH4bHpg6XKjkYqtE0ArO2TYV/KGectCutzD4PIrpnyeUK9Bw3AU9+MeeuCUx39vC0qZ1Mbv3njzimtETbkrgrg6jgICobWOLhH4AqdeqXqd+bV6Mx98WnEXvmpMV2bj6+6DTqcdhLdloadi2chz8/eBsJly9gx29zsfqLmdj2yxybEk6IiO4F/q++At9nx0PmbPy/OqeGDRH+669Q+vndsbFR2WXm52DLVcv/w7PV5quRUn/3Ck9P47+pkpKS7thYiIiIiIiIiIiIiIiI7Elp197IpKCIAIx+dyh+fmthuc+Qy+l0KJPzofaxUslBLkN2Y0/EVq2LsA/OQpWcr18lgkk7DG5tdV9bf9+NU3vOWm3XaWhbnNh1BndSRnKm1TYiaNbd2xUZKcZl2y0pVBfivYc+wfdHZ6FqvVCz7cRM475VvPHHJ3/jwuHLyOruXaqNXKaBh5PlGdSU/ZxR8FMmkA9EHb+KCa3fNlq/6ruN6DG6EybNn1BqdjYionsxyWHIyw/g4LpjyMnIQUSjcNRvW/tOD4uI6L7mXSUErR4cir1Lf7+j43BydUP1Fq2stju1fTMSL1+02q5Wmw64fOQA7qTczAyrbYJq1ISDszPyc2wPmtQUqrHs4yl4/LNv4RUUbLadeF/dff1waNVy3LhinySExKiL+P2dV42WHduwGg279ULvZ16wa9UIIqLbTSaTIeDll+H75JPI3LUbmuwsONWrB+dGjfhm3IMSslNRqNXYpS/RT2J2KtwcKjZRze0SERFh9PrWrVt3bCxERERERERERERERET2xKiE22T4pAcx8Nne5d5epgH8/ogFtFrTDUosLvRUIeWBIKNlYsZsFyuVJC4di8asJ76FptDMfv7VdmAL1GxWDa36NsWdFFLLfKCPLlFBBND6hviUue+CPDX++myVTYke3x6ciSXxPyGgTVip9SpFocg7sUjmIYfMV2E18WSg2xg8Wf9lKaEiO+PemVGOiKgkVw8XdBvZAf2f7snkhkokfv3ItBV88PIlum+0HTJCClC/kzqMeBQqB9PV5nTiLpzDpjlfQ2vu3udftdt2hG9oGCKaNMcdI5PBK9DaPYkaUccOw8277FWK1AX5OLLub6vt6nbogkc/+RLPzvkNrt5lv/exlUg8+fLRIZj/2vM4tHo5CnItJ3ITEd3NFB4e8BzwALyHD2dywz0suyDPrv1l2bm/ylSzZk04G1QiOXLkSLn7UqvVyM8vniiHiIiIiIiIiIiIiIjoTmKCw22cHe7F757GTydno3X/ZuXqw/1ACoK/joJDrEFgu4j50cf9GIcgZrT3Ncp72PXXPuxdecjiPlZ8vU5KCrCkZZ+meGfRy9LzsDoh5T6eimrStQFCa1cxu/5WXDKea/EGpg37HFdOxZRrH7v+2m92XX5eAbYs3IXPx32P2U//gBO7ziLI1aNUO43WttBQbY7GpqSLmHPXMfft3/Fyx8nISLFewYKI6F4Tc/46NvyyHZt/24mUxNQ7PRwiovuGmHW/z7Mv4dFPvkJ4ozuTqHxu705EHbN8T3J03UporczEXKNFG/Sd8Ir0PCCiOsIaNMadUK1Jc3j4B5hdn37rJhZMmoi1X36K5LjYcu3j/L5/zK5T5+fj9M6t2PjDl9j049eIO38W7j5+qEwiYSMp9hp2LZyHP6a+ibzs7ErdHxHRnZB36RJSly1D2urVUKek8E24i7moLCdOlpWrnfurTCqVCu3bt9e/3rJlS7n7Wrt2Lby9vdGzZ0989NFHSE5OttMoiYiIiIiIiIiIiIiIyk5Zjm2oAiIahGHq8kkY6vckcjLLNtulp587cCQVbkdSkdLDH7ceDf93jekAeo2zAlqVDLKCojSHs/svYsrgTzHx66cw4NleyM3Kg7ObE+RyOa6cicW8d37HgXVHrY6jzQPN4ezqJD0Xs6pmpd3+gBZHFwcpYcSSD4d9juiT18wmnFibEVbIzTL9HkWfvIp3B8zAzZgk/bL1c7dCNbwqMNw4yaGgUIncAiWcVGqz+yk8mg+kWh+P8Riu4ec3F+KVH58t03ZERHeL6FPXsPPPvchKz0a1RlVRo0lVzBjzJa5fTNC3USjl6PtEdzz/1ZNwcFTd0fESEd0vRELAoDfew7dPjkRhQUGZtnVydUNuVvmTbK+fO4MVn0xD72deQIOuPVCQmwcHJycp+eLmtSv4548FiD522Go/1Vu01leC0GgKkZ97+6ubqZyc0f0Jy3+Lr5z1kfnEBpnMfIU+AwV5pu9JEqMuYcWn05CVUhyAeHLrRrh4euF2uRF9GXv+/A3dnxh/2/ZJRGRPuefOIX3DBmiys+FUpw5U1asjftIbKIgt/tktc3CA17BhCHzrTchUvCe52wS5eEEhk6PQSnKkLZQyOQJdbt/vUXsYPHgwtm7dKj0/duwY4uPjERxsubqUKX///Teys7Olvvbv349XX321EkZLRERERERERERERERkGyY43AEqBxUGv/QAFk1fZvM2vlW8kRRXPGOcy9kMs4kNOoqUfMj/TW4w9N1Lv+DntxZKCQ4evu7wD/PF5cgrNo9FJAfoHN4YidN7zlvdxsnVEc26N8S+1eUvlW7owef7ICkuGb7BXnD1dC21/sy+8ziz74LZ7UVyg0iSyMu2XHq9epOIUstys/Pwdr/pRu+HTv7ya3BvVRsZ1RyMlt/KckWIZ5oUw1RqLGotCn4pX5DYtkX/4JnPHoOrh0u5ticiuhNEBZxZT3yLHX/ssdq2UK3B2p+2IDszB+/8XlQ9iMrAqNJTOVV0eyK6K4nkgCa9+kvVEmzl7uuHjKRbFd+5VostP3+Lrb/8gML8fDh7eMLVywu3rl0t1z3J5cMHkHj5otVtVE5OCKvfGFFHD8IemvUbIFVoEON3dCn99/i1U8dx48pl8x1otVCoHFBYYPmexL9qtVLL8rKzsGzGFOSkp5Val52WalO/9iIqSHR65HGoHIuS4ImI7gWa3FzETXoDGZs3W22rzc9Hyu+/Q5ObgyrTp9+W8ZHt3Byc0bNqU2y8Yn3SFmtEP6K/e8moUaMwadIk5OTkQKPR4IsvvsCnn35apj4SExPxxx9/6F8PGjQILib+tiEiIiIiIiIiIiIiIrpd5LdtT2TkiQ9HwifY9hnBSgbTO8blwumi5aB4z52mg4/Eh10iuUFIT8ooc3JDi16N9a+3/2k9OFUQ+zu15zzC64agvFzra+H/oAY+vbRY9u0qvNFzGkaGjMdXz/+EvJyi49E5tvWU1f58q/hArrD8LTDw2d6llm37fbfJ5AZBptbCY/IFdNOEwVVZnOQQ6BiCHn494ePgadRek1CIvHdToTletplzDZMtEqJvlGtbIqI75bsX59mU3GBo++I9uHomptLGRET0X9T1sXFwdjeuPmaJXZIb/qUpLJSSGwQRpF+25AY5qjZqqn99bu9um7YryM1F/MVz8A4u/z2JoYMrlmLph+9gznOPY/v8H6EuUQ3j2qkTVvvw9A8wStYwpWnvB0wmFZhKbtARyQ0RTVpIVSZ0fEPD0bTvALh6ecOe8nOy7XptEBHdDglTptqU3GAobfkK5F8zXSmU7qxRdTvbqZ8uuNf4+Pjg+eef17/+3//+h8OHrVfDMjRhwgTk5hZVjBKVft9++227j5OIiIiIiIiIiIiIiKgsWMHhDpq1dSqeazEJ+TnlC24PWHAVsW/Vgca19NvoeCUL3hsSYG9tB7ZAaO0q+tdZqdk2b5uRnCk9QutUQUZSBtJuiSoUgEKlQGFBodntnKtrUePDQrg1LF6mTgfifpEjbl4eVv+wCbEX4zFz42TpQzhbObs54dMt7+O9Bz9BTkZOqfXdRnVA36e6l1p+eFOkxX7leVrUXJ+Dz+a8iisZSXBSKFHDw19aV6gdiGMp55Ccn4Zbx25i7RsbceNK8cyqoqKGSDopCxePe2tmOSL6b0tJTMWmX3eUa9sdf+7F4x+MsPuY7mtaWdGjon0Q0X1JBNYPf/9jLHz7FRSqy3dPcifUatsBHv4B+td5WbZXQ8vJSJcePiGhyE5NRe6/28oVCinpojwKcnNwdP0qpCTEYfCbU6wmLBhydHXFkLc/wMrPp0OdZ5y0LTTo0hP1OnYttfzKceuzVHsGBmHgK28iJT4OSkdH+IaEScu7PjpO2j4rNQUZSTdxcvtmZCUn6bdzdndHTkbZ7kkcDBIpiIjudgUJCUhbs6bsG2q1SF+/AX7jn6mMYVEFtAmqjVpewbiYGl/uPmp5VUHroFr35PswefJkLF26FNeuXUNBQQH69++PtWvXolWrVha3ExVu33jjDSxbVlxl+Nlnn0WDBg1uw6iJiIiIiIiIiIiIiIjMY4LDHSSqGSyM+g4fDp+N03vOQaPRlml7x5gchH14FskDg5HZ2gdalRyKtAJ47LoFn7XxkOdq7Drehh3r4o35E42WhdYOLnM/sefj8NHqt+AV6AW5XIZPHv8aV0/HmmyrCtCi3s+FcPA1Xq70AMJfKjq+uHlyHNt6EgfWHkW7gS2lZc16NsL894tLq5tSrWEYmnRpgIVR32L195uwddFuZKVmSQkYA8b3RtcR7U0GJ2lteJs0Wq1UwaGBt/H5UcgUaOnz74eE/YCRlwZKY791PRl+IT5o1qMRFkxdgkXTl0sfMtpCJEQEVwu0qS0R0Z12ZPMJFOSry7VtdnrpZDQiIqoYv/AIPPXVj1j9xUzEX7pg2x+7d1B4w8boM/4Fo2WiIsPVE8fK1E/y9Vg8PPkjOLq4QiaXS8efllj+oEgh+thhXDt5HFUbF1WXCG/YBAdW/GlxG7/waoho0hxPfz0XkZvWStUo8rOz4BsahsY9+6N22w6mEyZseZ+0Gjg4uyCwek2jxQqlEjVatNa/bvfwKFw7EYnM1BS4+/ohvEFj7F78Kw6tKg52tCYvOwtuPiVu2oiI7lKZu3cD5Uxq02Rl2X08VHHid+XMTmPx6PrZyFaXThi0xkXpiJmdHi9TkuLdxMvLC3/++Sd69uyJrKws3Lx5Ex06dMDEiRPx8ssvIzw8vNQ2+/fvxzvvvIPt27frl7Vo0QKff/75bR49ERERERERERERERFRaUxwuMO8A70we+c0ZGfk4JPHvsbelYcstlc6KKE2CAx1SMhD0E9XoJ13FRpHOeQ5hZDZOSbJt4o3XvhmHNo/1Er/QV/i1ZtYOG0pti3eU64+ty3+B28vfEl6rs4zH+ga/IimVHKDoSpPapCwWAZNjgybf9upT3Co37Y2GnSog9N7zpvd9p+/D2FoZDRqNq2G0ZOHSg9bNO5cH/8sP2CxjUicsIWoONGiVxOjZWOnjUTPMZ2xeObf2DS/+ENGczb+sh11WhoHLRER3a3UFir2WBNSK8iuY/lPEH8TVPTvgrs71pmI7MDd1x+PfPS5FKS+9qtZUqC+JXKFEprC8iWrlZe7nz96PPksarRoo1+WmpiA/csW49yeXeXqU2zX59kXpecaO1WwOLNrq0GCQ2MpuSAx6pLZ9uf37ESL/g/CNzQc7YeNlh62CK3fCNGRR6y2sYVcrkBE0xZGyzqPfkKqHiESNM7+Y73y0ukdW9F5zBM27Y+I6I5Tl/93mENEVbsOheyngV84vu4+Hi9sm1OmJAeR3CC2E9vfCaJiQlm0a9cOjz/+eKnlbdu2xZo1azBs2DDcunVLquTwxRdf4H//+x8aNWqE+vXrw9XVFcnJyTh69CiuXr1qtH3Hjh2xevVqODk5VfiYiIiIiIiIiIiIiIiIKooJDncJF3dndH64ndUEhz5ju0LlqMLWhbuQkVI8a5ysUAtFdvmDRi1JikvBzDFf4fFpI/DwqwMRH5WIlzu9h+T4lHL3GXc5EYc2HMPlyCsWK1f49rEcVal0B7w6apG8WYa0m+lG695f+hqeqPuS2Rm/czNzMe+dRfh43btlGnvvx7vgt2lLkZGcaXrMVbyl6g8VEVq7CjoNbWNTgkOBhQQRIqK7TcMOdaRkOVur1Bg6tec8Hny+b6WMi4iIIFUzqNW6vdUEhya9+kGr1eDs7h1SUsTtkHHrJtZ+OQudRo9Fsz4DkBx3HX9MeQM56Wnl7lNUbIg6egg3r0aLqZ/tMs7sDON7koden4xfXnkWBXm5Jtvn5+bgnz9+w0Ovl+2epGG3Xjj491Kz59/DP0B6LytCVJGo3ry1TQkOanV+hfZFRHQ7OTc3Tuoqi+wjR+E1ZIhdx0P20yGkHn7r9yre2j0fF1OtV2aq5VVFqtxwp5IbhDlz5pSpfW5urskEB6Fr166IjIzEpEmTpIoOGo1Guvc+ceKE9DDF3d0dkydPxquvvgqlkh8VEBERERERERERERHR3UF+pwdAxTo93BY+QV5mT4lCqcDwSQ9hwpdPYnnSfGxU/4nn//cEYCIWR6GUo+2A5nDxcLbLKc7NzsOc1xdgWPA4PNviDYvJDTK59eCgi0ej8E7/jzH3nUVSwoQ5CjfrY9O1qVI90Gi5UqVEbpblGdsObzyO5ISyJWq4errio9Vvwd2n9OC8Az3x0Zq34eDkgIpa9e0Gm9pVa3TnPoQlIipPAlfLvkUzW5fVrqX7cCsumSediKgS1e3QGU7uHmbXK5RKtHpwKHo8+Rwm/vInXl28Cp0eGWuyrVypRLXmraByss89iUgS2DbvB/ww/lH8/s7LFUpuEK6fP4MVn3yAf/5YICVQ2INXoHG1IZlcbja5QefykQPIzTSdPG2Oi4cnBk16T0pKKcnNxxeD35wivVcVdXzzOpva+YVyRnMiunc41akNlzbFFYHKIn31aqhTyj/hB1U+kaywatB7+LXvK+gT0RwKmfG/v5UyOfpGNJfWrxo0+Y4mN1SGkJAQLFq0CJcuXcKsWbPw4IMPokaNGvDw8IBCoZC+itfDhw/Hjz/+iLi4OLzxxhtMbiAiIiIiIiIiIiIiorsKp2W6izg4qjBl2et494EZyEzNKpXc8Nrc51ClRnHATHpSBtbM2QSYmAS7WqOqmPznq9AUahB9KkZKSPhg6GcVHmNqovUgIrlcjkKN5WoShQW2VZvIvgx4NLPcJudSUUKFX5if0XJxfsTxWyJmMUu9kQ6fIG/ptTSzmUYrnW9L6rerg98uf4NNv+5E5PZT0oSvLXo3Rc8xneDsZjmAS7Rf+9MWxF9OgIevO7o/0gldhreDykGlb5Ofmy8lX9iix5hONrUjIrpbTPplAt7sNQ3RJ6+VabtCdSFO7DyD7qM6VtrY7jvibwStHfogov8MlaMTHnr1Haz49APk5xhXQpMrlOg38TW4+xb/3Z2VloqT2zaa7CsgojoefPUdaNQFuBVzFRm3bmHNl59UeIxZqdYDS2UKJbSFliudaQrtXwHPwy/A6HV2WqrVbbQaDXIy0uDk5qZ/Le5T5ArL9ySh9Rti3NdzcWrHZsSeFfckclRr1gL1Ooqqf04Wt71y4hhObtuEtMQEuHh6on6nbqjVpoNRUoSoDiH6tTUxhojoXlLl009x7YknkB8VVabttPn5yD58GB69elXa2KjiRNXANsG1pUdmfg4Ss1ORVZAHV5UjAl284OZgn+RLU+bPny89zBk7dqz0qGzVqlXD66+/Lj2IiIiIiIiIiIiIiIjuNUxwuMuIwPmfTs3G2jmbcWDtERSqNWjQvg4enNAXEQ3CjNr+8NqvuHb2usl+Lh2LxqLpy/HER6NQv21tpCdnQC6XQaOp/ChFEYBqLzeWyuHRzHySQtY5IPNkUYLDnhUH8PjU4UbVFFQOShTkmw9skivlcPZwxqk957Bk1kocWHtUSoqo3bIGBr3QD70e7WKxksPgF/tLD1t9+dyPWDNns9GyQxsiseq7DZixYTJcPVykZWLMIqjJFucPXkbrflayQIiI7iLeAZ745uBMPN/yTVw9HVO2jW382UhEROUnAucf/+w7nNiyHtHHjkCrKURo/UZo2ucB+FQJNWq7/Zc5SE2IN9lPwqULOLx6OdoOGYEqtesh0z9ZRBzelp/l1pIbKsuF/f9IFS4MqymIRAVLyRQiqUAkJMScOYlDq5bhSuRRaLUaBNeqg+b9HkTdDubvSURSRMsBg6WHLcQ9xsYfvsTpHVuMlkcfO4yQuusw9O0PoHIqSo5Q5+fDVolRlxDWoLHN7YmI7jRVYACqrViOqIEPouBa2RKveU9ybxHJDJWZ0EBERERERERERERERET2J9PaGkVNd5W0W+kYFTreYvC+V4An/oido69G8N5DM7F/9RHc7TRKObIa+6DA1wmKrAI0HxQP/z6lkxwKUoCzTyuQfbEowUH4/er3CDCo5DBjzJfYtugfi/tTqhRSIompbwWR5DDhyydhDxvmbcPn4743u77XY13wxvyJ+tcjQ8cjKS7Zar91WtXANwdm2mWMRES3041rNzGm+gSpco4txO+zhdHfwi/Et9LHdi+LjY1FWFhRUmTIR+9C6e1Vof7UKam4Pnm69DwmJgahocbBzUT035WZkoyfJjxhMXjf3dcfT387T5pJWVj60WRcOxmJ+9lzP/0OFw9P/etVn3+Miwf3WtxGJDkUqk3f27V66GF0fsQ+Mz1HblyLrfPM35M07tkXvZ6eqK8k8f34MchJT7fab0i9Bhg5teLVOYiIbrf8K1dwuW8/m9vLVCrU3LkDSh+fSh0XERERERERERERERER0X+Z/E4PgMon9kK8xeQGIfVGGlJvFgejjJ02Es5uRbNx3q0yG/ng2uQWuDmyFlJ7hSFpUHVsVrfFySUByDgOFGYB+TeA+N9kODnSOLnBVPWIpz5+BH4hlj90VhcUmq2W8PfX63Fy91k7HBmw4ut1Ftfv+GMPUm+m6V8Pe32gTf2eP3QZO5dYDpgiIrobBYT7S4ldMrnxz3Jzugxvx+QGIqK7SPL1GIvJDUJG0k3kZWXpX3ca+RiUDo64F+mSNKwRiQGGOo9+Ai6elpPNzCU3CIdW/iVVw7CHYxtWW1x/Zvd25GZlSs9lcjma93vIpn6vnz2Ny0cO2GWMRES3k0NEBII/+rCowpANPB56kMkNRERERERERERERERERJWMCQ73KBcP66XV5XIZnFyLg4fC64VgzHtD4Rd6e2a+livKdnnlRLjjxiO1oXFRGq9QKnDSsw6O/V4Th9orcbSXElc/UyA/wfjDZ/9QXwSEF1dv0AXPfrl3Ono93hVKhxL92mjtT5tRUXk5eYg6ftViG5GwcvFotP51ww51be7/ry/WVGh8RER3Ss8xnfH9kU/R98nu8K3iDQcnlcl2Tbs1wMs/PHPbx3fP08rs8yAiMsHB2cXqeZErFFA6OOhf+1WthjaDh8HV6/bMfC2C9O1FJEVbS87wCgwulczgFRSMRz76DHU7din3eE5s3YCKys3MRHJcrMU26rw83Lp6Rf86tH4jm/s/subvCo2PiOhO8Xr4YUT8tRSegwZB6e8PmcHvLUOuHTog6N13b/v4iIiIiIiIiIiIiIiIiP5ryhfxTXdctYbhqFo/FFfPmA9QadGnKVw9XKRAnF+nLMGSWX+jIM9gZlARr2i6cIFdiGSD4OqBOLb1pE3tU7uHAArzQZSp3ULgv/kKZMYTouoVFmqQlZYNDx93o+VXTsXg0LqjUFupeGHO9QvxNrfNycyBylEFpcr4W0uhVEgJJxqN5ROuVCkQfeoavnjmB5zdf9Hm/Z47cBE5Wblwdr27K3QQEZlSo0kEXvv5Of3rGzG3sO6nLbh2Nlb6PdZ1ZAc079nY5pmziYjo9gisXlMK6E9NNP/3co0WbaQEB1HVYPcfC3Bk7d/QWKhWYG/eQVXg4umJ2LOn7dKfSNiwVokhPycbji6uRstvXr2CK5FHS1V3sFVKfJzNbcX+FSoHKJTG9yRypeWxG7ZLjL6MLT99g4TLtt+TxJw9BY2mEHK5bfshIrqbODdoAOeZM/Sv82OvI/WvpciPiobcwx2eAwbCtW2bOzpGIiIiIiIiIiIiIiIiov8KJjjcwx7/YAQ+HD5bSmAoSeWgxJjJQ6Xn37wwF6u+21i6AxuTG0RAqal9WNNhUGtcjiyuSGCJRilDTm3jmU5LypRrULtLDaRuv2xyfXJ8Cr5/ZT7e/PUF/bJLkdGYOmQWCvIKUF7uPm4W1xeqC7Hiq3VY/f1GxF1OlJIZ2j3YEqPeHozaLWpIbUTCg0g4ObT+mNl+PHzdpdnLX+n0PtKTMso8Tgb+EtH9IiDMD2OnjbzTw7gvyLRFj4r2QURk8ueDTIb2w0dj3defmVyvVDmgzeDh0vNNc77GqR0Vr4xWVrXatMe1U8ft1p9IHnD380fGrZsm12ck3cTOhfPQ+5nie5L4i+ex+ouZ0BSWP7HDyc3aPUkBjqxdieOb1yP9ZiLkCiVqtm6HNoOGISCiutTGwckZYQ0aI+b0CbP9uHr7SMkZi9+fhLysrHKPl4joXucQGoKAl1++08MgIiIiIiIiIiIiIiIi+k+S3+kBUPl1GtoWk+ZPgHegp9FyvxAfNOveCJ+P+x5j67xoOrnBAq1ChtyavshuGoTcGj6AUo7gagFl6sPFwxkPTexrU1tPfw+MnjIMkFufmTs333KiwvbFe5B2K13/eulnqyqU3CCImcPNKSwsxLRhn2PO6wuk5AZpmboQ/yw/gJc7vofDm4qDqUa88RDkCvPfckNfGYC/v1pvc3KDRilHbg1v5NTxRVDranBycSzTcRERERERVVS9jl3Re/yLcPYwvidx9/FDWMPGUvLD3JeeqXByg6ic4OEfWKZtnFzd0KRXf5vaunh6ofW/yRjW5OfmWFx/Zuc25GUXJwccXPlXhZIbhLodulisGvH3rI+we9F8KblBEPu7sG83Fr83CTFniivqtX7oYZGZYravlgMG49Dq5eVKbvALrcrqDURERERERERERERERERERFRhTHC4x/V6tAsWXfsB01a+iVfmjMeINwYhOSEVBzccw7Wz13H9YrzVPtSejsgLcYPa3QE5df1x86mWSBtQBxldqyNtYF3cGNsMLd7sj7d+K56F1BLvIC9MX/M2gqsFomm3RlbbT/plAp58dxhq+PhYbOegUCArMs5iG5FcsGnBDv3rvSsPoaL2rDgoJTKYS6gwtw+RWDH76e/12zbp0gBvLngBLu7OKKjjhKxRfsga7YeCZq5ScoOo+LBt8T9WxyMm0s5oF4rE51oieUg9pDxYB0c7B2HEzPm4kZ5ZwaMlIiIiIiqbRt1745nv5uOh1yej1zMT0WLAYGSmJiP62GEkx8UiNcHy3/C20BQWol6nbug93rZ7EndfPwx55wPpa3jDplbbP/DiG+g4fIzVJAqFgwPyMjOtVlM4t2en9Fyr0SDq6EFU1IUDe81W1Tu9cwuuRB4xuU6dn4dNP3yl3zaiSXP0efYlqBydjNrJ5HK0HjQMLfo/hPN7d5drjLdirmDR5NeQlZpSru2JiIiIiIiIiIiIiIiIiIiIBCY43AeUKiXaDWyJFr2bYNkXq6Ep1Ni0XX6wK2481gDxL7fAjXGNEf9KCyQNqYlCN5VRO42rA345fwG7T0fb1G9IrWAoVEocT0xAYkc/ZD5QFbnhribbRjQIQ6u+RQFHY5o2sdhvwJVsKLKsz3y6dWFxQE5BXsVmShVEAsOOP/aaXLfupy0Wt70Zk4TDGyL1r5sOaQqvNR2R+lkEsh/xQ/ZIP6ROC8O2hzIQm5WMrLRsq+PJ6BSOjI7h0DopixfKZDiVkoKxPyxFZm5eWQ6PiIjuZ1o7PYiIrFCqVKjZqi3C6jfC0XUrpcB+ezv49xJEHz9mU1vvKqFSNYG4C2el5Ai50uBv5xICqtVAeMPGUpB/096WKz44OjnbtP/Tu7ZJXzUajbT/ihLVGC4d3Gdy3Yktliv2pSbG49qp4spyIsnBJyTUqI14v66eOIaUhHgpKaK84i+ex9IP30VBbm65+yAiIiIiIiIiIiIiIiIiIqL/NiY43EfWzNkMdYFtwTP5Qa64MbYh8qp5Fi+UyaBVyaB2A7QlrgyNFlgTdcWmviMjL+HhP37HoCW/4+uTh5HQOxixrzVC7Av1oXZXGSVCTFv1JuTyop2NadYUD9Wra7JPx5hMKH4qDsqx5HLkFaTcSJOe12ld02p7hYPCapt1P5tOZIi7nGB12+uXitqIWVNfOLQQx9NjSrW5kJGI5w8tQJX6wRb7KnRRIbNlFbPrryalYvmh01bHRERERERUGY5vXlcpyQ2C6PfifusVz4RrJyOx8J1XsPi9STi06i9o1KYTn31Dw6XKEzotBgxC7TYdzPabnV50n2FLoH9edjYUSiUCImpYba9QGSeZm3Ji6waTy9MSrVftS0ssuifRaAqxfMYUJEZdKtVGLFs560O4+/qjIpJir+HM7u0V6oOIiIiIiIiIiIiIiIiIiIj+u5jgcB+5cOSyzW1Te1aF1lxgvwxQO5VenF/FQwqwt0QrA+LH10V2dfdS63JreiDj7RboNqYj3l38Mn4+NRvB1QL16+UyGT7v3w8/DR6EnjVqoJavL7wS8uC39DKCvz8FRa7tM5/mZhXNGDpoYj+rbTUF1gOw4v5NUjAUuf0U8nMLrG7r6echfd136zJOp1032y4mOxnhLxdVszAnt7YPoLT8bbs28pzVMRERERERVYaEy6UD5+8YrekSNE5u7qjXqRsGvvIWHvv0a3j4FQf0i6oPA15+Ew++/i6qN28Fn5AwKFQO5dq3rhJCs74DrDYvLLB+X5GaYJzIIBKor5w4Bo3W+v2Ms3vRPUnUkUO4edV8Zb7kuFhUqW066bwszu3ZWeE+iIiIiIiIiIiIiIiIiIiI6L9JeacHQPaTm1kU1G+N2t0BedUNKjeYoFUCIhxIVnK5SiRFmA++yWrgjbwwV7Prk1yBllP6o2uNWibXy2QydK9RXXqc2HUGrz01BWXl5e8BvxAf6Xm3kR1wZt95/P31erPtRWCQNXKFHOoCNZQqJbIzcjBl0CeI3G69UoKLhzPaP9RSer4z0XriQUYTRzTv2QhHt5w0uV7jaP1b9mp0on6sRERERES3U0Fuzl1/wnMzM1C/Y1dENG1hcr1MLketVu2kx5XjR7Hs4/fLvA83H184exQlFTTs1kuq6GCuAoPNZDJoCgshVyiQm5WJvz+dhuvnzljdTCR0VGtWdE9y+cgBq+3F3VFI3fo29W3OzWtXpGoRImGEiIiIiIiIiIiIiIiIiIiIqCxYweE+UaguxLWz5qsDGNK4qqTgGItkpa8OWU4BFJlFs5Cak9XY2+r+N0ZZntX14q0kzNixE29t34qkB6oiP9AZZdHz0S5QORRXmpjw5ZP4dMv76DysHRycyzH7KoAb127hsZoTcfn4FXw+7nubkhuEx6YMh7Nb0fjzNWqr7dVaDaYsex0+QV4m1yuTrQeM5V9Nxrx3Ftk0PiIiur+JX+cybQUfd/ogiOieoS4oQEqJKgN3q4uH9lkN0N+x4Gds/vnbcvXfoEsPo+D+Xs9MxNB3P0StNu2hUFmuimdOakIc5r38DJJir2H9t7NtTkDoOPJRKB0cbK4UodUU4qFJ7+mrPpRHXlYm9v21uNzbExERERERERERERERERER0X8Xp3i/TxxYexSZqVk2tVWk5wMaLSCXWZ62U2O8yPn0DcgKLVc70Cqt58zkqc0H+k/fvgPzjhwteiEKQXSpgrQuVeDxTzz8Vl2BLTYv2IFuozqgdosa+mXNujeSkgZ2LbUcyGTJzZgkvNFzGjKSM6y29Q/1xejJQ/HAM730yxp5hWJFzBGL29V3D8bUIZ8hOSHV5HqnS8mQZ+RB4+5otg/XyASs3XIVj04Zpk+uICIiIiKqbJcO7r0nKjhYCvQX1d22zvsBxzetrVD/p7ZvRp12neBftZp+WUTjZnB2c8fFA3vL3W/ajUQs+eBtZKenWW3r4R+AdkNHSRUkdIJq1sHZf3ZY3C4gogZWzvoIORnpqIjIjWvRZtBwfXIFERERERERERERERERERERkS2Y4HCfiDkfZ3NbRXYBnM8nI6eer9k28gLjGZubRVRB4booJFrp2zEmC5kt/Cy2aRwYZHL5b8cii5MbSkjvGAxVci48/0mwMgIg7VYG3n1gBhZc/gZpN9OxYe42XL+cgPycfFRUepL15AZ3X3f8Fv0tFIriGVuFfiGN8dW5zUgtyDa5nVwNrOj2C3DD/DjFTNp1T6fibAs/aFXG/QsuxxPgFJ0KsYcz+y6gRa8mNh0XERHdp7SyokdF+yAiskFynG0V5corrH4jpCTGIzPpVoX7Cqxe0+TyI2tWVDi5QchKTcHyTz7AU1/+JI335PZNUnKCOi+3wn3bktzg6u2DcV/9DJncOAG9QZfu2LtkIfKyTSfHi/Z7liwUmR4W+3fz9UVmUpLFNrmZGUiIuojQug2sjpeIiIiIiIiIiIiIiIiIiIhIx/p0+3RPcPdxK1N7z81XIc8yPWupPFsNh9gsKHPUqObpjveH9cBPzw9FYJCP1X49DtyALK/Q7HpnpRLD6jU0OVPqvMOWqxukdQy2OcYy9UYaZo39Fo/XnIjfpy/Djj/2YO/KQ7gdlEp5qeQGwVnhgNktR8FNaaL6Qr4Gbp/EWkxu0Hnx5UHwW3gSzqduQJZfCBRqoIrLgNfaC/DaFKVvZyUmiYiIiIjIrpzc3O1+RkXAvU9IGHqPfxFD350GN2/r9yTWODi7oH7nHqWWazSFOLJ+FexFJDas+/ozzH35GRz8eynO792Fy0cO4nZQKFWlkhsERxdXDHz1bagcnUxup9VobLqR6D72WdsGwpsSIiIiIiIiIiIiIiIiIiIiKiNWcLhPdBzSGt++OBf5uaaTFkrSBnrD7boMuYFa5Is4JLkM0GjhfDkdXqsvQplRFGhf4KBE/T6dkRSThJO7z1rtV5FdiKBfLyJhbG1oHYwDahwVSnzVdwC8nZ1LbXctLU16WKL2cUKBnxMcbto26+nuZftxJzTtXjqBQ6e5TwSWd3kRf107hL03LyEzPQuJyy7BeV0qFAnW3zt5Vyf8kP83XH5yg0t2GjTbElC4IhtI1hi1c3J1RL02pmelJSIiIiKqDHXadcTO3+ZCU6i2W58i4D79RiICIqojNTEBCZcuVKg/paMjBr7yFhxdXEqtS74ea5fqEIYuHtiDOyG8YWOz66o2aoqxs7/HiS3rcfXEMeRmZSI1Ib5M/W/5+VubEknMVcogIiIiIiIiIiIiIiIiIiIiMocVHO4THj7uGPHGILPrXTyKkwoKqvkjv2lVKLRyuCZo4XVJC8/LGumrU6Eb4FYc7FOQr8bvH/2FuEsJUpUFW7ieTkXYJ8fhuSMeDnHZqKJwxhNNmmP9I4+hZ7UaJrfR963UQOmbC4fQLOmh8MkDFAbB+zIbSzhUIgcnlcX1tVvWtHiuApw88HztHpjT6FFohh+F27ybNiU3KN7whHKqN1KDsyHzVkAWooTiUXeofvQDQo0rRjTp2hCunq5lOCoiIrovae30ICKygauXN1oMGGQx4L081AX5OLBiCVLi48r9Prj7+aPFgMF4fNa3iGjS/J6vNqBQOZhfKZMhsHoti/ckHn7+6DjyMQx5+wNkJieVef/ZaalW24jzbK5SBBEREREREREREREREREREZE5THC4jzw2dTie/mQMPHxFSYYicrkMbQe0wOjJD0uvRYhLfv0Qo+1kWkCuLvoqgmFKrj+8IRJKh7IV+3C4lQf/FVcR/skJvJwdivc7d0M1L2+z7cO9vBDg5wDHqplQ+uRD7lwoPVS+edIymZMajllq1PDzQd8nu0vHeqdYq5Ix57VfMXngDOTnWW63+dedyMnKs2mf8h5OUPQ3HRAm81NA+Y6X0bLGnevZ1C8RERERkT11GvU4Oox4FE6ubvplMrkcNVu1Q+tBw8rd7+UjB6BydCz39q0GDkHXR5+CV2CQ2TY+IWFG4zZFrlRK7Rr37Iu2Q0bgTiksKKq4Z5JWi61zv8Oqzz9GodpyNY1T2zdDnW+hrwoIqdegUvolIiIiIiIiIiIiIiIiIiKi+1vZotbprjd80kMY9EI/nNh1FnnZeajRNAJBEQHIzc7D0lkrkZRfAK275Vk0Nf7u0DoqIcsrCobRaLQIrV0FYXVDEHPuepnH5Bfqa3H95ZRkRKXfQrZ3CkzVZ5ApAIfgHExs1Rfj3moOdb4aSpUC6+duxc2Yss82ejscXHcMv7y7GOM/e8xsmyNbjtvcn3yQ5WoM8voOkNVUQnup6D3zDjJOeCAiov8oe1RguHcmNCeiu4BMJpMC/0Ulh9gzp1BYUICAatXh4ReAvOxsHFr1F/Kyssrcr6awEAFVq8MzIBBpNxLLvL2br5/F9UnXY5AUcw15OdkW23Ue/QSa9OoPTWHR390nt29GVkoy7kaXDu3D/mWLpYQTc66ejKy0/bt6mk9wJyIiIiIiIiIiIiIiIiIiIjKHCQ73IQcnB7Ts3cRomZOLIz5Y+SbeGPUFcmzoQyuX65MNvAM94eXvgXEzRuODobOkhAdbufu4ocOgVibXHYqPxfS9OxF5Ix4qt3w4eBSa7Uem1GLPX5uxssPn0v7D6lRBz0c7Y+vC3bhx7ZZR26AIf7h6uuDMrZvIDXeFrEAD1zOpUGQb9C8OzobDEOdNJIeUh0jAeOyD4XB2dapwwKiipspqc5loc0kNJ1dHdBjUukxjJSIiIiKyJ5WDI6o1bWG0zNHFBYNefw/LZ05BQV7Z/sZ29/WHk7s7Oo56HGu/miVVKbCVi6cXqjczfU8Sc/oEdi78BYlRF23qS1Q82LHgZ2n/vqHhaNi1J07v3IrMZOPEa6+gYCiUKiTFXjPbl0wmh1arsbpPpaMj1GU8XzrHN69HmyEjoVSpTK7XluE8loWjiyuqtzB9zomIiIiIiIiIiIiIiIiIiIgskVtcS/eV+m1r4+d/PoKD3FSdhGKy7DzIcvP1r/uP6wmFUoH2D7XC5CWvoUqNQKP2zu7OpvuRyfDcF2OlhIuSDsdfx5jVf0nJDYJcZT65Qed83k19ckXM+Tgs/ngF6rWphbcWvohej3ZGj9Gd8PbvL2HaoQ8R9XxtXHu7EW6Mro7EsTUR/VEz3BwcDu2/h96yl3ECiDn5eQXSV41KhrROfoh5rQ6uvlcf8eOqI7uWm8Vts9KyEX3SfEBTk64NbBqDtP8s64FP2pyicyPeqx9e/RWHNhyrtIAlIiK6N8i09nkQEdlLaP2GGDPzS8gVijJt17hnX+n+om77znjgxUnw8De+J1E5mbsnkaP7E+OhUJbO7b926gSWffy+zckNwq1rV/TJFSJ54cCKJQhr0AT9Jr6G+p27o36n7hjw8lsY9Mb7UvUKS6o2aWbTPtX5xfdmZZWTkY7k6zFm14c3aIzKIJPLsWP+T7h6IpL3JERERERERERERERERERERFQmrODwHxMU4ouHejXF0o3HzLZRXUzUBzM26lQPo94ZrF/XaUgbdBzcGqf3nkf6rQwEVw9AlZpBWDBlCdbP24aM5EypXd3WNTF68sNoO8B41ladGft3Iq9QXaaxy9SlIyx3Lt0nJTuIRAIRzH/6VDROJ0cgWWYcTKR1UCC1RzC0ChkGZPkgPSnDpn1qCjVQuykR+3od5Ie66JfnVXVFRltfeG+Ih/9fsWa3F8kG5vR5ohsWTV+GjJQs6+PYkQvFw65m12szNdAezNMnVojqEeJRv11tfLj6LXj4uFvdBxERERHR7eBTJRQNuvbEya0bbWof3qgpWg4con8tkhzqtO2I6+fPIDczE97BVeDu54+9Sxbi1I4tyMsq+vs6uHZdtB86ChElKkno7Fw4F4Xqst2TmHJ29zbcvBaNW1ejpdfxly8gOzUFednm/86v2aod0m4k2LaDCiYty+Xm5zVo1L03Dq78C/k52bCn3MwMnNi6QXqE1muIQW+8J1V1ICIiIiIiIiIiIiIiIiIiIrJGpuUU7/85uXkFeOWT5Yg8Vzow3y01G64HLiOoqj/6PdUD/cb1gIOjyqZ+83PzkXj1JpxcneAf6mu23dW0VHRZ9LPRMqVzARy9iwL0zfGZfhVOh4sSKMxJ6RGMW4PDzTco1KDalONQpto+C+r1CTWR1czb7Prg7y/B/UgKRNhRTm1P5NbwlIKQgpIKsWrPbItJDmf2ncfkgTP1iSFmBSmg+tEPMg/TwUnquRnQ/Ga6j1b9muHjte9Y7p+IiO4bsbGxCAsLk56Hv/celF5eFepPnZqKax9+KD2PiYlBaGioXcZJRP9tIqD+r4/fR/yFc6XWqZycpAoA3kFV0Kh7HzTsJirK2XZPUpCfh4xbN6U+3H38zLa7FXMVv74+AXeMTFbhxAVbuHp5Y/z3v0rn05yYMyexctZHFhMyKqpW6/Z48DXekxAREREREREREREREREREZF15qMc6L7l5KjC1+88jKkT+qNVw3BUD/ND+2bVMeOVB7FxzWT8nTQfPxydhYcm9LU5uUFwcHJAWJ0Qi8kNwi0Ts4Oqc5TQqGVmt1FG58DxiJUkAAAZzX0sN1DIkdnEfLJCSQW+DshqYjkwNLVHIAp8HBH7ehMkPFMfqT1CkNozFOdGVMXwJX/i5r8zyJpSv10d/Bb1LSZ8+SQ6DmkD7yAz+0oohPq1JGiiS1SmyNFA/Yv55Abh0PpjuHomxtqhEhHR/UhrpwcRkZ05OLtgxJQZ6Pv8Kwhv2AR+YVVRvUVraab/F+YvxQu/LMGYGf9Dk179bE5uEFQOjlKFCEvJDUJ2WhruqNuQ3CBkpabgzw/eQna6+eMNq98I476Zi66PPS0lIjh7eNp9HBcP7UNqoo0VK4iIiO5h8+fPh0wmM3rUqVOn3P0NHjy4VH//ZYbnt2vXrnd6OHSb5Ofn48yZM/f8+Z4xY4Z07apUKqRV0v2I+L7QfY+I75fb6dgx81XD7enKlSt37GdiRkYGLl++fFv3SURERERERERE9F+lvNMDoDtDqVSgT4d60uN2C3Fzh1wmg8YoqEeG3CRnOPnkQq7SGLVXXcyBz4xrkNkQA6RxUtiljU5uNVdAbvmf5DnVXRH/TH2o/ZxKrYtMSMBTK1Zg5ejRZv/Z7urhgha9G8PD1w1Xz8QiJSHVZDvtRTXUT9yCrIkDZFWVQI4Wmr25QJb1E3Nk8wlUrV80mzcRERER0d1AJC406NJDetxungEBt62Kwp12/dwZ/P3pNDzy0edm2zi5uiGiSTO4eHjgxtUo5FhIiCgXrRbXTkbCK7CvffslIiK6B1y4cAEnTpxA48aNy7Rdeno61q9fX2njIroXbNq0CS+88AJGjRqFqVOn4l6m+35u164dPD3tn1R8J3/GTZw4UUpE2bFjB+5XixcvxmuvvYaPP/4YNWrUuNPDISIiIiIiIiIiuu8xwYFuuyA3d3QNr4ZtV6OMlmsL5ci56QyFYyGcE9PheiYNjpGZcDxduuKDOY5xOSgIdLbYxiEux+b+ZGrrAU8ODiqo/cwnQZy+cQM7r1xB12rVSq27GZuEz576Dkc3n7B5TNrj+dKjTO7/uC0iIjLFHhUY+DuEiO5DngFBCG/QGNdOHcf9QOnoCHVentn18RfP49qpEwhvWDqwMv3mDWz4/n+IOW37PUl5aP8DySRERETm/PXXX2VOcFi5ciXyLPx+J7rfffjhh3j//fdxPxAVG/bt2yc979evH+4XW7duRf/+/aXkhi5duuB+9dRTT2HevHl3ehhERERERERERET/KfI7PQD6b5rcvit8nUwlIsggj1XDf2Y0PH6/UabkBsFzd6LF9crkPLieSrG5P+dz6ZDlFlps4yO3nFAhbIsyTuYQstKz8Xr3qaWSGxz9NKg9LhvNpmWg/itZcK+uRkU169Gwwn0QEREREd1Puo19Bk5u7rgfODq7WG0TdfRAqWU5mRn484O3Kz25QVTLMJVcQURE9F9KcCirP//8s1LGQnSvuHz5Mu4Xmzdvhlqtvu8SHGJiYqTkhvvd/XQtEhERERERERER3SuY4EB3RHUvH6wYOhpD6zSAg1xRdDHmqOG5MwEhn51GfpArbj0UgZtDqyGjpT80SuNLValSQCYvXTXB5UI6vLbEmdynPKcQQfMvQVaGiUMVuRp4bbthdr1KJkf2iZtW+ykoLJ0ksXHedsRdSjBaVu2RHPTdmowGr2UjYlge6jyTg55rU6VkhzIN3EDzno1QrVHVcm1LRET3NvGrwx4PIqL7kV9YVTzy0Weo16kb5IqyFzdUKO+OgogKlQrZ6WlW2xX+G1Bl6MSWDUi/aTlJ3B6qN28F7+CQSt8PERHR3SQiIgL+/v7S87Nnz+LMmTM2b5uSkoJNmzZJz4ODgyttjER0e6xfv17//dykSROediIiIiIiIiIiIiIrmOBAd0y4hxc+aN4Z7b65impvHUH1N4/Cd+113BhbFwnj6yO9UzAy2gXh5siauDa5OXKruknbterbFI9MHorBL5ie6cj/7xgEzzkPl7NpkGepoUjNlxInwj49CeeozDKP029FLDy3JZYK8PRydEL9v27CMdJ6RYimJj6I3P7nHqPXgZ3z0fS9LMgdSm8vkh3qTrBczcJUwketFtXx9u8vWR0fEREREdF/kQi67/rYOLj7FQUf2qpas5ZoO3QUmvTujzvJ2cMTji6u0Go0VtsG16pbatn5vbvsOyBZ6XuS4Fp10Pf5V+y7HyIionuAQqHAkCFD9K+XLl1q87YrVqxAQUGB9HzYsGGVMj4iun02bNggfe3bty9kJv5mJiIiIiIiIiIiIiJjd8eUk/SfteLLdYg7fV1/ISY+Vgd5Ee6l2mncVEgYVw+hn0bi0Iaih8pRhQ6DWuP4jlPITDUO/nc7mSo97EEkNozUhOGxEU9gTdQ5pOfnoaaXL6pcKcB766fDw02J1J4h0DoUVaIoycfZGQ/WLR1MlJWaZfS61lOWExhqjM7FhZ9cUJgng7aaCnCWQxZTABetA/qP64HBLz+ALb/twqVj0XBydUSnIW3RZkBz6cNUIiL6j9LKih4V7YOI6D52ZM0KpCXGl2mb6GOHpYdCqULN1u1w7eRx5OdY/nu+ohp07Ym2Q0bi/L7d0r78QsOhdHTCqs+nW93W1csbtdt2LLU8L9v4nqS8HJyd0bhnPzTrMwCnd27FzavRUDk5oU67TqjWtAVkcs6tQEREd0ZhZibUCQnQZGdD7uICZVAQFG5Fk6jcDsOHD8ecOXOk53/99RemTJli03Z//vmn9NXNzQ0DBgzAV199VanjJKLKc/z4ccTFFVWd7tfP9KRNRERERERERERERGSMUQZkN7EX4vD9K/PxUsfJmNTzA/z99XpkpZsP8tFqtVj2vzX617nhbsit4WG2vcZZiYy2gfrXBXkF2PP3QbQZ0MLq2BycHFC9SVXUaFoVZRVcIxDvLHoZoW6eeLZxG7zRsjOG1GyAmOMx0npFphqBv12ALL+w1LaKvEJ8/+CDcFapSq0Lrx+qfy531MK/tdryMXhp4fWYEgVzQ1DwYwgKvgyGZlkEWuzqg1GfDENguD9GvzsUU/56HW/++gLaP9SKyQ1ERERE9J+SFHsN236Zg8XvTcLSjyYjctM65OfmWLwnObah+J6krArVBbh0aD+qN29lta3S0RH+VavBr2q1Mu/HNzQcfZ97GV6BQWgzaBg6jXoc9Tp1k47XGplMjocmTYbSxD2Jb0gYKkquVKJmq7ZoM3g4PPwD0O7hUXjwtXfQb8Kr0nlhcgMREd1u4vd71v4DiH3xJVxo0xZRAwbiyvAR0lfxOvall6X1ol1l69KlCwICAqTnp06dwoULF6xuc+vWLWzbtk16PnDgQDg7O9u8v5SUFHz22Wfo3r07qlSpAkdHR/j6+qJ58+Z44403cP78+TKNf+XKlRg6dChCQ0Ph4OAAf39/dO7cGd99952+wkTdunWlGemtzUqfnZ2NuXPnYsyYMdI2fn5+UKlU8Pb2Rs2aNTFy5EgsWLBA329F/P3331LfunGJoPLc3FyTba9fv45Zs2ZJiSTVqlWDp6en/lgbNWqE8ePHY+vWrRb3N3bsWP2+IiMjkZWVhUmTJiEkJER6/6pXry4d965du/TtxOPixYs2HY8457pt5s+fb7JNUlISPv30U/Ts2RNBQUHSMfj4+KBx48Z46aWXcOjQIZRFYmIiZs6cKe3b8L1q1aoV3nzzTURFRZXaZty4cfpxdujQwab9XL58Wb+NSOjJzMxERESE9PrXX3/Vt/vggw/07bp27Wq2P3GNv/XWW2jRooX0HorvgeDgYHTr1k06P+J7xBZiHD/88IN0XYj3UfTj4eEhvZfie+LHH39ETo75+wxD69evl76KiYh69epltG7q1Kn64/rjjz+kZWfOnJGuuxo1akjXj9ivOO+i7c2bN2EvR48exbvvvotOnTohLCwMrq6ucHJyks5Xu3btpPfZ3M8M3TX/xBNP6Jft3LnT6Pq+XT+nrKnINaE7FnFsOuKYdcvFeajMa4eIiIiIiIiIiOi/jBUcyC42/LIdXzzzAzSFGv2yyG2nsOSzlfh0yxSE1goutc2i6cuRlVacAJFd18vqfrLreMF7c6zRsjN7iz4YzKviikIPRyjS8+AYZzwTaUTDMHx7cCY2zNuGz8d9X6ZjC6tTxeRyUSVBx+VsKkJnRSKjbRByRJKGVguXC2mon6JAy7dDTG4/YHxv7FlxUHouszHVSPOoJ7R5xYFJapkGW5OOI+pIIr5vOQEuSieT211JSMbSHcdx7GIclHIZOjaqhiFdGsPP09W2HRMRERER3eWOb16HrXN/gFZbfE9y7WQkDq9ehmHvTYdnQFCpbf754zcU5JkOdrOZVouEKOvBaYHVamLkB58gcuNabJ1XtnsSnyrFydGGVI6m//435BdeFcE165hc17hXf0RHHkFFaNRqnNm1HbdirknHZ25MIhkjctNaxJ0/B4VSKSU/NO7ZFy6e1u8DiYiIbJVz+jTi33oLeRcvmW5QWIiMjRulh2OtmgieORPODRpU2gkWAc1DhgyRgl2FpUuXSgHFlixbtgxqddFEKCLo31bz5s3D66+/XipYNzk5WXocO3YMs2fPxgsvvCAF9CuVSovB7aNGjcL27dtLJV/s3r1benz//fdSIoEtFi5ciFdffdVkcHZqaqr0EIHuonLFtGnTpMSKBuV8XzZs2IARI0boz6FIblixYoUUZGyosLAQb7/9tlQdIy8vr1Q/4ljFQySmiIDkPn36SOMTCRCWiP2KwOYdO3bol0VHR+PKlSv46KOPpKB1cazCokWLrFb1ENv9888/0nMRgP7www8brReJOl9//bV0LCKJxJC4FsTj5MmT0nGK8yKORQRbmyP6E0HfIpi+ZFKIeJ8OHz4sPb788kvpeMQ1p/P4449LSSzCvn37pLGLZAVr14aOODaR5FAe4ryLsXz77bf6914nISFBeoj3ZMaMGfjf//4njdWcvXv3SoHoYhtD+fn5yMjIkN7P5cuXS++dSDgR14YtCQ4iacDLy/LfviKp49lnnzU69+K57rx/8cUXWLx4Mfr374/yEskwIjB/zRrTid6687V//34pEUEk64jzZi2J6Xb/nLqd14St7H3tEBERERERERER/ZcxwYEqLPrk1VLJDTo3Y5LwwdBZ+OnEbKPlOVm5UvKDEVv+Qa4o3SZak4PUCU2RH+CiX6ZKyIL3umg4XU2XXvcc01n66uJh+4xnOn2f6G5yuaiQ8N1L86AuKKrcoErJh8964xlUe74/zGy/LXs3wUMT+mLltxtQmCNDymkFvBuUrgKhU6CRIzm/+BgNRWclYNX1AxhZtUupdRsPnsf78zZAbfD+nL6SiMVbj+GrFwejUY3SySdERHQfqfxJSYmI7riESxewZe73UrJBSWk3ErH6i08wZsYXRsvzsrNwdH2Je5JySo2Ps9qmfudu0lcHF9N/01vSsJvxTK86tdq0w87f5holdZRUt0PpewSdmi3boFGPPji5dSMq6kb0ZZzesRVN+zxQat3pnVux8YcvodUUjzP+0nkcXb8KQ9+ZhsDqNSu8fyIiosw9exD7wovQlgjyNkckQVx99DGEfv0V3Gycbb48hg8fXqYEhyVLlkhfRSB93759cfBg0QQplojZ7UVAuo4IEu/YsaM0S3laWpoUbB4fHy8F9YtAXjGj+erVq01WfxVBxmKG/HPnzumXiZnH27ZtKwW/i6BnEaQrAv/FDOimkgMMzZkzRwrYNhybCPQWVSFEf6KCghifmPVcEMH/DzzwAE6fPi0F9JeFSMgQCSUimFgQQeAimLhkcoMgKiroZswXxLlq3bq1VK1AbC+qK4iqB+KcCRs3bsRTTz2Fv/76y+IYRNC/YXKDTvv27aVg/8cee0yf1CAC1a0lOPz+++/6aiOmEgBEILgI4NYRlRbEe1+1alWkp6dLyRE3btyQ1okEDZHsIGajF8dpiqgc8NNPP+lfi0oQor/w8HDExcVJ77/oV7zvIvBdVNwQyRWCaCeuFVHdQYxZHJ9unaXj09HNhj969GgpCF+8n7qqJ2L2/ZYtW0rPa9eubdSHGINIKtm0aZN+ma4Kgfg+Ete+OA/iGhNJGmI/4lhMjU1cfyLoXHc9ivMtqlGISgMi0eDSpUv6ahgiiP3BBx+UzkmzZs1MHp/4/hNB77pkG2uJECLhQ6PRSIH94vtQfJ+I87lnzx7pWhTn/qGHHpLaiYSVshLbi+MxrJJQr149qdKHu7u7FIR/4sQJnD17VlonxvLJJ59I45g4caJ+G/G9L6o9iH5017s45+J83I6fU9bY65oQ3w/CqlWrpG0E8b7UqVOUQC76q6xrh4iIiIiIiIiI6L/Oxnnjicxb+e1Gk8kNOldOxeDYtpNGy45sOo7sdOMyvE5RRckIljhdNm6TF+aOG2PqGyU3CAVBrrjxaH3khbohokEY+j5ZFEzUql+zMiU5tO7fDO0HtTK5zjfYGw88YzrQSPAJ8sLA53pb7H/i109h8h+voGHHuri62N1i2+hsXxRozeckbUg4XGpZ3K20UskNOunZeXjt+1UoUJtPqiAiIiIiuhcc27jGZHKDTmLURVw/XxSkoxN17DDUVgLy7MU/ojrqdSq6JxGVC5QmguzMqdmqHao1bWFynYdfABp262l2WzcfXzTqbvmepPczL6D/C6+jSu16kJcjeMjQ6V1bSy1LjovFpjlfGSU36ORkpGPl59Oh+TdwkIiIqCKVG8qS3KAj2ovtxPaVpXPnzggMDJSeHz9+XApytVQ5QQSfC4MHD5aCy60RVRR0QcNihvU33nhDCtQVwdJitnRRESI2NlZ67vJvoqVYN3nyZJP9iSBmXXKDCGD+5ZdfpMBdEYguKg6IYGuxTKyLiYnRB8+bIsZhOMO/SCoQy0TQsRiP6Ec8F4HDzz33nL7d1atXpWSQshDB0SJgOCen6H/OIknCXHKDCFbWJTeIcyaCqcU5Eufy559/xoIFC6T+xHslArB1xLkUVQksEdUn5HI5pk+fLgUxi4QRUUFCFzgtEhx0M+GLAO4jR47YXOFAlwCgIxIbDJMbRHKHOHfbtm2Tzq0Yrzjf4vhE4oNw5swZKTBeBK6bqh5gmNwgEiquXbuGrVu3Sv2JJA9xTsS1qfPee+9JferOpTg+HXG9WCKCu0UiiVCtWjV06VKUmCvOnUgKMgweF8HqYpl4iGoghkSihS6QXQTpi7GKa1Mcv7jOxPUurjHD7USika6ygiGRcKILUBcJRiIBR1QFEf2I4xEJR6KSggiWF0QyjDgH5mzZssWomogl4roT74s4bnFeNm/eLB2L+JkgElMaNWoktRP9icB7S9975oifFbrkBm9vb+m9Fe+f+H4Q7734Kl6LfYrAfJ3PP//cqB9R7UC8F4ZVD0Tiie490iV1VdbPKWvsdU3ojsUwqUZ37CWP397XDhERERERERER0X8dExyowk7vLZ7Ny5wze4tmWtLJzjBObhCcL6ZBFW/hQ0i1Bh77jEv7pnYPB1RmLmOVHLJRjTBr2xQ4uxUlNTi7OmHUW8UfwJjjFeCJ0ZOHYurySRZnCHrui7EYNLEflCrjNtUbV8WnW96Hd6DlktNCjWbV0Lpfc7SpNQy+icUfmBlKuOCMyNQwi/2k5BX989zQsl0nTSY36CSlZWPzYeP3hoiI7h8yrX0eRER3u7gSyQsm21wwbpNfxgDI8nL19sGw96ZD5VAUXOfk6oaWA4ZY387LG+2Hj8bAV96CTG7+1r3HU8+jSa9+pZITAiJqYNh7H8PZ3cPqvkQFhWrNWqLVg0PNJlPYIjsttdSy45vWWUxgyLh1E5cO7y/3PomIiMRM8fFvvVXm5AYdsV38W2/rZ8m3N/G/RRF4rmOpAoBYp6sYYMvs7CLQ+cUXX9S/njlzpjTbugjoNSQC7p944gmsXbtWei7Mnj1bCsA1FBkZKc26ryOCcksG1QtimS0JCCKoWBfwW7duXSnQt+TYdDOdf/fdd2jSpIl+makqCOaIJAERPK7blwiGN5fcIHz99df6508++SReeukl/XkxJCouiPdElxxg67hEFYd33nlHSmwRQeSDBg2SEi50feoC+UtWMChJBEPrkk0MEwAEMdO+4Wz4olKIGKsueNrw+hPHZ1itQiRAiEBvQyKw3jDYWlyzopqILjlHx9/fX7pGdLPOi+v1q6++0q8XAd+6BA5R5UNUA7AlecMw8aMsxPnR7V9UPRAB5eL6LPk/fXGNiSD9adOmSa/F97sIgi/5fW844/+PP/4ID4/Sf0uLahIiGcQwiUHM0G+KLmA+KCgITZs2tXo8oo1IbBDXiSFRZUFce6KSgiAqHpQ1OF5U3TBMYBHnrXv37mYTs7755hv9a5HYYy2553b9nLrd14St7H3tEBERERERERER/dcxwYEqTKkyX1VAR1EiAaAgr6BUG/HxRdD8c1Aml/6HrqxAg8CFF6FKKp5hVe2uQl51T4v7TXSTQe1sPL6Rbw3GUzNGw9XTuOpDrRbVMXPjZPxy/issuvY9xk4bCZWDyvJxKRWY8NWTWHTtB7zy47NSwsPsndMwJ/IzVK1vOSGhIL8An479Bk/WfQnz3l2EP2auwM9dz+HI02EIyu6EUJeWqOXeAwNCP0Hnhh9CY+XbNcjZu9SyU1HGCSGmnIq23oaIiIiI6G5mS+WBkgEtBXm3J5AkOzUVMulup1j7YY+g/bDRcHA2ri4XVLM2Hn7vIzz5vzl4+ttf0G7oKKvHplAq0XPcBKl9r6cnotvYZzBy2iw8+smX8KkSYnFbdX4+1nz5KX555Vns+fM3HFixBNGRR+Ds4YkaLdugauNmUuWJh9/9CL2ffcnqsXr4B5RaFn+paIZYS+IvWm9DRERkTvaBg8i7aL4qgi3yLl5E9sFDlXaSRfC5LQkOf/75p/TV19cXPXuar9KkI4LUxazkQvXq1fHaa69ZbN+1a1c89NBD+tnDRRCuIcMZ90XCgOFM/SWJJALD4zKnffv2UnD3hAkTjBIFzI1PJykpCbYQM9v36dNHCvjWjUucF3PVL0Qgv5+fH5o3bw4vLy8p+N8SEeBfv359m8cl9msYzG2K4azv4j03VU3BWgKASD64deuW9NzV1VWaTd5SgoBIWDB8v7744guj9QcOHNBfSyIoXAS3m+tPJI7oZr4XbS9cKJ5ARwTmi+B4a1UcCgoK9Ne72I/hOSmLL7/8Uh+QPnr0aOl6s+TNN9/UJ22cPn26VMJKVlaW/rmuGogpPXr0kCpNiKoLogqCqQQZQQTXC+IatSWBQ1QQEe+nKT4+PlJygOE1oKsOYQtRjUMkyYhkiapVq2LUqFEW23frVlSBrqzfk5X9c+p2XxO2sve1Q0RERERERERE9F/H/5xRhbV5oLnVNm0HGM8Cai5xQCQwhM46Dr8ll+FyOhnO51PhtSkGYTOOwfVUslHbQi8VHAOy4VY3Be4NkuFSLR0KV+PECfFv7LTc4qQInZFvDsLi2Dl4f+lreG3u8/jmwAx8d+gTtOjVBKG1gq0mNpQkKjX0H9cDQ156AI061bNpm29f/AWbF+wsNSPQtX9y8EvnKDTPfRW9qkxGuGtrdK3aFP6OlpM5BlZpU2qZQ4nEElMclNbbEBHRPUprpwcR0V2ueovWlhvIZKjWvJXRIpWjE24HrVaDvOysEsORod3DozD++18x4OW30OfZlzBmxv8wevpsVG3YFN7BIVLiQlm4efugcc++aN7vQYTUse2eZPNP3+D83l2lluekpyHm9En0fuYF9J/4Gqo2bor6nbrCxdNyhbrG3fuUWqawEsgoKG1oQ0REZE6KQcWBu6EfU0TAty6AVlQbiI6OLtVGzFL+zz//SM+HDh0qBY6XZcbw3r17W6xEq6OrJCBs377daN2qVauMAuqteeqppyyuf/fdd7Fnzx7Ex8dj4sSJVvsTCQc6IrDZmvPnz0uJILrA64EDB1pMbhBEMLGoQCDeh5SUFDRq1Miu4xKJE+YC1HUefvhhfZu4uDiTAdWiMoKumoapBAAxy79h8oKoFGHN+PHj9c8PHjyI9PR0k++9CMAuWQmipGHDhknnXwRyi4oQhgzHKo7B1Iz4IvBfl6Ahvj9EhYryMPweEEk51ohro1evXma/Bxo2bGh0XnXfk6auI1Gl49FHH0WHDh1MXnPHjx/XVx+wZWytWrWSZvi3du04/5sknZqail27Sv8tb06tWrWwZs0anDlzRqrGYO3nheF1b+v35O34OXW7rwlb2fPaISIiIiIiIiIiIqBsERNEJgx4tjdWfbsBGSnGQTs6bQe2QEQD42oG/mG+Zs+lvEADj4M3pEdJHn7uCK8bAvf6Pjg6OBv5KCo7Lihd1XD0z0VOrCty44o+IHJWKRHo7mZyP86uTug0tK3+dVZ6NjbO247tf+5Bdno2qtYPxcDn+qBZd+sfcpVVUnwKNv5i/MGPodysPKz4ci1e+GZc0bHJFXi97lC8e+JXqLVFZeoNtfCuiT7BpT/86NykOvaeslw6ukvTGuU6BiIiIiKiu0WzPgNwYssG5Odkm1xfu00HeAdVMVrm7udXrn2J6gaiMoKLhxdiz52WkgEscXB2gauXt9l1ddp11L/OzcrEqW2bcH7/P8jPyYFfeASa9u6PsPr2vydJv3kDZ3ebn51UnMtjG9egy5gnpdcKpQo9n3oea778BJrC0vck1Zq2QJ32xbP16tRs2RaxZ05ZHEvNVu3KdQxERESFmZnI2LLFLiciY/NmqT+Fm+n/JVaECGgVSQvfffedvorDpEmTjNosXbpUHwg+cuRIm/oVs+4bBqw/++yzVrfRBVzrqh/oZGRkSAHrOq1bW0kgFf/3bdtWCr43FcBujdhGJD6IYGsRCL53716joH1zVQ10xLYiEP/GjeL/IYuZ2isaLCxmxL969SpOnTqFo0ePYvfu3VKShq3jatCggdV9uLm5SQHQv/32m/T6999/R/fu3UsFaeuOzVQCwLFjx/TPrc1Qb/h+ieBykTwhHuK8d+rUSVon3gfDQHtrRBWH2rVrmw3CFwkt2dnZUtUAEeit24+p6hRjx45FeYgEiaioKKM+bQlONzxWw+8BQVTfGDNmjH42fzHuKlWqSIH5IgheXHO6ZCVr1q9fL30V51xsb41h5QtL571x48b6730x/pLXTnmJZJWLFy9K1/6hQ4dKJa5Yu/Zvx8+pO3FN2Mqe1w4RERERERERERExwYHswK+KD6avexcfDJ2FpLgUo3Ut+zTBW7+VLsndpGsDBFcPRHxUotX+ZXKZlBAx4s1BePDZohlBnz04B7dSSidACM6hWVBnqqBOd8ADDerCzdH6h1o3Y5PwevepiLuUoF927ex17F52AENffgDPzi7fhyzmHNoQCXVB6aAgQ/tWH9YnOAjt/Orhy+bjseDKVhxMugAttPBz9JAqN4yO6A6VvHS+0gNt62H++kNISM4wuY/mtUPQrFaIHY6IiIiIiOjO8fAPwOC3pmD17BnITkstVd2h73Mvl9omoklzuPn4IjO5aMZfS2RyOTz8/NFm8HA0+rdKwcK3X7Ga3CDU79wNShsC7dJuJGDJtHeRfrP4Hin5egwu7Nst7bfjSOuzKJdF1NFDUnUJSy4fPqBPcBBqtWmPhyd/hAMrluDqyUgRmQg3Xz806dkPrR4cCrmJ2VgbdO2Jw6uXIzPFuCKfTtXGzRBYvaYdjoiIiP6L1AkJYqp7+3RWWAh1YmKlJDgIw4cPt5jg8Oeff0pfg4KC0KVLF5v6TBDH/y8RjC8eZZGWliYFuosAbJEwYEgE5lrj4eEhPUQ/1ojA5tWrVyMyMhKXL1+WZpAXAdXmWEuauHDhQqllH3zwgZQ4YC7wvqSCggJs3LgRW7ZskYK6RWB0TEyMlORQ3nH5+PjYtG8R1K9LcFi+fLl0bYjgdVsTAHTVD4Tw8HCb9uni4iJVetBta9hHYmJimd57S9zd3aWEHt3xLVq0yCjBQVSOENeCICpZiISI8jC8/gVRnaCsdNU/dEaPHi0lj3z++ef6ZaLKxvz586WHSOhp2rQpBgwYgBEjRlhMaNElOLRp08amChs1a9r2N7Hh+1PyHNhKVH9YsWKFlHxy7tw56dq31ld5Epns/XOqLPuy1zVhK3teO0RERERERERERMQEB7KTem1qYWH0d/hn+QGcP3QZDk4qtB/UGnVa1jA7a9kL3zyF9x/6xGygv+hjxBuD8NjU4UbLL6bHIzLFclUCx8BshCoD8Gr3DhbbHU+5hujMW/h7+ipcv5YI2b/Lc6u6ocDXCYosNf76ah0adKyHTkPawF4K8gpsaFP6g7RGXtUwrdFjyCzIgVwmg5eDGxQyudk+XJwc8P2rQ/H6d6txOc74H/Nt6oVjxvjiUs9ERHQf0gIybcX7uJPEzJn16tWTAl9++eWXcs/saI4IXBHBF7m5uWXaztPTUwoIIKK7R2jdBnjmu19wYf8eJEZdgsrREbXadEBARHWT7eVyBXo89TxWz/7YZEUCQaFyQLuhI6UEA0NxF84hMeqi1TH5hoaj/fCiWTzNuX7uDFLir+PQqmVGyQ2GREJBlTr1UL2Z9dl0bVVoIXCvuE3p+xZRTSKoRi3kZWVJiR8uHp7SV3OcXN3w8OTpWPn5dKTExZaq+vDAS2+U8wiIiIgATbbp6k3lpckyXaHWHkSAt0heEAG4YnZ0MbO9LjBdPN+/f7/0fNiwYdL/Tm1hS2KBtYDlzMxM6f7GMNhdBOI6OTnZ1IeoRmBpHGIm82eeeUaq0GCO2FfHjh2l+7MdO8xXmDKlb9++0qzzImlC3Nc99dRT2LVrl3QMlqxcuVKacV2ce3N8fX3Rs2dPHD58WOrf1iQCW3Tr1k16/8X+xb3lunXrMHjwYGmdeE/+/vtviwkAIklAR7SxlWire6+zDK53w6BuW4/Bkscff1yf4CCqk3z11VdQqVT6BB9dcos4NnENlUdFr39d5ZKSPvvsMykIXQSqi0oa+fn5Rt8zIohdPD788EP0799fSk6pWrVqqbHprvl+/frZNBbxvwlbGL4/Zf2/hBj/jBkz8PHHHxu9/yWJiiEPPPAAvvnmG1SUPX9OVfa+zF0TtrLHtUNERERERERERERFSk/5TlROSpUSXUd0kB4lFagLsSXyIjYePo/svALUCPbFw50aY9bWKfht2lIc23pK+gevk4sjajSNQOfh7dBzdGd4+Jb+p/6pNPMfOum4ewOLHxwJHxdnk+vPpsVhyvHluJDxbwDRQEDWpSYcNmUgzS8QBUHFHxIo0vLx9d9bypXgEJOZhtXRZ5GWn4saHj4YWK0etDlqJF69aXXbem1rGb3emXgOC6J241jK1aL1HlUwulp7hF9xwvL/rUHktlPS8qY9GuHhVwagfrs60uvwQG/8OfVRHDh7DZEXr0OhkKNjo2qoV5XlkImI6O4mZugTCQ2WZvWsqLNnz5Y5uYGI7l4KpQr1OnaVHiWpCwqkagjn9/+Dgtxc+Fethia9+uHhdz/Evr8WI+bMSamdyslJSoqo066z1I+TiYCr+IvnrY7FwdkFIz/41OT2Uh+XzmPj918iKdb6/Y3wz+IF5UpwSE1MwPm9u5CXnSUlXNRu1xEatRrpt0xXxDMUXLPonkLn4oG9OLRmOeIvnJNeB9WsjZYDBktJDkfWrULs2ZOQyeRSVYYWDzyk3943NAxPzP4eV44flZJDxOyrorKGueQTIiIiW8ntEIht1F8ZAsXL3LdcLs1q/+2330r/BxVB3q+++qq0bsmSJfp2YmZvW4lAZ12g+/fff49nn3223ONzdi7+P6oYX3Z2tk2B7paCpE+ePCkldhgGHQcHB6NVq1aoX78+6tSpg0aNGkkPBwcHvP/++2VKcBAB2MuWLcPu3bvRq1cvaZmYkV6c44kTJ5rdTsym/uSTTxrNSF+3bl00a9ZM+ioeTZo0kSpBiESJzp0725zgYCvR76OPPorp06dLr3///Xd9goOo6CDOvyCuGVMJAGKZLrjd0ntgKXjbMDHC8Lk97sFFAkdYWJhUEUMkT4hKGSLwu2R1CpEIUV4lr09xfy/eO3vo2rWr9BDfX6LCh3hs375dqnZgSCSmiHaiQom/v79+uWivqwRia4KDrf+bEMH+5UluEUQCkJg8QkcknYjrvnHjxtL3o5hgonnz5tL3qUajsUuCgz1/Ttmyr8q6Jm7XtUNERERERERERERFmOBAlS4lMwfPf7Mc52KKA2gOXYjBn7si8crgzvhk0/tIvZmGnIxc+FbxhoOTg8X+VHLrpYi9nJzNJjfEZCXjmf2/IENt/IGB1kOBvIe9gAQ5YDDxkdpThcNNVXh943r0rlkT3SKqQ2VQDjnqxFVcOhYNRxdHtOzTBK4eLtBotZh6YAsWXjgmPdeZdmArQhbGQLMpxuoxDJpY/MHH4iv7MOvMWqP1Z9PjMPn4X3D+Kxkuy4oTJnb/tR97lh/Aqz8/hz5ju+k/MGtbv6r0ICKi/xDxK+geruDw/PPPl3n2zrISM+fpiIAaEYBhCw8Pj0ocFRHZW1ZqCv76aDJuxRQlCwsxp0/g2PrV6P7EeAyfMgPZaanIz82Fm48vlP/OLmuOwsp6wdXLy2xyQ9L1GGk8+WUIHrt5NRobf/gKNVq2QfVmLSE3uCe5cSVKWi+SMyKaNIeDk7NUlWLL3O9wctsmEaWob7t9/o+QyWXINQiMMqdZ34H65wdX/oXdi+YbrU+4dAFr/vdJqe1EQsXFA3vQb8KrqNuhi/6eRFRsEA8iIiJ7UQYFAeJ3oplqTGXrTAllYOVOCCKqM4jge8FUgoO4H2nfvr3N/fn5+ekDh2/csJ68aImoLmEoNjZWCvC3RATWG1YSKOmJJ57QJzeIgOlff/1Vn4hgSllmoxeB2CIRQNzHiSoLIllAVzHg7bffxsCBA03OjJ6YmIgJEybokxvE+Z43b54U3G2PcZWFCO7XJTisX79eSiwQiSbi2tAxV8VQBETrxmWpCoUh8V6lpKSYfM9FtQqd+Ph4m/rTjddcQs9jjz2mPz6RiCISHG7evImdO3dKyyIiIqQA7/IS178h8T1g72B2ce8/ZMgQ6SFcv34da9aswc8//yxV9hCuXLmCL774QqqKoCPeTyEgIEBKGLCFqO5iC/G9qVOW2f/FuA2TG55++mnMnDkTPj4+lXrd2/PnlC37quxrorKvHSIiIiIiIiIiIirCBAeqdFN+22iU3KAjPkOavXwX6oT6o3WdcHj5Wy8xLLTzqwOlTAG11vwHl53865ldtyDqn1LJDYYc/HJRkOooQnCglWkBETckA5afPyM9/FxcMLVLDzRTemLW2G9xcvdZ/bbObk4Y8vIDuDmoChacP1qq78zCfJwf5o+wi8lwijY/s9bYD0eiec/G0vObuRn44mzRByKm5DzsA4cd6VBeydMv02i0+N/4OWjZpyl8g73NbktERHS3Vm4QASc//vhjpe/LMMFBzDC5YcOGSt8nEd1+676eZZTcoKPVarD1lx/gH1EdIXXqwcW2WxJUb94S2+bJpe3NtmlhvgLcoZXLypTcoHNq+ybp4ebtgx7jJsA3JBTrv51tVFHCwdkZLQcOQV5WFk5u3ViqD1HJwSqZDF1GP4GQuvWll2k3EqUKEmUhEixEhYrwRk2lCg9ERESVQeHmBveePZGxsfTvvLIS/Yj+KpOoZiAC/UUA+f79+6WA1/z8fBw6dEhaP3z4cCkp0FZi5vWoqCjpuejPFmfOnJHug0RwebVq1VClShVpuRhXaGioPnj6yJEjVhMcRBsxy7spx48fl9YbVk2wlNwgREdH658bVlcwRQSOi+QGndmzZ0szootqAWKG+2eeeUaqGlDSH3/8oa+OIKogrF692myAt+7+VFQhsHVcZVGrVi0pwWLv3r3SmDZv3ozevXtj69atVhMARND8xYsXped79uyxaVb8ffv26ccvrjPDpI6mTZti27Zt0nPD980c0Y+4dkQig7iOli5dKn01ZJjgIAK7xbkU75HumhHry3K9lyQSgkRA+61bt/TfA6LahjViRn2ReCPOb40aNeDl5aVfJ94HcV7FuERVg5JCQkIwfvx4qRJC//79pfdMKDk5g+5/C3379rX5GHVB79aSikRlFJ2WLVvCVnPnztU/F9edtf+5GH4/VuTat+fPqTtxTdjKXtcOERERERERERERFZH/+5WoUly9kYJ/Thv/I7ykmd+twdg6L2JEyDN4p/907Ftt+R/5vo7uGBhiftZPZ4UDhlftYHb9hrjiDwBMkSu1ULiqjZIbDN3KzsZLG9Zg3OOfGCU3CDmZufht1gr8FGnhH/VKOVL6mZ4NLrxeCL45MAOj3x2qX7Yq9gjUFgKnhLw+pQOG1AWF2DC36EMpIiL6j1dwqOjjNhKzafbo0QNz5sy5LfszTHCwdVZFIrq33Lx2BddOnTDfQKvFxh++xNwXn8acZx/Dik8+QHSk5aAuD78A1O9cVC3NFEcXVzTrM8Ds+vP7dqMiMlOSserz6Vj83iSj5AZBJE7sXfI7jm1YXa6+/cIjMObjL6QkCR2RVGEpmcMcdUE+Tu8sCtAjIiKqLN6jRt1V/VgigsGHDh2qDxZesWKFNLO9zsiRI8vUn7h30hHBsoYzu5vz5ptvYsyYMejYsaN+LDoi6FZn0aJFVvtauHCh2XXnzxv/jSL2Z0lycjK2b9+ufy2C4ctCBDV/9tln+tebNm0ymq3e1LhEFQhLyQ26wGfDmezLOi5bqjjorFy5Ukpu0CVgWEoA6N69u/65uI4MKzOYI2aON7z/NTx2w0QKcczi/bBEJGWI8yLanTt3TkqOKUkkyLRr1056LgLOxTYi0UEQx2V47Oa+X6wxPA8iicZaEL44t+L6f/jhh6XkgE8+Ka5GJqqriKQXkexhrnKGjlKp1M/ML2RkZOifnzhxQkpeEvr1K67SbI1IirD2PooEHZEUJQQGBqJ169Y292947XfoYP7zEx3DSiLmrn1b3iN7/5y6ndeErcdpr2uHiIiIiIiIiIiIijHBgSpV5OU4qVKDJVcyM3H9YjyS41NwaEMk3n/oE3z/ynyL27xabyD6V2kGWYnsA18Hd3ze/HGEuxqXIjaUXVj0AYAlMrnp5AadQq0W0c3cTfdf1x35CssHndXU9AxADk4OqNOqptGy2GzLHyZJ4wlWmVx+5Uzx7GJERER3OxHoIGb227lz523bZ2RkpP652DcR3X+unz1ttU1KXCxSE+OlxIGoo4ewfMYU7F5k+Z6k57gJqNuhS6nlbj6+GPzWVHgGmE5qLlSroc4vrr5WXlqNBjkZ6RYrKJSHg5MzAqsb35OkJiagvJJirpV7WyIiIlu4tGkNx1rGv7vKyrFWLbi0bnVbTviwYcP0z5cvXy49BDFreFlmYxdEUK5upnG1Wo1x48ZJX81ZtWqVPsBcEDOJG3ruuef0z0U7SxXuDhw4YDKBQMfRUVTILWY463xJInBajEXMTq+jC+IuCxFYbBjc/Oqrr0rVMsyNS8y2npdn/u8yEZRfsjJCecZlyYgRI+Dk5KQ/5yLJwZYEgEceeQTe3kWVe8V5E+O0FMj9999/GwWsiwoXJZNbwsPDpefinEyaNMlsX2I/U6dONToGlcr0/6cNj0FUedBV1RDVTKpXrw5LDPs09z5NnDhR//zs2bP6ihHmvPfee9LECoJCoTAKRhdB/7pzKCZDMEy4MeXo0eIKznXr1tU/X79+vT4oXlTksFVubq50zZqTkJCAd999V/9aVAMQx2Arw2vf0vejrvLB559/bvXat+U9svfPKWvseU3Yepz2unaIiIiIiIiIiIioGBMcqFIp5DaUXzbxucvyL9di/xrzs6aq5Eq832g4lnR8Fc/X6oPHq3fFh41HYWWXN9Hcx/IHIzXc/K0OqTBPbja5QSe3hgfUbiY+uFFaP2atQqY/bK1chqx6XkhvHYCUEMdSH0R5Obha7U+Wbjp4ydXdWfp6KTIanz35HR6vNVGqlvHti/MQe9H4wz0iIrr/iGJE9nhUtuPHj6Nnz54YOHCgUfDJ008/Xan7jY6ORlpamv41ExyI7k/yMgT9GDq48i9cPVmcBFWS0sEBD7w4CU988QM6jnwMbQYPx8BX3sLT38xDSJ16ZrdTKJXwDg7B3So/N6fUPYmzu0e5+3NwKbonSbh8Eeu/nY2fXxyHeS+Px44FP1UocYKIiEhHBIIHz5wJmYtLuU6K2C545gyzM+Xbm5iRvEqVKtLzXbt2SYHEuiDxsnJ3d8e0adP0r0Xw+AMPPIArV66USiCYO3cuRhlUqWjYsGGpQF4x+7hhQLqY0Xzx4sWl9rt69WppZnpLQcpi5n7D4GsRUH/16tVS7UQwsKgeIALwDemqGJTVDz/8oE8YEBUGnn/+ebOVJMR6ETxdcgZ1cb5EkLW4Ryx5Lss7LnM8PT0xaNAg6fmNGzfw66+/2pQAIGaL//DDD/WvlyxZIiXPiCD4ksciZpc3vL66desmBZkbEu/VjBkz9K/nzZsnBdCnpxsn1IrX4roRVR4EZ2dnvP322zYlcIhKjbpzbW2We0GXwCEcPmy66rM4T4az4Ytg9ddee63Ueyru/cXy2bNnG/3PoU6dOkbXf+fOnfWvxfkU10FJ4m9lcU7F95RhXyUTHNq0aWO1QkhJouKA+F7JzMwsFRDfpUsXfSC+qJghjqcsDK99kbz01VdfQaMxrtIm9vu///1PukYKCgqsXvuG79GFCxeM/sdSWT+nrLHnNWHqOA8dOlRqvb2uHSIiIiIiIiIiIiqmNHhOZHdt6oZDqZBDXWj8j3JDDldNl11e9f1GtB3QwmL/Ya5+eKx6cflsWzxctTU+PrXa7Hp1thKafAVgetIpI1pHOWD8WQMco7NEiQdAYf5DUaeoLCl/IqO5H5IGVkWhh4O0/Kb4gOmXefioR090rFpVWtY9qC4WXdkOrVYGtdZ0cJbjdtMzt3Yd2QGbft2Bz8d9D43BeyAqZqyfuxVTlk9Cqz5NrR8oERFRJRIBNCLJQcfV1RWfffaZNAPlTz/9VGn7FYE0Oh4eHtKMqUR0/4lo2hwymRxarfl7EnOOb1qHqo0s/73sUyVUSm4oiya9+mHHgp9xN7p17Qp+eWU8ej/zIkLrN5SW1WjZBsc2mL+HsqRu+844sWUDtvz8ndF7cGTtdZzYugmDJr2H8IaN7TZ+IiL6b3Ju0AChX3+F2BdehLYMAegiuUFsJ7a/XcSs7kOHDsXXX38tBfTqlCfBQXjhhRekynQiIF3YtGkTatasKSUYiK8pKSlScHRMTHGlV39/f2k2f6Wy9McDX3zxhRRMfvr0aakygKgUIAKERbC2GPuRI0ekWdGFgIAAKShfKDmTvFgnArW///576fWJEydQq1YtKcg6LCxMCjY+d+6cvi9BzPIukg6EmzfFf0rLTuxDzHIvxiyIxAkR/D98eNHfaw899BAaNWqkn8H+999/lwLSxfEFBgZKxyPuFQ2T7+0xLmv3xH/88YfRLPm2BHVPmDBBem917/2yZcukoGoR4F21alUpGeGff/7RB8Xrzs/ChQul97Ik8V6Lyhwi8F348ccfsWjRIimwXpwbcew7duzQB4qLpCCRUCKuM3PEuRPn/M8//9Qfm7jnN6xkYo5hoLlIqBCJMGJfImng008/1a8TlUSioqL0FRpFwLoYuwg4F9fh9evXcfDgQaPge/F+Gwa264jjad26tRTon5SUJI1d/K+gXr160jkQ14FIShJ96oj3SlepQZzzvXv3Ss9FElBZiP9LiO3F/0HENSuSDMT5O3/+vLRPXRKySBgQ37+ifVmI6hDiWtElKrz00kv48ssv0aRJE6lPcUzi/TdMrhAJOLrzZuraN3yPkpOTpfMqvsfFNSKSNUQCTGX8nLLGntdEyeMUyQkikSgoKAi1a9fGG2+8YZdrh4iIiIiIiIiIiIwxwYEqlb+nGwa0qY+/954y3aBQA+cTcSZXXY40nsGnPJLiU7Dupy04sesM5HIZWvVtht5ju2Bf4CVsTyz+8EwvD8iN/3e2N/F5gYWJ2+SZBVCmmijLnFwAt6MpyGxlfnYmr82JyGzkgxujagIlqlxcS0vDuJV/Y97QB3Akex/+uXUEVdyLZkvKUyuQmueMXHVx9kVBvgIZVT3ge8z4w9tmPRohqFoA3urzkVFyg/5Qc/IxfeQXWBzzA5zdij5oICIiutPELH7ffPMNIiIiKn1fhgkOYra92zVjKxHdXh5+AajTvhPO7dlZ5m1vXI2q8P4zkm/hxJaNuH7utFRNonqzlqjXqZtUHSL6mOmZaO+0lPg4LJsxBQ9Nmowzu7bhwv5/ytVPtWYt4eTmUSq5QacgNwer/zcTz3z3C1QOjnYYORER/Ze5deiAqr8tQPxbbyHv4iWr7R1r1ZIqN9zO5AYdEdwtEhx0RABs48blT/gTAbciAFfMki6SEkTihAhsF4+SWrVqJQX1i0B3U8RM5SKYXCQE7N69W1p2+fJl6WFIBPLOmjVLCn4XHB0dTSZLiEQBXXUGMSP89u3bTe5XzNouKhLoguXj4uIQGxsrzVRfVm+++aaUMCCSNHTB1T169ICvr68ULK2rQKFLrhCB2bpZ9w2JYxKJEiKIWZcgIQLA7a1Xr15SVQ9xzGVJADB87z/44AMpcF2c423btplsO3r0aCnhRASzmyMC3kUCypQpU6T+RLD22rVrS7UTgfciEF9U+bAlgUMkOOiIBB9RgcIacQ6mT5+uv/Z27twpPcT5mTlzpj5JQwT6i2v9ueeek5I3RCKAGPe6devMngdRTUIXfG9IfC+K63/kyJH6CgOmrn9BpVLhlVdewccff6xfJrbVVT4oa4LD4MGDpcSUjz76SAq8L1nVRDc+kXQi/odRVtWqVcOKFSukZCpdwo5IAhCPkkTwvgjY37p1q/5nlbj2S1YbEH2K7w2RkCGIZAzxEER1BPFzojJ+Tlljz2tCEMla4n9V4meFoPueEO+HLsGhotcOERERERERERERGSs9TQ+Rnb01vBt6NC09i5MsXw33TRegTDI9q5qzW1Hp6vI6vOk4xtZ+AQumLkHktlM4uuUk5ry+AE/XewXjZa0xtfEgNPAMgavSET5whsuyZHg/ewk+S6/BIT4HUBfNiGSOx4GbkIlKDf/KreqChCciEP1xI6hFwoHjv4kSJdQ6XQD3gylI7htWKrlBpxD5mH3pR2y7sR/5muJS0I7KQgS4ZMJZmQ8xYVNurhKZmY5I7+EPrUHFiKoNwvDBiklY++MWFKqLZ4LT0TrLUPigG9JedsXErV9hWcxuZKpzbDqvRERE9iYSC8RMjCLQZc2aNbcluaFkgkOzZs2kAALxgXWfPn2k2fUcHBykmf3EjILiA3hdsAkR3Xt6j38B1VsUB9fYysGxYvckl48cxLyXxmP/ssWIOX0CV08cw/Zff8KCSRPRccSj6PX0RARWrwkHZ2c4e3jCnmQKBZzdTc/q6ubjZ3V7dX4eVn02HWd3b0fhv0FaZREQUR0DX3kLxzevs1g9IzcjHX+8PwnHNq5Bfo7tM24TERGZIpIVqq1ahfBff4V7nz6irIBxA6US7n37SuurrVp5R5IbBDHDuQhor2j1BkMiyFYEKs+YMQPdu3dHcHCwdE8jAnarV68uBd2K4GYxg7i1oGER3CwCyUXQsgi6FgHvIthfzJwv7t1+/vln7Nu3Twpy1zF8riO2EfsUgdqiH5GsIJbp7rXat2+PF198EYcOHZKCtsVs52IWdcNZ2MtDBA+LYGVdEruoyiBmq9cRQeSiEoUI3Baz5Pv5+UmJDy6iokdoqJRwMHXqVFy6dEmqBiFeOzkV/V0ogpV1iR/2IqpfiADrsiYAlHzvRTKASDgR7584ByIRQFSrmDhxonSORaC3peQGnddff106dpE0Id4j8V6J/kTyi3gtgrLFeluSGwQxQ70Yk44t1SkEcQ5ENQRR3VG8Z+LaEdezuLYNq1II4lgXLFggVQqZNGkSWrRooX9fRbC7OA8i2F3M2i/Og2hvjrgGz5w5I1UbENetCOIX7cU5EPtu27atdH2INp988olR9RJdooyoPiDGUFbinItjFtU0xLUo9imOQyRL6I6vPMkNhu+FSPx55513pPGJCg1i/OK6EMlFgwYNwnfffSe9v6ICQf/+/fXbimoKuuodhsT5FNdegwYNpPMkvr/F2Eu+R/b+OWWNPa+JkJAQqd2YMWOk57rvL3Hu1Gq1Xa4dIiIiIiIiIiIiMibT6uraElWy8zE3sPHoBWTl5iPE3RWLRnyNwqw8s+1HvT0YT05/pFz7SrmRhsdqTECumf59gr3xW9S3cHAsqoTwQtu3ce6g8cxuGkcF4ibUQ1546Q+TnC6nI/iHc5AXFAXqpHXyQ+KjESUSFrRwVChQ+9/goVpefnikdlO0CgzFkuW78NZV87O1BoYkIygkxez6fLUCZ2ICjXKUwt47C8erxUkKn2x6D0s/X4XDG48bbautoYJ6RiDgbfzPcw+VC2Y0eQoNPKua3S8REd39xAyXIvhEqPba+1B5lg4yKYuCtFREfz5Neh4TE1Ou2TOtEf3qxlySYVUFEdxiayCELcSH0rqkhZ49e0oBLikp5n//imAXMYulbnY+Irr3JFy+KFUjyM/NhYefP/75YwG0GvPB9x2Gj0HboSPLXblBJDeIRAFTPPwD8NSXP0lVHYQFb7yAm1ejYW8KlQN8Q8Okn6d+YVXRuGc/VKldF4dWLcOu38sXNGirER98gj1//obYM2Yq+pXg4umFIW9NlZI+iIiI7KEwMxPqxERosrIgd3WFMjAQijIEjpNlIkldBCkLLVu2lILoqXzGjRsnzXCvO68ikeR+kZOTI00iIILjRcC3SBJhBcUiIthdJDXoKl3Mnz//jr5XRERERERERERERHcL5Z0eAP131AkLkB46OePP46/Zq0229QrwxIMT+pZ7XxvmbjOb3CAkx6dg19J96DmmM+KjE0slNwjyvEJU+foMMtr6I711AAo9VFCm5cN9/w24H7wJ+b8VHvIDHJE4pmRygyBDXqEGJ2/cgCxHDne1C66pbmD9xD+wNfIc8Hx9s+Pz8Ss9E5IhB2Uh3JzykZlrMKNsibisld9ugKOLcWl4rYMM6ukBpZIbhPSCbLx9fC7+aP8OXJQVm6mWiIjuEuJXVUVTWW9DKqy55IbKJGbwNKzIsGXLFv1zMYOemF0yOzvbKOFBvH7zzTel2Q5F0AEDMojuPUE1akkPnYykm4jcuNZkW1dvHzTu1a/c+zqxZaPZ5AYh/eYNXDq8H7XbdEBSbEylJDcIhQX5uBF9WWSMwdHFFUnXY3Bw5V+4fOQAKps4t0oH43sSS7LTUrHikw/w1Fc/QVXB6hlERESCSGZgQoPtxCzmImlezKRessqEKWKWdR0xGzqVT25urjQ7viBm0RdVGO4nooKHbub/J598kvfSRERERERERERERGQVExzojnn60zEixgZ/f7MBBXkF+uURDcMwfu54LDh/FhtXXkRugRr1gwIwpmUTdKhuW3WBf1ZYD9Y5tfuslOCQmZKFAh8HpHYNQlZjb2iVMjhezYLXjkS4XEyH5+5E6WFOatcAQFEyucGAWKXQYv/1GOnhd+MK3BOyALUGUBZXYDCkVBWXNTZHqSjOaFAm5cMhtrh6g3DxaBRa9W1mtEzbzQXwNf9tL5IcNsYfweCwDhb3HXsxHqmJqQio6o+AsKIKFUREdP+Lj4+32qYyKjxUhsjIyFLL2rVrh7fffhv9+vWDUln0+/LKlSuYN28ePvvsM2nWSWHBggXSrJNipkUiurd1e/wZyORynNi8HoXq4r/B/SOqo+ujT+Hw6uW4dGg/1AX5CKpeC037DEB4w8Y29X3p0D6rba6fPS0lOORmWk5wtgutFtdOHZcet8uN6EsIqlG7TNtkpabg3J5daNS9t8V2yXGxyE5Pg2dAINz/rZpHREREFXPixAnMmjVLej5mzBj89ttvZtuKZPCvv/5a/7pXr148/eW0dOlSpKWlSc+fffbZ+y4B4Oeff5a+qlQqPPXUU3d6OERERERERERERER0D2CCA90xcrkcz8x6DCPeHIR9q48gNzMXNZpGQFnbD2N/X4aU7OKA/fj0DGy9cBnPdmiNV7uZD77fF3MNU39biagBXpD1awbXUynw3J0A1a1cab1WLkNWAy+ovR1xyVuD69cS8fbrP+Da242gcSn+dhDrs5r6wHdVDHw2Fs/ubEpeuIvVY9XKAVlh0fNbQ6rC7Xgy3E4kIbO5v8n2BflKODpZTnIoKCyuwuC58QZkJWbYdnR2wD/Li2dREzSNrc+CGpl62WyCw6k95/DTG7/hzL4L0mvxYVvLPk3w7OyxCK8bYrVvIiK6vcTvhpK/H8rTh07r1q2tttdqb0PJBzs4duyY0esXX3wRs2fPlqo3GIqIiMC0adPw4IMPomfPnvqgk48++giPPPIIatcuW+AuEd1d5AoFuo8dj7aDR+DykYMoyMtDYPWaUCiVWDb9PeRmZerbZty6iYsH96L98NFoN3SU2T6vnDiGzT9+LVVosCb1RgJS4uOw+n8zcT9SKFW4dLjslSJizpw0m+AQc/oEdv3+CxIuX5Rey2RyVGvWAl0ffxreQZZnmSYiIiLL+vbtq09wWLRoEdq0aYNnnnkGDg4OpRLGn3jiCX0SvEgAHzx4ME9vOURFReGdd96Rnnt6emLcuHH31Xn88ccfsW3bNum5uIcODg6+00MiIiIiIiIiIiIionsAExzojvP080DfJ7rpgyL7/vCrUXKDoR/2HETbiDC0rxZutFxs9/mRZdh6fR/kDQCvFHckpXkgrXMw0lsHIPjncyh0U+LmwxEo9Cj6QG4tsrHxzwUo7O9jlNxgKOnBMDifT4fzleLAppJkBcWVFGyikCO9jT98V15BXqgbCgKcSzVxzguFxumK2S5y85XIynUANFp4br4Jrw2lg6eqNgjDnhUHyx7kJZWcKO3UP2fxRq8PjaptiPN+aEMkzh96D1/tm46QmvyAioiI7g0jR46UkhNEMElubq4UUGJplsyWLVvihx9+wKhRRUHNhYWF+OSTTzB37tzbOGoiqiwunl76gHqtRoO5Lz1tlNxgaO+S3xHeoAlC6tY3Wi7+Nl73zec4988Om/cbdeQgoo4ekqor3G08/AORftN8JTtbeAVXwa2Yq2XeztzPY1F9YtnHU6ApLE4G12o10jkUCQ+jp8+Gh39AhcZMRET0X9a9e3epot369euh0Wjwwgsv4MMPP0Tz5s0RFBQkJXyLe6jjx4srQrm4uGDx4sVwcrI+sQoB6enpUjJI1apVkZSUhC1btiA7O1ufSC+SHO5lv//+O1asWAEPDw+cPn0aBw8W/X9aHJc4PiIiIiIiIiIiIiIiWzDBge4q+67EIDopxWKb3w8fN0pwSM67ia8ufIokeRxqhhUtqxmWgLRMZxw+XRO5cED8k7WhcVYACuNAmQJnmZhW1OL+0joHWExwcD+aguxGXhb7kBWW2K+fE5SZaoR8eRLpHYKQ0cofhW4qhPt4Y2zblniwXi18cPYrXMm6XrozjQzqkx6ocjwNyvXX4ZCQV6qJp587ajSJKJXgID+cg8LebhbH2sq3jsnlP77xm1Fyg6H0pAx8+vg3eH3e8wirw0oORER3FTvGzIrAhPtltkURTCIeZTFixAhMnToV58+fl16vW7dOCmi2lBhBRPee6MgjSLthObA/ctNaowSH1IR4LP1ocvkSAu6y5AbvKiFo3u8h1GrTHkunvYOk2GulG8lkcHJ1Q2FBAQryiqrlmUoa8QutiksH95V5DBFNmptcvmPBz0bJDYay01Kx7tvZ6DP+BXgH856EiIiovP766y889dRT+OOPP6TXN27cwIYNG0y2rVu3LhYuXIgWLVrwhNtIBP4fPnxYX9XAMAl/woQJ9/x5FAkvy5YtM1omKoD8+uuvCA0NvWPjIiIiIiIiIiIiIqJ7CxMc6K5yNuFGmdoUatWYdfYjZGpulWrn6ZaD1g0vYvfR+tC4KmGyMIEN8Yh5oa4W17sfSEZyn2AUBJmZpawQkGmMd6TIKgrKUeQWwnvrdekhgiMXXP4GQRFFM45+1PBlLL62BttvHEB2YS5kkKGxVx2MCOuPep1qoFBdiG9fnId1P2+VnuuE1amC5798Apt+3Vn6cHdnA/EFQLDK5FD9HD3RI7BZqeWxF+Nxdv9Fi+fhzL4LeLLey2jZpwnemD8R3oGWkz6IiOjeI5Ib/ssBCeJ3dZ8+ffQJDgkJCYiNjUVY2L8ZlkR0X7gRfdl6mytR+ucF+XlY/P7ryE5Lw71OJpNj+Psz4ObtI70eMXUm9vy5EGf/2Y78nBwpsUEkH7Qf9giCa9ZBoboAW+d+j1M7tkiVL3R8Q8PR9fGncXKL6WBIa5UjarftUGr5zavR0sOS62dPYd4rz6J6s5bo89zLcPG4t2dAJiIiuhN0FRleffVVKXnhn3/+kao2ZGRkQKVSISQkREpoGDJkCIYOHQqlkh8xlJWo4LBq1SqpmmCtWrXw9NNP4/nnn78vkucbN26Mhg0b4tKlS3Bzc0ObNm3w3nvvSV+JiIiIiIiIiIiIiGzFTx/oruLsoCpTm08OLEKmQ+nkBh1311wE+KYgIcXbdAMbJkuV5xVaXp+vQejs84gfXwO5NdyM+xbJDfny0uM6dLPUsqbdG+qTGwRXpQvGVR+OR6sOQnJ+GlyUTvBUuevXK5QKvPjd03hk8lDs/fsQcrNyUbNZNVw4EoV3H5gBTWFxgJGOTA0o374B9ccBQBXjcx3o5IWZTcbBUVH6PUhNTIWtDm88jsdrvYBhrz+IAc/2hncAg4qIiOj+Ub16daPXYjZTJjgQ3V9UTk7W2zgWt1kze+Z9kdwgVGvWQp/cIDi7e6DnuOfR5dEnkZmSDEcXV6OkAYVShd7jX0TboaNw+cgBqPPzEVitJq6fP43lM6YYJT3YwjMgEEPe/kDqt6SsNBvvSbRaRB09hLkvPo1WDz2Mxj36MNGBiIioHFq1aiU9yP7mz59/357WGjVq4OTJk3d6GPcMUSVSPIiIiIiIiIiIiIjIGBMc6K7So3YNfLRxB9RmAmG0Ci0KVNloNP9zZMsL0bjKVYQWx9+YFOibZjnBQTwsTI7ldizZ6rhVyfkIn3EWOdVckVPLHent/FHg5wKZtnTH7gduwjE+x2iZi4czxn/2mMm+HRUOCHb2N7tvvyo+ePD5PtLznUv2Yu7bv1scq+y6Gson46Dt4AJNCyfp2N0uy/G/b95EsJvp/QSE+0kziGm1NmSEAMjJzMWCqUuwZNZKTFk2CS17N7FpOyIisjPd77mK9kF6zs7ORmejsNByIiQR3XtqtmqHnb/Ng1ZrPji/IDcHXz0+DOr8vDIH8d+tnNzc0Xn0k2YTOryDqpjd1sPPH836DJCen965FXuXWL4nMcXR1Q0jPvgU7j6+ZvZRnAxui/ycbOz5YwEOrfwLgyZNRliDxmUeExEREREREREREREREREREd1+paeWJ7qDAt3dMLxZI5PrtEotCgILcEGZhgy5GoXQQq6wHnUpl5tvIxPR/Ra6UCblwWNf6WoL5jhHZ8FnUwLCp5+C165EyAyqP7g7OGJs7UYYrQqFg1PRjKRyhRwdBrfGl3umo0aTCFTUn7NW2tROVgjId2VD+UUylLOTkbvyFjZ8v8Vs+4Bwf7ToXfaAoNysPEweOAMnd58p87ZERESVLT8/H7GxsUhJSbF5m6SkJKPXvr6mA3GJ6N4lqgjU79LdYpvkuFgpyeFeS25wcnVD834Pom7HrlCodPckStRu2xGjPpwF39CwCu/j8Orl5douLysTp7dvNrvep0oIQus1LHO/ItHhr4/fR/yl8+UaFxEREREREREREREREREREd1erOBAd53JfbpCLpPhz6MnUGAQMKRxywOUxjk5ydkuqOKZZrG/lHRXyzvUAKqEHBQEOgKK4v4dr2Qi6JdLUOSUfWZmuVoL/6VX4LMmBnlV3SByLBZvmI7QqoFA79548aunkJyQCg9fd7h7u8Ee0m6l4+KRqHJvv+uvfXjio1Gllh/bdhJ/f70eZ/dfLFMVB53CgkK82mUKxk4bidGTh5Z7fEREVHYybdGjIiq6/d1IJDU0atQIqamp0us333wTM2fOtGnbI0eO6J+7u7sjIqLiCYpEdPfp9fQEKBRKnNqxGZr7pFKLTC7HmE+/gue/lRDyxz2PrLRUOLt7SIkP9pCRdAu3Yq6We/sLB/ag7dCRpZZfOX4Uxzasxs2r0YBMJKmX7ZeTRq3GondfQ+cxT6LVwCHlHh8RERERERERERERERERERFVPiY40F1HKZfj/b7d8FzH1th64TJyC9TYOGcD9nVVlGobk+KDOgGJUClMz5yar1Yg9qblmZUb+QVivE8YVv+6FZG5ydAoZHC6mgmnK1kVPhaRHOFyrigB49S209h2dScK8tWo17YW2jzQHApF6WMqj8LCQhxcf6xCfYhqCyUtmbUSP725EPYw//0/oNFoUL9dbdRuWcNuiR1ERERlFRISArVarX+9ceNGmxIc0tLSsGnTJv3rLl262O13ORHdXRRKFXo9MxFtHx6JqCMHUVhQgGOb1yI1Lq5S9hdcqw4adu2F45vX48aVy5WyD1FtIvb0SZxKTICmUI2QOvVRrWkLKfHBHkQiSNTRQxXqoyAvt9Sy/cv+wJ4l9rkn2bVwHgrVagTXqI2gmrXg6GIlGZ6IiIiIiIiIiIiIiIiIiIhuOyY40F3L380VI5s3RnZGDuac/AHoWqNUG7VGgcPXqqJV+FUoSyQ5FKjlOHK2OtSF5gMPX23THuOatYSzSoUBo7siPSkDG3/ZjsvHr8CptxPaDWyByQNtm9HZms+f+t7otaje8MqP49FxcJsK9XvldAymDPoEcZcTK9RPjabGM1BHn7yKn9/6Hfa0YOoS6aujswN6PdYFz85+HI7OjnbdBxERGRATXFe0AsN9WMFBVCQaMGAA/vjjD+l1ZGQktm/fjm7dulnc7sMPP0RGRob+9fjx4yt9rER0Z7n7+KFJr/7ITk/D9l9/qpR9iKoCTfs8AJWDIxr37IvstFSc2rEFt65dgYOzMyKaNMfKz6bbZV8bvvvC6LWLpyf6PPcyqjdrVaF+b1yJwsrPPkL6zRsV6se/ajWj1/GXztstuUFnzx8LpK8qRyc07NZLOv9Klcqu+yAiIiIiIiIiIiIiIiIiIqLyY4ID3fXysvMgzyqeZbmkW1nu2H6xDsK9kxDgmAUtZEhKdseVJF/k5TtY7LtNcJiU3GCYdDDs9Qf1r3cu2WvTGGVyGbSaskWAimSKD4Z+hsad6+PdP16GT5A3yiorLQtv9fkQSXEpZd62VF/pOTh38CLqtq4lvV79/SZotZaPSaFUoFBdWOZ95eXkY82czYi7nIAZGyZDbqdZY4mIiGw1YcIEfYKD8NRTT2HPnj0IDg422f6XX37B7Nmz9a/bt2+PBx54gCec6D9CnVe62pm9hDdsIiU36Lh4eqH1Qw/rX5/eudW2jmQywMrf7yVlp6VhxcwPULVRU/R/cRJcPDxRVjkZ6Vj28ftSYkZF5WZmIjHqEgKr15ReH9+03uo2crkCGk1huapFHNuwGmk3EjD4zSnlGi8RERERERERERERERERERHZH6OK6a7n4eeOsCwVlMn5ZtvkqlW4eLUK9h+uh4P7aiFxoQwFKVYubw2w9uwFi02iTly1aYxlTW4wdGLXGbzZ60Pk55o/PnM2/brT5uSGpt0awtPP3ez6U7vP4uWO72HHn3uk19Gnrlnts+uI9ujzRDcolOX7URKZcg7f7/kAK698ihNJ28rVBxERkakKDbpHRIRxhSKdjh07YuzYsfrX0dHRaNmyJRYuXIicnBz98rNnz+LJJ5+UHrrEPw8PD8ybN0/qn4j+G1y9feDk7lEpfZ/dvd3i+ptXo23rqIzJDYaunozEsunvo1BtPrHcnJPbNtmc3FC1UTM4uZm/J4k5fQKLJr+OiweLEs1vxVi/H6vXuRvqd+4OWTmTpqOOHsKSae9i7Vef4tyeneXqg4iIiIiIiIiIiIiIiIiIiOyHFRzorqdQKDBgXC9ErdiCG09VM9lGnl0I3z9ioUougNPlNChy1MgLdkZOffMzkMoKZDgce91oWdqtdClpIO5SPNx93BAflVihsfsEeSE5IRUubWXwGqWEc3MZtIVA9j4NUhYWIu+0FhqlDCdccjFq7kJ4h/qgWXAwRjRsBD8XF6v97197xGqbqvVDMeGrJ9GseyPcikvGwmlLsfbHLSbbimoMnz35HVr0bgIXD2erfQdFBGDshyMxdtoIKUnj2jnj82mOYzsFWszKQv/gSASq/g3oygF2XAxGneBvEezWzqZ+iIjIMpm26FERFd3+bvbDDz8gJiYGW7cWzY4eFxeHRx99VKrmEBgYiIyMDKSmGgfturu7Y+PGjahTp84dGjUR3QkKpRJNevbFgRVL7N739XOnjV6LZAFRtSE1MV6qqJCamFCh/l29vJGVaj0p+saVy1j8/iS4enohpG4DNOzWy6aKDlFHD1pt41+1GrqPHY/Q+g2Rfusm9i5ZaLYyhaZQjQ3ffYGqjZvBwdn6PYlXYDDaDhmBDsPHYMlH7yItIR5lFXP6uPT13J5d2PD9lxjy9lSEN2hc5n6IiIiIiIiIiIiIiIiIiIio4pjgQPeEEW8+hFN7zmHbvCtIGhqCQk+Vfp3jlSwEzLsCp2vFsy0LLufSkVvbE9qSV7kI9lQD8kIZFAazfK6fuxVfT5yLgrwCu41bJAloemXA/yXjQbj3UsCtmxzXP5XhXN36UPs54WZBKhCdim3RUfju4AF8/cAAdK9W3WL/hQWFVsfQvGdjKblB8KviA0dnR4vt83LysfnXnegyrD0OrjtmsW2XEe2L+g3xxYBne+G7l+fr12nlQH4NZ2gd5VDF5EKRVjRWp9ZytP02EyN9j0JRImo2wjkeKbdGwtNhE1wcGDhKRESVy9HREevXr8e7776LL774Aup/Zy7Pz8+XEh9MVX2YM2cO6tevz7eG6D+ozZARiDt/FjFnTtq1X5lCoX8euXEtdiz4qVyVFMxxcHaxKcFBSLx8UV/VYP/yP/HQa++iauOmFrfRqK3fk0Q0bSElNwgefv5QOjhYbJ+fk4Ozu3egTruOUlUHs2QyqY3Ur38AGnfvg92Liu9JyqOwIB9Lp72DJ76YA58qIRXqi4iIiIiIiIiIiIiIiIiIiMquOLqb6C6mclDho9VvYdrjw9F/SS5q/RyLwB+iEDb1DMKnni2V3CC4nE+BPF8OeY4MsoKipAbxVZ4rg7yg6NLvWj1C+np060l88cwcuyY3CIn5CfB7oThgyZBMKUPwGzIgqHSeUY5ajYlr1+B6errF/uu3q211DA3aGycKXDlTOmCzpKtnYtB1RHtENAwz26bL8Hao1jBc//rYtlP651k9vJHwXW3cnFkDtz6ohvg5dZD0cigKPRTwm+KI7p4XSiU36Lgo83HkzCtWx0hERDbQ2ulxH1OpVPj0008RFRWFKVOmoFOnTggICJCWe3t7S8kM48aNw4YNG7Br1y4mNxD9h6kcHDH03Wno9cwLCKpZGyobqgvYonrTlvqkgq3zvrdrcoOQEm9blbWSCnJzsPLz6VaTI6rUqWu1ryq16xm9vhVzzeo2SdevoX6n7vAONp9kUL9TN6P1104VVWKwh9Wzp9utLyIiIiIiIiIiIiIiIiIiIrIdKzjQPUOpUqLvE92kx4KpS/DbtKUW2zsm/J+9uwBv6mrjAP6PJ03qbpS2UNzdXTcYLhNkgwHzb8rGlAnbYL6xwRgTYMBwd3d3L20pdbc0nnzPuaVpQ7SlRd/f82Qk95577rk3bdfbnP99iyG7mgtVjDd4Op7VeoVYjNFNG3PP/5u5BiZT1c/g9BzCB49vve9SAqEJoQE5uJESYLVOpdfh4z074S2TcnNL24XVwGO1YyARlH3bPj6pF5Z/u95uMMM/zBcdBre2WCb3dHM6btZGLBXjnb9fxsdDZiL9RqZ5HV/AR+9xXfHyzxMstik9f4WP+SL/2WDLDkV8qDp5QdaIh+CgGwgWFTrcf5DPGRhNavB5UqdjJYQQ8nCrzP+fK7NNeHg4Pv74Y+5BCCH2CIQiNO7Rh3vsXfQnjq1dcUcnSypXoFGPPtzzO+2rOrCQw/Y/ZkMikwM8IKJRU8S07cCdh1JNevXHqc0bYDTYDmZ4BgYhqnlJiKOUxM35NYnETQ6RVIq+L/4P6779EkU5WeZ1PD4fjbr3Qffxk1BdWAjDaDCAX67CBiGEEEIIIYQQQgghhBBCCCGEEEKqH1VwIA8ktVLtUjv/xVchvZ5fdgtqVjWAZwKPb0KHyHCYYIJBb8DJbWerZZziKOffYgq59bGwcbHvzu0J17Hs0gUsv3QBb2zbhG7//IHLWWVhg4Aa/nh30asQScomGJXy8vfA9DXvcMGQ8rqN7OB0TN1Gd8SNS0l4t9/nFuEGxmgwIvlaGlZ8sw6rftyIjMSS9c26N4JRykfBKOuwRilRKA8yvtbp/kV8I1ILk5y2I4QQ4gRVcCCEkGqj07h2TWIXj4eIJs1hNBq4vpIulVVEu5/EHj2EC3u248Lu7dj40yzMf20SspPLqsKxCgr9Xvwf+OWC2KXkXt4Y9Ob74PMtQwJ123d2ul/WJiMhDqu+mm4RbmBMRiNXmeL4+pU4tXkdCm+tr9GwCapSQVZGlfZHCCGEEEIIIYQQQgghhBBCCCGEEOeoggN5INVqFulSO4HagKA/LyLlhYbQhiks5ntuuRaL48kpWDBsSNmdnhU8iPpKIWgj5gIGhtM66NepYMozoe+z3XHx0BUkXkp2eZzGQud3kNbp+TbDDewOqbdLLSrCuLUrseuZZyETlYQaOg1pg9qXvsf637bi/IHLEAgFaNO/OTdeD193qz7aP9EKddvUxuUj12yOp9PQNqjdPAovt30XeRksHGLt3N6L3IP57Y2/0XtMFzw740n8sn0zTG7273CqNQiRZ3CDkR2i/cIWKNRLcCI9BeM8atlvRAghhBBCyD0UUDP6zjowmXDl4F4u2DBk6icubdKwe28kXTyPvLQU3CsFmRlYOeMjjP9uDoS3rknqduiCoOgYnNm+CSlXL0MgECC6ZRs06NITUkXZdVipmHYdcXzDamTEX7e5j3odu8I3rAb+eeslqAsLbLa5eeEs92B2/f07V1Wj7dDROLT8X+i1zkPVrog/dQLN+j5eJX0RQgghhBBCCCGEEEIIIYQQQgghxDU8k3lmNyEPDq1Gh6ciptidgF9efudg5DxW0+76VmGh8PvxDK7mxEP6jRf43rcFDpRG6D4qwp9Lv8P5/Zcw4+kfbfYj8APknQTgSQHNRSPUZ0yQd+MjZKZ1dYXyDpyoi0KlW9n+WJUJJ4UfZnTvhVENGqOyivKU+Pb533Bg1VGuIgPDqkD0HtsVL/wwHokXkzClxdsV6pMFKvSjQ/FXwSmb63kwwUtWjLo+GXjS9wRqSSzvwlreqvRGSLr5NILWFkKn0aFuq9roPa4rFF7yCh4pIYQ8epKSkhAeHs49r/3ChxB5eN1Rf7qCPFybPZ17fvPmTYSFhVXJOAkh5EHHqi7MnTIOamXRHfcV0bgZigvykZkQZ7eNQCTGhJ9+R/zpE9j6m+1rkrup30tvoH6nbpXeXlVYgK1zfsT140dhMpVckwhFYi7E0XXMBKRdv4YlH75VoT6b9nkcBr0O53ZsQVWo064ThGIxDHo9gmvXRYMu3SFxo2sSQgghhBBCCCGEEEIIIYQQQgghpDpRwIE8sM7suYD3B3wJdZHaYbubbzWF3k/msM1HQQ2w3H0V+P62qw+YlCYoR2ZBDhmU+cWWKwWA31tCeDwhAE9YVpZAc9WI9Pd1CPxACFlj24mFfKUE6VpPGAx8FOW6IS/THXoD32nAoX+tGHzVrjty0/PgHehV6Yn/GYmZOLPvEq4bixDUKAzNImsgwtML2xbswddjf65wf91/H4J/fK5aLefxjAjxKIBEaIBMoEWULAtjfY9BLrC+s2qi2gtvXR4E4Q9ZcNuRZ14uU0jxwX+vo1XfZpU4UkIIeXRQwIEQQu6ehLOnsHrmpzDcacUAHg/tRzyFg0sXOm0qlrlBq7rtmuQeYOGGbuMmccEMuZdXpSf+52ekIenSBeSlpcI7JBShderBMyAIZ7dvxrbfK35N0qhHnyoLONyOHePAN6ahRsPKh80JIYQQQgghhBBCCCGEEEIIIYQQ4hgFHMgDLTUuHZ+N/BZXT9i+06mJByR82c5pP6/2qYWdhY4nwWSck8P0ax7k53ItlvtPE8JjkNDmNvoME5InauD3shCKbnxzAMJoAAoNUmRp2CSgslCEXifAzWv+0OkdV32omQVIvzwGvc4AoUiA9oNa49nPRyO0VjAqYsmFs/jhyCGk3brrLBtJh/AIDDME4ufhFb8rrIkPFC5tjgK+5QQvbzclvGVlQRSpQIdwaQ66uF9HA2kaxHwDigxibMuOwZKUllAWCBH43BXwNZYFZqRuEsw99w2CIwMrPDZCCHlUUMCBEELurtzUZKz9dgayEhPuqJ9mfQfg1OZ1eFC4+/pDmZcDo8EAgVCI2m06oOOoMfAMqNjv6qe3bMDhVUuhzM0pWcDjIbJpC0Q2a4md83+r1NjEUhm0alWltnXat0yG8d/+BoWPb7X0TwghhBBCCCGEEEIIIYQQQgghhDzqnNwnnpD7W3BUIH489AW6jLAdYuCZAJ5a77SfbGOa0zbScBPSnquDvA6BUNeQo7iWBxAthPsA2+EGRhjAg6K3AGnv6pHwhBap03RIXczDDZUPsjQKi3AD115kQFCNWxN7HFDujOfCDQz7d++yQ3itw/tIupYKVy06dwbv7txmDjcwLE6w/+YNfJV/EdIwT4fbGyNE0I7xhnayL/R93WGS8MAzAn7z0iDklf/RYoKHRGOxrdogwjVlIP5Kb4OpiY/jzbiBeOrMM5h3swOKtGJ4zU6xCjdw2xVrsP7XrS4fIyGEPPJMVfQghBBil3dwKJ6e8R1qtXIerHYkNzXlgTrLhdmZXLiBMej1uHxgDxZ/+BbyM9Jd7uPEhtXYMf/XsnADYzIh/tRxHF+7AiKJtFJjE0ql4PGr588dWpUKZ7Zvrpa+CSGEEEIIIYQQQgghhBBCCCGEEEIBB/IQyEzKxsVDV+2uV5zOcri9v0SG6zsuOd1P6RzPrOE1kfRGI6S8XB/aL2qAJ3C8naJHSQN9OlC0xQhltDuMrNSBHTKFFmKJZQWE8gSFOrgfy7RanpdZgPnT/oUrNHo9vjm83+76VGURAl7vYHOdSQRo3g2Aem449E95Qz/YE9r/+UP1bw0Y2rhBuyUF78s6o3tQHfDBA59ngoBve3as3iSAxiiGChIIeUZIjhbA94MEyA4W2B3byR3nXDpGQgghhBBC7paCrEykxl6p9PasGkB63DU86FhQ4cB/C11qq1OrcWj5YofnNLh2nUqNozgvF93GT+KqQPAswtdV48a5U1XeJyGEkIfDX3/9BR6PZ/GoU6dy/z9jBg8ebNUfuT9dv34dBQX2/6ZJCCGEEEIIIYQQQgghhBDXUQUH8sD7+eU/kHkz2+56zz0p4Ct1dteL/7uMzDUZTvdTkO9WUnCh3AeJAoHz21rzbr/paJTI6TZSsc7mHbMFRToEz70MvtZoc7uDq4+hIKfQaf97bsQjV6122OaKlx7PzxwDhZfcYrn2BT8YurLqE7dRCKB5PwDGSDEC84T4pd0onBz4Hvb2fQtCZykQAD5vxMN3xk1ILhVzr1kGxFBPAkNzGYw+ZdubTHQrcUIIqRCq3kAIIdVu+++/WFYhqCBVQQFUhQ/HhLirh/dDqyr5nd6R6yeOQFOsdNimKCcbHUeNgVjmVuFxuHv7YsjUj/HyP8vw/Oy/qq2iAyGEEOLM1atXcfbs2QqfKDZZftOmTXSC73NqtRoff/wxGjZsiJycyv8+SAghhBBCCCGEEEIIIYSQMsJyzwl54GQkZuLYJsd3zxTlaFBzYSzyRsYgx6tsonygQoHoU/lIPZgCA5tMH6+HINL2t4RWK0BujvWk/kKlzOkYNVdvm5BfbAQkjif8mwx88PQlESTTrTyF/5EsuK+KA19jO9zAGPQG5KblwcPH3WH/+RqN03Hnq9UY/sYADJjSG8c2n4YyvxinTl3E+l437G8k5kM32BMhtYK4lxKBEBKBAh39mmJ35gm7mxmv64BYdsAl9L3doXvaC6bAW2EQvQmCg0qIf8lG8x6NnI6dEEIIIYSQuyU3NRmJ5884bSeSSMHj86BVqczL3P38IXWTIzMxAQ8CgUgEg85+eJxh61lYw1koQV1U5HR/amUR2gwegWb9BiDh9Alo1WrEnzrOhSic8QoK5v4ViSUQ+UoQ3aINYo8dQlWIaNikSvohhBDy6Fi+fDkaN25coW3WrFkDjQt/wyP3VoMGDRAXF0dvAyGEEEIIIYQQQgghhBBShSjgQB5oN6+kwGh0fkd/SYYKnjOOQhbkBp2/FPxiPWKkHki+nFLSwAio38yD9GsvCKItvy00GiHiY4NgZCUFbmNgDyMPAr79MRQs0yOiaSHqd8sFX2hCXIIWV7xrstoONtsb9DwUF0jBY+uNZa34V/Ichhu4NgI+vAO9nJ6Pml6ut5G6SdBpSJuShX08sf5CosPteB3cEdMi2mLZyIg+OJZzEUpD2WSuUiaDCYa5ZVUndAM9oHvRz7KRkAdDZwU0URI0qNEABdmF8PB1HOIghBAC8Ewljztxp9sTQsjDLiclyeW25cMNjFjq9sCEGxhn4QZGIBRCqvBw2s47ONRpG6+gEO5fsVSGmLYduedGg95pwIGNwS88wmJZ++FP4sbZU9BpHFeyc0VI3fpQFRVCpqBrEkIIIa4HHKZPn16h07V06VI6vQ8ACjcQQgghhBBCCCGEEEIIIVWPAg7kgabwkrvUTl1UcrczcVox92BuosCijSnDCNX4HGhH+cAwzIcLFhQVSpGfJ4eJvbotjyB3U6NOrRSojSK48bTg2cgr8E554rl3diCmffl9JSNNcwXzMzogU2c9ISY3zRMmG2EKUa7zO7a1G9jSpYn/rULCUNvHF9dysu22GW3jrqR6E4t0OCZxl1hU2NixaD9y0/PQs15THAy/iExFvnm9KVEP/a8FMB0pOTaThAfdWG+7fRvDRJg291dIVhSgdf/mGPfpKEQ3YWERQgghhBBC7g2Jm2vXJLYm1mcnOaiOVkVkHp5QFZT9Dl7darfpAImb4+oNTI1GTeAVGIy89FS7bZr07Gu1zKh3fk0iLvee5Gek49L+3dw5aNyzLy4f3Adlrv3rIFes/OIj8Ph8RLdojQ4jn7EKUxBCCCFMzZo1oVQqkZmZiUuXLuHixYuoX7++SycnNzcXW7du5Z4HBwcjNdX+/y8JIYQQQgghhBBCCCGEEEIeNhRwIA+0mJbRCK0djORrVfQhnwkQLclBlmcAVHUdVzkICc4Gn8+KLPChNEgg4ush5BnBgwkGEx8avRDv90uA0WgZpGCCJIWYHLgXXyX3gdZU8m1oMPCQm+aBvHTru52K0oshTSircmCLu7cc4z8b7fKhftWjD8asXo4indZqXbeISIyo39BqeSMv52GCpr5R3L+/v7MQy79dB6OhrOqEQMiHMZwPBAuAPCP0CUYUtA9A0f+8YBLyoeArIVVYhzvK0/dwh2hZPg6vP4Ezuy9g5s6PUaelZcUIQgghhBBC7pbQOvXh4R+AgsyM+/Kku3l63bWAAwtTtB/xlEtteTwe+kx5FStmfAS9xjrMXatVO9Tt2MVqeWhd5xNDw+s3gslkwu5/5uHUpnUwmcquSXh8AaqCyWhE7LHDuHnhHEZ8NAMBNUuugwghhJBSAoEAQ4YMwZw5c7jXy5Ytw0cffeTSCVq1ahV0tyonDR8+HD/++COdWEIIIYQQQgghhBBCCCGEPDIczyQm5D7HJsWM/3QU96/tBpXo0wQEzbsCz92pEOntf7N4eynNz1mFB61RhGKDBEqDFGqjGGHSPBiNp+zux0dcjFrKHKQneCM13hfx50KRm+4JE4/LWZSNR2eE36p4i20VXm7mihF8AZ+r3PDd/s8QUS/M5eNsFhSMVSOexLB6DSAVloQsanp54/2OXTHnsScgZOmN20TI/dHWN8Zhv8NrdMCK79bjv5lrLMINjEFvhCleD9NBDdS5Qtx4vzGyBteAupYHNDUVUDeyDnfczuRRNi5VkRq/vf6Xy8dMCCGPHFMVPQghhNjF7uTfYcTT1XaG+IKyCfl2r3scyL5ZPVUiJHI5G5D5HLBAwujpX8M7KMTlPsLqNcRTn32Dep26QSgSc8t8QsPRbdwkDHh9Kvg2wgj+EZFcgMEuHg/N+g3A0dXLcHLjGotwA2MyOq8AURGaYiX2LJxfpX0SQgipOjqlCQUJJuRcKvmXvb6bRowYYX6+fPlyl7dbunQp969CocDjjz9eLWMjhBBCCCGEEEIIIYQQQgi5X1EFB/LA6zKiPQx6A1cxICs5x7w8qnEE0hIyUFygqnCffL0JdY4W4MuZr6NAwYeIz0dqURGeX7caBpaA4ObNOP5ANEaa7nQ/fSOyseaKe9mC0vlKLORgMMHtSh68tyZBmlhksV1RXjH3r0QmxuTvxuHx53uhMmr5+GJmz774ukcf6I1GiMpNnrLn/YYj8eqJ33G9KM1q3Qu1+6G5ZxS++Wamwz5YiCP1+RgYPEsmMZXS65xnrvip5VInAM7vv4ybV5IRXifU6baEEEIIIYRUh/qdu8NoNGL/kn+gzC27JgmoGY3s5Jsw2Kia5gpWGWLoe9OhLS6GQCRCXnoq1n33JVc9oKrIvX0sxuwqjbIk8C2USNDj2clo2LVy1yR+NWqi/0tvwPTi6zAaDBDcCl870v/lN7Hss/eRk3zTcgWPh25jJiAoOgZrv/kCd0vi+TNcBQ/2fhFCCLn3WBWfzNNA7GojUvazcFvZOh4fCO0ERD/Bh3/TyoUHK6JLly4ICAhARkYGzp8/j6tXryImxvHNQ7KysrBz507u+YABAyCTyVzeX1JSEn7//Xfs2LGD21deXh48PT0RERGBnj17Yvz48ahTp47DPkrPSZMmTXD69Gnu+YoVK7Bo0SKcOHEC6enpXPCC9TNo0CBMnjwZ7u7l/r7pwPHjx/Hnn39i//79SExMRHFxMXx9fVGvXj307dsXzz33HHx8fFw+3oMHD2LBggXYt28fEhISoNVq4efnx4196NChePrppyGVSs3t2f6CgoJQWFhSKXfu3LmYOHGi0/18+OGH+PTTT7nnY8eOxbhx49CtWzerdpGRkebn7DhZO1tfn2vXruUCL2z87HyyZYGBgWjXrh2GDRvGnVdXvjYvXbqEv/76C7t37+be76KiInh5eSEkJASdOnXi+uratavTfgghhBBCCCGEEEIIIYSQ+w0FHMhDofuTnbigw+ld55GfWYCQWkGo27o2Phr8NQ6uOVahvgQiAfo92x1PThsK/zBf8/Jdn29A8JpzyO0VAmUDbxQVyeDpURI0sIV/251CbclT56F+xE1EBmVAKtZCqZbiekogrqcEwcjjwW9lPEQ5Grvba1Ra/PTiPEQ2rIEG7R1/OOkI+8DMlXAD4y1WYF6bl7Ej7Qx2pJ9FsV6DKEUgBoW1RS33YFw5FovslFyHfRTX94IuQGp9PMViLuQgFNk/d8JNBVbLMpNyKOBACCE2sCyekzyeU3e6PSGEPCoadu2J+p26IfHcaaiURVwlg6Do2ljxxYdIOHOyQn3xBUI06tEHbYeMhMK7bJLf6S0bqjTcwFQm3FCeXqPBtrm/wL9GJAKjat3RNYkr4QZG4eOLp7/8HlcO7MXVw/uhVau5yg5Ne/eHb1gNJF06D1VBPu4akwmF2VkUcCCEkPtA7lUTjs4woiDB9nr257qkPexhhEdNoPW7fHjHVF/IQSAQYMiQIfjtt9+418uWLcO0adMcbsPCBHp9yQ0+Ro0a5dJ+dDodPvnkE3z99dfc89sDE+zBwgmzZs3iAgnffvstxGLLG4/YwrZ78sknsW3bNovlGo2Gm5zPHqzPNWvWoG3btnb7yczMxPPPP4/Vq1dbrUtNTeUeLNTx+eefc8fA2jrC2k+YMAEbN26029/mzZvx1VdfcdUwmjdvzq1zc3PD8OHDMX9+SfWlf//916WAw8KFC83PbYUWXHXt2jXufLKgx+3i4+O5BxtTy5YtsWTJEkRHR9vt64MPPsCMGTNgMBhsvt9nz57FL7/8wgVb2DmoSHCEEEIIIYQQQgghhBBCCLnXKOBAHhoCoQAtejWxWDb4lf4VDjgYdAYIxUKLcEPStVSs/mkTpCYTguddhVHEg6GLGPjU/h3UbpxzR+v2jvelk/DRJPqG+bVYpETLOnGoEZCF3WcaoKBtAHw33nZX0tsYDUYs/3bdHQUcKkrMF6JfSAvucTu9zvJDNVvUkQo7a3jIy3CHb3A+d0e92/GPKCHYaVnNgvEN8XZt4IQQQgghhFQjvkCAmk0tf0du3m9ghQMORoMeYqnUItyQmZiAszs2437Exnt8/So89spbd22fIrEEDbv14h7W43F+TVLVFDRpkBBC7rn04yYc+MAIg9q19iwEsetVIzp8ykdgy+oLOYwYMaJCAYf//vuP+5dVXmBVDY4ePeqwPZvgzu7Uz6oClGIT+dkd/Nmd/Nlk97179yI/P59ryya9nzt3Dlu2bLGobnA7tVrNVZA4fPgw97pBgwZo1qwZF75gY4qLi+OWs+oU/fv35ybvs2oMt2MVCjp06IDr16+bl7GqFh07doSHhwdu3LjBVXRgwQw2xkmTJiE2NpYLOtiSkpLC9ccqNpRiVRnYMnbcly9fxrFjJX8PZv10796dO4a6deuaKzCUBhzYeUlOTkZoqP3KsAcOHOCCB6UVGlhVDnasbJzMnDlzzG1ZeKG0msXtlTJOnjyJ3r17Izs72xzuZMELVr2itBoDa8OqObAARJs2bbBr1y40atTIakwsuPHZZ5+ZX0dFRXF9sa8Z9n6cOnWKq+bBbN++Hf369ePOQXVXLCGEEEIIIYQQQgghhBBCqoqNKcSEPDyadmuISbPGVPjDmw1ztyM/q6xSwPZ/9nAfLpXi60zQb9dA+aftT0x1V/U4/JI78tNFdvehN/KQaLJ956wA7wLUj0iCuJb1h4K2HNlQsQlT1SmqcQ24udsPfnD09u86q1GJkZnsBU06H9CXnHNeig6i37Mh+SQdvNs2rdumNiLqhVXJ2Akh5KFjqqIHIYSQSots1hIdR42p8HantqyHplhpfn1hz4578i6I3dxcahd3smLB8uoUEBkNoURy1/YXVr8hPAOC7tr+CCGE2K7cUJFwQynWnm3Htq8unTt3RmBgIPf8zJkz3KR7e1gYYM+ePdzzwYMHu1RlYerUqRbhBlahgYUAWAUDNpGfrWMVDd577z3z30jZxP4pU6Y47PfKlSvcpPiIiAhuov358+exYMECLF68mJvg//3335v7y83NxY8//mjVB/t76sCBA83hBolEgp9//pkbH6tU8eeff3KVG1hYgYUpSs2cORN///23zXE9/fTT5nAD64+FR1hIYfny5fjnn3+48MW+ffu40APDQhPPPvuseXsW/GCBAMZoNHKVEhxhx1xqzJiSvzPHxMRw+y0NrpRiFShKl7dr1868PC8vD0OHDjWHG1q3bs1VWGBBBtY/e7Dn7OujRYuSsCxry7YpKrK82UtBQQGmT5/OPWdjYfti55eFZ+bNm8e93yyQUT4gws4JO9+EEEIIIYQQQgghhBBCyIOCAg7koTfs9QH4/dw3CKnl+oQTnUaHo5tOmV/npOXZbKecq0bOs4VQrdNAd04PzSEdCqYrkTuhCPpsHuZNrAtlnnWhFL2Oh4NF0VAa7U+6iQ5JQ/fHW+K9xa85Ha9Bb7AIYNxLMoUMfcZ3c9hGcc72+Syl04hgWlgM2RPxkA2Oh2z8TYiW54N3241Y2Yd4V47G4gmvMfju+d+QHJtaFYdACCGEEEJIlWozeATGzPwZHn4BLm+j12iQcKbsmqQ4L/eevCv1O3dHnymvOm1nNN79qgn2SOUK1O/k+JqkyvB4SLp4Hj8/OxLb581Gfkba3dkvIYQQM/Y3saMzKh5uKMW2O/qlsdr+tiYQCDBkyBDzazYR3x62jlVZYEaOHOm0b1b9oHyw4M0338Svv/7K3cm/PJlMxk2+nzVrlnnZX3/9Za50YI9cLucqAHTt2tViOZ/Px6uvvspVLCi1fv16q+2XLl1qrkDB/o7Hju/FF1/kzkl5rNLE6tWrMWjQIPOyt956C8XFxRbttm3bxoUtyvfPKimw8ZTHqkOw/koDGIcOHTJXomDLWFCh1KJFi+wev1ar5YIDpdux6g+VwSoulIYyWICBHUPDhg2t2rFqDSzgUlq1gQVJZs+ebdGGVbsoPS/dunUzV5IoTygUcuev/Puzbt26So2dEEIIIYQQQgghhBBCCLkXKOBAHgkR9cPx6uyJFdpGp9GbnwdG+Nttp79kQOEXKuQ+X4TcP/RQqsUwNpDCxAMSz7hjRo+m2DArHPEnFUg8I8fuecH48ZUmuGlwXJ1BJtGhb0w4GnWqB4HQ8kO/2zVoX+e+KjE+4cun4B1o+UFqeZLkYridtz9BS1Cog8fBDPD0AK+47MNlgdDyRxb74Jk9igtU2DhvB15sNRV/vr8YL7d7DyNDJmJS0zex/Nt1UBWpqujICCHkAUMVHAgh5L7hX6Mmuj87uULbGPQ683MPf9fDEVWpdqt2CK/fCDye4z8fhNapj/tJ12cmQKpwr/J+ebdNoMStybAapRJntm3EgqmvYf+Sf7Dw3f/h1+efxoJ3XsXJTWuh01Ry1i0hhBCnMk8DBSVzxyutIB7IPFN9J3vEiBEuBRzYhH3G19cXPXv2dNovu2M/m4TPsEoLX3zxhcP2r7/+Otq0aWN+/d133zlsz6ol1KpVy+56VmGgVFxcnNX6X375xfx81KhRePzxx+32xUIKv//+O9xuVY/KzMzEwoULLdqUP3ePPfYYnnjiCbv9sePs3r0799zDwwOnT5+2qsTAnDp1CpcvX7bZx8aNG5GTk2OuxBEZGYmK0mg0FpUeWMik9BjthUo+++wz8+vbAw5KZVmFL5XK8d88WeDlm2++wcqVK7kKHoQQQgghhBBCCCGEEELIg4ICDuSR0bR7Q4dBhdvVbV324V3vcV3BF9j+djEEiaAZ5w3N4jDovg+G/j1/6GYGQftPGAwd3FCYJcbWn8Lx/eDG+GZgE6z6NBIZsTKn+zeZeGgTGgm/EB90GtbWYdvBr/R3+bhYtYedi/fj7V7TMTbmZfyv8wdcOECrLvkwtCqIpWI06FDXYZugP6+jRq71ORVmqRH602UIi8oCJqXe+OMFPPPhcLt9KvOL8e8XK3H5yDWu6kbc2RuY8+Y/eK3jByjIKazk0RBCCCGEEFI1Ipu2gNzbx7XGPB6ComubXzbs2otbdlfxeAitWx+eAUGIatHaYdPm/Qa63K1Br8fFvTvx3yfv4o9XJmLpx1Nxfvd2i0DHnRJJpQiuXcdpO5ffj1v6v/wmWj0xzO56jbIIR1b9h/S4ayjOz0NGwnXs+msud4ya4rIJiYQQQqrO9TXGqulndfVVR2WT4wMDA7nnJ06cQHx8vFWb5ORk7u78pcEBdhd+Z1hFg/KT9kUikdNtnn/+efNzVp3BkR49ejhcX37Cf1FRkcU69rq0agIzYcIEp2Pz8/OzCE2UP77bqxCw8IUz//zzD1JTU5Gfn4/JkydbjLtTp07m1//++6/N7RcsWGB+Pm7cOFQGq2CRl1dSzZYFG9jXgjN9+vQxv/+sSkf58EiDBg3Mz1llClbBIS3NdgWpZs2acaGWwYMHo04d578XEUIIIYQQQgghhBBCCCH3C+efkhDykGB3AXvxx2fxydBZ3CR/Rxp1roeoxhHm1/5hvhj/6Sj88V7Zh11GDwFU/wuAobUbxCKD9VyjICH0H/gDH2ZAcNTyblqFqWLkK3nwlNu/y5avoC7EfD5MJh1XfSItPoObuH+7J98bgk5DbQcgctJyEXsqASKJkAscsDF+PGQmjm48ZW6TEpuG8/svY/P8Hfhyywdwc3cevnBFky4NsH/lEbvrBWoD3gqPhGf3a0hTHkBmUhYSjipwcbYMxem2P4xlYQV2LBXFgg6/vfE33v7zpQpvSwghhBBCSFXhCwToPn4S1n//FUxGx5MxIxo1hU9ImPm1V1Aw2g0dhUPLF9+1NyS0bgMYjUbwDAb0mfwKln+eiYz461btOox4GlHNW9nsoygnGxk34iAUSRBatx5MRhNWffUJEs+X3SY7Lz0VSZfO48Lu7Rjy7scQSaRVMn5WeSL+1HGHbdoMGo7MhHgknD2FwuxMp32ysEJlquelx8Vi379/oeeEFyu8LSGEEPt0ShOS91XNGUreZ+L6E8l51fJ3STZxv/Ru/KwSwVtvvWXRZtmyZVyl0tJqB65g1QdKtW/f3qVtOnToYH7OqiTcvHkT4eHhNts6qt5QWhmhlF5vebOSc+fOmZex4y9fOcLZ+EqDBSdPnjQvz83N5cIKpVq1sv27R3khISF2140dOxZ79+41BxymT59usZ6FEjZs2GCuqjBsmP2AoyNHjpT9fZT9DvHCCy+4tJ1EIjGfP3Yuo6KiuOf169fnqnuUhlPmzp3LVfJo3rw5evXqxT3Y1wLbnhBCCCGEEEIIIYQQQgh5UFHAgTxS2g1oiRmbp2HBJ8twbt8lm21CogMx9Z+XrZaPmjoYgTUDsGzWGlw9mwDl56EwRksgEujt30hVwINhnJdFwMHEA3J6heBsogid6l2xuVkTSQ6aCbfDkM7K0vMhk3TGdzsmYP+6kuoLhTlFCK8Tiscm9UKdltFW2xfmFuGnl+Zh3/LD0OtKwhyefu6IbloTJ7efs7nPS4evYd47C/HK7IlIupoCnUaHkFpBkMgq92FYr7Fd8M8n/3FjtTglXoA4FIhqYoKo0wwUaosgFwHySKBmZC7aP8bH6inhSDyosOozP7MAlbVn6UFM/mYsPHzcK90HIYQ8aNj/nu50as5dvlc4IYQ89GLadMCQqR/j4PJ/kXr1ss02LNjQd8prVsvbD38KXoHBOL5uJTITE6p9rGnXLuPHZ4aCx+dzAYauYyegKDsblw/sgaa4GL5h4Wjcsx8CI62vSYoL8rHjj18Re+wQjIaSaxI3Ty/4hkfgZrlwQ3ks5HBg6UJ0eeY55KYmc5UevINCIBSLKzX+ht164fDKpdCqim2uFysU2Pfv39Bp1C73yaoyVNbFfbvR+anxEMvcKt0HIYQQS6pMwFQ1BRy4flRZgEhePWd5xIgRDgMOS5eyvwMCQUFB6NKli9P+CgsLodWWVWStUaOGS+MICysLUDJZWVl2Aw7lAwy2sOCCPazfUr6+vlxIoKLjK99Henq6y+EFVwwfPhwvv/wyiouLcf36dS6IUD6EwQInGo2Ge87CDQqF9d8qXVG+uoJSqcScOXMq3Ed2drbF64ULF3LVNS5cuMC9ZoHU48ePc48ZM2ZwlSK6d++OQYMGccEaLy+vSo2dEEIIIYQQQgghhBBCCLlXKOBAHjnNujfiHlnJ2Tiz+wIOrz+BxEvJkLlL0XVEB25ivtzD9oSTbqM6cI//Lh3ArBvsDl4m8HmOy9ebaktgDBOCn6RHQdtA5HYPhdZfjPws4OAVI5pFJkAm1pnb95Glor17+TuHGmHS7IZJsw+dB36LriPfcbg/rVqL1zp9gMSLSRbL87MK7YYbSm3+cydO7z6Pm5dTuNfu3nL0fbY7xn06CmJpxSYVsXP46dqp+GDADBTmKiEKBIL+x4NHNx6EIiO6uF+BwWRdSUOsMGLgrzfxe6cYaAoEqCpatQ5JV1JQvx2VYyeEEEIIIfdWzSbNuUdhdhZXySDu5FHkpiRD7CZH3fadUb9Ld4iltiur1e/cnXscW7sSexfNr9ZxsoABw6pNXD9+hKuG8Pj/pmLwOx853E6nVmPxB28hL63kuqJ8OMBZQODM9k24fuKoeVupuwca9+iD9sOfhEBou9KbPTJ3Dwx6+wOs/vpTmyEHbS9t9Y4AAQAASURBVJFlGLu66dQq5KWnIaBmyR2YCSGE3Dm9qor7s52JqxKdOnXiwgtswvuxY8eQmJhoDiWw54cPHzZPvHcUHChVUGB5IxBXAwRs8nt5bNK9PQJB5f82V358ro7t9rblx1Z+kj+rhCCT3VkVWnd3dwwZMoQLC5RWcSgfcCitIsGMGzeu0vvJz8/HnWJhlvICAwO56hY///wz5s+fbw46lGKhjfXr13OPV155BVOnTsW0adNc+roihBBCCCGEEEIIIYQQQu4HFHAgjyy/UF/0eKoz96iog8pr5ud2qzeUp+Ajp1cY8nqX3g2tJBQRnxGAG5l+CPbOhVSkQx23PLRvftZmFzwYoM+fBpGkG3h8+3f8nD9tsVW4oZSwNh+iSD6MhYDmuB4oy1VwdBq9OdzAsGDCsm/WIfZ0AmZsmgaBsGIfajZoXwd/x/6MdYs24njDdTB5lewwRJwHMd863FBKqjCi/tMFODXbG1VJppBWaX+EEHLfY/+7MVVBH4QQQqqFu68fGnTpwT0qKv70cdxtrBLD1t9+QGSTFg6rKuxe8IdVuMFVeo3GYlt1YQGOrl6GzBvxXFiBz6/YNUl4/UaY8NM8HF+/Cic2rIZBd9tF0F0mktI1CSGEVCWhrIr7q8YiO2xyObub/i+//AKTycRVcXj99de5df/995+53ciRI13q7/aKAo6CCuUV3Rbwq0j4oCLKj8/Vsd0+mb/82Mo/Z+dPrVZDeof/Xx07dqw54MAqaHz77bdcqOPGjRvYv38/t7xmzZouVdRwJVDCAhSlQZY7JRaLua8f9oiNjcXmzZuxc+dO7N69G7m5uRZhhw8//JAL1rCvPUIIIYQQQgghhBBCCCHkQUC37CGkEpT6kvLkjMnJxE+TwYS0JyKhfNIXkmAlxP7FEAjKJvcbTXwk5/jienoQevvfdPINWwSTer3d9RqVBqt/2mS1XBjJh988NwQsUMB7uht8v3ND0GZ3yJ90rSrDqR3nsHd55T58c/dWQDZYZQ43MN4C5x9q+ve0H4CojPC6oYhsFFGlfRJCCCGEEHKvaIpdnyhYldRFRbh29KDd9axSwrmdW6p8v6x6RNyJY5XallVy0CiL7nm4IaBmNLyDQu7pGAgh5GEj8wd4VfQXbp4AkPmhWrHqDKVYwKFUacAhPDwc7du3d6kvDw8PbpJ7KVYFwhVs8n55rKpEdfD397eovuBqyKH8+MqPzdfX16Jdamqq0770ej33sKd79+7cOWfS09PNoYYVK1ZwIQpmzJgxXMWIyvLzK/uiysjIQHWoVasWXnrpJaxcuRJZWVk4cuQIV7XBx8fH3ObXX3/F5cuXq2X/hBBCCCGEEEIIIYQQQkhVo4ADIZUQqQi49YwHg9Hxt5FGI4awAw9SPw3EnlpIfDVwjyyEzJvVvLdMR0QonJcsz1desbtu99KDMOgtgwGCQB58f3GDuKFlwRa+nAfPV6Tw+MS1W91t+WsXKut4zl6L10Y4/1BQEMaH/F05pE9KwfOs/IeIpcZ8VPYBMiGEPDJMAO8OH1TBgRBC7k9+YTXu2b7TrpdVtLvdpf27YTIaq2W/53dvr3TliYv7duPe4qHdsNH3eAyEEPLwEcl5CO1UNX2FduRx/VWnTp06ITg4mHvO7uSfnJyM+Ph4HDtWEuIbMWKEy5PpWbtmzZqZXx84cMCl7cq38/LyMo+nqjVu3JirhsAYjUaXKxeUH1+9evXMz1kQoXzI4cSJE077WrduHVflgVVheO6552xW1XjmmWfMr9esWWPervQcsyoPd6L8e8Tea1dCDux8zZs3D1u2bMGVK1eguy2kycIY+/bt44Ijto6pdevWmDFjBg4ePGiucsECG3v3Wv6NlhBCCCGEEEIIIYQQQgi5X1HAgZBKGFqjjfm53siH0Wj7g0e9jg8dnw9bn0tKWNjBXWMxcTRP47yseorSMqhQXvw56zu1yUeLIfCx/60u7y2CqIvI6X6zk3NQGXqjDsUGyzu0Zeo8nG6XKfCE5HEp3F6Uw2uVN8R9XKs2YYtYKkLLPk0rvT0hhBBCCCH3m8a9+t+zfeu1ZRXtbpd5I6Ha9luUYz2JzxU6jRo6tQr3kkgsRo1GTe7pGAgh5GEV/UTV/Ik7elD1hhtKJ58PHTrUPOF81apVXLWAUqNGjapQf6wCQal//vnHaiK8LX/88Yf5eY8ePVBdFAoFN9He1n7tYdUHSkMGTM+ePS3Wd+nSxfx86dKlTvvbuHEjDAYDVxVCKLT9N9XyAQa277y8PHMlBxZIiYqKcrgPZ4GUjh07WlTa+PPPP52Om31dTJw4EX379kXdunURFxdnXsfOKats0blzZyxatMhhP3Xq1EGTJmW/fxQWFjrdNyGEEEIIIYQQQgghhBByP6CAAyGVUMcjBJNql37AxoPWIIDOwIfRxD6cBHhGIfIz5ShSSWFyUK3AzbsYfv55CArNRkBQLjamRjrcr87IR47J/gePbu7W1RhkvR2HF9hncIpJzqs4+IdbloF3lZAvgpvA3WJZht4DhQaJ3W3y9VIkqMvKt/MkPMinKSBsVPJBpEBYsR9dWrUOW/8quWPr6V3nsWD6MiyesQpxZ8tK3hNCyEPJVEUPQggh953QOvXQZvAIu+t5/Oq73I9oWHYn4tuJZa5ViKsMd9+ya4SKEEtl3KMqVfT86rQaXNq3i5vMmnD2FA4tX4wjq5ch6yZdkxBCyJ3ybwp41LyzPjwiAf+7lEMbPrysyujKlSu5BxMdHY2WLVtWqK/JkyebJ+4nJibivffec9j+hx9+MFeLYJ5//nlUp5deesn8fMmSJVi/fr3DqgWTJk2CSlUSSpTL5XjyySetjrcUO2979uyx29+1a9ewcOFC8+unn37aZruYmBi0bduWe86CBLNmzYJer+dejxs3zukxikRlf3vVaKxDoKxKRvl9f/bZZ7h06ZLd/vLz8/H222+bX3fo0IELKpRq3769+fmcOXOgVFreWKa8oqIi7jyUYmEJQgghhBBCCCGEEEIIIeRBQAEHQirpueju+KHFOLTzi4FcIIVcoECPgNaY1+o1JF3xR2G2HHyx0e72MpEWPgoVPAOUkHuq4e5TjLNSD1ws8rG7zZLYZmjs3xAH1x7Dlr924cLBKxbru4xoZ/1N7u787nOCmgLwvB236zO+7I5wzrAPJE9sO4N1v23F3uWH4MavYbGehT5OKCNRYLCuWJGjc8OW3EYw3vbjiSfgwXuCFz5e+Ra+2/cZmvVoZL5DGo/v/BhP7jiLSU3fxFs9PsE/H/+H+dP+5V6/1/9z5KTlYuO8Hfhf5w8wNuZlvN1rOnYu3g+D3uDyMRNCCCGEEHK3dRw1BoPe/gA1GjWFSCqD1N0DDbr2xFNffAeT0f61yJ0QiiUIb9wE144dwvnd25F6zfKapE67TqguDbv1crktO/740ydwZttGxB47DK+g4CoZg1jmhsHvfIQRH81AeP1GLt+9mUk4cwp/vfECVnz+AQ4uW4T9i//G32++iNUzP4UyPw9ntm3C4g/ewh+vTsTyzz/AlUP7qu19JISQhwn7Gdz6XT4Ezguj2sS2az2VVWCt/goOpXf0DwkJ4Z7v3bsXhw8f5p6PHDmywn3VqFEDr732mvk1m5z/wgsvcJPky1Or1fjoo4/wv//9z7xszJgx6N27N6rTiBEjzOEBFvIbNmwYZs+ezVVVKC81NZWrbFEa9mB++ukn+PhY/p20V69e5jGzvz8OHDgQy5cvt9rvyZMnueoH7LhLt2PVGOwpH2SYOXOmOWBRPoxij7e3t/l5+fBIeR9++KG5HQsdsEoU5StVlDp9+jRXVaO0YoNAIMDXX39t0Ya9v6WhlosXL3LnrXyFh/LVMNj5z8kpqcobERFR7e83IYQQQgghhBBCCCGEEFJVeCb2yQIhpMqwb6laP38LE98Ij5oFNtuIBXq4S6zv6MW48XWY6HUJPf0SIRaUTGbJUUvx55UmSLzWF+nTdyE/q6yceGSjGnhj3hTUaVULGYmZeKrmCxb9+S+TQxQucDhmjUGInEF5MGXanjzDF/Ixc/tHaNy5vsVyZb4S2xbsxc3LyXD3VqDb6A7ITc/HtxN/Q2pcurmd5F1fhA8pglSgv/1swUughMioh94gQJ5JjmQt+7DP9gfKJpUJtWbVwCer34ZILEJWSg4Kswvx7xcrsXvpQYfHKJKIoNPobK5z85ChuKDk7nDlte7fjAtUsH0RQsiDIikpCeHh4dzzuuM/hNjd64760xbm4fKf07nnN2/eRFhYWJWMkxBCSPXR63T44enB1dJ3dIvWSL5yCeqismsS/5pR6DvlNQTUjEJuWgrmv1r1d4PmCwQY+fFXCImxvPOwuqgIF/ftRG5qMqQKd9Tr2BUFGenYNu8XFGRmmNsJhEIYbt2N+U5Ft2yDga+/x42pMCcLmqIi7F+6ENePl0xQtUcgEsGg09kNTmhVxVbLa7VqhwH/m8rtixBCiGPpx0048IERhpI57S6HGzp8ykdgy6oJN/z1118YP368uSJDbGyszXavvPIKN4G/vDNnzqBx48ZWbffv328xOf/2P+ezagOPP/44tmzZYl7m5ubGTaIPDg5GdnY2V+kgLy/PvL5NmzbYvn07FAqF1f7KBz3i4+NRs6b98hgJCQmIjCyrSGvrowZ2HcnGf+NGWdWiwMBALujh4eHBLWfHqNVqzetffPFF/Pzzzzb3mZGRwVU1KH9uo6Ki0Lp1a0ilUq46wtGjR81jYRP7Wf+OrmXZuQkKCrKowMACIH///TecYeeZBVVKQxEsdCEWi7kwB3tfSrH3Z/DgweYKFeXHzYIMrNICC0iUP4fffPMNXn/9dat9fvrpp1xoohQLPLDqH+y9kslkXDWPAwcOmAMebDysegYLehBCCCGEEEIIIYQQQgghDwIKOBBSDXp89SPi3HRQhBVAYKOKg6dEBeGt8IItJiMPhbFeqO+ZDa1RgPO5oWgPf1x/ea3Nqf9sgv6LPz6L+e8tRnZKjuW+Zisgb26/WIvRxIMqhYf8YXksb2CXb4g3FsbPhlBUcoewXUsO4NuJv0KttAxq8AV8GA23jo1vgn8XPbyH88FrKYEefC60IeCZwD6rK9RJkKFxh9oggl4tRIBn2SQpm+dFY0Ju9xyM+WgEnvmo7A5qrErEpyO+tbmN0BuQN2HnFCg6CRiLUCFjPxmJpz8YVrGNCCHkfgo4KO4w4FBEAQdCCHkQ/TZ5DJS5ltcGd4IvFCK8QWPcOHPS5noWLug6ZgL2LvoTxfllEyirkod/ICb8+Dt4/JLrmwt7dmD7vNnQazVWEzOr+14OnZ4ch9ZPlF0nXNy3C5t+/qZa9tX56WfRasCQaumbEEIeNrlXTTg6w4iCBOdtPSJLKjd4x1Rd5QZXAw779u1D586dza/r1avH3Y3fFmcBh9KQw9SpU/Hjjz9CZydMx/D5fK7iw5dffgmRyPYNPao64MBkZmZi7Nix2LRpExxhgYtffvmFCxc4wkIbzzzzjNP+2rdvj8WLF3OVLpxhFTT+++8/8+udO3eiW7duTrfbsGEDF2pgFSXKmzJlCletorzjx49z4758+bLDPj09PfHDDz9w58yezz77DNOnT3f4fpcGPObMmYM+ffo4PRZCCCGEEEIIIYQQQggh5H5hf9YzIaTSuph8WHIAmnyJjbUmh+EGhsc3YUKHjmgdNRr9GzyDHc9MRP6MfXbqGoCrPjBr/GyrcAPkPBhrS6A32qmIYAJ0RgE0K9QOww1MdkouDqwuKbN+8fBVfPnMj1bhBqY03CCPNqDThiI0/1mFyC5K1JTnoJY8C+58FeIKfHApPxCJxT5cuIEHHr5r8xwEPMc/knSnSj6wWz93Gwz6slL2HQa1Rs0GJZN5S/FlQI1PgAabgajvgOgfgIZbgNA3WOoBLls/ZysMhrJ9EUIIIYQQ8iAIq9fgjvtoP+JpdBw1Bj0nvIAJP/2BjDjbkzQZVtFh86/fV1u4gSnITEfcqZJrkpsXzmLLrz9YhRuYyoQbeDw+hr3/OfevK85s22Sxn5i2HeEdHILqcHrLhmoPbBBCyMOChRV6z+ejy3d8hHVhf2OzXM8TAGFdeNz63n9UbbihIlj1gpCQEIvJ9XeC3cF/1qxZuHLlCt5//320bdsWAQEB3HJWJaFFixZ4++23uRAFqwpgL9xQXfz9/bFx40YurMEm/jdo0ABeXl7c+Pz8/LggwcyZM7lqDs7CDYyvry/X365duzBx4kTUqVOHO05WqSA0NBRDhw7FypUruSCJK+EGpnyYgIU6unbt6tJ2jz32GFedoXfv3tyxsGPy9vY2V08oj1VZuHDhAhekeOqpp1CrVi24u7tz7wc7R+w8fP3111wwxlG4gWHvM6tWwf5lARi2PTt+Vr2DhU4GDRqE+fPnc20o3EAIIYQQQgghhBBCCCHkQVOBab6EEFdNHNkLG5+ejvRhNaERGyDxLCux7qrWoWFo5l2be35613kuYOAIN+GF5Snc+UCBEWC7bCIBT8aH2iiE2GSAkG/kQhIR4mwEiQqgMQlxsTgY2RusJwXZcv10PLoMb4fl36wtq9Jgg0BuQsvfiyENtJ6E4y1WoYlXMg7llN3dbWL0ADT1rou2Pi1wILtkwpItmqUlHwzmpOYiOzUXAeF+JfsTCjBj8zR8PGQmrhy7DnaQUT8C7i1vG5cbEPA0IPQBbky7dd4AGJrKYAwVgVdghPCoEjxN2bjZec9Ny4NfqK9L50ij0mDX4gPYs+wgigvViGpUAwOm9EFU4wiXtieEkKrEM5U87rQPQgghD572w5/ClYP77qiPiEZNERJTl3vOggWqwgLHG9yFSfgZCXGIbtEGx9athImVaasKPB66jZuIiEZNEN2yDWKPHXIpbMHOh5uHJ/daKBJh2LTPsGbW58hIuF414yq3LxYgkbl7uNRep1bj0v7duHrkAHQaDQJqRqFJr37wC6drEkLIo4FVIAhoCgQ0FUCnNEGVBeiLAaEbIPMDRPLqCzWMGzeOe7gyxuTkZJfDEK4G3djE9k8//ZR7VFZFQnUsCFCR9h06dOAeVYWFEFwNIjiTk1N24xgWLihfycKZnj17cg9XsCoaw4cP5x53ilUJuZP3mhBCCCGEEEIIIYQQQgi5X1HAgZBqEBwZiDGtWmLZR1tR2CYA2joy8CMAoVEPQZoGpgYAL9r+ndIUQhnqeZRNPlHmFzveYYgAgnEK8LvKwBPzYFIZYdyuRq7YAx5goQA+tCYevPkFeNL3OALFheZN+3tdwKEPArD03SgYdI7vViqVS7l/j2w46bBd6BM6m+GGUh4iNWrKcxEgboPhNXqh6a0gx4SoJ5Gcl4oEQ5JFe5PRBNXsYuiOlpVcX/HdehzbfBpalRa1W0ThiRf74ucjX+Lw+hOYOetLq3BDeT79gYy/gUKxFOr/BcAUIi5bWWiAZGEOxGvzzYvE0nLrHWChi3d6TceNi2Xjv3jwCjbM3Y6JXz2N4W8OtNqGla/PTc+HUCSAp59rE5YIIYQQQghxxickDI179sXZ7ZsrdbJkHp4IiIw2v9YUO7kmuUtEEilMRiMSTju+JnEFm7gY2awlWg0cirB6DbllfSa/itzUZGQnJTrbGEdW/Yf40ydg0OkQVCsGzfo8hme++gFXDu3D+u+/uuPxld+XwMU7bRdkZWL5Z9OQm5piXpZy5SJOb92A7uOeR7O+A6y2YedTmZfL7cPVEAUhhDwoWJhBJL/XoyAPggULFpgDCOPHj7/XwyGEEEIIIYQQQgghhBBCHmkUcCCkmkz5bhw8/T2w6ocNyN9RMrmEL+AjMMIfTZu0wgacsbvtwNAOkArKJtW7ecjs7yhMANFPvuB5C8yLWNUGwQA3eGiM0On4EImMkPO1mBBwEO4Cy2oNAp4JHUekA0I+/n0tyuHkn87D2nLPy1dv4IfwIRktg6i7BDw5D4brBgT6pDo7PfASKSESFpjDDdxxCmX4ouW7GP/UqyioqwRPwYPhhgGatWoYE8v2ySo2rPx+g/l1+o1M7F95BGM+GoE+47vCp5/T3cNrFB8ZzUIA6W2hDncBNFP8AZ0J4k0FaNChDk5sO4vigmJENqqB+u3q2O3zqzE/WYQbSrE72c35cCEympogipDDV+KOHoENse3nnVj7yyakJWRy7eq1rY1RUwej/cBWzg+AEEJcwbJmd3ozbargQAghD6yez70AuZc3Tm1ez1UAYHh8PjwDArkJ/ed3bbO7bfO+A7iqBOWDBfcaj8dH7dbtud+vq6J6A+tHr9WYww2MVKHgQgpzpoyDqiDf/lj4fJzcuMaiysLVQ/vQ6clxqNWq5LqpqtRo0BjXTxyFTq2Cf0QkgmvZvybZ8MPXFuEGM5MJO/+ai8KcbO59VXj7onab9ji3cysXfijMKrkmCalTH20Hj+CCH4QQQsijIiEhAdu3b+ee9+/fHxERVPWIEEIIIYQQQgghhBBCCLmXeKaK1JAmhFSYVqPDpcNXYdAZUKt5JDx83Lnly2/uwZzr62C8bWJOr6CWeKvuKAh4ZRPvp4/4BvuWH7bZv/Bzb/A72J9spFUL4aFQo4fHZfTyumy3ncHIw1vju0K9S2vdR4AMkjq+CPLxRKuwMFw5FosrR69DECOA/AdP8N0tQwJ1FSnwFLHKEfZlaBRI1vhgeoP3ECoLgdaog0LoBj6Pjx2L9uHLZ35EZczc8RHmxX0Ot5Z6h+3Sr0txRR5mtZwHI7tBKkxZBijGJkIsEkKrLqscEdUkAu/8/TKiGlt+0Jlw4SYmNnrd5r60PdyhmuwPyMuFULQmSP7JgmRlnlX7V2ZPxIDJvV06XkIIuV1SUhLCw8O55/XGfgixwuuOTpK2KA+X/p7OPb958ybCwqx/dhJCCLm/6bQapF27wgWVA6NrQSpXcMtZBYIDSxdahQUa9eiDXhNe5Cbxl1r11SeIO3kM9xILH7j7+iOsfiMkXTyHzBvxVdLvmJk/c6EPvVYLmcKdO2428X/rnMpdk4z8+Ev8N/09rjLCHePxIBSKoNeVXacFRtVCvxffgG9Yyf/vS6Vdv4ZF7/2vQn2z4IOt5aySRcOuPe9o6IQQQsiDQKlUYvDgwdi2rST4uWvXLnTt2vVeD4sQQgghhBBCCCGEEEIIeaRRwIGQeyhTnYfNaUeRrMqCl0iBXkEtEK0ItWhTkF2IEcETYdAbrDvw4UO0LAA8Ac/uPoxGHgrzZfi80WqEiAscjufXk11waiwPwvySCf3aQBkyh0dBHeVhbiPMVsN3YyIUp7LhttwP4iDrfsKkOQiVWU/cLy++2Bd5ejmCpSFIKs6ACSb4ir3RI7ATngjpjY2/7cAf7y1CcYHKopJF+de2dB3ZHvyhacitHeewXVyeD5LUPubXAr4BYoEBfF7JBB9uns9+FfhfZYOnspz0IxQLueocEpkY7Qa0xKCX++HE1jP4fvJcq/3oWrqh+OMQgG/7PZJ9lw7xNsv3hfW7OGkO3L1LJp4RQkhFUMCBEEJIRRRkZuD87m3Iz0iHm6cXGnTpAb9wyzBvUW4O5k4ZVyVVE+5HPmHhyElO4i4CPPwD0LhnP7R8fDBOb1mPA/8t4ionlBK7yaEtVjrsj53D9LhYZN28UW1jFohEkCrcIZZKUatVOzTt8xhijx7Crr9/r5L+xTIZJv32D8RSB9UECSGEkAfU2LFjuX91Oh0XaEhLS+NeDx06FMuXL7/HoyOEEEIIIYQQQgghhBBCiJBOASH3jr/UC8/UdHyn/uyUHNvhBpZQ8hc4DDcwfL4J6VleMOr4gNjxeCQSAzKGxyD4jyvwbBiMc6PCoZeVVR1g9L5SpD9VG4YeCngF2Z7Yk6HxQLA03xwWuJ3WKECe3o17nlScChNK7gybrc3FfzfX4nJBLN6Z/CJ6jemM/SuPIictD4ERfki6loa/P1zi8BiunYzH9F9fxc83pjoMfaRrPM2vhXwDJEK91c1M0UkGk68/8HoGeGVFHKDX6pGdnMM9X/Hdemz6YwcGvtDX5r40I33AFxi5I9Sb2H8t3y/NCG+IthVYLNWotPhhyu94f0kF7r5KCCE2sB/Ddn4Uu+xOtyeEEHJ/YxP62w9/ymGbouysexJuYNUaCrMzq30/OUk3LQIf+xf/jZQrF/HEW++jYbfeiD12CMq8XHgFBiE9IQ5HV/3nsL+M+Ovo8dwULP3Y/jXJnTLodFDm5oBdkR1buwJnd2xG4+62r0kqQ6tSYcf839DvBbomIYQQ8vDJy8vD2rVrLZY1aNAAv/322z0bEyGEEEIIIYQQQgghhBBCypTMKiaE3Le8AjzBt3P3f1Ou7eCDRRsTYDDwcS0v0Glb1qa4gTfks3oh4J3OVuEGc598wNjM/p08tSYhYpUBMNqYFKsz8hFX7M9N9GdjM9024Z85m38RezIPQaaQodeYLhj59hPoOrID5B7O7x4qlUtQwysaPfyG2VzPxnQ8MQIqraj0aCAWWIYbLNSXAD3lDvfJqkps+XMX+IJyP1L9BXD/yg2tuqWiT8hl9A69jK5B1xCpyOL2aR5PqBjGmtbJkz3/HcTs1/50eryEEEIIIYRUNzcvr7t+kgOjasE7xLK63d0Ud/IYrhzYC4mbG1eRofUTwxDTtiMkspKgtiNCiQRh9Rqi5YAhuFs0SiUuHdgDHq/q/sxzcc8O7P33ryrrjxBCCLlf9O7dGyEhIRCLxYiMjMQbb7yBffv2wc/P714PjRBCCCGEEEIIIYQQQgghFHAg5P7nHeiFFn2a2l6ZYYTxlMbh9i28GqBZUCjWJjdy2C6pyBsnMiK45+dQhB0ZZXcxtcIHDEbb4YdSuTo5Tl0PQWqRO4r0EhTqJUhWe+FSUTBUxpIJ/SXT/G2HN3ZmHLBa1mFQK8sQgQ2dhrTl/u0TOhIjwv6HrCIPLtRgNPGQnOeJ3VfrID7bH0qlhGsn5BtLqjU4YOrjOODAHW96Hhp3qlfyIkwI3wVyNOybBx+xyty/m1CHel7paObDzq0JYr4ebkIt+CG2B7Dqx404tvkUdi7ezwUe8rMKnI6DEEIsf4BV0YMQQsgjzcMvAOENGld6+1ot2yKoVkyFtkmPi8XN82dwL53budVqWe3W7W6Ve7OvdpsO3L9dnn4WfSa/6rR9VSnKyUJo3VvXJFXk2JrluHHuNC7t340rh/ZDVVRYpf0TQggh98KLL76I5ORkaDQaxMXFYdasWfD29qY3gxBCCCGEEEIIIYQQQgi5Twjv9QAIIY6dP3AZCi85BEIBDHrrig2G3wrB+14Ensx64r9C6AZNsT9O5F0FEII/49pifNRhq3Z5Ghk+O/p4Sdjg1kRWvZMZrfkFbtAb+BAKjHbbFG0w4tJJETw/9wTfw3J8JaED+2GFDDWrdGApoIY/+ozrhk1/7LC5jU+wNx6b1NP8+lqWHDuu1Ck3O7dsYlGxUgKJRA93uYPqDeaOXbsLakzLaHgGeGBf2yuIDsqAncIbCHYrhN6UAj3v1o/gbyXQnBAg/3s19Ncsz+d7j31hHr5IIkLf8d0w5ftxEIlLK1AQQgghhBBSvW5ePAc3D0/w+HyYjPZ//7dF6u4BvlCItFh2TVIxJlby7R7Ky0izWuYdHIp6Hbvi0r5dNrdx9/VHo269za+1alVJWb27JLRuQ0gV7og9Zn3dV1nLP3vf/FwolqBxjz7o/PSzEAjpT0qEEEIIIYQQQgghhBBCCCGEEEKqHn0aTch9SlWkwvTh3+D4Fsd3LTVd0UH/vxwIJruD31RiTg/ECCIQXFwLs1Mum9v+m9Aa5/NCMDD0LGp7ZECjF+Fgcm2si2+CHLXC4k7dbG6+3Wk4t8IJKWneqBGabbOJTsWHZoUKpmwTsgYWQNpbDGEdASR8Meo2qoNLUdcdHpenyN3m8qe+H4akhtm4cuk6DIk6GHapAQ0gEPKhKlTh81HfYeALfdFpaFskF5VWPLCVNOAhN0cOntEIH+9ih2NBunWwxBatRofx85/BxTPvQsR3PPHLV6pEusbT/FrSQgi/X+XIel4JfVy5bcu9CTqNDut+24rC3CJMW/w/l8ZECHm08UwljzvtgxBCyKNJU1yMNbM+w80LZyu1fXBMXQREROLMtk2VGwCrfFAN4QCRRMqNLfHcaYft5J5eNpe3GzoaOSlJXJWJ8uPj8QVQFxVi3fdfolmfx1GrVVsUZGXibjIZDegw4ukqDTiUp9dqcHLTWmiKlej7Al2TEEIIIYQQQgghhBBCCCGEEEIIqXoUcCDkPvXdpDlOww2lTJd10L+WA0NtCZRdA1AU4Y04iQ46+XnAzfLb/GxeGPco2ZCVWRCCZ7xVucHApv2XhAHkIjGKdFo7OwR4WiPSM0sm/AQH5kIkLJuUX1gkReEParhl35rsowHU67TAOqAIKhwQH4XvBj+Y3OxPVurs39ZylyYT/k5Yg7UpO2FoYYSwhRv3A8z0sju0XxfAsEcDVZEap3dd4B6DXuoH/8lNnZw5FnJwh6e7CgKh/bHwNinhCnWRGqvWbIMkynlVCBHPOjTBV/Dg/rwEuVNVDrfdvfQgRr87BFGNI1waFyGEEEIIIZWxefa3lQ43MKlXL3OPypK6yaFWFqGq6TRqLtzgrCJF/c7dLV6ztrv++R2nt2ywuR0LF+g0Bq5v9mg1cCjkXt64m7RqNU5sWlft+7mwdydaDxoOn5Bb15aEEEIIIYQQQgghhBBCCCGEEEJIFeFXVUeEkKqTfiMTe5YerNA2Wj8p0sbUhaSPGFEdMhDTJhn1GqShRkA2xCKd7Y14t27NbbAMNzDDGzRAi6Bgm5uJlAa8Gt4EglshhzMXInA1LgjXEwJw/nIYErZ4QLoly2IbE58HbYAMOl8poAWKfiq0eyxhsmD0DOxksWx50lasSt4Og8lyIhHPnQ/xR57gNxRZLF/98yaEJ+ggETjOcZn0fGSle9q/MexRFbDbSYWHW84fuIzlB3ZDbxI4bWsw2f7xK+0oBE/hfF+7Fu93aUyEkEecqYoehBBCHjk5KcmIPX7kno6hUc8+CIiqZXslj8dNsOeqPFSSo3CDf0QkGnbtZbHs4LJFOLVpncPtyju2dgU8AwLBd3JNUpVunDuF8zu3VP+OTCZcPrC3+vdDCCGEEEIIIYQQQgghhBBCCCHkkUMVHAi5D53cfhZGo+szSll4IHdsTUS0zYRYUlYZgM8DvBUquMs0iE3xh0ZXFgLg842Qu2kgVhhhMvCgLpBCXSDhUg9+bm6Y2LIlvKRS/HnqFBacOIk0dTHERqCN1A8fju6H6EB/+Pxlwsydu1DY0hf5+XKuX64aRA0pbk5rjoCF1yC9UYjcnmEoaBcIg4eYayNKL4bXrhTIf9Qj6O1ApKkzueUCngBtfJphfORIuAll5rFqjTqsSd5p9/h5Qh6Eo92gnZZvsXz33N14fXpXzDi+x/aG7FQZgaICNxgMfARpMsCvfevHYpYBoWdT0SL0JsKPKWEy8ZB4QI6T832QdqZsbOXFNVZBO9AHmRoVasqzIWDhETuKDBK7x8L35MFQ5Pj9V+a7FroghBBCCCGkshPl7aeAq5/Cxxct+g9CuyGjcWLDapzauh7FeXkQCIUIrdcQPZ57AT7BIeDzBTi8ckml9yNz94BYJkN+Rjr3WiASoU7bjug67nmIpFJzO61ahZOVqIxw9dB+tB0ykgtH3A25Kcm4W7Qq1yrdEUIIIYQQQgghhBBCCCGEEEIIIRVBAQdC7kMmF8MNem8pCtuFQdnAF/5tsi3CDeUJBUaE+OQjPt2Pey2TauHjXWRxs1M3bzW0KiH8sqLw0xNDEKRw55ZPadWae+gMBogElpUJxozri3XXr+GESQeT3mRRAULvI0Hq83UhjSuEqq63xXa6QDdkjqoFw8ZE/BE1FRmCbKiNGoTKAuEp8rAa/8WC6yjUO548I2gnKalJU+5mqgnnb2J64zbwkbrhl7OHkFCQV7KCnV52qvQ885ijMr2hffsM1A3doWzujWbNMjB43EXwyxVaqPN4AWr3LcCWt0NweY2nxf5NUh60o9lx8qDUSZBU7IUIea7NsWqMAhTpyyZLlWdUm2DMdv7+H1xzDPHnE9FlRHv0HtsVbu5loYuka6m4cjQWIokQzXs2hsKrJHxC7l+5Gfnc96OXv+XXFSGEEELI/X5NUh38atTEwDfeg9yr5Dqi7dBR3MOg13MBh/I6jHwaVw/vR05KUqX2pSoswPOz/0LWzRvQazTwCQuHm4f172Q3L5yDVlXxkDHr9/HX3oGbpxeOrV1uDlLY4hMajpzkm3hQXDm0H2nXY1G3Qxc06NzdIhCSnXwTGXGxEIjFiGjUDBI3t3s6VuKYyWRCtroQAh4f3lIXSgoSQgghhBBCCCGEEEIIIYQQQkg1ooADIfehxl3qg8fjcZMM7NH5uyHryYYwSYWA1ABP3yKHfbq7qSEUGACeySrcUEos06Mo8wy+6HQe4z4djU5D2pjX3R5uYNJz8nHKQ8PqQViEG0qxsanqeZcECmzI6R2GIhgQpajhcOx6ox7OsMoHtwcc3DxKJv2PiGmE4bUb4mpeFjZdv4b11y4jNjeHWxckV6C7JAhH31yCtOdioGziA29pEQZ122oRbijFFwK9ZqTixn45VNllP0LljwVBKS/ZQG8UILbQH4FCJXp6xsFTqEWRUYRzal/EpXgi38MdLA5ii2qrDia108NFdmou9zi//zLW/LwJM3d8BL6Aj1nPzsbxLWfMXztSNwkGTOmN5758CgIb7yG5txZ9vgJrZ29BTmpJGKZ280gMe2Mguo/uSG8NqRrsR8Gdzk+9d/NbCSGE3ENh9Rrcs31nJSZg7azP0XH0GES3KLsmuT3cwOSmpVY63FBKp9UgKLq2wzYGva5SfYtvTexv0qsfGvfog6ykRK6qw5WDe5GblsKtc/fzR40GTXBhz3bcCYlcAY3S8XVhVSrKyeYeyZcv4PSW9Rj+wecwGg3YPPt7JJ47bW4nksrQvN8AdBjxNHi2LrLIPcOuG386tR5Lr+zjAg5MQ78ITGjUG31rNqd3hhBCCCGEEEIIIYQQQgghhBByT1DAgZD7UFhMCFr3b4YjG07aXM/CCapBdUvCDWyij8gIvsDxDFS2jUhogESqsxluKGVsLkPC3GR8OvwbTF3wMro/2clu2zlLtsIovoMJKkI+1l27ioktWzpsFqUI5+4kaTAZ7Y/7qg64LQfRdUR783MWGKnj7Y86Lf3xWsv2uFmQz/UX5u6J1zu+j8yBNbhwA9O+xlUI+PbPp1BiQsNheTg2xw9hMcEY9voArEk7hgwU3GphwsTAkxjoe9Viu2bSTGzdHoi10Q0h8LfuV59iROFcFhipmKSrqZjxzE/IS89D4qVki3XqYg2WfbMOaqUGr8yeWOG+SfUoyCnEi62mIi0+w2L5tZPxmPHUD9zyJ98bAqPRiPysQoilIsg96K63hBBCCLl7AmpGoUbDxkg8f9bmejZRnT2Meudh5MpglQ/WzPwcA/43FbXblP1ef7uD/y28431d3r8bzfoOcNgmKKo2eDw+TA6uSWyp267seoqdL/8aNbkHqzyRn5HG/b7nGRCIhVNfq/T4WeWHVgOG4MSG1Xc14FBedlIiNs/+jjum3NSS4EYpnVqFI6v+g16rQdcxdE1yv8hRF2LI2hlIU1pWHjyfdQOv7fod77QaivENe8JoMiJXXQSJUAyFyHYlQkIIIYQQQgghhBBCCCGEEEIIqUp06zxC7lNv//USareIslrO7tI/4vsxKPIpm1hgKubD6MI8m8dktRDiKXLaztBMyt3Jce7bC2DQG+y2i7tyZ3dKZdKKnE/A8RF7ooNfM4dt9Nf1gLQsucHj89BvYk+77cM9PFHT0xs5yTk4fy4ehW3KEgch7pYTPGwZ8HZjLIj7Bb+dmgkPX3cEGBXmdU/4XrEKN5TqPSwdrXfGQrlWC6OqJERhVJqgXK5F1gQljFm2gxXseBw5u/uCVbihvA1ztyH9RqbT4yLVz2Aw4I0uH1qFG8r7+8MlmPfuIoyJfgkjgiZgsPc4vN1rOk7vOk9v0W3O7LnAhXhYJYzMpGw6P7fhmarmQQgh5NHU/+W3uMn4t+MLBGg7ZFSlwg31OnWDRC53qS0LE+xZ+AdMDi522MT6O8WqEDjj4R+A6JatK9QvCzQ06NrL7nrPgCB4B4UgLy0NmTfiUVEx7Tph4s/z8fSX33NVEhQ+fqhOLDTuSMLZU1bhhvJObV6PoluV9Mi9pTMaMHrDLKtwQ3nfHF+Fb46vRvf/3keHJe+g1cLXMWHrTziedu2ujvVBcDjlMuaf347Fl/cgozj/Xg+HEEIIIYQQQgghhBBCCCGEkAceVXAg5D7FJs3/dOgLHFx7HHuXHURxoQpRjSLQ//meuKQqAhbEljU2CFCcK4PCV2W3P/1ZHUJOFSB5vBQFesehgtLJrNkpuTi5/Sxa9bUdLvBXsYyU/QCEK4IUZcEAxmgy4WDqDdwozIOPVIZuYdGQCoSYFD0SycUZuK68adWHwcQD+iggaC6D4a1sIEEPk9GE66cT0LxHI4f7v3rsOlS1PGASleW91HrnIRB3dz+cXH0Of7y7CAXZhWCnjPd7OBAuwiDfyw637TsiFevbByF/php8BQ/GQpNV9YnbsalEdzLH2Gg04ePBX6PtgJbo91x3BNSwUUKC3BVH1p9EwoUkp+/X0q9Wm1+zwNGpHedwZvcFvLfoVXQpV53kUcTudLz+t63468OlKMwp+3n2y6vz0WdcN7z8y3MQiZ1/HxNCCCHEMbmXN56a8T1ijx3C1cMHoNOoEVAzGo179kHqtSuVOn1SuQJiqRs0SqVL7fMz0pF0+QLC6zey29+dUvhaBgNYoOLG2VPIz8yAm5cXIpu2hFAkQq/nX0ZeehqyEhNc6pf1wypRhNap57Bd2nXb4Whn3H18EHfyGA4sXQD1XajcYDLdWQOjwYDVX09HdIs2aNitF9xvO+/k7tmacBI3CuwHrhm9yYjfz20xvzbBhP3JF7nJ/D90ex49IprgUWYwGrHw0i78cnoDCrRlf4v5/PB/GF6nI6a1GQEhX3BPx0gIIYQQQgghhBBCCCGEEELIg4oCDoTcxwRCAToNacM9yku7cVuogGeCRK6x2w+bHK1fUYTtB/ei04tP4GZxlsP98k+WfTifm27/7oO9OzbFhuO7oI72sN+ZgzkuIj4fg+qVTfZhwYapBzcjsSjPvMxLIsVbzbrgqTpNMaPx/zB/z3JsEhyCiV/SscHEh4mb/g/w/AUQfOkDw9MZXGDg2onrDgMO7G7v3036DQgXWyw/mRKJtmHX7Q+cvQeHQ/Dd87+ZX7MRSGdlwPsbBYLEjidrBYRrERypRkqcDMZc57EFdbgbilr6wCgVQJyigvuRLAjULpTsuE3s6QTu8e/nK/DcjKcw4q0nKtwHqRhWAeXcvksoylMion4YwuuEYunMNZU+jUaDET+88DuimtbElaOx3F10m3ZvCN9g74fqrVEXa7B32SGkxKZxYa+uo9rDJ6jkGDNuZmFqn09x83KKzfOz6Y8d3GTCN/544R6M/D5FFRgIIYTcAYFQiDrtOnGP8vLSUivV3/ld2xDdqi0u79/t8jbF+WXXB7er26ELbl48h8oSiiVcH6USTp/Atnm/oCCzbPK3zMMTnZ8cx03KH/3ZLOz6cy7O79rqUv/p8bEOAw4sMLFz/m+VHLsUO+b/igfpl4r0uFjucWjFYnQdMxHN+w2okpERx9UaWNWFIp0atb1CUNMzAH+c31bpU8aCDx8d+heRXkE4l5kAPo+H9iF14Stz8HeBB1CxToNNCSeQVJgFH6k7+ke2MB/jzcJMPLflJyQWZto8P4sv7+X+RvBhu9H3YOSEEEIIIYQQQgghhBBCCCGEPPgo4EDIA6hpjWDU8PVCYnbJRB95oBIiqf0J72wStKCpBLpdhaiX6IdtCiG0RtslA/jHi8FP0JlfB0UG2O23y8j2qP/NCpz1FkPvI7Va77EnFQYPMZRNfG1u/1q79vCXy7nn57PTMH7HcmgMluPK06gx7fAWaHKLcXjSCiTUzYbgRU+7c2t4QULwOstg2qnC3x/9Bzd3GQZM6WPRJjcjH/tXHsGuxftRkF0EqU4E6I2AsKSKw8XMMMTmBKKWT7rNffhK2+HXN85YLRdc0UD2uRJYhju/+ymbrC3kIe3ZaCib+1gszxocjqC/4qA4neu8E1v9Gk34/Z2FCK0djA6DWleqD+Lc5vk78fdHS5GVnGNe1qRrA8Seiruj08cqFjxX71Xz1xALQvV4uhNe+WUCJDLJA//W7F1+CN89P4cLhZT6/Z0FGPbGQIz/bBSmPfaFzXBDeVv/3o2nPxyOwAiqVEIIIYRUl7D6DeHu54/CLOsJvo6wKhBswv/VQ/thvO13f3s8/QPtrqvXsSv2L10AVYH9YLYjnUaPgUzhzj1PuXoZq2d+CoPeclys7y2//QCNqhhnt29GTrJ1VTl79i6cD5FEgkbdelssV+bl4trRQ7i4byc0xa5VsygvqnlrbtsHFQuk7vprDryDghHZrOW9Hs5Da/HlPZh9eiMyVQXcax54aBscg9jcygWUSmWpCvDYyk+4qg6MiC/EoFpt8UHbERALHvxKauuuH8UnhxZzoZBSXx9biecb98GUJv0wcevPNsMN5S27egCTm/RHgJvnXRgxIYQQQgghhBBCCCGEEEIIIQ8XCjgQ8gBigYU3+3XCa4vWw2gyQeppv3pDKX6dkkkGAfDAJw2fwifn/4XaqLPs95Ia4hllH9KH1wlB48717fYplojw7dJ38HKvD5FcR4Gipr4wsSoDqSp4HEyD25V8mPhAbkooCjoEcWEHRpRWjGGh0ZjSumxy/S/nDlmFG8r7+vAuhJ1PhGCU5WT/Eia4CdixmKAyiMBrJuYCDjqNDj++OA+e/h7oNLQtd67mv/svVv2wATpt2b6EBTq4n8xGYeuSydCsIsSvx3riqUYH0DT4Bvi8kkkbPAgQJO+LrO09kXxtrs1xZhwWIP2GBIER9t+TjEQJ0hKsAyG3yxxd0yrcwI1PKkDqhGgE/xELvVfJ++p2oQDiDOdfB+X9N2st5J5uUCs1iGpcAwE1/HGlIBkHMi9DbzKgqXckWvnU4r7eSMVs/H07vps0x2r5md0XquRUlg/IsCoRW//ajfzMAny27l08yI5tOY3Pn/weRhY4KkevM2DJl6uQk5qLuMtJKGrlh8LmvlxVE0lKMTwPZHD/lg/xHFh9FENefeweHAUhhBDyaODzBej81Hhs+HGma+ndcryCQtD/5Tex+ZdvoddpHbb1j4hEUK0Yu+tFUimGf/A5lnz4NrSqst8HXNGoRx80719W1ezwyiVW4YbbwwpGw23V9Jww6HTYOucnuHl4cqEEk8GAPYv+xOktG1wOeJTHFwhQt0NX7pzEnTyKB92xtSvAFwqh12oRUDMK7r5+SI29goTTJ2E0GhFevyFqNGxyr4f5QPrn4k58ccQyfc8CCYdSr1RJ/6XhBkZn1GPZ1f3I1yjxY/fn8SDbeeMM3tr7p9Vydoy/nN6A1KIcJBSUVXhxVDljZ+JZjKprWf2GEEIIIYQQQgghhBBCCCGEEOIcz2Sq4EwEQsh9Y+fF65i5djcKAxLgG+P4bv6GU1pgqhKLk+bA3VuBfK0SaxMPY9m6bchPyodgvxL8YyqUTmWXyMT4fON7aNKlgdNx5GcX4Nm6r6Egu9BuGxOfB52PBDyjCaIcDZ6fOQbD3xjArdMaDKi/6FvoTfarUDDhn16C2wQJ+O1LwwEmBEgKuYeYX7Kt3shD5kUJksZpYdLzoIpUQDukFnKi3KA3GCGNL4TXnjQu0FCeUcxH6qQ6UNW2vLuij6QQzRLPwzNWCX5+HSSeKeYmWTvSd3wanvs0we76+R9GYNP8YId96D1EiP+iibmqhCUTIDIBgvIHYIL8ZB4C58VD4M8HusgAGR+4rgX2qQDLLIsVnocAom9qISfccpJVpDwAXzUdg3C5n+MOHkEqpRo7F+3D6d0XwDIgzXs2QbdR7cEX8PFkjSnIy6jcXYQrS9xcgE4/tYLOUw9PkQc6+bVHE69G4PNsfQ3dW1qNDie3nYUyvxgRDcKg0+ixYPp/OLbptMPtjJ5i3JxSB9rQksov5fmuvgGfHWV3omWhpg+XvYFHUVJSEsLDw7nnjUZ9ALHc64760yrzcG7Jp9zzmzdvIiwsrErGSQgh5OFw9cgB7P7nDxRmOZ/wy4hlMkz69W+IZW4oLsjHmW0bcXLjWqiLrK8lRBIphr3/KUJi6jnttyg3G3+98SI0yiKXx97j2Slo2qckEMnCET+PHwWTk2uSypK4ybnqFRUNSJTHggC+YTWgzM1BcX5JNb+HCY/Ph1SugKqwpNpA+ZDLE29Og2dA0D0b2/1KqVNj7fUjOJZ2jQumdwptgP6RLWAwmdBl6VQUaFV3fUwdQupDpdcg0M0Lg2u35cZ0P4bm1XotDqZcglKnQYx3KHcuWYDhQMolh9vxeTzu5gmuGBDVGjO7jK+iERNCCCGEEEIIIYQQQgghhBDy6KCAAyEPgZ+XrMC2sF0O22h/LED/gM54+ecJFsvVxRosmbEKG+dtR256Pjc5u92AFnhy2lDEtIh2eQzJsamYPuwbxJ294VL77/ZOR8OOJROVCrQaNF78vcP2PIERsqwiuNU2wd9dyS0LleYiUGp7AlPuLuDkAn+kjakNCKwnU3hvT4HfmkSLZWyKQnE9LxS18IVBJoA4XQ2Pg+kQZ1WsMgIz7uMEPDYhzWr5xvlB+PPDmk63L2jji/Txts6/CRCbAJtz1k0IEWZBHnLbpKkcA/B5DnCq3HF48iAaIYegrxQ8Hz6MOh5UfDFUehFXwaK8IKkXFrX/H9yEEqfjflRcOxmHaY99wX3PlOcX6oPR7w3BTy/Ou3uD4QGe02SQPVZSIaW8BvL6mBA4DvuXHEF2Sg78w/3QbXQHLuTEaNVaJF9LhVAsRHid0Lsy3FU/bsTCT5dbBKLYhCdX8pbJk+uguIG33fUhP1+C/ErZezJgSh+88ovlz7xHAQUcCCGE3G3s/+Pb5v6Mczu3OG3bcsAQdHn6WYtlWrUKR1Yuxbld26AqYNckAtRq2RZthozk7urvquykm1j33QxkJ1n+nm/PU198h6Do2txzZV4ufpv0jMv7IneXV2Awxsz6GSIxXZOUOpMZj8nbZiNXY3lNHKLwwbgGPayqN9wrXcMa4eP2T2JLwglkqQoRqvDBY1Gt4C6WmYMGNwoyIBaIEOkZeFfG9Me5bZh7djPytWVVX9hVcHXcAYa9F1NbD6uGngkhhBBCCCGEEEIIIYQQQgh5eFHAgZCHxMenfsYp5WWb64zpBjRdFoEP/n4DYonIZhuDwYCC7CJI5RLI5KUVEiruzJ4L2LXkADbM2Wa3TXTTmvjt5EyLCVEdV/yGZKXlnTpLCcQ6uLlp4SbWgs83wkOqgUygQ333NO7O+fbsOFEPacU+dteHfXMesgTX7/BaUWG1i9FtZCZ8g7UozJUD/MFY8tU57q71zuS380PGWBuTufi3Ag42BHjnw9Pdzh06VUZgUgaQpAfPlw/Jz97ghwqtmumMfOSpZVYhh7fqDcKQ8LZ4WJmMxYDqP5hUKwFjJsAPBs9tGCAbBh7PMjigKlJhbO2XrcINpVh4oDC3+r6ubuc2UgyP10omB9miXKRB4c9q82tWneXZz59ETlouNs7bgcKckrGG1w3F6KmD0axHQ2xfuI8LRASE+6HnM53hHXhnFQBKrfxhA37931+V2lbrL8WN95uwW6babSM/l4uQuVcsln217UM079EIj2zAYWQVVXBYeu8qONy4cQP16tWDSqXCn3/+iXHjxlXLfoxGI9auXYtFixbh6NGjyMjIgEQiQWhoKNq1a4cxY8agc+fO1bJvQgh5WCz5eCqSL523u7526/Z47NW3IRBa/x7KsOoGrJKDSCrlqjdUVuL5M7i0bzfO77Z/TRJcuw6e/Oybsn0bDZj7wniuOsLDSigSo06Hzrh25AC0qrt/Z/871Wfyq2jYrRceVkU6NZZe3oc1148gW1WAUIUvhsV0wKBabSEWWH7PFGiK0WvFh8jXlIT/b+ctVSBXffeuSZy5PTzAwvNvtByEpMJsrLh2wFxporZXMCY36YdmAdFcZYpsVSEX2HiiVhv4SN2rZCy/n92Cb06sxt30b/830TzQ9RtIEEIIIYQQQgghhBBCCCGEEPKoo4ADIQ8JtUGD768uwOHsMzCVmzqgyJPied/h6NKuzV0dz7JZazH37QVWy/3DffH19o8QVjvYYvnsc4fx9ck9Vu15PCMCA/IhFenLlsGEmopshMhsByJK3cz1xt7z9e2udz+cgaBFcahqtZpFwj/MB9dOxkMsFaHDoNZ44qV+CIzwh0qpxhvdPsK14473qw2Q4MYnTUpmgpQnMgIC6/YCvgGRoZkOAx9YXQT8mAfxh54Q9rQ/YaxYJ0KRzvLOqG18Y/B9i2cReyoey75Zi0Nrj0On0aFum9oY9FI/dBnRHvez4kIV8jLy4ennDrmn3GKdyVgAU84YQH/RekNRS/B8/gCPVxYgWPfbVvz4wu93NB72daFV61AV/JYpIAyz8UVxi7HAhIyBBYCDQiQmHqD3EoOnN0Gk1MNkLPsZIhQJMP6z0Rjx1hNlfRqNOLb5NJKvpkLhLUeHQa2szuvtWLWIUWGTzIGKispv44+Mpx1PCuIX6xH9znGLZV1GtMP7S17Ho+RhCjiw8F3Pnj2xe/du7nV1BRwSExMxevRoHDx40GG7YcOGYc6cOfDxsR+eI4SQR5mmuBgbf56FuBNHLZbL3D3Re9JLqNWq3V0dz+GVS3FgqfU1iWdAIIZ/8Dk8A4Islh/4bxEOr1iMh0FgVC24eXohMyGOC4ywcEnTPo/D3dcPWlUxlnz4NjITE/AgiW7ZFoPeeh9psVdxbP0qxJ08CqPegNA69dCs3wDuGO9nRVoVctRF8JEqoLhVvaAUCyOM2fQtruWlWm3XLrgO5vR6katwUOqvCzvw5dHldzQeiUAEjaFqrkmqGo+76i+7JmEBj7daDsEz9buZlxmMRuxNvoDEggx4SRToEdEECpHjYJRSp0bnpe9y/95NLKTyZaexd3WfhBBCCCGEEEIIIYQQQgghhDzIbN82kRDywJEKJJhabwKSitNxPOc89CY9Ytwj0dgr5p6MZ/ibA9G4awOsm70F107FQeomQcchbdH32W7cHe5vN6F+KxxOS8TelHiL5T7eRRbhBoZVF+Bb3P/RNnc3NmmBtbM9618XYDmphE3kDojw5ybCFxdU7I6mfD4PtVtEof+Enug1tgtEYtuVMlh1jJyUXKf9iTM0qG9U4KLAtcngcpnGcbiBaScF/uZB0MUyvHA7qVCHIh2rWlDWodqgxZENJ/DJ0FnQacvej/P7L3OPS0euYfI3Y5GQn4uzWWkQCwToEBIBd7HjfVW39BuZ+PODxdi77DAXyGDvcftBrTH+01Fw91FAIBTAjfe17XADozsOU9Ev4Lm/aV50aue5Kvn+8PTzwPxp/0KtdJA8cILvz3MYbuDaePAgjBRAf9lgM9iQ2yME+Z0Cofcpea8kN4rgszUZirMlX6d6nQG/v7MQfmG+6D66I1elZdb4X5CWkGnuZ+azQEzzaLz55wuIbFjD5jiObz1T6XADwzOYKtUm6ar1JLFHCc9U8rjTPu6VF154wRxuqC4stNGxY0fu31I8Hg8BAQHQaDTIy8szL1++fDliY2Oxf/9+yOWOQz2EEPIokri5YfDbHyI7KRFxJ49xFRlC69RHWP2G92Q8bYeMRESjpjizbSMyuIn+MtRp2wENuvaExM3653ibQcO5ChQ3L97573uVxRcK4ekfgMKcbOg1Ffs9kcfnIyi6Nhr16IMGnXuAL7D9e6JY5sb17wrvkFDkpiTjfqDTanDtyEGs/+FrGA1l1yTs/WKPNoNHouOoZ5CTkoz0+FgIxWLu/RdL7Vc7uxtuFmbiuxNrse3GaeiMeoj4QvSKaIpXmw2Ah8QNAh4fM44usxluYA6lXsHcs1vwUrPHy5al2K7eWBFTGveDRCjC9yfWQGO0vOa+18qHGxitQY/Pj/yHILk3d+4OplzCtP0LkKosu7bm7QMa+0diRscxiPKyDC+V2nPz/F0PNzAJ+Rl3fZ/k7kpISEBkZGSV9hkfH4+aNWviQceOgVXlY3bt2oWuXbtarGfXXg/bMRNCCCGEEEIIIYQQQggh5M5RwIGQh0yYWyD3uB/UaRmNOvNfcKktmxD/R4+hWBF7HouvncGNwlx4S6QwybJstlcbnP/40poEkLppoS6W2L3be3lv//0yuo3qgEnN3kTcmZIPX12hjlAgsGcMur/xBNpFRNoNN5QSSRyvL/V+gw74Ius0zmelly20M9FYwYU5HDO4C6Hr5AM3keMkBJ/HHiYY2ez3W65ezcJXr/1sEW4ob+kfW7C1hQknizPNQ5SLRBhXvwXebNkRfKfpC0s3cvOw5MxZXMrM5PrpVycGfWJqQ2RnkpYtGYmZeLXDNGSXC5Swyfp7lx3C/pWHYTSY4KYwYMnZS5A4utFn8TKYFK+Ax2OhD8BkuvPZ3tsX7MHs41+j7YAWeLXD+8hNK5tAXSGuzkOyMfGfLUkbVxtFzX0tlmsiFEidWAf+/8XDa1/Z197Sr1cjsmE43n9sBtTFt022MwFXT1zH5GZv4aMVb6L9wFZW+2PBoTvhdiUf0BsBId9+m4vW55EFWciDh1VuePHFFzF37txq3Q+rRjJy5EhzuIFNrnnllVfw9ttvIyQkhFt29uxZvPvuu9i4cSP3+vTp05g4cSL+/fffah0bIYQ8yHzDanCP+0Fw7TrcwxVsQvyQ96bjwu5tOLdzK/Iz0iFz90Bu6t2b4D/gtamo1aot5r82qcL7ZeecVWmIat7KbrihlEDk2jVJj/GTsfufeci66fr1UXXJuhGPTbO/swg3lHdk1VLcOHeKq/BQPszR4rFBaDdstMUkWlcnpS+5shfXclMgF0nRP6oletZoAiHf9WuSxIJMjN4wE9nqQvMyFnLYGH8cmxNOwHjr2sLZyJZe2Y8pTfpDwOfbDABUxsrYQ1gx8F10DW+EJzfMQq6m8mHku2XeuS0Ikftg8vbZXOihPHZGzmTGY+Dqz/BrzynoFNbAavtMleMqkNXFU+J2T/ZLCCGEEEIIIYQQQgghhBBCyIOKAg6EkPuGiC/AqJgm3IM5mxePV05cs9k2U6NADXkuNxnfHtZGIDDaXe9xvCw8MWByby7cwPR4spNLAQdtgBTpz9SCpoYCSQBObNsEiUCIsU2a4p32ne1O6m83oCVW/VgyUdYeuacbaoYGYFXHp7A5/hrWX7+MIp0Goe6eWHnjHPSmsuMSCAxwk2qdjletkSG3dyB8uNHax+bYmMqFG9jrGyo+TFq1zf9pGCV8JL1eF3HFZXf0Z5Q6HX45cxjFei0+btcDrlp8+iw+2r7DPNmH2XItFvX8/fHX8KHwldufHHK5IA6n8y5xE/D3TT9gEW6wGPOtCf8hkRpIpNaVDSyYcgFDBiAM417KPe78ru3pN7Kw7teteOr9oZh37lt8NeYnHN10qsL9GHNN0F3UQ1Tf/v/ODalG6GOtvw+K63tZhRvKyxpUA+7HsyBQlZwf9j0xf9pi63BD+fEYjJjx1A9YkjQHck/L81S+4oPd7YU86P0k4OmMEGVbfk0LC3XwOJyJgo62A1xsG+9d1ne9Zd/PjzT2pX6n89/ucgWH9PR0LnSwZ8+eat/XP//8g0OHDplff/vtt3jttdcs2jRu3Bjr16/HhAkTMH/+fG7Z4sWLuXatW7eu9jESQgi5u4QiEZr06s89mBtnT2P55+/flX2zifgs3MDU69gVB5ctqtD2WYkJ2PTzNxBKJGjR/wl0GPmM3Un90S1a4+z2zQ77kyoU8A4OxdNffo+rh/bjyuED0KlV8PALwIU926sk+FsRxfnOQ8Hlww2MVlWMQ8v/hV6nRecnx7m8r38u7sSMI8stggRbb5xCQ78IzOv9Mrwk9q8Jjqddw8HUy1DrtdiacMoi3FBe+esdZ2cyU5XPBRD8ZB7ca4XozqtSJBZmYtnVA3i2YU+sH/wB3tzzJw6l3nlliOp0JjMB359caxVuKE9vMuCNPX9gz8gvIROWhNRLJRfavoFCdRsQTb8zPuzc3d0xadIkh21Y9YKrV0t+RgUHB2PgwIFO+ySEEEIIIYQQQgghhBBCCHlUUcCBEHLfEvLs36ldaxQhqdgLNeS2J7mkqxVQGiTQamz/mPPM1KFWvhCRj7fA45N6oc1jLczr+k/siQ2/b0dKbJrd/esVQiS/VB8GT8sJExqDHnNPHofBaML7nbparNMZDDifno6oJ1tC8u8eaLKUdvtX5hfj1fbT8P2BzzCgVl0MiK7LLVfpdNwkm+UJZ82TYNzd1HDlZqT5GQpo1WKoisSQKewHIrQGAUy37iHK5tzkZSug54mgrimH4rz1XfgL2vpBG2J/gs0/F09hcuPWCJI7/3B+5ZbD+ODMQZu3MGXVHN7YuIkLOdwuT1uIry7PxeXCuLKFLwKyXt5Qv5cPU7rtoItK6drdV008mXlIKdetJ9FXxl8fLsH1swkY+dYT+HzDezi//xK+nzwXNy46DqDcrmiBBt4z7P/vXPmvxuaMqfx2/g77NYkFKGzpZ1HF4fD6E07Ho1ZqsO2fvRj0cj+L5ZeP2A4rlQYbcgaEIr9DAIyKkmORJCrhszEFitNlIRX/FQkwygQoauFnVY0lcEEsJMnFFsujm9ZE9yc7Oh0zuX+wIMHzzz+P1NSq+T5zZtasWebnnTp1sgo3lGKTQ3/77TccOHAAV65c4ZZ99tlnWLt27V0ZJyGEkHuHL7B/TXKnWBBB7ukNvxo10bRXP9RsWnZN0qR3f5zfvR0FmeWqublIr9HgyKr/uOcdR42xWGfQ65AeF4vQeg1xad8u6DT2w6vqoiL8+8GbGD19Jup16sY9GK1axfVzaf9uPChObliNlo8PhpuHp9O2/1zYiS+OLrO57nzWDby37x/M7jnFal16cR5e3jEHZ7MSUB2kApFFZYiq8PWxFTiflYDnGvbGn31fxZHUq/jo4CIkFGTgfrUv+YLTNgVaFdbHHcXwGMtrgXPZd78SSWO/mugd0eyu75fcXb6+vtz1giPjxo0zBxxiYmKctieEEEIIIYQQQgghhBBCCHmUUcCBEHLfinEPg4/YHTla23e8TFZ5QWsSIlhaALmwZMK+yiBEutoDGRp3mE6rodiZgfzOgTDKSn7cifh89I+OwacTesLjY4nNfhVecnyz+xN89/xvOLbptPnOpKyqgneQJ5KvpqGgQ6BVuKG8BWdPY3KL1vBzK6k2MO/ocfxx/AQylSWhBuk7zeBxMguyZVfB19uefJ+XWYA/3vsXH/73Bvf6YFIiXti8DnkaNZtpBYiNgMAEIZxUIGDhCi0f6kIp9zz9pg8i6qbZDEUYjUBesQw6owBajQjFhVLo9SUhAJ6dYhiFre1XAWAMJhPWx13BhEYt7bbR6/T44qkfsEKcDTSxnLxe3v6EG3hpxAxor2TBN8Qbvcd2Q6ehbfDZxdm4rky0ai+IEUH2nReKx+YAOuv+kuMkiLsgRVQDtd19nt6vgMkzCS16lRxnZmLV3fVz3/LDOLTmGD5Y9gbaD2yFeee/w4Lpy/DPxyUT0lyh2a1HwfcquL8gBU9crvKG3gTlIg2Kl9sOs+i9bX/9W7Txcd7GlutnEmyGdmwx8XlIeSkGqrqWk800NeRInVwbAQvj4bm/ZAIXX29C8F+x0GxJ5qpPGKUCiFNVXKUJvtZoMRm907C2ePXXiRBL7X+fkvvHmTNn8MYbb2DHjh0WyydOnIjff/+9WvZ56tQpXLhQNkHulVdecdheJBLh1VdfxQsvvMC93rx5M/Ly8uDl5VUt4yOEEHJ/CK5dFxKFOzRFtq9JKkMgFKJuhy7oPn4SxDLb1cnYRPyRH8/A1jk/4ca50yXJYxYClcvh5uGF3LQU8zJ7TmxYg5aPD+EqMbBrmqOrl+HkprXmSghCsYQLWbBAhD3K3Bwc+G8h+r9Uck2ScPoE1v/4NTS3rmseFAa9HteOHDBX5rBFo9fhtd2/Y9fNcw772nnzLJ7Z+A3yNMUIlntjSO126B7eBBO2/IRreSmoLldyk9EisBb3PL3YdqW6ytgYfwLbE8/gl+6T0SmsATYP/QTfHF+F389txYPsck6y1bIirf3rvqrGBw/9o1rio3ajIRbQn18JIYQQQgghhBBCCCGEEEIIqQj6hI0Qct8S8gUYUaMLfotdb3O90cSDh7AWLhSkQsgrmeSvN7E7rPKAHAN43+bBLykLPluTIW4bitf/fAFNAoIQIFc43bdfiA8+X/8eUuPTcf10AqRyKRp3qQ+xRASVUo0BK/5FTr79SSVaowHb4mIxumFjfLl7D+Yds7zzvdpogLqpN2SKugicdxE8O3OTDq4+hoLsQuSLjJi4cTWUuluz9I08QF0SPNCJxYC37cnjpTRFZRPVi/LdkHg1EBFBWYBnWThCpREhKc0HSlVJEKI8vkoP2XXbk7oMbs6rIBRq7U+aYv54919usr96Wtlda0uYIPNRwc1XBaFED6Oej5NpKrhtSEH8uUQc33IGMZNikPK07Uoe3NjDhRB2k0C/1fYY/vkmCB/OSwDfxs159Tpg0XeBaN4/Fi16NeGWeQV4Ii2hau6YWrIPA2Y9OxtLkuZwk/FHTR2EtbM3Iy+jwOU+ipdqod6qg7SvCIJAPoy5Jqg2aWHMsP2F5RPkhZQCHRy/K4CgwH6lD0dkCuuvobCYYFw9ft1qeWErH6twQ3lZQ8PhfiwbfE1ZgEGSqoJkg/1KF9PXvI22j9sP1DxK2M8Wez9fKtJHdRs7diwXcigll8u56gqTJ0+utoADCyiUEgqF6NfPsuqILQMGDDAHHHQ6HdatW4dnnnmmWsZHCCHk/iAUi9Gy/xPcJH97fMPCkZ1002lfcm9v9JzwEkJq14Gbp/OAnIdfAIZN+5QLM2QlJkAklSG8fkMIhCKuisJfb76Iwkz7d9rXazWIO3kU9Tt3x84/f8PpLRus1rvi6uH96PncFBTl5mLNN1+4vJ0r+AIBjAbnge2qoHYSyvjq2HKn4YZSx9JjuX9ZoGFv8gXU9wmv1nADczYzwRxw8JG6I1Pl+vWCM1qDHu/t/wc7R3wBEV+AF5s+hqVX9qNA6/g68074yTyQVYXHcDs3oXVYu6ZnQLW/T6X+6PMy2oXUuyv7IoQQQgghhBBCCCGEEEIIIeRhY2M6JyGE3D9GRXTlQg7s7ofliXhCvFZnCH5p+TqGSjtCf8MIvZ4P5BuBFYXAlAwgSc+1ZXd27xAUhl6RtVwKN5QXHBmIjoPboGXvJly4gZHJpVAZS/p2RKnTIjm/APOPn7TbRlXLE8X1vM2veULAux8QOQuI/hkImGRAQkocFpw7XRZuuE1hvhuMLPDggDpfAr+APO4hFutQmCvHUO+nMTSzO/pltcMTsidwLT7UZriB8dydYTHBvDx2B31nor187K4rLlRh4+/bS14Yy8+kNsEnKhfeNfMhcddCIDZC5KaHqL8Akjk+EEeWtL2hcD5BRdDRcnKLzkcCVZQ79++hzZ6Y9Wo48rIsM39ZqUJ8Nqkmzh5SmN97puczXVDVCnOKsPXvPdxzkViEV2Y/z1UhqAgWaiherEXh92oo/9bYDTeE1ArC9DXvYEDN2g774+mMcD+ejcrIzyzAsS0l1U9yM/K5aij7Vx6x2bagnb/Dvlj1laJm9r9+bjfu01EUbnjAPfbYYzh//jwXbqhOx44dMz9v2LAhF6pwJiwsDCEhIebXBw8erLbxEUIIuX+0GTISzfoOAI9n+ScUgUiM3pNewVMzvndYGaBURKNmqNWyjUvhhvK8g0JQu3V71GzcjAs3MGKpzGHlhVJalQo5Kck4vXUjKsug0yHzRgJObV5XpeEGptv4yWgzeASa9h2AdsNGozr5hobbXZenUWLltUOV7vtijvOAy50qXwXgiVptq7x/FpjYEFfy+5FUKMaH7UbddhVedSI9AvF7r5fQo0bjatoDuPDEwZRL3PP04jwuwLHbxQDLnXq71VAKN9xHNMXFyE5KRGrsFe5f9poQQgghhBBCCCGEEEIIIYTc36iCAyHkvvdC7QEYEtYB29JOIldbhGCZD3oFtYCXuGQy6uS2Q3H1nTM4t69k8sLt2ETxQS87n3BUEXV9/ZFSWOi0zZpLl2A0Ob79eVFzf8gv5kLoD9T6FZBFl63z6AD8a5yBhPxGbJqJze2NRj4yU70QEJJjNSmexyogmPSoVy8JpavYcHIyPbBw5E8wJZeEE/gCPjq+1Ar765hgFFr24bE/E36rS+6WH143FNnJOVwogduOz0N7nTe2Ojg+X6kb+taMsbv+v5lrzP3JruZB1dYPwX65kPsoYXQ3QWkoCSfwYURjj2TUVmRAFq4DNgFZJ0W4ki+AUGRAuCwHXqJimEw8ZGrdkajyQaFBVnKO/Ev+d6cJc0PWoJpQ1/Iw7196LR8b19zAnhZeaN2jEL5BOmQki3BspweMBh53Tts90crcvs/4btg8fydiT8XjThgUAqhaesAo40OcoMaSL1fh8Um9uHWdhrTBF5um4Ysnv+fCD7fz9HNHfpbjrz97UmLT8F7/L/Dj0S+QdHYf9icl2mznszkJwkLboRpndi7ezz3C64ZAq9Yh3UHFC7232Gl/eu+ygMntBEIB5F5uaNihLp54qR+a92DfK8SM/fi50woMd6GCA/s+69q1Kz766CPu37vh4sWL5uf16rl+d93atWsjJaUkWHX58uVqGRshhJD7C/v/VPfxk9C8/xO4tH8XVAUF8AoKRr1O3SBTuHNtek54AWnXryE97pqdPvhcSKIq+deoicTzZRWQbPGLqIlL+3aWXATcgf+mvwvprWOtSjv++BUwGc3VHIKia3Pn0RHfsBooyMyATqPmXvP4fATXroOUK7avBxmFrx+iWpT9Tl8eC+XOPbMZakPlfve9GwQ8PrqFl4UBRtTpiFXXDuJaXmqV7ue3M5sw6FZ44vGoVlwVhHf2/YVCrXWo3VuiQK7G+lrFFfEF6Ziw9ScsefxtFGhUOJbu+D2vjFWxh7hHba8QFGqLkVZsv+rfnRLy+PAQu6FFUC08U78bWgfZv/4ldwf7vr554RxOb12P2GOHYTKW3bCB/cyo3aodmvR+DOENGlX45gIPAoPBgJUrV2LZsmVcsDs1NRV89rMyOBitW7fGmDFjXKpgp9frsXjxYqxevRonTpxARkYGV/2O9dOpUyc8+eST6N69e7Ufj9FoxNq1a7njOXLkCHc8bJmvry9iYmLQo0cPjB8/3iKMTgghhBBCCCGEEEIIIYSQBxsFHAghD4QgmQ+eiexpd/27i17F2z0/QdJVywke7IPqyd+O5SY/V6VnGjXFzoQ4u+sjvbzRKiQU804dg15uYEkD8Iw88DU88AyWH54bFCWTtyO/tAw3lDLCgPCQM7iU0RD5Stt3GC/Ik8Ntfzbc62iBpiWBAK1KAB+pCm5uWou27LN734ACaN/hI++VW/swGJH2wxF0blEDF3100PiLIVDq4X4kG5K0kolDbu4yfLjsDQTU8MPpneeh0+gQ0yqaq3LxyaGdmH/hhNW4JAIhvuvaH2KBwOa4f5gyF+vnbDO/bhSSgLBusZCIyypk5GlluFwQgPY+cQiR5lts79dcB19TMgxc/OHWHXV5Jq5dkKQAZwrDkKV1R7FUCmOIG5JfagCT1HIs6tqe3PLQHy/g4GbrwkZdRrRDWO1g7nlWcjZ2Lz2IJl0b4OaVZGiKLc+tK0w8IO/JIBT284NJXLa/nEQ11u0+jAFdSyYUsaohy9LmcWGKbQv2ICctD77B3ug9titCawXhjW4fo7IKsgsx9/V/MG/Z6/j2yAEsvnAWhbqSYxFlquG9LRmeh+yHElx187Lj6hosWOMnliHVyQx6Ya7tyWYTZz6DYf97nJuoQR5sbLJKeLj9uypXh6SkkuBWaWUGV4WGhpqfJybaDggRQgh5OHkFBqHdUPtVBgb8byqWfTYN+elpVuGGHs9N4SbvV6WmvR9zGHDwq1ETQdExOLB04R3vy2gwoDi/GiaI3wo3lO6DhRt8QsORk5JkM5Qhkcsx8I1pkHt5IfHCWRj1BgTXjoGHXwC2z/sFZ7ZtstpGKJGg/4uvg88X2JwEPe3Agjuq3nA3DIxugxBFSVWzlKIcbIo/wVUIuFGQCa0L1QVdlVCQgc3xJ9E3sjn3unuNxjg4eiaWXzmANdePIFtVgEC5N4bUbgd/mQcmbvu50vvKVhfiuxOrMbf3S/j+xBosv3YASl3VVghhruU5uSYBD+5iGfK1lbur/wdtR+LJul0eyknyD6r0uFhs+uVbrlqDLSzscPXIAe7BAlP9XnwdgVG18LBgAYBx48bZDGPHxcVxjyVLlqBXr15ceIGFBOz1w4IQV69etVpXWFjILf/jjz/Qu3dvLFy4EP7+jqszVlZaWhoGDRrEjed2ycnJ3GPXrl347LPP8Mknn+Dtt9+ulnEQQgghhBBCCCGEEEIIIeTuooADIeSh4B/mi19PzsTOf/dj34pDUBWpEd2kJgZM6YOaDap+0mzXmpF4tmlzzD990mqdp0SKT7v1wOB1i3AhOwO4dYN6E0wwSkzgq3gQqMsmZItyNJDVBxQlc0hs4vFMqB2chuOxNhIQtwi3FgBzigA3HruFJASPecLtFVsTx0uWiVsJIWouhO5k2YSYlBOJePmjEdw5TDifbF5ev10MXvrpOfO5bF+uogHzUbvuaBEYgr8unMTZrDSI+QL0iqiFiY1aob5vgM3xHlxzzCLcEDbBgIiJ1oEBL7EKnfxiESi2XbGAzSMRmIwwshQJ9yjB55nQUJGMPdkxyFZ4QTPWzyrcYD4jUgGUw6Mh+eGcxfLOw9vhzfkvcBOffn97AVb+sBEGvQF3Im90EAqesD4nuhpSvJu4FckzE9G7TxtENY7gqhM89nwvrmrEsc2nkZWUDa8ATzToUBcDX+iDtbO3VHoc7Py/0uIdvL/0deSt3Y9DZ6+CpzdBnKYqdxarFwvWGFfHAuPtf13zVXooTuVYLe8wuDVGvDGwmkf44OOZSh532kd1u9vhhuLiYiiVSvNre5N6bPHxKZlcyOTkWH9tEkIIeXR5BgRi7Nc/4+K+Xbh29CD0Wg0CIqPRpFd/+IZW/f/rardpjya9+tmc1C9z90C3cc9j0buvIevmDTxIcpJvov2Ip3H5wB7ueanQuvXR49kp8AkpCRuyO7CX13PCiwit2wCntqxHRvx1CEVi1GrdDi0fHwy/8Aib+9oYf/y+CjdIBSKLShI88LhKCp+0Hw2jyYgvjizD4st7YSgXDKlqb+6dj8s5N/FYVCvU9g6BiC/A6HqdMTSmPfYlXUCmKh8+UgXah9TD4Oi2WHX9cKX3tTH+BBLyM/B9t4k4n5WIExmxuNuMMFU63MDem6fq3Z3qY8Q1CWdPYe2sz80VXpxhIYilH0/FwDenoWbjZg/8ad6xYwcef/xxqNVlx1+/fn00adKEq+pw8uRJxMaWfJ9t27aNq3xw6NAhyGQl1S9Lbd68GUOGDIFKVVK9hVVtYJUfWDU7rVaLM2fOmCvibd26lVt34MCBKq+goNFo0LdvX25/jEAgQJs2bRAdHc3d6IAFzg8ePMi1Y8f8zjvvQC6X48UXX6zScRBCCCGEEEIIIYQQQggh5O6jgAMh5KEhdZOg/4Qe3ONu+KBTN7QNDceCc6dxISMDMpEIfaNrY1yT5vjkyI6ScIMNRpmJm0jO15dMI1ccS4eig/P9BXjanuDPAgviG0rI4otKXhaz2cgmeEWzu1+KLdoJeKzOgYkLBbAbovp8KEHOVCN0l8smyCRdTcbvZ7/F1RPXkZuej6Ca/oio73xC1uNRdbmHq9b+WjY5XyA3Iew5+8EBL2HJh+r2sOPhm0y3Qg5lRHwjZNBApxNCGyrjzjubJGRLfpQCX65+Haknb0IsFaH9oNaoUbdk8tSiz1Zg2TfrcKcMcgEK+/vZXa9142He2X1Y8c4ytOrbFO/9+xpObj+LX179EzmpueZ2ck836HV3fqfW+HOJ+F+n91GQXQQpqo9BLoLeUwxBkQ7CAssQi/uxHBS084OqrqfNbf1W3ARfU/b1+X/27gM6iqqPAvjdluym956QQOi99yK9iqKIoCioFHv/7NgLFuyKYkNUEAQUUBHpvfcSWiC997bJtu/MxDSyPZsC3N85c9idefNmdjZsduDd95c7yTB+9kjMfn96PZ4xmZKSUrNKjjG2VENoLIWF/31e/sfNzc3qfau3vbIfIiIihVIphg6EpSEIg/ojOnbBsQ1/ISPuEhRKFVr3HYCuoydgw1efXHXhhgr5GWmYueBLsaJDcX4uPAOCrAqJtB0wRFysJYQFmhKtXof3B81EbH4aXOTOGNGsC5p5lIejhSoHP53Z2iDnsPD4enEZGt4J7w6eiS3xxzH/wEpkluRXtvNwckFptTCGvU5nJ+D2de8iu/Tq+V7lJJVjWtvBeKrHzY19KnRF5QZbwg0VhPbCflNeeeeqruSQlZWF22+/vTLcIITIf/zxRwwZUvWZKEze8M033+D+++8XAw9CcOD111/HW2+9Vdnm0qVLmDp1amW4YezYsfjiiy/QrFnNoNjOnTvFShEXL17E5cuXcdttt2H79u0OrbC4ZMmSynCDcHwhlCGELKpLTk7GHXfcga1byz8fX375Zdx3331wdi6vbkpERERERERERERERFcnBhyIiOpgRPNocakuPj8XG+Mvmt1Pr9RDWiiD+740qC4VADUnHzXKV+WCsOBs+HjnQy7XobRMgcxsd6TneKAsygXJ97eC9z/JUMWWDwyRuFbf2wC5RAeppGYoQBEsQcBXKmQ8VoKyI+WDyIvyymevbNXd9Kz6plw6EYc/Pv8Hp3bHQK6Qo/e4bhg/dyT8QnyMtI2vfOw9WA9ZjfOtSQhm2MtNVgZNkUJ8bJACprrSGwzIKinBnfNuhUFvQMqldKRcSoNPkBdWfrQOjlDS3R0GJ/P/2V/c2xPeP6eKFRueHPIyLp+Mh15fcwr9ivfIEYRwg70iO4TD3dsVJ3bEGN2u8VUie2wzFLfxEd5E4SJDeTEPPuvj4JxUPnu+RG9AyGfnkD0+FHkD/KF3K3+vnOOL4PNXMtyOVgU7hGzKohMfIqxlsN3nfN0pzzvVvY//CDNzWmwupKeaOGHW0eoUivKfO2tUb6vV1j1oREREVFetevcXl+qykhJw+VjtanN15ertg6LcnPK0dD0qLS7/rhjUouZAVmucyUrALzHbcDT9EhQymThIf0rrgfB3qR2oPZdTVbWuKdAa9CjSluKRrhOg0euQVJCFxIIseCtdsaQBwg1X2pxwHHf/vQCnsxLFioTV5dtZ9cCYuoQb2viEiZUvjmZcQkOQQoJ/bnkVwW6173Gp8Qj3IH9/vsDmcEMFYb/1X3yIu977DBLhH0uuQgsWLEBmZqb42MvLCzt27KgVShBe26xZs5Cbm4v//e9/4johvCCEAioCAc8//7y4XSBUg/jjjz+MhhYGDBggVm3o2rWrGIQXHv/2229i0MFRhOoQFYQgxpXhBoFQNWL16tVi0F6o0icEPYSqDjfccIPDzoOIiIiIiIiIiIiIiBoeAw5ERA52KD1ZHCxvjkEOSEp0cN+dKj7P32O530K9AcFB2ZXPXVRliAjNgpdnEc5dDkZRJ28UtfdE8KILcDuWA91FPfDfRH1C1Ybq4YbqJEoJvJ9RIu328gEqzdraN/v6Pz9swYJZC6HXVSUILhy5hD8+W4+3/n4BbXvX/I9oVw9VZVUCufsV5wQDwuQ5aOaUBSeJDhqDFBk6dxQabJ+Br6TUCbpSWUXHpmn1+Pqer/H9HQvh5OIEdaFQAQMIiPBDQbZjZhM1OFueyVCvrGoTe7xpz7h7+WQCXNxVRrdpfJyRPLcD9O7VqohIJVC39EJKhDuCvz5ZGXKQag3w+z0RPuuSoPV1hkSjhyK75gB0wdCpAxluIIe4MoRRl0FMQl9X6yAoIiK6diXFnK6XfjXqknoPNwh8wyLs2m9ZzA68tndpjfux01kJ+PnMNnw76hG0861ZBcJNoUJ+mflqcQ3t5d2/4NU9S+EsU6BEW/6dOMTVB0Ua+wZu19WprAQ0ZWezk6CUVa9cWL9uadWP4YYmKOHUCWQlVk2iYA+h4k3i6RMIb98JVyMhXFDhhRdeqBVuqO7BBx/EG2+8gfz8fDHYcPr0aTGoIFRDWLFihdhGuMf55JNPzFZkCAwMxLPPPotHH31UfP755587NOAgBBYqVFSUMEYIdHz22WdikL158+bo0qWLw86BiIiIiIiIiIiIiIgah+NqRhMRkSg7sSqEYJIw3sZJjow728AgAUovAXnbzO0gRaqJ8SwebmoE+5fPrgeZFGl3RkGilKFkTSkMWoNVFRAUUVI4dSr/leCktH1wSOK55FrhhgqFuUV49Zb3oNVoKwcDH9t6CoGRAZVtii9WDQ6WQ4dhrjEY4HoR4YpcBMoLEKbIQ1dlIprJs4weXxi/pDeRXjh5WRjEZHnwsdvRbMhKdGK1hIpwgyA9vnwGREdwuqx2SJumpLjA+CCD3OHhNcMN1RicZcgeG1lrvRB0cEpTGw039LupF5767n4HnDHVxf79+5GQkGB2uRo4OdX82dRoNFbvW72tMBiI4QYiImqKCrMd9x22gkQqRZmZAaZXksr+CxnbQe7kbNdA9yvDDRVySgvx0OaF0OnL71f0Bj32JMcgzN0XTZHwGirCDYLkIivuMa9TQmWJEl3V/Vt9GhvVHS/3ndogxyLbHNvwp0Mu2dENf12Vl/7s2bM4d+5c5fM77rjDbHsXFxccPnwYeXl5SEtLE8MNgk2bNkGn04mPW7dujaioKIvHHjduXOXjvXv3Qq123L9pdOjQofKxUHHi559/NnnvNmPGDMyePRvDhw+Ht7e3w86BiIiIiIiIiIiIiIgaBys4EBE5WPG/sZCE6WFQmM6QScvKB9xrfZQoaeMNlzM5uPwiEPWpFB5daoYE9Bo50rWu0BpMDxDy98lHcrrwH7gS6N0UmLH9KVx4dxsOvHsY7s+orPq0lwVJgeN6/P7Z35jy7E1QuSrNtj+Vdxg7M/9Fckk8ijNK4XsvkL0C0JUXZaghOzUbO1btgYu7Kz5/5DukxKbV2J5/UIriWMClOdBDFQd/ufGKCRGKXBTpnZGpd6uxXifm9WqHGE6mhCK7uKo8hFStAxS1L4YstxQ+6+o226M1nM8XQ3GpBJoo41UPBO4bjIc4bKVXKVDSMQilLXxhcJJBnlUM5YlUOMflQKeSoSxcBWgNUF4ugoX8i+3HVkhR1NHPbBt1C09ovJ2hyDE+GEkYND5s+kAEhvtjyO39Edm+5my7ZD2JAydZDg4ORliYfVVemhIPDw+TM4NaUlhY9fnk6urq0PMiIiJylMLsbIeHGwz/hQOsNXzWg7hwYC9iD+23+XiH1q1G93E3Qa5QmG23Ke4Ylp3djvM5KSjRlpqtpJdcmI3N8cchFF56a/8K8TmRORJIMKllHwS6emN8VE809wriBWuCSouLcf6AFWUxrXB+/26xP2cXF1xNhAoMFYT7NeG+zZIWLVrUWrdv377Kx7m5uZg7d67FfvTVfjcIFRSEsEXnzp3hCEJg4eOPP0ZpaakYxrjzzjtx//33Y+jQoWKQYcSIEWIQg4iIiIiIiIiIiIiIrj0MOBAROZguswQelzOQd0Og8QYGQFpSFX4oDXMXAw4FUT7YmNwSvppChAZkQSbTIzffFdn5rmjeMdXsMZ0UOrG9TlcegsiUaHD3q1NwcmgMcu4vQMCnSkhU5qsY6LPKBwMV5RVjz5qDGDp1gMm2KxN/wPaMf6pWeAH+c6TwmiRB3BwdyuLKV4ePLEHbGYXw71qGODyDlF1K6APcUFbgieJ23oBUAufLBVBdKsD5F+TovqgEER7mBxoFy/OQWVYecMgqdcWpHT5oJs1E0GANJP9dVo1OiuPJ4dhyvl3lftISHUK+iEFBL38UdvMTqwhISnVwO5QJn3+SIM+rXTWgPvh9Eo+0l5tD71V7sJb735lwOZhf52NovVTIu6k99K5Vs9SXuTmjNMoLZS4FUEcpxNcvkOWUwfvvVHj/mw5H0avkZgM+FXTuCpMBB09/Dzzzw8MOOyei6lQqlThraXFxsfg824ZBoNXbBgRUVaIhIiJqSnRa66sTWcPWcINAXViIAbfdiZRzMSgpsO07rtD+0tGDaNmzr8k2L+36GSvO7bSp30e2fCUW0yOyRoCLJ94ccBcv1lVQscaezyhjhH4Ks7OuuoCDUIWhQkhIiN39pKam1nj81Vdf2dxHVpZjJm2oCGEsWbIEd999N0r+qyBUUFCAP/74Q1wEERERYhWJW2+9FUOGDIFUyoLVRERERERERERERETXAgYciIgcLLRVCAKe3QS9SoaCPlfMYq8H5IVSSHVVYQOJTg+thxMyprQE5FJk5XiISwWVq9riMfUGYda8qj43fPIPtqy9jMLcIiANKFyqgcc9VYPdr6RN1qP0sK7yeX5mgcm2x3MP1Aw3VKPwlyD0dRku3aVDp4fy0enhmv2EDFQjeIAaa481w9GEyMr1TomFCPzxHAo/zYHsHfNDjjykaiy93B2GBB1Kl6vh8m8uUuAJ13AdvLprkds3EDGeUVBrq16vLK8Mwd+eh+pSobj4/3YZOhc5ZMVaSHQNO8TJKakUwf87j8JRvijq6wWDUgrF5RK4/5sFl0Omr7stCka0rBFuEBgkBhS21ELnXrMyh87bCZnTIqB3k8N3dbJDji8t1kBSphMrR5ikN5gNlQQ358BxhxBmMTYzk7HVfVyDIiMjK2c6TU62/mc/KSmp8vG1UM2CiIiuTd7BoY19Cji24U/sXbkMZSXlgUJbleSbDkWsiz1gc7hBcG1+q6H60szDnxf3KlCmLnFwf/Z9ZjWm6qECIchtL6FKQl0JAQRHmjx5Mrp164Z33nkHK1euRE5OzbKh8fHx+PLLL8WlXbt2+OKLLzB48GCHngMRERERERERERERETU8TmlERORgI+8eDCe5HMHfxcJ3TSqkxRJISySQFUqhyJZBWlbzo7eXbwAK+wSZnPG+pMgZ6hKFieE55Ut+gQoGQ/n+kjI9iledLQ83/KdwaRk0CcZnNDToDMj9uLTGaJ+Q6CCTr29n5r9mX7+qvQSBYzW1wg0VJBJgbMcjcHGqmrm/LMwNKXPboSTbzID4/0glcvRaFAjZrFQx3FChKEGGpN+dUfRMLgJeiYHPugR4b0hG0HfnEfXSUahiC6vOQWeAvEBjc7hhwC190GVoB7ToEolBk/ti/oaXcPOjY2Erea4WXr+mIfSxswibewaB71w2GW5w9bRtcIIm0A3aALfa67310Lmbfr3ZY4Og9TT2c2Y7qdYA16OZZtuozueaDTj0GNnFIedCZErbtm0rH587d87qC1W9bfv27XmBiYioSepwwwhIZZa/W1cIaVX1e9FR8tLT7A43CLyDgk1uWxqzDY1JJXNC76CWjXLsMZHd0CuoFdr6hGFsVA/8MOox3NbKdPU9R3BT1AxJXy8GhPK73tXASalycH9XV/UGgaura+XjikoH9qgejpgyZQoMBoPNy8SJE+FoQiWHRYsWiZUqtmzZgueeew59+vSBXF5z7iYhwD5q1Cjs3Gl7AI6IiIiIiIiIiIiIiJoWBhyIiBzM088Dj3x+H6RSCbw2JcM5VQd5kQwytRQSVFVZEAxpEYXPf30OXWaZG5AiQUqcb7VJ1A2QiIsw2L988fYoRnREKmRSHbz/SYasSAu9XIKiGQEo+S4c6iURSNF6ouiCBAZN1SD3shgdsp5SQ721qnqDYPMvO5CZnG30bBJLLlu8Bi1vqwpXGCOX6dE5rGY/Wh8ljmiaQ11o/leTq3IISlLND5RyTi2B7/pk+K1JgPvhbEiEEhd1JJPL8OBHM/Dexpex8PB7eOnXJ9BteCcMua0f6pO6uBRTnrkJMrl1v7K1flUDG6or8zUecKkkl6Kgtw8cxXtjAmS5VSGW6jycndH2lOmfEZWbEmNnDXPYuVzPJAbHLNeinj17Vj4+duwYyspMB24qJCYmIiUlxWgfRERETYmbtw9umDGnPF1sQcve/TD19fcQ3r4TmpKTWzeiKLfmTN0VzmQlojENDu+AQo3x77r1SSGV46W+t+PHMY9j9cQXsGDIvegT0hpjo7rX63E1eh3u6zASUit+nq4W3s5u8FdVVU68kruTCre2qt97PXIMNx8/SKSO+SduIRjm5uOLq42vb9U5V79fMae0tFQMJFTn51dVhTQ9PR1NjUKhwJAhQ/DWW29hz549YuWK3377DTfffHON1/W///2vUc+TiIiIiIiIiIiIiIjqjgEHIqJ6MPqeoZj/7zz0GdIRwT+chjyz9gx6N7SIwoc3ls/+L1R8MCc3yx3JhwOhK5KJwQZhXEn1sSXCY1+vQrR3vwTfv5NQ1M4TBT+1QOi9WrTvkIEOoSloHpULbbgz4lM9kPZ8GVInFyH97hKod9cMNwg2/bwDjw94ETlpVRUSKjhLnS2+fhdvrcU2Pm5VFRUqZEcHYseSYLO/tnzcH0Da5Yb/j/Y7XrgFfqG1Bzo4aiCFKTqNDqVFpXj481lWtZdoar+fAr0VxRl0HuZ/Dm2pLiHPL0PIFyfgdjANsv+yFXKpFKNbt8TyO6fg01+fRVir2u+1i4cKr6z+n9FrTeRII0eOrDHL6aZNmyzus3bt2srHEokEw4cP55tCRERNVpeRY3HL86+hWaeu4u8tY6J79sWYB54QH8udnNCUnN6+Gb++8gxKCvJrbVPJG+9c5RIp7m4/DClFxgPh9emRruPho3SvtV4iqd97klKdRvzzmZ63oKnxcLJutv2KcIYQEhEqXywd9zR+Gvskwt39jPSpwpfD7jd6ranpcXZxQcuefR3Sl/CZKPR3tenSpaoCYnx8PDIyMizuI4QAhIoNbdq0wRdffCGu69q1a+X2Q4cOQau1/G87+fn5+Pbbb8X7qYsXL0KnM/5vEvYQjn/+/Hls377d6HYPDw/ccsstWLVqFV599dXK9Xv37hWDDkREREREREREREREdPWybSQjERFZrcsNHcRFr9dDp9djV1wCjialwEkuw7DoFmgdUDWQYkR0C/xz7rzZ/tSnPJB5WYHgWxNMtlE1A0omuKHo1hD0bX4JKnn5QBSBk7QMbooyeDs5I3ayD+RzU80eL/VyBn6d/zvmLphRY30nz17YmvGXyf1kBjn8XSMAWHg9ZbUHJekVUqx5txncfDXoe1vNEINEokSg97uQaDsjM6lqMFFpsAp5AwOgCVRBWqyF+8EsuB7PsXvWealMCrlChjJ1+bULbRmMKf+biDH3Gq8oEN01El4BnshNz0N9OfDPUdz0yBir2jrF5QJCyEEhq1ynczZA72T5gigybBsAMGRKP8THJOHE9jMmQw7+v11Ed40XHvh+LrxVKrg7/xeQ8QUWnViAHSv3Ye+6g9BqdGjXpxVGzbwBbl7Gq1AQOZIweKd169Y4e/as+PyDDz7AmDGm/55pNBp88sknNQISgYGBfFOIiKhJi+zUVVwMej30eh0uHzuM1IvnIVc4IbpnH/iGCd/bqwb2XjpyEE1JTkoyDq5bjYFT766xfmRkVyyNMT7gVeAsUyDY1RuX8x0bjHaRO+PNAdMR6RGAbHXtwLajCLF2uUxeGSxo7hmE2Z1G4aboPkbbd/aPFAfl55fVDtY7yo6kU3hv8Ew0NTdF98axjMs4lnHJbLth4Z3xv16TxMoNbk6qyvV/3jwP6y8fxrbEk+J9e/fAaNwc3adGG2r6Oo8ch3P7djkkGHY1at++vVh9ITMzU3y+fPlyPPjgg2b3+fvvv6FWq8X7IW9vb3HdsGHDagQXVq5ciSlTppjtZ9GiRXjqqafEx87OzmLlByF4UFdClT2hYp5wHyaXy5GWlgYfH9NVJ2+77Ta8/PLL4mOhMkVhYaF4PkREREREREREREREdHViwIGIqJ5JpVJxGdIiSlyMGdO6Fb7Yuw+x2TlGt8uLAEUh4Nq5wOLxZLe4oUNUco1wQ3UeTqUI7FCKjLZOkJ4pM9vXhsVbMeeDu2vM+Do4YAz2Z29Dsa7I6D5DAseia6twbE75n9m+TyRVDaaq4JxQBINegp+fbomNX4Wix8QMuHhq0Wf0TWjf7RHIpF7QaXViAEEYEJ89OgRZN4bX6KOwuy+UF/IR8sU5yNTWzxzo7uOKF399AtFdo6ByUyL5QipkcpkYcDA1461A4aTATQ+PwQ8vLTPZRuivpFANewmv2cvfo/J1myMt1UJ1PAUl3cMq15UE6AGdFJD/V0rBCEmJDm77rJ+FViKVYOJDY7Dvz8MmAw4VWrYJR4SXV631coUcN9zeX1yongi5FoMD+rhGPf7445g7d674WJhx9PXXX8dLL71ktO3999+PmJiYyudPPvlkg50nERFRXQlVx2RSKVp07y0uxrQdMBj7/1iBvDTzQeiGdmrrxloBhxnth2Htxf0o1Bj/jn1fx5Fo6RWMx7Z+47DzmNl+GB7oMg7uTiqUaMvEigB6g2O/KPkq3bFgyL1o6xMOpVyB+IJMyCUyRHoGmN1PKXfCtDaDsfD4epNtXOROKNaav/8zR2fQw1/lCZlEKj5uCuRSGaa1GQIPp/0WAw5tfMMQ7u5fa72TTIEbW/QWF7p6hbfvKAa2shLj7e7DL7wZwtp1xNVI+Den2bNn46233hKfC/c1woB/f//aP/OCJUuWiJURBEIYYcKECeLjtm3bYujQodi8eXPlPc+QIUNMBrvj4uLw5ptvVj6/9dZbHRJuqAhtCH1lZWWJlRyEsPkrr7xisv3hw4crHwthD19fVoUkIiIiIiIiIiIiIrqa1W8NeyIisoqzXI4fJt+KzsFBtbYpCgCPS4AwxN7J2fJAEomfFH4u5mcT9VUWAlEKi30V5BShtKTmIBgfJz88EP0CApxDaqyXSxQYGjAe40OmIMy1H4JU3Uz2ezwxAukFnjVX6gzw2FM1mCrtggv+/KAZVsxrgbiDfcRwg0AIHfS7qRcKO3rVCjdUUEd7IGNKpMXXV+O1ZhehIKsQHj7uYmihWbtwhLUKMRtuqDD1uZsxbvaIWuuFfcfPGYGPd78JJ6Xl621Kx0Ft4erpigGTrBt047o3HqrDSYBWD73MAK27UB5DAmhNvBYD4LciETK1lQOVJMBT3z6AqA4RYsUFhbPp1yaVSjB21nDr+iVyEOHvXsUSGWn6s+Dee+9Fly5dKp/PmzcPM2fOxOXLlyvXnTp1CuPHj8e3335bue7mm2/GiBG1/84TERFdzRTOSkx+8Q0ERLYw204qq6oU1hCKcnPEChTVNfMIwLejHkGzKwasC5Ub5nQajYe6jMPwZl3QNaC5w86jtU+YGG4QqOROGBzWAY6WpS5AkUYND2cXceB9tFewxXBDhYe7TsDN0X1rrZdAgrvaDcWSMU9CIbV/npMegdHwVrphSHjTGAAuvK75A+8Wr8/kVgMgl5j+J05h260tGaq+lgnf+8c8+IT4OWYPYb/RDzxu1f1/Uw5vBwcHi4+FageDBw/G0aNHa7VbtmwZ5syZU/n8mWeegZubW+Xz+fPnw8mpvOJmUlIS+vXrhx07dtTqZ9u2bWIYIienfKIOV1dXvPrqqw57PULVhupVKF577TW8//77YtUJY+fy6KOPVj6fNWuWw86DiIiIiIiIiIiIiIgaBys4EBE1ESEe7lh55zQcTkrG3vgESCWAp8YJaXF5QCuge7twZAdcwC8Jq813ZIC4rzlOUj3kcj0sDWf38HWHs6r8P7arC3eJwvNt38f5wlNILomHs0yFjp7d4SavmqlvaMh72J+xALEF/0JvKA9JSKHE/stR+Ptk25od6g3wWxkLpwzjM7B6+FT9Z3tFoGDZkjyz517Q3Qd+q+MhzzdeycKYuNOJsHe2xMcWzsbNj4zBhsXbkJOei+DIQIyaOQQBEeWDrl5Z/T+8fcfHKMiuCp8IgyeGTx+EpPMpOL3nnPG+ZVLc/PBY8fGM12/HkU0nkJdpvpKH8Pa77YmDy5EkFPQIRH6b/6o5aCQQ33S58EPyX2OhIIRWCpdTlquDVJzPG2ufRc/RXcXn3gGeeGLRXLw383PodTV/ooTX98DH9yC4ufHZHqn+SfTlS137uFYJg2Z+++03cVbSxMTyv/8//PCDuAQEBECn04kzhlbXrl07fPfdd410xkRERPXLMyAI0+d/jMTTJ5EYc0qs/OCkUiE3NQXCuN+Ijl2QevE89qz4pcHeCjdvH/E8rtTZPwrrb3kVu5NjcCE3GW4KFYY16wwvZ1dxu1D5YNGIh/D63l/x16WD0OjLK6EpZQqxAkHFc2t5OLnUeH5/57HYmnDC4cWuLuSmYmhEZ5v3Eyp0vD3wLsxoPxR/XNyHbHWhGACZ1LIfAl3Lw+If33Afnt2xGPllJTWCAre26odTmfE4nZ1gMiBwR9sh4uMnuk/EwdTzyCsrRmMRqkh8O/Jh9AlpIz4XXt/L/abi5d2/1KqqIVTaELZVXAO6dgU2j8aNT72ANe+/CU2p2qZwg7CfsP/VTKha8Ouvv2LMmDEoKirCmTNn0K1bN/To0UOszCDc2+zbtw8XLlyo3Gf06NH43/9qVt8U2i9cuFAMCQj7xMbGYtCgQWJFBSEcLqw7ffo0jh8/XrmPTCbD999/jxYtzAfkbPXss89i5cqVYujcYDDg6aefxrvvvovOnTsjPDwcpaWl4nmcPHmych9hmxDaICIiIiIiIiIiIiKiqxsDDkRETUy30BBxqTSw6mG+JhArEtdCY9Aa3degNyA/RgbULK5Qu50BMOyx/B/+o2YMMTmDobC+lXsHcTFGIVWhf+AL6O77ADLUpyCRSBGo6oxhQXo0Ux3D5thYaPV66I6nQbP8NJyTjQ+QUbkp0Xt89xrrortEQb1XCFOYGU4kl0Ld3A1uR8tnE7SGq2fNQUu2Eqo+zJp/p9FtPUd1wdKEhdi2fA/iTiVA5a7CkCn9xCoRmcnZeHbk67UCFkKY4PGv56Jlt/KZZ0Ojg/HRzjfwzXM/Y8+ag2KgQKiQ0GtsN/SZ0B0Ln1gMdVFp1f5qLYLiipAJCfTitZIAOmGpft2Eyg56yAqsC4I88PHMynBDheF3DkJIdBBWfbQOB/85Jg486HJDB0x6dBw6D2lvwxUkanjCIBxhxs/p06dj9+7dlevT09NrtR01ahR++ukneHlxgBwREV3bwtp1EBdjApo1x75Vy6HXGb8ncbQON5iumiTck/QPbSsuxrg5qTB/0Aw83XMSjmdchlwqRffAaOSoi7A0Zhu2J54Sww75pcXIVOebPI6nkwsGXHGMtr7hDg83CNyd7JuBvnqlif/5/BdwvoIQnNg25R38FXsQsXmpYkWKsVE9EOHhj+TCbMz852PE5df8DqSQyvDWgLvQ0rv8JrOFVzB+HvcUFhz8HdsST4rXTwgcCJUdBoa2wzv7f4NaV/PeQgid5JUWOex6vdb/jspwQwWhikNzzyD8cGoT9iTHiOv6hrTBjPbDxPecrg+Rnbpiyivv4O/PFyArMd5ie7/wZmLlhqs93FBh4MCB2L59O6ZNm4azZ8+K9+YHDhwQF2PV7D777DMx9H0loaqdUA1CCDlUBMGFkIGwXEloJ1S7E4IVjqZSqbB582bcdttt4j2bICMjAxs3bjTa/sYbb8SiRYvg6XlFxVAiIiIiIiIiIiIiIrrqSAzC/3QQEdFVY0fGPnxxYTGM1V8YWNAb8UeAnMFb4aasGuh+JU2mCxIn68QB8qUlZbVm3hcIA9Y/3vUGvPzr9z+GczPyMKPVIyjKMx5wuH/BDEx6bFyt9S2//tDirKvBX56F24lcq85DJpfhp0ufwy/UF42hrFSD7Sv2YOeqvSgpKkXLrlEYN2cEgqOMVz/Iy8xHVnIOvAM94R1YPtg6KyUHfy3aiGNbT4nhiB4jO2P0PUPx1IFN2HC5apbGK7kdzELwd6a3VwhvE4pvTi4QK1ZQ0yUMQBFmsxR0G/cinF3qNhi/tDgXh/98Q3yckJCAsDDjA+bqS/WQlTAr6IwZM2zap1mzZrh8+bLFfYSvxL///juWL1+O/fv3IzU1FXq9Xhyw07dvX9x1111iwIGIiIiAE5s34N+vP4PBUPs+ouOwUSjJz8OFA3vNXiqFUimGoIU+tKWl4u/iK/mEhGHq6+9D6VazopujpRXlYsyqV1CsNX4P9Urfqbi9zaAa63R6PTosfggGB8YcFFI5tt72JnxVVZXxGlKpVoM/Lx3ExrijKNVp0MGvGaa0HogQNx+j7bNK8pFZkg9/F0/4KN0rr+Wv53bgYOoFMVAyMLQ9JrXsi6e2fYcdSafrfI5tfMKw+sbnTQbxiQTC50ni6RM4+s+fOH9gDwz6qs8qqUyG6J590WXkWIS169hgP0vCfczixYvFx4MHD8bWrVvr7VhClYWlS5eK9zcHDx4Uw9vC6xTu5YRjz549W6zUYIlQIeGXX37Bn3/+iUOHDon9aLVa+Pr6ipUShEDBnXfeCXf38r//xkRGRiIuLk58vGXLFrF6XnXVr/+lS5fE9sasX79erFAhhDWE+1KhSoUQPA8JCRH7FEIQAwYMsOEqERERERERERERERFRU8aAAxHRVehcQSzWJW/E8bzT0Bv0aO/RGmOCh6KTV/msoi/t/xqFTptN7C3BQy3moYV7eduzBy9i8bxllTPvK12cMeT2/rjnzamVA+frW1pcBt6753Mc21I1G6AwcP/OlybjxgeMDyi+6ZtvcFRrOrwgKdUh6vkjkJWYD0FU9vfQGDz4yT24Fl3Mzcatvy9Fjrqk1jZFkQ4h80/AKdN0IEYQ3DwQ7/zzIkJaBNXjmZIjXGsBByIiImqaEs+cxKE//0DciaNiibiIjp3RfexEhLfvJG5f/trzSDh13PjOEgmmvfE+gqNbi0+Tz8Vg94qfK/tSOCvRdsAQ9L99Olw8GmYm7vj8DDy380ccSqsK/gaoPPFwt/FidQBjxq9+DRdyUxx2Dvd2GCFWm7gWnctJwp1/fYD8str3JNLKinPmRXoE4NtRjyDUrXFC6XR1Ki0uRmF2FsrUxXBSusDNxxfOLnWr3khERERERERERERERET1iwEHIqJr1E8Xl+Ng3jpIpGWV69xknpgSMQsdPHsYraRQkF0Iv1AfqNxUaAyJ51MQdyoBKjclOg1uB7lCbrLtiy99g5+CcwCp8dkWvTanwP+3+FrrheBEbnp+5QyxwrEmPjgaM9+cek1XJojNzcb7+3eKlRy0ej0UUilGRbXEA2264cvbPkfMvvO1ZlGM7hqFsNbB6D22OwZN7gOFk6LRzp/sCzh0H+uYgMOhvxhwICIiIttt+m4hjm/8G3pdVejYxdsbo+c+hqgu3Wu1L87LhbqoEO4+fmKFh8YQm5eKi7mpcFco0SOoJeRSmcm2D2z8EpsTTIQ4zPBTeYiVDyq4KpS4u/1QPNxl/DVdmUAIg3x8aI14zXQG4Z5EjlGRXTGz/XC8tPsnnM5KqNFeKpGgnW8Emnn4Y2h4J4yM7AaFmfeDiIiIiIiIiIiIiIiIiK4NDDgQEV3DyvSlOJl3CAXaXPg6BaCtR1fIJNfGgJAfX1mOz9dvQfq0KBicagYT3A5kImhxLCT6mrOARrQNxftbXkVRbhHOHbwIhbMC3UZ0gqvH9TN7Y16pGpklxfBTucDTuXzQmE6nw751h7FtxW6UFKoR2T4c42aPQGAz/8Y+XbIDAw5ERETUlGjUalw4uBcl+XnwDAxGVNfukF4jg9TfP7Aa35zcYNM+rb1DsXjM48guKcCprHgo5U7oF9JGDDlcL3JLi5CtLoC/yhPuTuXheq1eh83xx/FP3GGUaMrQxicMt7UegCBX78Y+XSIiIiIiIiIiIiIiIiJqYAw4EBHRVenSiTjM7vwUdK5y5Pf2Q1mgErISHdwPZMI5qURsE94mFGUlZfDwc8fwOwZh9L1D4eLeONUpiBoKAw5EREREDeN4xmXctm6+2TbNPQKh1mvgq3THxBZ9MKllX7gonPkWERERERERERERERERERGZIDe1gYiIqCmL6tgMAyb1xs5V++C9ObXW9pAWgfh8/9tQuTHQQNcxg6F8qWsfRERERFRLJ/9IDA7rgG2JJ41eneaeQVh94/Nwlit49YiIiIiIiIiIiIiIiIiIrCS1tiEREVFT8+yShzHszoGQSiU11rft0xLvbnyZ4QYiIiIiIqpXHw65D2Miu0MqqXlP0iMwGt+PepThBiIiIiIiIiIiIiIiIiIiG7GCAxERXbWcVc549sdHMPP1qdj/12FoNTq069sKrXtGN/apETUJEkP5Utc+iIiIiMg4F4UzPrzhPiQUZGBH4mloDTr0CGyJdr7hvGRERERERERERERERERERHZgwIGIiK56gc38MeH+UY19GkREREREdJ0Kd/fHtLaDG/s0iIiIiIiIiIiIiIiIiIiuegw4EBEREV3LWIGBiIiIiIiIiIiIiIiIiIiIiIiIrhLSxj4BIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBhyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKjRyRv7BIiIiIiofkgM5Utd+yAiIiIiIiIiIiIiIiIiIiIiIiJqCKzgQEREREREREREREREREREREREREREREREjY4VHIiIiIiuVQZD+VLXPoiIiIiIiIiIiIiIiIiIiIiIiIgaACs4EBERERERERERERERERERERERERERERFRo2MFByIiIqJrlMRQvtS1DyIiIiIiIiIiIiIiIiIiIiIiIqKGwAoORERERERERERERERERERERERERERERETU6FjBgYiIiOhaJVRfqGsFBlZwICIiIiIiIiIiIiIiIiIiIiIiogbCCg5ERERERERERERERERERERERERERERERNToGHAgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqJGJ2/sEyAiIiKi+iExlC917YOIiIiIiIiIiIiIiIiIiIiIiIioIbCCAxERERERERERERERERERERERERERERERNTpWcCAiIiK6VukN5Utd+yAiIiIiIiIiIiIiIiIiIiIiIiJqAKzgQEREREREREREREREREREREREREREREREjY4VHIiIiIiuVULxhboWYGABByIiIiIiIiIiIiIiIiIiIiIiImogrOBARERERERERERERERERERERERERERERESNjhUcqN5lJmfj70WbcHzHacjkMvQa0xWjZgyBq6crrz4REVE9kgiLoe59EBFd7VLySrB0XzwOxuVALpNiWJsATOoWCnelorFPjYiIiIiIiIiIiIiIiIiIiIiqYcCB6tW+vw7jjdsWQF1cWrnu0IZjWPbOary9/kW06BzJd4CIiIiIiOrNP6dS8fDSIyjT6ivXbT+XgS+3XsRP9/VCdIA7rz4RERERERERERERERERERFREyFt7BOga1dWSk6tcEOFnLQ8zJs4H1qNtlHOjYiIiIiIrn0J2cW1wg0VUvPVuG/xQej1dSx1Q0REREREREREREREREREREQOwwoOVC+ObT2Fn99caTTcUCE9PhO7Vu9Hiy6R+PvbzUi5lAYvf08Mnz4I7fq04jtDRERUV8KYXUMdB+5y3C8RXYUMBgN2XcjCJ5vPGw03VLicVYxNMemI8nPBrwcSkJRbAj83Z9zaPQydwrwa9JyJiIiIiIiIiIiIiIiIiIiIiAEHcrCkCyl47dYPEHs8zqr2Kz5Yi3MHL4oDkCqs/fIfDJnSD88ueQQyucxiH0KIYsvSnbhw5BKUrkoMvKU32vRqWafXQUREREREV6cL6QW4/6fDOJ9eaFX7z7acx7GEvBrrftwTh0ndQvH+rZ0hlUos9lFUqsXvR5MQk1IAV2c5xncKRodQT7tfAxEREREREREREREREREREdH1ihUcyGGK8ovxv+GviZUZrHX2wAWj67f+uhtBUYG4961p4vOSwhJoyrRw93aDRFI1wOjQv8fw5u0foiCnqHLd8vf+QK+xXfHissehclPV6TURERFd1QyApK4VGFjBgYiuIjlFZZi2aB/SC0xXkrvSleGGCqsOJyHS1xWPDCsPTxeWaqHV6eHl4lSj3eaYNDy67CgK1NrKdQu3XcSIdoH4dGpXKBWWQ9tEREREREREREREREREREREVI4BB3KYDT9stSncYMm6hRvQvn8brPpoHY5sOiGuC4kOwsQHR6P3uG74bcE6/LVoI/Q6fa199/91BB/c9yVeXPaEw86HiIiIiIiatl8PJtgUbrDkxz2X0S7YA4t2xGLfpWxxXQt/V8zoF4n+0X5ikOG3Q4nQGwmD/Xs6Dc+vPoEFt3Vx2PkQERERERERERERERERERERXeskBoOB8/KSQzw19BUc23rKoVdTKNZg90+oBPji4Hy07NrcoedERETUlCUmJiI8PFx83Gfgc1AqPevUn1qdh7073hYfJyQkICwszCHnSURUH27+YheOxOc6tE+hflwdbkmw8YnBaBHg5tBzIiIiIiIiIiIiIiIiIiIiIrpWSRv7BOjqd+7QRbx3z+c4vfecw/uuU/zGALx043yUFJY48IyIiIiIiKipOZqQiyd+PYpTSfkO77uOtySY8f1+qDU6B54RERERERERERERERERERER0bWLAQeqk7++2YSHez+HDT9shUataXJXMyspG39+vbGxT4OIiIiIiOrJ4t2XxcoNq44koUynb3LXOSGnBCsOJTb2aRARERERERERERERERERERFdFRhwILslnE3CR3O/gl5flzlN69+GxVsb+xSIiIgahcRgcMhCRNRUxaTm45U1p+pW+a0B/MaAAxEREREREREREREREREREZFV5NY1I6pt5Yd/wlBP4YaW3Zvj/KFYh/SVnZIDvV6PA+uPin06KRXod1MvhLUMdkj/ZF5JYQk2LN6GzUt3oii3CGGtQzBu9gj0HNWFl46IiIiI6mTR9ljUV7ahY6gnTiTlOaSv9Hy1GAzfHJOOU8n5UDlJMbp9MCJ8XRzSP5lXoNZgxcFErD2ejEK1Fi0D3XBH72boH+3HS0dERERERERERERERERERNTESAyGpj7XJTVVt4XMQk5qrkP7HDVjCCbcPwoBzfxxR8RcaMq0de4zvHUIdDo9ki+kVq6TSCQYPKUfnvr2fjirnOt8DDIuJy0XTw97FXGnE2ttGz9nBB79cjYvHRGRgyUmJiI8PFx83Lffs1AqPevUn1qdhz273xEfJyQkICwszCHnSUTkCF1f24CcYo1DL+a0XuGY1rsZfN2cMGD+FugcEOpuE+SOwlItEnNKKtdJJcBNXUPx9qSOcJbL6nwMMi41T42pi/biUmZRrW339I/CvAnteOmIiIiIiIiIiIiIiIiIiIiaEGljnwBdnYryi5GXke/wfodOG4jWPaPhHeCJqc9Nckif6fGZNcINAiHXs3XZLnxw35cOOQYZt2D2QqPhBsG6r/7Fv0u28dIRERERkV1yi8uQ6+Bwg2BStzB0CPVEsKcKswY2d0ifwuD66uEGgZCbWHU4CS/9ftIhxyDjnv7tmNFwg+C7XZfw14kUXjoiIiIiIiIiIiIiIiIiIqImRN7YJ0BXp7TLGdDr9A7vV6vRVT6e/vJkuPu64df5vyMzKVtcp3CS21zVobSkzOS2rct2Y8ZrtyOkRVAdzpqMSbmUhv1/HjZ7cdZ8vh7BzQOxbflulBSo0bxTM4y4ezBcPFQ4e+AiykrKENUxAp5+HtDpdDi+7TTyswoR2jII0V2ieOGJiCyQGAziUhd13Z+IqL5czipGfXxCaXRVvT47pg383Jzw9fZYpBeUiuuc5VKUam27FzLXfuXhJDw2vBVCvFR1OGsy5mJGIXaczzR7cRbvvgwfVyesP5mK4jIt2gV7YFL3MLgoZDiWmIcyrR5tg93h5eIErU6PvbHZyCvRoEWAK9oEefDCExERERERERERERERERERORgDDmQXV08Xh185IbwQ2ioYhzedgEQCtOndEjc9NAYT5o7EuUOx0JRqxMHum37egYVP/ACdjYOKjBEqOez+4wBufWKCQ14DVTl/KBZ6YVpaM2L2X8DjA1+qsW7RMz+JAYf8rALxucJZgdY9W4iBiayknMp2wrrHvprDoAMRERHRdcpd6fjbWaVCijBvFXaez4RUCnSL8MZ9A5vj7n6ROJ6YJw5wbxvigWX74/Hu+hg44JYEOr0Bm86kYXrfSEe8BKrmeGKuxetx4HI2bv96b411b/0VAxcnKXJLtJWhlk5hnojLKq4Mugi6RXjhnVs6oVWgO687ERERERERERERERERERGRgzDgQHYJbOaPtn1a4sze8ybbBET4IT3e/GyZ1QU1D8T9XZ9GSaFafC4MchfCDTPfmIq2vVviwPojeO3W93F0yylxu1+Yj/hnZmJ5dQd7lak1ddr/WiZUTdj9x0HsWXsAWmE20z6tMeKuQXD1dLW4r5PSya5jajXaynCDQAi2nNwZU6udUOHh6aGv4tN9byOsZbBdxyIiuuYJObO6Tm/OAg5E1ES18HdD+xAPnErON9km1FuFpJwSq/sM93bByA+3o+S/ynKeKgXu6ttMrLDQvZk3Np5Ow32LD2L/pfJ7kGBPJfQGA9Lyqwa928PWihDXE41Oj39OpWJzTDq0OgN6Rnrj5m5hcHO2/M8ZznKZxTbGMtllOj3KSvQ13p8Dl6vC1hUOx+diyld7sOahAQj3cfwkAERERERERERERERERERERNcjBhzIrkHve9ceslhBwSvAw+qAg5u3KxJikmqsK84vwa/v/oHMpGy0798Gnz74jVhxoUJdgw3VKwFQbZlJWXhu9Ju4fCqhct2Wpbvww7xleHnlU+g6tKPZy9ZlaAex0kdRXnG9Xd7C3CL8+s5qPPntA/V2DCIiIiJqeoRKCv+eTqtxf2CMj0phdcDBQyXH+fTCGuvySjT4dPMFpOeXolWQO15fd7rG9pS88nB2XXUK83JIP9eahOxi3P39fsRmFFWuW3MsGe9vOIdv7u6BnpHloXdTBrb0g4uTDMVl5YGV+pBTrMGiHbF4bWKHejsGERERERERERERERERERHR9URisDQihKgadXEpXprwtlhFwSCToDTEFZAATinFkGrqb9ZRuUIG7X+zqDpSeJtQfHvqQ0gkEof3fbV7sNezOHfwotFtKjclvj39EfzDfM32seTVFfjx1eWoT1KZFEtiP0dAuF+9HoeI6GqRmJiI8PBw8XG/Ps9AqfSsU39qdR52750vPk5ISEBYWJhDzpOIyF6FpVrM+G4/DsbVnlG/Pkklxmf7r6t2wR7469GBju/4Kif8U8Xoj3bgbFpVdbfq3JVybHlqCPzcnM32M399DL7cavy+xlEUMgl2PTsUAe7Kej0OERERERERERERERERERHR9UDa2CdAV5eFj/+AI1tOIXdIKOKf7Y6UBzsh5YFOSHi+B7JHR8AgjPqpB/URbvAJ8sK8FU8y3GDEsW2nTIYbBCWFavz59b8Wr/Gd827FbU/dKAZU6otep8fjA19CVkrDDnAjIro6GIQRonVbhD6IiJqQeX+cbPBwg6A+wg1BHkp8Nq2r4zu+Bmw7l2Ey3CAoUGvx64GqanOmPD2yNWb2j4S8nu5VBRqdAbd+uRtZhaX1dgwiIiIiIiIiIiIiIiIiIqLrBQMOZLWCnEJs/Gk7siY2R87oZtC7O1Vu06vkyBsShvRprZrcFR10a198tv8djJwxBJEdwtGqRwvc8+Y0fH38A0S2L5/hmmo6svGExUtyeONxi22Eyhiz3p2On+O+hNKt/mYzTY/PxLJ3Vtdb/0RERETUNGQWlmLdsRRcbSZ1DcWqB/qJf7YKdEPncC88O6YN1j82EM393Rr79JqkXRcyLbbZed5yG6lUgpcntMfOZ4bCSVZ//wQSn12CRTsu1Vv/RERERERERERERERERERE1wt5Y58AXT2EGf0L3GQo6Btksk1xB1+UNPeAKjYfTcX23/ag/8298PR3Dzb2qVw1DOKM3ZbaWO6npEiNzT/vwNGtp6DTaFGf/v1xG+7/cAakUua2iIgqSAzlS13UdX8iIkc6Gp+LMp3+qruoq48mYWT7QCyY0qWxT+WqYc39hsGKKkOFpVqsPpKE/ZeyrbrPqYvfDiWIwRUiIiIiIiIiIiIiIiIiIiKyH0cCk9VkchkKu/lbbFfYPaDWOrlT42Zpvnv+F+j1V99AqMbSdVhHi226WWhz/nAs7o5+CB/N/Rpbl+2CprR+Aw5FecVQF5XW6zGIiIiIqHHJZBK795VL7d+3roRx9e/+c7bRjn816h/tZ7lNC/NtjsTnYNC7W/DS7yex9lgyNPr6DThkFpZBexUGcIiIiIiIiIiIiIiIiIiIiJoSBhzIam37tITU18ViO52rolYwYvzcESbbK92U9f4upMVl4PdP/67345SVarBtxR78tmAttizbhdKSq2vAvU6rQ9KFFIS0CIRviLfJdkpXZ4ybY/o9LSkswfNj30JOWh4aipu3q3heRER0xYhaRyxERE1Er0gfu4IKTnIppvQMN7nd1UmG+habUYRf9sXV+3HUGh3WHEvGou2xWHc8GaVaHa4mGp0elzOLEO3vCl9XJ5Pt3J3luL1XhMnteSUazPzhALKLytBQ/NycIJfxn1mIiIiIiIiIiIiIiIiIiIjqonGn1aerirPKGZ3bRmIr8s22k+fUHNQ/+La+eODDmXB1d8HKD9dBXVy1vUWXSGQm50BdqLb5fKQyKfQ2zI755eM/YOfqfXjt92fg5uUKR9u8dCe+ePQ75GUWVK5z93bF7PfvxuiZN6CpBxuWvr0aaxduQHZKjsXrPm/FkwgINz1b6sYl25Gb3nDhBkG7vq0glXIwEREREdG1zNVZjk5hnjgcn2vTfjd1CcHrEzvATSnH4t2XodZU3Ud0DPNEYnYxispsDwIIWQtbigI8v/ok/jqRioXTu8PN2fG3478dSsQbf55GbrGmcp2PqxPmjW+Hm7qGoikr0+rx2ebz+GV/vFgJwRyZVIKv7uoOf3fTAecVBxNqXIeG0DPSdEiciIiIiIiIiIiIiIiIiIiIrMOAA1lNp9OhbaEMWz0MgMz0rKnuB9JqDDp/9MvZKClUo1n7cMx443YU5hTBL9QHUZ2a4e9FG3Hx6GW73gVbwg0VTmw/g/l3f4rX/3gWjnRg/RHMn/4J9FeMbirIKcKC+76Eq6cLBk7qjaZIr9fj9ds+wK7fD1jXXqeHush8ZYojm0+goZ3adRaXTsQhqmOzBj82ERERETUMrU6P5v6uNgUc+jb3was3dkBhmRbtgj3w1MjWKFBrEOihQodQD3y78xJOJNoXzrUl3FBh54VMPPPbcXx+Rzc40oZTqXj6t2O1Cu8IFQyeWH4UnioFbmgTgKZIpzdg9pKD2Ho2w+r2QqUKc3ZfzEJD2xubjQvphYgOcGvwYxMREREREREREREREREREV0rGHAgq33+8HdYv3ADvAeHImeM8UHkHjuT4ZxcJD6WSIBHF87CR3O+wu4/DqC0pGoWzqiOEbj37TuwYfHWBn8H9q49hPiYJES0cdwMpj+9/lutcEMFg8GAn15f4fCAQ2ZSFk7ujIFEIkGnIe3hHeBpsq1wDof+PY5/vt+M9PhMePi6o+OgdugxshPS4jKtDjdU+HfJNgy8pQ8aispNKYZkzCnKK8bzY9/CD+c+EauNEBERINGXL3VR1/2JiBzp2VUn8NuhJKvbyyQSvHZjezy54ig2nUlHqbbqQ619iAeeGNEKa44lN/ib9NeJFCRkFyPcx8VhfX686XytcEMF4Vblk83nHR5wSMotwaG4HPE6923hK1aLMHdPsvVchlhZISVPDV9XJ/Ru7otBLf1wPr3Q6nBDhZWHkzC0TSAailIuhbraz48xOcUazPh+PzY/OQROclaXIyIiIiIiIiIiIiIiIiIisgcDDmSV1Mvp+PPrf8XHXtuSIM9WI29QKMrCy2emVKQVi+EGjwPplft4+HlgTpenASODbC6diBerBpgKBdhCKpNCJpdCU6q1ep/3Zn6O5395FMFRxgfExJ1OwJ41B6HV6NC2T0t0G95JDBIYk5WSg9N7zpk9XuyxOCRdSEFodDDqqrigBB/f/zW2Ld8DnbZ81lKFkxzDpw/Gg5/MrDW4X6i88c70T7F12a4a6/euO4RF/ysPD9gqN938DLddh3XCjpX74Chu3q4WAw6CzKRsbFm6C6PvGeqwYxMRERFR0yDMjP/boUSb9vF2VWDERzuMbjuVnI+Hlx4xGQqwhVwqgVQqQZmFAfAVhEM+sfwYPr69C0K8VEbbxKTmi6EMoVpBj2be6BftZ7K/+Kxi8fWYcyQ+F6l5agR52v79/0p5JRo8v+oE1p9KFc9PIAzon9IjHC+ObwtnuaxW5Y2Hfjkitq9u45l0vAnAxalme2tkFZqvKtevhS82x1Tdn9aVn7szEnNKLLYT2vx9MgUTuzguUE9ERERERERERERERERERHQ9YcCBrLL11901wghuJ7LEReciF0s1yIo0tfbJyzA/wKa0uKqiQ13odXpxEYIOwp/WiNl3Ho/0eR4f7ngdYa1CKteXFJZg/l2f1qpo0KxdGOb99pTRqg+lxeYH1lRQF1nXzhy9Xo8XJ7yNE9vP1FivKdPi7283ISc9F6//8WyNbb99sK5WuKE6a4IDVwpubn6m1OF3DsSPryy3GISwlqe/hxg02b5ir8W2e9cdZMCBiKiCMGq3riN3HTHyl4jIAdbaUWkhs9D8PUdxWXlguK60wr2S3gCZFLDylgQHLmfjps93YeX9/WpUcshXa/Do0iPYckVFgzZB7lh4Z3dE+rnW6qtEY93rKC6zPhRuihBWEKoUCIGJ6oRwx5K9ccguLsPn07rV2PbZlgu1wg11fR8iLFS/mNwjHJ9vuSBWVXAEf3dn8T0QQhmWCMEUBhyIiIiIiIiIiIiIiIiIiIjsw4ADWaUot8joellx7QEyKnclSgpsHzRfV9aGGyrkZuTjlUnvQSaXIflCKtx93KBwliP5YlqttnGnE/HMiNew6MQCuHnVHFDkF+Yr7luQXWjyWC7uKoREB6GuDvx9pFa4obq9aw/h9J6zaNe3dWX1hjVfrIejjb1vuNntKjcV3v77Bbww7i1kp9Yc+GSPC4cvISMhC35hPshMzDbbVniviIiIiOjaIwz8t5abswyFpY4JL9jCxlsSpBeUYtaPB8UsWVx2EXxdnSGVAAlGKgXEpBbgjm/2YcPjg+DqLK812N/NWY5CM1XtvFwUCPU2Xi3CFv+eTqsVbqjuz+MpeGBIHtqHeIrPNTo9ftobD0e7vVeE2e2eKgW+n9kL9/xwANlFdQ/XC69ZCDkEujsjrcB8eP1sWkGdj0dERERERERERERERERERHS9kjb2CdDVIaJtmMU20V2jxCoHoS2Dre5XIpGgMQmD4WOPx0FdXIqMxCyj4YYKmUnZWP3xX5XPy0o12PrrLrx6y3soKTIf6Og9vjtUrso6n++WX3dZbrO0qo0QBkiPz4Qjjb1vGDoPaW/Vz8PiC5/h8a/nIjDSv87HFSqCWAo3VLxPQrCDiIiE6gsOWoiImoDoADeLbTqHeeKr6d0R7Gn9QH4hUNCYhOCCMCBerdEjKbfEaLihgrBdqJJQQa3R4Y+jSZiz5CBKtea/A49sFwhnuazO57v2uOVKGmuqVduIzy5GZmHdq9lVN6NfJLpFeFts1yXcCzv+dwPevLkDgj3rfj+WUVBqMdwgSDLzHhIREREREREREREREREREZF5rOBAVhk0uQ++fOIHs1UKHvzkHnTo3wbfPLPE6qsa2SEc2Sk5yMu8Oma4/PG15Yg7k4DeY7vh66eXiFUgrLFl6U7EnUrAjNdvR98JPZCdmoM/v9qIPWsPQFOmRdverXDjg6MQ3SXKbD9FucUWj1WUX9VGpqj7AKbqhk8fhMe+mmNye056Hi4dj4OTyglte7eE0sVZDES07tkCD/d5HppS62fdtZe6qFS8Th6+7vV+LCIicrzCwkIsXrwYf/zxB44dO4acnBx4e3sjLCwMo0ePxowZM9CyZUuHHzc6OhoXL160eT/h/Ly8vBx+PkRU28QuoXj7rxizVQpev6kDOoV5Yd4fJ62+hEKlAWEQfl5J/X9XdYT5f8fgTEo++rfww1t/n0FusXXnvfxgIk4l5+PpUa0xpHUAUvPU+HlfHDbHpEOrM6BHpDfu6huJ1kHmv0fnl5i+/hUK1FVtFFLHzqtwe89wvHKj6cB1eoEa51ILoXKSoku4t1jt4o7ezdAhxBO3LtwNja7+k3vCz2hxmRYuTvwnFyIiIiIiIiIiIiIiIiIiIlvxf9vJKppSLUJaBOKsiYDDbU/dKIYbBGGtQ8xWQqhu8pM3ouvwjlj35Qbs+n0/SkvK0KpHcxzZdAL5WabDFI3GAGxbvkdcbCVUinjl5ncx861pWPHeGuRnVYU6Lp9MwN/fboJvqA+atQvDyLuGYPBtfSFXyGtV0ti77pDV1Tb8QnzQslsUzh++BEfYtXo/Sj5Tw8W95oy4+dkF+OLR77F9xR4xsCHwDfHG7c/ejJseGoMWnSPxyqqn8c70T8yGZBzBWeUElXvdZ2clIroWSAwGcalrHw1ly5YtuOuuu5CYmFhjfXp6urgcPnwY7777Ll566SW88MILkMkcE+TLz89HbGysQ/oiovqj0eoR4eOC0ynGQ8aPDI0Www2CFv5uSMu3rmrA3MEt0K2ZF5bsicOG02ko0+rROdwLW2PSUFDa9CqDCZ/KfxxNFhdbCQGHexcfFEMOX2y5gPxqQQShisTP++IR5KFEqyB3TO4ehjEdgiCXSWtV0th5wXyVuGj/qmobEb4u4j4X0h1zH/D3yVQx4KC8IsydVViKl9ecwvqTqdDqy393hXgq8dDQlpjWO0J8Tz+b1g1PrzhW43XXB1cnGZQOqJZBRERERERERERERERERER0PZIYDA04ao2uWk8MmYcT288Y3RYQ7ofFFz6tHIz/20dr8dUTP1rsc9idA/HM4ochkUhqbZsWORcZ8Vm4FkllUuh1eovtOg1uhzf/fB55Gfn4bcFaMTwgVGcoLS4zuY/CSY6f4xfCO8Czct22FXvwxpQFDjv/x7+eK1ZlqKAuLsVjA17ExaOXjbYXqlbc8cIt4uMydZl4Pkc2Hhf/LFPXnG1WKpWgda+WOLP3nN3nN3LGEDz93YN2709EdLUTwgHh4eHi44Fdn4TSuep3gj3UpXnYceQD8XFCQoJYSaE+/PPPP5g4cSJKS6sGJMvlcgQGBopVEoqLa1YxmjVrFr7++muHHHv79u0YPHiw+Fj4XtK8eXOr9z1y5Ajc3Vk1iKi+6fUGTPpyN44m5BrdHuGjwpanboBMWn5v8fnmC3hvw1mrqgG8c0sno9t6vPEvMgtNf/e+mskkgDWFDAa29MOiu3ogLV+Nb3dewl8nUsTqBGqN6fsZlUKGvc8Pg6dKUblu1eFEPLH8mKNOHx9N6YKbuoZWPhfOadIXu3AuzXiI4sVxbXHfwPLP9pIyHdYdTxZDGn+fSEXZFfdmws9QhxAPHEvMs/v87ugdgTdv7mj3/kRERERERERERERERERERNczVnAgi45sPmEy3CBIT8jEjpX7MGBSL3GG/u0r9prtz9PPHfd/OANDpw0UBxEWF5Tg3x+34eTOM+Lg/56ju8JZ6XTNvjPWhBsEx7edxgf3fYlDG45ZVfVACAc89tWcGuEGweDJfZGVNAOLnv0J2v+qK9RFelxGjefCe2cq3CBY+tYqTLh/JDx83OGkdMKI6YPF5Z63pmHdwn+xZ91B6DQ6tO3TChMfGo2dK/fZHXBw93GrDFMQEdHVIzk5GdOmTasMNwiBgXfeeQd33303XF1dodfrsWHDBjz66KM4d678d8SiRYvQo0cPzJ49u87HF0IKFVq1aoWYmJg690lEjrXtXIbJcIMgPrsEm86kYVArfzz0y2FsPJNutj9/Nye8fGN7jO8UIj7PV2uw6lAiDsTlQCGV4IY2AVDKa1YuuJZYE24Q7DifiedWHRevZ4EVVQ/kUgnm39qpRrhBMKlbmFhRY8G/Z6Gx9uBmJOWW1Hi+bH+8yXCD4MN/z+H2XhFwc5ZD5STD5B7h4vLM6BL8tDcOm2PSodMb0CPSB3f3a4ZVh5PsDjj4uChw/5AWdu1LREREREREREREREREREREDDiQFXau2me5zep9YkDBUrhBkJdZgPT4LDHccGr3WcybOB/5WQWV2zf/stNoVYfr0dZlu8xuFyo2yBQy9BjVBbc8Ph4d+rcx2m7SY+PEihkbftiKrb/uwrlDsXafk3eQV43nG3/abrZ9aUkZZnd6El4BnugzrjvGzx0Bv1BfcRGqOwhLda4eLlj69ipxll57yBUyu/YjIromCYW66lqsqwGKfT3//PPIzs4WHyuVSrGaQ9++fSu3S6VSjB49GgcOHMCgQYNw7Fj5LOAvvfSSGIxwc3NzWMChW7dudeqLiOrH+pOpVrXZeCbNYrhBkFFYhtQ8tfh4b2wWZv94EPnVBvD/fjQZvCMpt/pIstlrqZBJ4CyXYXArf9w3MApdI7yNthMG/U/uEYYVBxOw7lgKTqXkw17+bs41nv9+NMls+6IyHYZ/sBW+bs4Y3jYQd/SJQIC7EiFeKvxvdBtxqe62HlJ8vd2+eyYheK6QXbvhGCIiIiIiIiIiIiIiIiIiovrG/3Uni0qLyyy2KcotwvrvNlt9NX9bsBaZydl4acLbNcINFQwNMJiyPuhdpCgc4Y38W/xRNNgLeqf6HRbVulc0VmZ8h5d/e8pkuKGCp58HJj91Iz4/MB8vLH0MMjtmpJXJZbjh9v411uVnWh6YlJWcI1Z5+PnNlZjV8UmcNlOhIbh5IKbZWYVBqHTx6q0f2LUvERE1jpSUFPz888+Vz59++uka4YbqPDw8sHLlSigU5TODp6en4+uvv67zOVQPOHTt2rXO/RGR45VodBbb5BSXYdXhRKv7FAawJ+eWYNbimuGGClfnHUnD6x3li0MvDcfnd3QzGW6o4OfmjPuHROPPRwfig8mdIJPafr/kJJNgTMegGuuyCy3fs6bml+JUcj4+3nQeoz7cjpNJpis0RAe4Yc7g5rBHZmGZWEWEiIiIiIiIiIiIiIiIiIiI7MOAA1kU3S3KYhuVuwplao3VV1MINfz06goU5BTV+R1wVjmhKSiY4IuURW2QOzcU+dMCkfNImPi8eKBnvR3z5M4YjHO5AzNaP4JVH/0JndbywC/BkCn9xaDD6Jk3wD9MqKbgA1dPF+uqN1wxBsk3xMemcy7MLcKrt7wPTZnpn5e7X52Cx7+eA6kdM5+eO3hRrCZCRET/jc7V13Gp5xG+y5Ytg1arrazU8OCDD5pt36JFC9x8882Vz5cuXVqn45eVleHMmarfGww4EDVNHUI9LLZROcmgFT63rJReUCoOdi8orR1usJXSjvDwtWLnhUy0fnE9hn2wFYt3X4bOykpst3QPxx8P9sct3cIQ5KFEsKcSrk6Wq7EFeihr/Wry96hZ0cGSnGIN5iw5ZPZcnxvTFq/e2A52ZDBw4HIOjifm2r4jERERERERERERERERERERMeBAlo2YPggu7iqT2+UKGboO7WDzpTx3ONYhl3/W/OnwCqi/EIE1im7wQt6MYBiUNQc2GdxkyH44DOrObvV6/KTzKfjyiR/wyi3vQaezLuTQonMknvz2AfwSvxBLE77CkNv6WdwnMzELTw55GUV5VcEU70Dbr312Sg52rtpvto3KTQW9zoYRatUc23rarv2IiKjhrV+/vvJxr169EBgYaHGfCRMmVD4+ePAg4uPj7T7+yZMnodFUhe4YcCBqmiZ3D4dKYXrwu7Ncip6RtgVvBccTHDMI/cVx7eDtUl5d5np1MaMIL685hYeXHobeypBDh1BPfHBbZ+x9fhj2PDcMo9rXrMxgTEJOCaZ+vRdF1YIp/m62BRwESbkl2HgmzWwbFyc5rHwpteyLzbZvRyIiIiIiIiIiIiIiIiIiouvc9TvNJFnN1dMVzy99DE7K2gN2ZHIZnvruQTRrF1ZrZn9zhFCEq4fp0IQtSktK8eWh+bjt6YkIiPCDm5cr2vVrDSdV/Q8wUrkrEdoqGOo7Q003kkmQf4s/GsLetYfw74/ba63XarTISslBSWGJyX0nPjTaqooJl08mYErobLx1x0c4e+ACnF1sH0wkEPY1JyMhE/ayp/IDEdG1SGIwOGSpT0JAoUKfPn2s2qd37941nu/Zs8fu4x85cqTycUREBHx9fe3ui4jqj7erEz66vQucjHzPU8gk+HBKF0T5utrUpxCKcHGWO+T8dAY91j0yELMGRiHEUwkPpRw9Ir3hJLNj+n8buSvliPJ1MXptGsNfJ1Kx7kRKrfUanR7p+WoUl5mumHF3v0irKiacSs5Hjzc24vFfj+JkUp4YRLDHicQ8s9tT8tSwl6T+33oiIiIiIiIiIiIiIiIiIqJrUtMYAUFNXu+x3fDV0fdx00NjENIiEL4h3uh7Yw8s2PkaDqw/gqeGvgrYMP5x4K190Gtsd4ec2y9vrYRfqC9mzb8TP1/+Equzf8DHO9/AoFv7oj4JIY3Q6GCEjWuJEi/zo1fK2rtC71ZzxtnBk/uKARFH+2vRv5WPi/KLseh/SzAlZDZuD52Nm31milUeLhy9VGu/qI7N8OQ391sVDigtLsOWpbvwSL8XkJ9RYNd5GgvMVOcXavsMvBV6ju5i975ERNRwUlNTkZ1dNcN127ZtrdovKioKcnnVYNaYmBiHBByE6g0lJSVYvHgxJk6ciLCwMDg7O4uhh27duuHZZ5/F+fPn7T4WEdWNMLv/X48OwPQ+zRDh44JAD2eMbB+I3+7viz+Pp2DGDwds6u/GziEY0soxQeQPN55HqJcKL4xrh93PDcPxV0bht7n9MKKd5YoEdSGEO5r5uKBVkDvK7Kh+NqFTMGT1MBJ/6b6qyjp5JRq8se60GEjo9dYmdH51Ax78+TDOpta+j+gc7oU3bupoVXa+RKPD6iNJuPmLXShQV1XisYWT3Py9T5CHEvYa0rphQu5ERERERERERERERERERETXGsdMV0nXBa8ATxQVFCMjMRuaUg32rDmII5tOQF1UalM/LbtF4eHP7hMfL317FQqyC+t0XkV5JVj+3h+Y9Ng4nNl7Huu+2oALRy6jIMe+gffG+If7wsPXHXGnEmAwGKDT6qHV6HDhyCWcKkwFBrSw2IdBXnOYTsvuLdBlaEd88sAisU9HSTyXgs1LdyL22GVs+nkHMpOqBo7qtDrsWr0fh/45hnc2vIT2/VrX2Hfk3UNQkFOIhU8stupYep0ee9ZVzbxtiwGTeiM9PgNrvvgH+/48LFaZaNW9BVw8VTi88QRy0nIhkUpg0Nt2bboN74jorlF2nRMR0TVH+Ait6++YeizgkJiYWOO5ECiwhhBuCAgIQHJysvg8Pr5qIG1dAg4ZGRlo1apVrfMSQhjCIrT94IMP8Mgjj2D+/Pk1QhZE1DB8XZ3FweypeWpxQP+GU2nYeT4TxWU6m/rpEu6FeRPaQa3R4+vtsSgoNV1VwBq5xRp8v+uSGL44cDkHP++Lw+mUfOQVl8FRhACFm1KO2IxCCF+RdXoDNDoDTibni4s9ujXzRtcIb7y27jQcKTazEKuPJCImJR+rjyQjvaDqnlE45z9PpGDbuQz8Mqs3OoV51dh3Wu8I5BSX4b1/zlp1LKG/LWcz7A7NJGQX48c9l7H1bAZ0BgM6h3lBpZBhx4UMZBeWiRUlbLwlwbA2AYgOcLfrnIiIiIiIiIiIiIiIiIiIiK53HJVFViktKcX/RryG84dia6y3NdygdFOi3029oXBWQOnijDfWPYd5N76DvMy6hREWPfMTfv/0b2QkZtm1f+ueLXD2wMVa62VyKQZN7ouHPr0XHj7ueHPaR9i6bFeNNorEUkhKdDCoTFdjkGWUQZpfNWhKqNww7M6B8AvxESsVLJu/Gqd2WTeAxxIhMPL2HR+bbaMuLsUnDy7CV0fer7WtZbfmqG89RnWGplSLWZ2eRHF+SY1wRl0IVSGe/+UxB5whEREZk5Ji+XPa2pCCID09vcZzoVKCtXx8fCoDDtWrQNhCr9fj+PHjlc93795d+VgikSAwMBAajUbsvyKMqNVqsWDBAnG/devWiRUeiKhhFJVqMXXRXsRcMfO/reEGN2e5OLBdIZPCXanAN3f3wOwlh8RKA3Xx6trTYlgiJU9t1/4dQjyMBhWEKg0TOoXglYnt4aFUYPaPB7HhdBrqykkmFatY+Lo5I8RLhYXbLuJoQi4cIS2/FI//esxsm8JSLeb9cQq/P9i/1raOoZ6obyPbBSKrqBSTvjiIomo/Q7EZRXXqVwhHLJjCinJERERERERERERERERERET2YsCBrPLvj9trhRvsoS5UY/G8Zdj/1yG8+vv/xEH9nv4eKCkqhcJJDp9gbySdS4be1ikyhVmX7Qw3KF2dsWD767h0PK48ZCABfIK84O7jhqiOEfAJ8hbbZSZlYcdve2vtLy3Rw2V7LopGmR6U6bohBxJ91fOpz90shhsEfcZ3FxehcoIQ9Hj7jo9w7mDdr7UlscficPbABbTuGV1jfceBbRESHYTkC6n1ctyQ6EA8u+RhzO70VI1wgyOUqTViwMPTz8Oh/RIRUblevXpZvBS2VCUqLKxZxcnNzc3qfau3vbIfa124cKHWvu3atcMLL7yASZMmQalUiutSU1Pxyy+/4I033kBOTo64buPGjZgzZw5++OEHu45NRLb79UBCrXCDPYSB9fPXx2DL2XR8Ma0rjiTkwtfVCaUaHZzkUvi7O+OinYPc7Q03eCjlWPPQABxNzMWR+FxIJAYEuCvhqVKgbbAH/NzKw1RCtYGNZ+oebhA8OrylGG4QjO4QJC65xWXILCzFI0uPihUo6psQqIhJzUeboJrf3/tH+4kVK5JyHXu/UCE6wA1vT+qIYQu21Qg3OEKJRif+jAnvHREREREREREREREREREREdmOAQeyysaftjn0Sp3Zex5zuzyN7NSqGULLSspQlFfc4O/IsGkD4eSsEAf6XznY/8pz1mmND37x/DENmmYqlLVxqbXN7UgR3H/PEB8HRQXgtqcnYsLckbXauXu7ictHO9/AjpX7sPmXHUi+mIqEmPLZqetD6uWMWq9ZmLH6oU/uwbyJ86HVOHawjyA3PR971h6u8d47kqn3iIjouiSEDWwIHJjso56UlZXVeK5QWD8YtHpbocqCPY4cOVLj+eTJk7F48WKoVKoa64OCgvDEE09g4sSJGDp0KOLj48X1Qtvp06dj2LBhdh2fiGyz+kiSQy/Z/kvZGP3xDmQWVn0WqbV65KurKq81lFu6h0EqlaBbhLe4mHIoLgd2ZMEhkwC6//aL9HXB/UNaYErPiFrtvFycxGX1g/3w14kU/HE0GXFZxbiUWbeqBuYkZpfUCjjIpBK8PKEd7v/5MHT2vGALsgpLsf5kKnKL61a1wxRdxcUmIiIiIiIiIiIiIiIiIiIimzHgQFYPSne0+hrgbgv/MF/cOe9Wq9rKFDKT26RqPfxfvoTSoT5wubMFUgvyIElRw3VTDryOq9H3lr6Y/PSNaNmtOaRSqdnjKJwUGDp1gLic2n0Wjw14EfXFO9DT6Pqeo7vinX9ewg/zluHkzhiHHlOo2rB37UHU1+sJbRlcL30TERGwf/9+BAc77nP2ymoPQsiuIQ0ZMgRr1qzBpUuXkJ6ejhdffLGyaoMxLVq0wLJly9CvX7/KdW+99RYDDkQNRBiU7mjVww2NJdxHhQeGmA5aVycXkgoWOMkkYsWH1Hx1ZRhCqZBheLtAzBrYHO1DPCx+3jrLZbi5a5i47L6QiWnf7EN98XMvryJxpZHtg/DDzJ748N9zOBzv2HvHnGINtpwtD6E7WoinEqHeNYNyREREREREREREREREREREZD0GHMgqwc0DkHQ+5Zq6Wq16tMDLK5+CX6ivVe07D24Hpasz1EXGB1ZJtAZEXZAj5a79CKi2XhgytW3FHhTkFuHtv1+w6Rzb9W2FkOggJF9IhaMFNw9Ex4FtTW7vPKQ9Ptz+OtLiMzBv4ruIPXbZYceWyc2HPOw1Ye4oyBX8WCMiqqT/b6mLavsL4YawsDCHXWAnJ6caz22pxFC9rblQgjmBgYGYMGGCTfv07dsXI0eOxIYNG8Tn27dvR0FBAdzd3e06ByKyXriPC5Lz1NfUJesW4YWFd3aHv4lB/lfq38IPznIpSrWmP9yDPFWIz65ZGa+oTCdWYyhUa/HtjJ42nWPv5r4I9VIhKbcEjhYd4IYu4V4mtw9s6S8ucdlFmLX4IM6lFTrs2AorwiL2mN43UqxAQURERERERERERERERERERPapn1HGdM0Zc+8wXGsmPToOAeF+Vrd39XTF+DkjTW6XyqRIiU0zuf3wv8ex/68jNp2jMLPqnPfugqMntJZKJZj7wd1WzZQdGOGPBVtfwcBbeov71ZVMLsOY+xz/8zTw1j6Y9sIkh/dLRET1x8PDo8bzoqIiq/ctLKwa5Orq6oqGNHr06MrHWq0WR48ebdDjE12vbu8VjmuNUFEhwMP6kJa3qxOm9DR9HYQc8ZXhhuo2xaRj14VMm85RGKz/3Ng2cPSQfblUghfHmQ5cV9fMxxXL5/TFiHaBDrk3cpJLcVsPx/883dQlBHMGNXd4v0RERERERERERERERERERNcTBhzIKgMm9Yarp8s1c7VcPFTod5NtM5cK7nvnDoycMaTWeqGyQ7+Jlvv7d8k2m48p9Pvq78/AO8ATjhDRNhSvrXnWqvOtHu6Yt+IpLL7wGZ767gFMnzdZDHTYY9DkPugxsgt6je2KuojuGomOg9rihqn98c4/L+KlX58QwxNERFRFYjA4ZKkvfn41g4bZ2dlW71u9bUBA9dpJ9a9585qDV9PT0xv0+ETXqwmdQuCiuHa+73m7KHBDG9s/v14c104cSH8lN2c5hrYJtLj/ysOJNh9zfKcQfHlnN/GcHaF1kDu+n9kTQ1pb//q9XJyw6K4e2PrUELx7ayc8PDTa7n/QEK6fcO37tbCump8pHUI80CvKR+zvl1m98dHtXR0SCiciIiIiIiIiIiIiIiIiIrqeyRv7BOjqkJOWh6I80zOB2koilcCgr78Bk5aMe/VmxBbnIUIhgbuTs9X7CQPon/7uQUz5303Y/MsOFOUWI6x1CIbfORDfPveLxf3zMvLtOt++E3qgb+o32L3mALYs3Yn4M0mIPR5nV1/5mQUIjQ6ya9+gyAAEzSgfhNSiSyRev20BdFqd1fu36RWNRz6fJT5+cdnjeHfG59i5ap9d5/L0Dw+hecdmdu1LRERNQ2RkZI3nycnJVu0nVE2oHioICwtDQ1KpVDWe63TW/y4kIvul5KlRrHHc3zdhHHoj3pJgZv8oXMwoRDNfVzGcYEv1AWEg/QM3RGPtsWQUqLWIDnDDTV1D8eqaUxb3zy4qs+t8R3cIFpe/T6aIx72QXohzaVXVdGwhnEOkr33Vd4TrJSwVQYlHlx2FzoY3skczb8yb0F58vHB6dzy+7KhY2cIen03rikg/N7v2JSIiIiIiIiIiIiIiIiIiIuNYwYGsYtDrHXalItuHY+4HdzfKlS9q54WSDwfjbVksxv/6E3p/txDPbt6APLXapn4i2oRixmu348FP7sHEB0eLFQ6Cm1ueLdWaNub0u7EnXlj6OIJb2D9TdW5GPr566kfUVf+beuG5nx8RwyqWSOVSPPTpvViw/TW4eZUPRlK5qTD6nqGQO9mXs9qydJdd+xERUdPh7+8PX9+q2bPPnTtn1X6xsbFiyKFC+/blA1XtIfSTkpJiUxWGrKysGs+rvwYiqj96B1aUaRPkjufHtkVjCXR3xoJ/z2HcJzvR+82NeGH1CeSrNTb10SrQHU+ObI1XbmyPO/s0E0MSET6Wq+41s6KNOWM6BOOLO7oj2LNm2MsWGQWlePvvM6grobLEu7d0hDU1E+RSCd6e1AFLZ/epDJR4KBWY3CMccjv/ZeTPE6n27UhEREREREREREREREREREQmMeBAVvEN8UFYq+A6Xa3WvaLx8e438dKKJ5GdklM50L2hFHbxQeqcNkiSlVauK9Fq8evpE7h99XIUltk3k2mFEXcPhsLCYP1RM29AXaXFZWDX6gN16mPvukP49MFFKMwtsruPMnUZPn3wG4uVONx93PDexpfFIIjCSVG5vrSkFPPv+hTasqoBqraQWhGsICK67gmDgR2x1KOePXtWPt6/f79V+1zZrkePHnYFG4KCguDk5ISQkBA88sgjVu976NChGs87duxo8/GJyHbh3i4I9bJ/UL2gZ6Q3/niwHz6Z2lUcZG9L5QRHSiuouicpKtPh533xuPObfSgpq1uFivLB+ua/J0/uUfeqN7EZhdh2LqNOffx1IhVvrDuNwlL77gcERaVavLLmNCz9pvJ1dcLyuX0xtVczKGRV/wwiHPupFcegtTPPz1sSIiIiIiIiIiIiIiIiIiIix2PAgawikUgw6dFxdbpal0/E49Vb3se97R7Dr+/+UafB9bYySIGMSZEwmBjrE5OVgVG3PI/ZnZ/Eyg/XQV1cNeDIWl7+nrj/wxnitTLlrakf4dyhizXWxcck4eiWk0i6kGLVcY5tOwVHWPPlBjwxeJ7d78P23/YiL7PAbJu2fVrhl/iF6DSoXa1t25bvQUF2Iew15Pb+du9LRERNx8iRIysf79y5E7m5uRb3Wbt2beXjdu3aISzM9sG6crlcrLxg+C/AsXnz5hpVIUzR6XRYtWpV5fMOHTogIMD+ykpEZFvAdUa/ZnW6ZCeT8nHfj4cw8sPt+Gp7bJ0G1zva8cQ8dH19A8Z8vAM/7LoEtcb2sEOQpxLPjmljts2cJYdxJiW/xrrzaQXYfTET8VnFVh1n98WalWzs9c3OS5j69V6734c1x5JRYGHf3lE+2PXsUHSL8K617fcjSXX6GRCqWRAREREREREREREREREREZFjMeBAVistKavz/kLlhsZQ3MYLOi8ns20yOnvi0ol4LHxyMZ4c8jKKC0psPs6E+0fh9TXPwNXTxfgxErPw/Jg3kZuRh5O7YvBw3+fFwMfTw17FjFaP4Ikh83Dh6CWzx8jPqDkYqS6E17v0rapBmraIO5VgsY1Wo4XSxdnu/U2JaBuKqA4Rdu9PRHT9cET1hvqt4DB58mTIZDLxcVlZGT799FOz7S9evIjVq1dXPp8+fbrdx77xxhsrH2dkZGDJkiUW9/nyyy9x6VLV7+o5c+bYfXwisp3a3qn2/1Oi0YmVG5oqtUYvhg9eWXsad3yzD8V2VDu7b2BzfDW9O1ydyj9br5SUW4Lp3+5HXokGey5m4cbPdmLEh9sxbdE+DHpvC6Yt2ouzqeaDzFmFjruGJ5Ly8PW2miFwa51LM3+eAp3eAKXC+LUQgh326hDqgUi/hq1KSEREREREREREREREREREdD1gwIGsIgxUX/H+mqvqamndFMgbEITsEaEoal97ts4r6TyqAhDnDl7E9y8uteu4Hn4eKMozPfOpUPXgx5eX45kRryFm3/ka205sPyOGKy6djDe5f4eBbeFIf3+3Galx6Tiw/ogYuhBmpraGNe1MBT0ELma2maN0dcb7W161a18iImp6hOoLQsihwuuvv45NmzYZbVtQUIBbb70VGo1GfO7p6Yn77rvP7mPPmjULzs5VQbynnnoKZ86cMdl+/fr1YpsKzZs3xz333GP38YnINkJFg+92mg8DX0sOxeXg40017xes5alSoKjM9Pf1zMJSfLDhLO7+br9YOeLK6gy3fbUHsRmmq611b2b5/soWv+yPF4MXW8+m41BcNvR668J1Gp3ldu5KuZltCtjDzVmOn+7tbde+REREREREREREREREREREZB4DDmSVmP0XkJ2aW+9Xy0llvsqCwDfEB3Kn2oNU5P/NyikMcckaF4G4ed2QOSkKOWMikN8v0GK/8pyas5D+++M2lJbYPjPpvj8PWWyz6ecdKFOXD868UnF+CX58ZbnJfdv0agmFs+lBOrYqyC7EXS0ewvNj38LjA1/C9OYP4u9vjQ8srS4zIctim8GT+5rcNmRKP0gkEpvO1SvQAz9d+gLeAZ427UdEdN2qa/WGyioO9eutt96Cm5ub+FgIL4wbNw7vvPMO8vLKB90aDAZs2LABPXv2xNGjRyv3e+211+Dn52e0z8jISPH3TMVijBBQeO655yqfZ2dno2/fvvj8888rjy2Ii4sTgw0TJkxAaWn5dwOFQoHvv/8eLi72BfaIyL4B/znFxr9DO5Kz3PJtcoinEjIjHy1W7GqT5QcSUGZH1YotMekW26w8lIgynfG+heoOn5gJV/Rr4QeZ1Lbv8uZkFpah/zubMeP7A7jlyz1iJYlVhxMt7peaZ7nq3rhOwSa3TegcYvO5Bnk4Y9ezQ+HlYvnelYiIiIiIiIiIiIiIiIiIiGzHgANZRVumbZArNfzOQRbb+IZ446uj7+PGB0Yhom0omrULw6RHx+G9za9AJpchd3gocoeF1hxdJIzNtDA+02NfRo3nQhWG9PhMm1+DTmO5skFxgfmBOLtW78OnDy5CfExSjfWJ55Lx5eM/wNPPA45kqDZDakZCFhbMWog/Pl9vdp99fx+x2K9fmPFBp4LQ6GCMmjHEpvNcsPU1h792IiJqfFFRUfjll1/g5FQ+WFQIEQjBA19fX7HCg7u7O0aNGoWzZ89W7jNt2jQ88sgjdT72vHnzMH369MrnQrDhoYceqjy2v7+/GJb44IMPoNVqK8MNy5cvx6BBlr+3EJHjmBqM72gTu1ge9B7m7YK/Hh2EO3pHoIW/K1oFumH2oOb4+b4+cOC4fzHQkV6gtnk/ayobmKvwIPjjaDJeW3sKlzKLaqy/kF6A19adho+LfdUPrJGYU4Inlh/DrwdMV7YTqjzsOG/5fi3ES2VyW+sgd9xoY8hh1QP9xAoZREREREREREREREREREREVD8cNw08XdOad24GJ6XCZNUBR3D3cUPLrlEW24VEByGiTSge/uy+WtuGzhyMr5sV1FovgaR8EL+QeTAy4Mj5ciE8dtWe5VTlbnowjCkdBrQB5qNOhMmy13y5QVxmvjEV056fJFZ9eG/m59BpLQcoHOGHl5Zh1MwboHRxrrVNr9eLlSYs0ZSa/3l57Ks5cPFwwe+f/Q29hQFr3UZ0QnjrUCvOnIiIKgkfrXUdD9ww44nF6gjr1q3Dvffei4SEBHGdTqdDUlLNsJ9UKsXjjz+O+fPr+Mv2P0J1h8WLF6Nz585i2KG4uNjksQUdOnTAV199hX79+jnk+ERkvQ4hnlDIJFYN3reXn5sT2gRZDtRG+LqIg+PfvLljrW1jOwZj3fEUh5yPUIDG1Uj1Okt6Rnrju12X6nRs4Sp/t+syvt99Gc+PaYtZg5qLgYPnV5+ErlpAuj69989Z3Nw1DE5GSmOUavXiYkmpxnyb9yd3hpeLAj/tjYOllzW8bSBCvFi5h4iIiIiIiIiIiIiIiIiIqD6xggNZxcPHHb3Hd6/Xq9V9RCcMvWMgXCyECsbeN8zktm5PDYfexfgAIIlBIg7SlFQb3yIt0sJrczJCPzsN6RUDX1oNaYML+iIcSk6GRlceKsjPKsCFo5eQkZhl8hxa9mgBD193OMr3Ly7Fmi/+sSrcYOna2aIwtwhblu5EZnI2DELi4orBpeFtLIcNhAobpuRnF4ivSzB+zkg4q8pn7TZGoVTgnjem2nT+RER09RkxYgRiYmLwxRdfiI9DQ0PFqg5CBYeOHTvi4YcfxrFjx/D+++9DJpM57LhCyOHJJ59EXFycGJwYPnw4goOD4ezsDA8PD7Ru3VqsGLFy5UocPnyY4QaiRuLv7owB0aYrhDnCDa0DMKlbKJQK87fKU3tFmNw2qn2QxeNYW+ShV6QPYlILcCguB9r/AsHZRWU4lZyH1DzTlR06R3jCQ+mY+QyEW4E3/zojBgCsCTe4Ojvu8zmzsAzrjiUjPV9d655E5SRDqJnqDBUBkRb+bia3ZxWW4sc9lyGXSjGtdwScZKbfGZVCiidGtLLjVRAREREREREREREREREREZEtJIYrRwkQmfDt879g2Tur6+X6SKUSLEv+Gt4BXmKlgnfv/hR6IwNnxs0aLs76b8o/F87j/nVrzR9Mb0DEKwfh7O0CXWoBJJqax9E7SZF1UyRK+wWj1FA+iMjHWYnoc2rkfb4fWk15yKDzkPa4582paNe3deW+R7aexMsT30VJgeXqBrbwDfVBVlK22TbP/fwoug3viOfHvInzh+s2W+uVvAI8cfPDYzD1+UniIFDBqo//xJeP/2Byn46D2mLB1teMblv31b/48vHva1QEkUgl8Av1QUZCzfBIVMcIPLZwdo3rTEREpiUmJiI8PFx8PLjlQ1AqLM9Ebo5ak49t5z8THwuVFcLCwnj5iajRvLb2lFhVoD7IpRIcemkEPFUKsVLBs6tOiIP7rzSjXyReubG9yX7+OJqER5cdteqYQpBCqDBg7KZcKgFk0qqKFUJ1CX83Z5xPL4RWbxAH7/dv4Yf/jW6NTmFelfttjUnH/T8dQokV1Q1sEeypRIqZUIVg4fTu6Bbuhbu+2y8GMxwpwN0Z9w6IwuxBzSvvSb7YegHvrj9rcp+BLf2w5N7eRrd9v+sS3v47BmXVrpNwvYXjXPk62wd74O1bOta4zkRERERERERERERERERERFQ/HDOlI10X1EXmB7PUxc2PjBXDDYJhdwwUB7r/+u7vOPjPMXGmzuadmmHiQ2PMVm8QdAgIhFQigd5Mbsc5sQiKQi30hfliWzcfNxRkF4rbDFIg86GOKAh3Af4LNwiyS9XY3wzwGhUK33Xx4rpjW0/h6WGvYv6Gl1BcoMZnD3+LlNg01AdL4QbBpeNxGDp1AD7d+zZ2rzmIbSt24+TOM8hKyqnz8XPT8/D9S8vw70/b8dXR9+HkrMCND4zCwX+O4sD62oO3vAM98cTXc432te/PQ/j4/q9rrTfoDWK44a5XbhNDDdoyrfhns3blg3SJiMh2EoNBXOqirvsTETlSyX9h4/owZ3BzMdwgmNIzAiFeKny1LRa7LmaKQYf2IR5iuGFyD/PfTzuGeorhA2s+PtUavdjWU6lAXklV+FchKw826P8LN1RUMxCWCkL/Oy9k4tBXOVg6uw8yCkrxypqTSMqtn/s2cxUjKsSk5GN0+yCsfXgA/jmVir9PpOLA5WykF5TW+fhCH0IgYeXhRPz5yEAoZFIx8LDzfCZ2X6xdYS/IQ4m3bu5otK+/TqTg1bWna60XqlMI4YZnRrdGpJ+r+LxNkAeiA0xXgSAiIiIiIiIiIiIiIiIiIiLHYsCBrBbaMrjOV0uYpV8YyF7BSanAxAdH4775d9ZoJ1RHEBZNmQY6rR5KF+fKbXmZ+Vj54Tr8++M25KTlITDSH2PuGYqJD49BqIcHhkY1x8bYiybPwWNnauVjITwR3iYUU5+9GVnJ2bjgqcPHqbUHulTIHRICzx2pkOeVDywSKhA8Pew1aDVaNDaZQlb+p1yGgZN6i4ter8eaz//B1/9bAk1p1YApeyWeTcZzo9/AB1tehVwhx2t/PIO/Fm3Cn1//i4SYJLj7uOGGqQNw6xPj4Rfqa7SPZfN/N3sMoa+fL38pvg4iIiIiouqi/FzrfEGEygjVi8UJVRSEgfJPjaxZMWxgS39xKdXqoNcDKqeq76dCmODbnZew6nAisovKEOHjgik9w3F3v0g093fDgGg/7DifadX5VIQnZvaPEvu9lFmIRTsu2RT6uG3hbpRVC0PUC6FogoVDCKGDij/HdwoRFyEk8N3OS3j3n5jKahR1cS6tEPctPoDF9/SGs1yG72f2xC/74rF0fzwuZxbD21WBm7qG4t7+UQjwUBrt48utpu8XBT/vi8f2p28QKw0SERERERERERERERERERFRw2LAgaw2/M5B+PbZn6Eutn/2zba9W2LO+3fhwpHLULo6o8/47vDwdTfZXuGkgMKp6nlmcjaeHDwPyRerKiUkX0jFt8//gp2r9+HdjS/jreEjEPdbLs5n157F031PGjwOZtRYd3r3WbTuFQ3vAE/ct8b84HvIJCjo7gfvzcmVqxoi3ODu7YqCnCKzbfpN7FlrnVQqhbOLk0PCDRWObzuNC0cvIbpLlBhyECo5CIs1ivKKcHJnjNk2Wck5OH84Fm16tXTQGRMRXceEUbN1rcDACg5E1ITc0i0M7284hzJtVbU1W/Vp7ovHR7QSqw24OssxrE0gPF3KKzcYIwyiry4ptwS3Ldwj/lkhNrNIrC7w7+k0LLm3N967tTOmLdorrrfGntgsfDW9O9yVCtzxzV6bX1O9hxsAeKkUyCk2f18xvG1grXUyqQROcqlDwg0Vtp3LxIX0QrGygvD+COEQYbFGeoEaJ5LyzLZJzCnB2bQCtA32cNAZExERERERERERERERERERkbXKp1cksoKblyse+2oOpP/NymmPMfcNR7u+rcUB8SPvHmI23GDMwid+qBFuqO7sgYv4+P5FUGmBVbdPxSs3DEVbd28o0orhciIbQV+fQcCKWKP7atTlFRmyS4otnoPOzfTgp/oihBtc3FUmt3cb3hGturcwum3rr7ss9u/u7VZZYcMaW5Za7tMYrUbn0HZEREREdH3xdXPG6xPbQ1KHifVv7xWBnpE+mN43EpO6hZkNNxjz8h+naoQbqjsYl4OX15yEm1KONQ8PwMsT2qFlQPl3bUtZsorQRlZh+b1JUyOEG1yqVbG40rA2AWgdZPz+bu2xqoC4KZ6q8vfB2qIJa6zo0xitlUELa9sRERERERERERERERERERGRYzHgQDYZdsdAvL/5FfSZ0N3moEOPUZ0x/M6Bdl/xnPQ87Fq932ybzb/swO2hs/Ht4z/itpZt8duU29H687MI/v4sXGNyje6jUCrgFeglPg738LR4HoosNRqDi4cKwc0DjYYbXlr+pMn9CnMthzbGzhqGNfk/YsarU6w6F+E6v3bbB9j+2x7otNaFEYoLSrBg1kKL7VRuSjTv1MyqPomIyAK9wTELEVETMqVnBH6+tzeGtPa3ejB89QoD4zoG233slLwSbI4xHriusPxgInq/uRHv/3MWU3tF4Le5/aBUmL93EoIDnsryAf4RPi5oqnxcnRDqVTt4fUNrf3w8tavJ/QrUlqvezegXiVOvjsIDQ6KtOpffDibgwZ8P459TqdBZ+bsqX63Bc6uOW2znoZSjZaDlYAoRERERERERERERERERERE5nrwe+qRrXMeBbcXFYDDgzakfYdvy3WbbK12dcfuzN6PT4HZYMHshLh69DKWrEoNu6YPR99wAV09Xq46bfCHVqpn91UWlWPvlP4g7nYBbn7wRoS2DceHIJZPtNWoN1ny+Hjc/Oha3teuAtefOmmwrKdXB7VAmGkNmUjYWnVggXocze89BppCh74090bqH8coNFZq1C8O5gxfNtoloGwaVmwoj7h6C7+ctAwyWz2XHb3vFpXXPFnjr7xfg4WO+Gsdb0z7Cvj8Pm+8YwKgZN5itVkFERERE1C/aT1z0egPm/HQI/542HzpwdZLhoaEt0T3CC08uP4qY1AK4K+Vi2OHWHuFwc7bu1vhSRpFVua+iMh1+2H0ZF9ILMKNfFCJ9XcVjmlJcpsPSA/GY1rsZpvQMxwYLr6exJOaUYOtTg8XXcjQhD05yKUa2C0SHUPNB8egAN5xNK7DYxtVZjsk9wvDZlgsWzyU5T43kEyn480QKujfzxg8ze8L9v5CIKXOXHMLui1kW+xaCKUqF6WoVREREREREREREREREREREVH8kBmGUOpGdtq3YgzemLDDb5o0/n0fs0cv47oVfam0LivTHu5teRnBU7coEVxICC/d1eKJe3iuJVAKD3gCpVALto91xKcLIwBi9Af6/XoTH/gw0FiHgENk+3KZ9Tu85i0f7v2hyu7uPG5YmLISzyll8/uGchfhr0SabjtH/pp54YdnjyE3Ph6unS42AQsqlNCz63xLsWLnPYj9dh3XE62ueqTwXIiKyXWJiIsLDy39XDIm6H0qFR50uo1qTj62XvhQfJyQkICwsjG8LETUpqw4n4onlx8y2WTarD3ZfzMQnm2sPnI/0dcEvs/ogxEhlgiudTMrD+E93oj4I1SiEu3OJBPB3c0ZaQSmaou1P34AIX9uqTOy+kIlp35i+H/Bzc8buZ4eKgQnBo8uO4I+jyTYd48bOIXhvcidkF5WJQYfqoZXLmUV4fd0pbIqxfC8nVKNYOL07nOUMOBARERERERERERERERERETUGVnCgOhEGtkd1jMClE/FGt7fp3RJOznKj4QZB6uUMvDX1I3y6922Lx2rWLhzNOzdD7LE4h79rQrhBIMwAK/nwIPz7BUI6uS3SUD6oqGdAMIL3Z+PcsVxo0Dh8gr0R3jrE5v1a9WiBoKgApF5KN7r9lsfH1wgUPP7VXOSk5mHP2oNWH2PX7wdwq/+9KC4ogVQmRd8JPTDo1j4oK9Xg66eXoCC70GIfEe3C8Pb6FyCTcSAREZHDCL/e6pplZRSWiJq4cZ2CxRn/YzOKjG7vFeWDEq3OaLhBcDmrGI//ehS/zulr8VhCpYIW/q64aOJYdVFRGUL42BbCDRIAvm5OyCwsE0MPPSO9oZTLsDc2G2U6PRpDmLdKXGzVPdIbwZ5KpOSpjW6fO6h5ZbhB8PHtXZFTVIbt562vnrf2eDI2nkkTq2HIpRKMaBeAsR2DUVSqw5t/nUGBWmuxj3bBHvj27p5i8J2IiIiIiIiIiIiIiIiIiIgaBwMOVLcfIIUc7/zzIl6/bQFO7oypsa3b8I54YenjWDB7odk+YvZfQMz+82jTq6XZdkkXUhDSIqheAg7VCUNZPHanQbY/E0vPf4SAEF+4KBTAVKD49Xvw+MCX6v0cjJn44GjI7JhFdMMPW02GGwTrv92Eqc/dDKm0akDRa388g31/HcIvb67C+cOx0JRaHgwkhBsEep0eu37fLy62ULk6M9xARERERDYTZtr/+b7eeODnwzgSn1trNv6Pbu8qVgQwZ9+lbJxJyUfbYPNVby5mFCLKr34CDlcS8g75ai22PDUEQR5KqJzK7wUKSjS4+YvduJBhOUTsaDP6Rdo1+H/pvniT4QbBL/vjce/AKEiEJMd/fry3N/45mYovtl7A6ZR8aHTmE3dCMEQINwi0egP+PpkmLrZwU8oZbiAiIiIiIiIiIiIiIiIiImpkDDhQnfkEeePD7a/j7MGLOLr5pDi7aPeRndGic6S4/ex+4zOlVrd24Qa4+7ghNDrY6PYV76/Bomd+gqGus1DbQKfVYdeSXbjjxVsq17m4qTB/w0t4fuxbOH8otsHOZdidAzHlmYk275eRmIUf5i0z20aoovH3t5tw7sBF7P3zMHQaLdr1a42bHh6Lj3e9KbaZ5DsDBTn1O4irdc/oeu2fiOj6ZKh7BQeWcCCiq0CwpwqrH+iPw/E52BebDZkUGNI6AK0C3cXtxxJqBh+MWbLnMu4fEo1wHxej2z/ddB4LNp6r+8eqDcq0evx7OhWzB7WoXOeuUuCX2b0x/Zt9OJvWcCGHKT3Cce+AKJv3S8wpxkebzpttE5tZhBWHEnHwcja2nM2ATm9Ar0gfzOwfiT8eGiC2afPS31Br6rdyRecwz3rtn4iIiIiIiIiIiIiIiIiIiCyTGBpyxDhdl+6KfggpsZZnzhRm6+wxugse+vQenNwRg8RzyfDwdYennwfenfFZnc9Dp5SioK8PNEFKyAq1cN+bDUVGmdl9hk8fhGcWP1xrfWlJKSZ63i2GIOpD887N4BvsDd8QH4yaeQM69G9jcx/JF1Px+KB5yE7JsdhWrpBBq6n9Wu59+w7c/sxNeOuOj7Bl6S7UF2EW2K+OfYDI9uH1dgwioutFYmIiwsPLP0+HRM6FUl4+uNdeam0Btl4ur8aUkJCAsLAwh5wnEVFD6v3WRqTll1psJxQnGNomAPPGt8Pe2GzEZRfB28UJ7ko5nll5Ao1haq9wvD2pU631haVadH51gxgGqA8dQjzg6+aMEC8lJvcIR7cIb5v7uJBeiClf7UFWkfn7LoFcKhErL1QnhOdfGtcO9wyIwpwlB/HPKdsqMthCOP7GJwYj0s+13o5BRERERERERERERERERERElrGCA9W7vhN6YNXHf1psJ2RtDvx9BDNaPQJD9YEtkrqfQ34fb6TPaAaDSla5LmtSCDw3Z8D/pwRITIwJUro4Y/Unf2Hrr7tQmFuEZu3CMH7OSHQb3gk3TO2PjUu2oz6069sKj34x26q26uJS7Fi5F+nxmfAJ8sKgyX3h6uGCzx7+1qpwg8BYuEHw7XM/o8eozrjl8QnYvmJvvQQ6hEFLj345m+EGIqL6IORY65plZRaWiK4Bw9sG4ud98RbbCbchG8+kY1NMeo2PPwfckthNpZDhmx2xWHc8RQw1tA5yx/Q+zdCnuS9GtgvE3ydT6+W4fVr44sVx7axqW1SqFc8jJbcEQZ5KjO0YDFdnOV78/YRV4QbBleEGgfAevP7naQxq5Y/Zg5qL7019BDqEcMP8Wzox3EBERERERERERERERERERNQEsIID1buUS2mY2/VpFOeXNMrVLmnlhsRnWwEy48OSfH5Phu/qFKPb/MN9kZGQVWv9zY+Mxb1vT8PM1o8iI7H2dnM8/T2Ql5Fvto2blyt+Tf4aUpkU2am5ULkp4e7tVqvdv0u24YtHvxfDFxWEtrc+eSN+em2FGBqpq+huUWI1ifysQlw4EgtNqRaOIrzOD7a+iuadmjmsTyKi612NCg7N5jimgkPcV+JjVnAgoqtVbEYhxn+6E8Vl9VOBrT4FejgbrT4xd3ALPDIsGoPe3YLMQutCBBX83Jws7uPj6oS9zw0TA8kZBaViYMFTpajVbtn+eLz55xkUVLtPcHOWY9bAKHy48TwcoXOYp1hNIqeoDCeS8oyGIezl7aLAr3P6olVg3X5fEhERERERERERERERERERkWMw4EAN4tTus3hjygJkJmU3+BVPfqwFirp6mdwuLdIi6rHjkJbVHCTjFeiJ3LQ8k/t1GNBGfF01qk1YQa6QmayYUF3rXtFIu5yB3PQ8SCQSdB3WAXe+NBkdB7YVt+//+wheHP+2Q0IMtvAJLr+W2Sm5de5r9D1D8eQ39zvgrIiIyGjAIXy2YwIOCV+LjxlwIKKr2d7YLDy89Ig4WP9q4evqZLYCQo9m3jgcnyNWnrCFk0yCMp3lnbpGeOFyZhFyijVi0GFQS388OrwlukV4i9v/OZWKOUsOoaEFeThDozNYXR3CnLv7NcOrN3ZwyHkRERERERERERERERERERFR3Ukd0AeRRe37tcZPl77AvBVPotPgdg12xQwSoKiTp9k2elc5Stt4VD5XujpjxPTBZsMNgpM7Y2wONwisCTcIzu6/IIYbBEKI4fDGE/jf8Fexd135AKKf31xZ53BD3xt72LyPEGxwRLhBMGrmDQ7ph4iIiIjIkj7NfbH72aH4bFpXMRjQ1EirFZwTKiDc0i3M4gD+g3G2hxsE1oQbBEfic8Vwg0C49dh2LgO3f7UXO85niOs+3Vz3Cg3D2wbYvE9qfqlDwg2Cyd3LQ4FERERERERERERERERERETUNMgb+wTo+iGTyzDwlj7i4+PbTjfMQYVBQrJqI4VMmPvJTLQsUEKYlrRD/9bYu+4w/l2yrd5OK7CZP9LiygcF2RqOeG3y+7jx/tE4vftsnc5B5abEPW9Ow541B9EYojpEoEP/No1ybCIiIiK6PilkUozvFAKNTi+GA5qSN27qgEAPJaRSCXpG+mDdsWSsPJxYb8cL8nRGap7t1SzKdHrct/gg7uwTgZNJ+XU6Bw9nGR4b3gobz6SjMXQK80SHUPOBeCIiIiIiIiIiIiIiIiIiImpYrOBADU6oGuAT3DAzpkr0gPPFIvNtNHp8f9Pn2PjzDnQa1Baunq5wUirq9bzGzx1h976aUi1WfrSuzudQUqhGeJsQDLm9PxqaRCLBvJVPNfhxiYiuOwa9YxYiomvMmA7B8Hap3+/8tnrx95NYdzwFfaJ8xQoOzor6vV2/o1eE3fuWavX4duflOp9DQakO7UM8MLJdIBqjYsbCO7s3+HGJiIiIiIiIiIiIiIiIiIjIPAYcqMHJFXI8s/ghOKucGuR4Xv+anw3UbX8OpLkabF22C/d1eAIrP1yHjMSsejsfd29XjJxxg8376aKdoX4sAEWfhqHo/VCU3ewFg2vd/gonnU/F098/iGbtwtCQht81CGEtgxv0mEREREREFZQKGRbc1gVO8qZzS6w3AKuPJGHUR9vw3c5LSMlV19ux/NyccWv3cDQ2A4DEnBJ8MrUrIn1dGvTYU3tFIMRL1aDHJCIiIiIiIiIiIiIiIiIiIsvkVrQhcrhuwzvh071vYcUHa7Fz1T6oi0phMAjDWxzPY082SiNdkDu69qygyguF8F8SX/k8PT4TC59cjPoilUrw4Cf3wifQC77B3shKybFqv7JJXiid5VdjXWl7FcomesLluWRIUzR2nY9EUr4U5JivcuFIHQe1xcOf3ttgxyMiuq4Jv1vr+vu1nn4/ExE1thvaBGDV/f2waEcsNp5OQ7FG1yQ+8uKzS/DautP11r9MKsHrE9sj0EMpVrHIKbbvXsKR90jCPUleScOdx4BoP7w0vl2DHY+IiIiIiIiIiIiIiIiIiIisJzHU16hyIhukxWXg0f4vICvZugH/9iiJdkXeED9ogpSQFWrhvjsbbodyINE5/lhSmRR6nb7Guo4D22LcnBGIP52I3X8cQHZaLvIzCyz2pW2nRMkHpissSM+r4fpIos3nKFTQuOnhMVj/3WbkWXEedRUSHYQ579+FPuO7QyptOjPlEhFdaxITExEeXj4r95DQe6GUu9epP7W2AFuTvhUfJyQkICysYav+EBE1lLisItzy5W5kFpZdExddJgF0V9zt92nugzt6ReB0aoEY6sgsLG3UgIOLkxR39onE8oMJyG2A84gOcMMLY9ticCt/MVhBRERERERERERERERERERETQ8DDtSkQg4/zFuGbcv3QFOqgUwuhU5bMyRwtep3U09Me34Snh/zFvKzbAsTlDwTCO0Q84NTVU8mQn5abVO/EqkEBn3D5ZsWHnkPLTpHNtjxiIiuVzUCDsH3OCbgkPKd+JgBByK6HkIOH2w4h/UnU1Gm00Mhk0BzZUrgKjW+UzDu6R+JGd8fQL5ai6ZAyBg04C0JNj4xWAw5EBERERERERERERERERERUdPFgAM1OcUFJchNz8OlE3F4ZdL7uFZ4+XsgNyPf5v0Kv2sGQ7DCbBvnrzPhtDoXTVWXG9rjvU2vNPZpEBFdFxhwICKquwK1BtlFZTiWkIdHlh25Zi6pl0qB3JLGq9jQmIa09scPM3s19mkQERERERERERHR/9u7E+i6ynJv4E9OhiZN07lpS5POQFvKUEpLi2WwFSgWUCahICDCRQrfRS9QPgUBQRfqB3qveNEl6L2CgKBXUEEQEKggoBYVqAUECpSkA52HpE2TNPlWDpcjoVOSc5KTht9vrb3Y7z7vfp83O6WrZ63zPw8AAMAu5O1qAnS07iVFyWPThs1d6uG3JdzQJKeuMXb5paZ17fe1p6VD+8eKt1e1+f6R+w2LK+76Qkb3BEALNTa+e6Qj3fsBdkMlhfnJY1XVluhKdtdwQ1mfoqhc2/b3h/sO6Rn//qkDMronAAAAAAAAAKB9JNppXUjb6AkjYvg+5R/6J5n3p+qdP4Otjbue0wZ7jBoYF998Xvzw79+O0QeOaNMaBx65X3zvuW9Gn4G9M74/AABobwcO7RPD+nX3oLNkZP/i+PqJ+8aj/3Z47DWwR5vWmDFmQPzyomnRp7gg4/sDAAAAAAAAADJPwIFO7bxvnBGJ3A/3H9P8+9dHbNy6w9fzntgYiZX1Ga979nWnxXFzjo6iHkXx5bv/LYp7t/6DXXtOGBG5ebkZ3xsAAHSEnJyc+NIxYyInx/POhstnjonZk4dGUUFufO+MA6O4W+vfW+xb1jtyE36BAAAAAAAAALC7+HB/cpxO7+BZE+Pa+y6PoWOHdHjtAWX9ojNoCi90v2pp5Kysa/5CQ2PkzdsYhTet3On9F3z77Djm3Bmx9+TRLa5Z0qc4PvLJSanxkNGD4+Y/fyMO/9TUyM1r+V8bH509rcVzAWgnjY3pHQAfcjPHD47vnzEx2U2gow3uVRi7u6ZwyDXHjYtTDyqP8UN6tfi+/j0KYvqY0tR4dGlJ/OqiaXHM+EHRmrzCcfvv0dotAwAAAAAAAABZlJfN4tASU46dmDz+8dyiWL9yQ6xetjZunXt7bFxbnfEHmN8tP/aaODJ6l/aMJa8tj5WVqzvFLyn3H1ui+DOLo35KcTSM7hZR0xj5T1dFYkld5BfmRyIvJ7Zsrt3mvnO+NjtO+sKxyfPX//ZmzJl4eYvq/cv/OzO6FXVrdq0p5PDluy+JqnXVsfaddVG3pS6uP+M7sXhh5XbXOPTkKTFq/+Ft+nkBAKAzmTl+UBy9z8B4oXJ9rNtUG8vW1cT1D74cG7dkvpNat7xE7F/eO3oX5cfrKzfG7qBpz0221Dds89qVHx8b53xkRPL8L4vXxEnff7ZFoYgvzxoXBR8IV48u7RHf//TEWL+pLlZVb4nNtVvj4p/+Ld5Ytf33hidOGBKjBvRo408FAAAAAAAAAGRDTmOjr+Zl91OzaUs8ftcfYtHzb0ZhcWEcdvKUKCgqSF7bsGZj8sP8r85f1Ko1T7/ixFizfG389r+eyOhei0oKY/PGmmgPvQb0jO89983IzcuN+7//cDz9yz9H7eba2OugUXH8hTNj30PHNpt/8SFXxMt/fG2H65UO7R8XfOvsOPSkKS2qv2H1xrjx3O/FH+//S7z3V0l+QV4cedbhcdF3z42Cbvlp/oQAtFZlZWWUl5cnz48Y+JkozE3vg501W6ti3js/Tp5XVFREWVmZXwpARFRvqY9fPb80Xlm+IYq75cWsfQdHIicnfv3C0li/uTYWVK6Pvy/d0KpndcmRe8ZbqzfFvX9dktFn3L0gNzbVbm2X31tpj27xm89Pi/qGxvjJs4vj0ZfeidqtDXFAee84a+rwmDisT7P5x3znqXh52Y6fy9C+3eOqY8fFkeMGtqj+qqotMffnL8S8V1emGg81BSNOm1SeXCc/V+NKAAAAAAAAANidCDjQZc0u/1ysWrKmRXMPmD4+DjrqgPjhF+/ISO1EbiJOuPiYOPKsI+I/LrglXvnTjkMF6Ro9YXjsd9g+MfPc6TFi/NCdzq18bVnMnf6V7T6Xj86eFlfc+fk27WHpouWx8Ol/RG5eIibM2Df6DOzdpnUASJ+AA0DnMeG6R2LtproWzZ0+pjT2L+sd//67VzNSOy+RE+dOGxEnHlgWX7jn+Z2GCtK135BecfDIvnHqpKHJLgs78/qKjXHaLX9KBhM+6JSJZXHDKfu3aQ9vrqqOvy5eG3m5OXHongOib3FBm9YBAAAAAAAAALJLwIEu67Zr7ok7vvo/u5w3fHx5XP/glfGvU74Uq5euTatmIjcnPvLJyfGpuZ+IMZP3TF679f/eET+74VfREU76wqy44Nuf2emcdSvXx/3ffyR+/7NnYtPGzTF8n/I49oKj4pDjJ3XIHgHowIDDgLMy08Fh5e3Jcx0cAFrn6w+9HD/4/Ru7nLfPHj3jR2dPilk3PRWrq2vTesy5iZyYOX5QzDl8VIwf0it57Su/Xhg/fuat6AgXHjEqLp85ZqdzVmysiTueXRy/WbAsNtdujTGDe8aZU4bFR8eUdsgeAQAAAAAAAIDOS8CBLmv9qg3xfyZ/MZa/tXK7r4/cb1gyiHDYKVOi4pWl8bkDLku7Zq/+JXFXxQ9iVeXqWPDUy5FIJKJs78Exd/q1sWVzeh9Uaqme/Upi5H5DY+ZnZ8QRpx4SuXm5HVIXgM5BwAGg81ixoSaO/8+nY/mGmu2+Pn6PnvG5w0clAwkLl26IT978dNo1S0sK4pkvzoi312yK55o6GiRyYmjf7nH6rX+K2q0N0RGauieMHVwSp00aGrP2HRyJRE6H1AUAAAAAAAAAdn8CDnRpKypWxU0X3hrzH/pbNDQ0Jq8NKO8XZ13zqZj52empeYteeCsumDA3IzX3njQq/jF/UbNrPfoUR031lqivrY+OdPCsA+Mr986NvPy8Dq0LQPYIOAB0LhVrNsWVv/x7PPXaymh89y1JDOldFJcdvVecMKEsNe9vb6+NE773TEZq7lfWKxZUro//LZfUuyg/qrbURX3HZBxSZu4zKG4+48BkZwkAAAAAAAAAgF0RcOBDYflbK2LxS5XRvaQoxh2yV+TmNu9qUF9XH2cMmxNrlq9r133sd9i4KCopjCWvL4vKfyyLjvCZr54WZ1x5UofUAqCTBRz6nxmFuT3SWq9ma1XMW/WT5HlFRUWUlf3zw7gAtNzi1dWxaGVVlBTmx8ShfbbpalBTtzWmfv2xWLuprl0f69SR/aIwPxFvrqqOt1Zvio7w5Vlj47xDR3ZILQAAAAAAAABg95bI9gagIwwaXhoHf/zA2PfQsduEG5o0dTg4/qKZ7b6PF598KabMOjCGjB4cHeU3P3g0tm7d2mH1AACAbQ3rVxzTxwyMScP7bhNuaFKYnxufnjKs3R/ds2+sjo+NHRhlfbt32K/pJ39cHI3vta8AAAAAAAAAANiJvJ29CB8ms790QixdtDwe+fG8bV7rO7hPjJ4wPPoM7B0P//cTadX5zkU/jOjAz/asrFwd61ZsiH6D+3RcUQA6h6YPk6b7gVIfSAXoMJ+fsWcsXr0pfv3C0m1eG9izMMbv0TN6dc+Pe/+6JK06V/7y79GRmn6mDTX10asov0PrAgAAAAAAAAC7HwEH+F+JRCLm/tdFcfyco+PhH8+LNcvWxIDy/nHMuTNi5H7vfpNqXW1dLH9zRbwwb2Hbn1sHf3FpTk5OdCsq6NiiAABAq+XlJuKm2RPi7EOGxy/+WhmrNm6J8r7d47RJ5bHnwJLknJq6rcnAwF8Wr91tnnBTw4pueRpIAgAAAAAAAAC7JuAAH7D3pNHJY3vyC/Lj+geviLuuvzce+uFjsWb5uoicjg8ttMY+H9k7evQuzvY2AMiGhsaInMb01wCgQ00c1id5bE9hfm785NzJ8Z+Pvx73zK+I1dW1nf0tSUwb3T+5bwAAAAAAAACAXRFwgFYqKCyIz1x3Wpx59SmxdsX6WPDky3H96f/RaZ/j8Rcene0tAAAAGdS9IC8unzkmLjlyr2TA4clXV8bc/3mx0z7jsw4Znu0tAAAAAAAAAAC7iUS2NwC7q9y83Oi/R9845BMHddoOCT37lcRhp0zN9jYAyJLGxoaMHAB0Tnm5iRjYszBmjh8UxQWds0PCgJKCmDGmNNvbAAAAAAAAAAB2EwIOkKZuRd3i1Ms/0SHPsbBHt1bNP+Wy4yM3t3N+0AkAAMiMksL8OO/QkR3yOEu6ta4R5JzDR0dOTk677QcAAAAAAAAA6FoEHCADTvviCXH2tadGYXHrAgitte+hY2PaiQe3aO4Rpx4Sp1x2XLvuBwAA6By+8LE941+nj47C/PZ9mz91VL+Y3sKODCceOCTO+cjwdt0PAAAAAAAAANC15DQ2NjZmexPQVVSvr45nfv1cVK/fFBvXVsft19yT0fXHTd0rvv3kdfHwf8+LB37wSCxeWBHFvbrH3pNHR33d1qheVx2lQ/vHzM/OiIlH7uebUgE+hCorK6O8vDx5fniv2VGYKE5rvZqG6vj9+p8mzysqKqKsrCwj+wSgfazfVBe/e/mdqNpSH6uqtsR3H389o+tPHdkvfnLu5Lh7fkXc9ae3Y9HKqigpzIsDyntH7daG2FhTH2V9usdpk8rjI6P7Z7Q2AAAAAAAAAND15WV7A9CVFPcqjiPPPDw1rqmqiZ/d8KuMrd9vSN/Izc2Nj583I3kAAAC8X6/u+XHSxH+G0ZoCBz9+5q2MPaTBvQojLzcRn54yLHkAAAAAAAAAAGRSIqOrAc38yzc/Hd+ad20MG5eZb7s+5rPTPWEAWq6pUVcmDgB2W185fp+467yDY0T/9Dr6vOeUg97tEgQAAAAAAAAA0B4EHKCd7XfYuLjlxW/FJy6aGYlEzo7/Z0zkxKj9h+/w9WknHhwHHX1AO+0SAADoqg4Z3T8e/bfDYvbkobGTtySRm8iJsYNLdvj68fvvEVNH9WufTQIAAAAAAAAAREROY6Ov5YWO8s7ilTHvnmdi45qNUT5mSAweNTBe/+ubkZefF5M/PiEGDS+N393xZNzzzV/GWwsrkvf0HdQ7jptzdMz+0gmRm5frlwXATlVWVkZ5+bvfrn14j09FYSK9b+yuaaiO31f9LHleUVERZWWZ6UoEQHa8vXpTPLBgaWysqY89S3vEHr2LYuHSDVGQl4jpY0pjSO+i+NlzFfGD3y+KRSurk/cM6lkYZ04dFhccPioZggAAAAAAAAAAaC8CDtBJLXvzndhatzUGjShNBiAAoCUEHADIZBiivqEhhvbtHnm5GkACAAAAAAAAAO3Pp6ahkxo8YmC2twAAAHyIDe3XPdtbAAAAAAAAAAA+ZAQcAAC6qsbGd4901wAAAAAAAAAAAIAOkOiIIgAAAAAAAAAAAAAAADujgwMAQBfV2NAQjdGQ9hoAAAAAAAAAAADQEXRwAAAAAAAAAAAAAAAAsk4HBwCArqqx8d0j3TUAAAAAAAAAAACgA+jgAAAAAAAAAAAAAAAAZJ0ODgAAXVVT94UGHRwAAAAAAAAAAADYPejgAABAp1FVVRU333xzHHXUUTFw4MAoKChI/nfixIlx5ZVXxmuvvdau9R977LE466yzYvTo0VFcXBwlJSUxZsyYmD17djz44IPR0NDQrvUBAAAAAAAAAAA+zHIaG5u+2hcAgK6gsrIyysvLk+eHdTshCnOK01qvprE6ntxyX/K8oqIiysrKor088cQTyXBB08+wI3l5eXHVVVclww65ubkZq7127dpk7QceeGCn84444oi47bbbYujQoRmrDQAAAAAAAAAAwLt0cAAA6KqacqyNDWkeHZOFffjhh+OYY45pFm5oCjMMGTIkunfvnrpWX18f11xzTcyZMydjtTds2JAMLnww3NC/f//k8X7z5s2LadOmxfLlyzNWHwAAAAAAAAAAgHcJOAAAkFVLly6N008/PbZs2ZIcl5SUxM033xzr1q1LBh42btwYDz30UOy1116pe2699da45ZZbMlL//PPPjxdffDE1PuOMM+L111+PlStXJo9FixYluzu8p6mTxcknnxwaoQEAAAAAAAAAAGSWgAMAQBfV2NCYkaO9XXHFFbFmzZrkeWFhYbKbw4UXXhjFxcXJa4lEImbOnBnz58+P/fffP3XfVVddFVVVVWnVburIcM8996TGF198cdxxxx0xatSo1LWRI0fGbbeVAAk4AAAIEklEQVTdFtdee23q2tNPPx0///nP06oNAAAAAAAAAABAcwIOAABkzbJly+LOO+9MjefOnRtTp07d7tyePXvGL37xi8jPz0+OV6xYkXYXhxtuuCF13hRquPHGG3c49+qrr47p06enxl/72tfSqg0AAAAAAAAAAEBzAg4AAF1VY0NmjnZ09913R319fapTw0UXXbTT+U0hhBNOOCE1/ulPf9rm2qtWrYrf/va3qfEFF1yQCk/syGWXXZY6X7BgQSxcuLDN9QEAAAAAAAAAAGhOwAEAgKx5f8Bg8uTJMXDgwF3ec9xxx6XOn3vuuXj77bfbVPvRRx+NhoaG7a67IzNmzIiioqLU+N57721TbQAAAAAAAAAAALYl4AAA0EU1NjRm5GhPTQGF90yZMqVF9xx88MHNxs8++2ybas+fPz913rt379h77713eU9BQUFMmDAhNX7mmWfaVBsAAAAAAAAAAIBtCTgAAJAVy5cvjzVr1qTGY8eObdF9I0aMiLy8vNT4lVdeaVP9l156qdW1m+y5555p1wYAAAAAAAAAAGBbAg4AAGRFZWVls3FZWVmL7msKN5SWlqbGb7/9dtr1W1q7yZAhQ5qt0djYvl0uAAAAAAAAAAAAPiz++dW3AAB0KVsaN0U0NqS3RtSkzpctW7bL+a0JCqxYsaLZuF+/fi2+t2/fvrF06dLk+fu7QLTG++u3tvZ76uvrY8OGDdGrV6827QEAAAAAAAAAAIB/EnAAAOii5sfjGV1v8uTJu5zTmm4GVVVVzcY9evRo8b3vn/vBddpSv62131tHwAEAAAAAAAAAACB9iQysAQAArVZbW9tsnJ+f3+J73z+3rq4u7fptrZ1OfQAAAAAAAAAAAJrTwQEAoAsZNGhQVFRUZHzdZcuWxYABAyIvL3P/fPxgt4ecnJyMrd3a+h1dGwAAAAAAAAAAgG0JOAAAdCFNAYSysrKMr9seaxYUFLS5E8L75xYWFra5fk1NTVq106kPAAAAAAAAAABAc4kPjAEAoEP07Nmz2bi6urrF91ZVVaXOi4uL067f1trp1AcAAAAAAAAAAKA5AQcAALKif//+zcZr1qxp8b3vn1taWpp2/bbWLioqipKSkjbVBwAAAAAAAAAAoDkBBwAAsmL48OHNxkuXLm3RffX19bFixYrUuKysLO36La3dZMmSJanzIUOGtKk2AAAAAAAAAAAA2xJwAAAgKwYMGBD9+vVLjV999dUW3ffGG28kQw7v2WeffdpUf+zYsa2u/cG5ba0NAAAAAAAAAADAtgQcAADImkmTJqXO//znP7fong/OO+igg9KuvXz58qioqNjlPbW1tfH8889vdw0AAAAAAAAAAADSI+AAAEDWHHXUUanzP/zhD7Fu3bpd3nP//fenzseNGxdlZWVtqj1jxoxIJP75z+EHHnhgl/c89thjsXnz5u3uHwAAAAAAAAAAgPQIOAAAkDWnnHJK5ObmprojfPe7393p/EWLFsV9992XGp955pltrt2/f//42Mc+lhrfdNNNUVdXt9N7brzxxtT5mDFjdHAAAAAAAAAAAADIIAEHAACypqn7QlPI4T1f/epXk10Stmfjxo1x8sknp0IIvXr1ivPOOy+t+pdccknq/JVXXok5c+bscG7T3h5//PHU+NJLL02rNgAAAAAAAAAAAM0JOAAAkFXXX3999OjRI3neFF6YNWtWfOMb34j169cnrzU2NsYjjzyS7Jbw/PPPp+677rrrkl0Ytmf48OGRk5OTOnbk6KOPjmOPPTY1/tGPfpQcL1y4MHXtrbfeinPOOSeuvvrq1LWmvTRdAwAAAAAAAAAAIHNyGps+MQYAAFl0//33J7sz1NbWpq7l5ubGoEGDYt26dVFdXd1s/umnnx533nnnDtdrCjgsXrw4Nd7ZP3lXrVoV06dPjwULFjS73q9fv+QeVqxY0ez6HnvsEU8//XSyBgAAAAAAAAAAAJmjgwMAAFl33HHHxQMPPBDl5eWpa1u3bo0lS5Y0CzckEom49NJL4/bbb89Y7aYuEI8//nizTg5NVq9evU24oalzw1NPPSXcAAAAAAAAAAAA0A50cAAAoNPYtGlT3HbbbXHffffFSy+9FCtXroxu3bolAwVHHHFEnH/++TF+/PhdrtOaDg7v99hjj8Vdd92VDDEsW7Ys2VGitLQ0GWyYPXt2nHjiicmuDgAAAAAAAAAAAGSegAMAAAAAAAAAAAAAAJB1iWxvAAAAAAAAAAAAAAAAQMABAAAAAAAAAAAAAADIOgEHAAAAAAAAAAAAAAAg6wQcAAAAAAAAAAAAAACArBNwAAAAAAAAAAAAAAAAsk7AAQAAAAAAAAAAAAAAyDoBBwAAAAAAAAAAAAAAIOsEHAAAAAAAAAAAAAAAgKwTcAAAAAAAAAAAAAAAALJOwAEAAAAAAAAAAAAAAMg6AQcAAAAAAAAAAAAAACDrBBwAAAAAAAAAAAAAAICsE3AAAAAAAAAAAAAAAACyTsABAAAAAAAAAAAAAADIOgEHAAAAAAAAAAAAAAAg6wQcAAAAAAAAAAAAAACArBNwAAAAAAAAAAAAAAAAsk7AAQAAAAAAAAAAAAAAyDoBBwAAAAAAAAAAAAAAIOsEHAAAAAAAAAAAAAAAgKwTcAAAAAAAAAAAAAAAALJOwAEAAAAAAAAAAAAAAMg6AQcAAAAAAAAAAAAAACDrBBwAAAAAAAAAAAAAAICsE3AAAAAAAAAAAAAAAACyTsABAAAAAAAAAAAAAACIbPv/3NszCGiWJlQAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 709, + "width": 1564 + } + }, + "output_type": "display_data" + } + ], + "source": [ + "sc.pl.embedding(\n", + " adata,\n", + " basis=\"umap\",\n", + " color=[\n", + " \"leiden\",\n", + " \"CST3\",\n", + " \"NKG7\",\n", + " \"PPBP\",\n", + " \"CD8A\",\n", + " \"cell_type\",\n", + " ],\n", + ")" + ] + }, + { + "cell_type": "markdown", + "id": "eec9ac44", + "metadata": {}, + "source": [ + "### 💾 Save Results — 💻 Local\n", + "\n", + "Save processed data following the template's data organization." + ] + }, + { + "cell_type": "code", + "execution_count": 21, + "id": "c21acfe8", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved to: /Users/mlange/Projects/analysis_template/data/example_dataset/processed/pbmc3k_processed.h5ad\n" + ] + } + ], + "source": [ + "output_path = FilePaths.EXAMPLE_DATASET / \"processed\" / \"pbmc3k_processed.h5ad\"\n", + "adata.write(output_path)\n", + "print(f\"Saved to: {output_path}\")" + ] + }, + { + "cell_type": "markdown", + "id": "22d5126e", + "metadata": {}, + "source": [ + "---\n", + "\n", + "### 📋 Session Info" + ] + }, + { + "cell_type": "code", + "execution_count": 22, + "id": "81c9ee78", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "19daaa1b1492491590486e02fd5aeaf1", + "version_major": 2, + "version_minor": 0 + }, + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PackageVersion
pandas2.3.3
anndata0.12.8
matplotlib3.10.8
scanpy1.12
myanalysis0.1.dev29+g32849c680.d20260127
scvi-tools1.4.1
torch2.10.0
celltypist1.7.1
ComponentInfo
Python3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ]
OSmacOS-26.2-arm64-arm-64bit
Updated2026-01-27 13:26
\n", + "\n", + "
\n", + " Dependencies\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
DependencyVersion
seaborn0.13.2
pycparser3.0 (3.00)
texttable1.7.0
six1.17.0
requests2.32.5
torchmetrics1.8.2
appnope0.1.4
platformdirs4.5.1
h5py3.15.1
jax0.8.2
charset-normalizer3.4.4
natsort8.4.0
scipy1.16.3
sparse0.17.0
llvmlite0.46.0
dask2024.11.2
pure_eval0.2.3
jedi0.19.2
sympy1.14.0
numba0.63.1
matplotlib-inline0.2.1
kiwisolver1.4.9
typing_extensions4.15.0
jupyter_client8.8.0
opt_einsum3.4.0
mudata0.3.2
pyzmq27.1.0
jupyter_core5.9.1
fast-array-utils1.3.1
google-crc32c1.8.0
cloudpickle3.1.2
executing2.2.1
PyYAML6.0.3
threadpoolctl3.6.0
idna3.11
MarkupSafe3.0.3
zarr3.1.5
ml_dtypes0.5.4
scikit-learn1.7.2
cycler0.12.1
comm0.2.3
ipywidgets8.1.8
certifi2026.1.4 (2026.01.04)
defusedxml0.7.1
umap-learn0.5.11
pyro-ppl1.9.1
tqdm4.67.1
Pygments2.19.2
fsspec2026.1.0
debugpy1.8.19
traitlets5.14.3
urllib32.6.3
decorator5.2.1
pyarrow23.0.0
pytz2025.2
filelock3.20.3
tornado6.5.4
asttokens3.0.1
wcwidth0.5.0
absl-py2.3.1
Jinja23.0.3
numcodecs0.16.5
statsmodels0.14.6
mpmath1.3.0
setuptools80.10.2
session-info20.3
packaging26.0
docrep0.3.2
lightning2.6.0
pynndescent0.6.0
ipython9.9.0
donfig0.8.1.post1
prompt_toolkit3.0.52
pyparsing3.3.2
stack-data0.6.3
joblib1.5.3
igraph1.0.0
patsy1.0.2
attrs25.4.0
jaxlib0.8.2
pillow12.1.0
python-dateutil2.9.0.post0
lightning-utilities0.15.2
xarray2025.12.0
toolz1.1.0
ml_collections1.1.0
ipykernel7.1.0
cffi2.0.0
numpy2.1.3
legacy-api-wrap1.5
rich14.3.1
psutil7.2.1
parso0.8.5
\n", + "
\n", + "
\n", + "
\n", + " Copyable Markdown\n", + "
| Package    | Version                        |\n",
+       "| ---------- | ------------------------------ |\n",
+       "| pandas     | 2.3.3                          |\n",
+       "| anndata    | 0.12.8                         |\n",
+       "| matplotlib | 3.10.8                         |\n",
+       "| scanpy     | 1.12                           |\n",
+       "| myanalysis | 0.1.dev29+g32849c680.d20260127 |\n",
+       "| scvi-tools | 1.4.1                          |\n",
+       "| torch      | 2.10.0                         |\n",
+       "| celltypist | 1.7.1                          |\n",
+       "\n",
+       "| Dependency          | Version               |\n",
+       "| ------------------- | --------------------- |\n",
+       "| seaborn             | 0.13.2                |\n",
+       "| pycparser           | 3.0 (3.00)            |\n",
+       "| texttable           | 1.7.0                 |\n",
+       "| six                 | 1.17.0                |\n",
+       "| requests            | 2.32.5                |\n",
+       "| torchmetrics        | 1.8.2                 |\n",
+       "| appnope             | 0.1.4                 |\n",
+       "| platformdirs        | 4.5.1                 |\n",
+       "| h5py                | 3.15.1                |\n",
+       "| jax                 | 0.8.2                 |\n",
+       "| charset-normalizer  | 3.4.4                 |\n",
+       "| natsort             | 8.4.0                 |\n",
+       "| scipy               | 1.16.3                |\n",
+       "| sparse              | 0.17.0                |\n",
+       "| llvmlite            | 0.46.0                |\n",
+       "| dask                | 2024.11.2             |\n",
+       "| pure_eval           | 0.2.3                 |\n",
+       "| jedi                | 0.19.2                |\n",
+       "| sympy               | 1.14.0                |\n",
+       "| numba               | 0.63.1                |\n",
+       "| matplotlib-inline   | 0.2.1                 |\n",
+       "| kiwisolver          | 1.4.9                 |\n",
+       "| typing_extensions   | 4.15.0                |\n",
+       "| jupyter_client      | 8.8.0                 |\n",
+       "| opt_einsum          | 3.4.0                 |\n",
+       "| mudata              | 0.3.2                 |\n",
+       "| pyzmq               | 27.1.0                |\n",
+       "| jupyter_core        | 5.9.1                 |\n",
+       "| fast-array-utils    | 1.3.1                 |\n",
+       "| google-crc32c       | 1.8.0                 |\n",
+       "| cloudpickle         | 3.1.2                 |\n",
+       "| executing           | 2.2.1                 |\n",
+       "| PyYAML              | 6.0.3                 |\n",
+       "| threadpoolctl       | 3.6.0                 |\n",
+       "| idna                | 3.11                  |\n",
+       "| MarkupSafe          | 3.0.3                 |\n",
+       "| zarr                | 3.1.5                 |\n",
+       "| ml_dtypes           | 0.5.4                 |\n",
+       "| scikit-learn        | 1.7.2                 |\n",
+       "| cycler              | 0.12.1                |\n",
+       "| comm                | 0.2.3                 |\n",
+       "| ipywidgets          | 8.1.8                 |\n",
+       "| certifi             | 2026.1.4 (2026.01.04) |\n",
+       "| defusedxml          | 0.7.1                 |\n",
+       "| umap-learn          | 0.5.11                |\n",
+       "| pyro-ppl            | 1.9.1                 |\n",
+       "| tqdm                | 4.67.1                |\n",
+       "| Pygments            | 2.19.2                |\n",
+       "| fsspec              | 2026.1.0              |\n",
+       "| debugpy             | 1.8.19                |\n",
+       "| traitlets           | 5.14.3                |\n",
+       "| urllib3             | 2.6.3                 |\n",
+       "| decorator           | 5.2.1                 |\n",
+       "| pyarrow             | 23.0.0                |\n",
+       "| pytz                | 2025.2                |\n",
+       "| filelock            | 3.20.3                |\n",
+       "| tornado             | 6.5.4                 |\n",
+       "| asttokens           | 3.0.1                 |\n",
+       "| wcwidth             | 0.5.0                 |\n",
+       "| absl-py             | 2.3.1                 |\n",
+       "| Jinja2              | 3.0.3                 |\n",
+       "| numcodecs           | 0.16.5                |\n",
+       "| statsmodels         | 0.14.6                |\n",
+       "| mpmath              | 1.3.0                 |\n",
+       "| setuptools          | 80.10.2               |\n",
+       "| session-info2       | 0.3                   |\n",
+       "| packaging           | 26.0                  |\n",
+       "| docrep              | 0.3.2                 |\n",
+       "| lightning           | 2.6.0                 |\n",
+       "| pynndescent         | 0.6.0                 |\n",
+       "| ipython             | 9.9.0                 |\n",
+       "| donfig              | 0.8.1.post1           |\n",
+       "| prompt_toolkit      | 3.0.52                |\n",
+       "| pyparsing           | 3.3.2                 |\n",
+       "| stack-data          | 0.6.3                 |\n",
+       "| joblib              | 1.5.3                 |\n",
+       "| igraph              | 1.0.0                 |\n",
+       "| patsy               | 1.0.2                 |\n",
+       "| attrs               | 25.4.0                |\n",
+       "| jaxlib              | 0.8.2                 |\n",
+       "| pillow              | 12.1.0                |\n",
+       "| python-dateutil     | 2.9.0.post0           |\n",
+       "| lightning-utilities | 0.15.2                |\n",
+       "| xarray              | 2025.12.0             |\n",
+       "| toolz               | 1.1.0                 |\n",
+       "| ml_collections      | 1.1.0                 |\n",
+       "| ipykernel           | 7.1.0                 |\n",
+       "| cffi                | 2.0.0                 |\n",
+       "| numpy               | 2.1.3                 |\n",
+       "| legacy-api-wrap     | 1.5                   |\n",
+       "| rich                | 14.3.1                |\n",
+       "| psutil              | 7.2.1                 |\n",
+       "| parso               | 0.8.5                 |\n",
+       "\n",
+       "| Component | Info                                                                              |\n",
+       "| --------- | --------------------------------------------------------------------------------- |\n",
+       "| Python    | 3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ] |\n",
+       "| OS        | macOS-26.2-arm64-arm-64bit                                                        |\n",
+       "| Updated   | 2026-01-27 13:26                                                                  |
\n", + "
" + ], + "text/markdown": [ + "| Package | Version |\n", + "| ---------- | ------------------------------ |\n", + "| pandas | 2.3.3 |\n", + "| anndata | 0.12.8 |\n", + "| matplotlib | 3.10.8 |\n", + "| scanpy | 1.12 |\n", + "| myanalysis | 0.1.dev29+g32849c680.d20260127 |\n", + "| scvi-tools | 1.4.1 |\n", + "| torch | 2.10.0 |\n", + "| celltypist | 1.7.1 |\n", + "\n", + "| Dependency | Version |\n", + "| ------------------- | --------------------- |\n", + "| seaborn | 0.13.2 |\n", + "| pycparser | 3.0 (3.00) |\n", + "| texttable | 1.7.0 |\n", + "| six | 1.17.0 |\n", + "| requests | 2.32.5 |\n", + "| torchmetrics | 1.8.2 |\n", + "| appnope | 0.1.4 |\n", + "| platformdirs | 4.5.1 |\n", + "| h5py | 3.15.1 |\n", + "| jax | 0.8.2 |\n", + "| charset-normalizer | 3.4.4 |\n", + "| natsort | 8.4.0 |\n", + "| scipy | 1.16.3 |\n", + "| sparse | 0.17.0 |\n", + "| llvmlite | 0.46.0 |\n", + "| dask | 2024.11.2 |\n", + "| pure_eval | 0.2.3 |\n", + "| jedi | 0.19.2 |\n", + "| sympy | 1.14.0 |\n", + "| numba | 0.63.1 |\n", + "| matplotlib-inline | 0.2.1 |\n", + "| kiwisolver | 1.4.9 |\n", + "| typing_extensions | 4.15.0 |\n", + "| jupyter_client | 8.8.0 |\n", + "| opt_einsum | 3.4.0 |\n", + "| mudata | 0.3.2 |\n", + "| pyzmq | 27.1.0 |\n", + "| jupyter_core | 5.9.1 |\n", + "| fast-array-utils | 1.3.1 |\n", + "| google-crc32c | 1.8.0 |\n", + "| cloudpickle | 3.1.2 |\n", + "| executing | 2.2.1 |\n", + "| PyYAML | 6.0.3 |\n", + "| threadpoolctl | 3.6.0 |\n", + "| idna | 3.11 |\n", + "| MarkupSafe | 3.0.3 |\n", + "| zarr | 3.1.5 |\n", + "| ml_dtypes | 0.5.4 |\n", + "| scikit-learn | 1.7.2 |\n", + "| cycler | 0.12.1 |\n", + "| comm | 0.2.3 |\n", + "| ipywidgets | 8.1.8 |\n", + "| certifi | 2026.1.4 (2026.01.04) |\n", + "| defusedxml | 0.7.1 |\n", + "| umap-learn | 0.5.11 |\n", + "| pyro-ppl | 1.9.1 |\n", + "| tqdm | 4.67.1 |\n", + "| Pygments | 2.19.2 |\n", + "| fsspec | 2026.1.0 |\n", + "| debugpy | 1.8.19 |\n", + "| traitlets | 5.14.3 |\n", + "| urllib3 | 2.6.3 |\n", + "| decorator | 5.2.1 |\n", + "| pyarrow | 23.0.0 |\n", + "| pytz | 2025.2 |\n", + "| filelock | 3.20.3 |\n", + "| tornado | 6.5.4 |\n", + "| asttokens | 3.0.1 |\n", + "| wcwidth | 0.5.0 |\n", + "| absl-py | 2.3.1 |\n", + "| Jinja2 | 3.0.3 |\n", + "| numcodecs | 0.16.5 |\n", + "| statsmodels | 0.14.6 |\n", + "| mpmath | 1.3.0 |\n", + "| setuptools | 80.10.2 |\n", + "| session-info2 | 0.3 |\n", + "| packaging | 26.0 |\n", + "| docrep | 0.3.2 |\n", + "| lightning | 2.6.0 |\n", + "| pynndescent | 0.6.0 |\n", + "| ipython | 9.9.0 |\n", + "| donfig | 0.8.1.post1 |\n", + "| prompt_toolkit | 3.0.52 |\n", + "| pyparsing | 3.3.2 |\n", + "| stack-data | 0.6.3 |\n", + "| joblib | 1.5.3 |\n", + "| igraph | 1.0.0 |\n", + "| patsy | 1.0.2 |\n", + "| attrs | 25.4.0 |\n", + "| jaxlib | 0.8.2 |\n", + "| pillow | 12.1.0 |\n", + "| python-dateutil | 2.9.0.post0 |\n", + "| lightning-utilities | 0.15.2 |\n", + "| xarray | 2025.12.0 |\n", + "| toolz | 1.1.0 |\n", + "| ml_collections | 1.1.0 |\n", + "| ipykernel | 7.1.0 |\n", + "| cffi | 2.0.0 |\n", + "| numpy | 2.1.3 |\n", + "| legacy-api-wrap | 1.5 |\n", + "| rich | 14.3.1 |\n", + "| psutil | 7.2.1 |\n", + "| parso | 0.8.5 |\n", + "\n", + "| Component | Info |\n", + "| --------- | --------------------------------------------------------------------------------- |\n", + "| Python | 3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ] |\n", + "| OS | macOS-26.2-arm64-arm-64bit |\n", + "| Updated | 2026-01-27 13:26 |" + ], + "text/plain": [ + "pandas\t2.3.3\n", + "anndata\t0.12.8\n", + "matplotlib\t3.10.8\n", + "scanpy\t1.12\n", + "myanalysis\t0.1.dev29+g32849c680.d20260127\n", + "scvi-tools\t1.4.1\n", + "torch\t2.10.0\n", + "celltypist\t1.7.1\n", + "----\t----\n", + "Python\t3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ]\n", + "OS\tmacOS-26.2-arm64-arm-64bit\n", + "Updated\t2026-01-27 13:26" + ] + }, + "execution_count": 22, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from session_info2 import session_info\n", + "\n", + "session_info()" + ] + }, + { + "cell_type": "markdown", + "id": "e45c1207", + "metadata": {}, + "source": [ + "### 🔄 Workflow Summary\n", + "\n", + "\n", + "**Git sync workflow:**\n", + "```bash\n", + "# Local: push changes\n", + "git add . && git commit -m \"description\" && git push\n", + "\n", + "# Euler: pull and run\n", + "git pull\n", + "# ... run heavy compute ...\n", + "git add . && git commit -m \"results\" && git push\n", + "\n", + "# Local: pull results\n", + "git pull\n", + "```" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c445a7b3-a9c1-42c1-8cef-cbc7f79fd769", + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Analysis Template (Pixi)", + "language": "python", + "name": "analysis-template" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.12" + } + }, + "nbformat": 4, + "nbformat_minor": 5 +} diff --git a/analysis/[INITIALS]-[DATE]_sample_notebook.ipynb b/analysis/XX-2026-01-27_sample_notebook.ipynb similarity index 73% rename from analysis/[INITIALS]-[DATE]_sample_notebook.ipynb rename to analysis/XX-2026-01-27_sample_notebook.ipynb index f9fff05..499b181 100644 --- a/analysis/[INITIALS]-[DATE]_sample_notebook.ipynb +++ b/analysis/XX-2026-01-27_sample_notebook.ipynb @@ -4,11 +4,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Title of the Analysis\n", - "Short description of what is being done here. \n", + "# Sample Analysis Notebook\n", "\n", - "Changelog\n", - "- XXX. " + "This notebook demonstrates the template structure. Delete or modify as needed.\n", + "\n", + "**Changelog**\n", + "- 2026-01-27: Initial template notebook" ] }, { @@ -24,14 +25,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Dependecy notebooks" + "### Dependency notebooks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Links to notebooks/scripts that this analysis depends on. " + "Link to notebooks/scripts this analysis depends on, e.g.:\n", + "- `XX-2026-01-20_preprocessing.ipynb` — raw data → processed AnnData" ] }, { @@ -72,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2021-05-31T09:25:05.984402Z", @@ -82,7 +84,9 @@ }, "outputs": [], "source": [ - "from fancypackage import FilePaths" + "import scanpy as sc\n", + "\n", + "from myanalysis import FilePaths" ] }, { @@ -96,7 +100,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define constants etc. here. " + "Define constants, figure settings, etc." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sc.settings.set_figure_params(dpi=100, frameon=False)" ] }, { @@ -124,12 +137,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Any data should be stored in the `data` directory, or somewhere centrally on the cluster. The `data` directly is acessible from anywhere in this repo via `FilePaths`: " + "Store data in `data//` with subfolders `raw/`, `processed/`, `resources/`, `results/`. Access paths via `FilePaths`:" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -141,7 +154,8 @@ } ], "source": [ - "print(FilePaths.DATA)" + "print(f\"Data directory: {FilePaths.DATA}\")\n", + "print(f\"Figures directory: {FilePaths.FIGURES}\")" ] }, { @@ -154,17 +168,14 @@ { "cell_type": "markdown", "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] + "source": [ + "Your analysis code goes here. Delete these placeholder cells." + ] } ], "metadata": { "kernelspec": { - "display_name": "analysis_template", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -178,7 +189,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.7" + "version": "3.13.3" }, "toc": { "base_numbering": 1, diff --git a/pixi.lock b/pixi.lock new file mode 100644 index 0000000..1bf6dff --- /dev/null +++ b/pixi.lock @@ -0,0 +1,9777 @@ +version: 6 +environments: + default: + channels: + - url: https://conda.anaconda.org/conda-forge/ + indexes: + - https://pypi.org/simple + - https://pypi.nvidia.com/ + options: + pypi-prerelease-mode: if-necessary-or-explicit + packages: + linux-64: + - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.2-h39aace5_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hda65f42_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.6-hb03c661_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-mpi_openmpi_h76e6d66_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/geos-3.14.1-h480dda7_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.6-mpi_openmpi_h106f004_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/hypre-2.32.0-mpi_openmpi_h398ea61_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/icu-78.2-h33c6efd_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.3-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.45-default_hbd61a6d_105.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.5-h088129d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libamd-3.3.3-h456b2da_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.11.0-7_hc00574d_netlib.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libbtf-2.3.2-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcamd-3.3.3-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.77-h3ff7636_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.11.0-7_h8e06fc2_netlib.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libccolamd-3.3.4-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcholmod-5.3.1-h9cf07ce_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcolamd-3.3.4-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.18.0-h4e3cde8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.3-hecca717_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric-2.4.0-ha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric1-2.4.0-h8f87c3e_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h3435931_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.2.0-he0feb66_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.2.0-h69a702a_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-15.2.0-h69a702a_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-15.2.0-h68bc16d_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.2.0-he0feb66_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.12.2-default_hafda6a7_1000.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.18-h3b78370_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libklu-2.3.5-h95ff59c_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.11.0-7_h8876d29_netlib.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.2-hb03c661_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.67.0-had1ee68_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.11.0-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libpmix-5.0.8-h9b03745_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libptscotch-7.0.10-int32_ha94cade_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libscotch-7.0.10-int32_h865694f_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libspqr-4.3.4-h23b7119_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.2-hf4e2dac_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hcf80075_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.2.0-h934c35e_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.2.0-hdf11a46_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsuitesparseconfig-7.10.1-h901830b_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-257.10-hd0affe5_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libudev1-257.10-hd0affe5_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libumfpack-6.3.5-h873dde6_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.3-h5347b49_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-16-2.15.1-hca6bf5a_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.15.1-he237659_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-hd0bcaf9_1007.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-openmpi.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-include-5.8.1-h158ef2a_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-mpi-5.8.1-hcc12995_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openmpi-5.0.8-h611b0e2_111.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/parmetis-4.0.3-h02de7a9_1007.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/petsc-3.24.3-real_h326748a_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/petsc4py-3.24.3-np2py310h90edcb8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.12-hd63d673_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-gil-3.12.12-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.12-8_cp312.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/rdma-core-61.0-h192683f_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.3-h853b02a_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/scalapack-2.2.0-hf7e2fd8_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/shapely-2.1.2-py312h383787d_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/slepc-3.24.2-real_h5d6ed6e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/slepc4py-3.24.2-np2py310h29f32ec_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/superlu-7.0.1-h8f6e6c4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/superlu_dist-9.1.0-h3349319_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h366c992_103.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025c-hc9c84f9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ucc-1.6.0-hcedbda0_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ucx-1.20.0-hf72d326_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb78ec9c_6.conda + - pypi: https://files.pythonhosted.org/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/67/84/d844b79acd9fe15ded60b614b7df04a12fad854ee1fbb8415d726ab1beeb/aiobotocore-3.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/f6/a62cbbf13f0ac80a70f71b1672feba90fdb21fd7abd8dbf25c0105fb6fa3/aiohttp-3.13.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5e/09/f39f9443f901a8e9d960602e0f916005560839d3cfd96b89abd370ff7527/anndata-0.12.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/09/52/94108adfdd6e2ddf58be64f959a0b9c7d4ef2fa71086c38356d22dc501ea/argon2_cffi_bindings-25.1.0-cp39-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/df/5d/493b1b5528ab5072feae30821ff3a07b7a0474213d548efb1fdf135f85c1/array_api_compat-1.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/c9/d7977eaacb9df673210491da99e6a247e93df98c715fc43fd136ce1d3d33/arrow-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2e/e9/eb6a5db5ac505d5d45715388e92bced7a5bb556facc4d0865d192823f2d2/async_lru-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/39/47f9197bdd44df24d67ac8893641e16f386c984a0619ef2ee4c51fbbc019/beautifulsoup4-4.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e3/a6/24169d70ec5264b65ba54ba49b3d10f46d6b1ad97e185c94556539b3dfc8/cachetools-6.2.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/c2/7f3664b5b9421ef2d23d1684f56dd7df52b30ed37d8c91b3e92b2ff93720/cellrank-1.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/6c/12f14d20ccd49bfe8709cebd1b77a244f019e44a8702d3962021b618812e/celltypist-1.7.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/98/78/01c019cdb5d6498122777c1a43056ebb3ebfeef2076d9d026bfe15583b2b/click-8.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/39/799be3f2f0f38cc727ee3b4f1445fe6d5e4133064ec2e4115069418a5bb6/cloudpickle-3.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c6/c6/9963d588cc3d75d766c819e0377a168ef83cf3316a92769971527a1ad1de/colorcet-3.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a9/c1/dabe88f52c3e3760d861401bb994df08f672ec893b8f7592dc91626adcf3/cuda_bindings-12.9.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b2/75/cb52e7d8c44ef4bf1313251685adc0c6568d51b9790edf7a1ecdf0135394/cuda_core-0.3.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/0b/02/4dbe7568a42e46582248942f54dc64ad094769532adbe21e525e4edf7bc4/cuda_pathfinder-1.3.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/af/f3/6b032a554019cfb3447e671798c1bd3e79b5f1af20d10253f56cea269ef2/cuda_python-12.9.4-py3-none-any.whl + - pypi: https://pypi.nvidia.com/cuda-toolkit/cuda_toolkit-12.8.1-py2.py3-none-any.whl + - pypi: https://pypi.nvidia.com/cudf-cu12/cudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/cugraph-cu12/cugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/cuml-cu12/cuml_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e0/95/d7e1295141e7d530674a3cc567e13ed0eb6b81524cb122d797ed996b5bea/cupy_cuda12x-13.6.0-cp312-cp312-manylinux2014_x86_64.whl + - pypi: https://pypi.nvidia.com/cuvs-cu12/cuvs_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/60/3fcd548bed6d25016933e4b2984c9b82e4c1e760380e03d4100b1b4726e0/dask-2025.9.1-py3-none-any.whl + - pypi: https://pypi.nvidia.com/dask-cuda/dask_cuda-25.12.0-py3-none-manylinux_2_28_aarch64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/dask-cudf-cu12/dask_cudf_cu12-25.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/28/0e/b11ad5fd77e3dd0baad9cac3184315be7654ae401e3b0b0c324503f23d96/datashader-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/3e/e27078370414ef35fafad2c06d182110073daaeb5d3bf734b0b1eeefe452/debugpy-1.8.19-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/33/6b/e0547afaf41bf2c42e52430072fa5658766e3d65bd4b03a563d1b6336f57/distlib-0.4.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/10/76/486da90111ae15daf88a25e464e271575de4197c331cca4d41c9c5db8bf4/distributed-2025.9.1-py3-none-any.whl + - pypi: https://pypi.nvidia.com/distributed-ucxx-cu12/distributed_ucxx_cu12-0.47.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/80/07/cdecb7aa976f34328372f1c4efd6c9dc1b039b3cc8d3f38787d640009a25/fastrlock-0.8.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b5/36/7fb70f04bf00bc646cd5bb45aa9eddb15e19437a28b8fb2b4a5249fac770/filelock-3.20.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/37/82dbef0f6342eb01f54bca073ac1498433d6ce71e50c3c3282b655733b31/fonttools-4.61.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/bd/d91c5e39f490a49df14320f4e8c80161cfcce09f1e2cde1edd16a551abb3/frozenlist-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e3/bd/4c0a4619494188a9db5d77e2100ab7d544a42e76b2447869d8e124e981d8/fsspec-2023.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/e4/fac19dc34cb686c96011388b813ff7b858a70681e5ce6ce7698e5021b0f4/geopandas-1.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ce/a9/a780cc66f86335a6019f557a8aaca8fbb970728f0efd2430d15ff1beae0e/google_crc32c-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f5/86/f6ec2164f743d9609691115ae8ece098c76b894ebe4f7c94a655c6b03e98/grpcio-1.76.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/30/d1c94066343a98bb2cea40120873193a4fed68c4ad7f8935c11caf74c681/h5py-3.15.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b8/58/40fbbcefeda82364720eba5cf2270f98496bdfa19ea75b4cccae79c698e6/identify-2.6.16-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7d/da/dd2867c25adbb41563720f14b5fc895c98bf88be682a3faff4f7b3118d2a/igraph-1.0.0-cp39-abi3-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/fb/fe/301e0936b79bcab4cacc7548bf2853fc28dced0a578bab1f7ef53c9aa75b/imageio-2.37.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/92/162cfaee4ccf370465c5af1ce36a9eacec1becb552f2033bb3584e6f640a/ipython-9.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/56/6d/0d9848617b9f753b87f214f1c682592f7ca42de085f564352f10f0843026/ipywidgets-8.1.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/f7/ae4ecf183d9693cd5fcce7ee063c5e54f173b66dc80a8a79951861e1b557/jax-0.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/53/f2/44ad0ce1d115f0f6be10f4af0ca05a18afb838b06e6ca6b01ba4b0137421/jax_cuda12_pjrt-0.8.2-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/60/a5/3a4f6585d530516f8a70494e9e916a611e01733ce3174dacb45d48a5ee63/jax_cuda12_plugin-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e0/bf/e386c4bbfda3fb326a01594cc46c8ac90cdeeeacee4c553d9e3848f75893/jaxlib-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/14/2f/967ba146e6d58cf6a652da73885f52fc68001525b4197effc174321d70b4/jmespath-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/91/984aca2ec129e2757d1e4e3c81c3fcda9d0f85b74670a094cc443d9ee949/joblib-1.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/9e/038522f50ceb7e74f1f991bf1b699f24b0c2bbe7c390dd36ad69f4582258/json5-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/69/90/f63fb5873511e014207a475e2bb4e8b2e570d655b00ac19a9a0ca0a385ee/jsonschema-4.26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/45/1a4ed80516f02155c51f51e8cedb3c1902296743db0bbc66608a0db2814f/jsonschema_specifications-2025.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2d/0b/ceb7694d864abc0a047649aec263878acb9f792e1fec3e676f22dc9015e3/jupyter_client-8.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/60/1f6cee0c46263de1173894f0fafcb3475ded276c472c14d25e0280c18d6d/jupyter_lsp-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/80/a24767e6ca280f5a49525d987bf3e4d7552bf67c8be07e8ccf20271f8568/jupyter_server-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d1/2d/6674563f71c6320841fc300911a55143925112a72a883e2ca71fba4c618d/jupyter_server_terminals-0.5.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/9a/0bf9a7a45f0006d7ff4fdc4fc313de4255acab02bf4db1887c65f0472c01/jupyterlab-4.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/07/a000fe835f76b7e1143242ab1122e6362ef1c03f23f83a045c38859c2ae0/jupyterlab_server-2.28.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/b5/36c712098e6191d1b4e349304ef73a8d06aed77e56ceaac8c0a306c7bda1/jupyterlab_widgets-3.0.16-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/5b/058db09c45ba58a7321bdf2294cae651b37d6fec68117265af90cde043b0/legacy_api_wrap-1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b0/a4/a89e2ce16a580f7bea066ed49364f0b3e04a6412f0c3692975bee8515141/leidenalg-0.11.0-cp38-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcudf-cu12/libcudf_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcugraph-cu12/libcugraph_cu12-25.12.2-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcuml-cu12/libcuml_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcuvs-cu12/libcuvs_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libkvikio-cu12/libkvikio_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libraft-cu12/libraft_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/librmm-cu12/librmm_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libucx-cu12/libucx_cu12-1.19.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libucxx-cu12/libucxx_cu12-0.47.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/d6/e9/36b340c7ec01dad6f034481e98fc9fc0133307beb05c714c0542af98bbde/lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/de/73/3d757cb3fc16f0f9794dd289bcd0c4a031d9cf54d8137d6b984b2d02edf3/lightning_utilities-0.15.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/da/8341fd3056419441286c8e26bf436923021005ece0bff5f41906476ae514/llvmlite-0.44.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/41/6d499b9b63406b204dd551002712c088abf0e130686721f403aa105736ba/loompy-3.0.8.tar.gz + - pypi: https://files.pythonhosted.org/packages/59/1b/6ef961f543593969d25b2afe57a3564200280528caa9bd1082eecdd7b3bc/markdown-3.10.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/3e/f3/c5195b1ae57ef85339fd7285dfb603b22c8b4e79114bae5f4f0fcf688677/matplotlib-3.10.8-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/c0/2dfab7b319dabe23f5a7b515a797c74b501d15c72e7a03837cf0cf779b9e/matplotlib_scalebar-0.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9b/f7/4a5e785ec9fbd65146a27b6b70b6cdc161a66f2024e4b04ac06a67f5578b/mistune-3.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/8a/18d4ff2c7bd83f30d6924bd4ad97abf418488c3f908dea228d6f0961ad68/ml_collections-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/cb/28ce52eb94390dda42599c98ea0204d74799e4d8047a0eb559b6fd648056/ml_dtypes-0.5.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a4/8e/469e5a4a2f5855992e425f3cb33804cc07bf18d48f2db061aec61ce50270/more_itertools-10.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/65/92/a5100f7185a800a5d29f8d14041f61475b9de465ffcc0f3b9fba606e4505/msgpack-1.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/3f/de/f7bf1832967e7e4bcd34b232ed33169a0d86a8efbcdc7fcfd8f98c18d5c1/mudata-0.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f3/8d/5e5be3ced1d12966fefb5c4ea3b2a5b480afcea36406559442c6e31d4a48/multidict-6.7.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/51/c0/00c9809d8b9346eb238a6bbd5f83e846a4ce4503da94a4c08cb7284c325b/multipledispatch-1.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f5/98/23d67fb3e1cb801122bbf3ced565e796d471a09b610cd9c5697528e83494/multiscale_spatial_image-1.0.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ef/82/7a9d0550484a62c6da82858ee9419f3dd1ccc9aa1c26a1e43da3ecd20b0d/natsort-8.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/a0/5b0c2f11142ed1dddec842457d3f65eaf71a0080894eb6f018755b319c3a/nbclient-0.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c9/b2622292ea83fbb4ec318f5b9ab867d0a28ab43c5717bb85b0a5f6b3b0a4/networkx-3.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/b2/d0896bdcdc8d28a7fc5717c305f1a861c26e18c05047949fb371034d98bd/nodeenv-1.10.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9a/2d/e518df036feab381c23a624dac47f8445ac55686ec7f11083655eb707da3/numba-0.61.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ca/e9/210e32faa7f9dd42d835d7d36394eaa1d0e29807c56950b389793ee55c1b/numba_cuda-0.19.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/53/78c98ef5c8b2b784453487f3e4d6c017b20747c58b470393e230c78d18e8/numcodecs-0.16.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b0/e0/760e73c111193db5ca37712a148e4807d1b0c60302ab31e4ada6528ca34d/numpy_groupies-0.11.3-py3-none-any.whl + - pypi: https://pypi.nvidia.com/nvidia-cublas-cu12/nvidia_cublas_cu12-12.8.4.1-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-cccl-cu12/nvidia_cuda_cccl_cu12-12.9.27-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-cupti-cu12/nvidia_cuda_cupti_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-nvcc-cu12/nvidia_cuda_nvcc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-nvrtc-cu12/nvidia_cuda_nvrtc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-runtime-cu12/nvidia_cuda_runtime_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cudnn-cu12/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cufft-cu12/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cufile-cu12/nvidia_cufile_cu12-1.13.1.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-curand-cu12/nvidia_curand_cu12-10.3.9.90-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cusolver-cu12/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cusparse-cu12/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cusparselt-cu12/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/fd/72/fb2af0d259a651affdce65fd6a495f0e07a685a0136baf585c5065204ee7/nvidia_ml_py-13.590.48-py3-none-any.whl + - pypi: https://pypi.nvidia.com/nvidia-nccl-cu12/nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-nvjitlink-cu12/nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-nvshmem-cu12/nvidia_nvshmem_cu12-3.4.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-nvtx-cu12/nvidia_nvtx_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvtx/nvtx-0.2.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/da/9d476e9aadfa854719f3cb917e3f7a170a657a182d8d1d6e546594a4872b/param-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/70/ba4b949bdc0490ab78d545459acd7702b211dfccf7eb89bbc1060f52818d/patsy-1.0.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/8f/48d0b77ab2200374c66d344459b8958c86693be99526450e7aee714e03e4/pillow-12.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz + - pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/46/4b/3aae6835b8e5f44ea6a68348ad90f78134047b503765087be2f9912140ea/propcache-0.4.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e8/8e/971c0edd084914f7ee7c23aa70ba89e8903918adca179319ee94403701d5/protobuf-6.33.4-cp39-abi3-manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/29/f8/40e01c350ad9a2b3cb4e6adbcc8a83b17ee50dd5792102b6142385937db5/psutil-7.2.1-cp36-abi3-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c6/6f/8f9eb40c2328d66e8b097777ddcf38494115ff9f1b5bc9754ba46991191e/pyarrow-23.0.0-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/0c/c3/44f3fbbfa403ea2a7c779186dc20772604442dde72947e7d01069cbe98e3/pycparser-3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8c/b2/23f4032cd1c9744aa8e9ecda43cd4d755fcb209f7f40fae035248f31a679/pyct-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/35/2d/cb0cd5865a8dac8869cdd01df17c2c0c94d9aa22b167e1bbfa01559dd3a9/pygam-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/56/fa/ad3e85498b1ca5c54162035567f9cb6ad38d1a24829db465e947fe32c6c9/pygpcca-1.0.3-py3-none-any.whl + - pypi: https://pypi.nvidia.com/pylibcudf-cu12/pylibcudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/pylibraft-cu12/pylibraft_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b2/e6/94145d714402fd5ade00b5661f2d0ab981219e07f7db9bfa16786cdb9c04/pynndescent-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/36/f7/cf8bec9024625947e1a71441906f60a5fa6f9e4c441c4428037e73b1fcc8/pyogrio-0.12.1-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/10/bd/c038d7cc38edc1aa5bf91ab8068b63d4308c66c4c8bb3cbba7dfbc049f9c/pyparsing-3.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b8/be/212882c450bba74fc8d7d35cbd57e4af84792f0a56194819d98106b075af/pyproj-3.7.2-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/fc/81/957ae78e6398460a7230b0eb9b8f1cb954c5e913e868e48d89324c68cec7/pyro_api-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/37/def183a2a2c8619d92649d62fe0622c4c6c62f60e4151e8fbaa409e7d5ab/pyro_ppl-1.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3b/ab/b3226f0bd7cdcf710fbede2b3548584366da3b19b5021e74f5bde2a8fa3f/pytest-9.0.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/77/eb/cc6dbfe70d15318dbce82674b1e8057cef2634ca9f9121a16b8a06c630db/pytorch_lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8b/9d/b3589d3877982d4f2329302ef98a8026e7f4443c765c46cfecc8858c6b4b/pyyaml-6.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/raft-dask-cu12/raft_dask_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/rapids-dask-dependency/rapids_dask_dependency-25.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/69/b6/139d9df6d0f7bd289a9a6286cecfff999e41c36865515d7fdb56b7b32a14/rapids_logger-0.2.3-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/ba/39fe2e073b8c84ed3e7a8ca5e17aca6a73a0396a10b5058743b0936e8dff/rapids_singlecell-0.13.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7e/71/44ce230e1b7fadd372515a97e32a83011f906ddded8d03e3c6aafbdedbb7/rfc3987_syntax-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/87/2a/a1810c8627b9ec8c57ec5ec325d306701ae7be50235e8fd81266e002a3cc/rich-14.3.1-py3-none-any.whl + - pypi: https://pypi.nvidia.com/rmm-cu12/rmm_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/60/1b/6f8f29f3f995c7ffdde46a626ddccd7c63aefc0efae881dc13b6e5d5bb16/rpds_py-0.30.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/08/86/bcabd656a78122c7642a16ce2ea77347b77888b2fcde43bd2e925e393c64/s3fs-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/f0/000ac705a3d5b8744c6eabfce6b413b131829542ffec05020b1e931ffed4/scanpy-1.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f4/a2/70401a107d6d7466d64b466927e6b96fcefa99d57494b972608e2f8be50f/scikit_image-0.26.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/5c/d0/0c577d9325b05594fdd33aa970bf53fb673f051a45496842caee13cfd7fe/scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/6a/7e/f003fd232ec3c3e29ae565e38536dbdef417c76f7c29a67203e05b800f44/scikit_misc-0.5.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/79/2e/415119c9ab3e62249e18c2b082c07aff907a273741b3f8160414b0e9193c/scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/5b/9a/97224ad312fca04b8dec60c1b743096344c3b2fff5f56a9a817576c5cf4d/scvelo-0.3.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4a/8b/37ee827c0cd629f85d3473577d90cd032f70d1de8bb0e5e3b222d87bb19f/scvi_tools-1.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/46/2c/1462b1d0a634697ae9e55b3cecdcb64788e8b7d63f54d923fcd0bb140aed/soupsieve-2.8.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8d/fd/42a1720542199ae6ff0f9c37bbd55dd3033ddd7bbe00d68cde09d6824887/sparse-0.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/10/e5/134cfa437c0d87ce33b28b593a9990ceb4dd425e104c8da3efc299dccc55/spatial_image-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f9/a1/3f65aff044381794b455b6069a3ef0008f989707d96df9d7677eb9b8ebed/spatialdata-0.2.5.post0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/31/cb/c9bee6502e1dd51f755b4d81014fc721128f3a48a0220fabe3bd09d61dfb/squidpy-1.6.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/68/dddd76117df2ef14c943c6bbb6618be5c9401280046f4ddfc9fb4596a1b8/statsmodels-0.14.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/02/be/5d2d47b1fb58943194fb59dcf222f7c4e35122ec0ffe8c36e18b5d728f0b/tblib-3.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/24/99/4772b8e00a136f3e01236de33b0efda31ee7077203ba5967fcc76da94d65/texttable-1.7.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/4d/3fd60d3a37b544cb59463add86e4dfbb485880225115341281906a7b140e/tifffile-2026.1.14-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/12/5911ae3eeec47800503a238d971e51722ccea5feb8569b735184d5fcdbc0/toolz-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/23/8e/3c74db5e53bff7ed9e34c8123e6a8bfef718b2450c35eefab85bb4a7e270/torch-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/02/21/aa0f434434c48490f91b65962b1ce863fdcce63febc166ca9fe9d706c2b6/torchmetrics-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/50/d4/e51d52047e7eb9a582da59f32125d17c0482d065afd5d3bc435ff2120dc5/tornado-6.5.4-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c2/5e/85dcba563c41c55d17ad49d7a4950409d394cbcf941e02c22d7908948bc4/treelite-4.6.1-py3-none-manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ab/a8/cdf8b3e4c98132f965f88c2313a4b493266832ad47fb52f23d14d4f86bb5/triton-3.6.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1b/a9/e3aee762739c1d7528da1c3e06d518503f8b6c439c35549b53735ba52ead/typeguard-4.4.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/b0/003792df09decd6849a5e39c28b513c06e84436a54440380862b5aeff25d/tzdata-2025.3-py2.py3-none-any.whl + - pypi: https://pypi.nvidia.com/ucxx-cu12/ucxx_cu12-0.47.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/43/d2/fcf7192dd1cd8c090b6cfd53fa223c4fb2887a17c47e06bc356d44f40dfb/umap_learn-0.5.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/39/08/aaaad47bc4e9dc8c725e68f9d04865dbcb2052843ff09c97b08904852d84/urllib3-2.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fa/6e/3e955517e22cbdd565f2f8b2e73d52528b14b8bcfdb04f62466b071de847/validators-0.35.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/2a/dc2228b2888f51192c7dc766106cd475f1b768c10caaf9727659726f7391/virtualenv-20.36.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f2/3e/45583b67c2ff08ad5a582d316fcb2f11d6cf0a50c7707ac09d212d25bc98/wcwidth-0.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/cc/e097523dd85c9cf5d354f78310927f1656c422bd7b2613b2db3e3f9a0f2c/webcolors-25.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/34/db/b10e48aa8fff7407e67470363eac595018441cf32d5e1001567a7aeba5d2/websocket_client-1.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ad/e4/8d97cca767bcc1be76d16fb76951608305561c6e056811587f36cb1316a8/werkzeug-3.1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3f/0e/fa3b193432cfc60c93b42f3be03365f5f909d2b3ea410295cf36df739e31/widgetsnbextension-4.0.15-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/53/3e794346c39f462bcf1f58ac0487ff9bdad02f9b6d5ee2dc84c72e0243b2/wrapt-2.0.1-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/28/3a6365e45721c7c9078968ed94b4a60076bc31d73b8519021a69b4995b63/xarray-2024.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/aa/7b/9adbd82e2b7b8571da23856a890324b42cfbc38ae0ceac2177e5256f7216/xarray_dataclasses-1.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6e/a3/5e92dc7e35c08574472bbd9201aabdad03e38d54cc47c421922d219502c6/xarray_datatree-0.0.14-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/6d/f585a27b380ee987619b5617c0ca672a71a4345b67cfedbb6299750ce845/xarray_schema-0.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/d2/cb1c6104e6bf7ab77879fce7bc4bc6dcc4ae5a94246ab9c314b5d21022b2/xarray_spatial-0.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/db/0f/0d52c98b8a885aeda831224b78f3be7ec2e1aa4a62091f9f9188c3c65b56/yarl-1.22.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/44/15/bb13b4913ef95ad5448490821eee4671d0e67673342e4d4070854e5fe081/zarr-3.1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/80/ab/11a76c1e2126084fde2639514f24e6111b789b0bfa4fc6264a8975c7e1f1/zict-3.0.0-py2.py3-none-any.whl + - pypi: ./ + osx-arm64: + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/_openmp_mutex-4.5-7_kmp_llvm.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-hd037594_8.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/c-ares-1.34.6-hc919400_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/fftw-3.3.10-mpi_mpich_h6eb47b5_11.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/geos-3.14.1-h5afe852_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/hdf5-1.14.6-mpi_mpich_h05d5b64_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/hypre-2.32.0-mpi_mpich_h189fe77_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-78.2-h38cb7af_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libaec-1.1.5-h8664d51_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libamd-3.3.3-h5087772_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.11.0-5_h51639a9_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbtf-2.3.2-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcamd-3.3.3-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.11.0-5_hb0561ab_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libccolamd-3.3.4-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcholmod-5.3.1-hbba04d7_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcolamd-3.3.4-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.18.0-he38603e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-21.1.8-hf598326_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20250104-pl5321hafb1f1b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.3-haf25636_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric-2.4.0-hce30654_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric1-2.4.0-h84a0fba_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-hcf2aa1b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgcc-15.2.0-hcbb3090_16.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran-15.2.0-h07b0088_16.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran5-15.2.0-hdae7583_16.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libhwloc-2.12.2-default_ha3cc4f2_1000.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.18-h23cfdf5_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libklu-2.3.5-h4370aa4_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.11.0-5_hd9741b5_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.2-h8088a28_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.67.0-hc438710_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.30-openmp_ha158390_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libptscotch-7.0.10-int32_hf99fa1b_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libscotch-7.0.10-int32_hed6a4d5_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libspqr-4.3.4-h775d698_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.2-h1ae2325_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h1590b86_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsuitesparseconfig-7.10.1-h4a8fc20_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libumfpack-6.3.5-h7c2c975_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-16-2.15.1-h5ef1a60_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.15.1-h8d039ee_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-21.1.8-h4a912ad_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/metis-5.1.0-h15f6cfe_1007.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-mpich.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/mpich-4.3.2-hb31c3fa_105.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-include-5.8.1-ha6078a4_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-mpi-5.8.1-h3d714e2_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-2.1.3-py312h94ee1e1_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/parmetis-4.0.3-ha4b917a_1007.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc-3.24.3-real_h9fb0cc7_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc4py-3.24.3-np2py310h37723c0_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.12-h18782d2_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-gil-3.12.12-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.12-8_cp312.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.3-h46df422_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/scalapack-2.2.0-h1b9cfae_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/shapely-2.1.2-py312h35cd81b_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc-3.24.2-real_hc5a9acf_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc4py-3.24.2-np2py310h0c2cbfb_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu-7.0.0-h742a510_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu_dist-9.1.0-h89afcdd_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h010d191_3.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025c-hc9c84f9_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-hbf9d68e_6.conda + - pypi: https://files.pythonhosted.org/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/67/84/d844b79acd9fe15ded60b614b7df04a12fad854ee1fbb8415d726ab1beeb/aiobotocore-3.