From 2c8f10bcb32f197cb7123f674abf70c6089b5d4b Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:29:09 +0100 Subject: [PATCH 01/12] Modernize template: pixi environment, copilot instructions, simplified config - Add pixi.toml with GPU-ready single-cell stack (torch, jax, cellrank, scvi-tools) - Add .github/copilot-instructions.md with project context placeholders - Simplify pyproject.toml to metadata + tool configs only (deps in pixi.toml) - Update workflows to use pixi instead of hatch - Rename package: fancypackage -> myanalysis - Update README with comprehensive setup instructions - Add pixi artifacts to .gitignore --- .github/copilot-instructions.md | 62 +++++++++++++ .github/workflows/build.yaml | 21 ++--- .github/workflows/test.yaml | 86 ++----------------- .gitignore | 2 + README.md | 73 +++++++++++----- ...nb => XX-2026-01-27_sample_notebook.ipynb} | 0 pixi.toml | 63 ++++++++++++++ pyproject.toml | 46 ++-------- src/{fancypackage => myanalysis}/__init__.py | 2 +- .../_constants.py | 4 +- tests/test_basic.py | 4 +- 11 files changed, 201 insertions(+), 162 deletions(-) create mode 100644 .github/copilot-instructions.md rename analysis/{[INITIALS]-[DATE]_sample_notebook.ipynb => XX-2026-01-27_sample_notebook.ipynb} (100%) create mode 100644 pixi.toml rename src/{fancypackage => myanalysis}/__init__.py (72%) rename src/{fancypackage => myanalysis}/_constants.py (64%) diff --git a/.github/copilot-instructions.md b/.github/copilot-instructions.md new file mode 100644 index 0000000..9bd9023 --- /dev/null +++ b/.github/copilot-instructions.md @@ -0,0 +1,62 @@ +# Copilot Instructions for Analysis Template + +## Project context (fill these before working) +- **Project name:** +- **One-liner goal:** +- **Primary datasets / locations:** + +## Important notes +- This is an analysis repository using **pixi** for environment management +- Use `pixi run ` or `pixi shell` to work in the environment +- Analysis notebooks follow template: `analysis/[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` +- Avoid drafting summary documents, e.g. endless markdown files. Just summarize in chat what you did, why, and any open questions. +- Don't update my jupyter notebooks - I manage them myself. + +## Environment Management (pixi) + +```bash +# Install environment +pixi install + +# Activate shell +pixi shell + +# Run commands directly +pixi run jupyter lab +pixi run pytest + +# Install Jupyter kernel (already done) +pixi run install-kernel +``` + +### Platform-specific behavior +- **macOS ARM64**: CPU-only JAX, PyTorch with MPS support +- **Linux (Euler)**: JAX with CUDA 12, PyTorch with CUDA support. Start notebooks via JupyterHub: https://jupyter.euler.hpc.ethz.ch/hub/ + +## Analysis Workflow + +### Notebook naming convention +`analysis/[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` + +### Data organization +``` +data/ + / + raw/ # Original data files + processed/ # Preprocessed AnnData objects + resources/ # Reference data, annotations + results/ # Analysis outputs +``` + +### Using local package +```python +from myanalysis import FilePaths +``` +Paths resolve relative to repo root; adjust `_constants.py` for your datasets. + +## Development Notes + +- Python 3.12 for maximum package compatibility +- Uses pixi.toml as single source of truth (not pyproject.toml for analysis deps) +- pyproject.toml exists mainly for package metadata and testing +- Run `pixi install` after pulling changes that update `pixi.toml` diff --git a/.github/workflows/build.yaml b/.github/workflows/build.yaml index 83e01a1..c94a239 100644 --- a/.github/workflows/build.yaml +++ b/.github/workflows/build.yaml @@ -1,4 +1,4 @@ -name: Check Build +name: Lint on: push: @@ -10,24 +10,17 @@ concurrency: group: ${{ github.workflow }}-${{ github.ref }} cancel-in-progress: true -defaults: - run: - # to fail on error in multiline statements (-e), in pipes (-o pipefail), and on unset variables (-u). - shell: bash -euo pipefail {0} - jobs: - package: + lint: runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 with: filter: blob:none fetch-depth: 0 - - name: Install uv - uses: astral-sh/setup-uv@v5 + - uses: prefix-dev/setup-pixi@v0.8.0 with: - cache-dependency-glob: pyproject.toml - - name: Build package - run: uv build - - name: Check package - run: uvx twine check --strict dist/*.whl + pixi-version: v0.40.0 + cache: true + - name: Run pre-commit checks + run: pixi run pre-commit run --all-files diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index cf9c545..b7bffa4 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -5,98 +5,24 @@ on: branches: [main] pull_request: branches: [main] - schedule: - - cron: "0 5 1,15 * *" concurrency: group: ${{ github.workflow }}-${{ github.ref }} cancel-in-progress: true -defaults: - run: - # to fail on error in multiline statements (-e), in pipes (-o pipefail), and on unset variables (-u). - shell: bash -euo pipefail {0} - jobs: - # Get the test environment from hatch as defined in pyproject.toml. - # This ensures that the pyproject.toml is the single point of truth for test definitions and the same tests are - # run locally and on continuous integration. - # Check [[tool.hatch.envs.hatch-test.matrix]] in pyproject.toml and https://hatch.pypa.io/latest/environment/ for - # more details. - get-environments: - runs-on: ubuntu-latest - outputs: - envs: ${{ steps.get-envs.outputs.envs }} - steps: - - uses: actions/checkout@v4 - with: - filter: blob:none - fetch-depth: 0 - - name: Install uv - uses: astral-sh/setup-uv@v5 - - name: Get test environments - id: get-envs - run: | - ENVS_JSON=$(uvx hatch env show --json | jq -c 'to_entries - | map( - select(.key | startswith("hatch-test")) - | { - name: .key, - label: (if (.key | contains("pre")) then .key + " (PRE-RELEASE DEPENDENCIES)" else .key end), - python: .value.python - } - )') - echo "envs=${ENVS_JSON}" | tee $GITHUB_OUTPUT - - # Run tests through hatch. Spawns a separate runner for each environment defined in the hatch matrix obtained above. test: - needs: get-environments - - strategy: - fail-fast: false - matrix: - os: [ubuntu-latest] - env: ${{ fromJSON(needs.get-environments.outputs.envs) }} - - name: ${{ matrix.env.label }} - runs-on: ${{ matrix.os }} - + runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 with: filter: blob:none fetch-depth: 0 - - name: Install uv - uses: astral-sh/setup-uv@v5 + - uses: prefix-dev/setup-pixi@v0.8.0 with: - python-version: ${{ matrix.env.python }} - cache-dependency-glob: pyproject.toml - - name: create hatch environment - run: uvx hatch env create ${{ matrix.env.name }} - - name: run tests using hatch - env: - MPLBACKEND: agg - PLATFORM: ${{ matrix.os }} - DISPLAY: :42 - run: | - uvx hatch run ${{ matrix.env.name }}:coverage run -m pytest -v --color=yes - - name: generate coverage report - run: uvx hatch run ${{ matrix.env.name }}:coverage xml - - name: Upload coverage - uses: codecov/codecov-action@v4 - with: - token: ${{ secrets.CODECOV_TOKEN }} - - # Check that all tests defined above pass. This makes it easy to set a single "required" test in branch - # protection instead of having to update it frequently. See https://github.com/re-actors/alls-green#why. - check: - name: Tests pass in all hatch environments - if: always() - needs: - - get-environments - - test - runs-on: ubuntu-latest - steps: - - uses: re-actors/alls-green@release/v1 + pixi-version: v0.40.0 + cache: true + - name: Run tests + run: pixi run test with: jobs: ${{ toJSON(needs) }} diff --git a/.gitignore b/.gitignore index 814af96..4d6b627 100644 --- a/.gitignore +++ b/.gitignore @@ -109,6 +109,8 @@ venv/ ENV/ env.bak/ venv.bak/ +.pixi/ +pixi.lock # Spyder project settings .spyderproject diff --git a/README.md b/README.md index 604501d..be2db22 100644 --- a/README.md +++ b/README.md @@ -1,32 +1,59 @@ -# Analysis template repository +# Analysis template (pixi, notebook-first) -This contains the raw structure I usually use when doing single-cell/spatial data analysis. This template is based on ideas from Philipp Weiler's [template repository](https://github.com/WeilerP/sc_analysis_template) as well as the [scverse cookiecutter template](https://github.com/scverse/cookiecutter-scverse). +Template for single-cell/spatial **analysis** repos. If you are building a Python library, use the scverse cookiecutter instead: https://github.com/scverse/cookiecutter-scverse. -## Set up +After you set this up, **replace this README with project-specific docs** so collaborators know what the project does. A good replacement includes: a one-line goal, data locations, key notebooks to run, and who to ping. -1. Rename `src/fancypackage/`. -2. Update `pyproject.toml` to include the following information: - - Project name - - Project description - - Project-specific Python requirements - - Project author - - Project maintainers - - Project URLs -3. Update `src/fancypackage/ul/constants.py` to include any paths relevant to your analysis and that should be accessible from any script or Jupyter notebook -4. Update this README to include the relevant information about your project. - -## Installation +## Quick start (pixi) ```bash -pip install -e ".[dev,test]" -pre-commit install +pixi install # create environment +pixi shell # activate it +pre-commit install # set up git hooks (run once) +pixi run jupyter lab # start notebooks +pixi run pytest # run tests +pixi run install-kernel # add Jupyter kernel (run once) ``` -## Development +Environment is defined in `pixi.toml` (GPU-ready: torch, jax, rapids-singlecell on Linux; MPS on macOS). `pyproject.toml` is kept for metadata and tool configs (ruff, pytest, hatch-vcs) only. + +## What to customize + +1. Update `pixi.toml` metadata: project name, description, authors, and kernel display name. +2. Rename the package directory `src/myanalysis/` to your project slug, and update the `name` in `pyproject.toml` to match. +3. Adjust paths in `src//_constants.py` to match your datasets. +4. Update `.github/copilot-instructions.md` with your project name, goal, and dataset locations. This helps AI coding assistants (GitHub Copilot, Claude, etc.) understand your project when you ask them for help. +5. **Replace this README** with project-specific docs: what the project does, how to run key notebooks, and who to contact. + +## Data and notebooks + +- Notebook naming: `[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb`. +- Data layout (one folder per dataset): + - `data//raw/` + - `data//processed/` + - `data//resources/` + - `data//results/` +- Figures: `figures/` or `data//results/`. +- Import paths via the local package: + +```python +from myanalysis import FilePaths +``` + +## Tooling + +- **Pixi**: single source of dependency truth (see `pixi.toml`). +- **Ruff**: lint/format Python + notebooks (config in `pyproject.toml`). +- **Biome**: format JSON/YAML (pre-commit hook). +- **Pre-commit**: install with `pre-commit install` (after `pixi shell`). + +## GPU notes + +- macOS: torch uses MPS; JAX is CPU-only. +- Linux: `rapids-singlecell` + `jax[cuda12]` enable GPU acceleration. -This template uses: -- **Biome** for JavaScript/JSON/YAML formatting -- **Ruff** for Python linting and formatting -- **Pre-commit hooks** for code quality +## Clusters -The package provides a minimal structure for analysis projects. Add your analysis-specific dependencies (numpy, pandas, scanpy, etc.) as needed for your project. +For cluster usage (e.g., ETH Euler): +- General docs: https://docs.hpc.ethz.ch/ +- Start notebooks via JupyterHub: https://jupyter.euler.hpc.ethz.ch/hub/ diff --git a/analysis/[INITIALS]-[DATE]_sample_notebook.ipynb b/analysis/XX-2026-01-27_sample_notebook.ipynb similarity index 100% rename from analysis/[INITIALS]-[DATE]_sample_notebook.ipynb rename to analysis/XX-2026-01-27_sample_notebook.ipynb diff --git a/pixi.toml b/pixi.toml new file mode 100644 index 0000000..c1e2fbc --- /dev/null +++ b/pixi.toml @@ -0,0 +1,63 @@ +[workspace] +name = "analysis-template" +version = "0.1.0" +description = "Template for single-cell/spatial analysis projects (pixi-managed)" +authors = ["Your Name "] +channels = ["conda-forge"] +platforms = ["osx-arm64", "linux-64"] + +[pypi-options] +extra-index-urls = ["https://pypi.nvidia.com"] + +[tasks] +lab = "jupyter lab" +test = "pytest" +install-kernel = "python -m ipykernel install --user --name=analysis-template --display-name='Analysis Template (Pixi)'" + +[dependencies] +python = "3.12.*" +# Pin numpy to avoid conda/pypi conflicts with numba +numpy = ">=2.0,<2.2" + +# CellRank accelerated linear algebra (PETSc/SLEPc) +# Pre-built from conda-forge; PyPI wheels require building from source +petsc4py = "*" +slepc4py = "*" + +[target.osx-arm64.pypi-dependencies] +# CPU-only JAX on macOS (MPS handled automatically by torch) +jax = "<0.9.0" + +[target.linux-64.pypi-dependencies] +# GPU stack for Linux (CUDA 12) +rapids-singlecell = { version = ">=0.13", extras = ["rapids12"] } +jax = { version = "<0.9.0", extras = ["cuda12"] } + +[pypi-dependencies] +# Compatibility fix: cuML (rapids dependency) incompatible with sklearn 1.8 +# https://github.com/rapidsai/cuml/issues/6426 +scikit-learn = "<1.8" + +# Core single-cell stack +scanpy = ">=1.10" +squidpy = "*" +scvi-tools = "*" +cellrank = "*" +torch = "*" + +# Notebook workflow +jupyterlab = "*" +ipykernel = "*" +ipywidgets = "*" +pandas = "*" +matplotlib = "*" +seaborn = "*" + +# Utilities +pre-commit = "*" +pytest = "*" +session-info2 = "*" +pot = ">=0.9" + +# Local editable package for path helpers +myanalysis = { path = ".", editable = true } diff --git a/pyproject.toml b/pyproject.toml index 2b71eca..c535440 100644 --- a/pyproject.toml +++ b/pyproject.toml @@ -3,54 +3,24 @@ build-backend = "hatchling.build" requires = [ "hatch-vcs", "hatchling" ] [project] -name = "fancypackage" -description = "Fancy Package" +name = "myanalysis" +# Minimal metadata - project info lives in pixi.toml +# Only the package name matters here (must match src/NAME/ directory) readme = "README.md" license = { file = "LICENSE" } -maintainers = [ - { name = "Jane Doe", email = "jane.doe@usa.com" }, -] -authors = [ - { name = "Jane Doe" }, -] requires-python = ">=3.12" classifiers = [ "Programming Language :: Python :: 3 :: Only", "Programming Language :: Python :: 3.12", "Programming Language :: Python :: 3.13", ] -dynamic = [ "version" ] -dependencies = [ - # for debug logging (referenced from the issue template) - "session-info2", -] -optional-dependencies.dev = [ - "pre-commit", - "twine>=4.0.2", -] +# Dependency management lives in pixi.toml -optional-dependencies.test = [ - "coverage", - "pytest", -] -# https://docs.pypi.org/project_metadata/#project-urls -urls.Homepage = "https://github.com/url/to/repo.git" -urls.Source = "https://github.com/url/to/repo.git" +dynamic = [ "version" ] [tool.hatch.version] source = "vcs" -[tool.hatch.envs.default] -installer = "uv" -features = [ "dev" ] - -# Test the supported Python versions -[[tool.hatch.envs.hatch-test.matrix]] -python = [ "3.12", "3.13" ] - -[tool.hatch.envs.hatch-test] -features = [ "test" ] - [tool.ruff] line-length = 120 src = [ "src" ] @@ -117,9 +87,3 @@ xfail_strict = true addopts = [ "--import-mode=importlib", # allow using test files with same name ] - -[tool.coverage.run] -source = [ "fancypackage" ] -omit = [ - "**/test_*.py", -] diff --git a/src/fancypackage/__init__.py b/src/myanalysis/__init__.py similarity index 72% rename from src/fancypackage/__init__.py rename to src/myanalysis/__init__.py index cf43ac5..708daf0 100644 --- a/src/fancypackage/__init__.py +++ b/src/myanalysis/__init__.py @@ -3,4 +3,4 @@ from ._constants import FilePaths __all__ = ["FilePaths"] -__version__ = version("fancypackage") +__version__ = version("myanalysis") diff --git a/src/fancypackage/_constants.py b/src/myanalysis/_constants.py similarity index 64% rename from src/fancypackage/_constants.py rename to src/myanalysis/_constants.py index 364581e..c3b36d7 100644 --- a/src/fancypackage/_constants.py +++ b/src/myanalysis/_constants.py @@ -2,10 +2,12 @@ class FilePaths: - """Paths to the data and figures directories.""" + """Project-wide paths for notebooks and scripts.""" ROOT = Path(__file__).parents[3].resolve() DATA = ROOT / "data" FIGURES = ROOT / "figures" + + # Example dataset layout; customize per project EXAMPLE_DATASET = DATA / "example_dataset" diff --git a/tests/test_basic.py b/tests/test_basic.py index b11ec0b..fa29c3f 100644 --- a/tests/test_basic.py +++ b/tests/test_basic.py @@ -1,10 +1,10 @@ import pytest -import fancypackage +import myanalysis def test_package_has_version(): - assert fancypackage.__version__ is not None + assert myanalysis.__version__ is not None @pytest.mark.skip(reason="This decorator should be removed when test passes.") From 09e3226918243aae760ceea5d1bcda33fb435e38 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:35:27 +0100 Subject: [PATCH 02/12] Update sample notebook: fix imports, improve template structure --- analysis/XX-2026-01-27_sample_notebook.ipynb | 47 ++++++++++++-------- 1 file changed, 29 insertions(+), 18 deletions(-) diff --git a/analysis/XX-2026-01-27_sample_notebook.ipynb b/analysis/XX-2026-01-27_sample_notebook.ipynb index f9fff05..4125913 100644 --- a/analysis/XX-2026-01-27_sample_notebook.ipynb +++ b/analysis/XX-2026-01-27_sample_notebook.ipynb @@ -4,11 +4,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "# Title of the Analysis\n", - "Short description of what is being done here. \n", + "# Sample Analysis Notebook\n", "\n", - "Changelog\n", - "- XXX. " + "This notebook demonstrates the template structure. Delete or modify as needed.\n", + "\n", + "**Changelog**\n", + "- 2026-01-27: Initial template notebook" ] }, { @@ -24,14 +25,15 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "### Dependecy notebooks" + "### Dependency notebooks" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ - "Links to notebooks/scripts that this analysis depends on. " + "Link to notebooks/scripts this analysis depends on, e.g.:\n", + "- `XX-2026-01-20_preprocessing.ipynb` — raw data → processed AnnData" ] }, { @@ -72,7 +74,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": null, "metadata": { "ExecuteTime": { "end_time": "2021-05-31T09:25:05.984402Z", @@ -82,7 +84,9 @@ }, "outputs": [], "source": [ - "from fancypackage import FilePaths" + "import scanpy as sc\n", + "\n", + "from myanalysis import FilePaths" ] }, { @@ -96,7 +100,16 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Define constants etc. here. " + "Define constants, figure settings, etc." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "sc.settings.set_figure_params(dpi=100, frameon=False)" ] }, { @@ -124,12 +137,12 @@ "cell_type": "markdown", "metadata": {}, "source": [ - "Any data should be stored in the `data` directory, or somewhere centrally on the cluster. The `data` directly is acessible from anywhere in this repo via `FilePaths`: " + "Store data in `data//` with subfolders `raw/`, `processed/`, `resources/`, `results/`. Access paths via `FilePaths`:" ] }, { "cell_type": "code", - "execution_count": 3, + "execution_count": null, "metadata": {}, "outputs": [ { @@ -141,7 +154,8 @@ } ], "source": [ - "print(FilePaths.DATA)" + "print(f\"Data directory: {FilePaths.DATA}\")\n", + "print(f\"Figures directory: {FilePaths.FIGURES}\")" ] }, { @@ -154,12 +168,9 @@ { "cell_type": "markdown", "metadata": {}, - "source": [] - }, - { - "cell_type": "markdown", - "metadata": {}, - "source": [] + "source": [ + "Your analysis code goes here. Delete these placeholder cells." + ] } ], "metadata": { From 03f61cbbe7b525ab84e15316bd1fe4ebcb1a9fa0 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:36:18 +0100 Subject: [PATCH 03/12] Track pixi.lock for reproducibility and CI caching --- .gitignore | 1 - pixi.lock | 9816 ++++++++++++++++++++++++++++++++++++++++++++++++++++ 2 files changed, 9816 insertions(+), 1 deletion(-) create mode 100644 pixi.lock diff --git a/.gitignore b/.gitignore index 4d6b627..de07c2b 100644 --- a/.gitignore +++ b/.gitignore @@ -110,7 +110,6 @@ ENV/ env.bak/ venv.bak/ .pixi/ -pixi.lock # Spyder project settings .spyderproject diff --git a/pixi.lock b/pixi.lock new file mode 100644 index 0000000..ed6481c --- /dev/null +++ b/pixi.lock @@ -0,0 +1,9816 @@ +version: 6 +environments: + default: + channels: + - url: https://conda.anaconda.org/conda-forge/ + indexes: + - https://pypi.org/simple + - https://pypi.nvidia.com/ + options: + pypi-prerelease-mode: if-necessary-or-explicit + packages: + linux-64: + - conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 + - conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.2-h39aace5_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hda65f42_8.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.6-hb03c661_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-mpi_openmpi_h76e6d66_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.6-mpi_openmpi_h106f004_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/hypre-2.32.0-mpi_openmpi_h398ea61_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/icu-78.2-h33c6efd_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.3-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.45-default_hbd61a6d_105.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.5-h088129d_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libamd-3.3.3-h456b2da_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.11.0-7_hc00574d_netlib.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libbtf-2.3.2-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcamd-3.3.3-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.77-h3ff7636_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.11.0-7_h8e06fc2_netlib.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libccolamd-3.3.4-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcholmod-5.3.1-h9cf07ce_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcolamd-3.3.4-hf02c80a_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.18.0-h4e3cde8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.3-hecca717_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric-2.4.0-ha770c72_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric1-2.4.0-h8f87c3e_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h3435931_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.2.0-he0feb66_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.2.0-h69a702a_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-15.2.0-h69a702a_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-15.2.0-h68bc16d_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.2.0-he0feb66_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.12.2-default_hafda6a7_1000.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.18-h3b78370_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libklu-2.3.5-h95ff59c_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.11.0-7_h8876d29_netlib.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.2-hb03c661_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.67.0-had1ee68_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.11.0-hb9d3cd8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libpmix-5.0.8-h9b03745_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libptscotch-7.0.10-int32_ha94cade_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libscotch-7.0.10-int32_h865694f_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libspqr-4.3.4-h23b7119_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.2-hf4e2dac_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hcf80075_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.2.0-h934c35e_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.2.0-hdf11a46_16.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsuitesparseconfig-7.10.1-h901830b_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-257.10-hd0affe5_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libudev1-257.10-hd0affe5_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libumfpack-6.3.5-h873dde6_7100101.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.3-h5347b49_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-16-2.15.1-hca6bf5a_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.15.1-he237659_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-hd0bcaf9_1007.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-openmpi.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-include-5.8.1-h158ef2a_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-mpi-5.8.1-hcc12995_4.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openmpi-5.0.8-h611b0e2_111.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/parmetis-4.0.3-h02de7a9_1007.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/petsc-3.24.3-real_h326748a_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/petsc4py-3.24.3-np2py310h90edcb8_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.12-hd63d673_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-gil-3.12.12-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.12-8_cp312.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/rdma-core-61.0-h192683f_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.3-h853b02a_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/scalapack-2.2.0-hf7e2fd8_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/slepc-3.24.2-real_h5d6ed6e_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/slepc4py-3.24.2-np2py310h29f32ec_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/superlu-7.0.1-h8f6e6c4_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/superlu_dist-9.1.0-h3349319_0.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h366c992_103.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025c-hc9c84f9_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ucc-1.6.0-hcedbda0_2.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/ucx-1.20.0-hf72d326_1.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb78ec9c_6.conda + - pypi: https://files.pythonhosted.org/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/67/84/d844b79acd9fe15ded60b614b7df04a12fad854ee1fbb8415d726ab1beeb/aiobotocore-3.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/f6/a62cbbf13f0ac80a70f71b1672feba90fdb21fd7abd8dbf25c0105fb6fa3/aiohttp-3.13.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/78/bc/dee9a01c1b9cd16d7e257644a2fc8ee6df6c685faaf68d289bdc4c91adec/anndata-0.12.7-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/09/52/94108adfdd6e2ddf58be64f959a0b9c7d4ef2fa71086c38356d22dc501ea/argon2_cffi_bindings-25.1.0-cp39-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/df/5d/493b1b5528ab5072feae30821ff3a07b7a0474213d548efb1fdf135f85c1/array_api_compat-1.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/c9/d7977eaacb9df673210491da99e6a247e93df98c715fc43fd136ce1d3d33/arrow-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2e/e9/eb6a5db5ac505d5d45715388e92bced7a5bb556facc4d0865d192823f2d2/async_lru-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/39/47f9197bdd44df24d67ac8893641e16f386c984a0619ef2ee4c51fbbc019/beautifulsoup4-4.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e3/a6/24169d70ec5264b65ba54ba49b3d10f46d6b1ad97e185c94556539b3dfc8/cachetools-6.2.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/c2/7f3664b5b9421ef2d23d1684f56dd7df52b30ed37d8c91b3e92b2ff93720/cellrank-1.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/98/78/01c019cdb5d6498122777c1a43056ebb3ebfeef2076d9d026bfe15583b2b/click-8.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/39/799be3f2f0f38cc727ee3b4f1445fe6d5e4133064ec2e4115069418a5bb6/cloudpickle-3.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c6/c6/9963d588cc3d75d766c819e0377a168ef83cf3316a92769971527a1ad1de/colorcet-3.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a9/c1/dabe88f52c3e3760d861401bb994df08f672ec893b8f7592dc91626adcf3/cuda_bindings-12.9.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b2/75/cb52e7d8c44ef4bf1313251685adc0c6568d51b9790edf7a1ecdf0135394/cuda_core-0.3.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/0b/02/4dbe7568a42e46582248942f54dc64ad094769532adbe21e525e4edf7bc4/cuda_pathfinder-1.3.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/af/f3/6b032a554019cfb3447e671798c1bd3e79b5f1af20d10253f56cea269ef2/cuda_python-12.9.4-py3-none-any.whl + - pypi: https://pypi.nvidia.com/cuda-toolkit/cuda_toolkit-12.8.1-py2.py3-none-any.whl + - pypi: https://pypi.nvidia.com/cudf-cu12/cudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/cugraph-cu12/cugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/cuml-cu12/cuml_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e0/95/d7e1295141e7d530674a3cc567e13ed0eb6b81524cb122d797ed996b5bea/cupy_cuda12x-13.6.0-cp312-cp312-manylinux2014_x86_64.whl + - pypi: https://pypi.nvidia.com/cuvs-cu12/cuvs_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/60/3fcd548bed6d25016933e4b2984c9b82e4c1e760380e03d4100b1b4726e0/dask-2025.9.1-py3-none-any.whl + - pypi: https://pypi.nvidia.com/dask-cuda/dask_cuda-25.12.0-py3-none-manylinux_2_28_aarch64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/dask-cudf-cu12/dask_cudf_cu12-25.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/28/0e/b11ad5fd77e3dd0baad9cac3184315be7654ae401e3b0b0c324503f23d96/datashader-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/3e/e27078370414ef35fafad2c06d182110073daaeb5d3bf734b0b1eeefe452/debugpy-1.8.19-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/33/6b/e0547afaf41bf2c42e52430072fa5658766e3d65bd4b03a563d1b6336f57/distlib-0.4.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/10/76/486da90111ae15daf88a25e464e271575de4197c331cca4d41c9c5db8bf4/distributed-2025.9.1-py3-none-any.whl + - pypi: https://pypi.nvidia.com/distributed-ucxx-cu12/distributed_ucxx_cu12-0.47.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/80/07/cdecb7aa976f34328372f1c4efd6c9dc1b039b3cc8d3f38787d640009a25/fastrlock-0.8.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b5/36/7fb70f04bf00bc646cd5bb45aa9eddb15e19437a28b8fb2b4a5249fac770/filelock-3.20.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/37/82dbef0f6342eb01f54bca073ac1498433d6ce71e50c3c3282b655733b31/fonttools-4.61.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/bd/d91c5e39f490a49df14320f4e8c80161cfcce09f1e2cde1edd16a551abb3/frozenlist-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e3/bd/4c0a4619494188a9db5d77e2100ab7d544a42e76b2447869d8e124e981d8/fsspec-2023.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/e4/fac19dc34cb686c96011388b813ff7b858a70681e5ce6ce7698e5021b0f4/geopandas-1.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ce/a9/a780cc66f86335a6019f557a8aaca8fbb970728f0efd2430d15ff1beae0e/google_crc32c-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f5/86/f6ec2164f743d9609691115ae8ece098c76b894ebe4f7c94a655c6b03e98/grpcio-1.76.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/30/d1c94066343a98bb2cea40120873193a4fed68c4ad7f8935c11caf74c681/h5py-3.15.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b8/58/40fbbcefeda82364720eba5cf2270f98496bdfa19ea75b4cccae79c698e6/identify-2.6.16-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7d/da/dd2867c25adbb41563720f14b5fc895c98bf88be682a3faff4f7b3118d2a/igraph-1.0.0-cp39-abi3-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/fb/fe/301e0936b79bcab4cacc7548bf2853fc28dced0a578bab1f7ef53c9aa75b/imageio-2.37.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/92/162cfaee4ccf370465c5af1ce36a9eacec1becb552f2033bb3584e6f640a/ipython-9.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/56/6d/0d9848617b9f753b87f214f1c682592f7ca42de085f564352f10f0843026/ipywidgets-8.1.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/f7/ae4ecf183d9693cd5fcce7ee063c5e54f173b66dc80a8a79951861e1b557/jax-0.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/53/f2/44ad0ce1d115f0f6be10f4af0ca05a18afb838b06e6ca6b01ba4b0137421/jax_cuda12_pjrt-0.8.2-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/60/a5/3a4f6585d530516f8a70494e9e916a611e01733ce3174dacb45d48a5ee63/jax_cuda12_plugin-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e0/bf/e386c4bbfda3fb326a01594cc46c8ac90cdeeeacee4c553d9e3848f75893/jaxlib-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/14/2f/967ba146e6d58cf6a652da73885f52fc68001525b4197effc174321d70b4/jmespath-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/91/984aca2ec129e2757d1e4e3c81c3fcda9d0f85b74670a094cc443d9ee949/joblib-1.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/9e/038522f50ceb7e74f1f991bf1b699f24b0c2bbe7c390dd36ad69f4582258/json5-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/69/90/f63fb5873511e014207a475e2bb4e8b2e570d655b00ac19a9a0ca0a385ee/jsonschema-4.26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/45/1a4ed80516f02155c51f51e8cedb3c1902296743db0bbc66608a0db2814f/jsonschema_specifications-2025.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2d/0b/ceb7694d864abc0a047649aec263878acb9f792e1fec3e676f22dc9015e3/jupyter_client-8.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/60/1f6cee0c46263de1173894f0fafcb3475ded276c472c14d25e0280c18d6d/jupyter_lsp-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/80/a24767e6ca280f5a49525d987bf3e4d7552bf67c8be07e8ccf20271f8568/jupyter_server-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d1/2d/6674563f71c6320841fc300911a55143925112a72a883e2ca71fba4c618d/jupyter_server_terminals-0.5.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/9a/0bf9a7a45f0006d7ff4fdc4fc313de4255acab02bf4db1887c65f0472c01/jupyterlab-4.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/07/a000fe835f76b7e1143242ab1122e6362ef1c03f23f83a045c38859c2ae0/jupyterlab_server-2.28.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/b5/36c712098e6191d1b4e349304ef73a8d06aed77e56ceaac8c0a306c7bda1/jupyterlab_widgets-3.0.16-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/5b/058db09c45ba58a7321bdf2294cae651b37d6fec68117265af90cde043b0/legacy_api_wrap-1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b0/a4/a89e2ce16a580f7bea066ed49364f0b3e04a6412f0c3692975bee8515141/leidenalg-0.11.0-cp38-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcudf-cu12/libcudf_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcugraph-cu12/libcugraph_cu12-25.12.2-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcuml-cu12/libcuml_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libcuvs-cu12/libcuvs_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libkvikio-cu12/libkvikio_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libraft-cu12/libraft_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/librmm-cu12/librmm_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libucx-cu12/libucx_cu12-1.19.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/libucxx-cu12/libucxx_cu12-0.47.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/d6/e9/36b340c7ec01dad6f034481e98fc9fc0133307beb05c714c0542af98bbde/lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/de/73/3d757cb3fc16f0f9794dd289bcd0c4a031d9cf54d8137d6b984b2d02edf3/lightning_utilities-0.15.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/da/8341fd3056419441286c8e26bf436923021005ece0bff5f41906476ae514/llvmlite-0.44.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/41/6d499b9b63406b204dd551002712c088abf0e130686721f403aa105736ba/loompy-3.0.8.tar.gz + - pypi: https://files.pythonhosted.org/packages/59/1b/6ef961f543593969d25b2afe57a3564200280528caa9bd1082eecdd7b3bc/markdown-3.10.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/3e/f3/c5195b1ae57ef85339fd7285dfb603b22c8b4e79114bae5f4f0fcf688677/matplotlib-3.10.8-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/c0/2dfab7b319dabe23f5a7b515a797c74b501d15c72e7a03837cf0cf779b9e/matplotlib_scalebar-0.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9b/f7/4a5e785ec9fbd65146a27b6b70b6cdc161a66f2024e4b04ac06a67f5578b/mistune-3.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/8a/18d4ff2c7bd83f30d6924bd4ad97abf418488c3f908dea228d6f0961ad68/ml_collections-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/cb/28ce52eb94390dda42599c98ea0204d74799e4d8047a0eb559b6fd648056/ml_dtypes-0.5.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a4/8e/469e5a4a2f5855992e425f3cb33804cc07bf18d48f2db061aec61ce50270/more_itertools-10.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/65/92/a5100f7185a800a5d29f8d14041f61475b9de465ffcc0f3b9fba606e4505/msgpack-1.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/3f/de/f7bf1832967e7e4bcd34b232ed33169a0d86a8efbcdc7fcfd8f98c18d5c1/mudata-0.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f3/8d/5e5be3ced1d12966fefb5c4ea3b2a5b480afcea36406559442c6e31d4a48/multidict-6.7.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/51/c0/00c9809d8b9346eb238a6bbd5f83e846a4ce4503da94a4c08cb7284c325b/multipledispatch-1.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f5/98/23d67fb3e1cb801122bbf3ced565e796d471a09b610cd9c5697528e83494/multiscale_spatial_image-1.0.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ef/82/7a9d0550484a62c6da82858ee9419f3dd1ccc9aa1c26a1e43da3ecd20b0d/natsort-8.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/a0/5b0c2f11142ed1dddec842457d3f65eaf71a0080894eb6f018755b319c3a/nbclient-0.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c9/b2622292ea83fbb4ec318f5b9ab867d0a28ab43c5717bb85b0a5f6b3b0a4/networkx-3.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/b2/d0896bdcdc8d28a7fc5717c305f1a861c26e18c05047949fb371034d98bd/nodeenv-1.10.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9a/2d/e518df036feab381c23a624dac47f8445ac55686ec7f11083655eb707da3/numba-0.61.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ca/e9/210e32faa7f9dd42d835d7d36394eaa1d0e29807c56950b389793ee55c1b/numba_cuda-0.19.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/53/78c98ef5c8b2b784453487f3e4d6c017b20747c58b470393e230c78d18e8/numcodecs-0.16.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b0/e0/760e73c111193db5ca37712a148e4807d1b0c60302ab31e4ada6528ca34d/numpy_groupies-0.11.3-py3-none-any.whl + - pypi: https://pypi.nvidia.com/nvidia-cublas-cu12/nvidia_cublas_cu12-12.8.4.1-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-cccl-cu12/nvidia_cuda_cccl_cu12-12.9.27-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-cupti-cu12/nvidia_cuda_cupti_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-nvcc-cu12/nvidia_cuda_nvcc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-nvrtc-cu12/nvidia_cuda_nvrtc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cuda-runtime-cu12/nvidia_cuda_runtime_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cudnn-cu12/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cufft-cu12/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cufile-cu12/nvidia_cufile_cu12-1.13.1.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-curand-cu12/nvidia_curand_cu12-10.3.9.90-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cusolver-cu12/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cusparse-cu12/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-cusparselt-cu12/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/fd/72/fb2af0d259a651affdce65fd6a495f0e07a685a0136baf585c5065204ee7/nvidia_ml_py-13.590.48-py3-none-any.whl + - pypi: https://pypi.nvidia.com/nvidia-nccl-cu12/nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-nvjitlink-cu12/nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-nvshmem-cu12/nvidia_nvshmem_cu12-3.4.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvidia-nvtx-cu12/nvidia_nvtx_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://pypi.nvidia.com/nvtx/nvtx-0.2.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/da/9d476e9aadfa854719f3cb917e3f7a170a657a182d8d1d6e546594a4872b/param-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/70/ba4b949bdc0490ab78d545459acd7702b211dfccf7eb89bbc1060f52818d/patsy-1.0.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/8f/48d0b77ab2200374c66d344459b8958c86693be99526450e7aee714e03e4/pillow-12.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz + - pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2f/3f/cc519c1176116271b6282268a705162fa042c16cc922bc56039445c9d697/pot-0.9.6.post1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/46/4b/3aae6835b8e5f44ea6a68348ad90f78134047b503765087be2f9912140ea/propcache-0.4.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/e8/8e/971c0edd084914f7ee7c23aa70ba89e8903918adca179319ee94403701d5/protobuf-6.33.4-cp39-abi3-manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/29/f8/40e01c350ad9a2b3cb4e6adbcc8a83b17ee50dd5792102b6142385937db5/psutil-7.2.1-cp36-abi3-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c6/6f/8f9eb40c2328d66e8b097777ddcf38494115ff9f1b5bc9754ba46991191e/pyarrow-23.0.0-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/0c/c3/44f3fbbfa403ea2a7c779186dc20772604442dde72947e7d01069cbe98e3/pycparser-3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8c/b2/23f4032cd1c9744aa8e9ecda43cd4d755fcb209f7f40fae035248f31a679/pyct-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/35/2d/cb0cd5865a8dac8869cdd01df17c2c0c94d9aa22b167e1bbfa01559dd3a9/pygam-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/56/fa/ad3e85498b1ca5c54162035567f9cb6ad38d1a24829db465e947fe32c6c9/pygpcca-1.0.3-py3-none-any.whl + - pypi: https://pypi.nvidia.com/pylibcudf-cu12/pylibcudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/pylibraft-cu12/pylibraft_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b2/e6/94145d714402fd5ade00b5661f2d0ab981219e07f7db9bfa16786cdb9c04/pynndescent-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/36/f7/cf8bec9024625947e1a71441906f60a5fa6f9e4c441c4428037e73b1fcc8/pyogrio-0.12.1-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/10/bd/c038d7cc38edc1aa5bf91ab8068b63d4308c66c4c8bb3cbba7dfbc049f9c/pyparsing-3.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b8/be/212882c450bba74fc8d7d35cbd57e4af84792f0a56194819d98106b075af/pyproj-3.7.2-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/fc/81/957ae78e6398460a7230b0eb9b8f1cb954c5e913e868e48d89324c68cec7/pyro_api-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/37/def183a2a2c8619d92649d62fe0622c4c6c62f60e4151e8fbaa409e7d5ab/pyro_ppl-1.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3b/ab/b3226f0bd7cdcf710fbede2b3548584366da3b19b5021e74f5bde2a8fa3f/pytest-9.0.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/77/eb/cc6dbfe70d15318dbce82674b1e8057cef2634ca9f9121a16b8a06c630db/pytorch_lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8b/9d/b3589d3877982d4f2329302ef98a8026e7f4443c765c46cfecc8858c6b4b/pyyaml-6.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/raft-dask-cu12/raft_dask_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://pypi.nvidia.com/rapids-dask-dependency/rapids_dask_dependency-25.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/69/b6/139d9df6d0f7bd289a9a6286cecfff999e41c36865515d7fdb56b7b32a14/rapids_logger-0.2.3-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1d/ba/39fe2e073b8c84ed3e7a8ca5e17aca6a73a0396a10b5058743b0936e8dff/rapids_singlecell-0.13.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7e/71/44ce230e1b7fadd372515a97e32a83011f906ddded8d03e3c6aafbdedbb7/rfc3987_syntax-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/87/2a/a1810c8627b9ec8c57ec5ec325d306701ae7be50235e8fd81266e002a3cc/rich-14.3.1-py3-none-any.whl + - pypi: https://pypi.nvidia.com/rmm-cu12/rmm_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/60/1b/6f8f29f3f995c7ffdde46a626ddccd7c63aefc0efae881dc13b6e5d5bb16/rpds_py-0.30.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/08/86/bcabd656a78122c7642a16ce2ea77347b77888b2fcde43bd2e925e393c64/s3fs-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/f0/000ac705a3d5b8744c6eabfce6b413b131829542ffec05020b1e931ffed4/scanpy-1.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f4/a2/70401a107d6d7466d64b466927e6b96fcefa99d57494b972608e2f8be50f/scikit_image-0.26.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/5c/d0/0c577d9325b05594fdd33aa970bf53fb673f051a45496842caee13cfd7fe/scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/6a/7e/f003fd232ec3c3e29ae565e38536dbdef417c76f7c29a67203e05b800f44/scikit_misc-0.5.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/79/2e/415119c9ab3e62249e18c2b082c07aff907a273741b3f8160414b0e9193c/scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/5b/9a/97224ad312fca04b8dec60c1b743096344c3b2fff5f56a9a817576c5cf4d/scvelo-0.3.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4a/8b/37ee827c0cd629f85d3473577d90cd032f70d1de8bb0e5e3b222d87bb19f/scvi_tools-1.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b9/37/e781683abac55dde9771e086b790e554811a71ed0b2b8a1e789b7430dd44/shapely-2.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/46/2c/1462b1d0a634697ae9e55b3cecdcb64788e8b7d63f54d923fcd0bb140aed/soupsieve-2.8.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8d/fd/42a1720542199ae6ff0f9c37bbd55dd3033ddd7bbe00d68cde09d6824887/sparse-0.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/10/e5/134cfa437c0d87ce33b28b593a9990ceb4dd425e104c8da3efc299dccc55/spatial_image-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f9/a1/3f65aff044381794b455b6069a3ef0008f989707d96df9d7677eb9b8ebed/spatialdata-0.2.5.post0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/31/cb/c9bee6502e1dd51f755b4d81014fc721128f3a48a0220fabe3bd09d61dfb/squidpy-1.6.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/68/dddd76117df2ef14c943c6bbb6618be5c9401280046f4ddfc9fb4596a1b8/statsmodels-0.14.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/02/be/5d2d47b1fb58943194fb59dcf222f7c4e35122ec0ffe8c36e18b5d728f0b/tblib-3.2.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/24/99/4772b8e00a136f3e01236de33b0efda31ee7077203ba5967fcc76da94d65/texttable-1.7.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/4d/3fd60d3a37b544cb59463add86e4dfbb485880225115341281906a7b140e/tifffile-2026.1.14-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/12/5911ae3eeec47800503a238d971e51722ccea5feb8569b735184d5fcdbc0/toolz-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/23/8e/3c74db5e53bff7ed9e34c8123e6a8bfef718b2450c35eefab85bb4a7e270/torch-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/02/21/aa0f434434c48490f91b65962b1ce863fdcce63febc166ca9fe9d706c2b6/torchmetrics-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/50/d4/e51d52047e7eb9a582da59f32125d17c0482d065afd5d3bc435ff2120dc5/tornado-6.5.4-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c2/5e/85dcba563c41c55d17ad49d7a4950409d394cbcf941e02c22d7908948bc4/treelite-4.6.1-py3-none-manylinux2014_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/ab/a8/cdf8b3e4c98132f965f88c2313a4b493266832ad47fb52f23d14d4f86bb5/triton-3.6.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/1b/a9/e3aee762739c1d7528da1c3e06d518503f8b6c439c35549b53735ba52ead/typeguard-4.4.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/b0/003792df09decd6849a5e39c28b513c06e84436a54440380862b5aeff25d/tzdata-2025.3-py2.py3-none-any.whl + - pypi: https://pypi.nvidia.com/ucxx-cu12/ucxx_cu12-0.47.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/43/d2/fcf7192dd1cd8c090b6cfd53fa223c4fb2887a17c47e06bc356d44f40dfb/umap_learn-0.5.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/39/08/aaaad47bc4e9dc8c725e68f9d04865dbcb2052843ff09c97b08904852d84/urllib3-2.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fa/6e/3e955517e22cbdd565f2f8b2e73d52528b14b8bcfdb04f62466b071de847/validators-0.35.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/2a/dc2228b2888f51192c7dc766106cd475f1b768c10caaf9727659726f7391/virtualenv-20.36.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f2/3e/45583b67c2ff08ad5a582d316fcb2f11d6cf0a50c7707ac09d212d25bc98/wcwidth-0.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/cc/e097523dd85c9cf5d354f78310927f1656c422bd7b2613b2db3e3f9a0f2c/webcolors-25.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/34/db/b10e48aa8fff7407e67470363eac595018441cf32d5e1001567a7aeba5d2/websocket_client-1.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ad/e4/8d97cca767bcc1be76d16fb76951608305561c6e056811587f36cb1316a8/werkzeug-3.1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3f/0e/fa3b193432cfc60c93b42f3be03365f5f909d2b3ea410295cf36df739e31/widgetsnbextension-4.0.15-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/53/3e794346c39f462bcf1f58ac0487ff9bdad02f9b6d5ee2dc84c72e0243b2/wrapt-2.0.1-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/94/28/3a6365e45721c7c9078968ed94b4a60076bc31d73b8519021a69b4995b63/xarray-2024.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/aa/7b/9adbd82e2b7b8571da23856a890324b42cfbc38ae0ceac2177e5256f7216/xarray_dataclasses-1.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6e/a3/5e92dc7e35c08574472bbd9201aabdad03e38d54cc47c421922d219502c6/xarray_datatree-0.0.14-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/6d/f585a27b380ee987619b5617c0ca672a71a4345b67cfedbb6299750ce845/xarray_schema-0.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/d2/cb1c6104e6bf7ab77879fce7bc4bc6dcc4ae5a94246ab9c314b5d21022b2/xarray_spatial-0.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/db/0f/0d52c98b8a885aeda831224b78f3be7ec2e1aa4a62091f9f9188c3c65b56/yarl-1.22.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + - pypi: https://files.pythonhosted.org/packages/44/15/bb13b4913ef95ad5448490821eee4671d0e67673342e4d4070854e5fe081/zarr-3.1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/80/ab/11a76c1e2126084fde2639514f24e6111b789b0bfa4fc6264a8975c7e1f1/zict-3.0.0-py2.py3-none-any.whl + - pypi: ./ + osx-arm64: + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/_openmp_mutex-4.5-7_kmp_llvm.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-hd037594_8.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/c-ares-1.34.6-hc919400_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/fftw-3.3.10-mpi_mpich_h6eb47b5_11.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/hdf5-1.14.6-mpi_mpich_h05d5b64_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/hypre-2.32.0-mpi_mpich_h189fe77_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-78.2-h38cb7af_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libaec-1.1.5-h8664d51_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libamd-3.3.3-h5087772_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.11.0-5_h51639a9_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbtf-2.3.2-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcamd-3.3.3-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.11.0-5_hb0561ab_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libccolamd-3.3.4-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcholmod-5.3.1-hbba04d7_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcolamd-3.3.4-h99b4a89_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.18.0-he38603e_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-21.1.8-hf598326_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20250104-pl5321hafb1f1b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.3-haf25636_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric-2.4.0-hce30654_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric1-2.4.0-h84a0fba_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-hcf2aa1b_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgcc-15.2.0-hcbb3090_16.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran-15.2.0-h07b0088_16.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran5-15.2.0-hdae7583_16.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libhwloc-2.12.2-default_ha3cc4f2_1000.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.18-h23cfdf5_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libklu-2.3.5-h4370aa4_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.11.0-5_hd9741b5_openblas.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.2-h8088a28_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.67.0-hc438710_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.30-openmp_ha158390_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libptscotch-7.0.10-int32_hf99fa1b_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libscotch-7.0.10-int32_hed6a4d5_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libspqr-4.3.4-h775d698_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.2-h1ae2325_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h1590b86_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsuitesparseconfig-7.10.1-h4a8fc20_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libumfpack-6.3.5-h7c2c975_7100102.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-16-2.15.1-h5ef1a60_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.15.1-h8d039ee_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-21.1.8-h4a912ad_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/metis-5.1.0-h15f6cfe_1007.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-mpich.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/mpich-4.3.2-hb31c3fa_105.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-include-5.8.1-ha6078a4_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-mpi-5.8.1-h3d714e2_4.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-2.1.3-py312h94ee1e1_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/parmetis-4.0.3-ha4b917a_1007.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc-3.24.3-real_h9fb0cc7_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc4py-3.24.3-np2py310h37723c0_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.12-h18782d2_2_cpython.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python-gil-3.12.12-hd8ed1ab_2.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.12-8_cp312.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.3-h46df422_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/scalapack-2.2.0-h1b9cfae_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc-3.24.2-real_hc5a9acf_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc4py-3.24.2-np2py310h0c2cbfb_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu-7.0.0-h742a510_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu_dist-9.1.0-h89afcdd_0.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h010d191_3.conda + - conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025c-hc9c84f9_1.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-hbf9d68e_6.conda + - pypi: https://files.pythonhosted.org/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/67/84/d844b79acd9fe15ded60b614b7df04a12fad854ee1fbb8415d726ab1beeb/aiobotocore-3.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5d/43/4be01406b78e1be8320bb8316dc9c42dbab553d281c40364e0f862d5661c/aiohttp-3.13.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/60/2f/fd99b85e3913803e4134657a311971f39d34c9995b26d3cbf9a218459c36/anndata-0.12.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b6/02/d297943bcacf05e4f2a94ab6f462831dc20158614e5d067c35d4e63b9acb/argon2_cffi_bindings-25.1.0-cp39-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/df/5d/493b1b5528ab5072feae30821ff3a07b7a0474213d548efb1fdf135f85c1/array_api_compat-1.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/c9/d7977eaacb9df673210491da99e6a247e93df98c715fc43fd136ce1d3d33/arrow-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2e/e9/eb6a5db5ac505d5d45715388e92bced7a5bb556facc4d0865d192823f2d2/async_lru-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/39/47f9197bdd44df24d67ac8893641e16f386c984a0619ef2ee4c51fbbc019/beautifulsoup4-4.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/6b/9378741ab32c2856132b9b6f3f6d5cd2b580996da52876b27928ddef8fd1/cellrank-2.0.7-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl + - pypi: https://files.pythonhosted.org/packages/98/78/01c019cdb5d6498122777c1a43056ebb3ebfeef2076d9d026bfe15583b2b/click-8.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/39/799be3f2f0f38cc727ee3b4f1445fe6d5e4133064ec2e4115069418a5bb6/cloudpickle-3.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c6/c6/9963d588cc3d75d766c819e0377a168ef83cf3316a92769971527a1ad1de/colorcet-3.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2a/72/33ff765a07913cb5061baa94718f3a17003aa29adc89642a68c295d47582/dask-2024.11.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e9/57/e7996529256b13009fa8f4c34d1d7229755cc7d2b054aa43edb6ca655578/dask_expr-1.1.19-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/28/0e/b11ad5fd77e3dd0baad9cac3184315be7654ae401e3b0b0c324503f23d96/datashader-0.18.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/25/3e/e27078370414ef35fafad2c06d182110073daaeb5d3bf734b0b1eeefe452/debugpy-1.8.19-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/33/6b/e0547afaf41bf2c42e52430072fa5658766e3d65bd4b03a563d1b6336f57/distlib-0.4.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz + - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b5/36/7fb70f04bf00bc646cd5bb45aa9eddb15e19437a28b8fb2b4a5249fac770/filelock-3.20.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6f/16/7decaa24a1bd3a70c607b2e29f0adc6159f36a7e40eaba59846414765fd4/fonttools-4.61.1-cp312-cp312-macosx_10_13_universal2.whl + - pypi: https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2b/94/5c8a2b50a496b11dd519f4a24cb5496cf125681dd99e94c604ccdea9419a/frozenlist-1.8.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/01/c9/97cc5aae1648dcb851958a3ddf73ccd7dbe5650d95203ecb4d7720b4cdbf/fsspec-2026.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/e4/fac19dc34cb686c96011388b813ff7b858a70681e5ce6ce7698e5021b0f4/geopandas-1.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e9/5f/7307325b1198b59324c0fa9807cafb551afb65e831699f2ce211ad5c8240/google_crc32c-1.8.0-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/d9/75/11d0e66b3cdf998c996489581bdad8900db79ebd83513e45c19548f1cba4/grpcio-1.76.0-cp312-cp312-macosx_11_0_universal2.whl + - pypi: https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a4/5e/3c6f6e0430813c7aefe784d00c6711166f46225f5d229546eb53032c3707/h5py-3.15.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b8/58/40fbbcefeda82364720eba5cf2270f98496bdfa19ea75b4cccae79c698e6/identify-2.6.16-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8f/27/0494b31c65a4dbb09206962f7a056ff9df5388ab13e1dddc27ecf47238df/imagecodecs-2025.11.11-cp311-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/fb/fe/301e0936b79bcab4cacc7548bf2853fc28dced0a578bab1f7ef53c9aa75b/imageio-2.37.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/92/162cfaee4ccf370465c5af1ce36a9eacec1becb552f2033bb3584e6f640a/ipython-9.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/56/6d/0d9848617b9f753b87f214f1c682592f7ca42de085f564352f10f0843026/ipywidgets-8.1.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/f7/ae4ecf183d9693cd5fcce7ee063c5e54f173b66dc80a8a79951861e1b557/jax-0.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/77/18ac0ac08c76bf12ed47b0c2d7d35f3fc3d065bd105b36937901eab1455c/jaxlib-0.8.2-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/20/9a/e5d9ec41927401e41aea8af6d16e78b5e612bca4699d417f646a9610a076/Jinja2-3.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/14/2f/967ba146e6d58cf6a652da73885f52fc68001525b4197effc174321d70b4/jmespath-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/91/984aca2ec129e2757d1e4e3c81c3fcda9d0f85b74670a094cc443d9ee949/joblib-1.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/9e/038522f50ceb7e74f1f991bf1b699f24b0c2bbe7c390dd36ad69f4582258/json5-0.13.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/69/90/f63fb5873511e014207a475e2bb4e8b2e570d655b00ac19a9a0ca0a385ee/jsonschema-4.26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/45/1a4ed80516f02155c51f51e8cedb3c1902296743db0bbc66608a0db2814f/jsonschema_specifications-2025.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2d/0b/ceb7694d864abc0a047649aec263878acb9f792e1fec3e676f22dc9015e3/jupyter_client-8.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1a/60/1f6cee0c46263de1173894f0fafcb3475ded276c472c14d25e0280c18d6d/jupyter_lsp-2.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/80/a24767e6ca280f5a49525d987bf3e4d7552bf67c8be07e8ccf20271f8568/jupyter_server-2.17.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d1/2d/6674563f71c6320841fc300911a55143925112a72a883e2ca71fba4c618d/jupyter_server_terminals-0.5.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/9a/0bf9a7a45f0006d7ff4fdc4fc313de4255acab02bf4db1887c65f0472c01/jupyterlab-4.5.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/07/a000fe835f76b7e1143242ab1122e6362ef1c03f23f83a045c38859c2ae0/jupyterlab_server-2.28.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/b5/36c712098e6191d1b4e349304ef73a8d06aed77e56ceaac8c0a306c7bda1/jupyterlab_widgets-3.0.16-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/41/5b/058db09c45ba58a7321bdf2294cae651b37d6fec68117265af90cde043b0/legacy_api_wrap-1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d6/e9/36b340c7ec01dad6f034481e98fc9fc0133307beb05c714c0542af98bbde/lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/de/73/3d757cb3fc16f0f9794dd289bcd0c4a031d9cf54d8137d6b984b2d02edf3/lightning_utilities-0.15.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/2b/f8/4db016a5e547d4e054ff2f3b99203d63a497465f81ab78ec8eb2ff7b2304/llvmlite-0.46.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/41/6d499b9b63406b204dd551002712c088abf0e130686721f403aa105736ba/loompy-3.0.8.tar.gz + - pypi: https://files.pythonhosted.org/packages/59/1b/6ef961f543593969d25b2afe57a3564200280528caa9bd1082eecdd7b3bc/markdown-3.10.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/7e/65/07d5f5c7f7c994f12c768708bd2e17a4f01a2b0f44a1c9eccad872433e2e/matplotlib-3.10.8-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/c0/2dfab7b319dabe23f5a7b515a797c74b501d15c72e7a03837cf0cf779b9e/matplotlib_scalebar-0.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9b/f7/4a5e785ec9fbd65146a27b6b70b6cdc161a66f2024e4b04ac06a67f5578b/mistune-3.2.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/8a/18d4ff2c7bd83f30d6924bd4ad97abf418488c3f908dea228d6f0961ad68/ml_collections-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/b8/3c70881695e056f8a32f8b941126cf78775d9a4d7feba8abcb52cb7b04f2/ml_dtypes-0.5.4-cp312-cp312-macosx_10_13_universal2.whl + - pypi: https://files.pythonhosted.org/packages/a4/8e/469e5a4a2f5855992e425f3cb33804cc07bf18d48f2db061aec61ce50270/more_itertools-10.8.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3f/de/f7bf1832967e7e4bcd34b232ed33169a0d86a8efbcdc7fcfd8f98c18d5c1/mudata-0.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/65/1caac9d4cd32e8433908683446eebc953e82d22b03d10d41a5f0fefe991b/multidict-6.7.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/51/c0/00c9809d8b9346eb238a6bbd5f83e846a4ce4503da94a4c08cb7284c325b/multipledispatch-1.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/01/a7/fec56dbac873a18930b2127d400794a91dd53898bff811aa4802ddbbfac9/multiscale_spatial_image-2.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ef/82/7a9d0550484a62c6da82858ee9419f3dd1ccc9aa1c26a1e43da3ecd20b0d/natsort-8.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/a0/5b0c2f11142ed1dddec842457d3f65eaf71a0080894eb6f018755b319c3a/nbclient-0.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c9/b2622292ea83fbb4ec318f5b9ab867d0a28ab43c5717bb85b0a5f6b3b0a4/networkx-3.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/88/b2/d0896bdcdc8d28a7fc5717c305f1a861c26e18c05047949fb371034d98bd/nodeenv-1.10.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/14/9c/c0974cd3d00ff70d30e8ff90522ba5fbb2bcee168a867d2321d8d0457676/numba-0.63.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/f5/6c/86644987505dcb90ba6d627d6989c27bafb0699f9fd00187e06d05ea8594/numcodecs-0.16.5-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b0/e0/760e73c111193db5ca37712a148e4807d1b0c60302ab31e4ada6528ca34d/numpy_groupies-0.11.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a5/7b/9254310594e9774906bacdd4e732415e1f86ab7dbb4b377ef9ede58cd8ec/pandas-3.0.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/11/da/9d476e9aadfa854719f3cb917e3f7a170a657a182d8d1d6e546594a4872b/param-2.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b1/29/c028a0731e202035f0e2e0bfbf1a3e46ad6c628cbb17f6f1cc9eea5d9ff1/pathlib_abc-0.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/70/ba4b949bdc0490ab78d545459acd7702b211dfccf7eb89bbc1060f52818d/patsy-1.0.2-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/c1/10e45ac9cc79419cedf5121b42dcca5a50ad2b601fa080f58c22fb27626e/pillow-12.1.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz + - pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/07/9f/57e49b3f7173359741053c5e2766a45dcf649d767c2e967ef93526c9045f/pot-0.9.6.post1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0a/b6/5c9a0e42df4d00bfb4a3cbbe5cf9f54260300c88a0e9af1f47ca5ce17ac0/propcache-0.4.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/66/15/6ee23553b6bfd82670207ead921f4d8ef14c107e5e11443b04caeb5ab5ec/protobuf-6.33.4-cp39-abi3-macosx_10_9_universal2.whl + - pypi: https://files.pythonhosted.org/packages/c5/2c/78e4a789306a92ade5000da4f5de3255202c534acdadc3aac7b5458fadef/psutil-7.2.1-cp36-abi3-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3d/bd/c861d020831ee57609b73ea721a617985ece817684dc82415b0bc3e03ac3/pyarrow-23.0.0-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/0c/c3/44f3fbbfa403ea2a7c779186dc20772604442dde72947e7d01069cbe98e3/pycparser-3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8c/b2/23f4032cd1c9744aa8e9ecda43cd4d755fcb209f7f40fae035248f31a679/pyct-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/35/2d/cb0cd5865a8dac8869cdd01df17c2c0c94d9aa22b167e1bbfa01559dd3a9/pygam-0.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/82/a6/c415c9faa7c4c8749fbac0c54523def0cf9efb94d70f09188370c0da74c8/pygpcca-1.0.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/b2/e6/94145d714402fd5ade00b5661f2d0ab981219e07f7db9bfa16786cdb9c04/pynndescent-0.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ad/e0/656b6536549d41b5aec57e0deca1f269b4f17532f0636836f587e581603a/pyogrio-0.12.1-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/10/bd/c038d7cc38edc1aa5bf91ab8068b63d4308c66c4c8bb3cbba7dfbc049f9c/pyparsing-3.3.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/04/90/67bd7260b4ea9b8b20b4f58afef6c223ecb3abf368eb4ec5bc2cdef81b49/pyproj-3.7.2.tar.gz + - pypi: https://files.pythonhosted.org/packages/fc/81/957ae78e6398460a7230b0eb9b8f1cb954c5e913e868e48d89324c68cec7/pyro_api-0.1.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ed/37/def183a2a2c8619d92649d62fe0622c4c6c62f60e4151e8fbaa409e7d5ab/pyro_ppl-1.9.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3b/ab/b3226f0bd7cdcf710fbede2b3548584366da3b19b5021e74f5bde2a8fa3f/pytest-9.0.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/77/eb/cc6dbfe70d15318dbce82674b1e8057cef2634ca9f9121a16b8a06c630db/pytorch_lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/89/a0/6cf41a19a1f2f3feab0e9c0b74134aa2ce6849093d5517a0c550fe37a648/pyyaml-6.0.3-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl + - pypi: https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7e/71/44ce230e1b7fadd372515a97e32a83011f906ddded8d03e3c6aafbdedbb7/rfc3987_syntax-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/87/2a/a1810c8627b9ec8c57ec5ec325d306701ae7be50235e8fd81266e002a3cc/rich-14.3.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4d/a1/bca7fd3d452b272e13335db8d6b0b3ecde0f90ad6f16f3328c6fb150c889/rpds_py-0.30.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/93/cf/0af92a4d3f36dd9ff675e0419e7efc48d7808641ac2b2ce2c1f09a9dc632/s3fs-2026.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/44/f0/000ac705a3d5b8744c6eabfce6b413b131829542ffec05020b1e931ffed4/scanpy-1.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e3/be/f8dd17d0510f9911f9f17ba301f7455328bf13dae416560126d428de9568/scikit_image-0.26.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/43/5d/779320063e88af9c4a7c2cf463ff11c21ac9c8bd730c4a294b0000b666c9/scikit_learn-1.7.2-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/59/48/5a486b3a9cff8cd8abc0bdc21a1a23f9c5b73962ef6e66a502b7636fad08/scikit_misc-0.5.2-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/1e/0f/65582071948cfc45d43e9870bf7ca5f0e0684e165d7c9ef4e50d783073eb/scipy-1.16.3-cp312-cp312-macosx_12_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/5b/9a/97224ad312fca04b8dec60c1b743096344c3b2fff5f56a9a817576c5cf4d/scvelo-0.3.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4a/8b/37ee827c0cd629f85d3473577d90cd032f70d1de8bb0e5e3b222d87bb19f/scvi_tools-1.4.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/07/59dee0bc4b913b7ab59ab1086225baca5b8f19865e6101db9ebb7243e132/shapely-2.1.2-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/46/2c/1462b1d0a634697ae9e55b3cecdcb64788e8b7d63f54d923fcd0bb140aed/soupsieve-2.8.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/8d/fd/42a1720542199ae6ff0f9c37bbd55dd3033ddd7bbe00d68cde09d6824887/sparse-0.17.0-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/17/a1/e538ae38d9424f62199266b4e4ccd780e149162fa828a9e1f7b8e745262e/spatialdata-0.6.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0e/92/4d9f07a97fba85d2db59bde27621d7c243efbe95250498c9aa2efdbf1cf3/spatialdata_plot-0.2.13-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4f/f4/99bb6201fcf62593874d98cbf874357651915ed02d31129d3a2ca3864d04/squidpy-1.7.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/05/30/affbabf3c27fb501ec7b5808230c619d4d1a4525c07301074eb4bda92fa9/statsmodels-0.14.6-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a3/4d/3fd60d3a37b544cb59463add86e4dfbb485880225115341281906a7b140e/tifffile-2026.1.14-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fb/12/5911ae3eeec47800503a238d971e51722ccea5feb8569b735184d5fcdbc0/toolz-1.1.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c9/5c/dee910b87c4d5c0fcb41b50839ae04df87c1cfc663cf1b5fca7ea565eeaa/torch-2.10.0-cp312-none-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/02/21/aa0f434434c48490f91b65962b1ce863fdcce63febc166ca9fe9d706c2b6/torchmetrics-1.8.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ab/a9/e94a9d5224107d7ce3cc1fab8d5dc97f5ea351ccc6322ee4fb661da94e35/tornado-6.5.4-cp39-abi3-macosx_10_9_universal2.whl + - pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/1b/a9/e3aee762739c1d7528da1c3e06d518503f8b6c439c35549b53735ba52ead/typeguard-4.4.4-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c7/b0/003792df09decd6849a5e39c28b513c06e84436a54440380862b5aeff25d/tzdata-2025.3-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/43/d2/fcf7192dd1cd8c090b6cfd53fa223c4fb2887a17c47e06bc356d44f40dfb/umap_learn-0.5.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/86/2c/fc9416619a418e94576aef84ef263906a24f76a21a1c3e96ddae25c82df9/universal_pathlib-0.3.8-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/39/08/aaaad47bc4e9dc8c725e68f9d04865dbcb2052843ff09c97b08904852d84/urllib3-2.6.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/fa/6e/3e955517e22cbdd565f2f8b2e73d52528b14b8bcfdb04f62466b071de847/validators-0.35.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/6a/2a/dc2228b2888f51192c7dc766106cd475f1b768c10caaf9727659726f7391/virtualenv-20.36.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f2/3e/45583b67c2ff08ad5a582d316fcb2f11d6cf0a50c7707ac09d212d25bc98/wcwidth-0.5.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e2/cc/e097523dd85c9cf5d354f78310927f1656c422bd7b2613b2db3e3f9a0f2c/webcolors-25.10.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/34/db/b10e48aa8fff7407e67470363eac595018441cf32d5e1001567a7aeba5d2/websocket_client-1.9.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ad/e4/8d97cca767bcc1be76d16fb76951608305561c6e056811587f36cb1316a8/werkzeug-3.1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/3f/0e/fa3b193432cfc60c93b42f3be03365f5f909d2b3ea410295cf36df739e31/widgetsnbextension-4.0.15-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/4d/8a/5b4b1e44b791c22046e90d9b175f9a7581a8cc7a0debbb930f81e6ae8e25/wrapt-2.0.1-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/d5/e4/62a677feefde05b12a70a4fc9bdc8558010182a801fbcab68cb56c2b0986/xarray-2025.12.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/a9/6d/f585a27b380ee987619b5617c0ca672a71a4345b67cfedbb6299750ce845/xarray_schema-0.0.3-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/e0/d2/cb1c6104e6bf7ab77879fce7bc4bc6dcc4ae5a94246ab9c314b5d21022b2/xarray_spatial-0.5.2-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/ba/f5/0601483296f09c3c65e303d60c070a5c19fcdbc72daa061e96170785bc7d/yarl-1.22.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/44/15/bb13b4913ef95ad5448490821eee4671d0e67673342e4d4070854e5fe081/zarr-3.1.5-py3-none-any.whl + - pypi: ./ +packages: +- conda: https://conda.anaconda.org/conda-forge/linux-64/_libgcc_mutex-0.1-conda_forge.tar.bz2 + sha256: fe51de6107f9edc7aa4f786a70f4a883943bc9d39b3bb7307c04c41410990726 + md5: d7c89558ba9fa0495403155b64376d81 + license: None + purls: [] + size: 2562 + timestamp: 1578324546067 +- conda: https://conda.anaconda.org/conda-forge/linux-64/_openmp_mutex-4.5-2_gnu.tar.bz2 + build_number: 16 + sha256: fbe2c5e56a653bebb982eda4876a9178aedfc2b545f25d0ce9c4c0b508253d22 + md5: 73aaf86a425cc6e73fcf236a5a46396d + depends: + - _libgcc_mutex 0.1 conda_forge + - libgomp >=7.5.0 + constrains: + - openmp_impl 9999 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 23621 + timestamp: 1650670423406 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/_openmp_mutex-4.5-7_kmp_llvm.conda + build_number: 7 + sha256: 7acaa2e0782cad032bdaf756b536874346ac1375745fb250e9bdd6a48a7ab3cd + md5: a44032f282e7d2acdeb1c240308052dd + depends: + - llvm-openmp >=9.0.1 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 8325 + timestamp: 1764092507920 +- conda: https://conda.anaconda.org/conda-forge/noarch/_python_abi3_support-1.0-hd8ed1ab_2.conda + sha256: a3967b937b9abf0f2a99f3173fa4630293979bd1644709d89580e7c62a544661 + md5: aaa2a381ccc56eac91d63b6c1240312f + depends: + - cpython + - python-gil + license: MIT + license_family: MIT + purls: [] + size: 8191 + timestamp: 1744137672556 +- pypi: https://files.pythonhosted.org/packages/8f/aa/ba0014cc4659328dc818a28827be78e6d97312ab0cb98105a770924dc11e/absl_py-2.3.1-py3-none-any.whl + name: absl-py + version: 2.3.1 + sha256: eeecf07f0c2a93ace0772c92e596ace6d3d3996c042b2128459aaae2a76de11d + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/67/84/d844b79acd9fe15ded60b614b7df04a12fad854ee1fbb8415d726ab1beeb/aiobotocore-3.1.1-py3-none-any.whl + name: aiobotocore + version: 3.1.1 + sha256: a4e12a3bd099cd19dc2b2e9fe01a807131b46ebd0f83f509bda3cb243e988c32 + requires_dist: + - aiohttp>=3.12.0,<4.0.0 + - aioitertools>=0.5.1,<1.0.0 + - botocore>=1.41.0,<1.42.31 + - python-dateutil>=2.1,<3.0.0 + - jmespath>=0.7.1,<2.0.0 + - multidict>=6.0.0,<7.0.0 + - typing-extensions>=4.14.0,<5.0.0 ; python_full_version < '3.11' + - wrapt>=1.10.10,<3.0.0 + - httpx>=0.25.1,<0.29 ; extra == 'httpx' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/0f/15/5bf3b99495fb160b63f95972b81750f18f7f4e02ad051373b669d17d44f2/aiohappyeyeballs-2.6.1-py3-none-any.whl + name: aiohappyeyeballs + version: 2.6.1 + sha256: f349ba8f4b75cb25c99c5c2d84e997e485204d2902a9597802b0371f09331fb8 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/5d/43/4be01406b78e1be8320bb8316dc9c42dbab553d281c40364e0f862d5661c/aiohttp-3.13.3-cp312-cp312-macosx_11_0_arm64.whl + name: aiohttp + version: 3.13.3 + sha256: 27234ef6d85c914f9efeb77ff616dbf4ad2380be0cda40b4db086ffc7ddd1b7d + requires_dist: + - aiohappyeyeballs>=2.5.0 + - aiosignal>=1.4.0 + - async-timeout>=4.0,<6.0 ; python_full_version < '3.11' + - attrs>=17.3.0 + - frozenlist>=1.1.1 + - multidict>=4.5,<7.0 + - propcache>=0.2.0 + - yarl>=1.17.0,<2.0 + - aiodns>=3.3.0 ; extra == 'speedups' + - brotli>=1.2 ; platform_python_implementation == 'CPython' and extra == 'speedups' + - brotlicffi>=1.2 ; platform_python_implementation != 'CPython' and extra == 'speedups' + - backports-zstd ; python_full_version < '3.14' and platform_python_implementation == 'CPython' and extra == 'speedups' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/86/f6/a62cbbf13f0ac80a70f71b1672feba90fdb21fd7abd8dbf25c0105fb6fa3/aiohttp-3.13.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: aiohttp + version: 3.13.3 + sha256: 9ae8dd55c8e6c4257eae3a20fd2c8f41edaea5992ed67156642493b8daf3cecc + requires_dist: + - aiohappyeyeballs>=2.5.0 + - aiosignal>=1.4.0 + - async-timeout>=4.0,<6.0 ; python_full_version < '3.11' + - attrs>=17.3.0 + - frozenlist>=1.1.1 + - multidict>=4.5,<7.0 + - propcache>=0.2.0 + - yarl>=1.17.0,<2.0 + - aiodns>=3.3.0 ; extra == 'speedups' + - brotli>=1.2 ; platform_python_implementation == 'CPython' and extra == 'speedups' + - brotlicffi>=1.2 ; platform_python_implementation != 'CPython' and extra == 'speedups' + - backports-zstd ; python_full_version < '3.14' and platform_python_implementation == 'CPython' and extra == 'speedups' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl + name: aioitertools + version: 0.13.0 + sha256: 0be0292b856f08dfac90e31f4739432f4cb6d7520ab9eb73e143f4f2fa5259be + requires_dist: + - typing-extensions>=4.0 ; python_full_version < '3.10' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl + name: aiosignal + version: 1.4.0 + sha256: 053243f8b92b990551949e63930a839ff0cf0b0ebbe0597b0f3fb19e1a0fe82e + requires_dist: + - frozenlist>=1.1.0 + - typing-extensions>=4.2 ; python_full_version < '3.13' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/60/2f/fd99b85e3913803e4134657a311971f39d34c9995b26d3cbf9a218459c36/anndata-0.12.6-py3-none-any.whl + name: anndata + version: 0.12.6 + sha256: 1088843f63e788128b215a885237a48df3881ccaec66310f269c4cfb0f9a8929 + requires_dist: + - array-api-compat>=1.7.1 + - h5py>=3.8 + - legacy-api-wrap + - natsort + - numpy>=1.26 + - packaging>=24.2 + - pandas>=2.1.0,!=2.1.2 + - scipy>=1.12 + - zarr>=2.18.7,!=3.0.* + - cupy-cuda11x ; extra == 'cu11' + - cupy-cuda12x ; extra == 'cu12' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'dask' + - towncrier>=24.8.0 ; extra == 'dev' + - towncrier>=24.8.0 ; extra == 'dev-doc' + - awkward>=2.3 ; extra == 'doc' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'doc' + - ipython ; extra == 'doc' + - myst-nb ; extra == 'doc' + - myst-parser ; extra == 'doc' + - scanpydoc[theme,typehints]>=0.15.3 ; extra == 'doc' + - sphinx-autodoc-typehints>=2.2.0 ; extra == 'doc' + - sphinx-book-theme>=1.1.0 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design>=0.5.0 ; extra == 'doc' + - sphinx-issues>=5.0.1 ; extra == 'doc' + - sphinx-toolbox>=3.8.0 ; extra == 'doc' + - sphinx>=8.2.1 ; extra == 'doc' + - sphinxext-opengraph ; extra == 'doc' + - towncrier>=24.8.0 ; extra == 'doc' + - cupy ; extra == 'gpu' + - aiohttp ; extra == 'lazy' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'lazy' + - requests ; extra == 'lazy' + - xarray>=2025.6.1 ; extra == 'lazy' + - aiohttp ; extra == 'test' + - awkward>=2.3.2 ; extra == 'test' + - boltons ; extra == 'test' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test' + - dask[distributed] ; extra == 'test' + - filelock ; extra == 'test' + - httpx<1.0 ; extra == 'test' + - joblib ; extra == 'test' + - loompy>=3.0.5 ; extra == 'test' + - matplotlib ; extra == 'test' + - openpyxl ; extra == 'test' + - pyarrow ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-memray ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-randomly ; extra == 'test' + - pytest-xdist[psutil] ; extra == 'test' + - pytest>=8.2,<8.3.4 ; extra == 'test' + - requests ; extra == 'test' + - scanpy>=1.10 ; extra == 'test' + - scikit-learn ; extra == 'test' + - xarray>=2025.6.1 ; extra == 'test' + - awkward>=2.3.2 ; extra == 'test-min' + - boltons ; extra == 'test-min' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test-min' + - dask[distributed] ; extra == 'test-min' + - filelock ; extra == 'test-min' + - httpx<1.0 ; extra == 'test-min' + - joblib ; extra == 'test-min' + - loompy>=3.0.5 ; extra == 'test-min' + - matplotlib ; extra == 'test-min' + - openpyxl ; extra == 'test-min' + - pyarrow ; extra == 'test-min' + - pytest-cov ; extra == 'test-min' + - pytest-memray ; extra == 'test-min' + - pytest-mock ; extra == 'test-min' + - pytest-randomly ; extra == 'test-min' + - pytest-xdist[psutil] ; extra == 'test-min' + - pytest>=8.2,<8.3.4 ; extra == 'test-min' + - scanpy>=1.10 ; extra == 'test-min' + - scikit-learn ; extra == 'test-min' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/78/bc/dee9a01c1b9cd16d7e257644a2fc8ee6df6c685faaf68d289bdc4c91adec/anndata-0.12.7-py3-none-any.whl + name: anndata + version: 0.12.7 + sha256: bd7c18bdc2ed24b9089fd1494b52b787566dea175dde4689d4144693d0949581 + requires_dist: + - array-api-compat>=1.7.1 + - h5py>=3.8 + - legacy-api-wrap + - natsort + - numpy>=1.26 + - packaging>=24.2 + - pandas>=2.1.0,!=2.1.2,<3 + - scipy>=1.12 + - zarr>=2.18.7,!=3.0.* + - cupy-cuda11x ; extra == 'cu11' + - cupy-cuda12x ; extra == 'cu12' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'dask' + - towncrier>=24.8.0 ; extra == 'dev' + - towncrier>=24.8.0 ; extra == 'dev-doc' + - awkward>=2.3 ; extra == 'doc' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'doc' + - ipython ; extra == 'doc' + - myst-nb ; extra == 'doc' + - myst-parser ; extra == 'doc' + - scanpydoc[theme,typehints]>=0.15.3 ; extra == 'doc' + - sphinx-autodoc-typehints>=2.2.0 ; extra == 'doc' + - sphinx-book-theme>=1.1.0 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design>=0.5.0 ; extra == 'doc' + - sphinx-issues>=5.0.1 ; extra == 'doc' + - sphinx-toolbox>=3.8.0 ; extra == 'doc' + - sphinx>=8.2.1,<9 ; extra == 'doc' + - sphinxext-opengraph ; extra == 'doc' + - towncrier>=24.8.0 ; extra == 'doc' + - cupy ; extra == 'gpu' + - aiohttp ; extra == 'lazy' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'lazy' + - requests ; extra == 'lazy' + - xarray>=2025.6.1 ; extra == 'lazy' + - aiohttp ; extra == 'test' + - awkward>=2.3.2 ; extra == 'test' + - boltons ; extra == 'test' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test' + - dask[distributed] ; extra == 'test' + - filelock ; extra == 'test' + - httpx<1.0 ; extra == 'test' + - joblib ; extra == 'test' + - loompy>=3.0.5 ; extra == 'test' + - matplotlib ; extra == 'test' + - openpyxl ; extra == 'test' + - pyarrow ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-memray ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-randomly ; extra == 'test' + - pytest-xdist[psutil] ; extra == 'test' + - requests ; extra == 'test' + - scanpy>=1.10 ; extra == 'test' + - scikit-learn ; extra == 'test' + - xarray>=2025.6.1 ; extra == 'test' + - awkward>=2.3.2 ; extra == 'test-min' + - boltons ; extra == 'test-min' + - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test-min' + - dask[distributed] ; extra == 'test-min' + - filelock ; extra == 'test-min' + - httpx<1.0 ; extra == 'test-min' + - joblib ; extra == 'test-min' + - loompy>=3.0.5 ; extra == 'test-min' + - matplotlib ; extra == 'test-min' + - openpyxl ; extra == 'test-min' + - pyarrow ; extra == 'test-min' + - pytest ; extra == 'test-min' + - pytest-cov ; extra == 'test-min' + - pytest-memray ; extra == 'test-min' + - pytest-mock ; extra == 'test-min' + - pytest-randomly ; extra == 'test-min' + - pytest-xdist[psutil] ; extra == 'test-min' + - scanpy>=1.10 ; extra == 'test-min' + - scikit-learn ; extra == 'test-min' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl + name: anyio + version: 4.12.1 + sha256: d405828884fc140aa80a3c667b8beed277f1dfedec42ba031bd6ac3db606ab6c + requires_dist: + - exceptiongroup>=1.0.2 ; python_full_version < '3.11' + - idna>=2.8 + - typing-extensions>=4.5 ; python_full_version < '3.13' + - trio>=0.32.0 ; python_full_version >= '3.10' and extra == 'trio' + - trio>=0.31.0 ; python_full_version < '3.10' and extra == 'trio' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl + name: appnope + version: 0.1.4 + sha256: 502575ee11cd7a28c0205f379b525beefebab9d161b7c964670864014ed7213c + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl + name: argon2-cffi + version: 25.1.0 + sha256: fdc8b074db390fccb6eb4a3604ae7231f219aa669a2652e0f20e16ba513d5741 + requires_dist: + - argon2-cffi-bindings + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/09/52/94108adfdd6e2ddf58be64f959a0b9c7d4ef2fa71086c38356d22dc501ea/argon2_cffi_bindings-25.1.0-cp39-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + name: argon2-cffi-bindings + version: 25.1.0 + sha256: d3e924cfc503018a714f94a49a149fdc0b644eaead5d1f089330399134fa028a + requires_dist: + - cffi>=1.0.1 ; python_full_version < '3.14' + - cffi>=2.0.0b1 ; python_full_version >= '3.14' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b6/02/d297943bcacf05e4f2a94ab6f462831dc20158614e5d067c35d4e63b9acb/argon2_cffi_bindings-25.1.0-cp39-abi3-macosx_11_0_arm64.whl + name: argon2-cffi-bindings + version: 25.1.0 + sha256: 7aef0c91e2c0fbca6fc68e7555aa60ef7008a739cbe045541e438373bc54d2b0 + requires_dist: + - cffi>=1.0.1 ; python_full_version < '3.14' + - cffi>=2.0.0b1 ; python_full_version >= '3.14' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/df/5d/493b1b5528ab5072feae30821ff3a07b7a0474213d548efb1fdf135f85c1/array_api_compat-1.13.0-py3-none-any.whl + name: array-api-compat + version: 1.13.0 + sha256: c15026a0ddec42815383f07da285472e1b1ff2e632eb7afbcfe9b08fcbad9bf1 + requires_dist: + - cupy ; extra == 'cupy' + - dask>=2024.9.0 ; extra == 'dask' + - jax ; extra == 'jax' + - numpy>=1.22 ; extra == 'numpy' + - torch ; extra == 'pytorch' + - sparse>=0.15.1 ; extra == 'sparse' + - ndonnx ; extra == 'ndonnx' + - furo ; extra == 'docs' + - linkify-it-py ; extra == 'docs' + - myst-parser ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - array-api-strict ; extra == 'dev' + - dask[array]>=2024.9.0 ; extra == 'dev' + - jax[cpu] ; extra == 'dev' + - ndonnx ; extra == 'dev' + - numpy>=1.22 ; extra == 'dev' + - pytest ; extra == 'dev' + - torch ; extra == 'dev' + - sparse>=0.15.1 ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ed/c9/d7977eaacb9df673210491da99e6a247e93df98c715fc43fd136ce1d3d33/arrow-1.4.0-py3-none-any.whl + name: arrow + version: 1.4.0 + sha256: 749f0769958ebdc79c173ff0b0670d59051a535fa26e8eba02953dc19eb43205 + requires_dist: + - python-dateutil>=2.7.0 + - backports-zoneinfo==0.2.1 ; python_full_version < '3.9' + - tzdata ; python_full_version >= '3.9' + - doc8 ; extra == 'doc' + - sphinx>=7.0.0 ; extra == 'doc' + - sphinx-autobuild ; extra == 'doc' + - sphinx-autodoc-typehints ; extra == 'doc' + - sphinx-rtd-theme>=1.3.0 ; extra == 'doc' + - dateparser==1.* ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytz==2025.2 ; extra == 'test' + - simplejson==3.* ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/d2/39/e7eaf1799466a4aef85b6a4fe7bd175ad2b1c6345066aa33f1f58d4b18d0/asttokens-3.0.1-py3-none-any.whl + name: asttokens + version: 3.0.1 + sha256: 15a3ebc0f43c2d0a50eeafea25e19046c68398e487b9f1f5b517f7c0f40f976a + requires_dist: + - astroid>=2,<5 ; extra == 'astroid' + - astroid>=2,<5 ; extra == 'test' + - pytest<9.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/2e/e9/eb6a5db5ac505d5d45715388e92bced7a5bb556facc4d0865d192823f2d2/async_lru-2.1.0-py3-none-any.whl + name: async-lru + version: 2.1.0 + sha256: fa12dcf99a42ac1280bc16c634bbaf06883809790f6304d85cdab3f666f33a7e + requires_dist: + - typing-extensions>=4.0.0 ; python_full_version < '3.11' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/attr-2.5.2-h39aace5_0.conda + sha256: a9c114cbfeda42a226e2db1809a538929d2f118ef855372293bd188f71711c48 + md5: 791365c5f65975051e4e017b5da3abf5 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 68072 + timestamp: 1756738968573 +- pypi: https://files.pythonhosted.org/packages/3a/2a/7cc015f5b9f5db42b7d48157e23356022889fc354a2813c15934b7cb5c0e/attrs-25.4.0-py3-none-any.whl + name: attrs + version: 25.4.0 + sha256: adcf7e2a1fb3b36ac48d97835bb6d8ade15b8dcce26aba8bf1d14847b57a3373 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b7/b8/3fe70c75fe32afc4bb507f75563d39bc5642255d1d94f1f23604725780bf/babel-2.17.0-py3-none-any.whl + name: babel + version: 2.17.0 + sha256: 4d0b53093fdfb4b21c92b5213dba5a1b23885afa8383709427046b21c366e5f2 + requires_dist: + - pytz>=2015.7 ; python_full_version < '3.9' + - tzdata ; sys_platform == 'win32' and extra == 'dev' + - backports-zoneinfo ; python_full_version < '3.9' and extra == 'dev' + - freezegun~=1.0 ; extra == 'dev' + - jinja2>=3.0 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest>=6.0 ; extra == 'dev' + - pytz ; extra == 'dev' + - setuptools ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/1a/39/47f9197bdd44df24d67ac8893641e16f386c984a0619ef2ee4c51fbbc019/beautifulsoup4-4.14.3-py3-none-any.whl + name: beautifulsoup4 + version: 4.14.3 + sha256: 0918bfe44902e6ad8d57732ba310582e98da931428d231a5ecb9e7c703a735bb + requires_dist: + - soupsieve>=1.6.1 + - typing-extensions>=4.0.0 + - cchardet ; extra == 'cchardet' + - chardet ; extra == 'chardet' + - charset-normalizer ; extra == 'charset-normalizer' + - html5lib ; extra == 'html5lib' + - lxml ; extra == 'lxml' + requires_python: '>=3.7.0' +- pypi: https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl + name: bleach + version: 6.3.0 + sha256: fe10ec77c93ddf3d13a73b035abaac7a9f5e436513864ccdad516693213c65d6 + requires_dist: + - webencodings + - tinycss2>=1.1.0,<1.5 ; extra == 'css' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl + name: botocore + version: 1.42.30 + sha256: 97070a438cac92430bb7b65f8ebd7075224f4a289719da4ee293d22d1e98db02 + requires_dist: + - jmespath>=0.7.1,<2.0.0 + - python-dateutil>=2.1,<3.0.0 + - urllib3>=1.25.4,<1.27 ; python_full_version < '3.10' + - urllib3>=1.25.4,!=2.2.0,<3 ; python_full_version >= '3.10' + - awscrt==0.29.2 ; extra == 'crt' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/bzip2-1.0.8-hda65f42_8.conda + sha256: c30daba32ddebbb7ded490f0e371eae90f51e72db620554089103b4a6934b0d5 + md5: 51a19bba1b8ebfb60df25cde030b7ebc + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 260341 + timestamp: 1757437258798 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/bzip2-1.0.8-hd037594_8.conda + sha256: b456200636bd5fecb2bec63f7e0985ad2097cf1b83d60ce0b6968dffa6d02aa1 + md5: 58fd217444c2a5701a44244faf518206 + depends: + - __osx >=11.0 + license: bzip2-1.0.6 + license_family: BSD + purls: [] + size: 125061 + timestamp: 1757437486465 +- conda: https://conda.anaconda.org/conda-forge/linux-64/c-ares-1.34.6-hb03c661_0.conda + sha256: cc9accf72fa028d31c2a038460787751127317dcfa991f8d1f1babf216bb454e + md5: 920bb03579f15389b9e512095ad995b7 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + license_family: MIT + purls: [] + size: 207882 + timestamp: 1765214722852 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/c-ares-1.34.6-hc919400_0.conda + sha256: 2995f2aed4e53725e5efbc28199b46bf311c3cab2648fc4f10c2227d6d5fa196 + md5: bcb3cba70cf1eec964a03b4ba7775f01 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 180327 + timestamp: 1765215064054 +- conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda + sha256: b5974ec9b50e3c514a382335efa81ed02b05906849827a34061c496f4defa0b2 + md5: bddacf101bb4dd0e51811cb69c7790e2 + depends: + - __unix + license: ISC + purls: [] + size: 146519 + timestamp: 1767500828366 +- pypi: https://files.pythonhosted.org/packages/e3/a6/24169d70ec5264b65ba54ba49b3d10f46d6b1ad97e185c94556539b3dfc8/cachetools-6.2.5-py3-none-any.whl + name: cachetools + version: 6.2.5 + sha256: db3ae5465e90befb7c74720dd9308d77a09b7cf13433570e07caa0845c30d5fe + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b3/c2/7f3664b5b9421ef2d23d1684f56dd7df52b30ed37d8c91b3e92b2ff93720/cellrank-1.5.1-py3-none-any.whl + name: cellrank + version: 1.5.1 + sha256: 107757d3098e4ad5ea73861c73f670a4fab2deb9e2063e0efeff49e47a5c7bfe + requires_dist: + - docrep>=0.3.0 + - joblib>=0.13.1 + - matplotlib>=3.3.0 + - networkx>=2.2 + - numba>=0.51.0 + - numpy>=1.17.0 + - pandas>=1.2.0 + - pygam>=0.8.0 + - pygpcca>=1.0.3 + - scanpy>=1.7.2 + - scikit-learn>=0.24.0 + - scipy>=1.2.0 + - scvelo>=0.2.4 + - seaborn>=0.10.0 + - setuptools>=41.0.1 + - typing-extensions + - wrapt>=1.12.1 + - pre-commit>=2.9.3 ; extra == 'dev' + - tox>=3.23.0 ; extra == 'dev' + - towncrier>=21.3.0 ; extra == 'dev' + - bezier ; extra == 'docs' + - ipython ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - leidenalg ; extra == 'docs' + - memory-profiler>=0.58.0 ; extra == 'docs' + - nbsphinx>=0.8,<0.8.7 ; extra == 'docs' + - pypandoc ; extra == 'docs' + - python-igraph ; extra == 'docs' + - sphinx>=4 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-gallery ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - statot>=0.0.14 ; extra == 'external' + - pot ; extra == 'external' + - pygpcca[slepc] ; extra == 'krylov' + - pytest>=6.1.1 ; extra == 'test' + - pytest-mock>=3.5.1 ; extra == 'test' + - pytest-xdist>=2.1.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pillow ; extra == 'test' + - filelock ; extra == 'test' + - python-igraph ; extra == 'test' + - leidenalg ; extra == 'test' + - bezier ; extra == 'test' + - jax ; extra == 'test' + - jaxlib ; extra == 'test' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/04/6b/9378741ab32c2856132b9b6f3f6d5cd2b580996da52876b27928ddef8fd1/cellrank-2.0.7-py3-none-any.whl + name: cellrank + version: 2.0.7 + sha256: 8e048bf1e7574d1194fac064d3c55479ec9c415988d2b6b1c35bf724c19114da + requires_dist: + - anndata>=0.9 + - docrep>=0.3.0 + - joblib>=0.13.1 + - matplotlib>=3.5.0 + - networkx>=2.2 + - numba>=0.51.0,!=0.57.0 + - numpy>=1.22.0 + - pandas>=1.5.0 + - pygam>=0.8.0 + - pygpcca>=1.0.4 + - scanpy>=1.7.2 + - scikit-learn>=0.24.0 + - scipy>=1.12.0 + - scvelo>=0.2.5 + - seaborn>=0.10.0 + - wrapt>=1.12.1 + - pre-commit>=3.0.0 ; extra == 'dev' + - tox>=4 ; extra == 'dev' + - pytest>=8 ; extra == 'test' + - pytest-mock>=3.5.0 ; extra == 'test' + - pytest-cov>=4 ; extra == 'test' + - pytest-xdist ; extra == 'test' + - coverage[toml]>=7 ; extra == 'test' + - zarr<3 ; extra == 'test' + - igraph ; extra == 'test' + - leidenalg ; extra == 'test' + - pillow ; extra == 'test' + - jax ; extra == 'test' + - sphinx>=5.1.1 ; extra == 'docs' + - furo>=2022.9.29 ; extra == 'docs' + - myst-nb>=0.17.1 ; extra == 'docs' + - sphinx-tippy>=0.4.1 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5.0 ; extra == 'docs' + - sphinx-design>=0.3.0 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - sphinxcontrib-spelling>=7.6.2 ; extra == 'docs' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl + name: certifi + version: 2026.1.4 + sha256: 9943707519e4add1115f44c2bc244f782c0249876bf51b6599fee1ffbedd685c + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: cffi + version: 2.0.0 + sha256: 3e17ed538242334bf70832644a32a7aae3d83b57567f9fd60a26257e992b79ba + requires_dist: + - pycparser ; implementation_name != 'PyPy' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl + name: cffi + version: 2.0.0 + sha256: 8eca2a813c1cb7ad4fb74d368c2ffbbb4789d377ee5bb8df98373c2cc0dee76c + requires_dist: + - pycparser ; implementation_name != 'PyPy' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl + name: cfgv + version: 3.5.0 + sha256: a8dc6b26ad22ff227d2634a65cb388215ce6cc96bbcc5cfde7641ae87e8dacc0 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/c0/10/d20b513afe03acc89ec33948320a5544d31f21b05368436d580dec4e234d/charset_normalizer-3.4.4-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: charset-normalizer + version: 3.4.4 + sha256: 11d694519d7f29d6cd09f6ac70028dba10f92f6cdd059096db198c283794ac86 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/f3/85/1637cd4af66fa687396e757dec650f28025f2a2f5a5531a3208dc0ec43f2/charset_normalizer-3.4.4-cp312-cp312-macosx_10_13_universal2.whl + name: charset-normalizer + version: 3.4.4 + sha256: 0a98e6759f854bd25a58a73fa88833fba3b7c491169f86ce1180c948ab3fd394 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/98/78/01c019cdb5d6498122777c1a43056ebb3ebfeef2076d9d026bfe15583b2b/click-8.3.1-py3-none-any.whl + name: click + version: 8.3.1 + sha256: 981153a64e25f12d547d3426c367a4857371575ee7ad18df2a6183ab0545b2a6 + requires_dist: + - colorama ; sys_platform == 'win32' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/88/39/799be3f2f0f38cc727ee3b4f1445fe6d5e4133064ec2e4115069418a5bb6/cloudpickle-3.1.2-py3-none-any.whl + name: cloudpickle + version: 3.1.2 + sha256: 9acb47f6afd73f60dc1df93bb801b472f05ff42fa6c84167d25cb206be1fbf4a + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c6/c6/9963d588cc3d75d766c819e0377a168ef83cf3316a92769971527a1ad1de/colorcet-3.1.0-py3-none-any.whl + name: colorcet + version: 3.1.0 + sha256: 2a7d59cc8d0f7938eeedd08aad3152b5319b4ba3bcb7a612398cc17a384cb296 + requires_dist: + - colorcet[tests] ; extra == 'all' + - colorcet[tests-extra] ; extra == 'all' + - colorcet[examples] ; extra == 'all' + - colorcet[doc] ; extra == 'all' + - colorcet[examples] ; extra == 'doc' + - nbsite>=0.8.4 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - numpy ; extra == 'examples' + - holoviews ; extra == 'examples' + - matplotlib ; extra == 'examples' + - bokeh ; extra == 'examples' + - pre-commit ; extra == 'tests' + - pytest>=2.8.5 ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - packaging ; extra == 'tests' + - colorcet[examples] ; extra == 'tests-examples' + - nbval ; extra == 'tests-examples' + - colorcet[tests] ; extra == 'tests-extra' + - pytest-mpl ; extra == 'tests-extra' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/60/97/891a0971e1e4a8c5d2b20bbe0e524dc04548d2307fee33cdeba148fd4fc7/comm-0.2.3-py3-none-any.whl + name: comm + version: 0.2.3 + sha256: c615d91d75f7f04f095b30d1c1711babd43bdc6419c1be9886a85f2f4e489417 + requires_dist: + - pytest ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/53/3e/405b59cfa13021a56bba395a6b3aca8cec012b45bf177b0eaf7a202cde2c/contourpy-1.3.3-cp312-cp312-macosx_11_0_arm64.whl + name: contourpy + version: 1.3.3 + sha256: 556dba8fb6f5d8742f2923fe9457dbdd51e1049c4a43fd3986a0b14a1d815fc6 + requires_dist: + - numpy>=1.25 + - furo ; extra == 'docs' + - sphinx>=7.2 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - bokeh ; extra == 'bokeh' + - selenium ; extra == 'bokeh' + - contourpy[bokeh,docs] ; extra == 'mypy' + - bokeh ; extra == 'mypy' + - docutils-stubs ; extra == 'mypy' + - mypy==1.17.0 ; extra == 'mypy' + - types-pillow ; extra == 'mypy' + - contourpy[test-no-images] ; extra == 'test' + - matplotlib ; extra == 'test' + - pillow ; extra == 'test' + - pytest ; extra == 'test-no-images' + - pytest-cov ; extra == 'test-no-images' + - pytest-rerunfailures ; extra == 'test-no-images' + - pytest-xdist ; extra == 'test-no-images' + - wurlitzer ; extra == 'test-no-images' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/cc/8f/ec6289987824b29529d0dfda0d74a07cec60e54b9c92f3c9da4c0ac732de/contourpy-1.3.3-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: contourpy + version: 1.3.3 + sha256: 4d00e655fcef08aba35ec9610536bfe90267d7ab5ba944f7032549c55a146da1 + requires_dist: + - numpy>=1.25 + - furo ; extra == 'docs' + - sphinx>=7.2 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - bokeh ; extra == 'bokeh' + - selenium ; extra == 'bokeh' + - contourpy[bokeh,docs] ; extra == 'mypy' + - bokeh ; extra == 'mypy' + - docutils-stubs ; extra == 'mypy' + - mypy==1.17.0 ; extra == 'mypy' + - types-pillow ; extra == 'mypy' + - contourpy[test-no-images] ; extra == 'test' + - matplotlib ; extra == 'test' + - pillow ; extra == 'test' + - pytest ; extra == 'test-no-images' + - pytest-cov ; extra == 'test-no-images' + - pytest-rerunfailures ; extra == 'test-no-images' + - pytest-xdist ; extra == 'test-no-images' + - wurlitzer ; extra == 'test-no-images' + requires_python: '>=3.11' +- conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda + noarch: generic + sha256: ccb90d95bac9f1f4f6629a4addb44d36433e4ad1fe4ac87a864f90ff305dbf6d + md5: ef3e093ecfd4533eee992cdaa155b47e + depends: + - python >=3.12,<3.13.0a0 + - python_abi * *_cp312 + license: Python-2.0 + purls: [] + size: 46644 + timestamp: 1769471040321 +- pypi: https://files.pythonhosted.org/packages/a9/c1/dabe88f52c3e3760d861401bb994df08f672ec893b8f7592dc91626adcf3/cuda_bindings-12.9.4-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuda-bindings + version: 12.9.4 + sha256: fda147a344e8eaeca0c6ff113d2851ffca8f7dfc0a6c932374ee5c47caa649c8 + requires_dist: + - cuda-pathfinder~=1.1 + - nvidia-cuda-nvcc-cu12 ; extra == 'all' + - nvidia-cuda-nvrtc-cu12 ; extra == 'all' + - nvidia-nvjitlink-cu12>=12.3 ; extra == 'all' + - nvidia-cufile-cu12 ; sys_platform == 'linux' and extra == 'all' + - cython>=3.1,<3.2 ; extra == 'test' + - setuptools>=77.0.0 ; extra == 'test' + - numpy>=1.21.1 ; extra == 'test' + - pytest>=6.2.4 ; extra == 'test' + - pytest-benchmark>=3.4.1 ; extra == 'test' + - pyglet>=2.1.9 ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/b2/75/cb52e7d8c44ef4bf1313251685adc0c6568d51b9790edf7a1ecdf0135394/cuda_core-0.3.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuda-core + version: 0.3.2 + sha256: 1338ab324d29b3afcde623c4a12571cd6e74e76fa0d5533db1e36df978899e4e + requires_dist: + - numpy + - cuda-bindings[all]==11.8.* ; extra == 'cu11' + - cuda-bindings[all]==12.* ; extra == 'cu12' + - cuda-bindings[all]==13.* ; extra == 'cu13' + - cython>=3.0 ; extra == 'test' + - setuptools ; extra == 'test' + - pytest>=6.2.4 ; extra == 'test' + - cuda-core[test] ; extra == 'test-cu11' + - cupy-cuda11x ; extra == 'test-cu11' + - nvidia-cuda-runtime-cu11 ; extra == 'test-cu11' + - cuda-core[test] ; extra == 'test-cu12' + - cupy-cuda12x ; extra == 'test-cu12' + - nvidia-cuda-runtime-cu12 ; extra == 'test-cu12' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/0b/02/4dbe7568a42e46582248942f54dc64ad094769532adbe21e525e4edf7bc4/cuda_pathfinder-1.3.3-py3-none-any.whl + name: cuda-pathfinder + version: 1.3.3 + sha256: 9984b664e404f7c134954a771be8775dfd6180ea1e1aef4a5a37d4be05d9bbb1 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/af/f3/6b032a554019cfb3447e671798c1bd3e79b5f1af20d10253f56cea269ef2/cuda_python-12.9.4-py3-none-any.whl + name: cuda-python + version: 12.9.4 + sha256: d2cacea882a69863f1e7d27ee71d75f0684f4c76910aff839067e4f89c902279 + requires_dist: + - cuda-bindings~=12.9.4 + - cuda-bindings[all]~=12.9.4 ; extra == 'all' +- pypi: https://pypi.nvidia.com/cuda-toolkit/cuda_toolkit-12.8.1-py2.py3-none-any.whl + name: cuda-toolkit + version: 12.8.1 + sha256: adc7906af4ecbf9a352f9dca5734eceb21daec281ccfcf5675e1d2f724fc2cba + requires_dist: + - nvidia-cublas-cu12==12.8.4.1.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cccl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cupti-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cuxxfilt-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-nvcc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-nvrtc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-opencl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-profiler-api-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-runtime-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-sanitizer-api-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cufft-cu12==11.3.3.83.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cufile-cu12==1.13.1.3.* ; sys_platform == 'linux' and extra == 'all' + - nvidia-curand-cu12==10.3.9.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cusolver-cu12==11.7.3.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cusparse-cu12==12.5.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-npp-cu12==12.3.3.100.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvfatbin-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvjitlink-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvjpeg-cu12==12.3.5.92.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvml-dev-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-nvtx-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'all') or (sys_platform == 'win32' and extra == 'all') + - nvidia-cuda-cccl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cccl') or (sys_platform == 'win32' and extra == 'cccl') + - nvidia-cublas-cu12==12.8.4.1.* ; (sys_platform == 'linux' and extra == 'cublas') or (sys_platform == 'win32' and extra == 'cublas') + - nvidia-cuda-runtime-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cudart') or (sys_platform == 'win32' and extra == 'cudart') + - nvidia-cufft-cu12==11.3.3.83.* ; (sys_platform == 'linux' and extra == 'cufft') or (sys_platform == 'win32' and extra == 'cufft') + - nvidia-cufile-cu12==1.13.1.3.* ; sys_platform == 'linux' and extra == 'cufile' + - nvidia-cuda-cupti-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cupti') or (sys_platform == 'win32' and extra == 'cupti') + - nvidia-curand-cu12==10.3.9.90.* ; (sys_platform == 'linux' and extra == 'curand') or (sys_platform == 'win32' and extra == 'curand') + - nvidia-cusolver-cu12==11.7.3.90.* ; (sys_platform == 'linux' and extra == 'cusolver') or (sys_platform == 'win32' and extra == 'cusolver') + - nvidia-cusparse-cu12==12.5.8.93.* ; (sys_platform == 'linux' and extra == 'cusparse') or (sys_platform == 'win32' and extra == 'cusparse') + - nvidia-cuda-cuxxfilt-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'cuxxfilt') or (sys_platform == 'win32' and extra == 'cuxxfilt') + - nvidia-npp-cu12==12.3.3.100.* ; (sys_platform == 'linux' and extra == 'npp') or (sys_platform == 'win32' and extra == 'npp') + - nvidia-cuda-nvcc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'nvcc') or (sys_platform == 'win32' and extra == 'nvcc') + - nvidia-nvfatbin-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'nvfatbin') or (sys_platform == 'win32' and extra == 'nvfatbin') + - nvidia-nvjitlink-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'nvjitlink') or (sys_platform == 'win32' and extra == 'nvjitlink') + - nvidia-nvjpeg-cu12==12.3.5.92.* ; (sys_platform == 'linux' and extra == 'nvjpeg') or (sys_platform == 'win32' and extra == 'nvjpeg') + - nvidia-nvml-dev-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'nvml') or (sys_platform == 'win32' and extra == 'nvml') + - nvidia-cuda-nvrtc-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'nvrtc') or (sys_platform == 'win32' and extra == 'nvrtc') + - nvidia-nvtx-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'nvtx') or (sys_platform == 'win32' and extra == 'nvtx') + - nvidia-cuda-opencl-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'opencl') or (sys_platform == 'win32' and extra == 'opencl') + - nvidia-cuda-profiler-api-cu12==12.8.90.* ; (sys_platform == 'linux' and extra == 'profiler') or (sys_platform == 'win32' and extra == 'profiler') + - nvidia-cuda-sanitizer-api-cu12==12.8.93.* ; (sys_platform == 'linux' and extra == 'sanitizer') or (sys_platform == 'win32' and extra == 'sanitizer') +- pypi: https://pypi.nvidia.com/cudf-cu12/cudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cudf-cu12 + version: 25.12.0 + sha256: ad22d3ce8da37f366926b6af43bbb62bf0ab1c69e81f76368cd295222ecacb04 + requires_dist: + - cachetools + - cuda-python>=12.9.2,<13.0a0 + - cuda-toolkit[nvcc,nvrtc]==12.* + - cupy-cuda12x>=13.6.0 + - fsspec>=0.6.0 + - libcudf-cu12==25.12.* + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - numba>=0.60.0,<0.62.0a0 + - numpy>=1.23,<3.0a0 + - nvtx>=0.2.1 + - packaging + - pandas>=2.0,<2.4.0.dev0 + - pyarrow>=15.0.0,!=17.0.0 ; platform_machine == 'aarch64' + - pyarrow>=15.0.0 ; platform_machine == 'x86_64' + - pylibcudf-cu12==25.12.* + - rich + - rmm-cu12==25.12.* + - typing-extensions>=4.0.0 + - aiobotocore>=2.2.0 ; extra == 'test' + - boto3>=1.21.21 ; extra == 'test' + - botocore>=1.24.21 ; extra == 'test' + - cramjam ; extra == 'test' + - fastavro>=0.22.9 ; extra == 'test' + - hypothesis>=6.131.7 ; extra == 'test' + - msgpack ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cases>=3.8.2 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - s3fs>=2022.3.0 ; extra == 'test' + - scipy ; extra == 'test' + - tzdata ; extra == 'test' + - zstandard ; extra == 'test' + - hypothesis>=6.131.7 ; extra == 'pandas-tests' + - ipython ; extra == 'pandas-tests' + - pandas[clipboard,compression,computation,excel,feather,fss,hdf5,html,output-formatting,parquet,performance,plot,pyarrow,spss,test,xml] ; extra == 'pandas-tests' + - pytest-reportlog ; extra == 'pandas-tests' + - certifi ; extra == 'cudf-pandas-tests' + - ipython ; extra == 'cudf-pandas-tests' + - jupyter-client ; extra == 'cudf-pandas-tests' + - nbconvert ; extra == 'cudf-pandas-tests' + - nbformat ; extra == 'cudf-pandas-tests' + - openpyxl ; extra == 'cudf-pandas-tests' + - pytest-rerunfailures!=16.0.0 ; extra == 'cudf-pandas-tests' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/cugraph-cu12/cugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cugraph-cu12 + version: 25.12.2 + sha256: 26ed0fa76ba915ebbb21ceb80930db32f7ef42b8fdc0209aacd304293b6503fc + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - cudf-cu12==25.12.* + - cupy-cuda12x>=13.6.0 + - dask-cuda==25.12.* + - dask-cudf-cu12==25.12.* + - fsspec[http]>=0.6.0 + - libcugraph-cu12==25.12.* + - numba>=0.60.0,<0.62.0a0 + - numpy>=1.23,<3.0a0 + - pylibcudf-cu12==25.12.* + - pylibcugraph-cu12==25.12.* + - pylibraft-cu12==25.12.* + - raft-dask-cu12==25.12.* + - rapids-dask-dependency==25.12.* + - rmm-cu12==25.12.* + - ucxx-cu12==0.47.* + - certifi ; extra == 'test' + - networkx>=2.5.1 ; extra == 'test' + - numpy>=1.23,<3.0a0 ; extra == 'test' + - packaging ; extra == 'test' + - pandas ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - python-louvain ; extra == 'test' + - scikit-learn>=0.23.1 ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/cuml-cu12/cuml_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuml-cu12 + version: 25.12.0 + sha256: 78ad9030481ad0489ff0d3dd214f8a116110a67a4b85d9c8e9f70df724706970 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - cuda-toolkit[cublas,cufft,curand,cusolver,cusparse]==12.* + - cudf-cu12==25.12.* + - cupy-cuda12x>=13.6.0 + - joblib>=0.11 + - libcuml-cu12==25.12.* + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - numba>=0.60.0,<0.62.0a0 + - numpy>=1.23,<3.0a0 + - packaging + - pylibraft-cu12==25.12.* + - rich + - rmm-cu12==25.12.* + - scikit-learn>=1.4 + - scipy>=1.11.0 + - treelite>=4.6.1,<5.0.0a0 + - certifi ; extra == 'test' + - cython>=3.0.0,<3.2.0a0 ; extra == 'test' + - hdbscan>=0.8.39,<0.8.40 ; extra == 'test' + - hypothesis>=6.0,<7 ; extra == 'test' + - nltk ; extra == 'test' + - numpydoc<1.9 ; extra == 'test' + - nvidia-ml-py>=12 ; extra == 'test' + - pynndescent ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cases ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0 ; extra == 'test' + - pyyaml ; extra == 'test' + - scikit-learn>=1.4,<1.8.0 ; extra == 'test' + - seaborn ; extra == 'test' + - statsmodels ; extra == 'test' + - tenacity ; extra == 'test' + - umap-learn==0.5.7 ; extra == 'test' + - xgboost>=2.1.0 ; extra == 'test' + - dask-cudf-cu12==25.12.* ; extra == 'dask' + - raft-dask-cu12==25.12.* ; extra == 'dask' + - rapids-dask-dependency==25.12.* ; extra == 'dask' + - dask-cuda==25.12.* ; extra == 'test-dask' + - dask-ml ; extra == 'test-dask' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e0/95/d7e1295141e7d530674a3cc567e13ed0eb6b81524cb122d797ed996b5bea/cupy_cuda12x-13.6.0-cp312-cp312-manylinux2014_x86_64.whl + name: cupy-cuda12x + version: 13.6.0 + sha256: 79b0cacb5e8b190ef409f9e03f06ac8de1b021b0c0dda47674d446f5557e0eb1 + requires_dist: + - numpy>=1.22,<2.6 + - fastrlock>=0.5 + - scipy>=1.7,<1.17 ; extra == 'all' + - cython>=3 ; extra == 'all' + - optuna>=2.0 ; extra == 'all' + - packaging ; extra == 'test' + - pytest>=7.2 ; extra == 'test' + - hypothesis>=6.37.2,<6.55.0 ; extra == 'test' + - mpmath ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://pypi.nvidia.com/cuvs-cu12/cuvs_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: cuvs-cu12 + version: 25.12.0 + sha256: 9f7de2f3bf94f3ea8e2f702dbd54298b0c86da31ffaa85fb10211b1a85f00030 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - libcuvs-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - pylibraft-cu12==25.12.* + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - scikit-learn ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e7/05/c19819d5e3d95294a6f5947fb9b9629efb316b96de511b418c53d245aae6/cycler-0.12.1-py3-none-any.whl + name: cycler + version: 0.12.1 + sha256: 85cef7cff222d8644161529808465972e51340599459b8ac3ccbac5a854e0d30 + requires_dist: + - ipython ; extra == 'docs' + - matplotlib ; extra == 'docs' + - numpydoc ; extra == 'docs' + - sphinx ; extra == 'docs' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/2a/72/33ff765a07913cb5061baa94718f3a17003aa29adc89642a68c295d47582/dask-2024.11.2-py3-none-any.whl + name: dask + version: 2024.11.2 + sha256: 6115c4b76015e8d9d9c2922b6a0a1c850e283fb7fee74eebbd2e28e9c117c30d + requires_dist: + - click>=8.1 + - cloudpickle>=3.0.0 + - fsspec>=2021.9.0 + - packaging>=20.0 + - partd>=1.4.0 + - pyyaml>=5.3.1 + - toolz>=0.10.0 + - importlib-metadata>=4.13.0 ; python_full_version < '3.12' + - numpy>=1.24 ; extra == 'array' + - dask[array,dataframe,diagnostics,distributed] ; extra == 'complete' + - pyarrow>=14.0.1 ; extra == 'complete' + - lz4>=4.3.2 ; extra == 'complete' + - dask[array] ; extra == 'dataframe' + - pandas>=2.0 ; extra == 'dataframe' + - dask-expr>=1.1,<1.2 ; extra == 'dataframe' + - bokeh>=3.1.0 ; extra == 'diagnostics' + - jinja2>=2.10.3 ; extra == 'diagnostics' + - distributed==2024.11.2 ; extra == 'distributed' + - pandas[test] ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-rerunfailures ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pre-commit ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/25/60/3fcd548bed6d25016933e4b2984c9b82e4c1e760380e03d4100b1b4726e0/dask-2025.9.1-py3-none-any.whl + name: dask + version: 2025.9.1 + sha256: 2a8a7dc933caaea2f47745a65a6ec93d9e616e12aab53b4f03ee161d31939110 + requires_dist: + - click>=8.1 + - cloudpickle>=3.0.0 + - fsspec>=2021.9.0 + - packaging>=20.0 + - partd>=1.4.0 + - pyyaml>=5.3.1 + - toolz>=0.10.0 + - importlib-metadata>=4.13.0 ; python_full_version < '3.12' + - numpy>=1.24 ; extra == 'array' + - dask[array] ; extra == 'dataframe' + - pandas>=2.0 ; extra == 'dataframe' + - pyarrow>=14.0.1 ; extra == 'dataframe' + - distributed==2025.9.1 ; extra == 'distributed' + - bokeh>=3.1.0 ; extra == 'diagnostics' + - jinja2>=2.10.3 ; extra == 'diagnostics' + - dask[array,dataframe,diagnostics,distributed] ; extra == 'complete' + - pyarrow>=14.0.1 ; extra == 'complete' + - lz4>=4.3.2 ; extra == 'complete' + - pandas[test] ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-rerunfailures ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pre-commit ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/dask-cuda/dask_cuda-25.12.0-py3-none-manylinux_2_28_aarch64.manylinux_2_28_x86_64.whl + name: dask-cuda + version: 25.12.0 + sha256: c47985165e061f50c29e1ceb9d08a8ffb598dfd6b03fccdd747ee2a2f4bf4005 + requires_dist: + - click>=8.1 + - cuda-core==0.3.* + - numba-cuda>=0.19.1,<0.20.0a0 + - numpy>=1.23,<3.0a0 + - nvidia-ml-py>=12 + - pandas>=1.3 + - rapids-dask-dependency==25.12.* + - zict>=2.0.0 + - numpydoc>=1.1.0 ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-click>=2.7.1 ; extra == 'docs' + - sphinx-rtd-theme>=0.5.1 ; extra == 'docs' + - cuda-core[cu12]==0.3.* ; extra == 'cu12' + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 ; extra == 'cu12' + - cuda-core[cu13]==0.3.* ; extra == 'cu13' + - numba-cuda[cu13]>=0.19.1,<0.20.0a0 ; extra == 'cu13' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/dask-cudf-cu12/dask_cudf_cu12-25.12.0-py3-none-any.whl + name: dask-cudf-cu12 + version: 25.12.0 + sha256: 5a637613ee72edf0817da5077c53b2f5dfe465944ecf1b5d3e0f30a0a34ec46a + requires_dist: + - cudf-cu12==25.12.* + - cupy-cuda12x>=13.6.0 + - fsspec>=0.6.0 + - numpy>=1.23,<3.0a0 + - nvidia-ml-py>=12 + - pandas>=2.0,<2.4.0.dev0 + - rapids-dask-dependency==25.12.* + - dask-cuda==25.12.* ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e9/57/e7996529256b13009fa8f4c34d1d7229755cc7d2b054aa43edb6ca655578/dask_expr-1.1.19-py3-none-any.whl + name: dask-expr + version: 1.1.19 + sha256: b2931c20241a3bc1978ccccc4b8a2f7b27b15bb85ce89fec04595bc5bcf20cf5 + requires_dist: + - dask==2024.11.2 + - pyarrow>=14.0.1 + - pandas>=2 + - crick ; extra == 'analyze' + - distributed ; extra == 'analyze' + - graphviz ; extra == 'analyze' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/6f/4b/817da308fa1170da07ef01259585887a3bbb6ab80700b3e61ce4967301ec/dask_image-2025.11.0-py3-none-any.whl + name: dask-image + version: 2025.11.0 + sha256: 4834ece8d7133f8cd7d4e672f7f5a598c9057e687b20f14f3121360e3e1690b4 + requires_dist: + - dask[array,dataframe]>=2024.4.1 + - numpy>=1.18 + - scipy>=1.7.0 + - pandas>=2.0.0 + - pims>=0.4.1 + - tifffile>=2018.10.18 + - build>=1.2.1 ; extra == 'test' + - coverage>=7.2.1 ; extra == 'test' + - flake8>=6.0.0 ; extra == 'test' + - flake8-pyproject ; extra == 'test' + - pytest>=7.2.2 ; extra == 'test' + - pytest-cov>=4.0.0 ; extra == 'test' + - pytest-flake8>=1.1.1 ; extra == 'test' + - pytest-timeout>=2.3.1 ; extra == 'test' + - twine>=3.1.1 ; extra == 'test' + - cupy>=9.0.0 ; extra == 'gpu' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/28/0e/b11ad5fd77e3dd0baad9cac3184315be7654ae401e3b0b0c324503f23d96/datashader-0.18.2-py3-none-any.whl + name: datashader + version: 0.18.2 + sha256: 2aa90e867a46b1e75248f32a47c5b14bb5dc869524152f88c0af8369d47359e7 + requires_dist: + - colorcet + - multipledispatch + - numba + - numpy + - packaging + - pandas + - param + - pyct + - requests + - scipy + - toolz + - xarray + - pytest ; extra == 'tests' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/25/3e/e27078370414ef35fafad2c06d182110073daaeb5d3bf734b0b1eeefe452/debugpy-1.8.19-py2.py3-none-any.whl + name: debugpy + version: 1.8.19 + sha256: 360ffd231a780abbc414ba0f005dad409e71c78637efe8f2bd75837132a41d38 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/4e/8c/f3147f5c4b73e7550fe5f9352eaa956ae838d5c51eb58e7a25b9f3e2643b/decorator-5.2.1-py3-none-any.whl + name: decorator + version: 5.2.1 + sha256: d316bb415a2d9e2d2b3abcc4084c6502fc09240e292cd76a76afc106a1c8e04a + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/07/6c/aa3f2f849e01cb6a001cd8554a88d4c77c5c1a31c95bdf1cf9301e6d9ef4/defusedxml-0.7.1-py2.py3-none-any.whl + name: defusedxml + version: 0.7.1 + sha256: a352e7e428770286cc899e2542b6cdaedb2b4953ff269a210103ec58f6198a61 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*' +- pypi: https://files.pythonhosted.org/packages/33/6b/e0547afaf41bf2c42e52430072fa5658766e3d65bd4b03a563d1b6336f57/distlib-0.4.0-py2.py3-none-any.whl + name: distlib + version: 0.4.0 + sha256: 9659f7d87e46584a30b5780e43ac7a2143098441670ff0a49d5f9034c54a6c16 +- pypi: https://files.pythonhosted.org/packages/10/76/486da90111ae15daf88a25e464e271575de4197c331cca4d41c9c5db8bf4/distributed-2025.9.1-py3-none-any.whl + name: distributed + version: 2025.9.1 + sha256: 9453a2216cb9c686be12ad66b9c8698df3c3917565367de5797993a5f83f30ba + requires_dist: + - click>=8.0 + - cloudpickle>=3.0.0 + - dask==2025.9.1 + - jinja2>=2.10.3 + - locket>=1.0.0 + - msgpack>=1.0.2 + - packaging>=20.0 + - psutil>=5.8.0 + - pyyaml>=5.4.1 + - sortedcontainers>=2.0.5 + - tblib>=1.6.0 + - toolz>=0.11.2 + - tornado>=6.2.0 + - urllib3>=1.26.5 + - zict>=3.0.0 + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/distributed-ucxx-cu12/distributed_ucxx_cu12-0.47.0-py3-none-any.whl + name: distributed-ucxx-cu12 + version: 0.47.0 + sha256: deefab372bdaaeae6085c8d53031d4e4989bb5cfa4d1197df59e381c294f0a6d + requires_dist: + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - pyyaml>=6 + - rapids-dask-dependency==25.12.* + - ucxx-cu12==0.47.* + - sphinx ; extra == 'docs' + - sphinx-click>=2.7.1 ; extra == 'docs' + - sphinx-rtd-theme>=0.5.1 ; extra == 'docs' + - cudf-cu12==25.12.* ; extra == 'test' + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - numpy>=1.23,<3.0a0 ; extra == 'test' + - pytest-rerunfailures!=16.0.0 ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz + name: docrep + version: 0.3.2 + sha256: ed8a17e201abd829ef8da78a0b6f4d51fb99a4cbd0554adbed3309297f964314 + requires_dist: + - six +- pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + name: donfig + version: 0.8.1.post1 + sha256: 2a3175ce74a06109ff9307d90a230f81215cbac9a751f4d1c6194644b8204f9d + requires_dist: + - pyyaml + - sphinx>=4.0.0 ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pytest ; extra == 'docs' + - cloudpickle ; extra == 'docs' + - pytest ; extra == 'test' + - cloudpickle ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl + name: executing + version: 2.2.1 + sha256: 760643d3452b4d777d295bb167ccc74c64a81df23fb5e08eff250c425a4b2017 + requires_dist: + - asttokens>=2.1.0 ; extra == 'tests' + - ipython ; extra == 'tests' + - pytest ; extra == 'tests' + - coverage ; extra == 'tests' + - coverage-enable-subprocess ; extra == 'tests' + - littleutils ; extra == 'tests' + - rich ; python_full_version >= '3.11' and extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl + name: fast-array-utils + version: 1.3.1 + sha256: 7617322b29c9f3a8e4c046355ecf653bbee581245787243ea06212a1a56fa611 + requires_dist: + - numpy>=2 + - numba>=0.57 ; extra == 'accel' + - dask>=2023.6.1 ; extra == 'dask' + - furo>=2024.8.6 ; extra == 'doc' + - pytest>=8.4 ; extra == 'doc' + - scanpydoc>=0.15.4 ; extra == 'doc' + - sphinx-autodoc-typehints>=3.2 ; extra == 'doc' + - sphinx-autofixture>=0.4.1 ; extra == 'doc' + - sphinx>=8.2.3 ; extra == 'doc' + - dask>=2023.6.1 ; extra == 'full' + - h5py ; extra == 'full' + - numba>=0.57 ; extra == 'full' + - scipy>=1.13 ; extra == 'full' + - zarr ; extra == 'full' + - scipy>=1.13 ; extra == 'sparse' + - anndata ; extra == 'test' + - coverage[toml] ; extra == 'test' + - numba>=0.57 ; extra == 'test' + - numcodecs<0.16 ; extra == 'test' + - packaging ; extra == 'test' + - pytest ; extra == 'test' + - pytest-codspeed ; extra == 'test' + - pytest-doctestplus ; extra == 'test' + - pytest-xdist ; extra == 'test' + - scipy>=1.13 ; extra == 'test' + - zarr<3 ; extra == 'test' + - coverage[toml] ; extra == 'test-min' + - packaging ; extra == 'test-min' + - pytest ; extra == 'test-min' + - pytest-codspeed ; extra == 'test-min' + - pytest-doctestplus ; extra == 'test-min' + - pytest-xdist ; extra == 'test-min' + - scipy>=1.13 ; extra == 'test-min' + - packaging ; extra == 'testing' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl + name: fastjsonschema + version: 2.21.2 + sha256: 1c797122d0a86c5cace2e54bf4e819c36223b552017172f32c5c024a6b77e463 + requires_dist: + - colorama ; extra == 'devel' + - jsonschema ; extra == 'devel' + - json-spec ; extra == 'devel' + - pylint ; extra == 'devel' + - pytest ; extra == 'devel' + - pytest-benchmark ; extra == 'devel' + - pytest-cache ; extra == 'devel' + - validictory ; extra == 'devel' +- pypi: https://files.pythonhosted.org/packages/80/07/cdecb7aa976f34328372f1c4efd6c9dc1b039b3cc8d3f38787d640009a25/fastrlock-0.8.3-cp312-cp312-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_28_x86_64.whl + name: fastrlock + version: 0.8.3 + sha256: 5f13ec08f1adb1aa916c384b05ecb7dbebb8df9ea81abd045f60941c6283a670 +- conda: https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-mpi_openmpi_h76e6d66_11.conda + sha256: c4a765d3de0a7f831dbf0ae0d9846e53ffa909a35273bd0981136b980d4be7bf + md5: f5b0b0b5746ecc9bd9e3f64c05ef647b + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - libstdcxx >=14 + - openmpi >=5.0.8,<6.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 2080673 + timestamp: 1763157302873 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/fftw-3.3.10-mpi_mpich_h6eb47b5_11.conda + sha256: 009a697faff41c9ecd7ac23e34085c70f9789e000e31622f726fc7a15322ff9d + md5: 566a57100ffdd6c65cf8595074735f0e + depends: + - __osx >=11.0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - libgfortran5 >=15.2.0 + - llvm-openmp >=19.1.7 + - mpich >=4.3.2,<5.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 792036 + timestamp: 1763157977524 +- pypi: https://files.pythonhosted.org/packages/b5/36/7fb70f04bf00bc646cd5bb45aa9eddb15e19437a28b8fb2b4a5249fac770/filelock-3.20.3-py3-none-any.whl + name: filelock + version: 3.20.3 + sha256: 4b0dda527ee31078689fc205ec4f1c1bf7d56cf88b6dc9426c4f230e46c2dce1 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/6f/16/7decaa24a1bd3a70c607b2e29f0adc6159f36a7e40eaba59846414765fd4/fonttools-4.61.1-cp312-cp312-macosx_10_13_universal2.whl + name: fonttools + version: 4.61.1 + sha256: f3cb4a569029b9f291f88aafc927dd53683757e640081ca8c412781ea144565e + requires_dist: + - lxml>=4.0 ; extra == 'lxml' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'woff' + - zopfli>=0.1.4 ; extra == 'woff' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'unicode' + - lz4>=1.7.4.2 ; extra == 'graphite' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'interpolatable' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'interpolatable' + - pycairo ; extra == 'interpolatable' + - matplotlib ; extra == 'plot' + - sympy ; extra == 'symfont' + - xattr ; sys_platform == 'darwin' and extra == 'type1' + - skia-pathops>=0.5.0 ; extra == 'pathops' + - uharfbuzz>=0.45.0 ; extra == 'repacker' + - lxml>=4.0 ; extra == 'all' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'all' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'all' + - zopfli>=0.1.4 ; extra == 'all' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'all' + - lz4>=1.7.4.2 ; extra == 'all' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'all' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'all' + - pycairo ; extra == 'all' + - matplotlib ; extra == 'all' + - sympy ; extra == 'all' + - xattr ; sys_platform == 'darwin' and extra == 'all' + - skia-pathops>=0.5.0 ; extra == 'all' + - uharfbuzz>=0.45.0 ; extra == 'all' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b7/37/82dbef0f6342eb01f54bca073ac1498433d6ce71e50c3c3282b655733b31/fonttools-4.61.1-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + name: fonttools + version: 4.61.1 + sha256: 10d88e55330e092940584774ee5e8a6971b01fc2f4d3466a1d6c158230880796 + requires_dist: + - lxml>=4.0 ; extra == 'lxml' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'woff' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'woff' + - zopfli>=0.1.4 ; extra == 'woff' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'unicode' + - lz4>=1.7.4.2 ; extra == 'graphite' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'interpolatable' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'interpolatable' + - pycairo ; extra == 'interpolatable' + - matplotlib ; extra == 'plot' + - sympy ; extra == 'symfont' + - xattr ; sys_platform == 'darwin' and extra == 'type1' + - skia-pathops>=0.5.0 ; extra == 'pathops' + - uharfbuzz>=0.45.0 ; extra == 'repacker' + - lxml>=4.0 ; extra == 'all' + - brotli>=1.0.1 ; platform_python_implementation == 'CPython' and extra == 'all' + - brotlicffi>=0.8.0 ; platform_python_implementation != 'CPython' and extra == 'all' + - zopfli>=0.1.4 ; extra == 'all' + - unicodedata2>=17.0.0 ; python_full_version < '3.15' and extra == 'all' + - lz4>=1.7.4.2 ; extra == 'all' + - scipy ; platform_python_implementation != 'PyPy' and extra == 'all' + - munkres ; platform_python_implementation == 'PyPy' and extra == 'all' + - pycairo ; extra == 'all' + - matplotlib ; extra == 'all' + - sympy ; extra == 'all' + - xattr ; sys_platform == 'darwin' and extra == 'all' + - skia-pathops>=0.5.0 ; extra == 'all' + - uharfbuzz>=0.45.0 ; extra == 'all' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/cf/58/8acf1b3e91c58313ce5cb67df61001fc9dcd21be4fadb76c1a2d540e09ed/fqdn-1.5.1-py3-none-any.whl + name: fqdn + version: 1.5.1 + sha256: 3a179af3761e4df6eb2e026ff9e1a3033d3587bf980a0b1b2e1e5d08d7358014 + requires_dist: + - cached-property>=1.3.0 ; python_full_version < '3.8' + requires_python: '>=2.7,!=3.0,!=3.1,!=3.2,!=3.3,!=3.4,<4' +- pypi: https://files.pythonhosted.org/packages/2b/94/5c8a2b50a496b11dd519f4a24cb5496cf125681dd99e94c604ccdea9419a/frozenlist-1.8.0-cp312-cp312-macosx_11_0_arm64.whl + name: frozenlist + version: 1.8.0 + sha256: f833670942247a14eafbb675458b4e61c82e002a148f49e68257b79296e865c4 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/6a/bd/d91c5e39f490a49df14320f4e8c80161cfcce09f1e2cde1edd16a551abb3/frozenlist-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + name: frozenlist + version: 1.8.0 + sha256: 494a5952b1c597ba44e0e78113a7266e656b9794eec897b19ead706bd7074383 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e3/bd/4c0a4619494188a9db5d77e2100ab7d544a42e76b2447869d8e124e981d8/fsspec-2023.6.0-py3-none-any.whl + name: fsspec + version: 2023.6.0 + sha256: 1cbad1faef3e391fba6dc005ae9b5bdcbf43005c9167ce78c915549c352c869a + requires_dist: + - adlfs ; extra == 'abfs' + - adlfs ; extra == 'adl' + - pyarrow>=1 ; extra == 'arrow' + - dask ; extra == 'dask' + - distributed ; extra == 'dask' + - pytest ; extra == 'devel' + - pytest-cov ; extra == 'devel' + - dropboxdrivefs ; extra == 'dropbox' + - requests ; extra == 'dropbox' + - dropbox ; extra == 'dropbox' + - adlfs ; extra == 'full' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'full' + - dask ; extra == 'full' + - distributed ; extra == 'full' + - dropbox ; extra == 'full' + - dropboxdrivefs ; extra == 'full' + - fusepy ; extra == 'full' + - gcsfs ; extra == 'full' + - libarchive-c ; extra == 'full' + - ocifs ; extra == 'full' + - panel ; extra == 'full' + - paramiko ; extra == 'full' + - pyarrow>=1 ; extra == 'full' + - pygit2 ; extra == 'full' + - requests ; extra == 'full' + - s3fs ; extra == 'full' + - smbprotocol ; extra == 'full' + - tqdm ; extra == 'full' + - fusepy ; extra == 'fuse' + - gcsfs ; extra == 'gcs' + - pygit2 ; extra == 'git' + - requests ; extra == 'github' + - gcsfs ; extra == 'gs' + - panel ; extra == 'gui' + - pyarrow>=1 ; extra == 'hdfs' + - requests ; extra == 'http' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'http' + - libarchive-c ; extra == 'libarchive' + - ocifs ; extra == 'oci' + - s3fs ; extra == 's3' + - paramiko ; extra == 'sftp' + - smbprotocol ; extra == 'smb' + - paramiko ; extra == 'ssh' + - tqdm ; extra == 'tqdm' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/01/c9/97cc5aae1648dcb851958a3ddf73ccd7dbe5650d95203ecb4d7720b4cdbf/fsspec-2026.1.0-py3-none-any.whl + name: fsspec + version: 2026.1.0 + sha256: cb76aa913c2285a3b49bdd5fc55b1d7c708d7208126b60f2eb8194fe1b4cbdcc + requires_dist: + - adlfs ; extra == 'abfs' + - adlfs ; extra == 'adl' + - pyarrow>=1 ; extra == 'arrow' + - dask ; extra == 'dask' + - distributed ; extra == 'dask' + - pre-commit ; extra == 'dev' + - ruff>=0.5 ; extra == 'dev' + - numpydoc ; extra == 'doc' + - sphinx ; extra == 'doc' + - sphinx-design ; extra == 'doc' + - sphinx-rtd-theme ; extra == 'doc' + - yarl ; extra == 'doc' + - dropbox ; extra == 'dropbox' + - dropboxdrivefs ; extra == 'dropbox' + - requests ; extra == 'dropbox' + - adlfs ; extra == 'full' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'full' + - dask ; extra == 'full' + - distributed ; extra == 'full' + - dropbox ; extra == 'full' + - dropboxdrivefs ; extra == 'full' + - fusepy ; extra == 'full' + - gcsfs>2024.2.0 ; extra == 'full' + - libarchive-c ; extra == 'full' + - ocifs ; extra == 'full' + - panel ; extra == 'full' + - paramiko ; extra == 'full' + - pyarrow>=1 ; extra == 'full' + - pygit2 ; extra == 'full' + - requests ; extra == 'full' + - s3fs>2024.2.0 ; extra == 'full' + - smbprotocol ; extra == 'full' + - tqdm ; extra == 'full' + - fusepy ; extra == 'fuse' + - gcsfs ; extra == 'gcs' + - pygit2 ; extra == 'git' + - requests ; extra == 'github' + - gcsfs ; extra == 'gs' + - panel ; extra == 'gui' + - pyarrow>=1 ; extra == 'hdfs' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'http' + - libarchive-c ; extra == 'libarchive' + - ocifs ; extra == 'oci' + - s3fs ; extra == 's3' + - paramiko ; extra == 'sftp' + - smbprotocol ; extra == 'smb' + - paramiko ; extra == 'ssh' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'test' + - numpy ; extra == 'test' + - pytest ; extra == 'test' + - pytest-asyncio!=0.22.0 ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-recording ; extra == 'test' + - pytest-rerunfailures ; extra == 'test' + - requests ; extra == 'test' + - aiobotocore>=2.5.4,<3.0.0 ; extra == 'test-downstream' + - dask[dataframe,test] ; extra == 'test-downstream' + - moto[server]>4,<5 ; extra == 'test-downstream' + - pytest-timeout ; extra == 'test-downstream' + - xarray ; extra == 'test-downstream' + - adlfs ; extra == 'test-full' + - aiohttp!=4.0.0a0,!=4.0.0a1 ; extra == 'test-full' + - backports-zstd ; python_full_version < '3.14' and extra == 'test-full' + - cloudpickle ; extra == 'test-full' + - dask ; extra == 'test-full' + - distributed ; extra == 'test-full' + - dropbox ; extra == 'test-full' + - dropboxdrivefs ; extra == 'test-full' + - fastparquet ; extra == 'test-full' + - fusepy ; extra == 'test-full' + - gcsfs ; extra == 'test-full' + - jinja2 ; extra == 'test-full' + - kerchunk ; extra == 'test-full' + - libarchive-c ; extra == 'test-full' + - lz4 ; extra == 'test-full' + - notebook ; extra == 'test-full' + - numpy ; extra == 'test-full' + - ocifs ; extra == 'test-full' + - pandas ; extra == 'test-full' + - panel ; extra == 'test-full' + - paramiko ; extra == 'test-full' + - pyarrow ; extra == 'test-full' + - pyarrow>=1 ; extra == 'test-full' + - pyftpdlib ; extra == 'test-full' + - pygit2 ; extra == 'test-full' + - pytest ; extra == 'test-full' + - pytest-asyncio!=0.22.0 ; extra == 'test-full' + - pytest-benchmark ; extra == 'test-full' + - pytest-cov ; extra == 'test-full' + - pytest-mock ; extra == 'test-full' + - pytest-recording ; extra == 'test-full' + - pytest-rerunfailures ; extra == 'test-full' + - python-snappy ; extra == 'test-full' + - requests ; extra == 'test-full' + - smbprotocol ; extra == 'test-full' + - tqdm ; extra == 'test-full' + - urllib3 ; extra == 'test-full' + - zarr ; extra == 'test-full' + - tqdm ; extra == 'tqdm' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/54/e4/fac19dc34cb686c96011388b813ff7b858a70681e5ce6ce7698e5021b0f4/geopandas-1.1.2-py3-none-any.whl + name: geopandas + version: 1.1.2 + sha256: 2bb0b1052cb47378addb4ba54c47f8d4642dcbda9b61375638274f49d9f0bb0d + requires_dist: + - numpy>=1.24 + - pyogrio>=0.7.2 + - packaging + - pandas>=2.0.0 + - pyproj>=3.5.0 + - shapely>=2.0.0 + - psycopg[binary]>=3.1.0 ; extra == 'all' + - sqlalchemy>=2.0 ; extra == 'all' + - geopy ; extra == 'all' + - matplotlib>=3.7 ; extra == 'all' + - mapclassify>=2.5 ; extra == 'all' + - xyzservices ; extra == 'all' + - folium ; extra == 'all' + - geoalchemy2 ; extra == 'all' + - pyarrow>=10.0.0 ; extra == 'all' + - scipy ; extra == 'all' + - pytest>=3.1.0 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - codecov ; extra == 'dev' + - pre-commit ; extra == 'dev' + - ruff ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ce/a9/a780cc66f86335a6019f557a8aaca8fbb970728f0efd2430d15ff1beae0e/google_crc32c-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl + name: google-crc32c + version: 1.8.0 + sha256: 14f87e04d613dfa218d6135e81b78272c3b904e2a7053b841481b38a7d901411 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e9/5f/7307325b1198b59324c0fa9807cafb551afb65e831699f2ce211ad5c8240/google_crc32c-1.8.0-cp312-cp312-macosx_12_0_arm64.whl + name: google-crc32c + version: 1.8.0 + sha256: 4b8286b659c1335172e39563ab0a768b8015e88e08329fa5321f774275fc3113 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d9/75/11d0e66b3cdf998c996489581bdad8900db79ebd83513e45c19548f1cba4/grpcio-1.76.0-cp312-cp312-macosx_11_0_universal2.whl + name: grpcio + version: 1.76.0 + sha256: 04bbe1bfe3a68bbfd4e52402ab7d4eb59d72d02647ae2042204326cf4bbad280 + requires_dist: + - typing-extensions~=4.12 + - grpcio-tools>=1.76.0 ; extra == 'protobuf' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f5/86/f6ec2164f743d9609691115ae8ece098c76b894ebe4f7c94a655c6b03e98/grpcio-1.76.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: grpcio + version: 1.76.0 + sha256: 980a846182ce88c4f2f7e2c22c56aefd515daeb36149d1c897f83cf57999e0b6 + requires_dist: + - typing-extensions~=4.12 + - grpcio-tools>=1.76.0 ; extra == 'protobuf' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/04/4b/29cac41a4d98d144bf5f6d33995617b185d14b22401f75ca86f384e87ff1/h11-0.16.0-py3-none-any.whl + name: h11 + version: 0.16.0 + sha256: 63cf8bbe7522de3bf65932fda1d9c2772064ffb3dae62d55932da54b31cb6c86 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/3a/30/d1c94066343a98bb2cea40120873193a4fed68c4ad7f8935c11caf74c681/h5py-3.15.1-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: h5py + version: 3.15.1 + sha256: 25c8843fec43b2cc368aa15afa1cdf83fc5e17b1c4e10cd3771ef6c39b72e5ce + requires_dist: + - numpy>=1.21.2 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/a4/5e/3c6f6e0430813c7aefe784d00c6711166f46225f5d229546eb53032c3707/h5py-3.15.1-cp312-cp312-macosx_11_0_arm64.whl + name: h5py + version: 3.15.1 + sha256: b51469890e58e85d5242e43aab29f5e9c7e526b951caab354f3ded4ac88e7b76 + requires_dist: + - numpy>=1.21.2 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.6-mpi_openmpi_h106f004_5.conda + sha256: d842172ae5b908c24ce56c8dc336ec7667469249681c7d1f3f70a67c9f96582f + md5: a9a68cf8f960586d92a8ceb68cd32374 + depends: + - __glibc >=2.17,<3.0.a0 + - libaec >=1.1.4,<2.0a0 + - libcurl >=8.18.0,<9.0a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - libstdcxx >=14 + - libzlib >=1.3.1,<2.0a0 + - openmpi >=5.0.8,<6.0a0 + - openssl >=3.5.4,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 3925340 + timestamp: 1768858903986 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/hdf5-1.14.6-mpi_mpich_h05d5b64_5.conda + sha256: fd817bbfe26ada92caa4dcb36d9fd0635c65017504a552ad80d1bb212af1e374 + md5: 86cc67e06d68ed6b7f401b9d3f15039b + depends: + - __osx >=11.0 + - libaec >=1.1.4,<2.0a0 + - libcurl >=8.18.0,<9.0a0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - libzlib >=1.3.1,<2.0a0 + - mpich >=4.3.2,<5.0a0 + - openssl >=3.5.4,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 3515366 + timestamp: 1768858135533 +- pypi: https://files.pythonhosted.org/packages/7e/f5/f66802a942d491edb555dd61e3a9961140fd64c90bce1eafd741609d334d/httpcore-1.0.9-py3-none-any.whl + name: httpcore + version: 1.0.9 + sha256: 2d400746a40668fc9dec9810239072b40b4484b640a8c38fd654a024c7a1bf55 + requires_dist: + - certifi + - h11>=0.16 + - anyio>=4.0,<5.0 ; extra == 'asyncio' + - h2>=3,<5 ; extra == 'http2' + - socksio==1.* ; extra == 'socks' + - trio>=0.22.0,<1.0 ; extra == 'trio' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl + name: httpx + version: 0.28.1 + sha256: d909fcccc110f8c7faf814ca82a9a4d816bc5a6dbfea25d6591d6985b8ba59ad + requires_dist: + - anyio + - certifi + - httpcore==1.* + - idna + - brotli ; platform_python_implementation == 'CPython' and extra == 'brotli' + - brotlicffi ; platform_python_implementation != 'CPython' and extra == 'brotli' + - click==8.* ; extra == 'cli' + - pygments==2.* ; extra == 'cli' + - rich>=10,<14 ; extra == 'cli' + - h2>=3,<5 ; extra == 'http2' + - socksio==1.* ; extra == 'socks' + - zstandard>=0.18.0 ; extra == 'zstd' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/hypre-2.32.0-mpi_openmpi_h398ea61_1.conda + sha256: c0a72b039aa522b469d317daab302dd7783a821529914e0c038098a22c6b2d69 + md5: d7196a72ed192856ece63b4c0da8c462 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas >=3.9.0,<4.0a0 + - libgcc >=13 + - liblapack >=3.9.0,<4.0a0 + - libstdcxx >=13 + - openmpi >=5.0.5,<6.0a0 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 2013687 + timestamp: 1730470317432 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/hypre-2.32.0-mpi_mpich_h189fe77_1.conda + sha256: 7ad7150e0de22579889eb3268254e24cf57224fe3809f67745b9ec83c69b4844 + md5: 27813d86f0e04d6674d790a76473410a + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcxx >=18 + - liblapack >=3.9.0,<4.0a0 + - mpich >=4.2.3,<5.0a0 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 1556359 + timestamp: 1730470784893 +- conda: https://conda.anaconda.org/conda-forge/linux-64/icu-78.2-h33c6efd_0.conda + sha256: 142a722072fa96cf16ff98eaaf641f54ab84744af81754c292cb81e0881c0329 + md5: 186a18e3ba246eccfc7cff00cd19a870 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + license: MIT + license_family: MIT + purls: [] + size: 12728445 + timestamp: 1767969922681 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-78.2-h38cb7af_0.conda + sha256: d4cefbca587429d1192509edc52c88de52bc96c2447771ddc1f8bee928aed5ef + md5: 1e93aca311da0210e660d2247812fa02 + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 12358010 + timestamp: 1767970350308 +- pypi: https://files.pythonhosted.org/packages/b8/58/40fbbcefeda82364720eba5cf2270f98496bdfa19ea75b4cccae79c698e6/identify-2.6.16-py2.py3-none-any.whl + name: identify + version: 2.6.16 + sha256: 391ee4d77741d994189522896270b787aed8670389bfd60f326d677d64a6dfb0 + requires_dist: + - ukkonen ; extra == 'license' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl + name: idna + version: '3.11' + sha256: 771a87f49d9defaf64091e6e6fe9c18d4833f140bd19464795bc32d966ca37ea + requires_dist: + - ruff>=0.6.2 ; extra == 'all' + - mypy>=1.11.2 ; extra == 'all' + - pytest>=8.3.2 ; extra == 'all' + - flake8>=7.1.1 ; extra == 'all' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/7d/da/dd2867c25adbb41563720f14b5fc895c98bf88be682a3faff4f7b3118d2a/igraph-1.0.0-cp39-abi3-manylinux_2_28_x86_64.whl + name: igraph + version: 1.0.0 + sha256: 2d04c2c76f686fb1f554ee35dfd3085f5e73b7965ba6b4cf06d53e66b1955522 + requires_dist: + - texttable>=1.6.2 + - cairocffi>=1.2.0 ; extra == 'cairo' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'matplotlib' + - plotly>=5.3.0 ; extra == 'plotly' + - cairocffi>=1.2.0 ; extra == 'plotting' + - cairocffi>=1.2.0 ; extra == 'test' + - networkx>=2.5 ; extra == 'test' + - pytest>=7.0.1 ; extra == 'test' + - pytest-timeout>=2.1.0 ; extra == 'test' + - numpy>=1.19.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - pandas>=1.1.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - scipy>=1.5.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - plotly>=5.3.0 ; extra == 'test' + - pillow>=9 ; platform_python_implementation != 'PyPy' and extra == 'test' + - cairocffi>=1.2.0 ; extra == 'test-win-arm64' + - networkx>=2.5 ; extra == 'test-win-arm64' + - pytest>=7.0.1 ; extra == 'test-win-arm64' + - pytest-timeout>=2.1.0 ; extra == 'test-win-arm64' + - cairocffi>=1.2.0 ; extra == 'test-musl' + - networkx>=2.5 ; extra == 'test-musl' + - pytest>=7.0.1 ; extra == 'test-musl' + - pytest-timeout>=2.1.0 ; extra == 'test-musl' + - sphinx>=7.0.0 ; extra == 'doc' + - sphinx-rtd-theme>=1.3.0 ; extra == 'doc' + - sphinx-gallery>=0.14.0 ; extra == 'doc' + - pydoctor>=23.4.0 ; extra == 'doc' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/8f/27/0494b31c65a4dbb09206962f7a056ff9df5388ab13e1dddc27ecf47238df/imagecodecs-2025.11.11-cp311-abi3-macosx_11_0_arm64.whl + name: imagecodecs + version: 2025.11.11 + sha256: 45a865690275a3a8893c4c54377c678a7b361ebe13dd3a9e22c66443a96b1c2a + requires_dist: + - numpy + - matplotlib ; extra == 'all' + - tifffile ; extra == 'all' + - numcodecs ; extra == 'all' + - pytest ; extra == 'test' + - pytest-run-parallel ; extra == 'test' + - tifffile ; extra == 'test' + - czifile ; extra == 'test' + - blosc ; extra == 'test' + - blosc2 ; extra == 'test' + - brotli ; extra == 'test' + - zstd ; extra == 'test' + - lz4 ; extra == 'test' + - pyliblzfse ; extra == 'test' + - python-lzf ; extra == 'test' + - python-snappy ; extra == 'test' + - bitshuffle ; extra == 'test' + - zopflipy ; extra == 'test' + - zarr ; extra == 'test' + - numcodecs ; extra == 'test' + - kerchunk ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/fb/fe/301e0936b79bcab4cacc7548bf2853fc28dced0a578bab1f7ef53c9aa75b/imageio-2.37.2-py3-none-any.whl + name: imageio + version: 2.37.2 + sha256: ad9adfb20335d718c03de457358ed69f141021a333c40a53e57273d8a5bd0b9b + requires_dist: + - numpy + - pillow>=8.3.2 + - imageio-ffmpeg ; extra == 'ffmpeg' + - psutil ; extra == 'ffmpeg' + - fsspec[http] ; extra == 'freeimage' + - pillow-heif ; extra == 'pillow-heif' + - tifffile ; extra == 'tifffile' + - av ; extra == 'pyav' + - astropy ; extra == 'fits' + - rawpy ; extra == 'rawpy' + - numpy>2 ; extra == 'rawpy' + - gdal ; extra == 'gdal' + - itk ; extra == 'itk' + - black ; extra == 'linting' + - flake8 ; extra == 'linting' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - fsspec[github] ; extra == 'test' + - sphinx<6 ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - fsspec[github] ; extra == 'dev' + - black ; extra == 'dev' + - flake8 ; extra == 'dev' + - av ; extra == 'all-plugins' + - astropy ; extra == 'all-plugins' + - fsspec[http] ; extra == 'all-plugins' + - imageio-ffmpeg ; extra == 'all-plugins' + - numpy>2 ; extra == 'all-plugins' + - pillow-heif ; extra == 'all-plugins' + - psutil ; extra == 'all-plugins' + - rawpy ; extra == 'all-plugins' + - tifffile ; extra == 'all-plugins' + - fsspec[http] ; extra == 'all-plugins-pypy' + - imageio-ffmpeg ; extra == 'all-plugins-pypy' + - pillow-heif ; extra == 'all-plugins-pypy' + - psutil ; extra == 'all-plugins-pypy' + - tifffile ; extra == 'all-plugins-pypy' + - astropy ; extra == 'full' + - av ; extra == 'full' + - black ; extra == 'full' + - flake8 ; extra == 'full' + - fsspec[github,http] ; extra == 'full' + - imageio-ffmpeg ; extra == 'full' + - numpydoc ; extra == 'full' + - numpy>2 ; extra == 'full' + - pillow-heif ; extra == 'full' + - psutil ; extra == 'full' + - pydata-sphinx-theme ; extra == 'full' + - pytest ; extra == 'full' + - pytest-cov ; extra == 'full' + - rawpy ; extra == 'full' + - sphinx<6 ; extra == 'full' + - tifffile ; extra == 'full' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl + name: inflect + version: 7.5.0 + sha256: 2aea70e5e70c35d8350b8097396ec155ffd68def678c7ff97f51aa69c1d92344 + requires_dist: + - more-itertools>=8.5.0 + - typeguard>=4.0.1 + - typing-extensions ; python_full_version < '3.9' + - pytest>=6,!=8.1.* ; extra == 'test' + - pygments ; extra == 'test' + - sphinx>=3.5 ; extra == 'doc' + - jaraco-packaging>=9.3 ; extra == 'doc' + - rst-linker>=1.9 ; extra == 'doc' + - furo ; extra == 'doc' + - sphinx-lint ; extra == 'doc' + - jaraco-tidelift>=1.4 ; extra == 'doc' + - pytest-checkdocs>=2.4 ; extra == 'check' + - pytest-ruff>=0.2.1 ; sys_platform != 'cygwin' and extra == 'check' + - pytest-cov ; extra == 'cover' + - pytest-enabler>=2.2 ; extra == 'enabler' + - pytest-mypy ; extra == 'type' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/cb/b1/3846dd7f199d53cb17f49cba7e651e9ce294d8497c8c150530ed11865bb8/iniconfig-2.3.0-py3-none-any.whl + name: iniconfig + version: 2.3.0 + sha256: f631c04d2c48c52b84d0d0549c99ff3859c98df65b3101406327ecc7d53fbf12 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/a3/17/20c2552266728ceba271967b87919664ecc0e33efca29c3efc6baf88c5f9/ipykernel-7.1.0-py3-none-any.whl + name: ipykernel + version: 7.1.0 + sha256: 763b5ec6c5b7776f6a8d7ce09b267693b4e5ce75cb50ae696aaefb3c85e1ea4c + requires_dist: + - appnope>=0.1.2 ; sys_platform == 'darwin' + - comm>=0.1.1 + - debugpy>=1.6.5 + - ipython>=7.23.1 + - jupyter-client>=8.0.0 + - jupyter-core>=4.12,!=5.0.* + - matplotlib-inline>=0.1 + - nest-asyncio>=1.4 + - packaging>=22 + - psutil>=5.7 + - pyzmq>=25 + - tornado>=6.2 + - traitlets>=5.4.0 + - coverage[toml] ; extra == 'cov' + - matplotlib ; extra == 'cov' + - pytest-cov ; extra == 'cov' + - trio ; extra == 'cov' + - intersphinx-registry ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx<8.2.0 ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - trio ; extra == 'docs' + - pyqt5 ; extra == 'pyqt5' + - pyside6 ; extra == 'pyside6' + - flaky ; extra == 'test' + - ipyparallel ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-asyncio>=0.23.5 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0,<9 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/86/92/162cfaee4ccf370465c5af1ce36a9eacec1becb552f2033bb3584e6f640a/ipython-9.9.0-py3-none-any.whl + name: ipython + version: 9.9.0 + sha256: b457fe9165df2b84e8ec909a97abcf2ed88f565970efba16b1f7229c283d252b + requires_dist: + - colorama>=0.4.4 ; sys_platform == 'win32' + - decorator>=4.3.2 + - ipython-pygments-lexers>=1.0.0 + - jedi>=0.18.1 + - matplotlib-inline>=0.1.5 + - pexpect>4.3 ; sys_platform != 'emscripten' and sys_platform != 'win32' + - prompt-toolkit>=3.0.41,<3.1.0 + - pygments>=2.11.0 + - stack-data>=0.6.0 + - traitlets>=5.13.0 + - typing-extensions>=4.6 ; python_full_version < '3.12' + - black ; extra == 'black' + - docrepr ; extra == 'doc' + - exceptiongroup ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - ipykernel ; extra == 'doc' + - ipython[matplotlib,test] ; extra == 'doc' + - setuptools>=70.0 ; extra == 'doc' + - sphinx-toml==0.0.4 ; extra == 'doc' + - sphinx-rtd-theme>=0.1.8 ; extra == 'doc' + - sphinx>=8.0 ; extra == 'doc' + - typing-extensions ; extra == 'doc' + - pytest>=7.0.0 ; extra == 'test' + - pytest-asyncio>=1.0.0 ; extra == 'test' + - testpath>=0.2 ; extra == 'test' + - packaging>=20.1.0 ; extra == 'test' + - setuptools>=61.2 ; extra == 'test' + - ipython[test] ; extra == 'test-extra' + - curio ; extra == 'test-extra' + - jupyter-ai ; extra == 'test-extra' + - ipython[matplotlib] ; extra == 'test-extra' + - nbformat ; extra == 'test-extra' + - nbclient ; extra == 'test-extra' + - ipykernel>6.30 ; extra == 'test-extra' + - numpy>=1.27 ; extra == 'test-extra' + - pandas>2.1 ; extra == 'test-extra' + - trio>=0.1.0 ; extra == 'test-extra' + - matplotlib>3.9 ; extra == 'matplotlib' + - ipython[doc,matplotlib,terminal,test,test-extra] ; extra == 'all' + - argcomplete>=3.0 ; extra == 'all' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/d9/33/1f075bf72b0b747cb3288d011319aaf64083cf2efef8354174e3ed4540e2/ipython_pygments_lexers-1.1.1-py3-none-any.whl + name: ipython-pygments-lexers + version: 1.1.1 + sha256: a9462224a505ade19a605f71f8fa63c2048833ce50abc86768a0d81d876dc81c + requires_dist: + - pygments + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/56/6d/0d9848617b9f753b87f214f1c682592f7ca42de085f564352f10f0843026/ipywidgets-8.1.8-py3-none-any.whl + name: ipywidgets + version: 8.1.8 + sha256: ecaca67aed704a338f88f67b1181b58f821ab5dc89c1f0f5ef99db43c1c2921e + requires_dist: + - comm>=0.1.3 + - ipython>=6.1.0 + - traitlets>=4.3.1 + - widgetsnbextension~=4.0.14 + - jupyterlab-widgets~=3.0.15 + - jsonschema ; extra == 'test' + - ipykernel ; extra == 'test' + - pytest>=3.6.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytz ; extra == 'test' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/7b/55/e5326141505c5d5e34c5e0935d2908a74e4561eca44108fbfb9c13d2911a/isoduration-20.11.0-py3-none-any.whl + name: isoduration + version: 20.11.0 + sha256: b2904c2a4228c3d44f409c8ae8e2370eb21a26f7ac2ec5446df141dde3452042 + requires_dist: + - arrow>=0.15.0 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/a8/f7/ae4ecf183d9693cd5fcce7ee063c5e54f173b66dc80a8a79951861e1b557/jax-0.8.2-py3-none-any.whl + name: jax + version: 0.8.2 + sha256: d0478c5dc74406441efcd25731166a65ee782f13c352fa72dc7d734351909355 + requires_dist: + - jaxlib<=0.8.2,>=0.8.2 + - ml-dtypes>=0.5.0 + - numpy>=2.0 + - opt-einsum + - scipy>=1.13 + - jaxlib==0.8.2 ; extra == 'minimum-jaxlib' + - jaxlib==0.8.1 ; extra == 'ci' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'tpu' + - libtpu==0.0.32.* ; extra == 'tpu' + - requests ; extra == 'tpu' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda' + - jax-cuda12-plugin[with-cuda]<=0.8.2,>=0.8.2 ; extra == 'cuda' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda12' + - jax-cuda12-plugin[with-cuda]<=0.8.2,>=0.8.2 ; extra == 'cuda12' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda13' + - jax-cuda13-plugin[with-cuda]<=0.8.2,>=0.8.2 ; extra == 'cuda13' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda12-local' + - jax-cuda12-plugin<=0.8.2,>=0.8.2 ; extra == 'cuda12-local' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'cuda13-local' + - jax-cuda13-plugin<=0.8.2,>=0.8.2 ; extra == 'cuda13-local' + - jaxlib<=0.8.2,>=0.8.2 ; extra == 'rocm' + - jax-rocm7-plugin<=0.8.2,>=0.8.2 ; extra == 'rocm' + - kubernetes ; extra == 'k8s' + - xprof ; extra == 'xprof' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/53/f2/44ad0ce1d115f0f6be10f4af0ca05a18afb838b06e6ca6b01ba4b0137421/jax_cuda12_pjrt-0.8.2-py3-none-manylinux_2_27_x86_64.whl + name: jax-cuda12-pjrt + version: 0.8.2 + sha256: e3bab41ca7c48e4163db9e7efd271b3aa85f0fe45f5ed0708d6bbed93a59f977 +- pypi: https://files.pythonhosted.org/packages/60/a5/3a4f6585d530516f8a70494e9e916a611e01733ce3174dacb45d48a5ee63/jax_cuda12_plugin-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + name: jax-cuda12-plugin + version: 0.8.2 + sha256: 20165861b3d3e66ebb2c0f63a547d1d5ee17ea44ac3be7153c7908c9ca8c88f3 + requires_dist: + - jax-cuda12-pjrt==0.8.2 + - nvidia-cublas-cu12>=12.1.3.1 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-cupti-cu12>=12.1.105 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-nvcc-cu12>=12.6.85 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-runtime-cu12>=12.1.105 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cudnn-cu12>=9.8,<10.0 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cufft-cu12>=11.0.2.54 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cusolver-cu12>=11.4.5.107 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cusparse-cu12>=12.1.0.106 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-nccl-cu12>=2.18.1 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-nvjitlink-cu12>=12.1.105 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-cuda-nvrtc-cu12>=12.1.55 ; sys_platform == 'linux' and extra == 'with-cuda' + - nvidia-nvshmem-cu12>=3.2.5 ; sys_platform == 'linux' and extra == 'with-cuda' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/c1/77/18ac0ac08c76bf12ed47b0c2d7d35f3fc3d065bd105b36937901eab1455c/jaxlib-0.8.2-cp312-cp312-macosx_11_0_arm64.whl + name: jaxlib + version: 0.8.2 + sha256: 023de6f3f56da2af7037970996500586331fdb50b530ecbb54b9666da633bd00 + requires_dist: + - scipy>=1.13 + - numpy>=2.0 + - ml-dtypes>=0.5.0 + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/e0/bf/e386c4bbfda3fb326a01594cc46c8ac90cdeeeacee4c553d9e3848f75893/jaxlib-0.8.2-cp312-cp312-manylinux_2_27_x86_64.whl + name: jaxlib + version: 0.8.2 + sha256: 2b9789bd08f8b0cc5a5c12ae896fe432d5942e32e417091b8b5a96a9a6fd5cf1 + requires_dist: + - scipy>=1.13 + - numpy>=2.0 + - ml-dtypes>=0.5.0 + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/c0/5a/9cac0c82afec3d09ccd97c8b6502d48f165f9124db81b4bcb90b4af974ee/jedi-0.19.2-py2.py3-none-any.whl + name: jedi + version: 0.19.2 + sha256: a8ef22bde8490f57fe5c7681a3c83cb58874daf72b4784de3cce5b6ef6edb5b9 + requires_dist: + - parso>=0.8.4,<0.9.0 + - jinja2==2.11.3 ; extra == 'docs' + - markupsafe==1.1.1 ; extra == 'docs' + - pygments==2.8.1 ; extra == 'docs' + - alabaster==0.7.12 ; extra == 'docs' + - babel==2.9.1 ; extra == 'docs' + - chardet==4.0.0 ; extra == 'docs' + - commonmark==0.8.1 ; extra == 'docs' + - docutils==0.17.1 ; extra == 'docs' + - future==0.18.2 ; extra == 'docs' + - idna==2.10 ; extra == 'docs' + - imagesize==1.2.0 ; extra == 'docs' + - mock==1.0.1 ; extra == 'docs' + - packaging==20.9 ; extra == 'docs' + - pyparsing==2.4.7 ; extra == 'docs' + - pytz==2021.1 ; extra == 'docs' + - readthedocs-sphinx-ext==2.1.4 ; extra == 'docs' + - recommonmark==0.5.0 ; extra == 'docs' + - requests==2.25.1 ; extra == 'docs' + - six==1.15.0 ; extra == 'docs' + - snowballstemmer==2.1.0 ; extra == 'docs' + - sphinx-rtd-theme==0.4.3 ; extra == 'docs' + - sphinx==1.8.5 ; extra == 'docs' + - sphinxcontrib-serializinghtml==1.1.4 ; extra == 'docs' + - sphinxcontrib-websupport==1.2.4 ; extra == 'docs' + - urllib3==1.26.4 ; extra == 'docs' + - flake8==5.0.4 ; extra == 'qa' + - mypy==0.971 ; extra == 'qa' + - types-setuptools==67.2.0.1 ; extra == 'qa' + - django ; extra == 'testing' + - attrs ; extra == 'testing' + - colorama ; extra == 'testing' + - docopt ; extra == 'testing' + - pytest<9.0.0 ; extra == 'testing' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/20/9a/e5d9ec41927401e41aea8af6d16e78b5e612bca4699d417f646a9610a076/Jinja2-3.0.3-py3-none-any.whl + name: jinja2 + version: 3.0.3 + sha256: 077ce6014f7b40d03b47d1f1ca4b0fc8328a692bd284016f806ed0eaca390ad8 + requires_dist: + - markupsafe>=2.0 + - babel>=2.7 ; extra == 'i18n' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/62/a1/3d680cbfd5f4b8f15abc1d571870c5fc3e594bb582bc3b64ea099db13e56/jinja2-3.1.6-py3-none-any.whl + name: jinja2 + version: 3.1.6 + sha256: 85ece4451f492d0c13c5dd7c13a64681a86afae63a5f347908daf103ce6d2f67 + requires_dist: + - markupsafe>=2.0 + - babel>=2.7 ; extra == 'i18n' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/14/2f/967ba146e6d58cf6a652da73885f52fc68001525b4197effc174321d70b4/jmespath-1.1.0-py3-none-any.whl + name: jmespath + version: 1.1.0 + sha256: a5663118de4908c91729bea0acadca56526eb2698e83de10cd116ae0f4e97c64 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/7b/91/984aca2ec129e2757d1e4e3c81c3fcda9d0f85b74670a094cc443d9ee949/joblib-1.5.3-py3-none-any.whl + name: joblib + version: 1.5.3 + sha256: 5fc3c5039fc5ca8c0276333a188bbd59d6b7ab37fe6632daa76bc7f9ec18e713 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d7/9e/038522f50ceb7e74f1f991bf1b699f24b0c2bbe7c390dd36ad69f4582258/json5-0.13.0-py3-none-any.whl + name: json5 + version: 0.13.0 + sha256: 9a08e1dd65f6a4d4c6fa82d216cf2477349ec2346a38fd70cc11d2557499fbcc + requires_python: '>=3.8.0' +- pypi: https://files.pythonhosted.org/packages/71/92/5e77f98553e9e75130c78900d000368476aed74276eb8ae8796f65f00918/jsonpointer-3.0.0-py2.py3-none-any.whl + name: jsonpointer + version: 3.0.0 + sha256: 13e088adc14fca8b6aa8177c044e12701e6ad4b28ff10e65f2267a90109c9942 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/69/90/f63fb5873511e014207a475e2bb4e8b2e570d655b00ac19a9a0ca0a385ee/jsonschema-4.26.0-py3-none-any.whl + name: jsonschema + version: 4.26.0 + sha256: d489f15263b8d200f8387e64b4c3a75f06629559fb73deb8fdfb525f2dab50ce + requires_dist: + - attrs>=22.2.0 + - jsonschema-specifications>=2023.3.6 + - referencing>=0.28.4 + - rpds-py>=0.25.0 + - fqdn ; extra == 'format' + - idna ; extra == 'format' + - isoduration ; extra == 'format' + - jsonpointer>1.13 ; extra == 'format' + - rfc3339-validator ; extra == 'format' + - rfc3987 ; extra == 'format' + - uri-template ; extra == 'format' + - webcolors>=1.11 ; extra == 'format' + - fqdn ; extra == 'format-nongpl' + - idna ; extra == 'format-nongpl' + - isoduration ; extra == 'format-nongpl' + - jsonpointer>1.13 ; extra == 'format-nongpl' + - rfc3339-validator ; extra == 'format-nongpl' + - rfc3986-validator>0.1.0 ; extra == 'format-nongpl' + - rfc3987-syntax>=1.1.0 ; extra == 'format-nongpl' + - uri-template ; extra == 'format-nongpl' + - webcolors>=24.6.0 ; extra == 'format-nongpl' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/41/45/1a4ed80516f02155c51f51e8cedb3c1902296743db0bbc66608a0db2814f/jsonschema_specifications-2025.9.1-py3-none-any.whl + name: jsonschema-specifications + version: 2025.9.1 + sha256: 98802fee3a11ee76ecaca44429fda8a41bff98b00a0f2838151b113f210cc6fe + requires_dist: + - referencing>=0.31.0 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/2d/0b/ceb7694d864abc0a047649aec263878acb9f792e1fec3e676f22dc9015e3/jupyter_client-8.8.0-py3-none-any.whl + name: jupyter-client + version: 8.8.0 + sha256: f93a5b99c5e23a507b773d3a1136bd6e16c67883ccdbd9a829b0bbdb98cd7d7a + requires_dist: + - jupyter-core>=5.1 + - python-dateutil>=2.8.2 + - pyzmq>=25.0 + - tornado>=6.4.1 + - traitlets>=5.3 + - ipykernel ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx>=4 ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - orjson ; extra == 'orjson' + - anyio ; extra == 'test' + - coverage ; extra == 'test' + - ipykernel>=6.14 ; extra == 'test' + - msgpack ; extra == 'test' + - mypy ; platform_python_implementation != 'PyPy' and extra == 'test' + - paramiko ; sys_platform == 'win32' and extra == 'test' + - pre-commit ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-jupyter[client]>=0.6.2 ; extra == 'test' + - pytest-timeout ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e7/e7/80988e32bf6f73919a113473a604f5a8f09094de312b9d52b79c2df7612b/jupyter_core-5.9.1-py3-none-any.whl + name: jupyter-core + version: 5.9.1 + sha256: ebf87fdc6073d142e114c72c9e29a9d7ca03fad818c5d300ce2adc1fb0743407 + requires_dist: + - platformdirs>=2.5 + - traitlets>=5.3 + - intersphinx-registry ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - traitlets ; extra == 'docs' + - ipykernel ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest<9 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/e2/48/577993f1f99c552f18a0428731a755e06171f9902fa118c379eb7c04ea22/jupyter_events-0.12.0-py3-none-any.whl + name: jupyter-events + version: 0.12.0 + sha256: 6464b2fa5ad10451c3d35fabc75eab39556ae1e2853ad0c0cc31b656731a97fb + requires_dist: + - jsonschema[format-nongpl]>=4.18.0 + - packaging + - python-json-logger>=2.0.4 + - pyyaml>=5.3 + - referencing + - rfc3339-validator + - rfc3986-validator>=0.1.1 + - traitlets>=5.3 + - click ; extra == 'cli' + - rich ; extra == 'cli' + - jupyterlite-sphinx ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme>=0.16 ; extra == 'docs' + - sphinx>=8 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - click ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-asyncio>=0.19.0 ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + - rich ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/1a/60/1f6cee0c46263de1173894f0fafcb3475ded276c472c14d25e0280c18d6d/jupyter_lsp-2.3.0-py3-none-any.whl + name: jupyter-lsp + version: 2.3.0 + sha256: e914a3cb2addf48b1c7710914771aaf1819d46b2e5a79b0f917b5478ec93f34f + requires_dist: + - jupyter-server>=1.1.2 + - importlib-metadata>=4.8.3 ; python_full_version < '3.10' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/92/80/a24767e6ca280f5a49525d987bf3e4d7552bf67c8be07e8ccf20271f8568/jupyter_server-2.17.0-py3-none-any.whl + name: jupyter-server + version: 2.17.0 + sha256: e8cb9c7db4251f51ed307e329b81b72ccf2056ff82d50524debde1ee1870e13f + requires_dist: + - anyio>=3.1.0 + - argon2-cffi>=21.1 + - jinja2>=3.0.3 + - jupyter-client>=7.4.4 + - jupyter-core>=4.12,!=5.0.* + - jupyter-events>=0.11.0 + - jupyter-server-terminals>=0.4.4 + - nbconvert>=6.4.4 + - nbformat>=5.3.0 + - overrides>=5.0 ; python_full_version < '3.12' + - packaging>=22.0 + - prometheus-client>=0.9 + - pywinpty>=2.0.1 ; os_name == 'nt' + - pyzmq>=24 + - send2trash>=1.8.2 + - terminado>=0.8.3 + - tornado>=6.2.0 + - traitlets>=5.6.0 + - websocket-client>=1.7 + - ipykernel ; extra == 'docs' + - jinja2 ; extra == 'docs' + - jupyter-client ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbformat ; extra == 'docs' + - prometheus-client ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - send2trash ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-openapi>=0.8.0 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - sphinxemoji ; extra == 'docs' + - tornado ; extra == 'docs' + - typing-extensions ; extra == 'docs' + - flaky ; extra == 'test' + - ipykernel ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-jupyter[server]>=0.7 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0,<9 ; extra == 'test' + - requests ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d1/2d/6674563f71c6320841fc300911a55143925112a72a883e2ca71fba4c618d/jupyter_server_terminals-0.5.4-py3-none-any.whl + name: jupyter-server-terminals + version: 0.5.4 + sha256: 55be353fc74a80bc7f3b20e6be50a55a61cd525626f578dcb66a5708e2007d14 + requires_dist: + - pywinpty>=2.0.3 ; os_name == 'nt' + - terminado>=0.8.3 + - jinja2 ; extra == 'docs' + - jupyter-server ; extra == 'docs' + - mistune<4.0 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbformat ; extra == 'docs' + - packaging ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-openapi ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - sphinxemoji ; extra == 'docs' + - tornado ; extra == 'docs' + - jupyter-server>=2.0.0 ; extra == 'test' + - pytest-jupyter[server]>=0.5.3 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/9e/9a/0bf9a7a45f0006d7ff4fdc4fc313de4255acab02bf4db1887c65f0472c01/jupyterlab-4.5.3-py3-none-any.whl + name: jupyterlab + version: 4.5.3 + sha256: 63c9f3a48de72ba00df766ad6eed416394f5bb883829f11eeff0872302520ba7 + requires_dist: + - async-lru>=1.0.0 + - httpx>=0.25.0,<1 + - importlib-metadata>=4.8.3 ; python_full_version < '3.10' + - ipykernel>=6.5.0,!=6.30.0 + - jinja2>=3.0.3 + - jupyter-core + - jupyter-lsp>=2.0.0 + - jupyter-server>=2.4.0,<3 + - jupyterlab-server>=2.28.0,<3 + - notebook-shim>=0.2 + - packaging + - setuptools>=41.1.0 + - tomli>=1.2.2 ; python_full_version < '3.11' + - tornado>=6.2.0 + - traitlets + - build ; extra == 'dev' + - bump2version ; extra == 'dev' + - coverage ; extra == 'dev' + - hatch ; extra == 'dev' + - pre-commit ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - ruff==0.11.12 ; extra == 'dev' + - jsx-lexer ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme>=0.13.0 ; extra == 'docs' + - pytest ; extra == 'docs' + - pytest-check-links ; extra == 'docs' + - pytest-jupyter ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx>=1.8,<8.2.0 ; extra == 'docs' + - altair==6.0.0 ; extra == 'docs-screenshots' + - ipython==8.16.1 ; extra == 'docs-screenshots' + - ipywidgets==8.1.5 ; extra == 'docs-screenshots' + - jupyterlab-geojson==3.4.0 ; extra == 'docs-screenshots' + - jupyterlab-language-pack-zh-cn==4.3.post1 ; extra == 'docs-screenshots' + - matplotlib==3.10.0 ; extra == 'docs-screenshots' + - nbconvert>=7.0.0 ; extra == 'docs-screenshots' + - pandas==2.2.3 ; extra == 'docs-screenshots' + - scipy==1.15.1 ; extra == 'docs-screenshots' + - coverage ; extra == 'test' + - pytest-check-links>=0.7 ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-jupyter>=0.5.3 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-tornasync ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + - requests ; extra == 'test' + - requests-cache ; extra == 'test' + - virtualenv ; extra == 'test' + - copier>=9,<10 ; extra == 'upgrade-extension' + - jinja2-time<0.3 ; extra == 'upgrade-extension' + - pydantic<3.0 ; extra == 'upgrade-extension' + - pyyaml-include<3.0 ; extra == 'upgrade-extension' + - tomli-w<2.0 ; extra == 'upgrade-extension' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b1/dd/ead9d8ea85bf202d90cc513b533f9c363121c7792674f78e0d8a854b63b4/jupyterlab_pygments-0.3.0-py3-none-any.whl + name: jupyterlab-pygments + version: 0.3.0 + sha256: 841a89020971da1d8693f1a99997aefc5dc424bb1b251fd6322462a1b8842780 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/e0/07/a000fe835f76b7e1143242ab1122e6362ef1c03f23f83a045c38859c2ae0/jupyterlab_server-2.28.0-py3-none-any.whl + name: jupyterlab-server + version: 2.28.0 + sha256: e4355b148fdcf34d312bbbc80f22467d6d20460e8b8736bf235577dd18506968 + requires_dist: + - babel>=2.10 + - importlib-metadata>=4.8.3 ; python_full_version < '3.10' + - jinja2>=3.0.3 + - json5>=0.9.0 + - jsonschema>=4.18.0 + - jupyter-server>=1.21,<3 + - packaging>=21.3 + - requests>=2.31 + - autodoc-traits ; extra == 'docs' + - jinja2<3.2.0 ; extra == 'docs' + - mistune<4 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinxcontrib-openapi>0.8 ; extra == 'docs' + - openapi-core~=0.18.0 ; extra == 'openapi' + - ruamel-yaml ; extra == 'openapi' + - hatch ; extra == 'test' + - ipykernel ; extra == 'test' + - openapi-core~=0.18.0 ; extra == 'test' + - openapi-spec-validator>=0.6.0,<0.8.0 ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-jupyter[server]>=0.6.2 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0,<8 ; extra == 'test' + - requests-mock ; extra == 'test' + - ruamel-yaml ; extra == 'test' + - sphinxcontrib-spelling ; extra == 'test' + - strict-rfc3339 ; extra == 'test' + - werkzeug ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/ab/b5/36c712098e6191d1b4e349304ef73a8d06aed77e56ceaac8c0a306c7bda1/jupyterlab_widgets-3.0.16-py3-none-any.whl + name: jupyterlab-widgets + version: 3.0.16 + sha256: 45fa36d9c6422cf2559198e4db481aa243c7a32d9926b500781c830c80f7ecf8 + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/keyutils-1.6.3-hb9d3cd8_0.conda + sha256: 0960d06048a7185d3542d850986d807c6e37ca2e644342dd0c72feefcf26c2a4 + md5: b38117a3c920364aff79f870c984b4a3 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-or-later + purls: [] + size: 134088 + timestamp: 1754905959823 +- pypi: https://files.pythonhosted.org/packages/5b/5a/51f5464373ce2aeb5194508298a508b6f21d3867f499556263c64c621914/kiwisolver-1.4.9-cp312-cp312-macosx_11_0_arm64.whl + name: kiwisolver + version: 1.4.9 + sha256: 4a2899935e724dd1074cb568ce7ac0dce28b2cd6ab539c8e001a8578eb106d14 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/70/90/6d240beb0f24b74371762873e9b7f499f1e02166a2d9c5801f4dbf8fa12e/kiwisolver-1.4.9-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: kiwisolver + version: 1.4.9 + sha256: f6008a4919fdbc0b0097089f67a1eb55d950ed7e90ce2cc3e640abadd2757a04 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/krb5-1.21.3-h659f571_0.conda + sha256: 99df692f7a8a5c27cd14b5fb1374ee55e756631b9c3d659ed3ee60830249b238 + md5: 3f43953b7d3fb3aaa1d0d0723d91e368 + depends: + - keyutils >=1.6.1,<2.0a0 + - libedit >=3.1.20191231,<3.2.0a0 + - libedit >=3.1.20191231,<4.0a0 + - libgcc-ng >=12 + - libstdcxx-ng >=12 + - openssl >=3.3.1,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 1370023 + timestamp: 1719463201255 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/krb5-1.21.3-h237132a_0.conda + sha256: 4442f957c3c77d69d9da3521268cad5d54c9033f1a73f99cde0a3658937b159b + md5: c6dc8a0fdec13a0565936655c33069a1 + depends: + - __osx >=11.0 + - libcxx >=16 + - libedit >=3.1.20191231,<3.2.0a0 + - libedit >=3.1.20191231,<4.0a0 + - openssl >=3.3.1,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 1155530 + timestamp: 1719463474401 +- pypi: https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl + name: lark + version: 1.3.1 + sha256: c629b661023a014c37da873b4ff58a817398d12635d3bbb2c5a03be7fe5d1e12 + requires_dist: + - regex ; extra == 'regex' + - js2py ; extra == 'nearley' + - atomicwrites ; extra == 'atomic-cache' + - interegular>=0.3.1,<0.4.0 ; extra == 'interegular' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl + name: lazy-loader + version: '0.4' + sha256: 342aa8e14d543a154047afb4ba8ef17f5563baad3fc610d7b15b213b0f119efc + requires_dist: + - packaging + - importlib-metadata ; python_full_version < '3.8' + - changelist==0.5 ; extra == 'dev' + - pre-commit==3.7.0 ; extra == 'lint' + - pytest>=7.4 ; extra == 'test' + - pytest-cov>=4.1 ; extra == 'test' + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/ld_impl_linux-64-2.45-default_hbd61a6d_105.conda + sha256: 1027bd8aa0d5144e954e426ab6218fd5c14e54a98f571985675468b339c808ca + md5: 3ec0aa5037d39b06554109a01e6fb0c6 + depends: + - __glibc >=2.17,<3.0.a0 + - zstd >=1.5.7,<1.6.0a0 + constrains: + - binutils_impl_linux-64 2.45 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 730831 + timestamp: 1766513089214 +- pypi: https://files.pythonhosted.org/packages/41/5b/058db09c45ba58a7321bdf2294cae651b37d6fec68117265af90cde043b0/legacy_api_wrap-1.5-py3-none-any.whl + name: legacy-api-wrap + version: '1.5' + sha256: 5a8ea50e3e3bcbcdec3447b77034fd0d32cb2cf4089db799238708e4d7e0098d + requires_dist: + - anyconfig[toml]>=0.14 ; extra == 'test' + - coverage ; extra == 'test' + - coverage-rich ; extra == 'test' + - pytest ; extra == 'test' + - typer<0.14 ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b0/a4/a89e2ce16a580f7bea066ed49364f0b3e04a6412f0c3692975bee8515141/leidenalg-0.11.0-cp38-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: leidenalg + version: 0.11.0 + sha256: 571a0934f831a69442d82889d319bdba93de924bd9e09b720cd8cbe6fdc08c17 + requires_dist: + - igraph>=1.0.0,<2.0 + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/libaec-1.1.5-h088129d_0.conda + sha256: 822e4ae421a7e9c04e841323526321185f6659222325e1a9aedec811c686e688 + md5: 86f7414544ae606282352fa1e116b41f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 36544 + timestamp: 1769221884824 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libaec-1.1.5-h8664d51_0.conda + sha256: af9cd8db11eb719e38a3340c88bb4882cf19b5b4237d93845224489fc2a13b46 + md5: 13e6d9ae0efbc9d2e9a01a91f4372b41 + depends: + - __osx >=11.0 + - libcxx >=19 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 30390 + timestamp: 1769222133373 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libamd-3.3.3-h456b2da_7100101.conda + sha256: 5fc32a5497c9919ffde729a604b0acfa97c403ce5b2b27b28ca261cf0c4643aa + md5: a067596d679bcde85375143e7c374738 + depends: + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=13.3.0 + - libgfortran + - libgcc >=13 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 48250 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libamd-3.3.3-h5087772_7100102.conda + sha256: 69b5340e7abace13f31f3d9df024ed554d99a250a179d480976fc9682bf7d46e + md5: 0c30185fa04e8b5c78f1f70e6e501bec + depends: + - __osx >=11.0 + - libgfortran >=5 + - libgfortran5 >=13.2.