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5d/43/4be01406b78e1be8320bb8316dc9c42dbab553d281c40364e0f862d5661c/aiohttp-3.13.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5e/09/f39f9443f901a8e9d960602e0f916005560839d3cfd96b89abd370ff7527/anndata-0.12.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b6/02/d297943bcacf05e4f2a94ab6f462831dc20158614e5d067c35d4e63b9acb/argon2_cffi_bindings-25.1.0-cp39-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/df/5d/493b1b5528ab5072feae30821ff3a07b7a0474213d548efb1fdf135f85c1/array_api_compat-1.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/c9/d7977eaacb9df673210491da99e6a247e93df98c715fc43fd136ce1d3d33/arrow-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2e/e9/eb6a5db5ac505d5d45715388e92bced7a5bb556facc4d0865d192823f2d2/async_lru-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/39/47f9197bdd44df24d67ac8893641e16f386c984a0619ef2ee4c51fbbc019/beautifulsoup4-4.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/6b/9378741ab32c2856132b9b6f3f6d5cd2b580996da52876b27928ddef8fd1/cellrank-2.0.7-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/6c/12f14d20ccd49bfe8709cebd1b77a244f019e44a8702d3962021b618812e/celltypist-1.7.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl + - pypi: https://files.pythonhosted.org/packages/98/78/01c019cdb5d6498122777c1a43056ebb3ebfeef2076d9d026bfe15583b2b/click-8.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/39/799be3f2f0f38cc727ee3b4f1445fe6d5e4133064ec2e4115069418a5bb6/cloudpickle-3.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c6/c6/9963d588cc3d75d766c819e0377a168ef83cf3316a92769971527a1ad1de/colorcet-3.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2a/72/33ff765a07913cb5061baa94718f3a17003aa29adc89642a68c295d47582/dask-2024.11.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e9/57/e7996529256b13009fa8f4c34d1d7229755cc7d2b054aa43edb6ca655578/dask_expr-1.1.19-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/28/0e/b11ad5fd77e3dd0baad9cac3184315be7654ae401e3b0b0c324503f23d96/datashader-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/3e/e27078370414ef35fafad2c06d182110073daaeb5d3bf734b0b1eeefe452/debugpy-1.8.19-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/33/6b/e0547afaf41bf2c42e52430072fa5658766e3d65bd4b03a563d1b6336f57/distlib-0.4.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/36/7fb70f04bf00bc646cd5bb45aa9eddb15e19437a28b8fb2b4a5249fac770/filelock-3.20.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/16/7decaa24a1bd3a70c607b2e29f0adc6159f36a7e40eaba59846414765fd4/fonttools-4.61.1-cp312-cp312-macosx_10_13_universal2.whl + - pypi: https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2b/94/5c8a2b50a496b11dd519f4a24cb5496cf125681dd99e94c604ccdea9419a/frozenlist-1.8.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/01/c9/97cc5aae1648dcb851958a3ddf73ccd7dbe5650d95203ecb4d7720b4cdbf/fsspec-2026.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/e4/fac19dc34cb686c96011388b813ff7b858a70681e5ce6ce7698e5021b0f4/geopandas-1.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e9/5f/7307325b1198b59324c0fa9807cafb551afb65e831699f2ce211ad5c8240/google_crc32c-1.8.0-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/d9/75/11d0e66b3cdf998c996489581bdad8900db79ebd83513e45c19548f1cba4/grpcio-1.76.0-cp312-cp312-macosx_11_0_universal2.whl + - pypi: https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/5e/3c6f6e0430813c7aefe784d00c6711166f46225f5d229546eb53032c3707/h5py-3.15.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b8/58/40fbbcefeda82364720eba5cf2270f98496bdfa19ea75b4cccae79c698e6/identify-2.6.16-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0d/bc/6281ec7f9baaf71ee57c3b1748da2d3148d15d253e1a03006f204aa68ca5/igraph-1.0.0-cp39-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/8f/27/0494b31c65a4dbb09206962f7a056ff9df5388ab13e1dddc27ecf47238df/imagecodecs-2025.11.11-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/fb/fe/301e0936b79bcab4cacc7548bf2853fc28dced0a578bab1f7ef53c9aa75b/imageio-2.37.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/92/162cfaee4ccf370465c5af1ce36a9eacec1becb552f2033bb3584e6f640a/ipython-9.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/56/6d/0d9848617b9f753b87f214f1c682592f7ca42de085f564352f10f0843026/ipywidgets-8.1.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/f7/ae4ecf183d9693cd5fcce7ee063c5e54f173b66dc80a8a79951861e1b557/jax-0.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/77/18ac0ac08c76bf12ed47b0c2d7d35f3fc3d065bd105b36937901eab1455c/jaxlib-0.8.2-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/20/9a/e5d9ec41927401e41aea8af6d16e78b5e612bca4699d417f646a9610a076/Jinja2-3.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/14/2f/967ba146e6d58cf6a652da73885f52fc68001525b4197effc174321d70b4/jmespath-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/91/984aca2ec129e2757d1e4e3c81c3fcda9d0f85b74670a094cc443d9ee949/joblib-1.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/9e/038522f50ceb7e74f1f991bf1b699f24b0c2bbe7c390dd36ad69f4582258/json5-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/69/90/f63fb5873511e014207a475e2bb4e8b2e570d655b00ac19a9a0ca0a385ee/jsonschema-4.26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/45/1a4ed80516f02155c51f51e8cedb3c1902296743db0bbc66608a0db2814f/jsonschema_specifications-2025.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2d/0b/ceb7694d864abc0a047649aec263878acb9f792e1fec3e676f22dc9015e3/jupyter_client-8.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/60/1f6cee0c46263de1173894f0fafcb3475ded276c472c14d25e0280c18d6d/jupyter_lsp-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/80/a24767e6ca280f5a49525d987bf3e4d7552bf67c8be07e8ccf20271f8568/jupyter_server-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d1/2d/6674563f71c6320841fc300911a55143925112a72a883e2ca71fba4c618d/jupyter_server_terminals-0.5.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/9a/0bf9a7a45f0006d7ff4fdc4fc313de4255acab02bf4db1887c65f0472c01/jupyterlab-4.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/07/a000fe835f76b7e1143242ab1122e6362ef1c03f23f83a045c38859c2ae0/jupyterlab_server-2.28.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/b5/36c712098e6191d1b4e349304ef73a8d06aed77e56ceaac8c0a306c7bda1/jupyterlab_widgets-3.0.16-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/5b/058db09c45ba58a7321bdf2294cae651b37d6fec68117265af90cde043b0/legacy_api_wrap-1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/98/f4/98db342d603671ae0a233f0a624939a47161044a2716cbd62a50440a1132/leidenalg-0.11.0-cp38-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/d6/e9/36b340c7ec01dad6f034481e98fc9fc0133307beb05c714c0542af98bbde/lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/de/73/3d757cb3fc16f0f9794dd289bcd0c4a031d9cf54d8137d6b984b2d02edf3/lightning_utilities-0.15.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2b/f8/4db016a5e547d4e054ff2f3b99203d63a497465f81ab78ec8eb2ff7b2304/llvmlite-0.46.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/41/6d499b9b63406b204dd551002712c088abf0e130686721f403aa105736ba/loompy-3.0.8.tar.gz + - pypi: https://files.pythonhosted.org/packages/59/1b/6ef961f543593969d25b2afe57a3564200280528caa9bd1082eecdd7b3bc/markdown-3.10.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/7e/65/07d5f5c7f7c994f12c768708bd2e17a4f01a2b0f44a1c9eccad872433e2e/matplotlib-3.10.8-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/c0/2dfab7b319dabe23f5a7b515a797c74b501d15c72e7a03837cf0cf779b9e/matplotlib_scalebar-0.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9b/f7/4a5e785ec9fbd65146a27b6b70b6cdc161a66f2024e4b04ac06a67f5578b/mistune-3.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/8a/18d4ff2c7bd83f30d6924bd4ad97abf418488c3f908dea228d6f0961ad68/ml_collections-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/b8/3c70881695e056f8a32f8b941126cf78775d9a4d7feba8abcb52cb7b04f2/ml_dtypes-0.5.4-cp312-cp312-macosx_10_13_universal2.whl + - pypi: https://files.pythonhosted.org/packages/a4/8e/469e5a4a2f5855992e425f3cb33804cc07bf18d48f2db061aec61ce50270/more_itertools-10.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3f/de/f7bf1832967e7e4bcd34b232ed33169a0d86a8efbcdc7fcfd8f98c18d5c1/mudata-0.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/65/1caac9d4cd32e8433908683446eebc953e82d22b03d10d41a5f0fefe991b/multidict-6.7.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/51/c0/00c9809d8b9346eb238a6bbd5f83e846a4ce4503da94a4c08cb7284c325b/multipledispatch-1.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/01/a7/fec56dbac873a18930b2127d400794a91dd53898bff811aa4802ddbbfac9/multiscale_spatial_image-2.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ef/82/7a9d0550484a62c6da82858ee9419f3dd1ccc9aa1c26a1e43da3ecd20b0d/natsort-8.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/a0/5b0c2f11142ed1dddec842457d3f65eaf71a0080894eb6f018755b319c3a/nbclient-0.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c9/b2622292ea83fbb4ec318f5b9ab867d0a28ab43c5717bb85b0a5f6b3b0a4/networkx-3.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/b2/d0896bdcdc8d28a7fc5717c305f1a861c26e18c05047949fb371034d98bd/nodeenv-1.10.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/14/9c/c0974cd3d00ff70d30e8ff90522ba5fbb2bcee168a867d2321d8d0457676/numba-0.63.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/f5/6c/86644987505dcb90ba6d627d6989c27bafb0699f9fd00187e06d05ea8594/numcodecs-0.16.5-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b0/e0/760e73c111193db5ca37712a148e4807d1b0c60302ab31e4ada6528ca34d/numpy_groupies-0.11.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5c/bd/bf8064d9cfa214294356c2d6702b716d3cf3bb24be59287a6a21e24cae6b/pandas-2.3.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/da/9d476e9aadfa854719f3cb917e3f7a170a657a182d8d1d6e546594a4872b/param-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b1/29/c028a0731e202035f0e2e0bfbf1a3e46ad6c628cbb17f6f1cc9eea5d9ff1/pathlib_abc-0.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/70/ba4b949bdc0490ab78d545459acd7702b211dfccf7eb89bbc1060f52818d/patsy-1.0.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/c1/10e45ac9cc79419cedf5121b42dcca5a50ad2b601fa080f58c22fb27626e/pillow-12.1.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz + - pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0a/b6/5c9a0e42df4d00bfb4a3cbbe5cf9f54260300c88a0e9af1f47ca5ce17ac0/propcache-0.4.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/66/15/6ee23553b6bfd82670207ead921f4d8ef14c107e5e11443b04caeb5ab5ec/protobuf-6.33.4-cp39-abi3-macosx_10_9_universal2.whl + - pypi: https://files.pythonhosted.org/packages/c5/2c/78e4a789306a92ade5000da4f5de3255202c534acdadc3aac7b5458fadef/psutil-7.2.1-cp36-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3d/bd/c861d020831ee57609b73ea721a617985ece817684dc82415b0bc3e03ac3/pyarrow-23.0.0-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/0c/c3/44f3fbbfa403ea2a7c779186dc20772604442dde72947e7d01069cbe98e3/pycparser-3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8c/b2/23f4032cd1c9744aa8e9ecda43cd4d755fcb209f7f40fae035248f31a679/pyct-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/35/2d/cb0cd5865a8dac8869cdd01df17c2c0c94d9aa22b167e1bbfa01559dd3a9/pygam-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/82/a6/c415c9faa7c4c8749fbac0c54523def0cf9efb94d70f09188370c0da74c8/pygpcca-1.0.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b2/e6/94145d714402fd5ade00b5661f2d0ab981219e07f7db9bfa16786cdb9c04/pynndescent-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ad/e0/656b6536549d41b5aec57e0deca1f269b4f17532f0636836f587e581603a/pyogrio-0.12.1-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/10/bd/c038d7cc38edc1aa5bf91ab8068b63d4308c66c4c8bb3cbba7dfbc049f9c/pyparsing-3.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/90/67bd7260b4ea9b8b20b4f58afef6c223ecb3abf368eb4ec5bc2cdef81b49/pyproj-3.7.2.tar.gz + - pypi: https://files.pythonhosted.org/packages/fc/81/957ae78e6398460a7230b0eb9b8f1cb954c5e913e868e48d89324c68cec7/pyro_api-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/37/def183a2a2c8619d92649d62fe0622c4c6c62f60e4151e8fbaa409e7d5ab/pyro_ppl-1.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3b/ab/b3226f0bd7cdcf710fbede2b3548584366da3b19b5021e74f5bde2a8fa3f/pytest-9.0.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/77/eb/cc6dbfe70d15318dbce82674b1e8057cef2634ca9f9121a16b8a06c630db/pytorch_lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/89/a0/6cf41a19a1f2f3feab0e9c0b74134aa2ce6849093d5517a0c550fe37a648/pyyaml-6.0.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl + - pypi: https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7e/71/44ce230e1b7fadd372515a97e32a83011f906ddded8d03e3c6aafbdedbb7/rfc3987_syntax-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/87/2a/a1810c8627b9ec8c57ec5ec325d306701ae7be50235e8fd81266e002a3cc/rich-14.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4d/a1/bca7fd3d452b272e13335db8d6b0b3ecde0f90ad6f16f3328c6fb150c889/rpds_py-0.30.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/93/cf/0af92a4d3f36dd9ff675e0419e7efc48d7808641ac2b2ce2c1f09a9dc632/s3fs-2026.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/f0/000ac705a3d5b8744c6eabfce6b413b131829542ffec05020b1e931ffed4/scanpy-1.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e3/be/f8dd17d0510f9911f9f17ba301f7455328bf13dae416560126d428de9568/scikit_image-0.26.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/43/5d/779320063e88af9c4a7c2cf463ff11c21ac9c8bd730c4a294b0000b666c9/scikit_learn-1.7.2-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/59/48/5a486b3a9cff8cd8abc0bdc21a1a23f9c5b73962ef6e66a502b7636fad08/scikit_misc-0.5.2-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/1e/0f/65582071948cfc45d43e9870bf7ca5f0e0684e165d7c9ef4e50d783073eb/scipy-1.16.3-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/5b/9a/97224ad312fca04b8dec60c1b743096344c3b2fff5f56a9a817576c5cf4d/scvelo-0.3.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4a/8b/37ee827c0cd629f85d3473577d90cd032f70d1de8bb0e5e3b222d87bb19f/scvi_tools-1.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/46/2c/1462b1d0a634697ae9e55b3cecdcb64788e8b7d63f54d923fcd0bb140aed/soupsieve-2.8.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8d/fd/42a1720542199ae6ff0f9c37bbd55dd3033ddd7bbe00d68cde09d6824887/sparse-0.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/17/a1/e538ae38d9424f62199266b4e4ccd780e149162fa828a9e1f7b8e745262e/spatialdata-0.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0e/92/4d9f07a97fba85d2db59bde27621d7c243efbe95250498c9aa2efdbf1cf3/spatialdata_plot-0.2.13-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/f4/99bb6201fcf62593874d98cbf874357651915ed02d31129d3a2ca3864d04/squidpy-1.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/05/30/affbabf3c27fb501ec7b5808230c619d4d1a4525c07301074eb4bda92fa9/statsmodels-0.14.6-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/24/99/4772b8e00a136f3e01236de33b0efda31ee7077203ba5967fcc76da94d65/texttable-1.7.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/4d/3fd60d3a37b544cb59463add86e4dfbb485880225115341281906a7b140e/tifffile-2026.1.14-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/12/5911ae3eeec47800503a238d971e51722ccea5feb8569b735184d5fcdbc0/toolz-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c9/5c/dee910b87c4d5c0fcb41b50839ae04df87c1cfc663cf1b5fca7ea565eeaa/torch-2.10.0-cp312-none-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/02/21/aa0f434434c48490f91b65962b1ce863fdcce63febc166ca9fe9d706c2b6/torchmetrics-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/a9/e94a9d5224107d7ce3cc1fab8d5dc97f5ea351ccc6322ee4fb661da94e35/tornado-6.5.4-cp39-abi3-macosx_10_9_universal2.whl + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1b/a9/e3aee762739c1d7528da1c3e06d518503f8b6c439c35549b53735ba52ead/typeguard-4.4.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/b0/003792df09decd6849a5e39c28b513c06e84436a54440380862b5aeff25d/tzdata-2025.3-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/43/d2/fcf7192dd1cd8c090b6cfd53fa223c4fb2887a17c47e06bc356d44f40dfb/umap_learn-0.5.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/2c/fc9416619a418e94576aef84ef263906a24f76a21a1c3e96ddae25c82df9/universal_pathlib-0.3.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/39/08/aaaad47bc4e9dc8c725e68f9d04865dbcb2052843ff09c97b08904852d84/urllib3-2.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fa/6e/3e955517e22cbdd565f2f8b2e73d52528b14b8bcfdb04f62466b071de847/validators-0.35.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/2a/dc2228b2888f51192c7dc766106cd475f1b768c10caaf9727659726f7391/virtualenv-20.36.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f2/3e/45583b67c2ff08ad5a582d316fcb2f11d6cf0a50c7707ac09d212d25bc98/wcwidth-0.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/cc/e097523dd85c9cf5d354f78310927f1656c422bd7b2613b2db3e3f9a0f2c/webcolors-25.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/34/db/b10e48aa8fff7407e67470363eac595018441cf32d5e1001567a7aeba5d2/websocket_client-1.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ad/e4/8d97cca767bcc1be76d16fb76951608305561c6e056811587f36cb1316a8/werkzeug-3.1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3f/0e/fa3b193432cfc60c93b42f3be03365f5f909d2b3ea410295cf36df739e31/widgetsnbextension-4.0.15-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4d/8a/5b4b1e44b791c22046e90d9b175f9a7581a8cc7a0debbb930f81e6ae8e25/wrapt-2.0.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/d5/e4/62a677feefde05b12a70a4fc9bdc8558010182a801fbcab68cb56c2b0986/xarray-2025.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/6d/f585a27b380ee987619b5617c0ca672a71a4345b67cfedbb6299750ce845/xarray_schema-0.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/d2/cb1c6104e6bf7ab77879fce7bc4bc6dcc4ae5a94246ab9c314b5d21022b2/xarray_spatial-0.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ba/f5/0601483296f09c3c65e303d60c070a5c19fcdbc72daa061e96170785bc7d/yarl-1.22.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/44/15/bb13b4913ef95ad5448490821eee4671d0e67673342e4d4070854e5fe081/zarr-3.1.5-py3-none-any.whl + - pypi: ./ +packages: +- conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 + sha256: fe51de6107f9edc7aa4f786a70f4a883943bc9d39b3bb7307c04c41410990726 + md5: d7c89558ba9fa0495403155b64376d81 + license: None + purls: [] + size: 2562 + timestamp: 1578324546067 +- conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 + build_number: 16 + sha256: fbe2c5e56a653bebb982eda4876a9178aedfc2b545f25d0ce9c4c0b508253d22 + md5: 73aaf86a425cc6e73fcf236a5a46396d + depends: + - _libgcc_mutex 0.1 conda_forge + - libgomp >=7.5.0 + constrains: + - openmp_impl 9999 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 23621 + timestamp: 1650670423406 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/_openmp_mutex-4.5-7_kmp_llvm.conda + build_number: 7 + sha256: 7acaa2e0782cad032bdaf756b536874346ac1375745fb250e9bdd6a48a7ab3cd + md5: a44032f282e7d2acdeb1c240308052dd + depends: + - llvm-openmp >=9.0.1 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 8325 + timestamp: 1764092507920 +- conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda + sha256: a3967b937b9abf0f2a99f3173fa4630293979bd1644709d89580e7c62a544661 + md5: aaa2a381ccc56eac91d63b6c1240312f + depends: + - cpython + - python-gil + license: MIT + license_family: MIT + purls: [] + size: 8191 + timestamp: 1744137672556 +- pypi: https://files.pythonhosted.org/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl + name: absl-py + version: 2.3.1 + sha256: eeecf07f0c2a93ace0772c92e596ace6d3d3996c042b2128459aaae2a76de11d + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/67/84/d844b79acd9fe15ded60b614b7df04a12fad854ee1fbb8415d726ab1beeb/aiobotocore-3.1.1-py3-none-any.whl + name: aiobotocore + version: 3.1.1 + sha256: a4e12a3bd099cd19dc2b2e9fe01a807131b46ebd0f83f509bda3cb243e988c32 + requires_dist: + - aiohttp>=3.12.0,<4.0.0 + - aioitertools>=0.5.1,<1.0.0 + - botocore>=1.41.0,<1.42.31 + - python-dateutil>=2.1,<3.0.0 + - jmespath>=0.7.1,<2.0.0 + - multidict>=6.0.0,<7.0.0 + - typing-extensions>=4.14.0,<5.0.0 ; python_full_version < '3.11' + - wrapt>=1.10.10,<3.0.0 + - httpx>=0.25.1,<0.29 ; extra == 'httpx' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl + name: aiohappyeyeballs + version: 2.6.1 + sha256: f349ba8f4b75cb25c99c5c2d84e997e485204d2902a9597802b0371f09331fb8 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/5d/43/4be01406b78e1be8320bb8316dc9c42dbab553d281c40364e0f862d5661c/aiohttp-3.13.3-cp312-cp312-macosx_11_0_arm64.whl + name: aiohttp + version: 3.13.3 + sha256: 27234ef6d85c914f9efeb77ff616dbf4ad2380be0cda40b4db086ffc7ddd1b7d + requires_dist: + - aiohappyeyeballs>=2.5.0 + - aiosignal>=1.4.0 + - async-timeout>=4.0,<6.0 ; python_full_version < '3.11' + - attrs>=17.3.0 + - frozenlist>=1.1.1 + - multidict>=4.5,<7.0 + - propcache>=0.2.0 + - yarl>=1.17.0,<2.0 + - aiodns>=3.3.0 ; extra == 'speedups' + - brotli>=1.2 ; platform_python_implementation == 'CPython' and extra == 'speedups' + - brotlicffi>=1.2 ; platform_python_implementation != 'CPython' and extra == 'speedups' + - backports-zstd ; python_full_version < '3.14' and platform_python_implementation == 'CPython' and extra == 'speedups' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/86/f6/a62cbbf13f0ac80a70f71b1672feba90fdb21fd7abd8dbf25c0105fb6fa3/aiohttp-3.13.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: aiohttp + version: 3.13.3 + sha256: 9ae8dd55c8e6c4257eae3a20fd2c8f41edaea5992ed67156642493b8daf3cecc + requires_dist: + - aiohappyeyeballs>=2.5.0 + - aiosignal>=1.4.0 + - async-timeout>=4.0,<6.0 ; python_full_version < '3.11' + - attrs>=17.3.0 + - frozenlist>=1.1.1 + - multidict>=4.5,<7.0 + - propcache>=0.2.0 + - yarl>=1.17.0,<2.0 + - aiodns>=3.3.0 ; extra == 'speedups' + - brotli>=1.2 ; platform_python_implementation == 'CPython' and extra == 'speedups' + - brotlicffi>=1.2 ; platform_python_implementation != 'CPython' and extra == 'speedups' + - backports-zstd ; python_full_version < '3.14' and platform_python_implementation == 'CPython' and extra == 'speedups' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl + name: aioitertools + version: 0.13.0 + sha256: 0be0292b856f08dfac90e31f4739432f4cb6d7520ab9eb73e143f4f2fa5259be + requires_dist: + - typing-extensions>=4.0 ; python_full_version < '3.10' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl + name: aiosignal + version: 1.4.0 + sha256: 053243f8b92b990551949e63930a839ff0cf0b0ebbe0597b0f3fb19e1a0fe82e + requires_dist: + - frozenlist>=1.1.0 + - typing-extensions>=4.2 ; python_full_version < '3.13' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/5e/09/f39f9443f901a8e9d960602e0f916005560839d3cfd96b89abd370ff7527/anndata-0.12.8-py3-none-any.whl + name: anndata + version: 0.12.8 + sha256: 95a1ee9644ca5ec6a36d980d209311609db2b83a1366ad3f4604e004cb79f2bc + requires_dist: + - array-api-compat>=1.7.1 + - h5py>=3.8 + - legacy-api-wrap + - natsort + - numpy>=1.26 + - packaging>=24.2 + - pandas>=2.1.0,!=2.1.2,<3 + - scipy>=1.12 + - zarr>=2.18.7,!=3.0.* + - cupy-cuda11x ; extra == 'cu11' + - cupy-cuda12x ; extra == 'cu12' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'dask' + - towncrier>=24.8.0 ; extra == 'dev' + - towncrier>=24.8.0 ; extra == 'dev-doc' + - awkward>=2.3 ; extra == 'doc' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'doc' + - ipython ; extra == 'doc' + - myst-nb ; extra == 'doc' + - myst-parser ; extra == 'doc' + - scanpydoc[theme,typehints]>=0.15.3 ; extra == 'doc' + - sphinx-autodoc-typehints>=2.2.0 ; extra == 'doc' + - sphinx-book-theme>=1.1.0 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design>=0.5.0 ; extra == 'doc' + - sphinx-issues>=5.0.1 ; extra == 'doc' + - sphinx-toolbox>=3.8.0 ; extra == 'doc' + - sphinx>=8.2.1,<9 ; extra == 'doc' + - sphinxext-opengraph ; extra == 'doc' + - towncrier>=24.8.0 ; extra == 'doc' + - cupy ; extra == 'gpu' + - aiohttp ; extra == 'lazy' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'lazy' + - requests ; extra == 'lazy' + - xarray>=2025.6.1 ; extra == 'lazy' + - aiohttp ; extra == 'test' + - awkward>=2.3.2 ; extra == 'test' + - boltons ; extra == 'test' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test' + - dask[distributed] ; extra == 'test' + - filelock ; extra == 'test' + - joblib ; extra == 'test' + - loompy>=3.0.5 ; extra == 'test' + - matplotlib ; extra == 'test' + - openpyxl ; extra == 'test' + - pooch ; extra == 'test' + - pyarrow ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-memray ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-randomly ; extra == 'test' + - pytest-xdist[psutil] ; extra == 'test' + - requests ; extra == 'test' + - scanpy>=1.10 ; extra == 'test' + - scikit-learn ; extra == 'test' + - xarray>=2025.6.1 ; extra == 'test' + - awkward>=2.3.2 ; extra == 'test-min' + - boltons ; extra == 'test-min' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test-min' + - dask[distributed] ; extra == 'test-min' + - filelock ; extra == 'test-min' + - joblib ; extra == 'test-min' + - loompy>=3.0.5 ; extra == 'test-min' + - matplotlib ; extra == 'test-min' + - openpyxl ; extra == 'test-min' + - pooch ; extra == 'test-min' + - pyarrow ; extra == 'test-min' + - pytest ; extra == 'test-min' + - pytest-cov ; extra == 'test-min' + - pytest-memray ; extra == 'test-min' + - pytest-mock ; extra == 'test-min' + - pytest-randomly ; extra == 'test-min' + - pytest-xdist[psutil] ; extra == 'test-min' + - scanpy>=1.10 ; extra == 'test-min' + - scikit-learn ; extra == 'test-min' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl + name: anyio + version: 4.12.1 + sha256: d405828884fc140aa80a3c667b8beed277f1dfedec42ba031bd6ac3db606ab6c + requires_dist: + - exceptiongroup>=1.0.2 ; python_full_version < '3.11' + - idna>=2.8 + - typing-extensions>=4.5 ; python_full_version < '3.13' + - trio>=0.32.0 ; python_full_version >= '3.10' and extra == 'trio' + - trio>=0.31.0 ; python_full_version < '3.10' and extra == 'trio' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl + name: appnope + version: 0.1.4 + sha256: 502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl + name: argon2-cffi + version: 25.1.0 + sha256: fdc8b074db390fccb6eb4a3604ae7231f219aa669a2652e0f20e16ba513d5741 + requires_dist: + - argon2-cffi-bindings + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/09/52/94108adfdd6e2ddf58be64f959a0b9c7d4ef2fa71086c38356d22dc501ea/argon2_cffi_bindings-25.1.0-cp39-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + name: argon2-cffi-bindings + version: 25.1.0 + sha256: d3e924cfc503018a714f94a49a149fdc0b644eaead5d1f089330399134fa028a + requires_dist: + - cffi>=1.0.1 ; python_full_version < '3.14' + - cffi>=2.0.0b1 ; python_full_version >= '3.14' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b6/02/d297943bcacf05e4f2a94ab6f462831dc20158614e5d067c35d4e63b9acb/argon2_cffi_bindings-25.1.0-cp39-abi3-macosx_11_0_arm64.whl + name: argon2-cffi-bindings + version: 25.1.0 + sha256: 7aef0c91e2c0fbca6fc68e7555aa60ef7008a739cbe045541e438373bc54d2b0 + requires_dist: + - cffi>=1.0.1 ; python_full_version < '3.14' + - cffi>=2.0.0b1 ; python_full_version >= '3.14' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/df/5d/493b1b5528ab5072feae30821ff3a07b7a0474213d548efb1fdf135f85c1/array_api_compat-1.13.0-py3-none-any.whl + name: array-api-compat + version: 1.13.0 + sha256: c15026a0ddec42815383f07da285472e1b1ff2e632eb7afbcfe9b08fcbad9bf1 + requires_dist: + - cupy ; extra == 'cupy' + - dask>=2024.9.0 ; extra == 'dask' + - jax ; extra == 'jax' + - numpy>=1.22 ; extra == 'numpy' + - torch ; extra == 'pytorch' + - sparse>=0.15.1 ; extra == 'sparse' + - ndonnx ; extra == 'ndonnx' + - furo ; extra == 'docs' + - linkify-it-py ; extra == 'docs' + - myst-parser ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - array-api-strict ; extra == 'dev' + - dask[array]>=2024.9.0 ; extra == 'dev' + - jax[cpu] ; extra == 'dev' + - ndonnx ; extra == 'dev' + - numpy>=1.22 ; extra == 'dev' + - pytest ; extra == 'dev' + - torch ; extra == 'dev' + - sparse>=0.15.1 ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ed/c9/d7977eaacb9df673210491da99e6a247e93df98c715fc43fd136ce1d3d33/arrow-1.4.0-py3-none-any.whl + name: arrow + version: 1.4.0 + sha256: 749f0769958ebdc79c173ff0b0670d59051a535fa26e8eba02953dc19eb43205 + requires_dist: + - python-dateutil>=2.7.0 + - backports-zoneinfo==0.2.1 ; python_full_version < '3.9' + - tzdata ; python_full_version >= '3.9' + - doc8 ; extra == 'doc' + - sphinx>=7.0.0 ; extra == 'doc' + - sphinx-autobuild ; extra == 'doc' + - sphinx-autodoc-typehints ; extra == 'doc' + - sphinx-rtd-theme>=1.3.0 ; extra == 'doc' + - dateparser==1.* ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytz==2025.2 ; extra == 'test' + - simplejson==3.* ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl + name: asttokens + version: 3.0.1 + sha256: 15a3ebc0f43c2d0a50eeafea25e19046c68398e487b9f1f5b517f7c0f40f976a + requires_dist: + - astroid>=2,<5 ; extra == 'astroid' + - astroid>=2,<5 ; extra == 'test' + - pytest<9.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/2e/e9/eb6a5db5ac505d5d45715388e92bced7a5bb556facc4d0865d192823f2d2/async_lru-2.1.0-py3-none-any.whl + name: async-lru + version: 2.1.0 + sha256: fa12dcf99a42ac1280bc16c634bbaf06883809790f6304d85cdab3f666f33a7e + requires_dist: + - typing-extensions>=4.0.0 ; python_full_version < '3.11' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.2-h39aace5_0.conda + sha256: a9c114cbfeda42a226e2db1809a538929d2f118ef855372293bd188f71711c48 + md5: 791365c5f65975051e4e017b5da3abf5 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 68072 + timestamp: 1756738968573 +- pypi: https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl + name: attrs + version: 25.4.0 + sha256: adcf7e2a1fb3b36ac48d97835bb6d8ade15b8dcce26aba8bf1d14847b57a3373 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl + name: babel + version: 2.17.0 + sha256: 4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2 + requires_dist: + - pytz>=2015.7 ; python_full_version < '3.9' + - tzdata ; sys_platform == 'win32' and extra == 'dev' + - backports-zoneinfo ; python_full_version < '3.9' and extra == 'dev' + - freezegun~=1.0 ; extra == 'dev' + - jinja2>=3.0 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest>=6.0 ; extra == 'dev' + - pytz ; extra == 'dev' + - setuptools ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/1a/39/47f9197bdd44df24d67ac8893641e16f386c984a0619ef2ee4c51fbbc019/beautifulsoup4-4.14.3-py3-none-any.whl + name: beautifulsoup4 + version: 4.14.3 + sha256: 0918bfe44902e6ad8d57732ba310582e98da931428d231a5ecb9e7c703a735bb + requires_dist: + - soupsieve>=1.6.1 + - typing-extensions>=4.0.0 + - cchardet ; extra == 'cchardet' + - chardet ; extra == 'chardet' + - charset-normalizer ; extra == 'charset-normalizer' + - html5lib ; extra == 'html5lib' + - lxml ; extra == 'lxml' + requires_python: '>=3.7.0' +- pypi: https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl + name: bleach + version: 6.3.0 + sha256: fe10ec77c93ddf3d13a73b035abaac7a9f5e436513864ccdad516693213c65d6 + requires_dist: + - webencodings + - tinycss2>=1.1.0,<1.5 ; extra == 'css' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl + name: botocore + version: 1.42.30 + sha256: 97070a438cac92430bb7b65f8ebd7075224f4a289719da4ee293d22d1e98db02 + requires_dist: + - jmespath>=0.7.1,<2.0.0 + - python-dateutil>=2.1,<3.0.0 + - urllib3>=1.25.4,<1.27 ; python_full_version < '3.10' + - urllib3>=1.25.4,!=2.2.0,<3 ; python_full_version >= '3.10' + - awscrt==0.29.2 ; extra == 'crt' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hda65f42_8.conda + sha256: c30daba32ddebbb7ded490f0e371eae90f51e72db620554089103b4a6934b0d5 + md5: 51a19bba1b8ebfb60df25cde030b7ebc + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 260341 + timestamp: 1757437258798 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-hd037594_8.conda + sha256: b456200636bd5fecb2bec63f7e0985ad2097cf1b83d60ce0b6968dffa6d02aa1 + md5: 58fd217444c2a5701a44244faf518206 + depends: + - __osx >=11.0 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 125061 + timestamp: 1757437486465 +- conda: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.6-hb03c661_0.conda + sha256: cc9accf72fa028d31c2a038460787751127317dcfa991f8d1f1babf216bb454e + md5: 920bb03579f15389b9e512095ad995b7 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + license_family: MIT + purls: [] + size: 207882 + timestamp: 1765214722852 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/c-ares-1.34.6-hc919400_0.conda + sha256: 2995f2aed4e53725e5efbc28199b46bf311c3cab2648fc4f10c2227d6d5fa196 + md5: bcb3cba70cf1eec964a03b4ba7775f01 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 180327 + timestamp: 1765215064054 +- conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda + sha256: b5974ec9b50e3c514a382335efa81ed02b05906849827a34061c496f4defa0b2 + md5: bddacf101bb4dd0e51811cb69c7790e2 + depends: + - __unix + license: ISC + purls: [] + size: 146519 + timestamp: 1767500828366 +- pypi: https://files.pythonhosted.org/packages/e3/a6/24169d70ec5264b65ba54ba49b3d10f46d6b1ad97e185c94556539b3dfc8/cachetools-6.2.5-py3-none-any.whl + name: cachetools + version: 6.2.5 + sha256: db3ae5465e90befb7c74720dd9308d77a09b7cf13433570e07caa0845c30d5fe + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b3/c2/7f3664b5b9421ef2d23d1684f56dd7df52b30ed37d8c91b3e92b2ff93720/cellrank-1.5.1-py3-none-any.whl + name: cellrank + version: 1.5.1 + sha256: 107757d3098e4ad5ea73861c73f670a4fab2deb9e2063e0efeff49e47a5c7bfe + requires_dist: + - docrep>=0.3.0 + - joblib>=0.13.1 + - matplotlib>=3.3.0 + - networkx>=2.2 + - numba>=0.51.0 + - numpy>=1.17.0 + - pandas>=1.2.0 + - pygam>=0.8.0 + - pygpcca>=1.0.3 + - scanpy>=1.7.2 + - scikit-learn>=0.24.0 + - scipy>=1.2.0 + - scvelo>=0.2.4 + - seaborn>=0.10.0 + - setuptools>=41.0.1 + - typing-extensions + - wrapt>=1.12.1 + - pre-commit>=2.9.3 ; extra == 'dev' + - tox>=3.23.0 ; extra == 'dev' + - towncrier>=21.3.0 ; extra == 'dev' + - bezier ; extra == 'docs' + - ipython ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - leidenalg ; extra == 'docs' + - memory-profiler>=0.58.0 ; extra == 'docs' + - nbsphinx>=0.8,<0.8.7 ; extra == 'docs' + - pypandoc ; extra == 'docs' + - python-igraph ; extra == 'docs' + - sphinx>=4 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-gallery ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - statot>=0.0.14 ; extra == 'external' + - pot ; extra == 'external' + - pygpcca[slepc] ; extra == 'krylov' + - pytest>=6.1.1 ; extra == 'test' + - pytest-mock>=3.5.1 ; extra == 'test' + - pytest-xdist>=2.1.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pillow ; extra == 'test' + - filelock ; extra == 'test' + - python-igraph ; extra == 'test' + - leidenalg ; extra == 'test' + - bezier ; extra == 'test' + - jax ; extra == 'test' + - jaxlib ; extra == 'test' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/04/6b/9378741ab32c2856132b9b6f3f6d5cd2b580996da52876b27928ddef8fd1/cellrank-2.0.7-py3-none-any.whl + name: cellrank + version: 2.0.7 + sha256: 8e048bf1e7574d1194fac064d3c55479ec9c415988d2b6b1c35bf724c19114da + requires_dist: + - anndata>=0.9 + - docrep>=0.3.0 + - joblib>=0.13.1 + - matplotlib>=3.5.0 + - networkx>=2.2 + - numba>=0.51.0,!=0.57.0 + - numpy>=1.22.0 + - pandas>=1.5.0 + - pygam>=0.8.0 + - pygpcca>=1.0.4 + - scanpy>=1.7.2 + - scikit-learn>=0.24.0 + - scipy>=1.12.0 + - scvelo>=0.2.5 + - seaborn>=0.10.0 + - wrapt>=1.12.1 + - pre-commit>=3.0.0 ; extra == 'dev' + - tox>=4 ; extra == 'dev' + - pytest>=8 ; extra == 'test' + - pytest-mock>=3.5.0 ; extra == 'test' + - pytest-cov>=4 ; extra == 'test' + - pytest-xdist ; extra == 'test' + - coverage[toml]>=7 ; extra == 'test' + - zarr<3 ; extra == 'test' + - igraph ; extra == 'test' + - leidenalg ; extra == 'test' + - pillow ; extra == 'test' + - jax ; extra == 'test' + - sphinx>=5.1.1 ; extra == 'docs' + - furo>=2022.9.29 ; extra == 'docs' + - myst-nb>=0.17.1 ; extra == 'docs' + - sphinx-tippy>=0.4.1 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5.0 ; extra == 'docs' + - sphinx-design>=0.3.0 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - sphinxcontrib-spelling>=7.6.2 ; extra == 'docs' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/92/6c/12f14d20ccd49bfe8709cebd1b77a244f019e44a8702d3962021b618812e/celltypist-1.7.1-py3-none-any.whl + name: celltypist + version: 1.7.1 + sha256: 3953f96a4476ed1dd2807446d97d3945e8905bbdac6bfef0d20b84a9a00d1101 + requires_dist: + - numpy>=1.19.0 + - pandas>=1.0.5 + - scikit-learn>=0.24.1 + - openpyxl>=3.0.4 + - click>=7.1.2 + - requests>=2.23.0 + - scanpy>=1.7.0 + - leidenalg>=0.9.0 + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl + name: certifi + version: 2026.1.4 + sha256: 9943707519e4add1115f44c2bc244f782c0249876bf51b6599fee1ffbedd685c + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: cffi + version: 2.0.0 + sha256: 3e17ed538242334bf70832644a32a7aae3d83b57567f9fd60a26257e992b79ba + requires_dist: + - pycparser ; implementation_name != 'PyPy' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl + name: cffi + version: 2.0.0 + sha256: 8eca2a813c1cb7ad4fb74d368c2ffbbb4789d377ee5bb8df98373c2cc0dee76c + requires_dist: + - pycparser ; implementation_name != 'PyPy' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl + name: cfgv + version: 3.5.0 + sha256: a8dc6b26ad22ff227d2634a65cb388215ce6cc96bbcc5cfde7641ae87e8dacc0 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: charset-normalizer + version: 3.4.4 + sha256: 11d694519d7f29d6cd09f6ac70028dba10f92f6cdd059096db198c283794ac86 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl + name: charset-normalizer + version: 3.4.4 + sha256: 0a98e6759f854bd25a58a73fa88833fba3b7c491169f86ce1180c948ab3fd394 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/98/78/01c019cdb5d6498122777c1a43056ebb3ebfeef2076d9d026bfe15583b2b/click-8.3.1-py3-none-any.whl + name: click + version: 8.3.1 + sha256: 981153a64e25f12d547d3426c367a4857371575ee7ad18df2a6183ab0545b2a6 + requires_dist: + - colorama ; sys_platform == 'win32' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/88/39/799be3f2f0f38cc727ee3b4f1445fe6d5e4133064ec2e4115069418a5bb6/cloudpickle-3.1.2-py3-none-any.whl + name: cloudpickle + version: 3.1.2 + sha256: 9acb47f6afd73f60dc1df93bb801b472f05ff42fa6c84167d25cb206be1fbf4a + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c6/c6/9963d588cc3d75d766c819e0377a168ef83cf3316a92769971527a1ad1de/colorcet-3.1.0-py3-none-any.whl + name: colorcet + version: 3.1.0 + sha256: 2a7d59cc8d0f7938eeedd08aad3152b5319b4ba3bcb7a612398cc17a384cb296 + requires_dist: + - colorcet[tests] ; extra == 'all' + - colorcet[tests-extra] ; extra == 'all' + - colorcet[examples] ; extra == 'all' + - colorcet[doc] ; extra == 'all' + - colorcet[examples] ; extra == 'doc' + - nbsite>=0.8.4 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - numpy ; extra == 'examples' + - holoviews ; extra == 'examples' + - matplotlib ; extra == 'examples' + - bokeh ; extra == 'examples' + - pre-commit ; extra == 'tests' + - pytest>=2.8.5 ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - packaging ; extra == 'tests' + - colorcet[examples] ; extra == 'tests-examples' + - nbval ; extra == 'tests-examples' + - colorcet[tests] ; extra == 'tests-extra' + - pytest-mpl ; extra == 'tests-extra' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl + name: comm + version: 0.2.3 + sha256: c615d91d75f7f04f095b30d1c1711babd43bdc6419c1be9886a85f2f4e489417 + requires_dist: + - pytest ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl + name: contourpy + version: 1.3.3 + sha256: 556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6 + requires_dist: + - numpy>=1.25 + - furo ; extra == 'docs' + - sphinx>=7.2 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - bokeh ; extra == 'bokeh' + - selenium ; extra == 'bokeh' + - contourpy[bokeh,docs] ; extra == 'mypy' + - bokeh ; extra == 'mypy' + - docutils-stubs ; extra == 'mypy' + - mypy==1.17.0 ; extra == 'mypy' + - types-pillow ; extra == 'mypy' + - contourpy[test-no-images] ; extra == 'test' + - matplotlib ; extra == 'test' + - pillow ; extra == 'test' + - pytest ; extra == 'test-no-images' + - pytest-cov ; extra == 'test-no-images' + - pytest-rerunfailures ; extra == 'test-no-images' + - pytest-xdist ; extra == 'test-no-images' + - wurlitzer ; extra == 'test-no-images' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: contourpy + version: 1.3.3 + sha256: 4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1 + requires_dist: + - numpy>=1.25 + - furo ; extra == 'docs' + - sphinx>=7.2 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - bokeh ; extra == 'bokeh' + - selenium ; extra == 'bokeh' + - contourpy[bokeh,docs] ; extra == 'mypy' + - bokeh ; extra == 'mypy' + - docutils-stubs ; extra == 'mypy' + - mypy==1.17.0 ; extra == 'mypy' + - types-pillow ; extra == 'mypy' + - contourpy[test-no-images] ; extra == 'test' + - matplotlib ; extra == 'test' + - pillow ; extra == 'test' + - pytest ; extra == 'test-no-images' + - pytest-cov ; extra == 'test-no-images' + - pytest-rerunfailures ; extra == 'test-no-images' + - pytest-xdist ; extra == 'test-no-images' + - wurlitzer ; extra == 'test-no-images' + requires_python: '>=3.11' +- conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda + noarch: generic + sha256: ccb90d95bac9f1f4f6629a4addb44d36433e4ad1fe4ac87a864f90ff305dbf6d + md5: ef3e093ecfd4533eee992cdaa155b47e + depends: + - python >=3.12,<3.13.0a0 + - python_abi * *_cp312 + license: Python-2.0 + purls: [] + size: 46644 + timestamp: 1769471040321 +- pypi: https://files.pythonhosted.org/packages/a9/c1/dabe88f52c3e3760d861401bb994df08f672ec893b8f7592dc91626adcf3/cuda_bindings-12.9.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuda-bindings + version: 12.9.4 + sha256: fda147a344e8eaeca0c6ff113d2851ffca8f7dfc0a6c932374ee5c47caa649c8 + requires_dist: + - cuda-pathfinder~=1.1 + - nvidia-cuda-nvcc-cu12 ; extra == 'all' + - nvidia-cuda-nvrtc-cu12 ; extra == 'all' + - nvidia-nvjitlink-cu12>=12.3 ; extra == 'all' + - nvidia-cufile-cu12 ; sys_platform == 'linux' and extra == 'all' + - cython>=3.1,<3.2 ; extra == 'test' + - setuptools>=77.0.0 ; extra == 'test' + - numpy>=1.21.1 ; extra == 'test' + - pytest>=6.2.4 ; extra == 'test' + - pytest-benchmark>=3.4.1 ; extra == 'test' + - pyglet>=2.1.9 ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/b2/75/cb52e7d8c44ef4bf1313251685adc0c6568d51b9790edf7a1ecdf0135394/cuda_core-0.3.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuda-core + version: 0.3.2 + sha256: 1338ab324d29b3afcde623c4a12571cd6e74e76fa0d5533db1e36df978899e4e + requires_dist: + - numpy + - cuda-bindings[all]==11.8.* ; extra == 'cu11' + - cuda-bindings[all]==12.* ; extra == 'cu12' + - cuda-bindings[all]==13.* ; extra == 'cu13' + - cython>=3.0 ; extra == 'test' + - setuptools ; extra == 'test' + - pytest>=6.2.4 ; extra == 'test' + - cuda-core[test] ; extra == 'test-cu11' + - cupy-cuda11x ; extra == 'test-cu11' + - nvidia-cuda-runtime-cu11 ; extra == 'test-cu11' + - cuda-core[test] ; extra == 'test-cu12' + - cupy-cuda12x ; extra == 'test-cu12' + - nvidia-cuda-runtime-cu12 ; extra == 'test-cu12' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/0b/02/4dbe7568a42e46582248942f54dc64ad094769532adbe21e525e4edf7bc4/cuda_pathfinder-1.3.3-py3-none-any.whl + name: cuda-pathfinder + version: 1.3.3 + sha256: 9984b664e404f7c134954a771be8775dfd6180ea1e1aef4a5a37d4be05d9bbb1 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/af/f3/6b032a554019cfb3447e671798c1bd3e79b5f1af20d10253f56cea269ef2/cuda_python-12.9.4-py3-none-any.whl + name: cuda-python + version: 12.9.4 + sha256: d2cacea882a69863f1e7d27ee71d75f0684f4c76910aff839067e4f89c902279 + requires_dist: + - cuda-bindings~=12.9.4 + - cuda-bindings[all]~=12.9.4 ; extra == 'all' +- pypi: https://pypi.nvidia.com/cuda-toolkit/cuda_toolkit-12.8.1-py2.py3-none-any.whl + name: cuda-toolkit + version: 12.8.1 + sha256: adc7906af4ecbf9a352f9dca5734eceb21daec281ccfcf5675e1d2f724fc2cba + requires_dist: + - nvidia-cublas-cu12==12.8.4.1.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cccl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cupti-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cuxxfilt-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-nvcc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-nvrtc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-opencl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-profiler-api-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-runtime-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-sanitizer-api-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cufft-cu12==11.3.3.83.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cufile-cu12==1.13.1.3.* ; sys_platform == 'linux' and extra == 'all' + - nvidia-curand-cu12==10.3.9.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cusolver-cu12==11.7.3.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cusparse-cu12==12.5.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-npp-cu12==12.3.3.100.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvfatbin-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvjitlink-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvjpeg-cu12==12.3.5.92.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvml-dev-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvtx-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cccl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cccl') or (sys_platform == 'win32' and extra == 'cccl') + - nvidia-cublas-cu12==12.8.4.1.* ; (sys_platform == 'linux' and extra == 'cublas') or (sys_platform == 'win32' and extra == 'cublas') + - nvidia-cuda-runtime-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cudart') or (sys_platform == 'win32' and extra == 'cudart') + - nvidia-cufft-cu12==11.3.3.83.* ; (sys_platform == 'linux' and extra == 'cufft') or (sys_platform == 'win32' and extra == 'cufft') + - nvidia-cufile-cu12==1.13.1.3.* ; sys_platform == 'linux' and extra == 'cufile' + - nvidia-cuda-cupti-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cupti') or (sys_platform == 'win32' and extra == 'cupti') + - nvidia-curand-cu12==10.3.9.90.* ; (sys_platform == 'linux' and extra == 'curand') or (sys_platform == 'win32' and extra == 'curand') + - nvidia-cusolver-cu12==11.7.3.90.* ; (sys_platform == 'linux' and extra == 'cusolver') or (sys_platform == 'win32' and extra == 'cusolver') + - nvidia-cusparse-cu12==12.5.8.93.* ; (sys_platform == 'linux' and extra == 'cusparse') or (sys_platform == 'win32' and extra == 'cusparse') + - nvidia-cuda-cuxxfilt-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cuxxfilt') or (sys_platform == 'win32' and extra == 'cuxxfilt') + - nvidia-npp-cu12==12.3.3.100.* ; (sys_platform == 'linux' and extra == 'npp') or (sys_platform == 'win32' and extra == 'npp') + - nvidia-cuda-nvcc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'nvcc') or (sys_platform == 'win32' and extra == 'nvcc') + - nvidia-nvfatbin-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'nvfatbin') or (sys_platform == 'win32' and extra == 'nvfatbin') + - nvidia-nvjitlink-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'nvjitlink') or (sys_platform == 'win32' and extra == 'nvjitlink') + - nvidia-nvjpeg-cu12==12.3.5.92.* ; (sys_platform == 'linux' and extra == 'nvjpeg') or (sys_platform == 'win32' and extra == 'nvjpeg') + - nvidia-nvml-dev-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'nvml') or (sys_platform == 'win32' and extra == 'nvml') + - nvidia-cuda-nvrtc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'nvrtc') or (sys_platform == 'win32' and extra == 'nvrtc') + - nvidia-nvtx-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'nvtx') or (sys_platform == 'win32' and extra == 'nvtx') + - nvidia-cuda-opencl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'opencl') or (sys_platform == 'win32' and extra == 'opencl') + - nvidia-cuda-profiler-api-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'profiler') or (sys_platform == 'win32' and extra == 'profiler') + - nvidia-cuda-sanitizer-api-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'sanitizer') or (sys_platform == 'win32' and extra == 'sanitizer') +- pypi: https://pypi.nvidia.com/cudf-cu12/cudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cudf-cu12 + version: 25.12.0 + sha256: ad22d3ce8da37f366926b6af43bbb62bf0ab1c69e81f76368cd295222ecacb04 + requires_dist: + - cachetools + - cuda-python>=12.9.2,<13.0a0 + - cuda-toolkit[nvcc,nvrtc]==12.* + - cupy-cuda12x>=13.6.0 + - fsspec>=0.6.0 + - libcudf-cu12==25.12.* + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - numba>=0.60.0,<0.62.0a0 + - numpy>=1.23,<3.0a0 + - nvtx>=0.2.1 + - packaging + - pandas>=2.0,<2.4.0.dev0 + - pyarrow>=15.0.0,!=17.0.0 ; platform_machine == 'aarch64' + - pyarrow>=15.0.0 ; platform_machine == 'x86_64' + - pylibcudf-cu12==25.12.* + - rich + - rmm-cu12==25.12.* + - typing-extensions>=4.0.0 + - aiobotocore>=2.2.0 ; extra == 'test' + - boto3>=1.21.21 ; extra == 'test' + - botocore>=1.24.21 ; extra == 'test' + - cramjam ; extra == 'test' + - fastavro>=0.22.9 ; extra == 'test' + - hypothesis>=6.131.7 ; extra == 'test' + - msgpack ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cases>=3.8.2 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - s3fs>=2022.3.0 ; extra == 'test' + - scipy ; extra == 'test' + - tzdata ; extra == 'test' + - zstandard ; extra == 'test' + - hypothesis>=6.131.7 ; extra == 'pandas-tests' + - ipython ; extra == 'pandas-tests' + - pandas[clipboard,compression,computation,excel,feather,fss,hdf5,html,output-formatting,parquet,performance,plot,pyarrow,spss,test,xml] ; extra == 'pandas-tests' + - pytest-reportlog ; extra == 'pandas-tests' + - certifi ; extra == 'cudf-pandas-tests' + - ipython ; extra == 'cudf-pandas-tests' + - jupyter-client ; extra == 'cudf-pandas-tests' + - nbconvert ; extra == 'cudf-pandas-tests' + - nbformat ; extra == 'cudf-pandas-tests' + - openpyxl ; extra == 'cudf-pandas-tests' + - pytest-rerunfailures!=16.0.0 ; extra == 'cudf-pandas-tests' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/cugraph-cu12/cugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cugraph-cu12 + version: 25.12.2 + sha256: 26ed0fa76ba915ebbb21ceb80930db32f7ef42b8fdc0209aacd304293b6503fc + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - cudf-cu12==25.12.* + - cupy-cuda12x>=13.6.0 + - dask-cuda==25.12.* + - dask-cudf-cu12==25.12.* + - fsspec[http]>=0.6.0 + - libcugraph-cu12==25.12.* + - numba>=0.60.0,<0.62.0a0 + - numpy>=1.23,<3.0a0 + - pylibcudf-cu12==25.12.* + - pylibcugraph-cu12==25.12.* + - pylibraft-cu12==25.12.* + - raft-dask-cu12==25.12.* + - rapids-dask-dependency==25.12.* + - rmm-cu12==25.12.* + - ucxx-cu12==0.47.* + - certifi ; extra == 'test' + - networkx>=2.5.1 ; extra == 'test' + - numpy>=1.23,<3.0a0 ; extra == 'test' + - packaging ; extra == 'test' + - pandas ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - python-louvain ; extra == 'test' + - scikit-learn>=0.23.1 ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/cuml-cu12/cuml_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuml-cu12 + version: 25.12.0 + sha256: 78ad9030481ad0489ff0d3dd214f8a116110a67a4b85d9c8e9f70df724706970 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - cuda-toolkit[cublas,cufft,curand,cusolver,cusparse]==12.* + - cudf-cu12==25.12.* + - cupy-cuda12x>=13.6.0 + - joblib>=0.11 + - libcuml-cu12==25.12.* + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - numba>=0.60.0,<0.62.0a0 + - numpy>=1.23,<3.0a0 + - packaging + - pylibraft-cu12==25.12.* + - rich + - rmm-cu12==25.12.* + - scikit-learn>=1.4 + - scipy>=1.11.0 + - treelite>=4.6.1,<5.0.0a0 + - certifi ; extra == 'test' + - cython>=3.0.0,<3.2.0a0 ; extra == 'test' + - hdbscan>=0.8.39,<0.8.40 ; extra == 'test' + - hypothesis>=6.0,<7 ; extra == 'test' + - nltk ; extra == 'test' + - numpydoc<1.9 ; extra == 'test' + - nvidia-ml-py>=12 ; extra == 'test' + - pynndescent ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cases ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0 ; extra == 'test' + - pyyaml ; extra == 'test' + - scikit-learn>=1.4,<1.8.0 ; extra == 'test' + - seaborn ; extra == 'test' + - statsmodels ; extra == 'test' + - tenacity ; extra == 'test' + - umap-learn==0.5.7 ; extra == 'test' + - xgboost>=2.1.0 ; extra == 'test' + - dask-cudf-cu12==25.12.* ; extra == 'dask' + - raft-dask-cu12==25.12.* ; extra == 'dask' + - rapids-dask-dependency==25.12.* ; extra == 'dask' + - dask-cuda==25.12.* ; extra == 'test-dask' + - dask-ml ; extra == 'test-dask' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e0/95/d7e1295141e7d530674a3cc567e13ed0eb6b81524cb122d797ed996b5bea/cupy_cuda12x-13.6.0-cp312-cp312-manylinux2014_x86_64.whl + name: cupy-cuda12x + version: 13.6.0 + sha256: 79b0cacb5e8b190ef409f9e03f06ac8de1b021b0c0dda47674d446f5557e0eb1 + requires_dist: + - numpy>=1.22,<2.6 + - fastrlock>=0.5 + - scipy>=1.7,<1.17 ; extra == 'all' + - cython>=3 ; extra == 'all' + - optuna>=2.0 ; extra == 'all' + - packaging ; extra == 'test' + - pytest>=7.2 ; extra == 'test' + - hypothesis>=6.37.2,<6.55.0 ; extra == 'test' + - mpmath ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://pypi.nvidia.com/cuvs-cu12/cuvs_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuvs-cu12 + version: 25.12.0 + sha256: 9f7de2f3bf94f3ea8e2f702dbd54298b0c86da31ffaa85fb10211b1a85f00030 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - libcuvs-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - pylibraft-cu12==25.12.* + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - scikit-learn ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl + name: cycler + version: 0.12.1 + sha256: 85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 + requires_dist: + - ipython ; extra == 'docs' + - matplotlib ; extra == 'docs' + - numpydoc ; extra == 'docs' + - sphinx ; extra == 'docs' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/2a/72/33ff765a07913cb5061baa94718f3a17003aa29adc89642a68c295d47582/dask-2024.11.2-py3-none-any.whl + name: dask + version: 2024.11.2 + sha256: 6115c4b76015e8d9d9c2922b6a0a1c850e283fb7fee74eebbd2e28e9c117c30d + requires_dist: + - click>=8.1 + - cloudpickle>=3.0.0 + - fsspec>=2021.9.0 + - packaging>=20.0 + - partd>=1.4.0 + - pyyaml>=5.3.1 + - toolz>=0.10.0 + - importlib-metadata>=4.13.0 ; python_full_version < '3.12' + - numpy>=1.24 ; extra == 'array' + - dask[array,dataframe,diagnostics,distributed] ; extra == 'complete' + - pyarrow>=14.0.1 ; extra == 'complete' + - lz4>=4.3.2 ; extra == 'complete' + - dask[array] ; extra == 'dataframe' + - pandas>=2.0 ; extra == 'dataframe' + - dask-expr>=1.1,<1.2 ; extra == 'dataframe' + - bokeh>=3.1.0 ; extra == 'diagnostics' + - jinja2>=2.10.3 ; extra == 'diagnostics' + - distributed==2024.11.2 ; extra == 'distributed' + - pandas[test] ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-rerunfailures ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pre-commit ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/25/60/3fcd548bed6d25016933e4b2984c9b82e4c1e760380e03d4100b1b4726e0/dask-2025.9.1-py3-none-any.whl + name: dask + version: 2025.9.1 + sha256: 2a8a7dc933caaea2f47745a65a6ec93d9e616e12aab53b4f03ee161d31939110 + requires_dist: + - click>=8.1 + - cloudpickle>=3.0.0 + - fsspec>=2021.9.0 + - packaging>=20.0 + - partd>=1.4.0 + - pyyaml>=5.3.1 + - toolz>=0.10.0 + - importlib-metadata>=4.13.0 ; python_full_version < '3.12' + - numpy>=1.24 ; extra == 'array' + - dask[array] ; extra == 'dataframe' + - pandas>=2.0 ; extra == 'dataframe' + - pyarrow>=14.0.1 ; extra == 'dataframe' + - distributed==2025.9.1 ; extra == 'distributed' + - bokeh>=3.1.0 ; extra == 'diagnostics' + - jinja2>=2.10.3 ; extra == 'diagnostics' + - dask[array,dataframe,diagnostics,distributed] ; extra == 'complete' + - pyarrow>=14.0.1 ; extra == 'complete' + - lz4>=4.3.2 ; extra == 'complete' + - pandas[test] ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-rerunfailures ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pre-commit ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/dask-cuda/dask_cuda-25.12.0-py3-none-manylinux_2_28_aarch64.manylinux_2_28_x86_64.whl + name: dask-cuda + version: 25.12.0 + sha256: c47985165e061f50c29e1ceb9d08a8ffb598dfd6b03fccdd747ee2a2f4bf4005 + requires_dist: + - click>=8.1 + - cuda-core==0.3.* + - numba-cuda>=0.19.1,<0.20.0a0 + - numpy>=1.23,<3.0a0 + - nvidia-ml-py>=12 + - pandas>=1.3 + - rapids-dask-dependency==25.12.* + - zict>=2.0.0 + - numpydoc>=1.1.0 ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-click>=2.7.1 ; extra == 'docs' + - sphinx-rtd-theme>=0.5.1 ; extra == 'docs' + - cuda-core[cu12]==0.3.* ; extra == 'cu12' + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 ; extra == 'cu12' + - cuda-core[cu13]==0.3.* ; extra == 'cu13' + - numba-cuda[cu13]>=0.19.1,<0.20.0a0 ; extra == 'cu13' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/dask-cudf-cu12/dask_cudf_cu12-25.12.0-py3-none-any.whl + name: dask-cudf-cu12 + version: 25.12.0 + sha256: 5a637613ee72edf0817da5077c53b2f5dfe465944ecf1b5d3e0f30a0a34ec46a + requires_dist: + - cudf-cu12==25.12.* + - cupy-cuda12x>=13.6.0 + - fsspec>=0.6.0 + - numpy>=1.23,<3.0a0 + - nvidia-ml-py>=12 + - pandas>=2.0,<2.4.0.dev0 + - rapids-dask-dependency==25.12.* + - dask-cuda==25.12.* ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e9/57/e7996529256b13009fa8f4c34d1d7229755cc7d2b054aa43edb6ca655578/dask_expr-1.1.19-py3-none-any.whl + name: dask-expr + version: 1.1.19 + sha256: b2931c20241a3bc1978ccccc4b8a2f7b27b15bb85ce89fec04595bc5bcf20cf5 + requires_dist: + - dask==2024.11.2 + - pyarrow>=14.0.1 + - pandas>=2 + - crick ; extra == 'analyze' + - distributed ; extra == 'analyze' + - graphviz ; extra == 'analyze' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + name: dask-image + version: 2025.11.0 + sha256: 4834ece8d7133f8cd7d4e672f7f5a598c9057e687b20f14f3121360e3e1690b4 + requires_dist: + - dask[array,dataframe]>=2024.4.1 + - numpy>=1.18 + - scipy>=1.7.0 + - pandas>=2.0.0 + - pims>=0.4.1 + - tifffile>=2018.10.18 + - build>=1.2.1 ; extra == 'test' + - coverage>=7.2.1 ; extra == 'test' + - flake8>=6.0.0 ; extra == 'test' + - flake8-pyproject ; extra == 'test' + - pytest>=7.2.2 ; extra == 'test' + - pytest-cov>=4.0.0 ; extra == 'test' + - pytest-flake8>=1.1.1 ; extra == 'test' + - pytest-timeout>=2.3.1 ; extra == 'test' + - twine>=3.1.1 ; extra == 'test' + - cupy>=9.0.0 ; extra == 'gpu' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/28/0e/b11ad5fd77e3dd0baad9cac3184315be7654ae401e3b0b0c324503f23d96/datashader-0.18.2-py3-none-any.whl + name: datashader + version: 0.18.2 + sha256: 2aa90e867a46b1e75248f32a47c5b14bb5dc869524152f88c0af8369d47359e7 + requires_dist: + - colorcet + - multipledispatch + - numba + - numpy + - packaging + - pandas + - param + - pyct + - requests + - scipy + - toolz + - xarray + - pytest ; extra == 'tests' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/25/3e/e27078370414ef35fafad2c06d182110073daaeb5d3bf734b0b1eeefe452/debugpy-1.8.19-py2.py3-none-any.whl + name: debugpy + version: 1.8.19 + sha256: 360ffd231a780abbc414ba0f005dad409e71c78637efe8f2bd75837132a41d38 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl + name: decorator + version: 5.2.1 + sha256: d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl + name: defusedxml + version: 0.7.1 + sha256: a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*' +- pypi: https://files.pythonhosted.org/packages/33/6b/e0547afaf41bf2c42e52430072fa5658766e3d65bd4b03a563d1b6336f57/distlib-0.4.0-py2.py3-none-any.whl + name: distlib + version: 0.4.0 + sha256: 9659f7d87e46584a30b5780e43ac7a2143098441670ff0a49d5f9034c54a6c16 +- pypi: https://files.pythonhosted.org/packages/10/76/486da90111ae15daf88a25e464e271575de4197c331cca4d41c9c5db8bf4/distributed-2025.9.1-py3-none-any.whl + name: distributed + version: 2025.9.1 + sha256: 9453a2216cb9c686be12ad66b9c8698df3c3917565367de5797993a5f83f30ba + requires_dist: + - click>=8.0 + - cloudpickle>=3.0.0 + - dask==2025.9.1 + - jinja2>=2.10.3 + - locket>=1.0.0 + - msgpack>=1.0.2 + - packaging>=20.0 + - psutil>=5.8.0 + - pyyaml>=5.4.1 + - sortedcontainers>=2.0.5 + - tblib>=1.6.0 + - toolz>=0.11.2 + - tornado>=6.2.0 + - urllib3>=1.26.5 + - zict>=3.0.0 + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/distributed-ucxx-cu12/distributed_ucxx_cu12-0.47.0-py3-none-any.whl + name: distributed-ucxx-cu12 + version: 0.47.0 + sha256: deefab372bdaaeae6085c8d53031d4e4989bb5cfa4d1197df59e381c294f0a6d + requires_dist: + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - pyyaml>=6 + - rapids-dask-dependency==25.12.* + - ucxx-cu12==0.47.* + - sphinx ; extra == 'docs' + - sphinx-click>=2.7.1 ; extra == 'docs' + - sphinx-rtd-theme>=0.5.1 ; extra == 'docs' + - cudf-cu12==25.12.* ; extra == 'test' + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - numpy>=1.23,<3.0a0 ; extra == 'test' + - pytest-rerunfailures!=16.0.0 ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz + name: docrep + version: 0.3.2 + sha256: ed8a17e201abd829ef8da78a0b6f4d51fb99a4cbd0554adbed3309297f964314 + requires_dist: + - six +- pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + name: donfig + version: 0.8.1.post1 + sha256: 2a3175ce74a06109ff9307d90a230f81215cbac9a751f4d1c6194644b8204f9d + requires_dist: + - pyyaml + - sphinx>=4.0.0 ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pytest ; extra == 'docs' + - cloudpickle ; extra == 'docs' + - pytest ; extra == 'test' + - cloudpickle ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl + name: et-xmlfile + version: 2.0.0 + sha256: 7a91720bc756843502c3b7504c77b8fe44217c85c537d85037f0f536151b2caa + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl + name: executing + version: 2.2.1 + sha256: 760643d3452b4d777d295bb167ccc74c64a81df23fb5e08eff250c425a4b2017 + requires_dist: + - asttokens>=2.1.0 ; extra == 'tests' + - ipython ; extra == 'tests' + - pytest ; extra == 'tests' + - coverage ; extra == 'tests' + - coverage-enable-subprocess ; extra == 'tests' + - littleutils ; extra == 'tests' + - rich ; python_full_version >= '3.11' and extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl + name: fast-array-utils + version: 1.3.1 + sha256: 7617322b29c9f3a8e4c046355ecf653bbee581245787243ea06212a1a56fa611 + requires_dist: + - numpy>=2 + - numba>=0.57 ; extra == 'accel' + - dask>=2023.6.1 ; extra == 'dask' + - furo>=2024.8.6 ; extra == 'doc' + - pytest>=8.4 ; extra == 'doc' + - scanpydoc>=0.15.4 ; extra == 'doc' + - sphinx-autodoc-typehints>=3.2 ; extra == 'doc' + - sphinx-autofixture>=0.4.1 ; extra == 'doc' + - sphinx>=8.2.3 ; extra == 'doc' + - dask>=2023.6.1 ; extra == 'full' + - h5py ; extra == 'full' + - numba>=0.57 ; extra == 'full' + - scipy>=1.13 ; extra == 'full' + - zarr ; extra == 'full' + - scipy>=1.13 ; extra == 'sparse' + - anndata ; extra == 'test' + - coverage[toml] ; extra == 'test' + - numba>=0.57 ; extra == 'test' + - numcodecs<0.16 ; extra == 'test' + - packaging ; extra == 'test' + - pytest ; extra == 'test' + - pytest-codspeed ; extra == 'test' + - pytest-doctestplus ; extra == 'test' + - pytest-xdist ; extra == 'test' + - scipy>=1.13 ; extra == 'test' + - zarr<3 ; extra == 'test' + - coverage[toml] ; extra == 'test-min' + - packaging ; extra == 'test-min' + - pytest ; extra == 'test-min' + - pytest-codspeed ; extra == 'test-min' + - pytest-doctestplus ; extra == 'test-min' + - pytest-xdist ; extra == 'test-min' + - scipy>=1.13 ; extra == 'test-min' + - packaging ; extra == 'testing' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl + name: fastjsonschema + version: 2.21.2 + sha256: 1c797122d0a86c5cace2e54bf4e819c36223b552017172f32c5c024a6b77e463 + requires_dist: + - colorama ; extra == 'devel' + - jsonschema ; extra == 'devel' + - json-spec ; extra == 'devel' + - pylint ; extra == 'devel' + - pytest ; extra == 'devel' + - pytest-benchmark ; extra == 'devel' + - pytest-cache ; extra == 'devel' + - validictory ; extra == 'devel' +- pypi: https://files.pythonhosted.org/packages/80/07/cdecb7aa976f34328372f1c4efd6c9dc1b039b3cc8d3f38787d640009a25/fastrlock-0.8.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl + name: fastrlock + version: 0.8.3 + sha256: 5f13ec08f1adb1aa916c384b05ecb7dbebb8df9ea81abd045f60941c6283a670 +- conda: https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-mpi_openmpi_h76e6d66_11.conda + sha256: c4a765d3de0a7f831dbf0ae0d9846e53ffa909a35273bd0981136b980d4be7bf + md5: f5b0b0b5746ecc9bd9e3f64c05ef647b + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - libstdcxx >=14 + - openmpi >=5.0.8,<6.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 2080673 + timestamp: 1763157302873 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/fftw-3.3.10-mpi_mpich_h6eb47b5_11.conda + sha256: 009a697faff41c9ecd7ac23e34085c70f9789e000e31622f726fc7a15322ff9d + md5: 566a57100ffdd6c65cf8595074735f0e + depends: + - __osx >=11.0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - libgfortran5 >=15.2.0 + - llvm-openmp >=19.1.7 + - mpich >=4.3.2,<5.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 792036 + timestamp: 1763157977524 +- pypi: https://files.pythonhosted.org/packages/b5/36/7fb70f04bf00bc646cd5bb45aa9eddb15e19437a28b8fb2b4a5249fac770/filelock-3.20.3-py3-none-any.whl + name: filelock + version: 3.20.3 + sha256: 4b0dda527ee31078689fc205ec4f1c1bf7d56cf88b6dc9426c4f230e46c2dce1 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/6f/16/7decaa24a1bd3a70c607b2e29f0adc6159f36a7e40eaba59846414765fd4/fonttools-4.61.1-cp312-cp312-macosx_10_13_universal2.whl + name: fonttools + version: 4.61.1 + sha256: f3cb4a569029b9f291f88aafc927dd53683757e640081ca8c412781ea144565e + requires_dist: + - lxml>=4.0 ; extra == 'lxml' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'woff' + - zopfli>=0.1.4 ; extra == 'woff' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'unicode' + - lz4>=1.7.4.2 ; extra == 'graphite' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'interpolatable' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'interpolatable' + - pycairo ; extra == 'interpolatable' + - matplotlib ; extra == 'plot' + - sympy ; extra == 'symfont' + - xattr ; sys_platform == 'darwin' and extra == 'type1' + - skia-pathops>=0.5.0 ; extra == 'pathops' + - uharfbuzz>=0.45.0 ; extra == 'repacker' + - lxml>=4.0 ; extra == 'all' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'all' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'all' + - zopfli>=0.1.4 ; extra == 'all' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'all' + - lz4>=1.7.4.2 ; extra == 'all' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'all' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'all' + - pycairo ; extra == 'all' + - matplotlib ; extra == 'all' + - sympy ; extra == 'all' + - xattr ; sys_platform == 'darwin' and extra == 'all' + - skia-pathops>=0.5.0 ; extra == 'all' + - uharfbuzz>=0.45.0 ; extra == 'all' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b7/37/82dbef0f6342eb01f54bca073ac1498433d6ce71e50c3c3282b655733b31/fonttools-4.61.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + name: fonttools + version: 4.61.1 + sha256: 10d88e55330e092940584774ee5e8a6971b01fc2f4d3466a1d6c158230880796 + requires_dist: + - lxml>=4.0 ; extra == 'lxml' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'woff' + - zopfli>=0.1.4 ; extra == 'woff' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'unicode' + - lz4>=1.7.4.2 ; extra == 'graphite' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'interpolatable' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'interpolatable' + - pycairo ; extra == 'interpolatable' + - matplotlib ; extra == 'plot' + - sympy ; extra == 'symfont' + - xattr ; sys_platform == 'darwin' and extra == 'type1' + - skia-pathops>=0.5.0 ; extra == 'pathops' + - uharfbuzz>=0.45.0 ; extra == 'repacker' + - lxml>=4.0 ; extra == 'all' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'all' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'all' + - zopfli>=0.1.4 ; extra == 'all' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'all' + - lz4>=1.7.4.2 ; extra == 'all' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'all' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'all' + - pycairo ; extra == 'all' + - matplotlib ; extra == 'all' + - sympy ; extra == 'all' + - xattr ; sys_platform == 'darwin' and extra == 'all' + - skia-pathops>=0.5.0 ; extra == 'all' + - uharfbuzz>=0.45.0 ; extra == 'all' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl + name: fqdn + version: 1.5.1 + sha256: 3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014 + requires_dist: + - cached-property>=1.3.0 ; python_full_version < '3.8' + requires_python: '>=2.7,!=3.0,!=3.1,!=3.2,!=3.3,!