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 46609 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libblas-3.11.0-7_hc00574d_netlib.conda + build_number: 7 + sha256: 464608528e7b188fa3a602c503c7f73b3b446bbfd7b259d1c8b56470c34166fc + md5: bdc18b0a31b3141c6fc1b3bd9fa30fa4 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + constrains: + - blas * netlib + track_features: + - blas_netlib + - blas_netlib_2 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 222771 + timestamp: 1763440535188 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libblas-3.11.0-5_h51639a9_openblas.conda + build_number: 5 + sha256: 620a6278f194dcabc7962277da6835b1e968e46ad0c8e757736255f5ddbfca8d + md5: bcc025e2bbaf8a92982d20863fe1fb69 + depends: + - libopenblas >=0.3.30,<0.3.31.0a0 + - libopenblas >=0.3.30,<1.0a0 + constrains: + - libcblas 3.11.0 5*_openblas + - liblapack 3.11.0 5*_openblas + - liblapacke 3.11.0 5*_openblas + - blas 2.305 openblas + - mkl <2026 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 18546 + timestamp: 1765819094137 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libbtf-2.3.2-hf02c80a_7100101.conda + sha256: fe36f414f48ab87251f02aeef1fcbb6f3929322316842dada0f8142db2710264 + md5: 6f4aec52002defbdf3e24eb79e56a209 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 26913 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libbtf-2.3.2-h99b4a89_7100102.conda + sha256: b05f0169f8723d4a3128ba0b77382385f01835f245079f14c3cb1406a9aff4a8 + md5: bb83a609dcf66d5ac2fd666888788c16 + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 25541 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcamd-3.3.3-hf02c80a_7100101.conda + sha256: 16e9ae4e173a8606b0b8be118dbdcf4e03c9dd9777eea6bf9dff4397133d0d06 + md5: 1c9d1532caadece8adc2d14c6d4fc726 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 44119 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcamd-3.3.3-h99b4a89_7100102.conda + sha256: 7ee0d0881bde6702b662fdaea2d7ca2dd455b37cc413ba466075d7fc3186094d + md5: 9c61b6733f2167a84d08d97a9f2d6f88 + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 38836 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcap-2.77-h3ff7636_0.conda + sha256: 9517cce5193144af0fcbf19b7bd67db0a329c2cc2618f28ffecaa921a1cbe9d3 + md5: 09c264d40c67b82b49a3f3b89037bd2e + depends: + - __glibc >=2.17,<3.0.a0 + - attr >=2.5.2,<2.6.0a0 + - libgcc >=14 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 121429 + timestamp: 1762349484074 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcblas-3.11.0-7_h8e06fc2_netlib.conda + build_number: 7 + sha256: 7940cc63673587cb7946831431b0527ce5707e24a54df87644c199e40c2714b4 + md5: 5febfe8ecc44ffab4f03b026fd63abb8 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas 3.11.0.* + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + track_features: + - blas_netlib + - blas_netlib_2 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 50122 + timestamp: 1763440541127 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcblas-3.11.0-5_hb0561ab_openblas.conda + build_number: 5 + sha256: 38809c361bbd165ecf83f7f05fae9b791e1baa11e4447367f38ae1327f402fc0 + md5: efd8bd15ca56e9d01748a3beab8404eb + depends: + - libblas 3.11.0 5_h51639a9_openblas + constrains: + - liblapacke 3.11.0 5*_openblas + - liblapack 3.11.0 5*_openblas + - blas 2.305 openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 18548 + timestamp: 1765819108956 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libccolamd-3.3.4-hf02c80a_7100101.conda + sha256: cc90aa5e0ad1f7ae9a29d9a42aacd7f7f02aba0bf5467513bfda7e6b18a4cbc8 + md5: e5107e02dc4c2f9f41eef72d72c23517 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 41578 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libccolamd-3.3.4-h99b4a89_7100102.conda + sha256: c2adccb535216828b036311da2e5ff67210cbd796c5c008c8c0aff8225b33adf + md5: 14092975663a3b6139a8891b8f56151b + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 38623 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcholmod-5.3.1-h9cf07ce_7100101.conda + sha256: 69540315b4b8de93b383243334151ed19e98968baaa59440ba645a3bff68d765 + md5: f51e24ce110ae24c92074736a308e47e + depends: + - libgcc >=13 + - libstdcxx >=13 + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - liblapack >=3.9.0,<4.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libccolamd >=3.3.4,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - libcamd >=3.3.3,<4.0a0 + license: LGPL-2.1-or-later AND GPL-2.0-or-later AND Apache-2.0 + purls: [] + size: 990886 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcholmod-5.3.1-hbba04d7_7100102.conda + sha256: d031714d1c5c29461113b732a9788579f6c8b466cf44580fdd350e585c246b40 + md5: a780c27386527ac7fe7526415a3b9b23 + depends: + - libcxx >=18 + - __osx >=11.0 + - llvm-openmp >=18.1.8 + - libccolamd >=3.3.4,<4.0a0 + - libamd >=3.3.3,<4.0a0 + - libcamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - liblapack >=3.9.0,<4.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: LGPL-2.1-or-later AND GPL-2.0-or-later AND Apache-2.0 + purls: [] + size: 775287 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcolamd-3.3.4-hf02c80a_7100101.conda + sha256: 00d1b976b914f0c20ae6f81f4e4713fa87717542eba8757b9a3c9e8abcc29858 + md5: 56d4c5542887e8955f21f8546ad75d9d + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 33160 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcolamd-3.3.4-h99b4a89_7100102.conda + sha256: 3c4467faf60994dd095a66ba5a4508b9d610487ed89458084d87ad3e4b0fe53f + md5: 89673c8b6f5efcce6e92f5269996cc40 + depends: + - __osx >=11.0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 31802 + timestamp: 1742288952863 +- pypi: https://pypi.nvidia.com/libcudf-cu12/libcudf_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + name: libcudf-cu12 + version: 25.12.0 + sha256: 5cf9f7f13c37a2dc2c1fa57c1aa50e5ceda6813cb47803719b16dddb5fb3e622 + requires_dist: + - libkvikio-cu12==25.12.* + - librmm-cu12==25.12.* + - rapids-logger==0.2.* + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/libcugraph-cu12/libcugraph_cu12-25.12.2-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: libcugraph-cu12 + version: 25.12.2 + sha256: d0eb2e4dc68e48999c05d175d3d0fb8531c5b2c4ce3312f039e0e2bf8db2b92c + requires_dist: + - libraft-cu12==25.12.* + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/libcuml-cu12/libcuml_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: libcuml-cu12 + version: 25.12.0 + sha256: 41f356963ac6cbff88d92cf9ede2de33323b788ad9c97937b8d9394f49309817 + requires_dist: + - cuda-toolkit[cublas,cufft,curand,cusolver,cusparse]==12.* + - libraft-cu12==25.12.* + - rapids-logger==0.2.* + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/libcurl-8.18.0-h4e3cde8_0.conda + sha256: 5454709d9fb6e9c3dd6423bc284fa7835a7823bfa8323f6e8786cdd555101fab + md5: 0a5563efed19ca4461cf927419b6eb73 + depends: + - __glibc >=2.17,<3.0.a0 + - krb5 >=1.21.3,<1.22.0a0 + - libgcc >=14 + - libnghttp2 >=1.67.0,<2.0a0 + - libssh2 >=1.11.1,<2.0a0 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.4,<4.0a0 + - zstd >=1.5.7,<1.6.0a0 + license: curl + license_family: MIT + purls: [] + size: 462942 + timestamp: 1767821743793 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcurl-8.18.0-he38603e_0.conda + sha256: 11c78b3e89bc332933386f0a11ac60d9200afb7a811b9e3bec98aef8d4a6389b + md5: 36190179a799f3aee3c2d20a8a2b970d + depends: + - __osx >=11.0 + - krb5 >=1.21.3,<1.22.0a0 + - libnghttp2 >=1.67.0,<2.0a0 + - libssh2 >=1.11.1,<2.0a0 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.4,<4.0a0 + - zstd >=1.5.7,<1.6.0a0 + license: curl + license_family: MIT + purls: [] + size: 402681 + timestamp: 1767822693908 +- pypi: https://pypi.nvidia.com/libcuvs-cu12/libcuvs_cu12-25.12.0-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: libcuvs-cu12 + version: 25.12.0 + sha256: 30f54b221525128c1af8f750063e23e3b546e28f321a7e13aff9592c05d6a58d + requires_dist: + - cuda-toolkit[cublas,curand,cusolver,cusparse]==12.* + - libraft-cu12==25.12.* + - librmm-cu12==25.12.* + - nvidia-nccl-cu12>=2.19 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libcxx-21.1.8-hf598326_0.conda + sha256: 82e228975fd491bcf1071ecd0a6ec2a0fcc5f57eb0bd1d52cb13a18d57c67786 + md5: 780f0251b757564e062187044232c2b7 + depends: + - __osx >=11.0 + license: Apache-2.0 WITH LLVM-exception + license_family: Apache + purls: [] + size: 569118 + timestamp: 1765919724254 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libedit-3.1.20250104-pl5321h7949ede_0.conda + sha256: d789471216e7aba3c184cd054ed61ce3f6dac6f87a50ec69291b9297f8c18724 + md5: c277e0a4d549b03ac1e9d6cbbe3d017b + depends: + - ncurses + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - ncurses >=6.5,<7.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 134676 + timestamp: 1738479519902 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libedit-3.1.20250104-pl5321hafb1f1b_0.conda + sha256: 66aa216a403de0bb0c1340a88d1a06adaff66bae2cfd196731aa24db9859d631 + md5: 44083d2d2c2025afca315c7a172eab2b + depends: + - ncurses + - __osx >=11.0 + - ncurses >=6.5,<7.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 107691 + timestamp: 1738479560845 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libev-4.33-hd590300_2.conda + sha256: 1cd6048169fa0395af74ed5d8f1716e22c19a81a8a36f934c110ca3ad4dd27b4 + md5: 172bf1cd1ff8629f2b1179945ed45055 + depends: + - libgcc-ng >=12 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 112766 + timestamp: 1702146165126 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libev-4.33-h93a5062_2.conda + sha256: 95cecb3902fbe0399c3a7e67a5bed1db813e5ab0e22f4023a5e0f722f2cc214f + md5: 36d33e440c31857372a72137f78bacf5 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 107458 + timestamp: 1702146414478 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libevent-2.1.12-hf998b51_1.conda + sha256: 2e14399d81fb348e9d231a82ca4d816bf855206923759b69ad006ba482764131 + md5: a1cfcc585f0c42bf8d5546bb1dfb668d + depends: + - libgcc-ng >=12 + - openssl >=3.1.1,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 427426 + timestamp: 1685725977222 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libexpat-2.7.3-hecca717_0.conda + sha256: 1e1b08f6211629cbc2efe7a5bca5953f8f6b3cae0eeb04ca4dacee1bd4e2db2f + md5: 8b09ae86839581147ef2e5c5e229d164 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + constrains: + - expat 2.7.3.* + license: MIT + license_family: MIT + purls: [] + size: 76643 + timestamp: 1763549731408 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libexpat-2.7.3-haf25636_0.conda + sha256: fce22610ecc95e6d149e42a42fbc3cc9d9179bd4eb6232639a60f06e080eec98 + md5: b79875dbb5b1db9a4a22a4520f918e1a + depends: + - __osx >=11.0 + constrains: + - expat 2.7.3.* + license: MIT + license_family: MIT + purls: [] + size: 67800 + timestamp: 1763549994166 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric-2.4.0-ha770c72_1.conda + sha256: c5298c27fe1be477b17cd989566eb6c1a1bb50222f2f90389143b6f06ba95398 + md5: 647939791f2cc2de3b4ecac28d216279 + depends: + - libfabric1 2.4.0 h8f87c3e_1 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 14406 + timestamp: 1769190335747 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric-2.4.0-hce30654_1.conda + sha256: a2a9779347d26c0d66f18705183e8701aeba420db01edaa5dcde3ae76cbf9c00 + md5: b356b8b9cdb1cb1f3cbfb25d00d35515 + depends: + - libfabric1 2.4.0 h84a0fba_1 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 14420 + timestamp: 1769190772410 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libfabric1-2.4.0-h8f87c3e_1.conda + sha256: 3110ee1b3debb97638897bb0d7074ee257ff33519520327064c36a35391dec50 + md5: c5fc7dbc3dbabcae1eec5d6c62251df8 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libnl >=3.11.0,<4.0a0 + - rdma-core >=61.0 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 699849 + timestamp: 1769190335048 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libfabric1-2.4.0-h84a0fba_1.conda + sha256: c57c240b11a0051f62d9f26560ae2c94df0ba5e30a33c59cd79786bf2d8588c6 + md5: 17b27d39ff83af87065476ab6d8b7e74 + depends: + - __osx >=11.0 + license: BSD-2-Clause OR GPL-2.0-only + license_family: BSD + purls: [] + size: 330902 + timestamp: 1769190770219 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libffi-3.5.2-h3435931_0.conda + sha256: 31f19b6a88ce40ebc0d5a992c131f57d919f73c0b92cd1617a5bec83f6e961e6 + md5: a360c33a5abe61c07959e449fa1453eb + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: MIT + purls: [] + size: 58592 + timestamp: 1769456073053 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libffi-3.5.2-hcf2aa1b_0.conda + sha256: 6686a26466a527585e6a75cc2a242bf4a3d97d6d6c86424a441677917f28bec7 + md5: 43c04d9cb46ef176bb2a4c77e324d599 + depends: + - __osx >=11.0 + license: MIT + purls: [] + size: 40979 + timestamp: 1769456747661 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-15.2.0-he0feb66_16.conda + sha256: 6eed58051c2e12b804d53ceff5994a350c61baf117ec83f5f10c953a3f311451 + md5: 6d0363467e6ed84f11435eb309f2ff06 + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + constrains: + - libgcc-ng ==15.2.0=*_16 + - libgomp 15.2.0 he0feb66_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 1042798 + timestamp: 1765256792743 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgcc-15.2.0-hcbb3090_16.conda + sha256: 646c91dbc422fe92a5f8a3a5409c9aac66549f4ce8f8d1cab7c2aa5db789bb69 + md5: 8b216bac0de7a9d60f3ddeba2515545c + depends: + - _openmp_mutex + constrains: + - libgcc-ng ==15.2.0=*_16 + - libgomp 15.2.0 16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 402197 + timestamp: 1765258985740 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgcc-ng-15.2.0-h69a702a_16.conda + sha256: 5f07f9317f596a201cc6e095e5fc92621afca64829785e483738d935f8cab361 + md5: 5a68259fac2da8f2ee6f7bfe49c9eb8b + depends: + - libgcc 15.2.0 he0feb66_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 27256 + timestamp: 1765256804124 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran-15.2.0-h69a702a_16.conda + sha256: 8a7b01e1ee1c462ad243524d76099e7174ebdd94ff045fe3e9b1e58db196463b + md5: 40d9b534410403c821ff64f00d0adc22 + depends: + - libgfortran5 15.2.0 h68bc16d_16 + constrains: + - libgfortran-ng ==15.2.0=*_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 27215 + timestamp: 1765256845586 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran-15.2.0-h07b0088_16.conda + sha256: 68a6c1384d209f8654112c4c57c68c540540dd8e09e17dd1facf6cf3467798b5 + md5: 11e09edf0dde4c288508501fe621bab4 + depends: + - libgfortran5 15.2.0 hdae7583_16 + constrains: + - libgfortran-ng ==15.2.0=*_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 138630 + timestamp: 1765259217400 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgfortran5-15.2.0-h68bc16d_16.conda + sha256: d0e974ebc937c67ae37f07a28edace978e01dc0f44ee02f29ab8a16004b8148b + md5: 39183d4e0c05609fd65f130633194e37 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=15.2.0 + constrains: + - libgfortran 15.2.0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 2480559 + timestamp: 1765256819588 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libgfortran5-15.2.0-hdae7583_16.conda + sha256: 9fb7f4ff219e3fb5decbd0ee90a950f4078c90a86f5d8d61ca608c913062f9b0 + md5: 265a9d03461da24884ecc8eb58396d57 + depends: + - libgcc >=15.2.0 + constrains: + - libgfortran 15.2.0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 598291 + timestamp: 1765258993165 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libgomp-15.2.0-he0feb66_16.conda + sha256: 5b3e5e4e9270ecfcd48f47e3a68f037f5ab0f529ccb223e8e5d5ac75a58fc687 + md5: 26c46f90d0e727e95c6c9498a33a09f3 + depends: + - __glibc >=2.17,<3.0.a0 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 603284 + timestamp: 1765256703881 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libhwloc-2.12.2-default_hafda6a7_1000.conda + sha256: 2cf160794dda62cf93539adf16d26cfd31092829f2a2757dbdd562984c1b110a + md5: 0ed3aa3e3e6bc85050d38881673a692f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + - libxml2 + - libxml2-16 >=2.14.6 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 2449916 + timestamp: 1765103845133 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libhwloc-2.12.2-default_ha3cc4f2_1000.conda + sha256: 4d03bb9bc0a813cf5e24f07e6adec3c42df2c9c36e226b71cb1dc6c7868c7d90 + md5: 38b8aa4ea25d313ad951bcb7d3cd0ad3 + depends: + - __osx >=11.0 + - libcxx >=19 + - libxml2 + - libxml2-16 >=2.14.6 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 2356224 + timestamp: 1765104113197 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libiconv-1.18-h3b78370_2.conda + sha256: c467851a7312765447155e071752d7bf9bf44d610a5687e32706f480aad2833f + md5: 915f5995e94f60e9a4826e0b0920ee88 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: LGPL-2.1-only + purls: [] + size: 790176 + timestamp: 1754908768807 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libiconv-1.18-h23cfdf5_2.conda + sha256: de0336e800b2af9a40bdd694b03870ac4a848161b35c8a2325704f123f185f03 + md5: 4d5a7445f0b25b6a3ddbb56e790f5251 + depends: + - __osx >=11.0 + license: LGPL-2.1-only + purls: [] + size: 750379 + timestamp: 1754909073836 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libklu-2.3.5-h95ff59c_7100101.conda + sha256: 6b4d462642c240dc3671af74f7705b23f34eea0f71e0d9dbcf14b4ed008311ff + md5: efaa5e7dc6989363585fbb591480b256 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - metis >=5.1.0,<5.1.1.0a0 + - libcamd >=3.3.3,<4.0a0 + - liblapack >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libamd >=3.3.3,<4.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libblas >=3.9.0,<4.0a0 + - libbtf >=2.3.2,<3.0a0 + - libccolamd >=3.3.4,<4.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 131775 + timestamp: 1741963824816 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libklu-2.3.5-h4370aa4_7100102.conda + sha256: b0a2232fe917abcf0f8c7fbb37c8c3783a0580a38f98610c5c20a3a6cb8c12f3 + md5: 37896b0b2e01cbe2de5f25f645bc881e + depends: + - __osx >=11.0 + - llvm-openmp >=18.1.8 + - libccolamd >=3.3.4,<4.0a0 + - libcamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libcolamd >=3.3.4,<4.0a0 + - libbtf >=2.3.2,<3.0a0 + - libamd >=3.3.3,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - libcholmod >=5.3.1,<6.0a0 + - liblapack >=3.9.0,<4.0a0 + - metis >=5.1.0,<5.1.1.0a0 + license: LGPL-2.1-or-later + purls: [] + size: 93667 + timestamp: 1742288952864 +- pypi: https://pypi.nvidia.com/libkvikio-cu12/libkvikio_cu12-25.12.0-py3-none-manylinux_2_28_x86_64.whl + name: libkvikio-cu12 + version: 25.12.0 + sha256: 06555daf9fec5f5ef7051524e107a50a8c3b527cdff9bb2e02debc1451238b05 +- conda: https://conda.anaconda.org/conda-forge/linux-64/liblapack-3.11.0-7_h8876d29_netlib.conda + build_number: 7 + sha256: 4de5b6aef4b2d42b4f71c6a3673118f99e323aed2ba2a66a3ed435b574010b1e + md5: 3bb4c3696602a7d3a4243d165e8fd867 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas 3.11.0.* + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + track_features: + - blas_netlib + - blas_netlib_2 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 2901209 + timestamp: 1763440547062 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblapack-3.11.0-5_hd9741b5_openblas.conda + build_number: 5 + sha256: 735a6e6f7d7da6f718b6690b7c0a8ae4815afb89138aa5793abe78128e951dbb + md5: ca9d752201b7fa1225bca036ee300f2b + depends: + - libblas 3.11.0 5_h51639a9_openblas + constrains: + - libcblas 3.11.0 5*_openblas + - blas 2.305 openblas + - liblapacke 3.11.0 5*_openblas + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 18551 + timestamp: 1765819121855 +- conda: https://conda.anaconda.org/conda-forge/linux-64/liblzma-5.8.2-hb03c661_0.conda + sha256: 755c55ebab181d678c12e49cced893598f2bab22d582fbbf4d8b83c18be207eb + md5: c7c83eecbb72d88b940c249af56c8b17 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + constrains: + - xz 5.8.2.* + license: 0BSD + purls: [] + size: 113207 + timestamp: 1768752626120 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/liblzma-5.8.2-h8088a28_0.conda + sha256: 7bfc7ffb2d6a9629357a70d4eadeadb6f88fa26ebc28f606b1c1e5e5ed99dc7e + md5: 009f0d956d7bfb00de86901d16e486c7 + depends: + - __osx >=11.0 + constrains: + - xz 5.8.2.* + license: 0BSD + purls: [] + size: 92242 + timestamp: 1768752982486 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libnghttp2-1.67.0-had1ee68_0.conda + sha256: a4a7dab8db4dc81c736e9a9b42bdfd97b087816e029e221380511960ac46c690 + md5: b499ce4b026493a13774bcf0f4c33849 + depends: + - __glibc >=2.17,<3.0.a0 + - c-ares >=1.34.5,<2.0a0 + - libev >=4.33,<4.34.0a0 + - libev >=4.33,<5.0a0 + - libgcc >=14 + - libstdcxx >=14 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.2,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 666600 + timestamp: 1756834976695 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libnghttp2-1.67.0-hc438710_0.conda + sha256: a07cb53b5ffa2d5a18afc6fd5a526a5a53dd9523fbc022148bd2f9395697c46d + md5: a4b4dd73c67df470d091312ab87bf6ae + depends: + - __osx >=11.0 + - c-ares >=1.34.5,<2.0a0 + - libcxx >=19 + - libev >=4.33,<4.34.0a0 + - libev >=4.33,<5.0a0 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.2,<4.0a0 + license: MIT + license_family: MIT + purls: [] + size: 575454 + timestamp: 1756835746393 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libnl-3.11.0-hb9d3cd8_0.conda + sha256: ba7c5d294e3d80f08ac5a39564217702d1a752e352e486210faff794ac5001b4 + md5: db63358239cbe1ff86242406d440e44a + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-or-later + license_family: LGPL + purls: [] + size: 741323 + timestamp: 1731846827427 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libnsl-2.0.1-hb9d3cd8_1.conda + sha256: 927fe72b054277cde6cb82597d0fcf6baf127dcbce2e0a9d8925a68f1265eef5 + md5: d864d34357c3b65a4b731f78c0801dc4 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: LGPL-2.1-only + license_family: GPL + purls: [] + size: 33731 + timestamp: 1750274110928 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libopenblas-0.3.30-openmp_ha158390_4.conda + sha256: ebbbc089b70bcde87c4121a083c724330f02a690fb9d7c6cd18c30f1b12504fa + md5: a6f6d3a31bb29e48d37ce65de54e2df0 + depends: + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - llvm-openmp >=19.1.7 + constrains: + - openblas >=0.3.30,<0.3.31.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 4284132 + timestamp: 1768547079205 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libpmix-5.0.8-h9b03745_3.conda + sha256: 339fdb508599d406a126cd93fd0fb995551cc5b981fc66e2fc615d4d606f6260 + md5: 935ac8861a784e8393474b1675f92b3f + depends: + - __glibc >=2.17,<3.0.a0 + - libevent >=2.1.12,<2.1.13.0a0 + - libgcc >=14 + - libhwloc >=2.12.2,<2.12.3.0a0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 730177 + timestamp: 1768612382564 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libptscotch-7.0.10-int32_ha94cade_2.conda + sha256: 384e47a445664c94f176bfaf19ec67addd9393619eecb610c846fb9272791bfd + md5: cae64eda47b87e020742dee1eb524737 + depends: + - libscotch 7.0.10 int32_h865694f_2 + - openmpi >=5.0.8,<6.0a0 + purls: [] + size: 192723 + timestamp: 1763423740144 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libptscotch-7.0.10-int32_hf99fa1b_2.conda + sha256: c2269b2c9c789a415ec4a5f1c69ecb7cfc50bf456bd3d74a13a959bdb4c81c55 + md5: b5557656b7c824e0aad2e4f061e45903 + depends: + - libscotch 7.0.10 int32_hed6a4d5_2 + - mpich >=4.3.2,<5.0a0 + purls: [] + size: 156483 + timestamp: 1763424518127 +- pypi: https://pypi.nvidia.com/libraft-cu12/libraft_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: libraft-cu12 + version: 25.12.0 + sha256: 157b2010bbc054a7fa43fc5571ad7d2444ca7be6bdef55e5d51f1992fa8dc9aa + requires_dist: + - cuda-toolkit[cublas,curand,cusolver,cusparse]==12.* + - librmm-cu12==25.12.* + - nvidia-nccl-cu12>=2.19 + - rapids-logger==0.2.* + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/librmm-cu12/librmm_cu12-25.12.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: librmm-cu12 + version: 25.12.0 + sha256: efb769b3c4c81840831edf2e152a281e92e7958da33fcf4b9689023c184f7e74 + requires_dist: + - rapids-logger==0.2.* +- conda: https://conda.anaconda.org/conda-forge/linux-64/libscotch-7.0.10-int32_h865694f_2.conda + sha256: 82b292f736d14d10527f7f7da0a593a3c15488edc39328c3554a6e25b251e592 + md5: f251dd3dc377b9b34b58fa72430c0f68 + depends: + - __glibc >=2.17,<3.0.a0 + - bzip2 >=1.0.8,<2.0a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + license: CECILL-C + purls: [] + size: 359893 + timestamp: 1763423721992 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libscotch-7.0.10-int32_hed6a4d5_2.conda + sha256: caded9c5dd44dd4f3d92876255759040cc7d25efdfb84b99356e0946fabe03d4 + md5: 4c7fc18892e7d60fe2607e1559033f99 + depends: + - __osx >=11.0 + - bzip2 >=1.0.8,<2.0a0 + - libgfortran + - libgfortran5 >=14.3.0 + - libgfortran5 >=15.2.0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + license: CECILL-C + purls: [] + size: 287360 + timestamp: 1763424455961 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libspqr-4.3.4-h23b7119_7100101.conda + sha256: 52851575496122f9088c9f5a4283da7fbb277d9a877b5ce60a939554df542f3c + md5: c1ee33a71065c1f0efd9c8174d5f18b0 + depends: + - libgcc >=13 + - libstdcxx >=13 + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libcholmod >=5.3.1,<6.0a0 + - libblas >=3.9.0,<4.0a0 + - liblapack >=3.9.0,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 203419 + timestamp: 1741963824816 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libspqr-4.3.4-h775d698_7100102.conda + sha256: 35decda7f3de10dfeb6159ddaf27017fcf53c52119297a1f943b6396d18328a7 + md5: cbac21c5e5ffcd4bcee5dba052535565 + depends: + - __osx >=11.0 + - libcxx >=18 + - libcholmod >=5.3.1,<6.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 164152 + timestamp: 1742288952864 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsqlite-3.51.2-hf4e2dac_0.conda + sha256: 04596fcee262a870e4b7c9807224680ff48d4d0cc0dac076a602503d3dc6d217 + md5: da5be73701eecd0e8454423fd6ffcf30 + depends: + - __glibc >=2.17,<3.0.a0 + - icu >=78.2,<79.0a0 + - libgcc >=14 + - libzlib >=1.3.1,<2.0a0 + license: blessing + purls: [] + size: 942808 + timestamp: 1768147973361 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsqlite-3.51.2-h1ae2325_0.conda + sha256: 6e9b9f269732cbc4698c7984aa5b9682c168e2a8d1e0406e1ff10091ca046167 + md5: 4b0bf313c53c3e89692f020fb55d5f2c + depends: + - __osx >=11.0 + - icu >=78.2,<79.0a0 + - libzlib >=1.3.1,<2.0a0 + license: blessing + purls: [] + size: 909777 + timestamp: 1768148320535 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libssh2-1.11.1-hcf80075_0.conda + sha256: fa39bfd69228a13e553bd24601332b7cfeb30ca11a3ca50bb028108fe90a7661 + md5: eecce068c7e4eddeb169591baac20ac4 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.0,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 304790 + timestamp: 1745608545575 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libssh2-1.11.1-h1590b86_0.conda + sha256: 8bfe837221390ffc6f111ecca24fa12d4a6325da0c8d131333d63d6c37f27e0a + md5: b68e8f66b94b44aaa8de4583d3d4cc40 + depends: + - libzlib >=1.3.1,<2.0a0 + - openssl >=3.5.0,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 279193 + timestamp: 1745608793272 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-15.2.0-h934c35e_16.conda + sha256: 813427918316a00c904723f1dfc3da1bbc1974c5cfe1ed1e704c6f4e0798cbc6 + md5: 68f68355000ec3f1d6f26ea13e8f525f + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc 15.2.0 he0feb66_16 + constrains: + - libstdcxx-ng ==15.2.0=*_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 5856456 + timestamp: 1765256838573 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libstdcxx-ng-15.2.0-hdf11a46_16.conda + sha256: 81f2f246c7533b41c5e0c274172d607829019621c4a0823b5c0b4a8c7028ee84 + md5: 1b3152694d236cf233b76b8c56bf0eae + depends: + - libstdcxx 15.2.0 h934c35e_16 + license: GPL-3.0-only WITH GCC-exception-3.1 + license_family: GPL + purls: [] + size: 27300 + timestamp: 1765256885128 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsuitesparseconfig-7.10.1-h901830b_7100101.conda + sha256: d8f32a0b0ee17fbace7af4bd34ad554cc855b9c18e0aeccf8395e1478c161f37 + md5: 57ae1dd979da7aa88a9b38bfa2e1d6b2 + depends: + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=13.3.0 + - libgfortran + - libgcc >=13 + - _openmp_mutex >=4.5 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 42708 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libsuitesparseconfig-7.10.1-h4a8fc20_7100102.conda + sha256: 847b393bfb5c8db10923544e44dcb5ba78e5978cbd841b04b7dc626a2b3c3306 + md5: 7ffecea6d807f0bd69a3e136a409ced3 + depends: + - libgfortran >=5 + - libgfortran5 >=13.2.0 + - __osx >=11.0 + - llvm-openmp >=18.1.8 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 41963 + timestamp: 1742288952861 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libsystemd0-257.10-hd0affe5_3.conda + sha256: b3a7f89462dc95c1bba9f663210d20ff3ac5f7db458684e0f3a7ae5784f8c132 + md5: 70d1de6301b58ed99fea01490a9802a3 + depends: + - __glibc >=2.17,<3.0.a0 + - libcap >=2.77,<2.78.0a0 + - libgcc >=14 + license: LGPL-2.1-or-later + purls: [] + size: 491268 + timestamp: 1765552759709 +- pypi: https://pypi.nvidia.com/libucx-cu12/libucx_cu12-1.19.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: libucx-cu12 + version: 1.19.0 + sha256: 64b9448f23c7bb29be30d21bac5742f7297845d0f0c159e6302670b35e71251f + requires_python: '>=3.9' +- pypi: https://pypi.nvidia.com/libucxx-cu12/libucxx_cu12-0.47.0-py3-none-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: libucxx-cu12 + version: 0.47.0 + sha256: d42d544a022abd004b68ac8c264f1e1972f6b6236aa8b34c8583cb195816f18d + requires_dist: + - librmm-cu12==25.12.* + - libucx-cu12>=1.17.0,<1.20 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libudev1-257.10-hd0affe5_3.conda + sha256: 977e7e4955ea1581e441e429c2c1b498bc915767f1cac77a97b283c469d5298c + md5: 3934f4cf65a06100d526b33395fb9cd2 + depends: + - __glibc >=2.17,<3.0.a0 + - libcap >=2.77,<2.78.0a0 + - libgcc >=14 + license: LGPL-2.1-or-later + purls: [] + size: 145023 + timestamp: 1765552781358 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libumfpack-6.3.5-h873dde6_7100101.conda + sha256: 9a2c0049210c0223084c29b39404ad6da6538e7a4d1ed74ee8423212998fd686 + md5: 9626fc7667bc6c901c7a0a4004938c71 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libblas >=3.9.0,<4.0a0 + - libamd >=3.3.3,<4.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 404065 + timestamp: 1741963824815 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libumfpack-6.3.5-h7c2c975_7100102.conda + sha256: a7d2d337e953a3ff641efb5bb1842c6d3f66a0a21718a1d354f4841432bf3204 + md5: ca1a54d25f34317fecb0a134e94d3cab + depends: + - __osx >=11.0 + - libamd >=3.3.3,<4.0a0 + - libsuitesparseconfig >=7.10.1,<8.0a0 + - libblas >=3.9.0,<4.0a0 + - libcholmod >=5.3.1,<6.0a0 + license: GPL-2.0-or-later + license_family: GPL + purls: [] + size: 295754 + timestamp: 1742288952863 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libuuid-2.41.3-h5347b49_0.conda + sha256: 1a7539cfa7df00714e8943e18de0b06cceef6778e420a5ee3a2a145773758aee + md5: db409b7c1720428638e7c0d509d3e1b5 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 40311 + timestamp: 1766271528534 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxcrypt-4.4.36-hd590300_1.conda + sha256: 6ae68e0b86423ef188196fff6207ed0c8195dd84273cb5623b85aa08033a410c + md5: 5aa797f8787fe7a17d1b0821485b5adc + depends: + - libgcc-ng >=12 + license: LGPL-2.1-or-later + purls: [] + size: 100393 + timestamp: 1702724383534 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-2.15.1-he237659_1.conda + sha256: 047be059033c394bd32ae5de66ce389824352120b3a7c0eff980195f7ed80357 + md5: 417955234eccd8f252b86a265ccdab7f + depends: + - __glibc >=2.17,<3.0.a0 + - icu >=78.1,<79.0a0 + - libgcc >=14 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libxml2-16 2.15.1 hca6bf5a_1 + - libzlib >=1.3.1,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 45402 + timestamp: 1766327161688 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-2.15.1-h8d039ee_1.conda + sha256: 59f96fa27cce6a9a27414c5bb301eedda1a1b85cd0d8f5d68f77e46b86e7c95f + md5: fd804ee851e20faca4fecc7df0901d07 + depends: + - __osx >=11.0 + - icu >=78.1,<79.0a0 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libxml2-16 2.15.1 h5ef1a60_1 + - libzlib >=1.3.1,<2.0a0 + license: MIT + license_family: MIT + purls: [] + size: 40607 + timestamp: 1766327501392 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libxml2-16-2.15.1-hca6bf5a_1.conda + sha256: 8331284bf9ae641b70cdc0e5866502dd80055fc3b9350979c74bb1d192e8e09e + md5: 3fdd8d99683da9fe279c2f4cecd1e048 + depends: + - __glibc >=2.17,<3.0.a0 + - icu >=78.1,<79.0a0 + - libgcc >=14 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + constrains: + - libxml2 2.15.1 + license: MIT + license_family: MIT + purls: [] + size: 555747 + timestamp: 1766327145986 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libxml2-16-2.15.1-h5ef1a60_1.conda + sha256: 2d5ab15113b0ba21f4656d387d26ab59e4fbaf3027f5e58a2a4fe370821eb106 + md5: 7eed1026708e26ee512f43a04d9d0027 + depends: + - __osx >=11.0 + - icu >=78.1,<79.0a0 + - libiconv >=1.18,<2.0a0 + - liblzma >=5.8.1,<6.0a0 + - libzlib >=1.3.1,<2.0a0 + constrains: + - libxml2 2.15.1 + license: MIT + license_family: MIT + purls: [] + size: 464886 + timestamp: 1766327479416 +- conda: https://conda.anaconda.org/conda-forge/linux-64/libzlib-1.3.1-hb9d3cd8_2.conda + sha256: d4bfe88d7cb447768e31650f06257995601f89076080e76df55e3112d4e47dc4 + md5: edb0dca6bc32e4f4789199455a1dbeb8 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 60963 + timestamp: 1727963148474 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/libzlib-1.3.1-h8359307_2.conda + sha256: ce34669eadaba351cd54910743e6a2261b67009624dbc7daeeafdef93616711b + md5: 369964e85dc26bfe78f41399b366c435 + depends: + - __osx >=11.0 + constrains: + - zlib 1.3.1 *_2 + license: Zlib + license_family: Other + purls: [] + size: 46438 + timestamp: 1727963202283 +- pypi: https://files.pythonhosted.org/packages/d6/e9/36b340c7ec01dad6f034481e98fc9fc0133307beb05c714c0542af98bbde/lightning-2.6.0-py3-none-any.whl + name: lightning + version: 2.6.0 + sha256: f1a13a48909960a3454518486f113fae4fadb2db0e28e9c50d8d38d46c9dc3d6 + requires_dist: + - pyyaml>5.4,<8.0 + - fsspec[http]>=2022.5.0,<2027.0 + - lightning-utilities>=0.10.0,<2.0 + - packaging>=20.0,<27.0 + - torch>=2.1.0,<4.0 + - torchmetrics>0.7.0,<3.0 + - tqdm>=4.57.0,<6.0 + - typing-extensions>4.5.0,<6.0 + - pytorch-lightning + - ipython[all]>=8.0.0,<11.0 ; extra == 'pytorch-examples' + - requests<3.0 ; extra == 'pytorch-examples' + - torchmetrics>=0.10.0,<2.0 ; extra == 'pytorch-examples' + - torchvision>=0.16.0,<1.0 ; extra == 'pytorch-examples' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'pytorch-extra' + - hydra-core>=1.2.0,<2.0 ; extra == 'pytorch-extra' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'pytorch-extra' + - matplotlib>3.1,<4.0 ; extra == 'pytorch-extra' + - omegaconf>=2.2.3,<3.0 ; extra == 'pytorch-extra' + - rich>=12.3.0,<15.0 ; extra == 'pytorch-extra' + - tensorboardx>=2.2,<3.0 ; extra == 'pytorch-extra' + - cloudpickle>=1.3,<4.0 ; extra == 'pytorch-test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'pytorch-test' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'pytorch-test' + - fastapi ; extra == 'pytorch-test' + - huggingface-hub ; extra == 'pytorch-test' + - numpy>1.20.0,<2.0 ; extra == 'pytorch-test' + - onnx>1.12.0,<2.0 ; extra == 'pytorch-test' + - onnxruntime>=1.12.0,<2.0 ; extra == 'pytorch-test' + - onnxscript>=0.1.0,<1.0 ; extra == 'pytorch-test' + - pandas>2.0,<3.0 ; extra == 'pytorch-test' + - psutil<8.0 ; extra == 'pytorch-test' + - pytest-cov==7.0.0 ; extra == 'pytorch-test' + - pytest-random-order==1.2.0 ; extra == 'pytorch-test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'pytorch-test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'pytorch-test' + - pytest-timeout==2.4.0 ; extra == 'pytorch-test' + - pytest==8.4.2 ; extra == 'pytorch-test' + - scikit-learn>0.22.1,<2.0 ; extra == 'pytorch-test' + - tensorboard>=2.11,<3.0 ; extra == 'pytorch-test' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'pytorch-test' + - uvicorn ; extra == 'pytorch-test' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'pytorch-strategies' + - torchmetrics>=0.10.0,<2.0 ; extra == 'fabric-examples' + - torchvision>=0.16.0,<1.0 ; extra == 'fabric-examples' + - hydra-core>=1.2.0,<2.0 ; extra == 'fabric-extra' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'fabric-test' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'fabric-test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'fabric-test' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'fabric-test' + - huggingface-hub ; extra == 'fabric-test' + - numpy>=1.21.0,<2.0 ; extra == 'fabric-test' + - pytest-cov==7.0.0 ; extra == 'fabric-test' + - pytest-random-order==1.2.0 ; extra == 'fabric-test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'fabric-test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'fabric-test' + - pytest-timeout==2.4.0 ; extra == 'fabric-test' + - pytest==8.4.2 ; extra == 'fabric-test' + - tensorboardx>=2.6,<3.0 ; extra == 'fabric-test' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'fabric-strategies' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'fabric-strategies' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'fabric-all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'fabric-all' + - hydra-core>=1.2.0,<2.0 ; extra == 'fabric-all' + - torchmetrics>=0.10.0,<2.0 ; extra == 'fabric-all' + - torchvision>=0.16.0,<1.0 ; extra == 'fabric-all' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'fabric-dev' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'fabric-dev' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'fabric-dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'fabric-dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'fabric-dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'fabric-dev' + - huggingface-hub ; extra == 'fabric-dev' + - hydra-core>=1.2.0,<2.0 ; extra == 'fabric-dev' + - numpy>=1.21.0,<2.0 ; extra == 'fabric-dev' + - pytest-cov==7.0.0 ; extra == 'fabric-dev' + - pytest-random-order==1.2.0 ; extra == 'fabric-dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'fabric-dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'fabric-dev' + - pytest-timeout==2.4.0 ; extra == 'fabric-dev' + - pytest==8.4.2 ; extra == 'fabric-dev' + - tensorboardx>=2.6,<3.0 ; extra == 'fabric-dev' + - torchmetrics>=0.10.0,<2.0 ; extra == 'fabric-dev' + - torchvision>=0.16.0,<1.0 ; extra == 'fabric-dev' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'pytorch-all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'pytorch-all' + - hydra-core>=1.2.0,<2.0 ; extra == 'pytorch-all' + - ipython[all]>=8.0.0,<11.0 ; extra == 'pytorch-all' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'pytorch-all' + - matplotlib>3.1,<4.0 ; extra == 'pytorch-all' + - omegaconf>=2.2.3,<3.0 ; extra == 'pytorch-all' + - requests<3.0 ; extra == 'pytorch-all' + - rich>=12.3.0,<15.0 ; extra == 'pytorch-all' + - tensorboardx>=2.2,<3.0 ; extra == 'pytorch-all' + - torchmetrics>=0.10.0,<2.0 ; extra == 'pytorch-all' + - torchvision>=0.16.0,<1.0 ; extra == 'pytorch-all' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'pytorch-dev' + - cloudpickle>=1.3,<4.0 ; extra == 'pytorch-dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'pytorch-dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'pytorch-dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'pytorch-dev' + - fastapi ; extra == 'pytorch-dev' + - huggingface-hub ; extra == 'pytorch-dev' + - hydra-core>=1.2.0,<2.0 ; extra == 'pytorch-dev' + - ipython[all]>=8.0.0,<11.0 ; extra == 'pytorch-dev' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'pytorch-dev' + - matplotlib>3.1,<4.0 ; extra == 'pytorch-dev' + - numpy>1.20.0,<2.0 ; extra == 'pytorch-dev' + - omegaconf>=2.2.3,<3.0 ; extra == 'pytorch-dev' + - onnx>1.12.0,<2.0 ; extra == 'pytorch-dev' + - onnxruntime>=1.12.0,<2.0 ; extra == 'pytorch-dev' + - onnxscript>=0.1.0,<1.0 ; extra == 'pytorch-dev' + - pandas>2.0,<3.0 ; extra == 'pytorch-dev' + - psutil<8.0 ; extra == 'pytorch-dev' + - pytest-cov==7.0.0 ; extra == 'pytorch-dev' + - pytest-random-order==1.2.0 ; extra == 'pytorch-dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'pytorch-dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'pytorch-dev' + - pytest-timeout==2.4.0 ; extra == 'pytorch-dev' + - pytest==8.4.2 ; extra == 'pytorch-dev' + - requests<3.0 ; extra == 'pytorch-dev' + - rich>=12.3.0,<15.0 ; extra == 'pytorch-dev' + - scikit-learn>0.22.1,<2.0 ; extra == 'pytorch-dev' + - tensorboard>=2.11,<3.0 ; extra == 'pytorch-dev' + - tensorboardx>=2.2,<3.0 ; extra == 'pytorch-dev' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'pytorch-dev' + - torchmetrics>=0.10.0,<2.0 ; extra == 'pytorch-dev' + - torchvision>=0.16.0,<1.0 ; extra == 'pytorch-dev' + - uvicorn ; extra == 'pytorch-dev' + - litdata>=0.2.0rc0,<1.0 ; extra == 'data' + - ipython[all]>=8.0.0,<11.0 ; extra == 'examples' + - requests<3.0 ; extra == 'examples' + - torchmetrics>=0.10.0,<2.0 ; extra == 'examples' + - torchvision>=0.16.0,<1.0 ; extra == 'examples' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'extra' + - hydra-core>=1.2.0,<2.0 ; extra == 'extra' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'extra' + - matplotlib>3.1,<4.0 ; extra == 'extra' + - omegaconf>=2.2.3,<3.0 ; extra == 'extra' + - rich>=12.3.0,<15.0 ; extra == 'extra' + - tensorboardx>=2.2,<3.0 ; extra == 'extra' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'test' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'test' + - cloudpickle>=1.3,<4.0 ; extra == 'test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'test' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'test' + - fastapi ; extra == 'test' + - huggingface-hub ; extra == 'test' + - numpy>1.20.0,<2.0 ; extra == 'test' + - numpy>=1.21.0,<2.0 ; extra == 'test' + - onnx>1.12.0,<2.0 ; extra == 'test' + - onnxruntime>=1.12.0,<2.0 ; extra == 'test' + - onnxscript>=0.1.0,<1.0 ; extra == 'test' + - pandas>2.0,<3.0 ; extra == 'test' + - psutil<8.0 ; extra == 'test' + - pytest-cov==7.0.0 ; extra == 'test' + - pytest-random-order==1.2.0 ; extra == 'test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'test' + - pytest-timeout==2.4.0 ; extra == 'test' + - pytest==8.4.2 ; extra == 'test' + - scikit-learn>0.22.1,<2.0 ; extra == 'test' + - tensorboard>=2.11,<3.0 ; extra == 'test' + - tensorboardx>=2.6,<3.0 ; extra == 'test' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'test' + - uvicorn ; extra == 'test' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'strategies' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'strategies' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'all' + - hydra-core>=1.2.0,<2.0 ; extra == 'all' + - ipython[all]>=8.0.0,<11.0 ; extra == 'all' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'all' + - matplotlib>3.1,<4.0 ; extra == 'all' + - omegaconf>=2.2.3,<3.0 ; extra == 'all' + - requests<3.0 ; extra == 'all' + - rich>=12.3.0,<15.0 ; extra == 'all' + - tensorboardx>=2.2,<3.0 ; extra == 'all' + - torchmetrics>=0.10.0,<2.0 ; extra == 'all' + - torchvision>=0.16.0,<1.0 ; extra == 'all' + - bitsandbytes>=0.45.2,<1.0 ; sys_platform != 'darwin' and extra == 'dev' + - click==8.1.8 ; python_full_version < '3.11' and extra == 'dev' + - click==8.3.0 ; python_full_version >= '3.11' and extra == 'dev' + - cloudpickle>=1.3,<4.0 ; extra == 'dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'dev' + - fastapi ; extra == 'dev' + - huggingface-hub ; extra == 'dev' + - hydra-core>=1.2.0,<2.0 ; extra == 'dev' + - ipython[all]>=8.0.0,<11.0 ; extra == 'dev' + - jsonargparse[jsonnet,signatures]>=4.39.0,<5.0 ; extra == 'dev' + - matplotlib>3.1,<4.0 ; extra == 'dev' + - numpy>1.20.0,<2.0 ; extra == 'dev' + - numpy>=1.21.0,<2.0 ; extra == 'dev' + - omegaconf>=2.2.3,<3.0 ; extra == 'dev' + - onnx>1.12.0,<2.0 ; extra == 'dev' + - onnxruntime>=1.12.0,<2.0 ; extra == 'dev' + - onnxscript>=0.1.0,<1.0 ; extra == 'dev' + - pandas>2.0,<3.0 ; extra == 'dev' + - psutil<8.0 ; extra == 'dev' + - pytest-cov==7.0.0 ; extra == 'dev' + - pytest-random-order==1.2.0 ; extra == 'dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'dev' + - pytest-timeout==2.4.0 ; extra == 'dev' + - pytest==8.4.2 ; extra == 'dev' + - requests<3.0 ; extra == 'dev' + - rich>=12.3.0,<15.0 ; extra == 'dev' + - scikit-learn>0.22.1,<2.0 ; extra == 'dev' + - tensorboard>=2.11,<3.0 ; extra == 'dev' + - tensorboardx>=2.2,<3.0 ; extra == 'dev' + - tensorboardx>=2.6,<3.0 ; extra == 'dev' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'dev' + - torchmetrics>=0.10.0,<2.0 ; extra == 'dev' + - torchvision>=0.16.0,<1.0 ; extra == 'dev' + - uvicorn ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/de/73/3d757cb3fc16f0f9794dd289bcd0c4a031d9cf54d8137d6b984b2d02edf3/lightning_utilities-0.15.2-py3-none-any.whl + name: lightning-utilities + version: 0.15.2 + sha256: ad3ab1703775044bbf880dbf7ddaaac899396c96315f3aa1779cec9d618a9841 + requires_dist: + - importlib-metadata>=4.0.0 ; python_full_version < '3.8' + - packaging>=17.1 + - setuptools + - typing-extensions + - requests>=2.0.0 ; extra == 'docs' + - mypy>=1.0.0 ; extra == 'typing' + - types-setuptools ; extra == 'typing' + - jsonargparse[signatures]>=4.38.0 ; extra == 'cli' + - tomlkit ; extra == 'cli' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/llvm-openmp-21.1.8-h4a912ad_0.conda + sha256: 56bcd20a0a44ddd143b6ce605700fdf876bcf5c509adc50bf27e76673407a070 + md5: 206ad2df1b5550526e386087bef543c7 + depends: + - __osx >=11.0 + constrains: + - openmp 21.1.8|21.1.8.* + - intel-openmp <0.0a0 + license: Apache-2.0 WITH LLVM-exception + license_family: APACHE + purls: [] + size: 285974 + timestamp: 1765964756583 +- pypi: https://files.pythonhosted.org/packages/cb/da/8341fd3056419441286c8e26bf436923021005ece0bff5f41906476ae514/llvmlite-0.44.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: llvmlite + version: 0.44.0 + sha256: c0143a5ef336da14deaa8ec26c5449ad5b6a2b564df82fcef4be040b9cacfea9 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/2b/f8/4db016a5e547d4e054ff2f3b99203d63a497465f81ab78ec8eb2ff7b2304/llvmlite-0.46.0-cp312-cp312-macosx_11_0_arm64.whl + name: llvmlite + version: 0.46.0 + sha256: 6b9588ad4c63b4f0175a3984b85494f0c927c6b001e3a246a3a7fb3920d9a137 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/db/bc/83e112abc66cd466c6b83f99118035867cecd41802f8d044638aa78a106e/locket-1.0.0-py2.py3-none-any.whl + name: locket + version: 1.0.0 + sha256: b6c819a722f7b6bd955b80781788e4a66a55628b858d347536b7e81325a3a5e3 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*' +- pypi: https://files.pythonhosted.org/packages/c0/41/6d499b9b63406b204dd551002712c088abf0e130686721f403aa105736ba/loompy-3.0.8.tar.gz + name: loompy + version: 3.0.8 + sha256: c1f48d0bf21aa2bbdeee21a0577553cba9609d9435d7c32b687686bbb5869ca7 + requires_dist: + - h5py + - numpy + - scipy + - setuptools + - numba + - click + - numpy-groupies + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/59/1b/6ef961f543593969d25b2afe57a3564200280528caa9bd1082eecdd7b3bc/markdown-3.10.1-py3-none-any.whl + name: markdown + version: 3.10.1 + sha256: 867d788939fe33e4b736426f5b9f651ad0c0ae0ecf89df0ca5d1176c70812fe3 + requires_dist: + - coverage ; extra == 'testing' + - pyyaml ; extra == 'testing' + - mkdocs>=1.6 ; extra == 'docs' + - mkdocs-nature>=0.6 ; extra == 'docs' + - mdx-gh-links>=0.2 ; extra == 'docs' + - mkdocstrings[python]>=0.28.3 ; extra == 'docs' + - mkdocs-gen-files ; extra == 'docs' + - mkdocs-section-index ; extra == 'docs' + - mkdocs-literate-nav ; extra == 'docs' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/94/54/e7d793b573f298e1c9013b8c4dade17d481164aa517d1d7148619c2cedbf/markdown_it_py-4.0.0-py3-none-any.whl + name: markdown-it-py + version: 4.0.0 + sha256: 87327c59b172c5011896038353a81343b6754500a08cd7a4973bb48c6d578147 + requires_dist: + - mdurl~=0.1 + - psutil ; extra == 'benchmarking' + - pytest ; extra == 'benchmarking' + - pytest-benchmark ; extra == 'benchmarking' + - commonmark~=0.9 ; extra == 'compare' + - markdown~=3.4 ; extra == 'compare' + - mistletoe~=1.0 ; extra == 'compare' + - mistune~=3.0 ; extra == 'compare' + - panflute~=2.3 ; extra == 'compare' + - markdown-it-pyrs ; extra == 'compare' + - linkify-it-py>=1,<3 ; extra == 'linkify' + - mdit-py-plugins>=0.5.0 ; extra == 'plugins' + - gprof2dot ; extra == 'profiling' + - mdit-py-plugins>=0.5.0 ; extra == 'rtd' + - myst-parser ; extra == 'rtd' + - pyyaml ; extra == 'rtd' + - sphinx ; extra == 'rtd' + - sphinx-copybutton ; extra == 'rtd' + - sphinx-design ; extra == 'rtd' + - sphinx-book-theme~=1.0 ; extra == 'rtd' + - jupyter-sphinx ; extra == 'rtd' + - ipykernel ; extra == 'rtd' + - coverage ; extra == 'testing' + - pytest ; extra == 'testing' + - pytest-cov ; extra == 'testing' + - pytest-regressions ; extra == 'testing' + - requests ; extra == 'testing' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/3c/2e/8d0c2ab90a8c1d9a24f0399058ab8519a3279d1bd4289511d74e909f060e/markupsafe-3.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: markupsafe + version: 3.0.3 + sha256: d6dd0be5b5b189d31db7cda48b91d7e0a9795f31430b7f271219ab30f1d3ac9d + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/9a/81/7e4e08678a1f98521201c3079f77db69fb552acd56067661f8c2f534a718/markupsafe-3.0.3-cp312-cp312-macosx_11_0_arm64.whl + name: markupsafe + version: 3.0.3 + sha256: 1872df69a4de6aead3491198eaf13810b565bdbeec3ae2dc8780f14458ec73ce + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/3e/f3/c5195b1ae57ef85339fd7285dfb603b22c8b4e79114bae5f4f0fcf688677/matplotlib-3.10.8-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: matplotlib + version: 3.10.8 + sha256: 3ab4aabc72de4ff77b3ec33a6d78a68227bf1123465887f9905ba79184a1cc04 + requires_dist: + - contourpy>=1.0.1 + - cycler>=0.10 + - fonttools>=4.22.0 + - kiwisolver>=1.3.1 + - numpy>=1.23 + - packaging>=20.0 + - pillow>=8 + - pyparsing>=3 + - python-dateutil>=2.7 + - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' + - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' + - setuptools-scm>=7 ; extra == 'dev' + - setuptools>=64 ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/7e/65/07d5f5c7f7c994f12c768708bd2e17a4f01a2b0f44a1c9eccad872433e2e/matplotlib-3.10.8-cp312-cp312-macosx_11_0_arm64.whl + name: matplotlib + version: 3.10.8 + sha256: b9a5ca4ac220a0cdd1ba6bcba3608547117d30468fefce49bb26f55c1a3d5c58 + requires_dist: + - contourpy>=1.0.1 + - cycler>=0.10 + - fonttools>=4.22.0 + - kiwisolver>=1.3.1 + - numpy>=1.23 + - packaging>=20.0 + - pillow>=8 + - pyparsing>=3 + - python-dateutil>=2.7 + - meson-python>=0.13.1,<0.17.0 ; extra == 'dev' + - pybind11>=2.13.2,!=2.13.3 ; extra == 'dev' + - setuptools-scm>=7 ; extra == 'dev' + - setuptools>=64 ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/af/33/ee4519fa02ed11a94aef9559552f3b17bb863f2ecfe1a35dc7f548cde231/matplotlib_inline-0.2.1-py3-none-any.whl + name: matplotlib-inline + version: 0.2.1 + sha256: d56ce5156ba6085e00a9d54fead6ed29a9c47e215cd1bba2e976ef39f5710a76 + requires_dist: + - traitlets + - flake8 ; extra == 'test' + - nbdime ; extra == 'test' + - nbval ; extra == 'test' + - notebook ; extra == 'test' + - pytest ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a8/c0/2dfab7b319dabe23f5a7b515a797c74b501d15c72e7a03837cf0cf779b9e/matplotlib_scalebar-0.9.0-py3-none-any.whl + name: matplotlib-scalebar + version: 0.9.0 + sha256: 5140525cd4e0c60bcade541b86571dabaf446fa69192530bd82d60b54601aa79 + requires_dist: + - matplotlib + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b3/38/89ba8ad64ae25be8de66a6d463314cf1eb366222074cfda9ee839c56a4b4/mdurl-0.1.2-py3-none-any.whl + name: mdurl + version: 0.1.2 + sha256: 84008a41e51615a49fc9966191ff91509e3c40b939176e643fd50a5c2196b8f8 + requires_python: '>=3.7' +- conda: https://conda.anaconda.org/conda-forge/linux-64/metis-5.1.0-hd0bcaf9_1007.conda + sha256: e8a00971e6d00bd49f375c5d8d005b37a9abba0b1768533aed0f90a422bf5cc7 + md5: 28eb714416de4eb83e2cbc47e99a1b45 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 3923560 + timestamp: 1728064567817 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/metis-5.1.0-h15f6cfe_1007.conda + sha256: f54ad3e5d47a0235ba2830848fee590faad550639336fe1e2413ab16fee7ac39 + md5: 7687ec5796288536947bf616179726d8 + depends: + - __osx >=11.0 + license: Apache-2.0 + license_family: APACHE + purls: [] + size: 3898314 + timestamp: 1728064659078 +- pypi: https://files.pythonhosted.org/packages/9b/f7/4a5e785ec9fbd65146a27b6b70b6cdc161a66f2024e4b04ac06a67f5578b/mistune-3.2.0-py3-none-any.whl + name: mistune + version: 3.2.0 + sha256: febdc629a3c78616b94393c6580551e0e34cc289987ec6c35ed3f4be42d0eee1 + requires_dist: + - typing-extensions ; python_full_version < '3.11' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/ab/8a/18d4ff2c7bd83f30d6924bd4ad97abf418488c3f908dea228d6f0961ad68/ml_collections-1.1.0-py3-none-any.whl + name: ml-collections + version: 1.1.0 + sha256: 23b6fa4772aac1ae745a96044b925a5746145a70734f087eaca6626e92c05cbc + requires_dist: + - absl-py + - pyyaml + - pytest ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pylint>=2.6.0 ; extra == 'dev' + - pyink ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/3a/cb/28ce52eb94390dda42599c98ea0204d74799e4d8047a0eb559b6fd648056/ml_dtypes-0.5.4-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: ml-dtypes + version: 0.5.4 + sha256: 9ad459e99793fa6e13bd5b7e6792c8f9190b4e5a1b45c63aba14a4d0a7f1d5ff + requires_dist: + - numpy>=1.21 + - numpy>=1.21.2 ; python_full_version >= '3.10' + - numpy>=1.23.3 ; python_full_version >= '3.11' + - numpy>=1.26.0 ; python_full_version >= '3.12' + - numpy>=2.1.0 ; python_full_version >= '3.13' + - absl-py ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pylint>=2.6.0 ; extra == 'dev' + - pyink ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a8/b8/3c70881695e056f8a32f8b941126cf78775d9a4d7feba8abcb52cb7b04f2/ml_dtypes-0.5.4-cp312-cp312-macosx_10_13_universal2.whl + name: ml-dtypes + version: 0.5.4 + sha256: a174837a64f5b16cab6f368171a1a03a27936b31699d167684073ff1c4237dac + requires_dist: + - numpy>=1.21 + - numpy>=1.21.2 ; python_full_version >= '3.10' + - numpy>=1.23.3 ; python_full_version >= '3.11' + - numpy>=1.26.0 ; python_full_version >= '3.12' + - numpy>=2.1.0 ; python_full_version >= '3.13' + - absl-py ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pylint>=2.6.0 ; extra == 'dev' + - pyink ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a4/8e/469e5a4a2f5855992e425f3cb33804cc07bf18d48f2db061aec61ce50270/more_itertools-10.8.0-py3-none-any.whl + name: more-itertools + version: 10.8.0 + sha256: 52d4362373dcf7c52546bc4af9a86ee7c4579df9a8dc268be0a2f949d376cc9b + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-mpich.conda + sha256: eacc189267202669a1c5c849dcca2298f41acb3918f05cf912d7d61ee7176fac + md5: 1052de900d672ec8b3713b8e300a8f06 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 6522 + timestamp: 1727683134241 +- conda: https://conda.anaconda.org/conda-forge/noarch/mpi-1.0.1-openmpi.conda + sha256: e1698675ec83a2139c0b02165f47eaf0701bcab043443d9008fc0f8867b07798 + md5: 78b827d2852c67c68cd5b2c55f31e376 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 6571 + timestamp: 1727683130230 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/mpich-4.3.2-hb31c3fa_105.conda + sha256: 3074fbf7a79c49bf0e8bf1063cb509dc7f3585b8c32f9677a3a58492867d2f82 + md5: 6bf716ccac6b5839fb3e1d31c6915d69 + depends: + - mpi 1.0.* mpich + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - libcxx >=19 + - libhwloc >=2.12.2,<2.12.3.0a0 + - libfabric + - libfabric1 >=1.14.0 + license: LicenseRef-MPICH + purls: [] + size: 4019760 + timestamp: 1768958490901 +- pypi: https://files.pythonhosted.org/packages/43/e3/7d92a15f894aa0c9c4b49b8ee9ac9850d6e63b03c9c32c0367a13ae62209/mpmath-1.3.0-py3-none-any.whl + name: mpmath + version: 1.3.0 + sha256: a0b2b9fe80bbcd81a6647ff13108738cfb482d481d826cc0e02f5b35e5c88d2c + requires_dist: + - pytest>=4.6 ; extra == 'develop' + - pycodestyle ; extra == 'develop' + - pytest-cov ; extra == 'develop' + - codecov ; extra == 'develop' + - wheel ; extra == 'develop' + - sphinx ; extra == 'docs' + - gmpy2>=2.1.0a4 ; platform_python_implementation != 'PyPy' and extra == 'gmpy' + - pytest>=4.6 ; extra == 'tests' +- pypi: https://files.pythonhosted.org/packages/65/92/a5100f7185a800a5d29f8d14041f61475b9de465ffcc0f3b9fba606e4505/msgpack-1.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: msgpack + version: 1.1.2 + sha256: 372839311ccf6bdaf39b00b61288e0557916c3729529b301c52c2d88842add42 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/3f/de/f7bf1832967e7e4bcd34b232ed33169a0d86a8efbcdc7fcfd8f98c18d5c1/mudata-0.3.2-py3-none-any.whl + name: mudata + version: 0.3.2 + sha256: 185b80b61993515a121258401932db877bc123ba2677cdbd87051e974dfcd897 + requires_dist: + - anndata>=0.10.8 + - setuptools-scm ; extra == 'dev' + - nbsphinx ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - readthedocs-sphinx-search ; extra == 'docs' + - recommonmark ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-automodapi ; extra == 'docs' + - sphinx-book-theme ; extra == 'docs' + - pytest ; extra == 'test' + - zarr<3 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/a9/65/1caac9d4cd32e8433908683446eebc953e82d22b03d10d41a5f0fefe991b/multidict-6.7.1-cp312-cp312-macosx_11_0_arm64.whl + name: multidict + version: 6.7.1 + sha256: b0fa96985700739c4c7853a43c0b3e169360d6855780021bfc6d0f1ce7c123e7 + requires_dist: + - typing-extensions>=4.1.0 ; python_full_version < '3.11' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f3/8d/5e5be3ced1d12966fefb5c4ea3b2a5b480afcea36406559442c6e31d4a48/multidict-6.7.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: multidict + version: 6.7.1 + sha256: bfde23ef6ed9db7eaee6c37dcec08524cb43903c60b285b172b6c094711b3961 + requires_dist: + - typing-extensions>=4.1.0 ; python_full_version < '3.11' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/51/c0/00c9809d8b9346eb238a6bbd5f83e846a4ce4503da94a4c08cb7284c325b/multipledispatch-1.0.0-py3-none-any.whl + name: multipledispatch + version: 1.0.0 + sha256: 0c53cd8b077546da4e48869f49b13164bebafd0c2a5afceb6bb6a316e7fb46e4 +- pypi: https://files.pythonhosted.org/packages/f5/98/23d67fb3e1cb801122bbf3ced565e796d471a09b610cd9c5697528e83494/multiscale_spatial_image-1.0.1-py3-none-any.whl + name: multiscale-spatial-image + version: 1.0.1 + sha256: e927ed619d23e6b61777ca05a7c50f29db86dcfc2857f512bec6be8bcb351fcf + requires_dist: + - dask + - numpy + - python-dateutil + - spatial-image>=0.2.1 + - xarray + - xarray-datatree>=0.0.5 + - zarr + - dask-image ; extra == 'dask-image' + - pyimagej ; extra == 'imagej' + - itk-filtering>=5.3.0 ; extra == 'itk' + - matplotlib>=3.9.1,<4 ; extra == 'notebooks' + - ome-types>=0.5.1.post1,<0.6 ; extra == 'notebooks' + - tqdm>=4.66.4,<5 ; extra == 'notebooks' + - dask-image ; extra == 'test' + - fsspec ; extra == 'test' + - ipfsspec ; extra == 'test' + - itk-filtering>=5.3.0 ; extra == 'test' + - jsonschema ; extra == 'test' + - nbmake ; extra == 'test' + - pooch ; extra == 'test' + - pytest ; extra == 'test' + - pytest-mypy ; extra == 'test' + - urllib3 ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/01/a7/fec56dbac873a18930b2127d400794a91dd53898bff811aa4802ddbbfac9/multiscale_spatial_image-2.0.3-py3-none-any.whl + name: multiscale-spatial-image + version: 2.0.3 + sha256: 8b20d36e90a104083fe14f5466d582eea453c213d1a368d7e7435b3e13445f61 + requires_dist: + - dask + - numpy + - python-dateutil + - spatial-image>=1.2.2 + - xarray-dataclass>=3.0.0 + - xarray>=2025.1.2 + - zarr + - dask-image ; extra == 'dask-image' + - pyimagej ; extra == 'imagej' + - itk-filtering>=5.3.0 ; extra == 'itk' + - matplotlib>=3.9.2,<4 ; extra == 'notebooks' + - ome-types>=0.5.1.post1,<0.6 ; extra == 'notebooks' + - tqdm>=4.66.4,<5 ; extra == 'notebooks' + - fsspec ; extra == 'test' + - jsonschema ; extra == 'test' + - nbmake ; extra == 'test' + - pooch ; extra == 'test' + - pytest ; extra == 'test' + - pytest-mypy ; extra == 'test' + - urllib3 ; extra == 'test' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-include-5.8.1-h158ef2a_4.conda + sha256: c2cdade4e8ee9f67e5b401462df858d37ab0640f66c9b786207dedc7bb361d00 + md5: ed1cfc40cabee5915f6860da52e1215d + license: CECILL-C + purls: [] + size: 19751 + timestamp: 1759596390552 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-include-5.8.1-ha6078a4_4.conda + sha256: 9ff8901858e625a029e249b74f85b8ecde54836bf08547500c07d4d93b2546b5 + md5: b775cf85336188285b7785ac1534926a + license: CECILL-C + purls: [] + size: 19791 + timestamp: 1759596482955 +- conda: https://conda.anaconda.org/conda-forge/linux-64/mumps-mpi-5.8.1-hcc12995_4.conda + sha256: b3c4df2db4b2593c9dd09d40c4f76a65baa35f7778bfb199861350fd0290f038 + md5: 587cda98aa0a2daff371eb4314a45f2a + depends: + - mumps-include ==5.8.1 h158ef2a_4 + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - _openmp_mutex >=4.5 + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - metis >=5.1.0,<5.1.1.0a0 + - parmetis >=4.0.3,<4.1.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - openmpi >=5.0.8,<6.0a0 + constrains: + - libopenblas * *openmp* + license: CECILL-C + purls: [] + size: 2736520 + timestamp: 1759596390552 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/mumps-mpi-5.8.1-h3d714e2_4.conda + sha256: f13655a8f1cf4c2242a7fc1ad23a98aa7770dfb1a0d71488fc9267bc0f745a67 + md5: edc4785dcb50b5ad8da693dc69156640 + depends: + - mumps-include ==5.8.1 ha6078a4_4 + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - llvm-openmp >=19.1.7 + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - mpich >=4.3.1,<5.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - metis >=5.1.0,<5.1.1.0a0 + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - parmetis >=4.0.3,<4.1.0a0 + constrains: + - libopenblas * *openmp* + license: CECILL-C + purls: [] + size: 2730320 + timestamp: 1759596482956 +- pypi: ./ + name: myanalysis + version: 0.1.dev29+g32849c680.d20260127 + sha256: afc1bcf8209ce17b1f69dd66288a7d39770ac5f48aca31fbcb3132d332ee49ad + requires_python: '>=3.12' + editable: true +- pypi: https://files.pythonhosted.org/packages/ef/82/7a9d0550484a62c6da82858ee9419f3dd1ccc9aa1c26a1e43da3ecd20b0d/natsort-8.4.0-py3-none-any.whl + name: natsort + version: 8.4.0 + sha256: 4732914fb471f56b5cce04d7bae6f164a592c7712e1c85f9ef585e197299521c + requires_dist: + - fastnumbers>=2.0.0 ; extra == 'fast' + - pyicu>=1.0.0 ; extra == 'icu' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/83/a0/5b0c2f11142ed1dddec842457d3f65eaf71a0080894eb6f018755b319c3a/nbclient-0.10.4-py3-none-any.whl + name: nbclient + version: 0.10.4 + sha256: 9162df5a7373d70d606527300a95a975a47c137776cd942e52d9c7e29ff83440 + requires_dist: + - jupyter-client>=6.1.12 + - jupyter-core>=4.12,!=5.0.* + - nbformat>=5.1.3 + - traitlets>=5.4 + - pre-commit ; extra == 'dev' + - autodoc-traits ; extra == 'docs' + - flaky ; extra == 'docs' + - ipykernel>=6.19.3 ; extra == 'docs' + - ipython ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - mock ; extra == 'docs' + - moto ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbconvert>=7.1.0 ; extra == 'docs' + - pytest-asyncio>=1.3.0 ; extra == 'docs' + - pytest-cov>=4.0 ; extra == 'docs' + - pytest>=9.0.1,<10 ; extra == 'docs' + - sphinx-book-theme ; extra == 'docs' + - sphinx>=1.7 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - testpath ; extra == 'docs' + - xmltodict ; extra == 'docs' + - flaky ; extra == 'test' + - ipykernel>=6.19.3 ; extra == 'test' + - ipython ; extra == 'test' + - ipywidgets ; extra == 'test' + - nbconvert>=7.1.0 ; extra == 'test' + - pytest-asyncio>=1.3.0 ; extra == 'test' + - pytest-cov>=4.0 ; extra == 'test' + - pytest>=9.0.1,<10 ; extra == 'test' + - testpath ; extra == 'test' + - xmltodict ; extra == 'test' + requires_python: '>=3.10.0' +- pypi: https://files.pythonhosted.org/packages/cc/9a/cd673b2f773a12c992f41309ef81b99da1690426bd2f96957a7ade0d3ed7/nbconvert-7.16.6-py3-none-any.whl + name: nbconvert + version: 7.16.6 + sha256: 1375a7b67e0c2883678c48e506dc320febb57685e5ee67faa51b18a90f3a712b + requires_dist: + - beautifulsoup4 + - bleach[css]!=5.0.0 + - defusedxml + - importlib-metadata>=3.6 ; python_full_version < '3.10' + - jinja2>=3.0 + - jupyter-core>=4.7 + - jupyterlab-pygments + - markupsafe>=2.0 + - mistune>=2.0.3,<4 + - nbclient>=0.5.0 + - nbformat>=5.7 + - packaging + - pandocfilters>=1.4.1 + - pygments>=2.4.1 + - traitlets>=5.1 + - flaky ; extra == 'all' + - ipykernel ; extra == 'all' + - ipython ; extra == 'all' + - ipywidgets>=7.5 ; extra == 'all' + - myst-parser ; extra == 'all' + - nbsphinx>=0.2.12 ; extra == 'all' + - playwright ; extra == 'all' + - pydata-sphinx-theme ; extra == 'all' + - pyqtwebengine>=5.15 ; extra == 'all' + - pytest>=7 ; extra == 'all' + - sphinx==5.0.2 ; extra == 'all' + - sphinxcontrib-spelling ; extra == 'all' + - tornado>=6.1 ; extra == 'all' + - ipykernel ; extra == 'docs' + - ipython ; extra == 'docs' + - myst-parser ; extra == 'docs' + - nbsphinx>=0.2.12 ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx==5.0.2 ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - pyqtwebengine>=5.15 ; extra == 'qtpdf' + - pyqtwebengine>=5.15 ; extra == 'qtpng' + - tornado>=6.1 ; extra == 'serve' + - flaky ; extra == 'test' + - ipykernel ; extra == 'test' + - ipywidgets>=7.5 ; extra == 'test' + - pytest>=7 ; extra == 'test' + - playwright ; extra == 'webpdf' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/a9/82/0340caa499416c78e5d8f5f05947ae4bc3cba53c9f038ab6e9ed964e22f1/nbformat-5.10.4-py3-none-any.whl + name: nbformat + version: 5.10.4 + sha256: 3b48d6c8fbca4b299bf3982ea7db1af21580e4fec269ad087b9e81588891200b + requires_dist: + - fastjsonschema>=2.15 + - jsonschema>=2.6 + - jupyter-core>=4.12,!=5.0.* + - traitlets>=5.1 + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinxcontrib-github-alt ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - pep440 ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest ; extra == 'test' + - testpath ; extra == 'test' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/ncurses-6.5-h2d0b736_3.conda + sha256: 3fde293232fa3fca98635e1167de6b7c7fda83caf24b9d6c91ec9eefb4f4d586 + md5: 47e340acb35de30501a76c7c799c41d7 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + license: X11 AND BSD-3-Clause + purls: [] + size: 891641 + timestamp: 1738195959188 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/ncurses-6.5-h5e97a16_3.conda + sha256: 2827ada40e8d9ca69a153a45f7fd14f32b2ead7045d3bbb5d10964898fe65733 + md5: 068d497125e4bf8a66bf707254fff5ae + depends: + - __osx >=11.0 + license: X11 AND BSD-3-Clause + purls: [] + size: 797030 + timestamp: 1738196177597 +- pypi: https://files.pythonhosted.org/packages/a0/c4/c2971a3ba4c6103a3d10c4b0f24f461ddc027f0f09763220cf35ca1401b3/nest_asyncio-1.6.0-py3-none-any.whl + name: nest-asyncio + version: 1.6.0 + sha256: 87af6efd6b5e897c81050477ef65c62e2b2f35d51703cae01aff2905b1852e1c + requires_python: '>=3.5' +- pypi: https://files.pythonhosted.org/packages/9e/c9/b2622292ea83fbb4ec318f5b9ab867d0a28ab43c5717bb85b0a5f6b3b0a4/networkx-3.6.1-py3-none-any.whl + name: networkx + version: 3.6.1 + sha256: d47fbf302e7d9cbbb9e2555a0d267983d2aa476bac30e90dfbe5669bd57f3762 + requires_dist: + - asv ; extra == 'benchmarking' + - virtualenv ; extra == 'benchmarking' + - numpy>=1.25 ; extra == 'default' + - scipy>=1.11.2 ; extra == 'default' + - matplotlib>=3.8 ; extra == 'default' + - pandas>=2.0 ; extra == 'default' + - pre-commit>=4.1 ; extra == 'developer' + - mypy>=1.15 ; extra == 'developer' + - sphinx>=8.0 ; extra == 'doc' + - pydata-sphinx-theme>=0.16 ; extra == 'doc' + - sphinx-gallery>=0.18 ; extra == 'doc' + - numpydoc>=1.8.0 ; extra == 'doc' + - pillow>=10 ; extra == 'doc' + - texext>=0.6.7 ; extra == 'doc' + - myst-nb>=1.1 ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - osmnx>=2.0.0 ; extra == 'example' + - momepy>=0.7.2 ; extra == 'example' + - contextily>=1.6 ; extra == 'example' + - seaborn>=0.13 ; extra == 'example' + - cairocffi>=1.7 ; extra == 'example' + - igraph>=0.11 ; extra == 'example' + - scikit-learn>=1.5 ; extra == 'example' + - iplotx>=0.9.0 ; extra == 'example' + - lxml>=4.6 ; extra == 'extra' + - pygraphviz>=1.14 ; extra == 'extra' + - pydot>=3.0.1 ; extra == 'extra' + - sympy>=1.10 ; extra == 'extra' + - build>=0.10 ; extra == 'release' + - twine>=4.0 ; extra == 'release' + - wheel>=0.40 ; extra == 'release' + - changelist==0.5 ; extra == 'release' + - pytest>=7.2 ; extra == 'test' + - pytest-cov>=4.0 ; extra == 'test' + - pytest-xdist>=3.0 ; extra == 'test' + - pytest-mpl ; extra == 'test-extras' + - pytest-randomly ; extra == 'test-extras' + requires_python: '>=3.11,!=3.14.1' +- pypi: https://files.pythonhosted.org/packages/88/b2/d0896bdcdc8d28a7fc5717c305f1a861c26e18c05047949fb371034d98bd/nodeenv-1.10.0-py2.py3-none-any.whl + name: nodeenv + version: 1.10.0 + sha256: 5bb13e3eed2923615535339b3c620e76779af4cb4c6a90deccc9e36b274d3827 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*,!=3.5.*,!=3.6.*' +- pypi: https://files.pythonhosted.org/packages/f9/33/bd5b9137445ea4b680023eb0469b2bb969d61303dedb2aac6560ff3d14a1/notebook_shim-0.2.4-py3-none-any.whl + name: notebook-shim + version: 0.2.4 + sha256: 411a5be4e9dc882a074ccbcae671eda64cceb068767e9a3419096986560e1cef + requires_dist: + - jupyter-server>=1.8,<3 + - pytest ; extra == 'test' + - pytest-console-scripts ; extra == 'test' + - pytest-jupyter ; extra == 'test' + - pytest-tornasync ; extra == 'test' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/9a/2d/e518df036feab381c23a624dac47f8445ac55686ec7f11083655eb707da3/numba-0.61.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: numba + version: 0.61.2 + sha256: 5b1bb509d01f23d70325d3a5a0e237cbc9544dd50e50588bc581ba860c213546 + requires_dist: + - llvmlite>=0.44.0.dev0,<0.45 + - numpy>=1.24,<2.3 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/14/9c/c0974cd3d00ff70d30e8ff90522ba5fbb2bcee168a867d2321d8d0457676/numba-0.63.1-cp312-cp312-macosx_11_0_arm64.whl + name: numba + version: 0.63.1 + sha256: 2819cd52afa5d8d04e057bdfd54367575105f8829350d8fb5e4066fb7591cc71 + requires_dist: + - llvmlite>=0.46.0.dev0,<0.47 + - numpy>=1.22,<2.4 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ca/e9/210e32faa7f9dd42d835d7d36394eaa1d0e29807c56950b389793ee55c1b/numba_cuda-0.19.2-py3-none-any.whl + name: numba-cuda + version: 0.19.2 + sha256: 15284c0d6a3fdd842fc5671db8bbb9c34ab3c122f5a3a06b01b104e23f100e5c + requires_dist: + - numba>=0.60.0 + - cuda-bindings>=12.9.1,<13.0.0 ; extra == 'cu12' + - cuda-core==0.3.* ; extra == 'cu12' + - cuda-python==12.9.* ; extra == 'cu12' + - nvidia-cuda-nvcc-cu12 ; extra == 'cu12' + - nvidia-cuda-runtime-cu12 ; extra == 'cu12' + - nvidia-cuda-nvrtc-cu12 ; extra == 'cu12' + - nvidia-nvjitlink-cu12 ; extra == 'cu12' + - nvidia-cuda-cccl-cu12 ; extra == 'cu12' + - cuda-bindings==13.* ; extra == 'cu13' + - cuda-core==0.3.2,<0.4.0.dev0 ; extra == 'cu13' + - cuda-python==13.* ; extra == 'cu13' + - nvidia-nvvm==13.* ; extra == 'cu13' + - nvidia-cuda-runtime==13.* ; extra == 'cu13' + - nvidia-cuda-nvrtc==13.* ; extra == 'cu13' + - nvidia-nvjitlink==13.* ; extra == 'cu13' + - nvidia-cuda-cccl==13.* ; extra == 'cu13' + - pre-commit ; extra == 'test' + - psutil ; extra == 'test' + - cffi ; extra == 'test' + - pytest ; extra == 'test' + - pytest-xdist ; extra == 'test' + - filecheck ; extra == 'test' + - numba-cuda[cu12] ; extra == 'test-cu12' + - numba-cuda[test] ; extra == 'test-cu12' + - nvidia-curand-cu12 ; extra == 'test-cu12' + - numba-cuda[cu13] ; extra == 'test-cu13' + - numba-cuda[test] ; extra == 'test-cu13' + - nvidia-curand==10.4.* ; extra == 'test-cu13' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f5/6c/86644987505dcb90ba6d627d6989c27bafb0699f9fd00187e06d05ea8594/numcodecs-0.16.5-cp312-cp312-macosx_11_0_arm64.whl + name: numcodecs + version: 0.16.5 + sha256: 94ddfa4341d1a3ab99989d13b01b5134abb687d3dab2ead54b450aefe4ad5bd6 + requires_dist: + - numpy>=1.24 + - typing-extensions + - msgpack ; extra == 'msgpack' + - zfpy>=1.0.0 ; extra == 'zfpy' + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + - google-crc32c>=1.5 ; extra == 'google-crc32c' + - sphinx ; extra == 'docs' + - sphinx-issues ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - numpydoc ; extra == 'docs' + - coverage ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' + - importlib-metadata ; extra == 'test-extras' + - crc32c ; extra == 'test-extras' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/fb/53/78c98ef5c8b2b784453487f3e4d6c017b20747c58b470393e230c78d18e8/numcodecs-0.16.5-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: numcodecs + version: 0.16.5 + sha256: ad1a379a45bd3491deab8ae6548313946744f868c21d5340116977ea3be5b1d6 + requires_dist: + - numpy>=1.24 + - typing-extensions + - msgpack ; extra == 'msgpack' + - zfpy>=1.0.0 ; extra == 'zfpy' + - pcodec>=0.3,<0.4 ; extra == 'pcodec' + - crc32c>=2.7 ; extra == 'crc32c' + - google-crc32c>=1.5 ; extra == 'google-crc32c' + - sphinx ; extra == 'docs' + - sphinx-issues ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - numpydoc ; extra == 'docs' + - coverage ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pyzstd ; extra == 'test' + - importlib-metadata ; extra == 'test-extras' + - crc32c ; extra == 'test-extras' + requires_python: '>=3.11' +- conda: https://conda.anaconda.org/conda-forge/linux-64/numpy-2.1.3-py312h58c1407_0.conda + sha256: e4c14f71588a5627a6935d3e7d9ca78a8387229ec8ebc91616b0988ce57ba0dc + md5: dfdbc12e6d81889ba4c494a23f23eba8 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libgcc >=13 + - liblapack >=3.9.0,<4.0a0 + - libstdcxx >=13 + - python >=3.12,<3.13.0a0 + - python_abi 3.12.* *_cp312 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 8388631 + timestamp: 1730588649810 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/numpy-2.1.3-py312h94ee1e1_0.conda + sha256: cd287b6c270ee8af77d200c46d56fdfe1e2a9deeff68044439718b8d073214dd + md5: a2af54c86582e08718805c69af737897 + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libcxx >=18 + - liblapack >=3.9.0,<4.0a0 + - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython + - python_abi 3.12.* *_cp312 + constrains: + - numpy-base <0a0 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/numpy?source=hash-mapping + size: 6398123 + timestamp: 1730588490904 +- pypi: https://files.pythonhosted.org/packages/b0/e0/760e73c111193db5ca37712a148e4807d1b0c60302ab31e4ada6528ca34d/numpy_groupies-0.11.3-py3-none-any.whl + name: numpy-groupies + version: 0.11.3 + sha256: d4065dd5d56fda941ad5a7c80a7f80b49f671ed148aaa3e243a0e4caa71adcb3 + requires_dist: + - numpy + - numba ; extra == 'fast' + - pytest ; extra == 'dev' + - numba ; extra == 'dev' + - pandas ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://pypi.nvidia.com/nvidia-cublas-cu12/nvidia_cublas_cu12-12.8.4.1-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-cublas-cu12 + version: 12.8.4.1 + sha256: 8ac4e771d5a348c551b2a426eda6193c19aa630236b418086020df5ba9667142 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-cccl-cu12/nvidia_cuda_cccl_cu12-12.9.27-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cuda-cccl-cu12 + version: 12.9.27 + sha256: 37869e17ce2e1ecec6eddf1927cca0f8c34e64fd848d40453df559091e2d7117 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-cupti-cu12/nvidia_cuda_cupti_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cuda-cupti-cu12 + version: 12.8.90 + sha256: ea0cb07ebda26bb9b29ba82cda34849e73c166c18162d3913575b0c9db9a6182 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-nvcc-cu12/nvidia_cuda_nvcc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + name: nvidia-cuda-nvcc-cu12 + version: 12.8.93 + sha256: 2d6dc36fb7cb5ac9c0b8825bc13d193c35487a315664007287d0126531238011 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-nvrtc-cu12/nvidia_cuda_nvrtc_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + name: nvidia-cuda-nvrtc-cu12 + version: 12.8.93 + sha256: a7756528852ef889772a84c6cd89d41dfa74667e24cca16bb31f8f061e3e9994 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cuda-runtime-cu12/nvidia_cuda_runtime_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cuda-runtime-cu12 + version: 12.8.90 + sha256: adade8dcbd0edf427b7204d480d6066d33902cab2a4707dcfc48a2d0fd44ab90 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cudnn-cu12/nvidia_cudnn_cu12-9.10.2.21-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-cudnn-cu12 + version: 9.10.2.21 + sha256: 949452be657fa16687d0930933f032835951ef0892b37d2d53824d1a84dc97a8 + requires_dist: + - nvidia-cublas-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cufft-cu12/nvidia_cufft_cu12-11.3.3.83-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cufft-cu12 + version: 11.3.3.83 + sha256: 4d2dd21ec0b88cf61b62e6b43564355e5222e4a3fb394cac0db101f2dd0d4f74 + requires_dist: + - nvidia-nvjitlink-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cufile-cu12/nvidia_cufile_cu12-1.13.1.3-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cufile-cu12 + version: 1.13.1.3 + sha256: 1d069003be650e131b21c932ec3d8969c1715379251f8d23a1860554b1cb24fc + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-curand-cu12/nvidia_curand_cu12-10.3.9.90-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-curand-cu12 + version: 10.3.9.90 + sha256: b32331d4f4df5d6eefa0554c565b626c7216f87a06a4f56fab27c3b68a830ec9 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cusolver-cu12/nvidia_cusolver_cu12-11.7.3.90-py3-none-manylinux_2_27_x86_64.whl + name: nvidia-cusolver-cu12 + version: 11.7.3.90 + sha256: 4376c11ad263152bd50ea295c05370360776f8c3427b30991df774f9fb26c450 + requires_dist: + - nvidia-cublas-cu12 + - nvidia-nvjitlink-cu12 + - nvidia-cusparse-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cusparse-cu12/nvidia_cusparse_cu12-12.5.8.93-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-cusparse-cu12 + version: 12.5.8.93 + sha256: 1ec05d76bbbd8b61b06a80e1eaf8cf4959c3d4ce8e711b65ebd0443bb0ebb13b + requires_dist: + - nvidia-nvjitlink-cu12 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-cusparselt-cu12/nvidia_cusparselt_cu12-0.7.1-py3-none-manylinux2014_x86_64.whl + name: nvidia-cusparselt-cu12 + version: 0.7.1 + sha256: f1bb701d6b930d5a7cea44c19ceb973311500847f81b634d802b7b539dc55623 +- pypi: https://files.pythonhosted.org/packages/fd/72/fb2af0d259a651affdce65fd6a495f0e07a685a0136baf585c5065204ee7/nvidia_ml_py-13.590.48-py3-none-any.whl + name: nvidia-ml-py + version: 13.590.48 + sha256: fd43d30ee9cd0b7940f5f9f9220b68d42722975e3992b6c21d14144c48760e43 +- pypi: https://pypi.nvidia.com/nvidia-nccl-cu12/nvidia_nccl_cu12-2.27.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-nccl-cu12 + version: 2.27.5 + sha256: ad730cf15cb5d25fe849c6e6ca9eb5b76db16a80f13f425ac68d8e2e55624457 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-nvjitlink-cu12/nvidia_nvjitlink_cu12-12.8.93-py3-none-manylinux2010_x86_64.manylinux_2_12_x86_64.whl + name: nvidia-nvjitlink-cu12 + version: 12.8.93 + sha256: 81ff63371a7ebd6e6451970684f916be2eab07321b73c9d244dc2b4da7f73b88 + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-nvshmem-cu12/nvidia_nvshmem_cu12-3.4.5-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-nvshmem-cu12 + version: 3.4.5 + sha256: 042f2500f24c021db8a06c5eec2539027d57460e1c1a762055a6554f72c369bd + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvidia-nvtx-cu12/nvidia_nvtx_cu12-12.8.90-py3-none-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: nvidia-nvtx-cu12 + version: 12.8.90 + sha256: 5b17e2001cc0d751a5bc2c6ec6d26ad95913324a4adb86788c944f8ce9ba441f + requires_python: '>=3' +- pypi: https://pypi.nvidia.com/nvtx/nvtx-0.2.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: nvtx + version: 0.2.14 + sha256: 17efe5d903996bceb0c8a12cae80fa9b66bee7ee895923bd9d8ec2a5af1aabd8 + requires_dist: + - pytest ; extra == 'test' + - cython>=3.1 ; extra == 'test' + - setuptools ; extra == 'test' + - sphinx ; extra == 'docs' + - nvidia-sphinx-theme ; extra == 'docs' +- pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl + name: ome-zarr + version: 0.12.2 + sha256: 655fe1b11ca01148603f9931a5b0af31207dfc03a3a35f9b0ab8639790282bbd + requires_dist: + - numpy + - dask + - zarr>=3.0.0 + - fsspec[s3]>=0.8,!=2021.7.0,!=2023.9.0 + - aiohttp + - requests + - scikit-image>=0.19.0 + - toolz + - pytest ; extra == 'tests' + requires_python: '>3.10' +- pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + name: omnipath + version: 1.0.12 + sha256: 28b85360f2f566e3c1e146560f8d3a5c133e221ce93c63ef62b3c71be9a6b003 + requires_dist: + - attrs>=20.2.0 + - docrep>=0.3.1 + - inflect>=4.1.0 + - packaging>=24.2 + - pandas>=1.2.0 + - requests>=2.24.0 + - tqdm>=4.51.0 + - typing-extensions>=3.7.4.3 + - urllib3>=1.26.0 + - wrapt>=1.12.0 + - attrs>=20.2.0 ; extra == 'docs' + - docrep>=0.3.1 ; extra == 'docs' + - inflect>=4.1.0 ; extra == 'docs' + - packaging>=24.2 ; extra == 'docs' + - pandas>=1.2.0 ; extra == 'docs' + - requests>=2.24.0 ; extra == 'docs' + - sphinx-autodoc-annotation>=1.0.post1 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5.2 ; extra == 'docs' + - sphinx-last-updated-by-git>=0.3.8 ; extra == 'docs' + - sphinx-paramlinks>=0.6.0 ; extra == 'docs' + - sphinx-rtd-theme>=3.0.2 ; extra == 'docs' + - sphinx-toolbox>=3.9.0 ; extra == 'docs' + - sphinx>=4 ; extra == 'docs' + - tqdm>=4.51.0 ; extra == 'docs' + - typing-extensions>=3.7.4.3 ; extra == 'docs' + - urllib3>=1.26.0 ; extra == 'docs' + - wrapt>=1.12.0 ; extra == 'docs' + - networkx>=2.3.0 ; extra == 'graph' + - tox>=3.20.1 ; extra == 'tests' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/openmpi-5.0.8-h611b0e2_111.conda + sha256: 1d96c7a064104383d5ebf9b917b3fefe1e9fb8777db114b6e66edceeaed7ccf4 + md5: 93c7c61f1a87894da811a584df22d126 + depends: + - mpi 1.0.* openmpi + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - libstdcxx >=14 + - libevent >=2.1.12,<2.1.13.0a0 + - libhwloc >=2.12.2,<2.12.3.0a0 + - ucx >=1.20.0,<1.21.0a0 + - libnl >=3.11.0,<4.0a0 + - libzlib >=1.3.1,<2.0a0 + - libfabric + - libfabric1 >=1.14.0 + - libpmix >=5.0.8,<6.0a0 + - ucc >=1.6.0,<2.0a0 + constrains: + - __cuda >=12.0 + - cuda-version >=12.0 + - libprrte ==0.0.0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 3926022 + timestamp: 1768621211266 +- conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda + sha256: a47271202f4518a484956968335b2521409c8173e123ab381e775c358c67fe6d + md5: 9ee58d5c534af06558933af3c845a780 + depends: + - __glibc >=2.17,<3.0.a0 + - ca-certificates + - libgcc >=14 + license: Apache-2.0 + license_family: Apache + purls: [] + size: 3165399 + timestamp: 1762839186699 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/openssl-3.6.0-h5503f6c_0.conda + sha256: ebe93dafcc09e099782fe3907485d4e1671296bc14f8c383cb6f3dfebb773988 + md5: b34dc4172653c13dcf453862f251af2b + depends: + - __osx >=11.0 + - ca-certificates + license: Apache-2.0 + license_family: Apache + purls: [] + size: 3108371 + timestamp: 1762839712322 +- pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl + name: opt-einsum + version: 3.4.0 + sha256: 69bb92469f86a1565195ece4ac0323943e83477171b91d24c35afe028a90d7cd + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl + name: packaging + version: '26.0' + sha256: b36f1fef9334a5588b4166f8bcd26a14e521f2b55e6b9de3aaa80d3ff7a37529 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pandas + version: 2.3.3 + sha256: b3d11d2fda7eb164ef27ffc14b4fcab16a80e1ce67e9f57e19ec0afaf715ba89 + requires_dist: + - numpy>=1.22.4 ; python_full_version < '3.11' + - numpy>=1.23.2 ; python_full_version == '3.11.*' + - numpy>=1.26.0 ; python_full_version >= '3.12' + - python-dateutil>=2.8.2 + - pytz>=2020.1 + - tzdata>=2022.7 + - hypothesis>=6.46.1 ; extra == 'test' + - pytest>=7.3.2 ; extra == 'test' + - pytest-xdist>=2.2.0 ; extra == 'test' + - pyarrow>=10.0.1 ; extra == 'pyarrow' + - bottleneck>=1.3.6 ; extra == 'performance' + - numba>=0.56.4 ; extra == 'performance' + - numexpr>=2.8.4 ; extra == 'performance' + - scipy>=1.10.0 ; extra == 'computation' + - xarray>=2022.12.0 ; extra == 'computation' + - fsspec>=2022.11.0 ; extra == 'fss' + - s3fs>=2022.11.0 ; extra == 'aws' + - gcsfs>=2022.11.0 ; extra == 'gcp' + - pandas-gbq>=0.19.0 ; extra == 'gcp' + - odfpy>=1.4.1 ; extra == 'excel' + - openpyxl>=3.1.0 ; extra == 'excel' + - python-calamine>=0.1.7 ; extra == 'excel' + - pyxlsb>=1.0.10 ; extra == 'excel' + - xlrd>=2.0.1 ; extra == 'excel' + - xlsxwriter>=3.0.5 ; extra == 'excel' + - pyarrow>=10.0.1 ; extra == 'parquet' + - pyarrow>=10.0.1 ; extra == 'feather' + - tables>=3.8.0 ; extra == 'hdf5' + - pyreadstat>=1.2.0 ; extra == 'spss' + - sqlalchemy>=2.0.0 ; extra == 'postgresql' + - psycopg2>=2.9.6 ; extra == 'postgresql' + - adbc-driver-postgresql>=0.8.0 ; extra == 'postgresql' + - sqlalchemy>=2.0.0 ; extra == 'mysql' + - pymysql>=1.0.2 ; extra == 'mysql' + - sqlalchemy>=2.0.0 ; extra == 'sql-other' + - adbc-driver-postgresql>=0.8.0 ; extra == 'sql-other' + - adbc-driver-sqlite>=0.8.0 ; extra == 'sql-other' + - beautifulsoup4>=4.11.2 ; extra == 'html' + - html5lib>=1.1 ; extra == 'html' + - lxml>=4.9.2 ; extra == 'html' + - lxml>=4.9.2 ; extra == 'xml' + - matplotlib>=3.6.3 ; extra == 'plot' + - jinja2>=3.1.2 ; extra == 'output-formatting' + - tabulate>=0.9.0 ; extra == 'output-formatting' + - pyqt5>=5.15.9 ; extra == 'clipboard' + - qtpy>=2.3.0 ; extra == 'clipboard' + - zstandard>=0.19.0 ; extra == 'compression' + - dataframe-api-compat>=0.1.7 ; extra == 'consortium-standard' + - adbc-driver-postgresql>=0.8.0 ; extra == 'all' + - adbc-driver-sqlite>=0.8.0 ; extra == 'all' + - beautifulsoup4>=4.11.2 ; extra == 'all' + - bottleneck>=1.3.6 ; extra == 'all' + - dataframe-api-compat>=0.1.7 ; extra == 'all' + - fastparquet>=2022.12.0 ; extra == 'all' + - fsspec>=2022.11.0 ; extra == 'all' + - gcsfs>=2022.11.0 ; extra == 'all' + - html5lib>=1.1 ; extra == 'all' + - hypothesis>=6.46.1 ; extra == 'all' + - jinja2>=3.1.2 ; extra == 'all' + - lxml>=4.9.2 ; extra == 'all' + - matplotlib>=3.6.3 ; extra == 'all' + - numba>=0.56.4 ; extra == 'all' + - numexpr>=2.8.4 ; extra == 'all' + - odfpy>=1.4.1 ; extra == 'all' + - openpyxl>=3.1.0 ; extra == 'all' + - pandas-gbq>=0.19.0 ; extra == 'all' + - psycopg2>=2.9.6 ; extra == 'all' + - pyarrow>=10.0.1 ; extra == 'all' + - pymysql>=1.0.2 ; extra == 'all' + - pyqt5>=5.15.9 ; extra == 'all' + - pyreadstat>=1.2.0 ; extra == 'all' + - pytest>=7.3.2 ; extra == 'all' + - pytest-xdist>=2.2.0 ; extra == 'all' + - python-calamine>=0.1.7 ; extra == 'all' + - pyxlsb>=1.0.10 ; extra == 'all' + - qtpy>=2.3.0 ; extra == 'all' + - scipy>=1.10.0 ; extra == 'all' + - s3fs>=2022.11.0 ; extra == 'all' + - sqlalchemy>=2.0.0 ; extra == 'all' + - tables>=3.8.0 ; extra == 'all' + - tabulate>=0.9.0 ; extra == 'all' + - xarray>=2022.12.0 ; extra == 'all' + - xlrd>=2.0.1 ; extra == 'all' + - xlsxwriter>=3.0.5 ; extra == 'all' + - zstandard>=0.19.0 ; extra == 'all' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a5/7b/9254310594e9774906bacdd4e732415e1f86ab7dbb4b377ef9ede58cd8ec/pandas-3.0.0-cp312-cp312-macosx_11_0_arm64.whl + name: pandas + version: 3.0.0 + sha256: 14c2a4099cd38a1d18ff108168ea417909b2dea3bd1ebff2ccf28ddb6a74d740 + requires_dist: + - numpy>=1.26.0 ; python_full_version < '3.14' + - numpy>=2.3.3 ; python_full_version >= '3.14' + - python-dateutil>=2.8.2 + - tzdata ; sys_platform == 'win32' + - tzdata ; sys_platform == 'emscripten' + - hypothesis>=6.116.0 ; extra == 'test' + - pytest>=8.3.4 ; extra == 'test' + - pytest-xdist>=3.6.1 ; extra == 'test' + - pyarrow>=13.0.0 ; extra == 'pyarrow' + - bottleneck>=1.4.2 ; extra == 'performance' + - numba>=0.60.0 ; extra == 'performance' + - numexpr>=2.10.2 ; extra == 'performance' + - scipy>=1.14.1 ; extra == 'computation' + - xarray>=2024.10.0 ; extra == 'computation' + - fsspec>=2024.10.0 ; extra == 'fss' + - s3fs>=2024.10.0 ; extra == 'aws' + - gcsfs>=2024.10.0 ; extra == 'gcp' + - odfpy>=1.4.1 ; extra == 'excel' + - openpyxl>=3.1.5 ; extra == 'excel' + - python-calamine>=0.3.0 ; extra == 'excel' + - pyxlsb>=1.0.10 ; extra == 'excel' + - xlrd>=2.0.1 ; extra == 'excel' + - xlsxwriter>=3.2.0 ; extra == 'excel' + - pyarrow>=13.0.0 ; extra == 'parquet' + - pyarrow>=13.0.0 ; extra == 'feather' + - pyiceberg>=0.8.1 ; extra == 'iceberg' + - tables>=3.10.1 ; extra == 'hdf5' + - pyreadstat>=1.2.8 ; extra == 'spss' + - sqlalchemy>=2.0.36 ; extra == 'postgresql' + - psycopg2>=2.9.10 ; extra == 'postgresql' + - adbc-driver-postgresql>=1.2.0 ; extra == 'postgresql' + - sqlalchemy>=2.0.36 ; extra == 'mysql' + - pymysql>=1.1.1 ; extra == 'mysql' + - sqlalchemy>=2.0.36 ; extra == 'sql-other' + - adbc-driver-postgresql>=1.2.0 ; extra == 'sql-other' + - adbc-driver-sqlite>=1.2.0 ; extra == 'sql-other' + - beautifulsoup4>=4.12.3 ; extra == 'html' + - html5lib>=1.1 ; extra == 'html' + - lxml>=5.3.0 ; extra == 'html' + - lxml>=5.3.0 ; extra == 'xml' + - matplotlib>=3.9.3 ; extra == 'plot' + - jinja2>=3.1.5 ; extra == 'output-formatting' + - tabulate>=0.9.0 ; extra == 'output-formatting' + - pyqt5>=5.15.9 ; extra == 'clipboard' + - qtpy>=2.4.2 ; extra == 'clipboard' + - zstandard>=0.23.0 ; extra == 'compression' + - pytz>=2024.2 ; extra == 'timezone' + - adbc-driver-postgresql>=1.2.0 ; extra == 'all' + - adbc-driver-sqlite>=1.2.0 ; extra == 'all' + - beautifulsoup4>=4.12.3 ; extra == 'all' + - bottleneck>=1.4.2 ; extra == 'all' + - fastparquet>=2024.11.0 ; extra == 'all' + - fsspec>=2024.10.0 ; extra == 'all' + - gcsfs>=2024.10.0 ; extra == 'all' + - html5lib>=1.1 ; extra == 'all' + - hypothesis>=6.116.0 ; extra == 'all' + - jinja2>=3.1.5 ; extra == 'all' + - lxml>=5.3.0 ; extra == 'all' + - matplotlib>=3.9.3 ; extra == 'all' + - numba>=0.60.0 ; extra == 'all' + - numexpr>=2.10.2 ; extra == 'all' + - odfpy>=1.4.1 ; extra == 'all' + - openpyxl>=3.1.5 ; extra == 'all' + - psycopg2>=2.9.10 ; extra == 'all' + - pyarrow>=13.0.0 ; extra == 'all' + - pyiceberg>=0.8.1 ; extra == 'all' + - pymysql>=1.1.1 ; extra == 'all' + - pyqt5>=5.15.9 ; extra == 'all' + - pyreadstat>=1.2.8 ; extra == 'all' + - pytest>=8.3.4 ; extra == 'all' + - pytest-xdist>=3.6.1 ; extra == 'all' + - python-calamine>=0.3.0 ; extra == 'all' + - pytz>=2024.2 ; extra == 'all' + - pyxlsb>=1.0.10 ; extra == 'all' + - qtpy>=2.4.2 ; extra == 'all' + - scipy>=1.14.1 ; extra == 'all' + - s3fs>=2024.10.0 ; extra == 'all' + - sqlalchemy>=2.0.36 ; extra == 'all' + - tables>=3.10.1 ; extra == 'all' + - tabulate>=0.9.0 ; extra == 'all' + - xarray>=2024.10.0 ; extra == 'all' + - xlrd>=2.0.1 ; extra == 'all' + - xlsxwriter>=3.2.0 ; extra == 'all' + - zstandard>=0.23.0 ; extra == 'all' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl + name: pandocfilters + version: 1.5.1 + sha256: 93be382804a9cdb0a7267585f157e5d1731bbe5545a85b268d6f5fe6232de2bc + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*' +- pypi: https://files.pythonhosted.org/packages/11/da/9d476e9aadfa854719f3cb917e3f7a170a657a182d8d1d6e546594a4872b/param-2.3.1-py3-none-any.whl + name: param + version: 2.3.1 + sha256: 886b19031438719bbecfd15044dcdd9ed3cb9edb199191294f75600c7081d163 + requires_dist: + - aiohttp ; extra == 'all' + - cloudpickle ; extra == 'all' + - gmpy2 ; extra == 'all' + - ipython ; extra == 'all' + - jsonschema ; extra == 'all' + - nbval ; extra == 'all' + - nest-asyncio ; extra == 'all' + - numpy ; extra == 'all' + - odfpy ; extra == 'all' + - openpyxl ; extra == 'all' + - pandas ; extra == 'all' + - panel ; extra == 'all' + - pyarrow ; extra == 'all' + - pytest ; extra == 'all' + - pytest-asyncio ; extra == 'all' + - pytest-cov ; extra == 'all' + - pytest-xdist ; extra == 'all' + - tables ; extra == 'all' + - xlrd ; extra == 'all' + - aiohttp ; extra == 'examples' + - pandas ; extra == 'examples' + - panel ; extra == 'examples' + - pytest ; extra == 'tests' + - pytest-asyncio ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - odfpy ; extra == 'tests-deser' + - openpyxl ; extra == 'tests-deser' + - pyarrow ; extra == 'tests-deser' + - tables ; extra == 'tests-deser' + - xlrd ; extra == 'tests-deser' + - aiohttp ; extra == 'tests-examples' + - nbval ; extra == 'tests-examples' + - pandas ; extra == 'tests-examples' + - panel ; extra == 'tests-examples' + - pytest ; extra == 'tests-examples' + - pytest-asyncio ; extra == 'tests-examples' + - pytest-xdist ; extra == 'tests-examples' + - aiohttp ; extra == 'tests-full' + - cloudpickle ; extra == 'tests-full' + - gmpy2 ; extra == 'tests-full' + - ipython ; extra == 'tests-full' + - jsonschema ; extra == 'tests-full' + - nbval ; extra == 'tests-full' + - nest-asyncio ; extra == 'tests-full' + - numpy ; extra == 'tests-full' + - odfpy ; extra == 'tests-full' + - openpyxl ; extra == 'tests-full' + - pandas ; extra == 'tests-full' + - panel ; extra == 'tests-full' + - pyarrow ; extra == 'tests-full' + - pytest ; extra == 'tests-full' + - pytest-asyncio ; extra == 'tests-full' + - pytest-cov ; extra == 'tests-full' + - pytest-xdist ; extra == 'tests-full' + - tables ; extra == 'tests-full' + - xlrd ; extra == 'tests-full' + - cloudpickle ; extra == 'tests-pypy' + - ipython ; extra == 'tests-pypy' + - jsonschema ; extra == 'tests-pypy' + - nest-asyncio ; extra == 'tests-pypy' + - numpy ; extra == 'tests-pypy' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/parmetis-4.0.3-h02de7a9_1007.conda + sha256: 46f621fefa4a7e16e3baecb8fd91c963c114868f9916d4fd88012f9733e50de7 + md5: 5b8d0f52f0248c5788fde9aa3436bb4d + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=13 + - libstdcxx >=13 + - openmpi >=5.0.5,<6.0a0 + license: LicenseRef-ParMETIS + purls: [] + size: 276865 + timestamp: 1730465272445 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/parmetis-4.0.3-ha4b917a_1007.conda + sha256: 3d6b8fe9c3bdfebe6ab741f2d361d1f9985648e133adc92d5255c49d239b23d5 + md5: 5446c6b6425a5639d701d5424a061d5e + depends: + - __osx >=11.0 + - libcxx >=18 + - mpich >=4.2.3,<5.0a0 + license: LicenseRef-ParMETIS + purls: [] + size: 220470 + timestamp: 1730465546669 +- pypi: https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl + name: parso + version: 0.8.5 + sha256: 646204b5ee239c396d040b90f9e272e9a8017c630092bf59980beb62fd033887 + requires_dist: + - pytest ; extra == 'testing' + - docopt ; extra == 'testing' + - flake8==5.0.4 ; extra == 'qa' + - mypy==0.971 ; extra == 'qa' + - types-setuptools==67.2.0.1 ; extra == 'qa' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/71/e7/40fb618334dcdf7c5a316c0e7343c5cd82d3d866edc100d98e29bc945ecd/partd-1.4.2-py3-none-any.whl + name: partd + version: 1.4.2 + sha256: 978e4ac767ec4ba5b86c6eaa52e5a2a3bc748a2ca839e8cc798f1cc6ce6efb0f + requires_dist: + - locket + - toolz + - numpy>=1.20.0 ; extra == 'complete' + - pandas>=1.3 ; extra == 'complete' + - pyzmq ; extra == 'complete' + - blosc ; extra == 'complete' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/b1/29/c028a0731e202035f0e2e0bfbf1a3e46ad6c628cbb17f6f1cc9eea5d9ff1/pathlib_abc-0.5.2-py3-none-any.whl + name: pathlib-abc + version: 0.5.2 + sha256: 4c9d94cf1b23af417ce7c0417b43333b06a106c01000b286c99de230d95eefbb + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/f1/70/ba4b949bdc0490ab78d545459acd7702b211dfccf7eb89bbc1060f52818d/patsy-1.0.2-py2.py3-none-any.whl + name: patsy + version: 1.0.2 + sha256: 37bfddbc58fcf0362febb5f54f10743f8b21dd2aa73dec7e7ef59d1b02ae668a + requires_dist: + - numpy>=1.4 + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.6' +- conda: https://conda.anaconda.org/conda-forge/linux-64/petsc-3.24.3-real_h326748a_1.conda + sha256: 0e1fe7371b42f179315862e5d60536038064c057d2f2b310f8f13781b8896318 + md5: 0941ef873ec159a6141a492b29126a80 + depends: + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - libstdcxx >=14 + - liblapack >=3.9.0,<4.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - yaml >=0.2.5,<0.3.0a0 + - libklu >=2.3.5,<3.0a0 + - mumps-mpi >=5.8.1,<5.8.2.0a0 + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - libblas >=3.9.0,<4.0a0 + - superlu_dist >=9.1.0,<10.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libspqr >=4.3.4,<5.0a0 + - fftw >=3.3.10,<4.0a0 + - fftw * mpi_openmpi_* + - superlu >=7.0.1,<7.1.0a0 + - libumfpack >=6.3.5,<7.0a0 + - openmpi >=5.0.8,<6.0a0 + - hypre >=2.32.0,<2.33.0a0 + - libamd >=3.3.3,<4.0a0 + - libhwloc >=2.12.2,<2.12.3.0a0 + - parmetis >=4.0.3,<4.1.0a0 + - metis >=5.1.0,<5.1.1.0a0 + - hdf5 >=1.14.6,<1.14.7.0a0 mpi_openmpi_* + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 24258048 + timestamp: 1768671939184 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc-3.24.3-real_h9fb0cc7_1.conda + sha256: 2312e935d8a54ddf0685495d83e75ac91ebb6a0d691712cce209b9e6b2787a28 + md5: 637f86995ced46f6ffd9caa72011fc90 + depends: + - libcxx >=19 + - __osx >=11.0 + - libgfortran + - libgfortran5 >=14.3.0 + - hdf5 >=1.14.6,<1.14.7.0a0 mpi_mpich_* + - libklu >=2.3.5,<3.0a0 + - mumps-mpi >=5.8.1,<5.8.2.0a0 + - fftw >=3.3.10,<4.0a0 + - fftw * mpi_mpich_* + - libscotch >=7.0.10,<7.0.11.0a0 + - libscotch * int32_* + - hypre >=2.32.0,<2.33.0a0 + - libumfpack >=6.3.5,<7.0a0 + - libcholmod >=5.3.1,<6.0a0 + - libspqr >=4.3.4,<5.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - libamd >=3.3.3,<4.0a0 + - libptscotch >=7.0.10,<7.0.11.0a0 + - libptscotch * int32_* + - libhwloc >=2.12.2,<2.12.3.0a0 + - superlu_dist >=9.1.0,<10.0a0 + - metis >=5.1.0,<5.1.1.0a0 + - mpich >=4.3.2,<5.0a0 + - parmetis >=4.0.3,<4.1.0a0 + - superlu >=7.0.0,<7.1.0a0 + - yaml >=0.2.5,<0.3.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 19961691 + timestamp: 1768671965776 +- conda: https://conda.anaconda.org/conda-forge/linux-64/petsc4py-3.24.3-np2py310h90edcb8_0.conda + noarch: python + sha256: b1887b2536f054fcb98b93f46283f15c84458dba1319b0a6e968c74d660fffe8 + md5: 5cbad812476b36c1e54788537299707d + depends: + - python + - __glibc >=2.17,<3.0.a0 + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - _python_abi3_support 1.* + - cpython >=3.10 + - numpy >=1.21,<3 + - openmpi >=5.0.8,<6.0a0 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/petsc4py?source=hash-mapping + size: 1813384 + timestamp: 1767605661858 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/petsc4py-3.24.3-np2py310h37723c0_0.conda + noarch: python + sha256: 60b5bf14e7806b9fd258a4604fe2db7495025be707b2ba245a04925fa0571e00 + md5: 082c5842c04aadaf7e680104c92dccda + depends: + - python + - libgfortran + - libgfortran5 >=14.3.0 + - __osx >=11.0 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + - _python_abi3_support 1.* + - cpython >=3.10 + - numpy >=1.21,<3 + - mpich >=4.3.2,<5.0a0 + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/petsc4py?source=hash-mapping + size: 1329951 + timestamp: 1767605889601 +- pypi: https://files.pythonhosted.org/packages/9e/c3/059298687310d527a58bb01f3b1965787ee3b40dce76752eda8b44e9a2c5/pexpect-4.9.0-py2.py3-none-any.whl + name: pexpect + version: 4.9.0 + sha256: 7236d1e080e4936be2dc3e326cec0af72acf9212a7e1d060210e70a47e253523 + requires_dist: + - ptyprocess>=0.5 +- pypi: https://files.pythonhosted.org/packages/11/8f/48d0b77ab2200374c66d344459b8958c86693be99526450e7aee714e03e4/pillow-12.1.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: pillow + version: 12.1.0 + sha256: a6dfc2af5b082b635af6e08e0d1f9f1c4e04d17d4e2ca0ef96131e85eda6eb17 + requires_dist: + - furo ; extra == 'docs' + - olefile ; extra == 'docs' + - sphinx>=8.2 ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-inline-tabs ; extra == 'docs' + - sphinxext-opengraph ; extra == 'docs' + - olefile ; extra == 'fpx' + - olefile ; extra == 'mic' + - arro3-compute ; extra == 'test-arrow' + - arro3-core ; extra == 'test-arrow' + - nanoarrow ; extra == 'test-arrow' + - pyarrow ; extra == 'test-arrow' + - check-manifest ; extra == 'tests' + - coverage>=7.4.2 ; extra == 'tests' + - defusedxml ; extra == 'tests' + - markdown2 ; extra == 'tests' + - olefile ; extra == 'tests' + - packaging ; extra == 'tests' + - pyroma>=5 ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-timeout ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - trove-classifiers>=2024.10.12 ; extra == 'tests' + - defusedxml ; extra == 'xmp' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ab/c1/10e45ac9cc79419cedf5121b42dcca5a50ad2b601fa080f58c22fb27626e/pillow-12.1.0-cp312-cp312-macosx_11_0_arm64.whl + name: pillow + version: 12.1.0 + sha256: 907bfa8a9cb790748a9aa4513e37c88c59660da3bcfffbd24a7d9e6abf224551 + requires_dist: + - furo ; extra == 'docs' + - olefile ; extra == 'docs' + - sphinx>=8.2 ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-inline-tabs ; extra == 'docs' + - sphinxext-opengraph ; extra == 'docs' + - olefile ; extra == 'fpx' + - olefile ; extra == 'mic' + - arro3-compute ; extra == 'test-arrow' + - arro3-core ; extra == 'test-arrow' + - nanoarrow ; extra == 'test-arrow' + - pyarrow ; extra == 'test-arrow' + - check-manifest ; extra == 'tests' + - coverage>=7.4.2 ; extra == 'tests' + - defusedxml ; extra == 'tests' + - markdown2 ; extra == 'tests' + - olefile ; extra == 'tests' + - packaging ; extra == 'tests' + - pyroma>=5 ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-timeout ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - trove-classifiers>=2024.10.12 ; extra == 'tests' + - defusedxml ; extra == 'xmp' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b8/02/5bf3639f5b77e9b183011c08541c5039ba3d04f5316c70312b48a8e003a9/pims-0.7.tar.gz + name: pims + version: '0.7' + sha256: 55907a4c301256086d2aa4e34a5361b9109f24e375c2071e1117b9491e82946b + requires_dist: + - imageio + - numpy>=1.19 + - packaging + - slicerator>=0.9.8 + - tifffile + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl + name: platformdirs + version: 4.5.1 + sha256: d03afa3963c806a9bed9d5125c8f4cb2fdaf74a55ab60e5d59b3fde758104d31 + requires_dist: + - furo>=2025.9.25 ; extra == 'docs' + - proselint>=0.14 ; extra == 'docs' + - sphinx-autodoc-typehints>=3.2 ; extra == 'docs' + - sphinx>=8.2.3 ; extra == 'docs' + - appdirs==1.4.4 ; extra == 'test' + - covdefaults>=2.3 ; extra == 'test' + - pytest-cov>=7 ; extra == 'test' + - pytest-mock>=3.15.1 ; extra == 'test' + - pytest>=8.4.2 ; extra == 'test' + - mypy>=1.18.2 ; extra == 'type' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl + name: pluggy + version: 1.6.0 + sha256: e920276dd6813095e9377c0bc5566d94c932c33b27a3e3945d8389c374dd4746 + requires_dist: + - pre-commit ; extra == 'dev' + - tox ; extra == 'dev' + - pytest ; extra == 'testing' + - pytest-benchmark ; extra == 'testing' + - coverage ; extra == 'testing' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl + name: pooch + version: 1.8.2 + sha256: 3529a57096f7198778a5ceefd5ac3ef0e4d06a6ddaf9fc2d609b806f25302c47 + requires_dist: + - platformdirs>=2.5.0 + - packaging>=20.0 + - requests>=2.19.0 + - tqdm>=4.41.0,<5.0.0 ; extra == 'progress' + - paramiko>=2.7.0 ; extra == 'sftp' + - xxhash>=1.4.3 ; extra == 'xxhash' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/07/9f/57e49b3f7173359741053c5e2766a45dcf649d767c2e967ef93526c9045f/pot-0.9.6.post1-cp312-cp312-macosx_11_0_arm64.whl + name: pot + version: 0.9.6.post1 + sha256: f3207362d3e3b5aaa783f452aa85f66e83edbefb5764f34662860af54ac72ee6 + requires_dist: + - numpy>=1.16 + - scipy>=1.6 + - jax ; extra == 'backend-jax' + - jaxlib ; extra == 'backend-jax' + - tensorflow ; extra == 'backend-tf' + - torch ; extra == 'backend-torch' + - cvxopt ; extra == 'cvxopt' + - scikit-learn ; extra == 'dr' + - pymanopt ; extra == 'dr' + - autograd ; extra == 'dr' + - torch ; extra == 'gnn' + - torch-geometric ; extra == 'gnn' + - matplotlib ; extra == 'plot' + - jax ; extra == 'all' + - jaxlib ; extra == 'all' + - tensorflow ; extra == 'all' + - torch ; extra == 'all' + - cvxopt ; extra == 'all' + - scikit-learn ; extra == 'all' + - pymanopt ; extra == 'all' + - autograd ; extra == 'all' + - torch-geometric ; extra == 'all' + - matplotlib ; extra == 'all' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/2f/3f/cc519c1176116271b6282268a705162fa042c16cc922bc56039445c9d697/pot-0.9.6.post1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pot + version: 0.9.6.post1 + sha256: 4f1b0148ae17bec0ed12264c6da3a05e13913b716e2a8c9043242b5d8349d8df + requires_dist: + - numpy>=1.16 + - scipy>=1.6 + - jax ; extra == 'backend-jax' + - jaxlib ; extra == 'backend-jax' + - tensorflow ; extra == 'backend-tf' + - torch ; extra == 'backend-torch' + - cvxopt ; extra == 'cvxopt' + - scikit-learn ; extra == 'dr' + - pymanopt ; extra == 'dr' + - autograd ; extra == 'dr' + - torch ; extra == 'gnn' + - torch-geometric ; extra == 'gnn' + - matplotlib ; extra == 'plot' + - jax ; extra == 'all' + - jaxlib ; extra == 'all' + - tensorflow ; extra == 'all' + - torch ; extra == 'all' + - cvxopt ; extra == 'all' + - scikit-learn ; extra == 'all' + - pymanopt ; extra == 'all' + - autograd ; extra == 'all' + - torch-geometric ; extra == 'all' + - matplotlib ; extra == 'all' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl + name: pre-commit + version: 4.5.1 + sha256: 3b3afd891e97337708c1674210f8eba659b52a38ea5f822ff142d10786221f77 + requires_dist: + - cfgv>=2.0.0 + - identify>=1.0.0 + - nodeenv>=0.11.1 + - pyyaml>=5.1 + - virtualenv>=20.10.0 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl + name: progressbar2 + version: 4.5.0 + sha256: 625c94a54e63915b3959355e6d4aacd63a00219e5f3e2b12181b76867bf6f628 + requires_dist: + - python-utils>=3.8.1 + - sphinx>=1.8.5 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.6.0 ; extra == 'docs' + - dill>=0.3.6 ; extra == 'tests' + - flake8>=3.7.7 ; extra == 'tests' + - freezegun>=0.3.11 ; extra == 'tests' + - pytest-cov>=2.6.1 ; extra == 'tests' + - pytest-mypy ; extra == 'tests' + - pytest>=4.6.9 ; extra == 'tests' + - sphinx>=1.8.5 ; extra == 'tests' + - pywin32 ; sys_platform == 'win32' and extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl + name: prometheus-client + version: 0.24.1 + sha256: 150db128af71a5c2482b36e588fc8a6b95e498750da4b17065947c16070f4055 + requires_dist: + - twisted ; extra == 'twisted' + - aiohttp ; extra == 'aiohttp' + - django ; extra == 'django' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/84/03/0d3ce49e2505ae70cf43bc5bb3033955d2fc9f932163e84dc0779cc47f48/prompt_toolkit-3.0.52-py3-none-any.whl + name: prompt-toolkit + version: 3.0.52 + sha256: 9aac639a3bbd33284347de5ad8d68ecc044b91a762dc39b7c21095fcd6a19955 + requires_dist: + - wcwidth + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/0a/b6/5c9a0e42df4d00bfb4a3cbbe5cf9f54260300c88a0e9af1f47ca5ce17ac0/propcache-0.4.1-cp312-cp312-macosx_11_0_arm64.whl + name: propcache + version: 0.4.1 + sha256: f048da1b4f243fc44f205dfd320933a951b8d89e0afd4c7cacc762a8b9165207 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/46/4b/3aae6835b8e5f44ea6a68348ad90f78134047b503765087be2f9912140ea/propcache-0.4.1-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: propcache + version: 0.4.1 + sha256: 15932ab57837c3368b024473a525e25d316d8353016e7cc0e5ba9eb343fbb1cf + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/66/15/6ee23553b6bfd82670207ead921f4d8ef14c107e5e11443b04caeb5ab5ec/protobuf-6.33.4-cp39-abi3-macosx_10_9_universal2.whl + name: protobuf + version: 6.33.4 + sha256: 2fe67f6c014c84f655ee06f6f66213f9254b3a8b6bda6cda0ccd4232c73c06f0 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e8/8e/971c0edd084914f7ee7c23aa70ba89e8903918adca179319ee94403701d5/protobuf-6.33.4-cp39-abi3-manylinux2014_x86_64.whl + name: protobuf + version: 6.33.4 + sha256: 3df850c2f8db9934de4cf8f9152f8dc2558f49f298f37f90c517e8e5c84c30e9 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/29/f8/40e01c350ad9a2b3cb4e6adbcc8a83b17ee50dd5792102b6142385937db5/psutil-7.2.1-cp36-abi3-manylinux2010_x86_64.manylinux_2_12_x86_64.manylinux_2_28_x86_64.whl + name: psutil + version: 7.2.1 + sha256: 5e38404ca2bb30ed7267a46c02f06ff842e92da3bb8c5bfdadbd35a5722314d8 + requires_dist: + - psleak ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-instafail ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - setuptools ; extra == 'dev' + - abi3audit ; extra == 'dev' + - black ; extra == 'dev' + - check-manifest ; extra == 'dev' + - coverage ; extra == 'dev' + - packaging ; extra == 'dev' + - pylint ; extra == 'dev' + - pyperf ; extra == 'dev' + - pypinfo ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - requests ; extra == 'dev' + - rstcheck ; extra == 'dev' + - ruff ; extra == 'dev' + - sphinx ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - toml-sort ; extra == 'dev' + - twine ; extra == 'dev' + - validate-pyproject[all] ; extra == 'dev' + - virtualenv ; extra == 'dev' + - vulture ; extra == 'dev' + - wheel ; extra == 'dev' + - psleak ; extra == 'test' + - pytest ; extra == 'test' + - pytest-instafail ; extra == 'test' + - pytest-xdist ; extra == 'test' + - setuptools ; extra == 'test' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/c5/2c/78e4a789306a92ade5000da4f5de3255202c534acdadc3aac7b5458fadef/psutil-7.2.1-cp36-abi3-macosx_11_0_arm64.whl + name: psutil + version: 7.2.1 + sha256: 05cc68dbb8c174828624062e73078e7e35406f4ca2d0866c272c2410d8ef06d1 + requires_dist: + - psleak ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-instafail ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - setuptools ; extra == 'dev' + - abi3audit ; extra == 'dev' + - black ; extra == 'dev' + - check-manifest ; extra == 'dev' + - coverage ; extra == 'dev' + - packaging ; extra == 'dev' + - pylint ; extra == 'dev' + - pyperf ; extra == 'dev' + - pypinfo ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - requests ; extra == 'dev' + - rstcheck ; extra == 'dev' + - ruff ; extra == 'dev' + - sphinx ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - toml-sort ; extra == 'dev' + - twine ; extra == 'dev' + - validate-pyproject[all] ; extra == 'dev' + - virtualenv ; extra == 'dev' + - vulture ; extra == 'dev' + - wheel ; extra == 'dev' + - psleak ; extra == 'test' + - pytest ; extra == 'test' + - pytest-instafail ; extra == 'test' + - pytest-xdist ; extra == 'test' + - setuptools ; extra == 'test' + requires_python: '>=3.6' +- pypi: https://files.pythonhosted.org/packages/22/a6/858897256d0deac81a172289110f31629fc4cee19b6f01283303e18c8db3/ptyprocess-0.7.0-py2.py3-none-any.whl + name: ptyprocess + version: 0.7.0 + sha256: 4b41f3967fce3af57cc7e94b888626c18bf37a083e3651ca8feeb66d492fef35 +- pypi: https://files.pythonhosted.org/packages/8e/37/efad0257dc6e593a18957422533ff0f87ede7c9c6ea010a2177d738fb82f/pure_eval-0.2.3-py3-none-any.whl + name: pure-eval + version: 0.2.3 + sha256: 1db8e35b67b3d218d818ae653e27f06c3aa420901fa7b081ca98cbedc874e0d0 + requires_dist: + - pytest ; extra == 'tests' +- pypi: https://files.pythonhosted.org/packages/3d/bd/c861d020831ee57609b73ea721a617985ece817684dc82415b0bc3e03ac3/pyarrow-23.0.0-cp312-cp312-macosx_12_0_arm64.whl + name: pyarrow + version: 23.0.0 + sha256: 5961a9f646c232697c24f54d3419e69b4261ba8a8b66b0ac54a1851faffcbab8 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/c6/6f/8f9eb40c2328d66e8b097777ddcf38494115ff9f1b5bc9754ba46991191e/pyarrow-23.0.0-cp312-cp312-manylinux_2_28_x86_64.whl + name: pyarrow + version: 23.0.0 + sha256: b73519f8b52ae28127000986bf228fda781e81d3095cd2d3ece76eb5cf760e1b + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/0c/c3/44f3fbbfa403ea2a7c779186dc20772604442dde72947e7d01069cbe98e3/pycparser-3.0-py3-none-any.whl + name: pycparser + version: '3.0' + sha256: b727414169a36b7d524c1c3e31839a521725078d7b2ff038656844266160a992 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/8c/b2/23f4032cd1c9744aa8e9ecda43cd4d755fcb209f7f40fae035248f31a679/pyct-0.6.0-py3-none-any.whl + name: pyct + version: 0.6.0 + sha256: cfaded7289fca72ddf6579b81459e3ec8db323a508e61c49aa318ee3cd6ff160 + requires_dist: + - param>=1.7.0 + - pyyaml ; extra == 'cmd' + - requests ; extra == 'cmd' + - pytest ; extra == 'tests' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/35/2d/cb0cd5865a8dac8869cdd01df17c2c0c94d9aa22b167e1bbfa01559dd3a9/pygam-0.12.0-py3-none-any.whl + name: pygam + version: 0.12.0 + sha256: e66597040fc9b6f113a5a9229fc42fb4ea60e8f55942a3b438caccf0512835f4 + requires_dist: + - numpy>=1.5.0 + - progressbar2>=4.2.0,<5 + - scipy>=1.11.1,<1.17 + - black>=23.1.0,<24 ; extra == 'dev' + - codecov>=2.1.12,<3 ; extra == 'dev' + - flake8>=7.0.0 ; extra == 'dev' + - ipython>=8.11.0,<9 ; extra == 'dev' + - ipykernel>=7.1.0 ; extra == 'dev' + - matplotlib>=3.0.0,<4 ; extra == 'dev' + - mock>=5.0.1,<6 ; extra == 'dev' + - nbsphinx>=0.9.0,<1 ; extra == 'dev' + - numpydoc>=1.8.0 ; extra == 'dev' + - pandas>=2.0 ; extra == 'dev' + - pytest>=9.0.0 ; extra == 'dev' + - pydata-sphinx-theme>=0.15.0 ; extra == 'dev' + - pytest-cov>=7.0.0 ; extra == 'dev' + - sphinx>=8.0.0 ; extra == 'dev' + - sphinx-copybutton>=0.5.0 ; extra == 'dev' + - sphinx-design>=0.6.0 ; extra == 'dev' + - sphinx-favicon>=1.0.0 ; extra == 'dev' + requires_python: '>=3.10,<3.15' +- pypi: https://files.pythonhosted.org/packages/c7/21/705964c7812476f378728bdf590ca4b771ec72385c533964653c68e86bdc/pygments-2.19.2-py3-none-any.whl + name: pygments + version: 2.19.2 + sha256: 86540386c03d588bb81d44bc3928634ff26449851e99741617ecb9037ee5ec0b + requires_dist: + - colorama>=0.4.6 ; extra == 'windows-terminal' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/56/fa/ad3e85498b1ca5c54162035567f9cb6ad38d1a24829db465e947fe32c6c9/pygpcca-1.0.3-py3-none-any.whl + name: pygpcca + version: 1.0.3 + sha256: 7b373326fc97daef5a22461b82dd37ad00bd86cd8b8ddc7e330502b578c33d49 + requires_dist: + - docrep>=0.3.1 + - numpy>=1.17.0 + - scipy>=1.5.0 + - pre-commit>=2.9.0 ; extra == 'dev' + - bump2version ; extra == 'dev' + - nbsphinx>=0.8 ; extra == 'docs' + - sphinx==4.0.2 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-last-updated-by-git ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - mpi4py>=3.0.3 ; extra == 'slepc' + - petsc>=3.13,!=3.14 ; extra == 'slepc' + - slepc>=3.13,!=3.14 ; extra == 'slepc' + - petsc4py>=3.13,!=3.14 ; extra == 'slepc' + - slepc4py>=3.13,!=3.14 ; extra == 'slepc' + - tox>=3.20.1 ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/82/a6/c415c9faa7c4c8749fbac0c54523def0cf9efb94d70f09188370c0da74c8/pygpcca-1.0.4-py3-none-any.whl + name: pygpcca + version: 1.0.4 + sha256: e541059418032cd51d2997638adfe6aac9629717bbd6b78d8876ffb4bf4018c7 + requires_dist: + - docrep>=0.3.1 + - jinja2==3.0.3 + - numpy>=1.17.0 + - scipy>=1.5.0 + - pre-commit>=2.9.0 ; extra == 'dev' + - bump2version ; extra == 'dev' + - nbsphinx>=0.8 ; extra == 'docs' + - sphinx==4.0.2 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-last-updated-by-git ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinxcontrib-spelling ; extra == 'docs' + - mpi4py>=3.0.3 ; extra == 'slepc' + - petsc>=3.18.0 ; extra == 'slepc' + - slepc>=3.18.0 ; extra == 'slepc' + - petsc4py>=3.18.0 ; extra == 'slepc' + - slepc4py>=3.18.0 ; extra == 'slepc' + - tox>=3.20.1 ; extra == 'test' +- pypi: https://pypi.nvidia.com/pylibcudf-cu12/pylibcudf_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pylibcudf-cu12 + version: 25.12.0 + sha256: fe2a12f16a3d9f21cdee878ea2d2f02300079ab5fe3dd29e877d0ff5d64ca244 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - libcudf-cu12==25.12.* + - nvtx>=0.2.1 + - packaging + - rmm-cu12==25.12.* + - typing-extensions>=4.0.0 + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - fastavro>=0.22.9 ; extra == 'test' + - hypothesis>=6.131.7 ; extra == 'test' + - mmh3 ; extra == 'test' + - nanoarrow ; extra == 'test' + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 ; extra == 'test' + - numba>=0.60.0,<0.62.0a0 ; extra == 'test' + - pandas ; extra == 'test' + - pyarrow>=15.0.0,!=17.0.0 ; platform_machine == 'aarch64' and extra == 'test' + - pyarrow>=15.0.0 ; platform_machine == 'x86_64' and extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - xxhash ; extra == 'test' + - pyarrow>=15.0.0,!=17.0.0 ; platform_machine == 'aarch64' and extra == 'pyarrow' + - pyarrow>=15.0.0 ; platform_machine == 'x86_64' and extra == 'pyarrow' + - numpy>=1.23,<3.0a0 ; extra == 'numpy' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/pylibcugraph-cu12/pylibcugraph_cu12-25.12.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pylibcugraph-cu12 + version: 25.12.2 + sha256: 74e8eac098da8ac455c7b5282a2a0c3e36bdbd9ee848ecf207e4ee7000c0fe16 + requires_dist: + - cupy-cuda12x>=13.6.0 + - libcugraph-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - pylibraft-cu12==25.12.* + - rmm-cu12==25.12.* + - cudf-cu12==25.12.* ; extra == 'test' + - numpy>=1.23,<3.0a0 ; extra == 'test' + - pandas ; extra == 'test' + - pytest-benchmark ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/pylibraft-cu12/pylibraft_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: pylibraft-cu12 + version: 25.12.0 + sha256: 13a6e9663793d5920b86be797ed78d686baa7362886d4be0030bdf9cb333b7f0 + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - libraft-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - rmm-cu12==25.12.* + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - scikit-learn ; extra == 'test' + - scipy ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b2/e6/94145d714402fd5ade00b5661f2d0ab981219e07f7db9bfa16786cdb9c04/pynndescent-0.6.0-py3-none-any.whl + name: pynndescent + version: 0.6.0 + sha256: dc8c74844e4c7f5cbd1e0cd6909da86fdc789e6ff4997336e344779c3d5538ef + requires_dist: + - scikit-learn>=0.18 + - scipy>=1.0 + - numba>=0.55.0 + - llvmlite>=0.38 + - joblib>=0.11 + - pytest ; extra == 'testing' +- pypi: https://files.pythonhosted.org/packages/36/f7/cf8bec9024625947e1a71441906f60a5fa6f9e4c441c4428037e73b1fcc8/pyogrio-0.12.1-cp312-cp312-manylinux_2_28_x86_64.whl + name: pyogrio + version: 0.12.1 + sha256: 8b65be8c4258b27cc8f919b21929cecdadda4c353e3637fa30850339ef4d15c5 + requires_dist: + - certifi + - numpy + - packaging + - cython>=3.1 ; extra == 'dev' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-benchmark ; extra == 'benchmark' + - geopandas ; extra == 'geopandas' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/ad/e0/656b6536549d41b5aec57e0deca1f269b4f17532f0636836f587e581603a/pyogrio-0.12.1-cp312-cp312-macosx_12_0_arm64.whl + name: pyogrio + version: 0.12.1 + sha256: 7a0d5ca39184030aec4cde30f4258f75b227a854530d2659babc8189d76e657d + requires_dist: + - certifi + - numpy + - packaging + - cython>=3.1 ; extra == 'dev' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-benchmark ; extra == 'benchmark' + - geopandas ; extra == 'geopandas' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/10/bd/c038d7cc38edc1aa5bf91ab8068b63d4308c66c4c8bb3cbba7dfbc049f9c/pyparsing-3.3.2-py3-none-any.whl + name: pyparsing + version: 3.3.2 + sha256: 850ba148bd908d7e2411587e247a1e4f0327839c40e2e5e6d05a007ecc69911d + requires_dist: + - railroad-diagrams ; extra == 'diagrams' + - jinja2 ; extra == 'diagrams' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/04/90/67bd7260b4ea9b8b20b4f58afef6c223ecb3abf368eb4ec5bc2cdef81b49/pyproj-3.7.2.tar.gz + name: pyproj + version: 3.7.2 + sha256: 39a0cf1ecc7e282d1d30f36594ebd55c9fae1fda8a2622cee5d100430628f88c + requires_dist: + - certifi + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/b8/be/212882c450bba74fc8d7d35cbd57e4af84792f0a56194819d98106b075af/pyproj-3.7.2-cp312-cp312-manylinux_2_28_x86_64.whl + name: pyproj + version: 3.7.2 + sha256: 1edc34266c0c23ced85f95a1ee8b47c9035eae6aca5b6b340327250e8e281630 + requires_dist: + - certifi + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/fc/81/957ae78e6398460a7230b0eb9b8f1cb954c5e913e868e48d89324c68cec7/pyro_api-0.1.2-py3-none-any.whl + name: pyro-api + version: 0.1.2 + sha256: 10e0e42e9e4401ce464dab79c870e50dfb4f413d326fa777f3582928ef9caf8f + requires_dist: + - sphinx>=2.0 ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - ipython ; extra == 'dev' + - flake8 ; extra == 'test' + - pytest>=5.0 ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/ed/37/def183a2a2c8619d92649d62fe0622c4c6c62f60e4151e8fbaa409e7d5ab/pyro_ppl-1.9.1-py3-none-any.whl + name: pyro-ppl + version: 1.9.1 + sha256: 91fb2c8740d9d3bd548180ac5ecfa04552ed8c471a1ab66870180663b8f09852 + requires_dist: + - numpy>=1.7 + - opt-einsum>=2.3.2 + - pyro-api>=0.1.1 + - torch>=2.0 + - tqdm>=4.36 + - notebook ; extra == 'dev' + - ipywidgets ; extra == 'dev' + - graphviz>=0.8 ; extra == 'dev' + - matplotlib>=1.3 ; extra == 'dev' + - torchvision>=0.15.0 ; extra == 'dev' + - visdom>=0.1.4,<0.2.2 ; extra == 'dev' + - pandas ; extra == 'dev' + - pillow>=8.3.1 ; extra == 'dev' + - scikit-learn ; extra == 'dev' + - seaborn>=0.11.0 ; extra == 'dev' + - wget ; extra == 'dev' + - scipy>=1.1 ; extra == 'dev' + - black>=21.4b0 ; extra == 'dev' + - mypy>=0.812 ; extra == 'dev' + - nbformat ; extra == 'dev' + - nbsphinx>=0.3.2 ; extra == 'dev' + - nbstripout ; extra == 'dev' + - nbval ; extra == 'dev' + - ninja ; extra == 'dev' + - pypandoc ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pytest>=5.0 ; extra == 'dev' + - ruff ; extra == 'dev' + - sphinx ; extra == 'dev' + - sphinx-rtd-theme ; extra == 'dev' + - yapf ; extra == 'dev' + - notebook ; extra == 'extras' + - ipywidgets ; extra == 'extras' + - graphviz>=0.8 ; extra == 'extras' + - matplotlib>=1.3 ; extra == 'extras' + - torchvision>=0.15.0 ; extra == 'extras' + - visdom>=0.1.4,<0.2.2 ; extra == 'extras' + - pandas ; extra == 'extras' + - pillow>=8.3.1 ; extra == 'extras' + - scikit-learn ; extra == 'extras' + - seaborn>=0.11.0 ; extra == 'extras' + - wget ; extra == 'extras' + - scipy>=1.1 ; extra == 'extras' + - funsor[torch]==0.4.4 ; extra == 'funsor' + - horovod[pytorch]>=0.19 ; extra == 'horovod' + - lightning ; extra == 'lightning' + - prettytable ; extra == 'profile' + - pytest-benchmark ; extra == 'profile' + - snakeviz ; extra == 'profile' + - notebook ; extra == 'test' + - ipywidgets ; extra == 'test' + - graphviz>=0.8 ; extra == 'test' + - matplotlib>=1.3 ; extra == 'test' + - torchvision>=0.15.0 ; extra == 'test' + - visdom>=0.1.4,<0.2.2 ; extra == 'test' + - pandas ; extra == 'test' + - pillow>=8.3.1 ; extra == 'test' + - scikit-learn ; extra == 'test' + - seaborn>=0.11.0 ; extra == 'test' + - wget ; extra == 'test' + - scipy>=1.1 ; extra == 'test' + - black>=21.4b0 ; extra == 'test' + - nbval ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest>=5.0 ; extra == 'test' + - ruff ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/3b/ab/b3226f0bd7cdcf710fbede2b3548584366da3b19b5021e74f5bde2a8fa3f/pytest-9.0.2-py3-none-any.whl + name: pytest + version: 9.0.2 + sha256: 711ffd45bf766d5264d487b917733b453d917afd2b0ad65223959f59089f875b + requires_dist: + - colorama>=0.4 ; sys_platform == 'win32' + - exceptiongroup>=1 ; python_full_version < '3.11' + - iniconfig>=1.0.1 + - packaging>=22 + - pluggy>=1.5,<2 + - pygments>=2.7.2 + - tomli>=1 ; python_full_version < '3.11' + - argcomplete ; extra == 'dev' + - attrs>=19.2 ; extra == 'dev' + - hypothesis>=3.56 ; extra == 'dev' + - mock ; extra == 'dev' + - requests ; extra == 'dev' + - setuptools ; extra == 'dev' + - xmlschema ; extra == 'dev' + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/python-3.12.12-hd63d673_2_cpython.conda + build_number: 2 + sha256: 6621befd6570a216ba94bc34ec4618e4f3777de55ad0adc15fc23c28fadd4d1a + md5: c4540d3de3fa228d9fa95e31f8e97f89 + depends: + - __glibc >=2.17,<3.0.a0 + - bzip2 >=1.0.8,<2.0a0 + - ld_impl_linux-64 >=2.36.1 + - libexpat >=2.7.3,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - libgcc >=14 + - liblzma >=5.8.2,<6.0a0 + - libnsl >=2.0.1,<2.1.0a0 + - libsqlite >=3.51.2,<4.0a0 + - libuuid >=2.41.3,<3.0a0 + - libxcrypt >=4.4.36 + - libzlib >=1.3.1,<2.0a0 + - ncurses >=6.5,<7.0a0 + - openssl >=3.5.4,<4.0a0 + - readline >=8.3,<9.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + constrains: + - python_abi 3.12.* *_cp312 + license: Python-2.0 + purls: [] + size: 31457785 + timestamp: 1769472855343 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/python-3.12.12-h18782d2_2_cpython.conda + build_number: 2 + sha256: 765e5d0f92dabc8c468d078a4409490e08181a6f9be6f5d5802a4e3131b9a69c + md5: e198b8f74b12292d138eb4eceb004fa3 + depends: + - __osx >=11.0 + - bzip2 >=1.0.8,<2.0a0 + - libexpat >=2.7.3,<3.0a0 + - libffi >=3.5.2,<3.6.0a0 + - liblzma >=5.8.2,<6.0a0 + - libsqlite >=3.51.2,<4.0a0 + - libzlib >=1.3.1,<2.0a0 + - ncurses >=6.5,<7.0a0 + - openssl >=3.5.4,<4.0a0 + - readline >=8.3,<9.0a0 + - tk >=8.6.13,<8.7.0a0 + - tzdata + constrains: + - python_abi 3.12.* *_cp312 + license: Python-2.0 + purls: [] + size: 12953358 + timestamp: 1769472376612 +- pypi: https://files.pythonhosted.org/packages/ec/57/56b9bcc3c9c6a792fcbaf139543cee77261f3651ca9da0c93f5c1221264b/python_dateutil-2.9.0.post0-py2.py3-none-any.whl + name: python-dateutil + version: 2.9.0.post0 + sha256: a8b2bc7bffae282281c8140a97d3aa9c14da0b136dfe83f850eea9a5f7470427 + requires_dist: + - six>=1.5 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*' +- conda: https://conda.anaconda.org/conda-forge/noarch/python-gil-3.12.12-hd8ed1ab_2.conda + sha256: 3307c01627ae45524dfbdb149f7801818608c9c49d88ac89632dff32e149057f + md5: d41b6b394546ee6e1c423e28a581fc71 + depends: + - cpython 3.12.12.* + - python_abi * *_cp312 + license: Python-2.0 + purls: [] + size: 46618 + timestamp: 1769471082980 +- pypi: https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl + name: python-json-logger + version: 4.0.0 + sha256: af09c9daf6a813aa4cc7180395f50f2a9e5fa056034c9953aec92e381c5ba1e2 + requires_dist: + - typing-extensions ; python_full_version < '3.10' + - orjson ; implementation_name != 'pypy' and extra == 'dev' + - msgspec ; implementation_name != 'pypy' and extra == 'dev' + - validate-pyproject[all] ; extra == 'dev' + - black ; extra == 'dev' + - pylint ; extra == 'dev' + - mypy ; extra == 'dev' + - pytest ; extra == 'dev' + - freezegun ; extra == 'dev' + - backports-zoneinfo ; python_full_version < '3.9' and extra == 'dev' + - tzdata ; extra == 'dev' + - build ; extra == 'dev' + - mkdocs ; extra == 'dev' + - mkdocs-material>=8.5 ; extra == 'dev' + - mkdocs-awesome-pages-plugin ; extra == 'dev' + - mdx-truly-sane-lists ; extra == 'dev' + - mkdocstrings[python] ; extra == 'dev' + - mkdocs-gen-files ; extra == 'dev' + - mkdocs-literate-nav ; extra == 'dev' + - mike ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl + name: python-utils + version: 3.9.1 + sha256: 0273d7363c7ad4b70999b2791d5ba6b55333d6f7a4e4c8b6b39fb82b5fab4613 + requires_dist: + - typing-extensions>3.10.0.2 + - loguru ; extra == 'loguru' + - mock ; extra == 'docs' + - sphinx ; extra == 'docs' + - python-utils ; extra == 'docs' + - ruff ; extra == 'tests' + - pyright ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-mypy ; extra == 'tests' + - pytest-asyncio ; extra == 'tests' + - sphinx ; extra == 'tests' + - types-setuptools ; extra == 'tests' + - loguru ; extra == 'tests' + - loguru-mypy ; extra == 'tests' + - mypy-ipython ; extra == 'tests' + - blessings ; extra == 'tests' + requires_python: '>=3.9.0' +- conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.12-8_cp312.conda + build_number: 8 + sha256: 80677180dd3c22deb7426ca89d6203f1c7f1f256f2d5a94dc210f6e758229809 + md5: c3efd25ac4d74b1584d2f7a57195ddf1 + constrains: + - python 3.12.* *_cpython + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 6958 + timestamp: 1752805918820 +- pypi: https://files.pythonhosted.org/packages/77/eb/cc6dbfe70d15318dbce82674b1e8057cef2634ca9f9121a16b8a06c630db/pytorch_lightning-2.6.0-py3-none-any.whl + name: pytorch-lightning + version: 2.6.0 + sha256: ee72cff4b8c983ecfaae8599382544bd5236d9eb300adc7dd305f359195f4e79 + requires_dist: + - torch>=2.1.0 + - tqdm>=4.57.0 + - pyyaml>5.4 + - fsspec[http]>=2022.5.0 + - torchmetrics>0.7.0 + - packaging>=20.0 + - typing-extensions>4.5.0 + - lightning-utilities>=0.10.0 + - requests<2.33.0 ; extra == 'examples' + - torchvision>=0.16.0 ; extra == 'examples' + - ipython[all]>=8.0.0 ; extra == 'examples' + - torchmetrics>=0.10.0 ; extra == 'examples' + - matplotlib>3.1 ; extra == 'extra' + - omegaconf>=2.2.3 ; extra == 'extra' + - hydra-core>=1.2.0 ; extra == 'extra' + - jsonargparse[jsonnet,signatures]>=4.39.0 ; extra == 'extra' + - rich>=12.3.0 ; extra == 'extra' + - tensorboardx>=2.2 ; extra == 'extra' + - bitsandbytes>=0.45.2 ; sys_platform != 'darwin' and extra == 'extra' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'test' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'test' + - pytest==8.4.2 ; extra == 'test' + - pytest-cov==7.0.0 ; extra == 'test' + - pytest-timeout==2.4.0 ; extra == 'test' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'test' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'test' + - pytest-random-order==1.2.0 ; extra == 'test' + - cloudpickle>=1.3 ; extra == 'test' + - scikit-learn>0.22.1 ; extra == 'test' + - numpy>1.20.0 ; extra == 'test' + - onnx>1.12.0 ; extra == 'test' + - onnxruntime>=1.12.0 ; extra == 'test' + - onnxscript>=0.1.0 ; extra == 'test' + - psutil<7.2.0 ; extra == 'test' + - pandas>2.0 ; extra == 'test' + - fastapi ; extra == 'test' + - uvicorn ; extra == 'test' + - tensorboard>=2.11 ; extra == 'test' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'test' + - huggingface-hub ; extra == 'test' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'strategies' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'deepspeed' + - matplotlib>3.1 ; extra == 'all' + - omegaconf>=2.2.3 ; extra == 'all' + - hydra-core>=1.2.0 ; extra == 'all' + - jsonargparse[jsonnet,signatures]>=4.39.0 ; extra == 'all' + - rich>=12.3.0 ; extra == 'all' + - tensorboardx>=2.2 ; extra == 'all' + - bitsandbytes>=0.45.2 ; sys_platform != 'darwin' and extra == 'all' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'all' + - requests<2.33.0 ; extra == 'all' + - torchvision>=0.16.0 ; extra == 'all' + - ipython[all]>=8.0.0 ; extra == 'all' + - torchmetrics>=0.10.0 ; extra == 'all' + - matplotlib>3.1 ; extra == 'dev' + - omegaconf>=2.2.3 ; extra == 'dev' + - hydra-core>=1.2.0 ; extra == 'dev' + - jsonargparse[jsonnet,signatures]>=4.39.0 ; extra == 'dev' + - rich>=12.3.0 ; extra == 'dev' + - tensorboardx>=2.2 ; extra == 'dev' + - bitsandbytes>=0.45.2 ; sys_platform != 'darwin' and extra == 'dev' + - deepspeed>=0.15.0,<0.17.0 ; sys_platform != 'darwin' and sys_platform != 'win32' and extra == 'dev' + - requests<2.33.0 ; extra == 'dev' + - torchvision>=0.16.0 ; extra == 'dev' + - ipython[all]>=8.0.0 ; extra == 'dev' + - torchmetrics>=0.10.0 ; extra == 'dev' + - coverage==7.11.0 ; python_full_version >= '3.10' and extra == 'dev' + - coverage==7.10.7 ; python_full_version < '3.10' and extra == 'dev' + - pytest==8.4.2 ; extra == 'dev' + - pytest-cov==7.0.0 ; extra == 'dev' + - pytest-timeout==2.4.0 ; extra == 'dev' + - pytest-rerunfailures==16.0.1 ; python_full_version < '3.10' and extra == 'dev' + - pytest-rerunfailures==16.1 ; python_full_version >= '3.10' and extra == 'dev' + - pytest-random-order==1.2.0 ; extra == 'dev' + - cloudpickle>=1.3 ; extra == 'dev' + - scikit-learn>0.22.1 ; extra == 'dev' + - numpy>1.20.0 ; extra == 'dev' + - onnx>1.12.0 ; extra == 'dev' + - onnxruntime>=1.12.0 ; extra == 'dev' + - onnxscript>=0.1.0 ; extra == 'dev' + - psutil<7.2.0 ; extra == 'dev' + - pandas>2.0 ; extra == 'dev' + - fastapi ; extra == 'dev' + - uvicorn ; extra == 'dev' + - tensorboard>=2.11 ; extra == 'dev' + - torch-tensorrt ; python_full_version >= '3.12' and sys_platform == 'linux' and extra == 'dev' + - huggingface-hub ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl + name: pytz + version: '2025.2' + sha256: 5ddf76296dd8c44c26eb8f4b6f35488f3ccbf6fbbd7adee0b7262d43f0ec2f00 +- pypi: https://files.pythonhosted.org/packages/89/a0/6cf41a19a1f2f3feab0e9c0b74134aa2ce6849093d5517a0c550fe37a648/pyyaml-6.0.3-cp312-cp312-macosx_11_0_arm64.whl + name: pyyaml + version: 6.0.3 + sha256: fc09d0aa354569bc501d4e787133afc08552722d3ab34836a80547331bb5d4a0 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/8b/9d/b3589d3877982d4f2329302ef98a8026e7f4443c765c46cfecc8858c6b4b/pyyaml-6.0.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: pyyaml + version: 6.0.3 + sha256: ba1cc08a7ccde2d2ec775841541641e4548226580ab850948cbfda66a1befcdc + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl + name: pyzmq + version: 27.1.0 + sha256: 452631b640340c928fa343801b0d07eb0c3789a5ffa843f6e1a9cee0ba4eb4fc + requires_dist: + - cffi ; implementation_name == 'pypy' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/f8/9b/c108cdb55560eaf253f0cbdb61b29971e9fb34d9c3499b0e96e4e60ed8a5/pyzmq-27.1.0-cp312-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl + name: pyzmq + version: 27.1.0 + sha256: 43ad9a73e3da1fab5b0e7e13402f0b2fb934ae1c876c51d0afff0e7c052eca31 + requires_dist: + - cffi ; implementation_name == 'pypy' + requires_python: '>=3.8' +- pypi: https://pypi.nvidia.com/raft-dask-cu12/raft_dask_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: raft-dask-cu12 + version: 25.12.0 + sha256: b3b55c9eb2c6dd282d7ef0c1445e6ca15c8b1b7b980d002cddf3dcfb2cd502ca + requires_dist: + - dask-cuda==25.12.* + - distributed-ucxx-cu12==0.47.* + - libraft-cu12==25.12.* + - nvidia-nccl-cu12>=2.19 + - pylibraft-cu12==25.12.* + - rapids-dask-dependency==25.12.* + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://pypi.nvidia.com/rapids-dask-dependency/rapids_dask_dependency-25.12.0-py3-none-any.whl + name: rapids-dask-dependency + version: 25.12.0 + sha256: d8efc4a2211d17079f907cf605460ad1bfd5ec2568ddefca605c91427465b5b3 + requires_dist: + - dask==2025.9.1 + - distributed==2025.9.1 + - pytest ; extra == 'test' +- pypi: https://files.pythonhosted.org/packages/69/b6/139d9df6d0f7bd289a9a6286cecfff999e41c36865515d7fdb56b7b32a14/rapids_logger-0.2.3-py3-none-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: rapids-logger + version: 0.2.3 + sha256: 7fe67ef4049c5d8ba6154746325dcf7cc0f327f0efa8f2611fc8f64e67510f60 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/1d/ba/39fe2e073b8c84ed3e7a8ca5e17aca6a73a0396a10b5058743b0936e8dff/rapids_singlecell-0.13.5-py3-none-any.whl + name: rapids-singlecell + version: 0.13.5 + sha256: 31626623211680f50397e05022a936c40c5e99318e3bdc314845cc9e8a70ba52 + requires_dist: + - anndata>=0.10.0 + - docrep + - matplotlib>=3.4 + - natsort + - numpy>=1.17.0 + - pandas + - scanpy>=1.10.0 + - scikit-image + - scikit-learn<1.8.0 + - scikit-misc>=0.1.3 + - scipy>=1.4 + - statsmodels>=0.12.0 + - tqdm + - hatch-vcs ; extra == 'dev' + - pre-commit ; extra == 'dev' + - dask ; extra == 'doc' + - myst-nb ; extra == 'doc' + - nbsphinx>=0.8.12 ; extra == 'doc' + - pytest ; extra == 'doc' + - readthedocs-sphinx-ext ; extra == 'doc' + - scanpydoc[theme,typehints]>=0.9.4 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design ; extra == 'doc' + - sphinx>=4.5.0 ; extra == 'doc' + - cudf-cu12>=25.10 ; extra == 'rapids12' + - cugraph-cu12>=25.10 ; extra == 'rapids12' + - cuml-cu12>=25.10 ; extra == 'rapids12' + - cupy-cuda12x ; extra == 'rapids12' + - cuvs-cu12>=25.10 ; extra == 'rapids12' + - cudf-cu13>=25.10 ; extra == 'rapids13' + - cugraph-cu13>=25.10 ; extra == 'rapids13' + - cuml-cu13>=25.10 ; extra == 'rapids13' + - cupy-cuda13x ; extra == 'rapids13' + - cuvs-cu13>=25.10 ; extra == 'rapids13' + - anyio ; extra == 'test' + - bbknn ; extra == 'test' + - decoupler ; extra == 'test' + - fast-array-utils ; extra == 'test' + - igraph ; extra == 'test' + - pooch ; extra == 'test' + - profimp ; extra == 'test' + - pytest ; extra == 'test' + - scanpy>=1.10.0 ; extra == 'test' + - anyio ; extra == 'test-minimal' + - bbknn ; extra == 'test-minimal' + - decoupler ; extra == 'test-minimal' + - fast-array-utils ; extra == 'test-minimal' + - pooch ; extra == 'test-minimal' + - profimp ; extra == 'test-minimal' + - pytest ; extra == 'test-minimal' + - scanpy>=1.10.0 ; extra == 'test-minimal' + requires_python: '>=3.12,<3.14' +- conda: https://conda.anaconda.org/conda-forge/linux-64/rdma-core-61.0-h192683f_0.conda + sha256: 8e0b7962cf8bec9a016cd91a6c6dc1f9ebc8e7e316b1d572f7b9047d0de54717 + md5: d487d93d170e332ab39803e05912a762 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libnl >=3.11.0,<4.0a0 + - libstdcxx >=14 + - libsystemd0 >=257.10 + - libudev1 >=257.10 + license: Linux-OpenIB + license_family: BSD + purls: [] + size: 1268666 + timestamp: 1769154883613 +- conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.3-h853b02a_0.conda + sha256: 12ffde5a6f958e285aa22c191ca01bbd3d6e710aa852e00618fa6ddc59149002 + md5: d7d95fc8287ea7bf33e0e7116d2b95ec + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - ncurses >=6.5,<7.0a0 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 345073 + timestamp: 1765813471974 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.3-h46df422_0.conda + sha256: a77010528efb4b548ac2a4484eaf7e1c3907f2aec86123ed9c5212ae44502477 + md5: f8381319127120ce51e081dce4865cf4 + depends: + - __osx >=11.0 + - ncurses >=6.5,<7.0a0 + license: GPL-3.0-only + license_family: GPL + purls: [] + size: 313930 + timestamp: 1765813902568 +- pypi: https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl + name: referencing + version: 0.37.0 + sha256: 381329a9f99628c9069361716891d34ad94af76e461dcb0335825aecc7692231 + requires_dist: + - attrs>=22.2.0 + - rpds-py>=0.7.0 + - typing-extensions>=4.4.0 ; python_full_version < '3.13' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/1e/db/4254e3eabe8020b458f1a747140d32277ec7a271daf1d235b70dc0b4e6e3/requests-2.32.5-py3-none-any.whl + name: requests + version: 2.32.5 + sha256: 2462f94637a34fd532264295e186976db0f5d453d1cdd31473c85a6a161affb6 + requires_dist: + - charset-normalizer>=2,<4 + - idna>=2.5,<4 + - urllib3>=1.21.1,<3 + - certifi>=2017.4.17 + - pysocks>=1.5.6,!=1.5.7 ; extra == 'socks' + - chardet>=3.0.2,<6 ; extra == 'use-chardet-on-py3' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/7b/44/4e421b96b67b2daff264473f7465db72fbdf36a07e05494f50300cc7b0c6/rfc3339_validator-0.1.4-py2.py3-none-any.whl + name: rfc3339-validator + version: 0.1.4 + sha256: 24f6ec1eda14ef823da9e36ec7113124b39c04d50a4d3d3a3c2859577e7791fa + requires_dist: + - six + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*' +- pypi: https://files.pythonhosted.org/packages/9e/51/17023c0f8f1869d8806b979a2bffa3f861f26a3f1a66b094288323fba52f/rfc3986_validator-0.1.1-py2.py3-none-any.whl + name: rfc3986-validator + version: 0.1.1 + sha256: 2f235c432ef459970b4306369336b9d5dbdda31b510ca1e327636e01f528bfa9 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*,!=3.3.*,!=3.4.*' +- pypi: https://files.pythonhosted.org/packages/7e/71/44ce230e1b7fadd372515a97e32a83011f906ddded8d03e3c6aafbdedbb7/rfc3987_syntax-1.1.0-py3-none-any.whl + name: rfc3987-syntax + version: 1.1.0 + sha256: 6c3d97604e4c5ce9f714898e05401a0445a641cfa276432b0a648c80856f6a3f + requires_dist: + - lark>=1.2.2 + - pytest>=8.3.5 ; extra == 'testing' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/87/2a/a1810c8627b9ec8c57ec5ec325d306701ae7be50235e8fd81266e002a3cc/rich-14.3.1-py3-none-any.whl + name: rich + version: 14.3.1 + sha256: da750b1aebbff0b372557426fb3f35ba56de8ef954b3190315eb64076d6fb54e + requires_dist: + - ipywidgets>=7.5.1,<9 ; extra == 'jupyter' + - markdown-it-py>=2.2.0 + - pygments>=2.13.0,<3.0.0 + requires_python: '>=3.8.0' +- pypi: https://pypi.nvidia.com/rmm-cu12/rmm_cu12-25.12.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: rmm-cu12 + version: 25.12.0 + sha256: 3b44781ec3063ad1ecfffbcc928a04ae26e073f49d2f451b52335a66b34f0d3f + requires_dist: + - cuda-python>=12.9.2,<13.0a0 + - librmm-cu12==25.12.* + - numpy>=1.23,<3.0a0 + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 ; extra == 'test' + - numba>=0.60.0,<0.62.0a0 ; extra == 'test' + - packaging ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/4d/a1/bca7fd3d452b272e13335db8d6b0b3ecde0f90ad6f16f3328c6fb150c889/rpds_py-0.30.0-cp312-cp312-macosx_11_0_arm64.whl + name: rpds-py + version: 0.30.0 + sha256: 6abc8880d9d036ecaafe709079969f56e876fcf107f7a8e9920ba6d5a3878d05 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/60/1b/6f8f29f3f995c7ffdde46a626ddccd7c63aefc0efae881dc13b6e5d5bb16/rpds_py-0.30.0-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: rpds-py + version: 0.30.0 + sha256: 47f236970bccb2233267d89173d3ad2703cd36a0e2a6e92d0560d333871a3d23 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/08/86/bcabd656a78122c7642a16ce2ea77347b77888b2fcde43bd2e925e393c64/s3fs-0.6.0-py3-none-any.whl + name: s3fs + version: 0.6.0 + sha256: 296a7e2c69f6f5414221a7688245c25e0c6d36eebc52cdf77fdaff77b10c7dd9 + requires_dist: + - aiobotocore>=1.0.1 + - fsspec>=0.8.0 + - aiobotocore[awscli] ; extra == 'awscli' + - aiobotocore[boto3] ; extra == 'boto3' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/93/cf/0af92a4d3f36dd9ff675e0419e7efc48d7808641ac2b2ce2c1f09a9dc632/s3fs-2026.1.0-py3-none-any.whl + name: s3fs + version: 2026.1.0 + sha256: c1f4ad1fca6dd052ffaa104a293ba209772f4a60c164818382833868e1b1597d + requires_dist: + - aiobotocore>=2.5.4,<4.0.0 + - fsspec==2026.1.0 + - aiohttp!=4.0.0a0,!=4.0.0a1 + requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/scalapack-2.2.0-hf7e2fd8_5.conda + sha256: 3edfdfaea04b3d27160f6e9d8ba4b73f38cae1518fd28bb9d5e1cc0d9aeaa707 + md5: f38b2e68978b035ef0e7352a9e675f25 + depends: + - __glibc >=2.17,<3.0.a0 + - libblas >=3.9.0,<4.0a0 + - libgcc >=14 + - libgfortran + - libgfortran5 >=14.3.0 + - liblapack >=3.9.0,<4.0a0 + - openmpi >=5.0.8,<6.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 1959824 + timestamp: 1767294315929 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/scalapack-2.2.0-h1b9cfae_5.conda + sha256: b7960e3ffc3f2ad5a1ec388264321fbe44d23c24f78b8c1d3603fd1ad1bbc3f2 + md5: e3a8ecbc2b6ecdbfc49495ed100763fc + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libgfortran + - libgfortran5 >=14.3.0 + - liblapack >=3.9.0,<4.0a0 + - mpich >=4.3.2,<5.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 1663934 + timestamp: 1767295066448 +- pypi: https://files.pythonhosted.org/packages/44/f0/000ac705a3d5b8744c6eabfce6b413b131829542ffec05020b1e931ffed4/scanpy-1.12-py3-none-any.whl + name: scanpy + version: '1.12' + sha256: 0b89827f9ba9fea8fce5a49b311e9ce34a23f922b7d8506fa845a2dc92ef0bfe + requires_dist: + - anndata>=0.10.8 + - fast-array-utils[accel,sparse]>=1.2.1 + - h5py>=3.11 + - joblib + - legacy-api-wrap>=1.5 + - matplotlib>=3.9 + - natsort + - networkx>=2.8.8 + - numba>=0.60 + - numpy>=2 + - packaging>=25 + - pandas>=2.2.2 + - patsy + - pynndescent>=0.5.13 + - scikit-learn>=1.4.2 + - scipy>=1.13 + - seaborn>=0.13.2 + - session-info2 + - statsmodels>=0.14.5 + - tqdm + - typing-extensions ; python_full_version < '3.13' + - umap-learn>=0.5.7 + - bbknn ; extra == 'bbknn' + - anndata[dask] ; extra == 'dask' + - dask[array]>=2024.5.1 ; extra == 'dask' + - anndata[dask] ; extra == 'dask-ml' + - dask-ml ; extra == 'dask-ml' + - dask[array]>=2024.5.1 ; extra == 'dask-ml' + - harmonypy ; extra == 'harmony' + - igraph>=0.10.8 ; extra == 'leiden' + - leidenalg>=0.10.1 ; extra == 'leiden' + - igraph ; extra == 'louvain' + - louvain>=0.8.2 ; extra == 'louvain' + - setuptools ; extra == 'louvain' + - magic-impute>=2.0.4 ; extra == 'magic' + - igraph ; extra == 'paga' + - colour-science ; extra == 'plotting' + - cudf>=0.9 ; extra == 'rapids' + - cugraph>=0.9 ; extra == 'rapids' + - cuml>=0.9 ; extra == 'rapids' + - scanorama ; extra == 'scanorama' + - scikit-image>=0.23.1 ; extra == 'scrublet' + - scikit-misc>=0.5.1 ; extra == 'skmisc' + requires_python: '>=3.12' +- pypi: https://files.pythonhosted.org/packages/e3/be/f8dd17d0510f9911f9f17ba301f7455328bf13dae416560126d428de9568/scikit_image-0.26.0-cp312-cp312-macosx_11_0_arm64.whl + name: scikit-image + version: 0.26.0 + sha256: 3409e89d66eff5734cd2b672d1c48d2759360057e714e1d92a11df82c87cba37 + requires_dist: + - numpy>=1.24 + - scipy>=1.11.4 + - networkx>=3.0 + - pillow>=10.1 + - imageio>=2.33,!=2.35.0 + - tifffile>=2022.8.12 + - packaging>=21 + - lazy-loader>=0.4 + - meson-python>=0.16 ; extra == 'build' + - ninja>=1.11.1.1 ; extra == 'build' + - cython>=3.0.8,!=3.2.0b1 ; extra == 'build' + - pythran>=0.16 ; extra == 'build' + - numpy>=2.0 ; extra == 'build' + - spin==0.13 ; extra == 'build' + - build>=1.2.1 ; extra == 'build' + - pooch>=1.6.0 ; extra == 'data' + - pre-commit ; extra == 'developer' + - ipython ; extra == 'developer' + - docstub==0.3.0.post0 ; extra == 'developer' + - scikit-image[asv] ; extra == 'developer' + - asv ; sys_platform != 'emscripten' and extra == 'asv' + - sphinx>=8.0 ; extra == 'docs' + - sphinx-gallery[parallel]>=0.18 ; extra == 'docs' + - numpydoc>=1.7 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - matplotlib>=3.7 ; extra == 'docs' + - dask[array]>=2023.2.0 ; extra == 'docs' + - pandas>=2.0 ; extra == 'docs' + - seaborn>=0.11 ; extra == 'docs' + - pooch>=1.6 ; extra == 'docs' + - tifffile>=2022.8.12 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - intersphinx-registry>=0.2411.14 ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - ipykernel ; extra == 'docs' + - plotly>=5.20 ; extra == 'docs' + - kaleido==0.2.1 ; extra == 'docs' + - scikit-learn>=1.2 ; extra == 'docs' + - sphinx-design>=0.5 ; extra == 'docs' + - pydata-sphinx-theme>=0.16 ; extra == 'docs' + - pywavelets>=1.6 ; extra == 'docs' + - pytest-doctestplus>=1.6.0 ; extra == 'docs' + - simpleitk ; sys_platform != 'emscripten' and extra == 'optional' + - scikit-learn>=1.2 ; extra == 'optional' + - pyamg>=5.2 ; python_full_version < '3.14' and sys_platform != 'emscripten' and extra == 'optional' + - scikit-image[optional-free-threaded] ; extra == 'optional' + - astropy>=6.0 ; extra == 'optional-free-threaded' + - dask[array]>=2023.2.0 ; extra == 'optional-free-threaded' + - matplotlib>=3.7 ; extra == 'optional-free-threaded' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'optional-free-threaded' + - pywavelets>=1.6 ; extra == 'optional-free-threaded' + - numpydoc>=1.7 ; extra == 'test' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'test' + - pytest>=8.3 ; extra == 'test' + - pytest-cov>=2.11.0 ; extra == 'test' + - pytest-pretty ; extra == 'test' + - pytest-localserver ; extra == 'test' + - pytest-faulthandler ; extra == 'test' + - pytest-doctestplus>=1.6.0 ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/f4/a2/70401a107d6d7466d64b466927e6b96fcefa99d57494b972608e2f8be50f/scikit_image-0.26.0-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: scikit-image + version: 0.26.0 + sha256: 7df650e79031634ac90b11e64a9eedaf5a5e06fcd09bcd03a34be01745744466 + requires_dist: + - numpy>=1.24 + - scipy>=1.11.4 + - networkx>=3.0 + - pillow>=10.1 + - imageio>=2.33,!=2.35.0 + - tifffile>=2022.8.12 + - packaging>=21 + - lazy-loader>=0.4 + - meson-python>=0.16 ; extra == 'build' + - ninja>=1.11.1.1 ; extra == 'build' + - cython>=3.0.8,!=3.2.0b1 ; extra == 'build' + - pythran>=0.16 ; extra == 'build' + - numpy>=2.0 ; extra == 'build' + - spin==0.13 ; extra == 'build' + - build>=1.2.1 ; extra == 'build' + - pooch>=1.6.0 ; extra == 'data' + - pre-commit ; extra == 'developer' + - ipython ; extra == 'developer' + - docstub==0.3.0.post0 ; extra == 'developer' + - scikit-image[asv] ; extra == 'developer' + - asv ; sys_platform != 'emscripten' and extra == 'asv' + - sphinx>=8.0 ; extra == 'docs' + - sphinx-gallery[parallel]>=0.18 ; extra == 'docs' + - numpydoc>=1.7 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - matplotlib>=3.7 ; extra == 'docs' + - dask[array]>=2023.2.0 ; extra == 'docs' + - pandas>=2.0 ; extra == 'docs' + - seaborn>=0.11 ; extra == 'docs' + - pooch>=1.6 ; extra == 'docs' + - tifffile>=2022.8.12 ; extra == 'docs' + - myst-parser ; extra == 'docs' + - intersphinx-registry>=0.2411.14 ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - ipykernel ; extra == 'docs' + - plotly>=5.20 ; extra == 'docs' + - kaleido==0.2.1 ; extra == 'docs' + - scikit-learn>=1.2 ; extra == 'docs' + - sphinx-design>=0.5 ; extra == 'docs' + - pydata-sphinx-theme>=0.16 ; extra == 'docs' + - pywavelets>=1.6 ; extra == 'docs' + - pytest-doctestplus>=1.6.0 ; extra == 'docs' + - simpleitk ; sys_platform != 'emscripten' and extra == 'optional' + - scikit-learn>=1.2 ; extra == 'optional' + - pyamg>=5.2 ; python_full_version < '3.14' and sys_platform != 'emscripten' and extra == 'optional' + - scikit-image[optional-free-threaded] ; extra == 'optional' + - astropy>=6.0 ; extra == 'optional-free-threaded' + - dask[array]>=2023.2.0 ; extra == 'optional-free-threaded' + - matplotlib>=3.7 ; extra == 'optional-free-threaded' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'optional-free-threaded' + - pywavelets>=1.6 ; extra == 'optional-free-threaded' + - numpydoc>=1.7 ; extra == 'test' + - pooch>=1.6.0 ; sys_platform != 'emscripten' and extra == 'test' + - pytest>=8.3 ; extra == 'test' + - pytest-cov>=2.11.0 ; extra == 'test' + - pytest-pretty ; extra == 'test' + - pytest-localserver ; extra == 'test' + - pytest-faulthandler ; extra == 'test' + - pytest-doctestplus>=1.6.0 ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/43/5d/779320063e88af9c4a7c2cf463ff11c21ac9c8bd730c4a294b0000b666c9/scikit_learn-1.7.2-cp312-cp312-macosx_12_0_arm64.whl + name: scikit-learn + version: 1.7.2 + sha256: acbc0f5fd2edd3432a22c69bed78e837c70cf896cd7993d71d51ba6708507476 + requires_dist: + - numpy>=1.22.0 + - scipy>=1.8.0 + - joblib>=1.2.0 + - threadpoolctl>=3.1.0 + - numpy>=1.22.0 ; extra == 'build' + - scipy>=1.8.0 ; extra == 'build' + - cython>=3.0.10 ; extra == 'build' + - meson-python>=0.17.1 ; extra == 'build' + - numpy>=1.22.0 ; extra == 'install' + - scipy>=1.8.0 ; extra == 'install' + - joblib>=1.2.0 ; extra == 'install' + - threadpoolctl>=3.1.0 ; extra == 'install' + - matplotlib>=3.5.0 ; extra == 'benchmark' + - pandas>=1.4.0 ; extra == 'benchmark' + - memory-profiler>=0.57.0 ; extra == 'benchmark' + - matplotlib>=3.5.0 ; extra == 'docs' + - scikit-image>=0.19.0 ; extra == 'docs' + - pandas>=1.4.0 ; extra == 'docs' + - seaborn>=0.9.0 ; extra == 'docs' + - memory-profiler>=0.57.0 ; extra == 'docs' + - sphinx>=7.3.7 ; extra == 'docs' + - sphinx-copybutton>=0.5.2 ; extra == 'docs' + - sphinx-gallery>=0.17.1 ; extra == 'docs' + - numpydoc>=1.2.0 ; extra == 'docs' + - pillow>=8.4.0 ; extra == 'docs' + - pooch>=1.6.0 ; extra == 'docs' + - sphinx-prompt>=1.4.0 ; extra == 'docs' + - sphinxext-opengraph>=0.9.1 ; extra == 'docs' + - plotly>=5.14.0 ; extra == 'docs' + - polars>=0.20.30 ; extra == 'docs' + - sphinx-design>=0.5.0 ; extra == 'docs' + - sphinx-design>=0.6.0 ; extra == 'docs' + - sphinxcontrib-sass>=0.3.4 ; extra == 'docs' + - pydata-sphinx-theme>=0.15.3 ; extra == 'docs' + - sphinx-remove-toctrees>=1.0.0.post1 ; extra == 'docs' + - towncrier>=24.8.0 ; extra == 'docs' + - matplotlib>=3.5.0 ; extra == 'examples' + - scikit-image>=0.19.0 ; extra == 'examples' + - pandas>=1.4.0 ; extra == 'examples' + - seaborn>=0.9.0 ; extra == 'examples' + - pooch>=1.6.0 ; extra == 'examples' + - plotly>=5.14.0 ; extra == 'examples' + - matplotlib>=3.5.0 ; extra == 'tests' + - scikit-image>=0.19.0 ; extra == 'tests' + - pandas>=1.4.0 ; extra == 'tests' + - pytest>=7.1.2 ; extra == 'tests' + - pytest-cov>=2.9.0 ; extra == 'tests' + - ruff>=0.11.7 ; extra == 'tests' + - mypy>=1.15 ; extra == 'tests' + - pyamg>=4.2.1 ; extra == 'tests' + - polars>=0.20.30 ; extra == 'tests' + - pyarrow>=12.0.0 ; extra == 'tests' + - numpydoc>=1.2.0 ; extra == 'tests' + - pooch>=1.6.0 ; extra == 'tests' + - conda-lock==3.0.1 ; extra == 'maintenance' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/5c/d0/0c577d9325b05594fdd33aa970bf53fb673f051a45496842caee13cfd7fe/scikit_learn-1.7.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: scikit-learn + version: 1.7.2 + sha256: e5bf3d930aee75a65478df91ac1225ff89cd28e9ac7bd1196853a9229b6adb0b + requires_dist: + - numpy>=1.22.0 + - scipy>=1.8.0 + - joblib>=1.2.0 + - threadpoolctl>=3.1.0 + - numpy>=1.22.0 ; extra == 'build' + - scipy>=1.8.0 ; extra == 'build' + - cython>=3.0.10 ; extra == 'build' + - meson-python>=0.17.1 ; extra == 'build' + - numpy>=1.22.0 ; extra == 'install' + - scipy>=1.8.0 ; extra == 'install' + - joblib>=1.2.0 ; extra == 'install' + - threadpoolctl>=3.1.0 ; extra == 'install' + - matplotlib>=3.5.0 ; extra == 'benchmark' + - pandas>=1.4.0 ; extra == 'benchmark' + - memory-profiler>=0.57.0 ; extra == 'benchmark' + - matplotlib>=3.5.0 ; extra == 'docs' + - scikit-image>=0.19.0 ; extra == 'docs' + - pandas>=1.4.0 ; extra == 'docs' + - seaborn>=0.9.0 ; extra == 'docs' + - memory-profiler>=0.57.0 ; extra == 'docs' + - sphinx>=7.3.7 ; extra == 'docs' + - sphinx-copybutton>=0.5.2 ; extra == 'docs' + - sphinx-gallery>=0.17.1 ; extra == 'docs' + - numpydoc>=1.2.0 ; extra == 'docs' + - pillow>=8.4.0 ; extra == 'docs' + - pooch>=1.6.0 ; extra == 'docs' + - sphinx-prompt>=1.4.0 ; extra == 'docs' + - sphinxext-opengraph>=0.9.1 ; extra == 'docs' + - plotly>=5.14.0 ; extra == 'docs' + - polars>=0.20.30 ; extra == 'docs' + - sphinx-design>=0.5.0 ; extra == 'docs' + - sphinx-design>=0.6.0 ; extra == 'docs' + - sphinxcontrib-sass>=0.3.4 ; extra == 'docs' + - pydata-sphinx-theme>=0.15.3 ; extra == 'docs' + - sphinx-remove-toctrees>=1.0.0.post1 ; extra == 'docs' + - towncrier>=24.8.0 ; extra == 'docs' + - matplotlib>=3.5.0 ; extra == 'examples' + - scikit-image>=0.19.0 ; extra == 'examples' + - pandas>=1.4.0 ; extra == 'examples' + - seaborn>=0.9.0 ; extra == 'examples' + - pooch>=1.6.0 ; extra == 'examples' + - plotly>=5.14.0 ; extra == 'examples' + - matplotlib>=3.5.0 ; extra == 'tests' + - scikit-image>=0.19.0 ; extra == 'tests' + - pandas>=1.4.0 ; extra == 'tests' + - pytest>=7.1.2 ; extra == 'tests' + - pytest-cov>=2.9.0 ; extra == 'tests' + - ruff>=0.11.7 ; extra == 'tests' + - mypy>=1.15 ; extra == 'tests' + - pyamg>=4.2.1 ; extra == 'tests' + - polars>=0.20.30 ; extra == 'tests' + - pyarrow>=12.0.0 ; extra == 'tests' + - numpydoc>=1.2.0 ; extra == 'tests' + - pooch>=1.6.0 ; extra == 'tests' + - conda-lock==3.0.1 ; extra == 'maintenance' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/59/48/5a486b3a9cff8cd8abc0bdc21a1a23f9c5b73962ef6e66a502b7636fad08/scikit_misc-0.5.2-cp312-cp312-macosx_11_0_arm64.whl + name: scikit-misc + version: 0.5.2 + sha256: efc64474adcec7fc373b13519db19682ae1e75fbed0da044efce1ae232a6bb01 + requires_dist: + - numpy>=1.26.4 + - scikit-misc[doc] ; extra == 'all' + - scikit-misc[build] ; extra == 'all' + - scikit-misc[lint] ; extra == 'all' + - scikit-misc[test] ; extra == 'all' + - scikit-misc[dev] ; extra == 'all' + - numpydoc ; extra == 'doc' + - sphinx ; extra == 'doc' + - cython ; extra == 'build' + - build ; extra == 'build' + - spin ; extra == 'build' + - meson ; extra == 'build' + - meson-python ; extra == 'build' + - ninja ; extra == 'build' + - ruff ; extra == 'lint' + - pytest-cov ; extra == 'test' + - wheel ; extra == 'dev' + - twine ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/6a/7e/f003fd232ec3c3e29ae565e38536dbdef417c76f7c29a67203e05b800f44/scikit_misc-0.5.2-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl + name: scikit-misc + version: 0.5.2 + sha256: cd5a6e06864b07e9fe18c2bac756163e87f26615e5ddaa5f6129fd62535b7cfb + requires_dist: + - numpy>=1.26.4 + - scikit-misc[doc] ; extra == 'all' + - scikit-misc[build] ; extra == 'all' + - scikit-misc[lint] ; extra == 'all' + - scikit-misc[test] ; extra == 'all' + - scikit-misc[dev] ; extra == 'all' + - numpydoc ; extra == 'doc' + - sphinx ; extra == 'doc' + - cython ; extra == 'build' + - build ; extra == 'build' + - spin ; extra == 'build' + - meson ; extra == 'build' + - meson-python ; extra == 'build' + - ninja ; extra == 'build' + - ruff ; extra == 'lint' + - pytest-cov ; extra == 'test' + - wheel ; extra == 'dev' + - twine ; extra == 'dev' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/1e/0f/65582071948cfc45d43e9870bf7ca5f0e0684e165d7c9ef4e50d783073eb/scipy-1.16.3-cp312-cp312-macosx_12_0_arm64.whl + name: scipy + version: 1.16.3 + sha256: c97176013d404c7346bf57874eaac5187d969293bf40497140b0a2b2b7482e07 + requires_dist: + - numpy>=1.25.2,<2.6 + - pytest>=8.0.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - asv ; extra == 'test' + - mpmath ; extra == 'test' + - gmpy2 ; extra == 'test' + - threadpoolctl ; extra == 'test' + - scikit-umfpack ; extra == 'test' + - pooch ; extra == 'test' + - hypothesis>=6.30 ; extra == 'test' + - array-api-strict>=2.3.1 ; extra == 'test' + - cython ; extra == 'test' + - meson ; extra == 'test' + - ninja ; sys_platform != 'emscripten' and extra == 'test' + - sphinx>=5.0.0,<8.2.0 ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - pydata-sphinx-theme>=0.15.2 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design>=0.4.0 ; extra == 'doc' + - matplotlib>=3.5 ; extra == 'doc' + - numpydoc ; extra == 'doc' + - jupytext ; extra == 'doc' + - myst-nb>=1.2.0 ; extra == 'doc' + - pooch ; extra == 'doc' + - jupyterlite-sphinx>=0.19.1 ; extra == 'doc' + - jupyterlite-pyodide-kernel ; extra == 'doc' + - linkify-it-py ; extra == 'doc' + - mypy==1.10.0 ; extra == 'dev' + - typing-extensions ; extra == 'dev' + - types-psutil ; extra == 'dev' + - pycodestyle ; extra == 'dev' + - ruff>=0.0.292 ; extra == 'dev' + - cython-lint>=0.12.2 ; extra == 'dev' + - rich-click ; extra == 'dev' + - doit>=0.36.0 ; extra == 'dev' + - pydevtool ; extra == 'dev' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/79/2e/415119c9ab3e62249e18c2b082c07aff907a273741b3f8160414b0e9193c/scipy-1.16.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: scipy + version: 1.16.3 + sha256: 72d1717fd3b5e6ec747327ce9bda32d5463f472c9dce9f54499e81fbd50245a1 + requires_dist: + - numpy>=1.25.2,<2.6 + - pytest>=8.0.0 ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-xdist ; extra == 'test' + - asv ; extra == 'test' + - mpmath ; extra == 'test' + - gmpy2 ; extra == 'test' + - threadpoolctl ; extra == 'test' + - scikit-umfpack ; extra == 'test' + - pooch ; extra == 'test' + - hypothesis>=6.30 ; extra == 'test' + - array-api-strict>=2.3.1 ; extra == 'test' + - cython ; extra == 'test' + - meson ; extra == 'test' + - ninja ; sys_platform != 'emscripten' and extra == 'test' + - sphinx>=5.0.0,<8.2.0 ; extra == 'doc' + - intersphinx-registry ; extra == 'doc' + - pydata-sphinx-theme>=0.15.2 ; extra == 'doc' + - sphinx-copybutton ; extra == 'doc' + - sphinx-design>=0.4.0 ; extra == 'doc' + - matplotlib>=3.5 ; extra == 'doc' + - numpydoc ; extra == 'doc' + - jupytext ; extra == 'doc' + - myst-nb>=1.2.0 ; extra == 'doc' + - pooch ; extra == 'doc' + - jupyterlite-sphinx>=0.19.1 ; extra == 'doc' + - jupyterlite-pyodide-kernel ; extra == 'doc' + - linkify-it-py ; extra == 'doc' + - mypy==1.10.0 ; extra == 'dev' + - typing-extensions ; extra == 'dev' + - types-psutil ; extra == 'dev' + - pycodestyle ; extra == 'dev' + - ruff>=0.0.292 ; extra == 'dev' + - cython-lint>=0.12.2 ; extra == 'dev' + - rich-click ; extra == 'dev' + - doit>=0.36.0 ; extra == 'dev' + - pydevtool ; extra == 'dev' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/5b/9a/97224ad312fca04b8dec60c1b743096344c3b2fff5f56a9a817576c5cf4d/scvelo-0.3.3-py3-none-any.whl + name: scvelo + version: 0.3.3 + sha256: cb9821a86d0c6b9cb79d9fd867480d7caece27530d1d30b49052a0fa9d94a187 + requires_dist: + - anndata>=0.7.5 + - scanpy>=1.5 + - loompy>=2.0.12 + - umap-learn>=0.3.10 + - numba>=0.41.0 + - numpy>=1.17 + - pandas>=1.1.1,!=1.4.0 + - scipy>=1.4.1 + - scikit-learn>=0.21.2 + - matplotlib>=3.3.0 + - igraph ; extra == 'louvain' + - louvain ; extra == 'louvain' + - pybind11 ; extra == 'hnswlib' + - hnswlib ; extra == 'hnswlib' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - ruff ; extra == 'dev' + - black ; extra == 'dev' + - isort ; extra == 'dev' + - hnswlib ; extra == 'dev' + - hypothesis ; extra == 'dev' + - louvain ; extra == 'dev' + - pre-commit>=2.9.0 ; extra == 'dev' + - pybind11 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - igraph ; extra == 'dev' + - setuptools-scm ; extra == 'dev' + - scanpy ; extra == 'docs' + - setuptools ; extra == 'docs' + - setuptools-scm ; extra == 'docs' + - importlib-metadata ; extra == 'docs' + - sphinx-rtd-theme>=0.3 ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - ipykernel ; extra == 'docs' + - sphinx>=1.7,<8.0 ; extra == 'docs' + - nbsphinx>=0.7,<0.8.7 ; extra == 'docs' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/4a/8b/37ee827c0cd629f85d3473577d90cd032f70d1de8bb0e5e3b222d87bb19f/scvi_tools-1.4.1-py3-none-any.whl + name: scvi-tools + version: 1.4.1 + sha256: 96a8325c3f56f7528fd1201c41a2fdfdcaa135ad6ffd73cce4fb61a6c2301d30 + requires_dist: + - anndata>=0.11 + - docrep>=0.3.2 + - lightning>=2.0 + - ml-collections + - mudata + - numba>=0.60.0 + - numpy + - pandas + - pyro-ppl + - rich + - scanpy[skmisc]>=1.10 + - scikit-learn + - scipy + - sparse>=0.14.0 + - tensorboard + - torch + - torchmetrics + - tqdm + - xarray + - biomart ; extra == 'all' + - biopython>=1.81 ; extra == 'all' + - boto3 ; extra == 'all' + - captum ; extra == 'all' + - cell2location ; extra == 'all' + - coverage ; extra == 'all' + - dask[array] ; extra == 'all' + - dataloaders ; extra == 'all' + - decoupler ; extra == 'all' + - docutils>=0.8,!=0.18.*,!=0.19.* ; extra == 'all' + - dvc[s3] ; extra == 'all' + - fcswrite ; extra == 'all' + - flax ; extra == 'all' + - gdown ; extra == 'all' + - genomepy ; extra == 'all' + - gputil ; extra == 'all' + - huggingface-hub ; extra == 'all' + - hyperopt>=0.2 ; extra == 'all' + - igraph ; extra == 'all' + - ipython ; extra == 'all' + - jax ; extra == 'all' + - jaxlib ; extra == 'all' + - jupyter ; extra == 'all' + - leidenalg ; extra == 'all' + - matplotlib ; extra == 'all' + - mlflow ; extra == 'all' + - muon ; extra == 'all' + - myst-nb ; extra == 'all' + - myst-parser ; extra == 'all' + - numpyro ; extra == 'all' + - optax ; extra == 'all' + - plotnine ; extra == 'all' + - pooch ; extra == 'all' + - pre-commit ; extra == 'all' + - psutil ; extra == 'all' + - pynndescent ; extra == 'all' + - pytest ; extra == 'all' + - pytest-pretty ; extra == 'all' + - ray[tune] ; extra == 'all' + - readfcs ; extra == 'all' + - scib-metrics ; extra == 'all' + - scrublet ; extra == 'all' + - seaborn ; extra == 'all' + - shap ; extra == 'all' + - sphinx ; extra == 'all' + - sphinx-autodoc-typehints ; extra == 'all' + - sphinx-book-theme>=1.0.1 ; extra == 'all' + - sphinx-copybutton ; extra == 'all' + - sphinx-design ; extra == 'all' + - sphinx-hoverxref ; extra == 'all' + - sphinxcontrib-bibtex ; extra == 'all' + - sphinxext-opengraph ; extra == 'all' + - squidpy>=1.6.0 ; extra == 'all' + - umap-learn>=0.5.0 ; extra == 'all' + - zarr ; extra == 'all' + - hyperopt>=0.2 ; extra == 'autotune' + - muon ; extra == 'autotune' + - ray[tune] ; extra == 'autotune' + - scib-metrics ; extra == 'autotune' + - jax[cuda12] ; extra == 'cuda' + - torchaudio ; extra == 'cuda' + - torchvision ; extra == 'cuda' + - cellxgene-census ; extra == 'dataloaders' + - lamindb>=1.12.1 ; extra == 'dataloaders' + - tiledbsoma ; extra == 'dataloaders' + - tiledbsoma-ml ; extra == 'dataloaders' + - torchdata ; extra == 'dataloaders' + - biopython>=1.81 ; extra == 'dev' + - boto3 ; extra == 'dev' + - captum ; extra == 'dev' + - coverage ; extra == 'dev' + - dask[array] ; extra == 'dev' + - decoupler ; extra == 'dev' + - dvc[s3] ; extra == 'dev' + - fcswrite ; extra == 'dev' + - flax ; extra == 'dev' + - gdown ; extra == 'dev' + - genomepy ; extra == 'dev' + - gputil ; extra == 'dev' + - huggingface-hub ; extra == 'dev' + - hyperopt>=0.2 ; extra == 'dev' + - igraph ; extra == 'dev' + - jax ; extra == 'dev' + - jaxlib ; extra == 'dev' + - jupyter ; extra == 'dev' + - leidenalg ; extra == 'dev' + - mlflow ; extra == 'dev' + - muon ; extra == 'dev' + - numpyro ; extra == 'dev' + - optax ; extra == 'dev' + - pooch ; extra == 'dev' + - pre-commit ; extra == 'dev' + - psutil ; extra == 'dev' + - pynndescent ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-pretty ; extra == 'dev' + - ray[tune] ; extra == 'dev' + - readfcs ; extra == 'dev' + - scib-metrics ; extra == 'dev' + - shap ; extra == 'dev' + - zarr ; extra == 'dev' + - docutils>=0.8,!=0.18.*,!=0.19.* ; extra == 'docs' + - ipython ; extra == 'docs' + - myst-nb ; extra == 'docs' + - myst-parser ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.1 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-hoverxref ; extra == 'docs' + - sphinxcontrib-bibtex ; extra == 'docs' + - sphinxext-opengraph ; extra == 'docs' + - boto3 ; extra == 'docsbuild' + - docutils>=0.8,!=0.18.*,!=0.19.* ; extra == 'docsbuild' + - dvc[s3] ; extra == 'docsbuild' + - flax ; extra == 'docsbuild' + - huggingface-hub ; extra == 'docsbuild' + - hyperopt>=0.2 ; extra == 'docsbuild' + - ipython ; extra == 'docsbuild' + - jax ; extra == 'docsbuild' + - jaxlib ; extra == 'docsbuild' + - muon ; extra == 'docsbuild' + - myst-nb ; extra == 'docsbuild' + - myst-parser ; extra == 'docsbuild' + - numpyro ; extra == 'docsbuild' + - optax ; extra == 'docsbuild' + - ray[tune] ; extra == 'docsbuild' + - scib-metrics ; extra == 'docsbuild' + - sphinx ; extra == 'docsbuild' + - sphinx-autodoc-typehints ; extra == 'docsbuild' + - sphinx-book-theme>=1.0.1 ; extra == 'docsbuild' + - sphinx-copybutton ; extra == 'docsbuild' + - sphinx-design ; extra == 'docsbuild' + - sphinx-hoverxref ; extra == 'docsbuild' + - sphinxcontrib-bibtex ; extra == 'docsbuild' + - sphinxext-opengraph ; extra == 'docsbuild' + - jupyter ; extra == 'editing' + - pre-commit ; extra == 'editing' + - fcswrite ; extra == 'file-sharing' + - gdown ; extra == 'file-sharing' + - pooch ; extra == 'file-sharing' + - readfcs ; extra == 'file-sharing' + - boto3 ; extra == 'hub' + - dvc[s3] ; extra == 'hub' + - huggingface-hub ; extra == 'hub' + - captum ; extra == 'interpretability' + - decoupler ; extra == 'interpretability' + - shap ; extra == 'interpretability' + - flax ; extra == 'jax' + - jax ; extra == 'jax' + - jaxlib ; extra == 'jax' + - numpyro ; extra == 'jax' + - optax ; extra == 'jax' + - jax-metal ; extra == 'metal' + - torchaudio ; extra == 'metal' + - torchvision ; extra == 'metal' + - gputil ; extra == 'mlflow' + - mlflow ; extra == 'mlflow' + - psutil ; extra == 'mlflow' + - biopython>=1.81 ; extra == 'optional' + - boto3 ; extra == 'optional' + - captum ; extra == 'optional' + - dask[array] ; extra == 'optional' + - decoupler ; extra == 'optional' + - dvc[s3] ; extra == 'optional' + - fcswrite ; extra == 'optional' + - flax ; extra == 'optional' + - gdown ; extra == 'optional' + - genomepy ; extra == 'optional' + - gputil ; extra == 'optional' + - huggingface-hub ; extra == 'optional' + - hyperopt>=0.2 ; extra == 'optional' + - igraph ; extra == 'optional' + - jax ; extra == 'optional' + - jaxlib ; extra == 'optional' + - leidenalg ; extra == 'optional' + - mlflow ; extra == 'optional' + - muon ; extra == 'optional' + - numpyro ; extra == 'optional' + - optax ; extra == 'optional' + - pooch ; extra == 'optional' + - psutil ; extra == 'optional' + - pynndescent ; extra == 'optional' + - ray[tune] ; extra == 'optional' + - readfcs ; extra == 'optional' + - scib-metrics ; extra == 'optional' + - shap ; extra == 'optional' + - zarr ; extra == 'optional' + - dask[array] ; extra == 'parallel' + - zarr ; extra == 'parallel' + - biopython>=1.81 ; extra == 'regseq' + - genomepy ; extra == 'regseq' + - biopython>=1.81 ; extra == 'test' + - boto3 ; extra == 'test' + - captum ; extra == 'test' + - coverage ; extra == 'test' + - dask[array] ; extra == 'test' + - decoupler ; extra == 'test' + - dvc[s3] ; extra == 'test' + - fcswrite ; extra == 'test' + - flax ; extra == 'test' + - gdown ; extra == 'test' + - genomepy ; extra == 'test' + - gputil ; extra == 'test' + - huggingface-hub ; extra == 'test' + - hyperopt>=0.2 ; extra == 'test' + - igraph ; extra == 'test' + - jax ; extra == 'test' + - jaxlib ; extra == 'test' + - leidenalg ; extra == 'test' + - mlflow ; extra == 'test' + - muon ; extra == 'test' + - numpyro ; extra == 'test' + - optax ; extra == 'test' + - pooch ; extra == 'test' + - psutil ; extra == 'test' + - pynndescent ; extra == 'test' + - pytest ; extra == 'test' + - pytest-pretty ; extra == 'test' + - ray[tune] ; extra == 'test' + - readfcs ; extra == 'test' + - scib-metrics ; extra == 'test' + - shap ; extra == 'test' + - zarr ; extra == 'test' + - biopython>=1.81 ; extra == 'tests' + - boto3 ; extra == 'tests' + - captum ; extra == 'tests' + - coverage ; extra == 'tests' + - dask[array] ; extra == 'tests' + - decoupler ; extra == 'tests' + - dvc[s3] ; extra == 'tests' + - fcswrite ; extra == 'tests' + - flax ; extra == 'tests' + - gdown ; extra == 'tests' + - genomepy ; extra == 'tests' + - gputil ; extra == 'tests' + - huggingface-hub ; extra == 'tests' + - hyperopt>=0.2 ; extra == 'tests' + - igraph ; extra == 'tests' + - jax ; extra == 'tests' + - jaxlib ; extra == 'tests' + - leidenalg ; extra == 'tests' + - mlflow ; extra == 'tests' + - muon ; extra == 'tests' + - numpyro ; extra == 'tests' + - optax ; extra == 'tests' + - pooch ; extra == 'tests' + - psutil ; extra == 'tests' + - pynndescent ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-pretty ; extra == 'tests' + - ray[tune] ; extra == 'tests' + - readfcs ; extra == 'tests' + - scib-metrics ; extra == 'tests' + - shap ; extra == 'tests' + - zarr ; extra == 'tests' + - biomart ; extra == 'tutorials' + - biopython>=1.81 ; extra == 'tutorials' + - boto3 ; extra == 'tutorials' + - captum ; extra == 'tutorials' + - cell2location ; extra == 'tutorials' + - dask[array] ; extra == 'tutorials' + - dataloaders ; extra == 'tutorials' + - decoupler ; extra == 'tutorials' + - dvc[s3] ; extra == 'tutorials' + - fcswrite ; extra == 'tutorials' + - flax ; extra == 'tutorials' + - gdown ; extra == 'tutorials' + - genomepy ; extra == 'tutorials' + - gputil ; extra == 'tutorials' + - huggingface-hub ; extra == 'tutorials' + - hyperopt>=0.2 ; extra == 'tutorials' + - igraph ; extra == 'tutorials' + - jax ; extra == 'tutorials' + - jaxlib ; extra == 'tutorials' + - jupyter ; extra == 'tutorials' + - leidenalg ; extra == 'tutorials' + - matplotlib ; extra == 'tutorials' + - mlflow ; extra == 'tutorials' + - muon ; extra == 'tutorials' + - numpyro ; extra == 'tutorials' + - optax ; extra == 'tutorials' + - plotnine ; extra == 'tutorials' + - pooch ; extra == 'tutorials' + - psutil ; extra == 'tutorials' + - pynndescent ; extra == 'tutorials' + - ray[tune] ; extra == 'tutorials' + - readfcs ; extra == 'tutorials' + - scib-metrics ; extra == 'tutorials' + - scrublet ; extra == 'tutorials' + - seaborn ; extra == 'tutorials' + - shap ; extra == 'tutorials' + - squidpy>=1.6.0 ; extra == 'tutorials' + - umap-learn>=0.5.0 ; extra == 'tutorials' + - zarr ; extra == 'tutorials' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/83/11/00d3c3dfc25ad54e731d91449895a79e4bf2384dc3ac01809010ba88f6d5/seaborn-0.13.2-py3-none-any.whl + name: seaborn + version: 0.13.2 + sha256: 636f8336facf092165e27924f223d3c62ca560b1f2bb5dff7ab7fad265361987 + requires_dist: + - numpy>=1.20,!