=3.4,<4' +- pypi: https://files.pythonhosted.org/packages/2b/94/5c8a2b50a496b11dd519f4a24cb5496cf125681dd99e94c604ccdea9419a/frozenlist-1.8.0-cp312-cp312-macosx_11_0_arm64.whl + name: frozenlist + version: 1.8.0 + sha256: f833670942247a14eafbb675458b4e61c82e002a148f49e68257b79296e865c4 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/6a/bd/d91c5e39f490a49df14320f4e8c80161cfcce09f1e2cde1edd16a551abb3/frozenlist-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + name: frozenlist + version: 1.8.0 + sha256: 494a5952b1c597ba44e0e78113a7266e656b9794eec897b19ead706bd7074383 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e3/bd/4c0a4619494188a9db5d77e2100ab7d544a42e76b2447869d8e124e981d8/fsspec-2023.6.0-py3-none-any.whl + name: fsspec + version: 2023.6.0 + sha256: 1cbad1faef3e391fba6dc005ae9b5bdcbf43005c9167ce78c915549c352c869a + requires_dist: + - adlfs ; extra == 'abfs' + - adlfs ; extra == 'adl' + - pyarrow>=1 ; extra == 'arrow' + - dask ; extra == 'dask' + - distributed ; extra == 'dask' + - pytest ; extra == 'devel' + - pytest-cov ; extra == 'devel' + - dropboxdrivefs ; extra == 'dropbox' + - requests ; extra == 'dropbox' + - dropbox ; extra == 'dropbox' + - adlfs ; extra == 'full' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'full' + - dask ; extra == 'full' + - distributed ; extra == 'full' + - dropbox ; extra == 'full' + - dropboxdrivefs ; extra == 'full' + - fusepy ; extra == 'full' + - gcsfs ; extra == 'full' + - libarchive-c ; extra == 'full' + - ocifs ; extra == 'full' + - panel ; extra == 'full' + - paramiko ; extra == 'full' + - pyarrow>=1 ; extra == 'full' + - pygit2 ; extra == 'full' + - requests ; extra == 'full' + - s3fs ; extra == 'full' + - smbprotocol ; extra == 'full' + - tqdm ; extra == 'full' + - fusepy ; extra == 'fuse' + - gcsfs ; extra == 'gcs' + - pygit2 ; extra == 'git' + - requests ; extra == 'github' + - gcsfs ; extra == 'gs' + - panel ; extra == 'gui' + - pyarrow>=1 ; extra == 'hdfs' + - requests ; extra == 'http' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'http' + - libarchive-c ; extra == 'libarchive' + - ocifs ; extra == 'oci' + - s3fs ; extra == 's3' + - paramiko ; extra == 'sftp' + - smbprotocol ; extra == 'smb' + - paramiko ; extra == 'ssh' + - tqdm ; extra == 'tqdm' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/01/c9/97cc5aae1648dcb851958a3ddf73ccd7dbe5650d95203ecb4d7720b4cdbf/fsspec-2026.1.0-py3-none-any.whl + name: fsspec + version: 2026.1.0 + sha256: cb76aa913c2285a3b49bdd5fc55b1d7c708d7208126b60f2eb8194fe1b4cbdcc + requires_dist: + - adlfs ; extra == 'abfs' + - adlfs ; extra == 'adl' + - pyarrow>=1 ; extra == 'arrow' + - dask ; extra == 'dask' + - distributed ; extra == 'dask' + - pre-commit ; extra == 'dev' + - ruff>=0.5 ; extra == 'dev' + - numpydoc ; extra == 'doc' + - sphinx ; extra == 'doc' + - sphinx-design ; extra == 'doc' + - sphinx-rtd-theme ; extra == 'doc' + - yarl ; extra == 'doc' + - dropbox ; extra == 'dropbox' + - dropboxdrivefs ; extra == 'dropbox' + - requests ; extra == 'dropbox' + - adlfs ; extra == 'full' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'full' + - dask ; extra == 'full' + - distributed ; extra == 'full' + - dropbox ; extra == 'full' + - dropboxdrivefs ; extra == 'full' + - fusepy ; extra == 'full' + - gcsfs>2024.2.0 ; extra == 'full' + - libarchive-c ; extra == 'full' + - ocifs ; extra == 'full' + - panel ; extra == 'full' + - paramiko ; extra == 'full' + - pyarrow>=1 ; extra == 'full' + - pygit2 ; extra == 'full' + - requests ; extra == 'full' + - s3fs>2024.2.0 ; extra == 'full' + - smbprotocol ; extra == 'full' + - tqdm ; extra == 'full' + - fusepy ; extra == 'fuse' + - gcsfs ; extra == 'gcs' + - pygit2 ; extra == 'git' + - requests ; extra == 'github' + - gcsfs ; extra == 'gs' + - panel ; extra == 'gui' + - pyarrow>=1 ; extra == 'hdfs' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'http' + - libarchive-c ; extra == 'libarchive' + - ocifs ; extra == 'oci' + - s3fs ; extra == 's3' + - paramiko ; extra == 'sftp' + - smbprotocol ; extra == 'smb' + - paramiko ; extra == 'ssh' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'test' + - numpy ; extra == 'test' + - pytest ; extra == 'test' + - pytest-asyncio!=0.22.0 ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-recording ; extra == 'test' + - pytest-rerunfailures ; extra == 'test' + - requests ; extra == 'test' + - aiobotocore>=2.5.4,<3.0.0 ; extra == 'test-downstream' + - dask[dataframe,test] ; extra == 'test-downstream' + - moto[server]>4,<5 ; extra == 'test-downstream' + - pytest-timeout ; extra == 'test-downstream' + - xarray ; extra == 'test-downstream' + - adlfs ; extra == 'test-full' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'test-full' + - backports-zstd ; python_full_version < '3.14' and extra == 'test-full' + - cloudpickle ; extra == 'test-full' + - dask ; extra == 'test-full' + - distributed ; extra == 'test-full' + - dropbox ; extra == 'test-full' + - dropboxdrivefs ; extra == 'test-full' + - fastparquet ; extra == 'test-full' + - fusepy ; extra == 'test-full' + - gcsfs ; extra == 'test-full' + - jinja2 ; extra == 'test-full' + - kerchunk ; extra == 'test-full' + - libarchive-c ; extra == 'test-full' + - lz4 ; extra == 'test-full' + - notebook ; extra == 'test-full' + - numpy ; extra == 'test-full' + - ocifs ; extra == 'test-full' + - pandas ; extra == 'test-full' + - panel ; extra == 'test-full' + - paramiko ; extra == 'test-full' + - pyarrow ; extra == 'test-full' + - pyarrow>=1 ; extra == 'test-full' + - pyftpdlib ; extra == 'test-full' + - pygit2 ; extra == 'test-full' + - pytest ; extra == 'test-full' + - pytest-asyncio!=0.22.0 ; extra == 'test-full' + - pytest-benchmark ; extra == 'test-full' + - pytest-cov ; extra == 'test-full' + - pytest-mock ; extra == 'test-full' + - pytest-recording ; extra == 'test-full' + - pytest-rerunfailures ; extra == 'test-full' + - python-snappy ; extra == 'test-full' + - requests ; extra == 'test-full' + - smbprotocol ; extra == 'test-full' + - tqdm ; extra == 'test-full' + - urllib3 ; extra == 'test-full' + - zarr ; extra == 'test-full' + - tqdm ; extra == 'tqdm' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/54/e4/fac19dc34cb686c96011388b813ff7b858a70681e5ce6ce7698e5021b0f4/geopandas-1.1.2-py3-none-any.whl + name: geopandas + version: 1.1.2 + sha256: 2bb0b1052cb47378addb4ba54c47f8d4642dcbda9b61375638274f49d9f0bb0d + requires_dist: + - numpy>=1.24 + - pyogrio>=0.7.2 + - packaging + - pandas>=2.0.0 + - pyproj>=3.5.0 + - shapely>=2.0.0 + - psycopg[binary]>=3.1.0 ; extra == 'all' + - sqlalchemy>=2.0 ; extra == 'all' + - geopy ; extra == 'all' + - matplotlib>=3.7 ; extra == 'all' + - mapclassify>=2.5 ; extra == 'all' + - xyzservices ; extra == 'all' + - folium ; extra == 'all' + - geoalchemy2 ; extra == 'all' + - pyarrow>=10.0.0 ; extra == 'all' + - scipy ; extra == 'all' + - pytest>=3.1.0 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - codecov ; extra == 'dev' + - pre-commit ; extra == 'dev' + - ruff ; extra == 'dev' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/geos-3.14.1-h480dda7_0.conda + sha256: 08896dcd94e14a83f247e91748444e610f344ab42d80cbf2b6082b481c3f8f4b + md5: 4d4efd0645cd556fab54617c4ad477ef + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + license: LGPL-2.1-only + purls: [] + size: 1974942 + timestamp: 1761593471198 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/geos-3.14.1-h5afe852_0.conda + sha256: 1ac5f5a3a35f2e4778025043c87993208d336e30539406e380e0952bb7ffd188 + md5: 4238412c29eff0bb2bb5c60a720c035a + depends: + - __osx >=11.0 + - libcxx >=19 + license: LGPL-2.1-only + purls: [] + size: 1530844 + timestamp: 1761594597236 +- pypi: https://files.pythonhosted.org/packages/ce/a9/a780cc66f86335a6019f557a8aaca8fbb970728f0efd2430d15ff1beae0e/google_crc32c-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + name: google-crc32c + version: 1.8.0 + sha256: 14f87e04d613dfa218d6135e81b78272c3b904e2a7053b841481b38a7d901411 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e9/5f/7307325b1198b59324c0fa9807cafb551afb65e831699f2ce211ad5c8240/google_crc32c-1.8.0-cp312-cp312-macosx_12_0_arm64.whl + name: google-crc32c + version: 1.8.0 + sha256: 4b8286b659c1335172e39563ab0a768b8015e88e08329fa5321f774275fc3113 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d9/75/11d0e66b3cdf998c996489581bdad8900db79ebd83513e45c19548f1cba4/grpcio-1.76.0-cp312-cp312-macosx_11_0_universal2.whl + name: grpcio + version: 1.76.0 + sha256: 04bbe1bfe3a68bbfd4e52402ab7d4eb59d72d02647ae2042204326cf4bbad280 + requires_dist: + - typing-extensions~=4.12 + - grpcio-tools>=1.76.0 ; extra == 'protobuf' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f5/86/f6ec2164f743d9609691115ae8ece098c76b894ebe4f7c94a655c6b03e98/grpcio-1.76.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: grpcio + version: 1.76.0 + sha256: 980a846182ce88c4f2f7e2c22c56aefd515daeb36149d1c897f83cf57999e0b6 + requires_dist: + - typing-extensions~=4.12 + - grpcio-tools>=1.76.0 ; extra == 'protobuf' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl + name: h11 + version: 0.16.0 + sha256: 63cf8bbe7522de3bf65932fda1d9c2772064ffb3dae62d55932da54b31cb6c86 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/3a/30/d1c94066343a98bb2cea40120873193a4fed68c4ad7f8935c11caf74c681/h5py-3.15.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: h5py + version: 3.15.1 + sha256: 25c8843fec43b2cc368aa15afa1cdf83fc5e17b1c4e10cd3771ef6c39b72e5ce + requires_dist: + - numpy>=1.21.2 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/a4/5e/3c6f6e0430813c7aefe784d00c6711166f46225f5d229546eb53032c3707/h5py-3.15.1-cp312-cp312-macosx_11_0_arm64.whl + name: h5py + version: 3.15.1 + sha256: b51469890e58e85d5242e43aab29f5e9c7e526b951caab354f3ded4ac88e7b76 + requires_dist: + - numpy>=1.21.2 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.6-mpi_openmpi_h106f004_5.conda + sha256: d842172ae5b908c24ce56c8dc336ec7667469249681c7d1f3f70a67c9f96582f + md5: a9a68cf8f960586d92a8ceb68cd32374 + depends: + - __glibc >=2.17,<3.0.a0 + - libaec >=1.1.4,<2.0a0 + - libcurl >=8.18.0,<9.0a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - libstdcxx >=14 + - libzlib >=1.3.1,<2.0a0 + - openmpi >=5.0.8,<6.0a0 + - openssl >=3.5.4,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 3925340 + timestamp: 1768858903986 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/hdf5-1.14.6-mpi_mpich_h05d5b64_5.conda + sha256: fd817bbfe26ada92caa4dcb36d9fd0635c65017504a552ad80d1bb212af1e374 + md5: 86cc67e06d68ed6b7f401b9d3f15039b + depends: + - __osx >=11.0 + - libaec >=1.1.4,<2.0a0 + - libcurl >=8.18.0,<9.0a0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - libzlib >=1.3.1,<2.0a0 + - mpich >=4.3.2,<5.0a0 + - openssl >=3.5.4,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 3515366 + timestamp: 1768858135533 +- pypi: https://files.pythonhosted.org/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl + name: httpcore + version: 1.0.9 + sha256: 2d400746a40668fc9dec9810239072b40b4484b640a8c38fd654a024c7a1bf55 + requires_dist: + - certifi + - h11>=0.16 + - anyio>=4.0,<5.0 ; extra == 'asyncio' + - h2>=3,<5 ; extra == 'http2' + - socksio==1.* ; extra == 'socks' + - trio>=0.22.0,<1.0 ; extra == 'trio' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl + name: httpx + version: 0.28.1 + sha256: d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad + requires_dist: + - anyio + - certifi + - httpcore==1.* + - idna + - brotli ; platform_python_implementation == 'CPython' and extra == 'brotli' + - brotlicffi ; platform_python_implementation != 'CPython' and extra == 'brotli' + - click==8.* ; extra == 'cli' + - pygments==2.* ; extra == 'cli' + - rich>=10,<14 ; extra == 'cli' + - h2>=3,<5 ; extra == 'http2' + - socksio==1.* ; extra == 'socks' + - zstandard>=0.18.0 ; extra == 'zstd' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/hypre-2.32.0-mpi_openmpi_h398ea61_1.conda + sha256: c0a72b039aa522b469d317daab302dd7783a821529914e0c038098a22c6b2d69 + md5: d7196a72ed192856ece63b4c0da8c462 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas >=3.9.0,<4.0a0 + - libgcc >=13 + - liblapack >=3.9.0,<4.0a0 + - libstdcxx >=13 + - openmpi >=5.0.5,<6.0a0 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 2013687 + timestamp: 1730470317432 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/hypre-2.32.0-mpi_mpich_h189fe77_1.conda + sha256: 7ad7150e0de22579889eb3268254e24cf57224fe3809f67745b9ec83c69b4844 + md5: 27813d86f0e04d6674d790a76473410a + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcxx >=18 + - liblapack >=3.9.0,<4.0a0 + - mpich >=4.2.3,<5.0a0 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 1556359 + timestamp: 1730470784893 +- conda: https://conda.anaconda.org/conda-forge/linux-64/icu-78.2-h33c6efd_0.conda + sha256: 142a722072fa96cf16ff98eaaf641f54ab84744af81754c292cb81e0881c0329 + md5: 186a18e3ba246eccfc7cff00cd19a870 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + license: MIT + license_family: MIT + purls: [] + size: 12728445 + timestamp: 1767969922681 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-78.2-h38cb7af_0.conda + sha256: d4cefbca587429d1192509edc52c88de52bc96c2447771ddc1f8bee928aed5ef + md5: 1e93aca311da0210e660d2247812fa02 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 12358010 + timestamp: 1767970350308 +- pypi: https://files.pythonhosted.org/packages/b8/58/40fbbcefeda82364720eba5cf2270f98496bdfa19ea75b4cccae79c698e6/identify-2.6.16-py2.py3-none-any.whl + name: identify + version: 2.6.16 + sha256: 391ee4d77741d994189522896270b787aed8670389bfd60f326d677d64a6dfb0 + requires_dist: + - ukkonen ; extra == 'license' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl + name: idna + version: '3.11' + sha256: 771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea + requires_dist: + - ruff>=0.6.2 ; extra == 'all' + - mypy>=1.11.2 ; extra == 'all' + - pytest>=8.3.2 ; extra == 'all' + - flake8>=7.1.1 ; extra == 'all' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/0d/bc/6281ec7f9baaf71ee57c3b1748da2d3148d15d253e1a03006f204aa68ca5/igraph-1.0.0-cp39-abi3-macosx_11_0_arm64.whl + name: igraph + version: 1.0.0 + sha256: 1a27753cd80680a8f676c2d5a467aaa4a95e510b30748398ec4e4aeb982130e8 + requires_dist: + - texttable>=1.6.2 + - cairocffi>=1.2.0 ; extra == 'cairo' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'matplotlib' + - plotly>=5.3.0 ; extra == 'plotly' + - cairocffi>=1.2.0 ; extra == 'plotting' + - cairocffi>=1.2.0 ; extra == 'test' + - networkx>=2.5 ; extra == 'test' + - pytest>=7.0.1 ; extra == 'test' + - pytest-timeout>=2.1.0 ; extra == 'test' + - numpy>=1.19.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - pandas>=1.1.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - scipy>=1.5.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - plotly>=5.3.0 ; extra == 'test' + - pillow>=9 ; platform_python_implementation != 'PyPy' and extra == 'test' + - cairocffi>=1.2.0 ; extra == 'test-win-arm64' + - networkx>=2.5 ; extra == 'test-win-arm64' + - pytest>=7.0.1 ; extra == 'test-win-arm64' + - pytest-timeout>=2.1.0 ; extra == 'test-win-arm64' + - cairocffi>=1.2.0 ; extra == 'test-musl' + - networkx>=2.5 ; extra == 'test-musl' + - pytest>=7.0.1 ; extra == 'test-musl' + - pytest-timeout>=2.1.0 ; extra == 'test-musl' + - sphinx>=7.0.0 ; extra == 'doc' + - sphinx-rtd-theme>=1.3.0 ; extra == 'doc' + - sphinx-gallery>=0.14.0 ; extra == 'doc' + - pydoctor>=23.4.0 ; extra == 'doc' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/7d/da/dd2867c25adbb41563720f14b5fc895c98bf88be682a3faff4f7b3118d2a/igraph-1.0.0-cp39-abi3-manylinux_2_28_x86_64.whl + name: igraph + version: 1.0.0 + sha256: 2d04c2c76f686fb1f554ee35dfd3085f5e73b7965ba6b4cf06d53e66b1955522 + requires_dist: + - texttable>=1.6.2 + - cairocffi>=1.2.0 ; extra == 'cairo' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'matplotlib' + - plotly>=5.3.0 ; extra == 'plotly' + - cairocffi>=1.2.0 ; extra == 'plotting' + - cairocffi>=1.2.0 ; extra == 'test' + - networkx>=2.5 ; extra == 'test' + - pytest>=7.0.1 ; extra == 'test' + - pytest-timeout>=2.1.0 ; extra == 'test' + - numpy>=1.19.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - pandas>=1.1.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - scipy>=1.5.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - plotly>=5.3.0 ; extra == 'test' + - pillow>=9 ; platform_python_implementation != 'PyPy' and extra == 'test' + - cairocffi>=1.2.0 ; extra == 'test-win-arm64' + - networkx>=2.5 ; extra == 'test-win-arm64' + - pytest>=7.0.1 ; extra == 'test-win-arm64' + - pytest-timeout>=2.1.0 ; extra == 'test-win-arm64' + - cairocffi>=1.2.0 ; extra == 'test-musl' + - networkx>=2.5 ; extra == 'test-musl' + - pytest>=7.0.1 ; extra == 'test-musl' + - pytest-timeout>=2.1.0 ; extra == 'test-musl' + - sphinx>=7.0.0 ; extra == 'doc' + - sphinx-rtd-theme>=1.3.0 ; extra == 'doc' + - sphinx-gallery>=0.14.0 ; extra == 'doc' + - pydoctor>=23.4.0 ; extra == 'doc' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/8f/27/0494b31c65a4dbb09206962f7a056ff9df5388ab13e1dddc27ecf47238df/imagecodecs-2025.11.11-cp311-abi3-macosx_11_0_arm64.whl + name: imagecodecs + version: 2025.11.11 + sha256: 45a865690275a3a8893c4c54377c678a7b361ebe13dd3a9e22c66443a96b1c2a + requires_dist: + - numpy + - matplotlib ; extra == 'all' + - tifffile ; extra == 'all' + - numcodecs ; extra == 'all' + - pytest ; extra == 'test' + - pytest-run-parallel ; extra == 'test' + - tifffile ; extra == 'test' + - czifile ; extra == 'test' + - blosc ; extra == 'test' + - blosc2 ; extra == 'test' + - brotli ; extra == 'test' + - zstd ; extra == 'test' + - lz4 ; extra == 'test' + - pyliblzfse ; extra == 'test' + - python-lzf ; extra == 'test' + - python-snappy ; extra == 'test' + - bitshuffle ; extra == 'test' + - zopflipy ; extra == 'test' + - zarr ; extra == 'test' + - numcodecs ; extra == 'test' + - kerchunk ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/fb/fe/301e0936b79bcab4cacc7548bf2853fc28dced0a578bab1f7ef53c9aa75b/imageio-2.37.2-py3-none-any.whl + name: imageio + version: 2.37.2 + sha256: ad9adfb20335d718c03de457358ed69f141021a333c40a53e57273d8a5bd0b9b + requires_dist: + - numpy + - pillow>=8.3.2 + - imageio-ffmpeg ; extra == 'ffmpeg' + - psutil ; extra == 'ffmpeg' + - fsspec[http] ; extra == 'freeimage' + - pillow-heif ; extra == 'pillow-heif' + - tifffile ; extra == 'tifffile' + - av ; extra == 'pyav' + - astropy ; extra == 'fits' + - rawpy ; extra == 'rawpy' + - numpy>2 ; extra == 'rawpy' + - gdal ; extra == 'gdal' + - itk ; extra == 'itk' + - black ; extra == 'linting' + - flake8 ; extra == 'linting' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - fsspec[github] ; extra == 'test' + - sphinx<6 ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - fsspec[github] ; extra == 'dev' + - black ; extra == 'dev' + - flake8 ; extra == 'dev' + - av ; extra == 'all-plugins' + - astropy ; extra == 'all-plugins' + - fsspec[http] ; extra == 'all-plugins' + - imageio-ffmpeg ; extra == 'all-plugins' + - numpy>2 ; extra == 'all-plugins' + - pillow-heif ; extra == 'all-plugins' + - psutil ; extra == 'all-plugins' + - rawpy ; extra == 'all-plugins' + - tifffile ; extra == 'all-plugins' + - fsspec[http] ; extra == 'all-plugins-pypy' + - imageio-ffmpeg ; extra == 'all-plugins-pypy' + - pillow-heif ; extra == 'all-plugins-pypy' + - psutil ; extra == 'all-plugins-pypy' + - tifffile ; extra == 'all-plugins-pypy' + - astropy ; extra == 'full' + - av ; extra == 'full' + - black ; extra == 'full' + - flake8 ; extra == 'full' + - fsspec[github,http] ; extra == 'full' + - imageio-ffmpeg ; extra == 'full' + - numpydoc ; extra == 'full' + - numpy>2 ; extra == 'full' + - pillow-heif ; extra == 'full' + - psutil ; extra == 'full' + - pydata-sphinx-theme ; extra == 'full' + - pytest ; extra == 'full' + - pytest-cov ; extra == 'full' + - rawpy ; extra == 'full' + - sphinx<6 ; extra == 'full' + - tifffile ; extra == 'full' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl + name: inflect + version: 7.5.0 + sha256: 2aea70e5e70c35d8350b8097396ec155ffd68def678c7ff97f51aa69c1d92344 + requires_dist: + - more-itertools>=8.5.0 + - typeguard>=4.0.1 + - typing-extensions ; python_full_version < '3.9' + - pytest>=6,!=8.1.* ; extra == 'test' + - pygments ; extra == 'test' + - sphinx>=3.5 ; extra == 'doc' + - jaraco-packaging>=9.3 ; extra == 'doc' + - rst-linker>=1.9 ; extra == 'doc' + - furo ; extra == 'doc' + - sphinx-lint ; extra == 'doc' + - jaraco-tidelift>=1.4 ; extra == 'doc' + - pytest-checkdocs>=2.4 ; extra == 'check' + - pytest-ruff>=0.2.1 ; sys_platform != 'cygwin' and extra == 'check' + - pytest-cov ; extra == 'cover' + - pytest-enabler>=2.2 ; extra == 'enabler' + - pytest-mypy ; extra == 'type' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl + name: iniconfig + version: 2.3.0 + sha256: f631c04d2c48c52b84d0d0549c99ff3859c98df65b3101406327ecc7d53fbf12 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl + name: ipykernel + version: 7.1.0 + sha256: 763b5ec6c5b7776f6a8d7ce09b267693b4e5ce75cb50ae696aaefb3c85e1ea4c + requires_dist: + - appnope>=0.1.2 ; sys_platform == 'darwin' + - comm>=0.1.1 + - debugpy>=1.6.5 + - ipython>=7.23.1 + - jupyter-client>=8.0.0 + - jupyter-core>=4.12,!=5.0.* + - matplotlib-inline>=0.1 + - nest-asyncio>=1.4 + - packaging>=22 + - psutil>=5.7 + - pyzmq>=25 + - tornado>=6.2 + - traitlets>=5.4.0 + - coverage[toml] ; extra == 'cov' + - matplotlib ; extra == 'cov' + - pytest-cov ; extra == 'cov' + - trio ; extra == 'cov' + - intersphinx-registry ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx<8.2.0 ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - trio ; extra == 'docs' + - pyqt5 ; extra == 'pyqt5' + - pyside6 ; extra == 'pyside6' + - flaky ; extra == 'test' + - ipyparallel ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-asyncio>=0.23.5 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0,<9 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/86/92/162cfaee4ccf370465c5af1ce36a9eacec1becb552f2033bb3584e6f640a/ipython-9.9.0-py3-none-any.whl + name: ipython + version: 9.9.0 + sha256: b457fe9165df2b84e8ec909a97abcf2ed88f565970efba16b1f7229c283d252b + requires_dist: + - colorama>=0.4.4 ; sys_platform == 'win32' + - decorator>=4.3.2 + - ipython-pygments-lexers>=1.0.0 + - jedi>=0.18.1 + - matplotlib-inline>=0.1.5 + - pexpect>4.3 ; sys_platform != 'emscripten' and sys_platform != 'win32' + - prompt-toolkit>=3.0.41,<3.1.0 + - pygments>=2.11.0 + - stack-data>=0.6.0 + - traitlets>=5.13.0 + - typing-extensions>=4.6 ; python_full_version < '3.12' + - black ; extra == 'black' + - docrepr ; extra == 'doc' + - exceptiongroup ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - ipykernel ; extra == 'doc' + - ipython[matplotlib,test] ; extra == 'doc' + - setuptools>=70.0 ; extra == 'doc' + - sphinx-toml==0.0.4 ; extra == 'doc' + - sphinx-rtd-theme>=0.1.8 ; extra == 'doc' + - sphinx>=8.0 ; extra == 'doc' + - typing-extensions ; extra == 'doc' + - pytest>=7.0.0 ; extra == 'test' + - pytest-asyncio>=1.0.0 ; extra == 'test' + - testpath>=0.2 ; extra == 'test' + - packaging>=20.1.0 ; extra == 'test' + - setuptools>=61.2 ; extra == 'test' + - ipython[test] ; extra == 'test-extra' + - curio ; extra == 'test-extra' + - jupyter-ai ; extra == 'test-extra' + - ipython[matplotlib] ; extra == 'test-extra' + - nbformat ; extra == 'test-extra' + - nbclient ; extra == 'test-extra' + - ipykernel>6.30 ; extra == 'test-extra' + - numpy>=1.27 ; extra == 'test-extra' + - pandas>2.1 ; extra == 'test-extra' + - trio>=0.1.0 ; extra == 'test-extra' + - matplotlib>3.9 ; extra == 'matplotlib' + - ipython[doc,matplotlib,terminal,test,test-extra] ; extra == 'all' + - argcomplete>=3.0 ; extra == 'all' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl + name: ipython-pygments-lexers + version: 1.1.1 + sha256: a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c + requires_dist: + - pygments + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/56/6d/0d9848617b9f753b87f214f1c682592f7ca42de085f564352f10f0843026/ipywidgets-8.1.8-py3-none-any.whl + name: ipywidgets + version: 8.1.8 + sha256: ecaca67aed704a338f88f67b1181b58f821ab5dc89c1f0f5ef99db43c1c2921e + requires_dist: + - comm>=0.1.3 + - ipython>=6.1.0 + - traitlets>=4.3.1 + - widgetsnbextension~=4.0.14 + - jupyterlab-widgets~=3.0.15 + - jsonschema ; extra == 'test' + - ipykernel ; extra == 'test' + - pytest>=3.6.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytz ; extra == 'test' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl + name: isoduration + version: 20.11.0 + sha256: b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042 + requires_dist: + - arrow>=0.15.0 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/a8/f7/ae4ecf183d9693cd5fcce7ee063c5e54f173b66dc80a8a79951861e1b557/jax-0.8.2-py3-none-any.whl + name: jax + version: 0.8.2 + sha256: d0478c5dc74406441efcd25731166a65ee782f13c352fa72dc7d734351909355 + requires_dist: + - jaxlib<=0.8.2,>=0.8.2 + - ml-dtypes>=0.5.0 + - numpy>=2.0 + - opt-einsum + - scipy>=1.13 + - jaxlib==0.8.2 ; extra == 'minimum-jaxlib' + - jaxlib==0.8.1 ; extra == 'ci' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'tpu' + - libtpu==0.0.32.* ; extra == 'tpu' + - requests ; extra == 'tpu' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda' + - jax-cuda12-plugin[with-cuda]<=0.8.2,>=0.8.2 ; extra == 'cuda' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda12' + - jax-cuda12-plugin[with-cuda]<=0.8.2,>=0.8.2 ; extra == 'cuda12' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda13' + - jax-cuda13-plugin[with-cuda]<=0.8.2,>=0.8.2 ; extra == 'cuda13' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda12-local' + - jax-cuda12-plugin<=0.8.2,>=0.8.2 ; extra == 'cuda12-local' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda13-local' + - jax-cuda13-plugin<=0.8.2,>=0.8.2 ; extra == 'cuda13-local' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'rocm' + - jax-rocm7-plugin<=0.8.2,>=0.8.2 ; extra == 'rocm' + - kubernetes ; extra == 'k8s' + - xprof ; extra == 'xprof' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/53/f2/44ad0ce1d115f0f6be10f4af0ca05a18afb838b06e6ca6b01ba4b0137421/jax_cuda12_pjrt-0.8.2-py3-none-manylinux_2_27_x86_64.whl + name: jax-cuda12-pjrt + version: 0.8.2 + sha256: e3bab41ca7c48e4163db9e7efd271b3aa85f0fe45f5ed0708d6bbed93a59f977 +- pypi: https://files.pythonhosted.org/packages/60/a5/3a4f6585d530516f8a70494e9e916a611e01733ce3174dacb45d48a5ee63/jax_cuda12_plugin-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + name: jax-cuda12-plugin + version: 0.8.2 + sha256: 20165861b3d3e66ebb2c0f63a547d1d5ee17ea44ac3be7153c7908c9ca8c88f3 + requires_dist: + - jax-cuda12-pjrt==0.8.2 + - nvidia-cublas-cu12>=12.1.3.1 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-cupti-cu12>=12.1.105 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-nvcc-cu12>=12.6.85 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-runtime-cu12>=12.1.105 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cudnn-cu12>=9.8,<10.0 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cufft-cu12>=11.0.2.54 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cusolver-cu12>=11.4.5.107 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cusparse-cu12>=12.1.0.106 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-nccl-cu12>=2.18.1 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-nvjitlink-cu12>=12.1.105 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-nvrtc-cu12>=12.1.55 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-nvshmem-cu12>=3.2.5 ; sys_platform == 'linux' and extra == 'with-cuda' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/c1/77/18ac0ac08c76bf12ed47b0c2d7d35f3fc3d065bd105b36937901eab1455c/jaxlib-0.8.2-cp312-cp312-macosx_11_0_arm64.whl + name: jaxlib + version: 0.8.2 + sha256: 023de6f3f56da2af7037970996500586331fdb50b530ecbb54b9666da633bd00 + requires_dist: + - scipy>=1.13 + - numpy>=2.0 + - ml-dtypes>=0.5.0 + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/e0/bf/e386c4bbfda3fb326a01594cc46c8ac90cdeeeacee4c553d9e3848f75893/jaxlib-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + name: jaxlib + version: 0.8.2 + sha256: 2b9789bd08f8b0cc5a5c12ae896fe432d5942e32e417091b8b5a96a9a6fd5cf1 + requires_dist: + - scipy>=1.13 + - numpy>=2.0 + - ml-dtypes>=0.5.0 + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl + name: jedi + version: 0.19.2 + sha256: a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9 + requires_dist: + - parso>=0.8.4,<0.9.0 + - jinja2==2.11.3 ; extra == 'docs' + - markupsafe==1.1.1 ; extra == 'docs' + - pygments==2.8.1 ; extra == 'docs' + - alabaster==0.7.12 ; extra == 'docs' + - babel==2.9.1 ; extra == 'docs' + - chardet==4.0.0 ; extra == 'docs' + - commonmark==0.8.1 ; extra == 'docs' + - docutils==0.17.1 ; extra == 'docs' + - future==0.18.2 ; extra == 'docs' + - idna==2.10 ; extra == 'docs' + - imagesize==1.2.0 ; extra == 'docs' + - mock==1.0.1 ; extra == 'docs' + - packaging==20.9 ; extra == 'docs' + - pyparsing==2.4.7 ; extra == 'docs' + - pytz==2021.1 ; extra == 'docs' + - readthedocs-sphinx-ext==2.1.4 ; extra == 'docs' + - recommonmark==0.5.0 ; extra == 'docs' + - requests==2.25.1 ; extra == 'docs' + - six==1.15.0 ; extra == 'docs' + - snowballstemmer==2.1.0 ; extra == 'docs' + - sphinx-rtd-theme==0.4.3 ; extra == 'docs' + - sphinx==1.8.5 ; extra == 'docs' + - sphinxcontrib-serializinghtml==1.1.4 ; extra == 'docs' + - sphinxcontrib-websupport==1.2.4 ; extra == 'docs' + - urllib3==1.26.4 ; extra == 'docs' + - flake8==5.0.4 ; extra == 'qa' + - mypy==0.971 ; extra == 'qa' + - types-setuptools==67.2.0.1 ; extra == 'qa' + - django ; extra == 'testing' + - attrs ; extra == 'testing' + - colorama ; extra == 'testing' + - docopt ; extra == 'testing' + - pytest<9.0.0 ; extra == 'testing' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/20/9a/e5d9ec41927401e41aea8af6d16e78b5e612bca4699d417f646a9610a076/Jinja2-3.0.3-py3-none-any.whl + name: jinja2 + version: 3.0.3 + sha256: 077ce6014f7b40d03b47d1f1ca4b0fc8328a692bd284016f806ed0eaca390ad8 + requires_dist: + - markupsafe>=2.0 + - babel>=2.7 ; extra == 'i18n' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl + name: jinja2 + version: 3.1.6 + sha256: 85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67 + requires_dist: + - markupsafe>=2.0 + - babel>=2.7 ; extra == 'i18n' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/14/2f/967ba146e6d58cf6a652da73885f52fc68001525b4197effc174321d70b4/jmespath-1.1.0-py3-none-any.whl + name: jmespath + version: 1.1.0 + sha256: a5663118de4908c91729bea0acadca56526eb2698e83de10cd116ae0f4e97c64 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/7b/91/984aca2ec129e2757d1e4e3c81c3fcda9d0f85b74670a094cc443d9ee949/joblib-1.5.3-py3-none-any.whl + name: joblib + version: 1.5.3 + sha256: 5fc3c5039fc5ca8c0276333a188bbd59d6b7ab37fe6632daa76bc7f9ec18e713 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d7/9e/038522f50ceb7e74f1f991bf1b699f24b0c2bbe7c390dd36ad69f4582258/json5-0.13.0-py3-none-any.whl + name: json5 + version: 0.13.0 + sha256: 9a08e1dd65f6a4d4c6fa82d216cf2477349ec2346a38fd70cc11d2557499fbcc + requires_python: '>=3.8.0' +- pypi: https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl + name: jsonpointer + version: 3.0.0 + sha256: 13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/69/90/f63fb5873511e014207a475e2bb4e8b2e570d655b00ac19a9a0ca0a385ee/jsonschema-4.26.0-py3-none-any.whl + name: jsonschema + version: 4.26.0 + sha256: d489f15263b8d200f8387e64b4c3a75f06629559fb73deb8fdfb525f2dab50ce + requires_dist: + - attrs>=22.2.0 + - jsonschema-specifications>=2023.3.6 + - referencing>=0.28.4 + - rpds-py>=0.25.0 + - fqdn ; extra == 'format' + - idna ; extra == 'format' + - isoduration ; extra == 'format' + - jsonpointer>1.13 ; extra == 'format' + - rfc3339-validator ; extra == 'format' + - rfc3987 ; extra == 'format' + - uri-template ; extra == 'format' + - webcolors>=1.11 ; extra == 'format' + - fqdn ; extra == 'format-nongpl' + - idna ; extra == 'format-nongpl' + - isoduration ; extra == 'format-nongpl' + - jsonpointer>1.13 ; extra == 'format-nongpl' + - rfc3339-validator ; extra == 'format-nongpl' + - rfc3986-validator>0.1.0 ; extra == 'format-nongpl' + - rfc3987-syntax>=1.1.0 ; extra == 'format-nongpl' + - uri-template ; extra == 'format-nongpl' + - webcolors>=24.6.0 ; extra == 'format-nongpl' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/41/45/1a4ed80516f02155c51f51e8cedb3c1902296743db0bbc66608a0db2814f/jsonschema_specifications-2025.9.1-py3-none-any.whl + name: jsonschema-specifications + version: 2025.9.1 + sha256: 98802fee3a11ee76ecaca44429fda8a41bff98b00a0f2838151b113f210cc6fe + requires_dist: + - referencing>=0.31.0 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/2d/0b/ceb7694d864abc0a047649aec263878acb9f792e1fec3e676f22dc9015e3/jupyter_client-8.8.0-py3-none-any.whl + name: jupyter-client + version: 8.8.0 + sha256: f93a5b99c5e23a507b773d3a1136bd6e16c67883ccdbd9a829b0bbdb98cd7d7a + requires_dist: + - jupyter-core>=5.1 + - python-dateutil>=2.8.2 + - pyzmq>=25.0 + - tornado>=6.4.1 + - traitlets>=5.3 + - ipykernel ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx>=4 ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - orjson ; extra == 'orjson' + - anyio ; extra == 'test' + - coverage ; extra == 'test' + - ipykernel>=6.14 ; extra == 'test' + - msgpack ; extra == 'test' + - mypy ; platform_python_implementation != 'PyPy' and extra == 'test' + - paramiko ; sys_platform == 'win32' and extra == 'test' + - pre-commit ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-jupyter[client]>=0.6.2 ; extra == 'test' + - pytest-timeout ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl + name: jupyter-core + version: 5.9.1 + sha256: ebf87fdc6073d142e114c72c9e29a9d7ca03fad818c5d300ce2adc1fb0743407 + requires_dist: + - platformdirs>=2.5 + - traitlets>=5.3 + - intersphinx-registry ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - traitlets ; extra == 'docs' + - ipykernel ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest<9 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl + name: jupyter-events + version: 0.12.0 + sha256: 6464b2fa5ad10451c3d35fabc75eab39556ae1e2853ad0c0cc31b656731a97fb + requires_dist: + - jsonschema[format-nongpl]>=4.18.0 + - packaging + - python-json-logger>=2.0.4 + - pyyaml>=5.3 + - referencing + - rfc3339-validator + - rfc3986-validator>=0.1.1 + - traitlets>=5.3 + - click ; extra == 'cli' + - rich ; extra == 'cli' + - jupyterlite-sphinx ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme>=0.16 ; extra == 'docs' + - sphinx>=8 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - click ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-asyncio>=0.19.0 ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + - rich ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/1a/60/1f6cee0c46263de1173894f0fafcb3475ded276c472c14d25e0280c18d6d/jupyter_lsp-2.3.0-py3-none-any.whl + name: jupyter-lsp + version: 2.3.0 + sha256: e914a3cb2addf48b1c7710914771aaf1819d46b2e5a79b0f917b5478ec93f34f + requires_dist: + - jupyter-server>=1.1.2 + - importlib-metadata>=4.8.3 ; python_full_version < '3.10' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/92/80/a24767e6ca280f5a49525d987bf3e4d7552bf67c8be07e8ccf20271f8568/jupyter_server-2.17.0-py3-none-any.whl + name: jupyter-server + version: 2.17.0 + sha256: e8cb9c7db4251f51ed307e329b81b72ccf2056ff82d50524debde1ee1870e13f + requires_dist: + - anyio>=3.1.0 + - argon2-cffi>=21.1 + - jinja2>=3.0.3 + - jupyter-client>=7.4.4 + - jupyter-core>=4.12,!=5.0.* + - jupyter-events>=0.11.0 + - jupyter-server-terminals>=0.4.4 + - nbconvert>=6.4.4 + - nbformat>=5.3.0 + - overrides>=5.0 ; python_full_version < '3.12' + - packaging>=22.0 + - prometheus-client>=0.9 + - pywinpty>=2.0.1 ; os_name == 'nt' + - pyzmq>=24 + - send2trash>=1.8.2 + - terminado>=0.8.3 + - tornado>=6.2.0 + - traitlets>=5.6.0 + - websocket-client>=1.7 + - ipykernel ; extra == 'docs' + - jinja2 ; extra == 'docs' + - jupyter-client ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbformat ; extra == 'docs' + - prometheus-client ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - send2trash ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-openapi>=0.8.0 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - sphinxemoji ; extra == 'docs' + - tornado ; extra == 'docs' + - typing-extensions ; extra == 'docs' + - flaky ; extra == 'test' + - ipykernel ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-jupyter[server]>=0.7 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0,<9 ; extra == 'test' + - requests ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d1/2d/6674563f71c6320841fc300911a55143925112a72a883e2ca71fba4c618d/jupyter_server_terminals-0.5.4-py3-none-any.whl + name: jupyter-server-terminals + version: 0.5.4 + sha256: 55be353fc74a80bc7f3b20e6be50a55a61cd525626f578dcb66a5708e2007d14 + requires_dist: + - pywinpty>=2.0.3 ; os_name == 'nt' + - terminado>=0.8.3 + - jinja2 ; extra == 'docs' + - jupyter-server ; extra == 'docs' + - mistune<4.0 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbformat ; extra == 'docs' + - packaging ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-openapi ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - sphinxemoji ; extra == 'docs' + - tornado ; extra == 'docs' + - jupyter-server>=2.0.0 ; extra == 'test' + - pytest-jupyter[server]>=0.5.3 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/9e/9a/0bf9a7a45f0006d7ff4fdc4fc313de4255acab02bf4db1887c65f0472c01/jupyterlab-4.5.3-py3-none-any.whl + name: jupyterlab + version: 4.5.3 + sha256: 63c9f3a48de72ba00df766ad6eed416394f5bb883829f11eeff0872302520ba7 + requires_dist: + - async-lru>=1.0.0 + - httpx>=0.25.0,<1 + - importlib-metadata>=4.8.3 ; python_full_version < '3.10' + - ipykernel>=6.5.0,!=6.30.0 + - jinja2>=3.0.3 + - jupyter-core + - jupyter-lsp>=2.0.0 + - jupyter-server>=2.4.0,<3 + - jupyterlab-server>=2.28.0,<3 + - notebook-shim>=0.2 + - packaging + - setuptools>=41.1.0 + - tomli>=1.2.2 ; python_full_version < '3.11' + - tornado>=6.2.0 + - traitlets + - build ; extra == 'dev' + - bump2version ; extra == 'dev' + - coverage ; extra == 'dev' + - hatch ; extra == 'dev' + - pre-commit ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - ruff==0.11.12 ; extra == 'dev' + - jsx-lexer ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme>=0.13.0 ; extra == 'docs' + - pytest ; extra == 'docs' + - pytest-check-links ; extra == 'docs' + - pytest-jupyter ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx>=1.8,<8.2.0 ; extra == 'docs' + - altair==6.0.0 ; extra == 'docs-screenshots' + - ipython==8.16.1 ; extra == 'docs-screenshots' + - ipywidgets==8.1.5 ; extra == 'docs-screenshots' + - jupyterlab-geojson==3.4.0 ; extra == 'docs-screenshots' + - jupyterlab-language-pack-zh-cn==4.3.post1 ; extra == 'docs-screenshots' + - matplotlib==3.10.0 ; extra == 'docs-screenshots' + - nbconvert>=7.0.0 ; extra == 'docs-screenshots' + - pandas==2.2.3 ; extra == 'docs-screenshots' + - scipy==1.15.1 ; extra == 'docs-screenshots' + - coverage ; extra == 'test' + - pytest-check-links>=0.7 ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-jupyter>=0.5.3 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-tornasync ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + - requests ; extra == 'test' + - requests-cache ; extra == 'test' + - virtualenv ; extra == 'test' + - copier>=9,<10 ; extra == 'upgrade-extension' + - jinja2-time<0.3 ; extra == 'upgrade-extension' + - pydantic<3.0 ; extra == 'upgrade-extension' + - pyyaml-include<3.0 ; extra == 'upgrade-extension' + - tomli-w<2.0 ; extra == 'upgrade-extension' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl + name: jupyterlab-pygments + version: 0.3.0 + sha256: 841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/e0/07/a000fe835f76b7e1143242ab1122e6362ef1c03f23f83a045c38859c2ae0/jupyterlab_server-2.28.0-py3-none-any.whl + name: jupyterlab-server + version: 2.28.0 + sha256: e4355b148fdcf34d312bbbc80f22467d6d20460e8b8736bf235577dd18506968 + requires_dist: + - babel>=2.10 + - importlib-metadata>=4.8.3 ; python_full_version < '3.10' + - jinja2>=3.0.3 + - json5>=0.9.0 + - jsonschema>=4.18.0 + - jupyter-server>=1.21,<3 + - packaging>=21.3 + - requests>=2.31 + - autodoc-traits ; extra == 'docs' + - jinja2<3.2.0 ; extra == 'docs' + - mistune<4 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinxcontrib-openapi>0.8 ; extra == 'docs' + - openapi-core~=0.18.0 ; extra == 'openapi' + - ruamel-yaml ; extra == 'openapi' + - hatch ; extra == 'test' + - ipykernel ; extra == 'test' + - openapi-core~=0.18.0 ; extra == 'test' + - openapi-spec-validator>=0.6.0,<0.8.0 ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-jupyter[server]>=0.6.2 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0,<8 ; extra == 'test' + - requests-mock ; extra == 'test' + - ruamel-yaml ; extra == 'test' + - sphinxcontrib-spelling ; extra == 'test' + - strict-rfc3339 ; extra == 'test' + - werkzeug ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/ab/b5/36c712098e6191d1b4e349304ef73a8d06aed77e56ceaac8c0a306c7bda1/jupyterlab_widgets-3.0.16-py3-none-any.whl + name: jupyterlab-widgets + version: 3.0.16 + sha256: 45fa36d9c6422cf2559198e4db481aa243c7a32d9926b500781c830c80f7ecf8 + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.3-hb9d3cd8_0.conda + sha256: 0960d06048a7185d3542d850986d807c6e37ca2e644342dd0c72feefcf26c2a4 + md5: b38117a3c920364aff79f870c984b4a3 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-or-later + purls: [] + size: 134088 + timestamp: 1754905959823 +- pypi: https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl + name: kiwisolver + version: 1.4.9 + sha256: 4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: kiwisolver + version: 1.4.9 + sha256: f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda + sha256: 99df692f7a8a5c27cd14b5fb1374ee55e756631b9c3d659ed3ee60830249b238 + md5: 3f43953b7d3fb3aaa1d0d0723d91e368 + depends: + - keyutils >=1.6.1,<2.0a0 + - libedit >=3.1.20191231,<3.2.0a0 + - libedit >=3.1.20191231,<4.0a0 + - libgcc-ng >=12 + - libstdcxx-ng >=12 + - openssl >=3.3.1,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 1370023 + timestamp: 1719463201255 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda + sha256: 4442f957c3c77d69d9da3521268cad5d54c9033f1a73f99cde0a3658937b159b + md5: c6dc8a0fdec13a0565936655c33069a1 + depends: + - __osx >=11.0 + - libcxx >=16 + - libedit >=3.1.20191231,<3.2.0a0 + - libedit >=3.1.20191231,<4.0a0 + - openssl >=3.3.1,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 1155530 + timestamp: 1719463474401 +- pypi: https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl + name: lark + version: 1.3.1 + sha256: c629b661023a014c37da873b4ff58a817398d12635d3bbb2c5a03be7fe5d1e12 + requires_dist: + - regex ; extra == 'regex' + - js2py ; extra == 'nearley' + - atomicwrites ; extra == 'atomic-cache' + - interegular>=0.3.1,<0.4.0 ; extra == 'interegular' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl + name: lazy-loader + version: '0.4' + sha256: 342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc + requires_dist: + - packaging + - importlib-metadata ; python_full_version < '3.8' + - changelist==0.5 ; extra == 'dev' + - pre-commit==3.7.0 ; extra == 'lint' + - pytest>=7.4 ; extra == 'test' + - pytest-cov>=4.1 ; extra == 'test' + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.45-default_hbd61a6d_105.conda + sha256: 1027bd8aa0d5144e954e426ab6218fd5c14e54a98f571985675468b339c808ca + md5: 3ec0aa5037d39b06554109a01e6fb0c6 + depends: + - __glibc >=2.17,<3.0.a0 + - zstd >=1.5.7,<1.6.0a0 + constrains: + - binutils_impl_linux-64 2.45 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 730831 + timestamp: 1766513089214 +- pypi: https://files.pythonhosted.org/packages/41/5b/058db09c45ba58a7321bdf2294cae651b37d6fec68117265af90cde043b0/legacy_api_wrap-1.5-py3-none-any.whl + name: legacy-api-wrap + version: '1.5' + sha256: 5a8ea50e3e3bcbcdec3447b77034fd0d32cb2cf4089db799238708e4d7e0098d + requires_dist: + - anyconfig[toml]>=0.14 ; extra == 'test' + - coverage ; extra == 'test' + - coverage-rich ; extra == 'test' + - pytest ; extra == 'test' + - typer<0.14 ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/98/f4/98db342d603671ae0a233f0a624939a47161044a2716cbd62a50440a1132/leidenalg-0.11.0-cp38-abi3-macosx_11_0_arm64.whl + name: leidenalg + version: 0.11.0 + sha256: 9b5781876b1f1faed72a4f9926ff52de286843556b9d6791fe25a2acb33b7a5c + requires_dist: + - igraph>=1.0.0,<2.0 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/b0/a4/a89e2ce16a580f7bea066ed49364f0b3e04a6412f0c3692975bee8515141/leidenalg-0.11.0-cp38-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: leidenalg + version: 0.11.0 + sha256: 571a0934f831a69442d82889d319bdba93de924bd9e09b720cd8cbe6fdc08c17 + requires_dist: + - igraph>=1.0.0,<2.0 + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.5-h088129d_0.conda + sha256: 822e4ae421a7e9c04e841323526321185f6659222325e1a9aedec811c686e688 + md5: 86f7414544ae606282352fa1e116b41f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 36544 + timestamp: 1769221884824 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libaec-1.1.5-h8664d51_0.conda + sha256: af9cd8db11eb719e38a3340c88bb4882cf19b5b4237d93845224489fc2a13b46 + md5: 13e6d9ae0efbc9d2e9a01a91f4372b41 + depends: + - __osx >=11.0 + - libcxx >=19 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 30390 + timestamp: 1769222133373 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libamd-3.3.3-h456b2da_7100101.conda + sha256: 5fc32a5497c9919ffde729a604b0acfa97c403ce5b2b27b28ca261cf0c4643aa + md5: a067596d679bcde85375143e7c374738 + depends: + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=13.3.0 + - libgfortran + - libgcc >=13 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 48250 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libamd-3.3.3-h5087772_7100102.conda + sha256: 69b5340e7abace13f31f3d9df024ed554d99a250a179d480976fc9682bf7d46e + md5: 0c30185fa04e8b5c78f1f70e6e501bec + depends: + - __osx >=11.0 + - libgfortran >=5 + - libgfortran5 >=13.2.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 46609 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.11.0-7_hc00574d_netlib.conda + build_number: 7 + sha256: 464608528e7b188fa3a602c503c7f73b3b446bbfd7b259d1c8b56470c34166fc + md5: bdc18b0a31b3141c6fc1b3bd9fa30fa4 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + constrains: + - blas * netlib + track_features: + - blas_netlib + - blas_netlib_2 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 222771 + timestamp: 1763440535188 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.11.0-5_h51639a9_openblas.conda + build_number: 5 + sha256: 620a6278f194dcabc7962277da6835b1e968e46ad0c8e757736255f5ddbfca8d + md5: bcc025e2bbaf8a92982d20863fe1fb69 + depends: + - libopenblas >=0.3.30,<0.3.31.0a0 + - libopenblas >=0.3.30,<1.0a0 + constrains: + - libcblas 3.11.0 5*_openblas + - liblapack 3.11.0 5*_openblas + - liblapacke 3.11.0 5*_openblas + - blas 2.305 openblas + - mkl <2026 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 18546 + timestamp: 1765819094137 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libbtf-2.3.2-hf02c80a_7100101.conda + sha256: fe36f414f48ab87251f02aeef1fcbb6f3929322316842dada0f8142db2710264 + md5: 6f4aec52002defbdf3e24eb79e56a209 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 26913 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbtf-2.3.2-h99b4a89_7100102.conda + sha256: b05f0169f8723d4a3128ba0b77382385f01835f245079f14c3cb1406a9aff4a8 + md5: bb83a609dcf66d5ac2fd666888788c16 + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 25541 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcamd-3.3.3-hf02c80a_7100101.conda + sha256: 16e9ae4e173a8606b0b8be118dbdcf4e03c9dd9777eea6bf9dff4397133d0d06 + md5: 1c9d1532caadece8adc2d14c6d4fc726 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 44119 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcamd-3.3.3-h99b4a89_7100102.conda + sha256: 7ee0d0881bde6702b662fdaea2d7ca2dd455b37cc413ba466075d7fc3186094d + md5: 9c61b6733f2167a84d08d97a9f2d6f88 + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 38836 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.77-h3ff7636_0.conda + sha256: 9517cce5193144af0fcbf19b7bd67db0a329c2cc2618f28ffecaa921a1cbe9d3 + md5: 09c264d40c67b82b49a3f3b89037bd2e + depends: + - __glibc >=2.17,<3.0.a0 + - attr >=2.5.2,<2.6.0a0 + - libgcc >=14 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 121429 + timestamp: 1762349484074 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.11.0-7_h8e06fc2_netlib.conda + build_number: 7 + sha256: 7940cc63673587cb7946831431b0527ce5707e24a54df87644c199e40c2714b4 + md5: 5febfe8ecc44ffab4f03b026fd63abb8 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas 3.11.0.* + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + track_features: + - blas_netlib + - blas_netlib_2 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 50122 + timestamp: 1763440541127 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.11.0-5_hb0561ab_openblas.conda + build_number: 5 + sha256: 38809c361bbd165ecf83f7f05fae9b791e1baa11e4447367f38ae1327f402fc0 + md5: efd8bd15ca56e9d01748a3beab8404eb + depends: + - libblas 3.11.0 5_h51639a9_openblas + constrains: + - liblapacke 3.11.0 5*_openblas + - liblapack 3.11.0 5*_openblas + - blas 2.305 openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 18548 + timestamp: 1765819108956 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libccolamd-3.3.4-hf02c80a_7100101.conda + sha256: cc90aa5e0ad1f7ae9a29d9a42aacd7f7f02aba0bf5467513bfda7e6b18a4cbc8 + md5: e5107e02dc4c2f9f41eef72d72c23517 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 41578 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libccolamd-3.3.4-h99b4a89_7100102.conda + sha256: c2adccb535216828b036311da2e5ff67210cbd796c5c008c8c0aff8225b33adf + md5: 14092975663a3b6139a8891b8f56151b + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 38623 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcholmod-5.3.1-h9cf07ce_7100101.conda + sha256: 69540315b4b8de93b383243334151ed19e98968baaa59440ba645a3bff68d765 + md5: f51e24ce110ae24c92074736a308e47e + depends: + - libgcc >=13 + - libstdcxx >=13 + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - liblapack >=3.9.0,<4.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libccolamd >=3.3.4,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - libcamd >=3.3.3,<4.0a0 + license: LGPL-2.1-or-later AND GPL-2.0-or-later AND Apache-2.0 + purls: [] + size: 990886 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcholmod-5.3.1-hbba04d7_7100102.conda + sha256: d031714d1c5c29461113b732a9788579f6c8b466cf44580fdd350e585c246b40 + md5: a780c27386527ac7fe7526415a3b9b23 + depends: + - libcxx >=18 + - __osx >=11.0 + - llvm-openmp >=18.1.8 + - libccolamd >=3.3.4,<4.0a0 + - libamd >=3.3.3,<4.0a0 + - libcamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - liblapack >=3.9.0,<4.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: LGPL-2.1-or-later AND GPL-2.0-or-later AND Apache-2.0 + purls: [] + size: 775287 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcolamd-3.3.4-hf02c80a_7100101.conda + sha256: 00d1b976b914f0c20ae6f81f4e4713fa87717542eba8757b9a3c9e8abcc29858 + md5: 56d4c5542887e8955f21f8546ad75d9d + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 33160 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcolamd-3.3.4-h99b4a89_7100102.conda + sha256: 3c4467faf60994dd095a66ba5a4508b9d610487ed89458084d87ad3e4b0fe53f + md5: 89673c8b6f5efcce6e92f5269996cc40 + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 31802 + timestamp: 1742288952863 +- pypi: https://pypi.nvidia.com/libcudf-cu12/libcudf_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + name: libcudf-cu12 + version: 25.12.0 + sha256: 5cf9f7f13c37a2dc2c1fa57c1aa50e5ceda6813cb47803719b16dddb5fb3e622 + requires_dist: + - libkvikio-cu12==25.12.* + - librmm-cu12==25.12.* + - rapids-logger==0.2.* + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/libcugraph-cu12/libcugraph_cu12-25.12.2-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: libcugraph-cu12 + version: 25.12.2 + sha256: d0eb2e4dc68e48999c05d175d3d0fb8531c5b2c4ce3312f039e0e2bf8db2b92c + requires_dist: + - libraft-cu12==25.12.* + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/libcuml-cu12/libcuml_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: libcuml-cu12 + version: 25.12.0 + sha256: 41f356963ac6cbff88d92cf9ede2de33323b788ad9c97937b8d9394f49309817 + requires_dist: + - cuda-toolkit[cublas,cufft,curand,cusolver,cusparse]==12.* + - libraft-cu12==25.12.* + - rapids-logger==0.2.* + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.18.0-h4e3cde8_0.conda + sha256: 5454709d9fb6e9c3dd6423bc284fa7835a7823bfa8323f6e8786cdd555101fab + md5: 0a5563efed19ca4461cf927419b6eb73 + depends: + - __glibc >=2.17,<3.0.a0 + - krb5 >=1.21.3,<1.22.0a0 + - libgcc >=14 + - libnghttp2 >=1.67.0,<2.0a0 + - libssh2 >=1.11.1,<2.0a0 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.4,<4.0a0 + - zstd >=1.5.7,<1.6.0a0 + license: curl + license_family: MIT + purls: [] + size: 462942 + timestamp: 1767821743793 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.18.0-he38603e_0.conda + sha256: 11c78b3e89bc332933386f0a11ac60d9200afb7a811b9e3bec98aef8d4a6389b + md5: 36190179a799f3aee3c2d20a8a2b970d + depends: + - __osx >=11.0 + - krb5 >=1.21.3,<1.22.0a0 + - libnghttp2 >=1.67.0,<2.0a0 + - libssh2 >=1.11.1,<2.0a0 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.4,<4.0a0 + - zstd >=1.5.7,<1.6.0a0 + license: curl + license_family: MIT + purls: [] + size: 402681 + timestamp: 1767822693908 +- pypi: https://pypi.nvidia.com/libcuvs-cu12/libcuvs_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: libcuvs-cu12 + version: 25.12.0 + sha256: 30f54b221525128c1af8f750063e23e3b546e28f321a7e13aff9592c05d6a58d + requires_dist: + - cuda-toolkit[cublas,curand,cusolver,cusparse]==12.* + - libraft-cu12==25.12.* + - librmm-cu12==25.12.* + - nvidia-nccl-cu12>=2.19 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-21.1.8-hf598326_0.conda + sha256: 82e228975fd491bcf1071ecd0a6ec2a0fcc5f57eb0bd1d52cb13a18d57c67786 + md5: 780f0251b757564e062187044232c2b7 + depends: + - __osx >=11.0 + license: Apache-2.0 WITH LLVM-exception + license_family: Apache + purls: [] + size: 569118 + timestamp: 1765919724254 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda + sha256: d789471216e7aba3c184cd054ed61ce3f6dac6f87a50ec69291b9297f8c18724 + md5: c277e0a4d549b03ac1e9d6cbbe3d017b + depends: + - ncurses + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - ncurses >=6.5,<7.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 134676 + timestamp: 1738479519902 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20250104-pl5321hafb1f1b_0.conda + sha256: 66aa216a403de0bb0c1340a88d1a06adaff66bae2cfd196731aa24db9859d631 + md5: 44083d2d2c2025afca315c7a172eab2b + depends: + - ncurses + - __osx >=11.0 + - ncurses >=6.5,<7.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 107691 + timestamp: 1738479560845 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda + sha256: 1cd6048169fa0395af74ed5d8f1716e22c19a81a8a36f934c110ca3ad4dd27b4 + md5: 172bf1cd1ff8629f2b1179945ed45055 + depends: + - libgcc-ng >=12 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 112766 + timestamp: 1702146165126 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda + sha256: 95cecb3902fbe0399c3a7e67a5bed1db813e5ab0e22f4023a5e0f722f2cc214f + md5: 36d33e440c31857372a72137f78bacf5 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 107458 + timestamp: 1702146414478 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda + sha256: 2e14399d81fb348e9d231a82ca4d816bf855206923759b69ad006ba482764131 + md5: a1cfcc585f0c42bf8d5546bb1dfb668d + depends: + - libgcc-ng >=12 + - openssl >=3.1.1,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 427426 + timestamp: 1685725977222 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.3-hecca717_0.conda + sha256: 1e1b08f6211629cbc2efe7a5bca5953f8f6b3cae0eeb04ca4dacee1bd4e2db2f + md5: 8b09ae86839581147ef2e5c5e229d164 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + constrains: + - expat 2.7.3.* + license: MIT + license_family: MIT + purls: [] + size: 76643 + timestamp: 1763549731408 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.3-haf25636_0.conda + sha256: fce22610ecc95e6d149e42a42fbc3cc9d9179bd4eb6232639a60f06e080eec98 + md5: b79875dbb5b1db9a4a22a4520f918e1a + depends: + - __osx >=11.0 + constrains: + - expat 2.7.3.* + license: MIT + license_family: MIT + purls: [] + size: 67800 + timestamp: 1763549994166 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric-2.4.0-ha770c72_1.conda + sha256: c5298c27fe1be477b17cd989566eb6c1a1bb50222f2f90389143b6f06ba95398 + md5: 647939791f2cc2de3b4ecac28d216279 + depends: + - libfabric1 2.4.0 h8f87c3e_1 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 14406 + timestamp: 1769190335747 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric-2.4.0-hce30654_1.conda + sha256: a2a9779347d26c0d66f18705183e8701aeba420db01edaa5dcde3ae76cbf9c00 + md5: b356b8b9cdb1cb1f3cbfb25d00d35515 + depends: + - libfabric1 2.4.0 h84a0fba_1 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 14420 + timestamp: 1769190772410 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric1-2.4.0-h8f87c3e_1.conda + sha256: 3110ee1b3debb97638897bb0d7074ee257ff33519520327064c36a35391dec50 + md5: c5fc7dbc3dbabcae1eec5d6c62251df8 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libnl >=3.11.0,<4.0a0 + - rdma-core >=61.0 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 699849 + timestamp: 1769190335048 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric1-2.4.0-h84a0fba_1.conda + sha256: c57c240b11a0051f62d9f26560ae2c94df0ba5e30a33c59cd79786bf2d8588c6 + md5: 17b27d39ff83af87065476ab6d8b7e74 + depends: + - __osx >=11.0 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 330902 + timestamp: 1769190770219 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h3435931_0.conda + sha256: 31f19b6a88ce40ebc0d5a992c131f57d919f73c0b92cd1617a5bec83f6e961e6 + md5: a360c33a5abe61c07959e449fa1453eb + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + purls: [] + size: 58592 + timestamp: 1769456073053 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-hcf2aa1b_0.conda + sha256: 6686a26466a527585e6a75cc2a242bf4a3d97d6d6c86424a441677917f28bec7 + md5: 43c04d9cb46ef176bb2a4c77e324d599 + depends: + - __osx >=11.0 + license: MIT + purls: [] + size: 40979 + timestamp: 1769456747661 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.2.0-he0feb66_16.conda + sha256: 6eed58051c2e12b804d53ceff5994a350c61baf117ec83f5f10c953a3f311451 + md5: 6d0363467e6ed84f11435eb309f2ff06 + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + constrains: + - libgcc-ng ==15.2.0=*_16 + - libgomp 15.2.0 he0feb66_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 1042798 + timestamp: 1765256792743 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgcc-15.2.0-hcbb3090_16.conda + sha256: 646c91dbc422fe92a5f8a3a5409c9aac66549f4ce8f8d1cab7c2aa5db789bb69 + md5: 8b216bac0de7a9d60f3ddeba2515545c + depends: + - _openmp_mutex + constrains: + - libgcc-ng ==15.2.0=*_16 + - libgomp 15.2.0 16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 402197 + timestamp: 1765258985740 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.2.0-h69a702a_16.conda + sha256: 5f07f9317f596a201cc6e095e5fc92621afca64829785e483738d935f8cab361 + md5: 5a68259fac2da8f2ee6f7bfe49c9eb8b + depends: + - libgcc 15.2.0 he0feb66_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 27256 + timestamp: 1765256804124 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-15.2.0-h69a702a_16.conda + sha256: 8a7b01e1ee1c462ad243524d76099e7174ebdd94ff045fe3e9b1e58db196463b + md5: 40d9b534410403c821ff64f00d0adc22 + depends: + - libgfortran5 15.2.0 h68bc16d_16 + constrains: + - libgfortran-ng ==15.2.0=*_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 27215 + timestamp: 1765256845586 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran-15.2.0-h07b0088_16.conda + sha256: 68a6c1384d209f8654112c4c57c68c540540dd8e09e17dd1facf6cf3467798b5 + md5: 11e09edf0dde4c288508501fe621bab4 + depends: + - libgfortran5 15.2.0 hdae7583_16 + constrains: + - libgfortran-ng ==15.2.0=*_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 138630 + timestamp: 1765259217400 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-15.2.0-h68bc16d_16.conda + sha256: d0e974ebc937c67ae37f07a28edace978e01dc0f44ee02f29ab8a16004b8148b + md5: 39183d4e0c05609fd65f130633194e37 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=15.2.0 + constrains: + - libgfortran 15.2.0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 2480559 + timestamp: 1765256819588 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran5-15.2.0-hdae7583_16.conda + sha256: 9fb7f4ff219e3fb5decbd0ee90a950f4078c90a86f5d8d61ca608c913062f9b0 + md5: 265a9d03461da24884ecc8eb58396d57 + depends: + - libgcc >=15.2.0 + constrains: + - libgfortran 15.2.0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 598291 + timestamp: 1765258993165 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.2.0-he0feb66_16.conda + sha256: 5b3e5e4e9270ecfcd48f47e3a68f037f5ab0f529ccb223e8e5d5ac75a58fc687 + md5: 26c46f90d0e727e95c6c9498a33a09f3 + depends: + - __glibc >=2.17,<3.0.a0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 603284 + timestamp: 1765256703881 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.12.2-default_hafda6a7_1000.conda + sha256: 2cf160794dda62cf93539adf16d26cfd31092829f2a2757dbdd562984c1b110a + md5: 0ed3aa3e3e6bc85050d38881673a692f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + - libxml2 + - libxml2-16 >=2.14.6 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 2449916 + timestamp: 1765103845133 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libhwloc-2.12.2-default_ha3cc4f2_1000.conda + sha256: 4d03bb9bc0a813cf5e24f07e6adec3c42df2c9c36e226b71cb1dc6c7868c7d90 + md5: 38b8aa4ea25d313ad951bcb7d3cd0ad3 + depends: + - __osx >=11.0 + - libcxx >=19 + - libxml2 + - libxml2-16 >=2.14.6 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 2356224 + timestamp: 1765104113197 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.18-h3b78370_2.conda + sha256: c467851a7312765447155e071752d7bf9bf44d610a5687e32706f480aad2833f + md5: 915f5995e94f60e9a4826e0b0920ee88 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: LGPL-2.1-only + purls: [] + size: 790176 + timestamp: 1754908768807 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.18-h23cfdf5_2.conda + sha256: de0336e800b2af9a40bdd694b03870ac4a848161b35c8a2325704f123f185f03 + md5: 4d5a7445f0b25b6a3ddbb56e790f5251 + depends: + - __osx >=11.0 + license: LGPL-2.1-only + purls: [] + size: 750379 + timestamp: 1754909073836 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libklu-2.3.5-h95ff59c_7100101.conda + sha256: 6b4d462642c240dc3671af74f7705b23f34eea0f71e0d9dbcf14b4ed008311ff + md5: efaa5e7dc6989363585fbb591480b256 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - metis >=5.1.0,<5.1.1.0a0 + - libcamd >=3.3.3,<4.0a0 + - liblapack >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libamd >=3.3.3,<4.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libblas >=3.9.0,<4.0a0 + - libbtf >=2.3.2,<3.0a0 + - libccolamd >=3.3.4,<4.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 131775 + timestamp: 1741963824816 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libklu-2.3.5-h4370aa4_7100102.conda + sha256: b0a2232fe917abcf0f8c7fbb37c8c3783a0580a38f98610c5c20a3a6cb8c12f3 + md5: 37896b0b2e01cbe2de5f25f645bc881e + depends: + - __osx >=11.0 + - llvm-openmp >=18.1.8 + - libccolamd >=3.3.4,<4.0a0 + - libcamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libbtf >=2.3.2,<3.0a0 + - libamd >=3.3.3,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - libcholmod >=5.3.1,<6.0a0 + - liblapack >=3.9.0,<4.0a0 + - metis >=5.1.0,<5.1.1.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 93667 + timestamp: 1742288952864 +- pypi: https://pypi.nvidia.com/libkvikio-cu12/libkvikio_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + name: libkvikio-cu12 + version: 25.12.0 + sha256: 06555daf9fec5f5ef7051524e107a50a8c3b527cdff9bb2e02debc1451238b05 +- conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.11.0-7_h8876d29_netlib.conda + build_number: 7 + sha256: 4de5b6aef4b2d42b4f71c6a3673118f99e323aed2ba2a66a3ed435b574010b1e + md5: 3bb4c3696602a7d3a4243d165e8fd867 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas 3.11.0.* + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + track_features: + - blas_netlib + - blas_netlib_2 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 2901209 + timestamp: 1763440547062 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.11.0-5_hd9741b5_openblas.conda + build_number: 5 + sha256: 735a6e6f7d7da6f718b6690b7c0a8ae4815afb89138aa5793abe78128e951dbb + md5: ca9d752201b7fa1225bca036ee300f2b + depends: + - libblas 3.11.0 5_h51639a9_openblas + constrains: + - libcblas 3.11.0 5*_openblas + - blas 2.305 openblas + - liblapacke 3.11.0 5*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 18551 + timestamp: 1765819121855 +- conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.2-hb03c661_0.conda + sha256: 755c55ebab181d678c12e49cced893598f2bab22d582fbbf4d8b83c18be207eb + md5: c7c83eecbb72d88b940c249af56c8b17 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + constrains: + - xz 5.8.2.* + license: 0BSD + purls: [] + size: 113207 + timestamp: 1768752626120 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.2-h8088a28_0.conda + sha256: 7bfc7ffb2d6a9629357a70d4eadeadb6f88fa26ebc28f606b1c1e5e5ed99dc7e + md5: 009f0d956d7bfb00de86901d16e486c7 + depends: + - __osx >=11.0 + constrains: + - xz 5.8.2.* + license: 0BSD + purls: [] + size: 92242 + timestamp: 1768752982486 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.67.0-had1ee68_0.conda + sha256: a4a7dab8db4dc81c736e9a9b42bdfd97b087816e029e221380511960ac46c690 + md5: b499ce4b026493a13774bcf0f4c33849 + depends: + - __glibc >=2.17,<3.0.a0 + - c-ares >=1.34.5,<2.0a0 + - libev >=4.33,<4.34.0a0 + - libev >=4.33,<5.0a0 + - libgcc >=14 + - libstdcxx >=14 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.2,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 666600 + timestamp: 1756834976695 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.67.0-hc438710_0.conda + sha256: a07cb53b5ffa2d5a18afc6fd5a526a5a53dd9523fbc022148bd2f9395697c46d + md5: a4b4dd73c67df470d091312ab87bf6ae + depends: + - __osx >=11.0 + - c-ares >=1.34.5,<2.0a0 + - libcxx >=19 + - libev >=4.33,<4.34.0a0 + - libev >=4.33,<5.0a0 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.2,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 575454 + timestamp: 1756835746393 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.11.0-hb9d3cd8_0.conda + sha256: ba7c5d294e3d80f08ac5a39564217702d1a752e352e486210faff794ac5001b4 + md5: db63358239cbe1ff86242406d440e44a + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-or-later + license_family: LGPL + purls: [] + size: 741323 + timestamp: 1731846827427 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda + sha256: 927fe72b054277cde6cb82597d0fcf6baf127dcbce2e0a9d8925a68f1265eef5 + md5: d864d34357c3b65a4b731f78c0801dc4 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-only + license_family: GPL + purls: [] + size: 33731 + timestamp: 1750274110928 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.30-openmp_ha158390_4.conda + sha256: ebbbc089b70bcde87c4121a083c724330f02a690fb9d7c6cd18c30f1b12504fa + md5: a6f6d3a31bb29e48d37ce65de54e2df0 + depends: + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - llvm-openmp >=19.1.7 + constrains: + - openblas >=0.3.30,<0.3.31.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 4284132 + timestamp: 1768547079205 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libpmix-5.0.8-h9b03745_3.conda + sha256: 339fdb508599d406a126cd93fd0fb995551cc5b981fc66e2fc615d4d606f6260 + md5: 935ac8861a784e8393474b1675f92b3f + depends: + - __glibc >=2.17,<3.0.a0 + - libevent >=2.1.12,<2.1.13.0a0 + - libgcc >=14 + - libhwloc >=2.12.2,<2.12.3.0a0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 730177 + timestamp: 1768612382564 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libptscotch-7.0.10-int32_ha94cade_2.conda + sha256: 384e47a445664c94f176bfaf19ec67addd9393619eecb610c846fb9272791bfd + md5: cae64eda47b87e020742dee1eb524737 + depends: + - libscotch 7.0.10 int32_h865694f_2 + - openmpi >=5.0.8,<6.0a0 + purls: [] + size: 192723 + timestamp: 1763423740144 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libptscotch-7.0.10-int32_hf99fa1b_2.conda + sha256: c2269b2c9c789a415ec4a5f1c69ecb7cfc50bf456bd3d74a13a959bdb4c81c55 + md5: b5557656b7c824e0aad2e4f061e45903 + depends: + - libscotch 7.0.10 int32_hed6a4d5_2 + - mpich >=4.3.2,<5.0a0 + purls: [] + size: 156483 + timestamp: 1763424518127 +- pypi: https://pypi.nvidia.com/libraft-cu12/libraft_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: libraft-cu12 + version: 25.12.0 + sha256: 157b2010bbc054a7fa43fc5571ad7d2444ca7be6bdef55e5d51f1992fa8dc9aa + requires_dist: + - cuda-toolkit[cublas,curand,cusolver,cusparse]==12.