=1.24.0 + - pandas>=1.2 + - matplotlib>=3.4,!=3.6.1 + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - flake8 ; extra == 'dev' + - mypy ; extra == 'dev' + - pandas-stubs ; extra == 'dev' + - pre-commit ; extra == 'dev' + - flit ; extra == 'dev' + - numpydoc ; extra == 'docs' + - nbconvert ; extra == 'docs' + - ipykernel ; extra == 'docs' + - sphinx<6.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-issues ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - pyyaml ; extra == 'docs' + - pydata-sphinx-theme==0.10.0rc2 ; extra == 'docs' + - scipy>=1.7 ; extra == 'stats' + - statsmodels>=0.12 ; extra == 'stats' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl + name: send2trash + version: 2.1.0 + sha256: 0da2f112e6d6bb22de6aa6daa7e144831a4febf2a87261451c4ad849fe9a873c + requires_dist: + - pytest>=8 ; extra == 'test' + - pywin32>=305 ; sys_platform == 'win32' and extra == 'nativelib' + - pyobjc>=9.0 ; sys_platform == 'darwin' and extra == 'nativelib' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl + name: session-info2 + version: '0.3' + sha256: 95cbacef200cd7ff84e6010fdc957007c8692bd9517dc57e91ad2c8831e87d61 + requires_dist: + - click!=8.3 ; extra == 'docs' + - furo ; extra == 'docs' + - hatch ; extra == 'docs' + - ipywidgets ; extra == 'docs' + - myst-nb ; extra == 'docs' + - numpy ; extra == 'docs' + - session-info ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-codeautolink ; extra == 'docs' + - ipywidgets ; extra == 'jupyter' + - ipywidgets ; extra == 'notebook' + - numpy ; extra == 'notebook' + - session-info ; extra == 'notebook' + - coverage[toml]>=6.5 ; extra == 'test' + - ipykernel ; extra == 'test' + - jupyter-client ; extra == 'test' + - pytest ; extra == 'test' + - pytest-asyncio ; extra == 'test' + - pytest-md ; extra == 'test' + - pytest-subprocess ; extra == 'test' + - testing-common-database ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl + name: setuptools + version: 80.10.2 + sha256: 95b30ddfb717250edb492926c92b5221f7ef3fbcc2b07579bcd4a27da21d0173 + requires_dist: + - pytest>=6,!=8.1.* ; extra == 'test' + - virtualenv>=13.0.0 ; extra == 'test' + - wheel>=0.44.0 ; extra == 'test' + - pip>=19.1 ; extra == 'test' + - packaging>=24.2 ; extra == 'test' + - jaraco-envs>=2.2 ; extra == 'test' + - pytest-xdist>=3 ; extra == 'test' + - jaraco-path>=3.7.2 ; extra == 'test' + - build[virtualenv]>=1.0.3 ; extra == 'test' + - filelock>=3.4.0 ; extra == 'test' + - ini2toml[lite]>=0.14 ; extra == 'test' + - tomli-w>=1.0.0 ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest-perf ; sys_platform != 'cygwin' and extra == 'test' + - jaraco-develop>=7.21 ; python_full_version >= '3.9' and sys_platform != 'cygwin' and extra == 'test' + - pytest-home>=0.5 ; extra == 'test' + - pytest-subprocess ; extra == 'test' + - pyproject-hooks!=1.1 ; extra == 'test' + - jaraco-test>=5.5 ; extra == 'test' + - sphinx>=3.5 ; extra == 'doc' + - jaraco-packaging>=9.3 ; extra == 'doc' + - rst-linker>=1.9 ; extra == 'doc' + - furo ; extra == 'doc' + - sphinx-lint ; extra == 'doc' + - jaraco-tidelift>=1.4 ; extra == 'doc' + - pygments-github-lexers==0.0.5 ; extra == 'doc' + - sphinx-favicon ; extra == 'doc' + - sphinx-inline-tabs ; extra == 'doc' + - sphinx-reredirects ; extra == 'doc' + - sphinxcontrib-towncrier ; extra == 'doc' + - sphinx-notfound-page>=1,<2 ; extra == 'doc' + - pyproject-hooks!=1.1 ; extra == 'doc' + - towncrier<24.7 ; extra == 'doc' + - packaging>=24.2 ; extra == 'core' + - more-itertools>=8.8 ; extra == 'core' + - jaraco-text>=3.7 ; extra == 'core' + - importlib-metadata>=6 ; python_full_version < '3.10' and extra == 'core' + - tomli>=2.0.1 ; python_full_version < '3.11' and extra == 'core' + - wheel>=0.43.0 ; extra == 'core' + - platformdirs>=4.2.2 ; extra == 'core' + - jaraco-functools>=4 ; extra == 'core' + - more-itertools ; extra == 'core' + - pytest-checkdocs>=2.4 ; extra == 'check' + - pytest-ruff>=0.2.1 ; sys_platform != 'cygwin' and extra == 'check' + - ruff>=0.8.0 ; sys_platform != 'cygwin' and extra == 'check' + - pytest-cov ; extra == 'cover' + - pytest-enabler>=2.2 ; extra == 'enabler' + - pytest-mypy ; extra == 'type' + - mypy==1.14.* ; extra == 'type' + - importlib-metadata>=7.0.2 ; python_full_version < '3.10' and extra == 'type' + - jaraco-develop>=7.21 ; sys_platform != 'cygwin' and extra == 'type' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/86/07/59dee0bc4b913b7ab59ab1086225baca5b8f19865e6101db9ebb7243e132/shapely-2.1.2-cp312-cp312-macosx_11_0_arm64.whl + name: shapely + version: 2.1.2 + sha256: ba4d1333cc0bc94381d6d4308d2e4e008e0bd128bdcff5573199742ee3634359 + requires_dist: + - numpy>=1.21 + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - scipy-doctest ; extra == 'test' + - numpydoc==1.1.* ; extra == 'docs' + - matplotlib ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-book-theme ; extra == 'docs' + - sphinx-remove-toctrees ; extra == 'docs' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b9/37/e781683abac55dde9771e086b790e554811a71ed0b2b8a1e789b7430dd44/shapely-2.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl + name: shapely + version: 2.1.2 + sha256: 1e7d4d7ad262a48bb44277ca12c7c78cb1b0f56b32c10734ec9a1d30c0b0c54b + requires_dist: + - numpy>=1.21 + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - scipy-doctest ; extra == 'test' + - numpydoc==1.1.* ; extra == 'docs' + - matplotlib ; extra == 'docs' + - sphinx ; extra == 'docs' + - sphinx-book-theme ; extra == 'docs' + - sphinx-remove-toctrees ; extra == 'docs' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl + name: six + version: 1.17.0 + sha256: 4721f391ed90541fddacab5acf947aa0d3dc7d27b2e1e8eda2be8970586c3274 + requires_python: '>=2.7,!=3.0.*,!=3.1.*,!=3.2.*' +- conda: https://conda.anaconda.org/conda-forge/linux-64/slepc-3.24.2-real_h5d6ed6e_0.conda + sha256: 813b4f916e45bc4cf467f842f90613e2d616b03ff2a5ae2409f0b16ec4204e9e + md5: 3c191eb701d2b5050bfd9cf6ae76e0bc + depends: + - libgfortran5 >=14.3.0 + - libgfortran + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - libstdcxx >=14 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + - openmpi >=5.0.8,<6.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 10229027 + timestamp: 1769009087376 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc-3.24.2-real_hc5a9acf_0.conda + sha256: 23e6dc97fedbcde1043b436d160ffcb5e3c35c78feb7e31ff49fa843e8ecc0df + md5: f75b11743001063422911ff725075a58 + depends: + - __osx >=11.0 + - libcxx >=19 + - libgfortran + - libgfortran5 >=14.3.0 + - liblapack >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + - scalapack >=2.2.0,<2.3.0a0 + - petsc >=3.24.3,<3.25.0a0 + - petsc * real_* + - mpich >=4.3,<5.0a0 + license: BSD-2-Clause + license_family: BSD + purls: [] + size: 9373106 + timestamp: 1769009140625 +- conda: https://conda.anaconda.org/conda-forge/linux-64/slepc4py-3.24.2-np2py310h29f32ec_0.conda + noarch: python + sha256: 0b4579b11a2a5dbaf7d89a97139160a33f661baafadbfaea0e18e3eca73da5af + md5: d70e2ced0a46e34776bed981ae487924 + depends: + - python + - petsc4py 3.24.* + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + - openmpi >=5.0.8,<6.0a0 + - slepc >=3.24.2,<3.25.0a0 + - slepc * real_* + - _python_abi3_support 1.* + - cpython >=3.10 + - numpy >=1.21,<3 + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/slepc4py?source=hash-mapping + size: 562755 + timestamp: 1769023374683 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc4py-3.24.2-np2py310h0c2cbfb_0.conda + noarch: python + sha256: 2a8104e63c553466836813896edb5c1b04cb2aa258b80650ff75f257da864e8c + md5: d2f8969124fd7ecd0a0f193fabff39bd + depends: + - python + - petsc4py 3.24.* + - __osx >=11.0 + - slepc >=3.24.2,<3.25.0a0 + - slepc * real_* + - numpy >=1.21,<3 + - mpich >=4.3,<5.0a0 + - _python_abi3_support 1.* + - cpython >=3.10 + constrains: + - mpi4py >=3.0.1 + license: BSD-2-Clause + license_family: BSD + purls: + - pkg:pypi/slepc4py?source=hash-mapping + size: 453280 + timestamp: 1769023482050 +- pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl + name: slicerator + version: 1.1.0 + sha256: 167668d48c6d3a5ba0bd3d54b2688e81ee267dc20aef299e547d711e6f3c441a +- pypi: https://files.pythonhosted.org/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl + name: sortedcontainers + version: 2.4.0 + sha256: a163dcaede0f1c021485e957a39245190e74249897e2ae4b2aa38595db237ee0 +- pypi: https://files.pythonhosted.org/packages/46/2c/1462b1d0a634697ae9e55b3cecdcb64788e8b7d63f54d923fcd0bb140aed/soupsieve-2.8.3-py3-none-any.whl + name: soupsieve + version: 2.8.3 + sha256: ed64f2ba4eebeab06cc4962affce381647455978ffc1e36bb79a545b91f45a95 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/8d/fd/42a1720542199ae6ff0f9c37bbd55dd3033ddd7bbe00d68cde09d6824887/sparse-0.17.0-py2.py3-none-any.whl + name: sparse + version: 0.17.0 + sha256: 1922d1d97f692b1061c4f03a1dd6ee21850aedc88e171aa845715f5069952f18 + requires_dist: + - numpy>=1.17 + - numba>=0.49 + - mkdocs-material ; extra == 'docs' + - mkdocstrings[python] ; extra == 'docs' + - mkdocs-gen-files ; extra == 'docs' + - mkdocs-literate-nav ; extra == 'docs' + - mkdocs-section-index ; extra == 'docs' + - mkdocs-jupyter ; extra == 'docs' + - sparse[extras] ; extra == 'docs' + - dask[array] ; extra == 'extras' + - sparse[finch] ; extra == 'extras' + - scipy ; extra == 'extras' + - scikit-learn ; extra == 'extras' + - networkx ; extra == 'extras' + - sparse[extras] ; extra == 'tests' + - pytest>=3.5 ; extra == 'tests' + - pytest-cov ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - pre-commit ; extra == 'tests' + - pytest-codspeed ; extra == 'tests' + - sparse[tests] ; extra == 'tox' + - tox ; extra == 'tox' + - sparse[tests] ; extra == 'notebooks' + - nbmake ; extra == 'notebooks' + - matplotlib ; extra == 'notebooks' + - sparse[docs,mlir,notebooks,tox] ; extra == 'all' + - matrepr ; extra == 'all' + - finch-tensor>=0.2.12 ; extra == 'finch' + - finch-mlir>=0.0.2 ; extra == 'mlir' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/10/e5/134cfa437c0d87ce33b28b593a9990ceb4dd425e104c8da3efc299dccc55/spatial_image-1.1.0-py3-none-any.whl + name: spatial-image + version: 1.1.0 + sha256: f7f9b89e20ced35ee50efb588399d384d44c8242bee686a2e8add2fc9ab3ef56 + requires_dist: + - numpy + - xarray + - xarray-dataclasses>=1.1.0 + - pytest ; extra == 'test' + - pytest-mypy ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/d0/5a/8ef888a4f56fa2ea5c10a7d6ff02286f503a93ea298bcaa9f51a41a20df8/spatial_image-1.2.3-py3-none-any.whl + name: spatial-image + version: 1.2.3 + sha256: b5280386a4d540c32c14cb4fdf74bd0242c99c168a7dac36204b29f8c27ce19a + requires_dist: + - numpy + - xarray-dataclass>=3.0.0 + - xarray>=2024.10.0 + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/f9/a1/3f65aff044381794b455b6069a3ef0008f989707d96df9d7677eb9b8ebed/spatialdata-0.2.5.post0-py3-none-any.whl + name: spatialdata + version: 0.2.5.post0 + sha256: 61e7628a387261a8b8116bb28e9c76af438600855a74f168807fd1e834a6c5bd + requires_dist: + - anndata>=0.9.1 + - click + - dask-image + - dask>=2024.4.1 + - fsspec<=2023.6 + - geopandas>=0.14 + - multiscale-spatial-image>=1.0.0,<2.0.0 + - networkx + - numba + - numpy + - ome-zarr>=0.8.4 + - pandas + - pooch + - pyarrow + - rich + - scikit-image + - scipy + - setuptools + - shapely>=2.0.1 + - spatial-image>=1.1.0 + - typing-extensions>=4.8.0 + - xarray-datatree + - xarray-schema + - xarray-spatial>=0.3.5 + - xarray<2024.10.0 + - zarr + - bump2version ; extra == 'dev' + - ipython>=8.6.0 ; extra == 'docs' + - myst-nb ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-pytest ; extra == 'docs' + - sphinx>=4.5 ; extra == 'docs' + - sphinxcontrib-bibtex>=1.0.0 ; extra == 'docs' + - napari-spatialdata[all]>=0.2.4 ; extra == 'extra' + - spatialdata-io ; extra == 'extra' + - spatialdata-plot ; extra == 'extra' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - torch ; extra == 'test' + - torch ; extra == 'torch' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/17/a1/e538ae38d9424f62199266b4e4ccd780e149162fa828a9e1f7b8e745262e/spatialdata-0.6.1-py3-none-any.whl + name: spatialdata + version: 0.6.1 + sha256: 64a06b481859d22bd72e910c2cfd10af4b6c56be8e78404f096712558cd66ee8 + requires_dist: + - anndata>=0.9.1 + - click + - dask-image + - dask>=2024.10.0,<=2024.11.2 + - datashader + - fsspec[http,s3] + - geopandas>=0.14 + - multiscale-spatial-image==2.0.3 + - networkx + - numba>=0.55.0 + - numpy + - ome-zarr>=0.12.2 + - pandas + - pooch + - pyarrow + - rich + - scikit-image + - scipy + - setuptools + - shapely>=2.0.1 + - spatial-image>=1.2.3 + - typing-extensions>=4.8.0 + - universal-pathlib>=0.2.6 + - xarray-schema + - xarray-spatial>=0.3.5 + - xarray>=2024.10.0 + - zarr>=3.0.0 + - asv ; extra == 'benchmark' + - bump2version ; extra == 'dev' + - sentry-prevent-cli ; extra == 'dev' + - ipython>=8.6.0 ; extra == 'docs' + - myst-nb ; extra == 'docs' + - sphinx-autobuild ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-pytest ; extra == 'docs' + - sphinx>=4.5 ; extra == 'docs' + - sphinxcontrib-bibtex>=1.0.0 ; extra == 'docs' + - napari-spatialdata[all] ; extra == 'extra' + - spatialdata-io ; extra == 'extra' + - spatialdata-plot ; extra == 'extra' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-mock ; extra == 'test' + - torch ; extra == 'test' + - torch ; extra == 'torch' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/0e/92/4d9f07a97fba85d2db59bde27621d7c243efbe95250498c9aa2efdbf1cf3/spatialdata_plot-0.2.13-py3-none-any.whl + name: spatialdata-plot + version: 0.2.13 + sha256: ffa8fdba1225945224bc4ad95b4ab92daf2ea37f8cf231832a78ef100b11acf4 + requires_dist: + - matplotlib + - matplotlib-scalebar + - scanpy + - scikit-learn + - spatialdata>=0.3.0 + - ipykernel ; extra == 'dev' + - ipywidgets ; extra == 'dev' + - jupyterlab ; extra == 'dev' + - jupytext ; extra == 'dev' + - notebook ; extra == 'dev' + - pooch ; extra == 'dev' + - pre-commit ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - ruff ; extra == 'dev' + - ipython>=8.6.0 ; extra == 'docs' + - myst-nb ; extra == 'docs' + - sphinx-autodoc-typehints ; extra == 'docs' + - sphinx-book-theme>=1.0.0 ; extra == 'docs' + - sphinx-copybutton ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinx>=4.5 ; extra == 'docs' + - sphinxcontrib-bibtex>=1.0.0 ; extra == 'docs' + - pooch ; extra == 'test' + - pytest ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/31/cb/c9bee6502e1dd51f755b4d81014fc721128f3a48a0220fabe3bd09d61dfb/squidpy-1.6.2-py3-none-any.whl + name: squidpy + version: 1.6.2 + sha256: 33c3e2e81334f6652f723ed9e470a23120509ba46c8a02e0e309a8324d23dca5 + requires_dist: + - aiohttp>=3.8.1 + - anndata>=0.9 + - cycler>=0.11.0 + - dask-image>=0.5.0 + - dask[array]>=2021.2.0 + - docrep>=0.3.1 + - fsspec>=2021.11.0 + - leidenalg>=0.8.2 + - matplotlib-scalebar>=0.8.0 + - matplotlib>=3.3 + - networkx>=2.6.0 + - numba>=0.56.4 + - numpy>=1.23.0 + - omnipath>=1.0.7 + - pandas>=2.1.0 + - pillow>=8.0.0 + - scanpy>=1.9.3 + - scikit-image>=0.20 + - scikit-learn>=0.24.0 + - spatialdata>=0.2.5 + - statsmodels>=0.12.0 + - tifffile!=2022.4.22 + - tqdm>=4.50.2 + - validators>=0.18.2 + - xarray>=0.16.1,<2024.10.0 + - zarr>=2.6.1 + - pre-commit>=3.0.0 ; extra == 'dev' + - tox>=4.0.0 ; extra == 'dev' + - ipython ; extra == 'docs' + - ipywidgets>=8.0.0 ; extra == 'docs' + - myst-nb>=0.17.1 ; extra == 'docs' + - nbsphinx>=0.8.1 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5.0 ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinx>=5.3 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' + - sphinxcontrib-spelling>=7.6.2 ; extra == 'docs' + - coverage[toml]>=7 ; extra == 'test' + - pytest-cov>=4 ; extra == 'test' + - pytest-mock>=3.5.0 ; extra == 'test' + - pytest-xdist>=3 ; extra == 'test' + - pytest>=7 ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/4f/f4/99bb6201fcf62593874d98cbf874357651915ed02d31129d3a2ca3864d04/squidpy-1.7.0-py3-none-any.whl + name: squidpy + version: 1.7.0 + sha256: 15dca7769bb4afa66bb071a9d436db1ad1f61dd48c75837ed12a41b07f901c3a + requires_dist: + - aiohttp>=3.8.1 + - anndata>=0.9 + - cycler>=0.11 + - dask-image>=0.5 + - dask[array]>=2021.2,<=2024.11.2 + - docrep>=0.3.1 + - fsspec>=2021.11 + - imagecodecs>=2025.8.2,<2026 + - matplotlib-scalebar>=0.8 + - matplotlib>=3.3 + - networkx>=2.6 + - numba>=0.56.4 + - numpy>=1.23 + - omnipath>=1.0.7 + - pandas>=2.1 + - pillow>=8 + - scanpy>=1.9.3 + - scikit-image>=0.25 + - scikit-learn>=0.24 + - spatialdata-plot + - spatialdata>=0.6 + - statsmodels>=0.12 + - tifffile!=2022.4.22 + - tqdm>=4.50.2 + - validators>=0.18.2 + - xarray>=2024.10 + - zarr>=3 + - hatch>=1.9 ; extra == 'dev' + - ipykernel ; extra == 'dev' + - ipywidgets ; extra == 'dev' + - jupyterlab ; extra == 'dev' + - jupytext ; extra == 'dev' + - notebook ; extra == 'dev' + - pre-commit>=3 ; extra == 'dev' + - ruff ; extra == 'dev' + - ipython ; extra == 'docs' + - ipywidgets>=8 ; extra == 'docs' + - myst-nb>=0.17.1 ; extra == 'docs' + - nbsphinx>=0.8.1 ; extra == 'docs' + - sphinx-autodoc-annotation ; extra == 'docs' + - sphinx-autodoc-typehints>=1.10.3 ; extra == 'docs' + - sphinx-copybutton>=0.5 ; extra == 'docs' + - sphinx-design ; extra == 'docs' + - sphinx-rtd-theme ; extra == 'docs' + - sphinx-tabs ; extra == 'docs' + - sphinx>=5.3 ; extra == 'docs' + - sphinxcontrib-bibtex>=2.3 ; extra == 'docs' + - sphinxcontrib-spelling>=7.6.2 ; extra == 'docs' + - coverage[toml]>=7 ; extra == 'test' + - pytest-cov>=4 ; extra == 'test' + - pytest-mock>=3.5 ; extra == 'test' + - pytest-timeout>=2.1 ; extra == 'test' + - pytest-xdist>=3 ; extra == 'test' + - pytest>=7 ; extra == 'test' + - scanpy[leiden] ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/f1/7b/ce1eafaf1a76852e2ec9b22edecf1daa58175c090266e9f6c64afcd81d91/stack_data-0.6.3-py3-none-any.whl + name: stack-data + version: 0.6.3 + sha256: d5558e0c25a4cb0853cddad3d77da9891a08cb85dd9f9f91b9f8cd66e511e695 + requires_dist: + - executing>=1.2.0 + - asttokens>=2.1.0 + - pure-eval + - pytest ; extra == 'tests' + - typeguard ; extra == 'tests' + - pygments ; extra == 'tests' + - littleutils ; extra == 'tests' + - cython ; extra == 'tests' +- pypi: https://files.pythonhosted.org/packages/05/30/affbabf3c27fb501ec7b5808230c619d4d1a4525c07301074eb4bda92fa9/statsmodels-0.14.6-cp312-cp312-macosx_11_0_arm64.whl + name: statsmodels + version: 0.14.6 + sha256: 26d4f0ed3b31f3c86f83a92f5c1f5cbe63fc992cd8915daf28ca49be14463a1c + requires_dist: + - numpy>=1.22.3,<3 + - scipy>=1.8,!=1.9.2 + - pandas>=1.4,!=2.1.0 + - patsy>=0.5.6 + - packaging>=21.3 + - cython>=3.0.10 ; extra == 'build' + - cython>=3.0.10 ; extra == 'develop' + - cython>=3.0.10,<4 ; extra == 'develop' + - setuptools-scm[toml]~=8.0 ; extra == 'develop' + - matplotlib>=3 ; extra == 'develop' + - colorama ; extra == 'develop' + - joblib ; extra == 'develop' + - jinja2 ; extra == 'develop' + - pytest>=7.3.0,<8 ; extra == 'develop' + - pytest-randomly ; extra == 'develop' + - pytest-xdist ; extra == 'develop' + - pytest-cov ; extra == 'develop' + - pywinpty ; os_name == 'nt' and extra == 'develop' + - flake8 ; extra == 'develop' + - isort ; extra == 'develop' + - sphinx ; extra == 'docs' + - nbconvert ; extra == 'docs' + - jupyter-client ; extra == 'docs' + - ipykernel ; extra == 'docs' + - matplotlib ; extra == 'docs' + - nbformat ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pandas-datareader ; extra == 'docs' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/81/68/dddd76117df2ef14c943c6bbb6618be5c9401280046f4ddfc9fb4596a1b8/statsmodels-0.14.6-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: statsmodels + version: 0.14.6 + sha256: 19b58cf7474aa9e7e3b0771a66537148b2df9b5884fbf156096c0e6c1ff0469d + requires_dist: + - numpy>=1.22.3,<3 + - scipy>=1.8,!=1.9.2 + - pandas>=1.4,!=2.1.0 + - patsy>=0.5.6 + - packaging>=21.3 + - cython>=3.0.10 ; extra == 'build' + - cython>=3.0.10 ; extra == 'develop' + - cython>=3.0.10,<4 ; extra == 'develop' + - setuptools-scm[toml]~=8.0 ; extra == 'develop' + - matplotlib>=3 ; extra == 'develop' + - colorama ; extra == 'develop' + - joblib ; extra == 'develop' + - jinja2 ; extra == 'develop' + - pytest>=7.3.0,<8 ; extra == 'develop' + - pytest-randomly ; extra == 'develop' + - pytest-xdist ; extra == 'develop' + - pytest-cov ; extra == 'develop' + - pywinpty ; os_name == 'nt' and extra == 'develop' + - flake8 ; extra == 'develop' + - isort ; extra == 'develop' + - sphinx ; extra == 'docs' + - nbconvert ; extra == 'docs' + - jupyter-client ; extra == 'docs' + - ipykernel ; extra == 'docs' + - matplotlib ; extra == 'docs' + - nbformat ; extra == 'docs' + - numpydoc ; extra == 'docs' + - pandas-datareader ; extra == 'docs' + requires_python: '>=3.9' +- conda: https://conda.anaconda.org/conda-forge/linux-64/superlu-7.0.1-h8f6e6c4_0.conda + sha256: 4e748f877553c7ed42290420ba1e9aa0e80cf72b23b463f12dbb7927c16f0437 + md5: 6bd14d1838657334b3c0eb02f85561e2 + depends: + - libgfortran5 >=13.3.0 + - libgfortran + - libgcc >=13 + - __glibc >=2.17,<3.0.a0 + - libcblas >=3.9.0,<4.0a0 + - libblas >=3.9.0,<4.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 280620 + timestamp: 1745607580942 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu-7.0.0-h742a510_1.conda + sha256: fdec15bc4cd02de10474b13f1b7fadc1b953cb0ab6e2c093c599d2b730ed4653 + md5: 7aa007e27351cfafcbe89253dc003343 + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcblas >=3.9.0,<4.0a0 + - libgfortran >=5 + - libgfortran5 >=13.2.0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 182500 + timestamp: 1737124080734 +- conda: https://conda.anaconda.org/conda-forge/linux-64/superlu_dist-9.1.0-h3349319_0.conda + sha256: 30105f23b74bde0e3edc4b1ac7f7355244d80b04f51e114d80a4c59a1875e6b7 + md5: 0c75a7f9223703ba86d4714ba7c1676a + depends: + - __glibc >=2.17,<3.0.a0 + - _openmp_mutex >=4.5 + - libblas >=3.9.0,<4.0a0 + - libgcc >=13 + - libgfortran + - libgfortran5 >=13.3.0 + - liblapack >=3.9.0,<4.0a0 + - libstdcxx >=13 + - metis >=5.1.0,<5.1.1.0a0 + - openmpi >=5.0.5,<6.0a0 + - parmetis >=4.0.3,<4.1.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 1091811 + timestamp: 1731326778001 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu_dist-9.1.0-h89afcdd_0.conda + sha256: 84ea0413abd904dd8bccedca9a8754b0c2847b44345afe877c60cc356ada60f6 + md5: 3795fd537d0d4c39445996a8db673a30 + depends: + - __osx >=11.0 + - libblas >=3.9.0,<4.0a0 + - libcxx >=18 + - libgfortran >=5 + - libgfortran5 >=13.2.0 + - liblapack >=3.9.0,<4.0a0 + - llvm-openmp >=18.1.8 + - llvm-openmp >=19.1.3 + - metis >=5.1.0,<5.1.1.0a0 + - mpich >=4.2.3,<5.0a0 + - parmetis >=4.0.3,<4.1.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 880309 + timestamp: 1731327032505 +- pypi: https://files.pythonhosted.org/packages/a2/09/77d55d46fd61b4a135c444fc97158ef34a095e5681d0a6c10b75bf356191/sympy-1.14.0-py3-none-any.whl + name: sympy + version: 1.14.0 + sha256: e091cc3e99d2141a0ba2847328f5479b05d94a6635cb96148ccb3f34671bd8f5 + requires_dist: + - mpmath>=1.1.0,<1.4 + - pytest>=7.1.0 ; extra == 'dev' + - hypothesis>=6.70.0 ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/02/be/5d2d47b1fb58943194fb59dcf222f7c4e35122ec0ffe8c36e18b5d728f0b/tblib-3.2.2-py3-none-any.whl + name: tblib + version: 3.2.2 + sha256: 26bdccf339bcce6a88b2b5432c988b266ebbe63a4e593f6b578b1d2e723d2b76 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl + name: tensorboard + version: 2.20.0 + sha256: 9dc9f978cb84c0723acf9a345d96c184f0293d18f166bb8d59ee098e6cfaaba6 + requires_dist: + - absl-py>=0.4 + - grpcio>=1.48.2 + - markdown>=2.6.8 + - numpy>=1.12.0 + - packaging + - pillow + - protobuf>=3.19.6,!=4.24.0 + - setuptools>=41.0.0 + - tensorboard-data-server>=0.7.0,<0.8.0 + - werkzeug>=1.0.1 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl + name: tensorboard-data-server + version: 0.7.2 + sha256: 7e0610d205889588983836ec05dc098e80f97b7e7bbff7e994ebb78f578d0ddb + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl + name: terminado + version: 0.18.1 + sha256: a4468e1b37bb318f8a86514f65814e1afc977cf29b3992a4500d9dd305dcceb0 + requires_dist: + - ptyprocess ; os_name != 'nt' + - pywinpty>=1.1.0 ; os_name == 'nt' + - tornado>=6.1.0 + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - pre-commit ; extra == 'test' + - pytest-timeout ; extra == 'test' + - pytest>=7.0 ; extra == 'test' + - mypy~=1.6 ; extra == 'typing' + - traitlets>=5.11.1 ; extra == 'typing' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/24/99/4772b8e00a136f3e01236de33b0efda31ee7077203ba5967fcc76da94d65/texttable-1.7.0-py2.py3-none-any.whl + name: texttable + version: 1.7.0 + sha256: 72227d592c82b3d7f672731ae73e4d1f88cd8e2ef5b075a7a7f01a23a3743917 +- pypi: https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl + name: threadpoolctl + version: 3.6.0 + sha256: 43a0b8fd5a2928500110039e43a5eed8480b918967083ea48dc3ab9f13c4a7fb + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a3/4d/3fd60d3a37b544cb59463add86e4dfbb485880225115341281906a7b140e/tifffile-2026.1.14-py3-none-any.whl + name: tifffile + version: 2026.1.14 + sha256: 29cf4adb43562a4624fc959018ab1b44e0342015d3db4581b983fe40e05f5924 + requires_dist: + - numpy + - imagecodecs>=2025.11.11 ; extra == 'codecs' + - defusedxml ; extra == 'xml' + - lxml ; extra == 'xml' + - zarr>=3.1.3 ; extra == 'zarr' + - fsspec ; extra == 'zarr' + - kerchunk ; extra == 'zarr' + - matplotlib ; extra == 'plot' + - imagecodecs>=2025.11.11 ; extra == 'all' + - matplotlib ; extra == 'all' + - defusedxml ; extra == 'all' + - lxml ; extra == 'all' + - zarr>=3.1.3 ; extra == 'all' + - fsspec ; extra == 'all' + - kerchunk ; extra == 'all' + - cmapfile ; extra == 'test' + - czifile ; extra == 'test' + - dask ; extra == 'test' + - defusedxml ; extra == 'test' + - fsspec ; extra == 'test' + - imagecodecs ; extra == 'test' + - kerchunk ; extra == 'test' + - lfdfiles ; extra == 'test' + - lxml ; extra == 'test' + - ndtiff ; extra == 'test' + - oiffile ; extra == 'test' + - psdtags ; extra == 'test' + - pytest ; extra == 'test' + - requests ; extra == 'test' + - roifile ; extra == 'test' + - xarray ; extra == 'test' + - zarr>=3.1.3 ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl + name: tinycss2 + version: 1.4.0 + sha256: 3a49cf47b7675da0b15d0c6e1df8df4ebd96e9394bb905a5775adb0d884c5289 + requires_dist: + - webencodings>=0.4 + - sphinx ; extra == 'doc' + - sphinx-rtd-theme ; extra == 'doc' + - pytest ; extra == 'test' + - ruff ; extra == 'test' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/tk-8.6.13-noxft_h366c992_103.conda + sha256: cafeec44494f842ffeca27e9c8b0c27ed714f93ac77ddadc6aaf726b5554ebac + md5: cffd3bdd58090148f4cfcd831f4b26ab + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libzlib >=1.3.1,<2.0a0 + constrains: + - xorg-libx11 >=1.8.12,<2.0a0 + license: TCL + license_family: BSD + purls: [] + size: 3301196 + timestamp: 1769460227866 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/tk-8.6.13-h010d191_3.conda + sha256: 799cab4b6cde62f91f750149995d149bc9db525ec12595e8a1d91b9317f038b3 + md5: a9d86bc62f39b94c4661716624eb21b0 + depends: + - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 + license: TCL + license_family: BSD + purls: [] + size: 3127137 + timestamp: 1769460817696 +- pypi: https://files.pythonhosted.org/packages/fb/12/5911ae3eeec47800503a238d971e51722ccea5feb8569b735184d5fcdbc0/toolz-1.1.0-py3-none-any.whl + name: toolz + version: 1.1.0 + sha256: 15ccc861ac51c53696de0a5d6d4607f99c210739caf987b5d2054f3efed429d8 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/23/8e/3c74db5e53bff7ed9e34c8123e6a8bfef718b2450c35eefab85bb4a7e270/torch-2.10.0-cp312-cp312-manylinux_2_28_x86_64.whl + name: torch + version: 2.10.0 + sha256: 787124e7db3b379d4f1ed54dd12ae7c741c16a4d29b49c0226a89bea50923ffb + requires_dist: + - filelock + - typing-extensions>=4.10.0 + - setuptools ; python_full_version >= '3.12' + - sympy>=1.13.3 + - networkx>=2.5.1 + - jinja2 + - fsspec>=0.8.5 + - cuda-bindings==12.9.4 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-nvrtc-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-runtime-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-cupti-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cudnn-cu12==9.10.2.21 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cublas-cu12==12.8.4.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufft-cu12==11.3.3.83 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-curand-cu12==10.3.9.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusolver-cu12==11.7.3.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparse-cu12==12.5.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparselt-cu12==0.7.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nccl-cu12==2.27.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvshmem-cu12==3.4.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvtx-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvjitlink-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufile-cu12==1.13.1.3 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - triton==3.6.0 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - optree>=0.13.0 ; extra == 'optree' + - opt-einsum>=3.3 ; extra == 'opt-einsum' + - pyyaml ; extra == 'pyyaml' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/c9/5c/dee910b87c4d5c0fcb41b50839ae04df87c1cfc663cf1b5fca7ea565eeaa/torch-2.10.0-cp312-none-macosx_11_0_arm64.whl + name: torch + version: 2.10.0 + sha256: 6d3707a61863d1c4d6ebba7be4ca320f42b869ee657e9b2c21c736bf17000294 + requires_dist: + - filelock + - typing-extensions>=4.10.0 + - setuptools ; python_full_version >= '3.12' + - sympy>=1.13.3 + - networkx>=2.5.1 + - jinja2 + - fsspec>=0.8.5 + - cuda-bindings==12.9.4 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-nvrtc-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-runtime-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cuda-cupti-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cudnn-cu12==9.10.2.21 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cublas-cu12==12.8.4.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufft-cu12==11.3.3.83 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-curand-cu12==10.3.9.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusolver-cu12==11.7.3.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparse-cu12==12.5.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cusparselt-cu12==0.7.1 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nccl-cu12==2.27.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvshmem-cu12==3.4.5 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvtx-cu12==12.8.90 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-nvjitlink-cu12==12.8.93 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - nvidia-cufile-cu12==1.13.1.3 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - triton==3.6.0 ; platform_machine == 'x86_64' and sys_platform == 'linux' + - optree>=0.13.0 ; extra == 'optree' + - opt-einsum>=3.3 ; extra == 'opt-einsum' + - pyyaml ; extra == 'pyyaml' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/02/21/aa0f434434c48490f91b65962b1ce863fdcce63febc166ca9fe9d706c2b6/torchmetrics-1.8.2-py3-none-any.whl + name: torchmetrics + version: 1.8.2 + sha256: 08382fd96b923e39e904c4d570f3d49e2cc71ccabd2a94e0f895d1f0dac86242 + requires_dist: + - numpy>1.20.0 + - packaging>17.1 + - torch>=2.0.0 + - lightning-utilities>=0.8.0 + - onnxruntime>=1.12.0 ; extra == 'audio' + - requests>=2.19.0 ; extra == 'audio' + - torchaudio>=2.0.1 ; extra == 'audio' + - gammatone>=1.0.0 ; extra == 'audio' + - pystoi>=0.4.0 ; extra == 'audio' + - pesq>=0.0.4 ; extra == 'audio' + - librosa>=0.10.0 ; extra == 'audio' + - torch-linear-assignment>=0.0.2 ; extra == 'clustering' + - pycocotools>2.0.0 ; extra == 'detection' + - torchvision>=0.15.1 ; extra == 'detection' + - torch-fidelity<=0.4.0 ; extra == 'image' + - torchvision>=0.15.1 ; extra == 'image' + - scipy>1.0.0 ; extra == 'image' + - piq<=0.8.0 ; extra == 'multimodal' + - einops>=0.7.0 ; extra == 'multimodal' + - transformers>=4.43.0 ; extra == 'multimodal' + - timm>=0.9.0 ; extra == 'multimodal' + - transformers>=4.43.0 ; extra == 'text' + - regex>=2021.9.24 ; extra == 'text' + - sentencepiece>=0.2.0 ; extra == 'text' + - nltk>3.8.1 ; extra == 'text' + - tqdm<4.68.0 ; extra == 'text' + - mecab-python3>=1.0.6 ; extra == 'text' + - ipadic>=1.0.0 ; extra == 'text' + - mypy==1.17.1 ; extra == 'typing' + - types-six ; extra == 'typing' + - torch==2.8.0 ; extra == 'typing' + - types-emoji ; extra == 'typing' + - types-protobuf ; extra == 'typing' + - types-setuptools ; extra == 'typing' + - types-requests ; extra == 'typing' + - types-tabulate ; extra == 'typing' + - types-pyyaml ; extra == 'typing' + - einops>=0.7.0 ; extra == 'video' + - vmaf-torch>=1.1.0 ; extra == 'video' + - scienceplots>=2.0.0 ; extra == 'visual' + - matplotlib>=3.6.0 ; extra == 'visual' + - onnxruntime>=1.12.0 ; extra == 'all' + - requests>=2.19.0 ; extra == 'all' + - torchaudio>=2.0.1 ; extra == 'all' + - gammatone>=1.0.0 ; extra == 'all' + - pystoi>=0.4.0 ; extra == 'all' + - pesq>=0.0.4 ; extra == 'all' + - librosa>=0.10.0 ; extra == 'all' + - torch-linear-assignment>=0.0.2 ; extra == 'all' + - pycocotools>2.0.0 ; extra == 'all' + - torchvision>=0.15.1 ; extra == 'all' + - torch-fidelity<=0.4.0 ; extra == 'all' + - torchvision>=0.15.1 ; extra == 'all' + - scipy>1.0.0 ; extra == 'all' + - piq<=0.8.0 ; extra == 'all' + - einops>=0.7.0 ; extra == 'all' + - transformers>=4.43.0 ; extra == 'all' + - timm>=0.9.0 ; extra == 'all' + - transformers>=4.43.0 ; extra == 'all' + - regex>=2021.9.24 ; extra == 'all' + - sentencepiece>=0.2.0 ; extra == 'all' + - nltk>3.8.1 ; extra == 'all' + - tqdm<4.68.0 ; extra == 'all' + - mecab-python3>=1.0.6 ; extra == 'all' + - ipadic>=1.0.0 ; extra == 'all' + - mypy==1.17.1 ; extra == 'all' + - types-six ; extra == 'all' + - torch==2.8.0 ; extra == 'all' + - types-emoji ; extra == 'all' + - types-protobuf ; extra == 'all' + - types-setuptools ; extra == 'all' + - types-requests ; extra == 'all' + - types-tabulate ; extra == 'all' + - types-pyyaml ; extra == 'all' + - einops>=0.7.0 ; extra == 'all' + - vmaf-torch>=1.1.0 ; extra == 'all' + - scienceplots>=2.0.0 ; extra == 'all' + - matplotlib>=3.6.0 ; extra == 'all' + - onnxruntime>=1.12.0 ; extra == 'dev' + - requests>=2.19.0 ; extra == 'dev' + - torchaudio>=2.0.1 ; extra == 'dev' + - gammatone>=1.0.0 ; extra == 'dev' + - pystoi>=0.4.0 ; extra == 'dev' + - pesq>=0.0.4 ; extra == 'dev' + - librosa>=0.10.0 ; extra == 'dev' + - torch-linear-assignment>=0.0.2 ; extra == 'dev' + - pycocotools>2.0.0 ; extra == 'dev' + - torchvision>=0.15.1 ; extra == 'dev' + - torch-fidelity<=0.4.0 ; extra == 'dev' + - torchvision>=0.15.1 ; extra == 'dev' + - scipy>1.0.0 ; extra == 'dev' + - piq<=0.8.0 ; extra == 'dev' + - einops>=0.7.0 ; extra == 'dev' + - transformers>=4.43.0 ; extra == 'dev' + - timm>=0.9.0 ; extra == 'dev' + - transformers>=4.43.0 ; extra == 'dev' + - regex>=2021.9.24 ; extra == 'dev' + - sentencepiece>=0.2.0 ; extra == 'dev' + - nltk>3.8.1 ; extra == 'dev' + - tqdm<4.68.0 ; extra == 'dev' + - mecab-python3>=1.0.6 ; extra == 'dev' + - ipadic>=1.0.0 ; extra == 'dev' + - mypy==1.17.1 ; extra == 'dev' + - types-six ; extra == 'dev' + - torch==2.8.0 ; extra == 'dev' + - types-emoji ; extra == 'dev' + - types-protobuf ; extra == 'dev' + - types-setuptools ; extra == 'dev' + - types-requests ; extra == 'dev' + - types-tabulate ; extra == 'dev' + - types-pyyaml ; extra == 'dev' + - einops>=0.7.0 ; extra == 'dev' + - vmaf-torch>=1.1.0 ; extra == 'dev' + - scienceplots>=2.0.0 ; extra == 'dev' + - matplotlib>=3.6.0 ; extra == 'dev' + - properscoring==0.1 ; extra == 'dev' + - mir-eval>=0.6 ; extra == 'dev' + - pytorch-msssim==1.0.0 ; extra == 'dev' + - scikit-image>=0.19.0 ; extra == 'dev' + - sacrebleu>=2.3.0 ; extra == 'dev' + - dists-pytorch==0.1 ; extra == 'dev' + - torch-complex<0.5.0 ; extra == 'dev' + - pytdc==0.4.1 ; (python_full_version < '3.10' and extra == 'dev') or (python_full_version < '3.12' and sys_platform == 'win32' and extra == 'dev') + - netcal>1.0.0 ; extra == 'dev' + - lpips<=0.1.4 ; extra == 'dev' + - jiwer>=2.3.0 ; extra == 'dev' + - fairlearn ; extra == 'dev' + - monai==1.4.0 ; extra == 'dev' + - statsmodels>0.13.5 ; extra == 'dev' + - mecab-ko-dic>=1.0.0 ; python_full_version < '3.12' and extra == 'dev' + - sewar>=0.4.4 ; extra == 'dev' + - mecab-ko>=1.0.0,<1.1.0 ; python_full_version < '3.12' and extra == 'dev' + - faster-coco-eval>=1.6.3 ; extra == 'dev' + - huggingface-hub<0.35 ; extra == 'dev' + - numpy<2.4.0 ; extra == 'dev' + - permetrics==2.0.0 ; extra == 'dev' + - bert-score==0.3.13 ; extra == 'dev' + - scipy>1.0.0 ; extra == 'dev' + - kornia>=0.6.7 ; extra == 'dev' + - rouge-score>0.1.0 ; extra == 'dev' + - fast-bss-eval>=0.1.0 ; extra == 'dev' + - aeon>=1.0.0 ; python_full_version >= '3.11' and extra == 'dev' + - pandas>1.4.0 ; extra == 'dev' + - dython==0.7.9 ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/50/d4/e51d52047e7eb9a582da59f32125d17c0482d065afd5d3bc435ff2120dc5/tornado-6.5.4-cp39-abi3-manylinux_2_5_x86_64.manylinux1_x86_64.manylinux_2_17_x86_64.manylinux2014_x86_64.whl + name: tornado + version: 6.5.4 + sha256: e5fb5e04efa54cf0baabdd10061eb4148e0be137166146fff835745f59ab9f7f + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/ab/a9/e94a9d5224107d7ce3cc1fab8d5dc97f5ea351ccc6322ee4fb661da94e35/tornado-6.5.4-cp39-abi3-macosx_10_9_universal2.whl + name: tornado + version: 6.5.4 + sha256: d6241c1a16b1c9e4cc28148b1cda97dd1c6cb4fb7068ac1bedc610768dff0ba9 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/d0/30/dc54f88dd4a2b5dc8a0279bdd7270e735851848b762aeb1c1184ed1f6b14/tqdm-4.67.1-py3-none-any.whl + name: tqdm + version: 4.67.1 + sha256: 26445eca388f82e72884e0d580d5464cd801a3ea01e63e5601bdff9ba6a48de2 + requires_dist: + - colorama ; sys_platform == 'win32' + - pytest>=6 ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-timeout ; extra == 'dev' + - pytest-asyncio>=0.24 ; extra == 'dev' + - nbval ; extra == 'dev' + - requests ; extra == 'discord' + - slack-sdk ; extra == 'slack' + - requests ; extra == 'telegram' + - ipywidgets>=6 ; extra == 'notebook' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/00/c0/8f5d070730d7836adc9c9b6408dec68c6ced86b304a9b26a14df072a6e8c/traitlets-5.14.3-py3-none-any.whl + name: traitlets + version: 5.14.3 + sha256: b74e89e397b1ed28cc831db7aea759ba6640cb3de13090ca145426688ff1ac4f + requires_dist: + - myst-parser ; extra == 'docs' + - pydata-sphinx-theme ; extra == 'docs' + - sphinx ; extra == 'docs' + - argcomplete>=3.0.3 ; extra == 'test' + - mypy>=1.7.0 ; extra == 'test' + - pre-commit ; extra == 'test' + - pytest-mock ; extra == 'test' + - pytest-mypy-testing ; extra == 'test' + - pytest>=7.0,<8.2 ; extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c2/5e/85dcba563c41c55d17ad49d7a4950409d394cbcf941e02c22d7908948bc4/treelite-4.6.1-py3-none-manylinux2014_x86_64.whl + name: treelite + version: 4.6.1 + sha256: 627d2789d7c4fc290de15da16e2946b36247c762004f28aed11847011f42cddd + requires_dist: + - numpy + - packaging + - scipy + - scikit-learn ; extra == 'scikit-learn' + - hypothesis ; extra == 'testing' + - pandas ; extra == 'testing' + - pytest ; extra == 'testing' + - scikit-learn ; extra == 'testing' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/ab/a8/cdf8b3e4c98132f965f88c2313a4b493266832ad47fb52f23d14d4f86bb5/triton-3.6.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: triton + version: 3.6.0 + sha256: 74caf5e34b66d9f3a429af689c1c7128daba1d8208df60e81106b115c00d6fca + requires_dist: + - importlib-metadata ; python_full_version < '3.10' + - cmake>=3.20,<4.0 ; extra == 'build' + - lit ; extra == 'build' + - autopep8 ; extra == 'tests' + - isort ; extra == 'tests' + - numpy ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-forked ; extra == 'tests' + - pytest-xdist ; extra == 'tests' + - scipy>=1.7.1 ; extra == 'tests' + - llnl-hatchet ; extra == 'tests' + - matplotlib ; extra == 'tutorials' + - pandas ; extra == 'tutorials' + - tabulate ; extra == 'tutorials' + requires_python: '>=3.10,<3.15' +- pypi: https://files.pythonhosted.org/packages/1b/a9/e3aee762739c1d7528da1c3e06d518503f8b6c439c35549b53735ba52ead/typeguard-4.4.4-py3-none-any.whl + name: typeguard + version: 4.4.4 + sha256: b5f562281b6bfa1f5492470464730ef001646128b180769880468bd84b68b09e + requires_dist: + - importlib-metadata>=3.6 ; python_full_version < '3.10' + - typing-extensions>=4.14.0 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/18/67/36e9267722cc04a6b9f15c7f3441c2363321a3ea07da7ae0c0707beb2a9c/typing_extensions-4.15.0-py3-none-any.whl + name: typing-extensions + version: 4.15.0 + sha256: f0fa19c6845758ab08074a0cfa8b7aecb71c999ca73d62883bc25cc018c4e548 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/c7/b0/003792df09decd6849a5e39c28b513c06e84436a54440380862b5aeff25d/tzdata-2025.3-py2.py3-none-any.whl + name: tzdata + version: '2025.3' + sha256: 06a47e5700f3081aab02b2e513160914ff0694bce9947d6b76ebd6bf57cfc5d1 + requires_python: '>=2' +- conda: https://conda.anaconda.org/conda-forge/noarch/tzdata-2025c-hc9c84f9_1.conda + sha256: 1d30098909076af33a35017eed6f2953af1c769e273a0626a04722ac4acaba3c + md5: ad659d0a2b3e47e38d829aa8cad2d610 + license: LicenseRef-Public-Domain + purls: [] + size: 119135 + timestamp: 1767016325805 +- conda: https://conda.anaconda.org/conda-forge/linux-64/ucc-1.6.0-hcedbda0_2.conda + sha256: 6c07022845b98019363e648cf7b3568e311e02def0ec44d89b7539eab2b483a3 + md5: 74722935e2c63ff703e14089f07655b9 + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + - ucx >=1.20.0,<1.20.1.0a0 + constrains: + - nccl >=2.29.2.1,<3.0a0 + - cuda-version >=12,<13.0a0 + - cuda-cudart + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 8786856 + timestamp: 1768336975876 +- conda: https://conda.anaconda.org/conda-forge/linux-64/ucx-1.20.0-hf72d326_1.conda + sha256: 350c5179e1bda17434acf99eb8247f5b6d9b7f991dfd19c582abf538ed41733a + md5: d878a39ba2fc02440785a6a5c4657b09 + depends: + - __glibc >=2.28,<3.0.a0 + - _openmp_mutex >=4.5 + - libgcc >=14 + - libstdcxx >=14 + - rdma-core >=61.0 + constrains: + - cuda-cudart + - cuda-version >=13,<14.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 7801740 + timestamp: 1769197798676 +- pypi: https://pypi.nvidia.com/ucxx-cu12/ucxx_cu12-0.47.0-cp312-cp312-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl + name: ucxx-cu12 + version: 0.47.0 + sha256: 27c8c445b8686691f31821482b559de69cc349bb6191fe1c4654031a82070fef + requires_dist: + - libucxx-cu12==0.47.* + - numba-cuda[cu12]>=0.19.1,<0.20.0a0 + - numpy>=1.23,<3.0a0 + - nvidia-ml-py>=12 + - rmm-cu12==25.12.* + - cloudpickle ; extra == 'test' + - cudf-cu12==25.12.* ; extra == 'test' + - cupy-cuda12x>=13.6.0 ; extra == 'test' + - pytest-asyncio>=1.0.0 ; extra == 'test' + - pytest-rerunfailures!=16.0.0 ; extra == 'test' + - pytest<9.0.0a0 ; extra == 'test' + - rapids-dask-dependency==25.12.* ; extra == 'test' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/43/d2/fcf7192dd1cd8c090b6cfd53fa223c4fb2887a17c47e06bc356d44f40dfb/umap_learn-0.5.11-py3-none-any.whl + name: umap-learn + version: 0.5.11 + sha256: cb17adbde9d544ba79481b3ab4d81ac222e940f3d9219307bea6044f869af3cc + requires_dist: + - numpy>=1.23 + - scipy>=1.3.1 + - scikit-learn>=1.6 + - numba>=0.51.2 + - pynndescent>=0.5 + - tqdm + - pandas ; extra == 'plot' + - matplotlib ; extra == 'plot' + - datashader ; extra == 'plot' + - bokeh ; extra == 'plot' + - holoviews ; extra == 'plot' + - colorcet ; extra == 'plot' + - seaborn ; extra == 'plot' + - scikit-image ; extra == 'plot' + - dask ; extra == 'plot' + - tensorflow>=2.1 ; extra == 'parametric-umap' + - tbb>=2019.0 ; extra == 'tbb' + - pytest ; extra == 'test' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/86/2c/fc9416619a418e94576aef84ef263906a24f76a21a1c3e96ddae25c82df9/universal_pathlib-0.3.8-py3-none-any.whl + name: universal-pathlib + version: 0.3.8 + sha256: dac4fd9a3df918d85bb6da678e794b5dfa9ecdb5ff74675b497553dbe50134b8 + requires_dist: + - fsspec>=2024.5.0 + - pathlib-abc>=0.5.1,<0.6.0 + - pytest>=8 ; extra == 'tests' + - pytest-sugar>=0.9.7 ; extra == 'tests' + - pytest-cov>=4.1.0 ; extra == 'tests' + - pytest-mock>=3.12.0 ; extra == 'tests' + - pylint>=2.17.4 ; extra == 'tests' + - mypy>=1.10.0 ; extra == 'tests' + - pydantic>=2 ; extra == 'tests' + - pytest-mypy-plugins>=3.1.2 ; extra == 'tests' + - packaging ; extra == 'tests' + - mypy>=1.10.0 ; extra == 'typechecking' + - pytest-mypy-plugins>=3.1.2 ; extra == 'typechecking' + - fsspec[adl,gcs,github,http,s3,smb,ssh]>=2024.5.0 ; extra == 'dev' + - s3fs>=2024.5.0 ; extra == 'dev' + - gcsfs>=2024.5.0 ; extra == 'dev' + - adlfs>=2024 ; extra == 'dev' + - huggingface-hub ; extra == 'dev' + - webdav4[fsspec] ; extra == 'dev' + - moto[s3,server] ; extra == 'dev' + - wsgidav ; extra == 'dev' + - cheroot ; extra == 'dev' + - pyftpdlib ; extra == 'dev' + - typing-extensions ; python_full_version < '3.11' and extra == 'dev' + - pydantic ; extra == 'dev-third-party' + - pydantic-settings ; extra == 'dev-third-party' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/e7/00/3fca040d7cf8a32776d3d81a00c8ee7457e00f80c649f1e4a863c8321ae9/uri_template-1.3.0-py3-none-any.whl + name: uri-template + version: 1.3.0 + sha256: a44a133ea12d44a0c0f06d7d42a52d71282e77e2f937d8abd5655b8d56fc1363 + requires_dist: + - types-pyyaml ; extra == 'dev' + - mypy ; extra == 'dev' + - flake8 ; extra == 'dev' + - flake8-annotations ; extra == 'dev' + - flake8-bandit ; extra == 'dev' + - flake8-bugbear ; extra == 'dev' + - flake8-commas ; extra == 'dev' + - flake8-comprehensions ; extra == 'dev' + - flake8-continuation ; extra == 'dev' + - flake8-datetimez ; extra == 'dev' + - flake8-docstrings ; extra == 'dev' + - flake8-import-order ; extra == 'dev' + - flake8-literal ; extra == 'dev' + - flake8-modern-annotations ; extra == 'dev' + - flake8-noqa ; extra == 'dev' + - flake8-pyproject ; extra == 'dev' + - flake8-requirements ; extra == 'dev' + - flake8-typechecking-import ; extra == 'dev' + - flake8-use-fstring ; extra == 'dev' + - pep8-naming ; extra == 'dev' + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/39/08/aaaad47bc4e9dc8c725e68f9d04865dbcb2052843ff09c97b08904852d84/urllib3-2.6.3-py3-none-any.whl + name: urllib3 + version: 2.6.3 + sha256: bf272323e553dfb2e87d9bfd225ca7b0f467b919d7bbd355436d3fd37cb0acd4 + requires_dist: + - brotli>=1.2.0 ; platform_python_implementation == 'CPython' and extra == 'brotli' + - brotlicffi>=1.2.0.0 ; platform_python_implementation != 'CPython' and extra == 'brotli' + - h2>=4,<5 ; extra == 'h2' + - pysocks>=1.5.6,!=1.5.7,<2.0 ; extra == 'socks' + - backports-zstd>=1.0.0 ; python_full_version < '3.14' and extra == 'zstd' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/fa/6e/3e955517e22cbdd565f2f8b2e73d52528b14b8bcfdb04f62466b071de847/validators-0.35.0-py3-none-any.whl + name: validators + version: 0.35.0 + sha256: e8c947097eae7892cb3d26868d637f79f47b4a0554bc6b80065dfe5aac3705dd + requires_dist: + - eth-hash[pycryptodome]>=0.7.0 ; extra == 'crypto-eth-addresses' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/6a/2a/dc2228b2888f51192c7dc766106cd475f1b768c10caaf9727659726f7391/virtualenv-20.36.1-py3-none-any.whl + name: virtualenv + version: 20.36.1 + sha256: 575a8d6b124ef88f6f51d56d656132389f961062a9177016a50e4f507bbcc19f + requires_dist: + - distlib>=0.3.7,<1 + - filelock>=3.16.1,<4 ; python_full_version < '3.10' + - filelock>=3.20.1,<4 ; python_full_version >= '3.10' + - importlib-metadata>=6.6 ; python_full_version < '3.8' + - platformdirs>=3.9.1,<5 + - typing-extensions>=4.13.2 ; python_full_version < '3.11' + - furo>=2023.7.26 ; extra == 'docs' + - proselint>=0.13 ; extra == 'docs' + - sphinx>=7.1.2,!=7.3 ; extra == 'docs' + - sphinx-argparse>=0.4 ; extra == 'docs' + - sphinxcontrib-towncrier>=0.2.1a0 ; extra == 'docs' + - towncrier>=23.6 ; extra == 'docs' + - covdefaults>=2.3 ; extra == 'test' + - coverage-enable-subprocess>=1 ; extra == 'test' + - coverage>=7.2.7 ; extra == 'test' + - flaky>=3.7 ; extra == 'test' + - packaging>=23.1 ; extra == 'test' + - pytest-env>=0.8.2 ; extra == 'test' + - pytest-freezer>=0.4.8 ; (python_full_version >= '3.13' and platform_python_implementation == 'CPython' and sys_platform == 'win32' and extra == 'test') or (platform_python_implementation == 'GraalVM' and extra == 'test') or (platform_python_implementation == 'PyPy' and extra == 'test') + - pytest-mock>=3.11.1 ; extra == 'test' + - pytest-randomly>=3.12 ; extra == 'test' + - pytest-timeout>=2.1 ; extra == 'test' + - pytest>=7.4 ; extra == 'test' + - setuptools>=68 ; extra == 'test' + - time-machine>=2.10 ; platform_python_implementation == 'CPython' and extra == 'test' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/f2/3e/45583b67c2ff08ad5a582d316fcb2f11d6cf0a50c7707ac09d212d25bc98/wcwidth-0.5.0-py3-none-any.whl + name: wcwidth + version: 0.5.0 + sha256: 1efe1361b83b0ff7877b81ba57c8562c99cf812158b778988ce17ec061095695 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/e2/cc/e097523dd85c9cf5d354f78310927f1656c422bd7b2613b2db3e3f9a0f2c/webcolors-25.10.0-py3-none-any.whl + name: webcolors + version: 25.10.0 + sha256: 032c727334856fc0b968f63daa252a1ac93d33db2f5267756623c210e57a4f1d + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/f4/24/2a3e3df732393fed8b3ebf2ec078f05546de641fe1b667ee316ec1dcf3b7/webencodings-0.5.1-py2.py3-none-any.whl + name: webencodings + version: 0.5.1 + sha256: a0af1213f3c2226497a97e2b3aa01a7e4bee4f403f95be16fc9acd2947514a78 +- pypi: https://files.pythonhosted.org/packages/34/db/b10e48aa8fff7407e67470363eac595018441cf32d5e1001567a7aeba5d2/websocket_client-1.9.0-py3-none-any.whl + name: websocket-client + version: 1.9.0 + sha256: af248a825037ef591efbf6ed20cc5faa03d3b47b9e5a2230a529eeee1c1fc3ef + requires_dist: + - pytest ; extra == 'test' + - websockets ; extra == 'test' + - python-socks ; extra == 'optional' + - wsaccel ; extra == 'optional' + - sphinx>=6.0 ; extra == 'docs' + - sphinx-rtd-theme>=1.1.0 ; extra == 'docs' + - myst-parser>=2.0.0 ; extra == 'docs' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/ad/e4/8d97cca767bcc1be76d16fb76951608305561c6e056811587f36cb1316a8/werkzeug-3.1.5-py3-none-any.whl + name: werkzeug + version: 3.1.5 + sha256: 5111e36e91086ece91f93268bb39b4a35c1e6f1feac762c9c822ded0a4e322dc + requires_dist: + - markupsafe>=2.1.1 + - watchdog>=2.3 ; extra == 'watchdog' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/3f/0e/fa3b193432cfc60c93b42f3be03365f5f909d2b3ea410295cf36df739e31/widgetsnbextension-4.0.15-py3-none-any.whl + name: widgetsnbextension + version: 4.0.15 + sha256: 8156704e4346a571d9ce73b84bee86a29906c9abfd7223b7228a28899ccf3366 + requires_python: '>=3.7' +- pypi: https://files.pythonhosted.org/packages/11/53/3e794346c39f462bcf1f58ac0487ff9bdad02f9b6d5ee2dc84c72e0243b2/wrapt-2.0.1-cp312-cp312-manylinux1_x86_64.manylinux_2_28_x86_64.manylinux_2_5_x86_64.whl + name: wrapt + version: 2.0.1 + sha256: 7b219cb2182f230676308cdcacd428fa837987b89e4b7c5c9025088b8a6c9faf + requires_dist: + - pytest ; extra == 'dev' + - setuptools ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/4d/8a/5b4b1e44b791c22046e90d9b175f9a7581a8cc7a0debbb930f81e6ae8e25/wrapt-2.0.1-cp312-cp312-macosx_11_0_arm64.whl + name: wrapt + version: 2.0.1 + sha256: 386fb54d9cd903ee0012c09291336469eb7b244f7183d40dc3e86a16a4bace62 + requires_dist: + - pytest ; extra == 'dev' + - setuptools ; extra == 'dev' + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/94/28/3a6365e45721c7c9078968ed94b4a60076bc31d73b8519021a69b4995b63/xarray-2024.9.0-py3-none-any.whl + name: xarray + version: 2024.9.0 + sha256: 4fd534abdf12d5fa75dd566c56483d5081f77864462cf3d6ad53e13f9db48222 + requires_dist: + - numpy>=1.24 + - packaging>=23.1 + - pandas>=2.1 + - scipy ; extra == 'accel' + - bottleneck ; extra == 'accel' + - numbagg ; extra == 'accel' + - flox ; extra == 'accel' + - opt-einsum ; extra == 'accel' + - xarray[accel,dev,io,parallel,viz] ; extra == 'complete' + - hypothesis ; extra == 'dev' + - mypy ; extra == 'dev' + - pre-commit ; extra == 'dev' + - pytest ; extra == 'dev' + - pytest-cov ; extra == 'dev' + - pytest-env ; extra == 'dev' + - pytest-xdist ; extra == 'dev' + - pytest-timeout ; extra == 'dev' + - ruff ; extra == 'dev' + - xarray[complete] ; extra == 'dev' + - netcdf4 ; extra == 'io' + - h5netcdf ; extra == 'io' + - scipy ; extra == 'io' + - zarr ; extra == 'io' + - fsspec ; extra == 'io' + - cftime ; extra == 'io' + - pooch ; extra == 'io' + - pydap ; python_full_version < '3.10' and extra == 'io' + - dask[complete] ; extra == 'parallel' + - matplotlib ; extra == 'viz' + - seaborn ; extra == 'viz' + - nc-time-axis ; extra == 'viz' + requires_python: '>=3.10' +- pypi: https://files.pythonhosted.org/packages/d5/e4/62a677feefde05b12a70a4fc9bdc8558010182a801fbcab68cb56c2b0986/xarray-2025.12.0-py3-none-any.whl + name: xarray + version: 2025.12.0 + sha256: 9e77e820474dbbe4c6c2954d0da6342aa484e33adaa96ab916b15a786181e970 + requires_dist: + - numpy>=1.26 + - packaging>=24.1 + - pandas>=2.2 + - scipy>=1.13 ; extra == 'accel' + - bottleneck ; extra == 'accel' + - numbagg>=0.8 ; extra == 'accel' + - numba>=0.62 ; extra == 'accel' + - flox>=0.9 ; extra == 'accel' + - opt-einsum ; extra == 'accel' + - xarray[accel,etc,io,parallel,viz] ; extra == 'complete' + - netcdf4>=1.6.0 ; extra == 'io' + - h5netcdf ; extra == 'io' + - pydap ; extra == 'io' + - scipy>=1.13 ; extra == 'io' + - zarr>=2.18 ; extra == 'io' + - fsspec ; extra == 'io' + - cftime ; extra == 'io' + - pooch ; extra == 'io' + - sparse>=0.15 ; extra == 'etc' + - dask[complete] ; extra == 'parallel' + - cartopy>=0.23 ; extra == 'viz' + - matplotlib>=3.8 ; extra == 'viz' + - nc-time-axis ; extra == 'viz' + - seaborn ; extra == 'viz' + - pandas-stubs ; extra == 'types' + - scipy-stubs ; extra == 'types' + - types-pyyaml ; extra == 'types' + - types-pygments ; extra == 'types' + - types-colorama ; extra == 'types' + - types-decorator ; extra == 'types' + - types-defusedxml ; extra == 'types' + - types-docutils ; extra == 'types' + - types-networkx ; extra == 'types' + - types-pexpect ; extra == 'types' + - types-psutil ; extra == 'types' + - types-pycurl ; extra == 'types' + - types-openpyxl ; extra == 'types' + - types-python-dateutil ; extra == 'types' + - types-pytz ; extra == 'types' + - types-requests ; extra == 'types' + - types-setuptools ; extra == 'types' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/bc/ea/bc1de04d06b7c59fc3ff647a11fa248bf80af5a6227647a31c6250c32ce6/xarray_dataclass-3.0.0-py3-none-any.whl + name: xarray-dataclass + version: 3.0.0 + sha256: 7956f29005671b2acaa0da700d8f359105dce84ef84f76ce2dd05b76dba3e826 + requires_dist: + - numpy>=2.0.0 + - typing-extensions>=4.10.0 + - xarray>=2022.3 + - myst-parser>=3.0 ; extra == 'dev' + - pre-commit>=4.2.0 ; extra == 'dev' + - pydata-sphinx-theme>=0.14 ; extra == 'dev' + - pytest>=8.2 ; extra == 'dev' + - sphinx>=7.1 ; extra == 'dev' + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/aa/7b/9adbd82e2b7b8571da23856a890324b42cfbc38ae0ceac2177e5256f7216/xarray_dataclasses-1.9.1-py3-none-any.whl + name: xarray-dataclasses + version: 1.9.1 + sha256: 3590556ef795ebbb33908b484a58311192d880cbb511666fe4c354569c3c468f + requires_dist: + - numpy>=1.22,<1.25 ; python_full_version == '3.8.*' + - numpy>=1.22,<3.0 ; python_full_version >= '3.9' and python_full_version < '3.14' + - typing-extensions>=4.0,<5.0 + - xarray>=2022.3,<2023.2 ; python_full_version == '3.8.*' + - xarray>=2022.3,<2025.0 ; python_full_version >= '3.9' and python_full_version < '3.14' + requires_python: '>=3.8,<3.14' +- pypi: https://files.pythonhosted.org/packages/6e/a3/5e92dc7e35c08574472bbd9201aabdad03e38d54cc47c421922d219502c6/xarray_datatree-0.0.14-py3-none-any.whl + name: xarray-datatree + version: 0.0.14 + sha256: 07f5d0d9a03a3220d732e1c764ee60f2c5110f884a290b2af371f92952379166 + requires_dist: + - xarray>=2023.12.0 + - packaging + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/a9/6d/f585a27b380ee987619b5617c0ca672a71a4345b67cfedbb6299750ce845/xarray_schema-0.0.3-py3-none-any.whl + name: xarray-schema + version: 0.0.3 + sha256: aa6f856626b2e100213ba290407797464608b2555bb8e0b26093a97fe1ba38ce + requires_dist: + - xarray>=0.16 + - numpy>=1.21 + requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/e0/d2/cb1c6104e6bf7ab77879fce7bc4bc6dcc4ae5a94246ab9c314b5d21022b2/xarray_spatial-0.5.2-py3-none-any.whl + name: xarray-spatial + version: 0.5.2 + sha256: 9bf4850b7321d633f4178c5caea9cce7f52896b2533f1aa475ce5b187ac9cc4a + requires_dist: + - datashader>=0.15.0 + - numba + - xarray + - numpy + - dask[dataframe] ; extra == 'doc' + - geopandas ; extra == 'doc' + - jinja2>=2.11 ; extra == 'doc' + - ipykernel ; extra == 'doc' + - matplotlib ; extra == 'doc' + - nbsphinx ; extra == 'doc' + - numpydoc ; extra == 'doc' + - pandoc ; extra == 'doc' + - pydata-sphinx-theme ; extra == 'doc' + - sphinx ; extra == 'doc' + - sphinx-panels ; extra == 'doc' + - sphinx-rtd-theme ; extra == 'doc' + - awkward>=1.4 ; extra == 'optional' + - geopandas ; extra == 'optional' + - shapely ; extra == 'optional' + - spatialpandas ; extra == 'optional' + - rtxpy ; extra == 'optional' + - flake8 ; extra == 'tests' + - isort ; extra == 'tests' + - noise>=1.2.2 ; extra == 'tests' + - dask ; extra == 'tests' + - pyarrow ; extra == 'tests' + - pytest ; extra == 'tests' + - pytest-cov ; extra == 'tests' + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/yaml-0.2.5-h280c20c_3.conda + sha256: 6d9ea2f731e284e9316d95fa61869fe7bbba33df7929f82693c121022810f4ad + md5: a77f85f77be52ff59391544bfe73390a + depends: + - libgcc >=14 + - __glibc >=2.17,<3.0.a0 + license: MIT + license_family: MIT + purls: [] + size: 85189 + timestamp: 1753484064210 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/yaml-0.2.5-h925e9cb_3.conda + sha256: b03433b13d89f5567e828ea9f1a7d5c5d697bf374c28a4168d71e9464f5dafac + md5: 78a0fe9e9c50d2c381e8ee47e3ea437d + depends: + - __osx >=11.0 + license: MIT + license_family: MIT + purls: [] + size: 83386 + timestamp: 1753484079473 +- pypi: https://files.pythonhosted.org/packages/ba/f5/0601483296f09c3c65e303d60c070a5c19fcdbc72daa061e96170785bc7d/yarl-1.22.0-cp312-cp312-macosx_11_0_arm64.whl + name: yarl + version: 1.22.0 + sha256: 939fe60db294c786f6b7c2d2e121576628468f65453d86b0fe36cb52f987bd74 + requires_dist: + - idna>=2.0 + - multidict>=4.0 + - propcache>=0.2.1 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/db/0f/0d52c98b8a885aeda831224b78f3be7ec2e1aa4a62091f9f9188c3c65b56/yarl-1.22.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl + name: yarl + version: 1.22.0 + sha256: 50678a3b71c751d58d7908edc96d332af328839eea883bb554a43f539101277a + requires_dist: + - idna>=2.0 + - multidict>=4.0 + - propcache>=0.2.1 + requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/44/15/bb13b4913ef95ad5448490821eee4671d0e67673342e4d4070854e5fe081/zarr-3.1.5-py3-none-any.whl + name: zarr + version: 3.1.5 + sha256: 29cd905afb6235b94c09decda4258c888fcb79bb6c862ef7c0b8fe009b5c8563 + requires_dist: + - donfig>=0.8 + - google-crc32c>=1.5 + - numcodecs>=0.14 + - numpy>=1.26 + - packaging>=22.0 + - typing-extensions>=4.9 + - typer ; extra == 'cli' + - astroid<4 ; extra == 'docs' + - griffe-inherited-docstrings ; extra == 'docs' + - markdown-exec[ansi] ; extra == 'docs' + - mike>=2.1.3 ; extra == 'docs' + - mkdocs-material[imaging]>=9.6.14 ; extra == 'docs' + - mkdocs-redirects>=1.2.0 ; extra == 'docs' + - mkdocs>=1.6.1 ; extra == 'docs' + - mkdocstrings-python>=1.16.10 ; extra == 'docs' + - mkdocstrings>=0.29.1 ; extra == 'docs' + - numcodecs[msgpack] ; extra == 'docs' + - pytest ; extra == 'docs' + - rich ; extra == 'docs' + - ruff ; extra == 'docs' + - s3fs>=2023.10.0 ; extra == 'docs' + - towncrier ; extra == 'docs' + - cupy-cuda12x ; extra == 'gpu' + - rich ; extra == 'optional' + - universal-pathlib ; extra == 'optional' + - fsspec>=2023.10.0 ; extra == 'remote' + - obstore>=0.5.1 ; extra == 'remote' + - botocore ; extra == 'remote-tests' + - fsspec>=2023.10.0 ; extra == 'remote-tests' + - moto[s3,server] ; extra == 'remote-tests' + - obstore>=0.5.1 ; extra == 'remote-tests' + - requests ; extra == 'remote-tests' + - s3fs>=2023.10.0 ; extra == 'remote-tests' + - coverage>=7.10 ; extra == 'test' + - hypothesis ; extra == 'test' + - mypy ; extra == 'test' + - numpydoc ; extra == 'test' + - packaging ; extra == 'test' + - pytest-accept ; extra == 'test' + - pytest-asyncio ; extra == 'test' + - pytest-cov ; extra == 'test' + - pytest-xdist ; extra == 'test' + - pytest<8.4 ; extra == 'test' + - rich ; extra == 'test' + - tomlkit ; extra == 'test' + - uv ; extra == 'test' + requires_python: '>=3.11' +- pypi: https://files.pythonhosted.org/packages/80/ab/11a76c1e2126084fde2639514f24e6111b789b0bfa4fc6264a8975c7e1f1/zict-3.0.0-py2.py3-none-any.whl + name: zict + version: 3.0.0 + sha256: 5796e36bd0e0cc8cf0fbc1ace6a68912611c1dbd74750a3f3026b9b9d6a327ae + requires_python: '>=3.8' +- conda: https://conda.anaconda.org/conda-forge/linux-64/zstd-1.5.7-hb78ec9c_6.conda + sha256: 68f0206ca6e98fea941e5717cec780ed2873ffabc0e1ed34428c061e2c6268c7 + md5: 4a13eeac0b5c8e5b8ab496e6c4ddd829 + depends: + - __glibc >=2.17,<3.0.a0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 601375 + timestamp: 1764777111296 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/zstd-1.5.7-hbf9d68e_6.conda + sha256: 9485ba49e8f47d2b597dd399e88f4802e100851b27c21d7525625b0b4025a5d9 + md5: ab136e4c34e97f34fb621d2592a393d8 + depends: + - __osx >=11.0 + - libzlib >=1.3.1,<2.0a0 + license: BSD-3-Clause + license_family: BSD + purls: [] + size: 433413 + timestamp: 1764777166076 From cbb10b099efe331fcd9769159ca114f30b8678bc Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:38:23 +0100 Subject: [PATCH 04/12] Make README more beginner-friendly: explain pixi, installation, package management --- README.md | 99 ++++++++++++++++++++++++++++++++++++++++++++++++------- 1 file changed, 88 insertions(+), 11 deletions(-) diff --git a/README.md b/README.md index be2db22..faf645e 100644 --- a/README.md +++ b/README.md @@ -1,21 +1,96 @@ # Analysis template (pixi, notebook-first) -Template for single-cell/spatial **analysis** repos. If you are building a Python library, use the scverse cookiecutter instead: https://github.com/scverse/cookiecutter-scverse. +Template for single-cell/spatial **analysis** repos. If you are building a Python library, use the [scverse cookiecutter](https://github.com/scverse/cookiecutter-scverse) instead. After you set this up, **replace this README with project-specific docs** so collaborators know what the project does. A good replacement includes: a one-line goal, data locations, key notebooks to run, and who to ping. -## Quick start (pixi) +## What is pixi? + +[Pixi](https://pixi.sh) is a modern package manager that handles both **conda** and **PyPI** packages in one tool. Think of it as a replacement for conda/mamba + pip that: + +- Creates isolated environments per project (like conda environments) +- Installs packages from conda-forge AND PyPI together +- Locks exact versions for reproducibility (`pixi.lock`) +- Works cross-platform (macOS, Linux, Windows) + +**You don't need conda or pip installed** — pixi handles everything. + +### Installing pixi ```bash -pixi install # create environment -pixi shell # activate it +# macOS / Linux +curl -fsSL https://pixi.sh/install.sh | bash + +# Or with Homebrew +brew install pixi +``` + +See [pixi installation docs](https://pixi.sh/latest/#installation) for other options. + +## Quick start + +```bash +pixi install # create environment (reads pixi.toml) +pixi shell # activate the environment pre-commit install # set up git hooks (run once) pixi run jupyter lab # start notebooks pixi run pytest # run tests pixi run install-kernel # add Jupyter kernel (run once) ``` -Environment is defined in `pixi.toml` (GPU-ready: torch, jax, rapids-singlecell on Linux; MPS on macOS). `pyproject.toml` is kept for metadata and tool configs (ruff, pytest, hatch-vcs) only. +### Daily workflow + +Once set up, your typical workflow is: + +```bash +cd your-project +pixi shell # activate environment +jupyter lab # work in notebooks +# ... do your analysis ... +exit # leave pixi shell when done +``` + +Or run commands without entering the shell: + +```bash +pixi run jupyter lab # runs jupyter in pixi environment +pixi run python my_script.py # runs script in pixi environment +``` + +## Adding packages + +All dependencies live in `pixi.toml`. To add a new package: + +### Option 1: Command line (recommended) + +```bash +# Add from conda-forge (preferred for scientific packages) +pixi add numpy +pixi add "scanpy>=1.10" + +# Add from PyPI (when not available on conda-forge) +pixi add --pypi some-pypi-only-package +``` + +### Option 2: Edit pixi.toml directly + +```toml +# In pixi.toml: + +[dependencies] +# Conda packages go here +numpy = ">=2.0" + +[pypi-dependencies] +# PyPI packages go here +some-package = "*" +``` + +Then run `pixi install` to update the environment. + +**Tip**: Prefer conda-forge packages when available — they're pre-compiled and faster to install. Use PyPI for packages only available there. + +See [pixi documentation](https://pixi.sh/latest/) for more details. ## What to customize @@ -42,15 +117,17 @@ from myanalysis import FilePaths ## Tooling -- **Pixi**: single source of dependency truth (see `pixi.toml`). -- **Ruff**: lint/format Python + notebooks (config in `pyproject.toml`). -- **Biome**: format JSON/YAML (pre-commit hook). -- **Pre-commit**: install with `pre-commit install` (after `pixi shell`). +- **Pixi**: package manager and environment ([docs](https://pixi.sh)) +- **Ruff**: lint/format Python + notebooks ([docs](https://docs.astral.sh/ruff/)) +- **Biome**: format JSON/YAML ([docs](https://biomejs.dev/)) +- **Pre-commit**: git hooks for code quality — install with `pre-commit install` after `pixi shell` ## GPU notes -- macOS: torch uses MPS; JAX is CPU-only. -- Linux: `rapids-singlecell` + `jax[cuda12]` enable GPU acceleration. +- **macOS**: PyTorch uses MPS (Apple Silicon GPU); JAX is CPU-only. +- **Linux**: `rapids-singlecell` + `jax[cuda12]` enable NVIDIA GPU acceleration. + +The template automatically configures the right packages per platform. ## Clusters From 05660f7e4b4f2ad6bbd4dd1d9d8c4fc14f4f3262 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:45:16 +0100 Subject: [PATCH 05/12] Add emojis, expand pre-commit docs with links and explanations --- README.md | 139 ++++++++++++++++++++++++++++++++++++------------------ 1 file changed, 94 insertions(+), 45 deletions(-) diff --git a/README.md b/README.md index faf645e..d1f36e6 100644 --- a/README.md +++ b/README.md @@ -1,44 +1,48 @@ -# Analysis template (pixi, notebook-first) +# 🧬 Analysis Template (pixi, notebook-first) -Template for single-cell/spatial **analysis** repos. If you are building a Python library, use the [scverse cookiecutter](https://github.com/scverse/cookiecutter-scverse) instead. +Template for single-cell/spatial **analysis** repos. If you're building a Python library, use the [scverse cookiecutter](https://github.com/scverse/cookiecutter-scverse) instead. -After you set this up, **replace this README with project-specific docs** so collaborators know what the project does. A good replacement includes: a one-line goal, data locations, key notebooks to run, and who to ping. +> 📝 **After setup, replace this README** with project-specific docs so collaborators know what the project does. Include: a one-line goal, data locations, key notebooks to run, and who to ping. -## What is pixi? +--- + +## 📦 What is pixi? [Pixi](https://pixi.sh) is a modern package manager that handles both **conda** and **PyPI** packages in one tool. Think of it as a replacement for conda/mamba + pip that: -- Creates isolated environments per project (like conda environments) -- Installs packages from conda-forge AND PyPI together -- Locks exact versions for reproducibility (`pixi.lock`) -- Works cross-platform (macOS, Linux, Windows) +- 🔒 Creates **isolated environments** per project (like conda environments) +- 🔀 Installs packages from **conda-forge AND PyPI** together +- 📌 Locks exact versions for **reproducibility** (`pixi.lock`) +- 💻 Works **cross-platform** (macOS, Linux, Windows) -**You don't need conda or pip installed** — pixi handles everything. +**You don't need conda or pip installed** — pixi handles everything! -### Installing pixi +### 🛠️ Installing pixi ```bash # macOS / Linux curl -fsSL https://pixi.sh/install.sh | bash -# Or with Homebrew +# Or with Homebrew (macOS) brew install pixi ``` -See [pixi installation docs](https://pixi.sh/latest/#installation) for other options. +👉 See [pixi installation docs](https://pixi.sh/latest/#installation) for Windows and other options. + +--- -## Quick start +## 🚀 Quick start ```bash pixi install # create environment (reads pixi.toml) pixi shell # activate the environment -pre-commit install # set up git hooks (run once) -pixi run jupyter lab # start notebooks -pixi run pytest # run tests +pre-commit install # set up code quality hooks (run once) +pixi run lab # start Jupyter Lab +pixi run test # run tests pixi run install-kernel # add Jupyter kernel (run once) ``` -### Daily workflow +### ☕ Daily workflow Once set up, your typical workflow is: @@ -53,11 +57,13 @@ exit # leave pixi shell when done Or run commands without entering the shell: ```bash -pixi run jupyter lab # runs jupyter in pixi environment +pixi run lab # runs Jupyter in pixi environment pixi run python my_script.py # runs script in pixi environment ``` -## Adding packages +--- + +## ➕ Adding packages All dependencies live in `pixi.toml`. To add a new package: @@ -88,49 +94,92 @@ some-package = "*" Then run `pixi install` to update the environment. -**Tip**: Prefer conda-forge packages when available — they're pre-compiled and faster to install. Use PyPI for packages only available there. +💡 **Tip**: Prefer **conda-forge** packages when available — they're pre-compiled and faster to install. Use PyPI for packages only available there. -See [pixi documentation](https://pixi.sh/latest/) for more details. +👉 See [pixi documentation](https://pixi.sh/latest/) for more details. -## What to customize +--- + +## ✏️ What to customize 1. Update `pixi.toml` metadata: project name, description, authors, and kernel display name. 2. Rename the package directory `src/myanalysis/` to your project slug, and update the `name` in `pyproject.toml` to match. 3. Adjust paths in `src//_constants.py` to match your datasets. -4. Update `.github/copilot-instructions.md` with your project name, goal, and dataset locations. This helps AI coding assistants (GitHub Copilot, Claude, etc.) understand your project when you ask them for help. -5. **Replace this README** with project-specific docs: what the project does, how to run key notebooks, and who to contact. +4. Update `.github/copilot-instructions.md` with your project name, goal, and dataset locations. This helps AI coding assistants (GitHub Copilot, Claude, etc.) understand your project. +5. 📝 **Replace this README** with project-specific docs: what the project does, how to run key notebooks, and who to contact. + +--- -## Data and notebooks +## 📓 Data and notebooks -- Notebook naming: `[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb`. -- Data layout (one folder per dataset): - - `data//raw/` - - `data//processed/` - - `data//resources/` - - `data//results/` -- Figures: `figures/` or `data//results/`. -- Import paths via the local package: +- **Notebook naming**: `[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` +- **Data layout** (one folder per dataset): + - `data//raw/` — original data files + - `data//processed/` — preprocessed data + - `data//resources/` — reference data, annotations + - `data//results/` — analysis outputs +- **Figures**: `figures/` or `data//results/` +- **Import paths** via the local package: ```python from myanalysis import FilePaths ``` -## Tooling +--- + +## 🔧 Tooling & code quality + +This template uses **pre-commit hooks** to automatically check your code before each commit. This catches common issues early and keeps code consistent across the team. + +### What are pre-commit hooks? + +[Pre-commit](https://pre-commit.com/) is a tool that runs checks on your code **every time you run `git commit`**. If any check fails, the commit is blocked until you fix the issue. This ensures: + +- ✅ Code is consistently formatted +- ✅ Common bugs are caught early +- ✅ Everyone's code looks the same + +### Tools we use + +| Tool | What it does | Docs | +|------|--------------|------| +| 🦀 **[Ruff](https://docs.astral.sh/ruff/)** | Lints (finds bugs/style issues) and formats Python code + Jupyter notebooks. Super fast! | [Rules](https://docs.astral.sh/ruff/rules/) | +| 🌿 **[Biome](https://biomejs.dev/)** | Formats JSON and JSONC files for consistency | [Guide](https://biomejs.dev/guides/getting-started/) | +| 📋 **[pyproject-fmt](https://github.com/tox-dev/pyproject-fmt)** | Keeps `pyproject.toml` nicely formatted | — | + +### Setting up pre-commit + +Run this once after cloning the repo: + +```bash +pixi shell +pre-commit install +``` + +Now hooks run automatically on `git commit`. To run all checks manually: -- **Pixi**: package manager and environment ([docs](https://pixi.sh)) -- **Ruff**: lint/format Python + notebooks ([docs](https://docs.astral.sh/ruff/)) -- **Biome**: format JSON/YAML ([docs](https://biomejs.dev/)) -- **Pre-commit**: git hooks for code quality — install with `pre-commit install` after `pixi shell` +```bash +pre-commit run --all-files +``` + +💡 **Tip**: If a check reformats your code, just `git add` the changes and commit again! -## GPU notes +--- -- **macOS**: PyTorch uses MPS (Apple Silicon GPU); JAX is CPU-only. -- **Linux**: `rapids-singlecell` + `jax[cuda12]` enable NVIDIA GPU acceleration. +## 🖥️ GPU notes -The template automatically configures the right packages per platform. +| Platform | PyTorch | JAX | +|----------|---------|-----| +| **macOS** (Apple Silicon) | ✅ MPS acceleration | ❌ CPU only | +| **Linux** (NVIDIA GPU) | ✅ CUDA | ✅ CUDA 12 via `jax[cuda12]` | -## Clusters +The template automatically configures the right packages per platform. Linux also gets [rapids-singlecell](https://rapids-singlecell.readthedocs.io/) for GPU-accelerated single-cell analysis. + +--- + +## 🖧 Cluster usage For cluster usage (e.g., ETH Euler): -- General docs: https://docs.hpc.ethz.ch/ -- Start notebooks via JupyterHub: https://jupyter.euler.hpc.ethz.ch/hub/ + +- 📚 General docs: https://docs.hpc.ethz.ch/ +- 🚀 Start notebooks via JupyterHub: https://jupyter.euler.hpc.ethz.ch/hub/ From 6119181e6817c491169849c24fa4c4866ded5707 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:48:15 +0100 Subject: [PATCH 06/12] Fix workflows: rename to lint.yaml, fix test.yaml syntax, streamline copilot instructions --- .github/copilot-instructions.md | 74 ++++++--------------- .github/workflows/{build.yaml => lint.yaml} | 3 +- .github/workflows/test.yaml | 4 +- 3 files changed, 23 insertions(+), 58 deletions(-) rename .github/workflows/{build.yaml => lint.yaml} (92%) diff --git a/.github/copilot-instructions.md b/.github/copilot-instructions.md index 9bd9023..1aee131 100644 --- a/.github/copilot-instructions.md +++ b/.github/copilot-instructions.md @@ -1,62 +1,28 @@ # Copilot Instructions for Analysis Template -## Project context (fill these before working) +## Project context (fill these in!) - **Project name:** - **One-liner goal:** - **Primary datasets / locations:** -## Important notes -- This is an analysis repository using **pixi** for environment management -- Use `pixi run ` or `pixi shell` to work in the environment -- Analysis notebooks follow template: `analysis/[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` -- Avoid drafting summary documents, e.g. endless markdown files. Just summarize in chat what you did, why, and any open questions. -- Don't update my jupyter notebooks - I manage them myself. - -## Environment Management (pixi) - -```bash -# Install environment -pixi install - -# Activate shell -pixi shell - -# Run commands directly -pixi run jupyter lab -pixi run pytest - -# Install Jupyter kernel (already done) -pixi run install-kernel -``` - -### Platform-specific behavior -- **macOS ARM64**: CPU-only JAX, PyTorch with MPS support -- **Linux (Euler)**: JAX with CUDA 12, PyTorch with CUDA support. Start notebooks via JupyterHub: https://jupyter.euler.hpc.ethz.ch/hub/ - -## Analysis Workflow - -### Notebook naming convention -`analysis/[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` - -### Data organization -``` -data/ - / - raw/ # Original data files - processed/ # Preprocessed AnnData objects - resources/ # Reference data, annotations - results/ # Analysis outputs -``` - -### Using local package -```python -from myanalysis import FilePaths -``` -Paths resolve relative to repo root; adjust `_constants.py` for your datasets. - -## Development Notes - -- Python 3.12 for maximum package compatibility -- Uses pixi.toml as single source of truth (not pyproject.toml for analysis deps) +## Critical rules +- **Don't update Jupyter notebooks** — I manage them myself +- Use `pixi run ` or `pixi shell` for all commands +- Summarize in chat, don't create markdown summary files + +## Quick reference + +| Task | Command | +|------|---------| +| Run Python | `pixi run python script.py` | +| Run tests | `pixi run test` | +| Add conda package | `pixi add ` | +| Add PyPI package | `pixi add --pypi ` | + +## Project structure +- **Notebooks**: `analysis/[INITIALS]-[YYYY]-[MM]-[DD]_description.ipynb` +- **Data**: `data//{raw,processed,resources,results}/` +- **Paths**: Use `from myanalysis import FilePaths` (edit `_constants.py` for datasets) +- **Deps**: All in `pixi.toml` (not pyproject.toml) - pyproject.toml exists mainly for package metadata and testing - Run `pixi install` after pulling changes that update `pixi.toml` diff --git a/.github/workflows/build.yaml b/.github/workflows/lint.yaml similarity index 92% rename from .github/workflows/build.yaml rename to .github/workflows/lint.yaml index c94a239..3b16cae 100644 --- a/.github/workflows/build.yaml +++ b/.github/workflows/lint.yaml @@ -1,4 +1,4 @@ -name: Lint +name: Code Quality on: push: @@ -12,6 +12,7 @@ concurrency: jobs: lint: + name: Lint & Format runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index b7bffa4..6ca6b31 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -1,4 +1,4 @@ -name: Test +name: Tests on: push: @@ -24,5 +24,3 @@ jobs: cache: true - name: Run tests run: pixi run test - with: - jobs: ${{ toJSON(needs) }} From 2da29390de0f41074c9bc19b87ecca76383da675 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:50:21 +0100 Subject: [PATCH 07/12] Add job name to test workflow --- .github/workflows/test.yaml | 1 + 1 file changed, 1 insertion(+) diff --git a/.github/workflows/test.yaml b/.github/workflows/test.yaml index 6ca6b31..f5a9ca9 100644 --- a/.github/workflows/test.yaml +++ b/.github/workflows/test.yaml @@ -12,6 +12,7 @@ concurrency: jobs: test: + name: Run pytest runs-on: ubuntu-latest steps: - uses: actions/checkout@v4 From d25df27da38b2eee56f97eeb128a8c944bc38996 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 11:51:16 +0100 Subject: [PATCH 08/12] Re-trigger CI after enabling Test workflow From eb8435606fb0d1e37d9a96e6ad30875c34f89784 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 13:06:27 +0100 Subject: [PATCH 09/12] Add demo notebook and plotting utilities - Add analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb demonstrating: - Local vs GPU/Euler workflow for scRNA-seq analysis - Using custom plotting functions from local package - Git sync workflow between local and cluster - scVI model training, rapids-singlecell usage - Add src/myanalysis/plotting.py with: - qc_violin(): QC metrics visualization - styled_umap(): Clean UMAP plots with consistent styling - embedding_density(): Cell density visualization - Update __init__.py to export plotting functions - Update pixi.toml: - Add shapely from conda (for spatial dependencies) - Comment out decoupler (optional, pygeos conflict with rapids-singlecell) --- .../ML-2026-01-27_demo_scRNA_workflow.ipynb | 442 ++++++++++++++++++ pixi.lock | 89 ++-- pixi.toml | 4 + src/myanalysis/__init__.py | 3 +- src/myanalysis/plotting.py | 194 ++++++++ 5 files changed, 699 insertions(+), 33 deletions(-) create mode 100644 analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb create mode 100644 src/myanalysis/plotting.py diff --git a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb new file mode 100644 index 0000000..9e1655d --- /dev/null +++ b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb @@ -0,0 +1,442 @@ +{ + "cells": [ + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "# Demo: Single-Cell RNA-seq Analysis Workflow\n", + "\n", + "This notebook demonstrates a complete scRNA-seq analysis workflow using the analysis template.\n", + "\n", + "**Goals:**\n", + "1. Show how to use the local analysis package\n", + "2. Demonstrate which steps to run locally vs. on a GPU cluster (Euler)\n", + "3. Illustrate the local <-> remote sync workflow via Git/GitHub\n", + "\n", + "**Legend:**\n", + "- **Local** - Fast, good for development, code editing\n", + "- **GPU/Euler** - Heavy compute, model fitting, GPU-accelerated\n", + "\n", + "---" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Setup & Imports - Local" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import warnings\n", + "\n", + "import matplotlib.pyplot as plt\n", + "import scanpy as sc\n", + "\n", + "# Local analysis package - edit these functions in src/myanalysis/\n", + "from myanalysis import FilePaths, qc_violin, styled_umap\n", + "\n", + "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n", + "sc.settings.verbosity = 2\n", + "\n", + "print(f\"Project root: {FilePaths.ROOT}\")\n", + "print(f\"Data folder: {FilePaths.DATA}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Load Data - Local\n", + "\n", + "We will use the classic PBMC 3k dataset from 10X Genomics, available via scanpy." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Download PBMC 3k (cached after first download)\n", + "adata = sc.datasets.pbmc3k()\n", + "adata" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Store raw counts for scVI (needs raw integer counts)\n", + "adata.layers[\"counts\"] = adata.X.copy()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Quality Control - Local\n", + "\n", + "QC is fast and benefits from quick iteration - perfect for local development." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Annotate mitochondrial genes\n", + "adata.var[\"mt\"] = adata.var_names.str.startswith(\"MT-\")\n", + "\n", + "# Calculate QC metrics\n", + "sc.pp.calculate_qc_metrics(adata, qc_vars=[\"mt\"], percent_top=None, log1p=False, inplace=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Use our custom plotting function from the local package!\n", + "# TIP: Edit src/myanalysis/plotting.py locally, then re-import to see changes\n", + "fig = qc_violin(adata, figsize=(12, 3))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Filter cells and genes\n", + "print(f\"Before filtering: {adata.n_obs} cells, {adata.n_vars} genes\")\n", + "\n", + "sc.pp.filter_cells(adata, min_genes=200)\n", + "sc.pp.filter_genes(adata, min_cells=3)\n", + "adata = adata[adata.obs.n_genes_by_counts < 2500, :]\n", + "adata = adata[adata.obs.pct_counts_mt < 5, :]\n", + "\n", + "print(f\"After filtering: {adata.n_obs} cells, {adata.n_vars} genes\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Preprocessing - Local\n", + "\n", + "Normalization and HVG selection are fast operations." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Normalize and log-transform\n", + "sc.pp.normalize_total(adata, target_sum=1e4)\n", + "sc.pp.log1p(adata)\n", + "\n", + "# Store normalized counts\n", + "adata.raw = adata\n", + "\n", + "# Identify highly variable genes\n", + "sc.pp.highly_variable_genes(adata, n_top_genes=2000, flavor=\"seurat_v3\", layer=\"counts\")\n", + "print(f\"Highly variable genes: {adata.var.highly_variable.sum()}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## scVI Model Training - GPU/Euler\n", + "\n", + "**This section benefits from GPU acceleration!**\n", + "\n", + "Workflow for running on Euler:\n", + "1. Local: Commit and push your notebook: `git add . && git commit -m \"Ready for scVI\" && git push`\n", + "2. SSH to Euler, pull changes: `git pull`\n", + "3. Run this section in JupyterHub: https://jupyter.euler.hpc.ethz.ch\n", + "4. Save results and push: `git add . && git commit -m \"scVI trained\" && git push`\n", + "5. Local: Pull results: `git pull`" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import scvi\n", + "import torch\n", + "\n", + "# Check if GPU is available\n", + "device = torch.cuda.get_device_name() if torch.cuda.is_available() else \"CPU\"\n", + "print(f\"PyTorch device: {device}\")\n", + "print(f\"MPS available (Apple Silicon): {torch.backends.mps.is_available()}\")" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Setup scVI model\n", + "scvi.model.SCVI.setup_anndata(adata, layer=\"counts\")\n", + "\n", + "# Create and train model\n", + "# On GPU: ~1 min | On CPU: ~5-10 min\n", + "model = scvi.model.SCVI(adata, n_latent=10, n_layers=2)\n", + "model.train(max_epochs=100, early_stopping=True)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Get latent representation\n", + "adata.obsm[\"X_scVI\"] = model.get_latent_representation()\n", + "print(f\"scVI latent shape: {adata.obsm['X_scVI'].shape}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Neighbors & UMAP - GPU/Euler (rapids-singlecell)\n", + "\n", + "On Linux with NVIDIA GPU, we can use `rapids-singlecell` for massive speedups.\n", + "Falls back to scanpy on macOS." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "import sys\n", + "\n", + "# Use rapids-singlecell on Linux (GPU), scanpy on macOS\n", + "if sys.platform == \"linux\":\n", + " try:\n", + " import rapids_singlecell as rsc\n", + "\n", + " print(\"Using rapids-singlecell (GPU-accelerated)\")\n", + " USE_RAPIDS = True\n", + " except ImportError:\n", + " print(\"rapids-singlecell not available, falling back to scanpy\")\n", + " USE_RAPIDS = False\n", + "else:\n", + " print(\"macOS detected, using scanpy (CPU)\")\n", + " USE_RAPIDS = False" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Compute neighbors and UMAP\n", + "# With rapids on GPU: seconds | With scanpy on CPU: ~30s for 3k cells\n", + "\n", + "if USE_RAPIDS:\n", + " # GPU-accelerated\n", + " rsc.pp.neighbors(adata, use_rep=\"X_scVI\", n_neighbors=15)\n", + " rsc.tl.umap(adata)\n", + "else:\n", + " # CPU fallback\n", + " sc.pp.neighbors(adata, use_rep=\"X_scVI\", n_neighbors=15)\n", + " sc.tl.umap(adata)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Clustering (Leiden)\n", + "if USE_RAPIDS:\n", + " rsc.tl.leiden(adata, resolution=0.5, key_added=\"leiden\")\n", + "else:\n", + " sc.tl.leiden(adata, resolution=0.5, key_added=\"leiden\")\n", + "\n", + "print(f\"Found {adata.obs['leiden'].nunique()} clusters\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Visualization - Local\n", + "\n", + "Back to local for visualization and figure generation." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Use our custom styled_umap function\n", + "fig = styled_umap(adata, color=\"leiden\", title=\"Leiden Clusters\", figsize=(7, 6))\n", + "plt.show()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Marker genes\n", + "sc.pl.umap(adata, color=[\"CST3\", \"NKG7\", \"PPBP\", \"CD8A\"], ncols=2, frameon=False)" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "## Cell Type Annotation - Local" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Find marker genes per cluster\n", + "sc.tl.rank_genes_groups(adata, groupby=\"leiden\", method=\"wilcoxon\")\n", + "sc.pl.rank_genes_groups(adata, n_genes=5, sharey=False)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Manual annotation based on known markers\n", + "cluster_annotations = {\n", + " \"0\": \"CD4+ T cells\",\n", + " \"1\": \"CD14+ Monocytes\",\n", + " \"2\": \"B cells\",\n", + " \"3\": \"CD8+ T cells\",\n", + " \"4\": \"NK cells\",\n", + " \"5\": \"FCGR3A+ Monocytes\",\n", + " \"6\": \"Dendritic cells\",\n", + " \"7\": \"Megakaryocytes\",\n", + "}\n", + "\n", + "adata.obs[\"cell_type\"] = adata.obs[\"leiden\"].map(cluster_annotations)\n", + "adata.obs[\"cell_type\"].value_counts()" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Final UMAP with cell types\n", + "fig = styled_umap(adata, color=\"cell_type\", title=\"PBMC Cell Types\", figsize=(8, 6))\n", + "plt.show()" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Save Results - Local\n", + "\n", + "Save processed data following the template data organization." + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [ + "# Create output directory\n", + "output_dir = FilePaths.DATA / \"pbmc3k\" / \"processed\"\n", + "output_dir.mkdir(parents=True, exist_ok=True)\n", + "\n", + "# Save processed AnnData\n", + "output_path = output_dir / \"pbmc3k_analyzed.h5ad\"\n", + "adata.write(output_path)\n", + "print(f\"Saved to: {output_path}\")" + ] + }, + { + "cell_type": "markdown", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## Workflow Summary\n", + "\n", + "| Step | Where | Why |\n", + "|------|-------|-----|\n", + "| QC & filtering | Local | Fast iteration, quick edits |\n", + "| Custom plotting | Local | Edit `src/myanalysis/plotting.py` |\n", + "| scVI training | GPU/Euler | 10-100x faster on GPU |\n", + "| Neighbors/UMAP | GPU/Euler | rapids-singlecell acceleration |\n", + "| Visualization | Local | Interactive exploration |\n", + "\n", + "**Git sync workflow:**\n", + "```bash\n", + "# Local: push changes\n", + "git add . && git commit -m \"description\" && git push\n", + "\n", + "# Euler: pull and run\n", + "git pull\n", + "# ... run heavy compute ...\n", + "git add . && git commit -m \"results\" && git push\n", + "\n", + "# Local: pull results\n", + "git pull\n", + "```" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Analysis Template (Pixi)", + "language": "python", + "name": "analysis-template" + }, + "language_info": { + "name": "python", + "version": "3.12" + } + }, + "nbformat": 4, + "nbformat_minor": 4 +} diff --git a/pixi.lock b/pixi.lock index ed6481c..86d7705 100644 --- a/pixi.lock +++ b/pixi.lock @@ -19,6 +19,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/fftw-3.3.10-mpi_openmpi_h76e6d66_11.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/geos-3.14.1-h480dda7_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/hdf5-1.14.6-mpi_openmpi_h106f004_5.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/hypre-2.32.0-mpi_openmpi_h398ea61_1.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/icu-78.2-h33c6efd_0.conda @@ -90,6 +91,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/linux-64/rdma-core-61.0-h192683f_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/readline-8.3-h853b02a_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/scalapack-2.2.0-hf7e2fd8_5.conda + - conda: https://conda.anaconda.org/conda-forge/linux-64/shapely-2.1.2-py312h383787d_2.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/slepc-3.24.2-real_h5d6ed6e_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/slepc4py-3.24.2-np2py310h29f32ec_0.conda - conda: https://conda.anaconda.org/conda-forge/linux-64/superlu-7.0.1-h8f6e6c4_0.conda @@ -343,7 +345,6 @@ environments: - pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/b9/37/e781683abac55dde9771e086b790e554811a71ed0b2b8a1e789b7430dd44/shapely-2.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl - pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/32/46/9cb0e58b2deb7f82b84065f37f3bffeb12413f947f9388e4cac22c4621ce/sortedcontainers-2.4.0-py2.py3-none-any.whl @@ -404,6 +405,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/ca-certificates-2026.1.4-hbd8a1cb_0.conda - conda: https://conda.anaconda.org/conda-forge/noarch/cpython-3.12.12-py312hd8ed1ab_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/fftw-3.3.10-mpi_mpich_h6eb47b5_11.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/geos-3.14.1-h5afe852_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/hdf5-1.14.6-mpi_mpich_h05d5b64_5.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/hypre-2.32.0-mpi_mpich_h189fe77_1.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/icu-78.2-h38cb7af_0.conda @@ -462,6 +464,7 @@ environments: - conda: https://conda.anaconda.org/conda-forge/noarch/python_abi-3.12-8_cp312.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/readline-8.3-h46df422_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/scalapack-2.2.0-h1b9cfae_5.conda + - conda: https://conda.anaconda.org/conda-forge/osx-arm64/shapely-2.1.2-py312h35cd81b_2.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc-3.24.2-real_hc5a9acf_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/slepc4py-3.24.2-np2py310h0c2cbfb_0.conda - conda: https://conda.anaconda.org/conda-forge/osx-arm64/superlu-7.0.0-h742a510_1.conda @@ -658,7 +661,6 @@ environments: - pypi: https://files.pythonhosted.org/packages/1c/78/504fdd027da3b84ff1aecd9f6957e65f35134534ccc6da8628eb71e76d3f/send2trash-2.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/36/6a/04e51cb67eba95e0fc74b6d370ddf76cde8bcc4191398d43d30a339a9e44/session_info2-0.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/94/b8/f1f62a5e3c0ad2ff1d189590bfa4c46b4f3b6e49cef6f26c6ee4e575394d/setuptools-80.10.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/86/07/59dee0bc4b913b7ab59ab1086225baca5b8f19865e6101db9ebb7243e132/shapely-2.1.2-cp312-cp312-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e8/ae/fa6cd331b364ad2bbc31652d025f5747d89cbb75576733dfdf8efe3e4d62/slicerator-1.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/46/2c/1462b1d0a634697ae9e55b3cecdcb64788e8b7d63f54d923fcd0bb140aed/soupsieve-2.8.3-py3-none-any.whl @@ -2324,6 +2326,27 @@ packages: - pre-commit ; extra == 'dev' - ruff ; extra == 'dev' requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/geos-3.14.1-h480dda7_0.conda + sha256: 08896dcd94e14a83f247e91748444e610f344ab42d80cbf2b6082b481c3f8f4b + md5: 4d4efd0645cd556fab54617c4ad477ef + depends: + - __glibc >=2.17,<3.0.a0 + - libgcc >=14 + - libstdcxx >=14 + license: LGPL-2.1-only + purls: [] + size: 1974942 + timestamp: 1761593471198 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/geos-3.14.1-h5afe852_0.conda + sha256: 1ac5f5a3a35f2e4778025043c87993208d336e30539406e380e0952bb7ffd188 + md5: 4238412c29eff0bb2bb5c60a720c035a + depends: + - __osx >=11.0 + - libcxx >=19 + license: LGPL-2.1-only + purls: [] + size: 1530844 + timestamp: 1761594597236 - pypi: https://files.pythonhosted.org/packages/ce/a9/a780cc66f86335a6019f557a8aaca8fbb970728f0efd2430d15ff1beae0e/google_crc32c-1.8.0-cp312-cp312-manylinux1_x86_64.manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_5_x86_64.whl name: google-crc32c version: 1.8.0 @@ -8256,36 +8279,38 @@ packages: - importlib-metadata>=7.0.2 ; python_full_version < '3.10' and extra == 'type' - jaraco-develop>=7.21 ; sys_platform != 'cygwin' and extra == 'type' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/86/07/59dee0bc4b913b7ab59ab1086225baca5b8f19865e6101db9ebb7243e132/shapely-2.1.2-cp312-cp312-macosx_11_0_arm64.whl - name: shapely - version: 2.1.2 - sha256: ba4d1333cc0bc94381d6d4308d2e4e008e0bd128bdcff5573199742ee3634359 - requires_dist: - - numpy>=1.21 - - pytest ; extra == 'test' - - pytest-cov ; extra == 'test' - - scipy-doctest ; extra == 'test' - - numpydoc==1.1.* ; extra == 'docs' - - matplotlib ; extra == 'docs' - - sphinx ; extra == 'docs' - - sphinx-book-theme ; extra == 'docs' - - sphinx-remove-toctrees ; extra == 'docs' - requires_python: '>=3.10' -- pypi: https://files.pythonhosted.org/packages/b9/37/e781683abac55dde9771e086b790e554811a71ed0b2b8a1e789b7430dd44/shapely-2.1.2-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl - name: shapely - version: 2.1.2 - sha256: 1e7d4d7ad262a48bb44277ca12c7c78cb1b0f56b32c10734ec9a1d30c0b0c54b - requires_dist: - - numpy>=1.21 - - pytest ; extra == 'test' - - pytest-cov ; extra == 'test' - - scipy-doctest ; extra == 'test' - - numpydoc==1.1.* ; extra == 'docs' - - matplotlib ; extra == 'docs' - - sphinx ; extra == 'docs' - - sphinx-book-theme ; extra == 'docs' - - sphinx-remove-toctrees ; extra == 'docs' - requires_python: '>=3.10' +- conda: https://conda.anaconda.org/conda-forge/linux-64/shapely-2.1.2-py312h383787d_2.conda + sha256: da100ac0210f52399faf814f701165058fa2e2f65f5c036cdf2bf99a40223373 + md5: 69e400d3deca12ee7afd4b73a5596905 + depends: + - __glibc >=2.17,<3.0.a0 + - geos >=3.14.1,<3.14.2.0a0 + - libgcc >=14 + - numpy >=1.23,<3 + - python >=3.12,<3.13.0a0 + - python_abi 3.12.* *_cp312 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/shapely?source=hash-mapping + size: 631649 + timestamp: 1762523699384 +- conda: https://conda.anaconda.org/conda-forge/osx-arm64/shapely-2.1.2-py312h35cd81b_2.conda + sha256: 81d4780a8a7d2f6b696fc8cd43f791ef058a420e35366fd4cd68bef9f139f3d5 + md5: 624173184d65db80f267b6191c1ad26d + depends: + - __osx >=11.0 + - geos >=3.14.1,<3.14.2.0a0 + - numpy >=1.23,<3 + - python >=3.12,<3.13.0a0 + - python >=3.12,<3.13.0a0 *_cpython + - python_abi 3.12.* *_cp312 + license: BSD-3-Clause + license_family: BSD + purls: + - pkg:pypi/shapely?source=hash-mapping + size: 596152 + timestamp: 1762524099944 - pypi: https://files.pythonhosted.org/packages/b7/ce/149a00dd41f10bc29e5921b496af8b574d8413afcd5e30dfa0ed46c2cc5e/six-1.17.0-py2.py3-none-any.whl name: six version: 1.17.0 diff --git a/pixi.toml b/pixi.toml index c1e2fbc..696f9dd 100644 --- a/pixi.toml +++ b/pixi.toml @@ -24,6 +24,9 @@ numpy = ">=2.0,<2.2" petsc4py = "*" slepc4py = "*" +# Shapely from conda to avoid pygeos build issues +shapely = "*" + [target.osx-arm64.pypi-dependencies] # CPU-only JAX on macOS (MPS handled automatically by torch) jax = "<0.9.0" @@ -44,6 +47,7 @@ squidpy = "*" scvi-tools = "*" cellrank = "*" torch = "*" +# decoupler = ">=1.8" # Uncomment when needed (may cause install issues on some platforms) # Notebook workflow jupyterlab = "*" diff --git a/src/myanalysis/__init__.py b/src/myanalysis/__init__.py index 708daf0..50c9808 100644 --- a/src/myanalysis/__init__.py +++ b/src/myanalysis/__init__.py @@ -1,6 +1,7 @@ from importlib.metadata import version from ._constants import FilePaths +from .plotting import embedding_density, qc_violin, styled_umap -__all__ = ["FilePaths"] +__all__ = ["FilePaths", "embedding_density", "qc_violin", "styled_umap"] __version__ = version("myanalysis") diff --git a/src/myanalysis/plotting.py b/src/myanalysis/plotting.py new file mode 100644 index 0000000..46ac6bf --- /dev/null +++ b/src/myanalysis/plotting.py @@ -0,0 +1,194 @@ +"""Plotting utilities for single-cell analysis. + +This module provides custom plotting functions that wrap scanpy/matplotlib +with project-specific defaults and styling. +""" + +from collections.abc import Sequence + +import matplotlib.pyplot as plt +import numpy as np +import scanpy as sc +from anndata import AnnData + + +def qc_violin( + adata: AnnData, + *, + groupby: str | None = None, + figsize: tuple[float, float] = (10, 3), + save: str | None = None, +) -> plt.Figure: + """Plot QC metrics as violin plots with consistent styling. + + Parameters + ---------- + adata + Annotated data matrix with QC metrics in `.var` and `.obs`. + groupby + Key in `adata.obs` to group violins by (e.g., 'sample'). + figsize + Figure size as (width, height). + save + Path to save figure. If None, figure is not saved. + + Returns + ------- + matplotlib Figure object. + """ + qc_vars = ["n_genes_by_counts", "total_counts", "pct_counts_mt"] + available = [v for v in qc_vars if v in adata.obs.columns] + + if not available: + msg = f"No QC metrics found in adata.obs. Expected: {qc_vars}" + raise ValueError(msg) + + fig, axes = plt.subplots(1, len(available), figsize=figsize) + if len(available) == 1: + axes = [axes] + + for ax, var in zip(axes, available, strict=False): + sc.pl.violin(adata, var, groupby=groupby, ax=ax, show=False) + ax.set_title(var.replace("_", " ").title()) + + plt.tight_layout() + + if save is not None: + fig.savefig(save, dpi=150, bbox_inches="tight") + + return fig + + +def styled_umap( + adata: AnnData, + color: str | Sequence[str], + *, + title: str | None = None, + palette: str | Sequence[str] | None = None, + figsize: tuple[float, float] = (6, 5), + save: str | None = None, + **kwargs, +) -> plt.Figure: + """Plot UMAP with clean styling suitable for presentations. + + Parameters + ---------- + adata + Annotated data matrix with UMAP coordinates in `.obsm['X_umap']`. + color + Key(s) in `adata.obs` or gene names to color by. + title + Plot title. If None, uses the color key. + palette + Color palette name or list of colors. + figsize + Figure size as (width, height). + save + Path to save figure. If None, figure is not saved. + **kwargs + Additional arguments passed to `sc.pl.umap`. + + Returns + ------- + matplotlib Figure object. + """ + if "X_umap" not in adata.obsm: + msg = "UMAP not found. Run sc.tl.umap first." + raise ValueError(msg) + + fig, ax = plt.subplots(figsize=figsize) + + sc.pl.umap( + adata, + color=color, + ax=ax, + show=False, + frameon=False, + palette=palette, + **kwargs, + ) + + if title is not None: + ax.set_title(title, fontsize=14, fontweight="bold") + + # Clean up axes + ax.set_xlabel("UMAP1", fontsize=10) + ax.set_ylabel("UMAP2", fontsize=10) + + plt.tight_layout() + + if save is not None: + fig.savefig(save, dpi=150, bbox_inches="tight") + + return fig + + +def embedding_density( + adata: AnnData, + basis: str = "umap", + *, + groupby: str | None = None, + figsize: tuple[float, float] = (6, 5), + save: str | None = None, +) -> plt.Figure: + """Plot cell density on embedding, optionally split by group. + + Useful for visualizing batch effects or condition-specific distributions. + + Parameters + ---------- + adata + Annotated data matrix with embedding coordinates. + basis + Embedding to use (e.g., 'umap', 'pca'). + groupby + Key in `adata.obs` to split density by. + figsize + Figure size as (width, height). + save + Path to save figure. If None, figure is not saved. + + Returns + ------- + matplotlib Figure object. + """ + key = f"X_{basis}" + if key not in adata.obsm: + msg = f"Embedding '{key}' not found in adata.obsm." + raise ValueError(msg) + + coords = adata.obsm[key][:, :2] + + if groupby is None: + fig, ax = plt.subplots(figsize=figsize) + ax.hexbin(coords[:, 0], coords[:, 1], gridsize=50, cmap="viridis", mincnt=1) + ax.set_xlabel(f"{basis.upper()}1") + ax.set_ylabel(f"{basis.upper()}2") + ax.set_title("Cell density") + ax.set_aspect("equal") + else: + groups = adata.obs[groupby].unique() + n_groups = len(groups) + ncols = min(3, n_groups) + nrows = int(np.ceil(n_groups / ncols)) + fig, axes = plt.subplots(nrows, ncols, figsize=(figsize[0] * ncols, figsize[1] * nrows)) + axes = np.atleast_2d(axes).flatten() + + for ax, group in zip(axes[:n_groups], groups, strict=False): + mask = adata.obs[groupby] == group + ax.hexbin(coords[mask, 0], coords[mask, 1], gridsize=50, cmap="viridis", mincnt=1) + ax.set_title(f"{groupby}: {group}") + ax.set_xlabel(f"{basis.upper()}1") + ax.set_ylabel(f"{basis.upper()}2") + ax.set_aspect("equal") + + # Hide unused axes + for ax in axes[n_groups:]: + ax.set_visible(False) + + plt.tight_layout() + + if save is not None: + fig.savefig(save, dpi=150, bbox_inches="tight") + + return fig From df316ce39e318a82bc95ac0e80f352031d00b40f Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 14:11:15 +0100 Subject: [PATCH 10/12] Streamline the analysis notebook --- .../ML-2026-01-27_demo_scRNA_workflow.ipynb | 970 ++++++++++++++++-- analysis/XX-2026-01-27_sample_notebook.ipynb | 4 +- pixi.lock | 87 +- pixi.toml | 4 +- src/myanalysis/__init__.py | 4 +- src/myanalysis/_constants.py | 2 +- src/myanalysis/plotting.py | 138 --- 7 files changed, 945 insertions(+), 264 deletions(-) diff --git a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb index 9e1655d..83a8e75 100644 --- a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb +++ b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb @@ -2,47 +2,80 @@ "cells": [ { "cell_type": "markdown", + "id": "7825e34f", "metadata": {}, "source": [ - "# Demo: Single-Cell RNA-seq Analysis Workflow\n", + "# 🧬 Demo: Single-Cell RNA-seq Analysis Workflow\n", "\n", "This notebook demonstrates a complete scRNA-seq analysis workflow using the analysis template.\n", "\n", "**Goals:**\n", "1. Show how to use the local analysis package\n", "2. Demonstrate which steps to run locally vs. on a GPU cluster (Euler)\n", - "3. Illustrate the local <-> remote sync workflow via Git/GitHub\n", + "3. Illustrate the local ↔ remote sync workflow via Git/GitHub\n", "\n", "**Legend:**\n", - "- **Local** - Fast, good for development, code editing\n", - "- **GPU/Euler** - Heavy compute, model fitting, GPU-accelerated\n", + "- 💻 **Local** — Fast, good for development, code editing\n", + "- 🚀 **GPU/Euler** — Heavy compute, model fitting, GPU-accelerated\n", "\n", "---" ] }, { "cell_type": "markdown", + "id": "ccefa0ea", "metadata": {}, "source": [ - "## Setup & Imports - Local" + "## 📦 Setup & Imports — 💻 Local" + ] + }, + { + "cell_type": "markdown", + "id": "5cb3d0f7", + "metadata": {}, + "source": [ + "Import autoreload to automatically sync changes in environment packages back here in the notebook. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 1, + "id": "3e62f205", "metadata": {}, "outputs": [], + "source": [ + "%load_ext autoreload\n", + "%autoreload 2" + ] + }, + { + "cell_type": "code", + "execution_count": 2, + "id": "f93b0838", + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Project root: /Users/mlange/Projects/analysis_template\n", + "Data folder: /Users/mlange/Projects/analysis_template/data\n" + ] + } + ], "source": [ "import warnings\n", "\n", "import matplotlib.pyplot as plt\n", "import scanpy as sc\n", "\n", - "# Local analysis package - edit these functions in src/myanalysis/\n", - "from myanalysis import FilePaths, qc_violin, styled_umap\n", + "# Local analysis package — edit these functions in src/myanalysis/\n", + "from myanalysis import FilePaths, qc_violin\n", "\n", "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n", "sc.settings.verbosity = 2\n", + "sc.settings.datasetdir = FilePaths.EXAMPLE_DATASET / \"raw\"\n", + "sc.settings.set_figure_params(dpi=100, frameon=False)\n", "\n", "print(f\"Project root: {FilePaths.ROOT}\")\n", "print(f\"Data folder: {FilePaths.DATA}\")" @@ -50,18 +83,32 @@ }, { "cell_type": "markdown", + "id": "674c1607", "metadata": {}, "source": [ - "## Load Data - Local\n", + "## 📥 Load Data — 💻 Local\n", "\n", - "We will use the classic PBMC 3k dataset from 10X Genomics, available via scanpy." + "We'll use the classic PBMC 3k dataset from 10X Genomics, available via scanpy." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 3, + "id": "4e166319", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "AnnData object with n_obs × n_vars = 2700 × 32738\n", + " var: 'gene_ids'" + ] + }, + "execution_count": 3, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ "# Download PBMC 3k (cached after first download)\n", "adata = sc.datasets.pbmc3k()\n", @@ -70,7 +117,8 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 4, + "id": "9ad36666", "metadata": {}, "outputs": [], "source": [ @@ -80,16 +128,18 @@ }, { "cell_type": "markdown", + "id": "fedaaf0d", "metadata": {}, "source": [ - "## Quality Control - Local\n", + "## 🔬 Quality Control — 💻 Local\n", "\n", - "QC is fast and benefits from quick iteration - perfect for local development." + "QC is fast and benefits from quick iteration — perfect for local development." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 5, + "id": "978b5878", "metadata": {}, "outputs": [], "source": [ @@ -102,21 +152,49 @@ }, { "cell_type": "code", - "execution_count": null, + "execution_count": 6, + "id": "f9b50fed", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAACTQAAAIrCAYAAADbKoQJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qm8TdX7+PGFa57neSYzJVMpCSlFIoUUoSJCIX1LlAZNlKKSEpEmoq8QlaEUocxTxjKP1zxf9/xfz/r+9/7tfe4Z9jn3nvF+3q/Xed2zz91nnX32Oa619nrW82RwuVwuBQAAAAAAAAAAAAAAAABRIGOkDwAAAAAAAAAAAAAAAAAADAQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAETA5cuXOe8AAAD0kUAfGwAAAFxfTbdcLpdKSkqK9GFEPeYTkF4R0AQgqmTIkMG85cyZU+3cuTOodh5++GGznVKlSqlQ2717txo7dqzq1KmTqlWrlipUqJDKmjWrypUrlypXrpyqX7++evzxx9W3336rTpw4EfLjQer9888/tu+jr1umTJn0Z12xYkV11113qVGjRqkDBw7E9MewatUqNWzYMNWyZUtVpkwZ/f6yZMmiihQpoq677jr16KOPqpkzZ6orV65E+lBjzrlz59TgwYPVW2+9FelDAQAAcSqQvmwgNxnbxFsfyf1cLVmyJGSvJWPBqVOnqq5du6prr71Wjxulj507d25VtmxZPZZ45ZVXgh4Hp3e//vqrPq8AAABwJpCxQObMmXW/Va4V33zzzeqZZ55RCxcujNipnjVrlmrevHnIX0fGKTKvI9fDZZ6ncOHCug8v81cy99SiRQs1dOhQtX79+pAfSzyS89a4cWO1b98+FW2s84zWfwfHjx8Pus0///wzRZv+5jCPHTumj+XLL78M+nWBWEZAE4Codf78edWjRw8dnR2tFi9erAM+KlSooPr376++/vprtXHjRt2hkWhp6ez++++/upMyfvx41aFDB1WiRAnVq1cvdfDgwUgfPtJIcnKy/qx37dql5s2bp55++ml1zTXXqNGjR6urV6/G1Hn+5ptv9CRAgwYN9GTKTz/9pPbu3avfnwQvHT16VK1du1Z98skn6t5779Wd7Y8//lifA/g3e/ZsVa1aNf3dIBgMAAAgffSRZLFDnz59VMmSJXUwkwQ1rVu3To8b5f2ePXtW7dmzR48lZFFB5cqVVbt27fTCGfiXmJiorx3ccsstasuWLZwyAACAEJAMOtJvlWvFv/32m3rzzTd1MM/111+vVq5cGbZzLq9/9913q/bt2+v7oXLq1Cn17LPP6uvfMq8j18NlnkeCS6QPL/NX+/fv10FdI0eOVHXq1FFNmzbV/Xz4d+HCBTVkyBD9/Vm+fHlM/Tv47rvvgn7+V199FdD+EydOVFWqVFGfffZZVM+VAqGUENLWASANVliOGzdO9evXL6rO5ZkzZ3TGpWnTpnn8vUToy2pb6dzIRWprUMvFixfVhAkTdOCIPP/OO+8M45EjWPnz51cFChRI8bgE8ly6dEmdPHlSD2LcV5hLkNP7778f9Sf+8OHD6qGHHtIBTJ6+z/LejdUH1vd55MgR9dhjj+lVKvKdzpMnT5iPPLZI4GMoB9oAAABC+m2SPdQfWXxhpPbPli2bDrjxJVTZb+O5jzRp0iT15JNPqtOnT6f4Xb58+VTevHl1/1omRowL1PJTLpL/+OOP6vPPP9fBTfAdECfnGQAAAMGT7EuSnd8buQ4ucxvGYm7D6tWr1a233qozJsni71CTAI/vv/8+pK8hCw169uypDh06lOJ3cv1b+vEyJyB9eOvczy+//KIDdN577z29oAHerVixImYrGEyfPl1/PwIl4zyZQwnEI488EvDrAPGGDE0Aop5EwUtQSLSQTqykVLUGM0laSFkRIBebJTBEOrMSnS/3pXO/Zs0a9eqrr9omCCQA5p577lGLFi2K0DtBoJMsO3bsSHGT76Z81hLAJFm3PvroI1WsWDHzeR988IGaPHlyVJ/s7du3q0aNGtmCmWTwKqvDJRuT8d5k1bgE823YsEH95z//0Wl1DQsWLNApfmVlBQAAACJLxh2e+q7uN+v4pGHDhn73D2U5tngkpSckc5A1mKlVq1ZqxowZOvOplKCTkneySECyDMmF8RtvvNHcVwKdZDV4oBe9AQAAgEDJ/IavsYBcB5fMo3L9d+nSpTqIydpvlcWyqSnFFS2k0kabNm1swUzSR5cMOVIWTTI3ycIQ+b3cl+An66J1CXDq27evGjVqVITeAUJNsnLJ+C1Qy5Yti9uFPEAoEdAEIOpJMIVEO0dDOkVZgSDpTK1pQyXiXlYhSIaaLl26pFjFkDFjRl3C67nnntMdfylHZpDUpHKBW1K1IvZJIJNkK5JShNZMRfLZGyvfo410vGXAJRMphm7duqlt27apl156SafKTUhIsH2fa9asqV577TW1adMmVb16dfN3knK3d+/eYX8PAAAAQLSRVdlSesIg40TJuCQTHlK6WTL6WskqbwlekvIdb7zxhl40Y6yEf/jhh3XfGwAAAIg0uT5800036b6tLNg2SJC+lKGLZZIlVTIrSR9cyIJeWcT++++/69LR7hlt5feyYGHu3Ll6P6l0YHjmmWfUzz//HPb3gNAoWLCgucA72LJz1nJzkiEZgDMENAGICbISWDLdRJoEpqxatcrclkAQKYsnAUtOSCdFOvXSjkGi+eWCNeJH1apVbYE9kt1I0s1GI1ktIoF2BqlbLRmlpPSFP2XLltWDsqJFi5qPTZkyRU/CAAAAAOnVxo0bdflpg/SXly9frm677Ta/z5VAJumTS7ZUg6yCl7J1AAAAQLSQRbAffvihypo1q/mYVLWIhoXpwZBqG927dzePX4JXZOGyLGJ3QvaT7E4GCYrq169f1C50RmBkbq9169bmdqBZdOX7IJl6jRLxTsaGAP6HgCYAUUsyIVkj2qXElTWLTLht2bJFjR071tyuXLmyjqjOkSNHwG29+OKLqlq1aua2BJAYUf+ID9Y0s2L9+vUq2khqYOuqACkZ9/rrrwfURvHixdU777xje+yVV15Js2MEAAAAYs2AAQN0Nl4jQOnrr79WFSpUCKiN4cOH28aMspDgjz/+SPNjBQAAAFJTseD22283t/fv36/L0sUiWYR+8uRJc1sW2NevXz+gNiQgqmXLlub21q1bzSAWxL6OHTsGXXZOkjYYZQzlO1KgQIGQHCMQjwhoAhC1atWqpZ5//nlzW8qyRbL03FtvvWWLph83bpzKnTt3UG1JBLZc5LZGd+/cudPv8+QcfPTRR7qGc/ny5XUwlZQ2k+AqqVEtnWMngVFNmzbVF9blNn/+fP3Y5cuXdVpUiTKXtuWYpAxCvXr19MX0PXv2BPQejfbuv/9+VbFiRX2uZFWDXMiXUgoSxHXp0iXH7cmq5KlTp6r77rvPfO9yK1OmjH4/EkSzfft2FS2sWYuE++ciZQqNz0Bur776quO2X375ZfN5JUqU0HW5g/1OW40ZM8YsbRGITp066e+g9b1J/XB/32UZFLZt21ZnepLPUr4j8l2R74zT74eU3zDOhXwPnHDyHOtnI6UmxdGjR9Xo0aN1SmU577L6SH5KIJgEO0p5TE/kvRhtSUY2w4gRI2yv44mcR1npJAGepUuX1v8u5TzJv4E77rhDH0+sXiQAAACxTfr7kp1TLupKHz9Xrly6T1euXDk9XpG+3unTp70+PzV9JCF9RQkU6tWrl86Ya/TP5DhkjHDLLbeoF154IexjBOkLL1q0yNyW8nJyLIHKlCmTGjp0qK20h5OSFStXrtRjzbp16+rxnCwSkommBg0a6EmaDRs2+G1DFhJZPwO5+J4Wz5GFPcbvZcGSdTJA+uhVqlTRfV0Z40owl5T7WLFihdfXlO+atCUTR1bW45DX9ESCw/r376+uu+46lT9/fn2eZAxXu3Zt/bpSGjBWswsAAACEU6VKlWzbEtTkiwR1SMWKW2+9VZdllrkSqRZQo0YN9eijj+pFuJ4Y/TsZLxhkHGHt+8kYIxhyTDKXYZA5ESkxFwyZS7Gyjg28kcAn6R83atRInxPpmxYuXFiPc5566im1bNkyR68dzLnw9xzruE3mAazjjieeeEJ/blI+W+Z+5Lsg/fqffvrJ79yUfP5Wcr3beB1pw1smXDlPN9xwgy4BJ98dGfNUr15djwmmT58e0oxYUl7QmBMMtOycdWG59Tx6Yh03Wcl7NB6XsRCQbrgAIIrInyXjNnToUNeVK1dc1113ne3xDz74wG873bp1M/cvWbJkqo/r5MmTrmzZspltNmjQINVtnj592jV58mTX3r17He0/ZcoUV9GiRW3nwtOtZs2arj/++MNnW7fccou5/w8//OBav369q1atWj7bzZ49u+u9995zdKzz5s1zVahQwe+xli1b1jV37ly/7S1ZssRVunRpv+1lypTJ9dhjj7kuXrzoSq3du3fb2n7hhRcCer4cs/X5M2fOTLFP9erVbZ+bU9WqVTOfN3jwYFcwjhw54sqYMaPZzk033eRKDXl/H374oWvjxo2u5ORkn/tOmDDBlT9/fr+fZ5kyZVyzZs1y/G9dvtdOOHmO9TguXLjgmjFjhqtgwYI+j1f+1sjn7m7SpEl+36unLtk333zj9zXlJn+b5O+lv/MOAADgTvrjgfalxHfffecqUaKE335KoUKFXB999JHHNoLtIxnPlb6Xk+fLGKF///6upKQkR/3+xYsXp+qL0q9fP1t7P//8c9BtST9U+nkyZpIxqS8yrrz99tv9no8MGTK4HnzwQdeJEye8thXMOXHyHBlTGb9/5plnXMePH3e1b9/e7zE//PDDrsuXL/v8/nq7uY/j5H3ffffdjr47ci1i7dq1ft87AABArLL2feSaaTAGDhxoa2fNmjUe97t06ZLr+eeft82zeLtJf+3YsWNej9XbTcYJwRg9erStnU8++cSVGi+++KK+Xi7X4H1JTEx0PfDAA7qP7u+93XnnnX7nkoI5F/6eYx23dezY0XX+/HlX7969/R5vq1at9ByYr7kpbzf376LM9/Ts2dPReapUqZJr0aJFrrTgaZ6xS5cu5mN33HGHo3ZkntO4zi/zbHJefM1hWsdN3m4yFgLSCzI0AYj6OswSAS6R1oYhQ4aEvfTcggULzCwt4sEHH0x1mxLJ3a1bN1WqVCm/+8pKWlkRIHWcreemZMmSOlLfGqktUeoS5T5z5kxHx7Ft2zYdDW+s1JW2ZGWqRLa7Z0iSFaySJckXySYjWZ527dplW00sq4KlPJmsNLauoJDV25Ltypvly5frFJx79+41H5M2ZAW23KRtg2QqmjBhgmrXrp2KtO+//968L6vEmzVrlmIfyapl/dw2b97st901a9bo8oeGYFeKyHfamjUqtTWb5Zz37t1br8jwtZL+kUceUY899pg6ceJEiu+H+3dZsoK1b99evfbaayqSZGWHZAY7fvy43pa/R/LvVj5X99VH8t23fj5CVphL5im5yb9bg6wENx6Xm9W3336rsx0Yr2l9Xfn3aT1P8rdJMnzJSnIAAIBQk2yh99xzjy1LpPRNZPwgfTpr//zYsWM6g9Ljjz+eIttNMH0kIVmXZGWqdeW3vKaMNSTzp3sWXRkjvPfee3plczhIZh9D9uzZdXbPYEl2TslEK+WsZdW6N+vWrVN16tTRfXwrWSUtWT7lOAzyOcjqc1n9HcmS7ufPn9crnK3jVim74D7GE3JNQMYa7mRVsnxHZBW7lfX7Yy3lIFnFZNwze/Zs2/6yj3x3rOfJGHvJWFlWzAMAAMAz6zVtGRdI/9OdzC1In1b6ttZ5FhkHSP9Psu1YSX9N5jisJeCM/p2MF6zPt/b9ZIyR2j58WlwrlzGLXC+X693e7Nu3T2cL/eKLL2xjJRkDyDmUvrz7MUrWVemjRorMJ0h2ofHjx5uPyTmXa9bWMZ344YcfPM7TyJyWfFbyuVtJf9z4HN2rX0hFh4kTJ9rOk4yP5Dnu1+h37Nihxxm//vqrCgU5FmumWes8hzeSscq4zn/XXXf5rfwi4xNP42EZ9xiPk6EJ6UqkI6oAwMoaYSwrUa0R7dbfNW/e3Gc2krTO0PToo4/aXn/Lli1h++DGjx9ve+2qVau6vv76a9fZs2fNfSTS/5133rFlvZFI73Xr1nls0xoFnyVLFv0zT548rlGjRtlWDfz777+uRx55xPb6xYoV85oBSbI9WaPk5dx//PHHttW/p06dcn366aeuUqVKmftJpqD58+d7bLNGjRq29mRlg/X1ZaWurBCX82I9TsmoE6kMTb///rsrR44c5nOHDBnicb89e/bYzpesUPFHMjIZ+9epU8eVVivHf/31V1eoDRs2zPaasiph7NixemW24eDBg65XXnnFdv7kNm3atIhlaDL+jVSuXFn/25NVKIaVK1fq7FbW/du1a+f1ta2ryL19p2QlvmQzMPaTTF6ysl9Wclj3+eyzz2yZCeS7tGrVKkfnAAAAwL1v4qQvNXHiRFu/R/psL7/8suvAgQO2Vcbjxo1LkWny1VdfTVUfSUif1dqmZC7973//q/tGVlu3btVZmawZSeW+9PFDmaFJ+rXWtpo1a+YKNVml7Z4tq3Xr1q4VK1aYY2bJTiWrlBs3bmzbT8YT1r5tODM0GX1s6cM+/vjjrr///tvcT1Ysy9jU2MfYz9tqf/dsX9689dZbKa45WL+7xndHMli5n08AAIB4lNoMTXJ9O2vWrH6vV3fv3t32WhUrVnR99dVXrnPnzpn7SBUJyepj3e+hhx7y2adMqyw1MjditCmVJ0JN+rvWeQ+5SV994cKFtsyy0qdv06aNbT+5Huwt81OoMzRZ++eSrcnaP5c5G5n3yZs3r61NGa95IuMF636exmpi+vTptv1krm7nzp0pvodPPvmkbb/atWunuqKBp3lGeZ/W9yhjZH+6du1q7v/tt996bTutPlMg3hDQBCCquF9ctAatSGfY+nspbxWugKZGjRqZ7eXMmdMVLtIRs6ZglRIC1k6+u+3bt9tKs9WrV8/jfu5pPWWyQS7cetO3b1/b/hK45E4CrIoUKWLuc+2116ZIC2t1+PBh22cqn5OknbVavXq17XW9XcAW+/fvt5Xkk45+uAKaJNDk6NGjruXLl7sGDBigg8mM5916660eyyMY5PfGvhIw44t0wK2BYJIKN1i33Xab7f35K2GRWjJBIeU+jNcrX768a9euXV73//PPP10FChQw98+VK5c+x5EIaJKb/A04c+aMx33le1u3bl3bwE4C94KdrJOgPWMf+S65T7JYbdiwwfZ9k0A1AACAUAQ0SaCS9cKt9NX++usvr/tLX0/6fMb+0heU8sT+jsNXv9s6jpEgHl/jDfHGG2/Y+nRjxowJaUCTLGywtiUX1UPNPfhGFgN5c/XqVVePHj1s+0vpt0gENBlBSlJm2Rv3yQtPxxpIQJNMahj7yLjNF5k8sx6nv+8aAABALEpNQJPMBzRp0sTWxgcffJBivz/++MO2T4MGDbyWP5b+atu2bW39MGvgeygCmmRewXp899xzjyvUZGGz9TWljy7v3Rv3frQEE3kS6oAm4yYLBbyRICzrwhJvx+o0oMlaLlq+G4EsqPY1XnXC2zyjNUDJX9k5awCUBM4Zi3EIaAKco+QcgJggpZY8lZ6TkmXhYC2fFs5Uju+++66ZglVKOHz99dcqR44cXvevVKmSmjRpkrn9559/qsWLF/t9nTfffFNVqVLFZ4pUa4mrP/74I8U+8rpHjhzR97NkyaJLZrmninVPjynvxyhBJyUjpk2bZttn+/bttjSb1157rdf2JEWplHCT8gSSatQ9xWlqjRgxQp8DTzf5Xkr62BtuuEF/ZpJCV46jX79+uvSc9Xvrq+ycvN+//vrL676SJlVS0Qo5bw888EDQ78f4rIzPy1cJi7Qg6YSl3Idx7PLZly9f3uv+119/vfr444/N7bNnz+pzGwnyGUupRff0tdbzJ2UhraUsVq9eHfTrWb/31apV0+VTvKlZs6ZOU2ukV7aWEQQAAEhL77zzjjp16pS5LX21unXret1f+npfffWV2d+XvuDrr78e9OsfPXpULV261NyW/pev8YaQUnfWktc7d+5UoWTtYwtfJSbSgpRTkBIVBinnLWM3b2SMIuUhrJ/bBx984KhMQihIKXcp7exNhw4ddH/X1zg02H528+bNfe77zDPPmONQGZvs3r07Va8NAAAQL/bs2aP7lFLy2FrWq1atWqpnz54p9rde05W5DbkunC9fPq/91Q8//FBfbxUSbyNjinjqw8uYynpOpG8u59O97LLViy++qPv6hunTp6tt27apSLj55pvV4MGDvf5eyuJJecFI9OEHDhyo52KkDJ7MJR08eFCFQseOHR2XnZPSe8Y4um3btrqkIIDAENAEIGZIB+TZZ581t8+cOaMeffTRsLy29cK908AP6cRIgJHTW5cuXVK0MWXKFNvFXievLZ26a665xtyeOXOmz/2zZs2qOnfu7HMf6cRbA7mOHTuWYp/PPvvMvC8d1goVKvg9VgmisnZC3Y/VWvM6MTFRdw59eemll3Qw0T///OP3fYeaDMrk+M+dO+dzv3vvvVdlz57d3JYBnTfWyQqp412sWLGgj896XP4mglJLgmwksMsgATj169f3+7z27dvbgti+/PJLFQk33XST/jfqi/v78fRvxCnr937Tpk22OvSeSLCnBD7KhNa4ceOCfl0AAABfvvvuO/N+7dq1dV/NH7mYbb3wLoseJPg7GNJnnjdvnnr//ff1hWrrRWRvcufObZuQkCD5UHLv+8uilFCaPXu2LaBdFmH4Ixf4hw8fbhtXz507V0XCww8/7Hcfaz87NX1s9362TAL5UqNGDXXy5El1/PhxtWrVKlWvXr1UvTYAAEC0k+vpvuYvSpcurRd8ymJiWThgXSwgCzLl+UYgkuHKlSu6z2qQYHZ/C8alLZkLadGiherbt6/PRc6x2IeXOQ7pgxuef/55nwuiDS+//LJ5X8YA33zzjUpvffhZs2appKQkn3MyshBG5vPWrFmj5yFCQeZm8ufPb37HrWNld9aAPH/zcAA8I6AJQEyRzp1cPDf89NNPasKECSF/XSOzTKDPkU6905tkKLLaunWr7nwZrrvuOsev3bhxY/O+dRWzJ7JywhpQ403RokXN+0bWKOvEgHQQU3usv//+u151Ye34WiPWZTJEMnPJa1n3M8j7cB80pRXpoEoGHE83GcTJQMeaxUoCsF599VU92PO1ikQ65Hfffbe5LQMRT+9NOsYzZswwt7t27Zqq92NdqR5qkq1IJgOsK62duv/++837nv6dhEPDhg0D+vfh6d9IoAFUhkuXLultyXAlfxM8yZkzZ1g/TwAAkP7IuGTjxo2p7s/J4gMJDgmGTJ7cfvvtqk+fPmr06NGOJhqkD2rto/u6+J0Wwt0nW7RokXlfFpQ4HYe1bt3alvn3l19+UeEmn4uTRQ6+xqHBrCY3SAbWli1b6gk2b4tQQp3FFgAAIJpIkI2v+QupHODeb5KsQpJ1Rq7Xe1oQKo9bnyP9UCcmTpyo535k8ab12nm89eFlsbnTcyIZsawL2SPRhw/mWnla9uGlGsmNN96o51u8ZUUKRx9eAtDatWvnd7HE+fPn1Zw5c8xF5RIIBSBwBDQBiMnSc9ZyYk8//bTau3dvSF9XVvaGa1WvwRogZKS8d5rtyRoRbi2X50nJkiUdHY90rr0FeG3YsMH22NixYx0fqzWjjHRCrR1R6eTJhIV1AuStt97SaViNlRpyIfrw4cMq1Pr3768z4Hi6SUYomeSRDuqyZct0ti1j4kQGglIazteKCWvZOSmjuHz58hT7zJ8/XwdJGd/He+65J81WNoT6O+2e/lZKNjjlvu/ff/+tws3JvxHrv49ggyANUlbDmvFA/k0MGzZMl5+TFUySmU6C26xBYgAAAKEkaf6tQffR1p+TFcrSj16yZIn66KOPdOlnudAu2ZmsZQZCXZ7X2scOdz87kM9EJm1kQiSSfWw5V9ZxdjDj0ED95z//sS2AkUkymYCTsnLNmjXTJRHdx+EAAAD4H1l4XKRIEX2NUjItvfHGG/rauMxFuC/29NbPtPZBo0Uk+/CyeN9JdiZPff5I9OGDuVae2j68zMtYSxTKAhnJdCRjPQlukpLbMieT2tcJlDVj8M8//+wxwEqqVhgBfbIoyDqvCcA5/uUAiDmy6lQuRErGEnH69Gn1yCOPqAULFoTsNUuVKmV2SJwGT8mKYU+ZdqwkOEEuvHsiqe2tDh06pIIhATWyEtlbZ8nJRWR37u/L/VgljWiwqUQlaEcuKBtkYHTgwIEUWY4kiGnatGn6ZqzulU6hBBOVKFFCRWpQd8MNN+ibrKyQQCY5V3Lr1auXvkjuaSW5rDSXDriRkUveq3TGrazl1uR9Osmq5YtklTJWx8t3RNKwhmr1gvv3I5BSee6DYfe2wiEt/o0ESgI35W+OrDqxkr8Xn3zyib7Jv2nJ3iQXEDp16mT7dwMAABDP/TlZSCAlLaRU2tq1a/WKccloGmnSx7YK9cIb67kMtBy19XNJL31smQCSsu49e/a0ZQqQMojS75ablLmX8aQEOsnY0ppRGAAAIJ5169ZNX5NMS+4LkUNdzi0Y9OFD349PDSl1KKXm5Bq4dc5JAphkYbjcXnrpJb04XuZkJNhJMiFJ9rBQMuZ65JiMsnPdu3e37WOd05Lr9wCCQ4YmADFJspVIqTTDjz/+qD7++OOQvZ5kTDFIkIEE2ISaBJikFW8p9NMqpWooj1WCNiSYR6LZmzdv7rEjKhe2V65cqcvRlS9fXmezkovSkSQdVGs9acmm8+mnn3rcV96jtX6ypCi1rh6Xc2KtNW7N6BSs6tWr27Y3b96sQkWCDt1LpDnlvq9MXoVbJMq5ycBQ6qnLhIu3NL4SqChZCKSWvAy8JXtZaid5AAAAor0/98UXX+jyatInlgvEUpbXUzCTBKVIZstwBn1LBlrrCutQ9rHdP5dAPhP3/dNLH9tYSb1p0ybVu3dvXVbcExnvf/jhh3rxwC233OK19DMAAAB8cy83Zi17HC2kX1ymTJmY68NLNYtIXAuORD++adOmasuWLbpai7eFHLJI47PPPlN33HGHTorwxx9/hPSYZE7HWmXBveycfM4//PCDOTZt0qRJSI8HiGcENAGISZImftKkSbasQ4MHDw7ZClj3zoYEGoSaewYe6bAZ2X4CvYW6brD7sUpHLdhj9ZZ2VqLrJXWnlIyQz14ChiTFrTsJZHrzzTf1atpIe+yxx2zbcvzeWIOUJBuXBKoY/vvf/5qBXjK4kg58allrTwtJy5oae/bs0Vmlnn/+eV0H3DpYzZUrl+MAO3eSPcoqtZmpRLjTzwZLMo/J90IGX5KZ6YMPPtArxa0pdq2pkCWgTwZ1AAAAaS1a+nPvvPOO7udbV3rLBfUaNWroFbvDhw/XpZ4lY9P+/fvVhAkTwrqCWEorNGjQwNyWRRep7XvKYg15zxMnTlS7d+/2+rkE8pm4fy7pqY8tZDGABCzJ90jKzg0cOFCX+zDKhlv9+uuvOqhJvlMAAAAIjHvAjgThRCPrtXIptx1s9QnDmDFj1L333qvef/99Pa8Tij68VIvw1H+N1z68ZEOSeR8Z5/3222/queee02MvTwFW69evVy1atFArVqwI6THdf//9XsvOScamS5cumfuFOmMUEM/41wMgZkm6eJnAt0Y8ywrcULj77rttHY6pU6eqUJMUmVaRKAMQjccqQUyS+UiyNkngj5SYeP3111XdunVt+82YMcOMgI+UqlWr2rZ9BdzVq1fPtr8cv6fo/gcffDDVAxUhpROskzvSwU6NefPm6fSur776qs6kNWLECPN37qviJSjNKfd9pTSfN9asVr6Eug56KEgg2+OPP64/JxlQS5CT1Ae/5pprbPu9/fbbIV9FBAAA0p9w9ed8kaw6EtxjHYNIGV65aLxx40YdyCR9UAlskgxOkZo0kRXB1iyt1oUKgZL+rYw9JSuVlFmX8YJ1Rbf1cwnkM3Hf399n4qSfHYt9bMmmJRMdo0ePVuvWrdPjSylpLt8hCU4zHDlyRE+YAAAAIDDuGTFTGygUjj68LLqWBcapIZlkpUT2E088oSsl/P333+bv6MOnjszTydyGzENIwJLMRcm5lpKJ7sFiAwYMUKEkC8+NRfeSNdj6vfn666/N+5SbA1KHgCYAMU0m9GU1rmHBggV65Wpak5SQEtRkjbZetWqVCqUqVarYtlevXu34uYmJiWb0dzik5ljlIn+wJQ4ksEcyOsnExl9//aXGjRtn+701KCgS3FcHyKoJXyRYyTBnzhz9Uz5HWTWcluXmjFXYHTp0MLdlVYOsXAjW+PHjva5OcC9vJ5+VU3/++WeKMh7ezrF7CmNv9u3bp2KZvGcpQ/fiiy/q8hfWwE4ZcH/77bcRPT4AABB/qlWrFrL+nFOSUcdaWk5KUvfs2dNnBibpS1snTcJRkkH669YFCLIqO1hSdtoaeCQTLXny5PHYzw7kM5Gstta+v68+ttN+dqz3sYVMRjzwwAM6OG7Dhg36OoBh1qxZjhdQAAAAwPOCX+ljOSF9L1k0KwvYX3vttZD3w9q1a2cLhpFM+cGSBdjWzECSCdQ6f2Ltw8v5kL55MGMrT+Mq66L89NKHl+ok8vlNnjxZZ1W1zhfK5xCqqi7GuMk6x2LMR8n8nDGnI4tt5Fo+gOAR0AQg5kvPSUfFesF10KBBIemIDR061OwQyoVw6UwHG4hj8NURlwxU1prS0ol3Qo5NSn9JwIpcgLUGloSK1C22dqAlEt3pIEOOT1LPysVjSeVvTXMq57xVq1aqXLly6qWXXvLbVt++fVXFihXN7VB2Vp2wrrwQpUuX9rm/NfuSHLsMfmRFt5F6tn79+ikGgakhKxSsky1StjGYSR654C8rmg3SQZc61YZrr73WNiB0ryfti3VfOX/u59D6b0QGCv7Iv1lZwR8p/rJryQC2X79+eqV4yZIldd1vf+29/PLLtjIhkf7eAwCA+CPp/a1BTcH252T8JplJ3TnJQCrl2ww1a9ZUN9xwg9/nSFll67gkHAEpUs7snnvuMbclw+bSpUsDbkeCt2QBj5Vk7PRWGkPK0TkNapJgMOsCGBk/eutjO+1nh7qcgy9Ovj9z587VK6NlbOK+4MKTypUr2863fB6SwQkAAADOSVUF6yLf+fPnO3qeVF5YtGiRzsgq8z/WQJ20qF7gTuYnrNU/ZMG2ZO4MhntmT199eOmTS9/cCenrW0tQu/fhg7lWHu19eKkIIQtGZF5ExqT+gr9kjuk///mP7bFQXyu3zr9JEJNk1JW5PGMxTseOHUP6+kB6QEATgJgnF8Sffvppc/vUqVNq4cKFIXkdCZgxSACHpKIPJqhJOqp9+vTx2ZmS9Pft27c3txcvXqxv/khHWwJpJDBFVvOWKlVKhYM1baZEwvsLxBByYd+IVD969KguG2ENTpMOqwxy/v33Xx3d7iTYRiZJrIFWkTRlyhTb9u233+538sM6oJHBjFx4T+vsTAbJbuXe4XafNPFHaopb/10ISffqa6WClKezTkh5I5mGrMFH1n8PhuLFi5v3//nnH7+lNj7++GPHmZxCwTr49vR9lu+vfObyN+zAgQOOsozJ+U1ISIia7z0AAIhP1gux0kdzkhVS+nzWMtCyWMEaiO20jySspdbcMwh5Igsl3CcTrBmeQkkWYxj9M3k/Xbp00WOaQMgY15pF6aabbrKVwhDSx7aeO8ng6Y+cA2t/XfqfrVu3TlEaxFpyTQLDfJEFGJMmTVKRYj0H3r5DUopCyj7IOH7Lli2Ogr+sY0v5zskkCgAAAJyT/lSbNm1spdgOHz7st6KD9Zqoex/YydghGBIIY82GKte816xZE1AbY8aMsY1/ypcvr7PKWrlnXZW+uZNxintf/9577/V5rdxfH14We6QmE1U4+vByXj7//HOdmUr6806Cv6x9+HBcK5f5HOO8S8CVXNu3LupJbbm5UH3fgVhCQBOAuCCdOSerLFPrrbfesgWcSGCGrAyWwBunJHuRBJJIyQR/EelyEdv6uKS/37x5s9e2N23apLO7WDtvoa4TbJDXtU5O9O/fX/36669e95dgja5du9oes5bOEtZgG0m/+u677/o8BhksyMVpg9RSjhRZQWL9jGV1hJNsWdagJWtAkwS4de7cOc2Pc+zYsbZOvWT7eeyxx9TZs2f9PlcGRbfeequtjIesZJF0wO4kc5rR+ZbBknTkJQDJGxksynEYZCWPfKfcWVfmy6SVHL+vFSfDhw9XkWRdJWOdlLOyfk+k9KC/7GwTJkxQZ86ciYrvPQAAiF+yIMPal5G+mq8L/NLXkz6fkYFVxjXWhSiB9pHKlClj3pdAH8lm6o0EsEu/9I8//kjxeDhIBilrv1MWskgfTcYI/ly4cEGfa+vYR7Kdyup0d1K+wDqRIX3HESNGeG1b+uGyQtz6uT388MOqaNGitv2k324tiyCTCLJoxROZZOjVq1dEy1W4Z5Ty9B2SoC3rePWJJ57Q59ob6V/LYgiDrAp3nxwBAACAfwMHDrT106RKgbd+mARsSD/txIkTZr+0d+/eAY8dgiHZfcaNG2dbON+sWTMdFO+PjHleeeUV9dRTT9kC4iW7lFzXt5JgJuk/G6RvLn10X9lkZcGE9PUNLVu21JlHfV0rX7BgQYrxkPU8y+KPQMpWR6IPL1mopIqB4ZlnntGBTd7I2OS9994zt+W5Uv0jlOQ7al3MLQs9jHGfzFlKycHUCNX3HYgpLgCIIvJnybgNHTo0oOeuWLHClSlTJlsbcitZsmSaHuOJEydct956a4rXueWWW1wff/yxa9euXa7k5GRz/6tXr7o2bdrkGj16tKtGjRopnie3G2+8Ue/jyfPPP2/bN0+ePK433njDdfjwYXOfU6dOucaOHevKly+fbd+XX37ZY5tyrMY+3bp1c/S+nTznk08+sb1+1qxZXf/5z39c//zzj7nP+fPnXVOnTnWVKFHCtm/Pnj1TtHfu3DlX6dKlzX0yZMjgevzxx11btmyx7Xf06FF9fnPkyGHuW7x4cdeFCxdcwdq9e7ft+F544QVHz9u8ebPrmWee0e/d+nz5zJw4efKkK1u2bCm+I3fffbcrVOTfTu7cuW2vV7hwYdeLL77o2rBhg/4OG+ScLlq0yPXAAw+4MmbMaHvOzTff7POcyzm07l+oUCHXuHHjXImJieY+hw4dcr366quunDlz2vaVz9eTy5cvp/gu9erVy7Vv3z5zn7179+p/R8ZnYn2v8r32xNrepEmTHJ1HJ89p1qyZuU/ZsmX1+3Unx249xsyZM7uee+45278jYz95X9a/e9ddd52jYwUAABDSH/HXL7KSPo61zyN9tldeecV18OBB23jp/fff13096779+vXz2q6TPtIHH3xga69YsWKuyZMn2/qf8toyJvE27mrSpInffv/ixYvT5MshfWjpM7sfQ6tWrVzffvutPlb343j33Xdd5cuXt+0vfcGZM2d6fR0593IurM9p06aNa+XKlbZjkfd100032fYrV66c6/jx4x7blc/Quq98LrNmzXIlJSXp31+5csU1d+5cV8OGDc19cuXK5fM8WscD0p4TTp7z66+/2o71tdde87jfwIEDbftJ33nevHmuixcv2sYXP/74o6tOnTq2ff/73/86Ol4AAIBYYu3vOJ0nCEafPn1sryV9rR9++EH3KQ1//vmn6/bbb7ftN2DAgBRtTZkyxbbPl19+mabHKtf2Pc3fyOta52SMvvinn37qqlWrlm1/mceQ+Rpvzp4966pevbrtOY0bN9bX3Y3+tli1apWrbdu2tv3y58/v2rFjh8d2pX9u3bdAgQJ6DHfp0iVzXCB95zvuuMPcx3od2tM1bfcxoBNOnrNnzx7bPjLvY51XM7z33nu2/SpUqOD6+uuv9dyRQc7ZsmXLXE2bNrXtK+Or1JB/E07mGX/77TeP48+XXnop1W3L+zX2u/76611nzpxJ1XsCYhEBTQCiSmoCmsSQIUNCHtBkXOR89tln9cVlTx0VCayRQBy5eQpOMW5ykV8uFHvqqBmkk/nQQw+leK50iosUKeIqVapUisASuXXp0sUWiBKOgCYh58XTey1YsKA+H57OmUxgSKCTJ0uWLPF4DiWwSy7Ayzlw/51MrCxfvtyVGu4TGzJQqFixotebXFx3Dwoybp07d7YNRPy57777UrQxffp0VyjJ4Mg6oeX+fS5TpoyeKElISPC4T/v27b1+hgb5Pj788MMpnivfXwlAk89Svtfuv3/66ad9tjtt2jSv/77kc7M+Jt/Bzz77LGIBTYMHD7btlyVLFn3e5TitA+IvvvjC479rGYTK917+Pbn/rmjRoq7t27c7OlYAAIBgAprEsGHDvI5NpE/naZGJv/6wkz6SXIR3DzIxXlv6qe6LO4x2rJMLEiwUroAmIRM0/fv399hXNc6ZvE8Z23jaR97T/PnzHS1QcA8gMwKMpP+bPXv2FL+T/r37QhErOd81a9b0eE5ljO0+LpCL9TIJE4mAJgkOcx9nGmNlOf8GmfSoW7duivckz5V95VzJ+3P//aBBgxwdKwAAQKwJV0CTLEKwBtEYN7nuL32wvHnzpvjdbbfdZgs8N2zcuDHFvrLgVW6jRo1Kk+OVAHlP4xq5yXVZY6zi6ffynmThhT9yHdcarGLcpO8u58S6WMC4yWtK8IwvLVu2TPE8eS/Sh3fv68oic5lHikRAk8yJuc/tyPuTcUq7du1scwp33nmnx/ckn7ns72m8I3Ms3ubHnHIadCTvRcYT7sfg61q907Y7dOiQYq5G5gdk7J3a9wfECgKaAESV1AY0Sce4atWqIQ9oMmzdutXVvXt3n0FLnm7VqlVzffTRRwFlEHrnnXe8dpLdO8wjR470GSQVyoAmI8DEPWuOp5t0Op966imPAxP3oCb3lcrebnKB2roaOVjuExvB3GRiQgZRgQQzCVn96z6R4e8cpQWZCJDJJE8DAG83GbxJ8E0gZGWEpwkn95t8h2S1hRMTJkzwOMiz3mRFunyuP/30U8QCmiTbgPsKeuMmK8GtZsyYoTNlOfkcmjdv7vr7778dHScAAEBqApqErIJ20t+XPp9k5PQ1Ngmkj7R//35XgwYNHPWPJJBJxgUTJ060PW7N5BnqgCaDvAdZTeu0jy3BQpLdyZr5yh/JFCx9Qn9tSyBVp06dUqwu9/a5SFYrX+3J2EFWTYtIBTSJESNGeDw+WU1vJdlhZTGG0/GcjMP9fX8BAABiVbgCmoxgf0+VDTz1VyW7q6+5E5mT8fRc6UOnFRlLWDPJOulnSzbWQBacSuUJCbzxtMjX/SaBSjt37vTbpmR/8tfflXkZyfwvn0mkApqEBH55eu8y1rSSuRGpyuDkPMn3S+YWjaxUqeE06EjIPJf1OGT8lxZtSwCft3mPbdu2Bf3egFiSEOmSdwCQlrJly6Zr1DZu3NhnzeG0UqVKFfXpp5+qt99+W9ckltq4GzZsULt27dI1luUYChUqpAoXLqwqVaqkmjZtqm699VZVo0aNgF/rySefVN27d1eff/65fi15naNHj+q6wPnz51c1a9ZULVq0UA8//LAqVqyYiqQHHnhAtW/fXn311Vfqhx9+0LWY5VilNnbevHlV1apV9bno0aOHKl++vN/2brnlFrV582Y1a9YsNXv2bLV27Vp18OBBdfbsWZUvXz79fhs1aqTatm2r7rrrLl23OJwyZMigaxnnzp1blSlTRtWqVUs1b95c3X333SpnzpwBt9eqVStVsGBBsx70/fffr7JmzapCTc7lW2+9pZ5//nn1/fffq4ULF+rv2Z49e9SZM2d0LXD5rpUqVUqf7zvvvFMfa6Dnu3///qpr165q6tSpav78+Wrjxo36+yH/XuSzvP7669U999wT0Pt+9NFHVevWrdUnn3yi64nv3LlTfz+KFy+u64lLbfZ27drpY92xY4eKlKJFi6o///xTvfrqq/q9y/dYrh3I4ydPnrTte++996rbbrtN12mXfdetW6eOHDmi/x0VKFBAv7cmTZro9yV/VwAAAMKlU6dOuu/9xRdfqHnz5qk1a9bofoqMTWTsU6dOHd03kz6Y9JHTqo9UokQJ9fvvv6vp06frPpIxzpB9ZZxRtmxZ3fdr06aNfn3p+5UuXVolJCSopKQk3cbEiRPV8OHDVThJn05ucrz//e9/9XvdunWr7u+fO3dOjyWk/y/jiJtvvlmPp0qWLBnQa8i46ueff1ZLly7V5+eXX35R+/fv1+PSXLlyqWuuuUaPwbp166aqV6/uqE05/9KOjA2+/PJL9ccff+jPRo5XzrWcYxnTlStXTkWafKYy5h4/frweO8r3Rr578tlbyXjm22+/1Z/BtGnT1IoVK/T4QM6T7CvvWcb58t7uu+8+VaRIkYi9JwAAgHgifa3XX39dPf7442rKlCl6jkOu4UqfWPqX0p+Va5y9evXS/TFf5Bpw3bp1dTvSl5Nr1zIe+F+MVtqoX7++vj4u/XaZl5B+46ZNm9SxY8f0dWe5bi3XaKtVq6bnozp37qwqV64c0GvI3NE333yj5zukvy3zS3ItPjExUWXPnl1VrFhRjw+6dOmiGjZs6KhNmY+Q/u6vv/6qz4/8lHFB5syZ9XX9li1bqp49ewY1R5XWZGwi/e8xY8boMaW8b/kuyHmVcZIxtyLnWvr5AwYM0PNjMib8+++/zbGi9NnlXMlchcwpyFgl3Dp27Kjeeecd25g5LcjntGrVKjVy5Ei1ZMkSdfjwYf1vSeYG5H6g3zkgFmWQqKZIHwQAALCTDrgExgnpoN94442cIgAAAAAAAAAAAADpQnhTWAAAAL9WrlxpBjNJhD3BTAAAAAAAAAAAAADSEwKaAACIMpIK1iDpXwEAAAAAAAAAAAAgPaHkHAAAUeTo0aOqUqVK6vTp07o29N69e1XhwoUjfVgAAAAAAAAAAAAAEDZkaAIAIIJOnjxp3t++fbtq06aNDmYSjzzyCMFMAAAAAAAAAAAAANIdMjQBABBB5cqVU5cvX1bJycnq8OHD5uPFixdXmzdvVvny5ePzAQAAAAAAAAAAAJCukKEJAIAIKl++vDp48KAtmClv3rxqxowZBDMBAAAAAAAAAAAASJcIaAIAIIJat26typQpo7JkyaJKly6tunbtqlauXKluvPFGPhcAAAAAAAAAAAAA6RIl5wAAAAAAAAAAAAAAAABEDTI0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoJkT4AwKmLFy+qDRs26PuFCxdWCQl8fQEAQPxLSkpSR48e1fdr1aqlsmXLFulDAuIGYwwAAJAeMcYAQocxBgAASI+SQjSPQUQIYoYEMzVo0CDShwEAABAxK1euVPXr1+cTANIIYwwAAJDeMcYA0hZjDAAAkN6tTMN5DErOAQAAAAAAAAAAAAAAAIgaZGhCzJAyc9aovuLFi0f0eAAAAMLh4MGDZpZKa38IQOoxxgAAAOkRYwwgdBhjAACA9OhgiOYxCGhCzEhI+L+vqwQzlSpVKqLHAwAAEMn+EIC0/TfFGAMAAKRHjDGA0P2bYowBAADSo4Q0nMeg5BwAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICokRDpAwAAIBZcunRJrVu3TmXIkEHVrl1bZc2aNdKHBAAAACCGJScnq40bN6pz586pOnXqqBw5ckT6kAAAAADEuB07dqiDBw+qmjVrqvz580f6cAAgVcjQBACAA88++6waMmSIevrpp9Xw4cPT5JyNHz9eVa5cWf8EAAAAkL76zR9//LHq37+/Hmv07dtXXb16NdKHBAAAACCG/fjjj+qRRx5Rw4YNU927d1eJiYkqmsXrWA9A2iGgCQAAP86cOaNWr15tbq9YsUJduHAh1edt9OjRerWE/AQAAACQvvrNX3/9tXl/9+7dat++fRE9HgAAAACx7fvvvzfvnzx5UmeEjWbxOtYDkHYIaAIAwI/Lly+neCwpKSnV523QoEGqUqVK+icAAACA9NVvlpJzaT3GAAAAAJB+nTp1SsWSeB3rAUg7CWnYFgAAccnlcjl6LFC9e/fWNwAAAAD0mzNkyMDXAAAAAECayZw5c1SfTeZIAPhDhiYAAAJcOe3tMQAAAAAAAAAAgGiQJUuWSB8CAKQKAU0AAEQoQxMAAAAAAAAAAEB6zNAEAP4Q0AQAAAAAAABEGCXnAAAAAKSlbNmycUIBxDQCmgAAAAAAAIAII6AJAAAAQFrKmjUrJxRATCOgCQAAAAAAAIgwApoAAAAApKUsWbJwQgHENAKaAAAIgsvl4rwBQDr277//qhw5cujJ58mTJzt+XosWLfRzAr2tXbvWb9tnz55V77//vmrZsqUqWrSovmglP6+//no1dOhQtX379qDe69atW9XAgQPVtddeq/LmzavTlZcvX17dfvvt6tNPP9WvG6jk5GT13Xffqfvuu0+VLVtWZc+eXeXLl0/VqFFDPfLII+rXX38N6lgBIJYxxgAAAACQljJlysQJBRDTEiJ9AAAAxOJK6YwZiQkGgPTq6tWr6uGHH1YXLlwI+Llr1qwJyTEtXrxYde3aVe3bt8/2+JEjR/Rt9erV6s0331TDhg3TwU1OLmhJ0NHzzz+vnyfv2eqff/7Rtx9//FG99NJLasqUKapJkyaOjnXPnj2qc+fOatmyZbbHL168qE6dOqU2b96sJk6cqDp06KA++ugjVaBAAUftAkCsI6AJAAAAQFrOZZAFFkCsI6AJAAAAAALQp08ftWTJkoDPmQTyJCYmmtuS5chpgGzWrFm9/m7BggWqbdu26tKlS+ZjCQkJOjvTiRMn1Pnz5/VjSUlJ6oUXXtBBTxMmTPD7mj179kyRfSpXrlwqT5486tChQzrgychWJZmnJLipadOmPtvcu3evuummm/RP68W1IkWK6OM/efKk+fiMGTPUjh071G+//aZy5szp93gBINYR0AQAAACAMQYA/B/SSwAA0sz48eNV5cqV9c944mmymZUNAJD+SJai3r17OwoG8pedScrVSbCO01u1atU8tnngwAH1wAMPmMFMuXPn1mXnJDBIApfOnDmjfvjhB3XNNdeYz/n444/9vgf5v9wazCRl6ySwSNrbv3+/On78uBo5cqQuayeuXLmi7r33Xh3o5I0EQHXs2NEMZpL/SwcMGKCPU54nwVfr1q1Td955p/kcKbX36KOPOji7ABD7jEBRAAAAAAAAENAEAEhDo0eP1pOu8jPeA5qoPQ0A6cvhw4dV8+bNdQm0YFkDmurUqZMm5Uufe+45M+tTtmzZdLYmySBlZDSS17jjjjvUqlWr9GsapPTc2bNnPbYpgUXSrqFRo0Zq6dKlqnHjxuZj+fLlU88++6yaO3euypw5s35MjkPKz3kjZemWL19ubr/99ttqzJgxqkSJEuZjtWvXVnPmzFE9evQwH/vyyy/VypUrAz43ABBr4q2sdbwueAEAAAAAAOERX1dKAAARNWjQIFWpUiX9M554Cl4ioAkA0g8JsLnuuuvUL7/8kqp2rAFN0l5qHTx4UE2bNs3cfvrpp9UNN9zgcV8pE/ftt9+awUdHjhzxmqXpk08+0UFNxv93EoiUPXt2j/tKqTkJjrI+V4K/PBk1apR5/+abb1ZPPvmkx/0kc5NMflepUsV87JVXXvG4LwAgesXrghcAAAAgWlHGGkC8IaAJAJBmpAzP9u3b9c94QkATAKRPUv5MAnbatGmjg4cMwZZAk/JpaRnQ9NVXX6mkpCQzq0ffvn197l+xYkXVrl07W+YjTz7//HPzvmR3kuwavvTr109lzZrVLD03Y8YMj8FcmzZtMrf79+/vs00JvJJydIb58+frMnoAEM/iLUNTvC54AQAAAGKFLBoDgFgWX1dKAAAIgYSEhBSPkaEJAOJft27d1MKFC81tKeP24Ycfes1s5IuUY9uzZ0+aBjRJkI+hQYMGqmjRon6fI8FZhj///NN2TEICt9avX+9xf2+k/NxNN91kbs+cOdPnscr/q61atQroWCVQ6vvvv/f7HACIZfE22RCvC14AAACAWEHGJgCxjoAmAAD8IKAJAHDXXXepjRs3Bj0pay03J9mHatWqleqTKgFJhkaNGjl6TsOGDW3by5cvt22vWrXKth1MuytWrFDJycle261Zs6YODvOnVKlSqkSJEub2smXLHB0LAMQqoywoAAAAAAQj3hZJAAABTQAA+EE2JgBIvxeBmjZtqhYvXqzmzJmjypUrF3Rb1oCm6tWr67JCksmoY8eOut1s2bLpTEcS7COl1lavXu2zvUOHDumsT4Zq1ao5Oo7y5cvbAnW3bt1q+/3mzZtt779KlSqO2rWWpTt37pzau3ev13adHqt7u+7HCgDpYSEFAAAAAABAesWVEgAA/GBVAwCkT7Nnz1alS5dOk7asAU2SvUgyNLkH6Fy6dEmdOnVKbdq0SY0dO1Y9+OCDusSdp2xG+/btS5HNyOlkeZEiRdSBAwf0tnvJOWu7hQoV0oFWTpQsWdK2Le2WLVvWY7tOj9W9XfdjBYB4kyVLlkgfAgAAAAAAQNQgoAkAAAAAPEirYCb3gKYNGzbYfle4cGEdPHvs2DGzVJvL5VJTp05V69evVwsXLlQFCxa0PefIkSO2bfff+1KgQAEzoMma5cm93UDbtLK2e/78eZ21KbXtuh+rE+6BX+4OHjxo3r98+bK+AUC45M2bN8Vj/B0CEA78rQEAAAAQCwhoAgAAAIAQunDhgtq2bVuKYKmhQ4eqzp07qzx58ujHTpw4ocvQvfDCC2r//v36sXXr1umydAsWLLCVQD179qytvVy5cjk+Huu+7u1Yt4Nt072dUB1rWgelScYs+QwAIFyGDx9u2965cycnH0BYHD58mDMNAAAAIOpljPQBAAAAAEA8kyxLV69eNbdvvvlmtXbtWtWrVy8zmEnkz59f9ezZU61evVpde+215uOSoWny5Mk+V9VnzpzZ8fFY971y5YrXdoNt073dtDrWpKQkx88DAAAAAAAAAMQ2MjQBAAAAQAhVqVJFzZs3T+3evVvt2bNHDR48OEWJNqsiRYroTE3Vq1dXFy9e1I+NHDlSBzsZpCSdlZSsSwvWdkPRZmrblbYCef7evXv9lpxr0KCBvl+1alVVqlSpoI8NAAJ133332banT5/OSQQQFhJIDwAAAADRjoAmAAAAAAihfPnyqVatWgX0nPLly6uuXbuqCRMm6O1du3apLVu2qGrVquntLFmy2PZ3z7Tki3XfbNmy2X5nbTfYNt3bTatjzZo1a8DBUIEEKMlxuh8rAITSqVOnUvwdAoBw4O8NAAAAgFhAyTkAAAAAiEJ33HGHbfvPP/8071tL1Ylz5845bvfs2bPm/Zw5c9p+Z2032Dbd2w3VsQIAAAAAAAAA4hcBTQAAAAAQhSpUqGDbPnLkiHm/UKFCtt8lJiY6bte6r5S3s7K2G2yb7u1mz55d5ciRI82PFQAAAAAAAAAQvwhoAgAAAIAoJIFAVlevXjXvlytXzva7AwcOOGozKSnJFhjlXpLN2u7Ro0f1/k7s37/ftu2rXafH6t5uIOXjAAAAAAAAAACxjYAmAAAAAAix5ORkHUgUSDDP8ePHbdsFCxY07xcuXNi2vW3bNkdt7tq1yxakVKNGDdvvq1WrZgug2rlzp6N2ra+fL18+VbJkSa/tOj1W933djxUAAAAAAAAAEL8IaAIAAACAEKpbt67KnDmzKlq0qGrfvr3j5/3111+27dq1a9u269evb95fuXKlozbd96tXr57XNoNt171N93bXrVunLl++7LfNffv2qYMHD3o9NgAAAAAAAABA/CKgCQAAAABCqHjx4jpDkxGkdOzYMUfP++abb2xZj6677jrb71u2bGne/+2339TJkyf9tvn999+b96tXr56ijJsEXVkDp+bMmeO3TXndpUuXejwuT49duHBBLVy4MKBjzZAhg2rRooXf5wAAAAAAAAAA4gMBTQAAAAAQQnfffbd5X8q9jR071u9zJJDIGiTUs2dPlZCQYNvnvvvuU5kyZdL3JeORv3alfNysWbPM7Yceesjjfp06dTLvf/fdd37LzsnrGhmX5Hg6d+6cYh8JxqpSpYq5PXr0aJ9tXrlyRb333nu2gCgJtgIAAAAQH7Zv366GDh2qbr75ZlWsWDGVNWtWlSdPHlWxYkXVsWNHNWXKFD0uCMSqVatUr1699OKN3Llzqxw5cqhKlSqptm3b6gUjTjLFAgAAIHoQ0AQAAAAAISQBQoUKFTK333jjDfXLL7943V+yOHXr1s3czp8/vxo0aFCK/SS7kgQ1GV5++WWvmY/OnDmjOnToYE4I5M2bVz3yyCMe93300UdVrly59H254C/Pk+d7Iq8nr2t9r+5ZnwxPPfWU1+e5e/zxx9XWrVvNbU/vHwAAAEDsOXv2rF6wIQseRo4cqbPNHj58WI89ZNyxa9cuHXwkYyIJblq8eLHfNi9duqTbbNCggZowYYLasmWLfh3JDisLNGbPnq2DpKSM9caNG8PyPgEgElwuFyceQFwhoAkAAAAAQkiCh0aNGmW72H777berV155RR05csR8XC7iywX9W265RSUmJpql1t5//31dts4T2d8IPpJgpbvuuku9/vrr6tSpU+aFrB9//FFfuF+7dq35vJdeeskWZGUlj7/44ovmtjxPni/tGBfGpH0JzJLXswZJvfbaa17Pg0wwXHvtteb28OHDVffu3dU///xjPrZp0ybVunVrNXHiRPOxdu3aqdtuu81ruwAAAABiw+nTp1WTJk3Up59+apt0l+xMpUuXVgULFrTtv3fvXj0W+OKLL7y2KVlwZQwhbVpJ2W7J/CRjKsP69etV48aNdcATAAAAoh8BTQAAAAAQYrK6WMopWIOahg0bpi+wlyhRQv+UoCXZ59y5c7Zybp5KuBnKly+vL+5nyZLFbPfZZ5/VEwGSKUnKLEjw1N9//20+54EHHlD9+/f3ebySTalLly7mtjxf2pH2pF1p/z//+Y9+PZE5c2Y1bdo0PQnhjZTMmzFjhi2D0+TJk/V7kHJyEkhVs2ZNNXfuXPP3UirCfWICAAAAQGySBQ1r1qwxtyWj0oIFC3Rmpj179qhjx47pBQ9PP/20WV776tWrqkePHmr16tUe23z++efVzz//bCtXvW7dOnXixAl18OBBdeDAAZ3x1QhskqCqNm3a6OxNABBvrEGcABAPCGgCAAAAgDCQjExTp07VJeQMsipZLrJLdibrCuUyZcrosgh9+/b1265cjJ8zZ44tmEgu+u/fv98WHJUxY0Z9IX/KlCl+25R9ZT+ZSJBAJIO0J+1K+wYJxJIgJMnW5I+UjJByezfeeKPtcclUdfz4cdtjEkAl+8rKagAAAACx7ddff1UzZ840t9u2bavLzUkAkiyQMJQtW1a9+eab6rvvvjODmmQhhacy1Nu3b1dvv/22LbvrDz/8oGrXrm0+JotHJGPupEmTzMekDJ0sHgEAAEB0I6AJAAAAAMLkwQcf1CuPpYyclEWQbEXZsmVTOXPmVJUqVVL33HOPDiSSEggSqOSUlGHYunWr+uCDD/T9kiVL6qxNklGpVq1aql+/fnqVslzINyYFnAQ1yUTChg0b1JAhQ1SdOnVUgQIFdICTZFNq1qyZGjNmjH7dQErCVahQQU9cyGRGp06d9HaOHDn0eZBsTZJBav78+frmrSweAAAAgNjyySefmPdl0cJnn31mC2RyJ+MlGccYlixZov7991/bPjIesZbAltLVMo7xljVXMj0ZZKxz+fLlVL0nAIg21sVynrYBINb831Jb+CRpUKXUwdKlS3Wn+fz58zqyXy64y0qCjh076lIRgZAL/xMmTFCLFi1Su3fv1qsMZHXzNddco9u7//77Va5cuQJqMzk5Wa/klnIPK1eu1Cudpf60TGjccMMNqmvXrrpGdaAk1asMOObNm6c2b96s07LK5IKsHJf3L+3KawAAAADpQWouCEkfv0+fPvqWliQo6PHHH9e3tFS1alX1xhtv6FtapkCX1dNyAwAAABD/ZG7BIAsbJADJSYk6CVqyZnl66KGH9H3JGvvll1/aFo9Ys+F6MnjwYLOktWSI/emnnxxlmgWAWJWUlBTpQwCAVCFDkx+nTp3SHeS6deuqcePG6VXNJ0+e1JH7srJaSiAMHDhQl054/fXXHf3HIEFHzz33nKpZs6Z65513dJsSICQBTVIf+scff1Q9e/bUv5cOulNyPDfffLOeFJgxY4bevnjxon4PEoQkqxNuueUWdd9996nExETH7X7zzTc6yOrZZ5/VAV3S0ZdVD1IaY8WKFfq9yO8/+ugjx20CAAAAAAAAAID4d+jQIVuJ6QYNGjh6nsy7WMmchEEWdJ84ccLcdpLhtlq1arY2rSXwACAeGVnsACBWkaHJB+kMt2jRQq1evdr2uJRtkEh/6YCfO3dOPyaBQxLwI/t+/fXXesWxNxKsNHny5BSrtPPkyaM79hLwJCQTlLy+BDg1bdrU5we5d+9eddNNN+mfBjmGIkWK6EApCcIySLDTjh07dJkHKW3hi9SVluO1rkCXjE+FCxdWR48e1W0LyVjVu3dvnclp6NChPtsEAAAAAAAAAADpg2Rj+vnnn9W+ffvU/v37Vf369R09zxqwZMxNGFatWmX7XcOGDR21Kfvt3LlT31+2bJmj5wBArDLmcQEgVpGhyYdevXrZgpkkuOiPP/7QGY8k2Eh+Srk4yd5kmD59unrllVe8tjl+/HhbMNP111+vA4vOnDmjO/ISJDVy5EiVJUsWM3L23nvv1YFO3kgAlJSoM4KZJJBpwIABenAgz5NOv2SBuvPOO83nrF27Vj366KM+vxzyHClXYQQzFS1aVH3xxRc6m5S8lhyzBG9JmTzDsGHD1IIFC3y2CwAAAAAAAAAA0ofs2bOr5s2bq27dupnVK5yQ+RersmXLmvelKoVB5ijy5cvnqM3KlSub92Xht5SuA4B4JRWHACCWEdDkhUTmS3CS4f7779eBOhK9b2RfypQpk7r11lt1QJI1Reprr71my4hkkMAi6awbGjVqpEu4NW7c2HxMOt2S6Wnu3Lkqc+bM+jEpD/fSSy95/RCnTJmili9fbm6//fbbuq50iRIlzMdq166t5syZo3r06GE+JvWlJS2rNxIUZUTuFipUSB9r586dzWArOT45L7ISolSpUvoxCX6SOtRGlikAAAAAAAAAAIBAyFzDu+++a27LfITMxxhkQbfBmJ9womTJkub9pKQkdeDAAT4YAHGLDE0AYh0l53xkUrKWg5PtjBkzel1d8Oabb5pl4S5cuKB++OEHHfxj9cknn5gpUiUYSgKR5LmeSDYoyXY0fPhw87kvvPCCzpLkbtSoUeb9m2++WT355JMe25RALHkfv//+u/r777/1Y5JNavbs2Sn2lSClX375xdx+4403bCsX3AcAkrmpSZMmenvjxo3qu+++U+3bt/e4PwAAAAAAAAAAgDcyl2GtoNGuXTtdus5w5MgR837BggUdn8gCBQrYtmVBeenSpR0/3xpI5cnBgwdtmVHIjgIgnGRO2/q38uLFi/wdAhAWoerzENDkhbWjfM8996j8+fP7PJHu9ZmNGsxWn3/+uXn/jjvu8BogZOjXr5969dVXdfSslJ6bMWOG6tu3r22fNWvWqE2bNpnb/fv399mmrGKQzEt9+vTR2/Pnz9fZpNzTsVqPVd77gw8+6LNdCaSSLFVGxifJ/kRAEwAAAAAAAAAACITMMwwcONDcTkhIUC+//LJtn7Nnz9om8J1y39fajhOBBD9t3brVXOQOADLPO23aNNWlSxfVoUOHkJyQnj17pnhsw4YNnHwAIXf48OGQtEvJOS8ky5BE+EuWov/85z9+T+SZM2d8RvlLVP769evN7TZt2vhtU4KMbrrpJnN75syZKfaRgCRrp75Vq1Z+27W+tgRKff/99z7bvf32280yc07bnTdvHmkMAQAAAAAAAACAY7KAu3Xr1jqriGHkyJHqmmuu8ZoFQBZyO+W+r8yRAEA4SDDT3r179U8AgDNkaPKhcOHC+ubErFmzbNt169ZNUcLNqlGjRo7alcxPCxcu1PdXrFihkpOTbaXvrO3WrFlT5cyZ02+bUk+6RIkSZm3oZcuWqYceesj8/enTp9W2bduCOlbD+fPn1dq1a1NkrgIAAAAAAAAAAHAni8Jbtmypjh49aj4mlSCefvrpFPu6XC7zfoYMGcJ2MiUYwRdZ3C7VLETVqlX1fAwAiCFDhqgxY8aoJ598UtWqVSskJ0Xa3r9/v7ktfz+Nv0kAEEr+Kp4Fi4CmNPDbb7/p/4QMjRs3ThEEtHnzZlvnukqVKo7atpalO3funO4sly1b1mO71apVc3zM0q4R0CRpT70dayDtupfQk3YJaAIAAAAAAAAAAL4sXbpUV4E4deqU+dgtt9yiPv/8c4/7W6tKBJJlyX3fbNmyBfTBBBKgJMfopPoFgPThiSee0LdQkjKa1r+jmTJl4u8QgLAIVZ+HknMBkqj/pKQkXQNQSrV17NhRd6qN/xykMzt16tQUz9u3b595v1ChQo47ySVLlrRt79mzx2u7gXSkre36ajOQdiXrk3UlhHu7AAAAAAAAAAAAVlJ+6bbbbrNNwt96661q7ty5Knv27B5PVp48eWyLwQOZ7LdyUvUCAGJVQgK5TQDENv6KBWjBggWqVatWHn939913q/fee8+WQclw5MgR837BggUdv16BAgVs24mJibaybtaOerDtWtt0P9ZA2pWoO+n8GwMC93YBAAAAAAAAAACMBeQvvPCCevnll1PMtXz99dc+F4bLwnFDIHMR7vsWKVKEDwNA3LCW4xRZs2aN2LEAQFogoClA//77r8fHc+XKpcqXL6+zN/mL+pd9nXLf19qO+0qCYNt1bye17RrPd2/HH/fMUJ5qTxsuX76sbwAQLnnz5rVt8zcIQLjw9wYAAAAAEG8uXryounfvrr766ivb4z179lTjx4/3m1WkXLly5v0DBw44ft39+/fbFmkXLlw4oOMGgFjiLcsdAMQKApqCCGjKnDmzKlq0qO5wHzt2zAzeeffdd9UHH3yg3nzzTfXkk096nYiS5zvlvq+1vrP75Faw7boHYaVVu4HUrRalS5d2vO/WrVvViRMnAmofAFJj+PDhtu0NGzZwQgGEhZQ6BgAAAAAgXpw+fVpnYfrll19sj48YMSLFNThvqlWrZlssLRUtcuTI4fd527Zts7WRMWPGgI4dAKJZhgwZbNtkaAIQ6+ipBahfv346eGnv3r3q6NGjOsDpmWeeMVcLSBDPU089pT766COvKf7c/zNJq7SBqWnX2lZatgsAAAAAAAAAACBOnjypWrRoYQtmkkxJU6ZMcRzMJOrXr2/eT05OVn/99Zej561cudJjGwAQjwJJWgEA0YgMTQEqXry4bbtMmTLq9ddfV82aNVOtW7c2sxINHjxY3XPPPTqTk9EhDyZzkfu+1prR1jZT065E51qDljy16/Q/PGu7vupbeyJBYv5KzjVo0EDfr1q1qipVqlRA7QNAatx333227enTp3NCAYRF/vz5OdMAAAAAgJh34cIFddddd6lVq1aZj+XNm1fNmjVL3XrrrQG1Va9ePVWgQAGVmJiot+fMmaNuvvlmn8/ZsmWL2rlzp7ndsmXLgN8DAMSSTJkyRfoQACBVCGhKI9LxldUDw4YN09uSxWny5Mk6e5PIkyePue+5c+cctyvtWOXMmdO8b20zNe1a2/TWrpNUrf7a9SeQACUJunIPvAKAUDp16lSKv0MAEA78vQEAAAAAxEsFjGXLlpnbRYoUUT/++KOqU6dOUJP0HTp0UBMmTNDbn376qXr22WdVvnz5vD5n1KhR5n3ZTxapAwAAIHpRci6NO+NG6TmxZMkS836hQoXM+8aKASfc95UOviF79uy2QKNg27W26X6sgbR7+fJlW1CVe7sAAAAAAAAAACD9+fbbb9XEiRNtC6t//vnnoIKZDAMGDFAZM/5vmuvYsWOqU6dOXitZSEk7CXoy9O3bV8+xAEA8sVbkAYB4QEBTGpLUqNWqVfNYQq1cuXLm/aNHj6qkpCRHbe7fv99nFiNruwcOHHB8rNZ2fbUZSLuyn8vl8touAAAAAAAAAABIX2Q+5Omnn7Y9JsFFtWrVSlW71atXV3369DG3FyxYoJo0aaL++OMP87HDhw+rIUOGqO7du5uPlS1b1qyuAQAAgOhFyTkf2Yb++ecftWvXLl132Wn5tFy5cpn3k5OTzfvWQKerV6/qOs1VqlTx2962bdtsKVBLlixp+720u3nz5hT7BtJujRo1bL+T45IIXiM4SfZ1Ur/a/fXd2wUAAAAAAAAAAOnLV199pXbv3m1uS1YlCSgKNKiof//++mb15ptv6jmSRYsW6W0JZrrhhhv0AnSpcHHo0CHbQmzJDDVjxgyVO3fuVL8vAAAAhBYZmjz45ZdfdKpRCexp1aqVrXRcIJmPihUrZt6vX7++bb+VK1c6as+6X7169VL83truunXrdCCWP/v27VMHDx70emzSobcGWwVzrDJQkNURAAAAAAAAAAAg/Zo5c6ZtWxaDy6LvQG+JiYkp2pa5nDlz5qiHH37YVmrp1KlTeh7EGsxUuXJltXjxYo9zLQAQD6x/8wAgHhDQ5IFkPbJmV5o1a5ajk7llyxa1Z88ec7thw4bm/aJFi6ratWub29LB9ufkyZNq6dKl5nbLli1T7GN97MKFC2rhwoV+2/3+++/N+9LBb9Gihc9258+fr7NKBdJu06ZNVZYsWfw+BwAAAAAAAAAAxK9AqksEQ4KaJk2apFasWKGeeOIJvdhaMjRlzpxZLzyXhesTJ05U69evV3Xr1g3psQAAACDtENDkQZEiRXRKUsOXX36pDhw44PdkDh8+3LZ977332rY7depk3v/uu+/0igJfxo4da2ZcypQpk+rcuXOKfa677jpbNqXRo0f7bPPKlSvqvffeswUuSbCVO+uxynv/4osvfLYrgVfWDE0PPfSQz/0BAAAAAAAAAED827hxo84aktrbiy++6PN1pBqFzKts2rRJLxiX+RXJ0jRv3jzVo0cPlS1btrC9ZwCIBGumOgCIBwQ0efHkk0+a98+fP6+6devms5zbK6+8ousuG9q2bZsibemjjz6qcuXKpe9LWx06dFBnzpzx2J5kWnr55ZdtAUalSpXyuO9TTz3l9XnuHn/8cbV161Zze9CgQR73k4CuRo0amdv9+vXTgw5vZfa6dOlibpcvX161b9/e6zEAAAAAAAAAAAAAAAAA3hDQ5MX999+v7rjjDnP7559/VjfddJNatGiRWX5NVgRIViIJXho2bJi5b4kSJdT777+fos1ChQrZVhCsXbtWrxj48ccfzZqmUtf5jTfeUHfddZfOpiQkNeprr73m9UPs2bOnuvbaa22Zorp3767++ecf8zFZkdC6dWudVtXQrl07ddttt3ltd8yYMTozlHFc8v4nTJigS9uJpKQkHcTVoEEDtXfvXtvzKDcHAAAAAAAAAAAAAACAYCQE9ax04uuvv1a33nqrWr16td5etWqVat68ucqZM6cqWLCgSkxMVGfPnrU9R4KZJH1pyZIlvWZTWrNmjZo2bZre/vvvv9Xtt9+u28yXL586dOiQGTAlpMaz7Fu6dGmvx5mQkKADi5o2bar27dunH5s8ebK+Sfk8ae/48eO250gN6U8//dTn+2/YsKEaN26c6tOnjw64kqCmXr166RrUUqbu2LFj6uLFi7bnPPfcc+ruu+/22S4AAAAAAAAAAAAAAADgDRmafMiTJ49aunSpLhWXMeP/napz586pPXv2pAhmatOmjfrrr79UnTp1vJ/wjBnVlClT1NNPP60DkaxtSuk2azBT8eLF1dy5c3W2Jn8qVqyofvnlF3XjjTfaHj9y5EiKYCYJoJJ9JYDKn969e6upU6eqAgUKmI9J5igJnLIGM2XNmlWNGjVKvfrqq37bBAAAAAAAAAAAAAAAALwhQ5MfOXLk0GXWBg0apMu1LV68WO3atUudPn1aBwRJ5iTJ4tS5c2dVr149R980CWp68803VY8ePdSkSZPUggULdMk2o83atWvrLEdSNk6CqpyqUKGC+u2339R3332nvvnmG10OTzI+JScn6+CoG264QXXt2lUHNAWiS5cuuvyeHOvs2bPV9u3bdZCUnJtKlSrpsnWSualcuXIBtQsAAAAAAAAAAAAAAAC4I6DJoSpVquggpLRUtWpV9cYbb+hbWsmQIYNq166dvqUlKbE3ePBgfQMAAAAAAAAAAAAAAABChZJzAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAA+JGcnMw5AgAAAAAAAAAAAIAwIaAJAAA/rly5kuIxgpwAAAAAAAAAAAAAIDQIaAIAwI/Lly87CnICAAAAAAAAAAAAAKQeAU0AgJgzfvx4VblyZf0zHDwFLxHQBAAAAAAAAAAAAAChQUATACDmjB49Wu3YsUP/DIekpCRHjwEAAAAAAAAAAAAAUo+AJgBAzBk0aJCqVKmS/hmpknOeHgMAAAAAAAAAAAAApF5CGrQBAEBY9e7dW9/ChQxNAAAAAAAAAAAAABA+ZGgCAMCPK1euOHoMAAAAAAAAAAAAAJB6BDQBAOAHGZoAAAAAAAAAAAAAIHwIaAIAwA8yNAEAAAAAAAAAAABA+BDQBACAH2RoAgAAAAAAAAAAAIDwIaAJAAA/yNAEAAAAAAAAAAAAAOFDQBMAAH6QoQkAAAAAAAAAAAAAwoeAJgAA/CBDEwAAAAAAAAAAAACEDwFNAAD44XK5HD0GAAAAAAAAAAAAAEg9ApoAAPAjOTnZ0WMAAAAAAAAAAAAAgNQjoAkAgBAGNI0fP15VrlxZ/wQAAAAAAAAAAAAA+EdAEwAAQXBacm706NFqx44d+icAAAAAAAAAAAAAwD8CmgAA8CMhISHFY5kzZ3Z03gYNGqQqVaqkf7ojexMAAAAAAAAAAAAApERAEwAAQQQ0eXrMk969e6vt27frn+7I3gQAAAAAAAAAAAAAKRHQBABACAOags3eBAAAAAAAAAAAAADpVepnYwEAiHNZsmQJuuScL5K1yVPmJgAAAAAAAAAAAABIz8jQBACAH9mzZ0/xWI4cOThvAAAAAAAAAAAAABACBDQBABBEQJOnxwAAAAAAAAAAAAAAqUdAEwAAfhDQBAAAAAAAAAAAAADhQ0ATAABBBDRly5aN8wYAAAAAAAAAAAAAIUBAEwAAfngKXiKgCQAAAAAAAAAAAABCg4AmAAD8yJIlS8r/QDPyXygAAAAAAAAAAAAAhAKzsQAA+JEhQwbOEQAAAAAAAAAAAACECQFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAA+OFyuThHAAAAAAAAAAAAABAmBDQBAOBHcnIy5wgAAAAAAAAAAAAAwoSAJgAA/CBDEwAAAAAAAAAAAACEDwFNAACkk4Cm8ePHq8qVK+ufAAAAAAAAQDT5999/VY4cOVSGDBnU5MmTHT+vRYsW+jmB3tauXRvS9wMAAIDUIaAJAIAgSs7FYpDT6NGj1Y4dO/RPAAAAAAAAIFpcvXpVPfzww+rChQsBP3fNmjUhOSYAAABEVkKEXx8AgKiXMWPK+F9ZxRVrBg0apIOZ5CcAAAAAAAAQLfr06aOWLFkS8PP27NmjEhMTze3y5ct7vJbnSdasWQN+PQAAAIQPAU0AAPjh9CJItOvdu7e+AQAAAAAAANGSmalv375qwoQJQT3fmp1JytVJdvJ4uZYHAACQ3hHQBACAH1wEAQAAABBqUtY6FjPBAgAQrMOHD6uOHTuqX375Jeg2rAFNderU4ToeAABAHCFMHQAAP5hUAAAAABBqV65c4SQDANKNOXPmqOuuuy5VwUzuAU3SHgAAAOIHAU0AAAAAAABAhBHQBABID9atW6datGih2rRpow4ePGg+/uijjwbV3tq1a837BDQBAADEFwKaAAAAAAAAgAi7dOlSpA8BAICQ69atm1q4cKG5nTNnTvXhhx+qCRMmBNxWYmKi2rNnj7lNQBMAAEB8SYj0AQAAAAAAAADp3eXLlyN9CAAAhNVdd92lxo0bp8qVK5fqcnOZM2dWtWrVSsOjAwAAQKSRoQkAAAAAAACIMDI0AQDSgwwZMqimTZuqxYsXqzlz5gQdzOQe0FS9enWVMWNGNXPmTNWxY0fdbrZs2VS+fPlUzZo11YABA9Tq1avT6F0AAAAgHMjQBAAAAAAAAETYlStXIn0IAACE3OzZs1Xp0qXTpC1rQFNycrLO0LR169YUAcOnTp1SmzZtUmPHjlUPPvigLnEnpe4AAAAQ3cjQBAAAAAAAAMR5QNP48eNV5cqV9U8AACIlrYKZ3AOaNmzYYAtmKly4sCpSpIjO2mRwuVxq6tSpqnHjxur48eNpdhwAAAAIDTI0AQAAAAAAAHEe0DR69Gi1Y8cO/bN3794hfS0AAELtwoULatu2bSmCpYYOHao6d+6s8uTJox87ceKELkP3wgsvqP379+vH1q1bp8vSLViwQGXKlCmg1923b5/P3x88eNC8f/nyZX0DgHDJlSuXyps3r7mdlJTE3yEAYRGqPg8BTQAAAAAAAECEhXrCc9CgQTqYSX4CABDr1q9fr65evWpu33zzzeq7775TBQoUsO2XP39+1bNnT9WmTRt1++23q7Vr1+rHFy5cqCZPnqx/F6oMU5IxSgKqACBcevTokSLI0hpoCQChcvjw4ZC0S0ATAAAAAAAAEGGyejqUJCsTmZkAAPGiSpUqat68eWr37t1qz549avDgwSmCmayk/Jxkaqpevbq6ePGifmzkyJEBBzQBAAAgfAhoAgAAAAAAAMLImlEiXCXnAACIJ/ny5VOtWrUK6Dnly5dXXbt2VRMmTNDbu3btUlu2bFHVqlVz3MbevXt9/l4yoTRo0EDfr1q1qipVqlRAxwgAqfHUU0/ZSmN++OGHqlChQpxUACEnWTFDgYAmAAAAAAAAIMLZmAhoAgAg9O644w4zoEn8+eefAQU0BRKglCVLFn0DgHA5e/asOnXqlLmdkJDA3yEAYRGqPk/GkLQKAAAAAAAAwKPLly+neIyAJgAAQq9ChQq27SNHjnDaAQAAohQBTQAAAAAQoH///VflyJFDZciQQU2ePDng87dq1SrVq1cvVb16dZU7d27dVqVKlVTbtm3VN99843Gi2x95zpQpU1SbNm1UyZIlVdasWVXBggVV7dq11YABA9SaNWtUMKSkwvPPP68aNmyoChQooNstXbq0uuWWW9TYsWPV8ePHg2p34cKFutyDvO+cOXPq8yAlGTp37qzmzZunkpOTg2oXAGKBp+AlApoAAAi97Nmz+y0DCwAAgOhAyTkAAAAACIBc8H744YfVhQsXAj5vly5dUn369FGffvppit/t3LlT32bPnq2DkKZNm6Zq1qzpqN3169erTp06qS1bttgeT0xM1LcNGzao9957T/Xt21e99dZbKS7ieyMBS88880yK97pv3z59+/XXX9VLL72kSza0a9fOUZsnTpzQgUxz5sxJ8bu///5b37766ivVtGlT9dlnn6kyZco4ahcAYomn4KVgglkBAEjPZBHEsWPHdCnXEiVKOHqO+4IMWQQCAACA6ESGJgAAAAAIgAQkLVmyJOBzJhfZW7dunSKYKV++fKpYsWI625M1QKlx48YpApQ8Wbt2rc6WZN03Y8aM+oK+ZD2yev/991X79u0drUJ+8cUXVf/+/W3BTBIIJdmfEhL+b22MTCBImxKA5c/p06d1oJJ7MFOhQoX0zUrO8U033aQOHTrkt10AiDVkaAIAIHXq1q2rMmfOrIoWLarHI0799ddftm1ZTAIAAIDoREATAAAAADggQUC9e/fW2YiCIWXbfv75Z3O7ZcuWat26dTpj0cGDB9WBAwfUoEGDzMAmCf6R8nG+MkGdO3dO3XvvverkyZN6Wy7ov/zyy+ro0aNq//79uo3ff/9dl4szzJ8/Xw0bNsznsf7www8685KhYsWKau7cuerMmTM6M9OpU6fU+PHjVZ48ecx9evbsqTNB+fLYY4/pYC1Dly5d1I4dO/Txyk0yVEn2Jmu5uw4dOiiXy+WzXQCINda/a/L3f+XKlerHH3+M6DEBABBLihcvbpapliAlWWjhhJT4ti4uue6660J2jAAAAEgdApoAAAAAwI/Dhw+r5s2bq48++iioc7V9+3b19ttvm9tSnk2ChqyrgSVL06hRo9SkSZPMxyTAR8q+eSPl43bt2qXvSyCUlGqTwKkCBQqY+9x4441q6dKlOoDKIMciwULesoZIZiZjsr1SpUpq+fLl6s4771SZMmXSj+XIkUP16tVL/fbbb2ZQk5TTk/J03kjGpa+//trcltf4/PPPdbCUoUKFCrrM3IgRI8zHJCBr+vTpXtsFgFgngaISvDpv3rxIHwoAADHj7rvvtmXD9TVuMkimWBkbWRdlWLPPAgAAILoQ0AQAAAAAfi56y6rdX375JejzNGbMGLO8UN68edXEiRN1WThPunXrpnr06GFuv/nmm+ry5csp9rt48aIaN26cuf3ggw96LbUgmZsk2KlgwYJm8JEEQ3ny3Xff6axJBgniKly4sMd9a9WqZTsGCdJavXq1x32trydBTBK85c3w4cNVs2bNzO1XXnnF674AEOtKlSqlS3pK4GhakSx6lStX1j8BAIhHnTp1spWtfuONN3yO2SSLk4y1DPnz59cZcgEAABC9CGgCAAAAAA+kHFyLFi102TcpCWd49NFHAy5V9+WXX9oCj+TiuS+DBw827x8/flz99NNPKfaR4CH5nTXjkS/ymrIC2VpqwSjRYCVZkww1atSwBRZ58sADD6gSJUqY29b3apDyD1LqziCl+yTIyuk5kFJ2mzZt8rk/AMQq+RvaoEEDddttt6VZm6NHj9bBqfITAIB4JAtFrIskZNHG7bffrhdDHDlyxJZtd+TIkeqWW25RiYmJZnbb999/X5etAwAAQPQioAkAAAAAPJDVuwsXLjS3c+bMqT788EM1YcKEgM7XypUr1YkTJ8xtCZDyp1q1arZSbDNnzkyxjzVASC7E16tXz2+71teWC/tSzs1KskgtWrQooGOVMnStWrXyeawSkGUNnnLSrpT4k4wlvtoFgFiVJUuWFI9lzZo1zdqXjBNSMpTMEwCAeB+zDR061BbUNGzYMF3OWwKG5aeMlWSfc+fOmftJebrOnTtH6KgBAADgFAFNAAAAAODHXXfdpTZu3KgzCwVq1apVtu2GDRs6ep51v2XLlvls12mbEvRkLXXn3u6WLVvU2bNnze1GjRoFfKy7du3SwVLejjVfvnyqSpUqjib7pdSft2MFgFhmDdj09Viw5P+r7du3B/X/FgAAsUQyMk2dOtWWBdflcuksuzIukfuGMmXKqNmzZ6u+fftG6GgBAAAQCAKaAAAAAMADKUPQtGlTtXjxYjVnzhxVrly5oM7T5s2bzfuyOlgCepyoXLmyeV/KBknpOoNclN+6dasto5MT2bJlU6VLlza3rW24H2sg7VqP1V+7Ttt0b9e9TQCIZaEOaAIAID2Rst579uzRZeRat26tSpUqpcc+kmVXMhbec889asqUKXoBh5NssQAAAIgOCZE+AAAAAACIRrJy1xr8E6x9+/aZ9+XCulMlS5Y07yclJakDBw6Yx3P8+HF14cKFoNv9999/9X256O/tWANp13qs/toN9hxIGxLIJYFmABDrMmfOnOIxmXgFACA9s2ZTClSuXLlUnz599A0AAADxgYAmAAAAAPAgLYKZxJEjR8z7BQsWdPy8AgUK2LYTExPNY7K2mZp2pU1vxyoT6zly5Aj6WL21G+yxSlDX6dOnVd68eR0/3z1Ay52UoTBcvnxZ3wAgXNz/nkkWCf4OAQgH/tYAAAAAiAUENAEAAABACJ09e9a2atgp932t7Vjvp6Zd93ZCcaxp3W4gAU2BBKVJSbsTJ0443h8AUmv48OG27UuXLqkNGzZwYgGE3OHDhznLAAAAAKJexkgfAAAAAACklxXwnkoMeeO+75UrVzy2mZp2rW2G6lhD2S4AAAAAAAAAID6RoQkAAAAAQsjlcpn3M2TIkOZthqrdtGozlO36s3fvXr8l5xo0aKDvV61aVZUqVSpMRwYASt1333220zB58mRddg4AQi1//vycZAAAAABRLyoCmk6ePKn++ecflZiYqM6dO6fatGlj+12+fPkienwAAAAAQifexwNZsmQJKsOQ+77ZsmXz2GZq2rW2GapjNdq9ePFimrfrTyABSnKM7ucVAELp1KlTKcpsBpLFDgCCRZ8nfYj3cRYAAADiX8QCmo4fP67GjRunZs6cqTZt2mSu2JXVuklJSeZ+LVq00D+feeaZFCvXAAAAAMSm9DQeyJMnj3lfJhKcOnv2rG3bmrXD2mZq2nXPBBKKYzXaNQKa0rJdAIgnCQlRse4QABDD0tM4CwAAAPEvYyRedOLEiapcuXLqpZdeUhs3blTJycm6Y23crHbv3q3WrFmjOnXqpO644w7dIQcAAAAQu9LbeKBQoULmfVkd7ZT7vkWKFPHYZmratbbp3u758+fVpUuXUn2s7u0Ge6zZs2dXuXPndvxcAIg14SzJCQCIP+ltnAUAAID4F/aApmeffVY99thj5qpc9460+2rcEydOmPv99NNP6rbbblOnT58O2/ECAAAASDvpcTwgkwqGAwcOOH7e/v37bWVBChcubG7LfWu2omDbdS/JZj3WQNq1tumv3WCPtWTJko6fBwAAAKQn6XGcBQAAgPgX1oCmzz77TL3xxhu2sgPSyZbHS5Qo4XFl2iOPPKIyZ86s70vnet26dWrAgAHhPGwAAAAAaSC9jgeqVatm3t+3b5/OfOTEtm3bbG1kzGgfvlWtWtXjvr5I2be9e/ea2zVq1PB6rIG0676fr3adtum+r3ubAAAAANLvOAsAAADxL2wBTRL1P2TIEFuN5l27dqnx48erhx56SJcPcCcrjidMmKBrPdetW1c/Jp3rKVOm6McAAAAAxIb0PB6oX7++eV/KPvz111+Onrdy5UqPbXh6zLqvL3/++ac+Bm/tSuBRrly5Am7Xul+lSpVUvnz5vB7roUOHbEFV3ly+fFmtXbvW67ECAAAA6V16HmcBAAAg/oUtoEk6w0ePHtUR/7KS+L///a/Knz+/o+dWrFhRLVq0yLYCefLkySE8WgAAAABpKT2PB+rVq6cKFChgbs+ZM8fvc7Zs2aJ27txpbrds2TLFPtbHZNJCnuPP999/b97Pmzevatiwoe33mTJlUs2aNQvoWK9evarmzZvn81ibN29uyzDlpN2FCxeqCxcu+GwXAAAASM/S8zgLAAAA8S9sAU3WC9yvvPKKx5UBvuTOnduWNvW3335L0+MDAMCbpKSkFI/JyjUAgHPpeTwgQUIdOnQwtz/99FN18uRJn88ZNWqUeV+yHbVu3TrFPnfccYctE5L1OZ6cOHFCTZw40dzu1KmTSkhISLGfPG7NvLR06VKf7X7xxRfq4MGD5rasBHdXqFAhvVrc8N5776krV674bNf6fmSShQxNAAAAgF16HmcBAAAg/oUtoGnjxo36p9RlvvPOO4Nqo1WrVipbtmx6EnnHjh0qXLZv366GDh2qbr75ZlWsWDGVNWtWXYdaVjB07NhRr4LwdzHe3apVq1SvXr1U9erV9aAhR44cujRD27Zt1TfffKPLKwRKniPH0qZNG1WyZEl9nAULFlS1a9fW9a/XrFmjgiHlIJ5//nm9eltWlku7pUuXVrfccosaO3asOn78eFDtAkCsOHXqlMeU3gCA9DEeSAvSHzcyFB07dkwHDXkbQ0ifXoKeDH379vU4MSGP9e7d29yW58hzPZHX6ty5s9l3lyArOSZP7r33XlWmTBlzu0uXLurAgQNeP9d+/fqZ240bN1aNGjXyuO/AgQPN+1u3blWPP/648ubll1/Wq8UNgwYN8rovAAAAkF6l93EWAAAA4lvYApqOHDmi054WKVJEB8QEQ1YPy/PF6dOnVajJZHXPnj1VlSpV1MiRI/XqhMOHD+vAoTNnzuiyDhJ81K1bNx3ctHjxYr9tXrp0SbfZoEEDXadaykLI60gpBSkpMXv2bB0kJauPjcGIE+vXr1fXXnutPhYp3yATDnKciYmJasOGDXoFtNTDfuKJJ2xlG/yRgCV5/6+++qpenS2ruqXdffv2qV9//VX1799fr5aeNWuW4zYBINZ4yqLhL7MGACD2xwNpSRYy9OnTx9xesGCBatKkifrjjz/Mx2SsMWTIENW9e3fzsbJly6pnnnnGa7vyO1nMYJDnPv3007otg7yGvJa8pkH68dWqVfPYZpYsWdTo0aNtCxxkfDJ9+nQza6GMKT7++GN10003mYG/Mony7rvvej3W22+/3ZZpSrJFyfamTZvMx/755x/9HoYPH24+Jq9tPScAAAAA/ie9j7MAAAAQ38IW0CSdaYnwDzSTkTujQ50rV640OjLvryMX/WWVs7WskJGdSDIfWclF/ttuu02XW/BGLv7LBXvramshZSIk85MMPKwBSrK6WQKe/Fm7dq3OlmTdV1Z/lyhRQmd/snr//fdV+/bt1dWrV/22++KLL+qJDmsAlKwClwkTa2kKWWEubU6bNs1vmwAQiySY08ljAID4GQ+EwptvvqmaNWtmCzS64YYb9HhA+u7FixdXb731lkpOTta/l6ywM2bMSNGnt5Lnzpw5U+XNm1dvy3OlVJu0JW3K7+U1rIFTTZs2Va+//rrPY5USec8++6y5LQsm7r//fn0sMh6S13vsscfMYCYZy8hiiOuvv95nu5MmTVK1atUyt+fOnatq1qypS9IVLVpUlS9fXk2ePNn8vbwHWUQiGaUAAAAA2DHOAgAAQDwLW0CTXJw2VgxIAEww/v77b50RQy6WG+2FiqwAtpZok4xKsqJZMjPt2bNHvwdZPSyrn42L6xIk1KNHD7V69WqPbUrZtp9//tncbtmypVq3bp2eFD948KCeJJBSCkZgk0zWSPk4XxmVzp07p0tCGJlCZFW0lGc4evSo2r9/v27j999/1+XiDPPnz1fDhg3z+f5/+OEH9dJLL5nbkoFKJhvk/Ut2Jpm4GD9+vJ5kMUjmKckGBQDx5tChQ44eAwDEz3ggFGRxgGRTffjhh22LGaRvLeMB60KKypUr6wyw9erV89uujFWkPJtkgTJIW9Kme9nUBx98UM2bN09nYfJHstRKpiYpj224ePGiHg9YA9NkTDB16lRdUtsfCVySY7VmahJSCk++G1aSmWnp0qWqXLlyftsFAAAA0iPGWQAAAIhnYQtoklXBhmAz+bzzzjvm/UaNGqlQkVJqssrZ0LZtW11uTgKQJGDIWv5BVll/9913ZlCTlJSToCR327dvV2+//ba53a5dOx00VLt2bfMxydIkq6ll1bJBytDJSmdvZAW3lL4TMiny1Vdf6cCpAgUKmPvceOONeiJAjt8gxyJZpTyRyQnJzGRMqFSqVEktX75c1+A23qdMasiEhZwXI6hJ3ruvchgAEKtkQtjJYwCA+BgPhDqoSfr7K1as0OWgJQhJsh3JOEPGA61atdKl2CRjq5SMdkr2lcUSn332mbr77rtVmTJlVLZs2XS//ZprrtGLD5YtW6YDj+QYnBo4cKDaunWrGjFihA6cKly4sM7Wmj9/fp1R9pVXXtFjnS5dujhuU4Kavv/+e73YQxaESPCWZNySIKtSpUrpsZJkZZIxSIUKFRy3CwAAAKQ3jLMAAAAQz8IW0CRBQUKCZCTzj7dgGm+k1MInn3xibt91110qVKyvIyUaZFLAGsjkTlYX9+vXz9xesmSJ+vfff237jBkzxlzFLBMWMkkhZeE86datm76wb5CgqcuXL6fYT1ZHjxs3zrbaWkq/eSLHL8FORqk8CT6SYChPJEBrx44d5vZHH32kJy48kXIR1mOQIC1vGaoAIFZJBj0njwEA4mM84IS8D+MmGZcCJdmHZOHCpk2bdNYp6e9LsKxkT5KxgAQjBUoCjbp27ar++9//6vGIZHqVjK6S2UrOnXWyIxBSYm748OE6CEuyKMm4JjExUS9uGDp0qCpSpEhQ7TZv3lyPi7Zt26YzwcoYRb4Xsrjkvvvuo8wcAAAAkM7GWQAAAEDEAprq1KmjswhJibUmTZqoP/74w+/z5AK8rAZ+4IEHdKdcni8rjL0F7qQFmUQwdOrUSQcgOSlR557lySCl6L788ktb4JGsaPZl8ODBtvILP/30U4p9JHhIfmeQrEq+yGvKymyDrHpOTk5Osd/nn39u3q9Ro4Zq1qyZz3blsylRooS5bX2vABAPPGVjIqAJAOJ3PAAAAAAAsYBxFgAAAOJZQrheSCYeJNPPrbfeqjMLyYphKVFw7bXXquuuu04dO3bM3HfChAk6UEcy/UgZgtOnT5vlz2TVsWQEkvZC4dChQ7YgISmr4ETFihW9Tn6vXLlST9oY2rRp47e9atWq6Tal5JyQVcruqyPmz59v3i9evLiqV6+e33bltSXjkzh8+LD6/fff1c0332z+XlZbL1q0KKBjlTJ0RmkM41i9ZX8CgFgj//94Wt22b9++iBwPAMSqWBkPAAAAAECsYJwFAACAeBa2gCYjOOiLL75QnTt31uUEZFJi7dq1+maQxx5//HHbtjFZISXa3nvvPV2aIFQkG5NMmshE9f79+3UpCCesAUsia9as5v1Vq1bZftewYUNHbcp+RkDTsmXLUvze2q7TNiXoSc6jkZlJ2rUGNG3ZskWdPXvW3G7UqJHjYzUCmnbt2qWDpYoWLerouQAQzaQMkGQH8fR3X/5e5sqVS40fP16NHj1aDRo0SPXu3TsixwkAsSAWxgMAAAAAEEsYZwEAACBeha3knDUF6vLly1X16tX1trHSWshEhaeV1rKPlDSTjEShnijOnj27niDp1q2beu6551TNmjUdPc+a1UiULVvWvL9582ZbJqV8+fI5arNy5crm/R07dujSddZzsnXrVltGJyeyZcumSpcubW5b23A/1kDatR6rp3YBIFZ5ys7knqVJgpnk77T8BADE9ngAAIBIsf6fCABAIBhnAQAAIB6FPaBJ1KlTR23YsEHNnj1bdejQQRUpUkRftHG/5ciRQ7Vo0UJ98sknOuuP3I9GcqzvvvuuuZ05c2ZdSsNTWaJSpUo5brdkyZLm/aSkJHXgwAFzW0pwXLhwIdXt7tmzx2cJJaftWtv01C4ARJJkUJLAS/kZKOvfXneSyU9IZqZKlSrpnwCA9DceAAAgLVy5coUTCQAIGuMsAAAAxJuwlpxz17p1a30Thw4d0kE6p06d0lmSChYsqINkMmXKpKKdTJCvXr3a3G7Xrp0uXWc4cuSIeV/el1MFChSwbScmJprZlaxtpqZdadPK2q5kc5JJpGCPNVDuwVTuDh48aN6/fPmyvgGAE6NGjdIlPOVnjx49Ajpp8vfM+jfdveyc/C2SNo12+dsEIK3F89+VeBkPAACQVgFNWbJk4WQCAFKFcRYAAADiRUQDmqyKFSumb7Fm5cqVauDAgeZ2QkKCevnll237nD171ryfK1cux22772ttx3o/Ne26txOKY3XKWgrPHylpJ4EEAODEfffdp6ZNm6Z/SkaQQFSpUkUNHz7c6+8DbS+azJgxQ5+XLl266AwpAKLT4cOHVXoQq+MBAADSMog5Z86cnFAAQJphnAUAAIBYFpGSc/Fi06ZNerXDxYsXzcdGjhyprrnmGq+r6qUcnVPu+1pTj7uv1A+2Xfd05qE4VgCINAnWmTVrVroI2pEgJckUKD/9kWCmvXv36p8AAAAAIiueszICAAAAAADEbIamWLN+/XrVsmVLdfToUfOx9u3bq6effjrFvi6Xy7yfIUOGNHl9a5uhajet2nRKJtX9lZxr0KCBvl+1alVVqlSpMB0ZgFCYMGGCGjNmjHryySfVY489FrUnWbLwGX+fkvKWUsqVrBJOH9DblSpVUq+99pqKJh07dtTHO336dDVixAif+w4ZMsT8DGrVqhW2YwQQmPz583PKAABIB1gcBgAAAAAAEIGAph49eqRpexJsM3HiRBUJS5cuVW3atFGnTp0yH7vlllvU559/7nH/LFmyBHVxyn3fbNmyeWwzNe1a2wzVsToVSICSHKf7OQAQW9599121c+dO/fOJJ55Q0erQoUPm3/vLWYqrDK6rKvP/35ZAy2j7WzR48GA1evRoNWjQIL/HJuc9ms89gP+Jtr8zwYqn8QAAAKFw9epVTiwAICCMswAAABDPwhbQNHny5DTP+BOJCQwpy9OzZ0916dIl87Fbb71Vff/99yp79uwen5MnTx7z/rlz5xy/1tmzZ23bOXPm9Nhmatq1thmqYwUATyTgxgi8iWanT58277sSsiiVfNXj76JF79699Q0Aok28jAcAAAhHQNP48ePN8RL9ewCAN4yzAAAAEM8yhvsFpaSZ05uv50XiuIcPH64efPBBWzDT3XffrebNm+czgKdQoULm/cTERMev6b5vkSJFPLaZmnatbbq3e/78edt7DfZYAcATuSi/ffv2NLk4Lxf7K1eurH+mpYsXL6rLly+b266ErPpmDeZMSkpK09cEgHgXq+MBAADCGdAkwUw7duzQPwEA8IdxFgAAAOJR2DI0NWnSxPGKbLmAI5PE+/btU8eOHdOPyXNz586tRowYoXLlyqXCSSa0u3fvrr766ivb45KpSSbPExJ8n8Zy5cqZ9w8cOOD4dffv328rNVK4cGFzW+5LEJWRRSnYdt3LvFmP1Wi3fPnyAbXpqV0ACCXrxf60XL2cIlNdpqzKldFeBuLChQv6/ycAQPyOBwAACAdrwG6sZLQFAEQW4ywAAADEs7AFNC1ZsiSo5+3evVu99957aty4cerMmTNq6tSp6scff1QFChRQ4SDlhCQL0y+//GJ7XCZSJGOTE9WqVTPvy6SMZD7KkSOH3+dt27bN1kbGjPaEWlWrVlV//fVXin39BWft3bvX3K5Ro4bXYzXadRLQ5P767u0CQCjVr19f/fvvv/pnWpK/11auTJmVSs6YYh8CmgAgfscDAACEizXwl1LSAAAnGGcBAAAgnoW95FygJJjmnXfeUTNnztQXdtasWaMee+yxsLz2yZMnVYsWLWzBTJIpacqUKY6DmYR1gj05OdkMQvJn5cqVHtvw9Jh1X1/+/PNPfQze2pWAJuuKd6ftWverVKmSypcvn6PnAUBaWLVqlbpy5Yr+GfKAJrn52AcAED/jAQAAAACIR4yzAAAAEAuiPqDJ0KZNG/X444/r9NuzZs1SP//8c0hfT0oI3XXXXbbJ8bx586r58+erhx56KKC26tWrZ1tBPmfOHL/P2bJli9q5c6e53bJlyxT7WB/btWuXfo4/33//ve39NGzY0Pb7TJkyqWbNmgV0rFISZN68eT6PFQBCScowSDBlWpdjkP8LbDJm/l9QkwUBTQAQn+MBAAAAAIh3jLMAAAAQzWImoEn079/fvP/ZZ5+F9LX69eunli1bZm4XKVJEZ2q69dZbA25LgoQ6dOhgbn/66ac6+5Mvo0aNMu9LtqPWrVun2OeOO+6wZUKyPseTEydOqIkTJ5rbnTp1UgkJKasOyuPWzEtLly712e4XX3yhDh48aG4HGvAFAFbjx49XlStX1j+dknIM27dv1z9DnaHJlTGz76AnAEBcjAcAAAAAID1gnAUAAIBoFVMBTTLBnTt3bn1/xYoVIXudb7/91hb4kydPHr0CvE6dOkG3OWDAAJUx4/9O97Fjx3TQkJRH8kRK2knQk6Fv374qe/bsKfaTx6yT9/Icea4n8lqdO3dWx48fN4Os5Jg8uffee1WZMmXM7S5duqgDBw543Hfjxo06+MvQuHFj1ahRI4/7AoATo0ePVjt27NA/I809WOl/JefsgaAENAFA/I0HAACIBMlCCABAuDHOAgAAQLSKqYAmkSNHDn2Bx1uATWolJSWpp59+2vaYBArVqlUrVe1Wr15d9enTx9xesGCBatKkifrjjz/Mxw4fPqyGDBmiunfvbj5WtmxZ9cwzz3htV35XsmRJc1ueK8cvbRnkNeS15DWtqy6qVavmsc0sWbLYAgn27t2r6tevr6ZPn67PjzGB//HHH6ubbrpJnTp1Sj+WOXNm9e677wZ0XgDEn2AyLIWjfFzalJxLIEMTAMT5eAAAgEghoAkAECmMswAAABCNUtYbi2JSMs0I1MmaNWtIXuOrr75Su3fvNrclq5IEDfkKKvJEAoasqVrFm2++qTZv3qwWLVpkBhrdcMMNKm/evHrAcOjQIdvFK8kMNWPGDHMVuidScm7mzJmqZcuWOrAoOTlZl56TgKRixYrpcklGwJGhadOm6vXXX/d5/FIi79lnn1Wvvfaa3pYJo/vvv19ly5ZNFSpUSH8O1gxTGTJkUGPHjlXXX399QOcJQHxnWAqmBJw8J61Lx6VphqYMGX2WpQMAxPZ4AACASCGgCQAQCYyzAAAAEK1iKqDpnXfeMYNnJHNRKEhwkJUECO3cuTPgdhITEz2WiJszZ47O1PTZZ5+ZF6ok4Mg96Eiym0hwVd26df2+VoMGDXSQ1EMPPaQDpoS0ffDgwRT7Pvjgg2rChAk6C5M/I0eO1MFLw4YNMyfsL168qPbt22fbTwKvPvjgA12aDgAks5IEM0VDhqW0DGjSf7EzZFIqYwbbPvJ3EQAQP+MBAAAi5erVq5x8AEDYMc4CAABAtIqJknOXL1/WWYdeffVVPXkhWrVqFZLX2rZtmwolCWqaNGmSWrFihXriiSd0KTrJ0CTl2iSjkryviRMnqvXr1zsKZjLIvuvWrdOBUnfffbcqU6aMzqYkmZ+uueYa1bNnT7Vs2TI1depUfQxODRw4UG3dulWNGDFCB04VLlxYJSQkqPz586vGjRurV155RW3fvp1gJgAmya4kfxeiJctSav//MbLUrVy5Uh1dt1hnaHKpDCn2iXapLQUIAOllPAAAQKQQ0AQACCfGWQAAAIh2YcvQ1KNHj4D2l8xIkvVCMh2tWbNG/zQyGkl5CQnQCYWNGzeqcKhfv76+pSUJNOratau+paXSpUur4cOH6xsApCdG9iXJTHfxwgV15M/5qvC1zZTKmKBU8pWYytCU2lKAAJBexgMAAERKPAQ0yQIKI2Mv4w4ACD3GWQAAAIhnYQtomjx5srmaOlAycSHPlZvcf+6551SFChXS/BgBAPF1cdzT/oG0cenSJf2zVKlSau++/apwvTv0titjgsoQYwFN8VQKEEBsYjwAAED8BzSxkAIAwotxFgAAAOJZ2EvOSUBSoDfjeVIqbeTIkWrYsGHhPmwAQJRdHA92/0DaMAKaSpQooeo1afG/7EwiY6aYKzkXT6UAAcQ2xgMAAHiWlJQU86dGFlBUqlSJhRQAEGaMswAAABCPwpahqUmTJgFnaMqUKZPKkSOHKl68uLrhhhtUmzZtVMGCBUN2jACA+Moy5Gn/QNqwBStZgphcMRjQBACRxngAAADf2ZjiIaBJFlCwiAIAwodxFgAAAOJZ2AKalixZEq6XAgDEqUAvjnvaP5A2jAxNWoZMHoObbPsAALxiPAAAgO/gpXgIaAIAhBfjLAAAAMSzsJecAwAgmo0fP15VrlxZ/7QGK7kyWmKALfcvXrwY7kMEAAAAEOM8BS9duXIlIscCAAAAIH5KkAJAPCGgCQAACylHt2PHDv3z3Llz5uOuTJk93j9//jznDwAAAEBAPAUvkaEJAAAAQFrKkCEDJxRATCOgCQAAi0GDBqlKlSrpn9aAJpUpi3nXlfH/7tv2AQAAAIAgA5ouX77MuQMAAACQZsjYBCDWEdAEAIBF79691fbt2/X97777Th04cMBnhiYCmgAAAACkRUATJecAAAAApAYZmQDEm4S0bCxTpkwqnH+QScUNAAgVo+Tcvn37VIkSJZQrIav5O+v9EydO6FUODBQAgPEAAABOXb16NcVjXOcCAHjCvAsAAADSq4yhSFsnP8NxAwBEn/Hjx6vKlSvrn+F4Xqg89thjKnv27KpUqVJ6OzlLLvN3riw5bWUhTp06FZFjBIBow3gAABAtom184S45OTnShwAAiBGMswAAAJBepXnJOQKNACB9k8xGO3bs0D/D8bxQadWqlWrQoIHOzuQexJSc9f+Cm8SRI0fCfnwAEK0YDwAAokG0jS+c4P9QAAD/RwAAAAAhKjk3adKktGwOABCDBg0apCcN5Gc4nhcqhw4dsm1bg5iswU3Gvtdcc03Yjg0AohXjAQBAtIi28YWT4CVvWZsky5TxXnr37h2GowMARBPGWQAAAEiv0jSgqVu3bmnZHAAgBskF9mAusvt7Xqgu4ntrd+fOneZ9V4YMbhma8iiZfshg2bdJkyZpdkwAEKsYDwAAYn1cEi4JCQmOHnPPNhXN7wkAEBqMswAATrkvkrhw4QInD0BMS/OScwAApDbAqHLlyvpnOEpGeGv377//Nu8nZy+gVEbL5EKmzCo5W16P+8bCuQQAAAAQWVmyZEnxWLZs2TzuK4svKlWqFLXZpgAAAABEp1OnTkX6EAAgVQhoAgBEFW8BRqG6iO+pXVnFYA1SupqzYIrnJecsZN6XfT2VjIi0UAWBAQAAAEgdT8FLnoKchGRl2r59O9mZAABx799//1U5cuRQGTJkUJMnTw74+atWrVK9evVS1atXV7lz59ZtyXW/tm3bqm+++UZdvnw5JMcNANHqzJkzkT4EAEifAU2//fZbpA8BABAC3gKXQnUR31O7//zzjzp37py5nZzj/4KXDFctAU0nTpxQ+/fvV9GGldwA4hnjAQBALMuaNavjDE0AAKSHcdbVq1fVww8/HFR5pEuXLqmePXuqBg0aqAkTJqgtW7aos2fP6rZ27typZs+erTp27Kjq16+vNm7cGJLjB4BoRIYmALHOUj8nvDZs2KA7ktKpTEpKSlHTU0i2C3n8ypUr6uLFizqKdO/evWrp0qX6ufI8AEB8kcCitA5aCtTy5ctt21dzF0uxz9VcxVI857777gvZMUnZOMm0JEFKTs9PNJxLAPCG8QAAID3zlI0pe/bsETkWAED8iOVxVp8+fdSSJUsCfp4cb+vWrdXPP/9sezxfvnw6WPjw4cNmZvX169erxo0bqz/++ENVq1YtzY4dAKKFeya6I0eOROxYACAmA5pmzZqlhgwZonbt2hV0G9L5lJSjAACEejVactY8Kjlb3hT7JOcooJKz5FQZL58znxPKgCZr+TiClADEMsYDAAAoj9e1CGgCAKTHcZZkZurbt6/OrBSM559/3hbM1LJlS/XWW2+p2rVr6+1Dhw6pUaNGqbffflu/x9OnT6s2bdro4C/+7wUQTyRYNTEx0faYBHUCQCwLa8m5zz77THXo0EF3qqXjaETFC2Pb+pj7455+DwBInyRjUeXKlfXPtHT8+HGdltqQlK+MzDak3DFDhv/97v+TiyChTN9K+TgA8YDxAAAA3jGpCgBIb+MsmWhv3ry5+uijj4J6/vbt23WgkqFdu3bqhx9+MIOZRLFixXRA06RJk8zHJBPV2LFjU3n0ABBdJJhJsu9ZEdAEINaFLaDp5MmT6sknn/TacZbIfyP6370TbfxObqVKlVIPPfSQ+uabb8J16ACAKGTNWJSWnn32WbVy5Up14MABvZ2U//+CltxZA5pk9cMvv/yiQkWyMslFGrIzAYhVjAcAAPAta9asnCIAQLoZZ82ZM0ddd911qbqeNmbMGHPyPm/evGrixIkqY0bP017dunVTPXr0MLfffPPNFKWZAKQPoVosHWlHjx7VP2Vuw5jjoOQcgFgXtoCmKVOm6MwVRuf5zjvvVHPnzlVbt25Vy5cvNzvRvXr1Urt371abN29WP/30kxo2bJiudWx0tGXCWNKF3nvvveE6dABAFEqLjEXuAxf5f+brr79WFy5cUPv27VPJmXOoq7mKeH3+1dzFVHJCNnNbVoABADxjPAAAgG+ZMmXiFAEA4n6ctW7dOtWiRQtd9u3gwYPm448++mjApeq+/PJLc/vBBx9U+fPn9/mcwYMH27K0y7kAkP6EarF0pJ07d07/lLkNY47j/PnzkT4sAIiNgKZFixaZ91u1aqWj7+XnNddcoxo2bKiqVKmiO86///67Klu2rKpatapONTpixAjdwa1Xr55+rnRw+/TpE67DBgBEqbTIWOQ+cJH2ihYtqks9yMq0K4UqKZXBx3+VGTOppIIVzU0pVScXh6JNvK44ARBbGA8AAAAAAOMsyZS0cOFC80TkzJlTffjhh2rChAkBnRzJPnLixAlzWwKk/KlWrZqqWPH/ruXNnDmTrySQDqXFYuloJEFMQuY2jDkOApoAxLqwBTRt2LDBvD906NAUv2/UqJH+uWnTJh0ZbyV/cGfNmqUKFiyog57k/urVq8Nw1ACA9DRwmTdvnipRooRq0KCB/nml0DV+23DfJ62yNKVlEFK8rjgBEFsYDwAAAAAA4yyru+66S23cuDGoBYurVq2ybcvCeSes+y1btoyvJJAOpcVi6WhkBC9Z5zguXryos/ABQKwKW0CTESmfNWtWjx3L2rVrm/f//PPPFL8vWbKkGjBggLn91VdfhexYAQCxzWkwkHXgIh17a5rppFxFlStbHr+vlZwjv7qas5C5vWDBAnX58uVUH19aBiHF64oTALGF8QAAAL5duXKFUwQAiPtxlpTHa9q0qVq8eLGu5FGuXLmg2pHyeYbixYvrEnpOyDU5g1x7k9J1ABDP44mkpCQVbagqASDqAprOnj2rO6qFCxdWGTNm9Jjq07B+/XqPbXTt2tW8/9dff4XoSAEA0dRRDaZjawQDDR8+3PFzlyxZYtaYFvuPn1GbPhmijq79v5Kp3lwpXMW8f+rUKfXbb785Oj5fwUppGYQUrytOAMQWxgMAAPh25swZThEAIO7HWbNnz9bBTBLUlBr79u2zVflwSoK4rJP8Bw4cSNVxAEC0yJs3b4rHpPRclixZoi6oiKoSAJxKUGEi0fHHjh3z+vsKFSqY97ds2eJxnzJlyug/vJJFY9u2bSE5TgBA6kkHWDqkEozjHkRj7ag6CbAJdH8hryv7S3CR0+fKijCDK1MWdXDrX+rSySPqyJ/zVeFrm/l87pUCFVTWPStUhuQks61mzZr5PT5fwUpyvAQgAYgnjAcAAPg/nrJBnD59mlMEAIj7cVbp0qXTpJ0jR46Y9wsWLOj4eQUKFLBtJyYmBnRM1kAqTw4ePGjelyzu/jK5A0Ba/p/gHtRUtGhRr3+HRo0apXbu3Kl/9ujRI6wfhGQHHDNmjP7J30kgPlwOUZ8nbAFN0qGUjrW3zrWkFZWVBL461kY70mE0UqkCAKKPryAkJ8E8qdnfGgxkDazyZdeuXWrjxo3m9pWClVSReiV0MFORenek2F+yNhm/08FOmTKrKwUrqixH/9a/X716tf6/ytvqsGCDlXwFigFAtGM8AACAPaOGOzI0AQAYZwX3f2muXLkcP899X0//J/sSSPDT1q1bmcsCEFZStcLdhg0bPO573333qWnTpumf3vYJlRtuuEHffB0fgNhy+PDh2C45V6dOHf1TovxlotedpLuTjqDL5dKTyp5WqiUnJ6tDhw75rAMKAIg8b+XSggnICaZcmpEq9ddff3W0/w8//JCihJwEKtV45E2P2ZkkmOnSycP6p/U5vtpMC6RhBRDLGA8AAPB/PC3UkwwRAAAwzgo8C0DmzJkdnzb3fZlrApBedejQQc2aNUv/BIBoFbYMTVIP+ZtvvtH3R4wYof773/+m2KdWrVpqz5496vz582rJkiWqefPmtt//9ttvuqaxyJ8/f5iOHAAQKG8ZiIIpHxcM43X+/fdffVHC2+sZAVY5cuQw/1+5mrOwSs7h+/8Yyczknr0pOWchdTVHAZXp/P8mIRYsWKC6d++uEhLS7r/aYLJVAUC0YDwAAIDnMjmGo0ePcooAAIyzHJLF8Qaj+kc47N2712/JuQYNGuj7VatW9ZrBHQBCoVu3bnqe3XDHHXeonj17crIBhFyo4nfCFtAk0Z2DBw9WFy5cUHPmzFFt2rRRb731lu7QGZo1a6bmzp2r78tkrWTWyJMnj96WP77yfKNzWrNmzXAdOgAgxgJyjNepX7++WrVqlfl67iXo+vfvrwOesmfPbl5ouFL4Gt/l5ZTSPz1lbrpS6BqVac8f+r6UWJXXNtKmpoVgS9UBQDRgPAAAgO/gJQKaAACMs5yTqh/BZFly3zdbtmwBnfZAApTkGK3HCQChJnPop06dMrfz5cvH3yEAYRGqPk/YSs4VKlRI9e3b14yal8ClGjVqqBdffNHcp3Pnzipr1qxmvcxq1aqpAQMGqIEDB6rq1aurv/76y9z3rrvuCtehAwDSSDDl41LzOl988YXt9awZouRmXMDIlSuX/unKmEldKVDeb3k5b64UrKBcGTKGtOwcAMQqxgMAAMRmQJNR0lt+AgCiS3oeZxmL4cW5c+ccP+/s2bO27Zw5c6bpcQFANClcuHCkDwEAYiOgSbz66quqRYsWunNtpADNmzev+ftixYqpp556yux8S2rOcePGqXfffVeXorPuR3o8AECgJDNTpUqV9E+5GeXgjAsZSfnLKZXJHkEsmZmy5itqKy/nVUI2lZSvjLm5bNkyczUEkwAAwHgAAABDYuL/SlX7eywaWBeGAACiT3qdd5FgrmD+D3Xft0iRIml6XAAQSZkyZbJtS4YmAIhlYQ1okoljKTc3YsQIXd5HVKxY0bbPyy+/rNq2bWvrfAu5L49J1P306dNt0fcAAASaIUpuUk9a/j8yUkVfKVRZl5jb9MkQ/VNIabkaj7xplphz/707acOQlJSkFi9erO8zCQAAjAcAADCcPHkyxcmQxRDGZHO0LgwBAESf9DrvUq5cOfP+gQMHHD9v//79ttIoZC8BEE+sf+MFZS8BxLqwBjQZfziHDRumjhw5ojvI9evXTxE5OmvWLJ3JQtKdSmdabtIRv//++9Wff/6pbrzxxnAfNgAgzsj/LcnJyapBgwaqRIkSKjlLTnU1d3G/Jeb8/f5q3pIqOfP/Lh6JBQsWeJ0EIGsTgPSI8QAAIJqFq49uZHK1kpLY58+fV9F2HsJVOhwAELz0OM6S0nmGffv2Of4/dNu2bbY2MmYM+zQZAIQNAU0AYl3Eemo5cuRQ7du3V8WLF/f4+8cee0zXc5bax5ICVS70fPXVV3oyGACA1Nq5c6fatWuXuX2lYCVZvqBLyyVkz62uXjrvMQuT3xJ0GTKqpAL/twpu4cKFqnz58vq++yRAarM2ERAFIJYxHgAARKNwZVb1FNDk6/FwI8MsAMSm9DTOsgZtyaLFv/76y9HzVq5c6bENAIhHBDQBiHVhC2iSjuHYsWPV0aNHA3qerBAoWrRoipqfAACkxqJF9mAlCWiSACYj81LShTMeszBJ6TkJZpLfeS87V8m2Quyff/7xOCGS2tINwUwyEAQFIFIYDwAAYkG4yqtduHDB4+MXL15U0YAycwAQG9LzOKtevXqqQIEC5raU3fNny5YtepGjoWXLliE7PgCIBlevXo30IQBAbAQ0SXT8k08+qUqWLKlat26tvv76a3Xp0qVwvTwAIM55CtTx9diECRPMx67mKKhc2fOa5eSSLp7VWZq8ZWHyVHZOgps2fTJE/0zOnl9dzZZPP16qVCmVO3duNXDgwBTtpLZ0g5NJBvdzwEprAJHCeAAAEAvCVV7t8uXLAT0ezeeBRRMAEDnpeZwlwVgdOnQwtz/99FN18uRJn88ZNWqUeT9fvnz6nAFAPJFyolbp5f8EAPEr7CXnkpKS1A8//KAeeOABvQLgkUceUUuWLAn3YQAAIiRUF7s9Ber4emzz5s3mY1cKVNA/JYApQ8ZM0utXmbLm0NmYPHEvOydBTPsWff5/QU4ZMqikgv9rs0SJEqpu3bqqRYsWaX5unEwyuJ8DVloDiDTGAwAARH9AUyBYNAEAkZdex1kDBgxQGTP+b5rr2LFjqlOnTurKlSse950yZYoOejL07dtXZ6oCgHgWLRlgASDqA5patWqlEhISbNGhp0+fVpMmTVLNmzdXZcuWVUOHDtUpPwEA8StUF7s9Bep4e6xw4cI6c5IhqUB5/VMCmEo1e9AWrOSJ7Pf/2PsTODnKav8fP909+0xmJstkD0mIkAAXCEtYXEABFxRBvCgKiIgiP3FB+eJ6lcvluiKXq17Bv3pFQeGiIm4sKpuyhy0hEFYhIfueSSaz9/J/fU71qX6qurqne7bM8nm/LKuXqqeeqiEzz/Ocz/mcgz52pS94gogpk06pGMrO6822afzjH//YK88m/AyGK+OcEELCcD5ACCGEjE1BE5MmCCFk7zHe51kHHnigXHTRRf77v/71r3LcccfJo48+6n+2efNm+cIXviAf+chH/M/wXL74xS8Oe38JIWSoicVigfd0aCKEjHaGTdB0++23y8aNG+Xaa6+VN73pTf7nGGRjW7t2rXz729+Wf/mXf9Haxz/4wQ9ky5Ytw9U9Qggho3yx2xXqmNMRCIt3LrzwQnVLgnMSSNW3SKa6oaBYqRBuiTlzbIIYys7L1DRJqnaSf/yDDz7Y5z2Y2GrXrl2D4mCFNiCOQrsUMBFC9jacDxBCCCEeWAeDk0YUhVwlRjJMmiCEkL0H51kiV155pZxwQm4dD2KmY489VkvKYf1vxowZ8t3vflfS6bR+39jYKLfccotMmDBhL/7kCCFkeKBDEyFktDOsJecmTZqkixxwqXjttdfkO9/5jixevDhP3LRs2TL53Oc+p+4Z73rXu+Tmm2/mL1xCCBnFuKXUBnuxO1ymDfvPfOYzBZ2OVq9eLRs2bPDfJ5v36dd14cpkJeYKiaCSE/cJXHf9+vVF28QzaWpqkq1btw6KSxNLPxBCRhqcDxBCCCEiqVTKd9EIU0joRAghhHCeFQ3Kxt12221y3nnnBZxJkDCIJHv3by7WEO+77z5NqieEkLFIeJ6xtxyawnEbQggZFYImF4iVPv/5z8tTTz2ldqdf/epX1bHDFTZhEecvf/mLnH322Vr3+aMf/agONgkhhIwuhlJYE277sssu06zmeDye5wKFwTMytAKCJkd0VA7mylSoNB2cm5bdcWPgWg899NCwOlix9AMhZCTD+QAhhJDxunBeTLQ0Gh2aCCGEjBzG6zwLoiaU2Vu6dKl86lOf0lJ0SBqsrKyU6dOna2m+n/3sZ7JixQo5/PDD93Z3CSFkzDs0MdmaEDLqBU0uCxculCuuuEJeeukleeyxx+Tiiy/2SwHZILutrU1+8YtfaJmgffbZR7785S/v7W4TQggpkcEupRZuGwszS5Ys0cBFZ2enfj558uQ8FygMojdv3izr1q3T9+nqRknXNJdUVi5MX6Xp1MFp1zZZu259WYKmwXSwimprNAR4CCHjD84HCCGE9EWp49jRsHBeLKiwtzKoCSGEjD1G4zzL+oUNjkvlgvXB//mf/5GVK1dKa2ur9PT0qEvTHXfcIeeff77U1NQMSb8JIWSk4DrVAfwe3Bsw2ZoQMqYETS6w+vzv//5vWbt2rWYFXHTRRTJr1iz9zgayCESjLjIhhJDRQbFSagMV2Jho5/HHH9fABTKyIHDCgk3Usfge2Wog2TwHI/ySysr118FpxgFH+J8988wzulC0NxkNAR5CyPiG8wFCCCEDGceOhoXz3bt3F/wOSSCEEELIYMN5FiGEjE/S6fReue5gJm4TQsY3I07Q5CpIjz/+eLnqqqtUUW82oGFlKSGEkNFBocDCYAlsrH0ImQoNlGE3fdRRR+nrhx9+WB7/0/WR7kullpUrhjk4TTniHYHJAzLiymGwHZVGQ4CHEEIA5wOEEEL6M44dDQvnxURLFDQRQggZSjjPIoSQ8QWMQgghZDQzIgVNsAK97rrr5NRTT9WSQf/6r/8qy5Yt08G2/eKlNSghhIwuCgUWBktgU0rgAiImAKe/3t5eSXa1F3Vf6qusXCmkJkyXTLyirLJzQ+WoBFEU2sGzHskBHkII4XyAEELIaBQqlfN3bjgETSw3TQghJPz3h3EXQgghhBAymhgxgqb29na56aabVMQ0ffp0ueCCC+T222+Xzs5Ov9QcOO644+SnP/2p1j0mhBAyOii2kH7//ffLa6+9pvtSz+kP+Hti7kgoOVdRVS0VtRN89yU4Na383y8UdWzqD1tX3K/X3bBhg75/9NFHpbu7e684KoXFUQxwEEJGEpwPEEIIGS9s2bIl8D5dPcF/vWnTpkG7DstNE0II4TyLEELGH4hFWEyClY8IIaOdnGXEXgABXYiWbr75Zrnjjjs02Bxlf7f//vvLhz70ITnnnHNk7ty5e6m3hBBCBmMhPZxRfcstt6hbEvYQtpZyTn+AkGjVqlXqzgRB0+HnfEWSk+b538Opqbt1s+6LOTJB8IRjIIQqxblJ221vk3XrkjJz5kzp6OiQJ554Qt7whjeU1G/c+2BloUMUZQ5NQ/GMCSGkXDgfIIQQMh5ZvXq1/zqTqJZUwzSJd7fp+zVr1gzadcLjf0IIIeMDzrMIIWR8gxgIYu7YV1dX7+3uEELI6BI0pVIp+etf/6oipj/96U/S1tbmi5jcknIoNfeBD3xAhUxHHXXUcHeTEELIIAEXIJRNaGlpiVxIP+OMM1TMhP1QLr7//e9/9wfyEPHMnvNPaXEETRAomVCpGFHCp2IiJ6/dO2VWS3OgL6UKmgaTsDiKAQ5CyN6A8wFCCCHjHVfQlKptlnRtbq6wbds2XSubMCHn2tRfBjM5ghBCyMiG8yxCCCEGErotsZuCJkLIaGfYBE333nuviphuvfVW2blzZ6SIqaqqSk455RQVMb3zne+Uioq9aiBFCCFkEIAoaevWrVo2LWoxHa5MrjPTUCy+wxVp6dKlOoCHmAl/d7Y89TdpOfwk/xgIkUpxXIoSPoVFTmGBE7bal+8SaV2rxz/88MOaLbe3JxMMcBBChhPOBwghhBBvLQwltw2ImVK1E/METwcffDAfFyGEEM6zCCGElA0qRWCz2DshhIxmhk0xdNJJJwXESwbew6UCIqYzzzxTmpqahqtLhBBChoGR4AJ0//33S1dXlz+IX7N5e54TU6ml5KKETzhn40O3Sqq7w28n7OK0fvMO2fz0YyqqQj8eeughOeGEvgVUg+GQZc+f2dmEkL0J5wOEEEKIyPbt22X37t0BQZPr0LRhwwZ5+9vfLpdddhnH74QQQjjPIoQQUhaIxbtQ0EQIGe3E99aF4dRx+eWXyyuvvCIPPPCAfPzjH6eYiRBCxiAQ0bz88sv6er/99lOBTang2HLPiQKlTo0Zc+bJQR/7bp4oyRUhlcKq234ky64+X/doK1FdJ8nONl8UVd08LSCa2vjCE37d6nCf+vMsSn02EDPBlQp7QggZSXA+QAghZDyCdTCXdO0kyVQ1SCZeqe8xX9i4cWPB8XvUPGCw5k2EEEJGP5xnEULI+CZsLLK3q0QQQsioEjRNnDhRA9sotfPSSy9pttn8+fOHswuEEEKGifCien+ENYXOsbbPOuusPhfuEQxYtmyZ/7530r4i8XyDQoiPKmon+C5LfdH60uOSSad0b+ebiAkCp4M+dmVANDX1yJOlpr5RHZrA448/Ltu2bev3syj1ecKZCYtZe9MhixBCDM4HCCGEjHfCgqZU3SSkUUuqzis7h/kC3MsLjd9tHvCZz3xmQHMtQgghYwfOswghhBSCgiZCyGhn2ARNt956qwaVr732WjnmmGOG67KEEEL2EuFF9f4IawqdY23fcsstgWtEZSbfeeedgXN7p7yu4PUgZjKXpb5o3n+JxOIJ3YMoEZMLPj/47K/4Ze/S6XRe38p5FuH3hbKyzSGL5eYIIXsbzgcIIYQQkVdffdV/DOmqepEKL2M6DWGTiM4XXv/618uFF14Y+bgw/q+srJTe3t4BzbUIIYSMDTjPIoQQUgwKmggho51hEzS95z3v0QUXQggh44Pwonp/hDWFzrG2zzjjDN0vWbJExTxw/nMFTt3d3fLHP/7RPy9V0yzp+pbIa0HEBMcliJTcUnGFmH/KJ+SwS67TfamkJkyXdHWD/x59QyCiP4SfTblZ2SxLQQgZbjgfIIQQQkS2bt3qP4Z0daPzusl/3dHRoVvU2B3j/x/84AcDnmsRQggZG3CeRQghhBBCxjLDWnKOEELI+MEW1UFfZeH62/ZNN92ke5Rvg5gHuAv799xzj+zatcs/r3fagVrOIQxKzMGdCSXnZp9wTkGXpQETi0nP1AP9tyg5949//KOkU/sSLLkCslLESib+wp4QQgghhJCxTDklq4eaHTt2+K8zlbXO65rAcTt37vRfs6QcIYQQQgghpD8kk0k+OELIqIaCJkIIIUPKcCy+m5jniiuu8DOTM5mMlqTbsGGDPPbYY7J+02bpnbxAxUsr//cLunfdmVBqLlFdp+/x/arbfpR3nEtUO6XQO2V/ycQr/Pe//e1vta+l3mOhMhJuVrb7zOnERAghhBBCxjuFSlbvDVyhUlDQ5M1FooRP4bnA3hQ4cX5BCCGEEELI6IGCJkLIaIeCJkIIIUO62A2HpJaWloJCnMEgqsTCJZdcIjfffLOsXr1aOjs7Zd36jSKJShUvdbdu1r2BEnPVzdOkbvp8WXfvr/T71pcezzvOJaqdkqioUlGT8eKLL8rDDz/cr3sshBvwKBTsgPjLRGCEEEIIIYSMZcIlq4dyblJMBHTNNdfInj17Il2Zijk0hecCfSU7DCV0iyKEEEIIIWT00Nvbu7e7QAghA4KCJkIIIUO62L1161ZpamoqSYgzWNm+3d3d8r//+78qZAI1tbUydcnJAfES9gZKzB30sSulY9MqyaRTEosnpHn/JXnHuUD8hOOwL9etqWfagZJxSt9de+21fU4synk2bsCjULCjHIEUIYQQQggho5lwyerhHgObCOjqq68OfJ5JVDuvqwLfdXR0FGxvb47l96aYihBCCCGEEFKccDWIrq4uPjJCyKiGgiZCCCFDvti9ZMmSksQ4g5Xti1ISM2bMkNraWpk3b54sPu1jMuWIkwPiJezDmNhp9gnnyPxTPlHwOGDiJ+zLdWvK1DRK79QD/ffr16+Xiy66qOgz6m8ZOQqXCCGEEEII2TvYuB3zIcyLwgIktxS1+3okBx44vyCEEEIIIWTkEnMSqUfyvIIQQkqFgiZCCCFDvtj9+OOPlyRUKjXbt5igZ8uWLfKrX/1KZs6cKbNnz5a169bL+i25cg3FKCZ2CuM6PUW5PvVF98zFkq7IZWQjW7zYMyqljBwhhBBCCCFk5GDjdsyHMC96//vfHzzAFTHFKwNfMfBACCGEEEIIGSjlzisGq4oGIYQMFhQ0EUIIGXJKFSpFZftGDaDDgh475pprrpHLL7/cLzW3bt066erskC1P3TXo9+SKn8oRQhlbn31IHnvscdmwYYO+nzVrlpbm++xnP1tSGbmWlhbZtWsXJxaEEEIIIYSMknlQW1tb4PtMwhExxeOSiSX8t+FjwzDQQAghhBBCCBlshyYmUxNCRhoUNBFCCNnrZQmKLcZHDaDDgQE75j/+4z/kueee84+bue8iqW6eWpZzksvW5ffKyv/9gu7d1319Vwpapq5tp6xd7wma4Ci1ePFiqawMZmZHgecI8dPWrVvp0kQIIYQQQsgwMpDyz2vXrg18n66eEHrf4L8OHztSAw0UVhFCCCGEEDJySKfTgfc9PT1DkpxOCCHDBQVNhBBC9jrFFuPDA2gsmOO4JUuW6B7v8R0cjpqbm9Xx6LHHHpP1mzZL8wkfk4M+9t2ynJPyREetm3W/8aFb9TX24e/s9dq7r5dVt/2opLb9MnVHnRLIzEbpuYcffrjP83H/ED9hb8+FVrCEEEIIIYQMLQMREr322mv+a7gxZRwBE0jXNEceO5IDDSNFWEUIIYQQQgjJFzAlk8lBTU4nhJDhhoImQgghQ0opQptii/HhAbQtmP/mN7/R/WWXXSbHH3+8HHLIIepyhDJzKDm3duPWvABBOcBtKdXdIRW1EyIdnnxB0pHvCHzf+tLjBdtzXZysTN2UI98pXfPeFDj2m9/8pt5zsef4+OOPS29vr+7d58JAAiGEEEIIIUPHQIRErkgpXdMoEgsuy6Vrm/zX69ev1/H+SA80jBRhFSGEEEIIIUTy5hDF5hSEEDIaoKCJEELIkFKK0MYW40Gp4qeKigp9397eLp///Oelo6ND38+ePVtqGpqkbuZ+ZZeBc4HrUrKzTRLVdSo+mvGG96qACXtXkIQ9tomLjpFYPCHN+y8p2J45Ormgf0/feq2sacv4n+3Zs0fv89VXXy34HMOBAwYSCCGEEEIIGXr6KyRCpvSKFSv89+nanBtT7rOJ/utUKhU4fqQyUoRVhBBCCCGEkHwBU7kl5wghZKRBQRMhhJAhpRShjbkPwW2pVPFTY2Ojb5kKAZAxddESOfDC70nHplWRAqJSMQemuunzVRgFTMAUxfxTPiGHXXKd7ou1F3Z7MqHThldfkOSEGf7nu3fvlksuuURWr14d+RzDgQMGEgghhBBCCBm5PPHEE5qMYSSbZucdk2qcKRmJ+e/vu+++YesfIYQQQgghZPTT3d09LIKmUipzEELIYEBBEyGEkCGlFKGNuQ+BUssVfOYzn5H6+nqZO3eu/xkEQZ37nailGwoJiAqVgAtjDkwDFUbZtXA++hIWROWEU/vKEw/eKytfflUee+wx2bBhg7S2tsrpp58u8+fP12P7m/lczuSCExFCCCGEEEIGf2x87725eUcmFpdkc24e439eWSupxlySw/333y/XXHPNkAYKhmP8zzkGIYQQQgghQ08mk8kTMA2VoKmUyhyEEDIYUNBECCFkry9cm/vQFVdcUZJoZ9myZbJ06VI58sgjZebMmfpZsmGadO53kki8Iq8kXJSIqVAJuDB9CaNKodi1gsKpLbJ90wbp7OyUdevW6fcvvviiujR95Stf0Wd51llnlR1wKGdywYkIIYQQQggZL/Q1XxmssTHKYz/00ENBd6aKqshjk5O8ZAZzbf32t789pIGC4Rj/c45BCCGEEELI0BMlXgo7Ng1nZQ5CCBkMKGgihBCy1xeuyymXduedd8qll14qbW1t/mep+qnSuf/bRBKVRc/d+NCtKizCHgKlitoJkuruKOjSVEgYVS6liKKsP7FEpe5n7rtQP589e7bU1tZqWT08y1tuuSXvmVogxhU7ucGZUicXOHbTpk2SSCRkyZIl/b5fQgghhBBCxsJ8pb+L9GGh1N/+9jdNWogSLYXpnThPHZyMAw44YEgDBcMRiGCwgxBCCCGEkKEnSrzU1dU1JNcqJ6ZDCCEDwbOxIIQQQoZo4RrBgf4ujiMAYOen02n5j//4D2lqatLv4GAEsc/U/Q+Tzv3e2qeYKQwESq5zUiHBUrFyccWIOs8cmgq1A3FVJp2SyvomaXrrRZJ66S6BARVcqFCCDvd8yCGHyPbt2/WZ2PPZtWuXbN26VV577TXp7e31AzIWnCl1YoFjIZwCjz/+eMn3SgghhBBCyGjAnV9gfNzXfAXH9GeB/rLLLtPxOfYf//jH5Xe/+53/XbqiRpIT88vN+VRUS3LifKnc8YqfZX333XcHSm0PJv29x5F2DUIIIYQQQsY7bhJFsc8IIWQ0QYcmQgghQ8ZAVfqWMX3VVVfJ1772NdmyZYuKerBhIL52w2bpXPiOguUajFW3/UiWXX2+VDVOUaekGW94b0nOSRAlrbv3V77oyS1ZV4zweaCvEnf4HGKmWDzh9aeiWl7rrpGlTzylYiaImo466iipqamRD3/4w3Leeef5zwcgq/qMM87ws6v7kwWNY1taWnSjVSwhhAwdDz74oMRisbK397znPX22DUHqhRdeKAceeKBMmDBB6urq9O/BaaedJr/5zW8i7cf7AufccMMN8u53v1tmzZol1dXVMnnyZBXZXnzxxVoKtj+sXbtWvvrVr8rRRx8tkyZN0nbnzJkjxx9/vPzP//yPCngJIWQwy8mFHZmGI6sYv5fx+87onbrIL5NdiJ5pBwbe//73vx/WkuAj/RqEEEIIIYQQKcmNaagcmgghZLigoIkQQshep9CiN0Q18+bNkylTpmjgFKXX4MqEraahWVqOfY9IPFGwXRMg7XxxqYqFOreuCZSPiyonZ+dABAVRkisy6kuUVFCcVIJ4yr6ffcI5OUenJ/8mXe1tsnbjlsCxyND+5Cc/KQcddJBUVlbKSSedpIGYm266yQ/I9Cc4g2MhGsPGDGpCCBk6+isA6stW/KMf/aiKX3/yk5/I888/r657EAC/8sor8qc//UnOPPNMLSn67LPPltzuihUrZPHixSqmve2221RkC4HTjh075JlnnpEf/OAHcvjhh8unPvWpsrL+IFhauHChfOMb35DHHntMdu7cqe1CtHz//ffLZz7zGVm0aNGgBfEJIWOTYuKZqHJyw1X67IorrtDrYO/+HkMpud6WRX2en25o0bLaxl/+8hffSXU4SoIPxjXgTkVhEyGEEEIIIcOXPOCuy2D9Busty5cv54+AEDKqoaCJEELIXs/IDS+sWxsIxiLYCVcicyiaMWuOTHzjB+XA/+/70rL4RD2+kHOSCZDiFdUqLmref0nBPlgbGx+6Vc9pfelxX5RkIqO+RElR4iSAdkFYPOUSJa6ydlqOeY90zn+TrN+wUSchmIwgOH3XXXdpiTmWhyOEkNEraEIp1QULFpS0zZgxI7K9ZDIpp5xyilx33XWBz5ubm2X69Onq7uQKlN7whjfo39i+wKIX3JLcY+PxuP5NhvuTyzXXXCPvfe97JZVK9dnu5ZdfroIld6ENomW4P1VU5FxLtm3bpm3eeOONfbZJCBmfFBPoRImXBtORqdi8x66D0tAQfmL8DpIT50mmqq6k9l2XJmRVI6lhoAyHoMuuAYZaPEUIIYQQQsh4oq8EBTcJwqpcrFy5chh7SAghgw8FTYQQQgaVKHHS1KlTdSskcoJbBJyGsAcoMYc2fvrTnwYsUdOVddKx6GRJTl4QOD/snGTipLrp81UQNOv4M+WwS66T+ad8oqAAyoRM6WSPngPxU9gxKSw6KiSkco8r1dUpDNrEORA1oZ3klP1k7ebtOgnBZAQg8IsAMJwxIGwihBAy+gRNX/rSl/RvXinbj370o8j2ULbNDXS/7W1vk6efflpdjzZu3KiBdASYTdi0e/duLR9XzFGpvb1d/vVf/1VaW1v1Pf5O/+d//qds3bpV1q9fr2089NBDWi7OdRBBidhi3HnnnepYYkCodfvtt0tbW5v+fUPwH+OFxsZG/xg4T8ENihBCyhHoDHU5uVLcjq6++urA+L136gElt5+cOFfSFTX+ezjtZTKZAfV5OErs2TXMpYqlrAkhhBBCCBkc+kpQcAVNqHKB2MGcOXP4+AkhoxoKmgghhAwqGEy3tLT4AUks8CP4ia3QYj8chiDIueWWW+Rb3/qWuklYeTkj2ThLOg46TdINudILRtg5yUREHZtWqbAIuMKj4iIjL9jbMHthUUelvtuJ7lupWNsQWlnfpx51ilQ3tciM1x2kx5hrFQLjKMv3ne98p6xrEEIIGX5QVs3NjoModSAgaIyAuXH66aeraOiQQw7xP8PfVYiFf/7zn/ufwekPZd8K8d3vfldeffVVfQ0h1M0336zCqUmTJvnHvP71r5cHHnhABVQG+rJ27drINvG3Hs5MFpDHItwjjzwi73znOyWR8ErI1tXVyYUXXigPPvigL2pCOb0vfvGL/Xo+hJCxQ5Qj0lAIdEp1nO0rmIDfeXDWs3lNqnaipCLmMgWJJ6S3ZX//LX4nj6bs6uEQTxFCCCGEEDKe6GuMjWQxw2IH06ZN03UVQggZrVDQRAghZFDBYBrlcyBgQtASrksQOGErtNiPz+H8gEX/r3/961puBov+yGR+7rnnZOmTT8uazgrJVNb657juSGHnpEICJxMeRYmMZrzhvfpZvKJSj11376+07UIuTIXaCVOqq1P4O2sbWN+1rQuukua3fVK6Z+QC1XhOcMpAFvS9995bNCjTn5KAhBBCBg8Eo11XvcMOO2xA7X3ve9/z28Pf35/97GdaFi6KD3/4w3L++ef776+88koVWIWBO+IPf/hD//0555yjpd+iwN9viJ0mT56s77FIBjFUFH/4wx/UzcT48Y9/rOODKA4++OBAHyDSeuqppyKPJYSMD1xHpKEc05bivFRKMAG/s1D6E0EEBBN6WxbK1qfvKzgXiALnuJ5Mf/3rX2WkwHkFIYQQQgghIwvECKJA8jkhhIxWKGgihBAy6LgCJbgvbdmyRbdCi/3nnnuunHzyyZq9jDJqYPXq1VqeYeu2bdK1p1W2PBFcvLcScdiHgfAHgiCIgFxxkAmPwiIj9zMIm2LxhGTSKT2/mAtTOWIlo1h77j25/ckTTcXi0jP7SOnY762SSVT79rF4dhA1IUDtlhFygzKlBmgIIYQMDcuXL/df4/d2IUFPKaRSKfm///u/gPBo4sSJRc+59NJL/dfbt2+Xu+66K+8YiIfwnQGBcjFwTZSFM37zm99IOp3OO+5Xv/qV//qggw6SE04o7IIIzjrrLBUBGO69EkLGH64j0lCOaftyXiqVxx57zH+dkZj0Tl4QORcoNofIVE+Q1IQZ/nvMrQZadm6whEucVxBCCCGEEDKyWLNmTVmfE0LIaICCJkIIIYMOhEs/+MEPNBAAh6Zi2dMvvPCCfOxjH9MsActeBpnsn6hYLKECo7rp8/1zsNif7PTqQaeTOZcLFwsWwGkJ9FU+zsAxs084xxcRuWKovgRLhcRKdt6q234kqe4OqaidoPdjn4XbTCd7CrpPue3988HbZOmTyyRVPSHw7O644w75+Mc/rhnj4aBMoQANM6wJIWR4QJnQwXJnQrB8586d/vt3v/vdfZ5zwAEHyIIFC/z3t96aLwz+y19yf8dQLunII4/ss1332ps3b5aHHnoo8D1Ezq6LYCl9RRk6CJ6L9ZUQMn5wHZHcMe1gj2MHq1TaE0884b9Gqbmtzz7kzwXcZIW+ylinmryED7Bp0yZZv369DCZ9Pb9CwqXBEn4RQgghhBBCBodVq1ZFfo7kcUIIGa1Q0EQIIWRIsEAAsoijFsCTyaQ6NXzyk5+UDRs2BLKXu2cdLjOOP1MX+zOZlLoldWzKDca9xX7LTM5EiowQJHCdlvoSI+HzFdd8SjdgIiJXUNRXRjVESmHxlfUX57W+9LgkO9skUV2n92OfWZvmxiR4BgXcp8Ltde/aKquee1rWtMf12Rlr166Viy66SMsAXXDBBX5QplCAhhnWhBAy/IKmww8/fEBt4W+sy9FHH13See5xDz/8cNF2S20Toie31F243eeff1727PHEyOCYY44pu6+vvvqqiqUIIcQd0w7mOHawxFFwp33ttdcCoiSM4TEXgKipnDLWSUfQFBZKDcb99VXKr5BwqRzhF5MnCCGEEEIIGVrg4l1IuFRI6LS3x++cJxBCSoGCJkIIIUNK1AL4unXr5MQTT1QXIQhvIGiCy8T6zdul44B3Sc/MxdKy+EQV/kgmoyIhd4FfBUOxmMQrayReUeWLf1zBkuu0hOPX3nNDnyIhBBiwmWApLIKyYIO5K+Fz1wmq7bWVeeIr97zm/ZfkOT+5n5l4Kl5RmefUVKg9E21t+Odz0rnoZElX1gfcMDAp+NznPiff+c53/ElIOYEKQgghgwfKBD399NMBhyYsNn3ta1+TY489Vku3VVd7pUThTPSjH/0oUEI0zHPPPRdwUmpubi6pH/gbYCCIjUUvt49wT3QdnUqhpqZG5syZ47932wj3tZx23b5GtUsIIeWOY8NjYff9YImjnnnmmcD7ZOPMvIQLI8qR1Z2LbH5puaQravzP3b8jpdDX/fVVyq9c4dLUqVN1KySaIoQQQgghhAw+GzdulJ6enkFxaBqu8TvnCYSQUqCgiRBCyJDiLoAjSPrHP/5RS8zB/QFBWoibsOH12k1bJN0wNU+4A2GSu8CvgqFMRjKpXqlqnKKBAZSeM6cjW/wHCA7Y8cXAteAI5ZaACDsyWbABwiUTR7mBCRAWPLnnzT/lE7q3tnGufebenzk1mVgrXH7C2muYvVBFX9bn1ITp0v4v75He5rmB41esWCFXXHGFPwkZaKCCEEJI/8Dv3ra2Nv/9DTfcoEHmr3/96/Loo49Ka2urLj6hnBDKvsFpb//995c777wzsj38/TQggiqVWbNmBRwTXafE7du3B0RU/W13zZo1BftaTrtum1HtEkJIuePY8FjYfT9YIn83Axouqum6yXmlrfsiNxf5q6TrW/r9e7Cv+ytUyq8/GdO4xtatW3UrJJoihBBCCCGEDD5IHHdJ1U0u+F1fDNf4nfMEQkgpUNBECCFkWLjqqqtk0qRJ8vnPf166uro0kFlbWysNjY3Sm4llRTknB84plK3siog6t67RPVyNLDgQFiK5YiWIhYCJnlbd9iMtMwdxEr475JM/1O/xWW97a0DgFIUbmMD5JqAqVpouqnRd1H2bsCl8fWsLfbYSdv4zqqiWrtedIJ3z3iiZeEUgIIznvWDBAg1WMKBACCF7t9wc+P3vf6+CIgBnJjgc1dfnnPZMCPTud79bfvKTn0SWNDImT84tVPUF/h677NixI7LNgbTrthluF25OdXV1A+4rIYQMxqK5+36wRP6u6Chd0ygSTxSd30ThlqJL1zYF2jZnvVIER+XcX/j7cjOmcY2WlhbdCommCCGEEEIIGUmMlbJn4USyZHPORXv37t2aRFcqwzV+L/c6Y+VnRQgpj1ykkxBCCBkCEKhFwPbf//3fpaOjQ7q7u2XmzJm6pWqa5NVnn1T3JAiHSlnYB3YcBEFwQ4KAyEq2GRD79LbvUmGSK1QyQRBKxEEI1bN7m++uhPbQhpWfA5X1XvkeCIjsGmjPHJasP+61TVTlCpFcEVPU94XuM+qZWFt4Zq4jlP8MYjFJtuwv7Y0zpObV+6Viz2b/mUNMdt9998mVV14pp556aknPmxBCyOCwfPnyvM/OOecc+exnPyuHH364xGIxdTOE8AnB45tuukmPQeAabk377ruvnHTSSf65e/bs8V83NDSU3I/wsW477uuBtBtuZyj62p8FvShLdgPuWIXs2Qkhow8IQb/3ve/p71iUujbOP/983QD+zYffDwbbtm2TpiZPhJRsnC1VteUvvzUf+zbZ79i36euK7a9KTefawO82lBpF0sgrr7yie7uHMAO5v4svvlifIfalnOteqz/XI4QMH/z3SQghhEieiH80C/BdF6Z0RbWkHJdXm0M0N3uxjtHKWPlZEULKg4ImQgghgw4U8hhUvv/979cyNii5AIcgDJrhzJSJJWRNZ0JeW/lgZCk4czEKi5RKEfvYd54oabOke7t8oRLcmFpfelxiiQoVMcHlqXn/JVpCDpjACHsIogDEQiZ+snaKXbtQ30zEhPbce3PvFfR1325bdhzETCaWcs/LVE+QzkUnS+WmlbL9sT/J+nVr9flD2PT9739fbr/9dg1OHHzwwQWvRQghZGgcmhKJhNx4441y5plnBo6BqAniJnz35je/2Q/CQ9R04YUXygsvvCCVlZV5gSj7rBTCx/b29hYMbvW3XbfNoeprKcD1qlTwbHfu3FlW+4SQkcktt9yiIh8kV0DIf+yxxw5Km/jdfPbZZ8sZZ5xR9NiPfvSjMrgsFJGTA4IpbO973/u0T9g/88wzg3xN0edmzy7cfjnPgxAy8ti8efPe7gIhhBAyIoCzqJVnHs24ztiIC2z+5wrZ+thjfjwAf/v/5V/+ZUjiQOYGO9SMlZ8VIaQ8WHKOEELIoIOgAZTy//3f/61iJoBB81FHHSXTXneIdBx0mmx8cYXvjBSvrJYJcw8quSSbi1vKzcUtM2diIYiZcM10skedjVAqbv4pn1D3JmwmBsLePoP7k4mf+nJUKoaVlwiXo3PvNeq+3dJ4dp/WFsBnKDkHVyY4UrnPQc/92Zdkw+atsnbLDuns7Aw4Vdx///1y9NFHy3ve8x7Zvn17v++NEEJIaXzrW99S16Wvf/3rcv311+eJmcJccMEFKmIyXn31Vbn55pv993BzcoVQg4Hb5lC1O1htEkJIISC0gZipoqJCBTelApHO6aefrvuoNpH1jP1IYG8Likba8yCEEEIIIaQ/jJXyyG4iWSZeKZuX3ReIBwyFO2O5JaoHWlZurPysCCHlQYcmQgghgwZKyn3605+W9evXq6MC1P9GJlEl3bOPkN6WhbL16b9LqrtDRThwaEJZN1foU6gkW5Rzk4mA4KIEXFFS2OUIbkwQNWEPIVMphN2Q+ov1HQ5N1m64fbufqFJ1VhrPdWGy7yC2wnOEGxWcpawNvEbpPOy9Mnl3yrT9D5X1m9bK+jWvaZAHThd//OMf5bHHHtNyEihDV1NT0+/7JIQQUpjFixfrVg5f+9rX5Kc//amk02l9f9ttt8mHPvQhfV1VVdUv56Lwse7vfbfNgbQb/lsyFH0t13K9UMk5CK7BokWLAmMXQsjo5Qtf+EJkubm+gNAUvzd++9vfyn/8x3/ktYnPUML5kUceKdjun//8Z7nhhhv89+0HvlsylXVl9X/9k3fLmkfvkH2OeafMOsIrNVr70t8k0em5yB144IHaR/T1f//3f/V1oXstVHpvMJ+x6/g6VNcjhAwuEydO5CMlhBBCxhAmWELFjLUbnpK62Ysk3rPHX+co1/F6bzkmsawcISQMBU2EEEIGzNatW+XWW2/Vxft7771XB8+1tbXqygR6puwvPbOPkExlrb73ysG1qXsS3IUKiXnCYiCIoHCeK+rB8eGScJF9XH6viqbgylRMmBQWTRUrL+eKlNB2MdGTiY+AuSuBcPvua7SPe4aDFbBnFRZHYW9l80CUu5VdB+eufvxuFUDF4zmjxk2bNsm1114rv/rVr1TUhMz0yZMnF3xOhBBChgeUbIUl+IoVK/T9E0884X/X2Njov25vby+5zT179gTe19fXR7Y5kHbdNoeqr6VQjkAJoquwoIsQMjr51Kc+pVu5XHrppf6CfPj3Adyedu3apYEAlG8u1D5Ks+E4kK6sk/ZklUgyWVY/Vj98h47psa8/8M36WWeqWqqy7aKE6ec+9zkVDuFar7zySsE+4fNi3w/2Mx6q6xFCBheOeQghhJCxKWiCI1NXZ6dkNr8mx2QTuIZK0ASnpMF2S2JZOUJIGAqaCCGE9BvYe/7mN79REVMqlVL1P1x/zJ0pVTdFuuYeK+mGlsB5EODAcQhl5lynJBPzoIya67pkYiAIoFAqzhU9uW5FxUrCuW5FYdGRK2Iqdlz4HBNSmXtS2CXKpZDrVDFM+AUHJrQPJyu0bc/HbRcOTCZY6svxCWImEK+qlUkTJ8q2jeu0/A9+fgCipl//+tdy4oknyvve9z5ZsGBByX0mhBAy+Oy7776+oGnLli3+51OmTPFf79ixo+T2wsdOnTo1ss2BtOu2GW4Xjo7d3d1SXV09oL4SQshwLcij3MFnPvMZDQJgrlMoAxm/3x599FH/fSo0DyqV8NxBx/hL/yT7TJ+iSSNwiTr00EN1Poa+FcuKHu6AAAMQhBBCCCGEDD+WPIa4zNoNm6XlyHdIpneNxCQTmTA2UhkKkRQhZHSTs2YgZfHaa69JXV2dBoB/8YtflP30Hn/8cbnwwgvVJnzChAna1ute9zo57bTTVBzQn1qmOAe25u9+97s1kxsBArhrHHLIIXLxxRdrBl9/gIX5V7/6VTn66KNl0qRJ2u6cOXPk+OOPl//5n/+R7du396tdQsjoBCVvHn74Yc0IvuCCC+Suu+5SMZOp/7HIn6iolEnHniEdB56SJ2YCcDOCQAfl37A4D7CHUAd7LNybiAfCIrgUQcwE0Q7cjcIuRv0tCYdzV1zzKVl79/UqEMK1/PtM9vj9cftmr3Es+gcq6pt1j/dr775B27T7MtC3cN/7AveE+44lKtSlqbd9l7YNQRiEXdhDROU6MrnXsdfA+m+uTiIxmTDvYNnnrP+U6gkT9eeKnx9ETSg/h79zf/nLX+SjH/2oZqovXbpUMlkhFCGEkOEFroeG/c0F8+bN81+bKLUUUBrWzc5vacn9rcZr1wWpv+2GnZHcvpbTrttmVLuEkPELhDz77bef7ot9NhhAEGRiph/84AcFF9jvu+8+FRsZyUn79ut64bmDJni07ZS169b5x9x55526R18gbCrUJ/seDMWzCT/3vvpDCCGEEEIIGVywbo8qGgAJEItPOVdaFp/oV8wA27Zt42MnhIxKKGjqBwginHfeedLZ2Vn2uchERnD4qKOOkp/85Cfy/PPPqyoWbcGS+09/+pOceeaZsmTJEnn22WdLbhcZ24sXL5YPf/jDctttt2mAAAInZDTD7hwLbocffrjafZfTbwiWFi5cKN/4xjc0wL1z505tF0Hv+++/XzMUFy1aJL///e/LfhaEkNE1IIbA5aabbtLfM1/5ylciRZIz5++v4piW1/+r9E5dJBLL/ZkpJlgygZAJc7Bwj9JwEO0AuBSh3FqUGMjcmyDsiRJHGRBDoT3s3XPRtosdF6+o8vtj13BfA9wD6G1zhZ0Zvyxe+N5X3fajvH4VwoRaIN3bnd26tG0IwhDgMGEY+lHM+cntP86xfurrWFymHn2qVDdPlWmHHi9r12/QvxP4PW+gvNEXv/hF+chHPiI333yzCl0JIYT0P2Nu1apVOi8oFTeBwC0HesABB/iv8XsbziCl8NJLLwXacEuQAozvo44tBgL47t+Hgw46KPC929dy2g0fF26XEDJ+gcjon//8p+6LfTZYrkNIQismZgJ33HGH/zpdUS3J5n0G5fqW6JBMZXxB6COPPFJWgtlgPpuwcCzctn1/1llnDZmIihBCCCGEkJHIUCVZFLvG7t27A0YZmSovUS1TVed/ZoKnscJwPGdCyMiAgqZ+cNFFF8nf//73ss9DGaZTTjlFrrvuusDnzc3NMn36dHV7cgVKb3jDG1Tw1BfLly9XtyT3WAQloMKF+5PLNddcI+9973sDmd2FuPzyy1Ww5AqgkB0O96eKioqAqhdt3njjjX22SQgZPeD3BH4X/ehHP5IPfehDKmSCEDNKzJJsnCUd+79dmk7+nBx04fek5bCTiopqwoIlEwi55eQsK9kERoUEO644ygRA7rVMTATCDkk4N15Zo6+xt7Jt7nXhaGQOUTgemwmjcA8mapJYTF2U0I4dG753OFK5bkpRwivfNeqeG/KEU7iG27b1Bf0AhcRSdpz1H2247Xj3/F2Z9MYPqhitunGyzHhdfsB49erVOkHAfw/nnnuu/PjHP1bxbSl/UwghZLwDF1Y4HzU0NGgJObh4lIorIob7qoEkCANOe08++WRJ7SFRIaqNqM/cY4sB8Sv6UKhdCJpw7+W26x4HMQHmToQQ4oqM3FJqUZ8NxqJ4Ka5DK1eu1M1ITl4gYuP4MgnPEzBeR4JHsqfLTzzA79zf/e53JbdZyrMpNSgQFjCF27bvb7nlliERmBFCCCGEEDJSGaoki2LX2LJlS+B7EzSls3uwebMXaxgrDMdzJoSMDChoKgMEbLF4hYB+f0DZtrvvvtt//7a3vU2efvppdT3auHGjZtlh8ceETVDUonxcMUclZHj/67/+q7S2tup72J//53/+pyptUZ4BbTz00ENaLs5ACaGvfe1rRfsK6/IrrrjCf79gwQK5/fbbpa2tTRfPdu3apQtcjY2N/jFwnoIbFCFk9ILfNw888IB8+9vfVqEiRI2//vWvA249RiYWl94p+0n7QadL58K3S6pplgpuokQ6wIQ0EAfhu7BwCHscYyKkUku1ueIoE+hAhAQREPauuCnq3Mr6Jn2NvXsNuy5cjOCKhH7vWfdioLyde+2JC4+WyvpmaVqwWIMNONZcmXp2e5nTscoav18gqm++a1Qmo8eacEpFSDUNvugqTF/36ZahO+STP9QtXLrPE37F5KCPXy3Nb/+0tB90mvROXiAZR3BrrFmzRv7v//5Pnf/OOOMMufLKK7UUYTmOI4QQMp6YP39+wEHpr3/9a0nn3XvvvYEsuhNOyP3uPvLII7UktAGn1r5AEgScYd05SRj3s1dffbWkJIs///nP/uumpqbA/AMkEolA30vpK+ZfrttJVF8JIeOXKJHRQMudFVoU70vogwS2q6++OvBZ75T9pb9Eje0tSWHWvNcFxLJw0i2FUp5NqUGBsIAp3LZ9j3nCQARmhBBCCCGEjDYGmmTRn2vACdwlXe2ZXWSye4BEddfFaTSDeRni1C0tLZxrEDIOoKCpRKBcPfHEE9WNoj9gYcdd3Dr99NNVNORmWMOl6aqrrpKf//zn/mcINqDsWyG++93vapABQAiFUkAQTrmBjde//vUqUHADAOhLoZJBvb29KmJAiSmAP4qwMn/nO9+pgQhQV1cnF154oTz44IO+qAlBbJQkIoSMLlCaEkFFlJE77bTTVPAI4SMGhFGkqxuke8ah0n7o+6Vr/pskXTcxIGIqJKzxs4qz5diinJOKiXKKERY9WSk27F13oihUXBSLSW97a54IC+8hZML3aC/ssGTXRtv2XdQ+k056z6673e+XXdsVOAHXQQlCJhMhuc8uqtwe2ih0n4VEZi5Rzz5dN1m69j1e2g95v3TPOETSVTlnDRcIcxFwxn9Dp556qvzbv/2b/o0zsS0hhBCRI444Qp1Ojeuvv17/BhcDAXL8bjVqamrUMdHA2BzBYgNOsH397sV8w4DbERxkw7zjHe8IOCG55xT6O/Czn/3Mf/+BD3wg4Ojqfu46L2GOUgyUukXihwGHQEII2RvBh76ETp/4xCf0dxp+tyFZDUkB6brcuky5RM1hbN6xdv16v+wc/k58//vf99dvBlrqrdTgS1/iKPsev8cHIjAjhBBCCCFktDHQJIv+XOPFF1/0v8vEEpKu8dZ0UnVT/M8xdwgLn0YrmJch+Y/xB0LGBxQ0lQAC/Ycddpj84x//6PeD/t73vqdCIctYxoI/ysJFgSDF+eef77+H60WUararq0t++MMf+u/POeccdVSJAs5NEDtNnjzZFx9BDBXFH/7wB12oMyDigso1ioMPPjjQBwSwn3rqqchjCSF7Hyx0w73trrvu0oXvj3/84+ryhkAl3HUKKfRT9VOke9YR6sbUfvD7pGf2EZKprIsUw7iL71Y+bfn3L9S9K7oplnVcSHxUKq5QqC+Hp12vLFM3pHRvd56QauNDt2bdkkQFRs37L8nrHxyY1t59vQqVcE07xt1bWTv3Pl3hVdtrK33BUSEHpahn45bbQxsupYjMwn0q9OxhUdsz+0hpP+R90n7Qe6R71uGSqvP+noTB3xc4A37nO99R8S4mVRDm3nPPPRqUtmALIYSMNzD2R8DbFQGdd955uqAUBUoJIYFg6dKl/mef/exnZcqU3GIUuPjii/15BUpBQzRk844wN9xwQ6D89Sc/+UktKR0Gn7kLbzgH50aBa33wgx+U7du3+yIr9CkKjDn22Wcf//3ZZ5/tB+XDoKTppz/9af89ynEfc8wxkccSQsY+pZZCG+g1sDAOMU84+NCX0AnCHbjawvF27bp10j3nqLKv747fC81hdFy/e4es3ZATe2INBvO7QqXeynl2wxF8IYQQQgghZLzMMYYLV9C0futOWXndl7xk7fopBY8bzWBehrg31qRYco6QsQ8FTUVAObiTTjpJy765mcEXXHBBWQ8ZpRJQlscVHk2cOLHoOZdeeqn/GsEBW5xygXjIAgcArkrFwDVRFs61JkegJMyvfvUr//VBBx0UKA0RBTL/Zs6c6b9375UQsndBaRsscOPfNRweIDBB8PAb3/iG/P73v5eXXnopUmACFX+yabZ0zX297Dn0A9Jx4KnSM/NQdWOCW1EYt5wcwOI7gHMQBEHp3i7dQ8BjC/MmoIHoyF24jyo7V4hCzkOuQ1Nfx6d7cyKuwkKqjDokNcxemPcNHJgMOCrNP+UTeo/ufvHFP5aJi45R8RH2FpiwZwD6EhxFBTWs5B2efbJrT6ANiLHwHvtShGJ9Cb+UWEwzzXtmLpaOg06TPYeeKV1zj5Vk4ywtQZj31DIZeeGFF+R3v/udlkNFwBvCWzg43XjjjbJs2bJA+SVCCBnrYIy/aNGiQJm2N77xjfL3v//dH5djj/fHHXdcQHx06KGHyuWXX57X5oEHHigXXXRRoJQdzn300UcDbrNf+MIX5CMf+Yj/2dy5c4u6q+I711EK537+85/XtgxcA9dyy+dhTnLAAQdEtllVVRVYaIJj7JIlS+S3v/2tL+yCGOCnP/2pPhdzi8QiFYTYhJDxS6ml0PoLghj4/VXoGoWEPhBewrUavy9nz56tgtDphxwnmcp8sWhflJWEsORdOmdzXbgx7g6XesPv2GL3RQghhBBCyHhlqOcYwyW4QoKxa1Kx/rVX/HkFSs5lElX+dytXBpOiRyuYl/3gBz9geWtCxgn5dQBIwCkJoiajvr5eXUzwixKL7KUCy3FkYBsQSPUFggALFizQknPg1ltvlXe9612BY1ASypgxY4YceeSRfbaLa8PxCSAYAReNN73pTf73ULPee++9ZfUVWdgnn3yyX2YCfS3k/kQIGToQAEVg8LnnntMNg9PVq1dHChejyCSqJdk8R5LN+0iyaZZIorLka0MEY25G6/9xsw6WIW6CqAgimHhFtcQrKvNKJmCDwMgG2OGyc3hvDkM418Q29hmuYWXYwm5Gdo6LtY2+2veew1FSYvGKPDHPhLkHyc4Xl0q8oirPVcqOhQMTRE3Yu+eH+w1hk8gn/O/QBzDjDZ6zXlR/w21B/GVl9Oxa9szwHHAvxURLe9a9mPcsBwKcm3qnHqCbpHqkYtd6qdi5Rip2rZVYKtrtC38P8bcHG4CryPz58zUgDxEt9ggGFXIxJISQ0Ux1dbUmJWD8DScPAAemt7zlLTrXgJsqXJbCYk/8bkSCA86PAuN7/O23cTyERscee6w6w6JU9KZNmwICZgTf4d4xYcKEgn1FyTmM61G2GsIijCcwF8JCH0plo4/h8rRvfvOb5dvf/nbRZ4Ag+5e//GX51re+pe/h0PT+979fy+nBfQpzFNdhCmW14fSHkn2EkPELhDrmnjQUoG387oGAstRrQIiJ+RccvY1p+x0iHQfkl/IsBXcOEzUHcslU1EhPyyFSvWGZ7+CN363XXHNNQHSFAEi590UIIYQQQsh4YKjnGIMpuCrmoIqkYcwHjOkHv0k2Pv+EFyeIxSTVMFUqdq3z14tgwoG47t6kmDtuse9c8B2dZQkZHzBaWCIQE6HsQX9+OT7+eM69Axx99NElneceh1JQxdottU2Intwgcbjd559/Xvbs2eO/L7Wsg3v9V199NZC5TQgZGnbv3q1B0J///OfqmAABIoSYKPUFxwf8WywmZlIXpoZp0j39YOlYeLLsOeyD0rXvcZKcNK8sMVOYdLJHRT8A2cNzTjxXHYog3MGiPEq0uS5JYfeg8HtXhITzcD6cn/AZXIngTuS6PBUjyhEpUe1lT9vedXFSh6dMRgVNJigqtSReVIa1tW3iL1eMVcgdCefY/UI4FZW1bfcFtyZrA88bn9lzd8+3Z1mKC1bJJKokOWm+dC04XvYsPkv/m+qZ/i+SbJgayB4Pg/9GId7Ff7MIgp977rly2mmnqZPIL37xCxUFt7W1DV4/CSFkLzNv3jx58skn85IV2tvbZc2aNQExE8Q8KEX9wAMPFCwBDeAIgjLZKGGHcwwIjsLlPhHcvu+++0pKhjjqqKNUJAVBlYG20GZYzAQX2jvuuENdmPrim9/8pi5OQWxlYPENIi9XzATh1S9/+UstvUcIGd8Uckjqb5mI8HnmbIQs31LWffC7EIlc7rpMurJWOhecIBLhXNoXroAJ2Pg/PO535xhw0E02zQkkDmAM3draqvc1depUFbQ2NDSoSLUUop5nuc94LJXuIIQQQgghY5eRXm65UNnrMA8++KD/GlUUJh39nkCsAQnsBtZyRoJLUzF3rJHunEUIGX7o0FQEBAOQZfzv//7vuu8vyJZ2nZRKXUjCApCBX96uatbK+BiFyjqEQebznDlz5LXXXtP3bhvhvpbTrttXa3faNE80QAgZGD09PfpvdtWqVbpBqIRt69atZbWTrp4gqfqpkmpoUVV+unYS7HEG7cdjwpkoFyET5cCxqWf3Nt2bkMc2Ow5im3Sy13cwskxluDFh8d7OVzJeKThcr5jLUxg4L1kfgV3LAgl2bvjabjk9AyIh9GfnC15pH8+JKdolytpW16pKuGzEpLe9VZZ//+MqmsIzDPdXrWHTKXVfggsU+m0CLnvGcF7Cc8HedW5y2/Kea4/EEpUqBIOYCj8T9zqD5dyE/65SjTN0U9IpiXfskET7Vkns2SKJ9i0S786JZ8NAwAQhEzYDAZl9991X3Zywx7bPPvtotjkhhIw28DsNAiT8nkNZ2Pvvv19dPvD7Dy5NcKp761vfKh/4wAfkkEMOKalNiJogckb5uRtuuEGFSOvXr1eBFNqEgwjckVAuGnOCUjn88MPVtfamm27SEqLLly+XLVu2aJIE+gm3KZS1hiNUOVxyySXyvve9T/t8++236xgHwXi4RkFABQdYlPrGsyKEjF/6ys4NZy2Xks1r5eUgoLTzSsnutbbx+wvrRSi3CZc5iDFnzZkrzSd9XDLVDf26z3AyhI3/w4kUgTlGLC6dC94sdS/eKYn2bfo9+gKnpr/97W/+fBHjZSSu9ZXZXSgLvNTM8Kg27H1f2dWEEELIYICgvluNolSQWPeHP/yBPwRCyIAo1VmoVEqZoyBubJUQ9P2E6SIVwUQzFTS99nDgd2Wpa017wx1rpDtnEUKGHwqaivCnP/1JxT8DxcpJACz6l8qsWbMCVuZYKLP+bN++XTo7O/vdrgmakAVeqK/ltOv2NapdQkjfwKkGGbQmWDLxEgKcpZaNMzLxCknVt+TES/Utkqn0HIiGmobZC3WzxXgTGLminLbXVqpICG5LrrDIRE8g3dul51k2QbjsmrtHe3BqsnYgcnL3YVEVQLu50nWdWnZu3b03qlOTtWWioHDGtAvux8RMEDdZWbmwoAjg/LV336BCLIiZKuubfKFUurdb1t5zgwqPXGGTG7Swz1Zc8ykVJKEtdXvq2qNtutd3CZel867vBUpwPp5TMQHYgIknJN3QolvvNM/lI9bbKfE9W1Xc5ImctkksnSzYBILn2GCLa0Dki7+LrsgJGwS1LFlHCBkNwAEJ22CyZMkS3QaTiooKddDDNpjgd/hll12mGyGERNGXmCa82F2K+KY/5eXctvE7C6WSbQ0FazNrN22VxrrJ/f4hhpMhCiUb5M0xEpXSud9bpe752yTe3eY7b6M0KBx9Ibw66aST1EmqlHuNCh6UG1Bwjy9XDEUIIYQMBJRdIoSQvcXeGPuiggeSw4zkxLl5x2Sq6jRWtPnlp3X+AkdXJKZVVyPheu9QTKzlfjfYIjFCyOiEgqYiDIaYCSAAayA7ulQmTZoUeL9jxw6/T26bA2kXbRbqKzK33TIQ5fa1XMJiqjAobeE61mAjZLSCxWUICyH+sw3Cpe7u7rxj4VTQF6nqRsnUT5ZUnbelaxqloh+lDgbC8095WcXbnvKETPa6Z+NL0r1rizoS7ffWs2TWESfJI9dcIp07vBJoENXYOSo2isUkUVkt8YpKmff6d0pzrfenqvnYt8l+x74t77poC0Kd2knT/O87t67x93Y++meiKmvX+mxA1IS2KusmBK6Fa9dVxWXNo3fo/exY9ax+vu+bz5DD3vdpWXlrTLY8/5hMPeAoaX/u73rcPse8U+91/ZN3++/R5tq7r/cFW/Ne/0F59e+3SKq3R9K9PSo0wvXxPOx6OK+qtk7Pa115vyz52NfxiKzHejyebSaV1Ovb/YbBPdu1Mpm0L2pCW/jOrlXo/EGndoJII/7b3jd7K2mJd+2ShDo5bZNYx3ZJZIMyxcCEDdtTTz2V50Y4d+5c3cPJCRtKFxEyGuGYhxBCyHgFAk3MmwoJNcML4SaiwfFwko5a+HYFN+Usin/2s59VMdPEiRMDSWBrNm2XqUedUnI7brJEOHnCdVstFSSudOz/dk/UlOzSzyDWevvb3673WY57dlRgwT6zUnJ9PbdwG8yuJoQQsjcETU1NTTJlypSSzkNVDUIIGSj9dRbqr2gHlXxuvPHG3PtYPFLQBHonL5B1992uyRgvvfSSus2eeuqpMtJhggQhBFDQNAzA2ttoaCjdfjx8rNuO+3og7YbbGYq+DoWADCXtXNUxIaMVE1qMBf7tscVyzz33yHFLFuv7u+66S2JdbbL1+aUqnoED0emHTBPpfUaWZXqkZuJEdaVAqcuzzz5bz8EAHK+xAIG25qU2yDdOWxi8zr/9m3534oknyje+8Q25pfcj/nlnZI/9t8dO8q4fE/n7Nz6kZXsu/rhz3Bln6HE498c//nHe75OG6gq5MnTd03/xJRVh9e7erq55oOOZu+WoQ6bJy7vXyRe/8Hlt9/TTT9fj8N2VV3zSP8+OvS8W08kGBKM3XvFJEcEmctxxx2lZINBUFZNX/vZLvY7tQdvGVdqvf3vs9Xp/cMyor6+XCy+80L8nva9bbvHv1X2uNz7TrMI5NwiTO/eT3nm/+FLgGY0F8LzNmZCQ0cjmzTnhJSGEEDKegLMQ3JSwLwUT00B4Uyg7upTSDWGQeIIkrIMPPtj/LCMxmfiGM2XClP3KaitcHruvctlRhEVQmZpG6Vx0stS++FeJ93pzCvT305/+tFx11VVyxx13DDizuT/BhP48a0IIIWQwBE1f+tKXdCOEkOGiP2PfqHLYpfLMM8/IypUr/fe9U/aTTGW0SQW+m7XPPFm/ZrUmZdx8883yzne+U+MLg8lgOyqx/BwhBAyvfcc4xc2qR5ZcqYSPxR+0qDYH0q7b5lD1lRAyPoAwCcIb7LGhTB4EOnDLMSCswQYBEYSQECT9/ve/V/EMNnsNsQ7awh4iG4iEsAcQM+E77IF7noF2UQoTNaTRDzs2DM5xBZn4XQaxD0Q+4eseeOCBOsDff//99RgIkiDehCAKIiHLhoAYCN/jO5yL9xBsqqDoxhtVXIN2MFExgdYxxxzji5YASg/ae+ztdyz6gOORQYH7QrY1nlFYfGR9wh7XxOsrr7xSy5Wib1beCIEZHIM2ca/heyGEEEIIIWRvggXs173udSVnOZuLEByaSjnPjse+EBgzf/nLX5ZHHnkkkP3c9boTJFmmmAlAhFTdPM0vLxd+XwquCMpI106UjgPeJenqCbJhwwZ57LHHZPny5XLxxRfLd77zHV+MNFw/C0IIIWQ4QVzDDewffvjh/AEQQgY8Fxhq+lsOG9x0002BZIue6bnkC0uCWPm/X9A9SlVPOfztGheYOXOmzhfuv/9+GWzcJIjBAKKol19+mUkShIxz6NA0DCB4bcRydYIGrc2hanew2iwVBNH7KjlnQfhFixapipiQ4aSrq0v/O1y/fr0O+LDHhs8GUg4oXVEl6ZomydQ0S7qmWVI1TfpeEqPnVzTKqq1b75WF3LKrQ3o7PZe2RFWNzHnzmdL62gtakq2ncbY0z10kte13SN3BJ8kX/vhiXjsofZZRvW1a99+58rtaKu77P/m5PFZ5sNS2zFGnIuzD57ugfVl3vZYyS9Q16flwSkJ7v1+x2e9Tw7R9tFxdsqtDejvaZE93Uo+193bdRx5fruKiVZu2y7Gf+qGWutu5I+uaEovpvZ192TXa/2R30j/32E9eLfud9215LNsn3DtKu6HNx/74otx3191+qb0wKCWXqKySdLJXKutqJDXvaPnbX27wv8c13/S2d/nl7Qzcg+2nHnuSxNbfIOl0SgVmmZoJcv/jy6Uz60qFz/76t7+pixZ+XngWUT+bEU+q1ytZ17VL4l2tEsPrzl0SS/X/3ybqiGOCZxtEcthgRb43a4yT8YfrqkYIIYSMJ8otd2YL6AAL3wN1HcL4/z/+4z8C5Y3Xb9wkazdtk6kV+0hLtqRDVNm4csrLFXJmwvEbH7pVX894w3v943C+teOSqZ4gHYveJWsfvE+6Ojtl9erV6tSEkjvz58/PC5IUy6AOf0e3JUIIISMZiJncJOvDDjtsr/aHECLjrpxZf9yJ+lsOG4nLS5cu9d8nJ85T11aXsBNsz7QDpGrTMxJLe7GDO++8U044ofRS14NRMny4nJ0IIWOL0RMtH8VUVVX1y7kofKzrcuK2OZB23TaHqq+lUo5ACf0MPwNCBkvUh8HgmjVrdIPQzl4PtORPJpaQdG2zpOsmSap2ombQYstU1uaLWVSDkXPsGemsfvgOyWQHwt27t/ufxxKV0tGTVuEQRDut61+VWSf/f3LAgW/Wxfn7r/IGpxPmHiQdm1ZJqrtDkp1tKuTRvIJEhaR7u7y2Kuvkof+5RI8Bna3b9H3d9Pl6blSQAMJM6DTRp4mLjpGu1m3aj1fuu0WvA/ZsXiOzTzhHAwW4LsRYECNV1E7QTOkph79DWjuTuke72L/8yN+ku21X7gFkMnqPW196SkvrxeIV+jPtat2u92jBh/oD36z3Dpb99n+k9aXHpaK+WZLtrdK8/xLZ+aJXng+gL/GKKn2b6unSDc/ZP05isnmllyWOz9G2Mf317/WfAT6f3ZOW9f+4WdLJHqmZOt97fju3SCyWkER1rX6u/U5UygHnX6nf455HFzGReLNIHbZsrfBMRmK9nRLv3CHxjp2S6Nwpcd1aJZZJldTqli1bNLM9DNyxrGSku02aNGnYBcFk7MMxDyGEkPHKWWedpa6nEJPDAbWvYEM5JQmwaL5r1y5paWnxj3cX0i+44AL55je/KQ8//LB/TiZRJWs3bdf5hVsirlDZOPsccw28tvlOqeXlcJzNW8yNycb5B33MG7eHyVTVScsx75Gtj/5BUr090tnZKdu2bZP3vOc96uzq3mOxIE6h7xhsIIQQMhJx126QjIa/74QQUoxS5w7h8W+h8XDYnagUgU6xpAG7DsRBKMHttvXAAw8EDCp6py7KOz8vCaKiRnonzZeqbV7iB5I2du/eLY2NjXqtyy67TD+/4oor+i0qKrdk+FCJywghYwsKmoYB/DEw2tvbSz4Pi3Uu9fX1kW0OpF23zaHqKyEjESzqwl0J2aomWrI9HGsGAha5VbiUdVpKwXmptkmzZSU2Nit9YlCsgpne7rzvsHivDkRwKJruiWnCi/MQ9uAYExHpQn9vtySq6yST6tXvOjav8oU+sXhCRTg4v3vXFhWu4DoICrjBhNqWffzz2l5bqcIlCyQYEAhZX9CuimDiiUAGdDhzGlatJrRSIJxKpySTSetbE3dlMsmCAQu7Z4iZDrvkusDn6Hfn1jX6DAzct4m2IODCPRr2XF0xlxvgwDl4Pvj54DngueI+q5om63Fu5jdelxJcGRXg51JVJylsTbPFl95m0hLrapNEV6u6OunW6b0u1dEJAkds4ckZ/v5B2IQyg9hDrIvXWEzrj9iXEEIIIWQ8AzETFsRRbrmUcmeluAhZYABipq1bt2q7do67kN7W1ib33ntvyJlpu9TNfJ1IPBFwR8JrjKcxz1h124/8hAsLIuBzjN9tvoPxO+YU1gaOsUQNN2HD2rVrFBJOhWk5/G3Scsjxsuuua2XDqy/qmBQuw5deeqkGP1599dWAqCnquRb6LhxsKEXgRBEUIYSQoWbZsmX+a7ozEUJKoa+5Q3jeYOPfQuIbd/w8GAIdawOOR5gTuW39/e9/949LV9RKasK0vPOjnGCTjqAplUrJQw89JCeffLK2jXu06/a3z+UkmAzGeYSQ8QEFTcMArL2NHTt2lHxe+NipU6dGtjmQdt02w+1C1NHd3V1SWZ1ifSVkb4FBHhZtTbQEARP2eI8M1YGAmsSZ6gYtEafCpVpPvKSl4ypqIsuHjWVscLzs6vN98RIW6yEKsgV4gIV5E92oqCYWUxeipgWHBVyWEASACxFESxAcmfgHLjwmmoJ7E4RHXiZCRo8NZx5YFjNIdu6Rdff+StsDaBOv55/yiUCfOjav1mut/8ev/XPDZSHweu3dKP0G8VOFuhyZ01Sur1lisYCQy8iJrWK+iMjry0LtZ6ANTEySPfos96x7UQMiuK4Jp3BNnOcGOIC5MtVNnSfJrj0FszNcIRiubZ+NWWJxydQ2SbK2Kfg5xGzJroDAybZYdxs8oPoEYuDnn39etzDIDjRxE/YILGFDCTvUSSeEEEIIIUHgKARRE/bHHXecn+08kKxdCwxgbBYWSVmJBKyN3H777QG3XZSZUzfaeCKQPGBzCYBkBpsPuONtc6S1OQXETO64Ha97dntusrbHd7hOeFweLjVncyfMq2Yd/4Hc8RXV0jv1QMmsypXeQwk6jEPj8XiglFwhELyxTG07LhxsKCVYw4xrQgghwyloOvzww/nACSEDptC8oZD4Jjy2tmP6K+6367gOTWDnzp2yYsUK/7jkpLklJ9KnJszUhPyNa73S1P/93/+tgia0beP+gYiKyi1T7T6bUkqGE0LGJxQ0DQPz5s3zX0NcUSoQX7ilRlybVLyGC4S5KPW33XCZN7ev1u78+fPLajOqXUKGCqjIURLKhEqueGnTpk2ayTsQMvHKkGDJc1tKVzfqQjYJYuIjEwoZ6+69UcU3PW3bVZSjzkwQfWVtUd3FfXuP7yBewms4K4UdoFTA5NiqZlI5ARAEP7gOAgc5J6OMV/bupcc956d0Sna+8Kh079ysx+cEUF6bcGCyLGsca0IfgOPgmIRj1GWp0ytRZ4IkV8SF7/R+QgEPc4nCc7ESFJaBrWImCKGmzlOBlfYpkwkESCDmQhk9N2AC4RQcq3rbW1WQZc/LXKoAnklUdoae27rZb2tMC5qKOTpV1koK24Tpwe/SSYl37XYcnbDPujplhWV9gSwXbLDzdUFAafr06QGRk20QCCcS/F1DCCGEkPHJTTfdpBvYb7/9NKDwmc98Rt8PJGvYXay3drCYbo5QTz/9tBx11FH6+foNG2TtZjgz7S8SrwiIiYAlBrjuSza/se+AK4Ky73AsHFRxrome3PONQk6sAPMBmzuFx/Gbl90j3R3tsnbdepk5c6b/+ec//3n5+Mc/XvQ5lZql7QZ0CgVrmHFNCCFkKEGyI/52uw5NEPH+7Gc/k7vvvlteeOEFTd5GTOXggw+WU089Vc477zyprfUSFAkhJAp3DOuObUsR7bjH2DymXOejQtd59NFHA3Gv5MS+Y7g+8bgkJ86VdY88qFVMHnzQ25crRBps0dhA53iEkLENBU3DwAEHHOC/htgCg+e6uro+z3vppZcCbSDg6bJo0SJ58skn844tRldXl4o9jIMOOqhgX63dUgRN4euH2yVkoJNSOCqZYMndILrDgvNASVfVR7gtNau4Yby5LfUHd4G9YbbnFOSWLvNLsKWS6hSEBXsIkrDojn24bIJXwg6CnC4V5wBzYAKuO5GRyaTyStkhEGCin4r6Zi3vBrEVggaGiX3W3nODZjXD+Qn9hHNSqrvTd0rCfu3d1/tCLNxDZX2T9s+7j17NtIZYCmIlODAhuxrHucEIE3TFK2s8URSeQ7Z8HkRTuD6oqGmQRR+6XFZc8yn/fnDfZhOkgqwXH5OJC4/yRVpuMKMQuHf354Vnjvd6bpYoR6lxT7xC0nWTdAv9hyex3o5IV6d4T2mlWzEBxe8ybEuXLg18B+cmODqFXZ3wetKkSRLj7ydCCCGEjBMQSMBCd7jcQrlElYmAEMfaxvjKTdJSZ6a2nSLxVXliorD7qY2tLaEh7IxqWIIB5g8Y60MI5SaEhClWag7zG3NoCl/Hv/7iN0smvkPLK2PM+dnPflbLzn37298uSfiFrHAEYqLKZxQK1gA3AMTgBCGEkKECf3tQKta44YYb5H3ve58kk8G1QyTAYvvLX/4i3/zmN+UnP/mJOpMQQshguw0NpbgfgiYDbktR5eaKkWz21pgRX8MeDnevf/3ri54zVCWkB2uORwgZ21DQNAxg4ccNWkKE9KY3vanP8x577LHINtzPTNDkHluMJ554IqDcDbcLQVNDQ4Ps2bPHb/ftb397WX2F9WJzc3NJ/SHEFS21trb6QiVMLl3hEsR4AyVdUSPpmkbJQKxU3aivVbgEt6WsiIT0j3CpM7d0mVv2TdU4WVclLLirgKiiSnrbtqt7k4mgciXQuvxMYxzrlpsLC5omLjxa9+ZyBIERxEYQ8Khz1MtPqAgIjkwohafiJL9bXr+89k3AlvFFUt5nmZyAJZ7QNixgYY5LOTeonFAKwQmAYAWEQrnSbxlPOJXJ6L3htTovJSq1fWRoh9H+pHOuVJJJa/ACbXRsWR1wrEKfq5unqmNT8PPcz8ucocyFyu+74yhFSnB1qqqXFLbGXNa7kuqVeDdcnWyD0Gm3xPBZsrTfaZjMIasQWxhkEprACYIn19mpqamJYidCCCGEjClscbvUYECxRfdwUAHCHRMzYU3D3Ix6puwnU4+eFylKMsLup+7cCOeYeyxKR4edaQsJnsKEj3MTFCCEKiSGcvvWtXO11P7zXp1fIwv7hz/8oVx66aVaXi+KQkKlYgEZ9ztX+ASGIgBCCCGEhMvNgd///vf+6+rqanW/3rFjh1/tAuDv4bvf/W659tpr+3QtDINzi7Fx40b/dU9Pj26EkJEFBI3f+973VOhf7u+AQlx11VXyyiuv6P7888/3P8drex/+fVBuPyDUhMEE1n71ffMcqairKq+jVfNk2oEH+QYXqCZw5JFH9uveBgrawj3hGVx88cX8fUnIKKdniMY8sQxUBKT8B+c4Ivz85z9Xi9JiJbFs0Ay+8IUvyHe+852i7T///PNy4IEH+u9/85vfaFZBeGD+3ve+13//3HPP5TkshfniF78oV17pZRTiDx5cbyoqgkKO0047Tf70pz/pa1ish90iou4PThE2UL/ooovkmmuukcEGEwVcB8BlimXtRie7d+/2S8K5giW8dyeV/SWTqJR0NdyVgoIlvJaK6kG5B5KPLahbyQRzFAJwSHJLJpiAxjKR4WJkYhpPqJRSgU/TgsNk1yvLJN3bI/FK772VV/Nds7J/wuCCdMgnfxjoEwREvsDIKW9nfXL7ifOBio2c4+qmzZfOrWvUbalz29qsc5N3fjhogGfglaiDq5N3HIRJKJfnl9lzgEMTHKjQN7gxWYkJ99kgAxztwj1KhU+V1fpswm157VVLZX2zOjWhzxBxwS1LS/Ule7R8Hdq2n1Gqp9O/H9w/znPLW4zLknPDSbI7J3LqzomdVPCUHrjrHMTJhcROEyZ4/72T0QPHQITw3xchJCdQQmLW448/3qc4xkQ4ECi9/PLLRR8h1mxQXg3umJadvG7rTlm3YZNMPfLkyLGxKyoCUa/dknOYG1jpaMwRBjLetrmOzRlKpfq1R2Xb8rv9bOw3vOEN+kzh/FlMCNafjGz3HBM3lfKzIIQMD5xjkLHEV77yFfnWt74V+Oycc85RgcDhhx+usRyEwSB8wt8kK2cLEomEOjaddNJJJV+vHLfs22+/XaZNK889hRAy9Jx++ukap0LM0RVBDgSUr77xxhvl7LPPljPOOKPf/ehPO0OF9QXxasSgC/VpJPWZELL32Lx5s7zrXe8adC0HLUmGAQyK8QscSltw3XXXyZe//OWiLkZQuRo47pRTTsk75h3veId+B1cbOwd1oQuxc+fOwPcf+MAH8sRM9rkJmuC89MADDxR1lMIEwM06+NCHPlTwWDI+gMNXlMsS3kPQNFAysUROsJQVL2Wy4qVMRQ1LxO1FPAFSsNyZlXeDqAeuRlhwX3Xbj1ScBAENtp0veDapJrBBGxDWQKCDhXp7r+UUcCxER1g8iMXVpaiqMT+rGAEEXwgEB6R0ym8fbUCUtOuV5ZJOdquYCAIlFQ/5zk0x6dqxQc/TffZcOx+ERU2+01FWpGQuTrj3MPGKSt0gooJACc8DgQ17VmjLLdtnbaBNZHeruAvPIQPXvZjMOv4DeUERBDrw7CBYgnDMfh5hQZTrNkV3pmGiolrSDS26BYADWLIzJ24yoVM39m0S813D+v49/MILL+gWprGxMSBwcgVP9fX1g3WHhBBCCCEDJkoU89prrwVKEgy0tAOStCDs+etf/+ovtmXiCVm3foN079rmu5qGRf+uE5MlJeBYJFq4x9k4HnMOS9CIKh1XDphDYXyPpASM+UtNSOies0TSzz3iv1+1apUGe//7v/9bJk+erJ+FS8qB/pSMC58zmGU2CCGEkEIOTYjFIKh+5pln5omQIG7Cd29+85t9JxSMAy688EJdP4GwmRAyPoDwxgQ4gwXiwH2JecLCn6h+4D2EANi77e0N0ZD1BRQTfhXq82BAsRQhhA5Nw+DQBKBcPfjgg/1ybyjj9uc//zlykIwazx/+8If99//2b/8mX//61yPbhTDq29/+tv/++uuvl3PPPTfvOCz2wUIVC3Q2sH/mmWciHZ1gB4ZMxjVr1uh7KINRk9Us112effZZeeMb3yi7du3S91gEfPDBB2UoYObQyKKjoyNSsIS9iewGQkbLOE3wHJZCbkso7+Q79JARwYprPpUVyTil2cJORBGORXAVAmERFIAIB4v+JjqCwxCch9zSaC5zTvpwXsDAxFQm2IGQysRIuLZd181s1mNeXBoocRdJLCbVTVP94EHAESrUJoRC6//x67zn4GZsR7lHuc5Tbha2ldUzYRKe8a2o5eEAAPljSURBVOKLf5zXRXONCjtPaR8qqkTSKRWJmZgLZQLxfMvN9CbDBMROPe2Oq5Nbxq5NYqF/e/1h4sSJeY5OeI+trq5uUG6DlA/HQIQMHfz3RcjIxnVZMoFS2KHJjsH6yg9+8IOyhDcob4A1FazDmGvRjJmzpGvBm2XjmlV57rLuGNl1aLKxeZRzrIt7zmA4NJnrk80RzDW3mOvqyp9eKt27tmr5Yrhy2/weDt5wFAelujH1x7mJEDIy4BiIjCWWL1+uFS9effVVmTdvXkkCBfzd+vGPc2tpGAuUmqhdSsk5+xuLEk2sNEHI6KNYKbiBlKvD7wM4w7a0tBT8XVKofbgk4XdKVVWVzn3mHXCoTDv5k4Fz1z95t6x59A7Z55h3yqwjCjvPYY25/vnb/PeoBvTBD34wsi9XXHGFJlb/+7//e8H7HYoSfuH7XrBggcbaCSEjF/xew7/VwXZooqBpmARN4NOf/rT88Ie5ha1jjjlGs+CwNxsuLARhM+HT3LlzVXhUqDwMhCP/8i//okISEI/H5ZJLLpFLL73UtzKFGOlzn/uc7g28v/rqq4sqXt0SdxAz4Y8R7A/h6tTZ2Sm/+tWv5POf/7wvZsIf0EceeUSOOOIIGQo40R5+MEjBoiYyYCFwW716tb7GLyEroTig9hF+r27wS8J5jktZp6XqBs99h4wyQRN+bBWSyaRygqBYTOJwo0l2qyADi+0WFAiXgvPJft7XsXqtbHm3cBm6cEkHYAv8YScpCILwXyT6DPFTlNDIqJwwWZLtrb47komJXEGQ69Bk1+1tb/Wfx5wTz80TX5nQCv1FprUJvuBSFS5dES5h5x4X5dJU6F4Ov/T6yKDIQEtgkL1AOi2xnjbf2ckXPHXvklh3+6CInZC1D5EzFgf32WcfHaPgNUqUlGO3TsqHYyBChg7++yJkZFOKYOass86S//u//9PXpZY0Q7tXXnmlLFy4UNc34E6NfU1trRxy1pckOXFeWSKkgQqVyj3fLflt4iWbw7gipygBlp6z8RWZM3OazJrquTLZ/WOMhzl/qT+Pcsr6EUJGFhwDkfEO4in4u2dxmPe///3y61//elDa5r8vQkb/fKPYOLfYd33NX6zUNQRNW7ZsKStB4PLLL9c5DJIyYGJRPaFZDrrw+32Wpi4016hb+UdJdGzX1/h9iNLb5T6L4YBJFISMHoZqDERB0zAKmrA4hNJx9957b+DzpqYmdT3YtGmTFyB3SsLcc889cuSRRxZtFwtPb3vb23xhkfVv+vTpmmXnfg5gqQqnJqh4y609XVNTI1OmTFHxFf5gutf70Y9+pPasQwUnAkMHJm747w+CJQiXsIBpr9vb2wfUNv6LzlQ1OGKlXKk4FS3FE4N2H2TvoaXasuXdLCs5/JkJhVxxjltuDkAchNJunkgpJnXT5knHltWeM00C4qWUxGIJyaDMWiYtddPmy+SDj5O1d98QcIbCsVjITyd7vHMdkRD6Ei655mLZzb44yW80WEbuqf86LyCegtNRw+yFAScmvVbYHSkraLKAg00urAxfbcs+fnm4dLJX2wpnei///sdzgiz9ewSxVzrwHGcdf6aWpjO3qZpJM6Vj86qAMCueqNB73f7M/d53sbhU1NT790jGCOmUxOHg5Ls6WQm73ZqNM1ApEsrUQdgEgRMmv/YawmoIrcnA4RiIkKGD/74IGR0UW8Qu16EJZdCxGI9AAlyKsMCG+S9G7LOOeodMPja/REJ/RE3liJSiAg/lYu6smANZooZ7XbsG5haYG01b/BaZW9WuQnhkOiOZCes9H/vYx3Tbd999864RDmbYzyXsmkUIGflwDESIyKGHHiorVqzQR4G/e3AA4b8vQsYXNr6FwAixWhvPFpt/lDI3KST+GUiCwDXXXCO//e1vZcOGDfp3vOXoU2XKke8MHBM1Byk016jasFyq1z/lvzdDg3Bf+iMo4jyBkPHJOgqaRr+gyURNF110kZaGc8VLYfBH7Oabb9a6zqXw1FNPqSVqX3Z755xzjlr/YdGuFODi9LWvfU2FUYWA8Oraa68d1FqzUXCiPXAgQkP2CQYl7gbhEkoNDoR0ZX3AZSnjv54gEq8YhN6T0eLS5IqXUMpAhTaxuFQ3teQt5nul2G7OLrpX+0Ign0IOTs73h/+/X8hTV50XFDRls5LRFzg8mWuS5xqF/9Yz+Q5PEpN4ZZXMOv4DfgBi7d05ByMTQtnA/4VfXh4QCJlQKeoc/TpRoffiloQwhyY32OBOMHxXp6wLE/qvbk4vLi3+XPxnAJETjotJdXOuPJ7783JLArr9LlYqg4wh0kkVO6m4yRE66dZb+G9/KVRXV/tOTu6G8nVweySlwzEQIUMH/30RMjoYSBa0ux5z6623yk033aRtWIk57PFddeNkOejjV5ctOLKgQbg0XTkipSjHpf4kGIRFS2gHSQ6WOIE+Wj/1mKoamT1rhmxY9bI+AytDhzUvrPXAMRxl6Oy5wg0Ljt5nnHGGPseRkrVNCCkfjoEIEa1G8Yc//EEfRUNDg7S1FU6A5L8vQsYmNpeAMQQSHgY6ni1X/FPq8YjRoqqOGRCk6qdIx4GnBo4plFBR6PN4Z6vUP+vFJ0Bzc7OsXLlyUJIU3KQTxCU5TyBkfLBuiARNjCYNM1gcggAKoibUZYZbEwQm+GOEUi6HHXaYLgxhkQhuSKUC4dPTTz+tC0q/+93vtG407ArhjID/WN70pjfJRz/6UTn22GPL6i/K1+GPJPp8++23y6pVq2Tnzp1aAg91S08++WS54IIL1CaRjBy6urr0F4Upqm3Df2uplOM4UyaZRJWka5slhZJwNU05x6XqRhGINci4BYPiZJc3mI5VVOWXbMuk9T0+t0EzHIlcdyYtQhhPSEV9s/S2eVanftm6ADGJJRLq5AQRlB5X6R0HgVJV4+RAIACY25I6NmXFTFjAhwOSuUFZyTn0EYv+ON8ETxATuQ5T6HtAzOR1X92ZXFLdnbmvU0mvjGIspv3Dc7DnZM8F7dpzQwACwQa7f+yxIRiRJ2bS8oyZwOcBdynJ5D1/I09ERsYX8QpJ107ULY9Ub650nZWx64TgqVViqb5FsN3d3boAEF4ESCQSOjYxgZOVsMMGERQhhBBCSBgsqpsTEBbH3UV27IstuKMkA9YzkFhmpdNnzpypG0hX1cu6tetk6lHvKtiGlXSz+YXhlp3G/MISFwqd05drU9trK1VsFDVuLwW7JuYRNv6H+yv617l1jRx2yXUBARYSUF7DnCWd0TEanhUyvvFs7rrrLhU5IckNgZPvfOc7sn37dnV4hhuTG4RBAAhZ7fi5EEIIIaMFN+l7IGvmhJDRi80lXGHRQARKfc1N+nv8X/7yl0A1lZ6pB+YdE441GHgdNbdArC/ZOFMqdm/Q92j/0UcfVReo8JxrIPM3c3J1YRk5Qkg5sOQcGTUwc6gwEMQhcxJOXcuWLdPgcTEHsL5IV9ZKuqZZBzRpCJc02N0kmYrabHkrQqIzgQ2UgsOCuStOcl2GIA4KlHSLxbxScioeqpF4RaV+jOP8cmihNux7c1NSp6es+GfiomN0D/GPlYLDQN51PMIxFjBAm5X1zX62sjk8mUOUfW+Bh2VXnx8SDBUmygHJytdVNU7RknpRJeHQh9knnBO4LxVDTZ2XJ6YyVywr8ec0kitFFyqZZ4EM95mE22PZORIJyjj2dqqwCZk8/h5ip2ROxFcuEGFjsgyRNgTeBx98cMmOkmMdjoEI4b8vQsY7pWROu4viF154oZaNueeee9SlGvNlACG1L2SqbpTu2UdIcuK8fs9zbR5kY/f+lJZzRVGYdyARAnOY+ad8os/rF3J2coVTNp/CHG3Rhy7POzc3B4qrw6u5NFkpCwjRLRHP+OAHP+g7NEW5MzFAQcjIh3MMMtZAIB4J3vg7X2qy1Nvf/nb529/+pq/x9w4JwoMB/30RMnYYCWNdJI1+5CMf0fE5trXr1kvL6/9VWg47KXBcOSWvjUTrWql7+S7/PSrxXHnllf12Xy312dDhlZCxyTo6NBFC3AEMyguagOn555/vVxZJuqohK1pq9p2XsJes6w0hpYIFdFfQZIKb3j07g//NZV2GUGoNi/Q7X1jqOwtlMt5/w+kkjunSoACckiCMAljch8MSSsahDQiFsPCPBXp1MlL3JfGFTFZuzbuGSPeuLdqmATGTuS6h/3gPxyZcxxySUN4NgQE3wxmTAa/vj+aLhiLwxFmZoGgok9GgQbJrj77Gd2GREvoPgRKEXt51YlLZMCnfGQrPLJ3WvuU5Nzn9Qju45rp7b9R24W416/gz9Tt8BjEZHKkS1bUDygon44BYTDJVdZLC1ugFBH2S3ZJwRU663yXxnj19Nov/jl988UXd/u///k/L0h1wwAEqcMKG11VVnpiREEIIIeMLLIpjUR0uQFhYj3IC+vznPy979uyRz372s/LII4+oSzHAfBllDgDagPPw5KNPk97J+0FRPaB+uS5MpYydo1yb8N6SKXROk8noHKQUMK/C2B1zHZwXNYbHXMbdhzO1XVEU5kS9mbSs294ms7MuVgia4PnBwcnWHeDeBGfwQw45xM++dn8m9vPCfjiCPIQQQsYvv/nNbzTQb8LbO++8U97xjqCjYiGwrm7gbxohhITZG2NdVxSE329f/epXdUxuYoGuzk7Z8uTf8gRNhZyYipFqmq1VWODOD2688UZ529vepq9LdVVyPy/l2dDhlRBSLqwRRcgoALbvCPBikgUR07PPPis9PX2X+wEZiXll4VS0lHVbgnCppkkk4bngEDJQCi64O4IaZATDjSgousm9Rtk4uCBhId0TJKUCJekgNnLPNdejnMAn5peO8zKs7diM7HxxqSeaQtm3LComEtHM6BXXfEoDAWHg7IR7M2ET+oasagQg8F5FXMXETNlSda5oCAKoWCyuAi51gsr2KV5dL+nunG2sJ/RCt73v4a7kul2Ze5Q+i+52ScXj6qyEkn+B46y1rGDMK7HnPT8EQCDc8r/LZMvyZcviEVI2FdWSmjBNt7zydV27Ao5OCZSu62qTmPN7IPy3D24K2FAiBhmWcG2CexMETsjkgeiJEEIIIeMvkHDZZZfpdtJJJ6m4BvNjiJksAcjETOa4gHLsEOXAyfiVl16Q7tlHSkvLwqLXLJThjDLR5gQLF6VyggZRQQa3TJy5xYZL2/UFHF/NUTZcbqJQubyoPpmD1Lp162XSMZ+S6nVPyurVD+uzq6yslH333VeDKBMnTlThGARmb3nLW+Scc87Rnw9A4CIq8EMIIYQMBfPnzw+4CP71r38tSdB07733quujccIJTOojZLzRl5tQoe+LlcMeyPXDrrRXXXWVus665Z5n7TNX1m7aXvZ8oSCxmHTPOFRqVz3gf7Ry5Uq5+uqr5d3vfnfg0EJiJfdzdx5Q6PnhM3PdZfIDIaQUWHKOjBrGm1XrqlWr5IknnpAnn3xSVqxYEZiYFRUv1U+W5IQZkq6f4rkvVTeKOK40hAwFWOy3cmeewxGyi7sDAiQszNe27KML9RhwuyXn4Aw0+4Sz9TVENqnuTl94Uw6HX3p9Xvk7ODlBNBTZXiwmc048V9b/49f5ZeHwdaJCz0UbcDOye4RwCCInV3AVSdZVKdne6jtG2bPAvaMdPA+89svcRbSBAAU2ONhAvATxU2Vtg3S3bgmIwgDa1FJ2IScnCMp6dm+LfrYRLlNuGQxChgyUVune7Qmc2rdJYvdGiXdsU2liX9TX18uhhx6q4iYsIMydO3fM/qDG2xiIkOGE/74IGX1MnTrVD0CiZC3GyPYagqUpU6bIgQce6B+fqpssvZP3lQ0bNsq6v9+sY+5iY91wKbZwebi1d1+vrzF+P+yS6yLPdYVFpbo39VUiIur7Quf0p9xE1Hlbl98ja+/5pTfPi8dVYI5xiJXtMx577DHp7OzUnw1e77PPPhJjuXpCRjQcA5GxAsYB+LuD8qgAolsE1idNmlTwHCRQvfGNb5SlSz1X95qaGp1rYwwxGPDfFyGjg77KnvXn+3LK0YXPt/dIGmhsbFTBpjnNgky8UjoWvl3SDVMH5f5zDWekat0TUr3JK9NtXHLJJXLqqaeW5dDkfl7o+Q1WyT6WuSZk5DFUYyAKmsioYTxNBG644Qa57rrgwmghUrUTteRPsnGGpBqmi1SwHA8ZfrDwDSESgCORLZo/9V/n5ZVBm7joGHU3gjOQiW4QDECGszkz9SW2gWgn31EpJtXNU9VZKE9oFIupwxGEPl4Ju5gv6oGYqk/xVPZ8uyZEW8iAdoVTpRFTJ6qmBYflngFcqyDfKOL05IudHFcmtx+97a2BknYqlOrpDDhS6X3CiSlclq4AEEAt+tDlZd4fIYNAslsq2japuCnRtlESncHSlYXABPgDH/jAmPwRjKcxECHDDf99ETI6sNK0KLlgwUeAxf7W1lYthYaSaPPmzVOxDcqpJyftq0KmDNyJyxD6WIIExtRa8jrZIxMXHq1uTG7yhCU9uO3Y9xi/Y6xvgihzSbKybuF5U1+g35YQgrZnn3DOkJSHDj+f4P1W65yjpq5BZs+aIevXrfPFTSiBsc55jw3Bl0cffVRLAX7mM58Z9L4SQgYGx0BkLPGNb3xDSzIZcBW59dZbI12dMaa44IILAmvvX/rSl+Rb3/rWoPWH/74IGR24ghgQdkuCIyy44oor8r4Pn2+f9SWCCl8/6hpwP8X4GvMfI5OolI79yxMzlZMQ4YmanpTqTSsCbZx++uny0Y9+VBoaGsp6foWez2BSzrMmhAwPFDSRcc94mQhgUnXKKacUdGSC45KKlxpnSmrCdMlU1g57HwkJ4y50V06YLKmuPbrwb+5EcAnLoJRZSJwTiyXKdmKC0AbZ0oXERF7goTfScSlKHBV9TCZbus47Hk5NWv7NRFBwbkr3IQ4qci3fYWnXloJt4Dn27tkh8YpqaVqwWAMfyU6U0XAFTTWy+OIfa9mLnIgrlq28V2LfQiKp3CH5GeeE7A1ivZ1ZcdMGqYCDU3d+eUiAzKU//vGPY9INYLyMgQjZG/DfFyEjFwiV/v3f/11+9atf6d8+OC784x//CCxgm1OQOQShtPOcN71Xpiw5JVuGemDJGlqmOjtWnnPSh3VfyL0pLDzCvASiJhMzmdDJEjjCzk9ugohdJ0pYBND2IZ/8YdF76I9Dk13H+lbwfh6/Q7p3bZWauno5esmRkW3Zz6S2tlYuuugiOfroo+Woo46iexMhIwSOgchYAuVmFy9eLC+88IL/Gf7ufPvb35bjjjvOd3S8//77Vfj00EMP+cfB+RliabgQDhb890XI6KOQW1Kh94UoV8Tjtrts2TL52c9+puub5kIbFjOVM853EzVsHI85B+YxkfMJiJrWPynVG4OiJszDPvnJT8qJJ56o667h0njoOxhucREdmggZeQzVGCg+KK0QQgaN7du3B8RM6co66Z38Oumc/ybZc8j7pf2QM6R73hskOWk+xUxkxODWbO5t2+65BWUy+hpl5kzMBODEhIV8fB8tZoo5wpz8IAQcljAQ90rb5QMxU7yiMrqjfYmZ/GMyWVemeu8jLVlnzlGxkJgJ/cSf01xfcX9zTvyQBj0QDAj3FWXj9B4KOKpBtDX96FPUFQpYFne4vBxEYyuu+VROzIQ+1zZEi5m0j/5NOi9RJrDG66PzvPFzI2QkAOFucvK+0j3vjdJ+yPv0byH+JvZOXiBpR9S7e/du3QghhBAyOoHL0sqVK+XnP/+5Lv4jG/inP/2p7Nixw18UR0DS3T/08MPy0KNLpXbWQk8slEnL5hUPRM4jsPiPRX0kA2CP91EgMGDuSu6wGcIeAKEPREfmvBQ+F+5J+A4lqiF8QtAAzkz4DHMhBA+wueciKIHrYcNrE0BhD3AsztdEi+ycpxjh8937L3Tf7nXcvuFZWMlt/7gl79TjWl5/hqyKTZelTz4tK1/8p4qYnnvuOXn44Yc1uFxZWakLmE888YRcc8018uEPf1g++MEPytVXX63B5EKJXIQQQkg5QIx05513BoJmECm95S1v0eQnlKifMGGCvnfFTChRe9dddw2qmIkQMjqBAAliHHMbwh5usBDtQDizZMkSHdtiXwzMYzB3KdWRyK77rne9S84991z5/e9/HxIzVUnH/u/wnZmixvl9je2BnZPq7tT3tg8Qi0nPrCOke+biwMc7d+6Ur3/969rXNWvWqJgJ4iVgzyz8/MLgGUK8hX0pn5dCuc+aEDJ6Yck5MmoYL5kNUGF/7nOf8993LHyHujERMtJ55seXqICpb9Q+qMjX8azDSq4snHvuxEVHq8AHg25PZBRsyxbb88rO5V3GK8EGF6mofiNYkKiqlWRXuydy8l2NLDhSvHSbWwrihV9e7pfXC5ff85yXQo4zFoBxhEmllMaDMAmkk91SN3We9OzeFnB1wvf4Ttvtw62qr6xvQkYCida1UvfyXf57BMoOOigXbBsrjJcxECF7A/77ImTvgozep556SoUwjz/+eJ44OVzKDO/Xrt8gMxYdIWufe9Ibq2fHrhAZRWUrWxazuSqZS1LYXck9XjOXs+5MWs65u6PPc6ykHEpLu65MoNB57vnr//FrHaujvF3D7IWBe7H2/VLTsZjMOfHcglnZbuZ2X65SpTo2Ade9KXyMPVe4ZEFYZsIzlAIEVg7QBUGhgw8+WJ2bEByaP3++L1YjhAwtHAORsciWLVvk/PPPl9tvv73ocVh3RBnb7373uzJp0qRB7wf/fREyNnDdkwo5EA3UJejVV1+VH/7whzonCs99eifOk+59jpZMlZd0DcIOTaU4NrnHrL3nhmxsICaH/79fFOxXYtc6qXntkTynfIzfp0+fLo888ohceumlBe85/FwKOVzZ52j3Bz/4gR571llnyS233CJnnHGG3HTTTWU/U0LI3mOoxkD5RYQJIXuV9evXB95Xv/aIpJpmS7JplpaYkzj/2ZKRSTybLewLlrLCpBhENN1eoCFaCBTLLn5nxTqZtFQ1TZOe3VHiqEy+UEmdlBrUrQiORwhkWLkGVzwVFgQlqmt1QR9l3aKAK1NAaKSipujybOH+6CJ+OuVnSkSJmcDOF5d6Lk2Bdj0xlys2gnsS7q/4deOBMntwskI2daBEXda5CoESN9AQRV9Z34TsNVK9kmjbJBW710tF67q8v6FjUdBECCGEjKUycsuXL9dEHizaY4GrGFjInzF7H1m3fY88+tQKmXbE2+XA076q3619fpl/nI3bo4Q66/9xsycCygqfqhqnSMeW1dLbvksX98ML/+aW5JZmsM/DjkzuORD1mIDJjrV5CV4XCzbgvbWBOQKSHjCvsePW3Xejzk90jpUVDuH4QkEM7O21W2oiylWqGHYPEEPhueHaEG25JfLMucnEXNjjHjC/SWPr7fUXNsOCpt7eXv3vABuCHk1NTXLYYYfpdvjhh+vi51gsJ0wIIWRomDp1qtx2220qlEbJWpSYw1ijra1NJk+erH9X3vrWt8oHPvABOeSQQ/hjIIQUBWIcE+UAe+2KdcytCPtSBU1wMv373/+uZTHhJmcCJoyXUbJ57fr10vzm8zQuCMLjfXcu4To2RSV1hM/Zs+5FaX3pcXWOdQkfj2u3/8vpsvP+X8nGlY/KHBNZ9fbq71UIk+BeBYdduN25Y3Y8H5Sog9PUZZddps8l/CzdZ/yZz3xG27VnCDET3mNPQRMhBFAZQcgIJ9G1S7eqzSslE0tIasI0T9zUOFvStc2RVvqE7A2wcN29a4svzIFgpqpxsvdZQWJSN22eBhRcNBCQ/W8brkKV9U2Btl3iVdlyEFkRkgvKr2GB3RukH6mfmSAKGdcqFMoGN/p0jtIL9O0shclA987NKmJCAKSo/asu8Hfn9VmzwR1wTOWEyVknqXA/s+9D4iQEOSCCQuDCE0PFAgKtTKYPt6dCZfsIGW5QFrFzh1TsWi+J3esl0bZZYqWUjySEEELIXqe9vV1WrFjhC5isNEFfpGonZhN7ZkuqYaqsv+7L0t22UzYvv0+mHHmyHgPBj59hnF3MN4GPiW1wTDgxAOIcbxzeFbnwj+/N8cn9rlDGM8DCP0rSqUNRPBEZbDBhkZWuC7fntmGl5+wYf56TScvsEz/su0GhTXNewmdugGL+KZ/w23Xdo3BM2L2pkKsVPsecBv22uQTawOa+R9vudc1hCp9b+eyWo94hXbPnSsWudZLYEz2eQ1AEwR1sek5LiwqbTOCEQDUhhBDSF3D+w0YIIWFKdVSKOs725irkipqiSq2F23jllVdUdPm3v/1N50kQX0LAZML/WbPnyLqNm6Xl6FN9MVOUaMkdq9tYP5y0UEjo5M0RvHlCn8fHK2TDP5+T7s5OWfXamoB7VFdXl5b6/NnPfiabNm1SoehVV12lZT5xz1Y2D/eH54Vn4DozGfZM3WcIZyZzaCKEEMCSc2TUMF6sWrdv3y5f/vKX5aWXXurz2HRlnaSaZkmycZYkm2aKVHjlpgjZG6y45lOh0mk5p6Zipc0KAQFPsr1Valv20UX6dCpZUkk7T8DTqwEKCJbggGQZ1sArVZcNCLjOSAXcl1RIBBenKDFVdb2kERBRgVFM5pzklX1YdvX5fjADZefcrPC85xP+FE5Xqk9KBp+d4/zknmuZ4927tuY9Zysbh0mOBUeiCfYlKoBDyHAS6+2UxO4Nvogp3htR1z3EAQccIN/61rekublZxhrjZQxEyN6A/74IGVyQbYwsXXPdeeGFF/zF7GJkEpWSbJzpi5jCZRVcgZK7iA/BzK5XlqloyUq1uSInOBKpY1A2qcHGueH2okqsuW5PhUo7uCXmosRBq277kQp9MKfRctDZMnY2TwifE75X+97mQnXT5suiD10e6KvNc4BbbtpKcUeVwLNnoz+z7P26oiSc47Yd1W9vjtMj8coqTzSW/f6wS64LPDP3GfnPGo6buzequAlbvCeY0FGIWbNmqbAJ2+LFi2XixIklnUcIyYdjIEKGDv77ImTkUqj0WViABGchlMeGwB7lLPsjirJrzZgxQ0477TR5/vnnA9+7JeamLloiXXOPkUxNU1474bmIW/IZY/OoNfxSStGVcny4fHdNbZ0cfVTO3clEWbW1tfKGN7xBjj/+eH3/05/+NNfG1q2Rz5sQMvZYx5JzhIwPYH977bXXyosvvqiDgccff7zgInC8t0Pi216Wym0v65Jlun6KJCfMkHTdJEnXNEu6tokl6siw4WY+myuQJ+Lpw/UoC8RH2k5W+GPipULl2vLOr66XTG+XL2Zy24IYKCi2CguYYlI3dZ6WaQuLfiCqihIzaQk7vY59l5G1d1+vAYiK+mbtPwIXmADgs7CgCc5UnVvXBsrghV2mPJekWLZEXLYsX8zra8dmuFpltPQDJhQ4NnwNfIcJTm97a1Exk1vyD/fllaojZJhIJSXe1SrxzlZJdO5UIVOio2/xYjweV0tjZF0eeeSRsnDhQkkkEsPSZUIIIYR4oIQL5qsQMT399NPy7LPPanmAvlD34YapkmqcoUKmdN0U/HGPPNZKwGEcbGIfV5yDBAaMg+EEBOGMm7BgC/IQOuXKUntl0iDegVuRu2AP8Q2ER1ZWzS0dhz5gb+N7vDcXWRwHAVQ4WIBrYBxucxpziHXLU1smNAgLrVyB1ZyTPGcmiKTMFQm4/XPBe7u+3UfYRQr3b/drx2KPwIgbuHDL79k92s8A94M5hMQygdIV9j3ad0vkKYlKSU3cR7duCKG6d0vF7o0qckq0bZR4MldKO1xeGNuf//xnfb/vvvuqexNKDmNcOG3aNJaoI4QQQgghBTFHpSVLlvjun1dccYXu3dJnxYCIKUrIZEKniy++WNcrUdoSoqWGhoY8MROYMWeuTFl8gvS2LJTOuskFrxd2fnXH9TaP6Eu81JdgCZ8XSujA5/a+5Yi3SefcBVK59UWp2L1BxVgmysJ88J577pEpU6bI29/+dnnHO94hq1atkuuvv953XypVDBZ+pqUeTwgZm7DkHCEjkIqKCl2Qw/aRj3xEF4mffPJJFTdhCyvCzV8l0b5NNyMjMclUT5BULcRN2CZ6e6i8seBIyCBigQRzBbJs5FhljaS72/P/O6+dILGKKj/TePLBx+mguLd9ly9IKgeIi3RxHg5H6maUkER1rX4XLiuHMnYQANmiP8q82UK768wUT1QEFvcD1wsJkQw3kIA2EYQIl7kAEE95/fHAMwgLqpDxjL7NOv5MP0hRUdPglcnICqnsHDzPyvrmQH/99pzyfZlUb+heMoF7yWRSkXa0hAyYdFLinbsk3rlTxUsQMUHAFOtuc/4lFGf69Om64IANwasJE3KOBIQQQggZWlKplLz22mvy3HPPqYAJe7wvBcxN0/UtkmycoSImiJlKnZNGlWJzhUdW0syOLeTmBOx8G/tj3OyWXIBQSAVI2bJqrthIz+/ao+0Z8YpqLY9tDk3hQAEEPubQhDG8Os+qAMgTFAG7H9dR1YRTbgmJsEAIWHDBc2YKkS2H7bojWUk69Mebe3mJD3iGOHbni0u9+ZTzLMPureYiBedbA/MuzAHDP7coF6uofiITvRfb1EXZcsMQuW+UirYNkmjbJLFUtEju1Vdf1e13v/udnyAGYZNt+++/v2aLE0IIIYQQ4oqR4J4E5yBgAiaImSorK33xTbiUXDFxzcaNG1UYhf0Xv/hFXbs0h9HVq1frNm/ePC3XlkRJ7e17ZOMLT8rUI2dJy9zCYqYo3AQDdx7hrueHS8gVKkFX7ueoKJGcNF83rOkm238nvdn7s8SWbdu2qcO8uTTBWRUl9h588EEtS4fSe3iOpQiUcJyV93OPp9CJkPEFFQ2EjAIQsH3zm9+sWyaTkTVr1vjipuXLl6utfxQxLBt375Z4926RVognooROWZET9ip0orsF6R9Y5LbFdixym6gmEyFmgrDGjgdY2LeybMjuxSK661Tk/Qcd0zISUeIifIdFeWQ+m3gpUVPruzVZm3A60nJuqV6ZsGCxtL70hIp5VFiFsnJZrMREuESE6/4UdJaKRYqwcHyyc7MnKAqV3gsLjaLcodBZywT3RFFwa+rRjHINhmSFUsiWhhsT2sBrc1jCcQhO4DgIzvDMEcSwkhv5oD/oq5edTki/hUtdEC61+uKlRGdrVrhUmmObUVNTo8IlEzEh2yeW/XdDCCGEkKFl586dmkkM4RI2vEb5gFJQB+G6yZKaAAemGZKaMF1defqDCXEgtsGY1hXwQyjjlpADJqzBnMTcSv15Rjyh52sZOhXvVOpxJnzCsQBJFk0LFutrE+K4gQKby5hYJ2rhH+A7V1QE3L5atjX6GeWoGs7G9uYFCBTE1B3K3JpcV1wrux1VQtoEW+HEBzD/lE/kibgwF7HSdCgxbgTcoLJt2HOM6rsrKuszaSIW81yn6yZJ7/SDdA4Vb9/uiZvUwWmzxDLR7rPbt2+XBx54QDd9FvG4LFiwICBy4niSEEIIIYRYWTkQFjCZcMb2Z511ltxyyy1SXV0te/bs0eM++tGPyooVK2Tp0qXy6KOPaswOTkwQREHYA2cmiJfgXmRCn7Ubt0jT2z6psbiN6sS6pd9JxeF5hJswAdzEiKj3Uce5JaMRe0Big30eJZpCjHHDP5+TZPb+kByOY+DQ5ALhGBxWscHMAQkHMG34xje+IV/5yleKrvWao5YrLCsmdCKEjE0oaCJklIE/7nPnztXtjDPOkJ6eHnnmmWdU3PTEE0+ohSMyZ4u2UUzoVDNBUjUTIxydKHQihXEzkcHae26ILNNmQPzjZhpjr+dkHYJiEl1uAqUisIXbh2sRBEcuyJ62Y1S0hFJU/nsvCxnXcsvbYfEcbdl9IMiBczq2rJbD/98v9LMXfnm5VzIiFpeKmno/mNHdGiFoUpGTV9oOTkuYCODaEDCZuCp3XLgMnudilWur299bGQhzbYJgye7Xylkg8ICgBAIPOAdBDcvGCAc7AoGJ7PXdTHdC+hYueeKl/gqX/P/mKypk/vz5WkIO1sxwKqyqyv03SgghhJChAYvsyJQ18RI2LMKXQ6qmyXNfmjBTko3TMUgfUJ8suQCCIB2bwrmnosoX5biL9jbOxvg47GhkghtzJUVbED254h0bJ+fG3F06F8DcAGIqV5iEBf7wNey6tviPLVyWDu9x3XD5OoDzrIQe7gtzjDDWR02YyOLOC4Cd5475i7kmuQ5XmNOZKxP6j4QJE4D5Zf+ycxSvxHivV/ZakziC9xOmYIZ3KcTikm5okZ6GFpEZh4qkU5LYs0VL02mp4vZtEnMSR1zS6bS8/PLLuv3xj3/UzxobG+WAAw7wBU6LFi2i6ychhBBCyDgjqmxcIWEMxEyYLyHuNmPGDHnd614np556al6yBwRM5lSE/YyZs2TG6w6SNS8/J6meHunas0ueuOazWqmhkMAIuMIi1221r/G9m0AQTowIv48qNWflrs0RFnMBgOOiRFN2fXcuMvXAo6Vy28uS3vayxLvbdE5pJenwfOC+D/HX7t275Wtf+5r84Q9/kLPPPluOOeYYdXL6xS9+UVKJuUJCJ0LI2CSWgd0LIaMA/NGbM2eOvoZdIf4AknwwWMKzMhtL2/DMsJjXH7Q8QE2jpGuas/smb6ttGvAiNRkb2GDXsndtMT4PX7ATU4GPOQZhIb6ivlldklRgE6/wytSFXI0waMaCvesyhM/MnakcIObxS9HF4lLd1CLpVNIvgbfoQ5fL8u9/3D/GSi24pSDMzaiyYZLn8KR/UTPBfsdiUt00VYMCWOhHf+GgFMhqzt6Hukg55fHmnHSuny2+9u7r854lSlyYGErvJ9njl9ozdyY38IAAimZU3HejOmDZfVrZCLdPdjwhsd4uFS7FIF7KbomuVol19V+4lEgk9G86rJZtg5AJNswQNZEgHAMRMnTw3xcZj2DxGIkw2FCuC0Kml156yc8cLoVMokpS9S2SasA2VV9LBZxLB49lV5/vj7vhrgRBEsa8s47/QGDx38bn7jgb85KcOKczWC46FpM5J56rL93ycDYmxpgapZ/97IPsHMbmA5ZcYe/Rho31cV17jSQGlKOzkto2vkbCgZaSdsbbNp+y+Q764wq6kKjgBh5wn0i6wNwJz8O9FxMPmetsOXM5HG/9s/t2n6Xr/OrPUyzZJPtco4It4VJ8gwoSRjq2S2LPVkm0b9F9vCeiBF8RkDCGsiMYj+677766nzZtGp1ByZiGYyBC+O+LkPGOW7YMwLEJIiU4CJ100knqvnT66afL3//+d3nqqafUeQiC+LBIx32/evVr0tvbIxU1dXLI//c9nSNFre0ffmlord8hPB535wg2ZwGuI2t4TN+XMCpqThKYazhJ0674qq+xfG7c/3aZuvBIefaGy6S7zXPBhXsV1oABEg7ss9e//vX6GkmtMG5obW2ViRMnajnpXbt2qcMTRGR2DiFk/M0xGDEiZIyBAQAW37C5YHEavzzCQif8culL6ISAdUID2LvyvktXVEvGBE6u2Km6ka5O44hwRkFU4AAL+omaehUMwS3JsnhNRANBEMQ4nqDHRD3eArqWhHhhqQYq1t7zy4BYyBbzyydnZYrMYtepyQbsCA5YgMT6q+XwNLCC81G/LnceJhf4DuIo6zMmHeijlq+IxTQg0b1zc0A8hGeDkhbqCOWT8TOYsVlJvtzXCLB4gRQLLGBDu3Br0mtngzDoFwROmNigX1bOD/fpipm8QBHuLaPHk3EEAoTdbRLvzImWvG23xFLRZU1LFS5h0OqKlhAwwmf4e0UIIYSQoaOrq0vnfCZesm3btqCzaUkJLrUTffFSur7Fc/Ed4jKwGDdbEoM5q5rrqLtwb6InHA83V5uXIAkiqjQaxtFR2dBuu24QAXOUTCapY27Nes7mBWK+YwECJBJAbOWWhcaTw3sbs5t7kluuzsbnVtLBFQrZvUPUtHX5woIZ1JaJba+LZXsbbiDExv12vFfSTh+Y/g+CLDxL7zuIvbp1jgTc52HPta/M70EnnpA0/rtsmCq94t1LrLfDEzaZyAkuTq6oLcRrr72mm0tdXZ2/tmIbxE7Nzc1Dcx+EEEIIIWRYccuWmXAGoKzcr3/9a42bXXvtteoif9xxx/nnIaYG4RP2GAm/8s9/CrxD/vnKK1l32ef0uK3PPpRXMQEgybgU4T/mPljHt1Jvem0n2dode0eVjrNEC3NcinJLxfge8wq7Pja/1HQsFvi8FHLOrH+VlsUnytSjT/P7jBjlP//5iixYeIBfmg+uVw8//LCei7XjlpYW6e7u1p8BSqBDXIZEAyQfYFuyZImKnvpycCKEjC0oaCJknIABAhbfsLmgZB0GXljYdoVO69evL8nRKY6yWbB737Ml8LmWr6tuyAmcHNFTprJuyBe/yd7Bc1t6QoVMGJir0Cibrbv44h9rljXAQBwim9xiv7cAjkCBge/dbGSv/JvWigic4wUpHHFSZbVkUqlgFnZWNOSXdtPBercjTvICAJb5bZMKG6ir4Ker3Q+I5FyhIKTKaDuJKs8VybIdtM/ZIITrHqWlLVB2IotlTWDiEC7T505AcoEF554qqgJZ3uiHPRcXK49hlrEu6//xa/+5QGhW1ThZj8PxZIyBjJ7ejpBgydti3e39dlsC8XjcFy4h2IM9hEtQ41O4RAghhAwtyWRS53RwW3KdlzZu3KgL6+WSrqjxhUue+9IUkcTwC5FtHuC6uUJEhLGvCX8wXrYFcoxfcU5YEGTUTZ0nkw8+Ls/JKGphH+2b4AdzFnWHqqjKlcrWuUsqryRDsrdbhUmV9c1+AAHgvV3D9tZvOx/zAnf+4Y7lo/oKIRTORfIE9iaoAsXEQ+rY6gRCrASfoWXkdH6A5I2MvsbPIOdS65XwtufoJl6gT25QxvqNY3BNd343lGDNITlxrgg2r8NeeWQInPZskXj71siELZeOjg5ZuXKlbi7IFg8LnbBBAEUIIYQQQkYPn/jEJ+Tqq6/WUmd//vOf/c9jmtQQ0zXNKHeRWfvMk3Xr1su0Q94oa597wp9zZdJp6di0Wsfn7tg9XJbNnXvYeNkSBvCdmwBh5aGtDRuT29gfY+9wiTlLfMC8xJLFLWbhutLie+D2Fd8jWdq7oYzOfRDzccfwxURY4eSKYHxlj2QyaVm7aZs0zDtYWv+5XCtdmFMw5rQQj4Vdr8Bf/vIXfc6Y5yJu+c1vflPOP/98dXUihIx9KGgiZJyDP/iFhE7m6GRiJ7yH0AkL5n2BwHgMbh/dbSK71gW+y6CcWEjkZK/3xkI5GTjm8KNCnewAHiKeiYuO8cskAOzxPpbwFskxgA2UfnNQwdCmVVpqAXsEIAqXlcvInJM+7A+Ww+XTwKzjz/QnArYgb05FCE4gyOA6TCFQUtU4RTq3rtG+uO3hXHyuYia4MqWSOlFxB/YqUHKwknC4vpWdAHgP3GCMfj7Nq3sNZ6e856Pl5rxSD+4kw+7Hs6P1nov+LPD8sgEPfa4mNMsKu/w+ZoM0fWV0kxFOqjdCtLTbEy4VyUwvBUzkURbOLReHAA4ml5xAEkIIIUMLFm43b94ccFvCgu6aNWtKmqMVKh2Xrm2WVN0U34EpU9UwIhJQVJSkSQ2ZbHlnLwEC43LXyRSEx6+uIMjAXKJ6olciG+RK0uUCAYZlUlsgAHMFjKfx2cSFR/vja9sj0IAEBMwJzIkJiQM2DwiPrdGOjfsxPkcfosbfuDbmGG65CD9j2pmXuIIqV/TkBhus1Leb1AHwPN37jwqgYF5kczHcD+YNJp5yk1TwPKzsNYIfeFbA5om4vsjQC5ryiMUlXTdZt96pi7zPkt2SgLAJCVrt2yTesVPive19NoVMcWwoO+Iyffr0QMk6bPvssw/F/YQQQgghI4Tt27fL8uXL5emnn9YNDp0oZQZnJozb4NZk4iQ4B2GtE+Ka9RDXrN8o9VNmyp7WHTL1qHfKge/+kndcfUtWINSriQE2pg+LegolU7gxgfB3Nq7GON/FhEhWUaKYqMidF3gxE8QRvHvEmN7ac/sdSJbOZHROZvMCmyvgXtBesVJ07lwECRTWB8wj2ta9rLGhRFW9xPU6KZm+6DBJVzdIvHuPPndsAA5O9nNBGTq4N9XU1Mi73vUuOeigg+TQQw9VURrKAVZXD24ZdELIyICCJkJIJBisLViwQDcXLJRjER3iJmxYPIdSGq9LLV2AgHqiY7tuYdKVdbqgnq5pzu6bdJ+pqBkRi+qkOPGK6pzbT7wiK/DJLVijBIQt+ruiIoh3sBCPxXUT79iCuZuxjMF1WKgEKidMDqr9dWAeRDOHs4Ii1Jy2iQImBCZcwiK/TRSA7QNCqlhcYrG4l6VdWSM1k2bouSZMMjR726mNDdcobxH/CUlU13pCokzGd0Ky/ts5YfEWnicmGxbwsICKBhJCmfeVDZO8En7xCr0/nSS8tlLvV8tZ1DT4JTRUKLZltf7sLEOkVAtZspfdlpJdEu9slXhXa7ZU3E5v3+sFlwYCasJjIg/hEsRK9hoWvygjRwghhJChAQu1KHeARBLMsTDXwmvsrbRBv9pFaWfMr1A6rnai97pu0oh2z1VRkj/OzZZ7zjqzQvQflY0cxnNpxfzCa8fKMqNtLKqHM6JN9INEDAsEmHDJ5gkYT0O45KIJBpmMBjHQFyQ32LzIkg6QqIFgAErYqbOqJiFksmPxKu0Tro9rhZ1f0Sa+c12nwhnXJkDCszEXKzdwYvMqbN68KhfMMAGY3a+B+7TnoD+FeELLcrtBDHcu4maf21wHblEv/PJynd9gLjNiqKiWVNNs3XwgcsL4unOnvyU6dpZUgnnTpk26PfLII/5nGDcjEIOEAIypbcP7qVOnclxNCCGEEDJEYN708ssvywsvvOBvcP0phIlnMOdqaJggbe0dUjdlhjy67FlJ9fbo2Ll73StZ4ZFXTs0EOwBj/8r6poLJFVEl4UwIpOP8F5f6cxwbayORAJjYKewia7jJDzaHcMfwJqiKKseNz1ynWHcOtOuVZXodTZzInus6sWJe5Aqb3JiPWxbbFT6Ze5XNZewZYK60+ulHpXX/JbLvWz8kibZNulW0bQok2kK0ZMDZCQI1bNdff71+D4HawoULZdGiRbphPZtr2YSMfmKZ/viPE7IXwEACf3wAFnajrB7J3gWW7CZ0Cm9dXblSX/0hDaGMipyaHLFTs2Sq6kfsAvx4wtT1wF18DwcWrDQaBqwYgJuoyMqueeUPblSxEERK8URFYCAOMPjFwNcTQFk5BM/RyLKTfWLQ9yOwUBVwOYJzFMRV1md/MT8Wy4l9IoIhXs3q6FJ2uCcr1eBOIsLlGXJ9865lGdw2qLcSFoFD4wkVYVlwBIP+cEYGJhc6kQmdayIw7C0gYddz++d+T0HTCBMu9ezJCpd26T6hAqZWiaWcko39ADXI8Xc1vOHvK0tmjCw4BiKE/77I2KOtrc0XKYVFS8g47S8o/a0OuCpa8rZU3UTJVE/Ijo1HDzZ38Od7EeNcd1HfLd9g4/FIt9OsyxBclzD+tUQCtIdFeUt6OOyS6/JKNuB4KyWnTq0Y52eFSdYG5gQmXvL77Bzj9t+uZ1ib7vjfeOq/zgtcx5Iy3DJu7lzBAgSWMe7OZUwIZQIpuzc91/qa3Vs7bpa5zdnC9+NmXrtzQ3tmNu8bfWWbO3MCJ1/s1Dog91NzPo0SO7W0tGiZE0KGEs4xCOG/L0LGCqg2AudaiJZefPFF3cN9CQ63hXBLms2YNdsrtT1hum6b/vmcbHnqb/4YNrf+7rkw2Rg3PNcIxycKrbfbmN3G2W7VBnfs7Vd5iMVkzonn6vcWO0BMAgIqt8yzzSXQBrDPMK8ArpOUG5Nw4y9uP/PmVNl+2DGWtKAOsKlkbn6UfRZIqDAs3uJ+7s7fll19ft48zNj25J2y+Ym/yczXHSizpk7qs3R0eP17//339wVO2OCsyrE2IaNrjkGHJkLIoIEAONTP2Fygm4R7k+vqZNnGyGAsNrA04sluie/ZLIItqnyd7+rUJKmaiZKpGX0L9qMZ1zbVsnCLgQxmZB545Q7SfvaBR9byNFER2Y6JejDAxYTABE2R5egyaR0ENy04TJ2RbNEdIh4s+lufDSvjphnMbdtzJdyyWRaWEe5i1w9Yt2YztAEmDK4IC1nJNrGxzG6biODcXGk9y0L32rDBPSYYfp9jMb+/frAnIliCgA36hKCHBSLwbO05mm1tuF43GUbSaYl37w45LnkipoEESuLxuE7S4LCEwSMGk+a2BIteTt4IIYSQoU34KCRaggvTQElX1TuOSxMlXTfRK+Otzp6jH7f0mWYHh4RJqe7OgCOqW27BXJsgisJ5YbdTyyZ2yzdo9nGiUksfWMlsf/y9a4t+7y782/ge429v3hDz5wTqwprJFBAtVahjK9oKuy7Z9cMlJyCQcsf4CKJYYoJbxs1LkPilzoPS2bmMOzcJB1WQ5OGWl8P3CHJgjgMHVwRJzBnWzvHmEMlQOWwve9zKhVuQx1yt3AzsUQd+vlV1ksLWNEt6XaFTd5sjcMpuGL+XkDuKjPLVq1frFgYlNAqJnSZNmsQxPCGEEELGLSgFB7GSCZewQcyEsVU57rVr12+Urs5OWbN5h0xA+ThnDrXlqe/5DkmYL9jYNtm5WcfHuQoPwViBL2bKJjKDQmXmXKcj9xwbc+fmMl36Od4v//7HnTlBJhA7CQuTLOaAtjFPsnmMiZnceZMJrKyfJmQyQZf2LZtM4t6HzoWyjrT43p2j2LPAHADzD78SxpbVUt00NS8OgfmXOeWGmXLEybrp+XjqvR2S2L3Ji8W8+JTMmZUrTxfl1GUlBo3GxsaAixM2rJMTQkYuY2OVixAyokHAHBmG2A4//PDAd93d3aqGd8VOGJBiK6WcQqHydZlYXNLVjYGydfZ6rCzwjzQwYIa63koURFmdYlCrC/Zaei3nXIQgg9mQmsAmyn41atC/aelt0tu2XeLV9VJZ2xAKeMS0PVwfQQMbOCOQgba1/Fp2sO1mIZjNqRtcAPHKnNNTOIPbssNddyf0xfqN/powyb0vty41giQY1Nu1rCTf9mfu99tAZoZhEyMtO5cVMlmQwoIS1q6WfMiKvizwk59pHV2vmwwiKFVoYiVXvNRdWuCjmKB07ty5KlayDaIlTOZQQpQQQgghQwPmLJbdGxYt7dixY8DtZ1RMMcFzXdKt2RcwScXY/hsfLsnsguBCurcnT+CExXjXkRSCfoyVY4mEjuMx1sYY2sb/NmZ23U6x6G6OR8DESTgf42VbZO/asSE7F/DKPGPugbkAAgcTFx7tjdFF9Hi7hva9okqv75ePdlAhUdY9yp0PuUkYAPMUywB3F/0hkIKYCWCOFC4JZ88Dx7nl5Swoo+6zSCaqrJFZx58ZEFyt/8ev9f4r6pv95As7zvporlQQgNncxC2LN6bAv82aRknWNIpMnJv7PJ2SeBcSFXbkXFaRuNC1u+REBThcv/LKK7pFjftN3BQWOzU1NVHsRAghhJAxAxLhMddyxUsoI1duNZB0Za2k6lskXT/Fc2Gqb5GWijn+eHjldV8JrKVjrA404Tmdkl2vLPfHvIESy35J7IzOCWpb5mTLSVfnVWUAbkzAxEgYbyOmYq6rOMbmNJbgYee7ZeYAjnPLT4ddltxYhVtyzuIwlqSBsTvG9fos/vcLAWcqc13CceF4AfpscwV8j/6vus1LJrdEEnOgMjAXcl2pLA7h3btXUWP59y/0q26ERVT61CvrJDl5X9mw6v8n3R3tsmZLq0x809mS2LNF4u1bNVYYi6qYkWX37t3y+OOP62ZMmTJFhU0mdIKrE8bWhJCRAaP6hJC9SnV1tcyfP1+3sKvT1q1bfXETNoidkL1YSjZzLJPWskzYCpZgqJvkZzR7JRho6d5fMNA2gZItVNuiNgbk+ByDVHMkwkA4t7Dv2ZxiIOsO4N3sAFs8t4G9KxLq3eMFijK9XXLQp6/V15qtkL1OVeNkbXv9P272+4vBtA3iwwELI7zgbk5PmMBgkd8mNli0RyZ1FNaGTR5sshOukY1JQyyWCJSMw4Ddz1zYvEq6dmwMuEEZuC8EV6ymNjKw0TdkW9vPxGxfXfA8IbAKu2C5kyQyAPyM7R0S77DyFDsk1tUGmV2/m504caKKlSBecjdMuui2RAghhAzNIvr27dtl48aNuphue9t27tw54GtgjpKprpd0NcprN3qJGSpeapJMVQMsF2W8kgsWBPEW84NjKrgGYe4Ah6KKmvqcg2kmk3NIymT087CrrM07ohIrLGiB89BOOOkhk0nlSrRlrwF3WPTP5kcoxWYl9DB2d0u9hR1WMQ+wvoXLTbtgTmPlGHzhE4REDurO5KDJExActeK43B4BDMyLTIiE+U64PXyG7yCUAuHycW45CsxtMpLSud6MN+TKYIyLxIl4wnNLq5sYXbrOxE0QOkH4ZO/x31GJzm8vvfSSblFipxkzZmhSg232ftq0aVrmjhBCCCFkJM65Nm/e7LtXYlu1apXGg8oVL2USVSpYStVP8QRM9VMkU1Xvfx8WFdl422IYtt6PJAhbT7c1eYy/MS/wk7Y1ZhAPlKr2EiG6dM0e43rMW3AOYgC2Vu+OiTFX0DnGi0t9QRXmDDjGxtomQELSBI5Du9jcftseyRXWR4zFMdewWIEXR+iRnt3b85JGMqle7YuV2vacW+FgW+E7vIZBTMUcX+17ux8kXlhytyZJZPs96/gPBGI7brvhZHHMK9x4StiBypLVpy55pyQnzdfNu5m0JhYk2rd5AifsO3dqzLAQqDDz4IMP6uauwyNuOW/ePH/D+wkTvBKEhJDhg4ImQsiIBIH5qVOn6rZkSdBmsrW1NeDkZNuWLVv6blcyWmNX6+zuXB0sXQdxExYea7NCp7pJIlnrfFIc3xo1q8YPux/ZYF0DD7GYCoC6d27WYyBSsoGvOR6ZEMitAQ0w8DXxkX0OIQ8mF2jHJiTmooSghg38tUZ0ttazK55Cf91Mbq+WtJftYP23yYQKsLITGLhA6aQmO0kx69aowbWLK27C4N0yvjMZExyhbJxIzMm4R/a1OTfl/mP2MsAtcOJnaGTdr2zykCuB4ZW3sICLO8GxTAfbSJkkuyShoiVPvKQips7WAZWKQ8DBFSyZiImZIYQQQsjgg0VyV6jkipew9fQEM2EHVCLOESthn8F7JFc4pc9INFhMh4YJ41kVzPjj5xCZtC/kwaI5xsJuyTcMts2ZyHCdS11XIgskWMkHd4HdQGDBsqLtPL8kWyymc5xceW23G1756MDCfTbgYPMaTQhxBE82nkfWtzvXCM+N3DLXek46qc8Pgi1vrpQrVWF73CdcajGXwLGB0tyV1ZKoaVAxU+WEyZJJ9uh9WYk5Cwjlzk9Ipjep8yQESzCfGbUl54aidN2E6flip552X9zkCZ12SUz3bUWDL2GxUyFnJ5Sihmu2K3Jy93R3IoQQQshQgyR2xHBMsOQKmMoVLml78QpJ1U3OCpc8EVNfies29sa6OMb9bgzDLyWXTYLIuZJWBxyOMN6Nckv1yj/fkE0Q6PFjFF5Cw1J/7O2OiV23IrTvlcr2StU9ddWH/bnA2rtvkDknnatxFItfeAnOMZ0zqMgq65aKdtzqGBivI6Zic4Zg+ei4zp/gwmqVIVQIle03gHtsoZhBOJ4Qdl8yIRfmTFFJ5aUQTpw3gZclq+f1DdVbYGaA+F7L/rmqCVi3N4ETtq7WUNHAIEhewvbUU08FPkd5OlfgZK8bGrxqGoSQwYeCJkLIqKO5uVm3Qw45JG/xDkInEzthIIzXKPsAlX+fpet0MLM18Hm6sk4zK1NZkZNmWtY0M+AQQgfrWVU/3IQwuPQG4AkdZNtAWwMLWQGQlT/Dor8/WcjWYzZ7U1sYX3b1R71F+Fgu0BMul4bXuVJzOdzggVvr2URYlqWMyQYyL9wgBQbrGGhbpoabQe26Kel/K8lefwCPa5ooC69NyOWKo/CZ2cLaYBzPC8ED3INlPlsQpG7qPP+Z+YveWacrm6C44i5XJGb3hLZnH3924Gfhiqusv1Fl/oiVj2iVeMcOSXTuzDov7ZB4b9/lMaNAUAGlITDhcUVLKBWH7GpCCCGEDA6YC6D8W9hhyV4PRmk4/1qVtZ5YqbpRy1F5jksQL0G0xCWYcrGFeQh4UOYBYKyKrGIjz400uyiPsTIygAFcm6wUGwIJmDe4JRrcsg9uSQQ4DmF8jHGxn6iBOUC2rYmLjgkszKubazYBAtdHcMEyrMPiJcw98spBZDI6P7JgRNi9Se+1NymV9U2BsbrNKWomzdTx/+SDj/MzoS2QUTVhciDA4M49sEGM5N3LJ+SFX14emHvYMSAOYVlW8OQKv4D1Wx1snb6jLZ1LkcJip+oGSWFrnBn8Dv8tQ+ykQqdc+Tp1deou3f3VnA+wLVu2LO/7+vr6SKET3Z0IIYQQUi5WfSPsuISYDWI4/SGTFalAtGTl4zDv0rF/vxr0koIxLsY4FXOC8Hi9bto8v2wasDV1nOO6pbpr6m6yQ67sdCxXeSErtrLYhzsfiHJYzc0FMgEhjwvmBhjHuzEWq44BrP9WxcKNn5izbbK91Z83BKpEZJPDwxSKIbiOTBBI2fwAezcB3OYk2ON4fIf5ViC+k31WloyCuRVEZPYe859wokpBYGjQ0KKbJ9eCxVOvJ27q2KZ7fd2dn8ASBg7O2J588snA56igYAInV+jEdX5CBg5X0wghYwYMDFDfFpsLMqohasKA+dVXX/U3BC/6It7bIfFdHVKxa73/WSaGsnVNnsCpdpI6OaXrJkumsnbclq3zB6rZBe1kpzfwxqAU5eIWX/zjQBYDsExhEwNZPWYvg+AJ/W7dfTd6AYXsc01U10YOmIuVYsBkwAIJmJzYwN8tHeF1NqMTBpRbsBrN7mDfFU95WRBeqTzLtsBrwy2pgMmNDcIxIEe7tpiPY/C9BiaybkphQZbZxyLbwA0KWBuuYAxUTZqpkzGAoAyelWWGoI/hn4P+vLr2+IGacVUOohBaDqJD4h3bJdEBt6WseKlrV7/KxcFxDoGAfffdVzeb0EDMxLIPhBBCyODQ3d2dJ1bCHGCwXZa88nAN6qqEDRnA+jpbKk4KlCIm/cPcTLGobuN4b9zvzQ+0BEJVbXCeEYtLTMfmMb/Ug47bnXE2XqMdm0NYhjauB3cjE/PgOBsXIyDgOj1hPoPjbRwNILryM6YrqqSqcYqOtSGMAhYksdfAxuCBMbpfws7LCjdwH9jM9cmSKfzy39lkDQ1UOAkYVkrPDTDg2aGkts3hvDnEJ7zkDDeRIoCXbIFgg5WnAwgk6M/HCbhoskhXuy/+MmHXuJ1j9JdYXH/PpLA1zQp+l4bYqS3r6NTmuTll9/q6DMfY9vZ2+ec//6lbKe5O7tbY2DgYd0oIIYSQUUZvb6+KpTH/sgRz2zC26C+aZF7bnI2/NHsuTLUTByXJ3B2PY0yL8TzGt17p6ht0DG9r8PjcLbFsY2+c77qwhpOKLZZgidVwejWREARPtv6OdnLVImI6ztek5uyY3q3mgAQPE0khqdnG+jbOd+8N3+E4zEU6Nq/WRHTMASB68qtYZJMzUEVD4yb1zerCqrEOp20rG+fGY4DrwhQe37tzOMRaUM7OHGDdKh3Ayu3Z/WqZPn/eFvNjRVWNk6VrxwY9HveGeI9b6aNfJCol1ThDt163EoOKnHZKAonNiAuUWIkBZeuwPf64F5txKzG4ZeuQzIwx9aRJkzRuQAjpGwqaCCFjnqqqKhUQYHvzm9/sf45sAGQGYIPACbbseL179+6i7cUyGUmgBm8nFqWdrNWKGknXT/YG2HXevi+L07GE1Uy2wayRTnYHsoYxOIbiv7Zljj84x2B9xvFn+i5PJnTyM61jsUCJgvxBv1cP2h/4VtZ4182+t0kEAgnmSHTIJ3+YCxzYzyjbF7cutE44suKlYMBhs2Y/WKa2WxrCMgO07AQG5P6z8MRP5qykWRNZp6TA/Tp2tsiytswDbLgWzrWa1lYGw56Ja32LgERUTepwjWxc3yYfYfHWmAeTs+42SXTAanaHJDq2q5Apnizf5hhgMX/BggW+cAmvMVGprfXEeIQQQgjp75/sjOzatcsXLIU3LBwOFplElS9YCoiW9HVD/7OASVnAMchNWsBY2FxIMa7HuBrj57BYH3MJt4yCtyDex5ws64wEMO+Yc9KH/UAHxsUY5+eypb2xOkq/oX+WVexlYOfmDZrpnO0b+uBmQ7uJFjYGRxkJV7zkCYJyGdpeSYncnMJcVt3y39a3sJssRFoAiSAIIHgBhu7IchnWrwIPSu8JcxHX3dayre2Z2f0HnnuB7G4yAOJxydQ0SQpb3o8qI7FklydwihI89ZbujtCXuxPKa4RFTkjewB6Z6okES2oSQgghoxXESgo53aJ8XF+VMfp0t4VwqcYTLkG0lKptFqnwxr1DgVsiDWN8zxEom/ySHSNr2bdYxl/jd8U8GPfbGNgSqa2yg8UvbJ3edX4FOAYxFBNFeUnhTgWIrOjp8P/3C7+UM8bxiKlgfO+7ocYTKowyByb0ycpVu/MPd55kcx23L5hb+Qnq7a3qOJUTbHXqfGf7M/cHBFsm5jLHV3d87/bZkrFN1OXGTdx4CYBYC3GW8HzCEiMwtwsnsw9ZDKOiRlJNs3XrDZSH3qPCJq3a0JkVOiH5uQShk42jly4N3ndNTU0gWcB9PX36dI1rEkI8Yhn1yiZk5LNu3TpVroK1a9fK7Nmz93aXyBgEvxIRDIHACeImiJzwGhkGyWSy/PYSVb6Dk1fPefLArFBHARi4eoNSbzEdg2tX6GROTO7elP7uoBcDY7MRxeK6DfZt4GvZE/7APIYshirJpFI62EY2g5Zqc8pI+I5MsZjMOfFcPS1cts7axKDbzRYA+AxCKHcSYxMUFVFlJx2YvEBk5DtHZfum9rJZoVVU+xaowLHufanQqrLGH9jbs/LKb1T5pTRcMRkCE2aJGy4nl04lnZJ2cf/n5D7jMVlyLpOWeOcuz0YWzkvqwLRdYil/elIycFZCeTgIliBcgoAJr5lZQYYCjoEIGTr472tkkUqldFG8kGhpIFm++S5L9SHBUqP/figX0EnpLLv6/MBYGWNsE/gjScIfz5aABiUgQrL2YjGpbJgU2UYMc4pkj46nUboNjrPBsgve+BnzDcxVwuP5UGuBIIXbHy2pnU10wHzF5j56b3tQBhHzgFyAyOZP4XmDCZxCF8g71w1wuNjcxVCHV0dchcxtC57gmijLnSuh0auiMsy/bD4BdK4SCpqEy/ORvUw6KfHuPQFHJ5Szs/exov9dlzdvQkAmLHaygE11NX/f7i04BiKE/74IAYh52BwsSrS0Z0+oBFo/0ETwrNuS77oEx6W9PO/Kq/pgCdPZPdbvMYZGuWuM3TEW1rFvdpyE7yHYMTERkrcxPk/UNPjzDLfssol7Iq+dnTdY/MG+D88BDK3mkHWvLXSMN+fA5znXVsRhTDSEsXyuFF5cy8+BqDmDzafQT00eycZX3LiDJVHjOlaOLxzPscQUF8y7Fn3o8rx2jMoJkwPzNiSfjIi4RTZROt7lCp28LZYZ2Fgazk1IDIgSO2FramqiuxMZV3MMOjQRQkhooAArdWxHH310YGCPX75uyTpsUFYXI5bqkYq2TSLYsmTiiWypOk/gNJiWqSMBsxStbp7qL4xjAO4P9OubJY7SEI5YyQag3gJ3TlSDAAJAEOGp/zpP1foYZCMrAYNvt3Y1ronFdSt9gAkEBtWu/SkmDe579C9c49lEVamezrxMZ/c49zwVNeG6WSx7w80UMOGTTYTcTIYMgg2OS9OEBYfJrleWq/gpFsP3SX1trlQmvLKsEWR7L774J/7zAHhGVtYh/JxwTZ9soANBCst4HxMl5zDJRNaEWsTCecmziu3PZAIL8FYuzjYMxCoqOIwihBBCyqWrqytPqGSl4TZt2tSvJIKyXZaqGtTZhIxs3NJvWGDHmNrG8uWImfT0REKTAMJlEqKAmAng2poN7YqZnPEzvnfFPnnXjCeC9xBoIpkrsRAS/iA72mvPKTVXWa3l4ay0nM4hUilJ9uYHG9w+GlECMJuXmAOVm9Tglaz2jtPydBBEVdX6QRjM7zDXQCAFzwj9Rd+2Ll+Ym6uEGFA5CDL4xCs0mCgIKEa6O3VKrMsVO/XP3QmlaLCWgi0KN1AT3hioIYQQQgYHiJLCQiV7jTnYQFyW8oVLzTnhUo23z1TWyEgD4193zIqSaLPfcnZeMrUrOsI6fE5cE9O1djgYucfhmECp62zygevQCsLj5coJkzRmYmPzHhNEOaXgIJZClQgkFuB8lJSzOYclhyMmgnhCojo3dn/hl5frnATJ/BY7yBMtZdL6GeYdGON379oamFMggcGbo3gOrOgLnKEwp8L1Eecx0GfMF9yYCOYMhRJB0De3fF8cyUfdSGaKSUVtg6Qc11o8f9fpdq8Si0mmplFS2Jo9R1wlk5ZY956gmxP2cHQqMTaBn9XWrVt1e/rpp/O+RzWIQmInlLhDUgEhYwlG4gghpJRflhUVftm6E0880f+8ra1NhU0vv/yyv6FGdLFJADIdE+1bdZOt3meZWMyzVs0KnFINU1X0NBoDLRg4u/vw5ADZxrBNNZETJgfhBXS3pJzrYqQCn2zGgR2P61i9a72mBRMyGRVCeefGtB0Msq1fhexIMSEIuzJZpkXUOSZucrOQbbE+SvhkEyJMONAnK+3gBUK8oAaCAegngieJmlp9bVnQmCiZg5SBSRGeofvs8L25QPnOVHZPbk1sm2A5ExqcN6rKQaRTnmgJ/65QLg4ipi5kQpRnQolSCCgPt99++/kbXJfq673sFEIIIYSU7rSExXGMkzE2hmAJGxbNd+yA88zAUblHZb2ka0ywlHNYStc0iiSqxk3p57FKYJE/u5ieEwhFOx8VAgvuNjbHuNl1j0XwIpAlDPG/Mx/A97nS0EFQoqIQGOe3vvRE8XY0+1tvMHermoDgOTgZ6B+SDywBIVeirsg9Z92UTAjmXFQDA1EZ4nYc3JZMPIV5gpb2ywYStBTgri16P8iw1p9FLKb367tZqYuV9zNCxnXXjo16Ds6lS9MoAMGZyjrd0hO87P98d6eswKkrwt0pJKgrBhyysa1YsSLvO8zDLEgDV6d99tlHk0swZ6OzEyGEEJL9s5xOS2trq/49hfgBe9f1FvMylI0bLLRMXMjlVl/XNEqmsnbE/1gKlXvDvMBdu7e1eKyTYx3fkhQ0+UDBQr4nxulrHqLVGLJr+hhvRzmnQiSFCg22Pm/zBnyOPiA5w8buK675lFfeOpu8bFUa0H+M463/Jvzx51Uh0RJEU4XmOeoEm03s8NyZcKmk/8zcEnjhZ2CJFLgXxG0gZrLSef5zj8WySRre9cNxIHvGVm3DwPO32BAYkZUmYigL3ShJrEtMnBsSOjkJA11OwgDG0iWUrzM6Ozu1ugy2MPF4XA0bbByNDe+RSGBmDnV1XoyMkNECBU2EEDIAJkyYIIceeqhuRnd3d57ICQMLZCYWAsKLROcO3SrlZf0sE0tIqn6KpBtaJFU/VVINLZKpGvnCClPj2x6DSneAjgwBDLphaWrCmbArkH3m2bnmBrFWvs4GuCbUsUF5uJZyzjLVyzqwQTau29cgN1zize4FRJ2LhXk3wBDGAihhu1gECuA2ZfeFiYjds9Xddq/t295m7VhtwmDPDpMVTA4sW8MmKbhn+zn0tu2Qwy/9hb5e/v0L/eekrlSppF53RE0CQmiGA8RLe7boPt6+vWznJdSghljJFS9BsMiFcUIIIaR0ILzYvn27lmo2B1O8RrlmjIkHCsbDAXclFS81Zt/DZYlLGmMZT4hzoy/sUdcgHyubEBT+WKk1fA7BTW7BvVfnIBDxYMxt4+2AmMlKTNh38YSOqTFet/d+iYUsWMiPcmcCviDIeozFertGloqaBr1GwKUpk/YcXEOg3wh+YHNLwhUCjk4mHkLmuM4bsqUkcE3MH/C5lbnzLp1zsoVzbqB0XCaTc6bNipwsAIH5A+YzuWPT/ucoHwG3XZyD+RgFTWPF3WmiSO3ECHentMR6OhxXp91Z0dNu733Kc0ArBZQZtTWVwOXjcQ3QQNxkiWd4DdETklQIIYSQsQLiCSb+NbGSu8eG+dhgudxGzsGy8zB9XzVBRMfYo5dwrAJY4jDW7C2+YHt8h/FsuHSauSEVmgsYmIfEKypz1RnSKZ1DRJWJwxo9Ni0tXVnjr9lbFQZLzsj1P6ZVMqKckKz/qOwAMZQr4oJYCeN9E0YZuC7adO8d8ye0kVfiOluOGvMBc2jKu59krz4rfI7vvURz7zmgfLe64WZLWFs/8FzMXRZuTFbpw8r51Uyaqa+RWGGxoVFTaUKFTk2SwhbpkNoVKgedEzzFetqz3liliRxRWQbbsmXRCThIHDCBE/au2Mk+g1sqxt2EjARG918eQggZgUAQccABB+hmYFKxZs0aeemll/wFuX/+85/S0VHYqh0CjYo9m0WwZUlX1quwCVsaIqf6ySMmkGODehvAmvOQDahdq1YboGIw74qFcIzZkWJQrQvfWTCYNcEQMJciLJL3tu8KlIKA0McG0TgPfXFrNGPSYNcJD3bNjcn6C1cnK5sQnjxg0Gx2r5bhHDV4dic8aAf9tuCIm1Fg92SOTOb0ZBMSBEBsgoVjcRxqRrsiKpskYK8Bliyovf3UVR/OvnPKV1RU+s8O57kiqhFBKumVi9uz1RcxlVPiwAbor3vd61S0tP/+++trZPeyZBwhhBBSXpkCuC25wiVsA832zSSqfZel/AzfOrosjWNc91ElIligpQ8CH3hCGoiOUGYBY2AT8GNbe/f1GhzwiPkL81Hl4TCHgAOTLcxbyWu0YQScjMJ9y/sslucsZa5HGNNHBQpQ0s4rKdHpZWGHS0NEkRVN2VwCoqTcfXlZzuEyd245OsyZrOQD2siV1RCv9EXEz8GSTfwuIPBQVevPK7wM727dkzEOAjXVDZLCJjPyv092ZzPSswKnrNCpnEANgjTr1q3T7f777w8krcydOzdP6ISATIyOfYQQQkYYiAuYKKmQYGnnzp1Dcu10RW0oaSQnYBrrczCMT701/d6AYMhzGM0n2dUuy64+X+cGFuewmEJYEBSFd41MQMCEvVZn0OoJWL8Pjq8xZsY8xuIPAMejH17SRhYnCcKSnMPiIrRv8Qr/vpM9OkdScVNltT8HCc9FrNJF+HPtQyaj4iLMAyYffJzGULRUdQz3mfSrbVi/TMhl+GKwUMIH5lwWK4GYCTEixHFUQFVR5Z9nc4sRF8sYkENqrW7phqn536eTEutu95MEAuWg8boMdydLHMCGZLRCoGzd5MmT89ydXBEUNsZYyHAwMqLghBAyxsEfdSykYXvHO97hL8LB9hXiJhM6YV8sKBTvbZf4znap3Lk6V6qudnJW5ASBU4tOPoZ70hEu24CBpw2UwyIfHKvZ1c5ANexeZKIhBAh2vrBUB9eYNLjl1GywapMHr7RBTOaceK4vOApbjvqWsl17AtdxCffFBtzuNYFbxg0DaLy3CYaJm9zr4X6tLbSDzOSty3OOThj04/tYRZVmPXe3btH7NiGUBnKyz8wtgRd+vq6ATB2pspMgC4gg4GJiM2tLS0Mku/V579WMaWQidO+WhIqXtug+3rmjrNJxyByAaMnES9jDVpXZBIQQQkhp9PT0qBDfXJdMuITsvn6Xhquqz4mVsi5Llu0rFcgCJSQfjKWRuFCQrBtT3ussGKtDzINxbvi/yqDbUkwX6zEWd9EEAQ0w5F04u/hfo2PnVbdZ+WhzjcrPtvb/NYTHtXAteuFRFS1ZGQlzMwL4TjOfy1igtmxnBBcCDks6L6gOJIJg7oFS1C42t8kv+ZArfREGz9pKUVhpPTxTm6fALQrzEOzJOAf/DWKrn1KglN2eQOkNtxRHX668+PsV5egEZ20TN5nQCRs+J4QQQgYbrPnv2rUr4KIUJVYqlug8UDKxeJ7LkvtaEpUyXnHX0t3KBeG5RNA91XNftWoIGCu76/HqqISyco64ya2sANwyc74jkYqogvMDc4lFbALr+zhPy01n4ynh8TliBpa0ge8whkdsxpIw4pVVAWeq8FwF790EBhfMxVyXXIz3kTTiCbG6fXGRfwz6p2Xp7Nl5SRaIRWC+5M6tVPiEY0PzIyR5YL6FZ4p7wZzQRFEBd9xYLFBCe8wDZ+LaJklh68vdyU8cyI6heztKdncKO8Rt2rRJt0IgaaC5uTlP7BTes8QdGSixDDziCRkFIPNqzpw5+nrt2rUye/bsvd0lQgYd/EqGyOm5557zNzg5pVKll9NKV9RIur5Fko0zJNU407OCH2KBUzgbAYIdr0xBDldgVKi+cZQIyf3cXIvs+0KfF8Mt+WbOTVHnYfEfExVkNVgdavcY954xYYDTkb03lyXXjaqv60VmdGQFWq54CoP5xRf/xAtOvLhUJ0tuDe2o+3QFZlEUeu5DDjIrUGpx1wapaNsocZSPyws4FRcKQrB04IEH+tv06dOZfUvGHBwDEcJ/X0PNs88+K3/6059UXI+5VjljT5c0sglrJ+qWwr5ukqRrmsb1gjnpPzaeLUzQ7ajU4ywLGfvK+mZ/zO5mJ1sygCsG0hLO2UQFtKnBgIyX0FFI6FO4S8FMZHcOFRYhFb0vvbXQM7C5X95yX0wqJ0yKDFYYNq8BbikL9/nhOUAIFWzHOSYW8xyZkj1+woTNdXAuss0JKRuUsutqk0TnDol37tQt0bFTE2L6u9qBAAvKkB9//PHy1re+ddxll3OOQQj/fZHywTwJrklbtmwJiJXsvZWHG8wScGEyiSpJV9ZJpgpbffZ1vaSz7+GwlKmoGdMuSwPF1sKtmkOY8LzA+8xzefUEUKii0CBVjVP8ShUY87qJCf54P2LcX2wcbonMtq5vCeTh0tdRmOss5jduvASsu+9GnbNAvISEBs+pqTvUN0vcyBdoYW5kidDLrv6onxjS13zMqksE53X232bfzwf35IrBzAkWzwnslZjGaAP/DfV2qhsqDBO0PDScUSF0cl8XEvUNAqig4Yqcpk6dGhBBYWtoaGBcZwywboi0HONrpkYIISMcKJpnzZqlGxbUQHd3twaXXJETJkiFiCe7JL5rrVTsWusHliBsSjbOlFTjLJ3sDFn/NSs3owPmMDZwxR4L9VGDTMuQwKQCi97AHcQDVyjl1oY2BydrpxCuNawJhcxZKVwaz7Ia3GvahMctGZdJ9cqEBYs1S8MwJykrERfOGCgkIrKM5kKY2xKubfaq6H9Y2BW2wC12TfdnM9SDfwycE7s3SMWu9brHf6+lMm3atIB4CaXjUOKREEIIIf3jxRdflOuuu06WLvVcHUslE6/0REt1zZKuneSLmDJ+KS9CBrMcRI9kUqm8BXxvgb+UYFFQjAOsRAHG+QFXVYfWl55wLhYLZgRLxr92SWKm8EI9hP2hQAkyoDEHwrzBXGqLgWxrlHlAECWWyJWRzguiOM+hmJgJ1EyaIYs+dLnnquuX1gv2I7qsRu4YddnNOlZBmOW6V7llJggpu5RdbZMka5tExFlvSCUl3tXqC5w8sdMOifd29tmkBaEfffRRufHGG+W8886Tt7zlLZJIIGhICCFkPIqVtm/fHhAqhUVLECvBgWkoUGdblIKrqpM0hEkQKFXmhErpSu8zJosMHD/WEIMwaYKOvy1OgDF6TnCTi3lYdQgT8bjloC0ZAU6p5soEB6JETW3xknTOeN1KZKMfiDsgJgHRUQYOUY6jEgRJqa72gOuq/99QOuW7JuF8K1tnlTWAzgdiMe1fUJCUe405SljQhVgEqk0gdpAr+507FwIvEBZBbX/mfj+ug+fozaFyc4fKhuIJF3nOt5mM3pebBDIcMY1RDebN1Q26FfztZS5PPR0SQ5UY7FUA5e194VO6t19dsBJ3q1d7lWeiqKmpCQidol5T9DR+oUMTGTUwc4iQHJhAPf/8877ACcEo2KuXQqqmWVJNEDjNktSE6YMyCTKhjGU39+XQVEjYA9wSbcDKvBU61x2Q2/HhaxfCzRSG0t8bXGcH77G4Z5m5/xJpmJ0rDeeWvQPWV/e6pThHWca5XTsvayJ7X2jXyse5bkzm0OTZs6a8QaeTtQFXJuA+N7tm+Bn1x+mqZFK9kmjbKBW7Nkhi93pJdBUpG+IAodKiRYt88dIBBxygCn5CxiMcAxHCf1+DDUrJ/fznP5cHHnig71IFNU0516W6rHCpqoEZv2RYsHGqlWPOLeLvyS2yayBA/4sNnBtVOgEBCpQ9w5gXY99dryxTkY2OqUsRR0WUtiuFsNuTObFigd8tRQEwVsf8wPvcyV6O7E8u89t3isp+FpUoEa+ul3R3e9G+2vwrXCY879LxhMQqa7z2/OeC8hBVkZnugA5NZNhIdjkCp52SyO5jqeJBmHnz5sn5558vb3rTm8Z8hjjnGITw39d4Ao5JO3bsyHNUcl9DzDRkYiUIcysLCZVyzkoSRwkyMtS4MQVbJw/HNwaKHzsItVXKeDwn/Cnmvuocm40NhL6JFBkVvmgJTlLZOcyedS+G5jZeHMWfGxRxuuoPKN9XPXFaoJpG964tfn/hAkVB0zCR6vWETVlXJ+91h+/8pCKoMhLYywWip7CzU1j4hLLSY30cPx7nGBQ0kVEDJ9qEFJ+UvfLKKypuWrlypTz99NNFXZzcyVSqYarv4JSun5Kt3dzficCNOtjGIBOZve53hew/XZEN8O1HkSFR09BnLeRg9rA3WbBz+iqlFimmCg3wXbGTWzbOLGlhB1tZ3xS4hpWrQxABxxQTeLkiMFe4BcIiqqh2wiX0zDUK/TaXKbuHdCqpQZ3wzyfqZ1GqKCyPTFri7dt8B6ZE+xYMNkpyXzrkkEPkoIMOUgHTvvvuO+4s/wkpBMdAhAwd4+3f15o1a+QXv/iF3HfffVrqOIwK3usn51yXaho1m4+QvUVUWebAAn+2PEN+uYTC2HwhnBhRKn05qpYWIPCEPyDd29NndnMhcO9wiy14H5ZF7oiw/MBCMXFWLBbIMPc+Cx7fnwCFW6qCkGEHQj8EWVTgtEPiHTulonVtZKY5SptD2HTMMceM2YDIeBsDETKc8N/X8K+Lu85KUWIliJmGTKwE956qhugScFlXJZaAG3lYsjASiJHwgMoLhZxh+wPW3zs2w40m06fov5T5i5aIi3BlCiZDDITSynlbInVUHCX6+ODcrV89c+IeFm9x2y0U6yB7s8QdxE4dBYRPVuKutPl7uSBRvlBZO/u8sbFxzI7x9zYsOUcIIaQgEH4sXLhQt9NPP10DVAhYPfnkk/LEE0/I8uXLpaOjI+881MWtaNukW/X6p7QGd7J5jvROXqAip3LETRDd2CDSG6xLZEkze28CoLCIx8pKYDJRSMwUFiLlFtNjOpC261iQIsp2NErshPdRA3EcY21BzASxD4IrXqmKyjzxj1+KLpP2hUrFyuvhniE+solAVFk+935dkFluJfcQHID1qwmlcjW2HaGYiJaliMLaiioZWJRMWhK71kvl9le01GFfWa9WN3nx4sVy5JFH6obFUw4iCSGEkKEBi/c/+clP5De/+U3kQn5v81zpmXWYpOsm8UdARjzhBXEs7MONKdneKhX1zX2WVUMwYO3dNwRERHXTwuKdwhnKvnioHLemvLa80tERB+ZKXfSVJR2L6VykatKMwgEMPT+/DcxRNKs5hD+vymR0XhBsK3ivxQIyAdGX85zgiEXIXiMW01IbKWzNc3wnp6qNz0rVluck5vxuefnll+XLX/6yJt1cccUV0tzcvPf6TQghRNm1a5eWK8K2atUq3SNwOrRipcqsqxIESllxkv/aKwMnFZ5InYwe3HJlGNMG3IYK4iUeVDVOKUk8FJxb+P+X36oKc1L+mB3vYxiTd7dLrKJKkxeSXXA9inZgVTETyswNmExJTlLoK5xcvZJ1/k0UnHfMPuFsWf+PX/tirLykiIg5FZIg1Ek3G++BK5P9jGwuhriLMXAxFxn8EncTJFXtuZRFkklLrBcl7lDeDgKn7N4tbwfxUz9ET93d3fq3AVshqqqqNMF+7ty56tA6f/58fQ2xPwRRZORB6wNCCBmDQBiCP8DY3vve92qmCkrUQdwEkROcnKImerFUj4pSsKUraiU5eV8VN6XrJvdZVkTLEvhOSZmAYMgVLbniJhP1mHAH52AQDkzYE+W0FBZIear8XLk1CHLcEglRAp1wP+we3ExttIWa1RAaYcKAvpmoCGKrsMjIMjt0ghKLycSFR0dmIBe6H2RbRAmg3GcUBgIrE1q5x4ZFX3iN/kPMBPFTFMhEQVvY90kmo05MKmLa8WqfVqKJREKdl0zABPEdHZgIIYSQ4eGFF16Qm2++OfK77ukHS8/MxYNShpiQwQTj2VR3Z0nHmgtpX4vZntg/vNie0RIGwD8/YuEUwQUciwV1iH2SnXsKXkcFSRKLyKIuLfNZAyY1DQWznq20BL4vmhkdIYrC3AlzhHC5OwQOUGp7/T9u1gSTVE/w2WtAJVlamXO//B1wgg2eGxUhI4iKGumZfbi6VdeseiDPrWnFihVyyy23yMc+9rG91kVCCBlv7N69OyBasm3nzp2Dep1MIitWqswJlHxnpaxoSRIUK41FkIycNz5HyTQtQ50TFwXJaJwgKH4Kje0LJTxkkMyQv3aOWEB4LI/kjUy3N47Ojb29a0S5xBaa/2A8jnlLoe+LzZ3wHZKl6+YfrHGCvPlGJiOZjOOYW1GpfQu7xsJNFnEKzC8KJkVA2OK4LSEGo/EVOGtm3aDc893z3P6SUQbKcOrv2jpJS0v0MfhvINkpse52v6RdTvRkQig4PZUvaO3p6VGHUmwPPvig/3k8HpdZs2apyMk2iJ2QjA8RFNl7UNBECCHjAAhHDj74YN0+8pGPyJ49e9S1yQRO+MMdJp7slKrNK3VL1TRJcvICFTdBXR0FBqe2KI5BpCsYKtVtqJCwxz6HsAivTaCEPQbVCBjADhYTDysJ5y7cuwIdE/pA3INBMfYoteY6NeE6rmjJBu2V9c3+MVEiI50MZbMR0P9C5RTCYqoolypsfZXbA+Fz3Xt072mw6kjHunZL5Y5XpXL7PyXetbvosRDUQbx0xBFHqBtTXZ0nViOEEELI8AJnCQjeo8rMVW96Rqo2PyfJplmSnDhX3ToR4CVkb+M6wJZCX2ImKzWnjrChhXSM45FtXYycG22hoEGFV91NAw0xaVqwOC/bu/RSE55TU7BEQy5gUupziVdURwZPNPnD77gnnnLdcjVIEQqYuGImFSzh90mBxWO04ZXA7lThlddtLyhByIggnZJE20ap2PmabsUSdOjORAghQ0NbW1tAsGQCJjguDRRUITBHJbgoua5KJlqiWGl8gnXzWKLSEd9gjFqRLWVWPGE338kpNL8uU1hRLEEiCk24rqotqdQbYiSFkpYhNEJCR/68xptv2Ofq6JrJZMf1XjWIKJC04I3zw8kbOUfc0m4wFpiD4Hrr7r3Rm08UYfLBx5XWPhld4L8HlPCs7Ev05Dg9hcRO8Z49KoQqVfQEEwgTOj3wwAMBoRNETSZwwt4cnSormRw4HFDQRAgh45CGhgZ54xvfqBvYvHmzCpvwR/qxxx6TFMRBDomuXZJY/5SWpUs2TPPETZPmi1QE7RcxsLW9CW0gOnIFQ8XchlxxjrkM4VwTMKFdK50GkRS+8xb6LXvCcyzC+V75NkwKMpLs2qNtuW5Idg4ci9yydFH9U1vUZHfBUmwmINKshy2rNXCAPkQJi8L3Cdxr2j0BuEXtWfeif09Rzy2qv3aPON+OKQRcpRDAwSQnynVKSXZJ5Y5VUrntFUm055emcIVzRx99tP53BRET6hETQgghZO8zc+ZM+a//+i/59a9/rWM+uHe6xDIpqWxdo1tGYpJqnC7///buAz6KMv0D+LPpEHoJvQmCUlSQYhdFsaKe5ayIXVHPfnf/w45nP089u5wFPXsX7AVRRIpSRBGl9w4JJKRn/p/fu/tO3pmd2Z2ElE3y+36cT3Y3s7Ozsxt8y/M+T0nL7lLSoqsa8CeqDWh767a/d3agoNmOwrCi2iw1jeNn//GjCg5CqTrVl6lIGTkXFWQUyWqLyZCcpfOi9vENZnK9rt7PGbjk9V5jXwPfSRkjuBGlvtH/iFtqQ59jZBFJrP1Tm7RSJQBVWYzi8veQnN4o9msQVafSYknZsTYcxJSNUumxM4b16tVLjjvuODnllFP4uRAR7QYsrHUHLa1cuVK2bHGVt61oKbhGLcJbelMpw6S3URqO2WfJD/oB7jayyopUgYUUVcdV5i01I2ZQFeYzggQzQay2OoKGwlUmYp8PMlalNW9tzxWUV+eIfp7f9cNcR7w+m/1cjwVY4T5WUvS5GeX3MA9UVYu5qS4GPTVSGzKuVijoqXCnJOVvV4v2Q3G+owh0WrVqldq+/fZbR1USHehkBjvhMVYnqVoMaCIiIlUv9vjjj1dbdna2fPPNN/LFF1/Ir79GR/Gn5G5UW/qqGVLcZk8p6rCvWOlNfLMF6bSkZmk3P+7gHB2YowOYdPCNDiwyg6b0igMzcMquh21Z9utjX5SIQPCRSp3avocdMGQyg5FSM5ur89Bl3fTvdSYnwHtEVqZBN77oaLC7y9qZ71MHbJnBSnYwVkGuCrTC+zUDroIwS+fFe54+Pn4io5S5L7Ixpa3/WWVjihXFjsxfRx99tAwfPlyaNWsW6ByJiIioZg0aNEhtmFCYMWOGGoRBIHtBgXPAFAM5KTvWq01W/iBlKRkqQ6eaKMhopn6G7zdTg0bxyhITVZa5otiz1JlHLA8mATJadfDMooR+Qc7SudLp8LPsxRF68Bwl68ozDwU/x9Smre3nhtMzlT853gpvB93WVqUuknxXP3s8MUbJu/JgpViwT6xgK3uyIHKOWLwRs0R1KGRfE/U+ImXvcG2xgIKoWpUWSVLBTkkq3KG2kLodvq8mL+I8vX///nLooYeqDcHARERUeRhXfvXVV2X69OmemWKDsJJSIoFLLaU08rMso0V40QX7IVQJ5rh5lfMo91wRmINITvfuyyCox6t8M/ojJXk5FQrICu8bvx+PxQiobqECmVRQUcUWlKB/oRaWJ6eovgAWkZT3nSrAY16iWj4/aphBT2WlklSQI0n52ZEAJ/zMDhTohMQQCNDFNnXqVEdCiZNPPllOP/10admyZXW8qwaHAU1ERBSVTh0rELGtXbtWvvzySxXctGbNGsd+CHBJ2/y7pG5ZLKtzimTdsj8ka8jxanLADOZRJQwaNfUsMeeXwUhzB0ghoAiNVR1YFCvbk95fnWtSsp0xSQfwIJhJn6vXeZkBQWbg1LxHL1MlFMzyDe4SeX7nH6/0nPme9LXxC7iKxVx5Hu95WF2tMzSZgUzp6+dLypYlvo02pNMcOXKkHHXUUdKhQ4fA50ZERES1CwMr+P83NgQzzZ49W2Xp/P777yUvLy9qf1WGp6RAkvM2e08wRIKdrPRmUpYRDnRS99OaIC93Db0ramhQFqJF78EqCxLa5Ajg0cE7sUrPYVB97dTXVck1rDj2K82AxQVBJiOQhSh8QiHVP8AAf1lJsX+WJ+yH0ieFeWryobQgV/UtkNGoeOe2cKk3o6QCBv/RHK/IBEWXo8Y4+khz/nVBzImHeAFPKsjLKP2A6+0MfnJObESVuYuUqQhSTpsoLgTHFeeHA5RUoNJONdmAn+p+jNJxXlA+YuDAgXLYYYfJwQcfLG3axC49SURE8f6ZttSiCQQyzZ8/v3KBSxmRzEuNWjJwiaoc2qOoiBArg1Hjdj1cfYpQsNLRUf2HSDs5kmFIlbrzWqihdk2yF3Z7H9u7f9Gk057+78XMAhsVbGWWg/PuK6BPZPcVKpnFNvxUlKC2pDi3EuUk/TLoGu8lXulwopiSkqWscSu1eQc6bbeDnZLzs1WfI16gExYSvvLKK/LWW2+pJBJnnnkm59B2EwOaiIjIV6dOnWTMmDFy/vnny6JFi1Rg09dff62yOJmBTRsWzZHC/HzZ/MN7Kn3jxnnflJeIsCy74esOYDIDetCRQGCNzpxkZlpyl54LGtzjLmEXXoWNCYKQel0EJ2GFtlfJNr2aWJfR06u4dccFJegwMK8bzShdh/dQkUF6v7J8sYK14gWBafGCvTRkZRIZG77GE26STj32lM7N0zwbZYgmHzFihMrG1Lt3bwlxJRQREVGdlpGRYWeiKC4ulnnz5qnMTdOmTZPt27fHfX6orESS1aBO9L4oXYcsnuGAp0iQUyTDEzaWgaB4EACDwKPywerwRELzngNV0BG2ToefqX6j29RByqaFVzYjcChcIg6BTTpgSGdwMo+ZvfhHR0CPCauMMSmBwf54GZmQPUpnfgVzdXKSWrUcnZnJ73Vjrf5GnwR0NtnUpgiW2lqhcnpmuQsEiiVnNHGtpq54mTsGM1FgVpmECnPtzErIuBRSGZfCAUz4f8/uSEtLkyFDhqj/9x100EHMMkxEVAWQpQLZKRDItGTJktiBS3bAUgspRcalRsi41IQZl6jGxMo2imAmVHdwB/gHyWgULdJmVu12S9KatJTivOyowCi0vZNSUgOXk7PPKzklZv8Hx7Rfy6PvgNfV/SlVMcL9+uZzVFBWJQOb9HF8ziHcfwhF+i0IejL2C/B6uzatqPg5EVU60KnEmdEpPzsS6ISMTk5FRUXy/vvvy4cffqjm1c4++2zZY489eO0rgQFNREQUFwJX9t57b7VdeeWVqkzJ//73PxXkpFf65+fnS1F+rqxD47c4sirZGGhHoxgpSs2MRGZAj25869UPZtYid+m5oNxBPfr1CrM3qfto0HuVZNP7IZgJDXmcuz5P1ekoKZKWfYZFgoFE5v77IrtsG4KDNDNgS9/XwVj6tg6UMq9LrKAl3bnQExRBgpviQaNr8w/vSmHeTlk+f4sk9+rlSK/ft29fOe+882To0KGs/UtERFRPpaamqglebNddd50qEbFw4UJZt26dvW3YsEHKyoINYCI4WmfPEFkX9fsypPvWmZ3McnZpmZFSdszu1NDp9q3OnIqAH7TfzUF7Vf7A0HKvA+IENYUnE8rvWhJKSbEDmnD8cEmFkKO9D6qc9e8zHRmLsMo4vXlWoMkHPCfcp4leBY0+RtBJEmSj0kFdXq+Lc9RZaR3PS0lT5+Cd7UmvHg9JlxHnq0eQyQr9nqbd+jlKb1emtAaOQ+T4uysplFBxniQV5oaDlczScHisAuVMYsGiHCzUQv8WGyYQBg8eLI0bN+YHQkRUBbAo4rPPPpPXXntNZfp3w7/mJS27SXHrPaWsMTIuMXCJal9pYb7v77yyvaL97G5DO0tPxxNu14TnQGZG/RYLp5MzMgMeK8Dih4BtcAQSrf3ubUlt1CTmNdndDE3xzgFSGjWR9sNOjOrfBRHOlEtUQxCY27i12qICnfJzVHbz1I2/SnJBTvmvyspUsghsWFBx7rnnSr9+/fiRVQADmoiIqEJSUlLkkEMOUenYkUJ44sSJ6qf+HzOCn7A1SxMp69JLtq5a7GhA6/JzZtCODvjRnQGsckYwEfYxA5/cz6tsEI+ahIh0QnSAkfu4ZmARzkUHVO137bOByrbpY5vv0Qxuwm0EJWFDWQqzLJ9XKTovQffzVVos6WvnqgZWl47tZcmSXJUaGuUFMdg7YMAAlaFr//33ZzYmIiKiBiQ5OVn22WcftZlKSkpk48aNarJCBzmZtwsL46TgNyShZFBxvkhuONA8KrtTaiMV3FSGACeU6ErFz8htFfTUWK2Yo/oLbfFwEH8k0CdOdtCiHVtVe7pJ5z7OzE5GmTcz8CYpPVMsVT7NI6OQZanAIDOgSa3ktixJTmskpUX5agJBl7YuD7pKFguD/cZr69vh/kcossLbWUYuVvkKrLw2JytwG+8R56aCrFwBXGbGKfcK7WQjQ5TrDUf2SVM/7f6ZZamsVXgcgVSqT+dYqe1fosL1LqIy0lJ9DlYqkFBRniQV5amfoaJdklQcvp1UtCv8mFFacXegZFz79u3tgCVsOoAJpdEZuEREVH0whvj3v/9d5syZE/27UEhKWveSovYDVAYmokRilniuaNlr3c4OZxIySqIFyIYazgzl0XZGOTaP4CjMF6AyRKyS2v4ni35I/N3QRypEP2k3IdNSRqsO4WxJ6nUrFpxekp9rL+Cu2Oum21mmiGo90CmztdqK2/aRlOyVkrb+Z0nOc2Z8mz59utr+9re/qXJ0FAwDmoiIqFIQtDRs2DCVtad58+by0EMPqVU56MxiQ53YoX37ytrMDFm9dp2UFhepFcTpLdrZ5d90MI45CYByC5Kc4gjUMTMt/fzE1XaGoooOhusAIHQGkC1KD6hjskS/Pn6a+7szKpnMIChzskMzzxulH5CuFisxMAFhZoAClJ/Q+5qBUO7XQekN3bivaAk+x3nPmixdOnaQTu3CkeQY8EUpwS1btkiXLl3k4Ycflv3224+BTEREROQIbMdEMTY3tP+2bdvmCHAyA55ycspXpwXK7lS8S6R4l1rd5qcspVF5gFNk08FOOhAKg0pUN6H9a2YgQiCPCqqJBP9gIUSpKvUWvo/JBd1ODq/StVQgjl26zkUFOMViWSpgCNmJ0O5GWTnQwUyA4CYzqyza5Wj3h1deew3iW+FJECM4C2UtwgP/lmfGpM5HnOsoAYE+i++ChlDInmRRgVDI0hQ5Ls4bAUlmOTmPAziy46rrVFxoX2N9TDtoCsdW2dSMQLHUDLXC3JyU0dmpKr0QgxKnFFxxviMwSQcqqaAl/CzepcrSV6X09PSoYCW9IZgJ/28iIqKahxLVXsFMUNa4jZQ066ja5ESJJrVJpCRzhNnHiCWtWWspzNlkl5BzllNztn+weMLd36hoSTm03Qu2RWc7DiIlo0ng18N8TVlpSQUyTjl1OWqMauNj3kYFt7sWZCAQDLwzxWqWK0tUsIUTqZkt2L+gxBMKSWmjVlLSopskFeyQUGl0trQpU6YwoKkC2OMjIqLdDmy699575e2331Y10jHYCJ07d1Y/O2W1UtvqnGJZu3yJHXyDnxiYR1CP2v/I8+IGEJmZntAgR2COua97cNwMBMLEAjocGGDHpIa5L/bRJRn0BAHoQXeUhfMaeNeD/boknd+KY5yHLvuACREEP2E/XbYCEy7me3WXyjMzMeFc9H0cyyzBFyR7FQagdXm5lfk7ZO3KFPVZYTBYB6Qh09bAgQM9n09ERETk2cYIhaR169Zqc2d2AgS7e2V1wrZp0ybVBqmopJJ8NAoleZf/wGtZSoYKbLJSjWxPOvhJZX1qLJKcyg81Aen+gj0QHwqpUms6I1FJXrbqQ6z5+hU1OK4Hys2B+06HnxW+4fX9CiWpgCd3cA8WP6jgJWRpiryWGeBjDs6jHJu7/Y6faKer53i+bki1//G6eK29Rt8hi16+w7nyWo/fW5Yqu4D3hokW9CewYXGGWiCCCRWT8XrYD2XzdD9ElZsrLVETFlmDz4xcWwRpWfYLlpfF86bfeyjFyAKlJm/KJxyQCQqfjeN5ZSWOjLSUgJBtudgMUooEKNmZlnaFf19FpeDcmjVrZgfMurMttWrVigttiIgSEMp6olz17Nmzo36HRQmNlk0VK5QsJS26SEmr7lLSvAvb3ZQQ3G3VIMFMgDZ4uP9Q6FkJwnHMKsh6FPS8PJ9bUhx4X73YvDLQRzEXoXuVwosdyOS9X+N23T0WfbiFHFU+iGpbqHCnpGxbIanblsUcp0KW2aOOOqpGz62uY0ATERFViRtvvFFlacLPvn37yqOPPipbt251dGRDRbmSnLtZNUTRyHQH6pgNT79GqNlpcAcemWXi3GXekB0Jr2uVFkcdW++LldeYfNAD7WunvqEmCRB45JWBST9Pl6TT5+MOKtIBU+jg4DV0uQW8Fs7JzM7kxZ2xyX0/UICVZUnKlsWSsXqWKi+3Zk2JKhuTn5+vAtFOPvlkOeuss+zPkIiIiKgqNWnSRHr37q02t6KiItmwYYMqZ7d582bPbefOiq1m1ZJKCkSwSaQkgAcrOS2qtJ0d9JTWRP1EBlGqeZg0QNBQuDyDLtMQ1qhtVzvLauSTVPuaJdjM0tbRq3ytqGAmrKRG2969atuxj7GCW7XnPaAdjkAkh1BIrZTG4grd10Dg1LzHriyf8AiFJL15luozoNSbmX0qnN0p/F7zN68KZ7c1si3p0t2YvCgrKVTtf5wfymJjEQX6Isgo5S6xrQKbCsLl+IJONpQVF9mZpdQkjjFpgQUoKZktPK8fJxpqMbOSHaCUWx6gZGZYQualanr5tLQ0adu2bdSWlZWlfiJwCf+PICKiureg4b777pOZM2fKN998I9OmTZNdu3Y597FKJXX7CrVZSckqqKm0eWfV1mY7m2oNSkDbfYjgvEq/+bafVQk6I5NTDfPOyOqd9Si8QKS0PIusK4jILLUX/TqF9gKTqoR+BhZnoB8TPh+vc7dUEBX6VexnUM2X2S6MZKrNk+SCbEnZviKqvJwbEgscccQRMmLECOnevXuNnW59wBE5IiKqEldccYXatEGDBsmECRPkgw8+UPfXrFkjBfn5snH+FOnYrrUUdj/YNzDHj87IhEkEBDZ5ZXMyg5gwEaDLvGHD6mQM6LszGbkzImlqZYJlqeeJ+JeU8wui8iohZ/4+6Pt3n5/5ujo4Cve9AqzwOAarM1ZMk5ScNer5erUrMiIsW7ZMSktLVQDaf/7zH1m8eHGgz4KIiIioKie7u3btqjY/CML2C3bSW0XK2pmQ/js5v0gkf3ucTE/RgU7qfnoTsVIbRUpvUVXR2Zl0RlfcVlmYVIajNNXOLw9mCmckUuXhEGizcbnaVwcG4TkYELczJ6knRA+M68CieOUW8BoIKtKZktwZUnFbn7/uu4AOZkI7XQcdmau3cY4oT43n6sy0GoKEELAECNzSCzF0/wKlu/td/m/1ex2ohGungsBUsFL5tTL7L+p1fEqEIVhJFYGMmqCwVPmLQTe+aJcSt69hcWHUqmyqRvgelxZKUqHOpqQDlvTPSPBSNU2mZWRk2IFJfhuyL2HSm4iI6p/k5GQ56KCD1FZYWKiyNSG46fvvv1ftd1OorDy4yWQlpxttbO+fKgCFqIroNvVuUQFLMcrs7m4J3hjH9ypnF4zleVy09bFQQi+giM6wFDv4q0qDmfT5IVvu77OM4Cr/tqx/OW2iSkKpdlefyvETi0ICBkViHu7II4+U4cOHS8+ePdkvqiQGNBERUbXACsvrr79epU5E1h8Ez6xYsUJlBdq8cIa0z90kHbodJG33C14yDb/DpADKJJil1sx93cFDemIjvH84KEkPuptBRyZ9Hlj1rVYdJ6fGTF3qVSLOXUJOP45JFcBPTDJ40a+vM0aZmaP8StGZgVnmdUzZukwyVk531OnFZ4EMCNddd5106NBBrr76alVu7rbbbnMEpRERERElikaNGsUNesIkypYtWxxBTihnZ97fvt0/aClIpie/tOEWwgVUOTtnoJMZACXJaeWrXikwZDHSAUF6sBxBM3jMLA+HwBtVYjqyLz4VBPPoLEd6cYMOhEKwDu47gpxMoZB0GXG+rP7qJccqZRxv10ZMxFl2GQR3v0IvxEBQlQ5MwvP04gMVnJWMlc6l5ccOJalgJt3n0eegf48gqy5HjbFfRwctISOTLuemH7OvXf5O9btwKYxSdd/McuteTa3L9unH0B/C9fI6H/2+dL+rOC87fK1DoXBWKCNTFs5BB3NRBaGcoh44LzQH1HPLH6/iFfFaZmZmzEAlbOj3M1iJiIggPT1dDjnkELWhXT5r1iyZMmWKTJ8+XQoK/AMOQqWFkpxfKJLvn1G1LKVRzIAnVUaaiwuoioKRkPk03gKH3Q5YiiMlIzOqnLaGYCYza2zFWJUICop+jurLVMsiBiv2NY700XLX/G73N3AuRIGVFhsLP1yBSnb/KnjJRi+Yc0MAE7Ix7bnnnuwvVQH+lRMR0W57+umn7VJlOiDGfAyZmi699FJV2syyLJWtCZHJ27/7n6xet1HaDhslbQeN9MxuZIqX0cgrIMpr/3jH0eehBv9DSapBb5ZxM4/rPk+/bE/6mJjAwEpuTK7oDolZo9qc5NATK3rSxX1d/N6HOof+B6tAptRl3zh+l5qaqkq6oGzLU089pSb5EMiECT4iIiKiuj6J0qlTJ7X5QRC3O+jJvW3btk3Kyio2QI3sJ3rwy4+F4JYYAU9qIiYSUELhLERqkDoSQKODcrRwWzqSYUkH2ljhwCHcx74q6Eb9rjyDE4JtENykFi9EFg1gQByPhVDCzVjtvHXBt46Ao/JB9fBjCJ5KzWzhKCttZmcyS7RhUQZ+rwOOcD4oQWfvZ5Wp3yHwB2UTkMEJGZsKt2+0y1uY/QEz8An9FbwHvB8z+MgMJNKvi3PYMHNy5CWdkxBpzVo7yuWpxR2h8owI5vk0zgqnyMf5qAkFVdYuRZLTG6nHzWAz9H9YBsLrH4WycKk3HaCEySn3SmBVMrPqIWtSvGClxo0bV8trExFRw2iXH3rooWpDMNOMGTNU5ib8jBXc5CepJB+NP0netcV/cUFq49hBTyqjKhcXkEiXEaNdpaudWVuRwSkcMFTkGwAUtTihSoN8wt9TXXrbM6jJM8uUd0k5B1c5ucoEgCGbU1JKqud5xYL+AaB/svqrl50BS6EkFfQRLl2N4Eaf87QsWf3lS5LSqLxcMcpqEylYuOQXpKT7WMbC/6rUrl07O4ipT58+DGKqYiELM8tEdQACILp06aJur169WtWaJKLEgChjBCv16tXLLlmGtPOYEMJAKIJm9D5JSUkqtSICmrBSB+mHMxo1lgHn3SIblv8eM0NTPDrzkjuDUzzuQCh9XwcWgV71gIY3HkeHpSKvE3XMSKmMcIkHSx0LdCCVfg1d0gJBTbrBH+/aJGevViXmkoqdqZ179+4t48aNk6FDhzo+G6+ANCJKHGwDEfHvi2oWMopu3bpVtZOwIbOleRvtqB07dlTLa4dL2zUpD3jKaG5vDW0SxixlpksghFchOwfqEeiEgBnHgDoGwzOaOLIUYR+zRJtmtund5dNMKkBHlb0rz+ykFxboCRH9OkU7tkYFC5nBRXp/vC9zNTQCgiyrfGIEfRAETOGcvF7XDJzSv9++aKZ9ffR7MzM3qQmESMCS1/mhr7F88lPhAK/kFHvlN44/8Ibny69R5BrjOc4JIROCqsL7NNiAptIiSSrYIUkFOZFtZ/lgOkoVVMOwLCaR0R/HhoF19PvwUz+GDaXiqGFjH4OIf1+11c7G4gKdRVW3sc372dnZ1fLaVihJBT2ZAU4W2t6pGeGfKRlSFrnNzKr1m24bl4/7Z0jznvs52tH+yvsi7rZ8ZaANjvmBYNmWdF+wKtuPFT+m6rOotn90Ce9Y9AIPc/7FzvJqH7w8I6zzRV2PR+ZWsDXovkZDUFYmoZKC8q3YuI2taFe1LwZBeVX0qXRfSt82H2vevDmDmKT6+hhc+kdERLsNgTA6ICbePihzhgHWV199Vf3PDP+D69y5kzT+4zPp0moPyRpzh+pc+olVli5e5iU/sUq32ZMNkdXXaGSrBnso5HideOXyvI6J4+lV2ghgwqoLwApvtfoisqJZZ3WKlb0K0GhLXzUzqhY9gshGjx6ttpSUFBk/frzj80IQEwOZiIiIiMLQXsLkPzY/CMp3Bzm5A5+QDarype2iV59bSalSltHMCHIqvy3JqfXu40ObGCXkEEiDbEV6ABsBMiX5ufbAOYJ4dKk2PAeBOGZwTTgYKnw8vY9Zdk636dFOR7vbMSgfWY2MY2Cg3N3eN9v2OBaEA6KiA88wYYJ2/z5XPa7uq0kUtPfDL6T+K58YCMPkhruktu4TIFBJBx+p7EjJKaoP4Xh+aYnMeeiCyEOW/brhSYiSqPNDZij8Hv2StGZt1LXKWTpPXX9cZ8B56PesS9jprFcqV5njuA0kOxMG2Qt3SlJhjiTl54R/6iAm1yKT3YW+XevWrT0DlfRjHEwnIqJEbme3b99ebX5Qrs4sH20GPOnHkHm+okLIjKiCinX7y5/K+OQIdkp3BD45foefyRn4n3SFz4lqh6PEs8q6mio9Thwb1Y/wZrbVI4E4oZDKamouTAgazIS+gWrPR4KpvNrpXq+tzjs1Xc1ZVDRTkqlxu+6RMtrlj4VS0sQqQV/W+72Y55eUinLfofiBXaEk1Y/Riyx06WuU90NWK/u6+1y/8PU1rosVXuyCLFrIFlvv+xv1SWmxd2CSul+obieZv6umjEpm/6pVq1aOxR9moBK2li1bqv2o9jCgiYiIdptXQEy8oJkDDzxQ7rnnHpWpSUvdtkxSclZLYaf9pThrL8/a57HK0plBQ2bJh90JhMIAPOhI/5+fuDqcqSmjiedERqyAI30O5spq7KvfEx7DxATO3b2SXL933I56L1aZpG78TdLX/iQho0Oxbt06VV7uhhtukAsvvDDm50VEREREwTVq1Ei6deumNi9Ihp2Tk+OZ3Uk/hixQFUmaHSorluRdW9XmVobV5o5gp3DAk5Xe1LNNXRegbYyBakfZhlAoUl7BcuyHCYjytnkfR2ZUBBqVFBeooB+9WKDzked5lqrWmVT14VMyMtVPvCaCfTDZYcJz9OC7ZZWpICC036NWGrvoPoA+P51hSmeFNUu8mSWtMViPYCwEGoXf69fq/evSdZjQMFcvF+/c6pm1CpMH4dXgxY7JB9zGpkr9RUpf41qZ/Ru7xFxk0gXngusvMladz+qvXjIyTGVUeLFJwrIsVR6uPNNSedASgplQdrIqNG3a1A5O8sqyhGAmTAYTERHVV1gIi0WwsbI67Nq1yzfoSd/GAoTKUuWkI2XugrKS0+wApzJH4FO6cRtZocL36+OChLpClVg22qylhfkqqMguI+dRai06K2x5mxulmPM3r4oZzORu5+s+xrxHL3P0b1RQlA8E/xTnohybWgkRbsvbJbZjtUXLy3SrihHGeejS1s4TQ2WKrPLMta6Sc473FcmQ5JltyWQ8P9yHKrH7Kwji8ro+zqf7XRcrsrAC/RGqcfjelRapYCSUBg0HIRWWByu5g5awxQ0arFoIRnIHKJn32b+qG9gDJiKiahEvaKZfv37y3//+VyZMmCDvvfeePZkTKi2WjFUzJHXLEvl18TLJXvZz1KpriDUwbgY96ft6QiNWIJTXcfAcpEPVv0cDHSsJ0GFAh0NNGkQa1eYK71jnpd6/UarOHVBl3ndPHoAu84B92vUaIBkrv5eNS35R2a6aNGkiubm5Kq0jUjRjxdIrr7yiVj7FKiuny84NGTJEZs+ezfJzRERERLshFApJixYt1NanTx/fkht6IsYd+ISfa9euVSvUg0gq3qU22bnB8biFAKD0cKCT5Qp4UhMpCVzCzjHREAnG0UE7yHSqs5qinY9AGt1WNhc56P4Dgn70ADsG/fXKYATm6Ha3ztzUqG1XR7ln1faPDK4j2AcLGfTrmNmecJ6YyEAAEJ6DxxCMpUtYhLMnhYOQ8FydqRWQEUn/Xq+yRh8kHChUDu8Dx0Vwlt5fB2GZJe30cRFghRXXSSnp0unwM6PKa+P94HnqvZUU2ees4T7eL66TuSBDBZtFJl1wHuif6OuMICy9uj01s7nax73YJKGVFkcFLOnbCCrcHVjVq7NSmAPqOngJA+uNG/tnKyYiIqIw/P8y3uICjI/6BTzhJ8ZNsU9VQRYRlUmkcIeE83bGZiUle2d8cpfBi9xnGbyqodvCaB/rwH4E13hmZ0IQjlFmGdZOfV1lBTKDiDyDghzCfa6k9EwpK8yzH3UH8KigHp/MSGizWwheUn0j4/wqQL8Pr/LTjv0iVSrK+WRNSkpRfYjVX76k9lEZo9R7KFJBXugnmdmjdMk5WP3Vy/b54/qnNWstxXk5npmecEyrtNQ3cxXOl6oI5rgiWZKiApL8MipVaQnEipWBQ2ZaBCz5BSu1adNG0tLC83dUtzGgiYiIqoUOkPELoIGJEyfKY489Jueee66asFm8eLH9O5TZyF46T3VAMWBvdirMYCDNzFpklnHT9bDR6EejGQPtQbM36QkKHUTlXE0dDkxS2Zoix443SO8OXDJf13xPfgFWjuPM/lg69thTGv82SfVhEMyElUcFBQXqmmHyy8yShZ9LlixRP83PQ39OyCCAzjz2Afd+RERERFS1kGWlQ4cOavNSVlYmW7ZskdWrVzs2tPuQhRO/jydkWZJckKM2r1XkyOJUmpklpU3Cm5WWmTBBTmgP2235yOC7GaCEBQ/4qUsXuNvz7ja1GcijB9Z11iYVOAWRDE66LJwZHGSWhdOLJHSAEYKWrNJitRDDLGHRcq8Dwq8TyXgEetGFXXLOstRxdIlps2+Bc9avj/fvLveGfbGoAvd1aTc8B7f1deoy4vyoRRJeAV8Iqgqvbo68W5S7sErtACqcp77OeI6acChBgFix6hvZgV0ijgxYsTLs1rqSIknO2yzJuRslOXezJOVvDwcG7iYMqiOrBBaZmBuyE6emMhsDERFRTSwuQNZDbHvssYfvflhggDFRbAhwwqZvu3/q20Ha4IHOEYEDRXki2AIoL4NnZHyKZHtylMVLLi+PJ0kpCdO2TxS6baqylRrBM5bf54r+lNHOtrMp+ZVG8ywZFy6PltIoTZIaNbUzszpKtenPySNISQcOqUCqyDlVBMrCYUGIvRDbK+NSjCyvWLCA/oK7vDfep/u96iAtBHnphRPhc8iw5z9wHfE3ar4N9C2wCERngTX7IxmtOobL4vkocQRfkQ1lNkuKjCCkQmewkp1JqbDGyrvFkpGRoQKUsChM/9S33ffxEwv78T2ihiFkVSS/OVEtwqAtBoAAg7ixUo4SUe3bc889VXBMr169HIFKfvv89ttv8sEHH8hzzz2n0gbDwoUL1SQOGia6s9i4XQ81yaAH3vWkhc5ahMF/XbZNd0502Tav/cDrsViP64kFdCR0WlVzUiDo6mN9fExC6FIOcY9RUiDp6xdI6saFsn5teEJL/3uIoLD9999f1q9fHxVIZgaYgTvQCZHr27Ztk9LSUhXd/vjjjzOgiShBsA1ExL8vIjcEr6PN5w52woaJlspC6bpwcFM79bOscSuRpCBrzKueO5hHt41RAloH85SXNwiv5sVjZjCSeSxzYYHO/KRXEOvRdLTL3eWhzfNA0I/+HXidnyq7Fln1jOOBudobQU46EEvvg76A1/H0ewX93tzXBdmTMLGgs9rqgCcd6KT7Q+7+k1efRJ1npBSFOSGByQSsmjbL+OmSG/GOj/NVK9lLitRkiDvrVI2WjEPGhNxN9oYAptBulsNxBy3hMUyeEiU69jGI+PdFFYfx6by8vMDBT9iw+LS2WKEkV+BT5Geqx2OR2/U9CMpum3qWNwtJKCkpnKEoEtRj9g+Kdm51lsN2QQYmZOQ0sxI5D18eHGQG/seig4J8jxkQ5lT2Gn2H3fZ3vwb6FV7XBb/TCx90f8Ms1xfuO6RHgracpcF1qTsEM+lssWD2cbzOw70IJR70r2qtj1HTpd3MzEh2kFJ5gFJS5Lbo4KVaPGX0ibwCkvyClBDQRHXfmmqK5WCGJiIiqlJm6TLQATRedEANfmKF+mmnnSaHHXaYPPHEE/LNN99I37591X7r1q1TQTeIwc3ftFIsq8xeAaxX+gYt2+bez++xWI/HKlEXa/WxeyIFDXM0+nUpB79jhJ/3iXTcs790aZqkyvKZ1wSNhHHjxsnYsWPlrbfekttuu01toIOazBKAOpDMDGrCTzwHWZpatWrFYCYiIiKiBIZgiu7du6vNbceOHY5sTqtWrVI/sRUVFcUvXbd9haRuD6+AtULJUprZxg5yKmvSVqzURlITzEyrZrtYZTVytcsxKO4uT2BmINIriXEfCxV0EFDzngNVyTRdtk1nFkJ73Cwtpx/Dc3TwkR7IN89P728GGbkzNOkJDDNISvcRdJameNmMzAUb2BfvDa+H96KDkkLJKWo/wDHd/SdNnwsCjrC/LrNnTiAkpzdS1w3XVAdMmRMssRZ04HF1LS0rkgGqhiYbykokOW9LOHBJBzBhcL8CsLAG5eHcAUtdu3ZV5QswYUVEREQNB/7frzM/6QnbeBDQ5A5y8gt+wu2dO3cvcMUUQoYWZJ+sQAZKtP/LMz55ZYOKzgqlgqDqCLtt6gr2QelotJ8R0IOMP/oxtOft/oIDsreGA3Z0cA/KyZV5BIOZiyjQF9ALp9Fn8Ato0pme3K8bfrzUCBwKScu9hjn6G16QMWnuvy9S5bURYIRMq7osnIYsTvaii+QUFbxVkp9rHxtteQQO4bzDj4UDtPSiiujSdOH7SSmpjr5COMtVtJKCPHUcHThlZrRV/ZvIAgx93nqxOfatm8FJXtmSvIKVdHBS7eWn0eXd/AKS3I81a9ZMzfcRVRV+m4iIqErpjD/gl5nJi5lB6I477pCZM2eqx5YvX65S8wMmYZBKcmdunjRu103ysrfapRjilZjwKrFglp6LtW9QfgFQmp4I0eXw9Ippfdssy2Afo6xENs38QAp3ZsuGX36QrkOH2tcCwUzoSF977bVyyy23qMdxDRGUFKtsnBnEZDJL1BERERFR3YTBw379+qnNvaJ806ZNdpATAp7Qbl+0aJEUFxd7HitklUpK7ka1iSwIHye9mV2iTmVxatQiXLagmulgGpVpJylZBd5oCApCWbTSwnwV3GQG5RTmbLKfo9vYOvAHP/UqYLMvoYN2dPAPgqLQjtcLETDArycuMMiOczODrjBRoTOwAgb+l09+Sk0CIGgIx9VZmOY9epmaOFnz9SsqcAgTHugf4Dj6fYB+v/p96TJ5Zhk6QHZZvaIZkxCYtMB9/dNrsYYuk4dJDF3qzxYKqdfWfS49qaPhefo6+WWbxXPMAK/qgJIt5dmXNkrSrq2q5GJQCA7s06ePClbChsAl9EMRPEhERERUWcg6ggBpbEGYZfD8SuG5N7+2fGWg/R8qzkMNMJH8YM+xEGjiVwbPJytUbQZBoV2MAB9A2zu9Zbj9bC6EQDATfqJd782S9OZZKjhpwTM3hDM6RUq56axOOUvnqna+yp6KQDEplaLc7TLnX2MktWlrSUKfIkYWJ69gp0Ztu9jnBimNmqi+hhnQhIxFaK+jNHQ4kCpc+UK/r7RmbdSxcQ1UsFVxoaz+En0L9JmwKCK8gCUcTFWeiQnXTWVXsheYWOp1dHlq8/xVJqdI1trSovAXSfcVwpmbvC5pmTqMDpzS/QudOUpnx9IlwnWmJ/Rdaq20tQpOKvbMlhRV6s0MWKrF4CTIzMy0A5Dcm1eQEsu7UW1jQBMREVUpHSyDDE3IBOQufeYV/ISfoG9j/2HDhsngwYNlypQp8vzzz6vfY0AZmYlyc3OldWqJ9BsyWIo6dJB5Hz4vhdmbYg6kux+Ll02pMuIFQOlgJR3AZE7EmOem3sPcL+XXZ66TLp06Stf2bWVNSaEjPeOAAQNUiTlkZrryyisd119nZ/ILTNLZmhAwdvXVV6syc3gOJrj8PisiIiIiqtsQCK8nU9DO1pC1Ce3wX3/9VX755Re1bd261f84hTvUlro1vIjBSk6TkuadpaRlN/VTklOr5HzNQCPQmYjMcs2ammiwLLGs8Crm8EB55HxT0iU1s7lvFiH3ggdMZOjMRmYAlIZzsCLlsMMPWGoQ3VycoBcx6AxROD/dB9ATEPocdVkHvQIb76+kuNDOJuXbv7Asex99fRyl8CKZYPXr6WAm/bqxsti6A6nM8nc4js4khQkQnC/eo5m9yd3HCpeAqOLMTFaZCl5K2b5KUrJXqe9kRSYWkQ0YQX/9+/dXt1kmjoiIiBIBspq0bt1abUGoigb5+SqwCZlavQKevB5H4FRVCaGNXpQngi0gKylVZX4tS22kfpZvjaUMwU+pjcP3UzKqtAQ22qxoH6vzTkpWbXEdxAQ6Y6tuw+Mn+gJo9+qyzDprEtrE6D9YkYxDKRmZjlLMOhORWaZO74sAqC5HjbFfywwKQjCQyno05ZWoEndmMBMCgxCchHa6yqhUVupZ4jncTn9F9TfQR9CLNey+CLJKRV7bskrt95D9x4/h52DRRPMsVxk4ZKiKZFsyFxFEslDhHHRGW32+up+Ea+mgFsdYkpTWWGW5QuCUX0YtLA7XC9zNzL1VCu+nrERlN0sqzpeQa3M8VpKvMqHVpsaNG6tFTV7BSV6P47HU1KrpsxPVFAY0ERFRldLBMmZZM78gGR18g07UUUcdZT9mprLE48OHD5dPPvlEJk6cKLNmzVKdNKwsR4BTxsofpEv7NrK6tEhlbbJXCUQG+MGsu+xXos6L3wpjv8fjMSdLvDJKKaXFkrbpN9k8/R0pzN8la1cWyNChQ+0sVVlZWXLBBRfIyJEjPdN2mqXl4mXDwnVHMBMRERERNVxpaWkqoAPbGWecoSZFNm7caAc44Sfa9cjw5CVUWiSp25apzQolSWmzjlLSoquUtOyqJiIqS7ePdZteDbznbApnRxJRGY8w8I+JBZSOQ3tflx1wBPZ4lERzB0uZwTi6NBsyHbnb+lixjMF2M6AJEyGgF0uYixjMUm+YKMAAPLJJ6ckRnWUpciA1CYKV1LqknBcz2AjH0Fln3SXh8FrmhAp++gUcuRdmxFqogT4VJk7sTFCRSSCd9crMhFUtZeRy1klK9kpJyV4duIQcgvgQuKQDmHr06MESCERERFQvoEQuAhqwdejQIdBz0N7ftWuXbwCU3+bXH6jUeZcVS6iwOFBQepnK7OQOfNLBUJHAJxX8lB43c6y5SAJZlHQ7WZeFdreD0dZG+xdtX3d7W2d5Qrsbv9dtYP17VdrNVRa7/AKUnyeCl+yydpalMhsh2CmtaetI4FGktF0oybmwQixHgBNeD+8D/SS9IEP3e3RgEgKk1Htu16M8S1VKmpQVI9DKUpmk8JrqdSPl83T7XpXIQ38M2abwmpFAJrx/PR+j98V1UvtZJZLapJW9cARUvy2yqEMdXy3EKBMrcq3we5OZ7VUHa+F4Xpl7Y1JBSgWxA5UQoISfketV07Dwwi9zkleAEu6jP09U3zGgiYiIqoVfWTMTAm90lqbZs2f7lqhD4M6oUaNk5cqV8sUXX6ggHDNbUad2bdU2c9ZsKckvb/CikaxLMqj0sUbHwt058Qoy8svi5PU4nu9exezHc4KgpFDSNi6UtI2/qkmhLp07qaAt/T5btmwp5513nroOupFqlumLFcTk3k9f87Zt26pNl5sjIiIiIsKAss7kNGLECHVBMOHx+++/2wFO2Hbu1Ktzy2F1akrOGrVZK6dLWWaWCmwqbtFNrEbNK3xxzXa3Yllq8Bv3ESik7+sBbjOTEtrbujwBfsYK2PGa2DCDcvREgHNVcuQ9J6faQUrmJIguMZeS2SJcgsKyVICRexBeQzATYNIDG/oWmDQwJ1n0T93fwDFwffSqZf0+AOdkrs7Gwg8dWFWZgCO8pi4bsWvTCrVKG4FNqrRdWakKJtPXz93XqeyCEKWkQAUvqUxMO9bGnVzAauPevXvbwUv4GTTDAREREVFDae+j5BS2igRB5eXlBc4ApR+viiCopJJCNXYuBdmxzxGFvFR2JyPbkyp3Vx701G7fw2Tj/KmRdmm4r2O2WdFmBh0kg/a/LgmN9j3a4mbJOh1Qoxcxm6Wgm/fcT/00y8GFnxSSLiNG230dLHJAVlmTztyEPo8O5Jn774vEQjYgLJTIaKL2Q3tcn0tZSaFzQUVkgYdeEGEu/tD9K5x/OKCp0FG6OnxBLUd2XPWcSFZc+7NJSVPl39ztfZW5KtJuL8nLts/HHRTmF1hmcmd7xfPDn0uGJKWkqrmUpLytKlApKjDJDFYqDWfHqimYw9Fl24JmUGK5ayJvDGgiIqJqESRTUNDAJ+3RRx9VHaGePXvKrbfeKm+99Za6ryEIaMWKFXbd8F3rlzka17ocgxevICW/LE5ej+O+buxXpIzdlp8+k02zP5LOHTtIpw7t7MeRkQkbApmwUv6UU05RK238SvbFutbu/cxrzhJzRERERBQP2qEDBw5UG2BiYvXq1bJgwQKZOXOmyqJaWFi+yhawnjc5b5Pa0tf8KKUZzaWkRTcV4FSW2dZe8RvzdSOD+PiJlctmxiUE++jSDBgMN0tF6Pa4LvOgf7rpgXdVYi4UsrM/YYBcv5YOUDIzrWJ/e+KguMAOqMLvdBBScWTgvjh3W/h6uDIX4bY5sWBmXgL0LfT705MS+icmPbAvgpb0Y7p/Yq8YRxk+D3ryQ2d2ClqyG9vWBd+q961XbuvsVPi09SprvK5+rlluz8yWG0+ocGeklNxKSd65EVNTMfdHdrGDDz5Y9t13X5UpmBMBREQNW25ursry/sEHH8j8+fNl+/btanwNiwaPPfZYlfkc/78goooFQTVp0kRtnTp1CvQc9Bn8gqDwd7lt2zZ7w/3s7OzdO0eENBXni2DzgRxBPfbdW6yS1bJu8gOyZtUK6dirn1jJqbJm3g/hgCGVZell1eYvyc+1S0Lb/Q3djwmF7D4AoH1eXg4uXLZal7J2L5zQbWLddkefQmV0Kil0BB2Z7XozUxH6RvYij8i5hIOi0G4Ol56Ol31Vt/XRf8FxdZ9Ll4rDMc1S32ZfQwdV6cAv92vovg6Yiz80fV308/F7vLa9IKO0RJKKdqrPc/OC72TNnCnqvXXde5BsXvxz+HMJhaSkuEA2z3hfepStk+qGhRP4f0mrVq3sDfexeQUoIdsSEVUNBjQREVHCBT75ZR4yA3FGjx6tOjr33nuvWj2ORqIOAlq3bp3KbtSpXUspbdZP1i35VbIGH2cfx2vA3itIya+x7/W42UjXaVVjrkJGRqb1P8umGe9JQX6+rF1d5AhoatOmjZx99tlywgkn+DZ+9fUYMmSIGojxC1ByB40FDTYjIiIiIvKSlJQk3bp1U9uJJ54oBQUF8tNPP8m0adPk+++/dyw60JILciR5w8+SvuFnVR5ClaVr0VVKm3XA6gPP18HAth7E14PbesIA97GZwTM5S+epyYDivBz1eMs+w+xBfy86m6ualIhke9JBRKAzH5llonUAECYPEIyEzQyoMkvMqWuVkq5WDmM/d5CUnjxo2nOguo1SDQiqslRZaEs9NzWzuXpvmBBBOTo1yWJZ6rxxXfTEBvYxM826F2WYZfbcizm8Fnd4PabLPySnNwrfL8q3r52G89DP1dfCXYYjimVJ0q6tkpK9SgUyJeeHg8BiTSYMGjRIDjnkEDnooIOYgYmIiGxTpkyR888/X40LmjZt2qS2OXPmyAMPPKAWSt58882SnKyDc4moOvoMTZs2VZtZbcFPSUmJCmrSAU5mwJN7Q6DU7kBm2bUrl6lx+eULZofLnkWCmQAl0BA0g3Zn89ZZkrtzh5RhocGucGk1QEAP2uMqy9KXEyPlqZ3MOQf3HIG+H17kgAXalh0k5NWuNzMV6UytoDMVmf0aZJVKzWzh2/425zd04FTO0rmqL4Tgq+S0RlFVKMz+i1n+zb2YwV0BwxGoZCwMT2+RJe167ysL/vdPKdyxTTb/8J50zSiQpIIdklRcXoVj47xZUlIYDlJb//tc6dK5s/o3HsF1CGAN8t2K9R1FFiUdnGQGK7k3vB6+J0RU80IW8gQS1QH4H1SXLl3UbawE3Z3/SRFRYkNwDjIK9erVy7cMnbkfMjYhYOfVV1+VjRvDDXmTlZwmRe37S1G7fiLJqXaDX9e+rqggJRN8X6O0SNI2/CppG3+RUGmxLFy4ULZs2aICmLCyGGl+zz33XBk5cmTg+sdBrxcR1U1sAxHx74uoLsFEBErSIbAJAU5YbBCLlZQiJc07RwKcuogY5Ra8ShfEasebA/t++5gD7jp4CQP+WAkNpYX5dnkEMMssuF9HB+no4yHoSD3fKpXGWd3LV0xHMi6VHzSkgq3M4Ck9+aBfz93f0K+J4CANq511IJV+v37Zlszy2GDuE+s5ZgYp83l2MFhkEgWBZPq6m9fEPalhKyuT5J3rw0FM2askqSj2pBRKohx44IEqE9PQoUPVfSKqPPYxqD767LPP5OSTT3ZkjUxJSZF27dqp4AiU0DVdeuml8uyzz1b5efDvi6j64e/cK8uTV/CTO5Oshn4KxtTNaXIEMHXv3t1+vFGjRqrtCd9++629LwJbevbqhagmWfLbAvv56c1aS+N23WTX5jVqgbXZBo41pxCvH+N+Lu7rctBm/wFZYrFIA30GlIILQpfKRhBXOMOTf1/K3R9T52FkdMJP/Tt73+ZtZN/TrpKkgp2SVLhDNvw+R9YtXaSqbZiL0zHni/tenxOqcgA+G3AHNLmfh0xJ7oAkr+xKWCTPwFaixG8DMUMTERElnKBl6Mz9MGCBbEZffPGFvPLKK46VWKiPnL52jqRuXChFHfaRrP1HyqafPvdfIRyH12rlWKsvwh2OT6TDnvtIl2ZJ4brfEWh0oyOEVe3jxo2TI488Ug22VERFyvYREREREVUntGVR+gvb2LFjZfny5SqwCdsff/wRtX+orERSt69QmyUhKW3aXpWlQ3k6v9IFyBSENjaYwURY2ayDk/za+rotX5izyR5473T4Wfbr/PzE1SpQB0E6VmmxXc7NfR7ucmyAQXsd5KOzGeljYVIBGZjUa1qWmjTAeepSbSgNEcIK4d5DfDPCuicxdMkHXc7OfExnssJPXfJN38cEg3u1tVe/Bs8Ll8AoVNcdpSH069vl8dT1O9M+tntFtmPCprRIUnLWhMvJ5axR/bRYsOgDWZiw4fuECSYiIiIvmPA+55xz7MAFZIS57777ZMyYMSoIFqWvPv/8c7n22mvt9siECRNk8ODBctlll/GiEtUxKDGMqg3YYsG4e35+vm+mp6+++kpmzJihglqQHQrZenRwDIJoioqKZPr06SqQBm3TzZs3q6w+WGCt91v+R7KUlpaqYxwwsH/4dTv2FStpq5T9/pmUZTSTsvRmsmnWJJWJCPMEXm39tVNfV4sJ0LeJNx/hzpbkLpFdkXkPnRUX/ajwYob0qOebi0L0+erz0gs0kpJTJC0jUzp27ymNF06WLu1ay8q8bVK2K0eWT3rSDj7q0rGjdGntnUHXK7hJV+VAGXQEIk2ePFl9pvj3Hv+247j33HOPI1CJ/Qai+oUZmqjO4MoGoobNrwydF3Qg0Bl58cUXPVeEl6U2lqKO+0lxm97IK1qhzEsV2S/8YqXy64QbpXDndseKDg2N77Vr18qhhx4qP/74Y6D3R0QNC9tARPz7IqovkE0VmZuwzZs3T7XbY1mzJUfWrlwuWQNHSJuho7D82LEqGHAbAT2qzFuAFc0Qzi6UGy7r4Fq9rFcoY2IA5RECt/tdmZCQPUlnYNKvgd/riQpkaILti2aEnxwKyaAbXwx0HXGO5vO6jDjfkcEKj6FcBSCQyczq5C4d4cfvWLi+OrsVrjs2ncHJM4tV87ay38mXSEr2SknesV6V94ilR48eKgsTgpj69OnDsg5E1YR9DKpvLrjgApk4MZytJCMjQ77++muV2c8NZXEPO+wwmT9/vrqflZUlS5cuVZk+qgr/vojqHl0BYY899lDzClu3bpVRo0bJ+vXr7Yw/+DcFi5JjBeGAX7YhvV+nzp2lQ/feUpbRVMrSm4d/NmopP7/1qBRmbwqUoakqVagaRdNWMvDE0eGycMi2tHShrFy2RO2DoC/3e541a5aa/wiX9HNmvHLvg+BTBCkh4y8C1j7++GOVYQ8BStjwXHOeaMiQITJ79mzOpxAlkOpqAzGgieoMdgSIGm6AUmXLqqHx++mnn6oBDayecCtt3EoKuh8qZZmt1f3dLUXnlpS7WTJWTJONS3+N6sigMY7BlqOPPlqtYg/y/oJeM/d+Fb3WRJRY2AYi4t8XUX20c+dOmTlzpgpuwqpoDGK76cFtrLBNTkmRjnvuo1Y4r/99rmQNOV5lNTIzNPkF7Jjl2pBlSGcsMsvJ6YF8/bt4fQJzlbJXWbV5j15mZ1/qctSYqHMysylB43Y91GsHmaSY+++L7OeFklNk4PXP2cdUwVqRTFD6/XodM9bEhbtEnXu1t3nemr6WWX0PUKXkNs/7StYvmmuXkvCDFe4DBgxQQUzYOnXqFPO9E1HVYB+D6hMEHHTt2lWNA8Ktt94q48eP990fAUx77723FBcXq/sYM7vhhhuq7Hz490VU93iNn+Ox2267Td3GvymXX365yuqExckoV/nWW2+poBq0dfFYXl6e3X/xCtyJZ+HCRbJlyyZp2a2P9DjhSrEymoXLuFXSbgdBlZVKcu4mlVl104LvZN3yP3zLwvnRQVwIGkUGLLT9DzroIDnuuONUux8bSvlh/uamm26Sq6++2l708tRTT3Eug6iOWcOAJmro2BEgql8qGqDk16kIEqiDyP5JkyapUnSopW1CWQuUoUPGps0/Tw3cyI/ZISgrkfS1cyV1wy8SitSd1pD2dPTo0ao8XlpaWsz3V9Frpo+Rk5OjArj0fpUJBiOixME2EBH/vojqO5RymDt3rp29CSuizQFwTFBi0tGcGChLyZDSph2ktFkHKWnWQaz0ZrJ5/hTPNnq8QB8zuChWEJBnBqOIUFKKpDVrbT9vzkMX2CXt3JmX3MFMLfc6QAVF6WxTOsjK/Rz93lBewi+zkz4vHAdZpnSwFZjXRpfWMzNUuYO6/K6FzmKFgDKrLDx5DKlpaZKSnBx3ogMrrjH5gwAmrHRHaQ8iqlnsY1B98vDDD9sBSZgsR/sBCwljOfPMM+XNN99Ut1F2Dlk+qgr/vojqP/d4O7IP4d+iu+++WwXknHTSSdK7d28V6IR/E7CYIxb8u4XjmVmMytKbSEnzzmpDv0eSg5Vf1m364rwcKSsuiMpI697PbOuHCnNVAFMyykTvWKfKg1cEMjEh850OVtIb+gdY2I2A0lhzFCgd+tprr6nbnMsgqnvWVFNAU0qVHIWIiKiCELijA3iCQJCPO9AHz0dDHz9jBTRhwPz0009XQUTvvvuuahSjtjIg4Ch9/XxJ2b5S2vU6JPBqBXfdai155wbJWD5NpVw1IS0tGuSnnHKKSn0d5P1V9Jrp69G2bVvV4Nf7VfRaExERERHVJAT6Dxs2TG3XXXed/P777yqwadq0abJixYqoMg6QVFIgSduXy+Zfvw+Xbui2h2xevVoK83bIptkfR7XrEaSDACME+rizOKFNj+Ai/A6l4hAEFG8hA+6H+wSb1DIJBPagf4DAKZW5Kau77Nq0QpVjQwCQmcVJv56mf6eDnNx9DHf/Q2eO0qXxTDiOzq6ErFUITMJzwKv/YgqX4tspSakZKkNVcV62uo/H7eeUFkmvQ06QlH0GyaZfpsu65b+rFdfoXyHwDCvS8Xm4A5qaN29uZ2Haf//9PftERERElYHs7BqCAOIFMwFKSemAph9//FFWrVqlsjwREQXhHm9HIA8yCiGDE8blX3rppahylwhu8tqQuQjtZwQz4Ti6z5NUmCtpmxapzQolSWnT9uHgpuadpSyjuW/2Jt1viJfdye5fzJosnVtlSnLOWkkuyI773hE42r59+6igJWwdOnRwLOI2IQNTvDmKV199VZUF5VwGEZlYco7qDK5sICK3ypZSw4rvRx99VKUzNSGXUnG7flLYeX+RpNgxv1ETG6Ulkr5mtqRt+i1q3xEjRshf/vKXal95zNJyRPUT20BE/Psiasjuv/9++c9//qOyJ6BU84IFCxzlnM2yDnhM/659jz4qcxNWM89/9ykpzNkclbUImY4QFNSobVe73Jse2Ncl57zKUruzJZnHMEvWgc6WhEAlfQwEOOkMS15l78zgKTy2durrUlZcJEmpadLp8LMcv/MKtnKX2DMzNOkSee5SeTjW6q9esjNYIejLvp+RKYNPuUhSdqyXpLwtUVloNTPwDGUCcf/UU09VKzSRLZclsIkSB/sYVJ+0bt1aBREAAqORJSUeZAdB9hTt9ddfV1mbqgL/vogapsqOzSPY6Y477lBBUAisxMLoeMrSkL2pkxS36ytljVpWqDS2at9vWy5bfvpE1i1eIF3iZFdFkFWfPn3U4hMEjeLfTrT1iYjcWHKOGjx2BIgatuoI1pk6dao88sgjUWXoSpp2kPw9jwqcxhWrlBv98YWk5JaXnNADKkh5jVXIJgYeEVFFsA1EVH3490VUt8o5/PHHH9KmTRs1adm4cWO1cGDRokUqixN0797dHoxfuHChbNmyRe0PuN26U3fZmZMthTu3S3qLLCnasdXOzDTwhuc9g4S8goa8gpw0c3/wmkwwy8LFKy9nr7COBD/hPN2l4XAeZmYmnWXKq2ye37nbJfRCIUlJa4RpEikpLFATGLj2YAaSuQOYunXrJv369ZNBgwbJwIEDVSCT/tyAJbCJEgvbQFRfbNiwQWUE0Z555hm57LLL4j4PWQURDI2fgGCC22+/vUrOiX9fRBSP3/wAsjQtX75cZs6cqTYs5kAJOz9WKFkKux0gxW16x83IpJQWqeoSqdvD/Sc/yK6KEtEIYMLGEtFEFAQDmqjBY0eAqGFz16WuKjk5OfLEE0/I559/7ni8pEk7ye99tEiyd4rU8h0LpfEfn0ly3hbHw8cff7yMHTtWmjZtWmPvhYjqJ7aBiPj3RdSQuQf7s7KyZPPmzarMMiYxly1bJoceeqi6jSAnDLwDsrHqsg0ob+bO4tSkWTPZumWrlJWWqLJwnQ47U9oOOirQOXkFLXkFDwV5vle2JTNLFIKhdDan1KatJSk5xQ5kUsFHGU1UNiUz8Mkr0Mrztfc9QrbMniwb534lTZu3kNytG6W0pFiKi4tVKQlcPwSE9e3b186EpQOccB3nzJmj+lPIwIR+DUp9e31uUNWLU4ho97CPQfUFysXp//fDRx99pMbkgkB5JATnwkUXXSTPPfdclZwT/76IKJ6g8wN5eXmqzY22OAKcNm3apP7dci/oKG7dSwq6HSSS7F91ImnXNmm05GtJKtwR9Tu08ffaay+7DDiyMCUnJ9faB8kF4UR105o1a9T4AKxevdouobm7YtfTISIiStC61FUFqw3GjRsnRx55pNx1112qkwDIttT4909lV+9jRFLKB+ZNoeICaYRgpl1b7ceQEvbWW291DKbU1HshIiIiIqpvEABjBsGMHz/ebksj6AaTAMiogMdQZgbt+gcffFCmT5+uAnMQkIMVxWZ2IV2qDsFMGLwvKymSzT+8LWkbf5GVS36TstIyFeTU4ZDT1Gu6g4/w052tCft4BTR5BS/p5+N3eL4ZxGQGNemfWvHOcL8DJeF0GTuUlNPH1RmaEASlj+s4p7ISad+zr3TKai3JuRslee4r8tvsaVKYny9JJQUybOhQO+tSYWGhCmjKzs5WT8W1W7p0qZSVlanApsmTJ6uyGPqz0MFM55xzjrz99tty+umnOyZnGMhERETVAZP77mzpQbVq1coOaNIl64iIakLQ+YHMzEy1eAMb2uYIZDrooINUPwfQbkffJnXrEknatVXye40QKyO6ZF3KliWSsfJ7CZWVZ3tC2bgjjjhCBTChvDfmSRIFrg0CvvCT/QgiCln4F5CoDuDKBiKqbihhcdNNN6m61VpZehMpS/euW51UsEOSinLt+y1btlSN7D322IMfFhFVGbaBiKoP/76I6gcziObVV1+1szhhVfGxxx4rP/30kyqFhkF7HaCjA3ewDxY1IPApNzdXBetoGY0zVRakgrxcychsIvsfOUo9vn7FYlm3bJF03GOv8LEitzt03zPq3H76elLU871+h+d7HQevter3BVJSVISiElhWISlpadKiTTvJzdnm+bperxkqLVKrskNWmWNfs2ycLiUHOiAMGWe//PJLlaUJJXzM6+wlLS1NPQ/XukidMxElIraBqL5488035cwzz7Tv//LLL6oEahAHHnigzJgRzoJ41FFHyRdffBH47yeW9evXqxJNgGDgqspOQEQEzz77rNx5552qrd2jRw9V+lmzkM21kTOwM2SVRlWXQN8HwVS6PHQivsdHHnlELVgJUkaUiBID2kg9e/ZUt5mhiYiIqJrSmI4ZM0ZNeGzfvl09nlSYq7Z40AnA880OBBERERERVT8E2SCIBj/NQJvS0lJVWhq/w+IFbGvXrpUFCxbY2zvvvKNWOyOYCROOWPWMLETI/tSlUzjARwX8dOwgKTvCWRzWL/lVCvLz1U9MWHZptX/4BSO/N3Xp2CHq+V6/69gq0z7OukU/2kFGXTp2lC4HHmAHHpWUlEhxUaHkbd+sMip5vW6s13TTGauwInvAgAH2NmXKFDWJgIkOPSk7e/ZsdS3x0w+CnXTQExERUXVzB88ioDYoc1+d7SQIXUoliEWLFtljjEREVQHBmJdccom88sorctxxx1W63Y2FHOgPxYO2PV7r3HPPrbE2Pt4jNtDnWBvnQUQVs3HjRqkOLDlHRERkpDGdOHGiWoGMgfstW5wrF/y0a9dO/v3vf0unTp14LYmIiCoAAQT4f+8HH3wg8+fPV4P9yHiISXxkVbngggtkzz2jM54QEcUKokFZuttuu83OuIAAHLTvUV4O/75gw+A/7LfffvLwww+rMg4oTYegJwRCmczMRYDn64CjeHTAUEV+h2NjgkGXkDD3NTMqVeY1NfRdzAAmTM7i+mjIyHTVVVdVuDQGAsr8sjcRERFVNXcBEvP/ZURE9RUCe5D9BD+rO7inJl+rLpwHEdU8BjQRERG5BueRZemxxx6T559/XrZu3Rrz+rRt21YuvvhiVdaCiIiIgkP2j/PPPz+qZMOmTZvUNmfOHHnggQfk1ltvlZtvvlmVhSIiChJEc8UVV6gtCLT/zQAdBBIhmwJWAv/2229SWFgY9RyUr6tO+PcO/wbidfbdd98qeW1knEI/Z5999pH+/ftL69bOUhRBVOS6EhER1QSUOjVVJNOSuW9GRkbg52FCPWjJub322osl54ioyv3tb3+zS7JhcQKyuKJsJipPuBdnALKxjhw5Ui1a2N3Xqi2Jch5E5A+LVKtDyHKHsBMlKNZ2JyIiooaIbSCqjz777DM5+eSTHYECKSkpKushsjTt2rXLsf+ll14qzz77bJWfB/++iIiIqCFiG4jqi08++USOP/54+/6sWbNkyJAhgZ6LCfFffvlF3T711FNVGdqqwL8vIiIiaojWrFljl+ZFAHiQrNZBJFXJUYiIiIiIiIgCQLmkc845xw5matq0qTzxxBOSnZ2tOr47d+5UExO9e/e2nzNhwoRqCWgiIiIiIqK6q02bNo7727ZtC/xcc19mXiciIiJKTAxoIiIiIiIiohozbtw4e/IApR2QrenKK6+UzMxMuyzSscceK7Nnz3aUWkLpudzcXH5SRERERESkdO/ePWrxRBAoz4Qy11pVZRAgIiIioqrFgCYiIiIiIiKqEevXr5dXXnnFvv/Xv/5VDjzwQM99mzVrpso+pKamqvuYcGCWJiIiIiIi0tq2bSutW7e27//xxx+BLs6yZctUUJPWr18/XlQiIiKiBMSAJiIiIiIiIqoRr7/+uj1xgExMV111Vcz9e/bsKX/605/s+6+99lq1nyMREREREdUdQ4YMsW/PmjUr0HPc+w0ePLjKz4uIiIiIdh8DmoiIiIiIiKhGfPrpp/btoUOHSrt27eI+Z9SoUfbtH3/8UVatWlVt50dERERERHXLyJEj7dvTpk2T7OzsuM+ZNGmSfbtv374sOUdERESUoBjQRERERERERDUCAUnaAQccEOg5w4YNc9z/4Ycfqvy8iIiIiIiobjrjjDMkOTlZ3S4qKpLHHnss5v5Lly6V9957z74/evToaj9HIiIiIqocBjQRERERERFRtduwYYNs27bNvr/33nsHel6PHj0kJSXFvr9o0aJqOT8iIiIiIqp7OnfurIKatLvuuku++uorz3137twpp59+uhQXF6v7zZs3l0suuaTGzpWIiIiIKoYBTURERERERFTt1qxZEzXxEASCmbKysuz7LDlHRERERESme+65R5o0aaJuI1jphBNOkPvuu09ycnLUY5Zlyeeffy5DhgyRefPm2c8bP368tGnThheTiIiIKEGVL3MlIiIiIiIiqiabNm1y3G/dunXg57Zq1UrWrVunbptZnioaROW2fv16+zbKU2AjIiIiqu/Y5qH6BlldX331VZV9Cd/vwsJC+cc//iG33HKLtG/fXrKzsyUvL8/xnHPOOUeuueaaWjtnIiIiIoqPAU1ERERERERU7XJzcx339QrqIMx93ceJpUuXLoH3RSm77du3B96fiIiIqK7auHFjbZ8CUZUbNWqUTJ48WS6++GJZvXq1eqy0tFTWrl3r2C8pKUmuv/56uf/++/kpEBERESU4BjQRERERERFRjWcCSE1NDfxcc1+UkCAiIiIiInI7+uij1UKFiRMnynvvvScLFy6UzZs3S3p6unTv3l2GDx8ul112mfTv358Xj4iIiKgOYEATERERERERVTvLshz3Q6FQtb+mXpkdq+Tc0KFD1e299tpLOnfuXO3nRERERFTbWrZsWdunQFRtGjduLGPHjlUbEREREdVtDGgiIiIiIiKiapeWlua4X5FMS+a+GRkZgZ9XkQAlnJ/7HImIiIjqI7Z5iIiIiIioLmBAE9UZJSUljpXURERERA2B2e4x20NEdU2zZs0c9/Py8gI/Nzc3176dmZlZZefEPgYRERE1ROxjEFUf9jGIiIioIVpfTfMYDGiiOgO1rjVdFoKIiIioobWHunfvXtunQVQpbdq0cdzftm1b4Oea+2ZlZVXZJ8A+BhERETV07GMQVf3flMZ5DCIiImqINlfhPEZSlRyFiIiIiIiIKAZ3J3bdunWBrhdW9GzatKlSZeSIiIiIiIiIiIiIqG5ihiaqMwYMGCCzZs1St9u2bSspKfz6ElHNpUnUK6rw71CHDh146YmoxiCYQ6/wRHuIqK5CG75169aydetWdf+PP/4I9Lxly5Y50hT369evys6JfQwiqk3sZxBRbWEfg6j6sI9BRLWJfQwiqm99DEaEUJ2RkZEhQ4YMqe3TIKIGDsFMzAxBRDWNZeaovkB7/tNPP1W39WKFeNz7DR48uMrOh30MIkoU7GcQUU1jH4OoerCPQUSJgn0MIqoPfQyWnCMiIiIiIqIaMXLkSPv2tGnTJDs7O+5zJk2aZN/u27cvA4uJiIiIiIiIiIiIGgAGNBEREREREVGNOOOMMyQ5OVndLioqksceeyzm/kuXLpX33nvPvj969OhqP0ciIiIiIiIiIiIiqn0MaCIiIiIiIqIagbKtCGrS7rrrLvnqq6889925c6ecfvrpUlxcrO43b95cLrnkEn5SRERERERERERERA0AA5qIiIiIiIioxtxzzz3SpEkTdRvBSieccILcd999kpOTox6zLEs+//xzGTJkiMybN89+3vjx46VNmzb8pIiIiIiIiIiIiIgaAAY0ERERERERUY3p0aOHvPrqq5KWlqbuFxYWyj/+8Q9p3bq1yuDUtGlTOeaYY+T333+3n3POOefINddcw0+JiIiIiIiIiIiIqIFgQBMRERERERHVqFGjRsnkyZOlS5cu9mOlpaWydu1aycvLsx9LSkqSG2+8UV566SV+QkREREREREREREQNSEptnwARERERERE1PEcffbQsWrRIJk6cKO+9954sXLhQNm/eLOnp6dK9e3cZPny4XHbZZdK/f//aPlUiIiIiIiIiIiIiqmEhy7Ksmn5RIiIiIiIiIiIiIiIiIiIiIiIiLyw5R0RERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERJQwGNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1EREREtaSoqIjXnoiIiBpkW4TtIOJ3iYiIiIjYX2gY2P/j9SSqLAY0ERERBRAKheztxRdf5DWj3fbee+/JiBEjeCWJiIioxuXl5clNN90kDz74YINqBw0fPtxu019wwQU1/vpUtYqLi+Xee++V6667jpeWiIiIqJ6o7b4KVb1vv/1W9ttvP15aXk+iSmFAExEREVENWr16tZx00kly6qmnqttERERENenDDz+UvffeWx566CEVEFKT2A6iqvL999+rSZFx48bJrl27eGGJiIiI6oHa7KtQ1du2bZtcdNFFcvjhh8tvv/3GS8zrSVQpDGgiIiIiqkHPPfecTJo0ideciIiIasU111xTa0HVbAdRVbn55ptl4cKFvKBERERE9Uht9lWoegLUXnjhBV5aXk+i3cKAJiIiIiIiIiIiIiIiIiIiIiIiShgMaCIiIiIiIiIiIiIiIiIiIiIiooTBgCYiIiIiIiIiIiIiIiIiIiIiIkoYDGgiIiIiIiIiIiIiIiIiIiIiIqKEwYAmIqp1d9xxh4RCIbX93//9n/34V199JRdccIH06dNHmjZtKs2aNZO9995brrzySpk5c6bUtu+//14uvvhi6d27t2RmZqpz7Nu3r9x4443yxx9/qH22bNlivzdsK1asiHvchQsXyi233CJDhw6V9u3bS1pammRlZcngwYPV9VmwYEHcY+B19GviGNqqVatk/PjxMmTIEGnXrp1kZGRIly5d5MQTT5QXXnhBiouLK3QNVq5cKXfffbcceuih0qlTJ0lPT5c2bdrIvvvuK9dee61Mnz69Qsdbvny5Or/hw4dL27Zt1Xtv1aqV+g6cffbZ8uKLL0p+fr4kCrz/v//979KvXz/1+bdo0UL69+8v1113nfz000++z9u0aZOkpqban9Gll14a+DVffvll+3n4/LKzs6UmFRQUqM/hlFNOka5du6pzwPe/e/fucvrpp8sbb7xRoe/Rl19+KZdffrm6bi1btlTfIXyX8J2666671Hcinm+++abCf2dBnoN/f/Tvn376afWYZVny/vvvy5///Gfp1auXeu8473322Uduuukm9ffrRx/rzjvvdHyHzPPAtfXyxRdfqO8Jvmv4txDXqUOHDurfBfyb891338V9z0RERNRwoY2h2xtof2hol5htET+zZs1S7ftBgwap9j7a6ehnoM8ybty4uH2U3WkHwezZs+X2229X/YQePXqo9hDOAX2aAQMGqPbkpEmTVFutLtiwYYPcf//9csQRR6i+HvoGzZs3V209tPkq0rYrKiqSl156Sc4880zZY489pEmTJtK4cWPVPh81apQ8+eSTsmPHjgr1y/HcIII8B4/rfRYtWqQe27lzp2pfjxgxQvVH0bbFZ3nwwQfLfffdp/rR8drwU6dOtR+fOHFi3LY9+pHoS51xxhnqO4RrhA19Gnyv/vnPf8rixYsDvW8iIiKiushsu1199dXqsbKyMjWee8wxx0jnzp1VGxvj8kceeaT85z//Ue22isB8wFVXXaXGSjFejnYujnf44Yersd7169dXeV+lupSWlsrbb78tZ511lvTs2VMaNWqkxsJxndDO/u9//yu7du0KfLzd7VO5532woX1cFc+p6jk63Qe48MILHY+b54HX9DJjxgy55pprZODAgWrcXff78J3C63788ce10u8z+yKHHHKI/fjcuXNl7Nixam4Q1wjzWZgf+9vf/ubZL8H+V1xxhey1115qbgH9QLxXzAlu3ry5yq8nUb1gERHVsttvvx2tD7X9/e9/t7Zu3Wqdeuqp9mN+2wUXXGAVFRXV+Pnm5ORYZ5xxRsxzS09Ptx544AFr8+bNjseXL1/ue9ydO3daF198sZWUlBTz2Pj9mDFj1P5+8Dp6/3bt2qnHnnjiCatx48Yxj92nTx/rl19+iXsNcN3xWeF9xvucTjzxRGvDhg0xj1dWVmaNGzfOSklJiXu8Dh06WG+88YZV08xzeOGFF6yJEydaTZo08T3PUChknX/++daOHTs8j3f88cfb+7Zq1Srwd/nYY4+1n3f66adbNenVV19V36d4n1G/fv2suXPnxjzWr7/+ag0dOjTusVJTU61rr73WKigo8D3WlClTAv+dVeQ5+DvTv3/qqaesFStWWIcddljM88V3+B//+Ifna8Z7r/q7ZVq9erV10EEHBXruEUccYa1cuTLueyciIqKGB22MIO0JN7RFjjnmmLjPQ9v3vPPOs7Zv315l7SD47bffrBEjRgR6PraBAwdaS5cu9b0Ohx9+uL0v2no1rbCw0LrlllusjIyMuO/lpJNOsrZs2RLzeO+//77VsWPHuMdq06aN9cwzzwTul3fr1i3Q+wnyHDyu98Hn+c033zge89patmxpvfnmm3Hb8H6bu22P1+zSpUvc5yUnJ1uXXXZZzL4HERERUV1ltt2uuuoqNQ8Tr62PseDJkyfHPfbixYutI488Mm57q1GjRtajjz5aJX2V6vT5559bPXv2jHtOaGN+9dVXMY9VVX0q97wPNrSP4wnynKqeo4vX3seG1zThfaMPFLTfN2/ePKsmmX2Rgw8+WPXtbrjhBvW5+Z1nZmam9dFHH6nnFxcXq3mDWPN/bdu2tWbOnFkl15OoPmFAExHVOrOx9Je//CUqyAHBHhik9fof/UUXXVTjwUxoLLnPA4EtnTp1igrIGTt2bMyBVQ0BP37H7dq1q2fgzD777GOtX78+UEDTgw8+6HguBtDR2EYHwquTsmnTJt9rgECqo48+2rMzgmO2aNEi6nd4Dxi89oPP3auxh+d5HQ/fBQTX1CTz9UeOHOloqCLopnPnzp4BYwcccID63ri99tprjv2CdAzxuZjfsQ8//NCqKWhse3Wy0MjG36e74d68eXPrp59+8jzWZ5995vnda9asmbqOaWlpUb9DUA86UrUV0HTnnXdae+yxR1QHA38vXp2W8ePHRx0PnWBsmKDR++Hz1I9je+edd+z9t23b5tlZwevib8PrOmH/jRs3xn3/RERE1LCgjaHbG2Z7Eu0Ssy1iwgAx+mJe7XS/vgQWSHi1qyraDoLZs2d7vj6O0b17dysrK8uzHYZ+mVf7u7YDmnbt2uUZnIXrgPZ069ato37Xv39/3wkNtDe92ucIXmrfvr1n//mKK65Qi0lqK6Dpv//9ryOYCwFEeO/oO3hdl6+//tpxrBkzZtjfF/M4TZs2dXyX1qxZYz9n+vTpUe1m/bp+4wzHHXdcoPdPREREVJeYbbdLL71UBWWYbSCMw6Md6W5j4/7LL7/se1y00bzG8PXchlcwP4L8d6evUp2wsNWrn4G+Ccau0ZY0H0db8+OPP/Y8VlX2qWoqoKkq5ujQ78Jnhj6bua/5eZqBbQgOGjx4sOc1R3/C6zrh+xFrzqm6A5rOPffcqO87+qLua4Tv/6pVq6xLLrnE8TiuDfpuXv3Z7Ozs3bqeRPUNA5qIqNaZjSU90IgGI4KBfv/9d3s/ZLr517/+5RiMxH7xMsFUpTPPPNPRYEDD7ttvv7UHhRHsgwavOVBvbl4N0ZKSEuuQQw5x7HfOOeeoYBBzsBnvExH65n5oyOD5sRqp6AToBvj++++vGtdm1PyXX36pMuqYx73++ut9r8HZZ5/t2BcZg3ANzPPA53bNNdc4Gvd77bWXZ1apWbNmOY538sknR2WJQqYrDNibnz06V7m5uVZN8fo80eDEoHxeXp7ap7S0VAXruK+nV6MeExoYeNf74LON5/HHH3cEtdRUhrKXXnrJ8X5w3shAZgbOICjPvSJhzz33tPLz86M6ceb7xv5YybFgwQJHB+aDDz6Iuo74ruEa10ZAk/7u4efNN9+sVtaY308EfJnvHZ0sv4DDoJNFWCllBs09/PDDjqAu/PuAfycw4WK+l6uvvjru+yciIqKGywww8VvFibaOO/MPMq9itajuo6D9j4AT90TIvvvuq9q6u9MOQjsX/Qe9LzLD3nPPPdbatWsd+yHY5/nnn486V6/g8toOaLrwwgujBp9ff/11uy8BP//8c1TbbvTo0VHHeu655xz7YGHFXXfdZa1bt84RHI/+gztQ6u677661gCbdpkZfbsKECY7As4ULF6q+oHmuWPTjJ+hnafYpMDnw7rvvOjIw4buGTFfm9w3b22+/HegaEBEREdXleRhsRx11lGNhKtrcGOc1AzPQHveq7IDxYbTtzHYUqgqYx8NYLyoumPthHBXzEpXpq1QnjBmb7xvXCeO+yNyvIdgEbWrzGqLN7V5kWh19qpoIaKrKOTp39i0/7gX5GH83+zawaNGiqPkxXM+aYs4nmPNep512mjV//nzHonT3eeqF0rhWmDcz5xYwL+L+/B966KHdup5E9Q2/7URU68zGkv6fuld6ee2tt95y7I8UmDUBaerN1z3hhBNUY9wLGldepbm8gibMxhreOwJkYnn66acdx8QgdbxGKrY//elPvgEwaIRjcNcs6+a1ctd97W+77baY5zpp0iQViKH3v+mmm6L2QQNO/x4BV0i96cc9cO9exV2d3NcT12vJkiWe+6Jhj8xM5v5eqULNSQ0E+biDf9zM0mNYKVETEISG4CkziAsTLX7QoTHfNyYqTIceeqjj+44JKD/otJkl9rAhYLA2App0x/27774L3PHyOtegEz/4+zNXqiOYyQ/+ZlBuTu+LFVFegV9EREREQScJ3AOwd9xxh+/FQ7sDAfxB+mhBg2bcA7XIbhoL2nJmttT99tsvoQKasGrdvTDGL/MSrqcZ2IM2szmJgEAls52IVct+mVFh2bJlVo8ePRyD716TUTUR0KQDufxKkqMNPGrUKMf+fquug3yWc+bMcRwr1mIoTNyZfXicBxEREVF9nofBhqwxfhk8kZXJ3Bdl09zcFSruvfde39fHWLqZyQlBHIkU0IR2uBkMj8w67oyhJgTAu4NwqrtPVRMBTVU5Rxc0AAfVSPQ+1157bcz3gwUf5nnGK9NdVbzKX1933XW+n2ffvn2j9n/yySc998fCfczJ6f2Q2dcLA5qooUoSIqIEc95558kZZ5zh+/vTTz9d+vfvb9+fMWNGjZzXQw89ZN/OysqSl156SdLS0jz37dOnjzz//PNxj1lcXCwPP/ywff/iiy9WWyyXX365ukbmeZWWlsZ8TpMmTeSFF16Q1NRUz983b95crr/+evv++vXrZeXKlVH73X///fbto446Su68886Yr3viiSfK3//+d/v+M888Izk5OY59Fi9ebN8+/PDDJSUlxfd4F1xwgbr2jRs3Vt+B7du3S215+eWXpWfPnp6/a9q0qbz66qvSqFEj+7HHH388ar/Ro0fbt3fu3CkfffSR7+utWLFCfvjhB8/nVie8j82bN9v3n3jiCRkwYIDv/jfccIPss88+judrX3/9tXz33Xf2/auvvlouvPBC32Ph+r3++uvSpUsXx3ewpKREasPf/vY3OeSQQ3x/f+2110rLli2r5N8mXHPzb2XEiBG+++Jv5sYbb1S38fex9957y9q1ayv92kRERNSwLVmyxNGGGzVqlNx+++2++yclJcnTTz8tgwYNsh978sknd6ut/s4779i3Bw8eLGeddVbM/bt37y4nnHCCfX/p0qWSSB599FH7Nvoyb7zxhrRo0cL3ej711FN2XxNrK9Am1tB/NNuJEyZMcFx7tx49eqjnJycnq/voO953331SW5599llp166d5+9CoVDUd2132tRmX7NVq1ay3377+e7bsWNH1cfC9e/WrVvMfikRERFRfYC2EdqdaIN5wRzEJZdcYt//7LPP5Pfff7fvo02KOQftuOOOk//7v//zfT2Mpd9yyy32/e+//15WrVolieLLL7+UX3/91b6PuY8jjjjCd//TTjtNzX9oZh8qEfpUdWmOzmy3xxoHBz3fhPb9/vvvL8uXL5fa0LVrV99+FT7Pc845x/HYQQcdJGPHjvXcPzMzU11T7ZdffqnisyWq2xjQREQJB0Er8QwZMsS+vWXLlmo+o3Dj/NNPP7XvX3bZZarBFMvxxx+vGlSxfP7557Ju3TpHgEcQV155pX0bDbZ58+bF3P9Pf/qTCloKek29risa8z/++GOFz9VspCFoBx0DU7Nmzezbn3zyieTm5voeCw3BP/74Q/Ly8mTBggVxg7+qy2GHHRazM6MnDsxGKCZl3IE4w4cPl86dO9v3MbHh57XXXlOTGYCAFffnVV3efvttx3uK1ZEBdIDxmR988MEqWOmkk06yf/f+++/btxFcd/PNN8d9fXxvdbCODuyqqSDGiv7bhPdkTpLszr9NCIozBxPefPPNmPsfe+yx6u9r48aNMn36dEcQGBEREVFFfPjhh1JWVmbfj7eIQbeDbrvttsDB+vHgWFhAgkF/87ixmIsNYvUpahoWseCaamhPIwArlg4dOqhJBCwiueqqqxxtTLNNjYUEp556atxzGDp0qJpEMfsmRUVFUhuD/kceeWTMffBezYU4u9OmNvua27Ztk6+++irm/uPHj5f8/HzV53j33Xcr/bpEREREdcEdd9wRN4j7H//4h2OM8q233rJvo71fUFDgWAwaz/nnn6/asAgGGjduXNyF2jXJHAfHAnFzDsYP5onQ1kZg/EUXXaTa/onSp6pLc3Rmu938jnnp16+fZGdny9atW2X27NlqAUxtGDNmjKSnp8c8T9O5554buD9bmwv5iRIRA5qIKKGgcRwkUMNc0Wk2mqvLtGnT7MYonHzyyYGeZwa0eDGz1WDFrJnZJhZcIzM7lHkcL8OGDYt7TPcqWfd1db/GwIEDA50rVroiEMbvOIceeqh9+7ffflMN0Oeee04FZniJF5hVE+J9rpo5abBr1y6ZO3du1PfdbMiig4JgLS/mio6ays6EACoEx5hBen4rdkxXXHGF+ptBlrLrrrvOkaHJ/Nz9Vma7/fnPf3bcnzp1qtS0Nm3ayB577FFj/zYhO5UZEPnPf/5TzjzzTBUQ6DX5hH8/0NEmIiIi2l1mmw3tn6DtfqxORvahqmizob+DNi8mWcw2tR9MhGDA32zHmhMItQl9ALONb67ijgV9oi+++EJletWLBJDF01ytG7Rf4m5TI2gHg/81DZM98aBd27p16yppU+N7lJGRYd/HdwkTbfhM9GIRdxvcLwszERERUX2CxZRmhlM/6A+YmXi+/fZb+zbGf83jofpCPG3btpX58+er4KG7777bMW9Q28z3g/cSZKwV7cuZM2eqxRjIPqUD8xOhT1WX5ujMOSJUxhg5cqQKCvObK0mEOaJ4gVTuc4z3HcDfkFYbi0+IEhkDmogooSAS2/wftx8z8rkmoviRDcjMEhSr5FZFGilmgAsGVPfcc0/p1atX3G2vvfZyvO9ly5bFfJ1OnTrFPVd3NLn7urqDcZBdKMi5YkMJO79zRSQ7VupqSFuLVLZYlYzrhxSiWEmbSI24WCUdTO4AtYULF0btYwYnIejpgw8+8Pz+6YkLdxBUdVqzZo2j07Dvvvvu1vGQXUuLl73MhO8CNs1MbVxTgvwNVfW/TbfeeqvjPrI0HX300So7HAYcULpk0aJFu/UaRERERFXVZkMgitlerK42GzLtIHMsyqhhBTMG/TExgtLIpkQJaHJfh91pU6MUgxmIU5HPx71vQ2hTIzDKXFmPQK4HH3xQ9ed0FixMmPgtpiEiIiKqrzDuHrTErtl+xYJkr/Yk5kuCLIRNVGhzokxcbY+D11SfKtHm6FCq0FxYgIUdSCqAcXBkeEVpN/f8VG2LVyHB/fdgLtrwgnlHIvLGgvBElFCCNJTcvFZWVrW1a9c6zjFWKklT+/btY/4eaTHNAfelS5dWelC/uq+rea5Q2drE7nPFSoePP/5YTUQgtb/5+iilh+2BBx5Q7wFltZClBisfanPlbNDMQphYiXUNdepRdCB1gxwTM+76yig3ZwaSmQFg1ck9sI8sRZWFFfNmlrN4fxte11wHxnldx/r4bxNW4j/88MNqFbl57RBkhr8ZbDodLcpKYkJmdzvbRERERGZbqzJtNq2q2mw//PCDCuzGymdMoKC8QF1SlW1q9zWtyOfj7sM0lDb1/fffr8q8o5/l/lxeeeUVtelV6Mh4hcUjyDJMREREVJ/FC8YwZWVl2bc3bdrk2c7dnTZuIkCJL3P8dXffT6L1qRK9zY6gL2S5uvjiix0LrLHIfcqUKWpD+UO00xHohDb7wQcfLLWpoteJmWCJKo/hfkSUUBCBnoiQOcdMQx9UZmZmzN/n5ORIVfBLvVmV17U6zxVBPchAdNddd/mW9UJADOonY5AZGap0MEdtMNO+VuTzLyws9NzPzNL02WefRU3SmIPvNVVuzitVbND37WXHjh0V+ttwM/c3/x7r+79NKNk3Z84c1Unzu2YIhPzXv/4l++23nwpswoQNERERUVW022qzzYY2zhFHHCEHHXSQPPLIIyqwySuYCf2zY445Rq3cTUSJ0qZ279tQ2tTIPIAFIpMmTZIRI0Z4rnzGBMysWbPUQgKUPUGW4ETKEExERERUm8EYZvsVbSQdvGK2c3enjVvf2uyJ1KeqS+PgWMj+66+/yhVXXCEtW7b03Afj3k899ZQccsghqixgbVYvCJrhjIh2HwOaiIgCMOslxwseMsXb1wyOGjZsmOoMVGZ77733qv1zNM8VqwQqe65+qUHRUEedaUxcIIDjn//8p2qUekWuIzsUstd4lWerCX6BSW65ubmO+y1atPDc7+yzz7Y7CugUvvvuu/bvpk+fbmfDQkcKAV01xd3ZQomGynLXHK/I35EOaKtMUKGfmihVWVVQp/5///ufWgGF2uFjx45V5Sm9vP/++2oyrzZW7xAREVHD7vtUZZsNpdUOPPBA+eabbxyPo0zYyJEj5ZprrpGnn35aZW1CkNOnn34qhx56qCSiRGlTm59NQ2xTIyPwl19+qbK+vvDCC3LWWWc5sg1o6I8hQ3BNlfkmIiIiSoQAnqDtSIxP61JaZjt3d9q49a3Nnih9qrrYZu/WrZsKWEL2L5Sdu+GGG2SfffbxLGf47bffqvmjylY9IaK6gwFNREQBmClGEaQSNDJ+8+bNMX9v1s1N9AAE81yRghUl8qoLSrDdfPPNagIDr/XJJ5/IlVde6fgc0BD/y1/+4kgFW1PM1LqxbNiwwXHfL1Ut0s4effTR9v23337bvo2sVNopp5xSqZSvleVeCbFly5bdqr1tru7Q5eOCMvd3l/JzC/LddAeb1QUYMEC5xSeffFLVYV+1apVMmDBBjjvuOMe1RW11TMIQERERVUarVq1qpM0WywUXXODoS1122WWq/YMVucho+uijj8rll18uQ4cOtRdAJOokSlW2qc3PpqKfj3vfWJ9P0L5eXWxTI4gJ3y9kbUJ/DSXO77vvPhk0aJBjP/TJ0A8lIiIiqo8qMhdhjnF37tzZs527O23cRNC8eXNHJs/dfT811aeqr+PgqampctRRR8lDDz0k8+fPV99BlIo+44wzJD093TFPM27cuFo9VyKqfgxoIiIKAKWcNGQZWrBgQaDr9vPPP8f8fZ8+fezby5Ytq1BZNzTidrc2cUWY54pVq0j/GRQi6isbAIUgjmOPPVaeeOIJWbFihQwfPtz+3erVq2XGjBlS0xAwEsRPP/3kuO8eJDedd9559u2vv/7aXrkxefLkWik3pzuo5uqUoN/7NWvWqBrWeE+33Xabuo9VFHvvvbfvtYkFgTvmhFavXr1ipsENssII51Qfat1fcsklqvzitGnTHMFuZlAcERERUUX07du3Um029BHM/o+7zRbUjz/+qLKUaghceuaZZ3wzVGpr16513K/JvlIsKJdtCtqmRhZelEi79NJL5d5771X9KbM9XdHPB9fVFKtNHXTFfl1vU6OPsu+++6oSc7iWjz/+uOP3bFMTERFRfRVv3sKEAHBtwIABnu3cX375JfDx0L7Fwt3rr78+YQLIEcxk9jeCttmx2Brj4Mj+icAaPWdSXX2qhjoOjkUJ55xzjrz55pvqs+nYsaOj31Sdi++JqPYxoImIKICDDjrI0Vj86KOPAl23SZMmxfy9WRYBja6gJdQwwI9yC0g52rt3b1WOqrq5SzgELXOHoKNOnTpJRkaG7LHHHvLggw86AoMuuugidX2xomPlypUxj4Xgmrvuuivq+DXtq6++CrSfOQCOMn09e/b03fdPf/qTnYoWJe2QUhXXZ8mSJZ5ZnGqqDjRWvWso5REE0r3iO4pVE/i89N+O+R367rvvojJY+TGzVAG+L7Fqmm/bti3uMVGepLZ4pch1e+mll+S0006Tfv36yTHHHBN3/wMOOED+/Oc/16uOKhEREdVOW8Rss6H0cdABePR9zNLM7jZbkNeGWbNmRU14xIPgJQR4mxJlUBuLGtAXqmibGpM7WOjw3//+V1588UU1yYKMr2ZQk7udHIu5L7JaDR482LdNjTJ+QQLC3J9VTQryXULWX2Qz7d69u4wfPz7u/ldddZWjz1YbfU0iIiKimoBx+IULF8bd77fffnMs7kXWHK/2PhZq//DDD3GPh/7CG2+8oeZBHnnkEUewVNA2XnUx38/UqVMDBQvNnj1bjYPjPWERwo4dO6q1T1Ufx8Ex14aAMCQVMAPB/CDwbOzYsY6gsqDzDHVdbf59ENUmBjQREQUst3bCCSfY9zGorBunsRqzaPjGgmOa9ZTR6A1SKgFZbwCN28WLF6s6wtUNARMYCNawejVI6bU777xTlYdDwxKNdzPTEwKyXnjhBdXZwaB5kBWwuqSEhkCfmoaVAMgWFQs6Kcico40ZMybm/uiMnHrqqY7Oixk4hxUI7hUYNeH000+3b6PMR5BVM/j70PDdRPAdnHnmmfbjJSUlcvfdd8c9FjrD6NyaaXbdwXX6+Jq5ot9v9X7QgLzqYKYv9psowvfr3XffVQMLU6ZMCdQpM/82EEBHREREVJm2CNp/5j533HFH3AuJtr7ZtkO75MQTT6zwa4O7nxWkDYySvO7FEbVRmtoLrgXKBmuvv/66ymAbi7tvhIy1mtmmxkr4d955J1DgkdmOR5AP+mJ+bWpcO/RnY8EkFDKp1pYg3yX0MxFAhu8GrmeQIC2zTV0bfU0iIiKimmIuPPaD+QoNpb5Q8suc2zDblOYYrh8E/uzcudOznRu0jVcT4+AYk8a8RUXGwbH4YP/996/WPhUWhZsl1+KNg6MKRJD3UV3Ma+D3maL8Ib4XKC2HALogwV9mmx39RVz7hiDI9SSqjxjQREQU0A033OCoY4zMQgjK8ILgA5TbitegaNGihSqhoC1atEjOP/98lVrUzz333OPIEITsLTUR0ISG4Y033mjfRwkwNMxjBXYhQ89zzz1n30eEvdkI79q1qwwbNszx3lB6L5Z///vfjiCggQMHSk3D6gx03szOl/vzRwASArkAK7KvvvrquMc1S8ohmMnM8IXvRW1AIJZZ8xvf11jBXM8++6wKwNGuvPJK+/bhhx8uQ4YMse+jjCBWm8e6zmeffbYj2xBSEbuD2pBitlu3bo7j+tU5x2eG91SbtcPNlTR+fz/m4AA6s7iOsbIMIEgLHT8NqY6JiIiIKtMWQVZVZIrUUAIZixT8oI2CFbJz5861H7vgggs8A6yDtIPQR3Bnrozl/fffl7/+9a9Rjwctm1bTfUm8b/QV/RayoA+JvsP27dvtQesrrrjC/j3aheZ1vOyyyxzX3g1td6x41n0TrOr1ul4HHnig4z4yrfq1P7HQIUj/pjoF+S6ZGUxRmuLRRx+NeUwEfWESRWObmoiIiOozjMvGamtPmDBBXn75ZUe7Ewu/Ndw2x6yxCNgM8HFDMDxK/ZoLqN1j+0HaeNUFQf9mGb3/+7//kzlz5vjuj8D5iRMn2vcvueQSe9y6uvpU6BuY8ymo3LF06VLPY2JMGWP5tZnJ351RyuszxXyRGRiHfkasRf8Y38d3U8N8g3u+oL4Kcj2J6iWLiKiW3X777Yj6UVu3bt2q7TlV4bzzzrNfF9shhxxiTZs2zSorK1O/LygosF577TWrS5cujv30tmLFiqhj7ty509prr70c+w0cOND66KOPrKKiInu/3377zRo9erRjv8zMTPW42/Llyx37TZkyJe57C/KckpIS6/DDD3fs17NnT/We8/Ly7P1WrlxpXX/99VZSUpK9X3JysucxP/zwQ8fxsrKyrGeffdbavn27vQ+u7/z5863TTz/dsS9eo6Z4fZ743CZPnmyVlpaqfQoLC9W16Ny5s2O/J554ItBr4DidOnWKep199tnHqk1vvvmm43zatm2rPqOcnBx7n1WrVlnXXnutFQqF7P0GDRqkvjOmX375RX1v9T7Y/8ILL1SPa/je43sxYMAAx+sOHjxYXWMvf/3rX6Ou2ddffx31t7n33nur36emplrp6en2/vj+u40ZM8b+Pb73QQR5zksvveQ4V5yXl1NPPdWx35FHHml9++23jmuan59vvf3221b37t0d13Tu3LmBzpeIiIgaHrQpzL7Uhg0bovZZv3691b59e0dbZNSoUdasWbMcbVe079EnMvdDu2Tr1q2Vbgdt2bLFaty4sWO/q6++2lqzZo29T3FxsTV16lTr7LPP9mynY1u2bFnUsc2+DNptNenKK690nN++++5rffLJJ+q9aD/++KN1zDHHOPZDG9vthRdeiOoX/vOf/1Sfm4b+FPohbdq0cez7l7/8xfcchwwZ4tgX7dHff//d8dk8+OCDVosWLdTvmzZtGrdfjsf1PujHBxHkORdddJG9T/PmzT37xeijmn1ztJPHjh0bte/mzZuthx56yPG969Chg2prExEREdUX5pyK3jB+j/bm6tWr7f3Qjr7iiisc47xoU23bti3qmGj3u9tbl112mfXHH3/Y++zatcv63//+5+hfYK5g9uzZleqrVKfvv//eSklJsc+hSZMm1gMPPKDaixpujx8/3kpLS7P3w3zAjh07aqRPhTa+uS+u03vvvWePGaN/gbmlYcOGOd6Hvu01R1Ndc3QYyzbP9d577/Xc74YbboiaH/v444/VmL45Z/D555+rfpS57wcffGDVBFw383W95hN2Z393H293ridRfcOAJiKqdXUpoAmNUgRVuBv+GMhFw91sxGI74IADHPfXrl3reVwMEvfo0SPquAi4wHFbtWrl+Tu/xlp1BTQBOhFoULrPBwEiCMZBQJL7d+jIPPnkk76vjQ6S13PQ4Mfnaza49YZGPjpDNcUdSOX+LNBpMQNkgkwYBAnMwYZJg9p2xx13RJ0XOp4dO3a02rVrF/U7fG+9Avhg0qRJUZNUeiICz/O6jghQMido3DC5gnNxPy8jI0M9bgbXYZs4caIjeKwmA5oQvOU+T5wjtn/961+OvzVzMsd8T127dlXnj8/A/fv//Oc/gc6ViIiIGqabbrrJ0XZAHwZtjpYtW1obN26095s5c2ZUMAw2tM3RZmvUqFHU79BG8QosqWg76P7774/aT/e7vNp22Nz9NAQ8JVJAE4Jjjj32WM+2Ha4n2sLu3x199NGOQXzTrbfe6tmHQn8MwThe7UQEgLkXHJhwzdCvcz8PAUxY1OBuu2PipLYCmh5//PGovgmeh/M0J4m++eYbdY3d76lZs2Zqosir/4oAsR9++CHQuRIRERHVFeacCtp35lgq2pEY43W3+bC1bt3amjdvnu9xEZjk1W9A/8JrzgSv9dxzz+1WX6U6/fe//41qS6P/geuDa2YGeul28Zw5czyPVR19Kiz47d+/f9TzcK0wXmwGZGFD8NXBBx9cKwFNWGTh7l+g/Y25lGuuucaxEAGLo93vCc/Fvl7fI2w33nijVVMSIaAp6PUkqm9Yco6IqAKaNm2qUon+6U9/ikpzuXr1artUXGZmpjz//PNy7rnnOvYz6xubevfuLTNnzlQl3FACQCssLFTH3bZtm2P/Pn36yNdffy0nnXRSjX9+SHP63XffqRSzKSkpjhSmKHu1adOmqHJgH3zwgUqZ6ufJJ5+UW2+9VVJTU+3HEEOE0m0rV650lAfTJRdQks1MRVqTrrnmGlU/XL9/fE5I3YqfWpMmTVTd8P/85z8VOjbKT7hL/bm/R7Xh9ttvVymGs7Ky7MdQtmLdunWyceNGx74jRoyQH374wVEGzp1Gdtq0aXZNcbM2Ob7v5nXENb7qqqvk+++/l/bt2/ueH1Ic42/CXX4RpUZwjrpcBsrnoTRbbZXwg379+smFF17oeAzniM1MY4y/tW+//VaV6nO/J6Roxt+bLh2i90ea4b/85S818C6IiIiorrrpppsc7Sr0YdDmRomz+fPn248PHTpUZs2apdp2JrTN0WYzywCgD4OyZrNnz3aUaahsO+hvf/ubjBs3ztE30v0us22n290PPfSQajeZ/RP0WRIJylCjpDTKbJj9QrTtcD3RFtbwvtGm+/DDD337kOPHj5fXXntN9bfMPhT6YyiRbrYTUer88ccfVyXB0b/wc9hhh8nbb78tbdu2dTyenZ2tSo6bn+PUqVOlf//+UltQAh4lzTW8X3yPcZ7z5s2zH0dbGn34Hj16RJVnQDk+d/910KBBqoQ2SqAQERER1VfNmzdXY6lo1+l2JMZ4zTafbh+ijb/vvvv6Hmvw4MEyY8YMta8J/QtzzgTQzkTJaLTldqevUp0uvvhiNfdgth/R/8D1QV8kvPY5bL/99lPj4O7SedXZp0J5tS+//DLqeuNaYby4pKRE3cfcCeYmMO9SW9APueWWWxyPof2NuZQff/zRUUoN7+nUU0917Is5J+zr/h41a9ZMHn74YXnwwQelIQl6PYnqm/KRHiIiCgSBE++++65q8GNAGAPlGDBGQxYBHAjWQABG165d5V//+ldUQJQfNObfeust1TBHwAWOj8Y6gpnQSEVDHvWA0ag75ZRTHIP1NQ0BW88884yaaHj11VdVYxO1mrds2aIGyPFeMBCMgKszzzwzbuARGusYkEedaQTNYHB84cKF6r1jYBpBNLieI0eOlD//+c+y9957S21DDW3U1X7iiSfUZ4XOAhreqI+N78Cll17qmFwICgE52H7++Wd1H52dDh06SCJAsBW+e6it/vHHH8uCBQtUJxefH97rwQcfrPY56qij4h4LnTx0znAcdGIRsIQANkxSoUONz/joo4+WMWPG+AZGuSHQDxNh+PvB39JPP/2kGvQ4HjqgCETEBJoZlFVbUE8efyO4lkuWLLHft9khBnzvv/nmGzWpgjr0uGaYeMEEDCbFEMQ0YMAAGTVqlKrLjs4cERERUSxoP2Cw8+6771aBHrovg8cRuGJCGwptffR50L5COx3tXgTfIJAICzOGDx+u2mxmcElVtINwfmj7P/vssypYCQHdeXl56nXRnkMwDQbxR48erfpocMwxx6jJB3jxxRflH//4h1oQkSjQh7vvvvvUYg+8/88++0z1o7Zu3ar6ErjeRxxxhFx++eWqbRsPJjxOPvlk1SdDu3ru3Lmq/YuBf/TJMPGEvgna6LH6oib04RYvXizPPfecWpiyaNEi9b3ANceE19lnn61eF4FW+PxqC/qY06dPl3vuuUedJwbx8b7btGmjvicmBDWhf/nee++pIDEEPOF7j4kkTAqgr40AJlzLE044IaG+M0RERETVBe1NjJ9iYTbmOdDuQ9scY9EY58WCULSvg+jZs6fqK3zxxRcqQF7PmaBdhgWmaJdi/BJjs5hbqIq+SnXC+8b1eP3119WiBD3OjLkKnMuwYcPUvAfGyuO1HaujT4VzwHFwbljkgIAyXCv0KfQcFYLGunfvLrXttttuk169esnTTz+t2uT4HNE3cc9vtWzZUt555x31+eP7iAQA6G/gOmFfvGd8Z/HezjjjjIQY40/k60lUn4SQpqm2T4KIqL5CtDQa34CGOwaqieJBEBOCpACN93POOYcXjYiIiIiIiIiIiIgq5Y477pA777xT3UbQCxZNEhERJTouOSIiCggrOZE1Z9euXYGvGaL4NUTaE8WDlRTIyAPItuMub0hEREREREREREREREREVN8xoImIKCCk/UdqVKQBfeSRR+Luj/JZSPmpIQ0pUTzIyISa3IDMTPHK9RERERERERERERERERER1TcMaCIiCgjBTIBKnRMmTFD1n/0UFxfLpZdeKkVFRfZjZ511Fq81xVRQUCBPPvmkff/KK6/kFSMiIiIiIiIiIiIiIiKiBocBTUREAY0ZM8a+vXDhQhk+fLjKwFRYWGg/XlJSIlOnTpWRI0fK5MmT7cdPPfVUOeCAA3itySE7O9u+vW7dOjnjjDNk+fLl6v4JJ5wgAwYM4BUjIiIiIiIiIiIiIiIiogYnpbZPgIioKqxdu1YOP/zwarmY11xzjdrOPvtseeONN+SDDz5Qj//4449y0kknSSgUkqysLElLS5ONGzc6sjLBoEGD5Pnnn6+Wc6Owc889V2bOnFnll6Nz587yzTffVNtlPvnkk+W3336T1NRUVaJQl5pr3LixPPbYY4GO0atXr2o5t9NOO03uv//+ajk2EREREVGiQD8C/Ynq8MADD6jFLUREREREtHuwwHzNmjVVfhmHDRsmr7zySpUfl2oW50mI6i8GNBFRvYASb0uXLq2WY2/bts2+/dZbb8nf//53FWyCbEy6BB0CmdySkpLkoosukocffliaNGlSLedG5QFt1fH568+4uuyxxx7y7bffOh5DYNzLL78sPXr0CHSM6vree32niYiIiIjqm/z8/GprU+/YsaNajktERERE1NCsWLFCVq5cWS2Lmqnu4zwJUf3FknNERBWATDr//ve/ZfHixTJ+/Hg54ogjpH379pKenq5+17ZtWzn44IPl5ptvVpl3JkyYwGAm8nX00UerlQMIYsL3CKu3p0+fzlXcRERERERERERERERERNSghSykFiEiIiIiIiIiIiIiIiIiIiIiIkoAzNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERJQwGNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERJQwGNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERCSJ4v8BMJgloSsVPTsAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 277, + "width": 1178 + } + }, + "output_type": "display_data" + } + ], "source": [ "# Use our custom plotting function from the local package!\n", - "# TIP: Edit src/myanalysis/plotting.py locally, then re-import to see changes\n", + "# 💡 TIP: Edit src/myanalysis/plotting.py locally, then run again, autoreload will update automatically!\n", "fig = qc_violin(adata, figsize=(12, 3))\n", "plt.show()" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 7, + "id": "eef2cf3f", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Before filtering: 2700 cells, 32738 genes\n", + "filtered out 19024 genes that are detected in less than 3 cells\n", + "After filtering: 2638 cells, 13714 genes\n" + ] + } + ], "source": [ "# Filter cells and genes\n", "print(f\"Before filtering: {adata.n_obs} cells, {adata.n_vars} genes\")\n", @@ -131,84 +209,166 @@ }, { "cell_type": "markdown", + "id": "d8be7399", "metadata": {}, "source": [ - "## Preprocessing - Local\n", + "## 🧮 Preprocessing — 💻 Local\n", "\n", "Normalization and HVG selection are fast operations." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 8, + "id": "ed3cc9af", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "normalizing counts per cell\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/var/folders/j6/fcqzqhwj6y7b1nzw3241zgjw0000gr/T/ipykernel_89978/1339639258.py:2: UserWarning: Received a view of an AnnData. Making a copy.\n", + " sc.pp.normalize_total(adata, target_sum=1e4)\n", + "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + " finished (0:00:01)\n", + "extracting highly variable genes\n", + " finished (0:00:00)\n", + "Highly variable genes: 2000\n" + ] + } + ], "source": [ "# Normalize and log-transform\n", "sc.pp.normalize_total(adata, target_sum=1e4)\n", "sc.pp.log1p(adata)\n", "\n", - "# Store normalized counts\n", - "adata.raw = adata\n", - "\n", "# Identify highly variable genes\n", - "sc.pp.highly_variable_genes(adata, n_top_genes=2000, flavor=\"seurat_v3\", layer=\"counts\")\n", + "sc.pp.highly_variable_genes(adata, n_top_genes=2000)\n", "print(f\"Highly variable genes: {adata.var.highly_variable.sum()}\")" ] }, { "cell_type": "markdown", + "id": "bd7be0d6", "metadata": {}, "source": [ "---\n", "\n", - "## scVI Model Training - GPU/Euler\n", + "## 🚀 scVI Model Training — 🚀 GPU/Euler\n", "\n", "**This section benefits from GPU acceleration!**\n", "\n", "Workflow for running on Euler:\n", - "1. Local: Commit and push your notebook: `git add . && git commit -m \"Ready for scVI\" && git push`\n", - "2. SSH to Euler, pull changes: `git pull`\n", - "3. Run this section in JupyterHub: https://jupyter.euler.hpc.ethz.ch\n", - "4. Save results and push: `git add . && git commit -m \"scVI trained\" && git push`\n", - "5. Local: Pull results: `git pull`" + "1. 💻 Commit & push your notebook: `git add . && git commit -m \"Ready for scVI\" && git push`\n", + "2. 🖥️ SSH to Euler, pull changes: `git pull`\n", + "3. 🚀 Run this section in JupyterHub: https://jupyter.euler.hpc.ethz.ch\n", + "4. 💾 Save results and push: `git add . && git commit -m \"scVI trained\" && git push`\n", + "5. 💻 Pull results locally: `git pull`" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 9, + "id": "3c7546ce", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "PyTorch device: CPU\n", + "MPS available (Apple Silicon): True\n" + ] + } + ], "source": [ "import scvi\n", - "import torch\n", "\n", "# Check if GPU is available\n", - "device = torch.cuda.get_device_name() if torch.cuda.is_available() else \"CPU\"\n", - "print(f\"PyTorch device: {device}\")\n", + "import torch\n", + "\n", + "print(f\"PyTorch device: {torch.cuda.get_device_name() if torch.cuda.is_available() else 'CPU'}\")\n", "print(f\"MPS available (Apple Silicon): {torch.backends.mps.is_available()}\")" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 10, + "id": "f525e3a5", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/scvi/train/_trainrunner.py:86: UserWarning: `accelerator` has been automatically set to `cpu` although 'mps' exists. If you wish to run on mps backend, use explicitly accelerator='mps' in train function.In future releases it will become default for mps supported machines.\n", + " accelerator, lightning_devices, device = parse_device_args(\n", + "GPU available: True (mps), used: False\n", + "TPU available: False, using: 0 TPU cores\n", + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/lightning/pytorch/trainer/setup.py:175: GPU available but not used. You can set it by doing `Trainer(accelerator='gpu')`.\n", + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:434: The 'train_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=11` in the `DataLoader` to improve performance.\n", + "/Users/mlange/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/lightning/pytorch/trainer/connectors/data_connector.py:434: The 'val_dataloader' does not have many workers which may be a bottleneck. Consider increasing the value of the `num_workers` argument` to `num_workers=11` in the `DataLoader` to improve performance.\n" + ] + }, + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "e58eeaa60e7f48489d0c7e75483c4a1f", + "version_major": 2, + "version_minor": 0 + }, + "text/plain": [ + "Training: 0%| | 0/100 [00:00" + ] + }, + "metadata": { + "image/png": { + "height": 361, + "width": 1967 + } + }, + "output_type": "display_data" + } + ], "source": [ - "# Use our custom styled_umap function\n", - "fig = styled_umap(adata, color=\"leiden\", title=\"Leiden Clusters\", figsize=(7, 6))\n", - "plt.show()" + "sc.pl.embedding(adata, basis=\"umap\", color=[\"leiden\", \"CST3\", \"NKG7\", \"PPBP\", \"CD8A\"], ncols=5)" + ] + }, + { + "cell_type": "markdown", + "id": "122594fa", + "metadata": {}, + "source": [ + "## 🏷️ Cell Type Annotation — 💻 Local" + ] + }, + { + "cell_type": "markdown", + "id": "19bb8ada-e2bc-47d0-a0af-ae37020da868", + "metadata": {}, + "source": [ + "Let's first get the model, if we haven't already downloaded it. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 16, + "id": "3652cb45-b174-46cc-8267-9fc8caaf65ec", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "📂 Storing models in /Users/mlange/.celltypist/data/models\n", + "💾 Total models to download: 1\n", + "⏩ Skipping [1/1]: Immune_All_High.pkl (file exists)\n" + ] + } + ], "source": [ - "# Marker genes\n", - "sc.pl.umap(adata, color=[\"CST3\", \"NKG7\", \"PPBP\", \"CD8A\"], ncols=2, frameon=False)" + "import celltypist\n", + "from celltypist import models\n", + "\n", + "models.download_models(model=\"Immune_All_High.pkl\")" ] }, { "cell_type": "markdown", + "id": "711f1dd0-77fb-4f67-af5b-22df7d0c7b1b", "metadata": {}, "source": [ - "## Cell Type Annotation - Local" + "Now we use the downloaded model for annotation. " ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 17, + "id": "f000a6c3-ef97-4da7-9653-4320da9ded5d", "metadata": {}, - "outputs": [], + "outputs": [ + { + "name": "stderr", + "output_type": "stream", + "text": [ + "🔬 Input data has 2638 cells and 13714 genes\n", + "🔗 Matching reference genes in the model\n", + "🧬 4178 features used for prediction\n", + "⚖️ Scaling input data\n", + "🖋️ Predicting labels\n", + "✅ Prediction done!\n", + "👀 Detected a neighborhood graph in the input object, will run over-clustering on the basis of it\n", + "⛓️ Over-clustering input data with resolution set to 5\n" + ] + }, + { + "name": "stdout", + "output_type": "stream", + "text": [ + "running Leiden clustering\n", + " finished (0:00:00)\n" + ] + }, + { + "name": "stderr", + "output_type": "stream", + "text": [ + "🗳️ Majority voting the predictions\n", + "✅ Majority voting done!\n" + ] + } + ], "source": [ - "# Find marker genes per cluster\n", - "sc.tl.rank_genes_groups(adata, groupby=\"leiden\", method=\"wilcoxon\")\n", - "sc.pl.rank_genes_groups(adata, n_genes=5, sharey=False)" + "# Load and annotate\n", + "model = models.Model.load(model=\"Immune_All_High.pkl\")\n", + "predictions = celltypist.annotate(adata, model=model, majority_voting=True)" ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 18, + "id": "6b16ba9f-7248-4e25-8168-f80332f85aa3", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "text/plain": [ + "cell_type\n", + "T cells 1428\n", + "Monocytes 640\n", + "B cells 338\n", + "ILC 164\n", + "DC 56\n", + "Megakaryocytes/platelets 12\n", + "Name: count, dtype: int64" + ] + }, + "execution_count": 18, + "metadata": {}, + "output_type": "execute_result" + } + ], "source": [ - "# Manual annotation based on known markers\n", - "cluster_annotations = {\n", - " \"0\": \"CD4+ T cells\",\n", - " \"1\": \"CD14+ Monocytes\",\n", - " \"2\": \"B cells\",\n", - " \"3\": \"CD8+ T cells\",\n", - " \"4\": \"NK cells\",\n", - " \"5\": \"FCGR3A+ Monocytes\",\n", - " \"6\": \"Dendritic cells\",\n", - " \"7\": \"Megakaryocytes\",\n", - "}\n", - "\n", - "adata.obs[\"cell_type\"] = adata.obs[\"leiden\"].map(cluster_annotations)\n", + "# Add to adata\n", + "adata.obs[\"cell_type\"] = predictions.predicted_labels[\"majority_voting\"]\n", "adata.obs[\"cell_type\"].value_counts()" ] }, + { + "cell_type": "markdown", + "id": "988b3e4c-06aa-4de2-951a-feaddad5d871", + "metadata": {}, + "source": [ + "Visualize the umap again. " + ] + }, { "cell_type": "code", - "execution_count": null, + "execution_count": 19, + "id": "79c555e5-d8db-4662-9b6d-50e87bbab91a", "metadata": {}, - "outputs": [], + "outputs": [ + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAADDgAAAWKCAYAAACnpjQAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3QV4FOf2x/HfbtyVBHeXooXSlhaq0Ja6u9u/7t7eW7n1W3ej7qVKWwqU0hYv7g6BACHusrv/553cLFlim2SjfD/3mYed2dmZ2eG5dM+87znH5nK5XAIAAAAAAAAAAAAAAAAAAAAAAGhC9qY8OQAAAAAAAAAAAAAAAAAAAAAAgEGCAwAAAAAAAAAAAAAAAAAAAAAAaHIkOAAAAAAAAAAAAAAAAAAAAAAAgCZHggMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAmR4IDAAAAAAAAAAAAAAAAAAAAAABociQ4AAAAAAAAAAAAAAAAAAAAAACAJkeCAwAAAAAAAAAAAAAAAAAAAAAAaHIkOAAAAAAAAAAAAAAAAAAAAAAAgCZHggMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAmR4IDAAAAAAAAAAAAAAAAAAAAAABociQ4AAAAAAAAAAAAAAAAAAAAAACAJkeCAwAAAAAAAAAAAAAAAAAAAAAAaHIkOAAAAAAAAAAAAAAAAAAAAAAAgCZHggMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAmR4IDAAAAAAAAAAAAAAAAAAAAAABociQ4AAAAAAAAAAAAAAAAAAAAAACAJkeCA4B6e+ihh2Sz2ayla9eujXJHN2/e7D6nWX7//XefHPfiiy92H3Ps2LE+OSYAAACA5qGoqEhTpkzRddddp0MOOUSJiYkKDg5WSEiI2rdvrzFjxujWW2/V33//Xedz7NmzRx988IHOPfdcDR48WO3atVNgYKDi4+PVr18/HXXUUXr00Ue1cOFCuVyuao9l4pzycY+vlupindzcXL3++us64YQT1KFDB+v+xMbGatCgQbrssss0depUOZ3OOt8fAAAAoLUp/1s7LCxMGzZsqPf4RMeOHb06n/lMba1bt876rV/+OAMHDtSuXbu8PkZycrLefvttXXDBBRo+fLgSEhLcsVXnzp01bNgwXXLJJfrwww9rdVwzxuSLmMeMIQEAAAD7k9r8Xg4ICFBERIT1292Mi9x5552aNm1asznPvnPCqlv8/PwUHh6uHj166Pjjj9fTTz+tHTt2NLv7BgCoPZurptF0APAiweFf//qX9bpLly6N8uDYnKNbt27u9RkzZvgkIcEMBkyaNMl6ffjhh/sscQIAAABA0ykoKNDzzz9vLWYijjdMcoLZ38QF3sjIyNA999xjTfIxiRTeGDBggB5//HErmaAyJh4ZN26cfK2qWOeHH37QFVdcoZ07d1b7+VGjRlnf01w/AAAAsL8zE13KO+yww9zJynUdnzAJCElJSTWe76KLLtJ7771Xq+QGM5ZSfsKPiX1+++03Kym7Jv/8848ee+wxTZ48WQ6Hw6tz+vv767TTTtPDDz+sXr161ZjgsGXLFtXXpk2bGq0gFwAAANAc1Db+qIxJVH711Vc1cuTIJj3PvnPCassknpt5bDfddJOVANEc7hsAoPb86/AZAAAAAACAFmHu3LlWVVEzkaeyh9ymO0FJSYnVeaG4uNj93pIlS6yJP3fffbfVcaG6h9ymQuvRRx9tTaIpz3wmLi7Oqh6Un5+vtLQ0j3OsWLFCEydOtB6yP/vssxXOYaqfmqpDNSlfIdZUDzLVU6tjJkvt691339Xll1/u0Z3Bbrerbdu2VqcJk/RQViPD3NMDDzzQmrTFA3sAAADA0x9//KGXXnpJ119/fbO6NevXr7cSqMsnN4wYMUK//vqrYmJiqv2siWPuuOMOvfDCC5V2dDNJDCZBwsQ0+8ZWJt767LPP9O233+qVV16xOjtUxSQlmGPVhulCVz5J2xzDm2QNAAAAoLWqaZzA/KY3haFSU1M9CjaZhGYTM3zzzTc65phjms15TLxixnIqO35hYaFVgCovL88jRrjtttu0ceNGvfzyyzUev7G/DwDAOyQ4AAAAAACAVum7777T2WefbSUXlBk0aJCuueYaHXvsserevbt7u3kIPmfOHL3xxhv65JNP3JP5//Of/ygrK8uaoFQZ86DctD0un9xw+umn68orr9RBBx1kPRAvYx54L168WO+//75ef/11a6KP8dxzz1kP6B944IEKnRLMJKSalE+MOPXUU2tVwdUw13T11Ve7JyqZhAxTXdVUkI2Ojra2paSkWAMBplqrmaxk7qlJzjBJGkweAgAAADyZRGkTJ5SPOZqSiStMAvf27dvd20aPHq0pU6YoKiqq2s/m5OTo5JNP1rRp0zy2H3XUUTrrrLOs2Kpjx47uuMTEUmvXrrWObaqYmteGmQh06aWXWhVUL7zwwkrPVduu2iamOvLII90JDpGRkVZnOhPTAAAAAPsrb8cJzJjA33//bY1NzJgxw9pmEgVM0aiVK1daBZyaw3luuOEGPfTQQ9XuY2ICMyb04IMPuuMDk2BtijWZsQ5vNNb3AQB4x+7lfgDQrJgKPOYhedliHswDAAAAQBnTZcBMtilLbjBVQE2XBDOZ3yQ47DvRKCgoSIcffrg++ugjq4KpmRhTxkzsNx0OKvP0009rzZo11mszoWfSpEn64osvrI4O5ZMbjMDAQKvjgUmWMA+/y1dJNQkFq1evbpK/QFOJtazaUHBwsPVA3nSVKEtuMNq0aWMNIJjkjzK7d++27ikAAACAionQl112mTtxuimZjm+mmmj55IbDDjvMintqSm4w13/eeed5JDeYLnMmEWHq1KlWF7hOnTp5JF2b13369LFiCjO5x8QMpjtc+clJ5a+lvrGM6ZhR5u2339aAAQN8cmwAAACgtTO/0w899FArNjBJzeWf/T/55JMt6jymG7UpPGXGN8qP79xzzz3uYlMt7b4BwP6OBAcAAAAAANCqmKSGc88916oQapgKoV9//bVuvvlmj4k1VTGVSL/66iuPfc3EGdPmeN/JPq+99pp7/fzzz6+yEum+TNUg08WhjHnAXlWXiIZkWjSbiUllbr31Vo0YMaLK/U877TSPBHNznwAAAABUZJIATMXQpk5uML/fk5KS3NtMxwPTXcGbLgcvvviiVQW1jIkVTOc7kxzuDROLmTisfNyUmZmpu+66S/X122+/Wd3wylx11VVWNz0AAAAAtWMKRJnua6YQVBlTDMrXCduNcZ6+fftaHavLJCcna+bMmWrJ9w0A9lckOAAAAAAAgFbFdFUwE/fLmDbBEydOrNUxTJKDqUZaZs+ePR6Tcox169a5Wx0b5Sv1eOOMM86wqp+Wn6DTFJ0uzEP4MpdcckmNnxk1apT7dfn7DAAAAOzvTjzxRKtzWxkzkX/z5s1Nci3mt7rp3FA+uWH8+PH64YcfFBoaWuPnTQxkYqky8fHx+uabb6w/a+uKK66wEivKJ0qbRIe6ysnJ0aWXXuqeONSlSxcrDgQAAABQ9w4Ixx57rHvddF3bsWNHizzPcccd57G+dOlStfT7BgD7IxIcADS6efPmWVVBhwwZojZt2liZrO3atdMhhxyif/3rX9q0aVONxzADAqbNcdliKiFVxzzkNg/eTfUe0y7ZnNOc++CDD7YqEJl20XVlWjNfc801Vtvj2NhYBQcHq2PHjtbD+qeeespqQVaT9957z/1dzj77bI97dd1111nHjo6OVlhYmHr27KmLL77Yo8oqAAAAgFKma4P5jV+mffv2da4Oeu+993p0cTCtjctLTU31WK9LVZ5jjjnGo5JQYzvnnHOUl5enFStWaPLkyR4JF1XJzs52v46JiWngKwQAAABajkGDBum+++7zmIh/2WWXNXoFTzPOYpIbtm3b5pF88e2331pjGN4w3SfKJyE8+uij1thHXd1+++3u1yZJoj6TjB588EGP72a643nTkQIAAABA1cx8pPLMZP2WeJ7ExESPdafTqdZw3wBgf7O3RB8ANLBdu3ZZiQAm0WBfpuqpWf7++2899thjuv766/Wf//xHAQEB9T6vqap67rnnasGCBRWqD5ll9uzZev755/XZZ5/V6rhr167VlVdeWWkrM/Nj1SzTp0/Xv//9b91///264447vD52fn6+brnllgoVYstaSptl0qRJmjBhgnXdERERtbp2AAAAoLX66aeflJKS4l43VT3LV1Ctjc6dO1tVQE0FnjFjxlSYzGOSJ8r78ssvddppp9XqHA899JBuu+02a4JPZGSkmoKJu/r3728tNSkqKrLucZlhw4Y18NUBAAAALcvdd99tjYMsWrTIWjfjBOZZvxkfaazkhrFjx2rr1q3ubab408cff+z1mItJyDBJA2U6dOhgxVb1YZK73377bSu26tWrV52Ps2rVKr3wwgvu9VNOOcWjYioAAAAA36jr2EpTn8fMTyuve/fuao33DQBaOzo4AGgUa9as0UEHHVQhuSEqKsqaNBQSEuIxYeaZZ56xHkjXp7OCsXz5cuu8+yY3xMXFWZOUyqqxmoSBo48+2rpOb5ikCNP9Yd/kBnPcsg4R5Ss03XnnnVaShcPhqPHYJnPYdHEon9xgJjqZyVT+/p55aVOmTLEe3gMAAAAoVX7yvWF+59fHzTffbHU5qKxSqfntn5CQ4F7/9NNPrWqthYWFXh/ffN48XG+q5Ibadscwk5pMR70yJjkDAAAAwF7mOb7p2lw+mcAUQCr/O7qhmHOYzg3lkxvM2ISJVWpTUGr+/PnasWOHe/2ss86qMD5RW6aDtYkn6pPcYJjxlpKSEuu1GYsxSekAAAAA6m/lypUev9/NGEhLPM/333/vfm06vR1xxBFqDfcNAPY3JDgAaHBmgv/EiRPdD+9NUsF1111nVdnJyMjQli1brH3++usvqyNBmRkzZuiqq66q83nz8vJ06qmnKi0tzb3NTExavXq11bkhOTnZWkwrY5M9m56erjlz5tR4XNOZwbRyTk1NtdZNO2fTocF8D3NcM3CQnZ2tX375RaNGjXJ/7pNPPtEDDzxQ4/FNi+jvvvvOPWhgqjyZNtCm3bK5T++8846VGFJm2rRp7v0BAACA/d28efPcr00itUl4bigmtjHd58p79NFHrYfXN910k37//XcVFxerpTLJ1yauWrp0qZ566in16dNHH330kfv9e+65R0cddVSTXiMAAADQHB1wwAG699573evm2f7ll19udUZoKGYMxnRuMGMVZS6++GJ98MEH8vPzq9WxfvvtN58mjvuK6QJefrLStdde2+jVWAEAAIDWyMxJMvO0ysc0pshrSzuPiRleffVVj5ih/ByrlnrfAGB/RIIDgAZ31113ad26ddZrk0jw448/6sUXX1Tfvn33/mNkt1sdEUy1VdO+uYyZPGP2r4vnn3/efV7DDCaYFsxmUk75aqkPPfSQfvjhB69bhJmkC5PIYERHR1uJGf/+97+tThRlTCUk0275zz//1AUXXODe/p///MfqKlEd08HCMBOITFWlIUOGuN8z1YguueQS/frrr+7uE4b5XgAAAMD+zkzIX7t2rXvd/PZv6FbApsPDoEGDPLalpKRY8YipnGoenJvqQCax2vyONxObWgoTo4WFhWnw4MFWxdmyKrBt2rTRG2+8YSVzAAAAAKicSQg2v6XLFyt6/fXXG+R2maQGE3+UT24w4xdmLKb8WIK3li1b5rE+fPhwNQcPP/yw+7WJVcz4EwAAAID6yc3N1fnnn+/Rnbo+BWkb8zymu5uZw2UK2prCU6YokyncZJgY6ZFHHlFLv28AsL8iwQFAgzI/It9++233uulgMH78+Go/89hjj2nMmDHu9SeffLJO5y4/UDBy5EgrCaEqpvrQfffdV+MxTXJC+YSLl156ScOGDatyf9Oy+a233lKPHj2sdVOdySQu1MR8/9tuu63K9833Oe6449zr3nSeAAAAAFq7rKwsjwfJZiJ+QzOTakx1U5MMUJn8/Hyreo+JR4499ljFxsbq0EMP1eOPP65NmzapOSs/Oaq8nj17Wp3sHA5Ho18TAAAA0FKYQkjvvfee9WcZkzhc1e/sujLHM50byrpolzEdtM0En7rYuHGjR8zTGLFVTUy3659//tmjEqspYgUAAACgbkxRo9dee81KzP7jjz/c201Rp8suu6zZnOdf//qXbDZbpYuJt0y8Mnr0aKvwlBmTKeu+bbq/lY/Hmsv3AQB4x9/L/QCgTj777DMVFBRYr00L5Guuucarz5n9Zs2aZb02f5pEifj4eK/Pu2LFCo9BghtvvLHGKkVmH9NhwfzYrcqkSZPcr01LsXPOOafGazEVY80PWFOtyfj222+tyrLVXY9pG12TAw880Oo8YZR1lAAAAAD2Z6ZaTnm1iSHqw0yqMQ+xTZK1SdCubsJScXGx1QXOLCZGOPHEE61kh/Id7poDkyiya9cuxcTEKDw8XLt373Ynj8yePdtannvuOX3zzTce3ewAAAAA7GU6NJuu1WUFmLKzs3XFFVdY3d18ISkpyapKWj65wYxJlHWKNgWoTIGns846q1bHzczMdL82Xem8ZSb47BuXVaVjx476/fffvT62maxUxkxSMmM6AAAAACr6+uuv9eeff1Z5a8yz/vT09Ep/u7dr1876vDfdsRvrPLVlutlFRkZa5zUJ295qrt8HAPZXJDgAaFBlSQqGmfRiqpV645BDDnG/Nl0PzA/Ik08+2evz7js4UFPXCMP8uD3yyCPdSQM1fZ8DDjjA69bO5b+PGRhYunSpNbBRlVGjRtV4zMTERPfrsiQSAAAAYH9mkqqb8tymgujVV1+tmTNnWhP/TXXRdevWVfkZE+uYBOhffvlFL774oi6//HI1FybW2bZtmzp06GCtmwlSU6dO1b333qslS5ZY2/755x9rstSCBQsUERHRxFcMAAAANE+me/TkyZOtcQHD/K5+4403dOWVV9b72NOmTfNYf/DBB63k6fLFma666iqrK3S3bt28Pm5du7Vt2LDB6wSHkpISr4+blpZmFdQqc+aZZ7pjFQAAAACeTGK1WWo7JjBx4kSrkFP5+UjN4TymEFNV881MXGFikNTUVGvMpSx+ePTRR/XCCy9YsdfZZ5/drL4PAMA7JDgAaPCWwWW2b9+unj171rsdcm33Nw+5vU2sMEkH1SU4LF682P163rx5Xn8fU6V13+urLsHBmwfzQUFB9R5sAAAAAFoTk7RcXk5OTqNfg3mYbSqomqWsoqqpSmo6PEyfPt2a8LMvk7BsqriaKqQXXXSRmgNzLeXjElN16Pjjj9cRRxyhU0891UreMNauXWtVo33qqaea8GoBAACA5sv8tn7vvfesJIOySf233367JkyYoE6dOvnsPI888oiVkGx8//33+vjjj91Fl0zCgyngZK7FG+UTmJsirtrXJ5984lHoydtu4QAAAAAqCg4OtsZT4uLiNHDgQI0YMUJnnHFGrZKiG/M8N9xwgx566KFq9zHxgpmj9vLLL1uxkEl2MMkK5557rjVuY5KkW8p9AwCUIsEBQIMyGbJlTMXPyibzeMNk19bGrl273K/j4+O9/pxpGVYV8xDftBsrYzKAG+r7UP0UAAAAqL3Q0FDr9/+ePXusddOBoKl17NhR559/vrUYW7ZssZKq33//fStpurzrr79exx57rNq2bavmKiQkxJpcZJK9y+K9N99806qGROtlAAAAoHJDhw7VXXfdZSUhGFlZWVYHN9PNzReefPJJK2mijJnUYxIaymKiuXPnWp0knnjiCa/jmLICVuZaTZJEVFRUjZ+rKRli7NixVse72vroo4/cr3v16uXRNRsAAACAJ1NIySRZt5bzeJt8MHr0aGs54YQTrMQGk+RgFtPVzhRvqmn+WHP6PgAAyc5NANCQzENvX/C2pXGZ9PR0jwk4da342hDfxZvv4+fn57NzAQAAAPuT/v37u1+b7gJlFVKbiy5duuj//u//rAlG3333nUe3OVNN6K233lJzFx0drUsvvdQjVirfvQ8AAABARffff78GDRrkXv/111+tZOH6+u9//+uR3FD2m33SpEmy2Wzubabr2tSpU706pqlGWt6KFSvUVExXvNmzZ7vXm0vXOwAAAADN09lnn62LL77YvZ6RkaF33nmnSa8JAFB7JDgAaFDlkwvOOussd3ZsbRfzgL42ylcOrU1yRPkODdV9F+POO++s8/e58cYba/V9AAAAAHhnzJgx7td5eXlasmRJvW7d559/ruOOO05PP/20NYnf6XR6VCc1Xd3+/vtvj+513po4caJ1/PKmT5+uluCggw7yWG8O3TIAAACA5syMW7z77rvy9/d3b7vtttvq9Vv69NNP10033VTpe+PGjdMtt9ziXjdjExdccIFHB+yqHHbYYR7r06ZNU1P58ccfPdZPPfXUJrsWAAAAAC3DlVde6bH+22+/Ndm1AADqhgQHAA0qLi7O/bouE37qql27du7X3jysL5OWllble6bikd1ub5LvAwAAAMA748eP91ifPHlyvW7d119/rSlTplgVUYcNG+aueGo6MERERKhnz5465JBD9NVXX9Xp+EceeaSGDBniXt++fbsaW0pKivV9Fi5c6PVnwsPDPdbLJ34AAAAAqNzw4cN1xx13uNezsrJ0xRVX1Pl2hYWFVfv+o48+6tE1woyXXHjhhVayQ3VMckT5jtcfffRRjZ9pKCYeK9OrVy/169evSa4DAAAAQMvRt29fj3WKNAFAy0OCA4AG1adPH/drU+3UWyUlJdYkm7rq37+/+/Xu3bu9niS0dOnSKt8zyQ3m4XmZf/75x+vrKSgoUHp6utf7AwAAAKgbk2zQvXt39/rbb79dbae26pjJP+UTJEwCt0lIMDp06OCx719//VXnv7Ju3bq5XwcHB6sxHXXUUUpISLA6Mlx99dVef27fGKtt27YNcHUAAABA6/Pggw9qwIAB7vVffvnFilsaQlBQkD788EPrzzK//vqrnnrqqRo/d+mll7rX16xZU+ek7vowSRV//PGHe33ChAmNfg0AAAAAWh4/Pz+P9cYeewEA1B8JDgAa1JgxYzw6HpR/EF2dzz//3JpkY6oPmWSF2rY/NtWFyvvmm2+8SqqoqSVZ+e+zePFibdq0yavrefbZZxUbG6uoqCgdcMABWrlypVefAwAAAFA7NptNN954o3s9OTlZTz/9dJ1u47/+9S+P5IjLL79c/v7+1uuOHTuqS5cuHjFMbbrHlbd+/Xr36/ITnRpD7969PZK4t27d6tXnfv75Z/frwMBADR06tEGuDwAAAGhtzO/n9957z2PCza233qqkpKQGOZ8ZkzCdHMq77777rC5u1bnlllsUGhrqXr/pppusglL1UdvObytWrPAoHjV27Nh6nR8AAADA/sEkaZfXqVOnJrsWAEDdkOAAoEGdeeaZVueD8pWJanqAXVxcrIcffth6nZeXZ032GTJkSK3OaybXlO/i8N///tc6VnU++OAD7dy5s9p9zj77bPdr8z0eeuihGq8lIyPDOn9Zu2lzjvKTiAAAAAD41lVXXeWRfGASFUxV1Nr4+uuv9dprr7nXIyMjdccdd3jsc/HFF3t0bTPnNYnTtTF16lQtW7bMvX7aaaepMZ188skeMU5Z7FJT57vy1VuPPvpoRURENNg1AgAAAK3NiBEjdPvtt7vXMzMza13oqTZMskL5wlBmHOacc86xxiyqYiYAlY3VlHVxO/7447Vnz55an9/EGo888oj+/PPPWn1u/vz5Fe4bAAAAANTk/fff91g/9thjuWkA0MKQ4ACgQfXq1UunnHKKe/3333+3HqSbtsKVMduvu+46rV692r3NtEGOi4ur9bnvuece9+uNGzdax3E4HJXuu2TJEuu6anLkkUdq+PDhHj+Iq5sAVFRUpPPPP9/jgb85T1nVVwAAAAC+FxQUpEmTJrmTrc3kHTOR/6WXXvKqYuhbb71lJTeXj1teffVVqytbeea3fbt27dzr3377rRX/bNu2zavrNBVTyydRm8qq5eOnxnDUUUd5dI0w98gkXVRly5Yt1jWWxVamY0b5SU8AAAAAvGMKKJUv1NSQzO92EyNFR0e7t5kO1VdeeWW1n7v55pt11llnudcXLFhgJRn8+OOPXp975syZOuigg3T//fd7xFjmmmpixm7KJ51TdRUAAABATaZPn26N6ZQxnelMgV4AQMtCggOABvfCCy8oISHBvf78889biQJ//PGHe3KReahtHoyb6j9vvPGGe18zWejf//53nc577rnn6phjjnGvf/bZZzr88MP1999/u7eZ6kRmAo/ZbjoteOPdd99VSEiIx6SmM844Q//88497m/leJpnjsMMO83jQP3DgQN144411+j4AAAAAvGd+45vf+uU7LFx//fUaPHiw1ZkhKSnJY/+0tDR9/vnnOvTQQ3XFFVdYSRFlbrvtNiu+2JeZYPPpp58qMDDQve2HH35Q3759de2111pdI/btJJeTk6OffvrJSoQ++OCDrfMaJsYwCdTlO+A1BnM+cz/KkrBNB4oTTjjB6nqxe/du937mOl9++WVrMpNJIC9jJimZDnoAAAAAap+YbcYb/Pz8GuXWmeQA85u+PDNuYhK8a0qMKJ/kYJKeTcxgikGZ8R9TsKp8IrkZ7zExg4kzTGLD2LFjK3RiMIkdH330UY3XXL4YVvkufQAAAACwr1WrVumuu+7Scccd59Ft+8EHH1SbNm24YQDQwlBCHECDa9++vSZPnqyJEycqNTXV2jZjxgxrMVmy8fHxVnLBvq2QTSWhb775xiM5ojbMg/dPPvlERxxxhLvKz19//aVDDjnEmohklp07d7p/1JoJRRdccIFHgkVlBg0aZB3XtG/Oz8+3tn355ZfWEhERYVV1NR0bcnNzKwwemO9TPjkCAAAAQMO55pprrJjDJBuUJRosX77c2m4WE3NERUVZSQdmAv++nebMRCOTcF2+O9y+TFLzlClTrOo/ZfGOOZepDlRWIcjECTExMcrMzLSWfZkY4uuvv7aSL5qCSep4++23dckll1gTk0wnOlNN1iQ5tG3b1tpn165dFbpfmPtq9gEAAABQNyNHjtStt96qJ598slFuoUnc/v77761E7TKmKJMZN+nXr1+ViRhm/1GjRumBBx6w4ifDFH0qK/wUHBxsdeI2MZSJi/YdHykTHh6uO+64Q3feeadHonhVNm/e7H5dvnseAAAAgP2HSaz+8MMPq3zfzPsyYzzZ2dkV3jNzu0zMBQBoeejgAKBRjB49WnPnzrU6N5RnJv5s3bq1QnKDeVBuOi2YP+vDTBQynSLMD9byzPlMxday5Abz4N1MKPK28uhJJ52kWbNmWRWKyjM/lk31on0f3k+YMEGzZ89Wz5496/V9AAAAANTORRddpEWLFum0006zkqDLM4nW5ve7mYCzb3JDWQxTXXJDGZNUbRInTOeHyibpmDjBxD37JjeY7glmgtHSpUutjhNN6cILL9Rvv/2mzp07u7eZe5KcnGwt5ZMbTBL6O++8U6H6KwAAAIDaM0nDpgtcY3nllVfUsWNHj3Gas88+2+p6V52bb77Z6qhgEiJMAanyzGe3b99uxT2VJTeYOOOpp56yxmVMFzhvkhvKEq3L7HtOAAAAAPuH9PR0bdiwocrFjPPsm9xg4oenn35aH3zwQaN1zQMA+BYdHAA0mh49elgTZv7880999dVXmjlzpvUw2/wQNVVVO3ToYCU0mAfpxxxzTIXJR3VlfrR+/PHH1kN302r5999/17Zt26yqQ6alsUlWMJVHTfUf0zLZWya5YcGCBVa11m+//dbqDmEm/phJS6YKkTn2wQcfrPPPP9/6EwAAAEDT6N27t9VxzTzkNl3VzG/3FStWWJNlzENvf39/q8NCr169rN/up59+uoYNG1arc5hOB6Yb3OOPP27FBybuWbZsmTuxwXRFMFVNzX79+/fX2LFjddZZZ3lMLGpq48aN0/r1662Odd99953mz5+vlJQUKzYz7ZuHDBliJW+bGCcsLKypLxcAAABoFUyc8O6771pdFPbtmtYQTOzz3nvv6eijj3Ynepuk61tuucVKfqiOGcd57rnn9Nhjj2natGn69ddfrc+aOMIkkJu4xxSUMknRZozEdLwzCeGmuJRJ8K6tsm4RZfcJAAAAAMoz4xdmzpnppG0SqwcNGmQV3z3xxBMZxwCAFs7m2rdEIQAAAAAAAAAAAAAAAAAAAAAAQCOrfakMAAAAAAAAAAAAAAAAAAAAAAAAHyPBAQAAAAAAAAAAAAAAAAAAAAAANDkSHAAAAAAAAAAAAAAAAAAAAAAAQJMjwQEAAAAAAAAAAAAAAAAAAAAAADQ5EhwAAAAAAAAAAAAAAAAAAAAAAECTI8EBAAAAAAAAAAAAAAAAAAAAAAA0ORIcAAAAAAAAAAAAAAAAAAAAAABAkyPBAQAAAAAAAAAAAAAAAAAAAAAANDkSHAAAAAAAAAAAAAAAAAAAAAAAQJMjwQEAAAAAAAAAAAAAAAAAAAAAADQ5EhwAAAAAAAAAAAAAAAAAAAAAAECTI8EBAAAAAAAAAAAAAAAAAAAAAAA0ORIcAAAAAAAAAAAAAAAAAAAAAABAk/Nv6gsAAAAAAAAAALQOJSUl2rlzZ4Mcu23btvL355E2AAAAAGISAAAAAM0T4yS+wWgQAAAAAAAAAMAnTHJDp06dGuRubtu2TR07dmyQYwMAAABoHYhJAAAAADQlYhLfsPvoOAAAAAAAAAAAAAAAAAAAAAAAAHVGBwcAAAAAAAAAgM/NmdJJ7RL86nWM5N0OHTRhm8+uCQAAAMD+g5gEAAAAQFMiJqk7EhwAAAAAAAAAAD6XmGBX+/b1S3BwyuWz6wEAAACwfyEmAQAAANCUiEnqzl6PzwIAAAAAAAAAAAAAAAAAAAAAAPgECQ4AAAAAAAAAAAAAAAAAAAAAAKDJ+Tf1BQAAAAAAAAAAWh+Hy2kt9T0GAAAAANQ1niAmAQAAANBUiEnqjg4OAAAAAAAAAAAAAAAAAAAAAACgydHBAQAAAAAAAADgc065rKW+xwAAAACAusYTxCQAAAAAmgoxSd3RwQEAAAAAAAAAAAAAAAAAAAAAADQ5OjgAAAAAAAAAAHzO1Eo1/6vvMQAAAACgrvEEMQkAAACApkJMUnd0cAAAAAAAAAAAAAAAAAAAAAAAAE2ODg4AAAAAAAAAAJ9zuFzWUt9jAAAAAEBd4wliEgAAAABNhZik7ujgAAAAAAAAAAAAAAAAAAAAAAAAmhwJDgAAAAAAAAAAAAAAAAAAAAAAoMn5N/UFAAAAAAAAAABaH6dc1lLfYwAAAABAXeMJYhIAAAAATYWYpO7o4AAAAAAAAAAAAAAAAAAAAAAAAJocHRwAAAAAAAAAAD7nlOSodwcHAAAAAKh7PEFMAgAAAKCpEJPUHR0cAAAAAAAAAAAAAAAAAAAAAABAk6ODAwAAAAAAAADA55xyWUt9jwEAAAAAdY0niEkAAAAANBVikrqjgwMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAm59/UFwAAaBxpBdlKL8hRQmi0IgJDuO0AAAAAGlX6rgxlpeUovkOswiJDufvAfsDhcllLfY8BAADgC2k705Wdnqs2HeMUGsE4CbA/ICYBAADNSWpyunIycpXQOV4hYcFNfTkAGgExSd2R4AAArdzK1G16buG3+nPHSjldLgX6+Wt812G6ZfjJahsW09SXBwAAAKCVWzN/vd69/1P9M3WpXCYmCQ7Q2LMP0WWPnavYtsQkAAAAABrWytlrrJhk8fTl1npwaJDGnXOoLn3sHEW3ieL2AwAAAGhQS/9YqUkPfqalM1da6yHhwTri3DFWTBIZG8HdB4BKkOAAAK3Ysj1bdNGU/yqvpNC9rchRou82zNP8nev06Ql3KDE0ukmvEQAAAEDrtfyv1brrmIdVmF/k3lZUUKxf3/tdy/5Ypef/flQxCUwoAlor5/+W+h4DAACgrhbPWK57jntMxYXF7m0FeYWa8vY0LZu10opJmFAEtF7EJAAAoKnN/2WxHjjxcZUUO9zb8nMK9OMbU7Xi79V6btbDCosKa9JrBNBwiEnqzl6PzwIAGpDD6VR6QY6KHHsfutfW4/O+8EhuKC85N12vLZlSjysEAAAA0JqVmJgkP19Fjr0P3WvrlZve9UhuKC954y599sTkelwhAAAAgNbMUeJQVmq2SopL6nyMl298xyO5obyktcn68pnv63GFAAAAAFozE4tk7smqc0xiulq/dP3bHskN5W1evk3fvMDcLQCoDB0cAKCJkheW7dmsgpIi9Yppr7iQSPd7mYW5em3Jz/p6/WzrdZBfgMZ3HaZrBh+nrlEJXp9jc+ZuLdy1odp9TCeHe0adqQC7X72+DwAAAICWN1Fozfz1VjeFboM6Kyp+b0ySlp+vl+fN1VcrVyirsFDB/v46oXcfXT/qIHWK8r7bwsalW7Ru4cZq9/n1vRm66ukLZbPZ6vV9ADRPTrnkkKvexwAAAK2PmSC0et56lRSVqPvgLh5dFNJ3ZeijR77S1A9mKi8rX8FhQTrinEN13n2nKaFzG6/PsXreOmvCUHV+eXeGLn303Hp9FwDNFzEJAACoSnFRsdaYmKTYoZ5Duyk8em8XhT070vTxI19p2kezlJedr5DwYB153hidd//pim8f6/VNXfrHSu1Yv7PafX55d7rOv/90/qKAVoqYpO5IcACARvbZmllW5wTTQcEIsPvr2K5Dde+oM2W32XT+T89qXcYO9/6FjmJ9u2Gufk9arg8n3GIlRJTJKMzVJ6tm6ruN86xuD10i2+jM3mN0Us9R2plXevzq5BYXKKcoXzHB4Q30bQEAAAA0N5NfmmJ1TtizPc1aDwgK0NizDta1z12ioiC7zvz8U21M3xtPFJSU6MuVKzRj00Z9dubZ6h4T437PVC767uVfNO3jWcpOy1HH3u10/JVH68jzxyglKbXGa8lOz1VBXqFCwoIb6NsCAAAAaG6+fPZ7ffH0d0rbmWGtBwYH6Ihzx+ia/16sgtwC3XTo/VbHtzIFuYX66a1pmvPjP3ruz4fVrluiRzLEty/9rBmf/qmcjDx17tdBJ1x1jMadc4hSkkpjnuqYa3A4HPLzoxAUAAAAsD8wXRU+e/JbffXfH5SxO9PaFhwapCPPP0xXPXOhctJzddOh92n31j3uz+TnFOiH16dq7k8mJnlECZ3i3e+lJqdr8otT9Ptnf1kJ2l0HdtLEq4/R4WcerD1exCRlYzUAAE8kOABAI3pn+W96cv5XHtuKnSX6YeN8rUvfoVHt+ngkN5Rnujk8MuczTZpws7W+KzdDF0x5VluzU9z7ZKTkaknKZn28eqbO7ze2xusJ9Q/Stuw9SsreYyVOBPsH1vs7AgAAAGi+TBXU9x741GNbcWGxpr4/U5tXbFP8f47ySG4oLzU/X4/M/F3vnHyKtb5rS4puHfug9WeZlbOztXL2Wv3w+q8af8kRNV5PaGSItq3eLpdL6jawkwKDiUmA1sQ0XnfUswFD5c3bAQBAS/XufZ/o48e+9thmOsv9/M50bV2VpE59O3gkN5SXlpyuN27/QA9+eZu1vmPDTismKT8haPmfq63lhzemWoncNYlqE6GNS7ZYk5xMd7uAwIB6f0cAzQcxCQAA2JeJKUzSdXmmENOPb0zVtjXbFd8h1iO5obyUbal6556PddcHN1jrW1dv123jHlT6rtJECWPpzJXW8uObv2nUCcNq/AuIbRuttQs3WJ2uTUziH8CUXqA1ISapO5vLPK0BADQ40ynhsM/uVl5JYZX7hPgHKr+kqNrj/HLav9QlMkH/N+01Tdu6xGfXFxUYqjP7HKrrh05UoB8/lgEAAIDWJis1W2d3vMpKaKiMy8+m5KcOVr6cVR7DdJ2bdenlahcRobvGP6KFv/ouJomMi7CqGl3w4Bny86d6KtBSJSUlqVOnTtbrv+e1Ubt29fv/c3KyQwePLE2k2rZtmzp27OiT6wQAAI3PVDY9v+s1KimuOoUxINBfxUUlVb5vYoVPkl5XTEKUbhn7gJb9scpn1xfdJlIn/t94nXvvqXR0AFowYhIAAFAVU7Dpwh7/J6ez6imzfgF+clQXswQF6PPkNxUeHabrD7pbq+et99kNN8kOJ19/nM6+62Qr4QFAy0RM4ht2Hx0HAFCDX7csrja5wagpucFIyk5Vck6aZmxb6tN7nlmUpzeX/aqbZrxpVSoCAAAA0LrM/PzvKpMbDEeof7XJDYbT5VJSVpa2r0/WP1OX+jwB46NHv9J/zn/ep8cFAAAA0Dz8/ulf1SY3GNUlNxiOEodVTdV0oPNlcoORkZKl9x/6XE9f+opPjwsAAACgeZj20axqkxuM6pIbDDPOYrrIma4LvkxuMNJ2Zuidez/W81e/4dPjAkBLRIIDADSS9ILsGvfxJvc2LiRCS1M2WxOLGsL0bUv15w7fDgoAAAAAaHpmsk517AUO2Rw1xxlxoaFaOXttgyVGz/x8tpb+sbJBjg2gcTl9tAAAgP0jJvFWTEKklv+1Wg3ltw/+0Op56xrs+AAaDzEJAAAoL3OfmMQRHaqSNhFyBvl7faNMZ4Wo+Agt/7PhYpIf3/xNm5ZtabDjA2g8xCR1R4IDADSSjhHxNe4TGxxR7fu9Y9rrk9V/6PZZ76ohfbNudoMeHwAAAEDja9c9sdr3bU6XOu6pfirxAW0S9M1tn+jZK15TQ/r1vd8b9PgAAAAAml9MYsS2ja72/QGH9NF7D3yml69/Ww2JmAQAAABovTFJcadY5Rw/WLnHD1beMQOVc8pw5R3cU46QAEV3iVN15Z0Gjxug126dpNdve79Br/UXxkkA7Oe8Tz0DANTLEZ0HKzIwVFlFeVXuk1qQbXVxqOyHsr/NLlMg9bM1sxr8b2JnbnqDnwMAAABA4xpz2ii9cO2bys8p8NheEh2s7IM7Kr93nJw2u2xOyVVJSYwAu11hn6/Vz983fMe3lO2pDX4OAA3PKZscXvWrrP4YAACgdRh39sF6+YZ3VFRQVOU+aTszqnwvIMhfWanZWvHXGjW0lO1pDX4OAA2PmAQAAJR35Plj9NLLPyl/RFfTisG93eVvV1GvNirsE68sm032/GIFrtml4KXbZSvZWxgqKCRQu7fs0eLpyxv8xu4hJgFaBWKSuqODAwA0oB05aZqTvEZr0pIUYPdTWEBQjZ+pLLmhb2xHXT7oGK3L2KHGsDU7pVHOAwAAAKBh7dy8W4tnLNem5VsVGByokPBgj/eL40OVcv4g5Q9IkAL8ZHfYFJgq2Qs9jzMwIUHXh/XU7kZIbjCS1jRO7AMAAACgYSVv3GXFJFtWblNgSKCCwwLrdJy+o3rq5BuO07bVjTROsiqpUc4DAAAAoGFtX59sxSRbV29XSESIXIf08kxusEnOAMnlJ/d2Z0iACoZ0VPb4/nL5lU6x7X9wb51w9dHasWFno/yVbV6xrVHOAwDNFR0cAKABbM1K0aNzP9es7SvkNG0XJHWOaKPkOnZG2JOfpQW71vv4Kqs/39KUzTqgTddGOycAAAAA3zEP6l++8R0t+m2ZXP+LSTr0alehGmrmkd3kCgnw2GYvsSkoTXL6uRS8NkWRf21XWECI1nWKb7S/ot1b92jTsi3qNqhLo50TgO85XaVLfY8BAABaHpNk/cpN73pUNu3Qu52yUnPqdDwTyyyZvtzqQJc/MFElCWFSsVPB61MVvHaPbA7f/mjYsX6nktbuUMfe7X16XACNi5gEAID91/pFm/TKze9q2R97CzcljuuvnPZRHvs5zQzaKprIOhIiVNi/rYKX7VDGrkz9M3WZGsvWldu0a0uKEru0abRzAvA9YpK6I8EBAHwsOSdN5/30tFLys3zWFcEkHJilMU3fuoQEBwAAAKCFVki95bD7lbkn22P79nXJHutmYlBRZ88H+eWZbg4l7WIUsGu99ihfe5LS1Jj+/m4BCQ4AAABAC2QSA249/AFlp+d6bN++1jMm8ZbL366twdLaRH8VHjLUo9pqUfdY5Q7voJhvVsgvt1i+NPv7hTrjVhIcAAAAgJaYcH3ruAeVl5XvsX3b1j1SuQQH071BpQ0aqlTYJ9FKcNixYZcak6ldNffHf3Titcc26nkBoLmo4Z9nAEBtvbns1wrJDY3lkPb9FBccYb2ODAhRREBInY9V4nT68MoAAAAANJaPH/2qQnJDZUqigmrcxxkaIFeg3971AD8V9ohTQd8EFSeEV9j/wGOHKDLufzFJXLhCI+oekziKHXX+LIDmwSGbTxYAANCyfPDvLyokN9SV6daw57IRyjy2twp7xnskN5RxxIUqc3xv6/XICUMVEVsaq0S1iVRwWM1xT1UcxSX1uHIAzQExCQAA+6dJD35WIbnBsOcUeKxbCQ41cIbXLqYYedwwhUWFWq+jE6IUFBqouiohJgFaPGKSuqODAwDUg8Pp1KztK7Qla7ciA0N1ZOfB+m7D3Ca5p4F+/npu3BWKCAxRYUmxgvwDdP9fH+qLtX/V6XhDErr5/BoBAAAA+JbD4dC8nxYpecMuRcSFa9TxwzTj079UElH6wNwvu6jKqcF+eTVXN7UVOWQrdshlJhYN76j8AzqY4GPvMVJyFD59nfwz8q2JQ/d/eatCwoJVVFCkwOBAPXHhi/rtwz/q9N36jS6doAQAAACg+TITbkxV0Z2bdluTd4YfO1izvpzjk2MX9IpT9hE99m6oZvJRcccoBfZsowe/vl2BQQHumOTfZzyjWV/V7XqISQAAAIDmr7ioWHN++Ee7t6Qopm20Bo8doNnfLah0X79dWbJlF8gVEWyt21yyxj+qYyvwvlNcVHyk/j35Dvn5+7ljknsn/kfzfvxHddGfcRIA+zESHACgjuYkr9E9s97Xjtw097YAu5+KnU1TZfTQ9v2t5AbDJDcY/eM61fl4P2yYrz6xHdQpoo3PrhEAAACA7yz4dYmevfxVpSSlurcVjeyg9PP6qyS+tDqQf2qewucnK2xxxdbJASl58t+dq5KEsCrPEbJqj/WAP294J+WPqBhfONqEK3PiAMV8tUSjJ46wkhsM89De6Dm0W90SHGzS1Pdnqku/DkroTEwCAAAANEdzflio/171utKS093bAoL8VVzkm84HuaNqN8Yx6vqjreSGfWOSuiQ42Gw2/fzOdHXo1U7x7WNr/XkAAAAADW/W13P14v+9qfRdme5tAUEBcjqcle5vcqZD5m1U3ti+kp+9NLvBVX0ydeD6FK+vZ+xZB1vJDeVjkl5Du9UpwcFmt+mH16YqsUsbxSRG1/rzANDSkeAAAHWwJi1JV099WQUOzyzdpkpuMHbnZ2prVoo6R+6d/DOxxyg9s2Cycoo9W6x54+ct/2jerrUa33WYpm1dqtT8LLUPj9NpvQ/W+f3GKiygdOISAAAAgMa3ZsEGPXDSEyou3BuTZI7topyDOnjsVxIXqozxPVQSG6Ko6ZsrHCdy5malndqv9EH+Puy5xQqfmyRnoJ/yB7f3eM9lc6kw1qWCWJecQX5KHzJECX7h2paVqU6RUe79jrl4rN67/1MV5BXW7gu6pBmf/Kklv6/QIScfqL+/na+M3Vlq1z1BEy47UiddN15BIbVrCw2g6Vov1/cYAACg+Vn+12r967SnVFLsOS5SXOib5AYTwzhiSxO3vbVz/U7t3rZHCZ3i3dsmXH6kPnz4S4/YyRsul0u/ffCHFs1bqwPumajpKzYpM7dAndpE69RDB+nMMQcoMIChdqC5IyYBAKD1WjxjuR4569kKyQw1/fb335mp0KkrVDSwg0rax8heYpPT32WynCvsa8spVPCKZK+vKWntDu3ZkeaRJH3cFUfp08cny1FSuzllLqdLv7w3Q4t/X64RxwzRX9/MVXZ6rjr1aa/jrzxaJ1x9tPyJSYBmj5ik7iqOXgMAavTmsl8rJDc0teV7tuiM7x/XqtRt7m3hAcF65vDLFORXWrGottIKcvTx6j+0Ky9DJS6ntman6L8Lv9VFPz9Xp6QJAAAAAL7x6ePfeDykL44NqZDcUF7OyPYqji/t+FZe8OZMxX61Sv67cvZudLkUtCld8Z8sk39moYo7x0gBfnvftrmU3dWpvPYuOU3es01yBdk12z9DJ335odam7XHvGxETrrs+vEEBgXWb+GMqwX7/6q9K3ZFuPfxPWpusN+/8UHcc9e/aJ00AAAAA8JmPH/u6QnKDL7n8azmM7XJp1aS/dN3Iu6xJRWViEqJ0x3v/566iWhuOiCCtG9lBX8xZodTsPJU4ndq0K03PfDVT//fyNyos9k0yBwAAAIDa++iRL6vs1FAT/9Qchc5co4gv5iniiwUKnb5G9vS8vTs4XQrYkqbIH5fLnu/9/LCFU5fq+lF3K3nT3q7aJgH71reukb2SQlPe1HbZtTlFP74xVRkpWdY4yeYV2/Tyje/ovomPq7ioec1dAwBfIsEBAOpg6pbFDXbf6lOXMLMoT/f++YHHtsM7DdQ3J96jc/oepo7hcWoXFqORbXvVO5ni1cU/1esYAAAAAOqmpLhEs79b4LEt74CEGj+Xe0BipduDt2Qq4f2lavPuYsV9ulyJb/6juC9XyT+9NKnZVS65wTCdG0rCKz9HWkG+7v79V49th5w8Uq8sfFLHX3GU1Uo5oXO8Dji8v+pj5ey1+uyJyfU6BoCG53KZsUBbvRZzDAAA0Lzk5+Rr4S8NOE5is8kvo0C2otIECkeIUwXtSpTfoURFcQ657BV/IAStS5V/VqHSd2Xq+Wvf9Hhv7FmH6OX5j2v8JeOseMQsgw7rV+N15BzWXc7wyjvHLViXpA+n/1Pn7wigcRCTAADQOmWlZWvxjBX1Po6txCl7QbGCtqQr6pslipi8ROFTVij6i38UPm2N7LlFtT7mnu1pevmGdzy2HX3h4Xpp7n909EWHW/GIGSsZNKaf1c26rhb+ukTfv+I5HgOg+SEmqTsSHACglkqcDhU2YPeGyMDatVze18q0bVqWstljW/fotnpw9Dn67YxHNOPMx9Q+PK6eVyl9te5vFTsbrjoTAAAAgMoVF5VUaGXsiKx80k1t9gnYk6fApCwFd41WfvdIOUJLuy74pZWrWiSpILb6J+4Ld+7QmtQUj21dB3TSTa9fpQ83vaKPNr+qmMQo1ddPb/4mp7Nu1ZkAAAAA1F1RQbGczobLQgyLCpW9yKGgtSnK7VqsnD4lKkp0qjjeqYKODmX3L1Zx5N5YIHBzuiJ/W+9eXzx9uZLWJXscs8fgrrr17WuteMQs4dFhNXZvKO4UXe0+X85aWufvCAAAAKDuCvNqn3jgDf+0PAUkZymsDh3gyps/ZZF2b/UcJ+k1rLvuePc6Kx4xYyWBIYH1vFrph9dJcADQepHgAAC15G/3U7fIyiuf+oLpwlBfGzP3tjqrTH5J/X/oZxTmKi0/u97HAQAAAFA7IWHBVnWf8rypIuSXU/0+WaMStO2uYVpzXnclXz1AW+8drt1n9JA9M09+qbnWPi655Kw5l0IbMtKqfb8gt1D1lbYzQzkZpdcFoHlyyOaTBQAANC8RseGKbVv95P/6KPudn9fVqZLoShIp/KT8LsXy37ZbwUt3yJZXoJyDOqg4Nti9S9KaHfWKSRwxIaaVRLX77EzPVn5RwxXEAlB/xCQAALROJh6JjItosOPnZebX6/MmITxp3c5q9ynILe2iXR/b1uygEBTQzBGT1B0JDgBQB+3DY5v1fduQkaxle7ZU+X6/2I71PofdZlNYgBczmwAAAAD4XJvOnl3ZwpbtrvEzodXsk3F4e+05rYdKYvb+xncF2JVzYIKSr+yv0D/Wy5ZfLJv5nxdNE7bO26T1izZV+b6pnlpf/gF+Cg4lJgEAAAAam91uV5tO9e8UXZ2SSH9lH1TNWIzdpsxDY5Qzqr1yh7dT9iGdtPvKYUof30Mum7Rx6RZrqUtM4vK3q7BDhBwBksPfJHpXLijAT4H1rOwKAAAAoPb8/P0U36F5zt0y8Uhhx0gtz87UuuQ9DTpOEhoZYsVnANAa8a8bANSxe0Fz9sayX3TG94/rlG8f1aLdGyu8f1qvgxVgr99D98M7DlR4YEi9jgEAAACgbnLSPWOSgN15Cl1UdTWg0CW7FLir8jjGEeyn9KOrToIu6hiugm5hivpqiYKXbFdAWvUZDvZ8h748/21dM/wOXXvgnVqzYEOFfY6/8ijZ/er3WOqQU0YqMLj+LZwBwPjzzz9ls9lqvZx88sncQADAfik7PadBj583INK01K52H0d4xdSDvCGJyhrTWe/e94muGnKbrh99jzYs2Vxhv+OvOrrSBg35feK066oRyjm4k5wBkjNQKgkpTXTY19HDesuPyUQAAABAq4xJ6iK/XxulXDpc6acP1FN/zNepT32gC174VBt2plbYd+I1x9b7fOPOPrTexwCA5ooEBwCopWlblmhl6tYWcd9WpSXp0l+e16rUbcopLtCKPVu1MXOn2oRG6cw+Y+p83GC/AF075HifXisAAAAA78z8/G9tXrGtwvboXzYqcsYW2bOL3NvsOUWK/H2LoqdUTDIok3tAnFyB1SdAZw9vI7/cIoXN2aKgTTlSNTkO9gI/9/HWLdyoO478l7as3KbczFytXbhBSWt3KKFzGx1z4eFVHsNMU8rvFaO0U3prz7n9lT6hu4oSw9zvB4cF6bx7T6v2mgE0PYfsPlkaw6JFixrlPAAAtAZTP5ipHet3Neg5XH6VZB/sq4pdcoe1lTOg9DfE6rnrdNu4h5S0Llk5GaUxyfb1yerYq53GnnWIx+dMldWM43rLFbxPNoOtNNGhfJJDeHCgLj1mZB2+GYDG1JJiEgAA4L2f3pqmlG0VkwaaOrkh89heckZ4dp5evDlZl7z8hbanZSorLduKSZI37lLXAZ108EkH1vl8ETFhOvP2E31w5QAaEjFJ3VVSawIAUGbx7o2avH6OUvOz1T48Vge376dbZ75dZTvimvSIbqvknHTllRQ22k3OLynSddNfV3pBjvu8vWM6aGzHgXU6Xs/odnpw9DkaFN/Fx1cKAAAAYF/L/1qt3z74QxkpmWrXLVFDxg3QExe9VJoBUMncnoi52xU+b7tK2oRa2/z35Mvm3Ltzl/4dtXvrHuXnFLi3OcICarzxznL7FHWOUkCmTSXhTrnKf9Qh+efZ5Oewq6BrpELXpFub87Lzdf+JTygtOV2F+aXJFz2GdNWIYwZXfq4Au1LP6KeirlF7N3aV8oa2Vfjs7RqaKt346hXqNoiYBEDDJDhERUUpPj7eq8+1a9eOvwYAQKu2ZOYKTftwljURp0OPthpwaF89c/mrdTqW6ZjQqV9H7d6SooLc6sdJQtaaxGqXZK860cEvv/L3TIJCUYcIBW/OtNZNYsO9xz+mPUmpKiootrb1HtFDgw8f4PG5nFEdqj2f01+yl0h9O7bRA+cdrW5tY6v9DgAAAADqb9H0ZZr+0SxlZ+SqU+/26nVgDz1/zRt1OpbNblOnPu21a0uKCvP2FouqL5dNyj64c5Xvp+fm6/p731XBe/NUXFgak/Qd2VMDDulbp/OZeOaWN69W+x5t63zNANDckeAAAJVwOJ26a9Ykfb9xnsf2SSun1+t+3X/Q2eoWlagjP79PJS5Ho9377TmeWctr07dbS4h/oJUAURuXDDhKB7bt5eMrBAAAAFBeSXGJHjvvec36co7H9i+f/b7GG2VzSQG78yp975a3rlFs22hd1Ot65bcLV37/BBV22dsZoSr+aeUmH9ltsjtsCsz0k9PPJZdf6TltxSbJ4n+TgfaZFGSqEZW3YfFmawkKDawwiJB5VFfP5IZyckZ30IlnTFD/wX1qvGYATc/lsslpRvfqeYzGTnC46667rAUAgP1ZUWGxHjnrWc3+boHnG09/V+djulzS3R/eoODQIF3a/ya5yiVj7ytwd6FCl2Uqb3B0lfv4p1fTiW6fmGTH+p0e62sXbNC6hRsUEByg4oJiufztKupS9blKjymFzVyv6x4+WP07J1a/L4BmoSXFJAAAwFNhfqH+ddrTmv/zYp/dGhODPPT17SopKtGVg2/z2XGLOkRW6Nywr/X2YiX+L7nBWD1vvdYu3Cj/AD+VFNduDtlF/zpLPQZ3rfP1Amg8xCR1R4IDAJQza/tKTVoxTbN3rJbD5fT5vdmRk6pPVs1UkJ+/SkoaL8HBl0ySx2m9D27qywAAAABapTk/LNQ3L/yoxTNWyOnwbUxis9m0bc0Off70d8o7ZYAyOkZY212mHYQJT6qZGxQxtzRBwYzp++WUyBFZ2rrBJDpYny3P4VRgUrZX12S32z3WncH+yhvYptrPvD97kY4fXLeqRgBQmaKiIq1YscK9PmzYMG4UAGC/9dfkeZr84k9a+scqn8ckdj+7Ni3bqllfzVFAUICK/tfhrSpt396s7bf2VmGX0g51bi6XAvb4yy/fM55wK3EqIDnHq4SLwKD/JTiYhAjTYqIGftkF+vr5H3XoKaNq3BcAAABA7c38Yra+fWmKVvy9xucxiUkmWDN/vWZ89rc72dkXTBe5GvcJ8reac5ePOsz3C40MU056bq3OZ2KSkROG1uFKAaDlIMEBAP7n7WW/6qkF3zTY/YgLjtA9f37QrO636d5wco+DNCNpmTILvfuxbDo/ZBXmKTJonwEFAAAAAPXy4cNfatKDnzXYXYxOjNLTl7ysnJEdlVOuVbLpuhCY6VJRzD5P1v8ndFmqwlakWa9zR3SQza80uaEqoStT5Z/t3aBAfk6BjrlorP7+dr5yMnJV1C5cCqgm00LSsqSdKiopUaA/j7WA5s4hm7XU9xgNzSQ3FBfv/Xdr6FAGBwEA+6d37v1Yn/yn4cZJohMi9eRFL3m9v0mu7vTIKuWMiFH2gTFyBvspcEe+grYWK+fQ7lV+LnRlivzyS7w6R25mnhWT/PnNXO1Jy5cjNqTqnU3iREqeVmxfLZfLZSWRA2jeWkpMAgAASr12y3v66rkfG+x2RMZH6okLvY9JvOWXXuDFPvmV/qowyQ3HXDxWf3wxWwW55bppV2P5rFV1uEoATYGYpO6qKGsBAPuXjRk79fSCyQ12/EC7v1ILvKtg2ti2ZO/W60deq4v6H+H1Z/atsgoAAACgfjYs2dygyQ2BIYFK35lhVSXNO6Bthff9C2wKSpXsBf8rY2q2pRYo9ofNSvxwrWyu0u4N+Qe0lV+x5FfFs3pbkVMxUzbX6tp2bt6tx366RydcfYz73NUxc4iYSATAlxYv3tvmvkOHDmrTpvpOMgAAtEYr56xt0OSGoNBApSVn1PpzNodLEXPT1P6lDer49FolfLxNUX/uVPjspEr3D9yaqaipm2p1jj3b0/TE1Ad02rD+1e4XsjpF9oISqxMFMQkAAADgW0t+X9GgyQ3BYUFKS05vkGMHpOYpYEdWtfuELivtlF2ZjF2ZenrGQzryvDFenc/EJADQ2vEvHQBI+mzNLLmsRmD10zO6nU7uMUoh/oHWup/NrqM6D1ab0Khme58X7d6os396SiUup87qfWiN+w9P7KHwgOBGuTYAAABgf/HDa7/65DjdB3fRkecfpsDg0i4Lfv5+GnPaKEXEhFnrjqhgOcNL45V9+RXZFJxmU8hOmzo8u1Sdnlik6D+SreQGwxkRZC2Gf4EUkC3ZCyVbsWQvkvxzpYA8u5xh1Xd42NfSmSt1w8H3Kjg0UCeMGypbQfWVVkd376wAv+q7PABoHhwuu0+WhrZo0SL3a7o3AAD2Vz+87puYpNfw7jri3EMVEFQaF/gH+OnwM0YrJNy34wpRM7eqzbtLFLpopwK3ZCp4dapiv1qt+E9WyF7srNWx/vltqa4fdbc6Jedr/MCele4TkJytyBmlydwjxg/xyXcA0PBaSkwCAAB8F5P0G9VTY886WAGBpV2gTWwy9uxD3OsNJfK3DbLlVd7dOnBrhkKXJFf52XlTFum6kXerQ+92Gj1xRI3nGnkcHWiBloKYpO4a9l9tAGghNmTurPcxOoTFqn1YrGJDIvTJcbcrNCBIUUGh1nujPr5Nzd1Hq37X/QedpVN6jtY362dXuV9EQIjWpG1Xn9gOjXp9AAAAQGu2dfX2eh+jbbcExXeIVXz7GL045z9WNaLIuAgV5BXqnI5Xle7kTYcEl01+eSUVWyU7nHLZXCoJlUpCzI6SvVgKyJHsJXv3tpXULXn8y2d/0C1vXq0TSjL0/batle/kcil+eaq2rNymLv071ek8AFBdgsOwYcO4QQCA/dK2VfWPSdp1T1RsYrQSu7TRy/MfV1BIoKLiI5SVmqMLe14nXwvclavAXzb67HgfP/a17vrwevm7IjR1w2YrQdyeX6KQlbsVsnqP1U3CMN9r25rt6tSHcRIAAADAV7b6ICZp37OtIuMj1aFXO73yz5MKDApQVJtIpWxL1e+f/qWGFJCWr7hPlyp3eAcV9I2XK8hffun5VucGk9xQFk9U5/0HP9f9n9+qkmKH5v+895mlB5tJJPfX9vXJ6tCzne+/CAA0E6SaA4DJog00s3PqZ3tumv7YvkLvLP9Np3z3mKZsXqiooDD521tOZdHH5n6hi/qP03n9xspWcTqT5fek5Trp20f0zILJjX59AAAAQGsVHl3aYaE+dm7arXk/LdJnT36ra4bdrtnfLbCOW74qkV9GgfVAvTp+aXnyzyqssN0ZbFd+vFNFMea15AySSsKl/ESpOKz0wbxfWn6Nx6/OC//3lq4eM1KnDx9Y8c0Sp6J/2qCF/52qywfeog/+9UWdzwMAZVwul5YsWeLRwWHz5s26//77NXr0aMXExCgoKEgdO3bUhAkT9Oqrryo/v+7/zgEA0FyF+SAmSd64S3N/+kef/OcbXT30di34ZYnCosLk38CVUn3p2ctf0/9dMUFnRbVVm/eXKO6LFQpdkeIxGWnm57N1Wf+b9ekTjJMAAAAAvhIWXVpEtj52rN+puT/+o48e+UpXD7ldS35fobDI0EaLSczYStSMjUp8dZ4Sn/tbbSYtUtg/O7xKbijz5MUv6drnL7a6TlTKJU37aJYu6XOjvn7+R99dPAA0MyQ4AICk47sd6NP74JJL/134rX7csEAPz/msilSB5sfhcurSX1/ULcNP0s+nPaTB8V2r3PfNZb/o2/VzG/X6AAAAgNZqXFUPquvI6XTptVsn6c+v5+iVm951bzexSdjC6qsghS3YUen2XRf0liuokkdJNqkoWnIEuBS2YHu94p+SohLdM/5R3TfhcP1w40UamhegsH92KvK3TWr74gKFLdnt3vf9f32uP76suvscgKbnlE1O2eu5NOxTlfXr1ys7O9u9/v7776tXr1565JFHNGfOHGVkZKioqEjbt2/Xzz//rGuvvVa9e/fWlClTGvS6AABo8TGJw6mXrn9bs79fYMUmLUVRQbHuPeE/Vne5t5Y/q26DOleZJPn23R9ZCR0Amq+WEJMAAIBS484+1Ke3wlHi0HNXvW79Zn/rrg8b/TbX9RdEYV6hHjzlKd31wfV6ffHT6ty3Q5Uxyas3v6d/pi2r13UCaFjEJHXXcsplAEADGttpkIYl9NA/uzdU+n6Yf7D6xHbQmA79tT0nVTty0xUdFKqpWxar2Omo8rgPzv5YOcUtq6pfWkG2vtswVxN7jNK6jORq93183pc6qeeoRrs2AAAAoLU69NRR6nNgD62ZX0VMEhWqboO6aNRxQ5W0Nlkp21MVERuuP7+eK0dx1THJ05e9qtzMPI9toct3yxEepNyRHSV7uUfsTpfC525T6Mq9SQRlCrpGqKhjeNVfwBwmL0chlXy2tvYkpWrGp39p9IkjlPHa34ouKK5y35dvfFeHnT663ucE0DIkJ1f/nMIwnRZqY9Eiz1bv33zzjfu16dyQkJCgtLQ05ebmurcnJSVp4sSJeuWVV3TllVfW6nwAADTnBAdT/XPjki2Vvm+6w3Uf3EUHjh+irau3K3VHuiJjw/XHl3OsZIaqJtw8ceGLFWKS5i55wy7N+mquhowboG2rq08Qf/H/3tKoTa802rUBAAAArdVRFxymb1+aoi0rkyp9PyImTD2GdNOI8UO0eflWpe3MsLb98cUcK/aoqhjUf857vsXFJFtXJmnuD/+o59CuSlpX/TPRF//vTb27+oVGuzYAaCx0cAAASX52u944+v90cPu+lWbQ5pYUWMkPzy/6XluyU/TM4Zfq5J4HVZvcYLS05IYys5JWavmeLcorKax2v/TCHC3bU/lgBwAAAADv+Qf46z8/36fBYwfIZisXlfzvpXn4vvzPVXr7no+VkrRH9316sw4/4+BqkxvKPleZiDnb1OadhQr/e6tClu5U+F9bStfnVj5wYBIcauII85MjIkjFbcLkDPJTfSz4ZbFWz11vVU+tTlpyuratqbzjBIDmUZnIUc+lfLXUkSNHqlOnTtUutbV48eIK284//3wtWLBA+fn52rp1q9XhYeHChTr33HPd+zgcDqubw2+//VaPOwQAQPMRGByoJ6c+oAGH9PUsNfq/1zkZuVo6c6XevvtjZezO0gNf3KrRE0dUmdxQpjlMJHLZbSroFafcER2VNzBRzuCaawDO/2WRlv+1RiU1xFy7tqRoz/ZUH14tgOYckwAAgIYTEhasp6Y9qH6jenm+8b//FGen52rxjOV6684PlZeVr4e+vl3Djx5cZXJDc4pJ6mL+z4u0/M/VNcZcpihW+u7MRrsuALVDTFJ3JDgAwP+qCD294Bv9vWO1qv/ZK83fuU7X/PaqbK34YZbD5ZS9/KSqavy0cX6DXw8AAADQ2jmdTr1+6/ta8vsKz4fxlQQo//y2TP8+/Wl5+ZO9Sn45RQqfl6So6RsVPn+7tV4VWw0P0A1HeKD2XDpcaecOVsrlByrzmJ5yhAbUuXW0rXx3iWpM/3hWnc4BAPt2cPDz89Onn36qDz74QMOHD3cnnJk/hw0bpo8++khvvPHG3n+rHA5dddVVKi6uPhkLAICWwPx37eUb39GKv1Z7xiGVxCTzpyzSY+c+Z/4jqeausGuM9lw8QlnH9lHuQZ2VM7aHtZ4zsvrESGeJU3YvY5JpH/3po6sFAAAA9l8lxSV68bq3tGruOs83KolJ/v52vp686CXPglGtjKPEKZvdu+m9v3/6V4NfDwA0NhIcAEDSR6tm6tM13k+KWZyyUQ6nQ8F+dZusUyYqMLRZ3v8RiT11QHxXr1I4MotaZqYzAAAA0Jx8+cz3+uW9GV7vv3jGCgWFBikgqH4xSXiMdzFJ6KoMyVl9OrhfSbmuDf52FfRLUPoZA+UMqbk66r4GjemvAQf38awcW4XMPdm1Pj6AxuFw2X2ylJk3b562bdtW7VJb//nPf/Txxx/rkUce0aRJk3TWWWdVu/8VV1xhJTWU2bhxo5UUAQBAS/fJY99oxifeT4qZ99MiRcVHyM+/ft3bwqMbbpykODFcmRP6yLVv4rW/XXkjOylvcLsqPztoTD8NOqyfV+dJ35VR30sF0EJiEgAA0HDef+hzzfpqrtf7//n1XCV0aeN1saSqhEaFqDky8ciQcQO82jeDDg5As0VMUne1H2EGgFbGVEd9f+X0Wn/u3r8+VIGjfhX6mmNyQFhAsE7vfYjVwcFkOtfUyi0+OLLRrg0AAABorZVSJ784pdafe+ril1VcWL+YJCfdu5gkYE+BwpalKndwfOU7OCX/nIqbHdEhyh3WXhF/bfX6miJiwnTMRYdbxWDNsERNXfbi2kd7fWwALVu7du3UsWNHnx5zyJAh1lIb999/v958802r+47xww8/6IILLvDpdQEA0JiKi4r13Ss/1/pzT1z4otV9rT5yMhpunCR3WAfJr+qJyXnDOihk2U7Z9knmjm4TqSPOGyNHsXffrU2nuHpfKwAAALA/K8wv1A+v/Vrrzz1+/vNy1VCcqSZ5mflqbuLax+jwMw9WbqZ38RIxCYDWiFRzAPu9lanbtDU7pdb3IbWg9VUJNckNLx9xlXKK8/XI3M/lrCG5wRiW2KNRrg0AAABorVbOXquUpNRaf66xq4S2+WyDQpenVdhuc0jBKZLdUXmVpIL+CV6fIzw6TP/+9k6l787Si9e/Iy9CEg081LuqqgDgKx06dNDAgQPd6wsWLODmAgBatKUzVyp9V2atP1fZZ1z+djmD/WtMVG5oLptU1C222n2cYYEqbhfhsS0yLkIPf3+XUral6oX/e8urc3nb6QEAAABA5Rb+ulTZ6bm1vj11iWOau+iEKD3y/d3avi5ZL/7fm159xttODwDgreXLl+u+++7TyJEjreJTgYGBiouL06hRo3T33Xdb3a0bGh0cAOzXftq4QHfNmqT9lV02xYVEqkN4rI7oPFin9z5YM7ct1+W/vqgSV2kVwpos2r1RPaPbqWNEFZVcAQAAAFRp6gcz9cxlr7SIO2Qvcqrte2tU2C5UuYNi5Qqwy15sU2G/9rJZvRYq5wwNtCY3VbaHaR0dmxittt0SdMjJI3XspeM068s5unXsg3J6WXVpyYwVatctQQmd29Tj2wFoCE7ZrKW+x2iOunfvrqVLl1qvd+/e3dSXAwBAnf301jQ9f80b9b6DRe3ClXNQRxV2i5HsNtmzChW2ZKfC5u+o0CGhUdhtpUsNbIF+VnXUdt0Tdegpo3TMxWM17cNZeuWmd2vscF1mwS9LFJMQrTYd6eQANDetOSYBAKC1mPzSFOv39/7K7mdXTGK0OvRsqzGnHaSjLzpcP74+VW/e+aHXx/jr2wU66vxQxbWLadBrBdD6Y5KsrCzdcccdHl2sy6SlpWnevHnW8vTTT+uee+7Rgw8+KLu9YXotkOAAYL9SUFKkIL8A2Ww2rU5L0h1/vOv1RP76ODCxlxbuXu9VR4TyzLUWOoob7Lp+PPVBdYtKdK+be3LfXx/KUYt78vrSn/Xmsl80sftIPXzIeQr0C2igqwUAAABaR5vlwOBAKyZZM3+9nr70FTkdDR+TDBzTV8v/XK3allENCPRXcVGJx7ag5DxrMYoTw1XUr0O1x7DnFFb62M1ut+n9DS8rscvexARzT1641jww8/5CP/j3F/ro0a907MXjdMMrl8s/gMddABpeSEiI+7XD4eCWAwBajIK8QgWHBlmvl81apeeuet3rifxVHrNrtNJP7iv57x3QdkYGKXtMFxV1jFSb79eqz4ieWvn3Gvf7JXFhKuwaq8L2oXIG2+SXnqfQ1WkKSsrxOLZfgJ8cxbX/b63N4ZJfap4ccaFV7uNvt+uLf55Vm6hw9zZzT2qT3GC8e+8nmvTAZzr+yqP1fy9cIj8/v1pfLwAAALA/xiT//LZUr9xYu9/fdREYEqjuB3TR6rnrav1Zu59NTkfDXF9AUIA+2faaouIj3dvMPalNcoPx1p0fWnHJSf83Xlc9c2GDTTYG0Lqlp6fr2GOP1fz58z22h4aGKjY2Vrt27VJxcelc1pKSEv373//Wjh07rGSIhsCIL4BWL7soX28v+1VfrftbKflZCgsI1kk9Riq9ILdRkhsMM3kpxC9QuSWFXn9mZNveig+J0E+bFjbINR3cvq9HcoPx0aqZtUpuKGMSN77dMFd2m13/GXOhD68SAAAAaPmy03P02ROT9cu7M5SRkqWwqFAdfeHhSklKbZTkBpNd4B/gZw0YFOR6H5MMP2awgsOC9Nc386rcJ2BXjvz35KokPqzKfUJWVF7ZfOTxwzySG8oqNdUmuaGMuY9T3p5mfc8bXrmi1p8H0DCcssshe72P0dByc3OtLgzt27dXUFDp4GpNUlNT3a9NW2YAAJqzzD1ZpTHJe78rKzVbETFhOuaisdq6Zke9JxK5bFLmMT08khvKMx0dcvrEKzA4QAHBASoqcSj7iN4q6BGrgnjJ5a6ZFKuswzoqaFOm2ny6Rn75JRp1/DCrWuD8KYvrdG2hS5OVPa5Hle8fMbinR3KD8c2LP9XpnpiY5PtXf1FgkL+ufvbiOl0vgP03JgEAoLVL35WhTx+frKnv/67s9FxFxkVo/CXjtHbRpgZPbjCKi4oVEh5sjSGU1CKB+pBTRio3M0+Lpy9vkOs6/KzRHskNxjcv/FSnYzlKHPr6+R8VFBqoSx8910dXCGB/iUkcDodOOukkj+SGc845R3fffbcGDRpkrefl5enzzz+3OjykpKRY29566y0dddRROuuss3x+TTZXY/wXAgCaSFZhni6Y8qzWpG+v8J7dZvOqo0L/2E5WZqufza4+MR30+do/1ZCig8L04hFXaWhCd61K3aYzf3hSrtqWWf2fiIAQZRfnV/qeXTbFhURqfNdhumjAEeoYEa9jvnxAW7NL/+NTF+aeTj39YXUIZ2AfAAAAMMzkoZsPu19bV1WMSWx2m1w1Tea3Sb2Gdrf2NQ/eu/TvZE3kb0jRCZF66Ovb1XdkL62as1a3HP5gtQMMRe0jlX5KP8m/YpXSKIdNgW/Okb3QUWnb5djEaB1+5midetPxSujcRmf1uV5Jkf4qbhthdZsI3JKuoLW7ZS/2LhHE3KOPtryq2La0YQaaSlJSkjp16mS9nvRXb8W3q1+nxz3JxbrokLXW623btqljx47yFfMg/pJLLrEeyhtTpkzR+PHjvfpsQkKC+wH+cccdpx9//NFn1wUAgC+l787UTYfepx3rd1ZanKmmoWKzT6/h3a39THXRTn066Jd3p7vfL+geo/RT+1V7jIDtWYr/pHRCUPaRfVTYI0557SRXFY0OOhT76dXjJ1jnXTJjhe485mHVhflmrjOGaE9ixS4OJlE77vtViosJ1xFnH6qTbzhObTrG6fSES5W5J1t1ZRI5Ptn2ujVhC0DTaEkxCQAA+4M921N185j7tXNz3eYjmfGRPiN6yOFwWr+3O/Rsp18n/a6GlNA53hon6T64i5Vwff+Jj9f5WOExocpJL33+uC8/f7vi2sfqiHNKY5K4djGaGHm+CnK8L1a1L5PI8UnS6wqLrLqbHYCG1RJjkhdffFE33HCDe/3RRx/VPffcU+m+69ev19ChQ5WTU9qFc+DAgVq2bJnPr4kODgBatdeWTqk0ucHwJrnhygPG65bhJ3lsW5Kyqcpj+kJGYa4u+eV5lTgd6hndzkpAmLK55i4O7cJilJybbr0O9Q/S8d0PVJ+Y9npk7ueV7u+USyn5mfpg1Qx9u2GObhp2krZl76nXtZt7On3rUl3Qf1y9jgMAAAC0Fu8/9HmlyQ1GjckNki566Eydf/8Zez/jcmnZrJVKWptc72srbh+lgoHtrT+NgB2ZCl62QxnJmbpt3ENWFaNugzprzGmj9MeXc6o8TuCOLMV+uUJhZw1Tkr1EJtQKCwrU8SP6qvfuIr1Z+FeVFU737EjTV8/9qKkf/KGz37lS68Z2latc5dfiLjHKH9ZBkT+slH965cnb5ZlrnvPDPzru8iPrdE8A+JbDZbeW+h6joXTr1s2d3GD88ssvXiU4TJ8+3Z3cYBxxxBENdo0AANTXu/d+Umlyg+FNHbzLnzhfZ952onvddFRYPH2Zdm0p/W+hI6rm7keOqGD3n0XdYlUcVnVyg7E9wKGrz3lCAZsy1WNIVx16yij9+c3cGs9jOsTt3rrH+l6hkSE65sKximkXrdfe/Fn5AxLliA6WPb9EwWtSrMVV4tSe3DR9/vR3+vX9mTrv3lPrldxgFBUUa96URTrq/MPqdRwA+0dMAgDA/uCtuz6qc3KD8X8vXqaTrjnWvV5SXKIFvy5RWnLpHKmGYOKK60bdbY1jmMTr0SeO0OzvFngVk5TFSuHRYTr24rEKjQrVB//6otL9HSVO61yfPjHZiknOuuOkeiU3GPk5Bfpn6lKNOe2geh0HwP4TkxQVFemRRx5xr5vCUFUlNxg9e/bUnXfeqfvvv99aX758uVavXq2+ffv69LqIxAC0WiZB4Kt1s+t1jDeW/qwjvrhXry/9WQUlRda2B0efo2C/+mXVeXPtxvqMZCu5oW9szVl3ZckNpsvEa0ddq4cPOU9fr/fu+2cV5evhOZ/VuVNEeYWO4nofAwAAAGgNigqKNPWDmfU6xqQHP9eFPa/T5099q6LCYqt66g2vXCH/wPrVrCjo11bZEwaouFOM5Ge3FvM6e0J/FfRNdLdo3rRsq5Xc0HNot2qPF7ArR0Uv/KH41+bpoKXpeuu0Y3Tf6Ufq11d+9ep60gsK9fiPf3kkN5Rxhgcp67h+ctm8+25F+aWxGwDUZPjw4erQoYN7fdKkSUpLS6v2MyUlJR4P9oODg3XRRRdxswEAzVJ+Tr5mfFK/rtRv3vGBLu5zg7589ntrIpHpeH3jq1dYlUYNe17NYwJl+xSZ+MNmkyOk5vPm9CxNxN6weLOV3NBrWPUxiWEmEpnkhj4je+qJXx/Qtc9fol/ema6gzemK/nG14j5arJivlytkxS7ZSjy7xGXsztQrN70nXyAmAQAAAEplp+fojy/qN3frpf97S5f2v0mTX5wih8Mh/wB/3fjKFVaX6IZkkhuMdQs3WskNvYZ1r/EzZckN/Q/uo6emPaArnrpAP7+9twNedUzCxmu3+CYmKWScBEAtTJ48Wbt377ZeR0dH64knnqjxMxdccIEmTJhg/XnzzTd7VUSjtkhwANBqZRXlKbMwt97H2ZGTpv8u/FaX//qiCkuKNSyxhz487lYNiu+ixrI6LUkD4jp7ta/pLnHpL89r2pYlWpm6zetz+CK5wRjo5XUCAAAArZ2ZIJOXVXPXgZokb9ylN+/8UPed8B8VFxVr6BGD9OzMf6vn0K51Op4jPEh5B1UxOchmU97o7nKGBnpsXr9ok3rUkORg2AtKtGnGKt126P36+7v52rIyyatrKuifKGc1gxHOyGAVdY316li9R9Q8yACgcThlk1P2ei5eZjfVgZmgec0117jX09PTdfHFF1tJDJV+H6dTV111lebO3VtB+qabblJ8fHyDXSMAAPWRuiNdBXn1q/5pbF+XrNdve18PnvKkHCUOHTh+qJ6e8S91HdhZwRvSZSuo/L+dZUJW/q9aq730v+vejEa47J7xwbp/NqnbAd6Ny6yZt163HP6A/v52vnZs2OXVZ6xz+mgwvveIHj45DoDWH5MAANDame4ExUXVxwve2LZ6u16+8R09fOazVpLDwScdqCd/e0Cd+u4tXtLQ1v2zUV0HdvJq35V/r9FNh96v2d8vUEpSqtfn8NX8YNN1AkDz0BJiksmTJ7tfm4SFNm3a1PiZLl266KefftL777+vZ599Vv369fP5dZHgAKDVWp+e7NV+gXbvKp8u2LVe768szaodGN9FX0y8S8+NvVwxQeFqDIUlRTqmy1BFB4XVuG+Jy6lbZ76jxtYzup0Oau/bVkMAAABAS7VpuXcJx/4Bfl7tt2jaMv3w2lTrdb9RvfTqwqd014c3KCK2djFJYZ8E98SiStltKuiTWHG7y2UNGoRHh9Z4DtMB4j/nPe/1NZW0i6xxn+L2Ne9jqrr2H93H6/MCwG233ebRNvn777/XoYceqt9//91KaDDMn2b9sMMO0zvv7H3eMnjwYD300EPcRABAs7Vp+Vav9ivrxlDGZWKCfonKOPkApZ03QhmnDlb+wHaa++sS/fzO/8ZJDumrN5c+o9vfvFptl+2p8tj+e/IUurQ0ycB/V3bp+bxouha0rXTf8gID/TV64giFRdUckxQXFuuJC19UYzOVWmvqgAcAAADsLzYt21LjPqZzta26MYty/vpmnqZ/VNqlbvDhA/TOyud00+tXKiQiWI0hNCJEo44bav3pTReFJy9+SY1t6JGD1KVfx0Y/L4CWa+bMme7XpitDc+HdrF4AaGFmb1+ly6bW/OC6f2wnvXXs9fpy7d+am7xGf+1YVe3+H66cIbvNrh83zVd2Ub66R7VVt6hEpe/OUUNbn7nTWrxV4PBihMCH2oRE6r9jL2/UcwIAAADN1dyf/tH9Jz5e4379R/fWQ1/frilvT9ei6cu0ePryavef/OJP1kPx3z/7y+oOYaoFdejZVqvnrff62hxeTAZyRoeosGu0coe0U0lCmGwlTmWtT1PojKXyzyo0jR5qrCRUkFuLSrFelCWyOavfJ75DrO75+CbvzwkAZvJkUJCmTJmiMWPGKCmptOuM6dAwbtw4hYWFKS4uTnv27FFeXp7H/erfv7+mTp1qfR4AgOboz6/n6uEznq1xvyHjBujOD27Qz/+LSZb8uVpZE/qppF2Uex9HaKDyRndTYe8Eff36r8pIydIfX85WfnaBug/uop5ZLuX9tE45B3eSI/p/E4scTgWvTVXk9E2yFzmsTQG7suWXkqMAv3AVR5gf+ZVfk19GoUJXV6xyumbBhlrdg/ycAjWmxC5tdNcH1zfqOQEAAIDm6reP/tATF9Y8wf/ACUN002tXacpb06yYZPmfq6vd/+sXftTOzbs166s5KswrtLpPJ3SO15YV3nWUro+Vs9fWav/8rMaNSdr3SNRt71zbqOcE0LIlJydrx44d7vWhQ4e6Xy9cuFCffPKJli1bZu0TERGh3r176+STT9bEiRPl5+ddEb+6IsEBQKt0y8y35axhgoyfza6bR5ysyMBQ5ZcUatHujTUed1d+pp5a8LV7fVt21VWJWrNLBx6tlLxMrUjdqmC/AB3dZYjO7HOo4kJqrqgKAAAAtHam0vfj578gVw0T8k3nhksfPdfqwJCbmadVc9bVeOwdG3bp7bs/cq8nbyythFobdi/aQRclBCtnSH+PbXnD2yt/QIJiv16pgF2+TfIO2Jqh4o7RNe5T5py7T7G++4bFmxUcFqTDTh+t4644SpFxZpYUgObC6bLJ4bLV+xgNrWvXrtaD+ksvvVQ//vije3tubq617FtR7pJLLtFTTz2l2NjYBr82AADqwlHi0BMXvyRXDeMkAUEBuvjhc6zf0TkZuVo9d53yh3b0SG7wOG5cmFbuydHW+z+tEJOYNOqQlSkqTgyTK9BP/qn58ssrrnCMiGlrlHXcAAUFBqswrmKSgz2nWAkfr5attJFSs3X+/adr6+rt2rR0i0IiQnT4GaM14fIjFRHTOF2/AbSumAQAgNamqLBY/73y9Rr3CwoJ1EX/OkuRceHKTsvRmvk1F3Na/88mayk/brI/uvChM7VhyWZtXZlkdbkbe9YhGn/pOIVFhTX1pQFoQTHJ2rV7E7cCAwOVmJio7du36/LLL9fPP/9cYf/Zs2dr0qRJVofrt99+W8OHD2+wayPBAUCr8/6K6Uov9Bx8rszo9n31xLwvtTM3XTnFjZsx2xyF+Acqv6Tmrg8moeGqA45VVBA/iAEAAIDKfPL4ZGtyUHVKYkLU967j9NBfC5Ty2S8qWZ6sUH+pYetclArckKLCPolVvu/0k0raVz4pxxXsr4zjeiv+3X+qKrZaJ8Grd8t1SHfluyqfxeS/O0cB2zOt16b189l3neJVC2gA8FZCQoJ++OEHzZs3Tx9++KH++OMPbdu2TdnZ2VYXh44dO+roo4/W2WefrQMOOIAbCwBo1t69/xNlto1QYZ+ecsSEylbsUOCmPQpekSx77t5xgKFHDtIzl7+iPUlpVrcDl82mgr5VxwpGYY94hc7Z7O7KUJ6JEQJ3VR8L+WUXKvqrxSrs1Ub5fdqosF2QHME267pCV+5R+MLd8suvOSm7IQSGBKoov+ZxEpOkfvZdJysohE5OAAAAQGXeuP19r35bDx43UI9f8IJStqXWrit0KxUQHKDigoqJ4vuKSYyyYpKAwIBGuS4AzavjQk3MeIa3yjpbG9HR0Vq3bp0OPvhgpaZW7KxZ3pIlS3T44Yfrq6++0rHHHquGQIIDgFZld26mHp//pVf7/rl9ZYNfT0tJbLig/zhN6DpCl/zynDJqSA65aMCRJDcAAAAAVdi1JUXv3f9JtfenoGecso7upT+2/e8BVIBNGtpeBQMSFfXTagUmlU7kbygByVkKSEpXcceYSt93OcygQ2CVn3dEB6uoa7SCNu/tqFAfIeHBOv2WiRpx6eG6+rkvlV3oOehhKyxR2KyN7oSKs+48meQGoIVwyG4t9T1GYxo5cqS1AADQUm1bu13vzF2pojE93dtcAX4qHNBeRT3aKOLnlfJLz7O2z/vpH4/POkMD5AqpYYKMv5+ckSGy76l7VzdbiVPBq3ZZS3NgkqdNnGESPu469mHlZeVXu/95955KcgPQQrTEmAQAgJZu47It+valilW/K7NvTLK/Mh0Yzrv3NPUd1Uv3HPdojckepnsDyQ3A/hmTjPRi/KKmjp7l7dmzx/26pKREEyZMsJIb7Ha71fXadHIYOHCgHA6HFi9erBdffFFfflk6P9d0wD7zzDO1YMEC9erVS75GggOAVuGnjQs0aeU0LUnZ3NSX0mKc3WeMRrTtpcM6DFBkUKjWpG1XsaPmqkh0uwAAAAAq+u3DP/TNCz9p7YIN1d4eR1igldwgv4oPslyBfsqc0Edx7y2QvbjyTga+Ev7bGuWN7qbCnm32XkuJU0EbUpTXK7LGzxe3CatXgoMzyE8n/d94HXBgLx04YajCIkO1cusuFTud0j7P3FyB/soa31fR3yyzqr3m1tAdAwAAANgf/fLeDE1+cYpWZGWr6LDKB5VdwQHKPbSHIr9fVmXigVdKKnZvaIlOufE4DRjdRyOPG6qQ8BCtnL1GJcU1f7fsdGISAAAAYN/JtFPemqbJL03RpmVbuTnesEmn3zxR/Q7qpZHHDVNwaJCWzFwhhxdxWXYaMQkA38jLKy2CYaSlpVlLUFCQ1Znh+OOP99j3sMMOsxaT5HDDDTdY27KysnTNNdfot99+k6+R4ACgxfvvwm/1+lLvMn+bUqh/oPJKam6/VhsxQWHKLS5UkbP27Zo/XTNLC3dtsJIaTuk1Ws8unKzckprbvX27fo7uHXWG7DaqlQAAAADGa7dO0lf//cGrm5E/ILHS5IYyriB/FfRpo9DlFSuZuuw2FfSKV0liuDXxKGhjmgJ2Znv9lxAYEuhuCW1zOBX25waFLNiqkrYRVlKB/64s2QtKlN/lgBqPZSsqnfQTnRCp3Mx8FRfW3DLZKOwep4JBHeRoE65JWenqs2aT8rvGacKovnru61kqKKo8tnGFBipvRCdFzFivXyf9riuevMDr7w2g6Thddmup7zEAAED1Xrj2TX3/2q/W68LjB1a7ryM+XCXx4fKvpAODvbBE/tszVNIhusrP+6Xlyj+j+g4HVfEP9FdJFb/56yq2bbSy03JUXIfjfvP8T1rx1xrJZtPhZ4zW67e9746ZqmNikov/fXYdrxhAYyImAQCgcTxz2atW0nVzZ/e3y+ltYreX4trHKDMly6tkaQ8u6ctnv7cSHPz8/XTIySP12i2TvBpvMff6nLtPqftFA2ixMcm8efPUrl07+UpxccV/c5555pkKyQ3lXX/99Vq4cKEmTZpkrU+bNs3q4jBixAj5EqNDAFq01WlJLSK5wTipx0E+P2Z6Ya4SQqPq/Pl1GTt095/v69+zP9Ws7Su8+ozp4JDv40QNAAAAoKVaNXed18kNRklCeJ32KW4bodSLhyv7mF7KH9xOecM7KP2MQUo/ub+cgX5enXv8JeMqbLMXFCtwc5oCt6RZyQ1G8NrU6g/kcCp4fek+GbuzFNchxqvz5w/pqNwj+ljJDWXWJKXovren6OnPftf8tduq/Xxhj3i5/O3KSMmy2qACAAAAkJb8vsKd3GD9XI8OqfG2VLdP6D9JkumsVhmXSyELq//dXp3jrzhKvpa2M0PxneLq/HnThe+Rs561EtdXzl7r3TmT697NDgAAAGht5v+8qEUkNxgnXHW0z4+ZuiNdCV3a1Pnzq+as00OnPqU3bv9A6xdt8uoz6TuJSYD9Vbt27dSxY8dql9oIDg72WO/cubOuuuqqGj/3wAMPyGazude/++47+RodHAC0aJ+vmaWWIiIoRJGBocoq2tvWxxeScmqYfOSFj1fP9Hrf6KAwhfoH1fucAAAAQGvw0xtTa7W/6bxQ230cYYHKOLGf1d1hX0Wdo5Vy4QFy+bvkCPZXwJ58hf+zUyErU013Yw/RCVEKCg1UYV71Ccuhy3Ypb3BbOSOCqnzfL3dvNY+dG3fX+J0ckcHKH96pyvc/mb5IqilPw1RWCvJXYmK4/Py8S+oA0LQcsltLfY8BAACq9uObnjGJrdghV2D1Q8Bmn6oE7MxSxNQ1yj2ku5zhe2MCW36xQuduVtDmtDr/dSR0jrcqkzpKfJuwnLzBswNecVyI8oa2U2HHSNlcUtDmDIUuTpZ/ZtVdrL9+zvvE9cQu8fW6XgCNh5gEAICG9+Obv7WY29ypd4cGOe6O9TvrfYyvahGTmNgKQMvQ3GOSiIgIj3XTucHfv+bUgu7du6tPnz5avXq1tT579myfXxsJDgBatM1ZKWopIgJMRSSXmiubl1d3Wq+DPbLvAAAAgP3Z9nIPrV12W2klVKdLfhn5FRIMjKBNqSrsWX110aANnknM+YMSK01ucNmkItMMIWpv9dXCiEAVdotSaJ8UxX6zzuMawqJCvfotbzo5xH65QpkTelmdI9wcToUu2amIPzartgp7J0jVnNvlTTBS7LCubfylR9T6/AAAAEBrte9EmkATcwxsX+X+9mKHApKqr/YZuDVdAdsWqrhTjJXkYMsrsrbZnPUb4zAxid3PJkdp87gGkd83Xhnje0p+ewf/S+JDlTc4UTGTVytoa2bdY5L/GX/pkb64VAAAAKBV2L4uuVb72+w2ueoZW9QvJrHL6ai5GFVjq801TbiMmARAwyQ49OrVy+vPlk9w2Lmz/ole+6L8FYAWzXQTqI3Tex2smCAzA6h6If6B6hAeK1+x22ya0G2EYoI9/4NQmcjAmttHN4RoL+5LQkiULh90TKNcDwAAANASRMaFW4kGecM7Kf3cEco8bYgyzxiqjLOGqaBfYoX9zzz6QEWbD1QhYEeWArdnKTQyRPEdSxMhirrGVLpvcaiq7HqQN7CNcocmuNdNldTDzhitqPjIGr9TRGy4/DMKFPvJMqvKqa2gpDQb2m5XYa845Q1rX+vUbWekZ3vTfZk7EhNWfSwUtH6P2nWK02k3n1DLswMAAACtl/n9Xl7wimSr20JVzj96mMJCa+7SHBEVpsRCp4JX7rS6NtQ3uSEgKECHnjpKEbFejJPE1TxeURlHeGCF5IYyrgA/pU/sI2dA1cPjkfE1X1uHXu100nXj63R9AAAAQGsUGVfz7+jyzr37FAV5EZOY4+4b79RHcGiQDj5phCJiaj5mlBexQUPw5vt2HdhJx115VKNcD4DWr3Pnzh7rAQEBXn82PHzvv1k5OTnyNRIcALRoJ/YYWav9N2Xu1lUHHFvjfhO7j1R8SJR82b1hU+ZOHRDfpcZ9Q/2rn/jTUNqGVT5pqrzesR0UE+y74AEAAABo6Y44d4xyjuij/GGd5AoJ8JjQn3toDyvxobwda3fo8p495b8zu8KxArekK+rH0ioXx148zv0A3VVJ5wOnXXLV0JczZ0Rb9+uw6FBtXbVdvYZ1q/E7BYUGWn9mHd1D+YPbSUH+VgKCWUz11pwxXZV9RHfVRnUTrMq0l79shZWXcrXnFCp0wTb1GNpN4dG1S3QH0HRMzTGHy1avpfnVUgMAoPnFJOXZ84oUMWWF/FI8B5bNb+2Q+VuU+s1CnXT9hBqPe/yVRynci4k/3gqPDtWWlUnqMaRrjfsGBHo/mF5e3gGJlSY3lHEF+yu/X5sq32/TMb7Gc/Qa0V2hEU1TqApA645J/vzzT6vzZm2Xk08+uZGuEACAyo0759Ba3Zodm3br+KtqnqB/8nUTfPrbO+x/MUmXAR1r3Nd0eWgKCZ1qjkn6HNjTStYA0DI095hk0KBBHuvJyd535cnKynK/jory3VzbMiQ4AGjRQgNq94Nt4e71igoKV4C9+plAZ/c9TOM6ef7jXR+ZRXm6YupL2p1Xeevj8hLDfP+PvTd6RrercZ89+Xv/owQAAABA8uuTqKLupZ0WKpM/pKMcYaUJA8aCX5eoXXyk2kxeqZgvlirs7y0K+2uzYj9ZrOjvV8leWGINTp9w9TE66ITh1mcCkysmQ7hM54aqG0FYihPC3J0WsvZk686j/63crPwa/9piE6OtzxYMSKz6ex3QVsVxpoWEd4LWp9S4T69im6K+WabADXukslbMJQ4FrdltbffLLVJacrrX5wQAAAD2B5VVPvXLzFfkD8sU8d1Shc5ar7BpaxT12UIFL9+hvyfPV+d+HWT3qzqgsNttOv7Ko3XQ8cOqPbcjOkS5o7sp86QDlDVxoPIP6CBnUOXjL+m7MnXruAflKK48qbmMiYei2tTcea4yxYnh9dqnQ6+9SeJVSU/OqPV1AYA3Fi1axI0CALRIQSF7x0C8MePjP9VrWHfrt39VTFfqCZcf4R4n8YXUHem66dD75B9Q/ZwxEw950+WhIbTrXvW4TJm0ncQkAHwnJibGo4vDnDlzvP7sypUr3a979eolX6uh1h8ANG/frp9b6888+PdHKnZW/QD95uEnqX9cJyWERur5f75zTwjyhbk71yrA7qdip6PS9yd0Ha5BbbpqScrmWh87PCBYOcUFdbquozoPVqwXnRniQ+o2qAAAAAC0Vj/OLe24UCW7TYW92ih08Xb3pmcue1WOEocCduVYy76uevpCde7bQRMuO0IfPfqVQpYmK79/gkclUpsXgYqt2FkhB2LRtGUKCPJXcRWdEo6+6HB16NlOC6bVHGsVDEhQwB97Y5ewqFDlZuZVuq9/So4C16eoqGfl1VKPGdFbUf9sl39GviKnrpUz0M+qrmrPK5atZG9dkpjE6BqvC0Dz4ZTdWup7DAAAULXpH8+q8j3/1Fxr2dczl74ip6PyoMJMMrruxcusiTUTLj9SXzzzfaX7mTgnd0xPK+YpU5IYqYJB7RQxZaX80yqJDVzSP7+ZmCRAxYWVd3k77oqjrG52G5duUW1FRISosIZ9yscX5R1z8dgq70l5MW2JSYCWpCXFJOUTHEz10/j4mis4G+3a1VzEDgCAhjTjkz9r/RkTk7hcrioTDG567UrFd4jT+MuO0Lcv/yxfMaf857el1cYkJ19/nNXBYevqveM63gqPCVNOesUYzBsnXHW0slIrFrzaV0xi0xTOBdB6Y5ITTzxRL730kvV65syZ2rVrlxITq0+4Wrt2rTZs2OBeP+yww3x+XYwOAWjRdufVPiu1qJrkhosHHKmrDhhvvQ72D/JpckMZk9wQExSuMH/PqkrRQWHqF9dRR3UZbCVB1FZucU2P7StPirh04FG6fuhEfb6m5oDj5J4H1focAAAAQGuWklnzg2pnaKBcNqmwQ7gKukSqsJqf++fee6pOu/mEvZVYXZJ/Wr4ipm3Y29XAmpTzv56m1QhZlVrpdpPcYB6AB8aGKX9QO+WM6a68g7oorG9bdR3QSYefebDs0TW3fXaEBXis52VX3x0ibOY6BS9Okq1g76BBRGiQLplwoC4b1V+/fTDTvd1e5JBfVmGFyUfHXDS2xusCAAAA9iemCmltlRRXXoTJuPjhszXxmmOr7A7h7tywT3JDGVdIoHKO6mvFQFUxE4li28V4VHo1xVtNnNKpb3sdcd4Y2f1rP4ztWJhU4z7B6z3jpIjYcJ1//+maePUxmvnZXzV+/pgLD6/1dQFAbRMc7rrrLq1fv96r5dVXX+UGAwBaVUxy5VMXaPylR1ivg6uISerLxCTxHWIVGFw+JrFZcUq7HolWArRJtKitqopAVSe6TaQu/vfZOuqCw/TX5Pk17n/MhYyTAPCtCy64wP3a4XDonnvuqfEzjz76qPt1QECATj/9dB9fFR0cALRwbcNifXq8f3btzSoL8QtUiH+g8kuK5GvphTnys3k+nM8ozNWzC7/Vhyt/12EdB2ra1iW1OqarDukY7x17kwa26aL7/vxA+Y7qv+fwxJ46tmv17agBAACA/U2iF22Ki9oEKuuG4XJE/e9BfIlTocv3KOaXTbIXej7EXzZrlft1aGSoAgL9VVxUopA1KQpMzlL+wLYq6BUvZ3iQ/POlkrCquzdEzq66utDOiADljxsgR7nn81slPfvLPH37yi8acfUYzdy5s9rv5ZftGUO4nNXHJKbrROiCrQpZlKSS+DBrsOCdGf9Wtz4d9PgFL6gwv/qYZOhRg3TQRN+1owbQ8Bwuu7XU9xgAAKBqbTrFafXcdT67RctmrZR0qvU6IibMqlzqLJdsbRT0a1tpckMZZ2SwijvFKHBr1ROd0pLTZVrOmSiiuG2YXAF2pabk6LVbJqldj591wOEDtHjaslpde9DqFPkf2F4lcaGVvh+YlKmgbVnudZvdphfn/EcderbVv05/2oq9qjPq+GEaceyQWl0TgKbVUmKSoqIirVixwr0+bBhjsgCAlhWT1KUDW1WW/rFKp9080XodGR9h/W6vafyhLvbsSPNYNx0lTJzy8g3vWInXAw7po2WzaujivY/aXqefv59eXvCEEjrF694THrO6f1fn0NNGafDYAbU6B4Cm1RJikpEjR+roo4/W1KlTrfV3331XBx10kK644opK93/nnXf0/vvvu9fPP//8Buksx+gQgBbttF6jfXq8DZl7J/D42e2KD4lUQ3G4Ki+3ujs/U5syd8pmnuw3sB83LbD+/GXL3oogVbmw/7g6dZYAAAAAWrOTDhlY7fvFoU7lDo7bm9xg+NuVNyRBuy8YIOc+VUm3rdqblBAYFKCohL0xieloEP73FvlnFMjulALyJX/TQGKf0MLmkMKXpClgT+UdFYoTI5QztpdHckOZoh7x2tQ+XDm/mElN1XC5FLJil+rC5nAqYFe2/HdmaeaHs6xts76aU+PnTr/5BPn5EZMAAAAA5Y2/pLSyqa9sLReThISHWBOK9lXSpuZE75KEip/bV87gBCVfP0y7rhqs3ZcO0o5bRihtYg9tT9qj3PSau+Xty+ZwKfbLlQrYsTeJoUzQpnTFTF5dYfLR75/9pZLiEs3+rnS8pDqn3zrRStQGAF8zyQ3FxXs7Xg4dOpSbDABoMY71eUyytzNbZGyEwqOrqPRUXyYXoYp8hG2rd1jdsBuaSWiY+fls5ecWaMHPi2vc/6w7Tm7wawKwf3rjjTcUHh7uTvi68sordemll2r16r3PUpKSknTjjTfq8ssvd29r06aNHnvssQa5Jv8GOSoANJLBbbopLCBIucWFPjleZGCI+7XT5VRyjme2bmPZmLlLXSLaaEt2SoOeJzm39Pvle3H/HM7KEzIAAACA/dmwnu0VuT1TWR2iKrznsknF1Tx3L24frrxB8QpftNu9Lazcg/qigqJKWzvbylUAspIcCiSH6aJsK01usBdLAWkFVZ634ID21VZbLRjQVit2ZatrZKQ2Z1WcGGSELtwh//Sqz+Gt3dv2WA/wiwr2DuJXpaSo+spFAAAAwP5oyBEDFRAUoOLCmn9Te6P85KHczFxl7s6qNiapLrG5OtkHtVPGsd08trkC/JQ7LFFFiWHSe8vVsWeidqyvXWK1X06R4j9ZrqK24SrqFGUlZwdtylBAal6l+6ds3WPdu5oqpRrEJAAayuLFeyc0dujQwZokBABASzH8mAPkF+AnR7HD5zFJ+q4MZaflqCmsnrde7XokKnlD3Yo9eStl2x4V5RfJ6UWcZfYDgIbQtWtX/fTTT5o4caIyMzPdnRzMEhkZqdDQUO3atctKfihjEiK+/vprtW3btkGuiQ4OAFq09MIcnyU3GMd3O9D9usTpVEkVXRYaQ1lyQ0xQA2UiS0oILZ2E1TeuU4379o3t2GDXAQAAALRUqdvT5P/TCoXO3Sx7zt7YxC8tV/5bdlndGqqTOzjBY33c2Ye4X5tJNpW1Mw7c7JmIbXNJ/oWliQ5+xVaegwI3V0yMKFPUKbrqCzIftttU0i5SSbuyZC+SokODy32vPEX8tl4Rf/qm3XRcuxirBXPXgdXHJHa7Td0O6OyTcwJoPE7ZfLIAAICq7d6S4rPkhn1jEpOIXH7gukzA1pqLQwVsrTomcQb5KXNc1b/vizuEK+WSIVrdJULFbcMVGVdzx4h9Be7MUfj87QpfsKPK5AYjrn2s1amifY/Eao9n97Or6wDGSYCWpqXEJIsWLXK/pnsDAKClMQkAvkpuMMadfaj7dWETT+gvS26IiK19TOKt2HYx1vHbdIqrdr+AQH917tehwa4DwP4dkxhjxozRX3/9pUMO2ftsyMjKytLOnTs9nhENGDBAf/75pw49dO+/2b5GggOAFi3A7rtGNFFBobpgwDj3eqCfv3pFt1dTSy/M1YOjz9Fjh16o8IC9E4t84dReB1t/ntP3sGr3O6hdH3WPbphMOwAAAKAlM5VSzSOlkKU7FP3pwtLl4wWK/mqJ7Lk1dzhwhga4X0e1idSJ/zfevR4WFab2PSv+Dg9ak+KRTFHhmrZnKmBXdtUntVXxEKySzXaHlJ1aoIfPOFqPHXSgOn29WqHL93acqA+bzaZjLymNwU685thq9x0xfojadat+whEAAACwv8YkvhLXLlrHXXmUR4yS0Dm+wn5Ba3bLllf1RKOAbenyT82t8v28fnFyBfpVey3FbYJV0C9B6acfoB09YnTXBzfopteuVFCIaV/nGyaR+uiLDrdeT6whJjn4pAMV36H6CUcA4IsEh2HDhnEjAQD7bUxiJvkfe+neuVvxHWIVk1ixg3ZjM10k7v/8Fl3/0uU+/b6mANRRFxwmu92uE646ptp9DztjtKLbNP29ANC6Dfhf4sKUKVN02WWXqW/fvoqKilJAQIDVbe6kk07SJ598oiVLlmjw4MENei0kOABo0SICQ3Rg214+OVZmYZ7unjVJOUX57m3n9Rur5mDSimnqHpWovBLfdas4s/eh7q4Mp/YcrRN7jKx0v/bhsXrkkAt8dl4AAACgNYlJjFbfkT3dnRT8sgvll1s60ccvvebf7/4Ze5MgMlOy9PSlLys/Z29MctK1exMeytiLHIr8fqX80itWIQ1IylDEz6urPWdAcpZqw+Q9fPLDPHVKjFF+Ts1JG946+foJ6ti7NKncTKIyD+crYyqp3vTaVT47L4DG43TZ5ajnYo4BAACqltiljboP7uKTW5SanKFnL39VhfmlsYyZZDPx6oqTbOyFJYqYslL2zL2xSxm/lGyFTV9b7Xmc4V5MCCr3EyBvZCd99t1sJXRp49MKrmfcdqLadi3tqnfKDcdp9IkjKt2vU5/2uuHly312XgCNpyXEJKYKqpkcVL6Dw+bNm3X//fdr9OjRiomJUVBQkDp27KgJEybo1VdfVX5+xX9/AQBoKub3sll8IWVbqv575Wsq+l+XOv8Afx1/5dFqDia//LOVcOHLDnrn3Xua4tvHWq/PuG2iDhw/pNL9TBfsa/57sc/OC6DxtISYpDLjx4/XW2+9pVWrVikjI0NFRUVKSkrS5MmTdfbZZ8vPr/rCFb7A6BCAFu+qA8bLXlUF0lr6e8dq3fHHe+71M/scoondK5/435g2Z+3WpBXT5aykFXRtJYRG6fYRp+hfB5/rUTn1iTEX67mxl1vdGsw+PaPb6cahE/XVxLvVMYKqRAAAAEBVzrnnVOs39b5CV6fKnlf9g+6wf0rbG5eZ99MiPXP5q+71k64frzGnH+ReNxFBQfcYZR3eWSWBLik7R/7bUhWyYKuivlyiqO9XWgkQ1QlellxxYw0h1fo9Gfr6uR/lqwpM1zx7sa597hL3NvMQ7N5PbtLdH92owWMHKK59jPXA/rLHztVL8x5Xm47EJAAAAEBVzr3nNJ/dnL8mz9fz177pXj/91ok6aOLwCvv5p+fJPymjNEgptzjiI5Q7rrdc9qqDDL8ML4o57RPWLC3J11f//UG+0LZrG1334mW6/PHz916Tv58e/Oo23fn+9Ro0pp9i28Wo26DOuuKJ8/XinMes5HYAaAjr169XdvbeTpzvv/++evXqpUceeURz5sxxTybavn27fv75Z1177bXq3bu3VVEVAIDmwIyPnHP3qT473szPZ+uVG9/1GIMZcWzDVgn3xuo5a/Xlf7/3ybFMYaebX79KFzx4hntbQGCAHv7uLt32zrUacEgfKybpMaSrrn7mIj3/16OKio/0ybkBoKUgwQFAi3doh/567NALFRYQ7LHdz2bX8ITSSqq1MX3bUm3M2Gm9ttvsevKwi/XSEVepXWiMT643PqRuPzjn71rnk/NPP+NRXTbomAoTsMz6+G7DdfUB4zUwrot252Xo/ZUz9Pi8L7UqdZtPzg0AAAC0RgefeKBueu1KhYR7xiQBdrsOywqUHM5KPxeyco9CVqdV2D7ryzlK3rjLPfH/vk9vtlofx7aPUcbxvZR+aj8V9opTSUKYituGK79vnPJ7RMsvI18l0cEq7BGnos4xcvlV/tinTV6JQudtqdV3dDmcWjpzperL7mfXBxtf1qk3HV/xPbtdR5xzqE578RIl3nmc1h3RU2+l7NKz3/6tdUl76n1uAI3PIZscstdz8U1RCwAAWrPDzxhtTdgPDg3y2O4f6K8Bh/St9fGmf/Sn9mxPLT1GgL8e+vp2KyE5OjHKvU9Bn0QV9W9X6eeLO8Uof0TVXSUSdhbUmAzut08ORGGbMJ/EJOaeTFr/kk76v4rd8kz8ddT5h+msO05S9wM6W9Vjv3z2e71x+wfasiqp3ucG0PJjkuTkZKtqaXVLbS1atMhj/ZtvvlFJSYn12nRu6NSpk8LCwjz2MeeZOHGi3njjjTrfGwAAfOnoCw/XVU9fqMBgz25tAUEB6je6V62P9+t7M5SRkmm9DgwK0CPf3627PrhBkfERPrne0AjP8RxvlBQ7tHxW9R20vREUEqj31r6o4644qsJ7JvH62IvH6czbTlLXAR21a3OKPn/qW715xwdKWruj3ucG0PgYJ6k7/3p8FgCajZN7HqSjuwzRlE0LlZS9R3EhkTq++wg9s2CyFu5eX+vjzUxaru7Rbd0T/9uFxdZY0dRbecVeVCbahzm1zQcX0DO6rfztVbcHemf5b3py/lce277dMFc/bVqo/469TEd1qbwVGgAAALC/Mw+iDz/rYM387G/t2pJiVdYZd/YhevnGd9Tm55XKPrSDCnpEmwBD/mn5Cp+/U+Hzkiv9le90ujT/58U68dpj3RP/E7u0Ue6wdiroW3nV0OKOkUq9cKhsgaUTmkzxVFtBsUIXbf9/9u4DOopqjQP4f1s2vVcSSIHQe++9CggqKNIEBVFUVOwKFlSwK8+uKKKIiCIiXXrvEFoILaQQQkjvydZ3ZmLKkm1JNoEk/987e9iduffOzfIO5pu53/3gGGF407ugQAWHiAQoYtNQ2MIfGk9HaAJchQxvkz+f/fUsYepVJuw2ZK5k6Q8bDuOrtQcMjv1z4By2HI3Ch4+NRq82oVWfBBERERFRHSQs2B80qQ92rtyPlGup8A70RP8JvQwqxFlLq9Hi2L+nMXz6APGz8Du8byNv6HWlVaYLWxlPbig538wXDifiINGUT/jW5KrgsSEaqfc1NRqHSFVFr7IUchmkZdrqnJTQ28khzS2ERFW0ENgazbo0EWMsU36avxK/vmv4nGTjku3YsWIf3lr7EjoOamP1tYio7unatavFNnp96b+V1oiIiCh3bPLkyXjmmWfQsWNH8Vm1MKaQCPHxxx9jxYoVYhutVitWcwgLC8PgweUXSBIREdW0cXNHY+i0/ti18gBSr6fBp6E3BkzoiXcnLq7wWGqVBie2nRE3RSpe+F8UkxjfUKqiNGpdpRITVPkqVPA/9eUISejGqoIX++6Fn/HHx4aVItZ/uxXbf92LhRtfReveLao2ASKiWoIVHIiozhAqOIxr2gtPdRiNph6BOJ50BVcyEis1llZf+ovsjrjTmLDhQyTmpttknnmaiic4dPRtIlaqMEcqkaCrn/msZzc7JxxPMp7wcTkjER8e/cvoObVOg5f2LkOOuqACsyYiIiIiql+cXB3FRIepb96PRi0CcXpPJOIvXId9XBZ8VpxH4KLDCPzgMPy/OAmXw4mQ6M0vKCq258+DmNNrHuL9ze8opHFXQicBdHJArwB0Lgrk9A5B1mDDynaFuUUxiTw9H04HrsJt/TnYn7thZjI69PD2RKdh5hOe5QoZWvVsZraNo4sDIg9dNHrufGxSueSGkjmrtZj3wybkF5rf5ZWI7iw6vcQmLyIiIrKOs7sTRj82FFPeGI/Apg1watc5JFyq3HMSXZmYRFhI80yf+chMzio6p5RD6+Fotr+QfKDxNNxxvFhhvgqOkanw+eUclFcyhNXARSe0gCwXkGeX33OqV7NG6DS0HbQ+rsgf0Ar5IzqgYFAb5I3qiIJu4dA52Im7xTbt3NhwHhIJtA28oO4SDlXPFpD3aIaoS8bjn3MHLpRLbihWkFeIRZMWQ61iTEJUm9SGmKRsBQchoWzlypX45Zdf0KlTp5LFj8KfQrLDr7/+alC1QUhymDVrFtRq/ttERER3BldPF3Hzpsmvj0NAmC8idp7D9ctmnj/Auuckm3/cgef6v47stFybzFNVcEtGtRV63N0ZHYe0NdvG3kmJsLamq9kJFHZyXD551ei5kzvOlEtuKJafU4CFExcbfC9EdOerDTHJnYoVHIiozjibEosNV49h3ZUjSMkvusleWZ38ihYA5WtUeHnvT+IC/9tFCgme73IP4rJuYs3lgybb9Q1shbd6TsL9699HUl6G0TbHb17BpI0fI8zNH4HOnvB38sR94T3Q3jcMv0fthV7c59W4XHUB1l05jAeb97PJz0VEREREVJcIO+ldPHYF21fsw87f9iLjZvmYRCrsXGplaNGmT9EOPLlZefjo4a+gVkigdbdQMllSlNhgkDghBQpa+kKWmgenk6bLFzseioHOXg5VuI/hCbUWbvuvYtavz+HC0cvYtXK/yTF6jOmMRz+ciqd7vIa0G8ZjEmGB1ez73kfAmE7wbhaAAC9X3NOnNVoE+2H1ntNmf7ysvEJsPXYRd/dqZbYdEREREVF9jUmijlzG9uV7sOv3/chMya7SeK16Nxf/zErNxiczvzao3mDtlqUSC+3sY7JgHxMJnZ0M2b2DUdDS32iVO4VUitn39cMJTx9slUmEMnelJ6VSaBt6ocDTGUOCPDH5+bvxTO+iZAy9QgZ1t2bQuzuXND8SlYgjz/2CJvYy+Ofkwz/UD3fNHIQm7UOx/tt/zc4342Ym9v11RKzWR0T105EjRxAQYL6CTUUtWrQIU6dORXR0NEJCQvDAAw+YbT9z5kwcP34c3377rfhZ6CckRUyZMsWm8yIiIqoonU6HqMOX8O+y3dj750FkpeVU+ksUqre17lUUk6QmpmPx499VuXJCVQjJ1FPffAC7f9+PY1tOmWw3aFJf3DNnBJ7tKyRjGP/5D288Ib6ERAivBh5o0NgfIx8djNA2wVj3jfmYJPlaKg6tP45eYy1XlSIiqu2Y4EBEtd7O+DP46OhfuJJZuYzfW7X1DkEH3zDx/cboY8hS5eN2cVbY453eU8T5mKquUNrWAe8d+dNkckNZ0Zk3xJfgj4v7ML5pbzGBwpJL6aYXRBERERER1Vd7/zqMH1/9FdcuVm5nVGPJDU06hIrvty/fK+7KI7GTVWnM3F6N4BCVDGm+8R39JDo9XHZcguZkAlRNvKFTyiBLz4d3ci5e+n42wjuG4dNZRQ/OTXF0ccTXz/xkMrlB2Dk1Z0BTqEO9kK0uxMWzMeLx1btP44GB7XE5IdXiz3HluuU2RERERET1jZDQsHTeb7h+Jckm4wmVEoJbBInvt/y0C6oCwzhCqtJCdjMbWl8Xk2NI8lSQpVi3u6ownuuuq5BAgoIWvsJW5SXn3BztseihEQhv4I03T0QbJjeUoXdSQt6pMb565qeSShOaNqEGyQ1lXS7QIuZkDGSbI7Du6y0Y/9xoXD0TZ3GuMWeFNkxwIKqvhOSGoKCifx9tpX379uKrIubPn4/vv/9eXEgqWL9+PRMciIjottr6y278/MbvuBGTbJPxuo3qhIAwv5LqDRr17ata4Objinkrn0VgE3/8+/NuixUcvpjzo8nkhrKiT8eKL8HaLzdj0mv3IcaqmCSeCQ5EVC8wwYGIan1ywxPbv4bORmm6wa6++HTAjJLPVzJts0CpMqa0GIBnO42Bo0KJ2KybOHHzitn2m2OOQ6MvuolVUUKSQ1P3BhbbOSkcKjU+EREREVFdtefPg3jngU/F3VJtoWHzQLy64umSz7GR8SULfuziM6Fq6Ga6szAFU9OQSpHfwgdOJ8wnLcvT8yA/WnQD/f4Xx2DqG+OhdFDi6tk4XDoebbbv9l/3QqMyXaIiv2NDMbnBmN93RCC0gScscbJXWGxDRHcOHaTQCqVkqjgGERERmf89/L0p/7PZVxTaphFeWvZkyee489eMtnM4nYCcwUU7qhpjfy7RYgWHW5OuXXdcgePxBBQ28YLeToaHZo/E9Pv7QqmQI/LyDVyNN5/wvH7HGSg2nRTf6+3toPP3MNteG+oPWVJRgvYfH69DUDPLu7I7ujpa/TMR0e1XV2OSwMBAtG7dGqdPF1XDPHbs2O2eEhER1WObftiOT2Z+Y7PxwjuG4vkfZluMSWrC9HcexPjnR0Nhp8CZvedx/bL5zXfXf7sVhXmFlbrWr++uRkDjoqQOcxxduXaLqDapqzFJTWCCAxHVakJVg8okNwh7/zzUahBkEinOpcZBKVNgaHAHjAzrDHu5XUk7l9u0oH9mm6F4rvM9JZ9T8ot2GzKnsskNJdcosFyuWvh+iIiIiIioiLBL3vcvLa9UcoNEIhETCISEgCsRV2HvZI8+93VH/wd6ws6+NCZxdncqfX/oGtICXQGpxPiY2qJYxxStm73V85vy+nhMffP+ks/pJqoylGUuuUEvk6Kwhfkb81m5lm/6D+nczGIbIiIiIqL6QqvRYsnLyyvVVyKVYOKr9yIvKx9Xz8TCwcUB/cb3RN/x3cXFO8Wc3Iwv6LeLTYPjoavI6xIMyMo8aNfroYy8AfvTCZWalzyzAPLjCXhk4URMmDSw5HhahuVqECqdHnKpREyW0Hk4mYydSqbqaVjdoTBXZba9VCoRvx8iojtBWFhYSYLDzZs3b/d0iIionlIVqvHjqysq1Vcqk2Ly6+OQeTNL3OxJSCbu/0Av9LmvG+SK0mWtTm6lz0lqivAM57GPH8K9z4wsOWaqenVZlU1uKKa1UKlCJpeJ3w8RUX3ABAciqrXOpMQiOtN8ZqwpwvIjHwdXPNJmqNHzOr0Ou6+dQ0TyVdSk1l7BeL7zWHRvYLjrkb+Th1iaWW9yO9aqSyvIRhP3AFzOMF61QkgAae5p25KrRERERES12bn9F3DjauUeIAtJEd4NPDH2qRFGz2u1WhxadxwXj5dWclPGZsJt82VkDQqFXlnmlo5WB4lOCqmFcEHn4ShGFOaW+LTs2RQzFk1Gmz4tDI77NvJGVWiFayvNV19IzcxFsL8HYpPSjZ4f0a05QgMsV3kgojuHTi8VX1Udg4iIiIyL2HkWKQlplfp69Do9fBv54K4Zg0wmTxxYexTRp2LMVmmwi05BYbgvdM5KSPLVUF5Ohiy7oNJ/Ze36txJ3SW3V0zC52c/bxXLnApWY3CAq/tOcW5LVk6+lokFjP1y/kmS0+bDpAxEQanlHVSK6c9TlmMTBwcHgPhIREdHtcGxLBDKSLW/aaoxOqxN/v54yf7zR8xq1Bvv+OoyYc0WVrmtKp6FtMW3BBDTvGm7T5yTWuBmXAr8QHyTFJBs9P2rWEHgHGq+UTUR3prock1Q3JjgQUa2VUZBT5QSJW2l1OmyKOY5Pjv+N6zmVeyhQWR5KZ6wa/SKkkvL/QQp09kKPBs1w4HpUtc7ho77T8dnJddgdf7YkmUIhlWFsk+6Y1+2Bar02EREREVFtk5lSuZv2xcomLxTTaHXYsv8clnzyD1JikqGITYOszHnHyGTYX0pFQTNvaN2UkOapYR+VguwhTaEKcTd9Mb0eencXFHRsBIcTcUabeAa4Y/G+d42eC2raAK17N8fZfZWNSaxL1v7o8VH45I89OHiuNF5TyGUY06sVnn+gfyWvTURERERUN2WmWK7MbM7Fo5fLJTioVWpsW74Hy17/HanXjScflyXNV8OhktUabuUX7IOPdrxp9Fx4iC+aN/ZDlInkA4GizCIgaWq2EGAB8rIRlSFpUvkdWN/d8Ar+98QPOLn9TMkxO3sFRj46BLM+mlqBn4aIyHq5ubliFYYGDRpAqVRa1Sc1NbXkvZcXFzoSEdHtkVXVmOTYFQye3LdcVYh/f9qJZW+uQkZSJmpSUNMAvLd5vtFzLbqFI6R1Q8Scja/WyhHv//s6Pp7xFc7sOV9yXOlgh7tnD8Mj702qtmsTEd1pmOBARLVWQxefKvVXygx3Dz2bEos5O7+r8cSGYo+0GWI0uaHYy13HYfLGj5Glyq+W6/s6uKG5V0N8M3g2YrNu4njSFcilUvRs0ALeDq7Vck0iIiIiotqsQWP/KvVX2Bneljlz5Tpe/nI9bqbnAB4OgEcjFHRoBEVMKhz3XYZEqxPbSdU6OJ41rBzh+k8k0h9sB62P8VLNUjUg0QGFLfxhfyYBEiNljie8dI/Z+T6x+GE81/8N5GVXPCaRpeZBkqeC3tHOZJtAZ0eENfDGF0/fi5gbaTgdnQi5TIoeLYPh4eJY4WsS0e2nhUR8VXUMIiIiMk6oNlAVCnvD5ySn90Ti3QmfIu1G+YX/NWHiq/eaPT93+kA8/fafyC9UlzsnycyD4sL10s8aLWSxN6FtHGB8MJ0OsmjDKuFBzRogqGkgPtj6OmIj43H+8GXYKeXoPKw9XL2sqCBBRHecOz0mWbVqFaZPn468vDzx86ZNmzB8+HCr+p48ebLkfdu2battjkREROYEVDUmuaXy84ntZ7Bo0mJk3KzZxIZiE1+7z+z5OV/OxMvD3oaqoHxMYgshbRoisIk/Ptm1AFfPxOLCsWgx4brL8PZw8XCulmsSUf2OSe5k9bNuBRHVCSFuvujq37TS/QcHty95n5yXiRn/fn7bkhuGBnfA9FaDTZ5PyEnFpqvH0d4nrNr+c3UzPxObY06I74NdfXFveA/c3bgbkxuIiIiIiEwIaxuM5t0MSxRXRK97upW8v5GajTkfrylKbriFOsQLeT3DLN7g8Vx1GrI8rVitoYROD2mBHtLC/2ooKGRQN3Ar13/gxN4Y86TpB+iJ0UnY8+dBtOzVDJUh0ethfy7RbJvMdRE4uO6Y+D7E3xN392yFu7q1YHIDEREREZEJzbuGI6xdcKW/n95lYpLrV25g3qhFty25Ydi0ARhxSzWJsq5dSsShH3egY6EasoQ0MdYRqTWQX74Bh13nyiVyy6LiIY0rrepQQqOF/OQVSDNyDQ4nXLyO41tPie+DWzbE8OkDMHBiHyY3EFG1CQ0NLUluEGzZssWqfjt27EBycum/bwMHDqyW+REREVnStm9LNGzWoNJfVK97upa8j4tKwBtj3r9tyQ2jHxuKIVP6mTwvzO/QumNo0aPya9UsiT17Dad2nxPfh7YJLopJHuzN5AYiqpdYwYGIarXXe0wQqxpkFBrehLakmUcgBjYs3cli5YW9FR6jsoSFRx39wpFZmIMGzl4Y37QXBjZqa7J6w9Kz2/Dhsb+gK7tIqZp8FbERw0M6Vvt1iIiIiIjqime+eRTPD3gTObcsjLGkWZfG4o47xf7YEYGc/EKT7dUh3tCejIcsx3QbiVYPWb4eUg2gl+nFhAa9RChpDOgVEuiFmEI46OWENo18kZ2WK+6udNeMweg2sqNY+tiY3xatwdJ5vxX1rwL70wnQOdqhsNUtO6jq9HA4Hge76BT8+s6f6DG6c5WuQ0RERERUn8z97jG8OHhBhSutte7dHO36tyr5vOZ/G5GfU4CaILeTo3nXJshJz0VguD/umjkEXUd0MNl+2Ru/49d3VpfEJPZCrCOXQa+QQVKohqQ42eEWEj2gOH0VuiuJ0AV6AXIZJDn5kCakllTIK0sY/td3V6PTkHY2/GmJ6HbS6aXiq6pjVJdOnTohMDAQCQkJ4udly5Zh/vz58PT0NNlHo9Hg1VdfLflsb2+Phx56qNrmSEREZI7wXGHuksfxyvB3UJBr+vmFMR0Ht0HL7qXJAn99uh4FeRUbo7KEqgjhnRojNyMXDZs3wMhHh5iNA75/aTlWfbi22uel0+nEZzLt+pXGakRE9RUTHIioVmviHoBVo17Cd6c3Y8PVY8jXqODj4CpWRDiVfBVnU+PK9eno2xiLB8yETFp6M2pn3Okam7Nwy7ydTwhe6GK+1LJgV/wZvH90dYWvIYMEjT0C0MDJE7uunbW638X0BFzNTEKoW9VKyBERERER1ReN24Xg80ML8dt7a7Br5X6xLLF3oKe469DZfVG4EhFTro+wiGje788aJBTsjbhi/kJSCTRBHpBF3TDbTJ6SA02Am1CrFHpF0cOFEsJ7CZDTJgBt2jXH9GdGW/z5hKoNP762wmK7cvOwk6NR80B4BXri6KaTRZcH4HToKuzPJ6KwiS90DgoxYUN58SakeSqxzYWjV3AzLhm+jXwqfE0iuvPc6YuJiIiI6oJmXZrgfwffFWOSPX8cgrpQDZ+GXug1titO7jwj7gB6q05D2+HVFU8bHBN2Iq0pGpVGTGy+/4UxFttuW74Hy9/+s9xxiUYrvkxRKBVo1CIQ7n7uOL4lAtKLRYuHLTmz5zzSb2bCw7d85TsiIluTSqV4/PHHMW/ePPFzeno6pk2bhr/++gtyudzoosdZs2bh8OHDJceeeeYZeHt78y+HiIhum9a9mmPx/qKYZP9fh6FWaeAf4oPuozvjxNZTiIu6Xq6PsOnSK8vnGBwrrvBcE4RnOQMe7IUxs01Xti628fttlUpuUNgrENwiSKwId2Kb9evSTmw9jdzMXDi5OVX4mkR05+FzkspjggMR1XqNXH3wTu8peKvnJORrVVBp1Lhv3SIk5qYbbd+9QTP4OBremFbrNKhJ66OPGk1wUOu02BYbgQ3RR5GlyheTDSpDCz0upl9HUm4GpBJJhao/CEkiRERERERkvaCmDfDCj09g7vePQZWvEndOnd35ZaQlGo9JOg9tB3efW2ISMwtziullxisslGUXdUNMcNAJd3xMVGTQK+X4J+oqphs5p1apsXf1Yez6fT/ysvIRG1l+MZS1C5aiT8ci1ch3IMssgOPx8snoxfIruMsTEREREVF9F9yyIV7+eY4Yl6gKVMhOz8UTnV9CRnKW0fZdh3eAq6eLwTFhEVJN2rx0h9EEB1WhGrtXHRCTrfOzC3D1rOnYwRwh0UNIOPfwq3iiQmEN7RpLRCR4/vnnsXz5ckRFRYmf161bh969e+O9995D3759xSQIIbFhz549YiLE/v37S764du3a4c033+QXSUREt11Y22C8tuIZaDVaMSbJuJmFJ7q8JMYmxnQb2ancAv6ajkmExAVjCQ7C/Heu3I+9qw+JVSmunCq/kZU11AVqXD55FV4BHhXqJ1SuK8xXMcGBiOo9JjgQUZ0hVGRwltrjq3M7TCY3CH48sxUPtRwIN2XpL8rtfEJxKSOxhmYK3MzLQHJepkGiRVZhHmZu/Rynkiv3i7Exmao8eDu4IiXf+EOMWznKlQh25U6pRERERESVIZPJ4ODsIJYPNpXcIBDOj3lyuNi2WOuwAFy7mWl2fHlyjsU52MWmQX0hCdrW5quyxUOLrNwCuDrZlxzLSs3Gy8PexqUTV2ErmclZ8PR3R9qNDKvau3g4ISDU12bXJ6LbS6hiqRXrt1RtDCIiIrKOTF4Ukyx7/XeTyQ2C5e/8iVGPDYGdvV3JsRbdm2LfX6U7gle3hEs3kJ+TbxAXCZUTXhqyAFfPVC6pwZj0pEx4+Lsj3cqYxN3XTazKR0R1Q22ISZRKJTZt2oQ+ffrg2rWijSaECg0DBgyAk5MTvLy8kJKSgry8PIN+LVu2xNatW8X+REREd1pM8v2Ly00mNwh+eWsVRjwyEHJF6fLVFt3DcWRjUUXomhAXeU1MsLZTKkqOpVxPw4uDFyA+yroKcNYQNoISEq+F2MQaPkFecPNxtdn1iej2qg0xyZ2K9b2JqM5Ze8X8DfgCrRrb4wxLf01s0V+sdFBThHoKybckHbx58DebJjcUE5IbOvuFW9V2bJNucFKULnAiIiIiIqKK27Z8j9nzQoWHwxtOGBy7f3B7UwUXRLLUHMhvZlt1fWXUDZPVG8reCEvNNnww/vGMr22a3FBMWFjVqmdTq9oOnTbAYJEVERERERFV3LZf95o9n52Wg2NbThkcG/vkiBr9qnVaHTJTDGOcDx763KbJDcWyU7PRrGsTq9reNWOQwSIrIqKaEBISguPHj2PkyJEGx3NzcxEXF2eQ3CCRSPDwww9j79698PHhxnVERHRn2r7CfEwiLPaP2HnutsYkGrUWuRmGSRgLJ35m0+SGYrmZeQjvFGZV25GPDhE31CIiqu94d4aI6pQPj/6F2KybFtvlqPLFP08kXcFvUXsQmRoHP0cP3MhNE5MPynKQ2aGdbygOJV6w2TyFZAofh9Js26TcDPwbY7jAyZaebH8XFDI51l85iq1xEUYrOrTzCcHczvdU2xyIiIiIiOo6oWzwV88sRXJ8qlU3swWn90Ri3ddbEH06Fo0aeSDW36VcW0dI0ElqhzNWzkOapwJ0eiHwMNlGLpPCy8Wx5HNidBIOrTuG6lq49OiHU8Xy0jtW7MWBtceQYaRaRZs+LTDt7QnVMgciuj10eqn4quoYREREZOV/N3U6/G/2ErGSmrUxydHzcVi96zQuJ6RA+Xh/ZO65AOXFm5CotSVtHV0cxMU4p3YZLkCqCoVSATfv0vgnLiqhXNKFLRcuPfP1o8hKy8HOlftxcO2RcskVgvYDW2PSvPuqZQ5EdHvUppjE19cX69evx5EjR7B8+XLs2bMH8fHxyM7OFqs4BAUFYciQIZgwYQLatm1bI3MiIiKqKK1Gi08f/RZ5WUXrsqyJSY79ewrrv/0XcecT4B3kiZRraeXaOrk5IqxdMM7sOW+zvxR7JyWc3J1KPl8+edWm45elKlDjpZ+fEp8f7fp9Pw6sPSomnt+qy4gOuP/Fu6tlDkR0e9SmmOROwwQHIqozlp3bjh/ObrWqbWP3AHxzahM+O/FPuXMOcjsEOXvDVemAwY3a497wHpBJpOjz+8vI16iMjmcvs0OQixcuZyRadf2+Qa3h4+hW8vlkcjQ0+uorJuRh74JmnoHo5NcEr3Qbj3XRR7D64gEk5qbB19EN9zTpgbFNusNezp1SiYiIiIgq6/f3/8bfn2+yqm1wyyD8NH8lfn13denB8wlw8XCEtFMIvDuHwtXFAQM6hWN071bQ5aswIehRqAs1RsdzcLGHV6AnrkVdh7RQA0VsGtShXiavP6BdY7g6lVZvO7s/CjohKaKauHq7Iig8AO36tcIT/1Nj28+7seWnnUi+liqWWx42fSAGT+lrUAqaiIiIiIgq5pe3/sCG76x7TtKoZRAWr9qNX7YcNzzRNQSyrqFofP4m3JV26DuuB4ZM7YeC3AJMDH4c2jKJD2U5uTvC3ccVCZduWHX9fvf3gIOzQ8nns3urZyFRMVdvFzTpEIqOg9qg8H/T8e+y3fh32S6kXk+DbyNvDH94EAZN6g2FHWMSIrq9unbtKr6IiIhqox9f+02892/tc5IvnvoBa7/cXO6co6sD/EJ84Orpgn739xSfHwgJAVPCZkOnNf4sw8XLBS7ujrh+Jcmq6w+a2MfgmcSZaoxJpFIJXL1cENwiCJ2HtkP+/wqwZelObP15N9KTMuAf6osRjwzCwAd7QyZn9QYiIgETHIioTtDotPjx7Dar2jZy8YFcKjWa3CAQkhiECgs/DX8W/1w5jIe3/A8X0xOg1hm/aS94tdt4nEmJFatHmGsncLNzxPOd70GuukAcf0fcaSTlZaC6NPcIFJMbitnJ5LgvvKf4IiIiIiIi21Cr1Fj92Qar2oa0aoj83ELD5Ib/yNLzgG2R8MlW4+M9C7Dh0Hk8+v7vuBpzE9qhLcSdVJWXb0JS9ga+BHjqixk4tfMcbkTfhEalgdORWGQ1cINOWf7Wj7uzA54Y0wu5WXnYumw3Dm88LiYaWEsvlaCwmS8KWvhB52oPSYEaykspsD+XCGlB+QSMFt3CxeSGYsIDg7tmDhZfRFS3afVS8VXVMYiIiMiygrxCqxOuhWoMiVJ9+eSG/+RAD9nYDlg0Zyy2/LQLz/SZj7jz10wmN0gkEjz99aM4vOE4bsQkl7YTisoZWXvk6e+Oh956ADkZueKinqNbIqyqhFdZ7Qe0gm9D75LPSgclRj82VHwRUd3GmISIiKjmCM8chIrV1mjduzmunokzmtwgECpAeDfwxOt/Pi/GDHO6v4L4C4kmkxskUgnmfjsLu/88iKTYFLGShLmYRNh4adL8cchKy8aWH3fi2NZTSI5LQXXpNKw9PHxLN8J1cLLH2CdHiC8iqtsYk1QeExyIqE6ISrtmVZKAk8IeH/abbjEZ4kJ6Ah5c/wHOpsZZdf0Pjq5GjrrA6DkpJNAJDwMkUgxs2BbPdLpbvNk/as0CJOamo7oNCm5f7dcgIiIiIqrvLhy9goybmRbbObs74sVlT+LnN1eZbXf+2BVMf3sFohL/W+RjJwN8XZDn6wJVuA9cNkdCovmvCpwe+HLOjyXlnAWyzAK4/n0aeV2CoQnzgtBSSPTu374xnhzTC7qUHDw89CWkJVYsJhGSG7KHN4e6oUfpMaUc+Z0borCpD1z/OQtZrmHlu77ju1foGkREREREVHGRBy6ICQOWuHo544WlT+DDzUfMtjtx4RoeH/E24nZHWRxTr9dj8WPfGcQkRSdgsKhIrpCh933d8fC7DyInPRdPdX/Vqjiqqvo90Kvar0FEREREVN+d2XMe+TnG106V5eHnhrnfP4aPZ3xttt3RzRF4stvLiD13zeKYep0eHz78FfKyjMckEokQtwAKpQJ9x3XHwwsnitXcXhu5CFmp2ahuQ6b0q/ZrEBHVNUxwIKI6Qav/b2GPBd8PeRLtfEJxNiXWYltrkxsEppIbBHrosWToU2jl1Qge9s7ijf6RNZTcINgQfRSOcjuMbdIdXg6uNXJNIiIiIqL6pmQ3IAs+3PEmmrQPxcVjV8y2y+/YsDS54RYaP1fkdW4Ep0MxJcfKLST6L8nBZdsFSBzt8N6+BWgcHgg3J3totVpM6zmvwskNgoI2AQbJDWUJ1Rxy+4TBdbPhAqhNPwrlqCUY+lB/sQQzERERERHdvpjks/3vomHTBoj8Zp3FtpcSUqG08vrGYpJicoUcH25/Q6xm5+zuJFbAm9v39RpJbhD889UWqPJVGDK1H1w8nGvkmkRERERE9Y1VMYkE+OLIe2KFtYvHoi02tya5oVi55IYy7OztxOczjZo3gJObEwrzC/FEl5drJLlB8MfH/yAzJQtDpvQVr09ERJaxvjcR1QlNPQLhaudgtk2wqy86+IaJ75UyRQ3NrCgZ+JW9P2N73CkxuWFfQiSiM2/U2PVjsm7iw2Nr0H/Va1gZtcfqfhqdFrlmEjeIiIiIiKhUkw6hsHcyv/QnpHVDMblBYGdvOibRyyQobOprdixVuC/0cutu6+jzVPjo7g9x+M9DYkxy8J9juHH1ZqX++gpa+ps9LyQ/aJ3tDI7FRV7Dt8//jAcbzsLmpUKyg/UPQ/Jz8is1TyK6M+jFqpZVewljEBERkWXNujQxG2cImnZuLCY3CJQKmcUxJVrrNpeyRKPS4L0p/8ORjSfEz3tXH0ZKQhpqytXTsfj62Z/wYNAs7Fixt2IxSS6fkxDVZoxJiIiIak6L7uFi1TZzWvdqLiY3CCzFL7ZUmK/Ce1MW49iWU+Lnnb/tr7GEa8Gl49FiJe4JQbOwd/Uhq/tp1BrGJES1HGOSymOCAxHVCQ5ihYIeZttMaTEAEqHmGIBBjdqhJiXnZ2Le/uV4cc9POHLjIm4HtU6Dtw6uxN5r58y2u5yRiBd2L0XH5c+g0/JnMXDVa/jm1CYUatQ1NlciIiIiotrGydURgyb2MdvmnjkjS973HNPVZDudkxJ6Czf29XZyaF3srZ5f8rVUfDj9S3wy8xuc3Xve6n4G15RLxSoNZkkl0Ho4Gj2lKlDj05lfI2LnWbNDRJ+OxbsTP8No58m423UqpoTNxu8frBV3eSUiIiIiIuOEaml9x5t/TnLv06UxSb8OTcx/lRot5AkZNvu6k2KSsWjy//D5k0twZk8kbgdhUdP7D32BcwcumG136UQ0Ftz/MUY6TsLdLlPwUPiT+POTdVZXySAiIiIiqo88/T3Qa6zpZx+3xiQ9x3ZBTbp+OQnvTPhU3JDpzL7KPSepqoLcQiyc+BkuHjdf5TvqyCW8ee8HJTHJ9OZzsOZ/G8UK3URE9YX8dk+AiMgWTiRdwT+XD5s8P75pL0xq0a/ks/B+1cV9yCzMrdG/gHXRR9DUo2h3pNtBDz2WnPkXLb0a4reoPdgccwJ56kI09QzExOZ94a50xvQtiw0qN1zPTcNnJ/7BgetRWDL0SdjVYPULIiIiIqLaQli0v/vPgybP3z17GO6aMajk89g5I7Dlp53IzSxfMlmisW6XVEklFtds/nEHQts0QqUIu7cKL5n5/TIkKtPz0un0Yinmhs0Dse6rLdj71yEU5qnQuH0IxjwxXNyx6ZXh76Igr7Ckz42YZCx5eTlO7jiDd9a9DLmCt7OIagutXiq+qjoGERERWXZ0SwQOrD1q8vy4uaMxaFJpUvbEoR2x+dB55BUaTyRWnk+C1Mzv9pX1z1dbKh+T2IBOqxOTFfyCvbH2yy3Yv+awmIzdtHMYxjwxAlqtDvNHLxKPFbt+JUlcBHVq9zm8+dcLkMksV78gojsDYxIiIqKac3DdMRzedNLk+Ymv3os+93Uv+Tz+ubuxZ9VBMRG5JgnxwO2MSTRqLf76bAMefvdBrP1iMw78cxTqQg2ad2uCsU+OQF52Ad685wOoVZqSPtcuJuKrZ5aKiRnzVj4LqZT3TIlqC8YklSfR6/X6KvQnIrrtbuZlYuSat5Ctyjd6vplHA6wdO7/c8bMpsXh21xLEZ6eUHJNKJBjTuLt47FjSJdRV3vauSCnIKnfcQ+mM9MIck/1e7ToeU1sNrObZERERERHVLkmxyZjZZi7yc0oThctq1qUxvjj8XrnjkYcuYuGDn4n9i0llUox4eCBONnLB2Zgkk9eUpeTAbe1p1LTsQeFQNfExeV6aXQD3FSdQVDvPOIlUAjdvV6Pln108nZGdZjomefrrRzFq1pAKz5uIas61a9fQsGFD8f2cf4fB1d+hSuNl3cjH/4ZuEd/Hx8cjKCjIJvMkIiKqS65dSsRj7Z83uTCodZ8W+HT3gnLHT168hnnfbURSeunv4DKZFPf1a4srH29CdEQM6iKFUg57J3ujsYeTuyNyM8onohd78acnMWRq6YZaRHTnYUxCRERU82LOxWN255egNpFA3XFIW7y/pfzarRPbz+D9qZ8jLTG95JhcIcOYJ0fgyKYTiI+6jrrI0dVBTFLIySi/Ma+jiwPyso2vgRMICQ797u9ZzTMkoqpgTGIb3PKOiGq93y/sNZncILiQfh0nb0ajg2+YwfHW3sHYct9b2HstEpGpcXBQKDG4UXsEuXjh0PUoPPLv59Dqrds5tbYxltwgMJfcIBCqXjDBgYiIiIio/A6kppIbBBeOXsHliKto0j7U4HjL7k2x7PLnOLLxJKJPxcLB2R697+0K30Y+2HfmKp79fC10xval0OvhEHGtUn8NeqkEqmBP6FyUkOarYReTCona+rjH4WSC2B8K4zuWOhyLN5vcIM5Bpzea3CAwl9wg2Pj9ViY4ENUiOkig00uqPAYRERGZt/aLTWZ3PT279zziohLQqHmgwfEOTYOw9v0Z2HcqGpcTUuDsYIeBncLh6+GCfY5OWDDuY9TFvfKE3VHVJp6HmEtuEGz4fisTHIhqEcYkRERENWPN4g0mkxsEEdvPIPFqEgJC/QyOdxzUBr/GfIWD/xxD3PkEMeG477ju8PT3QNPOjbFo0mLURfnZBSZjLXPJDYIN329jggNRLcKYpPKY4EBEtd6+hHMW2+xNOIcAJw/sv34eOr0Onf3CEermB6lEin4NW4uvslr7hOC9Pg/hvSN/IrUg26p5SCCBh70T0grML8ipqnY+ITibEndbki9is0p3liUiIiIioiLHtkRY/CqObY6Ai4czTm4/I960btuvJQKbBEAmk6HH6M7iq6yOIf54fepgfLZ6HzJySm9mSwrUcDwcA7vYNKOVEYQKCFkpxmOYwhBP5PZuDL2DorSPKhQOx+LgcO6GVX+d8rQ89MjQ4pi9BmoXZek4+Wo4Ho2D/cXqjRkSLls3TyIiIiKi+sTamERhJ0fEzrPi5/YDW4uLi+QyKfp3bCK+yuo4uC3mfD0TP766wmIictmKdE5ujla3r6xWvZoh8uBFMXm6pl1nTEJEREREVM5RCzGJTqfHsS2n0GFQG5zZEwmJRIKOg9uIGz7JFXL0ua97uT7dRnbEE/97BMteX2m00oExMrkUDs4OVrevrNa9m+Pc/guVTgivSiI5YxIiqi+Y4EBEtZ7RHU1vsS0mAt+e2lySFCAkI/QNaiUmMXjYO5e0W33xAH6O3IEL6Qni567+TXG/X2+42jnCUa5ES6+GYrLEkjNbkacpLOnnYueAFzvfi+GhndBn5cso0JreKakqegQ0w+eDHkOuugAfHVuDfdciodZpxHlNbNEfnf2aiEkZ66OPVsv1hQQOIiIiIiIypNNZTj7e8ds+LJ33m3gTXyDcvO9xd2c8/+NsMfGh+Ib2hu+24e/PNyI28prYptOQtgif0B0ODTzgJJOipZc7Dqw+jL8+XY+CvDIxiaczZn82HZ2HtcODDR+DRqUxuL7a3xU5g5oCUqnBcb2dHHk9wyBVaaG8ZDk5ocuIDnj952eQmZKFrz/7B8eOXYYuKx+t/Lww9t2paNE9HJ8/9QP2rT5cLf83cfN2rZZxiah6aCGBFtIqj0FERETmFccZ5mxaugPfPr+spK1UKkGve7vhuSWPw8nV8b9xdFj39b9Y++VmxEcliG06DG6LFt2bwsnVAY6ujmjSMRR7Vh3Emv9tgKqgdIdWVy8XzPnyEbTq3QKTgh+HTls9mzQJcdS8lc8iNTEd37+0HKd2noVWo0PzbuEY++QIhHcKw6ePfoPDG05Uy/UZkxDVLoxJiIiIaoY1ycf/fL0Znz+xpGRxv5Ag3Xd8D8z9bpaYlCDQarVY+/lmrP1qs7iQX4hJOg9vj2ZdmsDRxUFMqBZiku3L94rVtctWjXD3dcUz385C43YhmNr4CaEYdrUQ5vzyL08hKTZZjEnO7Dkvxj+tejbD2Dl3IbRNI3w47Uuc2Ha6Wq7v6u1SLeMSUfVgTFJ5En1drCtKRPXK+0dWY+m5bZXq29KzIX4f/RIUUhkWHFyJFVG7y7URkiHe7jUJ45r2KjmWo8rHmkuHsC76iJgMUahVQyoRkiZaI8DRA79d2ANbuLtxN3FcIbliRGgndPEPt9inQKPC7O1f48D1qHLn+gS2xN6EyErPZ2aboXiu8z2V7k9EREREVBd9/uQS8UZ6ZQgJAZ/tewdSqRQfz/gam3/cUa6NcAP/xWVPYdCkPiXHhN2HNi/dgV2/7Uf0mVioCzXiw4DuozqJN7c3/2A4TtaIllAHuZuch1gZ4sBVKGNSIdGW3ioaMrWfEBTBycUR/R7oida9mlv8mfJz8vHaqEXiTf1bdR3RAUc2nURlTXl9PKa+eX+l+xNR9bt27RoaNmwovn/83xFw9StaMFlZWUl5+HroJvF9fHw8goKCbDJPIiKiusRULGGNNn1b4OOdb4nv35/6Obb/urdcG5lchld+fRr9xvcoOZaVlo1NS7Zj96oDiDkbD7VKI7brOaYz7J3ssfXn8s9bKmPY9AFi4oWzmxMGPNgbLbpZfk6Sm5mLV+9aKFZ5MJa0fbQKMckjiyZhwktjK92fiKofYxIiIqKat2jyYuxYsa9SfTsNbYf3Ns8Tf+9/Z8Kn2PvnoXJt5AoZ5v/xHHre3aXkmLAR04bvt2HvnwfFmESj1ortet3TFVKZDDt/q9x8bjXikYHQaLRwcXfGwEl90KxzY4t9hHjpleHv4uKxKwbHhY2tugxvX6XnJI9/Og33Pj2y0v2JqPoxJrENVnAgolpvYou++DVqF1Rawx1KrRGZFo9tsRHwc3Q3mtwg0EOPdw79jiHB7eGmLKpgIFSCWHlhD65k3jCoJLEr/gwc5HZ4sHlf/HXpoJj4UBXNPYPwcOvBVrVNyc/ChbQEKGVyfD14Ng5ej8I/Vw4jrSAHjVx8ML5Zb2QW5lY6wcHf0QNTWw6sVF8iIiIiorrs7ieGY+P328Sb5xV1/tAlcWdRpYOdyQVJwg6r/5v9vbhTqbBDkUCj1og7q5YtRSzsEHRg7VE4ONtj1GNDsWXpTnH3Ip1CBnWgm9l56OwVyBnYFDnQQ5pTCOXlZNhHJom7Io15YrhVP4uwg2rM2TgoHZV4b8s8HNt8CttX7EV2Wg6CwgNw16ODkRSTXOkb9/6hvhjzpHVzISIiIiKqT8Y+NUJMKNBqKh6TCInJws6iQtK0seQGgTDu4se/Q/dRHaF0UIrHhPbrv/kXN2KSDdrtXX1Y3FV11Kwh2Lx0Z7nqchUlJFkPf9i6ZxMpCamIOXdNjIk+3PGmGGvt/G0vcjLy0LBZA3FOV8/GVTrBITA8QByDiIiIiIgM3TPnLuxaud+q6nK3Ov7vKZzZex5pNzKMJjcIhOcvn836VkwOUNgpxGOF+Sqs//pfJF9LNWi3e9VBser1iBmD8O+yXdBW4tlNWe0HtMbAiaUbUJlzMz4FcecT4OjqgE/3LsDBtcew8/f9yMvKR3DLIPHZTeT+qEo/Jwlp1dDq+IiIqLZjggMR1XoNXXzwab8ZmLv7h3IJBc4Ke+SoC8z233T1OBwVRTfkTSnQqvHPlSOY0nKA+PmHs1sNkhvKyteocCr5KtbdMx9j/34XeZpCVJZQKcKY/QnnsTJqDy6mJ8BeroAEUlzOTIRGV/RLuY+DG2a2HYpP+s8o6SOcG/LnfLPXE76vpzvejZ8jdyA+O0U8JlSQ6N2gJV7v8SB8HM0viiIiIiIiqo+CWwTh5V/miLudCruWliUs7MnNzDPbX9jxVEhYMCcvO198OHDXzKIE6N8WrjFIbigrP6cA0adj8c3JDzG780vI1+uEbYFMjq0XThW/IIHOzR75nRqioHUAsp2LHhTcSrj5vv7bfxEbWbR4SCg/HXMuXkyyEHgHemLia/dh/u9zS/qoCtV4dcS7Zn9OFw9nTH59HP76bINY3rm4gkXXkR0x58uZcPN2NdufiO4ser0EOvEfmaqNQUREROY1bheC53+cjY8f+apc4rWTuyNyMyzFJAeRkZxpto2QuCwkLwye3Ff8vHzBHwbJDWUJMVDC5Rv44sh7mNPjVajyVZX+KyzMN/6M5eC6Y9jw3VbEX7guxiRCLCLEJEJsIvBt5C1WgHv9j+dL+hTkFeK5AW+avZ67rxseeGmMGJMkxxctlBKq5QkJ53O+nAFn96KNsIiodmBMQkREVDOadw3HM9/OwmePfVfynKCYk7sTcjNyLT4nib943Wyb9KRMHPznGPqOK6ost+yN3w2SG26NX9IS0/HZ3rcxt+/r5Z7dVISqsHxfvV4vbjglxCRC7CNsTiU854kVYpL/cjz8Q3ww9a0H8ObqF0r65Wbl4ZvnfzZ7Pa9AT9z79F1iTJJ6PV08JlTLEypTPPXFIyUbYRFR7cCYpPKY4EBEdcKg4HbYOu5t/HFxH07dvAo7mRz9GrbBxuhjOJgYZbZvrroAqQVZFq8Rl1V6o16ozmBOZGo8clUFWDbiWUzd9ImY9FAZyyJ3YEaboQYJGIuO/Ill57ab7Zecn4mFh/8Q5/B4+7vEYzvjzyAxt+gXX1Nc7RyxJeYkmnoE4r7wnmju2RBN3AMQ5OJVqfkTEREREdUX/e7viZY9m4mVHC4cuwI7e4W4AGbzj9txdu8Fs32FhARTN+HLun6lKKFBq9Vi68+7zLaNPFB0zff/nY8XhrwlVmXQOZdP7Bbvs5ckN9xyTinHktMXMF7dD0pF6S0kYefW9d9uNXv9lIQ0sepEQU4Bxj9/t3hs3+pD4gMIcxzdHLFvzWE06RiKUY8NQWjbYIS2bgTfht5m+xERERER1XdC4kHbvi2w4bttuHQiWqys1mtMF/z95WZcOHLZbN/8nHwkXkmyeI3iJGu1Sm2y2kOxiB1n4eTqgIUbX8Urw98RKz5Uxop3/8KoWUPFBT3FC4k+fuRrbPlpp9l+N+NS8PGMr8VdXYur0glJ48JCJ3McXezFhUrNujYRq/WFtWmEsLbB8A7kcxIiIiIiInNGPDII7Qe2xsbvtuHKqRjYO9uj9z1dserDtbgSYT7BIT+3wLqY5L82Qvvdvx8w21ao3Pbsd4/h7XUvY96oRZWqwi345a1VGPpQP0ilUvGzTqcTN7zasWKf2X5CQvgHD30hVrUTvhvBtl/2iNUczLF3tMOh9cfRqmczNOsajtDWDRHWLgReAR6Vmj8RUW3FBAciqjN8Hd3wRPuR4nu1TovHt31lMblB0Mwz0CB5wRRPe2fxT5VWg5R8ywkRiblp6BvUGrri1NxKEJIvnt/9I74a/Lj4eVtshMXkhrK+Ob0ZD7boB3elEyJT4yy2v56bJr4E2+NOoaNvY3w39MlKz5+I6HbasmULfvzxRxw6dAhJSUlwdHREw4YNMWLECDzyyCMIDw/nXxAREdmUT5AXHnrrAfG9qkCFV0cutJjcIBAW8AvtLSmuXiAkDWSnm38YULygp02f5tCptVCev4H8LsHlG5lIbiiWmV+Id95eibcXTBY/7/htn8XkhrJ+WfAHRs4aIu4odOnEVYvtk2Juii/B/jVH0H5AK7y97hWrr0dEdxYdpOKrqmMQERGRdXwb+WD6Ow+WVCt4acgCi8kNgtA2wUi7kWGxnZtPUUySk54rJmqbIyQiCBUQmrQPERf0VJYwr09nfYvnf5gtft7y0y6LyQ1l/TR/JYZNHwB7R6WY+GHNgqniRVP7Vh9G52Ht8NaaFys9fyK6vRiTEBER1ayAUD88smhSSWXqFwa9iSsRsVY9J4mLvIbEaPNJDm7eLuKfmclZYjKzOTqdHinXUsXkgMomNxQ/a/lyzo946osZ4uf132y1mNxQ1o+v/YbBU/pCYafAZStikoRLN8SXYM+fh9B9dCe8/sdzlZ4/Ed1ejEkqj0+HiKhO+vjYGuxLiLTYTiqR4IFmfXB3424W241u3FV8L1SHcFNaLkHs4+iOQq1afFXFjvjT+DfmpPj+1/Pmd2m9lXDtzVdPiO/t5XYVvvaJm1fw9sGVFe5HRHQ75ebm4t5778Xw4cOxatUqxMXFobCwEOnp6Th9+jTef/99tG7dGh999BH/ooiIqNp8PXcZTu08Z7GdsAvpXTMHYfDkfhbbDZjYW3wv7HpkTQlirwYe4qIjrUYHh1PXoYgrSmY2YCa5odi2nadxZFNRTLL2y82oCOH6QqKCQOlY8ZgkYuc5fDN3WYX7ERERERHVd4sf/x6RBy9abKewk2PEIwPFChBm2ykV6Hd/D/G9k5sjlA6Wf7/3DHBHblY+qrAPlGjL0p04ueOM+P6fLzdVqG9ORi4Orz8uvheSHCrq2JZTWPLyrxXuR0RERERU330y42tcPGZ5Qb8QWwyd1h+DLMQkwu/zfe7rLr539XIRYxlzJBIJPPzdkZthecMoS/75agvO/Vc5e20FY5KMm5liXCEQKu1V1KF1x/HzG6sq3I+IqLZjggMR1TkqrRq/Re2x2E4CCV7rdj+CXX0xqFE7dPVvarLtpOb9EeTiXfL5niZFvzCbEuDkgRaeQTiTHAOZpOr/1C6LLKracM6KKgy3yigsKrc8JLh9pa69PvooUq2oWEFEdCfQaDQYNWoU1qxZU3KsTZs2mDJlipj04O7uLh5TqVR44YUX8N57793G2RIRUV0l7JS6+QfLldckEuDpr2eKu6z2Hd8dLXuYjknGzR0F7wae4nuZTIZBk/oYnNfLJChs4oPcnmHiy3tgCzRqGYRLx6MhlUkh0evh8m8UnHdchPxGlrCdKiAsMrJioZFEq8Pqz9aL74XxKiojuSieKH7wUFHC7qzZ6UVxDRHVLlq9xCYvIiIiqpjczFzsWLHXYjuJVIK5Sx6Hh5+7GGM07dzYZNsJL42Fu4+b+N7O3g79H+hlduxGLQIREOaHyyevitcxRy+RWAxN/lq8QawKcflkDCoqMyVb/LPXveY3uzJl4/fbxN1niaj2YUxCRER0e2SlZmPP6kMW28kVMrzw05Nw9XQRK6+FtTVSifo/k+aPg7N70Ya0wiZQve8z//t9WLtgsfL2lVMx4vOYqhJiksL8QsSdT6hwX6HihKB3JWOStV9ttqoSOBHdeRiTVB4THIiozhBubB+5cRFLz26zqmrC2CbdMKlFf/G9TCrFN4Nni9Uc7GWKkjae9s54puPdeLXbeIO+M9oMRaCzl8mxE3PT0XvlS5i2ZTG0eh2q6njSFah1WihlFd/xtOF/iRlhbv64K7RzhfsL8xeuT0RUGyxcuBC7dhVVu3FycsLff/8tVm34+eefsXr1aiQkJODRRx8taf/qq6/i8OHDt3HGRERUl+h0OnFX0ZXv/21VueMxT43AiEcGie+F0sSLNs/D8OkDYGdfGpN4+Llh5vuTMeO9yQZ9J752L7wDixIeNF5OyBzXEXl9mkDVzE98XQp2x/DHv8BL4z+CTlsUk0j0gPJKCtzWnYXyQrL4WXhZYheTVlKNwppdWm8V2MRf/LNxuxD0HNPF5IImrYcjtO6OuHUts0alQdSRyxW+LhERERFRfaPVanFi+xmsWPRXSRxgzoOv3FNSuUFIWnj/3/kYMrWfWK2hmGeABx7/dBqmvnm/Qd/Jr48T4xVThEU/9wfMxBtjP4BepzcaAxS0DEDmve2RMa07MqZ0Q26fxtC6Ga9WJ8Qkwg6sZeMlawU09hP/bNm9KToPa1fh/oX5KlyOuFrhfkRERERE9Y1Wo8Wxf0/hl7f/MBoH3Gr6Ow+i3/iiSnEOTvb4cPsbGPBgLzHxoZjwLOSpL2aISddlPfTWA3DzdjE59pWIGIz3n4F3Hvi0ylXlBKd2noVcIRcrbldUg/+ek7Qf0Bpt+7WscP/87ALEnIuvcD8iotrMfJ0eIqJaYmf8GSw8vArx2SlW99keewqaXlrIpUW/eDoqlHir50TM7TQG51PjIZPK0M4nBHZlEh6KeTu4YsVdz2PRkT+wOeaE0fEzCqte4qxstQnJf1UYVkTttrqfh9LZoHLDot5ToZDKsC76CHQV+O39dEoMhoZ0qPC8iYhqUnJyMt5///2Szz/88APGjBlj0MbR0RHffvst8vLysHz5cjE5Tkhy2L7d8i7bRERE5uxbcxjfzF2GpNhkq7+o3asO4vFPpkEqlZbsOPTcD7Mx84MpuBwRAzulHM26NhGTH27lHeiFz/a9gy9f/AWb5GrojSzySddoIB3SAq5/nxLjibIcD18VEwo0Ps5F21+Y2L1IkZAJxY1sSP8r9dz7nq7YvHSn1T+jVwMPdBvZseTzK78+jY8f+Ur82YX/DgvJDKpWgVA184f+v+QJSZ4KdlGJsIu8XjKti8cuo8uwylWlIyIiIiKqD3b9vh/fvfgLkuNTre6z7Zc9mLZggpg4IBB2Q33xpyfx6IdTEH06TkwmaNEt3OgCHv8Q36KY5OkfcWTjSbO7lN5KiANyBjWDpqFH6UG5FKomvlA18oTLlvOQpxhWcSueY697umLHin1W/4z+IT7oNKRtyef5q57Dh9O/xP41R8SYxFqXjl9F2z4VX4hERERERFRfbP1lN3545VekXk+3uo/wvOH+F0qf6bt6ueDVX59B+icZuHo2Xtx0qXm3JmJl61sFNgnAp3vfFmOS4/+erlBMUhkSqVSMjbqP7iTGE9Zq2DwQbfuWxhIL/n4R7039HIfWHa/Q9aNPxaJpJ9NV94iI6hpWcCCiWu/g9Sg8tf2bCiU3CLLU+Thw/Xy5425KJ3Rv0Bxd/MONJjcU83NyR/eA5qgJ3QOaiokYD7UaCCeFvVV9hESGt3tNMvgZlHIF3u87DVvHvY153R5AO+8Qq8YqW9WCiOhO9dNPP4mJC4IOHTrggQceMNl28eLFYrKDYMeOHbhw4UKNzZOIiOqewxuO4+3xH1couUGQfiMDZ/aUj0mEG/gdB7VB694tjCY3FPML9kGLGf2NJjcU03k4Qh3kXu64VKWF64YzcNp7GYrEbEBTfndXRXw6XLZEie87DS3a5XTcc6Nh76i06udT2Mkx9/vHDRZDCX1f++1ZLLv0OZ5Y/DAaPTkUhe0blSQ3CPSOdijsGIyCrqGlYykrXjmCiG4/nV5ikxcRERGZt/evw1g4cXGFkhsEN+NScP7wpXLH3X3cimKSXs3N7k7aoLE/2vRuUeG/HlW4r2FyQ1l2crGSw606/Vd5QVj8ZG0VB6Hd3CWPlySVFyeWv/Hn8/gxajFmfzYdYe2CrRpLruBjdaLaiDEJERFRzdixYi8+eOiLCiU3COKjEnDlVEy54x5+7mJM0qpnM6PJDcUaNgtEy+7NUBOKq8EJlSSE5x/WEJ6JzP1ulsExJzcnvL32ZfwQ+Rke++QhBLcKsmosiZT3SYlqI8Yklcc7MURU63124h9o9JZLLRuTkp9dpWvvT4hETXi49RDxz2BXXywZ+hQaOHsanJdKJHC1cyx5P6BhGywb/iwGl6neUFagsxc6+zfBqZTyQYIxAbdcj4jIGtkFalxKykZEfIb4p/C5Ov39998l780lNwg8PT0xYsSIks+rVq2q1rkREVHd9uO836CzotSyMelJGVW69sFzln+n1wSWT3AQSLR62F+8Cbd/zsB7ySG4/nMWjkfj4Hg4Fu5/RMBtw3kxEULYKHXc3NFin+CWDfHOhlfgE+RlMJZUJhV3ey1+32tsF3yyZwG6jjBeCS4gzA9N7mqPc+mmYzJ1U39o3RzE97dej4iIiIiISi2d91uFqhGUlZGUWaWv8ti/pyrcp7CZn9nzOndHqP1cDBbyjHt2lPi+cbsQLFj7EjwDDBMkZHIpnNyLnpMISRl9xnUXK0x0GNjG6DWCwgMQ1jZY3AXVGkIVPSIiIiIiMvL7u06HpfNXVvqrSa9yTBKB6iY897j36ZHi++Zdw/HG6ufh4edm0EamkMHJrSgmkStk6P9ATyw+8K64mZUxjZoHiq/Yc9esmsOtMRARUV1nXSoZEdEd6lp2Ck4lX610/yCXqt2Q1qFyDwwqYnhIR/QJalXyuYNvGLaNexu7r53DpfTrcFIoMSS4A3wd3ZCrLoBCKoedzPI/72suHbTq+g4yOwwLNr4oiYjoVsKD1IPRqfjlYCz+jUyCtsxiT5lUgmGt/DC5ezB6hHmVlJW3hYKCAhw5UloGctCgQRb79O3bF6tXrxbfb926FfPnz7fZfIiIqP6IPX/N6gUxxviH+lbp+lYtYrLyv7l217PE160GT+mPdv1LY5J2/Vrhl6tf4vD6E4g7f028Yd/7vu7w8HVDXnY+FEq52coTxTbsPWexjbqxL9yiU9BzTGerfgYiurPo9VLo9NIqj0FERESmXT55Vdz19HbFJMJiporSulquVK0T2iQVJUSPfHQwWvYo3ZW105B2WBH7NQ6uO4b4qOtw8XRGn/u6wc3bVYxJhMoNcoXl5yRblu20ar7uPq7oehefkxDVRoxJiIiIqt/5Q5dw4+rN2/ecpJIbUFWEkNwQ3jGs5HO3kZ2wIu4bHFh7FAmXbsDN2wW97+sGV0+XCsUk/y7bZdX1vQM90XGw8eRtIrqzMSapPCY4EFGtlq3Kr3TfEFdfdPELr9L1u/iHY3tcxXcnqoi4rORyxzQ6LbIK8xBxMxr5mkJcy07FA836IMTN+l/6k/PLL1wy5tlOY+BsV7RrKhGROWcTMjF3VQQuJuUYPS8kO2w8c0N8NfVzxif3t0frQMNdDSorKioKGo2m5HPLli0t9inb5vTp0zaZBxER1T+5GbmV7ivsFirs9FMVHZs2xMGz5hMs5Des+93flITLieWOadVaZKfn4NzBCyjMU+FGTDJGzRoiVmawVmqm5e9O56DAI4smQemgrPC8iYiIiIjqg5wqxCTNuzYR45KqaNu3Jc7sOV+hPtJCDXR2Fh5TF5be67t2sXxMolZpkJWag3MHoqAqUCMptigm8Qv2sXoe6Tesq6g384MpViVxExERERHVR1WJSdr2aylWV6tqTBJ15DKqU/yFBJMxydn956FRaXAzLgV3PToYvg29rR43zcqYZNZHUyGTySo0ZyKi2o4JDkRUqwU6e0EpU6BQq65QP3uZAm/1nFSye7hQCaFAo0Kom1+FFvPf26QHvo7YiExVHqpLQm6a4efsVEzc8CGS8ktLtB1MvIBlkdvxevcHMaF5H6vGbeDkabFNz4DmmNpqYCVmTUT1zd5LyZj1y3HkqbRWtReSIO7/9iC+ndIJfcKtf+hoytWrpdV8fH194ehYVPrRnKCgoJL3mZmZSE9Ph4cHyzoSEVHFNGjiL5Ya1qit+29gMXsnJeZ8NbOkCkPMuXhxUU7DZg3g6GJ9TDK2b2v8tPEIcgtURs9LswugiDWMKSrqZqxh0nXC5et4tu8bBouBTm4/gz8/WYe53z+GYdMGWDWun5erxTa9BrYRFykRUe2khUR8VXUMIiIiMi0wPABSqQS6Cu5aKsQdT34xozQmORsHVaEGjVoEwsHJcoWFYsLv66s/WY+CvEKr+9hFp6CgXem9uXL0QEGnEMDeDsqLSeVikpjIeDzf/w1kphRVeCiJST7+By/89CQGPtjbqnlYs/Co3/09MPSh/laNR0R3HsYkRERE1a9R80Bx/ZVVFafLcHZ3whOLHy6pDHf1TJz4rCW4ZRDsHa3f9GjU40Px9xebxGcs1UVIqC7rSsRVvDBogbgRVLET285g1Uf/4JVfn0afe7tZNa5vI8sxyZCp/dD/gV6VmDUR3QkYk1Qe63sTUa3mqnTEiNBOZtu09gqGt0PRwhnhkbiQECGVSPH5yfV499DvGPnXWxj999sYv/599Pn9Zby+/1fkWFkZQrj+14Nnw7UCSRFjG3dDsIv1i3l9/5t7ccWKu9e+bZDcUEyn1+OtgytwKrl0ka859zXtCYmFRQLZ6nzkqgusnisR1d/KDRVJbigmtBf6Cf2rKikpqeS9n591O0f7+Bj+W5ySklLleRARUf3j7uOG3hZuVDfvFg53n/9iEqlELE0s/PnT/N/wxVM/YHrzp/Fo2+fwZNeXMSHwUfzviSXIz7EuJvFwccTHT90NJwe7cuckuYVw3hYFSdmHChJg2PQBFdrV1DOgNAEwKzUbs9q/aHSnU51Wh09mfoPLJ62LSe7u29p8A70emZCgUFV9DyWIiIiIiGo7nyAvdBtl/jlJix5N4erlYhCTCFHCj6/+is+fWoJpTZ/Co+2eL4lJvnpmKQrzrUtY8A70wuurnxeTuK0hLHy6t1dr+Lo7m24jTM7FHgXdw1DQrqFBTJJ+MxNPdH7JILmhmLAY6sNpXyD2/DWr5jL8kUEW2wg7sqoKGZMQEREREZkiVHbuOKSt2S+oVa9mcPFwEt9Li2MSnQ7fv/QL/vfE93ioyZN4rMMLYkzyYNAsfPv8z1b/Hh4Q6od5v8+F0shzEmOEmGj040Ph7udu9V9q2ZgkOSEVT3Z/1SC5oZi6UI1FEz/D9Ss3rBp3+MOWN50VYh+NurTCHRFRfcEEByKq9V7ofI9YecGYZh6B+HHYHHw7+Am42TmKN+yFag95mkIcS7qEX87vwpXM0l8q8zUqrLq4D9O2LBYrOlijo19jbB33Np7qMMpiwsDjbYfjvb7TsPyu5zCoUTuL7QV9AksX/by4Zyly1aYfKgg/3y+RO62at/CdzWgz1GybMymxWHBwpVXjEVH9JOzCMHdVRIWTG4oJ/Z5bdarCuzncKju79IGmg4N1SWfOzoYPUbOysqo0ByIiqr9mffyQeAPfmKadG+P9f+fjrb9fFHdI1ev04i5C+dkFiNh5Dmu/3IyES4kl7fNzCrDu6y14efi7Vt+879y8Eda+9wgeGdIJivh0sWKD4/4rcPsrArIMw0SJaQsm4PkfZuPTvW+j28iOVo3fvUy7tx/4BIVmdmYVkhzWfrHJqnHDG/lgwjDTc5BogTNR17F42S6rxiOiO4+wkbROL6ni63b/FERERHe+J//3sMmdP1v2aIoPtr6ON1Y/L1ZmKI1J8sUdRv/5cguuXyndPCQvKx9r/rcRr41cBK3Gunt+XYa1xy/RX2L883dbbPvoR1Mwd/HDWPLKA+jROtjwpB6Q6P5LcPhPYZsG6D6hdLfSN+/5wOzOrEKSwz9fbrZq3i26hWPko+YrxgmVIZa8tNyq8YjozsOYhIiIqGY8/dVMeDUoTQIoq13/VmJM8trKZ8UkBKH6nPA7fW5WPo5tOYV1X/+LGzGlFRJyMnLFitFvjH0fWq11MUmP0Z3FmGTsUyMstn3qixmY8+VMfLZ3AToMamPV+L3vKd3oav7o96BRmU44UKs04s9kjXb9WmHIQ/3Mtjmy8QSWvf67VeMR0Z2HMUnlMcGBiGo9LwdX/DbyBcxufxcCnDwgk0gR6OyFpzuMxq93PSdWWXh57zJkqvKsHvNsSiz+vnzI6vZuSic80X4kHmlt+kZ4kLMXpv933sfRDV8Oegx3Wag+IdCi6Jf1tIJs7Ll2zmL7fQmR+DlyBzZdPY5CjfkFUc91HoswN3+zbTZePYaUfC76JSLjDkan4mJS+Z0JKuJCUjYORadVaYzCwsIKJzgoFAqDz2o1d2IjIqLK8W7gic8PLcSDr9wD70BPSGVSNGjsh0cWTsRHO96Ag7M93n/oC+RlW1eVQRB54AJ2/rbP6vbuzg54fEI/TG4eCucdF6C8eBMSjc6gTVDTANwz566SXV7fWfcKet3T1eLYws14QUpCKk7ttByTHN50En8t3oC9qw9ZTNJ4dlJ/NPR0Lbq7V0ynh0Sth/S/5xab9kQiy8qKFkRERERE9ZFvIx98cXgRHnhxjLizqBCTBIYHYOb7k/HBttehUMrx/tTPkZ9rfcXmU7vOib/TV6S63aMfTMFdM0xXRQhp1RCjHyvaeKmBtxs+f/Y+9GoVIiY3i69bkhtEUilyA4t2Vk28moTzhy5anMuh9cfFJI19aw5b3On06a9nivGROZt/3FGheI6IiIiIqL4RNoH64sh7GDd3NDz83MSYpGHzQDz28UNYuOk1sWrCBw99gcJ86zabFQjJD4fXn7C6vYefO55Y/DAGTe5jsk2TDqFilWtBYJMAMfGi3YBWFscu+G/jJ6Fa3JWIGIvt9/99RIxJDqw9ajFxXNiUSpi7ORu+22p1lT0iorpCfrsnQERkC+5KJ8zpMFp83erYjUu4lHG9wmP+dekgJjTvW6E+QsKAnVyOZed2IFdd+qCge0AzLOw9VUy2KEuoJGFJRkGu+Of51GvQ6nWW2xfmYuHhP0oSL17sci/uC+9psn1c1k2z46l1WhxPuoxhIdbt7kpE9cvyQ7E2G6dHY/MPEs2RSkvzdmUymU3mREREVBFu3q54+N2J4utWx7eewvXL1pUjLuvfZbswbFrRjXZrPf7ZNNg7KfH3F5tQkFsUb0gkErE89PM/zharSJQl7NpqSWZyUcLzxePRVlVdSr+Rga+f/Ul87+7jisc+mYZBk4w/UNBodbiemPnfDhxFY99a565QpcHZS4no2SHM4rWJiIiIiOorYUHMjPcmi69bHVx3DDfjUio85pafdqL/A6XVE6wx56uZcHR1xPpv/i1ZBCTEJF3v6oDnljwOpYPSoH1egdpirev0/xKeLx69AmsKwQo/61fPLBXfC4urnvjfI+g3vofRtgW5BUi+lmp2PKHS3oWjl9FhoHW7uxIRERER1dfNoGZ9NFV83Wr3qgNIu5FR4TH/XbYTPcd0qVAfIWHAxd0ZG5dsK6n+JpVK0H10Z8z9/jHYKQ03QhSq2FmSkZQp/nnhyGWr5pAYnVQSkwiVLYQ4qefdxn+OrNRspCeZ/26y03PFxIqWPZpZdX0iorqACQ5EVOdVJrlBUJmqBcJNeiHJ4uHWQ3Ag4TwKtWq09GqIxu4BRtsHOHlaHFOoSiGwk1X8n+zMwly8tu8XOCnsMdxEgoJEIgUsJE4IVTGIiG6VXaDGlnOl5eurYvO5G+J4LvaGNxOs5eTkVPJeozG/K5upig1KpeHDVSIiIlu5eiauUv2ERIHKJP09smgSJrxyD05sPS3evG/aOQwNmwUabe/b0Nuq3WAFiltu+lsjIzlL3CnWyc0R3UeVr2AnkRS9/sttMEnKmISoVtLppeKrqmMQERHR7YlJKrMASSaXiQuaJs27Dye2nYa6UIPm3ZqIu6Ma4+/pglMWxhTaVDYmSU/KxMKJn8HZ3RGdhrQr30AMSCwTdqAlotqHMQkREVH9i0nkCjme+N/DmPLmeJzcdkasoNCiR1MEhPoZbe/byBuXjkebHVNoU9mYJPV6OhaM+1isrte2b0uzmzmaw5iEqHZiTFJ5vBNDRHWesLi/Mho4W04+MMVZYY+hIR0wunFXk8kNgnFNze98JIEE9zXticScNBy+fsHiLkamfHlyg8lz3fzDzfa1lynQ2UIbIqqfbmQWQKuzYss0KwjjJGWVVr6pKGdn55L3OTk5VvW5tZ2LS9GDUiIiIlsTdi+tDJ//bphXhpOrI/rc112snGAquUEw7OGBFm+YD53WHzdibuLcgahKzUWo+vDLgqIqc7eSSaVo3yJQzG8w9VuFo4Md2jRrUKlrExERERGREJMYVnKzll9wUbJzZTi7O6HvuB5iTGIquUEwum9rs+Mo5DKM6NUS15IyEJGXj/wuoShs2QC6CmyUotPqsPztP42ec3CyR7Oujc32d/FwQvOuTay+HhERERER2SYmKU4sqAxXTxf0u78nBk7sYzK5QTB8uvnnJEoHOwyc2BvXLl7HpRPmEyFMEZIsfn13tfF5erkgrF2I2f5CZbrG7c23ISKqa5jgQER13oCGbeEgt6twv/vCe6K6CdUdJrXob/L8Y+2GY83lQxj853x8cWqDpU1NzVaxWB650+BYdMYNPLXjWxy8bn6R0r3hPeGuLN0ZnYioWK5Ka9MvI6ew8uN5eXmVvE9JSbGqT3JyssFnf3//Sl+fiIjInJ5jOldqV58RFpIPbKF1r+YYbuY6U9+8H2u/2ISHmjyJX982fvPdGhePXcHmH3cYHLsSn4IXP/4bERevA7Kiu1R6SflEh7GD28LJoeIxHRHdfnpIoKviSxiDiIiIqqb3vd3EygoVZS5WsJWuLRthRI8WJs/PHtcLy/45gnEv/IhlG49B3dQfhR2CkTO2IwqbWX8/7+y+KOz4bZ/BscsRVzFv9CJcPGZ+kdLds4dD6cDqr0S1EWMSIiKiO0Ofcd0hlVb8Pt/whwehunUb2VGcnykz35+Cpa/9hodbPIM/Pvqn0tcRqm7vX3vU4NiFo5fxyoh3EH06xmzfsU/dBYVdxZ8zEdHtx5ik8pjgQER1noudAx5uPaRCfVp7BWNU466oCfO7P4CXu4yDl33pzuGe9i7isQAnT3wVsRFava7K13nn8Cr88l+Sw+WMRDy44UNsjY2A1kzaxLCQjni567gqX5uI6iYnu4o/FDXHWVn58Vq0KH0ImpiYCK3WcrJEfHy8QYJE2SoQREREtuTu44Z75txlto3wW7nOxw2apkHQhAei5chOZm+o29Lc7x/DI4smibsEFfPwd8eTXzwCRxcH/P7BWuhsULXp4xlfY8N3W8X3l2JvYtabv2Hv8SvQ6f8bW/LfnSoh0eG/PkN7NcdjD/ap8rWJiIiIiOoz7waeGP34UCtiEndomwRC27gB2o3tiu6jOtXI/N6YORyPjekOtzILdnyVdpg3eSB0Gj1WbjmB4rChhEyKws6hUAd5WH2d9yYvxtafd5csJHq2z3wc3nACejPxzrBpAzDlzfGV+KmIiIiIiKiYUEGhognUXYa3R6chbav9S5RIJHjtt2cwad44OLmVVuT2DvLCiz89gazUbKz75l+xWnVVvXXfh9j1+37x/dn9UXiu/xs4tuWU6RLXAEbNGoIHX7mnytcmIqpt5Ld7AkRENeHJ9iPFtTI/nt2GPE1hyfEQV18oZQpcSE8waH82NRZTNn6CLwbNgreDa7nxTt6MRkxmEtyUjugd2BJ2sspnyV7NTMLPkTuQWpBdciytIBufnVgLF7vSX5xt4cNjf2FkWGd8ePQvZKryTLYLc/PD+32no413sE2vT0R1i7+bPWRSCbQ2WPAol0rg52pf6f5NmjSBUqlEYWEh1Go1Ll68aJD0YExkZGTJ+zZt2lT62kRERNZ4ZNFEyBUy/LV4AwpyS2OShs0DIXF1wGWlPeBcWqI5Qgc8++rvWPDqWLiXuaFe7Oy+87h+JUlMSug0tG2Vdu6JjbyGvz/fKN6kL5Z+IwPfv/gLHJwr/99nY76Zu0wsCb14+W7k5quMN5IAjUO88frjI9A0xNem1yeimqXVS8RXVccgIiKiqnvsk4dgp1Rg7ZebUVjmd/HglkHQOtojRohJHEt//z+eq8MLr6zCm/PGwsWlfFxwek8kEqOT4O7rJi46kisq/9hZ2K100+M/Qn8zEy5OdoBOj8J8NZasOoL88eY3o1K1DITiWrpV1xHWI30x5wf0vrcrvnpmqUFsdqsmHULx4rInEdq6UYV/HiK6czAmISIiunPM+WomlI5KcSMkVYG65HhI64bQqDS4djHRoP3RzRF4bdQiMfnAydXwOYmQbHB6dySSYpPh4eeGjoPbVqpqXbHLJ65i3ddbkJtZupYq5Voqvnx6qU0SG4oJydWfP/kDeo7pgi/n/GgQm92qedcmeH7pEwhuEWSz6xNRzWNMUnlMcCCiekHItn2ywyhMaz0Ye6+dQ666AM08AhHu0QAj1yww2iciORqPbfsKf4x6SewvOJsSi9f2/WKQEOGhdMacjqPwYPN+FZ6XTq/D49u+wvXctHLnCrRqFORnwpZUWg1+Pb8bexPOmW13LScVoW5+Nr02EdU9LvYKDGvlh41nblR5rGGt/MXxKksmk6Fr167Yu3ev+Hnfvn0WExz27NlT8r5///6VvjYREZE1pFIppr/zIO5/4W4c2RSBgtwCccFMYPNATH3sByA1p1yfU2evYd47a/DFh5NKjkUevIBPH/0WMedKKxEJC4oefvdBjHik4qWatRot5o9ehNTr5RcEFeapxJctFeQV4q8fd+D4uTiz7a7fzERwA0+bXpuIiIiIqD4T7p/N/GAKJrxyj7hQSJWvQninMPiE+mHaoz8A6bnl+pyIiMUb7/yNT96fUHLszN7z+PTRbxB/4XrJMc8AD8x4bxKGTKn4cxJVoRrzRi1Cxs1McaMqSW5pDJItlyHPzIIfgdbHBXqFDBK15YqugrysfPy1eCMiD140205I3mjUPNDKn4KIiIiIiCwREhBmfzYdk+ePE2MSdaEazbo2EZ9xzGz9rNE+RzedxKJJi/HOuldKjp3YfgaLH/8O1y+XrlPwDvTErI+mov8DvSr13GLe6PcMNoEqVjbhwVaE66z+dAMun7xqMSZhcgMR1WfS2z0BIqKa5Kywx4jQThjXtBfa+IRgffRRJOSkmmwvJDTsu36+pNLC9C2Ly1V7SC/MwVsHV2LC+g9w6HpUheaz+9o5xGTdRE2KzrwBnYXsYiERIqOg/AIrIqJbTe4efMeMM358aan4X3/91Wzb1NRUbNq0qeTz2LFjq3x9IiIiazi5OWHAhF5iMkJ4xzBs2XEOyUaSG4qdiUzAqbNFyQxXz8bh5WHvGCQ3aD0ccaOhB979eSdmv/ATTkSWnrPG/r+P4EZMco3+5cXGWo6B8gvVyM4tqJH5EBERERHVJy4ezhj4YG8Mf3ggGrcLwaYtp5FuJLmh2MmIWJyPKkpmEBbgvDL8HYPkBkFaYjo+eOgLvDDoLZzdX8HnJKsOGE24Fkmtq+Skt7Jdsfgow+c8xggLmfKy8ys0LhHdeXR6qU1eREREZDtCZepBk/qIMYlQMW3jd9uQmVI+uaDY4Q0ncPVMrPj+/OFLYoJ02eQGQUpCGt598DO8POxtRB4yn8x8qx2/7hUTrm1BL5dBE+aHwu5NxZemsb+YkH2ruPPXLI4lfCeqAttuQkVEVJswEiOiem1n/BnLbeJOi3/+cOZfZKtM38yOSL6KaVsWY/a2r8UEAWscu3EJNS3Q2QsScR8k0xRSOdyVTjU2JyKqvXqEeaGpn3OVxmjm54LuYVXfofn++++Hg4OD+H737t1YsWKFybZz5sxBfn7Rv+k9e/ZEu3btqnx9IiKiyjhw+IrFNvsPXRb/XPneGuTnlC76L+wQjPyhbaFp4g9tAw+cvJaKJ95ehVc/WweNVmfV9c/sKUrorkkN/D0stlHayeHiZF8j8yGi6sPFRERERHUjJjl4uCgm+fXd1Sg0U1EhYudZPNtnPt6b8j9otdoqxyQyIfFCZf55izQzD9JC657JFPMP8bXYxtHFQXwREREREVH1OrT+mMU2B/4pavPLgj/Eyg+mHN96Gk/3fA0fz/gaegubvxY7vTcStqBzd0LB0HZQtwuBLsBDfKnbBovHdB6Gayr8w/wsjufi6Qw7ezubzI2Ibh8+J6k8JjgQUb2mtiIRQa0rugm/8epxq8bcEX8anxz/26q2UknN/jMsJDaMDO2MXoEtzLYbGtIezna8cU9EVvy7IpHgk/vbw9Gu/K4D1hD6fXx/O3GcqvLz88Mrr5SWpnz44Yfx008/GbQRkhoeffTRkuQH4brvv/9+la9NRERUWWqN5UU/QrKCsDho75+HSvuF+ULdNMBo+52HL+KHPw9YdX2prIZjEqkEQ+7phg4tgsy2G9KzuZjkQERERERE1UtjRUyiVuvEnUMP/reoyJLtv+7FykV/VzkmkWh0sLtivgKcXVSiVdcpuZ5ciqHTB6B51yZm2w2a3BcyeeXueRIRERERkfXUFpKaBVq1FrmZuTi+JcKqMTf/uAN/frK+xp6T6GVSFPZoBigV5U/aKVDYoyn08qLryO3kuGvGIIS1CzY75rBpA6o8LyKi2owJDkRUr7X3DbPYJjI1DpM2fIQ8TaHV4/55cT9y1aU7q5rSJ6glapIeejyw4QOEuPrCWWF8N1RPe2c83eHuGp0XEdVurQPd8O2UThVOchDaC/2E/rby4osvokePHuL7wsJCTJ8+HU2bNsWUKVMwbtw4BAYG4vvvvy9pP3/+fPTu3dtm1yciIqqoVs0bWGxzftNxzO33hsFNflUz48kNxdZsO4VCKx4KdB7eHlWhlwCqYE/k9G2CnP7hKGgVAJ2Z3wn0Oj1md3oRrSCFg7Eb/QC83Z3w8D1F/z0notpNBwl0+iq+LFShJCIioqpp2cJyTHJ67WE8P/AtaK1Ihij2z1eboVFbjkm6WIhJlBFxkCekGz2nuHgDdpfNJ0DcSqfRYVbb59CqV3MoHYzvhurT0AsTX7u3QuMS0Z2JMQkREdGdr2X3phbbHN0SgZeHvQOdzrqqDIK/P98Inc5ytesuwzqgqrQNvQB74888REoFtA29xbcalQaPtHwGHQe3hcLEcxL/UF/c/+KYKs+LiG6/2hST7Nu3T9wotqKvsWPHVst8uBUeEdVr45v2wnenN6NAa7p82bnUuAqPm6MuQGRqPLr4h5ccK9Co8G/sSWyNicDZlFgk52fC3d4Z3g6uSMnPQk1RaTVYfn4XZre7S/zZ9iacg06vh1wixYBGbfFcp3vQyNWnxuZDRHVDn3AfrJrVA3NXReBiUo7F9s38XMTKDbZMbhAolUps2bIFkyZNwrp168Rjly5dEl9lyeVyvPHGG5g3b55Nr09ERFRRd49oj1VrjkKlNrFQqECFS5tPQ1KmlLLOXgG9q/mKa5k5Bbgcl4xWTUoTIfJzC7D3z4PY//dRXDoejfSkDLh6u8Ld1xUZNysek+gcFMge3hJaL6eSY6omPsjr1BDO2y/CLiHDaL/CfBX+fmMVHlo8HSdz83HkTAyEH08uk6JflyaYPaEvAnxcKzwfIiIiIiKquDGjOuDvf05AozGx8Ce/EBe2nqnwo/S0GxmIO5+AsLalu5LmZedj9x8HcXDtUVw6EY2Mm5lw93WDq5czslKN31OU6PRw2BUFTQN3qEN9oC9eNCSTQxfojTw/D8iupYrJDtI86zaqKsgrxOpP12P6Ow/i1K6zOLn9LPR6PRR2cvS+rxtmvDcZ3g08K/gTExERERFRZdz9xHBs+H4bdFrTyQhRhw2f91vjZlwKrl9JQlB46XOS3Kw87Fq5HwfXHcPlE1eRmZIFD393OHs4ISc9t9J/gTpvV+vaXC1K0M7PKcDqT9bj4UUTcWxzBE7tOiceFxIe+t3fQ4xJPHxtu5aCiMiSkydP4k7CBAciqtd8HN3wSf8ZeHbXEhSaSXKojDWXD5YkOPxxcR8+PLoGWao8gzY1mdhwq7VXDmPruAVIK8hBan4WfB3d4WHvfNvmQ0S1n5CssOWZvjgUnYZfDsVgy7kkaMvsoCCXSjCslT8mdw9G9zBPMYu3Ori4uOCff/4REx1+/vlnHDhwADdu3IBUKkVwcDAGDhyI2bNno2XLmq2iQ0REZIyfryvmvTAKb3+wHupbd0NVqSE/fskguUF062cTti/fg1ZvPiC+/+erLfjh1V+Rl5Vv0CYt0fhOqNbIGdzMILmhhJ1cPOe2OgKyHNMLjHZ/tQU/nl+MlPQcZGTnw8fDGW4u5hM3iKh20aPqOwsJYxAREVH1CQr0xEvPjcT7H28on+RQqIYs4nKl/2u887d9JQkOQkLBsjd+FxfylJWSkGZxHOH6iusZkF/PgKpLY2hCSjdp0itk0IQHQNPIG/Z7zkOWYfgcxpzdfxzAtyc/Qsr1NGSlZIuVG1w8+JyEqC5hTEJERHTnC2nVEM9+9xg+ffQbs0kOlbHnj4OY+GpRdbaV763B8nf+RGGeyqBNcnxq1S9kzWObW57tCEnW+9ccwecHFyIlIVVM+vZt5A1ndyPPXYio1qpNMcnJMgkObm5u8PYuqjxjSUBAaSKZLTHBgYjqvYGN2mLjvW9gZdReHLlxUfw+IlPjoNZZX2rZmHVXjqBAo0ZaQRYOJRaNeydJyEnF+dRraOXdSKwiQURkC0LSQo/GXuIru0CNpKwC5BRq4ayUwc/VHi7myjLa2LBhw8QXERHRna5fr2YI/8YPazeexOnIBECnw+VNJ6CPSYJEpSnXXlqogTQ9FzoP0ze5JfkqbP5wLXIv3xAXDJ3eHWnTOat9naHxMxNHKGQobOEHx6OmK+LFX7iO2PPXENwiCN5cREREREREdNsMHtgSzZv5Y+36k4g8fx16rQ6XNh2HPv4mJKaqzVlhzecbkZyQiqSYZJzdF1XleWqDvAySGwwoFSjs2gSO/562erzoU7FIvJqEgFA/VmwgIiIiIrqNhk8fgJY9mmLd11sQdeSyuPj/4tEr4p9VsfL9NYiLuobEK0mIPFh9a7ekSRnQNjK/EFh6M9NoZYq0G+nwDvQSX0REt9PJMgkOL7/8svi6nZjgQEQEINDZC891Hit+F0dvXMKUTZ9U+XsREiQ2Xj12R3+/Kl35xVJERLYiJDPUZEIDERFRbdYgwB2PPzJAfH90SwReXbzO7F4ciqjrKOwRbvr8xRtQ56uxY8W+apgtoGngbrGNOtAdMJPgILYptG0lPSK6swgF3XT6qu0sVKYo3G116dIldOjQAbm5RaXqq/pwlYiI6E6s5PDErEHi+wNrj+KNL9dXeX9AYWfU7cv3VqqvXi6F3skeUGsg/W+HVXVjX/N93Byh9XaBLCXb6uuoC/mchKguq0sxCRERUV3XqHkgnlj8sPh+58r9WDjxsyqPmZ9dUOmYpCJkCWnQtCwoimGMkOQVQnbNeKUIxiREdVttiUlUKhXOnTtX8rljx4643ZjgQER06z+MUlm9+E4c5UqEu1dPeSAiIiIiIqo8ucJyTKKIS4XeSQlV64aA1PCmmOLSDTEBolrZoBKqUGY5qGkDW8yGiKhaaTQaTJ48uSS5gYiIqK6TWRGTVBe9QgZVm0bQCLufyovmIU3Nht25a9C5OVrsr3N1sDrBwd3HFf6h5pMmiIiIiIjoznxOcieR6PWw2x8FVc/m0DsbJjlIcgtgd+ACJEZWKHs18IB3oGcNzpSIyDghuUGtLt2YTtjw6XZjggMR0S1aeTWCt4MrUvKzavy7cVE4IFudXyPXGtOkG5ztHGrkWkREREREZD2hDLOLhxOy000vpBU2+pBfvQlZfCq0wd7QOSkhyVdDEZMMaXZBpb9uR1cH5GVZjkk0nk4W2yiuly+3XNaw6QNg76is0PyIiG6HBQsW4MiRI/zyiYio3mjTpwUcXRyQl10zzyuK6eUySEZ3gkYqNTiu83JBQe/mgMpyBTiJWmv19UbMGAQ7JSvQEhERERHdadoNaAWlgx0K84uqudUkeyclCnILK9xPmlsI5bZT0AV4QOvrJh6T3cyCNDFdTIAwZvRjwyD7L7GbiOh2ioiIKHkfGBgIHx8f3G6Gd4eIiAh2Mjkeajmwxr8JVzvzyQ0yie3+ye7k1xjPd77HZuMREREREZHtKB2UGPvUXUbP6exkyOoXjKQnu+DG012RNKsDckMcIL90Hcoz8VVKbnD1cjab3CC3K9onQ9XQA+pQL/ODabRQRt4webr9wNaY/s6ESs+ViGoHnV5qk9ftdPDgQSxcuPC2zoGIiKimCckNox8fWuPXderZFLm3JDeUkEqgsJQgrdZClphh1bW6DG+Pya+Pr8Qsiag2qQsxCRERUX3k6ukiJiTXNE9/d7PJDXb25hOkJXpAdj0ddhEx4kt2Pc1kckPPMV3wwEtjqjxnIrqz1ZaY5OTJk3dU9QYBKzgQERkxo81QJOZlYMX5XTX2/bjYOSJLZXoxkVavg5e9C1ILrCutXJa/owdclY7wdnDB2CbdMTykk5jIQUREREREd6bJr49DyvU0bFqy3SC5IWVia2j8ylRPkEuR39oXBY094P3bOSiS8yp9TaWwWCg1x+R5jUoDVy8XJLTwsziWfUQCZDmlDwF8GnrB2d0JngEeGDZtAPqO685diYjojpeTk4PJkydDq7V+J2giIqK6Yvq7DyL1ejq2Ld9TI9eTSCTQhfkBOaaTttU6PVyd7ZGVa7yN4sJ1SDTG/7vtF+wNR1dHeAd6Ytj0geh9b1fIZNwplYiIiIjoTjXro6lIT8rA7lUHa+R6UqkEGgsV4VQFaji5OSA3s+LV7vxDfeHgbC8+LxnxyCAxwUFqKsGbiKiGlU1w6NixI+4EXN1KRGTiRnpaflaNfDfe9i54ptMYLD6xzqrKC3uuRaJAW7ESbJ39m+Cjfg9XYZZERERERFSThJva6TcMdx7N6RZomNxQht5BgcwhofBecc7wuFwKnZsToNdDmp5rdKcgr0BPPLJwIr5+ZqnFeXUe2g6JCrXFdhKtzuBzp8Ft8dwPsy32I6K6RaeXiK+qjnG7zJkzB9HR0eJ7b29vpKSk3La5EBER1TRh8X/ajfQauZawwOfRD6bgrXXHLLbt0zQAW3dHQuXqUHpQrYHiQiLszieY7Nf1rk6Y8+UMW02ZiGqJ2h6TEBER1WdyhVxMuq4JfiE+eOzjh7Bg3McW2/kThdEAAQAASURBVPa7vyc2/7ADOp3xygym9L6nm5i0QUT1S22ISfR6PU6dOmVQwSEmJgY//PADtm3bhqioKOTl5cHHxwdt2rTB3XffjWnTpsHBocy9mWrABAciIiNiMm9iS0xpVpqtyCRSeDu4wl3phHY+oRjQsA16B7WCQirDqgv7kJyfabb/v7ERaOjijfjsij1Q7+AbVsWZExERERFRTbp6JhaH1h8v+SzcJs9r52u2j6qhGzSe9pCnFUAvlUDVphE0Ib6AomhXUkm+CvZXb8InIxduPq5o2b0petzdGZ2GtBOrKfz58Tpkp+eavcaO3/bB8+lBSMw1vzuRRGW4y1HLns2s+KmJiO4ca9aswdKlRYlfjRo1wty5c/HMM8/c7mkRERHVmAtHL+PEtjM2H1emkMHD1w1uvkJM0gw9xnRGx0FtxISKrw9cQHyi+QVMOxZvhL9Uipv5hWIyt1CxQXYjo1yS9a1aMSYhIiIiIqpVTu+JxNl9UdWSOOHhVxSTCHFCz7u7oP3A1uLGU95BnkiOTzXbf9MPO+Di6YyslOwKXZfPSYjoTnX58mVkZ5f+m/bzzz9j/Pjx0Gg0Bu0SEhLE1+bNm7Fw4UJ89913GDFiRLXNiwkORERG7Iw/Db24hMi2tHodBjVqh9d7TCh37t7wnjidEmNxjJS8ilWWcLNzxJgm3SvUh4iIiIiIbq8D/xjuXKpXSKFzsrPYT+NuD1laAQp6NYPOz91wDAc75LcMQq9RnfDU1P7l+g6bPgBfP/uTxWsUHo8FmptJttDqYBdb+gDA3ccVAyf2tjguEdU9OkjEV1XHqGmJiYmYOXNmSZXPn376CbGxsTU+DyIiotvp4C0xia1o1VoMmzYA094u/5xk5IBW+GbFPpN9JTkFkCRlosDNEbLMPMgy8qy6plcDD/Qdz+ckRPVRbY1JiIiIqPpiEo1ag5GzhmDSa/eVOzd8+kD8suAPs/31Oj30FhKsb+Uf4oOeYzpXeK5EVPvZOiZJTEy02D4oKKhC4588ebLcBlDFlEolfH19kZaWhtzc0o3yrl27htGjR+Orr77Co48+iuogrZZRiYhqObXOcLdRa9lJLeeN/Ra1B1czk8odvze8Ozr7NbHYP1+rgpe9i1XzcVbY44tBj4l/EhERERFR7aFRGe6IIVHrylVFMMZOrYM2wKNcckNZv284gcTk8onTIx8djOZdLcckuqMx8HRQmjxvfy4R0oKi+bt4OOGtv1+E0kx7IqI7iVCKefr06UhNLUrUEqo2DBgw4HZPi4iIqMapb4lJrCVUh7Pk9w/+RqqRSg3jhndA01ATydQ6HewiYsRH+rmZeXD1crZqPm7eLliw9iUo7BRWtSciIiIiojvzOYm1pDLLS2J/fWc1slLLV2C479mRCGnV0GJ/oRq2s4eTVfMRqkW89fdLYtU6IqKq6tq1Kxo2bGj2VVERERHljk2ePBnHjh1Dfn4+4uLixAoPx48fx8SJE0vaaLVazJ49G9u2bUN1YAUHIiIj2vmEVvh7cZTZIU+rsthOqAyxImo3XO0ccS41DvYyBYYEt8fQkI74fuhT6LHiBRRYGGdSi/44lHgBR25cLDmmlCnQyqshJML/JFL0bNAc45v2go+jG/+OiYiIiIhqmRbdmxp8FhbxOEQmI6+9v8k+bmpAGp8FVfdws2Pr9Hr8tf4YnK7exJWIGNg7KdH73u7ofU9XvL/1ddznPR0atelkCmmhBtOahmJ7ThZOXblectxeIUdrO3s4Kh0h7dcSnYe2x4gZA+Huw5iEqL7S6yXQ6SVVHqMmff7559iyZYv4vlWrVli0aFGNXp+IiOhO0cJCXGGMs7sTcjJKd/MzRYg3/vlyM3Q6Pa6eiYWDiwP6je+BHnd3xhdv3I9RfedD1dALUBQ9ypbezIRd5DXIUkoXIE14+R7s+fMQog5fKjkmxDbhHcPEhEUh0aLL8A4Y8chAuHpZt2kUEdU9tTEmISIiotKY5O8vNlXo63DxckZ2ao7FdupCNdZ+uRmFeYWIORcPJzdH9Lu/J7qP6oQPd7yB8X4zLI4x5fXx2LZ8Dy4djy455uBijyYdQsUqD3KFDN1GdhKrZ7t4WJegTUR1T22ISU6WqeAgJGP9+uuveOCBBwzaCNWuO3bsKJ7r379/SdUGIclh1qxZiIqKgkJh280lmOBARGREt4CmaOYRiAvpCVZ/P9YkNxT79fwucVFRsc0xJxB+ahOWDJuDcI8AnEmJNdvfXq6Ap72zmBwhVJsIc/PDrLYjMKpxF/59EhERERHVAZ2HtUNQ0wBcu1haZtT5YAIKmnhC52xXvoNOD9nf58W3envLN4/++HIzFCeulnze9fsBhLULxntb5iOoWQPEnI0321/h4QRvnRr2kEKr0yM00BMzR3XHwC6GiRlERLVJZGQkXnrpJfG9cCN++fLlYvllIiKi+khINvAP8cGNmGSr+1iT3FBsxaK/hB2hSuxauR9NOzfGos2vITgrHwnrjkPvqIRErYWkUF2uv0KpEHdCFf7U63QIbtUQU9+8Hz3v5nMSIiIiIqK6oM+47vjuxV+Qer189TdTrEluKPbzm6sMPu9YsQ8tezTFwo2vwjvQEykJaWb7y+3k/8UkcghLwMLaNMJDb09A1+EdrJ4DEVFFHTlyBAEBATb94oSNnqZOnYro6GiEhISUS2641cyZM8VqDt9++634Wei3cuVKTJkyxabzkuiFLSyIiKicq5lJmL55MW7kWf+LclV18muM0WHd8ObBFSbbuNk5IkeVD23ZO///earDKDzRfmQ1z5KIiIiIiGpCbGQ8XhzyNtISS2MSjYc9MgeHojDUXdgqQzwmv5kL112xsL+aIX4u7NIYmmAfs2PbnYqB4tKNcsc7Dm6Dbnd1wtdzfzLZ17FbY9xs4ScmNtzqyfv7YOpdXFBEVJ9du3atpATysL+mwsG3aruT5d/MwZZ7f7b6xn1QUFClrqNSqdCtW7eSUswLFy7EK6+8UnL+p59+wvTp00s+87Y6ERHVB5cjruKV4e8i42ZmjV1T2DG1Vc9m+OFV089JPP3dkZ6UafS/x7M/m4575txVzbMkovoak8THx1c65iAiIqKKu3D0Ml69ayGyUkuruVW3vuN7ILhFEH5Z8IfJNt5BXkhNSCsXkwg7nD/99UyMfHRIDcyUiO5U9SEmSUhIQKNGjaDT6cTP999/P37//XebXkNq09GIiOqQUDc//DN2Hl7pOg5O8prZre940hU09QhAV3/ju57KpTLka1RGkxsEn59cj/Op5ndaJSIiIiKi2iG4ZUMsOfsJHv1wKuwdi2ISeXoBvP44D99vTsDrt7Pw+TECvktPlSQ3iG2u3jQ/sFYHeWyK0VMntp1Bq17N0LJnM6PnZc5KpLT0N5rcIPjyj72IuW5+VyMiqj+Essu2eBXr2rWr+FDA3Kuy5s2bV5Lc0LNnT7z44os2+Q6IiIhqsybtQ8WY5OGFE2HnYKSSXDU4vOEEugxvL1ZzMEbYHTUzJctksuE3c39C4tWkap4lEdXXmISIiIhqVrMuTbDk3KeYtmCCGAvUhH2rD4nVI4Sq18Yo7e3EjamMxSTCsc+f/AEpfE5CRHU8JgkMDETr1q1LPh87dszm12CCAxGRGa5KRzzUahC+H/oUpJKa+SfzxM1ofD/kSTzebgS87F3EYxJI0LNBC0xq3g8qncZs/98v7K2ReRIRERERUfVz8XDG+OdGY8E/L0EiLb15Jc8qhDIuC4rkvHJ9ZCnZkEebXtBjdyoWEpXpuOL8oUt4b8s8THhpLNy8/4tJJBJxkdGQDyZBrS3aicMY4X7+mt2nK/ATEhHdfrt378bHH38svnd2dsbPP/8MmUx2u6dFRER0R3DzdsWDL9+DN1c/LzysqHbCgqALR6/gw+1viLGQi2fRLodSqUSs7jBs2gBoNaZjEp1Oj43fb6/+iRIRERERUY3w8HXDpHn34bXfnq2R6wkxxZWIGHy88y3c+/RIOLs7icelMil6jumCAZN6Q2fmOYlWo8XmH3bUyFyJiG6nsLCwkvc3b1rYgK8SaiatjYioluvo1xhzOozCZyf+qfZrCckMSrkCT3e8G0+0H4mU/Cw4yO3gpnTCgoMrLfaPzuTOREREREREdU2HgW3ERUUrFv5lVXu7E1chzciDuok/9K4OpYkPFxIgTyyt9mCMkEjh4GSPRxZNwkMLHkB6UiYcnO3Fm/jv/PivxWuzggMRFbPFzkJl+x85cgQBAQE2/YIzMzMxderUkjLKn3zyCRo3Nr5jNBERUX3WZXgH3PfsKKz+ZH21X0uISRxdHMRqdtPffRAZN7Pg6GIPJzcnLJq82GL/+AsJ1T5HIqqfMQkRERHdPr3GdsWox4Zi/TeWn1NUlZBgLTwTefzTaZjx/iTxOYmTmyOcXB3x1riPLPaPi7pW7XMkotqhLsckDg5Fz6AFWq3W5uMzwYGIyEoz2gzF2iuHcbWaEwh6B7YseS+XyuDv5FHy2dWu9D8KprhY0YaIiIiIiGqfSfPHYefK/Ug0U52hmHCbSxGdJL70dnLhzhckGss3loRKDZ2Gtiv5LFfI4RPkVfLZxVFpcQxr2hARVYaQ3BAUFGTTL2/27NmIi4sT348aNQozZ87kXw4REZEJ0xZMwJ4/DiI5PrVaFxJ1GtK25LPCTmEQkwhJDpYIC4+IiIiIiKjumfHeJBz4+wjSbpjfyKkq5AoZ2g9sbRCT+Db0LvnsbEW84WxF3EJEdCfJzc0VqzA0aNAASqV1z3pTU0vvD3l5ld67sRWpzUckIqqjhGSD74c8hXB32+4UWFZrr2A08ww0eX5kWBeLY4wM7WzjWRERERER0Z3ATqnAos2vIahpxWISiUpjVXKDoFWvZggKNz3+sO7NLY4x1Io2RFS/diaq6qu6rFy5EitWrBDfe3t7Y8mSJdV2LSIiorrA3lGJRZvnISDMr9qu0X5QG/g28jF5fuCDvSyOMWBCbxvPiohqqzs9JiEiIqKKESoovLdlHvyCTccMVdVlRAd4+pduRnurAQ9ajjesaUNE9cOdHpOsWrUKTk5OcHZ2RlhYGHbu3Gl135MnT5a8b9u2dLMKW2GCAxFRBQS5eGHt2Hn4ZvBsDA/pCJnEtv+MavXmFx2FezTA3Y27mjzfxjsYQ0I62HRORERERER05whsEoAl5z7FW3+/iN73dIVUZtuYRK/Tmz3fPMQPAzuHmzzfLrwBercLs+mciIiqQ3x8PB5//PGSz9999x38/KpvsSYREVFdEdwiCEujFuP1P59Hz7s7ixUXbEmv1Zk937p3C3Qf1cnkeWGn1bIVIIiIiIiIqG4JbROMny7+D/N+n4tuIzuKlaltSWfhOUmHQW3QcXAbswkSbfq0sOmciIiqS2hoKPLy8ko+b9myxap+O3bsQHJycsnngQMH2nxuTHAgIqroP5wSKfo3bIPPBsxE36BWNv3+zqddQ3TGDbNt3u09FVNbDoC9TFFyTEi0GBbSEUuGPgWFVGbTORERERER0Z1FJpOh591d8MbqF9B+gG1jknMHLiAptvRmlDELZo3AuIHtoFSUxh4ymVSs7vDp3HtsvsCJiKg6LF26FBkZRaXspVIpXnjhBTRp0sTk66WXXjLoX/bcpEmT+JdERET1ikwuQ597u+Gtv19Cy17NbDp2xM5zSLuRbrbN/FVzcdeMQVAoS5+TyBUyDJnaDwvWvmTzBU5ERERERHRnkSvk6De+B95Z9wrCO9l206Wjm04iOz3H5Hkh3nhzzYsYOq2/GIcUU9jJMfzhgXjjz+dsOh8iourUqVMnBAYGlnxetmwZ0tLSzPbRaDR49dVXSz7b29vjoYcesvnc5DYfkYionkjNz8K+hPM2H/dadgpyNYVwVtgj1K38zoFCAsOr3e7HE+1H4nDiRWj1OrT3CUWAs6fN50JERERERHeu5Gup4uIfa+llUqhDvKEJ8oBeKoE8JQeKy0mQ5qsN2iXEpSCjQANnZ3sEBpYvw2ynkOPFqYPw6L09ceJ8PLR6PdqHB8LHw9kmPxcR1R3CXmc6VG2Bofn90ipPp9MZvL9y5UqF+pdtHxQUZNO5ERER1RaJ0Uk4t++CTcfU6/W4HpuK5IwCuLjYo4GxmMTeDs9+9ximv/sgTu+OhF4PtOnTHJ7+5dsSUf12J8ckREREVHWxkfG4eKxi9/Us0Wl1uH75hpDJAFcvZwSEll+75eBkjxd+fAIzFk3C6T3nhaZo07clPHzdbDoXIqr97vSYRCqVitWu582bJ35OT0/HtGnT8Ndff0EuL59iIDxPmTVrFg4fPlxy7JlnnoG3t7fN58YEByKiSjp5Mxpqncbm39+TO76F6r9xW3gG4akOozGwUflyym5KJwwN6WDz6xMRERERUe1wZu958Ua7NXTOSuQOagm9i33JMW2gBwpbBcJh30UorqVDr5ADTRvilUXroVZrxTbNmvpj+rS+6Nql/A5I7s4OGNilqQ1/IiIiIiIiqk1OickFVX/MLiRgw04uPrCXhgXhuddWQ6Mpikmat2iAR2b0Q8dOoeX6ufu4oe+4HlW+PhERERER1U6ndkXafEypTIpnes+D5r/nJC17NsMjCyeibd+W5dp6+LmLlSSIiGqz559/HsuXL0dUVJT4ed26dejduzfee+899O3bV0yCEBIb9uzZIyZC7N+/v6Rvu3bt8Oabb1bLvKTVMioRUT0graYSx8XJDYLzadfwxPZvsCH6aLVci4iIiIiIai+psAjICsIiobx+zQ2SG0rIpcjv0xRad0foOjWDzt+zJLlBcOHiDbw67w/stfGurERUP+j0Epu8qoNww11YkGnta+nSpQb9y57btWtXtcyRiIiorsQkpujtFVB1CEXByE4oGNERhcM7oDDYC2pdaUwSdf46Xn7xdxw+dNkGMyai+uZOjkmIiIio6iRVjUnkMuhCA6Dt3graPm2h7dQMGh93g+ckkQcu4KUhC3Bi+xkbzJiI6pvaEJMolUps2rTJoFq1UKFhwIABcHV1RXBwMFxcXMTPZZMbWrZsia1bt4r9qwMTHIiIKqmzXzgc5HbV/v3pocd7R1Yb3NAnIiIiIiJqN6A1FHaWi3Nq/d2g83A03UAmhapDCOBkJAFCLDWqx1ffbBf/JCIiIiIiKtZxcBvI5LJKfSF6ezsU9msFbYgvUDyGRAKdvQwqNwX0ZZ5ia7U6fPXlNptUiyAiIiIiorqj89B2kFRyg1q9UgFd1xbQhzUoej5ipxBKV0PfKhS6NmHi5lHFhGoO3z63zGbzJiK604SEhOD48eMYOXKkwfHc3FzExcUhLy+v5Jjw7+7DDz+MvXv3wsfHp9rmxAQHIqJKclU6Ylx4rxr5/pLzM7EvwfZl1YiIiIiIqPby8HXDkKn9LLbT+LlabKP1cjZ7PikpCxERsRWaHxGRDjbYmQjcLZWIiOhO5R3ohQEPVu45ibpVEPSOJnb4k0qgcTRM5r4Wn4ZzZ69V6lpEVH8xJiEiIqrbAsL80Pu+bpXqq2sRDDiYiEl8PaAPNFy0G306FpdORFfqWkRUf9WmmMTX1xfr168Xqzc89dRTaNeuHTw9PaFQKODv74/OnTvjlVdeQUREBH744QfxXHWyvM0fERGZ9EKXe5GSn4VNMcer/VtKzsvk3wQRURUI2cTNmzdHfHw8li5dimnTpvH7JCKiWu+J/z2MzJQs7P/7qOlG1uxyasUOR6lpORWcHRERERER1XVPf/0oslKzcWTjSav76OVSaAO9zLbR2UmglwCSMuFMaipjEiIiIiIiMvT8D7ORm5GLE9vOWB+TONgBnuY3h9IH+QAJyQbH0hLT+fUTUZ3XtWtX8XW7sYIDEVEV2Mnk+HTADPw5+mWMCutSrd9lA+fqzXgjIqrrnn76aTG5gYiIqC6xs7fDm3+9iM8PLUTfcd2NtpFfz7A4jixXZbGNn59bpeZIRPVXlXcl+u9FREREdy57RyXeXf8qPtv3DnqOse45iV6pAGQWHlNLJNBLDX8P8PNnTEJEFcOYhIiIqO5zdHHA+/++jk92L0C3kR2t6+TsaHnjJ2cH3Lp9lG+wYVUHIiJLGJNUHhMciIhsoLV3MD7q9zDaeodUy/fpaueINt7B1TI2EVF98P7772PJkiW3expERETVpnnXcMxf9RzC2paPG+QpOZAlZZnurNJAcTHJ7Pgebo4IC/G2xVSJiIiIiKgOatWzGd786wU0bNbAYluJSgPodOYb6fWQ6EqXE3m7OyA4yMMWUyUiIiIiojqoTZ8WeOvvF+EfYkUSgkZruY1Wi7IpEP4hvggI86vSHImIyHpMcCAisqEP+02Ho1xp8+80S5WHQX/Mw6HrUTYfm4ioLtPr9XjzzTfx8ssv3+6pEBER1YjXVj4LpVBa+RYOey5AmpJd7rikQA3HnVGQXb0BZOUaH1SvR9a1DDw0ZjHOnIytjmkTEREREVEdIJFIMO/3uVAIFRrMtVNrIb1hvtKcRK2HpDi/QatD6q5TmBL2BM4fvmTDGRMRERERUV0ik8nw+p/PQ24nN98wIwcoVJttIklKN/h8I+YmpjZ+ApdORNtiqkREZAETHIiIbCjY1RffD32yWr7THHUBZm//Bkm55m/6ExFRkbS0NIwaNQpvvfUWvxIiIqo3GjUPxIJ/Xip3XFqogdPms3DcFglFVCIUl5Jgf/AynNecgDw5GxKtDtITFyGJTSrdSVXYMVWthSxbBalGh5ysArzx7ApkpJtIhCAiqsOll6dNmyYmUBe/iIiIyDihqtz8VXMtfj2KyGtiNTmjdHrI87RiTILUTEhOXYQkKxeZKdl4beRC5GQwJiGi+heTXLp0Cc7OzmIymfAiIiIi48I7huGln82v3ZIIzz9iEk030GghiStf+To9KVOMSfJz8vn1E1G9i0lqGhMciIhsrJNfEzzf+Z5q+V7zNIX4/cLeahmbiKiuEBYb/fzzz2jbti02btxYctzR0fG2zouIiKimdBzUFlPfvL/cceHWl/xGJhyOxcDhcDTsriSLiQ0l54Ukh5sZkGeqIM8sgDyzEPIcNaTa0oW8uTmF2Pz3iRr7WYiIiIiIqPbpMbozJrxs/jmJNDsfyr2RkN7MLEpkKD6enAW7PZGQHTgLycEzkJ6LhqTM4qHstBxsWbqzWudPRHSn0Wg0mDx5MnJzmeBFRERkjf7398K9T48020Z6LRmSS/FiMoOBvAJIIy5BkltgtJ+Q5LBtOdduERFVNyY4EBFVgxlthuL7oU+hiVuAzcc+cD3K5mMSEVWLgizgZhRw7XjRn8LnalZQUIBOnTrhoYceQkJCgnjMwcEBv/zyC7p06VLt1yciIrpTTHl9PN5Z9zKCmjaoUD+Ji7OYCCHRCTsYGW9z8gjLLxORlfQS6Kv4EsYgIiKi2ueRhRPx1poXEdDYz2QbaVY+lPujoNwSAbvd58Q/lfvOQ5aeA0mhCpJbFxr958T209U4cyKqU+pITLJgwQIcOXLkdk+DiIioVnn802lidTm/YB+TbaRxNyHdexqSs9GQRMWKla6lB89Bkmk+qfAkYxIiqmcxye0gvy1XJSKqB7IL83A500w5MyKiukjYbS1mL3DkeyBqA6Av8xBSIgNajAK6zABC+gDVUEJZSHA4efJkyefevXvjhx9+QNOmTbFkyRKbX4+IiOhOlpmSjWsXr9/uaRARERERUT2VdiMDiVeSLLaT5qsA4UVEROUcPHgQCxcu5DdDRERUCSkJaUiKTTbbRqLTQZKUzu+XiOgOwwQHIqJq8vWpTdUybs8GzatlXCKiKrseAax5DEg+b/y8kOwQubbo5dMCuOcboEH7avniw8LC8M4772DChAmQVEMiBRER0Z1Or9djxcK/TJ7XerlA28gbeqUCkrxCyGNuirun6rNzIPHzMjt2h65h1TBjIqqLdJCIr6qOQURERLWPVqvFb4tMxyRV0XFQ22oZl4jqntoek+Tk5GDy5Mniv6lERERUMRq1Br+//3e1fG0dGJMQUT2JSW4nJjgQEVWD2KybuJRh+51SHeVKPNCsj83HJSKqsis7gJWTAbX5Uo0lhCSIpXcBE5YDjQfa7C9AqVRi1apVuPfeeyGTyWw2LhERUW0Tcy4eCZfKV5TTSyRQdWkMXaBhEoO2sT/klxKhOBsHfX4BJA72Rsd1clZi+NiO1TZvIiIiIiKqGy6fuIqbcSk2H9fF0xnDpg+w+bhERHeiOXPmIDo6Wnzv7e2NlBTb/7tKRERUV50/dEmsKmdrHn5uGDyZa7eIiKqbtNqvQERUDxVq1TYf01lhj68GPQY/J3ebj01EVOXKDRVJbigmtBf6Cf1txMHBAePHj2dyAxER1XuqAuMxiaZFYLnkhpJz4QFQt2oEtb0UKlcF1K520NrJoP/vvLOrPRZ8NhHuHk71/vslIiIiIqLKxSRV4ebtgnc3vApnd8YkRGQdnV5ik9ftsGbNGixdulR836hRI8ybN++2zIOIiKi2UhWobD6mp7+7GJM4ODvYfGwiqptqc0xyu7GCAxFRNWjk4gNXOwdkqfKrPJaH0hkz2gzB/c36wMWOvyAT0R1GrwfWPFbx5IZiQr+/HwcePwBI6ucv5ERERNWhYbMGcHC2R35OQckxvVQCTaif2X6aJv6Q5+uK2gs33exk8HRxwKR7umDEmI5wdFLyL4yIrGaLG+/19cY9ERFRbRfcKgh29gqbJDp4BrjjwVfuw7Bp/biQiIjqhcTERMycOVN8L5FI8NNPPyE2NvZ2T4uIiKhWCWsbDLlCBo1aW+WxvAM9MfG1+zBkaj/YO/I5CRFRTWAFByKiamAvt8N94b1sMlZ6YQ7is1OY3EBEd6aYvUDy+aqNcTMSiNlnqxkRERERAEcXB/FGe1l6NyfAzsJeF1JJScWGYmnZ+UjMzmNyAxERERERWc3V0wUDH+xtk28sLTEDqdfTmNxARPWCXq/H9OnTkZqaKn5+5plnMGDAgNs9LSIiolrHw88dfcf3sMlYKQlpyLiZyeQGIqIaxAQHIqJq8nTH0ejq39QmY629chjZNqgGQURkc0eX3FnjEBERUYkZ701Cq17Nynwjt6YuWG/TltPIr4ZyzkRUt+n1Epu8iIiIqHZ67JOH0Oz/7N0FeBPnHwfw78VTd6NQiru7bAy2wdydubs7/zlTtrExYcI2xrAxBgx3dy1SpJRSd0/jd/d/3guVtLE6bX+f5wk0yeVyuabJvff+ZGjnBlnXql82wGyqfzcIQkjb0hLHJDNmzMDatWuln3v37o1PPvmkSZ+fEEIIaU2e/vYhdB7QsUHWtWLmOlgt1gZZFyGk7WiJY5KLBSU4EEJII3ZxmDXxOXx+yQPgUL8vGYPVjNMFaQ22bYQQ0iCMJcDJFQ2zrpPLbesjhBBCSIPR+mjxxcZ38ervT0vXuSI94C4giBcdjl7K9GYkJ9sqBxJCCCGEEEKIJ7z9vfHV1g/wwk+P1XuHleSXIj0hk3Y8IaRVi4+Px+uvvy79rFQq8ddff0GtVjf3ZhFCCCEturPc9B0f4alvHqz3ugqyipCdnNsg20UIIcQ9SnAghJBGpJTJcX3n4ejkH17vdankygbZJkIIaTAlGYDIN8y62HpKaYKSEEIIaWhKlRJX3j8OkZ3CwYkiFIlZLpeXWZx3eVAq5fQLIoTUiiCyC1fPC+10QgghpCVTaVS45tErENo+2OVyIsfB1CkEpRN7ofjmAdL/7Dq7vZxSTfMkhJDmHZNkZmYiLS3N5aWuzGYz7rnnHhiNRun6+++/jwEDBtCvnBBCCKknjZcaNz17NQLD/eu9L2lMQgipLZonqTsFvd0IIaTxjYjsjsRi14FEroR7BaB3cIcG3SZCCKk3c1nD7kSTrmHXRwghhJAKfS/picxz2VCczoCoVYOPDbPfO6IoJTfIeMeRxFGRAYjtGEp7lBBCCCGEEFInvUd1x5aFuxzeJ8o56C7vAWtUQMVtgr8W1ih/mLuGwmfDKcR0i0J010ja+4SQZjVs2DC3y4hi3bK0p0yZgiNHjkg/jxo1Cq+99lqd1kMIIYQQx3oM64Ldyw/Wefd0GRiLsPYhtHsJIaSJUAcHQghpAg/0mYDKGkO193DfKyCX0Uc2IeQio/Ju2PWpfRp2fYQQQgipcPsr10v/s3GJ6kgS1BuOQpGQAXlKLhQn06A6kAiZWXC6x+66bThksvqMagghbZEocg1yIYQQQkjLd8drNzq9zzCgvV1yQ1Xsdnb/nW/c1IhbRwhprVrKmGTr1q348ssvpZ99fHzw559/Qi6nTpqEEEJIQ7rj9fqNKWhMQghpzWOSixF1cCCEkCbQ3jcUd/a4BPNPbav1YxUyOW7qMrJRtosQQurFLwrg5IDI139HyhSAL1VgI4QQQhpLTK/2uPKBcVj3xxbbV2+pAbLjqXbLcCIHvnt7QFFlAl0QoE7LxeWX9qBfDiGEEEIIIaRe1U7H3TkaWxbstLtdlHEwd6vWYa4a2cD2uPTO0bT3CSHNbt++fYiMbNi5jOLiYtx3330QBFvhia+++gqdO3du0OcghBBCiK2r3Ogbh2Ln0v213h1evlqMucl9JydCCCENhxIcCCGkifxvxB0IUHvjr5NbUGo22D6EZXJYBdeBwez+s0WZGBjWqYm2lBBCPKTxA3peC8Qvq/8u63GtbX2EEEIIaTQv/fIEAkL9sWLmOuhLL4xJlHJYLbYxiSw9D1x2IYSIIECjAswWyDILIFisSE/IRJcBsfTbIYQQQgghhNTZ67OfQXBEAFb+sgHGMpNtHBLsA1GjdPk4Ay8gI68EHSODaO8TQpoVS26Ijo5u0HU+9dRTSElJkX6+9tpr8eijjzbo+gkhhBBS6a35L+LnV/7Emt82wWQwS7cp1QpYTFaXu4nNqeSlFyA8JpR2JyGENBFKcCCEkCYi42R4ftD1eLTvRBzMPguLwCPaJwTXL/vQ7WPVctcn9wkhpNkMfaRhEhzYegghhBDSqORyOR79bDLumXILju84Bd7KI7RDCJ4c+GrFMpyVhzwtt8ZjVSzhgRBCaom1TRbq2Tq5rbZeJoQQQlojhVKBJ756APe+d7s0JhEFEX6dQ3HftH/cPlalrNJpjhBCWsmYZMGCBZg3b570c0hICH799ddGey5CCCGEACq1Es/MeBgPfHgnTuw6zb7o4eWvxUuXvOt297BECEIIaW1jkosZfeoSQkhTf/DK5FJHhgWntyO5JAcyjn2JiU6Xl4HDrvR49Apu36TbSQghHuk4FgjtCeSerPsOC+sFdBxDO5wQQghpInK1EgkmC5auj0NGdjG4G4dBdj4HyjOZkOltVVSrksllOLD2CDr0aEe/I0IIIYQQQkj9xyQKOc7FJWPlz+uRnZwL5U39YQnwcrq8qtiAg//sRdQTV9LeJ4S0GqmpqXjyyScrrv/8888IDw9v1m0ihBBC2gq5QoYzBxKxetZG5Kbmg+OkXAenWDfsfasOY9JD45tyMwkhpE2jBAdCCGlCZt6KJzb8gF0ZlYHArpIbpPshYtrBpeAh4vF+k5pgKwkhpBbYSP+mmcDvVwOWstrvOqU3cOOPtvUQQgghpNGZzFa8/NE/OBSfBkHBQdRwACcDekXA3CUM2m2noMgpsXuMwAv48cU/ABG4+YVr6LdECPEYO+Ph5rSHR+sghBBCSOth1Jvw+hUfIH73mYrbVIdSYRnf3eljlAdT8O2/R6Sfr6MkB0JIKxmT/P777ygqKpJ+lslkePXVV6WLM6WlpXbXu3TpUvHz8OHDMXfu3EbaUkIIIaR10Zca8Mr495Bw8FzFbe6OF6wWHl8+8iM4GYeJD1zW+BtJCGk1LuYxycVO1twbQAghbcnMuDV2yQ218fPRtdBZjA2+TYQQUm9RA4A7/7IlK9QGW549jj2eEEIIIU1i1p9bpOQGXs1BVHKVSYYcB1Eth358Twg+aoeP/eujf2Ay1OzwQAghhBBCCCGe+vWNuXbJDYwquQBeOxMBs9V+YbNVup3dz8x5/29YzBba2YSQVkEQBLufExMTXV5ycnLsHl/1vvT09GZ4BYQQQkjLNPOlP+ySG2pj9rsLwfN8g28TIYSQmijBgRBCmsiO9Hj8GLeqzo8vsxixJfVYg24TIYQ0mM7jgQdXAaE9PVs+rJdtefY4QgghhDSJ3csPYP7iPVLnBsicdE+Sy2AY3tnhXaUFOhxYG9e4G0kIaVUEcA1yIYQQQkjrsH3xHiz7brXD+9RnchCw8CC8tp+F5lCK9D+7zm4vV5hdjCObjjfhFhNCWjoakxBCCCGkqg1/bcXqWZvqvFNyU/NxfMcp2qmEEBqTNAFFUzwJaT1STxzFodXLkX7qBGQKBWIHDMHgq69HSIeOzb1phFzUWOeFF7f8CrGeDYN0ZkODbRMhhDQ41onhqd3A+R3A/l+AkysAsUr1ApkC6HEtMPQRoOOYyorRhBBSC/vzE/BP6g6cKE6BQibH6JCeuK3DGHT0Dqf9SIgLJQWlmHr3dPATB0B0czaID/eDoFVBZjDXuE9XVEb7mRBCCCFt2v41h7H0u9U4ve8slGolRl4/FDe/cA2iu0Y296YRclErzC7CJ5O/cbkMZxWgPpvrchldkb6Bt4wQQprHe++9J1089ccff+DBBx+suC6K9Zt3JoS07EI2//2wBmcOnINaq8Lom4bh5uevQWQnmichxJWc1DxMe+iHeu+kMhqTEEJIk6AEB+KxAyuWYOucWXa3Hd+8Did3bMb1L72FToOG0t4kxInliXtR2gDJCbH+EbSPCSEXN5a0EDvWdjGWAKWZgEkHqH0A30hA49dsm7Zly5Zme25CSMP4M2kTfk5cY3fbsvS9WJt5CJ/0fwBDg7vSribEiXV/bIGpzARYrIBW5Xo/cRwEH7XDBIcOPaNpHxNCPCaKnHSpj/o+nhBCGtIf7yzA3I8W2922/Me12DBnKz5a8Sb6XdKLdjghTrAqqRaTtd77p0PPdrSPCSEeozEJIaS1+eW1Ofh72n92ty2dsRrrZm/BJ2umoNeIbs22bYRc7Fb9vAG8Vaj3etr3iGqQ7SGEtA00Jqk7WT0eS9qQvNRkbP3rN4f38RYLVs2YBovR2OTbRUhLcSIvpd7riPUPx/BIGowSQloQlswQ2h2IHmz7vxmTGwghLd+pkrQayQ3ljIIF7x+fBxNvafLtIqSlSDh0TvpfkZrPzqS5XZ5zEHjUeUBH9BxOiUSEEEIIaZuO7zxVI7mhnEFnxMesW5a1SidLQojDMUl99BzRFZ37U1d5QgghhLRNhzYeq5HcUE5fYsAnd0+HINQ/eJuQ1upMA4xJBlzWG+27U9I1IYQ0BUpwIB6JW7/aZQCESV+GE9s3094kxAmNwk2FVDd8VVp8PvYB2r+EEEIIabOWpu2ucZtSZoW/yoAAlQEmsRCbsuOaZdsIaQnUWrX0v/J0BjiL60kuWb4O8hL7DnS+QT545benGnUbCSGEEEIuZitmrqtxmzXYG/pB0dAP7YBMObBj6b5m2TZCWgK1V/3mSQJC/fDyr0822PYQQgghhLQ0rHucK1nnc7Fv1eEm2x5CWhpNPcckQREBeH7m4w22PYQQQlxTuLmfEAgCj7yU8273xKZZP+DQyiUw6EohlysREhODrsNGIXbAEPiFhNKeJG3a5TED8NfJLW6Xk3Ec7ukxDodzz+F0QRq8lBpM6jgID/a+HB39w5pkWwkhhBBCLjaCKCBRl1VxnYOIEG0ZvBT2HRv+TPkVqzL/A8cVwEvOoYNXewwIHIqefv0RqApqhi0n5OIx+qZhWD1rI2QGM7Q7zkA/rgcbgNRYTi6X4c5L+yA+qxTJJ1Lh5eeFcXeMwq0vX4fI2PBm2XZCSMsliJx0qe86CCGkufGCgHNHkyuuC0o5dJd3g6V9oN1yr/+3HV2nLUXZ2RyotSp0GRiLMTcPx+Ar+yMkisYkpG0bfeNwbPxru9vlFEo5rn96Eo5sOo6Uk2nwCfDGuDtH47aXr0NYB5pvJITUDo1JCCGtBc/zSDqW4na59275AhExoSgp0Eljkm5DOmH0TSMw5Mp+CIqwH78Q0hbHJNsX73W7nFKtwHVPTsSh9UeRdiZDKgA1/u6xuPWlaxHSLrhJtpUQ0nrQmKTuKMGhFbNaLMhMOAXByiMsthO0vn4ePa44JxsHVi7Bmd07YdSVQOB5yORyt48TRRGFmRkV18uKCpAcZ8sM7tCnPy6550GEd+pSj1dESMs1IrI7hoR3wYHss06X6egXhteG3oLxHfo16bYRQgghhDQWE2/FkYI08KKA3gGR8FdpPXpcuj4P/6ZtRnzJbsi5fHCcFWq5EpFaNXKMvghS62skN7Ckh0BlKWSyYum6QQBO6/JwWncYvChDN9/+uLndHYj2immU10rIxW7opAHoMawLTu07C0VmEbzXHIVhRGcIQT4Vy8S2C8bzd1+Ckf1igddvbtbtJYQQQghpCCaDCSf3JEAQRHQb3EkKlPYEC2BY+O0qbDudjkI/L1jlMig7h7NMBygTMqG7ojss0QE1Hmf2UiK+WxACjiRDVqBDXnoB9qw4KN037OqBeOzzexHTqz39ckmbNOqGIeg8oCMSjzgvqtapXwwe//J+DJrQt0m3jRBCCCGksRjKjDi1NwGiCHQf2hnefl4ePS75ZBoWTftPGk+UFugg8ALkCvexW7yFR/pZW8GoUkAak+xadgAcBwy/djAe/+I+RHeLqvfrIqQluuS2EZj/yb9Ijk9zugwrVPDU9AfRd2zPJt02QgghNVGCQyuRlZiAgyuXIvnYEZZpAO+AQJTk58GsL7MtwHFQqjUIiopGn3GXo/e4CdL16skL5+MOYem0j8CbzXbrZ8vVR8rxOCx87w3c/u4niOjctV7rIqSl+n7CE3ht2x/Ymnbc7vbO/pF4dchNGNeBTtgTQgghpOU6VXIey9K3IK7ojHTdSxaAk/lm5Bt5yGQilHIRXgolOvmG4qb2g3Bd9AApacEqCFDIZBXr2Z0Xjw9P/IZorxyo5ZXjEI6zIEJrQaDKAL2gggj7as7echOUMsHhtsk5AadK4jBNdxavdJ+CaK8OjbYfCLlYyWQyTF35FqbePV2qOiQv1MNn9THwflp0HNkNj394J4YPoaIEhJCGxSbv2aW+6yCEEE8c33ES/36zEke3xkvXAyMCkJ2cC0OpUbrOyThovdWI6d0eVz08ARMmXwKVWgneytsFCm1fvAdTH/oBpaO7QwysTAa1sGV6RcMcGwJLO+dBSaKXCqbu4dAeqywIxexbdRgnd5/B1zs+QkzPaPqlkjZHLpfjk9VvY+pd0xG35YTdfSzx4fFp92HgeJonIYQ0LBqTEEKaUtzWE1jyzUoc33FKGn8EhPkj63wujDrbmEQm46Dx1iC2Xwdc/cjlGH/3GCiUihpjkk3zd+Dz+2eAt9rPebDl6vN5uGf5QWlM8s2uqWjXJbIer5SQlkmpUuLTdf/DR3d8hRM7T9vdx7qdPPHl/eg7tlezbR8hpHWiMUndcSIru09atJM7t2LN91/VKgnBJygYcqUKxdmZUqJD91FjMeDKa/D3B2/CbDA02ra2790Pt7/zcaOtn5CWIKEwAzvS4yGIAoZFdEPf0I7NvUmklTLkikjdKsKiA/xigHZjOcgU9sGghBBCSEPYkLUX35yZBwH2w0s22szXe8HIK2s8JkwZAFOOH1JKSuCjVOG6rj0wuV9vvHJsBoLUuQhSOx+XGAU59Ly64joHAUFKvVSByBlBBCyiAn38+uOZrq/U9aUS0iqcO5qMg+uPSn+kAyf0lSoSEdIYclJyse2fPdCXGBDbtwNG3TDUo0pzpGVLS0tD+/a26uQ9fn8OqhDPuso6Y84rwakHv5V+Tk1NRXQ0BQUTQmpa8dN6fPvUL1KnaU+Fx4RChIic5Dx4+Wkx4e6xuOKBcXj50ndR2j8GfIcQh4+zaDnwWtfn2BQZxfBfYR/AXW7MzcPx7j80JiFt29nDSTi88ZhUoG3wFf2kzg2ENIbMpGzs+HefFFjaqX8MRlw3WEq2Ia0bjUkIIc1hyber8OOLf9RqTBIRGyYlLeSm5kvd5i6ffAkuu2s0Xh73LqyW+hWidWXCPWPxxpznGm39hLQEp/eflRKvZXKZ1AGbui2SxpJ+NhM7l+yDSW9Gl0GxGH7NIKkoGWndaEzSMKiDQwunLynGuh+/qXWHBV1BfsXPFpMRxzevx8kdW8Fb7Ds3NLTUE0dxaPV/SDy4D6V5OfDyD0TvSyeg59jLoFDWDHoipDXqGhglXQhpLKIg4sj3IhKXihCrFHVQB4oY/rYM4YMpyYEQQkjDyTcVY0bCghrJDQxLOAj20iNT5wtBtD9Rk2MpgkmhZ70eoLOYMT/+KDbl7YNPsBEBKtdJ12qOh156Ptt3mpITXCY3SNsi/SviRMlRLDi7B8vOnUOWvhRhXj64rXM/XN+xF1Q0wU3aCBY8RAFEpDGxidkZz8zC6l83QGAZZhcERwXirXkvoN8lVAWrzRA5iGI9x6D1fTwhpE0Er8545tdaBRIxrLtDOZaMt3zmOqyfsxVmUQTfLqh+GyWvHP/w/lpYOoVC1Kgg05uwfctxLNx8EGtPnENuiQ5h/r64aXhvTBrYHYoqjyOkNWNJ1pRoTRqT1WLF9Md/xvo/t9iNSULbB2PKghfRa2R3+gW0FTQmIYQ0gdTT6bVObmCyknIqftYVlWHpd6ux5vdNjZrcwGz5exd6juyGrQt3oSCrCOExIZj00ARcctsISgQkbUb3oV2kCyGNxWyy4KtHfsSmeTvsvh8iOobif4teRrfBnWnntxU0JqkzSnBo4VhigrWBkhIaO7mh3OY/fq74uTAzA+mnTuDY5nW49e0PodJom2QbCCGkNTs+S8TZf2uePDEVAjvfFjDhRxn8YylAhBBCSMNYm7ULVtH5yXaWeOCtNKPUrKlxn8rbDGOhtiJwUVTqoZQJkLlLVuAAGUQIFWkLnmMVWr88uQy5Rf7S9aTSQuzNTsWixKP4Y/zt0Coo8ZoQQurr51fnYOXP62vcnp9RiCnXfoIfDnyG6G6U+E8IIaRhrPp5AwS+SpWPejCWmSAEeNklKFTFhi4cX5ls7Ywip1Qap5iGxMLSNbzy8QBKRkVj6n/bKm5Lzi3C/rOpWL4/HjMevQEqBU3dEUJIfX337G9Y+8fmGrezCtlvXf0xZh7+AhEdw2hHE0IIaRArZq6vdXKDqzFJY+MtPL57ZlbF9fSETBzacAwb5w7Ce/++CoWSxiSEEFJf05/4CRvnbq9xe9b5XLwx8SP8HDcNIe2CaUcT4gKVgmnh8lKT0RpknjmFbX/93tybQQghLZ6lTESCg+SGcrwJOPN3w5xcIYQQQpjzZZlud4RS7jjYiJMBcqUtOSLWPwd3dtiLZ9tvxNUBhzHCJwFhimKn6xSrBBRZRDmqFONzyJYMwapIAzKlCLXGPsGbJTlMO1IZZEQIIaRuSvJLpQrYzhh0Rvw7fSXtXkIIIQ0m6XhKg6yHD/aBcWRXGC/rXeM+qxowBHLQh8tgDJKBl4nOG8wIAjTxWTD3jLJLbmAsPhwEleMH7j6Tgplr9zbIayGEkLYsP7MQa3/f5PT+smI9ls5Y3aTbRAghpHVrqDFJc9u78hAWfLq0uTeDEEJaPNY1dOMc5/POpQU6/PfD2ibdJkJaIkpwaOFUWi+0FvHbN8Ns0Df3ZhDiEUNcHErWrIX+8GHaY6TJGQtE6LNFiFK1OHvZBwDe6Prx6TspwYEQQkjD8ZLX7MxQnavkA1HkMCQyEa+NXI6+gelQyXgoOBFhylKM8E1EF3VWjceUWlSwCPIqt3AwCs47L7CkBl60DX+LTFpYRTm0WpbgYL9hrIuDwWpx+3oIuRgczk/DmrR4xOWnN/emkDYov6gMWXklEBx8wO9bfRhmnoc5OgDmDoEQtDU/n3cu299EW0qaG/ueb4gLIYS44uVX/87QlpgQKbGBjw4GFHJbg4YLF4sXYAiRwezPweoF8F6A1ZeDVQvw1WfZBAE+WxMhKzHB0i3C/jORJUq4GT4t3nMMFqvzDnmEXCxYheLjO09h++I9OH0gsbk3h7RBeRkFyEnJhSAIDoMzrRbXn6W7aEzSZtCYhBDSUsYkFwvWlZXnaUxCLn7sOPDY9pPSmCTh0Lnm3hzSBuWl5yMnNc9hB5/dyw84nD+pisYkbQeNSeqOekq1cN1HjkHcuuateidTKKD29oGhuKhe67EYDShIT0NEl24Ntm2ENLSyvfuQ/dGHMCWcrbhN1bkzwt96Ez6jR9MOJ40qY6eIk38JKDhlu64NATrfwKH7XRxkcg6iICJlg+MK2VUJ9gWrCSGEkHoZGzoQ67P3uFzGYFE5vJ23yKAWrXig73YoZI5P8vTyykC2xR+lgm2CgJ0LStMFQs8r4asywltphlqmgFEMQpklHyHqMnBV4iDZOSWrKJM6PlgEGVLLAqTb5XIRMpkIQahcuMRsQnJpIXoEhtVlVxDSJHZmn8OHR9bgXGl+xW1d/ULx7sCrMCw0hn4LpFFt2n8Gfy7fj5NJ2dL1iGBf3Hr5ANx99WDIZTLwgoCVZ1NQePcQQHXhtCMvQJWUD6+d5yC7EGRkMdKghBBCSMO59LZR2Dx/Z50fL6oUMA/uBLuBxAWCDDAGchDU1e7gAEEFsDxqRbIOWpUSPmUWmLcmQF5sAB/gBdHLfhwkshxtmeukrUKdAZmFpegQahu3EHIx2rvyIH58aTbSEyo7OnbqH4Pnvn8UvUd1b9ZtI63f5gU78fcXy3D2cJJ0PaJjKG545irc/MI1kLExiZXH5gU73K7HTGMSQgghDTwm2blkX7PuU5VWBbVWidKCsnqtJy+9AAWZRQhlyd+EXKR2LNmLn1+dg8xztvPUTNdBsXj+x8fQfWiXZt020vqtn7MVi6b9h6Rjtu49UV0icNNzV+OGpyeB4zhYzBZsXbjL7XrMRiq6R4g7lODQwrXv1Rcd+g5AyrEjzbYNk558AT3HjEPaqROI37YJ6adPoiCtbu3XivNyKMGBXLQMR44g9dFHIZrtAzHMiYlIfeJJxPw2C15Dhzbb9pHWSZcuwmoAco8KOPKdfaFpQx5wfJaIwjMiRr4nw5HvRaS7P2+PoB6NusmEEELamEGBPdDbrzNOlDiu2Gi0ymHibd0WfJVGhHqVQauwSEkHWbkB6BqdArXC6vI5YtR5OG5oD71VgRRdEHRWW3RRsclLunw2YDIuDe+NQwXnsDl7H7JMJ1BgToFKbpUSGwSRQ7FZg3RdAEy8fSVxGSegY0A+Qrx0sAoyGHnWMYISHMjFaV9uMh7bMR8W0T6pNaEkFw9vn4c5l96LAcHRzbZ9pHVKO5MBk8GMPam5+Hbhdrv7svJL8d3C7TidnIMPn7oan87dhG0ZuZXJDYxcBnOXUPC+GvitOA5OFNF9GE0ytRXsO5hd6rsOQghxZcR1g9FjWBec2ldZlKY2LLGh0veVw/u8WCKD888hkX3l8RZMv/86DLlyAA5tPIaNf23DsVNpOFPHX1ve+RxKcCAXrQPr4vDOjZ9D4O3HJOfikvHGlR/iq20foOugTs22faR1Sj2dDovJij0rDuD3KQvs7ss6n4ufXvkT544l47Xfn8G0h3/AkU3H3a6TfW+QtoHGJISQpjD2luHoPKAjEo+cb7Yd/smaKeg7pgcOrj+KTfO248TO08hIrNkh29Oq5JTgQC5WrDL+h7d9WaM6fsKhJLx2+QeYvvMjxPbp0GzbR1of1qEh9XQGrGar1DHkrw//sbs/42wWvn/uNySfSJWSbD69d4bU8dAdmidpO2hMUneU4NACWUxGGEpKoPHxgUrrhRteeRvrf/4Op3dvh+igDWdj27vkb3QaNAzRPXpLF/ahPuv5R1GcXfsD5RVff4r4QUNxzfOvQaVpPS3cSOuQ++23NZIbKlgsyPnmG3T866+m3izSSqVvF3FitoBiD7p7p28HklaJOLvUdXuzcl1ucjxhSwghhHhKbzWj0KRHgNoL3goV3uvzGKafmY/deXEQLmTjsc4JOr0aeSYvKOQCOvgVIsJbZ5et59cuC/3UqW6fTy7yiC8MR9mFxIaq2PnLXxM3Y1hwVwwK6iRdeFHAdVumodSSgzBvHTQKKxRyoINfEUotauTqfWC0KBCqLcXlnU7BS1lZIWNl9ls4qx+FG6JfhlJW8/kIaU5fHd9cI7mhnEmw4psTW/H7Jfc0+XaR1mnr37vw10f/4PzxVAgqBXQ3D3Ya/Ll+z2kM6xeDJTuOOV0fH+4Lc+dgqM/m4Yanr2rELSeEENIWGHQGFOeVwj/UD1pvDT5e/TamPfQDdv93QJqjqA3R1/lchFXLSd0aXLFEeGP2OwvRd2xPDJrQV7pYrDyuf/ZnFJboK5aT8QBnFSEqnK9QkVWK14e/jXF3jsarvz8Nldo+QZuQ5vbb2/NqJDeUM+pNmPPBInyw9PUm3y7SOm2cux3zPl6MlJPpbpddP3sr+l/aGxvmbPNo3dfTmIQQQkg9lRnMKNEZEeinhUatxGfr/ofPH/gO+1cfqfWYpCH8MWU+Plv/Pwy5sr90MRlMuCv6cZQW1r6jw/OjpuDyey/BS788AYWSQgvJxeW3t+bVSG4opy81YO5H/2DKgpeafLtI67Tm981Y+NkSpJ2p7GDozIqf1qPniK7Ytmi3R+tmHR8IIa7RUUgLoivIx86/5+Lkzi3gzWZwMjm6Dh+F0bffg2ueexWjbrsbK7+dhuxzCU26XflpKTiybiWG33ibdJ212uk2bDT2L19cp/WdO7Qfq7/7SkrcIORiYc3PR9nuPS6XMRw4CEtmJpSRkU22XaR1Or9GwP7PRbtuDe6c+UcEPMhx84oAtKH12jxCCCFtWKa+GNNPbMGq1BMwixYoOAUmteuF53tfird6PYTUshy8uWsR4guzUWZQg9epgDIZ/EOLERFZKq2DhfKUh/OwrzrR1tzBJdaxoXpyg1jxVcnhdEkGlqXtx50dR0u3yDkZJkV1we7CBMikJ7M9I8cBfiqT1EEiJTcAE7ucgkrO13i+06W7sDJDiRujX63nHiOk4WToi3Eo33VC0K6cc8g3liFY4027ntTL8pnr8O1Tv1Rct8SGOE1uKDd33UHps9kV/ZiuiLy0DwJ6U6eRtkL6vq7nnH4zxAQQQi5imUnZmP3uQmxbtAcWkwUqjRKX3DYS979/B95f8hrOn0jB1Dun4/wJ94nUFSw1xwQVPGgiI8o4qXvE+j+34drHr5BuUyrkGNstCv8dsO8qoSwTYfZ3slJRhPe+NOnHLQt2QqNV4eVZT3n+Oghpgs5eCQfPuVxm78pDKCsug7c/jUlI/fw7fSV+fOmPWj3mn6+We7Rchx7t4B/iW8ctIy0NjUkIIQ0tJasQv/yzE1v2n5USm9UqBa4Y2R2P3TIaU1e8hbNHkvDxXdOlat9N6dj2k9iyYBeuuO9S6bpaq8bgiQOksUVtsQSN9X9uhdZHg2e/e6QRtpaQukmMO+92vL9zyT4pwYf9DRBSHws+XYJZb82r1WMWfenZmCS2bwf4BNC4ua2gMUndUQnnFpTcMHfKSzi+eZ2U3MCIAo8zu7dj3lsv4dzhA1j8ybtNntxQ7sTWjXbXs5Pqtx1n9+9GfnotJiAIaWR8SYlHM+rScoTU571mFhH3Y+2SGxhzkWfL6bOALS8IyD4o1jhJkX1IwMGveOydyuPozwJKUiiKhBBCiH1w9e1bfsGWvN0ICchDdFAxwvwLsD1/H27f8iu2ZZ7F3Rv/xu78YhQLGljVHMRgC8R2JrTrkCfFBbEBaNVQHvZzminY7W6OK2lfcShWfgKgPLmh3PL0Q3aPKbCeuZDcUJNSJqBfWIbD5IZy8cXbUWTOprcAuWgUmw1ul2F/FyUWY5NsD2ndFbF/fd2+O6Ho5X4yqEjnwXuPA5INJjz+4UIcPpVm/xyiiH07T+Gzb1fig29WYubc7UjNLKz9CyCEENJqZSRm4dnhb2HjX9ul5AbGbLRI1bqfHfEW9q85jDcnTa1dcgOrBJaa7/Q+ucn9+TFFnq1Lw7rZm+1uT/lrJxRJufbLmgBliQBY7SuVcCYr/DYkQpNU+d23fs425GUUePw6CGlsnlT/Zd0dykrcj10IcUVXVCZ1C6mtknxbcQ13Uk6l44UxUxC/54zd7YIgYN/qQ/jqsZn47L4Z+H3KfGSeo3NDhBBCKiVnFODh/83F+t2npeQGxmS2YsXWE3j4nbnYu+0E3rpqapMnN5Rb+4f9mORcXHK91rd61iYU51EMDLm4jhPdsVp4GDw5V02IC4U5xfjzvb9rvY9KC3QeLZd0LAXPj34bCYfsiwjwPI/dyw/gy0d+xGf3z5CKfGSdz6HfFWmzqINDC7F17m/Q5Ts+yW4y6PHftI/AW61oLmWFlSfZS/JykHL8aL3Xee7gPgS3a1/v9RDSEJTh4ZB5eUHQV7YUr45Tq6GMiqIdTuolY6cIcx3OEagDAVOxZ8sKFuDgVwKu+ksmdd1JWing6M/Vn1fE6fkiutzEYcCznLQcIYSQtu2zo6shU2XCR14Z4COTifDVmmAVsvHc3nkoNbJ2DNW+M+SAn6/eaeHTYt4LKaYgdFA7DtxJ1gfhaHEU5PKq+aY115ZvqpzEzjRkIUGX6PL1RHi5nvQWISChdB+GBl/ncjlCmko7rwCoZQqYBOdjf2+FCuFaqkJJ6mf74r1SK++qOKOt2IYrQb5a5JU5HzNLLnyOs4nfz3/fiPmf3S9dX/7jWsycvwNFoX62djsX/LV0L+68bgieuW9cnV4LaX62xMT6jSepgwMhpNyMZ2c5Da4pyinGOzd8JgUy1Ja8QAd5egH4dkE17lOVAqYAEU6zpwH47rUl7RVkVlYgOXc0GYmHk6Blk9NnsmDpFAZRowSnN8HrXC64MiNMXYLB+6ggLzVDczYfXLWkB97KY9+qw7j6kQn0JiAXhchOYVAo5S7/zlgFysBw/ybdLtL6bFm4CyaD+zFIdYHhAXafxa4Yy0z47plf8cOBz6Xr/36zErPfWVhjLDT/kyW4+62b8cCHd9Z6e8jFgcYkhJCG9NnPa1GqNzm8L7eoDG9MmQdFtoeT9o2gIKvye/DUvgSknLQvMFJbLLH8wNo4TLhnbANsHSH1F9U5AjIZB0FwXowgINQPvkE+tLtJvWyetwMWs7VOY5L8DM8KN+lLDPjuud/wzY6PpAJQi6Ytx5wP/pbGKlXNm7oY9713B+6Zckutt4dcHGhMUnfUwaEFsJrNOL1ru8tl6pvc4B0YBIWq7q2ZBN6KnX/PRWl+HsoKG6a63v7/FiNh/24IQu0nJAhpaCy5we8618FtflddBbkvBROR+jE4LxjnUrc7AGUtupeVZQC5h4ETswUcmOY8qeLsEhEJi6iTAyGEtHU6iwkHio9AUSW5oSqFTIS3lw4aDZt8FqFSWBDhX4wu4TnoEp4NjnP9XbJP1wn5fE/IuMoxCS9yiCtuhz9SR0onK21JDbZLuLoY14bH4flO6/F651V4qdNaTG63AWcLf4DJmosii/sJBHfbxKzK+A+HC+MgiPaBRoQ0Bz+VBle17+Vymes69IGXQtVk20RaJ0cn35VJeQDv+rPw/klDoVUrXS4jq3L6Kik9H0fPZGDWm3Px5bT/UBTmb5fcUH7Sd/5/B/DvmsO1fRmEEEJaGVaV++DaIy6XqUtyQzn1ngRECyJUSpa0bSMKAgRTGWR65/MvmhO54Dgl9GO7Irt/O/z2317kF5chv0rnBXlBGTQHkqDdcQaaQ8mQF+khswjQnsyFz/50aE/l1khuKPfnewuxb/VhaaKbkOYWEOqP0TcNc7nMlfePg1Ll+piQEHeqfobWxl1v3ASlmzFJVQmHkqSKqT+++Id0qZ7cwLDP37lTF2PN7/YVsQkhhLQ9eYU6HDqT7nIZQ6Q/RHndQ/EiO4dLCaV1VZhVhAWfLpESwz0NsHXn9ynzcHB9HI1JyEUhNDoYw64Z5HKZSQ+Nh5xVTSOkGcYkd799M+QKz99/8btOI/lkGr558hf88vqcGskNDEvo+eOdBdg0f0edtomQlowSHFqA4txs6UR6oxIEPPr97+g6fHSdkzD2LJ6PX599BJkJpxtkkwylJfhv2lTMn/IKDDrPWooS0phCnn4KypgYh/epYmIQ9srLdV43O0FqOpcE45kzEM21r0pDWg+v0NpXtgwbCMRcIcOQV2XgajFOK0wQcfJP95OjZ/4RIfI0iUoIIW1Zsi4XaqXrYxS1wgqFgoe/dxk6huYjwNsAhVyQkiLcVW4WIcPBsk4YE70JZ4sexayE0fg0YRIWZg6DSbQFa5fH83TzzsJ97Xejr186ghR6+CjMCFQaEKrKQmLRd9iWdgU43nXgk1pmgUVw/6WZb9Hhm4TpmBr/OfRWN1XJCWkCr/YZg4GBCnjJav49dvELwYu9L6vzugVBQMqpdJw/kQqrpfk6RJLmF9o+uMZtMqMF6uPOJ3BH9uuIK0f0wNuTL4fcSYVrmUWErNrprZPxKVj4xTJYu0a63Kb5yw/QJCohhLRxiXHnG7WjCyeI8DqajH+/fxSj/byg3p0Aa1khDJ18AdZ5geVOVHl+Tm+B77YUKOReMIztCkvHEBT7azFz8U7c+MosnDc6ruqKC6uxhvnB3CUclg7BLgOgWFDS29d8jFcnvA+DrmbgLSFN7aGP70Fop3DW0rHGfZ36x+Ded2+r15iEBXYkx6dKHUxI2xXaPqTWjxl1w1BccttIPPfDoxcKZXjm+M5TUvcGd/758r9abxMhhJDW5dSJ1BrFOWpQyKXObXWl1qowL2Um+o/rXafH64rKMOuteZgc+xRyUvLQELKT8/DGxI/w5lVTYTI4H+cQ0lQe/WwygiICHN7XbUhn3PXWzXVeN8/z0nhEGpPwNCZpy+oyJhl3xyiMvXkEnv7mQXDuvi+qOLzxGFb+vN7tcoum0ZiEtD2K5t4A4lnyQGMrKy7CP1PfhlDPL2fWyWHLnF8hVyrBWywNsm1ZiQlY88PXuOm1dxpkfYTUFl9cjNzvv0fR4n8hlpXZ3cdpNAi45RaEPPM0FIGBddq5hX//jfxffoUlNVW6Lg8ORuCddyLkySfAKehjuq2JGgWoAwCTB12UWceGjldx6PsIB5mcQ/SlwGWhMhz7VZC6M7hTnCTCk4LUhlyg+DwQ0Nmz10AIIaT1sYhmt+ft2f1yTkC4rw7V55EtggwKmeuxRo6xAO/H/4KDab5ItUbDW+oGYU/JWXBNxFHIORFqzgKZgy4MgmhGctFUaPnhMFTLYVBxVoSodFDJeMggSAFSzl6XSZDDLCqg4ASc0Z3FrKQ/8WzXJ1zvBEIaicAXoKx0GqD/B9/1LINVkGF7QUfMShuCLFM4bo8dhGd6jYW/Slun9f/3w1r8PW0Zss/nStfZ5MD1T03CnW/eSJWO2qAxNw/H98/9Jk2IVqU+ngbOaIapdzuIPhrpNj9vNW4Y1xeP3TJKCiK6angPRAT54vt/d+DwWVtCBCfYOjc4+ho4u/MMeK2qYn3OZGQXIzWzEB2ighrypZImIIJzm+joyToIIcRsbPx5kvSELHxw7afIT8+XxhXGXqEV97GhB0tyqBiByOQQQ4Mg+nvVWI/JbMX0//bAO8gbYoH99ykf4gPj8C4Q/Ksct5mt0ves6lSm022L23ICM56Zhdf+eKYBXikhtVdYoMPsX7dh45pjMIZFACFhQGEJkJoFrYLDdU9eibvfvgXefjX/JjzBAswXzViN3LQ8cGYeIe2CcMMzV+H2V6+HzEEyBWndLr19JGa+9AcMOqPbZf2CfXHNY5fjvvdul4KIJj14GSI6hmLWW3Nxau9Zt48/tTfBo21Kjk9DTmoewuoQ6ESaF41JCCENxVyos1VicjVZwgvgTLWLlRJVClhjQiAE+uC0IOLDV+cgI8H52MATrAI4qwQuV8jAO+kWV1sH18Xhxxf+wAs/Pd4g6yOktvIyCjD7nYXYPH8HTAb7cwReflrc8PQk3PXmTdD6aOtUlPafL5dj8fQVFd1PWCGgm5+/Bre8eG2tgtVJ6zD+7jHS56jZ6P4zPSDUD9c9ORH3TLlFus5+juoSgV/fnIuzh5LcPv7ETs+KiZ89nISi3GKpuyJpWWhMUnd0RqgF8A1umhMlueeTkJ+aUu/1sG4TDZXcUO7cof0ozHTd6o2QxsCXlCDplltR+OecGskNjGg0onTjRoiGulXPSn/1NWS9825FcoP0nPn5yPv+e6S/+BJVqGyDZEoOA5/lXH5DK7RA9Dhgwo8cBjwtg1xdOZgK7sXBK8T94IolUcjVtdgwauBACCFtWpSX+0ROdl5fo7DWSG5g9LytC4MrZkGBxLIkaALioVU5Dl7q7ZsB9YXkBJbk4JwVUVw2rHzlF6qC4xGuLpGSGxgBMlhEucMqsCx4PN/iLf0sY5G5APYXHESeKd/t6yCkoQlCAXJyr4ZRP5uVJ5BuU8gEXBZyDjP7LEGULBtrzp+F0Vq3rgsf3DYNM575tSK5gSnIKpLa3X5234wGex2k5dB4qfHk1w/YTdqwiVZTvw4w924PaNTwUSowcXh3zP5gMp658xKolJXJ+QO7tkO42guKMhEKA6AwOU5uCAvygTq/1H3lu/JtoDEJIYS0adHdoprkeU7sPIWs87nQ9wl3eD9XflHIYI60jRkcsfAC9LH2czu8nwb6y3rZJzcw7Ht2UEeYu0W43DYWxFGQZQu0IKSpkxueuPdnrFx6CMby4A6WdBAcAPTpAgMP7Fy636PAD0feeOInfLlyP84PjUXZTUOhn9gXmSo5Zr05F189MrNhXwxpEViizOPT7nO5DAtimzD5Evx46HM8NPVuKKqMSQZc1sejoJ/ITmG1G2fQoIQQQtq02NhwyLNLXC4jzy0FV4uEAj7cH4ZJA2DpGwM+Ohh8hxDs1ZuQ3rMdhHp0gmAsJmuDJTeUWz9nK0rY+TxCmlhuWj6eHPQq1vy2qUZyA6MvMWDXsv2wmOs2T/L6lR/i59fmVCQ3SM+Zmo+fXvkTM57+tV7bTlomlkj9yKeTXS7jE+CFK++/FDPjpkkJ13JFZeW9wVf0h1+Qj9vniendHhaz52NpGpKQtoZKgzej0vw8nNmzE2aDHiEdYtB58HDI5HIHJ2j8Ed2zD9JOHkebJYpIjT+GwMh2zb0lpA0R9Hqcu+EGWDOzXC5nzcpC9udfIHr6106XMZw4gdINGyCazdD27QvfCRNQMGcOSpYvd/qY0vXrUbZzF3zGjK7X6yAtT/vxMih9RcT/KSDfwUe/1QCkbQEydoqIGsOj40QO+izAogf8O3HIOih61CnCO5xNx7pfVq4BVP5sOcpKJ4SQ1ia9rBhr006jzGJGz8AwXBbZBXIHlRHDNIHo7huD06XJTtfFkgLUCsddGiyCAkZeAY3c8YlFEy+XEg4YldyKcB8dcvXeNb57QtU66X+2tDudfHPxz7Eh6BCWjyBvPfyUhhpJEVZRDl7kpC4NrBuERZDDIChRxqurVIu2/S9CxKmSMxgTOtLtcxPSUIy8HgdTb0M3VWVCdFU+Cgte6rodjx0Ow+dHtuDLUdc5XVf8qQzs2psIi5VH755RGD28C+ZN/QfbF+91+pjN83fi2sevRL9LejXI6yEtx5X3j4N/iC/mTl2M+MNJ0I/vDdFPW/GpqDdYsH7nKWzdm4DxQ7vhqhFdkXXgHIxlRnQe0BH7jydLla6dVrUTRYwb3AUhSXngdEZwehNEL+cZ2D5KOfxUNc+ZkYuf9DZogHUQQlqvzHPZ2LFkH0x6E7oOisXQqwY6rNberkskYvt1QNLR+hdp8gTv574yiOjmq8kaYR9ca+7ZDlA6f5C5dzsoz2aDExx/8lktPI7vOIVLbqUxCWk6pYU6PHLV5yiROylcwLpQx0Qh/dQ5zP7fApcVfU/sOo29Kw+Ct/DoPaYHhl8zCDNnb8HWYh0Q7FuxnBDgDdOwzhD8vbD2j81Sd4juQ7s0xssjF7FrHrsCAWH+mPfxvzhzINFhENvGv7Zh+z+7Me6O0bjsrtFSJx7p+2RwJxzacNTtc1x6+ygIvGdHm37BPtC46TxHLk40JiGEuJOWkIndy2zJmt2GdMKQiQMcVmuP7dMBXQxWnLbwjo/rRYAP84d+fC9od5yWulK5InipYRreFagSEFtxn58XzCO6QbPlxEX1C2T7KH73GYy4dnBzbwppQ4rzSvBov5dQVqR323Hrrw/+wVPTH3S6zNFt8di/5ggEXkC/S3pK5yBYN+PDG485fczymeukMUls35h6vQ7S8tz03NUIigzEgk+XSN0TqtMV6bFu9lZs/Xu31PGBjS9ST2VIXUi7DumEI5vcx/pedscoFOW6Tp4rFxjuD5Wawr1bIhqT1B2945uBIPDY/MfPiFu/Wup2UM4nKBjXPPsqonv1qfGYcfc9gvnvvAbe0vhtmC9elQMIq8UCU5kOGh8fyBX1y1omhLUaK9uxA6XrN0AwGqDt3Rs+V1yB5HvucZvcUI51cbAWFEARFGR3O68rQ/pLL6Js23a72xVhYbDmu68AXPzvv5Tg0EZFDOUQMVSO/Z/xOL/G8TKCBUjbzC5VT8CL4DzozxTQGWg3lsOxWSIrYe0SbwQ2PSXi0q9F+EZTkgMhhLQGFoHHOwfW4p+kOAhVSj1Eefnh21E3YWBIzcTip7vcgJePfAeLyE7K238fsFUIogxKmeMEBpZEoLeqpP9ZkkN5ogG7zjo3sAv7DtPKLdDKLAhT6xClLUa2wRc5eh8p+UEh4ytiZD2ZembL6E1qnMsPQWoJj6s6Op4IEKVODjLpASVWNSyi/TDZyu67oOqkhlWwwMDroZV7QyGjoTWpH1EUkGfYhtyyjRBghp+qL0K8LsWG1IcxVO26Ne2AgEzEeBViZcopvDvkCvip7AMuSnVGvPvxMhw8Yp+gFBbig6Ll+9xuGwsoogSHtmn4NYOly7tf/4d1+xIcLmO28liz8yTWbT8JRXwaVCfTpNv1twwFp5BDZGMN9pkvlbou/xC3jUG6dQjB4Et6Y+5H/0BxNguWfs4niEyHkvDssDcxbfN7iOgY1jgvmBBCSJMymyyY/sRP2DhnG4QqAf2RncIxZeGL6Da4c43HsCCFN674EDzfsFVIHZHrLXBXP+9CszePy+pZOwS7XlyrAh/mB0VWsfPnrDImMVmsKDOY4euthtJB8SxCaoPneexdcQi7lx+A1WJFz+HdMGTSADwz4k2UdnQTyOPvA6iV2DhvO574+gGpI1hVrMrve7d8gWPbTlbeOO0/hPaIwvn+HZyu1tI9EorkXKz9fTMlOLRRo28cJl3eveUL7Fqyz2mg5brZW6RLVZ40iuvUryO6DOyIv79Y5nbZknwdnh3OxiTvIzTa9ec5IYSQlsFkMGHawz9i68JdUsxIuXZdI/HOopfRycG5qmffvR1v3PsN9P07QAj1tX3hlD/0wikwIdQPxpFdod16yuXzWzuFOUxuKCcE+YAP8oG8wFb46WLBVWnjbTJZoNeb4eenhVzuQZACIW7GJLuWHcC+lQdhtfLoM7oHBkzoi6eHvI6yYtfJDeXW/7kVj34+GUqVfSxhYXYR3r3pc5zcU3memx0DRsaGIfN8jtv1sjHJE189QL+/NujS20ZKl7eu/gj718Q5XIZ1FVk9a5N0qa3YfjEIjwnF0hmr3S5bmF2MZ0e8Jc2TBEUE1vq5CGmJKAqjGWyb+weOrF1Z43ZdQT7+/ex9TP5kOoKiKgOK2LL7Vyxu08kNHCdDx34Dpa4XuxfPx6kdW2ExGaHUaNFz9KUYceud8A2yb/dMiCeshYVIe+JJGOIqD0JK/luO7E8/q11fJ4sFGW+8CXNiojQI9bn0UgRNnozsTz6tkdwgPW9OjmerzcmmX2QbpssQcH5t7R8nBRG5YTFwyNgtQqEBrB6MBQ15wL6PBUz4wfVkKW8SkfCviJJkEdoQoMMEGfxjKSmCEEIuNh8dWo+/zx2pcXuGvgQPbl2AFRMfRrRPgHQbO7G/PGMblqRtglxmAvsmEEQOvCiTLuxnCy+XOh6YBTk0qJrkIMJXYZISF9jPLJFBb7WdVGTL27okcNJPAUo9lLLKLzGtwoqOvoUI0ZQhQ+8HH7UFmVa2TSngpW4PrqsfxRdG2dIXFKK0naxLgzvVv7HY4aBVsH33yTk5evv1QL4pF2uzFuNQ4W5YRDPUMi2GBo3BxIib4ae07TNCasPM5+NQ1uMoNVcm4WTiP5wu+ATeHA9Ftc4jjkRqSpCsD8QLO5choTgfSpkc49t1wf3dB+Prj9fWSG5gcvJ0wKCuUO44zmYOpDe8o6fKSy+gX2gbdv50OtbvPg24mqC8MI9r7RUNWXEZFBmF4DKLgPbBts9VsXx4bXuDSbcJIkyJOdh7PB0qFsx5NguCrxZ8bM3kBfn5HCgSMsFGx9Me+gHTNr3ncpsNZUYs/XYVUk9nIKxDCCbcMxbtu1NH0OYiipx0qe86CCGtz4ynfsH62VsddnR4Y+JH+DluGkLa2QJIBUHA4q9XYvHP62AK1IIzWCAva9z5Em18DozdXcw5CCLkRtfrUGZWJipI34IK9wE/oosAJ5VGif7jeiM1twi/rNiD9QfPwGTh4aNV49oRPfHotSMQ6GPruERIbeRlFODtqz/GuaOV44YNc7ZJwWuiTO4y8E7CAvtUKhhLy/Dh7V8iJT4NSrUSI68fihuenohPJn8rdR+pLr1KPKAzlk5h0vaRtivhUKLT5AZXPJniM+pN2LPiENRalRSU5E5GYja+fmwmPl71tsvlykr00pgk/WyWlKA9/p6xiO4aWZvNJw2IxiSEEGe+fORHbFmws8bt6QmZeP3KD6UxSWB4QEXg9aIv/sOSGavB5emgyCmFOcSv4mCm+pkLPiIAfIAX5C4qzrNuD+4IYf4XVYKDxluNPqO7IyU1H3P+2olt20/DYuHh66vBxCv74t57Rks/E1JbOSm5ePOqqUg5mV5zTOKky6EjuqIyvHfzNCSfSJXOO7Nk2eufmoj3b/kCp/fX7AqWmeRZ7BaNSdq2YztOOk1uqC82Dtm36rA0hraY3JXagDTv8e3Tv+K9xa+6XE5XXIYl36xC1rlsRHQKx+X3XoLI2PAG3HJSGzQmqTtKcGhiBl0p4tatcnq/xWjAoVXLcPkjT0nX1878Fsc3r2vCLbw4dR0xWvp/3pSXpUSQqvvr6MY1SDpyEHd+8Dn8QkKbcStJS5Txyqt2yQ0VapPccEHZtm0VPxf+OQeFfy8CjG5mudxQRtAJz7Zs9zssEqhx1n1+jQidrbiqxwpOAoWnRQR2t52iMeSKKMsCVP6AXwcOx37hcXqBfYLFqbkCoscBw96UQa6ioBRCCLkY5Bl1WOgguaFcqcWE2QkH8PbAy6Xr0079ia25B6SfywvzsIQEGceDt3Iw85VVUFgXBzMvg0ouQCs3I9Y7X+rYUPUQq8SqQaHFS0qMsIq2IAlvhckuuaEqH6UZUd4lKLFqUWT1RrIxGDGafFhFzmngt5mXY0t6D7tZhWKzFkEa11l9LBGi8rVwMPGKC0kYwMjgYbCKJkw/8y5KrZWBSibBgB1563GyJA4vdHufkhxIrcXlvGCX3MAowEPFmaS/NV5kCTau1zE0IgmHiqKwOeNcxW2zTu3DvDOH4ZvOQ1Njiu0CtRL8sJ5SAg/7AxULS4DUHHClZRWLhFFlyjaLJbi9N/lbiF3cdEyo8vaydo6QEhxUZ7JgaBdU8cVR/R2oSM3Hqq9WIOVUesX96sNJ4M/ngI8JhaBVQWYwQ56cC3lh5fsxbssJJMenIqZXe+l6dn4pMvNKEOTnhQ6RgZj58mws+WalXSXwuR8txoTJY/HKrKegUNKpUEIIuRjkpOZh3Z81kxvKlRbo8N8Pa/HQ1Lul6+898j3Wp2bDMqpjxXeLIrMY2gMpULCkzUagSiqC+lwBTJ3sO/aW8zqUAZnGB3y4n+MVWHioTld2B2ZbLSs2QAjwcv6kogi5i6qUV9w3DvkWCx7+fCGKyirPO+sMJizYfAS745Px26u3I9DXxXMQ4sD7N39hl9xQ8ZZkx1SsiyPrmuKuIq/FFojBAjPKpX6xDMt/XAuDzvE8ieDjPvhN9NZQtfw2jCW4fXDrV422/sVfLUdyfO0mSg6sjUNGYhaiOkdI17OTc5GbmofAiAC06xKJb5/+BSt+Wm8XiDfng0WY+OBlePHnxyGnjjuEEHJRSD+biS0Ldjm9vyinGCt/3oDJ/7tVOkf2zvWfYd/qyuMcPjLA2RlXu2VcJTi0RFc9PAFZ+WV48eW50OlMFbeXlhrxz+L9OHAwCd98NZmSHEitsL+x/13/mV1yQ8V9tUhuKLdv1aGKnxd8ugT//bAG+hJDvX4rodFUdLmt4q08pt45vdHWP++jxTh/IrVWj9n93wHkpuVXjJWzzucgLy0fwVFBUmdUlsDHuo5U7U405/2/ce0TV+KZGQ9DJqOOO6TloFm9Jnb+yEFYzZUHeY6c3b9bSnBIPX60RSY3yBVK8Fb3GWVVhcZ0RESXHjixZT0EVjmyCr/QMHQfMQbb5v5ul9xQVWl+LnYu+BNXPfNyvbadtE58aSmKly+H+VwS5H5+8Lv2Wqg7xcJ4+jTKdtbMyG8w9UxuYAJuublBNoW0HCxpIGGJiOR1IoyOP/IaRG2TG8oVnhWh9AGO/CAgc3dFEVbbLK2TsWXaFkDhJWDoq24qfRHSQAwGA/766y+sXLkShw4dQl5ennR7SEgIhgwZguuvvx733HMPlEr71pSEtBWb0s/CIrjuZrAu7bSU4LAv/7iU3MCKMVYlXRcBtdwKM6+AIHVUsNFbVVDKDOjqkwtFtaQF9jh/pe0YqdDiDSV4WEQZNDLX4wcvuVlKjGBfOLuKu0idIDprs+ElM0NeLcnBJMjxX9YIFFm9oFTw0CjM4GTA+ZIglwkO7bRd0MW3K3bm7YFFFKUEh/KQ3DB1KIYGDsaStDl2yQ1V5ZtzsCpzEe7s8KjL10LaJiOvQ3zxRhSa06GV+6Gn/2UIVLVDsekoioy2BCKGJTT4yoxQVuk4YhA5+Ljo4lDEq+Dnrcf9vXYj22Sr+pVWGoCTeZEwWAHTWKDdUhk4wfGUm+ilAgy87Q80yB8I8IN4+jy4fNt7feJD4xtwT5CWUi1rybersWneduQXlAKdQisz3NwQQnyl/+V5pVAfTIJpMAtEtT9ZLsspgfpAElKsNTvxsGSGqgkNjpw9fB4I9MbXf23BnqPnK4YhyoIyKA8kQeFg0mvjX9vh4+8tnbwnhBDS/NhErMACpl3YuXSflOCwefVBrDaWQexgn2hgjfRH6VW94LsmHorchk9yYN98ActPo3R0Bxj6hEPU2KbTZKUmeB/MgPehTAgaBfTje4IP9rF/rNkKvz2JgN6+GrjyTBZMwzo5fc4BXaPQ8XolNi/YWbF/+BBf8OH+iO4eheGPTsC0hVvskhuqSs4uxK+r9uLVOy5rgD1AWpuS/FJs+GsbMhOz4R/qJ3W5YoEPR7fF49S+s84fyAIi8ouAMMfJPhKWIM2OwdpHAL7etvPExaVATr7T5AaGM7qfS2TLsEA60rZkJmVjKRuTzN8hBZg2ltomNzAsSCjxyHmYjRb8+NIfOLT+aMV9Mhlnl2xdFQsw8gv2xWOf31uvbSZ1wH4l9S0m1kjFyAghzWfX0v12gZ/OxiQswWHdH5vtkhsknpwqqz6xUo08pxjWAG+Xy8jq8T2oUMphtbjuhF3dwAl9pe+r7f/srvGd1qFnO4y4bjBmfLfeLrmhqvPn8zB/wW489iiNSUhNRbnFUleG7PO5CAj3x+WTL0F4TCgOrItzmHDdUOqb3MBMeoje020xEY51QNi8cCdK8kob7Xlqm9zAsHNG7G+mOK8EP708G0c2VxZRc9b1hH3lLf9xHfxD/HD/+3fUe7tJLdGYpM4owaGJWS1mj5fZ8tevaIlqm9zg5R+Aa557DcHRHTD2rvtwZO1KHFm3EvriIun+ktwcLP/6E7frOb1nB8Y/9ATUXt6wms3IT0+VqmCw9XKUedZmlaxahYwp/4Oorwxmy/vhB8h8fCBUue1ipB04EN4jRzb3ZpAmVHxOxNaXBZhsH38XpZSNIg59LUqFu2pzcjd5DdD3YRGaIOriQBrX+vXrcf/99yMzM7PGfampqdJlyZIl+OCDD/D3339LCQ+EtDUmobKjgjPmC0nHfyQtc3oOnt3OQlZVch5GvmrwKodQdVmN5IaqfBVGFFs0EDg5lCw9ws3XA7tfzgngRbmUTLGvtBPidO0RoS5CiEIHL84k3Z5t9kN8WSTMohKx0Xkw8fKKDgw6UYVMvS8ivWqehPJVBOH2Di8gRB2FW6LvxLqsDdicsw0lVtuyOaZcTE/4FoEq1ydBDxbuxM3R90ElU8NotSCxJB9KuRxd/ULAuZnMIK3XiaL1WJ81Q+oAUm5X3hyWzg9/Lgcd1ZXL+shMdskNTInAQcOJUDh4C7HuDifMtgotYVodFEoBPOSI8ClBv7B0rEnsjSz4o7QLB+9kDjKLiGqrryDIAatWLv3Byfp1hHzrUQy+rDf6jO7RULuCtAAJh87h9Ss+QOmFJAP2tpNnFYGPCnT+ILHKnG6VcYHyXA7kmUWwdAqD4K8FZ+GhSMmHPLvYozlgZ1Yv2oVdK/aAV9gnUFuCvGGZ0Atem+KhyKn5Wb/y5/W4773bpUla0oToxD0hxAEWFOrpMt8v2g5Rq3K8kEIOw5AY+K4+UeePKFffSRwvwm9bMnx3pcIS4gVOEKHILUN57qnMaIX3qmOwRgXA2j4IopyDPE8H1blcwFrzoEuZmA0+wh/WDrbjt6oign3xztNXIyrUH49Puw///LQeS+NTUXgh6CoJwEtfLIXJ33WVveW7T+KFWy+RxiFGvQlppzOgVCvQoWc0jUnasFW/bMD3z/9m97c3+92F8PLTukxAqJCeDQT4AioHxUJYAYWCIqB/d/u5OD9viJEhwOnzgM7xXIzyfC4svdq5fOoxfTqgy8BY99tIWo34PWfw1lVTUeaio01zWz5zrRREVD1wyFlyQ7ll363GPVNugbcfddohhJCWMCaxmGzLzH7v7xr3yXNLIbhLTsh1HRCrOJcNa6dwaVzj8PH5pZAX1D2Zu7bJDSz59dXfn5Yqgudl3I/FX6+QEvRYhz2GVdd/7frPIYzq43I9q9cexSMPj5MS/ww6A9LOZEKlVSGmZ3SdXwtp+ZZ+txo/vzqn4u+Kmf3OAnj5ekGvq38CQmO69LaRFR2FSdvACgFMufYTz8bLzeSfr5Yjjo1JqiXruet6wj7b73j9Rmi8qkxOEnIRowSHJhbRuZvHy+SlpKA1kyuVGHDlNRhy7U3wCbKd0Nf6+iH52OGK5Iba4C0WlOTl4vSuxYjbsAbG0hLpdr/QcAy9/hYMuPLqBn8NpPmIVqvUmUHm7Q2ZSgXBYEDpunWwZGZBERYG3yuvhOnkSaS/8qrtBHs1gq5xWpc3GJkMIc8/19xbQZrY3qkXd3IDk1utOIWnRAHI2iei4yQK7iSNZ8WKFbjxxhvBXwjMZq31Bg8ejB49ekgDu2PHjiEuLk66LykpCWPHjsXWrVsxbNgw+rWQNqVfUJTbZfoGRYIXeaQbclwux11IPKguVFPqNmEhXFMqJSywjgu2hhCuvyMU4KXns4osYIKDSVQi2RiKZIRCb7HvImHbNhEKGQ+LYBv2sgSDs2WhyDd5S8/tpzJCzmkwLmwixoZeCx9lgLScr8IHR4tPVCQ3VG6z+1JtZsGEAlMh/jgVj4XnjqDYbDvxFeMTiCd6jcQdnQe4XQdpOXjRCiOvh1qmhUKmhFkw4GzpdugsufBVhqKL71hk6E9gV/ZH8OF4lIlqWOxOw5RAzlUmHLH0HRVXc9KJB4ccXoYAmQAtV1n4q5hX4pgpBPmCtmJZFWeFQbRNiLHkoys7xWPeiWGwBMogZMohKEXITaKU6FDlhcAYqITVR1658gAl5DcPweSP7m74HUcuWux4aepd0yuSG8qpjqfCEObneLKVJTdUedvKMwvt7pYZzFCfqGP7OCf25BSC7xzm+E65DMaBMfBZe9zhpO6hDUcx7o7RDbo9hBBCaq/70M4eLWM0W5DCqmy4SBa2RviB99VAXur5pLM5JhjmHhHgQ32lqvOK9CKo49OddoLgrAJUWU7uY0HaGUXSxR02pNDsOANrxxCYu4ZD9NVCo5TjjptG4I5JgxB4IeDVP9Qf20sNFckN5aShkBs6gwl5+SVY9ukyrPl9c0WAcHS3SNz91i244r5L3a+EtBhWixW6ojJ4+3tBqVKiTG/Cll1nkF9YhvBQX4wb2Q2H1sdh+qtzIarUtsSbKl203FYyVSps3bjMFiD+LNAhCgj0q/ybLNEBGTlAlxiHhcY4hQJi1xjgyClbuchqZKVGKM5mw9ol3OHTq7KL8dC0m2q9X0jLxc7rTr3z64s6uYE5vLHmeMPTYNq4LScw6vqhDb5NhBBCaqebB2OSbkM6o6xEj9y0/Br3KROypKIe7FyUI7LCMihybTFLzsj0Zqj3JMA0vCugtD/vxhWVQb03AU1B46PB7a9cjxuemQS/IFthkIBQP+xdeagiuaGCs+TzKoqLDSjMK8b8Dxdj/Z9boS81VHSAuGfKrRh/15jGeSGkWVjMFunYzSfAGwqlAmXFZdi6aI/UhSsiNgxjbhomdXH8/rnfajyWDRHY39jFTK6U457/3drcm0Ga+D3NxiQXc3IDc2RT3cYk7HUd33EKQ67s3+DbREhjoASHJhbaoSOie/VBWrzzD5kBE6+F1WKBwLuvrNoSRXbtgSHX3YQuQ0ZAJrc/SD93eD/ST8XXab0cJ8O2v37H+biDdreX5GZj46wfUFaYj9F3UNvPls5aWIj8mTNRtHQZhOJicGo1NL17w3T6NISyyiCMrPfeg8gCXB0kN7QIgoD0p59B7OJ/oOrYsbm3hjSB3KMiis+17l1tvbiP/0kLl5eXh8mTJ1ckNwwYMABz5sxBnz72VUR27dqFe+65B+fPn4fRaMQtt9yC06dPw8uLqmaRtqN/cBT6B0UhriDD6TL3dRsCA8+6Irg/lnIU9q9wViK+ChYOwWIiNHJeOonJEhcEJxE77P4Ate2LhBc5lFnVMPCqivtY8gELzK2eJCHnRFjs6rJyKLR6I8g6CFe1H4txkV0h5+yfc2/+YSSVnXewDe6T9GSQ482967E1076daLKuEG/uW4U8Yxme7k2BtS2dzlqErTn/4EjhZhgFPZScGrHe0Sg1n4ZFrAwQOpH3HsLk+eitsVUkYkVT8nkfJJnDYIVtLGwQKyugKqskOzhKcsgX5BBEltyjglmU4ZwlBGL1xJ5qj9MorOgamINU/kJVVI4Dr7ZVI5b+TEURVm85rL41Tw/xKgVenrYMs6dOlioJk9bv4PqjSE+o2QVLXqiHdstJmAZ1hBDkY5/cIFR53wkCFA4eX52gUdo6QshlkBXpIXcz2VuVKONgiQlxvf4QX/B+GshLag5AjGWVnVRIExE5j75D3a2DENK69LukFzr1i8G5o8lOl7nh6augM5ghuGv3xj4mtErAwwQHw6AOMPeuUjFezsHaIQjW6EBodyRAlVwzeKkhSQkR5/MwJDYctz14OYZeNVAq0FDV2v3xOKbOAD9IBGcC1CkKKEplbjuoMiqFHF/c/Q2ObbLvasGqpn7+wHcozivBrS9d19AvizSx/MxCzP3wH2ycu10KGNN4qxFz43CcNlthNFWOK774fi2Qo4esW6ytsACbLyksBlIyAN7FuN3PB2gXBs7Xu6LgFHILgbPJAJvXU6sAixUwmYGoMHBOAvsYTqWEGBwA5NknwpZTH0yCTG+CpVskRM2F8ZHZKnUDUx5LxZuTPsLMI9MQEhVU5/1FWg4WSJmTktfozyNqVOAjA6QEHhZAKs93XaijIZn0NCZpcjQmIYQ4wAI7WRIwO052hBVMuv6piShh3xEOjsNZoqZ6byJMwzvXSHLgdEZodp7xaL/Lc4qhXXMY1g6hEIK8pZPI8oxCqYhIY58NGXxlf9zywjUYMnFAjW5vrHND6qn0mg8yu49j02iU+OCWaYjfedrudtYB4pN7voGusEzat6RlY4k/0phk3nbpnKuXrxYd+3RA4pEkmAzmiuXUWhXMVbo2tDS8hZc6Hv8U9yUCw2iepC3YuWQfCrIu8sq09WTSU/BWk6MxSZ15UO+FNLSrnn4J/uERDu9jnQa6DBkOhVIJjU+VSeNWJDi6A7oNH10jueH07h1Y9sVHdV5veKcuNZIbqtq7dBFK8xv/pBipH9PZs8h89z2cvXIizl5xJTKmTIHx9OmK5IbkeyajYPafUnIDI5pMMBw6ZJfcIN1uNrNSLy3618FeU8Gffzb3ZpAGJlhEKZkh+6AIc0nl2ZDiRA9mKFu4w9+K2Pk2j4KTrf+1kqY3bdo0FF/4boiJicGmTZtqJDcwo0aNwsaNG+Hn5yddT0tLw08//dTk20tIc/t65A2I8rL9HVT3bO8xGBMRC61cA63cfXtK1j2hOiNfGbTtjFDl9Dw7d25Liqj5HcFuETj7pAU/pRFectuEsFWwdXSQSUvaP56t19EkQP+QEEyI6l4juWHp+WN498hcJ9srg0V6LufCVN1rJDdUNeP4DinJgVzcUvVpmHVuNl4+8qZ0+T1pDtL1toQgnaUIvyS+hT35K6XkBoaDDgWmI3bJDVGKAkQpsqDgKk/cs9i8UIUOvTTpkF1IHjKIapTwmgvrcY89qkxQINPqXyO5gbFcSJyoKty7BJqMKstyHAQlZ8sO4kVb5wYnSvUmLFp3xIMtIy0Jm1BiLZYPbTwmVfwtl+QiyFSer4PX+uPQro2DPKMYLB9Hxgpql3/sWnmo9idCXr2qW7UYddPAjjBcMxDmwZ1gHtARxnG9oL+yHwS/yk4kroismp1C5lHAkiPTn/gJ7986DQmHWnl2OSGEtABvL3gRwSzhzYGHpt6NvmN7ws9LDbWjDkJViSI4DxPYrCE+9skNVck4GEZ2hujB90xD6DaoE4ZfM7hGcsOipMN4KWUJygZYYOxshaGXFUWTjCgZYrK9Vqvr82p9gwNqJDdU9cf/FqC08CLvbkxw9nASvnjoe9zb+Wnc3/UZfPv0r0g9bQswy0vPx/Oj3sbymesqquGWBfogrtRol9zAmCw8TAEq8Grb+4x1WeCCA4Gusc47o7AODd07ViQ3SI9TKMBFhgLdY20dIHR6W3ID4+tB0RCfmsuIWjWEmEiInaOhLDJDu/IItBuOQ7vxBLz/OwR1XAo4QURxXimW/7CW3hWtjMlgkjoZHN50zK5qb9LRlEZ9XpHjYB4YC+PEAbAMiIWlXwzMl/SCcXwfCD6a2q1LLoPgo4aoql09yc/u/w4f3vGVyyQ/QgghjY8F9L+z6GUEhvs7vO/xafehx7CuUicDRbXuCuWUqfnwWnUEyvh0yLOKIE8vhHpfIrzWxEFWiyIbnIWHMjEL6v2JUB88B0UTJDcwPYZ1wdBJA2skN/z3w1p889QvjrdVZ2AnjV2ut1u7gBrJDVXNenMuDGw95KJ2+kCilCR/b6encH+3Z/H9878h/awtISg7ORfPjXwLK3/ZUFFQho1N4neftktuYNh1kVV/asEKs4ux6ucNzb0ZpIEZ9bYxyZHNxyvG1kxbOE7/6M7p+Pie6UiOdz6nTcjFgjo4NAO/kDDc++k3OL55A07v3gazwYDg9jEYcMVVaN+7X8Vy/S6/CvuWLvJ4vQq1GhGxXVCQmQ598cWbSWYxGVGSl4OjG9Yg4/RJyBQKqbPFwVXLbNVj6kCp0ULtXXmy1RG27vhtmzD8ptvruOWktviSEhQvWQLd9h2AwEM7eDACb78ditBQh8uXbtiA9BdfgmipDAIqTk1F8dJlaPf5ZzDExcF8rm0FIZSu34CId95p7s1o8QSriNTNIpJWizDkANoQoOMkDh0mcJCx4K56rjtti4jz60SYigDvCCD2Ghl8okVYSjnpujqAVawUcXqBiDOLRJguFKuSqYCYKzgMeJqDwrN4npo4oMvNQO4RwGoA/GOBwtOA4WLM5xKBjF1A1n4Boz+SIWIYVeEkDWfhwoUVP0+ZMgWBgY6DJJhOnTrhySefxGeffSZdX7JkCV588UX6dZA2JcY3ECsmPYy/z8Vhdcop6K1m9AgIw+SugzEktL20DAv+vyJ8JP7L2OJ0PRarDNmFgYjwLUZ7v0L4KBWI1HZDsZUFzDjvEMGq0NeoPH8h3rrquXQpucF2b411+ChMKLWopY4O5Y9ngbZVT5Oy9Tk6bWrkzcjQF+Df1L2IL06DSiZHB69IzDx+CDFBzsckel4FP87oMA5EK/fG+cIodmrX6ePNAo//zp/AQz2GOV2GNCwTX4rTxSuRrt8nXY/UDkB3/+ugVTj+ntiTvw8zE2eBFyuTpTflbMW23J14usvjyDDsQYHZvqqXl9z+hL0CPCIVzsfkPjITQuSlyOFtk2enjJHorUmHQs6e03UlI4OgQpY1AGYHp3NYFxSLWPN2rkwGJav4W60KPscDvEbmPLDpgq0HzuL5ey51uQzxrK3xpnk7sG72FuSlFyCsfTAmPTQB4+4YBbm7wE0PEha2LtyFDXO3oSSvFJGdw3H1I5cjslOYVBEtslM4/IJ9pTHJvKn/4t9vVtqqz7GKal5qXH7vJXj8y/uldvTuyIsM0G4/CcFXA2v7EEAph0Jvxi03DEFcUg4MKgU6D+iIE7tOo7BalSOW0GDtUrPgh+jvBcOlPaFdfwwyo+u/Ac7M2yrFuQoiEkWnk8i8VcCOf/di36pD+HjV2+g/rrfb10zqR/ouruccZn0fTwi5OHXo0Q4/x32JVb9uxI5/90hBEV0GxeL6pyah14hu0jIqpQLXjumNxVuOOl2PIqMY8rLK4zGtjwY9R3TDyb1nYKjW1cHcNdz1RinlMMeGQp3g/Ji+obDXy4JDVsxcjzMHE6WqlqG3dsdMv5MOG9eYY3noLVaoTyrBs0MHB8dwAd4aaA66Dg5mwSVbFu7CdU9c2ZAvh7jAumasnrVJCuRmBo7vi6seHg//EMdFB9b/uRXTHv4BQpUOCxk/rsXa3zfhnX9ewdZFu6SAonLsa9LajY1FneA4WH0UkJcnJLCbfLwgBvoDBdXGLex91TGqRpBbxd2+3hBDAoHcgtp9UVdZRipN0D0GiAi2uw2d2kF2OhlcXs2x1M6l+/DgR3e5fx7idtyw8a9t0nuMVSQNjwmRxiSX3DYC8mpF6WrLbDRj0/yd2DRvO0oLdFJF7GseuwIh7YJQVqyXxih+Qb5S99057y/Cf9+vQWmhLdmadSCZ9OB4PPr5ZOkzvC7YmOqGpyfh0MajMBvM6DwwFnGbj6Mk3z6hyzKwI/iYsBqPF/29YRrTE5pNx8C5qUzNEhpMfaNh7RgqfW+w97c8qxiqY6mQF5R5VAV426Ld0pjk07X/Q+9R3evwiklt0JiEEOJMbN8Y/Hz0S6z8eYN0vGExWtBtaGdc/+REdB/aRVpG66PFuLtGY8Of2xyuQ6Y3Q33MPkBU66tF71HdcHTrSek78mLFxiQsiZaNSc4eSYLaS412XSKwdMZql4+TnU2D0L+rraJPNYEBXrCedD0mYYHE2xfvxZX3j6v3ayCeKcwpxupfNyJu6wnpWH/wFf0x8cFx0vGZI6t+2YBvnvwZQpXEBPa+WDNrE95f9jpW/bJeOsfdluxcuhf3TLmluTejVSQ6r/9zGzb8tRVFOSXSHMZVD0/AmJuH1ygAUZd1b5y7A5sX7JDmRTr0bCeNSQLC/GEoNaBd10j4BHiDt/JS8QdWNICNVRjWgeSqRybg4U/ulj7360KpVuDax6/E4Y3HpM/+roM74cDauIrnuJhYzVZsnr8Te1ccwucb30X3IZ2be5NaPRqT1B0nstlNclEy6nRY8O6ryE+rXbaUQqWG1XzxtrfsOWYczuzdCb5KEHttsM4PQpXK/NG9+mDcvY9g8+xfkH7KeWUiZuCk6zD+wcfr9LzEnmA2w5qTA5m3NxSBgeB1Oui2bpW6Dmi6dwenUiHlkUfB51dr6S2XI/zNNxE0+R67m1l3hrPjJ0A0OMnUVigg02gg6Jq5uhQ7yduEnSFkfn7ovm+vx8sLej2KV6yA8US8tL98r7wCXoMHoy3jzSJ2vCUgx0GDF59olnwAWMoAn3ZAp2tliBzuedC91SBi++sC8mxzUw5xCqDdGA5ytYhkJ4WmgvsAw98GVt/L2n2j1vw7AeO+kUHlw0kJF4uvqFuyWFPShgHXzJOBk1OSQ2umMxuQpS+C3mKCl1KNCK8A+Kjqms3jXFZWFiIjIyuuZ2Rk2F13ZNWqVbjmmmukn0NCQpCbWzkxTAipVGzR4bUjXyHDWPNvhJ3XTM8PwLCIZET72gcgCKIXCi2An7LmuISNQE2iEqKDpIU0nR+yyvyglvOI9CmGl5Kd/Hf+XZFv9ILOqrHbJtZpoZxV4GARagbBTowYgtXpx2CtEsTOQipY4oVStKJT0IVsRPsth0pmhVpmhYr1i5DZvrQ5cOjq0xs3Rk/G09s24WiB45bW5R7rMQJvDBzvchniGRNvRY5BBx+lCoFqL5RZDThUeBwmwYyO3tHwV+ixJu1VmATb+7P8nSSDAiPDXkaPgOvs1ldkLsZLR16HxckBmUqmREevIpiFykA51okhSGkfwBAmL0aMqto4qJpiXosTpmjp76HYaqtmGqIoxVCvJGhljsfKLJlnTXFvRGn0EMHXuK+I97J7/5fbt7Avsk/ZB3Cwyr+qUh5WrQwWX9eBLMH+3lj5vefjaDZBtXHudiQeOS8Fqlxy6wj0Gtm2AzZYJaC3rp6KY9tO1rivfY928A3yhr7EgPbdo6QT7myCyVNlxWV4Y9JUnNqb4HQZpUqBMbcMl35mJ60dGTC+D1748TE81Ot5CHztTxV2G9wJX2x6T5oIYBVYbwy43+5+QaOUOjfAxSSF8kQaVPFpbp/LOLgjzD2cH+vJM4vgvanmvq4uqksE/jj9rdMAPlJ3rEta+/a2hMmYH16BIrh+7dut+cVIfmqa9HNqaiqio6Pp10NIG5JXXIYHp85HZn5Jjfs4kxW+q45LCXjVqTRKmKslzukm9gEf5jiAo+Jx8RnQHmz8an0smGfDX9vsgtiz34qFcYCL7WNjrPVe0jGkQqOA5ULBKPZVNrxnDF65/VJ8MnEqzh93PafEgjIe+ODOhnsxbRgLoGCB4ixIwjfQByUFpTiw5giMerN0fMQSSqZc+4ld1yxGoVLgpV+ewBX32icS56Tk4r4uz0oBF45oWZKp2QpLlU4NrOq8eXxl8TRnNFkGSI0TLxCLS4GE8/YLBfqB6xrjcj2iTg/u1LnKKqyhQeA6uf5uFk+dA4ptcztC53ZAtJNkI0EAd+QMuGpVgSNiwzAn8XvU5hh5/ZxtOH8sBV5+Wlx6x+g2H7DBxmlvTPwQJ/fUHDfE9Gov7SdWSTmmV7QUlDPgspqdcZ1h7/s3rvwQCYeSnC6jVCtx6e0jYdQZsWOJrQBBdUOvGojHp92LR/u8VKcE114ju+Gz9e9ISdwsiO/2iEfs7he8VDBdOUD60Ky++vIRgeJEKpRnMlx2lDNc3huCv4POJVYB2q0nIc+1JZN7omPv9vjl2FceL088R2MSQkhDyk3Ll6rV1zagmx3zsWM3Z0SlAgjwtX0RFevAmeoWQ1WvMcmcrXZB7O6IPjIIo7wghmihUIbCmqaR5khkMg5Dh3TC009OwNvj30XG2SyX62Fd++5686YGeBWEnXsuzC6SxiNsXMIK2+xbfRgWk0Xq0sESPt+58TPo9RYgPAgI8JOOh5RWC17/7E5cep19PFFaQiYe7vWC3Vi1Kp9AbylYnBWSaU7snG5ThryyYPlZJ6Z7vDwbA7LE4uQTqfD298Jld41Bl4GxjbqNFzu2T167/H2H4waWcKbxVsGgM6Jjnw5Sohnr7OmpotxivHb5B0g65jzBip0nuuzOMdKye1cecrjM6BuH4p4pt+KpIa+jLvpd2gufrH4bKo1KKkwwOfYpXOxYIsYP+22FQUnDaq1jkoSEBAwcOBBlZbZzXY39WUwdHBpYQUa61KEgMCISKq0HbVld0Pj44I73P8euv+dKnQfMBr3UPrbToKEYfPUN2D5vNjLP1mzrdTEnN8iVKpzeswOCtQ4RvBeUJzdwcjkuf/gp9JswUerO4OOiUnM53+AQtDX6gwehP3QInEIJn3GXQh3r2QETX1oK/YED0gll7YABUATbqunwujLkffcdipYsgVBcbDvwjY6Wkh1EU5X3nkIBOPo98zyyP/oIfFERQp95uuLm4n+XOE9uYKzW5k9u4Dh0WrMaxQsXwnAkDlAqYUpIAJ/XeKXytX08ryZZtmsX0l58yfZ7uaBg9mx4jRiBwHvuRsnKVTCnJEMREAj/G66H31VXSYkorV38bNFhcgOjS7NdmJIkIGOHgI5XcRjyKudRkEvcTNFlcgPD4uNYhwdX8o8Dq+4uL1VVe8XngFV3Cej3BIfYqzmpM4RQn2IQnK0TBFtvY2GdNLL2AZEjG+85SPNgB697s85g3smt2JgSB16sPLnBqsFfHjMAd/W4BMMjujVYMJnBYMDtt9+O9PR0ZGdnu01ukLalSlWy0lLPJ50IaQmyjBkwC2aEqyOgltet8l05f6UPPuv/IuYlr8LmnP0wCibIIMPw4L64JuIybMv9AYWWmtUVZZwevgo58kxeCFQZYJs65sCLMlilAGzHf/8qBQ9vtRkWQQ65jH1+uP6ckLOWDVVUTZpgY2mrUDNwWyNTYlU6+3yyPVbqJSETKgugiiJ4gYNcJtoFsfsqjRXPJ17oKyEXFbgz5jEMCx4LQeTRzluLowW21+pMlLfjKp2t2aGCRMQXp0Ipk2N0aC9Ee1VW6nRFby3DubJTECEi1rsbfBS2fVdiNmL60e3459wxlFpM0u9wWHsOUGbBIloqfmcTgs9CwTpuVPuNiLBiV85nMAsl6BdUmXi9JXe70+QGhheNdskNTM2wCEBRNWrICSVrn8CqXIqKivdtrtUP60p641Kf0whQGGokMKwv7o1EYxSe6/EeThUvQ67xJGRQItWYigJrmcP3XUm2D7JP1+ygJzPbtlFmcX8A2qOTm0rHVexlVfHvni4F65db/PUKDL6ynxQkwxIfspJyEBDmhyvuGyclPyjYRF4r98eU+Q6TG5jUU+kVP7NgRFa97LonJ+K57+2DcZz5/oXfXSY3MJYL1XhcObLpOB7o8ZzLMQkf4AU+0AucVYAis0j6v9yZg+ekduWPT7sf4+8eI1VQrRqYx0cFukxuYKzRQRUJDmxSNKZPeyQdrTkhoTqeBmtUAAS/momzbCJYc7BaoJ4TbKKVtZ9mVZRJ4xFZ1yZHpchruQ5CSMs6L5Byis2TWBDdLUoKNK2PEH9v/P7Wnfhp2W6s2XsKBpMFCpkM4wZ1xl1j+mJGXBaSi2oG9FdPbmDcVeX2dJn6YgmB6+dsrQwQlzpsAcZ+Pq4fqASsoTwUeQrwZl46+lOrFHjvoStx5dAeUmX0kKggtwkOYR0cd1huze/JfQmpOJGSDbVSjnF9OqOdh5PKLDjo+M5T0s99xvSoqHDKArpnv7MQG+ZskwLH2XiSBeHnpRdK7/1ycoXMYeAPC3T7/P7vpONmVnW+3Iqf1jtNbmCqdyWxPYlnVS5FjoWeifZzONWplG7Xo/DW4OcTX2P5j+tw9nASlFolzvJqlOpMThMiypMbRHY+LtLF+08mgxgdBu6k/fFct1pUk2TVlz+7b4YUGFNu0ZfLMfzaQZj4wGVSB4Ps5DwERgRg4v3jpEqh9e2o1hL88toch8kNTHJ85WcG+/zY+vdu3PLitXjiS/ukZWdmPP2ry+QGhv1dsL8XRwQ/Lwgx4dipF7Dr6dngesVAlpwNWZXfoSfid5/BvbFP4cmvH8DI64dIY4qqAZtCZJB9ckPVDqIXbuSjgioSHGRymZTwUTVIiiVaO0xuYBQymAZ1hNdaN5NGVZw/kSp1v6MuDo2LxiSEtD3s+O98Wj6sVgEdogKhVrs/xnElNDoY3+7+WDr+Y5XB2VhDoZRj7K0jpA500x76HukJNQP6nSU3sO66Ypf2QERQ5fkyUYSYWwjudAo4J4HlDYkFqbNOs7VhvTcA/O1+bJJFus5DD2SWwOc3C95++WGMnjTQNiZpF+Q2wSGsQ0ibe08eXH8UZw+dkzplsCBqT8dlLBibHeeweXUW8M2SGMpvZ+9Jds6dHftyMg7hHUORl1Zg995jxzSCWg307w5UORfPRi0ffbwKBpHDpOsHVdy+YuY6p8kNDKuM39xY8uyPBz+Tuo8kxp2HUqPEmf2JNRLLG1JtxiRbFu7Elw//KCWflPt72n8Yc/MwjLtzjJRYxH5P7G/lygcuw6gbhtS7o1pL8ONLfzgdNyQdS7Ybk2xZsBN3v3Wzx538vnp0psvkBoZ9dq/9Y7PLZXYu3S9d6uro1njc2+lpPPXNQxg4vk+9E3EcjUkaWsLBc9LYvq0n4DS21jImsVqtmDx5ckVyQ1No/bPITYR1JNj9z3zkpdhOuik1WvQaexnG3v0A1F51T3TQ+vhiwkNP4NLJD0FfUgS1l7d0id+xxWFyw8XC0Qe0XKFAbP9BOHtgT4M8h8jz2DjrR6SeOIrEg6xdnMFt54del7TOSqksyJ5d2B5nVfs5tVrqsJD15ltSIkG5nM8/h+/llyPq00+kzgtVseVL166D6WwC9IcOw3j8GETDhZOH7Oy8UgmYzQALiGf/lxNFWFIdTJi4SWJhSRLeo0bCa5DtQNl4yjZJ0GzYa3RzUKEIDYW6fXuEvfJKxW2WzEykPv00TPHuq0PWReDdLOrdPXNKClKffsZhkoh+zx7pUs50IRmicN58tJ/1K+Q+bibOLkKsS0HWfsBUKMI7kkOoVHSHc9i94dzK2h0snl8tIqAL0PVm1wcGFp2I5HUNmIVYz1VZdMDBaSJKk4HoSzmkrK/bCmMmAv0ekyH7oIh9H9d+HR2u4NDjbmDz8yIsNQvr2SnLch0ASlqeE3kpeGP7H0gocly9nCU7rD1/SLp0DYjEp2MfQO+QDvV+3tjYWCxcuLBWjzl0qDIrPyysZltyQlqi/QW7sSpzGTKNtmBZjUyDkcFjcWO72+uV6BCg8sVTXe/Aw51ukjo6+Ci08FJosSdvIwotzoNqVTJe6uBgFj2fPGAJCT4qdlrVUplw4IKFRQFVbe1Y3iHCKgfHyWp8vapkCvQP6IrtOWccJzdcGMvkGb0RqtVd6LAs2iU3VMVzVvyT/BPS9XuQULoHUYEm3OWjxOmCMBwviLIFkHCitE0Cz/oGqHB9jOcJrC1JQkkWkspypG92X6UMarkSBt6AnxL/hIgiaR8beQV+T/LC8KBheLP3rdDI7ZNtRdEAg2EVzJazOFF6FusKSlHE2345LBTHyHsh26gBz6tgsVjRNdQWOMSSZqwKwe7ETqS6yGFyQ1UH8n5ElNdghGh6SNeTy1LcJiWw32XV9wvPUilE+27cRtH9qRaDoIRFkEHPV90HHLLMAfgrbyS6a7PQWZ0jJUtkW/xwzBCNUl6LEHUw/FXRGB5amSxeZM7CP6kfINdkHwRUlO6LfQv6s0gm+ycXRMjNtvezzCqCswgQlc6Dom693LNuAskn0/DBrdMcBhMeXHdUulTFWvOyyZKpq96C1rt+yVjNwWK2YP+aIyjJK0Vk53D0v9Tx3zabxFjzu+uT5tUt/3EtugzsiKsfudzlcmwSa8uCXWgwTg7/BR819KO7gA+vkqBltkJ9IgOaY5UJGqwa2BcPfo+0MxkYdeNQbP9nT+0C7y4Ell3z2OV44MM7sfu/A9LERHUykxVe647D1DcalthQlh0H8AKUKflS8sPVN4/Eba9ej2dHvOk4CLCKzHM5oKY6hBDScFh1wvmf/IvU07bgUFalcNKDl+HBqXdBra17okNIgA/evv8KvHznOBSWGuDnrYG3VoUlM1ZJ1RA9pUzKgzXaRaEkUZSWaUws4aP36O7ScYQddshW9aDSg69rtrTZbMUHs9Zh748bsGfBropjMTYW4WNCYI0Jg+itlrpdyFNz4ZNTjHF3jEJrdPZIEtLYe4+z7WeVVo1C0Yr3lm1BSZVYkS+WbMU1Q3ri3Tsvh6pakL+RBWEfOIPkzAIcWxeH5EX7YC02QFQrwcVGQdYuFKzZlcxigbWgBOgQIT2OKyhBxvlccNWq37qravr9c79JFR5j+9jOj7HgnNriWBA4S4pwFaTPi+Cqd+mqWrDqAhnPuz1NHRUTgvbd2+Gp6Q9W3Jaemo93X/sbKeft/37E0jLgTJWOKIG+7o8LHSSfXP/URHiC7b+pd34tJfhWt3fFIelS1f7VhzFwQl98+N/r9fqMai4msxV7DyehRGdE+6hA9O/puHoj67DGOsbUBktUZ11Ixt891uVyeRkFUpJ2XfHtgsH3ia0YaEvnddqHQWgXAsWRRMhyahbVcKUotwSfTP4W979/h9QRomplVlF+4TyRo49adhs7r3RhbHzjs1dh8v9uxZaFu/Dds7MqFrPGuj6PLAR6QwjywXW3jsTNz1+Nxwe8AqvFdVf4zHPZlOBACCENaMWGY/hryV6kZdm+Q3x9NLju8r545M7RUNWj0ApLcnjlt6fwzHcPozi3BH7BPtD6aLHgs6UOkxtcEXvFskGO/Y3suzAsCKJaBRw+06gz6FofDboN6YRD6z1PyrPe5Q/+vmrbzEQqoHtBhk9fmoHhf/TBrmUH7BJ+HfEJ8JICvVujMwcTbckdHAe1l0oal+SmF+C7Z2ZJXQ+qBnqz5Nvnf3y0RgEg1lWLJZyyTgosWDrh0LmKhAWZQiYFwlstVilJt2oiA0ugzzqXU2ObpGSF7h3tkhsqcBy+/mw1+gzsiOj2QdJNiUdcJ642Npmcc9thuEOvdlIXsqe/fchufuLdGz9HeoLrLut1xZKZPHFqXwI+vXeGw8T1Hf/uky7lWFD5nhUHpePW95e8CqUHCecXY1dDdn6DJb6wLhfOunmz4gHuijBVN+/jf6XPqtE32rpTO5OZlI29K5xUvW0GrMvjR3d8hUc/myx1zj680fPP2qpue+V63Pn6jVj7+2b8/NqcWj2WzXWzcfS1T16BR/u87HZ5NiahBAfiiQ8++AD79jnuythYKMGhARzfvB5rZ35jdxsLto9bvwrZ5xJw+3ufQqmq34kxhUoFv5Aw8FYLVkz/DKd3b8fFbODVN8Bi0CP5WJx0HB7TdyAGTroW6375rkGfR+CtOLVzq0fLKtUa8JambenW2MznzyNjyhQYDnj4RS2KKF2/HukWC9rP/LHiZt3Wrch4403whYVOH1eR1FA1uaGeCv/6qyLBgSVmNBdFRATCXnkZuV99DUuG89azgXfVbNutjIxEp3//RdmePSjbtVvaV9rBg6SOFKXr1tVru4IeeEBKSPFE4dy5rjtgOGCIi0P21I8R9cnHaEmS1wlS5wRTxdtVhE87YPBLMoQNsh/q63MAc2VDC48d/UlExytFKH1s62PB/jmHbMGJYQM5hA8BMveK4GtXQKhJnFkkYuR7HDJ2ANbavSUkxnzAUgaE9OUAVrm6FgUivKOA4W/ZJgC0wbzbBAd1/bpvkYvMzvSTeHbTT9BbPeskxZIg7l39FWaMfxyj23neXrAhCIKA33//veL6iBEjmvT5CWkMW3I2YEHqbLvbjIIRm3PXI0WfjBe6vQGlrH4nxtRyFcLkQTALFnyT8B2SddsR4GaVapkVegddFBwps6rAo3JZE6+UkiScYXEjLKBdzgmwskBxKwsYl0MQOZQZ1XioyxgYUIjDhYmQcRyGBXXHze1H4524vyvWUT25oZxZUCBT7wcfhRn+Kr3D5AZGDh6+Kh3iSyrHJF5KCwaGp6ODfyHWp/aAVWTJFrbnClDJYBLYmKRm1fGW6lxpDj48vgTHipLhozJBo7BKr1clsyJApbcr2O6lsMBLUYy44h346LiAj/pPrrjPYFiNosJXIIq2g7xYDngkiMMhQxT2GqIh5wAfuQF+SjlMvMI+y+BCh4M8kw8sF5ILgpR66X93E0Eni/7F2Ii3pJ/VrA2WEyrOCo2ch0WUQ3Wh+4INB6OghJe8cqxZyHvDIuZD6aKTwzljGHS8pmILA5ShmBR5P35N+gdGoRjxhnbSpboJYZfVuC1AFYGHO32P82WHkVwWJ60zUtkXs1akwKSzb8nFgpoUOh5V39KqEh7mAA4i28nV3H/9MIzs71nVliXfrHKY3ODKse0n8curc/DcD4+iJVk9ayN+e2ueFDxTrn33KLz0yxPoM8b+uIZNaJUV296PtfHji3/gsjtHSxOlrIDEgXVxiNt8XDoxPeiKflLXgV3L9rudMKwvQa2AbmJvKTDSjkoB08AO0t+i5uiFtngXzP9kCd795xXsW3kIJoPtHIKsyP0+kF2osJWbni8lJrCKZM4qHLEkB+2B89AcSoaoUoCz8FJ1O1bNiE02M4HhATCUup5gZt1ECCGENAwWDDvzZfsxCfsOXDx9pRR0/MmaKfXu3KRRKxGpVkoJhG9f+zH2rTpcq8ezZDhzXgT4EFsV/upUCdmQO6lCXxd3v30zspNzcXz7KamS/7CrBuGGZybhnRs/r7Gs0C4MyhwOljBX7ZQAeXHN8ZXRYsW6g8nQVEluMI/sBiG8MgCJBehbe3eAbJgaRl5A/fqPX1zY++vrx2bi9P5Eu9sFrQIFdw+A4F0tsZoFvh2wFSyaOrkySGX9/tP4eM4GlFapsokb+0F9knV+8JO6G/AC6y8H8CzBMrKyM53Ifu7cDvIjCeB0np+UZcc5/32/Bs//+Jh0nVVzrS12DCRPzQMf67zzmqLMWnNslFtgdzWyUzge/eJefDNzG0qKnb+G62+rGYzWrn0wfpn3BPbvScSxw8lS5fw+faKx5ONF2B9fJdnAk0oG1ZZhgerOkomrWzx9hcPkBldYsMnvb8/HE189gJbk3zWHMWvBLhRXCZSLbR+MN56ahN7dImt0jTOW1f6z7ZunfsGoG4dJgXnsfCoLXGJBduz3O2TSAOn3smPxHpddR1wRNSrwvTs6fl/IZLD26wTlljhwdVj/nPf/xv8WvYxDG45VjJnc/m2yzbiQpJSTmivtMzYmqdhedvFy3xW989jueGGm7W86IMwfeen2f2vVsWUIIYQ0jD8X78HP83bY3VaqM2Le0v1ITM7F52/eDLmH3a+cYd+LmphQqYvX61d+IH3X1Ibo61UzuaEqfx8g2A/IdzPR7qF7371NKkYSv+sM5Eo5RlwzWBqTvH7FB55vs5oDf7uL7ytvGUonqrD1m90erU/jo4FJb26RCaauEhumP/6T265WVZMR1vy2STquevHnJypuZ0mpM5751a5DclWCVZAurjqE1BDkz1r/Ob1bEEWs+Pcgnnj+ijqPSRpKu66RePTzyfjige9dnlO/wUGyQUzPaPx2crp0nuD4jpNSAkifsT2waNryOgeYl3vs83vRc3hXj5b956vltT4+ZonXc95fhIemelYA92Lx7/SV+OvDRSit0tWjU78Y6fx810Gd7JZNOp5Sp7mMLx+ZiaFXDYJKrZTGJCyB+fj2k9Ln2bCrB6HP6B7Ytmi3Xee22hI1Sljbh0DUqsAZzFCk5Emdouvrt7fnY8rCF3FsW7zbpGdH2Pkks9GMvpfUPpam56hueGbGw9LPfsG+UoKJKzQmIZ7YvXs3Pv646WNMKcGhnixmE7b+9ZvT+7MSE3Bi8wYMmHgNGgJ7ros9uYHpNWYcwjt1qXG7XN58bzmTvgzrfp6BW9/+EK2BJScHyffeB2tubq0fq9uyBcb4eGh69ZL+T3v2OYgNmLjgKcPRyoNI3yuvQNGiRU2+DeHv/A+Bd9wBTi6HzMtL2hfgax5YqLp0RuDkygCs6rxHjJAu5XzHjYMpMRGlGzZCNJmg7NgRWf/7n/SzM5xGA2VEBNRdu0rJFN6jPK+kpdtuP1D3VMnKlQh77VUoAl1ULmtgLNs6Lw6w6AG/joBvtJtOCWUiEv8TcX6NKCUsOEoq0KUD298UcNm3MgR1r1yfvI5jL8EMnPhDQLfbZdg5RUBRleLUp+eL0ITYEgEuVifniRj6Oodjs0ToPC9iJ8k+AKx7WMClX3FoNwZIr0VhJ20osPUlHvnxrMuO62WVPkDkKOre0Jo6N9QmuaEcW549bs5VLzVIJwdPzZgxAwkJlX/Yt912W5M9NyGNwcgbsDTdeReTxLIzUneHUSGXNMjz/ZU8D4cKDyNE2TCdjFhgeplFhWKrfdC/WWCB7HKo5TW/VFisa5lVLRV+1MqsKDWrpISIivtZBfDoAejqV7OynoIrn8AQHc6hl78qQZShxKKBt8L5Z5uvwgSZk+SHYI0evYKycDS/Mki9yKzHB0dW4fuRNRNnW6JMQxEe2/crCs06BGgMUMnLA/pF+KsMTgvQBmoM2FNwEOd1V6CjTzjM5kMoLGAn8e1PGLLEkqFe6eDB4bCxnfT7UnO8lGDAOiCw5JGqy4aodcgy+rPfrMfNsXKN8RU/DwkajJ35jjoOilDLbZMFRl4JBcfbvTa9oJY6LZQn5IiQ4bw5FJ1V2Q73wbGydthU2BNechNUnIjHu9yDEcGXQsbJcE+MEj+c/Qm2sCl7HbzaY3zYOIevgwWBx/oMki7lPn9tMBJT8rDjYKLU8SI6PACfT1tVHq9RgW22usAKq1YGlb8aIaG+6NohFDdf3h+De7WHpw6srVaF2EPr52zFw5/cDW9/+y6Djclq5XHkZBoMRgs6dQhBuyrBf46U6I1YuC0OK/adRE5+CSyZxdCEaaHJL62o0ssqVb85aSq+2TVVOolfTqV1HwDjCAumWfjZMkx86DK8c8NnUlvmcqwyHKsal5vmeFDCmnbo+4WhbFAELCFayEw8tPF58NmXAUVJ7cb+5u4RNZMbqjD1joL6ZKaUYFDV39OWSRMZv0+Zj4zEbMhzS8AV6yH6Ow+nVF5oXb9v5WE8vPFFfL3tQwy72r7qanVs/3NVEmuCowLx8mXv4uSeM24/B9hJ+6GTBrhZitQbe0PWt3XyRdB6mRDiWmmhTvrMd+bI5hPY9s8ejL9rTIPsym+e/NlhcgP77Dd3DIKxZxgEPw1kBgvUp3OhTrBV1mcX7w0nYRjeCZaYICmAtqIz0eksqOOcn0hjSQNCgO17TFasr1GpvwYOuPL+cWjXxT7QmFEo7ZMURBkHvksUvE/IUBTmPEhFmaGAzOL4M9ES6Q/NMVvxHmvXSLvkhqoKykyYPmsTPnj5OrQGGYlZeHX8e3YBFeUMvcNrJDdUtfLgSTw5aQSiQwJw8HQqpvyySkpgsCOXwdQnEsi3Ql0i2I4v2NvG0WCSBWsP6Ar5ruPgBM+rxpzef7bi57E3j7DvguUhRXwqBH8viEE1k3dkRh4Knf37SszJB1h3BalCqgyv/v40xt89BjKZDCaNFl98sNRhw+vuvaIw8bqBTsckw0Z2kS7lhq56W0pAYVVJeQuPyF7t8flPW10Gn2gFHqHdItFlUCfc8NTEGgnErhyo3hnFQ6zj2v0f3tmkneXMJosU6MKC+zr1j0FER9edAVhAyrLv10hBbzkqBUq710yIT0rNx4sfLMIvn96DmOjKBBx1HcckLLCOJa9devsoaUzCEiXsxiTtQ5CbWveuN3z70MrPYUcUcqmTgzw5u9brZu8xFnD1yqwnpe+nrPO5ENlzuTusvPD5vGvpARxcexQz9nwsVV09sum4rUOkwSwFPrkS7OeFFy/5n/S37aZxPELaBWHg+D61fXmktmhMQkibUFBUht//dh5gv/fweew4kIhLPQxSdmfawz/UOrmBEcPcx2WIYUHgGiDBgQXPT3poPMLah9S8z1X3r2qEQRrAx3ViiHCJF/CNZwEUeWkFmPnKbLz2+zNoDVJOpePVCe87TUpwZfVvm6QklJB2wTi4Pg5fPPBdvQK1HfJxn95+Mr7yOG/MzSNcno9tDKwgwJvzXsAlt4yQxhXFX5RKSeyOsI6IEyY7nu9k45kR1w6WLuWGThwoJaDsX31ESjwIjw3FtAd/cLk9Wl8tQqIC0W1IZ6kKvrOuBI7U6NbooVW/bMDkd26TAvmbCgueP7rtJMwGM7oMinX4WVG9o/TSGauxad4OFGQVSmOZ6s4dTcZrl3+A7/d/iqjOto6H9RmTlBbopKIA7Dw+KxYhdUipUmgprEMIclLqPiaxdG8Ha48ou3GJtVc0FPFpUNazGwh7v/33w1q8/OuT+G3KfOSm1i7IjCVusOQXti97jeqO+F2nPX5sQIgfnh/9ttQBxh1W7ID9XZFG1sLHJDqdDpMnTwbvIKa2sVGCQz0lHtgLo851ltOJrQ2T4GAs0+HYxvpVhG8KEV26O0xuYGIHDkHayeNoLsnHjqAwMx2BkTVP/LU0hXPm1Cm5oVzJ+vVSgkP+rN+aJbmB4ZSVB2beY8ZAO2AADEfqdrBXXeD998GSli4lczhKWGATEOH/m4KguyszYH3Hj0f7n39C3rczpO4G0mIaDfyuvQZhL78Mua/jyl7OqDt3hqp9e+T/MRt506e7TG5ggh5+GGHP1nEQV8cvEPa7Z0kuPqNHoymcWy7gxJ8ijOXHl6zT4iBgyMsyeEfW/CI2FYvY8oKAkvOeJSWcnCNg9EeVg3GvUA6B3YFCz4/zKpxfC2TtF1CaUvO+iu2/SBWdAXZ/IKLPw0BwTxlSNghIWuX541lh6a0viZg0h4MhV0SBraCZWyxxxVN9Huag0FCQSmvAKs29sf2PWic3lGOPe2P7bPx34xTphEVj279/P954442K6/369cOtt97a6M9LSGM6VLhf6tbgyq78bQ2S4FBiKcHOvF3Sz6xqvT9cPy8vuj7pbeTlOK8LgrfSURAPB51VA6togUZmgVxm66bEKugbrCy4vXI466M0o9SslgLe2TKDAzs5TG5gRoZ2R3xJmos5bU6qWOMsOL+cHJUB7c509c/F0fwouz4CW7LOIENfjCivll+h76+kHSg0l0lJKJXJDbbOHc66XpQLUBmwNeeElOCgK/2+RnJDVf01WThqjAQvRRLZYonYe0LHS5FFFcux52RJA2W8BrlmX7TXuK6SyMi4yjHJoMD+iPWOQVJZsv0yECtejwCZ9L7Uys1QyspfM4cCi7cU7OQrN0Ep45FmDUKfwLuhFY+iyLBFKreba/HBwdKOiCuzJQ0YeS0e6nInRoVUJjYPCxoKdTcNlqQvQ1KZrdqTWqbGqOARuK39rdDIaxdw07lDCKKjAjBrz0F8fHgXskYqpIqU2jwB3qkCFGbWueHC6+RFPHzNMNxze906G0mtrusYyJ90LKVWgUv18c/qw5i9eA8KLlSAYu+n4f074rXHr0B4SM1q/vklZXho+iIk51TpeBjmA12YD0ydg+G/4mRFgCOrJj3/k3/x9vwXKxaN7hqJjn3a2yUoeGrVrxuweeHOipP21mAfCL5qKVgzJy3f4ecY25KCm7rD2KMyoElQylE2LAqGPqEImXsCylzPO0pYOlauxyGlHObYEKjP2AcdndyTgE/2f4vHv7wPHXt3wIY5W7F26T4YLu0FaGpO0ihPpkOeUzlxazFa8Mpl7+LX41+jIPMLj6uf1WZi+eGP726Rbb8JIeRitGXhroquPc6sm72lQRIc8tLzpcl0R3N8pZd3g7lL5YQ8O1q3tPOHsXc4/JbHQ8Y6/lh4eO1IgHBQCT7YRzo2UuSUgLtQBbPGeqUJ70gpaaAiqNVkgfJcDpQn0sA5iV4ddtVAh8kN5fex45+K52AVWlVKaJMAS5CIsv41xxnyfBk0J10EBFzYDqm7QKzrQOlt+xKQX1iG4MCmSzBtLH9/vsxhcgNj6uL6OIbtsk3HEnHfZYMxe/X+mskNVZj95VCVCLbhh6vzVxoVxIhAcBmeBy4oWDeIC8beMhyxfTvYvT887eKg2nUKfLtg8CwoRcMqT5pwz0MTkHwsEwd2J0rn8ES9AWDJDXm2Y1tW1ZQlpV5eJUDo8qv6wdtbjTm/bsXZM7bjUC8vFS6/uj8eenI8NA6O5Vzp3L8j2nVvh0Vzd+G3OXshsMRYF5WTH35yAm66e3STjklYddiUk+noPqQzmgKr6rrws6UVHeFY8CGrPvrCT48jOLJm0CNLbH553LvIPJctfdYZJzpOMmH0BjPmLt2Ht565quK2jn06SNVw0+sQoLPyp/VY/etGqXpoje2qR3JDRQVrt8vUvQMm6xgYv/sMnv72QUR2isCqbfFYWyVJw+HzVQlsYt9rL4z5H36KmyYleLC/S0VSLiy9nM8xy0oMOLDKsyQldi780c8mS3+HhBBC6m/99pOwuKmavnrz8QZJcGDfyTsW763bgxUehOk10HfD6JuHOw1YZmMSFqjsEY2sYZapYsuCXXjiy/vh5yBBt6Vh54PrktxQ3slh17IDUhA9C9Zu8OQGxoN1qqok4Y+/azT+/nypVNCnIdz99i1S4ueh9UcddupVqhR4fc5zuPTWkRW3Xf3IBPgGeuOvD/+RAuYZb38vqYjAg1PvqnUSQLfBnaUOzKyg0Kw35rpd/olp9+HqRy9HU45JivNKpXmAjr09LzpVHws+XYJFXy6vqOzPEt9HXjcYz898HIEOOoxlnc/BS5e+41GQvq6oDIum/VfRqZDpOrhTnZMRVsxcJ42h8jOqzNFcUJ/kBmvHUCmZwWE3uT4dbN0cnBSZ8hTrHsIS25/78VGERAVJnVtYARBPGXRGPDfqbfyw/1O8fe2ndknnrsYZrPu3J9hY9NHP75WSgwhx5bnnnsO5c7aEmZCQEOTlNV3gJCU41FNZYc0Pz+p0he6DKqozlJbg0KplOLF1E8qKCuEXGorIrj1gNTdce+TGoi8uwt4lf2PAlVcj7dQJKQmEt1gQ0bU7uo0Yg33L/oGpTNc8GyeKyEtJbhUJDsUrV9br8aLR9l4q3bQJzcV3wni7L9j2P81E+muvoWxrLUrGOyAPCkL4K69ICRQiz0uJIMXLl0O3YSMEixna3n0QePdd0PSsGUDDAv3ZxZKeDl6ng7JdO8h9fOq0HaLFgtSnnkbZDs+6K+T/9BM0XbvCb9LEWj+XdshgmJPtA7E8JVPVLVPWFd4sIm2LiIJTbP1Au9EcihJFHP6m2oBFBHIOApufF3D5TBk0QfaTQ3E/iB4lN5TL3A1YDSIU2sr19Jwsw653hMpyzB6y6GyXFksAjv8CjPoQ6HKTDEmrajeQYkkOh78VcdkMGTJ2AsnrBWTtsyWS1Id3JNDrPg4dJ9EBcmuxN+sMEorql72eUJSBfVkJGB7ZDY3pzJkzuO6662A02gKyVSoVfvnllyZJrCCkMZVYitwuU+zBMtXpLMXYnrcChwq3QWctRpAqHOGarlLCgZR8wKsRLOqgcBLIzs6ZmgS5y+p4+SYWFO7qb5CDkVdJCQ0s4cD2TDWXl3MCOvnmwV9llJIOQtRl2JITiOHBV2BP7nlszzkNi8ijf0AHTIocgGVpm8CjTAoM0FnUNdYpgJMCldjHQ6lFjTCtzuFzuqNVWKTK/lU7DbCan2dLclpFgsPazKPS/xqFfXKCoiLw3zmV3AqTYIEoCjAa17tclnXpiFSUIs1auc/Y+6H6vpW2RW5FGQ9km/2gt6rgrTC7fId18K4MsmMdFF7p/gJ+PPsLjpdUdnaojiU5sCQKGS9IHTwEkZNuMwoK5FlsAfKBykAMDHlaWqcoWlFkKUJ69kEYyo6hk7cV3Xw74urISxDjzRJg7PUP6Ctdck25MPBGhKpDoJXXLajDbLXikQVLsDclrfJGGQdDmBzGYBkCzghQXXh7iwoOsxbtRsfYUIweWvvAHtbuefP8nXXaTmUjVCUyGUxSsOXZQ0lSF4XRNw1DXG4Jvvtzq91ybE5lz5HzeObdv/Hrp/fAv1oAzWf/bLFPbqjCEh0A/cB28D5YuX93/LsXVosVCmXlKbfJU27FR3d+XevXUJhdLF2sIT4wjOgEIagyCJHTGaE9kAxliv05J9a5gSU3sM83QcECdAD2MS2zAoKXEoXXdkHY77a/XU+IVQLunDEN7gghzB/quBTISo12kzk/vvAHPl71Fq57ciLW/7kV2vVHYe0cDmt0EGvzCVlRmdS5oWpyQ9Xkl1lvzsO3uz/GziX7sGHuNhxcf1RKfqgPFtx133u3N1gVceIa+xtzV7nWnfo+nhDS+Aoy3c+T5GfUfp4kr1CH+WsOYe3OkygqNUgdqXr4aMGzY/Vqyxr7RtolN1RlDfdF2aiO8N2aWHEbSxiUpbnfbvOAGCm5wY5aCUvPdhB8NdDsrtL6tYr0s1nSBPzVj07AgbVxUscJVuWs79hemPjgZVj6/RqYymzn6MUqQU5+BxXQJslQ1oOHJQjgLBxUaQrICuRslOJ0O5XpxRd+kEP0ct3W1moVkJyW3yoSHDYvcH78KSrcn380WazSZfcJ1yeh2bEyr+YgN7v/UhKD/IBaJDiMun5oxc/sGPLTtVPw8d3fIG7LiYrb2bkrR8FAVbGkW0VqnnRhImLD8NjDl0k/81YBuRn52DB7K/auPAhr+wD0HtUd1z01ETE9awZ0jLyku3TJTC+EQW9GZLtAaL3qNo9gMlrwxnN/If6Y7ZiZ/VYENth2VFXgfCZ+feR7RAd7Y+jE2nfa6jO2p3TcWBcqdcNPmbME6M3zdyDxyHlovNUYe+tIqfPdH/9bYLccC2RjXS5Ygu93ez+p0d3u26d/kQIppWVZQpSb6qcbd562S3Bg7597ptyCz+//rtavwVnXuIbAEnPc/kXVMUCs4uFWHjOenoUvNr6La+8cjbXv/e1yeZnOPjhRX2rAvI//laqmbl+8FxsX78FOCw9TtU48EkGA6pBnE1oswO6BD+/EJVUC+UjjoTEJIW0DS+BtiGUcfRcu/mo5Ns3fIVUSj+4ehZhe7d0emznD6Q3uv//KXBeW8lTyiVQs+XaV1CF238pD2L/2iBRQ3++SXtI4hVWMN3twno1LNDfIMlVZTBaknclErxEtO8GBjfG2uugc4mkV/bLiMrvj/wZVWAxEh7tcZOTYyurtKo0Kn61/B1Pv+hondp6u1Zikug492+HBD20dzdk585zUfKyfvQX71xyWzh2zokcsuSO6W815krG3jJAu6WczpU4BUV0ioHEz1nXGoDPglfHv48yBynMCrvz44h/S8w24rPadtvqO7VnnLg7KRhiTsNfOikSwZF3WmeLS20dKXQPZMW5V7Pexc+l+pCdk4dvdU6H1sZ8n+frxn2rVgWDr37vsEhzkcjnuevNmqSNnXTo3NvT5YbY6a9ea77uqrN2i6p3gIK3HwmP6Yz/h6+0fSl11apPgwOgKy7D0uzWYefgLab+yMebhTcdgNTtO6vP075Ql07CEoarnJEjjacljkiVLluD333+Xfu7QoQNeeuklvPDCC032/JTgUA+FWRlIOeG+XLVvSGit1ssSIha+9zqKsiqDBdnPVa9fzEpys7FjwZ/Y8+8CWKt0BojfvhmcTAaxFq15G4NSW/dqHxcTobh+Lek0vXtL/zdX9waZry8C77rL7ja5vz86/PQTTImJKNvJKgOL0A4egtQnHgef63nmV8Att1R0h+DkcigjIhDy6KPSxVMssaG+ITZFS5Z4nNwgsVqR8dZb8B49qtbdIoLuvRfFS5fVupODPDgY2v790ZDyT4jY+T8Bpirzg2cWiuBcFBow5AJnl7COA5WTGuYSEamba/ftLAoA/3/2zgI6iuuN4ndmPRt3TwghuLsVKG6lpYWWtrTU3V2pQEsFqJe2tHiLF3d3dwkkIUrcbX3mf97bbLKb9SRQ2v/8zpkD2Z2dmWx2Z+Z777v3agCx2dc8oh+Dbm8wOPsjD507YxbkUP4DTRRXV3AY9K0I/m2AYvt9enYFI7weiLyNQXgfFgfe5ZBnQ+hL+u0MTkwJyN9/wEwGge0ZMM4ssQX+VfyVuK+JtrP3hgocrly5giFDhiAvr85dePbs2ejRo8cN26eAwM0gpaQYu9PyACd9Bv5Sf7e2W6otxM/JH6JEV+fQV6DJpoufRIQSHXHZY5Cn8UGorMzKrZ+IG65UhIBleYQpbCfeqfRiFGs8agtyR1oj0r5k77LMgkOovMzMTR8o1uZiU85i/J25FofyQ2uTJHblHUNCXjGivesmCHQcizyVF4o15g0EDHV71etZ6A1yVOsk8JDorEQQztBzrM0UC6W4YYOwtxrlOuMNAFPv7+/KAAsRBbT0JsJz+k47Xd+WoIQkK9iHwdHyOPT3vQqpHcGFjPVBK99xFo95S7zwVutXkVl9HZfKjTFWrbwS8HPydFQZLIUuRNRgMj+iA1Nmz90WNJCKG+iRMGL4SQMxIWo4XVwlSObeWIItlp4+byluMIMXMSiPZRF4oe79IS5n077ZhNW/PwWF3L0GprteHI29yw657TIVFBlA44+bkrN7L+LTCTOp65GJZbPWQzuuu92TTXZ+Gf7edhZT7u5lkd6w60yyw30RR2iPk3WpMGSwmkwMmgscBkzsg/LiSsx9azFtkHEV4p6j81agamgb2qxoDu8pR/WABHjsuQJJZl3xVdUlBAYJwJE/X81Bkb8I+ZnRAXyYJ7ShSkhzXSuO2LJqGJw1szEM9FH+0Ad7wWP7RYjMRA6ElbM34IutHyC+czMkn06F9GIWXVxh74pDeHPBc/Q97D2uO94ZOR3nbEz2KZQyqGqaRO0hlUvw1a6paN0zQRC4CggICDQh6ZcyceGA8/hP4tTnDuTa/NSny1BQYrwH41ggqaQYVyoAZkp3yC7mQnE+B6JqHb3WqdrZTkswoWkRCOXhNLB2JoBtwXnKoY8Ptfu8ITIAhqA8iGpc2M25fjUHv7y+EPM+WAqtWbrFjkX7IBKztOHcBFNleX8gKWbhe4ilgkW9nIVezhiv7fb69bUGSJPzaw6KMxZkTsbfPJw0SP9bmokc3VuJ8yth8HfsEN8mKgR60mTtyi2sy0Oaro99+gb7YMRjdUZQBP9QP3y96yMkn0nFuT2XqJMmERMTB393nGHHPDWs9v/kMxcaHYQHP7iHLq5ChA2NZe3K47XiBtO7Q76HPEvS5IgqlwMKS8FkF4CpVIF8W76Y/B3+zPzFbWfW8S+NxqE1x91uvAqLC6EpB03Jye1nMf2+2RYJI8u+XEv/nvYgTX6b5u7ChNfG1j6Wn1FAGxJrsdVYXw+NVk8/12KzfQ2dPIA2xsx7/y/qAuoq5Hgb6kLrdNu5xeDCHI9Xsbn2hWgGP09wNUk8otwSsNW25zvJ52HVNxvwyZq3EBPhj/Tr9gV34ms151IzSBPeSz8/QQXSfe/sjjfGzsDpahX0UQG1aSRsQTl8Uguhy60Rm9mBCF2I2KJVj8a7hwsICAgI1EEc3i/vcp7qGRzgXg9G1tVseg9WnFtnIEVSWhuS1FpLbhHQLJw6hNuEiLlzmsYVmSRU/fTyPMx9Z4lFTUJMSOrXJI5gM3RgzqrBd7SfLixa537/ksLTvbTiWxEyDkzEGo2hRZc46LTO50gaDKk3SysAX9uf/4BALwwb1cFqzP6b/dNw9WQKLuxPBCtm0a5fK7zS7wMq4nWVsU/XzYeQ8fLwuBA8/PG9dHEVe8mI7rBy5gaXxQ0E8jvOmPwdlqT97Hba1viXxzRI4BDTJrJJfldzjm46hc8f+JYm1pknNzjq10m7mIltC/Zi3HMjah/LSsrBaTeSkwlVNmrXMU8Npcey+JMVbn2OyN+AzLs0JWR+hSwO1/HxAKeQgnWQWMr5eoInAnWOA1tQBkZte10yb7b6241498+Xaf1pErC7yvo522jqDanr+o3vSa9NSSeNbvrmyD3lUDup90gaypc7P0RCl5uTYCjw7yYnJwdP1PTbEqHb/Pnzkd5AA+6GItgnN4CirAysm/U55r38FK6ddO4E0n5Q3SCiK+xd9Pu/RszgCHNxg4mGiBsU3kYHzKbAw8cXUW3cV1jeikjj4hr8WlaphPewofT/ivbtcaPwvnMcPLp3s3pcHBKC6N9+pSICW8iaN4f/Q5Ph/9BDULRtA7/7jIpeV1B07ozAZ5/BrUDpipVuv4avrkbZ2nVuv07eqhXCpk9zLdLQjIBHpoBpwgQHVSGP/W9bihtM8E7uN9N3WE46VGQZUwTcQR4ASG3UZVEDGQz7g0HCfUBNn5lTPBrfT9ZoFE1wDIXnyPvIo/sbLGS+br6YB64fMP5dri7nbYobCM7EDXRTBiB5NS+IG/5jVGpV2JHeMAeC+mxPP0O3dyM4efIk+vfvj6ysusnUt99+G88+++wN2Z+AwM3gSlkent63HCM2/IJViQXQ6R1f4PoGDnRr+2uv/2EhbjCHJCQoRcaBJzUnQabaD8U6D2g4MU1sKNJ64GRJFIq0SipgyFN5Qs/VDZaRPoMClQculYTQ5n/SJE5EBo5w1JvgJ62yEDeYIxNXoJmXcTJAJtKhjX8uFGLLgR3y2khlGfxlls2+eoMIpVUeKKj0Rs6iIKiTLQ+CJAfoDY6PO7XC3yqhIlThjU4BNiJP/4XEKo03K4Z6fz+1QeK8QYj3Q7+gNmAYCSQSxzWagWdQoLd2l7W1C7Wh7n5YzUkhEj+OYLn19j3FoRgeORMeYtuNdlEeERgeOoQuMcpo9Am0bDqqj54KWYx/65ZerTAitM4t859k+RnHg84GBQNtvcC6ymoNduxPdHtfrXu2oI48jhp2bDHxjXHUvaepIFHJH4ydYSFuIBjC/GBwktq0dZ+lIvhabjH0TsYxOE8ZeDNnpZCYIHjUS4EgDHmwP+ZenI27XhrlcnN9YGQA1B0i7TcxMQzUnSwbsbRhHuCsg2kofI3wQR/ouNHPnEiVk0LOXN0jk0DbMdpmDDNpKnr9j2fh5e9eQiJppjpa09D112ercfbAZfA23j9n4gbThOP6n7cL4oabDd9Ei4CAwC0Hab5+b/RneLzdqziz27nT5IhHB7u1/S/n76wVNxDxntYbMMgZ6qTPKcRQdYtEyf2doQv1Ai8Xg/Nx0hwjEcEQ4Po1kKCPDXKsxDat4wDzRiIT9RuJ2PJqMKXWqXFERyxRcZCXGuAvkhmFC/XXMXDw3HKxVrhBXPwdNQQTwkN80LK5YwfPfwPkHpK4atrD41yuw9cHSKXo0yoGSrkUzZw0WZP3nnUhvYHAFFs2d5GUhIRu1o0DpKnhi20fwDfIdrpffKdmGP/yaNz5wkj6/xGPOK5JzOk2vCPGvzwKtwKb1p62eoyKHEhTuo6DyACwWUZxgwlyL09cRd2FuBE/+80jVCjsDve9dWeT3iOSZsiP7vrKQtxgwplYYOcSSzOZ9EtZFiJyprzaqatAdLi/hbjBBEmPmXthNsY+M8zZqa2WgPDGi1zsweSXgCmzL7xmisrBllQgOMbyPMt5yKAe2BaaQW2h6xADXadYqId3gqZbcyqcscWp7cYUuw9eGAlPO86/osxCiGw4tJJmKtPrF0xdjsu7LkB+JAXKNSeh2HIOHutOwWPnJehsiCNspdRtmbfb6XoCTYxQkwgI/GchzddvD5+Gpzq9jst/HXCa/DNmsHu9McSx3Fzc0BQwOgOYKxl2r+dMchYYleuNv67gSk3iDMlXhfDS2rmGbqsEu6PK7WbuZk0sMP0nUCjlVAzQUAIj/NFxYFv4BHrT+uBGcdfotmgea32ckdH++OK7B+DpZbueTuja3FiTPG+sSYZMvs3lffYa25Xed94KbJq7w+3XFGWX4NBaOw0yDug2rCOe/HKy2/XFfW/fhaYk9UIGPr77awtxgwmS5OJOTZJ2IcNtEXlsuyibj5PPxNxLszDs+RHQxwRBHx1IRQSO8A2xXTM3Cldrxpr1QmODLR4myZm63m2g79UahtbRMLSNhe62DtC3i7U5f0E4ue0cWJbFmwued1vgRVKtz9XMX/3+zhKb4gaCM3EDgXwmdi1xw6xZ4P+2JuF5Ho888giKiox1MkltGDTImBR6MxESHNxAp1Fjy4+zcfWo/cjb+kS1aY82t7n+h60uL0OSG9t3h6CYZug94X5s+XEWtKob00DY1ES364jRL72FS/t24szWjagqK4FUJkds566I79YLG775ApwbjvU975oIkbixvvy3Bn733Yuc8+4pJCkMg4jZs2qb2v0efBCqM03QnCoWQxwYAE6lhjwhAX6T7oP3KOMAuubaNVRs2w5OrYK8dRt4Db4djBuN+IFPPQX15cuo3LHT+tdRKIwpDeHh8L3nHvhOnABWfmsovXUZGQ16nSbFsUOoPXzvvBMe3bqjdNlSqC9eou8NEbKQ+8y8adPAVZpNkonFVNwQ8PjjaEpS1vHQWc/FuUR1HnBxAYfWDzBgxQwk7s03UqIGkaSAupvFvJM8Ev/kkG9mcOQKYg8gajBw5S/8I/i3A5oNZxA9hMHZn3hcW9+4u5SiyzyCOrAYMofF1ZU8Mnby0JCxGBc2W5XLI/EvAy78gUaTtc/4NwnpKiQ4/FfIrS6FgUSnNAFkO3nVpfCUNm3S0vr16zFp0iRUVdUNrL355pv4/PPPm3Q/AgI3iyq9Fm8cX41dOVfpz6Kanu+kkiC0DsyzOUHdxrs9uvr1dHkfZboiXC4/6XAdhUiHKoOxg9bAk0QHJV0IRLxADkRGuhSI6FPngTKdAgqRFi28YjAqdAw+OL8COmihM/BUYFCpk8Kb0UDMWl+ciDiCCCFE1OnfEiKPUIocJ5KFK8uQUh6EMGW5XSEEIVRRjmKNAjzPQqMToVItp+KEASHx+PKTMdg6dyf2bNwBfcsKKP0V6BDZBT36tMa67K/Bg7PZaH+x2Npt5dlWAyByVXF5i3NPdA98cWk9VHoJFJI6hyEiWqk2SKEU2/7b6Dkx3m71ZO37oFQ+itLSV+3uJ1Xrh2recoCT3OPqeMumbwYSyEXBYBg9Yj0iMSJsAHoHdAbwEEo015BeuQ8GXodAeUtEKfuCdRQxVo9RYXfjuioDl8qtaycxowBYMcJkwbgtaAD6Bd4GCXtr1J0ZJH7aCQYZA1RafvfS3IgaNmfUE0PQ6fZ22DBnG1LOpVNX/dvu6U3deOa8usDCKVQsEdFBe9Kw1ZSs+3GLTUdSXuq8Bs1KK6DRzPe+ZRRdeLribMzxYMwmBG+/v5/F0yRue+kXa3Bur3txap6+SvSb2AdJuY6dfDg/Dxj8PCAqqa77ezpan3w09c7HUToMaIOhDw3EwHt748s/92LDgYu2HeUMlloKfYQfOJkYrEZvMWFCmmBbdI7Dj8dnYNWsDdiz7CDKiypdmhjJSS/AgpWH8fupazCM60Enq0XZxZAkXgfrhosxYceivdQpqm2futh1AQEBAQH3qCqrwvT7v8XxzdZNy44aG/qMszbCcZTecPR8Gv0/STGgpYaNYoeIDMtGtoLfXy4O/ul56jp554uj8OVD31PxmyN4F9zjeXnT3PeJLqRC36MVILXeXv9eLfD6S8Oxduc5rN5zDiXVanh6SDGgS3N0kynw5aJjFsN8kivZ0IT41jqL1+fRiX3+M4I/klLw6xsLbT4nya2E8kAaqvrFWj0n1hrwzQt1Te0Tb++EL5bssrsfSRUHUk7yTiIIpQzgx/LQ+nuiRdc4jHt2BPqQFLEaZ+HD605Qh9eWPeLRc3QX2tzgKo9+NglpFzNwyoZzplwpp8Y+kS3CMOqJoRjx6CCLRLF/khwHbvm1kPS4apVVOkxDIPUFEXiQmiT1YiZtHBl0b1+UFZbjtzcXWziFSmQSmmhB6pimZM33m91yJDUn9XwGln+1Fve8NpZ+PhT1xNNslQZsfjk4B00+I/pZ3use2XASy75cgwsH3BOy+wR6offYblj301bcCIiIS3ziKvQd48AHmv0+PA82vxRdAz0wfP7z6D+hF2Y+9jP2LD0IXsxC078VeGW9eUCGgSE6EFqWgeyY9RybRqWlbrSt20bh9y8exNINJ7Dr0FWUU4FZFU1uEKUX2M1fyUnJw4KPlmHlrPV1u9QZICq1bhhzxsZftmPU44Npw6CAgICAQMOoKKnEpxNnUVMN8/Oy5EIGdB2t7/0IA3snoJcbKbLpl7PcHs9zlS7tIjDytVH44r3l0CnJfAqZSKkEk5UPpsR2IvY/zaBBPfHMoMewNuswNqQcQYW2Gp5lEgyUtkVC62DMxM9ube+hjybiv8LoJ4di/odL3X4dSdH4dP3b9P+kLrnj2eE0BbCxSBVSePp6QKfRo1WPeOrE33N0V/pc0pUcHDmYRAUubdpHonuv5m7Vhk9+/RD9bpzfZ53iSO67STJAVMtw+p4MmzKwSY2NGopWo0OhKzWJDYjYuP/d7r9uwut3oMfoLrQmybicRR3zB93XD/mZhZj33l/03tQ8dXjKp5Mw5EHXxSOusPqbjQ1OF7l68hp9vcmsycPb/eatYQ9ZGu8d+PsorXMunbgGbZdmMET4A11rjJ15HqLrxZCeSgVTb+7CL8SHika2/NG0ImGGpFCT98fBuA+r0aFb35YY/tBA9LmrB2Y8+B0O/n0MvFgEXfeWgKKe6ItlwEUajTLE51NtCguIGL5d31Z0nmTlzPXYv+oIKkqrXOrdup6cixPbztI5sMZC/r5EAP9fEJoJ3Di+//57bN1qHA9o27btP9ZjxfDuSqz+j9nw7Ze4cshSpeYIkUSKp+bMh8LTG6V5uTi7fROuX7kEkUiMZp27of3tw6Dw8kZuShISD+6FuqoSEpmMNvL/kyh9/eEdFIScpCv/2DH4h0ei47DR6Dh0hENBQtqZk9i7+A8UZtZFn/iFR0Cn1qCyuC62TeahRK/x96Lb2PH4r8AbDLj+8suo2O660lQcGoqIWbPg0YU0+dSRO206ShYvbvCxsD4+iPr5J3h06YIbBUn/qNy3D2WrVkOXmwtxSDB8x4+H58CBYNyYBLiZpIwYCW2acSLOHQKeeALBr9lv8GoIXFUVyjdvhjY9AyJ/fyo+kYRYKkybgh1PGVBi7LdsMKG9gH7TWVr8bH3UgHLr+z67xN0BdH3FWCSlb+dwbAZPOuzcJrwv0PlFYKPryXhNRvxdDDq/aPmZPvWNASlrG75NzyhgxALWojgtzzBg68POXyvxBnTuJ0o6fG/7TvvnC1mBpuFcQRombviiyd7O5WPeQocg2wOPDeG7777DK6+8As7MeXnatGl47733mmwfAgI3m+cPL8OOHNv36X6yKkR7l8DPw9gUoNGJUVQRgr8GfgSlRI600hIsOXsOp3OyIRGJMDguDhPatoOPXI5zJZnYmnMelToNQhUapKpWOT2WfI2XRToBqSzLtHJoOZFNoYIJktZA1iGu/0S4UAcHhcgAD7EOwXJvBMq8cbk8s3YfEsYAUb3tSlkdwuTOL1T7c+PQPiAHYgcCB4LWIMK1Mn+UaxUIk0ZhUlx3TIztArGD+82rFUexO28+CjV1zReeombYnR2CK2V1A3HeEjleaD0QDzZ3XWxyq6PnDHj11GIcLLgKT6kGHhLzwVIenmINPMRaCyMUH3EInot/Fi28LAfNSkveQHX1Eqt9FOg9sL6iFTTEer6egETL1zXseIq98WTcm4hR3rgGAY7ncKHsFI4U7UOZrgR+0gD0DhiINt4db9kGsQE/zEVOueNJMd+rBsjq6SAeva8PHrm3T5MeS1V5NW1IyU3Nh1+ILwZN6kv/bWoeb/cKnXiojyHYB5r+rR2+li0sh3zvJRrx++GK1+hj4z6Zj4wC+05t0mtF8NlSd14mjlbPzJpC/7/5952Y/eQvbrsbEYgw5KEvH8CEj6y/F/VRbr0IcV45OAmLjI97OV0/5I+LUCSX0YF4XiICo9aRAcLa5ye+fgee+HJy7c/k+Gd8vhJrjyRSQQWFIw7RNoMi4LHpLERllg1qcR1i8MuZry0eSzmbhsdHTYcuJoAeB2kOkiTnW0Q+E7cj+bjuKLHVoKk3QLb/MkTF7qnsB97XF+/9+bJbrxFwD5KcFhVldOmK/PYtiAMa57KlLypD1kvGuiMzMxORkf+NJCQBgX8r74ychhNbz7q8voe3Astz50ImlyIj8TrW/7wVV0+k0MZi0vg9fMpAKH2UuHAwEXuXH4KKTDLHBGBl0nX6ep3cmDrlCK+dSdC0CIIu0v69BVuhgd+Sk7Sh1hWCogKgHNgWF9WOBdXilDzITrkxgOkAXi6FITYEXFgATZyIjw/FnWM6Y9TQ9hA5SMnav/oo/nh3CbKuGpPByb1pxG2tURIXgkKz5lsfLwWevL8fxg3riP8KOq0O743+3KK5zWqdUE9UdwiDPsSTJl40Y6SYMfUBxMdHWNzvfPTHVmw8bN3EJiqohPJ0LhAdCsikxr4DGuBm+bn091dixrQJaBF/45xXDQYDDq09gW0LdqMkt5Q62498bDBt+LhVa5IJo2airEaMaw/+cgpQbun6+/iMB3Hvm+OaXKC166+DyE8vgF+oLxUn20vQaAwPxT+PnGuOhcqOIJ+x2yffhncXvED/5g81fx75GYUWCQba/q2pa2h9SILLlNvb4dFPJ9Gf1/64BT+88HuDjoM0WRFB2PM9jI13NxIiWOD8vWrrssmvj8XDH9dN0JDx3RmTv8e2o0k0scER8u3nwFZYC6Fbdm+OH47OsHjs0pGreKmP87Fi70AvlNdLCWwMpOHvjT+ea7LtCVgj1CQCAv9tXhs01a74wBDuB11COHg/Y4ooU62BX1k1Vu/7BGKxiAreSE2SdOoaZB4y9L2zB4Y9PJAmsp7dexEHVh2FukpNG1W3/G5fAHszIEmxJA01+XTT1BsNIaFrHMY+OwLDHh7gUJy7e+lBzP/gL2SnGO+ByL1pdJsIVBRVWqRg+AZ54/EvHsTwKTffAfpGoVFp8M6I6Ti/37rp3x6RCeH4aPUbNMnCBLnvIw3Ue5YdalQixOdb3kdsW9vu+U2BQW/AgdVHsX3RXpTml9HkiZGPD0EXNxNSbibjfB5CtY37Q2eQdLi7XmzaZLzy4grs/usgCrOKEBDhj9sn9YN3gPE+uCm5N+JJFOc4Tnd0BmmAf/33Z6HX6fFAzDNuJdpM+fRePPDePfT/RCRMxDukziFzNFyQt83XsAXldLzfvLIlwuDBD/THa4M+QlOjax0BfSv748xPPdAfk8f3tPiOfvzc79ibmAuYEhhsuerzPCT7z9PrT33a39Yas/Z8YvHYmd0X8Mbgj296TUKMoEgqu8CN499ck1y6dAldu3aFWq2GRCLBsWPH0KlTJ/rc/PnzabKDiRstP7g17Dv+BZTm5uDK4f1uvcag0yL19EmIJRJs+v5rGPR17nVZly/gxIbVCIpuhowLrk8G1MfD1w/Rbdoj0Q3hhTM8/QMw7OmXsPCNF8Bz9l39WLEEnL5haj9ntLt9GLqMHOt0vdhOXelyaf9unNq0DvmpySjJvg6xVIrYjl0Q2aY9fIJD0LxLD0ga4OpP/maleTlUlOIbau2++k9CUgsivvkGpStWomTpUmiuXjUOqNckWij79IHv/fcDer0xOaFNG5qsYIvQ99+D15DBKFm2DNprqRB5ecFzyBBoEhNpUzyvMV50WW9v+IwbB0W7tqjct5+KLDy6dYPPneMg8vS8sb8vy8Jr4EC6/FvwGXcHCr79zu3XeY9u+uhoVqmkCRc3Gq7uNNdgco8Aa+/k0GI8Q9Mcjk7nXY5ZythJBA6AXsXj1DcNEzcQsg8C3jEMpD48tM5Nb91G7AXobdx3BncFOjxlORF1bQOHlHWN219lJmiKRYhRmE/fn9PfuPbaphQ3EIouAeoSHilreGTsNiZ+eMcAzccyiBzE3LITcQK28ZDYjiJtKMom2h6Z8CLxaERRbII4RPz888944oknmmQfAgL/BEnl+XbFDYQSjRL5Wd4gwQkiloNaJ6HigL3X06BT83hj61bozQQ/R7Oy8OuJE2jfToqTpXUD5F4SNXo76ccgdarKIIaI4REg9UWCVwI2XL8APc9CIXJ8QyBiOOrcLxIZoON46DmT8I2FykAWCSIVUXg09g68cW5G7eiQjmdAQmPIPk2XCzHj/LxBjtXAMXS/zpCKDEjwK8Tl4mBMbtEJE2Ocu8wmePWky8GC/ViXtQ9nSgtQZZBCzqowMqY52nklINzDDwNDEyAXue/uquP0yFUXQsKIEaoIxK2EmBVhVpcHsTrzOFZmHEO2+jqUEj1YVg8GLFp5dcbY8L5gGDV0nA6xyliEK8JtbsvX7yvIFWNQXbUYen0qWNYXYvkYXCstggFHyTtB15OxXujgOwQh8hgklp8FDx7xXm3Q3a8/ZKIbm+TGMiw6+Hajy7+Fce1aY86hY3afZ7U8pDbu9wb3a9Xkx6L09qDOTTcavc72OAabXwamUg3eQfSvODWf/ksmaCaEPIY7XxiFx4d0x4d/bbezMwM8TlqKKXb9eYAKHCpLq/Dji380eGBv38rDiG4TCS+5BBWO3KU53u0UA04pA3tnV5QqJHSylggcJNfyITufhV7DO2HKtPss1l/7wxbs/mAFPMUsKsd3BRyZDJBECxvHSxyLLx66UpucUFmtwZcbjqJ6cJ3oRB8TAE27CMiPXoP0WoHxsWbBtsUNBLEI2q5xUGw/59bvn3jkKgrLqrBs9xlsO3kVVSot4iMCMGFARwzu0sKtbQkICAj8v3H1ZIpb4gZCdbkKp3ecp40Ps5/6BZyh7r787J6LWPHVOoTGBVs4ixsCPYFhxuYIM02rXfy6N0PnwACsU5XaddZXnM5yWdxAiGoVgcnvjsdTU5fSmsIeyrwyNMGQKIVRayFOzATIQhLTJjyNkSOcixH6j++Jfnf1wKa5O7Hupy24djYdWXsvQX7yGvrf0xsdxnRBWJg/eneNg8yFVKv6aLV65OaWQSoVITS06QWqjUEilWD6xnew/udt2PjrdmQmZlPjHPI5I/+SlISxTw+jwhni3Nm6ZwvaTFQfMib50aPDMaxHS6zZdx6Z+aXw81JgUPs4XFm4DwdzL0J/vQDw9YJ3qB9GPdgfYZ2a4eSpNFqxdu0cgyG3t4W8iRI97EHGt8jfmyz/FoaM6IBVfx2x+zyv0VqJG1iWwYCJvZv8WIiYinwebjSkAaghcJ5y6BMiwIX7Y3O5Bkcf/hH33NENk96/B98+Oad2PbZaA9nuC9A3D4UhKoCm1ZFaR5xmTCHYlV1CBQ4l+WX45bUFDf49dizeh8iW4dSN11ZKXmMhzsKVNSIspkoNEWkmBdD3rh40WcMckgK3+68DMDgRrROIGyybaBTJmXPleAptZm3RJa62ueznV+a7dKxN2UhEuHwkCYXXi2jaB3FtJe9vXMdY3PHM8NrUFwEBAQEB2xBhtKNkBVF2CV1IGhtPxr1UWpCRM/Ka60k5+OH5ueC4uhv8M7suYMXXaxEQHoDLR642SoxAUrr2rTjcZH+6uI4xtLn6zSGWzbD1kStlUFc1LD3KGeNfHkObi50x6L6+GHhvH6yfs40KSNIuZCL9YhYUXnL0GtMVHQe2RWizYPQY1QVSF5Ly6qNVa5GTmg+5h4y+17cSMoUMM7a+j7U/bsXGX7chOzkXjIgFp+fAilj0HtsVo58ahqrSKjp23aZ3AsKbh9q813/3z5dx+/39qXGO0SjIB33u7IEzu8/j0JoTtfW0T5A3HWsPigygz5F6puuwThh0Xx96PDcSkViEARP70OXfAvkMk8+mu79n/3ucmwm5i7e/F03VuNEYGliTmLN13m6c2HoG418aTdO4f3p5nsuv3bl4PxU4kHve394yGi5zwT52xQ30+SBvcMHeEOXXTVqRcY6IhHCadOEshdNdxInZ8IgOQrkN4fjgvq1wf7378iUrj2Hv9TLAPGWPDEGRQSPzKWiGARfiB1FqrtV2SfoJSUGJaW1sTC8tKLObSnmja5LEY8nIzygw1iSrj0JTrUF8F5JEObw29UXg1iUnx2hy4oiGCiC0Wi0eeOABKm4gfPzxx7Xihn8CQeDgIiknjxlPSG6Sl5JEkxvMxQ0mVOXljRI3EGI7dMbI516FWCbDhd12JtzdhOc5rPrsQ4fihuh2HXHHa+/S9W5E0kNBuusKZLL/Hb/9CJ2mbnBNr9Ui7ewplORmY9InX7ktbuAMBhxZvYz+7arLjArEgMhodL/jbrQdMBi3ksjB77576WKC12ppswEjdu/rrezViy71CXn7LagTr4CRSqHo0L52u0ToIOAYv/vvR+maNdClZ7j8VnmNHAF5q4Y1E6kvX0bxkiVQnTpNPxueAwfAb9IkSMJtN5G5g6aMR+V1QOIJeEdbTxLqsrPpOTKwfSjKrjV6d9BVAJcW8PBtAbR/Ari6HNC4IAbWVwEGLY/MXTz07icDW5C8hkf83UDiIjQ5tsQNHqFA76kMRLK697cql8ep2a4LPBxRns4jpKtx2ydn88g/jX8EEpW+4ykOKmO/EqWgBCg4wyP6CNDjHeOEosC/g1APX9qkbCAdx41EzLAI8Wj8JDlRzk+ePBl//fVX7WNKpRJLly7FmDFjGr19AYF/kt05zgfXRWIOWq0UMLuVP52fgwWHz0LH6uHhpUZ4YAlkIj3UaimKDAqcLLW80FTo5KjUSeEpse9UShr49bwYeh5o69MZTze/H0XqP3Gg8Ji9fqJaiJu/iDFQ8YWE5WmSg3kShCkZ4IUTC+kgkJ9cUytOIIkPWo4Fx7Ho4tcWb7R6HHOS30e22n5qVpFGSY+VCCdIOoQzWIZHuLIcV8udDwyYOFuSig/Ob4aWqj2l9DE1p8Ox4kTkqAsxp9tzbosbiLBhWcYWbMk9iDKiCAQQ4xGGCVHDMCC42y0lcpgY04suJsj7IGKIqMS91Ca5fABdzLnLCxgWVo48dTrEjAQRHi1qt9szwHJdAWumdO+MDRcTkVVmW7XqmcVbNfqNGNgG0SQeuAFcOZGCtT9uRuLRZEikYjp5NfaZYQiMCGj0n4c05xAXVC8/JaJa1rntEoiIwORo2q5fKzpZWR9ylpGeSIGGiDfE1p9N0fUiiMxcUcsKK7Bg6jK03twCL745CosOn0dJTcMNgS1Tw2tPCiQFls1YpHmTHM/OJfstoqYbwtofNuPOH6Zg0ZaTdtcRZ5WAVRnPbayOgzSrEtpI+wYEjNYAfZtmKDUTKfBkcqBNBEL7tcI7Mx6ijYImSGTyz6/Mo78TozPQ/emj7f89xdklYDW2J09IsoZJ4DD99204c8W66QgiFupezcGWqSAuqqQCB0fw3h4wBHhBVOT64L7B1wP3T1uMwvK6ovFYYjWOJWbizr7t8OFDN16IIyAgIPBv5fC6Ew163YUDl7Fi5noLcYOJwuxiupjDFlbWCRNdGBfrd0d3vHn3QGjfnIetxYXgZWIrQaLiontu6hqpCG/PWANa9IhsFzkD2kVj6rzn8Wy3t5Bpo5m2sRChgquQBIMfX/gdOm3ddVhdqcaJ+btReDwZs/d/6ra4gQgbFszfj02bzqK8RlAZHx+CBx7sg9tua3pBbEMh9y6k4YIsJoiYQSQmwnrXaxIyJtm3fTO6WDC8K0pmlyHtQgbkSjkSusXVbnf0yP9OGsaN4p77e2HvjosoLLC+X6Ni4Azre3fiABsa27AEauLIT4Q+V4+nQCKXoM8d3WlN4h/qh8ZSkldKG+uIw2pkizCbNQkZE2nfvzUVPrsD56uEtk9rmt5iorhchV8X70enNpF46JN7sXr2BlSWGOsPRquH5HIWXWwdJ2HHwr0W54SG1iQjHrsdf3+7CU2NSdxgDhF5v73oRdpQZiL1fDp+fbNmosZBmo0J3sE6pCYxCRy+fPgHJB5Nwj8BSa1/psubKC2oq9VPbjtLlzueHY4Xfnj8HzkuAQEBgf9STcJodBazDmd2ncfSGWtsmpHkZxTRpTGQ5n6SQPVO+XTaENwUkCSJTyfMdLjOgAm98fq8Z/FE+9doQ3xTc+1smksCB8Kxzafx00vzqMO/CSI0PrLhJAqvF2PW3o/dFjeoqzVY8OEybJ23CxU190EJ3Zrjgffvpvd5twpSuRQTXhtLl8bWJL3HdqOLOeOeHYHi3BJ6L0PEp+Q9MCVqEBd2Acfc9/adOPD3UZTkue5uSu7JAsP9GzwGsu7nrUg+lQqpQop+d/XE6KeGwi+48elxRTklyEsvoGko9YUyxASS1CREWNOuf2sc/PtY4/eXXUIFCl2GtMf9742nZkhVZc6bsUzv9dZ5e2rHgvSRzt9PfWSAhcCBsOb7TTRpZ8MvTdMXa4KkWmu3noE02AeGmCA6T0JEcQm+Srz33DCLJM3LV3Pw+2I7NR4pAllLkYOjmiTjUp3A4bP7v0VSE6WCNkSY/3SXN1FhlpB9fPNputzz6lg89fVD/8hxCbhGjx49nK7TUAO2999/H2fOGO9l+vTpgzfffPMf/bMIAgcXMTQwqSAn+apNcUNTEd/N2ERy+5SnkHX5Ikpzsxu9TSIUqCyqm9Svj29IGO5571PqqN934mSs+pyIIRrf2GhO9tXLWP/NFwiNi0e7QUOh8LKv4Ns9/1cLcYM5ZXm5OLZmBQZNcT1Sh3y5N3zzBZKOWcZ+FWVlYMtPs1FZUoyed07ArQoRIjQlIl9fKHv9e9yAbiVEPj6IWbQIeZ9OQ8WuXbXpGuLwcIj8/KC5fJncYdb+3XzG34WQd99t0L5KV65EzodTa7dH0CQloeSvpYj69Rd4dOnSoO2qi3mc+ZHH9f08uJrToG880O5RFmG9Gbrfoj/mQXvNqGrwDItCgOpBFMnvt+uW5tbvlWRcSOS3T3OgLMXx+jJ/QCRlUJnTeEUAEUj4t2AQ2IFHoXuGoA2iOhdIWg20fbjusWsbeOpU3RRIlMZ/VYVGAcg/ibm4wZyM7TxCugCxIwSBw78FT6kCQ2I6YWvaqUZvi2yHbK8xkGt4fXFDcHAwNm7ciG7dbp1mYAGBhqJ1IEB2xInsLGi91WgVkYMY/2KLS3RzHsis9EV2VZ3AyFuqRqlOAaVYa/NyTsyNSnQ1FxYA3f070H9fbzUeF46kQQPHwgBSS5Ptkk0z4I1iC4PloHaxRgUOeQjxsBwkEzMcxCwHX3E03m/zLB3sHR52H+anfkGd/Otj4BlcKzc24uZXeyHW27Jxyh6+MhWK9acxJyUXccrm6BvYD0px3e9cn9lX1tSIG6zJrC7EXxn78HT8SJf2bTxuDp9dnosTxRctHk+vzsHXVxZQwcMdEbduspmUbdqhBqXYG3Get2688a2Mv9IDSyZPxCdbd2F3ciq4msGsSB9vhJVJkVmcV/vNkUrFGDu0PZ6f0rDP1toft1glFhDXfuLYRWKxW3aPb9B2C7KK8MvrC+hgvCmdoUXXODwybRK6D+9Et7/qm421oobg6EDq1subObGZIE3w8t0XaEy9ITKANscw5dUQX8uDOCWvntSqzlnz8vhvIZOJ0WlkeyRfzYaoXA1JVpnN9UNig+i5iYgxXIGXiGAI8QUvYiAqrgRbUTe+QQaWe/j74HRcKC5cs3b7YSo1UByzHPz2PpiNwnttpzcSZIXEzdj2dzSjuAKrd57D5DF1k4Nk0sDc1U52NhOGYG862G+FRg/pWfsCf6WPB/03u6AMe04kO1TCaVuHQXwgyWHihgm6jhsCh+JeMRbiBnPWHLyAnq2jMby7UYgh0ET8syWogIBAE6JvYKMsab63JW6wB1NzzVH3bQFWB3BOhrwHtW9O/33n7XtwresbyJax4LxlYKp1kKUU2RXfOSIn2BelpdXG672BB0/mpk0FEs+jZaA3Pv/AOE9A7ktI41FTRbLzDMAH+eFkTiU+/XQt2raNwLBh7eDp4Lr4Qz1xgzlpFzNpc/Lkqa7PaxgMHN57bwVOnbQUkycn5+Hjj/7Gy6+MwNixnXGr0hBXWEeQRhS/24WapCEEBHph5pyH8ePMLThxJKX23jI8wheK0jKklJTX3irIFFKMfWY4Hv/igQbta+Ws9fjl9YVWQiFSM8zY9gHiO9UTr7gIaSCa89oC2lBpathr1SMej33+AHUjJk0+q7/dWFsDkJrA6OTp+j505NjMxA3mnLmUhQvn0yCv0qBZ+xja8O8I4o5McLUmcdaY1Gt0F+o0mnzaduMNzzDQNQ+CrnkwOE9ZTUJcAaRJeWD07k1wkGafzXN3UrdqEyShxQRbWgXO33GiPFtmbH4kYjc9aUojCRcVKohySmprkozE6zi6sfFj2g2FJP6ZixvMWffTVnQd2lFIcmhqhJpEQOA/g07TsN6t41tON9n9ui1MCTxvLngeT3Z4FaX1GnQbQnZyXm1Tvy1a9WyB95e9Sv8/5ZP7MGPyd2hqjm89g/zMQrTr1xpDHxoAD3Pn8nqN1aQmMRc3mEPuI9b9tA33vum6kapOq8O7o6bT+xBzrp5IwUd3fYXXfn8Gw6cMwv9LTUIEu00h2v1/JDg6CLP2fUo/o6e2n6s9F0S0CIPMQ2phLkASUe58fiQemT6pQfv687PVmPd+Xa8CIeVMGq1Jvtj+IWLbRjVou9kpubQmIfewpvGVNn1a4vHPH0Dbvi2x+puN1Imf1C61NUkTcmrHebqQJIVm7aORej7D/ZrEhvGUFTbWKcgswsBJfWmCD0mHaUpI2SbKL6OLCTIKsn3BXotE8rWbnQjX6MR3nXkta2f+gWCqSVLOptHxsn+K4txSC3FD/dq667CO6DZMMHX4f6tJ9u7di5kzjeJKT09PLFy40C2h3o1AEDi4SHgL991oRGIxclMaHmHmjMCoGDTvbmw8JwkFkz79Cr899yj02oZHj8k9PVGS7dhpqDQvB8XZWTTRIKZDJ4x7/T3s+uMXlBfWqYE9fHzBisSoLLYvlHAEESaQ5erh/Ti88i+MfulNNO9qrTwiooOcZMcJEhf37cSAhx4Dy7r2ZUs9c8JK3GDOoeVL0G7gECh9hRtHAedIgoMR+f130OXlQZuSAlaphLx9eyoQ0mZdh+r0KZq24NGrF8T+DVP/alJTkTP1IwtxgwmushJZL76EFrt20mSPih07UXX4MJ2EI8IVr6FDwUhsF1bach67X+JQWc8AqDQZOPA+hzZdNoFd/4HFc4acTIThc8g8U5Ht9T6aDM65uIEg8wGq8jiUXGmauwLSGHXbVwxNc0hZw6OK9EyRycym1XTVkrqRtxA4lCY33d0N+Xue/p5D+nYefMP6YxuNSAaonZhfJK/lEXvjE/kEmpBJrW5rEoHDpFaNd+EmSmJzcUNsbCy2b9+O+PiGNVQKCNxqdPS3dCy3BWewbLeVi8Q4V5GN2JBCxAYU2xxvifYqhcYgRpHaE37yavgrVNDwUpToFPCVqGjigrlgoFCrhJYzlpLNldHo7NuG/t9TIsfP3Z/Hkyc+gp63P8lgvLoxtfuXiDjoOI6mMxB8JZ7Iqi5Acx/bgyqEEl0GCrVFCJIForV3VzwQ8wrWZ5PG/7oLjafYH5dLwlBeE8OaV+0FH5kKfjKj86gjyHGVGzJwoiQTJ0qOYV3233im+fNo69POat0r5VlIrnQs6tiYfdwtgcPRonNW4gZzFqStw6Dg7vAyKRgFBBwQ5u2FnyeMQ255BVKKiuElk6F9WAhtwr+eU4qLV7MhFrPo1iEG3nYmqJxBhAz1xQ0myCTcx/d8jUUpP9Ln9686irO7L9AvWtehHejkn7k7Z/3Uhldv+wC5aZYK2aST1/D+mM/Rc3QXK9c2U5ID+f1sHQ9broLsRApwIoU2D9ZPsLCHQaPH9TWnoTBrVCKvN0T4Q9csELxcCrZKA6WfF3LT8pF82nG0HdmErkM0dM1DLAbt2bwyyI6ngK1JfxAzDH56awKW7TiN1TvPIre4AmI9Bz67FBCLoRrUGmy1FuLUAojTi+B5thC6YA+UDbKOnpVfK4dC7eXwuNbsOW8hcEg+Y9nExFaq4bHjIjQdoqCP9KN1JlG+ia+XQHoug4o/bMIAZQVl+O65udhy9Aq4NpaOt/UxhBrdrBiNHryTiQ/iyOcq4tgA5BkcN7mu2HtWEDgICAgI2KF1L/siOnuQ5oAkO02xjpCkF9JxOHWnGBjkUioGtEXHZmHonmBsEPD298I3uz/Goy1fqhVGNgSf+DBcN3MWJ/cLjIFcv+uqmeSUfJo8QRwd+4/vibcXv4hfX19I3RRNBET4gTPwKMl1IZq2Bl4mBdexBaCUI624Gml7LmP3nsuYN38/Pv1kPDp1irF6DZnkz7zi2Pxqy7xdbgkcdu++ZCVuMOeXObsweHAbeHjIXN6mwP8vYeF+mDZzEvJySnE9sxieXnK0aBVG79lJYljisWRIZBJaH3j6NqzOvXI82UrcYJ7ORkRI8658R5vu9q04gnN7L9J5mu4jOqHX2K52J+zJ9/zlfu9T12FzyDG/M2Iaug3vRF2JzcmrqV/I2IIrfZScnxK8j+Pf2xATDP21PKO4wYl4giRMkAYoUqc1BRKZFDP3fEwbptbP2UrfC7FYRM+zPMugelArGMLqjDN4hRSarkoqePDYftFtkdnm3y0FDuY1iTg135jyZs9gS60Fe70E2rZR0MeHWiQ+sBodCg0GfPP0r9j9l3sJGw2BvDf6cF/wcjHYCg3EecZGV4WXwmnTK3H8NTXKCggICAhY1yR/f+despCnrwdSzjTNddEWnW5vhza9W9YKY2ft/QSPt3vVLZF3fQLC/Woble1x5VgSygrL4RPoTVMWiBv3728voWOqJgKjAqDX6GnqbEMgTcxk2bPsEE27/XTd27UJreac2X3RaYIESWFwR+CwY9E+K3GDCTLu+8trC2hyhkwh1CQCziEJbDO2vI+c1DzkpOTBy9+zNtmLiF+JcIY075OmbqW3sQHdXc7tu2QlbjBvJp927yzMvTAbWrUWe5cfxvn9lyGWiNBjVBf0GNW5NpWjPuRc8Er/D+g2zLl06AreGvYpOg1qi+NbztisSdwVXjtDq9YZxQ1OaxJPWusRwwXzuRlnIzX2hAFyDzm+2f8pVn+7CRt/3U7HXkw1yY2A1CTmAoekFDfE4yoNmHzb40AsyyAvowAzH/8Ze5fb70290Sh9PVBe6Ng0iohyBIHDrcuxY8cQFuZ4ns1dysrK8NBDD1HRImHWrFlo3txoKvNPIggcXCSyTTsERceiIMP+gG59guPikXM1ETcC//BI+IZFYPXnH8EnOAQdBo9ASFw8+t77IPYu+r1B2/QMCESnYaNx4K8FTtc9vXUDhjz2LEpys5F4cB8qii07VqvLShHRqg163XMfMi+cg0GnQ0jzeHB6DodXLnHruEg6w4bZM/DQ1z/ALzTc4rmKQsc39ARNVRV0ajVkHq4Nil7cvcPh85xBj8v7d6Pb2PEubU9AgCAJCaGLOdLICLo0ltKlS2vTIWxhKCxE8ZIlKF64CPqcuua70uXLIQ4ORvS8PyCzcUFKWsVbiRtq4YCko52QAIY6L9fHv3IpxH3GI+O8seHxZlGeCmyaVKeKbQysBPBvbRwnL0upETfgxokbTMkGvIEHIzI6zpY0oUbu7E//rBxU4gXEjwMuL3a8nitCFoFbi56hCWjhG4akUsfNvY5o4RuOHqEtGnUcu3fvxowZM2p/jomJwb59+xAV1TAXBAGBW5F+wc3RzDMAqZW21WJk0tygs5yQbx0QhDOF1xHr71hhFq4sR6nGA35yY/O/jNVBzPKoNMggYjjjOBXPwAAWclYPDaNDlEc44pQK/JD8NYJkwegfOAiRHjG4L3o4FqdvsHuMvA3PcwlrgMHAIlzhi7siumFx+jqHYVDkuR25ezAp5h7kqbNxrPgYCjUV4MHWjKkxKNKWoU9IFO6NGYnDhanQcxza+Q6Fn6wQ2/LXOHw/6jcgqDk1fkr5Hp+0/QwBMmMihIl8tfOJgRJtJXScHhIXkw125B11+LyW02FfwUmMDr/Npe0JCBBCvb3oYk5EmC9dGgtxmHTkgEYcdkjCw4qv11k0BpGBaJK48OWODxERbz0Qt/LrdVbiBhNkgtBRJD05HuKmenaPfbGQq+IGyw3X/CNioO7fqrYRnx5TgCdI+NuE+2dBdiTFZsKDCW3nWGPDTT24EB+oB7SGYsd5yCVimlbB8jyyFh9E9bJD8CL7va0VODO3LoOXAoYQH+ibBUG+NxF+2zOgPFuAiu4h0AfIIarSQ3k6H2JOClVfxwKH3MK6RhvS/JVqoymKpEwoDiaBl4rBkdhmtQ6sM0dvHvj+eeN4lTbOdfcoUUYB9DVxzXYbmFyMFvcO9MKQj+7BbwcduyJdzWqYWYeAbcj9A1kaQ2NfLyAg0HT0HNMFobFBdq/PtohtG43EYySi1X0kqYUQpxVCGheIyj4xNJXBnJb+Pog5mYO3R0yjzQqjnxqKZu2ice+bd2LJ9FUN2mdEfCgGvjUOczedtnqOqZcgtOX3XXjwg3uQfimTTkyXFlhek4qul9DmiH5TJ+D0rgv02tqmVwLKiyqw7Mu1Nm8zuA7NqbihPlVVGrz/wSosXPAk/Ou5lxdmOXEUcXEdc7ZucXy9VKm02Ls3ESNHCm5+Aq4TEuZLF3MiE8Lp0ljW/rTF4fPZKXnYMGc7Fn+6EiV5pRY1SVhcCK1JQmONLqPmLJuxxkrcYII009QXN5hDSqT2/VvTxiVH8Da+8w7XcVLHXDiQiIdbvICmQOEpR/NOsdQMKulUCgqzjO+FqZFI2zbcQtxgDufrAU3XWCgOOUhvs0FtM1aNc3PG5TpjPrasGpJz6dB1iLEWOegMkB1NgqFlGPQtrT9TnEyCGQv20lQ/tsK5+UVj0MYHQ905GryizmCMLVMh/FohRozoihVfWV8DzLl21vV+BAHnCDWJgMB/i/5390RghL/d67MtwuPDaPPyjYBcJ0kzNKlJoltF0JokpnUkxr80mjpgN4To1hG47Z7e9L7FEeReY9v8PZjw+h1UBLl/5RGU1Us5Lcwsoo3TvcZ0pTUJ6UEgNQkRcRLHd3cgTt/EdGZB0vdUUGlOQabz8TQyRuwOW+fvdnw8JVU4uOY4bp/Uz63tCvx/E9YshC7mkO8uWRrLOic1SfqlLKyfs42KhcrM0rzIY5Etw/Hl9g8RRJKn67Fk2iorcYN5qk19cUN9SMLDxYOOzaPdxklNQtIeHmn1ksVjorR86FqFG02TbMFxENsYb/LyUyK2bSQMeo4K24uyjcYSN0rcQMgjphs1aFQaZF/OAuQuiKl0eojP2J8bIomGsx6fg3+SgHB/Kg5bNdv2XL4JoSa5tWuSsLAwREY6mDtrAM8++ywyMozpLGPGjMETTzyBWwFB4OAGY155ByumvYfKIls3ZnXSNKWfP3rccTeOb/gbNwKRREITFMhi4tyOLYhs3RZ3vP4+9v+1AJzedTcMViym6QjXEy+5JG4glOfn4dzOrdj+2w927UfI9sRSGe5571OLx1NPH0NuinsTGnqdFme2bsSghy2/OJ7+1hf2+kgVHjThwlUqXEidqCxx78ZbQOBGorpgv2HHRMG334FXWztp6vPzkfbAg2ixdw9YmeXNWNpWx3ekOlE4qqQ94ak9Yvv5A39DFNwGhoaHyjSMJurhjxrEQO7P4PgXHNLrEpBvKIwYuLSYR9wooCQZ0NQZvv3r0asAsbndrR3ENabBuiqeJmekbeGhKgQ8goDYkQzi72RqtiNwq0Cc1mb0n4LJm2ehWu/+F95DLMOM/g/T7TQUoiB+5plnapXECoUCGzZsEMQNAv85yPfk+14T8ciBRShQ10s3IOIGjRg8ZxwUCvPwwnMdemPm2X3wkqshlziuD5QSLXxk1TVzwzw8RKbvMwMDbymaYBgeMR4qsDiPtCoGKk6CS+Vi7C3YiWhFZzwf/zQWpG0CC85irpmUDUQqYUvg4C0R497ocOSqz+Fs+Sm08wU0nBjlOjl0vO2ytUCTj70F27E8cwFEMNTsi7W40iRXXoScleGLzm9YvPZ4yTmU6Oy7qxslHZbHqeE02FuwG+Mj77F4PEjuDWf4SpQuixsIRRrnDq9FWtddYAUEbjRXTzqfIPz93T+hrUklqJ+48MptH+LP9J8hllh+T7Yt3Nuo4yLiBuK6RFyFmhpth2gLcYM5+tggsMVVkF7Ntfk8p5BCH2c5iWIO76Wg2xgyqD11op5+/zfUJY3ut10UFTPYgjyubRcJ2blMSPNVCNho2RSjD3F+vhLrDXTCZOTjt9PGqLJKDbhgHxgCvQGZmCYqENEBSXJgtHqInAkbbO2DCBI4HhYRQfUQ5RgbRCXJuTBEB4FX2p48kF7IBOOKLS7RQlSqoZBJna7nURMfX1lahbU/bMG2BbvpBBIR44x4dDDGPjMMcsGtWkBA4P8U4nA+dfUbeGf4NJSaTcbXYjb0Q86bpPn/p5fnNWqfRJAoSymkizbSB7pwb3od8SyoRnF6MQ7XrHdy21kqqOw+sjPeWvi82wIH4l7XaWA7nN17EQvf+RPo39rxC7R6ZCVlY8XM9fjtzUV2xZ7kuIhj7AfLXrV4/ODaY8i6Us8swt8b8LTvFFldrcWGDWfw0EP9rCanneHKOuYU2Pr7Wq3j2O1PQOBmknTCcYIa4ZfXF9isDXKu5eHVAR9i0bUfLZIcyPd6+6LG1SRE3CCRiaGzkWLAeUhpKhv0LrgqNeC+uykY/sggeHgpMPWuL3Fo7XGL58hZTxtvv64h6GICIDuZ5jTFgWyLCCUMkQFgfDyw8O+jGHN7e5xafwKVah1NuGDUWpreJknJA1tSBX3zEHBE8MXxEOWUQnwtl9YrmhoHbZuIWOhahEF20vnnpaFomwVC1cfaVIzzUaCwZzPIo/1dEpYQyosrsOa7zfRzSJy3iQhn5GODMebpoZDKndc2AgICAv9FyPjhR6QmGTmdNtw7IrRZMB788B58+9SvN+RYZAopUs6k0cV070/SJfre2QPPffeo2wIHYs7Rvl8rOqbpTNxggjik//nZaruu8YRjm07TlIcPl79m8fjBNccshIWuQMbLNv9uncRARCfOCHBhHXNMwkrH6wi9WwK3DiR52hk/vzLPZm2QdSUbrw2aigVXv7fomyDJLI1KH+OBi4eu0KSIGykIcAVWrYP0VCq0XeOsxcocT58jZkr1GfXEEJrU8s7IaTix9exNOVYiHCHGFCMeHYSDfx+DJikbaN/M/gt4HkxGPsQpObRuuZVRVajg4e08zV1eU5MQMw9Sk+xYvI+mBoU3D8XIxwdj9JNDIJHWCboF/t0sXboUf/75J/1/YGAg5s6di1sFQeDgBv7hEXj4qx9wcc8OJB07BL1Wi5Bm8eg4bBRttC9IT4VYIkVYi5ZgRSIcXO5eUoGrkDQEW2Rdvog5T02GTOEBVYXzwedaeOLE7m7sDYMdv/3oNFs1/dxp5KWmIKSZcSAnK/GC2+IGExnnrRWHgdGxCIlrgbxr9rfZ5rbbwbKWTVnV5WU4tWktLu7diarSEngHBaP9oGHoPHIsvPwDkQPHykVPP+fCCgGBm0V9YYItbIkbTHClpSj58y8EPDLF4nG1C6YHelGg3eckhpybL25wBgMwLElJcLyaSA50folBVS7vVOjRlPB64NJ8HpcX8bWN/v8VyO+Wd5KHxBPQORhrihzIQFvBY8/LHMrM6r+KTOD8rzwyd/MYOIuFxFMQOdxKtA2Mxve3P4UXdv3ilsiBiBvI68jrG8Pq1atx5UrdtZsolX/44Qe3tjFnzj+rlBcQcJV47yCsH/IMVqWdxs6cK9AY9OjgF4FJcd3gJ1XiamkB5CIxOgWGQ8Sy+OTEDrg63+kjNd4viBkDpKzBZpO/lNEjUFoJkZntuRc00HIiFGg9kaE6jcmHP4CU9UC1QQWWIXIGno5TGV9hff4mz8d65iGlKrXuMQaQi/SQsZUo0iqh4awHSHjosDxzIZh6Qor6XCg/hVz1dYTKje4rx4quYn9uNeJ9RZCLrG8KSM+tgbftHnKp/CLGw1Lg0Mo7Cs09Q5FSSRqZeShEOniI9VQIoudYVOmlGBXezWpbZboybMndhkOFh1Guq0CQLAgDgvtjSPDtCJD54lqVvSgtIwHSxrvuCwg05WSeM2yJG0yU5JZi67zdFpG/RLjY0Oh0i/3eAHEDL2ahc5JCoGsRAsnVXKuzHitiwTULdtjcT5C1i8ZTsx5G5pXr2FsjbiCpEbq4YMf7bR4M6YUsMORkVg9RXjmYSjV1nKbbo9s0LqYHdNeKMP/PI1j4zQYwPVtANbqL8aRsGv/hAH1COESpeZCcTXOYUmEPtkoLcUYR9LF26kmOhyzR2PBJRBSyvReh7dwMXKhv7cQHU6WG5GImxG44v5HPwpWlh+ERpUS1xv7nYmjXBDpo/9rAqRZuseT/v76xEPtWHKIOvwrP/1jRdqOgH7Qm2IaAgMAtQ3ynZph7cTY2z92JwxtOQq/Vo3XPFhj77HB4+iqRfjGTToK26hFP15/1hON6m2cZ6CP8aKMvW62F+HqJzesYQZpVRhf6OjvbO775NB6IecZtkaNOraMNPgRaDai00PtIofVhoCdmGzwgruYhK+ch0gGirCKopSJ6bXAGcVIlDdTEJZ5waN1xa3ED+Z38LF1QeTPRiOmae/JUmpXAoV2/VohoEYbrSfbTNYdNGWj1WEFxJZatP4Gt+y+hrFyFiFA/jBvaAXcN74SgIG9kZjoeIA4KcpwMJSBwM5G6UpM4OCcQR+E9Sw9i8AN1SYlatRZVZdWNPrb6DUxEPKxvFQnelMbCceD1BkBcz2DC7P+iJkwZIzUJaZoiqTKO8PL3xBNfPIhr59KtxA0EXia2K0SuhdQ/3gqwDgRRJBlO3a8VTcQjkOmDOUsP4PeVhyGv0kIzrFNtTcLml0F8KROi4kq61MdAagap4/YHAxF83SCBAzlvqzvZTxRWa/W4oNM6vUbdNqEPinJKqPAmO7lOOJ92MRM/vzof+1cfwedb3heE1+78YYSaREDgP0XL7vH4/dI32PTbDhzdeJK6erft0xJ3PDsccqWMjuEovBRo2b05Pd9+/chPN+Q4NHbGO0ldcWrHOYilIui1rjcUa6o0NJHAHSpKKrFp7k6n6+1csh+PTp+EwAhjr9Oe5YfcFjeYOL3rvJXAofPg9giJCUJeuv1tDp8yyOqx/MxCrJy5njZwlxdXIqplOB0jJmK+wEh/h9sjBNpwuxcQ+KdwRYBqS9xgIiclD4fXHUefcT1qH6uuUEFd3cjGK/7Gph24gzijEEyFGnzrCBiCvGlNIiL3+Mm5EJVUWa3vG+yDhz+5F5ePJt00cQOB1IFz316MBVOXQiQWUXGGoVkoYGdOgL1eBPFF6zTsWxHymUq/nOVU9DJgQh96jn5twIcWSa6kPvzxxT/otW76xnchrTGMEvj31iSZmZnUUNbEr7/+ipAQx2YGNxNB4OAmcqUnuo6+ky71iWnfCeUF+chNuUoFD6T5PvvKJdxMSHKDuqrSvdcY3Hf9IK/heRccRWhiwwkqDtk65ztcObQPTQ1JdVg5/X0qOLEFX+/bXVlchKUfvYWyvLoBIfL/A0sX4uDyxYjt2MXh/liRGK37W994Cwj8U3gNHYKqQ+6KlCwpXbXKSuDgEQpUZjp+nUSfbfc5vcis4YeBsbH9Hzb16vQcQ0UX539zfNWX+wMSDwZpm7l/pJGCCDAciQD+reSfBlpPBi7bmfeVKIGWExkqZDAXN5hTmgRc+INH5xcFgcOtRt+I1lg08lW8vX8+kkrtT6ibaOEbTpMbGituICxbtszi56SkJLq4gyBwEPg34StV4LGEPnSpT5BCiWL1WvtFAAEAAElEQVRtHq6rkuAjCUCCbyAul2qhNYggtdHMb06YRznkrA4yVk/7bkkvq5YXodogBQeWJjLUFzeYIIII8ly+1hveshJcrwqESETSH4zdOKIakYMtAmRVkLK2GwbIa3wlKuRpSOlquQEOVfRen2zbGZfKTsNbHICvr/yJg4XnQPoecqp9qKjDS6KGiOGM0ZBGuYRNIYYjXkq4A6+f/g0+skpIRXV1kkxkgFKig5fEcvCxSFOE6ZdnoEhbXPu++ouzcKXkBBJLfkBzj544W6KH1k56hZSV4Lagrm4do4DAjYS4khG3/8aw8dcdFgIHlmURFBXgdnS5oyYeEhdPJv0aC+fjAdRLm7CVwkAafoiDqDkv/vgEcnwV+GOV7SQ8E0FxwVAo5XRS0+QIzSvlNEXBITIJbTIikwT1IWc2+al0qPolULEE1Y6Zn+4Y4sAaaBSGe3mDJwPTRCBOfuYZMOT0xvIgw0GGZiFgVFpIrtqvCR2hOJKCarnEOgXDwEF+JAWiorq/E6vSQn7oCk2+4ImzkM4AtriyQeKKUxtOYdKy5/H71hM2n/dRyjFpcGf8+tpCC3GDOYnHkrH4k5V44svJDTgCAQEBgf8GxP3zvrfvokt9AsL8kJ2Si8SjSTTFIaZNJNIv2Rbv6mIDoe4WC15eNxlKri/y42mQZDT8HkBTraUT0O5g3mhKrjGGqjJUtg2xcBXUShlovXkoM3WQJWWjzNu15GiO43F8yxncfn8/fPHw9ziy/qTD9Yn4kBOzgKhm3xwPRm9cbEEalZ/79hF8cMcM2txlc5164srreaV49oOlKDRrEM7ILsb3C/bgl+82oWe0Y1GlQiHFgAGtHK4jIHCza5KrJ5wnyzli3c/bLAQOxCWUNNQ0hfCaIBKzkDYPRUmLCAvBM8+yRmWV+deUN47L0IdUGohTbKfDNYQ35j2H1PMZWP7VWofrEVEWadIijqW2YAyc02Q2up4TIYWmZ3ytuMEcnd4AnZQFq+Npmg85H3MhvtD6eUJ64BJNlasPL7JtWGGBK+s0EEOgJ3gvx9eGA+fTMOWFkVjx1Tqbz5PP3LjnR1B3X3Nxgzmk/l46429M+eS+JjluAQEBgX8jfsE+eOC9u+lSH9LEfz05h9YkIbHB9JpGBMc3E1WlGiKJqEkEE44ouF7sYo8XR5uD+4zrjs8f/LbJG4XJWO6z3zyCj+7+CrwdwXr9moQYuxCDkRKS9loDqR1JCiBJyet4ezuH+/TyU6Lvnd2b6DcQEGiamoQIUhvD399vthA4kDkNYiZB0lOaArFUTA2rmkLI3VBEJZX44JUxOL/3Etb8sNnhupEtw2lKwMG/j+KfgAhSyELOXpIjidB3igMfaDanYeDAZhVAdDED/yaOrj+Jsc8Mp6lDtggI96NCs5mP/2whbjDnzK4LWDVrAya9Yz02KPDvYt68eSgtLa29nr/xxht0sUdFhWXzZ3y80eSG0LNnTyxZ0rShAILAoYkgKQX7Fv+OjAvnjA8wDLz8/xmlKM9xEEtl0GtvjHV6RKs2KM1z3rhogjMYsOqzqbieeLFR+41q2wGa6iqc2rQOF/ZsR0VRIWRKTyi8vCESi+0KHM5u3Yio1u3RsrfR1WjPwrkW4ob67x0RZIgkErtJGX0mPgClr1+jfhcBAVfgVCqUb9yIyr17wev0UHTtAt977oHYz/Lz53PHHSj6/Q/osmxPFDJyucMEB4KhtBSVBw+iat8+6hTk0b0bYocNwoXf7V8mZPprUOpO2X2+RGF2E8MDIinQ9N6p7kFSEZThNbZnDvCpSRa75RIobgbO356GwwNxo1iIJDwS/+ShV1mmZvi2AE7M5FBw2vFm0rbxaP8kD7FcEDncahCxwro7P8Cx3CT8mbgXO9LPwGAmiBQzLIbEdMKkVgPQI7SFRbxiY7h06eYKSgUEblUyq5OwJWcB0qqM3wkGDDpGRCCf90BupReifYyFqTU8bbL3FmssxAvkKypjDJAwKpTpFVCKtDbFDSZkrAEyRgdIALWegZ9EAi1Hrv5EOECkA7YJkDoeRBOzHKSsHlqzFId23m2Rr3G9cYEDhzfP/oykynSIGAOUYi1kIjIgxUNlkELPiWjahIfY8QRCK+82qNJXYVveNhwoPIBSbQmUYiW8xJ5o6VuBKr0GOk5EBSHmbMjZhjbe8ejq34H+vDj9z1pxQ3OPAvremmCgQ776APr4K3CkJAxqG+kVD8feAS+iDBQQuMGoqtTYuXg/Tmw9DYOBQ4f+bTD80UHw9rd06x3x6O1Y/c1GFNiJBJcqJNCqHFcDpYXlOHI6FUfOpNGG/k5tIjH8kdux+JMVTfK7kEk84prWNBtz7YbZlvu0wlOGuCj7SXgmmkUGWidfkAYiV3CwnoQ4Me9NROXgBICx/X5omwdCpKrppjKfeOR4sDoGLLmxJ0kOzUMhTsoB4yTd0xaMnoNyxyXoQ72hiwkELxGBLakGW6UBlFLoEkIgSi8CayYQIUIH4qbd2M/BpL7twYpFWLT9JHVQNeGp49A5uwpf3z0T5/c5vr/cMm83pky7T4hgFhAQEKjHxUNX8Ntbi3DxoDFlkWUZ+IfZHkvXRfhC1TfeQkBA4BVSqPq1ALNbD3FOw5uKiQugyykO9cbD9N4yVHQLtjo2CsugOlSEYaM648KOC24dD2neIU53dg+jpAKGZmHgpYzlvlmGPsazPLp0jkFpeTWWrzuJLbsvoKikCj6eCvh4yMD2bw9tdjGdXCdpR+YQcV67vq3QdWhH+vPXv+6wEDeYo/XxwOFDl+Hh6wutwnaj7lNP3w4PD+fJwgICTeEuuWPRPpzcfpbWCR0HtMXwRwbRJh9zRj85BGt/2IziXNtjHxK5hCa1OKI0vxRHNpykjstkX51vb0/TT5Z/6VgI4Cp6PQdJpziLe1p66qHihnrnG/ojD6aoEpITyWAcJJC5C3G2jm1nP2XAhGkde46x5J5enFNKU3jswZar6H2+PUi6A01dsAfDUNGXhcBLKoa+dSSkx5Ot90cav6gyxP64M13HGeQ0TEaN3Kx1SF3jDD2pST6cQJNXSUOReTOrh7cCcR1i8Om9s3Cp5lpqD5KkNHnqBIhETVTnCggICPxHOLv3Iua+vYSKG0ymJ0QMQRLjOIWEJosSJ+768OTaQURwBoNRWNcEGHQGSGRih47tjZmjH3hvH5spS/bQ6/R4uf8HyEy0berhKp0GtUNJfhlWzVqP7Yv2oSSvlIrgSfoTSdUiSRS2+OPdP2nSRvv+renPs5/6xULcYI5Oq8eJLWfo9mwlA5M55qdmPkwFqQICN5qqsipsW7CXppcQugzugKEPD6DiA3NIsuWGX7ahrNC286sr5wOSdk2+12Rf5HPeZUgHDHnoNqz5zrEQwFVICqfCWQrbTUDu4WJN0iaywQKwpobUZJKjV8B5KsD7KY3zJQVlNIX6huyPralHbkD/Fnk/H5vxAL1GrvtpK3Rm9abSxwMxbaPwwR1f1F5L7UE+7/e9fWeT9f0I/DNwHGfx/5QU98wjzNePjDR+Z5sSQeDQBOSnXcPyj9+GVmXWqcnztAH/n4IVieAfHoXibPvKQFYshlhCbgbdU+VFt+uIxIN7XV6fCBsaK24gyDy9sHTqWyjMSKt9TF1RThdnkHSGZp26QK/TIenYYafrE3GDT0go9BoNqkpL6GMBkdHofsfdaDtgcCN/EwEB52iupSLj8cegz64TE1Xu2YOin+cg4vvv4Nm3b+3jrFKJ6Hl/IOull6C5dNliO55DBlPxguqEY1cwrrISmY89XvtzyZIlEIeGISjqBxRktbRan5UCCV2Ogt9oe3slijugkhob+Eyom8J4lQGajQVSbRvbOIYFQroyUAQCHiFAtQOThuZ3GJsS/RJuZLf/LcoN/HWl3sZ0jNYPsogby2H/2zxKaox+DWqg4Ixr29FXAap8wKvxxv8CNwBSvPQMS6BLpVaFvOpSVOk0UEpkCPHwhafUdmxfY7h4sfH3GQIC/3ayqpPwe8qH0PEayyQzNgsDIkTYl9McCokOQR51k7ikuZ8kNpD0BZap35JfB+ltJQ34cpHzyXS5SA+NXkLlDAaDApEecmSp8sDVJDnUN/UTQQJPMQM7RqS1iBkOZOiK9AqXqD0QEtgV5XpjXUD2RX4XR2zNTqPiBvI7+Emr681zGyBmDNBwEhg4BiLW9raoKSHvjemXpyNHnVMjDAGqDRV0IZDeaZKUoTGIoeXENA+CiClIQsTa7L/Q3jcBlXoVzpQahfHB0goLcYM5LKPCwEAeh0s8UVYT7RTrEY4JUcNwW7CQ3iBw4yFOQ28P/xRF2caamEDchhdPW4lP1r5FG4tMkOaiL3d8iE8mzKROoOb3Bf3v6UXjzq/YaD4xQZz58zvG4rXPVtc+tnLzaYQFeSOie3NcP55icwC80+D2OLLethO/LWxNmJGUAi4yCLw3GZDmwOaXgMktsdu0Txo1R03ojRW5xeA97EdOswXlYOrF+5LI346D2sEnyBsBvkoUOWisGT/M2HwY36VZ3TarNGBLqsCRwXN7+y2uBFvteLCf0ekBJ403Bhkg0tc7abMMOCkPhlxqOIAh752vkjou1YfzkIHz9aAnTxIxbUvsQRDnltNFH+SF6n7x4D3Nmii7xUJ2KRuyM5kNSmuwhX+oL3wCvfDMHX0wsX8HvP70T0i+kAlRSTUkueUwTlE5p7yogk42BUebJRcK2MH9ZCTb2xAQELjVuXAwEW8N/cRCUECSCwrtOIpqOkTZb0BlGWjaRzZK4EBQeCkQFBWI60n2DZuIc6FGbbx2krKFC/RGZbdQhw7fvEyEVi8MwOU9rhsu7Fl20KG4gW63vBK8pJ64wRwxAw9fOZ55awmycuqauEvKq+lCRIKi6BDwUcFgk7LApueBF4vAhfnTFKhfvtuC729rg8LSKhw/VzfPYgtDs2Dotp1F9IhuKBVLUV5unP+Kjw/BAw/2wW23CekNAjee5DOpeHfkdIv7+MPrTmDJtJX4dP07tEHOBGmqM9Uk5klcpCYh6SmpFzJw7azj72BRdilNQjGx5vvNCG8egvD4UJtO+gpPOW3QO7bZiWNPDXyAF0rrN+bYEjfUHTxRRRiFvvWSIIY+NABb/tgNdyHCrw63taEihzmvLqD3tfYY+/Qw+m9C1zj72zufBT1JZbNzzpSdy3J4J2cIrpfoZgPexqa5ED8qJqhfc9GaKa8MnAPRhDjFBQdv2kfk/mSJqEzlNNUiLMAbXko5Hvv8AZrU8M7I6Ui7YJzPry5XUYGNKxAxT3lRJW3aFXCGUJMICPy/QBqC3xv1GW2ON6H19UB6u7C6FFGOh/h6CeQn0yGqUFOBNR8bBj7E33g90+nBZBeBSctxmkLkCl5+npAr5TTlzh7kuqy2IwpwBGl8PrqRGFK6JoTc8seuRosbCEofBV7o+Q7y0utcvUnilbPUK9Ko++sbCzFzz8fISc3H+X2WvS22IOIGkgpYnFOCihLjWGpCt+Z44P270ecOIb1B4MaTeCwJ74/53EK0QGqSxZ+uwPRN76Flt+YWiZZfbP8Qn06cZTEOQeYUhj40EJeOXEFmouNEZDKXMvWuL2t/JoLYyIQwhDYLRm5qvtX6pBm9ZY94nNru2j0kwfRdagxkrmPQ/f2wfYHr/aPm57y2fVuCZVvh1zcX0Xtge4ypqUladLFfk9xs2EoVQJYbjL00nKYgokUYZHIpnp75MO56cSTeHfkZMmquDyTdw9XPU35GIU0s8vBq+h6g/x5CTdJQBIGDGeWFBTizdQOSjx+GTqNBSFw8bWonzfn5qdcglsmQ0LMPuo6+E35hEbWvO/DXAktxwy0AES0Uq6qh8PZBuwGDoamuRlbiRVQWF0GqUCCuaw8MnPwYlrz7Koqy3IvJKcrMQLNO3VCS47zD2CsgEBkXmiba7PyOzbViA3cpzc3GL888jI5DR4EzuKacK8vPw5SZP9HBT1Ykhm9IaIP2LSDgLrzBgKxnnrEQN5jgyHf5hRfRfMtmSILrYsKlUVGIW70a1SdOoPrUaTAiETwHDYQsLg4Ve/ciy4nAwVbCgz43B+G6J+F/70ak7vSElmiJWCCsJ9DmIRZ+LR9AcXs9ihcshD7HeKw6NgjFykkoUNaJJZqS8H5At1dE8I7icPZH927mogYw8AgxDir3fI/F/rc4iwQBE81GAcGdjf8nvYOeEUBlI+t8kkxQ6ljY+n9Bs5EMWDJJC+DqctSKGxqCWDCt/ldAxAw3QtAgIPBfJk9dhHXX9+Fw0QXoOD0SvKIRoI3BnvOFuJJfCA+pBCNbJWBK986I9qubrN2Ss8hC3GAOabhv65+Do3nNkFOpQqiyDCHKCniJNTXzrfbTFUxIGINTEYERHhVaGd1iiUaDYo0WgfIAjIvojGKtGscLMlDJFcNbIkO/oLZ4psUYfJv0Moq1jieXK/QyVOllyK9SQqWXIakiH239O+BA4W6QIyONyPb6AbzEodibmwlPKWdD3GCWVsHqoDJIoGB0VkkVZAypUK3EjvwdUHGFTnsQSDqEQqSBr0RNkyEIWi4Jn116El39RtBECfJeBUhsO6aa0HHp+L7zx6g0ABJWjFC5c9d3AYGmgLh5kUF7c3GDCTLY/OG4L7Aw+QfaRGQiMiEcv56dibN7LuLS4avUjajX2G6IbBGGvSsOYdq9s23ui3xDNH1bgZdaD1HlFJQjsGMs7ujTCrsX7qED78RRpteYrpj84QQ07xSL5V+tw5rvN9ltnnQEaYoxdIgjMwy1jxlC/YE4FcQnrth0SR0wsQ9emfMUAlcfxk8rD9neMM9Detl6ooIM+JNJDsLUF0bhzS//htqGY9M9QzqgfYsw+v+eo7sgOCYQ+enGc4/0YhbU/Vra3+9F28VLXMdYXDtrbGQ0+Fs6S9nEQZMVCZYRmZRpjLVgRNO1GQzhfnXb0OohuZINSWK2zeuNwUuOqsGtrUUXIpY2t5KTsPyc7cRCdxn5+OBah9NlH69A5qoTYKP9YQj2poIMCUmNcJI2QiBjRXJzMYaAgIDAfwjSeEOaeomLOXH2a9WrBSLiQ2n0PGnAJO7S5Hp49ytjEBJTJ/QijSoupSWQa7BSBi7A0+E69NxMHFZdOC/bo6ygnC4kRYI4vhNx2rl9F1GaVw5PPyX6je+Jx2c8gMlxzyFPJIKubRSgkEIXZl/cYCIprwg9RnXB9oXOJ/PDm4fS+yNn8GEBDptiCX+tPYECO8kLVIwoJtdpgEuIMr7PUUGA2HjtI17gd0+Zg1Ej2lODc4fHQtIZGAa5209hwbWfoDbwkEpFCHXktC4g0IRo1Vq8N/pzmyJlUhcQIcKilB+g9KkbKI5pE4W5F2bj9M7zuHI8hTbz9xnXHWFxIdg6fze+fvQnh/vU2EgqyE7JQ3BUAO54djh2LtlPmz1EYhH6jOtGaxLibPnX539j3Y9b7KZHmODllgmN9GvoxOmSC/GlQiXzBsshkwfgtbnPIiA8gIo93GHYwwPhHWBM5Ht70Qv4aPxXNs/dE16/o7aJqO9dPeAf5otiM2GVCXFhJRR7r0DdMw68mRMsqaVkpzMgSaszA4xtG0WF9E0CcTOVSawEDgTZqWtQ928N3kaTjSg1H+LMG2dQSMTmpGlWH+Vvd527BtWZgy3+dFWtuMHtfYlY2hwmICAg8F8k83oxVq0/hSMnrtHkm3atwxEBHqdXHELm5etQ+npg0H39MP7l0QiKDKh93ZzXFliIG/QBnqga1qb2fpjCMvQ8XRXkBeWeq0CrZjQdqBaJGHxMCPhAb7BkfLCRIgfT/UFghD+GTRmEwutFNDmUNEuTxIMBE3rjken3Y2Lo46iwd59vByLe7D6yM/atcG7yShqkyf1RU7Bk+moUNWAslpB4LBmTop7GiEcGufwacj+26NqPqCytos7zguGIwM1CVanCB2Nn2ExkII+RORTy2SRmTCaad4zFvMRvcWLbWSSfSqWmCuR+moyfrPlhM3588Q+H+7SVnpZ1NQdhccG02X/Xkv005Y4IDMh2J0+dSOdglkxbhfVztjkVGjUVo54Yghd+eBy+gd5YMXO9e699fEht+sVbC17AtHtnWZy7TTzw3t20hjAl1vzy+kKHAm1XiG4VUdvI//+MScxOWDB1eYPfE4lUTOtugX83H330EV1cZf78+XjkkUdqf3Y3+dBdBIFDDXnXkrFy+gdQV9adCIkYIOXE0dqfdRo1zm7fjMsH9uLudz9GeEJr2nCfdtY1Z45/AlV5GU5v3Yj7p8/E0Ceft3o+tHmC2wIHIvQIjU8Aw7LgzSJK6uMTHAKpwqPJkiyqyhwPDDqDiFCOr1vl+gt4HuX5eWjWuVuj9isg4C4kqUGbbt9JiK+uRunyFQh6/rnax7SZmSievwDl27aCr1ZB1roVxKEhVODgNWAAZK1aQZPofje5oagIkb5r0W7VZGhKALECkHjWDbgHTJkC/8mTkb02BSdnGaARNwOYG3fz0vYh4+Riwj0s9CoOlxby4F3RLDFAy0l1Pwa2ZzDkFxZXV/K4vp+HXg1IlYC2AkjdBKRt4xDQFuj6CoM+n7DY/RKHGuNkt/GOA/p8zGDzQy4e6w2CERHxTFNvFBBJAYMLhhL+rYE2Dxs/O3o1j+S/G36DE9gBUAQIDp4CAgL/PS6Xp+GD83NQZahT4BUWkXvgcyhifFGt84WK12DJhZNYe+kiFt43AW1DQ1CqLUBq1QWH2w5VVKCFXx7SygKQXh6AWO8Si74ZZ2dVMt+u5USQsY4vJiS5IF9l2ahUqK7Gn2nHsbD3c3inrbXTdbg83qHAQcexKNGSgS4GcokBKj2gEEkRKiMxxqSZiKMiB5ENkUOQLBQXiyPBMLnwEGsd9g3QBGqGR7VeShMjxKwBBo6FyiBGlZ64tDNQGYpq3izH1zEpq4O32PoCqeaqcbDob8hYBfQcCwlrv54y7oVDpT4XUcpODtcTEGhqDqw+auHAZUvkQNxC731zXO1jWUk5NJb84Jpj0FRr0aJrHB20J4Pr/e/uZXfg2BDmC97HfsN9YUkVoif0wbIvHkBpfjltqjSPfibHcM+rY7Dupy346eX59DHS6KKPCTI2tOj0EGUVQVRvgpBXyq3EDbV4KmDoGA/xMWsXsQc/nED/nTy+N6r1HBatPwaDwey7rDdAdjod4uxSq+aT+966q/bnbu2i8cdnD2LpppPYdzwZGo0e3hyH6mMpWHc0CRt/2oz2XZrj9ffvwUer3sBrg6ZCVaGGOKsEsmPXoOkUbTn5qtVDdiadNtPUp1WPeLy16EU80e4V6HUGMDqOnsXMnVAZkshQ73VkHVunTfI6+pxOD7asLhWUF7FQDWwNvl40NzlOXftoiOQSiM5Y17raNuEOEyU0rcNokgOjtz5nEvcrCRFVuBBRTdx1J71j/BtUlVdj7cYTqLi7q0WjmbprDKSJudTFz9G1seuwDvD2NzaGCTiBftga+S79nwUrCgj8k5zbd4lO0BP3NRMFKy1jWasYDisW7cL2pQcwa/uHaNY+BllXs3H5iOvuHryYdXE9cn1ouMDBBHH7XPvDZsw59RVem/uM1fNxd/awSEQg10VnyKUSJIzpis1XcmHwrUmCyiuF6Fqe0c2vhujWEdDZEE3agrjHOnye3Bs5aXrixTCOQZLrdTNr06aKSjWW/X3C+ewgub8xcOTWBoWZhWjTK8Gl30FAoKnYvfQg/e6a32siyA9QKgCDAeUFpdi2YC/uenFU7Trpl7OwevYGHFp7HFqNDi27x1NxA1mGPHgblkxfhRxX3PvrkZ9ZhFY9WuCpmQ9T0RRxSTV3qCSNN6QuWTV7A+a+vcTudlgXRWBWgxXkXFjTXEnuf4ljMWHKJ/dCp9Zi5ewN4MxrEnv7F7EWNVz3EZ3xw9HPsWr2RhzZcIK+Z6TWKi0ow4qvjULy9re1wStznsTUVW/gzSGf2BSBSLJLIV5zCvpwX1pnMWotrVvMU9zIvfiLPz2Bpzq9bnGsIhsCFqu3wNavZuDA2Hk/yePy3RehjwmEISqQJj2wpJZKzYOksIJaTjQlDKlJpOJaoYjiaCoqfT3Ae1kLoru3icb9w7vQ/5cXV2DrvF0N3i8R/iuUgujaJYSaREDgX8WJM2l4b9oaqM3uoXfvv0L7d0SFlRBVa2gD8MpZ67Fj8V7M3PMJHXckaWn105rIOI+FuMEMMh6k7tkccpWd2kSpoMkOTHLTmG4Qc5b1P2/FL2e+thBlmGjRuRlO7XQ1W9QIEbq17tkC+1Yedjh20qxDNCqLG+/YbqKh4gYTpEF55awNLq9P6qmSvFLEd6pLuhUQuBnsWLwfpQXECdY2RExABAek2d8ESY5bNWsDvb8mTftteicgIiGMzpWQ9ZZ/tRYFmZbjLK6Qcy0fnQa1wzOzp9CaxNPXAwrPuprkoY8mYtK7d2HZF2uxYOoyu9thWRacg15PVyCCb9M4+xNfTqa/JxF8kxRPp6+ViDDxzTtqfyaC9O+OfIbV35Ca5CQ13yIidvLekvptxcx16DCgLV797SlMXfU63hkxzWVzjfp0GdoBj3/+AJ7v8bZLx3qjIHWZK/Wbu9skSX86G4Za9ekxqjNNkiMU55Zg55J9Dd5v3/E9IZYI7ecuIdQkDca1UeT/OKRJf8M3X1iIG5ylIyz/5D0UZqZTAQHPN/VQSNOi12pwYv1qm8/lpjh3DaqPSCrFph9m2hU3KLy8MWjKk5j8xXcoSE9Fk9FEah+xxPEkgTkypWARLnDzqT52zOk6xYsWwVBpLEJV588jdfzdKFmyBIaCQnBVVVCdOIns115HzodT6ToxC+ZD2bev1XZEgc5dgCv37gMrZqAIYizEDSZIWkT4XS3g2zvBrrhB7g/4NXIOzCceOPMjh13PG+i/UQMZjFnGouMzDKLq6gXb8ED6VsuHvKIYdH2FxbC5LBT+gKqwrlGfTAIWngW2PsIjax+HEQtYhPd3/5gVIcBtX7JQhrHo9T4L9h8UrjaluCF6KND6IcA7xjVxAyMGen/MQKwwfn6oqETVcKFG20eE2xcBAYH/Hgaew+eX51mIG8wJiilGVKcshHfORmj7HIR0uIq3T89GrqoAlfpSl+bDAxTVSPAn8aUcTWQwh3fhVrxCr6BJBo6ECEkVQajQKej65quqDFr8mX7QxnZ5XKvMAMfbbiMl2yHJDaYWW1HNrLZMrMX0SyuRVeUFA0+yJVjowdL/k2NUin0wMeoxvBD/Ca6Ul9SICZxfDFm6fQZ6XgS1QYpSnQKVejndPt13TRoDDZF00PnqwToaXOPhLyUZDqzD99OETOTY2VZA4EZAUhicQQaWTW5CFw4m4rlub2HDL9upwypxECLb+GTCTPz40h900HzWvk/QYUAbq+34ujAxdfj0NUikEjr5Zy5uMB9Qv+O5EXT7RNigHt4J+jZRtJnFEBcK7W1t4TOhD2I7xdS+hosOsS1uqIH38wRn5gZLSOgah2+f+RUv9X2PugWN6RKHv797As9Nug1DO8RCeiIVyrWnIEmxjoomA9bb5u+2eCw2MgBvPzkMCz+6F2H7E1FyMBFlHSKg7tsCVW0icEStxsS3FuBoai7+uPwtTXMgSK7l0/3IjiRDei6D/kv3e63ApmP0p+vfpkKTN+Y9R98rvb8CPJnbJUq3moUXM+BqhAvGN8DBH4RhjH1WaflgzAbi9c2CrMUNZqjjQsDLrAe7ddH23U0pUjH0YZZu0cOmDMSDH96DsOahLokbiAjig+WvQKYwumnt2HoaJT2bWbnoks8EEVxoOkTa35ZUTN16BQQEBP5r6LQ66ppnLm4gkBQFg4cU6khvFN7bFnnPdkf+412QdF8rPDL1D+TmFtt0WHcEW6mh4jyHaPRgq1wYeHIRItD8+7tNVo+TSe3EesciqXJ+o24o0GDWogMwBPsYRYdyKbiYYOhuawsuyIe6nb/669OYsfUD2ojgCrbSo+rj9MgYY/YeL7JfsPAGHjIH4kICEYiatuBJBBwCAjeZs3vrahLe3xvo0Q5oEQ2EBwFRoUCXVli6/iy0NQ0cZ3ZfwPPd38amuTtpExL5zpMkh6l3fYnf3lpM74O/PTANbfpYp6H5u5BMcmzzKUhlxprEXNxggjR1kGQb0sBkjzAfD0SRpDN35j7JecHs3JDQrTm+mvIjrUnmvr0YY58dTl1jH/v8AfS/u6fDTZGaZPtCy+YVIlJ7/Y9n8ePxL2itRZov9Vrj+Alpjjm1/RweavECrhxLxh+Xv0GXIXXpA+aQ4RLJ9VJIr+ZCklFsIW6IahWBj/5+g7qvvvLr07T5xgRboYLIRjKE+fvDGKzfIzanxKGjNnlOkpIH+Z6LUGw/B9mRq1RM4ayRSN0iACV3t0X+Mz1R8ER3lA9uDr2f7YTikY8NxoMf3IPgmCCLJiuS4uC56TxkZzPBVKjp9Y4troLvuev4/MkRkNY0AG2bv4cK0BsCcUk1CV0EBAQE/ktoNDp8/OV6C3FDLQwDQ9sYKqYzQcxQXurzLk1FIA3w5nCeMhhC6tJnbaH3lcHO1ASFDw9w+Ly7kIQG0gRcH4PeQJui3YWIEskYpb0igaRGvDn/OWqeUpDlfkP1jYQ0WJPxOlcRahKBf4JzZjWJPZZ8toqOpxCObz1Dm+dJehxJeCA1yYmtZ6mRxMKPltN64rtD05HQvbnVdvxC3KtJzMUNJsgcysQ3x1HzKXuEtwhFSKy1GZ07tOwRj+mTvsFL/d7HH+/9hQmvjcXClB/x6PT70fsOxybSBp3BqiYh4qU35z+P7498RtMwCrOKaKIogdxnn9h6Bg82e44aaP1+6Ru0v40Y4LlHs/bR+HD5qzSl7vkfHqfC8X+KphI3kJTpMU8OofMkAeF+LokbFF5yvPfXy7WihI2/7gBno95yVWR3f43QRUDgRiJ0CAJIO3capXk5br1xBp0WC15/DsfWrQIrujlKJA8fX5qa0BCSj9dFkpXl5yLp+GGc27nF7fSGgKgYnN+x1e6Am0giwaPf/IouI++AVK5o8PHeSPQ6MvHt/ELlGxKGsBatbsoxCQhYwDj/3nBlZch5523aFJj9+hvgKmwLtEqXL0fFjh0Q+fgg+ve5iFu/DsFvvYXgN15H7Irl8B4+3Om+eIPBpRunVvdbfq8YXg2l5hiUmkPQFpZRkYOoEWYyZclAwRmg6CKQtJLH1kc45B7nkTCRhU+s8+903inb562L83hU2kvb4oFLC4C8kzwkcvdvcFV5QOF5434jBzDo+Oy/P3XAvw3Q810RKjMZlKe59hoiGDnxVd37n7GrYTfIEi9QQUtwJ/feR07Pozqfh7ZCsP0UEBC4dTladAEFGusJXRYcAmSViPQoRUJwHtr7Z6NTYDZa+BUgLjQd0y+/hD35O8A4Ke3I7TtpRvWSahHuWV6vOd/YAOMIHS+CjhdDx5OGT+t9aQ0inC2NgI6TQCbSgbfh+703r24gME+dj+PFp7G7YBcKtPlQGSRUhGBeZhDRg4YT0zQF0wg9eayNTwi25hrrGyJ+SCkPQG61F0o0HijQeCK7OhwftP4WfQOHQC6SgwEDtV4M3oUawPx9IMdCjqnuubrXO3q/yN9M7CSZAVDTd7FMb3uS3IS/NAbB8ninxy0g0NS4UssTl6DZT86BwWDAjAe/o6IGW6z5fjMd2PcJ9MbM3R9Tl7Inv3oIT345GT+f/BI9xzpPTTS4MMAqEokwgbgFdbadypCrMyDwjh40EprAueC+z9db5+rJazi39xIuHb5KXeIeb/sKLm47iwfHdkdzlR7S5DwwDhpUTu+ynbZDJgGua3VQ944H6k3scRIRflh9GOcyCyE1c3UmwgJJWqFRTEHclSP8wHlYGzpkX8ulzUiE2+/vj8krX4KqS5RtlRYZ1GfqnGTsTuDyPG0oEl+ydLDTRzsR0ItY6G041Lni4m2+TseBbfHGH89RV77rSTkuO7198/RvtT9vu5hOj8dRagR1Ca6Ht78nnv3uUbTpbd0Y5wjiPJWfWYjK0qZzy/vXORM1drmJnD59Gi+88AI6deoEPz8/yGQyxMTEYODAgZg9ezays7Nv7gEJCNwk9q86aiFU0DQPROn4DiiZ3B1FU7qh+L620Eb71D5PRGsFLXwx8p2fsPWv/W7ti17HbAjzzJGm5Fs0yJrwI43IDRxiI0lT5ulTB/4+itV/7kd+kWUqgqSSB6u1f/JpHx6CrevO2X5SxEJ2e3ssTP0ZIx8fDIWn6wOibHaxMTmhMdDiz7Eimzyjq3Yw8a3TQ3LFeK4jjRHEEVdA4GbD1syT8CSxoXUzm+7LRVoe332zld5rff7At7UC7PoQl1QimCBNQ0Tk8NOJL2g9QuoSUp90Htze6fGQxkNnkCaRe14ba/f53Gt5aMFxkNYIjFwIiIQ4vQCM2WBJ4rFknN9/mdYky75ci0dbv4yrJ1Jw31t3IqxZiNNjPL3LtjP0r28uouIGW/Acj59enoeUM2m0sd5dsq5kI/m00RBvxCODqLusObJjyWCLKmzXHXre5DVRB0mISMxEU1NxWzOUj2wJXYQPTZjjFRKo24ag+L4O0EZYNsh2H9kZr/72NC4fTUJeqrWIjdXoITubBY+DKVCcyoT8Ui4Ml7Px/bNza9fZt+qIW8enD/GCul045ANa4vklLyKhq3VjnCNI4x2pSarKhJrk31CTCAj8v7JzfyLKiTjMHkTkEBNs8VBlaTXuj37GmGJQT6gNV8TBjmoL0gBq4x6ENJI6MkBytSYhzbqkJln1zUa3ReOte7WgCbv28A70oiLIoQ8NpE2otyKuJt0RgWporOXfXUDgZkCSupyRn16IOa8ugFatpfMk9tIFFn2yAonHkhAYEYAfj86gSWpPfPEgnvr6Icy9MAvt+rVskpqECCDGvzTa4b15y27xEDsxPXDEpUNXcOFAIv136Yy/aU2SdiGDpjqERAc1uCaZ89oCu+dCIgog5lNkPqAhiQFpFzNrhWRjnx6Ge83Stv+t9LmzO16a8xQ1G3M1FYSkhP/40jyb1yR38A32xqu/PUMF8+5AUgNpTVJelwz+f8O/cJ7kVkHICCEXm7RrDX4DL+/fDYW3D01yuNFUlzl3ZrWHXqujiRObvv8aBRlpDUpD8I+IQmTrdijKtIx1M8eg0+HSvp3oMmocbYho1qkrrp06jsYS3Kw5pAoPZF1yL5LNHoyIpQ3ZnN7+IH6vu++j6wgI3GyU/fqheP58p+tV7NiJ0r//hjbd/neSUPLXUngNMUYcyFq0oIsJ3fXrNPnBER5du9b+X13MI3UTTxvbJUogahCDoJpm85S1NecVnkNw5c/wr/oTYt54buQgR+m2sejz3VtI3iRHziE0SSIBaZr3b8m7NIBgax2Dhkf6DufnwwvzeYgbKM44Oo2HropD3GgWGS7sy13IPI+8JoHiRiMPAHq8zaI6j0fWXvd+l7zjQO4xAwovMMg92rD96yqAMz/wyD5sQK8PWMh8HP/hyd/30iLjZ1ZD0swZIKQr0Hoyi6AOwvldQEDg1uKaTbUdj2B5BWQiMmDFQ8oYrK5nLMPjeMk++Eu8oeXs1wtqjgzmGx23/RXWgwakeZ+IEmydHUlPUZlOTs+juRoVRPCBp1gNGauHSi9GiU5pbNRnWSilWhBvTz3HoEilhJ6rGyDTGPRIr0rHb9fmIkt1HXreKMvwofMMRMxA/kOyEozyCPI/+gwxFwcPDgyiFFHo4BeMTTl1NRxZr0ynAGrHDHnszD+FMeG9IRNJ0CMgDkeLUlCs8oCHl+O6zcCbHS8nsnhHErziECirREpVioVopD6M1cy7bXIr/SBhGHiLsyCy85qegZNd2paAQFPTbXhHGpnujD1LD6Lz7e2Rl+64QXHDnG3oPrwT/X9chxi6mOhUrsJ6J/HrHVvXNdUVZhdjy++7kHnlOnXuGjSpH9r1NZoTrN5up9GwhoPnMvDV2rew7psNOFRGxFhOcLICcdv84qHvqYuqK9g6Z5CB3L3LD0HTnyTi2b9H/W3lQSjO15lUaCN8oOoRC85bQRt+RDpyuDx4tQaignJIcisgvVZIG0Onjv8Kr819BkMnD8DG847HwHhy6tUbpWz2jkacUQz5kbpEUDIZ4uXviWoXJhZ44nBdD1FxFQzBjh31yDqEoKgAvPb7M7ienIPD607AHQ6tPY5Tu87h9I4LOJGZYxR0OEqNCPWmLrTmlBdX4tunf8XhdcfxzuKXnLrHqSpVWPzpKmz5YxfKiyroOBP5fj344QS06dXImEOBJqesrAzPP/88Fi9ebPVcRkYGXfbu3Yt3330XU6dOxeuvvw6xWBheF/jvQBpXTag6RqC6Z0zt5ZDqcu1cp7TBSqzacxFh/p7UkdRV5GcyYAj0BBdoLTpkybUsKY+KzczTgggluQ2fJ9GqtLSh4KtHfkTGZWMNZiCCiXrCNfKbemZzqAphYahJJKXwPDr4+aM144PrsOeYAlRWa7H7QCJG3N6OXiva9m2JiwevOD0+RqeH6Op1GFpH2Xy+c/soVKg1SHKQCEGD51yY8ySabPnFTOhahkNn1rTFlFRBdvoa2Eo1vW5N/vAep8ctIHAjIPdMxPkUEUEOk9d2bDuPViFKFDs5N5CapOOAtvT/xLWTLCba92+NnUscC7Xa9atzCSUNGVv/2I2spGx4+Xni9gf6197brf95m8PtHJ23C9P3foLlW87iOG36Z4wDLzbuTZniSogT7Z9rTI2Bn93/LRYkfe84arJ2o9YPkfvUQy40tiz6eAXKCsvhLsSo673Rn+OtBc9j4L19sfuvA5aHpNVDvusiPR8bIv3puZ8traaJC4a4EHBhxD2LpQIwNqcY4sQsmpJQP2WNuJGW1xOsuYom2geqTmG2n5SIUD68BQLmnaS1V2izYLzyy1O0QerktrM2X2Lw9YC6dwvwPmbGFoZYbLuahbH7L+HwupO4fLiupnKEwVOG6oEJMAQYEz5zAXy47hB2Zubh4ydGQmkmhLcFqTnJ344kClaUVFG32h6jutCapKWLtayAgIDAzSLZheQzW+mh5Fqz6bed9N7bZC7BVmntD+Kb4Hh6/2wXUovorVcoyiYTzw2DJJFeOHAZMx//GVlX3TPiNUHqC9IkfflIkt11ygsrcHDNcQyY0Bv+oX50/JKIIhtL9xGd6FiwqZ5qLGKpmP79iKu7vQZzIUlV4J+i27BO2P2XdTp9fcjYb0zbSHpf7Yj1c7ahVQ9jv1bL7vF0MdG+fxtqPOGI9mY1Cfkebv59J3Ku5cE7wAtDHxpQK4Dd8IvjmuTw+uP4eO1bWDlzPU29ayzkvDbt3tlYmPKDS+vb6sUsyinBsY2nHL+QJ0KRlS6bHlm8lOPx5tBP8e6Sl9D3zh7Ys8z539VdiBicJNNUld345v2IFmF44YfHceVECs7vu+zWa7cv3IuRj92OvcsPW4wFugNJUCImA/tXH6HJ4QqzdCVbVJRUGmuSBXvo+0NS/XqN6YrJUyfQBA8BAUcIMzA0pr4RluJksN9NcQNp/Oe5pombcRW5lxdNnGgoRMTReeRYXD3i/AR/fP1q5CRfRet+A9Ft7HiknjnZ6N93xDOvQKuqxopP34XBgSjBVYgjvWmAn2GIU6z18Z3atA7x3XtB5iHELwvcXJR9+0DWujU0l53chPA8Knftcro9TYr9QtVr8GCIw8Ogz7Z9A8jI5fCdaHTTSdvC4eQsHpyZ4DhlHY+QbkCfT1jk1fSWhJVPQ0D1covtsFDDv2oFyr7IQN81f+DszzySVqJJRA7Ja3kEuJBAFtLVzHW5xgFWXQIYHJhAmKjOBnzjG36MJ7/mIZJyNH2iKSHvfesHWZSm8Djz/Y2Tasr8gLgxDOLvZCD3Z5C2lSM6Frc58I6xcGgs+SeBg+9xGPS9UaxmC4OWx743ORSa97jxoJ/T/DMc2j/G0EQRIlwJ6804FUsICAgI3GjkIuvJSKVYWyNuAGirvYNTVbG2CnKWgZi1Ps8aeAaVhjqHHrJOqcYTvjLzSV8G5NROhATGn4xj/xV6GUq0CnhI6gaXDURQoK+bRKjmpODMUh3IlkLlVYiUlyC32hvZKl+61Za+lfjiynt0HY+aSpQIISznGMirLX9Rsg45NiLimBTbE5tz7De0KkRaBMkrcbz4T1Tqj6Gz3214OK4fjhddQ5FaiUBFJeRi2wPl5H0iCRHkeNQGEU2PIJCfDTyLN1tORpk+HzOvzoSBN9gVhJB17fQm1KIxiJBVqURmpRJZngr0DsqAUlx3U1JtkOBKZQhSVScwo0MPeDRUaSkg0EDIwGJ06winE1Ucx+PIhpMuuePY4/Y+CfhpyT4Uldh2kVTIJRhzezv6/42/bsf3z/9u4VS07qet6DW2Kz5Y9ipOnHUs/ibnkt+/3Yhf1r+Db77birVbHAsi2ELn4z1E5ECamMKbO3dL7TKkQ+3/SfIFoTinBOTbb6u505zU7GK09fekSQYVw1pBF2kZWW2QkTMtC3h6QB/oAU3rUDA9Y+C1PRHIr8RXU34EPKRIzHQyUcwQMRxvbLKyYWHHllRBcaSuxuwxsjMmvTueTsz+uP4EDN6Ok2nYcuukD+mVXKgcCBxEuWUI8pBhzMtjMfbZYfAN8qGfBTL56S7vDJsGA8eDf6CX85UdJDwc23QaH43/Cl/v+sjuOsRBmEyaJB6tm2wmx3x8yxmc2XUBj352P53wIM7e5DPs7UKqyL8SqlpsZL11E5yJSkpKMGTIEJw6ZTmR5uXlRVMcioqKUFVlPE+p1Wq88847dN1ly5YJBikC/xlMrp4GDymqu9c12PPktthJ2E51+2BUHHcv3YRsVrn9EnTNg6BtHgyeJBGpiGKPgz5IiYq7O9NmIpJYJD+TBVGlhp5OdNH+0Eb70oZncW45ZMmFViIIu/uUivFCr3ctHmPspFCxBsArm4NeCuhFeojyShHu44P7x3TD2nVOJt0BzJ+1HmcX7KYCQ+Ks/uG4L126domu5QBaHQzx4YBpglinB5tZiKl/PImrGUV4e/pqej2z6XauI9dwB4psEyoN+CvZEF/JBhvkDSikYMqraVNx3eZ4rPh6PToP7gC5x63p+irw36Xf+J70Hvu6n2MhrF7P4dhhY2JZg2uSB/pj3vt/oazQdkMSaZYcPmVgbULdz6/Opw6iJtb+uAX97+6JNxe+QO/zHEGa9/56bQG+PTgdXz31C7YQYYXBAENsCAwxgeBlEjAqLURp+RCn5rt0fiMih42/bKcums7oOqSjVU1CBBukrnFG0qlriEywFAHwChngXTOPWlJOxQq20GuNKRvkfUuvlwRHIGcrcW4pXcwRnboGXpxGhdKMRm/z/eh9R1fc/+7dOLz+BP6cvhoNQd0u1OHznKcM3v3jcffQbhj7zDB6777fTgIDp5BCNai1VTofqS+0CWF48dV5kJx0rZGI1H9Vw9qA87IeF9p7OgXv/LwB37063u7rSdLiG7d/hKRTqVZ1PGlmIzWJSCyCh7cCvcd2cyrg/tfyL6lJBAQEALkrSUEOro3myZlEDCfOLoM+wnIMzRy5yuAwHI7JK7ZIUmoKyD32K7d92ODXh8QGYfSTQ2lClT00kZ6o6BaM6VdPY+PGctzVrg2tST6ZMNP+cZFrRJgfuAAv+gNbUAY2v8zq/Xlv2as4s/M8Pr776waNzdm6RzBB5v3rb5P0Fiz7cg06DGhDnekFBG4mA+/tgwVTlyE/w7HbKEltOLHVtvDVnHQHNcmwhwdg4UfL7SYA+wR60bqFQL7/v7+zhN7XmSB1yqBJffHynCedGizoNHqs+HotvtrxET67/xvsXtr4Zn8yFr5p7k541YhyHdHVfJ6EzPUwRsGG+e9jj4sHE+l5sCHo1DoqxHhj/rNUGNKU9LurB+5/727sWLwPq7/ZiBtFcHQgTaAY8/Qweu9OxAruQs6rrw6Y2ujeLXK+3r/yCK3xPlr1ht31yGf61QEfIu1C3eefvIYaUu04h0c/e4CKsMnvQ+ZJlDaEjP8JhJqkwTjPgP8/ICAy+qbujyQDSOSOJ3ybmurShiuITSKOnXN/cilBobK4CIkH9+LvLz7G4ZV/YfhTL0IkafiNpkgsgV6rQXhCK9z11kfwC4twKB7xCXLeVGCOLXEDIT8tBfv/dO6iLyDQ1JDCLernnwAXvjeM2Pk6rNL+gCQjkSDq558hCgy0fk4uR+S330ASEozCCzyOf2UpbjBBGsZPfWN0WpbqU+FfvcLu/rirR1G5Zy8SJrAQN9E9SdFFHtc2OL7xYkRA83EM8k7w2PeGASuHcVg5hMPhT2oszVwgqHPjjjPxz6Yf/RQrgaCODNSupY01mJihDNo9ylJxQ2NoiCjCHkQsQoQO9iCpDRbiBvPj0APnfuFx+lsex7/gsWECh7M/EdGGMEItICDwzxHtEUIzFMwXT7Gm9nnWoY2QMdInX+uJcp2sNqyNnNZIo3yxTmkpQGCAseF3Q8LUF1UQIQELHc8ivcoPiRUhSKsOsCsIMKEgtuE1hMjK0NvvGtp5ZaOVVx4GhiRhXORZdPTPAiuyFlQSsYWzs2+FXg4WDEp1Zfg+aSmuVV6DyMb7EaEoRTvfXITIK6HhcnCmdD/mpU7HpYpl+KD9WMhELDIr/KHSW98/qfViFKqUKNUokKfyRKnWA2q9hD6uNoghggLlOjVaebXCC/EvIFgWbBzwNzt4MWNAoKQCUbIKRCu86c/2yKjwr5FHMFQssr84DoeKm+F0WSSOlsRgX1E88jTeuFKRgYVpm528QwICTQ/Lspi+8V2IxKxLjYLOUDpoepdKxPjyrbvg66WwKW74/I1x8PX2wJndF/DtM7/ZjGE+sv4kfnp5vkthlcmnU+mg6b0Te0HuYFKMKSwDU2m74bE+l45cxeY/HIvPRRIRHXQ+tvk03hjyMUZKJ9Hl68d+JidDl/bTZXhHVPZvbiVuMB6w9b06aRStGNEGnEJS06C4Dq4izSiG7FwWmCqN0c2uUg3Z2Qwot10EY9b85BPkTRM0SnLLIHbisseotRDZcLiTphVBetX2hALZr8ehZIx8dDB18yHihsZAJknIOyVy5jDO8RAV2Z5MMkGin4mww5FLsLm4wRydVo9fXl+IH174nbqIT4p8ik5KNcXEsEDDeOqppyzEDUTscOTIEZrqkJ6eTv/dtWsXunTpUrvOihUrMG3aNOEtF/jPENMmkv6rSbB0S3elH9Dg5X7z+6PT74dULKLXAM/N56Hcch6cUgxDiBdgShQQs9DFB6NydDvogj1RdncnVAxvRYV8mpbBqBoQj5JJXaALcj6BTii8Xmz1GFuloY079iBCB7FBBIQFI9tDhk9/34aLhUUwSB2/MXlJudixaB/eGvYpNv62A89//yhtInUFUVYhJHvOQbz3PMT7L0Cy8wy8rxegNLcUPbs0wydvjkNYiI/1tUvLU3dxMQOEEcGIo32k59dUJKDpT6KMQgtxg4nz+y9jybRVLh23gEBTIpaI8dnm98C48L2RuNAM6eGgSYK4TX6y7m14+VnPpZDG74/XvAmlj5Ley//40h8W4gYTxG3197cdp2WbuHT4Kr2PnPjyaMhIKoFGD8mV65BvOwvF+hOQ7zgHSXKuy+Itus0jV6kbpiMkMjFGPTEYh9Ydx6sDP6ytSX588Q+X99NtmFEgwUvE4NrGge/WGnzLGOPSox24hGjwdsRV5F589Xeb4C6MnqNNqvbeD/9Qf+qEW1bg2DHXEfoA5xNWI9+9Ew+8d7dTYbIuIdRa3GCGJi7YZrKdLbTNg2yKG0wcPp+GS6kk08E2f3+3yULcYHEcKi1+fmU+rUm+fPgHWpOQBj4BAQGBf5JY8+QbO5A0H1eRn0yjAjl7Y07P3dMXYnvjclo9mDT759iGUpDZuIn9vLQCet62ZUxDRpUKx8Uh+7kOqOgZimtiDVZfuITJS1diKVuAp795hLpm14fzlEM7uAN03VvAEBcKQ/NQ6Hq1hHZgO/BmSUEkwbUws5C6n7+39BXaaGt1DAop9AkR4HskwH9EZ3A2xnztYW9cjAhIl32xxuXtCAg0FVK5lNYkrvQUESObxtQkpN4gdQepP+pD6pRP1r5F65aDa47ht7cW2xQDkLQJknDgCmd2XaTu//e+dSdNaG4KLh2+4jQZT6qQYPijg6hY+OX+72OE9D6Mkk3Cb28ucnk/PUfVjc+6C5lfWveT44SLhhAUFUhTAklSwY3krhdH4b6372q0MLkpe6MO/n2MptvZgySFmIsbzFFXafDTS3/QmmTG5O9oTfLnZw0TrQv8d/m/FzhcPXoQqz+felPf9IQefTDxw88Q0coYhfpvwt0khsyL55Bx8TzEEseD6Y4w6HX48/3XMPfFJ1Cck4VHZs/BvR9/gVEvvoERz76KZp271TqlkeMrK2g6ld2l/XtockR5QT7yriVDVeF+9KqAQEOQhIbCe/Rop+v5TpwARuZ4AtF71EgUXeJx5BMOa+4wYM1YAw5+YEDBWeMNi7xlSzTfvAkh774LZb9+8OjdC4HPP4/mW7fCc8AAuk7SSs5od2qH9B08PEIAX9VG2pDpiLJ16+ARzKDvdBaSJjCoJE3zhU60V6wEyD1udPSnSRM1v0sJ6UVx4b5NJAOihzTuOMvTAE/jPHGTcX0vUHmdh8Zx+najkSjrBhUKzvDQlBPbhhu3P69owNeY6O2Q6/t5hwIHVyHCnasreJosIiAgIPBPsCf/BKZdmlvbXGJaWNKZ4gYMGGSrvZGv9UKB1hMFOi9UGBQW4gYT3QJ64Im4jxDtYXnCrdJLkVYZSJvudbwYEtbgMImAIGFJ5gKPQGkFWnvmQko6gOolUbT1yoGC1dp8PWmYsjeOQpIOSJqChCWTEMaVOHB0Hy08ctHbNxndvVMRoyhEuIfte/WrlWegw2nIRSz0vAhp5QFIK/dHfrUnXVLLApBZ6YdKvRwqg6Q2l8EkNaHvi06HyYd+xF17ZyKlXIMZ7Wfg7Vbv4Mm4p/FI7OPo798MLT3yESKtgLe4EjpDFgLEVfARkQYhy18uX+WJ5FLjwD/Zg0JqfF/K9QoqaijRkQtv3Zu+Pe8YNAYtslXFuFJ+HeW6Gx9tKiBACI0NRr+7nbvcj316qNMB8IH39sWFg4n4ZMLXuMt/Cl0+mTgTFw8ZnYRaNQ/BX989ihceHogeHWPQrX00nrivL5Z//xi6d4ih66yavcFh8zdp5olwNglKmoeKKqiLTniYL6Z9eBeUNW7V5jAlFRCdcz2ynTimJp285tQV+8Dqo3hv9Gd0Uo78LmS5dOgKGNKso7ahJjdDqZBSxyhtc+uJw7oDt36Il4mhbm00gkg9moxoZykBPA9pcj4U+5IgP5cJr79PwfvPI/Bacxqy89ctxA0EMmFBHF/LCsuNjqv2nI8MHKTHUuy63imOXoPH7kSIr5fQCWa2uAqyU+nw3HgebJUWSh/j5A/HcTi963yjY56liY4nqBP8vRHf3LGLK4H8TR1Fk7sKcfla+sUa6hwscPM5dOgQFSuYmDhxIrZu3YqePXvWjjmKRCIMGjQIBw4cQI8ePWrX/fzzz1FaeoOLcgGBm8CWebsx/b7ZtS7V5rhSlrCVtu/1HTFoUj/M2Po+WvUwxqaqukSDt3FdpsekkKJiZBsY/D1sC/pGtgYna3hgueRMKqCy/h04lqQkMeDr3esYeB56BQuDxH6xxGYXW4gx0y9fp4JHV6E1YaUKbHk1beqtLlfhqY6v45FWL0GVmIWlPz+Bbz+9F1NfHYN3nx+JnhEBEGXkg72cDuw8hcK/D9N7GpvbzisBe836Wkic43kbjeJbft8JvU6P7JRc6uBuz1FSQKCpiYgPQ69+LR2uQy7Vd9zfx2aznjmD7u2Ls3sv4qPxX9J6ZHzAFEyfNBuJx4yC1Da9EjD/6vd44osH0WVoB3QZ0h6PfXY/FiR9jw63taHrrJy13uE+yP1fWJxrJmxEABXTOhIfrniNJno5g5yH9LHB0LWOhD4mCHw94Ye6Sm23acS8aWrr/D2YeueXOL/vcm1NcuFAokvHTJoab5vYmwoY+PbNgQAfS6E1GUAKDQDfOtbuNq4cS0ZITMMcV+2xbf5ulOSV0pqkodhrfjXHk6RV1NQkRDRPmnFsoY/yd7whMj4V4ed0f6RBKnxEnbutPfacSm6SmoS47i7+dCVdBAQEBP4J1s/Zhq/HfwUm14F5K7k/znZdICAqU1EhNUmFq01+0BsgScqD19YLGD64HWZ8NhEtWphdv8nYVVE52JNXwKhsn+vtwSvlMLSMhr57Kxi6JoCLCra6ZjcVtgSXFb1C6WKLrVeTcaWFnLpkWxwzSRjq1ZIee314bw9oeybUznBUFFfi8Xav4tE2L9PkhYUpP+CL7R/inSUv4fV5z6HNo4OhHdwJhoQIaIN9kSOWQDegPXQdYhsdhLPptx30Gnw9OYfWJFVlQk0icHMg9+zmiQO2IN+rO54d7jTllcyTnNp5Hh/cMQN3+j2M8YGP0KbuqyeNcxGk7iD1B6lDSD1C6hJSn5A6pU1vY120YqZjE6PNc3ciONq1++0di/aiecdYvPvXK02S2lhdVo3sZMfj7j6B3lj7/RaaKGNKmiBiDVdrEr8QHyqyagxkTiYwwsk9ewPOUeXFFSgruLF9paZ5EpLGd2LbWTo3dSMhQvKIFpYpfvZEDvZwZg5mjqpSTedI3DHrErj5TJkypXY84WaYdjV8xPc/QHVZKTZ/PxOcwfmgRVMRHNscgdHGgZ37Pv4CRVkZWPwOuflzfwKgqZHI5dCp1U2+3cSDe8DVxJw2hvKCPOz6Yw6qSorR776H6GOZl84j7cwpu18WT/8A6DRqaGoi5N1Fp1Zh6dS3UZBubFQQicVo0bMvbnvgEXgFOGgqEBBoAhSdOqF8zRqHz3v26QP/KVNQ9MsvNtcRh4SgKuxenHiBuNPXPZ59AMg+yKHLSwyaj2Mh8vKC/0OT6WILKgpwBAeUXwOUnPO0GHVmCQ5NNaDgjPFnv5aArgqotE4ldgnfeKDMSe+RQQ2c+bEmnr0BRA9hUEVNEBp3YVYVoMnJOcxD6fx+suEwQNQgBnkneZyazaHS2gyiSSEikB7vMrjwh/P32mDj0qmt4JG5i0d5uvv7TlnLo9X9POR+jYwqFhAQEHCDQk0pZl9ZAoONmBs9x9aKBYyN9o7OjTxNDFCKdNByIkhF9pWJzZXxCJGTAfsQPBv/GbKq0/DWuS+hNvDQcg0vEZsp7Ee0kjG9AEklsjS2BowY6HgyvyCGr0QELaeGnmPo76HlxVDQBAkDOJ5BpU4Kf0kVRgSch5dZwgUpB/L13riqDgVvQ9BxqmQPtFwUuaOnP6v0UrrUHQEPhjFYzMsrxRoEyKqoQIM8XqWTIL+6Cp9fXINibSUej7+drpdeeQLHCg7Z/PvIWT08xZ7I1rAo0uiRU+2NvGovY7cST+a0OacCkkq9Ck8f/xFXK4yDglJWjEEh7fFci9EIkDWBWlRAwA6kzm55V3dsTc2lzTTE0VeSkg/WrBG/06C26DiwHcY9P5IKEGwRGhtEHVVfG/ChhasQia49uPooXvntGYx4ZBC8PeW4b0xXutji5HY78Vw1kIHc7HUngL6t7K4jyiqijSuZV7Ix9S7S1HMJMokYMf3boFzPI/tqtrHhr9g9589m7WOcChyqSqvx82sLYAjyBleTQsAWlNO4d4bj6XurbWs/sXJU/7ZILSk3Ng25iS7KDzhlLLiqt10CupHzoW3kF3KgPJzm1mTqsU2nEdosmP4sO5kKtrAC+vhQcMQBl7hJZxVDciUbonqiBJIsoW0RDIOfBxitAZLUQih3JdqcIBowsTd1zCVOPk0RHy1NLYQhyAvaltaTvs3C/fHhs6PxS+LPTrdDXE/rU15UQWO9rydZJxc5g8RXT3xjXKMdmG4lyDW6sWPcN3qMfM6cObX/9/T0pD+TJBtbKBQKfPnllxg4cCD9WaVSYfPmzZg0adKNPUgBgRsIOa/OfnJO7XWaVVlOjjJk+oSUFw56hz3OO07xqU+n29shKDKALt8f+RyXzlzDo9+vtf+FZ+DQ7Zo05ZNEB8W5bDQEkuIg33MBuhZhkLaKhEqnp4I7Xs6SL77d1+llDFidSRZttr2sQrBVaqsmU62N64a7kOvL14/+hPLCCkx4/Q76GHFjP/vLFqs/kfhIIrjwAAT2aYVKlQ7VeaVgMwuo6635MeujA6FvHga+ZqKcqVBBnJwDcbpxMLO0oBzPdX8b184ZB9ykcgkG3teXNlo0Nl1JQMBZTdI2xg+HSclth+49m6NjzxYY/cQQ2hhpC9KQQUQ6b9z+scV84p5lh7Bv5RG8teB53H5/f3gHeNF7MbLUhzSQEKGyI0jDOxECuUL65Sza2EQaech3iqTokO9abqr1+VRPXJRbR9al25B7/PYxkFzIgDjNuH5MmyhcPmI7PcwEabYhqWENZeSjtyP94nUg0BfwdJB4EOgL3lNhNxGPNP40JSQd7cTWswirqUkagjypEJWh9sdYxCIWQzrE0/PtTy/NQ17N+dEmTsQ2BN5Jil9cxxi8Mf85TPv7AFDq2AVWo7Xucygpr8b2I1eQ7i0DExcESUYRTcJwBdJMdPcro6HwdN1x+1bn31CTCAj8v0Ouiz88P5dep8WnU2DoEEvvY80H7JmicvocGUdzB1G5Gh77k+i5lxiBMGo9FRD3GNWZ3st2CfLBLz89gvOn0/Dq0E/BV6tpCqm7cBGB4FrH1B4zOUre3xuICYHo1FUw1a6LJYhRij0hnT3I/sr6Om4aWHruPIJ4S0ssQ0QA4KCxmYgcuFBfiHLrzB0yE6/TpmziVH7n8yPpY7sOJOL0quM2t8FFByMgyBuqo1dp82pDIGl8T3d5A6nnjC7hpBmbiOaf+PJBePm5lugnINAQiLCmTZ+WDucn+tzZAx0HtMWwhwdi6/zdNtch9/vlReV0/KW+gdDe5Yfw7p8vo//dveh5iTj0k8WWINUkCrAHMQZy1Rwo9XwG3h39GS4fvgqZUobY9tEoyS11fK/rgMiW4bjg5PhK88uw8OPlaCijnhiCtIuOhd2uUF3hWnq3q5B5gtM7ziOsmWuC94ZA6kYi7ti74jB+eW0BCrIalwjkjISucXj9j2cxY/K3DZonISL0HUv2ozjHeR9hff6a8TfGPT+Cpqj8VxBqkobzfy1wOL97O/S6mycsYEVi2hhvjsLL+5YQN5iO5UYIHJpC3GDOsbUr0WHISHgHBuHEhr/B22gGM1FVWuJ26kR9TOIGgkGvR+LBvci+ehn3T5sJpa9zhw0BAXfhqquR9fwLqDpkf9ReGhuLiNmz6P+DXn4JjFiM4nnz6GtNKDp3RuC7n2Hra34W4oZaeOD0dzxCe/JQhjpuknF1mEArst8oYyL3WgzMkyNLyP0tA7SYQJIi3NcQ5Ng3zKyFEQF8I7RsLe8FSh3PDbiEwb1xCJfgDEDsCAYX5/Pgm/Z0S4kdzkBbAex/m2vUe+gMsSfg3wIoSQZ2Ps27FPPnVy/lgSSNnJ/LN/h9JkkO2Qd5xI0RBA4CAgI3j605h6C3cwKv0svwP/bOAjyK6+3iZ2Q97iEJCRDc3YsVq5e6u/zr7u7u/tWNKpTSFnd3CxIIEHfPZnXke+7dyG7WIxDa+fXZkt0d29lk5sp7ztHzjuIiUWbAebROlRGjMiKaNzaJIYyCBkW2MFQIYW5L8wyPC5IvcnlNzYah1u7ZRcgucTRdwVc9rV1ioeNsVAjgCz1rA0vzF9wncYmriUlQQ5LjUWsvb/rczpBEi3hNLWZH74OGJjo4rw/Eq2ohywwOW90H8SXYEaayoMrmuWCUlCTZBI7ef9SciEiNCYm6WrpdjiZGCDBorYjV1qPYFIIvslbi/JSRVGCwvdJ3A8YulmFLeR+aHkHQqkVoVCLMdlVDMoV/jtSRIlnHl2CTBCwp2oX91bn4dNTtiFD/e4pgFToP9SYrHnhrAXYdygfSGwZkUwHbgGRotx6lhehp/VPwyPd307dufv0qGsH8x/v/uEy+DTytL2585Urcd5qruKER8tq7t36KETMHI6ZLVJurCbiyGqj25cA+oKurkyi5hpTWQLU3u8k11Jm63zeB41lcfNcZ+P0tz0INX2xbtNPvMnyEHvVDukMON9DkGpGMyzJdwNZaoVlzAOqMfIjRIRAT3IsE2bI6XDN7GDYdbZ3amDisNv28Mw9anoVliLuYQn20HPrNgYsbGiHFYrOun4q5L82j36kqp5w+yDfm7fZh7RkH89huRL3Q9Jqtdzz4gmoYVmW6FN+cefN0FGeX4enzXoXQIkGiLei2HgefVwlbz3hIYTqEhevRfUhXHMwvxaUvfg+mWyj46b2h35EHvtLzpFCvET1cnv/82gJ8+8zPNJGhNZCJgM1/7cDpV57WqvUVWsfOnc1/w+eddx4iI32P95FkB2eOHg088UVBoTPy16fLXNw/NYdLYR6a3NQJIP/nzYCg93xh58vqYdgdWEEv3b5OjetfvNzlNX18BE1FaETiiHiAuIkCjAiwdv9DRfbkiFYLHAgkTUm9LxfRFXWoKKyiAk/bxSN9r8QxkFmAkZzSovLKwGc4im6caQ9xgzPfPP0zZl4/BWFRoV6d7UjxF5dfjtr5myDaRbhnM8DhBt/btV0gh+pgH9qd/ksKqAmN4gb6WSx2LP16NS2mfm/ji/8qYZ5C54EUzD1x9ivUXRNJsUC3JLc2fo/0ODz06Fn059vfvx4avQYLP17iUlxBBFXXPncp7jvtSY9maeT69+aNH2P4jMHUTfRE0dKhtKa8jibjXXDvWS7icSE5mooZGmn8BAzPwT6kGxirHVxRFbYG0CdR61Swmlp/Lbrs8TlYNXcD5NgIv8vKsZFeBQ7muvafiyZ9ktk3TsOvb/pO2fCGdn8pzAMTIEZ4Luq/bOIQ5G49imcveMOjY7YzbFU9RJ3vQhyuyrMxX3hsKNL6d6UuvjcPuh+WUd2Avr6T5fqmuRZRffHHZny1YAvsgggMcMSKW4anQbv9OBV6B1LstW3xbpx24Vi/yyooKCi0F399srRp7JCRJPC7j0HOzHeYhDAMmCojTTZrC2SsiRFsTQKC6553NSrQkyGqytpApqjdIO1mZ3GDCzoNxEE9wG8+EPD29KG6oAUOYqgKQoxvcZqJzJTE66EpaL4PSfH+BctSnKvAoZEvH/uRFnST4/1pnmdxQyPlOi0VebRlFr5R3NBY6L3oixXI3JaFt9c9T49BQaG9IQlhJJE5c5v3sT8yPnzvZ7fQn+/59GboQrXUzb9xfJjMfw6fMQiXPTYHD0x+xuM2yJj3a9d+QFMbSOraiWLP6v1ugmiVmsece86kRjzBQtqQ/uBVPOwBpKd5g5zHvz9ZhrZCUjLbG/I9kj7Jgg8XoyMgfcUDmw7TJEI5SLFfMJCUjK59kpC5/ShuHHAvmABMt1rOk5AUhl9eX9Dq+RySGLRrxT6MPtOzIZrCfwv/FgL/YkqPn7jJp6ikFMx55BmkDhri8rpapwev7gRqI4ZBbVlwLksnCyJYyFjtuFnl7N3ld9mOgJyrbX8qEZ0KHUPxs8/5FDdE3Xgjuv0xH6rExKYGceyddyB97VokvfM2El96Cd3mz0Pa3B+Rn9GVFm17gwgfji303/CJc710eaVafy4pAfT6vgQNSsLu83AgDnFD19MRNDb3vrQbTBvvdvu+kJG7snPas4T3ACoOyDRloj3hNEDPCxkkjAXWPdSx4gYCqc0s3QXYG82b/Jxu3gCkzmj+zLnLJZrS0VYRidD+/RgFBQUFn2T5iDCyiCqaWEAgqQQCqYhtQbK6ConqmiZxAyGEt6KnvgyJKldHhARtMu7t9QB6hTpiTBsJVRnAEzWgRxzCA1+YRRW4pooe75CxfSJS8IQos2DAosxSCR3nvfHSS1/sJm5wJl5VAzXjeX13X9UWxyCxMFq0qDNrkNAgbtCydoSqrNBwIlQsETqI6BpSg0HROfinYAcVW+fV+x6wYxgB0WrXiWuybb3aBp1K8FuzLUo0X4KKQ/S8jYpJyKfJN1fgp5x1vldWUGglL32xzCFuaAnHwjomHZe/ex0+3P4qohMdRcDE6ZzEJv+U/yme+OlePPjV7fhszxt4a/Vz2LFkD0RSWOEFMsBJYpP9MXhK/4COnT9aDM2yPeAPF4ItrASXUwb1hoNQbzxE3dm8IQoS/njvH5x2cfBFHFUlNT7fJ5dv65g+kMINsOsYWMMZCHoWgo6FLV4H45yhEOJCoVt9CNrNWeBKa6lrNBE2qImg5Fgp3v55HVZvaZ3qWlXsGots2JqD8F93QbuvEKrsCmgOFiNswT6ErjgML5dpn3Qf1BVHdh2nEdvOeLvqks9qHtvdRdzQ9F5SBExjujU5sV38wDkYOKkfnjj75XYVNzSiKqqBYe1hGJZkQBWnx9YjeagzOzoV5FTYu0Wj5tyBsMe5O8GFRBqoU5yzM/fnj3zfanFDI611suu0yO306EAyMjJQWlqKNWvW4JFHHvG7fF2dq+twVFT7RporKJxosna5phBxdVZ6j3B5TQBUpoY0hwZI+o5+TzFiftoP1hbYNZo4Ur+67Cn0Hd3T5fWIUB24hglTokm2RAKCgYGoZei/tnCH4MEXHrpLQUMEj0TcQLdHjsdTgVILiIssKcAi/6qX76ZiS+YE2DyTAu6VP66H1Wx1K5RuCRE3eEIyaCD06uJ1PSE9kYoAvUGcW/94f1EQR62gEDikwIeKG8j1pqAM2HkIKCgFquvAVNbg+qvG4oNPrkNEg8CG4zjc8sbVmJv/KR6few/tk3ye8RZeX/40Ni/c7lFw3Qhpvy35yrPTaiNk+wMmek+Law9Ie5cUw4w/f1Tza72Smq5xRPwlqxjIfMPPDGBv+BuuLPI/UdLW9vS7//s/bPlnBzkZ/hcOIMWgPSGOuMf357W6KJ/cxyLm7Ycq1/U86jUq3DR9FIbUM3j6/Nf9ihsIqiMlfgUQXLnnVAZeraKFZo0iENWhIpqK542oMD2mjWx2gvpt+W589vtGh7jBGTUPy5h0CB4E9Z5Q+iQnvk+ioPBfJ2vXcbfXGLMNXG4ZuJzSNosbnEkf2g1vrHyG/utMRFzrk8mklDjffYdQPaTIwNKYOZ5DpQcxgV8CvU61vJUF0Ofxtgy5X6z+ZSPqjBYcyvIteiejZXJY+xduEyE2EcgoKHQEL13xrldxA6nTuuXNq/Huhheo8UBj8f7t716PuXmf0kSGh76+A18ceBsvL3oC63/f4lFw3QgRNS37dq3P4yHj5X1GpaMjIelo5G9q5KwAi8ScaBxP8YWtFQk5TTDAWzd+jB3L96CzQX4fUnp3QUFWEcadM9L/pThUB6FnFwh9kiEmRrqYVLVEH6bD1c9cTJMJn7/4zQ4VNxAYlsWeNQeahHb+9hebEo1x54xoek5E5z++NK/N/U+lT6L0SRr5Tyc4qDR+RsTbCK/WQLA5/tgrC/Kw4qtPMP7iK9B77MSmZY5s3Qg2kIGgjqYDB9w5tRr60HDUVbQuwsgThzdvwLgLL/d58+9o9q9egclX33TS9q/w78ReWoqav30rYW3Zx8FqtW6vcyEGhM2a5fJarftYgBu12f7/jnpdyKJwo+S3YyyykSgKfxRdap4DKcVrSXbUZ5BYLxGBMmCuBEKSAR+1nt4h7T0Px6cKdSqabyUFa9BpWfdg+18HE8cBIV0AW52MzU+3zzZpioaP9qvJ95i/G5waOP63jJ4XkgY2g4M/tM95iOihpDcoKCicWLTkguaDKpsedTYNwtUW6FWOKFQiEiAPPWtFJKky8kKKthI5phSUWFSwiix22yUcqliG23pLmJrQr2m5ZUX7IYhagPXsHlcnaOht1qByHXQiTfEamwY2WUUFCt5TJhwIMhFpeJ7gtgg8bBIDvUrwOZ6erPE9OEbWJWkWRXZX52UNq4OKiSW+9F7XtYuOflmc3kjNatWMAC2p5PJApMaMbNMqyJgIOYCZA09JDSyRLZACBZlp+rkl5BwLIotkQxWiNaam82sVORSbw/BP4Xbc2tO1/aeg0FaKymuxaqv3Qnoy0HqclaHWuHsAE3ehSRePc3nt+H53B+OW5B703wG44N6zsX1JYAPXrMkK9kDwMcVE5EAcTRPSYmliQHv1SUIHpqFco4KgdRRqtkTmWdSf3hehf+6h6RjkQY8nTAvTlL6QQ7RY3vCdMMTNmvdyofR0ORIlaA+6TzDyVWbwm4JPa6CbDNfB1jsBQkIEGK0KN326uMmFVN09FvyxMp+SMmv/Lj6jgYSecRg6cwi6dI9H8cFC/Hz5O60SXngqWiXfsScsg5NQVe9F7aziUD++OyLm73VzIF/8xUoalUyY+/K8th8kcSIe3OzQq3DiiI2NpY9AmD9/vsvzYcOGddBRKSicGIjjeUsMW3LA1ttgGdQFUojjfc5oh2FbCVSHS0kDF1yt1a+wQdKqwA3pCpOaA2wiMnMr8N4dn+P65y91cWHbOHcDdCV1qEoJgaD3cI9gyD3UkZTgTQ+tKnQV9NFbB9EoBHEPcb5PMFYBTL0VssHHPJIggS+uAWPz7wwSGhXS5ELXXqz+aQNNUWotYtdYvwVNQmoc1Pua0xtasvSb1bjyyQtbfQwKCp7IyyzAlr9cEwkYkwU41pxoVrjxIFQ3TnFbNzQyxE14m73ff98gO4D+w4X3nY19aw926Jcm2ASwxNQqORolVfWQw3SQyFAK5/S3Sv5uGdI3kyFFhUDWqsH4KRQiRZvVpb6F2Y2Qy6YUrgd4FmytGUxDYQq55lB6JAF+ijSZ+hMj2hUjDRD6JOFGkmTDMlQ8oOoaAz7Xf1JBSzijDZF/HIAQqYPUJQzjZg9DKqdGxQ/b8GrjZw8AvqgaqkOFsPdxF5DxdhHqTZ772+RrrSiodD2mWgt0m441CMRbXK9tAsI3HsXiz1fg7FtnQJQkfPuXD/dsloG1fxK9b/mjx+A0v8soKCgodHSfpD0hiQ2NhZpETPHe7Z/juhcuw4gZg5uWWT9vC02otVuDN66Qw73UPzhDXNmr/Bct+DKK8QVvtENdWA9bF+8ighitDhEmCc4jYGxFHaQE30mWTKX34149dwMmtBgP9r4hdAikT3Lxg+d2zMYV/rMQ8czOZa7jwc6QesXCrBIqamhJWHQoplwafJ8kJ8A+yQuXvo2OhAjAQ6NCEZUQ0TrBlRfavD0Z1Oihs3L7KP/GOTLLQhjaHVJiC8Mcsw2qHVlgq5vHjEjC35izRyCxezyyM/Lw7TO/tMtx+ponIUKNyqKq4LbHcfQ6PPuGabDb7Pj1jQXtcpzdBinzJAoO/tMJDj1HB9jIaiWN4oZGqgrz8dc7r2LfKod6dO+Kxfjn/TdgM/+77aJlUcSwM84Bp/IUgNw6KvJysOiDNxESFY2ThaXeCMHWvrHSCgqmbdsAwfeEmGnjpoBPFHG597+M/55k7BAGw+5hAkpCqNJfhJyoT2BUj2l6zcz3Q174qzBpfMdHVR0AprzLoNuZCB4ZMDhCLZoK6pMnAQnNZkcKAVK00ZGokbOk7afM0AXoczmDaZ8CfDsmQ1qrgD0fy9j+ugxjgYza1tVmuaCNBmKHtsfRKSgoKATOuJjmAXQHLW3BGBwvjcGBygTsLE1CZk0cym1hKLWGw8D6Hmgn855hfAWsxNaPYRCitqHYlosHdszFPwWOIuG52ZvwzN55KDE5Cu09QV4/XheFzOpYlJkNqLLoUFQfikNVsagVdLBLLCwij3JiteqDaju5EbjvwySoYJbUfhMWHJ+pccCFLE1+dq9WImKBllTZOVzbYxxUXpIq7CILgVYMAFrecV41XsQNjdQIB/Hq/nnQcnE+lyMiBeeEjUYcdUQyTb8gx9xSvE2ekvSGtNBKxGnrXcQjJFEiNaQKPOvqrKug0B7s2J8LyY+ZwLYARAuNGAKIB9eF+F+GTDj+7+1rwQYQh9sWMtYfxLsbX8TpV54W/MoyqDjCeaB48qXjMOCScfTKRAozvcKzsPZPdBGSNIobnOGsACN6+H48fWeihJDVR8DVtF9xkT0tBvVnDIK9ZwLkUC0kFee44ZDC06gQ6gpqHdXd9zYSwzy+Tu9+RPjFACuPF+L7FbuwoLAENRcPgxAbwESxF5J6JuDyx+bgg62vUFGCJyy9fRe2i7EhEKL1bo5UH979Jd677f+QnZGLwqNBqrY9EJ8Wi35jXZOWTnnIl9oej07C+vXr8dBDDzU9Hz9+PMaMaR7/UFA4FZk4x/PvsC6jCBFzdyD8t90In7cHkT9sh35bLlQ1FqjKTX7FDeSeYTxvGGp6xMGeEg17jziYp/TFvrgQPHHhG1j3+2a63M+vLcDbt3wKbMiC4KdJIHqre7KJ0B5yXIftSeGom9kX1deOoY+62f1gS/FdsOMJcuVRH/Z9becLqogKPeDEhUsePo86srYX+zdl4pP7v2m126ys1zgc4HWAoPWslZT1vkX5pXnBFxErKPhj98oMvwZnO1d4Lzby5HjpD0Ooa1vPE8SJ88ZXrqRFHx3J3rUH8N6mFzHpsgmOZpCzuMEZhoHMARIRkTkRn+rUJ1FxmHblRPQdHZjTqz01BqYzh8B05mCYZg6E8fzhsIzqDpm0+xt3W1ju2ziPFGaWuhbqdwRCYiQsU/pDSIpyJEYwDBV8WEelwzqk9QX6RAyu3l+C7W8swu+vLGgWdgSBZncutKsPgsuvBGOyIjUxEjfMGYsvnrkUGqvn+6e3U6rJKkXIX3vpPYmtNoGtrIdmXwHCFuxB1Y5s2h/5+N6vkZldipIK34WzYkI4ZD/3IeI829LV/JTnX9YnUVD4NzJxzugO3X6juKGRw9uP4vEzX8Lmv3bQ5989+ys+uPOLVokbKIEYs54A89bwtc1iUE+oFx/D5Y/MAeuUtMQRUaAvl22LDVxBhde3d6/KwLeP/4hwlZ9CEpsApsa7AVVbaJVRjYKCH3Yu99/f2NXOfRJ9AHMpxGDq6qcv7vA+yZ7VGXh/80sYf67/NAJPxHZtrufk1RxmXDv5X12wHqhBtzC4m7u4gaBTwz66FxWvNy1rF6n47tc3/sTa3wKvE/RG175JuObZS/D2+heoeMITrTEaL84uxVs3fYIvHvsRBzcf8Zt4HghEcJ3aNxn/KpQ+Sav5Twscug8difjurlHIJ4K1P3wNs7EO6374Gv8FJFHEtj9/x+jzLkZ8j540yoZgiIgE34YUjQPrVqG2rBQnE6upYxrgCgq+CKY50XWq/0Zt1ymBNXx7nMNi9g8s+l7JoMsEIHUmg/7XeV7XqBmP7OjPsT9hJ/YnbMPR2F9Qo/evWhCo3ovB8HtZsL6Kf7xQX9T8M0kLqDrsOzVAoePRRgKRvRgY8xq/3/Yle7GM8n3tMyCUNAEo3QFseUHC6ntFbH1JQuluJXdYQUGhYxkXMwjdDF1o8hEpdOdZmT5IMTsp5q83q2CXeFoML4NFnU0Lk90hHNZ4sy51Qs+5CnLJtnUqK94+uATVNhM+Orycvi7IHMpNepqk4Dx2YRU4VJj1NDHAaFcjpy4CR2ujUWPTIVxrpSIAnnUU9GSbYmASPRe/1ApaZJujUGlxCCJI2gPZZpVNhzpaxeRoU3gTWTRSJ2ihhQ0hsCKEcfxLnjvEDg3LtKggNgpqVNh4rKv4Bw/2G4EJcWHQNAgOYjRhYCQtLHbisOLYtyBxDd+H73sA+dyrSjfgcJ3vxoZF4hGisiJKU49QlaVJmKHnbYhUWxCmtiGUPFRWqBk7JEmmwgZyjshroS2SM5xJ1NeiXmg/B1gFhUAJZoxzcgunotYuQ5hz95n4+sj7uPTh8zD+vJF0UPzKpy5Ce1JfbaJF8Pd9fivUXorhA51QIy44Wbuy6d+1RC7dfiYd7E6D/kLXKDdxA4HWN1nIQwZvkqAyitBUCgjNtUFXagdfbISqoBq6XfmI+HknNMe8T0AGi2RQwzymB9AwruN2YA39VXt6PIQuEcHvgGzDU5qNQQPjjL4QDcF/H4SohEj0GtGDum6R4lK37ZN7rC937gYkD98H4a9Pl+HIrgDiEwNgwpwx2LpoF1687G08MPUZvHbdB1R0o3ByIBM6giCgpKQECxcuxCWXXIJJkyahpsYxSZOcnIzvvvtO+XoUTnkmXTIOKX2SPL5HmsR8pQl8eb1ngZ0XxCgDzGPTHQWnLd+LDYVpdA9amF9dXovvnnU40JGwN68pRQ2QQt6WXQaSnhC29BBYsx2WvgkwzuwHISmiSYAnJIajfnofWAa6O2n7Q32gEHy+F+c6SYaQHAXjnBH0/ij5uZfYzDb889kyXP7Y+egxJK2pWRCTHA21tpXmUDLw96fLUFtRG/yqJEGquwE13VjUJ3EwJnOo7cbCHOncuwIYi+9+pyRIMNX9u028FDopwfRJWiQ6tKVPcslD5+KrzHepSzDpk8y6bgoue/R8tCc15XUIiwnDw+9fT4uBfEKExrGuAuKSHKc+iV3E0V3ZEEX/Yixbejws43tCCncqrOI52r43Te0HueGazpitYJzSNFyQJDCZOWAC2F9bkEkawQiSauC51EFIT3A7LycarrQWfF4V+IIaxLE8+naLx+ENma0qnuWrTNBvOkZFDWEL90K3MxesqblvM+/dv5GT6buotRHZm2CmgdMuGkcLfl+49C3aJ3nzho9wYFNm0MesoKCgEAxTr5iILukJJ/SkSaJE+ySVxVVtTuVkyqrbZZnWIOs0EHqnwD6uPzSGeITvrKZ9FRckGWEbCqFechzLvl1Nx1YbC40Zu4Ck4kqoPPTdYLVDveUImJbbc96/LGPBB4th3nnM53FyuaU+t9MWyL3VanYVsSgodLZ5kikB9EmmXDYhoG1d9fRF+OLA2zTNgfRJiHN+e6eYEBf/2JQYPPTtndTIKVjKcpvnJQSbiKO7s2n96H8ZYjIhdfEgbmhExUNM822q1xZISiCZJ9m/MZOKJ9qbn1/9A0XH2m4CRZh08Vhs+GMrnrvoDdonIQKKzO1H22XbCqce7jk5/yFIof3Q2Wdh8YcdG93TEktdLTb//hNNAAiGxJ59UFNSBFNt25VOJxpTTTU2/vpD03nvNXYCZtxyF2RJwv7VK3B893b6c0zXNOxa9GfgirAOVDkT8YVg9d0IPrh+NUac1b4Dlwr/bfQjRgI87zPFwTB2bMDbixnI0ASD4q2e348eACT4MEQgf4v5a4Bjf0qozQPUIUDXaQxGPMBCE85AlmTkrfLuns9o1JCCDDpheZK+wMAQC9T5T2DzK3gwt189j0IrqNgPbNovBZT+0VpKtstQhwG24OdyXag4ABxd4DzxIiNnmYzU6QxGPkISTBSHHgUFhfaHYzic1WUCPj76k8vrpNiFXHV4ToaKd24XMCiuD0G4xgqzXgX4qYMxi+4LqDgJFdYafJ61GvVCc3uXiBwqLXoqrCBiC0kmQgTXC/jg8G6wsEdhkUwur7OMDKvE44AxEXHqOsSo66BiRPpamT0U5bZQmrlAtm+VVbTWyBNExEEK+z2JC0JYC1LUVVA1pTg4zpMKEjjZBhPUqLCHINcaDZ4RqViiXtTQzxCpMkGFGqyvyKFz3+PiOQwIH4cLk2+GWZQwP3cXNpYepfURg6OGY3/9z75PbNPxMqiwaRGtUUPP2txql20Sh3pJA56Rm4QKEWozzILKqdZLhooVwTMSQlR22sUhiRi1dg3itL5TJMh531m1GRNjTw/oeBUUAmFYvxSwxPnSR397ZP+uAZ/MYacPwuDJ/bFn9X6P7w+ZOgDDpg30ur4kSVj980b883/LkX+4EKFRIZh2xWl44MvbERJhgCiKWPnjOhRmFXtcn4gUSEFhMLA8B5Vahaj4COo+0xbyMwtR9NN6oF+XgAoNGxESwn3rAESAq7FCWyvRsRGmohaqvFLo61yvz+0JKXjyVKjqcmBy87J8oeeJW764lgo4nPE3uiNreFj7JkC/PfD0kEb2rTtIH87udC6HLTuKN2U/xaWMj9+jfWsPUIetthZ47l65D7+/tdDltWXfrKGTVPd+dkuHO3N1BPT3tY3Dd86fuqjIydnAC0R40B4sWbIEs2fP9vjeOeecg/feew+pqf9e5zGF/w5qjQpn3TKduj+3F7beiQ6BgReE5EgU7crBjy/83iw+C/ASNy40FIdzy1BbbYKquBaazFKwVgGSXg3zaO9/k+YRXaHKqQRXG3iyESPL0K05BCE1Brb0OEhhWsgalaMjQu4fZCGOhdAtlrpi65ftB9vCHdYZkvbz3XO/0Z95NY+pl03A3Z/cDHOdGYu+WOlwf2QYpPZLxvx3/wn4OCUn8Ym1hw7GGVGwd9WCMUswbKyGfm01WJtjGTFCT93eayd3ha1riFvRqzWagaSSoKuQaXtDW1zlInjwNH689rfNtMhbQaG9IH0Efww93XsfoiWjzxyGfuN648BGz0XaI2cPRf9x3lO0HH2O9Vj0+QoUHi1GeEwYTXy7/PE5MITpYbfZseKHdSglDsge0Og1sJoCL7ojlxiOY2niS0S4DmVVvs3WPAmjncnen+e3X0PEC9Yh3vt5UnQI7N1ioc5yFKwwBWWA0Qw5KRYID3HM11bW0teZ+o4XPQnJ0QC5HvvA3j0eXFkbJw1aiRhpgHV87yYH1u05Zdj+6h/g68xQ6dRgg+yjBkLmot3QqnlYbN7Hkpg6Cxir77GmTQu34YcXHPcqAunLL/5qFc69fRbueP8GnIq0d59EQUGh/dEZtJh1/VR8+diPJ/T0FhwpwtyX58Pu49rpieEzBuHQlizU1zjG4dj8MogpcbQ41RNMSRVN9GlvpJgwCEOJsLxZEBlSB+g22WBGDUS1DK7OhtCdZVBVOPpBuQcL8ONBh6CDCK1Jm+aOD25AncmGv5btxa6MPDr+lBplwMIHvwUTYBEsk1MKTq+B2KM5obYRtqgSXIBCPE+QNpFIEqJ8iFU2LtiOKQEKVhUUAmGojzmLRnzNa7Rk/Pmj0HN4dxzZ4VkMNGHOaJ8pWoJdwPLv12HRFytQkl1KkxxnXD0ZVz9zEU3IJiKf5d+vpcIET+hCtDAbAx8P4XhivsfQMe+QyBDUtLFdTQQOutBWuNz+ixDjI/yaYElxEcCh/A7Z/45le+mjo+qeyPhQ1q7jUKn5oO+rLVn10wYc35fr0ichv/sX3X82bn79apyKKH2S1vOfTnCQJBHrf/LtshWT2jERjMVZh4Ncg0FCj56npLihJUTIcHjTevz5xgvQ6A0Yfua5uPDx53HRky9iyjU3YfBM/y7vHQ7DQGtwHdz3RH21F/cmBYVWooqPQ9gZnifPKQyDqGuCu1mPfZZF6gwGjLPRDwskT2Iw8WXWa+OFND62viRj87MSSncBlnJQIUPGFzKW3yrBVCLTdSe8zCLEQ+2AKhQYcH1wDaPo/oA6zLFOZB+0C8EKLBQ6BrkDDZuIiKXbmW1rhBNhTfURz+8RkcPhX5UkBwUFhY7BLgn4Mfdvr+8btDaM7NKyyJVBjVWLXZUpPrdNzHCO1ce6va7jbEjWV6PMkumSfNBYy0yEDSQ1oqW4gViqjooLhUXyPIglgYVd5lBsC0eGMRm76lJxoD4JZbYwKgQg6RAqXobsJ6XBRvftvszIkGPQsZ5d7khzhpclrK/tRVMequwG1Ah6CDKLaFU99JzdZcxIlEXsqV6H73PeQoRaj+vSx+P/xl2Nz8ddjTv7nI3x0ZMhSL67yzaRQ61NjRqbFmZJjWpBD5OoglXiaGpDjaBFLU2TIEILtcux6nk7TYkgVVEkBUPFSk3HR/7V8QISdCZEqf27ldfaO8b5SeG/S5fYcEweme71fY5lcMmsYQFvjwyCP7fgYUy5bLxLgTn5eerlE/DcHw/5LCR64dK38fIV79IBzIrCKmRn5OGLR3/A7aMeQXlhJTiOw4t/P4aEbu7ONuExobjyqQsR7MQFmVQl9BzezasQwdI7FvXDk2HuGwfJS5xvI0JmIRiz/8lAvjw4Iwym1gRu7R5w6/aCPZANpgPFDQQxyv84SSOSj8ht7f4iz4YVfpr09lQf7kaBHJMPF1nNYd9R9lyVCapS799PRVE1TRRpCyqNik70eIIM3i/4cHGbtv9vYdSoUUhJSfH5aC9ycnI8vh4SEoJu3brRdAcFhX8DZBL8++d+9blMt4GBixsJQkKYf8fxhHAcdprY5yvNYI2+B/JURhu6V9uBX3bS1Abd3kIqbiBYe8V5dfJu3CddJkhIQaQquxyG5QfAl9aBIf81ihuckHVqWAcFfg0SbAKWfrMaL13+Di2WJi6qry59Cq8ueRK3vX0dbScFS82cWJS8mo76aVGw9dTDOigElbcmo/i1dFj6x6Du7MEwnj0YdWcPgK2rdzGlPZSBqGbAaFjoIvT0NUmroukbRCDRkqpipU+i0L6k9E6iogRfRW7n33lGwNtjWRYv/f0oJl44BqzTfAjZzvRrJuGpX+/3ui4ppntmzut47ZoPqGiW9ElIMthnD32HO8c8hqqSaiqOfmnR44hNaU5kayQyPhyXPzYHwTDqjGH02Ag9A3Hw1Kqb0hVaQlrdYkIkanskwjYoDUKXKMgeimqElChA7dsX0d7ddYyJqTGCPXAc7KZ9YDdngD2ce0LEDQQ5gOKoQJbpCGQiMpjQp0nc4IwQqoN1XO+gktoDpbqgErPG9/W5jDqzyGe3ixgEHNvjuQ1M+iOkX6KgoKDQERDDiLkv+U5RSOvffv19Z474SR5oCXEyj4wLbxI3EBirHdzOI4DF5jG5gd3fPsmfzsg8B2GIq7ih6RgFFiGWMMQszEHUsrwmcUNLbBY7/vl8Bd64/iNERRhw9UVj8fazF+OtZy7C3XedgYlnjwjqmPiDeVCt2QfueDHYkiqwuaVQbTwI1Y4sKh5vDaRNpNH7nydR+iQK7U2PwWk+RQ6kiPvcO2YFvD1exeOVJU9g3LkjXfokvIqj5jaPfn+X13WJoPrJc15xJGttzKR9EjKO/PF9X+Pu8U+gtqIOGp0GL/3zGKISI93Wj+4SiYsfPAfBMPbc5r//tCDHhLxhrgtcYPGvJBDzIl/jWu0EMTLuKMjvIkmKbQvEIMBZ3ODMr28upOYCCv8t/tMJDjl7dsFY4dlNoxHB0jEX18LDwcXLDzp9FjI3nYA/UIZB2uBhyD+4H4LN2qEJCbkZe5GzbzfSBg1tEj5s/fN3HNmyEScdWYa5zr/6MCy246KBFP67JD79NMTyctRv3OT6Bs8j4cknYRg1Kqjt8VoGox5lMPAmGaW7ZDqiHTOIgSHBd+Mp+x8Zucs9XwNMxcDSGyQMuIFB2iwGM79iUbBWRuFmQBaBmAGgogpeBxz5TYbZ96XWAQP0uaK5sZY6nUXuso6NMVb4d6CNYtD/WgbVR2SUbG/lRvz0E7Lmy+h1oUzTRRQUFBTak+2VGaix1/lcRs17nhwutEQgqy4G6aGeb7QH6rrQBINGNKwdvcLKaIJAwxYwPYlFjjEKR2pjaeKBLy5LHYMNFat8LMHASkQMrEhTIhohXQqSWGAVOTp2QxMafEzlMuDRXT8IWfVEFG6mLvJ2O4O0WN8NCjUjwC65DuZrWIEKCLyRWbcLx40H0S3EMQEsyRL+KFiEDRWHIMtqRKq99werbVqMicuFjrc7CgbAwiQ1n+9GrCIPi+TqKkjOA0mZIMIPT2kVBBkyTKL/YuUodYzfZRQUguXxG2egqtaEXYdcnbV4jsWjN0zHgHR3Jy5fEJefx364Bze9ehV2r8qgogeS6kAicX3x1yfLsO63zR7fI4kNNw+6H9e9cBmmXz0JXx58B2t/3Yxti3dBFCUMOq0fTr9yItRaNea9/ReqSwNzGLrkoeYo59OvmoR1v29xed/SJw7G8Wk0UaAR44RuCNmcA90+zykSjCBCuykTwsx+kNTuDU+RB8jlWkjSw3bpYKhKTODr/RdO88Un1gSD8SEQcFvWh0MPX1IL3aZjMI/p7tPd240OTFTT7SmArVs0pFD36zgkCfrNXmILG4hOiMANL19BB969pZW0dX7jj/cXUdfUUzHF4VSFCBxUKhXi4+NhsVhQXu5oixiNRrz77rv46KOP8Nprr+Gee+452YeqoNAmNszfijp/7uAdMU8gy9i/4VDTU9IsNuwsQt1p3lMYrps6Eiuu+8rjeyRdwR9SuHcBnjMqDY8BE/rg4OYjsBCnVRmQiANdUiQdwyRdJ9qMbyF0IAXC8nYuYJfTxvOfuf0oeo/o4diGXcCPL87DrhX7EAzmwSGouTzB43tCshYVtychZJNDnCD4Ow0MA7uBpEXJqOmXDHtMCETy2Rsm2pkaEzT78sDnOwyg4lOVPolC+/Pwt3fi8TNfon+HLUWhD351u093U08Ywg146pf7UZJThr1rD9A2FSlYivZQAOTMvHf+xuaFOzy+l3eoADcNvA/Xv3g5pl05EV9nvoc1v2zC9qW76XVzyOQBmHrFRCru/vWNP2Gs9n2tpTDAxQ8290lmndYPG3f5KIok1+fYSNinDQV3MBdcXrNwV9JrYBvTG7KT+FjsHg+h3gL15sNgSfpYdAQQHw050b+YmQi5OguMLYDrbBtdQ1uLPS3WZ7qEFGmAFBcOrrR9+3NRCZG48fJJOJZfgb1HCt3e57PLoc703GdtOjY/fb557/5NC/AUFBQU2ps1v2z06yzO+TEYaS37N3hOePLGZY/NwS+vLXB7namtB7d+H+TYCMhheupAxZZWgTG2TvxHRGf9xvTEwS1ZVJTeckpFSoohg7XeN8BzkJJjqNjAHySp6rJH5zSJSGxWOxXBkzZTsJD2Bbs/+ARWX2JTMYD+VZzSJ1HoAB778W48dsZLbqkLJP3kke/vRmq/4IRXYVGheHb+Qyg6VoKM9YeoYIr0SSKJs78PfnntT2xfssfje2Q8+sYB9+L6l66gRgnfZr2PVXM3YOeKvQ19nkGYcuk42m345fU/A0pxYDkGF93fLIiYcdUk7FmZEdRnVfBwXquN8Hc1Y6qDM8HqbJA+yZVPXkD7ypnbjrZqG2RczBfz3/sb066Y2MojVDgV+U8JHKpLiiHabQiPSwCvVqPOj7iBYDbWIn3kGGRt8zyhHhIVA1mWUF9VSZ+rdTrYzO3rThEen4iwmFiYak6AC44sY+Jl1yAurTskUUTm5vXYMu9nVOS3XwPUmUMb1jQJHBZ/9DYOrPNVMHViEe2e3WEb4TUa9J3QNnc+BQVPsAYDun75Jeo3bULN339DqjNC06MHIi6+CKoEz5NUgaCLYZA6PfBCiKwFvicu7fXArvdkZP0hY/LbLFKmkof7ciMfZbD2fv+ToEPvYtBlbPPxxY9wPFpdsK7QoXBaQOwkAutusxlwagYjHmKw9gEZdbntn/RhKgFMpYAhuFo+BQUFBTdyjJWwiSK6hkRCw/Eot/pPBDOLJoyN6YVN5e4pcCtL+0DL1aJnaD7MoqNPIsrh2F4ViSP18U3LqRgBgyILoW1R7E+SA9LDyqFT2XCgKgE2kUSOuh9Dqj4GcXot6qv99HUYBlVWHVhWBgupIbnBMalrUDna10RIIUoMONZz+6DCrMGNgy5AWkgcbJKIRfn78fuxf+ix+qt7NXBWWITmCXcd6z/KaXf1BipwIMUH7x/5HJsrGxsfenr8kSqz2zmptmoRp2suTJCojytZurnAiQwWkiSHarseLOSGrIzmDbGMDMaLuKGRelGC3scchZbVYVjkGL+fUUEhWAx6DT56/GJszcjB8s2ZMJnt6J4SjXMmD0RsZOAu/i0hgobpV00KePmFHy/x+X5dpRHv3fZ/dLnXlj9FBzU9DWze/+VtePKsV3zvjAHu//x/GD59cNNLY84aToUYjQXr1tRI1E3p4V6JruJgnNgdjEWA9oj7WJMYZYCtTwK5QDvidRoK9ckVwB5CCiYdzyWNGohQw9bFAN4sQ1VLriue+3CMxQ7VMd+pA+0NX1TtcHYNAOJ07QvN4VKo8qth7RUPKUIHmWVgT/O9ba7MdXCfuLdZTe0T2cea7Qj7cx9MY7vBltZcwMmVGqHflgN1ge/io5nXTYFWr8EDX96Gh2c8TwU4wUJc83xRcKSIOgSTSYJTioYC4DZvo4GtW7ciMfHEdMzuvPNOPPPMM1A3JCrl5uZSUcObb75J0xvsdjvuvfde6HQ63HLLLSfkmBQU2oP8I0UQ7QK6pCdQ1/HSvAq/65AJcOd7YksS0mJhqbeiuswhKAwz2VGj9yAaa0SWwRe7iw9DthRAiNbB3N/dWKivoEL0wUqPk/GShoOoV4HonRmpQXzgAaYh7cEfgk3EvZ/disRu8bS4Z9Xc9fhy/kbUatmmdgDdBSlaEpz2x7GQtaqgBA4Esn0icJAkCc9f/BY2LtiGYKm+3EPErhNinAQxVAJXx1KBhj9kzvEZLWoOaOFKL4frYRnfC5pNWYgyWjFhzuigj1dBwR+hkSF4Z/0L2LZ4N9b+toleY7oPSsUZN07zWwDki/jU2OD6JJ8s9fl+TXkd3r7lU/z16VK8uuwpKr4mj5bc8+kteOGSt3xuixQgPfzdnVSs3cjkUT0xsFcX7DvsXrBOaLoGqTiIg7qBsQtgi6vo37ltbG/Ioe6KJtmghW1cb2jyasFEOBJ3GMa/Uyhbb0VngcsrBwam+HQ45XMDcd5qGyqtCvYW7Xgxwf/vp5DQ/gIH0ifRa9V4+orJuP+mj5DHgt6TWKMVqqwS8IXV/kLzaLqQL0iiIhHqhEQY8F/ukygoKLTxz0mW6RgHKVxP6plIXc3LAuiT2Cw29BvbCwc2uc+TELr0iIex2kTdoxsNV0gyRHtC2iLkfu1tDIekFDClVQB5tBHBZsfD392FmC5RVOCw4of1+OGF31DacH+Tw/1fi6VwA7gg+iTESIYk6j5z/mu0DdZZsJp9j/9FJUTQcVwFhfYmIjYcH2x5GVv+3ol18zbTseieQ7th1g1T6XutJbF7PH0EAhknIH0NX1SV1NB0h78/W0ZTImZdP5U+WnLnBzfgtWs/9LkthmXwxM/3o+/onk2vTb50PP74YJGb0EMhONhKI5iaeu/Xb1kGl10S9GklKSBCkONQHQXpkxBzgQe/vgOPznohoPt7S/yJ2ohwgozVqX2IyjslSp+k1fwnBA6Zm0iR/k8oy3W4rWlDQjFgynQk9urjd92QyGiceddDWPHlJziwdiUkUWga6OkxYjRm3no3FTVUFubThizDsvj2obuokKItsDwPqSHmvKakCOt/+hYnij3L/sH0m+4Ay3EIiYxCVZHnQbP2wGZyOJLmH8zoVOKGQJh4+bXQGlpf2KGg4A/D2LH0cbKoCVBMSYrJt70mYeIrrt1jWZRRtBWoOQZE9wMqfAj8e10CpJ/HugxsEGFD7FBAtAHlxLBMGTwMGFZNnHYc862yn3lbTgcMuZ3B8X9kVAZhwiD6rr05YYR3ByL7yDQ5ZMNjrRM3BArTMcYgCgoK/xH+zMnAxwc34Eitoxg1UqPHJd2GYGSCYyLZF1GacLw08HK8sv9PLC7cDVF2lMpzDIsp8f3xQP/zoed5VNtywTIcqqxq/FbwDs0UaKSLvtZN3OBMgrYO5foQFNRFNIW4qVkOdnKBJcIMUzk+yFyOpFD/n1XLC6i2aGGXOfANIgaS6tAMA7vE0mQGnpWa6oQliYgb9DALaszL24b7+p5JjyGKC8OufAFCV6Zpe54gNcN1QnMRlYoR/YoiCJaGlIR9NQedxA0O6gQdTIIGBt4KnpGoeKPEHIah0XkttuKQN5DUBfJxzAJP0xwksHSunYg9yPE5Eiaap5PJGr4QZBYmQQU9737jJd/TeUlXQENUhwoKHQAZ4xg9MI0+TgbEpSXnQH5AyxKXIiJ0eOrXB1y3IUrYuOMosq0Cul8yDkf/2Oq1sPGKJy7ErOuaB/0lScbmfTkYcPcsmFKjcPjnzTCNSPZps28anuwmcBCSImEe35MWPJI1WTspGJQhs4CoY5rEDW6fX8eAEQCViVwnGDdxg37VQZoMcUIhA8vk4sMwtGCKfIamYyKXW8kRjMZWmxBaXAuxwVnP2+A6a7JBtzsPhnA9bn3rWnyfm49DTo6zLdEedBUNBOLeFgxcvQ2hyzMh6VQQQzVgrQK4Gv+q7l7Du6PHkDT6O/vEWS+3StwQ8DH6cub7j0DEDcnJySdsX8507doVr7zyCqZOnYqzzjqLChwIDzzwAM477zya9KCg0JlZ+s1q/PTqH9RFjRARF46zbpmOhG5xAYkUn1vwMN659VPqTt7o8EyuS5MvGYe7P74JnIqnhUrkNZOGx/XPzIVIGvkeIM7/rAehArnjRf6TBcPuYpgGxIGNNkAqr4d+Xylqio34psXy5C5ZP6YrzAMTaXFvE5IMzu4udFAfDUwcSMYm//lsOU3nIROm+iGpyF632z3xmmUgqWR6f6f7kiQw1uAHzeprHH0SUjTRGnGDGKaFPcX/xK4YKVKBAxPALZQVGuIpvDV9SGHXkK64/ZLTaGKWgkJHwLIsRp8xjD5OBvW1JuquGghHdh7Hh3d9iUe+u8vlddJG3LRwB20jkjbj0d3ek8Gue/FSTLu8WbBNCgy3L96NiUSkkBiJjIJKKgymyA6BFWt3vS4JvZLAm62QwvUexQ2NyDoNLcTnLY7rNG+SwIgyZB8JxqqjwRfbdBSsxQ4+qwRCL8/CV7a6HqGVRthJ+5nx33cIjQrB/96+FnNfnt90nwwESWhlCnk7p7KRgt/Ufsm0APbx2S+iMqsYHSVBIE7DCgoKCq3ln/9bjl/e+JP2GxoL08/+30xEJUYE1Cd56tf78dbNn2L975vp2F1jYSdJTLrzgxvBsgzdNkl8qq004p4JT0BuWK618Gq+SQB2bG8OfZwIJFHGos9X4KqnLoJGp0FIhL5J3OBYwP89iAniszf2Sdb/vqVTiRsC4Y4PbqBCGQWFjuqTjD17BH2cDIigurzAYXDnj0NbjuDT+7/Fff93q8vrdpsdGxdsR3lBFdIGdEV2hveimlvevBoTnUwMiBiN9EnGnTsSHMfi0NasNnya/x66EG2TKI6cS9WOLNjG9AFamoLIMqJLqnD7+9fjm6d/RvGx0oD30SGpq62AGKMkdo+D2WjG42e81CpxQ6Bzl+R+r/Df4V93h7fbrNi3YgkyVi5FbXkZOJXKLfnAYqzD9oXzkNxvIAyRUU3pC54YMPl0mvYw89a7MOHSq5CbsQeyJCGpTz+aBNFITEpzbPI59z2KhW+/DMEWvMghJCoaYTFxKDx8ECeLspzmqNONv/7QJOroCKKTHXFNGauX41TDEN56hxgFhVMBUisnOPqxfineChgLZIQkORoR5RkytrwgUdf7JshbHtpVCaOBgTc0D4hWZsrY8rwEY+BjyAoe0gjC0oC0WcDeT3yfninvsIjsxaAuTwxK4OA3O+0EQQQ0S2+Q0ecyoDqrY4UU+jilkaygoBAYZtGGebnbsCB/O0ostVAzKhTUmWGzk+6X41pSZTXhk0Mbsb+6G8LUBtQKzWkALZkWNwZaTo1nBl2I23vNwPaKY7SQflhUNyTomtukUZru9N8INfDUgCvx3P4fYJccbflYrcO1yBscIyNCZUG12oYQNg5x2lDsq3Et4ifJCzaRhZrzPXBORAgRWgsVOZAcB4IgsY01sQ0wEEmSg8g0NRGsAk/FDYTDtc0i6zd3rUOdXY2d5WkYFdfcV2nJEVM8suujEaUxIVRlhZologL/1+54raNIck3ZRo/vi2BRKziKAiqseoQQsYNXoYVDskDSKSTJdcKXjLUQkYRArFBbpD54h0GdoEalVYdYbT00nOMGTM5HkSkMkqwUUir8eyHFkWQy0h5gkeCGP7ahLL+CTnYSdu7Pw/Pv/4PSimbXf+bM4eAOF0GVkevytzf+vJG46skLm57vPVKIpz5dhMKyZkdN+YJhEMJ9F5eLUXoIETrwDWk3pDjIPLo7FTc0HQN5EJ2ACAh+whDIpYc3MzQ5gaRDEPiSGqiOl4NpKCyl+6FCigjYU6MhqzhwVfVQHy6lRT/+sEdpIWt48FUWsA378OXeRIQMokomNw6X96jYQZIhW2XoVh6A1WKnBVynXTgWXz7zM8RIvaPYtLLerdiUOPOm9U/BoUe+w+E6C6RQd+EWERoICRFg66xUGEHPTwe5EpE0B/IIlMM7juHmwQ9gzt1nBCzKaQ29R/ZAeIx/YWSng6ph2tiXauv67cyMGTPw1FNP4cknn6TPjUYjvv76azz88MMn+9AUFJogTqV/fbIUS75ehYrCKuowXV3i6hRdXVqD75//DaPPGg59mA6mWu/upjOvnUIdUB/74R7c9OpVTUkOQ6b0R0xSs7t/twFdm35+5tZZePbTxVRw6AxXWgvdJt+DOF3VOoRXMshcSlxPvFM/Lg3mIV3c32AZiGoZnLW5Pp+IKlRF7qkR3ji6p7kI+eP5G6hA2yMMA4mTQfTkfEEVGFvw9ydSlEog31drsPSObbhW+pnUbvgqeDMg6n0sJ8tQkSaUn8uvrNcgdMCJEZ0pKJwMSH+E5dgmUZc/1v66Cbe8cXVTwsT2pXvw+nUforKoyqUYw1MBChGLXfzguU3P96zZj9eu+cClkFEbrofttAGO7ZC0Gqf1ySVA4hnIMQYIpw9qFmS1WM4ZUc02CRzIMpoKGyyxao/F91xRNfjsjilQaS3qvTk0scLeMxFQN5Q8kD5HYSU0O4/DYhPQZ1Q6Rs4eiu+e/dXrdsh3Qpx5u/RIoPe3YAQOpEipJVx5HaQ4346+5F7YnhA381uHPogzbz69QwXXAyf2hS7Eu3Cm0/Iv7JMoKJwK1NfUY+HHS6nQurK4mt5XSR/EGfI6KeQcf/4oaA0amtjkq09CXKGf/Pk+lOSUYe/aA7TweMjUAYhObE677DawuXbrgS9uw5s3fdwqQRpJhCCmHETEeLJw7pN8/eRPLu+xJVWQkmN9rk+WOVF9kpNJW5z0FRQ6Oxqd2msfwhMrf1yHm167kibiETb/tQNv3vixy/XX2/amXzMJc+46s+n5jmV78Mb1HwUssFBwh6SQDpjQB/3H98HPr/4BxmSFeu0+ev0Wyb2LZWmqgyqvHJ/ufQNxKTHY8teOoAQOYmtF1+0M6UvdPvIRTLvyNHqf7iiGTR90aoralD5JqzkFv23v2C0W/PbikwGLA/IP7EOfCVOQuWEN5AYXVGfi0npg0PTZTc8NEZFISO+FXYsXYtNvcyGKApJ698PQWWfTxIb8Q/vBcjy6Dx2BgVNn0uWCoeuAweg1biJWfPExTiai3Y71P30Hu9WM/AMZHbYfknZBzhPBWOl/UIzlVZAEe+fpkFW7CmcUFE4VzOUOt3tdrKNAxRvJpzHIXhyg0lMGqg47BA5E6LDuYcldHNGwKUMiwOsc++82m0XSBOKM7ziO+iIZa+6X4KPGUyFAarOBw7/5XoaIS4i4gThA5K44dU+tuRTI+KJjVcm9L1UGrxUUFALDaLfgf9u+xIEa58lQMyIMAtSsCKuNR51VC4vd4a65rvg4ru01DNuN66looSW9QtNwenxzolOsNgz9I7pgXv56fJ+zmKY5DIrohjnJ46HhqpFvOgiOUaF32EhMih2Fvwq2UPECKaz3B8dKmJbQHSOj+uG9wwsQqZFRb1fDJvG0EJ+kLdTbNVCxZr9Gc0QAoFMJMDUIFuSG1AZ3cURzhoFZaHQcJUoIM37IWQCj3Y4jdWQCQYvfjw9H/6gCGHh3IblF5LGobABMNg09t/2jHJO55Ng1rACGkaFhyHcg0El7koxgkVRgGBVGRk2hy1ba/A32ywjhybn0LwBnW1bvOr9OBw0ZiET0wcCnYIQMMMZr6hDNG6Fh7agXNThSF4dcM6mKZlBlay7cVlA4lSgvqKAua0SMQAbTPUFenzBnFFbN3RDQNknR0ZGdx+g2j+WV48GX58HSIq1BZhgIvbugS1osQnPKEJ8aS6Oax54zgk6IEnKKq3DXG7/D1FIc4CRS8IlT4b+QEg14icmVyIicH5cZmRQoEcFUqBahK3Z53o6KQ/3pfSDGNRe+29OiYRmUDP2Go1Afd02UaMTSIxK1k1JgT2hIphQk6A6WI3xFDjiT57EXtrLeIWTw5upKPo9obxJWZO3LRVH3KFRfMryp4IgxWqHNKGxKY5h4wWgqbiCRwuu/XIWwGhOsPWNh6xUHMVxPpWD0FqbTwjYwGbY+idCvOQS+uH0LgtpK8fFSfOujaKo9uOSh8zp0+wrBceedd+LZZ5+F0JDAu3r1akXgoNBpqKsy4oGpz+DYHidnUdc6IhfIxCmZxF72zRqP75OJWOKI2gi51/Yc1g3z31tEi5FI+3bQ5P44747ZqC6rRebWLFq8NO7cEThLpcGi7YcgRhpo8pAqpwJccY3Punlyb+g/rg8+fdB3qjVJ3DEPbDahcoNM2HMyGKsEdVYp9FtyghaJfPHYj6iFhCPFfiZmWUC2ClDvbZn01gxxXReToyElRDmSnarrwWWXQCvLmHHNZLpMeb7/eRIyiUsc4Z2RQjTgyniIyT7mTySAL3Xcj6kYo16GYPD8TWgrZZAwPOe0Jm9UNji9KiicahBxNOlz++qTkASXsWcPp2LqQLDbBBzdk4MRMyKQtfs4nj7v1Sa3zkYaC4m6pCfQYiWSonPGjadj9JnDmo7jeEYuHj/zJVgbhL2NEJGzp6BKMrYgkmQ458/R+DMrg0yBe/yELV5UkRSHEhts4TxEnUPczZhsUGWVQH2gAEwncQZ1Pnz1wQKoDhdBjA2j/RG2qh6sufm8EYfZsnzfBVlTL59AxQ0WkxXr521p83Hxx0pgJ8kSXtLXmDozOCfRS3tBHMtJAkVHcslDzSIcBQUFBV/UlNfi/slPuxhBkPuVrVsk7PEhNDVIc6wSfIWjLblh/lbMuHoyln672uP2hk4biNMuap4nIWN66UPSaJ/k6yfn0teGTB2Ic++YRQXeh7cfpffZceeNoq7jJJUgGCZfOh49Bqfhi8d+OKlftLGqnvZJ6irrkJfZbApFYMpqaFGsHO45s4epM4EprQrYYbyxz0faSP7gVFy7J6u2haoSpXZL4dSD9AvI3xvpAzSaNnmCmE2MmDk44GQVq9mG7Iw8Kkw9uOUInr3gdTejoMY+SVLPRKi1Kto3IX2SUbOHNi2Ttes4njrXvT+jEDwZ6w+5JAMygkTHg8ijkdk3TKPiBiIOJKKUUxVy3//1jT87dB8XP3BOh25fofPxrxI4bJr3U9DJB5kb12Dy1Tfg0Ia1KMrKpK+ptDr0mzgFEy+/BmptswsBSW/447XnYbc2RycfKl+DQxtcB/7Xz/0GurDgFaIFmQfoPk42pdnH6KOj6TV6PMJi45qSK/zRmcQNhIh4H5MnCgqdkNwVEg7NlVFz1PFcnwD0PJ9BzwsZj0IHUtCdv0aG4N28zQVW5djG4V9ln8kPlirgrM9YqEPc97nnY0Xc0J5YPNcyNZHUMDdNkjb8LXuyUIfRGimIfn4P7R1Y36kKBbpOUwQOCgoKgfHJkRUu4gaeERGtM0HVWMSutSIO9TBa1civjIAos/h+dzZemngJ1tdtwFGjoyBGz2kxJW40rkw9GxrOIRIgbKk4hKf2fgOr1Nw2Xl9Wglr7PJfC/xUl38AiJECWo2CReBjtGkRqfF9MbSKHzLoDyKjdi9CGXUZqLai3q1Bl0dHJcavIo8amRZja4q8uFxquWeBAMIsqsIzNLf2AjKMZbWrYRB48KyJWX48yoQbzCg7R9/ukOsSZet6GJbUDMMKQjWR1Jd0/SVg+XJ+AhaWDUGyLgI63IUFf13RsEljYJA7x6joq0GhEDRE61o4+4TMRqnK4O0Wpm12eWkowQnkr3T+nqwWtDPAD+V4bPh1Y8mCIxEMGx4qIVAngQNIlWJrOYJaIO6J75RAjSxgQUohIVXPDKhb1SNNXIssYgzXlvZCo82P/rqDQySCObWRwM3t/XpMT2vl3nUknHz0VFZGC7o1/bKOD8oGg1jquOT8t3O4mbnCmIsKAL3+5Hzqtu/jgnc+WuIsbCOTSRS46Pi5+jFWgSQONeEoiCBa6Nx+qMtOEdBdxQxMcS99ja8zgK10V5OY+0ag8r5frZ+FZmAfGwZ4Ygthv94G1eHAirTZBJhdkH8OJkl5FC04Zix3Gab1RHe4atSyHaGAe0w2yVgXdrjxMvGAMfb3oaDGN26bOsUfKYBuQAk708LlVHEyn9Ubo/J1g2jCRao8Pha13PC0IZcx2qLPKoMqr8lj4FR4bBqvJ6tNFsHHSuaOIjA9vOlenHORvp621cJ2rlo4SHh6Ovn37Yt8+h7t8Xp73omYFhRPNF4/84CpuCAAiKPzf29fSe/XR3Q6XUOJWOuu6Kbj2hctokW8jG//chhcuedslZan469VY+rVrMdLnj3yPsOgQaJzSlAJh8187sS6AAiRrd4dQwCcmK8J/3QvWFnxK9f4NmfQhxIQAZw30vTDDQLfhMLja5naAM7JODdu4PpCdXa/jwiGmJ+CsMT0RFh1KX4pJjkbmtobBWy+0FDcQWKMVqjwVxEQ74CVwis/jwdqa73RqI8AKMux6QG4Y1+UsMtS1MlRNXUeHONsXXfy4lCsodDb++XwFfntrYZNLf3KvRMy55yycfesMj8tf9ugcbF20O+BkOVIgRPjl9QU+i4FI2/H/9r7Z1Idx5sO7vnQTN1BMVoBczxrTChoQyd+wtz4DeZ2aLbi/xdncXySJDrzFRgVO8v4sMNVGtwS2zgYRfvDF3gsbKwp9CxwmXuhoZ+cezEd9O4i2iOBbs+kwrGN60f6Ly7HWW6HdkOkvIMdjf4AkLfnrG9dVdtxECSm8G33mcJyS/Ev7JAoKnZlPH/jWRdxgj9Gj5ow+kMKbx8rqx3SF+lglwpYeBmuXsPqXDfjfW9dg0ZcraXEuITTSQIs+r3nuEhe35jW/bsIrV77rUrS7+MuV9OHM54/8AEOEr+gyz2yYvwWrfwrMdKWj3bAb0/NaQu4l/I7DEIb0gBzlOjbIVBnB784K+B5OEoAMYfqm633j+fdGW8UNUrge9h7xkCINALmPF1SCzy5r9VhfYncl6Vrh1GLhx0vw+zt/U4EqoWvfJFx439n0eueJyx+/ALtW7As40bixT/Lzq/N9rmOuM+PzjLc8uuG/f/vnirjBg3GFnBAFOSKUTm4z5TVgyqoDatsT8Z0vJl3sEPEdz8jzOw9xsiBpScRUxZ/opSP7JIk94jGMJBaeiih9klbzrxE4iIId+1YuDXo9WZKQsXo5rn7tfdSWlcJmNiEsLt5F2EAQbDb89c6rLuIGX5hrfVgi+UhOaC9YjoMkdh7FrCcyN6/H0ENnI6lPPwyYfDr2r16OUwW1To+0IcNO9mEoKATMobkS9n3m2oM1FRNBgYySXTL6XckivDtJVmhueoWlMpj4Koutr0iodzUEcINVAzEDHBNeBet895RFC1C8VUbXqa7NvLp8GQXrlC/1RJKzBIjuK+Pwb50jsqwlET2B8c+zVGCw9HqJCjFOBvY6wFwG6JWxEQUFBT9YRDsWFuxsek4K2mP09W4F/YQQjQ0pUVXIroiGwIr4aU0efrn+YZRYymERbYjXRkPLuRaFmgQrnsv43kXcwDEihkbmQ0ssOFug5YsxItqIzeXdkFsf6VPgQBIQrDTRwH07BpWdDs5UWh0D3FaBh5VjoOMl+nrzp3O9t2vYlpU1DOoFNU2TULEiXZqkOpjtanquuhhqEKsz0rQFu8TBJKohyhxNYNCoHMdVLRqwvLY/dKwNetaKCrMB+2qS6LbCNRZEas00KcOZKJXJRdzQdDQMcLh2GYrMZyBR1wuTYsdhY8XWFkvJiFbXQ8M5bbMhutVXigURlZB1OUaiCRoELWtDOGdxWS9UZaXnoNASDrvMN72nZuxIN5S4iBucSQ8phyDHYURUD+8HoaDQyfjuuV/x7TO/uLxWeLQEH9zzFXbtycZFD52L9NRYaJ0KKIlT2ot/P4bXr/vQb6QtibHvMzqd/rxmS5bPZevNNmzfl4OJIx3LN0KEFxv35wAehA/kz5O1A5LGxzEcKqXuO03r+CimZAVSiCND9paGQNa3yzS9gCur8/i+GKqFkOJZnOXYCQNrv0Tw67Nc3PJqTk/zKtQQYvQwDk9E2IbmSeimdclD7aVq0mmfYkwIHewXkiK8LmYZ1AWaQ8VY/NUqpPRJcnH1sXWPdSvackHNw9Yjlq4fLOQzmMZ3p+IGZ+zdosHnVyNkxSH6vTTSZ1Q6np73IHQGDa7vew8qfRROdSRVJTWoKq1BpFJE2iHYbDZkZ2fj2LFjmDhxIgwGz+6HLQkJCWmenJc6Z79a4b9Hfa0JK34IfoBNsAnYuGAbPtn5OnWVIy7WpEhEq3e98Rmr6/HyFe8GXOhb60fcQO5LpBHMEBFhA4FuW25RNOptUr814gZn2DoLLbrxJaYgwj6+1PP9mmAb2dNV3NC0cRYLdhzHOTll6JEai5nXTqHutcGizSyDeVgyNHt0sA6wAGqnPqgMcMU8tLvd2ze8BdDk1kKz+SiE/imQEiPpMdHPVGMCV2WE0MNhUuWJGL0Gg3olBX28Cgoniy8e/QE/vfqHy2v5h4vw3m3/h71rDuD8u8+gbtDOooPeI9Px3IKH8dZNH6Msz7ejMRGG9Rzejf7s72+5tqIOe9YcwMiZQ1xeJ06pXgsZJRlsXimkHl1cr6P+HCgYh7mEy1KiBM6DqLlpFaOFFkf+FyDFsDFJ0fj19QXttk2+pAbcol2wd4uDRERsskxTG/i8CirICIb+43vj6d8fBK/icG2vO/3eWzsK4jBM2hmNBbAKCgoK3qitrMPqnzc2PZe0PKrP7Q9Z794etXWPQu2MXoj4+xAtmNy+dA/+b+9bKMgqgt0qILF7HDQ61z4JGR957Zr3Ayr0JeP4rTGkIPtuL0ifpKMc0MnYo2prJqQwA+QYh8iBqagFWxPcZ/7j/UU48+bpSO7VhfZJAnWKbw1E2GAbmuYizrTFhtH0I+2ag2CNgdXkNRKXGouew7p3wJEqKHQMH9/7Nea9+7fLa7kHC/DWTZ9g37qDOPt/M9GD9Emc5kkGjO9D24Pv3Pqp30L5sJhQdBuUClEQsWmh7yQAMta9f2MmBk/q7/J6xsZDOLD5cKs+378VOcwAcUi6S2K3nBwLGM3gdh4GE+BYljcWfbECulAdfuvg9IPWMnhyfzz16/3056u6305TT08GRUdLqPGHJ1GOwr+XAAJmTw3qq6pgqWtdPH1ZznGa3kDSBGK6koEr94HmzE3rYG7l9k8GMSmp4NTurh+dClnG/Neew5b5vyAqKYWmZpwqsCRWVHFqUDhFMFfIyPjC+y9s8WZg5R0SFl4kYfeHEkQn156YgQymvMcgYbTvfUg2YO2DMqw1MsQAxKSelsmap/xRnWjK9wFLb5CQvQidkv7XsdDHM1DpGWgCMINjO7ANu+MtCSXbld9RBQUF3xSbq2EUmgdf9Sr3tAJnDBo79GobIDDYU1CMQyVliNfGINXQxU3cQFhevBP1TtsnJGprPYobGonXGZEWWgGzpEKJubkIzxlRZmiBva+CfR1vp8X6hHCNGXpeovPnZB36L33H9bN2C0mGiml5cWYgyBxNdqiza2AW1NBwNgyIKUJSSA3UnAgVK0HP26mwgAgZ1KQKuGH7JBGDPBfBolrUAyoGERozTUYg/zZ+nkY0jB06zvugkgwJ72e+jm+OrUFXXSrGRI1weT+Et7mKGxo+A0mGaEhwdcMqcbBJPE1uaBQ3cBDdxA2NkM9LvkeynlXkwENAnLoWkbzvwaFB4aTYW7k3KZwaFGeX4vvnfnV5jfz22nt1gWXWEKyoqsetj/6I8276BB99twaCILoMnL617jkaRe8L4mrz6MwXaISvNYBCRk/LzHvnb8i856EyUQVYYgBjioy6NBn1XWTYQmWQ/wiqghoYtuS6rMPnVpCqZ4/bI5cDVb3vv2GqcZJlqA85nJxaIiSE+Ux3oMskujakrWkREMN8qDSIAGBQHKzpsTAP7AJbt2gqVmjCqQDVK5IMW3qs72VYFrYeMdi5bC/+N+whrPxxfdNbYqzDxdoXYoz/ZTxh6xPvJm5oREiOgHl4V5fXrnvhMsR0iYIh3IDQKM/3UWc4Ml4UJKRA15YSCVtqFE2/8AYpqtu9KiPo7Sv4Zs2aNdDpdOjduzdmz56N1atdHeh9UVDQnNqVkKAkvSp0DhrFCa2BFNTmHy6kwoZuA7q6iRsIJOGhPZzkrCnhqDy/L0ruGksfFZcOhLl3TFDb4Cr9u2z37ZZAC0LbAmsVoMr2XdSsPlIKxksHQYoKgRzp/R4iihLuv+lT/PrmQlrEOu7ckUEfI0mO0O0uAFfJQ7feAHWGFny2Cqqjamg3GRD2ey3C/94PPrey6V7OmGzQ7M2HYflBqGos0G08At1fu6BduR+6JXugX7oXmp3HwXoRWkIQEbLXte2joNCZycsswM+veS9gX/3zBtw97nFcmnwLvnpiLi0IamTEjMF4a81zGHRaP5/7IO7/j856kRaBB1IYafPgxv/b2wt9rsMdLqBOoUHRss9gF6Dem+siLnMj/yS5DZ0ENi/cgTtGPULdwNu76FSdWQjtxkxoNx2GijhTByluINz4ypVU6BwaGUL7Jf5gvfRp24M3b/yYFt4pKCgo+IKIB51Fy+YB8R7FDc4iByHKIZ7avmQPNTlJSk9EWv8UN3EDYcmXK08pV/E+o3uC9Zc810bY2npwx4roI1hxA4GIRe6b/DQdGx06fRBGznIVYLYXYqTBTdzQiKzXwDK2Z9DbVPkySVFQ6GQc3ZPtJm5wZtm3a3DX2Mdwecot+O7ZX10MVcacNRxvrn4W/cb28rmP2vI6PH7GizDWmCAF0Pb0dD397c3OWWR/siDj9+LQni7ihiZCdPS9ts7Wkr4I6Y9uWLANnZGbXruKpo+ShzbEf3J5R973Xr/2QxzYlNlh21fofPwrBA6m2hr8/d5rbdpGdZFve/LS7GM4leg7cQpSB3ZMo7M9sdYbsf6nb/Htg3eAU7VNkMFyJ67haqmrQ225b/dIBYXOQs5SGXIAgS5CPXDkNxkbn5IgNwxs1+XKWH6LjGL/qfCozgJ2vi0j0nd7mhLhapRKKdqiFOgpuHJ0QXOHK3Gs/2C3wXcw8FAP3C4UbyUiHgm7P1BcOU8VysrK8OKLL2LChAmIjo6GRqNBSkoKpkyZgg8++AAVFb6LExQUgqXcYsS9m10nynW8/8nsUK0FbI2jHZtT6dsV+oixuYiukVitf9e2eF0dwjQ2VAghyKmPgFnkaXE+EQJU2vTIMsbCSip3fUDGm7W8HQaVFXqV4Db+3Ch0cC64nxk/DONjk8DC9dpJ9i05rFppWkPPiApa5O9pn6EqC1hGptvQsgJdjogGyEPNOl6L0RppEkLjMdllrqn+VutD3NCIii3Fh4eX4MpNH8BsD0OdTQ1RcmxMz7kXGzg+pUPkQPbTWMdkEXjU2EJRaycDOwzYBkGIYzt2nzXIJHUilLfS7cZojNCwIv3cvrBJZTAJlX4/n4JCZ2Dp16shtSiesQ9Oo07BcHJHNdZb8eMf2/Dkm81FPcczcnH78IdpBLM/Dm3Nwod3f4Xe3b07DRPInyNJi2jJln92gqtwnwQUNEBNT8AaA8jkks04khzIc2uYHSErjiB84QGX9AYCa7ZDddh7yoCmSoSuWGi+kDQiy1AZZfBmGdptx8GXt82hUwzTwp4cASE2BGKI7+s9XT5cg/rJPWEenQbjtN6ovmwEbGnRDlFGvp8EA5sAvqQWkocUjJZIOs/jQD4LrYJYxhOWfok+37f2inMRuSz8pDktdvSZw30fE8PgtneuhcrTRIcHyK3QNCoVVZeNgHFmXxin90H1pcNhnJQOWcV6LLx6cNqz+L+Hv8cpGb3c1kcH0bdvX5fJwvnz5we03sGDB5Gb21zYO3q0H2cIBYUTQHlhJV675oM2baMgy3c6Ttbu42grpn5xqJrTD7bUyKbCFntCKGpm90LdhNSAt6POrQZb49vd85zhfdBvXO82H7NuWw7YGs8CZJK0pN3jnnzUCHXu9kOlJOOzB7/FbcMfgtbgf6LYE0RoaVh7FFqjAL5YBXWWFpq9QMiKXISsPgqush6GNZkI+3krQn/dhtB5O6Ddk+dSbMta7eAq6sDWOj4rSTXSrT4IVUY+0Fj0QNLsbBJUpSaUFNZScamCwqnAkq9WURdnf9RVGvHjS/PwytXvu6Qq3DbiYexde8Dv+vs3ZOL/HvyOuq76gmEZdBvkKq4lbP17p+/1JBn81sPgdh11CB3qLe79iZaIEtjiKrDF1eAzcqFdugdcTgmQlQsILcauRBE4lg+U+3aGVThx/OXSJxnmc1mWZXD7O9e1WdznjXW/bcZ9k55yS2fs9HTyPokndu3ahTvvvBNDhgxBZGQknd9ITU3F5MmT8fbbb6Ow0Hdti4LCyaI0twxvXP+Ry2vWblF+17N2dySUknt14dGO75OcSGZcO5kmhHZ2qoqr8fF9X+OOkQ9TF/G2wHm5DwnpCT7NWuQIA8RYRxJFoBQcKYKtjc7pCgonMjksEGrK6/Dts7/grRs/aXrt4JYjuH3kIziwyX+ywu5V+/HD87+ha98kv0Xo3Qa690m2Leq4FJfGcXEpREsfp0KVmNzFT+J0qB5ydFgbd4JTpk8yxk+fhPRFbn3zmg4TOaycux53j38CP70S2Dh+p+EU7JN0Fv4VAocFb7yIwsOH2rSNpZ+9jw+uvwT/vP8G8g5kYNfihfjrnVfxzwdv4tCGNW0uvj+RqHV6rPnuCxzbEXyU8cmivroK+1YuafX6DMvi0udexeRrbgLLnxihAznHgQyGKiicbExBGu0QMQMp5iZseUmCJYga4IL1MlKm+S9E3/KiDFOp69+P1H5Jj6446icDX5wH0s8Hel8KsD7qUpiOGR9WcKI2u/nn7mczUPmYDyYpI+nnspjxJYse5wJc6+aC/XLkdxn5a5Rrf2fnxx9/RHp6Op544gls2LABlZWVsNlsyM/Pp46sZGKgV69e+P77U6w4TKHTQtqEN637GfsqiyEIzl2sAAo07QxYVoI6vRZPZc/FpKUv4Yndv2N3ZTZ+y12HZ/d9j5f2z8Xqkj3QeLgxkZQAfzQvw6Be0uGoMRaHjPHIMsah3BbaJDTwd7wMZBhUNj/LkNQDC/qFmbC89GMIWIXRMTnoHlIGyBIVDkgy23RzDldbaGqD1+0xaEhtED2Oe5PXIjVmRGiozXnz5xQ0fuf3G3GILYBKWyWWlGyj65ZZDCgzG5oSGLyLHDjsLkvCouy+WJnXH3elv4QLki8Bx7AuzQ8V419tKokMVBDAM41+8P75Lf+nAJdUUDi5lOaWuzwnA9did88u+oR1W7OwY5+jcPily99BdVngiZqrf96I2eN9FzIyJdV4+ayXaSGoMyJxMvUgSDCmNAgbPGCPVsGWoAG8DNZqdudCvS8PrN3pOkCKknIroPtrN8KWHUH0olzoMyqgya6BptCEyGwLrhw/BNf27gr9cddzR1dXczRZgQv1PQFAr+wsUHvhUBhn9EXd2QNhGZwCfzANIq+m7ehUME7tBXtiGDQZBV5TKQjqo+WwDk6BHOJfecwaPTuA8/n+xVuBLNMSSctDivAzQavmITa4BhJy9uc1/Xzu7TOhD/O+/vjzR+Gc22bhs71v4oybT4fGg/O5M/UT02EZlASonTqXHAtbzzjUzexHJ3o88cvrC7D5L9/x4gqBExcXh7FjxzY9nzt3bkDFQk899ZTL8wsuuEA57QonFVEU8djsF3G84f7ZWp6/6E1cEHs93rzhI2RsPERTBV687G28du0HWD9/i0cH1WCvxbVTu3ktaqkfkQR7vP/EHALZQtiyw2C8uKTHZFfjo9mvYu8a/wXJ/mAtdoT8vQ/aXXlg6yyAIFHBg3ZbNkIWu4scXQikcd/QeSnJKcfKH9e1+jjDj1Xip4cuwz19eiLql92I/HEH9HsKXfom5FhZiwA/eurm5UUJqpI6qMyAqlaEqlaCyiyDMeghDu6Oj79p/fEqKJxISvPc29W+WP3TBuoKScZ8Xrj0bSp8CJQVP6zDzOt8p9YTk6kXLnkbVaU1bg7K/iCJMVxhBVRbMqFZtRdsuZeklQb43HJoNx+GdksmVFlFYOwN182yKmD7fuBIDpBT5BA8kOfF5dDo1Jhz95m44N6zwPlIBOA1imtyR5Pt1Cc5787Z0Bq834unXDaB9kk+3fMmLagl32NH8N1zv2JnACYECsFTU1ODq666CsOGDaNGTXv27EF1dTWd3yACa5JAd99996FHjx545ZVXILQUKSkonEQEu4BHZr6AvEMtjJo4/xP1stO42hNnv4wL467H2zd/ggObD9MEphcufQuvXfcBNv65ze94S2eCjCO9cd1HARUkdxaKjpVibRtSjch96vOMt3D54xdQQaczYgDpqIEs05IvHv0h6HUUFE4GZUH2SZZ8vYqKrcmYzwuXvEUT44JZd9YN03wuQxIenrvwDdRWuPYnRF9jHG2ADEMIvbrAOn0IbFMHOR7TBkFI82xYpTNoaH/k/LvO8Fksrw7AbKktBCJekKNdk7T/beQcaO6TzLnnTJ/n/PSrJtHv7NPdb+D0Kyd22PfzxWM/ImO9ki73X+CUH3XIP5CBwsy2D1ALNht9HFy/mj6cObhuFUJj3J39Ois2c+A3tH8DKo0WM/93DxLTe9NH3wmT8dlt10G0+y6+aitZ2zbh8OYN6D12QofuR0GhrWj9myK4kb1EhiYCqAoy1YkkRWgjGPS80JEG4Y26HGD9YxKm/x9LXS4JMQMY5K1s38LxhDFAWCqDwz8Hvt0u44ChdzkKTHqcJ2Ht/TI8GGYHlIqh0DZUTmnLumgGp73KYsNTEiwt+n3xI4DRjzMo3eUQziRNZDH0LqDyEBHsyJBEIvSRkbu8fb6RI/MkJE9SFC6dlS+++AI33XRTkwhRp9PhtNNOQ1JSEk11WLt2LZ0kIKIHMlFgNBpx6623nuzDVjjFWV9yDPuqiujPFhsPA2ej9To2kYeW933DsJtV0KY7JsmtEnnYsbhoB9aVb3Kp+VlavAMJWoeLkTO1gpaKBHxhEtUuIgUVK7tsm/xMnpI/G0dpvecJB1FiwbO+76nhKjPitXUQnRbjWBld9HU0ZWF3RTIkp+0beM/Frc6QJANf6QfkvXCNFXaJg1lQU+GBIHOoE7RUVBGjMvpcv9hCBqZkqFyEFgxNuLBLLDQ+BBgEsk81Y8CrI89H34hE+hgfMw5P7LsbIgJvMJgFFSwiDxgAm8xDkFnwTikQLTGKGhyq24KhkeMwKMK3W4aCwskmMiHC5bnYNcbvOotWZ0BdXY/sjOaB00CwW+1IUfE4b/pg/LFsj9v7jNEM9Y5jOGa24dk5r+P9zS83vTdgQh9s+GMbxPhi2Hol0NcEHSA217t7pHZSMnTaeOqKymXmg7E0j0dMunAsIuPC8ccnSyHGhUJmWXBV9WBNDcuUVUFFHk6+HdOunIj7rppKfz73itPw8PTnUHy8lBa8m0ekwto3HuCb26O02SO5Xr3pZZiVIRtcC1oYtQaMIEPmvV8YOU8G1SwD85BkhC06AP2aIzCN7+HqWkREG8W1sPeId0xe+pu7FkSoj3pOxuTzKsFWmyBFeD7xbI2JLhM0gaY+OF16nQUNcV1j8eJfj+K5i95EVYlrIRpxUn3gy9tokU9FYSWmXjoB93x8M53A3rZ4F50sKjxagjW/bKTLixE62Hp5TxoREsJg7xoFdY7nz7ngw0U0lvyUoD2chTpYY37PPfdg0ybH5L3JZMI111yDv//+G2q154KwF154Ab/99lvT83PPPRcjRozo2INUUPDDlr92tlncQLCabfSx+KtV9OHMsm/XINFPSpI/zH1jXe5hnjANiEd4SWCFxKpSIyJ/3QPzoC6wdo+CzHPgy4zQZRSDOd6+aWesTaRJDb7SGjyuV1IN9O/qf5k2EhJhwGM/3o20fin0MXvOGFyZdlubTZpkloEwqBs1mfJ0PV64ZC8mT+yDEUN9u9UrKJxsouJd+ySBsPSbNTAbLdQZmBReitEG2s4lqW++hE0WkxXdB6XSAnOSZueNIzuO4fmL38Rbq59z6ZNsWxyYY6ocEQIxPQmsTg+J/K17GPxgTFbMHtEDqiFpnh1jSRuZCB1aMPXyifjf29fSn8+4aRotWC3Lc3fDEryIzBTaD+c+SVJ6Ip7/8xFa4EacfVsKru/86EbsWLYHlcXVmHntFDzwxW3Yt+4gdi7bS+8HuYcKsH5eAJHtAbDgg0UYNm0gTglOgT4JoaqqCqeffjp27nRNcgkNDaUpDiSVur7ekZxksVjw6KOP0mV//vnnprlWBYWTCbm+5GW6Gwaoio00VdQXquLma5rNbKePfz5fQR/OLPtmDbr08G6a0tkwNSSj/VcIjQrBk7/ch+SeXXDd85di+tWTcH2fu5v7JD5MUxphAlimJfPe+RsT54zGgAl9W3PYCgonjKgE93lefyz9ZjWGTB3gZiIVyPVn4IQ+mHLZeKyau8Hrcgc3H8HLV76Llxc90fRa//G928Uswpmzbp2Bmp6JWLbGtSBdNmghDEqDrFNDddB1vGXGtVNoEgBh9o3T8OisF1BR6N53sTUmTip0GPqw5rma1H4peGb+Q3j5infdjAAmXzIOt717HbYt2Y3q0hqcecsMPPztXdi9KoOmtJM269G92TStuj1Y8NGSU+faf4r0STojp6TAobqkGBmrlqKmtAQV+cFNdLeWuvIyqLQ62C3/rQZoZ4ZXqzHxsmvRfzJxxWu+kOrDwpE+YhQyN60Panu60HCY61wnqP2xd/kiReCg0GkhDkBFW4CircHf4SwVMqqOtG6/uz+UYOgCRA8EKnwYuNQcBUq2AwkjHc97zmGQt4pWVrYbvBY4/EtwG5QF4OAPEtJmMDDEs5j5lYz8tTIOfCOj7sTcchQaSJniOiAb1ZfBmXNZFKyVqXiBGJknTWRgrQGW3yqhvrDxu5ahTwCG3smi/3UOJbdolVGTLaEmq+2nt+rUMdn4z3HkyBHccccdTQNlZ5xxBr766ivqytpIXV0dbrvttqb0BpLmMGnSJPTte4p0fBQ6DUXmUqws3YhyayX2V1RAy9thEVQQRQ4mixo6jQ0WgUOo2nvirmDjYHUSczmnJHhap9hSBT2ngUm00uXCVBaYBBUtbPW2D5vEoYZU51JkmubgbVnyurfaF5NNBaNVjUiddzEFOaYYjfdCpFCVDYn6WhSYmosKnMUO3rfrHxYSWIaFmrPD2iDoEGWW5CHAIqmg4zwPbhERw9G6GLoPIqRoSYVVT8UZ3o9Nj9t6XYSzuw6BgW8uggxXRaBP2GDsr3VMSFoknqZQ+KLIHIautBCZxG8xqBb0VJzhCfI9FVkdbiDrylcpAgeFTgtxFiIFl7uW73V5Xdb4d2ypqDQia2fgkfPkL1hMjIDQLQ6vzt+CLklRGBQdgox9uZBDdWDsIri8cvDZZWAEx9/joa1ZtNhj4ERHO+C8O8+gAgfdluPgC6phGZ4GMVzj90pkJ0MSLAshORqmnlEQGRstBqSTswlhWPD+YroFviiwMQeryUbd6aZffRq6dI/HFwfeoc5pny7djmpP9db0IkY1XU5H6qXAiTga1QLWCJmKFtzetwO8l6EvISkCkoanRfeqgmrYusVACtdR52wi2jCf1qfJmY1cUolGi4b2eEC/NYcWinqCrKtfeRCmSb0hRbtOgLOVRuhXZwbsOu2yrk0EV1IHMd57NBxjsoGraL72Tr5kvMv7ZLD8h5yPse63zTi84xh1RJ0wZzQt9rpl8AMoyWkWbZAJ9zs+uBHXPncpfW42mnF8Xw5yDxbA2sO/yMeaHutV4HB4+7GAPrNCYFx88cW037B48WL6fPny5ZgwYQJ1RCV9BY7jaB9j27ZtePHFF/Hnn382rdulSxd8+OGHyqlWOCmQIsUlX61CWX45ju3NOWFunqTQsrWFOmKEtl2WcYartSJk/XH66IywdWYqgpS8FTIIIrjjQUbwOkG+j5tfv4oWI+sMzecuLjkGQ6YMoBPIwRDdJYqK9UhbxpYaCSE5CnKkGiqT7PX+++ei3YrAQaHTIkoS1m7PwmZRgOn0/jRFjD9WCr7Uf0pcVXEVjuw6DvPQFNj6JEBuTCuwCdAcLoV2Ry5NU/DEmzd9jKQeCeg1orvPttu+tQeRuS0LvUem0+fE6TIQgYMUFQppaE/aD2ElgK8XIWpYh5CZ9ANECVxeBVQH8sBeOAaLv1uLQCGr19ea8Osbf+L0qyeha59kfJ35Hlb9tAHfP/cbirNLA96WQtuZ0qJPQq7tP+Z+gjW/bMLR3cehNWgx8cIxVIhz04D7XIQoyb0ScddHN+Ha5x19EvK9HtuTTcXXbYUIdBTal1tuucVF3EDEDkRcPWrUKFoMRsZYiIHTAw880LTcr7/+ioEDB+LJJ59Uvg6Fk5Yys/TrVagoqsKRnZ6vC7p9xTD3j/c4DkXgqsxQ5wQu+CXXsLb0SRTaHyK2vuXNazDl0nEuqX/JPRPRd0zPpgQLvrAK9ogWk2LO0JSqKsSmRHsUVvrir8+WnTpFrgr/OURBpCIwMhcRLJUl1a1ud7161fvokp6AHkO74egu72Mm25fswfGMXHQb0LWpT9LeAgerQesmbnBGTE8El1MG1tRgjMeAJkv8/vZfVCxFju3rw+9j1dz1+P7534IWfLQFpqrOb4oDWebfTMt5kpEzh2Bu3ic0Uf343hzoQnWYdPE42te4rvddLkKUrn2TcO+nt+C6Fy6jz2sr6/C/YQ+1y3d4ePvRNm9DofNzygkcNv0+Fxt//dF75U0HQsQNUUkpqCw4cRWuurBwmGuDK7r/rzDthtswYPLpHt8bfcFlQQscOHXwkTiVhcG5NSkonCgku4yNz0gocphDBg3DAwXrWnedrS9yPAKhZIeMhJGOwYzo/gy6jAUKW3nMnsj3bo7kFbL/wo0y9n8lo/+1DHpfyoDTAkZ3wwmFDkQfD3Q/232gi+UZxA0HTGUyqo8A+7+RULLNPVHDVAxsfFLCgBsZKp7hNAymfchi0ZUSzJ6NYgOG65hUZ4V2gBQgEeciwpAhQzB//nw311XidvTNN98gOzsb69evpxHOb7/9Nj777DPlO1AImB9zFuCPgiUNaQcO+iYAZUY9imrDEKqxIEpvhpoXHUt4qDEV7SyKS8OBUNf7rYa3Q6+yQc/bwLMSJJmFya6CqSGZgIgbBkYYIMhHm9IUiJN/CGd124cgscg2RbsU5voz86JJDi1eC+XDkFmmodsTpDqvKQ4kjYGjFS+N77vvLFFfQwv5yeciVFt1SPQhIGg0E/SfYu1YgCQeWJtSKGR6TFWCHgxTDy3r6iooyQwKzOEwCloqzvBEqSUEURoztJy7IyEDBpd3vRFDI0d5XPfMxPOQUbMLDCPDLKlhkG0N58cdktwQpTWBZbUQJIae4zpRBw4SIniTy/dGjjvXGoWaBkv5YovSSFHonNgsNjx9/mt0cNyTi6g/VHYR6/8IzFmS/GVZx/SEmEKueUB+RR19UBIjAJMVqvJacAWVTeKGRnYs3dMkcCCFIsOmD6Lulqr8Kgh9ksFb/Mfek8sL0VbVJ/KQ6QWrQWgVY8A8sQ6GfnHQHQi8CIhMdpDH10/OxfUvXYHz7pwFVUwIcjQ+lGjESba8DlydFVyVCeYhSQDn2SGbswGaKkA21cKWHEpvDoxFACfy4E1+5BwNUdDEsVZzpPkzmcf2cJuoZsipJhp2skrjW1aBfge2tGjALkJ9vMJjURhJuAhZtA9CfBiEhHC6PhGI8CXeC9EkNef4LGQfXpbR7i1A/fQ+XrehzShsKt5M7B6PWdc7kjScUalVGHr2cORGa3E4vwy7l27D3o9XgMurctlvflElHrr9E9zyyhU4/9yx0IXo8OG2V3FV99tRH4DIp6mA7iTEbrcrJHqEPNq6jQ6GuJ5OmTKlqVCIiBmmTZsGg8GA6OhomgBH0t+cIeKGf/75h6bFKSicaD65/xs6yXsyIIVESekJKMgqDnpdxuzf6ZvckzylQVUVtz3l4GSh2nEU9lG9IMW2mBC32aHaegSsuXVp1CzL4MGvbseE80d7fP/Kpy70KnCgAVApsZBS4yCHaOl9mS2sgGy1wpoWCeNpPSDrm8dULJIMTbUETZ27o2pufvumZSgotBcWqx0PvD4fOw40zOvGhEKKCYWQFgP+aAk02477bPvyah7LyipgHZzs+oaah3VAF0ghGhhWe3bDKTxSjLxqM4Tu8ZBnDHEIDoqqwB8rBtPCYXTHsr1NAoeRs4bS/om/4iepVwoVNzRCRA6sWXKMbhCNQ04J+EzH517+/ToEA2meE4E1eXz1xFzc/MbVOOOm06HS8CjJUcQNJ5KU3l1w+lWnub2u1qoxYuZglOVXIHt/Lj5/5Hvat23Ztco/XIRHZ72I/71zLc64cRoMYXp8tOM12idp6bYaLCqlT9KubNy4kYoVnEXYc+fOBev0d06E16TPQuY1Jk+ejK1bt9LXX375ZWrkFBERfFKNgkJrISYAH9z5Bf78aInfZfkKE0JXH0XdZPexI7behvB/MgMyOWrZJyHjNkXH2i7YCpSoxAhUFnWePglJryOJCEygiaUdBMdzeOT7uzD6DM8p01c+eSEeO+Ml+jNpf9nTE1xTYZ23lV8Jtt4KgfRPgiTvkDJPotA5MdWZ8dgZL2L/hsxWra/WqLDxz22tWjf/SBF9BAJpSzYKHMgYQ++RPZC5rf2KxxetygCSfZj+EDFnSgzYzALHcxlUYE0eXz7+I25/93qafM1y7AkVN9BDKygD0hK8J5LWW8CUdZ77Q3uTNiCFCthaQgRtw2cMpoK03EP5+OS+r2nftiXE8Omh6c/h9veupylzYVGh+Hjna7iqx+0w1bRNrKjMk/w3OKUEDgc3rMHGX35o1boqrRbRSV0RHp8AU001irMOw2717j7qjY4WNwyddTZKjmXRdIL0UWPRZ9xp+Pr+2+gxnwqwPA9J6Ng40qguyRh38ZVekxMkUURsSir6TpiMg+sDr242VgR/A9SGeHf9U1A4mRz4Vm61uIEQ3g3Imo+Ox2k+rHSn3K7ihrZCCuYzvpCR+bMMe9vGeRWCJGYgMPIRFppw9+GsgvUytrwoQQzgFk4cbPd9JuPQXBm9LmDQ92oGE19lsfIOCYKp9V8LSY1Q6HwQoYLzBMATTzzhJm5ohEwK3HjjjXQigEBcjxQUAmVlyUbML3C4+7YkNsQEjUqAmic3OBkc48gnoM9kFnpOixRDAmK4eBQa62GNy4VJFGATONglx6BIoqEOepXzRLcINSdCL9pQbg5BqMoKMEXgGSJ3IBILBhZJDbvMQcfa6Wtkr7WCFhW2EAhy82BLIFcvjmEwLf40HK/Ph4ZVY2z0MIyMGopZpR+iRrKg2qxDjMHzRTRWVYuu6nIYSOUsGbQTVagUQlAnNSZIgKYYhKstqLerYBVVMAtq1Nq0CFN7vrCTsXnyGTj4Tj8gSQz0MzKAmuFgkyWoWJEKCsg5qrCHQMUIjnPEyPR8E9EBqf0l3xNZnwgHWqY4iDKHzJpYpBiqEam20HUJCdoUzEq4BAPCR3o5HhFphu7oFToOB2s3UbEKEVpE8GYqwmiZsmEUtUgy1EKU61BiDUWSzlHAWy0aUCvqEMJZ6HFaJR6F1giIaP5e9ZzveG8FhZPFl4/P9ShuIPA55VQ84M25jdBdr8bvAboE2XsnNokbPBbkh+pg76ODvWcCNNuPgXcaAG+KSAew5e8dVNzQjEzTDhi7DFnl/Vh1JTLq4xvFDa6Qy5NxUg+oio3gK4NrhAp2EZ89+C2+f/5XVCaHQxrTzfcKDGBYe4Q6LptHOiYjvEGCbQyrC8CX1VJhAGOVUHPpcEDFed98vRWMlwJMIc7dwYicDXLJI8ny9HZE6jI0PC3cFwwaCF3CYesVh5Blh8CInuPniaDBl6iBYE+JhGVgEsQ4xxgNW2OG5kAR1Jklbvc+dV4VpE3HYB6ZBvBO8RKkaHN/EbQZjgmfwZP746Gvb6cOdC1ZtuMwnvp6Max2p3vT7L5UgBG65BC9GRkndoetexT9/Xt11XZ8ujUDV50+HNfPGIWXFz+OW2/5EP5kPpyPwX1vhawKrScsLAzr1q3DPffcgy+++AIS+cUl81P19fTRkrPPPpuKpBMSEpTTrnDCIUVErRU3EKfT1H7JSOgWR136D23Jgq1FoW0gtEbcQNAdKkP96GSfyuuw7Gqcdct0mkqhDdFi0kXjMObs4biu1120MOBUgBRFC7bmeRIi7lNvPAgpKgRiouP+wFTXgyuo8HoP9Ef3wam4/oXLMPrM4V4dIgdN7IeRs4di26Jdbu0TYVhPyM6pEhwHqXsi8iHAlKRxb6exDKxRHBUmqo2u/abQVhQgKSicCN7/cU2zuKEFQo94KgxWZXkvjEwcm44/93kv6rGnRUOICwVf6m7cYO+bDKG3qwhSCNVBSI2FZsMhsLUmlzTuRtYF4Owqh+mB0OZke2foXy7ZXEI00CBwcO7z+Nwuy0CKcGyXrTbRgkm7TcCHd32Jrx6f2+mvwVKoFrKap/0WthX3ts7GsNMH4sGv76BC6ZYs/34t3rrxY/r9+IPcDz644wuavnHxg+fiovvPxkv/PIb7Jj0Nu7X152nCeZ4NPxRaxyeffNL0c0hICH3uLG5wRqfT4bXXXqMiB4LZbMaiRYtw2WUOV1wFhRMB6Y8EIm5oRLe/FKqiOpgHJkDTOx6pfZKQInCoX3EQmfU2tKbCqCPFDbpQLSZfPB45B/JoH4o4V4+YOQTXpN8BayvFye0BFSl3jYfUNQ4g6W2yDKa8BuyxIrDVrgUNnIqD6Dx21QH0HNaNmrOMmDHY6z2IiDeJqczuVRn0/qxdexDWcb0g611NZbj8CmgaiqmrSoI3AQ6NUuZJFDonH939VavFDQQyfrPs2zXoaJy7DCt+WNeu4gaCFIjptBcBLRm3evuWT/HJA9/AXBd8rW9bYWwC2N1ZkIaku4sczFZwu48ELdQ7FSAJYiNmDcGDX97mks7TyKIvVuC92/6PzmP5w24V8M4tn+Hbp3/BZY/NwXl3zMaLCx/Fg6c/5zJ+FizKPMl/g1NK4LB94bxWr2u3WBASFY3MjZ23gI2kNQyddRaytm2GYLchIi4BWkMIpl53K/5+9zXIpFLzBMFrNBCs/h0VW6LWaGER2r8SeMTZc5A+YgzUOh1iU90n9C1GI7b/NQ/7Vi6lYhByLonAIa5bD5Qe77g4mj7jJ3XYthUUWotok5H1p9wODosdr/aPG8rQtIn8NTL2fHxy3QW8oYgbHJAUi0BEBcFAkhhiBzFIHAcY8xmIFhkR6Qx9SAIRlsjg9QDTMKFamyNj83MSpCDH3O11wP6vZdSXyBj5EIdpHzNYeoMMWWjdeeh10b+xe9IxiEYjhOJiSCYTWL0efEICuJCOGWAibqq33norDhw4gMzMTMycOdPn8s6FSIWFiquHQuAsLFzu8/0QtY0OMpNCfueaHVJAbxZlGLgILC7d3fQ6MZsmAgZBZKHhhBbihmbUnIRwjRkJmlpa7K5mBbp9MgdulVQwi2paJE+K5cttrf87i1JHYkr0dIiWI7CJIrRyEsJVBjw2aDYe2TEfZcYQaHgBoRrXQfxu2jIMDHH9W9Jzdui5KpTZBZQLjqJTIiwgx21Q2al4QJA4HKuNRrfQCoRrXG80KkaLajIowjBQyaLXOmhyDhxSksbnOljJTatF/8ku87CL7l1gR3oDC7vI0c/WEiKwOG6MxuRuUzExrge0rB6JOvfC4Vq7EX8ULMfK0s2osdchQhWKSbEjoWN7otSaSwUKFVYdQnkrwlXk+BjYZN5FhEIEGWpWwvH6KCRo66Dj7JDAokbQU3GDSXIkeTgzKmqs5xOjoHASMddbsPjLlV7fZyw28AfyIDQ4ArWEP1oMa3y43/1IEQbYeyVBSHEqzvMFx8I6qgdkcl3JccR6DZk6ADarHWt+3ohPH/zWdfHiGkiRIQgpAOrSPG+StcnQlcuwRvloIxLBwYAEhK5tXZQ0caWTVVF+l5MbxAmkEIk1WqmjrM/l1RzsxFFWq4LMs+BqLDR1whvaQyVN6QYtIcWOXnt0pCbDc10GhMRwmIelQL8tx+ex0v3rNbC0SP+w9omHeUx3l9ekcB3MY7tDjDJAv8n9nGsPlkB9rAK29FgMv2gMBg7rgUn9UpG/7SgdaE8f1o26VdlFEXVmK0K0ajqYTyCJDY9/uQiCh2JU8lnqJqdDCtNAjHW9F1fXW/D+gg0oK63Bw1dOx6ff3oPL3vzVp3xPc9Bz8TCZWD//7jNwqkB+Z7z93gSzjROBXq+nooX777+fihxWrVqFY8eOoba2lrqhpqSkUMdUUjg0YsSIE3NQCgotIEWqv7+9sNXnhdxTIuLCsWruhpNybvlqC3QZJbSwyROq/BqkijzOuX0Wtvy1g06SJnaPQ1R8BG558xq8c8unARfqtgdagwaW+iDnSYjoWqvyOEHLVhrpo7Vc+9wlGDxlABXgpfVPcXu/qqQav7z+J5Z+sxq1FXWISozEtCsmIq/OiMO8CDFcC9YsQF1lAxsX6XEC3haj9ilCtYZzUBld05KmT+nX6s+koNBRGE1W/LN2v89lbD3jvQocyJh0Saj/NDfSpmwpcBBjwtzEDU1oVLCNTIdmxd6mvyPSJ7GarVj100YqcPaHHEAaGHFGJv0eT2lpbtsjYyb9kqggnPQNKBY7PTfqA/m0LdYR4gayXzEujIq/iCqaL6iirs3BQlLfbIO6OrZDkCRwBVXQ7M6hyXDtiUavhrWdt0mEav3H9caYs4chZ38+7ZP0GtkDqUQkYxdQX1MPfRhJJ3X8xhzaegSvX/chpCAFctWlNfT3q7KoCre8cTXeWvMs7hr3uIvAJlBCIw04945ZOFU4FfokjUlyhPPOOw+Rkb7HOUaPdhW9Hz3acfUQCgotEUUR8975O+gTw1eaEbrmOLDmOLqeOZwajXRWuvRIoNe5rf/sotdbUmAcnRiJm167iiZXnEga+yT0vjmoB2QimG6EYSDHRkCMDgP2HAVb6jDOJfcMjUYNk73979/kHPQb24sKCsi9qiXlhZX45bUFWP7dGtRV1SM2ORpTr5iAktxSFB0tBVdVD90/uyB2iaTjriTlii+oBFvbtmOdeplng1wFhZNJTXktVs4NLk3NGZJWUHz8xCSoDZ06gI69r/xhHT576Lt2374346RgljkZ4oZG2Ko6MOv2Qk6KgRwR0iQwY4orT3iSjkanbnex3bhzR6LvmF4YfeZQHN+XRwVyfcf0RHKvLrDb7G59EiLKJ2N0UpCfvbK4mgroiZDtuucvxavLnsQDk59p1VhfeEwozrp1Bk4VToU+SWfllBE4mI11bS5Uz9q2CZ0ZXUgovrz3Vpei4sjELjj73kcx57Fnsfn3uSg4dKApKUFrCEVMSiryD+6jqQVtJaX/ICT17ovCI5nI3ddcdBUMlvrWDc5HJibRi1V1sXuBYb/TpmLi5deAZT27CJpqa/DzM4+4pGuYa2uw858F6EjC4+Ix+PTZHboPBYXWYMwH7L4NLn0SO/TEnHdVKBDZW8aK22RUZ52YfSoER5dxQNJpDFg1sOX59m0p6eOB0Y8zKFgH5C4D1GEyuk4jwgZg6ysS8lbJkGyAJhLofiaD3pcxyJonBy1ucCZ7EVBfLGLEAyxGPwZseVGmSR0t6XUxqYllkPWHqwhCF0OOmUVYqiJw8AW5n5u2bEXVjz+ibsUKMtLZ/CbHIfT00xF52WXQjx7V1AFqD0jBEXEtCpQjR440/dy1q2+HYwWFRiqs1cg3e4rylMGS4WXGUSxPzMJbQgrXSbH6tgrSznafIOc5EVE6387eUep6xGnrXGpNyM9ku0TwUGPXU2EFC4kWxbsfpaOr4etPr94cgel/f+byWo+waHw0cQ4+Hns5Pslci92VQKjGili9HTE6DfqHRSOed4+cbCRWVYdaIr6QVai0OZwAyTFoOTuMEgdJZnG0NhY6zoYZXZIxICIFB2qykFFL/k5Z2lk3CyroeLtbnQ0ZN7FJpFvreMMmcqgVyKAOC7Oo8pjK4IxJUFGBAQMGSboEsIwVpTZH0bMzZ3YZg6vSzvB63aq21eKxfW+hyNK8brW9jgpiHMfM0e/JwFvBszI9F+S7IJ+9JRpORLlVjcy6eGhYO0JVFvrZPWVwxGsSMC5GEV0rdD5yD+Sjvsb3NU11pAiMyQqhZyJkMplFfstrTVTcML5/il+HMTE2DPbRvSGTi66PIjw3GAbCkG7gymsRZdBSF+vbRzyM7P3uzq6O2PR46EvJdUaGMYmICJr3paqTEbVfhKjxUr3vhBDfNpEnV+1/ko93WoakF1iGe2/jMDYR1rE93d8gF1YP51OVVwXtngLv+y6ogi1M5/ne4+f02HrGQbczz6OD9YQ5ozHunJF0MufVq993PVQN70hi8Lbd3vFQHy3z6KjLWgV0t8p4+u5zsWxXFhbuPIzICB1mjxoEk9WOx79ehOW7jsAmiIgJN+CC8QNxzekj8OPKXW7iBuoPQD4jQwrcohwveElO+mn9XlTM24kH3rkeT103E89+vRSSh8H7G84YBVEdir8/W07d7hqJ6xqDx368h060K3QcvXv3DqpvoaBwIiEupYVH2+ZUuunP7TiZhK04BtZkh2lwImRtwxSVIEJ3qByhq4+DSU/EzYPud1knbUAKnv79QTwz70H8+NLvTU6CKg2PsOhQpA3oip3L9rSLX8vIWUPQa0QP7FqZgQMbW+GySAqBW1GcQ+51ST0TaGGrpwIG4m53xRMXel2/LL8C9058EiUNIk4CKWL9auMemIa5FlqT8mHeLMFQIrlMjtJkB63vdpXMM5DUDDibY8VuqTGYMaV/MB9VQeGEcDi7FBarb4cbOVxPRcKMh74HaYdaGhKdfCF5cBkVusf73m+oDlJMGO2TxCRF0TberUMfRP5hT2NOngXjfrHaAxI30EVHdofQPc71Ra0K9gHJkEM00G5p/8JpMUwH67iekMKbkyhsg1Np2p5m27GAi4SEhAhYJvYikb0OwTW5hHEshK7REKNCoF/ucItuC1MuHU/dp8m2X7vmA7QnpD/6wFf/w+q5G7H06zWIjA/H1Csmoq7SiBcvfwcb5m2hKQ2kOPSMm07HRQ+cjd/f+TtocYMzv721EHmZhbjn05txz8c3451bP/NYUHTNs5egNLccS75e5bI/UuT7xE/3Iq5rbKuPQcGdjIwMlJWV4eDBg4iO9pJQ6URdnWs/NyrKvymCgkJ7kXuwgLY920JnFjc0uoWTe7MzPYak4enfH8CT8ffhp1fm48jO4059kjB0G5jiNc02WMacNZzub/vSPcjc6iikkOMiXcUNzrAsxP5pYMr2OExIyFytsXV9kpTeXWCut6LUqV/RCEkBuviBc7yuX5xdivtOe8rl94P8/POrrrVbpA9CxhJBHu1A+tBumHzJuHbZloJCe5K5PYv28VvLlMvGw1Lf8UX9id3jERJpoGMxHZWOw+WVQUz10X6UZXB5zcnbnRGSzsnklADkcYI5/arTMGzaIAiCSJPc2hNyDb33s1uw8sf1tE8S3cVhllFRVIXnLn4TG//YRuco4lNjcebN03Hh/WdR85VgxQ3O/Pji7zQl6e6PbsJt71yHD+/+0uNyN75yBXIO5mPFd2td9tclPQFP/nIfFR8q/Ps5ZQQOJ8JJvN1gGCSm90J9TTVqSwO7qKm0WlQW5ru9XlVUiB+ffABRRABAiv0nTUPvsRPRdcBg8CoVti2ch9yM1okRGiFpB6POuYCmJBQfPYIt83/FiSBt8DAqiCjOOoyqItdJ8oj4RKQNGY7+k6YhoYeHCXcnNvz8nYu4ocNhGKQNGorpN98JbQe5UCsotIXc1a0f2NREA8PuYVC8peO/g4QRwLbX/j3iBoZHqxIBOjPxoxikzWSR9YfkqExqJwyJQI9zGCy6QobgNLaS8YUMloeLiMFaBRz8XkbRFhn2+rbvu2wXsPJOCdM/YTH5HQaZP0so2gwqdIjuB6TPYdB1qqMCq/elMgrWOvZLRA0kaYLlFHGDL8z796PokUdgPeLlD5u44C5ZQh+anulIfOUV6Pqf+Elwkvbw3nvvNT2fM2fOCT8GhVMV94shz4hQc0JTET3ptpC0Bocrv+s1g9TGa3gRJpd5cxkG3kYfJPFAlFmIdD33602Mpt5rDa9DQGGDSdSAYWQwMoNeod1Qbq1BqaWSLkO27UgIcE2XaISV9diQ7xAHOFNoKsJzu1/A+C4MpiTJuKh7L/QMmYze4X2gZjnsqfgKuyt9tz8ieBOOmWJR3SBwIKg4EWi45kerQ3FN98m4OHUcDtQcwy95JN6aaS6OBYt6QQ2ekcCzjrwGcp4dPzUsJ4Mu03xmWdTatYhQex/ITzeMhtUGHKwtQLbRMWDPMiq6j7SQaIyJ6Y3ZiSORHurFebGBb3P+cBE3EIjYxfF9yVScoqciBaf3GfK9SRAluqTLeypWoIkNJJ3DalUhVDIjVGWl359j2wwGhA/Glak3QMe5FxQrKJxsVvwYmCsRceciD1nNN0X9kuKe2969Dmt+3uTbYXRId1q40hpkloGYFo/Ro3rg5Svf8yhuILBmG7TrM2EZ1wv6UhV0ZYAtTIbEAap6GdqKhutR86XHO20oQGk8N97EB43oa+30s5FiIG1GEewpkRDjHAk6LkgyGIZzu63RWiAbIHMyJNZROMXVWqDJLKVCAV/uMOrMYtjS48nF3cPB+/5ssoaHGKkDX+7e4B9z5jBMv3oSfn1zoVvRja1HrN/fAWuvOI8Ch6SeiZjy6qU488kvYXFy2P5gwXqwPEfTGxopr6nHp/9sxsaDOSgrb94WvT+Rj+tyCFTtSN+kosKWO+ZYbDxagHsmPoUPt76MT++/EN8t3YENGdmQZAmDe3TB5dOGYdrwnsB543HZo+dj3e9bqGNut4FdMfrMYeA4zwYgCgoK/w1OZHpBW2FZBn3H9qLFkWV5zQUu5NoYuikPIdsKYEsMpfc2VYkRrEWALkSLvEPugrrsjDzcPvJhJHSPB8swmH3jNEy9dAIGTOwDXsXjy8d/xI6lbSsmIhO4Vz55Ec66ZTp2rtiLH174HSeCceeNREl2GY7uzkbeIVcDqK59kzBixhDMun4Kug1M9bmdTx/4xkXcQLD0inETNzQi6FiYowB9hVMbhXav/I99ESEE+X7HjU7HA3fMgNZDgbeCwsm+Vq78bm2gC3ss8Ln1jasxb8dhv6tzHlxEiXDCH1KEngociFPmC5e8FbC4gcCQNIVaMmjtPX2NKQysOEiM0LuLG5wQ0mIhHikGVxnY4Lxap4LN7FtQQPp/lsl9IetadKRYhu6PEKiowjo01SFuaBIdN1/D5DANLOPSoV95EG1h7LkjMeWS8fjhxd/bXdww5bIJuDL1NhcH1i8e+5FeY0mKkXNx6DdP/0zvTzkH3OsJWlNYTERxH259hd5bieiB3kdlGQNP64c595xJheaEK5+8AOvnbaVJjelD0jBy9lCwbOv64gq+iY2NpY9AmD9/vsvzYcOGKadX4cRxKvVJOJam5BQcLUZlYWDF9N76JKS9/r/hD1GhF+mTkH4DEcH1H98HHM/hk/u+brPAITYlGlc/cwlmXTcFmxZud+mTSMkxvldWqyDHR1I38WCZeOEY+plJv6vlfYYkx42Y6eiTpPZzT5Fz5qN7vmqz+CXY73f8+aOoYE+tDWSAVkHhxCFJEpZ/1/r0huReibjp1asw7+2/0NFMmDMKz17wRoeJGwgkzZLLLYPoRSTLHS4MKOXhZKWunWyIAH/8uaPw9ZM/tet2uw9KxdhzRuDyrv+D3drcj/v8ke/pIJGz+RIZcyLjb7tX7cPBzc1moq1lw/ytNMHu/c0vIalXIn5/+y/sWrGPtjNIeukF956F0Wc42rhXPXURFVqQflPPYd3ofak9zVQVOjenjMBBFxqG2K5pKMvNRmdFpdXh6lffgy4sDBq9AQc3rME/773ucx2G5dB92Egc3b7Z6zKC1YrS7GP057LsYzi4bhVm3no3Lf6vLnJPPAiU2NRumHj5teg6YBA4XoX9a1ZgycfvBD1JotJoYbcGrxisLMhHbbnnKKXqkiJEJSX7FTfYLRYcXLcaJwSGwbTrb0XqwCE0cUJBoTOy420Jx/5s/frWCtBEhZTJ1GgYaHs4jFfUYUDeCfrzJYXpdbmOdAuCJgKwOhIa2w0ibqA1Qh14zk40u96RYTdKVHTQFngdkDLNEYepjwVK98jY+6mHew1xsvYy91F9xJH60R5YK4F/rpSoyGL4vSy0UQyNYSax487oohmkn680igPFuGED8u+8C7LJFNj3cCQLOVddjeT330PI+PE4UQMJf//9Nx577LGmBIe0tDTcc889J2T/Cqc+UeoIJGrjUGRxtGF5VoCWc1W3kb40z8hgZcElWaARFSu6/NxFVwM111xQoiLpCzJgkVSQndYlQgod63uCmLj9A1H4cOiL0PMGGHgdlhdvxrtHfmhahogCrBLZt9RULM8xHAaFDcKXe0shkopWJ2L1dTg97RAVZpRaG1x4LMdxoHYFzmPuwYCI01BnD2BiVQKy66OdPpMMDStiWGQ8ru1+BoZF9QDPcpiftwWfZv2EWH3L+4RDyCDILASRCAcklxpfFaNHqVWGnZ7zZiqsBioWMLQQFxAK68NwrNqEYguZ2JCdRCoMbCKPwzU1uCQl2a+4oV4wYUN5c4x8Iw3egdCygpu4wWU5RoZI+2DNH6hlskOdXQejXUt/3+7seQn6hfdDrMZ7AYKCwsmCjCe8ccNHWPr16uCL9xsgRZC3DX8Yky4eB3tqOIx9oyBpefAVZoTsKgFntEOKDQf0jjQc+pfjp/Df47GG66EP1WL3ygyfy3HlddD/vQtC1xjIMaFQCSLYahOk9GQwvKPQXGWSYI3yXXQ+ZVA6SnaXouiY4x4SEReO6tKawI6VY2GZ0AusyEDyrIEDXy/BHhsDfno0pL3HwBVVInTRAVgGJMLWNwGSXg3YRXCVJsiRoV41B3TzIkBuV+rD5dDuyAnoGFmjFfrVh2Ce2AtyK4oc66f1g+ZgMTR781yO7Y0bPoax2gSbh8kNKdQ9EcltmRAt/Tc00oDTLhxL2/wRw7thU3U13l3sruwnd2nRS0rqvuNFCNE4TZaSA/VW19N8u3M/Ji2PsrwiXNn9dpx3+yw8/eA5iLgjnP79tByUj0mKxvl3nYFTGodSse3bUFBQaCq6JY5pLQvZOxMR8eH4aNsrNLreEKbHwo+X4L3bP3dbjhEkaPIc90JezWPUuSOxccE2r9slqQjHdjvmh7J2Hcfy79bisR/vxoTzR6Mgq7jVx9tvbG9c8/zFGHxaf1qYNP+9f/DxvV8HvR1DuN5vgpUnju7K9vp9EnfcKx6/wK+4obqshk4Mt8Q0pIvP9WwhDLRVANvYJZXI9yLTlAZvcCyDx2+fhWEDuyIhLtzn9hUUTgZk/O+Vq97Dyp82gjlnqHsRvRNsaS29FrWEFPYQ1+YJ102h4zy+pk3l2ChYJoWAzymjBTs0ecDDNlvSuF+VmseBTf6FFE3rsY6xbO5QHkQiivUkfq03g812vy6OP28UsnYdQ0mOQ/wQGR+B4i7+/47t3WIDFjgQcQOv4lyK8x0H3tyms/eI8/m9CKkxkDLywdY3DER5gSQ0yGE6j+IGxz4ZCIkRsKXFQJ3dejfYly9/F3UVRlhNvo/HHxFxYbQoiXyHMclR2LF0r8cCJZKWIHmZZ9q39iC0Bv/9oEAgaUGXp/4P5985G498dydCG5MVW5xHktRABA+nNP+yPsn69evx0EMPNT0fP348xowZc1KPSeG/RUqfJEQlRtK0sM4KMVB5Z8MLtD+iD9VRIdenD3zrcx2VRoWRMwdjo4/Eu/pqE22/E0iCw7Jv1+DJX++nBZhERNFaBk3qh6ufvggDJvalxhY/v7YAnz9KikubkRvGQn1h6BIFcysEDiQlgozJeoIYw1zz3CV+xQ3lBRXY8teJSeYgbY37Pv8fBk/uj7gUP8IPBYWTACkKf+HSt7F+XuudZYkA+pbB92PiBWP89knajOwYZwkUYgoqicEfEL/7OE6bMRgHyutQ0mAkFB2iQc36gzTJrb0g4gZ/fZJTjecueAP3fnYrLG3sk5AEwVGzh4JT8dToY+s/O/Hds+5G6KKPPu3O5ftoelF7kH+4kPZJ5tx1Bp78+V46luipT5LYLZ4KHk5p/mV9khPJKSWvH37W+ejM9BozHhEJiVTcQJ+PHofQGO8qe5bnMWTGGVDrgnPclCUJiz9+B1/ffzty9+9t9fGW5RzH4o/exrY/56Ho8CEs+eTdVjlA9Rg+qlX79yZuaGTn3wu8Ho8kifT4c/btapW4ojV0HzoCQ2acqYgbFDotxxcRcUPb72ZCPXD8744VNxCOkiTCIA43JAXoe2XwxeasCije6hA3hKYAPS8CrO4Gnu0CFTcwQOJYIHUmg4E3Mzh7HouzfmOgOQnpsEQQENVGc/yMz2Wo2hhWQ1IahtzGgtcDGV/KKG3l2IYQ/ByxVyQbcOQ3GStuk2Aqcxc3KASf3BCMuKERsjxZj6zfkZOaN954I2bPno3U1FScc845NO6Z0K9fPyxbtkyJb1YIGNKZPqvLNKcCfe/RPWyDO7/bNhr+5RgRaSEVCFFZoWbt9HnjjZGsq6ViheYbpYrxnLrQcp8jI8ciVhtDxQ2EibHDEEVUhU6Q4nmryMMuMgjnJVycPAqMoHETNxARwdTUw1Tc0BJJFvB73lu4aPmHWFfs39GjniRLNPTcYzRG9AwtR3pYBfSaTVhc8hbWlf+FXZXH8NqBBZD9NhAYKmQoMYeg3KKn//bQj3YTNxCIoKLIHI5CUxjq7BpUW7UoNoVid3kSjtbGoMhcCY6VoOIk8JxMHyqe/Oz4Pn7IXu/1KCRZRLnlKI7W7YKd3Fic4BkBobwFESoTwtW+r43ke3Wcm2YRillUefwswyJHYFLcZEXcoNBp+euTpR7FDeQ3XEgMh2VIV/oQ4l2vSy0xGs34tiYPxdf0h3FUIkyDYlE7pSsK7x4O4/B4yC0KOqh2LNDxDFJETi7PgoQFH5K0GP8wogTV8VL0sQq4YspA+rNq80EwJVWO6GQbwBu9d6C0oow9r/9DxQ3EpZMMxBqrjIEdLykASouBrFHRBAVye2i6ZZCH5HitUQMnMAykIT0w5vppmHHlRNx9xVQse+82/PP8tUhbfAic3Vk+5xshKbh4X76kFiHzd0K7MQvqQ0VQZxQgZWcu+qb6EWSRpAMVD9ugZFiHuxdwkgnoCA+/M6wfZ1i6jMWxTF1VPe786EZYJ6Tj/U37sPWwe2oH/Q3yc3KsTi5GLbRo7pCJJw8vczWOcSwi2vjljT9x97jHUVlcpTgOKSgoBARxTJ5zd+cuMpx17RTEJsfQYiLC6VedhvAY764VGr0G5905m4oLgoE4yz130Zu0CPnIjsCcvj1xYFMm3rj2I/zx/iLsXL6Xuo62Zp5k9FnDW7V/f2IVUozlDcEuIGv3cWxfsttt4l7mWQhxfgb1SKqVuvnmR35SG30XZs8a0RtnTBuoiBsUOi3z3vkbq+ZuACPLUB3ykYogy1Af9G4iR9qPi976C5pt3gW/nEUGo1FDjgqBfWg3WCf2g8xzVGzsE0kC11AU+scHixEMvYZ3xzm3zQRTYwS3PRNMWXVzX0gQweSXgtuWCcbJaZOg1qqw8c9tVNzQbVBX2iepraij/YyWEMEASa0j/9LnHpbxBbkekfF2klAz/ZpJuPXNa/B72Zf4Jut9KjwWkv1MlhBhgr9lyHE1CKs9ihuciDhzCFIH+C7K9LkfWcaHd39Ji2XbQl1lPe7+5GYqYPj6yZ+xb13rkiWcXVTbChFt/PTqH7hnwpP090FxQe18kN8/QRBQUlKChQsX4pJLLsGkSZNQU+MQiSYnJ+O777472Yep8B+DJKgRcVRn5oybTkdsUjQVNxBmXjcFIREGn6kN5999RkBpZs4QJ+mnzn0Vtw57EMf35bb6ePeuOYDXr/sIf32yDJv/2uFwzpa9G8R4Y/T0QX6X8fQRvYkbAumT2G32hj7JHkhE6HkCmH71ZEy/apIiblDotBCRUlvEDY3UlNfhr0+XdXhwDjF6CIb+4/pg1vVTg96PVqfG5tf/QPWXK9CvogaXDUyG+af17SpucO6TkJQXknxA+iS3vXMd5ld8jS8OvgN9WHB1uu1Bl54J6NIjodXrk+vru//7DIk94tt0HMQ8hPRJLPUWKrYORmzfUZjrzDQt797TnqLGIUqfROGUTXAgkMSCyoI8bF3wGzojEy+7xuU5SUWY8/DT+P2lp2Csch/MkgQBuxZ7bwj6RJZRkR+Yi54vTDXV2PDzd8hYtYwKJ4KGYTBw2iwc2rSu3eWCJMWhtqwE4XGuF/idixZi+1/zUFfe/i5VUUkp9HesJSSxYfrNd7b7/hQU2pOs+f9uqR6nAgbcwCI09f/ZOwsoN8q+i9+R+GbdXbuVrbt7qUCLlGJFPuRFiru7u7zAC8W9UKDUqXup6251t+vum40n853nyUqy0ZUq8ztnoJvMTCaTZOaR/73Xip2vCj6LI+wTARoKbMtphbhuVwOjXrVVu+irBQhmBmPetKVjtKl/PK2YGoDY0Qyqs3w/X+7SE/wTgfoOhijxKqB4uxXHF6BTnI50DG0ZcOBjAcOfFwUOnRlgL3n88XaLG1q212pR8vgTSFr812nprJSUlODLL790ejw5OZkO/Kempnb5a4pc2EyJHINiXRn+Ll3tdaybJCS0NbAgCQRKzoAkdXVLgoJtXQsEwQKDlSdZAlSswDNWmAWuZTvvMJgRM8fhERknxbO97sDzhz9FLbkxUAREyusRKNHR97CtyhZvOq2bBDsLE1GptRXBJAZUQSFxXzzKMFYI7CEsyQvA7T09H1mJMQAK3kwL/v2lju4S9eYaLCv5CYyQAAEcdGbvE+dGC0cFDeToWLCYEjUUmyrdOSsx0FpkqDMqUKlTNRl02P5LBA0c63yTJOefiB5yNGWoNDQgVKZ2uO7tr/4N+2sWotFsG3QbFcShUB+EU7pQBPB6qCWt79GV0MXpCO3cV/y4RAiod1onXhmJeamOn6+IyLnGov+ucHrMqpJBO647rEG2IkeCMSMGbJUGyo3HwLqICq6dkghd9xDnF+BY1ExPRsjyfAfHDnI5JUX/Akf+4fniTH6SZA2uuJoWlrQH4uR2+9s3IL5HDN77z2dg956EIOEACY8AiwUNE1JgTHY8bq5WB8WKoxAabe+TxLy3jXr3hiVY5ZSw0FaQLtiN8JHrSW2QP15661r6d2WtBlaGx6srnsKtL/3is5Zd6EDbjIhBpDkVAFnINR7A5T1m40iee5ML+n6aMKZHQppV7CBeINdd4mAdnRqJYjuHbklOJfT94jymd0hPNiVmhPljxT9H8eu6/bauUQcFziYaO9ckkO7ALhi9CbLsKofHirPL8MXjP+LRb+7u0DGJiIj8+yCFNwXHiugk97kGuT5e9+xsh8cUfgq8vPQJPDXjNVo86aq4cuE7HZsnIS7m2Qc6n/pdUViF/z30LSKTOpaSRhzYp9wwFut+3IyuhjjDamobHQqyyL1xwRuL8OdHK9w753ZwvkbaICA6wR+n6pz7JN1iw/DIleM7tF8RkTMB+W0s/qRVxCw9VkKL4E3pUY7tP7MFsr154Eu8xzzLDxeDbdDDkBENS5htbICxCOAMArg2QyZU6JARB8mRQpgTwwG565QCLrcCTJNwtr3F6kQUds9/b0V8z1j8954vwe1v6pPwPGAwgXEz12tsEv4STh3Mpwt9L3YpCWToySxnYAsktZ0vkuoitxu/as/1Wd9owAt/2FzmK4uraUHsy8uexB2vLiQ6bc9w3sfBGK2hSaTsuWFeWtuIa+6Zhi9v/xwdhfQdiSAtLC4EFQWO7XlfCY4KxLLP12D5F2vRGUwG7wWu7aXgaBG+fupn3P/Z7V2+7wsRMufgDSI86Ar+/vtvat7kCmLm9OGHH1JjJxGRM82cR2eh6EQJVn69/pw7+RzP4qpHZzk8RlJqXlr8GJ6Z+QZtW7dFp9Hj1zeJO2PH7hHZTUlznYHcZ8i9PTzBtaCOKa6iqazukMl4TJ7YCxve+MPj63Skm5C59RiMeiOkdm0bkoD686t/YvEnK1FT5ltKbXuITo1A8Ulnc61ug1Jw+9vXd/nriYh0FeS3QZIszyeckg68IFNK8dAXdyK+Zww+f/j7donCCKT1nrP1GF1OJ+T6TPpbj359d0vSjEIlxytLn8BD459v9/wQ9ZwKUdP5IGj0YDU6n7ctPlGK296Yi/mPOabztPdzqiuvR3BkIKpLvfdl3fVJiMEHSSA61/okRCj43fO/UjGKiMh5K3AgjL72JjAsix1//tr+jTuQ2cPLZAiOjkX5Kc8OQMGx8VAFOjvbhcYn4ub3P8eRLRtwav9uVOTnoa7Me6f3TFNX3rG4NJJAEZ/RBwm9+yHv4L4uP662s8WbfvoGu06DwEWmUmHwzNkYMms2Tu7ajoNrVqK6uAgyhQLq0HCasrFz0W9IHz4aMd29VG+JiJwFrCaBFqFfyHBN/eWESSw4qYAdL1sdxAt0HTkQNx6QKEmiRdc6/reHmmNAzlIrcpYJqDlqe0wRBgSlAlVZZ/ZYqjIFBHe3HZPQAR0boT5PwLBnWay53fmc+0LiFAYn/zh3BThFWwUYagXIAkWRQ0fQ7tgJw4mTnfoMDCdOQLtzF1RDO5YK5Ym8PNeC0JycHAwcOBBXXnkl5s+fj4AA73HsIiLN3JR0JWScFavKPLvs2bvyN2Mw80j0cxQ3tKzPgKZC6K2kwJ8BBwFkeEDOysDVZKDKuAshge5jiOSmDCg4ZxeiFL84fDboWawv34l9tUehNx+FUXAedFFKTBgZn401Od3RaJQhTOndXTxUqcHesngcqopG7xDXzoflRjWqTH6QcWYncYM9ApMHBRcLnUUKrUlCj8flegKgtbQOpF8RNxb9g9LRyz8FmfXu+23kjIepbJMXZisLnYmIR9xPmJPPg2Wcnc43l3+MgzWOkwRS1oJkZSX8eR2qzP5Or+vtDkPek5Lzw0WRszAufCq2Vh7A3yXbUKyrQIBEil4BPEKkLHZU/YxeAWMQo+zuZY8iImeexnotLUK3R2AZaCf2gNWFI441xA/a8T2gWn6AChSasch5NPbzUFzIMGhM94e6xgRIWwVRrNXW3hVYoclpVHAsimlKbiDF9Ey9Fmxx+4tSpArb6027ZSLkKjnevPEj2+A/cSgFELDiGCTxwRjx+MWQqeVY+/pimDNLISilMPaMhiCX0iIcPreyJVnAV9FAezmYWYjFGw5h4boDONokLogK9UdK30Rk5pT6VJvPV3RN9F3Owp3oL2VwkLfCYl9YRvQoJIHC/pbIsjDFh0B2rNSp4OaZXx/EPcOehLnJsY7TGCDLKqHFZi6Pv6gWfKFtoH/KjePw85rOj1sxOhP8tpyCZmwqwLczGNdihd+GbJef58Zft9GBe09ugiIiIiIt1yKGwX2f/ofOk5ypSXPibhcRH4ZThz27kvYYmga5wjFpidB9SBq+O/kRVn+3CXvXHkTOgVzqIn6uUXrKc+q0O+Y8MgsDJ/dF+uAUHNvle5qEQNoqDOPktN6WtrW7H9zxOZbNX+N5G4sASWEdTLHuxzsYsxW8ofVGHKBW4KZrR2DW9H5YvfcE/tx6CIWVdfCXSRGrtSLoRA1+evoXTJw7Gt0Gpvj6NkVEzhi15XUoyXEshJMdyIfkRCnMCU2paI16SHIrwbSjiEeaV00Xq4SFfnJfmtrgDktcKCSHCyDbehTGQakQApSOyQ255ZAc6riBHUliIMy6ayrkShneve1/sDb1SZohbtXjrh5BixCXf7EGRg/JZ5JTFTD1iKZ9N6OKDoQ4PC/wDHQ9wsBVN0J2pH3z2/vWHMLyL9fir/+uQM4B23uOSo5A6tQ+OOJC8GYPW+1cfNoWrlYLtrYRllDvEdTH9p9C2sBkZO871WF36YJjxXj2t4do2kFHUhRIn+TPD0l8+rnJ2p824/Z3b6RFXyKeGTLE+zxGR9Kg2jO/4efnh6SkJJruICJytpLlHvryLjr2/fcZEjmQMZPgqCDkH/FsHNJ7TE8qqmtLxqge+C77vzR9dv+Gw1SU0FHR2umk3E0/iS2uhDUuDPB3PXZ0/dXDMWRSHyRmxCH38GlwfGzTKXnnlk87XSDrisDwANz04lXUHX79L1ux8qt1KMsth1+wH0JjgmlS4PcvLqRJgan9krr89UVEOktlYTUqi7wkup3nNIudrnxwJhQqBT6aN9+pje0XqMTYq0ZS0dmK+Wth8iGF5nSwY9le2if584NlLddGYqSUlBHfLsMMS0woLOmxgKK1L8hUN4A/dAqMxpbY7A2SdpPSLxE5B/OoILwjFJ4oxjO/PYSHxj3XboFGcwIOETicq5D7yq1vzIW0nSmCIhc2553AgRDdrUeHtiPF6gYf3YWJqGHQzMvRbehILHnvda/rh8a6j7aUyOXoM2kqug0fhc/udEx5OF9RqP0xYNpMDL38Kvr35Nvm4ZfnH4emqusmJViOg39Ya1FDXXkZdi/2rDZuL2QSaNJt89Bj5FhIZLYBm7QhI+hydOtG/P3pB6jIb72hkcSNpH4DccmDT7SsLyJyLsCQuTC24wXsXQmvsBXyWXwXq/pEeH8Gmd9aUXNcAC9j0Ps/DBqLBVQctL33sD6AWQcUbgJM3usxTzt73nFskOoqbMuZpqgLjOMsBuDQ/Car23bCSoHokQJOdsz04owgmIHGEkAWeLaP5Pyk5uefu2w/p0PgQAb5Dx48SJMayGD/7t278e6772LpUptj/W+//Yb8/Hxs3LgRMplzEYaIiDvS/FKwytk8xoG2pfENRikCJVLwLhID7MeIieO/ReAQp4zBxIjpGBw8ADf/vBiZ2hRMGHoAHHEob4PeIAFTO8jtfpW8HDOix2BseF+8mnWn2/VIakFacDn2l8bB4kNqhLVpnT9P9UODSY7B4bmQkCpjcv8QGBTqg3GkMYqW+Ks49+KGZiIUDcjVhKBU648Yv1rIOAskjBkBEh0Vf5BjKtf7wWRlESjxw+y4cbgqfiLd9r5u1+Cxgx+ixujsNErGiVh63m2fCc9aoZZZYbKwMFjcD5IoeA4hdukNNYZ8J3GDPaHSRmitcuisrQNcAjlHHlIcSALF1Qm3o3/QcEjJjZMI+8P60+Vg7VosL/4vyvQmlDWNj+2qXoxu6mG4LPZR8E3ri4icC/ASjhZc2k/imxJCXIobmiGpDuaYIEgKW52HjfFqmwOpB/RJAQjamg1zv2SHx2m6gRVQsQz4TVmo6x4DazgRHTEtyQ1sRT0ke06C6cAAct8xvWhsb/bBXCpwuO3N61F4vBiZ246B41j0GdsLDdUabHn8Nxr1S99P7zhaMGRfKEQekx4qgPSobwVCfH4VFUh4grUrTiSYFQxe/trR2buksp4uPmEVqONtV7Dpt+30/2qeRcOsfjTVg4obyOJqAynv0knvq6d+tiUn2KHYnQdGZ4ShVzQVklCMZshOlEO+N5/unzhKDbp4AD771lYETDN8yPfUldOrF1Wa7HgFZCcrISmuQ9207jBHunfOs5msMLZzmVsNxf4iSMo0bh11KwoqL0iBA/1ddrK2R5Sii4i4pufwbh0SOKgCFGis823gLrV/Ei6/bwZGXT4ED094wev6SX3cOwirAlS49J5pdF9zk+bhQoAUWM15eCaueOBi+vfDX83DIxOeR22F5/utOToIpvRoWENt9xG2phH8iRJIXBQzyVUyeu6aIRPwrsQNRCwhyHgwBnOLmE65twh1Mf5u3c0Ve4sgOVYNPliNR+ffgdGj0yFtKgabOiidLss+X02dZCvtiqf/+GAZxlw5HI9/fw8kdoJTEZGzDe+iHUkgqXHSI86mDKSJYg0LgDU8gDY42KoGsKU17tsuPO9R3GBbh4PgJ4daEGDecRxahRQCaeOZLeBKa1uSGzpKxsju+PLJn5B7OJ+Kz+5450bkZRXgyD8nwEk49B3bE3UVDdjwyzZoG7xf61mNHpKsImgHeUhGI8L1oYngdUSg4WUwzA7S5n7vtv85PEYEKJZftgOTM9xuxzTo6Lly2h/LwJwUTtMxBJWMXu+4ijpYQlSeUxxMFmyev86rmMwbxPH7m2cXOPVJfEHuJ6f9xR9f/h3nKiRxo6q4BrFpZBzvwuJ87pMQgYNEIkFERAT0ej0qK21tBY1Ggw8++ACffPIJ3nzzTdx///1n6QhF/u30HJ7eIYGDKlCJxlrfare6D0nFpfdMx8jLhuCeYU94XZ+Ye7iDJDmQtvuISwfjprR7cD5BxjL5Xcdg6R4PISqYmoQQQkP8cN1Vw3DZJQPo3499dw8enfQiHaPsKoiowL7YNOuf4y7FDVTATfoTRrPbVClPIk5y7MNnDmrpY0yaO4YupBiXJO6d3HuqZf3f31uKideNxiNfzwPHex5LFhE5F/okZwO/IBVMelNLckJXjkeRJAIiOFMFKHHn+zch52A+ju08Sd8/6ZOQtMm1P2yibcyzCREBtO2T2KdE+4IlNhSWvo5zUQQhWA3TsB6QbM2kcxTeWP/zVnQWkuDw/Qu/2vok7ezekM+q+7BUfP1019T3nA5In6uuoh5hsS4S3s9zzuc+ydnm3LmqtoPEfgPgFxwCTXX71LS+ihsIGROmoPf4KfTf6hDXEWBtkxq8cWTzBpgNZ/fC3RUEREbhqmdfazkv9ZXlOLj2b8hValjNZpgMenqDCIyIRG1ZCSymjg3WSWQyWhzRTNamdRC6uHp76GVz0GfCRU6Pl2afwIqP34XV4nw3OLV/D9bM/xjT7n6oS49FRKQzMBwDVTSg8WxYcNrhVcCEj4CiLUDW94DQubH6FiQq4NhvAi1EtyGgYD0gCwL8yFgrC+SvBQwdS+ES8UL1kY6fIqsR2Pp0U4jSGTzTidOAgo2Axcdbv9TRbFvERywaDRrWeHYM9JWG1avp/jg/745b7SEqKoouzYwfP54uzz//PF54wVacsWPHDip6eOIJ7wOjIiLN9AvsB3/eH/Vm94UrBgsHq8DAaOXQYJChwSRDYIB3R1AWAh2TGBc+DmPCRti+y2o1dhcEYt0/fdG/ZzZCg2xOd6Q+t6Q8GHsyU3HXUO/R59sqNsPs5QYd7V9HBQ75dUHICPNc3FqssV1ABbBYXdgT9bwCwRLbxbfWrIBZaO1yukqtaIuUs7W/iZAhvyEI3f3LkOBX7TBPrfYzYFCQCjcmPwR/iU2dVqKrxp+Fu8EJIVCyHCzQQoAV0fJQ5GkrYKVnlHEp6DBZrS1CjbaoeEfh05E67wVk/rwWOqOdwIEcCRFYuBl1mBp1JYaGjHV6vKAxE0uLPqDvoy3HG/7BqtLPMT3aFqsqInIuIFPIEB4f4uDGTMQL3jDHOgocBE+FKc0wDPi8Clq8Z06PpQVEJLVBYAQEMMCn79+ENduO4btftsJCJtZIoXmjHvyxYkjyOqY6JoXnP7/+p4NT54ZfttI44IikcLAsg9Xfb0R9ZasTqSk1AqZeIc3iDwABAABJREFUMc4741gY+yWA0Rohyfc+tsVXasAV18IS7VqRy5gFcHYCB3IuTCoPIjVyrqyCw5iLA4IA+a4ccFXeXVPbA3WJrtDA7MLZ2x62zrkRf3hLUzSeC+SZJTTJwRLiR98bV6Olr9WMQWvEs5e8DmZ2/5Y+CRG8CG3mPqnwgWxGTp2LU8NqDFAcsBXGsVoT/FcfR82cvrSY1BVX9k3HP48sgK5e59PAs19Q17aDRURELnxGXzEUH9/7FZ38aw++ihsIM++6CJNvsLVVw+JCcHy353SCxF7ujaCaWfHlug45X59rJGbE4+31zyEgxNYnKs4upe6iQZGBdKKZiPPIPElMt2jkZxXA0nRvMqVFwtjPcT7JGqSCcUgqBFI4dCjfqQjLHuI467CtUgZjr1hYyOQvafdYrOALqiDJLIAsvxbqDTloGJPkmGxF75+lUO0soPeo/zw7GxMn9HJ6j3vXHsIHd8536UJNBIykHTTvg5vbfe5ERE4XpM0eEhWEqpLW/oU7BLkExqHdINgJiCzJkWAaDZDsPA7WhTjA12S1wBA/fLDsSaz+fhMWvPEnLF7SCnxFHeyH7174zcGpc91PWxASHYSIhDB67fn7mw3tLmiUHimCho4puW+1WqUMFWrLi9qXfuEKrloD6f482idyQm+CfNsJpyMh4gbDyO42MUrzYxKe9gVZnRlWpcRjSkVnxQ2EA+szO7ytXqPHC1e8hTPNJXdehFXfrPe5qI047Yp4Z+fOnQ5zDqeTe+65h85lSKW2sUZi1kREDe+88w41dDKZTHjggQegUChw++23n5FjEhGxZ9xVI/Dpg9/Q65wnrFIOup5hMMaoadKYLqcGcjJe4oMByWX3TseEa0fTf4fFhXpNJ0jo6X2eZNlnqzuc6HM2Ifcz/vApCMcKIKgVSOubiLc/uRt+/rbrNzFiIf0F0h4iZjSkT0LGAGPTozvlGB4QpvbYJxGUMli6xcIaGWTrd5gtND2XO17ks7iTiDbHzB7u9PiO5Xvx8X1fudxm7Y+bERIdjNvemNuu9yMicjoJighAQKg/6nw1GjpNBEcH4f2NL2Lp/DVY+M6SDrn9u8I/RI2vnvzJ4RpKfouhscEIjwulRtMkMcFXEdu5DplrockN7pBJYEmOAp/Z8ZS+9kDGaTpKY50WL81+F2eamfOmYsUXa2Hy4X5A+rREyC8iYk87s9TPDViWw+TbTl8hh0ypQsb4yS1/ZzQJHdxBLs69xk5y+zwZ/F339Wd0OafxpYiAqMFKS7D684/ov/MO7cc3D96FnYt+Q2X+KWjramHS6+kkeVxG3w6LGwjR6T0d/m6s7boIp4CISEy69S6MnOO6obtn2SKX4oZmjm7b1G6BjYjI6eTQF9azLm4gmBuB1bcCmV91nbhBGQ6YdDaX/bYYaoCqLKDq8PktbmA4W9KB/MIToVIselvKRkdh2iHHZCVA9AggZRaDSZ+wiJ/o/d7GyQG/mH+r1rVzmEtLAQ/3y3ZhscBc5rsDWGchkwJjx7YWFJNJARGR9sCzPK5PuN5mzuyCeqMMJ2tDkVcfjNLGADSa5WAZBlLOtwEkFe+H4SEjW/6+sq+t2KS8OhB/bxmIxeuGYNXWfli0Zhg27OwDvV6NSzPcJ91ZBCteObwI/z2+0utrEyECeV9ljf4o1bh3piYpCnFBNZjWLRMXpx/C+KTjkDAWVJr8UGlSO4gbCGYfEiGMdmkKobJGJKurXHZTakz5WFnyKf339opjuGbre/gxdxOON5ShUGtAiZZDnUGFdP9uMNFqVffXeQnr/jrWL8gx4lhr9t4n4RkrGFghY01QcgaoeBNkrIU+Zl8YFCaLxNVxt2NyxGUu97OjapFLcUMzJN2h0Vzn9XhERM4U/3vwWwdxA8UXZ8s2P3JZQT1gV5zuCkmdhRaVc4VVkGzOhKWhHiYlA7OSQ5WCwzVPfY/5f/4DY7N7F0mW8FfAODAZ5pjgdr+3iMQw6n7qqhizurQWR7YfR+bWYw7iBvJrN3b3XPBAkx18RLnpGE1yaHvjYUwCpPXkGtOKRc54HePhS2shyS4HU68DqzNCojNB0WhAVJ0eqiX7IT3hXpBnlfEwxQXRhfy7PUiPe27vEacjvsB7QZrTdoJNCEIEFM3iBotKCm3/WGjGpKA6PQxy+4JesoqLSV1y1oiwg621X1eAoqQBAYsOg2tsLQzi6g0IWJwFrsax+E3Kc5jYNxVXXDQIH25+CePmOE/OunJPuhBdiURERE6/uPCej289rZPyE64d1fL3tJsneDkeqcP6bSH30bdu/hjfPf8rzmXcCgDbQNzTP7nva/rvbX/twq0ZD1IX0VOH8lFTVkddCnkJj14jurWIG6ykoLpPvNt9mrpHwxLgWFzaZ6zjPEl1aet9kqQi6Sf0giUhrFXAwLEwJ4ZBPyEDVqUUiswyhH6zB6qtuZAfLoVyVwGCf9gH//U5iE+PxqPf3t2SQNGWhe8ucSluaGbll+vQWNe1gkgRkc7w0d1f+iZuIG31NuKGludUMhiHpdsciNvAGM00Ec4TpH1dn12GW3o9gJ9e+b3l999ZIpPCoalpdFmYRFz3s5r6JM3iBpqyHaqGOTLQlqDmAYG4zLp4v07rSVhYY7qmzUrS4hRrDoPPraDnjKvTQnGsBMGbjyJM6Xy85m7RDuIGexiWB2vXTreHq2iAfN+ZKTZyhcVPBl2/WGhHpKAqORR8mwLR9kASOtrjgj12zghccsdkvL/lZSqK9IZ/qBqBYa7PsYgjRNwQGxvrcenK12oWNxDi4+Px+uuvY9myZTTZoZmHH34YZWdwfkVEpBmlWoE7373R4wkxxPqj/LaBqJ+YDH33MOh6haP2knRU3NgXZrXnexQZKxk9e5jPfRJyPOT65w6T0YRXr3sfC97869z+EL10SRiTGWx1A7LXH8JnD3xDH9v46zbc1vtB/PnhcuRmFrT0SSQyCboNSumwuIHQd1yG2z6JoJLDNLKnrY3Q3J7gOVjjw2Ea0ROCXfKDO5H8kz/dT0V5rvjt7cUet1/62SroGj0LbEREziTv3va/sy5uIFQX1+Cm7vfh1zf/6jJxQ1RKBOqrGlwKxCoLq5v6JEfPX3EDMU/iOciUMioiJwjB/oDcc4qfNfr8GdcnJilk/K6jcLzvhV+2ccLRmHnnFLy36UWMmDXYp7FIkhokInLeJzgQkgcMRvrw0Ti2fXOX7pflecx65Gko/FoHGGLSe6D3hCk4tG6Vy22GzJxNi/q19XVQ+jt3/P/5/RfsW7kE5zrjrr8FW375Hmaj95QJkmJQkn0cS959jSY2tIXs4+Dq5Z06nn4XzXD4Wx0Shs5y8f2PISQ2HiExcVSY4o7cg/s87oeIH/IPH0DPMZ47UCIip5uaEwJ2vWlF3clz51x3adAKC6hiAK13s+vzGsFiW/TnmG6KFP4TcUJXYO2E4MWVuMUeIg4hooay3YBJAxRvI4uAoG4Cet/G0HQPT5D32FgqQBUpihzai7Ud6Vg+7a/xzE6K33HHHdi40RahWlhYiNzcXCQmek/lEhFpZlDwIIQZJ+K44R8EqRtpLanBxKPGqECFTgXORX2phVg9eIFjZLg79QHIuVaHguGJ8ZjVqzv+yrQ5WDc0KunSzF2jB6POogVnYBAkc+74f3p8Df4o2AW/NokErqjWke1tx7k2Nx3jEk4gRu1YSG+0smgwyxwEG34yWz/CYDGixkSKBBzfa6NZCrXEfV+DAYM58Vfh/aPrYLSakejn+cZ4rH4HChpz8dTBH2FwcaPRWYxYUrSjOanZLayHZInL4xwnQ9SScM87I30hKwsFZ3L47MlrSBmBikJuTHgMEYoIhMuiPRZP5TR67pNYBBPyGw+hR4D7IjIRkTPB0Z0n8N5/PqMuYK6KSczxngd3uUpHd1FOa4bqYAUaB0S43UZRzcDUOxGSvdnQTuwJa7BjYZKFDLDz5CIsgLFvSxLXzwFJ4EpqfHKIIxC3s8jEcJTlti/5wRqgoG6iHtcJUtFCR1bvg3ON2QrlpuOwqOUwkyQHMmEYFgxG4exmIxiMgJ9nlxuB56DY7pyKQFpj7spmSJGXbkgiTMl2RZRmK6TZ5ZDvyvXpnPKldZAcLYHJlfjDbIFi60kwTYWU5BopU0o7FGOt7RcD3aB4R5GNINgigC1NccCkH2YV0Ky/Y+v0UO7OhzS3iq5nDiWfDw+uVg9O4/oYJOUaBP20D2y3MPR9aBr+OZqPBp0R6/aepEvvxEjMe/gSbPx1u1f3JDI5HEyc7i40bPEqnd+HiIiISyZcMwqrv92A3asOdOkZkqtkeGnJE1RE0cyQ6QMw5srh1LnfFXOfuxI1pTYHEv9g5wLOzx/53snp81yD5Vjc+vp11I3Q7INDObm+z35oJl655j2XTnREIPn31+tb/ibCA28dFHNyOLh9uS1/ty30IY6IzRh7x0NwM9EuKKQw9oqDfFc2WJ0Jqn22FCLCG6ueQUhMMBJ6uC/AJMKGPV6+V3qtAYc2H8Wwiwd6XE9E5HRzeOtRvH/7Z8jL8s0FihTKuxI3tKCQwhIXCj7XeWKCP1YEY4jarZibP2o7Bl+LiEi73BIZCEh4MA06sJX1TjWNEhmP0JhglJ7ybaLElBAGU69Y6qZsexEBXFkdpHtPgdU6t2sZg5k4TpBYTQ8HKthS0LyksbUHrkpDF3uITKGa9krsXppcG5Pcj8fQ88VwkO/IgSkhhAo6qIg7p8KW3tCJgk7iICqVSXxOQLCHCBsMfWIdviuGvjGQZZZAsbv9oguLl/sSKeodMKkP9q45AG2Dnha6kqXniHRc99Tl2Pz7Do/bN1Rp0FCjcUoOuiC4APskU6ZMwbPPPotnnnmG/q3RaPDNN9/gscceO9uHJvIvZPqtk7Dmh804tCnL6TmLUoKaS7u7TL+0BCvpc6HfH3BZz68MUOKlJY9DIm0tkB9x6WAMnzkI2xfvdlqfjCPd+MJVqCisokljrq5nRKC8/uetOJeRSHnc+OJV+PrpX3xKvlv70xbMunsq3rjhI5d9GFLMuvaHTR0+HnJeSbKfuz6JuUc8YPcZOUCTHWLAH2rt3zTz3paXEBCiRly6i/RbO0HKgQ2eE5S09TpqPkPugSIiZ5P96w/jg7vmo/BYa9/7bNNVwobmYnUihi3JvoAFlYLNnIMshuZ+ky8i43YIkTsCSQ/npTyMPswj+UJH+jbNeBPwk5TqPmN6YN/aQzRFaN1Pm+nSe0wPXPnQTGoQ4ona8no61iR3IXo/77kA+yRnivNW4EAYe/0tKMg6RFMDuopx19+KuJ69nR4fefUN0Gk0KDh8AAatbWAlKDoWcpUfdi/9AzsW/QqGYZHUfyBGXX0DJDI5qooKwEsk2LP8r3O/OOuSyzFwxqXoMXo8dv61EPtWLPaYYEDYs3RRy7lwhbftPTFg+iwk93dUbvUcOwHbfvuxU/vNO3QA3YaN8u7C5MGVqHWV8y+yTuTCoqFQwMYHrbSg+4LFClR4ru0TOY10lbihbcJCZ8QOrogZDRS4EDHUHAe2Pefbtdokms11CFbZteppVuVhYvE0kJHh6DhSUlIiChxE2s29fS7GJQtrkWnRgJVbYBYYBIU1goUAxqlwXoBR4KnIgaQkuII8d2XszUjxS3V67pHJo6BRNmJHYQE0DWagkUNKZBD8Y4D/la7FRyWrwTEMxkV2w4O9JkDKMchrrISE5bAg11aEpDHLUWtQIFDm6DZtz6nqEIQoNLAILGr1CvxTnIRhCaeg5GwDHnqrBCxjBe/mPcg4C5RWI7QWx8EHo5VHQXUQ4oJduylOjLgcUyPHY1z4YCzMX4USvXPhrT0k3WBZ8UoqZHCH0WqF3IvAwepyMEDADYnjMTA4xeHR7gEXYXfVjx6TFXSCxK1xuoS1Ild7CL0D+3vtk/jS3/B0HCIiZ4K8rAI8NvklWrznCkl2BQx94twO8JKIclJw0pbAladgTAqBKajNsJUgQFVshaxBgDUyEKbUCCdxg8PqrK0YhmkbGRwdDL6wVUQlsAwtmCELKYZh9CbqJCrJLqMTgwc2ep5Ic/3mfBxo9CXlwg6uQQ/uWGnTcZdQdyBrTCh1QyPpB2xhJazBMphDEjwfnq79jXLtuHSYYwIdH+RZGNMjqUO0av0xn/aj2J0LvqKBbmcJ8SOKFEgKqiE9UgLOzt2JXAc7Im4wpIRCN8TF+ydJHgyp22JhJgVcTckPjFmA7EgpFDtyHb4rfKVvnQSyzbC5o7Fkn815wH4fh3JL8chPq8CrZeAaDF4nZC9IgYOIiMhpZ96HN+PuoU9QsVRX8fBXdyF9kGNbmLRfb3/7BhgaDTi05Qi9bjU7birUcnzz9C/48vEfqdsdKTq65dVrYQ6QI7+8FrzFiqWfr8a5DimIIhOuE68bjR8+XolFX28A9EZwTY7obSGT3gveWORxktlECoeb8CZ+pOuobOuQNgwpbOo1It3h+YtunoBf315MHdctTY6C7rDEhkDYlwvGbIE5TA1TdAC9H+45VojbfCkA8qFPYrWKfRKRs8vJ/afwxEUv0yIIX7FGBHpfh6QFuBA4cBX1kOw+CVPfRNq3aMFohiSzAHyR72n0pm7RNJmAuBw3Q0QO0r3ZYGsaHa4jRMTh0z6TwmlynQMMQ0UU+nE9oVh7mPbDHJ62CpCdrIChZ6Tb/XJGATQAU9/xYhhfIP0Dcl4sEQEt55v0zVrEGm4gpnZcrQ7Sk87FtZ2BCKI7UgBkSA2DoV+c8xMMA0NGNKRGM7iDRehKhl0yEOt+2uL0eNa2Y3ht7odetyf9L1KEdEEKHC5Q7rnnHrzwwgswm21tjQ0bNogCB5Gz93387y24d/iTTuM42j4RLsUNzZjDVTAmBECW55xU/MT39yKF3G/t4DgOd7x7E703Epdwct0iJPeJh1QuxWePfAfrg1ZqWDLysiG45dXrYNQbUZxdBpZjHMTH5yo3v3otZj94CSbOHYMfXvwNyz5f43F9IrT++fVFMBndOwZ2pij21jeuQ2p/x6TrabdOxF8fr6TjkYKbhKVmyNilkJnnJDg8tPkIrnnMdbp1M76WZLlykxcROdMmUE9Of9Wl8cGFAmkTH/nnOP51+JIQc5pTZMg1rqvEDfYQ0YTZw72jvZBxw8EX9cP6X5z7JIc2HUFeZoFPohx9o/7CFDiI/DsFDuqQUMx59lX8/ekHKDl5rMv2ufXXH1GRdwpWq4UmMjRUVaIw65BDYb1UroCuvg41xa1uIIJgRc7eXTTdQDiLg7ocz9NB5eZjCIyMwrArrkFkShpO7tyGrE3rUd103MExcVTY0GfiRajMz8XqLz5B8THfBn/qK3xxCiHTuoLP6RkKtT909fXYu/wv5B/aT1Mc+kycSgem1MGhGDFnLrb8/C06yqG1K1F05DBmPvwUTXFwR2yPDJzc5dldryIvh5RhdfhYREQ6y7GfhQtb3HA+4PslTsQu4SNlJsDJGLBSAXWngJJt7Tg9ZK6n6Xasiga6X8vgyPfuPwSzFmB4zykQJKlC5X7uRsQDfGQkGU0EOiE+bN0ZDz7CvVOzN06ePIlNmzYhOzsbISEhePDBB71u07a4WOHCAVlExBtx/oH4aeYcPLr+bxyuK6HXKbORg0zmaqCBgdnKodakQKBE5yRyIM7/5Dm/ejW+/vBnGiPMp1gRc3EwTgXqsDK/CrUGKUBqeVWAmpeikq/AqYbWgROLIGB96RHsqskEw9oV0gjNty0GmbWRGBBSCAXf9hgF1OvkGBWfDUlTMkO9QYZiTQAVZhjNPFhYIWXN4IltX9N7aoucMSFBpUOJXoECoz99zWh5BC6PuRhRkmQc1WzBIc06VBltBbqR8jiMDbsEg4PHokiXg0VF81GgOwEFsdb2QqHOc+GAycJBztvfBASoeQMCpDr6HkxWDiWN/tBapTRlIUJuxJDgBii4YmjN+/FDzl/oGzQLGYFT6TUjQBqNQSFzsavqO5evp7FI6edqFQT6vl2xtXIJjmsO4abEhxEqc38DildlIEezx+3zZMz+cF01enqePxAROa38/NqfbsUNBNZohnLTMWjHpDuLHIxmKDYco8kEbSGXx4A8wFRlgSGIgZUHOD2gqLKiSWtF3Y9NSV6SHklBOydQp357SDG+fSqBfnR3WMP8Wx+T8jD1iYc5IRSKDVlgOjDIy5KiTzKh4SGGndHowWg7XiBEJgYlJdWwFlY6Pl4rtRXTeHCIJqkL7cEc6e8sbrB/Pi4Y5jA/8BW+dVIleVV0sYekWej7xMGcEEI/A7ZWC+nJMvB5VW6uqM6Qws3GUW0KutpiNOHqAd3BhaohYxjkL9yFPTucneQ8uXs3u1/FpEXhmqeuwNtH3I9LNuiNUA2Mg2KD++hFpb8CobHnT5R1uxC6oN8s9rtFRDwS2y0ab655Fu/c+ilyDrTfEdoVfoEqfPnEj8g/WkSL+IMiAlF8shSHtx2F1e7erQpUoiy/Ejq79gBZf8O6g1j5pA768NYiSfbSDKh25EGWc2YiTKUkwcCuKDWhZyxueH4O/f+GBduw9sfNKMmxOQ8m903AVY/MwoRrRyPrZAne/nItjhJXwhHd6PNMvQ7Sg3ngmxIq7CnOtvVrfIEUFdNLGjFts7tNk+5Vc/dQKpfAf+YQkLvf/J2nsPGB73DFxQMwbaLNpCG+ewzmPDILvxDBiLe4Oo6FJUBBE5gs4a2pGp/vPooNz1Xh7XtmISrU3/WxMgx6j+np1TGVTFCPmOloViUicib58eXf2yVu8FmM7GEdImIgqXDWyCDatyACaZoS1w6HVFNqFMw9necpBbUChhHdIduQCda+UMaH9pDAMDS5xe3zShlMqZGQuigsUe4pgCkhGFaVi1QYqwBpvZUKk6HTQz8sFZZgFe2PcEU1kBMBgt3YVEcxJYTCSMR1dufeEhVEF1it1GjQE0xTkfe5ABExeMLYOwZXj+kNXsJTN9yjO09i75qDHeqTxHWPwbVPXIZPH3Q/f66paXTYxhX+IWoENQlLLjgu0D5JQEAAevTogUOHDtG/Cwq8F42JiJwukjLiaUrYe7d/htzDrd9FIl7whiEh0EngYEv1lGH+o9+j8EQJ7WOERAXR/knW9uMO1zN1sArF2eW0ILIZYlhC0ta2/LnTawJOR9DHqqBLs7035bFayIpdi81JMqnBbuwvqXc8FVXHpEXSJIm1P21uSY1NG5CEqx67DGOvHE6FjR/f+xVO7jvl0/EUnShBV/el1EEq1JTVYf6jP2Dzwn9w6T3TqRCcQIQnl94zDX98t8l7u4oIOUnCQxuR5FdP/IStf+zA8388gtAY12NiJEWpx7A0HPnnhMeXIN+LQVP6tvdtioh0Gd+/+NsFLW44H+Ak3Gm53rMNOjA1GggeRMBcXvvmWs4VSP/gsnun0/+T+9XhLUdxcGNWu9LuiCC82fzkmicvwwd3zne7fn2VxmEbV9AEpuALVHB9gfZJzgTntcCBEBIbj2tfeQdFx49g0w9fo/j4Ed9lnG3wCw7Bkvde8ykhwKh3P4HfEXFDWEISFVV0BZamARyFfwAyxk7C6OtuomIEkjJxdMtGmAx6+lz6iNEYddUNkCmVqC0rxYIXnoBe0+DTaxDBgX9YOEpOeHYMCYmNQ1Vhvm8HLgCNNa0FSpUFeVjzxScoyDqMGfc+QjsxQy+9kopOVn3m3WnCHUTcsfCVZ3DT25/Q9+6KuF69vQoc9q5YQpMm/ENbY1Eba2tweP1qVBcVQObnh+4jxiK6W/cOH6uIiCfy1/1L71znEoJjwb2ID6fMAmQvBjJuA07+AejbO6dtAQJSgL53MQjvx6AqE9CWefkteHk6fiIDierfGeXVWTg/P6gnTULD3393el9kP2R/HYWIG2655Rb677CwMNx///1gvUz0Z2W1dtBIOyM+Pr7Dry/y76ZnaDiWXnk9dhYX4LU9G3G4Pt+NwAFoMMrAy62oMqogY82QUPs7kjTA0YSDYG0wnuzxKhh/KyJflUA5mAUdmrYCg2OBKq0Sh8qiYbLy0Fj0UPFGBCtMNG2hwSCjRfUqmRFt53zJGDO50pHCe71Fgh0V8YhW1iNc0UAL/TUmKQaH+KOcdWy7+8sM8JeVo9Ykp/smCQRt3d1sl1kGMsaMyeps9JJXQNIkgDAzkTDLbkJc8D0o0lbgp7zVWF++DwYri3BZKiZEDMTchBlQ8DKU64swP/t56K22yQALWPAeEgo4hgfPkAnjerfrkGOOkUejSF8MBgLilDXwk9gPpJsQINWjXOcHjUGKsWGnIMDScuuoMORgTel7KNZl4qLoh+ljQ8NugowLxqqSj6HkTC3JGzSdAzxkrAVSwQKDwMMkuO5yl+oL8HnOK3g4/W1IWdcuFLGK/h4FDtVGFRYUrMeUyAkIlLYWJVUZarG27B8U6cqhligxNmww0tSendxFRDoCmVjctPAfr+vxJXXwW7wfxrQIWCJt31W+pBaSE+Vg3bnOWAUwViukGhZSjfvGnMB7KepzA2PnpGzqEeMgbnDYf4ASxr4JkO3K7pj44GQ5TL3cx6xLTpT5XLjvDjKh23ZQmNUZITtUBENf18VNfGEN+KL2paEavYlJqFtsmM8Ch2aIKMLQPRKWMDUtpmLA0nseOS+WyADoIgMgia6AfPtJr+fKkB4B7bAkCDLP3wujhMPyFxfijocvw2/vLEFtubNLoLdznjYwGXe8cyN6j+6BHUfzUfnPXo/bmNLDPQocptwwTnQlEhER6RTdBqbgs31vY/+Gw/jisR9wrAP3rmaikiPw5LRXfHLBbLRL3mnGopahblYGBIWjyM8aIEfD5G7AmuOQZTsPCLEsg9j0aOQf6RpH62ZxQ3BUEC6+fTKuf/ZKFBwrogLNjb9uo+53ZOKUOKPe+MIcyBQyZOdX4N4Xf4O2TRtF8CcFx+nA1qPgy1rvG6QolRRaeS63sU30EgE7V1gNgbQN2iQ40dQpC2n/AGa1ChUm0g+ynf/j2WV47YMVyDpWjIfumkIfu+2NuQiID8X7Gw57LCgi7QPtiGSXiVfH8ytw9zu/45eXboDEzj2+ZVtBQL/xGV4FDj+8tBAzbp8M/+BWAUV5QSX+/mo9inNKERCixqTrxzq5voqIdAVE2LB98e52b8dWNcCSGO55nWrP86W0uL+4mk4PtBcisqbJDe6Q8DATIcIB30W4aGo/Q+5eYE0wx4e6FDiwOhP8/zyAxmm9YQqS2a5TggBOL0CmsYJ4aAi19dCP7dH6Pui1XQlzagQUm46Creq4Ixdx9zYOSHZ/TSPidZc2G01Pk8IjF/eks4HFTwZroOfkY4OEw6KfNuP2Jy6n96UGN0lBnvok3Yek4o53b0SvEd2xfclu1Fc1eHVotRf+tWXqzRMgIQWoImcFo9GI3Nxc5OTkYPTo0VD5mHbtZzenIqYqiZxteg5Px/yD72L3qgP44vEfkL2/ffcxe6JSIvDY5Bd9SjluqHafwNneYldyrQxPCEXxCdciZrNagrIbukGf0jqWWH1JAhTHaxHx/QlwjY5iu2ZxQ2hMMGbNm4qrH7+M9gt+fu0PKhogqQsh0UG0vUzE2KSg//iebDw+5SWfE4SUagUCw12PbdqT0CvOJ/dsAinUripuTeImQrzXr/8Qx3dn4873bqKPzfvgZgQkhGH+ei8pU0SMYnItQiT91iemvYL/7X2LJgG2hVzX+k/o7VXg8M3TP2Pq/42n56KZsrwKrPxqHUpzyxEYFoApN45FUm9xnkSk69HUNmL3yv3iqT3LnA5xQzPcwVMwD+9uE2u1gamoA3ueChxI32Dxp3/jttevw/cvLmx3MiwZc+o1Mh23v3MjegxJo2NtzWmv7iDjaJ5Su6ffNommNYmI2NOxmeBzkJhuPTBk1hU0kaAjcBIJLa73RdzQ1ZAC+a4SN9hDEiZ2Lfkd67/5HD8+9SAOrf2bihuan9u/cikWPP8YDNpG7Fz0q8/iBkKPkWPRfeRYr+sNu/wqjLvhVkhkcq+CCavFTaN22yYc294aX9N7whREpTnGMrcXTVUlsjatdXqcfA7fPjyPnjNvECFL5oa1tFNFzuuh9avw+V3/hy2/fIeszeuxb8US/PzMw1j01sswm0SlpkjXYjULsJzelCsRXznPxA0kreBc4PCXQvvFDU3UZQOZXwu0kMuo8U1UIXdjhuqfBPT5jyhu6AxB11xzTuxn5MiRLf+uqKjA8uXLvW7zzTfftPx70KBBCA4O7tQxiIgMiY7DHelDkWCMhK7OddF6nUEBg5l0zBkYrBJozHK6GK0SSAUpcu7Jh1WwIvpDm7ihLSFKLfpHFUIh0aN7eDm6hVYiPrAOSUE16BVehih1vUcTT9sVT4BF4FDQGIQ9lfHYUZEIfz4W5Qb3wuQAXt8ixnAlnOBhxnVBB9FPUdYibiDwQink+tdRWPUm5u35ACtLd8JgJW1jBuUGHX7J34KH9n8CndmAdeULW8QNBLPAetSu9w2ciFFhA+CNGxOn4+akixGn1LcRN7RChB6jwvOouMEVWXWrkN3QKoDuFzwTlcYxyNcHod4ih8Yqh1GQOJwXOWsG56GhUG0sx76arU6P52tP4YXMR/Fz4ULUmuUuz0G9SYZcbQjMggXrynfSPonBYsLykk24bfez+DF/KTZU7MSS4g14+MBbePPoVzBbz7NGi8g5D5lk89WViBTcyw8WQLUqky6k+N6tuIEmOAhgy2odjU2YpqX5Qa0BrIcJTIeN7TFZwBdVtTicmpI8FzaZ42xpAh1BeriQFjK6gj9VAcmxrnFXc+V4Iz9YCPmOHJoSYS/skB4ugnLjsXYLKwQp51NRki8QNyCCvnc0NDN6w5QSBqu/nLpMCxwRrjh+bKbkMJiSQj3ukzjn6oYm+ubG25Rs9OWTP7Vb3NDMiT05tKCTiGQbdN4dg02MzX3IFcSh76aXrsIFi9BFi4iIiE/0G5eB2Q9eguiUjiUkylUymmrgi7jBHbp+MU7ihhYYBo1DElz+rKNTo7pM3GBPdUkNvnv+V8x/7AfcM+xJrP5uIxU30OdKa/Hb24vxGC0gMuDL37Y7iRtaYBmYMhznn6bdOhGjrxjm9RhuffN63PTi1WAyYp3EDS1wDDiWgZWKG5z5a+UB7LYrEpszbyqSvLjaMfUal+KGZvJLa7Bm13Gnx7P+OY7/634fvn1uAbxBzuW6H7fQ74zBYMLv7y3F9cnz8N0Lv2LN95vw+/vLcOfAR/H6DR9SgayISFdCnJo78r1ii6sBT0WDZgu4PJub8umACqy99DEsbpyMPeFLv8VTm53TmqD+cx/8txVCWWSAqswCRa0VXK0e7IkimGOD3L6ubnga7a91FBMRnHCeBrQYmuLgDklWocc+jjnUD7oB8dANToIxNRxStetxuzMJKdr84vEf2y1usC82JeKI5sI6b5CxowA34v7uQ9Mw95krcMFyjvdJNm7cSNOl09PTMW3aNGzYsMHnbYuKWttOkSRxW0TkHIA46V/xwMWISAyDNN/7uEvb9AaFWk7T43wRN3Q10SmRbsUNRJRccnsPB3FDM7pugSi5tbvbS0VlUTUdh/ryqZ9w7/Anse6nLVTcQCBCggVvLMJT01+B0WCifRdfxQ2Ei++YglGXee+T3P3hzZj7zGwq4vCEJ3ftPz5YRtMlmplL+p4BraICV7ClnlOuSOLHNheC1UObj+Cmbvfip1f/gDd0Gj1N6SP3VtKvI/fHG1Lm0bE70idZ+O4S/KfvwzT1UBSDiXQ12nptp8ZQRM59WI0Oki2ZYHPLWgVbGh24rDzwu47T+ayOIPEiTj9TwpDPH/2h3eKGZjK3HqPjar72SViedZvQQMykrn78UlywnON9knOZC0bgcGz7Zvz11iuo9iEtQCJXQK5ubXTK/fzActxZaSATNHapBaeDfX8vpYIGV5CC/h2LfsPRrZt83l/ygMGYdNs8pAwYTJMn3BEcHYu0oSPRd/J0sLznRrK31IvNP33t8PeEm+9EZ8nes9Ph74bqSvz20lM0OcJXjm7diP/+3xx8eMNsrPrfhy5FGtm7/8GGb70LJkRE2gPLM1B5Trh1S+RQgDnv83vOMc6j+vhzRhjT/rAjB6oOAxUHBah90TUyzkkR5DfQ7WpgwkcspP7n0Qd4DqIcOgSytNRO7UOWlgblkMGd2gcZ/B8+fHjL30888QR0OvcK8e+++85BBHHvvfd26vVFRAh/Hs7C3X8tQW5lLfSFfrCaGZeJAiWNATBbAuHH2QpNiFu1pTEMx3ZFo2hAAiSXKyHv4b6rFiDXo1dEGRQSx7YnxwoIVzXCX+r+u++u7pNlPbeByXYk6cHdc70V5YiWuJ+QZXSfwGx17RZ+rKEAv+avxeE6Ryd4K1iaiuCqm9bdfzimRv0H48J7IUnlvjg51S8So8J74tKYUQiVuZ8UULAm8IznQu11pV86/H1L8pXw440QaLfa9YmVuhCFWO3Wzap3TGioNJTjwxOvo8xQTP9utMhRZlSjwSyDzsKjziTHsYZwHNVE0vNDWFW6C1M3Po1pGx/DZyd/hUVw/py2Vu7FN7mLPL4/EZH2ovCTIyyu/UU3hKEXD6QDmZ7gj5dAsFhhJY7GpOidY5oW0Me47FJIT5Z5fiHB5oRsD3ErZcy2BwUygOxtEJljYfXrmEqYDGzLtxyHfMMR8HmVYMvrwedWQL4uC/Id2V3bjXCxM9nxMlqg5LfkAPyWHYT69z1Q7MunbrPthfPivENg67yv0+xeZw5XQz/QjWsaEbK06bOa0jwXahjTwsnNzPaHl/E9Rm8CV62lrqedYd/aQzi26ySSIr2LZLlaHS2itUci43Hd01fgnQ0vQBXgmzuniIiIiDeWfb4ar1zzPoqzy7w7/gap6EIgcfRkgrErpkgMaV5EaQFymCNb3f6bIcKK0wkpanE3YUsnZN9fjs27PSdfWIP8YFXb2gXjrxmJ29++AeOuGoHoVPf3qW6DUjBkaj/MfGAGzClehJW0x+iejz9Y4fD33TeOc3JDJR+hPhioSQMqxvijLhnQhgEWN+PBm/Y5vufC48V44qKXUXTCNyGmVSXDoj3ZmDL3A0y89gO8v+oADKmR1KHenrU/bMY3z3oXTIiItAdy3QoMD+hQO318VBA4V6Z3Zgsku06AaSo6PB0IvjhSdiCtjrUTN3d0HZpEl1UA+Yq9kK4/BMn6g3Qh6TweE2NUMlhiOm4eI6gVLcJ2K+n/kX5gm5djaxppUoMDeiOku06CL6xym/rXOKE7TaYw9oqBsXskdMNTUDmtN8wk8eI0wGoMDkJzVzBaI9g6faf7JDuW7cWpQ3mI7+4+ObAZs8GEugrHFFSpXEIdw99a+xwUfp4LVEVOHz169HAouP3zT5twxRtHjhxBfn5rbczQoUNPy/GJiLSXPz9cjjdv/C/KciugPFjmkKTalhCBQ1CtsaVP4h9C5lU6OYncCYpO2MblXdGYEQxjtPvxG0OCGtrurs0tmvn1zb9oMb4r9q/PxO/vLsWuFft8Pt7JN47Fza9cg4lzRyMiwX36asao7jSdbdbdU73u0524oZn/PdhqHke4/YbRtP3kEqMJ3PFCr6+5ffEuh79JysWT019pVx9x0UfLcYnfXFysmouvnvrJZcE5SXT48eXffd6niIgvBEUGQt00ttJeRl0+lIqKRM59GJ0RfGYepKv2QrJsJ6QbD4E7VdZhcQPB5MEE7EzS2T7Jlt93oPBECeJ7xHpdV1evdxJ4k1SHm1+9Bq///TRNVxURuSAFDiR1YcO38yG4KORoizIgEPG9+sCkbx0A0Ws0MOnPXsWnu+SCLsPLxfTwulUtyQ6eSB0yHNe98i4ue+w5mshAUheuePJFRHXr7rRuRHIqrnjqJXA8j+riQhgaOx5LSqivKKefUzNmH47XG5Y2qQr7Vi6FrsFxYMcb5L0ZPRRPNnN4w5p271tExBspM9vf0A3uSYrCAeE0X3bccpbb5rIgYPgLgH9iF+/4X6SSZM6hlkPxNgHqWAbh/dv/+ZDfQPkeQKISO4ydhbjWRr3+OhilsmPbK5WIev01up/O8vbbb7fs5/Dhw5gxYwYKCwudop5ff/113HzzzS2PjR8/Htddd12nX1/k343BbMarGza2XHIEK4v6UwEuRQ6hsgCEYAA2nwrD3oJY7MyPwe5iFcqkUjQMCQP/f94nWBW8+0GPQJkejAclmatfG8d4d59mPNzw+sg9x29KWROGqd0PZK8s/Qdmwfk9WcBCJ0hgtHIwCSx6+I/CbSnvYU78E+BZCXiWw/sDb0EPf+dBk4yAeLw38GZwDIsSfQH0Vvftdgnj3fGx1lQMg51SUMI1gmM8NwJsohDBoWtmX7LU9j2vK18JrcXR4cICDvUWBarNfjQtot5MJpxb95GrKYFF0ELBGz22tVaXboXW7FvxsYiIL5B77ozbJrf7ZJHI2oMbMulkpVXOw+omGYCtawRTVWdzObZvJ5B/EwflXrEwp0SBL3PT1yYpEIZWSREphCGFLzK7iTGGTL75MABN1+sgNOWmtA7y7SehXJeF2IIavPjJbYjr3kHFujsE96/P1WrBVTd6dEvzhvREOeBpgtNqta3jI4YeXpwlmxI7mrEEtbY1yYR3WywkAaLp/Xq7pMuzSjsk8nDF9iW7kRodir7JUR7Xkx12LhI1GcxUJHGhFxKRW2VXLCIiIt7Raw3UCdoXwuND0XN4N+o02DyZSSYYDVrv/QJPCMTt0wcHcdIGaMvpdvf3NmG74rsNsPhwr5zwf+Px2f638eSP94OX8JDKpXhj1TNI7pvgspDo5aVP0HbT8bxyGLwVTBMxp4enc/MrqSNpC1UayDdm2ZKvBIFu25BAFhZmP6IIZSDwDIxBDDQJgNnFPLGpzXlf+M4SaNsWELvB6q+AYVwGTjbooW8qXBOUMph7xsE4sruTyGHJp3/T76mISFfBcRym3TKh3dsRZ8i9C7eB/3s/+MN5YMvrwFbUgT9aCNnag+DaFIF3NbzG+2+M6YCDJlel8bodn1NOCyCfWfCAR3EWaS+zDToqiCBtbKsPRVvWwI6NDxMERgAJxhQkTMu1i/zbapfuxjTqIV91ALKNWZDuzoZs61Eolu8Dn1/pdr+NY7rBFBvkkAhIF5kEjePTYWkSrXnCFK6GZlwaamf3R91lfaEdEAd4SIAg50uW5dr9uxnZ0dJOFUPZs33JHqQPTqXJcJ5w9XIkhefgpizIlRd2IdG53icJDw93MG/6+eefUVzsvsi6mWeffdbh7yuuuIBTOETOGxrrGmlxeTNcowlBi46C0Tu3g2MD1RhWZIKuqe1J2uv1VZp2pRf4BAewg6RgR8vAxHgWGVo8iCsae3sX8nlbx1uf5O9v1vvkBH/R/43H/EPv4tGv7wbHc1Co5Hhj9TNI7OXsDNhvQgZeWPQo/ffx3Tkwd1LEeXJ/Lsx2ImumthH8P0fBVNU7ms6U10Ky7QgYH9r/zWkWzfz61l/QN7av33DqUH5LUp8nFn+8kiZliIh0FRKpBFNuGt/u7fqM6Ymdy/d6FRWdLlyNsZ9JSPLoU788gEiS5NaFdEHJiffXwLkB1wFR/OmAGMrvWLqH9rMTenoWObgynyf3/cNbjtLxtQuZc71Pci5zQXh45x3c5zUFgaQ2jLx6LvavXIbsPTtwtohI6YaynBM+TaCfKUjhvV9QCDQ1rt0tmhl9zU0IjnZ0gFAFBuHal95G0bEjyDu4l76t+Iw+iOvZu2Udko7RFeTs24Weo8dDW1+Hg2v/7vT+otLSHf4+vn0zThdETFGYdRhpQ0ecttcQ+feRdjmDst0CypwT+xxgyE+QjkAD1Vk4qyTPACozgfpTZ/614ycDGTezUEUy0BRZcejzc+c63FlImkej97HOLoGcNU4JWDqWUNa1x9I01jHwIRbr77M6pTR4o/YEUL5PQHj/c6ULcv6i6NULsR99iMJ77oWg1bZL3EC2I9t3BSNGjMD777+P++67j/69fv16pKSkYMyYMYiPj0dNTQ02bdqEqqrWL0vv3r3x+++/d4nAQuTfzYacU6hpI3w16ySoPhoCeaAeEj8T1FIZ5vUfh08O70FWY5NLJrEiJ78HqQBIjBBqJeA470U1tm+sQAvo+aZKTrPAwSywxGwcCokJWhMZCHD+bvf0j0VmfWt8OUFnkcBP4nniwJOXqJL1PiAcwLkXKZcbGtArMAAas6vkOQZmcGAEBpMi/w9BUkcnonB5AL4adjf2Vedgd7XNEX1wSBr6BrUqGjnaIHKPta0toAvMAnCk4QD6BQ5FjbEeq0q3wVdswgZbKoX9ZxKvTHNY70DtdkRLaxDI6ej6tWYlyk1qKnIgkDpvOWeCziKln7u/RAdebivgtggMjFYejWYZLMTqsA16qxFZ9TkYFNw111wREcKVD1+CPWsO4NCmI+6//6SIJDUC5m5RMKvl2KE3wjomGaZgGSyBtsJuSXE9lHuLIMutadnOqpTCGhXkeqfkvi2TwBoTTH8rjMEK6A0QSHGKVQBfVA1ZVjHYBj0tvIPZCrZOS38rl9w9FXtXH0TBsWIwJgu4sjpYIt27q5ECIdaH9IJmzBH+MMeHQJDwYOu1kGSXg9WZqBPTlBvHUXfM8LhQGr9OIudbzhPPQtsrDLqMMFgVPLhaA5QHyiA/UX1ODJgTF1L5njzoB7tWiydWaFHTjgloS4gPrlbkjTd125pTNwhWwQq5SuYw0WnvBshayYSxQBM/2iLNqYJiTwG6MsKZ8Ox1k3Hre7+hxkWxmiS/BvIs145zWduPI2v7MfQc7jhGJSIiItIRti3a6TUOnridk3vRgjcXYedy351BfcVWEKtvSTmwPWi3QtN1vWdaDLLt7vvnAuUnSuE/vBvqPbhucyyDO56/CiGBjvcxMiH/2b63sX/9YbqQouuBF/VFz2HdWrftgnkSq86I/esOY+iMgaioasCy7SdgGdgNnIQHV6mFTmWEIdh1wha5L2ojBfi3Ce/LSHEU6W38bbvPx2PqlwS4EbRYQ9Qwp0RCcrx10JIkaBz55zj6T2idPxIR6SzXPHk5/V0c2XHC/UqkZp5j6fgfETId2nykVYxMBNCnOUGmLVfeOhFryutR3OD+esOf6tgxSffkwDCmB8A7X3MkFfWYObE3bnjuSoRGB+PE3lP45Q0f0x59EUt30HFbkHAwxwa5rkYiwjleAGMG+IIqm4C7sh5woWkITwhDeV5Fy9+63jEwxwY63oea+hhknIbhORjTI6HYnev22HS9o6Eb4tgHsgSrYOkTg4DVR2Etcp1WKssqoYIPYzfngi1JdgVkhxzH5bqiT/LwV/Pw8ITnnRxRvUF+Pyf3n0IquaaLnDXuv/9+bN9uuwdrtVrceOONWLZsGaRS14VeL7/8MhYuXNjy96xZszBo0KAzdrwiIu7YtPAfp8J0WWE9wufvga5XGIzR/ggKVeOW6ybij5vmY2/x6e0TcJcqwd+gAhPSel+07DbA/FY90mIScHxPjs/7EiRsl6zjibK8CijVCo+CY4mUx3/evB7+IY6peDGpUfj84DvYu+YgbesQ4cOQ6QOQPiilZR1ewnXJfYfsn7Tpy/MrqCiDGNWw/xyFoJBCkErA6I1g2iEi6DHEcZ5k4587YU2MhBDoZxNLVNaBKakGY5d201FqK+pxcm+OOBYn0qVc/9yVOLgxCyf25vjcJyEi07PJ1Y9dilXfbUSlmyS00wVJ9p5x2yRc/9wcBIUH4Mj24/jjg2Vdtv+zXY5LUs8rCs7cOeWlfKeFa12BualP8sg3d+OxyS+6TVB1BxmjzD9a5FMynci/j3NDytNJGmt9a/Tq6upRW3qGKkBdQBIPYkjaQRdfTZWBnmPOvMFLpOg9yXMUGREstBU32BOT3gMjrrwOI+dc5yBuIITExiMgwosznw+QlI2Gqkr8+OSDOLJ5faf2xXI8+k6e1vJ36cnjqKvw3WmwI/iSMCIi0h5YCYPu13kvdRGIKamZOEmf3fMb1hfoO4/FmLdY+HlPpvIZ3ovZJSe3iRsCU5mWdTVdN3ZsOwYl0PMGnBYkaiC0j+38JVzkOn2iscyWTnFGsJ4Z1XNA61iLW0J62v7vF8Ng0qcsul3J0PNAUib84gBlhPd9lO25cIQuZxu/kSOR8P13kKWl+rS+LC2Nrk+260ruvfde6nAUEBDQktiwZs0afPXVVzTauVncQAYP5s6di23btiEo6Ez9gEQuZCoa3RQSWRnoqxVoyPeHvjgQ2TWNKGx0VcRvu74yfmbUa7w73pFidj/eABVvhIyz0IX8mzzGwkqTBVxdrhmBQ88A5xtxYaPnPgXpwhDxhNvjYb1fdMtN7otZFZwcg4Mmetw+Td3XSdxgT//gZNyWOhm3pk52EDcQYhSJCJS4d0/SWqVeu2mNFhmMFgPK9FV4cN9bWFmaRT8HT5isLCwCR5MorFSk0Lo+z0gwLKT1PVfoDiJdfgDJ8koESxoRImlEiqICA/3yoGJbix6Ip6uCMyBUpqGfO/msWUaAhLVCwRkRKG1EmKwe3f1KkOFfhFRVOdR884SIeN8T6VqIo8pVj13m9nnyjTMMT4N2YBKMajnNljGEyqBPDmwRN9DfSrQ/6i7uAW1G67XEEhvquuHZ9BjZt0nJQB/MwBjCwRitAFNVC9WKA1BuOWFLLCAChioNuCZxw4DJfegE4OurnkFkou16IskqdF+sIwiQZnovhlf6K2Dxk0Ezsx+0k3rC2C0CpsQQGHrHoXFmf/B94zHputFI7pMAhZ+t4LM4u9TBxbryugzUTU2BMdYf5hAlDClBqLm8O2ovSfPpl0sKVq967FKcDgJC1cgY3R1DIoJxaUw4kvxVtjQHqxV8UQ1Uq7PQuPEoAsL8fd+ppX3XIz7PblLAapvMtUd6yrHCibUArEkAQ17Havu/ctspqNccA1gW2v7RqLq+P8rvHo6KWwejYXQiLCqJwz6Se8d7Pa4ew22Fq8lRIfjx8Wtx7fj+CPRTgGNZJIUHIT6nBv4rj3pMjNi75pCvp0FERETEI9Wlross7SECsfwjRags9GwY1RlaRF00VqfNkwzA8yzSejg7i3aWdt2HXOAfpMKMcZ7FwKMGpTiJG+zpNz4DN714NS1usBc3EHqlRCLI33NfjzG1pk+5giuqpAVjhcU1+M8D32PzoUKAONwRlbufwrtjrIyB2U57IpfymDU6o+XvAxsyvYpkWvalVlARgyvIXc8sY9A4JBa1s3qjYVwqTBHqc6LYQOTCgzgWz354pueVBJsjMym6OFsOqc0MnTEA//fKNXjvjbkID3X9G+IKKsF5SCVwhV+QCgLPwZwRTyqnWqMKCIIA/zotpieGIzkjHgqVza2/yK5P4g3e231DEBButuLy+2agvZiSwmhBpFtYBiFyHv26RaHf+F6YfOM4xLhIn6gtr4N/0zk1B6tg6B/npk/Zen8yx7gfDzOH+jmJG1qOmWNhmdnXbV+N7F65LRt+yw5BerwMfFEtTbzzW34Yqs0nfXbeTMyI871P0icBH+96HTPvuogWvbISDvH9ExEY4T0pdp/YJznrzJkzB1OnttZrkDmNUaNGYd26dbBYLC2Otzt37qRihmeeeaZl3ejoaHz88cdn5bhFRHztk7BGC1T7ShG07DhithWj8KddqDnd4obZSkge8HcQN9DHB8mg+jwCiSOdE9g8ISvw3k4O13VuEj0wzB8T547xuM6oK4Y6iRuaIXOfAyf3tfVJnr3SQdzQnKyr9iGVyRukT5KXVYB5gx/HrpX7W19fZ7Sl8rZD3EDGVafcNK7l7527c6Ad1B3WtFgIYYEQwoNg7ZkIy8gMCErvyUu+IPZJRLoalb8Sl98//bzpk4y6fCg1v3hz9TMIdmcy1QGa2+LuUAUqMXnuGCRlxEPW1P63nyfpCiISw3Dx7e1PHveFkOggmlJAknEm3zAWkUnOYuaGKg2dqzkTkO8T6QeebrylMhBISiyB3HdIn4R8BuR+Q5JCknrH+3ScRKAnInLBChzUoe6LXJrxDw1D5obVOJsIVitO7v6nfRsxDHiZ+0YaSUcYOWeul114bkTH9sxAdFq6U6JBMwr/AEy89S4fD9j16w+ZORudJTwpGeu+/h/qK8o6LW6YOu8BBITbBr9MBj3+fPPF09uKZRhEpzdV4oqIdCHe0hvOFUjRuVEDbHzYisyvBfS/j0Hv2xj4t2/cwAlGAqR6SVy16IH81cDBTwUsudKKIz9ZwMu79vfO8kDK5QyGPsUguEeX7hoxI4HxH3AY9z6HpOksGvJdrGQBDGfQ9M7cCKg7+dl5QuoPDHyYAetYX+SAIgyIGdN6f1OEMeh5I4OkaQykAYCmAND6oFsTTfu7FpLEkLR4MeK//Rbqiy6yTabZw/NQT51Kn09a/FeXJTe05eqrr0Zubi7efPNNjBs3jkY8SyQSKmTo27cvdUPav38/vv/+e/j5nZkOpsiFT7S/92KaaLU/fs/13DlnJAIKq4Jgsbpvw5NxL46xiRjaQh4jQgezlbiAOD5PmrtaE4NN5cectivR+aNM5/r3wICBFcoWmzsJY25JjbC9Jo+ogLs9vq9Gixw7Na4HQDjGgrFh0Ujx64FoebLLddR8IGZF34qOwjIsxodf4vZ5kqxQbXavmjRaOWgsUsQqE/HJyQWoNNbSlIRyg+fBupzGECpyaFvZRcQN1yXci4Am0YXRosHGkocczmszUtaCXspiKpGgxyowCJDoXd7DyPciTl6DFFUlAqU6KnghQohe/iVIVlUjXS268Yl0Pfs8DDqaE0NpmkEzFh6wyN1f3zSjEmmxP0GQcp6FEwEMzErGFm1CYBgYk4JRd3kfGNIjYY4IgND0HNEiqfvFo1zO4oE5b+OnV/7AA5/fQSf7EkL8Idt6DEwbdzniNCbdmU0L+D0hU8ow/dWroZ3V35YWQdVqTcfFAgLLoqZ7FFas2IdPH/gGVyfPw29frYXcbkC3blISTJGur8G6nmFoHODdNIK4ss15ZCYe/WYe0ga4vpZ2lDFXjsB7G1/C2+uex9TxfVD7yVr4//APAn7YAdXao+BL6mgEfF2FXRS9FyR5zgVSQtulWXdiMEN21NGwpKGmEbHp0S1/8xUaSHIdnZHIbZAIHTgzIM2vhfxwCQSORe2lPaAhgoYghc0RVimBrn80aq7qA4u/rdgrKCIA939+h0dnu6jkCAy7eGDr38H+uGPSIFwLFRIWHEDDi8ugW+NZ3ECP80LvlAhdtIiIiHglPD7Up3XW/rDptJ5N+eFSKoJzh9lixeaS9pkNkSQkicz9QJFULqGiAk+QSVVP9B3bE0NjQ5Di5jyGh/jh3hvHo6NIeA7XTm+9bzghCOD0zhe8lstgow5seR1S+iXirY/+RnWNc4GVybtWHpamGmKZlMdrd13cIrqor2rAs5e+4fP7EZpEm06PM4A+kIVRzcKi4GEJV8OYFo76mb1hGJ2C9ME+uJqIiLST/WvPfcEo+W0E9E9AEax48Iq38PtLC/H0DWNx81UjEEsS5fRGsBX1kOw6AckeWzqlryjUCky/bRKMg1JgDfN31JeRpAIwaPBT4O+/duHj+77CVcnz8Od3G6AI8n1cVHKqHIzWsc9kD0lX4HVGzH3uSjz05Z20iMVXzLGexVmEyVP74b0NL+Kttc9j7OxhKM52nis26oyor2yg/zb0iPQ8+E+SBunn4n4dfU/P/bAaownh47p7XIf0U5TbcuC3+giUW7PBl9uOzxdCY4Jx/6f/8Xj/iu8Rg4GT+7T8HZUUgetfuw6jPrwBlltH41DvKBRM6g7dsGRYVR5EJGKf5JzokyxYsAADBgxo+XvXrl2YOHEiNXNKSEiAv78/hg4disWLFzuIG5YvX46YGNHtVuT86ZOExQZjw4Ktp/dAZAB/k/v7nDnAigP+TSnbPhK4uxIS4rLnBpVEgtuneBYnsM3jmG4ghbNkrCmue+uYlz3EsIWYt3QUmUKGy+5tvxixLURU9/bNn9A0hM5ABPjP/vYQ/JpE5FVVGjz30iKXSVRE2G3pn9rpy7FELkFqf9cCRhGRzrB/XeZ5cQJJG7PweDEemvA8/vrvSjz+/T247qkrXBbrtwdVgBIX/d8Ej+s01mrx9zcb8OG8L3BN7O1Y+tlqKnLqam5983rc/9ntiPehML89kPf37sYX8daa5zD8kkEoPeU8tqXXGtqdqNYZasvqqKjjdBGREIZ7P73N4/0rtX8SvX/ZJwoRAQ0R7BHDr1OH8uln7w1xnuTc6JOci7jOjj3PiO/VhyYE1JW5V3VljJ+Mjd9/ibMNSSDwlahu3TH00jmQyGT447XnYTGbnH7YU26/Fz3HTED+4YM4ts15YoJhWAy8+FLsWbaICixckXtgL13awkul6DV2EobMmg3/sM7dyPpMmkqPobq4sGM7YBjsXvonTu7e0anjIIIQ8l3oPnx0y2NHtmyAts67u1VQVAyCY+KQ3V6RCkEQ6HZ9J3tRbIqItPerdfaTpnyCFN83F+BXZwo4tQxImMJg2HPAqpvbvz9WCoT3Bwx1wNEffN9OMAGH57twj+skxnpg+dUCFVN0OXYDy0d/sp71JI5mFKFAQ5tI+66AJG5I1TZBSsIUIO9vwNrmey4LtAkgDn8hoGCDFWYdoI4HdJWA1r4p4EPjLnzgBV5MdBYg7RPV0CF0sWg0MJeVwdrYCFalAh8RAe4MCQoCAwPxyCOP0EVE5EwwJikREX5+KNO4H7S4tFcPvHTSfey9fTF9Zkk0MqKLWup27UUKjWYpFJxzIXwzxM1fyRthtPJ0A0FgqODBZOHovyv0Ghf3QgZ7q+KQrK5EvKoGCt528U1Q9sTY8CtgFhgsLXwGgVwdLbgnNFqkqDAH4ZKYexHkNwz1prUw6le4OCIOtdIHYRVyHC7OpGA/2a8KEfIGNFpy8UPeGpisEtQZZJBxZsh5C3hGjiHB4zE27FIESFuLpDvCmLBpWJC7FTx/0uG8krrTOpMSVYIKDKoQwOtaxCPkfOsFCWrNSkhYBqvL/sSBmhMtjYl8bTBkrBnBUseBGbJddmMoSvXEJY+BWmqApEW8IMXg0MnI8B/csv6phmUwWt1PBpBzHiZpAMtloJtfEI42uC7eIMkPclLJ64JwWS1ONW5Dn8DT41wi8u+FxJK7w5TqmO5i9iBuoPAc9OlhUB4oAdugd9s2JnokQeJ6X4KMR+OoJEg1Ahi9CUx5LUwxAajzk6E5i2FPcSn+uuZdzLp8OB777m7cM+xJcMv3wUJEEUoZ3Y4rrQXjwQhBqpDSKPaKukZ8tSUL4F1McFKhgwCSqWPsFQ2jVUB9XBDe3nAALMOAHZ0GydES6Lp7vr41DoiC317PTkbErfS6hLugb+z6Tol9rcvPr/0BK0lE6OQ+ZcdKYeweAUFuK1ZtOdN2OxYkgKAzwW/dEbAag8u458JjrcIH5aYT0GmNtIgSzcIEsxXS7AoodubSXTcOiKbfB1dY/WSom5YOfz0DU/covLd5P8a8Mgcbn10Ii95xTC44MhD3fnwLPn/4O2z6/R/qXJfQKw5lueUOEdS+uHH1n+SYhCoiIiLSUYbPHEQdPz0VmYy/eiQytzoLnrsSksxEEwU8UBoohWepcCt9x/XCtU9dAW29Fi/NeRfWNslLHM/iiR/vo5PLO5fvpbH2bSGCtcvunY6F7y6l7seu2PzHDrowUh6S1EiYk8Kpo7hCymPmpD64btZghLajGNgV1188GH/OX41i4p7eplPCa600fYjesKhGmqEF0ULzvwOUME7tj/lL9mDf4QKX92LWbBOUeoIzWqE0sLhqTG+M6tsqilzx5Tpo65uT39zTbWAy5Co59rlJuTL6sRB41y0FTfcIbDlWgIsGuzbbEhHpKBaz+z7JuYAxKRSGvvFoaEpOIOzJKcKima/hirlj8egVQ/DY5JfavV+5UoZ+EzNQnl+JXz5eCctF/Ryed/glsgxMPWNgZABNdBDeXLEHHMOAGZYK6aECsG0E321hjBYoNhyBfkQarPZJNuT6VVAF2c5sVFoFXBt3O20btwsvxZ5t+enVP+i1nIiXzQkhMEcF0uskRwQiORU0yc8S4VuqD1/u/p5pCfV+zQ8ZmISKDUfR1SjUclr0+c2zv2DS9WOx+rsNTn0LUpx21/v/h0/u/xpb/9wJg86I+IFJOJEainJN6/XcyrG2lMHYIKhWHgbnom81QOyTnBMQAcPmzZupQdOXX34Ja1NtR2NjI13acskll+Dzzz9HZKR3UwQRkTPF6CuG4ZP7vvaYCjZm9gjsX396C4HZ4TIwas99Eu1As8/znv0nZuC6p2cjLwR4cNVKWNrcuqQMiw+nz8ComDjsWrgT+1yIL0ka6ay7p2Hhu0vcvtb6X7bShQi824oZL/7PJFz5yCwEhXtP5vHE3GdnY8n//kZNmeukcW8Q4d0Xj/+AoztPduo4iEj9igcupokTzSxdsR/6NmNwDijlNNWhV1o4rGZrh47BpDdhz6qDGDGrdX5GRKQrMJvPj+KtyqJquhAytxzFXx+vxJyHZ+KO927E85e+1e79kfEBco0szinDb2/95fN22gYdPrjzc69mFO2lLLcCV0fdRoUGXY7deBLpk5wrEHEKed9djVKtoKKwH15cSMUKa77f6OQdTgQQt705l4pWtv21EyaDGcl9E5CfVeiQ6uRuLM4esU8ickELHBiWxaRb7sKiN1+ExcUNIyo1HX0nT8Oe5X9B0w6BwenAncjAnmn3PIzEPv2h9A+gP/Cl77/hJG6g+xIEGPU62qCecc/DiErthv1/L0NtWQl9Pj6jD4bMmoOEPv0Q16s3Nv3wNaoKXVl/u8ZsNEIdEtppcUMziX0HdFzgIAg4vn1Lp4/BarHg4JoVkCoUGDvXVlVdmHXY63acRIKZDz2JhS8/3eHX3rtiiShwEOlyQvswOLbg/JTo5a0SULSl4wU2pTs7oU48DafstIgbSOFMkwGQxSjY3vM5gq7r28ct51FTZFsqDwJ+0UDEYKD2JMBwQNQwBiE9ge3PCzDYadOqvF/KnQjqBoT3EwUOpxMiZjhTggYRkbMNz7J4cfJEzPtrCcwu2vyDY2NwTd8++LhgI6oNXlwKrAzKKgNhYDnE+dcgRGGbDDBYeGjNEvhJjF6PRy0xoMagRKOBFI46ePfBYBEgcdETJOWq2Q1hyG4IxYeD5qBfUDJUvD+sggXrS55AuMTRbVvFGaHiyqFmq6iw2j/of9A1zoeu8VtYLaTYhbisjobS7x6EyUbgefYw5ucsRQGN2BHQK6AEgVLHG6iENSFCYcKphhAcLY+gx9RTnd5pcUMzoZKhWFwgIEpVT0UUZoGFQmqGABbBvAYSmGniQr1VAis4mAQelpbgQwGH6rYhRsWjoDGIHhtZjmsioOZ1CJVqqBDBJHCoNKqgt0gQo6wDxwowWCUwoNVxdnXZWshYFS6NuZz+Xa7b68OxWzA78V68cfQFl88TwQj5TDyxp3qJKHAQ6XIyRvfAov+usBXgESdfUpen0dOrjjXA0X1HcG+G30Kzgz5XWAUQ10+p8wXLm1CCFNVZWQFQSmDtFubkRkkKVTQX9cTiX7dg7U+b6WNkDb4dE3tklzuX74GuTxzAe4hxpq8twBwb5HAcVkGANSEUhsRAr0WglhAFrFIWrNHzmNLpEDcQ0gen0v831jV22QQ0qzNBtSoL2nHdYKHJFy5WYgCrUgJTuB+4aueJ8Yr8NokNVgHKnbmQ7y+gbtFkB2ylhopPBAkLxmKFLsNRdNMWc7gf6vTExboe+VX12EPGsx6YjNFaAadIooeUx7CLByFtQBJenP02TZJo5vDmI+0+Dz1HpKPnMFt88wVLVzgLnZ/DHiIiZxyJVIJ7Pr4Vr1zzvpMIoHmicOotE/H107+gsc67c1pHIWJDb1gl3iewX176OHoM7Qb/EDUtXn76ktdcvi8ivCPFtCTN6IU/H8Vvby+hBTtEcEYc5gZe1A/XPnk5MkZ2R/qQNHz99M8oOlHi/viNZkizCulCnL2J4DF5ZPdOixuaGRbkj78XbocpMRSCTALGIgAxETR5yHYAgGAh7Rlb8a7De2UYrCUCFc6WUtT29qmoFKCJdd9OYswC1HkWMFYLfl2wE/4KOeZePZw+d3CT93s8KbZ9+tcHcVvGg2B1RjCNegiq1iQHEl7XnBDhjl/W7xMFDiJdTsaoHlj+xdpz8swaE0OpKKAtllA1tJN64o9v1mHFVx08dgbYsXQPLTKxEtdODy785BLTtk9iIRsmhMIS7g/FmkywXoqAiAhd+fchWMLUsAT72cQNxTUO4oh2ixvIfqs19Bg80TPZVsBdU1aLrO3HaR9CN74HBDvRCEkPNGTEQbHxqEPxkVsEAdKjHoTkPghnynOckyS6Al2DHoUNJSg8Tu5XmVRM3WtkOnIP5dNEoxEzByMxIw4vXvmOwz19V20DjBo7AYodglIK/eBEqNY7Ch37T+yNlL4XuJP1edQnUSqVVLTw0EMPUZHD+vXrkZOTg/r6emrqFBcXh/Hjx+Oaa67BoEGDzsxBiYi0U3w378Ob8dZN/6Xt9LYMnTEAk24Yjc8f/a5D9wxf8SZuILD+3gcq31j9DHWm9g9Ww2Q04bupryA6Kxt1o6KgS7Xdu5THahG4vRxczFBIkpLx8tIn8Oubf2HZ56tpETHpkwyZPoCKtnsMTaNjSt88uwAlHu4hbUVteo0e8T3jOi1uIJD6sj5je2Ljr9s7tD3pk21YsK3Tx0HSYH98+Xeog/yo0IFw4KBrEbU9ysRwPPXzA7g+eV6HX5uMZYsCB5GupveoHlj7g22u4Xzj17cXQ/pf96mZniDdi+2Ld3f4tV2N83SW0yJuIPMkQ2zzJGV5FTi57xTOFU6HuKFZhKI9pmsxmSJ9BpLKmZtZQEVqIy8biuiUCDx/2VvQaVrnpvava3/xFmkfxKVf4Ilk51Gf5FzjghA4NBfPX/nsa/jn95+Re3AfHZSQq/2RMW4Shs++BhKZHBnjJtPnvSGRKyCRSqGt75hi1RPq0DAo1P4oP+U67iw6vSd6jBzbErtyat9uHP/HfQUwES10HzkWCj81Bs64FAOmz4KuoR4cL4FM2ZpHnNx/MF3Wfvkp9q9a5vPxbvvtR/QcOwHqYO9Rct7ImDAFe1e0RiaeTfatWIzBM6+gIhJfIm7I9ys0LsFlJ8xXqosKYNA2QqZ0PbAkItIRIocKkAYAxq6/XJ0RzB2cS7WcvvGOcwqJGkiYzNBBjKM/k9nNrtlvV3xnNK1GqacV8jrqMmDCf1sHmVbdYnEQN3QE/wRgxMtdqwYXERERmZiagu/mzMZ/t/2D7fn59LIdrFRgTu/euHv4UMh4Hlck9cH8o+4TwQQTA5hZKM1+1PWn1qiHhSi8SOeNsdCifF+uXqSJayHVJS7WjlOEgsz/ZmtcD6APCUnFyLBW178CzSYUNrrrkwjYVfkBEtUTIGFVUPrdCYXqDgjWGoCRgmVbi4BGhmXQ5Y2sX7Gjap2TuMGeRL8qnNIEQ2+R4pPjqzAtuh+CpJ0vKJqdMAC/5e5Bbr1NMBGu0iBYXo0hAacQJGltmJB58FqLEnkG536QgjNDLdGj3tRauN1gllMxhLQ5WYMBFaIQcYM7VpWtxJSIi6DkSf/A+6faO2AgIuRREGClYoZmgUUzUtbsqZaBUqo/CYtgAsd0bKBSRMSdW7R0eCqqw/1bikuYBh2kR0qoc6Zgp6hifBirZrU2gwdSjC7dmwMjGTRmm34jxKWTfNE57/144nZMBRXufhhSHvreseC2tDp9CSwDY0oYjKlh1LGZpAZIT5ZDcqqyteiwCYPWJijyVohje1MejsOV4qwtJDGBFD+eBQLDAzDuqhG0sPSXNxZ12X4DQtWoq2yA3x/7UT9ngENhkj3kXev7xcIU5U8LZlmNEbIT5ZCUNaD4pOviVNZoAVNSD+3AWOgnpkJQ2K55XEkdrGrXr9MCEeowcPi8cytqkTIgFR+8d3OL4cgtPe93EDd0BOJk9NzChzq1DxEREZG2jJk9HH5Bfvjpld9xYIOtYD0oIgDTb5tEC2qkMgkmXz+WFnR4wz9UDYvJjMY6767+9nC13tdPjAqGX3o0CuySeNpObA6dPrDlb+JiuvvvAy7XJeNmn9z3FUZfMRQyhQzXPHEZrnpsFuqrGiAjCQx+re32sVcOx5jZw/DGDR9h7Y/eCw+a05w+f+R7jL9mFPzsXcs7yNSbJ2D1dxshy7K9d3N6HE2Vc3pfnto7rG28sG37RFVihTacgVXqelt1vgWsXXvs51//weWzBkJJ2j3N7S0PkPMXlRRBHaXJK0gOF9jaak3tHBIi6K1TciinlN5LfZmXERHxlVFXDMVHd3/hUFRxLkB+ooZ+8e6fl0lg6BkDdmdO62McC1NSGEzJYfR5tlEPSXY5+Pwqp998ewpDm9NgXD6nkMLYOxbyHa7nrtvCVTTQpauQniiDqVtka7+vDeHBfhg3KBVmkxm/vL6I9gl147q77kPIePocX1gFIxFSu0MAIotqoXchpG45rtxq6MLc5w2R01mxNpNozk47eZkFSO2fiA+2vkL/JtfhG1PvdhA30P5ssuf5fHNMEKwKCRWcE7oNSsGTP913mo9epCOkp6fjzTffFE+eyHnJpLlj6LgPcbc+vMWWchMSHYQZ/5lM2+q8hMf4q0dhxZdrfRqXMmgN7b7HW/O9O6nH+0ehMtnoVmgwevYwDJjYp+Xv1d9ton0soucN+8O5sPW/93xpGyeVSTD3mdm49qnLbX0SpQwKO1HwhGtHY9zVI/Hy1e9h80L3c0X2kPbzpw98jbFXDnPo33SUqTdP7LDAoav58ZXfccmdUyCVS33qI5DzFxYb4pO5sDuObD/e4W1FRNwx9qoR+PTBb1rmDc43iOioI5xrfbDTmZIw7OKBMBpM+OX1P7tsv2Tsrb6y430rkvhTeooYC55+sg/k0v5Dc5+E9M/mJt3V6e9Az+Hd8Nh393TRUYpciFwwAgdCTHoPXPHki9BrNDTZQBUYSAv9mxk4YxZO7NjqMcXALyQUF9/3GCQyGb5//D7fHB7aQd9J09B74kVY/tHbyCNCDDuSBwzGtHkPOTTaDq9f7XF/ZqMBR7dsQP+pl9C/ybakaN8VNSVF2L96ebsTD7I2rsPQy+agI5iMBlQXFYLjOITGxmPQJZdj95KzH9NDkj5O7NhGkz0S+w1E1ub1HtePz+iHv//3AXQNnagIZhiw7JkY5hL5N7H/o/NX3HC+EN4fCOvHIPPrM1tQxPDAiBdZ8AoGO16xIn9N17y+XyyQcgmDxnIBJ3/v+H6EM5iwV/IPkLfaCv9Ehopb6lrne9ot7FBFAcnTGSROZ8D6UBgnIiIi0l6GxMXiu6tmo1ang9ZkRphKCQnX2ga8vftwrCk6jlMNjmkIBNL1EDQSxKj98fG0S8BJLXjy8Gv0OVLKTsQNVLgAxmtHTmOSwmB2vdacpMGYEZuBJ/cvwJ7q1oF4BgzGRfTA872vcFj/RP1Sj69lsmqR27AOaQGtfRKGC3a5bramBEuKd6NPoOfBGvI+SfoBSZQwWs1YUbwf1yaOQkfQWQwo0FZAwvDICIzGtUlD8NMpWyySlDVhVNAJp+QD8vpBvBYMKpBjcHb7DmgjcCDJDS3ihiY4L5XcRqsR+2v3Y0ToSESrhqOgcZ3H9cMVA/Fz/sfgmHooeVu7wGxlYLRyVPLg2v7cEQYsXUREupK3vluHqqQwh8cEtQKGIclgSdGLsrXohDMIsMg8fFetAuTHWt1miBsos/EIzN2iYIm0SzogVYBtotpd4mUdU1IIhK0naaGQwLPQTO7Z5Pzf9DJqOcxRAeCTQqnLJUkIcMb2GNGUmZWAlTgqmwGimWpbgOTyEI1EzOE53WJM9yQMfiwKP5/h2GOJlMfzfzxCHUJfmvMONv++o0v2m9ArFlP/bwIdeP/j2/UexQ3kkmX1k8Hq1/odM3aPAKczQb4zj4odnLZjGdRP7wFTjOP4GPks6c3Wy2Spq2fX78vGumW7ER8TgoZqjduCXG8EhPnTyZBL7piCSdePoeNlFzrkd+DLb8HbPkRERHxnwMTedCHFNMS1LiQqiKYbNEMKbf5ZtsfjBChxYHvmt4ega9DhwbHPtev0S8o14CobYQl1Lwa4ckxfjLtxBl699v2WoicCcTclhUQPfXGnw/p/f+25rUxEZ1v+2ImJ141u2g+LwDDX8yTHd2f7JG6wh5zH9T9vwSV3XoSOoNPoqAs3cbjrM6YnFTms/KrpPfHO7XOPIs3mdchmbczFORMQetiC2jgrjGGtUQqMSaDiBnWhYx+lUWvEjl3ZGD+mBwZd1A//LCXZRZ5d8l+b+wFMBtvAIFdcDenOkzD1iqNJXr5cr3mOFcUNIl3O+7d/dk4W1pC+hbu2bjMkzUXRJHAQJBy0E3rCGtJq8GBRy2lfiE+ohnzzMbe/M7ai3m1bl27ipftkjguBsOcUGLOVCgjMcUE0ZQIWK/jCGowd2xNRiRFY+O4SdDUkGUK+Iwf6oSlOfTgZy+D1+2bSt/X8FW/jnyV7aFIDTQ90h5S3FfCbLIDEdXs7PTwQl/ZJQ1G3OCz9zPVcvOxYGfS9omjygSv4qkZw9WfOjYsUoo66dCiiUyNRUVCJ0jZOrYJc4jIB0QGWQUByOGL8lJg1byomXDvKJ4Hb+Y7YJxEROfMMntqfLrUVdbRotm2f5Ibnr8TuVftp6po7YrtF4bnfH0F5QSWemv5qu15fOGCCNc8MNsH9dXF67GhkrLmRJuAd3XHCoU8y/tpReOCz29vVJ6kpq8M/S/di9OVDvfZJSB/IV3FDM9p6HTb+9g+m/t/4dm3Xsn2DjibZEcHFoCl9MXHu6HPCbZ6Ms+1edYCmEw0ZlIS9+/M8rt8rLYL2IztTyse5aR+IiHQUIkJ655ZPz1txw/nC+GtG0pTPv/678oynE5F5EmI08czM17F39cEu2W+3QclU8Jd/pBArvvR8j/H03TuTrP1xE4ZdMhBRyRE02aGquKZD+wmKDERkYhguv28Gxs4Z8a8YJxL7JB3nghI4NCP386OL0+MqP1z1whvY+sv3tKDdpNfRgZ7AyCjEdu9FBQYpA4eCbZpcJA1OUuDfXkgCBN13GzipFAVZh5C5aR20dTUIjIhCSFwCYtJ7InngYITExDltU1/pPUamoarSp+M6uPbvDgk26ivar/Qym0zYuuB7HF63CvpGDX0sICISgy+5AlPuuBd7li7yKDQ5Exh1NleLbsNG0mOtK3etzPYLDsG+lUtQW9o5u/L4Xn0gkXsYcBMRaSe1JwVk/yXO8p9udNVA0sVA7t9A4xlKLSCMfJFBeD+GFvZ3lbiBlQCaQuDAp+ff92bnq7a8LpnrelmfIGIgsuw9IaA2B+h/N8CIIgcREZHTRKBCgUAXRjpBMiUWTLgB7xzagCX5mdCaTXSOOVEZgsEBiZgwJBUTEpPBkb6IYAXLEGmDAJ61tMxRmwUWUqH177ZYBBa1uhAyB+18XLlmHKrZjZWpm1FjbkSafwASVFHoE5CE0eHdEa9ydnprNLuPSm7POoTFhTtaBAHeIIkEzZTq2h/dY7CY8EXOcqwo2YlGs63QIUYRiusSJiLN/2J8n/0PohUnncQN9gTyOihMBuisMg/iBcFJ3EDwZShGb7X1GxP8puBQ9Xxoza77Xko+Gn+WrEGV0bF/yLMCOMYMnYWH3srDIjDgPFQVpfgNAtuUCCIi0hUcPlmMJRtt7tCusIb6gdEZAbmtIIT83Fij4NZVWHmgBJzG8TfJ1WjANU0yWnkOxuHdwKkCYfFgVkbTDnwx8SKCCbKYrdANTHAQN9hjjg2CoXcM5AcKnZ7ji2uhTQ2AkQQ52F2YDQECZHWAlBiCehicpe7HDQKMge4u6lbofz+Iy766D6u/3UCj7c8Uryx7Ar1GpGPxb1uwOisX6BEOSWEduIaOF/HwUh55mYX47OHvbA+oPYyTMO7PnUUhgXZkCqyBCih2OU58GrqFOYkbmncnWEkCiIcDJN8bF98dqyDghXmfQ5pfQwffO0pdRT1dTu7NwamDefjP2zf8KwqKREREzg5k0pcsbQmKCMT7W17G10/9jA0LtsKgM9LLbWx6DPqM7YnhFw/E4Gn96fWJFPZ3BPWGbOiv6g+9i/mVgBo9dr+2FMtOllIRBilcSuodT4vnh18yiE6StqU83/scCCn29IVln69BRyjL8z5X0xZdox5fPv4jTWwgBUWEuO4xuPbJy5HSLxGLPlqB/KbHHfBlYtfNKnyDGVGfZ8IYwEE/rgcVOMtrBLdJWo2NtrbX5BvG0uSP6lLXfa+YtCh8+/wCVBY6tkWIyIEtroYQ5EddwQ1TurktKCaM6ZPs/b2JiLQD4qS87id3qZNnF8FbsTlBwlFBAUmM0Q9IdBA32GOODYaxezRkR1xPUrCNBnDFNbDEuBlA93ZZ4ViaGGH156Edm+4gzCDpDvlxobjvkcux5odNqC3vetctyakKsFUamuRAhRWCAElRDT7+9h70TInEnx8tp+IGgiXCe4qeNVBFRerasd1oEpw9ikoNSn/cgc/MnjuNrMFMk+OMicGO12WSQiMQ8YkSpphASIo8j1mZI/xhigsmCi9wNY2Q5FTQtMP2Yjaa8cLst+m/g130SRijmfYfW4wB3FCbX4WGhiLaJ8k9nI9bXrvuX1FQJCIicnZwV+AfGhNCHaC/fvpnbPx1GxVBEBfquPQY9B3Xk/YLiACXXJ+Cozo2DmN+ox5+H0fAyDi7kssPsFjz2hp8d7yUFtjHpUcjqXcCMkZ3p4X2EQmOZi4+90l8WIewfH7H+iS+7t+exnotvnjsB3oPb05/SuwVh+ueugLdBqTQdD93KRZnCl2Dbf5m2kV98PNvO1DnJkUwMS4YX9z2KWpKOlZQ2wxJ2hAR6Up2rdyPLX90jTmQiHvK86tw53s3UXGWprZz6cq+Qu5N7256ESl9E2nCdVeJG8g8yfHdOXTpFGe49Ivcr5+71JYy1pl5kprSWrq8sfe/yM0swE0vXt2FRylyoXFBChw8ofBTY9Ktd2Hs9TdDU10FmVIFZYDrH1xkSjcUHz/i8745iQSXPPAEwhISsWvxHzi0diVNCmjGYjQ6pDYYGhtRW1YCTXUl+kya6nKfqqAgr6+rCgyGSa9HyUkSoyUgMiUNUoXSab2KPOeYNF84tX83cvbuogIQX7BaLfjrrZeQe2Cvw+N1ZaVY88XHGHHldbjpnU/w24tPIj+zay78HSEwKhplOSeRuWktgqPjqBCDfCb2BIRHIKFPfxxc0zn1H8OwGDxrdiePWETEkVMruqalIgsCus1mIFEDe98j1qX/sjPNAt2uBI4vcP10Qx6w9k4BAx9isO1pAdaOJbO1i4QpDEL7MNj2nAVFmzq5MwaIHg2UbscZOfbTjaEL6rkEC5C9SADLA/3miQP3IiIiZ54QuQqvDp6Bp/tPRplOA3+JjD7WFpZhkaSKQU5jYZuidYYWs8tZW6KDPTwjxX1p9yOAj8ZXJ7fizxN7YJQI4IoNUG2oATtRjn9ijUCTsaHGrEOhrhK1pjpcHj/E5fEq+BDUGj0PsCj4UGjNehytL6BJEN0D4qDgnF0KTzaU0P+Tgnxvwx5ac6tD3sayIxgRmo5hYWnwBYvVgicOfo5TjYeh4i2QshxqjQoU6Srx5tEFuD3lYiyddDdW5B9GjRdDlUBO6yRw0FkksFgZcKxAawRYF6ICKxhwXhpW4bJIHKopxNKi/dCap6Gb6i9wjOPEuFoSBws7BlXGrS73Qb4DMs5Cj4mkSgRJta7XA4uhIY7pHCIinWWpB3FD8xeUuH1aA5Wwhqrp70VWL8Akt8AsZ1sci8P8Vbh+wkAEpJXj461fud0da7ZAvvkIuLwQNExKpQ6nTggCOJ0AlhSceHHrZ8ikHnEo5VkYU5wnLu0xdIuA7GChk2OqUSHAGODiNVgGhiBQB1QJueZ6OA6FnsU1Q/rgu2376LG07EJrQsDKbBSeqMb9I5/GPR/fihdnvwOL2XMxjMDYiqkYs8Um9ugAM26bhJTh3XD///7CxoPZwLiUpp0LkJ6qht/6k2CNvhXlkMnoUVcMxbZFu2hRjj2sRg9WY6ApDQ7vgW4Ir87Vhp7RkGRXgK9uvfbpe0S4PxaSluEu9IYEg5g8vGzTuSQD753FYrbi9/eXQSKX4pZXr8UFDf1CdrLf1dntRUREnCAOqg9/dRfu+uD/UF1SA3WwHwJC/V261MX3iEH+kSKfz6JcJcMrvz6MgB7R+Hb1bizdehgmoi+r0UKeWQo+swx77VKRSPoCSTeorajHjP9McrnP4KggFGd7Lroh6zTWNeLY7hzqutpjWBpkCuc+Sc4hmzDOFOkPY1oYrCoZLQyWnqiApLTe7f63/LkDA6f0Rf8JvX06D0aDCY9f9BKytpF5m1YKjhbhjRs+wrwPbsbXRz/AncOfwBFyb7dztLUZVXlJHKrVAhIJIGtNMWfqGsEdPAVGa4BMC3AnNRCCXAs4m4mPDUbmtmM01SK5TwItemoWY7Ss0yMGaf2Tsfanze41iTUasDWA4nAJdP1jXa7HsyyunzLQ4/GIiLSXlS7clEmhvjkpDJYQf1v/oLQWfH4lbR+7Iyw2BHMemQWTwYTPH/2+Sz4Itt51cZ49pNDdODYD0BlgTvQ8J2xKi4D0SLHbq4N0dzYMMh7WttdzWvTOeOyTSHgOM+ddhJ9PFdPz15bMgkrc9cxPuOe/t1Cna6srV41OwtXrwO1uncu+7N7piIsLxZMzXsWuFa3z677OYUlK6uC/cA+MSaEQwtQYfckg7Hh/Bdgy99d6e4hoyxIdCM5MmqNCS5OUCMaaz6SxR5RbgQNN5BiXDktEa3EvmaLR942DYssJSIo73q9wJUajfc+CapoK4g6uvAFcUxGp2WTBgjf/ok7e1z97JS5oxD6JiMg5Cbn3PvrN3Zj34c10rMU/VA3/YOe2qzrIj4qg21OEr1TL8dr8p6HuE4A/CtZgXdFOWCUCrDkmWP7SQb9Yiz3WVtEgKZQlaZ2aWg1m/Gey2/6GN+ORkOggui+SGkcSK0ifRNpk/GIPMb3oCOt/3Yp+EzLQe3QPn9Y36Ax4dNILTgW0pJj0lWvfpykV3574CLf1fhB5Wc7GLmcK0t84dCAfa9dkoltCGA4fL4FO71jYkJwUhkRdIzZ1UtxAEmuveODiTh6xiIgjf3+zvktOSXh8KK5+/DLUVzbgm2d/+dedZpJ6OfH6MVgxf63L5zO3HsUTU1/B3R/dgjdv/AhWl4nbXcuch2ciNCYYj015EXvXHOrUvjiexYhZQ+j4Utt5kvORrpgnIefhx5d/h1KtoP3xCxqxT9Jh/nUCh2YkMjmComI8rtNv6sU+CxzCEpJwxZMvQhVoG3xK7Nsf+/9e6tO2pMh+yy/fYeLNdzg9lzF2EnL27HS7LUmbqMjLwce3XN0ipmBYDtHduiOx7wBIFQp6bDsX/eYgrmgPJCHizzdfxOTb5qHPRNdCDEJNSREOrFmJEzu2ekx92P77z/APC4fFcnYv1lsX/ICqAueOQ3hSCiKT0xDfuy9SBw/H/Ltv7vR3beItdyKxT/9O7UdEpC26io431nglMPp1FsTANyiNOPvbhmPD+grY/JgV2tJ/z/mOHAyoIqiXp9t1dOXAgU8EjHyVwfEFAsqIUZAAkLpNSxcmEMsCgZRLGfScy2Djw1ZU7O+CnQqAWXNhiBu6GpKA0mOuAJmrgjQRERGRM4CSlyJJ7TmaZkbUWHx08kenu5QVLLRWCSSMtSVNIEGZjPu73Q9/iW0ie+zxEGy+6jDtL5OCXOP9obAkOw+mEzLr8vFVzirMS3Me2E1Vz0CJdpfbY+QYORYXafB36XMwExUZ1Q+yuClGjWtjwsCxKuSb++OVI7twoC4XKqkZVUY/RCka3O6TiAeKtIEttT3Fuhrct/sbPNdnNqbHuG9X5zRUYsGpPTiu2YpAxTGkqVsn3E1WFgWNgagxKbGw4A+kqWVgGO83clfiheLGAFTqVTS5gaRrqKXO+zFbWXAukh2a0Zs5vHxwHY7UtTrBshiEdHU5pkfL0T0gBlHKoYhWjsLzWY5x2G0hAhi9mUeVIQRGK4dwWYND3YKUVWBq1D2IV/lWjCUi4ivl1bbERk+Qgn3lmkxYiMghQEkLePzKahEQEYinNz1HE2t6xkWAJy6TE0An6Z6Y9rKTO7A9kvwqBPzeiMZRyTan/qYvPCnmJ+IGUoBC/7YCgge3ftnxclqYYg5QeHQapu9DKYWgkIKxi5kmV4fGQVEet7NYdVAU6mEmjp1uGN0/GUnZGkR8vBu69BBYlRLwtTrIj1e3CBRIUed3zy/Ai4sfxW9vL8H+dYdt70Epg6HJXZuca12/WBjSw+mxkkImaW4V5PsK6f58ISgiAJfeMx1zHp2Fm9//DYdOlTgWQjEMjMkhqJfzCPgr06e0GhKTXFdR51KYQS6xsiMl0A1OdN7Qm4soy0CwCDCmRYDfYSuEElgG5hBn0WDLLsl/zACjN8Cqbi16ZYwWMAIHdwFDjN7ksei1oyz6aDmufmwWVAHuj1lERETkdEImEMniiVnzpuGju7/waX8k+eeFRY+2iCWGW6TY/L9t9J7p7Z5xaNMR/Pzany5d26bcOA6Htxx1u61CLcfulfvx7m3/a7nfkInjPmN70baFyl9Ji2bIpOnRXSehHZvqJG40poVDerICyk0nXR5r0YlSPH7Ry3jyx/swds4It8dy6nA+ln++hk5YuyuAIkWvn763BP79E+mEPH8gG+Z+qS2u21SQx3sWakqOFoAtr4cQ5g9BwoMhosE6RwMntqACFk8Ch3otPrruPeQeLnASJ6YPSaUOhUOm9cegqf1wZfgt8AXF7nxYZTwM3SPovboZP7kUz904Bb2TPLedRETaS2VhlcPfpJjcMDTNQTRkjQyEqXs05FuOOogOwuJC6G9aIpMgdUASOM62DREzPT715U4XbHD1enBldQ4F7m1hrQyEACWsQUqvzvuCn5ymETAG1/OrRMAh25gFa0QAzDEhtI/D1mnB55ZDPyQFFg8O2OOHpsEvNgRCsfu0mpw6DRZ8vQ4v/Pkofn37L3rdbhbDdTTxx10B6RX3z8Dl98/AvcOfxIm9jgZ+XGkdTXrwBF9S21L0LztRDpwoh5bhfRY3ECxhaqApbY30W1wFZpJ0BnfoRqS6/uylPHRj0sEuP0C/I12J7EAhTNGB9DWcsFgh3+s8L/77e0sx+6FLoFB5SNcTEREROY2QtjpZ3EHapjPvuqg1DdQLfcf1wnO/P0yFEYTUjRFYegcZ3/IukiPFqwvfWUIT11z1SYhwwR1ENL7p9+147boPYGkSAnISDv3GZ6Dv2J7wC1QhOjUSP7y0EDmH8tERCo4U4ZGJL+DZ3x7CiFnuDWqzD+TS5Lqti3ZSQbs7Pn3wGyosIUYcZwuSZPXGm8uRW9J6jyYfE8cz6JERi+TUCAwbkoJ+GTE+90ncoQ5S4dFv70Fqv6QuOHIREfd9kvYQkxpJDSiIEU7agKSWtN+hMwbgsYteomKHC4VWYyYrGBeC6QnXjkagC/MNe7L352L5F2vodf7Xtxcjc+uxFrON5pSaroCIGq58aCYuvnMK5g1+zGncpL0IHAszw6C8oBLCGRBmnG/8+tZfuPTe6ZC6ENuLiPxrBQ6+0GPkWBQdycSB1cu9rjvyqrkt4gbC/r+Xteu1sjatw5jrbqLF8PakDB5KhQpt0xCa8Q+LQOZGR+WaYLWg6GgmXboMQcD6b+cjffhomnrRlr0rFtPnbc5CXnZltWLlJ++Babopny1ciRsI5aeyMXDGpfS9kmNtrOm4XXj6iDGYfNvdkCndd8hERDqKIsyHXrgbEiYxCO3tPEHmH89g/Pss1t9nhfbsJhF2GawUsLpxZpaogD7/YXHgf9477STJYeuTAvrfy2Do0wzMOiIUEbD5EQE1jkZsHYLhgRkLWHBSBmV7hK4RNzRR7voW8q+HiD5K/hGQeJEocBARETl3mRgxDFn12dhQsRUStu39ioFJ4OhCuCx2dou4gbD4E1sKGZmAFZQMLBM8F08uK96N21KmQkoibuxIVE/AifrFKNW5vqHkajOwxu7GlSavxdOxexAnawQaba2VaIHBJGUyjtb3pO+jwSxHqV6NSLnzwBzpUmTWRsHcpirZCgFvZS3B+IheUPDOQo0vjm/FO4fXIlTRgGFRuU61QOR1k/yqkYBqaly4oOA9xEnrEOJlrERrcXytCp2KihvI+TdaeLoQcYGcNzuJUMxWK3hiI+9CwFGoCYLOTBItyPtkWrY50hCJI8eAtwdcjCF+GTBY9NBZvEetWkgsFVgU6YNRbvBHsLQRPGPFsNDRuCzm/yDjxD6JSNcTFmybKPQE2yQI4Gq1dGlm8pwR6J/sbDxBItLfWf8CHhz7LKqK3U/AcXV6+C/LgsVfBrO/Aua0SAjhjgU7xI3fQi6CdsV1LduX1UN22ObURgbUfaLNoLs5TAlLoOciEFOECsp1BagP9wdkzsNw/io57rpyFD689gOwejNUB9x3xLL359EEh3s/vg1P//IAdBo9Leh8dOKLyM4qQP30XrCE2xUxcrZkCmNcEPyXZ4Gv9CxIIWKJH/M+hUQqwaZDOTZxgxvM0QFUXCItqoMvHNzo3kBEdrgElgAljN3C0S6axqDs0x90A2O9FoaRr4R6Uy7Yej39/FidmQocGmZkuN1WfrjE5aRLZyGTLrtXHcTYK4d3+b5FREREuoqL75iMzG1Hse6nLV7XvfX16xySIFr6JD6+1oov1lIXaeJ2as/EuWOw8uv1yNpmm7huC3F6Xb/AMfGMFOnsW3uILvbo+8S4TW4ypobR9or8YKubqz3EsfzDeV9g+MxBLp1YSbHSt88t8Fi8Y+wbD3NSOC2+fvqj5WCTwsFaBbA1DRCC/enJookIRjLx71rwxxVUgi2rs61X7v5ezJRWgwkNgBAd4uLNmsAfPoVcjc6lOPHojhO47qkrMOzigaivanBKdXD7mkTMsDUHioNFMCaHUrHDzDmjcN+8GVCIE9Uip4HQ2NbvtyCXOIkbWpBLYRieDvmq/S2F6pPmjkHGKGcHZJJm8va65/HQuOdQ6+E35gvyHTnQTu5lEyC3gTELtM9C/+3LzgTBa5uU7IeIKshij/JoMRpC/FwWvgf5K3DblSPx7Kfe58MPFVbgVeL4/PkdtLiStGdJMdGDY5+jCTWdRaFW4Ke8T+l9YNPC7U7iBgJfVA2mXgfBX+FenHzKWajRXPzkM0LH17H4yz2K3EmaoTE9Copdzu+vM3B1Ovj9nQnd4CRYIlvvx2yVBordeeDLncfhGuu0VEA//JJBXXosIiIiIl3JZfdNR9b2Y9j8+w6v6/7nretbxA2ExZ/8bfuHj2UVSz9bhWueuIwKK+y56P/GY9W3G9yKHMj9cNNv/zg8ZjFZsGfVAbp0FUTQ/cFd82nxc9t+E+HLJ3/CL6//6dO+yH38hSveButlLO20khLrIG5oNSgRcPRAAW6aOwoDByehorAKBp2XOG4PXHrPNNpfdZXyJyLSWUJiPJvZeWLS9WNd9klS+yfh7bXP4eEJL9A++fkMMSUyZsTA2isGJnK9IUYPxTWQHSoEV9XYInK+/tnZeGbmG173d3BjFk7uO4WHv5qH535/BEadERIZjwdGP+M1/dMX1MEq/JD7CRXAr/5+Y6fEDZZQNczdYmANI+M9DA5o9OBSIsFnl/o8VvZvoK6yAYc3H8GASX3O9qGInIOc3Qrz84BJt96Fyx5/HnI/9y43kandkNx/sFMqQ3sw6rSor3AebGFZDrMeeQZ9p0wHR+KGmyCN6YiUNNSWuh5oPx2YDQYc2bLR6fGCzIM+ixvsIeKBc5XdS/6g/yciDFVQxxsiZCJAFDeInC6SpnWsucPJgfRr3G+rjGAw8RMW3a9loAi1Fd7LAoDANCBpOhDqS3viHGqJuRQ3MEDUcGD8RywCkhkIZt8L4ve8I6DyEKCKZCDzZzH2HRacZ6M7nyDHsOY/VlQfs+LID2f++pg8EwgfCIT0AuIn21I+zjQkUeRM4078IiIiInKuQNr993abi8e73wk5616gkK5ORYa/4wDYiT2tscNCtASQe+7+1Zu0qDQ4O9mxDI+J0e8gWX0pBLROyGstCtRbx2BtRWs/JZTX4c2E7TZxQ5uEgdnh2XgwrnUg/1RjKLI1odCaW7evNcqxqzIehdog2r1o28XQmPVYU+ocAbq59CTePryWzlF0Cyp3a3RKHifihmbKTUqP3RiShlBjtp13ImLIqQ/GkdoIp8ZOtd71jdMk8HQfJK2BiBpIikSlTomTdaHQWyQezcm/y9lG/y9lZVBy3ovILQLr8LplhgAU6YNQafATxQ0ip42Lx/TyvIIgQJLjPNZBnKKJQ6Q7olMi8d+dr9P4XzKwTQanA8P9qavqjNsmoefwbi3rcvUGyAproVx/FLLdOWBrbdcfhrx2biVUq7IgyyymRS7keEhRu3x3HvxWHWkpDiJFIKyd+MIVRBDBtnFKFewvKB6wVGug+vsw+IJqOnhPIJqLsQNTMP+Zq5EQFQyzyX3iiz0GrRFv3/wJnUyNTAxHQIg/3lr3HDAsyVHcYI+UR+PIZB/2bcDdQ57Ayf2n8O1vm72ub0xxUSzZAchZVG3NxtyEGAyLi0C/hAjMGNEDMokXX5am6zf9bJsmSvQ9PDu5Nq8vza2GpKIR8hNVkBbWQVKugd/aY5C0LRgjLqcHiyDfX4jTBZmAueAROrmIiIicVYh74OPf34tnfnvIY9rDgEm9nSblj9v1SXyhurQWdZXOfRLi4Pb6yqcw5Yax4O1Sl0ghDkkaKMtz7zje1i3Q0NPzvYLcS8h67iCFBVsXOSfcEXdUT+IGgmFYKsxpUY7O8mTuJSUC5thAEE07SRMiC28SwOmttAC6GZLSIDmUB8mebJ+GX2mh8+FT4A7lgKnRACTdQm8Em1sK/p8jYFyIG+xZ+O4S+n9VgNJr0kdbuAYDFAeKoNqZB/nxclHcIHLauOim8S3/NifaxEPuEFQyWKJtc35+QSpcdu90t+vGd4/BJ7vfoEkCJOVMIuURFB6AtIHJmHH7ZPp/bzAsA65BD9XKQ5AeLQFjsPVJQJLnDFbweqH1t0wuBl6cPElygc/i7DYI5fVQrMsEV1Rj1ydhMH5IGj574RrERgTC7IOgV2BYKrR+/foPkZdZSPskgWEBeHfjC5DKPTtI+NKs0zXocM+wJ5BzMBcL3vzL5TpEoKLccASMC+EVozNCsf4ITQ5sxhKggDEpFKa4YJp654lZd0+lTtsZI7tj6pR+kHpZnyfn0wVmD2kZLccV5TrZw1WxanvgarTwW5UJvz/3QbU6C36LD0C97BB4D+kVxqY+1QWN2CcRETmvIUWmTy94EE/+dB/kfu7NRog4t9vAFAcxQM5B18an7qgoqKLir7aQxKI31zyLCdeOomlxLcfGs+g+JJVud6YgqQw7ljkbUq3/ZavP4oa2Qu6zgUDueRHu67FIs2nhrzZRi3+IH2QuBKPt6deK4gaRM9EnaQ8BYf40ocYdSb0T8PGu16lAJzC8qU8SGYhug1Mw886LkNQ73qc+ydmEjNlrJ/SAoU+cTdxAICnMscFonJIBITYI464agQ+2vozw+DCYTb4Vb2nrdXjl6vdQfLIUEQlhCI4MwnubX6LnqLM0VDfi/pFPIy+rgKb6dBRzdDCMI3rAGt6aQk5S+cy9E2AanOq2f0SSDEgaUcao7ph0/RhwZ0GE1tk+SUfojIjtvEHsk3QIMcHBB5L7D8KtH31BUwdO7t7hUGWTPGAwpt71gFMaAS+TAe0U0EkVrgeI9Q31yN2/BxaTyaFwviz7BM409RXOSrc9yxe3W9zQHhiWo6kU7pDIFRh59Vxs+fFbmE1dc7GryDsFbX0dlP4B6Dl6PHYt/r1D+2mOjhIROR0EpjJImckge7Hvvz9eAYx9j6HF+QRjg4DcFQKKtwmwmoHgHgxSZjFQxzLofRtZnPdRulPA5oPuO7mcDLB0XfLXaYEU7w9/jgUns50HdSJQvs/37Y/8aEXMKFuDjsSHddX7rc8D1t5xFqo3GKCBJGEyQGgGg+SZ5Dsi4Mj3Z/ZYwvoCusqmYzlDBHU7h9Q4IiIiIh4YEtIHPQNewf+yv8L+2kMQmoY9GDAYENQXtyf/n5OjEHHiJpPOFK1vA9QKzvUAcY2pET8W1qLW2A0q3gCrwEJjIU43dQiUMag1KECm5S8LPoUA3v2k6LTAAvxSlYoai20SotygpgvHWGmXgiQY1BlkYMi/qIkHA6FNdVGJznny+JuTNmckGWdCiMJzkbI9BkGCQmMQYqU1TmIDIkzYWN0N1SYVLFYJynXkmFvb9yysUEv14Fkr5Kwa18ZdhN8K/4TJTjlJ3hNJe6imiQ/t42BtAbRmA5S8DP0DR2Frlc391h0qzgAzY4aUNcNo5Zs+HwYsI/ZJRE4fvdOiMWN0Lyzb7DpBUnKkGGzzdagJpb8C7295GaExIS1Fgiu/Wod/lpFxDwt6jUjHxXdMoSKH2968ni6uCgifv/wth8fIT1iSXU4Xhb8CuvrWYhdJaT0UuzxPZpIidu2YNNdPWgXIDzoXuPOVOjB6MwQ57zFpgm0w0uNTbjxGXYyJe2ugSo5X5t9D0xIIiT1j3bpSt4WMCf382p8YPLW/7fAsVtTHei6gsYT5wRyiAt/kiOQOMul754BHUX9ROpDsWcAg2BWYdhYy0VK06SjIyFj/wamYMXEgggNU+H7VHjcvTlRwtsuyOcqfOqTShxVNRVXkOTdNffkhksbg3NeR5tdgeKkB+TAjr6yWClqkOZVgdae32MeX4jgRERGRsw3pa4y5Yhj6jOmB16//yMGBlGUZjLpiGB764k6XRUC+Ov8374v0Y1xRW16P3asPOogCyT3w2E7fzaas/nIISs9FMaQA2qqWg6t3bMPYU5Zb7vTY7+8v9bhfS7AfLHZO807HJmFh5QWwdoIGm9iBZNkBkqxTEIqr3AobAkLVmP3QTHz33AKYjK19EpryUFINtqT9SdUHNmTSojAysT3m2tFY/uMmMCYzmDaiT4d52iA/CDIpGCKkqLWlR51VR1iRCx5SjD7u6pHY8MtWWELcm9U1Yw1Vw09rwIfbXkFQhK0NXVtRhxVfrMOulftgsVjRe1R32ichxft3vHsTXdqy7ucteO26D9y+jipQicYmETVJtZPvyaWLJTwApuHdXQuSTAIsTXMWzgduhTSzcwkJRNit2NLUJ5FLEBbkh5e+v48WjRKSwwJwLM/5+mYPX9HQcv39+fU/aeENwWw0uyyStwQqYewRDXNsEE1LI8JyyfFSKoR3dz0jqQ2393vE43GwGgNUSw/Q/Zqjg+gJ5MvrwedVtQjZrSopdMNSYYm0ExKYLFRsIjtY4PT6LM8iP6uQ7ou8r+n/mQRuw0H8ttZN3LZVgCzLTeqdD9MOJNXHFQOn9EHB0WKU5HTOfZaIa0AWH+7xqf0TO/VaIiIiImcCUnsz/upR6DO2FxXakfSZ1ucY2h64/7PbHbfhWFrsat8+9gZp+0rdFNKTtNm9qw/StLhmyL+PtqNP0lWUuuiT/OGlT9IV43ekNsIdIdFBtA31w4sLaT/CKwF+5MPzuMq+vbn0/0ScMOryoVj7o3dTlnOxyFvkwmbItP4YedkQbP1zp8/b+Ieq8dE/r8K/qQ9TU1aL5fPXYveq/XT8v8+Yni19knkf3EyXtpCky3du+cTja9RXnt30B1NquGN73B6Ohd8Vg/Hku7e2zHEn9IxD/hHf+j3kOrPgzUV4cdFj9G+91tiu670nyHX91owHOyXsMPVLdJkuTrDEhIArrAJX4jjnzUs55GUW0GtW/wm9Mf22ieAlPJ1DO5MMntYPpw7loyzXN0OR/2fvLMCjuLow/M2sJxt3J4KE4O5WHApUaalQo+7uRr2lSkvlp0YNKFAo7u4uQZIQd7f1nfmfezeb7GY9JFjn5ZmH7Oz47s7cc+/5zocLhDyvE8n1EhCwgyBwcBOZlzemPvsqKosKkHOCPEyA2C7dEBgZbXf59v0G4fBq+5Ul7BHZIRk+QcF239vx5y+oLrlwC53WwNs/wGZe/ummwKEtcCZuIOg1auxfthij738U2rpaVJUUwcvXH6k7tqCyoOUV9rQqFfb8/SdObdvU4m20696rxesKCLhDzycZKKOBk/PdTLJngKpzQGBHoDqTx/bnOGgsigmUn+KRvoxH3xcYxI0xBZNkubztPAxqUwIJcS8glfZ5ez9NBgjpARS5doe8pBjqgbxtPOLGMshcwyHD/ds1pfIMScTnIVEC6+6h2ZhXNjxQ2tBHX3qEx7m/efR+GoifxCBzlXsiB4ffCQ8osS000aYEdgYCOgqdGQICAlcOSrE3nu34GArURUitOUPndfHrjHB5qN3lh1zXDyu/20D/ZgsMYNK04Ns7tt/tHZCEAKl9p4AFWUtQriOdLCIYeBF8xBoqdKgzyFEPGbwlOtTpZRji62BgtwEJw2OAsgRrqmMdug9IxEbwFkIC0l9uMIiogIIQJLNNWDhUblLHEaGEp5QbfKDipPBj1fASacHzLPK1/khThUJFRQJk0NkIX5kWNVqTKD1IXocQrzrqTGGiFhtL1uCBhJmo0teiVFsOP4kvfj9/HBWaaof7No25O34W1RtUWJj7N3aVHYBSzEDM2n8uSxk9Er1rILY4f7VRgmxVEHr6d/b4mggIeMIrs8aiXVQg/vfHdmgbOmuZWg2kpwsgTS+221FJHGbiu8RSp4CXxr+LqpKm30nqnnP456s1eGHB4xh+00A6L+NYFh0cIBVcSOf+4dN5MAzuCAPLglFpIc4qgai8KYEuZWBHHFznIAnFAdLMMvBSEdS9YqnjgWW1f8X+TEgKbH/LrIGD9/ES1PWLdLhd70PWVsPUBUJrQG2VCruXH6Tn+O+367DGSQc1SUDSJ4SC81fQhBxJdjlO7DiNmopaOkh7b5enYZzaxeU5cj4ywIXAwQwRQuhcCBxE5e4LylxBBkfNA9Pkf1Ix+pmfHsWkAclYtfd0s4VNsan5upIk1NpxneG72SQQIfPp3dJ8yzQv2PBanlbm8DgOrTEp3y+WoR1JnGqXEoOrGfKobHxcXsA2BAQELg9Ile4P1pqq2B3bmkqfu73HdENEAnE5s2Xw9f2w4RdbV2hH9J3QE96+9u/C3zz1E61UekG4ez9xUdCJVEy0XpzHqZ2mGM0Rhjj74z+WGKWMlcABFo8yjmWdWrJXl9Vixddr8fyvj6I0twIlOaXUCYvMK8v3XNxgpqpGhf8t2oP11fXQjO1ucsQqqYEkNQ8i4grRABfsB0NyLOBtUVG3Tg1xajb6ju/R4v0LCLjDiwseo22q+ZtPwuUwCcfTJEiSRB/TMQpnD6TjpQnvorai6ftMhMfLvlyNV/58CoOm9qXz0g6fx+7lB2gSP8dzOLLpBK3YbJngaJkY2alPEg5tPG53/45gDeQ2xYGTMo0VPs0xiezAeZrA3xqYY5KKajUOrDlKq10TkdaOtxcDE7s5TDRkq9UQFVY1viYJnup6DTiDEbO6PmOzvCHMF+phHa1dawK8oe2fCGOoL+R73XOjcQR17cutoJMlnEJCE6m0yZGkk8l6JYkIuq7RNNFIftS60hJn4HDEIiZZ9MkKPLfgMVT164gN+5uJ0Q0cFHszGgUfZszfCeKW4Oq76MhRYf9qD6pxtQJ9xnVHVFIErmaEmERA4OoiKCIAH298A5knsnFixxl67+0zrget4N0ckjBLko63LjS5JbvDoKl9qIOcPb5+fD6qSlvneXyhBDaLSXRafZsLLZyJG8wCkLXzN+OVv55EQXoxyvLL6ee15PNVVv2/Hu2TJ05/lfjplT+xY4mp0FVLEGISgbaE3GteW/g0/nh3KX5/bwkt5OTOOulHshARH4aTu87g1cnvW7nHnNp1Fsu+WI3X/36msdDR6X1p2LfyEPRaEpPwOLzxOO2XsefCQtwvE7rFWYnBLgW6JPv9RWYKy2tx4FQO+nWJowJqT3/nxM2GCB3ItXuw57O4XKDOgQ3FrRxhiAuxETgYdEYaazbGJB8vx4u/PY7aCvtuovZwFKd6wt5/HRSeaiMGTumD0BjX/WZXMkJM0nIEgYOHBIRH0skVvSZMwaltG6Gtdz1wTNwfBt40w+57WlU9zu5pmQK1tWFFYnQaPNxmfnP3ikuBqroK67/9Aje9+i56TZxK5wVERGHl5x+0aHvBMXF03ZLMjAs6LrnSdbUYAYELgTR6E6cA51fzqDWJ151iUAGHPuUhVnI4NZ+3EjeYIUnqBz7k4RfP4eg8HqVuJp0HdweSZ7BIX97yhpJ3JFBPig20jqjWKfWFoOKGgx+1LFPizB8c9CrYvYZXOuQ7cGgOMPp7BspYHifmuV4n+Q6g5JBJAHMl4BUG9H/50j+/BAQEBFpCpCKcTq644elrsfmPnY0VU8ULKqF/MwzNC/qTJ6GIEeGuhGvsbqdaX4v9FUchZoyI9yqDt9jSNa0G9QYpztcHo04vhYyUGHWBxIkIgfSPm4UMZki+NBE96AwiyFgpRod3tVmPbVhHY5BAaxRBJvJMdafmZCjV+iBX7dgOmWxTzBrhI9Ei3Nu24kmVvgo/Zs3Hi51exISIMXSelInAWycW2d8gEW5wjp9FXfzDMefcF8hVmyqV6HReCJHV2zhNSBgDAsS28xUiPToqixGpuPg2ogL/LUhy0I0jumDTc78ht6CiUeDgKFGlrrIen9zzDXVy+PbpX+wObpEqOx/e8SVik6Pw1SP/o8n85qo32gEdwEUEAOFNldSM7UIhzixGvwAlZrx0Hf768J8WnYvsbDESpVJk6/XQi1mw9VpIsivAOBm8892WDX2IF7Txtg4KitRSKA8UOFy3KLMEK75Zi68ene9wGX27YKj7JwLipvuFvmMExPmV+GvOvyjJKEZNaQ0Ytb7JvcABZBl3kZ0ugapXNK2iZHdbRg7yM21XjINU555z91x8d2wOkrQ85q4/CGNQgxuOhbjBDK+U4a4fH8K6UxlIzS621jTwFlVxy+udVuS+mITHh+K5nx651IchICAg0CJIRT0yueKmZ6Zgx+K90KhcV2Yhor0Zr9xg9z2SGLN/1YVXxmBrNDRBl/NTOF6mSg221vHxKpRyDL1hgP1xEifFmvjmSbb2cJbpq3fdYVqaV46P7/oaX+x6F0k94+k8vyAffPbAd2gJnUd0xmNvLUa2pUCCYcCF+UEb7APZrjMQldWCC/SBoVeSbVK0UgFj347wSXQdvwoIXAjEgWDao+Px77ZTyHW1bHE1asrraLxBYpLP7v/OStxghggZ3r31M8w79BE+vucbnNmX5nay+K0vXY+fXv3T7vtsRS2g1QMOEidFBqBDkA9ytpyAQcJSpwJxnvOY5EIgMQlJ5P/h+QVURCXfkwHNwESb3zNTr4Vi2xmr2xQRdy3+ZAXSj2Sirsp6PJyYcWpoHGO/T8IQHwJDXgUkeRcoXGuGplsMdF0irY/fzqXTdYqgonwq9nAASRz7+I6vMD/1M8RrDPj5j+3gpWLqhEEcKOyt++CnM7Hq+43IOpkLUVG142q1HA/pWedFQi4G0R0i8LQdByYBAQGBK4H4rnF0csX056c1ihRdIVNI6XPcHsRZ58imS5sobMYnwJsmg1riwBjoolOcXYqP7pyLr/a931jUQ+4tx9dP/Gi7cE09daly5uLQpUs0nhr6Ggoyii8op8Yn0H5xLwGB1oKInKc+Nh6r529CWZ7rJKLq0hq8e8tnmL3iBXx451dW4gYzpC/l7Zvm4JtDH+L9GV9S0bVLGJOjxIyXb8A3T/7U0tNBUq94nD+aBe4C4xBO6bjwnpmC0moseHsxfn1zkefbN3JYPGcFFSqr3XAvu1gQd1DXy1gUiHAAKfr1we1f4udzXyKsXSiWfr7K5TqPfzMLCz9ajoL0IlwJxHWOxhPz7r/UhyFwGSNk9rURfqFhuPHl2fALc91xO+D6W9Cum0lt15za8jIY9e4PQLcl/a+72a6DQ7sevS/K/mNSukIsdfwA4IxG7F22sPG1f1g4ojql2AgwZN7eSOzT3+m+gqJjL1jcQNi79K8L3oaAgCuOfu2euMGS49/xqMt3nuC++TH3xQ2E8L4MwvsxkHq3PHru/jCDuNG4KPDgcWhOyxvj6cuA7PW46JCk1D7PM5D6XcA2RIDIRVuZ54D0pRwiB7j3eRbuBZJvZ92yXr7YRI8gTg2AMgrwbw90vZ/BmO9ZKKMuw4MVEBAQaEWi20fgvTWv0MpF5InHj/AGKzJ1dFtOIga4P3EcegYk2t1OmbYCRt6IRO/SZuIGE2RekrKUuiecU9sm+DYnQ+vr8D0jx9h9lNDjZHnMShoFP6ltRdchYUmQifTwlulQUNeyh6SOE7ss3josNA5RSscdZAbegJWFTTbQCcog9AmKgFKqh1ysowIJ0grxk3hhYHAyOAvniub0CJI3ihsI5PztDVIoRRqHgxcMw2NP2W8O9yEg0FqQBP38swVgazV0ctXKIokw3z+3gA54OYKIHB4b8FKjuIHOS4kxiRvsYIgPQ5/HJ1LbXqV/QyJ8C3jkk5m4pnsC5CcLIM0sd5lIxBh5BC1KReDSM5CnV0BSWAf5mXI6L2BFmtPK8+Qc5z7mWNxgDFJCPTDJStxgxhAVgF+3Hse2xaYKdNL0UpcJneJi9+2oRfU6KLdm2K0wK2ZZzL5rAnzkTSITT2HFLOQuOvmJyIFUnR40sBMk+VWNFW4cfb92nMjEveP7Wb3PWEwExZGWO31eCMNuHoj2vRMQmRhO/7//4ztpspy96oJXHXwrTQICAlckxLHpnZUvISQ6yGXCyayP70TnAR0cJuBe6KA63Q9JrjnhWHyIhvedtWXufudWePkobI6fJDU7g61zPdDuUAuuN4ApNYlCe4/rDrGF21RzSOLWwo+axJ7tusSgQ59EKkq1xD/ElyY9OMN3WGdrcYMlIha6bqaEMmMHUg3dfmzDMwx++XOP0/0ICLQGRMhTtjUV0Nj2W5hhqurBNgisyT3lu2d+ceoMQ35PD/V+wW1xA2HQtP7oNqyzw5iExBfiDCeJ7RyPpx+fiCGdoiFLLYAkx3VM4ikkkYYIk3i5FOp6NX54YYGVs533v8do8r+opIYm6csOZEK58phdofCCtxZjz4qDNvONkQEuk3r0Lqq5uhLFvfT741R0ZkbXIRy6bnbuR/Zu6iIWfHwI5Bbr2z1GrR7/zltPYxLF4Rx47T0P2elCh8KIfSsP47YGsZ5iZxrYSjuFEIlYfE86RJWt54jnDsOnD6KJaiQm6dg3EQ99ehfm7v8AwaS67NWOEJMICPynIcLft5e/gKBI+32KZhiWwcNf3I32vRIcChxIn+blwL3v3waZwvo5K5FK0GOUa4fX1oDEESSZ2xEkKXvRJ8sbXyf2aIeknu3oNbYkMNAbvXs4F877qOouSNxAIJ/b7+8suaBtCAi4Ayns5I64wQxxHvj2mV+oI6MjNPVaPND9OffEDQQeGH7zIKQM6gilf8t9ip/89n70vMa24JynsG6Iy+oKKlskbjAz/6U/qLvcxUYql+DVhU/R/5vDOBFSNy2jp24LChciECJyICLq/pPcy8/du/IQZrxsX6x3KSF9ZzQm6RmPyKRwdOrfHo98eQ++2vseAkIvIAHuSkGISVqM4ODQhoQndcC9n3+P3X//ib1L7FfqIJzYvA4Drp8OViRy4ABAGnmXtqGs8PXDIDsuE6XZmSjPs7bwbDsYGHTOKz1lnzgKrUqFQ6uWYc/fttfc2z8Qt33wGbz9/LH2689weudWm2X6TbsJ6ftbp8O9KP0cqooK4R9+dVt7Clw6tNU8stZ5fn9QuxEDGj0Ut576kUdwFyNiRrHI3uD5MYX0AqIGszjyhWcVl1tK6s+tsJGLfGsO7gZ0f4hFYCcG6jIjTtkpdOAORMBidOMy520DWOdFYBupPEPcQbhL/biyizKCwcA3BE2ngIDAfxPSgfVrxlz8sG45fpfuBgOeChFI4juBJNgbeQb/FuzFjLgRtHOhOUqxN/zEauoI4AjyXrC0Hssr2mGIr+OKEOdUfthbFQ6lVGeRlM/TdYNldVCIDSbLYZ0X8ur9UWtoGmiO8PLBzERbR7nM+mxI5WfQOczUwCHnqDJI4CX2TCheqbff0We6UqaDlZPj0zuPSY5XHYee0+OXzLVYmr8eIbI6dPYjCd88VEYpeD4aH3d/EkqJF146shgbCk9ZrU8kHg92GIkzqnX2DsQKFhxkrPNOsjzVCdTqy+AjubqtPQUuHcQifMufOz1ejwwKukKr0jUm+nM+cugTTAkwjpIO532/AV1DfDBi+mBsX+x5XD/g2t7oPbobPrz9S4/WI7dUxbkKOnnCL687L4qg7RRhsrFx4u4gO5oDVq2H4ng+dAlB9pOIOB5e+7I81iLLz5XSpBtN1wjoo/2p4qt/p1g8fvtodIoJRckj46ntdkvgDBw0BtfVvLcs3EUHcZxVcjPfIo/uPYO6n3bASwKoBraj1VUb0RvhvS8bsoyWWfAR9xBduyDoYwPoZyIuqYM0rcRpxdfmCb6v/fV0i/YtICAgcKXTfUQKFmR+TZ2b/vlqjcOEk5XfrsN1j02w+75vsGORtKfIzpXQCoKablHWz1mOh/xYHmRpxF7WPhEJobju8Yk280/vS0OBi7aNOLME+uRm+2yGSGtf4cCeLwBDKps2uNcZdM6fPzuX7gPHcfSaL/tytc374e1C8PWhjyD3kuGd6Z/aJCeTuJAkTf12zkmFHPK5+XvDGOYH3t95NdQDhzNRVa2Cv1/LkysEBJxRklOKHUv2mVzGdp2FdmAH8F4yG3GDbPdZqzZx3jnXFfR1TgQT9gQ9c1/5HR1HdKYxCUkssYc4rRC8WAxjUrh1O1enx+gOEUjpEIHXt6eitSGiBmNyTNNvlufx3T+HIfaSg6lvGhAS1WogOpR9YfvykbfKMo6SKsk9KqFbHNKOZmPR3DVUCKZNiXS8kp2hdgPLQOOG+Gzz7zuok5A7HFx/DDln8huTubxXn4AhNhD62EDqZsFW1EOaVgy2Idb1NCYhMaAhyp/+LS6phTSjBIzOvTE1IiJ89c+nPN6vgICAwNVA7zHd8XvWPHz12Hys+m6D3WV4jqeiton32a/G6BtEcrcuPcTxdtL9JgdpS07uPI3S3Jb1e3kMw9DEbGfsXLIPz/34CL546Aes+t72mpPk1nmHPoRIKsGbry7Bgf3WydtEoP3Aw9fg9we/aZVDJu0y4nbeXKwuINBa5KUVYu+/9tv/zsg57TzuNotuPeHzB79HUo92VOhweOMJj49pzMwRtD/71O6zuFCI85m2R6zD9xm1Dj/P/PpyrKPqlEFT++Ked2+l7qbHt6VixTfWY7qi/HLoicuQA4dsukxuGYwGDuo61+MkG37diswT7sVopI8n45iHVZIvAqTvr/eYbkJMcgVx5MgR/Pjjj9ixYweys7OhUqkQHh6O+Ph4TJ06FdOnT0dkpJM4vJUQBA5tDHEPKM4453SZuopynD98AEl9bW2NlQGBUAYG0mVaC5FYgsDoGARERKIsJxsV+blurGP7VakoyMPCt16Ett5O9QkLZN5K6qSQefgAeFISvBk9J05BzoljKM91fiNWBjqv8kTheaTt321X3ECor6rAkndew11zvsHEx55FzwnX4tS2zVBVV8IvNBxdRo5BUFQMjqz5F62FVuX8+ggIXAgVqQDneT9om0B+3lufBBShjkqNOYe4RSweZbwsE+QvB4hzQ/9XWOq+cPATDjmb2n6f+nogd7P7H4jqwoontBmqUuFLJSAg8N+GZVmkhhWDreIgpuIGi/cYDiIeKFSX40DFOfQL6mizfpg8GDEkW9QFgdJ6HKqNwK8lHXBnqG0MVKJT4Ln0QajXycAZvZAS4I8En0DwOIo6Y1XjcuT4gmQqBEhVOFMdhgqdqeqhlLWNSXJUeZidOgdqC2UmuetXGRTQ8yJ4iXRgGR5eIh8keHfA6VrbqoKEocHTUKPPRJ6quPH6EKGFpbiBECTzRbba+XXgwGFLySH8W7AGnXzKIGabnkMyEVk5DV+kzcGbXd7EJ71vwbHKHPybdxSV2npEewfi+pg+iFMG4Y595sRn0/o6nqWF1C3zoYhowh20XB18IAgcBNqGkzvP0Er7bYExWAltnwRwlpWGyNfeaBIVNEcvl+LxkW8hwkVFNkeQAYjxkumtUiG6NTBEuHDFYVkYwv1olVUicvD99yRUA+OhjzEl4RNEFSooDmZDmuO4Mq0zJKX1kGxOp3+LJSK8m/MgdZ6Yc+832PLXLrQ1NWW12LpoF8RhPtDCtngEzwB6JWAgY5Phfjia7APFuXIoV50EF6AE5y0FW6+D9Hw52BZ+T41KGerGJYPzaxoA1bcLgrpnNJSbz0KSb6oC7IxSDyp3CQgICFyNiEQinD1gep44G9Q/vj2VVj5vTmynKPgEKFFbWdcqx6M4nAufnCqET+mJyJ5xSNt6CuVrT9JnhjNkzRKmCaSK4vPXvEWrlDojQClHv9gQbMsrs/v+3df1x7bFB5FfrWlq9Gu0YM8Xgi1oWifAVfugwQVp3U9b7IobCEVZpXht8vv4Yte7ePufF6hj1qbftqOmohZR7SMx8b5rEBIbjC9v+czlvjhv1wlCJLaqV2kFgYNAm3F8+2lwxgYRULUK8nXHqIMAF+xDv4DEhYA4NzBOhAmQSWhVIKYFbUayvqFTFAzxoXQ797z8JyKDlDBEBULswAVFcjoX4vNFMEYFUmEucXlhCyqwc81hTJy7pvF8WlPcYOjX0TrBhmHAh/hBPzAZkt2pYFzcxzzChRCL7t7NxHxLZAopXljwGOqMHN76bi02lpZDd31vgCRZSkQudmgtciDfFXcoL6rEjr/3un2MJTlN92yG5yHJLqfThWD0kaN+dDJ4C8cJQ2wQNN2i4b31LMTFNR4dl4CAgMB/EeI44MqVKf1IJo1bOvZNsnmPVJxW+CigrnUxQOABMi8pYpOjEdMhAid3n0VJtut7tdzbViCYuvccXhg7m7pPOcM/zA8deidg/+ojdt+/482bsO7HLS6fGQFhritta1VaWnHcnriBUJBehDemfYyPN72B9z++BUePZGPThlOor9MgOjYQkyb3hI+3FN/ac0NqAaRtJQgcBNqS41tPXTYuL3qNHg/0eA4RDQWjPGXDL1ux+fftNPn+QpGeLYI+PsSqb90S2ZGcVnesa2uIi9wLvz6GyuIqfHDHl9hmp9gWiSvFZ/JhSLHvUsNU1lGBg7uU5JbTye3l3XieXAou1+MSsKa6uhqPPvoofvvtt2bvADk5OXTatm0bXn75Zbzxxht49tlnIbaTW95aCAKHi0BpjmtVVFleDuK698S5PTtRlpsNqUKBDv2HIOvYIWjqW6fTnuATEopJjz6L4xvX4OzenTDq3VP5hbaztWEjIgJX4gaCtr4OhWlnMP7hJ3F2zw5kHj1EH+qR7Tuh18Qp6DhwKHJPHcei2a+YerrtwDAsek+ahrS9u2DQOx5k8AkKQep251m/xHHi3L5d6NB/MCKSOtLJnpiistC1StIVpNKRb2jLLVYFBFx/yS6/a6R2XOTMNVdWu/WiEjnYJHLY/Ah3UYUE+ovrktwm+MVfhj8UAQEBgYtMVl2RjbjBDJknYY3IqS9BV98E/Jt2BukVFfCVyTAhqT0O1R5DvUELPxcaB4NRhMJKX7xT1h/r8uJxW9RZdPYph8oowdqSOPyZ3wkVehkS/QLxxaDRWFe0HRl1W+EjsT8IS3J6knzLcKDMCzwYtPexrQDwd+6/FuIGHr5iNbxEenA8gzqjHBUk67WBakMx7oh9HMert+Nc7TE6r513JwwNmYQufv0R53UCn577DL4SNXVF0HEiFGt8UEuzZgERw2JyxDU4Vr0TRmKH5IBQWShWFexFvLLCStxgicp4CqnVx9HZrxu6B8TSqTkBUn+U68ppc8/0sTHUAUIpboqHONiKHmwRwVcc6mwBAYELwp7zS2tg9PeCekQyrXJpvUOAFzkWOZB+haLMlgclluIGXsSCl0uonTDjoirZ5YCoTgufDWfAeUlh9JPT4xZXtF6DfthNA2m1qCcGv4oyB4labQFx8pBkV4BR6cB7Sa3EDZpAgJdYfAfFLNSdQ6BJCoT/ljwoTha2KHGqcR+kWMbojvYHYCQi1I3qCL+lR10mxJJKTv9ZeAe/VQ+3ISAgcOWTnZrncpncM/lo3yseW/7chbxzBfAJ9MHg6/th19L90FhUF79QSNXvhz6/i1Zo3f3Mn9QRwR3vz8Qe7Wzm/fTqn43iBlJR2xgTDC5Q2ZBUXQW2qIq256tLa5C9eA9en/8Q1uw7h0Mnc8GDR8/kGNwyuTeG9E5EskyCN2d8AV6pAEMSCarrrLp/JTIJdZDY+Os2p4LMuM7RWD53rdNzSd1zDid3nUaXwcnoOtQ0NcffV4GqGucJXGyNCkYXQYlYxCKYXBMBgYsUk5CkcioscNFmJe19Y1IkuKgQgLh/8TyY8hqI0gvAVrk3Nkt+iboB7cGFW4usC8rrgH7tgWNZEDtweGG0ervveSpu4Ij4imWoC4OjdhdxbnBYPVQmgbF9FMTHrCsnewLZLe/nBV7Mgq1RQ5JXAW3vdrbxnAWSFiS3jLx1CGr0Rsya/RcqLAUKTvZjD6ZOA3F+U7ENp/Am4dilglxb1chOVuKGRqRi1I/oCJ/lR6ljhKuK3/9ZhJhEQECggRx3YpKzBYjuGEljkoL0QuomN/i6fti+aI9Hzk6u6NQ/CXfPvhUr5q3Dtr/3wujms4ZUZW/Ojy//4VLcQKgqrqbC8ud/fhTrf9mCY1tT6fhQj1FdcOPT16Lv+J6ISorAB07cbYkL3NRHxmP9z1udJnMn9ozHks+dF5Y9uuUk0o9mIqlHPHr0jKOTJcSVTunvjbqqCxc5SOUS+Ie0njOggIANbTROciG446LtiNYQN5gT/b02nIKmTzsYYgIbYxK2Wg3ZsVxIcq68wkBj7hyO8oIKPDX0NVSX1TpcTpJWAEZvgKFDZJPDoJGDKK8MkhOeCTuIy9DVQHQH2yJW/xmukJiksrISo0ePxuHDh63m+/j4ICAgAOXl5ahvyBfXaDR46aWX6LILFy5ss/FiQeBwEeCMrqtU5J8+iUMrl0FT13Tj273o91Y/FrmXN/5643mP1+sxdpLVa71Oi7R97lfqU9dU48zu7bj+xTdpI5c4ObCsqbMp+/hR/PPx2w7FDYThd9yLsPhEdBw0DKe2bXS4XPcxE7Brka16qDmHVv5DBQ6O8AkKbhWBA+3Qa7COFhBoC4K7ACI5YFG0+L+NHZvhqwG/BKD3MyxO/MBfdJcEqS+gbVmx18uGmFGXXzApICAgcNFhDE771sh7+4szMHvtMdRozRX7ePxZ9A+8fLSIVohcChzK1EoqRDAaRdhbGUkne8QFqvHqyU+hFGsRInPeMS1ljQiU1aNcq8T10QOt3lMZVDhcZRIqeIu0iJZXQsI2tb1D+DpUGxQo0RHraAbV+mrsrTiOx9q/Ao46y/FgiTUSgFPVR/Fz1qeI86qi4gbztQqT1aBC54UztRF4MPFGxCtj0CegD/ZV7HN4zCNCRmD++eVIUDofkNhc8i8VODgiWBqASp11x169QQoWPLzEpsEKcr01nJQ6VTiiXOcNA8+gKSVYQKB16TosmSbbeWqT7Apdl2jHSSoNIgemWXcLW1EHxo1Koa7gFBLousbQipj0GIwcxPmVkJ7IBVvrPPgSSUQ2A5IkEZ9sS58YCs6bCA/01JpZVFhF7zckcd9eZ7a4pMbU6e/wQHm6THNYlY5OrUlSr3g8Nvc+zH18/kUVNxD8gn1RXVYD5aazqBubDF5m6s7UezcTN1jAS0WoGRELQ4coSFMLID/uegDbHoZIPxgDTU5CdpGIoO0YRiuBO4JhGQy70da1VUBAQOC/hjuDsQfXHcX3zy+AyiKp/sdX/mj1YyH35udGveXxelMeGmf1uqq0GgfXmWIS4hykHdjBVAW+AWN8GJiqesj2nAWj0VNHn6O/bsMXCx6nAgXyT8SaBvd3LtuHd6Z/ahI2SCTgI4PBx4XTtg1TXA62qhZPzJtFk38GXNsHu5cfcHicE+67Bt8+/YvL81n44XJ0WWErbDATyfFwlv7LVKtoBXR6Lk4EDuScLpNClgJXKd1HptCqzEYPRMk8cUPr2xG8v9La0SDYD4ZAH4gPpYEtd10Vn4sMtBE3WKJPiaGVOVviDOEKQ0ww9B0jwPuaHO8YtY4KJuSZJTBaxEUkMd7qPC2gP00GMEYEQnQis0XVUw2xwdAnRzcl4JOkndwyWq1Vl+Igqd5ghKjA9cADiaXMYuMuyTF46LO78PZPG63FDZYn42wowHxqeiMUu9M9qh/mE6hEbUXrFST0BEN0gMOKtxSpGLr2oZCfcDyuzYpZDJ7Wr20OUEBAQOAKgnEk9rNg78qD+PLhH6Cua+oDnP9S6+duGXRG6rrgCSRx8NpmMQmJMY5tPeX2NkhhGOKc9/GmN2Ek7lUMQ13ACVsX7sJHM+c63j/L4KnvH0D7XgnoPbZbYyxkj7F3DsfXT/zk8ngWfvAPXvnrKbvvkeMKjg5sFYHD5VJZX+DqpdformBZ5rJxh77USGRi6LWmmIQIcb12poGTicH5koIORogqr8xKq12GdsKsj+6g/TfOxA1mxFklEGWVgPf3pgJ7UiSipbGht78X6quuzOtGEEvFGDC596U+DAEXPPDAA1biBiJ2eOedd9CvXz/aZiBth+3bt1PXBvNyixcvRteuXfHaa6+hLXCnKI3ABSKW2amo0IzsE0etxA0twT88AmEJtlZplpRmZ3q83T7XXo/4nn2s5ulUKhgNniUNZB09jNrysoYGsilJwWjQY/VXH8OgczzwLpbJ0G20qZE+4s77EGLHTYIQ36M3PVbi9uCK6lLH1RxrykqRm3rC6frRyV3Qvv8Ql/shvfbknAUE2gqJkkHCJCF524zYG2BsneKveDSVQPoyDjmbLn4wJGrj60kGcs/6leHf2DNYEXsap0NKwDWMNDTknF4QgSmAd3jTb0RdxuPkfA7r7jZi9W1G7H2bQ9kJIcgUEBC4+pGLXGvbt2aftxA3AL6B9VTcQCjS+MLAOW5z6DkWaVUh6OAbgo6+jt0C/BQaVPDp1E2CuEaIGNdiYIVIj5nx16BXoHWsU29Uw8hzkLF6xCkqrMQNBJI07C9RI1jSNAB9pOoYavQ1YBm2Udyg43T4Netr+EsqIRdZC0HI30EyFXoFVGN0eH8677bY2xClsD9A38u/F8aEjYG3yHWid42+yOF7xZpipNdl2HmHQa1BjjKtF9p5dUdn3/7IU/tDbbSvPiHzc9T+qNRXuzweAYGW4h/iRwesWhNaSTXScZJQo8ih2Szx2YJWETeoR3eBISG0SWAhYqlAQTU6hXbAO8Pb1wtSRTOXgSEdoRncAcZwf/A+chiDfaDpl4D6ab1QN7UX6q7rDU2PWHByCTgfOfiG/UrPFDgtBiHOq3DpHNBaVBZVYdlXq7Ftka3dclvj5WdK2BKX1cF32VHID+eCLa2FUe68HW+UMTDKRdB1i4HWUWKVuepujD/qB7SjE5cU0vjd4mOdCEwa0Ef4OX2/x8guCI5s2k5JbhkdGL+vy1OY2f5RvH/7F0jdcxZXLXwrTQICAlc8UoULxTRJ8v9nv5W4oSV06JOAyKRwp0k5GUddu2435+53bkXngdZu0DXldaaCTlIxtIM6WokbzJBBbO2ADo2vt/+9lybokMQHs7ihvkZFE4lIhUQuKRpc32TwpKJ8kB/4iCBwPTrAe3gPXHP7MLo8ETrEdLQvKB8xfRAmPTDmgqs5Zp3KReZfu2iVc7sYOQyKDMDAmwaB1fNUeGkXjgenMaKqFZKSBAQcQdpao2a4MWZnARcb4jDpH0T8kBLnVhPEEBfsfAEivIgOcvg2jRfiA1DfMwKq5BBoYwOh7RINbedIGH0djy/rO0RA1zexUdxAt6WQUkGFfHwPiBtEwXS+1PbexLGAQcbA4MXCoGBhUIqg6xrrVKxk9zgSw6Drm2TtLkDiuXah4IL9wRJBtuWFNLftRCJohnUCL7E/CEAW0XSJRM2NvVE7tQedzvePwx+bj2Hb4XSPjrHpYI2QpBXBe81xiEttx+QNQd7QR/rD6GN73X2DfZqOTSzy+Dq5gpyvPiYA6r5xUPeJA98uqOmyRbuIjcmxhzuPSfqN70mF42aKskrw/XO/4p7OT9KY5KO75uLsgRZe1ysBISYREBBoQEIcm1xA+r4sxQ0tocuQTgiNddxGYEUs0o94nrtFkmqTesZbzSNFQTxl61+7oK7XQCQSNYobaipq8fHdXzt1kvIP9cPwmwfRv5/+4SFEJoY5rG4++g5T7OKK/HTH4yRnD2Yg66TjoiKE/hN7of+kXi73QxKtL5VYUeC/QXi7UAwVitw04hfiS0XolrDEcbq09ooVNxBKc8qx5LOVOLDmiNvrkMiBraqHqLz2goTvgeH+uJiILWK15p9lSxg8rS+8/ZqKSRVkFOHbp3/GPclP0Jjkk3u+adGz8YrhCohJdu/eTcUKZm6++WasW7cO/fv3b3RnIG2HkSNHYufOnVT0YOb9999HVZWbLokeIjg4XAR8g0NQU+K85PaFVvknSf3Db78XwbHtsHj2K6gpbbY/hkFwTBzKcjzruO8+egKG336PzXxVTQ0VHhgsEqBcQVwbqkuLqTuCmbR9u6GqcZ5sQ/axZu6nmPLMy5Arlbj17Y9wcutGpG7bhPrqKviFhqHrqHHoNGgYSnOyoPDxQX2V86ofZBlHkO26+jz8QsOp2CL9wG7nyzIMvPycdyoJCFwo3R5gaNJ23jZ738H/ViKAgcSkV6HegzgopLouutYmqIoARSigdqwLcxuRAjBajFFXSdX4scNhFHo3DSbsQDZiu3thzpA+kKd548zvF/YFrjgDLJtkBKcHJN6AXgVwFjlg9QU8crfw6Ho/g063CrpPAQGBq5cQmR8qdC7a3Ubrh6hfoCkBhQEPX4kGhVpfRMmJOMD63mzgWGzLaw+Ol+KFbmMQ6eWPOzb9iUKV9WAxyzAYGCNHkY44MxhAxoI5noHIhR/j9dEjcHOsdVUiQp2hDhJGjCBJpc0xWeIvUaFC7w0OLIy8EeXaCvhKmgZ1D1fuAc8T9wfHnUoKURn+l/ErHm5/L3wkPng1+VXsKNuB3WW7UWuoRYgsBMNDhqNfYD/kqjIRZpHc7AjLY2jO9tJdVAToCCMvgrc4BtdFTcX6ohdwuk5O3SaCpbWQMkboeRFKdT4o1vqC48XwETtI2hAQaCUe/uJuVBRXYc+KgzTRwxATRKt4kiQ/tl4DcXoxRKXuD7bRBH93EkbM8Q7HUUtfcUFFqzhH8N4OVL4yCbQ9YqHY7jgZvabc+t6n6xRp5cLQ+Mu2OD1eLqGVTcmyRB/FUJvickhO5UJ+IBOaPvE214NcT8Vee0KotqG8oBK/vrEIl4LCjCIERwehLK8crFoPxbE8yFILUNfVtSsCT3o+DYA2JRLSM4WQy8TQWrhbGH1kqB2XDGNgU2IYGcKOnNYDjw/tgdP1KizYeNjVXpy+e2LHaUz1uwN6nRFevgqauGvpeFKQUYwtf+7Cg3Nm4vonrR1UBQQEBK4mAsMDUG0nodQK/sITlmZ9eAcdSH9x7GxUFFXZJBJFJYUj10NR5K0vXYcZL19vM58IFciAr7pdKK2g7Qg+QAljsC9EZTX0GUDckJT+TYO6m3/fQZOouIhg8DH2k4SqGRG+/GwNnn5uMr2WX+17H2v+twmbft9BE3Wi2odj4qwx1DXo9N5zUAZ4o67SuajAP8zx2MXaHzdT9wj5tlPQdYk1JWg3VLxlS2sgSc1Dwh3DcN3z12H3rd9ApOXAiRnw4oY2Cw+wRh6MgYdEzMLHx7lIVEDgQnn8m1moKqnGgbVH3VqeIyIiZ3jJwQf6gKlwft/i5a7jfyI8sIc2xhfVY9uD87WIPzgeEhXopO0ZB3F2ORR70mmM0LRPCfSdox3ur1QsgszfG6JiUz8Qo9aahNMNCQkcMamTEis56woPhg4R1ClAvuMsGDeqHBNhOhFUOIILIFVKG7ZjsTnzXokoQp8QQp0emqMemABdB+v7YXFlHb77Z7fp/uLwoOyPEREHPbkD1wZ9dAA0vWLB+TfFBKLCaij2Z0JUbRrQyDtXCN8RyShUykxuCjxPl5GdyrfrqudK8KdTN8UDRFBRP7qTlUsDGX2PDlDisZG9cKi8Gos3O66QbTpvx58XidG3VhWj74ufQOMrga9UCm5rFhRbcyBSGRpjkk2/bcejc+/DtQ+O9eh8BAQEBK4kSJxQb88FqBWRyiW474PbIfOS4qVx76CqWZ8oiR9C44JRkO48h6w5M9+6GTc9c63NfHI+JM5xJkxojkalpcVMFIlNwvANv2yDTuO8cBNZ54cXFuDBOXchJDoIXx/4EKt/2IhNf+ygVcWjO0Zi8gNjqGvQidP5kPZKgKpKBbakCqwD0UiAk5hk3Y+bXZ5LfLc4jLtrBPatOuzyc/FuKKIiINBWEOEPKYRwZJPzosr/BcryLq4L9MWiOLsUP7/21yXZd+6ZAgSE+9N7cWs6bDjCoDfSvqZ73p1BHVfXzHd9T3bG7hUHMcX3Drpd0idWW1FL/zZDYpINC7bhqe8fxPi7R17QvgRaxrffftv4t1KppK/NQsjmKBQKfPTRRxgxYgR9rVarsWbNGtx6661obQSBw0Wgfb9ByEs92WbbJ6KGobfOREKvvvT1nR99hVPbNiFt/y7oNVqExSei+9iJWPrBmx5tlxWJMfCmGVbzqkuKsf67L5Bz8niLjtXL11pNVpab49Z66Qf3Ql1XC4XSBxKZHD3HTaaTGVV1Ff5+9zXknnLvuIgYwhHuOC7UlpdSsUVi735IP7DX4XKxXbrDJ9BF9RYBgQuElTAY+KYIJUc57HuHh6bc4s3/kLjhP33OFniFm0QJrUlriBt82gGdpjM48KHpAyIuDfM7HkKRl22lhJxaFZ7YeQBLrh0OXKjjpxEwNPRTaZ208098zyOkO4+gzlehQkZAQEAAwJCQbjhb67ztXV9jXaFOIjXAT6JGO+8KiBvcEVScBBLGCJ5noOdEKKj3xcmySMR6t8PswaMwJDyRLrd20n34+/xxrM05By1nQLfAcNzeoTfeOftRo2iCoOXEkLBO3NwYCSZHTrWaV6Qpwf/O/4LTtefoa1+Jc9E1yQn2EulQZzSdn6/EWuxcqM6DQuS6Avrpmu1QGWbAS6yAXCSnTg1kMlOtr8RXaW/jfP1Zen6SZrkCzenmP9Dhe+U654JtQoWuEv5SX3T374yjVadQoAmgU3N6B3SFr0QQOAi0LVK5FG//8wIObj2Ft37YgDKDEbwI4MSkIqk3mMQgiItq4bXltFVijiMYnR4gA2pyJ5WeeR7izFKwtWqIs8vAWCSMtxRexLiswGqM8AenkIJV69yrwtk+zKm4wQoRA57jwRBBVlwIuGBfyLaehLKgCrr2YTThhVT4IUlO4vzKy1bbHdYuBMVZpa26TSJusITRc2C0RvAy55WDGHP/uFSM+Ek9MG1iH3z+4Pd0Fs8wqJnQGZy/bcJlQU09vth1DK/dMdalwEGS70JAqDPQiVBdav97Sqp/f/vML+g2vLNNJb4rntaoLPQfj/MFBK4Whl4/AJkn3BsPaAkd+iRi1oe3U+ccwg8nP8W6H7dg94oDVFTQqV97XPvwODzc+3mPtiv3luGWF6+zmpdzJh+fzpqHU7tMokfOSVKOGbIMETiQimd+FpXACZkNVUn5GMdueIT1G1Px8GPjICfJOb5euPHpa+lk6RL0xOBXcHpvmlvnNvxGxzFJacOzl9EaIDt0HvyxbPBeUloB3dwOKskrR1i4H7p3j8WxYzkQGXiATM0YPLgDvB0JSAUEWgm5lwzvrX4F+1Ydwkd3f43qijroE0KhTwylAgNGrYMkowSS8yVgON6h6MASXkG+t84FDoxGBx7ezpexEzvoQ7xQOS25yTXODMtAT0J4nodETRwigkBS7L12mvpACIaYYOoy4QxDbIiFwEEHpqwGfIgfbVbZiBss4ML8qWBdkuN6rNQYFQhInKQakENkGadxCxHGNxc4ECeF5uKG5tvlOSe1rnggSiJGYVEl2DotpOklEBfZb7MTcYNqREcbQbkxwg/141KgXH0CBi8x6ka1R1mAgsYX5HNhOAbGSH+owv2g2J0GSbZ1vOKI5IEdMPKWwfjmiZ9MhypiUD82mTr5NSevsg5f7ziGp24Z6VLgICm0f35k+yW3dYKmg7m/iEOpTgMMCoeocwDCfzgBcbXp+8lxPOY++j8ak8QlOxbQXJEIMYmAgEADQ6/vj4UfLW+z69Gpf3s88PEdSCHubgD+d+ozKkreu+oQjHojdYSb/OAY3Nv5KY+26+3vjZuenWI1L/NENj69/zuc2ede298SIojwCbQeM8g66V6stuqHTbj3/dsgkUpogurNz02lk5mCoirc/8wCnCUCjshgIBIwdo4FW1QJ8dEMMAbrvuFhN7mOSZxRll+O6A6R9No7uxbEeYL0YQsItCVePgp8tOF17Fq2D3Pu+xa1lYJryH8V0vdDhGCkn6Y1aQ1xQ/eRKeg3vhcVrLkiP60Iv765CDPfnn7BAge9Rg/yj1BZbP88iFjvs/u/RbdhyYi0EOFdFVwBMcnhw01jYdOmTUNAgHM3QeLsYElGRtsUZRMEDheBlOGjcWDFEtRV2G98MSzbIgeHgTfOQPv+gxAS285qvszLC70mXEsnS0Rizz7u5CHD4e3f9EUlTgsL33oRtWUtG6SOSOqIwMgoq3lShXtVe8j1KUw7g4Sefe2+R8Qbxefds84k59T1GtsKsGaUgY6tYpsvM/jm26nYQ6e2VXkThwsiPBEQuFjkbIC1uKENYSWgFfFdEdwVqDwHGN03exG4QFpb3NBaJE0DYscw1C2haD+QGlBiV9xgpqBWjeXH8tAhJRrlpy7OMab/IwgcBAQErl4mRgzA0txtqNTbH5hX1cqh01h37ipYPRKUZVZjvDxY6HjTIHqexg9jI27Ha11S0N7POhHHVyrHPZ360ckSMWMauOeIBIAHNJwEcs7QKKBoTk//0fCycB+o0lXjndSPUalv6vgwiyWcwTQ4PHTy6YggmXV7Xy5SOHWAaDp3HdJqc9E9oIPNe0begHnp76NQ05CYBIaeo8jBsflLgtE30HH1iQCJa5vRAKlpmVtip+J0TTq0nG2DSyGSY3qM9cCHgEBbsvJENhU3GGWmRAqrRP8oX9RO6Q6flcdd2vCSnyRJPNJ3tu5DsEReUgPxofMuB+s6D+qAcwcyXFYgo8cpldgmGNkcHGNK7nNH4CAT06qk1us7X4dUUzUbyhAnCUNyNKRHMiE/2nYJoa1Na4sb7EEuo9epUtT3ctzJzep46ohhZupTkzF2YCdsXbQbRzefhC4h0K64wUxhVR32bT+JTjEhOJPr4Jx0BsjOelZxzxFE5LDim3V4+ocHW2V7AgICApcbkx4YjeVfr0F1mQsXBw+5/5M70G9CL5tkTN9AH5oE1DwRSCwVu9UuMEMSkEiSghkyOP3MiDdopXiPaGgD9BnXHQFh1u19b18FeJIk7O18vERn4JCRUYKUFNs2kk6rp64V7rpTRCSEYfQdjgtBBUcGWh++wQimRm13mVn3j8AzT/8BrZ3qf0qlHDPvHurWMQkItAZrf9qC6qp6qEangLMQE5E2vDZICUO7YCi2nAaIQNpF25/ROm/zk/uJMbsMunDHg/4ihkGP+FCcLai0cvGq7xPldP96L0BMEulJwn9cEIzH5RDVmCofuyfOsBaLi1OzoR+YbJrvrBoD2V98iI3AgZeKqRMAo9E3OTDInAjS3YSX2F4DXVKo6/VYIjKw/544pxy1O87BnVIPxLnBkXsgJ5eg4vrO0IdY35v1Sh7SGpPQgayr7psAcV6lW2L+G56chIHX9sH2xXtwcucZ6OKD7YobzOSUVuP0oXQkRAbivAPHQiJEk6Tbr1JVMyDCQtxgjdFfhoopiQhdcLrpnDkeK+etxyNf3uPyXAQEBASuRKY8Mh6rvt9IndhaE3Lf7DW6G2I7WbfT/YJ9qVi6uWCatCEs2wWuuP7xCZBR4aWJwsxiPDvqLRsnWXcZeG1v+ARYPym9fN1zN9DUaZB9Ks9ugQ61RoenX1+EAjvCQi48APpeSZDubxJtxnSKosI/RwQ1i0nsLhNhes7d/9EdeGHsbLvX1TfIB7e9eoPLbQkItBar52+6aOIGcj8xF9dxtkynfkk4sz/d5bL/ecyu4a3Q19/a4obW4sanrkWPUV2wY8ke+p1wRXZqHvLPFVDBQUFG2yekEZHDqu82YNZHd7T5vgSsOXnyJEpLS3H69GkEBbnOn66ttW6HBAa6fm63BOflHQRaBSI4uPHVdxAQaVvtIK5bT8R07tqi7fYYN9FG3EDQazVI3b4Ze5cuxInN66FVmZLvE3tbq2ZcQZwJKgryG0UE67/7qsXiBiKuGHbb3TbzOw50v2M7/3QqaspLUVNaAo5rSoY4f+SA2+IGcr1uev09ePk6rqiUMvwaMIzzn0aXEaMb3TOmv/kBYrt0s3o/qlMKbn79PYQntkdZThb2LPkTO//6FWkH9lgdu4BAa6Gr4ZG98eKUNFSEAGPnM+j/KgOfOOfLlp0QxA2uEHsBEY4LE7Q65PYW1gcXHfJdYEUMBr/DovNdDNLDXD9PVu0shXckLhpV54SyoAICAlcvvhJvfNj9QUTKbSuT9wtMRpTeVOXUkhBpnaMxXkqEvA43xQ6wETcQ1AYt1hUewG9ZG7C2cD99TegbaGo36zkxjDzZOINqgwIao5gKHsyQ9yp1cqwsPI1ijakDyMhzmJfxs5W4gaAxuh5Q1xqJ84QEN8XYdmL3DhgIAykz73IbYpytTUOFrhwVujJwpFxgA8erDjSKG8wYeJaeh+V5EaIU8bg/8XUoRI4rPA4LGQznNQ6BYcGmjv9471i8kfI0Ovu2t3q/s28HOj/OOxq5qmysLlyG5fmLcLzqsNWxCwi0FhVV9di85yw4ibW4wRLOVw41SSBxA2lqPthy+4MAESG++O23J/H8L48iukOE047QkzvOuJ3EyJDOfXccJtzdHtlW85uAy5WsX5LqrMRpoC0h9ux9J/TExYIIT3qNse5HaQnK3Xlg6xwknfE8ZM3GUs+sPEKry7278iXc9soNgIW7hiMWLt2N9llVEFXU200kUm44A1Z94e4hZtKPOBftXIkQwVJrTAICAlc+geEBeH/tqwhvF2Lz3uBpfakDg6cwLIOpj0ywW2laVaumic6/v7sEG37dBnW9KTF44BTPOsY2LtjRWDnUoDfg47u+thE3sGW1jYXYHN2y2NIa6gZx9zu2Vu0jSFKPm22GEztSUVxSjeKSGpqIambbwt1uixtIddOPNr4OhdKxoGLc3Y4F2c2XSe4chY/n3IouXZo+B9J86dW7HT774jbExQXjbFoRfvltJ+b/vB1792dYHbuAQGtBEkh2Lz8AbfdYK3GDJcZQX2i7xUCU7yLZRGNyPXBEVPsI/HzmCzz/zi2IduJQwh7NxMnNJ62S7ci3X5PkIllAxNDYyowhOtCpI4SrmIWp00CyKxWosS3Y1hzeq+l8DOH+UI9MgWpqH6iv7Q31xJ7QdYyk58CoXFS2cuNnzlabhFO+gUr0Htu9Yf9uVFd2VDiQCJCPWffP2EMkFqH79IHg/B0nc+q9idOGnfskw0DnS5wwGl7LxNDHuk7+IBDnH1I9mjwPpz8/FUyC7TOxOb8u2ILEnEqwVSq7n7PX5tNg7QjMCHX9nVc9Vbf3h8Hf+vubJsQkQkwiIHAVExoTjPfWvEKrajeHOAm06xLj8TZFYhbXPjTWRtxAqK+ux+r/baIxycbftkOrNj07B1zb26N9kG2Yq10TYfOHd35lV9zAi0Xg5VKnfYlevgrMfPsW+zGJm5zYeZq2u8hEknjNrN+aalfc0Hh8of7g/E3jIimDO+LD9a85dVXwJCbpOjSZbo/EOpYV1InA/NPtbyMqKQKn96XRSuQ/vfonDqw7anXsAgKtRX56IQ6sOXpRLmhschR+PvslnvzuAYTFOW5XElEDEdcK4gbn+IX4NrqCXgyI8KTnNS3LGb4QUveeow6IH254HTc9cy3EdkTnzfn59YWIbH/xHBXSjmTiauNKGScJCQnBsGHDkJKS4nLZZcuWWb3u1atXmxyT4OBwkQiKisHdn85D1rHDKDibCoYVIbF3P4QlJCHzyEHknHRuLWmPwrRzdBuWEGHD5p+/g7a+aeB1yy8/oMfYSairtF/ZwRFaVT0OrPgbY+9/DKu+/BgZB/eiJZBzHH7HvYjubPsQ8AsNQ4cBQ3Bu706X29m/fDGdzA4K3cdMRL+pNyJt/x63jmHEnfchOtn1g8g3JBT9pt2EfcsW2n2/46BhiElpGogPbZeAm157D9UlRagtL4N3QCACwiOh12iw/JN3qFCk+fanPP0yPSYBgdaiKgPgXPdpu4XYGzA4KFoQPgDo+xwLeSADnxggZgSPM3/ySF/OoyH3UMBNSOI+yS0kjguFrm9jVvi2A2qyPVcOi+RAvxdZKlIpPtg6iY1e4e65RuRvB7RVPGT+DFJmMogg4wJN7lZ2ITbPuVtcLCMG+FYSmYscj0MJCAgIXBXEKyPxU/+XsL/8NE7XZEPCijEwOAWJyiis9UrDgfwVFkvzCPF2Xl1ExBqRp05Dex/rJNVVBXvxXfoK1BtNCUSEr9OW4a52vREtO4NhgaRCD49qvQJleh9oeCnqjHLUGzmIGY66H6iNYqgM5MZcj38LNuLu+Jvx8dnvcaL6pFWhQQljoEICZ6iMUsR4dcCtsdORpLRNmgqVR6Cdsj9KNNsdbsPAM9RtYn3xImwu/YvOC5QGYXjIaIwJm0gFDrYwMPCkU4gHy/OI926PKVF3oJ23yZ7aGRGKcIwPH4M1Revtvj80eBCSfJrOJVEZhzdSnkGRphSVuioESv0RJg+B2qjC1+kf41SNdbwZIgvFrPgnEe3lXqK5gIA7nM0sgd7IgXORi6JLDIHiULaNHbnlwJNCKYOqVgPF5lTo24dDnxgC3lsORqvHyJ6JePbJyQjw9ULUHcMx6tYh+OPdpfj323WoLPawknLzfZP7UG45DHYSL82IiqvB1rtnUUfOUVRYDWOka1eWRpq38UnnslQEOEhYuRBIh7RRZ0RxdikOrDni0bpxXWKQfdJ14lBzFEo5Xvr9CTqYenjDcVwI4lodQhacgGJWf2SLDY2Xjjg3yKoAscXHJCqqxralh/HgKzdA6e+Nu2bfgjM/rML6Q01V4+xBvqV7ft8JHyMHfXQA9LEBtEqruLQO0vRS+hlLSEJTK30+Ujeq8QoICAhcybTvlYCf077CvpWHcfZAOk1mGTStL+K7xGLzHzvw/u1ferQ9nuNx7mAGugzuZDWfOOL878XfoK6ziEme+BHXPT4RtRWeVVEkYoaln6/Cve/PwOvTPsLRLSet3jf6ecEYpKTVxGmwwvNUq0AHHhuWYWrV6NY+Ag/NmUmvQXMSu7dDj6HJOFxTD/g6FkJzRiPm/bYL81aYntvhYX64YUov3DStD3b9s8/luZCkH1IBL9ki6ccRCd3icO1D4/DvvHV235/8wBh63GZSUqLxxVd3IC+vAhUV9QgN9UF4uD/q6jR47qWFOHg4y2r9mOhAzH7jOsTF2orwBQRaytkDGSAlxvTxzpPG9YmhkP57BIgMAuwIfUhM4p1bAkdDLiOmD8Zjc++l1YDH3xWKa24bhp8W78GKDcdQWas2uQvUqCA9lQ9xvp2xWVJNQuy6BiGtC2FG1LS8OLcM+pRogHW8DbEdVzUiSBBlFsEY4nx80iyg0LcLga5PgpXjA3GZ03eLBRfgDem+dCoEgaPERNJAJ8IOJ04PCSIWxphgmiB5aL2p74JxI96SZpUhrk8SMswiFJ6nsZf8SDZEzdxm7Am8X/nrKRgi/LD902X2D50BDM5MdRgGem8eooYvSVj3WFRmui7qtO7nLbj7nVuowOy+D27H6S/+wfZjzkXORp7HwUV7oeQ4KnQhcQl5wIhLaiHJKmuISSQ2Fas5MQtDoGN3CArLQB+qgLiq6ZrLhJhEQEDgKoe0hRec/xq7VxxE2qEMyLxkGHJ9fyqaXjN/Ez6d9a1H2zMSl7WjWejQ23rsYclnK/Hza39BYyEI/IbEJE9MRL2HDhLlBZVYPnctZrx6A16Z9B4VzFnC+XnD2D6SCgjoc1tnAJtXClFavlUfbPcRKXhwzkwaf9m7LskD2+P0njSXx/PNEz/RiRCZGIbrHp+EqY+Oxw431u0+YxgevHu4zfWyBzmm8XePpMJ1R85IMR2jrOKdr/a8h9yz+agqqUFYXDBCY0NQXVaDZ0a+gePbUq3Wb5cSgzeWPofo9o4L6AgIeMrZ/emtIp4hRYJIv7NWZT8qGXPHcDz8xd20r3vSrNEYc8cwKuBZM39zi91d/qtEd4yg17k0t5w6P3tCXEo0dbXxFJ8Ab7z+97Oor1bhyKYTaA0iEkJReN6+s5slK79dj9tfvYG6ld7/8Z3IOJ6FwxtOuHzWHVrnPLeZ9PHpSHzYCggxyeXPzp078fzzzze+Hjx4MAYMGNAm+xIEDhcR0iEW36M3nSyJ79kHA2+cgT1//+HR9mpKi1GUfo4mzLNiMfJST2DNN5/ZVPrRa9RUqNASzuzeTkUBZ/fs8HxlhsHoex9G9zETnC426fHnUJ6fi/Jckq3rHnUV5di1cAF1biDn7g6HVv2DAyuWILJjZ3QdNdapi8OQW+6AT1AwDq5ciqqiQjrP2z+ACkX6XXeT3XX8QsPpZGbNN5/aiBsIxIHi7/dex8yP50IZ0DbWLAL/PdhWuJv7xgHJtwPHf3AscCg5BBiaxgXBiBi0mwBUZ/LI2956iebOYEQAf4UboQR3B8pPtvw82t/AoDKNx3nLPFQ7BCYDQSkMDGrAKwwI7wP4xPKoTGu96xg/nkH8JAZr7+TofhzB6YH05RzC+7JUHNMvPhB/H3be0E+uCnH5nWrN71zUsLatjCsgICBwOcAyLAYEp9DJkvFJ7fFQ736Yd2h/w3I8WNZ1B1yhugJaYx6iFQEQsQwOVZzFp2cX2SwXKClCoeprOoYvaxh/D5XVUZeI8+pgVBiUYMDCwImgNYqg50njxnRf3lV2ELFeUThQcbxxXYKUMSBcVkOPVc+xkLC2ydJ6ToJJkU9hULBz57i74p/F52fzoeMybN4jhUUL1f7wllgPFBMnh2X5C5GnygHHO+uwYcCBgY4TYXn+enBYh44+HTAseAiUEmsbaEtmxN2MEFkwFTmUak1K0gBJAMaGj8LEiHF21wmXh9DJzI+ZX9uIGwil2hLMTf8Qr3b+AEqx/aqWAgKeIiEJOtSYxUWbSiKC0UcOcaVt9cn4rrGY8cr1+ObJn6nAgQgOpGcK6GTm6LoTMN57DdBgm04qb46/dxQyT2Vj17L94IzO711GHynqekVA0yEIvISFpKQe3keKIM+opO9LT+bRKqWQ20nCMRghPZbjlu2zGempPKjDfZuSj2ipU8fLs83b6AYjoGv9AKjnNV1wbMupFldPvuX5aTiy+QTW/7zV6XJdhiajQ68EmmAa1i4Efcf3QFSHSJzeYz0Q21JIIs7MoFgMf2AUbrr7c6j9vSFq9tGQarWKPRlQq7RYvnAneozphtjwAHRPjHApcBAX1dDOe/KRSXMr6dSc1hI3EIZe3zYdwAICAgKXEyKRCIOm9qWTJaNmDKXJyUu/WOXR9vLTCiGRihGRGEbHYPauPISvHv2fzXJk0Pi32S0bJ9ny106ExATZCAKNgUpohiUDYotqd6QtRHUOPFXKibV6vPHERIya5LxK63urX8Y9w96EIw8GjvTl0SThpjZKUXE1vv5hC85nlUHrRkV3juPw5/tL6bF1H55Cq536BDiOSUgCd1RSOP1MSnJMMQm5Dtc/MQk3PDXZ7jrR0YF0MvP67H9w5Kjt2E9uXgWefWkhfvr+PiidVL8XEPAEci/glDJA6mLARCoGLxNDsu8MjJ1iwIUHNgoIkhJCccfN/fHVDR87FDjs/fcgTSZq3K9EhMlju+JsVQV2HD8PI2lj+/vAIImAQq+HpMQ6wYjheIjLVDAEO3YPIGO9rEUz09LdjlbtzyyBKtF+BU1RfgXYZk4zZsR5FdD1NJAAzqk4ghez0PVo5zC+M8QEAXVqsFnFMHaIAmNHbCEqrIQ4vQCaoZ1Mwu1m9I8LRerCfTYJYLK0EuiSnSQaEre2E/l48Imp2Lb2CDavOABWpaOTPXqM6kITGEnSEnlWkErO5N525LBjYQF1z3AR2xIHB3N4d+OD4zDss3twV4fHYdQ7jt9UNWqs+n4jugzphJhOUegSH+5S4CAurqXuhGQ/ktwKOjWnubih0VFQzwES52IaRmt9vEOEmERAQOA/AOlPHHp9fzpZMuHea6iAeuV3GzzaXt65QpqmFZlI3K4ZbF+yF98+84vNcrWV9fj1TVNRV0/Z/OdO6gjXPPmWC/SBoV8HEmg1zSRtooQI8EG+EO85DTHD4PXFz9jEYM35eOMb9FlWZk+g6YCCjGIqJs9OzYXW3/VYg4HnseBt0zXodU03jJ05HN5+jkXeT/3wIKI7RuGfr1Y3HhdxBbzhqWsx7TH7uWhE9GApfCBC9dTdtn2RWady8eLY2fjh5KdQeLsQBQoIuAkZO7hQ2vdOwK0vXYc5986D1kFUsmv5fquYhCSXT7jvGmSn5mHvqkMeF0ttCRK5BHo33a4vV0hscNBF4r4zZn1wO1bP34Td/xxwsZ8eVExFBACRSeHoNYbEJGGNIu/W4JYXrkOPa7rg7o6POx0nI4U/iDNQp35JiOscjQ69klwKHAiuhDutJW4gEOGhwOUDz/MwGo0oLy/H/v378dtvv+Hvv/+m/YyE6OhoLFiwoM32LwgcLhMG3TQDCb364tiG1SjPzUF5QS50Kuc2oZt/+q7Nj8ug1eLo+tUer0cS/ae/9QF8Al1X32FFItz1ydfY8MPXOL5xjUf7ST+wBynDR7tcjgghyEQ4f/gA9i1bhCnPvIx23Xo6XIcIM7qNHo/KwgLwnBH+4ZEQuSmmIIKNtH27Hb6vqa2h5zroptvc2p6AgCtIIrssANDa5lq4BVl35FwWJYcBdQnnNEn9/Aoe3R40dexqq3lsfoSDqvjifkYBnYDKM7jsae5uQK5zyt3Amd8uQFzAAKG9GFRTRy7nDUiyj6ihwJEveWSuAk792MJ9OjmW2DEMFMEMSH6mM4EDIfVnMnFgpUDsyEgEq9NRprD/rJMZRehcSTqB3HS0sC4C5zHyICBhsiBwEBAQ+G/z/KChGJOQiD9OHkd6RQX0Wn9ISAlsB/A8g2cPrYFYxMNLooeoQRBBRAwcLTNouq9KWQP6BGTT+c0hY8XxijKUVPlShwR7Wb8qgxrri02Ca+LuwDQ8/wIl9VTcQCCCCGODAwSZR+b6SOJwb/w78JW6rpwuYsR4ptNX+CXzO5ypWQdvsZaeX41BgTKtN6Qio8N85AOVezAkeJDLfZyty4SOM4n7jlYdw4qClXii/aNI9rWuNmvJmPBRuCZsBIo1JeDAIVweBhFRKbpBrirbrrjBTI2hGrvLtmJs+LVubU9AwBVdO0bB11uGCjes5ey5NwRFBuCL3e9iz/IDqCxyfO/RafQ0IWTmW9Pp64qiSjza/0VUFDpex4w+1BtlN3cGr2hKDNTGS6GND4D3wQL4bckCW6eF16ZT0PaIhTHCVK3f7NwgPZoDUWU9GJkYHXon4Nwh54koBHFpLeQ706Dtl0BFE7wzkQPHg2kWJ4hyy8C0sOITqfIUHBmAktzyxnmBEQG4a/Z0/PzawhaLG8ggcI+RKTix3brqmV04HgOu7Y1vnvyJVsEjletaE3KOo2YMQYifD0J3ZKLcSwJd+zBwfgoweiOtaCo5VwxdfBC03aLw2b5TwL5TUEjFuKZvBzBaA01uswd5T3bOdRVWAkmQyk93w9rOCSRhlCSaCggICPyXeeizuzD0hv5Y9cNGmiSUdTIHGieVvEk88ck937T5cRFxhL0kJ5r8ayluaHZwiSFKfPneDPgHuk70kcok+G3fu5j9wh/YciDbumI6cYWwqN7enDUbTmBCx2jAxaC8ZaXXvf8ewh/vLsHsf19CyiD7LnNEMEKEDNMen4D8tCJ6HNEdIqhIxR1OpebbFTeYKSurw9r1J3DjdX3c2p6AgCu6j+gML7kUzkdXm2ISRm+A+EQm+DM54BVyhEUFYN7SJ7Hp9x1Oq56SSsxr52+mSUeEoopazHz/L1TUWu+ZOATUTkqBz+pTkBRbb8/rWBFqrrF1dDFDnAHMdRzYGjXEBdbxjvRcIeLaheKMSgvep8FqQKOD5HwJxGfzHfZhUBH58RzoetvfN1tWA3FOGQxxwXZFCbw5sV8EGHrHmGbqDBDVacBKZPS+QZwixOeLIT5XCKlMjNBT+SjwkcEQFQhGzCLMS45Zd47A/Omf202SEVWqID1d6FDkIDtVCLnGgK7DOmPPvwchLnPuzEOOqf/k3vjyk3+w5Ew2+PWHIKpSQXquGKLBSTBG2BbE8yRSkohFGDOgI3UZJCIbZwIHwnfP/kr/J0mqQ28fBkZnAO8gEY5R6yE979o+nZxjaGwQirObliVdZt6nylHfw4lDYZUWspym72ZEQhhG3+68SIiAgIDA1c4T8+7HiFsGY/UPG2kbmMQkzsTE5B78/m1fXLKYxNglzlrcYAHv542E6wfik3n3wteNmESmkOHP3O/w5vUfY9c/pmJY7kKObdg7M1wud3LFAYjyyxtjkt/f+Rvvrn4FHfvYd3RgWRbTn5+KG5+ejLy0Qnq9SUxC5rsDceCzJ24wQ5xtN/++A5PuH+PW9gQEXNFrdDdI5RI6jtESiCD3y93v0jEQ8rt3JpwlxYeuf3ISfV2YWYxH+7+EukrPHGIuBJGYRXSXGGS2wOn5YkJcpeVKGSqLmkTgoXEhdJxk7qPzW7xduZcMKYM7Yd0vzotAma9Vr7Hd8N0zv1JxAV78Ha0JcTwYeuMAUxELN4KZrx83JY8RF4fB1/drlWMg40Z+IT5ujdU5g9zjR94yuFWOSaB1WLduHSZMsC8qnDJlCr788kvExcWhrRAEDpcR4YntEZ74BP379I4tWD13zqU+JPiHR6Ai3/MHkbq2xqlDgj3GzHoEg2++Deu+/RLnD7vfWK6vroREJodea1FW3gXE1WLFJ+/ins+/gzIwyOFypHEcGNmk7HWXjIOu7aAzDu4XBA4CrQYrZtDpFgbH5rUsQYUII7LW8lC77idF/i4eEYN46GuBQ59z0LixTmtCkvaJuEHqC4T3Bz2O8tOAzn5BoktGcDdgxOcsTbw36kBdCyReDIoP8lA5EZG4ImoIoIxkENjJ9WddeQ7Y+kTbSbOTpjH0WAj+SYDavdwfkJy33HXAc16D8X77HaiSa2zEDXee6wkvowRihXPhBBH39HyMxdanORjdfwzYCCQGvslC5icIHP4LnDp1Cr1794ZWq8Xw4cOxdavrgFNA4L9Ez/BIOhH2l4diab5jO+YilRJeUgNkYuuBW5ILTEQIJG+WCBLaKcohahAi2IMsHy6rRpba/oBrtFcEclUmVzUjz4JljJAwRsiblejmwELHs40dN6yhBkqJr/snD2Bm/AOo0N2Kr9N+xcnak5CyeshZvcuC9DV6NcSMBAbefoclGa/Xcdbht9qoxhdpc/Fxt/fhI/Fx6roRobBfldEZJ6oPu1zmePVhQeAg0GrIpGLMmNwXXy/bCV7k+EcjKq+HqFZj12p90287kHnCcRIczzDgwvyw5WAGehGr8ZO5+OrR+agsdt1hSm4NlZPbW4kbLKnvEwlZVhXkmVVgazVQ7DgHjggSFFIwWr1VNVBSsZ+IG/xDfdF7THdafe3MvjSHSVCSvAqICyphiAoAp5SD95LCEOYLLqChOhlvEjaQCq2WV44kBklO56OlkEqlH6x9lQ7E6rQGxCZH0WpkJAmoorCF6ngAw28eiOCoIHTsm2TqjHfCyV1n8Pzot9FW3PjUZIREm/p1Enu0Q82mE1YVTXmJCLXjkmEM9mm6uDyg1hmwclcqlByDOjsiB5Jk5LPuDFi9ETIvqUMrcEL3ESm46+3peGHs7BYPXCV0j8Nri56hluICAgIC/3W6DEmmE+GfuWsaB13t0UINoMfEJkfTSq6WGP28wAU6dj8gVHK8W+IGS177cAYeLK3FBy/8gaN70gCdnrpOIcFJNXOS3BDoC7FEBIOLxFpLSBvmtWvfx4LzXzutmkoEDbGdPB8n2b033a1lBIGDQGuhUCpw432j8f3Bc+CCmn6fpAYD6S4gbW7SJGTLaq3a90QYy+jrUVpTj60LdyN1j3OXL8K2xbvRfWQKSrJL8cGSHajwd+BEImKhGpwIv6VHrY/1eBF00b7QdLQtFMcYeEgbQgtGraOxSfMIS6fWIXv5AUSG+6PHlD6orVbhzLY01Fk4PTiCiCBIe1fXORq8X4OLBBF7ZJVCeiKXOkzwXjL74gYZETc0OxqS1B8ohuhcMRSHcwGtvvF4+4ztjjeXPoesk7kw6ElMEk0TgbYt2u1UROK1PwuiGg20yRHgfE0VldlqNWSpBZCdK8E1d49EQKgfOvZJwsYF252e7+Edqdgh5WGMIPdj0z3ZEBsIbZdIyI7lgQvwAt/MwU9EmvWkY8tetY4GWL3p+3Tn5L5U3GCOSSzFZM4gAr4N321AYGIIygfE2whKiODae/MZkyjFRZIcqTx707NT8PLEd2GwcAD03Z4HVXIgeJn9xFf/TTlUCEHo0CcRry16mv6OBAQEBP7rELczMhEWfbwcP7zwW4srWrcW0R0jbRL1OX9v8D5OHKEAVCu93BI3WEKe3SW5ZVS4cXKn+1UnmfNF1OmbulnZg/SxFlq7Q1SX1eLVye/j14y5Tl0USOJsXHI0PGXPioOul/n3oCBwEGg1SP/u1EfGY/Gcf1u0fmFGMXWqTnXDAZk4u6QM7ojcswXUSeViihsImjotFTcERwXSPvLqilqc2XMOdVXuSM4vHv0m9sRLvz9BYxKjwUjd3YjjxYZft1GhSEsZe9cI+nmTmGTH33udLrtv1WE6tRW3vXpjo0MniUnSDtOKuS5R1aqx4ZdtkCqkNMZ0hkQmsescZ4YUupo0azRem/qhS9G3I5IHtKfjJOTzEXBOYaEpd8IZxFmhNcjOtj9uq1QqER8fD4Oh9VzO7eGepFHgopM8dCS6jzWp7C4l3UdPgMzL88FVnVoFTZ3zTjRVTTUOr/kXO//6Fcc3roVWpUJ5Xg7qq9y3OyMQZ4Y+U64H66a7ghkiiDi+aR3aAs6NH67RcGXbNAlcfnS4mUXkkJavX7CLB+tG8a26PJI0z2HXqxdf3GCJrgYoPgCI5JefuIHQ4UaWiqT84hkEdmSouIGgKnXdyUEKM9srzhzcFej7vOnRHT2coY4QlwplFNDtoabXiVM9b1KwKhGeOzEEk3I6Iqk6CInVgRibl4Tnjw1FhxrTwE7Sdc4zSjvNYJG/k/dY3EC+N6E9gWGfMBj3kwi+cYK44b+AXq/H7bffTsUNAgICrukbeA36BIyy+16NToaM2iAbcYMZIggwuSvw8JO47hxSih3/LseGDYWXyDS4auQZOomalzi3g9pYBx3n/AFRb6jE4Ypl2FXyE05UroHOqML52hKUaOohZoyQEecGNx4RmfVZGB4y1a67AhnfqCcZAHbqJxKRw/aynWgLDLyhVZYREPCEO6f1w+BOsaYqww0JMFatX56H7LjJycQeu1ccgFhiP7Y3xIVAPaEntIM7Ic1Lhgdf/QsvfbcBZXr3vse6WD8YgpwP+NX3sBYTsRo9dWywTH6ypKqkBkc2n4RYKnKanEMgSUIk8V52ugDyQ1lQrj4O7xVH4L36GLzXnYQkr6rJqcHIUecG2bZTYF10Kjvjhicn05gkvmscrYJmHiQsy2tydHBmL03WtSeaePLb++nfI2cMgY+LxM62hAg27nm/qTLctQ+NsxHE1I7rDGOIhbiB0GQyBJWIhdfhPHjtz4Y4vwri/Goo9mfD/68jkBTV0Gsw9RH7lWnophgG01+Yhh1L9nksbiCVo3qN7oqPN72B7458Qi2qr0r4VpoEBAT+k0x5eByuue3SV5K+9sGx9L5tib3k3+aUV9VDb3Aeu5QXVmLJZyvx4yt/YO1PW6CqUyPrcAaqD5wFezYbbGaBY5cIC86cyMHNz0+liT+eQEQO63/ZhrZA78aAtieCDAEBd7jzrZvRL8iXxh5GCaAOAFShgDqEof9rlYDkdIGLmMT17yjjaBaeGPQK3pnxOUp97IuozRgDvWAIMMUi+nBf1A9oB9XgBMgyquC35hykOdVga7UQVaghz6qBV2Y9RKV1kB3NgfeqY9RtwBHE/e7U2qNgqlVuiRvMiPMq4LX+OBRrjkK+/ji8/j0M2dFsmkxPYOy0bYlrgzMxu659KDgpa9X0vv6JSbTCckK3OHTonUjFDYSyfNdjwX65lfBdfhQ+Sw7D5+/D8PnnKBU3kGT+R766ly4z5s5h8PJ1npCvGpRkigmaw7LQdo+BYk8GJGnFQMP9iFHpID+aB8Vp5xWdpBUGdDYA9103oHHelGYxiTsYM0rhu/QI5IdzIC6shrigGvKD2fBZegTi0jowLIMpD4936mo3/flp2L54j5W4gR5jiRphP5+CpMT6O8TW6RH4TwZC0+vQZ1wPfLr9bXy9/wOEt3PPVfuKQ4hJBAQELoAbnp5Mq2Jfaq59aCxNLrWEV7iOSUrKalwuU5ZfTpOxSUyy/petUNerkXkiB9Wlrte15OyWk7hlbFcqcrBBb4DkUBrtI21OVUk1tvzRNuMkep3rvmNnCbsCAi3h3g9uo4naLYXEJCI3YpKzB9Kpa8OHd3510cUNlpC2/Zn96TBo9JeduIFw3eOTaOGGxO7taExiTp4vdWOcxFGsMXBKHzwwZyb9e/w9IxvjnEtBh76JuOXFaQ7HSdzBlbiBOFBMfsCx0w3pi7rpmSnYtmiPx+IGbz8v9JvYizq8f7n7vcaCVlcdrRyT9OvXDzExMU6n1oIIHCQSCRVMBAc3FWmoq6vDF198geTkZHz++edoKwQHh8uY0fc+hKS+A3B84xpU5OeBYVmU5WS1+n5EEgmMetsGW1y3nug54VrUV1fh4L9LPdomK5bgwIolqC0vg5efP5KHDEdkB1PVJcK+ZYuwZ8mfVvvdOP8b8JznVc3VNdXYs/gPBERGI7JDRxSlp9FkCpFYgtLs807XzU09DsC1TZqnRLTv5MYy9m2fBQRailHLo95xv7xLOD0QMYDBmT8ubeaAPBhuCye0VUC+8+I8l+wcooba7+j3CiHznV9j70hg5OcsMlfzqMogzg9A9AgGYX1MCTQEkZTBwLcYbH+Wp44IFwpJ+PdEJFCXD2StARKnmF5H9GfQ4WYG5xZ59v3xDxVjZGk8RhTG27zX/WEGHW5iIVZwSP2Vp99Rq2OWAcfmcU6/9xJvk1iECGIsIedacgQQKXiE9uTpIIHA1c+bb76Jo0etq6UJCAg4hjxzbox5GF39BmBfxUaUawth4MXYVqhGvsoP/grnwgXyyCIaBwMZAXcBC/sdP70DumJ0+BDkqouwpogk3TDQcyJo3QhlFawYR8vnQ20ogbckEPE+4xAi79z4/p7SX3GgfCGMFq4L6wu/wsHKKBRrfRHnY+r4dufJVqGrxp+56xDnFY8uflHIUaXTAX0jL0FGXRF1l3DE6ZozmBThOHm2pcR7J7XKMgICnqDRGVB4nlQNsah0Sd1cSOVRPbwOZkOaU+F0MKn/5N5Y+sUqq/mGmCDo7NiUk2qj2iHJkG89CdZFpR19iHNxA91PqKnAQ2C4PyqK3LPRJU4I7lQCs4elk4Vo1xnwMgl1EiBVWkkV2QshPD4U/Sb0tPtesBsdxDEdI/Huqpex5n+bkJ2aCy8fL4y4ZTB6XdO1cRkimCAVPl+Z+J5bg4WucKdKkCU5p/NptdZxd42kr4de358mwq74xlTMQt8uEMYQ5wIM8t0MvSYF9XM3w3i0mVsGAzz61b10mxKZGAs//McqCZM854gQZO6j/0NBRrHDfSgDvGlSV3MRjLpOg8MbT0AZoESPkV3cPm8BAQGB/xLk/vnCr49hxPTBWP2/jbSSIbkBE3ei1sZRJbqhN/SnVflIRfc185ucixiN62eW0kuK/z2/gIoLifvRmDuHI6lnUx/Y/Jf/wOJPVtAKgmY+f+BbGA3W4ySM1vW+StMK8ceSXYjvGkur9Z09kAGRiKXPuuxTzl26j209iesen4jWpnOyyR3QGcmdrlKBn8Alg1TFr9yXDjZIhvrBUaZGmxmWgUEJ1AyNRuDiKrB6zn5MMqk3Vn63wa39ccQJTOS6+I8hWAnVoHgYIvys5hMhgc+ms5AUWndg+wX7otqNhERCSU4ZrbLcEtg6+4MC4txy6LrHWZ0b56p7h2GgTwiB6JhJ1B7TKcphO5dUeXVFuy6xNN4gMUnu2Xwo/bypyNpcUZtA3Gde+fNJvDHtI7uCKaOPHIYYJ5WiWAb6dsHw2pEGfs95SJQy6Ou0NBYQ53nD4K+APspWHOF1pAi+WzKRx/PYPq0/fU4RRs0YSkXwa3/cDE+IiwtB/qlCcMetYxIybvH09w9i/D2jaFLR35+utHpmkL47iVSMObPmmZ6RdpDm1iFxXQHUsT6oqa6DuEYHRVoVGCMPkn52cN1R6k7YtcE9SUBAQEDAGpIU++pfT9H+PxIPFGeZBHBZLtrYLYH0PxHn2OYQ0fc1M4bi4Nqj2PT7jsb5xHXWFb5KOa3sXlFUiZDoYIydOYIKDwkkr+q7Z3/Fsi9Xg2sQORI+nTXPJiZxh6LMEvz96P/QYVhnxEzugzPnS2hMgoJy5G886TSGOrr1JCbOGo3WhiSZ/zvPeeHb5P4dWn2/Av9t1LUa6ljdUkhMMnhaP1pZ/1JC+rXdFU7kpxXS6XKDOCenDLKfn+lOIn37Xgl49seHsXb+ZuSlFVCXBHJPNjuPmmO3FxY8hnemf2bVVm8pnrpznjuQQZ9Rg6b2pa9J7HBs2ynqmO4JcZ2jqRuI5fPALKh+7qdHMWrGEBp/ELdVy2XIPFIE7MOZXzmMSQi+QT7gOM7mO1VfrcL+1YcRHBmAzgOE+/HlyGOPPUZzraRSkzgoJycH33zzDebMmUPdG0ih2aeeegoKhQIPPPBAq+9fEDhc5rTr1pNOhLT9u7Fiznutvo+RM+9HdUkRTu/YQl0X/CMi0W30eHS7ZjxEYjF6TZyC1O2boap2b3CfwBn0OLTqn8bXR9etRGKfAZj85AvY8efPOLxquc06LRE3WFJZkAfeaMTdn30LViTC1gXzXQocyABJWxDbtTsCo2JQkW8/qGEYFj3GTW6TfQv8NyHB567XOFQ7/8o7JTCZQXBXBsHdgDKi/blEUHGDaw1AI/yF3TraBJLs74jQXoBXGKBy3K5D/HgG8kAGybc7T7onAoPWEDcQPHVAIJz/l28UOBC6P8TCL57D6d941BW49xlqK4GoIabroS4nHfag38HEKQyqM4ANs4yozQNk/oAiFHSe+ViNWrgU9ehdxFuFu4Gi/UTc484ZC1zJ7N27Fx9++OGlPgwBgSuSjr696ERYnX8Mv6X/Tf8Wmz3sXZCn9keCt/OB9qnR9yO2qgY7yw6g3qhGlCIMY8OGYVTYIOqKMCVyNHaWHUStgdzYGag5GTRGMeQi+wm1/qJ6hEhqcbb6z8Z5p6sWo53yGgwJex3rC3/AmZqmeMUMyxjQNyAbu8rbQdRwfjwY2tZy5uSg40yhdbaqmAo6Pur2EViGxa9ZvyGtrsTpubNtZKyY4tsdIbJQlGpLHO53WHDrDxgI/Hcxchye+vIfpBNnEMsEn4bfDnEvkGY4r4DZqV97mkDfqX97nNmXRueRX6K+s5NKIxIR9B2jIDuQ7nTb7ggGaMX/UYmo5XjIvFhIMiuoUMvleo5s1y2XIclU0YHglDIwWgMkueVgmlXXJIOS7gxMukP/iab7tj36ju+BwIgAKs5wBBENBEcG4o7Xb3K4DLk3ksSd1hA3EDwRN5hZ9f2GRoED4bG599Gkzr8++AfpSS6SphrizvJqFUZN64vSnDJUFlfTJCJiqT3p/tE0OfSBHs+iIKMIAWH+CIkJQvrRLHqsxHCD/O9M3EBwNQhEKq0eeeAEeo5qEo9cTZDfkJtNBqfbEBAQ+O9CBkoHTO5NJwJ59sy5b16r7+fpHx7AuYPnseWvXVDVqBCXEoPJD4yllfjIOML0F6Zix5K9qKsy3deJyxNTowLv61hEqTmajaXHm2zciYjzmtuH4pn5D+OLB77Hup+32KxjL5GIzS+HMalZorbNMqaYi1RaJZXzfkw1VU6bc+83LgUOZLC6LRgyqD1Cgn1QWmbf6UosZjFlsn1BpoBASzDoDXhpwrvIzyiGanhPh78ZQ7gSqu7hUB4ssBuT9JvYkybCnD/W9Pt1CBlnJA1DF/aP2s7hdsW3vFyC2jHJ8Ft6FKxaDy4qCJy/EuU8cdxmwRRX2fGDtEMrt5cYnQGS1Dzou8ZazHRT8NHAwIb7tqOKpyTBxZkTHmnnh8YEY+Zb0x3vj+OwZv5mhwlAxjBfl5+NIdyX/k+WIuIGXUoktJ3CwXvLaCIFW6wDb9DRWE1cqYbieDEkFWqrmMQscCA887+H0L5XPBZ9soKKT9yJFyuLqjF4Wl+UZJehsqSafvbE7W3ifaNxatdZzOr6NIqyShAUFUDjtPQjmdRBjsRkWrXOYSJRfbcQ1A6OhiHIVHmW0QbD60Qp5BnVVOBghgjHiVtR54FXZ3E+ISYREBC4UEg8QJKNyURY/vVazH1sfqtf2Od/eRQntp+mfUWqWjUVIkx+cCwVJZC46NaXrqNJrOQ9AlNRC9RrgAbXVnvUHM7AP2ebHHWJexxJfn3i21n4aOZcbPlzl806LRE3WHJ+eyrkBiN+2/kOff3ebZ+jwIVAvK1ikuE3D8IPzy+gfX6OhO6TnFQlFxDwFJ1Wj+fHvE3bgS2FxCTkfkMcjEmRn0vFpXSFaC0GXtvH4XtDbuiPuY/Ph8pJ8SwSkxCXs7tm3+JwGaPRiHU/bWkVcUNLnS5Xfr+hUeBAnhcv/PIYdasg93ziVOFWTFJSTbdBvrvEWYcIrHuP7UGfGce3peK+Lk/R94gwJDDCn8YkRJRHYxKV45jEjCsX9NX/20TdJywLg1xNtHZMsn//fkREXJyiIc33Exsbiw8++ACjRo3C5MmTqcCB8Oyzz2LatGkICwtr1f0LAocrCN/g1reFDG2XiC4jx1Ahw7Db7ra7jE9gMG5+432sm/c5CtPOtnhfGQf34udnHkZ1cdsp9qqKC7Fo9su47vnXqTDk0MplTpeP62Ya8K8pLYFBr4NvSBjEEudWsu5AHhZTnn4Zf7/zCuoqK2zEDaPueRBh8bbVJwUEWkrxAdPUUkiFe5JQThj0NovNj3C0Qv8l4wpPXkic6rjDnCTL9Hycxe7XOfB22qV+iUDiNNcjBWUneGStubQXqiaXx6v/nMCOtDI6htOZDUTnrbGIqDcNCLgDESnkbTX9TcQNXWcxaH8Dg52vcFbfabUGUDvPh2sxWWs5RAxwXV1c4MpFpVLhzjvvpMGlgIDAhRGu8G/8m+MZmOqBOqdU54MSrRKhsjq774fJk9HVfzS6BbCYGX+j3WVC5UF4K+VJfJ2+ABn1pmqtJTofxMgrbcapvVktQqX2O0my6jYhrS4HFbpiSBz0l5PtdVSWocRofp4x4MBA5OBc9RwLA9+0sXx1AZ499D+802Mmuvh1waYS26QlS7r6maoZlmlLYeANCJaGQMxeeKhOBBaz4p/E3PQPUWOothE3zIi9FxGKqAvej4CAmR3HzuPgGcfJc7oOoZCfLICoxr6yllSdNFvcvr38BTw24CVaEY0LVIJXOh6kIxijAsEfZMCQRqkD5OmVqL6GA8ROBsvkUmiSTR1vmpRwiMpV8FuZClGdZ4n3RMyg7hQEbZwfTXaS1BrBhwUDFjby2l5xkJ7Khyz1Amz4nPRJENt6R4glYjzyxd1495bPwNnp2O7YN9GtimmHNx7H5jayj3cXMsDz2f3f0iqpBL9gH5w9mEE77I2dmqxynaEprMKOtafo3yQh9IFP7qTihlcmvYejW041LVevdcu2uiWQBNerVeAgICAg0NqExrp3f/eErsOScc1twzD69uF4+HP74yRRSRH4eNMb+OTeb5Bx1OS0LT2WDe3gTk3OVRYw9VpIzto+50kFvVO7z6LovHMhtNW2NDqwmUXgEuwPXDJFlWDKmyq9k0HmVya/h9cWPYPeY7tj7U/OY5I+Y3vQ//MqqmHgOEQF+EIiuvC+MrFYhNlvXo/nX16EmmYJA6SS6wvPTEJUpJPK6gICHrJjyT6k7j4LXYwvjP6mhG5HqLuE2QgcpHIJbQeTJMb3Vr+CR/u9iLJ8xw50BFajh0jDwahw/JthDLxzZzGpCJqeMRDLfaxiBmNcKJjqerAZBSbnB4mYOteJz5fQ/XoCSRpsXonTFdIzBVScrU+OBE8SJ3n3XerI/pwlC0rlUjz02V00sZIkxDQnZXBHjJ053OX+9q06jJ1L9+GCsNi9ekAC9B2akjHI3V3ESgCpBNLzRVDsN93/Lck+lUfFZMe2pdI+JZ9AJRXM2TsvRxDxHPn+miu2Eie5a24fhhfHzaYCB8uYhIgg3KG2XwSqx1onB/EyEer7hEMf5oWQ305ZiRxIUtbVKnAQEBAQuBJiEtJuH3HzYDqRAh72iOscgw/Wv0b7woiwmTynxKk5MPRpb1/QV6+B6HyRzWwiGj+65QSKMtto8B2gbbI3b/gYL//+BI037Akp7MUkheeLaZJwREIY7ae7UKQyCd5c+hxemfR+o1jdsj/6xQWPuVXFXUDAXbb8uRNph1pemVbuLWtw7xLh/bWv4tH+L6HSTbfpyx2xVAxDKxVLcgdyDSfd7zgmIQ7VD86ZiU9nfWv3/R4jUzDy1iYhsyN2LtmHvSsP4VJCngkf3TUXJ3acprEYcb87dyjDo23UlNU2xlbk/vjEt/dj6A0D8Pzot2ghKDOa+lIUZ7fN84PEJFerwKEtRAfR0dGX9BjGjh2L119/Ha+99hp9XVdXh59//hkvvPBCq+5HEDhcQYQlJCGkXQJKs1w/CBmWhV9IGJRBQeg4aDjyUk/g3N6dVi4J8T16Y/wjT1NxgyuComIw4505KMk6j7LcbEgVXpAqFNiz+A/knTYNIrtTcr0txQ1m8k+fwpJ3X8fNb37g9HrJfXzh5eePBS88gZIs041Y4eOLrteMw8AbZ1BXi/3L/0ZR+jn6Xmh8IrqNGouYlG5uHUdQdAxmfvINTm5Zj7QDe2HU6xCe2B7dx05CSGy7VjxjAQEgeyN/QeKGPs8x8IkxBb2Fe/hLK27wEIkPoHcu9HQPkudk0b8v9QUMKuJI49lmut7PIKC9c4FC5CAGwz5icepnDmUnTPPEXkDcaAZdZjGQeLkWOGSuvvQqkHJo8NteU5IpIQcqrO+cj1vOd0WP8ggw7tWWsnLjOP4dj+rMCxPseIq65eJ5gSsEohROSzNVgR48eDB27XLeiSYgIOCYXoFxiFcGI7OuDGqDGD4ix0m/IoZFmDwYIXJ/DAy5Hjy3AZl1O8E3PnAZtFMOxKjwF6kI2BVx3lH4qPuLyKjLQZ66EN4iL/hJOGwu/gs5KtNgL3n2BIidVxRh+XRIWFJl1fFzKkReh/waP0hEZhcHFkaeo4IO8zgBGafW8yz0nJjOJyIIMydrUvHQ3t/xv0F3IlIRiQK1/QRmX7EvvMUSzE59GflqU2K4j9gXw0JGYWLEVNTqsnG04k8UqNOh4aTwlnRBv6AxiFc2WZ86I9orFq92/gC7y7biePVhKqCI906izg2CuEGgtVmz57TzBRgGusQQKI7YiiBIAgepUBYWF0Jf71q2v9HunTg0uIRU+BIxgMF+G5knP0+WhdfJEqh6hNvfBgewzXKEjEFeqJ6UjICFx5y2bL39vKiNLkEfrED5zZ1h9JNZLcPoeXgV82g0nhGLoOseS50lpGnFjWJoy0o6fqG+qC5pSlZ0V9xAEoXIgKczht04EIpVCvz29mKk7jH1e3j5KjD2zhG4+91bIfeyPn57uEqWvBiQ604q+5ghg6BmiJiGVmx1gazh+hPIAOo3T/5EO/8txQ1tzYVYlgsICAj81+gxqgvC40NRlOlaIEDaGGHtQhEWF0yra+/99yD2/HuoMemUZRkMvq4fdVQgz1BXkEHWbw9/jDP705B7tgC+RIgZEYD//b0HqemmxCGWYcDklEF6PBusA2cmd8QNnLcUPMuCrdPQCm3ic3kwanQwxocDiobntE4PNrcUovQCm7bK/tVH8Ma0D/HOypcQmRjm0HEoKDIA6m6huPaLX5BRYkrkDlZ64db+3TFreD9kncjG4k9WIO1wJh0k79gnkQoB3U2C7dg+HD//cC9WrTmOvfvSYTBySOkchamTeyI2RkgkEmhdNv2+nf5PXNNcYfSR2lTvffmPJxEUYRLdbFu426W4gcAQ97f0Mqg7h4InMUlziBNDrQbGAOeCC118MMQV1gIEcqcyhCrBR1r/3nQpUZAdyoLE4l6iUMqhrnNs0+yuuKF5TBKq1qFi9VFwfl4wBnlDNTTJ8coGDpKMMnpvffzr+xCZ6CD2amD07cOg9PfGb7MXNybMkNfj7hqBmbNvoSIIV6z7abPT98WF1aRCh10hWtMypoQxY6C3lbihObpO4ZCeK4aoyhT7WVY6tYqNXFQudadi6xcP/YDj21OtxA2ewMlEqBlh4b7RDCICUnUJgfexpu9QuROHPwEBAQEBa/pN6Enb0e7050hkYoTGhdAK4CNuHoQdS/fiwJqjVjHJsJsH4envH3DrMif3b4/vj81B6p6zyE8vgl+wLwyBPvj5r904m256BonI8zy3DKLTOWD09pMd2lLcYIb08b590xy8vvgZ/PLGQocV7UmfsEalxT3JT9A4ixAcFYipj4zHzc9PRdrh8/h7zr/IOJZFE5Y79UvC5AfH0djEHUjsMj/1M6z6fiMOrD1CHSq6Dk2mBWKIkF1AoDXZ9PuOFq8rU0jx6sKnqdMZYfPvO64ocQM5fuIu5gh3xQ3NYxJXbtT2IP0XT//woEsB04R7r6EC5T/eXUL7PQjkNZl/55s30WJRrljrIibxBNI35YlQ2kxZXjk2/Lqt1Y6DuHZ/et88HFx3zErc0NaUF7qOwQUuLx577DG89dZbMBhMv++tW7e2usCB4VvyqxC4ZOSfPY2/33kVBp3W6XIjZ85Cr4lTrebVlJUi+/gRKnKI7twFgZGto+IhQgBVdTX2LPkTmUcO4nJh8C13ImX4KCx9/02U5VhX1CDCBuJcsf+fxXbXJe+rqu03EjoNHo4Jjz4Nlgec+ikAAQAASURBVBWqfQtcPux40YgiD4rUKKMAkQII6cpQtwHfOFPnLmkkrrmDQ33rFxFtE+RBQKdbgaNz22gHrnVbFLE3ENYLSLqeRWgPz5L61aU89CrAKxQQK9xfd9szRpQcRqtAXCOqW9Am3RSZgbUxpqRxS1gO6FwZipnpJpccT2GlAOdZkdwLImYkgwGvt43t5X8dfT1PnTcMavL9BhQhgMTbs9/IhbJ+/XqMGzeO/k3+v+WWW3D33aZqjMOHD6cNbAEBAc/YX3Yej+xfAD2nR5B3PcSs/Yfl4+1vwqRI68oWNfoi5NWTKhY8orx6wk/aOg4C5doiqIw1WF+wACJuk91iRZbUGuXQ8847pQ5UxcJL0ryzrelcDRwRPTTFBKTonUKkh4w1wMixKNd4Y0bcLRgW1gVzzhILZmuxt7/EH0OD+2JjySqbfRPPiH6+GsiYJutouk+eRZYmGJ38JuCmmIfcSsISELhYPPjxYqcODgRGpQer4yCqVSOeY+BbpUbXIcmY8vA4RHeIbEwwvz3+4cZkIk4hhWZCT/tVyBq3q4V8zRFbEQLDQNMtGtr2oeBJkiD5HYn00PuLTaIIM8TYQevYHtZvRSqkuVUOK7ZNfXQCtTrnxSyKH+gJo6/9hCoiclDm81bHyah08F5x2OG+3e3QJiILUuntuscmoMsQ90RQZogrAbG2J4OJ7ggbzDwx5FVaja01SOweh4xj2WhNDCFK1E524opAkkULqqDccMbG/YMMPhN75YvFmJnD8fxPj+JqIS8vDzExJpFNwlOvQ+Lb5ADVEvQ1VTj/2dv079zc3EtemUhAQODSQ5JSXp/6IU0CdcZzPz2CsTNHWM0ryCjCUeL8wzDoOaoLrQzaGuQVVaKmToN5s77FmW2pLd6Orl0QtF2iwAV4N7YVpGeLIDuVT9sL5InFKxX0+Jl6NU2udsYT82ah1+hueGnCuyhoEGGYCYkJQs9PbsRPRxsqsDQjqpoD/81eu0JP4rz1+DezhJhE4LLi8UEv4/TeNGhj/VB5Y4rTZcXVGnTfXgAvHwW6DU+hMYk5IV+v02NGzIOoKnVPbExiFvWYLtD7ycCRnHwSuxBhgwGQqozgs0ug7WaKd5y5PHiVWd/TDFIGvMRBHMTzUGxJhai0loqYxt41Ej+/9hfaGnWfOGhT7JwLzyMktQhD2kdh2mMT0XlAB4+2W5JTCnW9FuHtQiAzi7jc4OE+zzcmIjlCNaw99O0cVNrmOChXn4Sooh6Rs0bgtNb5+Ls0tQCKg60bt7RFhdv6HqGonJzk/FyyqxG64JTVff2JeffjakGISQQEBNqa3SsO4O0b59C+TEeQfr2X/3iCiq0tyTtXgGNbT9EEXNJWNxd9uVBy8ytQV6/F53d8ifMH0nG58PzPj6JjvyS8MvFdFJmL2jRAxOv9J/XC8rlr7a7rLLH5+icm0UIvAgKXEw/2eq7R9dElDHGLDIeXrxd19yWiGyKGIhDRz63RD9g4j7SE5oKBtiCuczSGXN8fv7+zBJcSnwBv9JvUC9c9PsltEZQZ4kpABBokJnFHbG3m3pQnqdN0a5DQPQ7nW3mc5EIghUNc9b21Jlfbff2/EpN069YNJ06Y+hZTUlJw8qS5WH7rIDg4XGFEdUzGLW99iN1//4HMwwdsBrl9Q0Ix4Ppb0HXUWJt1fYND7M6/UPxCw+nkSBBwqdj1168QiUToMmI0Dq/9F/WVFZBIZYjr3gtDb70Tvzz3mMN1nZ3LmV3bEBwTh/7X3dxGRy4g4DnKSDcz8RsgDg0xoxj0eJShjVkzVWm4YsQNxLlh6Ics/BMZcHoOx+fzQGvnn7i4pCIZaGI8cWRoKYoQBs5rN9lHHuTZZ24Pr3Ag4VqgoAXF7CulauwIt9+w5ljgZFAJNqrSMbrAeSe63fUvoriBED9RSA5tTUjbpPQokP4Ph4KdJmcOM6RAe9RQIHEqi5Aepo69tqSyshL33HMP/dvf3x/z58/Hhg0b2nSfAgL/BfoFJ+DHgffiu7Qt2F16FkqZBnKxoTH3OEIehNvixmFMeD+bdX0l4ejsP6nVjylIFo4ghKPOWAV/NzRrrvrxVEYJag1y8NDCW2JZddV0kqTwIccTvwiePo1FDA9/iQZsQ4ayhOUQpazGtrLvECifid7+I1FWvBX1hkooxFL08O+K6dGTMPv0S3b3315RAhljm0ghZjjEy0txomo9whWxGBYy2fXJCghcJGJC/V0KHCCTgJcCBqUMRCY7afpAPHTfOKs2wel9aVaVUlm1DmxRFbiGSqr2EJ8vtkm8M0YEoH5QAjhlU0c0WUZilEBcAbCFpRAX10DTIRRciKkikiN0sf52BQ5+Ib54b80riEuOhl6rx3fLtzsUNxBIcpLBm4fEYkyC95LCGOQDcZm1LR2nkMAQ5mNKwi+sBquz34lMKrWSqk6kclxLaakNe1DEhXXGEkgy1sRHxmPDoTTUhSvBS0QQVapoIqe4rO6Cti0urYPsZAG0XewnYEmyKuC9Pc1G3EC4mOIGwoR7rrmo+xMQEBC40uk7vic+3vwmfpv9Nw6tP2bzflT7CMx8azpG3mKdSEQgCcyuqoq3hOhwU1ulykFVUnfQJkdA08fa/Zm0FbQ9Y8EFeEGxI422Z5g6tdvb/PLhH/Dotw9g7OwZ+Gf5IVTVqKEQMRjcMw63PjQKk7/+zeG6+X4sghL8IT9v2w5a+d0GJHSLw7UPmYpKCAhcDkQmhVOBgzS3GmyNFpyTtrn8ZAny04ow6f4xeHDOTKv3Tmw/7ba4wRyzKDaehKhLLAzRgYCYpR0P4sJKSE/kwigXuxQ4iHTWbVIqZhK7cMjrGIEosYjGJKT6MIlJ/vrwHxjbMAGFJPcTMYC2cwSMQUrarvZT6fHuG7eif0pci7cbGtuyxE6S9Ag4FzgodmeAk0lgjPCzfsPAQbE7HXHBvpj01i1YWlgC5DkXOPAK9xOdLpSWihsIRos42BGWsTJhwn1CTCIgICDgCYOm9MWHG16jybxHNtkKhmM6RuLud2dg6PX9bd4jhV7MxV5ak5ioQPp/Za4pJuFJHojSy9SwqFPZ7QO7GHx8z9d46rsHMP6ea/Dvt+tQU14HL185Bk/thxufvRb3pTztcF1nVduXfrGKJgOPu2tkGx25gEDLYhK3BQ48aEwy7bEJmPXh7VZvkcIMrSFuoLtpY3EDKQJF3COJWIu0Yf/+9F/qlHIxIa4Lb/z9LLqPcC50d0ZLxWYkJrlQgUNschQmPzgW/85bh8uJiyluIIy/d9RF3Z+ANTqdDllZWTh//jyGDh0Kb29T8RVXKJXKxr85rvV/+4LA4QokLCEJ1z3/OjT1ddCpVfSBV1VcCIlMjvDE9mBY64ye4swMnN6xBeqaaviFRVDnAiJ2MKOqqcaJTeuQtn8PdYYIjU9Ej7GTENmhk0fHpfBt1jF0GbD995+sXhv1epzdvR2FaWeg17g/CNCco+tWou+UG8CKBBcHgcuDhGsZpC/zrFGau5lHSDeSaNyUCmRw7GB82TFqLuAbazr2DtMZpP/DQ3Vhzr8ek3wn0yhuIEGBpVikrWk3jkHOBhefOQNEDAAiBzMoO8lDVw34JzGIGgJIfRkwIh7bn+VRm+PZvitjajEv6DDqJc6VCOti0lHgXYshRXFoVxtAU0ALvGoQo7rwRKjWImIQENr7Uh/F1UPlOR773+dQ4yBmJ2KHvG1k4uDbDuj3EouADm33u3nkkUeQn28KJr/88ktERbVOpXgBAQGga0A05va7AzU6NeqNWuo4UKQpg0IkR3ufaLBE0WRBalU+VhUcRa1ejVjvIEyN7o0QuW/j+5W6OizP24sdpaeg4wxI9o3B9TED0cnXVNXAXZTiAKj0EniJLEUJ1pB+vGqDAkqx42Xy1GSAnEGdQQ61UYwAqRpiloOBI/cslgoZRMSyqEHYRZwbzOIGKxhgad4vyKoPhJaTmEJwHYc81TGcq02Hnrd9lkoZPcIkjhMpiJgiWFKL3WVrMCR4os21FhC4VFw3vCuWbbdf/bcpQ8d61qqdqejVMRrXDuvSOE9Tb5tQIj2SCa2vF3hv2wQltrQa4jRrhxRDfCi0veLBKe3/Pmj145BAKLZnQR8XRAwcnOOgufLtkY8RHGkaOLz1pevwS6HzxBp6bAoGkvpmF4IkQDXAS1gqzNAlBhOP+oaVjJCdLYHXviybKs33vDejUdxAOg7ZZn1CbcnYmSOxY4lzK0ESIw28tg8GTO6NY9tSUVdVhw69EzFoal/4BCjpZ/rIx38jV8QDYabnAhfoDX1iCGTHciE/lme7TQYICPdHRaHrQhteB7KpUEJDErBCTAlY4oIayI/nQVJsLSq5VAy/eRC6DvXMdeOKws5vv0XbEBAQEGhGl8Gd8MHaV1FTUQtNnQZGI4eizBJa+bBD7wSbogqpe89hy587UV+toslE4+8ZicAGUQKhoqgSK7/dgL0rD1KhW6f+7TH1kfFI6hnv0bUPDPenx+HOrY0P8gUvFYNR6wCNBpqesQ6XJ9XHxUW1kJwvAUMU127CicX4dMEuk+tDAzqOx+r9mditWQaDyPm2VN1C7QocCMu+XC0IHAQuKybNGoNNv+2g7X3frZmomtwRsNNnLypXweuoKYZY9f0GdBveGaNuHdL4vrrO84ESVqWDfH86+CMi8HIJGK0BTEOCOlsDiEpqYQx1IKwm4luV9W+RGka6KA5jDPPD90ufh1+waXz2jtdvwsrv1qO6tG3budLzZXTiiSsez+O5Hx5qFDdwHA/2Io6TEJeefaucW12TUGOCrw963jQMB7OKUFevQUqHKAztFAM/Lxn0MgkefX8x8svJB+X82ImrDv2fYeAf5ofKosur+J8ZUbXWo2XG3TWCxmlXLUJMIiAg0EZ0H55Cp5ryWmjqNTShtyirBEp/b7TvlWCz/Mmdp7F14W7qpBqbHI1xd49EQGhTnlVZfjn+nbce+1Yfps4QKQM7Ysoj46mw2BOo64HcCwgPAiQNaYF6A/iCUiCnyFFXZ5tB8ig+nfWt1bzqUj1W/28Tjm49Bc6D+MaeyEEQOAhcTkyaNRo7/t7r0Tr/fLUGPUZ2weBp/S4oJrlUfH98Drx9vejfM9+ejpU/bER9ZeuIM9yFOEyaxQ0Xf5xkhMkp1AkiMYvB1/VDn7E9cGTTSajqVOg8sCN1sCHjJDq1Ds+Pfpu6bbsLiUlIEa6qkmpcDRBXxfgujvvFrngu85hk27ZtGDVqVKNAYeXKlZg0yb2ileacLEJ4eOsXlREEDlcwcm8lnczODc3hOCPWffM5UndssZq/d+lfGHbb3egz+TqU5+di8exXqLuBmfK8HCqIGDrjLvSbeiOuRmpKXQ8wOKOusgKVRQXw9g/A4dXLcXLrRtRVlMMnKARdRo5GrwlTIfMyPbwFBC4GfvEMku9gcHqBZ0+zU7/ySJwKFO3ncW4xh5Ij7q3nE2sSVWSu5lHjOoenTfAOb2qQ5m25+OIGQskRHvX5HHK38DCoAZ84IPFaBonTGLANHeGcnkfuVh75O0zL+Ldn6DLeEdZdB/VFPHI28tBWE0cOIHYMA6nScfdCWG8GUcOA/O323yefa9dZLCTepm0k2Gl3bH+e81jcENgZWNM3DZVn3BOJnQgsphNNIiODH5wIbx0bBbHesUBM6gvo3C+QRVGL9OAH1SGqNACVZ9xfr/31TJu7CPxXKD7IY9drHIxuxtpEBLHlCQ6DZ7MI69P6n8GiRYvw559/0r+vu+463HHHHa2+DwEBAcBXqoBvgxdRuMKU5GuJnjPi1WOLsaHQumPn+7QteCZ5Iqa3G4D02kI8deQHKnIwk1lfjDWFh/B4h2txU2xTkoErSjTeAO8NL5HjAWYVJ6M5wwaepY4IzSnS+CBPYxLjBUhVdCKODARS4EjHiaCmYgXTvYtsg4gOHEETcaVqFGnIOk2Uakvgb6egXqBY5SqHAX4iNfLVJajWl0PCKrCxeB12le1CjaEagdJADAkehmtCx0AukjvfkIBAK9K5XTjuGNcbC9Ydsn2TB8jPzd5X+4dle6jAYe/KQ1jy2b80Cd5eRVT5lhPQJ4bDSCp7KiRIaBeKa0d3xcqnf0GBRdI/cQDQp8TCKHXxQxKx0CWGQJJfA320cwEuWcZRAqOZDb9uQ1lBJeAXDI8wcmCrVKZjB1A7NhmG5pVFxSJoUyLAKyRQbj5n9dahDcdw7lAGdizeS22r26XE0ETDSQ+Mpq6WBJ1GRwdPd/2zn1osk6TPyQ+MsamSWpBRhM1/7ERtRR2iO0Rg1G1DGwcm7NFvYk8qXCCfnT1ueHoy7nzjZnj5mJ4TE+61rQj64PuLkFts/56t7R4DUWkdJAXW73cd1plaI7sjcCBIM8vpxDeY4FGpmoh1KmzxDfKhg9Oe0ntsd1SX1SD9sPuB8rTHJ3i8HwEBAQGBJnwDfehEiIgPs7k0Oq0e7936GXb9c8Bq/oK3FtEBcPJ8Is/Sl8a/a3XvzzqVi/U/b8FjX8+iz013IUILl8uEB8LYMQawqARuYA20feIMXc84IC4CbF4ZROfybISPdvfVKcZK3GBJXnkVEOq8iJPRx3EV8NyzBagkz3GGwdLPVmLDgm2oKqlBeHwova5THx0PuZfjCvoCAq0NEY0SYdLyr9dCnl6BgH9Oo25QDPThDcICAwdJmRqKc1XgyXdTa2qH//rmIipw2HA6Hb/uO4JDOfngXhkARXolfHYXQJZr2y4kfcqkYjBJYPrzg2UozSXtTQaGCH8Y4oLByyRg6zSQZBRDVFoL5aazqJ2QAs6/2e/RyEGRVgHW3/OiQDShpUHcQCBJgm0tbrDaf8P9bvfO09irVmPL/jTo9AYkxYbg+tE9MGVk10axg1atxZY/d2H3igPUaaJj3yTqntHcTS7vXAFdjlSrJVVMR80YAoWDexiBJAn1GtMNhzcct/s+EaKTybyNa+0sc8/rv6OwtIbGCVRY4gRpuml8uc+47lDXay9I4ECuDRGEOMI32Ac1zZz+3IHEacVFVditNoBXOE4F8T7SNKg29TEhJhEQEBC4EEg/EpkIEQm2MQnps5t98xzsX22djEHaIE//8CBG3z6MCrJfmfieVcX2rJO5WPPjZrqMJ0n8fMc4IL9ZwisROsRFADIpkOZhgkAbUpBedEHrnz+WjfoaFbQqLZZ8uhIbf9uO6rJa6ho74b7RmPrIOEjlF8+BSUCg95juNB5eM3+TRxfjlzcWUoHDtkW7seyr1UjdfdblOqS4UFKPdpj8wFj8+OqfqPbAha61IMdgOYaw4ut1F13cQNi1bD92L99P/ydFK5J6tsOUh8dTIZk5H0hdr8Hm33dg76pD1GmCCAwmzhqNoGbu4dmn87Bt4W5aIKNdlxiMuGUwFN6Ox1tHTB+EtT9uxnE7Y1uEO968CTc9M6VxG/bGSR7o8axH4gbCoKl9UJZfeUECB3JtSCG/1o5JBk7pg/z0IuSk2hawcgRxMhG4dCQnJ1u5LyxbtswtgcPp06eRk9PUrujf39a56kIRBA5XMbsW/mYjbiDwHIdtC+bDPywCuxYusBI3WLLjj58RkdgJUYmdwMhFThNASbJ/1jHnFTKuNoh7xoo576EiP7dxXk1pMXYv+h3n9u7C9Dc+gNzCgkVAoK3pcg8L3zgO+95tyCR3A20FcPo3I07O92A/9zFImsYg7W/PK/+3JqoSwCfa9HfGyktTzrH0MFBi0QFdmw0cncvTRO9B77DQVgHbn7WuZk/eO7eQR+9nGMRPZGlj8djXPNKIA4fF+Ofx73n0eoJBu/GOBzYHvM4i9RceGStM7gwErzCg43QGSdc5HxCtzSXH6fk5L5acxeYznovEaDIRuXeKjCjoWI7Yk7bCPDNJNwKpP7q/7SJFLRYmnED3jt746o0gmjRfccq9daU+grihtZwbPBE3mCHLk/VGftG6Tg6FhYV46KGH6N8hISH49lvrqiACAgIXjy/PrLMRNxAMPIePUlchyisQc9P/sRI3mCHOP1+e+xcdfSORqAyHt9i5gDizrhCbSoqQ7OsHKWtAkLjORihAhAlVRrIdBjpeBC1HSyJCxHDQcyLkqf1RqCXJAQyCZXUIkpmSHcyQ7clERurWUG8kneKMfeeGZsjtOEoYHIyaM25sz3xadYY6zMv4BCXapkHpUm0pluUvwaHKg3iu44tQiBwnAggItDZP3DwcSVHBmP3xUhiCiOCIxCYMFbs6+moXVdTit3eX4pfXTMJER5AKqFLSGZqahwfnzMTYu0Zg6eerUNRsEMxIEmTEIvBuFOjhvGVQnMiDumcUeKn936SoSg1plv1+k7L8CoTGBDdWfpXpa6FJdi5wEGmsL4Q4twKsxnSP0McG2IobLNAlBMNwLB/i8qYBAjIwalnljCRjfvXo/3B0ywm8uvBpeowvjp1NExDNHFp/DIs/WYFnf3wE19w2FEajEXMfnY9V32+06sz+4YXf8OR3D1hVs7WEVEF6/e9n8Osbi7Dqh41UGGEeyL35uakuk0HTcktx+KzzDm5dp3AbgQMZ+CTn5SmW30FyjPnNnD8suf7Jifj5tYUe74OIXt7590U8PugVpB0679Y6pELT1Yyz378n2xAQEBBoKfOe/MlG3EAw6I34/IHvEBYfgk/v/dausI0knn71yA9I7JOA6I5R8FE6FxCfPZiBs/vTnS7DhfrD2D3BpjI71yB2sLzlNe8p4UiisEQMLj4cvLcc4kNpTquvEuEnF24rRDfDOja1a1qm1rmDa2VJNd6Y+iGKskob55Fn7P9e/A27/tmHDze87jQRQECgtXn0q3tplePPHvwOsqwqOmkTgqAekACIxWBEXtAnkymStsW9dqQhP70QX2zahXk79zdtSMxC3SkI6g6BCPwnDd4nyqz289jX92HYjQOw5LOVtG3Ki0VQD+8ELrjJpYELUlKxgyStCLLDWfBbdhS6+GDo2gVSQZOorA6yM8VgjYBuZFfAwjWe1mMgbXMnY7NscTUV1/oF+zbGJBcbQ6gvNqpU4HaebpyXll2KD+dvwOHTuXjrkYm0kjWJSQoymvouDq47hkUfLccLCx7H8JsG0irV5J687uetVjHJ988vwLPzH8bQGwbY3T8Rdc9e/gJ+fu0vrJm/uTEpNKp9BG55YRrG3zPK6fGfyihEaoYppqQCByPv0MVBeqoAompT4afMk7ko8zABqTmRSeHIO+c4Jpn2+CT8+vpfHm83JCoIb/z9LO6+dw4Ox4vsupjIz1VAcabp+Eml8asZISYREBC41JC+uubiBgIR/X1899cIiwvGO9M/sxI3mCH9fp/d/x0Se8QjIj4E3n7O79knjucio7m4wZLwIOrkwNS7V8zwSoAkBb88/l2r5GDSF/r9c79iz4oDeH/tK5ApBOG1wMXjqe8fQEKPOHz9mPtJL6Rfn7R9Sb+9uzzzv4fQb2IvLPn0XxoXXAqIQwtxpTEXOboUMQlh2+Ld9FjMpB3OxJz75uHkzjN49seHqZD6hbGzUZJTZhWT/PXBMrzy11MYNKUv9Do95tw7D5t+32G17e+fW4AXfn2MFnuyh0QqwburXsaPL/+BdT9vgarGdH+N6RSFGS9fT0Vszji+PRXnj2d7fM7nDp2nQvsLjUmcjZOQYlq/z/7b4+2GtwvFy388iYd6P488i7EpZ3j7Xd2FxC/3mCQ0NBQDBw7Enj176GtSTPbtt99GZGSk0/Vef/11q9c33HBDqx+bIHC4StFrNTi2frXTZYi4oSzX+Q1y76e/YGDoFIiD5PAeGAnloEhaTUR1tBSatEra2y5L8MOprE2mjrb/CAERUTi+ca2VuMGSspws7Fy4AKPvNSVXCghcLGKvYaGM5LDlCR6cGwNUhJMeJJKH9QXiJwJbHudQ7V6uhkva3wxkLAU4k1uz25Qe5XHmdx66Oh4VTX3nFxXeQUG2wr1A1moeOZt4K3GD5XoH5/DwS+RRfIBH2hLebuL3gY95KEJ46tZgD+IS0eUeBsm3m8QmjAjwjTOppF1RccZ9IYyZM36lWCu/cMsOv+vViPQHCnbavtdpBgOuWdKXPepFOqyKPYtSRT2yfEwJT/0kPvSajPqKxdm/eJz6yfnvgDiRtGZS/X8VMuC0/33PxQ1myHr7P+Awdj7bam4a9957LyoqTElv8+bNo41xAQGBi0+dXoOluY7VdETA8G3aOuSprZMEzBCRglKiw+zUj+nrKEU4xocPx7jw4dBwOmwuPoTDlaZK5j0DOiC7rgQ8GJypCYPKKEWUvApBkjrIWAM4nqHODVre0kWBuPgAJTolNEYJavRy1BlMiTdixohAqbW4wRLi6CDhOOhdlfZrPFdr5KweMsYAhqobmYb3TffAmoZjcEY9J0WEPA5ri9ZbiRssyVFlY0XBP5gec6tbxygg0FpMGpyCWJ7Fc2NnQx3uB/XQ9s5X4Hn8OHcN3Ps1gXY0j7x1MJ4c8ipyTufbbq5hsIokBLlqVbIqHURqA+5JTsKv6ZnQN2uKsLVa+K46bbfTkMzak5aDAzsPoVatxRGFEdK0arAqPTgva8cWM4yBh8RinJKtrIf8UFPAoEt07f5AlrEUODiycN+xZB/tiF/xzTorcYNlUicZQCVVZ7f+tQsrv7MdeCA22B/e+RVCY4LQZUiyw877e9+/DXe8cRNyzuRDLBEjrnO0W+26U+ddV2gzBtsm/7dE3NAcUtn3wLqjOLDGdnD5zjdvRmVxywaESEU4cg3m7nsff7y3lHb+k2vtiMQe7RCX3KDcFxAQEBBodYhogSTLOoIIGOa/+AeKs5uS8y0xhvhB1z4C989eSl+3iwnCjZN7YcrY7vQ5uXHBdhzbdorGFaRKozviNkOHaAcJyzwa9NcNWbamPkRLFyxLxwY+1B98sC8YJ0kMRAThzBVCXsGhPoK1m/xqxvu440InHfsmYsFbi63EDZac3puGv95fhrvfEWISgYsLqcJJnERenvQe9DIxNP0SwRDxQLN2vSEmEOqBiRCn5VuLGyxhGVRemwhFWiVYjaldN3z6IFqRkohazVWHtX3irMQNlujbh9O2vySzFLJ002S1C5bB9CEd8feedBgtkx8MRKjk4CR5HpKzhdi/+jCObD4JVY0KmScubkUqcjm1/ROpc4U9Nuw+g+F9krDooR+sxA3/Z+884Jso/zD+3GUn3Xu30BbKLnvvvRVFxI0L19+9996KW3EAKioooLKRvfcohUIplO692+zk7v9539A2aXNJWoqC3tdPJE0uySVt7t7f+/6e58EFzCYL3rn5E8T3iKVi6/ULm5v2keagN2/4CB/tep2mPgiNwe9+7xbc8sos2jwjU0gR08nDmuSsYzMPCfAk81VUMF//eCsH5cEsKM40vgchcYMp3At1fcNgjPKmx2xlRiW8DhVBWm1stu01j0zBjmX7cHRzqsPtZL9JjZV7pnm96wlylZx+Jj/88CS+WbwR3+w8BF2Exvbnb7WQqCEYQ+Uon9YePvuK0D0u0mkCkoiIiIhI21BeWEkdw4Ugc3vfPLkYFS5SgYgQ8N5eT9DrRMh59YOTqIhPW63Fxh924PjONEgkLPqMT8bxwuZmUs0ICQDOt+48c7nRbVgnfPPkj4LO56k7T2HZB6tx4/Nt33ApIiIEGc9ddf9E2uT90lXvCs7h20Oa81sibhh7y3D0HN0NDw54RrAmbwkSqQRT7xuPlZ+vA0dEvy1gz58HadI0ETo4W4v4O7AXN9hDBAcDp/fFd8/85CBuqMdkMOON6+dhwamPsfTdP5uJGwhEfPbqzA/w6b43Ed8jzunrkPTK+z6agzlvzEb+mULIlDKP5/1P789Aa7hYcQPh+qevxl/fb0XqjlPNatS5H9yKU/scE8U9Ra6U0c/k29QPsfCFJfRv29X3oMeILggIc0zSEPn7efjhhxsEDjqdDrfeeivWrFkDudx5EtLrr7+OZcsaBTDTp09Hnz592ny/RIHDv5TCjDMw6lxH/rgTNxAqjLaJHUu5AdWrM2E4UwlzYR242saOUX1qGcqrW3ewvVJJHj8ZO3/+3uU2p3ZuwfCb5kCmEN2JRP4eqs7yOL+Oh76UR+x4oPwUUHPOgwe2YGxKhAQH3uTbRtzAAN3nMug4i0XnG3lkruZwfh2gK4ZbcQZp5D/8weUtqjrjLuGCAzKWcSg64Hqb9CUcQnu7bveSyBn4OZ/bF4SV2VZKuQt/AKxLvzcbe0IvfoFEIWWx8UwxVoYWIHqWFwZVRCNW6wdNGIP2Uxj4tmOw9WHhBqB6VFYZDoY4TryM7xLWUDAmzWYQ1pfH5vs4wb+ngKSLfjsiVGwEp0KellBzHihNAUKSL/4jnT9/PtatW0evz549+5IohEVERDwjpTIHeqtrt8+M2gKajNwUlcQMX7nBoe8nX1+E784vxZHKNKRUFaHC1OiwuqM0BXJWduHcxiJLG4hcnT+S/fLgK3OtwCJNQ+dqA6CUcA2v5yNzfG1nyFgLfayKNUHGWsHzDCw8CyvoKrjDtnVmW8M1SYoIV9ZALbU/OfFUK27TejLQckpUWVTwkwo7KJWavTE2fBx+yP7V5T7uLtuFGZHXQkY/GxGRS096ZjHWbjmB0oo6jH7/FqRtOYWTtDPPhesoadqRez49dWLPadp070zcQDGbYVEwtgZBV3A8FJlluO/jObjqgYm4qU6PZTtSsHbjEZRklYA5UwplRhkYS/NJV07Gou7abnh+9fbGG3uEAd1CoT5aAG2vEPAqx+8do7fA60wdWEZG0yhkWWW0wYmxm9T15HNoyWf16/srkeWiyYksji6ftwY7l9smLJ1BJp3J8wgJHOohDTQJye083jf6GKkHshaBhYmLQalR0Pds1JvRd3wPsDIp/RONjA/DxLvG0IWHB/o/06rnHnx1v4Z0i5uevxZ9xyfjkaEv0OYtZ3Qa0AH/esiv8GJ/jZd3+S8iInIZk7I9jbqiuuLsUedmHpaYIFh6tHMYx2TlluP9LzfiwN4MpH+xDtVljTXJ9l/30qZSV3DE0dCrecIaJwXM3kRoYHcjeVnSj01us9h+lDYxBeEigwCLFVx0MHi1go4x2LwyMGXVtorEyTim6ThMXWiFLtL5+EKZXg5FpnCj1cQ7x+CT+75x+Rprv92MW165jrqsi4j8HZw+kIG/vt+OyuIqTJwzEntrtah1MYQ2xwbCEOh6sEHSULTdg+F9wCZmSNl6Am/d+HGDuIFXSOkxwxVE5EDG/00hZkUPfTUXk+4cjRuqtPhjzRFsXHsUpVmlkOSX0xQ3LrRJyhvHQ340C6oqHd697XP8U1jD/cBrXLsh/7hsD/JThNejyTiZpGAQwZgQRDC87MNVeO6XR1y+FmmgSejZwprEyaQUTc+gh88LdhS1RgdxgxB1vUJRNdExoacuSA1tr1AELTkFRW7jOYM43G75eReMeiP6TkgGK5GAYYHoDhFUoBPVIQJzkx/HxdQk5Lh7z60TMCQhDg/c/iEKZiWA8yF1qhTwV8AU4YXavqGY2s51rfevQKxJRERE/kHIuMGV+YWrmsQZxOWbuJIfXH+UiuRqKxv7wrYt3QN57yRA7SbVuQXzi5c7424dgXl3feVyG+Iof8NzM9rMaE9ExB0n96Rj04/bUVVag8l3jcGB9UdR3AYiBHsObzqOwsziNhE3sBIWj313L8bePByzn74Kf36+Hlt/2Y2SnFJY3cwrEHExWa+5nPnlzeXIPS0s6iIiB1JvrF+wRXAbMre0/KPVeHLhAy5fiyRYtrQmkSn+/jVckkCo7BGLVZlFMPZPRPKQTpBlFUNSa6DrI6QmiYgPw5wv/2rV8w+Z0b9BOHPnWzeiz7geNEFDSOTQZfB/oHnrCqhJrrvuOixcuBDr16+nP2/atAlDhgzB22+/jeHDh9MakxjgHjx4EG+88QZWrmwUZZGkh88/vzTzE/+eUYvIJfmLZhnHPxHjmUqn26l5W/xpPcHKaPjIAmDijCjQnYOV99BK/nKHYTBgxixEd+kOi6m524Y9Jr0eteXlCIiI/Nt2T+S/y9FPOJz9/dKv+JvrgGJhI2aP8YkD+j/Hwi/BVkRKVUDRIaAuz7PH8+773/9xPHkvxYcBU437bawmnooY2pLMwDJ81ykT6d42lXJsnR+GFsahe6VNJOCMfM3FxdoRMzijhcP+8zbH1eOoxhrk43+jEvDYuI4N20k90IVVyR2bVUO8FXh/w2m8+OcJxAd74Yb+MZjcLRyqYEArIBLP3gjET+MR2EWczLgYzv3Jtc3z/MEjJPnifhfnzp3DY489Rq+Hh4fjs88+a5N9ExERaR3E8a41kDwDnybiBnuOVqWizkwmexwbZEyc+YLRqe112ynLEC8vgUzCodjiQ4UPzjByUlh5KUycFQqJtUGI4A6SwOAts6sJGB4ycLDwDAwc2T+moTeXXHylOiraUF54DYf3zABSnqciB5I2kVIbhd7e2fCSOgpEiBCi0BSAoSFzEK5KgIV3HYGls2pRY65BoCLQ7fsREbkYiPvxe/P/wqpNjs6TBIkBsKoEvtA8D9bMg63zPBK9pqwWR5y8Dn06loExIRhc/diZHA4EXrqzTI6X97yBdt1i6c9qCYuTb61G3e50uAvCrRkVD0Ookzh4loG+ZwT8/zwFa6ASxlg/uhOK89VQnygBa3LTZFjrPhKLrXb+WXFKGQxdw2FMDAankkFSY0BGZjmkEtZBRNEU6qx0ITJZiP1rjtBJy7ZeBFSW1YHheUHHV4Is9+LTGpo2kBm0RqTuPO1w+22vXY8bn7vGQQTRUoKiAjD/se/xwR1f0BSLKXPH0Yl8v1BfQTelNfM30ma2xF7tW/FuRERERETc4knqtLOkJpkElq4kJtX5OWrHsSzIeUc9AsGkdy3whtT5kpzJx0WKAmMTOUj0HB032cMFeoOLamyqJvdykYFgiishPXLWNsYiFyeiinq8TlZCfrQKdQMiYQmyjYJYrQmaI8Xw3p3rdChFnPzufOdmRHeMcOtEWVVSjdqKOvgFN2nQFhFpY6xWK96//YtmjfK105IBXxdNfiwDU7jz5AV7zBe+H4SqkhpUlaQ1vra/xmVaCoHz18AS5gsuzB+8RAK2SosuwT548tt7ENs5mm6jlElw+JM1KD1oc64iRwwJaSoK9aECCnJsYmv0kGWW0DS6f3rllfN2P5GflVcOd+06JFnNoHO95rpv9WFcClTlzmsS+59k+c7Xxu0xB6lQNcFR3FAPEcCUX9MR4Z8cpqkOpCYh7rbEUbrh9RgGd717M2Y+NrXhNoXatWjOGSExQfj43m9ooke7bjGYes949J/aG6Z7eoIzOak3JQy+yU3H9LJ+SAwS545ERERE/qmSpDWQFCBnGCtr3QscDK7Pu1cCJLHi3o/mICgykM5Nu4KkO5AEPiIwFBG5lBBDobdu+pgaIFxqKgoq6eVi6TywA55YeD8V2BIUagUdexPxhCeYja7XKS8Hsk7kut2GJD27M8jYv/oILgXSv1l0xmkUMA/vAr1Shko7IzEy1/PwPeNxzcSeDbfJmxh5eUJ4+xC8e+tn9LhLEsSn3Tsevcf1gJefhiatOmPpO39g/G0jqKhC5J9l6dKlGDlyJI4csf29EzHD6NGjodFoEBgYiIqKCtTVOaZFEXHD2rVrERl5aXqkRYHDv5TQ9omQKVUwG4QXqYNj4lCWmwOeuCkKEKVJ9Oj12nl3xYnKHfBXhKFf0CT4yBsnQUxWA05W7cGZmoO4EpFIpfANDUNUp27of/VM+ASFoKbMMwWkQu2uLUJE5OLJWP73iBvakroCoDaHbxA4nF/Lo/Sohw++ENH+T6EOA4KTgWybYFEQF4fWBtz1B2mlJpz1qYAsBeibGIBIv8aiW2+yoqzOCF+1DD7Klg0qlx7MwdMrUmGvTcvyrkKW9zGMzYvHuHznx365Wxtc58QGqumvLatc5/T+T7ecRY8oP4zpbItBDhrGoWi/6wWhgyGNChKZhEFJrZFeCMU1Ruw5V479obXoXuAi2oIH/e6IAofWY9byyBdOVW0R+Tt5+nwyTesa5ziOoxFpWq3NqeTbb79FQEBA2+yciIhIq+jmFw0FK4WRE57c6ugTjfO6bAcxhFJiFuztqUcuscJikTg9t8YpSnF98GEEyxuLaxMvQboxDNnm5o6KVSbbmN3MSWC1smA5wCx3fc5jwdHUBmdIGR5yxgITL4WKNUPJmhEstx2byDy7gZNDayWL1E0Wz6kQUNogjthR1RGRikpEKCqhkbLwkkXCXzEQU+JmwlcWiCKDzSnSFQwYKCViopzIpeeXlQedihsIRNPDm3jY/rTt/u45nroQS2qNYO2cxi4Gc1wgrEFejWWDfd1Q/9KkUd8KZDMccowm1HvprP5qI07uTnf7GlaNHMYkF+6sDAND1zD4rzoNr0Puv6f1cL5q8EFuxi4WDoozJQhvH0odbYgLVP0+1Uzt6tBgZPVXo6a3GtJIX/isTRMUObAeiBbIOGvrkl3oPqwzXTSsR6810KZFn0BvaHxaNv9BXKA+f3ABZH1jYUoKd76R2Qp5mi1Z9GIhDZgWkwWF50uc3r/ohSXo1D8RvcZ0pz/3m9QTKdtOtmgRoiyvAmWwCTLKCyqpEIdM3LuKiibCkZWfr8dj393X4vckIiIiIuKeLoM7QkrECi4cU5P6JyBt7xmH26xENOAmacgSGwy5wMKsEIzOQE6sZNW44TYy3WZVuDkfszxktVxzsYHKuSCPD/WHtWMUpKdyIc3Ih6Wn4/wYHSLVB89p5FDolVD/dIruBxGMSisNtAnXHrlShvD2Yeg9thuue/IqBIb7U/dYdxC3PqVGrElELj0/v7HCaQoA+Zt2B2t2P5kv0ZsvLnWM52EY3KlBGGVFMNKVMuQbzLBJroHfP16L9AvihnpoektxDb1cTkQmhiNh1iCsyRB2QiWYq3VuBQ7uhNREzK0L9cXGfenolRSFQL9Gsbm+Tk+dcX2DfFrctEhcWuc//gOk/drDHB/ifCOTBfIzzes6i78SvISFtMpAU//qeocJC9XIe/CSI+SaHsC+XKf1AakLvn7iByT1S0C3obZEBVJLnNqX0aKapCTHZmhVX5Mc2pCCLo+MQkmIsJjeyvP46WgKXh47yuPXEhERERHxnG5Dk6g7uithcNKARKTuaBS+XRRF5UCkwHkNFyZMi9rWUOTvgiTmRcSH0sTUmU9Mh3+IL03v8sQdXeEmbU9EpC0gc8x/h7jBY7zUQFgw4OtNx9x8nQ4oKQcqGpMas9Py6BiyXuDw2/srkekige1yIjopEom92tFkNFcY3ZlREDxYJzHqjNj+6x50H9GFHn/qIeLl6rIa+AX7QOXCYMIZP7+5Aguf/wV/F3FdY1CaHIdSJwJzIhabt2AzOieGoVOCbc2m56iuLfp7IDVJYWbjGkxZfgUOrD1K11uExA314qBVX/6Fue/f0uL3JNK2+Pj4YOfOnXj44Yfx3Xff0fVBAunDqu/Fsmfq1Kn4+uuvERZ26cQprrsHRa5YSGN9t5FjXW7T76qZ6DxspOD9claFBO9GVZYrlBIN+gRNxPCw6xzEDfR5JEr0DByFBO9euBKxWiy46skXMfau+6m4geATFIyIjp1dPi6ma3do/Pz/pr0U+a/Cczwyll9Z4gYCZwL2v8HjxAIr6gp4ZK5x/x68omzJD/+UuKH7XGDiTwzaT2FQ4qkYww3hAwDWSS1tYTisiEvD6z23YXHiMTy8/BiGvbsV9/90BOdKa/H08uPo9dpGDH13K3q9uhFzfzyE9CLPFlTL64x44c+Tgm4RG6POwUo6O5tw3L8Ieknr1NedwnyQXeFc3FDPoj1ZDdflPU2olglPuBeoa7Az1LZ9uI8SZqvzN5NzzP3+lp+68r4/lxP6Us/EPJ5AnkffuP7SYt59913s3r2bXr/jjjswadKkttkxERGRVuMrV2NKpOt6Yk77ERgZ2s3hNinr/tjMCgwIwmTVuDt8l4O4gSBnrOimzEe0zHER2chJYOJZKFjbOaOy3Atn0yNx9EQ7WDnhySwJHBuk/FgTRqhLMNWrAMPUJQiQGKm4Qd1ErEGuqyUmeBNLeyfI6DnY9gArWOQYA7GvJgFbKuIxNmIexkfcQ8UN9L0qwxCrJoMjYbr6doNG6sRlXkSkDbFYOSxb49q5RmrgINPykBg4SIwcpHoOMh0P1sJDftK9e46nmNsHO/xMvk1Mfewr+XpxAGMBFTIZjBY8+9EqfP/pWhRnl2Ldd5vdPn9Mp0iEjUlymThAMEW3zKGYPJ9xYAewUimkOueDK/KKj88chh9TP8T4OSORsu1Ew33aQe0E3VMtYT7Q9xB2Tek/uSdt/HS9g8BbN36Cm9rdTx2octPz8d7tn2NmyB24Jf4BXBt8O16b9SG93RPK8svx5SOLaBOP8mA2ZBnFzZrCWIMZmi2naSRyW9C+R5yguKGe3z9d23CdiDk8JSgygIonnHH4rxS3jz994Cz+zZDvYFtcRERERFpDQJg/Rs4e4nKbm164FgOn9XG4jVe7T/LxZJumMEYzmJIqx+eReLCQTu5vuprn5iFcdDBtvmWLKyFJzQRMtuZsvsEWnjwnA95XA2t8OEwju4HReEFWrm8mbiCQc917W17CvfPmUHEDoX33WMR1sTnPCzFoeh8oW/FZiYi0BJPRTEWjzpCWup83V6W6NzVTpwpPXErKagE3bp/UgoAkstjdojeY8cw7f+CnT9ehJLfMo5okfEIXeD04HOUzu6BqYiJNjbuYoRLnp4Y5MZxeiOja5TtgGTz4xZ1YmP4xRt0wBKnfbycFocvHSLPdT/gOmNybuoU2hRzD9APiUXdVL9QNjMfzn6/BtIe/wSvz1yM7owDv3PoprglurEneuOEj5J/1TCBdeL4Y3zz5I72uOHQe0vNkortJTaI3Qb39NFhtY/OPrnMwSuYko/SOXii7LRnFc3ujZlgszOHu516iJ3Z1KX4m/PHZuobrPUZ0gacEhPsL1iQ7T7qvN1IKPBfnX4mINYmIiMg/SUhMMIZe01/wftJ0fOvLs9BrrM1042KhoupcF8f17EIwRg+afS9DOIsV83a8hrvfu6Whubhj3wREJLhuqhx27QAqvBYRuZSQRLLV8zdePh9ygC/QsT0YP58GQTHjpQbTPhqIavzOaKt1eG7KW/j1/T9RVlCBtd+6r0nIXAARG/0TEMHYo9/cgwWnPsLwmQNxdLNz462W0n9yb7fCayKUeP36ebgx5h58eNdXyDqZgzdv/IjWIqQmIbXJ27d8gqIs1+sQ9eSczv9bxQ2E9mO6ORU31ENKomXrGhvieozo6vFz+4f6CtYkROTgDk8Ea1cyV1JNolarqWghLS0NTzzxBPr06UPNZaVSKYKCgtCzZ088+uijNN1h5cqVl1TcQBATHP7FDL1xDqpKipB5+ECz+wZccz2SBg9HQr9B4DkOabu2OUzcaKR+GBQyHSqp+1hW+xQHV3T2G4hztUcd3FmvFLQVFfAPs6kV6xl83U1Y/uYL4KxWp6kPA2fe+Dfuoch/FW0RoG0bQ8u/HdLMfOpH4NRiziPRQl2jYf/fDklsSLyWxa5nOBQfapvnlCiAjrNYOgI530TgsST+OFICHScerByPNamF2JhWDJOdw4OF47HhZDH2nC3HkrkD0CXCdTPV8iN5MFlcd6RXJFci+EijWO1AcB5+a9/YQNVS6oxmt/GbR3Ma4/PCAhRY1H0PbjveG77mxkYtE2vFkcB8rI0+A5PUipemdsarqxujwJ0JRdwhaXmimoj9ZywcFNUqLK51MIIcP34cL730Er0eGxuLefPmte2OiYiItJrHOk9Cgb4Ke8uaT0rc32EMRoZ1xqDgRJo0sKX4OK0VON69SwYv0M0zyv80FALJCoQO8mLkmolDOgMLz6DY6AM/hZFetCY58ittzdFavQop52LRMyHLSa8R7yBaGKMpwlB1mcNtozQl2KELwm69c5d3pcQCPWeFhXYzNSL0zsnnUmmuRqDC0d396shr8EnGPHC0c9sRGSPD1PCrBD8LEZG2Iie/AqUVjqKiZhAn4DoLOCULXsrSZnaJwQppmRZsvusGj3oBAKeR02Y7Vie8AMcpnA/uGIFEOOJU+e3ibfj5kUXgPMiLzzmVD73VALTriLbEGunf0CRJUi0YqxVWJQvuwqwdawaGxUfimpE98MzEN3B8e+MYmFPLYI5xnfxgSAqF6khus2OMUqOgbme6WgM2/+Q+lou46BA3pJ3L9zlETxNX7B2/7cXRTcfx4Y7X3DY6rl+wlT4XgeF5qPdmgkvNhzk2ELxMArZSh07+3jjXhi61dZV17ifQ7dxRiSOtO8dv0oR1z4e34ouHF13UvskU4vSsiIiIyKXkf5/fidLcMhzb6pjMQxau737vZvSd0BNdhyThnVs/w+7fbWspzAUxgCsYu3Ohp3DeajAWK3hyHrzQYEOSpdxCEqiaDvndiSJkUvA+ajCVdZDkl4MtqAAf7Atz9zhA5sRxhWVh6dEOTLUWbK3eqZNfVXGVg0shYc7rs/HyjPeocLEpRNhw4/PXevAGRUQujqwTOdTF3xny9CKY2wUJfmckpbXQHCyArksATDF2kcd2qI+VQFYmPBFK6hR5eiFM3WOcb1AvuKYb25ZjGbv5/a8XbMb3jyykhlZCkHuqJySiqBP5DpqBKF/yfxiSgqHIKIffmvQWNTvwCimM/RLBBTe+Z/J8bEk1FAfOgnHSmDJ0Rn+MvWUEnhr7akPyjdxLLvi+mVoDZOdcN/eofVSY9dR0lBdWYOfy/Q736YZ1hDXCr5nAfu2uNGxZeRDydccb991kwbYlu3Fscyrm7XytwYFWiHXfbqbHNbqfHA/VvnPgTuTBHB1InDdoTdIxyAeZZY11RF2fCNSOcDSa4FUyaPtFgre6P2/UFlW73ebUvsZEodjO0WClLDgX6zmkWXPuB7fgi4cWCm5DEibcIZeITZ8iIiIil5JH5s+lyTondp1uNrd038e3U1FbQq92ePumT7Bv9eGLfj0mqxA8aWCNDLY5uBNqtUBeCZgyR8H1lQSZpyNjPi+7NCdS193++mzadOwMkvA0+5mr/8a9FPmvcvZIJuqq2iap+qIhqZGxkYIN+0xYMPjKGkBra84gTenfPLkY3z3zs8u0mXo8SXO8VIy+aSiGXzcIj496GRmHM9vkOb0DvHD901ch70y+R434pPYg4nSSsE2uN9xuNGPz4p04uikVH+1+HeHtXItA1n7tXhDTvnsMMo/noK0o96A2OJnR2IQYnxxHhe6ualWS2nD3uzfji4eFaxJPIGk7IpcXHTt2pEaz/zTiCtq/GKlMhquffBE5J44jbecW6Guq4RcWge6jxyMwKqZhm4kPPIaB196AjIN7YarTQXbAinB5O7fKtJYiYWVgqNeqJzP2NpRe3jDU2dxVfEPDkDxuMnYsXgi+reyiPcQrMMhpQsP0J57H1kVfo6qo8eDuHx6JUbffg6gkz501RET+01wBmifOAipCaCtxg0wDDHiRhXcMg+T7gdpcHmUX5uLz1TXNxA322Isb7Kk1WvDqqjQsnTuw4bYKrQlLDuZg6+kSulDSLy4ABVXuO9KPxuVh6vlAGCttooLVMY6TLS2lZ4w/dp113bgmI41uF9AopBg8wA9vstvRrTIUnSqDIeFZpPuW4mhQIawsj+nJEQjzUboUTqT5lWJaNg/WhaVdxOC2Pdf915Cq2vj5XJuECbJixQqYTLZmx+zsbBqb5gnbt293GO9s3boVI0aMaN1OiIiIOEUpkeGzvrdgf9k5rCtIQbVZjxhNIGZE90Gcl01MoJDI8Eq3G3FH+3HYVXoSNeY6bC1d57Rpvx4T13zhlQGP7hrX7uEkVcGHMaDI4gsjL4WctcJkpZap0MhN6BSfh+On29FtzxeFQG+SYUBCFSQKm5tjkDwcA4PG4K/CBfTnfqpyDNc0dyMkZqgjNWWo5mQ4YXQuPlSwZljoazdi5pyHLBIBSIDccVG/PqHh3vgHsDT3F5SZGh0nw5URuDHmZrT3au/y8xARaQs8nTqQ6q1g6yx0+E8fYjABaZluhQ2GHpEwdgwFr7Y14klK66A8nge5nUC2HrbOCC7AtXNm06YfS7hfQ2OLJ8jzaoj6mExyCG+T4/lCodVHCQsRONgJMSRmcnE8Blp4lkb02osb6ON9VbZ4GBfwGjltYLJvxPT21+CF3x6jk+z/++wO5J8twun9njnk2Isb7Kmt1OLrJ37Am2ufa7itsrgKa7/ZjIMbjtJJcJKMkJte4PR3pzjZeLtvYgRdWKh1J57xkKT+iTi8sbEBSmgivh5vfy8MmznQZbz1uFtHwCfQs3GnKwZO64t/NfUpKhf7HCIiIiKtRKVR4t1NL+HQhmPY8ssu2nAQ0zESk+4eg8iEcNs2Xiq8vPwJZJ/Kw75Vh1FRq8cvJ3JdzjtJ8loWQ2npFAMutvniNkm0YvVWcCrh5tJAuRIG2BolYqICMGVCd3yxYLv7F7Ub4xBRIU/MmlROxA0NO8PAGhcKNjWr+V0SFv5hzWuSQdP74rklj9AxQElO42cS1zUaD315N+J7uE6dExG51EjL6qA8cB6Gvu2ajZvZGgPUO8/QGiH4p1OonNweui6BDWN9xmSF16Ei+G5y38AjO1UAXiGDuUOYY5F0YSzkasRuDfUDn+L6NbR9ImHo5JhYV48xMRB1A6LhvdezdDyyS4bBSeDtmgPr4UJ8YRzcEYqtJ5vts8lgxoqP1jSIGwjytAJaH5k6RQLKCw0pPA9JYRUUBzPBuBAM+wZ546XlTyAoMhAPz5+LovMlyDhynt5nCfVpJm6wxxCgARvqA2kTUTRpevz26cV4ecWTDbeVF1Zi7debcHhTCj2uJ4/ognNOPm9ak5xqrEmCuseh+HwJdbXllFLUDhYWcvNy9804PTR+cFdxyexqEiIoGzStL3atcBR+2DP57jFQqFyn5KjTKlA1VkB8c4ExifH4VyPWJCIiIv8wGl8NPtj2Cm2c3bZ0N7Q1OsR1jsaku8YgvL2tRtD4qPHayqdx/kQO9q8+jMriavz+yRq3JoJCMCUVQEkF+HphtZvUJXeQ83Y1Sa26MNYfd9tIfP34D/g7IedJ/5Dmc3Gk2ZmYqXz79E8ozWvsSWjfI5aKS4hoUETkktPGPZYXRaAfGHcC1mD/BoFDPZ6IG/5pjDoTfn3vzzYTN5DUgVf+eIqOvR9fcD+eHveaxwIOe3GDPRVFVTSZ4dmfHm64jRyb1szfiKNbT9A/lV6juyMz1b1wITQuFIWZJdDXtU3SdUJyLPYWVLjcRmaXeBMSHYQ+45Nx0C7VoSlXPTCRiiAuFlL7/KsRa5JWIwoc/gOQRnxycYVfWDj6Tp1Br9eE5qDmL4GDNenUsbZuBJ1VmwquBeIGuUqF6158k4oLjOmVsKZrwRVZEBHaAflFF9ds2xKiO3eDX6jzKJX2PfuiXXIf5J86idrKcngHBiGyY+c2F4eIiAihCQc0EYC2eX9IA6ogILQvkP0XwF9c3dqsEdnebV2iAqxt7ObeVigDAIPrMZpLqs4CxspWzh6wwNC3GRQdAIjZq18iEDuWgVRlO06Qf4d/yCJ/O4/0pTzWWVsfybH/fAWyy7WIDdQgNa8atyzYj0pdo3PQ0Zwqd71PlIOVZcjruB/T0jsjl62FXurakU4hZWEUUPoSUcUdQ9rh6x2ZgtsQRic5LvBO7RGB9ScLkcIWNRN8EGHD0xOTkF7kOl68UqlHakghepQ4d2uSeQPxV4nH64tBFUyiyW2JLBcLI7Edr0RERP59kLHxgOAEenFFjCYYN2hsIiM/BYfleeucPx9kToUAEoaD1IP0HjMvgZG3LTwrJFZYYYbeamvyCfDVwlujR63WpuDSacNwf8IjCPeWoUi/GyW67TCZ16CThkeW3oQhatdNTQNVFYICByL9tocsVBjq7dqb0N23MwLk/k7v6+nfCz38knGmNh3VNOUhEAleiW4/BxGRtiImIgAhQd4oubDA5YzwYB/06RqILX8eAWe2ABXVQGklsQIWfAwJc9GO6tAsncAa7AXt6CTwu88hoLiONpvU41tUjXJXaQbki9ZkWE9+NMcGgffVgLFyYIurIHHxXiQ6M1Sny6DvEuJ8A46H5kjzAi0oMgBl+Y1FiTkuCMZukeB81Y3OzBaS1uA8oyZ93xmUnWou4iJNV+6QSli8s/ZZHFx5mMYod+gTj5GzB9OGz/pF1nk7XsX2ZXvx0x97ccZihJFhaIOPMr0YsuxKlw1Z9hzakEIn64OjApG2Nx3PTX7LwbmKNEORBkl3nD2WRbdTqOV00cIdcqWMNlw5o/e4Hph+/wQsfecPl4kMA6b0dvh59I1DsX/NkYa/MfI3aY7wpikTUWo15rwxG6fsUh9cCSeEopnJ4vCUuWPdPoeIiIiIyMXXJCSpgVxcEdspil4I3KJtWPLHQafbyWt0YAqbiy2dYQ73gb5XNLhAb3qel9VykNifFhgGylPF0HUPo67hTfH1UuK7Z2+Al0KGfauP4MCfB3D4i/Xw9/FCpatxgMEEpqZJs0KA+8RuPsDL6e0Dp/WBX7Dz2mb4zIEYMqMfFWKSRqywdiHoPKCD29cSEWkr2nWLoY0p5O/PGYozxYjz0SD2hkHYQprcjRZIc8ohP1/W4G7PmqwI/D0DfhuzYIzypq7+iuwasEbb94zzVgEKORiDEYxdc4nGV03Hi2S8rDiWDaWXCrXhdo35bsQNnkDGobpk5+uU9ej6RoHx9oEioxjSrDKnaQ4hMUFUiGSN8HcqbqiH8/cCF+YHSZGjcJu4Tp85fM5pSoYsoxhW0nAoYcFW62gt0dSN8/XVT2PvykNUMJ3UL4HWJPXN+T4B3vh4zxtUYLzi4zVI93bdtF9fUzUVOBD2rjqMqtJqesw6viMNL0x7G7qaxsWrtD3pkDg53jYl/eBZmuqmUMlR0TEAkAk3iZE0HoVSAgMRkjlhVFJ7XD10EFY8+pPLxrEBU/o0q0kOb0yBvrZ5Q1NEfBhuefk6t0JuRZEOvll1qI5zfnwP1qgxs3tXl88hIiIiInLxsCxL556azj81pV3XGHohWMwWrPxig9Pt3CWP1nOxwgYCGWd9uu8tek7cs+oQbXQlF58gb9S4mEdta4Zc05/OYzpj1A1DMXzWIKRsPUkFj5EJYejY1/WalIhIW5LYq51bw57YLlGISYrCrt/3u3TEbykaPzW0VY31vzLQB46jcSco3Y+3LwVE1FWYWdzqxx/bcoJeWoPKS4mXlj9OjS3I8bXzwI4Yft1AyJW2NWIicvh0/1vYvHgHfv94LXLS82H14DjrjF3L90P7hZYes45sOo6Xrn4XBm3jb+XkblKTuE9RI2ssZO2D1BBkbccdMqUMZoF1khGzBmHKxF5YvO6oS/Hc4N6O4uextwxH6o40h/2vJ6ZTJG54bgZ2C8yf2SNXyWESeA9kPWnsrcPdPofIfxNR4CDSDJ9RMWBVUtRuy4W1+sKBhQUkfkrIwtQwZdeA0zouzLLecjByFtZyYcVYge6sx582EWQMu+kOBEXEoOyHNBgzGifREtED+fh7BA5EZDH85jvcLo5EdRYnfkT+GcjfX4eZDI5+LDz6COwK9HmcReIM4MBbHKrthKwSBWB1O7J1jlc0EDuGoeIBVSCD7M0czq/CZQVpmA5OtjVNF+4FTM5Tqt1ChAl1rg2hBQkfAIT1ZRHmQmxKhCeZa3lUngF0cS2Pt7enoMqAcF8V7vrhkIO4oR5P6qQqnRlVqMSpDrvhY3Rf2Pir5YgJVOPAeUcVyaikEMyblQyThUN8sBfSCmsEBRJ3DrW5ZWuNFjz4y1FsPi0cXV1aa8TLK0/i+Smd4K+WOX2f9RivqkT02Ujkbml843VSE07GFcB7uAm159SY5hUBX5UYd9YaZBoGkUOBPA9MA90ROYShz9ca+vTpg7lz53q0bXp6OrZt20avh4eHY9q0aQ33RUS4ji4XERH5+7g+Zhq8pRr8mb8RlWZbg4KEYRGsCESkKgLHKnNQbiKTdY3HDX95IBg2CjyXJ/i85DxYzTnGzyhZC/RWWcNzBfrVoE6rwuDoWDw/ZATi/NTYVfgQSg2N0dDk7NhHbYU/sVl3QajUCG/WjFqu+XnGyrOO+2VWguQONUUjUePG2Gtdvg7LsEjy6eRyGxGRS4VEwuK6yb3x2ffbGppvOCkDvn5ulge6d4/Gk/dOwPTJ3fH+7V8gu7jRSUuogZ0IG5qKG+zRDWyPTsGBGNsrAYFgEBwVgNXfbMSqzEKY2ztxNiUCAq7xqEHNUiQA76eAdmQivZ+1ABJDBCRldVDsOwPG6Pw77rM1E1a1DKZ2TYRHVg4+mzMhL2hc2GMlDHqO7obAcH/sWXkIdZVaGDuGwUgcZO1hGBDtFdFvscbmIgfDmUKUZDcmtdQjLddCUqmD1V84Cmtkcjz6jOxGL0KYOR6/FBTimD85XtmOWdYgDcxxAZCfK4PXFpuzrTt4nqcCB59AL7x09XtOY7k9cYJq6eJoYGQAXYCwd5Ml9fKgq/riyUUPQFerR2RiOLLTnJ8jlGoFZjw8mV7XVmvx2qx5OPxXSsP92uQw1PWPBHeh0aqaZfDGpt14bNzghqY2IcbcPIz+3ps6r5IFL7KoTSb/SXMXcer7VyI6E4mIiFyh3HfrcPj5qPDrykOoqNLRw5lEJUVomC/ahbbDqZJK6NLyHc7ZoXHBVHBXWVQFnmVQO64DTO0CHZ7X5MtCUcXRSz2Mnx+8NqRB3ycG1lCbIylLhOJdYvHorBHwV8rx7KQ3aVNuPVyYP9BbWNgsOV9MUxsc8MT+1ck2PoHeuOPNG1w+TCKRoOco4bGGiMilRCaXYfoDE7HohSWC2/Ts2R6PPDwds/p2xAd3fIG8jMb5Z6VG0dCsIakzQ326wkEYZO0cQwXRDUMboxE8EWszQFKvdhiRHIcAhkVobBB+WX0YmzNaZmIkKXW9cGH1UTSMQ4XgJQysYT4wBPlAGhUI5a70hvE7K2XRa3Q3BIT502aqyggXovALWCL8mwkc6NheIKyOCEKkRc4FJgTSOERcSslFCHL8XPP1RmSmZMM8xL1xAxEeO4PUG+UFlbRR6eWr33UQN9RjdWHGVE+13e/F6uUi/ebCjFK0ly8UGhlOFDQ2bBE/vPFdOuCNq8ahrrgaEfGhyDvj/O9D7a3CVf+bSK/XVNTitZkf4NjWk4KvWZxdgs8fWkCF16SeMeiEF/tuUUXhRLw/tp6zJWTUEwgZphcqseen3Rh5/SCaaPSvRKxJRERErlAe+PQOBIT7449P1tKm/foUA1J3RCdFUiGffVMzISIhDHWVdagpv/hUVJZl0G9SL9zz4a1QeSvx7MQ3kH6wudjx74CILOa8NtttTdJrjGvzXxGRSwUR7k67dzx+emO54DZkTH7fR7fj2NYTmDd3PgrOFjmtSVpKx34JGDS1L63dieHAT9/twIFjbhqc2kD81BJkCimSR3aFf6gfKkuqYGgiiPaUmvLWi6pGzR6C3mN70IsQRp0Rq776i6bpXAwk3YEkOZD08Feued/p75Ykz7SkJvGEmKRI+u+5Y1kOx/KRNwyhiTZknyKlEuQJCDe8NQrMmJBMrxPR+Msz3qNiDCHI3/AXDy/ELS/NpKJ2s8CaGmHqPeOQnZZLTbLs8QvxRd8Jydi5bB8VqtUbc/3rEGuSVsPwZOVR5D+FuUQH3mSFNEgFVimscSFqwbo9BajZkAXe7DjRI/FXQE4cTKQsFPG+UPcIhvZQMar+FB7Mbin8GaUG1/GoHQYMwbAb58A3xObkXfnnWWj3Np/oSavag9TKnWhL/CMiUVtaCovZBIZh0a5XHwyZdTOCY5s0HYiIXIakfMHhzG/Ch/PokQz6P8/QWKiyEzxqsnnaSBzeH9jzEodi92JKQeKnA+pgBqnfXoanE9Ij+A+mqLFyYOQnLAI6um7aTvmSw5lfbZ/fztAsrIxrvYhLKWVpI4++lUri1tAn1g/L7h2ME/nV2HuunA6Qh3cIQkKIN0pqDLjmqz3IrXAe7+GjlOLj2T0xsqPNAffuHw7hrzTPFNvtgjSY0TMSH2xsbGKyRy2X4M/7ByMx1Bu1OTzydvJYUngOP1echdnOLVglk+Da3pHIq9Qjo6QOXgoppiVH4IZ+MfBTu164EAFKjvLY/ujFf9GGz2MRknzpEzUWLVqEOXPm2F5z+PAGsYOIiMjfy/m6Ehg5M2LUQVBLhRfprbwVqwu2YGnuKpg5x0mREEUwIpTtIWVl6OXfAcNDeqK6bgEKql4TfL48kz+2apsLAarMClgvdGP38h6GGZHXINLb1lh0qORVnK/9s9ljfBgrxqqFG1rr+bSiPao5x/MJqcJz9X7geAlqzAqU6r1h5Rn0DPJClbkIFt4CFix6+/fAddHTEaUWBVgilzdkaunDbzdjxV/HYJUzTuOYJw3tjBfuHk/Hqqk7TyH3dD5t8O47sSeem/QmXZCzp3ZiF1jCmkeO2yMx8mCtwPUTe8H/fCl+fOU3OkdoSgqDqWMYOB9VQ2oDae6pb/Ah/1DdkbN4M56HTMvbRA7bTrp0WzVFeEPfMRi8QgJpuQ6qkyU04cFhH6USh4lq0oRTe01vEqsg+LyskaPvqx5Gb4Jy43FBxzVjXADqxnR0+rmrFDIsfGIWOkQ7EX3Y8fYvW/DrdseJZXvU+7KgOu4iOtAOuUJGm6hauyDTGnqN6YZ3/noRpw9kIHXnaerI2m9iT0R1iEBJbhkeHvI8SnMbhTX2kIWf55Y8QheYCM9OegMH1x9ruL+uXyRqh8U6fWxCaCCm6VX45cVfnd6v9lHh84PvIIqKK3KpmIEIJ07sPu0g9CDuUWNvHYGCs4XISy+Axk9DF1wm3TUGXi7cdS9X8vLyEB0dTa8n3P8iZD52LsatwFxThbOfv0qv5+bmIirK5q4uIiIicjFjFyJ6IwuvUR0jXC6eWixW/LT6EL79Yx/MTc7FMb4adKs1QsGy6DOuB4ZeOwC/vreSNlnXDY6DobvwOF5VbIFM1zifKt11AmydHlZvJcY/MB63PTYdoRcSF9666WPqat4Ua7tQWJOiyWq1/ZsDm1UMSVpOs3EMcaA3j3AtQmgvZVC8+hB1gyXjGCIWvP312fScKiJyOcNxHObdPR/rF2wR3GbyXWPw8Py59BhAEkfyMwqp8zBppnh81Ms4vf9ssyQDS/8kmkpAIN9YGgDpZNx981X9IEvLw88fr4F+Yk/ntYazVAeOg3JzKlgnTfj1WL0VKL3TtdszQVVmq48IikPnIT9ja5iSyiWw2CW+GPsnwhrpWuQgySmD4lDbNDCSMfEne99sSMgRgghP1i/cSq8bukXB1N02nhRCfjwXylTnAmbickoS4dqqJtH2CEXNWEcn06aM6NQen82ZjqM5BTiWW0iT9IZ3aIeYAD8Uni/Gw0NeQIVA+g9p6nnh10fRfVhn+jP5e0zZJixusCc+OY6eg5a+23zuiuDtr8EXh99FWFwI0kvLsDnjHPZvTEHmr4ehOF3RUCeTmmTC7SPp+ZE0KpF6ffSNwzDhjlFXpBhbrElEREQud8h4JOtkLnUHJzUJEasJYTKaseSt3/HzWyuauYlHJ0UgvkccdcbuN6EnBl/dD4tfXeayydoTptwzDjc+NwNBkTbB9ivXvt/MvONSEdslms6PkTlVklQx5JoBtCYhzu8iIpczVqsV7835HJsXC/czEkHr/R/fTo8BROhQeK4YvsE+6DWuOx4Z8oJDY3pLufmlmTT5a9ln64FuHelajBD8uRygUlig3Na4Sjn+OyBjYpLOEJkQ7nI7ofmXFsPYBGkSmRQGuwTAS82wmQPxwtJH6Rrc6f0ZVHQwYGpvWgvknSnAI0NfQGVFHUx94pvVhIF+Grz55HR0vTD/8+CgZz1KsCaQhL5OAzvi94/XOL3fL9gHXx55l55Tzh49j72rD+Hg2qM4ffCsQ5oJqR3HzxmJ86k5Dd+NMTcNo3XKlSjGFmuStkFMcPgPoUstRc2mHFiKbU04JHFB3TMEvhPbORU6WKuMTsUN9L5KI6x+CoTMbVS1afqHw5BRBUOa8wXjIEWkW4FDuCEGPv5B9DpnsEB3yHmTa5LvAGRUH4GBa+4E2BqkCgWueuJFaPz8oa2qgMrbh15ERK4UetzHIn+3FVqBfpPcrTzCBwKxYxkEdbVd6hnyJou/7uBQ20oB6jk6Z3oZihvwz4obSMJF70fdixusRh7n1zZ+fr3LIrEu+gzMktbtvMED56G2pkeUrVmla6QvvTTsi9lKkxaExA2EIQlBDeKGsyW1HosbCOfLtHSR4InxHfH51rPQ2S3SRAeo8MHMZCpuIHjHMDjeIRffpzYXQxAxyI/7HL8Ap9en4+f9OfjlrgGIDrjyJu//TkhKik8cUNP6Whs+7YBgYaG8iIjIv4gNBcewIHMLsrU2F3K1RI5JEb1wX4cJToUORYZSLM1ZCTPffNKrxFiKcFUQnur0YMNtQd5zUK3fBa3RtiBuT61Vgf269gJ71ni+rrAWIkRjmyQxWiuRXbfO6SNqeRYGnoHShaV5lVWKaifpDaeqQ5GltdU99aglCjzT6X/wkylQZa6Bj8wbXtIrr6lV5L8JmSh/9M7R2JF6HsUVzh101u5Mw5Ce7TGqXwd0G9qJXup5a/1zuKv7Yw6ORVZ/93//NAjFCixZd4Q6lEovfJsVp4sgP10EXi4FL2NhGNIBXIBX4+OItkCo4YhhYFEBrL8XuGAfl26qJKnBPq3BGU1deMyxgS7FDXT/pAxReNl2R2uAYs8Zl3HyiqwKYGsGdP1iwXk1HkvbhwXg+ZvHuBU3aA0mrN7nKDBpiqFLGJTHC1wKPuwXXd1nYLctnfp3oP8m9Uukl4Z9MZjwyf3fCIobCH0nJjeIG8jkur24gZNLUDdQuBHrbHE5ZNOG4+YXZ+K391c6uKYSx7ynf3yQihsIsZ2jcXTLiWZiHoK+zoCVn6+3u6WULmat+WYT3t/yMo1ovlKxFxddzHOIiIiItBV/fb8NP7+5gjY21y+eTpgzCre/OZs6LjYlq7AC3/y+FxYnCUQ51VrE9Y7HC49Mb7ht5uPTcGTnSWyNdj2fRJIcZDr787vtYCepNaBkTwYCX7bVJGUFFdj+617BlAa2oAJcVBB4su8mMyR5ZWAEXLzZWj3Y4ipwoc6FZ14aBd77dA5UkntRWVxFG269/RvHUCIilzMsy+Lh+Xdj/9ojNEXFGWRsNXBaH/Sf3Bs9RnShl3re3fQS7ur6KIrtUtOsHaMaxA30Zxr+6HxE/OMfB6DYfRoSvQnSs4WwCImC7Mc1Vg7yQ+dcihsIklojpGVaWIKEayTGwoOxO6SYE0MbBA724gYCW1nnVuDAOkliaw3tusbgse/udStuIIkFW35pbCSSny2BqWuko4DLHo6n27hKg2hLVKfLUDsiTjA1gtDX15bw1zMmgl7qMeqN+OierwXFDYRB0/o0iBvS9qZ7LG4gkLphytyxuP7pq7Hio9UO7524ez+z+EHa0EToGByE49/vQcErG6F0UpP8/knjHFhRVikyjpyn35sPtr5M3XavVMSaRERE5HJj7TebsOSdP1CYaVsXJ+YWE+8Yhdten02NQ5pCGj1JDePM7Tv3dAEVODyx4P6G22Y/ezWObEnFKbuk05ZSdL4E/mG2Y39RVgn2/HEAfwfEiOS9zS9RYUNVSTU9/1yJ5h8i/01Iishj396LA2uPorbCeYrKH5+uw8Bpfel8NElBtE9CfH/ry7iz66Moz29MlGsJxACqgdIKIMT5nDJfpwOq/j5xA+GfFDcQQfDjC+5zK24g8yA7fnM+/9JieMBstNDL30mP4baaoukaHFm3+PDu+TQNiK6h7c+gBmHWiADwEpbWf+OvGdAgbjhKziEeihsIpw+cxdR7xuPaR6fiz8/XOyQ5xHWJxrM/P9QgmEvo2Q771xzBqf3Nn5+k7/3+8dqGn0l9fubQOaz7bjM9N/gGXbm9vGJN0noEZgVE/m1oDxah4qfTDeIGAm/ioN1fhNJvU8E1mdwi1O0rdCpuqMd0vgam3MaFfOIM7z1SeIIq3jsZLCM88aOWeCOkKgJVqzJtz59XJ/j6LMOig28ftAiBSUellzeuevwFBEREQqFWIyAiShQ3iFxxlB7nBcUN9Zxb6bwjgJUyGP4RA/+kS7Nv/yVYma1Je8jbDCb+IPHIjb42FzDb1TZqqwzXZXYDy196J/u2wmynqCVojRa8vjoN/d7YhLUnGpvUnLHxVDEqtSZ6ffMp4QUJIX4/mof7RyZg/7Oj8eF1PfDilM74/vZ+2P74SPRr17hIQxTwX2xrmeMUSXR4/DdhF1uRxobGfs+wkLQyKY48rt/TtuQRERGRfzfLcvbipdSlDeIGgs5qwrLcfXjo8EKYuOaTPOsLtzsVN9STUnUK2drGmFWGkYFTPYtNNZ1QZPaBnpOi2qrEMX001tZ2h45v3rBETmMkPYFAjN7P1GXi55xl9OcKw0lwvO081RQeDDLNzRcb7NmuDYGJaxSTG6wKnNcGoMKshlJqgpRaK/Lwl2vwfq9bEKHyh1qqRoQqTBQ3iFxxHDiRLShuqGfF5uNOb5cr5bRhIrG3TYTEK2RghBpZ7LEbhpoTwxzuIt9q1mSBRGuC+q8TUO5MhzSrDJK8Crfxy7yEAScBrGG2BpW2hFd5kBBmskCaUQj5vjNQbkihzYjuUJwrg9+SwwjccgZDGAW+fOAqLHvlViQn2CKJXZFZWA6di+hgAuetBK9yfcz7JzEaHI/V2motPn9oAWaG3Yn9q4+4fCyJPtbW2ObL9q0+7HCfoUOgyyYmwuojp3HLy9fhl7z5eGLh/bjvozl4568XsCj9E3Tqn+jg4PWrgKuqEET08+FdX7boMSIiIiIiwvz2wSrqplgvbqhfPF3x8Ro8N/ktWMzNa49fNxx1Km6oZ+eRc8gpamxaJQ1JM96/Cbzc9fnDqmTRMP2nN4Kxc/QjzvILn/uFXidNSc4amephjGZIzhVCeiIL0jP5TsUN1gAvmPokQD++J/gwPzqEajpTHOCvwbsvXoPgQG/aQBTdMVIUN4hccZAmCSFxQz2r5290ejtJcvlg28to3yO2YdzOBzY2T9Dvq6tUBlKTxNtqEvnxHMhO5tJxfQMcB7asBpK8ckgLKiBLy4Vy/VFI84SFuPZoDjbOfThDprO3bgA4XzV4gf2VEhGHi+MaqZfoNq1EoZKj15jueG/Ly/j6+Afo2DfB7WPOH89xaMxnSYrdwfO2iZqm8DyUh87Tbf4uWKMV3tuzBe9XZJQDKY3nlnrRxif3f4uZoXfiyEbntXA9W5fspkIIwt5VjjWJJ2z+aSfuePMGWpM89t19tCYhDUAL0j5CYq9Gsw+zyYzfPljZoucm6Ysf3/t1i/dJRERERMQ5JFlh3tz5DeIGQl2VltYqL131Dp0/agpxxHZVE5CGXHuRJhFuX/f4tIv6FRzacIwmQRBO7k4H16Qf4GJgJc7HKEGRAXhz3XPwvyC0JjWJKG4QudLY/fsBQXFDPavn/+X0di9fDRU5kIbwiyanAHxBMXj7dGmOA19eCWSQcTb+1Sg1CvQZn4wPt7+Kr468h4Tkdm4fQ8yPSJrllYy2urEvmFBVWk3F1teG3IHUJsZLRGgvO50P+clcSPMrsOmH7Q3zYvubrJN4wuZfdmLu+7fgl9yvqNCH1CQfbHsF36R+iHbdGhOySd2zfN6qFj03Efp99uCCFu+TyL8DMcHhPwBvtqJq7XnB+815ddAdLobXQEc3EWOGsJNEPYaMSsijbe7YBFcNCBqZLwYET8W+klXgiMWiHQpWjSGh11ABhPZIMXzGxYJx08vQ0bcfqkylyNG6dhlswMkkWGj7BFz30luQK6+8GBsREXtqs92PPpsmNHBWHmk/8MjewENH+sr/5QPYS03CDKDrHBYyr5Y1abNN+pu0UhOCDRrcciYZR4IKke5XCivDg/xnZS//XxJJbbjx2/04lut6Iakes5VHToUOO8+WYfVxxwUAT6jQ2hY9vJUyzOglLLI7U1yH7HLHwbwn7D9fgTPFtehwIQlCxDn+HRgMfo3F7hc4WA0tEzeQx5HHi4iI/LvRWoz44oy9M7UjqVXZNN1hapSjiPl49Sm3z022idU0NvCyrASnDBH0QgY4csYKtVS4cddgtXm+k3LBQm3dGWwv3YVro6aDcVOUnDbL4cNyiJI2b4Taqw3CX7VRVAhB9oPM/xs5Be04CFXXodyggZHjkewdh/eT74FS6kHTs4jIZUyWB65C2QWO21gsVnz7w1as35eO4motEO4DWddISAuqITHy4GQuxgg8D9bi2LjnyhlFlldJL4SqWwd4lg7hpoGpNQg5KtvDVtRBntryiL3rHp9Oo+M1Pi1LIJO7SZRooA0XMp1h8VXA0DGQpibISnVQZlSA8fQ17TbT1+nx+KhX6IKEJ5BGKuJOev54Nnat2O9wH6dyP3VapbUJUMiC67hbRwhud/ZoFko9bGCz5/Bfx5F/ttCtw5SIiIiIiGtqK+vw/YtLBO8nbtk7lu3DqNlDHG4/cML1OZnUEQdSsxFjJ4yUSlu29CbJKm6WkrT664246cVrwdq5xwtBzKd4gXOmJT4MZruF5IaVGZ4HY+bpOCm5axTef30WZG5EfSIilzs5p/I92CavWfrYoheWYMvPO1Fe0Lguysscv8ee+BFxF1LoyKbyU/mQpRfAGuxD6wq2Ugv2IlIFSIKA1VuBuoHRDqkS5Lss0wKypppoImAQOC4wRgvkB8/CRIQHTY8xVg6KA2fBtLKx58bnr8GsJ6dD5dWydVeZovlxkyQ0sDUGmJLCYQm3JUdLi6ohP10IabFw0t7FQBLxLFHExVQCSZUWkoLKhjQxzbEisFoTtP2jYA6z1Z9snQnqY0XwOpAPvmtXB8H1YyNeQtaJXI9el6QnlOSWU1HbvtWHWrzf1WU2swGfAG9MmDNScLvT+8+isrjlbr1EdFGSW4aQaMc0UhERERGRlkHcwRe/auew3oRDG1Kwd+UhDLm6v8Pth90I5Yj4gKSG2p8DZPKLbwdc+cUGzH7mao9qEolU4lKE0bRPpSm9x/XA66uehrTJGExE5N9YkxABqT0GnQGLnl+KrUt2ocKNYLtFFJQARaXgvTQ2U2gyj23555IU/i5ufXUWrnlkChWxtwSZkwSdKw17MRoRXD867EXkprtxS7YT25H0EHI+OWCXcu0pNRdqEpKyMOH2UYLbndh1GrWVLU8M3LV8Hz2PXsnJciKtQxwZ/AfQp1WA17s+QWmbCByI0zVn8OCk1mTcKQtTg/WSgatzPkkXrekIv8gQZNaloNSQR5MYwlXxaO/dHQrJhckuCw/j+RqokgLAqqXgdM73gzx2eP+boO1vxoq3XkJrKM48i7MH96HzUOHJHhGRKwGZV8u2KTnGYfdzPCwt7/cWEUAVyKAyA/Btx0Ph53kjlHe07ZJTrMfqmNM44V8C7oKQIb46AHef6gsGDD7p2kZRaJcAKctAZ7JALZfi5/05Hosb6pm7+DCKqlvQFW9HXKBnzVtmV45UbjiRXy0KHDwgtA+DkR+zOPAWh5os99v7tLMlN4jiBhGR/wZbi0/QtAZXrCk47CBw4HgeWpN7Nz5Su9gTq46FRqKB1mqbHCGiBaOVg5y1Ngt1M3ESerFwLDjagmDbwMiZcKb2LLr5JkPKamDhnE+0EPFCNjsaIT5X41jR8/CVmFBhkWOvLhhnTfYxmQztk2bAgQdLrwcodSjUeeNUbRb2V5zC8JAebt+riMjljJda0aJtDm06jqc/XY067wuTzGTxSiaFqXsMzO0MYIwcWAUjKHJgzY4OpcQR1ROsgV62uQw3Q3aGI0ID14kUrUGWXQ5D7ziiKhDcRn6u5clmhIBQX5w9ch7tusXQOHdPSYwMRkSgDwrKhZuEpIU1YD2IUzYkBEDXIwyWYA0YkxXKjHKojxZCUid8PCfOstXj2kPXLcRBVMLWGuG/8gwUee5/DxKZhDr/EIe6Pz/f4LG4gUDODc9NesOhoa0eaaX7OiU60NZs5Q77WOaWQM5z545lXbkCB2c24a15DhEREZGLZNvSPTC6cfv+6/ttDgIH4p5q0LZ8zqpbXBg0Sjm0TRKG7JEYONo0y+aVgckva3Y/SZY4feAseozoAqVaAYMLkeTAqX0wYtYgvHnDxw63Ewd3c9cY5w9iGJCwOamew/FjuTh0JAsD+8e35G2KiFx2eOLwq7HbZu+qQ3hj9kcwOvl+MeR4QWoMT5Ll6h/TRFBAfpa2oplcCK+D+VCllUDfOQTG7lFE3QSpAWCdlELSnHKXJY+0oBLs5lRY4kNhDbaNZyUl1ZBmFoO1S5RpKcRx+cyhTJqEQZyXPYWkPASE+6Oi0HFMLi2poZeWYIgPhL5bGCyBaltNcrYMquOFkFwwSxKqSYx928MSG2QrEMj4nfwOtUYo92ZAUm5z4VVlVNCL1UtOk/8kNcYGAQRp/jQZTDShcPm8NR6LG+ofSwQR7hJIhIhMcEw0FMJsnyrSAjgrh8yU7CtX4CDWJCIiIpcJW37e5dYdnNQk9gIHIhog5xd3EGd2e7oMTnJbR7ijprwWGUfOo+forlQw4eo8MvTaAeg9tjs+uKN1SaSH/0rB8R2n0Gt0t1bvr4jIFVOT+Db2uOxYthfv3PKpQ5pZm0JqlBrXiRL/NvxITXLwHBJ6xkHj6/73UU/nQR3hG+TdIB6+EmFZhqa2yeQymibtqbihfo3lgf7PoKq0dWLy8PhQj7Yze7DO5Axy/iRJDleswEGsSVqNKHD4D2CtdT/Y5WoatyFOPxVL02GtdD/QNZypgCm/DtJAJSQ+crBqGTR9Q1G71dEBxR4vmR96BAg72l3YCzAyFl6DIlCzSdghyXt4FHyiLs7p9PimdaLAQeSKJ3wAA6mGh8WFyDFmlG1StuI0jx2P8+Cv7GStywsWSP3GNhphZUD0CAbJ/2Mg93YvdGAYBoopWny+7wCq5Y7H3XO+FfjK6wAGyMPs7NUuPxbszsKSg7l4dGwHLDssfPx3hkLKtlrcQJjdT2CRtgnxwV7wUkhR14rBskp0r/MYIlYYt4BFaQpw7g8O+TvJuKLxfkYCRA5hEH8Vg+Aetr9/ERGR/wblRveTQWV221g4Dg9sXokMowUhAc63l4CDj0yPAv0O/JR1BGpJNHiEw1vmhcFBw/FX8dqGxXwjJ6NCBpvIgQfPMzBz5BlIowKRHTRvWCDpSVJWjQSfmThdtUhgrxl09LsZBmkiFlW6bwayZTlc2H+Gp8kSOoscqwv2igIHkSueYb3joVRIYXAx3ho7sCP998Tu03jisYXQd3Metcx7K8HUGiCrY2FRAVZS9tc3vnM8JGaAbTI+lua7T6EkWMP8qTiCBKoIwvFg6kyQeJBKQbD4KWljPy9hIS+qgzy7SrCZiLFwUB7OhmFA+4bGGYf3kVcJaa5nr9u0IWb+4z/Q63KlDCOvH4J7P7rNozQHMuk9vmt7LNwu4MrD84ipMcNda1b1qPbQJ9s11qhl0PaNhK5LCAKWnYSszLnCvnpUHHQ9mk9+c94KVFzbGcGLUiCtcl0zLH3nD6z6cgNuf+MGbFi4BS1BKpc6FTcQFJmV1JWV8xKee7q2v2cLr+26RkOhlsOocz9P12w/PBAQiYiIiIi4pmnTrDPK7dKmyILwK9e8j7ryaqB9iMvH7f58PU7M34TgYR3g2zkC/j4aTO3fGUuEzq3k2F6gA2NkgbBAcKEB4MtrwGbmg6lpPF8SLTdpjph452j8/slawTHAzMemIjCieeFkaRfqdLzR+GCGNugyVh6r1x4TBQ4iVzxDZvTDFw8vdCksJeNkwtEtqXjp6ncb0k9IIhwX5ke/M2x5LdiiKrBFleAiAhsE0PRL6eI7Rdz+LzWkSZ8IHeSVFhj7tXe+kcUKeZr7RhYiZJCnZLfZvpHj0WcPLqDXFSo5xtw0DHM/uMWjNAfi+kx+fys/3yC4TVBUAMryXNdKNaPiYejcWFvwKhl0vaNgSAqB3x8nIa1sGnVhw9i7HSxxwc1u5zUK6IclQb3hOFi7cbwzAfePr/6GFZ+swd3v3Iz1LaxJJFK21eIGwqS7xni0XUJyHE3LaE1TEallREREREQufU1ivw0RNrww/R0qfvZEPHFg3VFExIchIMwP/qG+GH3TUKz5etNF7TMx3vAL9sW420ZizdcbBc/j1z46lZ7/Lwby/KLAQeRKZ9jMAfj6yR9dJprU1yQH1x/F67PmNTNyE2k9rJTFx/d8Ta8rNQqMvWUE5r5/MzVGcodcIUP/Kb3x16JtgtuQ42ubpmy0MQue+wW/fbAK93xwKzYs3Nqix5LendaKGwiTPaxJEnu3p7UjEVG3FHGd5L+JKHD4DyD1c3+QlthtU7enAPqUUo+e25TtpFFJykIWroG50HmntdtmRgkDRZzNLcR7VAwVaGgPFDm6tUkY+E1pT1MeyIneJygENWWtczisKHAfDyUicrkjVTHodCOD1K+dD3yVQUDC1bbv3smFnChuaAGKACBhOoPyNB5F+wU2sht3cWYgeyOP6vM8Rn7KQqp038D9Wu6RZuKGeswSDsdkJXQB5XKua3QmK15fcwoKqecN6zIJA6Ol9ckKYzqF4KqekR5tu/FUMU2ZaClEFDG0Q/OFDRFhyHk+JBkISZbArOWhLwNNi5GqAVUQINP8s6KG2267jV5ERET+XkKVvi3aZv7xA1iflQGlwhdBfrXNDBPVEiMilNVgGR65upMXbt0Po1WC9FqykK1GN/84lBjPNzQZk+QEI9dcyODsTCRn5ejgnUCvdw24DwZrBbJqVzpswzJy9Ap6CiHqfuB4Dt5SX9RaqpvkO9T/33Yet6VENCK70KGdp2tdLSMicjnhrVHipsl98e0K58ljYYHeuGa0Lalk4QtLYGjneozFaRTUPV8GBaR6wCrj6VxAvTumAxYrZOmFnu0oy1CBBEeezy4toAGep07Gyn3pzRxYm20qZVE1Ph6Gjo0unwRJhY4mD8jKdYIJDYzRDGPXSHBB3g0OsfIzxZCfyG/2HoMiAzD1nnE4vvMUdTNzhv1kMHF72rBoK7LTcvHB9lfpxLw7tv6VAkbKg6e6L7vPhefBWIE6jesFSkO8v6O4wQ5eLUP1pEQE/dB8361qmVNxQ8NjFRJo+4TDd5P7RAay2PvZ/76DtAUCZSJucNXcQ/4GfDecReX0JDrf1ZRx3RIxrlsHj15r9x8HYW6FE5e3vwbJI7vgiuYyrmVFRET+O4TEBLVom5/fWIH9a45A7q+GJS5I0MWdNDQfPZWH2tGJsJ45B5ALqUgUMiREBuFs03QGjoeywAA5UXDWr9AxDPggX1j9vSE5egZMVR1UXkok9bPVJHe/dzN1T938006HpyINRA/Pn4uuQzpRQYZ3gAa1FY3rMlY7V0gh6LnfCuS6aRoWEbkSIM131zw8GUve+cPp/RHxoZh4xyh6fcGzP1NxAy+XwtQ/EVyQfQojwNQZICOpYCSFQKWwZT5aSQ0g8OJmK6RnPaxJ2gD52WJaHxmJaNwuHY4IxZX7zkJS3bbx3aGxwZgydywO/ZWClG318zDCNQlJzFnzzSZkn8rDe5tfgpQk9rlhzx8HXd7vrinfkBDoIG5w2DeNHDVjEhHw2/Hm96lkVNxglQLchbJHYp+MQWqGxDAoUoQN+erRVukwb+58t4mB9sgUslanvRFI8+qAKb092nbn8n2wmFrupkWaZLsOScIVjViTiIiIXAYEe1CTBNul5Xz/4lIc2dj83OWMY1tPNLuN1BRxXaNblCrUdE4qsVc7ev2+j+egtrIOO35znPslDcSPL7gfHfvE07QI8pr6pmlQZA7WzTwrIa8FTuMiIpcrQZGBmH7/BKz4eI3T+6OTIjHu1uH0+rdP/ySKG1pAePtQWpPs+fMgTu5Jd7oNZ9d/ZNAaqSlSbno+3t7wPCQS9+sGZB7IFcQc73KntqIO7835vEWPkatkMOlbX5NMuH0Ueo+1rf+5Y+eyfc1ShzwhOCoQSf1t82RXLJf/n89liShw+A+gTAoA6yUDVyd8INL0tS1CE7FA3d6LHDRaOCpuUPcKgY4IJawt+3aqk0Mg8bbNIDEsA/+rE+E1JBK6oyXgtGZIA1RQ9w6B5IJ7HnmtdtKuSEHL3DDqUXrZmglERK50kmazYCUcTv3Ew2QnqgzqBvR5koUygEH5KQ5FBy7iRexth/8DBCQBo7+0DXI5K4+M5TzO/clDSw6T9WuaAuOuqrNA9l884qe5nsk+W1KLzFKt6wGowYJ7hrfHgl1ZMDVRsV6dHIENaaR5v+WT0u2DNMgsc/3aLcVk8ewPJDnaD95KKXZmNFnkbYK/WobBCUGo0ZuxN7McZiuPuEA1bhoQi9sGxUHirCmtCcfzqvDo0mOezJs04/Yh7ajIQaR1EDGDzPPUPxERkX8xI0K7wvvUStRahB24p0b2of9aOQ6L02xOpwajHJn5IWgfWQqWtR3IJYy1QdzQFIXEikTvEqRWR+BguRnTI8fgZM1WWF1EV1loR48jQ4MGwktqO4AxjAR9Q16iSQ3Ztetg4qrhLYtBrPdkKCT+dJsztfnI1zHwkQMyxgI/qR4aiZHO25s5FrVWJcpN5Pkcz1skSYLgLXPfeCQiciVw54yBkEklWLz6IGrt4s97dYrC83ePh6+3CseOZuJgZS34CDdCVZaBNC0HvJ8XrNHBkJApLNKAJGMchL9EGKAgDTweOJnRpy2vowICmQ6wKHhbg9KFhn7iXiwxggoN2Cr3DUFU3JDUXKhhDVCjYmZnBH1/DBK98yYcWV4lvZBmGtIwyeiMTsUb3Yd3xgdbX6HXrzNbsOzD1Vj91V8ozi6lcyaEetfZppw+cBZbf9mF8beNdPk+Tp/IRg5vAUNEYKTcYG3T9HR/iEktSdnxV2LuczOw/J0/m7lPTZgzEstNrh3oLEEamCJ9IM93dAAKmdQZxU6EA/boEwM8EjjUY/VQRN1lcEfaaCXUoFVPaB2HUbwPCmN9sT+3AFaOR7tgf8wa2AOzB/WgCRjuIAsuH9zxBbhWFCXXPTHdI4cpERERERHXDL9uEL58ZFHzZhs7Jtw+mv5rMVsa3EkllToo952DoX88IGGbjStkJ/NQPb0zbZK2R2c0I6OgDNcM6IINC7bAImPBVhsgrwOYSAFxn4SFNSkG0n1pmHjHaKi9ba7n5Hz19I8PYtaT06kza12VFtEdIzHmlmHwCbCtb5w5lAmD1uYoznmrYOkYAfhrPJ7P9fZWut9IROQK4PY3b4BcJceyD1c5uB33GtMNj313H01FObD+KB0rE0wDOoALbL5OyHspYeoTD8XONHBxYeAiA8GSmoThwUkYh68VFSsfOAtW69zE6FIhTy+C7GwJLJH+9BjE1hogKa5uSW+9R/QZ3wNvrXueXp/xyBT89v5KrJm/EaV55dR5kwpFBNyZTuw6jV0r9mPErMEuXyNl+0mUuUnQqy6tocdB4khqL6YghjuT7hqNpTWu1xosoV4wh3hBVlLncHvYpGScDGZhtTerIsJ3HaCostlWkM/YE4FDwz6B/I24P/h2G9aJvpeTu503aNkLDJJHdkVVaTVStqXRx8R2jqLNc5PnjvUoKZmklnx87zetaqK7/qmrIZO7F86LiIiIiLhm1A1D8M2TP1JzEldNogSj3oh1322+qI+U1D5E3ECSfshzCc0hCjF57riGOSlioPLC0kdx9pnz2LZkN7TVOsR2jsbYW4ZB42tbS0k/eLZRkKhSggkLAny9wbAseIMRfFklUFIu+HreAV4X83ZFRC4bSIoZEf+QJMb6OQgyXuszIRmPfXsvTTgjY+TM461LUyPz0a2ZZ76SGXxVX7y84kl6ffoDE/Druyux5puNNJmZpKFZSX0g8JEc23IC+1cfwaDpfV2+xt7Vh2jN4YrKompc98Q0LCM1id3vgPxOptw7Dmu/3gSLueW9W9FJEcg93bYiL1IieDL0J+ZK+jojPYa7IjDcn65XkQSL1B1p9P236xaDqx6YSJNHPYEkDX3+kC31r6Xc8Nw1HolURP59iB17/wEYKQu/6fGo+OW000ZcRXtfqHvaIpY5nQXWcuEJ/pagTy2D7+R2qF6V6XFDNEl+IPva7PZgNXzHxTW7nQzAy39MQwdlL5SoslCoz2zxfnYaYlNGioj8G+hwHYv4q3gUHwIseh6+7Rj4trdNbKZ8acWZXy/iyRlg7NcMSo4B5jpAFcLj9M+A9l8aguITBwx8mUHeDh5Z6zgQY2VVMNDtTgYhvYC8bTyOfOT6OWwCB+H7i6oNmP3NPo/2Jz5Yg91Pj8Kyw3nILtfCXyPHjJ6RSAz1xsC3NrsVOBAxgNFiRXa5DgEaOa7uGYlXVqWhrfHkcP/ytM64bVA7PPjLUbfbDkkMxg39YrD0YA66RvrCXy3HzN5RGNs5FNImi8pCLNh1HpZWFHi+KhkeHn2FK4BFRERELhOUEhke6zQNr6b+Bs7J2WJAYCLGhHWn10t0WhRqG5PiKmu8kKJTItivFmqVEZFeVU7FDfWoJBb4yfSoMquxsegkHkichd/yfna6rYVjYG0icGinbo+bYmc129ZH3h7dAu9vdruZs+DZ44tQblRAIwHiNI7iCxnLIYDVQcFakK0PbEh0IOittsXh0aG9BN+PiMiVxq3T+mHW+J44cCIHBqMZibHBaBcZSO/7YMFmLN9wDHyHCNvMqpsmDFZngiQ3B3xqDnXPZzkeX535BPtP50OrMyLUV4Vf7/sWRSWex+ZKCivAkMYjjQIyA0B0RjwRUJFABzJnYuUgzSgSfDwnZ2GM84XFVwF9UpBg8xBxCNV1D4X3ftcFE+vCFSc+OQ7PLH4Q23/dgw3fb0N5QQVCooPoAkmPEV2w6Yft+PLR710+/6Yft7sUOBChxNMz3wcG2dzY6PvhnBiOyqXoMDQJP903gUY0F2YWwy/EB2NuHo6YpEj8+eKXgM71fNJVb80Ct+0cirJKaIPO6BuG4s35juk4TvFw3F+PJw07j35zD20cffma99xuO2Byb4ya3B/rFmyBIqcUvmF+mDS4CwZQcYNn+7Z8nuOCh6f4Bvvg+qevxpUMOSW6OG17/BwiIiIiFwsRC9w77zbMu3u+03MFWegmC+b158fK4sZ0NllWGW0aNseHgvNXU5MnaU45pAWVqBse30zcYM+m1HN4cOpgfPP4D/Rny+BurnfUS41uU/vgzndubHZXu26xuOOt2Ga3k+anl69+lzqAWwO8YBpMkofsFn0bY+2awV4wKxkzsrPr/RIRuUIgjUM3vzgT1z42FUc3pVIn4YSe7eiYlXz3P7z7K6z71tYsaA3ydipuaEAlBxfqB+nJbPAns+m4VMIwmJ/xCfamZEOnNyHUT42f7p6PsvJacEopTDF+4CUsZMV1kFboLv37tXKQ5Qg3Cl4sHfrE4/EF92HLzzvx1w/bUVlcRdMc7v/0dnQf1pmKwb57xvmcSz0bf9zuUuCQf7YQL139rkf703N0d0x/YCKtScixOiDMD2NvHY7IhHD8+sRngJskhGvfvQH6bWdQklOGwAh/jLhpGJ7dvR9WbZPfFcPAorGl3KgqSLHY9jXJMz89hFGzh+DZSW+43Xbw1f3peWrDwi3UIds/zBcT7xiDfpN6elyTENFPa8QN5HOa8fBkXMmINYmIiMjlAhEn3/3eLTSB1BnDrxuIfhN70usFZ4tQW9k2RoV7Vx7Era9ch0UvLPX4Mb3HdcdtrzZfJ0lIbkcvTdHV6vHy1e9RsTipaZiEWCpsqIdRKsBEhYH31oA/51w0OOqGoR7vn4jI5QwZn815fTZmPXUVjmw6ToU/ib3bIyoxHFarFe/e9hk2/rC99c8vleDblA/od5ukFARFBeD7l39FRYFrE6Irlc6DOuKhr+bSumLT4h2oKqmmaQ7ktq6DO1IhyY+v/ObyOchjXQkcSPLcWzd+7NH+DL1mABUab1i0DaW55XS8PO7WEXSfiMDBHTc+NwMlueVUME5SCUZcPxjv3PIp2hpPhv4v//4EBk/vh8dHvex22+GzBqHX6G40PZzUiYGRAZh81xj0GZ/skeCa8NsHHqwHOSEszpYoeCUj1iStRxQ4/EdQdwsGq5SiZksOTOdtC/+sRgZNvzD4jIqhIggCI207Xw/ezIFVyRB4U2dUrM8AX+o+ykbdPwys3HO1lSGtHNZK4owqwZDQa5BddxKZtSmos1RDKVEjzqsLCnXnUWzIcvp4n+AQJI+7sidlRESaIpEziBhErjV+n1O/uUhxA4HM4coZdLiWoeKJXc/yLRI3xIwFiDlxXT5QdgKwto2WShCFLyBRAsZqwCsCiB0LnFwEWF2YKLFyIHIoEDWURVh/Hvte4VG4r3HUV50JFO3nEdYPCOzqfh8MbuqHN9aeQmmtzVnNHe2CvRDsrcC9I+KdNuIXVrv+QBNDvXBj/8YF0E1pxcj5GxZYnLHvXAUVOPRvH4CVKa5VyIVV+mYikC2nSzCgfQAW3tYPKg/OGbvOunZuEqJab8b+85UYGG9ryBMRERERuTgmRPSEr0yNhZlbcbzK5koSKPfGVdF9cVv7kZCytmO63In7gsUiAW9iYOGk0Pi4d0T0kRmowEFnNULBhmJu+wewIn8ZSo22pmUrx6DGrES1WQGV1AIpw4HjGWgtMtwcMwZy1nNXuu0lqSgzkhqLQYiiTlB8oZGYECDTotxscyHSW6QwcxJEqoIwOXygx68nInIloFTIMKy347j1o+82Y/lftnQWaiRMIwKEn4OpM1BX5PrtSSMheYiaZTF7Um9oq7V4dvJbKDpX4vF+jZ8zEjKFDLmlNTjKMjBwvG1SsV4rbOUgP3gWrF36RD3ktatHxaCuXxj4+oSvC49lDc7finpIPILzDTS+PapDBEbfOBTfPfszLCbnqQ4EhVqBITP6YeiMAeg1thtenvG+QxR9Zko29q0+jIHT+lB3HHdUuRF/fPHwQtTkk8Kl+cKkAxyPqNhg6tIz+5nmDffeaiUq3Qgc2neMxPSbxjX8TIQb1QeygC7JLh8nK2wUvbUVx7aeoAIH0pS1+3fXMYe5Zwrw1LjXHG7bv+IAdbJ95fcnIVfaEkZdcdjud9gSiGPUqf0Z6NQ/sVWPFxERERFxhBz7/UJ88fObK3B6fwa9jSxET71nPK5/+qqGJlEyXmgKYzCD09WA47WQleghK7Wd94ztXc8bVesMCBvXhTayLnz+F+R5cN6Y+ui0Fjllb/1lN6ouuAyae7V3FDc4vAlHkQNj4ehYKDYmEBPGuRFeiIhcYag0ymYNLB/dM79B3EDgwmypjK6whvlBmllsG+9bOeoj56OQYfa0vqipqMWzE99AaX4F6oa2g6FzKBVm1yPLq4b3pgxILqSrEIiDMun9yD9bhLQ96S4dnNuCoMgA+i9JfonpFEWbZ759arFDAkJTVF5KDJnRnzbu9BjZBS9MfRvHt6c51CR7Vx7CsJkDERobdNE1CWny1HqQoEeISAilTUA3Pn9Ns/u8VApo3QgcErvGYPwtjY0xKw+lobSpuMEOq4qBVcpDXuGY+tAWHN2cSgUOpCY5uN5WKwtxLuU8TfKzZ8+fhzBgam+8+NtjHp0z7OvKlkBccc+lZCG+R3MjQhERERGRlkOaYgPC/bHk7d9x5tA5eltwdCCm3TseM5+Y1tAk6qwmaS1EvN1pQEc8sfB+LHpxCW3Idce0+yZAIlRXOGHTjzvoeIPAxEY6iBvsYXy9wQf4ARVVDre37xGL0TcO8fj1RESuFKOFIVf3d7jtvTmfY/PinRf1vGR9ISDMlyb/VpZU45kJr7dI3DDtvvH0OfLP2WqShuSVS0RIdCAsFg66Gh3iusbQOuKbJ35w2YCv8VVj8NX9MHzmIJrETOqutL1nHGoSMq8/+qahNKXPHUQU4YqP7/0a+lrPmthCYoMREOpHhfVNUfuoUVPuej2jQ98E3Pba7IafV8/fiJqytl8D8QRSIxCBA6lJ3CVdk89/xUdrHG4jv4Oh1w7Acz8/7PacQZLBU7a6fg0hirJKkZueT9NMRf57iAKH/xDKRH96sdaZwJs4SHzlYJpGKiukUMT7wnjO9YHdU3ijFaqeIYjsEojsV7ZDonftIiH1scWbeYoxp3FSjGVYtPPuRi/2BCgiUFzYRODAMIjtloxxc/8HlbdPi15TRORKw1DJ4fSSi38eIhZQB9uuH/mYR6nr+dZmJM5gEZBkK8hNtTy2PcxRwcClQqoBJv3kOICqK+CQuUp4lJx0A4Mut9qOUycWEHGD8+2KDgAlFj2qZQx8zcLx7URYIUSF1oT1JwrhCT5KKfrE2hYinDGpWzhOFwkPeGUSBuM6hznctibVs9e+FBRfKAwSQ7zgpZCiTqBg0igkOJTtvBDbl1mBN9eewmtXuVeatMKUqIHC6sYYcxERERGRi2dgcEd6qTDWwciZEazwaRA21BOoUqNXSATOaTMQEVSFGN9yhKlqIJc0phVZeQYmTuqQhmAPTyzZL6C3mjAspB96B/TFjF3PQmvRwkJTG2zb1Jkl9FxBBA7ktkB5y+qDE9U2sYavTAdfYgfvAn+ZDmUmL5rcUG1Uo39AJzyadB28ZKoWvaaIyJVGcUk1lpGGDbspASIM4Km6wPn3WJGa2+wbTia1iUMnYd7c+XTyvSVc8/Bk6nxMqK7V44GbP0EWaaRhGbDltbRxiSXpDk6omtgOdf3CHW8k6Q9S0vQCSPTNRQ4+ob74Oecrh9syU7Ox8XthdyYyKT7ryen0OomsF2pCIQ1FNRcEIK4Ia29L7HRGWUEFFUtIrBwkJbWwhgi71wYarYjvGCV4/7juifh2y0HB+5UyKUZ0cRS9bP9tD2QlOsjzamCKEj72ao4IJ2q0FtKkQyAiERIXTpyunL62r1rw7+zQhhQseO4X3PPBre5f8CJqktLcMlHgICIiItKGDJzah14qiirpIj5p/m26CEsSkxJ7tUPGkfP059rewagYHw2rX+P6hfJcNYKXZ4KXuXfO1hvNGD97CG1knTT5PejNwo3FhMAAmyjaU05eOFdZA73Be3tQW/A8GAsPmQUYNDARjz40HiqVe+GFiMiVDBEUrLUTNxB4T1wmWcdtfAK94RtkG7u+f/sXSD94DnUj423ihiaYo3xRfVUX+P+aAubC937m49OocyuhqrQaDw58jqajXSpIA+XnB952uC39QAa2/7pX8DHEbfbqByc1iA/sxQ327PhtL7oOSXK7D+EuapLC88U4/Ndxj99LeLvmn3M9Y5M7YPG2I4L3qxUyDOnsKOzekNLYJCWERc3Ay0XKX2spL6xsaOiUq2QwCaT7eflrcGqvTZTXlH2rDmPxq8vo7+xSrpOQRlhR4CAiIiLSdgwlQsIZ/WlNQpqMiQu2pInxEzFLiekUiZxTLXCcdIGhzkAdxsllkmq224ZmYnLSEtL2Xpg/89aAUbiuLZggf/AXBA4My2DI1f3w0Jd3Q6FqWb+YiMiVBlkbuFhxQ/24mDTSE96++ROcO+bc9NkZRERF1h9CYmzNXySh7f5+T3skfGotRBAwb4ejgVDqjjS6xiHE3e/eTMXhhA/v+spB3GAP+Tw9q0lCXaY3pO44BU8IiQ2i4gYhhl07gAoWhCBijN5juzdbJ/mnqK9J4nvGQaaQCp4bvAO8GoxCmrJz2T4s6f6HUxF6U1qTKFdPaV6FKHD4jyIKHP6DWMr00B0rBae3QBqkgqZvGKR2E/PktrYSOMjCG1VyASPiUb3OtiDgDNZLBmXHxkGyKb8OdTvzoD9dCXAc5HG+8BoUAVVSY5NvU4GGM/zkIegZMJquJYfM7AqllwZBMXHwD3PReSwi8i8inYgbXK+ZeUTMaAZSFQNDBY+czS0bdPgloEHcQJB7M0i4isHhDy9iRtUN/h2b39Z9LoOqDB4Vp51s3wHocK3tOmfmkbna9b7VHpfg3eTt6FAdhKnZHVGp0MMosSJc5w1/k20hsd1k4WNUboUOZqtn7/+FKa4j4m/sH4Of9mejuMZ5U85NA2Jp+oM9QqKCvwONXIopn+7EiXxh56YAjRwauQRao7DA4LdDuXhiQkf4KF07WPSM8cOmU547+9oT6iMsYBERERERaT0Z1eVYnZOGGrMBCT5BuK59MkJVjY21wxJ5aGrz4CPVI0LZvDaRMDyUrBkGTuZU5FBtJ0CMt1McTo8YgYXnN4BhGh9FxBC2MzJJYPBDr4BGl+yztVlYVbAJx6rSwPEcOvkkYHLEKPTwazw31ws0SEKDOxQsh1vj7oaCVSHeKxLhKjElSOS/wU9L94JrMjS2OaACvMRR5EDckeUpOZCdb57CNfbm4dQtvySnFDuX72/RPnQakNggbiD4eqtw9ciu+PKRRW4fa/GRo66Po2DYAYlN6MA0GWJ3jW4+aX7vh7fh/PEcnD3aOD9i8VeD81Ohc6/2uOqhifQ2o96Idd85NmA15eRuJ4VNEybdaVsEcAaJuq93blUdzkHduE6Ak3kW4u78xO2NyQvOmD04GSsOnERFnXP30xuH9oSv2nFsrbsgfPZblYHy67vA6t987O21OxfK846Obm2BXCXH3J6PU6cnIYiYhpWw0FYLO7qu/XYTbn11FnUIdkVS/wQc2ZTaqn0NjBAWu18RkJPsxZb+l27qQERE5D9Mdloeti/dA22tHu26xmDC7SMRYOfmTha/icChpk8wyq5LaPZ4Q7wvCu7pAq9zenD+rt0CO0RecI0BcPU1/fDzEgFXFQCREf7o1rVRVJiaUYCf1x/G/hPZtDm1d6coXD++F/p0bkxyksltS328xn1DkEwmwVN3j4WXSo6E+FCEhfq6fYyIyL+Bxa/+1mxMwVbUwgoX43y6jaOoeMKckVQUlX+2kDaXW30UMHQSbuC3+qlg6BgC1Yki9BjRpUHcQPAL9qVNO9898xMuFR37NE+E/t9nd9JjYNaJ3Gb3dRvaCZPn2hIOdLV6/PX9NpfPf2LXxdUk+RlFHje5PPTlXS7vv2lET6w+mIYqrXPziVtH9YamSYqO1uh+LoeI4SWlbe+oKpVJcFe3R5F1svnvoR4iwrOYGw0/eAkDfVIQ9B0CqcCOCMZ/X7IdN75wLeRunL6TBiTipAe/L2eQtKMrGrEmERERuQwh57/M4znYuWwv9FoD2neLxfjbR8E/pHF8HhEf1iYCB9LQ3K57Y/1A0iKWN3HhtieuSzQ69m2sgVJTcrB86QEcPWSbz+zZOw7XXN8f3Xo0PqdUdqH90I24gaAK8sEDzz1A3e0Te7enAnMRkf8CP77yW5s8z6Q7R9Pv9fkTOS1O6eozIblB3EDwD/XDhDmj8COpl1zAS1jwPhqbYUK1FkwLGtWd1SQPf3U38tILkJte0Oy+nqO7YdycEfQ6Scfe8vPONqhJRgvel5/huTnsI/PnuryfCNq3LtktuKZw/dNXNxNz6WsvkelqkxRPp5swwO2dH0buaeFzTUhMkNt9/OOztTQZ1VWKA7mvQ+/2OHO4dU7IYk2C/+w6ifvucJF/DbyFQ+k3qSj96ji0+wqhTylF7eYcFL17AHV7bCcMc5EW2gNt40IhDVHBlFeL2p359F/NgDDIwmwKwmYwgN/k9lSwQBImanfkoeSLY1SIwRssNHHCeKYS5YtOomZzTsPDlHZiByFkrBwdfPsgKbQ/uo0ai8R+g0Rxg8h/itKUiz/DeccA3e6yNR2VnyTHE88fK1UDvR9tfrqJGcNAISxsvWjIfhbuc3zvMg2DER+z6P0oQ0UXrN18b+UZYN1NPM7+zkFbBBjdJLhpLHL4G1U4EVCMt5N34KvOB7Gw4xG8lbwdCzochmqIAVHDhB/vq/IsVvKlqZ0xs0+0y20CvRT45a4B6B7puCApZRncNigOz0/u3GzChNx3KegT6w+5XQy3M47kVAqKG8hjZ/eNxsoHBiO30vUg2WDh8PZa10pqs5XDmaLWxUdH+aswsL3YeCoiIiLSlugtZty+8xs8fuhzbC7ahnW5qfjoxA4MW/UZlpw7Src5r83C4VqygM4jWF7rctJFSizgm6C1yFFjsTWadvQORZYuDRuLNyBXl4MZ0UMRow4Fz7PgLlxsUgcGLBjc32EaJAyLGnMVVheswYsn38ae8sPQWfUwcEYcrTqJ19M+xcr8RveNQYGd6L4S0YQ7NFJfjA7tjyHB3UVxg8h/itTjzhs2aICDhVx4MFYeiv2Z0PxxGPJzzcWpcV2jccsr1zVMWNc35nsCceF/8IvmzTDjbxsBbzcNiQRdl6Bmzq1NIQIHxxt4ZHy8GYc3pjjc7O3vhXk7X8ODn9+J2GFJ0F/TE7VX9YB2RAcc9JFi2tML8Pv247TRp7bSFuveWoj72YApvQXvt3/vsqIaeG06DbbSceJdUq7FSzOHY8yYZJevFeLrhQX3XIukiMbFEfq8EhZzRvTGQxMHN6tJSIMlQVpjRPCiFPhsOg9ZXg2kJVqoTpYicHEqfHYJN/sIkTyqi9s4ZOIQJSRuIO6p0+6fgA+2v4Ky/AqXz0Niqxe94Doy0WQ0I/d084UaT4hOikSXQU7U+yIiIiIirYY07D4w4Bk8OeZVrPlmE7Yt2Y2Fz/+Cm+Luw8YfbClLJ3afxo5l+8CzDConNDbtNMXqI4dF5ro5tktsKHafysLirUdwtqAM113TFxERzidFWZbB/feMoo0KpTV1+Hr1Xtz11lJsOZgBrd4EncGEnUcz8cA7y/DbRlv9ROh/4XzPmNxP2gYFaDBhdFcMGdRBFDeI/Kc4uad504uEpHrpXXyHSdLZ+cbahCS73HDBlZI4fJIxrTEhSDCVrh5jQiB1vHzg0zua3TfxjlG0ue9ScXhTClK2n3S4jSRQfLLnDdz/8e2I7RLdIJIipO48hVvi76fCBiKC0Ne5Tqp0x8jZg9FrjKNDqT2e1GOE55Y8jEHT+rrcJjzAB18/cC0Swx3n9OUsi7vG9MXcCQMcbuc4Duoa56kJ9ijOtNw8qc/4ZHpMd8XhjccFxQ0KtRwzHp6Mt9Y/j6oSm/GHVSND6S09UDUpEcaEAJhi/aDtG4FzV3fAN6t3uXwt0jhLBO6tgSRMJPZq36rHioiIiIg4R1utxX19n8IzE16nCVNbf9mN7579GTfG3ksbYwlHNqfS5NW2oPOgDtj75yGs+HgNdSq/7snpCI11nMOzF+Dd86EtrbQsvxwLP92Axx5YjN070qHTmehl984zePx/i7F2ZfOaBJbmazZNCQn3o0Y2g6/qJ4obRP5TnNrnPj3MHUn9E+l3mCCUtCaEX4gv7pt3W7PbicCZpBw7g8yLWJNiYBmRDGu/JFj7d4JlRA9Y24d73Gu9f/3RhuTJeojBxKf736KGUCStRmpXkxzdnIpb2j+ALb/sQubxbBhd1WweMH7OSHQdQtZynUPWbDzh1T+fQp9xrtdJiDDtnY0vIjrJ0XRbrpThlpeva0jvrsdqsVJTr0vBgMnCa0P17F9zRFDcQP4myN/aS8sfd7tWVVVSg98+WOn23FeUXYrW/t3HdhJOGBf5dyMKHP4jWGtMKHzvEIznnLjecUDVynMwnKlE3f7CtlH7SBhYSvSoXpWJ6jWZKPnsGMoWnkTA9UlQ9wkFYxfbTFIeAm/qDHmMN8p+TEPhG/tRvfY8IOBsXrMxm6Y7EBSxPpDYpU+4Qt1T2EHFE3gzB+4fdDwXEWktjKSlDyBCANtVZSDQ6SYGoz5lofBlkLeDR+p3njcSSZTAiHkMjDU8zvxqRc4WDqYaHrV5PHY9w8HY9kacDehLgN3PcSg+5HgskcgZhA8gSRQkqcHxMWR/jn7CI2eTZ+/Rwtq24+3mqcn1U/6leM/7AGoMwseMuCANekS7VniM6RSCOYMdI5OdcSK/GicLamgzv8P+cTz+OJaPQ1mNTTlk0eWJZcex7kTbRyonhXlj/s29cU0v4YFlTIAaOpPwxIbJwmHpoVwctNtnV/x8IBfbzwgPgjecLEJOkyYtT5CwDF6a2sXtIoSIiIiIiOdUmsrx9LGnoNFsQ3JYPnpH5GFUuwwkBpTAwlvx/KG12F+Sjc3FNndAFWuG7MK5Vggp43i/ziLDmdpgENlCpNoAA38aS3J/xtLcX/BK2ouYn/kJ3uh+E8aH9YaMbZws6+AdiTd73I5OPkH4NvM9vHLyPmwu+RGhyioEKWohYx3P6Yuzf0euzubo0SsgAdEaFQy8HEbO9cCri6+wQ4gnGK0m6CwX11wgIvJPICPTTwI1PpUY8QCrM0N2rhgMx9No8vqI5eCoQNz84kx8tPM1OtG8belut25C9mh8VfiQNKrnlWP5R6vp4+uqtMhOy8VzU97ySETAqdwHoNrXBETc4LMtCxX7zuP5KW/h+A7HhQalWoHeMwcgq0cEDE0Sw8prdHjjh03Yelo4WcBTstLyaBOnECTRon33xlQLWUE1fP9Igfeq49BsPg3vP1MwRaHBlCmuG4kI6YfO4fy+s2DKzZDV8pDqeEi1PJgKK9ZvTkNqZqFDI9FbN32MfWuONNzGmqzwOlyI4J9OIGRhCvxXZ0CR33KXVNJ09vzSRzHqhiGC24S1D4FB6zz9jmDSm7Hqyw1IP3DOo9dc8dGaZk1j9hB38NK8lkd8kwXle50sOF1pUCFTG1z+LjIyMvDcc89h6NChCAsLg0KhgI+PD+Lj4zFr1iz88MMPMJvdN8KJiIhcnhSeL8atiQ8g/cDZZveZTRa8f8cXOLU/g54HCPoEXypicIUhVg2FwNyUXCbByZxivL9iO71c+9aPeHrxerz+2jUYPbJzg9iPkNQxHO+8MRMhcf6479s/MObVb/Hp1n3Q+vEw+AL2pQYxSvxw8Tbkl9gmV/tOSIZvkDdY0gRrdH2MGj/MdVKsO/QmM3QeOJ6LiFxuSKTNx/TEdVSxN93p94ZMC/ul54PVm6hj5a2vzML7W1+BxkeNzT/txM9vrqDb8XbfYyG8wvxoTUJSH4hb8vZf90Bbo6PNOs9PfdvlmP1iKThbjGcmvIG0Js1UKi8V+k5MRnl+BT3+2VNeUIn35nzeTKzdGs6n5sCgEx57d+gTj+iOjs0/TRl7y3CMuM5RMN0Usu5x+kAGcreegs8Ph+G3PBXeW8/B568z8PlyL3be+4ODU6jVasVr132ItA822A6qAjAGC5Snm6cLuktve/aXhzD0WkdBhT1h7UJgctGoZdSZ8Odn63HuWGPyX+WUDrAEOTESZBl8eeAYjucIO89uXrwTlUUtX5CTKWS4b94cXOlcaTWJiIjIv5u8jELcHP8Azh5pPMbXYzaa8c4tn9Lk1/qa5GIhTbUnd6fjy0cX0STbO7s8gg/v+gqvr34Gw68bSOef6uk8sAPe3vACdXR/esLrmJ3wP/z8y0GnaUscx+OTD9ajtMRmajhoeh94+WmA6lrwbkQOoyf1uKj3RMYWRLwnInKlwUpa1rwlkbBQeSsbxo+3v3ED3tv8El1f2LBoK35970+Pn8sv1Bfvb30ZWSdy6DrJDpIeU6fHmcPn8OL0d5zOl5NvvrVnIrjYUMDeUEguA5cYBa6TsCGEPXmnC/D0uNeQccTRuZ/UVr3HdacmQ5YmNQmZT3/7pk88SmdwR2ZKFkwG4bF3l8EdBUVf9Uy+awwGTu3jchuy7kHqLrL2ZLVLYSOYDGas+3YzrQHrsZgteOnqd6nIvK3pNjQJTy1+EIOmC6/thMYFw+yiD5b8Tfz+0RqX6Q72LHjuF5y1q1+asmHRNtSUtXzNR6GS454PbMK7KxmxJmk97ldoRa54OKMVJfNTwFULTyARanflg3fRdOoMaYgarEpCExZI8gKrkIK3crBWNn8tU1YNyn8+hdAHe9G0Bku5HoxCAlmwGpYqA0o+Pwau1rMFQu3+QshnJMKqNcNa6/p9EVgvGbyHt07JZThbidpteTZxCA9IQ9XwGhQBTb8w6qQkInK5E9ydQUWaZzNvIb2BXg+y8I5hwF9oLKrnxAIOp35s2QyewhfYfB8PvuHQwoOR8CD9hFaBr65fB6Dq4oXLtlfjQAUZoX0cC4WM5TwVOAhx9g/Atz1Q7SIZq0hVi3KlcON8doUOi/dn4/6RzSPs63lyfEfcuuAAFSI0RSlj8dDoDsI7AGBregneWnsKZ4qFEwqqdGbc8f0hLLitDzJLtTiWW4llh/PQlgRq5HhuUid0CPXCLQsOULGFs21uH9IOX25tvoDcFPJxzNuYgT6xfjiU7X7SfeHu8xjewXnB8dfJYrSUnjF+eGxsRwxJFOMwRURERNoKvVWHeemvgmMdF4VlEg6JgWVgGR7p5aFYcOYAQv1s5ylJE/GCM8hwXC3pAI1EiUIDgwKDBaFKJfwVlaix2Bzu7DldewoLsr7E851fxgMdpiNfXw4vqRJR6mCUGYvwccaLqLM4nseUEgvkbC1Kjd4wc7YSmgePjcU7cXu761BhqoaRI6/FIEcfgESN8+YmL2kg+gRcjdZwqOIUfs3dgpSqDPpze00ErooajvFh/Vv1fCIifzfde8Tg9PoyWDTC01DSrDIqdug3qSd1EiVON2RCmGUbDRLmP/4Dln24qkWvTZxS7+vzFKyWxmMKcQOSSFnaNOKMDn3jceZgY3O7rMx9wxERaEhJc39RHdTHiiC/MEa3mK3U4f/D7a86bL94w2FU1Qk/76/7TiGqUyTyLiKGnkQ8r/9uC655ZIrgNre/MZsuYJBFyXqkZUT0oYXKS4mbLjjUCrHnz4P49pmf6CR3zdSusAZ729xU7KaXKmp1ePjj3zHvf1chs6AcabvSseXPg23quhIQ7oe579+KiIQwPD7iZadOqP5hfrj24Sn4/uWlbp+P1MOLX1/mcWTy75+sRY/hXZzet/vPA2gpXYck4bbXrhd8TpG2p66uDg899BAWLlzYbOHeZDKhtrYWmZmZ+PXXX/H888/j+++/x8iRI8VfhYjIFURNeS0eGfYidZUTgiREEVdTsuBPf1a7X0LjNDIkl5rARjIoj/ZFhcUEL6UCOpMJJdXNhZR7T2fjed1f+PGp2fjf/WNQVFQFL40SkZH+yCyuwM2fLkGN3m7ilGHAyQGDHw9lFcBeOMdyPI8/tqbi/llDUZpbjpqKOioUlaXlwtzTudN2WLAPrpnUC61h+4lMLNp8CEfO2cYmnaNDcOOIXpjSV9gFUUTkcqL7sE7IO9M8VYut1kG56TgsscHgwvzod27I0E544IEJiAj1a1aTfPrAt1j5RWPDoaTCvbmOHwfMTX7CIYWONI6TOQ3S6NIUTiVHwtTeSD+QAUlxDRVZXAykWfKHl3/F2+ufd7h96Tt/UvG3EKQBJzQ2CMXZLWvwtyfrRC5Nx5l6zzin95N11jlv3IDXZn7gtHmSpPHNfsb1XAppziLNNPkZjQ3+VJpW2Ng8U1FYiecmvYFX/ngK2SdzqUB514r9IDnb3tuyUDvSidGUxQq/tWfA2tWSrgiKDMA9825FcFQQHhr0vNNGoMDIAFzz8GQsePZnt89H3Fx/nbcasb3icDa3BKYYxwRve8gnt3j3MbwbE+70/j2tqEm6D++MOa/PRtfBSS1+rIiIiIiIcyqKKvHI0BdQW1Hn8vj/+6draUOup5CejvbdYqH0UkJbo0V1SQ2dEyXGLs4EbsSxW1ejp/OV1WU1KMoqhU+AF8Lbh+J8ajYeHvoCvR9RoS5Tba1WDutWHcMtdwxD4bliaKt1VDjIF5aAiXZ+ToqIDsDka1w3CQux6/f9+O2DVUi74ATfsW88rn10KkbMci2EFBG5XOgxojM2/bjDo22HXzcId797E0JigpvVJB/c+SXWL9jSotdWeylxd7dHHdYBZEoZHUiSeqEZDNBxUh+ctAgfA7joELDZxWBcCJrthUnEuOrVP55yuP2Xt363HW+cQOoDkixH5v4rClvvnptx5DxNxxl/m/O5XPLZknWSt276xOn95Hg666mrXL7Glp93YtGLS1GYKdyfREQbJLmHJCKQOokk9ZDjcVtCxPn3zrsVfiF+eKDPU8h3kuJGtrnqgYn49unFbp+PiOHJOSkyMYymjrtbU/nz03V47Lv7BNeSWkrP0d3o7yapX2KLHyvy70EUOPwH0B0phrXcvXrVeLYSigTXbuJNsZTYJu40A8PhPz0BxqxqlH513MX2euhSy6DpGQJ5lHfD7bWbcz0WNxDMF15Xf7LMYdHcGYxcguC53SH1c3RFtMeYWQ3dsRJwpCEhSAVN3zBIA1XQHi5G5bIzDqkWlmIdqn4/C3N+HfxniAdQkcuf+GkMbehvmlbQlISrGfR8sHFQXHEKKDlqm7hVhaDF4gaCzsnYjYgdrC6+t20hbqiVGnE8sAh6iQUhJRr0zApFXQaLcyt5VJOAGDf9SaYaIG4ig+pM4fe8OcJ9k8sfR/NdChwGJwThm1v74OWVJ5Fd3rgQ0incB69N74JuUcIT1tvSS3Dn94dgdSKOaEqd0YLr5u9DW0LKmHbBGszqGw2twYp3NpxGcY1w4WLhOFzXJwrvbXCMnhMip0JHL55w8LywWsXoQQxmPWE+Sro4XGew4FB2BZLCvRHk5VlKkIiIiIiIa/aUbUWlWXhBPM6vAuerArG76DxuCLAde028eycTEvBQVpeLEl6CrsHX4p3kaUirOYkPz7wn+JhcfS6OVR1Bb/++SJI1Ot+tL1rWTNzg4Nwo01ORQz15FxIc9pYdhfWCmrPM5A2eZxCjqqDCCAJZnzfzgbgh7n14yQIE9yu9Ng0HKvZCZ9EiTBmOwUEjEKQIxtrCvfjkzK9UVFFPprYAH6b/gnN1ebgvwXXzsYjI5cD0ab2wcuUR6CVWWJXNv9uSGiNkqdmY+dhU3P3eLQ23p2QU4OipPJqqFcyjxeIGQtH55qIj4gZkcdEjZC9uIKhPlqFqfBw4NWl/cU7gsnQoc5wfQ4gDT8G5QqTuPI3V8zci51QeiqZ2A+TCx7nyai2m3T0KeY/8iIth8087XAoc+k/ujZeWP4HPn1mMwvwK2jzFWDiahPDgF3fRlAchdv9xAK9e+z5dFDGH+VBxgxA1OiPueGtpo+vlNT0hyyyDet95ME2S6FpCbOcoTJgzCrWVdfjykYUum1bJBPuYW4bhGw8m7usFIp5ywoXLkrOmNSGCogPBWay00Yy4U7XrGgOfQOHP9YqA/M4v1u30Erul1tTUYMSIETh69KjD7SS9ISQkBDqdDuXljSkcubm5GDt2LE1zuOGGGy7tzomIiLQZq776izqVu+PIxuN04dZTkaO0zIC0ulqwO9Jw261jMOfVOdhxIhMPzhd2UiSpDrvSzmNY1/bw9VE13P7Z+t2O4gZ7WAYmLx5KOx33+QLbsWnb0j30PEf3J6uUuodYkqLAay7Ma/E8/CxWfP769fD3VQs2Dhw4kYON+06jTm9C+8hATB/RDaGB3vh5+1G8s9yWtFdPWm4JnvtxPTIKyvDI9KFuPycRkX+aafdPwLoFWxq+K/YwJgtkpDk+oxA3PncNFZraj+VTd5yCRCqBT5C3g7iBoDhXjjqdCbxaOO2l8s8UyJqMeZ01EfFSFoZ+8bDEBCKFLNUMSiQ2oJBml0N5MJOO01vLkY0pKM0rw6ENKVjz9Ubkphe4TY4oySnDtY9NxbIPWl6HNa1JhAQOhKEz+uP5pY/gy+d+RklhFRhSk1g5JPVLwENf3o3ojpGCjyUJfW/e8LFTcURTqstq8fAQR5EHQXO0ELJSLbQ9w2GO8KbHTEVmJdTk9nL354F23WIwYc5IVBRX4dP7vqWvIwjP02a1r59wXeeZQtSoHh6J7C6BgJQFqw0GJABrtK3NOOPw+fw2qUmCowNpcy1pviV1Dqm5SJriFc0VUJOIiIj8NyDpPFUkdc2DmoSMOzyFjG/OpWRR8eStr87Gjc/NwPbf9uL1WR8KPoaMcY5uSUXPUd3gG+TTcDsxMmloNlYL91jVk51lW/chzcMN5+PSCtqQzYQHg5HbxkjkPn8li/e/vg3edjWQw/vgeRzacAzbf90LXa0O7brGYuKdoxAUGUid6r95ynFOL/3gObwx+yNkp+XRtC0Rkcsd0lS+efEOVwFiFFKPkLqk/ntxNDUXJ07l08QVjdbQYnEDoeBc8+Yts6sxIk/q/gogPFB4G2LIEBEIyVnP5tH3rz6MypIq7P79INZ+s5E23wuJGxr2+2wRXd9YPm81LgaSwickcCCMusE2r0GOMyRRop7Ogzri4a/upgIwIYgIgyTgeUJFURUeGty8JrlY4pPjMOH2UbSG+/Cu+S6FdERkPnhGf3z9pGdrT54mXRNSXSRuuErRcCbCIAkXRIRH6nGS+qfx1eCKRqxJWo0ocPgPoEtx7iDqDFW3IBjPtFz1pt1bCEuZniY6uKNm/XlINDIoEv3oQZO3cFRc0BJY5QXnVL37xlVWI6UpEc4gr13+YxoM6ZUOt9duz4P36BjU7cgTnLDQHiiCqkcwlPEtE4WIiPzdaMIZDHiBxb7XuGYiB0YChA8AOs5iEdTNNi2qL+Ox92UO5SevvN8VafxbG30GO8OyYGUbv7yrvlRg5ulu6FDjuSO/bxzQ438MDn1hgcza2HhkYq1YF30Gx4KE437rIaKF6Z/tQnSAGtf3jWmWCJBWUIPFe7ORe6GRXyZhMCQhCG/O6IZwX+eFfT1vrzvtkbjhUjCucyjm39ybJk/cvuggdma4d3Cq1lvw2+E8xAdrcK5U2BWqNRgsHC3s6lN1yOey+VQxlh/JQ2q++0mieopqbGLAklojPtqUgSUHcvHL3QPQLugKHyiLiIiIXAYcqXQttJOwPGL8KpBXFY5+gf1xqjYdJk4GnVUGtaT5BJuSsWCkOg/tZLWQBNrOh3XW3Tievx0plm5OX0POWKCWGCFlOGwqWgB/mRztvWxRyEarASlV+13uo0JigYSxwnpBeKGW2M7V2ibKyXKzF8rNGnhdeC09J0OwIhp+cluTVFNMnAmfn/0Q6bWOg6/1RaswNWImvjy7w0HcYM+f+TsxMqQ3OvnEudx3EZF/muiYQDz99FS88/YqGPVmWJUseJahLsNKvQVDw70xc++b6NTfZiJQXF6Lpz5eiVPnHSfdJaM6QbUrA2yTuOJLDWPlEfDHWZRd15E2lzTFa2+BoLihnju7PuoQ92t18jxNSRzYEXe+c5PNSaeVQ//sU3l4oP/TNNlg8t1jmyUCkM/41zO5ONcnFnzvWMgkLAYmReHpeyYikMTKC0DG32Syv97xyRLpwdwIGa7Xvw+WhTkhBDq5FJqtnomg7Rk5ezCeWfwQdRAirkfHt6e5fQxZQCYNoCRuujjb87kyT2jaHGaxcthy6hxWHT2F0z18UMkmQJ1SAkWe67+TslxboypxpFp0Ygl1zSXR4WFxIW26vyKOzJkzx0Hc0K9fP7z22ms0oUEmswmbsrOz8fnnn+PDDz+E1Wqll9tvvx1JSUno1at1bugiIiJ/L6QJ1hNII86wawfi1L4MKPK0kOfVwRQl3NjJyFSonmJzt/6oMAvp7y+FLNS5aQnPAKScIP++s3I7VCo5+sbbkqdr9AZsPeHaUIUj5oosUB92p1HZBAzaJkkR0pwySHLKwAV4AVIJmFo9opMiEWrXuGSPzmDCI++uwLGMxqaErQczsGjlfsydNQSfbNwjuE8k1WFi745IihLPVSKXN/E94vD4d/fhw7u+os3b9pCEtyFX96fN/B37xNPbiPPmK9e+j3PHXLsnk5rG568zqJ7ciUzwN7tffTAXMhcJzPWQYbJ+eBKsTY8fLAtLu2DolTKotwqLat0+Pw/cmvigc3dWF3Qb2gkqLxW+/3gNeNJQwvFgS6rAtOB5yGdIapKojhGYcvdYdB3imPxyMqMQy9PzkdMzDnwyIJeyGNQ1Bk/cPxH+PmqXx2tSk3gibnCHPK+GXloCaZB67Lt7aaPOk2NeRdpe9+5d5QWV2L/mMAIj/Ol1ZxiivVFyW2fwColDWhCBnEMkOucih5oaR8Mo8ndOUio2/bTDaXqJECQVqL4m+S71Z6z9djM+2PYKgqNcNLeJiIiIiFySmiQzJbtFnyw5JS564RfkncmnBi/u+PT+b/HoN/c0nJsri6twaP2xxg08MCXRXDAL1DZNhSqvAk8uGjVZAAL0BoT1jUdgsPOahNQ0z0x4A6f221KsCTuX78fPby7H7W/egO+e+UlwHxa/tgwjZw9BTJKwKFJE5HKgY1+bgPeT+75xSFIgyBRSDJs5kKaSJCTb0sVy8yvw/Ft/4nyOYz8O2ycR0qPnLso4yCPkwoZPDVyYO/UE8p5vjLvPtbDCCX3GJ9MEvCVv/47WcvpABq1JYjpHYcrcceg8oIPD/Sd2ncK67zY3iBvkShkGTu2DB7+8Cz4BwoIz0oTv6vh0qZl673j877M7YNAa8NjIl5HhQRo1WRtJ2XYCvkHersXZraCq2LHn2GwyY+eyfdjyyy6aFuQpRKhRX5N8nfIj/d2QdZKAMP823V+RK4O2TIMXuUzhDR4u/DMMZEFkcCkcL+QKY0YVjGecT8bYY602oWzBCZR/n0YFBpzRCt7cspMuERYQpCGuG4AJMgHRBXntks+ONRM32O4EajflgDe53i8ichARuRKIHMpg4mIWnW5iENITCO0L9HyQwfSVLAa/LmkQN3BWHjuebJ24gZUCMg3o83vH4JLj0x7o8yQgs1tf3Bh5DtsizjuIGwhVjBGLOhxBocrzwZkp0Iz7s3bi1eStWB53EpsizmFF3Em83nMrdoV5NplgsnJIyavG6uOFuOm7/Xj812MNk+0n8qtx3fy92Hy6hKwJUMxWHlvTS3Htl3tRfKHZ3hlEGHG6qG0Hmp4SqJHjmUmdqJjg96P5Hokb6tmWXoob+ws7wLYWImh49vcT9LrBbMVtCw/g7h8PY8PJYhRUuU8wciV4eGSp3SSOiIiIiEir0Vvdi9t81QZEBlYhXBkDltjSkWOx0QcW0v1jhwQcrvLKRIK8BpIGK3DAS2JGHPMbOjFNXTx4+Em1CFHUwktqoskKemsBfsh6EUtz3qbpC2T/LLz7CTX71xscZItRjlI5c+1gUGdVosqihpGTIUrtXNxgtJrwysmXm4kbbHvNY2XBr5Awrj+7dYV73e63iMjlwKhRnfH9D3Nx08wB6JcQhSFJMXjyrrFYufJxvPjD/xrEDSazBQ+8vayZuIFgDfeDfkSSYK+/VCaFl68avcf1QES88+9da+C8FOBDg+CVx0NWy9OmHrITnUOD8c6UsQjf7V78bC9uILDV7p1AyXIfmbi9GKdIk95M3cw2/3EAj0x9Cx/d903DfalnC3DP60ux93hWg2uU2cphx8kc3PXaElSQWHkByGJjPnG5vUCTQ7XHmGMCYAlomaA4INwft79xA61J1n+3xSNxQz0H1x/FlLlj0daQ3+8Xjyyi1/UmM+5csByP/LQaW9LOoYA3Q981BOU3dkXVuPYtel6y2PD+7V/gX+FMdLGXS8SOHTuwYsWKhp+nT5+OXbt2Ydy4cQ3iBkJsbCzeffdd/PHHH5BIbOMUo9GIxx577NLtnIiISJuirdJ5fEwnruEsacIhTta/nQOrc77GwhoAqd3T8koZ1uYX4Hiu47oBOYxxUoCT25pTycpcTkUVbv/yNzz501pYOQ5VWgNNQHUJMYyyO+eOHdCR/kvEC802JfVLRR0kJdU0oSmmk/NmH73WgNvmfukgbrCfc/vk951UuOeKFXts83IiIpc7424dgQWnPsJ1j09D8sgu6DepJx75+h78XrEIz/3ycIO4gXwvnhz7qltxQz3y/Br4/3ocyhNFUFg4eKsUGNwpDonHS6E5kOvRc1jDfJuLG+zvD/eDJcTHaZPUUz88QBtw3NFScQNBEeSDtedKYBncBdaucbB2bwfzqB6wdI0Df8FwyB0GrdFWkyzeiUeGvYgvH7WNmwlH03Jx/yu/4uDx7IaaxGThsO1YFu59aQlq6oTrJuLkWd/48ndDUg5ufXUWrUlWffmXR+KGekiKxqQ7xwjeX3F1vIO4wR5eZjuXOMOos+CLZTsbBNiPjngJr18/D/tWHRYUU3gCEfvMu/srXNFc5jWJiIjIf4c6D2sSfZ0B3YZ1AkOipVvBph934OzR8263I4lO5Nz83u2fU1EFMQdxaLouc3/+GDG6M/03ppNNuN0MrQ6oqQPMFkEBAjlv3Z38uIO4oR6L2UqTj5o2gzeFmISIiFwJEBOi79I+wjUPT0aPEV3Qf3IvPL7gPvxR+T2e/uHBBnFDndaIR174tZm4gcCF+cPSO0HwNYiA28tPgwFTeiMg/CJMm4USJu1gDEZ0HtiB1iQkYcIdLRU3kPG2RMrS5IuLQV9roDXJhl/34n9jXsG3zzaKEg5vTKGC5WNbTzokoJEknMdGvNTMVMKeI5tSaSrDP0FYuxDc/OK19DNa8fFaj8QN9vs9fs6oNt8nbY0eP7+xnF4nKdWPDH0Bb930CfavOYLKi/icyPmKCIOuaMSapNWIAof/AJ6kKlCsPMoWnaD/thZLqfsF+noMpytQvT6LpjEwSvcnuXpk4Rqou9lc0JUdAyDxuxCzLIA8xrmSruzHNJiLLs5F3OJBNKmIyOWCOoRB1ztYDP9QgmHvSpBwNQuZ2rEozt8J1LivdZ0SPRK4arUEfZ5gof8b5pR1RYBfPIu4Cbb3YGItNLlBCLOEw/Zwz96cph2PO7bsRkZJHQxSC/aF5mJDdAb2huZCL229W+yyI/m4beFBGC1WvLo6DXVNmpzqya/S45PNzQv4eip1nkd3tZZwXyWSo32hlNmGCsQ16eqekVhx36CGRIMlB3Ja9Jxk4uHmgbEY3sEmUmtLyL6sPJaPcfN2tEh04Y5juVVIzfM8BUJERERExDlhSvfOOUarBFaY8PKJr2HiSToPSTeQIVsXiEqzCtYLnTwJsmoES4UFbAmSQ/AlnUYX0EiMVNjgjFM1e7Gt5Beopd6Qs67rCrI/VmKXSl7DKw79Am3pD/0CesBfJtyEQOjobZuQbMpbp79AmdF1s4OPzLVYr+DvGHiJiLQRYWF+uPOuEfjgwxvw9tuzMHVqT+pcbM+m/WeQUyS8eGYN9oZ2ai9oZ/SDbmIyTEkR4KW2OYXxc0bg98rvqWNNWUFjjPDFwGkU0I7rCktsECQWFupiwDcT8D3Ho+ZoNbqGhGH0jcNa/LyK9OYCDnuSIoPwybUfIv+Me/GEK0zR/qiZ2hXVs/ug5rpe+KmqHE++8jMsFivm/bgNBgE3t/ySavyw+oDg89Y0cfaRFXngdiow3WSOc+4EGhwdRIUv9c1aCpUc424bgU/2vNGQaEAFIC2As3KY8cgUJI/qirbmj0/WUie+mQ98hIOZeU630fUMg7aHcJy1M1K2nUTWSc8a40Razrfffttw3c/PD99//72DsKEpU6ZMwf/+97+Gn7dt20bTHURERC5/iEufJxh1Rrx41bv0nEFQFOoQ+WkqvPcXgzHaXN8lNWbIqwFlORESNG86yi6rcjjt0dQGgSWQdUfT8e2Wgwj0UkN+YUwjCEkwvaA16NEhEoO62+qM4TMHwifQcR2El7DgI4PBdYwBlxCFzhN6N3s60sT01FXvINsi3GBwoQRySU7ZP7OYLyLSGogQ+q53b8Z7m1/GG6ufxaQ7R0OpdpwP2PLTThSdd548z8skMHeMhGFcD+in9YVhTHeYE8MhqTXCe3smblMFYue79+Hp0f1Qt8/zBhNSb7RmG9J8TkQOw2cNQluTNKQj3vhyEwormzRjsiy42BBYu7UuTXLFR2vw+qwPacLAvIVbqcjdGTkFlfh51SHB56kua1niQmsg6W9J/ROpYyyB/K1MuH0UrUnqEw1IwkFLIOeXWU9NR5fBNpGaPYZYb5jdrOs7FTjwPMhU2ffrD2H94XTMeGY+tvb0R/H9A1A5NQmmSOdu2S0RZRScE03/RERERC6WWA9rEtKI++q1H4B309TvisJM52MZZ/y1aBuWz1uDwIgASOxrkuo6oErYdLHn/9k7D/gmyj+MP3eXne69y957T1kCIiAgooDiwL1w496C4kBUUFEERBFkiOy9915ll7Z0752d3P0/7xvaJm1WF+Pvff1EmuSaXJLm7v297+95ns4N0KlLw/K0VZWPa4NaR+c+Mh54feBHyL5Wu3UO8TwlcjsR1SwCz8x8FF/v+AifrX2bJoPJFPaDvI3b45Dtwl2fD/ED7+t43Dju9ZFUxP3EFw+iILPmvS5sqhvHfZ4Hk5qL9KtZaN2rBXqP6Ya6hhw3pk34Fjmp1pSxmmKOCoBuYBvoh3WE/q6OWHgqCdOmrYTFwmP2i7/RpGhHJMWlYNX3G29qTUKEDKQmKROQKL0UVCjz3f7P4B9qFbBsqsE6yUPvj6UGH3XNH5+uwM6/92Nyy5eoqKSuOLj2OLJTxDXx/yKSm70DIvWPuns4dGc8+4ILhjqILyIJEB6KJDRHM+EzJBaqjiHQHHSzaM8AihYB8L+vGRiJdVadKJYDHmiO3AVxTtMWircmQ3MsG/JGPuC8ZVC2D4FgMMPgKLmhmnDXI0FFRG4neLNAExosRiIQABQBFYtw6ftqXiRnHQdy43jse0uA2TPzgVpBnuP0zzx6fcIi+4SAg/n5VIzgiriALMDNmoJJbsZ07yNILagfAdPuyzl48NfDOHbN9TGIpCN8OLI1dW67kFECKcegVbgPJByLmAAVMWwrdzSqSx7rFYuHejZAw0A1WJahiQj5GiP8VFKoZJIqQozq0L1RAKQci3mPdMGiA0n4assl6KuZ4OMM8lZMWeo+bYH8tVf3bTuXXoS2Ua4bV0VEREREXNM7aBDOFp1wer+JZ1FqtjYUkDQFb46BhRy1BQEWQYp0vR/Srm87OMRx02gZLMOjiyof20sj6FHfi3PtMHIsfxPuCL4fHf164XD+TqfbGXgJeIFD94D2eKbJQ+AY60SShOXwcrOHMe3CzzDyjhuDfk9ahXUpBxFk7IwAuTdGN20JPZuLi8Xn4efEea8MJefazcTXNs5KROQ2gcTSEodL4pDcpGMD+AVXjLV2H493+/uCWgbGAgheCpjaxsASHQjFrvM4uvkUzu69gHeHT4dRVzeiYEP7aAiVRBhllGgNmP33Xnw8bQLO7j2P5AtlRyr3yC9mwRTlB3NU1UhdmQBk/LgDbH7tTBkMTUOg7dOIuj2XIahk2JGSiedmrkRcQqaDlswK1u09hykT+tF446S4ZOr81LhDA+peH97YvklfkloItlAL3s9JM44Lx0vSJGbLuDfuwbDJA+lCD3Ef0msNKM4roY2blZvPspI8X6wltO3bCjK5FNPWv4NV363Hoo+WUTemuoCk9X366A/Iet6a8OMMbdcIqE+7FrhUhrgHN2gdXcs9FHHEhg0byn8eP348fH3d136PPfYYZs2aZZcCMWnSJPENFhG5xSEJPse3nPZo25L8Urvr0jw9glcmIGhlAniVFIUjW8Ac5nwgz5NGUwlD52HpKdCNbuHvA6cxeUAXDG7bBOtPXnK6HWcEJAyDAd2a4e3Jd9K5OwJphJj6+wv4eOzX1KFdCPSF0LIBYNOc9P38vfhnzQm085cjINgHgx66A+nxmTgTnwGENXO+cx5M3fl7uU/aFhG51TDqjbQmIa7AzTo3shMJ7V991OHvCDIJDHe0guBd8TdPfja3iYElMgDyfRdxZMNJdB/eGR+OmkEf21Mqj4k93YaMk+e/uwRT5jyBc/sv0e91XUAa+s9nFMPsYmzERwVBuJIGpga1F3FDLeB5xLtxpl63Mw7PTOhLXVOvnU+l+0VqEpZl6zS1rzIT370Xgyf1Q2TTcFqTkFQPcm7wDfKGXGlfk2Rfc9P4VYl2d7SijzFjy/tYMXMdFn+6oryhyhygcP8AlYVnvABZCagATucl4LVlGwAyVSSwtG42NAqAsaE/vLdfheqctX4ir6ksbdwTyLakJqnP91xERETkv1KTkLlLTyjKqV3TLBEOMBwDwcPerX9/2ICxrwxHj5GdsX+VjenJxUSgURQQ5E8WX+hNHMei/52t8NJrw8o3U3opMXXhC1TE6GwM9M3jP2HZV2vQpldzBET4485J/ZBwOqlaruPO8A2qnZhPRORmYNAZaE1iMfNo3rUxvP0r1vv2OUg0qQwf6g/WQQozSfBq07slPh77VbXGfJVhizQQrmWCj3U8BmQvJoMxmWn6y8IPluKZbx7BpSPxyEyq3vjYGcT4iNQ4tXkNBFOTMJjaxdrdJqjk2HAyEbkfLkWqG5OpTfO346H376OJBKQmIUZMpCYhY+r6HB8/+skD6PdAb0Q1DafXdaU6lBRo4BfsYyeIIe9PVjVFYm37tqTH7S+3f4hlX63G0s9XVat+dYXZaMb0CRVz586obk1CRBmJZ5MREu3eHEDk/wtR4PAfQNHYD8oOwdCdqpsTiDs4HzksBa5dRssQDBYY00pgznXdJOs9MBrqzqGQBFadKJc39EXICx1RtPUa9GcdH7DJ/miPW/epZFcquEAPJog8QNXJ6hgoInK7cHkFj4t/CTBc761nJEDUHQw6vcRA5sPAYqz5wFCfDxz4QICpdj041SLnJGAqAQZ8zyJhPo/yzkcnmMoszirDABK1gOP+6dgQEI98Rf2ms7gTNxC0Rgvu+/kAEnM0KLme9BDmo8ATfRviib6N0KdJUJ0mFSilHJ7u1wgv32m/oKmQcojwU2LP5RzM35+Iwwn5dO6iX/Pg64IH97F0BLmExcTu1qKBiBwe79sI47vF4OfdV7HkSApySz17nNpC/sL/eLwbkvK0kHEMvtx8CXmlrhdglDLPU4ZERERERBzT2rcDWnr1xIXSg1Xu4wUGaVqyYG6dHBfs2m2ZKv2wKtZ9I2oA508fV8LwkLKuO3J0lhJk6ZNwtkBDhRaOtrfwHIaGPIDewb0QrKjqNN7OrwW+bDcVS5LX4XC+46apPEsmEjQ7kXA+FD+ePIy+rUxAHeilB4W6bqQVEbnV+PvL1VjxzRoUXl+kk8ok1G30he8nQ+2rhsGJU44reD81jG1jkH0iER+N/YrGuNcFgoSFKcZxukAZh84kwcAymLXvM3z12BwcXOPcYdQWRhDgte0SDC1CYWgeCgSo4KWUg7mQCeFwAliNsdb7riXjbxtxgy0nLqcS41WXTYslGgNe6vc+rp2+Vv6eBkcH4v43RmH0C8PQpk8LxO27aH09AH09pUNbgveuNOdCDuR82VG+KlyBptx5aPxbYzDxnXvt7ieiBnI5vOEEVn2/AXF7L1A3uW7DO0Hlo6KT+p6gUMtx95OD6M9E5PDA1NEY8cwQOnm/af6O8r/J2mAKVbttTjMFKjFj3ydIO51MG7R+fu13aBwsRNkiV7lRw93CkM+dqYPHqA8yMzORl1fh/tWtm2cuY40bN7a7npFRu6QVERGRG0OfMd3R7e6OtPm4upBTmalZOMyNwyCo5bAEuj8yRRlZJAsmgGPdHshyijW4mp6D4kVHwDZUgPeqmi7HmXm8MqwP7urZCqEBVVOru9/dCd8fnIaFM1bjYIaGOqxXJjVXg9TzqWDPJ+Kv6f8gvJH7VCEiqrC40S+M6NrS7eOIiNwqkAYK8vdPUgSIOIBAxmSDJvbBs7Meg8pbCZPe8Vjc1CbGTtxg97j+XjC1jETq2WR8Ou4bKtKtDtbGJNe1h6PmJQKpQV6Z+zRNFZjx8A84usm9EZAjiKmcF6mt9CaaZmOK9IM2lIHen6VpLlKtAFUWD2nZ8gnDgA8PAJdQM1HFiYOXAQdOzrbkF2nxYp/3kHQ6CXqN9T0NaxBM6wbiWtqsS2NcPlZ3rqDEefqh98dh3Gsj7W5XqhX0suvsVfy15yROJ2ZAKuHQt1VDyJuEwHA21ePHHzp5AP2ZiBwefHcs7nluKJZM/webF+6CVuu+HmYsAiRagASdsmaA+nowgMGPiGBsTjjEN4S1iuxYI4OSAY0gTyoApzHR78HM3R8j8WwKrTV+eGEeDG6Sw0k9dbtyK9ckIiIi/y0GTOhD56BO7oi7Ic8XGh3kcaNxdnIuUi6m0XQoO3geiE8GrqWDDfSljvAD7u6AoKCqNUnv0d3w3YFpWPDeEpr+4wjyHORC+GvaPwhtEIy64M5J1U/YFRG5WZA0xT8+Xo7VszeWz22Tpnki+nlm5iN0LtzoyToJmW9wAGkC/2z8zDox9uEupoAp1sESGwr4WM2NmPxisImZYHMr0iH2rjiEKT8+ie8PfY7pE2fhVA2Pc2Q5wzvAC3qtsU5MrAS5BCYXxkFHLqZDHuwDzsXaABEPvNTnPVw9mQjD9X2KaByKie+OpekbDdpE06SHukLtq8Kjn4zH6BcrRGQEIkggl70rD+Hf2RupmITUsj1HdYG3vxrFlcw6nEHe38EP97M+plqBRz56gK73kJpky++7PF5vqS3ks565+xMknEmGTCnFrKfnUrGPKyobYN1OiDVJzREFDv8RzJnVsFOvib21DZ6KG8rQXyyA4YrrCGPBLDgUNwhmHqUH06E5nOlWJGG3j3me7SPnK4elyPEkpCzWB8o2oipM5Pbh/O88zi20/3ILZiBlh4DiawIGzmYR0IJB2t6aHwDKhBM3El0uoA5nMGyiH2Z87TrVIEpTVbkvUQMjl7P4bOt5/HkgCbcSZ1Lt4+Iyi/X4bP0F5JQa8NE9rXH/zweR56DxyVshQYcoXzQN9cHvB5JgcfKmENHBK3c2Q4iPHHe2CoWPwnGX5a97EjBtg72bxIazmc56paqgkLKYM7ETIv3sj+NquQSvDWlO96FIZ8Q9s/cjpZ6SM2xpE+GLvk2DUaQz4YuN1oYsZ8g4FgNaiGI2ERERkdpCFk5XXpZAjyg0CcyBl8xABQglZgXyDCoY+YrS1GCRgIERVq/TqmSZ1Igh1nQuOFFqQGpJOJSsEREK9/Gr+3NPIa4kARzjC3+ZFl4SAxX0kVOoxixDal4AGuoDMDq6arOBwWLC39cO4t/UIyixpMHLRQ+qr48WcrkRBoMMuYYs+El565O4OKl6S8h5yLFrRge/puge2Nrt6xMRuVX47e3FWDrjX7vbiFPltj/20IWtmXs+RatGYTh4xs243MHhwRwTBNnpayh2EdtcXQQyPnaySGDr0JxbqEHLhqF4fPpEjwUOZSIHxYVMhGRrsCR1Ln6cMh/rd7gen3qKsWEQUCmBrTI8C3Cu5ouNZlzYf8mukSMnJQ9zpsynLnJkweK1fh+UT3hzxXr4/HMaxkaBkLeLRouezdAgPABLtzpvJCWC6heevRsBgd7oeU8XqK8vklRm8bSVWPj+Urvbdi3dD9bN51P+PGo5Plz5BgLC7BMzyPM9/vmDePSz8XQB4NlOU5GXlo8a46ErXosuTdCpV0saYf3z67+73FamlKHzkPY13ycRp5C0hm3btiE1NRVpaWno2rWrR+9WQYH95IdcfvsurIiI/NcaCKqz4FzmJEeO7IYeTWGJqqgFSEOpxY1YuWDrefjna6HpHAVdW/dNO9sW7cGVbecQ6C1DSc8Y6JsHWhMYzDwUV/LgdTAZsrBGCB3evcrv6vRGrPz3ONZtOoPMQiOgkNAGWHqpvHGwHwSFDIzeSJuXODLeIU1LDgQR9LXyQJS3N1JLHI+xerdsgF4t7J0QRURuZX5+9Xf88916u9tI8smmBTuRcjkdX+/4CM26NMGpnefstiEiVtvjgCMsMcEQzqVQZ8/qIo3PhrF1pNPvIiw8pFeznTo052cW0sSvxz6b4FDgYPFVwhxqXR+RpBeCq2Q4FBDuj8VJP+KbJ36i9ZnJX47cXr6wKCv2x+zFQBfMwDuZhzrLOu4VuJqbA3mU/KA34eIB+2Qb0qg565lfUJxXipd/fgpvDPrYoWCYNO606NaEpjD8+8NGp09BhNYPf3w/AkL9aE1CmoYcMXv9fvy6pcLRWm8yY8Pxi+D6x8CrREPFA+7EDZ/8+yZ8KonUiFPvU189jMe/eBCF+SUYsXgp8rTO10mkxURsYn+bUV1J3GALETlIyPI/C12rUHgdJWJ3Bq16NqcJdwVZhW7rKqW3Eu0HtHG5jYiIiIiIZ+7T1y54JoqrC6rror7h1+1IOH3N8Z0mM/jMPLB5RQ7FDdoSHVZ+uw4bf9tO5w89gdRbmYmepbOGxgYjy0lqUu/RXWlCkojI7cL3z83D+l+22t1GGufJbWnxGTTpq0XTcJy75NpUhXFRd+hK6sYEisCm59KLcH3MyFiqLiqQdR6yNkOMFB75+IEaCRzI93zR1dmYNmEW9iyvaphXE8i6kbs1HnNssEuBA+F8pZok/WoWvp78IzSFWrzyyzN4a8inDo23SFJg825NqCBi9exNTh/fy19NUyLI+gWpSZw18s99fRFWzFxr93ez9ffd4CSerZMQQfuna96qsg5DUnCemfkonvxqEq0tn2r7Wo3q2upATKza9GlJLzmpeTRB3GJ2XiOS+q61G4G8yP8nosDhP4DhWjFMmZ4fdGQNfGBMrL1rnafoTrsfVGuOZMB3aCwYm5MOETfkLjwHQ7xrcURt8B3VGJYcLYp3pUDQXW8qYhma3OA3srHd/tQU3mCB4UoBeBMPWYQa0lB17XdcRKQShiIBFxY7b7QougokbuTR8G4W5xcJsNwYM/06QXldZxQbqEa/ZsHYdcn5MaV3VtXFthYTGLByYOWJGzeZUCYuMLhQn/oY5eidGUsXIa/65OOSb265RQwRHEzqEYt/n++NH3fFY/WpdJr4EOQlwwNdo/F0v8blYoXGIWq8929cFeGHlGMw64EOGNbWGmfmjM3nMquIG8qg/ZguNHFNQrwwsl0EJnSLRoiP8+QcMpnur5bjnbtb4rm/TjgUqZAmU752yXOUTjF+MPMCFh1MwsrjqSjQmtw2rJHPSkRERESkdhzMuobEEtIw6osiowKh/s4bkEkLTmN1C8RrHJ9/9pREo6vauTtgiUWKw6WRkEp45Om8UKBXwt9FOpOJ57Apw7r4bxE45Bq8kWfwAsfwsAgkQYKFVG3G8osnMKVHT3A2zQZ6iwlTji3AqQJrM3aI2r2jSlRQPiL9CuGr1tmdb3iaVlF1MXpyw0dxqjAD69M3Q4C1TjPxKvQN7o2nGo8Gx9T+PGW0aJCsOQ6LYESIohn85TG1fkwRkcrkZRRg+TfWiVeLlxyGNhEwNQyijUJskQ5nLmVhx5L9GH1PZyxadxQms5M4XEGAw2A2KQdBJQNTRxP3pAHI0CzMrQiJ3BXkZ63jY1tFo8OA1lWaodxBXDvJ42z/ay/qCt6V2uo6cjkHs7P3mcwPJeQ4dalc+sUqjHx2CH44/DmWTF+FXX/vp5PpgSG+uHt8P9z/xj3ljUERgb74dumuKuN8mYTDtOdG4I4O9m74ldmxZF8VcYPtwjBxmhWcFAsN2sSg/wO9cPcTg+Af6uf0OTiOg3+wL5784iF8Mel7h9uQph/yfK6QZZTS9A1e7fz979YoGrq8UmxZcQibF+6kiyDuFntJ4sRtC/loalvL1UEt6AilUolBg6ypHtVhx44ddtdjY8XGXhGR2wHS8EtcST2lbd+WOLPnPCzh/lWamqUaARal8/EBORfIE/LB8AJ8t16BMUINS6BjER+BK9Rj5yLrQjdXYoTflnjwOxLAq6RgdSawJuv5Z82PmzDh7TFVxA2vvvU3Ltg2PhBxhoSBwAlgjaTSsIEMOgJ8gHTre8HqTZAm5cLUyLHBB/ndTyYNxeGEFPy54wQ0RutcmlzC4d5ebfHKqL5UDFJbyML5iW1nYDKY6eJ/VFPXc5YiIjWBNMX9+8MGp/ef23+JumGOeGYwbdAjwoEySHqLu8YYIjCmAqJqpjcQWJ0R8qOJMHRrVLX+4AUojibQ76vD3+VY+IeSZEygaadGaNmjKS4cumL9VbkEuj5NYY6wGQsLAiQp+VAduArGZH2NpJmGNCWVNRLl3t/cTtxQDsOgJIaFtNQCGQmLKa5Yf6YNTwzAuHHdtE1yUxjN0DsRZpMhIJdXDF2nGDCCVZghyapYv/7jk+UY/tSd+OHQdCz5fBV2LztAXWqDIgNw95N3Ytzr95Q3BgVFBmLeW39WeQ7ilPvBitfRxY2gePX+ODtxgy3kHSwd2gyy3446fO2N2sdiwPg+GPb4QNo45PT94DgEBvvh1f598O4G+4a3MqRaM2RFXJX3yeJ8+cW6DWc1PLMEWGu0Lnd1QI5Gi21x8Vi/aBcKQpSQl+id1n8Cz0PiJqnuluYWrklERET+WxxYcwz5GYXVqknO7nW8TlIfbP59l9ttVv+4CWNfGWF3m6ZYizcGfoQrJxLrZb9IvfH24ik4tO4EVi/aCx1jPScpTEYMf7A3Hv98Yp08T3F+CU5uOwuzyYJWPZt5lHgnIlJdUi6lYcOv25zeT4QBh9Yex6hhHfDvhpOwOGuS0RnBZt5YB1pHwoYySFK3z3XxU5veLdCkY0PEn6zeMeHhj+6HtliHA/86HnfXBEHp3phGGuBV48df8P4SLE37Bd8fJDXJPzTJgtRVITFBNHHuvldHQKawrhX4Bvpg0cfLHJozfbTyDbTv79rQbvWcjXbiBltI8oGrdZImnRpi4Pg+NE2usuC6ck0SHBmIRz8dj9kv/uZwG1fPUx26j+hMa/T9q45g/a9b3SbKkbUZifQ2bnUXa5Iacxt/6iKeYs6pXnqDumsYFC0CULzlmsfOc7XBUuh+ok/QW8CXmmiiQhmlhzLqVdzg3T8askg1cjcnVYgbCLwAU2opeI0JrLzmkzlkgbpkezJK9qZBMFQ8vqyhLwLGNYMkwM1slIhINUjdJYB3kz52di7QYIiAHu+zOPgx73b7yjAS6wTpjSS4gzW9oYwvx7bD+F8PISGnqqirS04kOuVF2CU3EHFDywdZlBrMKNHXfue9jTLcwUZiPZfoNq9WLefAsQwVJlTGyyTDi+d6wM9onWwekNEImcoSLGh2AvkKHW30//dkGl4Y2BSf39sOn41uC53JArWMq7Kg+GD3WLQI88b8/Uk4dDWPignuaBqMyX0aoHWEddHDERcyivHmyjNVUiQqQ84SbSN9cSmrBMbrk/cNg9R4aVBTjO4YiepAxBY/PdgJMzZdQmKu9TMkLycmQIVredU4l7kg2EuOXl9sh8nD8xsRQ6w7nYGxnaPq5PlFRERE/qsklFQ49mgNMpgsLKR2tuECJCwPCcODYzgMDeuHzsbmWJayDgIqztEWnsFFQxC2F8dikE9VJyGTwGJuVieYyMotTTXSI74oCF0Vzp1ac41qFJpJXWEjpgYD8/XHKDsfaVCIYoMB/soKJ7+lSfvLxQ10Ozfvg4w1o0VEBhXu2UKuEyd36yu13kkage+JGIdQRTiulPyJALmtqEMLPX8GOssgKDjXDpKuEAQeh3IX4EzBPzDxFYKLaFVnDAqfCi9p3cRDi4iUue2TBiGLvwqlQ1tZ0xGuw/uroOvREF+vPYC1D/TEx88Owwc/boC58oS5IFDHZGffNSnLOMk7qR7GlhHQd4xxKWwoo0fbBgj2r5gAf2PhC3RBjzj4eBI1/OB79+Hel4ejMKcIek3dKM1DY4OQ7GYymOALBqVSDobrTU22MKV6yM5Z4+IdQRb6dvy1D/e9OhKvz38Or/z6NJ2AJu6nlWuSCUM6oXlsCJZuPYFTl9PAcSx6t22I8YM7okm08+PM5eNX8e1Tc90uhJDJ9GZdGyPx9DW6eECIaRmJhz96AP3G9UR1GPRgX9ogtuC9JdTVmr4XDIPwRiEefaakkVV9NAMl/R03vJO3JuRCPh58/lm7hjlXmPQmHFhzFH3v7VGt1yJSP5D5vO+++678ulQqxYABA8S3W0TkNoCkRXkKcY2795XhdHF5/u6qroMSAyDRCDCrHYwVzDx8tsTTc0IZ6mPpKB7axOnzqY+lVUmhYs082GL7sUFuWj70WoOdk9/S5UfsxQ22MAx4KQvuukDCGYojieCVMljCK4kBeR4vjb8DYRIpDr+yBKqEbEhDvehgTJKtQdrBTJT27gB5uH1CUnWwWCz47a3FWPvTFvrarLvNoMvQ9nSMUTl9SUSkNpDxK++mEeP75+fRBpU3FjyPrx6bUzFmczBmrsJ1s5xqLq2UI7uaDbZYB1PzcPp9JOMOSWYRpBczIHGRVEccPm0b59/+8yW8PvAjZKXkQjOoJSyB1+uV8kMWA1NMIDQyCcKPJ+PhD+/HyGeGIDs5hwoE9DHeMEW4aPJhGGhDWcjO6cBkFcIU6Q9jqwhYQqz7wOaXIlpnRsEu9w2ZQSl5yGoeUUXgLjCAhRNgaRxUYeTVJhJcbilUuy5S8RdJ3tj19wHc89xQTF34Al6b9ywVXTuqSR6YOgrNujSiSQ7EfZWTcugxvDPGvDwcsS2dz/2fjU/H5wu34UJeLiBzXh9aZBwaPNgDaX8dprUSoUGbaDz6yXj0Ht0N1WFchzaQciy+33MQqUVWQQfLMGhokkI35xiM7WJgbFJRR9Hpq8oTTZUhd5O5J4MZDMegdFhTDJnxm7Vhjhxmx7akYjv/tZepaLsypFY9tuU0ut3VsVqvRURERESk5jWJVC7FA2+OQps+LfD3l6vdmm7UBRoP3LozrmbRMTxpgi3jr89W1pu4gfDinCfgFeaP3edzoI+OKB/SkOrhskZAaakR/gE1Nwcxm8z45Y0/qHs+GQsRyFii+4hOdHzhF+y8p0JEpLpsX7yXjvNdMfOpn7E0dS5ef34ovpqzuWoNYzRDevwKXVd0BJkzKKuvbxR9xna3SwV4d8nLNGmNzGO4wzfImybRDXmkP1Ivp5ePp2sLERmk6d2vkwT6q1Es4Tyer688Tt678jDuemwArcNIXWLUGx2mwk36cBxa9mxGRfcXD1+hx/me93TFvS/djahmFb1slSFCt++e/QXXzqe6XSchhhHxJxLLXwsRW0+eNhHd7+5Urdc16vm7IFNIqai8LJWHrJuQlI2ydZPaQB7LbDTj4cbPu63RyyCpfWf3nqcpdCL/LUSBw38AVlmNj1kACpZdhpQkCYSraSP/rQJTSUygOew6iqk2ePePAusjReaMYw4tw0kiRs5vZxH2cmcw0po5phZvvoaSXVUbrYyJRcj55QxCp3QEq7qNHfpEbikMHoSykNSGtfcJaPcUMGQ+i6urBWSfsFr0G0sBnZsxSrP7GFxeLkCozVjTVRxAJSRKoP2z9t8/khKw5oU+mLHxIpYcSKEpCOFab/TIjkaLIuuEb6nEgG0RV/HQlGBEtQ7ErG3x+PtIMuqCEpkRu4xpHp1d8zUmmnCQXqirEDkIQPOiIIxNbF0ubigjTOeNJy92wdft9sHCCkgrrGhCJEIJL7nzJ+0cG0AvnpKcp8WEXw+h0E26QRmtI3ywaHI3JOSWQimVoGW4d42d2+5qE46hrcNwOrUIhVojwnwUGDe39vFzEpZBnyZB2Hy++oPtHRezRYGDiIiISC3xkdqKdxlkFfggzL8YEo4Hy/BQSUw2a7E8vrn8G5p6xYKxNEeqLgUsBHCMBdHexVCyJmzTxCLLokQvVTpiZMWwgMUpbSjWFTTBZX1Fwz95zBKLEpl6H4TKi+16lcm8X55RjVyjN5U2uFseYAUOKqn9+HxVir2LiMHMQSJz/ki+Ep3TNWe6bzwDPS+BWWAxJnIMCvV+eOv0m1BIqjrSp2gTMefKF3i71efgiNK0BuzL/hmnC1Y4eOzjWJX8Kh5o8DNknJgwJ1I3FOVaixJt78Z24ga7bXwVGN3vPUx5YggWT38YK7adwsmLqXRsWVykQ05OiVNxA5tTjPufG4a/Z6zyeELUEZZQH+g7eebG7qWS44Xxfe1uC4kOwo/HZmDu63/QSHZXvLHwebTv1xoLP1iKTQt2eryPvFoOS2QABAlJv9CCSy+wW8zIupYLqYwDujWgyRbO0Gy7QAUGSd5yaEjiGjkQWXhIk/MgP5ns1CG24nkq0vPIoqbKu+qkfRmdmkfRS3WcrKbe+QmdtPaElt2aYtq6t5F2JZM2NDVqV3NH/QHje9PUhwuHr9CF3YAIf7zc+z2Pf9/rcBp13NZ0CbdrNJKxLPpZVDgxa0u19+ng2uO3r8CBTCvUoVtqRob7+cCoqPoTqP/88884ceJE+fUxY8bA11dc6BYRuR3wshEkuoMssn405iu07t0c4R0b4lpmVaMlRaEAk1GASU1EBNZjlayEh+pEOuTJ9turzmXD4iOHpnuUfRMqEcYdS4PqjGfzVcQRUWozB0iaItZtOu36lxjrYdRuDFVYWsWFUb3jAsyhPjDFWhO2uGIdnn9qKPi4VEy+9xtrahI5n6VXTDSTBfl3hk3Dj8dn2DU4VYfZL/yGdXPtncrJ6yKJG6QZYvaRL6BUi2ZQInVbk7iitECDB8KewLOzHsPPJ7/CmjmbcHbfBXASDpkKKXJdjJHZ7GLc/9Jw2uTnrmnJGZKcEnrxFO8AL9qwYgtxGyb7Puub1ViTklXe3F55HcYc5oup299Hq6hg/PbOX9i8wJpSZYxy7uhZhtGLgVlbDP3QluBD/cBYKp6CD/ACsaSQdYiB4pTrtZeCE4lo6qtCgkwCvY+1nhAsvPW4Kql6XLEEeUEzsCW81p+hz0dEGWWQz8hVTdJxYFt68ZT4lBy8+PVKaPUmCB5MjbQe3RlfzZiMtCsZVMzesE3N0zFHt22Fe9q0xKm0DJQajAjlZHil5euQGkyQ7I0Hl1cKQ8sw8D5Kz8faAuCTXITG00dhW0rV5iiLnwJ541oh+PfTkBRVbYg7tO747StwqOOaRERERKSmePt7PtdOhHzvjfiCiq6DYwKRlVhxzruZEKdx27E/aaKtzrxmdSBzws/OegQFWUV4atwcCLKqc8pxp1PwwetL8f1vk2vcn/Dt03OxZaF9egUZyxEX/TcHf0rTosoc2EVEaktlcwNHFOUUY1zoE3hx9uP47duH8c+Gk4i7mA4JxyL/xFWUHI0HY3Bel4x74x788fHyG/Zh+YX4UmGvLaRhn9QkREBelhLnjA9WvoGYFhH49c0/aeJxXUFSPDmFFKZWZC7GeW9n7q5zaNYmmgoIyHxQdcmxSQslNYkjcUMZJDnOXXqcLVdOJODtuz6jQm5PII/9yb9TqVkTOeeQ1PGaMuzxQRjyaH+aDqgr0cEnyAcv9XoXtUWukqFVz+a0vqguJMnnthU4iDVJjREFDv8BFM38waok4LWeH4RN6RowijqImiST9e4aCzzoJpI396eiApJ2QFMbBEBw4HpeW2Qx3vAeEA1znh5FaxJcbmvJ00N7OgfqLtWPJbNoTCjZl+oy1aL0cCZ8BtT8RCMiYouXc7Gn/d+eHjj5vYCOU4AOz1cM8HLPCtj9mvNUh4bDGbR7moXFwCN+VfVn+XSsEXJeCpbY8riDAcK6AW2fYOHXpOr2pNFfMAFTT/eFfyWRAL3fLMcdWQ2w7twV/LDvCs5neKD+qAYamWcDS0J8tv1iYsvCIEy+3MXp9kEGNdrnh+FEUAZ2X8qh7jpE3EA4n16M+fsTsedyDj3s9mgUgMd6N0Tn2AqXM63RjMWHkrH8eAoyCvUI81VgXJcomvKgtlkc/XnPVY/FDQRvhQT+ahk6qz0XUbiCTD50iLY6xm08m1HrdA2SALH4iW64+7t9Nfp9voaLUSIiIiIiFQyMbAIviQylZut50mSWIDXXDz4qHaL9ixw2/V8pvQY54wWNSU7FDe0Dc6DgKmqAc4ZgejHyLApNxBWEIQajUEkMkLEWutBtERhwAoMcoxcKTCr4SzX0PiIgKDKqYBAkYKh4gogKnB/vTUYOvULb4IomAWvTtyOu6DLtAzYyPGScHEaL9TxaapJDJTU5NH3nGB5ym/13BEmwiFa2xZiooTidn4vF11aipV9VcUMZWYZ0nCo4is4B1XMoJ2jMeThbsMrp/UWmNJwv2ogOAfdV+7FFRBwR0SQc5kA1bUhxRWGED2Y98wte/fUZvP74oPLbj8cl4+XpK2Fx5FbGCxg3sC0mv3cfCrOL3AoLXGFoHu52G5KK1rtDIzx7X280jq5wFC1D7aumLj3u2L3sIBa8u8St804ZAsPA2KkhLDFBdukSjM4I2RHS5FKxOMIaLVAeT6bJGI6QZBRBmpiHlIRckNkfL6UUglwKVmMA46FD0pENJ/HcLKF88ZBMtv/z3Xqc2HaWqsg6DGyDe18ajuZdKxyrtSU66tC85fedyEsvQHB0IO56bCCGPz3Yzo16yRerPBY3EEgDEXFTqytHNfKaWvVoRn/e9ueeaqVrkHfDd2cS1MczoGsVRMUODUID8O3XT+GZpi/VbIfICU6E0q2bewfcmjYUuuPIkSN49dVXy69LJBJ8+umn4icjInKb0Ht0V8x+QebxojDh3P5LkAR6AzLHS2lSLbkI4HQWSIzXjz0yFYSmMUCQH3ElAUp14HLy4HUwBaq4bOhaB8PiLQdbaoTyXDYk11MapAoJTG7mwPo90AundsTR8+2Z3efBSCUo7u5mYZecp21NZfKLwWgd1xiSrGJ66XhnW4z/cDx1Cfzz06qCaFsSzlzD4XUn0GtUV1SXzKRsbPh1m9P7ky+kYdsfe6izvIhIXRDZJMyj7TTFOnw9+Ue89ccUTPnxyfLbD51MxNTp/zgWVPM8HhzZGY++ORqZiVnY/ufeev3QiOMlSW4g4oaYFlWTlL39vVAS4g2kXhc4VOb6bVsOXsTcWbOQejnDTvRUBi8RIHBkUZYBayS/dj11kgN07W1qJ7JWoQdYm2GrsXUkpEm54Apdj+uv7TxHaxIlEcLLJDCF+UDfvZHT7fkANcyRfpCmFeLg2mN44ouHyu+LS8jAkm0ncIwI5QF0bx2LCXd2QovYkPJtNEUarJ6zGVsX7aINk8SFlDTv3P3kILvmxflrD1Nxg/UFwy1eSjn8Q3zppS4gqQ2doqyLexvmbaeNrgTyuhTnMyE/nwlBLqGJQXn3t4QxqiLFowo80ELthW/3TsOI2X853UxQSKDpHA7fHUlV76uFkYCIiIiIiJU+Y3vgp1cWlieQesLpXefgVQ1hhDNYjgFvcX0slymlMOpc9wgMmtgXRzaexKrv1yNu70UwLANdqfM1jJrS9a4OeGDqaPpcyxbsAdPYee/UpQvpOH4kAV26N6728xCTla2/73ZZ75DEKOIsLyJSF0R4WJOUFmrwxaQf8P6yV/HG80PLbz+w+ig+uvcrp8PTh96/jya0JcUl02SB+oSkopG0ssnTJiCicdXXRVLmyHqAO3b+tZemhWUmZtf5PhITJ8mldJidpLYR8yg2qwhXs4pq/BwkfZmkM5Rx7sAleoyk8zYsi65DO9AUb1tTpuL8EqyZs5muPZA1LSJSJzXJsCcGQmoj5iIJCtWZxyJrUyQJs67SMImgrU3vFvRnkoZXk5QLW5p0bIh3/noJT7Z9rUa/XxtzM5Hbl5pZz4vcVjBSDt6Dqu8SIejrQEDgyYGFTLC7SkFgGcgivZAz9wz05/IgGCz1Im4g+I9tCnljPxRvI94i7tGdt8bwVBfduVzA7Pq90Z2+NRTYIv8fRPZlIKlIA3PL+UUCeFPF32hQWwa9p7HwqjRPLvcDenzAoMvr1u9wh+cZNBvHgK2GgD1frsWZwCywTr1Y7WnzBIO+X3AOxQ1lqM97OxQ3lBFgUMFwXF7n4oba0qbAfTHTssA6EZ9epMe2C1Z3t01xGRg1Zx9WHE9FdokBuaUGrDuTgXE/H8CSI8ko0prw294E9P9qF6ZtuIDLWaUoMZhxJbsU0zdcxP1zD6LYxnlq7an0au33qA5VF1DqinO1/Iy6NQjAhpf64kJGCX3NNaFJsBov/nUC9/10AK8uO4nj19zH6ImIiIiI2OMlleP51r3tbhMEFjKWB8c6HxcbhFKopQY08C6wEzfYQh5DzRmpUEHOmel2RDBBygwJK8BXoYGcihoYmtaQofdDjsEHRipusC4Mk6QfiYsUhMKsIHRtzuGjc9/hWMFZ6HkDdBYDFTOEqEqhklqbksw8hwK9kqZD1KQ3lezzS80eQjOvxvjt6i4EyN03954tqr7DBSG+eDd4uK6rrhTXj/OSyH+Tfvf3hDTMfaMH72sdxy/6aJndZGnnNjH44vVRiKjULBLorcSMN0bhpfesYpyXfnqSxueSeN+aYCFNQG6YMqEfvn5llENxQxmeiBZIg6Kn4gaCqX0sLLHBduIGgqCUwdCrOU12sIU0vah2XwFr01DEGMyQx6XDa8tFu9QHVmeijUeeihsI6Vcz6cIDYceSfXixxzu0CTE/owD5mYXY8dc+TOn1LrYu2o3CUh3+WHcYD9w/A3N+3YRrlzOogCEpLgU/v/Y73hj4UfliB4m53/33AVSHARP6oL64eqpqc48nkIZV70Np6M94YdGvr+LKnos1jgYP7tEAryxYiYk//YG3/t2I0+mZNXockZpz7tw5jBgxAnp9xaL99OnT0ayZVQgjIiJy60OafUmDjKeQs6Qh1g+FxYUwK2hvr/39xNuJI9sJ4GzmUeGtBsICrc7j5JztrYKlUTTQPBZsiQFeh1Lhu/UqvA+mlIsbCJxEAlbifJ1EppTRBeq3hn5GRYZEfKclYkBH4k9nWKzneSEsEIKzaDkAb/7+Il10/vvL1R49LGmwqAlE7OlucXrX3/tr9NgiIo4YOLGPXQqKO0jSGm9TzPfo2BCfvn4PQoPsa4ZgXxW+fu8+PP2m9Rjz2rxnMfypwZC4SFMzBaug6RhOL2Z/52sZziBurh9Rp1Pnc/NJmfmOxQ1lMMCRQ5fsxA0E5eUC8CwPo58FJj8eZm8BZh8exgAeZoX1/ZDoKz0wy8CirHqsNDYJrVbzEVusgzncfd1ojvQvF0Kd3n2O/rx23zlMnr4Umw9fQl6RBrlFGqw/cB6PTPsLW45cQn6xFr+vOojxY2fgl3lbkRKfSWsS0rg456X5eHPIp+XjdYPRjF3H48ufj3PjB0Ve9l2dmqO+iD+Z4PA5WYOZ1nDe+1Kcr8kLQL+mDfHnh4/haFoWTNfPBc7QN3VsZEWEIJ+M+wYv930f3zz5ExW4i4iIiIhUDyKCG/vKiGq/bSRhqra4EzcQJFIJNXZxld6g9Fbg3eHTcWzzaXrerA9xA+HtxS8hqnkE/pm1DvB3IeK7zsE9l2v0PES84M4oQ6xJROqSwQ/3oy7/nkD+NklNYgsxFyAN4kGR9mM2YiQ0Y9v7eOTjB+h1ItYe+ugAj5+rJrz6yzN4/+9XEdnEuWlU+hX3abxEtFwf4oYyZBfSID2ZCMb2eEWS0S6mQXb4ioedas6JP5mIi0eu0J/X/rwFr/R9n853EDE1WSshqRQvdHsL+/89gvzMAmok8WizKfj9w79p+hupSchj/PDCPJqSabwubNYUa3G4GikHRARP1uHqC7KPtTUe+f7gNJzaea7GQomAMF8q8Hm573uY9cxcXD1ds7UbkdsLMcHhP4J370iqnC3engy+1HNX7huCRYCiZQBMySWwFNurzli1BH6jmyJ/6cX6j36UsOB85dBfzPdc3FGdxQMbPHl8vpaO5SIitnAyBs0fYHBugWdfJEMhkHUcCO9RcVtYVwZ3/cEi5zSgzRKgDGIQ0hH02FIGwzFo/xyD5hN5bH1cgN6DPvCljc5iZLJV8ekJMg/S5GNy3KtRQzJ8AOcmQDcF4jBdnW3Wn8lAj4aBeOXv0zA5mJQg89nvrDqLD9fEwehCVHUuvRgdPt6CCD8l7u0YWS0hQN8mQWgTWTeORJU5cDUXc3dfdbtdoFoKL4UU1/IqGrd8FBK8OqQZHu3VsFwQUhPIu/3Dzop9OHatAP+cSMegFiH4eVJnSIkTn4iIiIiIRzzdqickLIefzu9HvsHaxOqtdH58tgoWTGjgrYOPxHVDqJIzwsCzTiOISXqChGHAOznXGnkTegd1xsn8RBRbKlw6LGYWQmEkPu01Ej+n/Uibl6rsJwMEKHTQm6XgBRY6swxGjQQqqREyzgwBDAxmCcw8g3BlscO0ijLkrAI+Ul9szTgPncUq2nCHWahZ3WDkNXWyjYiIpyjVCox5egjmn7jkcjvmuoNZblo+dQ3uMKBN+X29OzVCzw4NceJ8CnLyShAc6I1OraLtFt7IhP0LPzyOie+NxZNtXkWxTapBXRk1+Hop3G5j0LlvZC/M8dwViKQrmBsEO99AysHcJAyy0/aGDfKrufRi8VVA4FhwRXo7R9basmfZAdoASRxuHU1K8xYen363Gub9p2Ak90f40IuuuxmqgwmQJVqNIy4eiccY/0cREhuEQQ/2hdFGgO2OXqO7okHr+knAPLr5FFZ9v8HtdoER/pDKJMhMqjCrIBHQj3/xIIY/Obg8ErsmFA6OwbSiK0Cx9e/8SHEuVly6iGFNGuPbMSMgcRGvfUtAvlK1ndMT7FMUwsPdJ63UJWfOnMGQIUOQk1Px+d5777144403buh+iIiI1B7iqCdVSLHsq9UoybdPVrXFGOGDkkFNwPvYnPMFAVINSWsAzEoGvPR6MSAIsMgZKArMtAGWcXbMCwkA8oqA3EKHd+tL9bT5+vjWMyjKsTf8CIoKxLMzH8FnD3xrdzsRKzJZ+RAiglyuYRB3b7qvHAcE+EAI8AGiQ4HTV8AY7c+5Xn5q+AR6YcvCXeVu4e4wm2pWkxAXdffbeJ7oJCLiiZvl3U8OxurZGz16s0iTzcXDV9CqZ0Xjer/uTdGnS2OciEtGboGGih06to62m48gjpsv//wUHnp/LJ5o+yo0NoJji0qKouHNYIyumFMnFYv8aj58N10Ba7B4LNpyh8GD72Z+TjEqe0ILLGD2tkCoLLpiAYsXSXPgocxyMAYl8y5SAZzNUi/vbS/C9ghXEyfl+1ixDWkeCmsbg88WbXWYxkxSAN//dQMkFgZmMw9E+NELo28AxeEESFOsC1lx+y5ilM8khDUKRb+H+8FsUzex5PhuIWkWjvft7g7NEE2Se+oB4gi7fq7ztBuC/FoRWpzIQ+GghsgsqqiB/VQKvHH3HRjduTW9npnu3rivyudOPlqWwW9vLy6/fm7/RWz6bQet3ab+/gLY/1hNUt9cuXIFCxcuxJ49e+jPBQUFkMvlCA4ORpcuXTB8+HBMmDABUmnNjB1ERERuLpOnT4RCrcCKmWupQ/uthLZYhzsn3YHD609UqZeI0O2JGQ9h2nj7mqQ+8Av2oWmt2/7YBDMxY3Gy7mOLqcY1ift6Q6xJROoSkmoweFI/bFqww6PtiaA3/lQimnSoSGru/0Bv9B3bAye2n0VhVhHCGoagbd+Wdr9Hkslen/8cHnz/Pjzd/rV6ESN5ki5j8CDpOj/D8TxJXSJNzIYkMRuCt5LWG0yJzjpXUkeQmoR8trNfmOdQNEWSez59YCbtP6LHNQdjcHNUAI6k5eHu5i8gWqlA37Hdq5VYcNfkgQhxYcpVG3YvP4gti3a53Y4kUZC5JLK+V4ZvsA+e/+4xDBhvNanKulYzw28i4PjljT/sUlfX/7INdz0+kIptnPUI3DLcZjXJrYQocPgP4dUzAuquYTAkFNHm+dL9aTBeq+ZCfz1huFKIiA96wJBYbE034AUo2wRB0dSfijKICKK+UbULAquQgNd5PvCVRbt3dnSEJNS9lb7Ug21ERKpDywcZxK8SqHjBE/Kv8ChOZiBYgKA2DE1xIAOCkA7kXscDAxJRm7ZXwKVlnokb0lXFSPQpcNgs6BAWCOvmelCy90oOEnLMaFFlWr7yvqLekFhYmLnqPYGfSookr0J0znWdhpDkXfEBZhfrsfBgEnQuXFbJ2NmVuKEMMi5OLdDh+x3x1MXa7MFA2Vshwa+PdEZtKdAYsfx4Ck1ZUMs53N02HL0aB+G9f+McCjcqk6cx4f0RrRDirUBKgRZBXnLc0Sy4XHyw7GgKPl13vkb75uzZt1/MxrR15/HRqIqGOxERERER9zzeohseatoJh7KuQWM2YlveWiRqq6anSRgLvKV6axIDeLfz12Q7jiEjCucbShgeRrJK74QzRRfwe/evcKboMvamnQfpw+0V1BndI2Ox+Npq8HB+bif7p5YaUWK0NkBZBBYlRjlYRma374VGJQLkzuNYuwT0goyVo8hk3abUJEeI0vUiRwNV9WOXCQHyBm638ZdVxKWKiNQFTzxzF5ZPSURJpUltoj0iX0+GB+QJFU3gFy+n43yJjjapdGgZhTbNIqiYoUsb5ymVFp7H1lOX8NcfO5DW2BtKiwmSQs8n7yXphTA1DnF+P8eiexvX343DG04gI8GatuYKUj95ioWkX7hpGrGE+wOVBA5lEGGDO7wDvFw2ezoiNz0f/36/wWkDpL5FKHQdokAPqjYIcgk0dzQFozNBmmlt4iTuuKSJbPFnK6lQxRMXH59Ab7y39BXUloLsImxesBNJ55Kh8lZhwPjeaN27Ob5/9heP9iMvvQDvL38Vah8VFTIEhPujy5D25Q5Za3/ajF/f/LPa+1XaPggFAx3HZ2+Mv4roXfswdeAd+C9BxA1RUY7fk/pg7969GDlyJIqKKgRJ/fr1w59/Vv/zFBERuTUY/+ZojJkyjDrGkRSExZ8tR+LZlPL7zQEqFI1oScWDdjAMTF4MzHIBjK1wmmFgVjEolUvhlWGCVO/i/B4e5FTgQCD7tDxzHk1IIg2tLMPQc1KbPi1p4pGjRXIuIQPmYD9A6mC5TxDAkrk1RwWVWgGhVQMwp6wug7ZukqQ5u6QaLrHNuzZBTfBEoBjb6sYd80X+Gzw540E67tNrPKsRLhy6Qhvfydevw8A2aN6lMTiORdf2zmtqMn4kTr/Lv1lrJ24gTfkFY1vBHFx17cLQOAAFo1ogcJk1jcAVMoUUHQe1dbkNcQfNI8kMAa7XSRib/SujYFA4BKnz2oNXCtebgaoeW3gJ7AQObDXN3IhIWJ9TQpt7XCHJsa5v83IOmTotlmw/QYUMzrDwAm0Osn1VgkIKXZ+mYLaegyTXWgeRbdLjM/HXB39DMqEbzNfPBeSVSjVE4CbQ11h+XDVbEJmtxyczh6G2EDfXTfN3IvliKrx81TSlrkW3Jvj+uV/tkkScUbz9Mj57+V5YmgYiq6gUIT5e6NU0Btz1OvKfWeux9MsVwMPtXD6ONFPjce26ffFeRDYNw6QP7vf4dYo4p7S0FC+99BIWLFhQ5ZxvNBpRUlKChIQELFu2DO+99x5+//13DBgwQHxLRURuM0i/xYPvjcXYV0fg9M44GHRGzH93CXXxri5kbCGE+ANKOWA0gckqAFNDV+wyyLhnRfZvOLLxJA6vP07ntsg5qXXP5vj++Xm4EZAmXSKeK5+nLNW6TXFo0dp1j0VtapKYlmJNIlK3PPPtI9ixZK/HJj9EXHpi6xn6c6fB7ajYgXw3uw6lzVtOjQh2LtlHa5L6EDeQRJf2/a0iWmfsXnYABZnuTZ7cpajUFWQET4QN7iDGD9UVoGWn5GLlrPUuBQkWJ31dxubhMLaJKp+HIuXUJa0BSfN3QMax1ETKHSTBY8qPT6C25Kbl0Zok9Uo6FdUTQXOj9g3ww/O/erSelZmYhekb36WpQXnp+QiJCaK1a5kgeukXq/D3jH9rtG/O3gcivI5qFoEH3hhVo8cVufURBQ7/MRgJC0Uzq7O5OUd3ywgcBIMFuov50BzOhOFKAe0oNSQVw6tXBIxZ9a9a5gIU8L3LqnaUBHkYBSthoe5WM8c4Itwgz2nJdz6IUHe/sW50Iv//kHSFdk8zODrDs8Hh+fnk/2XbCvBvDvT8iIU6zHHjYGG8gP3v89Bmer5PaSprI8slv1zEaNy720TdAafPT4hLK8KMWUm4s9T9olqibwHqi245Ueh7py/mXr2IQp1nRUmh1oQTQem4K7Up1GaZw230rBlHg9PKrx9KzKeXusYTcQPh3btbQuFg8dRk4elnQR6nZbgPvFzEfpMUiteWn4LeVDEY/fNQMlpH+CAhx/Pj/4+7rmLLK/2q3L7vSg7eXHmmXoSsS46m4PW7Wrh8fSIiIiIiVZFzEvSLsDblFwjxVQQOJLWgTNxQdotnuN7OXRqCxqzF5dLjOFu4BgU4Q2KTcFq3G/KCkUjVORrg2D+elLWfmGIYoUofUYrGD2qJEXKu6iRWiDwcw8PH0Z9j1YH03xy9F2K8CiBhHe87EUP0DOqPmtDQqxfUkiBozM4dxdv4j6zRY4uIOEMq4fD8uL744o/t9DppDDH4ABaiDSJfGF6AkCeD1E8Bc+tYfL/9rN3vt24ajmmvjkRIoGOzgbjUTLz8x1pkFJcC5DEHNEBJ/1goz+fCb2M8ddx0h+xiBkwNggAnSV1DujdDoJ/zJqELh6/gw9FfehaxS44RHg5UBQ8cMW1dTAkjnxmCHUv2eewyVl1xA4HE0ZMmTIf7wwD6di4WF1mG3l8mcLDF04ji52Y9RpswK2MymnDlRCKd9G7cPhZKL+dzPdv+3IOZT/5sJ9IggoRmXRrbJTK4Y+kX/+LHozOq3H5o3bEaLwAX9Y1wef+fx05hSt9eDuuyW4rb1Flo8eLFePzxx2EwVCSykAaitWvXQqn0cP5QRETklkSulKP73Z3ozxcOXbYTOGg7RlQVN9ggSBiAOHlXvoNjYPDlICt1cQ4jjUcuyM8owOENJ7Fy5hoqdqD7d/gK7n1pOK6dT6m6L75eEFRysFfSwEcGkpipiju1erBaIxhvF83Nft4Q1EowGl15cw9JuSBENvVsfULlo8SQR6rOyXlCn7E94PfKQhRWSqyoPJ4REanr7/9jn47HT68u9Gh7Ii6yhTijvvf3KwgIc5wiff7gJXx83zf0+1wZfZMAh+KGMkxRvjBE+0CeUvGd4NVyWpswGgNNYhMYBnc+OoAKfZ1xevc5fDLuGzCtw90KHIjAuzIlnV2LCwQJYPICZB4sMd97V0fsjkuD1oNGIvrcBRrIdAYYbBp8KsPoTWDyS1EwvCn0TQKxRmIBjpwA6wVIdECl6RmbX3RwG8fC2DoSkt2XqmzKXciAuV1FQyNJ6JFqrXUOLxHA5ZTCe9N5vL34ZSqEr4zRYEL8iQQqjmncoQEUKufngE3zd+C7Z3+xc3NdPWcTmndtTMXUnvL3F6swa+9nDpvLyN88WXmSppfAFOH870d9snoNtiu/XY/xb41xWJfdUtziNUlxcTH69++PkydP2t1OkhtCQkKg1WqRl1eRwJGSkoLBgwdj0aJFmDhx4k3YYxERkdpCzgvdh1uNBMnYv7oCBz7UH0LzGDuhs9A0GkxCOthk98YrzshNzaMJDsu/XkPTdQmXjsRj7CsjHNYk5lBvWLwVYPUmSNKKaMpcbSDnzPFvj6E/RzW7XpPk5EOIDAHjZH7Ux1eJgUNdiz+d0X98b8x9fZHLZuYRYk0iUscQk5yH3h+H+e/+5dH2s1+kzVtW3rQKr99d8jL8gitS4SrXAyQBsjDb8wTp6jLs8YH0dTjj6JZTmDZxVrVMnuqLe54dStMHiMmFJ9QkXWfP8oOeL2fbYGoSCmPHqoZaZK5H37c5mG3nwHlgQPHSj0+CI6mdDpLG408m0Z+bdmpIkz2csebHzfjx5QV2azP//rARLbo3RVGuZ/3F5BRAzh8ztnxQ5b6ti3bht3c8+5uvLsu+XI37Xh3h8D24pbj5X4fbkls8L1CkPlF3CwPjwoHjhiJhkL/4AgyXreIGgjlLi8JV8TBn1J/AgVFKoOwQDFmEFzK/OYbU9/ajeFsyWG/nB3QKyyBwQnNwPrKaPS/LIOCB5mDknNPPRtnK2tQkIlKXNLiLRZepDLgarMMdRwMXAAEAAElEQVQXXAJ2v8bD7MCFTJ8vYM8b1RM3EKS89TtwKCQFOpLh7goGSN0FrJ9gwcW/ePCmiv04kpiPqctPY8XrpXjkfCdEal0r+OX+gE8vz4QH1cXPoMA430Z4ekI0Trw/GIuf6IY7Wzp3gLXFyFmwsNkJh++FgTVjUbOT0EnqZ7+rA+mbevnOphjfrapz7i97rqL3Fzsw5scDGPfzQXSftg0frTkHvQM18rn0Irz890k7cUPFfc4XNh1xOasUJ6/ZT/QX6014bvGJehsjGsw8TiXXf1yeSPV5+eWXqQNKdS6bNm0S32oRkZvA0LA+kLH2C6By1mwjbiDlAUOThlxh4lmX6Q3Wx3FNqNyEZcmfIVFzunzrTH0i1qR9D/AX7R6JiCVIJVV2Ic8sYe3PZ472xsRLcLEwFFk6L5h56xZqzgud/e+AWtIUz5/4EBMPTsG2rI2IVFnfl6slgbBc39YWFhJMbjgFaknNUuVYhsPg8HcgYaypE5Vp538vYtRdavTYIiKuGDugPd5++E7IFCy0wYBFSaJarv+Nswy0bYOR/Xh7mKKqNgydu5KBlz5bAaODyPHMohI8Of8fq7jBFoaBrnUwCod6lnbCFWohu5BujTirhDQ1H3tfXIiHm7xAnY+IC1IZp3bG4ctHZ+O1/h941JwfHBWITm5cV+32q8C9+MB2orvtHS3xwuzHsTJ3Pj7f9C663d3R6e+RBh2Ltxy8qmZzHM4OsJYgLwikIcsF5ghfGr9ckzjix6dPpA5CdrsiCFjy+SpMjHkWL/V6F6/0fR/jo56mjWmkwagypGn0q8fmOEyguHzsarX26crxBCSctRftFeeXYPrE71ATLAoOxkibRlUHaAULzmXVfNFaxDHk7+iDDz7AQw89ZCduuOeee7Bhwwao1e7j10VERG4fRj47BFJZRVOQoXGgB5Z/ju8yebG4Pt3pGDdjBLWvCh/c80W5uKHs/DLj4R+QZSO6E3zUMPdoDUvXFuBbN6SNTYxMRoUO3Ml4cIcvgNt7Fozc9XmY4quGX7APBk/qh4imYXgw9lmMUD+IdT9vhpe/6+OdVC7BhyvfgNq3ZsdFmVyKqYtepG70jrj/jVE0vUJEpK659+XheP67yZApqz/+JY1+b981zeGYPyMxC28Pm+ZQ3EAwNHW/7le2jTkyALpBbaEf2gH6O9tBd3cn6Ia0h25MN6zILsL4F3/D3+uOl6cWkPHLiW1n8MXD3+OtoZ9Roa/scjZxI3L6XBHBvugUE1rldl7pvilEcGLEwNg8XbdW0XjlvXH4J28Bpq1/B50Hu04OsE19UO257PiYaTBDfuQq8u9vDX2LYGpGV77fMgZGbzg/DjupW8yR/rQmqow8Lg3c9aQIW4jQQVJogP+eq3ju84fQd2wPu/tJ2sIfnyzHxOin8VLv9/Byn/cwIeppzHvrT7sasowze87j26d+thM3lHHpqOc1CamrTp9LQnJKTpW0uq8mzym/7r/uMrhix81dXgdToUio3poHEdQnnk2u1u+IVOWxxx6zEzd069YNmzdvpqkNycnJyM3NRVJSEt54443yxi2LxYLJkyfjxIkT4lsqInKbM+r5oeUpoJ4gBHhDaN2waoobx0JoGgU+oua9RkpvJT4YNaNc3EC4eCQe0ybMshvjmEO8UTymA0qHtYGuTxNo7myJ4vs7wdg4uEbPGxDmhyGP9Kdu3+Mjn6I1CWlIJoJqkPNnfDIEB4lGclKTfHE/FE5qCk+EJlN/f8GuJrRl0gfjaIKXiEhdM+HtMXjqq4dpXV1dTu2Iw7vDP3eY8pVyKQ3vjfi8XsUNhFXfb8TkVi9TUW7ZfpCa5Oimk5j+4Hd4f8QXHokboltEUqOh+qLHyM54cc4TWJW/EJ+seRMdBrhOnagV1WxMIjWIsZULgygixm7l2gBJIpNgypwnygVzZZBx4sL3l2JC9DO0HiEXsk5CbiP3VYaYWM1+8TeHde7Fw/bJn+44uT2OJlpUTgL/9ulfUF8U55Ug9VJ6vT2+yM3lFrf3EqlPOG8ZAie1Qt4f5yE4aC69oZCDvJNdIEkT9YE02guCRYDulP1EjzHR9UmeJC8EPdYa0mDnSkRPkMf6IOSFDijdlwZdXC4EIw9phBe8eoZD1cGzZmgRkZrQcBiLlF0WZB2p/u9q0oFtz/Bo/zSL8J4VM74JawUYatDn3bwoCFILh2KZAb81P45HL3eEl9l+4S1PrkWgQVU+GCQiirO/Csg+KaDHp8Brq85g7el09M6MwejMMLfPyXrz6Pu5BI28mmBvUg50Lib4qwPpaexQGI5nmjTHwBdVYDnr+9O7STCScrXYeSmHxiC7I8m7EF+234vu2VFoVhREb7vqk09FIOR9ulkoJCwaBKnRr1kwHu3dAOG+VVUy0zdcwC97Euxu0xgtWHggCVdzSvH7Y93A2nSszt+XBJMHLrqeMuanA+jRKAAv39kMPRoFYuH+JBRXMwJb5P+Dyi5HIiIity5Bcn+81mwyvrk8H0be2lwqcWC1ZxI4yGCpkohQ5gahsUjpv47uL8PMO2+gZcEjVJ4Hwcnsk4G/ChUXDK1F5rCfiVxXSszwkhpQanLdREReS4rGHykaX3QJiEYJr8X6jApRBSGu+BLkUiAQMmjMUlwqDkagXEsfXxAY+Euj8Xar5xGsqNqIUB2i1B1wf4OfcCp/Oa6W7INFMCJE0Qzt/EejiU/NkiFERDzh3v7tsPrqRRxJqkgns4VXcNAHClBlV/1OXkvLx7Njv8Izzw+zi2Beeug0inXOx8tE5OC9NxmSEhLw6xxTw2CYW0TQphWaKHH9dnJduL5omJGQhV/eWITTu+Lw/rJX8flD32P/Ks8LLO8AL3y27m0aQU9i3z2JomYLtWDzSsC7cGqVXM0EJ2Ex6ME7aBxxWexvlyEdkHwhDcc2nbKLSCbur/r2kTC0CIVwXdzA5ZZCcToNsmu1T4oTnKRg2MEwNHnCE3MjuUpG3aS73d0Jo18YhsDwqiKYOVPm00UVW7TFOqz8dh1SL6fj0zVvUXFrGf/MWudRxLOnPN3+dXS6sy0e/ugBtO7VHCvqKQL8doJ8d+j3qZaPcaPQ6/W0uWjp0qV2t5Mkh59//hkSiTidLiLy/0Zkk3C89ecUfPHQ9zAazXbNstWGYcBzDFhn8105rl24dSU62hDgiJTrC7WCWgFLp2ZA5QYomRRCowgw5xLBSCQQurd2mURRRruxvVCSr8EW4uiXWwhoDWB40ih91u6czqukYAxmsEZrvdawbQw+XfsWQmNq1sBUBhnPzT78OVZ8uw4HVx+FyWBGi+5NMOqFYegzpnutHltExBWjXxyGbX/urlYDeRkJZ67hxR5v48kvJ6HjwArR8r/fb6RjT2d4IuwVJBxMDUNg6mhNnS9HykGw+U6nZBTg+4U7cfpCKj54YRg+u/8b6rZsC3FSVu+4CM2A5kClpr0ALwVmvTwapVez8ebgT2Aix7/ryNN1MES7Fi5xBscjeNZkbT4Y0bc1XntsEB17k4bNbsM6IuF0Ek5sP+tRo5M0vRDeq0/B2DQU5jAfOmVC0iZk8Vko7tcAvJcTcQrLwKwSHKZLOB1TkjULUjtVqgsYMw/1lvMwtgiDsWkIeC8FVBIODUgyaadYjJ79LPxDqyaTf/vUXJrIUNkF9u8vVyP9aiY+WP663X2kVrGt06oLr5CguG80rXkFuQR3//gnejWNxQuDe6FddBhNdTBoK+pgIs4IXngamnYh0LcIgiBlIcnRQn0y0y495P+JW70m2bNnD/7555/y66NGjcLy5cshldo368bGxuLLL7/EHXfcgdGjR9PmNCLIfu2117Bz587620EREZF6J7ZVNN5Y8Dy+njzHoeCtMnyDcJeLIUKDcAjpeTUxE0epC6fw1MvWlAlzgAqlg1tWqTcEpQzavk2I2g+yxIrUGXd0HNQGBVlF2PL7Lrvbj285U3GloBg4cxlCaCBwPaWuaaMgfPLrkwgKcW1+6Y6eI7vg+4PTseLbtTi87gQVJLbq1RxjXrwbPUbYNw2LiNQl414bSYU8STUQixJzHtK0/vjnD6J9v4qm/X9mrfc4qaC2pFxMo03xJMXu5blP46N7v8KJrTbfWzcERvjjk9VvIvtaDt65e7rHqc6eIJFyuPupwXh25iPXr0vQc0QXXD6WgNO7zjude7mR8EHe5esyzrBcF2PbjkUVXgpENQ1Hz3u64p7nhjhM8vjq0TnYvnhvlQTvxdNWIjMpG2/9McXuvhUz19bZe0Ie56EGz9J1nEc+fgBNOzXCX5+tdGgy9V/iVq9JbmUY4Vb4xorcVCzFRmiOZKBkfxoEXd2dLKqToiDoXDegsl5S8KW3wIGOYxD2VjdI3CU8iIjcwuhyBax7gHcqKvKU1pMZtJpknZDf+pQFhdUTbZazMeoydkRam+IlPIsOeeGIKfWFmeFxxScP9yS3QJDB8WR6wdAcTC88Tie3p57pi2C980l3HgI2RF1C4J1mGCQWqGQcmoZ64Z8TabiY6VmcljNGNY7Ci+1aIqaVFDJv+6mCjWcz8Ozi2989ZcrAJnh1SHOn96cWaHHHlztdOmz/+nAXDG5V0YjZbdo2ZJfUfXFF1iMifJXILNbDXI+RdxzL4PSHQ+BVA1W9SP1Bhrb+/v4oKrIKFp966im7JjZnTJkyBa1atRI/GhGRm0SeoRCbM/dhTfoucEwhFQtUhgMPKWMvcrAIDDRmGYyChEYfc04cBMl2BQYl1BKTw3n/BkoB3lLXzg48whBXzLlcFCCpDGmlvlSEwDI8XR93BLlPypLXIiBArrNLrKhMsVEGHiwVcPBgwDEyrOz9Pnykonu0yO1LakERBs+0iVV2hEWAX7zjbBYuNQ+KQ1fw1JeTMO71e+htI7/9HQnZrpvyfbck0KYNZwgcA809nQEX4zv5kQRIEnOouorsW9dhHXF0Y/XElf3H94KFNMt4KxHdMopG8ybFVY14rwyvlMHQtyUEr6rJK/2bR2Bkz2Zo27dlFRdlMpH9xaTv7V8rESMPag5TbIDD51IdSID8Yu2SAXiZBEUPdHbZKMoW6eDzzymPFlwf+2wCJr5zr9P7iYBhcsuXXU7Ef77pPXQZ0r78+r2Bj6LEg4jn6kKE3SGxwchOznUqoCALE7xSAsbEg3ViPJL2QjuXKQ4yM3Bi6otQVHbsu8mkpqYiOjqa/tzy0Q8g86ra+FUdjKWFuLDwE/pzSkoKoqKiUB8UFxfTlIbdu3fb3f7xxx/TRAcREZH/b7KTc7Bu7lYsyE5HicKFMIAsSJqchDjwZPyip0YoVdAbgJOXwDhZsPcN9kFRjuvGUr8QX+QFB0AId+HIajCBSAfpXAhVZ7s4yzo6ZeoMYM5cAaM30qZZbdcYGJoFQ5Bx9PXJrhUg8EI2VpydBZVXDWKCRURuEa5dSMUTrV+p1WOQ79lz3z1GxbeESY2eQ6ZN2kplSnpGQ9PTOkZyhveuRDCRkR4JlMro5a/Gqd/sG+pt4eUSGJuEwBzqbU0fSC3AXb1awKwxwstXTdNbtv6+i4qiCUV9QpA9oZLAwgZJKeCTUHX/hrZqiOE9W6Nj61ioK6VjbJi3naYU1BYiEsl6rqud2KPqRgLkRQBjeyzmAc7iXEzutY4YT7jnmW8ewdhXRrgUvzzdwV7AUJmZuz+hdVsZxKGaiN9rAi/nkPNgW5iDVVXOS+Qdan4gC0X7EzwSldQUksLzb+HvkMpq5pxdX9xONcnDDz+MP/74g/7s5+dHkxp8fas2qtnyyiuvYNasWeXXye8QAYSIiMjtDUmDWvfzVmreYdAanIoh+X4Vpi/OYI+cB1NSPTNZUm+4c30n26S1CoWpQaDL+T7vVZ7N99UUkn63LONXyBRi75bI7Uv8yUQ823lqrWuSl39+Cnc/eSe9/kDEk8jPrIE7bS0haW3HqyFuINw56Q46Dvb2UyO8cSg2L9hZLqSqKQMm9KGpz+36tYJSbb+O8u/sjdQg6VbBHOYLfX/3qZXq5UfA2KwxkMSGkc8Odbr9xSNX8GKPd1w+JjGaaN61Cf2ZJHAMk42vlejaGUTsHhQVgOxrufUqKlGo5bQmKUs6u1W4nWqSW5lba/VL5KbA+cjgc2cspGFq5P1ZETN2Q2AAZZtAaI9muU2b4IkLt/km63EsAoq3JCFgbLObux8iIrVAR+bX68Cg8tx8ARE9Bfg1YcDXbO6VMjS1KSwMj31h12BmeRwLTqOXAL0SE662cypuIBj2KYA2gNIidSluILBgkOJdhN0X7J3SOsX4YckTPVCoMyLIS4Zlx1Kx/HiqR/uulnH4bkJHXM4qwfMHDqFouwkNglSY0C0GI9tF0KaW73fE42ZA1i4jfBVIK6wbt9BLWa5FIP+eTHMpbiB8s+USujUIgEzCYs3pNJR4kK5AJj6qe+Qn+5FaWD/pP7bc2SJEFDfcgiQmJpaLG8iE/ty5c2/2LomIiHhAoNwPE2NHIEwRju+v/OZQ4GABS4UKrCDQf008d/0cQZr+eWgtEpjNHLwkRjuhg4GkRZkUsAgsSs0MFJwZEoan50oqGhCk6BnUBHFFrgUO0UpfXCzRwSI4F4VLWAFyzgy9WQpeYKjoonI/EQPhurgBkHMWl+IGAtlGZ2Hp9uQVC4IBvyduwYvNxrj+RRGRW5iMIg8ExhwDgRPAOPrKXU8G+PXNP9F9RGfEtIiEyQN3H3eOqebIAJfiBoKhYyxMHRpSJzIuoxBHjsRXe7Fu19IDdtfJZPuX2z9Aab4GAeH+WD1nI3Yu2V/l91idEYodcTDHBsESGUAXNH0YBh9Om4D4rWfw29t/UWfQqOYRGPH0ENxxXw+6wEFceSpjivF3Km4gaLvGQnY1F0wtEu84kwXRFiDFxVsqv5jp8fuXdM61k9W2P/a4nSSf/+5faNm9CViOxY6/9nnmZlWDooQsBmQmZju8T5AwKO4VidIuobD4yGkBo7ycD589qZCn24stfPemI2e88zmoETENbzlxQxXIe1fb6bwbMB1YWFiIIUOG4OjRo+W3yWQyzJs3D5MmTar/HRAREbnphMQEY/K0ifA/GIeP/9rqWuBQ9iOpKTjrv6SRVp6QBza+EIgOBWyPz8Rt9EqyU3GDVC6hzQDk3OSKqBaRyJepXB8WSRQcOX+XH3/dRN1VRimH0LoRhLh4FI1uA4u/TZI1y8DYMAAZUb74Y94WPP3yKM8fV0TkFoMIUWsLGXv+9PIC6uwb1iAERoPr+W7V2SxoukWW1zOVISkp0iIe5gbVa8o4ciUTMhc1kDncl47rFeczwGUW02PYziv2Y9VOg9vhhdlPoDS/FAFRAfih4AI2JVZ1tWKNgFciA4as11osYEsNCOAZfPzeA7iy+iQWPDIHc4p1iGkVhZHPDKFJLKRhZsnnFe70tYEIhF2KG8pS4hirIJ1lGIT4eSE723kNKrtk30RlUbAwhivpa5Snau1cMpPiXNckWxfZC2UdQerYLza/B17CYtOhiyjuGAVeZ6JO11yhFp6ij/ZC3pgmMIWq6ImJ1M6sgdRh118HcfZt6oWQvfU7mL5zUr9bTtxwu9UkGzZsKP95/PjxbsUNBJI6ZytwICkQYt0iInL7E94wFE/OeAghMUHUFd0h7hYUyrerXjKdXClD+/6tsHvZQZfbNerQANfCXQudeV8lLIFqSPLq3lSkDE2RFsu+XoOH3ruv3p5DROR2qUm+f34eug3vhKCIgJvmkn98W/XEDWXz+bZ0u7sjXvr5KZTkldKm+MWfraySUucMvxAfmkpwdu8FzH19EU3IJMmTRAhAUlpIOsTfM/7FzYCsRQSE+yE31d6giy3SWpubXBzXmWKdnbiBkOjGLMuTmuSXqX/gs7VvUXOmLYt214u4gUDe9ywXJgB1BRH43GrihtutJrmVucVXwERuJMo2QVD1CIP2kHM3wzqHHKcV7v8MSYID6v945xG6UzmAKHAQuY2R+9fdY11ewSOqHwu2FsJ4jmMwIqUF+mc0xNmALBg4C8K0XmhWFERFCa7w01mLZyKQ8ASSClGZE8mF+HLLRax6rje93qVBAPo0DcJXmy8htcB5k7xcwqJ30yBMWXIS2uvR7ASSGnAoIR9bzmVh6tDmuJBRd5G+Uo6ByVnE/XUkLIO3726JAc2DEeqjwCPzj+DYNXtRR03wIoujLsgtda9yIUkZvb7YTn/W2LxnziBrr9NHt8Ufh5JwPqN2KRt1TZS/ErMf7HSzd0PEAadOnSr/uUMH9w4mIiIitxYDQzvjRMElnC3eBqlD21MGZoFcWHq/bZ+OhLGgwKhErkFJO4yMFg5mnoOS2Ftfh4gcSOIDERmQC0lEII8p57zd7pta4gdecD8hr+BM8JProJCY6byUxiRHiUkOXrAuKHA2+02EFu4g4g27d4ABtmYeEQUOIrc1QV4eJJDwgr3jpg1soaZ88n7lzHXoPrwTvIvdT9xLnYwpJRIOZrOFxqi7hYgkyFOxLBUZ6ML9IDt0BZJauCKd2X0eiz9dia93fESvt+rZDF2HdsSC95cgJ8U+zp00RkqvZtEL2yAQrZ6/E29OXwJTeiHk17LBlRqQm5aPUzviqAPSA2+OplHRlTE2C3G9U1IOxkZBkF+yN6RgJSx4s+tjl1QuxdNfTaLpFj7h/nhu5gqcT6xqbCFNyIX8vOdzUCpvmwZLBxRkuf8MrhxPwMTYZ6mDqa7UvRiciNZf+ulJ/Dt7ExJrEBXuKCUke2JLGBrZOPWwDHQtAqFv7Ifgvy5CkVjhlOd1OhemICUKB0ZVWehorpFg+oPWBBOR2qHT6TB8+HA7cQNpKlq1ahUGDBggvr0iIv8xRvdojSMXr2HjictV7mOL9YDA0jEDLwN4Ml1mc3g2xHhBeSYNksNxgJ+3tYlZowOjcy2oMxnM8A5wnthThn+YL/j8ajYrOBM5uJpi9FJB26OBvbjBFimHv89fxdPV2xMRkVuKgLDaOSeWQRpBVny7Du37taZOwvkZzufiuVIjfDfHo2hokyoiBynLQr3hChh59ZNRLCrHdYyhVTj0baMAmcTOUVl5IB6S3FK7bU9sPUMbbz7f8C69PodvgpWXz+HbvfuQadDQ5nlpIaDMZiAxEEMH+orgU2BAd5UXPuv9oV0KAalJyGMOe3wQRj47xKn4t7qwOjM4oq1wtXQkCPCLy8Rzn05Ar/aNoFbI8MIXK3A5uepCs/RqNqTXxR68jEXuvdEo7hEE4XqSjyTXAL+dGfA9kAtWx0Pl46YmySmEwDJgXDQIXTh0GeP6voPi7g2hN5mBZtbUa0P7KFojqfbF2/2+RMpR8ck/s9Yj+YLVnEvTKgA5E5rZ/R0RwZ1FBQgGQHK91DEHq2EM94Isw/7zdgev4FDSJQzadkFUVCLJ08PrWCZU5/LsBB8NWkfTekmk5mRmZiIvr6Lu79atm0e/17hxY7vrGRm1czsWERG5tRjxzGCc2H4GB/6tmKcox2imqWtEmEwgYmuLjAUvtSa4kflU1mChNUh1TFnIedwn0P06iU+EHwS47wtwK0isA1bP3iQKHERua/zrqCYhTeSrZq1H825N4B3oXePEYjKvX2OBRB00Xh/ZcJIKZz/65w16/eNVU2mqw4L3l7pMl1F6K2gawQejZsCoN9nVJEc3ncKo5++iyQ7kel1RZqLnCrJfT3/1MLre1QFShQxTB32MpHMV4gRWZwKXlg9LtPNEHGl81XUVtY/rmrHATRJP2ZrUg7HP0vfLkzQ5ktr23KzHsPybtUi7cmuNO5t0bEiT9kT+f6meZFPk/56A0U3hd19TMCRuuDL1NP5UdQh2qzJWdQqFNNSDBgh31EEGmmDiYUhyfzIQEblVUYcxCO5YN491bTOw/x0ehVWNfDxCogZ6T7d+Mb3McvTMjqFChxZFwW7FDQSt1DrQMnIWXPFxrW4ulOqR6uVYbHAyuRArr6c2EIfTe9pHwODGqdRg5qmIwVbcYMv6sxlYdCgJdUmfJkFutzHzAn4/kIQ3V57B30dT8MukzvhmXHv0ahyIpiFeVPjw7QMd0D7KvQOMLSTdwhEJOaV4Y/lpLD50zaPHIcIGT8QNhCbBXugU648pg26t1JyGQWrsnToAUidOWyI3F1HgICJy+/N6i4mYEP0oONhHhxIEQUoTGWSVxA1l6QmBci1UEgtkHA+zwMHAOxZTE3kDT8thhv7XzrcfGDflcXu/AYhShrnchmMsCFFr4CM3QMZZoJBYEKjUItKrCBwsxPDduuJwHZLy4A6r56A9Ol6PS8W1b7QVEblZNAzyR4focJfbyIph1zhRDs9DklDRHLNh3jZ8OOZLZC087PLxJFkayFOrChzIwt0HK1+nPzNaD6LpKu8Ty8LYuRFtYqkNp3edw96VB8trkkEP9YXByf6Q5yoZ3Bw5Q5pjx5UUFId5Q9cpGoXjO0HXNsLOAWnzgh0OH4NXWxdBXcE7qAHa92/j9vfIIsjKWevw9eQfsX3BTnz//D344LEh6Nw8Co0iAtG3fSNMe2woOpSYqzVN46wJ7dr5FMx45AdsXrjLo8fRFus8EjcQGraLRes+LTH+rbpJzSntGGIvbqi08Js/snGVPzH/7SmImnkSvrvToD6TC++DGei1uxDrP3kRkmq68Yk45sUXX8SBAxXJKiEhIdi9e7cobhAR+Y9CzsPTH70bb93VC165WrAlBnC5GqgPJMF/2WkEbrwAaLVU4FD5RGbxUyB/bCvwaimYgmIwuYVuxQ0E0lQ8+OF+brcbOqkfIsLdNECQFfbKJxNynTTL0vsEa0OUGwyNnS+wEwqkDK6m195tUkTkZtG4fQPaCFEXrP5hIz6572uHwuLKKC/mInDxGSjPZoEr1IEr0CEyQ4dvhw+AIrHAs5rEUaNjJQwtwqDv3MBO3FDmqKy5sxUsPlXnXI5tOoUjG60OqRzL4t4mrSA9a4HPJRbeVzko8jgIHAuTCjDLrYeW4jAfHNh4wmlTzMbftmPHUtfpNNWBMfPoGux6nUSWXATuUCLWPvsbvhk3E3v+3IsfXhuDtx+7Ex2bR6JhZCDu6NQYnz0xFK1KTdbANpZB2ovNUNQ/tFzcwEh58LEsCh6PRNJv7ZH2UVPIRzZw+JyXMnPw+oqN+KOBBanv9kTGMx2oQMDRtI85UI3s9pFWcUMlTI2CoOtm/xyN2jdA+36tMO61kfQ6SX7IvbcxTYYTHHSS8SQkzmZN3+JdPYcys48MmU+1Q9HgWJhC1TR1ztDQF3njmiNvbLPy19S0cyP8enYmWLEmqRVEWL1t2zYsXLgQ06ZNQ9euXT36vYICezGVXO6+xhcREbl9IC7UH654HU99NYk2ldpCDsPSbGuTLjkmm9QceDlr7bkiKUYcA4tKAlO3ptWar5TKJBj8cH+32w178A6E+LsRZ/MCOCIOr2dIw3Na/K3VaCsiUh1adm+KmJaRdfKmkUSTT++fifT4mplaB0UFYurvz+Nms//fIzi9+xz9mZNw1MRJr3F9PNGV6GnSg624wZbVczZh7z+u14+qS8ue7nuYyH4tn7kGXz46BwfXHMPXOz/ElB+fRJs+LRDbKgq9x3TDx6+NQmyE46RtLiUP0itVP89AkkTugPiTifhs/EzsX3XEo9dAhDCeiBsIpHbuOKgt7n1pOG4lWvVsjp+Of0nn8kT+fxETHESq4NUlDOpOodBfLoDhSgGdoZI39oW0oS8yPzsEeGaU7hHyRr6QRXrDq28kSndbm4srw/nLoWobBJh4FPxTwy5qAhm811GkjqXAADiewxIRuS1o/zSLnS/zsNR/XekSswbIOCCAUwIW52EJTjnnV9HYtCMiAY2LA50KI3ZFJIJ32CFl5dttlzG2cxT9+Ycd8cjxIJHAHb/tqzuBAxFdvHxnE+y85D7OJjlfSy9Hkwqw4EAi/nqiR/lrK2NYmzCsOJ6KeXsTkJTnPvZ47p4EKGUcXr6zYqB+NrUIE+cdQonedfR2TbmSXYqhs/Yg0q/qYsvNZGK3GHGA7CEGrRal+bkw6nWQKZTwCgiCXOXa5aq2nDx5svznjh3rSM0lIiJyw7kr/A4MCeuDM0WncaH4PL2tpU8rNFQ2xGtnX3U55FdJjCgxKeAn1yNbq4bJwkLKVRQxLCloaGlgTW/oEtAc0epG6Bo4HEfy1jp8XC9JNJr7dMfgMCPmJ/7tcBsimeBYx2MNkjYRqi5FRkkQLIKhvBA38hzU1AreOWQbR2QbCtAcMS5/V0TkVmbqXXfgsQUrYDBXFb+yWhMUdKhf6e+f5yE/ehWsg0lXaaERyhQ9dNFVx46kMTFgzSWH+1FUqMGh1GwYx3aEjuchSASwPIPKITLkkEG+jpyjMkEuhSXCH5JKEcPVZf57S9F3bE/687y3FqM4z3HihLZ7LIwNHTQdsgy0PRuAK9JBlmxtdljxzTqHj0EbpwJdG0kwWvvj09BHB2DMS8PwTMepbl9LRkI2vZBI6H9/2ICvtn+Ie/rYiyP67fmUOjARMUTG1apORJX545PlkKvkeGDqqPLbzh+8hLeGfuaxYKG6XD2VhCdav4KQ2OA6ebzSTlZ3VmeYAxQwNPKFIsHeWEOap0fApgpR+dgfHsftAinDXZTiHj9GfbFy5Ur89ttv5dd9fHxog1Hbtm3r70lFRERuecjC6Pjh3TFuaBccWHMMZ3adAxMaiS6fdUBs90YY8mnFcaMyglIKbYdweO/zzAyE0POeLmjepQnufmIQNsyzpp9Whix+k3SkkRoz5s7b5ToFy+nOkV5nFkZi7OJiuo2MewS5e8er9PwSNI5wb8giInKrQlwe377rM5gcCATqE2muFr5br5ZfJxXRudAI6pgqEFfR9rGA1PMlfEmyvdiINDMaSHKD0x3gYGgdCdXBin0o47d3/kK3Ydbk4lkz/0WRYKyaAMMw1gQbQYCE2Dn4KiHJc+4Su+Jrx3MtNWHkM0PQ/+4+OPLjMoeCbMZghs9u67pMenwWvRB30tWzN9KaZPSAdnbb99n/GTb+tgMLDx6CvqlPxePILWDl9kWhoZkXpmUfAHNJhceaV7jsH0lKxdN/roLORrBgDlahcFgjGBr4InDFJbvjMknWqJzgYYuxaQgUJ1PAGqyPd/nYVUxu+TKCowNh9pUic1JTGEM46yCZjLXNAjiaqmFjqCEjjrDWnzmNexdec1M5jKP8YO6kAq+QQKY1QsiSwFJq31SrbRsEeVIRvI9l4Z5nh+J24VauSZRKJQYNGlTt39uxw97MIDY2tg73SkRE5FaACMjGvXYPbSbdt+oI4vZeoMJoUhOENw7Fw/d+C1NsoFMzWT7YB+am4ZBeSvfo+fqM7U6brUkzMTFNcdbg2mlQO4zRaDH33wqjiMpIU/LBuhBtkvk9g9a96NoTspNzEdnEtZGOiMitzLPfPob3RnxOUxhuJrmpebh0NB4SmQTmG1wfVWbem3/ih0Of05+/fXou9JraHy9Wzqy7mmTsy8PR5a4OePuuaW63TbucSS/E4Gr1nFh8ufUDWtPY0mNIB6zZeRZ/rz6M7OwisCV6SK5mQ5Kc53B+58eXFlBR2vCnBpffdnzr6SoJFnXJ+YOX8WizKQiKciyuuFmMel6sSf4LiDZfIg5hWAbKFgHwG9kYfvc0hrJ1EEyJxXUqbiBHYe/B1oYc796RjlMjrosJSg9nQNUlFMo2TlyDJO6VWKzafhKmNrAO3C4spUboL+VDH18AwY3zu4jIzca/OYMBs1iEWOeprTCAlIjtGYCVASrXBsV1xtXVNRM3EDibCdt433z83fgM9Kz9YDtTUYrZrQ5if5jrRcXUAh0SczXYci4TM7dWjaC/mQxvG45ZD3RAo2BvdIqpXkxdSr4OLy2taPguQyHl8FCPWDQM9jwd57vtV5CUW7FQMXXl6XoTN9iSVniTlTg2qGUcxnVxsTgkAkEQkBx3BmtmTsecx8dj4WvP4a93X6P/kutrZ35O7yfb1QdigoOIyP8PLMOig19HTIh5kF7Iz5c0pEHZdVEi56znJrL+rpaaoDNLqUmpgjMhUK5BiFKDEIUGQXINvCUWTIq1Tn509BuLLH0oTHxFmWwRGGTqvbE1i8OmjMMYEtYXnf0dNzwqONcNQAqJGcEKBQymirrEIrDQW5z/npln7PbHlgBZxcJ7GTn6EuzJuoJDOQkwWm7uBKSIiDs6xkRg4eRx6NqgYmxF/tqDsw0IXRSHwB0XEWU0gynSginWQXI1C8ptZyFJyavyWIKEg7FPSyh0UngnWyAr4sEaBHA6AcocHr6nSyDJrzqm5OUSlIxog8XHLkLjowDvp4IgZWGRMzBLr5sdSwBtMIPiWAalMSyKGrMojWBgqTTFIHjVXpSbeikd2ck52PX3fiz/eo3DbXgpB30L103yunYVKQ7OkF+pEIs7xMxDllDRKEUWN1/77Vk0bt+w2k63qZczMOOR2VVuV6jkNB46tBrigfnv/oXslIr9+mryj/UmbrAl+5p7obknmP0Vtd7Gy09NPw+ROvg8zGa88YY18ryM+fPni+IGERGRcohbYN97u+P57yfjuVmPoduwjjgYnwrejROqvqnr9ANbSPPAQ+/fR3++f+ooyJSOnbavnU/F9j/3YuyYLuhCXNkdICP5b5muBZe+ZiOQ7yahmjSCetDQEOxbdV4xNz0fRzaexKmdcTAZ62dhXUSkrmjfvzVmbP2AOmjaro96+avpv3KVDCGxN0bEs2rWepqExlh4yM4kW9NWPIDWSkn2Y1VzqA+ESm7PlTE1DALvYJuEM9dQkF2ErYt24+/dJ6uKG2wgIgeyl8wNasa6+8k78eKcJ9CubUN0Ol0AxcVcwHJ9jogXIL+aj8ClcZDmaB0eQ79+/Mcqtyu9lLRxVD7WxoGV46uIG2yZcXoHcvWl1qflBby9arOduMEWXctAaNvY/w2Zo/xdv1COhTnCPoGbzKWnFRcj5dU20DX3qUgQIoI0KWBWCRBsOvCF61NNkjwtZGmOhfPGYAUKBoaj4MUYaGZGwzTQB4KfBIwCkAYYoW5RCGlQ1cW70m5h8Av2wYAJvV2/DpF6g/w9fPfdd+XXpVKpmD4nIvJ/XpP0G9eT1iTPfvsougxpjxNbzwBXUmiajyssDUIcZP1UhaRETHxnLP35gTdGQSqXODUC2b3sACYN64LOLRyvlytMFigPuzaBJGOtuiIgvOp5NSc1j9YkxAXe7OQcLSJyq0C+059vehctezQtv43lGDoHTGoShVqO4OgbU5MQs6SbLW4oE/iWFmqwbu5Wp4Krm8XoF4fhmZnkWNwB4Y1cr9NUJuH0NXz37C9Vbler5JgwvAvCj1+Des1JKHdegNSJuKFsLPjTKwtRnG8d5xNxzJePzq43cYPt8+Y4WJ+7WQRG+KPvfT1u9m6I3ADEBAeRciwlRmiOZ8GcqwOrkkDVIQSyiIposTpv2hcA7dEsKBr6oWR/GgSj88cv3noNqvbB8J/QAoqT2Sg9nAlzlhasgoOyQzB0Z3OtqQou4Hxk4Etq78gOKQte4JH3x3kY00rBSFiAY2AmE2bX57vI++fVOxLeA6NFl2+RW1rk0O8bDtpsAfp8QBkMKAPth0iHp/FI3laPVom1pGd2DLKVGuwPS6bXTwRlIM4/Gx3ywhFgUOKauhAX/HOqxMU7I19jxLfbapEUU0+0j/YFe33h9JXBzfDI/CPVCqQ5kVyIj9acw9t3t4BcUtFEaeEFHLrqucssWVP5+1gK3ryrBRYeSMSFDMcT47cqfkopCnW1G9R/Na4d/FQy6E0WLD6cjL+PJtO0jEC1HPd2isRjvRsiQF29yOf/J7IS4rFxzkzkpVq/k5UReB6XD++nl8CoGAx7/lWENmpSZ8+fl5eH1FRrIpS/vz91LSopKcHWrVtpskNRURECAgLQunVrDB06lLqzioiI3FrkGoqxLu040rT58JWqMCyiIxp7V6gujbz78TxjM2Uv4ywoNiogYyzwk9k3wEpYARJWi0P5e9HStwH+SduFeI0ajEYJb4kBDCNAY5bDLHD0MRcmrsUdwR3wevOnsCvnELZm7kWaLgteEhX6BHfFwbz9KDS5bhQKUypxKd8ML7kB7PW0h1KTDIJggoIzl/cNkHOuWWChJR3WDgYycpa8piL8mfQFMnQJ4BgZsnUB2J5G9tl6rveXqfBok554sllft++ZiMjNokN0OBY9Pg5phcXIL9Ui3M8bQV5qYG7FNp+M+xp7V7qOD7bEBkFQyenPEj25kO+XzYA5xB+8jxJssX1zhrZnQ1gCHC+okQVCCyNAG8bYLxYyDEw+DG0g8U7mKxIdXMxpVIfivFIs+miZ0/vNod7UcdUVpBmGaMFdOUxKr+VDklYIc6RjAbXyRHK5Yyihedcm5fMbD390Pz4c/WW1BKundsTh1zf/wGOfTYDExo2WLDKe2+84XcMRvIWnqQ+TPhiHpTP+paKQ2qBv6IuSnhHQN7I2ECkSi+B1KAPKq4WoD3ylUhS6WVpm3TisvrPkJah9VNBrDVj742ZsnL+DCjD8w/ww5OH+GD1lGLz9K+bzbjqVvo41fox6YOnSpUhMTLRzR3zzzTfppTpMmTKFXkRERP4/yCoowZr955CRVwx/bxVG9GyJhuEVggW9Bw0yRDDpKaR5YOvvu9GkQ0Ms/2oNjA6Sqsr49a0/0fvebpj+yVhs2HQW6zacQmpaAXx9lRg8sDXWvfMHSvJKIKgUgFpZ9QGKNfCTmJGbngshMgSwmSe0hSkohvyiBfp2zp1Q/SxAcVwa3n9+Pm2Ilitl1FGWCBvLnCf9Qnxp8tJ9r470+P0QEbnRtO3bEt/u+RQZiVkozi2hyV3+IfbN5e+N/ByH15+4YfskIeJaownm5pHgA66P68rWaMtqAV4Al1EA2anEqgIDN/VCefrbkPZQ7rsILt/arE8RgKLcYiz6eBlMg90Im0l9oNeDK7oxBkUtulXUJJNfHYVP758JXs7B4iUDqzWDczP3f2TDSfz+4d9UVEaaRcsw6o04d/EaEGqtKRmpa2MNE89jZeJZPN2yJ2bvOEjrWVdoOoVCHZdrl7DhlkrCEl7GIuPJZjAHWPexCixgkQuQ6MsmlugCEHy2V20wVfgrkTQyEqUdA8FIBAQ2LHBoiUl2QdmgFOZiGQRjxftlClXjg1VvQK6UQ1eqw+o5m7Fp/g7q+kuajIY8MgCjX7wLagciuP+XmiQjI8Pt5lFR9WeU9fPPP+PEiYpj0pgxY+Dra3/cEhERub0hBiibF+yi/9L5nkcHIKppxdicpB8I3kqXQkQCnS8l4wI3vV6kKXb74r14fPpE/P3Vaphs5gTtHk8QMPeNRegxsjO+e3kMVu+Nw7+7zyI1pwj+3krc3asV1jw+F0YX6Q0EnyAv5JHUqlriG+yD9PhMzH19Ea6dS6HiVIYhNUk6nUMkBIT5YcI792L0C8Nq/XwiIvVFx4Ft0fFAW2QkZKE4vxRhDYLhG+Rj9917c8inOLn97H/iQyAiYlKT/PnpctxqtOhWIUSZ9OE4fOnA2MkVZK3rr+krMf6tMXQuugwyriZzK55i0BmxY/E+Krj47e3FyM+on/WM+kKulMJQy96tT1a/CalMCk2RBv/O3oQtC3ciL70AQVGBuOuxAbjn+bugIufKW4VbeJ3kVkcUOIhQSEJC4ZqrxEK0/B0p3ZMGVYdg+I9rDoZjILURO9QV2hPZUHcJg+6Uayc8QW9BxrTD1i8qByhaBMJvRCPIY60ndP2lArfPJYvyginNZpKupph45P92zuUmvNZMRRm81kRTMKoLGZwIJh6MlBUFEiL1jiqEgSrE8X1d32RAzIET1grgb7DhFkmRcNfDyIDBmNRWePftBliXmEYbzTeczcCREGuDc3X5bV8CLmS4noy+GTQIrJgI7ts0GN/c3x4f/HsOJU4mFxyx8EASjl3Lx+wJHdEgyHo833ExG7pqitfIexyXVoRP113A7USgWoZIfyUKU9041LmArDv0bx5CxQ0P/3YER5IqJl7SCnX4YUc8Vp9Kx/JneiLUp/YOvrcbSWdOYs3X02AyeLagRUQQf3/0Fu55/V00aNexTvaBiBjKIOKGV199Fb/88gs0mqoR6SqVCq+88gree+89KBT/vc9LRORWZNm1A/ju0npYhIqF5D+T9mBEZGe83fpecAyLGJU1Ac4VZr5i0ZWUD1LWggBFVfe+MnZk70a/4D7YmW1dGBTAothsnfBgGR4y1mxNeWby8cLJKZCwZkgYCU2UeKbJA2iobkS3PVFwzO2+tfOPws7US8gtVSPQSwOOihwYaMwyKmZgBAFFhSqYDEoEhuVfv98e0k/sw+VgYdIndrdzXDruiJBgX0YjlJgUKDBq8e357Sgx6fFq64qYUk8hom69xQwlJxVrEpF6J9LPh14c8dafL8E3aAE2zd/p1HHLEuE+FpdswxanlV/nVTJrjLsrQiQQJI6bW4joQRfMwiuNh1TC4YclL+HwysNIT8jCvpWHPDVcrQJp2k+pZdO+FXLgcr4TRPzgte0idB2jYWweCuG6MxtbqIPiTCrk8RUNOIRIm0XUniO74JVfnqYuQdVJT1j21Rqc3XsB7/z1MsIaWIvQ/auOUKfa6kCaz84fvIQF7y1BbSjtHIqC4Y3sFoP1TfzpxW9TIrwPu29aqa6jXGAhcDLItbhBecX5HBdpHO00qB1d8Jh65ye4eCS+/L7MxGzaiLZz6T58s/uTKo15IlX5559/7K7zPI+rV69W+63Kz6/9oryIiMitwaLNxzB71T5qClLGwk1HMbZfO7w9cSAdF7eIdJ88JMmuOg/hin++W4+7Jg/AjiX7XG5XkFmI0X6P0PUDuUKGnqO64s2Px5SnK237YDFKSaPzqctARDCE0ABAJgUMRjCZeUBGLlo9PQRXjyUAcfEQWjWy3m9LUSmY84nw8ZLB2DAAvLeDZloLD379ebz7ywGX+1uYXUSbjXQlerrwX13IcZks2pPUp7KmZhGR+iK8YSi9OOL9Za9i9ovzaapBmYCnvpFkFNKLLMALepLsQBsFBfAB3tThnynWgrVx6CTfky82v4cDq48iJacQm9wt6JCkFpkEhp7NoNx4EozNce/PT5bTsaXAWec7XCG9duMcPG1rkjvu64kXZz+BX6f+AX2e5xHhf366gro5v/3nSwiOstaDu/4+ACZTWyFw8ECjllJaiKMJqfhl1xG6bu0KU4B9U40kq9h1igMRr2SX2IkbUqa0gjHG9Tq9IAFNcWAEBrIsHQLWXoU82X69Kzg6EMXPtEGplwECK0ARoHf5esmhVxashyGtYo1KznFo26sFbSR6feDHiD9ZIRhOv5qFhR8spamE3+z6GD6B3vh/pFu3bm63qa8E6yNHjtB1jzIkEgk+/fTTenkuERGRmwM5V/3x8TLa4FvG0i/+pU2sJMGBjIsbd2gAxpM1fp6vSDtyw98z/sXgh+/AnuUHXW5H3Lvv8Z5Ej3MypRx97u2Gz14fhUbtYun9W56cB3c2VW16tUTiacdmebZIZRKYXLjJF+UU44NRM1w+Rn5mIeZMmQ+9xoDxb45GTWsSpVpcSxapf0gigKNUAPK9//jfqfjh+XlUjFQm4LlRyNVyGDSuTacJKh8lpq1/h875p1/NpLVJTSBj0IUf/E2b1W81IptWmPINntSPiuTJOgU5TnjKgveW4tTOc5j6+/MIirDWJNsX76v250oEMce2nMaKmetwOxHWMIR+xhkJblLGXUAMoJp1bkxTLF7r/yGS4lLK70u7koHf3vkLu5cfxNc7Pry1hNciNcJzGxmR/1v0VwpQ+G+8nbihDO2pHBRttk5MSENUkF93tPMYD+acS49kgNd70KRbtnsWQH8uDzk/n4bmeCa9SdnaTVMCA3j1j4I02vlECucnR9BT7WjqQl1ReiAd5gJ9tVI0iNAk/eODSP/gADI+PYTC9QmwuHHvExGpL1gJg44vshi6gLnhZwwibrjgm4P5zY7jm7b7MLfFURwPSoOZsR/URQ8AWjX3xtS7WmD2xE4Y1ta5s5g7Npy1HlNuJcJ8FBjYwl6BMqZjFA69MwhjOkZW67Hi0orR/+vdeHDeISpS2H25+gPGA/G5GPmD/ULvrU6jYDVmT+yIC+m1E68QcYNKJsGPu67aiRsqC0BIWsZ/MbmhOuKGMsj25PfI79cFp06dsvv522+/dShuIGi1WkybNo1GN+fm2jfwiYiI3Hj2ZV/AzItr7cQNZZBEh3nx2+jPMapYNFa7Tn6xph5Y0Zsl8Jfr3RkZYWf2HpSa7UUQHBU38FTcoJYY4CMzUHEDwSyYcazgKD6/8BkO5x2it3UJcC3W4hgO42MHo6VvKEwWCTKLfJCvUUJrlNJLvkYFwdQAP/V6Bo926IpCvRJGM1elSdpHqkNDb8fnIYXEjG6h9g4fC+MPIkfveepSpq4In55ej54bZqDr+unou+krfHNuK4qMnjcMiIjUJTK5FC/99BR+OjHDaWObYON045RK25gDVFYFqxNIAoJG6nqh0OQFEE3V3T2boW3Xpnjii4fwwbLX0H1EZ9QUEvPuCklWiVvXNUl6ERVMuYOxCFAdS4bv0uPw/vc0fFaehO8/p6qIG8iEc+fB7exuG/b4ICxN+wX97u+F6nDh0BVMavQ83h72GXUkOrKpQqDqKYfXncDLfd+v1UKO2VuGgmENnTrdFQ5pALOfE3fUGhDbKgpv//kichccgSTX+fFUeSEPJT3CoWkXDN6B+3fvMd2o2+yfn6ywEzfYQgQyc1/7HbcKRExTF5f64PLly/XzwCIiIrcl245fxncr9zqc81q5+wwWbLQuzHdoEIEWEa5FDqrT9nOMnvTmr/tlq0fCQYHsn2B169u1dD9e6PE29v17hN7Xe7S14ZKx8GBSssAeuwD2wBmwxy+CScuBXCbBQ++PpeclpkgD5nAcmEvXgPQcIDUbzOnLiNGWYNbOj3DPpP7wXXUWUmIWYjOuIOMHSYkZkHt+nlw6YxWK8zyvSbKu5WDWM79QMQdpnnog4knMf/cv2kwrInIzIE71r817Ft8fnH7Dn9uYXwpWY6DjezIm4vJKwGUX2YkbCMOeHITWvVvgyS8n4ZMFL6J7a2uToTOuT29AUMpgibQXjO9eZm1slGa6+d4KApRxN2ZNJbpFJNrd0crutnueG4qlaXPR6/qxz1PO7rmAB2OfwbsjpuPa+RQc3XwKPvsrjPg86Uvfeioej85bDosHG7OV1sDlF1y/Z5LUAnClFQ1k+XdFwhjrgQkhNecgn5sWoXNPVRE3NGofi5dXv4oL3kbwUh6CkodEXnl9XgDHWiBlzfRfel1pv83QVlbX2oXv/20nbrAl6VwK5r21GLcKt3JNUh3OnTuHESNGQK+vGC9Mnz4dzZo1u6n7JSIiUnds+3MPTRuyFTcQiJhg1fcbsPLbdeVu77HhfmDc1A9cekG5iJFxkyBEnmPdz1tomoM7yP6RUyBJktj+51483+0tHNl4wq4mcYbSS4GHP7zPTrhYmQZtovHd/s8w5NH+qCsWf7YCmmLnRliOGoe/eeInjPJ52FqTRD5FPxtiOiIicjMgIpupC1+gDds3Gk/EDYRRL9yFNr1b4OmvH8bHq6aiTZ8WNXo+cnwh8x23GmQ8bZvgQBj7yggsSZ2LbsOqZ+hJ0jgmRj+LD0bPoKkzR2uwTrJt8R68M2xavQlr64OmnRvhpZ+erJW4gdDv/p7033lvLrYTN9hCahUiJrlV+H+pSW4GosBBBCV7Ul1GmGgOZYK/7hLuP64ZGJkHfzYSFoGPtiI2Dm43JekNJK2g2ghAwfIrKN5+DV49IsCqnQeSqDqFQuqvRNCjrSFv7FikYSk0QHsiC7zOc0d0T/ZRe9p1OkUZ5iIDsuecoqIIklhRlgRRujcNOT+dhqXUc7WfiEhd4xXJIrLPjX1feQhY1OwkLvjnIFNVinjfPCxtfBa/tDgKQ9nsO13Us/+9j0a2pg3t/w/IJCy+vK8dJFzV465aLsFwFzHxrtgfn4f75x5Ebkn1jysFWlOtUq/8VJVc4eqJhkEqvHlXC/z5eHdsf7Uf0gr1MNVClCHjWDw/oAmdsFl6xLWjxNbzWcguvjGx3LcCpGDaOGdmtcUNZZDf2/Tjt3VSeNkKHAiBgYFUxHDp0iXodDoqZFi7di3696+YEDt06BDGjh0Lk0kUE4qI3EwWJ+11ef/K5EPQW6zf08kNnwQLuVNxg4G3nmtkrAxfdXgEYSr3x5dNGQeJQZ4NAiTXRZVSxgKVxPExggePXxJ+xrr0zRgSOgBqTuX0OQYE90Wg3B+/9ZmILkEx4FiedjoZLFJ6IY3WBZZcbMk9iRKzDgwESDlLlWaoMIXrBgMixAhSVCTXmQUeG1Pj4AmpmgJM2DMPS5OOotRsnbAkSRDz4/dj0r75KDR6vgAgIlLXNGgdg67DOji8jy103exmlgH6YBm07UJh8ZaVN+e5QmA96EZkGLCJmeAqRQe/9OOTDp2W6gLGbIE0rQA863wqR3mmegkQpAlSkq8FV1R1PCdXyvD6b8/ZxSWXQeJ9+47tjppwbPNpvHLH+9VqdiyD/A5t7qwhPkHe0HYKpc63TmEZlJJtakFMq0gqevlq+4eYF/ctUi9ngtGYELogDqq4XDsHPbbECMZggaZLGAoHN0DevU2R9loXlHSu2AeZQkqd5kiSyaYFO90KZWry3v7XiIuLs6ao1vLy0Ucf3eyXIiIiUkfpDa5Ysv0kTNed22c8NAxys+Nzkep4OhSJVpdBpbcCn655E3KVezHAmjmbaVJPdbGYLPh47Ff4d/ZG3PvycOqY6IyRzwxBQJg/dXlv2aMpbXYiyQ7slRSwV1PBFJYiPT6TuraWFJQCcing5QWJBuC0AiQaARIdwEik0PVuAqO7NKzrkCapPSuswnB3pF7JwAvd38Z6G8FHQVYRlny+Cq/2/1AUOYjcVJp1boQOA9vU6HctAV4wNQ6FqWEIeEXdz5GbjfYi6LcfuxNhTtzzSS3EWOz3zRHK064TzeQJ+eBKPGt2ciUsJ+Jzc5AXBCfHQNIISQQmjiBunL1Hda3+8wrAkQ0n8Urf96Ep1EB9phBex61pFILRzbFYAIrTjNZ6jPzPTWmiPmu/TixNK0RYSqHDbbncUqj2X7WrS4t7OIlgd7BfyvP5CPs1Duz1cxRx0yY1CUlTmHvya8ShBBYyHyWz3i+QD+A6EtYCldRIzTNkEgv9l1yXyivmxJRSCZ7o2RUGnQFbFu1yuTs7/tpbrUbS2wmSopCSkuLyUtecOXMGgwYNQk5Oxd/TvffeizfeeKPOn0tEROTmsfzrNS7v/2fWelgs1pP4e0tegSLexbnabIHkUjrUfip8vOoNaiLjjlXfb6xRTWI2mvHeiC+wYd52jH11BBRq5/UPSaLwC/HDl1vfR7MujR1uk3whDfv/PYqSgroTOJMEB+Iq7wlEAElqkk3zd0CvtY518jMKaLoGSS8SRQ4iN5O2fVuhVc9bU9xoqiTsfX3+cwiqJKa+XSFzLa/+6rgm8fb3Qo+R1Te9IvPKB9ccozWJtqT64imSHlGbHhu/EMep6vUhanhyxkP4du+n+PHoDMSfcCyS9hSyLnXfayPpe7bTTRIqqVnKjuMity+iwOE/DlkQNsQXut7GaEHekoso2pRIG+5DnnPcUGCL74gGKFhxBbjeqO+WWixMF29Nhu5cLoIebwtJYKVYMAaQhKnABchhytKAU0vhe1dDp3/52mNZMGXWrQsQb5O+IJh5Kngo3naNChlIYkMZRRsSqcjCEeZcHYq32DdMiIjcaNo+yUJWzRCX2nDJLwdmMtFaiUSfAqyLuVR+PW0vcP53Hql7BPAWAcHecqx6rjca3+YihwC1DCuf6YU7mjl3hNt9yTMBlSO0RgsSciuaH+sTMkU+uGUITVE4+u6dGNq6fpq9bGke6oNn+zdGn6ZB1OnXaOZrlaLx86RO6Bzrj0KdCdluFm3MvIBDCTcumvtmk3LuLPJS3ceIuiI35RpSz5+t9b6cPFmhbG/Xrh1Onz6Nd955hzoYKRQKKnggDkc7duzA66+/Xr7tnj17MGfOnFo/v4iISM0gwoWTBa4nM4rNOrx5fAW+PbcDZMj8erN3kKNTw2DhYOaJSIBDgUGJEpO1HrDwDJ5qNA6z4xdDY3YvwLIIjJ0QjmOE8r5mhRNxQxlku2WpyxBXdAFvtXgFwfIgm3sFyBgezb3CEapQI0ufgSCFF95o2x9KGV+ld5rswfLko7imyYNaZnTYW63i3AsUfWX2E2FEpFCGkTdhV/Yx/HVtI9al70WRsaIB9su4zci+nvZAUisi1IUIURaDBY+rJTn48aLrxWsRkfrmyRmT4OVXdZwvScxyaLPJS4DSMBaaCA6aTqEoHtQYOZM7o3BoE3C5JWBcOJJRjZO7yWFegPxCOnYtP4g/PllOI5fJImNQZCBmH/kc4Y08bETxEG37MOQ+3hm6VkHgFYBFCVhkNv00vADVoSTIkusmujkgzA/fHZiG9v1bO92GNAXRp1bJoO8QDc3AltD0aw5joyAIbpzhtMU6ZF+7MUlapCboM6YbPljxOpal/4qOk9wnT5gDnTeIekKTDg3xwNRR6DDA2gRn1FuP35zGhKAVlxE58zhCFsTBf30CeLUUQiWTEEEhQcHIxtC0DkRwdCA+Wf0mjV3Ozyx0K14wmyyIO1BRN99UhDq6iIiIiNQjRRo9ziVludwmv0SLT6bMw4L3loDL02Lew/dAfTCF/swWG2ijr/8/5+GzJ6n8d16c8wRmPDybNtN4Qo3TiQRgzpT5uHj4Cj7f+C5CYmxrEqtbK2nM9g3xQVp8Bh2rPPrpBIcursTcg7jD5qTkQd82ippZka2oPrvS8djQPtrjQ3RRboWTuN5owsb95zFv1UH8s/00imwW8n98aT4Ks4scPkbC6Wv4a/oqD59RRKR+IG6kpKHCU3i1HPoBrWHo3xqm9g1g6tgQ+rs6wNCxIQRP4l08ZOeSvbTp7tC64+B5HhHBvlj08UMI81Jb12BJbWMRwBrJxTpnX0aZs3NlFAn5UB1PdXifJKcU3jsrGvFrgqFFGIrHdkLpyPYoHd4WxeM6Q9c5xq6OCI4KpMkZrXs1d/o4ZY7RNYE0TpLxNXnGsHlXEbQyGVyWCYLJ+WfD5nFgrosgaGiCi0M3V2yA13FrYgPLMrjjvh7UzfbfTR+ib4kFsguZ4DKLIEnOh2r3ZXhtiAN73XSQYPGSwuLtmSBGEV+MsEWXwNkY+ZHGUVKTlKVfGC0WCNKKHdbrrAYAHGOBjDNXmYci11W+eigCdIj088EvE8ageWgQclLzaT3nCpI0dPlY7f5GbtWaJDw8HFFRUS4vdcnevXtxxx13ICurYqzSr18//Pnnn3X6PCIiIjeX3PR8mnbqipzUPHz+0PdY+MFSSOUSfPHTU5Aev0oG2HbbMSU6yA5cAluspU7ZpCYhx+X6rElIk+23T/1MxQmfrXu7SlMzyzFo0a0JbRLOSMxCSEwwHv7ofoeJvWQfln21GoVZjuuCmlKUWzGfptPoseX3XXROl4irS20MdL5/fp7TuTdyblv2lWshiohIffPst4+6FBLdLLb+sZvWJEc2nqQ1SWSTcPx4bAb8w25go1k9QBKufzj0OZo7EWURjmy0N+KsDoU5xSgtvDHCYCJi6/9Ab3y29i38nf4rWrmos+qKlt2b4v43RtF0D4InSUHOiGgcis83vYvo5pHITMx2K17QlejdnltvGOI6SY1xbnkv8t/Aw0VCw8UCeinZlQpFq0D4DI6hwgJHqLuHQ9BawJfeOCfkwrUJdJ+Cn2sPU2opdBfyoT2dDUFngTlTi5LMZJRsTYayTaD15boYkxuT7CM7a4skyDrRqbuYj4Lll+0ED4VrrkIaoYbvqMbQEfc+F2hPZcN3RCOwMvepGCIi9YF3FIOBP7CI+41H2j5AsJDFMUAeAFiMgKkOvzoWhsfOcOeNjieC0nF3SjMoLVLwJuDcQuvBTBkEdH+PRXB7KSL8lLiac/vGliskLNpGOR/ok4SAJW6SBNxxOasUId5ytw37ZD2hpjo0uYTBjLHtMbpjZPlt0f7O3a3rilEdIuyut3PxXroi2FuGvVP7QyqxHntVMg4SlqEiBld8ufkihreLAOemqev/gdNb1tfJ45zasgHRrdvV6jEWLlyIK1euIDExEQ899BAiIyv+7mwhk2Vffvkljh07hl27rM26M2bMwJQpUxy6E4uIiNQvnrpLbE+/CDN/BXMv7cOwyFYYEX4PliZvQoBcCwnpthEE6MwczAKHsZH9kWvMRbG5FCw4yNiqSQi2aMxSutbPCwLYShtyrlaqr0PSFn65uhR3Bk7Ex63eR4ImHqeLTuJM4QHoeQ0yDQlYl5GA9Rkr0dm/B07nedO0KifvCOI1lyHjHIvFebs2BMdYqPV8BbFeVmfVg7ln8P3lJSg2V4yRfo5fgSZesZjccAx2ZV2CUmJEp6AUhKoqhJBEQHKxIBRrUk7j9dZDIOPEqQSRm0OD1tGYte9T2lh4cO1xuthFJmSDvJXQpOYhPyqwPHWBGFFqQlnw0krfGZaBvlUIde9XnE2Hrmusw+ciDXyc3ioicIY8sZA2q+thwqKPltHbSEPhu0teRquezWnzYG2jdsvQdIlEaZ9K+8oAggTgzWaoT2ZBcT6z1g6qtpAFx8btGzi9PzMpG9v+2A1jgyDoejW2S0QwxwTA0CYK6m3nwWqdL6AmxSXDN8jbboHREaQZiDRc1gSy2PPGgudxx33W2GJCRGgA4MZV07axqCYMnGAfg9i8axO76+Rvh1yKBsVYiy4nKCZ1xB+vPQGOu16TeCs9ej/mTf0DPUd0drhQLCIiIiJij6fnmL3/HMah7BL8Nf0f3DnpDkzu3QHLv1nrcNsJb49Bwqlrdo0yrqB7wLE0WammfP3ET3ji8wfx86mvcHbPBdroTNIYNEVaXD6eQC8L3l2KOx++gzZHuUpEijt8Beaxrh0IeV8leH8VuAL3C/FRTa1JtNsOX8KMBdtQbCP6+HLhdnSKDsMzo7vTlCdXbF6wA5OnTyg/L4qI3GiIiJU4Ty54fwmOrD9Bjx+chIV/qB9tHCzJr6ilBSkHQ9+WECqnuLAsLA1DYGQZyI8n1Ml+kYaY3z/8u7wB5/1lr1JxbHiBFrluhrVcer7T+7wOJlMBl65NGMz+SrBGM+SXc6G4kus2Fc8Vuk4xMLS1n7sV5BIY2kTC4qeCevtFOvvhHeBF60BnpFxKw57lniXEOCMpLoW6rpLkGv+tmfDblgmzvwyF94SgtE8ABJX1eMNaGDDZHLgc+zmRsmkjawpg2YuxJmUE/3kOrN5CUyje+nMKet1TkTYR4a2G6rBrJ2nyu0SYAs71mJ4xWhC8qmrjzsCJ9jVJ2+BQOxNAk1ECg14CXy/HJhv0sRmgdTsWf/aZXD5npnaRFmTL3NcW4eeTX3m0rYhjFi9ejMcffxwGQ8V5c8CAATSpWqmsnShfRETk1sLTtNLdfx+g/y7+bCXumjwQ993TFavmbAIf4kvPpYzGAO56c/6jn45H3N6LNXIGrykzHv6emtTMi5uJkzvirDXJikPQlehw8Ug8vSx4dwnd9+SLaS7Xh84frFvzjsimYeVN2EQgTuqkMr577lcqCHzwvXtxZvd5l49Dkioe+fiBOt03EZHq0KJbU8zc/QkWvL8UxzefojWJRMrBL8SXNnyX1mH6SXUoyikur0kimoThg+Wv0fUFv2BfFGTWrWDpRkLe15gWjvtOCFdPJ+HQWtepoO64di6Zrse4ExETo4qaplurfFR4b+nL6HpXx/LbQmODcL6ejZIGTuxrd71xB8drcu6IbRWFX8/OLF/vUPt61nf286sL8f2B6TV6TpFbA7GD6z8OwzGQxVYvckZ/Pg/ak9n29h4EFvDqEwn/MU2gOeba7ajO4QUUb76G7NmnwCgl0J3JoeKGyuji8uj+u6QOXeEYGQdVh2AYU0uQ98d5O3FDGaZ0DXJ/OmOdoHK1W0YefLFnqmoRkfrCO5pBz4843PMPi6ELWdyzisXI5RxGr+Yw+FcWDe9m4B0NKDxIJw/tCro9W8l8RuItYHGT0zSpwRlGzoIsZdX0AV0usPctHiXJAi5m1E5x0Sc7Bk18veGnkrrqNak3grxdK643n89y22TvCe/e3ZKmXlTGSy7BRyNbYcUzPWp1WJSwbJXHH9HeXnzgCLmk5kOUTjF+GNzKPiWiTaSvB+2gVckpMeJSVsXfmkLK4c6W7hMoUgv02HbhBp8LbwIGrRZXjh6sk8e6cuQAfbza0LVrV0ycOBHvvvsuYmNdF0ak8HnzzTfLr2dmZuL48eO1en4REZGaoZTI0NLH+cQQgcxxm/mKc8OmtDhcLd2NjoEZiPUqRKSqGA29C9DWLw9PNuqLF5uPxJYM6yIxDxZG3nnzi4lnEaTQIlJdgmC5FkrOaHfOEEiXtAcwrAGzL63H/TvnQ8X64GzRfipusHsdEHCs4CAyDNZFCEd4yw2QkH1w8rTF11MqnMELDDK0FTWej1SBuyJb40JxIj6/MN9O3FC2T1dKkzD19HdQyzS4IzzeTtxAkHMWtA9KR7g6xS4NQkTkZhDbKhof/TMVyzPnYd65b7Ei+zcsSZmLNUe+wLwvJ2FY/9aIiQiAT7RXVXGDDfrmQejTuRHu6dCkXMxaho9aQY0RZKSkcDbm5gWoj1cd72Un5+Kdu6dTJ7LEuNoJkol4I7RBMNRhvtD2jHG6HXH6Z/SGWosbBAkLXiEpH/+TJi1X7PvnMEz/Y+8s4Js6uzD+5MaTNnU3oECLuzsMGTpksMHYBlPm7mPu7i7A2PCN4e4w3CkttFCou8STe+/3e99UkkZbWmDf7n+/O5rkWpL23ve85zzn0Shg6OcobrAvetQP9GyXTZIvD35xFwLDnOemyAQ16Xz94bZXGyxuqP4c676XUW0cxQauCDzX8KRLx0Ft0ePG2kQBgXadrfMryaqlMMV7npfLNupxsbT2XIiLSbeR3t1VL6fm4NCGhneOEhAQEPgvEeSvRGK05wlNkckKSXHtWHrzgp34Z43zPAIpKpj5ys2Y/dZ0WjjjS3d3Q68WqLylJypv7YXKSd1g7BgLSOs/N2YxWvDN47/i0b4v0QQ8KX6yL9ohkAKiTfN24NiWUx73ZSVBmA+TorzUu/iZnEvfm3rgcMplzP16rYO4ge4DwOHLeXjkjeXgQjw3KSGiSN1V6mwoIOCOFh0T8MbK57CkJib5mcYkK4p+oQ5ow24bgNjWUdD0bu0sbrCDjQ9F39sG4IYZA+i1wx5NiF+DvwDSyfK5kW9SIdPlVYdpoaM7mIJyiIvdOz2LpWLEKJSIPpKLkOUnEfh3CpRnC69I3MCpZTC1c58jsMYGwRpjG78HRni+Juxavt/nxhnuYK0sHv3uXiqmqBa7S0vMCPs1C+1fvoj3o4dg3oBbIDkjh6RQCpGLTAMROYisRGgAMBZQlwy/owWQFhtrPse6McmAyb28npucEUN92rNDn8jEIvazM1Bcdpzv6TaiE7oM7eDwXL945zlzbYUCYsbzZ5hrKUSBsfY8yHvpPMS90599sdfxHae9rifgDPm9njt3Lm3kZC9uGD9+PNauXQu1+t/tYi8gIOAMcTwgBcH1Yf3PW3F483GIeB7i/DJILhVRcYNUJsFdb0/HjBcnY8vCXQ3+uBvSNMOkN+PLh3/C4wPn0vs4iUmIuMEeMs9HRAKndp/16lDamJ9vrzFdcXDDMXxw51fOcRLH4/j203hu5Fte91WSW0odIAQEriWturbA22tewKKcH2wxSaEtJvmz+FcqyB5yaz8akwRFep7jJwya2gdDbukHcZ08SUCYf4PPL+d8Hp4b8QaKsoups8uVIJFJEJ4Q6tLd+2oQ5C0mWXZlgmuCxWTFkz/OcVm0T3InT/40B2+ufq7B4gYCcf4h8zP29J/Yy6ftGkqf8d2d3Pjq5k18JfNMFkrzy2oeRySEoU3vVl63S/nnHFL2n2vQMQWuD4S2iwLwHxCD4sz6FQJbi1wM1jhAuy8HkggV2JIrG8yJ5GLwpvoPVtlSE4oXpoDTe2hH0vAGSPWDAYImtQQjl6ByZ5ZXAYMv6A7mwn9QHBiVb3akAgJNhUwjgqxODUZgSxG6P20Lcnc9xyLPi5YoqJUIHe5h0OFeHlnbeZjKAHU04N+Dw+Pvei8Ml9gVOdrDGoG05TyMlob/sYcYVRh/oQ0CRSLoH8rDY4uvflHIuI62rmbu0F9hN1ECyVH2SQzBtqcG488jWdieWkg7V/dsHoJpPeIQrLbZE6ukYujMDZtAINvdO/8Qtj89pEbosPKY9wDGZPX+/Q1qHYYDF0pgqJrcIM4KoztE4c2J7SFxUWBFxCql+vq7CxnrTJ48NLQlNp7J8+pqsSOtECPb1W8i6t+GtqQIPNc4N1ayH21JMeSqpnf4sLdxJh3/WNb2HR8/fpyKJAQEBK4+0xL64dWTtu7nrjBbyaRa7WR6+9A8WEXOCV4xY8aJ8hUIuBiLfH0F5LZbGUycFDxEkDHWmhqd6uu4lLg/1GzPw58xw8yS+6wfjJwZRk7i1k2BQPLo1Y4JjIhHpq4EH539ERKp+6KbEIUWcnEgTKzUwQUiWKlDkNxQ45pg5KQO75usY+YlYHkRxCTj7oIsXUDNfiUiBq93Hg+FWIqllzeB5d1fsxkRh6TAAqil7u+VSUH5+DvrAKY16weNVOgSJ3Bt0YT408We5JaRePHhG+nPs79eiqz0LI/7iL+1F+aM6I2HKvTYfCgNFToj4sID0aFlNCY89SMtUFEWAmYND5Zoi0hSjyQMTYCsHJAVuu6mQxJkf32+DiYPhUS+QBwqgsIDMOnTGXh1ySaP6xrahEF1PK9Bx7GE+0HfLRaWuCAaJDBaExRn8jF4xgDPx9QaYU6KpB1o3cGG+cMa6gdJkeuiKZI06XZDR/ya9jk2ztuBI5tPUPvqzkM6YOSswdAE+9PCDqlcCoupYU6hpOvR3AnvYX76l7QzK2Hv++uhqCiBMSnY5TaKjDIwKZ6dNgk9RnWmXd1It14CKUwbfEs/PPLV3S6dwdQalUMClfexeNVocXzvM+fejEPrj3kt5jq4/phDR6br2T3W6z4EBAQEmpjpN3TFG/Pd32/lqflO7gqXz+a4LMJZ+sFKhMWF0u6FnmBJd74R7cArauMCXiWDuWMcrDFBCN55DuYGFM5cPpuNt6d/ekWdWomgQ6Q30/NxC8eB8dJdkBRXkSS9VCbFr38fAOthQs3oJ4Y6KQGo1EHk4b6/7qctGHv/CHpfFRC4lgSEauhiT9verelCuPeFhchPy3W/A5EIrSf3xowJPXHPBzOpEwFxfYlLjkFipwTMSn60wedGnCRWfrUOFp0Jip1nYOzTGnydgiBxXhnkXgo9WAtLu3oSNzTS6bgxMLcI8yqgMrcMgzS7DMPqOBC4ikmuFBJr9BjZGfPOfYGNv27H0a0n6fNdb+iIEXcMpoVUZisLCRiwLgamvIgHX1ULRgQOIl4Eab4Wmm0Xa9YhXXRfGvsOFmR8RR3ZCNuXuG9+YS9cC16XBX1yAHiZc/MO8imOy1HjfL4ZFrvr7rDbBuLBz2e73KdKIoWerb3G+lq7SubI7Ln91Wk4tn2uw1idiLcNSSE0zpEW6KA6WUjjlk6DvIshmpR/WUxiNBoxa9YsLFq0yOF54uTw7bffQiIRSnwEBP4fIWKCiY+Mrvf91lVMYjFb8cc7f8I/xM+pkL8+kHkn4lTF+pC3r8uFk5fw3swvaDf5aw251z/50wM0J/zH2ys8zqeR+VhfWPfDFtx491Ao/YQ8icC1heQPyGJP+37JdCHc1+UplObVFoW7on2/Nrjp4Rtx74cltFifXDdIt/zY1tG4t9OTDT63ssIKrPp2ExUUXwlWs5U6KHQd1hHfP7MAV5thPuRJrhTiQk1EWPPPf0nFa0QkTPILRLQ8/PZBdP7DoDVckdM1maMiMQnJk8iVttqtHUv3+SS+8Eb3EZ2oSIzcfwgyhZTGUnM+udNpXZlcRl83Gy0NEtHZQ9x0iLjfGyQmadPLuxiiSfmXxSTXE0L0IwBl+1BobohHxeYr6yxIYXmULb9y1ZM0Wg3zxYoG/WFy5dfY5UAEKFoHwX9QLOQtAung2HDKe1LcFyp3ZEN3pBBhd7eHNELozCBw/WL1IXdmrRrjyQNESJxgP4PKoGfzYFq47o4gkwLRVZ2JK6RGZKsqIeEZNK8Mov9m7+LRdqQG+z3swxOjLreiXXjKM4CtBxvehZ8U9Bc2sIvqxjP5uL1vM8jrqKSraRNVP/cdVwxJCke4xtYFemafZnSpC7mGVdsONxQiclh88BIeGtoKxVoTFu6/8vvN9J7xeHtSB5QbLNifUUyTo10TghBR9X5c0TxUjdJLnoM3V04SrcL9ndwgOscF4oiXfWUUuu989f+C2di4lqZm49XtwEcsnENCQlBQUEAfFxU1zv1aQECg/oyK7oIMbT7mX3DucGqxMjCYawt+5GIL4jw4PbEw4cfz82Bg5ZDLaiddzJyEOjkwVUGGXGx1EDfYIxNzSPKLwaHSizCxEljEFrfrEnEDEU+Q+SSj1XaeZmR7DLbJrZUIGfL0tvUVYguaBZQ4HEMpsYLlzSg1KWGtypST9XgwKDD5I1SmdVifzMlrWTlKzCowEGFQZCvc1ao/uobEU8HGgWLPHfPIOYUqPNvWkuP9lbUSyy8dw3e97kSCX6jH9QUEriUGs8XndYI1Kkwd6tgRv12LSJzOyANjBRQlANFX82IeIhYgf3pMuYEu7tjz1wEkdmmOs1fYGYbYtvN/7/e6nn1hpD3BUYEoyXU/bjXHBaJiVLKDAwPnJ4e+ZzzW6MtxI8tCKnYdkxB7aesR7/bFbITGrcCBdHOuFqqQJC5Z6kIEDySZarmCfCgpFNvwyzZMeWIc7RpFkgShPIfSUc2h6xxO1NK2Fa0c1CcLEbj2gtd9TnpsDOZ8fCcqSipxcmcKTSy069sawZFBbreJaB6GjGOZNY/FFWYwWjM4P/fFoyqpBAnBjvskk/GJnZvh/FHP55l9zkNBnYCAgICAAzf1b4/07CL8vuWo0ycjvVgM5UHf57OMejM+uedb7+v1bO72Hs6F+KHV/cNw+qM1Dfqm8i8W4kogs4Gyc/kwdYpzu470UgkYNwlp4qBEOvVNe+Ymet+q1Blw8FTtPdAVvEQETiGGODIUyHR/D/vxuYVY/d0mvL95LqKae3daFRC4Vhh9KNioXoeMIUlRUV2niIwTnv9uPLF35aGafag2nwQbrgFLxt6kWDG3DGIfCx7JWNeVa4GvBEcGosSuqIpTem/ixillNQU3pFifFCS6gghBrhTSsbZadDD58bF0qYuI4+CXUYby5gEOwgarCuDIqVZ9PCILB7/jJQj5Mx1MnSZcFcWV1P1n/AMjqePfVh87aiuy9Ij5+iwKpjWHOapW2CUpNuGRNl3xyIOjUP7cTNoFm+Rz2vdPRmCY+y6zUUoN0iuLa87ZaiUNgEQQi90n5f3ECkTVsW7vMKANEtrE0k6qnEyMkilJMDVz7BBcMSgB57jGzSH8v1NRUUFdGnbscJwjfe2116ijg4CAwP83Ex4chczTl+lY90ohYufP7v/hivfTZVjHBjuEElepawlpRNL3pp6Y9swEtO6WiNKCMpzcldIo+/7miV+x8uv1+GDLKwiPE/IkAtcvRh+aMBmrGiuERgc7zM+TsWVcUjR1Cm4o+9ccpk4SWZ6E3z5weOOJKxISEBeG0vyGOTZvX7QHAyb3dtnQiNCiEWKSobf2p6IDskx9egJdXM2zMGIxOK7hzXBJXLZt0V6MmjUEl85mY6cPAgdv3PnGLdQxqLSgnMYkRIRBYoW6DcrsIc4i9Z23Is0FwuIcY5JuwzshqkUEcjM81/VlnRfyJP9m6u9xK/B/ieaGBEQ83hV+faOhSAoirT6v6flYcnQImdkWsoQrL+C9mjBqKQLHt0TQ1CQqbuAMVhR+e6JRXSO4SjOKF6RcseWqgEBTQtwcvK/j/rUHh7T02MBnSE4LGCQW/NbyGN7qvAM/Jx/G920O4s0u27AtKgOkkczMPp4HkYrqAhYXFCtsE/sHQ7OwLqPhA50HBieiVXjDrKQPXizFogOX3b4+oFUoZB7eg32BviuCVFI8P7qN1+13nStCZSO4RezLsFl6bEsthLkBXR7qUu0GEaCUYkS7SNzYIcqjuIEwOCm83scZ2CoMAS5cc0a19+7MQEQ6xy7XT1Dxb0OmaNyuFDLF1e+8Z38/lck8dCUUEBBoch5oPQoL+j6CKfF90Du0NThWCq1BBp3JLlMMIFyl9dboD1EBZSjRuxIEi8BRiYMIEpHn+1G28TKeb3M3kvybo9yshJljqIigGvKzhWNgqXJvKDWoYOUYBCj1kLgRQzicSZUDA3FlqCtuqIa4NNgcHWzrVrs2WHgJck2ByDf5o9SipKKGbGMgSi1qxKrUeKHNeLzddRIVN5SY9Lh58zzwPqjHxV4+E4KUYZFnLMfTRxy7yAkIXG8kxYR5XSc52v06s8b2cuhkSf5ExRbbvwTFiSyPJT5moxnj54z0eHxZVdGON44vO+h1HbEbscVtL9+MmFau3eF4EaAdmOggbrDnQNplrP7HfdKv19iukLgRZNtDOoi6gtgh3/X2dK/b719zxKdEjDdIByHCvlWHadcoEcsjeE0Goj8+hJBFZxGy+CyiPzmM4L/TwfgQswRF2Ip3iMtEv5t6YsCkXh7FDYReN3Z1eCziePgd9jz5Piw+AX7VlkR2kGN649DG4zh/zLtYoykht67GWAQEBASuBk9OG4zfXpyOKYM6om+7ZlCcL4T/mlPw35wKUT3n473N37P+CrCR7gtQCedMJry89Em07p5IR/PWqCCYOsbD3CEebJj33AknY6DtEoHSUS1QNqwZTDHuk8uukJ/KhjjPdQEAcW5QHKrtTm5PeHwoHv3mHjz98wNU3FCaX4bHB7/iUz8rMj6BRu1TsdRbt3ziwx4FBK4drZp5n49u1dz9OtNfmHRFx7cYzRhnF5OICyogS8mG7GxOjbiBdM70hRM7zzT4PO544xZE2r1P4hjnjep1Dqw9iu2L3Dsd9JvYkxb6uINVimFM8AOX4Pr6FxIdhDtfv8Xr+ez58wDkWy5AZLJ1nyVzLBZ/gCNpCrvAkDgXVHYPRXl/1zHYse2n6L/7Vh7yufMqqxDDFKeCLF8PVWopAnbmIvqrM2j22lHE5rA1xT4kPug/sZdHcQNhSFzzKltT28LzIlRqPc/zD1J3gFzs/LvSd4LNDbl0XEsncQOBl4uxVqZFeoEXy/cm5t8Sk5SVleGGG25wEDeQnMX8+fMFcYOAwH/IxeHRb+7Fl/vfwZh7h6P7yE5XtL/GqCnKSs3GS4seR8suzfFvghS8PvLNPdRNjogbSMOTJwY1rlAs53we3p35eaPuU0CgsSFNchq6Drkm3fr8lcUkpEu/fUziCplc6tP17PQe782W3HH3u7c5Fcf7yu4/D2DPX+5zNIOn9aWflTfEbtycyRzKzFenet1+x5J9sFquvHbreFVMQmKcxiCwan6KOImQHAmJSzyJGwjEQa++DJ3eDxKpc66p7/juXrclziQ56Q1zQP+vxSTXI4LAQaAG4ggQOD4RobPaQ5kcfE0/Gd7EQhwkh7JzGBhN4xcbkv02BZzOgrKV55H7zgFUbM5EyZJUmDM921A3BGuRAaY0911rBQSuNYnjRR7vMDINED/U/QBvUOswfDClE/zljoMTUtD/cI/W6F4Yg++SD+J4SB44pvYOrpNasCUmHWdC8xG5MRLPGHugRYVzgUmAQgqjh4KVzTHpqJAYsT6u4d1WW0f44dae8VjxQF+8MDoZkRpbQX59WHSwVuBAHAo2ns7Do4uO4u55B/HRxjSMbOs9QWIiHUhlYkjFts9bJmYwrlM0ls/pi5bhfrCwHFYey8YdPx/A2C924YGFh7EjrVYpm5LbONeww5ml+G5HOrQe7OXrQ6AL0YH3CZz6j/aeH22z7qvL1O5xUMs9F3ORHMGPuzLw/4xfcChEbpTq9YWozf2CGxZUEtLS0vDLL7/gvffeo4uvVs8lJbVOL1FRrhNPAgICV49W/lF4qs14fNptFroEJMPKkWut45iB8aEIn6yjN8uQX+5aaEhuC97mmrRWLWKV4egT3BMWUxRO5EWhQK+GiRXTxchJqpwVRDBYpLhcHgg/hQkquYUKH7zRP9Q24RIoN7h1h6gWNSgYKz3nurlvEydFpVUJLaugwg1CVqUBL/yzEb2Xfo2vT/6Dx/auxMmSfJgsng0cyf6NrPf7q9ZiG9OkVebjUPG1LZoVEPDEtD6dPP6dh/qrMLyje0vaQV0S8cIdw6GqU/Ajl0kwvW9byDKKvI4/SRFQfJsYl6/7B/vBbPDNgVKeUQJG53ld5ckCl4mJG+8aSpOiREhAOqfaY4kLBFclHHbHn3ttk90EK8thy6E0vPj9GjzxxUr8uHo/+vbwbuvLXyikHVHFVWIIYgtPbJ0/3/sWYlpGwWK2YNOCHXhu1Jt4oPszePOWj3Fky8ma7TOON7xrrT3Htp3Cik/X1HSkqkZssEKVWgLV2RKI9b7HK5rg+onZWZZ1OXYO2JkFRbprYbTsciWeHuHaAnv0PcMgV3n+/jiWw4rPGtb5W0BAQOC/SpuECDw/Yxi+eHQi+jJySBtpbqwuvJ/nRh2EojIdEvsnY8BLUyCfPQSm/kmwJkXDkhwN4+C2MAxrD85NIYAxMRB5D3ZH+ahE6LtEQtczGkW3d0DRtDbgqpLqA6f09nh8IsRTb0mBYn8GmBIdYLaCqTBCfuwy1OtOgTG4vm8WXCrCJ/d+h1ti78PyT1bj9Zs/wsXDFyCq9NJtkeMhtrgIfNyQejAdKVfoliUg0JRMHOW5aCMi1B/9uiW6fX3Q1L546Iu7oKgz5iOPJz7q7HxWF4vZirMHztGuq64gRSek4KgpSe7ZEiPvHIyvDrxLO3sSkbMso5AkPDxuJz9XG9+s+2lLzc8WlsWatFQ8sm4N7l21Et8cPYROk7u7FDYUTGuBzNe6Ivvx9rjweDsUv9Mbhh5hNcKO4XcMojFJREIYTFYrlh87jVm/LcekHxbiyRVrcSAzq2Z/6cczIS3SQ7MnByIzT4UNvIdplrJhMWCVzisc2nAcf32xDga9b91nDS39cfGtziic1gza7iHQtwtE+dBIFN7SDNYgGY0r64OVuOPJeYj9rJCobQsjt6KsXAWDwfX9xJonwd1JY1y+Nvb+EWCi/GFs7b6uwMrz+O2fhnX+/i9hMBgwZswYHDxYWzwXEBCA9evXY+bMmdf03AQEBK4+ST1a4rFv78U7615C2z6tr+lXkHexEG37JmHwLf3gH+JHXXusgQpwXvLkvkLEik0B6eb98d3f4tbY+/D31xvw6qQPkJXa+B28idNV+nHXwm8BgesBb02YoltGoruHYvPhtw/CfR/eDnmdZk1KPwUmPep6jGgPaVxE5vfJcVwREKaBuZFqiNxB3ATI+/j60Hu4/dWpCAitX/MHp5jEbMHW33fRPMYrE9/H8k/WoNPgtl73wVo4qDTKGoE2+UyJk8Jne96k7hkmgwlrf9yCp294jeZJiIDq1O7aBlQZjXSt+WfVIaz6diOM+itvKkWod0xisUIsrf895M43b3X5/LgHRkLipslWNRaTBSu/XF/vYwpcH3j+dgX+s/j1jYHhdHFDakEbjYIvjwK2xhONiiRcieBpSbD0i0HhTyfBG5vgIFYOFZt9t6xuCKZLlVAkXVshioCAOzQJInR5WISjn/NO1xGxAug9l4FY7rmqcHK3WNolf83JXGSV6BHqL8e4jtEIUsvw6t6LyJVWOm3TuiwEt53vDCUrxYVMHmEIwRyEoDiiEovbHofUHxjbMRq7zhVShwR3WBkOW6MzUCFr2IBOo5Dgzr7NcPe8Q0jLr4RSKkZUgBJ5FfXb3+USWxelMr0Zd/xyEMft3AA2pxRAzIggE4tgZj1frHVm23Xu/oEt8NCwVvCrEo7oTFbc+csBh8/iVHYF1p7Mw+Susfjw5o5Q1xGZNBSjhcM7685S4Udj4IuDgj1PLzuBZYdrExK+UmF0rYAOVMkwq19zfLn1vMftd9qJRf4fkatUaNWjD9L277nifbXs0Yfur6Hs378fs2fPpj9LJBI8+OCD8PPz/Pu2Z88eWmhWTZ8+fRp8fAEBgcZnZste2JHvfJ0tN3l3jyk12q4nRVo/6qYQ4qejjg3EYaFYr0KlToGOsZ4ns0Vg8NCRd2HlOTAyIFYKaM1ylJmUCFYaIBNbYWXFdH9Fej9wvAhqmRkSEevVwSFOmYDn29yOsTGX8HHax14N38ix9KwMeqsM/lKzx6LtEqMSIoaDwWrB+0e3g5Ha9l6iUyEq0H1xFgcR8o3+0Ejdj1e0FhmKTLXdVE+UXkb3kH9X5yaB/w5tYsPx5LiB+PDvnU6vqeUyfHj7GEi9uA/cNKgDhvdMwqYDqcgrqUBYoB99rFErcOitlbR4zx1lBRVY//PWmsckAUgmrP2D/DDklv7Y8+d+pJZofXovpLhQszkdZWOTXLotyNOKID/v2BGTHG/EB9PxwJd/4WJeCVQSCUImdEbRr7vBVDm0kc7R3sgusnVtLq3U46GPVyD1Um2h0c5j6ZCIGUikDKwW11cySXYpxGUG2CIb4La5UzD1qfFQ+tmu5bpyHZ4b+SbOHqi93p87coF2Ixpzzw147Lv7qDjiSrEGqVAaE4CPf9mIpFDPHU19gVyH+9xk61bqC0Tw8u7ML6idtdO+WB5hC1Og6xAKXZdwWAPkEFea4XesAOoThdA9XAGEOQv3iVvE2PuG08JRTxzecBzXnP9oZyEBAYF/PxMfGY1jW2vFfo2JyIeue2Tub8YDP8Esdq3Q5oL9YBqQBMXmUw6ycEuIEsUTkwAXCWNTiyCUjWmJ/vnAy0uexMldZ/DC6LfduiWRcYg8LZ8u9YXs89sn59n2Q+KatDyYurnvHinRs6B69hLXrhGuSNmXRl0iBASuR9q3jsa9t/bH93/sdnrNXy3HG0+Mh9iD+wBhwoOjcMNtA7B98V4UZhUjLDaEdghVB6jpmLkk132eozinFBt+2VbzWBPiB5lCRoUNQ6cPwJaFO1FR7JxnaSwCwgMw8KNpmPXzcmQWl0EZIIH67X4oWXcc4op8ICgSIhe+eLJzBZDkVzgUKBIKdFrc/udypBXXxj6bM9Ih6ydFaEY4lIcKatxrch5oC3OcoxtMmRIom5GIZ96bjjt6dIdSbYuHygxGKmw4k1cb65zOK8Dq06mY2bMzXho5hMYk5rggWJNjoCoGyr2EFLxMDF3HYGj21+7TEqaCtlkg3vttPdoFeXZ+I1g1UuQ80BqcC6GEJUKJvIeSaxwUfIHjeTy8dwU2ZqdCZPdrx0h48GIe+QUBUCvMCJAbIZay4IximC6rYcpSoXy4FYEu6sDC40Ix6PWJ+O2C5zzJnnPXQeHndR6TPPzww9i7t9atJDw8HBs3bkSnTlfWvV1AQOD/IyY5sy+tSfYtYkTgvYiLJVIxZrZ4ECaVBNp+8TC2CgEkDBUrytNL4b/nEiSlrp1lvdF5aHu8uvxpHN16Ei+Ne9fnZjD28CKRR7c9faUBXzz0I5qSlH/OIbGT9y75AgLXgs5D2mPGS5Ox8M3lLgvTiUOLN/eBKU+Mw8hZQ2hMUpxTgvD4MBqTEJHDZhJTFLmPKQovF2HDr3YxSag/dWwgwoYbbhuI1d9tQnlh0zSWqHZsG3JLP+rgkpOeT8f14QlhKPdwzq7Iq45JLhfRfMbls9k1r+1deRBSuQSMhAHnxRlaX2GgnzcRjRCxcLWYvbSgHM/c8BounrrskCfZsnAXpj49Afe8dxuUjZAnIWjL9Pj8gR/QunuLK94XEWv0GuPoWu0J4qxNRCHEqa++aEt1UFXllewhTbRIzm3T/O0etz+08ToQXV/nMcn1iiBwEHCJvEUAAsa0QPmaDOc/LtLdx03i2ifEIsii/WC+7OVm0QS6AwIRBZT9eR7WYkPTiBsaCKOWQN48EIZTnrtAViOSeLc3EhC4lrS8iUFQax7nV/AoOsVDJAaieokQOxjgOaDsPI/AlrW/xyYri0MXS+m/7aMDEK5R0OJ60im/Lieb5QC140VKiFGFO851gYxzvrWF5PvjjRb90X+uLam35oR3dX6lsuFqVVIU/8KfjsnPzCqxQn0I9bOpoJ9aetxB3GDv6sCJAH+5GJVV1sie+GXvRdw/uLYj1JtrzrgVeiw/koWOsQG4sUMkXv7rVKONs9LytdRNwuJFlOENIlbgONukfK8WweibGOp23b3nixokbiAYLe4/18QwxwSJK3xsOPevptOIMY0icOg8wnvXMU/07du35mer1Yply5bhzjvv9LjNl19+WfNzt27d0KyZMPkkIHA90T8iEU+1H4YPT9V2xSCUmVQwWjRQSN1PeGVVBkAqZtE6rABKWW3hkETMIlpTiQJeiXhVHC7payeK6mJiRVTcUA2Z3/OTW2C0SpBRShxnbOMYm7MCER2yYBgeATIjnZwiYgpXQgeyfryyBz5IWYoCUy7MnJ7mA7xBtquwKCAR8QhV6lyuozXL6DoKtQlGvczBUatMp4RSZkagyujyfsXyIvCIRJJ/IlIr9zutQ97PseJYB0cNKSNMKQhc39wxqBs6xEXi993HcOJSLqRiMQa1bYERLeIgulSOC3oOzdvH16xvMltx/Fw2LFYWyc0iEBKghlopo0KHuqgD6ifMrCzWovOU3pi75En6eP3Pjtc2d5PDpAM/QX6hFMFLT0HXIwam5sHEqgbiEgNUx3OhPJ7nUBZEhqA5naLw5lLHCV3ShoGZ2BGaVacg1pnddl22J8Tf9j5f/H6tg7jB3tWBYUTU6UJfp/urOL8Cql2OXZWXf7waNz85vubxl4/87CBusGfND5uR1LMl+k/qiW+e+BUNgZNLoBvcCpa42gIiMo2tDOoM+brTPn0G7q7JG37eRjv/kA+cJGRJJyh3HFh31KW4wb541O94IV3qYvKQ3I1Pdu0QYk/175CAgICAQP3pO74H7e43/9UlTq/JVTKY9PUvwKnG38QiLCoYF3NrnSXrQvIXpPO1QyVqHbggP7ARAZDk14oCdN2jXIobqjEkhaBD/+b46O5vcDk1x6244UrhNWpwCRHgQwJoQCUuq4QktxzWKOfKYMbEQVFqRWiYPxKDmuHA377lSUgRgYDA9cwdk3ujQ1I0lq8/ipTzeVRkPaBnSwxsHw9rTgkyrVYktK3NgZAumqf3nIXVwiKpRyICwwKomGHMvcOd9q0kguV6NCKuKNbihpkD8ey8h+njv75Y63Ub4sJGilDqCy8CMvpF4pW128CLeJjDWbBqzjalMMbmokuE0AFHeIjFtnl2psIAeUoeZGfzHPYVFGG7Zjy0do2DuKEaM8chf0ZLtCg1g0svQ2WvMCdxgz3fph7DHf161Tyeu2azg7jBngUHjqFjdCQGTOmNz/adrBGb8T7M47BVLtTEyaF0fGuYm9U66u0jMWVkJ/gtPU0d5VxR3i/MpbihGmOUEgszTkNvsdCPtX9sArpFuY8PNmalUnGDK8jbEsk5cCf8UGnUOL1u8iDKi28bC3gROJBcloB7li9fjp9++qnmsUajwebNm9Ghg/NchICAwH+PwdP6If3YRSx67y+n12RKWYNEAdWoNCr4B6qoS4M7yJiE9Zej5JYO4KpqFyhiBqbWITDHaxCy6BQkJfUXOXTo34bGJJfOZNXrffByGRAXDoQFk6QPeKMZyCsCsgvoHNuVEtEsDLGto3F4o29NQ4SYROB6587Xb0HHgW3x99frkXY4gzZi6j+xF3qN7UYL7i+dzXaYZzbojDi9J5XOKxNHNiKQJo2bxt0/wmnfdZ0dvEHEEKPvHobHv7+fPv797RVetyFCK3ItaghE9P35g7UiJ08CcU8EVsUkr03+0EHcUI3FZKWxky9zRaQZ0uL3V2LCQ6Nqnvv47m8cxA32LPlgJZJ7tcLAm/vgtzeWobFIO5RBnQ+sZu8NONxBfkfWfL+Zig+IaK7HqM5I7um+CQURyTRE3EDwdJ9o1i7Wp3MV+HcizPwJuMW/fwwUrYOg+ycXljwdRHIxlB1CIYvXoODzI+DNDfzDZ3koO4XBnKOlP19ttLucbzTXGnGgHCEz20IarYb+UD7KN14EV+k5ya4/WkDarELdIwJijaM9rYDA9UJIWxFdCLo8Hke/4LD98dqqb01zoMM9DP42Z+D7nRko0dkGJBJGhJHtI/HmhPbUsYFwvkCLTWfyYbZyyNM5F+b1y493KW6oJncfUJHJU3eJuGAlUvM9i6z6DtbgxLH6dyZrTCZ1jcWFIh22nHU9uU4gOc4BrcMwqHUYPtl0DnkV7q2NTVYOq47nYGafZijXW/DnUc/Xw3l7L2JS15hGF5EScYNYdGW3gI822nWq2AK0jdLgu5ndEBfsXGi26KD74lVPyCQMkiLc29P1aBZM6so8ihh6t/j/d9qJa9cBIbHxKM5quHNRaFwCYtte2WR9YmIi+vXrR10ZCK+++iomTJiAIDfdsH777Tf89VftZOAzzzxzRccXEBBoGu5u3Q8DI1ph0YXDOF9RAD+pHKNj26N7WDA+Tn0OHJwLcSotckRotPBXmB3EDfZJ24iAAvQPnYJFl5aAc+GfQK7tRtb1uEIhsUIltUBvkdXsT8yQoiPb6yqJbRzPgYGFE4EREW8E282C4xnqlLA0awMqzEr4y0yQi0VeA3OdRYYKkwJWToxcqwR6vRTRgRWQiLma8y01qJCn9YNCbIEBMsgUVlit9nsWIa8sAFqDHBGBlVR8Qc6KiDPIOUUrwvBq+9lIUEfgcMkmrM1dCgtXDJZnkKPXIL0iFFqrwmEMsuLiMZhYK26K64pQReO4NAkINDZdW8TQhZB1LhdfP/YLnll/jE4iE1p0SsBd78zAKbMZv68/jIqqWIM4Ewzr2RrPzBwK/6rOnhdPX6b2vRaztUFdhXYv30+7j0a1iEBk83DaMcgTo++5Aau/3VjzWJqnReCqVPCku5pYBMZN8wlTcjjMLcNcvsZpFNANagnN2jOQZZZCZLSAV9gKb1wxtlcbnM8qxIEz7sd6HMdjYM+W6NIyBj9/vgal2SWQXi5x6LpajUFrxM5l/1DrZdKVaMfi2g6Vrvjri3XoM747GgL5hrUjkmGNcC7QMQSrwI7rAPXSIxA1MC756fmFNT/Pf20JLUB7ZfnTtKuuJwvr+qBQyxHfxn2RUsdBbamorvr32eU6g9s16NgCAgICAjZmzr2Z3ovWfLeJigH8AlW0Mxwp6Hyg+7MNTgSTTqLTe7bGp3/vpw08nOB4SEw8ODKJ5gU2KshB4GBs6WU+ihHhp4Vb4He06eY+uYggcO2aA4xdFXBIAMioQ3y2ANboAPBKKUQsINWxkOhYxMcH47U3pyAmJoh2cSTCEm/d5df+tAX6SiNGzhpMC8EFBK5HuraPpwshMyWLxiRPbT5ZM4Zr1a0F7n5nBk7uSqHjX22ZramBVCbB4Fv74aHP76pxNUvNLsTuMxdgYTkUK32osq/D1t934663pyM0JoTGJEXZ7kVWBOIYtvKr9fU+jq5rJIzJtnExFTdonGMXNlCKsl5WxL51DNJyK0QGW6F+XW6YOQjH8/JwKMd9PoMFj65fTkGfdODtyjN0VsYdFSYTNmWcx/ikNsirqMTms56L84nIoedNY8CG1M57iM1ETO1xM0hLjDQmKbm5LSxRjnMmnJxDZSsFzHe1R+iXx1y+b0Ny3WsaD0g4gLj6kB2zDN7et92mJgHwycG96BoRjW9vnIBwlbPAY3GGl0IiMcD7cYDR8ffKXyFHXGitOKMuPZrbiolYFQdLAAteRjqBiCDRMpCUMxBxIvSsWkfAGdKs6emnn3Z47ueffxbEDQICAg6QuUsitlv7/WY6v0m6rhM3pqgW4Xio5/MNEiNWO6ve9vJkfP/UAo9zS5X94hzFDXaQecXKgQkI+utsvY+/4PWl9d6GV8qBjq0Amd18pkIGNIsGgjXgT56/IpFDs3ZxeO2vZxAeH4q/v96ABa8trRmb1YUL8QcXFYw/951HWYAfRg1rjwBN43RYFxBobLre0JEuhAsnM2lMYi+cIkKGu9+bgUMbTlAhBBE+EGQKKYbNGIg5n95Z44B27kgGDq4/RgvGSWF7fdk0fwfufPNWBIUH0Jik0ovTNXE6IHHStWT4zEE4sfMM0g6lu12HXIvH3DMMcW1iMe+VxR4/m7KCclro3++mnjRntH/NEY/HJ+L0x7+7D40NmdOyb7TVEL55vLY5FZnH6TCwDeYufdLlHE1D8yQBof7UecMdHQa29bqPToOEPMm/FUHgIOARabgKgeNru30TLIX6hosbqjBfKEfone1QsjQVXEXDuuXVQDqpDo6FdkeWp/mq6xJJpAoBwxOgaBNClWwEdY9IKNoEI//jw+D07pMj1gIDKjZlomLLJfod+fW2dTwRELgeMRTx2PYwB0OdxlsVF4CXvzmLLdEZDs9bOZ66LGQU6vDbXT3x0l+nsO6UY9eeuiSVue/gX03eAZvAYVqPeGxOcS8a8FdI8OikRPxTXIhjLpwTGgu5RAST1XWAHayWIUApwdaUfFpA6IkDF0rx9Yxu+Hn3RY8CB8K5AltwkJJXAaMXN56MIh0e/t3zQLqhEHFDoFKKYDWZfBDR93v0UhlYb2/WDWdyKzDzp/1Y/9hAKOp0qMsua5gt5vhO0TUCG1fEBqnQPFSN9EL3gcnsfs3x/w4pqLrxwSew+NXnYDF5/v1zhVSuwKgHvFsf+sL777+P/v3700m4zMxMDBs2DL///juSk5MdEgaffPIJnn/++Zrnxo4di6lTp17x8QUEBJqG1gHhmNv5RofnMnWXkWOUQSUGFGIrFRBYeDH0ViksvAQyCQsxQxLJbpL9IuCcNhNPJD2Mb8//Ci1bWwxkYsUwcRIqUHCHWmauETgQZGIRZrcYjD9zyQRb7b2Mhwgs79w5ldQoiRkOEoanAgKOZ6lozhXEOSFfp6H7oo+tYmSWh6DQpIa/3ASRiEeErAK9Q9IRG2N7H8UmFY4Ux+NAHnGmsX8fImhNSlTmKSGXWqCSm9E+OAL3Jw1Fr5C2YKo6w/YIGYl4dR9M2fE5Kq2uu7mSW/Z5bT4+S8nH16nb8XLHcZgY38XtZyYgcK0puFSIJwa+jFK74j9CxvFMPDn3d5jaRDk5E2zYdxaX8krx2SMT8PHsr7Dv70NXdA5kjHJowzGMmzMSN941DEc2n/Q4YTvnkztxZl8qPUd7SJLOU6LO2DbS43lYYgLAahQQVxgRdDwXJb1qXSzsCZPJEHipHHuM7iftqzl6Lhuv33Mj/rrvBxjPe47dLqXY3NXOH71AxSKeyDiRiQ9mfeX0vDVEDXOCzclCUqiF9FKJk1CBFE66EjdUY9YoENq9GULLbdc5Yot9Zl8a+AYmQVMPpuO5kW/gu2MfQiJ1nHLN99AJzxPEplutce8WQrrJka5yeRdcx7dkjD3p0TG4loh4ni5Xug8BAQGBa0nLzs3x6Df3OjyXsv/cFXW5I2StO473Hh2Pt79eg1K7fTFaE8S8BCIydefeiKEWRgSpXIppL0zEvPUnPYoX7bdpKniJGFzbZo7ihirIUcVBQZBtPW07h2ANknq2wu1zR6NHz0TqDEWY8OAo9BzdBfd2fNKjw8T5IxfoQooHnvppDi30EhC4XslJz8MTA+c6CXfOHc7Ac6PedBqHkrHypnk7kHM+D6+ufQEvLNyAPSkXa1cYmABx21AErE2FpNy3eVlSuHJ40wmMvHMIjUlO7XZfjBgSHYT7P74DRzafoAKv+qDtZRPpchIerL/7PASnlsA0PBLyBRfcngMpqtqV7j0mOZSfi3ceuBPv/nQR0HkukkovtQk7TuXke8xJ8OBxtCwbz+3bgMrmHOTFDIihqLwUsLjvjQRGa4H6VAlMiUEO4gZOxcIaY7YJCch33ApQdemJZouLoMg0QhOqoQ4ezjvkAAVbbSBhQ0rEBKQ6VVIjcjiSn4M7Vi3D6ptnQlznGpyj9y7S5+XOn8VNvdpBaV9EWoekyDAEJSqQLarav4gHIyaOHYA1gIEqR47b+lzb+aLrOSZZtGgRLlyo/f1nGAbPPvssXerDI488QhcBAYH/X1p3S0Tr7xxrt45vP91gcQOFB3LT8/HS4sfx6X3fodJFMS4nZWBs7bkOw9QsCKxaChUvwpQnx2Hhm8vt0ySNS8s4R3GDPRo/ICYcuFx/IXfbPq0x85Wp6Da8Y03Omsyp9byxC+7r/BTMds61vISBtXtr8CG2eceUnDKk/LwdP/22Gy8+MRqD+iU19N0JCDQ5xK3hiUGvOAl3iMvyMze84VToTn73SVF6bkYeXlz0ON6e/hmObnGf1/AFEucc23oKQ27pR2MSEg+5I7JZGO776HbaeMqT28yVQmIO+79ze4jgidR0HvLB1eX0vjQ8/NU9VBzljeoYi3z2nkRmdL97zuLLh2sdvxoT8p0T1zziWk6uf8Sx4/Re185vvnByZwpeHvcuPt/3tlMNUP5F93V6nrjx7hsgk7uPSYhAJzBcg7IC1zGPWMJgwsOOtQZXm+s5JrneqX9rB4H/PMYzzvaf9cV0sQKKVkFgFI2gseEBa67+XyduIJP3wTcnQdnOdiO0R+wng8pXwQLHo2zleRjPNcxGSUDgapC6mHcSNxAqJSZsj3Q9cU1Iya3A7T8f8CpuIIhc9rhxhK+6TtzQJhxjO7r+GyN/jm9MaA+lTIx3JnVAYJWNcFPgJ5fiy+ld0CLMuZsOcbN45e8zeGed924H1WPCmCDvHQGWH8mirhBSsW9DgO1pvtnBN4QygwXZZUZ8OLUTls3pi19m9UC7aPcFSN64WKzH6hPOntwhHkQK7ugQE4CXx3pW+e46V+hR3KCQMOgY576z0f8TES1aYvxTL1KxQn0g65PtyPaNQd++ffHRRx/VPD569Cjat2+PgQMHYvbs2Zg8eTKio6OpWwPL2ib8evXqhYULa7vvCggI/Ds4VHqUFvzrWDmKzWoUmf1QblFScUM1jJeW3GcrzqNjQHsUGiJwWRuAHJ0GmZWBKDWpqNOCJ+ru28pzOHG+BBX5KhhZ72OHancI2zyEyCaocN20FTla/1pxg4WBrlxhu/eLRKg0K9BcVYwJcScRq6ot2g6R6zE8+ixGx59yEFzYY7JIodNr8FL7W9EntH2NuKGaCIUGo8N7gWOdx1jkvPmq5DnBwrF49dhKHCl2LMIWELie+P3tP53EDQSOWAYnuRcEpFzIx+N3f3nF4oaa41X9sZOua30n9HC5DumY88jX99AJ2yd/nEMnln2FNvIMcY4vHBCJqECAEFlsxJt3jEJcWO24lYgn5OcKwX6/G1/c8y1+fXmR1+MyVUFJhIcuOtWs/WEzci/k0460vmBvWcxLxagc2QYVEzvB2DUOxs6x0A5PRvnUrrDWcXMzN3N2UqhLkZ+Mdq194ffH8OmuN/HGymfRvINrwYcvXErJxp4/Dzg9TxIEDUms3vP+TI/r7COJHTfiBgKxxE7sTMRuAgICAgKNzd6/nK/39eXU7hT069QMQRtOQ73uBJRbU6BeeRTyzDJay0rwpfsoU1wJi8mCEwYWbLA/pDrv28gv1d+Nylf4qBBA7FmZwcWGQVSphzy/GC+8dTN69W5ZI26oJqp5BO3c7gvk/b9/51dIPei5E7uAwLXktzeXuXUl8SSyPb0nFXd/8IejuKEKNlSNspva0uJDX6kuWho2YwB63Oi68FwiFVNhFxHuPvXzA1D6+T7va2oWDDbAZm/Aqrkax0t3qCe0wpM/PUC7t9ZQtU1xTik+ufc7LHxjue95Eo33HMOCI8eQW1kJaZ1rFV/1n+3crbDEm8BGWrCj/DxMiRaUdzehqL8FupZWMDxxxnTxvVk5hC1Ph4jlYUgKcRA3WFoaa8QN1RSoTThzXyie3fciPt31Bl5d8TQS2sZCmVp9neadxQ3V75l87SoikKs9j5TiQmzNdC4SC5F7iyt5iOo05OqWGIOHRvf1uNWai2erxA08pAoLFP4myNUW2xJsgrytFS0jvcdm/1VWrFjh8JjjOKSnp9d7KSnx7MYiICDw/8meRolJztI5SkbievzOkVoJiZdxBiOiDg8mvRmndqU0mbiBujcEelAYEqK8N8Wsi0Ilx4t/PIbuIzo5FeOS5iKDpjneC60dW9SIG+wxma14/cPVSPcwVycgcK2Z/+pi964kHrr4H9t2mgojrlTcUPdYo2YPQeeh7V2uQxo5PPrtfZBIJHjqlwfp32pTEZsUTeMfImaooepyUHCpCB/d9Q2Wffi31/1Uz2tEJHi/Fq34ZBVK8koh8SFPwlptQvWmguTOiGs5cbD5dPebeGnxE4hLim7w/ohogwjl6xIYUf/6qa43dMDMV272uM7mBTvdihsIKo0Ksa2FxuH14dy5c3jxxRcxYMAAREZGQi6XQ6PRIDExEdOmTcP8+fNhsVxhU3sfEQQOAvWG99Lx27ffPBE4M0tdCBoDY+q/LGgXAYGTWkIW42hJag9vqEf3Jx7Q7nZvzSogcK3J3Og6ij0RkgeW8aJEzfEt2Zbh7/06EN7ZNpgkgelnt3TBS2PaIN6uCKZfyxAsuKsXbupi6y4UpJJhQqdohPrJapqaxQUp8fgNrWin5ivFbOUwtmM0tj45GL/O6gE/ufPEAXGz8MbAVrbB8dTucV7X1ZlYvLsuBZ1iAxDu33QBgK+YrBzeqxJxDGwdhjWPDMCKOX2oi0ZD+Hrbedwz/xCeWHIM284W0AKySV19sz8m36hKJsb0nvFYcl9vBCg9F6jO3+e5iNNo5TDlm71gr8AG899Es45dMO3VdxES61tBWGhcAl2fbNeYPP744/jtt9/o4JpAhAy7du3CL7/8QpMFhYW1yv477rgDGzZsqFlXQEDg34OVv7JOqQSxSIwKqwHZhhKYWCn0VhksnARWL+IGgpmtuw6Pw6VnoNCYUG5UeHRfMrJimDlynxPVHIs4TRg5KUycmDo2kIX8rDPLUXIpCJYCObTlCmjLVeB5hooLyDEUYjOGRKS5PVaX0CzEa4hA3fmEGIjwXq8xaBXgvhi53GBFRZkSuko5jAYJWFZEF44j5+04FiJp/QUZ+9y/cQGBawgpENj6+y6Xr1mahXrtYJxaqW+0c+k4yCaiFYvF1Kb37ndvo12IquOUbiM64f3NczFwSh/6XGCYBoOn9aX/Vk+ORydG4I7XptKio7rQNaze521EFramGHBMrzZY+eqd+HzmKERuOY+g+Qfhv+UcGKPtWiu66NjoguibyOXLTueEXu1sY8BRs4d6PbauXI9fXvoDbfsmUaeK+qAd0hqWuCCn5zl/BSpvbAfOLo4g3dS8QdYhXaF/fvF32/sY0w3fH/8IH+94DUr/+ol3q5n/2hK8MvF9fDD7K9rViXRf8rU4k+RQyXHHPzAS7295BSp/zyJ2YhfuCfLenhz8itcOUE0K30iLgICAwHUGuYd6FBzGhMDcNxmmEV1gHtIB1tbR4OskrcUSMUrzyqjYTlysgzSnDOJKI0SVtXkTEblle7iOiwxmSC4Xg/dT4tDJy/Q5ZRHncRv5xTJICxtvfFMXXuX9Hsr7KcColXh24WOIaek+yWyw+yy8QbrXrvhsjc/rCwhcTSxmC3Ys3tuwbSP9ca7cfZ6E0yhgSvIuNK6OOWpiEokYr/35NGa9eSvC4mwF6CTmIO4pH257DX3GdafPBbaMRK93b4F4Zl/oR3eAsUMsYjol4I7XplFxdl0MXeNqx28+pFFMrBWjZg3BvHNf0BhJTgqX6lzCpCe9N98bEG8T9t7c1nWBVA08ab5kxGd796JHQiz85XLqNGEOZGGKZGGKIv+awYZbAYkLQYGcgzWQgyWCBR9grRUFcDxUZ0oQ/d0ZqE+XOsUk1mizW1cercWET0/voD/3u6knfjz1Cb575X6oGAkg4VyKG2rOiexT4viBfbRnNx5Y/Dee/3sj9mVcos9NbNbB5fYShkWIvxbxoaWI7pWP0OE5iEiqxKwurfH9/ZM9ujcQ5qXYXMBlKgskckchBvnZINbjrt2/4ZpyHcckaWnu5/UEBAQEriQm8RXS1ZoU75LCVlcweov3uUaeB6Oz0Maux7efQZOh8KG2QS4D7+nGWQexVIwX/ngM4fHux1JGba1TFq+Sg490npusxmrlsHyV7d4oIHC9YdAaXDbn8ZXLZxunLpHEEB0GJNOfpTIp3lr9PG5/dSpCY4JtrzMi9B7XDR9tf40KjwhhsSG0aRRxF6huIh3fJga3vzbNSZjUECwmK8beNxwLMr7C8wsfpY4Odcd/3tyoCd2G28531OxhXtctLajAb28sR9dh7aFQX/vaLeLiM7/KeWLQzX3wc8pn9Luhn0UD+P6ZBTRP8tHd3+D4jtP0ueE+50lEUAWoMO3ZCXhrzQse3Rt8yZNUlmgxd/x7uKZcxzGJPVqtFnfddReSkpLw9ttvY/fu3cjPz4fZbEZlZSUyMjKwZMkSWmtFxA7btm1DU9MI7fMF/mvI4uqXfHaFIikIIjLpReZ1rlQvIRGRCif8qyCTZ3+dh/l8GTQjmkES7Dzhz8jr9+dJHBxIwroxbtwCAo0J6TxkdjP3rpNcedCtILaIFg7/RF1Cj6JYMPZVNnaEdgCCkmpfEzMi3D2gBe7q3xylegtkEgZ+dn93e9OLcM+8Q9CZHW0di3VmdIkPwruTO+Kppcdddlv2lU523f33pRdDa2qYheSWlHy8t/4s7hvYAjckh2PzWc9dATafKcChzBIMSw7HHwdtic9ryf4LJTidU4520baupnHBanRPCMK21PpbzGUU6ehCWHEkGz2bBeP727thQKtQ7Drn2Y2CfJV6M4vfD1yin8+82T0RFeC+oIicszfO5lVi69kCDG8bgf8CxInhjg+/QtaZkzi2YQ3OHdwHnqu90TNiMVr26IPOI0Yjtm2HJrtnzZgxA2PGjMGPP/6IdevW4fTp07SDkb+/P2JiYjB06FDcdttt6N7dlqQTEBD499FC7b0bNedmTFBNl8B2kIkk1AXKvuOeySqBWmJ2mzwmdUKVptrxO9k6XG0B76+lj60Qo8ioRqhC57QPC8egyFgrcjazYkhE1YlqEVheDPvRQNGlQFguq8FJeVhj7cZNvAiclUHbkDxIqlu7unufoZdxWRcMvo4TAxHgPfvPOuzKvYgnOg5EtNpZ7KWWEhckESxmCX3fUpnnY+0pSPf4uoDAtcJkMMNgl4iyh/ch9ua8rEMKcEx6Ey0Q8mQLTzrNNG9fKwYl6097ZgKmPj2ednIlE8VKv9rx58ENx/D65A9h1Jsc9kM60XQY0BYPfxVM7ePrFq/LM4phSrLrfloHkdECadVYNqmnzUmLjMtO/LEP1nMFTt1QxBVGSC+VwEw6sZJaI1JAQy5cZA6CBcRGYNvB8whWqzB9XDd0Hd4RR7x0E9q17B9MeHAUuo/qgi2/7YQvEIcGS7z7BCKvlMKUFAHlcVuiRVKkhbm1+8+heh3CoQ3HcTk1G3FJNrF7VIsItOndCkc2nWyQiwNZCBt/3U47UM1d9iQtJDuxw3OSl3yVhkoj/v56A07tTcXba15ASJT79+zJvruatEPptLtTdTJIQEBAQKBxaN3DtRsluStbuyaCi6ntVs3LpWCTYsHGhUG2N4WKEgg9b+wCmdLZeVR8uQhs6xgygUlrgxkLD47kcusGGCYL5HtSqcuDOCYE1RGD1AD4ZXPQxjBO20gKdAj6+xyaEp7lYJWLwJPcDQ+IzRyYunUAAf6w9GyLd3/chf3nizBr1gCEuhA+1qdrfPU9XUDgeoSM8czGhuVDTC1shT6eEHWIBk7l0yI9tkrM7IpeY7s6iIpIQdH0FybhluduojGJXClziEl2HknHi1+vhql6nyF+dLmskqPjLX0xJ0iNrx/9pSYmsQapwAWrITYBrAJgjN7nfzuH2c6HYRgcXH+MxlZ1kefqoUwtgyHJTcdPHlh1JgUBMjnu7NIFy1NO42BOthsFms0RfNXZVNzWuiP6JsVjZX6KY1tIhXvnCRoKkcZdPA9eLgLULELX6+C3JRVMnXySNE8LY5tQ8FLOybmhLpuyUpFTWYFof9v8TEzLaHQ7E41dvPcxP8Q8mZCqIa2gGBe0NpHFimOnMSCxGT6efCMWhxzD0eLaz0UqZhEZVA6xXSMykZIFl1SG1WfX4fwNu/HW0ucQGObeke5MST4YMQex1P37O1ySiUNFmegemuD9vfzHOHWKuK8KCAgINIykHi2x+rtNV/Tx9byxq8uYpBrGwkFxvhjGZPcCAFlmGcRaMyRyaaOILtxi9aHxFct6FHs7rW5h8fb0TzFs+gDc8cYtCAp3vucp7RqQcKEa57isDgeOOrtuCQhcD2jL9LB6iBWuFFKkTxrukMZMno7Tf1IvB1GRTCHDzLk3Y8ZLk20xiUoOpbp2LmDnsn1497bPnQQGJE/Sc1RnKJQyWkx/JSRX5UlITHJg3ZEGx26bFuyAwk+Bmx4ahY3ztyP1gGeXyc0LdmDUXUPQZWh77Ft1GNeaHUv24sHPZtWM/+OSY9CqWyJO77E1ra0PGccz6UJY//NW6hb01C8PYP0vW73mNUh8qS/XY/F7K6nT0Osrn4Um2H29cpoPeRLSjIq4fpJ7p4BrKioqMHjwYBw9WuuqTiDuDeHh4dDr9Sgurm0+cPnyZQwfPpy6OUyfPh1NheDgIFBv5K2DIAn13EHOIxIR/PvHQCQWQZHcCJaUV0PcQCbiGxsrD/2xQhR8fQzWYucuRMqO9bRO+5dpPAT+OxD1rMpNbXeY0Zslrneah/oh7c0bsfOTAej9PAORi9ojTQLQe67rWx4p5AlWyxzEDZVGC+5bcNhJ3ICqAvj7FxzC0ORwLL6vD0a0jaDiCCKYqC939K0tzlx7KhcNpcxgxTfb03HL9//goaHeB2Msz+OW7/dfF+KGasZ8vhttXl5P3RcmfLm7QeIGVxy4WIKX/jqFH27vjtn9msPfR/FYWr4WYz7bhY82pCIl11mhQ4pCyw2+BTV/HftvOeyQv6m4dh0x7onn8eBPi3DnR99g+lsf0X8f+PEPjHv8Ofp6UwvyAgMD8dRTT2HLli3Iy8ujimIy2D5x4gQ+/fRTQdwgIPAvp1tQZ4TK3McSZP6aOCm4Q8ZIMSpqCJQSGXqGtHLcFiJoLXK3c+ClBiWsXG3LPX+5GTzjmHzXWuXI0gWgzKRAhU6BokINiowq5Og1YO0cIsjPBtYmHnA6f5McZVIpTZozFhHkVsd7mNkoRYDEezfTIJkechm5Z9Ummm3HE9EuicszTmLyhvnI1jkL90Y3s3VQ8R0hKBG4PiHWxUERrgsymErXwgd7SCdlTzTvEI81ht+x1vg7nvjhfpddTFt0TMBzCx5xuT0ZFwWEahwKichE/hs3f+QkbiDoKw14ddIH1Nnhgy2voPfYbpDKJDXHVZACfw8JBOXRbFoISbjpoRtrnt+5/B+328hOZsGq4G2FitXjOJGtcNGqAkp1Bvy8aj8e+nAFZrw6Fd4gCY7H+r/ss7iBYIn3XthltltHdq6Q2Oa5X5nlIE/Nr3l4V9vHMM7/Nrw6+QM81PO5BokbXHFs6yl8+8Q8vLn6eerM4GuhZsaxi5jT9WnMf3UJLp52jt2sFitNGPmCOweTq4GIb5xFQEBA4HpjwOReCHYhQuMSwhzEDQ6o5LB0ak5/JPeDcQ+MpAnaDgPbOKwmMlkgOXmxpjCHaJrFJt7WJZzlIaowQHriElTrj0NcqqPdDc1mx3kqZQmP4FQWygIO0koOsnIO/mlGhP9yAmJdwxL1Uh/m1dgwfxjbR8LqJwarYMAqGZgDJDD7Mw7uT9Whg9Fowbr1J/DwIwtQVFTptL9BU/vW6xyvqWuRgIAH1AEq+Ae7d3X3BO+Dm3Tr3q1sMYnhdzz85d017m/2tOrWAk///KDL7UkhDylisY9Jisq0ePGbNbXiBjsq9SY8/dlKjLr3Bryz/kX0uLELLWRiVLYCSQkxiSECJyMDkReRwx1tutX8vMtDTBIx/xzkF52vE/R6wgHFBgM+27cPs//8E490702FDDXTFFXrUHFD1cXIaLVi5ju/Y/WlOuIGEW9zavAACYnoOgwPawAHaWqmk7iBoDpZQN3zeOKw4O1rFAEDf/wenT77Eg/9tQrTvvkdR85kQ+yLkU2dfYvqhEG70i/ioy178OugW3FrYhcoxbYOqMH+WgdxgwPJMpzor8PNr3xFP9f0EmcXdTKvZLKyEEu9F8qtvtw48VVDEGISAQGB/1eG3Nqv3u6odccnY+4bjtDo4JriXlf47blkc3Jwgchkhf/OTDov2aTiBkKlHlIiYPBEQakvBlIOkPm1NT9sxmP9XkRZoXOeZNDN9YtJ6iOwEBC4mpDrhTfH4Cuhw4A2VXmSP3D/R3e4rAchTYUe/+4+zzGJnbih4FKhS3FDdQ6FOATc9MiNtMs/abxEmkoRZ5r6QM6TNGOyb87UUIpzSvHry4sw96b3cdtLk72uTxpzPdj9uetC3FDdwHhq5D2YEHg7Xp/6ER7u/XyDxA2u2LvyIH57bRne3zSXOvgRcb0vnN6Tijldn8FvbyxD1jnnujqTwbccCWHLQiFP4olZs2Y5iBt69uyJDRs2UOeGS5cuoaioCBcvXsTTTz9NXeoJLMti9uzZOHKk6dyLBIGDQL0hF/aQ29qA8au/BY1IyiBkehtII9X0sf/gWMCHiTlXMIEyiORi347r43pO2ynFCJrcCqG3t23weXqD01pQvsFZwSuL9oOyve8CEHmLAMG9QeC6pfkY138/7UsioLI0zM6qmk6xAVRgQCbsE4YzGP0bg+QZIkT2BGIGAL1eFGH4DwyUob7/DZPO/5VG94UweguHpYey0IO6A3SnAovjr4yAUur7tWbO4ESHrv76Bro31HUL+PNYNiQNEFtcDxgsLDadyUdOufcis/qw7lQeSnRmzB3XFv+8MAw/39nDp0t6id6CL7adx42f7cJ9Cw7BYJeg+H5nBnQ+fmflbiZ8/gvIVSqExMYhqmUS/Zc8FhAQEGgMGBGDx1rPgZ/Ez+Xc8cWSYGQUh6Lc4FxEqmAUeDLpfkQrI+njO5oPhrhO5trESlBuUsBkFYPjRHTRGmXIrfBHhal28i9WFYgAN3WqVl6MUrMKBSY/nD7eDBYTKX5yvgERsUSlRQa9RYJyoxwlBiWyKgJQYlBD5m9FYIwE79w0At8MnwCJ3XnyHIMKg/eJSD0ro8lqhcJSO7deZ349z1CJT044T+p0C4vBkJhE+jNrFXudl+8RaivWEhC4HucxRs0e6vI16cUiz0XwJD5Pqy2Cd0Vyj5bUIpdMwN941zD8mvY5dWboMaozLX588Y/H8NXBdxEU4abbqAs2/LLNresEQVumw+YFO9FpcDu88fdzNGmwNP9HSOVSSMoM0Kw9A6aizvZmFsoDmVCezKEPie1ztWVyXbv1uuh7kPkbN9OIjAhs1eXo7MV8bD2X5bKg6krhfdmn3UCfsbDw25oGuHLVYDmod5xzSM6SaxxJaBKb7uLcMjQm237fTT9fUmz2R9Z3eHXFUzVW2p4ozS/HgteX4p4OT+DNWz6G2S5R/PtbK6g7iS8QC2YBAQEBgcaFdD1/ZflT8Au05TqqYRM8u3jyYQFQRQfT7nNRzW3rznhxstO9k7g4SPemgMktofcykZWFNKsEyh1noNpwHLLUHIjMVkS3jIRYKoGo2LnoV2wG/PI4BF7gEJDJITjHUCNyrA9EKEqEmi/8/rjHezynksEwIBlwIYTgZAwsflVjCReBRX5+BRYs2OP0fOch7akbkq90HtLO53UFBK4mpNBmxB2DG7SttMD7WK59fERNTEJEtb+kfo6bnxxni0mm9MbcpU/ii31vQxPiexHkyh2nYPIQK5VWGrDxn1QaUxDnsXWmRVh86lOIGQYMC8jKQR3f5HkSiNxMkT/XbTB6RsTVPPYUA4n1VsR8dgpR356BuNxsEyxULfZXpqO5udh16RJEnMjmakCObSXnIqoRN1A4gFWjJpapoR6hDK3ZYnjoOmpcn7PBisBV52wiD2+XXyrAEEFnNmP9uXPIleipo6dY60Peyer4vsQm5zfx1/EzsFp5vNl9NPaNfwTf9B8PpcxzLMwMlCG9lRyf/bMPw+f9iifWrYPFrrD0k4N7YbGQL8D7vaXc4otSQ0BAQECgPsiVcsxd9lSDCpY1wX60GUdYrK0macZLU9zWG0nKTQhedBLyc8XEOtv2JMdDnlGK4MWn0Dw4wKd5LnrOVWLI+hISHYwXf38Mz742yb2BgsUKZHmex/VETno+/nj7T6fnyXiqXb8k+jPjIu6qS+cOtQ6+AgLXE8QpYdiMAU22f9IZn8Qk5Foy+fGx+OnMJ5j82Bh0H9kJg6b2wasrnsYnu95wmkfxBHGpcSVusBcU7Fq+nzpkvrfhZaw3L8L881/6nJ8g53r/x3fUdPUnDt0NdW+whzg5n96bin8j1D2hwkCFHuUuGlFcCet+2kIFcU/+9ADNkzw7/2Gftiu4VIR5ryzG7ORH8dHd3zg4qf/43EJwrGe3vGoqS4U8iTt27tyJFStW1DyeMGECdu/ejREjRkAqra3rTEhIwPvvv4+//vqrRuRgMpnw5JNPoqkQBA4CDYIIFCIe6wrNyARIY/0gjVT5JAAIGNUcyra1RfvyeA0CJyQCUh9+FUVAwE2JCL4lCaH3dEDYXR3A+1hcqu5pK16qL7yBhbxVEBStgxF6ZztIIpqmMNNwuhiciwLY4GnJUHWPoMUC3vAbENsk5yYg0Bi0niJCkC3mc0DKi3FLdnu3BflTusYgIcT93x3ZbGYfR0tbVYQIHe5mMOA9Mfq+Lkb8DQwYaf2Ka3adK/C6zsYzeQ6PiQPEhM7RXreLCVTilzt64NlRjh2R20S5ngCvL38fy8GwNuG4FpD3VndCQV5PdXRTQNwW9l+w2WSp5RIEqaSk2V292HA6H88uP1GzvwX7fLeWTAzzPUATEBAQEPCd5uoEvN/xNUyJnYAW6gTEKWNQrNPgVF4UCnX+4HgG6cWhOFsQhvxKPxRq1cgsDcT48NvRObC26KVLcAs8mTQagTIe4fIKRCrKoJEYYObEyC4JxOlL0XS5kBeK0lIN5rafgHe7TsbPfWfhq17TYOI8F5eKpRxkChY3RvTxsJYIOosMJUY1yk1KKo6oRqssx4DWzTE0viV+GDoJLQNq46kTBXHgHdqgOpNSbouFxGIeIhEHns7xOG+zOjMFOovze/l60E2Y2KIdGDCwWjwn1We28PQeBQSuLURw0KKTY+xAEFk5BJ/IduvINmlwB0TJ3IuyyWTs2DkjHJ4jxYp3v3sb3l77IuYufQqDp/WDROqbk1g1hzfbxp6e2Pf3QYfHpAP0wJt705+l+ZUIXHQE/mtOQ7Ungxb6By08BNWxbES1CMd7G1+its/2uPp8CJxCAnNzz+4JnAQ1XZk3HD6P7jd2QWMjKfA+mR6jVDhc4mRZZQhbewbyUzlgyvRgygyQp+RB89cJyDNqrXSbGpKEObkrhf6s1qjgF+RHuyHVhx1L9uHzOT/UuDes/m6jz9vGJXmPVZsMvpEWAQEBgeuQtr1b44dTH+O2l6egVdfmaN4xAXyA9xzCQwseoYX71ZDi4Flf3gU+MRSWcL+ayx5TooX00HnI1x2mi/TgOUjLdXjyx/vx/G+P4OMdr9N/SadUpkIPUbGzC2k1JLk/9oaGFf+XFVag15iu6D+xJ15Z/jRiWkW5XM/SMhLw0ACGiBw4UgRbpxi5ms1bzsDsonDhtT+foc5V3goUSGHCpEfH+PCOBASuDdNfnIT4NjEuXyOuLu6K9W4Z1RMh/u6vLRKGwZR+HR2ei06MxL0f3G6LSZY8iQGTe1ORRX04cCzD6zq7/3Es2gkNUGNw5xb0Z7EFkJcAiiIR/FOkUFwWQ1IhgrTYiuR8KRYPm4b7O/TyKSYhWEJkKJ4Yg5IJUbBGiMFLOCqYcvWxrU1LQ5/4OIjs/quLrALg5PYDTd5mmQO+Xm4w5Hsztaz9fsLjQx1eV54rQegZHcTFXj5/vbg2qKI7Biz+gLiUsblRuIFn7QQOPCDVMi7fL3GsOHbZJnb3lykQqPAeo0qkHER2Dg9/nU3BGzu21+xv0ZkT9Ng8EZN4obmf4+dyVRFiEgEBgf9jOg5sS2OSW5+faItJ2vtWXP/4D/ejfb/aegXiEHvH+zMhjgoGr1E5TcVIyowIWpWK8O8OImrJabzftxfenzIcX/75PJ74YQ5YD26y9vOoo2a5bkLjjdL8MvQe1w2Dh7XDy69ORHRMHTe9ci1wgogKfWsG4o6N87bTbtR144y3Vj+P/pN6QWwwQVTgvjEKmWOeMr7WnUpA4Hpj5qtTaaMEV3gSS9381DiPjnTEYXrMvTc4PBeXFIP7P74T76x7CS8tegL9bupZUxDtK4c3Hve6zv41jp3jw+PDqMOcL3PmRHBhP49AYqZm7WoF2FcCaaTUtq+LQrmrQN2YxFdXzqaGCNrPHjhPf/YP8vPZ7boaEqet/3krfnj2t6r9GbDxV1t84gvkd/KacZ3HJD/++GPNz4GBgZg3b56DsKEuY8eOxcMP1wpUtm/fjszMzCY5t2v/myvwr0XsJ4NmSDxdCLnvHABb7tn2hfGTwJyjhXZnFgxnisGbfVNQUXiAN7JQ9bYlZdkK3yxm/IfGQTM8AZzBCv2h+qt1yXuSBMqhaBWEyMe7wZxVCbbCDHGgHIZTRajcerne+3Q+CA+20gxGJXVyvAie0hoBIxJgSCmBdk82rAUGZ+EHEY4key42EBC4lkiUIgz6mMHZhTwurOVhKgNEEiB2oAgjbovCOLES3+5Ix5aUAlg5HsmR/rizbzNM6xGHlNxKzPxpP4p1ZqdJ49fGt0O76IBGO8+zeRV4+I+jOJfvXbWZXebcbYaIFg5nluKch45KZLuPN6ehT8sQKKoSfucLKqkLRWNQqrfgngEt8E9GCcoNV9c5oO5nIheL0K9lCLaeLcS1xn5CP6iBnSFWn8jB0yOT6MREfVwmbu0ldGkQEBAQaCoCpBpMjBlLF0Kvvz+GwaJ3WEdvltOlGo1MjUv6dGwvWI1T5Udg4c0Qw4IBoXooxbXFNPkGP+wwtYQO1ZMrIiqQqzCxuLlFV/pMjsG34tjHB/TH7Ha9oE0pw5YCZ5tRC8tAZ3eODkg45GkrEapSYUhsIl2OFeag0KBDrF8AKtlwnCr9w+WmmbogZOhqJ7HEDAcWricPTawVxUYd1FLH+6RSIsUn/cfhmS6DsDnrHBZd3otL+iKHdUjq/Jn2o9A7zFbEICBwPaIOUOPj7a/Rrvfrf9lG7YuJ28HAKb0x46XJKBEBC9Yewp7jGVTQmpQQjmnDu2DsgHZI7dACz49606kLPknKPfbtvUho03gNB84dzsA7t32Gy6m2whNP5GQ4z3Hc98HtOLv/PLLP5dIRsCy7HCCLHbkZBZj3yhJ0HNSuRnhx4dQlKFSO1yFOo6Zdpq3EwdNb4wWRCLyIp407i8t1uO3VqTi1K4V2+mkspFllYMoN4ALcJFp4HmXrTkJiN8lLbI7bd2mBwxu8J0KaGhFTG/PVp3OuPZt/24k735hGnSaIu4NPxxWJMPoex+SSgICAgEDjERodjDtem0YXwshpn8LgpdtfQIAKJy7kYv62w9h5KgNmK0uFb6IRrem9lNzv1AcuQZ7uHG+wVg5WC4dRs21dFy+ers1PMCkXYRicDF4ph1TP0w7qFI7Dw3cNxYRxXVFyNhs7l+6r13sk51acW0q7LPad0AN9xndHyj9pVPhAiqhXf7sRK79aDzbau1sVJ2UgtrrOCxkMZlRUGBAa6u9UZPHiH49TAem+VYfw52draHfVuuOyR766G+37t6nXexMQuJoQQTIpoCExycZft6GyVAeZQopB0/pSJ5ei7BIs+WAlDq0/Bo7EJD0SMfGRMbTLar8LOXjou79QaTA5iRtemz4CcaG+u8V54+yBc3hnxuc4FxcAxHnOPWafzXZ67qlpQ3D2UgGyiypoTELcZMRmEaRaMcSH9dCsPU2vZUvWl6P75rk1RU7nMgsgHtIWen8ZdaghbntmhRX69gEwxaug7xhg12yPB2Q8eCvAaMWOzgzkvCoq8PmYMZi5dBn0FudrssgKKAuIgIBsx0EkYyGSkMYQVXunxSPVgYX34n1eKXboLmqPwk+B5K4tsaXyEqwhVa4PdSEChTIXxSMMwItFkF+UwZRgdq7sYAFRpQTgRGAsIoiNIptzhRvsO3NrpN4bMxFH07rihSWnTuHR3n1QYNChzETyJCKwlVJI5KxbkQ6ZN5rcrPFF8AICAgICNsLjQjH7rel04TgOY1UzPHY8J5BC5VO7U7Ds41U4sD0FphbR4IL9gfZVc/w6I5jzWWDqFPMzBiv4rHKIdRYMrXKnSjuc7tNX8fj39+GG2wai4HIR9v19qF5fH+nOXVZQDmVzBQYOboMBg5Jx5nQ2ysv1iIkJxrI3l2L9iXNX/CtBXHPJfCYpvK07t/zKsqeQeyEf+9Yfw+K955FX5piLEosZPPPwSCS3algDXgGBq0FQeAA+2/MmFr65HJvm74CuXE/n0Ifc0g8zXp5CY+2lH67E4Y0naDF5m96tqACANHHqNaYb5o5/D/pKxzl/iVSMZxc8gtCY2gZtV8rJ3Sl4//YvkXfRe3PaSylZTs8RJ+WMEy+j8LL7PC7JwRD35HfWvVgzTibXM3U9HCY8kX0+D5/88iCeGfaaz07MjYLIOSZRaZRo2aU5dZa41tg3r2honmTNd5tosxHyHdb9fXQH+T0dOWtIg473X2Dt2rU1P99yyy0ICPBeizlr1ix8+umnDi4QM2fObPRzEwQOAo2GskMotLudJ7KqEckYmhAv+PoYYG2YpIg31g7CRRIGTKAMXJn7m4BILYFfn2h6IyJCAVXHMGj358JaZIA133Gw6Q4xSeTbIYv1d3CysOTrYDxd0qD3U3uiAKN2r3oSa+Tw6xVFnShM58ugP1pABRuSMBV9Thpaf8s5AYGrjVQlQod7RGg/m4dZS0QPgFhmG7h0QRC+m9mdTtoTgYN9sX/baA02PD4Qiw5cwsYz+TBbOXSKDaTODe1jGk/ccORSKaZ+u48e3xdIkfvJrHLsSS+i09v9W4VSscWyOX3x5ZZz+GH3Bbfbnswux6rjObi5exy+25GOd9efdeXM3iDIZ0c+l2X398G7685iW2pBjVPk1cbE8tieeu3FDcQhpG9ibTDVLFSNznGBOHbZfXcFV5DPkYgcpnTzXbH9+A2tkRzZOO4cAgICAgLeuTG2DRamOwsIqtFIFQhWluDzc1+CpS3uALnIgnBppVMSNkKpxcTEE1iW1gUF2toxR6W5tphAySgRJAlEqdX9PSVQEoDJ7TuCETF4ts0MDInogrU5/yDHWIxz5YUwsQxMLAnNXWeBOStDxQ32dA6r7cRt5e7HmfIyVJq3QC2xxUYmVowzFVHYXZjouF8POXkpwyBQ7j6uiFJrMDOpG25r3RW7C85jXfZJVFqNSPQLw+SEbohTC4Jrgesfkoi65/2ZmP32dJqsIt1hiC0zgYzwOrWOActxNC6R2nU3TeqeiB9PfYw132+mRXWkI1mbXq0w/sFRaNHRfYfR+nJi5xk8fcNr4NwU/bmakD3zTxqdlCaTwsQuvXmHBHy+7y3Mf3UJVn653u22Z/alUetmkrj47Y1l1N63Gl4iBtspEXxI1TiWhGckYHHr/257nRRkEhQyCVp3aY5Pdr6BH5/7DYc2HPfaAZUXMzC1CAbnJwejt0CWUQTG4vg5kKP7bTqLyhvbgVc7irFEPA/VzvOQ1BFdk8TB0c0nca0hYpqOA2sLLkk3vcTOzZB+zHdnOAKxXt657B9aXOor5Pc9tvU1dHAQEBAQ+I8xpF8S1m455fb1wAAVCqwGvPLZ37Bydvc6RmRrxMaCivkqhyeBF5+DIs15bo0UIFQTEKZBQHQgLnYMhr5jGPhqBwWWh7LQCnW6AdEyCYYNbU+LiF/84zFaLL3uxy20UIAKJHyYOwwMq53fIvmWtn1quxDe9/EdyCwzYI/We9MYTzGJTCaBv7/77n0RCWG46aEbMf6BkTiw9ii2L9kDQ6URCW1jMebe4fR1AYF/g8jh/o/uwD3v3WaLSfyVkMlt+cGYllHoNKgd7RpMivikdk5ynZtHY/lzt2PZ3hPYdfoCjVu6tIjBtAGdkBjZeIVERzafwPM3vmU7voiD1YvAQVlQidN7U3Fy5xna7bTn6C5IaBuHec/fim8W78SKbcfAK6RgtCbIU/OhOJ0HEWu79pE4Zv/qI3Rs+82S3Zi3cr9tp1GBYKU88m8KhpnqNojyy004Qmr71RzEWsdmDv5yOTpHReGPaVPx/s5d2Hvpku1SRxwOKgFlPolvAEkFB4YU5turpKsabJHXbUIH758bY3DftdqoNWJPyWmYequpQwNftUNR9f6JgCBPDhHrugkWMfmU6BkoU+WwBrH0/fLk8zCKwbhxa3CFSipF17jauCBZE494VTgu6d0XjelKyTyR4/7NLIsN58+hZ1yt0J9nxbBUSiHTuBb4PddxJGJUjSfCERAQEBBwD8Mw6D+5F7b9scftOqExwchNz8cn934LVioB27MNmdBzXEmtANcxETiZASa/1GNMEhIdTAUTdZvD2BOdGEG7t5NmK68sfwp7Vx7C+p+30CLci6e8N5UVMY6FsCQmade+9l700Jd30YYv1Q6qDYXMF3vqYk+ceyfNGYkJ9w7H3gPp2L4nFUajBS2ahWHcqE4IryPWFhC4HgkMC8CDn83GfR/eTv+WSfF7dewR2SwcXYd1oDEJaXZg70xNYhXiGEOaHBwkomyWoy4y4x8c2aid8fevOYyXJ7znswMyEY2T3MqZvamQyCTUkYbMh3+5/x389Pzv1JnFk0PEoY3H0WNkZ3z75Dws/2R1o72PgFB/6vz5wdZX8fMLC3Fs22k0OWTo7uJjI8KtU3vO4lqjDlAhqWfLmsft+iUhsnk48i54F7LYY9SbqMM5yYf5yoOf34WQqDruPwKUvLw8FBfXioF69uwJX0hMJHUIteTm5qIpEAQOAo2GX/9o6I/kg9O7VgKr+8Wg7K/zDRY3EEhBP6FydzYqNlwEXyfZXRdeZ0XuuwcQNLEV5C0CwFs5+PWNhrxZAIrmn4YptdTz8cJVkIS4Hrxaiw0o+vU0rIVX3o1QkRxMHTG8QQbpxEmCLAIC/1ZEpNuMG10CKcqRuegMGuonx0NDW9GlqXhy8XGfxQ2ECoMV477cXfvEOtAi+i9u7YKIAO82Wn8dy0a4RoF31jXuIHJ0+0jqDOGnkOCFMW3w3OgkrD6ei2+3p1PBQWMT6idDkda90KyxxRVyCQOTjwVf1fRsHkw/67puGzN/+gf13BU+2JCKUzkVVHhzJqfC43l+fktnjGwfVb8DCAgICAhcEbNa98Lfl06h0uLa7e2u1t2xLOuHGnEDIUBicFuzK2U49I6+gL/TOtc81zLAVjjw7el9+OT4LgQF6UCanrvaB0lUZ+kNGL39fcztMAk9QyLgLzXgjuZ90EydhDt3LsRJU5qLbfmqOSgeSYpYRPq5nhS/rC/EM8d+RrahDCJ0QYhMBwY8ikx+KDMqwZGMtx2s1b1j1IjYJGhkCp9ikgERregiIPBvhRTeBIS6FqGKGQZiF38qwZFBmDn3Zro0BUQA8N7tX/gsbiCU5JXh0b4v1jwmtrxE5PD8wkcRFOG9eGTLwp20O5O9uIHAdk4EH1z7+TAcKQLiYNG4t49mLERkYPt5RO9k+jmqY4Jx309zcG+FAdt+24mlH/ztsnucsVUodP2b08KnakT9m0O1PxPKU3kO6xIBQ8DyozAlRcASH0SFEWGMGIZtqRCXu56fIYmWxoR8ZvXtuNT1ho5Ov3N3vTMDL419p97n991T85F68Dzi28TgUor7RiMKtZx2uyYJnWsJ+b2o/t24kn0ICAgI/Fu4ZWJPbNuT6tbFYcpN3fDmkq2O4oY6hayw2nLS+l4JkJ8rdLoOknsAgYgUf39rOXJvagljqzpFyGIRDJFSsKSr+CUOk+/+Fi89NhotiQggPAg3v30b2reNwaP9XsTZ/Z47nbYfmOx27HThYiGen7sM+QU6MCox0Wd4hDG7v6gPHpQMeVWht8d9MAy9v13re5yAQJPFJGJxjauBPRGBfnhwdF+6NAWkiInGJFXjU+mFIhg7xID3cz1XIC7Sonj/BTzW/6Wa575/ZgF6j+uG5+Y/jOjMMgT94b4JBWHzwp3QhfvXihuqKO3Aw1KdRxJ51lpDyoNjOOpcUF3sf1Mbm7g4hFHizf5DYeIt2PTXP/j5xHloo3mUdiBvgCwcmDrihrpQhx0vjnaxOSK4G9Vbg6Qo71HduIKoGqpmfGoMIkSAkgO0ZEaHzAc5Hqv6HkDen6REDKtVBGmoGAaFhe5KTEQOdRwsXDEkMgb+CkfXvnsSx2LuyV9qRBd155DK8l3/jr66bRvGJyUhQROIzApb0w9WL4PJykCitoCR2T4NFa/E5/0noX9EbRHTtUCISQQEBP5r3PLsROxbeYgWgLpi4qOj8fmDP9ImL1xCpLO4oRqRCFyrWIjyS53kdNUxyc8v/o6lH/4Nq8VzJEC6wk+Pvx8v/P4YYlpF0cYt01+YjLZ9WuP+rk8j43imx+27De8EtcaxEVQ16ccv4uVx76IwyzfHbU8MnT6AjtO8QdwaBvRpRRcBgX8rRLzgKSZxZQhv7xjTFFgtVrx3x5c+ixsIpIv/k4NfqXn8/dML0G9iTzzz64M+OQSQPElJbmmjihsIxLGGEBQRgEe/uRdmowWbFuzAik/XNHrOovo4nlyf65N78gW5Sg6Tm/uMO/rd1ANKtcJhfufud2bgrVs/9dokqy4f3/MtbeARFhfi0amDuJG+vPRJKty5llzPMUlAQAA2b96MrKwsZGdno0cP3xpslZY61l3L5Y7xZmMhCBwEGu+XKVCB0Ls7oGRxqoM7gkjKwG9ADCShSnA6zzZonmBUEqg6hkJ/rADlqzN835DlUboszXFfGhlUncO8ChysxXoU/5FCHRR4IwtxiALqbhFgVFIU/XKaOkH4gjhIDlZvAUzONwuRQoyAkc18fz8CAgKNzuHMUlwo1tVrm3KDc5Jyb3oxZv96EP1aeu+YVKqz4GcPLg8NQSll0KNZMCZ8tQfHq9wJ3Ah0GwWZWORR3NAU1FfcQNAonYc7fRJD8OusXnh+xQlcLvVdqEbiqDUncqmwwxOvjW8niBsEBAQErgEJfsGYN3AGnjqwEhmVtZMZKrEU9yb3RdcIC85dro1VSPmNgvEcoyT4l0AutsDEShGqUGNkfGssOX8c7x3dDpnUCpmMA8uLICZJaLtZfjIPQ57neBEkjB5/Zn2MHUX6mjtzgDQUNyYMwaGjEijktecgZlhIxSxp4Eopl5/HaycXw0/sDz1rQrw6FONjukItlePJoz8gz2iLaXgwKDJXTdSJALXcjEojmUiw7ShOFYxMPQsdnO/dgTIFnug0oGEfuoCAQKNwbNspJ9tgb2hLnWMY0jlp7oT3kNTDewFJRXElln/qOGnPBagdxA3VKAtZWFUMeImLwhnSyclo+1EllaBt8wjc8dpCpFzIp88xZiukafmQW1mnZKg5NgBaImSvUzDEy8TQDWgBkckKxTnHz4Uxs1CezKGLVC6B2WR1lWtpMhpiJ+0f5GxrTbpCvb7yWXw+5wcUXPb9uyfJj62/7/babYgkTYTCTwEBAYGrT7O4EHz02s1469O1yM6tdXpTKWW4fWpvMKFyGMyuxQ/V0M7cHOlKLoMlNhAyOxdSkrglHdL//noDFSka4zXO4gY7zAEMLCoO0Fsx9/2/ITJxNQnRiHANBk/p6yBwIDWyfGQI+OhQUCW3xYrUIh3ev+cbaPxV0FcaaDHTiDsGQ6qW45kXl6CoyNapVWziwMrdVyI3jw5GWUUJjFbn9x8UqMLtt/f3+LkICAg0LcR5jYioqyFOC+pNZ6Afkgwu0LGgUFxQAdWONGhdiLn+WXUYr9/8EXWk8EZlcSUWrTvi8Jwp0E7cQE/E9bYahQEyiRU6kxwGlRy0lwXHI0CsQDtJCG5/YT7SMgtrYhLR5QKUTgoDq6nNF4jknvMNNpcFpkrk4HodpY6HdXkGNb5zha5XIBWd1dmzwyPe3wrez0qLyHhySnoxRJUSiFgRmKqaIU7Gw5hgAS8DzNVyMjULNoCFtFACxmR3BnWSQsrTRYjNVQGzHJ/vG9oer7Wfhc+OL0WxuLLmeYNWhuKsIFjNrktJiEhvRUoKwjWOcQ5nlsBMt7GdwMcjxl9zcYOAgIDAfxHiOPvmmufx0V3fIDfDNj9X3Tn79lemUodQi8l2D+ejvDgzK+Xgg/whKq29T0S3jKTNPJZ+tAp/vPOnz+dl1Jnwyk3vOxSxRrWIoG5O3gQOp3afxYd3fQ21RgmD1oRm7eNoTELu1c+PetNjUW/dz4YUQ1e/f3tCooMw/cVJPr8fAQGBxmff34c8usG4ou765Bqze8V+WM1WtwIOeyqKtVjx2Ro0JkRYEdk8Avd2ehIXTl5ydHBrAqQKqc/XwcaivuIGgjrQOU8yaGpf+uF89cjPKM2vjUe9QYR1G37djrDYEI9N+56d//A1Fzdc7yiVSgwbNqze223dutXhcUJC4zne2yMIHAQaFVm0HyIf7wbThXJY8nQQycVQtgkBo5SgfOPFhu9YIkLQ1CSIpGJUbPVuT+YNrsIM7c5sMP4ycJUeEtMsYDjumGSu2JQJVddw38UNATKEzmpPJ9XK1l6A6VypbV5HBMhbBSFwdHNII50v4AICAlePzHqKGzxxPKsc3RK8u6w0D1Vj69n62Wx5w2Dh8OJfpxyeaypxQ7BahhJd04kb4oOVKNVbUGlsuDCuGnf76N8qFLueHYqdaYX482gWTudUIC3ft2CJCDsGtQ7DgQslMNh1pJCJGTwyrCVu6Rl/xectICAgINAwOgRHY8OoOdhfcBHnK4rgJ5VjaHRr+EvlWJm9wGFdxodWB6TmVi62QgQlPuk3FhIRg69P7aWvqZSmGnGBlechIkvV/df2kwhKiRldg7OhkDjej8otRThuWYrOgW1xuEQKmZSFUmaBTOLY6chCugzmH4aVE8FsJSG8CN+kbcGEuPY14gZXiBmeCiUsrATRykB82/t2VJjMePfoNuzJu0jPkRGJMDg6Ec93GYIWGu8CTQEBgaaD2MI3FiTh16prC6/rkYKjrX/YudKRa1eYa+cHsQXwz7TAGCqG2Z+xXRx5njo3EHEDKcIU55WDzS3HuxYrvcZwEoCTArxKAnO3GJgjNfBfd5peK6vRd4t1EjfYY+gW6yRw8LUj0ZVCusmV5pXRQs4rRVvmOubsNborFmZ+g/3rjmDrb7tw/vhFXDqT5dM+i3NL0WNUFxzffop2f6pGKpdi1pu31nSIuubYbopXvg8BAQGBfxHtk2Pw+zd348iJS8jMKobGX4m+PRKpyOHtpY7JP29wdg5HxJ3nuQWP0J8XvWcrJNJ3CPO6D1MgA6mes11OxSKIqly28wsqsHjTaYR1bYmyI+epuIHrkAjYjwdkUhjVSqw/kw/mSBpEVYVAv7z0B4Y8M7FG3EBgWECi42BVE4WG4/09NjIQHz03GeXFOvzw43YcPZpZ4+jbp3dL3HffEERHe3egEhAQaDpyzju6pxHEWhP8Vh2HNSoAbISGjsskOWWQFNYWObriyOaTiG8T6/WYkYmR2JWe6/CcKdTz4C/CvxztY7IRpLKN00l4kVsWgOMX4qEzKVAOI15bswl+WbXXIU4mQcWIKLB165u8Gx/Y3BYsDCDlnEQOEbwC8tcOg3HR4K4aVu2DHJusUv22yTH8WPBKFi2NkSiu1ENvNsMUb6XiBlfbWsKtkGVLqcuDIrUEshwdrEFyMAYr1CeLIM/WQjvFdQFrv7D26DusHfaln8TWNXtx5mwB/mnt5/2cARRU6DC0ZQvszs2Ema2dz1JIpHi+90CMTkzCdYEQkwgICPwH6TSoHX5N+5zek7PP5dJiW+KyRDpnf3TX13QdeuuReXdQg7S2tFDlr6TFoqTL+tIPV9b7vOp26CYCDNI1PSgykM7DeRJHbPhlm8Nzv7z4BwZN6+vz/GBccgzeWvM88jOL8NMLC3FyZwp9njg29J3QHfd+cDvtTi8gIHDtIG4vjcU/qw9j/IOjvK4XER+Kg+uOojEhzaW+eOhHh+eaStwQHBVEHSiaivi2sSi4WOjWFag+uBOvDLq5DwZO6Y29Kw/SnFXG8YvISnOME91B3Ht63tgFR7ecdHAQV6jkmPPJnddPE6j/s5iE53l89tlnNY+lUimGDBnSJMcSBA4CTYK8eQBd7GEUDft1kycHQTM0HvJ4DRUVWAtqO65eKR7FDe5geegPer+hMn5SaIbFUzEEI7e997DZ7cFWmMBWmCHWyKgzhICAwLWl0mjBiSzfgl6xSIS4YCUuFnu+DlUYrdAoJPRfd0zvFY8dabbuQf827hnQAheLddh0pvGCC1fjst3PDKHig4cXHbuifSWEeBaRDWwdRhfCr3su4LXVZ3wKLvamF+H+QYlQyyUo01sQ7i/HhM7RCPETru0CAgIC1wO9wpvRxR6l2PGewJIufMQS0kNC28yKMSCqDe5rNxAdQ6KRWlaITK1top1h7G8YIipqqHsLiVWXO4kb7AnXpMFyuSPtdKpRVrVAd4GE4WEV8dQRwsxZsSr7ILw5JUer1bij2UiMjukIlUQGqIEFw25Frr4ChQYdIlX+CFf6lrQWEBBoOir1RpzQ6aDvFgdGZ4Yso4i6FLhCLBXTRJt99zV33XNIESRJ/rljzH3DsX3xHnD2h/IgNiAiB3UuC3VqOUQpF2ixDOevAC+Xgqk0gjGYUTGlGy2OtKgA3q5LKSsB2Ob+wJBEaLaep89xCgms0Y5zR3Vhg1SwBikhqeO6Nv3FyUg7dJ52mW0qSPHSwkvf0En1D+786or2FZ0Y6fH1Xjd2pQth6Yd/4/tnHAV57iDihqnPTIBcKaOOHqExIRg6vb9P1tsCAgICAk0L6RLXrVMCXezRKOs3bySuMIBTStB/Wj/MfHwsWnZohtSD51F42eZYx/uQd+HFdX6uE54U+qlIjynwseGO4gZ7VApwSfEQn0inD4m4bu3KI0C44/oSMw/GyoKVE+cnIDxMg1lT+2JE32Qo5FJEhWnw0Ye3oqCgAqWlOoSFaRAcLDSAEhC41lSUVCL9mGvHaTKql+aW04UgkUkQ0iwM+Rc95zeI64FMIXUQ49ZlzL03YNmnKx3m40k84bijWiFCpKYcfRPPO4QtZE4nOqgcQeqz2Hq6DQxmGbQtQIXVqmwRyH+8iIch3MUJcD54YNMTEoG3iOl+RFVzQU91HYiMRzbgZK6Jxj7maH8aT0nzdWDsckOyLPdzPXXfKCOu3T+p4pCEWbFt5j1YlZ6CFw5vcL8pA8jyihG6+DKkbhr0xXiIScg9q2/Ljuj7aEf6+Mv9/+DjvbbmHt44fCQdL/i1hLF/JMp4C6L9/DGhVRsEyBU+bS8gICAg0HQwDIPuIzrRxVUHbXo71RvpWN8TIoMRJBkxePoAzHhmPJq1jcPJXSmN2njEk7jBHaTYduOvjqIHV0Q2C8PMV6Zi8LS+kClkdP7s4+2vIz+zEGWFFQiPD0VQuOc5SgEBgaanvKgC6cd9a55NnJ1JA6SCS7a5EXdIJAwkUjHt9u+OUbOHYPV3m/Bv5L4Pb8f2JXubVOBAhAJ/5HyPTfO24+tHf2myPAmJSfrd1JMu1Y01fn97hU/7JfckkjMigjVduQ4RzcIx9NZ+UAcI801NxbfffosjR2rdGCdOnIiAgKa5l7pzSxQQaHSUHcMa9BtnOluKop9OoXTlebBN2C28sZElaODXJ7pG3FANETXIYv2vqrjBmF6Gim2XULkzC5bCxhOICAj821l04BJ6v70Fv+71bZD886weSI70bmFmZTm8N7kjJG6Kg4i4oV/LUOoA8G8kr8KIvHJfJ+UbxuUSA2b8uB9n8zx3gvKF6V7cFCwsh73ni7D5TD6GtYnA+kcHon9L790ZLCyPL7aex9fbz0NvtiI1rxLf78pASm7FFZ+zgICAgEDT0CWoL01sV8OBgZ5z1f6ulgvaEOwqP4M5B3/Fe6fWosxUO562Wr134QtXeHYHUkitiPSrhEph8Si0IEgYrl5NGnqENMOUhO42cYMdUSoNOoZEXTVxA+nisOvSRXx1cD9+OHIIF8uabqJNQODfxpJtxzDq6R+w9HQGjJ3joO+XiLJbusPY1vVE7/ub5iI2KdrrfkmB0GPf3gdG7HoiZuIjo9G+XzK6j+zs8LyozP01i1x3zGoG+igF9H0TYegcC5HZCmlOGcSVRljigwGZBFaFo7ihduciGNuGwxxji6l4N+fmdFyJ83pF2cUoyipBU5KVmosXx7xTYyF9JYy+9waPr1vMFhzZchL7Vh2inee+OfI+Og1u63W/pFjst9eXYfkvqyGazCBvdBFWazcjS5+D6wViltQYi4CAgMD/C6O6ee9mXX3dE1UaoO2bgKJ7euIvjQWz/1iHj1buRKWutnhVUuLdaYjx1mRPIQMf5A8+1stcZWgAFTbW4voCTcIWqYGDrJJDn1ZxGD+kAxU32BMerkFSUtRVEzeQmOTQ7jT88f12rFiwB3lNPI4QEPg3sezjVZgedz82/Lrdp/U/3f0mopq7Ugs48/CXd9NCFVdMe2YCkru3RPd2jvP30oo66/O13U47xl52q8kmrphJ0Xm2ak0GqGwFlLfhif8CFXcR0VVdeLPnmIQcl2ftDsiLwLMMXXIrtVRsVtk7BvlzuqP41vYontYOeXO6oWxUIjipbd/qQ+UQl7sXeVQfSCzlbAIHkU20QQTX57T5eGD/EpzVencDtwZL3IobyHcw+h7PMYnZaMbhTcdpTHJLbCusnD4D3aKivB5Xx3BY+PTv2HrXzwiVZkOnOIU1eRuQbXB2BLlWCDGJgICAgCOkOUY1TLZr59QatAaIoiMh6twWO84U4+nHFuOnLzdDr23aWgFf8aVpYY8bu2LEHYOpuMGeiIQwJHVPvGriBo7nsfVSOr48ug8/nTyErMqmc6YVEPi38cc7f+LWuPuxrY7jtDu+PvQ+QqJdO5TZI5FKMOeTWW5jkttfmYqkHq3Qrt914jxWT4qySJ7Es8jjSkk7lI63b/30ivMkJFc1avZQj+uYDCYc2ni8xn3j831vI6lHS6/7NmiNmPfKYqxYvAnlN/nheH8t5ufvwWVd03421zImyc3NRVZWlselqThw4ACeeOKJmscSiQRvvPFGkx1PcHAQuGpIAuXw6x0N7d76J1l5EwvdvlyYMsohUorBG9wr664X6jpYXAuImKH4txRY82uLsMrXXoCyfQiCpiaBkTkXZPFWDoZTRbAUGsAoJVB1DBWcJgT+dZisLFYfz8WqEznQmaxoHeGP23onoE1UrTiBFLM//+dJn23AyPZEkHAquxzrT3uemG0brcGNHaKwWCPHtzsysPVsAViOR9soDe7s1wxTu8fR9e4e0BwbTufByv27qjXK9GaU+Cg4ax+jwcUiPbQm952r3XEqpwKqOiKx+nLfoBZoH+P+ejxv70UqUijS2jK9JDkyOCkcd/Rpht3nvUzoVFFhsGL+vsyax9/tyMCkLjF4f0pHSHws2hIQEBAQuDqEySPRK2QI/ineWvNcmVUJOWOFRFQrHqim3KzA4WLbfbvSYsTCC//gUPFF+EtlqLSYodPLofEzuBUmkHGGVOQ9dpFJLBAz3sUSIruZC45jALHzOdvTKbAFrjVpxUV4YN0qpJfWFhC9s2cHxrZKwvs3jIRCInU5gbVr+f4a62zSWSkowk0nWQGB6xSjxYq1x85i44lz0JvMSIoOw7TeHdEyslZIu+lQGt773UWXMakY+j4tIDJaIM+onYCd8vhYdBzYFkc2n/BqmZzYpRmGzRiAsLgQLPlgJV2f43i07p6Imx6+EcNnDrLt88lxOLD2CH2NICosAwwmoE53aU4M6MMl4GRkfEvG6CpYYgNh7BAN9e50KFILwKnktLkp52UIr+8UDVl2BRi9GYzWBM6DA5rIzEJc5lykU6Y3oYThwaplEHuJTZJ7tsLF05c8ulm448zeVIivcEw/c+7NSGgT67GgbPF7f9GOcdUT/X3GdcOEB2/E8e1natYzh6ug6xIJa6gSjJGFMqUIyrPFUEySQ/SQBButO4GquqeVORswJLwf7m0xAwypjBIQEBAQuG5oGRWKsT3aYPXBFM+W9SwLNlAONkRZ81K53oj52w7jcGw4ZP4KmCuNUB/NR2WfGPe2dDwPRWlt3OAi7LGtJpN67dxKj+GnBEyWGmEkHx7kcZNOHTw3HrkapJ/NxdtPL0J2Zu246seP1mPomE545JWbIJNJXHaD3bl0H3XNCgjT0JgkMOza53wEBOoD+T3eunAXdi7/B2aDGYmdm2HcnJGIT46pWWfTgh347qn5Pu9z+ouTaCFg626JOLbttMd1W3VrgZF3DkFEszDqUnZ443EadyT3aoVJj47BkFv60fVuG9MDh05fqsnVKIqACjO5LlXviQQZPAL9tNAoPI/pE0KKcSyz9rpjjABkZYCS6B5YR0cbChErmBiI5JxrcYOFjKVdX19LTXpk3xiNikA5RHQ9u3iuYwSsQQqELDoNEctjyDEldg8FjKzV5XEYCef2Mr6/8CIsQd5zSJZwNY0X1Eed81ez37oVUS0i3G676N0/sfSjVagorqyJSfpN7Ik7XhyFw7m5Ho8rLTVBfqsS3H1ibDDVxiR/Zq/HyMiBuKv5LW4LygQEBAQErg3kPj5gSm/sWvYPRJcKbC5ugS6aIVlZiFkGIv/a18rL9Fg8fy9OtI+BRCGD1Xj9N6ntNMh7E5Gm5kRhHh7c8jcu24ka3tq/HVNbd8Ab/W+A1EV+iOV0KNGvgdmaBak4DMGqsZCIPcdfAgLXGwatAZsX7MTuvw7AYrSgdbcWGDtnJGJb1Qpp1/6wGT+/+LvP+yRj22bt4ui1LOWfc15jksHT+iEqMQLLPvobR7ecog0QiKBh8mNjMWByb7re1Kcn4JU97+PfRllBBUwG367DHQe1pZ+XpWpOpz6Q/BJpmHUl3PfB7QiLDXH5GvlOFr65HCs+XY3KUh19jrgxkHsVETp8cOeXXvdvvCUImTMCkFl2AKgyBfo1YwduSeiLx9uMwf8bPXvanC48QT7Xxub06dMYO3YsjMZaoePbb7+N1q1bo6kQ8U3xTgQEPNiRVmzKpCIHIlpoCLIEf5gzr7yjd1MiUkgQ9VwPMD7YQzcVnNGK/E8Ogy13fSNTtA1B6O2OA3nD2RKULk0Fp7ObYGNE8OsXjYDRzYUJKIFrSmGlCWtO5KDcYEXzMDVGtouAXOIc6JFC9dvcdP5/dlQy5gxOpD/f9NUeHLvs3epQo5DgyRGtcUff5vRxdqke/d7zbHX40JBEPDCkJVRVyTEibiCLzEXn0b+P5+CZZcdhtHguULye8MG0uQYxI0JUgIJ+f1TIwQPtYjTU7cBk5Xzannx2vtA5LrDmO+0YG4DZ/Zrjpi4xKDdYqMAizE/u8B18vzMdb68963JfCSEqeuyMQtvguSHcN7AFnh/dpsHbCwgICAg0DRzPYXXuH9hTtBFmrkrgBg5+YhP8xUaIRTzMrASpFWE4WRoNE+dcgN/Bvzn2ZtkSxn4qI4ICXLukma1idAu5DH+Z5wT8ptQ2sMgAjdrzelaWoedmg4daZnabAA+QqrGk3wtQij07VDQlJQY9Rv0+H4V61/dTInL4YtRYh+d2/7kfH9/zLSpLarvIE/vYm58aj9lvTW/ycxYQ8ERRTglN/GnLdLQoiBR8kA5AdSko1+LuH5Yjo8CxMzD5e31m7CDMHNCVPr71td+QllXo9njiEh0C/jwO/2A/3PX2dIy5dzh9/nJaDmYnP+rxXGe9dSsmPzYG8iqhAsuy4FgOUlK8WIeN87bjsznfUzcAAu+vhLVba8BuXV2EBBa1COYAwOIH8ERjZQJk5YBUCwSsPAFOo4R2SCtYlZ6LV0RGK8J+PEB/1neLhd6D45riVC78dl2oecxqFND1SoC1WUhNTCLJKYd6fyYkRa7dJ8h3FBwViLKCcmpFLWJENJGSdjgDrBtratZPBmO7SFhiAuhEOnOhGIoz+R7FFOT7JQKS1IPp9HGb3q1okmTQ1L6oKKmEUWtEcFSQw+8MmbT/de4il/uLS46BxWRG3oVCVPSLReUA588pUFqIuFHuO1BPjh2DqXHjcLUh3YHi4mwCwc6TXoZMfWUiNbOuDMdW2DoAXb58GbGx7gUjAgICAv8GLCyLT1fuwrK9J2E0283Fc4DIwkGWUQxr80CwKuf7djW9rDJc+NrWbb2ydzTKhzVzuZ46h4WyuOquyfNgzLxLZxzxvtPguycDDOOst2BswgjaFP1wao3jEy8Rgx3QEXAxR0sICfbD7/PucykguFoUF1bigSlfoLzUdcw2fEIXPPnGZIfnti/eg8/m/EDHfNVIZRLc+vwkzHzl5iY/ZwEBTxRmFdOYRFehp0U9fSf0oOPVuhRcKsTTN7yOnPOOxe4MI8JDX96NcfePoI9nt3kUl1O9N6YLCPXHPR/MxMg7htDH6ccv4v4uT7tdn/NTYM5nd2LcjEGQV+dJWJbmiV3FUH9tPYGP5m2FVs3CGCQCqwBM4Sxg99biIgvRO6620ZA7VhzsCo5cuKqQVAJBp0QobcfD4s9XCSbI/+3iFikLRsYBElsOA2YRWLqeC7Eww0Mit0IsId4QtgulqJKBOEsGxuD4XQT9lQr5pXLwneMhG9EcuSFaGEOs9H11DInGsaJssBxH3Rs8aQAkEEOv99wYQ5YrhrxIjH5Hy5C+1SaUJoVbU54Yh/4Te6FcZ4TBbEGIRgWpuHZfpJiMdMx1RfNOCTg1pzXydO6d/uLT0hE2032uZ3r8BEyMHYWrjRCTCAgICHjGbLLg2yfmYcMvW2Eys+CaRYKPDQXkMtJdCaL8UojlSohE7u8/yVEqpKzaf11/1MSl4de0z12OP64W2doKjF4xD+Um164XM9p0wlv9bWOzaoq0y3Gp9FWwfG3Ni0gkR4zmUUQFPNDk5ywg4In8zELsWv4P7ZrfomMCeo/rBrHd+LKanPQ8PDv8deRddMyBEDHt49/fj1GzhoDjONzR6mHkXfDuWBYYHoA5n9yJobfaXGhO7U7B4wPnetzmkW/uoaJrWZWrJGtladG3q2vCn5+vxfdPz6c5hP9H5CoZ/IPUKC/S0s+B5Ena9GqF03tTaZzmDQlx77afw3ID+X5bdErA+SMXaoQVNz85Hr3HdkN5kU2QERIV5BDHfvvkPCz/ZLXL/bXs2py6VBAxhzvMQ/1heMq1Kzrh8eQxuLWZTWD//xKT+EJjywJOnDiBESNGID8/v+a5SZMmYfny5WhKBAcHgasKuTgGjGwG/8GxMJ0vB89ykMX6g1FJALEI5suVKPr+pMd9sKQTROsgmNJKcS2RRKjAVpic3CSIuCH0zrbXVNxA0B3KdytuIBjPFMOSp4M00mYBrTtagNIlqc5VyxwP7a5sMHIxNDckNPFZCwi4vuF+sCEVP+zKgIWt/QUNUcvwwc0dMTTZsevMk0uOuxQ3EN5bf5Y6CiRHanwSN/xyZ3cMqbP/I5e8b/fltnTM25uJyd1i8fTIJKjlElos74rxnaJpd9dnlnm+9l1P1GcIRMQJWaWOHVdD/eRo20WDRQcv+7S9rxBRw5L7+lB7x5TcCvx1NBtfbD1HRQpkL4EqKW7uFotHb7ApRz/fct7tvjKL9bi1ZxyySgwwsw0TnyzcfwkPD2sFvyt0oRAQEBAQaFxIJ+vx0TMwImIizlWeBgsWccoWUEn8IYEER0ozcM++39x26COUseXoE5GAffmZ0OoVVHjgrzZCLrPSrVheBAsrBsszyNIHoI3M/cRcmUGJYp0fJFYz/FUmjwltq0NiXYRmqgQUmwugZR3vtRqJCu91mn1NxQ2ERadPuhU3ENacS8XjvfqiRZDNRnbtj5vx6X3fO024kMlEkmxXB6gx7ZkJTX7eAgJ1Ib+T3z+9gE5wk4nfaoIiAvDs/IfRbXgnh/Wf/WOdk7jBth/gvVU70DY2HNEajUdxA4ENVuODw++hc5cWTq4C3vjlxT+w9IO/MfLOwbjzzVuhUMldJhkIxKLdqDPii4d+oo9FlQZI9pwGFxMKPiwArEoCs78GulhSyFi7nVUKWP0AWSkgbxcF9Z4M2tnN63Sj3d+48mg2LBH+sCQ4dx+T5FVAbeeUxvrLUT6uPXiV47XNGh2A8rHtoFlzGtJC58Ibq8WKgkt27mwsEBoTjJhWUbR7VF3McYGoGJlEO6/S7cn/QlQwdoyG//oU6j7h7m11GNAWH+98gz44d+QCtv6+C7++shjZabn094gUhhEb5hkvT6HJgD/eWeH2Y7p8Nhvj5ozAim1HXIobCME9nN0t7NmQtx03RY+E7FreD6o7kV/pPgQEBAT+jyCFpU9PGoz7RvXGwXNZtLi1Y7NI+CnkkEnF2HMqA4/9usbjPopi/NC+fzJO7T4L/39yICkyQNsrGqYEm4OtVMdDWchDpq0VN4gsrsUNonIdmEoDuMIy8BG2sTkJPVg5A04qsqn4iDjCyEJqNtfUG4usLNrKgYsyKfQGxw6AQYEqvP365GsqbiCsXXLArbiBsGXVMdw2Zygiom1jkb++XIevHv3Z6d5jMVsx/7Ul8AtSY+Ijo5v6tAUEnCDigG8e+xWrvt1IhcvVhEQH4fnfHkWnwe0c1n9j2idO4gYCcVD44sEfqeBX6a/0Sdzwxf53kNyjpcNzZ/aluVzXEh8CS9sYcAEqfLTxGH7Yexbjh3TA3VP62oQObmokbxraEaUSM97ftIs+FpsBZY4YVj8erJIjnSlQe/Vxj8EsdRA30HPy51HQl6gQqp8hlgmkKR8Rb1U9aRZDkiuFqLpeh1wDY6zOU0MiHlKlBcQkreYyQS6RGg7WJCMkqQoHkYO+UwRMnRPAq+XAZT2klxlIYRubJ/UKRUQbf6zLOuNxLohgJUEMOSl3c1VW4qTA0HNq99RIfL7mJfp0mjETWy8cx9eL/0HKCRNYvRTBfipM7tMe9w7vBX2JFss+WuX2uBeOZ2KCtQ9+hA6si0G5MrMMQb1JLtr9tX5N7jaMjSadqa/h/UCISQQEBAScIMW+j3x1N+58Yxp1ECXji7Z9W0MZ6AeZlMHebWfx9suuBXDVsAEaJPdsibMH3OfcrwYkLiLzcCa9YwMp0mjkjb+fvabiBsL800fcihsIS1JP4tGufRGusjll5JR/j+zyt53W43kTssrfpy4OYX63Nuk5Cwi4guRGSCyx7qctNY7QBOIi/eIfj6Nd3ySH9V+b8qGTuIFArjef3PstjUmIwMEXccMPJz+mAm97qhsNeeLzOT9g3suLMPqeG2jDAlcNoKohsT4Rks+buxj/j5j0ZrrUwAIxLaPgH+SHfasOed3eF3FD9fdLBNaf7X6TzieRfNa2P3bjm8d/paKX6uvzmHtuwK0vTKTCBZJ7cwcRShBX8pVfrXcrxDBN9uxu8/vF3Zia0Afia+l23cgxyYEDBxAVVeuE0tTs2rUL48aNQ3l5rRPRoEGD8NtvpKaiaREq7gSuCYxcAmU7Z9sZTufdBoetMCPi2R60QF9PivgrzBAHyKHqFg55cjAsGeXQHy8EZ2QhCVfCclkLU3pZ478HhRjWAkdxgzhITl0RpFEu7NuuMobTRd7XOVUEa4kRpcvTHF0bXFC5Owd+A2PByLxPIAoINCZfb0+nS12KdWbcv+AIls3pg46xNpXjzrRC7EjzXCT0656LeP2m9j4dO9TP2ZY9p8xzAUk1lSYrft17EcezyvDHPb2hqCqOccXPuy/iWhCglFJ3g6vN1rMFmDOwBSSMyObq0EikF2qpg8eDvx/BURdClDK9BT/suoD9F0owo1c8dXXwxOHMUnSKC8DBiw0T1JH9H7pYgsFJ4Q3aXkBAQECgaVGIVegQ2MPp+UJqqeg5s5xvrMDKGx/B+ktnsSzjJAoMWsSoAnBzi44YFNMcB4rTsSn3JHSsCYnqMIjEe5GpP+20HzMrxoFMW6dVq1mKSr3crYsDEVFwvON5WSs1SL1sgMpfDIXSNikVIQ3H592no0VAGK41G9I9JzbIKGBjxnk0U/jhlcV/ozLOAumPbcGkGqBeWgDlBcdCZWIfO/HR0TWdVgQErhbzX12CZR87F32U5pdj7oT38MU/79BORYTte07hYEaWx/0t3H0Mjw73rVuMJiLA6TmHYn0PkK7Dyz9dg7QjGXhv48tuJ+9J4X3dCWSRxQrxxTzgYh4s7aJgiNQ4iBvsMQcBuuRA+O3goDp0GRWDm9kKId0gy6wdX/sHqIB1KTAnhsLYJhysnxyMwQLF2QLI0wohsosXDF3jnMQNNUjF0PdKQMBq52ttzfskC9meB3Yt34/pL06i3YTsC8Q4uQSVI2rFDQ7by8SoHJmMoAWHwbjp4pSVloPi7BK8Me1jnDuc4fR6eVElFr+/Eid3n8WwGQO82keTJE3kPX1RUOj8nYvEHNQhnuNTrVWH89qLaBvQdPbAAgICAgINR6NSYFgnx6JhQonBs7MboaBchyVbXsHOpfuwcf4OlOaXIUqnwsjeA9FtZGfsP3IB2/emwWA0o0V8KI4czsSZM9nOOyL3/DO2uUnRxTzwoYHgpAwsajF1d65BJAKnlMA0uB0U28+AqSoeklToYT50EkxUKPhgfyqEiAvzw9vv34KYhGsfk+yp6mLuDlKUsW/bWfjDii8e/hG6MvdiCMLi9//C+AdGuuyYLyDQlPz8/O+0oKMuxTmleGncO/jq4HvUZY6wZeFOnN1/zu2+yPifiHlIZ39fCAjx9ykmMbeKhLmro5tMhdaI31YdROqFfHz83GRIxIzbv8UFB445PEfEB9IKsjCAioWOlaPUqESQwv0Y+EKRY+6Zeiy4OiS5vIl5KlIOhAKGIgsYi6g2buB5iCtEYDX2wghALCedTt0cXExEERYw52uvD5ZwPzB2zgvkfHglT11x1u8/izub98SGOnM9rvDYeNNKhAYSiFjbfi4UlqCQLcV7Z3/GBV3VdT8aiIkCdJfVKD4Shh82HcCxCzm4kVNTAZcn8hYdQ+9gMY5EcjC0CqD3BhWjRUhgGaSdiZuF53KTcksFLuouo5W/zSVdQEBAQOD6QhPsjwGTejk9X+ZDTURxoRbzd7yOHYv3YvNvO1BWWIGYlpEYOXsoug7rgH9WH8HuFf9Q4UHzjgk4sPYo0g55L0iuL2Rur664IaFdLN5a/TwiEq59nn7DRffjMoKF47A5Mx1j41JQVP4KJHwFwhnAxDPQ8WJY6wxmcsu/Rqh6GkTXslBX4D8JcX1Z88Nmp+cLLxfjhdFv4dsjHyCqha2B7JrvNyHjeKbHv9uVX67DqLuG+XRs4nLd0DwJmZMnTdQyTmTi9ZXPgqnjXGnfKGnVNxtxLVBplNBX+FaL1phs+HUbZr46FftWH2rUJkOXU7ORm5GPN6d9gounnRvfluSWYsHrS5GyPw2dB7d3yNG44tLZbHp/yUrLdXqNCxGDa25zMndHvrEcGdp8tPK/eoKApiYqKuqqOV0vXLgQd911F0ym2nvtkCFDsGrVKiiVyiY/viBwELiuEPt77yjH+EtpAlrVIYwuTvtICoYiydZliMCzPLT7cqDbnwtrYePcDMShSpgzK126SxQvPIvwR7pccyEAb/V+5yGuDezmS77tz2iFKaMcyuTaz1ZAoKkxWljq3OAO0ln/ux0Z+GpGVxRWmvDQ70e87vPgxRJEahR0yatwr5T3l0uQGG5zOLEnzN/zwKgupNB+2eEs3NbbtQNKZrHOreNEUxLiJ0OpznMxjb0QQmeyNqoYYd4/mY26P0KlwYphH+2AwYtl3ImscoT711pmuYMIIvLK3f+O+EIjO34JCAgICFwFQuXexcphCn9IGAZjm7WlS10GhCfTpRorNxR7i9dhf/FGFJvzwHIMMkuDkZIXiUpTVeDPi1BRrgLHMVArTZBKbJM5HEe2F1e5N9QmvSMQhX0XSVcTESrL1HQhFMKC+ytXY9XkmZCLr23Ib2I9J8nFYhbbSnaiQnwZkcOtiCJdD8kLrUTQDw2C4Sc5lEuLa9YnCZLTe86iy9AOTX/yAgJVGLQGrPjMfQdls9FCxQ/P/PoQirKL8ebz84De0R4/v8MXshEdqkGwvwolle6L6AL8FIgNcxY4BEfW2tiSWhhrbDDYIBUVJUgzS8DYd+EBcHJnCrb+vptaMbsi80yWy4nhmvcYIgXrrP12wBRqSwooTufC2CII5gQ3VrssB9Vx27GIiwIpyCKdpOXni+jiDr8wf5S19pyQtEYFUJcHcaVjQpNcV8xJkTAnR4HT2N4IU6rD0jWHnCbOjcnhVMjgDl4ugSkpDMpTzt1wq69Td7d/nP5eeIJ0LXJVKFaXyhItUktdC669l0HZ4NAwR7rGxFW3cAEBAQEB94RqnOck6xIWoKadSIdOH0CXugzo1You1Zhv7oNlfx3CqrXHkJtXTu/JotxiKmgUVRUDibQGMMfOwdIvyVHcYI9CBkvbWCgOZyCqRXiNsxSTmQeQhTSIId3jJ76Prw68e82FAN4Kdwl/fvk/9u4CPIpr7QP4f2bWN8nGXYhCIEAI7l68UChtgSr1Une7X2+9t+7u1FtKoYVSpEAp7u4SEkLck/Wd7zmzRDZZiwAJvL/77G12d3Z2sgEyZ875v++fyNm436v9sXOXg5uPoHN/x8qUhJxNLLjsLNxQw1BlxK9v/IF7P7oVuSfy8catH3ncJxsj3PvhLfDx10r7d4VV1gyNDXY/JuE5VHcJRvWgOOkcVVEO8A3+6m3ecxKrNh3CqP5110rq23c6D6fL3MyTnDml3Vccjj7hmZDzjc9xy01KHMwNcww3eDhpjvH3Q+G+avBnNrTxIiy+Imwq9loOYKf1gv1kNkitRpW83O3ZtehnhSi3gTPbx0fimeA0OxZLggmWeBNEjX1/XBmP7/ZsAVetgJisdx2ckBaAOV4T4qs48CYOQjUHWSlf24mC7bnAWIY7Nr4Mm8xxXMS+HZ/YKkAOFK0Pw+Yj2QhQuxi31VNeXIm8tacQKYqwqgSII7Tg7/UDBG9HJOzHd/4HBDQmIYSQpgkM9jxPEhjiKxUjGn3tUOnWEAtO1A9PXPXIFMx7Y5G08NnbhcnusN9tYR1CnXaWytybjeeuehNvrX3O5WLmc8Vodb92QaeoRoLqYZSV7WK/pqVf+ey3rJqzQSXaUGaTwVCvk5XRmoVq8z5oFd4V9SSkNZQWlEl/d11hi/NZEaU73rwB2YdP4/17v/C4z91r9uPW166D2kcFfaXrdTlhcSFSN+2GAuqNSbyxcdE2bPh9KwZMblz8jmEhcbbw/lxjC/dPOem+54wuxA/lhRVSILu1/MaKX7Xy6XpeZiFuy3gIFpP7f/+2/LXTqy477Ht2OYflqR3eGbY2sHirvY1JRFHEU089hWeffdbh8UsvvRQ//vgjVCoPE4ethOJ8pE1RxPlBFuw+2aPtWXdxyhucwMF3UBTCH+iFqOcGIvT+DAiBKqfBCW8uxuimJMFa6DooYSnUQ7/DfQX5c0ER5XnAYS1q4sJdy/mfFCcXF1Zpny0yd2fpvlzpl+rc9SdQbvA8YcW2efK33fBTuz9Jmt4rBhonLdTHpoVL4Yem+Hmr6wquxvP096qo0gRv8wUVBnOrhxGqPZzINseuU2Ueww01dp+qa5vlSodgLeQuKkp5g3WoSI9p2qCKEELI+dcnOB6RHiZ4J8ekN2mfMl6OISGX4qFO7+K5tO9xU+y7OFXYvS7ccEaEyg9GgwoFJb7IK7Lfcgt9UVquhskkg9nMw2SU49GUqdif5XpMcqikCIuPNr6of651DXU9dlMqTeiYmg2T5jhUSgvYHAO7BsXWUXEQodGYEDBHDjHdMVxq9tCBiZDWtn3FHo+Vc9bO3yT9d/5bi6Evc1/1lykpq8Zbby9CcL5jl5KGpg7uCoWTi7tDrxgAlUYJS6gvKqZmoHp4RxjTY2DoHS/d1/eNl4IPDSvxuGIyOA8+sxGAJdgHVn/PxSjqByB0i/dDebQunFSDM1nht/QQ5AX2BVSFp4q9vhBfoTexjske2Zx0eDD0jYehT3xtuEHaLkCLwq5RMHS1V7mtYQnzfC3FEuY6mMAmQTyFG2qwilGeRCWHQyYILhc5VZe6D+DLrDIkaJ2H7QkhhLRdAzrFIcRDyOHSPo2D1u4oFDLMvKIfvv/yNiz7/UF88vKVCCstrw031AgN9YWoct8xTYwNxl0f34qco64LiBzdcQJrf7OfI51PSanug6dMzh7Pv5ProzEJOdc2L9nhsfNXzd+3X177HcYGgWdn8jIL8PHDc+EX7D50O/HW0U6DSsNnDIRcKYch3g859/VE0eXJ0IcLqA7nUZrMoSqMjewd/bHKdbc1o8X52T4LBljlIqwiD5uJQ7lJhQ2nOyCn0q+2yyXrjnmsLBDrsuJhsTYYP3mY9s2qLIPtTIDBJgAWPxE2dV0wghM5cBZeulVUGj0v1GeFG+R124gqEWadDaZ0PcxdjLXhBuk5nQ2l8aUQdBbwp1yf17Mhk9Xs+DPgjRxU2TLIiwWHcINNARzBoUbhhvq04VUQ/O3PH+A9j12ikyMgyOzzJLxoA3+Lb+18ugjWpdv9h6yAEh0056ayKCGEkNbTb3AK/HTu125dMqF7k/apVCsx8/Gp+PbEB1hs+A7vbnzR6aLliETPa8LY+cld79+M3OOsCJTr63Sb/9yO8y0t2PX3E+NThFcH/oAoxS6nz7M5Ex1vAdcgYimK3hWyJKS1sHCApwICNWOSn15e4NU18qxDOfjiye+h8zAmYV0UnQWVRl0zpMlFFdzPk3h3Xb+1eRtuYCpLK1s13FBTZKm17Vmz32O4oQYLxHgzT8K5CDJwhRbwOe7/TfQRFUjwOf8dfdoTg8GAmTNnNgo3sE4O8+bNO2fhBoYCDqRNYf8Y6SYluKwOJASp4DO4+RdBOBkPRagW4Q/0ROCMTtD0DJNuAdNTEHJLN8Dq+ZeAObvc4zbVu89/wMGnX4T35fy8wQFyL0IThLQmoxeL1c1WUVqo//suzyc9Nb7flIVDea5P0vonBOHhsc6rcLHQwy1DEtAUeW66AMQGaqQOCeeD8sxFaU9aOdvQJhRXmhAd4P6izMw+sRjWsfknuWz/AVrPi8EIIYS0LTzH4+Eu4yC4KJ0X7xOMmR36NXv/LOzQMTAUK6fegjcHT8TlSWmYntQVbw2ZhC9GT4eVXZgSOVitgnQDBFgsMlRXK1FVpUK1Xo5Npzyf9yw6Zq+kej5d0zXd5ZAkLj4fCoXzcz37NSoRPC9CuLMubCKTC0jq0eHsHCwhTVz872yblT+uhfJEqccTaEEvYt7mwzj9z0HIs5xXBOrfJQ63THL+bw2rsjr5P9NQNTIVorbBQhiek7oVGDLiGlUbdiWmYyQ0vo7nxuaYAFROTkfV+K6wdGjcPbMhXl83ucFZRej+PIiAH3dCs+0UVHty4bP6GIK+3ALV0eLa7WwsOB7lD6uHyVIJW6TlaXwoiuArHRfysICGKSXc5UuM3WIcQhHs2D3y0C7ZW6xSblBkgNttxt88GkNSXP+7V3TM/euDD/pDIzv7LYLdkn6vtcKNEEIuInJBwINThoJ3MXmbHBGM6QO7NX//cgHJPRLw9ZF3pS5Ul1w/TOr09MT39+LJhY96nCxnvwl3bz7i8X3WzNuA8+3SGe7HbqLBCFR5DqjWYAu647vGtsKREdLKYxKjfTHOqh/Xer3fhe/9hRw3i2n6TeqJGY9d5vQ5/xAdxvxnMgpmpsLq1+AaOMfBGMRBH+L4b1hBies5maTQIKgahLstKhsMIVaYgq0wBdpgqra/T6VZiZ2FUVh2MgUrTibj76xkHCgOQ3VlgwUWXp62y3leCoizYIJN6frfP7MoQvS0T5aNMHGw6swwpeph6qGHfoAe1hg3i8EiDeDLBXDZSqDBZuz9LEaZvXWfh8qfNjbNxNsDDO6wXy3KJPvPoooTpQVlosDBGOMr3Wxyx+th428ehd7jetjvDFYDvo7PGx1CJezAHA8uoLIDlMJ5niehMQkhhDQZC0jfcs8lLgtjJ3eKwNjJZ34/NINcIUfH3kmYe+w9PPDp7Rh93VCMnT0C//fzA3jo8zs8vt5qsWL36n0et1v9y3qcb9d3yXD6OIuD3pW+DBEKz7+7fbi6kwSe00Atr+vWR8i54M3i/5ptvB6TiMBv7/yJ3BOu11gOvrwfpt0/0elzwZGBGHOD867VrrCiS67Ed4uD3EkR3HOB97I7mtVsuyDHu1qdxu02E2+9BBmjnV8Hk7oILih1+/qUE36Q8+fnZ9sexyTl5eUYO3YsfvjhB4fHn376aXz66aeQyc7tZ3mef3KENKbuGIjg2WkoX3oCppNn2pHKOGjSgqGbkABB2/KFwJzAQ9M9RLrVsLFKoOwXhrvJbPavorseoWeIpvP/C0UeroX/5CSULjjSKq2EVJ2DIAs4d+krQpi0KB0EnoPVzQKhLpF+0qRbYUUTO5I4ERuoxoNjOmF8GquS6frvepm+acndCH/Xf3dUcgFX9o7Bx/8cw7l2vrpHtMSwjiHYdLy4tgMEy2g059sI8VVicHIIvt900unz49LCcWn3SHQM98Xvu3Jgasab9Ixzv9iIEEJI2zUiIhXv9pmF9w7+jT2lp6THlLwMYyLTcH/nMfBTtHyxqEIQMCWxi3SrUWrUQ8bxsLiZMRfY1eyGpdmd0FvOT6WR+rqFheM/g4fj2TUrHYYkGq1B6tDgDvsO2WuUSYDejwPKRelCZmA4/X4l51ZKr0SpGIO7hX4pvZNgMVukNrmC3gT1/gLou7gIytpEyCvs+zJ3ioLPsj0wxwXCmBImLbSPiQrC7dePxPAeSRDctE8vjvAD9ruuTsRCDsrdp8CfqaoUEh3kclu1j1pqI7/gvSX244oOQPXQjrXFJ+Ts0gz7Z8nN5RDNoXLY1HLw9cZKrFNDTbcGh49AJUd13w4wxQcBZ8ZdQlEl1FuzoHAR+OBsIpRHCmBMdR1WkJ8qg1Dl+G+LKclDYJkFQhJDoNpt/7dekVkMY4r7QMegzh1wYGNWbRVdFr6yeNlJrmEL7dS+yVj29Wqnz4+cNRiDLuuDgFN5WLbvCCxOghWlp3TwrS6G/6DG/6aa1puQmEndGwghpL0am9ERaqUc7/+5Hgey7VVJ2eLfcT074b5Jg+Gjct/FxxsKlUI6B2C3GoUlldICGndzpjJ2Qe7MYmp3DFWuK4ifK116xGH2vZfg8zeXNnpONFtgy8pp0v5GzBgEvyD31SUJaW1s8Z834xazyYyKEvcL5LwR2ykKNzw/AwMm93ZaKbVGbloAxJ2u/w4ZAgF1ETuXt98Pc/N3R6dWYUK3Tpi3dQ9EQYQpxAKbj63u4oCZg6VKgFGQQ6E1S1O1NpGHSeSlEICxSmHvcsBOy9n7WTlwVg6ixuZ2HCMYAa7EClHHw8Y6L7i93MJBNPLg1K6v2XBlAsxhFohh5toFoTzvfm6BfS9ikBl8nhJisQzWUDOsAVaIIgfR5vzgh0cmYGv+qdrOF+zfZatgfx9O5sVcBvtcAAT5apDw7AT8cfwYbGe6nnMGC3y25kH390mMu24Y+o7PgNZPLVXttYY1XlpitMmgtJmhFKy13zP7HcJ+PqUFPujLN60LKiGEkLbjkondodEq8c0nq3HsiL17m0otx8ix3XDTXSOh8tD5zduuDizYwG41ck+47spQQ6GSSyGH9jAmGRgVh3szBuDNbetqH1MrTBgcewBBqkooOc/fh6w2RMghWDsNAk9jEnJudeyd6NU2hmoD9JUtX7vVoWssZj83A/0m9nRZuZ/RV7rvvt1QSIzreZKAUB2GTO+PFd+uwblm86bwUhvTZ1wPbF+xu7azBysIYfbiWlFDbN6XFeFw1QV00u1jkD48TZqj2758F2xO1g8qfi+DLU4J0/jGXYHk/1Sgr7z5RUIuNqWlpbjkkkuwefPm2scUCoUUbLjmmmvOyzFRwIG0Saokf6iS0mEpNsBWbYYsUAVec3YrnPNKGdRpwdDvdJ0MVCb5Q9nBD9Wb3bcHkke4bx99Lrs4KGJ8Ubk+B4b9xbBVNW+RkyxMg4DLPF9AJaS1RfqrMTo1DEv2uv47N6tvLG74cjMqjE1fUNJQhcGCMV3C3IYbmL/2ed8ijLmiV4zb5+8fnYLtJ0uw+YTrqqoESAjR4pNre0FvtmLTsWJYbCIKKw148jfXra1dCdOpXIYbEoK1eOuqHuB5DqkRfnh/Zgbu/H4bDE1MQ0d56BBBCCGkbRsYmizdsqqKUWE2IFoT0CrBBnf8lWqMiErC0uxDLrcZHpmEjJAo/HLQfXWizkFto9XmDekZyIiIxNxdO7Dq8FGUVRigk3s/qcAm+jkfHomJsbjznRvP6rES4kxkYjh6j0vHpsV17cxFmQBbiE5aHM+VVGL8TSPxyCXP1i541y07JoUVjPF1HUgkVhHqIhHCmYJbtiAfiAoZFCeKpRsjiwjAsNdvdhtuYFZt81A1WcbDEuUPxfFC6a6nSkY3vjQLBzcfwYFNR2DIiHXorMlbAVUxYAh2/lrOIoL3D0H59GDITpVCvTUTQqnziQWbQobyCWmw+Tv+e2oN8kHlqE7wWXkIihNFTl+r2ZoFc7Q/bL6NA+Sc0QLNhhONHhc1nhd/2up1wVAcK4ZQUg1rgPOKQUmRQfjfY1ej+tmrsXvNfog2EXmZBfjgvi/RVKwTh6twQ4e0GDz05Rxp8iYtOhyvXTkeD/+wGEab45hEvScf1sW5KEvgobxUBT6Kh1gqwviXEZZNZoT/7/z/LmDVZZ1VmG3qPggh5GI0tEuCdMssKEG1wYToYH/4qlsebHAnOMAHfbt3wIYdjX+v1hjSJxmdBB4rv3L+e6xGQre2EbS7YvYQdO0Zj99/2IDNq/ajoqgctrIKiMVlgNX7a8qd+iTh9jevP6vHSogzHbrEIH14F+xY6fo6+LgbR+DBEU/D1grdxti4xlO4gVl+0MOYROBg1opQnKllN3FYmtvNHx07BHvycrFDdgqonRI+EzpQiOBkHMzVMphNMsgUVnA866jAwWJkwW9WwA7gqjnwbLggY9UtedjMPESl689EncNDVcrBrPMUbrCzVsnBy0wAC0M0wIIWZhsPWWhduKH2e/BEcSacIHIQ8uWwqADRRdODrkHh+Gj8VJRNNGDb8RyIEHGipBSvLrUvxDJUK6DSup8PNhjtHzCvk2Fh7kngTLhBOlqVDBUDo9BhZCruf3i29FjaoFQ88tWdeGXeV2gYrfaRG6GSOf5byr5/HjZUlmkQ3en8F6qgMQkhhDTfoOGdpFt2ZhH0ehMiowOh9Tm7Y5LwDqHoCAfVygABAABJREFUPqwLdq5yfe4z9MoBiO0UjX9+cd81LrF72+gIfW/PgRgQGYe5+7ehjF+DEP8spKqy7eFyr/ZgP7nwUfZGtP9jZ/loCWkspWciOvdPwb71rucvL7luGB4Y9t9W+fgsRrPHcAOz7re6RdjeGHtDXZjKmTlvz8aRHceRuTe7Sfu92HQe0BHPL3ocpQVl2Lv2oPRzOr47E1/+349N3hcbw7oKN6T2S8bd790kfd1jRFfc/+ntePPWjxoVnGJ/StTv5kO+rAymS3QQQ2RSkF2xrAyyPQbEfhOF8609jEn0ej0mTJjgEG7Q6XSYP38+hg9vWreU1uS5FD0h5xELNiiifc96uKGG7pI48C46RHBKAbpx8dB0CwGvdZMNYu3B+kegrVBE+UARoW12uMFnWAxC56RD8DnP7UPJRev5y9LQMcx1Av2DVUex5rB90U5LlVSbcbzQc4UjYxMWuvfpEIipGe5PllgXh+RQStm70znCD1/P7gO5wMNPJceozmEYmxaOwHqLkbwVE6DGzizXLcqOFVZh1cG6yhDsvdY/OgJqhesKuc5YW2EyiRBCyPkXow1EZ//Isx5uqPFQ92HQKZx3f/KTq/Bg92GYnJwKX4Xr34E8x2FW5+5oK7qHhaO7OQj8RiMC9nFQFHt/KcJmEHHdvdPx5r/Pwi+QzpfI+XH/J7cjpmOk1DzF3CUWxjE9YO6TDHOvJJhGp+Pzpbuws96Ffc5ig25lJjS5NijK7B0bVMU2+JwWIWuY76kXJGCKT5e4bclcw2Sua0vuik2nkQIUPUZ2xfCrBrrdVq1VIaZjFKyBGtj8Gy/u1+QCKjbsanCKyxsB30wOArvkwHGwRAegYlwarA0CDDUMXSIahRvqdsZJnR1cNalh3SF0C3dDeSAPqKnQZrNBcawQfgt3Q1ZS3eg1omiFVQZYFPabTWg8aVi/6wTrFOH3xz4IBZWN9tUlLgzvzZkqhU98A3ww4NLeGDilT7OqOLPgzIGNh10+f2JPFrav2FN7f3RaMpbdfwNCVp+EdksOfNdmIfST7Qj844h0zNYjVlS/XoXKBypQ9WylFG5gaExCCCEXhriQAKTGhJ31cEON268eCq3G+XyAzleNm68aKC1cULm5LifIBEy4ZRTaitTuMYhQA6Ubd8N6JBNiQXGTwg23vHINXlv9DLR+zkOQhJxtD315JyITw1w+/8WTP2DfuoOt8l4swFuU47kYk9HieUzCzsXZ+f2A9HgM9dCJgnWmieroeybccGb1B2cvfCCtWBFE+411czDIYNbLYTHa34AzszyFCJ51Tggwg/M3A8FG8BoLOBeHqcrjoMnmpEA361rHWTwnHDgTB6FQgNwoQpDaRZzpVmAQYClRgGNBjEaXPLxITpjrtmEhB8UpOThj49f1DInC5yMulxYQ+WvVGJGWiJFpSQ6/H0qzfd124TFZBFTlqREXHoBdua6Lee02lGPLSXunO2bEzMH48uOXIKvXVULGWaGROZ9/ZmvRYpLyYFO67+BJCCGkfYiOC0Jyp4izHm6of/7tarwREKbDtU9dgbGzh0udHFxh1cRZYZq2ok9ENMalViE04CQ4TpRuTIVNDhUEBPIqhPIaBPNqaLh64UMRMIlAjP9z6Bj6LQSexiTk/Hh07t0Ii3PR/ZgDPn5oLg5tOdoq75V96DTKi84kpV1gFf2b0jFg4GV90Gd8D7fbsOv+EQmux10E6Da0M5757WHpo/AP0UlzJCwgr9U1vRh4XOdot39m9m84LBXmqjHm+uH4ZM/r4F0ULZYdNELzTj60/5cDzRt5UriBMRuat2b2YnPXXXdh3bq6bkOhoaFYvXr1eQ03MBRwIKQeWZAaIbd3h6pLUN3fDg5QpgQg5NZuUET6gJPzCJyRCk7h5K8PB+gmJkAe1jY6ODCiVUTF6uYlC1mQw39sB/BNXNRLSGsK8lFi/pwB6Bcf6PT5rJKmtRzzROahKhHTLbpBJVYX2FqlMJ0SepP7yTKD2YoFO+ouFLc2hYxHt2gdfJRtr3FTdIMuBzq1HP+d1Bk/3tIPd41Iwp3Dk/DdzX2x+J7BiHZSRXVAYhCUMu9PZ/onBmFCtwg46Vrm4NdtdT+PKqMFPMdLx9UUB/MaL4oihBBCPEnUBePn0ddiZFSyFFRg2H9HRCbhp9HXIMU/BFq5Au+MnAiVrPHvdrbts4NGoYPu/FfIq2G2WPHN4i219w2ZGoheriXSmkMw68FpUqtqQs6XoIgAvLf5JaTcNgbWpAhA5jhGztGbYRqQCrF+14MyPYQqC5TlIlSlIuRVjaurcJUGcPUW19eQyT2PwVPjwz1uY0mJhHFKL/hc2ksac7hTXaHHP7+sh6h0PSmozgN0hwFNDqA5aYbPCUB3BJA17DitkEHfI9bxIbUCHfskgU93393O5qOEJbJxG+EafLUZPmuOInDuZvj/sBUBX2+G74pDkDnpGGFICYUxIQiijJUPtd9scg5WpX2RFcP+E92g/XOAUomnR/XDx/dcjpvG9sFNY/vi03un45uHZyLU36fR+/Qc3c2rn1mNXmPS0W9ST4/bLZ+72uHno+R43D9zDPyXn4DfmizIizyPhY+5qb5NCCGEuJLUIQTvPzMD/TPipQ6njMBzGNw7CR88NwOxkYFSJ6LHvr1HWjTUEJtovv+T2xAa62Lhw3lgqDbi1zcXNeu14fGhmP7ApVC4OU8i5GwLjQnG+1tfRnLPBKfP5x6vK9jTGrw5v+0a6XlMYpPzsATL4BPlA4PJfSCixKA/09HyTLDhzI2p+VoKELDQtYkDX8GDr+bBVwrgZSI4X9bVoW5/0vYqG3iNFbyegxpy9AiJhK5YjoBdAnSHBHBnwgfKMta5jnMZhmAUahOCOpQgoFMpdKFVCNDp4ac0gKsQYC1XSB0jWFeJRp+BzX3AgQeHcIvj/FeIUovXMsZj7qgrMKdrf9zdbQDmjZ2FeeOuRoi68Rz0oKQ46d9pxlKgQV6Bn9P3slg5ZBUE4JLQjuid5jhmc2bBzv21X1eaTFD5+ODG5Im1j6ldhBtqvzdeRD7nodMHIYQQ4qJa/Ourn0HPS7rXVnBnIerB0/rizX+fk7o8sIW1D391l9PzFrbtQ1/MQUCYd+s6zgWDtRprC5fU3j9t8pcWaEfKFAgSNFBzcsg5AUpOhgBejRBeI52psN+2VllnhPtdA56jwrTk/GEL/z/c/griuzo5jxTtQenWxP4eu8P+bXA1PmqI/TsREKqDycNC9+LcEodu3q2NBbdYVwKZom2t3RJkPIKjHMckgeH+eHTuXXhh8eOY8dhluPo/l+Pt9S/gtZVPQxfceLzBOqF76rhR35DL+yG1f0eP29Xvgl1VXi39HK/97xVoiiPbjzdp+4vRvHnz8Nlnn9Xe9/Pzw/Lly9G9+/kvqNi2/rYQ0gbIg9UIvqYzrJUmWMtNUucCwc/xJFGV5I+wuzNQuS4H+gOs0o8IRZwvfAZGQRnn/KLR+WI6VSF9H83ShAl6Qs6m0mozNmd6rhjUUvHBWiSGeA4oXTcgDsv353ncji2i/33naRzJr8K82/tD4+IktbDSiCoPIYjm8lEKWPHAMIT5qdD96aVoS2b1jcVzU9Kw4VgxThRVwV8tx/BOoVJHC6ZvQpDHffhrFJjRJxZfrvO8cOeOYYl4eGwn/Heh63aWNYqrTPjnUIHUIWT9sSLpsWAfBZJCtNLPq1TvuToV6zZBCCGENEeSLhifDJ2OAn0lCgxVCFFpEaJ2XFQ7LDYei6Zdiy93b8OqrOOwijb0CY/G9V0zkB7adjrKMbsO56Ckom4hrs0gQ/UpDbSxjaut11QkYksCzFYegrLtTECQi1txhRF7TrvuAibqNLBGB0F20t5djrPaID+eD3PHSJevkR/Ja1TLs0NajDRB58kVI9OxcU+m6w2sohSoYKOMJf/ux4mcYnzw9FVQuhiTFOUUw6g32Rcxsr+E9S5EszCAFAhgGQGbffGPVFbVTWiYdXKwKWXgjRb4BGjxxf634B+qw4A73mZ/ud1+bza154k61iVDqDC6fn9/NaoGJzbqkGF/MQerXIRgAmaMycC9X96HHSv3IOdILnQhfugzrgcUKvsx9E5xH8hg2EQpqxy06JPlHrdlF96v+b/peOOWDz1uW5Jfho2Lt+HH//2G3Wv2104qxKZGoSSvDBXFngPVQlsoWMH+nLS0dfJZbr1MCCHEecjh1cenoaikCkWlVQgJ1CKgQTU+1s3o/S3/w2/v/ImtS3fAZhPRfVgXTLlrnLQgqS3ZtXofKks9d+51RqujCqmkbSjIKsLhrcfO+vuk9Er0ajHgrF7dHSr8N8S6vbHuCBbYsGDDXpzIL8and0+H3MVCpZzqcphtttpwg+NJoP28nj0uqmzgqmTgWCcBtgkLFWhdjzE4uYggXxWWXXkTdEoV+s1/A2KDtnFsbKAoESHyPMy+tkYlIhUqMwLDyxt1Z1CoLAiMKkNRVgAsFr7RfqXvQuSkkANb7O/MjSkDcc+lI7H+2EmcKilDkI8Wg5M7QHHmcxocGQ9PIv39MKFrJyw8E0go3xeIKpMCQQFVUCtM0jFU6FUortTi/rSRuC2tPx6e/6fH/RZVVWPp8SP4aPsmbM3NgSBY0SkKiA8KQZmtDDY4v65Tn9bNz+acoTEJIYS0S8kZCXhpyZMozClGaX6ZtPiWhRrqGzq9v9R5d/7bi7F9xW4pMJAxsium3D0eid07oC05XLkHRltdpZhSmw/CBR5hQoOWuWcoOAG+nBKFVgvK4foaMyHnUs7RXBzfffKsv0/aoE5SYQVPJs8Zh5evf9fjdhazFX98tAxZB3Pwv6X/cRmeYN21bVbnfydbKigyAJ/ufUMqnjBBMwttydX/mY4Zj1+Gbct3Iz+zAIERAeg9Nh0yuX0+qfdY950vmKikCAy+vB/++Xm9+w054I43rsdld0/AM1e85nG/pQVlUnGun19diAOb7OFp9vsgplOU1BG9qszzmERoC2u32vCYxGKx4KGHHnJ47PPPP0fXrl3RFlDAgRAXpGCDj+tJdVmwGv6XJkq3Ns3Sgl+83gfrCDmrFu8+Daunkvut4LahCV4lSgcnh+Cekcl4a8Vhr/a7/3Q5ft6SjesGOB9E+6nl0l+3s/EdVhqteOWvg3h1endE+atR5qRC7PkwvGOIFG5gnzfrqsBuzfXEhFSU6834dbvjZApby8S+597xgbimXxx6xAY47RrhjFUUcd0XmxxaORdWmqSbt1iohBBCCGkJFmpoGGyoL9E/EM8OHtXmP2STpfFkdjUng2CRQSlY6q+jln73smLqRqscRdUaxGrawEUnQgCsWHvA4dzQGVtUMHAm4MAodmXB5qeBNaLx4iBZZiHkB083evyqRy7z6vMe3CMR147vja8Xb3ZyICKEBqf9B47l4a81+3DpyG5O9+cb6GP/u2hji4VMEM+0m5euuZ4JNzRy5jEpD9HwOZ6DyFrEGy2oLKnC1//9CXe/fzPCg/yQmes+vM5Xug4ueMuYGu483FDv+Iand8B9M4dJd3uM6CrdmuuOt2dL1YNW/bjO8W3YJGVcCLoP7YxJd4ypXewZHu+5zbVJb8J/Jr0kTczWKM4tlW7eCgpvO918CCGEtE9BAVrp5kqHLjG498Nb0NaZjc2/JtqUCoSEnE2rflh7Tj7gqx71bkwyvktHbM8+ja83Na5wyjohKModH9t57DSWbj+ECb1Tne4vQKmuW/VRr3OD/XT4TCUE9gTr1sD+Stf81VRbHa4rOFPEVeLdzRvx5OBhCA/0w+miBgfHdlMAaRxlMHMwawGbou44fAOrGoUbarCm4L5BVSjJ9YNo4iGq0WBbDlYrCz/YpJADx4lQyizgRBFjInvgvs726zoDk+LQEk9PHoVqkxnL9x8Bb+JhO+CLXH8NOD8RUYF+GB4Zh2sGZKBzoH0sEu3vunNejVLegFv+/E36OjCwAlGRxdL3UHDmMo/Ci0s2/oq2VRiQEEJI+xMcGSjdXEnoFocHPr0dbZ3F1nhMEsqzRdau13RpOTlKLEpY5dRNjlw8YxI2Br/qkSlebTv62qHYu+4gFn28zKvtd67ai3ULNmPwtH5On9cF++JsKcopwU8vL8Ds52dKxaBYcKstGDt7uNSdgek9Jr1F+3rws9thrDZi46JtjTpEsDmRHiPScOmcsYg/000uwotiX6zY07NXvO7wWOGp4iYdl38b6ubTFv3www84fryuywXP83jkkUekW1Pcfffd0q21UcCBkAucPFwLyPhmBR1YNwtC2gK2eL252AL3LpF+yKswIlKngk4tx7xt2TCzlXNnyAVOCixc2dtzS94a941OwcCkYHyzIRMbjxVJ+3fn121uAg4qOUJ8lcj3sI/mYt/vXSOScGXvGDzlpnsB+3zm3tgXFQYzpn2wXlrkf7asPFiAaR+swzOT05AW5flCuqdOCa9fmY47hidi4Y4clBssSAr1wZQeUfBRNj7VmZoRjZf/OgiTm38X95wq87iAzZNpGdEt2wEhhBBygUiJDYFM4GGprXoiggu2oMqiQLVFBoVgldYMWEUeZhv7yj5DzhYoxPk0PwRJSGuqrPJ8ri426ILI2USo1hxA2JBURI7vgeKyaoQH+8GvoByr5m9B/Z5gcoUMNzw3AyNnDfb6mO68YjD6d+2AeSt3YsfBUygsqZQqpLLFRM7W9/z5j+uAA6t+po0OwumecRA1SvvioZpgg7vFQq6S2lYbOH1dOJh1N5jx+FRMGZSGt35Z43J3sWEBeHvlMygrLMd9Q/6v2SlwS6jrcFiNf3/4F/fN3yYFL2ouqDcXq7r0xPf3YeYT07D6x3VS2IHtc/jMQVBrGwefL7l+GL566kdYnQTAarBqRPXDDc0x6tqhON84VoS3hUWvWvp6QgghJLlnghQ8bE4lxqjkcPoASZvQ3C4kDKtuGZkUhrL8coQnhEEmF6TFSaySaQ2FSo6b/3cNBk/t6/V+nxgzDMOT4/HD1l3YmpmDorJqyAyAYIDUUa6hPzbudxlwiNT6wVdQohIGh8BCzdf2nAMLCHDgLSJENvySLiF4cc7MAXN37cBtPfvg0iFp+Gj+OmebQFkKdPYNxvN3TEJBVRVmLPgJvNwKhdp9R2el1gSOs0mdEqx6GQSNYzEHtnebTYBaZkCIbxUUMvvnvqtqDR7deRpzkq9EjMZzCNodlVyGd2ZOwv7T+fhrz2FUm0zoGB6C8V07Qq1ovChyao8u+HDNJthcjDlEXsSm4mzpa1+fakRHFTUKklhEHjI3izI5cBgc4nzx2LlEYxJCCCFtQYwmUfrdKJ654KniLAiSuV8Hw3McBE4BjcJzl1lCzoXKUs/V8l2J7xqL4OhAVBRVIjLJPs5mBYPqj9OVagVuf+N69J3Q0+v9sqILA6f0lkIOe9ceRGlB4zBzfcvmrnYZcGBdCJRaBYxV3hc+bYpf31yE6Q9eirGzR+CHl+a77ar3yNd3oSC7EI9e8hzOpiWfr0T+yULc88EtiExs2fUPtY8az/3+GA5tPYo18zbCUGWQuvEMu3JAbdfs+sbdNBI/v/a723mQmu7WzcWuBY2cNQjnW1sek/z6668O9202G44ePdrk/RQXNy144i0KOBBygeM1cmjSQ1C9Ja/Jr9X2pgv3pG1ICmt+SvZUqV7qWjClRyTmDE9ChE6Nh8d2wvztp3C6VC9V2WcL4VnAoKn6xAdKt4//OYoXFh9wu21N5f/CSiN+2pKFI/mVUrBhUvcI9IwLhN509tr0snPBxbtzccPADvhjVw42n2hcMZWFPJ6f2hWJoT5SaONshhtqbDtZihkfb8CvdwxAcgt+xjWSQn1x/yUdPW4XqFXg/yZ2xn8W7HEaYugR44/tWd5XRXVmcnokuka3LLhBCCGEXCiCdFqM6pOCJetrzpc4e1EigS1Q4GG0ui75NzWm1zk7TkLc6RDjOWzDV+gbPcYW9eSv3o+qHZkYfc1QXDVnEIIiAnDL3ROw4ts1UqWZ0JhgjJg1qFGLdW/0TI2Rbl/MW49Pfmq8SKe+knL75EPR6RL89cVKZB/KgVanwYiZg5HaNxnlncKlzg1SZuHMebLUvcETJyEH+cli8PXGOGyS4t9fN2L6raOxfOth7D2e22g3CpmAx2aNQEzHKGxavL1lLe68WLzIWUXs+fcAHhj6f3hn44vS5EVLsVCDN2EJ6c/Ay9fgg/u/rH3MJuNg7OADkeeQER2FA3+37ML92BuGtzi4QQghhFwo2PkWW/DAJtibavxNbb9rHrk4xHVufkGdrAOnUJpXitHXDsNVj12GgFAdbnrpavz97RppfMC6jrGwtV9Q06/TD0iIk27vLFyLz5ZucrttcaV9TJJXVon5m/fgZFEpdGoVJmWkonN0GEw2CzjH3HgtqZsD+8IG8DYBrD6CFHKwsGsKHuZXrBxMNiuWHjuCqy7JwMqth3HoZEGjzZQKGR65ZhQSggKx5Phhe+6b92Jswdk7OVitHESjIHWmlEIOZy53sPGVj8KISP/yRiGB3WVH8MjOt/BGjwcQpmp5kYfUiFDp5gnr4HDviAF4fUVdFV6RDWDVNun7To+LwqZCe9fs0NDGx83YWKDDxkFwETIZHTYU4SrPx0IIIYRcDIKV4ejom44DFfbuV6zgk01034SWMYoypPp512GLkLY8Jjm++6TUxWDM9cOkrnFs7CGNSb77FyV5pQiPD5XGJL4BnosXNdR7bA/p9uH9X2Lem4vcblvTOSH/ZIG0uP/08Tzogv2kbhCJ3TvAbHQfbm4Jo96EDX9sxZUPT8aG37fgxN6sRtuofVS4690bEdspCn9/57pYVGvatny3VHDqvU0vIjiq5WMS1sm6ppu1O9EpkZj15DR88+wvTp/vMrAT9q51vxbPk6n3TEBobEiL9nGhO3ToENoyCjgQchHwn5QAS341TCcrvH6NqnMg1GnBZ/W4CPHW2C7hCPZR1IYEmqrSaME3G05i2b48/HLbAMQEanDjoPhW+wHEBmq82uaXrdl4/NfdMNVbbPPluhMYlhIiHePZVGW0QCUX8PXsvnjn78P4cXMWiqpYVSFgcHII7h6RhF4d7K0dc0obL8w6WyqMFrz99xG8M6NHq+6XVYgWeM5lC/mr+8Uh0l+FD1YdbRT42HWqaeEGtVyA/kylKz+VDLP6xeGB0SktOHrSGgoKCvDll1/i999/x5EjR1BYWAhfX1907twZEydOxC233IKAgAD6sAkh5Bx58JoROHG6BAdO2IPXtiwVhA4Gl9uzyf/R4d0xOJR+p5K2YeTAjnj3i1WoqHT951Y4ke/yuaqyavz27p9Yt3Az3ljzrLTI7vL7J7Xa8UWGem6xGxXqL1Uxeveuzxwqtf72zp/oO7UvqkLqFjNJZ9Gi6wYN7rDODaptJxs9Xl2hh1opx4f3T8Mnf2zAgrV7UVZpkCqR9U/rgJsn9kXXBHvIgFUMaglFZgksEe4DI4pMezWZipIqfP/CfDz4+R1o7TEJ617jytR7J0iTNj+8sgD/6ipROjwMNh97ZdV8K6AJjkPw/JPgzZ5/AqyyFZscYXwDfXDpHWNwzVPT0Saww29pfv7s5+8JIYRcBFg1wlOHc3FsV6bXrxlzw3BkjHLeAYuQc23ErMH45JFvoHczJnGHnff++tYirP99C97891kpdMuqh7aW6GDPge3oIB2+Xbsdr/z+Dyy2unmSuf9ux4j0BJh5L+ZJjKxrHQfeKsLKmqXpeYh+LIjg+iWiwZ6aqDKZoFUr8OGjV+DTBRvwx797UF5llOYSBnZPwI2T+yG1g72TQk6FfU7VahGkaxQuphokNisHKyvewBLiVkghBwur0ayoGXeJCAmudLmPMnMlfslagTnJV6A1sc9YxpIXLtwyqA9iA/zx2fot2GHKghhglopRMLu44+C1HMRqHj4+rv7McTDaZJDDCo0gwCzaq1D7ynwwNnwkLosajzaBxiSEEELaiCtibsOHR59BvvEUzOBxxOSLFKXrdVzVNg5BPjMQou5+To+TEFdGXzcUXzz5fe216KYqL6qQKvazRf6v//MMQqKDpMX+rYV1q/MkIiEMP7+6EJ8+9q1D94h5b/yBwZf3g81ydtsJ6ysM8PHX4rXVT2Pu0z9j2derpfkj1mmg/6W9cM3/TZeCFkx+VsvmSZqi+HQJfnn9D9z22nWtul/WxVqQuUixA7ju6SuljoM/v7YQR7Ydd3juwKbDTXovuVJWG1DxD9Vh2n0TW/XP14U6JtmzZw/aMgo4EHIR4JUyhNzSDdU7C1C9PR/WUgMsRQaX//Apk/wRdHVncJ6iwoScIwoZjzeuTMdNX22BsQUnk3nlRjz7xz58fG0vlBvMmL/tFA7klkOjkGF813Cpk0JzjEwNQ7CPUurO4Eqf+AA8/MtOKYXf0KpDjSsFeUtg18u9OInpFGFfrKRWCFIHi/tGp0jHq5HLoNM4tiduSjcL1vnBXO8A+nQIxP2jk3HPjzukz9sbS/achsHcTQpgeMtgtmLhzhxsOFokrboanByMcWnhmL89B1+tO4EDuRVQCDwu6RKG24YmIi2q8eTKiE5h+PdwUaOAQ1M71b80LQ2hvmppcqJ7tL/0GZPz64svvsD999+P0tLSRi3R/v33X+n2+uuv45tvvsHo0aPP23ESQsjFxE+rwidPXImlGw5g8br9KCjQoiD2KEQXVf76BnXBC+lXuAwrEnKuKZVyPHH3OPzn5YUwWxpXBxUOnQJfUulxP2zhPluU9MR396KytEq6eM0qF2n81FKb3k59kpt1fMP6JuGNL1Uod7PYKS3UD2/d8rHTdr/rVuyCOCm98YvYubGbhUKMwHGwsX1abZCfKIJqRxYEJ2OjhG5x0n81KgXuuXwI7pgyEMXl1dJ9X43jGCQwwvsgqkwhg8VUtxAqfXgXzHzuKjz0yyoUVzoPb8tPlkBWVFV7f9WPa3Hfx7e6vdDekKHaKFWX2r1mn3T9pNcl6Rg0tS/mb9mHH9buxNHcIqkrxehuybhhRG+kRDYuIjFgcm8sCihF8b6dDo+bBaBsWDjMoSpEvndQ6gTizsNf3wW/QB9pEqRj70Qo1U3vUEgIIYRc6FhFxrfWPS9VrF/x3RoUZhfh9LF8p+dGDPu9/sCnt5/z4yTEFa2fBg99MQcvzHzTIbDcVKeP5eHzx7+XAr6lVXos2L4fR/OL4KdSYnz3jugc5XlRkDNjeqbg1V9Xo8rgerFTclwIXlywyulzyw4eATw0aJYuEejtyxs4kYNgEGGTc+DKFLD52ws6NSTqecBsH9R0Crafk/tolLh3xlDMmT5IGpNoVQrpsfpCNPbCVqKVh6FCCbWf6/kOa7W6ds6VHdegyA64o2dvzFk3HyUmPdQKMxQy9z+zlfmbmxxwqLIYsSh7N7YVnYTA8RgSloyhYR3x0/bd+G7rLhwrKoZKJsPY1GTcMqA3koIbV2Md2yUFf1cdwPYT9nBCDYtoA69mAz5Pf9Y4mG0y3NnxVmhlcgicgESfDpDzjvNOhBBCCAH85P64J/kFbC1Zgx2la7HTrEaSYj14Fxf/DMrJyAh6mD460mb4Bfri/k9uw/+ue9chHNBUWQdz8PVTP+Hu929GaUEZln21WnrMN0CLkVcPqZ1LaCrWAeLTR75xG8CI6RiJjx+e6/S5Nb9sQHOxOQLR2YKwBhK6xdZ+lnPemo2bX74GZQXl0hwRG/PVFxTehHkSuQwWs32ehM2t9hqbjukPTMTT015FVZl3RW5Z1/GmBhxYYavlc//Bvg0HIZPJ0HdiT/QZn44/PliG3z9cilOHT0OlUUrzX1c+MkXq2tDQiBmDsH7h5kYBB2sTx73PLHhE+hxkcgEd+yRBrqAxyYWAE11duSOEXNAMh0tQ/ONB2CrrXbDiAW3fCPhPSqRwA2mTWBjhk3+OY9m+XFSbrbB4s7K/AVaJ53/TuuGpBXtQZXI8GRqaEoL3Z2VAq2x6/o91h7jj260Oi/1rjEoNAyvc+ddee8Xi1tI1SofvbuqLH7ecxHOLXLflYoGFdY+OgNxF9VCjxYole3Kx73S5FHgYkBiIWZ9tgqkJYZIOQRrMGZ6E6b1ipPvHCipxy9ytOJLveZEXs+XJUVJIxBv7cspxw5ebGgUo6ndSqE8p4/Hpdb2kThX1ZRVXY+grK52GTrwl4zmsfXQEwvxYqSjSFrz88st45JFHau/rdDr0798f4eHhOHz4MNavXw/bmepgSqUSy5cvx6BBg87jERNCyMVrfeF+vLDvB5SZq2sfYxPyl8cMwh1JEyncQNqkQ8fy8OPCrVi3+SgMBhNseaUQjuVByHUMzbojV8ikCsKskwJbJF8fq9DzxPf3NmuB+t/rD+KptxfB6uQEd0S/FNhW7MbmxfYW6A3ZVHJUTuvZqCwp25ONDY9cZI26JUXi7Xsuw2+fLseXD34NzsUYIiwuBF8deQeC4DxAYDKYsPrn9TghhT006DY0FQ+NfEaq7uOt6JQIXP2fyzFy1hDp/tGcQjzwwe84mV/aKNzg8/ch8A3GDr+VftVoAsGVg1uO4smJL9a2s675rEzTu6E0qnELbZVChvdvugy9khxbeB8tLcbIHz53+16R7x6Adl/d+zQkV8rx3ckP4B/iuWLuuZKdnY2YGPvYsOf4J6HUeO4w4o6xuhRbFz8nfZ2VlYXo6Oa3QieEEELq+3f+Rrx+0wdSZfsagozH9Acn48YXZtKHRdokdi76y+u/Y9PibdLCnaYu+qjpAHbD8ofx/OLV0vxAfaPTkvDyleOgkDV9nmTRpv34z9y/7AHoBib07oTThkpsOprt9LU2uQ2GLu6LJkm7LVRAVsVLQQKmX1wM3r/iUny8ayPe3bMWUJ4Zk1g4iHoBMNrHIB38A/D31Te4vNZgsJjxx8n9OFJWCF+5EhmB0bj613nS98LLrAiKLYUgbzzesZgFFOb6QbTxSNIF4b6eAzEh0Z7U2FeSh9v++RUlllzEhngeMy4Y9AZkvHeh6x3FWZiz8TuUmhwXK6ltSpQfVtSGOmpoFXJ8PmMqekQ7LijaX5qHSUs/cfteCYFFUKscAxD1KXkFPu/zHHxk3o2nzgUakxBCCGkvRP0fEMufAsS6Tg4i5OB9bgPnc9d5PTZCXNm34ZDU8WDzn9thNpqbFcDW+Kpx0/+uxgf3fSnto74RMwdJ4W62WL2pFn+6Am/e+pHTYgbjbhyJzH1Z2Lf+EFpT73E98MR39+Db536VOhG4Et81Fh/vfM3l8/oqA1b/uA5ZB07BJ8AHHfsk4pHRzzbpWOI6R+OG52dg4OQ+0v2Dm4/gmemvedU1m+c5/GX5yev32rl6L/572StSMa/61D4qp50HtToNXl7+f0jpmejw+P6Nh3F3/8fREiwg8sOpj6HWtp21WzQmaR0UcCDkIiZabNDvLYI5vxq8SoC6WwhkOqryR9qHyz9Yhy2Z3i8iargo3eJiVfuk7pF4Z0aPZu13y4livLfyCFYfKpAWzUcHqHF1vzjcNCge3Z5eiuoGgYqWiAlQ47c5AxF0JhTw1vLDeGN545NwrULAXSOSkVlcLQUW0mN0uCwjGj5nQhwbjhXhzu+2N+o+0SncV+qC0BSsm8MX1/fBoGR7FSQ2YPhtRw7u/3GH205Z/ho5tjwxCrIzAQwWjvhzTy4qjRakRvhhbJdwqYsHU22yYNgrq5Bf4V13iBphfkqsfWRE7Xsw7/59GK8ubdnApSV/XkjrW7VqFYYPH157/8Ybb8Srr74Kf/+6BVXbtm3D5ZdfjuPH7envpKQk7Nu3D3I5pbcJIeR8MFrN+KdgD05W5cNXrsGIsG4IVradRbqEuHNHr4dxuEFFGW+xTgGuFu+PuX64VE21ObbtzcLXv23E5t2Z0uKfqDB/TL2kO64Yn4EJPrNgMVhcZRVQNSIV1sjGC9GlkANbY9MgL91Bo8ZnL14PnQ8r6wl89vh3+OGl+Y1er/ZV4eonL5cq9ZjNFnTu1xEjZw2C+szrti3fJVWhLSusG3+wRUcd0mKk7hZNwRb7v/TXk+g2pLN032YT8ceK7fjf49+yO1BkFkNWXBeqqhEY7i9d/K5Z7HTywCmpWhMLoCT1iMfAKb1rJ1OqyqpwXfJdDsfL6DsGo3xcistjiwz0w+LHZ0uTBDVe2/Qv3tnmviqUz+ZCRHxx1OXzLfnzcrbQhXtCCCHtiVFvxD+/bJDOVViXB1ZVMCCsZeE8Qs6Vm9LuQ+Y+54EBd0yRPii+trvTIAJzZd9u+L8pI5t1TBsOZOKLZZux8WCWdD8uNABXDemOqQO7IuPJt2uDCc4Ykoyw+bguvCSaOIhVcghVHAQzjxRdIL6/6Sr4quzzJM+tWYXPdmw9M4qpex+dUol7hmbgpDFf6kyQERCHsVFdoRYU0vN/nzqCB9YvRJmpbhEOe3WKNgwHTrJ5KA68YIU2UA+1zgBeEGG1ctBXKlFZrpbCDTVUggzfT7wSPULtQQL2Gf98fBO+zv7W7ecWogzAl32frr1/NLsQq7YegdFkQWp8GAb3SKyd3ygxVmH8indQbnbewU808LAcYcFrx886PigAf912vcNjL+5Yjs8OuR+T6OQGRIc4BsfrGxc+GLclXYm2hMYkhBBC2hNR1AP6PyFas8DxgYB6gv2/hLQD1yTOQe7x/FbvejDtvolN7iZQY9Of2/Hjy79h1+p90v3Y1ChMuWu8NC8xWde8fbqS2L0D3ljzTO18x1u3f4w/PlrWaDu/IB9c9ehlOLn/lFSQk81hDL9qIBQqRW0Bhldnv4+qsrr5CzaXENel6fMkLGDw2qqnkZyRIN23Wq349a3F+PjBr92+jnW3+Hz/W7X3j+48gXULNksBlE59k9F3QkZtEaui0yWY3ekeqYNDUyR0j8NH2191eOydOz/Fwvf/Qku05M/L2UJjktbR9JgTIeSCwcl4aLo7VjQnpL0oaLAgvylchRuYRbty8MjYjogOaHqlmV4dAvHFDX2gN1mlqkdsbQzrONH/pb+9CjewS83eNhPIKtFj0e7TuLZ/B+n+PaOS0SPWH1+tO4EdWaVSIIAFDXZmleKlJXXdHeZty8bLSw7gxandkBLugxu/3NyokwXDwg094wKk4ENmUXXt8bHvydXHx7pXPLdoH5bca6+YyhYHXdYjCn/szMGKA64HNNN7RksX5lkA49F5uzB/xyl7JaYzWGcHFiLonxiE37bnNDncwLBuD+wYxnQJr32sqMp1W7r6oQ1nXTmY9Bh/PH9ZWpOPhZwdJpMJt912W+3922+/He+//36j7TIyMjB//nz06tULFosFR44cwe+//46pU6fSj4YQQs4DpSDH6HAKC5L2qTjX9QIPT9x1Jljx7T9ShZ2gCO/bD9fI6BIj3fQGM8wWK0SImLtkC8bd9xFKruoNmCxQHCmAavcpmINU0KeFwKaSQVakh+rwadhC/SCeCRfXYOMAwWCFatMx2LRyadAiP1WKslI91vfoiLGzR0jbsSrHaYM6YcF7S3B4y1HIVXL0HN0de9cdxCePfFO7P9Zu+vMnvpNaWYcnhOH/Jv+vUctoFpZmF+27Dk5FflYh8k4USMdljQuBLTJQWiQkFFZAdiIfnKGuuhO70P7xQ1/j3Y0v1U4AXDo6A2tf+QPblu92+bmxyk1s/MI6Sbx8/btY/dN6h+eDIgPwn58eQJcBHfHXl6sahRsYfdcwtz+bnOJyrDuYiUGp9jEcU2TwfPGfD7JPjDjDPp85b9/gcR+EEEIIcY11zhp9zVD6iMhFNSap7BPlMtzAzN+6F3ePHgB/retzUVf6dYqTbtVGEyxWG8ycFR/t2Ix+336IqgQbYAXkFRzkpRxscsDiI0phat4EyPJkMGlNTjvIscMVDcKZiQoRPidF5JmLsHbHMYztlypt8+TgYegbFY25u3dgb34+1HI5hsTHYI/tAN468mftvn7P3o53Dy7BC+mToRX8cceaeTDZHMdo7NM5WJWHfslxOHm6CjmVFago1KK6UglebYOFjbasPMQGgQ2D1YIXN67GT5NmSPd5jsOVCX2xpXw99pUfc/m5jY0YIP1XbzTjqY/+lMIN9YUH+eKlOyehc0I45p3c7jLcwHAqGzgfC8RKx6I+x4tKsCkzG33i6jqiFRsdq606U6X3RWGhFcHBjcdB3XQpuCH+Mo/7IIQQQohrHKcGNFNdFqYhpC0racE8iatwA7Po42W45qnpXnddrq/PuB7STV+pl7pLWEwW/Pi/3zArrvULBbEQwJaluzB4al/pPuvenTG6O37/4C8c23lCChuw+6zQ08cPza193dIvV+Gzx77FQ1/eCY2vCs9f9UajThisgBObJ0kfkYbsgzkoPFUsPS4VauJcf36sewIrSPXSkiel+yyUMP3+SVj5/b84vNX1mGT8zaOk/7LQAitKtXHRNofnw+ND8dS8B5GUHo9FHy1rcriBObYzU+rYkNo3ufaxssJyj68T5ILL7oWsg8Zs6sJ5waKAAyGEkHYpUqeuXXjfFO4WrDPs/O+fQ4WY2TfWq/2xAMHSfbnS4vxu0f4YmxYOtUKA2WbDFR+ub1IXhLggDU404Xv6cNVRzOobB+FMBdAhKSHSrQZ7/0N5lY1eV2G04s7vt0uvs7oZMGzLLMHaR4dL38Mj83ajoMLoEDxwhm2751QZ0qLqKi8/NakLdp8qcxpM6BjmgztH2E9cn1q4F79uP9VoGxayuPGrzVh092CsPeK5bZorxwsdL9THBXoeCE3oGoFr+nfA4bwKbD5RguySavip5ZiSHoUxXcIcOkKQ8+uPP/7AwYMHpa/j4uLw+uuvu9y2e/fumDBhAhYsWCDd//PPPyngQAghhJAmC40NRlFO07vKubsQy7CL2Oxit7cL7fatP4j1v2+VLtKn9kvGwCl9oFbJYay04JaXfsLxnKK6jRUyGDtHoLxfGKw+9ko7NSoGiuiYb0PeqQpYQ3zrjje/HKqtmRCKGo8tvn9pPsbcMLy280Hf8RnSrcacPo9K7ZQbqiiuxNPTXgUv8LBZXVdoZeGI77M+xL79p/DS3NUoqahbxGML84e5YySUGw9DqDeJcnDzUWTuz0Zcat2inTvfuRH3D/k/lBY0vlCenBGPKx+ZLH39xq0fNQo3MOzn/Pj456X20dtXOA9KWP09L/7KLChxCDjE+XnuWDNuXF9cO+UqHN9zEnvXHkBeZgH8gnwxctYQDJjcq7ZiUpslrUQTW74PQgghhBDidEzCzq2bypzkviKwyWLFxmNZGNPVdYey+racPIXVh4/DYrOhZ0wkhqckQKNUoFBfhct/+x4nyustehIAs78Is5/YOMggAjEIQralGJys7hxQtHAQ9QJwplOCVQXwFnuXhi8WbaoNODCjE5Kkm/Q6UcSVa97Dyeq6MZFGZkKCXxFC1ZX4OWcXRFGO1FA/7C8Ih8naeOnE1pIsbJx5N9bnnMT/7VyEUpMFbAQjHYncClFpha1KLoUdamzKzUZWeSli/Oq6wcxJvgKP7nwbFRY2B1T//JZDR98OmBJl70z8zCd/NQo3MLlFFbj71V/x/fPXYkOB60VJtXt1EnBgjheXOAQcYn08B+uv6tgNEyO7IVOfhUzzIRQai+En98Hw0D7oFZgGgWvj8yQ0JiGEEEIIOatjkqyDOU1+HZtTYOfrrhiqjNj9z370m9jTq/3tXLUXm5dsl+Yb0ganSq9jXRUKc4px36AnkXuiwOtjC4kJQkFWvXkVD75/8dfagAPDvq65z7on3Jx2v9MuFyV5ZXh83PMQWHEni/t5kp9Of4JNi7fjnTmfoLK02mP13G3Ldknfe3Bk3djvvo9uxUMjn3boElGj65BUXDpnrPT1i7PeahRuYNj38NiY5/DJntexbcUuNFf2oRyHgENEQl2hWlcuu3s8Bk7ujaM7M6XPo/BUkdR985Jrh0oBB56nMcmFigIOhBBC2qUre8dg/THvTygZgePgo5ShpLquwqczVi8WT1QYzLjj221Yc9hxwX2YnxIfXdMLf+4+3aRwA9OUcAOTU2bA3pwyKVjR0PaTJdh0wp7edcVduIFhz37+7wmsPJgvhRua210jNkiDV6Z3w5PzdyOrxLGqEAs9fL3uBKb3isYvW+0tq51hHTC+XHtcqkDbXP5qOapNFmSX6KFVyjClR5TU3cJgdj1QmNk3TupkwW5X9fEu9ELq2AwWWMuMEE02cAoegk4JXnV2Tj+/++672q+ffvppqFQqt9s/8MADSE9PR1BQEFJT6ybACCGEEEK8NXb2SOzfcLhJH5ggE6BUKVBtdl/Zxt2i/xoVJZV45vJXsWPl3kYTCk/Pfxjz9x13DDecYdIBVq2TRfE8h4PhAoJWZkG13ghRowBXbYJQ7royaM6RXGTuy0aHLjFOJxQObTnaou+TPb/ww6VYVFjhEG6oJRNg7JsM1dKd4Ot1gWBVo+oHHGI6RuG+T27De3d/jvyTjmO4guxiLHx/KYZe0R9/f7vG5bFUl+ux4N0/XU66cAYL4GNvJ+2KTqOSqkblZRZCq9NgakoXvLZpbaNqsfVdnZaOLiHhUveIibeMdrt/QgghhBBycWHd1Ng5blPIFDIICpm00KYl8wdMcbUed/60EFuz6hY0fb5hK6L9/fDBlZPx+f6tjuGG+tj6k4ZvwQHZFRUQbXKIPOvsIAI21la6QRKCZR3kgGACjp0qQnZ+KaJDG8+TrCs4gkMVebX3tTIjeoVmQc7XjUM4zozEoCKE+lRi9fGkRiEHi2jDjwd24puTm1BqajyOY1lvXmuGtUIB1OvmUKCvdgg4dNBG4q7kK/Hp8XkoMpZKr2NDi4oqBdadkuMb2S6MDknE31sOOf+8AJRXGfDryp0Qw7yYJ3GxvsdfrUKV2YgcfRn85CpMi++Od/etcTsvNjOpJ1J0oeiFKNajw/N7E0IIIYSQi2pMUr+DszfkSpm9W4GH01pv5kmKc0vw1GWv4MDGurman1/7HVHJEXhmwSP47vl5TQo3MDWdErzFuiI0DBPUWL9wi8cAiLtwA2M2mLHs69X4/oVf7eEGL7B5jNL8ModjSs5IwF3v3SR1kig+7Vi86/SxPPz56Qqpa/SGP7a63C8rIrX4kxUtqknkF+iDqvJqKUTiG+iDcTeOkDpsuJx74ThMvHU0opIikDYoFZPPBDHIxYECDoQQQtqlid0i8NuOU1h10LsTUXZZ+f1ZPfD7rtP4Y9dpt9v2i3dfvYi554cdjcINTF65Edd+trG2gunZxjpHOOPs2Jpj2f5cZBY1ra1YTIC9cmlZtRk/bjmJX7Zm43BepdOxCQubvLbskHS87jprMMv35+O2oQlYvDsXTaWUcdiRVYrnFu1HpdEiPdY9WofxaRGYv/2U02O7pl8c+njxZ4E4YoMO47EyVK3PgX5fEaRyVjV4QN0lGNp+EVAm6Frt7wmbjFu8eLH0tUKhwOWXX+7xNYMHD5ZuhBBCCCHNNfraIVj5w7/Y8fcer7bneA7PLHgYiz5ejnULNrvejuPQbUhnj/t79orXG4UbGLaA/5Fxz6Fwanqj59h6G4uHRmaVfSMR/MN+wE2woT6z0XmAfMvSnWgNK9ccQE6gj+sNZAIs8aFQ7MuufSgszt7ZrryoAos/XYGlX69C9oEcpxfI2UX+Tx/9BhsXb5VaPruz/vctGH/zaKfVi9QHC1AZHOfytWqFHPs//Qcfffu8VH2KSe2fjGk3dMf3Nudh7xu79UTXEM/Vi9oyjhXmbWEDhpa+nhBCCCHkQjX+ppFY/dM67Pn3gFfbsw5qLy55Au8fO4S1hzNdbse6P2d0iPS4vzk/LcS2euGGGtml5bj+219Q7OfdmKI+6dSPXTZ2Fmyot5FNkHIOEpOLDnnrCx07IXT0z3cIN9TnqzSiY0gedueyRfyOFhzZg1xrw4JWIngWwJCuiXOwKawQjfalFzzHIdLH3hWvzFSBP3PXYWXeJuQa7WGLmsvi7L9+PkZw3Ak8v1GP1dojHhcK/bP9GIZcHY8NhcfdbmdWALYQM4QyAbzJnnbw08jxT9VePL7kJ+it9nFcr6BoXJmUgF+PH4DB0rjjw+2pA6VwQ3tGYxJCCCGEkLOHVf1fM28DDmxq3IXMVRGoV/7+Lz577FupQ4MrcoUMqf3dd5Rj1/ufnPSSFDBo6NTh03hk9DPS9f+mEr0Ie3s7T7K1leZJlnz2t9TxwVvscw6OCqwNgSz6aDmWf/uPVLTKmcLsYrx712foNtTz3BSbJ8kY2RX71h1EU+mCfbHqp3V4ZvprMBnsnxl7z8HT+uGfXxp312au/e8VUrihPaMxSfNRwIEQQki7JBN4fHxNL3yw6ii+3ZgpdQJw595RKRiTFoFgXxUW7z4NV+ejg5ODkRxmv/DsyoHccvx9oHH7sBrlrHLnOaBRCOgY7vxYW5KWra+4yn23i4bSY3RICvXF8cIqzPxkA06XeTeB4anbBGO02DA5PQqv/HWwyZ+xv0aBHzY7LhramV0m3Rg2n1DzkQX7KHDX8CRcNzC+Se9BANOpShT/dBCWPBepcRug310o3WRhGgRe0RGKKDeL1bx0+PBh6PX2IE63bt2g1Wrpx0EIIYSQs06ukOP5Px7Dd8//ikWfLPd4ofzGF2ahz7gMKNVKqWqPq2o0/S/thYiEMLf7Orj5CLav2O3y+dIqA6rPXByuz8oaDHgImZri/aVzY2+iqD7+WsR0arwAqDUHJUVeTCbYgv1qv2YXw9nnl7kvCw+PfrZRJSJX3E2m1LCYLBh93RDMfeYn6Bt0lFDvyoW+Syis/vbAd0Mh+wqx9A/HQMr+9YeB9YcRmeaPktGR0Cfbx3cRFgXuHjIYM7r18OrYCSGEEELIxUmhUuDFJU/i2+fm4c9Pl6Os0H1X6dtfvx7pw9JwbaSP24DDJWnJCNe5nyfZnJntNNxQv4OBWWPzvMqjNtFQh+c52NwVRBKB8kQOfseAUEGN6FCdi83q9qEWTAhUuS7mJMCKLkGnEaEuQ7VZgcMlocir8pPeq8hQBdSu/RchCDYIgugwtGKPGc08RBuPwVEdEK71xbHKU3hy93soM1dA4By3r89Xa0SgrhL/lmYhUMlDMNpnLIRoI/gw+9yXNUcJ22klzGYrpsT2wMeH1sBgM0MpmOGvZGMTEWUmtRRSsFk5WC08oBRhCbZAVigDb+GgTjZgftYO+/FyNiT6F8JHcxhlsGFkPGCwylFkVKPMqIEaobg+fhymxjcOzhNCCCGEEFJDpVHi5eX/h7lP/4wlX6xERXGl2w/n7vduQpf+HTHt3olur8kPnzkIAS7O82tsXbbLabihuZ0YGobDvekgwbAgQWhM8Fldu1WU6908R41+E3vCP0SHg1uO4rGxz3n8uTRlnoSFOcbeOAK/vP57bUjBaxyH5XP/cXho1+p9Tjdl3cpnvzATI2dS4dKLmYvmhIQQQkjbp5DxuGdUMtY9OgLrHxuBFQ8MxYSuEZDxdVeJg32UeHJCqrQd0zMuAM9N6SpVIGooNcIPb1zp+WLtiv2uww01WlKXXi2vqTvk3pT0KPiqGlfUYfoltE7nAW+PpUZWiR5H8isx59ttXocbvBWolWPcW2uaFG5gP+dRqaFSZw136o8pCitN+HFLNsqbeiJ+kTMcLkHBRztdhxsaYNux7dnrWmr37rrFfcnJ9r/rzNKlS3HNNdcgKSkJarUawcHBGDJkCN566y0YDK3755MQQgghF++CouufvQrfZ32IbzM/wGd738DAy/pIF79rBEYE4M53bsSVD0+W7ncf1gW3v3G9tGinoZReiXjgs9s9vq+7FsEMZ7I2+8o5x/NQuBhnNHTJ9cOkCQxnug3rgtagUrNUBpyGNQz+HKpCOFQm+6CqVzRsKhmyD5/GqSOnpQpA3oYbvKX11+KOjEcahRsY3mhFwM97oThegvqJeoXJhlHaQBgbhBsc9runFNFv7EPiPZuReN9m+Ny9Bmtv/hH6yqZ102uzxBbeCCGEEEKIS+x8/MYXZuKHUx9LY5KPd7+GfpN6Oow32IKb+z66FVPuGifdH5TSAQ+MG+x0wX16bASeumyUx0985WHXC4kYzs1aIE5mheBrgizACFmgEYKfEZy8rguDnI1JeBdzE6xDmJWT2jdUxgKTB6dBIXde07FXYF0RI5XMcV6Bgw0KzgwlZ4KGM0ArmKASLIj0LUdSYCHGJe7D4Jgj4Ko5qHi5Q5BBJrOHFXjOhgB1NeL8i5EcUoBOiTkICSrD0ZICnCwvwfP7PkWZuVKaL/LUzDjQ394F2xAqgvO1QDW5AMoRxZB3qZJuqtHFUE0sAJ/M4dJ536C8mENKQD56hmUjKaAQSQFFyAjNRqfAPFgN7LM784Y8IAQAw/tGoshiX9TEjjsjLAtxfiUOHS1UghmR6nIEqqpglZ3G+rJVMFhNuCDQmIQQQggh5KxR+6hxyyvX4secj/Htiffx4Y5X0HtcD6lbdf3F6g99MQfjb7aPNQZO6YPrnr7S6f5YEaM7357t8X03epgnaek4i3VB8MbEWy9xuS2bD2oNSpXzeRJXju0+idwT+Xh66itehxsYV4W56pMr5bhnwBNNCjfIVXL0GpOOsoJyr1/DupUv+WwFTC66Y7Q7NCZpFurgQAgh5ILo5hChs1fJfG9WBvLKDdh3uhwqmSAFGlgQor6ZfWMxKCkY327KxP7TFdAqBEzoFoExXcIhr7cQyRWLu8pBZ/iqZM3q5NAp3BcvTO2K2V9sRqne/UlaeqzrtHLfhCB0i9Zh15kOBc01unMYvt140uvtiypNmPj2Ghgs3iWZ6wvUyFFc7fp7PpTn/Ul3DatNxNH8pr+O/fl5c9lh/N8kz+3XiL1zQ9HcfRBNTfu5s+3Z60Ju7d6iTg7HjtVNpoWHh6OgoAA333wzFixY4LAdCzWsWbNGur3++uuYN28eevXqRT9CQgghhLSYTC6rrdDz33kPoSC7CMd2ZUKlVSJtYKdGF7cvu3u8dIF/0UfLcGLvSWj8NBh2xQAMmNzbq4vmFnPd4h9nOLMVARUmlPg5hg8EtjaFXaB2s7omLSIUT/z1H/zn0pdQVeY+vJraty5c2lCvS7qjQ1oMTuxx7KTWVIP6JuHnBvsw+nAw+9Z9D6JMhqp+sdB3DYdt/l7ckv4gTNVNX4jjF+SL8iLXVW+P7jjh9vVClQkBC/bD6qeEOVgDzmyD4lQ58mOdV29qiDfXnU8f3HxU6g5y44uzmvAdEEIIIYSQi1X9McmzCx5FXmYBTuzNgsZXjc4DUiAIjuOM2UN6YVinBPy0aReO5RfDV6XEhPROGNopHgLvxTyJzf21YE7kEMCrUGJzDAfzSgt4jcVhSMLJRfByM6zVImx6GXqERuLunv1x8+LfUGWpd15vY8EJDux/0l0l0LFHpMtjGBLWEbHaIJysKoLJWvP9i9DwJig4x2NgwySbPYpQ+1hiQCGqwtTo6j8Zc3M3neneINaGBKL9yqCQ1Y3N2NeRoaXQG6pw3b9vQONT6uljrHut3D6f5BOogLLXKfC+jcd8fKAFJ7X7kZcdiIykbARrqhyeZ99PkLoaPWKysPFYfO33YpRbcNB0qna7SG3Zma4PjbF9BCsrUWlRYl/5MfyavQIz4+zBGEIIIYQQQjx1vQ6NDZFuLyx6HKeP5+Hk/lPQ+rExSUfwDcYZV//ncgya2leaJ8k6lAPfQB+pWn+f8T0abeuMxex5TZZPgBaVJY7nzd7oMqgjLrt7Ap6e9iqM1e4Lqqb2dz1PMnhaX4TFhUjjs5Zgnb8XvLvE6+1PH83FLd0fcFqsyROtTuN2bujAxsNN3qfFaMbBLUea/LodK/di/luLawuIkYsPdXAghBBywQnzU2F4x1D0TwxqFG6oERukwWPjUvH17D744OqemNgt0qtwA9OrQ4DHbQanhEghh6Ya1jEEGbEBiPC3BzbcySp2X83zw6t7IjFEi5ZYtjdXCl00RXPCDUy3aH+cDfmV7gcbrvyyNQsGDwvHiD3BXfzTwSaHG2qw10mvb0FvvvLyupS31WrFmDFjasMNrHvDjBkzpE4OXbt2rd3u5MmTGDp0KDZu3Eg/RkIIIYS0upDoIPQdn4HuQ7u4DCxEJ0fg1levxYt/Pon//Hg/Bk/r53VFoLSBHT1uMzQyBBqlYycGTgRkHhpujYhPQNfBqQgIc9/+mck5mufyOVad6ZkFjyAyMQwtsenzlegQXjdWsCjgEG6oz6ZVoHxMSrPCDUxK70S0BqHcCNWxEiizysDZRBSf9n5hU31LPv8bVguNSQghhBBCSNOxRTRsTMLO7RuGG2okhAbi0YnD8PHsqXht5gSM6JzoVbiByYh2HSyoMToyCSpZvXkSTmwUbqhP0FgA3obRsYkYEB2LAJkanJkDZ+Gk//JWXgpO1HeizPW5tsDxeKfX1YhQ+6PKokSZSQkNb4SSb3wMUkcGJy3EUuJOY5+wBUk6P/C8vXMDw8IF9cMN9alVZmh8mtZNznImgNG7Z4DTcEMNhdKCsKBSBPu5XqSlUxsQ4usY3C4w1BWCivJxXxhLxovQyuxjqiWn17Xo2j0hhBBCCLl4RcSHSWOStEGpLgMLHbrEYM7bs/HSkifxxHf3ot9E1o3OuzFJl4GdPG7DAhSs40BTDZrSF73HpEOtdd7Bur5Th067DaI/v+gxac6oJTYv2YGwDiFNek1zwg1MJzeFrZqLDSkqippenJb546OlrX48pP2ggAMhhBDSRAMSg5AS5rravMBzuHtEMr6/uZ/UQaIppvSIkv7r50U4wlOAItJfjT/vGYK3rkpHby9CGc7kV5qQVVyNCJ0KZxObFNAqZWdlv2G+zTt21oGjoKJ54YiLifFYGSx5HlbJecBez/bTXBUVdZM1H3zwAbZv3w5/f3+pQ8Phw4fx3Xff4euvv8auXbuwfPlyhIXZF9lVV1dj+vTpDq8nhBBCCGkPWPeHqOQIl8/L5AKuu3M83n94OtISwh2eU5SIkFU5WaAiilDl2zAu3R6e8PHXelXJx9MExid73sAjX9+Fzv1T0BwFWYWo+Hk9gtX2FsxmrevuE4wlRAtTRNNC2gwv8FCeeY/WxPMcgiKbNx4rLSh321GiPWChmta4EUIIIYSQtmVUpyRE6lyfdysEAfcMHIBvJ0xH12D79VheaXXXTE4iyK0Yl2gfO/gplVK3BhZqqOna0JCvwv05fJxPMH4bejee7nYZAoQuUHCuwwPs2Bq+i0qwoMycB0FViDC1urZ7g4/S/dyBIJ3E2k9kpa88nNMWl2mh4AVo/dx39mYiAj1fSw/3qysKJOd5hKjq5rSUMs+VbmWcvaBRkakM1dbmLYxqK2hMQgghhBByYRoyvT8CI1xfe2fX+69/5iq8uOQJJKZ38H7HHNBvUk/pS20rzJPEdY7B5wfewv2f3IakHqzTWtPlHMmFodIA3yDXa9VaA/vMzkbAWaGSQxfc9HkbJvd4Pswmz+OktozGJM1HAQdCCCGkiVglUtYdIdLJon8Wbnhpald0DPdFWpQO824fgGX3DcHozqEe96tVCOgU7id9Pam7++pH7H0mdPNcIYl1sJicHiXdmqvKZEX3s9RdocZdI5KhkntXrbYpBiUF4+p+cc16Lc95DpEQoGqD6zT6udoPCyrUMJvNUCqVWLZsGaZOndpo25EjR2LFihVQn5mMysrKwnvvvdfs9yaEEEIIOR9YBaP//vqQ04v3LNzw0Jd3IjolEl3iw/HFkzPx/TPXYphMBdWeXCiqAZ9TInyybFCUipBXiFAWifA9LiKswIqYM/scduVAt8fA3mfI5f08HqtCKceoq4dg6PQBzf5+9fll6GUwQblmP2zw3NHAEtL0i/xsooN9T62tz4QMTLh5VLNeyzp6qHzObticEEIIIYSQ5pDxPD64YjKCtBqn4YbXLhuHKH8/9AyPwu/TrsGfl1+HQbExHvcb7KNGpJ99nmRiivuKrEpBwJikJI/7VApyTI7JwOSYeI8BC65BBweGPVJh0WPYma4VMt4mzR+43Y/D8xxsDTpP1GcyCygq8cXDfYZA5mnH0njQczdlmVC3zSUxybg8LqP2vtHied7DItqXkcg4AUq+9YPghBBCCCGEtBSbe3jmt4fhF+TrdKH+kz/ej6CIAKnT9ofbXsEH215G18Geuz6w1wSG18yTuJ/XUPuo0HeiPQzhjkqjxLgbR6LvhLrz8qYqK6xAr0u642xiXcfPhqFXDMCYG0Y067Xss2OdMMjFiQIOhBBCSDMkhPjgr/uG4OlLu2BgUhB6xQXgxkHxUphhei/Hi/TJYb7oGuU5INAlSlf79dSMKCSHul6UM6tvLKL87Qu0vWEwe14E5M62kyXoHGGfVGhN7FL94+M7oazahEW7clp134FaBZ6a1Bkz+sSie3TdZ+utISkh8NfQhXt3bAYL9HsL0RrYftj+moMFGuq788470atXL5fbd+nSBXfccUftfdbdgRBCCCGkvWGtmz/b+wZuf+N6pI9IQ5eBHTH9gUn4bN+bGDFjkMO2SdHBSA3xh3J7JvhiextgmR7Q5IvQnhahLhIhVJnRrd4C/7E3jnDbJeKyu8cjIMz7ILShumXd0Q5vO44OgT7g9Z4r9XBWzwt+6jYGbn/zeqlTxPqFW9CaAsJ0uO2163DpnLFI6N704HX/S3tBrW3nAQdW7ak1boQQQgghpM3pFB6Cxbdfh0dGDUGfuGj0jInEzQN64c87rsMlqckO26YGhaBTgOdCUBnhdcWaZnbtiugzYQdnbu7ZC/4q7+dJzLamj0mqLHLorXLp60x9DqI1/m7DCjXYKayt3mmsCA5WG+dwasu+ttg4GKwKPDNwJLJtOViVe8zjvmuOx50Kg30cEa7xwWO9huPaxH5I9A2RHjtV6X6+hB1TlcU+NzIoOB0yvvWD4OcUjUkIIYQQQi5YHXsn4fP9b+LGF2eh+7AuSBvUCTMeu0x6rF+D4EFSejw6dIn1uM9uQzrXfj35znEIiQ5yue2Vj0yB1s99B4f6THoTWiL74GkERwWitbEO13e9dyMObTmKXav2teq+w+JCMPv5GbjioUvdzjm5MuyqgVIh4naNxiTNRgEHQgghpJl8VXJcN6ADvr2pH365fQD+M7GzFHxwZnJ6pMfKQPU7DWgUMnx3cz8M7xji8DqNQsBtQxPx30ldmnSsnSNbFk4wWW14/cruULdyRVN2Lf/9VUfx1fpMGCxNWITkhlLG4/Ke0Zh/xwAkhfpCrRDw7c39MKZLmFfVj2r2ce8oexts4pq1zAi0zo9N2o+1vHmDOR8fx793V199tcfXTJ8+vfbr/fv3o7CwdYIahBBCCCHnko+/FlPvmYBXlj+FN9c8h1teuRaRieFOtx05a7C08F+1eh/k+7LB1VxIt1ghO5YH9Yo9mDxrSO327KL8q38/hZ4NKgJpfNWY9eQ03PzyNU061ia1gHbCZDDh0bl3wTen3P2GVhsUx4u937EIfPP0L/j9w6UwGcyt1m557OwReHv9C4hKipA+s9dWPo3+k3qBEzivqxKxz5kQQgghhJC2zF+twuz+PTH32un47vor8eDIwYj2d76AfnJcmsf9zUyuq2jKwgvfT7sC/aMdi0r5KpS4v/8A3NevaV3iwtWJHrdpGK3NrGaLh+zn8CabBS/3nAbOqoDBQxcEFoKwiELjkIPIw2zlYLQI0FtlMNlkEAQL3j++FPMyt6LCyLo9uNsvkG/QwuomZMG2KS4PxcyUdMwffw2ifXTwU6gxd/ANGB6RgHKzFhUmx6JBtccoAoVGdr2dg1pQ4orYS9x+n4QQQgghhJxvumA/XPXIFLz693/xxj/PYvbzMxEaaw/3NjRi1mCP+5t4W905cECoDq+u/C+6Dk512MY3QIubXroas55o2jX8xPR4tITZaMaj39wtdX9uTTarDZ899h2WfLESFnPzCpM2xIo3Tbp9DN5a9zyCo4Kkn9Mba55Fz9HdaoZYXs2BsRAJuXhR7w5CCCHkHIgL0kpdF77ZcNLp8z1i/TEuzXEhUoivEl/c0AcnCquw61QZFAIvdYtgwYqmGpAYjKQQLY4UVDXr+LtG6dAp3A8/3dYf095fC5O19Spolla3ziIi5r5Rybh9WBIUMscM5/ztp7B0X55XhT9Z54xnJqchPcb7arQXK9Fka939GZvXaUSn0zXq0OBJw21OnTqF4ODgZr0/IYQQQkh7ENc5BpdcPwxLv1wFxb5s6SayALCNLbMBug5JRd+Jju2R2UXnl5Y8iayDp6QOCqytc8aorlD7eF8ltUbvsemISAjF6WP5za7ElNIzEe+8cStu/Hg+TC7Cy4qcCghNHGNUlNi7WrQUqyJ040szMe3eiY1aJv/1xUqs/927DhHxXWNx9/s3SxWl2jtOtN9aug9CCCGEENL+dQmIwISYzliU5bwi6IDQeAwKS3B4LMrPD99Om44jxUXYV1AAtUyGgbFx0MibPk+S4tsXvrIgVFiKXG5jHx3ZQwInqoKQo6+bJ+jkG4PugTH4uOe1uHflF1DGFzotbMXmIcw2NkdhDzlwIturKG3Lgg/209u6F7LHq61s7kYGnhMRKK9GjE8JFIIVRqsMBQYf5Bt8pHBElUkp/fdYWRASdYVoOCziwGF69Cx80HME5A06LyzI3oStpfulEpgHykIxMugEEtSlMIBDrlUlHVuJSS29Z4I2CncmX4U4bdMrrLY1NCYhhBBCCCE10gZ2wsApvbH2t81OPxTW9aF+BweGFZV6ffUzOL7nJI7vPgm1j0qaJ1GqnYeG3Rl8eT98+MCXKM33UMjJhZTeieg+tAueWfgw/jPpf1IwobVUl+tbrRvEnHdmY8JNoxoFMRa+twRbl+1yeMwaqoMlIQyiTiMVsBJOFUtFuVLSYnD/J7chuhldH9oaGpM0HwUcCCGEkHPkmUvTEKBR4Mt1J1BhsCde5QKHid0i8fTkLpALzhsrdQjWSreWendWBmZ+vAHFzQgUXNe/Q23Q4Zsb++LKjzc0qmR0PrGL+E9O7Izu0To8v2gfyg0WJARrcWXvGBgtNvx34V6vwg2sQ8aLU7uiV4fWb+l2IeIUrdsMjFM2L2WelJRU+zXP89LNE63W8e9UZWXrLGojhBBCCGnL7v/4Nqni0O8fLEV1hR6cTYRcKceIGYMw5+0bIAjOz8diOkZJt5Zg52hP/ng/Hh3zHCqKm37uNXnOWOm/3brF4507p+H2d3+FtGaohiiCtwBigB+MncKgPJCHc4ldtL/7vZsQmxqN9+/9EtUV1YhLjcHY2cNRVVaNjx782qv9sMmRBz69XQp0EEIIIYQQcqF5pc9khKl98eOx7aiy2LvKKXkZpsR1xRPpl0ihYWeSAoOkW0vwnIBpMY/h+8z/g9FW3eh51hlBb1XAaJMhR6+D0eYYorgs2t4xok9MHF7ocw0eO/AZgoPKHUIGLBhhsgmwsRTBGWfiDY3bQ9QjijxkvBX9wk5ApzTUPi7nTfCRFyNAUY3NBbFSuIEpMWqwrzgcYZoK6BRsexF6iwa3Jl6DIFUQPjo6D3qrER20kRgd1heFxkp8cPgv6bX9fU/jnqhdiFXWjcvyLEosqQxDFm9DtAa4Pv5BhKvruo4TQgghhBByoXj8+/vw8YNfS0WJDNVG6TFW3OmS64fjtteudfm6+LRY6dYSCqUc//npATw58UXoK+vO+73BxkqX3mGfJ+kzNgNPfH8vnr3idbQlMrmAh7+6U+rW8M6dn8FQbUBi93iMuX4Yco7m4ptnf3HY3pwWA0typMNjlk5R0PRMwIPPzUBCLBUpvdhxoujNcj9CCCGEtJZqkwWbT5TAYrWhW7S/1KnhXMkvN2Duhkx8te6EFALwRr+EQLxxZToidPYqre+sOIzXlh1CW6OU8VKYoT4WIBmYFIxVBwu83k+orxJrHx3hMnBC6tgMFuQ8sx5ojVA4zyHy//qBVzU9f3vgwAGkpta1BMzKykJ0dLTb1xQXFyMoqG5CbN++fQ77IIQQQgi5kOkr9djz7wFYLTZ06psE/xDHjlhnU0F2ERa+/xcWvr/E64pArGXxQ1/eiaCIAOn++/P+xeeLNkEUgDPre6RwQ02lf85ght/PW8G1Yuc5byhUCpgM9kVaNeQKGboP64ItS3d6vZ+wuBB8deQdl4GTti47OxsxMTHS131GPQ6lumXd8Yz6Umxa/oLX5/qEEEIIIaTtqzAbsa0wCzaISA+MQoBSc87eu8yUjy3Ff2Bd4TIYrAaUmdXIrApEiVkt9VWoy1iIEDjWeUFE/6BUPNjpKgQofKVnnt24AkvLl0AmWKVteM5WrwOEY0iDrcZwkduQmK08iqp8kBaUgzjfEpfbZVX6Y19JeG2XiYbkvAWRPmZYROOZUAXDQcHLkaRNxtr8E+jlk4fXE9ZC5qRNmlnk8HVZLE5b1AhSROGO5PddBk7aOhqTEEIIIYQQTypLq7B33UHphL3zgI7wDfA5Zx/a6eN5WPDuEvzx0TIYz4QsPBk4pQ/u+/hWKTzAvHnbx1j08TK3r7EEa6HvGgFzpJ8UuFZklUC1+zRkpU0LVzSFQq2ASe84T8ICJKn9UrBj5Z7ax6xhOpgGdHK5n8TYYHz1xvVor2hM0jpo5R4hhBByjmkUMgxNCcHI1LBzGm5gQv1UeOCSjhAa9i12Y8OxYgz630o898c+sFzkF+uOoy1qGG5gzFaxSeEGJr/CiL/25rbikV24WBhB3aV1EtPqLkHNCjcwycnJDmGFFStWeHzNjh07ar9WKpVITExs1nsTQgghhLRHah81eo/tIbVbPpfhBiYkOgg3vjATNifn766wlsWz4m7HZ49/J92ft2SrtKSHtwKC2X6rvz5HVMlhjmrZovrmaBhuYMwmS5PCDUxeZgE2LtrWikdGCCGEEEJI2+IrV2JoRBKGRySf03ADo1OEYnjY9ViR1wGrC5KxozQaJWZ2DPZQAOvCwMMGlWCBQrBCztuwpWQvrt7wX8w98ae0jz9y10MmsDENJ3VVMNtkMNsEiCLnEGzQm2UorlK77DDNtq4wKiHjrIjSlro97ghNOcJ8yqEQGhavEuGvqkaYthI2GKWOEix0IZyJOZhsZuyr2AeBs+K2iD1Oww2MnBMxRFMofV1kOoVjVXXX0AkhhBBCCLnQ+Phr0Xd8BvpO6HlOww1MRHwYZr8wE2YncwqurP1tE2bE3IYfXpov3f/ri7/dbm/oGILSad1g7BQKm58KNp0KhrQIlF7eHaaYuvmT1g41Nww3MEa9CTtX1YUbGEtCmNv9HD1ZiJ37slv12Ej7QwEHQggh5CJkMDet5L7VJuLTf4/jtaWHUFxlbpVjuH90CuKDtWiL9uaUn+9DaDe0/SLO+35YZdsrrrii9v4nn3zi8TXffvtt7dcjRoyAQqFo9vsTQgghhJCmMxmbNq6wWqzShfu5z/yMCr3nikaiwnN49tZXrpG6JbRFR7efON+HQAghhBBCyAXLKtpgEa1OnuGkcAALNjRc58O2/ybzL3yXuQycsrLeK0QoeQuUvFUKMlhsnHSzihwKyn1RaVSjsFILq81xhxYLjzsSpsNPCIBGboKMd9+BTsbboBSsCFBX13aMYPwURvgqTI2Ol93n6/VySNCUoLPGfYgiUV4FFWf/XHL1x9xuSwghhBBCCGk+s9EMG0tXN/E1rBAUmyuxmJ2NZ+ysvkpUDk2ElH5uSC6gYnQKbHL70vEHPrsdfkH2TnVnU8PQt03neb3YoeP5Z++ASLtAAQdCCCHEiXKDGV+vP4GnFuzB60sP4kh+3cXqC0HX6OZVaf3s39br3nBl7xg8MrYj2iKNXDjfh9BuKBN0kIW1rMIWez3bT0vcfPPN4Hn7qe3atWvx0UcfudyWPf/VV1/V3r/99ttb9N6EEEIIIWdDeXEF5r+9GO/e9Rm+/u9PyD58+oL6oJMz4pv1up9fWwi+vHH7ZLHejRGcbNPQJdcPx+znZ6AtUmnPbbe/s4UVh22NGyGEEEIIOfdKqvX4csM2PLtkJd79ZwOyStwvjm9P5LwMiT7hLp5rHG6o7+esv+1jD1GEr9yIYFU1dEqjdAtS6eErt1cstVjtPRSYapMS2SX+yC/3QVGlBqcLdTiRGY7REb1wd+pIWGzeLdtgoQm2RkkjrwmMi/BRuA6As++jJuDgL/McMmf7Vp4JOCh4FS4ENCYhhBBCCGm/SvLL8PNrv0vzJN8+N0/qfnyh0PppEJ3SvEKgP76ywO3zhs5hgOB6jCEqZTCmhIIXeIyYOQjXPX0lzjXO6jqgUUOtlONCQGOS5vNcyowQQgi5yCzYcQqPztsNfb2069t/H8H0ntF4cWpXyNycBLYHRZVGROrUzXpt/c+kJXrFBSDMT4WxaRF4f1YG7vtxB4yWpnWVOJvGdW2drgQXA9auLvCKjij4aCdEU9N/hpyCl17f0rZ3PXr0wF133YW33npLun/HHXegqKgI9913H9Tquj/vixYtwtVXXw3rmcHSpZdeikmTJrXovQkhhBBCWttfX67EO3M+ldr21vjm2V8w4ZZRuOu9m2qDne1VUXkVdJf2QKWKA2eyQHm0ELJC70Ll+goDFAfzoA+2t4yWFhbVfBzsnJKVATJawFe6Dzj0GNlVqko0YuZg6f4rs9+HxWSRvrZq5dAn+0MUeCizK6DIq8a5xPMcBk3te07fkxBCCCGEkPp+2LoLz/+1CqZ6i07eXb0eV/dJxxOXDGvx9dzzLV9fgUAhFEeR2+AZEYKHTgrVVj14TgmdwgiVzHHOhH0sapkFAmdDZmlAg1dy0JvtnYStJh7DoxOhlStwWWwGOHD4u+ANaOSuxx6VZgVEkYOCt0CnsKHaLIect3k8XhZasIkics0qmG0c5G62N9h4VNpk4CGgo18/t/slhBBCCCHkbGIFoD55eC7MZ67bM1//90dcfv8k3PzyNe3+wy/ILkJkYjiyDzW9uFVlSZXb5y3BnrsjsG0GXtYHcoUcl94xBoKMxzt3fgrrOVq7JZwqhqVjlMvn5TIBA3snnpNjIW0XBRwIIYSQeracKMb9P+2E1UkbsJ+3ZiNQq8Bj41Pb7Wc2f3s2Hpm3G6bzGCZg0x73jkqpvT++awR0Kjmu/XwTrA17kp0HE7tFICnUvliKeEcR5YOgazqjaO6+JoUcWLiBvY69vjW8+OKLOHDgAP766y/YbDY88cQTeOONNzBgwAD4+/tjx44d2LVrV+32cXFxbjs9EEIIIYScD9v/3o3Xb/qgUWtiVh30j4+WwT9Ud16q6bSW39bswUvf/Q2zxQqkhEqPGdMiIT9eBJ9Vh8B50ZJZcSQf5tgAmGMC7eGG+ourOA6iSo7yiV3h9/tu8PrGVUrZYqyr/3N57X0WctD6a/Hk5JdQNC4elRmhgKwuRKI8UYbgXw5DVl4XODmbRl4zBBEJYbggsJ9nE9tsO90HIYQQQgg5Z1YfPo7/Ll5R2x2tBrs/d9MOhGi1uHVQn3b7E/nm8BY8u30ZLKIVOq0cGpXnzgYNKWWWRuGG+hSCDWq5CVYbL3VxMFkE2GqT2YDA8birR12AYEpsDyTq5uDbzFfr9aWrw6ZOyi0qBCj00vBHprAi0bcQasEM9g7VVjkKjT4ot9QU+xGlx23SjAy7ieAFGzbrgzFA67rq7S6jDlbw6Bk4Gn7yIFwQaExCCCGEENLu/Dt/I96/94tGj7N5k59eXYigyEBMvXcC2qt5b/yBjx+eC5v17Kzd4rxYE8YWjs98bGrt/Qm3jIbaR4UXr377rBxTo/c/lgdLh1DARZeGy8amI0CnwQWBxiTN1r7LvRFCCCHNUXAQWPok8PMNwF9PAHn7ap/66J9jTsMNNb7ZkIkKQ9MvdrcF206W4MGfd7Uo3CCwUj8tdNPgeAxKDnZ4bGByMAYmnd+L5exbm5oRhVendz+vx9FeqZIDEHJrd8jCvBtgsO3Y9ux1rYV1ali4cKHUyUEQBOmxwsJC6bGvv/7aIdwwaNAgbN68GeHhztuQE0IIIYScTcf3nMSHD3yF52e8gY8f+hqZ+7Nrn/vplQWNwg31/fbOnzBUG9vlD2jLwSw8N3eZPdzQgDk+CNV9O3jcBy/jpXa+2r8PgmOfg4vKsTZfFfTdnVf/mfnEVHQb0tnhsb7jMxD52iRU9gl3CDcwxg465N3QBTbF2b2UytpBj509Avd9dOtZfR9CCCGEEEIO5BTgpd9X4cHvFuO1xWtwoqCk9kP5ZN1mJ0vs63y5cZtDZ4f25J/TR/HfbX/BIrJ5Eg5lVWoUl2tgMMlgsfIw6WWwmNzPg8g5mRQs8CRAbYBOa4C/Vo8Qv0r4qfW14YX7uw1Fj9BIh+276vrCT9YVVpvj+1tsPIpMGimywIY/rINDhKoMOrkBCt4KGW+Dn9yIBJ8iRKpK4CPTI1RVgTB1JcJVFfCXV8NHZpJCFz+UJCDfrHJ6vHkWJdbow9ErcBzGRdCYhBBCCCGEnF2Htx3De/d8judnvonPHv8OOUfruqv9+L/f3L7259cWwupknqE9WLdgszQ/1JJwg0KjcP/8sSKP+7hnzkQk9Yh3eIwVg0pM9zxP0xo4gxnKf/eDK2fjpDpyGY/pEzIw59qh5+Q4SNtGHRwIIYRcXFigYf27jo+x+71vAsa/itUHXVeuYapMVmw8VoxRndtfNc3P1hx3G97wBqsa2xIpoVo8NKYj/j1ciPXHCqW2yyzsEBuowdqjnk+wz5YhyUF4cVp3RPnXVDcizcE6MYTdmwHjsTJUbTgN/d5CoP6YjOeg7hIEbb8IKBN0Z6WNuUKhwNtvv41bb70VX375JZYuXYqsrCxUVFQgJCQEffr0waxZszBt2jTwPGV9CSGEEHJusfPp9+7+HAveW+Lw+M+v/Y5p903Ezf+7GluX1oUynaksrcK+dQeRMaob2ptvlm6VKo+6YkwJhXprFvh6LacbOfN6q04thRjcMSWFQrPhhFSvtEZyzwRc89R0bP5rB3at3gee59B7bDp8O0dgQ3mhy31ZgtSoSg+F7yb7JItVp4IxPgiinIesoBKKzBIpeNFc/Sf1xF3v3YyQ6AukSmoN9pm0tAEDNXAghBBCCGk1LEz931+XY97mPQ6Pf/HPFtw0rDduGdEXm0+ecruP4mo9dp3KRa9Y54HituzTgxsbnF5yMJrl0k1iBTScBTKF6wCDUc9BqfJ8ksrXGyCwS+EapVl6LEGdgptT+2Jv2Q