* + - librmm-cu12==25.12.* + - nvidia-nccl-cu12>=2.19 + - rapids-logger==0.2.* + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/librmm-cu12/librmm_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: librmm-cu12 + version: 25.12.0 + sha256: efb769b3c4c81840831edf2e152a281e92e7958da33fcf4b9689023c184f7e74 + requires_dist: + - rapids-logger==0.2.* +- conda: https://conda.anaconda.org/conda-forge/linux-64/libscotch-7.0.10-int32_h865694f_2.conda + sha256: 82b292f736d14d10527f7f7da0a593a3c15488edc39328c3554a6e25b251e592 + md5: f251dd3dc377b9b34b58fa72430c0f68 + depends: + - __glibc >=2.17,<3.0.a0 + - bzip2 >=1.0.8,<2.0a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + license: CECILL-C + purls: [] + size: 359893 + timestamp: 1763423721992 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libscotch-7.0.10-int32_hed6a4d5_2.conda + sha256: caded9c5dd44dd4f3d92876255759040cc7d25efdfb84b99356e0946fabe03d4 + md5: 4c7fc18892e7d60fe2607e1559033f99 + depends: + - __osx >=11.0 + - bzip2 >=1.0.8,<2.0a0 + - libgfortran + - libgfortran5 >=14.3.0 + - libgfortran5 >=15.2.0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + license: CECILL-C + purls: [] + size: 287360 + timestamp: 1763424455961 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libspqr-4.3.4-h23b7119_7100101.conda + sha256: 52851575496122f9088c9f5a4283da7fbb277d9a877b5ce60a939554df542f3c + md5: c1ee33a71065c1f0efd9c8174d5f18b0 + depends: + - libgcc >=13 + - libstdcxx >=13 + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libcholmod >=5.3.1,<6.0a0 + - libblas >=3.9.0,<4.0a0 + - liblapack >=3.9.0,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 203419 + timestamp: 1741963824816 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libspqr-4.3.4-h775d698_7100102.conda + sha256: 35decda7f3de10dfeb6159ddaf27017fcf53c52119297a1f943b6396d18328a7 + md5: cbac21c5e5ffcd4bcee5dba052535565 + depends: + - __osx >=11.0 + - libcxx >=18 + - libcholmod >=5.3.1,<6.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 164152 + timestamp: 1742288952864 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.2-hf4e2dac_0.conda + sha256: 04596fcee262a870e4b7c9807224680ff48d4d0cc0dac076a602503d3dc6d217 + md5: da5be73701eecd0e8454423fd6ffcf30 + depends: + - __glibc >=2.17,<3.0.a0 + - icu >=78.2,<79.0a0 + - libgcc >=14 + - libzlib >=1.3.1,<2.0a0 + license: blessing + purls: [] + size: 942808 + timestamp: 1768147973361 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.2-h1ae2325_0.conda + sha256: 6e9b9f269732cbc4698c7984aa5b9682c168e2a8d1e0406e1ff10091ca046167 + md5: 4b0bf313c53c3e89692f020fb55d5f2c + depends: + - __osx >=11.0 + - icu >=78.2,<79.0a0 + - libzlib >=1.3.1,<2.0a0 + license: blessing + purls: [] + size: 909777 + timestamp: 1768148320535 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hcf80075_0.conda + sha256: fa39bfd69228a13e553bd24601332b7cfeb30ca11a3ca50bb028108fe90a7661 + md5: eecce068c7e4eddeb169591baac20ac4 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.0,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 304790 + timestamp: 1745608545575 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h1590b86_0.conda + sha256: 8bfe837221390ffc6f111ecca24fa12d4a6325da0c8d131333d63d6c37f27e0a + md5: b68e8f66b94b44aaa8de4583d3d4cc40 + depends: + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.0,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 279193 + timestamp: 1745608793272 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.2.0-h934c35e_16.conda + sha256: 813427918316a00c904723f1dfc3da1bbc1974c5cfe1ed1e704c6f4e0798cbc6 + md5: 68f68355000ec3f1d6f26ea13e8f525f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc 15.2.0 he0feb66_16 + constrains: + - libstdcxx-ng ==15.2.0=*_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 5856456 + timestamp: 1765256838573 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.2.0-hdf11a46_16.conda + sha256: 81f2f246c7533b41c5e0c274172d607829019621c4a0823b5c0b4a8c7028ee84 + md5: 1b3152694d236cf233b76b8c56bf0eae + depends: + - libstdcxx 15.2.0 h934c35e_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 27300 + timestamp: 1765256885128 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsuitesparseconfig-7.10.1-h901830b_7100101.conda + sha256: d8f32a0b0ee17fbace7af4bd34ad554cc855b9c18e0aeccf8395e1478c161f37 + md5: 57ae1dd979da7aa88a9b38bfa2e1d6b2 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=13.3.0 + - libgfortran + - libgcc >=13 + - _openmp_mutex >=4.5 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 42708 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsuitesparseconfig-7.10.1-h4a8fc20_7100102.conda + sha256: 847b393bfb5c8db10923544e44dcb5ba78e5978cbd841b04b7dc626a2b3c3306 + md5: 7ffecea6d807f0bd69a3e136a409ced3 + depends: + - libgfortran >=5 + - libgfortran5 >=13.2.0 + - __osx >=11.0 + - llvm-openmp >=18.1.8 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 41963 + timestamp: 1742288952861 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-257.10-hd0affe5_3.conda + sha256: b3a7f89462dc95c1bba9f663210d20ff3ac5f7db458684e0f3a7ae5784f8c132 + md5: 70d1de6301b58ed99fea01490a9802a3 + depends: + - __glibc >=2.17,<3.0.a0 + - libcap >=2.77,<2.78.0a0 + - libgcc >=14 + license: LGPL-2.1-or-later + purls: [] + size: 491268 + timestamp: 1765552759709 +- pypi: https://pypi.nvidia.com/libucx-cu12/libucx_cu12-1.19.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: libucx-cu12 + version: 1.19.0 + sha256: 64b9448f23c7bb29be30d21bac5742f7297845d0f0c159e6302670b35e71251f + requires_python: '>=3.9' +- pypi: https://pypi.nvidia.com/libucxx-cu12/libucxx_cu12-0.47.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: libucxx-cu12 + version: 0.47.0 + sha256: d42d544a022abd004b68ac8c264f1e1972f6b6236aa8b34c8583cb195816f18d + requires_dist: + - librmm-cu12==25.12.* + - libucx-cu12>=1.17.0,<1.20 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libudev1-257.10-hd0affe5_3.conda + sha256: 977e7e4955ea1581e441e429c2c1b498bc915767f1cac77a97b283c469d5298c + md5: 3934f4cf65a06100d526b33395fb9cd2 + depends: + - __glibc >=2.17,<3.0.a0 + - libcap >=2.77,<2.78.0a0 + - libgcc >=14 + license: LGPL-2.1-or-later + purls: [] + size: 145023 + timestamp: 1765552781358 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libumfpack-6.3.5-h873dde6_7100101.conda + sha256: 9a2c0049210c0223084c29b39404ad6da6538e7a4d1ed74ee8423212998fd686 + md5: 9626fc7667bc6c901c7a0a4004938c71 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libblas >=3.9.0,<4.0a0 + - libamd >=3.3.3,<4.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 404065 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libumfpack-6.3.5-h7c2c975_7100102.conda + sha256: a7d2d337e953a3ff641efb5bb1842c6d3f66a0a21718a1d354f4841432bf3204 + md5: ca1a54d25f34317fecb0a134e94d3cab + depends: + - __osx >=11.0 + - libamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libblas >=3.9.0,<4.0a0 + - libcholmod >=5.3.1,<6.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 295754 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.3-h5347b49_0.conda + sha256: 1a7539cfa7df00714e8943e18de0b06cceef6778e420a5ee3a2a145773758aee + md5: db409b7c1720428638e7c0d509d3e1b5 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 40311 + timestamp: 1766271528534 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda + sha256: 6ae68e0b86423ef188196fff6207ed0c8195dd84273cb5623b85aa08033a410c + md5: 5aa797f8787fe7a17d1b0821485b5adc + depends: + - libgcc-ng >=12 + license: LGPL-2.1-or-later + purls: [] + size: 100393 + timestamp: 1702724383534 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.15.1-he237659_1.conda + sha256: 047be059033c394bd32ae5de66ce389824352120b3a7c0eff980195f7ed80357 + md5: 417955234eccd8f252b86a265ccdab7f + depends: + - __glibc >=2.17,<3.0.a0 + - icu >=78.1,<79.0a0 + - libgcc >=14 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libxml2-16 2.15.1 hca6bf5a_1 + - libzlib >=1.3.1,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 45402 + timestamp: 1766327161688 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.15.1-h8d039ee_1.conda + sha256: 59f96fa27cce6a9a27414c5bb301eedda1a1b85cd0d8f5d68f77e46b86e7c95f + md5: fd804ee851e20faca4fecc7df0901d07 + depends: + - __osx >=11.0 + - icu >=78.1,<79.0a0 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libxml2-16 2.15.1 h5ef1a60_1 + - libzlib >=1.3.1,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 40607 + timestamp: 1766327501392 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-16-2.15.1-hca6bf5a_1.conda + sha256: 8331284bf9ae641b70cdc0e5866502dd80055fc3b9350979c74bb1d192e8e09e + md5: 3fdd8d99683da9fe279c2f4cecd1e048 + depends: + - __glibc >=2.17,<3.0.a0 + - icu >=78.1,<79.0a0 + - libgcc >=14 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + constrains: + - libxml2 2.15.1 + license: MIT + license_family: MIT + purls: [] + size: 555747 + timestamp: 1766327145986 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-16-2.15.1-h5ef1a60_1.conda + sha256: 2d5ab15113b0ba21f4656d387d26ab59e4fbaf3027f5e58a2a4fe370821eb106 + md5: 7eed1026708e26ee512f43a04d9d0027 + depends: + - __osx >=11.0 + - icu >=78.1,<79.0a0 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + constrains: + - libxml2 2.15.1 + license: MIT + license_family: MIT + purls: [] + size: 464886 + timestamp: 1766327479416 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda + sha256: d4bfe88d7cb447768e31650f06257995601f89076080e76df55e3112d4e47dc4 + md5: edb0dca6bc32e4f4789199455a1dbeb8 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 60963 + timestamp: 1727963148474 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda + sha256: ce34669eadaba351cd54910743e6a2261b67009624dbc7daeeafdef93616711b + md5: 369964e85dc26bfe78f41399b366c435 + depends: + - __osx >=11.0 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 46438 + timestamp: 1727963202283 +- pypi: https://files.pythonhosted.org/packages/d6/e9/36b340c7ec01dad6f034481e98fc9fc0133307beb05c714c0542af98bbde/lightning-2.6.0-py3-none-any.whl + name: lightning + version: 2.6.0 + sha256: f1a13a48909960a3454518486f113fae4fadb2db0e28e9c50d8d38d46c9dc3d6 + requires_dist: + - pyyaml>5.4,<8.0 + - fsspec[http]>=2022.5.0,<2027.0 + - lightning-utilities>=0.10.0,<2.0 + - packaging>=20.0,<27.0 + - torch>=2.1.0,<4.0 + - torchmetrics>0.7.0,<3.0 + - tqdm>=4.57.0,<6.0 + - typing-extensions>4.5.0,<6.0 + - pytorch-lightning + - ipython[all]>=8.0.0,<11.0 ; extra == 'pytorch-examples' + - requests<3.0 ; extra == 'pytorch-examples' + - torchmetrics>=0.10.0,<2.0 ; extra == 'pytorch-examples' + - torchvision>=0.16.0,<1.0 ; extra == 'pytorch-examples' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'pytorch-extra' + - hydra-core>=1.2.0,<2.0 ; extra == 'pytorch-extra' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'pytorch-extra' + - matplotlib>3.1,<4.0 ; extra == 'pytorch-extra' + - omegaconf>=2.2.3,<3.0 ; extra == 'pytorch-extra' + - rich>=12.3.0,<15.0 ; extra == 'pytorch-extra' + - tensorboardx>=2.2,<3.0 ; extra == 'pytorch-extra' + - cloudpickle>=1.3,<4.0 ; extra == 'pytorch-test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'pytorch-test' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'pytorch-test' + - fastapi ; extra == 'pytorch-test' + - huggingface-hub ; extra == 'pytorch-test' + - numpy>1.20.0,<2.0 ; extra == 'pytorch-test' + - onnx>1.12.0,<2.0 ; extra == 'pytorch-test' + - onnxruntime>=1.12.0,<2.0 ; extra == 'pytorch-test' + - onnxscript>=0.1.0,<1.0 ; extra == 'pytorch-test' + - pandas>2.0,<3.0 ; extra == 'pytorch-test' + - psutil<8.0 ; extra == 'pytorch-test' + - pytest-cov==7.0.0 ; extra == 'pytorch-test' + - pytest-random-order==1.2.0 ; extra == 'pytorch-test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'pytorch-test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'pytorch-test' + - pytest-timeout==2.4.0 ; extra == 'pytorch-test' + - pytest==8.4.2 ; extra == 'pytorch-test' + - scikit-learn>0.22.1,<2.0 ; extra == 'pytorch-test' + - tensorboard>=2.11,<3.0 ; extra == 'pytorch-test' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'pytorch-test' + - uvicorn ; extra == 'pytorch-test' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'pytorch-strategies' + - torchmetrics>=0.10.0,<2.0 ; extra == 'fabric-examples' + - torchvision>=0.16.0,<1.0 ; extra == 'fabric-examples' + - hydra-core>=1.2.0,<2.0 ; extra == 'fabric-extra' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'fabric-test' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'fabric-test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'fabric-test' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'fabric-test' + - huggingface-hub ; extra == 'fabric-test' + - numpy>=1.21.0,<2.0 ; extra == 'fabric-test' + - pytest-cov==7.0.0 ; extra == 'fabric-test' + - pytest-random-order==1.2.0 ; extra == 'fabric-test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'fabric-test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'fabric-test' + - pytest-timeout==2.4.0 ; extra == 'fabric-test' + - pytest==8.4.2 ; extra == 'fabric-test' + - tensorboardx>=2.6,<3.0 ; extra == 'fabric-test' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'fabric-strategies' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'fabric-strategies' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'fabric-all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'fabric-all' + - hydra-core>=1.2.0,<2.0 ; extra == 'fabric-all' + - torchmetrics>=0.10.0,<2.0 ; extra == 'fabric-all' + - torchvision>=0.16.0,<1.0 ; extra == 'fabric-all' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'fabric-dev' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'fabric-dev' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'fabric-dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'fabric-dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'fabric-dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'fabric-dev' + - huggingface-hub ; extra == 'fabric-dev' + - hydra-core>=1.2.0,<2.0 ; extra == 'fabric-dev' + - numpy>=1.21.0,<2.0 ; extra == 'fabric-dev' + - pytest-cov==7.0.0 ; extra == 'fabric-dev' + - pytest-random-order==1.2.0 ; extra == 'fabric-dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'fabric-dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'fabric-dev' + - pytest-timeout==2.4.0 ; extra == 'fabric-dev' + - pytest==8.4.2 ; extra == 'fabric-dev' + - tensorboardx>=2.6,<3.0 ; extra == 'fabric-dev' + - torchmetrics>=0.10.0,<2.0 ; extra == 'fabric-dev' + - torchvision>=0.16.0,<1.0 ; extra == 'fabric-dev' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'pytorch-all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'pytorch-all' + - hydra-core>=1.2.0,<2.0 ; extra == 'pytorch-all' + - ipython[all]>=8.0.0,<11.0 ; extra == 'pytorch-all' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'pytorch-all' + - matplotlib>3.1,<4.0 ; extra == 'pytorch-all' + - omegaconf>=2.2.3,<3.0 ; extra == 'pytorch-all' + - requests<3.0 ; extra == 'pytorch-all' + - rich>=12.3.0,<15.0 ; extra == 'pytorch-all' + - tensorboardx>=2.2,<3.0 ; extra == 'pytorch-all' + - torchmetrics>=0.10.0,<2.0 ; extra == 'pytorch-all' + - torchvision>=0.16.0,<1.0 ; extra == 'pytorch-all' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'pytorch-dev' + - cloudpickle>=1.3,<4.0 ; extra == 'pytorch-dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'pytorch-dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'pytorch-dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'pytorch-dev' + - fastapi ; extra == 'pytorch-dev' + - huggingface-hub ; extra == 'pytorch-dev' + - hydra-core>=1.2.0,<2.0 ; extra == 'pytorch-dev' + - ipython[all]>=8.0.0,<11.0 ; extra == 'pytorch-dev' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'pytorch-dev' + - matplotlib>3.1,<4.0 ; extra == 'pytorch-dev' + - numpy>1.20.0,<2.0 ; extra == 'pytorch-dev' + - omegaconf>=2.2.3,<3.0 ; extra == 'pytorch-dev' + - onnx>1.12.0,<2.0 ; extra == 'pytorch-dev' + - onnxruntime>=1.12.0,<2.0 ; extra == 'pytorch-dev' + - onnxscript>=0.1.0,<1.0 ; extra == 'pytorch-dev' + - pandas>2.0,<3.0 ; extra == 'pytorch-dev' + - psutil<8.0 ; extra == 'pytorch-dev' + - pytest-cov==7.0.0 ; extra == 'pytorch-dev' + - pytest-random-order==1.2.0 ; extra == 'pytorch-dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'pytorch-dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'pytorch-dev' + - pytest-timeout==2.4.0 ; extra == 'pytorch-dev' + - pytest==8.4.2 ; extra == 'pytorch-dev' + - requests<3.0 ; extra == 'pytorch-dev' + - rich>=12.3.0,<15.0 ; extra == 'pytorch-dev' + - scikit-learn>0.22.1,<2.0 ; extra == 'pytorch-dev' + - tensorboard>=2.11,<3.0 ; extra == 'pytorch-dev' + - tensorboardx>=2.2,<3.0 ; extra == 'pytorch-dev' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'pytorch-dev' + - torchmetrics>=0.10.0,<2.0 ; extra == 'pytorch-dev' + - torchvision>=0.16.0,<1.0 ; extra == 'pytorch-dev' + - uvicorn ; extra == 'pytorch-dev' + - litdata>=0.2.0rc0,<1.0 ; extra == 'data' + - ipython[all]>=8.0.0,<11.0 ; extra == 'examples' + - requests<3.0 ; extra == 'examples' + - torchmetrics>=0.10.0,<2.0 ; extra == 'examples' + - torchvision>=0.16.0,<1.0 ; extra == 'examples' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'extra' + - hydra-core>=1.2.0,<2.0 ; extra == 'extra' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'extra' + - matplotlib>3.1,<4.0 ; extra == 'extra' + - omegaconf>=2.2.3,<3.0 ; extra == 'extra' + - rich>=12.3.0,<15.0 ; extra == 'extra' + - tensorboardx>=2.2,<3.0 ; extra == 'extra' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'test' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'test' + - cloudpickle>=1.3,<4.0 ; extra == 'test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'test' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'test' + - fastapi ; extra == 'test' + - huggingface-hub ; extra == 'test' + - numpy>1.20.0,<2.0 ; extra == 'test' + - numpy>=1.21.0,<2.0 ; extra == 'test' + - onnx>1.12.0,<2.0 ; extra == 'test' + - onnxruntime>=1.12.0,<2.0 ; extra == 'test' + - onnxscript>=0.1.0,<1.0 ; extra == 'test' + - pandas>2.0,<3.0 ; extra == 'test' + - psutil<8.0 ; extra == 'test' + - pytest-cov==7.0.0 ; extra == 'test' + - pytest-random-order==1.2.0 ; extra == 'test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'test' + - pytest-timeout==2.4.0 ; extra == 'test' + - pytest==8.4.2 ; extra == 'test' + - scikit-learn>0.22.1,<2.0 ; extra == 'test' + - tensorboard>=2.11,<3.0 ; extra == 'test' + - tensorboardx>=2.6,<3.0 ; extra == 'test' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'test' + - uvicorn ; extra == 'test' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'strategies' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'strategies' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'all' + - hydra-core>=1.2.0,<2.0 ; extra == 'all' + - ipython[all]>=8.0.0,<11.0 ; extra == 'all' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'all' + - matplotlib>3.1,<4.0 ; extra == 'all' + - omegaconf>=2.2.3,<3.0 ; extra == 'all' + - requests<3.0 ; extra == 'all' + - rich>=12.3.0,<15.0 ; extra == 'all' + - tensorboardx>=2.2,<3.0 ; extra == 'all' + - torchmetrics>=0.10.0,<2.0 ; extra == 'all' + - torchvision>=0.16.0,<1.0 ; extra == 'all' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'dev' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'dev' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'dev' + - cloudpickle>=1.3,<4.0 ; extra == 'dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'dev' + - fastapi ; extra == 'dev' + - huggingface-hub ; extra == 'dev' + - hydra-core>=1.2.0,<2.0 ; extra == 'dev' + - ipython[all]>=8.0.0,<11.0 ; extra == 'dev' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'dev' + - matplotlib>3.1,<4.0 ; extra == 'dev' + - numpy>1.20.0,<2.0 ; extra == 'dev' + - numpy>=1.21.0,<2.0 ; extra == 'dev' + - omegaconf>=2.2.3,<3.0 ; extra == 'dev' + - onnx>1.12.0,<2.0 ; extra == 'dev' + - onnxruntime>=1.12.0,<2.0 ; extra == 'dev' + - onnxscript>=0.1.0,<1.0 ; extra == 'dev' + - pandas>2.0,<3.0 ; extra == 'dev' + - psutil<8.0 ; extra == 'dev' + - pytest-cov==7.0.0 ; extra == 'dev' + - pytest-random-order==1.2.0 ; extra == 'dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'dev' + - pytest-timeout==2.4.0 ; extra == 'dev' + - pytest==8.4.2 ; extra == 'dev' + - requests<3.0 ; extra == 'dev' + - rich>=12.3.0,<15.0 ; extra == 'dev' + - scikit-learn>0.22.1,<2.0 ; extra == 'dev' + - tensorboard>=2.11,<3.0 ; extra == 'dev' + - tensorboardx>=2.2,<3.0 ; extra == 'dev' + - tensorboardx>=2.6,<3.0 ; extra == 'dev' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'dev' + - torchmetrics>=0.10.0,<2.0 ; extra == 'dev' + - torchvision>=0.16.0,<1.0 ; extra == 'dev' + - uvicorn ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/de/73/3d757cb3fc16f0f9794dd289bcd0c4a031d9cf54d8137d6b984b2d02edf3/lightning_utilities-0.15.2-py3-none-any.whl + name: lightning-utilities + version: 0.15.2 + sha256: ad3ab1703775044bbf880dbf7ddaaac899396c96315f3aa1779cec9d618a9841 + requires_dist: + - importlib-metadata>=4.0.0 ; python_full_version < '3.8' + - packaging>=17.1 + - setuptools + - typing-extensions + - requests>=2.0.0 ; extra == 'docs' + - mypy>=1.0.0 ; extra == 'typing' + - types-setuptools ; extra == 'typing' + - jsonargparse[signatures]>=4.38.0 ; extra == 'cli' + - tomlkit ; extra == 'cli' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-21.1.8-h4a912ad_0.conda + sha256: 56bcd20a0a44ddd143b6ce605700fdf876bcf5c509adc50bf27e76673407a070 + md5: 206ad2df1b5550526e386087bef543c7 + depends: + - __osx >=11.0 + constrains: + - openmp 21.1.8|21.1.8.* + - intel-openmp <0.0a0 + license: Apache-2.0 WITH LLVM-exception + license_family: APACHE + purls: [] + size: 285974 + timestamp: 1765964756583 +- pypi: https://files.pythonhosted.org/packages/cb/da/8341fd3056419441286c8e26bf436923021005ece0bff5f41906476ae514/llvmlite-0.44.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: llvmlite + version: 0.44.0 + sha256: c0143a5ef336da14deaa8ec26c5449ad5b6a2b564df82fcef4be040b9cacfea9 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/2b/f8/4db016a5e547d4e054ff2f3b99203d63a497465f81ab78ec8eb2ff7b2304/llvmlite-0.46.0-cp312-cp312-macosx_11_0_arm64.whl + name: llvmlite + version: 0.46.0 + sha256: 6b9588ad4c63b4f0175a3984b85494f0c927c6b001e3a246a3a7fb3920d9a137 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl + name: locket + version: 1.0.0 + sha256: b6c819a722f7b6bd955b80781788e4a66a55628b858d347536b7e81325a3a5e3 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*' +- pypi: https://files.pythonhosted.org/packages/c0/41/6d499b9b63406b204dd551002712c088abf0e130686721f403aa105736ba/loompy-3.0.8.tar.gz + name: loompy + version: 3.0.8 + sha256: c1f48d0bf21aa2bbdeee21a0577553cba9609d9435d7c32b687686bbb5869ca7 + requires_dist: + - h5py + - numpy + - scipy + - setuptools + - numba + - click + - numpy-groupies + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/59/1b/6ef961f543593969d25b2afe57a3564200280528caa9bd1082eecdd7b3bc/markdown-3.10.1-py3-none-any.whl + name: markdown + version: 3.10.1 + sha256: 867d788939fe33e4b736426f5b9f651ad0c0ae0ecf89df0ca5d1176c70812fe3 + requires_dist: + - coverage ; extra == 'testing' + - pyyaml ; extra == 'testing' + - mkdocs>=1.6 ; extra == 'docs' + - mkdocs-nature>=0.6 ; extra == 'docs' + - mdx-gh-links>=0.2 ; extra == 'docs' + - mkdocstrings[python]>=0.28.3 ; extra == 'docs' + - mkdocs-gen-files ; extra == 'docs' + - mkdocs-section-index ; extra == 'docs' + - mkdocs-literate-nav ; extra == 'docs' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + name: markdown-it-py + version: 4.0.0 + sha256: 87327c59b172c5011896038353a81343b6754500a08cd7a4973bb48c6d578147 + requires_dist: + - mdurl~=0.1 + - psutil ; extra == 'benchmarking' + - pytest ; extra == 'benchmarking' + - pytest-benchmark ; extra == 'benchmarking' + - commonmark~=0.9 ; extra == 'compare' + - markdown~=3.4 ; extra == 'compare' + - mistletoe~=1.0 ; extra == 'compare' + - mistune~=3.0 ; extra == 'compare' + - panflute~=2.3 ; extra == 'compare' + - markdown-it-pyrs ; extra == 'compare' + - linkify-it-py>=1,<3 ; extra == 'linkify' + - mdit-py-plugins>=0.5.0 ; extra == 'plugins' + - gprof2dot ; extra == 'profiling' + - mdit-py-plugins>=0.5.0 ; extra == 'rtd' + - myst-parser ; extra == 'rtd' + - pyyaml ; extra == 'rtd' + - sphinx ; extra == 'rtd' + - sphinx-copybutton ; extra == 'rtd' + - sphinx-design ; extra == 'rtd' + - sphinx-book-theme~=1.0 ; extra == 'rtd' + - jupyter-sphinx ; extra == 'rtd' + - ipykernel ; extra == 'rtd' + - coverage ; extra == 'testing' + - pytest ; extra == 'testing' + - pytest-cov ; extra == 'testing' + - pytest-regressions ; extra == 'testing' + - requests ; extra == 'testing' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: markupsafe + version: 3.0.3 + sha256: d6dd0be5b5b189d31db7cda48b91d7e0a9795f31430b7f271219ab30f1d3ac9d + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl + name: markupsafe + version: 3.0.3 + sha256: 1872df69a4de6aead3491198eaf13810b565bdbeec3ae2dc8780f14458ec73ce + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/3e/f3/c5195b1ae57ef85339fd7285dfb603b22c8b4e79114bae5f4f0fcf688677/matplotlib-3.10.8-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: matplotlib + version: 3.10.8 + sha256: 3ab4aabc72de4ff77b3ec33a6d78a68227bf1123465887f9905ba79184a1cc04 + requires_dist: + - contourpy>=1.0.1 + - cycler>=0.10 + - fonttools>=4.22.0 + - kiwisolver>=1.3.1 + - numpy>=1.23 + - packaging>=20.0 + - pillow>=8 + - pyparsing>=3 + - python-dateutil>=2.7 + - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' + - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' + - setuptools-scm>=7 ; extra == 'dev' + - setuptools>=64 ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/7e/65/07d5f5c7f7c994f12c768708bd2e17a4f01a2b0f44a1c9eccad872433e2e/matplotlib-3.10.8-cp312-cp312-macosx_11_0_arm64.whl + name: matplotlib + version: 3.10.8 + sha256: b9a5ca4ac220a0cdd1ba6bcba3608547117d30468fefce49bb26f55c1a3d5c58 + requires_dist: + - contourpy>=1.0.1 + - cycler>=0.10 + - fonttools>=4.22.0 + - kiwisolver>=1.3.1 + - numpy>=1.23 + - packaging>=20.0 + - pillow>=8 + - pyparsing>=3 + - python-dateutil>=2.7 + - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' + - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' + - setuptools-scm>=7 ; extra == 'dev' + - setuptools>=64 ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl + name: matplotlib-inline + version: 0.2.1 + sha256: d56ce5156ba6085e00a9d54fead6ed29a9c47e215cd1bba2e976ef39f5710a76 + requires_dist: + - traitlets + - flake8 ; extra == 'test' + - nbdime ; extra == 'test' + - nbval ; extra == 'test' + - notebook ; extra == 'test' + - pytest ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a8/c0/2dfab7b319dabe23f5a7b515a797c74b501d15c72e7a03837cf0cf779b9e/matplotlib_scalebar-0.9.0-py3-none-any.whl + name: matplotlib-scalebar + version: 0.9.0 + sha256: 5140525cd4e0c60bcade541b86571dabaf446fa69192530bd82d60b54601aa79 + requires_dist: + - matplotlib + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + name: mdurl + version: 0.1.2 + sha256: 84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8 + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-hd0bcaf9_1007.conda + sha256: e8a00971e6d00bd49f375c5d8d005b37a9abba0b1768533aed0f90a422bf5cc7 + md5: 28eb714416de4eb83e2cbc47e99a1b45 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 3923560 + timestamp: 1728064567817 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/metis-5.1.0-h15f6cfe_1007.conda + sha256: f54ad3e5d47a0235ba2830848fee590faad550639336fe1e2413ab16fee7ac39 + md5: 7687ec5796288536947bf616179726d8 + depends: + - __osx >=11.0 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 3898314 + timestamp: 1728064659078 +- pypi: https://files.pythonhosted.org/packages/9b/f7/4a5e785ec9fbd65146a27b6b70b6cdc161a66f2024e4b04ac06a67f5578b/mistune-3.2.0-py3-none-any.whl + name: mistune + version: 3.2.0 + sha256: febdc629a3c78616b94393c6580551e0e34cc289987ec6c35ed3f4be42d0eee1 + requires_dist: + - typing-extensions ; python_full_version < '3.11' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/ab/8a/18d4ff2c7bd83f30d6924bd4ad97abf418488c3f908dea228d6f0961ad68/ml_collections-1.1.0-py3-none-any.whl + name: ml-collections + version: 1.1.0 + sha256: 23b6fa4772aac1ae745a96044b925a5746145a70734f087eaca6626e92c05cbc + requires_dist: + - absl-py + - pyyaml + - pytest ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pylint>=2.6.0 ; extra == 'dev' + - pyink ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/3a/cb/28ce52eb94390dda42599c98ea0204d74799e4d8047a0eb559b6fd648056/ml_dtypes-0.5.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: ml-dtypes + version: 0.5.4 + sha256: 9ad459e99793fa6e13bd5b7e6792c8f9190b4e5a1b45c63aba14a4d0a7f1d5ff + requires_dist: + - numpy>=1.21 + - numpy>=1.21.2 ; python_full_version >= '3.10' + - numpy>=1.23.3 ; python_full_version >= '3.11' + - numpy>=1.26.0 ; python_full_version >= '3.12' + - numpy>=2.1.0 ; python_full_version >= '3.13' + - absl-py ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pylint>=2.6.0 ; extra == 'dev' + - pyink ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a8/b8/3c70881695e056f8a32f8b941126cf78775d9a4d7feba8abcb52cb7b04f2/ml_dtypes-0.5.4-cp312-cp312-macosx_10_13_universal2.whl + name: ml-dtypes + version: 0.5.4 + sha256: a174837a64f5b16cab6f368171a1a03a27936b31699d167684073ff1c4237dac + requires_dist: + - numpy>=1.21 + - numpy>=1.21.2 ; python_full_version >= '3.10' + - numpy>=1.23.3 ; python_full_version >= '3.11' + - numpy>=1.26.0 ; python_full_version >= '3.12' + - numpy>=2.1.0 ; python_full_version >= '3.13' + - absl-py ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pylint>=2.6.0 ; extra == 'dev' + - pyink ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a4/8e/469e5a4a2f5855992e425f3cb33804cc07bf18d48f2db061aec61ce50270/more_itertools-10.8.0-py3-none-any.whl + name: more-itertools + version: 10.8.0 + sha256: 52d4362373dcf7c52546bc4af9a86ee7c4579df9a8dc268be0a2f949d376cc9b + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-mpich.conda + sha256: eacc189267202669a1c5c849dcca2298f41acb3918f05cf912d7d61ee7176fac + md5: 1052de900d672ec8b3713b8e300a8f06 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 6522 + timestamp: 1727683134241 +- conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-openmpi.conda + sha256: e1698675ec83a2139c0b02165f47eaf0701bcab043443d9008fc0f8867b07798 + md5: 78b827d2852c67c68cd5b2c55f31e376 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 6571 + timestamp: 1727683130230 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/mpich-4.3.2-hb31c3fa_105.conda + sha256: 3074fbf7a79c49bf0e8bf1063cb509dc7f3585b8c32f9677a3a58492867d2f82 + md5: 6bf716ccac6b5839fb3e1d31c6915d69 + depends: + - mpi 1.0.* mpich + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - libcxx >=19 + - libhwloc >=2.12.2,<2.12.3.0a0 + - libfabric + - libfabric1 >=1.14.0 + license: LicenseRef-MPICH + purls: [] + size: 4019760 + timestamp: 1768958490901 +- pypi: https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl + name: mpmath + version: 1.3.0 + sha256: a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c + requires_dist: + - pytest>=4.6 ; extra == 'develop' + - pycodestyle ; extra == 'develop' + - pytest-cov ; extra == 'develop' + - codecov ; extra == 'develop' + - wheel ; extra == 'develop' + - sphinx ; extra == 'docs' + - gmpy2>=2.1.0a4 ; platform_python_implementation != 'PyPy' and extra == 'gmpy' + - pytest>=4.6 ; extra == 'tests' +- pypi: https://files.pythonhosted.org/packages/65/92/a5100f7185a800a5d29f8d14041f61475b9de465ffcc0f3b9fba606e4505/msgpack-1.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: msgpack + version: 1.1.2 + sha256: 372839311ccf6bdaf39b00b61288e0557916c3729529b301c52c2d88842add42 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/3f/de/f7bf1832967e7e4bcd34b232ed33169a0d86a8efbcdc7fcfd8f98c18d5c1/mudata-0.3.2-py3-none-any.whl + name: mudata + version: 0.3.2 + sha256: 185b80b61993515a121258401932db877bc123ba2677cdbd87051e974dfcd897 + requires_dist: + - anndata>=0.10.8 + - setuptools-scm ; extra == 'dev' + - nbsphinx ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - readthedocs-sphinx-search ; extra == 'docs' + - recommonmark ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-automodapi ; extra == 'docs' + - sphinx-book-theme ; extra == 'docs' + - pytest ; extra == 'test' + - zarr<3 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/a9/65/1caac9d4cd32e8433908683446eebc953e82d22b03d10d41a5f0fefe991b/multidict-6.7.1-cp312-cp312-macosx_11_0_arm64.whl + name: multidict + version: 6.7.1 + sha256: b0fa96985700739c4c7853a43c0b3e169360d6855780021bfc6d0f1ce7c123e7 + requires_dist: + - typing-extensions>=4.1.0 ; python_full_version < '3.11' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f3/8d/5e5be3ced1d12966fefb5c4ea3b2a5b480afcea36406559442c6e31d4a48/multidict-6.7.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: multidict + version: 6.7.1 + sha256: bfde23ef6ed9db7eaee6c37dcec08524cb43903c60b285b172b6c094711b3961 + requires_dist: + - typing-extensions>=4.1.0 ; python_full_version < '3.11' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/51/c0/00c9809d8b9346eb238a6bbd5f83e846a4ce4503da94a4c08cb7284c325b/multipledispatch-1.0.0-py3-none-any.whl + name: multipledispatch + version: 1.0.0 + sha256: 0c53cd8b077546da4e48869f49b13164bebafd0c2a5afceb6bb6a316e7fb46e4 +- pypi: https://files.pythonhosted.org/packages/f5/98/23d67fb3e1cb801122bbf3ced565e796d471a09b610cd9c5697528e83494/multiscale_spatial_image-1.0.1-py3-none-any.whl + name: multiscale-spatial-image + version: 1.0.1 + sha256: e927ed619d23e6b61777ca05a7c50f29db86dcfc2857f512bec6be8bcb351fcf + requires_dist: + - dask + - numpy + - python-dateutil + - spatial-image>=0.2.1 + - xarray + - xarray-datatree>=0.0.5 + - zarr + - dask-image ; extra == 'dask-image' + - pyimagej ; extra == 'imagej' + - itk-filtering>=5.3.0 ; extra == 'itk' + - matplotlib>=3.9.1,<4 ; extra == 'notebooks' + - ome-types>=0.5.1.post1,<0.6 ; extra == 'notebooks' + - tqdm>=4.66.4,<5 ; extra == 'notebooks' + - dask-image ; extra == 'test' + - fsspec ; extra == 'test' + - ipfsspec ; extra == 'test' + - itk-filtering>=5.3.0 ; extra == 'test' + - jsonschema ; extra == 'test' + - nbmake ; extra == 'test' + - pooch ; extra == 'test' + - pytest ; extra == 'test' + - pytest-mypy ; extra == 'test' + - urllib3 ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/01/a7/fec56dbac873a18930b2127d400794a91dd53898bff811aa4802ddbbfac9/multiscale_spatial_image-2.0.3-py3-none-any.whl + name: multiscale-spatial-image + version: 2.0.3 + sha256: 8b20d36e90a104083fe14f5466d582eea453c213d1a368d7e7435b3e13445f61 + requires_dist: + - dask + - numpy + - python-dateutil + - spatial-image>=1.2.2 + - xarray-dataclass>=3.0.0 + - xarray>=2025.1.2 + - zarr + - dask-image ; extra == 'dask-image' + - pyimagej ; extra == 'imagej' + - itk-filtering>=5.3.0 ; extra == 'itk' + - matplotlib>=3.9.2,<4 ; extra == 'notebooks' + - ome-types>=0.5.1.post1,<0.6 ; extra == 'notebooks' + - tqdm>=4.66.4,<5 ; extra == 'notebooks' + - fsspec ; extra == 'test' + - jsonschema ; extra == 'test' + - nbmake ; extra == 'test' + - pooch ; extra == 'test' + - pytest ; extra == 'test' + - pytest-mypy ; extra == 'test' + - urllib3 ; extra == 'test' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-include-5.8.1-h158ef2a_4.conda + sha256: c2cdade4e8ee9f67e5b401462df858d37ab0640f66c9b786207dedc7bb361d00 + md5: ed1cfc40cabee5915f6860da52e1215d + license: CECILL-C + purls: [] + size: 19751 + timestamp: 1759596390552 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-include-5.8.1-ha6078a4_4.conda + sha256: 9ff8901858e625a029e249b74f85b8ecde54836bf08547500c07d4d93b2546b5 + md5: b775cf85336188285b7785ac1534926a + license: CECILL-C + purls: [] + size: 19791 + timestamp: 1759596482955 +- conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-mpi-5.8.1-hcc12995_4.conda + sha256: b3c4df2db4b2593c9dd09d40c4f76a65baa35f7778bfb199861350fd0290f038 + md5: 587cda98aa0a2daff371eb4314a45f2a + depends: + - mumps-include ==5.8.1 h158ef2a_4 + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - _openmp_mutex >=4.5 + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - metis >=5.1.0,<5.1.1.0a0 + - parmetis >=4.0.3,<4.1.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - openmpi >=5.0.8,<6.0a0 + constrains: + - libopenblas * *openmp* + license: CECILL-C + purls: [] + size: 2736520 + timestamp: 1759596390552 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-mpi-5.8.1-h3d714e2_4.conda + sha256: f13655a8f1cf4c2242a7fc1ad23a98aa7770dfb1a0d71488fc9267bc0f745a67 + md5: edc4785dcb50b5ad8da693dc69156640 + depends: + - mumps-include ==5.8.1 ha6078a4_4 + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - llvm-openmp >=19.1.7 + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - mpich >=4.3.1,<5.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - metis >=5.1.0,<5.1.1.0a0 + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - parmetis >=4.0.3,<4.1.0a0 + constrains: + - libopenblas * *openmp* + license: CECILL-C + purls: [] + size: 2730320 + timestamp: 1759596482956 +- pypi: ./ + name: myanalysis + version: 0.1.dev29+g32849c680.d20260127 + sha256: afc1bcf8209ce17b1f69dd66288a7d39770ac5f48aca31fbcb3132d332ee49ad + requires_python: '>=3.12' + editable: true +- pypi: https://files.pythonhosted.org/packages/ef/82/7a9d0550484a62c6da82858ee9419f3dd1ccc9aa1c26a1e43da3ecd20b0d/natsort-8.4.0-py3-none-any.whl + name: natsort + version: 8.4.0 + sha256: 4732914fb471f56b5cce04d7bae6f164a592c7712e1c85f9ef585e197299521c + requires_dist: + - fastnumbers>=2.0.0 ; extra == 'fast' + - pyicu>=1.0.0 ; extra == 'icu' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/83/a0/5b0c2f11142ed1dddec842457d3f65eaf71a0080894eb6f018755b319c3a/nbclient-0.10.4-py3-none-any.whl + name: nbclient + version: 0.10.4 + sha256: 9162df5a7373d70d606527300a95a975a47c137776cd942e52d9c7e29ff83440 + requires_dist: + - jupyter-client>=6.1.12 + - jupyter-core>=4.12,!=5.0.* + - nbformat>=5.1.3 + - traitlets>=5.4 + - pre-commit ; extra == 'dev' + - autodoc-traits ; extra == 'docs' + - flaky ; extra == 'docs' + - ipykernel>=6.19.3 ; extra == 'docs' + - ipython ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - mock ; extra == 'docs' + - moto ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbconvert>=7.1.0 ; extra == 'docs' + - pytest-asyncio>=1.3.0 ; extra == 'docs' + - pytest-cov>=4.0 ; extra == 'docs' + - pytest>=9.0.1,<10 ; extra == 'docs' + - sphinx-book-theme ; extra == 'docs' + - sphinx>=1.7 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - testpath ; extra == 'docs' + - xmltodict ; extra == 'docs' + - flaky ; extra == 'test' + - ipykernel>=6.19.3 ; extra == 'test' + - ipython ; extra == 'test' + - ipywidgets ; extra == 'test' + - nbconvert>=7.1.0 ; extra == 'test' + - pytest-asyncio>=1.3.0 ; extra == 'test' + - pytest-cov>=4.0 ; extra == 'test' + - pytest>=9.0.1,<10 ; extra == 'test' + - testpath ; extra == 'test' + - xmltodict ; extra == 'test' + requires_python: '>=3.10.0' +- pypi: https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl + name: nbconvert + version: 7.16.6 + sha256: 1375a7b67e0c2883678c48e506dc320febb57685e5ee67faa51b18a90f3a712b + requires_dist: + - beautifulsoup4 + - bleach[css]!=5.0.0 + - defusedxml + - importlib-metadata>=3.6 ; python_full_version < '3.10' + - jinja2>=3.0 + - jupyter-core>=4.7 + - jupyterlab-pygments + - markupsafe>=2.0 + - mistune>=2.0.3,<4 + - nbclient>=0.5.0 + - nbformat>=5.7 + - packaging + - pandocfilters>=1.4.1 + - pygments>=2.4.1 + - traitlets>=5.1 + - flaky ; extra == 'all' + - ipykernel ; extra == 'all' + - ipython ; extra == 'all' + - ipywidgets>=7.5 ; extra == 'all' + - myst-parser ; extra == 'all' + - nbsphinx>=0.2.12 ; extra == 'all' + - playwright ; extra == 'all' + - pydata-sphinx-theme ; extra == 'all' + - pyqtwebengine>=5.15 ; extra == 'all' + - pytest>=7 ; extra == 'all' + - sphinx==5.0.2 ; extra == 'all' + - sphinxcontrib-spelling ; extra == 'all' + - tornado>=6.1 ; extra == 'all' + - ipykernel ; extra == 'docs' + - ipython ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbsphinx>=0.2.12 ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx==5.0.2 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - pyqtwebengine>=5.15 ; extra == 'qtpdf' + - pyqtwebengine>=5.15 ; extra == 'qtpng' + - tornado>=6.1 ; extra == 'serve' + - flaky ; extra == 'test' + - ipykernel ; extra == 'test' + - ipywidgets>=7.5 ; extra == 'test' + - pytest>=7 ; extra == 'test' + - playwright ; extra == 'webpdf' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl + name: nbformat + version: 5.10.4 + sha256: 3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b + requires_dist: + - fastjsonschema>=2.15 + - jsonschema>=2.6 + - jupyter-core>=4.12,!=5.0.* + - traitlets>=5.1 + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - pep440 ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest ; extra == 'test' + - testpath ; extra == 'test' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda + sha256: 3fde293232fa3fca98635e1167de6b7c7fda83caf24b9d6c91ec9eefb4f4d586 + md5: 47e340acb35de30501a76c7c799c41d7 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: X11 AND BSD-3-Clause + purls: [] + size: 891641 + timestamp: 1738195959188 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda + sha256: 2827ada40e8d9ca69a153a45f7fd14f32b2ead7045d3bbb5d10964898fe65733 + md5: 068d497125e4bf8a66bf707254fff5ae + depends: + - __osx >=11.0 + license: X11 AND BSD-3-Clause + purls: [] + size: 797030 + timestamp: 1738196177597 +- pypi: https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl + name: nest-asyncio + version: 1.6.0 + sha256: 87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c + requires_python: '>=3.5' +- pypi: https://files.pythonhosted.org/packages/9e/c9/b2622292ea83fbb4ec318f5b9ab867d0a28ab43c5717bb85b0a5f6b3b0a4/networkx-3.6.1-py3-none-any.whl + name: networkx + version: 3.6.1 + sha256: d47fbf302e7d9cbbb9e2555a0d267983d2aa476bac30e90dfbe5669bd57f3762 + requires_dist: + - asv ; extra == 'benchmarking' + - virtualenv ; extra == 'benchmarking' + - numpy>=1.25 ; extra == 'default' + - scipy>=1.11.2 ; extra == 'default' + - matplotlib>=3.8 ; extra == 'default' + - pandas>=2.0 ; extra == 'default' + - pre-commit>=4.1 ; extra == 'developer' + - mypy>=1.15 ; extra == 'developer' + - sphinx>=8.0 ; extra == 'doc' + - pydata-sphinx-theme>=0.16 ; extra == 'doc' + - sphinx-gallery>=0.18 ; extra == 'doc' + - numpydoc>=1.8.0 ; extra == 'doc' + - pillow>=10 ; extra == 'doc' + - texext>=0.6.7 ; extra == 'doc' + - myst-nb>=1.1 ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - osmnx>=2.0.0 ; extra == 'example' + - momepy>=0.7.2 ; extra == 'example' + - contextily>=1.6 ; extra == 'example' + - seaborn>=0.13 ; extra == 'example' + - cairocffi>=1.7 ; extra == 'example' + - igraph>=0.11 ; extra == 'example' + - scikit-learn>=1.5 ; extra == 'example' + - iplotx>=0.9.0 ; extra == 'example' + - lxml>=4.6 ; extra == 'extra' + - pygraphviz>=1.14 ; extra == 'extra' + - pydot>=3.0.1 ; extra == 'extra' + - sympy>=1.10 ; extra == 'extra' + - build>=0.10 ; extra == 'release' + - twine>=4.0 ; extra == 'release' + - wheel>=0.40 ; extra == 'release' + - changelist==0.5 ; extra == 'release' + - pytest>=7.2 ; extra == 'test' + - pytest-cov>=4.0 ; extra == 'test' + - pytest-xdist>=3.0 ; extra == 'test' + - pytest-mpl ; extra == 'test-extras' + - pytest-randomly ; extra == 'test-extras' + requires_python: '>=3.11,!=3.14.1' +- pypi: https://files.pythonhosted.org/packages/88/b2/d0896bdcdc8d28a7fc5717c305f1a861c26e18c05047949fb371034d98bd/nodeenv-1.10.0-py2.py3-none-any.whl + name: nodeenv + version: 1.10.0 + sha256: 5bb13e3eed2923615535339b3c620e76779af4cb4c6a90deccc9e36b274d3827 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*' +- pypi: https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl + name: notebook-shim + version: 0.2.4 + sha256: 411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef + requires_dist: + - jupyter-server>=1.8,<3 + - pytest ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-jupyter ; extra == 'test' + - pytest-tornasync ; extra == 'test' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/9a/2d/e518df036feab381c23a624dac47f8445ac55686ec7f11083655eb707da3/numba-0.61.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: numba + version: 0.61.2 + sha256: 5b1bb509d01f23d70325d3a5a0e237cbc9544dd50e50588bc581ba860c213546 + requires_dist: + - llvmlite>=0.44.0.dev0,<0.45 + - numpy>=1.24,<2.3 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/14/9c/c0974cd3d00ff70d30e8ff90522ba5fbb2bcee168a867d2321d8d0457676/numba-0.63.1-cp312-cp312-macosx_11_0_arm64.whl + name: numba + version: 0.63.1 + sha256: 2819cd52afa5d8d04e057bdfd54367575105f8829350d8fb5e4066fb7591cc71 + requires_dist: + - llvmlite>=0.46.0.dev0,<0.47 + - numpy>=1.22,<2.4 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ca/e9/210e32faa7f9dd42d835d7d36394eaa1d0e29807c56950b389793ee55c1b/numba_cuda-0.19.2-py3-none-any.whl + name: numba-cuda + version: 0.19.2 + sha256: 15284c0d6a3fdd842fc5671db8bbb9c34ab3c122f5a3a06b01b104e23f100e5c + requires_dist: + - numba>=0.60.0 + - cuda-bindings>=12.9.1,<13.0.0 ; extra == 'cu12' + - cuda-core==0.3.* ; extra == 'cu12' + - cuda-python==12.9.* ; extra == 'cu12' + - nvidia-cuda-nvcc-cu12 ; extra == 'cu12' + - nvidia-cuda-runtime-cu12 ; extra == 'cu12' + - nvidia-cuda-nvrtc-cu12 ; extra == 'cu12' + - nvidia-nvjitlink-cu12 ; extra == 'cu12' + - nvidia-cuda-cccl-cu12 ; extra == 'cu12' + - cuda-bindings==13.* ; extra == 'cu13' + - cuda-core==0.3.2,<0.4.0.dev0 ; extra == 'cu13' + - cuda-python==13.* ; extra == 'cu13' + - nvidia-nvvm==13.* ; extra == 'cu13' + - nvidia-cuda-runtime==13.* ; extra == 'cu13' + - nvidia-cuda-nvrtc==13.* ; extra == 'cu13' + - nvidia-nvjitlink==13.* ; extra == 'cu13' + - nvidia-cuda-cccl==13.* ; extra == 'cu13' + - pre-commit ; extra == 'test' + - psutil ; extra == 'test' + - cffi ; extra == 'test' + - pytest ; extra == 'test' + - pytest-xdist ; extra == 'test' + - filecheck ; extra == 'test' + - numba-cuda[cu12] ; extra == 'test-cu12' + - numba-cuda[test] ; extra == 'test-cu12' + - nvidia-curand-cu12 ; extra == 'test-cu12' + - numba-cuda[cu13] ; extra == 'test-cu13' + - numba-cuda[test] ; extra == 'test-cu13' + - nvidia-curand==10.4.* ; extra == 'test-cu13' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f5/6c/86644987505dcb90ba6d627d6989c27bafb0699f9fd00187e06d05ea8594/numcodecs-0.16.5-cp312-cp312-macosx_11_0_arm64.whl + name: numcodecs + version: 0.16.5 + sha256: 94ddfa4341d1a3ab99989d13b01b5134abb687d3dab2ead54b450aefe4ad5bd6 + requires_dist: + - numpy>=1.24 + - typing-extensions + - msgpack ; extra == 'msgpack' + - zfpy>=1.0.0 ; extra == 'zfpy' + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + - google-crc32c>=1.5 ; extra == 'google-crc32c' + - sphinx ; extra == 'docs' + - sphinx-issues ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - numpydoc ; extra == 'docs' + - coverage ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' + - importlib-metadata ; extra == 'test-extras' + - crc32c ; extra == 'test-extras' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/fb/53/78c98ef5c8b2b784453487f3e4d6c017b20747c58b470393e230c78d18e8/numcodecs-0.16.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: numcodecs + version: 0.16.5 + sha256: ad1a379a45bd3491deab8ae6548313946744f868c21d5340116977ea3be5b1d6 + requires_dist: + - numpy>=1.24 + - typing-extensions + - msgpack ; extra == 'msgpack' + - zfpy>=1.0.0 ; extra == 'zfpy' + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + - google-crc32c>=1.5 ; extra == 'google-crc32c' + - sphinx ; extra == 'docs' + - sphinx-issues ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - numpydoc ; extra == 'docs' + - coverage ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' + - importlib-metadata ; extra == 'test-extras' + - crc32c ; extra == 'test-extras' + requires_python: '>=3.11' +- conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda + sha256: e4c14f71588a5627a6935d3e7d9ca78a8387229ec8ebc91616b0988ce57ba0dc + md5: dfdbc12e6d81889ba4c494a23f23eba8 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libgcc >=13 + - liblapack >=3.9.0,<4.0a0 + - libstdcxx >=13 + - python >=3.12,<3.13.0a0 + - python_abi 3.12.* *_cp312 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 8388631 + timestamp: 1730588649810 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-2.1.3-py312h94ee1e1_0.conda + sha256: cd287b6c270ee8af77d200c46d56fdfe1e2a9deeff68044439718b8d073214dd + md5: a2af54c86582e08718805c69af737897 + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libcxx >=18 + - liblapack >=3.9.0,<4.0a0 + - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython + - python_abi 3.12.* *_cp312 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 6398123 + timestamp: 1730588490904 +- pypi: https://files.pythonhosted.org/packages/b0/e0/760e73c111193db5ca37712a148e4807d1b0c60302ab31e4ada6528ca34d/numpy_groupies-0.11.3-py3-none-any.whl + name: numpy-groupies + version: 0.11.3 + sha256: d4065dd5d56fda941ad5a7c80a7f80b49f671ed148aaa3e243a0e4caa71adcb3 + requires_dist: + - numpy + - numba ; extra == 'fast' + - pytest ; extra == 'dev' + - numba ; extra == 'dev' + - pandas ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://pypi.nvidia.com/nvidia-cublas-cu12/nvidia_cublas_cu12-12.8.4.1-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-cublas-cu12 + version: 12.8.4.1 + sha256: 8ac4e771d5a348c551b2a426eda6193c19aa630236b418086020df5ba9667142 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-cccl-cu12/nvidia_cuda_cccl_cu12-12.9.27-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cuda-cccl-cu12 + version: 12.9.27 + sha256: 37869e17ce2e1ecec6eddf1927cca0f8c34e64fd848d40453df559091e2d7117 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-cupti-cu12/nvidia_cuda_cupti_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cuda-cupti-cu12 + version: 12.8.90 + sha256: ea0cb07ebda26bb9b29ba82cda34849e73c166c18162d3913575b0c9db9a6182 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-nvcc-cu12/nvidia_cuda_nvcc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + name: nvidia-cuda-nvcc-cu12 + version: 12.8.93 + sha256: 2d6dc36fb7cb5ac9c0b8825bc13d193c35487a315664007287d0126531238011 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-nvrtc-cu12/nvidia_cuda_nvrtc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + name: nvidia-cuda-nvrtc-cu12 + version: 12.8.93 + sha256: a7756528852ef889772a84c6cd89d41dfa74667e24cca16bb31f8f061e3e9994 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-runtime-cu12/nvidia_cuda_runtime_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cuda-runtime-cu12 + version: 12.8.90 + sha256: adade8dcbd0edf427b7204d480d6066d33902cab2a4707dcfc48a2d0fd44ab90 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cudnn-cu12/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-cudnn-cu12 + version: 9.10.2.21 + sha256: 949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8 + requires_dist: + - nvidia-cublas-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cufft-cu12/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cufft-cu12 + version: 11.3.3.83 + sha256: 4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74 + requires_dist: + - nvidia-nvjitlink-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cufile-cu12/nvidia_cufile_cu12-1.13.1.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cufile-cu12 + version: 1.13.1.3 + sha256: 1d069003be650e131b21c932ec3d8969c1715379251f8d23a1860554b1cb24fc + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-curand-cu12/nvidia_curand_cu12-10.3.9.90-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-curand-cu12 + version: 10.3.9.90 + sha256: b32331d4f4df5d6eefa0554c565b626c7216f87a06a4f56fab27c3b68a830ec9 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cusolver-cu12/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-cusolver-cu12 + version: 11.7.3.90 + sha256: 4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450 + requires_dist: + - nvidia-cublas-cu12 + - nvidia-nvjitlink-cu12 + - nvidia-cusparse-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cusparse-cu12/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cusparse-cu12 + version: 12.5.8.93 + sha256: 1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b + requires_dist: + - nvidia-nvjitlink-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cusparselt-cu12/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl + name: nvidia-cusparselt-cu12 + version: 0.7.1 + sha256: f1bb701d6b930d5a7cea44c19ceb973311500847f81b634d802b7b539dc55623 +- pypi: https://files.pythonhosted.org/packages/fd/72/fb2af0d259a651affdce65fd6a495f0e07a685a0136baf585c5065204ee7/nvidia_ml_py-13.590.48-py3-none-any.whl + name: nvidia-ml-py + version: 13.590.48 + sha256: fd43d30ee9cd0b7940f5f9f9220b68d42722975e3992b6c21d14144c48760e43 +- pypi: https://pypi.nvidia.com/nvidia-nccl-cu12/nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-nccl-cu12 + version: 2.27.5 + sha256: ad730cf15cb5d25fe849c6e6ca9eb5b76db16a80f13f425ac68d8e2e55624457 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-nvjitlink-cu12/nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + name: nvidia-nvjitlink-cu12 + version: 12.8.93 + sha256: 81ff63371a7ebd6e6451970684f916be2eab07321b73c9d244dc2b4da7f73b88 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-nvshmem-cu12/nvidia_nvshmem_cu12-3.4.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-nvshmem-cu12 + version: 3.4.5 + sha256: 042f2500f24c021db8a06c5eec2539027d57460e1c1a762055a6554f72c369bd + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-nvtx-cu12/nvidia_nvtx_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-nvtx-cu12 + version: 12.8.90 + sha256: 5b17e2001cc0d751a5bc2c6ec6d26ad95913324a4adb86788c944f8ce9ba441f + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvtx/nvtx-0.2.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: nvtx + version: 0.2.14 + sha256: 17efe5d903996bceb0c8a12cae80fa9b66bee7ee895923bd9d8ec2a5af1aabd8 + requires_dist: + - pytest ; extra == 'test' + - cython>=3.1 ; extra == 'test' + - setuptools ; extra == 'test' + - sphinx ; extra == 'docs' + - nvidia-sphinx-theme ; extra == 'docs' +- pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl + name: ome-zarr + version: 0.12.2 + sha256: 655fe1b11ca01148603f9931a5b0af31207dfc03a3a35f9b0ab8639790282bbd + requires_dist: + - numpy + - dask + - zarr>=3.0.0 + - fsspec[s3]>=0.8,!=2021.7.0,!=2023.9.0 + - aiohttp + - requests + - scikit-image>=0.19.0 + - toolz + - pytest ; extra == 'tests' + requires_python: '>3.10' +- pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + name: omnipath + version: 1.0.12 + sha256: 28b85360f2f566e3c1e146560f8d3a5c133e221ce93c63ef62b3c71be9a6b003 + requires_dist: + - attrs>=20.2.0 + - docrep>=0.3.1 + - inflect>=4.1.0 + - packaging>=24.2 + - pandas>=1.2.0 + - requests>=2.24.0 + - tqdm>=4.51.0 + - typing-extensions>=3.7.4.3 + - urllib3>=1.26.0 + - wrapt>=1.12.0 + - attrs>=20.2.0 ; extra == 'docs' + - docrep>=0.3.1 ; extra == 'docs' + - inflect>=4.1.0 ; extra == 'docs' + - packaging>=24.2 ; extra == 'docs' + - pandas>=1.2.0 ; extra == 'docs' + - requests>=2.24.0 ; extra == 'docs' + - sphinx-autodoc-annotation>=1.0.post1 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5.2 ; extra == 'docs' + - sphinx-last-updated-by-git>=0.3.8 ; extra == 'docs' + - sphinx-paramlinks>=0.6.0 ; extra == 'docs' + - sphinx-rtd-theme>=3.0.2 ; extra == 'docs' + - sphinx-toolbox>=3.9.0 ; extra == 'docs' + - sphinx>=4 ; extra == 'docs' + - tqdm>=4.51.0 ; extra == 'docs' + - typing-extensions>=3.7.4.3 ; extra == 'docs' + - urllib3>=1.26.0 ; extra == 'docs' + - wrapt>=1.12.0 ; extra == 'docs' + - networkx>=2.3.0 ; extra == 'graph' + - tox>=3.20.1 ; extra == 'tests' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/openmpi-5.0.8-h611b0e2_111.conda + sha256: 1d96c7a064104383d5ebf9b917b3fefe1e9fb8777db114b6e66edceeaed7ccf4 + md5: 93c7c61f1a87894da811a584df22d126 + depends: + - mpi 1.0.* openmpi + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - libstdcxx >=14 + - libevent >=2.1.12,<2.1.13.0a0 + - libhwloc >=2.12.2,<2.12.3.0a0 + - ucx >=1.20.0,<1.21.0a0 + - libnl >=3.11.0,<4.0a0 + - libzlib >=1.3.1,<2.0a0 + - libfabric + - libfabric1 >=1.14.0 + - libpmix >=5.0.8,<6.0a0 + - ucc >=1.6.0,<2.0a0 + constrains: + - __cuda >=12.0 + - cuda-version >=12.0 + - libprrte ==0.0.0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 3926022 + timestamp: 1768621211266 +- pypi: https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl + name: openpyxl + version: 3.1.5 + sha256: 5282c12b107bffeef825f4617dc029afaf41d0ea60823bbb665ef3079dc79de2 + requires_dist: + - et-xmlfile + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda + sha256: a47271202f4518a484956968335b2521409c8173e123ab381e775c358c67fe6d + md5: 9ee58d5c534af06558933af3c845a780 + depends: + - __glibc >=2.17,<3.0.a0 + - ca-certificates + - libgcc >=14 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 3165399 + timestamp: 1762839186699 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda + sha256: ebe93dafcc09e099782fe3907485d4e1671296bc14f8c383cb6f3dfebb773988 + md5: b34dc4172653c13dcf453862f251af2b + depends: + - __osx >=11.0 + - ca-certificates + license: Apache-2.0 + license_family: Apache + purls: [] + size: 3108371 + timestamp: 1762839712322 +- pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl + name: opt-einsum + version: 3.4.0 + sha256: 69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl + name: packaging + version: '26.0' + sha256: b36f1fef9334a5588b4166f8bcd26a14e521f2b55e6b9de3aaa80d3ff7a37529 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/5c/bd/bf8064d9cfa214294356c2d6702b716d3cf3bb24be59287a6a21e24cae6b/pandas-2.3.3-cp312-cp312-macosx_11_0_arm64.whl + name: pandas + version: 2.3.3 + sha256: 3fd2f887589c7aa868e02632612ba39acb0b8948faf5cc58f0850e165bd46f35 + requires_dist: + - numpy>=1.22.4 ; python_full_version < '3.11' + - numpy>=1.23.2 ; python_full_version == '3.11.*' + - numpy>=1.26.0 ; python_full_version >= '3.12' + - python-dateutil>=2.8.2 + - pytz>=2020.1 + - tzdata>=2022.7 + - hypothesis>=6.46.1 ; extra == 'test' + - pytest>=7.3.2 ; extra == 'test' + - pytest-xdist>=2.2.0 ; extra == 'test' + - pyarrow>=10.0.1 ; extra == 'pyarrow' + - bottleneck>=1.3.6 ; extra == 'performance' + - numba>=0.56.4 ; extra == 'performance' + - numexpr>=2.8.4 ; extra == 'performance' + - scipy>=1.10.0 ; extra == 'computation' + - xarray>=2022.12.0 ; extra == 'computation' + - fsspec>=2022.11.0 ; extra == 'fss' + - s3fs>=2022.11.0 ; extra == 'aws' + - gcsfs>=2022.11.0 ; extra == 'gcp' + - pandas-gbq>=0.19.0 ; extra == 'gcp' + - odfpy>=1.4.1 ; extra == 'excel' + - openpyxl>=3.1.0 ; extra == 'excel' + - python-calamine>=0.1.7 ; extra == 'excel' + - pyxlsb>=1.0.10 ; extra == 'excel' + - xlrd>=2.0.1 ; extra == 'excel' + - xlsxwriter>=3.0.5 ; extra == 'excel' + - pyarrow>=10.0.1 ; extra == 'parquet' + - pyarrow>=10.0.1 ; extra == 'feather' + - tables>=3.8.0 ; extra == 'hdf5' + - pyreadstat>=1.2.0 ; extra == 'spss' + - sqlalchemy>=2.0.0 ; extra == 'postgresql' + - psycopg2>=2.9.6 ; extra == 'postgresql' + - adbc-driver-postgresql>=0.8.0 ; extra == 'postgresql' + - sqlalchemy>=2.0.0 ; extra == 'mysql' + - pymysql>=1.0.2 ; extra == 'mysql' + - sqlalchemy>=2.0.0 ; extra == 'sql-other' + - adbc-driver-postgresql>=0.8.0 ; extra == 'sql-other' + - adbc-driver-sqlite>=0.8.0 ; extra == 'sql-other' + - beautifulsoup4>=4.11.2 ; extra == 'html' + - html5lib>=1.1 ; extra == 'html' + - lxml>=4.9.2 ; extra == 'html' + - lxml>=4.9.2 ; extra == 'xml' + - matplotlib>=3.6.3 ; extra == 'plot' + - jinja2>=3.1.2 ; extra == 'output-formatting' + - tabulate>=0.9.0 ; extra == 'output-formatting' + - pyqt5>=5.15.9 ; extra == 'clipboard' + - qtpy>=2.3.0 ; extra == 'clipboard' + - zstandard>=0.19.0 ; extra == 'compression' + - dataframe-api-compat>=0.1.7 ; extra == 'consortium-standard' + - adbc-driver-postgresql>=0.8.0 ; extra == 'all' + - adbc-driver-sqlite>=0.8.0 ; extra == 'all' + - beautifulsoup4>=4.11.2 ; extra == 'all' + - bottleneck>=1.3.6 ; extra == 'all' + - dataframe-api-compat>=0.1.7 ; extra == 'all' + - fastparquet>=2022.12.0 ; extra == 'all' + - fsspec>=2022.11.0 ; extra == 'all' + - gcsfs>=2022.11.0 ; extra == 'all' + - html5lib>=1.1 ; extra == 'all' + - hypothesis>=6.46.1 ; extra == 'all' + - jinja2>=3.1.2 ; extra == 'all' + - lxml>=4.9.2 ; extra == 'all' + - matplotlib>=3.6.3 ; extra == 'all' + - numba>=0.56.4 ; extra == 'all' + - numexpr>=2.8.4 ; extra == 'all' + - odfpy>=1.4.1 ; extra == 'all' + - openpyxl>=3.1.0 ; extra == 'all' + - pandas-gbq>=0.19.0 ; extra == 'all' + - psycopg2>=2.9.6 ; extra == 'all' + - pyarrow>=10.0.1 ; extra == 'all' + - pymysql>=1.0.2 ; extra == 'all' + - pyqt5>=5.15.9 ; extra == 'all' + - pyreadstat>=1.2.0 ; extra == 'all' + - pytest>=7.3.2 ; extra == 'all' + - pytest-xdist>=2.2.0 ; extra == 'all' + - python-calamine>=0.1.7 ; extra == 'all' + - pyxlsb>=1.0.10 ; extra == 'all' + - qtpy>=2.3.0 ; extra == 'all' + - scipy>=1.10.0 ; extra == 'all' + - s3fs>=2022.11.0 ; extra == 'all' + - sqlalchemy>=2.0.0 ; extra == 'all' + - tables>=3.8.0 ; extra == 'all' + - tabulate>=0.9.0 ; extra == 'all' + - xarray>=2022.12.0 ; extra == 'all' + - xlrd>=2.0.1 ; extra == 'all' + - xlsxwriter>=3.0.5 ; extra == 'all' + - zstandard>=0.19.0 ; extra == 'all' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pandas + version: 2.3.3 + sha256: b3d11d2fda7eb164ef27ffc14b4fcab16a80e1ce67e9f57e19ec0afaf715ba89 + requires_dist: + - numpy>=1.22.4 ; python_full_version < '3.11' + - numpy>=1.23.2 ; python_full_version == '3.11.*' + - numpy>=1.26.0 ; python_full_version >= '3.12' + - python-dateutil>=2.8.2 + - pytz>=2020.1 + - tzdata>=2022.7 + - hypothesis>=6.46.1 ; extra == 'test' + - pytest>=7.3.2 ; extra == 'test' + - pytest-xdist>=2.2.0 ; extra == 'test' + - pyarrow>=10.0.1 ; extra == 'pyarrow' + - bottleneck>=1.3.6 ; extra == 'performance' + - numba>=0.56.4 ; extra == 'performance' + - numexpr>=2.8.4 ; extra == 'performance' + - scipy>=1.10.0 ; extra == 'computation' + - xarray>=2022.12.0 ; extra == 'computation' + - fsspec>=2022.11.0 ; extra == 'fss' + - s3fs>=2022.11.0 ; extra == 'aws' + - gcsfs>=2022.11.0 ; extra == 'gcp' + - pandas-gbq>=0.19.0 ; extra == 'gcp' + - odfpy>=1.4.1 ; extra == 'excel' + - openpyxl>=3.1.0 ; extra == 'excel' + - python-calamine>=0.1.7 ; extra == 'excel' + - pyxlsb>=1.0.10 ; extra == 'excel' + - xlrd>=2.0.1 ; extra == 'excel' + - xlsxwriter>=3.0.5 ; extra == 'excel' + - pyarrow>=10.0.1 ; extra == 'parquet' + - pyarrow>=10.0.1 ; extra == 'feather' + - tables>=3.8.0 ; extra == 'hdf5' + - pyreadstat>=1.2.0 ; extra == 'spss' + - sqlalchemy>=2.0.0 ; extra == 'postgresql' + - psycopg2>=2.9.6 ; extra == 'postgresql' + - adbc-driver-postgresql>=0.8.0 ; extra == 'postgresql' + - sqlalchemy>=2.0.0 ; extra == 'mysql' + - pymysql>=1.0.2 ; extra == 'mysql' + - sqlalchemy>=2.0.0 ; extra == 'sql-other' + - adbc-driver-postgresql>=0.8.0 ; extra == 'sql-other' + - adbc-driver-sqlite>=0.8.0 ; extra == 'sql-other' + - beautifulsoup4>=4.11.2 ; extra == 'html' + - html5lib>=1.1 ; extra == 'html' + - lxml>=4.9.2 ; extra == 'html' + - lxml>=4.9.2 ; extra == 'xml' + - matplotlib>=3.6.3 ; extra == 'plot' + - jinja2>=3.1.2 ; extra == 'output-formatting' + - tabulate>=0.9.0 ; extra == 'output-formatting' + - pyqt5>=5.15.9 ; extra == 'clipboard' + - qtpy>=2.3.0 ; extra == 'clipboard' + - zstandard>=0.19.0 ; extra == 'compression' + - dataframe-api-compat>=0.1.7 ; extra == 'consortium-standard' + - adbc-driver-postgresql>=0.8.0 ; extra == 'all' + - adbc-driver-sqlite>=0.8.0 ; extra == 'all' + - beautifulsoup4>=4.11.2 ; extra == 'all' + - bottleneck>=1.3.6 ; extra == 'all' + - dataframe-api-compat>=0.1.7 ; extra == 'all' + - fastparquet>=2022.12.0 ; extra == 'all' + - fsspec>=2022.11.0 ; extra == 'all' + - gcsfs>=2022.11.0 ; extra == 'all' + - html5lib>=1.1 ; extra == 'all' + - hypothesis>=6.46.1 ; extra == 'all' + - jinja2>=3.1.2 ; extra == 'all' + - lxml>=4.9.2 ; extra == 'all' + - matplotlib>=3.6.3 ; extra == 'all' + - numba>=0.56.4 ; extra == 'all' + - numexpr>=2.8.4 ; extra == 'all' + - odfpy>=1.4.1 ; extra == 'all' + - openpyxl>=3.1.0 ; extra == 'all' + - pandas-gbq>=0.19.0 ; extra == 'all' + - psycopg2>=2.9.6 ; extra == 'all' + - pyarrow>=10.0.1 ; extra == 'all' + - pymysql>=1.0.2 ; extra == 'all' + - pyqt5>=5.15.9 ; extra == 'all' + - pyreadstat>=1.2.0 ; extra == 'all' + - pytest>=7.3.2 ; extra == 'all' + - pytest-xdist>=2.2.0 ; extra == 'all' + - python-calamine>=0.1.7 ; extra == 'all' + - pyxlsb>=1.0.10 ; extra == 'all' + - qtpy>=2.3.0 ; extra == 'all' + - scipy>=1.10.0 ; extra == 'all' + - s3fs>=2022.11.0 ; extra == 'all' + - sqlalchemy>=2.0.0 ; extra == 'all' + - tables>=3.8.0 ; extra == 'all' + - tabulate>=0.9.0 ; extra == 'all' + - xarray>=2022.12.0 ; extra == 'all' + - xlrd>=2.0.1 ; extra == 'all' + - xlsxwriter>=3.0.5 ; extra == 'all' + - zstandard>=0.19.0 ; extra == 'all' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl + name: pandocfilters + version: 1.5.1 + sha256: 93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*' +- pypi: https://files.pythonhosted.org/packages/11/da/9d476e9aadfa854719f3cb917e3f7a170a657a182d8d1d6e546594a4872b/param-2.3.1-py3-none-any.whl + name: param + version: 2.3.1 + sha256: 886b19031438719bbecfd15044dcdd9ed3cb9edb199191294f75600c7081d163 + requires_dist: + - aiohttp ; extra == 'all' + - cloudpickle ; extra == 'all' + - gmpy2 ; extra == 'all' + - ipython ; extra == 'all' + - jsonschema ; extra == 'all' + - nbval ; extra == 'all' + - nest-asyncio ; extra == 'all' + - numpy ; extra == 'all' + - odfpy ; extra == 'all' + - openpyxl ; extra == 'all' + - pandas ; extra == 'all' + - panel ; extra == 'all' + - pyarrow ; extra == 'all' + - pytest ; extra == 'all' + - pytest-asyncio ; extra == 'all' + - pytest-cov ; extra == 'all' + - pytest-xdist ; extra == 'all' + - tables ; extra == 'all' + - xlrd ; extra == 'all' + - aiohttp ; extra == 'examples' + - pandas ; extra == 'examples' + - panel ; extra == 'examples' + - pytest ; extra == 'tests' + - pytest-asyncio ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - odfpy ; extra == 'tests-deser' + - openpyxl ; extra == 'tests-deser' + - pyarrow ; extra == 'tests-deser' + - tables ; extra == 'tests-deser' + - xlrd ; extra == 'tests-deser' + - aiohttp ; extra == 'tests-examples' + - nbval ; extra == 'tests-examples' + - pandas ; extra == 'tests-examples' + - panel ; extra == 'tests-examples' + - pytest ; extra == 'tests-examples' + - pytest-asyncio ; extra == 'tests-examples' + - pytest-xdist ; extra == 'tests-examples' + - aiohttp ; extra == 'tests-full' + - cloudpickle ; extra == 'tests-full' + - gmpy2 ; extra == 'tests-full' + - ipython ; extra == 'tests-full' + - jsonschema ; extra == 'tests-full' + - nbval ; extra == 'tests-full' + - nest-asyncio ; extra == 'tests-full' + - numpy ; extra == 'tests-full' + - odfpy ; extra == 'tests-full' + - openpyxl ; extra == 'tests-full' + - pandas ; extra == 'tests-full' + - panel ; extra == 'tests-full' + - pyarrow ; extra == 'tests-full' + - pytest ; extra == 'tests-full' + - pytest-asyncio ; extra == 'tests-full' + - pytest-cov ; extra == 'tests-full' + - pytest-xdist ; extra == 'tests-full' + - tables ; extra == 'tests-full' + - xlrd ; extra == 'tests-full' + - cloudpickle ; extra == 'tests-pypy' + - ipython ; extra == 'tests-pypy' + - jsonschema ; extra == 'tests-pypy' + - nest-asyncio ; extra == 'tests-pypy' + - numpy ; extra == 'tests-pypy' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/parmetis-4.0.3-h02de7a9_1007.conda + sha256: 46f621fefa4a7e16e3baecb8fd91c963c114868f9916d4fd88012f9733e50de7 + md5: 5b8d0f52f0248c5788fde9aa3436bb4d + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + - openmpi >=5.0.5,<6.0a0 + license: LicenseRef-ParMETIS + purls: [] + size: 276865 + timestamp: 1730465272445 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/parmetis-4.0.3-ha4b917a_1007.conda + sha256: 3d6b8fe9c3bdfebe6ab741f2d361d1f9985648e133adc92d5255c49d239b23d5 + md5: 5446c6b6425a5639d701d5424a061d5e + depends: + - __osx >=11.0 + - libcxx >=18 + - mpich >=4.2.3,<5.0a0 + license: LicenseRef-ParMETIS + purls: [] + size: 220470 + timestamp: 1730465546669 +- pypi: https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl + name: parso + version: 0.8.5 + sha256: 646204b5ee239c396d040b90f9e272e9a8017c630092bf59980beb62fd033887 + requires_dist: + - pytest ; extra == 'testing' + - docopt ; extra == 'testing' + - flake8==5.0.4 ; extra == 'qa' + - mypy==0.971 ; extra == 'qa' + - types-setuptools==67.2.0.1 ; extra == 'qa' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl + name: partd + version: 1.4.2 + sha256: 978e4ac767ec4ba5b86c6eaa52e5a2a3bc748a2ca839e8cc798f1cc6ce6efb0f + requires_dist: + - locket + - toolz + - numpy>=1.20.0 ; extra == 'complete' + - pandas>=1.3 ; extra == 'complete' + - pyzmq ; extra == 'complete' + - blosc ; extra == 'complete' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b1/29/c028a0731e202035f0e2e0bfbf1a3e46ad6c628cbb17f6f1cc9eea5d9ff1/pathlib_abc-0.5.2-py3-none-any.whl + name: pathlib-abc + version: 0.5.2 + sha256: 4c9d94cf1b23af417ce7c0417b43333b06a106c01000b286c99de230d95eefbb + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f1/70/ba4b949bdc0490ab78d545459acd7702b211dfccf7eb89bbc1060f52818d/patsy-1.0.2-py2.py3-none-any.whl + name: patsy + version: 1.0.2 + sha256: 37bfddbc58fcf0362febb5f54f10743f8b21dd2aa73dec7e7ef59d1b02ae668a + requires_dist: + - numpy>=1.4 + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.6' +- conda: https://conda.anaconda.org/conda-forge/linux-64/petsc-3.24.3-real_h326748a_1.conda + sha256: 0e1fe7371b42f179315862e5d60536038064c057d2f2b310f8f13781b8896318 + md5: 0941ef873ec159a6141a492b29126a80 + depends: + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - libstdcxx >=14 + - liblapack >=3.9.0,<4.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - yaml >=0.2.5,<0.3.0a0 + - libklu >=2.3.5,<3.0a0 + - mumps-mpi >=5.8.1,<5.8.2.0a0 + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - libblas >=3.9.0,<4.0a0 + - superlu_dist >=9.1.0,<10.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libspqr >=4.3.4,<5.0a0 + - fftw >=3.3.10,<4.0a0 + - fftw * mpi_openmpi_* + - superlu >=7.0.1,<7.1.0a0 + - libumfpack >=6.3.5,<7.0a0 + - openmpi >=5.0.8,<6.0a0 + - hypre >=2.32.0,<2.33.0a0 + - libamd >=3.3.3,<4.0a0 + - libhwloc >=2.12.2,<2.12.3.0a0 + - parmetis >=4.0.3,<4.1.0a0 + - metis >=5.1.0,<5.1.1.0a0 + - hdf5 >=1.14.6,<1.14.7.0a0 mpi_openmpi_* + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 24258048 + timestamp: 1768671939184 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc-3.24.3-real_h9fb0cc7_1.conda + sha256: 2312e935d8a54ddf0685495d83e75ac91ebb6a0d691712cce209b9e6b2787a28 + md5: 637f86995ced46f6ffd9caa72011fc90 + depends: + - libcxx >=19 + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - hdf5 >=1.14.6,<1.14.7.0a0 mpi_mpich_* + - libklu >=2.3.5,<3.0a0 + - mumps-mpi >=5.8.1,<5.8.2.0a0 + - fftw >=3.3.10,<4.0a0 + - fftw * mpi_mpich_* + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + - hypre >=2.32.0,<2.33.0a0 + - libumfpack >=6.3.5,<7.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libspqr >=4.3.4,<5.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - libamd >=3.3.3,<4.0a0 + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - libhwloc >=2.12.2,<2.12.3.0a0 + - superlu_dist >=9.1.0,<10.0a0 + - metis >=5.1.0,<5.1.1.0a0 + - mpich >=4.3.2,<5.0a0 + - parmetis >=4.0.3,<4.1.0a0 + - superlu >=7.0.0,<7.1.0a0 + - yaml >=0.2.5,<0.3.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 19961691 + timestamp: 1768671965776 +- conda: https://conda.anaconda.org/conda-forge/linux-64/petsc4py-3.24.3-np2py310h90edcb8_0.conda + noarch: python + sha256: b1887b2536f054fcb98b93f46283f15c84458dba1319b0a6e968c74d660fffe8 + md5: 5cbad812476b36c1e54788537299707d + depends: + - python + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - _python_abi3_support 1.* + - cpython >=3.10 + - numpy >=1.21,<3 + - openmpi >=5.0.8,<6.0a0 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/petsc4py?source=hash-mapping + size: 1813384 + timestamp: 1767605661858 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc4py-3.24.3-np2py310h37723c0_0.conda + noarch: python + sha256: 60b5bf14e7806b9fd258a4604fe2db7495025be707b2ba245a04925fa0571e00 + md5: 082c5842c04aadaf7e680104c92dccda + depends: + - python + - libgfortran + - libgfortran5 >=14.3.0 + - __osx >=11.0 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + - _python_abi3_support 1.* + - cpython >=3.10 + - numpy >=1.21,<3 + - mpich >=4.3.2,<5.0a0 + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/petsc4py?source=hash-mapping + size: 1329951 + timestamp: 1767605889601 +- pypi: https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl + name: pexpect + version: 4.9.0 + sha256: 7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523 + requires_dist: + - ptyprocess>=0.5 +- pypi: https://files.pythonhosted.org/packages/11/8f/48d0b77ab2200374c66d344459b8958c86693be99526450e7aee714e03e4/pillow-12.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: pillow + version: 12.1.0 + sha256: a6dfc2af5b082b635af6e08e0d1f9f1c4e04d17d4e2ca0ef96131e85eda6eb17 + requires_dist: + - furo ; extra == 'docs' + - olefile ; extra == 'docs' + - sphinx>=8.2 ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-inline-tabs ; extra == 'docs' + - sphinxext-opengraph ; extra == 'docs' + - olefile ; extra == 'fpx' + - olefile ; extra == 'mic' + - arro3-compute ; extra == 'test-arrow' + - arro3-core ; extra == 'test-arrow' + - nanoarrow ; extra == 'test-arrow' + - pyarrow ; extra == 'test-arrow' + - check-manifest ; extra == 'tests' + - coverage>=7.4.2 ; extra == 'tests' + - defusedxml ; extra == 'tests' + - markdown2 ; extra == 'tests' + - olefile ; extra == 'tests' + - packaging ; extra == 'tests' + - pyroma>=5 ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-timeout ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - trove-classifiers>=2024.10.12 ; extra == 'tests' + - defusedxml ; extra == 'xmp' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ab/c1/10e45ac9cc79419cedf5121b42dcca5a50ad2b601fa080f58c22fb27626e/pillow-12.1.0-cp312-cp312-macosx_11_0_arm64.whl + name: pillow + version: 12.1.0 + sha256: 907bfa8a9cb790748a9aa4513e37c88c59660da3bcfffbd24a7d9e6abf224551 + requires_dist: + - furo ; extra == 'docs' + - olefile ; extra == 'docs' + - sphinx>=8.2 ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-inline-tabs ; extra == 'docs' + - sphinxext-opengraph ; extra == 'docs' + - olefile ; extra == 'fpx' + - olefile ; extra == 'mic' + - arro3-compute ; extra == 'test-arrow' + - arro3-core ; extra == 'test-arrow' + - nanoarrow ; extra == 'test-arrow' + - pyarrow ; extra == 'test-arrow' + - check-manifest ; extra == 'tests' + - coverage>=7.4.2 ; extra == 'tests' + - defusedxml ; extra == 'tests' + - markdown2 ; extra == 'tests' + - olefile ; extra == 'tests' + - packaging ; extra == 'tests' + - pyroma>=5 ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-timeout ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - trove-classifiers>=2024.10.12 ; extra == 'tests' + - defusedxml ; extra == 'xmp' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz + name: pims + version: '0.7' + sha256: 55907a4c301256086d2aa4e34a5361b9109f24e375c2071e1117b9491e82946b + requires_dist: + - imageio + - numpy>=1.19 + - packaging + - slicerator>=0.9.8 + - tifffile + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl + name: platformdirs + version: 4.5.1 + sha256: d03afa3963c806a9bed9d5125c8f4cb2fdaf74a55ab60e5d59b3fde758104d31 + requires_dist: + - furo>=2025.9.25 ; extra == 'docs' + - proselint>=0.14 ; extra == 'docs' + - sphinx-autodoc-typehints>=3.2 ; extra == 'docs' + - sphinx>=8.2.3 ; extra == 'docs' + - appdirs==1.4.4 ; extra == 'test' + - covdefaults>=2.3 ; extra == 'test' + - pytest-cov>=7 ; extra == 'test' + - pytest-mock>=3.15.1 ; extra == 'test' + - pytest>=8.4.2 ; extra == 'test' + - mypy>=1.18.2 ; extra == 'type' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl + name: pluggy + version: 1.6.0 + sha256: e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746 + requires_dist: + - pre-commit ; extra == 'dev' + - tox ; extra == 'dev' + - pytest ; extra == 'testing' + - pytest-benchmark ; extra == 'testing' + - coverage ; extra == 'testing' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl + name: pooch + version: 1.8.2 + sha256: 3529a57096f7198778a5ceefd5ac3ef0e4d06a6ddaf9fc2d609b806f25302c47 + requires_dist: + - platformdirs>=2.5.0 + - packaging>=20.0 + - requests>=2.19.0 + - tqdm>=4.41.0,<5.0.0 ; extra == 'progress' + - paramiko>=2.7.0 ; extra == 'sftp' + - xxhash>=1.4.3 ; extra == 'xxhash' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl + name: pre-commit + version: 4.5.1 + sha256: 3b3afd891e97337708c1674210f8eba659b52a38ea5f822ff142d10786221f77 + requires_dist: + - cfgv>=2.0.0 + - identify>=1.0.0 + - nodeenv>=0.11.1 + - pyyaml>=5.1 + - virtualenv>=20.10.0 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl + name: progressbar2 + version: 4.5.0 + sha256: 625c94a54e63915b3959355e6d4aacd63a00219e5f3e2b12181b76867bf6f628 + requires_dist: + - python-utils>=3.8.1 + - sphinx>=1.8.5 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.6.0 ; extra == 'docs' + - dill>=0.3.6 ; extra == 'tests' + - flake8>=3.7.7 ; extra == 'tests' + - freezegun>=0.3.11 ; extra == 'tests' + - pytest-cov>=2.6.1 ; extra == 'tests' + - pytest-mypy ; extra == 'tests' + - pytest>=4.6.9 ; extra == 'tests' + - sphinx>=1.8.5 ; extra == 'tests' + - pywin32 ; sys_platform == 'win32' and extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl + name: prometheus-client + version: 0.24.1 + sha256: 150db128af71a5c2482b36e588fc8a6b95e498750da4b17065947c16070f4055 + requires_dist: + - twisted ; extra == 'twisted' + - aiohttp ; extra == 'aiohttp' + - django ; extra == 'django' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl + name: prompt-toolkit + version: 3.0.52 + sha256: 9aac639a3bbd33284347de5ad8d68ecc044b91a762dc39b7c21095fcd6a19955 + requires_dist: + - wcwidth + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/0a/b6/5c9a0e42df4d00bfb4a3cbbe5cf9f54260300c88a0e9af1f47ca5ce17ac0/propcache-0.4.1-cp312-cp312-macosx_11_0_arm64.whl + name: propcache + version: 0.4.1 + sha256: f048da1b4f243fc44f205dfd320933a951b8d89e0afd4c7cacc762a8b9165207 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/46/4b/3aae6835b8e5f44ea6a68348ad90f78134047b503765087be2f9912140ea/propcache-0.4.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: propcache + version: 0.4.1 + sha256: 15932ab57837c3368b024473a525e25d316d8353016e7cc0e5ba9eb343fbb1cf + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/66/15/6ee23553b6bfd82670207ead921f4d8ef14c107e5e11443b04caeb5ab5ec/protobuf-6.33.4-cp39-abi3-macosx_10_9_universal2.whl + name: protobuf + version: 6.33.4 + sha256: 2fe67f6c014c84f655ee06f6f66213f9254b3a8b6bda6cda0ccd4232c73c06f0 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e8/8e/971c0edd084914f7ee7c23aa70ba89e8903918adca179319ee94403701d5/protobuf-6.33.4-cp39-abi3-manylinux2014_x86_64.whl + name: protobuf + version: 6.33.4 + sha256: 3df850c2f8db9934de4cf8f9152f8dc2558f49f298f37f90c517e8e5c84c30e9 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/29/f8/40e01c350ad9a2b3cb4e6adbcc8a83b17ee50dd5792102b6142385937db5/psutil-7.2.1-cp36-abi3-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl + name: psutil + version: 7.2.1 + sha256: 5e38404ca2bb30ed7267a46c02f06ff842e92da3bb8c5bfdadbd35a5722314d8 + requires_dist: + - psleak ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-instafail ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - setuptools ; extra == 'dev' + - abi3audit ; extra == 'dev' + - black ; extra == 'dev' + - check-manifest ; extra == 'dev' + - coverage ; extra == 'dev' + - packaging ; extra == 'dev' + - pylint ; extra == 'dev' + - pyperf ; extra == 'dev' + - pypinfo ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - requests ; extra == 'dev' + - rstcheck ; extra == 'dev' + - ruff ; extra == 'dev' + - sphinx ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - toml-sort ; extra == 'dev' + - twine ; extra == 'dev' + - validate-pyproject[all] ; extra == 'dev' + - virtualenv ; extra == 'dev' + - vulture ; extra == 'dev' + - wheel ; extra == 'dev' + - psleak ; extra == 'test' + - pytest ; extra == 'test' + - pytest-instafail ; extra == 'test' + - pytest-xdist ; extra == 'test' + - setuptools ; extra == 'test' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/c5/2c/78e4a789306a92ade5000da4f5de3255202c534acdadc3aac7b5458fadef/psutil-7.2.1-cp36-abi3-macosx_11_0_arm64.whl + name: psutil + version: 7.2.1 + sha256: 05cc68dbb8c174828624062e73078e7e35406f4ca2d0866c272c2410d8ef06d1 + requires_dist: + - psleak ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-instafail ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - setuptools ; extra == 'dev' + - abi3audit ; extra == 'dev' + - black ; extra == 'dev' + - check-manifest ; extra == 'dev' + - coverage ; extra == 'dev' + - packaging ; extra == 'dev' + - pylint ; extra == 'dev' + - pyperf ; extra == 'dev' + - pypinfo ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - requests ; extra == 'dev' + - rstcheck ; extra == 'dev' + - ruff ; extra == 'dev' + - sphinx ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - toml-sort ; extra == 'dev' + - twine ; extra == 'dev' + - validate-pyproject[all] ; extra == 'dev' + - virtualenv ; extra == 'dev' + - vulture ; extra == 'dev' + - wheel ; extra == 'dev' + - psleak ; extra == 'test' + - pytest ; extra == 'test' + - pytest-instafail ; extra == 'test' + - pytest-xdist ; extra == 'test' + - setuptools ; extra == 'test' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl + name: ptyprocess + version: 0.7.0 + sha256: 4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35 +- pypi: https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl + name: pure-eval + version: 0.2.3 + sha256: 1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0 + requires_dist: + - pytest ; extra == 'tests' +- pypi: https://files.pythonhosted.org/packages/3d/bd/c861d020831ee57609b73ea721a617985ece817684dc82415b0bc3e03ac3/pyarrow-23.0.0-cp312-cp312-macosx_12_0_arm64.whl + name: pyarrow + version: 23.0.0 + sha256: 5961a9f646c232697c24f54d3419e69b4261ba8a8b66b0ac54a1851faffcbab8 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/c6/6f/8f9eb40c2328d66e8b097777ddcf38494115ff9f1b5bc9754ba46991191e/pyarrow-23.0.0-cp312-cp312-manylinux_2_28_x86_64.whl + name: pyarrow + version: 23.0.0 + sha256: b73519f8b52ae28127000986bf228fda781e81d3095cd2d3ece76eb5cf760e1b + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/0c/c3/44f3fbbfa403ea2a7c779186dc20772604442dde72947e7d01069cbe98e3/pycparser-3.0-py3-none-any.whl + name: pycparser + version: '3.0' + sha256: b727414169a36b7d524c1c3e31839a521725078d7b2ff038656844266160a992 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/8c/b2/23f4032cd1c9744aa8e9ecda43cd4d755fcb209f7f40fae035248f31a679/pyct-0.6.0-py3-none-any.whl + name: pyct + version: 0.6.0 + sha256: cfaded7289fca72ddf6579b81459e3ec8db323a508e61c49aa318ee3cd6ff160 + requires_dist: + - param>=1.7.0 + - pyyaml ; extra == 'cmd' + - requests ; extra == 'cmd' + - pytest ; extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/35/2d/cb0cd5865a8dac8869cdd01df17c2c0c94d9aa22b167e1bbfa01559dd3a9/pygam-0.12.0-py3-none-any.whl + name: pygam + version: 0.12.0 + sha256: e66597040fc9b6f113a5a9229fc42fb4ea60e8f55942a3b438caccf0512835f4 + requires_dist: + - numpy>=1.5.0 + - progressbar2>=4.2.0,<5 + - scipy>=1.11.1,<1.17 + - black>=23.1.0,<24 ; extra == 'dev' + - codecov>=2.1.12,<3 ; extra == 'dev' + - flake8>=7.0.0 ; extra == 'dev' + - ipython>=8.11.0,<9 ; extra == 'dev' + - ipykernel>=7.1.0 ; extra == 'dev' + - matplotlib>=3.0.0,<4 ; extra == 'dev' + - mock>=5.0.1,<6 ; extra == 'dev' + - nbsphinx>=0.9.0,<1 ; extra == 'dev' + - numpydoc>=1.8.0 ; extra == 'dev' + - pandas>=2.0 ; extra == 'dev' + - pytest>=9.0.0 ; extra == 'dev' + - pydata-sphinx-theme>=0.15.0 ; extra == 'dev' + - pytest-cov>=7.0.0 ; extra == 'dev' + - sphinx>=8.0.0 ; extra == 'dev' + - sphinx-copybutton>=0.5.0 ; extra == 'dev' + - sphinx-design>=0.6.0 ; extra == 'dev' + - sphinx-favicon>=1.0.0 ; extra == 'dev' + requires_python: '>=3.10,<3.15' +- pypi: https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl + name: pygments + version: 2.19.2 + sha256: 86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b + requires_dist: + - colorama>=0.4.6 ; extra == 'windows-terminal' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/56/fa/ad3e85498b1ca5c54162035567f9cb6ad38d1a24829db465e947fe32c6c9/pygpcca-1.0.3-py3-none-any.whl + name: pygpcca + version: 1.0.3 + sha256: 7b373326fc97daef5a22461b82dd37ad00bd86cd8b8ddc7e330502b578c33d49 + requires_dist: + - docrep>=0.3.1 + - numpy>=1.17.0 + - scipy>=1.5.0 + - pre-commit>=2.9.0 ; extra == 'dev' + - bump2version ; extra == 'dev' + - nbsphinx>=0.8 ; extra == 'docs' + - sphinx==4.0.2 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-last-updated-by-git ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - mpi4py>=3.0.3 ; extra == 'slepc' + - petsc>=3.13,!=3.14 ; extra == 'slepc' + - slepc>=3.13,!=3.14 ; extra == 'slepc' + - petsc4py>=3.13,!=3.14 ; extra == 'slepc' + - slepc4py>=3.13,!=3.14 ; extra == 'slepc' + - tox>=3.20.1 ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/82/a6/c415c9faa7c4c8749fbac0c54523def0cf9efb94d70f09188370c0da74c8/pygpcca-1.0.4-py3-none-any.whl + name: pygpcca + version: 1.0.4 + sha256: e541059418032cd51d2997638adfe6aac9629717bbd6b78d8876ffb4bf4018c7 + requires_dist: + - docrep>=0.3.1 + - jinja2==3.0.3 + - numpy>=1.17.0 + - scipy>=1.5.0 + - pre-commit>=2.9.0 ; extra == 'dev' + - bump2version ; extra == 'dev' + - nbsphinx>=0.8 ; extra == 'docs' + - sphinx==4.0.2 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-last-updated-by-git ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - mpi4py>=3.0.3 ; extra == 'slepc' + - petsc>=3.18.0 ; extra == 'slepc' + - slepc>=3.18.0 ; extra == 'slepc' + - petsc4py>=3.18.0 ; extra == 'slepc' + - slepc4py>=3.18.0 ; extra == 'slepc' + - tox>=3.20.1 ; extra == 'test' +- pypi: https://pypi.nvidia.com/pylibcudf-cu12/pylibcudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pylibcudf-cu12 + version: 25.12.0 + sha256: fe2a12f16a3d9f21cdee878ea2d2f02300079ab5fe3dd29e877d0ff5d64ca244 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - libcudf-cu12==25.12.* + - nvtx>=0.2.1 + - packaging + - rmm-cu12==25.12.* + - typing-extensions>=4.0.0 + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - fastavro>=0.22.9 ; extra == 'test' + - hypothesis>=6.131.7 ; extra == 'test' + - mmh3 ; extra == 'test' + - nanoarrow ; extra == 'test' + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 ; extra == 'test' + - numba>=0.60.0,<0.62.0a0 ; extra == 'test' + - pandas ; extra == 'test' + - pyarrow>=15.0.0,!=17.0.0 ; platform_machine == 'aarch64' and extra == 'test' + - pyarrow>=15.0.0 ; platform_machine == 'x86_64' and extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - xxhash ; extra == 'test' + - pyarrow>=15.0.0,!=17.0.0 ; platform_machine == 'aarch64' and extra == 'pyarrow' + - pyarrow>=15.0.0 ; platform_machine == 'x86_64' and extra == 'pyarrow' + - numpy>=1.23,<3.0a0 ; extra == 'numpy' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pylibcugraph-cu12 + version: 25.12.2 + sha256: 74e8eac098da8ac455c7b5282a2a0c3e36bdbd9ee848ecf207e4ee7000c0fe16 + requires_dist: + - cupy-cuda12x>=13.6.0 + - libcugraph-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - pylibraft-cu12==25.12.* + - rmm-cu12==25.12.* + - cudf-cu12==25.12.* ; extra == 'test' + - numpy>=1.23,<3.0a0 ; extra == 'test' + - pandas ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/pylibraft-cu12/pylibraft_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pylibraft-cu12 + version: 25.12.0 + sha256: 13a6e9663793d5920b86be797ed78d686baa7362886d4be0030bdf9cb333b7f0 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - libraft-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - rmm-cu12==25.12.* + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - scikit-learn ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b2/e6/94145d714402fd5ade00b5661f2d0ab981219e07f7db9bfa16786cdb9c04/pynndescent-0.6.0-py3-none-any.whl + name: pynndescent + version: 0.6.0 + sha256: dc8c74844e4c7f5cbd1e0cd6909da86fdc789e6ff4997336e344779c3d5538ef + requires_dist: + - scikit-learn>=0.18 + - scipy>=1.0 + - numba>=0.55.0 + - llvmlite>=0.38 + - joblib>=0.11 + - pytest ; extra == 'testing' +- pypi: https://files.pythonhosted.org/packages/36/f7/cf8bec9024625947e1a71441906f60a5fa6f9e4c441c4428037e73b1fcc8/pyogrio-0.12.1-cp312-cp312-manylinux_2_28_x86_64.whl + name: pyogrio + version: 0.12.1 + sha256: 8b65be8c4258b27cc8f919b21929cecdadda4c353e3637fa30850339ef4d15c5 + requires_dist: + - certifi + - numpy + - packaging + - cython>=3.1 ; extra == 'dev' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-benchmark ; extra == 'benchmark' + - geopandas ; extra == 'geopandas' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ad/e0/656b6536549d41b5aec57e0deca1f269b4f17532f0636836f587e581603a/pyogrio-0.12.1-cp312-cp312-macosx_12_0_arm64.whl + name: pyogrio + version: 0.12.1 + sha256: 7a0d5ca39184030aec4cde30f4258f75b227a854530d2659babc8189d76e657d + requires_dist: + - certifi + - numpy + - packaging + - cython>=3.1 ; extra == 'dev' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-benchmark ; extra == 'benchmark' + - geopandas ; extra == 'geopandas' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/10/bd/c038d7cc38edc1aa5bf91ab8068b63d4308c66c4c8bb3cbba7dfbc049f9c/pyparsing-3.3.2-py3-none-any.whl + name: pyparsing + version: 3.3.2 + sha256: 850ba148bd908d7e2411587e247a1e4f0327839c40e2e5e6d05a007ecc69911d + requires_dist: + - railroad-diagrams ; extra == 'diagrams' + - jinja2 ; extra == 'diagrams' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/04/90/67bd7260b4ea9b8b20b4f58afef6c223ecb3abf368eb4ec5bc2cdef81b49/pyproj-3.7.2.tar.gz + name: pyproj + version: 3.7.2 + sha256: 39a0cf1ecc7e282d1d30f36594ebd55c9fae1fda8a2622cee5d100430628f88c + requires_dist: + - certifi + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/b8/be/212882c450bba74fc8d7d35cbd57e4af84792f0a56194819d98106b075af/pyproj-3.7.2-cp312-cp312-manylinux_2_28_x86_64.whl + name: pyproj + version: 3.7.2 + sha256: 1edc34266c0c23ced85f95a1ee8b47c9035eae6aca5b6b340327250e8e281630 + requires_dist: + - certifi + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/fc/81/957ae78e6398460a7230b0eb9b8f1cb954c5e913e868e48d89324c68cec7/pyro_api-0.1.2-py3-none-any.whl + name: pyro-api + version: 0.1.2 + sha256: 10e0e42e9e4401ce464dab79c870e50dfb4f413d326fa777f3582928ef9caf8f + requires_dist: + - sphinx>=2.0 ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - ipython ; extra == 'dev' + - flake8 ; extra == 'test' + - pytest>=5.0 ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/ed/37/def183a2a2c8619d92649d62fe0622c4c6c62f60e4151e8fbaa409e7d5ab/pyro_ppl-1.9.1-py3-none-any.whl + name: pyro-ppl + version: 1.9.1 + sha256: 91fb2c8740d9d3bd548180ac5ecfa04552ed8c471a1ab66870180663b8f09852 + requires_dist: + - numpy>=1.7 + - opt-einsum>=2.3.2 + - pyro-api>=0.1.1 + - torch>=2.0 + - tqdm>=4.36 + - notebook ; extra == 'dev' + - ipywidgets ; extra == 'dev' + - graphviz>=0.8 ; extra == 'dev' + - matplotlib>=1.3 ; extra == 'dev' + - torchvision>=0.15.0 ; extra == 'dev' + - visdom>=0.1.4,<0.2.2 ; extra == 'dev' + - pandas ; extra == 'dev' + - pillow>=8.3.1 ; extra == 'dev' + - scikit-learn ; extra == 'dev' + - seaborn>=0.11.0 ; extra == 'dev' + - wget ; extra == 'dev' + - scipy>=1.1 ; extra == 'dev' + - black>=21.4b0 ; extra == 'dev' + - mypy>=0.812 ; extra == 'dev' + - nbformat ; extra == 'dev' + - nbsphinx>=0.3.2 ; extra == 'dev' + - nbstripout ; extra == 'dev' + - nbval ; extra == 'dev' + - ninja ; extra == 'dev' + - pypandoc ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pytest>=5.0 ; extra == 'dev' + - ruff ; extra == 'dev' + - sphinx ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - yapf ; extra == 'dev' + - notebook ; extra == 'extras' + - ipywidgets ; extra == 'extras' + - graphviz>=0.8 ; extra == 'extras' + - matplotlib>=1.3 ; extra == 'extras' + - torchvision>=0.15.0 ; extra == 'extras' + - visdom>=0.1.4,<0.2.2 ; extra == 'extras' + - pandas ; extra == 'extras' + - pillow>=8.3.1 ; extra == 'extras' + - scikit-learn ; extra == 'extras' + - seaborn>=0.11.0 ; extra == 'extras' + - wget ; extra == 'extras' + - scipy>=1.1 ; extra == 'extras' + - funsor[torch]==0.4.4 ; extra == 'funsor' + - horovod[pytorch]>=0.19 ; extra == 'horovod' + - lightning ; extra == 'lightning' + - prettytable ; extra == 'profile' + - pytest-benchmark ; extra == 'profile' + - snakeviz ; extra == 'profile' + - notebook ; extra == 'test' + - ipywidgets ; extra == 'test' + - graphviz>=0.8 ; extra == 'test' + - matplotlib>=1.3 ; extra == 'test' + - torchvision>=0.15.0 ; extra == 'test' + - visdom>=0.1.4,<0.2.2 ; extra == 'test' + - pandas ; extra == 'test' + - pillow>=8.3.1 ; extra == 'test' + - scikit-learn ; extra == 'test' + - seaborn>=0.11.0 ; extra == 'test' + - wget ; extra == 'test' + - scipy>=1.1 ; extra == 'test' + - black>=21.4b0 ; extra == 'test' + - nbval ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest>=5.0 ; extra == 'test' + - ruff ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/3b/ab/b3226f0bd7cdcf710fbede2b3548584366da3b19b5021e74f5bde2a8fa3f/pytest-9.0.2-py3-none-any.whl + name: pytest + version: 9.0.2 + sha256: 711ffd45bf766d5264d487b917733b453d917afd2b0ad65223959f59089f875b + requires_dist: + - colorama>=0.4 ; sys_platform == 'win32' + - exceptiongroup>=1 ; python_full_version < '3.11' + - iniconfig>=1.0.1 + - packaging>=22 + - pluggy>=1.5,<2 + - pygments>=2.7.2 + - tomli>=1 ; python_full_version < '3.11' + - argcomplete ; extra == 'dev' + - attrs>=19.2 ; extra == 'dev' + - hypothesis>=3.56 ; extra == 'dev' + - mock ; extra == 'dev' + - requests ; extra == 'dev' + - setuptools ; extra == 'dev' + - xmlschema ; extra == 'dev' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.12-hd63d673_2_cpython.conda + build_number: 2 + sha256: 6621befd6570a216ba94bc34ec4618e4f3777de55ad0adc15fc23c28fadd4d1a + md5: c4540d3de3fa228d9fa95e31f8e97f89 + depends: + - __glibc >=2.17,<3.0.a0 + - bzip2 >=1.0.8,<2.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.7.3,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - libgcc >=14 + - liblzma >=5.8.2,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.51.2,<4.0a0 + - libuuid >=2.41.3,<3.0a0 + - libxcrypt >=4.4.36 + - libzlib >=1.3.1,<2.0a0 + - ncurses >=6.5,<7.0a0 + - openssl >=3.5.4,<4.0a0 + - readline >=8.3,<9.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + constrains: + - python_abi 3.12.* *_cp312 + license: Python-2.0 + purls: [] + size: 31457785 + timestamp: 1769472855343 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.12-h18782d2_2_cpython.conda + build_number: 2 + sha256: 765e5d0f92dabc8c468d078a4409490e08181a6f9be6f5d5802a4e3131b9a69c + md5: e198b8f74b12292d138eb4eceb004fa3 + depends: + - __osx >=11.0 + - bzip2 >=1.0.8,<2.0a0 + - libexpat >=2.7.3,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - liblzma >=5.8.2,<6.0a0 + - libsqlite >=3.51.2,<4.0a0 + - libzlib >=1.3.1,<2.0a0 + - ncurses >=6.5,<7.0a0 + - openssl >=3.5.4,<4.0a0 + - readline >=8.3,<9.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + constrains: + - python_abi 3.12.* *_cp312 + license: Python-2.0 + purls: [] + size: 12953358 + timestamp: 1769472376612 +- pypi: https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl + name: python-dateutil + version: 2.9.0.post0 + sha256: a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 + requires_dist: + - six>=1.5 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*' +- conda: https://conda.anaconda.org/conda-forge/noarch/python-gil-3.12.12-hd8ed1ab_2.conda + sha256: 3307c01627ae45524dfbdb149f7801818608c9c49d88ac89632dff32e149057f + md5: d41b6b394546ee6e1c423e28a581fc71 + depends: + - cpython 3.12.12.* + - python_abi * *_cp312 + license: Python-2.0 + purls: [] + size: 46618 + timestamp: 1769471082980 +- pypi: https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl + name: python-json-logger + version: 4.0.0 + sha256: af09c9daf6a813aa4cc7180395f50f2a9e5fa056034c9953aec92e381c5ba1e2 + requires_dist: + - typing-extensions ; python_full_version < '3.10' + - orjson ; implementation_name != 'pypy' and extra == 'dev' + - msgspec ; implementation_name != 'pypy' and extra == 'dev' + - validate-pyproject[all] ; extra == 'dev' + - black ; extra == 'dev' + - pylint ; extra == 'dev' + - mypy ; extra == 'dev' + - pytest ; extra == 'dev' + - freezegun ; extra == 'dev' + - backports-zoneinfo ; python_full_version < '3.9' and extra == 'dev' + - tzdata ; extra == 'dev' + - build ; extra == 'dev' + - mkdocs ; extra == 'dev' + - mkdocs-material>=8.5 ; extra == 'dev' + - mkdocs-awesome-pages-plugin ; extra == 'dev' + - mdx-truly-sane-lists ; extra == 'dev' + - mkdocstrings[python] ; extra == 'dev' + - mkdocs-gen-files ; extra == 'dev' + - mkdocs-literate-nav ; extra == 'dev' + - mike ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl + name: python-utils + version: 3.9.1 + sha256: 0273d7363c7ad4b70999b2791d5ba6b55333d6f7a4e4c8b6b39fb82b5fab4613 + requires_dist: + - typing-extensions>3.10.0.2 + - loguru ; extra == 'loguru' + - mock ; extra == 'docs' + - sphinx ; extra == 'docs' + - python-utils ; extra == 'docs' + - ruff ; extra == 'tests' + - pyright ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-mypy ; extra == 'tests' + - pytest-asyncio ; extra == 'tests' + - sphinx ; extra == 'tests' + - types-setuptools ; extra == 'tests' + - loguru ; extra == 'tests' + - loguru-mypy ; extra == 'tests' + - mypy-ipython ; extra == 'tests' + - blessings ; extra == 'tests' + requires_python: '>=3.9.0' +- conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.12-8_cp312.conda + build_number: 8 + sha256: 80677180dd3c22deb7426ca89d6203f1c7f1f256f2d5a94dc210f6e758229809 + md5: c3efd25ac4d74b1584d2f7a57195ddf1 + constrains: + - python 3.12.* *_cpython + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 6958 + timestamp: 1752805918820 +- pypi: https://files.pythonhosted.org/packages/77/eb/cc6dbfe70d15318dbce82674b1e8057cef2634ca9f9121a16b8a06c630db/pytorch_lightning-2.6.0-py3-none-any.whl + name: pytorch-lightning + version: 2.6.0 + sha256: ee72cff4b8c983ecfaae8599382544bd5236d9eb300adc7dd305f359195f4e79 + requires_dist: + - torch>=2.1.0 + - tqdm>=4.57.0 + - pyyaml>5.4 + - fsspec[http]>=2022.5.0 + - torchmetrics>0.7.0 + - packaging>=20.0 + - typing-extensions>4.5.0 + - lightning-utilities>=0.10.0 + - requests<2.33.0 ; extra == 'examples' + - torchvision>=0.16.0 ; extra == 'examples' + - ipython[all]>=8.0.0 ; extra == 'examples' + - torchmetrics>=0.10.0 ; extra == 'examples' + - matplotlib>3.1 ; extra == 'extra' + - omegaconf>=2.2.3 ; extra == 'extra' + - hydra-core>=1.2.0 ; extra == 'extra' + - jsonargparse[jsonnet,signatures]>=4.39.0 ; extra == 'extra' + - rich>=12.3.0 ; extra == 'extra' + - tensorboardx>=2.2 ; extra == 'extra' + - bitsandbytes>=0.45.2 ; sys_platform != 'darwin' and extra == 'extra' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'test' + - pytest==8.4.2 ; extra == 'test' + - pytest-cov==7.0.0 ; extra == 'test' + - pytest-timeout==2.4.0 ; extra == 'test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'test' + - pytest-random-order==1.2.0 ; extra == 'test' + - cloudpickle>=1.3 ; extra == 'test' + - scikit-learn>0.22.1 ; extra == 'test' + - numpy>1.20.0 ; extra == 'test' + - onnx>1.12.0 ; extra == 'test' + - onnxruntime>=1.12.0 ; extra == 'test' + - onnxscript>=0.1.0 ; extra == 'test' + - psutil<7.2.0 ; extra == 'test' + - pandas>2.0 ; extra == 'test' + - fastapi ; extra == 'test' + - uvicorn ; extra == 'test' + - tensorboard>=2.11 ; extra == 'test' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'test' + - huggingface-hub ; extra == 'test' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'strategies' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'deepspeed' + - matplotlib>3.1 ; extra == 'all' + - omegaconf>=2.2.3 ; extra == 'all' + - hydra-core>=1.2.0 ; extra == 'all' + - jsonargparse[jsonnet,signatures]>=4.39.0 ; extra == 'all' + - rich>=12.3.0 ; extra == 'all' + - tensorboardx>=2.2 ; extra == 'all' + - bitsandbytes>=0.45.2 ; sys_platform != 'darwin' and extra == 'all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'all' + - requests<2.33.0 ; extra == 'all' + - torchvision>=0.16.0 ; extra == 'all' + - ipython[all]>=8.0.0 ; extra == 'all' + - torchmetrics>=0.10.0 ; extra == 'all' + - matplotlib>3.1 ; extra == 'dev' + - omegaconf>=2.2.3 ; extra == 'dev' + - hydra-core>=1.2.0 ; extra == 'dev' + - jsonargparse[jsonnet,signatures]>=4.39.0 ; extra == 'dev' + - rich>=12.3.0 ; extra == 'dev' + - tensorboardx>=2.2 ; extra == 'dev' + - bitsandbytes>=0.45.2 ; sys_platform != 'darwin' and extra == 'dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'dev' + - requests<2.33.0 ; extra == 'dev' + - torchvision>=0.16.0 ; extra == 'dev' + - ipython[all]>=8.0.0 ; extra == 'dev' + - torchmetrics>=0.10.0 ; extra == 'dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'dev' + - pytest==8.4.2 ; extra == 'dev' + - pytest-cov==7.0.0 ; extra == 'dev' + - pytest-timeout==2.4.0 ; extra == 'dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'dev' + - pytest-random-order==1.2.0 ; extra == 'dev' + - cloudpickle>=1.3 ; extra == 'dev' + - scikit-learn>0.22.1 ; extra == 'dev' + - numpy>1.20.0 ; extra == 'dev' + - onnx>1.12.0 ; extra == 'dev' + - onnxruntime>=1.12.0 ; extra == 'dev' + - onnxscript>=0.1.0 ; extra == 'dev' + - psutil<7.2.0 ; extra == 'dev' + - pandas>2.0 ; extra == 'dev' + - fastapi ; extra == 'dev' + - uvicorn ; extra == 'dev' + - tensorboard>=2.11 ; extra == 'dev' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'dev' + - huggingface-hub ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl + name: pytz + version: '2025.2' + sha256: 5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00 +- pypi: https://files.pythonhosted.org/packages/89/a0/6cf41a19a1f2f3feab0e9c0b74134aa2ce6849093d5517a0c550fe37a648/pyyaml-6.0.3-cp312-cp312-macosx_11_0_arm64.whl + name: pyyaml + version: 6.0.3 + sha256: fc09d0aa354569bc501d4e787133afc08552722d3ab34836a80547331bb5d4a0 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/8b/9d/b3589d3877982d4f2329302ef98a8026e7f4443c765c46cfecc8858c6b4b/pyyaml-6.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: pyyaml + version: 6.0.3 + sha256: ba1cc08a7ccde2d2ec775841541641e4548226580ab850948cbfda66a1befcdc + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl + name: pyzmq + version: 27.1.0 + sha256: 452631b640340c928fa343801b0d07eb0c3789a5ffa843f6e1a9cee0ba4eb4fc + requires_dist: + - cffi ; implementation_name == 'pypy' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + name: pyzmq + version: 27.1.0 + sha256: 43ad9a73e3da1fab5b0e7e13402f0b2fb934ae1c876c51d0afff0e7c052eca31 + requires_dist: + - cffi ; implementation_name == 'pypy' + requires_python: '>=3.8' +- pypi: https://pypi.nvidia.com/raft-dask-cu12/raft_dask_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: raft-dask-cu12 + version: 25.12.0 + sha256: b3b55c9eb2c6dd282d7ef0c1445e6ca15c8b1b7b980d002cddf3dcfb2cd502ca + requires_dist: + - dask-cuda==25.12.* + - distributed-ucxx-cu12==0.47.* + - libraft-cu12==25.12.* + - nvidia-nccl-cu12>=2.19 + - pylibraft-cu12==25.12.* + - rapids-dask-dependency==25.12.* + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/rapids-dask-dependency/rapids_dask_dependency-25.12.0-py3-none-any.whl + name: rapids-dask-dependency + version: 25.12.0 + sha256: d8efc4a2211d17079f907cf605460ad1bfd5ec2568ddefca605c91427465b5b3 + requires_dist: + - dask==2025.9.1 + - distributed==2025.9.1 + - pytest ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/69/b6/139d9df6d0f7bd289a9a6286cecfff999e41c36865515d7fdb56b7b32a14/rapids_logger-0.2.3-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: rapids-logger + version: 0.2.3 + sha256: 7fe67ef4049c5d8ba6154746325dcf7cc0f327f0efa8f2611fc8f64e67510f60 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/1d/ba/39fe2e073b8c84ed3e7a8ca5e17aca6a73a0396a10b5058743b0936e8dff/rapids_singlecell-0.13.5-py3-none-any.whl + name: rapids-singlecell + version: 0.13.5 + sha256: 31626623211680f50397e05022a936c40c5e99318e3bdc314845cc9e8a70ba52 + requires_dist: + - anndata>=0.10.0 + - docrep + - matplotlib>=3.4 + - natsort + - numpy>=1.17.0 + - pandas + - scanpy>=1.10.0 + - scikit-image + - scikit-learn<1.8.0 + - scikit-misc>=0.1.3 + - scipy>=1.4 + - statsmodels>=0.12.0 + - tqdm + - hatch-vcs ; extra == 'dev' + - pre-commit ; extra == 'dev' + - dask ; extra == 'doc' + - myst-nb ; extra == 'doc' + - nbsphinx>=0.8.12 ; extra == 'doc' + - pytest ; extra == 'doc' + - readthedocs-sphinx-ext ; extra == 'doc' + - scanpydoc[theme,typehints]>=0.9.4 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design ; extra == 'doc' + - sphinx>=4.5.0 ; extra == 'doc' + - cudf-cu12>=25.10 ; extra == 'rapids12' + - cugraph-cu12>=25.10 ; extra == 'rapids12' + - cuml-cu12>=25.10 ; extra == 'rapids12' + - cupy-cuda12x ; extra == 'rapids12' + - cuvs-cu12>=25.10 ; extra == 'rapids12' + - cudf-cu13>=25.10 ; extra == 'rapids13' + - cugraph-cu13>=25.10 ; extra == 'rapids13' + - cuml-cu13>=25.10 ; extra == 'rapids13' + - cupy-cuda13x ; extra == 'rapids13' + - cuvs-cu13>=25.10 ; extra == 'rapids13' + - anyio ; extra == 'test' + - bbknn ; extra == 'test' + - decoupler ; extra == 'test' + - fast-array-utils ; extra == 'test' + - igraph ; extra == 'test' + - pooch ; extra == 'test' + - profimp ; extra == 'test' + - pytest ; extra == 'test' + - scanpy>=1.10.0 ; extra == 'test' + - anyio ; extra == 'test-minimal' + - bbknn ; extra == 'test-minimal' + - decoupler ; extra == 'test-minimal' + - fast-array-utils ; extra == 'test-minimal' + - pooch ; extra == 'test-minimal' + - profimp ; extra == 'test-minimal' + - pytest ; extra == 'test-minimal' + - scanpy>=1.10.0 ; extra == 'test-minimal' + requires_python: '>=3.12,<3.14' +- conda: https://conda.anaconda.org/conda-forge/linux-64/rdma-core-61.0-h192683f_0.conda + sha256: 8e0b7962cf8bec9a016cd91a6c6dc1f9ebc8e7e316b1d572f7b9047d0de54717 + md5: d487d93d170e332ab39803e05912a762 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libnl >=3.11.0,<4.0a0 + - libstdcxx >=14 + - libsystemd0 >=257.10 + - libudev1 >=257.10 + license: Linux-OpenIB + license_family: BSD + purls: [] + size: 1268666 + timestamp: 1769154883613 +- conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.3-h853b02a_0.conda + sha256: 12ffde5a6f958e285aa22c191ca01bbd3d6e710aa852e00618fa6ddc59149002 + md5: d7d95fc8287ea7bf33e0e7116d2b95ec + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - ncurses >=6.5,<7.0a0 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 345073 + timestamp: 1765813471974 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.3-h46df422_0.conda + sha256: a77010528efb4b548ac2a4484eaf7e1c3907f2aec86123ed9c5212ae44502477 + md5: f8381319127120ce51e081dce4865cf4 + depends: + - __osx >=11.0 + - ncurses >=6.5,<7.0a0 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 313930 + timestamp: 1765813902568 +- pypi: https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl + name: referencing + version: 0.37.0 + sha256: 381329a9f99628c9069361716891d34ad94af76e461dcb0335825aecc7692231 + requires_dist: + - attrs>=22.2.0 + - rpds-py>=0.7.0 + - typing-extensions>=4.4.0 ; python_full_version < '3.13' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl + name: requests + version: 2.32.5 + sha256: 2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6 + requires_dist: + - charset-normalizer>=2,<4 + - idna>=2.5,<4 + - urllib3>=1.21.1,<3 + - certifi>=2017.4.17 + - pysocks>=1.5.6,!=1.5.7 ; extra == 'socks' + - chardet>=3.0.2,<6 ; extra == 'use-chardet-on-py3' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl + name: rfc3339-validator + version: 0.1.4 + sha256: 24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa + requires_dist: + - six + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*' +- pypi: https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl + name: rfc3986-validator + version: 0.1.1 + sha256: 2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*' +- pypi: https://files.pythonhosted.org/packages/7e/71/44ce230e1b7fadd372515a97e32a83011f906ddded8d03e3c6aafbdedbb7/rfc3987_syntax-1.1.0-py3-none-any.whl + name: rfc3987-syntax + version: 1.1.0 + sha256: 6c3d97604e4c5ce9f714898e05401a0445a641cfa276432b0a648c80856f6a3f + requires_dist: + - lark>=1.2.2 + - pytest>=8.3.5 ; extra == 'testing' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/87/2a/a1810c8627b9ec8c57ec5ec325d306701ae7be50235e8fd81266e002a3cc/rich-14.3.1-py3-none-any.whl + name: rich + version: 14.3.1 + sha256: da750b1aebbff0b372557426fb3f35ba56de8ef954b3190315eb64076d6fb54e + requires_dist: + - ipywidgets>=7.5.1,<9 ; extra == 'jupyter' + - markdown-it-py>=2.2.0 + - pygments>=2.13.0,<3.0.0 + requires_python: '>=3.8.0' +- pypi: https://pypi.nvidia.com/rmm-cu12/rmm_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: rmm-cu12 + version: 25.12.0 + sha256: 3b44781ec3063ad1ecfffbcc928a04ae26e073f49d2f451b52335a66b34f0d3f + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - librmm-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 ; extra == 'test' + - numba>=0.60.0,<0.62.0a0 ; extra == 'test' + - packaging ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/4d/a1/bca7fd3d452b272e13335db8d6b0b3ecde0f90ad6f16f3328c6fb150c889/rpds_py-0.30.0-cp312-cp312-macosx_11_0_arm64.whl + name: rpds-py + version: 0.30.0 + sha256: 6abc8880d9d036ecaafe709079969f56e876fcf107f7a8e9920ba6d5a3878d05 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/60/1b/6f8f29f3f995c7ffdde46a626ddccd7c63aefc0efae881dc13b6e5d5bb16/rpds_py-0.30.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: rpds-py + version: 0.30.0 + sha256: 47f236970bccb2233267d89173d3ad2703cd36a0e2a6e92d0560d333871a3d23 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/08/86/bcabd656a78122c7642a16ce2ea77347b77888b2fcde43bd2e925e393c64/s3fs-0.6.0-py3-none-any.whl + name: s3fs + version: 0.6.0 + sha256: 296a7e2c69f6f5414221a7688245c25e0c6d36eebc52cdf77fdaff77b10c7dd9 + requires_dist: + - aiobotocore>=1.0.1 + - fsspec>=0.8.0 + - aiobotocore[awscli] ; extra == 'awscli' + - aiobotocore[boto3] ; extra == 'boto3' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/93/cf/0af92a4d3f36dd9ff675e0419e7efc48d7808641ac2b2ce2c1f09a9dc632/s3fs-2026.1.0-py3-none-any.whl + name: s3fs + version: 2026.1.0 + sha256: c1f4ad1fca6dd052ffaa104a293ba209772f4a60c164818382833868e1b1597d + requires_dist: + - aiobotocore>=2.5.4,<4.0.0 + - fsspec==2026.1.0 + - aiohttp!=4.0.0a0,!=4.0.0a1 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/scalapack-2.2.0-hf7e2fd8_5.conda + sha256: 3edfdfaea04b3d27160f6e9d8ba4b73f38cae1518fd28bb9d5e1cc0d9aeaa707 + md5: f38b2e68978b035ef0e7352a9e675f25 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas >=3.9.0,<4.0a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - liblapack >=3.9.0,<4.0a0 + - openmpi >=5.0.8,<6.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 1959824 + timestamp: 1767294315929 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/scalapack-2.2.0-h1b9cfae_5.conda + sha256: b7960e3ffc3f2ad5a1ec388264321fbe44d23c24f78b8c1d3603fd1ad1bbc3f2 + md5: e3a8ecbc2b6ecdbfc49495ed100763fc + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libgfortran + - libgfortran5 >=14.3.0 + - liblapack >=3.9.0,<4.0a0 + - mpich >=4.3.2,<5.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 1663934 + timestamp: 1767295066448 +- pypi: https://files.pythonhosted.org/packages/44/f0/000ac705a3d5b8744c6eabfce6b413b131829542ffec05020b1e931ffed4/scanpy-1.12-py3-none-any.whl + name: scanpy + version: '1.12' + sha256: 0b89827f9ba9fea8fce5a49b311e9ce34a23f922b7d8506fa845a2dc92ef0bfe + requires_dist: + - anndata>=0.10.8 + - fast-array-utils[accel,sparse]>=1.2.1 + - h5py>=3.11 + - joblib + - legacy-api-wrap>=1.5 + - matplotlib>=3.9 + - natsort + - networkx>=2.8.8 + - numba>=0.60 + - numpy>=2 + - packaging>=25 + - pandas>=2.2.2 + - patsy + - pynndescent>=0.5.13 + - scikit-learn>=1.4.2 + - scipy>=1.13 + - seaborn>=0.13.2 + - session-info2 + - statsmodels>=0.14.5 + - tqdm + - typing-extensions ; python_full_version < '3.13' + - umap-learn>=0.5.7 + - bbknn ; extra == 'bbknn' + - anndata[dask] ; extra == 'dask' + - dask[array]>=2024.5.1 ; extra == 'dask' + - anndata[dask] ; extra == 'dask-ml' + - dask-ml ; extra == 'dask-ml' + - dask[array]>=2024.5.1 ; extra == 'dask-ml' + - harmonypy ; extra == 'harmony' + - igraph>=0.10.8 ; extra == 'leiden' + - leidenalg>=0.10.1 ; extra == 'leiden' + - igraph ; extra == 'louvain' + - louvain>=0.8.2 ; extra == 'louvain' + - setuptools ; extra == 'louvain' + - magic-impute>=2.0.4 ; extra == 'magic' + - igraph ; extra == 'paga' + - colour-science ; extra == 'plotting' + - cudf>=0.9 ; extra == 'rapids' + - cugraph>=0.9 ; extra == 'rapids' + - cuml>=0.9 ; extra == 'rapids' + - scanorama ; extra == 'scanorama' + - scikit-image>=0.23.1 ; extra == 'scrublet' + - scikit-misc>=0.5.1 ; extra == 'skmisc' + requires_python: '>=3.12' +- pypi: https://files.pythonhosted.org/packages/e3/be/f8dd17d0510f9911f9f17ba301f7455328bf13dae416560126d428de9568/scikit_image-0.26.0-cp312-cp312-macosx_11_0_arm64.whl + name: scikit-image + version: 0.26.0 + sha256: 3409e89d66eff5734cd2b672d1c48d2759360057e714e1d92a11df82c87cba37 + requires_dist: + - numpy>=1.24 + - scipy>=1.11.4 + - networkx>=3.0 + - pillow>=10.1 + - imageio>=2.33,!=2.35.0 + - tifffile>=2022.8.12 + - packaging>=21 + - lazy-loader>=0.4 + - meson-python>=0.16 ; extra == 'build' + - ninja>=1.11.1.1 ; extra == 'build' + - cython>=3.0.8,!=3.2.0b1 ; extra == 'build' + - pythran>=0.16 ; extra == 'build' + - numpy>=2.0 ; extra == 'build' + - spin==0.13 ; extra == 'build' + - build>=1.2.1 ; extra == 'build' + - pooch>=1.6.0 ; extra == 'data' + - pre-commit ; extra == 'developer' + - ipython ; extra == 'developer' + - docstub==0.3.0.post0 ; extra == 'developer' + - scikit-image[asv] ; extra == 'developer' + - asv ; sys_platform != 'emscripten' and extra == 'asv' + - sphinx>=8.0 ; extra == 'docs' + - sphinx-gallery[parallel]>=0.18 ; extra == 'docs' + - numpydoc>=1.7 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - matplotlib>=3.7 ; extra == 'docs' + - dask[array]>=2023.2.0 ; extra == 'docs' + - pandas>=2.0 ; extra == 'docs' + - seaborn>=0.11 ; extra == 'docs' + - pooch>=1.6 ; extra == 'docs' + - tifffile>=2022.8.12 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - intersphinx-registry>=0.2411.14 ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - ipykernel ; extra == 'docs' + - plotly>=5.20 ; extra == 'docs' + - kaleido==0.2.1 ; extra == 'docs' + - scikit-learn>=1.2 ; extra == 'docs' + - sphinx-design>=0.5 ; extra == 'docs' + - pydata-sphinx-theme>=0.16 ; extra == 'docs' + - pywavelets>=1.6 ; extra == 'docs' + - pytest-doctestplus>=1.6.0 ; extra == 'docs' + - simpleitk ; sys_platform != 'emscripten' and extra == 'optional' + - scikit-learn>=1.2 ; extra == 'optional' + - pyamg>=5.2 ; python_full_version < '3.14' and sys_platform != 'emscripten' and extra == 'optional' + - scikit-image[optional-free-threaded] ; extra == 'optional' + - astropy>=6.0 ; extra == 'optional-free-threaded' + - dask[array]>=2023.2.0 ; extra == 'optional-free-threaded' + - matplotlib>=3.7 ; extra == 'optional-free-threaded' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'optional-free-threaded' + - pywavelets>=1.6 ; extra == 'optional-free-threaded' + - numpydoc>=1.7 ; extra == 'test' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'test' + - pytest>=8.3 ; extra == 'test' + - pytest-cov>=2.11.0 ; extra == 'test' + - pytest-pretty ; extra == 'test' + - pytest-localserver ; extra == 'test' + - pytest-faulthandler ; extra == 'test' + - pytest-doctestplus>=1.6.0 ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/f4/a2/70401a107d6d7466d64b466927e6b96fcefa99d57494b972608e2f8be50f/scikit_image-0.26.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: scikit-image + version: 0.26.0 + sha256: 7df650e79031634ac90b11e64a9eedaf5a5e06fcd09bcd03a34be01745744466 + requires_dist: + - numpy>=1.24 + - scipy>=1.11.4 + - networkx>=3.0 + - pillow>=10.1 + - imageio>=2.33,!=2.35.0 + - tifffile>=2022.8.12 + - packaging>=21 + - lazy-loader>=0.4 + - meson-python>=0.16 ; extra == 'build' + - ninja>=1.11.1.1 ; extra == 'build' + - cython>=3.0.8,!=3.2.0b1 ; extra == 'build' + - pythran>=0.16 ; extra == 'build' + - numpy>=2.0 ; extra == 'build' + - spin==0.13 ; extra == 'build' + - build>=1.2.1 ; extra == 'build' + - pooch>=1.6.0 ; extra == 'data' + - pre-commit ; extra == 'developer' + - ipython ; extra == 'developer' + - docstub==0.3.0.post0 ; extra == 'developer' + - scikit-image[asv] ; extra == 'developer' + - asv ; sys_platform != 'emscripten' and extra == 'asv' + - sphinx>=8.0 ; extra == 'docs' + - sphinx-gallery[parallel]>=0.18 ; extra == 'docs' + - numpydoc>=1.7 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - matplotlib>=3.7 ; extra == 'docs' + - dask[array]>=2023.2.0 ; extra == 'docs' + - pandas>=2.0 ; extra == 'docs' + - seaborn>=0.11 ; extra == 'docs' + - pooch>=1.6 ; extra == 'docs' + - tifffile>=2022.8.12 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - intersphinx-registry>=0.2411.14 ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - ipykernel ; extra == 'docs' + - plotly>=5.20 ; extra == 'docs' + - kaleido==0.2.1 ; extra == 'docs' + - scikit-learn>=1.2 ; extra == 'docs' + - sphinx-design>=0.5 ; extra == 'docs' + - pydata-sphinx-theme>=0.16 ; extra == 'docs' + - pywavelets>=1.6 ; extra == 'docs' + - pytest-doctestplus>=1.6.0 ; extra == 'docs' + - simpleitk ; sys_platform != 'emscripten' and extra == 'optional' + - scikit-learn>=1.2 ; extra == 'optional' + - pyamg>=5.2 ; python_full_version < '3.14' and sys_platform != 'emscripten' and extra == 'optional' + - scikit-image[optional-free-threaded] ; extra == 'optional' + - astropy>=6.0 ; extra == 'optional-free-threaded' + - dask[array]>=2023.2.0 ; extra == 'optional-free-threaded' + - matplotlib>=3.7 ; extra == 'optional-free-threaded' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'optional-free-threaded' + - pywavelets>=1.6 ; extra == 'optional-free-threaded' + - numpydoc>=1.7 ; extra == 'test' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'test' + - pytest>=8.3 ; extra == 'test' + - pytest-cov>=2.11.0 ; extra == 'test' + - pytest-pretty ; extra == 'test' + - pytest-localserver ; extra == 'test' + - pytest-faulthandler ; extra == 'test' + - pytest-doctestplus>=1.6.0 ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/43/5d/779320063e88af9c4a7c2cf463ff11c21ac9c8bd730c4a294b0000b666c9/scikit_learn-1.7.2-cp312-cp312-macosx_12_0_arm64.whl + name: scikit-learn + version: 1.7.2 + sha256: acbc0f5fd2edd3432a22c69bed78e837c70cf896cd7993d71d51ba6708507476 + requires_dist: + - numpy>=1.22.0 + - scipy>=1.8.0 + - joblib>=1.2.0 + - threadpoolctl>=3.1.0 + - numpy>=1.22.0 ; extra == 'build' + - scipy>=1.8.0 ; extra == 'build' + - cython>=3.0.10 ; extra == 'build' + - meson-python>=0.17.1 ; extra == 'build' + - numpy>=1.22.0 ; extra == 'install' + - scipy>=1.8.0 ; extra == 'install' + - joblib>=1.2.0 ; extra == 'install' + - threadpoolctl>=3.1.0 ; extra == 'install' + - matplotlib>=3.5.0 ; extra == 'benchmark' + - pandas>=1.4.0 ; extra == 'benchmark' + - memory-profiler>=0.57.0 ; extra == 'benchmark' + - matplotlib>=3.5.0 ; extra == 'docs' + - scikit-image>=0.19.0 ; extra == 'docs' + - pandas>=1.4.0 ; extra == 'docs' + - seaborn>=0.9.0 ; extra == 'docs' + - memory-profiler>=0.57.0 ; extra == 'docs' + - sphinx>=7.3.7 ; extra == 'docs' + - sphinx-copybutton>=0.5.2 ; extra == 'docs' + - sphinx-gallery>=0.17.1 ; extra == 'docs' + - numpydoc>=1.2.0 ; extra == 'docs' + - pillow>=8.4.0 ; extra == 'docs' + - pooch>=1.6.0 ; extra == 'docs' + - sphinx-prompt>=1.4.0 ; extra == 'docs' + - sphinxext-opengraph>=0.9.1 ; extra == 'docs' + - plotly>=5.14.0 ; extra == 'docs' + - polars>=0.20.30 ; extra == 'docs' + - sphinx-design>=0.5.0 ; extra == 'docs' + - sphinx-design>=0.6.0 ; extra == 'docs' + - sphinxcontrib-sass>=0.3.4 ; extra == 'docs' + - pydata-sphinx-theme>=0.15.3 ; extra == 'docs' + - sphinx-remove-toctrees>=1.0.0.post1 ; extra == 'docs' + - towncrier>=24.8.0 ; extra == 'docs' + - matplotlib>=3.5.0 ; extra == 'examples' + - scikit-image>=0.19.0 ; extra == 'examples' + - pandas>=1.4.0 ; extra == 'examples' + - seaborn>=0.9.0 ; extra == 'examples' + - pooch>=1.6.0 ; extra == 'examples' + - plotly>=5.14.0 ; extra == 'examples' + - matplotlib>=3.5.0 ; extra == 'tests' + - scikit-image>=0.19.0 ; extra == 'tests' + - pandas>=1.4.0 ; extra == 'tests' + - pytest>=7.1.2 ; extra == 'tests' + - pytest-cov>=2.9.0 ; extra == 'tests' + - ruff>=0.11.7 ; extra == 'tests' + - mypy>=1.15 ; extra == 'tests' + - pyamg>=4.2.1 ; extra == 'tests' + - polars>=0.20.30 ; extra == 'tests' + - pyarrow>=12.0.0 ; extra == 'tests' + - numpydoc>=1.2.0 ; extra == 'tests' + - pooch>=1.6.0 ; extra == 'tests' + - conda-lock==3.0.1 ; extra == 'maintenance' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/5c/d0/0c577d9325b05594fdd33aa970bf53fb673f051a45496842caee13cfd7fe/scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: scikit-learn + version: 1.7.2 + sha256: e5bf3d930aee75a65478df91ac1225ff89cd28e9ac7bd1196853a9229b6adb0b + requires_dist: + - numpy>=1.22.0 + - scipy>=1.8.0 + - joblib>=1.2.0 + - threadpoolctl>=3.1.0 + - numpy>=1.22.0 ; extra == 'build' + - scipy>=1.8.0 ; extra == 'build' + - cython>=3.0.10 ; extra == 'build' + - meson-python>=0.17.1 ; extra == 'build' + - numpy>=1.22.0 ; extra == 'install' + - scipy>=1.8.0 ; extra == 'install' + - joblib>=1.2.0 ; extra == 'install' + - threadpoolctl>=3.1.0 ; extra == 'install' + - matplotlib>=3.5.0 ; extra == 'benchmark' + - pandas>=1.4.0 ; extra == 'benchmark' + - memory-profiler>=0.57.0 ; extra == 'benchmark' + - matplotlib>=3.5.0 ; extra == 'docs' + - scikit-image>=0.19.0 ; extra == 'docs' + - pandas>=1.4.0 ; extra == 'docs' + - seaborn>=0.9.0 ; extra == 'docs' + - memory-profiler>=0.57.0 ; extra == 'docs' + - sphinx>=7.3.7 ; extra == 'docs' + - sphinx-copybutton>=0.5.2 ; extra == 'docs' + - sphinx-gallery>=0.17.1 ; extra == 'docs' + - numpydoc>=1.2.0 ; extra == 'docs' + - pillow>=8.4.0 ; extra == 'docs' + - pooch>=1.6.0 ; extra == 'docs' + - sphinx-prompt>=1.4.0 ; extra == 'docs' + - sphinxext-opengraph>=0.9.1 ; extra == 'docs' + - plotly>=5.14.0 ; extra == 'docs' + - polars>=0.20.30 ; extra == 'docs' + - sphinx-design>=0.5.0 ; extra == 'docs' + - sphinx-design>=0.6.0 ; extra == 'docs' + - sphinxcontrib-sass>=0.3.4 ; extra == 'docs' + - pydata-sphinx-theme>=0.15.3 ; extra == 'docs' + - sphinx-remove-toctrees>=1.0.0.post1 ; extra == 'docs' + - towncrier>=24.8.0 ; extra == 'docs' + - matplotlib>=3.5.0 ; extra == 'examples' + - scikit-image>=0.19.0 ; extra == 'examples' + - pandas>=1.4.0 ; extra == 'examples' + - seaborn>=0.9.0 ; extra == 'examples' + - pooch>=1.6.0 ; extra == 'examples' + - plotly>=5.14.0 ; extra == 'examples' + - matplotlib>=3.5.0 ; extra == 'tests' + - scikit-image>=0.19.0 ; extra == 'tests' + - pandas>=1.4.0 ; extra == 'tests' + - pytest>=7.1.2 ; extra == 'tests' + - pytest-cov>=2.9.0 ; extra == 'tests' + - ruff>=0.11.7 ; extra == 'tests' + - mypy>=1.15 ; extra == 'tests' + - pyamg>=4.2.1 ; extra == 'tests' + - polars>=0.20.30 ; extra == 'tests' + - pyarrow>=12.0.0 ; extra == 'tests' + - numpydoc>=1.2.0 ; extra == 'tests' + - pooch>=1.6.0 ; extra == 'tests' + - conda-lock==3.0.1 ; extra == 'maintenance' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/59/48/5a486b3a9cff8cd8abc0bdc21a1a23f9c5b73962ef6e66a502b7636fad08/scikit_misc-0.5.2-cp312-cp312-macosx_11_0_arm64.whl + name: scikit-misc + version: 0.5.2 + sha256: efc64474adcec7fc373b13519db19682ae1e75fbed0da044efce1ae232a6bb01 + requires_dist: + - numpy>=1.26.4 + - scikit-misc[doc] ; extra == 'all' + - scikit-misc[build] ; extra == 'all' + - scikit-misc[lint] ; extra == 'all' + - scikit-misc[test] ; extra == 'all' + - scikit-misc[dev] ; extra == 'all' + - numpydoc ; extra == 'doc' + - sphinx ; extra == 'doc' + - cython ; extra == 'build' + - build ; extra == 'build' + - spin ; extra == 'build' + - meson ; extra == 'build' + - meson-python ; extra == 'build' + - ninja ; extra == 'build' + - ruff ; extra == 'lint' + - pytest-cov ; extra == 'test' + - wheel ; extra == 'dev' + - twine ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/6a/7e/f003fd232ec3c3e29ae565e38536dbdef417c76f7c29a67203e05b800f44/scikit_misc-0.5.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: scikit-misc + version: 0.5.2 + sha256: cd5a6e06864b07e9fe18c2bac756163e87f26615e5ddaa5f6129fd62535b7cfb + requires_dist: + - numpy>=1.26.4 + - scikit-misc[doc] ; extra == 'all' + - scikit-misc[build] ; extra == 'all' + - scikit-misc[lint] ; extra == 'all' + - scikit-misc[test] ; extra == 'all' + - scikit-misc[dev] ; extra == 'all' + - numpydoc ; extra == 'doc' + - sphinx ; extra == 'doc' + - cython ; extra == 'build' + - build ; extra == 'build' + - spin ; extra == 'build' + - meson ; extra == 'build' + - meson-python ; extra == 'build' + - ninja ; extra == 'build' + - ruff ; extra == 'lint' + - pytest-cov ; extra == 'test' + - wheel ; extra == 'dev' + - twine ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/1e/0f/65582071948cfc45d43e9870bf7ca5f0e0684e165d7c9ef4e50d783073eb/scipy-1.16.3-cp312-cp312-macosx_12_0_arm64.whl + name: scipy + version: 1.16.3 + sha256: c97176013d404c7346bf57874eaac5187d969293bf40497140b0a2b2b7482e07 + requires_dist: + - numpy>=1.25.2,<2.6 + - pytest>=8.0.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - asv ; extra == 'test' + - mpmath ; extra == 'test' + - gmpy2 ; extra == 'test' + - threadpoolctl ; extra == 'test' + - scikit-umfpack ; extra == 'test' + - pooch ; extra == 'test' + - hypothesis>=6.30 ; extra == 'test' + - array-api-strict>=2.3.1 ; extra == 'test' + - cython ; extra == 'test' + - meson ; extra == 'test' + - ninja ; sys_platform != 'emscripten' and extra == 'test' + - sphinx>=5.0.0,<8.2.0 ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - pydata-sphinx-theme>=0.15.2 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design>=0.4.0 ; extra == 'doc' + - matplotlib>=3.5 ; extra == 'doc' + - numpydoc ; extra == 'doc' + - jupytext ; extra == 'doc' + - myst-nb>=1.2.0 ; extra == 'doc' + - pooch ; extra == 'doc' + - jupyterlite-sphinx>=0.19.1 ; extra == 'doc' + - jupyterlite-pyodide-kernel ; extra == 'doc' + - linkify-it-py ; extra == 'doc' + - mypy==1.10.0 ; extra == 'dev' + - typing-extensions ; extra == 'dev' + - types-psutil ; extra == 'dev' + - pycodestyle ; extra == 'dev' + - ruff>=0.0.292 ; extra == 'dev' + - cython-lint>=0.12.2 ; extra == 'dev' + - rich-click ; extra == 'dev' + - doit>=0.36.0 ; extra == 'dev' + - pydevtool ; extra == 'dev' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/79/2e/415119c9ab3e62249e18c2b082c07aff907a273741b3f8160414b0e9193c/scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: scipy + version: 1.16.3 + sha256: 72d1717fd3b5e6ec747327ce9bda32d5463f472c9dce9f54499e81fbd50245a1 + requires_dist: + - numpy>=1.25.2,<2.6 + - pytest>=8.0.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - asv ; extra == 'test' + - mpmath ; extra == 'test' + - gmpy2 ; extra == 'test' + - threadpoolctl ; extra == 'test' + - scikit-umfpack ; extra == 'test' + - pooch ; extra == 'test' + - hypothesis>=6.30 ; extra == 'test' + - array-api-strict>=2.3.1 ; extra == 'test' + - cython ; extra == 'test' + - meson ; extra == 'test' + - ninja ; sys_platform != 'emscripten' and extra == 'test' + - sphinx>=5.0.0,<8.2.0 ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - pydata-sphinx-theme>=0.15.2 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design>=0.4.0 ; extra == 'doc' + - matplotlib>=3.5 ; extra == 'doc' + - numpydoc ; extra == 'doc' + - jupytext ; extra == 'doc' + - myst-nb>=1.2.0 ; extra == 'doc' + - pooch ; extra == 'doc' + - jupyterlite-sphinx>=0.19.1 ; extra == 'doc' + - jupyterlite-pyodide-kernel ; extra == 'doc' + - linkify-it-py ; extra == 'doc' + - mypy==1.10.0 ; extra == 'dev' + - typing-extensions ; extra == 'dev' + - types-psutil ; extra == 'dev' + - pycodestyle ; extra == 'dev' + - ruff>=0.0.292 ; extra == 'dev' + - cython-lint>=0.12.2 ; extra == 'dev' + - rich-click ; extra == 'dev' + - doit>=0.36.0 ; extra == 'dev' + - pydevtool ; extra == 'dev' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/5b/9a/97224ad312fca04b8dec60c1b743096344c3b2fff5f56a9a817576c5cf4d/scvelo-0.3.3-py3-none-any.whl + name: scvelo + version: 0.3.3 + sha256: cb9821a86d0c6b9cb79d9fd867480d7caece27530d1d30b49052a0fa9d94a187 + requires_dist: + - anndata>=0.7.5 + - scanpy>=1.5 + - loompy>=2.0.12 + - umap-learn>=0.3.10 + - numba>=0.41.0 + - numpy>=1.17 + - pandas>=1.1.1,!=1.4.0 + - scipy>=1.4.1 + - scikit-learn>=0.21.2 + - matplotlib>=3.3.0 + - igraph ; extra == 'louvain' + - louvain ; extra == 'louvain' + - pybind11 ; extra == 'hnswlib' + - hnswlib ; extra == 'hnswlib' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - ruff ; extra == 'dev' + - black ; extra == 'dev' + - isort ; extra == 'dev' + - hnswlib ; extra == 'dev' + - hypothesis ; extra == 'dev' + - louvain ; extra == 'dev' + - pre-commit>=2.9.0 ; extra == 'dev' + - pybind11 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - igraph ; extra == 'dev' + - setuptools-scm ; extra == 'dev' + - scanpy ; extra == 'docs' + - setuptools ; extra == 'docs' + - setuptools-scm ; extra == 'docs' + - importlib-metadata ; extra == 'docs' + - sphinx-rtd-theme>=0.3 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - ipykernel ; extra == 'docs' + - sphinx>=1.7,<8.0 ; extra == 'docs' + - nbsphinx>=0.7,<0.8.7 ; extra == 'docs' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/4a/8b/37ee827c0cd629f85d3473577d90cd032f70d1de8bb0e5e3b222d87bb19f/scvi_tools-1.4.1-py3-none-any.whl + name: scvi-tools + version: 1.4.1 + sha256: 96a8325c3f56f7528fd1201c41a2fdfdcaa135ad6ffd73cce4fb61a6c2301d30 + requires_dist: + - anndata>=0.11 + - docrep>=0.3.2 + - lightning>=2.0 + - ml-collections + - mudata + - numba>=0.60.0 + - numpy + - pandas + - pyro-ppl + - rich + - scanpy[skmisc]>=1.10 + - scikit-learn + - scipy + - sparse>=0.14.0 + - tensorboard + - torch + - torchmetrics + - tqdm + - xarray + - biomart ; extra == 'all' + - biopython>=1.81 ; extra == 'all' + - boto3 ; extra == 'all' + - captum ; extra == 'all' + - cell2location ; extra == 'all' + - coverage ; extra == 'all' + - dask[array] ; extra == 'all' + - dataloaders ; extra == 'all' + - decoupler ; extra == 'all' + - docutils>=0.8,!=0.18.*,!=0.19.* ; extra == 'all' + - dvc[s3] ; extra == 'all' + - fcswrite ; extra == 'all' + - flax ; extra == 'all' + - gdown ; extra == 'all' + - genomepy ; extra == 'all' + - gputil ; extra == 'all' + - huggingface-hub ; extra == 'all' + - hyperopt>=0.2 ; extra == 'all' + - igraph ; extra == 'all' + - ipython ; extra == 'all' + - jax ; extra == 'all' + - jaxlib ; extra == 'all' + - jupyter ; extra == 'all' + - leidenalg ; extra == 'all' + - matplotlib ; extra == 'all' + - mlflow ; extra == 'all' + - muon ; extra == 'all' + - myst-nb ; extra == 'all' + - myst-parser ; extra == 'all' + - numpyro ; extra == 'all' + - optax ; extra == 'all' + - plotnine ; extra == 'all' + - pooch ; extra == 'all' + - pre-commit ; extra == 'all' + - psutil ; extra == 'all' + - pynndescent ; extra == 'all' + - pytest ; extra == 'all' + - pytest-pretty ; extra == 'all' + - ray[tune] ; extra == 'all' + - readfcs ; extra == 'all' + - scib-metrics ; extra == 'all' + - scrublet ; extra == 'all' + - seaborn ; extra == 'all' + - shap ; extra == 'all' + - sphinx ; extra == 'all' + - sphinx-autodoc-typehints ; extra == 'all' + - sphinx-book-theme>=1.0.1 ; extra == 'all' + - sphinx-copybutton ; extra == 'all' + - sphinx-design ; extra == 'all' + - sphinx-hoverxref ; extra == 'all' + - sphinxcontrib-bibtex ; extra == 'all' + - sphinxext-opengraph ; extra == 'all' + - squidpy>=1.6.0 ; extra == 'all' + - umap-learn>=0.5.0 ; extra == 'all' + - zarr ; extra == 'all' + - hyperopt>=0.2 ; extra == 'autotune' + - muon ; extra == 'autotune' + - ray[tune] ; extra == 'autotune' + - scib-metrics ; extra == 'autotune' + - jax[cuda12] ; extra == 'cuda' + - torchaudio ; extra == 'cuda' + - torchvision ; extra == 'cuda' + - cellxgene-census ; extra == 'dataloaders' + - lamindb>=1.12.1 ; extra == 'dataloaders' + - tiledbsoma ; extra == 'dataloaders' + - tiledbsoma-ml ; extra == 'dataloaders' + - torchdata ; extra == 'dataloaders' + - biopython>=1.81 ; extra == 'dev' + - boto3 ; extra == 'dev' + - captum ; extra == 'dev' + - coverage ; extra == 'dev' + - dask[array] ; extra == 'dev' + - decoupler ; extra == 'dev' + - dvc[s3] ; extra == 'dev' + - fcswrite ; extra == 'dev' + - flax ; extra == 'dev' + - gdown ; extra == 'dev' + - genomepy ; extra == 'dev' + - gputil ; extra == 'dev' + - huggingface-hub ; extra == 'dev' + - hyperopt>=0.2 ; extra == 'dev' + - igraph ; extra == 'dev' + - jax ; extra == 'dev' + - jaxlib ; extra == 'dev' + - jupyter ; extra == 'dev' + - leidenalg ; extra == 'dev' + - mlflow ; extra == 'dev' + - muon ; extra == 'dev' + - numpyro ; extra == 'dev' + - optax ; extra == 'dev' + - pooch ; extra == 'dev' + - pre-commit ; extra == 'dev' + - psutil ; extra == 'dev' + - pynndescent ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-pretty ; extra == 'dev' + - ray[tune] ; extra == 'dev' + - readfcs ; extra == 'dev' + - scib-metrics ; extra == 'dev' + - shap ; extra == 'dev' + - zarr ; extra == 'dev' + - docutils>=0.8,!=0.18.*,!=0.19.* ; extra == 'docs' + - ipython ; extra == 'docs' + - myst-nb ; extra == 'docs' + - myst-parser ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.1 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-hoverxref ; extra == 'docs' + - sphinxcontrib-bibtex ; extra == 'docs' + - sphinxext-opengraph ; extra == 'docs' + - boto3 ; extra == 'docsbuild' + - docutils>=0.8,!=0.18.*,!=0.19.* ; extra == 'docsbuild' + - dvc[s3] ; extra == 'docsbuild' + - flax ; extra == 'docsbuild' + - huggingface-hub ; extra == 'docsbuild' + - hyperopt>=0.2 ; extra == 'docsbuild' + - ipython ; extra == 'docsbuild' + - jax ; extra == 'docsbuild' + - jaxlib ; extra == 'docsbuild' + - muon ; extra == 'docsbuild' + - myst-nb ; extra == 'docsbuild' + - myst-parser ; extra == 'docsbuild' + - numpyro ; extra == 'docsbuild' + - optax ; extra == 'docsbuild' + - ray[tune] ; extra == 'docsbuild' + - scib-metrics ; extra == 'docsbuild' + - sphinx ; extra == 'docsbuild' + - sphinx-autodoc-typehints ; extra == 'docsbuild' + - sphinx-book-theme>=1.0.1 ; extra == 'docsbuild' + - sphinx-copybutton ; extra == 'docsbuild' + - sphinx-design ; extra == 'docsbuild' + - sphinx-hoverxref ; extra == 'docsbuild' + - sphinxcontrib-bibtex ; extra == 'docsbuild' + - sphinxext-opengraph ; extra == 'docsbuild' + - jupyter ; extra == 'editing' + - pre-commit ; extra == 'editing' + - fcswrite ; extra == 'file-sharing' + - gdown ; extra == 'file-sharing' + - pooch ; extra == 'file-sharing' + - readfcs ; extra == 'file-sharing' + - boto3 ; extra == 'hub' + - dvc[s3] ; extra == 'hub' + - huggingface-hub ; extra == 'hub' + - captum ; extra == 'interpretability' + - decoupler ; extra == 'interpretability' + - shap ; extra == 'interpretability' + - flax ; extra == 'jax' + - jax ; extra == 'jax' + - jaxlib ; extra == 'jax' + - numpyro ; extra == 'jax' + - optax ; extra == 'jax' + - jax-metal ; extra == 'metal' + - torchaudio ; extra == 'metal' + - torchvision ; extra == 'metal' + - gputil ; extra == 'mlflow' + - mlflow ; extra == 'mlflow' + - psutil ; extra == 'mlflow' + - biopython>=1.81 ; extra == 'optional' + - boto3 ; extra == 'optional' + - captum ; extra == 'optional' + - dask[array] ; extra == 'optional' + - decoupler ; extra == 'optional' + - dvc[s3] ; extra == 'optional' + - fcswrite ; extra == 'optional' + - flax ; extra == 'optional' + - gdown ; extra == 'optional' + - genomepy ; extra == 'optional' + - gputil ; extra == 'optional' + - huggingface-hub ; extra == 'optional' + - hyperopt>=0.2 ; extra == 'optional' + - igraph ; extra == 'optional' + - jax ; extra == 'optional' + - jaxlib ; extra == 'optional' + - leidenalg ; extra == 'optional' + - mlflow ; extra == 'optional' + - muon ; extra == 'optional' + - numpyro ; extra == 'optional' + - optax ; extra == 'optional' + - pooch ; extra == 'optional' + - psutil ; extra == 'optional' + - pynndescent ; extra == 'optional' + - ray[tune] ; extra == 'optional' + - readfcs ; extra == 'optional' + - scib-metrics ; extra == 'optional' + - shap ; extra == 'optional' + - zarr ; extra == 'optional' + - dask[array] ; extra == 'parallel' + - zarr ; extra == 'parallel' + - biopython>=1.81 ; extra == 'regseq' + - genomepy ; extra == 'regseq' + - biopython>=1.81 ; extra == 'test' + - boto3 ; extra == 'test' + - captum ; extra == 'test' + - coverage ; extra == 'test' + - dask[array] ; extra == 'test' + - decoupler ; extra == 'test' + - dvc[s3] ; extra == 'test' + - fcswrite ; extra == 'test' + - flax ; extra == 'test' + - gdown ; extra == 'test' + - genomepy ; extra == 'test' + - gputil ; extra == 'test' + - huggingface-hub ; extra == 'test' + - hyperopt>=0.2 ; extra == 'test' + - igraph ; extra == 'test' + - jax ; extra == 'test' + - jaxlib ; extra == 'test' + - leidenalg ; extra == 'test' + - mlflow ; extra == 'test' + - muon ; extra == 'test' + - numpyro ; extra == 'test' + - optax ; extra == 'test' + - pooch ; extra == 'test' + - psutil ; extra == 'test' + - pynndescent ; extra == 'test' + - pytest ; extra == 'test' + - pytest-pretty ; extra == 'test' + - ray[tune] ; extra == 'test' + - readfcs ; extra == 'test' + - scib-metrics ; extra == 'test' + - shap ; extra == 'test' + - zarr ; extra == 'test' + - biopython>=1.81 ; extra == 'tests' + - boto3 ; extra == 'tests' + - captum ; extra == 'tests' + - coverage ; extra == 'tests' + - dask[array] ; extra == 'tests' + - decoupler ; extra == 'tests' + - dvc[s3] ; extra == 'tests' + - fcswrite ; extra == 'tests' + - flax ; extra == 'tests' + - gdown ; extra == 'tests' + - genomepy ; extra == 'tests' + - gputil ; extra == 'tests' + - huggingface-hub ; extra == 'tests' + - hyperopt>=0.2 ; extra == 'tests' + - igraph ; extra == 'tests' + - jax ; extra == 'tests' + - jaxlib ; extra == 'tests' + - leidenalg ; extra == 'tests' + - mlflow ; extra == 'tests' + - muon ; extra == 'tests' + - numpyro ; extra == 'tests' + - optax ; extra == 'tests' + - pooch ; extra == 'tests' + - psutil ; extra == 'tests' + - pynndescent ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-pretty ; extra == 'tests' + - ray[tune] ; extra == 'tests' + - readfcs ; extra == 'tests' + - scib-metrics ; extra == 'tests' + - shap ; extra == 'tests' + - zarr ; extra == 'tests' + - biomart ; extra == 'tutorials' + - biopython>=1.81 ; extra == 'tutorials' + - boto3 ; extra == 'tutorials' + - captum ; extra == 'tutorials' + - cell2location ; extra == 'tutorials' + - dask[array] ; extra == 'tutorials' + - dataloaders ; extra == 'tutorials' + - decoupler ; extra == 'tutorials' + - dvc[s3] ; extra == 'tutorials' + - fcswrite ; extra == 'tutorials' + - flax ; extra == 'tutorials' + - gdown ; extra == 'tutorials' + - genomepy ; extra == 'tutorials' + - gputil ; extra == 'tutorials' + - huggingface-hub ; extra == 'tutorials' + - hyperopt>=0.2 ; extra == 'tutorials' + - igraph ; extra == 'tutorials' + - jax ; extra == 'tutorials' + - jaxlib ; extra == 'tutorials' + - jupyter ; extra == 'tutorials' + - leidenalg ; extra == 'tutorials' + - matplotlib ; extra == 'tutorials' + - mlflow ; extra == 'tutorials' + - muon ; extra == 'tutorials' + - numpyro ; extra == 'tutorials' + - optax ; extra == 'tutorials' + - plotnine ; extra == 'tutorials' + - pooch ; extra == 'tutorials' + - psutil ; extra == 'tutorials' + - pynndescent ; extra == 'tutorials' + - ray[tune] ; extra == 'tutorials' + - readfcs ; extra == 'tutorials' + - scib-metrics ; extra == 'tutorials' + - scrublet ; extra == 'tutorials' + - seaborn ; extra == 'tutorials' + - shap ; extra == 'tutorials' + - squidpy>=1.6.0 ; extra == 'tutorials' + - umap-learn>=0.5.0 ; extra == 'tutorials' + - zarr ; extra == 'tutorials' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl + name: seaborn + version: 0.13.2 + sha256: 636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987 + requires_dist: + - numpy>=1.20,!=1.24.0 + - pandas>=1.2 + - matplotlib>=3.4,!=3.6.1 + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - flake8 ; extra == 'dev' + - mypy ; extra == 'dev' + - pandas-stubs ; extra == 'dev' + - pre-commit ; extra == 'dev' + - flit ; extra == 'dev' + - numpydoc ; extra == 'docs' + - nbconvert ; extra == 'docs' + - ipykernel ; extra == 'docs' + - sphinx<6.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-issues ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - pyyaml ; extra == 'docs' + - pydata-sphinx-theme==0.10.0rc2 ; extra == 'docs' + - scipy>=1.7 ; extra == 'stats' + - statsmodels>=0.12 ; extra == 'stats' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl + name: send2trash + version: 2.1.0 + sha256: 0da2f112e6d6bb22de6aa6daa7e144831a4febf2a87261451c4ad849fe9a873c + requires_dist: + - pytest>=8 ; extra == 'test' + - pywin32>=305 ; sys_platform == 'win32' and extra == 'nativelib' + - pyobjc>=9.0 ; sys_platform == 'darwin' and extra == 'nativelib' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl + name: session-info2 + version: '0.3' + sha256: 95cbacef200cd7ff84e6010fdc957007c8692bd9517dc57e91ad2c8831e87d61 + requires_dist: + - click!=8.3 ; extra == 'docs' + - furo ; extra == 'docs' + - hatch ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - myst-nb ; extra == 'docs' + - numpy ; extra == 'docs' + - session-info ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-codeautolink ; extra == 'docs' + - ipywidgets ; extra == 'jupyter' + - ipywidgets ; extra == 'notebook' + - numpy ; extra == 'notebook' + - session-info ; extra == 'notebook' + - coverage[toml]>=6.5 ; extra == 'test' + - ipykernel ; extra == 'test' + - jupyter-client ; extra == 'test' + - pytest ; extra == 'test' + - pytest-asyncio ; extra == 'test' + - pytest-md ; extra == 'test' + - pytest-subprocess ; extra == 'test' + - testing-common-database ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl + name: setuptools + version: 80.10.2 + sha256: 95b30ddfb717250edb492926c92b5221f7ef3fbcc2b07579bcd4a27da21d0173 + requires_dist: + - pytest>=6,!=8.1.* ; extra == 'test' + - virtualenv>=13.0.0 ; extra == 'test' + - wheel>=0.44.0 ; extra == 'test' + - pip>=19.1 ; extra == 'test' + - packaging>=24.2 ; extra == 'test' + - jaraco-envs>=2.2 ; extra == 'test' + - pytest-xdist>=3 ; extra == 'test' + - jaraco-path>=3.7.2 ; extra == 'test' + - build[virtualenv]>=1.0.3 ; extra == 'test' + - filelock>=3.4.0 ; extra == 'test' + - ini2toml[lite]>=0.14 ; extra == 'test' + - tomli-w>=1.0.0 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-perf ; sys_platform != 'cygwin' and extra == 'test' + - jaraco-develop>=7.21 ; python_full_version >= '3.9' and sys_platform != 'cygwin' and extra == 'test' + - pytest-home>=0.5 ; extra == 'test' + - pytest-subprocess ; extra == 'test' + - pyproject-hooks!=1.1 ; extra == 'test' + - jaraco-test>=5.5 ; extra == 'test' + - sphinx>=3.5 ; extra == 'doc' + - jaraco-packaging>=9.3 ; extra == 'doc' + - rst-linker>=1.9 ; extra == 'doc' + - furo ; extra == 'doc' + - sphinx-lint ; extra == 'doc' + - jaraco-tidelift>=1.4 ; extra == 'doc' + - pygments-github-lexers==0.0.5 ; extra == 'doc' + - sphinx-favicon ; extra == 'doc' + - sphinx-inline-tabs ; extra == 'doc' + - sphinx-reredirects ; extra == 'doc' + - sphinxcontrib-towncrier ; extra == 'doc' + - sphinx-notfound-page>=1,<2 ; extra == 'doc' + - pyproject-hooks!=1.1 ; extra == 'doc' + - towncrier<24.7 ; extra == 'doc' + - packaging>=24.2 ; extra == 'core' + - more-itertools>=8.8 ; extra == 'core' + - jaraco-text>=3.7 ; extra == 'core' + - importlib-metadata>=6 ; python_full_version < '3.10' and extra == 'core' + - tomli>=2.0.1 ; python_full_version < '3.11' and extra == 'core' + - wheel>=0.43.0 ; extra == 'core' + - platformdirs>=4.2.2 ; extra == 'core' + - jaraco-functools>=4 ; extra == 'core' + - more-itertools ; extra == 'core' + - pytest-checkdocs>=2.4 ; extra == 'check' + - pytest-ruff>=0.2.1 ; sys_platform != 'cygwin' and extra == 'check' + - ruff>=0.8.0 ; sys_platform != 'cygwin' and extra == 'check' + - pytest-cov ; extra == 'cover' + - pytest-enabler>=2.2 ; extra == 'enabler' + - pytest-mypy ; extra == 'type' + - mypy==1.14.* ; extra == 'type' + - importlib-metadata>=7.0.2 ; python_full_version < '3.10' and extra == 'type' + - jaraco-develop>=7.21 ; sys_platform != 'cygwin' and extra == 'type' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/shapely-2.1.2-py312h383787d_2.conda + sha256: da100ac0210f52399faf814f701165058fa2e2f65f5c036cdf2bf99a40223373 + md5: 69e400d3deca12ee7afd4b73a5596905 + depends: + - __glibc >=2.17,<3.0.a0 + - geos >=3.14.1,<3.14.2.0a0 + - libgcc >=14 + - numpy >=1.23,<3 + - python >=3.12,<3.13.0a0 + - python_abi 3.12.* *_cp312 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/shapely?source=hash-mapping + size: 631649 + timestamp: 1762523699384 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/shapely-2.1.2-py312h35cd81b_2.conda + sha256: 81d4780a8a7d2f6b696fc8cd43f791ef058a420e35366fd4cd68bef9f139f3d5 + md5: 624173184d65db80f267b6191c1ad26d + depends: + - __osx >=11.0 + - geos >=3.14.1,<3.14.2.0a0 + - numpy >=1.23,<3 + - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython + - python_abi 3.12.* *_cp312 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/shapely?source=hash-mapping + size: 596152 + timestamp: 1762524099944 +- pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl + name: six + version: 1.17.0 + sha256: 4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*' +- conda: https://conda.anaconda.org/conda-forge/linux-64/slepc-3.24.2-real_h5d6ed6e_0.conda + sha256: 813b4f916e45bc4cf467f842f90613e2d616b03ff2a5ae2409f0b16ec4204e9e + md5: 3c191eb701d2b5050bfd9cf6ae76e0bc + depends: + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - libstdcxx >=14 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + - openmpi >=5.0.8,<6.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 10229027 + timestamp: 1769009087376 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc-3.24.2-real_hc5a9acf_0.conda + sha256: 23e6dc97fedbcde1043b436d160ffcb5e3c35c78feb7e31ff49fa843e8ecc0df + md5: f75b11743001063422911ff725075a58 + depends: + - __osx >=11.0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + - mpich >=4.3,<5.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 9373106 + timestamp: 1769009140625 +- conda: https://conda.anaconda.org/conda-forge/linux-64/slepc4py-3.24.2-np2py310h29f32ec_0.conda + noarch: python + sha256: 0b4579b11a2a5dbaf7d89a97139160a33f661baafadbfaea0e18e3eca73da5af + md5: d70e2ced0a46e34776bed981ae487924 + depends: + - python + - petsc4py 3.24.* + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - openmpi >=5.0.8,<6.0a0 + - slepc >=3.24.2,<3.25.0a0 + - slepc * real_* + - _python_abi3_support 1.* + - cpython >=3.10 + - numpy >=1.21,<3 + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/slepc4py?source=hash-mapping + size: 562755 + timestamp: 1769023374683 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc4py-3.24.2-np2py310h0c2cbfb_0.conda + noarch: python + sha256: 2a8104e63c553466836813896edb5c1b04cb2aa258b80650ff75f257da864e8c + md5: d2f8969124fd7ecd0a0f193fabff39bd + depends: + - python + - petsc4py 3.24.* + - __osx >=11.0 + - slepc >=3.24.2,<3.25.0a0 + - slepc * real_* + - numpy >=1.21,<3 + - mpich >=4.3,<5.0a0 + - _python_abi3_support 1.* + - cpython >=3.10 + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/slepc4py?source=hash-mapping + size: 453280 + timestamp: 1769023482050 +- pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl + name: slicerator + version: 1.1.0 + sha256: 167668d48c6d3a5ba0bd3d54b2688e81ee267dc20aef299e547d711e6f3c441a +- pypi: https://files.pythonhosted.org/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl + name: sortedcontainers + version: 2.4.0 + sha256: a163dcaede0f1c021485e957a39245190e74249897e2ae4b2aa38595db237ee0 +- pypi: https://files.pythonhosted.org/packages/46/2c/1462b1d0a634697ae9e55b3cecdcb64788e8b7d63f54d923fcd0bb140aed/soupsieve-2.8.3-py3-none-any.whl + name: soupsieve + version: 2.8.3 + sha256: ed64f2ba4eebeab06cc4962affce381647455978ffc1e36bb79a545b91f45a95 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/8d/fd/42a1720542199ae6ff0f9c37bbd55dd3033ddd7bbe00d68cde09d6824887/sparse-0.17.0-py2.py3-none-any.whl + name: sparse + version: 0.17.0 + sha256: 1922d1d97f692b1061c4f03a1dd6ee21850aedc88e171aa845715f5069952f18 + requires_dist: + - numpy>=1.17 + - numba>=0.49 + - mkdocs-material ; extra == 'docs' + - mkdocstrings[python] ; extra == 'docs' + - mkdocs-gen-files ; extra == 'docs' + - mkdocs-literate-nav ; extra == 'docs' + - mkdocs-section-index ; extra == 'docs' + - mkdocs-jupyter ; extra == 'docs' + - sparse[extras] ; extra == 'docs' + - dask[array] ; extra == 'extras' + - sparse[finch] ; extra == 'extras' + - scipy ; extra == 'extras' + - scikit-learn ; extra == 'extras' + - networkx ; extra == 'extras' + - sparse[extras] ; extra == 'tests' + - pytest>=3.5 ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - pre-commit ; extra == 'tests' + - pytest-codspeed ; extra == 'tests' + - sparse[tests] ; extra == 'tox' + - tox ; extra == 'tox' + - sparse[tests] ; extra == 'notebooks' + - nbmake ; extra == 'notebooks' + - matplotlib ; extra == 'notebooks' + - sparse[docs,mlir,notebooks,tox] ; extra == 'all' + - matrepr ; extra == 'all' + - finch-tensor>=0.2.12 ; extra == 'finch' + - finch-mlir>=0.0.2 ; extra == 'mlir' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/10/e5/134cfa437c0d87ce33b28b593a9990ceb4dd425e104c8da3efc299dccc55/spatial_image-1.1.0-py3-none-any.whl + name: spatial-image + version: 1.1.0 + sha256: f7f9b89e20ced35ee50efb588399d384d44c8242bee686a2e8add2fc9ab3ef56 + requires_dist: + - numpy + - xarray + - xarray-dataclasses>=1.1.0 + - pytest ; extra == 'test' + - pytest-mypy ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl + name: spatial-image + version: 1.2.3 + sha256: b5280386a4d540c32c14cb4fdf74bd0242c99c168a7dac36204b29f8c27ce19a + requires_dist: + - numpy + - xarray-dataclass>=3.0.0 + - xarray>=2024.10.0 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/f9/a1/3f65aff044381794b455b6069a3ef0008f989707d96df9d7677eb9b8ebed/spatialdata-0.2.5.post0-py3-none-any.whl + name: spatialdata + version: 0.2.5.post0 + sha256: 61e7628a387261a8b8116bb28e9c76af438600855a74f168807fd1e834a6c5bd + requires_dist: + - anndata>=0.9.1 + - click + - dask-image + - dask>=2024.4.1 + - fsspec<=2023.6 + - geopandas>=0.14 + - multiscale-spatial-image>=1.0.0,<2.0.0 + - networkx + - numba + - numpy + - ome-zarr>=0.8.4 + - pandas + - pooch + - pyarrow + - rich + - scikit-image + - scipy + - setuptools + - shapely>=2.0.1 + - spatial-image>=1.1.0 + - typing-extensions>=4.8.0 + - xarray-datatree + - xarray-schema + - xarray-spatial>=0.3.5 + - xarray<2024.10.0 + - zarr + - bump2version ; extra == 'dev' + - ipython>=8.6.0 ; extra == 'docs' + - myst-nb ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-pytest ; extra == 'docs' + - sphinx>=4.5 ; extra == 'docs' + - sphinxcontrib-bibtex>=1.0.0 ; extra == 'docs' + - napari-spatialdata[all]>=0.2.4 ; extra == 'extra' + - spatialdata-io ; extra == 'extra' + - spatialdata-plot ; extra == 'extra' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - torch ; extra == 'test' + - torch ; extra == 'torch' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/17/a1/e538ae38d9424f62199266b4e4ccd780e149162fa828a9e1f7b8e745262e/spatialdata-0.6.1-py3-none-any.whl + name: spatialdata + version: 0.6.1 + sha256: 64a06b481859d22bd72e910c2cfd10af4b6c56be8e78404f096712558cd66ee8 + requires_dist: + - anndata>=0.9.1 + - click + - dask-image + - dask>=2024.10.0,<=2024.11.2 + - datashader + - fsspec[http,s3] + - geopandas>=0.14 + - multiscale-spatial-image==2.0.3 + - networkx + - numba>=0.55.0 + - numpy + - ome-zarr>=0.12.2 + - pandas + - pooch + - pyarrow + - rich + - scikit-image + - scipy + - setuptools + - shapely>=2.0.1 + - spatial-image>=1.2.3 + - typing-extensions>=4.8.0 + - universal-pathlib>=0.2.6 + - xarray-schema + - xarray-spatial>=0.3.5 + - xarray>=2024.10.0 + - zarr>=3.0.0 + - asv ; extra == 'benchmark' + - bump2version ; extra == 'dev' + - sentry-prevent-cli ; extra == 'dev' + - ipython>=8.6.0 ; extra == 'docs' + - myst-nb ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-pytest ; extra == 'docs' + - sphinx>=4.5 ; extra == 'docs' + - sphinxcontrib-bibtex>=1.0.0 ; extra == 'docs' + - napari-spatialdata[all] ; extra == 'extra' + - spatialdata-io ; extra == 'extra' + - spatialdata-plot ; extra == 'extra' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - torch ; extra == 'test' + - torch ; extra == 'torch' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/0e/92/4d9f07a97fba85d2db59bde27621d7c243efbe95250498c9aa2efdbf1cf3/spatialdata_plot-0.2.13-py3-none-any.whl + name: spatialdata-plot + version: 0.2.13 + sha256: ffa8fdba1225945224bc4ad95b4ab92daf2ea37f8cf231832a78ef100b11acf4 + requires_dist: + - matplotlib + - matplotlib-scalebar + - scanpy + - scikit-learn + - spatialdata>=0.3.0 + - ipykernel ; extra == 'dev' + - ipywidgets ; extra == 'dev' + - jupyterlab ; extra == 'dev' + - jupytext ; extra == 'dev' + - notebook ; extra == 'dev' + - pooch ; extra == 'dev' + - pre-commit ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - ruff ; extra == 'dev' + - ipython>=8.6.0 ; extra == 'docs' + - myst-nb ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinx>=4.5 ; extra == 'docs' + - sphinxcontrib-bibtex>=1.0.0 ; extra == 'docs' + - pooch ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/31/cb/c9bee6502e1dd51f755b4d81014fc721128f3a48a0220fabe3bd09d61dfb/squidpy-1.6.2-py3-none-any.whl + name: squidpy + version: 1.6.2 + sha256: 33c3e2e81334f6652f723ed9e470a23120509ba46c8a02e0e309a8324d23dca5 + requires_dist: + - aiohttp>=3.8.1 + - anndata>=0.9 + - cycler>=0.11.0 + - dask-image>=0.5.0 + - dask[array]>=2021.2.0 + - docrep>=0.3.1 + - fsspec>=2021.11.0 + - leidenalg>=0.8.2 + - matplotlib-scalebar>=0.8.0 + - matplotlib>=3.3 + - networkx>=2.6.0 + - numba>=0.56.4 + - numpy>=1.23.0 + - omnipath>=1.0.7 + - pandas>=2.1.0 + - pillow>=8.0.0 + - scanpy>=1.9.3 + - scikit-image>=0.20 + - scikit-learn>=0.24.0 + - spatialdata>=0.2.5 + - statsmodels>=0.12.0 + - tifffile!=2022.4.22 + - tqdm>=4.50.2 + - validators>=0.18.2 + - xarray>=0.16.1,<2024.10.0 + - zarr>=2.6.1 + - pre-commit>=3.0.0 ; extra == 'dev' + - tox>=4.0.0 ; extra == 'dev' + - ipython ; extra == 'docs' + - ipywidgets>=8.0.0 ; extra == 'docs' + - myst-nb>=0.17.1 ; extra == 'docs' + - nbsphinx>=0.8.1 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5.0 ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinx>=5.3 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - sphinxcontrib-spelling>=7.6.2 ; extra == 'docs' + - coverage[toml]>=7 ; extra == 'test' + - pytest-cov>=4 ; extra == 'test' + - pytest-mock>=3.5.0 ; extra == 'test' + - pytest-xdist>=3 ; extra == 'test' + - pytest>=7 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/4f/f4/99bb6201fcf62593874d98cbf874357651915ed02d31129d3a2ca3864d04/squidpy-1.7.0-py3-none-any.whl + name: squidpy + version: 1.7.0 + sha256: 15dca7769bb4afa66bb071a9d436db1ad1f61dd48c75837ed12a41b07f901c3a + requires_dist: + - aiohttp>=3.8.1 + - anndata>=0.9 + - cycler>=0.11 + - dask-image>=0.5 + - dask[array]>=2021.2,<=2024.11.2 + - docrep>=0.3.1 + - fsspec>=2021.11 + - imagecodecs>=2025.8.2,<2026 + - matplotlib-scalebar>=0.8 + - matplotlib>=3.3 + - networkx>=2.6 + - numba>=0.56.4 + - numpy>=1.23 + - omnipath>=1.0.7 + - pandas>=2.1 + - pillow>=8 + - scanpy>=1.9.3 + - scikit-image>=0.25 + - scikit-learn>=0.24 + - spatialdata-plot + - spatialdata>=0.6 + - statsmodels>=0.12 + - tifffile!=2022.4.22 + - tqdm>=4.50.2 + - validators>=0.18.2 + - xarray>=2024.10 + - zarr>=3 + - hatch>=1.9 ; extra == 'dev' + - ipykernel ; extra == 'dev' + - ipywidgets ; extra == 'dev' + - jupyterlab ; extra == 'dev' + - jupytext ; extra == 'dev' + - notebook ; extra == 'dev' + - pre-commit>=3 ; extra == 'dev' + - ruff ; extra == 'dev' + - ipython ; extra == 'docs' + - ipywidgets>=8 ; extra == 'docs' + - myst-nb>=0.17.1 ; extra == 'docs' + - nbsphinx>=0.8.1 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5 ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinx-tabs ; extra == 'docs' + - sphinx>=5.3 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3 ; extra == 'docs' + - sphinxcontrib-spelling>=7.6.2 ; extra == 'docs' + - coverage[toml]>=7 ; extra == 'test' + - pytest-cov>=4 ; extra == 'test' + - pytest-mock>=3.5 ; extra == 'test' + - pytest-timeout>=2.1 ; extra == 'test' + - pytest-xdist>=3 ; extra == 'test' + - pytest>=7 ; extra == 'test' + - scanpy[leiden] ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl + name: stack-data + version: 0.6.3 + sha256: d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695 + requires_dist: + - executing>=1.2.0 + - asttokens>=2.1.0 + - pure-eval + - pytest ; extra == 'tests' + - typeguard ; extra == 'tests' + - pygments ; extra == 'tests' + - littleutils ; extra == 'tests' + - cython ; extra == 'tests' +- pypi: https://files.pythonhosted.org/packages/05/30/affbabf3c27fb501ec7b5808230c619d4d1a4525c07301074eb4bda92fa9/statsmodels-0.14.6-cp312-cp312-macosx_11_0_arm64.whl + name: statsmodels + version: 0.14.6 + sha256: 26d4f0ed3b31f3c86f83a92f5c1f5cbe63fc992cd8915daf28ca49be14463a1c + requires_dist: + - numpy>=1.22.3,<3 + - scipy>=1.8,!=1.9.2 + - pandas>=1.4,!=2.1.0 + - patsy>=0.5.6 + - packaging>=21.3 + - cython>=3.0.10 ; extra == 'build' + - cython>=3.0.10 ; extra == 'develop' + - cython>=3.0.10,<4 ; extra == 'develop' + - setuptools-scm[toml]~=8.0 ; extra == 'develop' + - matplotlib>=3 ; extra == 'develop' + - colorama ; extra == 'develop' + - joblib ; extra == 'develop' + - jinja2 ; extra == 'develop' + - pytest>=7.3.0,<8 ; extra == 'develop' + - pytest-randomly ; extra == 'develop' + - pytest-xdist ; extra == 'develop' + - pytest-cov ; extra == 'develop' + - pywinpty ; os_name == 'nt' and extra == 'develop' + - flake8 ; extra == 'develop' + - isort ; extra == 'develop' + - sphinx ; extra == 'docs' + - nbconvert ; extra == 'docs' + - jupyter-client ; extra == 'docs' + - ipykernel ; extra == 'docs' + - matplotlib ; extra == 'docs' + - nbformat ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pandas-datareader ; extra == 'docs' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/81/68/dddd76117df2ef14c943c6bbb6618be5c9401280046f4ddfc9fb4596a1b8/statsmodels-0.14.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: statsmodels + version: 0.14.6 + sha256: 19b58cf7474aa9e7e3b0771a66537148b2df9b5884fbf156096c0e6c1ff0469d + requires_dist: + - numpy>=1.22.3,<3 + - scipy>=1.8,!=1.9.2 + - pandas>=1.4,!=2.1.0 + - patsy>=0.5.6 + - packaging>=21.3 + - cython>=3.0.10 ; extra == 'build' + - cython>=3.0.10 ; extra == 'develop' + - cython>=3.0.10,<4 ; extra == 'develop' + - setuptools-scm[toml]~=8.0 ; extra == 'develop' + - matplotlib>=3 ; extra == 'develop' + - colorama ; extra == 'develop' + - joblib ; extra == 'develop' + - jinja2 ; extra == 'develop' + - pytest>=7.3.0,<8 ; extra == 'develop' + - pytest-randomly ; extra == 'develop' + - pytest-xdist ; extra == 'develop' + - pytest-cov ; extra == 'develop' + - pywinpty ; os_name == 'nt' and extra == 'develop' + - flake8 ; extra == 'develop' + - isort ; extra == 'develop' + - sphinx ; extra == 'docs' + - nbconvert ; extra == 'docs' + - jupyter-client ; extra == 'docs' + - ipykernel ; extra == 'docs' + - matplotlib ; extra == 'docs' + - nbformat ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pandas-datareader ; extra == 'docs' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/superlu-7.0.1-h8f6e6c4_0.conda + sha256: 4e748f877553c7ed42290420ba1e9aa0e80cf72b23b463f12dbb7927c16f0437 + md5: 6bd14d1838657334b3c0eb02f85561e2 + depends: + - libgfortran5 >=13.3.0 + - libgfortran + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libcblas >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 280620 + timestamp: 1745607580942 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu-7.0.0-h742a510_1.conda + sha256: fdec15bc4cd02de10474b13f1b7fadc1b953cb0ab6e2c093c599d2b730ed4653 + md5: 7aa007e27351cfafcbe89253dc003343 + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libgfortran >=5 + - libgfortran5 >=13.2.0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 182500 + timestamp: 1737124080734 +- conda: https://conda.anaconda.org/conda-forge/linux-64/superlu_dist-9.1.0-h3349319_0.conda + sha256: 30105f23b74bde0e3edc4b1ac7f7355244d80b04f51e114d80a4c59a1875e6b7 + md5: 0c75a7f9223703ba86d4714ba7c1676a + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - libblas >=3.9.0,<4.0a0 + - libgcc >=13 + - libgfortran + - libgfortran5 >=13.3.0 + - liblapack >=3.9.0,<4.0a0 + - libstdcxx >=13 + - metis >=5.1.0,<5.1.1.0a0 + - openmpi >=5.0.5,<6.0a0 + - parmetis >=4.0.3,<4.1.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 1091811 + timestamp: 1731326778001 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu_dist-9.1.0-h89afcdd_0.conda + sha256: 84ea0413abd904dd8bccedca9a8754b0c2847b44345afe877c60cc356ada60f6 + md5: 3795fd537d0d4c39445996a8db673a30 + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcxx >=18 + - libgfortran >=5 + - libgfortran5 >=13.2.0 + - liblapack >=3.9.0,<4.0a0 + - llvm-openmp >=18.1.8 + - llvm-openmp >=19.1.3 + - metis >=5.1.0,<5.1.1.0a0 + - mpich >=4.2.3,<5.0a0 + - parmetis >=4.0.3,<4.1.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 880309 + timestamp: 1731327032505 +- pypi: https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl + name: sympy + version: 1.14.0 + sha256: e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5 + requires_dist: + - mpmath>=1.1.0,<1.4 + - pytest>=7.1.0 ; extra == 'dev' + - hypothesis>=6.70.0 ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/02/be/5d2d47b1fb58943194fb59dcf222f7c4e35122ec0ffe8c36e18b5d728f0b/tblib-3.2.2-py3-none-any.whl + name: tblib + version: 3.2.2 + sha256: 26bdccf339bcce6a88b2b5432c988b266ebbe63a4e593f6b578b1d2e723d2b76 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl + name: tensorboard + version: 2.20.0 + sha256: 9dc9f978cb84c0723acf9a345d96c184f0293d18f166bb8d59ee098e6cfaaba6 + requires_dist: + - absl-py>=0.4 + - grpcio>=1.48.2 + - markdown>=2.6.8 + - numpy>=1.12.0 + - packaging + - pillow + - protobuf>=3.19.6,!=4.24.0 + - setuptools>=41.0.0 + - tensorboard-data-server>=0.7.0,<0.8.0 + - werkzeug>=1.0.1 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl + name: tensorboard-data-server + version: 0.7.2 + sha256: 7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl + name: terminado + version: 0.18.1 + sha256: a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0 + requires_dist: + - ptyprocess ; os_name != 'nt' + - pywinpty>=1.1.0 ; os_name == 'nt' + - tornado>=6.1.0 + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - pre-commit ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + - mypy~=1.6 ; extra == 'typing' + - traitlets>=5.11.1 ; extra == 'typing' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/24/99/4772b8e00a136f3e01236de33b0efda31ee7077203ba5967fcc76da94d65/texttable-1.7.0-py2.py3-none-any.whl + name: texttable + version: 1.7.0 + sha256: 72227d592c82b3d7f672731ae73e4d1f88cd8e2ef5b075a7a7f01a23a3743917 +- pypi: https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl + name: threadpoolctl + version: 3.6.0 + sha256: 43a0b8fd5a2928500110039e43a5eed8480b918967083ea48dc3ab9f13c4a7fb + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a3/4d/3fd60d3a37b544cb59463add86e4dfbb485880225115341281906a7b140e/tifffile-2026.1.14-py3-none-any.whl + name: tifffile + version: 2026.1.14 + sha256: 29cf4adb43562a4624fc959018ab1b44e0342015d3db4581b983fe40e05f5924 + requires_dist: + - numpy + - imagecodecs>=2025.11.11 ; extra == 'codecs' + - defusedxml ; extra == 'xml' + - lxml ; extra == 'xml' + - zarr>=3.1.3 ; extra == 'zarr' + - fsspec ; extra == 'zarr' + - kerchunk ; extra == 'zarr' + - matplotlib ; extra == 'plot' + - imagecodecs>=2025.11.11 ; extra == 'all' + - matplotlib ; extra == 'all' + - defusedxml ; extra == 'all' + - lxml ; extra == 'all' + - zarr>=3.1.3 ; extra == 'all' + - fsspec ; extra == 'all' + - kerchunk ; extra == 'all' + - cmapfile ; extra == 'test' + - czifile ; extra == 'test' + - dask ; extra == 'test' + - defusedxml ; extra == 'test' + - fsspec ; extra == 'test' + - imagecodecs ; extra == 'test' + - kerchunk ; extra == 'test' + - lfdfiles ; extra == 'test' + - lxml ; extra == 'test' + - ndtiff ; extra == 'test' + - oiffile ; extra == 'test' + - psdtags ; extra == 'test' + - pytest ; extra == 'test' + - requests ; extra == 'test' + - roifile ; extra == 'test' + - xarray ; extra == 'test' + - zarr>=3.1.3 ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl + name: tinycss2 + version: 1.4.0 + sha256: 3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289 + requires_dist: + - webencodings>=0.4 + - sphinx ; extra == 'doc' + - sphinx-rtd-theme ; extra == 'doc' + - pytest ; extra == 'test' + - ruff ; extra == 'test' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h366c992_103.conda + sha256: cafeec44494f842ffeca27e9c8b0c27ed714f93ac77ddadc6aaf726b5554ebac + md5: cffd3bdd58090148f4cfcd831f4b26ab + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libzlib >=1.3.1,<2.0a0 + constrains: + - xorg-libx11 >=1.8.12,<2.0a0 + license: TCL + license_family: BSD + purls: [] + size: 3301196 + timestamp: 1769460227866 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h010d191_3.conda + sha256: 799cab4b6cde62f91f750149995d149bc9db525ec12595e8a1d91b9317f038b3 + md5: a9d86bc62f39b94c4661716624eb21b0 + depends: + - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 + license: TCL + license_family: BSD + purls: [] + size: 3127137 + timestamp: 1769460817696 +- pypi: https://files.pythonhosted.org/packages/fb/12/5911ae3eeec47800503a238d971e51722ccea5feb8569b735184d5fcdbc0/toolz-1.1.0-py3-none-any.whl + name: toolz + version: 1.1.0 + sha256: 15ccc861ac51c53696de0a5d6d4607f99c210739caf987b5d2054f3efed429d8 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/23/8e/3c74db5e53bff7ed9e34c8123e6a8bfef718b2450c35eefab85bb4a7e270/torch-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl + name: torch + version: 2.10.0 + sha256: 787124e7db3b379d4f1ed54dd12ae7c741c16a4d29b49c0226a89bea50923ffb + requires_dist: + - filelock + - typing-extensions>=4.10.0 + - setuptools ; python_full_version >= '3.12' + - sympy>=1.13.3 + - networkx>=2.5.1 + - jinja2 + - fsspec>=0.8.5 + - cuda-bindings==12.9.4 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-nvrtc-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-runtime-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-cupti-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cudnn-cu12==9.10.2.21 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cublas-cu12==12.8.4.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufft-cu12==11.3.3.83 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-curand-cu12==10.3.9.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusolver-cu12==11.7.3.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparse-cu12==12.5.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparselt-cu12==0.7.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nccl-cu12==2.27.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvshmem-cu12==3.4.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvtx-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvjitlink-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufile-cu12==1.13.1.3 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - triton==3.6.0 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - optree>=0.13.0 ; extra == 'optree' + - opt-einsum>=3.3 ; extra == 'opt-einsum' + - pyyaml ; extra == 'pyyaml' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/c9/5c/dee910b87c4d5c0fcb41b50839ae04df87c1cfc663cf1b5fca7ea565eeaa/torch-2.10.0-cp312-none-macosx_11_0_arm64.whl + name: torch + version: 2.10.0 + sha256: 6d3707a61863d1c4d6ebba7be4ca320f42b869ee657e9b2c21c736bf17000294 + requires_dist: + - filelock + - typing-extensions>=4.10.0 + - setuptools ; python_full_version >= '3.12' + - sympy>=1.13.3 + - networkx>=2.5.1 + - jinja2 + - fsspec>=0.8.5 + - cuda-bindings==12.9.4 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-nvrtc-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-runtime-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-cupti-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cudnn-cu12==9.10.2.21 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cublas-cu12==12.8.4.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufft-cu12==11.3.3.83 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-curand-cu12==10.3.9.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusolver-cu12==11.7.3.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparse-cu12==12.5.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparselt-cu12==0.7.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nccl-cu12==2.27.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvshmem-cu12==3.4.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvtx-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvjitlink-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufile-cu12==1.13.1.3 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - triton==3.6.0 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - optree>=0.13.0 ; extra == 'optree' + - opt-einsum>=3.3 ; extra == 'opt-einsum' + - pyyaml ; extra == 'pyyaml' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/02/21/aa0f434434c48490f91b65962b1ce863fdcce63febc166ca9fe9d706c2b6/torchmetrics-1.8.2-py3-none-any.whl + name: torchmetrics + version: 1.8.2 + sha256: 08382fd96b923e39e904c4d570f3d49e2cc71ccabd2a94e0f895d1f0dac86242 + requires_dist: + - numpy>1.20.0 + - packaging>17.1 + - torch>=2.0.0 + - lightning-utilities>=0.8.0 + - onnxruntime>=1.12.0 ; extra == 'audio' + - requests>=2.19.0 ; extra == 'audio' + - torchaudio>=2.0.1 ; extra == 'audio' + - gammatone>=1.0.0 ; extra == 'audio' + - pystoi>=0.4.0 ; extra == 'audio' + - pesq>=0.0.4 ; extra == 'audio' + - librosa>=0.10.0 ; extra == 'audio' + - torch-linear-assignment>=0.0.2 ; extra == 'clustering' + - pycocotools>2.0.0 ; extra == 'detection' + - torchvision>=0.15.1 ; extra == 'detection' + - torch-fidelity<=0.4.0 ; extra == 'image' + - torchvision>=0.15.1 ; extra == 'image' + - scipy>1.0.0 ; extra == 'image' + - piq<=0.8.0 ; extra == 'multimodal' + - einops>=0.7.0 ; extra == 'multimodal' + - transformers>=4.43.0 ; extra == 'multimodal' + - timm>=0.9.0 ; extra == 'multimodal' + - transformers>=4.43.0 ; extra == 'text' + - regex>=2021.9.24 ; extra == 'text' + - sentencepiece>=0.2.0 ; extra == 'text' + - nltk>3.8.1 ; extra == 'text' + - tqdm<4.68.0 ; extra == 'text' + - mecab-python3>=1.0.6 ; extra == 'text' + - ipadic>=1.0.0 ; extra == 'text' + - mypy==1.17.1 ; extra == 'typing' + - types-six ; extra == 'typing' + - torch==2.8.0 ; extra == 'typing' + - types-emoji ; extra == 'typing' + - types-protobuf ; extra == 'typing' + - types-setuptools ; extra == 'typing' + - types-requests ; extra == 'typing' + - types-tabulate ; extra == 'typing' + - types-pyyaml ; extra == 'typing' + - einops>=0.7.0 ; extra == 'video' + - vmaf-torch>=1.1.0 ; extra == 'video' + - scienceplots>=2.0.0 ; extra == 'visual' + - matplotlib>=3.6.0 ; extra == 'visual' + - onnxruntime>=1.12.0 ; extra == 'all' + - requests>=2.19.0 ; extra == 'all' + - torchaudio>=2.0.1 ; extra == 'all' + - gammatone>=1.0.0 ; extra == 'all' + - pystoi>=0.4.0 ; extra == 'all' + - pesq>=0.0.4 ; extra == 'all' + - librosa>=0.10.0 ; extra == 'all' + - torch-linear-assignment>=0.0.2 ; extra == 'all' + - pycocotools>2.0.0 ; extra == 'all' + - torchvision>=0.15.1 ; extra == 'all' + - torch-fidelity<=0.4.0 ; extra == 'all' + - torchvision>=0.15.1 ; extra == 'all' + - scipy>1.0.0 ; extra == 'all' + - piq<=0.8.0 ; extra == 'all' + - einops>=0.7.0 ; extra == 'all' + - transformers>=4.43.0 ; extra == 'all' + - timm>=0.9.0 ; extra == 'all' + - transformers>=4.43.0 ; extra == 'all' + - regex>=2021.9.24 ; extra == 'all' + - sentencepiece>=0.2.0 ; extra == 'all' + - nltk>3.8.1 ; extra == 'all' + - tqdm<4.68.0 ; extra == 'all' + - mecab-python3>=1.0.6 ; extra == 'all' + - ipadic>=1.0.0 ; extra == 'all' + - mypy==1.17.1 ; extra == 'all' + - types-six ; extra == 'all' + - torch==2.8.0 ; extra == 'all' + - types-emoji ; extra == 'all' + - types-protobuf ; extra == 'all' + - types-setuptools ; extra == 'all' + - types-requests ; extra == 'all' + - types-tabulate ; extra == 'all' + - types-pyyaml ; extra == 'all' + - einops>=0.7.0 ; extra == 'all' + - vmaf-torch>=1.1.0 ; extra == 'all' + - scienceplots>=2.0.0 ; extra == 'all' + - matplotlib>=3.6.0 ; extra == 'all' + - onnxruntime>=1.12.0 ; extra == 'dev' + - requests>=2.19.0 ; extra == 'dev' + - torchaudio>=2.0.1 ; extra == 'dev' + - gammatone>=1.0.0 ; extra == 'dev' + - pystoi>=0.4.0 ; extra == 'dev' + - pesq>=0.0.4 ; extra == 'dev' + - librosa>=0.10.0 ; extra == 'dev' + - torch-linear-assignment>=0.0.2 ; extra == 'dev' + - pycocotools>2.0.0 ; extra == 'dev' + - torchvision>=0.15.1 ; extra == 'dev' + - torch-fidelity<=0.4.0 ; extra == 'dev' + - torchvision>=0.15.1 ; extra == 'dev' + - scipy>1.0.0 ; extra == 'dev' + - piq<=0.8.0 ; extra == 'dev' + - einops>=0.7.0 ; extra == 'dev' + - transformers>=4.43.0 ; extra == 'dev' + - timm>=0.9.0 ; extra == 'dev' + - transformers>=4.43.0 ; extra == 'dev' + - regex>=2021.9.24 ; extra == 'dev' + - sentencepiece>=0.2.0 ; extra == 'dev' + - nltk>3.8.1 ; extra == 'dev' + - tqdm<4.68.0 ; extra == 'dev' + - mecab-python3>=1.0.6 ; extra == 'dev' + - ipadic>=1.0.0 ; extra == 'dev' + - mypy==1.17.1 ; extra == 'dev' + - types-six ; extra == 'dev' + - torch==2.8.0 ; extra == 'dev' + - types-emoji ; extra == 'dev' + - types-protobuf ; extra == 'dev' + - types-setuptools ; extra == 'dev' + - types-requests ; extra == 'dev' + - types-tabulate ; extra == 'dev' + - types-pyyaml ; extra == 'dev' + - einops>=0.7.0 ; extra == 'dev' + - vmaf-torch>=1.1.0 ; extra == 'dev' + - scienceplots>=2.0.0 ; extra == 'dev' + - matplotlib>=3.6.0 ; extra == 'dev' + - properscoring==0.1 ; extra == 'dev' + - mir-eval>=0.6 ; extra == 'dev' + - pytorch-msssim==1.0.0 ; extra == 'dev' + - scikit-image>=0.19.0 ; extra == 'dev' + - sacrebleu>=2.3.0 ; extra == 'dev' + - dists-pytorch==0.1 ; extra == 'dev' + - torch-complex<0.5.0 ; extra == 'dev' + - pytdc==0.4.1 ; (python_full_version < '3.10' and extra == 'dev') or (python_full_version < '3.12' and sys_platform == 'win32' and extra == 'dev') + - netcal>1.0.0 ; extra == 'dev' + - lpips<=0.1.4 ; extra == 'dev' + - jiwer>=2.3.0 ; extra == 'dev' + - fairlearn ; extra == 'dev' + - monai==1.4.0 ; extra == 'dev' + - statsmodels>0.13.5 ; extra == 'dev' + - mecab-ko-dic>=1.0.0 ; python_full_version < '3.12' and extra == 'dev' + - sewar>=0.4.4 ; extra == 'dev' + - mecab-ko>=1.0.0,<1.1.0 ; python_full_version < '3.12' and extra == 'dev' + - faster-coco-eval>=1.6.3 ; extra == 'dev' + - huggingface-hub<0.35 ; extra == 'dev' + - numpy<2.4.0 ; extra == 'dev' + - permetrics==2.0.0 ; extra == 'dev' + - bert-score==0.3.13 ; extra == 'dev' + - scipy>1.0.0 ; extra == 'dev' + - kornia>=0.6.7 ; extra == 'dev' + - rouge-score>0.1.0 ; extra == 'dev' + - fast-bss-eval>=0.1.0 ; extra == 'dev' + - aeon>=1.0.0 ; python_full_version >= '3.11' and extra == 'dev' + - pandas>1.4.0 ; extra == 'dev' + - dython==0.7.9 ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/50/d4/e51d52047e7eb9a582da59f32125d17c0482d065afd5d3bc435ff2120dc5/tornado-6.5.4-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: tornado + version: 6.5.4 + sha256: e5fb5e04efa54cf0baabdd10061eb4148e0be137166146fff835745f59ab9f7f + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/ab/a9/e94a9d5224107d7ce3cc1fab8d5dc97f5ea351ccc6322ee4fb661da94e35/tornado-6.5.4-cp39-abi3-macosx_10_9_universal2.whl + name: tornado + version: 6.5.4 + sha256: d6241c1a16b1c9e4cc28148b1cda97dd1c6cb4fb7068ac1bedc610768dff0ba9 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + name: tqdm + version: 4.67.1 + sha256: 26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2 + requires_dist: + - colorama ; sys_platform == 'win32' + - pytest>=6 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-timeout ; extra == 'dev' + - pytest-asyncio>=0.24 ; extra == 'dev' + - nbval ; extra == 'dev' + - requests ; extra == 'discord' + - slack-sdk ; extra == 'slack' + - requests ; extra == 'telegram' + - ipywidgets>=6 ; extra == 'notebook' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl + name: traitlets + version: 5.14.3 + sha256: b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f + requires_dist: + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - argcomplete>=3.0.3 ; extra == 'test' + - mypy>=1.7.0 ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-mypy-testing ; extra == 'test' + - pytest>=7.0,<8.2 ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c2/5e/85dcba563c41c55d17ad49d7a4950409d394cbcf941e02c22d7908948bc4/treelite-4.6.1-py3-none-manylinux2014_x86_64.whl + name: treelite + version: 4.6.1 + sha256: 627d2789d7c4fc290de15da16e2946b36247c762004f28aed11847011f42cddd + requires_dist: + - numpy + - packaging + - scipy + - scikit-learn ; extra == 'scikit-learn' + - hypothesis ; extra == 'testing' + - pandas ; extra == 'testing' + - pytest ; extra == 'testing' + - scikit-learn ; extra == 'testing' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/ab/a8/cdf8b3e4c98132f965f88c2313a4b493266832ad47fb52f23d14d4f86bb5/triton-3.6.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: triton + version: 3.6.0 + sha256: 74caf5e34b66d9f3a429af689c1c7128daba1d8208df60e81106b115c00d6fca + requires_dist: + - importlib-metadata ; python_full_version < '3.10' + - cmake>=3.20,<4.0 ; extra == 'build' + - lit ; extra == 'build' + - autopep8 ; extra == 'tests' + - isort ; extra == 'tests' + - numpy ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-forked ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - scipy>=1.7.1 ; extra == 'tests' + - llnl-hatchet ; extra == 'tests' + - matplotlib ; extra == 'tutorials' + - pandas ; extra == 'tutorials' + - tabulate ; extra == 'tutorials' + requires_python: '>=3.10,<3.15' +- pypi: https://files.pythonhosted.org/packages/1b/a9/e3aee762739c1d7528da1c3e06d518503f8b6c439c35549b53735ba52ead/typeguard-4.4.4-py3-none-any.whl + name: typeguard + version: 4.4.4 + sha256: b5f562281b6bfa1f5492470464730ef001646128b180769880468bd84b68b09e + requires_dist: + - importlib-metadata>=3.6 ; python_full_version < '3.10' + - typing-extensions>=4.14.0 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl + name: typing-extensions + version: 4.15.0 + sha256: f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/c7/b0/003792df09decd6849a5e39c28b513c06e84436a54440380862b5aeff25d/tzdata-2025.3-py2.py3-none-any.whl + name: tzdata + version: '2025.3' + sha256: 06a47e5700f3081aab02b2e513160914ff0694bce9947d6b76ebd6bf57cfc5d1 + requires_python: '>=2' +- conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025c-hc9c84f9_1.conda + sha256: 1d30098909076af33a35017eed6f2953af1c769e273a0626a04722ac4acaba3c + md5: ad659d0a2b3e47e38d829aa8cad2d610 + license: LicenseRef-Public-Domain + purls: [] + size: 119135 + timestamp: 1767016325805 +- conda: https://conda.anaconda.org/conda-forge/linux-64/ucc-1.6.0-hcedbda0_2.conda + sha256: 6c07022845b98019363e648cf7b3568e311e02def0ec44d89b7539eab2b483a3 + md5: 74722935e2c63ff703e14089f07655b9 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + - ucx >=1.20.0,<1.20.1.0a0 + constrains: + - nccl >=2.29.2.1,<3.0a0 + - cuda-version >=12,<13.0a0 + - cuda-cudart + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 8786856 + timestamp: 1768336975876 +- conda: https://conda.anaconda.org/conda-forge/linux-64/ucx-1.20.0-hf72d326_1.conda + sha256: 350c5179e1bda17434acf99eb8247f5b6d9b7f991dfd19c582abf538ed41733a + md5: d878a39ba2fc02440785a6a5c4657b09 + depends: + - __glibc >=2.28,<3.0.a0 + - _openmp_mutex >=4.5 + - libgcc >=14 + - libstdcxx >=14 + - rdma-core >=61.0 + constrains: + - cuda-cudart + - cuda-version >=13,<14.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 7801740 + timestamp: 1769197798676 +- pypi: https://pypi.nvidia.com/ucxx-cu12/ucxx_cu12-0.47.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: ucxx-cu12 + version: 0.47.0 + sha256: 27c8c445b8686691f31821482b559de69cc349bb6191fe1c4654031a82070fef + requires_dist: + - libucxx-cu12==0.47.* + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - numpy>=1.23,<3.0a0 + - nvidia-ml-py>=12 + - rmm-cu12==25.12.* + - cloudpickle ; extra == 'test' + - cudf-cu12==25.12.* ; extra == 'test' + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - pytest-asyncio>=1.0.0 ; extra == 'test' + - pytest-rerunfailures!=16.0.0 ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - rapids-dask-dependency==25.12.* ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/43/d2/fcf7192dd1cd8c090b6cfd53fa223c4fb2887a17c47e06bc356d44f40dfb/umap_learn-0.5.11-py3-none-any.whl + name: umap-learn + version: 0.5.11 + sha256: cb17adbde9d544ba79481b3ab4d81ac222e940f3d9219307bea6044f869af3cc + requires_dist: + - numpy>=1.23 + - scipy>=1.3.1 + - scikit-learn>=1.6 + - numba>=0.51.2 + - pynndescent>=0.5 + - tqdm + - pandas ; extra == 'plot' + - matplotlib ; extra == 'plot' + - datashader ; extra == 'plot' + - bokeh ; extra == 'plot' + - holoviews ; extra == 'plot' + - colorcet ; extra == 'plot' + - seaborn ; extra == 'plot' + - scikit-image ; extra == 'plot' + - dask ; extra == 'plot' + - tensorflow>=2.1 ; extra == 'parametric-umap' + - tbb>=2019.0 ; extra == 'tbb' + - pytest ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/86/2c/fc9416619a418e94576aef84ef263906a24f76a21a1c3e96ddae25c82df9/universal_pathlib-0.3.8-py3-none-any.whl + name: universal-pathlib + version: 0.3.8 + sha256: dac4fd9a3df918d85bb6da678e794b5dfa9ecdb5ff74675b497553dbe50134b8 + requires_dist: + - fsspec>=2024.5.0 + - pathlib-abc>=0.5.1,<0.6.0 + - pytest>=8 ; extra == 'tests' + - pytest-sugar>=0.9.7 ; extra == 'tests' + - pytest-cov>=4.1.0 ; extra == 'tests' + - pytest-mock>=3.12.0 ; extra == 'tests' + - pylint>=2.17.4 ; extra == 'tests' + - mypy>=1.10.0 ; extra == 'tests' + - pydantic>=2 ; extra == 'tests' + - pytest-mypy-plugins>=3.1.2 ; extra == 'tests' + - packaging ; extra == 'tests' + - mypy>=1.10.0 ; extra == 'typechecking' + - pytest-mypy-plugins>=3.1.2 ; extra == 'typechecking' + - fsspec[adl,gcs,github,http,s3,smb,ssh]>=2024.5.0 ; extra == 'dev' + - s3fs>=2024.5.0 ; extra == 'dev' + - gcsfs>=2024.5.0 ; extra == 'dev' + - adlfs>=2024 ; extra == 'dev' + - huggingface-hub ; extra == 'dev' + - webdav4[fsspec] ; extra == 'dev' + - moto[s3,server] ; extra == 'dev' + - wsgidav ; extra == 'dev' + - cheroot ; extra == 'dev' + - pyftpdlib ; extra == 'dev' + - typing-extensions ; python_full_version < '3.11' and extra == 'dev' + - pydantic ; extra == 'dev-third-party' + - pydantic-settings ; extra == 'dev-third-party' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl + name: uri-template + version: 1.3.0 + sha256: a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363 + requires_dist: + - types-pyyaml ; extra == 'dev' + - mypy ; extra == 'dev' + - flake8 ; extra == 'dev' + - flake8-annotations ; extra == 'dev' + - flake8-bandit ; extra == 'dev' + - flake8-bugbear ; extra == 'dev' + - flake8-commas ; extra == 'dev' + - flake8-comprehensions ; extra == 'dev' + - flake8-continuation ; extra == 'dev' + - flake8-datetimez ; extra == 'dev' + - flake8-docstrings ; extra == 'dev' + - flake8-import-order ; extra == 'dev' + - flake8-literal ; extra == 'dev' + - flake8-modern-annotations ; extra == 'dev' + - flake8-noqa ; extra == 'dev' + - flake8-pyproject ; extra == 'dev' + - flake8-requirements ; extra == 'dev' + - flake8-typechecking-import ; extra == 'dev' + - flake8-use-fstring ; extra == 'dev' + - pep8-naming ; extra == 'dev' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/39/08/aaaad47bc4e9dc8c725e68f9d04865dbcb2052843ff09c97b08904852d84/urllib3-2.6.3-py3-none-any.whl + name: urllib3 + version: 2.6.3 + sha256: bf272323e553dfb2e87d9bfd225ca7b0f467b919d7bbd355436d3fd37cb0acd4 + requires_dist: + - brotli>=1.2.0 ; platform_python_implementation == 'CPython' and extra == 'brotli' + - brotlicffi>=1.2.0.0 ; platform_python_implementation != 'CPython' and extra == 'brotli' + - h2>=4,<5 ; extra == 'h2' + - pysocks>=1.5.6,!=1.5.7,<2.0 ; extra == 'socks' + - backports-zstd>=1.0.0 ; python_full_version < '3.14' and extra == 'zstd' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/fa/6e/3e955517e22cbdd565f2f8b2e73d52528b14b8bcfdb04f62466b071de847/validators-0.35.0-py3-none-any.whl + name: validators + version: 0.35.0 + sha256: e8c947097eae7892cb3d26868d637f79f47b4a0554bc6b80065dfe5aac3705dd + requires_dist: + - eth-hash[pycryptodome]>=0.7.0 ; extra == 'crypto-eth-addresses' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/6a/2a/dc2228b2888f51192c7dc766106cd475f1b768c10caaf9727659726f7391/virtualenv-20.36.1-py3-none-any.whl + name: virtualenv + version: 20.36.1 + sha256: 575a8d6b124ef88f6f51d56d656132389f961062a9177016a50e4f507bbcc19f + requires_dist: + - distlib>=0.3.7,<1 + - filelock>=3.16.1,<4 ; python_full_version < '3.10' + - filelock>=3.20.1,<4 ; python_full_version >= '3.10' + - importlib-metadata>=6.6 ; python_full_version < '3.8' + - platformdirs>=3.9.1,<5 + - typing-extensions>=4.13.2 ; python_full_version < '3.11' + - furo>=2023.7.26 ; extra == 'docs' + - proselint>=0.13 ; extra == 'docs' + - sphinx>=7.1.2,!=7.3 ; extra == 'docs' + - sphinx-argparse>=0.4 ; extra == 'docs' + - sphinxcontrib-towncrier>=0.2.1a0 ; extra == 'docs' + - towncrier>=23.6 ; extra == 'docs' + - covdefaults>=2.3 ; extra == 'test' + - coverage-enable-subprocess>=1 ; extra == 'test' + - coverage>=7.2.7 ; extra == 'test' + - flaky>=3.7 ; extra == 'test' + - packaging>=23.1 ; extra == 'test' + - pytest-env>=0.8.2 ; extra == 'test' + - pytest-freezer>=0.4.8 ; (python_full_version >= '3.13' and platform_python_implementation == 'CPython' and sys_platform == 'win32' and extra == 'test') or (platform_python_implementation == 'GraalVM' and extra == 'test') or (platform_python_implementation == 'PyPy' and extra == 'test') + - pytest-mock>=3.11.1 ; extra == 'test' + - pytest-randomly>=3.12 ; extra == 'test' + - pytest-timeout>=2.1 ; extra == 'test' + - pytest>=7.4 ; extra == 'test' + - setuptools>=68 ; extra == 'test' + - time-machine>=2.10 ; platform_python_implementation == 'CPython' and extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/f2/3e/45583b67c2ff08ad5a582d316fcb2f11d6cf0a50c7707ac09d212d25bc98/wcwidth-0.5.0-py3-none-any.whl + name: wcwidth + version: 0.5.0 + sha256: 1efe1361b83b0ff7877b81ba57c8562c99cf812158b778988ce17ec061095695 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/e2/cc/e097523dd85c9cf5d354f78310927f1656c422bd7b2613b2db3e3f9a0f2c/webcolors-25.10.0-py3-none-any.whl + name: webcolors + version: 25.10.0 + sha256: 032c727334856fc0b968f63daa252a1ac93d33db2f5267756623c210e57a4f1d + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl + name: webencodings + version: 0.5.1 + sha256: a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78 +- pypi: https://files.pythonhosted.org/packages/34/db/b10e48aa8fff7407e67470363eac595018441cf32d5e1001567a7aeba5d2/websocket_client-1.9.0-py3-none-any.whl + name: websocket-client + version: 1.9.0 + sha256: af248a825037ef591efbf6ed20cc5faa03d3b47b9e5a2230a529eeee1c1fc3ef + requires_dist: + - pytest ; extra == 'test' + - websockets ; extra == 'test' + - python-socks ; extra == 'optional' + - wsaccel ; extra == 'optional' + - sphinx>=6.0 ; extra == 'docs' + - sphinx-rtd-theme>=1.1.0 ; extra == 'docs' + - myst-parser>=2.0.0 ; extra == 'docs' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/ad/e4/8d97cca767bcc1be76d16fb76951608305561c6e056811587f36cb1316a8/werkzeug-3.1.5-py3-none-any.whl + name: werkzeug + version: 3.1.5 + sha256: 5111e36e91086ece91f93268bb39b4a35c1e6f1feac762c9c822ded0a4e322dc + requires_dist: + - markupsafe>=2.1.1 + - watchdog>=2.3 ; extra == 'watchdog' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/3f/0e/fa3b193432cfc60c93b42f3be03365f5f909d2b3ea410295cf36df739e31/widgetsnbextension-4.0.15-py3-none-any.whl + name: widgetsnbextension + version: 4.0.15 + sha256: 8156704e4346a571d9ce73b84bee86a29906c9abfd7223b7228a28899ccf3366 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/11/53/3e794346c39f462bcf1f58ac0487ff9bdad02f9b6d5ee2dc84c72e0243b2/wrapt-2.0.1-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + name: wrapt + version: 2.0.1 + sha256: 7b219cb2182f230676308cdcacd428fa837987b89e4b7c5c9025088b8a6c9faf + requires_dist: + - pytest ; extra == 'dev' + - setuptools ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/4d/8a/5b4b1e44b791c22046e90d9b175f9a7581a8cc7a0debbb930f81e6ae8e25/wrapt-2.0.1-cp312-cp312-macosx_11_0_arm64.whl + name: wrapt + version: 2.0.1 + sha256: 386fb54d9cd903ee0012c09291336469eb7b244f7183d40dc3e86a16a4bace62 + requires_dist: + - pytest ; extra == 'dev' + - setuptools ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/94/28/3a6365e45721c7c9078968ed94b4a60076bc31d73b8519021a69b4995b63/xarray-2024.9.0-py3-none-any.whl + name: xarray + version: 2024.9.0 + sha256: 4fd534abdf12d5fa75dd566c56483d5081f77864462cf3d6ad53e13f9db48222 + requires_dist: + - numpy>=1.24 + - packaging>=23.1 + - pandas>=2.1 + - scipy ; extra == 'accel' + - bottleneck ; extra == 'accel' + - numbagg ; extra == 'accel' + - flox ; extra == 'accel' + - opt-einsum ; extra == 'accel' + - xarray[accel,dev,io,parallel,viz] ; extra == 'complete' + - hypothesis ; extra == 'dev' + - mypy ; extra == 'dev' + - pre-commit ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-env ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pytest-timeout ; extra == 'dev' + - ruff ; extra == 'dev' + - xarray[complete] ; extra == 'dev' + - netcdf4 ; extra == 'io' + - h5netcdf ; extra == 'io' + - scipy ; extra == 'io' + - zarr ; extra == 'io' + - fsspec ; extra == 'io' + - cftime ; extra == 'io' + - pooch ; extra == 'io' + - pydap ; python_full_version < '3.10' and extra == 'io' + - dask[complete] ; extra == 'parallel' + - matplotlib ; extra == 'viz' + - seaborn ; extra == 'viz' + - nc-time-axis ; extra == 'viz' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/d5/e4/62a677feefde05b12a70a4fc9bdc8558010182a801fbcab68cb56c2b0986/xarray-2025.12.0-py3-none-any.whl + name: xarray + version: 2025.12.0 + sha256: 9e77e820474dbbe4c6c2954d0da6342aa484e33adaa96ab916b15a786181e970 + requires_dist: + - numpy>=1.26 + - packaging>=24.1 + - pandas>=2.2 + - scipy>=1.13 ; extra == 'accel' + - bottleneck ; extra == 'accel' + - numbagg>=0.8 ; extra == 'accel' + - numba>=0.62 ; extra == 'accel' + - flox>=0.9 ; extra == 'accel' + - opt-einsum ; extra == 'accel' + - xarray[accel,etc,io,parallel,viz] ; extra == 'complete' + - netcdf4>=1.6.0 ; extra == 'io' + - h5netcdf ; extra == 'io' + - pydap ; extra == 'io' + - scipy>=1.13 ; extra == 'io' + - zarr>=2.18 ; extra == 'io' + - fsspec ; extra == 'io' + - cftime ; extra == 'io' + - pooch ; extra == 'io' + - sparse>=0.15 ; extra == 'etc' + - dask[complete] ; extra == 'parallel' + - cartopy>=0.23 ; extra == 'viz' + - matplotlib>=3.8 ; extra == 'viz' + - nc-time-axis ; extra == 'viz' + - seaborn ; extra == 'viz' + - pandas-stubs ; extra == 'types' + - scipy-stubs ; extra == 'types' + - types-pyyaml ; extra == 'types' + - types-pygments ; extra == 'types' + - types-colorama ; extra == 'types' + - types-decorator ; extra == 'types' + - types-defusedxml ; extra == 'types' + - types-docutils ; extra == 'types' + - types-networkx ; extra == 'types' + - types-pexpect ; extra == 'types' + - types-psutil ; extra == 'types' + - types-pycurl ; extra == 'types' + - types-openpyxl ; extra == 'types' + - types-python-dateutil ; extra == 'types' + - types-pytz ; extra == 'types' + - types-requests ; extra == 'types' + - types-setuptools ; extra == 'types' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl + name: xarray-dataclass + version: 3.0.0 + sha256: 7956f29005671b2acaa0da700d8f359105dce84ef84f76ce2dd05b76dba3e826 + requires_dist: + - numpy>=2.0.0 + - typing-extensions>=4.10.0 + - xarray>=2022.3 + - myst-parser>=3.0 ; extra == 'dev' + - pre-commit>=4.2.0 ; extra == 'dev' + - pydata-sphinx-theme>=0.14 ; extra == 'dev' + - pytest>=8.2 ; extra == 'dev' + - sphinx>=7.1 ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/aa/7b/9adbd82e2b7b8571da23856a890324b42cfbc38ae0ceac2177e5256f7216/xarray_dataclasses-1.9.1-py3-none-any.whl + name: xarray-dataclasses + version: 1.9.1 + sha256: 3590556ef795ebbb33908b484a58311192d880cbb511666fe4c354569c3c468f + requires_dist: + - numpy>=1.22,<1.25 ; python_full_version == '3.8.*' + - numpy>=1.22,<3.0 ; python_full_version >= '3.9' and python_full_version < '3.14' + - typing-extensions>=4.0,<5.0 + - xarray>=2022.3,<2023.2 ; python_full_version == '3.8.*' + - xarray>=2022.3,<2025.0 ; python_full_version >= '3.9' and python_full_version < '3.14' + requires_python: '>=3.8,<3.14' +- pypi: https://files.pythonhosted.org/packages/6e/a3/5e92dc7e35c08574472bbd9201aabdad03e38d54cc47c421922d219502c6/xarray_datatree-0.0.14-py3-none-any.whl + name: xarray-datatree + version: 0.0.14 + sha256: 07f5d0d9a03a3220d732e1c764ee60f2c5110f884a290b2af371f92952379166 + requires_dist: + - xarray>=2023.12.0 + - packaging + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a9/6d/f585a27b380ee987619b5617c0ca672a71a4345b67cfedbb6299750ce845/xarray_schema-0.0.3-py3-none-any.whl + name: xarray-schema + version: 0.0.3 + sha256: aa6f856626b2e100213ba290407797464608b2555bb8e0b26093a97fe1ba38ce + requires_dist: + - xarray>=0.16 + - numpy>=1.21 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/e0/d2/cb1c6104e6bf7ab77879fce7bc4bc6dcc4ae5a94246ab9c314b5d21022b2/xarray_spatial-0.5.2-py3-none-any.whl + name: xarray-spatial + version: 0.5.2 + sha256: 9bf4850b7321d633f4178c5caea9cce7f52896b2533f1aa475ce5b187ac9cc4a + requires_dist: + - datashader>=0.15.0 + - numba + - xarray + - numpy + - dask[dataframe] ; extra == 'doc' + - geopandas ; extra == 'doc' + - jinja2>=2.11 ; extra == 'doc' + - ipykernel ; extra == 'doc' + - matplotlib ; extra == 'doc' + - nbsphinx ; extra == 'doc' + - numpydoc ; extra == 'doc' + - pandoc ; extra == 'doc' + - pydata-sphinx-theme ; extra == 'doc' + - sphinx ; extra == 'doc' + - sphinx-panels ; extra == 'doc' + - sphinx-rtd-theme ; extra == 'doc' + - awkward>=1.4 ; extra == 'optional' + - geopandas ; extra == 'optional' + - shapely ; extra == 'optional' + - spatialpandas ; extra == 'optional' + - rtxpy ; extra == 'optional' + - flake8 ; extra == 'tests' + - isort ; extra == 'tests' + - noise>=1.2.2 ; extra == 'tests' + - dask ; extra == 'tests' + - pyarrow ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda + sha256: 6d9ea2f731e284e9316d95fa61869fe7bbba33df7929f82693c121022810f4ad + md5: a77f85f77be52ff59391544bfe73390a + depends: + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + license: MIT + license_family: MIT + purls: [] + size: 85189 + timestamp: 1753484064210 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda + sha256: b03433b13d89f5567e828ea9f1a7d5c5d697bf374c28a4168d71e9464f5dafac + md5: 78a0fe9e9c50d2c381e8ee47e3ea437d + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 83386 + timestamp: 1753484079473 +- pypi: https://files.pythonhosted.org/packages/ba/f5/0601483296f09c3c65e303d60c070a5c19fcdbc72daa061e96170785bc7d/yarl-1.22.0-cp312-cp312-macosx_11_0_arm64.whl + name: yarl + version: 1.22.0 + sha256: 939fe60db294c786f6b7c2d2e121576628468f65453d86b0fe36cb52f987bd74 + requires_dist: + - idna>=2.0 + - multidict>=4.0 + - propcache>=0.2.1 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/db/0f/0d52c98b8a885aeda831224b78f3be7ec2e1aa4a62091f9f9188c3c65b56/yarl-1.22.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: yarl + version: 1.22.0 + sha256: 50678a3b71c751d58d7908edc96d332af328839eea883bb554a43f539101277a + requires_dist: + - idna>=2.0 + - multidict>=4.0 + - propcache>=0.2.1 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/44/15/bb13b4913ef95ad5448490821eee4671d0e67673342e4d4070854e5fe081/zarr-3.1.5-py3-none-any.whl + name: zarr + version: 3.1.5 + sha256: 29cd905afb6235b94c09decda4258c888fcb79bb6c862ef7c0b8fe009b5c8563 + requires_dist: + - donfig>=0.8 + - google-crc32c>=1.5 + - numcodecs>=0.14 + - numpy>=1.26 + - packaging>=22.0 + - typing-extensions>=4.9 + - typer ; extra == 'cli' + - astroid<4 ; extra == 'docs' + - griffe-inherited-docstrings ; extra == 'docs' + - markdown-exec[ansi] ; extra == 'docs' + - mike>=2.1.3 ; extra == 'docs' + - mkdocs-material[imaging]>=9.6.14 ; extra == 'docs' + - mkdocs-redirects>=1.2.0 ; extra == 'docs' + - mkdocs>=1.6.1 ; extra == 'docs' + - mkdocstrings-python>=1.16.10 ; extra == 'docs' + - mkdocstrings>=0.29.1 ; extra == 'docs' + - numcodecs[msgpack] ; extra == 'docs' + - pytest ; extra == 'docs' + - rich ; extra == 'docs' + - ruff ; extra == 'docs' + - s3fs>=2023.10.0 ; extra == 'docs' + - towncrier ; extra == 'docs' + - cupy-cuda12x ; extra == 'gpu' + - rich ; extra == 'optional' + - universal-pathlib ; extra == 'optional' + - fsspec>=2023.10.0 ; extra == 'remote' + - obstore>=0.5.1 ; extra == 'remote' + - botocore ; extra == 'remote-tests' + - fsspec>=2023.10.0 ; extra == 'remote-tests' + - moto[s3,server] ; extra == 'remote-tests' + - obstore>=0.5.1 ; extra == 'remote-tests' + - requests ; extra == 'remote-tests' + - s3fs>=2023.10.0 ; extra == 'remote-tests' + - coverage>=7.10 ; extra == 'test' + - hypothesis ; extra == 'test' + - mypy ; extra == 'test' + - numpydoc ; extra == 'test' + - packaging ; extra == 'test' + - pytest-accept ; extra == 'test' + - pytest-asyncio ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<8.4 ; extra == 'test' + - rich ; extra == 'test' + - tomlkit ; extra == 'test' + - uv ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/80/ab/11a76c1e2126084fde2639514f24e6111b789b0bfa4fc6264a8975c7e1f1/zict-3.0.0-py2.py3-none-any.whl + name: zict + version: 3.0.0 + sha256: 5796e36bd0e0cc8cf0fbc1ace6a68912611c1dbd74750a3f3026b9b9d6a327ae + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb78ec9c_6.conda + sha256: 68f0206ca6e98fea941e5717cec780ed2873ffabc0e1ed34428c061e2c6268c7 + md5: 4a13eeac0b5c8e5b8ab496e6c4ddd829 + depends: + - __glibc >=2.17,<3.0.a0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 601375 + timestamp: 1764777111296 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-hbf9d68e_6.conda + sha256: 9485ba49e8f47d2b597dd399e88f4802e100851b27c21d7525625b0b4025a5d9 + md5: ab136e4c34e97f34fb621d2592a393d8 + depends: + - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 433413 + timestamp: 1764777166076 diff --git a/pixi.toml b/pixi.toml new file mode 100644 index 0000000..edb41c4 --- /dev/null +++ b/pixi.toml @@ -0,0 +1,69 @@ +[workspace] +name = "analysis-template" +version = "0.1.0" +description = "Template for single-cell/spatial analysis projects (pixi-managed)" +authors = ["Your Name "] +channels = ["conda-forge"] +platforms = ["osx-arm64", "linux-64"] + +[pypi-options] +extra-index-urls = ["https://pypi.nvidia.com"] + +[tasks] +lab = "jupyter lab" +test = "pytest" +install-kernel = "python -m ipykernel install --user --name=analysis-template --display-name='Analysis Template (Pixi)'" + +[dependencies] +python = "3.12.*" +# Pin numpy to avoid conda/pypi conflicts with numba +numpy = ">=2.0,<2.2" + +# CellRank accelerated linear algebra (PETSc/SLEPc) +# Pre-built from conda-forge; PyPI wheels require building from source +petsc4py = "*" +slepc4py = "*" + +# Shapely from conda to avoid pygeos build issues +shapely = "*" + +[target.osx-arm64.pypi-dependencies] +# CPU-only JAX on macOS (MPS handled automatically by torch) +jax = "<0.9.0" + +[target.linux-64.pypi-dependencies] +# GPU stack for Linux (CUDA 12) +rapids-singlecell = { version = ">=0.13", extras = ["rapids12"] } +jax = { version = "<0.9.0", extras = ["cuda12"] } + +[pypi-dependencies] +# Compatibility fix: cuML (rapids dependency) incompatible with sklearn 1.8 +# https://github.com/rapidsai/cuml/issues/6426 +scikit-learn = "<1.8" + +# Core single-cell stack +scanpy = ">=1.10" +squidpy = "*" +scvi-tools = "*" +cellrank = "*" +torch = "*" + +# Notebook workflow +jupyterlab = "*" +ipykernel = "*" +ipywidgets = "*" +# Pin pandas < 3.0 until anndata supports Arrow-backed strings +# https://github.com/scverse/anndata/issues/1434 +pandas = ">=2.0, <3" +matplotlib = "*" +seaborn = "*" + +# Utilities +pre-commit = "*" +pytest = "*" +session-info2 = "*" + +# Local editable package for path helpers +myanalysis = { path = ".", editable = true } +igraph = ">=1.0.0, <2" +celltypist = ">=1.7.1, <2" diff --git a/pyproject.toml b/pyproject.toml index 2b71eca..c535440 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,54 +3,24 @@ build-backend = "hatchling.build" requires = [ "hatch-vcs", "hatchling" ] [project] -name = "fancypackage" -description = "Fancy Package" +name = "myanalysis" +# Minimal metadata - project info lives in pixi.toml +# Only the package name matters here (must match src/NAME/ directory) readme = "README.md" license = { file = "LICENSE" } -maintainers = [ - { name = "Jane Doe", email = "jane.doe@usa.com" }, -] -authors = [ - { name = "Jane Doe" }, -] requires-python = ">=3.12" classifiers = [ "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.12", "Programming Language :: Python :: 3.13", ] -dynamic = [ "version" ] -dependencies = [ - # for debug logging (referenced from the issue template) - "session-info2", -] -optional-dependencies.dev = [ - "pre-commit", - "twine>=4.0.2", -] +# Dependency management lives in pixi.toml -optional-dependencies.test = [ - "coverage", - "pytest", -] -# https://docs.pypi.org/project_metadata/#project-urls -urls.Homepage = "https://github.com/url/to/repo.git" -urls.Source = "https://github.com/url/to/repo.git" +dynamic = [ "version" ] [tool.hatch.version] source = "vcs" -[tool.hatch.envs.default] -installer = "uv" -features = [ "dev" ] - -# Test the supported Python versions -[[tool.hatch.envs.hatch-test.matrix]] -python = [ "3.12", "3.13" ] - -[tool.hatch.envs.hatch-test] -features = [ "test" ] - [tool.ruff] line-length = 120 src = [ "src" ] @@ -117,9 +87,3 @@ xfail_strict = true addopts = [ "--import-mode=importlib", # allow using test files with same name ] - -[tool.coverage.run] -source = [ "fancypackage" ] -omit = [ - "**/test_*.py", -] diff --git a/src/fancypackage/__init__.py b/src/fancypackage/__init__.py deleted file mode 100644 index cf43ac5..0000000 --- a/src/fancypackage/__init__.py +++ /dev/null @@ -1,6 +0,0 @@ -from importlib.metadata import version - -from ._constants import FilePaths - -__all__ = ["FilePaths"] -__version__ = version("fancypackage") diff --git a/src/fancypackage/_constants.py b/src/fancypackage/_constants.py deleted file mode 100644 index 364581e..0000000 --- a/src/fancypackage/_constants.py +++ /dev/null @@ -1,11 +0,0 @@ -from pathlib import Path - - -class FilePaths: - """Paths to the data and figures directories.""" - - ROOT = Path(__file__).parents[3].resolve() - - DATA = ROOT / "data" - FIGURES = ROOT / "figures" - EXAMPLE_DATASET = DATA / "example_dataset" diff --git a/src/myanalysis/__init__.py b/src/myanalysis/__init__.py new file mode 100644 index 0000000..9b44508 --- /dev/null +++ b/src/myanalysis/__init__.py @@ -0,0 +1,7 @@ +from importlib.metadata import version + +from ._constants import FilePaths +from .plotting import qc_violin + +__all__ = ["FilePaths", "qc_violin"] +__version__ = version("myanalysis") diff --git a/src/myanalysis/_constants.py b/src/myanalysis/_constants.py new file mode 100644 index 0000000..4eef26c --- /dev/null +++ b/src/myanalysis/_constants.py @@ -0,0 +1,13 @@ +from pathlib import Path + + +class FilePaths: + """Project-wide paths for notebooks and scripts.""" + + ROOT = Path(__file__).parents[2].resolve() + + DATA = ROOT / "data" + FIGURES = ROOT / "figures" + + # Example dataset layout; customize per project + EXAMPLE_DATASET = DATA / "example_dataset" diff --git a/src/myanalysis/plotting.py b/src/myanalysis/plotting.py new file mode 100644 index 0000000..690883d --- /dev/null +++ b/src/myanalysis/plotting.py @@ -0,0 +1,56 @@ +"""Plotting utilities for single-cell analysis. + +This module provides custom plotting functions that wrap scanpy/matplotlib +with project-specific defaults and styling. +""" + +import matplotlib.pyplot as plt +import scanpy as sc +from anndata import AnnData + + +def qc_violin( + adata: AnnData, + *, + groupby: str | None = None, + figsize: tuple[float, float] = (10, 3), + save: str | None = None, +) -> plt.Figure: + """Plot QC metrics as violin plots with consistent styling. + + Parameters + ---------- + adata + Annotated data matrix with QC metrics in `.var` and `.obs`. + groupby + Key in `adata.obs` to group violins by (e.g., 'sample'). + figsize + Figure size as (width, height). + save + Path to save figure. If None, figure is not saved. + + Returns + ------- + matplotlib Figure object. + """ + qc_vars = ["n_genes_by_counts", "total_counts", "pct_counts_mt"] + available = [v for v in qc_vars if v in adata.obs.columns] + + if not available: + msg = f"No QC metrics found in adata.obs. Expected: {qc_vars}" + raise ValueError(msg) + + fig, axes = plt.subplots(1, len(available), figsize=figsize) + if len(available) == 1: + axes = [axes] + + for ax, var in zip(axes, available, strict=False): + sc.pl.violin(adata, var, groupby=groupby, ax=ax, show=False) + ax.set_title(var.replace("_", " ").title()) + + plt.tight_layout() + + if save is not None: + fig.savefig(save, dpi=150, bbox_inches="tight") + + return fig diff --git a/tests/test_basic.py b/tests/test_basic.py index b11ec0b..fa29c3f 100644 --- a/tests/test_basic.py +++ b/tests/test_basic.py @@ -1,10 +1,10 @@ import pytest -import fancypackage +import myanalysis def test_package_has_version(): - assert fancypackage.__version__ is not None + assert myanalysis.__version__ is not None @pytest.mark.skip(reason="This decorator should be removed when test passes.")