4crTwAgZOhs647ZJwW20tPAwiCVjBB4GywiDyMNhnkfM2FdhEhigoILgYfoaoqyE0iTKKs9n3VMgvUsMBoFVBmVeKZ3HSM9TuFQdo8+MtMKLIosLE6GFWKSbgt+Qb4ygNxQaExCSGEEEJIm2K1WvHq7PexfO4/Do+zUAO7dj95zlgc2HTE7T4KTxXj6M4TSOmZiPbmp1cXtHgfFqPFfce5o0XQZ1TDGui8QGnvlBhMvaw/1i3cjP3rD0GmkKHfpF7Sc0d3nMC5wpfroVqxC9ZgP4g6DS65ejBuvWcCAv21uKDQmKTZKOBACCHk4rH5s8bhhtrnPoUY0AEWW4LH3VhaGBI4X/455D684Y2Wfuuz+sZh8nvrsP90ee1j7648gnA/VYvDFy2xObMUelP7THe3NSy0oEr0l242gwXWchNEoxWcUoDgpwCvOjenn126dMErr7wi3QghhBBC2opf31zUKNxQvyVxWGyIV6Hi9lqZaMO+k+43kAmwRPhBkVnscpOaqkY2rdLj+4lKGSAXAHPd5zX+5lG4Lf0hnNibVfvYdy/8CvmMbhBTfdzuryotCD5b81A5PAnGpGCH7hF8uQF+fx2ErLAKzbFz9T6Yje2zWyAhhBBCCGk/Plu9uVG4gWHDkE9WbkaYn/tz4hpWW/OrjZ4v7JjX5R13uw0vs0Gh9XBerjTDLHounmMTGxf4USksuLlTJ7yw/xHkG1mYwW5J7nz4yoLBwSZ1aqiy1o135Hzd4iUVb64XdnBOLZhgsjS+Di/nrTDaOFTYFPi5NF662VfanDlO8TSGhwO+Z7IehBBCCCGEnA1zn/65UbhBOh0VRXz935+gC/Hzaj9WS/sbk+irDNi79mCL9+Op+wNnE6FbuBflo1NgidLVPSGKUBwvxvShvTG70z3IOZpX+9Q3z/6C4JjzU4BJKCwHCsux9f2/YLt5FHChBRxIs1HZWkIIIRcHdnV+/XtuN+E2foTesfVO7JyQ8Rx6xPqjPbK1sPtCa3hl6SGHcEON3HIDzicWbnj6973n9RguRCzMIA/VQBHjK/33XIUbCCGEEELaalWiX99a5Hab3977Ex17u684JFfKkdKr/VUlau0xCV9l9LgNx6oY1Qs3MB8/9LVDuKFGfkGpx/2JCgGVQxNhTA5xCDcwNj8VyiZ1hlXrvjW0K9XleqktNSGEEEIIIWeL2WrFN2u3u93mx427kBLiflGLRi5H5/BQXIhFMxUyKzgPKyh4Dqg2K9x2p2PPcSyqwDkuPOJhwx+nP3MIN9SosBQiSMEC0w17TAByzgI/mV66ecKCDK6Om2/0CdSNa8osenx2fKHH/RNCCCGEENJcJoMJC9//y+02f362AlHJEW630eo06JAW0+5+EOI5LPzK683wX7gX/j/tgHbtcWjXHEPA99ulQk1v3/ihQ7ihRmFWkcv92XQamDtFwZQaDWuo7qw0Xi4rKMfnT3x3FvZM2isKOBBCCLk4lJ4Eio+636YsC3d2c38KNr5rBML8VGiP+iWcn6RtfZUe2qSdT/8eKURWcfX5PgxCCCGEEHKByj50GvknC91uk3MkF8NnDHK7zciZg6AL9q6CUVvTMyXK/QZWG2R5FV7tS1aqh1DgflvFkfx6y3Xs9BXOw9WKXM+dF2TFBnu4wQVRJYehSxiaa+OibSg6XYILCfv8ObGFt/P9TRBCCCGEXCCO5BahsML9NfDDuUW4rFtnt9tM6d4ZvirPHdXaGhnPo2dwtNttlJwZ4aoyxGmKEaUulbohOAsvWEQexUa105ADe8xs46VQtLJe9wUmQKmHRXQdUpDxInSyavCcVQpHcLAiVFGOCFU5/OV6qARLszpH1GiQ065lFTmYbQLWFe5Cubl5XenaKhqTEEIIIYS0HYe3HUdFcaXbbY5sO47xN410u824G0dCrW1/a7c0vmok90w4p+8pK6qGetdpqPfkQiizz48YvCggVUOUCzAM6gTDqG4wd4mBpXM0jINTYRjdDTaf1v8ZrP5xHarKL6y1WzQmaT4KOBBCCLlIeJcdHZwcjDuHJzl9jnVueO6yNLRXNw5i7YaJK2zSIavkwjpJJoQQQgghbYiX3QsGXNobl98/yelzXYek4o63bkB7NXNUhtvnFUcLwRvMXu9Ps+E4YHFRnbTCAPWOUx73YVMIMCaFgIccfLX791bmGe1lT90wxXsOlrM/CcYYP1R3CoIx0qfuWKw25GUWeHw9IYQQQgghzSF6OU8yMa0TZvXq7vS5/vExeGTUkHb7A7ixY1+XzyUH5mNUwkFEqCsQqKxGqKoSnfzy0UHLqpjWfXYWFl4AB6NFBqNVgMXGScM9drPaOBhtAiyiIG0r520Or9XJPXezlgs2+MqN8JUbEKMugUZmbtLQ0miTu3zOVSCj2sI60XGwiFYUGC+s0DUhhBBCCGk7RC/nScbeOAJjZ49w+lyf8T1ww/Mz0F5Nu3ci2hNjvxTYwvwbPS76aaSggyhr3SXoJoMZxRdYISjSfLIWvJYQQghpP/zjgIAOQMkJ19v4RgLBKXhwjICxaeH4duNJHC2ohL9ajsnpURjTJQwyof1mAwckBeOpSZ3x7B/7cA67nrUr327IxAerjiJIq8BlGdEYkhwMzlVJI0IIIYQQQpogumMkgqMCUXiq2OU2EQlhCOsQgltfvRZDr+iPRR8vx6kjp6WODSNnDUb/S3tBEOwLZdqjwd0ScPe0QXjn138bLayR5ZRBu/5Yk/Ynz6+E36I90PeMhTnK316O1GKF4ngRNFsyG4Ul2Ll9zQQK+399RgwMXSMBmSDdV1QBBlZwyMmwT7fiJGRlNjSu3+pI9BCA0CcFoGxkPKwBdZWNZAXV8F96DMqscsx/axG+/u9PCAjTYfS1w5AxsivaNfbBejlp5XYfhBBCCCGkxZLCghHko0FRpetCPwmhgQj188H/jRuBSV074adte5BVUopAjRqTu3XG8JQE8O34mvmY6E64N20I3tzzj8PjET5lSA9zHpAOUOhhspUhR+8vndoarfYlFuxjsIGHSQo8ONfwo/IwXDhDhJo3Q8FboOIbBro5lyfIQUIVUpW5CBUqIYLDMWMQtlTHotiqlZ63smO3CZBxYu1xsXBGtVUBk61u2ch7ezaiSL8GoWofTIvvhn5hcWjXaExCCCGEENJmJGfEw8dfi8pS113DknrEwy/QFw98ejsuuW4Y/vxsBXJP5CMw3F+6Zt57bDp4vv2u3WJzPZn7svD9i/PPy/vzPAebl4vGrIE+sIXqXD4vapSwxIZAfiyv1Y6PjVXmPv0zyooqEBIVhLGzhyNtUCraNRqTNBsFHAghhFwc2BlQvznAnw+53qbfbQBvXyyUFqXDi1Pb+UISJ24YGI/hHUPx/aaT2JFVitNlBmSXVJ+TwEOETiW93/mikvMwmFm1JNcW7c6t/fq3HTkY3jEEH17TE0pZ+11ERgghhBBC2gYWTLjs7vH45JFvXG4z9Z4JtRfmO/VJlm4XmuvG9sbQ9ET8+s9u7D+cg6JjeShZsR/CyWJpqU5TyQqr4PvXfthUcogqGbgqE3iz864OQVEBKMy2B0wM6dEw9Iipu7YsAwQzoC4AzD6AVWV/nD2m2VsE/9XZMEf4eRW6cEXsEoriCYmNVjVZQjQovCIVId/uxaof19U+vnzuPxg4pTee/PF+yOR0GZcQQgghhLSMQiZgRv/ueHfZepfbXDe4rutaj+hI6XahuavLYIyN7oQfj+3AnsLTyCutQpLPUbevCVZWIbskAOUFPuBD7UFqq2jv3OAu71Ez9yJwVigFK3TyAFjEunmIxkSoBBsEToQA5/MZ0i7P7LfmvZMUBRisOeow1AiUVaO75hTmlaTjqDEYVRYFbKIvis0WCJxNCkFYRceFYdVGOX47dbD2/rzjuzExNhWv958MWTteREYIIYQQQtoGpVqJibddgh9ecr24f9p9dR0Oug5OlW4XmtnPz8TwqwZi8ScrcHj7MRSeKkFeZv45KfYTEBGAIjeFuOqzRgZ4tU1TAg5KjRLGaqPL59kYa+UPa2vv//XlSoy+dige/PyOdh1sIc1DM2OEEEIuHn1vAYqOAJs+avxcxnXAgLtxMegQrMVj4+sGAKn/WQK9iwVANfzVMpTqLS163/MZbmACtQrklDbtGFYeLMBLfx7AU5O6nLXjIoQQQgghF4/pD16KnCO5WPTJ8kbPTZ4zFlPuGoeLQYfwQNx/xVDpa9ZRYaziKhdLd+r4h+lQmldmfw0Ac7Q/rAEa8EYL5JnF9m4NDTo2NFQTbhDlPPSsc0MNdk38zEIgViBVWQaI5YBVYX/cEh0Iq1YB+elyCEVVsAbZK6A6o9pz2uVz4uTOgM1FDwi5gPJB0Qj+5YDDw2t/24wv//MDbnrparRLbMFXSydlqIMDIYQQQkiruWVEH5wsKsXCbfsbPXfDkJ64vM+FV/jJmWRdCJ7sMVr62mIz48k9K9xuzwIH/oIOOfv8oBFKIQsygoMIi42HXKg/mhGhEUzQKQyQc1aYbTwqZCoYRbkUKMjSmxCudB2KYMED9l7usXe2v5fBIsBokWOQ/zGn3SHknA1T/Hfhf6dHwmhTgLf5wiqWgsUnnC0kqjTKGz3+x8n9SPALwr1dh6BdojEJIYQQQkibcv0zV0odGVbVW8ReY9YT0zDq6nZ63tlE8V3jMOft2dLXVeXVmOJ/ncfXeOoS7g1vww0SbwIFTQwdKNUKtwEHZ5Z9vRqxqdG46pEpaJdoTNJsFHAghBBycRn/MpBxLbD9G6A8G/CNAHpcDUR0x8XGYLZi5YF8mK2elhJBCjc8MDoZn645jjJDy4IO58MVvWLw05asZr32p81ZeOCSjvBR0mkTIYQQQghpGY7jcO9Ht0oViv76YiUKc4oREs1a7I5AQre4i+7jNVQbsfGPrbB5MSYpyy/Ddc9ciR++WY289EjY/FR1T1qsUO3OgXprllddIMxRAax8be19scGLzFrAojkTfJBwyLupK4K/2w/fpQdRPqkLbD5KxxeJIpRHimDok4AqfzU4sxXy44VQ7j0NodKIMY9MxOc29xMHxoQA2JQCeKNjAH3xJ8txzVPTpepWhBBCCCGEtITA83jxyrGYOSAdv23dh8KKKkT6+2FanzQkhQVddB+u3mrA5uIdXm1bLFbgvknDsTR/CWQ+xdI4wt4VgZPGemzVSpiqAr7yusU6CsEKrdwMo1VAnsFP6phQbNIgUFHdKOTAwt88XxduYIEI9ziUW9TIUGW7DUWoeAu6qPKg0V6PLw7vhIxXQaswOQQzzFYeVSYFOCklwfbl+N7fHt6GOzoPhEKgbteEEEIIIaRlBJmAJ767V+p4vfzr1SjJL0NEfCjG3jgSsZ2iLrqPl4Ub/vnZdZe9+opzS3H1k5fjlzd+h6GqaSGB5uCLKz1vU+J5GwkHXHr7GCx8/69mHcvC95Zg+oOTpG7p5OJBK/UIIYRcfMLTgHEv4WKlN1nx+PzdWLz7NIwWzwuJarzz91GYvFh4dC4pBN7jMXWP0WH2oA7NDjhUmazYnV2G/okX3+QOIYQQQgg5O5J6xEu3i1W1wYQXX/wF//69C+YyPZQaOfhq990XWDXRr95ehOLxXdhAwPFJmQBDjxhwVhHqHdke31+UNagoVG/tjlkDWHwav8bqr0TBdV0Q9vFO+P+0E4bUUJjigyD3UcKWXQqoFLBG140ZRDZWSY2AOT4YA/TAmDlj8Pn737s/MJ5zGnCoKKnC0Z2Z6NwvBe0OWxtFHRwIIYQQQtqcrjHh0u1iVW3R4/0jX2NryW5YRCui1DKoBNfFnSw2DjxvxRb5V/CPqjtf95WbYLAKKDRoEaAwOIQb6lMKVgQqqlBo8oXepkCxSYRObgB/JphgE3mwvaq4un3bWKcGVunTRc6BPXda74d4/yqP3++lYeGoVPTBF9gJi01AmUEtdYtg788CGix4wbD34jgRYoMUeJGxGkfLC5EaEIZ2h8YkhBBCCCFtErve3S6vebeSytIq/O/ad7Dlrx2wmB3nBFxhxaK+fWEeRNu5aXssnCoGpzdBVCtcHJANsmN5kCtlMBvdF8sdcGlv9L+0d7MDDgXZRVKH9JiO7TAEQ2OSZqOAAyGEEHKRKKs244XF+/DL1mxYm3Gu29bCDbWdzjyc5x/MrUCEnwoqOQ+DuXnfg7PWzoQQQgghhJCmKS+qwFvv/oHfM0/DKnBAJ/viGH3vWKkDg2bLSbevr2LbNww31GPoGgnVnhxwHoLcQnGDBUBnCpSyNTwWrevX2bRyVPaNgP+yTGh25Eg3lUaJsmgd9AMSnb5GVMmxk7Miyt8XckGA2ep6AMMZLBCqnAc9BKFpbZ4JIYQQQgghjZWbyzE383tsKNoKqyjCKrLxBYdSkwbh6nKXH1lutR86+JXA2UhDJVgRoNQjQF4Ff6EKvoJBCg9YRAHlVhUqrGqpG4NWZkKxyQYbeOhtSlhMAjQyExS8fa8i+59DoIGDGTLIRUujkANbz7S7JBLZVQHQh6o9/qiPVh1HL10gBI6HVbS/Hws1NJwrstlYqML5hIi9SwUhhBBCCCGkJUrySvH2nE+x9rdNzQoqnKtwA8OJIhTrD8I4KNWhK7bEZoNiy1HwVUbIfFUeAw571x3A7W9cL40rWPe65uBpnuSiQzNjhBBCyEWAhRp6Pb8MP25pXrihrfImsMC2Gfi/lRjeMbRZ7xGgkaN7jH+zXksIIYQQQgixW/zJclzW4wH8dvJMuKE+noehezT0XSPdflymDoFunxdZlaBIncePXFZcDVle3eIl7sywwqrwfLW0ukuww31DtRGmju6rmFYqBVyX8TCGxEe73U6zK1/qQtFQYLg/EtM7uD8wQgghhBBCiFvLcpfh4V13Y2/5P/CVVUvhAo3MCAVvRpVViSKjRgoYNJRX7YNqi8JlJwXGT6ZHgroQQfIqKHgrBE6EkrcgRF6JCEUp68UgvZ49V8MsylBm1uBUtS9O69l7yGGSAhd1WDDCBBksIi91WmC3CrMSa/ISpXAD83eR+3EUc8wk4I1DD6F/sPtOggYTW7TU+BuN1PghRRfi8X0IIYQQQgghrv306gJcFXUL/v114zkNKrSEUFIF9dKdkO/NAl9cCa6kCrIjuVAt3wVZVpG0jb7C4HE/ZQUVuLv/4+g+rEuzjiMqOQKRiRdvF8KLFQUcCCGEkAvcu38fxoM/74S5mckGhaxtny40XBvlTKXRgtUH8xEf7KYcqwvXDegAldx1lVhCCCGEEEKIex+/8wee+WEFSkYnwybnIPL2pgnOOjCITtqnyc5UBhJlns/LxQbn7ux9TOEaGKN9YFPWPaddfQRclVH6mmMbsXVGXowt6u9Dei3HwRbgeZxRbrPh+JOLEB3g5/R5eV4l/NZmOX3usnsmQCZvn414WYWn1ridT5mZmdBoNNLP+ssvvzyvx0IIIYQQQprn6/2/YNHpz+Aj00MjWKCRmeEvN8BPboBSsEDOW1Bq1iKrOgClJjUqzQpkVfpjQ24cthbEIlDtvNNajUhlqUN4oT41b4a/zN5FruGZrYIzI1xdgWhNGbQyM/QWQerO4IiDFQJMogylFjXKLSpUmlW1z24sT0C+2cflseWY/ZBr8YPAF8Bk24ZwlfOCTmYLD72Bpb4bu7FTH/DttIPDhTAmIYQQQggh7d9bd3yCTx7+BjZb++tewBnNkB84BdXKPVD/vRuKnSfA1ws11MzheFKSV4ZjuzMRFGkPazfF9AcmtduucjQmab62vWKREEIIIS3y1vJDeHXpoSa/TiXn0SFIg4fGdERMgOf2xudLnw6BCNPVXch3p9psw7CUYNw9MhmROhXYuqkofzXuG5WCh8d0hNxJUmJGnxjcPSL5LBw5IYQQQgghF4e356/BB/sPw9gxVOqwwK5GsqKkoqzx4h5RrYAl1Ff6WqGSI6ZjJG566WoERtgX4AhF9kVB7sjqbVOZHoqcezKQe1s68m7qhuxH+iD3tgwY4gMhVBig+20X1NtOgi+thlBhhDy/2uP+G26TMbobAnQaj6/jTFYYc8sxtUqDW4f1QZifj7RAiAUe7h49AA+kpEHeYD0Uu1g/ec5YXPnwZI/7J2eH1WrF9ddfD71eTx8xIYQQQkg79b+/VmCbfh5kfOOFRAreBl+ZUQo4sBEK66pQZPJBrkGHwyVx8Jd3wIOdx8Bf7vqcX4AVOpn780U/wSB11xYhSu/Fw4pQZTkiNeXwkxuhEizQykzwlZthsgmw2HiHbhJWkUO1VQ6rKEBvcQwh9A/pjPnlg5FpclwkxF7PHltemVL7mE51GpOjeuDahCEIVvpC4HhEawJxZ8oYXBM3UrpfH5s1ualTX9zQsY/b748QQgghhBDi2uu3fIg/PlzapI+IzQ8o1Qp06BKD29+4Hmof79ZGnQ8Dp/SR5nS8UV5YgSl3jpMCCwFhOvA8h+iUCNzy8jW44qFLpfv1sfszHrsME24ZfZaOnrRl7bP0FyGEEHKuVeQBp3cAvAyI7Q8oPC9gaS2H/5+9u4CO4mr7AP6fWd+Ne0KUBIK7uxRaSmlpS1uq1Gj71fvWnbpRd2pUaKmXQotbcXcLGuKu67sz37mzRDarMQjw/M7Zj2Tnjuym33nnzr3/+xRU4d89+TBYbegUE4RKkwU/bcpCRkEVdCo5JvWMwx3D2yO5QXWCNYeL8O6yw40+X0KYBmseG1P7e1GVGUeLfE8kOt3YPe29Y9Kw6XgJPl551K99/tqZix3Pjcf/xtU90K8xpW88ft2WjaxSA8J0SlzRpx3STk2uIoQQQggh5Ewrzi3Fke3HoVDJ0X14ZyjV7lfWbA0Z2UVYufMITFYbOsZHoqLUgHkr9+BEbikCtEqMG9QJN1zcD3FRwU77rd59FN8s3er+oJwj6MA1XOSU55DYuR2+2vde7Vu5R/Lw75fLoT6QB32053t0eU45ZOWOiUWVg2NRfmGKy7EtMWoUX9sJwavzELjuODQ7sqVXDesdPWCN9bz6acDW/NqfZXIZrnvqCkTnFuLHJds97sOZrJDnlks/r5y1Aj/P+AIPjB/q3Gg0cPENI7D4m1UoyCySHuyPu2kk4jvG4awmnHo19xhnyN13341Vq1aduQsghBBCCGlD8g2VOFCRD5VMjn7hiVDKTt9Ug3zjUWRUbYBdtCJKlYo8UzXWlqxGgSkPWpkOA8KHYFz0xQhThjvtt3DvIawqWIyuMZ5vKhW8IFVfMHEiBNExmaZ9QAJ+G/pUbZuvj+/FxpL1bvdXscCCj4VE5ZwAs11+qgqCiBCVUaoi4el6THZWyYG1FyGKHIR661YWGuv6KwpehltTR2B3pR3fF9nRVZOHWEWlFCbPsYagQnBewErGidhYshpfDn4Z96Vf5HLuqal98Pvx3cgzVCFKrcMVKT2QFNj41VXblLO8T0IIIYQQQuqwZ+fH95yESqtEt2GdoFD6N6m+JRzaehQb/t4Cm8WGDn1TUZBZiIVfLkfukXwEhQdi7PXDMeWRSxERF+a039LvVkvtGqvzoA54f90rtb/vXXcQa37biLaGBRumPj5Z+pssme3fs/RFs1di9sEPcMdbN7lsu+Su8Vj67WoU55Qiol0Yxt88CjHJUTirUZ+kySjgQAgh5PxWfBjY9ydgrgSiugJdLwcU9VKvpgrgn0ccbYRTD5vVwcDA/wNGPs6ioq12aSarHQ//ugv/7M7z2KbKZMOPm05iwa5czLl9ELrH100o+nb9iSad9/qBSU6/TxuSjJ82n4TZ1nae4IZqFXjhsm6ID9Vg7REBWqUMBov78s/1lRms+Grtcdw2rMFEJwBRQWrcMzqtla6YEEIIIYQQ9zL3Z+G/3zbCVG1C+57JGD5lEJSquofylaVV+ODuL7D2j82w2xz3vIFhAZjyv0nSqjWtWZLXaLHima8XYuWuBoFiQYTMBLAFUCv1Zvy+fBeWbTqET566CmkJkbXN5q7a6f0EnOO5bm2vyiZAVqrHpMevdGo2+f6LseTbVcCRYthig2FOj3Y5FCuHrFvjuE5BJUPF6ESPpxWUgL5fLJT5VVAdLXbaFvbnERRN6wpB5zowot1VCO0eR/uQyCDc/+kdCIkKhnLJTqg5Dqb6S6zWo96ZDe5U2enS/HLM/3QxJv3fhS7tItqF4/pnnD87OXOVG+655x7MmjWL/gSEEEIIOecdKC7C4qOHYbRZ0S0yGhemdoBSJqvdXmLSY8bOf7Ai7xDsp+55Q5Va3N5xCG7rOKRVr81sN2Bezhs4Wr3F6X1W4aDUEggRcujt1VhZuARbSzfi4fSnEaOuCwnP2bgTce2d7/ndYQGH+sbHjHD6fWzUhdhcugmC6DoOIUh1DrxjX5ve5hh74iBCI7P4vB6jXQa76DwGVWzUotzsCC1EqALwXPfJiNYICDZYEaawo8SuQ6mg834tsiysLFyL0VHDXLa10wXj/m7DfX4eQgghhBBCWtKRHcex9s9NsJqsSB+QJlUEYAsM1SjJK8P7/zcLmxZsg3DqWTtbJGjqE5fjigcmtuofo7pcj5eueQfbl+722Ka8qBK/v/cPVv68Hu/+9yLiUmNqt/310cImnZdN9K/vygcvwbo/NtV+/rYgPC4Uj3x9Dzieg0qthFwpg82PuVs5GXlY8eMajLnOte8RmxKNm2Zc3UpXTM42FHAghBByfrJZgL/vA3bPdX5/8VPAlV8CaWMdbb6/HMjZ5tyGhR5Wvw4Yy4CL32y1S3zqzz1eww31VZpsePS3XVj0YN1D9x0nHSuENsaQ1HCM6BCBCoMVwVrHhJ6UCB0+ub4P7v1xB4xW3zeire3GQUl4/KJ0vLhgPx6Yu8OpTLM/Xv5nv/QZO3hZ+ZUQQgghhJDWZjFZ8NYtH2PVz86rgH728Ld4Zu5D6DmqK8xGMx4f95L0cL++qtJqfPPMT9BXGDD9jRta7RpnfLfENdzA8BzsGhGcAeBO3Y9XVJvwypdL8M0L19c223OirtqBW2weEJuvcypLrTxWjP4TeqPL5X1RZTAhUOuYAJTSLRFP/fggXr/xA2DNUSgyS2HuHAN7iAacxQ7l0WKoDhWAN9uk9oau4RCVdYMf7ti0gKlrjEvAQVlkQPSsXageGAtD1wgpLKEoNEiVG1i4ga24evkDEzHtxaul4MmLU2ZK+ymCNbAOTYW9XhU4zmiFelc2VAedv4eP7vsKfcf3dBrkOFdxoii9mnuM06mgoADXXHMNVq9efVrPSwghhBByuhmtVjy09F8sPnbE6f0orQ6fTJiEvrHtoLdZcPPa73C4ssipTZnFgLf2LpO2399lVKtd4985b7mEGxg5LyBKVYlcU0htdYMqWyXmZH6Nh9OfqW23KzsfY3qZ/DpXTfWGfqHd0SkwCQabAVq5o5p3ki4ZtyZPx+wTX8EmOldeMNiVMNrl0Mgc/RF3ymxa2E9dp5yz+6z4wLazdhZBBlHkYbQrUGzUodyihUom4vrk4bg9bQT+zv0YSw+vk/ZR+bEeF5sLZRIU+Or4D+gR3BXhqrO8OsM52ichhBBCCDlfGKqMePW697DpH+cKyZHx4Xj+90eQ3j8N+go9Hhn9PLIznOdPlRVU4NOHZsNitEhBh9biK9xQX2leGT6450u8vsjRJ2GLVmVsdTPG4sPwKwcirXcK9JUG6IIcfZKuQ9Lx0Bf/h/fv+hy2Mzx3i+c5XPf0lZjy8CS8dfNHWPeXa5/Nl5m3fYreF/RAaIPK4Oci6pM0HQUcCCGEnJ8WPe4abmCMpcDc64E7VgH5u13DDfVt+QIYci8Q4nll0KbKKTdi3s7cRu1zML8K2zJL0TfJudyZP1RyHgmhGmw4WoKLP1gLhYzD6PQo9EwIAVsQNiVch/8eG4VJH65DfqV/gwGt5a+dOZDxHH7Zmt2k/dlz6DmbTmLGpV1b/NoIIYQQQgjx1/t3f+ESbmDKCyvwzKTX8NmOt7B79X6XcEN9f7y3AFc8OBHhsS0/KeVkYTmWbc/w3IDjIChE1F94dP+xAhw8UYBOyY4KC34VlzjVRmOyInZQeyytqsaSV+ZAIZdhRJdk9LLJINNbEJ8eh2+PfIS7+z6GspNlUJ4s83hIu5vqCw2xhVBtEQFut8krLQhZmim9XPYTRSz/YTXMBjOW/7Cm9n1ZhRGB/+6FPVRbG7yQ51XUVm6oj62w9M+sZa0aTiFNs2DBAtxxxx3Iy/NvsQFCCCGEkLPZYysWu4QbmEKDHrfM/wP/Tp2GVUUHXcIN9X2ZsQ43pg5AqMox6aYlFZlO4Ej1Jo/bZZyIQLkJFSy9fMrh6kPIM+YgVtNO+j08ohqczHd1arNdDq1MgXhtII7ot2DG/s1QcAr0De2BXkERkHEsUJGMl7q+jjs2vAcryhGgMkGtsIHd8edaQtBeXey2D8SCE1mmsNrqDTKOTUZie3nvMLHPZ7YrcKQiAjqlBWq5DVHyKphsCizO34o4XQb2VjjCDf6qtKkdgRBRwIrCNbgq4dJG7U8IIYQQQkhLeuOmD13CDUxRdgmevOhlfLH3XayYs8Yl3FDfnFd+x6S7L6wNArSkQ1uP+h1uqMHa5x0rQGz7aPAyXnoJdt99EkYdoEJkfATW/L5Jeqk0Sgy5rL9U/ZtNdkrpnoivD76P/+v7GPTlBpwpbIxj6XerkH04t0nhBsZqtmLx1ytaNZxCzn4UcCCEEHL+KdgHbP/O83abEdj4CVDpI2AgCsCeX4HhD7f4Ja48WAh7E8qKHS3U1wYcOscGYu2REp/73D4sGT9tzsKRIn3te1a7iCX7C6RXjRCNAuVG55WJzoQqkw0/bHSdaNQYB/MrW+x6CCGEEEIIaaxDuzOxdOEeICoMqNQDJrPTdpPejL8+XIgTe096PQ5bpWf1z+ulkENLW7PnmM9qaYIMaFgnITO3tDbg0CEuAjuOeulXseMLIm4a2xs/b9iLo5XVtZusNjuW7z6KlVVmBP+1G7zBisCwAKl6hS/ycufv0x3eDnB+Dio0VFFchYVfLne7TVZmkF6+HPfxtz1nsL9xcxc7PQ2Lpe7atQsPP/wwli93/rtOnz4dX3zxRetfACGEEELIabbteDb+OXzI4/YqiwU/7N2JHZbDXo9jEexYnLMfU9v3a/FrPOwl3FBDI7M4BRyYfFNebcChVwcd7CIPmWj3GMBm/Z5x0ZOwqmgxCsxVNe8iWlEAq+U3bKs3zCLjQlGsT0WBJRIdIwqhUjhWTi236XDCJCJeVQYFX9fPMAlyHDFESVUTWMWJAJlZqs7AzmkTeVhEOUQ3QQcWrJZBhJK3Iiagyqnig0rOakGcxM5y52p0vlTblCi21IW8sww5OC+cJX0SQgghhJDzzbalu7B+nufJ8VVlevzz+VKs/9v7BHo2nrLuz80YP63lK8ttnL+10fuwe/msQ7lSwIHjOCR1jvdrPGDqE5Px+zsLkHWw7j7dbLRg5dx10qtGcGTgGQ031CjILJZezUHjJI0g4rxEAQdCCCHnD5sZ+PdRYMcPgOijXNehhf5VZjB6XjW0OaxNnGgzb2cOvlx7DHKeR0yQymd7rVKG/XlV0Ft8ly9rC+GGGrYmhD/qC1DRLRAhhBBCCDn9zGYr3n9rIZYv3AMxJb5uQ3kVcPQkm9Xv9OBc68eKQ5WlNRNwWpbV7keJYzcThBbPWopf75gFhUqB4LGdfC5MGqxWYmdWAUyWus9enxCogqFPAgLWHvMr3MBoDpSCN9ogaDzf98v1gPJEqV/Hc3tdQtP6bDW0gepm7U9a1rRp06SQQw2dToeZM2firrvuooADIYQQQs4pRpMFb328BPNOHISY7r2CwLLjRyGP9F3RudxiRGsQfI3juO1qiFhTvAwL8n6FglciMT4Ix82cFCaQQ3AJObCggYYPxaHqPbCKdWMgccpyxKoqXI5uF8swJXU7FuR2h1pmhQyOfgELKZTadCiz6RAkM0LB22EW5Ci26CDjgHh1GeR83bgGuw4FJ0AmWmAUlE4hBy1vRoDMVBuU0NvKkGsOQbElsLZNkIKFur33SewCB71dKVVsqLKpYBacK92pZdQnOVtkZmaic+fOMBqN+Oabb3DzzTef6UsihBBCCGkyfaUB70z/DGt+2+iz7Yb5W1FZ4nsMxN+xg8ayeRi38OX39+bj80e+hVqnRlBE3X28J5EJ4djw91ZY/ThfRVHrjAmdCZoAzZm+BNLG0ew+Qggh54+/7gb2/uZfW8EKhLUHcnykccNS0Rr6JIY2ab91R+uWEtrvuUJbLZtdxPp6+5wvJvaIPdOXQAghhBBCzkOvzfgL61a7WSU1JBDo3B7Yc9gxw+ZUdYZ2HWJwbLf36mXtOrTOvW2PFN/H5RrMN+KMFuz+ayO4U4FkcXcm+Gn9IShkzjOPaub1iIBwuAC7rN7D1JYOERDXH689ri+8TUDov8dQckUHx8yhBmRGQFZth3q3j6p9rWjkVUPO2LmJdxMnTsRHH32E5ORk+qoIIYQQcs557vW/sWn7cdiT2G/eAw42QUCqLhQnqr2PISQHhKM1xGk6+WzDQgR1RKnSwcGqvU7vsapzgsiBdV/4ep+6ZmF/i2hEgeH4qa3s/wqIUbqGG2ooeQHDo47ipDnC+dysKgM4VNi1YCcTRQ5VZg3Sgoqcwg31setVcjaYRUf4IEhmQKDcuSKdTm5BB3kh1LwV2SZHBW/Oj+U7WYtCS5DH7YPC+/o8Bjnz7Ha7FGhg4QZCCCGEkHPBjMvfxM6V+/xqa7PapDGQoqySMzJO0nlwxybtt33pnka1ZwENX5+xSbi2vfL/yKsHn+lLIG2co5dOCCGEnOuKDvkfbmDiBwD9bvHeRhkIdJ+C1tAzIQS9E0PQ2ixNrBTR1oXpnFciqq9TTCAu7k4BB0IIIYQQcnodOZTvPtxQQ6sBwoOdHpxPvGOc12MGhgVgxJRBaA19OsQjPT7ScwNRBN8gl6Dak+0UQuDsAjRbTjoeoLOuR71/ORHgDRaIh4t8XouolENkIYlG0O0pRuT3+yEvqZscxNkARQWgzrYgaPFByMtar4xzcKTniUQd+6ViyGX9cX4QHaGd5rxOwwgMKxU+atQorFy5EgsWLKBwAyGEEELOSXsO5EjhBsZNcQIXvWNicU2K90nw4SodxsSlozWk6HojXJngcTu7VayyqZ3CDa44qQvCc6J0z8cqJQinXo6qCRysohkqvm6l1CC5ETLWYfEiVOHal2DZavmp2ATrFhWbtFLgQSezeD2WnBOk9rxodwk31MeqQChPdcIMdiV8UfKOMIQ7HQNS0SukG84PZ0efxJO7774bq1atOmPnJ4QQQghpSTtW7PE73MB0GdQRl/gYJ2HVD/pP6IXWMHBiH8S2j0ZrM+k99wOa5QyHG4K9VK/oNboreo/pjvPD2d0nOZMo4EAIIeT8sO/PxrVX6gBRAAbe5X47JwMufR9Q+S4l1lQfXtsbiWFan+1Ucvqf84ZeuqwbpvSNh7zBiMaIjpH44faBUMkbNzmKEEIIIYSQ5lq9Yr/vRmF1IWelSgGVVoWJ0y9w21SukOHhL/8PKo2q1f44b0y/BDFh7vs8vAXgT+Wl2ZQi9aajUB4ucGmn2ZMH3frj4E1WKdTgmEIEyAurELRgHxQlep/XwVls4KwNykX4QXOsAnEfbkPce9sR9ncmwhZkIuzPgwj7cRuUuX7M6GqGh2bdhbE3DAcvq+uvsQlVgy7pi9cWPg0Z9UnalL///lsKN7CQAyGEEELIuWrl2rrAtaocUFS6myAhIiDIgKiYMsTGViJWp8RliT3cHk/By/Bq30uh5FvneTu7f74y4RkEyt1XiCi16mAVHRUclLznCf+iHxUPWMigpg372Rfe7fFYiAIwWJXINwbBLCig4AV3ReWcSNtFDgFyi892Ucoq6Wd2bL3Ne8jh2qS7MSisH7h6lTrYz/1De+OxTveB52hsqa1Xbrjrrrswa9asM30phBBCCCEtZvUvG/xuK90nc0B0SiRGXeO+IrJSrcAjX98Dmax1+iTsuC/8+ShCo+sWp/JEqfEdQj7fPDHnAQy9fIDUt6vB85xUueGFvx4/o9dGzg71azYSQggh5y6z46Gv3/b94Xi16wtMeBPY9ROQu8MRbOgwHhj6AJDUuqWy4kO1+PeB4fhzezb+3ZMPg9WOLrGBuGFQEhQyHhkFVQhQyfHO0gzszm7dyTltkUYhg9HDJKfsMiNmXtUTj16Yjv8yimAXRPRLDkNaVMBpv05CCCGEEEIYg8H7ZBVJvYfwy+eskV5dh6bj7vduxpJvV+PIjuPSxPhBk/ri6kcvk1Yvak2JUSH4+ZkbsWDDfqzYeQRmqw2dE6MwZURPqVLDidxSBGhU+OrGD3HiSKHH42j25kF9IB/W+BCpEoOszAh5vWCDPK8StljPFQ+Uh4ucKkM0lrzchIDtOT7bCQoZzJ0iYU6NgCjnIS81QL0vH4qCavfXpVHCYnT/dy06WYwnvrsft75yHbYv2wPBLqDHyC6Ib6VS2W2VFGpp5sJC9ffPy8vz2T4+Pr7R50hI8LwyMCGEEELIucLQ4N41YpeIwn6AXeOYbKJSWZCQXASlylHNYHXpeunVI7gDnupxAX7P3INDFQVQcLxUteH2jkPRPTSuVa85XJWA21M/xe7ypcio2gC7aEWsuiP6hE2E0S6iwJQHrVyHn7Nmo8jsGriu4U/IgAUcWFUHm+h74r9BqJm8xPYQa48hiiKUMhtEi+OEVkEmLbbp7fxsuyCKULMUuQ/1K03kmEKQqq2CjDe6HO9YdQQyqqx4oOMdKDKXYG/FAWlbl6B0RKu9VOo7B7V0n+R0KCgowDXXXIPVq1ef3hMTQgghhLQyY7Xzvas37L723y+WS68+43rgjrduxOJvViJzfzYUSjmGXjEQ1zx2GdJ6pbTqNad0T8KXe9/Foq9XYOOCbbBabOg8sAMuvftCGKtNyDmch6CIILx180cozinF+Yb9Ldh34oIDyvLKMeP3R5F3rAA7V+6Vgg69x3ZHdBL1Sdp6n6StoIADIYSQ80N0E0vt5mwD7FbgjtWAaHcEHPjTt6oNCzDcODhZejXUMdqxkuonq442+zxahUwKUJwtIgKUKK72/LB/5pJDuKJPPKKD1LiqH01UIYQQQgghZ1771CjfjQyuD/f3rTskTY7/dNubsFltUkUA/jT2SQI1Klw7prf0aigtwfEQ+ge1wudxOLsIZWaZ2226DSdgvqYPTFbXh+B8lRna7dlobfYAJSou7QohWFP3XmQAzOlRUO/JQ8Da407tw2JDUZrn/vMwXzz+PcZcPwxRCRG46JbRrXrt55MBAwb4bMMmlRFCCCGEEFepyc6TSGRGIHyHCFOUCGuUiIT+BZCrXKsX7K44LE39nzf2flgEO+QcD95XYqAFqWUBGBB+ufRqKEGbJP2r4JQ+7xFZwedTUQS3beS8EhbBBjtkMNiV0Mo8j0Gw6hE14Yb6XwX7WSe3IlZTgTxjMGyiDOVWDUKVnidysWPEqKvB+zFjxSrWheKDFBFYWxSAaHU1otTVkHECqm0q5BiDobep8GHGfFwQ3RORqnCMjhrm89ikbViwYAHuuOMOv8LdhBBCCCFnGxYWANY2er/tS3dLiz+xoIHVYoVcIXeqCtDagsIDpUWn2KuhDn3at0gFB/Zx5CwsYHYTFmijWFChILPI/UYR+OTBbzB8yiDEto+WXoQ0FtUdJIQQcn7oejmgCWvavvm7gSPLAJmi5cINgt0RN24B47s07yawW7sg/HHPEIztdHYkZFMjdeiVEOK1jdUu4o/TMAmKEEIIIYQQf40Z3w26AJXnBqx/UFDidtOBjYel1W3YQ/uWCjfYbfYWmwg+dPLAZu3fo0M7fP3oNRjaNZktXep40yZAmVGIoHl7wBusaG1VF3R0CjfUZ+oei4qJXSCeGjBJ7paA9j0cE6k8sZisWDGn8QM15xz231hLvAghhBBCSLNdNKYrNGqFNMm/OpZDUS8ZyrrIYYyQIzBK7zbcUGNPxREcqDwOJS9rsXCDjY2TtJCeIX3dvs9BgE5mQYDMIv2r4y1QcVbp/fo6BHTFIx2fQpegrtLvBdZgWIS6MEF95TYNyu1al3BDfRq5DcGnQg0nDaGwCe4bsj6ZWuaYwFRTCcKbQrOjSnWKLgEBfAIEyJBnCsau8nbYXpaAjKooKdzAGO0WLC/Y5fOY57yzpE+ya9cuXHDBBZg0aZJTuGH69Omtfm5CCCGEkNPloltHQ6HyvWCSO1sW7sCRncehUCpaLNzAxklayrDJvhfn8WbAxX3w1vIZ6DW6iQv4nmbp/VMR0c77PLzqcj3W/rHptF1Tm3WW9EnaIgo4EEIIOT8o1MCUrxwVGJoiY2Hzr4HdbGz/DvhsGPBiGPBSJPDLTUDO9mYdllUoiA1WN2lfhYzDkxM6w2ITcLhQj9Yia4G+RZfYIHxzc38sfWgkKk2+E8u55f6XtiOEEEIIIaS1abRKPPn8ZGnVULd9hcxcwGT2uP/G+VubfQ2CIGDB50txR8+HcZFyKiZqr8cr170nDQo0x8XTxyI0OrhJ+7LBjOmvXw8huwxlby9F6PdbEPzzDunfwJVHINN7XjW1MdjqTp7YwrWwxQZ53d+aEIL4e8bgtUXPYNaut1FVWuXznEVZxU26VuLZ5s2bkZWV5fVFCCGEEELcCwxQ46kHL0ZVqgzVCTIIyrrOiTbK9/P0zSV7m/3V2kUBc09swhWrP0C/hTMwcOELeGrHrzhSVdCs446IHIsAuaPqdQ0WYgiWm6DmbbVBBPavgheg5a3gT4UcWPWHibHXwmi34WBlGQw2BWyQIcsSjiJrIEyCXAo7VNtVyLGEotAaDJvAeww31AhSmKR/jXYl9lfGotqmq40wsC4gO6ZwqpoEu1a3fcV6WBZ8UFgMnu9yP2b2fBKlFoPP76XAVO6zDWkbpk2bhuXLl9f+rtPp8Omnn2LWrFln9LoIIYQQQlpSSGQwHv3mniYHFDbO39YioYY/3v8Ht3Z+QBonuUR3Pd685SOcPJjTrONedu9FCAhhld4aT61T4eaXpsJsMDf7OrxhFSKaq9uwzpi5cgY+2vQ6ygorfLYvPEnjJKTpKOBACCHk/BEUD4hNTN/aW2DF0L/vBf6+D8jf4/hdsAL75wFfXwhkLGnyYYM1Cvxw+0B0jHas3OOvrnGBmH3LACRH6HDjV5txstT3w/CmuqJPfLOPcaSoWqrcwPMcogK9rHx7SlRQ00IfhBBCCCGEtJZwnRzCzoOOSg0Wq+NVUg7sPwrke3/Ia7M2byUhtjLoGzd9iPf/bxaO7zkpvWc1W7Fq7jo8MORpbF9+qp/SBMERQXhj6XNISI9r9Ao/ry9+BmGxoXhywitSKWPeZIO83Aje0nIrJzHjbhrhcZs12nkilCeHORvSh3eSBl/YNfviTxvSOLGxsYiPj/f6IoQQQgghngUnBsIQ7jqZiON8rwZpa+r4yimCKODx7T/j9X0LcKy6SHrPLNjwb+5u3LhuFraXnmjysYMVobgv7QlEquoqXrMQg8zD52LzqZS8DcnaDrg77RnIuAC8euBTlFjKwUOUAggCeJTbdciyRCDTEok8aygMggomu1wKOPjCghQqGQtsizDYlUgPvBClFi3KrBqUWrWosGkg5xwhC3ZOX9hfzWw/gs5BydLv4UrvIW0mQuW7DWl7Jk6ciL179+Kuu+4605dCCCGEENLi2GJJTa0ubbP6XgzVV7hhxhVv4dOHZiPrUK70ntlowdJvV+O+gU/iwKbDTT52VGIkXlv0NGKSIxu1X7dhnTBz5QtS9e5nL30dpXllaC3jp41s9jGyDmaj86CO0s/hfoyBhMfROAlpOgo4EEIIOX/s+rHp+yY0r5QYMhYDO35wv81uAebdDdiavjJpamQAljw0EnNuH4ir+/k3oePZiV0xNC0C360/gQpjCwQ4PBiVHon+yd7LkvmDVZlYf7RE+nlKX++fUcZzuKJPu2afkxBCCCGEkJa0ZPYqwGgGjmcD2/c7XoczgSrf1dS6DHY8MG4qVgZ4xY9r3W6zmKyYecvHsNubPmEppVsivtr/nlThYOz1w/3a54FP70CPEV3w5/v/wlDZehXYhkwegA59Uz1u5+yOSUW+GM1W7DjsWD1p/LRRXtsqlHKMuW4YzndsvlZLvAghhBBCSMv4Y/c+t++bq9iiQmySkeeJRp2CUpp17oU5u7Esf7/bbUa7Bc/t+qPJE52YBG0Snu/yFu5JfRR9ggdKAQZvZBBxQ9I9SNZ1xPzc5TAJZig4G+S8CKsgk0IODdlFDjaRR5lF6/N62P6BCivCVUaMj+mBtMAIKTRhE1nlBsc0DUF0hE38+dSsjVnQI9twUPp9Qlxfr+1VvAJjonvifHe29ElYkH7UqFFYuXIlFixYgORkR5CFEEIIIeRcs+TbVU3et8vg9Gade/HsVdi4wH0VCEOVETNv/bhZx+80oAO+PfIRXpz3OIZM7u/XPs/8/D+k90vFLzPnSWM1rYWNacQk1wXCm6qiuAoZW4/WHtMbbaAGw68chPPd2dInaYso4EAIIeT8UZnXtP204UC3Kc0799ZvvG/XFwEHFzTvHIAUWJg+vL1fbd9fnoHp323FT1uy0JpWZxQhq6xlqkPYT40ojOwYifFdPN943z0qFbHBmhY5JyGEEEIIIS2lOLe0SfuxFW6GT2neQ+AFs5Z63V6UXYLN/+5o9oSMfuN7YtL/jfer/RePf4/nL3+zWQMa/tjw9xaUePnulSfLAV8hh1MzjgTB8cPgS/uh/4TeHptf/+wUhEaHNPGKCSGEEEIIaR0FVdVOvys1FsR3yUdkQhmUMkGqOiCTZk44T7mPUoVhUHj3Zp37t5NbvW7PNpRhY7FjokxT8RyPrsE9MTRiOHjXQhUuVRy+OjYHr+6fhf+KN0vv1VRUEMHBIshgFXjYBE56Wewy2AQZFJwAs+C7igPb33EeEbsqNqHS6vzdM6yyA8MCD76yHbWhCDiC6aOjeqBvaJrH9tNTL0SQwncQg7QNf//9txRuYCEHQgghhJBzWXFO08ZJ4jvGov9FvZp17n98jJOcPJCDPWsONOscrBLD4En9MGaqfwsgvX3bJ5hxxZtY/fN6tKaVP61Fdbnvxbb8IZwaTxlz/XCpAoUnt712vRRyIKSp5E3ekxBCCDnbBDdhRX91MDD1J0DZzIfApX48lC9p3oP7Gh2iA6UKBvZTE2882XCsaZ2GxmIP5TceK4FWwcNgbXqklH2m/smhtROnPr6+D95fdhg/bj6JUr2j+kVCmAZ3jkjFDYOSWuz6CSGEEEIIaSlR8eGN3icoPBAv/PU4FEpFs86dk+E78J3tRxt/dBrYARzPQfTRJ9mxfC9OB3Yd+zccglKjhMXoWjmPN1qhPlgIU9cYDwdwvBRyGbq3d7SRyWSY8cej+Pa5n7Hwq+WoKnVMVopLi8HUxydjwm1jW/dDnS1Yh7AZq/DWHoMQQgghhLSI2KDA2p+VWgtS+mRDrhCcJv3LOBG8yKoYsAn1HEIUgXi263TIuOatnXjS4KjQ7E2mvgSDIz1P2vdXWmAX6dp91UbYUnYYFkEuhTrYZxekfWpwtRUWGlZxYNvKLRqEq/TSfg2xrhALQdTtI+BwdS5knBx2sa6yhEFQIlAwQ8nbpXOzqhKebontIg85p0KcxrFqrZyX4c1et2DW0UX4J3crqm2OqniJ2kjcmDzGZ4WH80YL90ny8nz3m+Pj/au0Xl9CQkKj9yGEEEIIORtFJoQ3aREo9jyezRVqjuyMXL/adB/eGc3Vz88wxpZFO3E6WC02nDyYDZmch93W9LlbLLCQ1ttR3U+pUuDVhU/j66d+lBayqqnUndQlHtc/MwWjpw5tses/q9E4SZNRwIEQQsj5o9f1wJp3/Cv2qwkFBt0D9J0GBEQ1/9xqP1bu1LTc6p6X9IjFvJ2+b8ybSinj0SsxBLuyymH248Z3y4myZp/zom4xTlUZFDIej1yYjvvGpuFooR5yGYe0yADwvpZlIoQQQggh5Ay56Lax+P29f/xqGxwZhCkPXYKLbhuDkMjgZp87MCwABZlFPtu0BDb5f+hl/bH2T8cqqK1BoVKg88AO2L8xAzZL3QQhT3au2Od1u27tcdiD1bC2C3HMg6rBuo+s/C+AC/t1RHiQrnYTe3g//Y0bcNOMq6RwiFwhQ2Ln+GYPshBCCCGEENJapvTqhh+37ZZ+jkktdgo31MduaSNUAbg07gKMixmEIEXdfXBTBcnVKDG7VjGoL1jRMqt7KnglUgP64Gj1No9tTHaZFG6oj4USWICBhTw8qbappH8FUYc4dRqyjAcg5+uC1Kyyg9GugHiq4kKNneX7oOA4aJ1OyaHIEoBQhQEaXgR4O6vl4BSaYHNhrCKrBsGhe8hoaGR1/TaVTIH7Ok6SqjVkGYqh4GVI1nmufk2ab8CAAT7biBTSJoQQQgjxaMKtY7Bktn9VncNiQ3H1I5fiwltGIyCkBfokYQG1k/Bbe5xEF6RFj1FdsXuV97GJ5lBrVejYPxV71x6srargzcYF2/yaMucN+1vUr8qg0alxz/u34tZXr0PO4TyoNEokpDdhAWJC3GjeMguEEELI2SQ8FRj2kH9tTZVA35tbJtzA9Lja+3aZEuh6ecucC8CdI9ujpYXplPjz/4Zg4QPDsfnpsfjlzsEYkBLW7ONqlY4yzd70SQzBa1e4L3+tksvQJS4IHaMDKdxACCGEEELatOSuCbjywYl+tdWX6zHxznEtEm5gxlw33OeD8GGX+56o4a+rH7sMLS0sJgQfbX4Nn++ciV/yvsDbq16QqkU0l1qnAieICJ6/H5rduVKgof6LzS3q06Ednpg6xu3+Ko0KqT2TkdQlgcINHqpfNPtFCCGEEEJaRLfYaFzbpwfkShsCwg1e25oEIybGDWuRcANzcbueXrcHyFUYGe2oTtAShkVcLlVScIfNP3dUbrBLv9dVauBQaVV7PGaIIgwvdnsOH/V5HN8PehnPd3sE1cb+OFwWDr1NiSqrCnq7CoKHaRgs+GCwKZ2ui7UtssRgQ0kKtpclotAUJIUkbCIPqyCDRZRLYYkUXS+Mi7nd7XHVMiU6BMZRuMHtH5v6JIQQQgghbUm3YZ0x/uZRfrU1Vhkx6e4LWyTc4M84CauoPWBCb7SUqx6ehJYWkxyJz7a/iVm7ZmJu7iy8vfIFJHb2M1Ageh8nqeVhDacBF/fG7W/c4HYbCzqk9UqhcMM5Ok6SmZkJrVYrjYHNnj37tJ2XKjgQQgg5v1zwPKDUASte8t5OtAOLnwRGPgFENL8cMnpdB2z5Cig64H77kPsAXQRayqpD3ldmbaxB7cPw8uRuSIuqK1/NjO8agzWHi5t1bIPFMYBQX4BKhm7tghGuU2FSzziM6xINWWtVZqjMBXbNBSpzgKA4oOe1jn8JIYQQQghpBXe9c7P0oHjOK3+4bBOVcgjxkRAiQ2DlgI+/WIkbbxyGdrGhzT7vxbePwb9fLJUqDbgz9YnLW2yQgNmysOXKKrMHpr3HdsN9H09HfIdYp23DJg/A3jUe+ll+MunNtT/r1p+A6kAh5INTkDKqC8JCdJgwoBOGd2vfaoHqwqxiLP1uNUrzyhCZEIFxN41EeAv8zQkhhBBCCHFnxoQxCAuzY5X9hJutolS9gIMIQbTj+xO/4bJ2FyJK3fzxi6uTBuCvrO3IMbqv+Dw9bRS08nqTapppX+VuVNvU0MiskHP22qoIVoGHSVBAgAwBcgsqrBpWMwGCKILd8hsFJWABAuVmyPmaVVA5dA7qjqsTbkGEynlhrLExXfBJRjYidQanygsNORb1Z9UdlFLQQcmzsRERBqsSJRZHX6zKpkGeKRiBchM6B5nRMyQCgYpQdAsehdSAvuC41lm/Mkdfhr+zdksVNuK0IbgssSfCVS2zcu25ZvPmzYiNde6XEkIIIYSQxnn4y/+TFg6a/+lir+2M1SZ88dj3UlAgKjGy2V/z5PsvxtLvV6Moq8Tt9ptmXA2lWomWsm3JrhY7FsdzGHhxH9z/yXRExoc7bRs6eQBO7M1qsXGSmsn0LPCR0jMJEbGhuODGkeg7rkerLfKUezQfy39Yg/KiCsS2j5bGSYIjglrlXKRx7HY7br75ZhiN3quftAYKOBBCCDn/DJgOrHodEKze2+35Fdj3FzD5U6DHVc07JwtVTJsPLHgQOLTQEaBgNGGOcMPw/6ElnSzxvvKSJ+zhfXKETqqq0DshVKrQwIIGKRHuJzpd0bsdZv13FFmlLXsTU222o1dCKJ6Y0AmtavVbwGr234Kt7r2VrwIjHgNGPd665yaEEEIIIeety+67GD+99ieEest2CsE62Pp2lEIONYt9/rv6AJatzcCzj12CkcOat5KpLliHmStfwHt3fY7N/2yvPXdIZBCueXwypvyvZVcSyj2W36T9ZHIZ4lKjodKp0HVwOrqP6IwOfdojLjXGYznk399b4HFAoinkZQbg330Y1q8LbnrEv4obTTX72bn46fU/ncpHs/dufmkqpj4+GWc7ThSlV3OPQQghhBBCWg6bkHJ97/5YvfVviPWWgWShBjkngONO/QsRK4pWY3XRRjyUPh19Q3s067zBSi2+HnwbXtwzD+uLjtSem02kn542ElOTB6ElFZsLpOoIrKIC+yw8J0iVGlg1hBos+FBDEHmIogglL0OoMgoamRrdgpPQLTgNidokl2BDjSlJffHT8c2oMFciRG3yeD11VSIYTqogwcj4muU467ZX2dTYXKpG79BxmBw/Gq1p5t4lmH1kA4R6/y28f2AFHu5yAW5KG4yzXUv3SVi4IT4+vgWujBBCCCHk/MXzPK58aKLPgAPz14cLseirFXj+j0fRb7z3qnC+hEYFS5Wh37trFnYs2yPd/zPhcaG48bmrMPGOcWhJeccKmrSfSqNEZEI4dMFadBmSjh4juqBj3/YeQx6T/u9C/PP5UpQXVaIlVZZUYcikfrjigdYbJ2F/g08e/AbzPlpU+/dgvn76J/zfuzdj0l3jcbY728dJ7r77bqxateqMnJsCDoQQQs4/6mCg00Rg/1++27IQxJ93AfF9gbD2zTtvQCQwdQ5QkQ3k7QbYSkRJQwGF53LHTRWqa1qieHR6FL66ub/f7XUqOX68fRDu+n4b9uW17I3yb9uyWjfgsGMOsPJl1/dZ2GHVq0BQLNDnptY7PyGEEEIIOW+xh+gDLu6DjQu2Sb+LHAdr7zSImlPhhnor4JgFO158az5+So9FVGTzVqthVQFemvcE8k8U4tiuTKmSBAsQKJQKtLTg8KZd65DJ/fHcLw/73Z5VnXhz2fN44cqZOLH3JFrSkm9XSSs2tZb5ny3BnFd+d3nfbrPjqyfnICoh3GfJbEIIIYQQQpoiQhWKHsHp2FVx8NQ7LNRgh0pmkyoL1F+U0y5Y8X7G5/ig92sIUTavTxKtCcbHA25CtqEUhysLoJUr0ScsGQpe1uJ/SJ28riI1q9BgF13PwUIN9bF2g8P74aF0/8cGQlU6fDHkJjyy9ScYrYegUdjcnMc5WFEf+67Z1+1uusrCvC24Prn1Ag7fHtmAr4+sd3nfKtjx+t7FiNUGY1xcl1Y7PyGEEEIIOX+1S4tF16Hp2LfukM+2JoMZL1z5FuZkfoqgsLr7/KaITYnGG4ufRc6RPGTuy4Y2SIPuwztLiy+1tKCIpl3r2OuH46FZdzVq7OeNpc/hhSkzkXukaYtPeRsnac2Aw9zX/5JCLA1ZzVZ8eM+XiEqMkCpXkDNTueGee+7BrFmzcKa0Tg1DQgghpK0b8yygCfWvrWgD1r3fcucOjgc6XQykjW2VcENNZYXGYg/Rbxue0uj9EsK0+OeB4Zg7fSAu7RmL9pE6pEbqMDo9EnJWEqKJiqstTivatrh17/nY/n5NzWhCCCGEEEJa3K2vXietvsMIMWEQWUhZxma2NLiH5jlYIODnP7a02LljkqMw5LL+6HNBj1YJNzCsfHBj8TyHKx+8pNH7xXeIxRe738YbS5/FyKuHIL5jLBI6xWHAhN7SMZuqNL8crUUQBPzy1jyvbX5+0/t2QgghhBBCmuOm5MlQ8yrpZx4i1DIbVDLncENNhQE5r8ei/OUt9oXHa8MwOqYzBkaktkq4gRkQNsxnG73debEoGcfj0naNDxSkBkbhz9EP4LH0h9BFNwThiljEqePQK6Q77ALvEqSozy6w8IP7fkuppQqtxSbY8Y2bcEN9Xx5e12rnJ4QQQggh5I63bpKqFfjDpDdj/qdLWjRgwcZJeo3u1irhBuaCGxo/TqJQyjH5/osbvV/7HkmYfegDvDT/CQy7fCDi0mKQ1CVeGidpjrJWHCexmK34470FHrezig6+xlFI6ygoKMDYsWPx+eef40yiCg6EEELOTxFpwK2LgaXPARmLfLc/tAiYhLNGh+hATO2fgLlbsvxqr5BxeOHSbhiSGtHkcw5KjZBe9d3/0w78vSu3SceLC1Y3azKSE3M1cGghYChxVOIISwGKM7zvU3IEKD0GhKe2zDUQQgghhBBST0q3RLz734v44ok5WJ9V5n0ZEo7Dmi1HcN+dY8+a7zCtd4q0ytDyOWv8fmj/4Od3ouuQ9Cafs8/YHtKrvhlXvoV1f25u0vHYykAtxVBlxPp5W1BVWi0FMMLbhSH/eKHXfY7tzkRRdgki48Nx1mKh8eYGxyl4TgghhBDSKtoHJOCV7g/hu8y/sL9iHxS83WNb9qh+e/lWTE28/Kz5a7QPSEevkP7YWe4+LK63KWAR6qZLKHkF7utwPVIDEpp8ziFRHaRXfa/s/xA7y/d73Mdo9xw6j1b7uVCXH/Q2I7aW7oLebkA7TSx4IRCFJu8Bij1lOSgz66UqFWct6pMQQgghhLRZXQZ1xMyVM/DVUz9i54q9Ptuv/mU9rn/6Spwt+oztjoET+2DTP9v9as/CHo9/f780ftQUHMdh0MS+0qu+R8bMwK5V+874OElVWTU2/L0V+goDkrslQK6Qo7yo0us+u1fvh1FvgkbXOgsInxZnWZ9kwYIFuOOOO5CXl4czjQIOhBBCzl+R6cB1PwM/TAGOLPXe1ljq+l7pcSBrE8DLgfajAF3L3dS1hFcv746oIDW+XX8CFUar9J6M59A+QoepAxJwssSASpNNqrZwdb8EqW1Le2ZiZ+zOLseJEoPLNrWch8kmeNz36v5NH0RwsvFTYOWrgLneTXFgjH/7Cq6lpAkhhBBCCGkpKd2T8Oo/T+H+J37EjoM5XtuWVbreU2cfzsOBjRlSOIBVYwgKb15p5pb26Df3SJPz53+2RHpgzbCVkBI7t8OE28YgOyMP+koDkjon4KJbRyM0OqTFr+Hu927Bke3HUZBZ5LJNqVbAYnL0ldyZcFvLBEpYJYY5L/8GY7Wp9r3wOP8mKtltnieZEUIIIYQQ0hIhhxld78OMfa8i2+h9USC9zXWcpMR8EvmmDMg4BZJ1faGWBbSpP8rNKffi75yfsb54JUyC8dS7cgTL2+OCqJHIMxXAaDchSdcOF0QPQpCi5a//9vbX4vm976DEUua6UVRBb/M8ZWNi3IAWuYbfs/7FnzlLYBbMte+FKkKhkQNGm/cVc22i53EcQgghhBBCmqvTgA54a9nzuKv3ozi664TXtsU5rn2SzP1ZyNh6DEqNEv3G94AuuG2Fc5/77RF8+fgPWPT1itoxArlChpQeSRg3bSQy92bDZDAhtWcKLrxlFILCWn6c58HP7sDDo553W7WajS9ZLZ7nRl1065hmn59VYvj2uZ/x2zvzYTZaat+PTPBvcSeBxklOi127duHhhx/G8uXO1RunT5+OL774AmcCBRwIIYSQ2J6+Aw71ywMbSoF59zgqAuBUQlKmAnrfAFz0OiD3r3xaa2PVD/43riPuHpWKHSfLIYgiuscHI0jteTUgT/bnVmLZgQJYbAJ6JYRgTKcov6orsNDEn3cPxdfrjuO3bdkoqjIjLkSDa/onoEd8MKZ/txUmq+vD8U4xgbhtWAqabdtsYNETru9X5fveNyDaUe2BEEIIIYSQVpaaGu0z4MDL6ko8lBWUY+Ztn2DLwp3Sg+GayfoXT78Ad868SVr1pi1gYYbbXrse1z87BQc3HZauNb1/GrSBmkYf6/D2Y9g4fxtsVhu6DElH/4t6gee9lb1wiEqIwIebXsMf7/2Dpd+tQnlhJWJSonDx7WOR1DUBL1w5E1aza8ihY79UXHrPhWiuPz/4F18+8YPL+yW5biY3NRCdFNmiqyOdEew/z+bOhzp9CxMRQgghhJy3krRxPgMOck5W+3O1tQQL82YiU1+3EqmcU6FX6CSMiLoVfL22Z5KMk+Py+OtxceyVOGE4Ko30JGlToZI1fsGnHEMGDldthQABSdquaB/QS1oh1ZdodQRe6/E4FuQux39Fm1Blq0a0OhIXRA9DmCIGz+75ATbRNdjcLTgJk+IGornm5SzB3Kz5Lu+XWcuQHMrhaGkYLHb3fcgkXRgiVG0rtNJo1CchhBBCCDkrJHaJ9xlwUKrq5jsVnizCmzd/7FSZQK1TYfJ9F+OWl6f6NX5wOrBrZgsxTXvxGmRsPSpdV/qANKi1qkYfa9/6Q9i6eCdEQUSPUV2lChH+iO8Yh4+3vI7f3lkgVd2uqTQ98Y5xCG8Xilevfd/tYks9R3XF+JtHobl+ePE3zHnld5f3i7JKfO6b0j2xzYVWztU+ybRp06SQQw2dToeZM2firrvuooADIYQQcsZ0mgismem9TUw3x782C/DdZUD+buftdjOw9SvAVA5M+RptiVohw+BU/1KvDVWbbbj/px1YcbDQ6f3EMC0+v7EvOscG+TxGqE6Jh8enS6+Gfr1zCN5fniEdXxCBILUcU/om4IELOiCwCUEMJ4IdWP1m0/cPSQRkzbwGQgghhBBC/DBqSDp+81GiuGNqtPSv2WjGY+NexIm9WU7bWSWCvz5cCGOVCY98fXeb+t7Zg/peo0/1qRqpulyPl6e+i21L6h6qMuzh+4w/HkVSF9+V30KjgnHbq9dJr4beXvUCfnjpV2xdtBOCICIwLAAX3jwaNz5/VbNLHlstVvz46h9N3p8FMdrKIMz5rCZERAghhBByLhsQ1g/rSlZ5bZOicyxKZBGM+PnkYyizZDttt4lmbC39DVbBhHGx96EtYYGG9MCuTdrXYKvEr1lvIFO/p/a9tWy1UVUCrk58GuGqOJ/HCFUG48bkK6RXQ+/3uROzjy/D1tLDECEiWKHDJXEDcFPKBVA1c4zCbLfgz5zFHrfznIhwrQF5Ve7HetqpI/wKcRBCCCGEENJcI6YMwsqf2J22Z50GpdWOGzw8egbyjzvPZTLpzZj7+p/SokZ3vT2tTf1RdEFa9B7jXyChIbbo1QtTZmLfukO177HAQPseSZjx56OITXGMH3kT0S5c+k7cfS/BS4Mw5+XfsXPFXul5eGh0sFTh+vpnroRC2bw+iaHKiF/f/rvJ+7dLi2nW+UnTTJw4ER999BGSk5NxJrWN5dwIIYSQM6ldH0hVHPKcJ8w4GXCn49/981zDDfXt/R0Y/ggQ3QXnAnfhBuZkqQE3frUJSx4aiTBd0ytWsIoSX07rj0qTFVUmGyIClFDJW2hlp+ytQGVOM/bfAmz5Euh/e8tcDyGEEEIIIR707BqPpPgwZGa7lleuceXFvaV/V/60ziXcUN+Sb1dh6pOXI75D7Dnxfb941dvYsbxuIlGN7Iw8PD7+JXy5910EhDR99Z7OAzvglQVPSQMi7EE7e3Df3Af2NfasOYjywoom789Wnlo8e6UUuDhbcaIovZp7DEIIIYQQ0rq6BHVFhDISxZYij23GRI2V/t1XvtQl3FDf7vJ/MTDiGgQponAu+PnkK8gyHHB5v8ichR9OPIv/S/sISlnjq9TV6B6Sgrd7T0eV1QCD3YJwZSDkfMuMk+ytOAS9zeClhYgYXRV0MjMEkUORIQBVVkfQ22blsfzkCcw/sR+Tks/eMS/qkxBCCCGEnB0GX9oP4XGhXqsfX3bPBOnfhV+tcAk31Dfvo4W4+tFLERYTirMdCxw8M+l1qfpDQ8d2Z+KJ8S/hiz3vQKlu+tytniO7Sq/K0iopJBIeGypV6G4JrOKEsdrktQ3LVHsaBlj752asn7cFQy7rj7PV2dIn4TgOo0aNwvPPPy/92xbQEmCEEEIIc8UXgM7Dw/YeU4EeV9cFGHzZ+9s58Z3uz610G26oUVxtwdwtJ1vkXEFqBdqFaFou3MBYqpt/jI2fer6LJoQQQgghpAXNeHgSggPdT4qZNK6HVOWBWfnzOp8Pu1f/vP6c+Nsc2HTYbbihBhvoWDLb+yqz/mIhiaiEiBYLNzAmHw/t/fHHe/+0yLUQQgghhBDiayLDXal3QyvTut0+JuoC9AjpJf18sNL7PbgIAYcqV58TX/iJ6j1uww01KqxF2F3RMn2SQIUW0eqQFgs3MCbB7HGbgrMhSlWJCFU1UoJLkRpSgkFxmegZkQ27mYfVwvpGHL48uLnFrocQQgghhBBPZDIZnv3lYWiD3I+TXP3IpbUVEFb5GCexWe1Y8/umc+LLZgEBd+GGGrlHC7CqhcaEgsICpXGSlgo3ML7CDYyvaVm/vTu/xa6HePb3339j5cqVbSbcwFAFB0IIIYSJTAfuXA1s+hzY+wdgqQIiOwH9bgO6T3HERRlzpe/vy1zledvJjcCJtQDHAx3GATFNKz92Oiw7UOCzzdL9Bbh7lKME3Gkn2IGD/wCHlzh+Thri+FspTnV2oroAnAwQ7U0/R8kRRxWI4PgWu2xCCCGEEELcSUuJwlfv3ITfFmzDyvUZMJosSE2KxOSLemHMsE617QwV3lbfPNWm0nOb3f/tx541B6QH1AMn9kFKt8Q2+wfZ8PcW323mb8EVD07EmWCz2rDury3YumgHBFFEjxFdMHrq0NqVklJ6JEoTxVjopKnYCkzlRRUIiQxuwSsnhBBCCCHEVbIuBc91eQHLCpZiW9lWWAQzErSJGB01Fn1D+9W2swi++yRmL20y9buQa9gPnpMjLXAgwlVtt09yqMr35P6Mys3oF+ZYSfZ0swk2bCnbhv0V+yFCROegzhgQ1g8K3hHcTta6H9vgISBMpYeMc+2rROn06BWbjc1ZKdLvu0vyoLdaoFM0fUVYQgghhBBC/NF1SDo+2foG/nz/X6z7azPMRgs69kvFZfdchMGT6voker/GSYxu32fP67cv242Dm49AqVJIlSPiO8a12T/Qhr+3+m4zfyvGTzszk9ItZiv++3UDdq7YK02t631BD4yYMghyhWNqemrP5GafY89/B6TxmJpjnu/y8vJ8tomPb/w8t4SEBLQ19BcnhBBCagTFAeNecLwaspqAbd8Ahft9f18sGNFQRTbwy01Azra695a/ALQfDUz5GtCGtbm/g9UutEibVlF+EvhhClB8qO69XT86vtNrfwbi+wJBsUCni4EDzU3yngq3EEIIIYQQ0sqiI4Nwzy2jpVdDRr0JCz5biqxDuT6Pk9TV9SFk3vECvDjlbRzZcbz2va+enIMBF/fGkz88IFUwaGtsFpvPNhaz7zatIfdoPp6c8Apyj+TXvseqSXz99E945Z8nkdYrBbEp0eh3US9sWbijWediIYmzFpsv1dyqeFRUjxBCCCHktIlQRWJq4nXSqyGT3YiVhSuQYyyDkvd1nCSX90rNOZiX/TKKzCdq31td+DXSAgdjYtwjUHmoHnEmCaLVZxu7eGb6JHnGfLyd8S6KzMW1760pXoffsv/Awx0fQLw2Hu20Mega1BH7KjNq28Qqy9BVl4MguQlmQY5sSxiKbIFOYyExgVUIVBlRZXYsKHU2d0moT0IIIYQQcnZplxaLez+8TXo1pK/QY97Hi1GSW+rzOEldXSd4Zx7IxotTZuLkgZza9754/AcMnzIIj35zD9RaFdoaqx/jJFaz735Lazi+9ySevvhVFGWX1L636JuV+OaZn/Dqv08hIb0d0nqnoPOgDjiw8XCzxkhonAS1BgwY4PM7a87CW22Jj0cPhBBCCIHFAHx3GbDoCcBY5v0LUQYCPa52fs9mBr6b7BxuqHFsJfDT1Db5JfdODHF5j4OAUfwOvCj/Bq/Kv8DN2vWO8MfpJAjAj9c4hxtq6IuAOVMAw6nOzMR3gPBmVJiI6AgEt2v6/oQQQgghhLQAQ5URj46ZgVmPfudzZaLAsACMvHqw03smgxmPj3vJKdxQY/O/O/DClJlt8u/UeVBHn200gRpYLaf34b3dZsdTF7/qFG6oUZpXhqcmvCL9zZiHPr8TMSlRTT4Xe/gfHBHUrOslhBBCCCGkuQw2Pd44+Bp+z/kVeWbvUwy0slB0CBzq9J7ZrsfPmU86hRtqHKnagPk5r7fJP1I7bbrPNhx0UiWF04mdb+Yh53BDjVJLKWYeeg8WwSL9fnfaTYhQhkoz/UcEH8TE8N1IVpcgTK5HrLIC/QOOo6/uhDT+U19MoKOiee+IOGjlVL2BEEIIIYScWRXFlXhw2LPS5HmT3uy1bWRCuFTBur7K0io8dsGLTuGGmongrALBm9M+xNk6TsKCGWzc4nRi405PXvSyU7ihRv7xQmmcpGbs5rFv70N4HOuTNE3PUV2kquTk/EMVHAghhJCaEEPBXoDjgZgeQP2HtWtmAlkbfX9PrOTv5Z8B7EH2+o8c+7D31MFAiZckatYm4NgqoP2ZKRfmyaiOUUgO1+JEiWMCVRTKMFv5JrrwmXWNslYC730BXPcL0M65c9BqjizzXknDWArsnAPoooBNnwElR5p+rsH3Nn1fQgghhBBCGsFotiLjZBHkMg7piVGQ13tY+93zP+PQlqM+j6FQKfD4d/fBbLBg3keLcGDTYciVcmh0auQdK/C4HysdvG/9Ian8c1sy5LL+iEqMQOFJ10k7NbYt3okb29+DV/55qkVKHftj/bwtyDnsuQRwWUEFln63GiqtCvM+Wig9zGerCzVlxZwp/5uEsxr7zM2u4HBurDRECCGEENLWme0GFJozwUOOWE178Fxdn+SPnN+RZTwp/WwUVCix6BCu1LscQ86pMLHd47DYq3GocgGKTAch55SwixpU2Qo9Vkw+Vr0F+cYjiNE0Y8GiVtAlaBiWyWej2lbm8VZ1Xck+7Kl8FA90fARxmtOzYNLm0q0otnjuJ5VZy7CheBPyKgPw3eFtOFypwaVJJeiodd8vjFZUoqM6H4dMcbXv8ZzjPnx654E4q1GfhBBCCCHkrMEqNJzYlw2FSo7UXsmQyer6JLMe+x4n9mX5PIYmQC1Vra4oqsTCL1fg8I5jjsoMHCctUOTJmt83SRUekjq7Vn44k8ZcN0yqxl1ZUuWxzepfN+DQ1iN4beEziO9Yd0/fmlb8uBYluZ6/z/wTRfjvlw3SYlB/f8KqbpTROEkLjZNs3rwZsbGxOB9QwIEQQsj5rfAg8M/DQM4WR6UFRhcJDLwLGP4wINiB7d/5Pk6XycCwhwBTBfBeD8DsWNnGbwcWtLmAA89z+OzGvrjh87UoNgr4SvmWc7ihftWEH64E7tsGaMNa/8KOrvDdZuNnQGV2887D/p59pzXvGIQQQgghhPhwKL8Ir/yxAvtO5MNebYfcCESG6HDd+L64cUI/WMxWLPl2lc/vcdS1Q3Ht45dLpZmvT/4/nysYNbTuz01tLuDAVuSZ8cejeGTMDBgqHRUR3GEPxtlKQd8c+gC6IG2rX9e2Jbt8tvnlrXlOwYxGhxs44KbnrsbY64c35RIJIYQQQgjxW57xCBbnfYY80xGpMoAIDoHyCAyJuBwDIy6F2W7GhpL1TvsUWYNgFJQIVeih5tmqnBy6B4/FgIgp0FuzMPf4VbCLzn2SIBmPKrsaItxXgDhctb7NBRzkvAJXJz6F744/B5tY0ycRoeRs4CCi0BoEO3iUWUvxfsZMvNjtdahkqla/rr0V+3y2mXNsKZYdV0s/c+DRO9jN+E49CcpSHDbFQDj19yk36vBYr1GYkNipha6aNFVTwvKEEEIIIWeTA5sP45P7v5aqUNusjkoEbPGjqY9PxqT/uxDV5XqsmrvO6zE4DrjwljG4+tFLcWz3STw+/iVYzY2r/rzuz81tLuDAwhlsnOSJi16Cxej58+QfL8KTE17B1wfeg0KpaPXr2rbU9zjJN8/NRcGJoibf17J5a3fOnIaBE/s26RrPVbGxsYiPb1v/nbYWCjgQQgg5P7Eww9/3Abt/dj9hf8VLQP4eYMIbjt99GXQ3EBgDzJ4IWKobfz32xk0+Ol06xQRhadpvWHcwG91519LRTlUTdnwPDH3gNFyVHze8zQk3KAOA25YB0Z2bfgxCCCGEEEJ8MFlteHzeIizaf6raWwB7ceCsIoRCPT745T8cO5qHOy4egKoy15VRG7rmkcugC9bi/sFPwWy0NPr7t5ga96D/dOnQpz3S+6dix/K9XtvVVE2YfO+EVr8mfx7Ce6s64Qv7O3646VUkdDw9q7+2KuHUq7nHIIQQQgghLc4iGDE/ZyYyqjbUvifnHQtDVtmKsTj/SxSYs9Ev7DKYBZPL/tV2tfSqcWPKdVBwdqzImwG76NonkXMCAmQmVNkdoWQOglTPgQUq2MvmZp+2IF6bDqPYF2XmnUhUlyBMroeCd9ykRikqUWINwDFTpBRy2Fy6AcMjW38xK9GPcZJsQzmAGOnnYKUBkWrvY1dK3i79fSrtWsgRgl/HPIqEwFCc9ahPQgghhBDSZukrDXj1uvex+d/tbp+xf3DPl8jKyMMFNwz3OYbB+jHXP3MljNUmvH7D+7VBicawmNpmn6T78M5S8OLw9uNe27Fq0v/9uvG0LJzkzzhJ/XBDY4VEB+Pjza8jKiECZz3qkzSZ++URCCGEkHPdgv+5DzfUt/8vYP88gPPjfy5VgcC22U0LNzCa01D5wF/mauDkJiBnG1B6HKEnFqIDl+N7vyPLTsfVAcnDWu/YMiVw8wIKNxBCCCGEkFb31N9L6sIN9YgKDoYYQJABC7ZmYMuGQ1LZXl+0QRrM/3Rxk8INTHBkENoKVrJ43/pDOLT1KHLySrEztwK29Hawx4VB9PJdbF2887RcX89RXVvt2Eq1Au+sfvHcCDcQQgghhJA2rWG4oQa75ZZzbDKQiB2li5BpOOR2fxkEKDgb+FOJVI1Mg/3lf7oNN9RQcAIUsELDm6GTWaBlL94MNW9BoKzt9EnsQiWM5i0wWXYjz1iAg5UnECI3IFpZVRtuYHgOiFRWo5suR/o+9lXuOS3X1znId/W9CqOm9me76N+0EFHkwNm0eLTzM+dGuIEQQgghhLRpr0x91224ob4/3/9HqsjgCxtH0QSoMe/DhU0KNzChMSFoK6rKqrF33UEc3n4Mx/dm+gw31NiyeAdOh54jW2+cRBOowXtrXjo3wg2kWaiCAyGEkPNPeRaw6yf/2i6bAaSO8T55n634zybGH/+v6de06TOg86VAfBPKarFKE3t+BYzlQERHoNd1gLYJgQmrCVj+oqMSg7my9m2LKMNWoSPSeR9VEU5Xidz0i4Gw9kDpMffbWSBFbOISn1FdgLjezbo8QgghhBBCfDlRUoZ/97mfJMSIMg6WQBHqcg4fz1qEHqO6YNfKfR7b60J00sP7nSu9Vznw5pe35mHwpf2Q1iul0fuyB+wrf1oLfYUBSV0TMO6mkQgMZSUpGsdkMOPLx3/Akm9XwVBtgq17MoSkSCAttq6R2QrF9qPgi+v6LDUE++lZ6n/4lEH48sk5KMoqcbud53kIQtOuJa1PCtr3SMK5ghNF6dXcYxBCCCGEkJZVZDrhNtxQew/GAbwoQuA4LM77Hu21qcgyZkjBBxlnh5q31U70Z7drcj6U1WBArmGbz3NreCuEegtLSYEKCNhZ9h3aB/ZHmKrxfZIS016crF4Km2BAsDINyYEToZQ1vk8iCHoUlr+ESsOvEEWj9F6ZTYNBAakIURs87sfCGlHKCr9WMW0Jg8IH4rfsP1FhrXC73S7IUVAVWPt7lVWDzOowJAWUejxmtVWFbVs7IknWFzH9z53ANfVJCCGEEELaJrbA0ZZF/i1a9M3TPyKtdzKO7DjhsU1IVBCsFht2NGOcZPazc9F3XE/Ed6g3JuEntmjTmt82wKQ3I7VXMsbeMALawLrQsb/0FXp89vB30phLUxa0Ol3jJGwc6PsXfkFFcZXb7TzPQRCa1j/qMaIz2tUfFzrLUZ+k6aiCAyGEkPNPxiJA9DOtazUA+T5uflnVhq/HAzbXEs1+Y/sue75x+9itwG+3AZ8NA9a9D2z/FljyNPBOZ2CnnwGOGmzyzc/XAxs/dgo3MP8JPbFa6On7GElDcVrwMuC6X4DgBNdtqiAgtlfTjx107jy0J4QQQgghbdeKjGPw9VjXpnX8W22x4eR+72FjfbkeDw57BjaLrcnXxB66f/104/oRFrMVL0yZibv7PY5f356Pf79cjk8fmo3rEu7Cqp/XNepYdpsdz056DfM+XiSVkLZ3SYCQHOWY7VSfSgHrgA4QAlwHBnq04opB9SmUCrzyz1MIj3Nd0TQwVIf2PZseUKAViQghhBBCyOmQUbXRZxuOc0yMMdorYRayoJNboJFZESCzOFUxYLfsdrEMXxx7EsKpag7eD+z+bYugx6bibxrxKQCbYMKa3IewLPsWZJT/iGOVf2FH8UzMPzER2dUrG3UsUbQgu+g6VOi/qw03MKFyIy4J3YtEuedwABOlrELHwE44HZS8Eg93fADBCteqF4HyAJj03SA0qNqwJNd7f2nJ5j7IOhSLCG3bWbWWEEIIIYScu9b/tdnvtqX55Sg86X7BoRplBRV4aPizzZrgX12mlybtN4ax2ognLnpZGqP5/b1/8M8Xy/DBPV/i2oQ7sclHdYqGzEYzHh//EhZ9vaLJ1bpbs7JCfSy88fKCJxEUXhesrhEaHYy4tJgmHzsyPryZV0fOFVTBgRBCyPnH6P0htIvqfN9tDCVAYDPToyfWAOUngZBE/9oveRbY+5v7sMS8u4HQJCBpiH/HOrzEY5WKUjEQy4S+OC5EI4UvcNvGIKqg7XszmsxUAeyaC5zcAPAKoOOFjooWcqX79hEdgHu3AHt+c1y7YAeSBgO9rnd8jj+mN+06el3b9M9ACCGEEEKIn8pK3a9o427SD19tkh7M+/OAv7nlk7ct3omygnKERvt3nE/u/xpr/9jkthLD6zd+iJiUKHQa0MGvY639czN2nqpSISpksLNwQz0iB1h1HKw6HiIng+ziTtCuPwZl9qnvhgMm3DYGzSn3vGT2KhzYlAG5Uo7Bl/TD0MsHQK5w//g0pVsivjn0AVb+uBZbFu+UBk3YwMH4m0dhze8b8c70z5p0HeNuGtXkz0AIIYQQQoi/qm3lfucQ2L96u+O+W8HZXTLINSqtJbCpnO/j3RE9JRzYMEn1OpjsVVDLXCfJuLOt6HXkGta6vG8TDdiQ/zQuSJiNUFVHv45VafgbRssWj9vj5eUotAfCBpnb7UpOwODwYWiqKms1/iteh+PVxyHnFegb2gt9Q3uDr1ftor4kXRLe7PEa1hVvwL7K/RAhoktQZwyLGIJfj+7D9sIlTu23lybht0wDLkvY4RRQsYscluZ2wcryjmAjMpf27dLkz0AIIYQQQoi/SvLKGvVlVZb4HlfJP14oVU9ojjW/bcSDn98JjU7tV/uZt32KbUt2ubxvqDTixSkz8cm2N5HUOd6vYy37/j8c2nIUTcXLeIy5fniT9y8vqsCir1dKVbtVWiWGTR6IgZf0gUzmvg/Exn++O/oRln63GjtX7JHS730v6IELbhyBBZ8txazHvm/SdYybRuMkxIECDoQQQs4/1UWtc9yiDEcFgQYVEBpFX+RfwMFYDmyb7Xm7KACrXgem/e3feXd5Xqk1kS+AAB63Wx/B98rXEMc5B0T0ogqvBj6FV4KaGPA4sRaYe50j5FBjzy9AWCpw4x9AqIfOh0IDpIwA8nY6gg4ZC4Ht3wN9bgLi+gC5jUtCSxUo0i9u2mcghBBCCCGkEfTbvVdkYGRmNtNEgPKo//2X7Iw8qHUqqRpDU7ByweVFlX4FHMoKK7Dk21Uu77PKFLaYQFhUcsx+fwFen/OQX+de9v3quuuIDAbqPTAXeMAQLYOgqJsIJURqUHFZV2h25SJg7QkkdopHcITr6qX+2LZ0F16c8jYMVXWrtC7/YQ0SO7fDa4ue8VhVgQ1w9BrTDRnbjkkVKzbO34qFXy/HhFvHSoMoR3d6LpftTr8Le6L/Rc2oSNcWiaLj1dxjEEIIIYSQFlVu8T2OIYCTbsVqJvRzbKSA835vlmkoR7RSBbvovk8iiN4DDiIEmO2VfgUcDLZCZFYtcnpPDgFa3g6byMMgArtLvsHIuNfgj0r9r1638xwQLtOjwO6+3xGhToVWfqoUXyPtLNuNj458DrNQ972x4EKCph0e6/QQQpTu+2hqmRqdgzrjcHU2NpZsw4bifViavwEjI4eiY3A4MiqcV7ldkd8ZW4qTMTDiOEJVelRaNdhcnIIyiw4ItWN0cHsMSHVTPftsRn0SQgghhJA2qbzQ98JOTVGYVQwFqwRttjZpf6vFJlXN9ifgkHesQApEeGIxWfHjK7/jyR8e8OvcS+uNkzRFpwFpfgczGlr75ya8fsMHTpUjln67Gh36pOCVf59GaFSw2/10QVr0HtNNCkWw72LDvC1Y+NVyXHjzaMR3jJXGrRpj1NSh6DLIv5D6WYP6JE3mPu5PCCGEkMYTLMBlHwOaUNdt4R0AuY+bSE4GBPmX2kXmOsBWN/nGreOrgW8mAkWH/AtWeDCQO4j2XC6Oiu0w1jwTT1hvx1J7X6yw98Kb1qsxwvwe0odORpNUFwI/XescbqhRehT4carnySwF+4FZo4AtXwKmckeoo/gQsORpwFINpI13VIPw1+hnWJy5aZ+DEEIIIYSQRtCeqIC8yOC5gShCWQlotmaCN9n8Pq7ZYMbj390HXbDrpJrkrglSZQJv5AoZwuPc9Gfc2Llir/Sg3+n8HSJQfl0fVF7WHVUXdcaSIOCu937DyULfKzGxyhG1eOdHlsZw3inc4LStZxxMaeG46uFJaIqi7BLMuOItp3BDjZMHcvD85Dc97ntkx3Hc0/8J/DNrKfQVBikgcmJvFj7932zYrXb0n9ALMrn/fYxbXr4WnKflcAkhhBBCCGlBNlEprdzvCXssLwg89AJb09/Rzp87Vb1gwaiY56HgXfskYco0CFKNAM9knBJaeZgfZwIKDJsgwi79rICAHspKjNMWY4SmDGO0JRimLoXJuAjvZsxEsdl3cNwmFPtswypYeNIzdCqaosBUiA8Of+oUbqiRZcyRtnlyuOo4ntrzOlYWroPRbpKqOGQasvFd5s/oGF2GYTHJkJ3qY9R0NapsGizL74JfM/tjcW43R7iBkQH3T/KzKjghhBBCCCHNxMtbZ+pyVUk1nvrpQai1KpdtaX1SwLPksheaADWCwv2rKLd18U6IPhboWfHjWjwz6TVpLMIXf6p5e3PVI5c2ab+TB3Pw6rXvOYUbahzefhyvXveex333rDmAewc+KVXINlabpHESts9H938NdYAavcd29/md13fbq9c16TOQcxNVcCCEEHL+0UW2znEVOqDDeODBvcDuuUDWZscE+44XOioDLHgQ2OGl/FbHi4DAaO/nOP6fo0oBq1rgj8y1wDcXA9NXAKFJntuxqhEsNOEGe+j9uuILTLM8DiPUmGsfI71qDNVkYmr/U1Un7Dbg0D9AxmLAbgUSBgA9pwKqBjf/bJuxDNj8pfeKF0UHgCPLgA7jXLf9fR9gdK4mUas4w/FiVRm6XwX88z9HAMIbX989IYQQQgghLSQ0KgSRX29C4U1dYQ9sMMFHFKHJNCNw+XEosxpXopkFGwZP6oc5mZ9KJYEPbj4MhUKOwZf2l8oIv3Xzx1g+Z43H/YddOQhBYd4f3G9fthuLvlmBw9uOOb1v6hgJ/egOLu03H8rC7W//gh+evB5RIQEejxudHFVbepkrr6593y4H7GrvD7/lI9Iw7qaR0s82qw3r/tyMTQu3Q7AJ6Dq0Ey64YTg0ARqnfawWK6rLDZj30UKvFS9YiGHnyr3oNbqby7a3bv0Y1eV6t/ud2JclvViFhxFTBuGDu7+EL2ExvitnnH1aoIKDVBeEEEIIIYS0pEBFCPQ2FQLkJqkygdPdF6vaIPKotqtgEeWQ86Lfd2VaWRCSA4YhTvsbDlcuQrHpIHhOgeSAEUjQDcLi3Bk4Vu25T9IhcAwUvPO9u/O1idhadhBL8jeBF7ahvdpRtWGwpgxBvHP4IERmwxBNKQ6VrsSbh3LxdOfnEaxwv+ooo5DFw2I94PXzmQT30ysUfBiSA8dKP1sFG9YV78T20oMQIKBbcBpGRfWDWubc92PtKq0mLMlfAavoeXXZw9VHcaTqKNICU12+i0+OzJaCDe4UWE4g21SKobG9MCa2A17YvtTrZ2P/GYRrToUdzinUJyGEEEIIaYvCov1bbKmxIuPDMWzyAPQ4+ak06Z4941dplBh2xUD0u7CXFDbY/O8Oj/tfcMMIKNWeg9mCIGDLwh1Y/O0qHNl+3K9r2vTPdvxv5HP4ePPrXsMTMcmRyD2Sj6Zgi1cNnTxA+tlitmL1L+ul8RzWb+g1ujvGXDvU5XOxdqxaxR/v/+OyoFXDBa+O7DyOtF4pLt/Fm9M+9DjGwr4ftqhTv4t6od/4Hvj0oW+9fgZexiMwzPM40tmL+iRNRQEHQggh558eVwOrX/c+4Z2FFTpdAuz52f/jdp8CKE5Vaeh/u+NV35hngMOLHVULGlIGAgkDgYocQLQ7/g2IAsJT60YU5t0D7JyDRjMUA+veBy55x3ObPjcBu37yuHkAfwi/KV/AJ7bLsEToByvkiEMxrpMvx3ThXyj5u4CKbOCHK4Gig3U77vkFWPEyMHUOkDwMMJQCq98Edv14qmqDHyndY6tcAw55u4Gcrb73ZaENFqRIGQkcW+m5Xbt+dd81IYQQQgghreyCm0Zi7ht/IeaTndD3iYahcxhEOQ9FgQEB2/KhPlkFTaAaQ64bjuU/ep780xCb5M8qBrCSwJPvnQCAverc+sq1WLf/OPLiA2CNC5L6GarMcmh35CLELCK9XypK8spgMVlQnF2KiHZhiG3vCALb7Xa8cdOHWPmTazCaLfxqGJDo+j578UBRlQE/LNuG/01xhBDcmXDbWPz36wbpZ77aBK6oAmJkMAQlV7fUqAf6QKX0ufNPFOLJi152KnnMAh3fPjcXL857HF0Gp6OssAJzXvpNKvVsqDT6VTGBDQI0DDjs33AIx3Zl+tyXPfhnAwTdR3TCnv/q9ZUa6DmqKyLahfs8HiGEEEIIIS2hb+hIrC3+B5U2LVS81VGZgBNhF3mY7QrY2XL+XDD6hPTC7gpHn0QED0HkwHOeow59QsdK99gqWSC6hV7lsn1w5F3INuyERahy2abigxCiTIfeVgZR1MNkK4JGHg2dIk7abhfteGX/t1hXvFv6PVRuQIoKSFYaXcINNVh444rgDLxSGILlBUtxRfwUj9ceEnAd9CbPIQAW+sixhUDGiZBBkLopgghYRRnYVCCekyHHWIjn9nyKfFPd6qwrC7fi+xP/YEa3O9EhMBFFpip8cWQl/s3ZCYPdgrTgEqh8zNrYW3nAJeCwrzIDuaYCr/tFB1ZjS+Eh6G0W9AyLwb7KbHCnAit2Ow/BzlbNdfSJhse2R5jKtfIGIYQQQgghrWH8tJFSdWRvAkID0P+iXlj501q/j3vRrY4FW9liTlP+51r5+a63p2Hv2oPS+EBDwZFBSO6WiPKiCmmBpPKCckQlRiAqMbJ24aQXrpwpBRYaK/94IeZ/ugTXP3Ol13GS7cv2oClEQZT6YpkHsvHUhFdQeLKuQt3yH9Zg9rM/4ZV/nkJqz2SpmsT3L/yKlXPXSuEEf8ZJdizb4xJw2Lp4F/JPeK+WxwIWLBDCKpC375nkdVxl8KX9pPEtQmpQwIEQQsj5JywFGHgXsPET99sD2wF3rAJ0EY5KCcWHfB9TGQB0u5LFUx1VB+wWICIdUNa78Tq4AKj2cGNnqQKWPed41cdW9GHH1kUBxZ4nw/i0bTbQ5TKgvYcJRUlDgD7TgO2e07Jd+Ux8rPwAFlEGE5QIBJsMxK5RBfA88NO1zuGGGqZyx7bblgK/3NTg+2zCSpwsGLFshv/tC/cDRRmet7MqGxc83/jrIIQQQgghpImSOsfjkjvHYcHnSxG0Lkd6NVyl56MtbyAgRIsDmzKQe9T7pJWa6g0jrx4iBRFO7M2C3WZHctcEpxV5Fh/LQuYI5yCCqVMkTB3CYV+Ugc8f+Q6fP/qd0226QiWHNkiL4IggnDyQ7fbc1rhgiDqVU+DBqgNsbOFVNl9GBL7dtRMj+qeiX1K822P0G98TF9w4Asu+/89x3h3HYB3SCdD4fpitVMillYKenfS6U7ihRkVxFZ655DW8u/ZlPHfZG04rIPkqH800fLhfWVqFb56Z63UfQa2APVwnzXjK2J0JmZfTKFQK3PLytTgniS1QwaHZFSAIIYQQQkhD7bQpUshhW9lqmASFdN+u482QcVZoeSu0siTclvoOFLwKJw/uR7nVMWGfjQ+oYHObQVbLAtAleDAE0Y4CUyZEiIhSJULOnsGfsql0C/ZXaxChsCFIqh4hSrd7LCSgt5vxX+FH2Ff6BtS8pXYfoxCIUnssbGIk9pSzagVaaGRmaJV2lNp0SNDWhQncCZVbcEnwIRyt+gaFxk6I0rhWZ2N06vEI1ExClXG+yzZ2jYcsUbBBDpt0e8ruc9m/ji9CyamkAMaMPZ87hRtqlFur8NzeT/F694dwz5bvkGssr90m+DFO0vDrLjXrMeuw98lgjIwXEBVUhd1lmVAqALmi7lwymV3qR1nMcqhlCjzU3XMg/axGfRJCCCGEkDaJLUg0aupQrJrruqgSk9g5Hh9uehUyGY9dK/eiNL/uHtqT4IhADL28v1TpmVVYZrfaSV3joWA3w6es+HGt23ADU1FUiQ/v/RIf3feV09gBe4bPxmt0ITpkH8pFU81940+pmgFbbMqd4VMGYcjc/lg/b0ujj61UK6SKDA3DDTVKcsvw1MWvYuaK5/H4uJekkENjxkkadgJL88vw/Qu/+H19u1fv97qWlSZAjZuevxrnJOqTNBkn+vVfJyGEEHKOYf/zt/Y9RyUHm5vyvVFdgGnzHZPpv58MlJ/077iaUEfFAEYd7KiMMOZZoCoP+KC396oRrY2TAVd/C3R2TSjXficLHgK2fdO443a9Aug7DfjuMu/t4gcC2ZvQaNf/DnS4wPGzuRr4ZgKQ71ihqdnkauDan4BUR4KbEEIIIYSQ04VNJPnx1T/w4yu/w2p2Lf2b1jsFby57Tnpoz6oSFGV5n7Qj4YCAEB2qy/TSr6yU78Q7xmHaC1cjq7QSk9/41uNccc5iR8RXW8Fb3K986o05NRzVF6RLP7PDm0MBwU0FZznP4+Opl2JkR+dVfup/J2/f9imWfLvKcSwZD3tyJMrGtQdknp98TxrQBZeEReCZSa97vc7OgzviwAYv4WcPZq6YIVVYYPQVejw4/FkpROKOqJDB2D8F1uRwNpvI8abFBtXBfKh2ZblMTFJplXhlwVO1xz8XZGdnIyEhQfp5ZPq9UCuCmnU8k7USqw99JP2clZWF+Hj3IRlCCCGEENI4LIiwNP8X7C77EUredYJPtLoTLk94A6WWEnxx7FVU2hxjHxwEqeIDD7ZCqGNoQQAnVThQcAIC5GqYBUefRCsLQv+wCRgRdQ3yjFl44+DTtcdnx4lWVkDBs3ETDkrOilhFudsKEewcJlEBQeRRbAlAvjUISl6ATmbBvWF7IfdSVYLZZAzDCZsOPBQYH/8W4rT93LYTRTsOFj0Gk/E3KejBlNi0yLSFoUzQeTx+1+BLIZONwmsHvI+vJGrSsKnIucp3tLYSERqD1/2e7/oU0gLaSz+XWwy47r+vUGbNRmIIq5TtGfve2F/KLnAoNWpRYmABcudeiZpX4fNBN6BfpOMe/lxAfRJCCCGEkLMDW6jpm2d+wm/vLoDd6jo20XVoOl5b9AyyDubg6YmvobzQ+/0vw/EctIEa6Csc99ih0cG47J4JuPapy3Fw8xE8MKSuT3ImKFUKvL7kWXQf3tnjd/LSNe9i3Z+Nm191xQMT0aFve6kStzfpA9JwaPMRNNZnO96Sqj8wrFI2+x7zjvlenMsfbAGvN5Y8i/T+aThXnGt9Eq5eOuWbb77BzTfffFrOSxUcCCGEnJ/Y//BqQtyHG2pW/WeT/a/5HrhnM7D3d+DQQkCwASXHgBIPk2Jqwg0MC0es/xAoPABEdzuz4QZGtAMLHgQ6TgBkcvdPuo+uaNwxWYWJofcD++f5bpu7DY3GgiZpY+t+3/JFy4UbGPb3r7d6FCGEEEIIIacLz/NSqV134QbmyI7j+PiBr/HEd/fj6wPvY8WcNdi8cDvsNgFZh3KRc9i1UgFLF9SEG5iq0mrMff1PqfKC7qYBXhfCF5UymDpHQrurrrqBv2QVdf0qm9Z9uEHaJgh4/u+lWPG/6eB5zm0J5e3L6u73ObsA+dECaCNUMPRz/7BWrZDjprF9seytBT6vsykP7dmAQP3wwR/v/es53MBx0I/pBHtUgwfVSjnMPeIhquTQbD7utMlssEChPof7JKwb3Nyu8BnuShNCCCGEnKt4ToZwJec23MAUmA5iTeFnuCD2YTze6T1sK1uDQ1U7IUBAofEkyqwF9aq/cVBwNimsUBNuYAz2Sqwu+hnF5mzYEe50fA1vhYJnB3D0DcLk1W7DDdLROUABOyzgEamqRphSjwJrMKyiHJWCEmEys9fPahBl0r8CrFhX8CamJP/sUqnNsV3A6vKTMNo7QsnZIYgcbJBBxtkh59zfmMo5NXqEXYk5mRvgy5GqTPbJnd4rNWkRpjbATRdJ0jEgrTbcwHx9eB1OVJeAZ1UjBA4y6Tt0r2YLaxOp00PGCSjUBzq1MQlmBNRb0facQ30SQgghhJA2SyaXQaVRuQ03MPvWHcLXT/6Iez64FbMzPsDS71ZLYwhsTfejO0+4XRiKjTPUhBuYsoIKzH5uLnKOuhlTOQNYlYX3/28Wvtz7rtvtVotNqljRGNogDSbfPwHfv/irz7YZW4+isXqP7V4bbmB+evWPFgs3MOzvpQl07iedU6hP0mSnlhEjhBBCzkObv/C+/eA/QEUOoNAAvW8Aps4BLnoNKDncuPMcWQYcX402QV8MHF7iflvmOqCcPVz3kzYCuGYOEMcqU/hREIqFQxojPA24dq5zmbPt36PFnVjb8sckhBBCCCHED39/ssjr9v9+2SCthKPWqnDx9Asw44/HcPvr17sPN3jByhlv33fCZztbOFvNs/HkxXrIiqodx1B7b5tfrcf6Y+4r5G1buhvFOaUu72s3nYRmVy5gd55QFB6oxXt3XIoOcRF+lVAWGuzvS1KXeLzw52NO7y38ernH9tbEMNdwQz2WjtEQAlRuSzMTQgghhBByuomigN1l8722OVS5AiZ7FVQyNYZEjMMtKY/iwuirUGZlVQi42hcH0WMAgNlXuQ5Z+oNO72llltqfZbBDzTkqJngik2aFOO77ZZyIULkjSLHXFOZ1v2pBhkJ73X14lTUXBUb3Cykdr9oEo52tCsvBIsqlcANjF3np1bDboZNHYGL8awhVJvrXJ6lLhNSyCnJkVYXCLromHBK1Cbivw/85vfdH5g7HsUQeRXrPVSVqKmvUF6oxQs67Th7bUuy7v0gIIYQQQkhLY9UKFsxa6rUNq/hsrDZKC0ZNvncCXvzrcUx9/HL/ql7Xs/Tb1Ti4qZHzvVpJ5v5sHNrifkGm9X9tRnV5XWjcl8iEcLy28GnEpkTXC6B7xgIgjdGxXyqe+vGB2t/tdrsUNGlpe/6jcZK2TBTF2tfpqt7AUAUHQggh5yebBSjc57viQf4eILhd3XsnWQmwxt3sSXJ3os0odz+ZCNX+pGs5YNQTjvBB50mA/NSgQMoIYN173ndllRIE7wMUSBsHaMOBjhc6ji9TAFX5QME+QKEFKrLR4njHAAUhhBBCCCGnk77SgOwM70EFtlLP8T0nETq2e+17e9Y4TwryxR6mg7lLLIpzSwGVhyVBT+HMdRNdBAUPzibAwwKqLgJWH0XlpK4Q3VWLayC/ssrt+6X55e6vix1/7QloduRC6BKNa2dcjZSYMIzukQqFzHE/32tMN/z5wb9ez8vLeJ8hh0GX9EVgeAAGX9IPQy7rL60gVVhWhWO5JdColChyE8CoYU2J8HpsFt62pERAvSfH+bo8LdVKCCGEEEJIKzLYK1Bl8z4uYBPNKDVnIk7brfa9E/oDLu3knN1prSJ3Cs2ZUpeEBRNYJQEFb4cAHiI46Xdf+7PtrH9S00VhgQgWjNhpCkdHVTli5K6VKOwisM0UWlsloobew+fW2zzd73OwSVUgeKg5FfqFX4UwVTJSAoZJlTCYniEdsSh/vdfPYLO77y9VW1XIKItEqMqIi+JSEajQom9ob/QO7Qme42G15cBsPcxiICiz6Gs/T5EhAEq5DSFqk1MFCKE23MC5fIdBKhNKjc7BCN7Xl08IIYQQQkgrYAseleaVeW1jqDJKYykd+rRv9mR4Vh27rSjMKkF6/zS/x0nq04VoceWDl6B9jyQMmtQXsppxktHdfIYP2K2/t2w22z74sgEIDNFh2BUDMeDi3lJF8oLMIpw8mCONszQmgOEvjqe1+okrCjgQQgg5P/Fyx8tXVQFFg+VH2T5N0oRQRGspPQrYrcD+ecCe3xx3p50uAUISfe8bmuQIODSUOgaI6uo5NKLQOUIL+/7wfOyYHsANvzlXm/j3EeDA/Lq/06mBghaVOrblj0kIIYQQQogPCpVCmtgu+FgtR6VROv0uk/v/kNeaEArD8I6AjAdvAeotWur+XEdLUD6qHaoGxMAeogJntUO7pwQhq7KhKDa53UfkOVhSI2BJDIW8oAp8VBAEtff79qy8Ulhtdqz6cQ3++22j9D2MuGowwuPYxCPPZHoLUg3AnRMGuQ0mJKTHeRygYCWa+1zQHWv/2Ozx+F0Gd8RLf9f1d4or9HhjznL8t/Mo7Kf+TvJr+kK57SRUGYWu34XKd3/RXZt+F/bCuYoTRenV3GMQQgghhJCWJ+cU/rXjnTsSNRP66/M9PV5EjKIcIXKDU5CB3WZXC2opPMBu+7zNs2fb698ZsrasaoRZVODXylQM0eSjm7oUqlOVJPJtKuyzBKNY6gixGIXjxVRbc2AXbNhZtgoHqjZCBhm6hwyFTuEjtAwOQcok9I+Y5rJlSERPRKvCUGB2H5IIkGvRQdsF/xVmuN3OKjKk6Lrh4U631b5nteUiu+xpVJuWSfUfmE+6B2FuTm+sLu0o/Z5XFQSLIINGYYNGZgXPs8/o+YuUSdvrfyJgaFQqzlXUJyGEEEIIabuUDcY//G3HFiZqkjb0qDn/eAFsNhsWfbkCGxZsg0Ipw5jrRyAi3nuFOialWyJufO4ql/dHXTME3zzzk9tK2UxIVDDa90zC9qXuK9ox/Sf0xgt/PFr7Ows2fHDPF9i6aGfteBbHc42uBOENGyPqO64HzlXUJ2k6CjgQQgg5P7HkZ/rFwIG/PbfRRgCJg53faz8SkCkBe13p5LPO5lnA5i+c79wP/QuoAoHgRKDCQ4UHpveN7t9nIwnX/gR8f7kjQFGfMhC45nsgLAU4sQbQF7mv7jD+pbrfzdXAt5OAwv2uVTVaUtIwIL5vyx6TEEIIIYQQPyhVCulB8aZ/tntsE9EuDJ0GpLlMhvenEoEo52EYkiaFGxjeCnA2EaLc/UQX5dESlExKgjkluO4YChn0faJg6ByGmK/2QZXrvCqPPVCFyoldIQTVBcNlVkBokBN33gn49p9t+HHuegT8sx/ycscqq+v/3gptsEZ6eF+cXVobnjCnhcMaHQDOLkJ5rBQX3TrG7WHZCkIvzX8CT1z4MvKPO4cPAkJ0eOGvxxAWG4pdq/ajqrTabeBk+hs31P5eZTDhzrd+QWa+8+pRNo0CtmGpEGU81Afyna+h0gR7VJCXD+9oU1+/C3tKqywRQgghhBByuqlkAYjX9ka2YYfHNkGKGESqnCe/pwf2AidFBerGGHxNbQmRGRAkcw1Ns6oDgbwJFXYtDIIKOpnZ4zHsYH0b5/6MXXT0dyyiDJtMEThk1SKAs0LgOJiliguOq5PDucLE7tLPsa3kK+RbgmA7NWXicPUGqGWBCJaFwmD3vIpst5CL3L4v52WY0f0uPLfnUxSZnfcPlGvxfLc7oeS02F56EtU21+9CzStwf/qFtb/b7KU4UXglrHbnMZtIZSXuS1kNBS9gWXEnKRhRrNchQGmBXCdAxXsfR7HYnSeDjYnphOQAX8EOQgghhBBCWl5oVDC6DEnH/vWHPLZJ6NQOSZ3jnd5jVQVmPfb9Wf0nmfXo9/jisR8g1lvgZ91fWxAcGYTAsAC34xg1PI2TKNVKvPLPU3jq4ldQklvmEm54ecGT0iJa/9vwHIzVrn0STYAat7x8be3vZQXleGjEsyjKKnFq15LhBmbE1UMQnRTZosck5waq60EIIeT8NexBx8R6T+L7A/JTKxOdWAf8Ph2Yex0QEIWzn5ubTXMVUJ0P8F4S0ocWAnrnG9dagTHA1T8A6RMdYQmFxlHV4YrPgdTRQGgycMsiIG2c8yBEXG/ght+B9qPq3tvxg2u4oaVva9r1Ba7+tpHnIIQQQgghpOVMfeJyKazgSdch6bUrEW0+eBJPffUvHpmzFIqbB8OcEgbRy+qm1pQIQFm3tglrqqwCeAtb9rRef0AUpeoMfEWVU7ihPlEjR8nlzpOa2BGqLursFG5g5AaAs3q4KBFQVDuuxcbCEZd0kYIYNQwVRlQUVUGukEmhhpJpfVE5viOMPeNg6NMO5VO6YwGnR6XBfTWJyPhwPP/HoxhwcR9oAzVQaZVI7ZWMJ+c8gB4juiC+Qyze/e9F9B3fE1y92U2dBnbAm0ufRbdhnWvf+331bpdwQ32mPglSyKE+zTE3Ye76rHYojxfX/tp1aLp0bec0aZndFngRQgghhJBWMSD8OnBenq0HKQeC43hp0s2m4gw8vetHPL7jD4hijFO7mgoMrkTIYEcA7/4enmG35hreglJbAGynAgsNsfkzVtF57UaTIIcNdZP1tbwFAnhUikqYBMf7NecOlJmlf9WcBfypSggKzoYYZbnTeInJXoUKmw18vePWp7crsbxwH4x2R1C7oRh1GF7pfhOujI/EsIgCDI3IxcRYJV7pfi06B6UgNTAaXw66Df3D2zvt1ys0EZ8NvBXdQuombpVVz3YJN9R3bdwWyDlHmEEUeVSZ1SjWu+/T1bALHCpNdX24ARHJeKXPZJzTqE9CCCGEENKmXf/0lV639xrdTfqX9Uk2L9yBF69+G2/f/inCYkJwtqsfbqhRUVQJq8Xmdexo9a8bYNS772O16xCDGb8/gt5jukuBBbVWhU4D0/Dszw8hvV8q0nqlYObKGeg+om48hGG/s/fZ9hq/v7vAJdzgi7zeuJQ/2HjN/2bdiXMa9UmajBPd/X8JIYQQcj6wW4GZHQCjp0krHHDnf8D2b4EtX7butbCSzi1dnaCpuk0B9s8DBA+zkhKHALcurPt9w6fAuneB6gLPxxz1FDDsIeDoCsf3rQ4C1CGALgKITHdtP2sUkOt51ShJ/UoaLIwy+ilHEGXNTPfte14L8HJHaKXTRKD9aO/1rgkhhBBCCGllFpMFV8VMh6HS4LEs76w972D2lv2Yt36fy3bOIkBRZITyRBGUGQXgrHV9CmO/ZFg6x7o9rsCzCg+Oh6pyM8DbRVTGW2EJ81Z6AYj9aFdtFQdLYqgUcHCHBS8sgYBdJQIyxz03Cz0o9ICsQTG8gNVHoD7gXHFh9B1j8bvMANupfRsa3CkJn919Re3vv8ych19nzkd5YYXHa7/99Rtw+f0TsHXJLujLDQgI0UIXokNodDAS0tu5tL/6uW9xLNf7g/vgdUfBH3Jce7dhnXDzi1OxMq8YPy7a5vZveWn7OKgyS6HSKDH08gHSAMO5KDs7GwkJCdLPo1LvhlrhvaqFLyZrJVYd/UT6OSsrC/Hxzqt1EUIIIYSQZtxr2U14atfdiFNnSxUBathFDlnGMOSbw/FOrxn47PBKLM7bKW1jtRtSAorRNTgPKt4GQWTVEuSwCDLIeDb14FQfQAo3CFDzFoSxJLRXPIptAZCJNgTLDQiUmcBzojQPhMUNbKIcYr2Fk1jgIdMcLp2FVYFg54pSVNY7nggNZ0WQzOgyDMCOaRIVsJ6q8FBoDYK+QRm6XsGjsadiJbSnqk6w4EWZVYsiawBE8OgV0hv3ptWFlfeUzEZW5bfgxQII4FBoC0KBLVgKXDhwuCD6DvQMnYCDlbulgIScY/fJQYhUBSKRjZU0cDhvKKy2E16/tbePXYgNZYnSz/3Dk/BAl7HYVrEei/L/c2kr43j0Cx4uBSE0MgXGx3VBv4hknIuoT0IIIYQQcvaoLtfj6rjpsJrcz1FSKOX45tD7+PzR77Hmt42tdh0yhQyCTXAbOjgTxt88Cku/W+2xWsKoa4bg6Z8ekn5m1/zdC7/g748XobLEfeUHNkZx/yfTMfaGEdi6eCeMVSYEhumgDdJK1cTjUp1D7MzU+DtcKkE0xBbpstscY1O9x3aXKkD8O2spFn2z0qUtW9xq/LRRUoVyTaAGI64ajG5DO+FcRH2SltG4uAwhhBByLjm4wEu4gRGBRY8Dmev9PCDvmLhvYiv+NBKbdG/19YD/NDkw33O4gTm5Hji5CYjpDvx0HXDc9abUxapXgdVvOIc4orsBl37ovr3BjwTwiEeB9Isd33mI4wE+UscA0V2BjZ8C2ZsBjne8N+Q+5woRhBBCCCGEtAFslR1P4QZGEES8+fF8bLC5X4lHVPKwRWkhhiTB2j4KuuX7EahSoLpM7xR2aEiat8SCBgLACSyQwMEWrvG5Ur4tXF0bcLDGeV4ZlBMBFZtbZLLAHqSSula8h8thQYmGAYfFB4/D1sP1YXqNDQczcSCrEMlRoXhi8uvYt2wPOLv3a//yiR/w9dM/Sg/Oa3Tok4KHv7rbbfuKavcrstY37a2bMCwxRgpLRCU6yif3ZBUhkqPw85Id2HcsHzzHYXCPZNx4cT/06eSY9H9eYYMvzS1X3cLlrgkhhBBCSJ21xVuQY1Yiz5yMMKUeKt4KqyBDiTUAdikAIOCjw3OxPC9Pas+qHwyLPIpYTV2YQMaJUMAiBanNogoKXgu9XQ8ZiyRI4QPfOHAwCKzitgJVVjV4qyMcwUOUAg+sOkNNUMEoKFBu08IkKKUwgdSOYxOR6tY0Yv8Eugk3SNs4QA2rFFpgoQktb3YJOOys2Igcc4ijL8MJjgoV9T7JzvIdyDXmIlIZjC15twP2TQipt8BqiMyIOHk5dpkSYJOmZIhYmv85fjo5F9Z6VSoSte1xQ5L71Urt9lKf39tLPUegirsIwUoNYjSOPlqf8ESkBSRjYd4qHNWfBA8efcO6YXLcOHQKcq7Md16gPgkhhBBCSJvGJvF7CjcwrJrBW7d8gl2rXBeBcodNE9IF6aTgRGMo1Qpp0n9bsfqX9R7DDcx/v27Ara9ch6CIADw88nkc3ZXp9XhsvOm9u2bh/bu/cDpul8Ed8ejse93uU1lc5fM67/ngVukYwRGBiGjHQuhApwFp6DIkHX99tBDHdmVKIYjBl/bDNY9dhk4DOuC8Q32SJqOAAyGEkPNX3m7fbXJ8VBFwIjjCDcEJQEWW/7uxif6mCqCiEQGHkCSg3PvNaZPZzb7bLHgQKD7sPQjRUMMKFQV7ge8mA9NXABFpzttCU4Byz6WXJVGdgRhHKTon3a5wvOw2x0gF776UNCGEEEIIIWfake3HfbbZqdcDKs/3tIIc4C2AEKSBsV8KuP8OISYlCjknimHu4X2lexZEYLqkxmCfpgqlBu+T+nmDrfbnmJRInPCji8TX7eIWC1c0VB2t83VkPPf9YhzPKYE9JQDctAFQHS6CdmsWeKPnPkr9cANzePtxPDr2BXy8+XXEto922tYuMgQlXsInTGpSFNp3T3J5/6LBnaWXzWYHz/PSykiEEEIIIYS0RSf0jrEMFiUoZmXY3MioYv0WRwAgPajAKdxQH7vtVcAKi1CNSGUsyq2OUISFVV+oFz5wJ1rTHXm2YliEmj4JBztkYKMKxbYgKVgh5wSpsgR7nwlTRKLYWuJoJ8pgEJTQnSoZp+Et0vV4wq5FydlgFhVuAxhW0YxAOWAReBjsytqqFDV0vAlbCp6AUtiBYJn7iVMBMjM6qApwwNyu9pxamREVtrr+zknDMXx4+BU82ullhCodk4FqKOVJMFn3eK8qp+6IOLVrOHx01CDpZRPsUuiaZ7O8CCGEEEIIaYMO7zjms83+DRl+H08UHFUh2nWIRc5hR5/EH10Gp2PvmgMwGxuUofYiKjEChSeL0RrMBovPwMKMK9/Csd2ZUjDbXw1DE+y7fWT08/hk6xsIiwl12habGo2TB3K8Hi+1VzJSezpXhuM4DhNuGwuUaqkAAQAASURBVCu9bFYbeBkbJ6E+CWk8+q+GEELI+Uuh8d3G5nvVTheNCTcwA+8EelzduH26TMYZVbi/ceEGT8wVwLp3Xd/vO837fgExQMeLvLeRsZleFG4ghBBCCCFtl0rLJsp4JqjkMHoJN0g4DjULgNrahULQKpF/vBCyCiMUx4o878dmGJ16jn3NhX1wWdfOXk8jKzdDfayi9vfxI7r77nLl+V7dR5HvZnKUH4GAjNxi2E9VnBCVMpi6xqB8cncIGrbqq/+qSqvx69vzXd6/3Mfniw0PwuCuzg/tG5LLZRRuIIQQQgghbZqS933/bGKLCUlEpAZ4n7zDqimwdjXhhprwhEn0fp4uIVehR0hdFeaG83PYMayiTAo5aHgzlJwVvUNHOrVhVR1qitLJOc8V7WrwpxLf7q7NfqqTpeTZ+ZzHQlhliCGBh2G374GW9z6GFCGrkq61hkIqbSdKgQ1WGYL9W2WrwKrCRS77hgRc5/XYSnl7aFWDvbaR8zIKNxBCCCGEkDZNrVH5bGM1N35+UmPCDcwVD0zEyGuGNGqfC28ZjTOJVUdoTLjBk5LcMsz7yLVPcvHtF3jdL6V7IroM6ui1jVwhp3ADaTIKOBBCCDl/db70TF8BkDgY6HMTMPD/HJUf/LX+fUAXhXPCjh+AN9sDX10I7JrLYsZAl8s9/31kSuDSDwFZ4yYuEUIIIYQQ0taMmDLYd9naxuA5CMHa2l81649CeTAPsNWrXMBm/Agi2HwfFiMYFB+BC4d2xm0D+iI6wHPlhNDFmbUVH5jf7v4a4XLP9+Sc2QbdxuPg9J5XGeIsNqgPFrq8r8j1HYyofy01hGA1DH29V61wZ8FnSzAl6lb8b+RzWPHjGoiiiAmDOmN4z/Zu26sUMjwzbRyFF/wh1oRpmvNq9J+UEEIIIYT4aUBYb59tDDbHfb9GZoFO7n0VUamospsbuAq7BhbBfXg7QjMayYEjMSziCuhkwS7VEhgVZ0GITA+dzCwFDlh1hAPlXyFKWdcnMYlK5FuDpSoPouhHFTWRBRk4VNnVzm+LrIKDvPZ3JW8HV+8zddHkQME7ghwKzrlKnLvsdgBfVzVbPHU8hUyQjsH+Zb+vKvwX925/AK8deBObS7dIbUN110Kndg5x1OA4DWLDZkoroxLff2fqkxBCCCGEtF3Drhx0pi8BI64ajAETeuO6p65AYFiA3/t9/+KvjWrfls194y9pnOSxcS9izR+bpPcm3X0heozs4ra9NlCDh2bddZqv8ixFfZImo4ADIYSQ81dUJ++VEIITgeThrXsNJzcAe34FAiKBW/4FUsf6v6++EAiMdR8AONsYSoCsjcCfdwK/3ey4u7tqNnDha0BYqqMNJwPSJwK3LAQ6jj/TV0wIIYQQQkizpfVOwaBJfT1uj0+KRM8UN/f89bGwQv05Nba6lUo5UYRmywkE/r4NmjWHodyfC3lOORQFlVAcK4R2yV7se2sB1s/bjOjAAMy5/moMSUxwTP44RV5iQsTcQwjYVewSMLB/txFRGufJQAxbbylw0QHI9FYELToAzui6uhJnsSNw8SHwpprVYOto9uQDdsHHw2D3m8wdIyH6UQHC6XCiiIriKuxZcwCv3fAB3pj2IWQ8h7fuvhQPXDUC7SLZJCtAJuMxpm8HfPn4VAzsktSocxBCCCGEENIWdQpKQ/fgTh63t9PEIEGTDCVvw8CIE/W7CvWwif42KYTAqhWwqgSuLXiU2ANQZtPCJMilsEO5TYNDhhgsLTqOveV7EKKMwi3tX0WitqvTLT87pk5mkcIT9bEKCGouH1HKumrdBkGFE+YIFNkifH52iyiTKjWEyfW1VRbY5zMISoj1QhbsvLJTnS4tb0a4Ql/3ufwI4wr1whZWQe7yOdjvct4Gk70CB6sO4eMjn+Gr47PBcQokRsxGVPCTUMhqgtwKBGkmISVqHnSqgb5PTgghhBBCSBvXZ2x3dB/uucJ0+55JSO7aiAVjm2DNbxux+7/9aJcWi7dXvYDOPqoS1BIdVaJDohxjCPUp1GfXoq2CXZDGSXYs34MXp8zEh/d+CaVKgdcWPo2bX5yKyIRwqZ1CKceY64bh/fWvoPPADmf6ssk5jhPZCB4hhBByvrIagfkPOEIGYr2H7rG9HBPsyzOB7y5r/HFVIYC53L+2nNwRbkg89TD6l5uB/X/6t29gDDBhJnB4EWC3AtHdga1fAWXHcVab+A7Q/7a6383VjuCG/CwMbxBCCCGEEOKFUW/C27d9gv9+3ShNtK/ReVAHPDP3IRyqqMIDH81zt4iphDeLkJ3KCHAGMwL+2i6FDwJCdKgur5t446tE8HvrXkZ6P0e4+Mlb38N/6/eBN9qgyqr2dGpJdEokbv7lQazddwI2ux2dYyPwz72zUXSsrjKDoJTB3CkKloQQafaOIrcS6gMF4N0EH2qYOkagcmwaIGuwPouI2uoTnoR9twW8ofElq+t75Ou7ceHNdeWlDSYLlHIZ5HL3q86SOtnZ2UhIcAw4jUq+C2p5YLO+HpOtCqtOfCb9nJWVhfj4xlfpIIQQQgghnhlsRnxy9FtsLd0FsV6SuFNgGh7ocBt2lefg58zXkaArl4IA8nrl1OSwQcNbpEoFNVi3Ri+oYEEYzILR7TlZ5YQiC7tPdOxoFbR4svPzSNI57vU+zHgdh6t3SceOVVVA7qVSQrAiEd3DpuNQ1Q7p+tupU7Cq6G8kK3cjSGZyu49N5FAtsGg2X3vNhdZAFNmCncINNaptSthEGcLlVRgYeKz2/RBeDzXvGtquYRVl2GBIlQIe7DOX21jVPPe9GRb6qLDWhTXuTr0TA8MH1P4uCHpwnFIKPhDvqE9CCCGEEHJ2YWMZb9z0ITYu2Ob0fq/RXfHUjw9Kk+7Z4kSNpQ3SwFDpvk/SkEqjxMdb30BSZ0ef5KGRz2HvmgN+7du+RxKufvQybFu2C6IgomPf9vjx1T9QXliJs9kLfz6GIZf1l35m41fGapP0PclonMQn6pO0jLraioQQQsj5SKEBrpgFjH4aOLwEsJmBhAGOV02AgFcAQiMnxyQPAcpOAIX7fbcVbcD8+4F7HCW+MO4FIHMtoC/yvW9VPhCaBFz2MWDRAx/0BqoL0KLi+wPKACBxMLDqVZwWW792Djiozo2SboQQQgghhDSk0anxzNz/IfeVfGz+dwfsNju6Dk1HpwGOlW90lToEbTiOygGJQP2HxqII3oracAOj2pMthRuYPuO64/juk8g6lOvzS7dZbXj/rs/xydY3pd/vefIaZAx5GpUl1U7tWGUEc4cImNOjIGgU4KvMMB8oQMcAHS64aTyqy6txc/oDqChyfmjPW+zQ7M6TXv5SZxRDkV8Fc49YpF7aG1qtGr1S4vDZ/A1eww2wCeDMdVUsmmrBZ0ucAg5aNYWtCSGEEELIuUkr1+CR9LuQZyzAzvL9EEQ7Ogd1RPuARGn7wHAZ1hc77vHZJH8ZbI6qBrBDy9evrCBCAQF2jkOAzIzkwN44WH0cVZZsqfKBgrNL4QGDoECOJbTBRH8Tvjz+I17q9pj025UJN+KNg5nQ272HG5gK60m016WhV+hQVFmr8NbB+yGiHEdN0UhWFSFEZnCqmmAVeanSQ/3zs+1RiipU2rUwic73/hx4JGs7Qi3TontQLCr0b9VuY0EOFef4PtzJsoZJ4QYWXtDbWfU7z70Z9v1wUkTD0WZF4SqngAPPs3AEIYQQQggh5x62YNNLfz+BzAPZ2LZkl7TQUc/RXZHaM1na3nN0N3Ac57RIlD9GXj0E25fuRkGm7/lXZqMFH9//Nd5c+pz0+70f3Ir/jXgOhirfAYljuzPRd3wPjL1+OEpyS3Frl4dgqDSgpcgUMqT3T4UuWIeOfdpjziu/43SY/9ni2oAD+/61gXWBbEJOBwo4EEIIIQwLCQyY7vpd5O5sfLiByVhcF5LwR9FBIHMDkDTYcS23LgZmjQTMVb73/fcx4Ob5wPeXt3y4IXUscOMfdb+z4MXx/3zvpwkDYnsDx5Y37bwF+xxLJnkaFSCEEEIIIeQcE5cag8n3TXB5f9+6g1DszUNoRiHMHSJhiw6CPToYnExeG2aAxQbV7iwoj9RVTVj31xbpgXcNkQNEBQ/e4n5y0OHtx5Gx7Sg69k1FfIdYvPPfi7h3wBMw6c3SdkHBo/KSrrDF1K3Gbw/TwpoUitcXrMOHHabgsQtecgk3NIes0oyxYRF48ZHrat/buO8Edh3zHJRQHS0GZxcQHBGI1D4p2L5kd5POfXzPySbtRxpg/brmFhCmAsSEEEIIIadFrCZaejV0tHoP6xFIPwvgYRblUEqVGxwT+3kISFKUI05WCRVvhyACZXYt7Ja5uCSoI3KNmci2BaBScAQHVLxNCkYcMUbDIjqqEbBJ/RlVx5BlyEWCNg5xmnZ4NP0pvHPwaWlrGG9AuFwvBQDK7RoU2QOdKi2sKPgYl8XPwCv73oJC5qiubQePo+ZoqDgrgmRGKWTBzs0+gzvss4QrqpFjCXN6v3vwYNyUfH/dubIWoNziWMnVCjnKBS2CeSP4epUtpAoV9g4w8wORZzoEm8hDK/cexGbnrx9wyDJk+fybET9Qn4QQQggh5KzBqifUVFCob/PCHY0ONzAr5qxBcrcEvwIOzM4Ve5F7NF8ar2HhipkrZ+D+wU/BZvW9qBILRzw55wE8POr5Fg03MGOuHYbHZt9b+/vaPzchc3+2z/1CY0KQ2CkOu1b5sTivG8d20zhJi6A+SZO5770TQgghxOHQv037JkQ7cHJD4/YpO173c3gq0PtG//bL2gAsfhrIOlUBoiUdXQ58MxEoPVVy+YIXAM7H7QOvBIyljnBDcELTbjdYxQgKNxBCCCGEEIKN87fVVUHYl4/AFRkI/mkLdMsPQL3lODRrMxD4xzaoDuU7fVt2qx3712fAEq1G/k3tcfTd/tLr+Eu9UHphHAS5a5g490jdMdggAlttqIZ+SLJTuKG+Dcdy8N53S3F4+6l+Qwva8PdWPDbuxdoBiAcvHwGezZhqQApwWKzQbMuCQqVARXGVFG6ISooAr5DB1CUG5Vf2RMltg1B6Qz/oByfDrvNclUETwFZXJYQQQgghhOwq3+X0JbCAgElUSBUHWLihlyoPKYoyKdzAKDkO/8/efcBHVeX9H/9OS+8JJfTem1QBARW7Ijbsvax1rY9lde2u3XXd1bUrFlTUFVEEK3YUUFBRBKR3CKT3ac/r3JghA+mZZEL4vP+v+TP3zr3nnrnZZ3fOzPmeX2dXsbq7MhXr/V49I3J1UMxmDYvMsCbwG+bYrlHmM37ZdomvbF3GrcW7QtsdYjpq/5RhGhG1TsOiN6iLK1OdXVkaHLVZY6JXK9ZWEpgrsjL/e32w+SUVev/Y4w9W4ncpwxMvj9Xb6n+viLKVBm0Xe536cOuvuu/3x7SzJMvaNzDtWvnNAKRC+9u98VbwItsTrV+L2mlm5kjNymyrbzLXK8bZzlp3sqb5WD6/Tb4KoY0oB2MSAAAAwFg4Z3G9boSpyrB84apaH29CFJtX7VpYtufQbtp/0vBanfvF9Hl69oZXtanC7yyh8ukrX+nWY+9X5tayMclfHj67xnOcEU5lbc22wg2tO6XJbq/7ArMx8YxJEF4EHAAAqE7G8qa7PzGpwdubyiYy1cqPU9VoTNWGF4+S8rZJzijJX305aPkq/ACQY1YYquH4yvQ/ru7nAAAAAC3Qxj/2rFZgvoZ2bslWxIqtcq3baVUsqExxp1htuH6A8ka1sqo3GJ6USO08tqM2X95nj5BDQlpC0PaKH8oCC74Ih1U9ojr/m/frn1OTQm/xZ0usVY9yd+YpOqtI8TOXyLmlrFKEJ1IqbO1Xfie/8nu5tPmyAcoY01ruxAgV9kzSOodb2Yf2UsEB3eRNjZUcdvljIlQ8sJ1yjh8kb2LlJZXHTxndSO9mH2PCKKF4AAAAIGw2F+9Qqa/yaQXtnLlKchQHth1WSMAmWyULGHVwFah/RGZgO8bhVqKzQF6/CRKUVXKId8YFTS7aL3JmUPuBc+1uDYvaIKe8ctk8irOXaF3eW4qyV16R2xwTafPIKU8gZFEZEzAwHz8LPU7tKInVztJY6+hfcn7T3UsfVoGnUPneOP1W1F653l2TfUzgwYQoNrpTFO3waGjCah2UtEwDYjaq0LNZRT67Snzm7lTNhCnKRntlRqaMqPZ41BJjEgAAgL3eltWhDw1UxVSHLufz+bT6l3W1PnfW0x83Sp/M2Oj7WT/q+ol3qii/SA5HzdO+PaWewPPt63fIV48KGBOmjKnzOagEY5J6K1sKAQAAVPG/lFWv6BlSsa2lbgcFhxvqUpHBW7ZSUaPJ2yIteFpK7qpGFxEvjdlV7hkAAADYl7ki6//13bYzusoXXfkkmqJeCcoZ10bJn5f9MNCqY6oGH9gv8PovXy0NVGTwpsRIruon4xS57IqOcspWvOtL81AyFRzef/JjxSXHyrUtX0kzf1Xe0NbKO7G75Ng1CcibFKmswzsr69BO1uQg84rNK0XkSBFlmYgAE3TIH99die//GrQ/LilWJ15zTKO8DwAAAGBv47I7leuJVqqroELhZZvcfofaOfOCj7XZKw03lOvsytey0iR5rCiElOQs0g53gvyyqU1kK/WO7x44trDkS/k8y6psK9LuUbeIDO3wlU9AKlZ8XKa2uxOV440JHNfKmasOETsVZS8bq5h5PaYCRYEvyrpuRdmeGHn9dhV5IwJVJcptK8nQ59u/UZyzRLm+GP1a1Elx9iLFO4qsc1q78hTn3LUAlMPmV3pkrtIi8rW8sK2y3DEqtTkU8Weli4pMgKTAu+v3KBP0OLTNIVW+dwAAAGBfEhHVNHO3uvTvaFVtKGdCBRUrX9ekuKBx526t/32TPn7pS+VnFdT95DrmG5LbJGrSZYfX/TpACFHBAQCA6vQ+qmnuz8TbgsMUf3yiZmfJW5IzsnGvkdpDOmuG1KpX414HAAAA2EuMnlS/VTsLeySotENstcfkjm0deH7hfWfI4dgVYlgwe9GuA6uoELEHs/RqI5r7+tdyRZat7Oq325R1RKegcEOQCuWW/Q6pJEUqSdrzME96gjzJu6o4dOrbXg98cqvadW/bCO8AAAAA2PsMShyqIl+EMt1m8v+uz9mFvghF2YIrJtQUz3ba/Epz7Jr0E2HzWpUcTKtndD4hKBxRUDS3xr4l2Yv3aD/dla24P/e3dWWpR9S2QLjBMJeItruV6CgMmuXj89u0071rtdbKfLtjvpz2sjGJOddh86nYH6l4R0mlwQXDZfOpU2Sm4l2lKvE4lF0aLbfPbt1L82+eO1I5bjMmKXvvHaI76IY+/6fUyJQa3z8AAACwLxg9aXijX8Nmt+nC+88I2rfggwq/kzQTc1//pkELY9VGj/266qG5dyg1PblRrwPUhAoOAABUJ6615IqW3EWNd58m3iENPSt4n7fyMsphVZwjdZ8oOSJDWzFixIVS675SWi+py7iyXxcAAAAAWFLSkxQR5VJpce3GCN6kGBUN7ai8/SqZzb+b0lZlAebL/32+Dj59XHA7nl2hBmdGgey5xfIlRFXZlmtjtuzuyif0hEp+dqFGHrWfHE6HcnslyptQw6pNZmhRIXNRmlhWxcG2W17j2NtPUo+IKHXu10GDxu+qYoEQ8PvKHg1tAwAAAGHTKiJeyS6PbH6Pir1Oq+pBpN2tSIddpX6nnLuFHGpi+/NDuqmkYCb5221+Xdr9DI1K3S/oOL9qbtdm2zNkbX5iSHXmqajUpU4RO6s812XzWgGNYn+E1Y8tpYnyym71q9RXeQW7Qm+R+iUM1cxNU+W0ef7MVfsV5wgOWuwu3lEsl82jeFexNhYlK89TcWzl17HtJio9urU6RLdXr/ieNb5v1AFjEgAAgL1eWodUOV0OeRrxN4ibp12lUUcPC9rn9TTubx71UZBdoNHHDtezN74a0nZPufE4tencSt2HdFG//VmUNqQYk9QbFRwAAKjKDy9Ir57UuOEGY7/gBLCl82g1OyaAEJsqDT8vtO2a0IQJOXQdT7gBAAAAqOCdxz7Q7cc9WOtwgyclRjmT+qugX4q8kTV/7efI98jusGviGcHhBmPAAX0Cz82cnejFm6puyOdX9KJqXg+RTn3aKa1dig4/90B5kutRXc4muSspajH6kMGadMlhhBsAAACA3Xy1/R1N3/CI7CqxggOmwkKco0SJzhI5bH6tcwev6FnT9B+fX8r0lX2W98ghj5xy2BwanTZyj2OjI0fV+PfI/7Ot3ZmqEEn2fKuP1TGhg0JvhDI9scr4s3pDsc8lXxXTKNpFt1VKRGsNTT5AdpUFce1WJYfqr2PuXcSfgYgYR+nur2po8n46uPWBhBsAAACA3bxy51t64Oz/NGq4wSwydcAJe44/+h/Qt9n9PTr2aa+Ovdtr3En7h7TdcSfub/1OQrgBzQkBBwAAKpO7WZp9ffByn42h+8FlVSL22D+xLFDQlFyVzPSpaNifwYbD/iF1nRCaa0anlN0DAAAAAEG2rN6mp697qdZ3xZMQoczje6uonVOeGJvsRZLNU/05CQt2aNTRQxWfHLfHa/tPGqa2XXeNVaKXblPM9+uk3VYsspV4FDf3D0VsymnwXzAqtvrQwtF/OdT694rHL9CQ/XrU6xr+3b4NTUuM1bDeHerVFmpzw/2heQAAAKDJbS/eqI+3TgvaZyb1R9t3BbBXl6Yq37erslppDdW3NnliVeJ3yu23q9AXYT0GJo5UhH3PsUB89FFyOtKrbMvntynDu+dYplyyq+bFq0w4wQQbNpYky29Vb4hWnqfqccnE1uOtf0/q8Bd1jCmrtGAqWtTmI6vHX1YVwlSsqKhVZIp6x3evuQHUD2MSAACAvdbKxWv08p1vNvp1JpwyRk6Xc4/9B506RsltEtWUTNiiNr+T3DD1CqvaQih06JWuXsO6haQtVIIxSb3t+X+VAABAWvSK5KthNlBDOaPKKhd8cX9ZoCKhvTTkNCmpU9lyPqe+Jr18nJS7sXGub67T60jJFS31PbbsmuZ6JZVMTOo7SRp8Wtlzh1M64y3pkd5SUVbD+jDhRslVsRQzAAAAAGP2s5/KZ5Y3rYXsQzorb3Q7M1Nm184om1zZNpWmVd6GM6tUbedn6bDp5+uJD+cpI7dA6ckJmjyin9omxcvhcOju927SjYfdrcwtZZ/7YxZvUtTSbSrpnip/jEv23BJFrt4pm6f6SUxVadejrUYesZ8VbBg/ZbRVqeJvR9yjovziPY49+PQDNOHkMdZzV4RLjz1yqUY//rTy3dVUt6jkrVeYi2W55JjRcjnKJhoBAAAA2GVh5sfy7/ahOtLusX5KCHzktkk/FbdVr4idSnMUWFXTSnw+Rdr3XGdxhydKC4taq9AfIZ+p3uC3y+NPUr/4ifr30rnaWZKvdjFJOr7TELWOTpDNFqH2aVO1MeMMeX07gtry+m1a7Um1qkBUxrxe8megoDoxrh7qnzxJkfZo7Ze0v3LcxXpw+X9U4tu9yoI0odUYDU8ZYj132SN0Xtc79K/lZ8njL1GBL9KqbFEVUyWixO8KCjqUO7njsbLbWJcSAAAA2N2spz9p9JsSlxSrA08ZqxdueU05GblK797WqiKd3CZJkdGRumvmjbrl6PuUuzOvUa7fZUBHDZ7QX7GJMTrotAOUsXGn7ji+8srepsLC8MMGW8+jYiL14Ce36dT2f5G7tP7z20yVvnPvPs36F2huCDgAAFCZHcsb97607ielD5amnylVXNHoi3ulLuOkU16R0npKl38vTZsirf8u9H1oM0DK2Sg5I6WsNVK/ydJfPpfm/Vv6dYZUmlfWz+HnS8POlSr+IGHOOfBv0pwb6nftmNSycMOoi0P2dgAAAICWZP2yTbU6Lnd0O+WNbb/nCzbJ7rUrcrtPpcl+/TmXxlopJmZpjkavkNrecbwue/eToNVGH//gWx2YkKL7r5uiLv076oWlj+rGw+/R8gUrrdftJR6rmkModBvYWds37FBkTIRVsWLscSP1+IL79dbD7+mrt79TcUGJug/urEmXHq7Dzzso6Av2aJdLVwwfrvu/+67W4QabV3IWlj1PiY/RJZNG64RxA0PyXlAFE9KpZVCnSg09HwAAAPWSUbyx0ooH5ZzyKs5eLK/Nod/dreVyexRjd1vBBTMg6ewsUJzdrWK/U6vdidrkibOqHZjwQbHfpQTXABW6B+rsr95Wm9hcpcflapPHo3k/O9Qnfriu6XOeoiIGqmv6V5q97mq5vD9a119fmqI8f4TaRFY9wcgEDszD48+Rc7eKCRVFOXvK7Vsll6JU4m2vPgmjdfeAmzVr80dakLlIpT63usR21GFtDtL4VqODzo10xGh02on6OuM1ZXljFG0vlaOSa5mPs5tLk6znHp9dRd6ywVmyK1GndJqs8a32r+VfBPXCmAQAAGCvtWF57X4nqa++o3qqVYdU3XLUvUH7n//bNB1wwijd8NIV6jOyp15c9piunXCb1i0N/QK1nfp2sH4nicmJtn4nMVW3//3dvXrrkff07YwFVtCh94jumnz5kZp4xrigcxNS43X8VUfrzYdm1uvaae1TdNEDZ2rClOCxDkKMMUm9EXAAAKAyUY1UYmzAydK4a6QN30uzrqn8mLVfS//eT7r0OykhXUrq3DgBh+Wzdz3/7R1p9v+VVY2Y9FjZozpF2dIPL9T+WnanNPE2Kb6dFJUgdTuwLCQBAAAAoFKxSTE13hm/3aa8Me2qPsCEHDx2xa7zyxdljpdO6dJd5102VF/vyNAD735ZyWd3m77Iz9Kpx92jl9+40VqlqHWntEDAIZS+mTE/8Pzz179VYqsE3f3ejbruuUutR3XMaknfXvSa0mI9yp7YQZ606F1fFJsghPmnwvEuu103jD9AbZyxio+O1Ki+neRyUrkBAAAAqEqUI3aPfd4Kn7LNhP6Ki3y65VSOb9f0g99KTaUGU6XBriJ/RGD/gKTjNSRlsmauX6231nyiga23KDmqSDb5lOrMV6Tdq2Lvh7rrt6W6ud99inMmaaV7qH7K3vX53S6fhtnXKsX1Z4LZ4rdCF+Z6pX4ThbBpqztJ7V1ZQf0sV+CN1OpcMyYpe3FF7mdy2ltpUof7dGmP83Spzqv2Pxz57mz9kPmV3D6HfDZpizvJ6n90hbJxhV6XNpcmK98XJafNpSPbnyOXLVlxzlgNSOwjp50xCQAAAFBddYXGcNK1k3T0Xw7R3Ne+0St3vVXpMd+8M19/LFqtpxc/ZAUJUtKTGyXg8NVbu+aDffbq10ptn6L75tyim16+ssZzd2zO1Oevf1Pra0VGR+iih85SXGKs9XvMfgcPkIPfSdCMUesQAIDKDDipce7LiPOl1n2lb/9d/XFFWdJzh0g+n9Smf+P0pbJrvniUtLQWyd7vn5QyltX8EcOUVe51pHTuB9LYq6RBU6RehxNuAAAAAGpw0KkH1HiPCga3kS9u10Shyvit+UU2OYptchbaNOWwUerQp71e+mJRtedt7BCrq8fdKr/fb1VaaAqm/PNVY/+u72f9WOOxZkWijSu2KH5xhjo8vFjt/v2z0p9coo7/WKjUGasUlVFkHeew2XRorx567cyTde6YYTpyZB8dMLAr4QYAAACgBoOSglcHNUp8LqsCnAkjuOzeas8vCxX45ZCpYr2rssGw1KOUFNFGL6/6Xp0Ss6xwQytnrgbFblSnqCy1ichVx6gsdYn8WdPX/p91TsfoDkFtm+DED3ld9Ut+B+10x1qVshPtBUp0FCnVWaDekdvU1bXdqhSx3p2qAu+ucVO+J9I6Z5snIRBuKOfxZejl1Vfq15xfa/zPxxcZbynLvU1emUCFU/neKK0rSdXK4lbWv6uL22hFcboKfbEamLi/Lutxtw5qfbgOaDVSQ5L7E24AAAAAanDgKWMb5R4dc8mhatUxVe8+Pqfa47atzdD/HXyn9bzboKb5nWTnpkxdOvR6/fzFbzUe+8rtbypj484qX7c7yuZuOV0OHXjqWD027x+afNkRViWI4YcNJtyAZo+AAwAAlekyVup5WGjvTUp3qfNoaecqKWtNzcfnbpTev1La70zJ+edqpI3OL/3vAil3S9WHrJ8vff1wDe34pGP+Jf09Qzr9DakTJZYBAACAujBfLg85eEDln7ZdDuVM6q+CA7rVqc2ebdPUv2Nbrdy6U1uz86o91tMqVhs279ST10zVkRdOlCsi9IVgfREOlXRNUUn3VHljyyYc+X1+3X3yI8rZkVvleeaL/bcefi+wbaYkRW4uUNS6PDkLPEpYsE3pjy7Wk11H6rfrr9R/T5ikIe3SQ95/1IKZ/RaKBwAAAJpcn4Rh6hzTN2ifqYqQ742s02e0itUTWkf1VmpkF/2evVU7S/KVHpdrVT3oEJklh81vVWaIspUq0uY2xeXk9y3V/IxndWDr8XLYHHv0ZUtpoiLltkINTltwn+IcJeoWsV2lPqfWuVtpWXG6ZmwfoqVF6crxmZVgbVZQw1zLup4VxJDinYV6dtU/VeipWB0i2PLcxZq/s+JkKJvVH/MO3H6XCn2RKvE7dE6XG3TvoGk6q8t16hDTvdb3DCHEmAQAAGCvNe7EUeozskdI2xw4rq/a90jXsgUrlZeZX+PxKxev0Wv3/k/HXHKY7GaQ0gS8Hp9uP/5BFRUUV3nMtzMXaPYLn1Xbjs/r04Of3qpZhdN0y2tXq/vgLo3QW9SIMUm9EXAAAKAqJ78sDT1bckTu2ueIkGLb1P2eRcRJJz5b9txf/apGQX5+XbI7peOfkuyupvlbed3Sj1Mrf23jj9JLx0g+T83tLJslOUI/CQoAAADYF9hsNt0180Ydes4Ea3Wdcq5IlyJOHSZ3+0TZzcfymuYVecsCAHFREbrvjCOsXT5fLScj2W16/8mPFJsYo+uevyyw2k9D+e025Y/top3nDFfukX2Ue3hvZZ45VLmH9rRCD6XFbs15fm6l5y75+nfdePjdtXoP37w5Tw47X38CAAAA9WG3OXR211s0OGmc7No1JvEqVrGupD8zDmZav6mn4LOm91dUnoHw+s2IxKZIe7wOS7/B2ufz+xRh9yrK4VF6RJYSHIXq7MxQ34gt6hmxXb0itqmna6sS7YX6LftNJUck6twuZ1mRhIq6RO1Q+8isKt+Dy+ZTmrMs3F3icyo5qkRJLjNJyK94u6kckackZ6H1MMeZfpj3EWnP1Tc7vqm0zZV5v+jVdXcrwgQx7KWKqBCO2N0v2d9b9xEAAABA3TldTt334d81fsrooN8nomIilZAaV+f2klon6NrnLg1M/q+tN+5/V+ldW+uK/1xg/XbTFApyCvXZq19X+tr8D37UnSc+XPPvQ5K+fPM7ORyMSbB3YtYhAABVcUVLx/5Hmni7tO7bsm/jU7pJzx5U+3tmQglDTpPGXCWl9dhVySGurZS/tebzTZDgg2ulHodI582WfnxJWjXXKres4mzJU3Vat0E2/bjnPvP+p58heUtrH5QAAAAAUG/RsVG64cUrdNH9Z1oT+80X560GddQZ/3rL+nxuFih1FEnemGra8Dl0wuj+OvegYeqYmmTt6942RUkxUcourHo84cgukj2/VCZD8e/LntWwQwfrn1/eqQ+e+VSLPv3F6oupsuAuqUX4eTd5B/dQSa9Wu13QrpKereSNj1LSjCVavnDlHuf5fD7dddLD8rprFxr3lNa9b2gEVGAAAADYa0U5YnRyp2t0RPo5WlewTHabXcmuRL274TK5bFKEPFalhXI+v01uOf6sZmDY5LfFalDi0RqWerISXGULSPVObKsYR6QGx6xTt8jtirF5rAoOQde2e9TJnqlNbp9eW/OS2sUM0019btAXGV/o99zl1vE9o1fIaat+YlKSo1Cb3ckqMJUn/pToKLTar8jMU4q2md77tFYpWlOwZyVun9+rGRvvU4yjwljK5pdTPnl8dpX6zfSLXTfEXZcFr9B4GJMAAADsteKSYnXr9Gu1fcMO/f79H3I47UpMi9e1E26vdRtRcVE68vyDNeX/jlWrDqnWvl7Duiki2qXSoprnNhXlF+vxvz6vIQcN0ENzb9espz7WL1/9boUuMrdmyeepfViiLszvJMdcfGjQPo/bo3tPf8yqhl0bbn4naR4Yk9QLAQcAAGoSmyb1m1z2/Jc3a1e9oNz1f0jRycH7TFWD1n1rF3AwlrxV9ohMlA6/RzruCSlrnfTYoMb72zkrVK0o9/U/pbwttW+j3dCQdgkAAADYVyW3SdL4k0Zbz2d8+6t8Fb4IdeVJZg6NL2LP82IXbdO86XcpMir4xQinU33cTn1fzTVjftoSmJbzyctfWo/45Fhd9tj5umHqFVq/bJMu6Hd1nd+LJyVmz3BDxdfbxqu0a4pckXt+bfni319XdkauVQGiqE+KSjonWvujVmcrakWmFfioqPeI0JauBgAAAPZVCa4UDUwaYz1fkjVDLnkUZXNboYCK7Da/Ivwelfid8suuNYVpumvwjD1WOY1xRuiKnlvUNiLDCgfsHm6oqK0zR09v/kbripYpwRWja3qfoEu6/0U7i//QRxsqr7JQkQksZHti5LbCB2XzSnYPN1RkKkuY4IbTVNfezSdbn5PHn1PpeU67Tz6fV54/r2MqV7SP7l5j/wAAAADUrHXHNOthvPXwe7W+ZXaHTe/nvrLH/tjEWLXr3lZrf91Qq3ZmPf2J9UhqlaBrnrlEt7x+jZZ+t1xXjf17o/35TEXv3f3rkmdUmFdU6zZ67tctxL0Cmg4BBwAAGitRGZUkfXqH1HF/qf/xkiuqbH9JvrTxh7rf95Ic6b2/Stt+lzKW1e4cZ1T9qjz0OXrP9/3ji3VrY9jZdb8uAAAAgGr5d6s5bKYJRWRJvkjJEyX57ZLd41fKm7+pTYFfT149VQMO6GOVcI7488vw/OwCbfnvl4o8sItKepatVlRR9JJtivlpz0B2XlaBHrzgCf2iAi0pzdO2c/opYmuh4n7YKtfOyscdEdERKi3aVQWupGfZDxDVKe7ZSmMnj9yjesPHU7+QOzVaO07rK29S1K5SzcPayrmzSGlvLJUzq8TaZ7fbdPh5dai+h8ZhxpINXZmIlY0AAACa3Zgkxl6yR7ihnNlv8/u1IKeLop1pmr7hBfWM66chySPksJVNTyj1Zio94itrdGMCDtUx4YcxySvVJjpfm4sTdf9vL0u+hfJ5f5BDNVdI8NkSAuEGI6KacEO5VhH5GpoUvIiT1+/R0ty51Z7ntJmAg0N+v02lviiNSBlX47XQyBiTAAAAtDjm94LaSmmbrMcufUZDDh6oA44fKYfTYe3fsWmnNizbXOdrm0WY7prysE66dpJ+/bZ2c7eiE6JUlFv3uVtjjxsRtF1aXKqv365u6ao9AxIHn3FAna+LEGNMUm8EHAAAqIvkzrU/tjhb+nFq2ePT26XTXpfaD5NWfSaV5tX/vs//b+2Pbd1P2ryo7tUb+p8QvC9/u5RTu9Sy5cCbpRRSwAAAAECotU2MNzOKypINfzJPHSVlD4tXityUrxyPTx8884n1eP5v03T3+zepx5Cumv/BIpUUlCj5g+Uq6ZCgon6t5YuNkCOvRNG/bVPElvxKr+2Nc2n72f309Jo/v7TvlqSSbknK2z9dCd9sVuS2Etm8PkWszZL9z7LOXfp30IofVgfa8FVSmWF3kSmxGnt8cMBh27oM7dyRqx2X7idv4p4V5zxW8KGf2jz1k2w+vy6474zAak4AAAAAQifBmShnNRUXDJfNqwiHXx7/Dn27Y671SNmcpku6X6/06A7aUfiZ/CobM9h2C3FXJtbhUWJEsVIjCtQ2dam2F3xd9oLNLo/fLqet6glOpbYBknZVXajN9RKcERqcNDhoX1bpZhV7q/9tx24zc1f8KvRG6LgOZyvBlVTjtQAAAADUTUJaQq2P3bEpM1B9Ib1bG907+2Z16NVO38xYIK+n5sB0Zbwen6Y/OLPWx3foka4/Fq2p0zXik+M09JBBQfvWLd1Yp+oNV/z7fCWkxNfpukBzYg93BwAA2KuYyf/1kb9NevUkqTCzrIJDU0hoJ42+rO7n9TxyV7WJcpWUYq6yYsSJz0sH3lj36wIAAACoUUyUqyzgUBW/WS3VJr+rbBWiil/i/+2If6ggpyDoC/DIjblK+nilUmYsVeKnq6oMN1htnNhT7jaxe75gtyl3XHvlHtxN+Qf2UOZZw5R/QFe17d5Gx152RNChjqzCGt/jgRMHy+kKHoOYVZUK+6dVGm4o50mJloa3021vXaeTr59c43XQBMxKWqF4AAAAoNmIcsTVeIyZ6G/frTJDZukO/Xfl/Sr1lcjjKwjs91dMb1eh2F9Wja6NK0dRu1VgKPRFyFfFGCnK2V3t4k8ObssXUeP1BiRNkN0WPJXCruAxVlWc9gSd1/UGjW8VPBZCmDAmAQAAaHGSWyfW67wtq7fpb0fco9ISt4ry6l5RoT66DuqkQ8+pe7XpQ8+ZINtuZfPKq0/UJD41TvfM+puOuuiQOl8XjYAxSb0RcAAAoC6SOkv2si/S66woU/r2MamtWS2oCXQeV1aJoa6VFMb+dc99salSdErN53Y7SBp4Ut2uBwAAAKDW2qclymHmCfmqCDd4ZVVP8LkcKunZSiXd0+SLclmVEzL8Hr353KfqNqgOlen+VNo6xqrWUCWb5In587nDruKB6ep1+2QdfPoBatUxNXBY1PIMyV39qkhnHR5cdtkw1RgcQ9vV2M9BV07UuBP3r/E4AAAAAPUT7+oUXFKuEn6/FGUvlcvmsR5lVRP8ynHv1FfbP1JcRO/AsZ4apiyU+h3a7olXpM2taHtZ1YeKfHIo3xetEp/Tuq7Vpt+uDHecPM6jtF/yBMU7d41ldnjiqwxElLGpb9Kpe+xNjmgnhy262r56/Tb1S9hfA5OGV3scAAAAgPpr37Ntvc/dujZDs576WN0GmXFN4xt55FAdcd6BSkyrfSUFu92mE646eo/9XQZ0VIRZBKsGB04Zo1FHDa1zX4HmhoADAAB1EZMipfWs/z379l/SrGuktF6Nf99/fUvK2SCdNl1KaF+7c8ZdJ3Wo4ov3Vn1qPt9Z88pHAAAAAOqvVVKcurgirCCDzSxc+mfYIbBtJuq4Pco5eT/lH9hTeQf30s5zhmvneSOUPWWwHluzWg98t1hp4+o2rinpXHPJ590XQn1v/lJlFZboH7P+ppT0ZGufvdSr+M9XqaoZRZcdPVq92req9LUOvWsOOLgi6xlIBwAAAFArsa50RTvTqz3GK7vaRuYq1llqPRKcRYpzFCvK4dbH217R9E2z5XK0DwQcTDCgMiawsLwkXX7ZFW0vrfJ6PtlV5I9UpjdWfxS30e/F7bXZk6qfsufI7SvSeV3/plhn2ZjG43dobUmrQBhid4NSrlR8RJc99pvVU2McHap938Vel+y22q2qCgAAAKB+OvZuH/jNoT6evGaq3nz4vQa1UVsz/zNHPq9Pd7//N8Wn1FwNz7j00fPUpvOev5PY7Xa16phW4/mO3Sp8A3ur4FrvAACgZm36S9uX1v9ObfqxLGMYnSwVZTXeHff7pN/fl8b8VbpiofTLm9IfH0s+j5TUScrdLK3+QvK6pY6jpP0vkfpOqrq9wadK6+dVf80u40L+NgAAAAAE65fn0Tp3iXxxkVawoZw1P8frlS+xbFVRa41U8+3fbmWMf1mzRc7BrdU6M1/u37bU6vbaql/itFIen09f/LJKJ48frBeXPabPXv1KCz5cbH2Zn5LeXutTIjR/5UbruKHd2+uMg/bThIHdq2zv6PFD9NPsL6q95ogu1U84QhMzs8aqmjlWlzYAAADQrMS4uqnQvXn3oYbF57dZoQVnhcGKOc5p88vm91kBgzUFy5RdnKDR8Tny+fNVLKdcfq+cJqrwZ5tZ3hitKW2lTG/ZJCB/DVUjrGvLoUJ/VGDb63drZd58DUo+XDf2+Y9+zPxSK/J/lt/vV0p0vCL8fyijeKH1e0qr6GHqmXi60mPHVtn+gKSDNXfbWkXZ3UHv3XxkLfa5VOp3qXtc/1reRTQJxiQAAAAtUode6crcUv85V798udRaMCkqNlLFBSVqLMWFJZo/e7EOPu0AvbzycX089Qst+uwXK0DdulOaNq/aqp+/WGp9bh0ycaBOuuYYDT1kUJXtTTxjnF6+481qrzloAmOSZoUxSb0RcAAAoK5SG1DBIcAnRcZLw86XfvufVJJXViEhro302zuh+5uUFpT9GxErDT+v7FFfA6dIc++WCjIqf90ENgadUv/2AQAAANRK5w6tlPDYLBUPbK+Snq3kj3LJnl8iR0aeSrvvWr3Hb2q3VjEHyOPzK+LE/XTC0SP15VvfqTi/WJ37d1RCWry+fvv7PY6PWpldVnWhfLZRJRyV/AZQWFK2ympMfLQmXXq49aivyUP66fHPv1NOUeU/NqTFxeiYQbWoPAcAAACgQRIiumhT4fdy+k2kwGdN9jdzNqxqDGaBJ9msIMPu7FZMwW/9/1lel5aWjNGhaR2UUfCRvP4iRbp6K8fXRt9lLZHfZtrZpdAXYV2jslBFuSLfnhXd3L5i698oR4zGtjrSetTXiBQTcPifcjwFirR7Au+lxOe0qkwkulI1MHH/ercPAAAAoHY69WlvhRQawl3iVpcB3TTwgL76ZsZ8lRa71X1IF7kinfr+fbN4bWiY31+MuKRYnXD10dajvo666BC9+dDMKkMZbbu21phjh9e7faA5Cf5WAAAA1GzI6dJuX6zXS/Z6qech0lU/Szesls6bLbUfGtq/QNuBoWsrIkY6/U0pJnXP16KSyl6LKivxDAAAAKDxHH7eQXIUexSzYK2Spy1U8gvzlDT9R/kdu830qWHYsnZHtva/9BC9suoJvbXteT089w51H9Sl0mOdOSWK+XVH1Y35Jeef+eqKendorVCJj4rUk2ccp8ToyD1eS46J1pNnTFaUi/VcmuXKRA19AAAAoFnpmXBMWYhBDpXIpWK/0/rXKxNqKBuXFHkj1c2Vrx4ReYqxeax9JpxgQg7l1hZtVVz0qRrTca7GdfpOQ9OnqsQ+RHm+qD0+Brr9ThX49hwLlDN57DxvWTW7ilpHdQvZ+451xuucrjcq0h6rYl+EinyR1r8m3BDnTNR5XW+S075nyAJhxJgEAACgRTri/IND0s4fP67WpMsO17S1T+qtrc/p/g//rvY90hVKJjQRKqnpybrjneutyhO7S2ufonvev0kO555hc4QRY5J64xc/AADqKqmjNP4G6cv7G37v8rYEb7cZELq/R2JHqdcRCikTwLhysfTTa9LqL8o+hHUdL+13RlkFBwAAAACNrkPPdE35v2OtVXoM258Tf/wRu77qs3ZVs7JpuYyc4FRCt8Gdqzw25b1V8kc4VNQnZc8CddmS3Ru8u1PrJO3fp5NCab9O7fThVedrxuLf9P3qDVZBidHdO+n4/fpbAQgAAAAAjS85srv6Jk3R79lv/bmn4uDDr95Ot06KXaVou8/a4/bbtKQ4UXPy28pjlXvYdXSeJ1vp2jUOaRfdRV6/w6rYEG0vDSoit9WdoDbKVfxu5eO8fpt2eOKtwEVFaZFd1DF2YGgnJ8X11419H9fCzM+1Ov832Wx29Y4foqHJExTl2DNgAQAAACD0eo/ooaMunKjZz33W4LYyt2RZv7uU6z44dIGE3iO6W30NpWGHDtbLq57Qh8/P1ZJvfpfDadeoo4Zp4hkHKDqOMQlaDpvfzxJYAADUy6JXpA9vkkrz638Dh50nxaZJ6YOl3keVVYZ4fLi0c2XV5xz1sJSzsey65t8VH+55TGSidNY7UgfKjgEAAAAt1aynP9FT172kksKyyT0FY7qquP+uL+F9zppDDmentVWK16beI3to1NFDZb4qPKfHX7VtXUaV51z2/rVaGelRodutLVtz9P2PawMhi3KJsVF68ooT1LdTmwa+S+xtNm7cqI4dO1rPD0w+Q1GOuAa1V+zN1xdZ06znGzZsUIcOHULSTwAAADTc79lva972p+S0FVrbJT6nRkQWaHBUXqXHry2N0XNZ3QJBBKfNq4NaHapoZ4zaRfdV19jh8smne5depjxPlhWWcNp8sssnv2xy+8sqRJzb+XyVelbI6y/W1uLtWpr3m/V6RTGOJJ3S+T61igrd5CTsHRiTAAAA7BvM7xnv/OsDPX/zNLlLyqrG1cfxVx2lmPho9R/bR8MPGyx3iVund7pEOTsqH9fYbDb93wuXac2S9SotLtX63zfpp89/3eO4lPRkPTz3dnXs3b7efcPeiTFJaFDBAQCA+hp6luTzSLOurv89/PHF4IoLJ78knfSC9PJkqch8eb+bMVdKIy8K3rf6S2nBM9KmRZIzUupztDTyL1Jy1SuvAgAAANj7HXPxoSotKdWTV0+1tiN/3xYUcDCVFXZbwDSIc3u+5vz3ncB2erc2uu3t63TLG9fob0fco4KcsklKFZ3x9xN1/NGjg/bNG7VW07/6Wcs2bFeky6mJQ3ro1AlD1CY5PiTvEwAAAEDz1DfpJK0ujNasLa9Z26mOEp2f8EuVx3eJKFTvyDwtLUlUgrNIkXaPfs5+N/B6ckR7Te5wm87sfI1eWHOfSnxF8lihhl0DmyPanqZ+SUdKMo8yffIWaHHWLG0vXi2XPUq9Ew7QfsmTFO9KbbT3DgAAACC8TNDgxGuOUUFOgV656+16tzPjsdmB5536ttcd71yvm1+/RrdPfkDFfy4wVdHFD5+tw845MGjfvJkL9f5TH1mhBxOWmHDyGB172eFKbpNU734B+zoqOAAA0BClBdJ/hkl5W0JzH6OSpEvnWasSWaGFpe9J7sKyCg8jLpJ6HcbfCwAAAECA+eL+3N5XKXt7jrVdNKidCkeVrVBqiir4q6ri4PYq6f2lcm0NXoEoqVWCnlnyT6sqxLv/maNv312g0mK3VUb52MuOsFYvAmq7MtGEpNNCUsHhy+zXredUcAAAAGh+8j35+tuSv1n/HpuwXpMTN1R7/K/FiXq/oJUi7d5KX491pOjc7k+r0FOob3fM0W+5C+XxedQppofGph2pHvEDG+mdoKVgTAIAALBv2bklSxf0u7rSRZvqo1XHVD3366PK3JKlGf+erfkfLJLH7VG/Mb113BVHatD4fiG5DlouxiShQcABAICG2v67NG2KlFP9l/a1Nu46aeJtoWkLAAAAQIu3cvEa3Xrs/dqxKdPaLm2fqOIB7eRpGy+/zy+b2yNvfITkckg+vyLWZylmwQa5dhRU2t65d51qVWoA6oMv7gEAAPY9q/NX67E/HtMxcT9pYnz1C0KtKY3RjII21R4zofWFGpE6JcS9xL6CMQkAAMC+59dvl+mO4x9Uzo7gRZ3q64r/XKDJlx8Rkraw72FMEhr2ELUDAMC+q3Vf6a+LpOEXhKa9ZbtKnwEAAABATXrs11UvrXxcR5x3kLUdsSlHCR/9rpSXFij1lYVKeWOx0l5YqJRXflTqiwuUOHtZleEGY957C7npAAAAAGqtW1w3PTz4YXVNPLDGYzM8kTUeszLvO+4+AAAAgFobMLaPXl37pMaduH9I7hq/kwDhR8ABAIBQcEZIh/9DikpqeFveklD0CAAAAMA+JCLSpUv/dZ5i4qMrfd3m9cmRVyJ7ibfGttwl7kboIfZJfllVQxr0MG0AAACg2XPZXeqedq2kqGqPm1+UWmNbXj9jEoQIYxIAAIB9RlRMpP76xIVyRTgb3Ba/kyBkGJPUGwEHAABCxRUtTX5csjfwg3L74aHqEQAAAIB9iAk3XP30xbI7GvaVX5+RPUPWJwAAAAD7Dps9UbbEO6qchjA7p4OWFyfX2E56dJ9G6B0AAACAli65daIue+x82Wy2BrXTl99JgLAj4AAAQCj1nSSdN0fqfbRkc9SjAZs08i/8TQAAAADUy0GnjtXDc+/Q/scMk91e9y/wzTnHXn44dx+h4feH5gEAAIC9hi36BNmSX5QixpX95iFpVUm8ntzRR69nd1eOJ1olvqp/P7HJriHJk5qwx2jRGJMAAADsc465+FDdO+cWDT10UL2CDk6XQ8dcclij9A37IMYk9dbwWiwAACBYx5HSaa9JPq/kdUvTz5BWflqLu2STDr9X6jiCOwoAAACg3gaO62s9vF6vSkvcum3S/frp899qFW644vEL1WNIV+4+AAAAgHqzRY62Hn6/R15fqV5b9h+tKFhZ/qrWFLZS95jtctl9wefJrsPSr1ZqZCfuPgAAAIB6G37YYOvh9XhVXFSqGw+5U8sXrqrxPIfToetfvFzp3dpw94EwI+AAAEBjsTvKHqdMkz65TVr8quQuKHstKlFqN1QqLZA8xVK7IdKIC6X0wfw9AAAAAISEw+FQdIxDd7//Nz193Uv65OUvVVJUar2WkBqnnsO6qzC3UO4Sj3qP6KFjLztc3QZ15u4jdHxmwpovBG0AAABgb2SzOeV0OHVDn6v06rrp+nbHfLn9bhX5IrSxuKdGJKfJZc+Uz+9WenRfDUk+RmmRXcLdbbQkjEkAAAD2aSawEBsfrQc+vlVPXP2ivnhjntwlbuu15DaJ6rFfV+Vl5ltBiP5j+mjSZYerU5/24e42WhLGJPVGwAEAgMbmipKOelA6+O/S5sVloYf2w8v2AwAAAEAji4qJ1FVP/kUX3HeG/li02vpCv8+onoqIdHHvAQAAADS6aEeULup2jk7rdJLWFayXw+ZQj7huctqZrgAAAACg8cUmxuqGF6/QxQ+drVU/r1NEpNP6ncTpYkwCNFf8XycAAE0lKkHqNoH7DQAAACAs4pJitd/BA7n7AAAAAMIizhmr/ol9ufsAAAAAwiIxLUFDJ/I7CbA3IOAAAAAAAAAAAAg9v7/s0dA2AAAAAKC+4wnGJAAAAADChTFJvdnrfyoAAAAAAAAAAAAAAAAAAAAAAEBoUMEBAAAAAAAAABByfp9Pfvka3AYAAAAA1Hc8wZgEAAAAQLgwJqk/KjgAAAAAAAAAAAAAAAAAAAAAAICwo4IDAAAAAAAAACD0/P6yR0PbAAAAAID6jicYkwAAAAAIF8Yk9UYFBwAAAAAAAAAAAAAAAAAAAAAAEHZUcAAAAAAAAAAANM7KRD4qOAAAAAAIE8YkAAAAAMKJMUm9UcEBAAAAAAAAAABJ+fn5euKJJ3TYYYepTZs2ioiIsP4dNmyYbrnlFv3xxx/cJwAAAACNhjEJAAAAgHBqLmMSKjgAAAAAAAAAAPZ5n3/+uc4++2xt3Lgx6F5s377deixatEgPPvigbr31VutLfIfDsc/fMwAAAAChw5gEAAAAQDh93ox+J6GCAwAAAAAAAACgcUov+30NfPib5C/z0Ucf6cgjjwz60t7pdKp9+/aKiYkJ7PN4PLr99tt16aWXNkm/AAAAADQAYxIAAAAA4cSYpN4IOAAAAAAAAAAA9lmbN2/W6aefrpKSEms7Pj7eKr+cnZ1tBR7y8vI0Z84c9erVK3DOs88+q2eeeSaMvQYAAADQUjAmAQAAABBOm5vh7yQEHAAAAAAAAAAAIef3+UPyaGw333yzMjMzredRUVFWNYfLLrtMsbGx1j673a4jjjhCCxcu1ODBgwPnmRLM+fn5jd4/AAAAAPXDmAQAAABAODEmqT8CDgAAAAAAAACAfdKWLVs0bdq0wPb111+v0aNHV3psQkKC/ve//8nlclnb27dvp4oDAAAAAMYkAAAAAPZaW5rp7yQEHAAAAAAAAAAAoef3hebRiN544w15PJ5ApYbLL7+82uO7d++u448/PrD9+uuvN2r/AAAAADQAYxIAAAAA4cSYpN4IOAAAAAAAAAAA9kkffvhh4PnIkSPVpk2bGs+ZNGlS4PkPP/yg9evXN1r/AAAAALRsjEkAAAAAhNOHzfR3EgIOAAAAAAAAAIB9kvnivdz+++9fq3NGjRoVtP3dd9+FvF8AAAAA9g2MSQAAAACE0w/N9HcSZ8hbBAAAAAAAAADs8/w+v/w2f4Pug9/fsPOrs3XrVmVmZga2+/btW6vzunbtKqfTKY/HY20vW7as0foIAAAAoP4YkwAAAAAIJ8Yk9UcFBwAAAAAAAADAPmfjxo1B2x06dKjVeSbc0Lp168B2Y5ReBgAAANDyMSYBAAAAEE4bm/HvJFRwAAAAAAAAAACEXIm/0CxP1LA2VBx4vmXLlhqPr+2X78b27duDtlNTU2t9bkpKijZv3mw9r1gFAgAAAEDzwZgEAAAAQDgxJqk/Ag4AAAAAAAAAgJBbqLkhbW/kyJE1HuP3+2vdXn5+ftB2XFxcrc+teOzu7QAAAABoHhiTAAAAAAgnxiT1Z2/AuQAAAAAAAAAA7JVKS0uDtl0uV63PrXis2+0Oab8AAAAA7BsYkwAAAAAIp9Jm/DsJFRwAAAAAAAAAACHRtm1bbdiwIeR3c8uWLWrVqpWcztB9pb17tQebzRaytgEAAACEB2MSAAAAAOHEmCQ0CDgAAAAAAAAAAELzhbPTqQ4dOoT8bjZGmxEREUHbdVlhqOKxUVFRIe0XAAAAgPpjTAIAAAAgnBiThIY9RO0AAAAAAAAAALDXSEhICNouKCio9bn5+fmB57GxsSHtFwAAAIB9A2MSAAAAAOGU0Ix/JyHgAAAAAAAAAADY56SlpQVtZ2Zm1vrcise2bt06pP0CAAAAsG9gTAIAAAAgnNKa8e8kBBwAAAAAAAAAAPucLl26BG1v3ry5Vud5PB5t3749sN2hQ4eQ9w0AAABAy8eYBAAAAEA4dWnGv5MQcAAAAAAAAAAA7HNatWql1NTUwPaKFStqdd7q1autL+/L9e/fv1H6BwAAAKBlY0wCAAAAIJxaNePfSQg4AAAAAAAAAAD2SSNGjAg8X7BgQa3O2f244cOHh7xfAAAAAPYNjEkAAAAAhNOIZvo7CQEHAAAAAAAAAMA+6bDDDgs8/+abb5SdnV3jOe+//37geb9+/Rql9DIAAACAfQNjEgAAAADhdFgz/Z2EgAMAAAAAAAAAYJ80ZcoUORwO63lpaan+85//VHv8qlWrNGPGjMD2WWed1eh9BAAAANByMSYBAAAAEE5TmunvJDa/3+9vlJYBAAAAAAAAAGjmTjvtNL3xxhvWc5fLpTlz5mjixIl7HJeXl6fx48frp59+srYTExO1cuVKpaWlNXmfAQAAALQcjEkAAAAAhNNpzfB3Eio4AAAAAAAAAAD2Wffee6/i4uKs5263W0cffbTuv/9+5eTkWPvMGkEff/yxRowYEfjS3rjrrrsINwAAAABgTAIAAABgr3ZvM/ydhAoOAAAAAAAAAIB92vvvv6+TTjrJKr9czpRkbtu2rbKzs1VQUBB0/Omnn65p06aFoacAAAAAWiLGJAAAAADC6f1m9jsJFRwAAAAAAAAAAPu0SZMmadasWerYsWNgn9fr1aZNm4K+tLfb7bruuuv08ssvh6mnAAAAAFoixiQAAAAAwmlSM/udhAoOAAAAAAAAAABIKiws1EsvvaQZM2Zo6dKlysjIUGRkpLp06aIDDzxQf/nLXzRgwADuFQAAAIBGwZgEAAAAQDg1lzEJAQcAAAAAAAAAAAAAAAAAAAAAABB29nB3AAAAAAAAAAAAAAAAAAAAAAAAgIADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAADAXqC0tDTcXQAAAAAAAAAAAAAAoFERcADQ6BNw5syZoyuuuEJjx45VmzZtFBUVpejoaLVr107jxo3Tddddp3nz5tW6TZvNVquHy+VSfHy8OnXqZF3b9OHzzz+Xz+er9/spKCjQE088oWOOOUYdOnSw3ou5Rrdu3XTaaafpzTfflNfrVUNNnjw56L2cdNJJDW4TAAAAwJ7uuOOOwOfuLl26VHqLzP7yY8zxTW3Hjh0699xz9frrrzf5tQEAAAAAAAAAAAAAaErOJr0agH1GcXGxHnvsMeuxZcuWSo8x+83jm2++0T//+U8NHjzYOn7ChAkh6YPH41F+fr712LBhgxWiMOEEE0x49NFH6xwamDVrls4//3xlZGQE7S8pKbGusWbNGr3xxhvq27ev9e+gQYPq1e9t27Zp9uzZQftmzpyprVu3qm3btvVqEwAAAMDe6fnnn9cNN9ygzMxMHXjggeHuDgAAAAAAAAAAAAAAjYoKDgBCbv78+dbk/ptuummPcENsbKw6duyo9PR0q8JCRT///LM1Yefmm2+W3++v1bVM9YTu3btX+jBBhqSkpD3O2bhxo6ZMmaLTTz/dqjBRG6+++qqOPfbYoHCD3W5X+/btraoUFf3+++8aPXq0vv/+e9XHyy+/bIUzDLNCrGG2n3vuuXq1BwAAAGDvdeGFF1rhBgAAAAAAAAAAAAAA9gUEHACE1HvvvaeDDjpIf/zxR2DfwIED9d///lerVq2yKh2sX79emzdvVl5enr744gsraFA+kd+477779Ne//rVW1zvhhBO0cuXKSh+makNWVpYKCgr07bffWm1GRkYGzn399dd18skn1ximWLFihS644ILAcaYN00cTdjBhCVNZwbynSy+9NHBOYWGhjjvuOOXm5qquXnzxxcBz079yzz77rHw+X53bAwAAAAAAAAAAAAAAAAAAAPYGBBwAhLRywymnnKKioiJr2+l06p///Kd++ukna/J/t27dgo43QYEJEyZo2rRp+vjjj5WQkBB47Yknngia6N8QMTExGjNmjP79739bfezUqVPgtZkzZ+ree++t9vy77747UOnBVG2YNWuWVZ0iJSUlcIypSmFCHI888khg37Zt2/Svf/2rTn01VR9MBQgjIiLCClKYaxomRDF79uw6tQcAAAAAAAAAAAAAAAAAAADsLQg4AAgJE2owlRiKi4utbYfDoXfeeUfXXHNNYIJ+dQ455BD973//Czr2hhtuUHZ2dkj/QoMHD7bCFImJiUEBhtWrV1d6vKna8P777we2Tz31VKuvVTHvd8CAAYHtGTNm1Kl/L7zwQuD56NGj1bVrV40fPz6w76mnnqpTewAAAAAAAAAAAAAAAAAAAMDegoADgJB4+OGHg0ICt912myZNmlSnNkxw4MILLwxs79ixo1Em9Pfu3VuPPvpoYLukpEQPPfRQpcdmZGQoJycnsD1u3Lhq27bZbDr44IMD2ytXrqxTSGT69OmB7eOPP97694wzzgjsmzNnjtatW1frNgEAAAAAAAAAAAAAAAAAAIC9BQEHAA1mqjb85z//CWy3a9dON910U73auuWWW4KqOHz++eeN8hc655xz1KtXr8D2yy+/bAUMdmfCDxVVdkx1fD5frY99++23lZubGwhKnHjiidbzKVOmKDo6OtDeM888U6c+AAAAAM3J1q1b9cADD+iggw5S69at5XK5rApr/fv310UXXaSvv/66Vu2Yz8amYtq5555rhZiTkpKsz82dO3fW0UcfrSeeeEJ5eXnaG91xxx3WmMA8KjrvvPMC+7t06WLtu/LKKwP7zFhq48aNtb5Ojx49AufeeOONgf1Tp04N7D/mmGMC+z/88EMriG2uHRkZqZSUFI0dO1b33nuvFQ6vq6VLl+rvf/+7Ro4cqbZt2yoiIsL6z8Tw4cOtMeWSJUvq3CYAAAAAAAAAAAAAYO9GwAFAg82ePTtoMsv5559vTUypj06dOlnVIF577TVt2LBBH330UaP8hczEnwsuuCCwXVhYqI8//niP49LT0xUTExM0oac6fr9fn376aWB7wIABte7TCy+8EFQpokOHDtZzM9nruOOOCzrO7XbXul0AAACgOSgtLdWtt96qrl27WpPXv/jiC2sc4fF4rKCvmez+3HPPafz48Zo8ebJ27txZZVsLFizQsGHDdMIJJ+ill17SihUrrMprJny9fv16a4xyxRVXqHv37tZk/ZbsrLPOChqPVKwKV5358+dr1apVge2zzz67ymPNfTWvH3nkkXr33XetqnLm75mVlaV58+ZZQXUTlqg4pqlOfn6+Vb1v4MCB+sc//qGFCxdq27Zt1jjH/Gfixx9/tEIwQ4YMsQIs5ngAAAAAAAAAAAAAwL6BgAOABjOThyo69NBDG9TeNddco9NOOy0wwb+xHH744UHbla0U63Q6rclV5UwI4tVXX62yTTM5x0zMqhj2qI3Vq1fryy+/DFqZtaKK7ZgVb82kIgAAAGBvYSqhHXXUUbrnnnusyfIVP2+bCnCpqalBx7/33ns68MADlZ2dvUdbM2fOtF776aefgvablf/bt29vVYQoZybLm8/WFasT7A1MZQQTzjCP3d9j+f7yCg4jRoywKliUe+ONN2p1DRMqLzd06FCrgkZlTGjChBteeeWVwL74+Hjr7+ZwOAL7TEjFhMhNNYfqmCCDCbE8//zzQRXv4uLirMC7+beced0EWEyVCDMOAgAAAAAAAAAAAAC0fAQcADSYWT21XHR0tPbff/+94q7269cvaELO4sWLqwwtJCUlBbbN5J5LL71UixYtsiZnmcla3333nU499VRrRdpyhx12mLUqaW2YVWXNxKHyyUJTpkwJen3ixInq3LlzYPupp56qwzsFAAAAwuvyyy/XZ599Ftg2E/TNRHxTdWHTpk3asWOHfvnlF6tCQLlff/1VV155ZVA7P//8s/W523wGN8zn9EceecSaNG8eGzdutNp8++231adPn8B5Dz74oJ599lntLcz7XrlypfWoyFQ1KN9vKmBUVsXhhx9+CKrMUBmv16s333yz0vN3ZyrUvfXWW9ZzUzXDXLf877Z9+3ZrvBQVFRU4/u9//7s++eSTKq970kknBY29Tj/9dKtigwlImMoQeXl51utnnnlm4Bjznw3zdzfnAwAAAAAAAAAAAABaNgIOABrErKi5YsWKwLZZOTQiImKvuKtmZVezQmi5tWvXVnpc165drQk65QEDE0QwAQMzuccEOmJiYjRmzBhNnz49sAqtqUJhVp2tGKCoSvmqpOVOPvlkxcbGBh1js9l07rnnBrY///zzoPsOAAAANFfz58/Xiy++GNgeOXKkNQn/lFNOsT5Llxs4cKBmzZoVVEHNVE8r/9xrPoebSe/lFSDMZ3kzEf7aa6+1KhuUM5/RTzzxROsahxxySGD/1VdfbVV0aInMfTFjhtpWcZg7d26gIoIZv5iQQVVKS0utf00Fjm+//VYTJkwIXMtUmrj55pv1wQcfKDIyMvB3Mve6YnWGco8++qi++eYb67lp47nnntO0adOsChIV+z9kyBCrYkTFYLepeEfQGwAAAAAAAAAAAABaPgIOABrErLJZUlIS2G7VqtVedUcrVmaobrLT8OHD9fvvv+uSSy6ptj0zKeemm27SPffcE5jgUxOzIur69esD2+edd16lx5n95ZN+zKShp59+ulbtAwAAAOH02GOPBZ6bQIMJBlf8HF6R3W7Xk08+GQhNm8+95ZP1zSR6U9Wh3GuvvaYuXbpUeV0TGjbXSkxMtLYLCwv1+OOPqyUyYexx48bVOuBg7l3FynMVAyKVad++vXVOVWOcgw8+OKia3dKlS/eo4uB2u62AQ7kLLrjAelTn4osvDqrkYKp1UMUBAAAAAAAAAAAAAFo2Ag4AGqSgoCBoOy0tba+6oxUrJRQVFVV53KJFi3T44YcHrRhqVjo1E33Me64YPDDhBlPJYvcJPVWpuJqtOW/s2LFVTloyE4fKTZ06NbB6LQAAANAcmUntprJZuSlTplQbSjDS09OtSe2m+sLll19ureZvVKx6ZvZV9bm5IlNhwFSKKPfOO++opaoYBDBBEBMyqIwZQ8yYMSOwffbZZ9fY9vXXXx8IilTlyiuvDBpfvfXWW0Gvf/zxx9q8eXNg+4orrlBtXHbZZYHna9as0U8//VSr8wAAAAAAAAAAAAAAeycCDgAaxOFw7NV3sGJAoHyV2N29++67GjNmjL7++mtru1u3btbqpdnZ2dq4caNV+cFM1HnwwQeVkJBgHWP2H3nkkZo5c2a118/KyrLar6l6Q7mKK5xmZmbqzTffrOU7BQAAAJre4sWLg0LRxxxzTK3Oe/75563AsKm4cOyxx1r7yj+PG/vtt1+t+1AxCPHbb79Zn6NbIhMeqVhhoaoqDqYSRk5OjvXchBYmT55cY9unnnpqjcfEx8cHBbK/+uqroNcr/v3MOHLQoEGqjREjRgSN1Sq2AwAAAAAAAAAAAABoeZzh7gCAvVv5hP5y+fn52puUT+wxkpKS9nh95cqVOu2001RSUmJtjxo1Sh9++OEex7Zt29Za1dRMvjrooIO0ZcsWeb1eazXUZcuWWavQVsYEJcpDFmaST02rpx5//PFKTk62ghGGqShRmxVXAQAAgHBYvnx50PbgwYPr1Y75fL1t27agSgy7T6CvSsVKbabi2tq1a63KDi2NGaNMmjRJb7/9trU9ffp03XXXXZWOQcqddNJJioqKqrbdTp06qU2bNrXqg/n7vv/++9bz1atXq7S0NBBOMGGXin+Hnj171vKdyRpblTPtAgAAAAAAAAAAAABaLgIOABokJiZGaWlp2rFjh7W9YcOGveqOmioM1QUc7rjjjkAAwbxXM5GqsuPK9e7d21opdcKECdZ2bm6uHnnkET388MOVHv/CCy8EnttsNo0bN65OVSe+++47/fLLL7Ve/RQAAABoShVDCYYZO9THzp079wgqVwwr10VLreBgnHXWWYGAw4oVK7Ro0SINHTo08LoZn8yePTuwXZuwdMeOHWt9/datWweFEszfrTzsXfFv6PP5tGrVKtVHS/77AQAAAAAAAAAAAAAkOzcBQEP169cv8NxMovF4PHvFTTWhjIyMjMB2nz59gl53u91WoKHiZKF27drV2O748eMDAQejYhsVmWCCmXBUztw3M8mnpkfFFWjLqzgAAAAAzVHFcG55aLg+6htmqExBQYFaqiOPPFKpqamBbRO+rsiMTcr/Jl26dKlVwDo+Pr7W19/971teCS+Uf8OW/PcDAAAAAAAAAAAAABBwABACFSfFFBYW6ueff25Qe2+++aaOOuooq+rB4sWLrdU9G8OCBQuCtkeNGhW0bcIaFcMEJrhQWwcddFDg+Zo1a5Sfn19t9YaGmDZtWqXtAwAAAOEWGxsbtL17WLe2oqOjg7affPJJ+f3+ej0mT56slsrlcunUU08NGluZ91zutddeCzw/88wzrSpydQ2pVCcvL6/Kv3/Fv6EZe9X37zdjxoxa9wcAAAAAAAAAAAAAsPehggOABjviiCOCtt99990GtWdWFZ0zZ46uv/56DR06VJ988okawxdffBG0PXbs2KDt7OzsoO2kpKRat92qVaug7dzc3KDt0tJSK5hQ7oILLqjTpJ6nn346qO2KE5UAAACA5iI5OXmPKmr1UbEqgbFz584G9aslM5Xnyq1bt04LFy4M3LO5c+dWelx16nKvt27dGngeFRWltLS0Sv+G/P0AAAAAAAAAAAAAAFUh4ACgwUwwoFu3boHt559/XiUlJfVqa9u2bUEBCTMJZuLEiSH/K5n+vfjii4HtLl26aMyYMdUGGjZv3lzr9rOysoK2U1JSgrbff//9oMldp5xyiupiypQpioyMDGw/9dRTdTofAAAAaAp9+vQJ2l6yZEmtzjOr9JtxwEUXXaT77rtP6enpQdUAFi1aVOs+mGpnu1cWaMlMdYSePXsGjT2MDz/8UF6vN3BMr169atXe8uXLrYB2bfz000+B5/379w+qENG7d+/A89WrVysnJ0d1CU5UrEQBAAAAAAAAAAAAAGi5CDgAaDAzaeWqq64KbG/ZskUPP/xwvdq68847g8IRF154oZxOZ8j/Si+88EJQwODcc88NmnxjdO7cWS6XK7Bdl0oSX3/9deB5p06drNVLd79+ObOq6cEHH1znlXCPPvrowPbixYs1f/78OrUBAAAANDZTka3iZ2Ezyb42TEU3U23gueee09SpUxUREaHRo0cHXv/0009rHVq49tprlZCQYIWOhw0bpszMTLV0Z5555h4Bh1mzZgX2nX322bVuy4QbzP2uTci7YpW8Qw45JOj1cePGBZ77fD7NnDmzVtefN2+eFXCJjo62QhmvvvpqrfsOAAAAAAAAAAAAANj7EHAAEBIXX3yxFQioGFT46KOP6tTGO++8E1SJwExCuuGGG0L+F/rjjz+C2jUBg4oBjXJxcXEaP358YNtMwDGrl9bEhA0+/vjjwPYxxxyzRyWIivfmxBNPlMPhaNCkJYMqDgAAAGhuTDBh0qRJge033njDqtpWnezsbL399tuB7SOOOML699RTTw3sy83NrVWoetWqVXrppZcCE/BNFYDdq6s1d3b7rq9ualvFoOJY4eeff9aaNWsCYxDzN6lrBbna3OtHH300KKy++3jFBLTNGKucqcxRVFRUY7u33Xab9a9p24zlBg0aVKe+AwAAAAAAAAAAAAD2LgQcAIREZGSkNXGofPKN2+3Wcccdp8cff9xanbMmZmVWM2Gp4oSdJ598MuSTj8zkHjNBKj8/P7DvwQcfVFJSUqXH/9///V/guZlQYyYCVTcha+PGjZoyZUrgfZgKENdcc03QMeY+eb3ewHZdJxdVnCBU8f5Mnz7dmgwGAAAANCemgkLFYIKZ+F7VxHbzOfqKK66wwgiGGV9ccskl1nNzXrt27QLH/uMf/9Bbb71V5XXNtcwYw1QgKNcYAerGFhMTE/SeaqNbt24aO3ZsYPtvf/tb4J4eddRRSk1NrVMfPv/8c911111Vvj579mzdf//9gW0TahkwYEDQMWbMZYLx5ZYtW2ZVkqj499ndvffeq88++yywffjhhxNwAAAAAAAAAAAAAIAWjoADgJCZMGGCFWgoV1xcrL/+9a8aPHiwVV3ATP6vKDMzU2+++aYOOOAAXXTRRVYoomKw4PTTTw9Jv3JycvTpp59aE6KGDx+u1atXB1677LLLdN5551V5rglDVFwp1gQkhgwZov/+97+BCUKGeW7e47Bhw6xVYiuuNtqjR4+gNqdOnRp43qZNG+u+1YdZedWEKcqZSWLlq9MCAAAAzcX+++9vfe4uZz6bjx49Wh9++KE8Hk9g/48//qgjjzxS06ZNC+wz44m+ffsGQtXms3R5qNqEhs1ndTNp3kyWL2fGFe+//75GjRqlH374IbD/kEMOqXe4OJxat24deP7KK68EhbWrc9ZZZwWFocuZUEF93H777daYasWKFYF9W7du1S233GKF28vHc6YS37/+9a9K27jjjjvUp0+fwLap1GH+82ECEhXHg+XhB9N2udjY2CrbBQAAAAAAAAAAAAC0HDZ/xeXSASAEzCR7M4GpsLBwj9fMqp2JiYnWpBwTcNj9v4IcDoe1MujNN99c9X9x2WyB5/Hx8UETfioyE2RMuME8KnPVVVfpkUcesa5ZHRPUOOaYY4JWDi3XqlUr6/zt27fvUanChDaeeeaZoH3ffPONxo0bF9i+/PLLg0IhdfXtt99aAZFyZvLX0qVL690eAAAA0BjMZ+rjjz/eCjVUFBUVZX2mNpUJdv/cfuihh1pBBRNsqMhUejPBh4pV0crHGmZyvflsbq5X0aBBg6xghblWZZPu77zzTut5586dtXbt2j2O6dKli9atWxeY6G/OaSom1GyCABUrOpgxkKkwZ0Lk5YGP3ZkQdtu2bYMqJJgKcFu2bLHC0tUxQZKKQfD+/fvrt99+C2ynpaVZ1epMwKHimM78Pd977z3rb1cVE5AwQfI1a9YE7Td/Z/O+CgoKrLHi7q+ZcPyxxx5bbb8BAAAAAAAAAAAAAHs/KjgACLlzzjlHixcv1oknnhgURjCys7OtiUE7d+7cI9xgVnGdP39+teGG3eXl5VkVEyp7rF+/vtJww8CBA62JUmb1z5rCDeWTdD766CNr9VDzvKKMjAxrUk/FcENycrI16Wr3cIPxwgsvBG03dAXZsWPHqmvXroHt33//XV9++WWD2gQAAABCzXyONp/Bb7zxxqDAggkibNiwIehzuxlDmACDmSi/e7jBuPTSSzVnzhz16tVrj7GGGQPsHm4wlQzMZ+TKwg17AxOmiIuLC2ybILkJYZigQsXqcbsz45Kjjz56j/FHTeGGypiwd8Vg9Y4dO6zrVxzTmXHWvHnzqg03GObvZsZ9J510UtB40QQ2zH8Wdg839O7dW3PnziXcAAAAAAAAAAAAAAD7CGe4OwCgZTKTVswqoybMMGPGDKvSgFnxc9u2bVYowel0WhNuevbsqTFjxliTW4YOHRrSPpgVRc1EoNTUVPXp00dDhgzR5MmTNXz48Dq3ZYIQ99xzj6644gqrQoWZ4GMqJZighlkx1UyWMqvCHnbYYVbAw1SW2J1ZifStt94KbLdr1y5oklB9nXnmmbr77rsD20899ZQmTJjQ4HYBAACAUDJjgPvvv98KKLz88stWiNhM0DefqU1VAhPcPeigg3TxxRdbk9qrYybRm8/j77zzjj744AN9//331ljDVIozVRx69OhhfdY+99xzrYn3ezNTPWHhwoW699579cUXX1jv09zL9PR067kZU1XFhDvMeKzidn20adPGCom89tpr1nhoyZIlVhDBjINGjRql008/XSeccEKV1SR2Z84zY6Off/5Z06dPtwIMZuxo2jQBDFN5YsSIEVabxx13nPV+AQAAAAAAAAAAAAD7Bpt/9yXUAQAAAAAAsNf7+uuvNX78+EAIffny5bU6b+rUqTrvvPMC23x1BAAAAAAAAAAAAABoKrVbWg8AAAAAAAB7lddffz3w/Oyzzw5rXwAAAAAAAAAAAAAAqA0CDgAAAAAAAC1MSUmJpk+fbj13OBw699xzw90lAAAAAAAAAAAAAABqRMABAAAAAACghZk6daoyMzOt55MnT1b79u3D3SUAAAAAAAAAAAAAAGpEwAEAAAAAAGAvVlBQILfbbT33+Xx68803dd1111nbNptNN954Y5h7CAAAAAAAAAAAAABA7ThreRwAAAAAAAD+9M477+iGG25olPsxbdo0jRo1qtbHL1iwQEceeaTatGljVW3Iz88PvHbxxRdr5MiRjdJPAAAAAAAAAAAAAABCjYADAAAAAABAHeXm5mrVqlWNct+KiorqdHy3bt1UUlKi9evXB+0/8MAD9dBDD4W4dwAAAAAAAAAAAAAANB57I7YNAAAAAACARtaxY0crzJCUlKSYmBgNGDBADz74oObMmaO4uDjuPwAAAAAAAAAAAABgr2Hz+/3+cHcCAAAAAAAAAAAAAAAAAAAAAADs26jgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMLOGe4OAAAAIHQ8Ho+2bt3aKLe0bdu2cjr5+AgAAAAAAAAAAAAAAAAAaBzMUAMAAGhBTLihY8eOjdL2hg0b1KFDh0ZpGwAAAAAAAAAAAAAAAAAAO7cAAAAAAAAAAAAAAAAAAAAAAACEGxUcAAAAWqjv53RUemtHg9rYst2r/Y/cELI+AQAAAAAAAAAAAAAAAABQFQIOAAAALVSb1na1a9ewgINP/pD1BwAAAAAAAAAAAAAAAACA6tirfRUAAAAAAAAAAAAAAAAAAAAAAKAJUMEBAACghfL6fdajoW0AAAAAAAAAAAAAAAAAANAUqOAAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIO2e4OwAAAIDG4ZPfejS0DQAAAAAAAAAAAAAAAAAAmgIVHAAAAAAAAAAAAAAAAAAAAAAAQNhRwQEAAKCFMvUbzP9raBsAAAAAAAAAAAAAAAAAADQFKjgAAAAAAAAAAAAAAAAAAAAAAICwo4IDAABAC+X1+61HQ9sAAAAAAAAAAAAAAAAAAKApUMEBAAAAAAAAAAAAAAAAAAAAAACEHQEHAAAAAAAAAAAAAAAAAAAAAAAQds5wdwAAAACNwye/9WhoGwAAAAAAAAAAAAAAAAAANAUqOAAAAAAAAAAAAAAAAAAAAAAAgLCjggMAAEAL5ZPkbXAFBwAAAAAAAAAAAAAAAAAAmgYVHAAAAAAAAAAAAAAAAAAAAAAAQNhRwQEAAKCF8slvPRraBgAAAAAAAAAAAAAAAAAATYEKDgAAAAAAAAAAAAAAAAAAAAAAIOyo4AAAANBCef1+69HQNgAAAAAAAAAAAAAAAAAAaAoEHABgH7Hq57XK3p6jtl1bq32P9HB3BwAAAMA+5tdNOcoqLFXnlFh1So0Jd3cAAAAAAAAAAAAAAM0QAQcAaOF+/ORnPXP9K1r9y7rAvsEH9tfl/z5fXQd0CmvfAAAAALR8c5dt0/1zlmnFtnxr22aTxnZP052T+6t7q7hwdw8AAAAAAAAAAAAA0IzYw90BAEDjhhtuOfq+oHCD8fMXv+m6Cbdp4x9buP1AC+YL0QMAAKC+Pvt9my56+cdAuMHw+6VvVu7QyU99pw2ZhdxcAAAAAAAAAAAAAEAAAQcAaKZyd+Zp5U9rlLFxZ73beO6mafJ6vJW+lpdVoGn3vN2AHgIAAABoyTILSvXb5hxtzSmudxv3zv5dXp+/0td2FpTqv1+sakAPAQAAAAAAAAAAAAAtjTPcHQCAfVFBbqF++OhnlRSWqOfQruo6sHPgte3rM/TMDa/o2xkL5HGXhROGHNRf5/3jdPXbv1el7fn9frlL3IqIigjsW/Preq1cvKbafnz55ne65plLFBHpCtl7A9B8+OSXV/4GtwEAAFqenCK3vv4jQyVunwZ1SFTPNvGB10xVBRNM+GTpNnl8ftls0tjuabrxiD4a2CGxyjFJicenKJcjsO/nDdlalVFQbT9m/rRJ/zhugOx2WwjfHQAAAAAAAAAAAABgb0XAAQCakJn089Jt0/W/f81ScUFJYP/AcX11/dTL5Ypw6upxtypjQ3DVhp8+/03XH3yHHvj4Vg04oG9g/9a12/XG/e9q7mtfqyi/WGntU3TURYfopOsmKXdHXo39MaGIorwiAg4AAADAPsLn8+uBj5bp5XnrVPRnoNoY3S1Vj5w8WD6/Xyc8OU8ZebvGK36/9M3KHVr0zHd6/aL9NbhjUuC1dTsL9OQXq/Tez5tVWOpVu8QonT6qky4c102ZhaU19secU+zxKiaCr6gAAAAAAAAAAAAAAJLNb2bbAgCaxLM3vqo3H5pZ6WttOrfSkIMH6KMXP6/y/N4juuvx+fdbz9cv26TrJtym7IzcPY5r3TlNR114iKbe+ka1/YlNiLGCFeZ/CvqN7qWUtsl1fk8AmpeNGzeqY8eO1vN5C1opPX3XKsr1sWWLV2NGZljPN2zYoA4dOoSknwAAIDzueO83TZ23ttLXOqfGaL+OSXr3p81Vnj+ya4revHi09XzZ1lyd+sz3yi5073Fcp5QYnTi0vR799I9q+5Mc49IDJw6yakYN65ystLjIOr8nAAAAAAAAAAAAAEDLQcABAJpIdkaOTu94idylniqPcUU65S6p+nXj2SX/VJf+HXX9IXfqp7m/hqx/TpdDE04eo78+caEVfACwdyLgAAAAqrI1p1hjH5grr6/qtS6cdps81bxufHX9QeqUGqMT/vutFq3PDtkNj3DYdeyQdrprcn8qOgAAAAAAAAAAAADAPsoZ7g4AwL7i2xkLqg03GDWFG4ydmzOtIEQoww2Gx+3VZ9O+1pY12/XPL+6Uw9mwVd8BhJ/vz0dD2wAAAC3D7CVbqg03GDWFG4xtecUqcntDGm4wSr0+vf3jRm3KKtK0C0fJbreFtH0AAAAAAAAAAAAAQPNnD3cHAGBfUZBTWOMxtlpM4GnVMU1LvlqqxrJ03nLNm7mw0doHAAAAEB75tQhU1zQisdmktglR+n71TjWW71bv1JcrMhqtfQAAAAAAAAAAAABA80XAAQCaSJcBnWo8JqVtUrWv9xreXc9c/7L+edHTakxzX/+mUdsHAAAA0PR6tYmr8ZjW8ZHVvj68c7JunrFEt7/3mxrTzJ82NWr7AAAAAAAAAAAAAIDmyRnuDgDAvmL44YOV2CpBORm5VR6zc3NWla9FxUYqP7tAK35YpcaWuaXqfgDYe/hkk7fGdZhrbgMAALQMh/Rto4Qop3KLq67ksC2vpMrX4iKd2pxTpE1ZxY3Uw4r9aPxrAAAAAAAAAAAAAACaHwIOANCIln63XJv+2KqE1DgNmThATqejXu0MP2KI+o7qqVfufEtNYeMfW5rkOgAAAAAa1w9rM7VuZ6FS4iK0f9cUOex1Dy+aMw7u01p90+P1+OeNH7g2Vm0vaJLrAAAAAAAAAAAAAACaFwIOANAIli9cqUcufFJrlqwP7ItLjlV+Vv0m6fz69e/K2Z6jppK7I0+L5y7RfgcPbLJrAgg9n7/s0dA2AADA3ufHdZm68X9LtHJ7fmBfUoxL2YXuOrdlPg7MX5OpTVlFairb80r047osDeuc3GTXBAAAAAAAAAAAAACEnz3cHQCAlmb9sk264dC7gsINRn3DDUZxQYn+WLRGTWnRp0ua9HoAAAAAQuP3Lbk66/kFQeEGoz7hhnL5JR4t25anpvTNHzua9HoAAAAAAAAAAAAAgPCjggMAhNgbD8xQYW7TrWxa0SFnjte6pRu0ff0OJbdNUu6OfGVuzapfY36WbQf2dl7ZrEdD2wAAAHuXxz9fqcJSb1iufeKwDlq6OVfbcovVOj5SGXkl2llQWq+2/FbtCAAAAAAAAAAAAADAvoSAAwA0QGFekea+9o02rtis+JQ4HXTaWH05fV5Y7ml0bKSufvovioyODOx77NJnNOvpT+rV3pCDB4SwdwAAAAAaQ26xWzN/2qx1OwqUHBuhowak66Nft4TlZidEOXXf8QMV4dxVMPS6N3/W/xZtrFd7Y3ukhbB3AAAAAAAAAAAAAIC9AQEHAKinL6Z/q0f/8rQVcig39dY3wnY/9z92eFC4weg3une9Aw4v3/mWFdroNay7SotLVZBTqLjkWLkiXCHqMQAAAICG+N+PG3XrzF+DqjU89NHysN3UIwekB4UbjGGdk+sdcHjow+W6c3J/9U1PULHba4U5kqIj9rgGAAAAAAAAAAAAAKDlsPn9fn+4OwEAe5tfv12m6w68XT6vT81Fh17tdMNLV6jvqJ6BfSaYcGbXy5S1LadebUbFRmnIQf216NNfVFrsVkx8tCaeOV5n3XaSktskhbD3AEJl48aN6tixo/X84/lt1Tbd0aD2tm7x6rBRW63nGzZsUIcOHULSTwAA0DDzVu7Qmc/Pl68ZfavTq02c/nnyEA1onxjYV1jq0Zj75yq70F2vNmMjHBrVLVXf/LFDpV6f4qOcOnFoB105sadSYiNC2HsAAAAAAAAAAAAAQHPAkncAUA9vPjSzWYUbjI0rNluhi8VzlwT2RURF6K6ZN1qVGPZgq7nN4oJifT/rRyvcYJhqFe8/+ZGuPuDvytqWHdL+AwAAAKi9J79c1azCDcaKbfma8tR3+mFtZmBfTIRTz5493Aom1GNIooJSr+Yu226FG4y8Yo+mzlurk56ap6yC0pD2HwAAAAAAAAAAAAAQfgQcAKCOTOGbBbMXN9p9c0bUf7V1d4lb/77sWauP5fqM7Knnl/5L591zmgaO66t+Y3pr9LHDpQZMhtq8aptevuPN+jcAoEmY/yrw+W0NelDrCwCA5qfU49M3K3c0WvvOBnxbVOT26taZvwXtG9ElRZ9dN0HXHtpLI7oka1jnZE3s07ohQxKtzijQ45+vbEALAAAAAAAAAAAAAIDmiIADANSRz+dr1OoNDmf9Aw7GxhVbtOTr34P2JbdO1Ok3n6B/fnmXHvvmHsXERzewl9Jn075WaTErpgIAAABNzevzN2oI0Wlv2NdFv2/J1c8bgiu+tY6P0pUTe+qtS8bof5eOkcvR8K+k3v5xozzNrLIeAAAAAAAAAAAAAKBhCDgAQB05HA51Gdix0e5bSWHDQwPb1mVU+7q71NPgaxTlFytnR16D2wHQeLyyheQBAACal+gIh7qkxTZa+8WehocGNmUXVfu6x9fwa+QUuZVX3PCxDQAAAAAAAAAAAACg+SDgAAD1kNo2uVnft6XfrdC37y6Qx135ZJ/+o3s3+BquCKfikhtvUhUAAACAqrWOj2zWt2fBmkx9unRblRUW9uvU8DFVlMuu2Ehng9sBAAAAAAAAAAAAADQfBBwAoB52bMlq1vdt1lMf644THtIZXS7TvJkL93j9sHMPVGRMwyZEHXDiKEXHRjWoDQCNyyt7SB4AAKD52ZFXouZs6ry1uvDlH3TAA5/r8+Xb93j91BEdFels2OeMYwe3U0QD2wAAAAAAAAAAAAAANC/8CgwAdTT7uc+0dsn6veK+ZW7J0l1THtEvXy3VljXbrLDDok9/UWRMhI6/6qh6txufEqezbz85pH0FAAAAUDsvzVur1TsK9orbtTW3WBe//KMWr8/Sup0F+vi3rZq3cocSol06Y1SnerebGhuhvx7cM6R9BQAAAAAAAAAAAACEnzPcHQCA5srr8erbdxfok5e/VNa2bLXu3Eq9hnXXS7e9Ue82Bx/YX5tXbVXGhp1qyvdx50kPKz8zXz6f39qX1DpRB5wwql7tDT10kC7957nq0KtdiHsKAAAAoCK316cPf92qGYs3aWd+iTqmxKhverz++fGKet+o0d1SrHDEttymqwBR6vXpwpd+UGZhqfxlQxK1jo/UYf3a1Ku9Cb3SdPuk/tb9AAAAAAAAAAAAAAC0LAQcAKAS2zfs0P1n/VtLvvo9sG/5wlX6+u3vG3S/zrptiroO6qTTO12iksLSJrv3uTvygrazt+do1lMfKyYhWoW5RXVqa+QR+6lL/44h7iGAxuD32+Tz2xrcBgAAaHobMgt01Rs/adH67MC+nzfmaNYvWxrU7vVH9FHH5Bgd8MBclXh8aio7C4LHP9vzSvTq/PWKjXCooNRbp7YO7ddW3VrFhbiHAAAAAAAAAAAAAIDmgIADAFQw+7nPNOOxD7T2tw0hvy92u03LF67Ucze9Kk8dJ/A0FneJRzabTf7yZVRr4b3/fqgTrj7aOg8AAABA6JjP5WbS/9Rv12hVRkHIb63DJi1ck6nbZ/4qj6/pwg3V+bPIXJ28/N1anbl/58boDgAAAAAAAAAAAAAgzAg4AMCfnrxmqt557INGux/xKXF69sZXm9X9dpe4NfmKI7Tok1+0YfnmWp2zedU25WcXKD6ZFVOB5s4rm/VoaBsAAKBp3PLur3pt/vpGaz8xJkL3zVmm5qTI7dV5Y7vo82XbtXZnYa3OWbEtX8Vur6JcjkbvHwAAAAAAAAAAAACgadmb+HoA0Cyt+HFVo4YbouOjlbMjT83RT3N/1QX3naGLHzm7Vsebyg2uSFej9wsAAADYl/ywNrNRww1xkQ5lFpSqOfp+9U79/ei+uv6wXrU63mG3yeXgKy0AAAAAAAAAAAAAaIn4NRgAJM157rOQ3IeB4/vqjL+fqNR2ydZ2bGKMJl9+hGLio5rtfV63dKPuOOEh/fbtcp1z18k1Hj/88MGKiolskr4BaBiv3x6SBwAAaHxvLNwQknbG9kjVZQd2V6v4ss/sidEunTumiyKczbfawe9b8nThyz9q+bZ8q+81OaRvayvkAAAAAAAAAAAAAABoeZixBgCStq7d3rD7YJNad0pTYW6hNv2xRTe9cqVmF7+md7Ne0tl3nqydm7Oa/X3+5p358pZ6deatJ1V7XHFBiebPXiS/399kfQMAAABaug2ZhQ0630z3b5cYpexCtzZlF+nx0/bTinuO1M+3H6ZLJnRvttUbKnrv582KjXTq4vHdqn2fuUVufbUio0n7BgAAAAAAAAAAAABoGgQcAEBSUuvEht0Hv7R9/Q6t+mmdvpg+T9dPvFNPXvOS9VJkdIT83aNUemyiSo9JlC/d1Wzv+bR/vKPBB/XXBfedYfW7Mku+/l1/P+Y+PXTeE4QcAAAAgBBJi2tYlTQTP96cU6zfNudq5k+bdcoz3+vBD5dZr0W7mm/1ht098vFyHda/ja4+pKcinfZK3+d3qzN19gsL9Ld3fmFMAgAAAAAAAAAAAAAtDAEHAJB06FkTQn4f3n/yI73zyke67tdXlP94B5Vc2koll7dSwXOdVHRLW/ljzNqjzYupynD7cQ/qqAsn6vWNT6vf6F5VHvvJy19qxr9nN2n/ANSNTzb5ZG/go/n9dxUAAC3RCUPbh7zN575Zo1e/X6uLXvlBewufXzp/6kJdcEBXff+3iRrYPqHKY19fsEGvL1jfpP0DAAAAAAAAAAAAADQuZyO3DwB7hf0mDtSYySM0b+bCSl+PS45Vp97tNe7EUSrILdKOjTsVFRel95/6WF63t9Jz/A7pP97PVZS52+Rgu02eA+JUFGtXzM2b1dwU5hbpoxc/12HnHqg/Fq2p9tipt76hE646usn6BgAAALRUB/VurQm9WunLFRmVvp4U7VL31nE6ckBbZRe6tT2v2KrM8PJ366yqBlW5Z9bvKvb4tDfJKfJoxuJNOqJ/Wy3dnFvtsffPWabTR3Vusr4BAAAAAAAAAAAAABoXFRwAQJLNZtPNr1+t0ZNHyOF07Lonf2YT8rMKtPT7FXr6+lf05ZvzdMatJ2n4YYOrDDcYVoghveqVz737xcjTP6pZ3v+fv/xNq39ZJ3eJu9rjivKL9dPnvzZZvwDUjam+4G3ggwoOAAA0Dbvdpv+eMVQH9m4lh23XOKL8WXaRWz+uy9I9H/yuj5du1TWH9tKobqnVhhuMvS3cUO67VTv16+YceWt4g7nFHi3ZmNNU3QIAAAAAAAAAAAAANDICDgBgwghuj/5x6qP6buZCeT0VQguVTKbZsHyzbjn6XtkrBiEq4RkbV+O9NSGI5shmt8kV6arVsd/OmN/o/QEAAABauhKPV5dNW6QvlmfI6981EKlsfv+Kbfm68KUf5LRXHahuCYGPCEf1Y65ys5dsafT+AAAAAAAAAAAAAACaBgEHAJA0/YGZ+u69H2p9L9b/vkkF2QWKiY+u8hh/VM2TjeLS45vl/R9+2BD1GdnDmlRUk+KCkibpE4C68/rtIXkAAIDG9+/P/tCXKzJqffxvm3Pl8/sV5WrY/1YnRDnVHE3o2UrDuyQHKlhUJ7/E0wQ9AgAAAAAAAAAAAAA0BWasAdjnmYoN7z/1UZ3vwz8vekqFeUVVvu5YVfPE/8IfM5vd/U9uk6hDz54gj9tb6Wqxu0vrmNoEvQIAAABadvWG1xdsqPN5107/WcVuX4OunVvc/MIB6YlROnZIO5V4avfe2idHNXqfAAAAAAAAAAAAAABNo3ku0wcATWjxZ0u0c3NWnc8ryi+u9nXXnFyVnpQsOatYc7TQJ9dnuWpO0tqn6J5Zf9PqX9bpzYfeld9Xc8RhwNg+TdI3AHXnk816NERDzwcAADX7fNl2ZRaU1vlWFbq9Le72tk+K1tTzRuinDdl68otVtQpdj+iS0gQ9AwAAAAAAAAAAAAA0BQIOAPZp7/zrAz157dRGadu+3aOof29X8VWtJcduE4RLfIp+YKtshbWZrtN4YhKi1bZLK3Xs00H7HzNM46eM1juPztLzN79W6za+fOs7RUZHaMABfRu1rwAAAEBLZCbxP/DhMu2rEqKcap8crZ6t4zSxbxsdOSBdT3y+Uo999ket23hn0SbZbDYN7ZTcqH0FAAAAAAAAAAAAADQ+m9/vD+/sWgBoIoV5RcrckqWE1Hjr8eu3y3Tt+NvU2P816O0RqXHTj9H3m5crNyNPzh8L5XovW44N7hrPjYqLVHF+SaP0y+6w65XVT6h1x7TAvt/mLdfVB/y9Xu0NOXiA7vjf/yk2MTaEvQRQVxs3blTHjh2t569820Ot0l0NuokZW9w6a+xK6/mGDRvUoUMH/igAANRTXrFbGXklSomNUFJMhOat3KHTn5vfJPdz8pB2+mJ5hnKKah6HVBTtcqiokSpFuBw2zbtpolrFRwb2NeSeTOjVSv89Y6hiI1nPAwAAAAAAAPh/9u4CPIprf+P4uxt3IiQEElyLu5TilLbUlQr1lsqtu3t763Ir1EudKoViLRQoxd1dEywCcd/d/zPDn4WUyCa7SUj4fp5nHmZmz5xzMrk3ZcJ55wcAAADUVvyLL4A6L2VPqj57/DvNGT9fBXmF5sL+3iO7qTC/sMrDDQavrfnacck/8t57UMF5ri0mslotGnxFf/n5+2rKJzOrZF69zuqqiAb1ip377b2ple5v5V9r9fI17+rZCQ95YHYAPMEuq2yyut0HAABwT+KhHL02fZOmrN2vgiK7vK0WDW0Xrcy8omq7tasT05WT7/p4Vot0cfc42ewO/bx8T5XMafgpMQoPLB7GHLdgZ6X7m7M5WQ/+vFrvXdHNA7MDAAAAAAAAAAAAANQEAg4A6rSUvQd1d/8ndGBXsvOc3WbXgolLZbFYyr3ey8dLvc7saoYivLy91KxDY417anyF57Fv+wGX2waFBeqFKY8qMjZc2ek5+vPLOSosqNzCp6i4CKUkHizxs4WTlmlk4JXqd15PjXrofLXp2VLr52+SO4z7unvjHjVu28itfgCcvFasWKHPPvtMc+fO1a5du5STk6MGDRqoWbNmOu+883TZZZepYcOGVTb+zJkzNW7cOM2fP1/79u2T1WpVo0aN1LVrV40ePVpnnHGGeQ4AAFftScvVRR/M14GMo5XZiuwOTV93QBYXqxwMbhMt4/HF28uqVtHBemvGlgp/A3akZLvcNiLQR59d21ORwX46mF2g31buNedcGQ3r+WtvWl6Jn01Zs19/rJumEe0b6LbBLdS+YZhW7E6TO6au2aeEgzmKjwh0qx8AAAAAAAAAAAAAQM2wOKrj9eUAUEPeuuUjTf7oz0pfP+rh83XVExfLL8DPee6u/o+7HQRwVVhUiDqc1k7zJyxWeT+tGzSLVlpSuvKy81U/LlJn3TRMfoG++uiBr8odx8fPRxfePVLjX57g9pxvef0aXXTP2W73A6ByEhMTFR8fb+5/9k9bRcUWfytyRaXsK9T1/Tea+wkJCYqLi6uSb016err+85//6Ouvvy6znb+/v5566indf//98vb2XFb30KFDuvrqq/X777+X2W7QoEFmAKJx48YeGxsAULfd98Mq/bw8sdLX3zOstcYMbC5/Hy/nuZHvzNW6vRmqDlHBvureJFx/rj+g8jIOjSMClJSRp7wihxrVC9AVvRubVfNe+2NzueP4+1h1Td+m+vDv7W7P+fnzO+iqPk3c7gcAAAAAAAAAAAAAUP14/SyAOquwoFB/fTvXrT6+/+8EXdrgJr1z+yfKSM00z93z4RgzeFAd0lMyNe/XxYpvV/6C4v07ksxwQ1R8pO5470YzmDH1k5kujVOYX+iRcIPBVmTzSD8ATh5GuGDIkCHHhRtCQkLMIEFQUJDzXF5enh555BFdccUV5oJJT8jIyDCDC/8ON0RFRZnbsWbPnq3+/ftr//79HhkbAFC35RQU6ffVe93q480Zm9XzhRl6euI6pecWmudeubiTwgLcCzG6KiWrwKw20bL+0f8el2b3wVwz3BAXHqAXLuig2wa10PilCS6Nk1do90i4wWCrZLUJAAAAAAAAAAAAAEDNI+AAoM7KSstRblae2/3kZOZq0gfTde/AJ5V5KEtN28fr3cX/1ann9VR12b0+UR1Pa+tS25SEVD153sua8slMJWxybzFVZXQccEq1jwmgZHZZZJfVzc1S5bd3zJgxWr58ufN42LBhWrhwoVnVYdeuXeaff/31l7p16+Zs8+OPP+r555/3yPg333yzVq9e7Ty+8sortXXrViUnJ5vbtm3bzOoORxiVLC6++GKPBSwAAHXXwewC5RfZ3e4nM69IX8zfqcs/Wqis/CK1bxim324/VUPaRqu6bE7KVo+m4S61TTyUq+u+WKIflyYq4WCuqluvZhHVPiYAAAAAAAAAAAAAwDMIOACos1bNWitX1uWGRAS71N+u9Yn6+Y3Db/du0DRaT//6oBl0iG/TUNUhaXeqBlzcVzFNir9NvDRv3/aRqlu7Pq3Urnerah8XQO01f/58M6xwxKWXXqrp06erd+/eslgO/xD38vLS4MGD9c8//6hXr17Oti+99JLS0tLcGt+oyDB+/Hjn8Z133mlWkmjRooXzXPPmzTVu3Dg988wzznPz5s0rNm8AAEqyYFuKSzemnovVGNbvy9C4+TvN/aZRQfrs2p765bZ+ig/3r5ZvQHJGns5o30AN65U/npEDfGzCGlW3vs0j1S42tNrHBQAAAAAAAAAAAAB4hsXBq2cB1EF/fTdXL135Trnt2p/aRq/MeEpzf1qoeRMWae7Pi8psHxoZrCFXnKbZ389TdnqO4ts2kq3IZoYfTiYWq0UOe/E3lxtBj5f/fFL14yJrbF4ApMTERMXHx5u34qO5pygy1tet25K6r0A3n7beWbkgLi7Oo7fZqIzw1VdfmfvBwcHavXu3wsNLfzv0nDlzNGjQIOfxt99+q8svv7zS448cOVJTpkwx941Qw4YNG+TjU/oi06FDh5rVJAwdO3YsVvkBAIBj/bB0tx78qfwF/v1bRumTa3poypp9mrpmn/7ckFRm+/ohvjqzQ6x+X71PWXlFahUTrJyCIu1IyTmpvgFGDvLfxZRaxwTr6xt6Kzq0egIfAAAAAAAAAAAAAADP866CPgGgRtlsNr36/DgdujlW+e2DJIfkvypLwVMPynt/gbOdf6Cfxrx2jRlQWDZjleZNWFJu3xmpWZrwv6nO4+2rd+lkdON/r1RGSqa2rNghvwBf9b+gtwZd1k++/u4tpAZw8lm+fLlz//zzzy8z3GAwKjsca9u2bZUeOyUlRdOmTXMe33LLLWWGGwz333+/M+CwZs0arVu3Tu3bt6/0HAAAdVOhza4nJ6wrt12wn7ceOaut2X72pmTN3Fh2uMGQnFmgLxccfQ5ZtzdDJ6MnRp6i/Rl5Wr83QwG+XhrZMVZndYyVrzfFSgEAAAAAAAAAAACgNiPgAKDOeX/qVO18qpHkc3RhS1a8v7KHRyjyld3yX5llnmvRtakeHvGc8nPyZSuy62QXFhWq9JTyF0cFhQXqnFtHKCCIt6ICcN/atWuVnJxsVk6IjCy/AkxmZmax44iIiEqP/eeff8puP/rz/5xzzin3GqOCQ0BAgHJzc83jX375hYADAOA4z/++TnkuPGO0iQnWpWMXKK/QJtu/qhGcjOoF+igtp7DcdhFBvrqyT2P5eXtVy7wAAAAAAAAAAAAAANWH19oBqFOVG1au36IPcpcWCzcc4fCzKvW+eNkDDn+2bt4m5WTknvThhqhGEbrzvRv1/rKXFds8utz7fPnDFxBuAGoJm6we2apa/fr1NWDAAJeCAr/++mux427dulV63CVLjlbuqVevntq0aVPuNb6+vuratavzeP78+ZUeHwBQ9xTZ7Jq3JVnjFux2qf2y3WnKLiDc0DDMXy9f1FGT/tNfDeuVH6S+Y0hLwg0AAAAAAAAAAAAAUEdRwQFArWe8ffvnN37XhHenaksfqxyXlb5I3xHopZxB9RQ89aBOdqdfM1CnXzNIHfq3k5e3l9b+s0EpieXfl4RNe6tlfgDwb//8848efPBB5/Gpp56qPn36VPpGrV+/3rnfrl07l69r1aqVM9iwceNGvlEAANnsDo2ds01fLdil/Rl53BEXXdYjXhd2a6QeTSPkZbVo3tYUHUgv//5tT87mHgMAAAAAAAAAAABAHUUFBwC13us3fqCPHvxKSbtTVNii/Ld9FjQLUE0IjgjyeJ8RDcMVHhNWqWv/GDdHz496U9+/PMEMiXz2+HcqLCgq97rZ4+eZ1TIAnPjsDqtHtprgcDhUVFSkAwcOaNKkSbrssss0cOBApaenm5/HxcXpq6++cmuMxMRE577Rn6saNWpUrA9jrgCAk9s941fq1embTvhwQ4i/599zERvqp4jAyvU7fmmC7vh2hT6eu9387+kr0zbK5sJ/Vies3FOp8QAAAAAAAAAAAAAAJz4qOACo1YyqA398Mdt5bCkofzWMpdCumjDimsH69e3Jsts9txD24N5DCgoLrPT1aUkZ+uKJ77V1xXat+XuDS9fk5xaoIK9QAUFelR4XQO20b9++cttUJChQlunTp+vMM88s8bNzzz1X77zzjpo0aeLWGElJSc79yMhIl6+LiIhw7hshjIyMDIWFVS5sBgCo/f7ZkqKJq2pHlbPLe8Xr4793yJPRvH0Z+QoL8Kn09UlZ+frv1I1asyddqxIPBxnLk5lXZFbNMKo+AAAAAAAAAAAAAADqFgIOAGq1aZ/NKnYcsDBDuf3KXmQasChDNcHH11sBoYHKTsv2aL/Z6Tlu9/HPL4tdbhvVKEIBQeVXygBQ82yympu7fRzRq1evctt7qprBrl27SjwfHBysZs2amcECd2VlZRXr11X/bmv0Q8ABAE5ePyxNUG0R6Ostf18v5RZ4tiJbem6h231MXl1+kPKIJpGBhBsAAAAAAAAAAAAAoI5yb8UbANSw5MSUYscBC9PlvTuv1PZ+m3Plt9qzAQNXhcfUk+UEfsGo1cu1/yScdeOwKp8LABgBBx8fH7MiRFRUVLEwwdtvv6127drprbfecutGFRQUOPeNsVz177aFhe4v6gQA1F770nMr1L4miw5EBfud0L8IcvXWXN6rcRXPBAAAAAAAAAAAAABQU07kf9cGgHJFNooodmyxSfWf3SnfDceHGPxWZOrWws6Kjosst9+Q8CA1atnAY98Bbx8vDb78VEU0CC+3bVhUqGpCvejyxzXuySUPnFst8wFw4lm8eLESEhLK3DzljjvuMMMMRp/Jyclm4OGhhx6St7e3M1Rwzz336MMPP6z0GMdWm7CcyAk0AMAJLSa0YtXN7hzSSlHBvuW2iwzyVaN6AfIUXy+Lzu4Uq0iXxnY9+OdJrtyXVtHBurZf02qZDwAAAAAAAAAAAACg+hFwAFCrnX71oOPOeR0qUvTjOxT94FaFfblfYV/sU8w9W1T/+V1a+sMSjX760vL7vWaQImLLDyO4yupt1aLJy9Whf9ty2/oFlr+opypExR19Q3ppopvWl3+gX7XMB4D77JJsDotbm9HHEbGxsWZFhbI2TzHG8vU9+vOwcePG+u9//6vJkycXq6Bw//3368CBA5Ua49j+K1KF4d9t/f0rtrAVAFC3XNi1UYXaz9yYpDuHtiq33ahe8S4t+HeVt5dVszYlqVvj4iHxkvh6e6kmxLoQ6GgcESh/n5qZHwAAAAAAAAAAAACg6hFwAFCrFeSVviDVd1ueQn5LUcikVPnszjfP7VyboKy0bPn4l/5GUquXVWffcrpOu6iP5+aZW6jXb/xAm5ZsLbdtTJP6qgnNO8SX2yY9OaNa5gIApTn99NP15JNPOo+NKg9ffPFFpW5YaOjRyjXZ2cdX/imNMeaxgoKCKjU+AKBuyC86Ng5YvjV70lVYZJePV+nVg4zPLu/VWGd2jJWn5BTYdM/4VdqalFlmO6OoUWxYzYT3WkYHl9vmYE5BtcwFAAAAAAAAAAAAAFAzCDgAqNX++nZuha/55KGvVFhKMMJitejej29RXOuGGjr6NFmM1T0etG3lTnmV8TbU8+84U0OuOK1SfQfXq/wC25E3D5evv+8JG74AUDl2WT2ynWjuuOMOeXt7O49nz55dqX6ioo5Wrjl48KDL1x3bNiAgQCEhIZUaHwBQN/y2cm+Fr3lhygYV2hylhhteu6Sz4sIDzeoQnn0ikdbuzZC3tfRexwxoobM7NaxU32EBpQfJy3P9qc1kdeH5q5ELVR4AAAAAAAAAAAAAALXXibdiDQAqICO17LePlsReykIiw2UPnKcR1w42943Fsw5H6W0ry1ZkU2hkiCIbhRc77xfoK7vNrvantpF/kF+F+zUqU1RUbPMY3fbWdTrjhiGa8smMctufecPQCo8BAJ4WFhamdu3aOY8TEhIq1U/Tpk2d+3v3ur44dc+ePc79Ro0aVWpsAEDdcagSFQXsZTxm/GdwS53X5fB/X7ysFnn+iUQqsjsUGeyr6ODiIecAH6vyCovUt0Wk/Lwr/iuj9NzSK+yVpllUkJ47v4NGdmqgX5cnltt+VM/GFR4DAAAAAAAAAAAAAFB7EHAAUKs1ahnr0f4WTVnu3DdCBoGhAVUWzEjdc6jYufycAk18f7ru7v+4ep3VTdXhkW/u1AV3nqWf35ikokJbmW37ntdDfc7uXi3zAuAZNofVI1tVKigo0ObNmzVt2jRlZ7se1AoODnbu2+32So19bEjCmIOrjm3bvn37So0NAKg7jAX6nvTXxiTnfmiAjwJ8Sq8A547UrAIlZRUPZ+QW2vXF/F0a9dECDWpdPdXbPriym0b3aaKxc7arjCy66ZzODdW/1dEKTAAAAAAAAAAAAACAuoeAA4Ba7aybh3m0v/07ji4mslqtZqWF6paTkatNi7fKYrVU+Vgzv55r/rnw92Xlth121QBZLFU/JwAnjzlz5iggIEBt2rTRmWeeqdmzZ1eqikKDBg0qNX7Pnj2d+/v373epEoQRyFi5cmWJfQAATk6X9/JsRYGEQ7nOfR8vq0IDvFXd0nOLtOlApqrjr/+/rthjVs6bdUywozQXdG1Y9RMCAAAAAAAAAAAAANQoAg4AarXG7RopINjfY/2Fx4Q59202m5J2JasmHNiVrPrxkVU+zqGkdPPPooKicts6ynudKoATjl0Wj2xVxaigcGz1hV9//dWl6zZs2KDdu3c7j3v37l2p8YcOHWqG2Y74/fffy71m5syZys09uvD09NNPr9TYAIC6o11sqPy8PffrlahgX+d+boFNBzLyVRN2puaoYVjVVLQ7VnJWvuwOo/JU+c8blSzaBAAAAAAAAAAAAACoRQg4AKjVMlIylZuV57H+ho0e6Nx32B2yGyttakjSrhTzz4jYelU2RmyzaPPPdn1bl9nOarWobe9WVTYPACen6Oho9e3b13n83Xffae/eveVe9+STTxY7vuiiiyo1flRUlIYNO1oJ6J133lFhYWGZ17z22mvO/bZt21LBAQCgpMw85Rd5buX9hd3inPtFNbyif0/a4VBfTKhflY3ROCJQXlaLOsWV/dzjbbY5GkgHAAAAAAAAAAAAANRNBBwA1Gr+QX7m4ntPCG9QTyPHHF3o6u3jfUIs6j+4L013jb1J7y56SaGRIR7r12Kx6Iwbhpr7F9xxVplt+57bQzFN6ntsbAA44u6773bu5+Tk6JprrlFBQUGpN+j555/XTz/95Dw+77zz1KNHj0rf0Hvvvde5v3HjRt16662ltn3uuef0119/OY/vu+++So8LAKg7gny9PdZXbJi/LutxNOAQ4u+jtg089wxQWUYViTcu6aRfb+unUH/Pfb1GsOGSHvHm/nX9mpbZ9syOsYoO9Vz1PgAAAAAAAAAAAADAiYmAA4BaLSA4QD3P7OqRvg7tT9NDw59T6r5DznMX3Fn2wv/q8u3zvyjzULYyUjM91udVT1ysuFax5v5pF/XRZQ+eV2K7Fl2a6p6PbvHYuACqj91hlc3NzeijKl166aU644wznMczZsxQ//79zSCBzWYzzzkcDi1evNgMMzzxxBPOtg0bNtR7771XYr9NmzY1g1xHttKMGDFCZ599tvP4008/NY/XrVvnPLdz505dd911xSpH9OzZ0zwHAEB4kK/6tYj0yI3Yl56nqz5drNSsfOe5609tdkLc5Lf/2qqUrAJl5BV5rM/7T2+jRvUCzP3zuzbSdaeWHHIwKjc8f34Hj40LAAAAAAAAAAAAADhxWRzGijEAqMU2LNqi+wY+qcICzyy06XhaO70x51nn8ccPfa0fXv1NNa33yG5aNHm52/0YgYVL7z9XQ6447bjP1i/YpN8//FMJm/YqINhfAy/tq+GjB8rX39ftcQFUj8TERMXHH34T8kuzeyu8gZ9b/R3an69HBi0y9xMSEhQXd/St0p6SkZGhwYMHa/ny4j/jgoKCFBkZqYMHDyorK6vYZ0a4YcqUKercuXOpAYddu3Y5j8v6K29KSoqGDBmiNWvWFDtvjO3l5aWkpKTjxp43b545BgAAhkXbU3XlJ4tUZPfMr1hOaxWlr27o7Tx+euI6fTF/Z43ebCMueGrLKP2zNcXtvjrHhWnMwBY6q+PhwPWxFu84qO8W79b2lGyF+HnrvC6xOq9LnHy9eUcHAAAAAAAAAAAAAJwM+NdhALVeu96t9OzEh9Wgaf1i54PrBWnAxX0q3N+auRu0aek25/FNL1+ldxf/V43bNvLIfKMbV+7trhsXb3V7bOMt5mOXv1piuMFwSt826jqko2yFRVoxc43eGvORHjv7JS2ZvtLtsQFUP5ssssnq5lZ69QNPCQ0N1dy5c3XTTTfJaj3619Ps7Gzt3r37uHDDOeeco2XLlpUabqioqKgos2LEsZUcDKmpqceFG4zKDcZcCTcAAI7Vu3mkPhzdXQ3D/IudDwvw0Yj2MRW+WXO3pGjT/qPV254+t71+ua2fmkYGeuTGx4RWPABpRDdWJaS5PbaXRfrtP/1LDDcYejWLUN/mkSoospthigd/XqMbxi3RPA8EKwAAAAAAAAAAAAAAJz7vmp4AAHhCj9M7a9zWd7V8xhrt35Gk8Jgw9Tqrq16/4YNK9bdq1lq16dHCeZyenKG05AyPzPXggfQKX2P1ssrX38elAENZbylv06tlmdePvW+cfn7z92LnVv61VqtmrdNdH9ykkTcPr8CsAcB1gYGB+uijj3Tffffp008/1axZs7R9+3azukO9evXMqhRGlYfLL79cPXr08PitNUIOkyZN0syZM/Xtt9+aIYZ9+/apoKBA0dHRZrDBGPvCCy80qzoAAPBvQ9vFaFCbaM3dkqw9abmKDvHXoDb1ded3Kyp1sxZsS1GbBiHO44NZBTqYXeCRG1+Zfny8LIerKOS7N3bPZhFlfv7EhLX6auGxVZgOBz6MgMMrF3fWxd09X00KAAAAAAAAAAAAAHDiIOAAoM4w3vptBB2yM3K0YOJSTf5whnatT6xUX0ZQ4Iipn87UGzeN9dg8i/KLKnxNjxFdzAoVE9+fXmobbx8v9T67u+b9urjUNvm5+Zr1/TwNvLRvsbekGzYt2XpcuOEIIzTx3l2fq/+FvRUWFVrh+QOoGXaHxdzc7aM6tWnTRq+88orb/ezcubNS1w0dOtTcAACoDC+rxQw5pOcWasb6A/pm4S5tTy5eiagyzyRfLtipJ39b57FvSqGt9FB0aYa3i1GIv4/GL00otY2/j9WsvjBrU3KpbbLyijRlzT6d2aFBsa/RsGh7arFww7HsjsPhh9PbxyjUhfA3AAAAAAAAAAAAAKB2IuAAoE4oyC/Ukqkr9OeXc7R42goV5hW61V+PEZ3NP7PSsvXenZ+pJhmVG27875XasHBLme36nddTd7x3o7av2qV92w+U2GbH6t168Yq39P7dnymsfqii46M04roh6n9hL03+aEaZ/RfmF5r39+J7z3Hr6wEAAADqorxCm2ZvStJPyxLNigP5RfZK92Ws+z+tVZS5n5qVr+d/36CaFOBj1f0j2ujvzaUHFwwjO8bqgRFtdNEH87UnLa/ENmv3Zui2b5YrKthX4YE+io8I0qU94nX6KTH6bvHuMvvPLbTptxV7NLpvU7e+HgAAAAAAAAAAAADAiYuAA4Bab/JHf+rzx79TekqmR/rrfnpnNevYxNyf+c1c5ecWqKY0aBatB7/4j5p1aKz/jn6nzLaFhTY9d+kbpYYbjpWWlGFuu9Ylasm0lepzdnflZuaWe93erfsrNH8AAADgZDBu/k698edms3KDJwxtG6Pm9YPN/V+W71GBrfJhCXc1jQzUm5d1Medz05dLyw15GOGF0sINx0rJKjC3LUnZ+mtjklnRYX96+dftSs2p0PwBAAAAAAAAAAAAALULAQcAtdof42brrVs+8lh/7fq00qPf3OU83r8jSTVlzGtX66J7zpbFYtGu9QlmZYayLJy4VA6Ho1JjLfx9mZqcElduu9CokEr1D6Bm2GWVTVa3+wAAAKX7euEuPTVxncduUa+mEXr90sMV5QwJh2pmQb9F0jPntdfoPk3MZ5K1e9K1LTm7zGumrT0gWyWfSaau3a8W9YPKbRce5Fup/gEAAAAAAAAAAAAAtQMBBwC1lt1u15dP/1C5iy3SrW9cI4vFqi3Lt8vX31f9L+yt7sM7mYt3jqgXHea5Cbs6NYtFt711nc6/40znucyDWeVeV9lwwxEH9x0qd17Drhrg1hgAAABAXVJos+udmVsqda3x1PHs+e2VX2jX+r0ZCvD10lkdY3Vqy6hi7SKD/FTdvKwWPX9+B13eq7HzXFpO+dUpKhtuOOJgdtnV86wW6bwuDd0aAwAAAAAAAAAAAABwYiPgAKDW2rBwiw7sSq7cxQ4p61COrn760hI/zsvJ159fztHcnxeW25UtwKrCGH9Z82zy3Z8vd/QZ2V03vTpajds2KnY+tkUDWb2sstvsqiqZh7LVrm9rbViwucTPR948THGtWUwE1CZ2h9Xc3O0DAACUbPGOg0rKrNwzgBEFyMwr0m2DWpb4eXZ+kX5alqg/1++v1tt/ZocGeuiMtmoaVbyaQtOoQBlZcDczDGU6lFOoznFhWpWYXuLn1/ZrprjwwKqbAAAAAAAAAAAAAACgxhFwAFBr5WTkuHX9zvUJx53LTs/Wb+9P1w+v/qbstLL7twV5KeWyOGX2iZDD7/ACYN9dOYr8da+CV5S8IKcs0Y2j9Nykh0v8LDI2XH3P7aF5vy5WVXr4qzv046sTzXBHfu7ht6eGRATrgjvO0pVPXFSlYwMAAAC1jRFQcMfWA8dXakvPKdTn83bo03k73O6/oppFBemDq7qX+JkRLBjYur5mb6pkyNxFH1zVTW/P2KoJK/cov+hwwDsiyFc39G+m2wa1qNKxAQAAAAAAAAAAAAA1j4ADgFqrySlxslotstsr9wrRoJCAYsdLpq/U85e+oZzM3HKvtftblfhwaxU0Lv720IImgdp3ZwvFfLRToQsOVmg+Vzx6YZmf3/bmtdq8dJuSE1JVFaIaRahh8wa664Obdf2LV2jLsu3y8vZSuz6t5OvvWyVjAqhaNlnMzd0+AABAydo0CHHr1gT5Ff+1zIz1B3Tn9yuUU2CrkVv+n8ElV5M44plz2+uSsQsqXbWiPHHhAWpYL1AvX9xJD5/ZVuv2Zsjby6KujevJz9urSsYEAAAAAAAAAAAAAJxYDr9yHABqoejG9dVrZLdKXz9o1KnO/X3bD+jZi15zKdxgSB9c/7hwg5PVopRRcXJ4ub4o+Pz/nKmRNw8v9fP1Czbpi6fGK6JBPVXVWuOUPQc1+aM/zf2Q8GB1G9ZJnQe1J9wAAAAAlFHxoH/LqErfn3M6N3Tub0vO0m3fLq+xcMOYAc11Ufe4Uj9ftD1Vb8/YophQ/yqbQ+KhXP28LNHcDw/yVf9WUerTPJJwAwAAAAAAAAAAAACcRKjgAKBWu/O9m7RzzW7t35l83GcWi0UOR8nVHYyF+8YC/iMmvj9deTmuv4U0o39kmZ/b6vkou1OogleklzAvqf/FfZSXmWeGNM66aahad29Ral9j7/1CP781WdXhh1d/01k3DTPvHYDaz+6wmpu7fQAAgNK9dGFHXfrhAu1Lz6vQbRrQur56NYtwHo+bv1MFRfZqudXG3/bP6hirrPwiNY4I1Khe8WrfMKzU9k9MWKuvFu6qlrmNnbOtzKAFAAAAAAAAAAAAAKBuI+AAoFarHxepdxf/V7+9O00zvv5b6SkZatSygbqP6KJZ383VgZ0pxdobC/cHXNJX9358S7FF/MtnrK7QuEVhPuW3qVdyGyNzEVIvWE+Ov6/cPmZ+M7dy4QaLFN+mkZp1bKy/f1zg8mV7tx3Q7g2JanJKfMXHBAAAAE5C8RGBmvif/vpywU5NWLlHaTmFah4VpFNbRpnHe9OKBx+Mp5DzuzTUCxd2LHb+ny3Fn12qkhEDjwn103vnlF8R7/vFuysdbmgZHaxW0cGauna/y9dsScrS7tQcNY4spWIeAAAAAAAAAAAAAKBOI+AAoNYLiwrV1U9fam6GpIQU3dL1AWUezDqurVHRITQyRIEhAcedrwif1ALlh3iX26Y0CyYu0T0fjjnufHZ6tqZ++pdmfT9PWYeylJ6SqUpxSAkb9yhpV7K8vL1kK7K5fGlRoettAQAAAEj1Q/x03+ltzM1gLNAf+c5cZeYXlfRXdUWF+CnQt/jzRMWeSNxnhA6ePKf9cefTcwr1/ZLdmrR6rzLzipSaVfpzTXm2JmVpb1quvKwW2eyuf4WF9uqpZAEAAAAAAAAAAAAAOPFYa3oCAOBpRjWHksINR0z9ZIYO7j9U7FznQccv7ClL6N9lv13VO7VAgWsySv380IF0M4hxrJQ9qbq91yP68P4vtXnpNrOaQnZ6jtyRn1ugsKgQl9sb4Y/4Ng3dGhPAicNYGmiTxa2N5YUAAFTcZ/N2lBhuOOLLBbuUllM8ONCneWS13up96XlKycovdi7xUI7OfneuXpq6UWv3ZGhXao6yyvg6XJFTYFNksG+FwiKNI6jeAAAAAAAAAAAAAAAnKwIOAOqcv76dW26FgoWTlhU7d97tZ8jHz6dCAQf/zaWEKIocqv/lblnKeUFpxr+qM7xx84fas2WfKsMYKqdtmNIGNFBGzyjZ/L2cnx3cn6b+F/WW1Wopt5+zbhomX3/XFx8BAAAAON6kVXvLvC35RXbN2pRU7Ny1/ZrKx6v8v7N7UlpOYbHj+39cpYSDuR4fJykjXyPax8jiwpd3Ve8m8vHi11UAAAAAAAAAAAAAcLLyrukJAICn2Ipsevma/yllz8Fy2xbkHV7IM3v8PE38YLq2rdgpX38f2Ww22YuKv6+8XnSoepzeWTO+PhqcsBY61OjVzTp4XkNlDIiULdRHsjsUsCFTkb/tU8Cm0itIGHx8vRXdOMp5vHfbfi2dtrISX7WU2yxYSVe1VGF9f+c5S75N4X/uUcQfhxdWnXvrCN38ymjN+WG++XXsWpdwXD99zu6uq5++pFJzAHBisjus5uZuHwAAwDWFNrvu/G6FUrOLV2coSV6hXQ6HQ7+t3KuvFu7Sxn0ZCvDxks1eZDxaFFM/2E/9WkaabT3F38eqBmFHnyE2H8jUwu3lP0tV1s0DWuiRM9tp8pq9+mX5Hm1Lzj6uzZkdGuj2wS2qbA4AAAAAAAAAAAAAgBMfAQcAdcbXz/2kWd/Nc6lty27N9M5tH2vS2D+O+8zHz1vt+rRWRGy4+l/QW/0v6GWGJ+ZNWKLcrDxnO2uBQ1E/7lHkL3sV3DpKbTo21Yqftsrx79VIJTj1wt4KjQxxHm9ZvsNc3FRRBTH+2ntrOzmOqdhgcPh56eDZjWUpcij8r32qHxep2GYxGvXQBbrswfO1YuYaTf3sLyXtTlFkw3CNuGaQep7ZVVYrC5kBAACAynrtj02auna/S207NAzVgz+t1o/LEo/7zM/bqq7x9RQT5m8u+h/WLsas+vDHuv3KLSweyD4iOsRPp8SG6u8tyccFJEpyTqeGCvY7+muhNYnpqipG5YaYUD/FhQfq9sGtdNuglpqzOdn82ven55lBi0t7xGtAqyhZXCnzAAAAAAAAAAAAAACoswg4AKgTCvIKNPH96S61bdGlqTIPZpUYbjAU5hcpOSFVT//6gCa8M1WX3/WZDu1PK7U/i82hG++6QPN/WyK5sJDIqNxgVFNITkzVpA+ma8Gkpco6dPzbS11xaGjD48INxT4f3lB9C0MV17rh0flaLOo2rJO5AajbbA6rubnbBwAAKF9OQZG+XbTbpVvVrXE97T6YW2K4wWCEGVKyC/Th1T306T879Niva8utCvHAiNaauGqfS+GGxhGBeuCMNko8lGNWj5i1MUlpOYer3FWFvs0jzXDDsc8kg9pEmxsAAAAAAAAAAAAAAMci4ACgTtixZrcyUjPLbRceE6bHvrtbY+8bV2a7fdsP6PYeD5t/uuL9uz9XYV7JC4K8fb1VVFCkoLBADb96oEY9fIFZOeHRM19QVlrlgg1HZHWJKPNze5CPOt0z2K0xAAAAAJRv7Z4MZeYVldsuNsxfb17WRY/8sqbMdluTsjTynblKPJTr0u03QhAFtpLTDT5eFhXaHAoL8NHF3eN066AW2pGSres+X6Ks/PLn7K7hp8RU+RgAAAAAAAAAAAAAgLqBgAOAusFicanZa389rfg2jbRrXclvSj2Wq+EGQ2nhBoMRbnhr3vNq17uVrFarbEU23dH7EbfDDQaHb+nVG46Y8PGfKpi1SyNvHq6m7ePdHhMAAABApR9J9OOYvoqLCNTmA+UHtF0NNxhKCzcYjHDDpP+cqg6NwszqCflFNt369bJqCTcYPvp7m/m1XN6rsVpGB1fLmAAAAAAAAAAAAACA2sla0xMAAE9o3qmxWZ2hLC26NFXjdnHmfmBoQLXe+EdGPK9vnvtZBfmFmjdhsZITUz3Sr9+e8kMSWcv2aML/puqmjvfqiye+d7nvlL0HtWtDonKz89ycJYCa4pBFdjc3ow8AAFC+jo3CVC/Qp8w2XeLrmeEGQ7Bf9b5z4opPFum9WVtVaLNr8up9SskqqLax96Xn69N/dmjYG3P07l9bXL5uf3qetiZlKrfAVqXzAwAAAAAAAAAAAACcOKjgAKBO8PH10enXDNL4V34rtc3F957j3B94aT/tWLO7mmYn5Wbl6ctnftDa+RvVsktTj/UbNveAkq4o/Q2oAZvS5Zt0NKDwzQs/q0n7eA0edWqp16yas07jnhqvNX9vONxHsL+GXnmarn/xCoWE87ZVAAAAoCT+Pl66oEsjfT5/Z6k36OYBzZ3753RuqP/9tbXabmZmXpFe+2Ozlu9OU+P/D1nUBGMOrWJCNKJ9g1Lb/LMlRW/N2Kyluw6ZxyF+3rqwWyPdN6KNQv3LDpEAAAAAAAAAAAAAAGo3Ag4A6gSjKsKv70wp8TOLRbrqiUs07KoBznPn3HK6Jn/0p5ITUku9xuHw/DyX/7la+7Yd8Fh/IQuTldMqVFk96x/3mXdqvqK/3Xbc+Z/fnKSWXZvqh1cn6u+fFigvK0/NOjXRubeOUGSjCD19wSsqKrQVC2f8/uGfWjd/k96c+5yCQmtuMRSAirE5rObmDnevBwDgZDFp1V59vXBXiZ9ZLdL9I9rorI6xznNX922q8UsSlJSZX42zlP7amKQmEdVb0e7fjGoOzaKC9NHf2zV1zT7lFdl1SmyoRvdtojB/b9327QrZ7EcfyDLzizRuwS4znDF+TB8F+vLrLAAAAAAAAAAAAACoqywOR1Us4QWA6rNv+wHd0P4eFeYXlvh5XOtYfbbhbVmM1MK/rnv5mv9p3bxNznNGtYIL7xqprSt2aNGU5aoNjB/iWV0jlNEvRgUxAfLKLVLwshSF/ZMkr5yiEq8JCPFXbubRyg5H+Af7m4GH0lz73Chd+dhFHp0/AM9KTExUfHy8uX/nHyMU2sC9BYwZ+3P1zunTzf2EhATFxcV5ZJ4AANQlW5Mydebbc1VoK/lXLG0bhGja3UcD10dsT87SfT+u0ordac5zRrWCmwY014JtKVqw/aDqIuPJzM/bagYb/i3Ax6rcwuPPH/HYWe3M+wMAAAAAAAAAAAAAqJt45R2AWm/i+9NLDTcYEjfv0/IZq9V9eOdi52Obx+ituc9r26qdZqDBP8hfPUZ0NisUbFq6TStnrVV+boFqw+KgkBUHzc1VJYUbDGWFGwzTP59FwAGoReyyyO6wuN0HAAAo27j5u0oNNxg27s/Ukp0H1bNpRLHzzesH69fbTtXaPenasC9DQX7eGti6vvnnqS0jdfnHi1RQQgigtjPuVEnhBkNZ4QbDD0sTCDgAAAAAAAAAAAAAQB1GwAFArbdm7vpy26yes15BYYFaMm2l7Da7Og44Rd2GdjQ/a9G5qbkdUVRYJP9AX937ya369sWftWtdokvz8PbxUoPmMUrctFdVqc85PbRi5mrl5xwfvrB6Wc2vr6qkJKZWWd8AAABAbbV4R/lh40XbU2W1SHO3pMiopdm3RaT6NI80P+vQKMzcjsgvsinU30cvXdBRH8zZpq1JWS7Nw9fbqoZh/tqZmqOqNOKUGM3enKz8EkIKVjMgWXX2p5cdygYAAAAAAAAAAAAA1G4EHADUeharsYSmbDO/matvX/yl2LnmnZro6V8eMCs5GGxFNn37wi+aNHa6Dh1IN8/Ft2moKx67yGxbr36omnduoqXTV+njh75ScsLRxf7RjaM0+qlLNHjUqRrVaIyy0rI98IX9/6tNjxxaLBp29QDd8+EYFRUU6ac3ftfcnxea+216tdQ5t45Qu96t9PHD3+jHV39TVYhsVPyNswBObDZZZDOXGbrXBwAAKJvVSC6U47vFu/XaH5udx2/P3KKOjcL04ejualgvwDxnVGt4Z+YWfbt4tw5mHw40t4oO1p1DW6pNTKiiQnzVJiZEf21M0svTNupARr6zv7h6Abrv9NYadkqM+rw4U9kFNk8/kpgBjct6xuu58zoot9Cmj/7erunr9stmd6hb43CN7tvE/JqembReX8zfqaoQE+ZfJf0CAAAAAAAAAAAAAE4MFofDeG8gANReXz79g7569sdKXWuEGz5e87p8/X313KWva+7Pi0psd+1zo3TlYxc5j202m/76dq5+fnOytq/aab6B1dCiS1N1PK2dJvxvqjzh3NtGKCQ8WP5Bfjrt4j5q1DK23GuMub1+wwf688s5xc57eXuZAYwZX/9d6flc++woXfn40fsA4MSTmJio+Ph4c//WP85UaEygW/1lHMjRB6cf/pmWkJCguLg4j8wTAIC65L9TN2rsnG2VurZF/SBNvWuAvK0W3fjlUjO8UJLHzmqnmwY0dx4X2ez6efkefT5vhzYfyJT9/59JjIBBl/h6+mrhLnnCNf2amNUkgvy8NbJjrOIjyv+7RaHNrnt/WKVJq4pXt/PxsujsTg3164o9lZ7Po2e11c0DWlT6egAAAAAAAAAAAADAiY0KDgBqvZFjhuuXtycrOz2nwtfu235As76bZ1YmKC3cYPj62R91xvVDFBkbbh4f2p+mTx/5Vql7DxVrt23lTu1Ys1uX3H+u/vhiltJTMuWOBs1idMl957jUdseaXdq0ZJt8A3x165vX6uJ7z9GMr+YoLSVDjVrEasR1g7R+weZyAw4Wq0WOI6ujjtG0fbzOv+OMSn8tAAAAQF1lVC74asHOSlVN2Jacralr98nfx6vUcIPhtT826eLucQoP8jWP96Xn6dXpm5SSdbSKg2HNnnRt3J+hmwc00w9LEpWWWyh3tKgfrKv7NnWp7do96Vq/N0P+vl564YIOGjOguSas2GPOoVlUkC7pEad5W1LLDThYLHKGyI/VvmGoruzdpLJfCgAAAAAAAAAAAACgFiDgAKDWM0IHL0x+VE9f8IrSkjOKfRYeE6ZDB9LLvH7+xCXyCzi8SKg0RYU2zfjqb1324Hnm8fiXfzsu3HCE3WbXwklL9dnGt3Vjh3vNMERlpR04/lq7w6Gf1q/TN6tXaVNqioK8vFVvQ4Zs366Tz8HDi5uMr8eo/nDDf6+Ul5eXea4gv1Dv3PZxmePViwnTXe/fpJ/f/F1r/9lonjOqRwy5vL/ZV1BYUKW/FgDVz+GwyO6wuN0HAAAoW6N6Afrkmp669ZtlSsspHiioH+yr5KyCMq//c/0B5RXay2yTX2TXbyv36NpTm5nH783aely44YhCm0Nzt6Tqz3sH6PQ3/9ahf82pIlJLmLvN7tD4JQn6ZtEubUnKUpCvt7y9LErOPDqfQF8vXXdqUz16VjtZrYf/PpFTUKQnJ64tc7yYUD89fU57fTx3u5bvPvw8FOTrpQu6NdKDZ7Q1K0kAAAAAAAAAAAAAAOou/lUYQJ3Qvl8bfb3zfc36fr42LtwsHz8f9RjRWd/999dyAw6F+YXKSC2/0kLKnlTnfnlVEBI27dWeLfv11tzndHuvh5V1KFuV8ev/pmrUIxcoJDzYGW64e9oU/b55k7NNgc2mQy38ZL23oxq+v15+e3OUn1ugH1+fpML8It3+zvVmu7k/LSy3ooTDZteH93+pkIhgXfXExep1Vlc1OSVegSEBlZo/AAAAcLLo2yJSCx4eaoYQViWmy8/bqkFt6uvNPzeXG3AoKLJrf0ZuuWPszzgcICiy2TVx1d4y227Yl6HkzAL9eEs/nffuP5WqLmH4cM423TSguYL/P1hghBtu/XqZ/lh/4Jj5H//15RTY9N6sbSqyO/TIme3McxNX7lVmXlGZ4xn9vzh1gyICfXX3sFYa3CZarWKCFejLr7AAAAAAAAAAAAAA4GRgrekJAICn+AX46YzrBuvuD8fouhcu1xdPfq91844GAUrTtlcr1Y+PKrdd/bhI88/CgkJlpZUfWDh0IE3RjaOUm5mnyjLCF4+PfMl5PGHjhmLhhmPZg3yUdEXLYucmjf1DKXsPmvu7NySWO54RgNi/I0lblm3X18/9pFeve1/5OSW/FRbAic8uq0c2AADgmgBfL43q1VgvXdhR9wxvrRenbDDDDuXpHF9PsWHlh4obhPqZf+YU2swAQXmMCg8N6/krt7By4QZDXpFdN41b6jz+fsnuYuGG8nw+b6cOZh8OQGxNyiq3fUpWgRIO5pr37a0ZW/TQz6vLrW4BAAAAAAAAAAAAAKg7WLEGoE56787PtHXFznLbGZUeRt48TCOuHVxmO28fLw0bPeDwNb4+imwYXm7fsc2izYCCrajyi4kM6xdu1rTP/jL3v12zqsy2BY2ClNfkcLUHgzH2Pz8vMveD6wVVeOyEjXv01i0fVfg6AAAA4GT3+K9rtPlA+Qv6A3y8NKpnvC7pHldmO6MixHldGpn7wb7eigjyLbfv+IhAMxxgd8gtC7anmpUpDN8s3F2ha43qFH+s22/uhwb4VHjsjfsz9dTEdRW+DgAAAAAAAAAAAABQOxFwAFDn5GbnaeY3c8ttZ4QWHvn6TkU1ilT34Z008NK+pba9+unLFNHgaKjhzBuGltm3UbnBqArxz6+LZfVy/0fthHenmn9uST1cjaEsBQ0Cix3nZOaafxpfX2XmsmDiEiXtTq7wdQBqns1h8cgGAAAqJiOvUFPWHl7UX15o4d0ruioy2E/D2sWYW2kePKOtwv8/1GC1WsoNRDSNDFRkkI/+XL9fVg/853zc/J0uV2H4t6z8IvPPczo3lKUSc5myep+SM6ksBwAAAAAAAAAAAAAnAwIOAOqMvJx8M9jw2SPfuFQ1YeCl/XTaRX3MfYvFoke+uUvXPjtKEbFHgwxNTonTg1/8R5c/ckGxay++7xy16NK01L6TdqfosoY365Vr3pXdZpe7tq3cqcKCQoX6+ZXb1pp3ePHQEU3bx5t/Rjeur3NuOb3CYzsc0roFmyp8HQAAAHCyyc4v0s/LEvXSlA2yuVA24eLujTT0/0MNRmjhg6u66c6hrRQVfLQ6Q9sGIXp7VBfd0L9ZsWtvG9RSrWOOVm/7t52pOer14kw99PMatys4GFYlppt/hgZ4V/ja1jEh5p/NooJ0affDzycVYXM4tDoxrcLXAQAAAAAAAAAAAABqn4r/qzQAnICmfDxDHz34lbLTc1y+Zv7EJSrIK5Cv/+HFQ15eXrry8Ys06uHztW/7AXn5eCm2WclvUA0KDdTrs57WF098rwnvTZNKWDBk9O0pRuUFL28vnd26jT5ctqT0drlFClx/dOFP/fhI9T67m/P4trevU0BIgH57d6pys/JcHn/z0u0afFl/N74CADXB7rCYm7t9AACA8n25YKdembbJWa3AFZNW79PT53aQz/9XWjP+vHd4a/1ncEslHsoxj+MjildoOyIs0Ec/jOmrV6Zv0reLdpfYJq/Q/bD1ET5eh/9OcHanhvri/6s5uMKoJHFaqyjn8QsXdDDn/vXCXcopKD+YfsSaPenOMAgAAAAAAAAAAAAAoO6iggOAWu/vnxbozTEfVijcYMjNzNPS6auOO28ECeJaNyw13HBEUFiQoptElxhu8LQ+Z3eX1WrVtV26qn5gUKnt6v25R9b/X8QUGBKgR7+5ywxuHGH0ccOLV+j7PR/p6V8eUOsezV0aPyis5EVVAAAAAKRflifqyd/WVSjcYMjILdKCbanHnff1tqp5/eBSww1H1Av0VcMw/2r5Fgw/pYH5542nNVNE0NEKE2UJ8ffWW6O6mhXzjvD2surRs9pp4aNDNfaq7moXe7i6Q3mC/HhHBwAAAAAAAAAAAACcDAg4AKj1vn7up0pfm5WW7dbYa//ZoKpmVG+49IHzzP2Y4GB9d/El6togtlibIKu3Oq3PV/yKdEXEhuucW0fovaUvq0P/diX2aYQf6kWHmZUZXNGwOW9KBQAAAEricDj0v7+2VvrmZOQVunVjF+88pKpmVG+4+bTD4ei48EB9d1MfdYoLK9YmyNfLrNZghBpiQv10bb+mmnzHaeoSX6/EPkP9fRTq760N+zJdmkN8OKFrAAAAAAAAAAAAADgZ8Po7ALVa4ua92rFmd6Wvb9yukdvhg6o2eNSpat+vjfO4eXiEfr7scq1PTtLm1BQF+/qpf+PG8vf2kT50vd+Z38x1qV1IRLD6X9i7MlMHUMMcDqvsDqvbfQAAgNJt3J+pHSmVD063jA526/Z6HS2OUGUu7h6njscEGto0CNHE//TXmsR0bU3OVIifj05rHSU/76PV41wxYeUel9rVD/HT0HbRFZ43AAAAAAAAAAAAAKD2IeAAoFbLzy2o9LUtuzZT216t3Bq/54gu+ueXRapKW5YfX2UhIzVTqz6Zp7k/L1Bedr4WdWlqVm3oNOAUl/vNPJTlUrv//O8G+fr7VmjOAAAAwMkit9BW6Wu7NwlX2wahbo0/sHV9zdqUrKq0Zk/6cedSs/I1e1OSpq3bb96DjqvDNLpPE/VoGuFyv2k55VevMPIbz53XXj7VEC4HAAAAAAAAAAAAANQ8Ag4AarWGLWIUGBKgnMzcCl0XEh6kBz6/3dwvyCvQqtnrlJdToJZdmiq2eYzL/Qy58jR9/dxPSk5MVVU5dKD4YqKNi7foodOfU07G0a85YdNezR4/X1c+fpGufXaUS/3GtYott03/i/poyOX9KzFrACcCmyzm5m4fAACgdC3qB8vfx6q8QnuFblNEoI9evqijuZ9XaNOC7anKL7SrfcNQxUcEutzPRd3j9N7sbUrOzK+yb1NKZvFg+ZKdB3XNZ4uVU3A03LE9OVu/rdyrB0a00e2DW7rUb7P6QeW2Ob9LI53RofxnFwAAAAAAAAAAAABA3cDr7wDUagHBATr9mkFltulxRhezWoO3j5e8fb1lsViUeShbT1/4qh4/+yWNihujR896Uc9e/JquaXWHHh35olL2uBZY8A/000vTHlODZtEutbd6WXXlYxepbW/XFvwYGjSt79xP2XtQ9w58sli44VjfPP+zls9Y7VK/Z9441JxPWXas2aVDSce/rRUAAADAYWEBPuYi/LIMaRuttg1C5G21yNfLYsYHD+YU6oYvlujazxer94szdd3nS3TL18s08NVZunHcEpcDCyH+Pvry+l5qGObvUntjDncPa2UGKVwVFx7g3N+TlqvLP1pYLNxwrFenb9LiHQdd6vfyno1lKSdLuW5futJyKl+5DwAAAAAAAAAAAABQuxBwAFDrXf/i5Tqlb+sSP+sypIOe+eUBjXntanl5e6mooEgOh8P8bN/2A1o0ZbkyD2Y52xufLZm6QvcNflpZadkujd/klHh9sekdPfDF7eYYZTHmce1zo/TyH0/q3NtGyMev/EI63YZ3du6/eMVbKswvkt3Hqowe9ZVyflOljmys/Lijbz797b1pLs07Oj5Kt7x+TZlt9mzepzdvHutSfwBOPHaHsVnc3Gr6qwAA4MT36Mh26hQXVuJng9rU19iruuuRs9rJarGowObQkf+87jqYq9mbkpWeW+hsb/y3d8aGJF3+8UJl5xe5NH672FDNeXCwXrqgo6zlBAaeOa+97h7WWt/d3EdX9m4s33JCz4aBbY6Grm/9epmKyvkLwpcLdro076ZRQXr4jLZlttl8IEuPT1jrUn8AAAAAAAAAAAAAgNqPgAOAOlHF4dWZT+mej27RKf3amBUPOp7WTg98frtemvqYWbXh9Rs/UH6u62/93Lt1v6Z+MtPl9kaw4fSrB+mGl64stY1RReKsm4aZ+4EhAbrj3Rt12kV9yu07LyvP/DM5MVVr525UbstQ7Xqim5KvaKn0AbFKG9pIifd20r4b2srua9Wq2ev00QNf6qc3JunQgbQy+77gzrMU37ZhmW0W/b5M+3cmlTtPAAAA4GQV6u+jH8b01fPnd1DXxvXMigd9mkforcu66JOre5ihg4d+Wq0Cm93lPrcmZemnZYkut/fxsury3o11z7CSw9+GzvH1dHH3OOecX7igowa1PRpeKE1W3uGgxa7UbK1OLL/C27ytKXpxygZ9+s8OpWaVXYlizMAWio84WiGiJNPW7ldSxuHnIgAAAAAAAAAAAABA3Vb+q8MBoBbw9ffVWTcONbd/W/rHKu3fUfEF+jO/natL7j+3Qtdcct85CgoN0Dcv/Kyk3SnmOR8/Hw26rJ9uffNa+Qf6FWufk5lbbp9H2uxcl6CCcF8zyODwO75SRE77cCWNaiHrl1v04+uTzHOfPvKNrnriEl35+EWl9r9ny/4yx7fbHdq8dJsaNI0ud64AAADAycrfx0tX9Wlibv/25/oD2l+JBfoTVu7RNf2aVuiaO4a2Uligjz6YvU370g+P6edt1XldGuqJs0+R37+qzuXk28rtM+P/Aw6b9me6NIdDOYX66O/t5v7L0zbqvuGtzSBDSQqK7Eo4WPZzkVExYu3edA0J9XdpfAAAAAAAAAAAAABA7UXAAUCdt29b2Qv4S5N5MKtS1xlVGs64YYgZCjCqRjRtH6+wqNAS28a1MqonLCuzv0atYp1VH9JPa1BiuOGI7E6RKoxKkE/K4YVMRYU2ffHk96oXHaqRNw8v8RofX+9yq1sYIQ0AtY/dYTU3d/sAAADuMSofVEZ6bmGlrru6b1Nd2buJViemmQGCNg1CVC/Qt8S2zaKC9M/Ww+Hs0jSPCjL/DPar+K+RjPFfmrpR9UP8dGG3w9UjjuVttZibEWIoi69X6c9BAAAAAAAAAAAAAIC6gxVrAOq80MiQSl0X37ZRpce0Wq1q26uVOg9sX2q4wTDy5mGyWCylfu7l7aUzrh+iDYu26I8vZyv3lIhyBrYop229406Pf2WCHI6SFwx1GtS+zC4DQwPUZUiHsscFAAAAUKrwUsIF5WkeFVzpu+pltahr43D1bh5ZarjBcEXvxmX24+tt1UXd47Rs10H9tnJPpefz/qytJZ63Wi3q1azs55zwQB/1bBZe6bEBAAAAAAAAAAAAALUHAQcAdV6fc7oruN7hN45WxMibhqmqxbVuqOuev7zEz4zgw21vXqsvHv9Od/Z9VFM+miG7Cz+1HV7HByb2bU/SZ49+W+zc2nkbdUefR7Rk6ooy+7vgzrMUEORf/sAATjgOWWR3czP6AAAA7jm9fYyCfCtegeCK3vFVfuvbxYbqzqGtSvzMapGePbe9np20Thd9sEDjlyZWepytydl6e8bmYucWbEvVOf/7R/O3pZZ57Y2nNZefNxUcAAAAAAAAAAAAAOBkQMABQJ3nF+Cna58bVaFr2p/axgxGVIfLH7lA9312q6IbRznPRTWK0B3v3ajc7HxN+3yW87z/9sxy+/PfUXKb71+eoE//P+SwfsEmPTT8WW1cXPJbVI9Uj7jo7pG65pnLKvgVAQAAADhWiL+P7hpWcoigNP1aRGpAq/rVciPvHd5aL5zfQbFhR4PNDev566ULO2p/Rp4mrNzrkXHenLFFb8/YYu4v3J6qaz5brDV70ktt7+Nl0S0DW+i2QS08Mj4AAAAAAAAAAAAA4MRncTgcjpqeBABUh6mfztRXz/6o5ITDbwe1elnVacApcsihVbPWHdc+tnmMXpr2mBq1jC12vrCgUPN/W6rETXsVHB6kAZf0VXh0WKXntXHxFj165gvKPJRd7LzFIgWFBSkr7ej5vPgg7bmr4+FXqZbAb0em4v63ttSxjK/5q+3v6eWr/6fVc9aX2q5Zx8Z6ccqjimoUWamvCUDNSUxMVHz84bc9XzLpEgXFVLyCzbGyD2Trx3N+NPcTEhIUFxfnkXkCAHAy+nrhLr3711YzNGDwtlrUu3mEimwOLdpx8Lj2zaOCNO76XoqPCCx2Pr/IpunrDmhXSrbCg3w1smOs+WdlLdl5UNd/vkSZ+UXFzhvz8/exKivfJk8xQgvzHx6qm75cqpUJaaW269AwVJ9d21PRoVSTAwAAAAAAAAAAAICTCQEHACcVm82mjYu2KiczV03bxyswxF/XtLpD6SklVz1o1CpWn65706xmYFgybYVeve49HTpw9C2jPr7euujec3T9C5fLYqQSKqCosEhXNbtNqXsPuXxNet9opVzU/LiQg09SrhqOXS/vtIIyr7/k/nP142sTy2xjBCF+Tv5MwfXcWxgNoPoRcAAA4MRWZLNrRUKacgpsatsgRD5eVg16dZYy8oqHC45oHROsaXcNkPX///7/x7r9euSXNUrNPvr3fl9vq1nl4O5hrSs8n7xCm07971/F+qtqtw5srg/mbC+zja+XVaueOl0BvoefxQAAAAAAAAAAAAAAJwfvmp4AAFQnLy8vte/Xxnn8y9uTSw03GPZs2af5E5fqtAt7a+uKHXrqgldVmF9YrE1hQZG+/++vmvPjfF31+MUaNOpU+fr5uDSff35ZVKFwgyFsQZICtmYoo1+M8uOCZS2wKWj1QQUvT5G10F7u9cm7U8ptY7fZlXkoi4ADUMvZHVZzc7cPAADgOd5eVvVsGuE8/mD2tlLDDYbNB7I0Z3OyBreN1vLdh3T7t8tVaCtejLOgyK63ZmzRbyv36s6hLXV2p4ZmcMIVv6/eV63hBsPetMMVLMpSYDyT5BUScAAAAAAAAAAAAACAkwwr1gCc1FbMXFNum+V/rjL/HP/qb8eFG461b9sBs7rD/YOfUnZGjkvjb1qyTZXhm5ynqN92qdF76xT78UaFLkpyKdxgiG8X56xIURr/QD+Fx9Sr1NwAAAAAuG7e1vIDyHO3pDjDEP8ONxxrR0q27hm/Sld+vEg5BaWHJo61OjFN1a1VTPC/C9IdJ8TfW/UCfatrSgAAAAAAAAAAAACAEwQBBwAnNYfD4UKbw3/O+3WxS31uWLhFY+/5wqW2vv6uVXrwFIvVom7DOqrvuT3KbDf48v5myAEAAABA1XLIhWcSOVRks+uvjUku9bl450H9d+pGl9r6eVfvr4a8LNKAVvU1sHX9Mttd1C1OvtU8NwAAAAAAAAAAAABAzeNfigGc1LoM7lBum5V/rdHoFreXWb3h3/767h9lHMws9XNbkU2HDqSp11ldVZ0cdofuOe0J+fn7KrJheIltYpvH6NrnLqvWeQGoGnZZZHe4uamc1ysDAAC39GsRVW6bWRuTNPC1WbLZyw9DHPHT0gRl5ZdexaHQZldyZr4Gt4lWdTIKUJz3/jxFBvspKrjkCg3N6wfpzqGtqnVeAAAAAAAAAAAAAIATg3dNTwAAatKI6wbr2xd+Vuah7FLb7Nm6v8L9FuQVatvKneo6pKPzXMreg5r26UwtmLRMuzckKi87X94+XgpvUE+H9qepOs38dq4ue/A8ZaXl6K9v5yo3K09BYYEafvVAXfHYRQqPDqvW+QAAAAAnq8t6xmvs7G3KLCOMsDM1p8L95hTatXFfhno0jXCe25eeq+8XJ2jmhgPampylvEK7fL2sigz2VWpWgaqLUSXvp2WJunNISx3IyNfEVXuVW2hTWICPLukep9sHt1R4UMnhBwAAAAAAAAAAAABA3WZxOIx/VgaAk9f6BZv0+Dn/VebBLI/2e9pFffTkj/eZ+18+/YO+eeFn2W12nSjCY8L07e6x5n5OZq6CQgPl5e1V09MC4KbExETFx8eb++dPvFyB0UFu9ZeTlK0J535n7ickJCguLo7vEQAAHrZwe6pu/nKpMvJKDzlUxkXdGun1S7uY+y9P26iP5myX7QT6NVCjegH6+8HBsjscys4vUoi/j7ysVI8CUDt98cUXuu6668ptZ7VaFRQUpEaNGqlLly4655xzdOmll8rbu+6+i2j27NkaPHiwud+kSRPt3Lmz1Hs3cOBAsz0AAAAAAAAAADh51d1/NQEAF53St42+2v6eZnz1t1bNWSdbkU2Lfl9u/umOub8s1L0Dn1R6SqZZseFEc+hAulllok3PlgqNCKnp6QCAtmzZYi5s+fvvv839Q4cOyc/PT/Xr11ePHj00cuRIXX755fLx8fHY3SoqKlJISIjy8vIqdF1YWJjS0qq3+g4AoO7q0zxS/zw8RD8tTdTSXQdVaHOYVRbsbmYRflu5VwmHcszqDNuSS69aV1P2pOVqa1KW2jQIUb1AKjYAODnY7XZlZmZq48aN5vb999/rlVde0eeff66uXbvW9PQAAAAAAAAAAABqHAEHAJDM6gXn3X6GuRkhh/kTlrh/XxzSmrkbTuj7azuBKkoA8DxjUaTd4d5bkN1dWOmKrKws3XXXXeaCnn8XFysoKDAX/2zfvl0//PCDHn/8cY0bN8759k93bdiwocLhBgAAqkKov4+u79/M3GZvStKf6w+43WeR3aHFOw7pRGarjr9sAEANGDNmTInhhvz8fKWkpGj9+vXOSgarVq3SkCFDtHjxYrVq1aoGZgsAAAAAAAAAAHDiIOAAAP/iH+h3UtyTkPAgtejcpKanAeAkl5GRoUGDBmnFihXFzhuVG6Kjo5WTk6PU1FTn+YSEBA0fPlxffvmlrrjiCrfHP3ZcX19fxcfHu3RdaGio22MDAFCaAB+vk+LmRAX7qWV0cE1PAwCqxNixY8tt88cff+jKK680Aw9GhbhLLrlEy5cvl9Vq5bsCAAAAAAAAAABOWvxLCQD8S6vuzRXTpH6Z98Xm76X82EAVhfl69P4FhgZW2/dj5M3D5RdwcoQ5AJy4rrvuumIhg169emn69Olm1Ybdu3ebC32Mt5o+8MAD8vI6vNjTZrPp+uuvNxf+uOvYsY2qEFu3bnVp88TYAACUpluTcEWH1Mzf1YN8qy9cMbpPE/l686spACev008/XV988YXz2KjkMHny5BqdEwAAAAAAAAAAQE3jX5EB4N8/GK1WXfHYRSXel6JgHyVf0lIJj/XU3ru6KOGRHto7pr1ym7n/Ju/QyBDlZOSU+rmXt+cWGvW/sLeuefYyj/UH4MRkd1g9slWVv//+W7/88ovz+LzzztM///xjLvLx8fFxnm/SpIleeeUVTZgwwRlyyM/P13333efRgEO3bt3c7g8AAE/w8bLqtkEtqv1mRgX7KrvAVurn3l4Wj411bueG+s+Qlh7rDwBqq5EjR6p58+bOYwIOAAAAAAAAAADgZOdd0xMAgBPRWTcO1cF9B/XVMz/KbneY52yB3tp3SwcVRQUUa5vfLEz7bwhRgy82KGBreqXGs3pZFRDsr4zUzFLb2Ipsim4cpaTdKRXuv1GrWDVs2UDhMWE6/ZpB6jywfaXmCQCe9Mknnzj369Wrp3HjxhULNvzb2WefrTvuuENvvfWWeTx79mzt2rXLDEBU1sqVK537Xbt2rXQ/AAB42rWnNlNSZr4+mL1Nh59Iqpa31SIva9kBhiKbQ7Fh/tqXnlfh/lvUD1J8RKBiQvx1cY849Wwa4cZsAcA1mXmF2p+eZ4a3jAo1DcL8FeJf+jNHTenYsaO2b99u7hsV7AAAAAAAAAAAAE5mBBwAoBSr/97gDDcY0gc0Oi7ccPSnqVWp5zRT3JtHF8q6qnnnJrrhxSv1xk0flNu2WYd4ZaVlKycjt0JjtO3VUg9/dWeF5wagdrM7LObmbh9VZcqUKc79UaNGKSwsrNxrrrvuOmfA4UgViNGjR1dq/B07dig9/WgwjYADAOBEs2jHwWoJN7RvGKJHzjxF//luebltO8WFKS23ULllVHooSY8mEXr54k5uzBIAXONwOLRge6q+WrBLf6w/INsxv9sxglwj2sfoqj5N1Ld5pCyWqnveqYgjleoM4eHhHuv3wIED+vzzz81nr/Xr15vPP8HBwWrZsqWGDBmiMWPGFKseUZo9e/bo008/1bRp07Rt2zYdOnTIDKm3aNFCI0aM0E033aRGjRqpqqWkpJjBeGMeq1evNucRGBio+vXrq1evXmY1jEsvvVTe3vyzBwAAAAAAAAAAtRm/6QeAEmxduUMrZq4pdi6ze/0y71VhTKDy4oPln5BV+g9dX28z0BDRoJ46DWyv7sM7qXnHJs4qC6l7D5U5xqIpK9SgaXSFAw7dhrGQCMCJZf/+/UpNTXUeG4tRXGEsoDnWvn37Kj2HFStWOPdDQ0OP6xsAgJq0bNchc/M0Xy+L2jUMVXSwn/q2iNKA1lFqGR1iftY0Mkgrc9LKvH76ugNqGOZf4YBD/1ZRbs0bAFyxdk+67v1hpTYfKPl3M0bYYcqa/ebWOiZYb1zaRR0alR+0rmobN2507nfq1MkjIY9XXnlFTz/9tPLyilfdSUtL09KlS83t7bff1vPPP6/777+/1L5eeuklPffcc8rNLf67qOTkZHNbuHChOdZTTz2lhx56SFVlwoQJuuaaa5SRkVHsvBHaMLatW7fq22+/1ZNPPqkff/yRADsAAAAAAAAAALUYAQcAKMHyP1cXO3ZYJXuIb7n3yhZadpuigiIzoPDE+HuP+2zkTcO0es76csc4uL9ii5yiGkVo0GX9KnQNgLrBLou5udtHVTCqNcyYMUOJiYnm20B79uzp0nXGGzqP5efn55GAQ5cuXU6Yt7cCAGD4Z0tKldyIAptDLaKC9cZlXY777IpejbUyoeyAg+FQTkGFxowLD9AZHRpU6BoAqKi5W5I15qtlynExgGWEIC79cIE+HN1dp7Uq+6UWVWnmzJlmdQWDr6+vWbXOXUZlho8//th5bPTbv39/NW7cWHv37jVDCUZQID8/Xw888IAKCwv1yCOPHNfP9ddfb1aAOCIiIkKnnnqqWTHBqKbwzz//6ODBg2b44eGHH9b27dv14YcfytPmz5+viy++WDabzTmPfv36KTo6WpmZmWZAZM2awy8qMSpMDB48WOvWrauWqhIAAAAAAAAAAMDzrFXQJwDUeg5H8WOLXfLKKH8RT6AL63z+/nGBtq7Ycdz5QaNOVf8Le5d7fUFeoRo0re9yuOHFKY/K17/8cAYAVKeAgAANHTrUfAPno48+qg4dOrh03V9//VXsuEmTw1Vw3A04dO3a1Xzr57vvvqsRI0YoJibGXARkLJjp27evnn32WXMhEAAA1cWhfz2UuMjPu/xf9fyyYo+2JmUed/7Cbo00pG10udfnFtrVqF6AS/Mx2n1xXS/5ePErKABVW7mhIuGGI4z2xnXG9TVh4sSJuvTSS53HL7zwgho0cC8QNm7cuGLhBiMYsHv3bjNIYYQVpk+fblY7uOCCC5xtnnjiCWfI4oi33nrLGW4wno1effVV85nImPOnn36q3377zayo9/LLL8vLy8ts99FHH1VJwOHBBx90hhuMAIgxj0mTJpnz+OGHH7R69Wrz6woODjbbGM92RuUJAAAAAAAAAABQO1kcRr1qAEAxm5Zs1X96F39z3cHT45U+JL7UOxWaYVPki4tcupPDRg+Ut7dVW1bskF+Ar049v5fOuGGIgsICdUH4tcrNyivz+ptevko71u7W7O/nqajw/99eF1tPnQcZC4Qd5lvIuw7tpMGj+skvoPJvNwdQ+xgVEeLjD/+sGvHL1QqIPrzAo7Jyk7I0/cIvzf2EhATFxcWpphh/be3Ro4eWL19uHvv4+Cg5OdmsBlEZxts8j4QWhg0bpmXLlh1XIeJYgYGBeuqpp8zFNQAAVLVF21N12UcLK3RNoK9VOQV2l9pe1iNONoe0bm+GAn29dGaHBrqkR7y53+Gp6covKrufJ89upxUJ6Zq6Zp+K7Id/tdQgzF+9m0WYgXGrRRrQur5GdoqVn/fhha8AUFXPCSPe+tusyFBZbWJCNO3u09yq6vbFF18Uq75gVFEoiVEtITU1VatWrdLOnTvNc0ZAwKig8Nxzz8kddrtdTZs2NZ/dDBdeeKF++umnEr8uo3qDEeY+Evw25jt27Fhz36jKYFR7yM7ONo/Hjx9fLIjxb1999ZWuvvpqcz8qKkq7du0yn5+OmD17tllV4UhI/cjXXdK9GzhwoNn+iJycHAUFBTmD8sYzW2mV/Ixgx80331zqOAAAAAAAAAAAoHbwrukJAMCJqE3Plup4WjutmbvBeS5s7l7ltI9UYczRf6A9wlJoU+B3R9uWZ8ZXc4odr1+wWb++M0WvzHhSLbs105q/y+4rP7dAe7bsc4YbohtH6ZL7z9V5t5/h1j/GA0BZjLdzlqcqAxDGYpsj4QaD8cbRyoYbkpKSilVkmDFjhnPfWFxkvDXVWEhzbODBOH7ooYe0bt06cwEOP28BAFWpd/NIdYoL0+pE198q7mq4wTB+aWKx42W7DunzeTv17U291bZBiFaVM25Wvk27UrOd4Ya48ADdOqiFruxd+epKAFAZC7anuhVuMGw6kKmF2w+qb4tIj30TKlLJwAgH3HfffW6PuWjRIme4wdvb26xQV9pzixESuPfeezV69Giz7ebNm4sFBY6EG4zAQVnhBoPRx5tvvmmGJVJSUsxAxLFhD3ccmceRMEteXl6pAQdjnsazXvPmzc3NaM9zGwAAAAAAAAAAtY+1picAACeqx8ffo2YdGzuPvXJtiv1wrUIW7pcl/3CwQHaHAjYdUuyH6xSwI8Ot8VL2HNSzl7yus28eXma7sPqh+vLpH7Rh4RbnuaTdKXrvzs/09i0fuTUHAChLr169zOoQZW1VZfHixebimyOMBTjuvN105cqVx50z3l46ceJEc8GMUQnDeGvpjh079MQTT5hvCj3iyy+/1DPPPFPpsQEAcNWHo7urpZvVmCpiT1qu7vhuha7offQ5qCT1g/30xp+bi4UvEg/l6rFf1+qZSeuqYaYAcNTXC3edUP1Uxueff65mzZrpo4/c+72O8TxzxNChQxUbG1tm+0suuUSbNm1Sbm6u/vrrL+f5P/74w7l/5plnujT2yJEjnfuzZs2Sp9SvX1/R0dHmvvGsds4552j16tUltjUC8I899pguv/xy9e7dm3ADAAAAAAAAAAC1FBUcAKAUEQ3C9cGyVzRvwmK9e8enOnQgXV45RYqasF0Rk3fKFuora26Rec5Tdq5NUL2Yehp4aV/N+WHBcZ/7B/opK+3om+v+bfLHMzRs9AB16N+O7ysA2R0Wc3OHu9d7glEx4eyzzzYXsxzx4osvqnXr1pXu03iz6LHuvPNOvfHGG2b1hmM1bdpUzz77rM4991wNGzZM6emHF3I+//zzuuKKK9yaAwAA5YkNC9DUu07TtLX79eRva3Uop7DKb5oRWnjy7GANPyVGf64/cNznwX7eSs3OL/V6owrEhV3j1DGuclWWAKAiMvMKNX3d8T+rKmPauv1mfyH+Ph7pz6geUJKioiJlZWVp9+7dmjt3rvkcsn37dqWlpWnMmDFKTk42F+lXxvr16537PXv2LLe9UQmhpGcaoxLEEVOnTjWD3+XZuHGjc3/NmjXyJON57fHHHzf3jXvWuXNntWjRQsOHDze3IUOGqF69eh4dEwAAAAAAAAAA1BwCDgBQBi9vLw24uK8at4vTbd0fVGHB4TCDtdAua+rRhbaetHnpNj367d3qOqSjJn4wXTvX7JZfoJ8GXtJXIZEh+vG1o2/jK8mUT2cScABQZVUUynsDqKcZb+Y8/fTTzUU+R1x44YV64IEH3Op31KhR5kIeYyGREZx49NFHy3y7Z48ePTR27FjzTaAGm82ml19+WZ9++qlb8wAAoDw+Xlad07mhmkUF6YL356nQVvKCWU+HHD64spu+W7xbXy/crc1JmQr29dbZnWMV4O2lz+bvLPP675fsVse4jlU+TwDYn54nm90zPxeNfg5k5Hks4FAaoxqdsRjf2Dp16qSbbrpJ5513nqZNm2Z+/uSTT+qMM85Q9+7dK9z3gQNHwx4NGzas1PyM8EV29tGXa8yZM8fcKiI1NVWe9PDDD5uhifHjxzvPbdu2zdyM5zQjqG5UbDCqO1x22WVmNQwAAAAAAAAAAFB7EXAAABc0bR+vO967UW/cNLbK75evn4+sVqtG3jzc3Iw3/h1ZdPu//3xS7vUHdh5dBAzg5ObpCg5GuCEuLk7VxXgzp7FA5UjVBMPAgQP19ddfu913kyZNzK0ijIUyTz/9tDZt2mQeT5kypdjPaAAAqlKHRmF69Kx2embS0bdzVxVfb6u8vawa3bepuR3737uHflpd7vUJh3KrfI4AYMgusHn0RmTle7Y/V/j6+uqbb75RfHy8cnJyZLfbzaoOxrmKOjZYEBgYWKn5HPv8VVmZmZnyJCPA8P3335vPZP/73//MwIVxn44wAujz5883NyO8fuWVV+qtt95SZGSkR+cBAAAAAAAAAACqh7WaxgGAWu+M64eobe9WVTqGsWio77k9jjt3RHhMvXL7qBcdViVzA4DqZCzmGT58eLHFNYMHD9bkyZMVEBBQI98M4+fxiBEjnMf79+9XYmJijcwFAHByurpvU50SG1qlY3hZLRraLrrUZ5KoEN9y+4gKLr8NAHhCkK+XR29ksJ9n+3NVRESEzjrrLOdxRSsmHBEUFOTcz82tXNjs38GIqVOnmkG3imyHDh1SVbjgggv0119/mZUqjGfG6667Tk2bNi3WxhjfCMUblQDz8/OrZB4AAAAAAAAAAKBqEXAAABcZi3pe+P0RdRveqcru2SmntlZs85hSPx961WmyWst+U/jpVw+sgpkBqM0VHNzdqpOxGOXJJ5/UVVddVWwxyrnnnmtWTDh2wU5NaN68ebHjpKSkGpsLAODkY4QPxl3fS32aR1TZGH2bRyg2rPQw4YXdyq/mdLELbQDAExqE+Zs/Gz3B22pRTKi/ToRnjco+ZxxbsWDfvn0uXfPvIES9evXk7e19Qj/zREVF6YorrtBnn32mHTt2aMuWLWbVizZt2jjbLF++XOPGjavReQIAAAAAAAAAgMoh4AAAFRAaGaKXpz+hsSte1cX3niO/QD+P3r/M1KwyP49tFqML7z671M97ntFFPc/s6tE5AUB1ycvLMxepPPfcc8XO33DDDfr555/l719zi42O+Hf1CJvNVmNzAQCcnOqH+On7m/vq9zv66/pTm8rP27O/2jmYU1Dm5y3qB2t0nyalfj78lBj1axnl0TkBQGlC/H00on3pL4qoiBHtG5j91ZSsrKxiC/gro0uXLs79ZcuWuRQwb9iwoRmM6NGjhxkWMF7w0blzZ2ebhQsXujT2okWLNH78ePPP5ORkeVJGRoaWLl2qzZs3l/h5y5Ytdc8995hfc4cOHZznZ8+e7dF5AAAAAAAAAACA6kHAAQAqoUXnphrz2tXq0L+tR+/f7g17tH31rjLbGOPe/MpoRcSGO88FhgboortH6ulfH5TVyo92AIc5jCoOsri1GX1UB2PByhlnnKHvv/++2PlnnnlGn3zySbE3iHpKQUGBEhMTdejQIZevSU1NLfUNqQAAVKcOjcL05Dnt1Tm+nkf7Xb83UztSssts8+x57fXAiDaKCvZ1ngv199aYgc31/pXdPDofACjPVWWErmqin8qaM2eOc/+UU06pVB+DBg1y7s+YMUMHDx4ss/38+fOVlpZmttu4caPi4g5X4Bk6dKizjRFayMnJKTcocfPNN2vUqFHq06eP7rzzTnnKgw8+qLCwMPXs2VMPP/xwmW2Nin8jR450HmdmZnpsHgAAAAAAAAAAoPp4fqUYAJwkknYna8WM1R7vd9f6RO3dtl+BoYHqNKCdvH2O/1F9yf3n6sK7R2rrih0qKrSpeafGCggu/lZxAKgtjAU1p59+upYsWeI85+vrawYbRo8e7fHxjFBDx44dzXENDz30kP773/+6dO2xb0ENCQlR06ZNPT4/AABcZQQRluwse/FqZWzcn6FN+zMVGuCtXk0j5O1VPERtvN379sEtddNpzbVub7rsDumU2FAF+HrxzQNQ7fo2j1TrmGBtPlB2VcyytIkJUZ/mEaopP/zwg9atW+c8vuyyyyrVz1lnnaXGjRtr9+7dys/P1wMPPKBPP/201FDC008/XWxMH5/DFSxuueUWvf7662bFOiP8cNddd+njjz8uddx3331Xq1evLlaFz1P69evn3J82bZrWr19fZgBk+fLlzv22bT37YhIAAAAAAAAAAFA9eM03AFTS5mXbZTdW8niQxSK9eMVbeuai1/TQ8Gd1ZZNbNWnsHyW29fL2UpueLdW+XxvCDQBqrdzcXPMNm8eGG4y3cxoLV6oi3GBo1KiRioqKnMfTp0936br09HT98cfRn8kDBw6UlxcLOQEANWd1YpocHi63ZDyT3Pr1ct3y9TJd8fEi9X95ln5YklBiW19vq7o2Dlf3JuGEGwDUGCN09calXRRYyZCVcd3rl3Y2+6luRoDACHZfe+21znMtWrSo9LOQ8Xzy0ksvOY8/++wzjRkzxqyYdyzj2BjTqPJgCAgI0COPPOL8vFmzZmao4QhjjldddZWSk5OL9ZOXl2eGxe+55x7nOaMy37Bhw+Qp55xzjjmfI8+PxvHff/99XLvCwkI99thj+vPPP81jo8KpJ4MWAAAAAAAAAACg+lDBAQAqycfv8FvtPOnfi5MO7k/TO7d9LFuhTeffcabHxwNQt9kdFnNzt4+qdMcdd2j+/PnO4+joaDNE0Llz5yob01i4dPbZZ+v77783j1euXKlZs2Zp8ODBZV733HPPKTMz03lsLBQCAKAm+f6rskJVPJPsz8jTgz+vls3h0OW9Gnt8PADwhA6NwvTh6O4a89Uy5RTYKhRuMK4zrvc0owpCaYzqCgcOHNCiRYvMCglHBAcH66uvvpK/v3+lx73iiivMft955x3z+KOPPtK3335rBrRjYmLMkMLs2bOdzzbG89HYsWPVsmXLYv28/PLLWrt2rTPk/c033+inn35S//79FR8fr6SkJC1dutT88wijj3HjxsmTjNCGEbAYMWKEGVTfvn27+bW0b99erVq1UmRkpPk1Gc+VKSkpzuuefPJJKjgAAAAAAAAAAFBLEXAAgErqPKi9gsIClZ2eU+X38Munx+vMG4fIL8CvyscCgOry888/69NPP3Ueh4aGmm8Q7dixY5WPffvttzsDDgbjzZ7z5s1TbGxsie0///xzvfHGG87jfv36mZUnAACoSae2ijIX51ZkMW9lvf7HZl3cPU4+VRCqAABPOK1Vff0wpq/u/WGlNh/IKrd9m5gQs3JDVYQbDB9++GGF2nfr1s0MI3Tv3t3tsd9++20zhPDUU08pJydHWVlZmjx58nHt6tWrp48//lgXX3zxcZ95e3ub1zz88MNmWMKokGAEM2bOnFnimEYA4csvvzRD6542ZMgQ/frrr7r++uudVSTWrVtnbv9mhESefvpp3XfffR6fBwAAAAAAAAAAqB78qzQAVJJ/oJ8uuvvsarl/mYeytXjqymoZC0DdYdfhCg5ubaqaCg7GmzcfeOCBYuc+++wzj4QbjDeQHtmaNm1aYhvjraPXXnut83jHjh3q0aOHvv76a+Xm5jrPb9iwwVxEY2yO/3+ltRHEMOZq9A8AQE0K9ffR1X1L/m+dp6Vk5eufrUffjA0AJyIjrDD97gH67qY+OqtjA3lZi/+d3dtq0ciOsebn0+4+rcrCDWWxWq3mIvyGDRtqwIABuvPOO82KckY1BE+EG464//77tXXrVj3zzDNmQNsIHvj4+Cg8PNw8fvHFF83PSwo3HBtyeO2117R582azIoJxnVEFwujH+BratGljPlcZoYdp06ZVSbjhCKMKnzEPI2xx1llnmQGOgIAA+fr6Ki4uzqzq8Morr5htCDcAAAAAAAAAAFC7WRxHVmoBACrM+BH64f1fasL/pspWVLVvTb3no1t01o1Dq3QMALVfYmKiudDD0P+HG+RfP8St/vKSM/XPpYerLCQkJJgLRzzBCBKMHj262CKfZs2aVbgfYzGQsR3r2OBBkyZNtHPnzhKvNd4+alRh+PcbSI0FMsainczMTKWlpRX7LCQkRH/88Yf69OlT4bkCAFAV7HaHnpm0Tl8v2i2bvWp/xfPWZV10ftdGVToGAHhSZl6hDmTkKSvfpmA/L8WE+ivE34ebDAAAAAAAAAAAcALzrukJAEBtZiyiveX1a3Txfedowv+maPzLv1XZWHGtY6usbwB105EqDO72URV++eWX4uPY7dq2bVuF+zl48GCl5+Dn56epU6fqscce05tvvmlWlTAUFBSYYY6Sqj58+OGHOuWUUyo9JgAAnma1WvTMeR10y6AW+mTudn36T8nBPk9oFhVUZX0DQFUwwgwEGgAAAAAAAAAAAGoXa01PAADqgqiGEbrxpavUbXinKuk/JCJYUY0iqqRvAKgJmzdvPiFuvI+Pj1555RVt375dTz31lE477TRFR0eb58PDw80ww4033qhp06bp77//JtwAADhhxYYF6Imz26tX06p5bogK9lVEkG+V9A0AAAAAAAAAAAAAwBEWh8PhcB4BANxy6ECabup0n9KTMzx+J719vPTguDs0eNSpHu8bQN2RmJio+Ph4c7/f+BvlXz/Erf7ykjM1/7JPzH2jqkFcXJxH5gkAAKrG/vQ8jXjrb6XnFnq8b19vq94Z1VVndGjg8b4BAAAAAAAAAAAAADBQwQEAPCg8pp7e/PtZWb08/+O1qNCmV675nxK37PN43wDqJrvD4pENAADUHg3C/PX9zX1kqYL/hBcU2XXn9yu0Jy3X850DAAAAAAAAAAAAAEDAAQA8L75NI93/2W3y8vaqkpDD72P/8Hi/AAAAAOqOdrGheumCjrJWUcjhu0W7Pd8xAAAAAAAAAAAAAAAEHACgagwfPVAfLHtZLbo09Xjf6xds8nifAOooh0UONzejDwAAUPuM6tVYE//TX61jgj3e97JdhzzeJwAAAAAAAAAAAAAABiu3AQCqxtp/Nmrbyp0e79fbx9vjfQIAAACoexZuT9XmA1ke79fbiwAkAAAAAAAAAAAAAKBqsEoWAKqA3W7Xj69PqpJ723tk9yrpF0DdY5fF3NztAwAA1D5FNrs+mbujSvoe2ja6SvoFAAAAAAAAAAAAAICAAwBUgcTN+7Rv+4Fi5xySck+pr+wuMSqKDJQ1r0gBG1MUtHyfvLILXeq3XnSYzrxhCN8zAAAAAGXadCBT+zPyPH6XYkL9dFH3OO4+AAAAAAAAAAAAAKBKEHAAgCpgt9mPCzccOru18tpFOc/Z/L2V1SdOOR2iFfXdWnmnlb34KKZJfT0z4UGFRobwPQPg2s8ih8Xc3OHu9QAAoGbYiz+SeESTyEB9fHUPhfj7eL5zAAAAAAAAAAAAAAAIOABA1YhrHavwmDAdOpBuHud2iC4WbjiWPdhXaWe2NEMOJQmJCNbNr16t4aMHyMvbi28ZAAAAgHK1iglWvUAfpeW4Vi2uLBGBPnrinFN0budG8rISfgQAAAAAAAAAAAAAVB1rFfYNACctbx9vnXvbGc7j7K4NymxfEBeqwqjAEj/LPJil5TNWEW4AAAAA4DJ/Hy9d2buxR+7YwZxCzd+aSrgBAAAAAAAAAAAAAFDlCDgAQBW5/NELNGjUqeZ+aeGFYxXWL73NPz8v0qGkw9UgAMBVDofFIxsAAKid7h7WWiPax3ikr0mr9yrdA9UgAAAAAAAAAAAAAAAoCwEHAKgiXl5eeuzbu/XarKfl4yi/vbXAVupnhQVFSti4x7MTBAAAAFCn+XhZ9eHoHvrmxt6yuJlZzCu0a0dqtqemBgAAAAAAAAAAAABAiQg4AEAV6zywvdpaA8psY8ktlN/OtDLbBAT7e3hmAOo6u8PYLG5uNf1VAAAAd53aMkrNIoPc7ifI14tvBgAAAAAAAAAAAACgShFwAIBqMDgqWpa8olI/D1m4RxZb6auIG7WKVcuuzapodgAAAADqutNaRbl1fZuYELWKCfHYfAAAAAAAAAAAAAAAKAkBBwCoBhdfM1TRP2+Qd3J2sfOW/CKFzNmp4KV7y7z+6qcukcViqeJZAqhrHA6LRzYAAFD73Xhac1nd+M/63cNaeXI6AAAAAAAAAAAAAACUyLvk0wAAT4qMDdd1N52pL5/5QfmNQlQUGSBrvk1+2w/JWmgv81ovL6u6De/ENwQAAABApcVHBOrmAS00ds62Cl/r42XRqW5WgAAAAAAAAAAAAAAAwBVUcACAajL6qUt099ib1dQvUEGrkxSwKVUhQf7lXmez2bVny/5qmSMAAACAuuvhM9vqmXPbq1G9AOe5sACfcq8rtDm0OzWnimcHAAAAAAAAAAAAAAAVHACgWo28ebjOummYdq1PVG5WrqxWi+7o86gcjrKvCww9ugAJAFzlcFhkd1jc7gMAANQd1/RrqtF9mmhLUpZyCorkcDh00QcLVM4jiUL8KQIKAAAAAAAAAAAAAKh6/Os0AFSznIwcTf1kpv4YN1tZadnlX2CRpnw8Q7e8cY28vLyqY4oAAAAA6rCMvEJ9u2iXflm+R5n5ReW2N+KO3yzarYfPaGuGtAEAAAAAAAAAAAAAqCoEHACgGhlVG+4f8oy2rtjh+kUOacL/psrL20u3vH5NVU4PQB1jvIm5vAoxrvQBAADqjvTcQl324UJtOpBZob8PfPT3dvl6WXX/iDZVOj8AAAAAAAAAAAAAwMnNWtMTAICTyUcPfFWxcMMxJr4/XRmpri9CAgAAAIB/e3biugqFG4712bwdyswr5KYCAAAAAAAAAAAAAKoMAQdUSkF+oYoKi7h7QAXM+Ppv/f7hn5W+Z4X5hVo0eTn3HIDL7LJ4ZAOAE5GtwCG7jTozQEWMX7JbP6/YU+mbllNg05zNydx0AAAAAAAAAAAAAECV8a66rlFXF2j/+s4UbV66TRaLRd2Gd9KlD5ynbkM71vTUgBOaUXnhzZvHut1PXk6+R+YDAABQW+2YatfWXxxK23o4st+gp9R2lFX1uxDIAsqSlJGnxyesdfsm5RbYuNEAUIrZs2dr8ODB5d4fb29vBQQEKDIyUs2aNdPAgQN11VVXqUWLFpW+t5mZmZo4caKmTp2qVatWKTExUVlZWQoKClJMTIy6deumESNG6JJLLjHPAQAAAAAAAAAAnKio4ACXjb1vnF6++n9muMHgcDi07I9VemTEc5r+xSzuJFCG6V/MVkFeodv3qFW3ZtxnAC5zOCwe2QDgRLH8LbuWvvL/4QaDXdq/SJpzn127Z9preHbAiW38kgQVeqDqSce4MI/MBwBOZkVFRWYgYefOnZo1a5aefvpptWzZUqNGjVJKSkqF+srOztYjjzyiuLg4MyTxzTffaO3atUpLSzPHSU9P1+bNm/X999/ruuuuM9u98847stkIrAEAAAAAAAAAgBMTFRzgko2Lt+jnN38v8TO73aH/3f6J+p3XUyHhwdxRoAS71ye4fV9a92ihtr1acX8BAMBJKXmlQ9t+K3lxtsMuLXvdodi+DvkEEswCSrIlKcvtG9OraYTaNgjlBgOAi6644gqFhIQUO2e8NKawsFCHDh3S7t27tWbNGvPYMH78eLMKxLRp09SlS5dy+1+2bJkuvPBCs59jq0N06NBBbdq0UXBwsDIyMswxNm7caH5uBB/uuusu/fHHH2bowWgDAAAAAAAAAABwIiHgAJdM/mhGmZ/n5xZoysczdNmD53NHgRIE1Qty675ENYrQI9/cxb0FAAAnre2/l/3m+aJcaecUu1pd7FVtcwJqk9AA934F1KhegF6/tLPH5gMAJ4MXXnhBTZs2LbONEUB466239Pzzz5tBhwMHDmj48OFaunSpmjRpUup1//zzj8444wyzgoMhKChIDz/8sMaMGaP69esf196o6vDAAw+Y4QnD5MmTdemll2rSpEny8uLvTwAAAAAAAAAA4MRBwAFlys3OU0ZKphI27Sn3Tn3y8Dca//IE5WXny+plVf3GUep5RhcNuLivOpzaljuNk9rgUaeWWgXlWL7+Prr+xSu0Zu4GbV+1SwEh/ub/h84eM1xhUbwpFUDF2B0Wc3OHu9cDgLuKch3KT5cyEsoOOBhWviet+9ImW54kqxQYI8X2luIHWRR5ipVvBk5q53RqqK8XHn3Dd2kCfb103+mttWBbqjYfyFKwn7fO6dxQl/eKV71A32qZKwCcTEJDQ/Xkk0+qX79+GjlypAoKCpSSkmJWfzBCDBbL8c9kiYmJuuCCC5zhhhYtWmjKlClq3bp1qeMYVR2MNnfeeafeffdd89zUqVP1+uuv68EHH6zCrxAAAAAAAAAAAKBiLA6jJjbqjIL8w+XMff18lJacrmV/rFZhQZFO6dtajds2cqmPTUu26psXftbSP1apMO9wfzL+Hc2N/6XEtWmoW9+4Vr3O7Fr5ToBa7umLXtW8XxeX+nmXIR10/QtXqF3vVtU6LwB1i7HQJT4+3txv98Wd8nUzHFWQkqEN175j7ickJCguLs4j8wRQd9kKDj84ePlalHfQoQPLHLIXSVEdLQqJcy00lbrOofVf2ZW0XLL//yOJu88koU2lLv+xKqY7wS2cvK79fLFmb0ou9fPTWkXpoTPaqkOjsGqdFwDUFbNnz9bgwYOdxzt27Ci3gsOxjODBHXfc4Tz+/vvvddlllx3X7sILL9Svv/5q7oeHh5vVHpo3b+7SGDabTaeddpoWLFhgHoeEhJjzjIyMdHmeAAAAAAAAAAAAVYmAQx2x8Pdl+uG137Tm7w3mcXhMmDIOZslWaHO2MV72FR5TT6dfO1gX3TNSgaGBOrjvkAJDAxQaEWK2mfH133r1uvdkt9k9Pkcvby+9OOVRdRvWyeN9A7UlgPT+XZ/rj3GzVfj/YSSL1aLuwzvptjevVXxbFg0D8GzAoe3nngk4bLyOgAOA8u2Z69CmH+xKXXv42C9cZuUFHftoYZH8I6VmZ1rU+mKLvPylvIOST5DkG3I4eLBjil1LX3O4FWYojdVHGvCaVfU7EXLAySmv0KYnJqzVhJV7VGg7/H8yb6tFA1rX15Nnt1PTqOCaniIAeFZehpSxVyrIlnyDpNCGkn/oCRtwMN5F1KVLF61evdo87t27txYuXFisjRFm6Nmzp/N47NixGjNmTIXmOW/ePPXv3995/Oabb+ruu++uUB8AAAAAAAAAAABVhYBDHfDzm79r7H3jKnSNEWowyptnp+eYf3Y/vZPO/8+Zeubi152+6JgoAAEAAElEQVQLr6tCm54t9O6i/1ZZ/0BtYFRXWTVrnWw2uzqe1k7143hDHqrGmoT9mrp6kzLz8tUiOlLndztF9YICuN11HAEHADVh47d2rfm4YokEn2DJYZeKcozkgdSgp9TiXIvmP+mQ42hO2+OiOkmD3/aqugGAWiA5M18Lt6eaOaLezSIUE+pf01NCHbV38wZtWvCPCnJzFBXfVO0HDpV/MEEaVDGjYPHOudLij6WNk1XsLxYWL6nd2VLPG6Wmpx1+I8wJFHAwfPrpp7rxxhsPT9di0f79+xUdHe38/Nprr9W4cYd/F1y/fn3zGdDX17fCcx00aJCCg4PNoMOZZ56pzp07V7gPAAAAAAAAAACAqkDAoZZLSkjR6Oa3e6TigtXLWiWVG/7tkgfO1cJJy5S0K1nhDerp9KsH6fw7z1RIOP/ADQCekF9YpAfHT9WMdVuLnffz9tKzFw7X2V3bcaNPloDDZ3fJx80KDoVGBYfr3zb3ExISFBdHtRkAxWXtcWjqaLtHKi4Yaw6rMtxwRJvLjYoTUk6SFBB1uKJEy/Mt8gmmsgMAeEJhfp4mvflf7VixtNh5bz8/nXnbPWrd5+ib4wGP2rtS+vUWKflwldsy1W8nXTBWatjlhAo47Nu3Tw0bNnQef/fddxo1apS5b7fbzbBDamqqeTx69Gh9+eWXHps/AAAAAAAAAADAicBa0xOAe6Z/NstjoYTqCDcYfnx1ohI27lF+boH270jSl8/8oDv7PqpDSenVMj4A1HUv/T77uHCDIb/Ipkd/mq5Vu/fVyLwAAHXTjikOj4QbDNURbjBs+k7KSpTsBVL2Xmntpw79dYdd+eke+kIA4CQ34+P3jgs3GIry8zX5ndd0YPvxzyuA27b9JX1+lmvhBoPRzmhvXHcCiY2NLRYs//vvv53769evd4YbDAMHDqz2+QEAAAAAAAAAAFQ1Ag613J5tdWORauLmffrw/sOl1QEAlXcwK0cTlq0v9XOb3aFx/yzjFp8kHA6LRzYAKK+CQ12QsVNa83Hd+FoAoCZlHkzRhnlzSv3cbivS8im/VeuccJJUbvj+Kqkwu2LXGe2N64zrTyAtWrRw7u/Zs6dYwOFY3bt3r9Z5AQAAAAAAAAAAVAcCDrVcWGSo6oq/f1yojNTMmp4GUK7CgkLN/Xmhfnlrsub8uEAF+YXcNVQbm82mTUu3ae28jcpOP37hxqLtCbJ5F8i/Ybb847LkHVJwXJt/Nu+qptkCAE4GvmF1Jwi1e6ZDhdmEHFALFOVL636VFrwvrZ8oFR3/dz6gqthtNu3full7Nm1QQW7OcZ/vWr1SDnvZVUJ3rFrONwie43BIv95S8XDDEcZ1E2493M8JIiIiwrmfkpLi3N+7d2+xdjExMdU6LwAAAAAAAAAAgOrgXS2joMoMGz1Av7w9uUbvcGBYgKLjo7RzbYJb/RTmF2rvtv0KjQzx2NwAT5s9fp7eu/MzpSVnOM+FRYVozOvXaPjogdxwVKmJ70/X9y//quSEVPPYP9BPQ68aoDGvX62AIH8V2Is0JWOOIk7dL8sxEcbCNF9lrA2XPe/wf/bt5Sw2AgCgIpoMs2j7xJpdEOgTLPlHSpluZvhseVL2fqne0ZcmAyeeld9J0x+Vcg8ePRdUXzrzZanDRTU5M5wEjMoLSyb9oqyDh59JfPwD1H7gUA246jr5+PqpsCBfq2dMK7ef8gIQQIXsnCslb3DvpiWtl3b+IzU77YS4+UFBQc791NTD/38zZGcXD3FERkZW67wAAAAAAAAAAACqAwGHWq5Vt+YafPmpmvXdvBqbwz0f3qJBl/bTvu0H9PePC7Ry9lotnb6qUn1tWb5drXu0kNVKcRGceJZMW6GXrnxbdnvxBXzpKZl69dr3FBQWqH7n9qyx+aHuKSos0tp/NiovO1+r5qzTT69PKvZ5Xk6+Jn/0p3atT9ArM57Uy5t/0Jr8zcXCDQafegWq1y1FhxZFy2Gzqmfz+Or9QlBj7A6LubnbBwCUJaqjRY1Ok/bMrbn71OsRixr2syprj0MJsx1KWm5slevr0BaHwppLFgs//3AC2jj58FvG9a9QUXay9PONkn+Y1HJYTc0OdZCtqFB7Nq5XUUGBdqxappXTfi/2eWFerlZO/10H9+zWRY89pynvvKZ9WzaW22/8KR2rcNY46Sz5xHP9nCABh7y8POe+l5dXiftH2vn6+lbr3AAAAAAAAAAAAKoaAYdaKGl3spJ2p6heTD3FtYrVQ+PuUP24KP3+4R/Kycit9vl8dP+X6jzwFMU2j9FlD51vbjd3vk871uyucF/v3PaJpn4yUy9MeUzh0WFVMl+gsr5+7qfjwg1HOBwOff3sjwQc4DET/jdV3774sw4dSC+3rRGC+OWXPzWz/opS23gF2uQXm6O8xGCNPrUr3ykAgFuy9zuUmyz5R0jBjSzq84RVqz9yaMdkh4qq/5FEK991KKqDw5xLuystanuFQ9OusSurEkXmlr7s0PZJDvV/0Sq/MEIOOMHM/u/x4YYjHHZpzisEHOAxSyf9osUTf1ZuRvnPJLvXrtbyyRO1dcmC8ju2WNTtzHM9M0kgL0PaUDx4U2kbJsnszz+0xu9revrR/9/Vq1fPuR8WVvz3pUZ1h9DQmp8vAAAAAAAAAACAJ/Ga/FrEeEP3w2c8r6ua3a57Bjyp69rcqbtOfUwbFm3RTS9fpQ9XvqaWXZt5dExH6UsnnJITU/Xbu9OKnes9snulx9yyfIeev+yNSl8PVIWUvQe1fsHmcv+3a1QyAdw1/pXf9N5dn7kUbjhi0obyK/n4Reeq2YZ0aUOSmzNEbeFweGYDgCPStjk0516bplxu16w77Zp6lV2z7rIpbavU5Xarhn9iUZhnH0lckr1P2jbx6A8so/pCg16VDyccXC8tftHuodkBHnJwu7R/ddltEhZJGfu45XDb/B+/1ZyvP3Mp3HDEqplTXWoXHBGpwvyjb6cH3JKxV3LYPHMTjX4yT4yfoYcOHXLuR0REOPebNm1arF1KSkq1zgsAAAAAAAAAAKA6UMGhlkjcvFd3nfq4stNzip03Flw/OOwZ3fn+Tfrkoa+VnpLpkfFyW4Yrq1dDFTQONRMOfrvSFbxor/x3pJXYfua3c3Xtc6Ocxyv/WuPW+KvnrNfmZdvUunsLt/oBPCUvO9/FdizSgHuyM3L0zfM/Vfi6nMLy/zfqezBb+RO36OlJ6/XIN3dp8KhTnZ/l5+brl6mLNCtxj3L9LGoQHqYLup2ivi0am4tEAQBI3+HQrDvsx1VoSFktzbrbrm53W7TqA4cKPfNIUmG7ZjjU7qqjx8kr3Uto7V8sZex0KLQp/x3ECaKg+O8DSlXoYjugFLmZGVryW8WfSQpyXCvhk5Waol9fflbn3PuwWvXq5zxfmJenVX9O0Y6Vy2QrKlJo/Wh1GDRcjTt04nuFMv6Hl+3Zu5OfVeN322azaf369c7jTp06lbhvWLZsmXr27FmpcfLz8+Xt7S0vLy83ZgsAAAAAAAAAAOB5VHCoJcbeN+64cMMRhflFeuOmsR4LN2T2bqiDl7RTQZMw49WnktWi/Gb1lHpZO2V1a1DyNQeP/uPfnq37tHHxVrfnsezPVW73AXhKdOMohUQEl9kmMDRADZrHcNPhlvm/LVFuVsWDMjFFoeW2sWw+3K/D4dCH94+Trcgmu92ucU+N16Crntdzy5fpn6T9WpawT5NXb9SNX/yiu7/7XYU2D70NE9XucAUGi5sb3zgAh6189/hwwxH2AmnpazUXbjAUZBQPY6Rvc7/P/Uuo4oATSEQzyTek7DYB4VJYXHXNCHXUlkXzVVRYUOHrQqPqu9zW4bBr9pefymG3y2636e9vv9C7119mVo3YvXaV9mxcpw1zZ+nH5x7V5HdeNdsAJfIN8uyN8Sv7dz/VYe3atcrJOfp74GMDDI0aNVKLFkdfCDNjxoxKjzN27FhFRkbq7LPP1muvvWYGHgAAAAAAAAAAAE4EBBxqgdzsPC2euqLMNg67e6sPY5rUV0RsuIrC/ZUxuEnJjSwWpQ9vJluI73EfGW/+fu3697Rp6TZlpHrmTWffPP+zfv3fFOVkuvYGQKAq+fr56IzrBpfZ5vSrBykgyJ9vBNySWcmfoVcOOEMR5Sx485p0tO/UvYe09I9Vevc/n2rstHlKbxdR4jV/rt+qD2YtqtScAAB1R0GWQ0nLy2nkZhYgqKHkF1756wuzjJCFXWlbHSpIl0es/Vza+ptNRbmkvXCCLOLtfLRyYom6jpa8/aprRqjDFRwqo+/Fl8s/uJwQzjEykg8oYf0a/TH2f2bFCHspweqN8+Zo8YSKV5TASSK0oWTxUAUCq7cUEquaNmnSJOe+n5+fBg4cWOzzCy64wLk/c+ZM5eVVrprohAkTlJ6ersmTJ+v99983xwIAAAAAAAAAADgREHCoBfbvTHI7wFCe3KxcfbbhLfX674WHqzaUxmpRdqfo404XFdg0/YvZ+k+vh7Vo8nJ5ebv/D4v5OQV6/67PdWu3B5S0O9nt/gB3jbz3bDUZ0l620ONDDG17t9J1L1xe6b7zcvK1fMZqM8yUnlK5xSSoGxq1KrlSTlkGjTpVp47sqac6XKUAr5IXJFg/PiTL1uJvYd2+aqcmffinsnqWvYBj/OLVKigqqvC8AAB1R8bOql/gb1SHOPMrixr2r9z19kJpx2SH/rzZrqRVDqmMxxpX2XKlFW9JM26xKzeVkANOAL3HSFFtSv6scT9p0COV77sgW9r2l7RlhpRzsPL9oNYLj21Y4WvaDxyq5t166uy7HpJ3BRZJ79+2WevmlP8G+pV/TC41AIGTnH+o1O5sz/TV9uzD/dUgm82mjz76yHlsVFcIDy+eAL3uuutk+f/f36alpemzzz6r8DgrV67U7NmzncdXXHGFW/MGAAAAAAAAAADwJG+P9oYqYSus+n/ANaou3NjhXv0fe3cB3tTdhQH8jdbdS6HF3d3dYeg2YMCY+9jYmAITNrbxbczYxhjO0OHuVrzQFqnRUnf3xu/33BsqofGmApzfnozk5lrS5Ca3Pe//lMzpZHBehauN3vu3fLMLApFmwEHuao2Sbl5chwh+mRx2t7JglVRk1L6l3s/A93N+x4rzXxs1PyGWlp5diJ+3nMOF4PtQ+TgCE7uCn1MM69BEOEsUmPT2GMz8dAqsbEwf6U6lUmHTlzuxa+NZlJRIICgog1goxPBZA/Dmry/Axl7/+408fnqM6QLPJu7ITMw2OK9PMy889eZoTJk/jitu6OzSHGt6vY/VVw/gfOotQMQDL1wK/v4i8G9Lqy2fGJkChYMISmf9nUfySstwPysXbX2qB9xIw8aAB4bh1XgdhBBSF6R5wImXGTA1zREwQPhGRh3nt9CpVFEiEPS9CoP+Z6ERogkxVW4ccOxT4N7x6u1SrF2APm8AA94zr3uDSgmcXgoErVaHHFhCa3W3iNHfAWJb+nk9YZr36ANbJ2eUFuQbFYboMnoiuo5RF5j7d+qCOd//hvOb1yI2+LrB5bMSE4zap5K8XOSlp8KtUWOj5idPmJ4vA+H7LbOeevbTTz8hKSmp4vb8+fOrzdOuXTtMnToVu3fv5m5//vnnGD9+PPz9dXTlfYhCocDrr79ecdve3l7rdgghhBBCCCGEEEIIIYQQQuoLdXB4BHj5e4DHr/3iwuzkHKTeTjQ4H1+iMCmUUTDQD+lvd0VR/0Yoa+eGku7eyHyxI7KfaQ3GyMd1JzAC92/FGzUvIZaUnlWAuZ9uwrkbMVBV6aSicrNH6dA2yLMVYf/KY1wQxxzz31yFPyJjkTaqDQqndEH+jB4o6OiDoxvP4fPx30GpoBEqnzQCgQAfrH0TYmuR7pl46iDEV/s+wvQFE7llyjWydQf/z1yI5qZCNDMFzJ8FKPJwQP5oD0iaVxanufu5wc7RFryH6uN0EfLpKwMhhDzJ7H3rJuxUmg6Umfe1ShP7tc3CX6MybgCFidTFgdSD3Fjg78HAvaPVww0sSR5wbRWQX1kQa5J1o4FLP1eGG1gKCXBzA7BtBpvKNn/fySNJIBRizBvvcf/qwhcIuI4NkxYuRrexEytGk2e5+jYCwxh+3Th7+UAoEhu9X+w2CdEqYCDg0bZmT45nOyDAzDZSFnLmzBksXry44va0adMwcOBArfP++OOPcHR0rOjiMHLkSMTExBjchkwmw5w5c3Dt2rWKaUuWLIGHh4dFHgMhhBBCCCGEEEIIIYQQQoglUAeHehQVFIOz2y+hrKgMAR2aYOTcwbB3tqs2n4OLPXqP74arB2/W+j7Z3M1GaScvvfPYhmUZvb7Stm4oHNZE631lbd2QP8IfLieMCy5EXI1G884BRm+bkJoqyC7EvJkrUODjpH0GPh/Sbv4oPnQL/3z8L5Yd/kzrbEqlEtcOBePS/uuQS+Vo3aMFRs0bgjUHr+KyUgo4VXZpYKxFkHT2g9LVDrdPRODygRsYOLU3/TCfMN2Gd8Svl7/Fjh/2IXDPteqdfBjgxrFQ3DxxC237tMLAab1RkFUISbEUAR0a4+7FSKhEPGS90ARF/VwBQWWxkVVsCbxXxqH/lF7wbeoFQbEMwowSKLzKP38Y2DYqgW2jYgjt5WCUPPDznGBlR4VtjyK2DNcCA6ETQh5jOWEMks4xUJQBzs0B/1E8iOyqhxmsXXnw6g5k1P4pSYOWG8HAsQl1tiF1qCgDWDUQkBXrn68sFzj9JfDsv9rvVyqAqMNA1DFAKQMa91J3aDi5BEgO0r3euPNAzCmg1aiaPQ7yyGnatQdmfP0/BO3fheigK2AeCrqolErEBgchLuQGfFu3RYte/VBWkA+5VAqPgKZIjggzuI2WffrDyrb678G0EXPz0fGX6MAGbKasAtaPA+RVwlrGEtkBk/9Sr6cepKSk4Ndff8XPP//MdVdgNW3aFKtWrdK5TEBAADZu3Ijp06dzv3eKjo5G165d8dFHH+G1116Dp2f1DownTpzAxx9/jNDQ0IppEydOxIcfflhLj4wQQgghhBBCCCGEEEIIIcQ8PIZhqG6tjknLpFg261dc3q9ZRGBtZ4WPNryNgdP6VFsm7m4C3huwGKWFZbW6b+yLIefZtpA2c9F6v3VkDtz2Rhm9vowXO0LW2EHn/TypAr4rboAvM1w4++G6NzF63lDuenZqLnLT8uDm6wo3H+37SoixJKVSnNkSiIv7rkNaKkXLbs244u9FE79D+sgOgJX+LJjtsTsQ55VgS+IquPu6atyXm56HT8d+i9hbCRrTxW72yJjUCYyev53bn4zA0O4t8eXuhfTDfIItm/Uzzm6/bNIy7OipaW/4o7iv5uuxnDBLih8c+mHE5L6Y2fg15Dd3Qt6kVtyngEvHHFh7Vv+ssRNYY3mX19HGUXtojTQcycnJaNy4MXe96eoFELnpCGkZSZ5TgLhXV3DXk5KS4OfnZ5H9JITUL0UZgytfqpB+XXO60BbovYgP377Vv6TkRqlw/n11GOJJ1XsxD02GqbsalWYxkOYCNh7qAAghNSItBm7vACIPqwMIvl2BVmOALU8bX6zLFwIfRgO2D30HLEgB/p0GZEVoThc7ALIiw+vtMB2YvtaEB0MeN/t//BYxQVcsvt5Rr7+LZl174u835oFRGW67w4YhnvniO3gGNLP4vpDHxP0zwPbZpoUc2HDDjH+B5sMssgvnzp3D0KHq31+yZs2aBQcHB62dFHJzc7lgQkREBKr+ir558+Y4cuQIWrViz9P127lzJ1544QWUlpZWTBMKhVzYgV3eysoKWVlZuH79OjIyNNtkseGIf//9l5uHEEIIIYQQQgghhBBCCCGkIaEODvXgt7fWVAs3sCQlbPDhF/x2ZRlXYM1SKpTYsGQHDvx5zOxwA1tAXdrOCSXtncEIeLCJLoJDSC54yurZFrYsx213FPJHBKC0gwcgEqiny5SwvZ0Jp9PGdVtgqYR8veEGbt+shJA1coB1XIHe+YQiAXqN7Yq4OwncSPk3jt/i/vDH5/PQfXQXvLp8DgLaq4s5CTFFRkIWPhrxFVLvV/6R9/b5cOz++RAYduQ+A+EG7nVsI4Iqh8EXk35A7O0ECIQC9BrXFdM/eAqrF26qFm5gFfg46A03sKQtPVGYbUTBEXls3bt53+RwA0vqLdYZbmApPKyQ2twKe345DJVSBduwbCgdrSCf4ao13MAqUUqwPGIb1vX+WO+2U/Ly8dfJC4grKYCnhzOmdOyIgU38udAFqXsMw+MuNV0HIeTxc+N/TLVwA0tRClz5QoURf/Ph1FT9/lfJGdxdy+D+fgYKCZ5YfDHg3YOHvHsMbq9WITNYnRDn8QHvPkDn1/hwoO4OxBy5scDGSUBBYuW0+EDg8m+mrUelADZPBTLuAAIx0Go00O8d4NCC6uEGljHhBlZpjmn7QR4ryZFhtRJuYEmKi3Hz8D5u0HxjRl+RlpbgxN+/YfZ3v+idLz8jHVd3b0N+Zjoc3T3RfvBw+HfsYrH9Jg0YG1J44Qiw93Xtx72HebZTd27wrb3Xx9atW42elw0mvPzyy/j222/h6qr7nL6qZ555Bh07dsSCBQtw7NgxbhrbBSIoKIi7aMN2d/juu+/w4osvGr1vhBBCCCGEEEIIIYQQQgghdYkCDnUsJy0Pp/8N1Hm/Qq7Enl8P4+ON73C3l0z6AdePhpi9PYWTCClvtYbMz65iWuFAL+TkyeD7VxSskitH9yrHU6jgciwWjucTufAByyqpEHyp4dH0zGJEE5ExLw5DflYh3h+0BCUFlfusUjEIOhqCiCv38Mulb+DflkaVJqZZ+sxPGuGGqngMA16pDIytWO86+MVS7t97N2Mr3seBu6/h0r4grnhcG8ZG/zpZKlsxGjVxN+JRkMeRSqXCNzN+NmvZ4p6GO9vsuhsM0beV4QmHKylQzlGwQ/nqXCahNAO382PRyVkdwou6cR+pMemwd7FDl2HtseT3ndiJVDBC9cjWKMrE/th76Obpg3VTpsGRRoUkhJAGoSSdQdJ53d/BVXIgejeDHh+qAw4XPlYhy/xTksdG86d4KEkHzr2n0uhiwaiAtMtATpgKw1by4eBHwTBioh1zNMMNNZEWUhl2CNsLhB8AmBqey7s1t8iukUePUqnA4V+X19r6Q48fQmFWpknLZMTGIP1+NLybt+Rup0VHoSAzHdYOjmjctgMO/bYcMdcrAxkpCENE4Fn4teuIKR8vgdjaxuKPgzQwbFjhzStA/EUg6B8g4pDmcZDtdtNmAtDzZSBgANsCsV52UywWw97eHt7e3mjfvj0GDx6MadOmcbdN1bZtWxw9ehRhYWHYvXs3rly5wnWFyMnJQVlZGddBgl1vz549MXbsWG477PYJIYQQQgghhBBCCCGEEEIaKgo41LHgU7e5rgz6sAX7rAu7rtQo3MCWLKW8qRluKKdwESPl7Tbw//IWBBLt+yMoU8AmJs/k7YqsRZBJ5JAGOIJXJOVGBec9qJ96+E+GPIkC4pRidBrcDj3HdMX2H/aiJF8zdOHTzAtNOzbBPx9t1gg3VFWcX4L1i7bhy90LTd5f8vhLi83AkX9OISkqBfbO9hg2awA6DmqL4FN3EBV0X++yovuZkHXUHZzh5xRD8NBrtpyucAO3XIk6FKEPO8+4z0YanI88XthONTuW78f5/65AIWMDB6ZjxA8CBnqkp+fi4b43PF/DXwuSSjNhFcPgp5f+RNydykI8SRM7pMzvAAiqbzs4Mw0fnTiKVRMnG/kIiMWwn7+MBdZBCHmsZAQxgO6vKZx0dh72c+n4oxlu4IvUQQ1TePUE3DvyELWd4TpZVGXfCHBswuDWX4xGuKEqWQEQtp5Bn8UUcCBa5NwHbm5Qd2uwcQE6PQM07gPcOwZk3K29p6ym4QZW93mW2BPyCMmIu4+g/bsQfe0SF7yuLaaGG8rlpSZDqVBw3RxyU5KMWiY5/A5Orl6J8e/S742eCGxooelA9UVSCBSlAdJiwMoecPABrB1rbdNDhgzhus7WBzYowV4IIYQQQgghhBBCCCGEEEIedRRwqGP6Cp4fnmfjFztqtK3Sdk6QNa4ebiindBShsK87XM5qH73eXGXWfGS+1AVyL9uKaUz5/1SaIQf7mxloHOCFTza/Cw8/N0x7fzyOrD6FTV/tRGFOcUVx+u9vrzW43SsHbqAwtwiOrg7IyyxA5LVoCEUCdBjQBjb2NELfk2rPL4fx94cbuW4f5Y5vOAuBUGAwbMSyikiFws8FKhct7yW5EjZBcWbtl/h+Nkp7+gNCgc55hrcLQNve6lEpyZPh9oVwfD5uGSSlhgMw+lgllJo3T7EKcNAfjtj33SHE/xlVrei9YLAPINBd0Hky7j6SCgrQ2MnJ4L4RQgipXWzHAWPnidj0aKacTA03OPoDvT7hw9qVh9bPMri/n0H4JgZy9SkJilOAmysMryclkIG8lIHIloeyHAZ5UeqBot07AUJrCj48sQJXAKe/1kwNhmxWvzjYTgsNWcenAe+O9b0XpA7F3w7B/uVLoZDLGuzzfm3/LuQkJZi8XNSVQAya/QIcXKlT4hOFDTPUYqCBEEIIIYQQQgghhBBCCCGEWB4FHOpYx4FtwePx9I7kxXYzYO9PvpdW44CD4XmcLRpwYAQ8ZMxtB4W7lkABD2D4lSEHnwwZ3nlqOMbOG1IRQBCKhDi0+mRFuMEUbDAkLTYTqxZsxLntlyB/MPK5raMNnnpzDOYtfRYCge5icvJoKcguRFZyDpw9HOHeyA3ZKTk4sfE8spKy4ebripFzByMyKAZ/LdigdXljwg0snlwJu5NhkHb0g6yZJ2DFFiGpIEzOg9WdZJ3dGwzhSxWwDUpAad9mWu+3isvB2Lf6mbVu8mhiR0b93wt/1DjcwLILzocgVwalq1jHxhg4nsqqPv1MKfCcnsKPIhXi/rlX0ZWnqrJW+gtG2EUuJyfiWScqkCOEkPrm3on9Nq4/uODRiQeVnEFJzU5JGjwrF6DdXCBgNB9CG3UAgS8A7h+oDDeYGqwoSWcQuYVB8nmmYvB8kT3QchoP7ebywONT0OGxUZINFKYCdh6Aow+QnwTc2g4UpgBOjYDOM4G4i8Dpr7Qv39DDDewI6B2fqe+9IHVIpVTi+F+/NOhwA8uccAOLUamQHHYHbQcOtfg+EUIIIYQQQgghhBBCCCGEEEIshwIOdcy3uTf6TOzOdRvQhg0/THl3PFecb0y3B30YIwpnjJnHFKXt3LSHG8rxgIEtAjB/SF90bORd7e5j688i/m6SWdtmuzWsfHsNIq/HaO5TYRm2f78XhdmFeH/162atmzQc6fGZWP3RZlzeF8SFFNj3jHdTT2QkZGm8Z7gOKBZ6ebMhB+vgBFiFJoKxEnK3eYqavT9Z1uHp4JfKUda5EZTu9tw0frEUVhHpsL6TgmUX7+O3q8vQoktTCzwK0tDdPHkb6XGZFlkXw+PDKpaPUjbnpiXXZXNLgrLWXlA6lcAmPAf8B69n3t4iMKNsAQ/tXw94mwvAk5k/kndeWZnZyxIzMWyosoYHw5ouTwhpcJya8uDVA8jQfkoC8NXF+Ao2c/doNnAwyLcf0O55PlxaVT/GxexnUJxs3noFVkDQ9wzyozWns2GJ8I0MZEVA13fouPrIy7kPnFwCRB2FOsXCA1z81QGH8lQL68y3j/abiB2YYecc4NXzgGeb+t4bUgdig4NQnJvzWD/XpYWF9b0LhBBCCCGEEEIIIYQQQgghhBAD2PH0SR37cO2baNWjebXpbKH2Gz/PQ+ch7SG2EsHN16VG27GJLjI4j220Zf+wW9rK8D67OdhqDTfs/e0IVrzyl9nbbtWzRbVwQ1VH155B8r1Us9dP6kbImTv4fMIyjLOeibFWM/DJmG8QdDyUuy8zKRvz+y9C4K6rFR0Y2G4nabEZ2gNBFq4l4qkY8MvkFgk3lBPH58Bp/204b7sBpx034bTzJmxup3Aj5LNBpz2/HLbYtkjD6T5yZmsgTmw8h6SolIrpKdGWGyK7pI8vVA72sIq3giBXAJ6MB8gBfiEfoiQxVPYuKO7ji9zJLZH2XndImqk7/vDyVOC9nwmESjRXmKcE77c88HYXQyXko3CgF7Lebo3MN9qgoK8vlDZC2Nwz8HnCAMsvBGLSli04ff++xR4rIYQQ8/T6lA8nLY2keHyg+3s8uLXjQWQLiA03hXskWbvztIYborarEPq7+V8iXVqhWrihqph9DNfhgTRwMaeBzVOBr92BpR7AlqeB2PPq+3LjgHWjgchDVcIMDJAXrxluKJ/+qFNIgGvmn6eThqkkPw8RgWcRdv408tIrf0+Sl1Z5flJzDTPMdW7TP9jy+QLEhd6s710hhBBCCCGEEEIIIYQQQgghhOhAHRzqgaObA367/C0u7buOczsvcx0GAto3xoTXRsKvlW/FfJPeGot1n281er32LnZo3bMF4u8mIic1D/a3ciHMkULhZqV1fp5ECcfLWbAogeE/YCuUKkRej8b+P44h/HIUhGIhmnZogvP/XTF7s67ezrC21f44y7GF8Ge2XsTcL58xezvENGlxGdi/8hhuHA/lAggdBrTF5HfGolknf63zH/r7JH578x/uZ1Xu5olb3IUN/7DdPXLT8h7LHwO/VKZ1etDRkDrfl8dRsUyGzbdDsDMiDGlFRfC2t8f0tu0xt1NXOFrpP3YYUlJQgoOrTuLU5vPIzyzgOoqMeXEYfFt4c8f3Ri19uGOcQq7AX+9v4MJWcqm8Yvkeoztj4fq34OCi7uJhKr6Qj5eWzcLt8+EoLSrjtvWfnxIoLQVPwYMoSwRkPRiEX8shWmUrQvazbeC1+hZEORLw0pTgfZAFprEQaCoCShku8MBTANJmdsj9tCl4Hmz3FPXyZUNcUJzoBYddKSju4qb7c4BhN8/D3YwMvLZ/P34aOxaT2rY16zET47GH0yqHVLPUdHlCSMNk7crDiL/5SL7AIPkcA0UZ4Nych2YTebBvpD6W8/g8NH+Kh4jNxh8IxA6AazsgLwqQ5qPBYhRA9l0GMXsZ5EYyEIgAxwAg+UENuzlsPIyo51UBSWcZtJnZMAt/H9tuC9f/Ae6fUX8hCRgA9HoV8NTxPeTqX8CxTzSnRZ8Aok8CE1YACVeAEgufRzd00afqew8eC9LSEoQcPciFCtguCQ7u7ugwdBS6jB4PsbWeTphGkBQXI/TEYS60UFZUCGcvH3QYOhJOXt6QlZXC1bcx3PwaQyGX4+z6vxF2/hSUCoV6YR4Pzbr2wOg33oO1vYNZ2+cJBBg463kk3b0NuUQCD/+miLh4DpJiwwNv1If0mHvY+/1XmPD+x2jVu3997w4hhBBCCCGEEEIIIYQQQggh5CE8pmolMWlQpGVSfDrmW9wJjDBpOaFIAIVcPXKk1McGKe+0gdJZXC3c4PNPNOwiCiy6z4V9fZA3tqneeabYeiNk4V6NInZT8AV8bllGxUBkJcKg6X3w/NfP4n/z/jD4XE1+eyze+u1Fs7ZLNOVlFiA5KhW2jjZo3jkA6fGZXGcFtsCaDTCw07+c+j9ISqSaC/KAqfPH440V8zQmZ6fkYHbTtyo6MzyMz+dBKBZBJtEeBKgrNvbWKCt+aHT7WuTgYoc9ORuMnj8rOQdH/jmF6OBYWNlaYcCU3hg4rTeEoic3z1YolWDmnp0Iz65eiOapEKLZmvsoSy3gggjjXxmB0S8MhUAoMGrd+VkF+GDIF0iM0D/Sabt+rWFlLULImbta72/Szg+Ltr+Ht3p8wnXuMJVbI1esOP81fJt5Qa5UotNXv2nczx1tHwQcGAEDxkEBCBhAygevWMAFD+yD0uByNE7nNpQOfGStbgOerfZjtyLGGvZ7UpE9xR8QPtQgil1EqQ44lHO1scGlV1+FWGDcc02Ml5ycjMaNG3PX/f/8EEK3mg2/rsgpQMKbP3LXk5KS4OfnRz8OQp4gijIG5z9QIVfb12z2sK7jKz1PqA4RNFR+Q4Dkc+YvzxMADNvUiwH4YqDxUB46vMjD5S9UyIvUv2zrGTx0eo2aKVpEUQaQex+wdgK82qu7K0QcAGSlgHdHgC8C/nuefSE//BMEBrwPjPhCczLbheG3rg9+uDp+8HwBoKzfcxIIbbQ8plpk7w18GGX8/PmJwM0NQPpdQGwLtJsEtJkICJ7ccxI2dLDjy0+Qk5xY7T5bJ2cIRCLIStkggh86jRiDdoOHgc++1oxQnJeLnV99grw0/R0r/dp2gIphkBoZpvV+d/+mGPPme9j62QKolNrPy/VxcPfAjK+Xw9HNA9LSUqx8oeEPLmHv6oZXVq4Dn85JCCGEEEIIIYQQQgghhBBCCGlQnty/LtcCuUyOO4GRkJRIuAJv7wDPGq3PysYK3x9fhL2/HcXh1SeRFpvBFY2PnDMYU98bj6+f/hH3QxOqLVcebuDWkVaGgK9uobC3O0raOwN8HmzuF8HxUiaERZavOLIPyUT+0MZgrLW/tBxEIgQv2l+j4aDZTgDlI8q+vuJ5PPXGaK7I2MnT0eCyjVr54El7TZ7ZdglhFyNhY2+F3hN6oNvwjkYty77euM4LKgYdB7aFT3MvlBSUQilX4J+P/8WlvdcrXmt2zrYoLSjTCK3weDztIRYG2PPLYS4I8cE/b1RMZke11xVuYLH7Ud/hBnbE+m1Jq3By0wVEXLsHkViI8Kv3kBSpv5CkJjoMNH6E+zNbA/G/F/7QOAZc+O8K/Nv5YcxLw7jrafcz4OjugBGzB2PiG6Ng72yHx92PVy5pDTewMoUKSDpZwzMiDfdu3Ocul/Zfx1d7PzIqFMJ2ZDAUbmCx3Wq0kTZxQkkPX6Q3ccZT63ZD/FRr2N5MhXWcaZ1KclJy8XK79zDjkyl4bvE02FmJUSLVfL8wPAYqDzkYNzlQtaZSzgM/xQplLV0rAg5sR5zWvVrg1rnK4qfCuY10hhtYAn8pIBTC/6sQFPXxQP4QX6hs2OrWyu4NVeWWleFsbCxGt2xp0mMlpmEY9lhcs1HCa7o8IaRuKWUMsm8DSing3BKw9azZe1how8Pgn/iI3s0g9hCD0gxAZA8EjOahxVQGlz4DCqufkjTocAO7/zXp1MBiqnxt7fou0Gw8H5JcBtYuhpd1eNJyYgopcGs7kHJD3eKjzTh1FwVjuy9wnRegXsapMSAtUq/z5GIg6gigevBiY0MOkgIjUzgMcHEFIC0Gxv+vcvLNjbrDDdxiSsCMwm+LYkMWH0QAoduA1GBw7UcSrwK5sbW3Tf++xs8bsgU4+G7lz4UVthfw6gB0ngmE7QHyEgA7D6DzDKDHi4C14XP5R92FLRu0hhtYpQWV7W7SYqK4y/2b1zFxwSdGhRxOr/3LYLiBlRyhPWxdLjshDv9+PB/mKsrOwrr5r6LP1BnoOXEqhGIrKGQPDXhgApG1DbyaNje43zXBdtJIuB2Cpl171No2CCGEEEIIIYQQQgghhBBCCCGmow4OFrLn18PY9t1e5GcWVIw232tcN8xf9SrcfV0tsg2VSgU+nw+lUokdP+zH+kXb0BCVNXVE/ryOkPE0C0nsrcQYmSpA8K+nLbYtNuTQoX9rhF2K4grg9RFbi7EjdfVjV9DNvi5unriF+LtJkJRKuQ4D7GMsyivG+kXbIZfKNeZv3bM5lh78FC6eTtU6MhxffxbxYYmIvBaDlOg0jfvLAws6gwtmWHbkM/Qc05W7/t3sX3Fm60XUF3bEfn0BC5ZPMy9silmpMY19npfPW4lrh4It9rxUtfzUEnQdZjiUEncnAW90/9jgY6iK7Vjw07mv4OZjRCVeA1OYU4TzOy8jP7MQ3k09MXB6H64o/2Flcjl6rV2FYrnucAxPqkTTxTfBl1YWs81ePB3Pf/Ws3n1gg1WzGr9uVscFVmlnbxQOa6pOzjzE4UI87G6YF5wZOrM/ZDM6YkfQ7Ypp7CtT5SmDylPzeFBBBQjvCtF42U08+/FkvPDNDJzfeQXfPfdrxSwZG1sDzvpHm+Zf4eMdtOJCFgM3rONCDPp8MXQo5nZVHwNI7XRwaPLHQot0cEh863910sEhOjoaGzZswIULF7jreXl5sLKygoeHB3r06IHx48dj5syZEIlEtfJ5euDAAWzZsgXXr19HZmYmt+1GjRqhb9++mDt3LgYNGmTx7RJiSVHbVYjczkD2oMabxwd8+gHdF/Bh7WKZsBLbRY39Dq5SMgjfyCBic8NtCKiti4TIAXBvD6RdteSGAPcOQDZbg8sYHnh/4m4+Fxx5rKhUQMxJICsKkJcCYnvAxhkozgDOfV+940HjPsDMbYCta/WODKH/ApmRQPINIC9Ox5Oqp32IqeYdrgxcbH8OiDyEeiMQG+4O4dEGeOua5rSSHGDvq0DMqVrYKR7w4nGgSW/Ds6YEA2tGaCaADGEfD/szsHPHo6a0sABRVwJRVlgIZ28ftOrdH0KxZvdMFtvNYNVrc0wu9h8w83n0nvy03nmKcrLxz9svgmHfgw1I+8EjuH/Dzpv3muz79Cz0nToDYedP4/iqynMSo/B4XMii9+Tp+POV2ZBL9J+TjHz1HXQaPtqs/SSEEEIIIYQQQgghhBBCCCGE1A7q4GAB23/Yh7WfbtGYxhbbXz10E4lDvsAf17+3SFE9G25gR71fNOE73AmMQENlE1eIl2wDUNLTG5fjErna3f5N/fF01w5YOupbi26LLbBiu2YYgy/gITMx+7EKOERci+YKkNluC8aKCrqPLyb/gN8uL6uYdmz9Wfz25j/VwhBVlRfvW7KI/8BfxysCDnZO9fdzadWjOV5dPge/vfWP3tH4J789tto0Bxd7LN3/CZKiUhBy+i73/HQa3A5H15zGob9P6n1O9WGDJK/9ONeocANr3+9HTQo3sNgQy+9vr8GXuxfiUcAWH0vLZNj76xFs+WYXZJLK5/bP99bjnT9exrCZmqMBpxUX6Q03sBgrAeSuVlzHm3LbvtuD8a+N5AJqbOeQs9svIeT0He7n22VoBwybNYAL5JgbblDai1E4JEBruIFVNNAfVjG5EOZLTF732W2X8NkLg3HSzga5JWWV3RvYzg26sLkFR/W2rh2+iX5P9UDXYR0gFAkqO4IYUYjp19EHL82cxQVQvO3sDQYcvB0cTHps5PFVXFyM+fPnY/369dU+Z2QyGYqKihAbG4udO3di0aJF2LhxI4YOHWqx7ScmJnLBicuXL2tMl0gkKCgoQHh4ONauXYvp06fj77//hqurZcKrhFhS2AYVFzioih2IPvUiUJSkwoi/LFNUz4YbZMUMAj9WITccDVr7eWwnCx6yQtlQBuDVk4dm43m4sNDChcAMkH3HyHl5QGkW4NgEj4+Ey8Ce14AC7aPTa5V0FfjveeD5g5XTgtYCRz8GVMZ8f7ZgsCZoTWXAgQ1l1Be/nsDIpcC+14G8eN3z9Xq1+jQ7N2D2bnUwJD5QPS1gIBD0DxC8yXBoQhf2jTN2uXHhBta1VaaFG1hZkcCxT4Bpa/AoYIMECpkM1w/sRtD+/6BUVJ4PnN2wGiNffZsLOlRVkJluVieDy/9tQcehI2Hr5Ay5VIKIi+eRFHabO1f079QVrfsORPiFMw0u3FAebJj0wee4f/MaJMVFJi8fE3QVzbr2RJOOXcDj8016jB5NAtDv6Vncdh3c3JGbkqR3fke3Ry9cQwghhBBCCCGEEEIIIYQQQsjjjjo41FBJYSlmNHoVkhLdf6x++fvZePajSbCEH57/Hac2X0BDtzb8FzRp06ja9IUjvkLoGXZo0/rRtk9LjcL+R1nq/XS80f0jlBbqLyDWZcX5r9FxYFvcvhCOhcO+NNgBozZ4B3hgc+yf3PW7FyPw/qAldbp9gUiAr/Z+hN7julXsw6djvuU6YTyMfa6+P76I6wRirILsQlw/GgK5RA6vpp74cvJyresu5+hmj+ZdmsK/nR8mvD4K/m2NHyV9Xut3q3XdMAZfwMeW+D/h3sgNdaU4vwRXDtzgjp9NOzRB5yHt9c6fnZLDdcg59e8Fva93tnPOd8cXo9vwylBIVkkJeq1bZXCf/L8MhihPs/Br7MvDMeXdcfh83DJkJedo3Md2SikrNi58oHASg+HzIMyXoryxTXFvPxT311/ZaBeUAofABJjDt4U3Zq18HttT4nE1LgkqBwWU/vqLqnhlKgS8oK7OZIumFu14H0HHQnFs3RluWtafLaBqpH/U/G6JjcFfeRdJUako6OeFnKnNdM7rbmuLi6+8ApFAYNZjJEZ2cFj5kWU6OLy9vNY6OBQWFmLIkCEICQnRmM52T/D09ERpaSlycjTfgwKBAJs2bcKsWbNqvH32MfXv35/7txz7HmC3LZVKkZ+frzF/ly5dcPHiRdjZPT6BSfLokxYwOPS0Sm9deJd3eGg5VX8nHmNd+VKJ5PNo2HjAuC182PlUD3WceVuJnDDUG4+uwJAVj8nnH9uxYfVQQF5i3vKvnAUadQPunwE2T7VscMFY7q2At4PU1++fBTZPrvuuDc/9BzQbor4dex7Y+gyg0PJds+lg4LldgND4cxIUZ6k7OyilgFNjYPtMQKHne6GtG+DVQX3p8SLg3sL4ba1oBxTqDozrfQ4WRNRpF4ey4iLE3rwOmaSMK4j3a9tB7/yF2Zm4tncnFzLQ1xGALxDg6SXL4Nem8hynIDMDa955yaz97DZuEtoNGoa933+Jkvw8jfvE1jbc/jdUro38uE4Kt08dQ3KEGb8H4vEw+aPFiLp0AREXzxm9mF+7jijOzUZ+uuHzYwd3D7z8+xrw+Y/JMZkQQgghhBBCCCGEEEIIIYSQx4RlKlyeYJf3BekNN7DObH0wgqIZ2JHD8zILoJArkJueh3PbL6Gh6zG6i9ZwA2vAFCNHfqwlEVejEXfHvILhhmb3z4fMDjewrh8J5v7976cD9RJuYFnbW1dc7zCgLfpM6G6xdb/164tccbqrjwtXxP8wkZUIn297vyLcUL4Pv1z6BgOn94FAqC5wYJefs+RpfHfsc5PCDSwnd0duJPyY0Hh8Pe1HveEG1vjXRmH5ySXcvpsSbigv7jeHSqlCfFgy6gI7KvuGJdsx0+81LJ+3En+8uw4fDvsSL7V/D9HBsVqXSY/PxDt9PsOBP48bfL2zr+Pt3+/VmOZhZ4fejfQ/l9ZxRdXCDayz2y7is7HfVgs3sIwJNxR3ckfqW52R8kEPpL7fHSnvd0fBAF8wPEDhamNweYVL5fvDVKkx6fhxzA/oEVKIo/Pn4ZVBPQwuw4h4Gj+rb2f9gtlLnka/ST25abaHqj8PGiR8JCw8w4UbWA7XM2EVV6h1VgGPhy+GDaNwA+G88MILGuGGXr164fjx41zXBrazQnZ2NuLj47Fw4UIu2MBSKpV48cUXERys/iyrSWeYZ599tiLcwAYb2E4SbEgkPT0deXl5uHXrFsaNG1exTGhoKF555RX66ZEGJfk8Y3DQ+8ST5n/fU8oYSPIYqBQMStIZJJt/elNnfPtDa7iB1WhgzTtZ1ERWCFCUXD/fvy3u8m/mhxtY0SfU/176rX7CDSyxfeV1NmTQzHIdgjD+Z6DnK4Cdp7obwsOENsAzmyvDDdw+DAZePAa0mQDwHhRdOzYChi5SByFMCTew7D2A1mOA1BBgxxz94QZW7zeA5w8AY5aZFm5gaXuMxmA7TGTfQ11gOwFc2LoBq19/Hsf+/Bln1q3Cji8/wcaFbyMrUXvnjLy0FGz5bAFXqK8v3MBSKZUI2r9LY5qTpxd8WrQ2a3/Dzp3C7mVLqoUbWA053MDKTUnGkd9/hE/L1njh51XoNt7EgT8YBvt//BYDZz6Ppl2M/11Bcvgdo8INbBhl2AuvU7iBEEIIIYQQQgghhBBCCCGEkAZIWN878Kgryi22yDwPS4vLwL9Ld3GBBplEDltHG7Tv1xoKuRINXdilSPz25j+YtmACgk/expWDNyCXytG6ZwsMnTUAzp6OyM/UXvRaF5Kj09G0oz8edRf3XKvR8kqF+rV08/gt1JdB0/tq3F68cwH+nL8eJzad514zLKFIyAV8TOHR2A0T3xzFFcK++csLkMvkCNx1FZf2B3GhodY9WmDcK8Ph6u1SbdnmnQOwZOcH3HxsIMHe2Q58vnmFOmUlEiwc8TWib2ov3n/YtmV74ObjgklvjTF5W91Hda4oLDcV243A0thg1rG1ZxB1I4YLk/Sf1BMJ4UnY8s3uavMmRqTg45Ff48+by+Ed4Klx36oPNiI7Jdfo7bIdYkqLymDrUBkgeK93P8zdtwtylar6AkoGrkcqR22vig2vGQqw6ZIzLgCF/Xy50aNZPBWgcLZC/qgAyL3sIM41/JrmS2p+vN+38ihadm+G6VM74++ES3rLBq3iSzVuqxQqfPfcr/glcCkir0fj9I6L2J2VjGwPLRW0KsDur3QIJZWPi69g4PNPBPJGNUZRL0+obNVfObr7+uKdPn0wMCCgxo+PGMYw6ktN1HR5fS5cuIA9e/ZU3J40aRL+++8/iESa3UL8/f2xfPlyDBo0CJMnT+YCDmx3hQ8++ABnz541e/tsF4grV65U3F6xYgXee+89jXk6deqEQ4cO4eWXX8a6deu4adu2bePmY8MYhDQEsiLLzPMwtgg/fBOD5HPqAIXIHnBtqz7uN3RsiCDkNxVaTgPSrwOpV9iABuDenge/QQzEjoCs/k5JUJwCOFi2IU79CD9Ys+XZH4pKCcTVY0uQ9lU6NvB4wIytwJGFwJ2d6sJ7Fl8Egymih7k2A3q8oF7n+B/VwYKwvUDUEUAhA/x6AN2eVwcQHubbFZixBZBLAEUZYOXEJprNe3ySQmD9eCDTyLYlZ78F7D2B7s+bvq3mw4DgjTCL2PKdkdhQwJ3Tx5ERFwOh2Aote/VFWsw93DhY+d2jXHZiPP5b+jnm/PArHFw1O0mc3bAapQWaHZ30iQu5CYVcDmGV7zP9np2NPd99wQUsTCEtrUGAqIEIOrAbnk2bo8OQkQg+vN+kZRmlEsf//g3TP1+K1HsRXCcHtouGtMT037NVxXbs6Dt9Fpp06FSj9RBCCCGEEEIIIYQQQgghhBBCagcFHGrgTmAEAvdeNThfo1Y+Jq03OToN7w9YhPysyoobduTyoGOheBSwI5sfXHUCh/85xY0OXy70bBh2LDftj9m1wdG1ygidjzBD3QAM6TCwbcVI7fXBzdcFE14fpTGN7ZDw3t+v4YVvZ3LvL0bFoF2/VnhvwGKkx2Uave6Jr4+uGOWbJRKLMGzWQO5iLHZfTO3Y8LAjq08ZHW4o9/cHGzHo6b5w8XQyablJb4/F0TWnIS2r3olAHy9/D7Tt0xKWdPlAEJbN/EVjX9iwFk9Pl4mivBLs+eUwF0gpx3atuXLghknbZl/PXDimSsChT6PGWD1+Mr44fxqJhQUV04U5EnjsSYDtPe3VjWznj6rHMGNlTwhAUX9fzf1i69HYVSmBks4esNp/3+B6rCOzYAl7fzuCv54fgv5ezXAxQ/fr0eF49Q4NYZcjUVJYija9WsK/nR/CxyxFcOM8lI5zBeMsAFQMBJEyuG/PBm5Vfx75MhXcDiXA5VgiGDdrrL35I5r6aoZYyJNtzZo1FdednZ2xcePGauGGqiZMmIB33nkHv/zyC3f73LlzSEhI4AIQ5vjxxx8rrg8cOLBauKEc29lh1apVuHTpEqKiorhp33zzDQ4cOGDWdgmxpMxQBqmXDH+fszexmL4gjsG591QaIQB5MZARhEcC21QgZi+D+/vZEdsrp2eFMIj4F/VO7IDHg1wzIGky/37qf6v+kOqSU2Og21zNaWJbYPIfwIgvgcQr6oCCXy9g9RCgyIRAMdu5gV22nNAK6DxDfTGWyFp9qYnrq40PN3AY4OjHQLunAJvqgXC9+rwB3NoOKE08V3VrAXhbttD83tWLOLLyJyjllcGUyEtskEb3OUlZYQFCjh3CoFnzKqYVZmci7pZpHaMYRgWVUgFU+U4T0KkrnlrwGc5uXI3CLOPPbdkuA2xXiEdd8NEDmLX0Ry5YkBxx16RlE++EQi6VwLdVW7j5NUFKZDiytAQchCIxFHL958M8vgAv/rwKzt6m/Z6OEEIIIYQQQgghhBBCCCGEEFK3zBwC8MnFFs8GHQ/FO30+xYLBS3A3MNLgMuNfGWFygXPVcMOjypzCYG18mnnqLD42FVvM3XGQurD/UdeyWzOzl3Vyd0CfCd256x0HtUNtmfXZVIyaNwQCYWXYgNWqR3P8eOZLnUX8Tu6OGDClNwZO6wM3H1dMnT/e6G32n9ILzyx8Cg3B8Q2mjyoulylwcuM5k5fza+mDL3Z/yHV7eZi+YMHsxdPN7lChTUpMGr559metQQs2sKLPuZ2XNG6nx2eZfBzxaeYFR7fqFYMtZFZY33UE3hE2hdeW+/D9Ixz+S0NhdzdP57q8A7SMpmtAcUe3auGGCnyAefBWkAY4wiq6eqCgnDg+D+LEAgR0aKJ3e4wrH8wMB6jedQbznCMYT833GismJI7rSPJdzwloYq+9SM3+dA4cArU8F0xlt5jNX/+He5ejYb8jGx7z7sFj9j14PhsF909jtYYbNB66goEgowwrZ/2hdz5SCxgLXWrJkSNHKq7PmDEDTk6Gw10vvFAZhCrvAmGOkJAQhIVVFny+++67eudngxfz58+vuH3s2DHk5xs/mjMhlsR+pqZdZXDyVSXOv69CboThZZpPNO3zPnSlZrjhUWWpunlbHbWwPDO+Rtk3ftAJ43Hg09n8ZR18gGZD2RM7oHEf1JqhnwMdnwZ4D31P8usJPH9QdxE/21mBLfJvOxFw8AJ6v2b8NjtMA3q/jgYhdIvpy7BdI27vNH05z7bA0xsAkbZuDLrPSTDkU80wSA3lJCfi8G8/aoQbKun/YhN1OVDjdkFGusntrFx9/SC2tqn2uyQX30aY9OEidB41zuh1Obibfk5iaR7+TWu8jrR7kVz3ijFvvg9HD9MCz+xzd//mde76xe2bkZUQp3U+Q+EGbl0qJU6vX2XS9gkhhBBCCCGEEEIIIYQQQgghdY86OJigMKcIiyZ+h4ir0UYvM/iZvtxo7MbKTs3F9SOmjQ5oLJ/mXnjzl3n4dsYvkJTUbPT/ujJs1gB8uO5NbhT3fSuPIi02A3ZOthg2cyC6Du+Aj0Z8bdJjeXHZLIsWc9eniW+Mxq1zpozEqcaGDZYd/bzieZj2/gSEnL5T4/2xsbdGk/aNISuVolknf647Q4f+bbj7XvtxLq4dDuZ+Vi27NeVGgzfF5HfGIvleKg78eVxrJwh7Zzt4+ntg3MvD0W9SzwbzM85O1l3Arg/7OjdHzzFdsTVxFU5tvoCY4FiIbcRcSIQtCFnx8l9cYKAc+5zNWzoDY14cBks6+OdxdQcFM+SlF2DFK6vw+ornYetgwwVxTMU+Xnak9XInN5/Htu/2IikypWKaMWt19XbG2JdHYO2nphWEFQ7QEW4ox1OXVCmcxHDbEI6iwQEo7eAJiB4U3ClUsIvKxkQPH4w68hl6jO6Crd/uwYYl26utinnWAcyLToBQ/Xi5sqvnHcHsKAJ/bWWnClbwqdvoM6EH9o14CTvjQnEw8S4SEtOhjC6E46kc2AbrrmDNiM/CynfXYv8fxyofBgPwikwfSfb2hXBc3HuNCzARkp6ejpycyuNkr169jHpSmjdvrnE7LS3NrCeTDSiUEwqFGDt2rMFlJk6ciDfffJO7LpfLcfDgQcyZM8es7RNiLkkeg4ufqJB3z/hl/Efx4PNgoHxjlKQxyAxBrXDwBzq+Alxbavog7/UlYCwP3d4HUgKB+/sYlKQBIgcgYBQPru2BCx8yUBnbRIsHdHqFr/F95ZHW82UgxbSOWxyBGJi9t7Kove9bQJLh7ogGie0Bj9aAXAJ4d1TvX+Oe6vvGfA9EnwAUEsC3q/piiv7zgdz7QPCm6vc5+ALWToCLP9B9HtBqjEUL9muk0ISuE1XlxZu3XJtxwIJwdSeH9DuA2A5oNwmQlwGH3gMKkirntXFVd8roOB2WFHLsoLqDghkKszJwas2fGDznRYisrGHj4GjyOlr3G6Rx+87ZEwjavwt5aab9LOzd3NFu4DBc2bUVdY3H56NN/8FoN2gY/Dt2waUd/+La3h01Wmdi2G1uXbO//xV3Th9H5OULyE1JhtKIYAIbNDnxz0rcOVX5/c1c8aE3ERd6E027qAd9IIQQQgghhBBCCCGEEEIIIYQ0PBRwMMGy5341KdwgshJh/qpXuWLr8CtRXIH+3YuREIqE6D2uGya/OxbeTT254v2z2y+hOL8E9k62UBkY5dxcafczsHjiDwbnY/fJv50fV5BeXzoPac8Vtfef3Isr/hk0vS93ediK819j/aJtuHH8FlfELRQJ0KJbMyjkCsQEx2k8phe/nYWhM/rjcTH46b64dW40Dv5VvehfG/Z5bNWjGRbv/IDrZFGOfS2+/P1srpCbfQ7N4dvcC1/v/xj+7Rprvd/R1QEj5ww2a93l+/7Oypcx7pUROLbuDLJTcuHm44LRLwytUSeL2ubR2B1FeSUmL+eso7OFMewcbTHprTHVpm+MWYmbJ29zxwGug8fE7rCysYKlhZoRuqnq6NrTiA6OxfcnFqNRCx+06d0SkdeMP+7mZVSOpv7fTwexeqGWAjQjNGrpjeHPDTAp4MDwAWkTA/EJts6ND/ALZeCpGDiejYP95UTIGqkLp8SpRZjz4STM+3pGxSLPLZqGvMwC7F95tHJbQ23BvOpcff0CHjDLEUy2Erz9xRWTf3tzDXqO7QpHsTVebt2Hu6TFZWDuK29XzKNwsUJxV08onK0hKJbD7lYmxBml+O+nAxYNxR1cdUIj4CBXKiESVO88QSyDYXjcpabrqA1st4ZTp04hOTkZKSkp6NnzQQGqAXl5mt1GrKzMO5YFBQVVXO/QoQPs7LSNNq3Jz88Pvr6+SE1VFyhevnyZAg6kzl350rRwg8AK6Pqe+vtU9h0G0XsY5IQz4AsB3348tJjCg62Xung/6awKilJAaFt73VuKEoDLiwzPZ98IsPcD0tWNhOqFZ3eg5VQ+9zyxmgxTXx425GcGd9epkMmePrEhQCHg0gpQyIDCGM3H1PFVPhoNbCCF75bQeQaQcAkI2WzkAnzArwfwzCbAsUpbDLZTwpDPgHPLzN8Xt5bArB2Am2YQroKdO9BllvnrZwMLT/0O9HgRCNkCFKcDjo2ArnMA7w5osNh9ZIMZpmKfL3PZOAN9tHSwmH8LiDkN5CcAdh7qIIjIGpaWGFazAP+tk0eQERuDaYu+hnuTAHgENENWfKzRy5fk51Zcv7pnBy7tMPb9Ub0TRNv+g+sl4ND/mdnoPeWZitsDZsxBaUEe7pw5YfY6T/3zB178dTVs7B3Qa9J07sIGHNYvMNzt5OreHVBILXdOwv6MywMO7O9BVEolBEL6FSkhhBBCCCGEEEIIIYQQQgghDQX99c5IcXcScPPELZOeXHYU88D/rkImlePP+es1isfZsMPRdafhHeCJhPBkmMunmScGTO2DXSsOgrFQMMLBxQ5zv3wGN07cglKue4Rutki6ILsItRVwMGaEb7a4fdmRz3Fm+0Vs/nInku+lccXQbAFXu76tMHz2IK6bAHvdnFH92a4dMSFxEIgEaNunFcRWIjQk7/7xMnqP68oVDN+7EQtpmRQqpYrrplAeopFJFJCWShHQoTGcPbQXzj/70ST0m9QDh1efQlJUCje6PxugiA6Ow+HVJ5GXUVBR9D1twUQ0ad0I14+GQKlQotOgdug9oRsEdVCg3LxzAN769UU8KkbPG4q/FmwwaRn2tTtijuaIn5bAvv57ju6C2maJ0YjZ99wM31cwYvYgPLtwEr6d+TMUeo5FVV347woWrn8LRbnF2LB4m9n7cCcwEluW7ubCQBkJlZ0v9GIPwexxmG/4OXDPrxxRli9VwjpWXbA9cu5gzPniaY15N3/1n0a4gdvUTP1BCuYZB+BAMddpgZWVnIOgo6HoM0FdxJOfVYAvp/yvYv6CwX4oGNJYY6Thon6+sLuZDtdDsVwuwxCVkAelkxX4EiUEJbq7eMTeSkBsfi7+CrmOQzGRKFMo4O/ojOfad8a8jt0gprDDE8PGxgbDhw83ebkzZ85o3Pb39zdr++Hh4RXX27Zta/RyLVu2rAg4REZGmrVtQsyVG8Eg+7Zpy7BdElIvsp0fVLj9l+b5QvQuBnGHGVh7AMWJ5v9c2MJ93wE83NvJWCwYYeUCtJ3NQ3oQA6h0zyd2BmSV+UaL8urOqwg36OPWjofBPwoQf1yF8E0MSlKBXPYQwwPcOwJNRvLg3IwH13bmfVeS5jPIjwH4InZb7L8NKCDBPp5JK4HWY4Eb64C02+oOCSoFYOWgnt7rVUBWqp7u1R6wddW+riEfq0f6v7lBXZBv4wK0nwIk31BPK82uDDL0fw9w9lMXyzMqoOkgoMVI9ktv7T9mc7o/1KeuzwGnvzZtGZ4A6FhZ3G4xfAHQahRqmyXeIen372HVq3O4Dga9Jj2NI7//D4xKz8GoiqjLgRj5ytsoyc/DlV3mn5Mk3glFyPFDsHN24dZlaSIbW8jLSqtN7zh8NBc+qCpw64YahRtY+RlpSLx7i+viwCrOy8X+n741allLhhtYWQlxyElOwvX9/+He1UtQyKRw8WmEziPHocvo8RR2IIQQQgghhBBCCCGEEEIIIaSeUcDBSDdOmFhJ9MD9W/E4tOqE1pHxpaWyGoUbWJ2HdMCry+eAL+Bjxw/7YAnsrn404mu94YaxLw7D/L9fxWdjv0XwqZqNjqhNSkya0fMGHQvBD3N+5wr7y7HPd/iVe0iJTsPvV78zOdxQVlyGP9/bgDNbAyGTyCsCHVPmj8esz6ZapIjbUnqP785daqpx60Z4/afnNab1m9SLGz0+PT4LYishPJt4aIRQiH7jXh2BM9sCERVk/IipE98YxXUuMMe1I8HY9/uRyk4x47th+oKJaNG1aY1/VPFhSdzxyt7ZlvvZs+svJ5PIcO9mLHfw6DS4HRdQqCk20HBs/VmEng3D7C+ewenN55EUpS4o1kdaJoNcpuC64pS/d811cvN5PLdoOtclxhhsmMA6rhCS5no6cDz4KJDE5YIdHLsqVx8XvPLDbI2wUEJEMjZ9tbPitkrMR960xnBpbqC4ylsIBIiAuMrnIC02o+L6Ty/9hdjbCdz1kk7uKBjaROtqSrp7Q5gvhVNgis5NqawEyBvRmOv+wNioXxfWsQVwPp0E6/jCavMrmjli0u4tKJJVFiklFOZj2ZXzCEyKx9pxUynkQHRiP99//fXXitsikQhDhw416xljO0dU7cxgrEaNGlVcT0ysQUU4IWZIv2FeeiA3EojZo31ZRVnNwg0sr548dH6dD5VcpXM7pmJr1gM/0h9uaD4Z6PoOH2fnq5BzFxZXrPvjr5qUiwyClj+0vwyQfYddD4Phf/FMPoeQFzMIWckg6QwDlbwy+NH6GR5az6iDQn5TtBmvvtSUZxtg7Pea09iQxOCPgYIkQGgFOFU5ZjcbUvNtPu7YgMndvUCGCeftfd4AnLV35zMo8jBw7W91MEUgAlqPA/q+ZZEuF2xRem5qCqzt7NG4fUfwqwZj5WVAaih3tWmHDshNrdnvWlhKuRx3Th9H0t1b6DN9FiIunEF+ujHnJKXcd5aIwLNQKSuDzea4e+4Uuk+YjKs1CErooi3c4ODmjoEznwevyu9QMuNjcX3/LotssyAzveL60T9WIDclCfWBPR5vXbQAsrKyiml5aSk4t+kfJN4NxaQPF2m+vgghhBBCCCGEEEIIIYQQQgghdYoCDsbSElAwBltkr7JQZwVtBj/Tj/t33tfP4ta5MK57QU2VFpahpKD6H7rLefq7Y8GaN7jrLy57DuGXv4Ck1LKj6YWeuYv5AxahVfdmmPjGaDRpU1lM+LDVH23WCDdUxXaY2LpsDz54sL/GYLsSfD7+O9wJjKi2rg2Lt6Mwuwhv/DwPTwq2kN2vpXkF9086a1srLD/1BVcgf3LT+Yr3Vds+LeHi5YyQ03dQVizhpjl7OGLyu+O4AI05/l26Cxu/2FFlihSntwRyHQ0W7VyAfk/1NGu9bEePFa+s4kIT5Vy9nbkuL2NeGsZ1Odj/xzGu2wnLxsEaQpHA6I4LhqTHZ2LDg4BBo5Y+XGhJH68AD67TSnZKbo23zQYk/Nv5YeC03gjcfc2oZZzOJUPSzFGjE4IGRh2EyHmmDaQhGXA+mQCeUv0ZkZuWh/9+PIBX/ze3Yvaj/5yqXFTAQ9orbaFoZQsXVBYG6fRQPY6zpzp4kRiZgquHblZML+yn+/jKKurtA8fLqRX7WZVKxEf6i+0h87PXmC5p5oT0Jg7w3BoF2yjN0WbTnm2iEW6oKjA5AVvDb3GdHIgFWfBrSFqa4QCiKWEBU61atQrBwcEVt6dMmQInJz2hIh1KS0tRUlJScdvNzc3oZV1dK0cez82t+bGGkLp4P2eG1t75CKvxEPXnXqfXeMi6xaDA+GynTpJcdfhCX9eIbvPVH3adXuXj/AeqihCApaRdY3DmbSXXoaHZUzw4+Gn/fGcLmW//rdIZxmAfS9R2Bl3fNT7goJIzuPCRCrmapySQ5gG3/2YgK1Kh4ysNLORQm4RiwK15fe/Fo4ntpDHvEHBmKXBrByB70IWxcR91N43Yc4D8wfm/nac6jDDgPfO2xXaKCPyp8jb7nry1FQjbAzy7BWg5wqzVZifG48Tq35EWHVUxzd7FFf1nzEWHgUOAc8uAoLWARN3OZZCVI2y9XHExww+MBfo55Gek48rOf7nrzj6NkJ+mP/3k4uPLFdAX5+XUeNtySRl8W7ZBs+69EHvzOmpbUU42go8eQP9nZldMu33qmMXWb+voXBGaYDtU1Bc22FA13FBVbHAQFyzpNHx0ne8XIYQQQgghhBBCCCGEEEIIIUSNAg5G6jzU9NHqrWzFXAeH2tJxYFt0H9mpogj9x7NfYkajV1GcV1mwZyp3P1ek3tdfOJuZkI3IoBi06dkCrXs0xw+nluCPd9fh3o3KSibfFt6wdbBGTIh5jz8nNY+7hF+OwoE/j+O9Va9i7EvDq83HjhQff1f/iH/ntl/ilhcIjRt97+Le69XCDVWxI+RPfW88vPwruxkQooutgw3e+vVFvPTdc8hMzObeF+6N1IW0JYWl3GuYfW226tGcK8w3B7sOzXBDJbabwfLnV2Jb8t9cV5YTG84h+PRtrhCvy9COGPPiUDi4aBanl8tKzsEHQ75AXkaBxvTc9Hz88vpqnNh4jgtxVVVWpA5ssI+JDQtZkqFwA4sNVwQnJuO0hwQp73QEX6qE3e0c2AdngS8z0PVAx/oW7VjABUV2/ngASZEpkPOA3C7uKOnqCaWTGIIiOexuZcCJnwvHkXzYtU6ETCBGYZY9irLtwTAPiqpU6nADV5wqFqC4ty8Uztbw2F4ZHmGf06oBh/jwyuNbUXcPSJs6AnIGcqkAIis9z2+BEkjQrPJkj9EXdl3B5f1BFdOUdiLIve30PgcqezFkXnawSi2udl9Rb+9q4YbKJ4+P3AlNYXMvT/242UmdPZEu1j+K7bbw2xRwaMB69eplcB5tXass4fr161iwYEHFbaFQiKVLl5q1ruJizdezvb2O17EWVed9eD2E1DbPrjyErTftPSa0BQpja22X4Nkd8Ois/qwTiHkY9hsPB59moNCdlzbI1gsoTTfcXaEwnoFjAA/uHXkY9CMfob+rkB9TOY9DY4AnMv/xS7LVl5wwBtF7GPT8mAf/kdVDBbnhQLGBweITTrABB+O3nXSWqRZuqCpqJ4MWUxnYuDWcznKkAbNxBsb/BIz8GihIUYceHB+E2MvygYy7AF8ENOqm7rpgjsRrmuGGqhQSYM8rwIIIdZgi5F8gPpAdRx9oPhToMguwdtI54v+Orz+DpEizM1hxXi6O//ULcGMdOhQf1riPLy1EL9dCOIolOJzUEpZkKNzAbZ8vQFLEXSRHhFtkm2wngUkffo6oSxdw49Be5KalQKVQ1rg7hC5scX/VgENOsuU6VqVGR+DuuZO4XwdhDV1sHBxR9tDr6WF3Th+jgAMhhBBCCCGEEEIIIYQQQggh9egJGvKxZlp1b84FCkzRslszMLXQvYER8eD1Ti8kvd8ao3atx4vHduN4fDRXHP36T8+bvV52f8e9bNyIiof/PsH9e/tCOP75aDPu3dQcpjU1Jh3SUhmW7PoAT38wEZPfHotPNr+Lz7bOB19g2suO7c7wy2t/aw2L5Gfp/6M0i+0uISlRF10b49S/5/Xvj4rhRsYnxNRuDmwnkvJwA8vO0RadB7dHh/5tzA43sA6tUr8fdWE7R2xbtgezm76JvxZswLXDwbh+JASrF27Cc/5vIOxy5UioVe3++VC1cENVD4cbqmLDDb3HdUVdu9tYgGd27MR1RT5XeC9p7oScKc2Q+m4nKJzEJv/M2vdvw3XZOPT3SUTfjEWpQoHk51qjYKQ/FO42YNhuFa5WsHnLGuIlzuD3tYbIVQU7Jwl8WmSjcbs08Hgq8JQA/0H3BvZ6OUlrV0j8HTU6xSiV6hkUcgXu3aisyCzqWR6q4qEoy0Ax9sFi8B4axXrXioO4uOeazo43eumonSzu7ql3MYWrNdfNgeXh54apP80wuKm4/Lxqr6XC3CKLB2aeFGzAxhKX+hYWFoYJEyZAIqn8PF+2bBlatWpl1vpkMpnGbZHI+GNw1XkVitopLCREF7aQ37WNCc8PD3BqWkvPJw9waQ0oJcDxeUpc+lyJtCsMBDY8rpODuVzaAP4jjZv3/gH1Z1pmiLqDQtVwA6uIzQmqgL5f8tDqGR5aTOWh92Ieenys+7NNF0YJBP3AoDCx+vmdVD1ovF7yEnVXBmMlnNQ/L6MAks7UbmcO8hgS2wEerSrDDeXhh4ABQJPe5ocbWDfW6b+/LBcI/BH4pQNwcjEQfQKIPg4c+wT4uQOQUtmhqaqgA3uqhRuquhSSBV2/dmljn47efcz7rlATbCBg55efICO25h02xTa2XAcHWWkZQk8e4TofKKTSWgs3sErzKw9qCpmM26alBO3fjfs3rpndJbWmHD290G3cJIPz5aWlatxWKhSQFBdDpaJzEkIIIYQQQgghhBBCCCGEEELqAnVwMMGiHe/jk9HfIO6O5uh1PD6P66Agl6qrSVt0bYpZn03F72+vsexPi/2jqjUfGR+2R4wfW8mj/oNrdF4OziTGok2hFf6eOBUiK1HFvhjDykaMLsM6IOT0HUQHG/eH69y0fGz++j9s+nKnznmSolKx/ft9+OP69xrT//vxAKKD42AKNlRw4I9jeH/16xrTfZrpL65lOXs4wsbBRut90jIpivNL4eBqX1FgXphdZHCdhdmGgxWE1JWqo/zr8t9PB6GQVS+CYYv3Px61FDtSV3OBi6rObrtYo/26diTE5ONRTZS1dEL+6CZa75N72CDr2RbwWW38KKpjXx4Oe2c7LJn8A26dC+OmFQxtDLmvZrjAuXEB7D20D1Nt4yiFp38usqLd1V0M2C4OD81T2skD1gnqY4pQLMSvr/+DCa+P5IJiBc4yyPo7o7i5E8qaWwMCJXgyHgqy7CC2kcPeTct2L5aCt8m4Y5SgRA5RZinknpo/+6r4pXKI07V3BlI4WRnchsJZPU92Si5UeYbDZk7W1ur5U3Ox9ZvdXKCstKgMto42GDlnMGZ9PhWu3i4G10NQa10UfHyqFEXWgdu3b2PUqFHIysqqmDZ16lQsXLjQ7HU+3GWCx+PVaF01WZ4QU/X9mo8LC1UoSnjoDh7AF7JF9JVBgXZz+Li2zIxgmzH4QF6VjGRhApB6WQVHf6DfNzz1B54J9asCW8CjI5AZDORVNjfSqywHuPOPCpFbdW+oMB6I3s1g6G+a3dzu7VBy95kacri/j+3EoPmet/M1vKyNBztAvvZjhULCcAEIK8fKeaS6M6YmBSsIqTNZelqOlAv8WZ3OeZi0ENg4EfgwGhBrfi+NvKR/AIJihRWSSp3hb6f9DWEXdwQCYRuuQP1R1HnUOIisrbH/28VIjTLiObYA9ndcJ/9Zic4jxyErIQ6yshq05GlgirKyjAqHWD/o2FWYnYVre3Yg4uI5yKUSWNnZof2g4eg99VnYOmrvOkIIIYQQQgghhBBCCCGEEEIIqTkKOJiALaj86+ZyXNx7HRf3XoOsTMZ1PWCLYB3d7JERnwWxtQieTdSjbK94ZRUsLftpf5T4aS/Wj3SUYvo7P8Df0RoFWcYXFCsUSm5Ed1OwhXz6wg3l7t24jzuBERXdL079e8HkcIO+0eIbtfBB5yHtK4qPtRn9wlDw+ZpdI1Lvp3MBjfM7r3DF1zb21ug3uRfmLJkOn+ZeekemZ/k09zbrMRBSG+ycdBenl9MWbignLZVyAYh5Xz2rMb0oT3tRuynqKtzAKuin/33JdnNAM2fYZktRWlimd15bJ1u8snw2EiKSceXADW4aI+ShuMvDoSoGTr76Q1GOHsXIi3aFSqW9e43KRqjxczq69jQOX7oI3ofekK5qxE23Y0dvlRegIN8OEokYUAAZaU4oyrWFg2spBGIllHI+hP/lwWZnjkmDUjtcSUXupBY677cPSgdPqb1wVFAog8KjymcSjwHfVsG1q2CkAjAyATdPeRF42K/n4f6iL7L1FElNbtkWmUnZeG/AImQl5VRMZ39m+/84hmuHb+Lni9/A3dfVhEf5BGN/dDUdILfK8my4wc+PTVnWjcDAQEycOBEFBZWVvoMHD8a///5bo/WKxZodXeRy449VVee1srKicAOpc7YePIxaw0fyBQapFwGljIFrGx6ajuNBZA+UZgACK8DWU/1poNJsWGI5OgaxZoMOx55nILID5MXGr47dz/Rrpu0CG+bQF24ol30HyI1UP0+s2MMqk8MN5XLCqm/PqSkPru2AXD05ymbjq386FyUxCNvAICWQ4R4LG/JoPAhoN5cHe18g38Dg7/bqrwmENAxsQscQbeGGcrJi4PpqYMB7lbOrVJCWGj4nkSo1A0xV2QrlDS7cIBRbgSfgQ16m/5zE2t4BA56dg4zYGCTcDqmz/VPK5bh96hhunz4OgeDx+rUhw6iQHBHGPbeSYt3ncW0HDEFBZjq2LfkIJXm5FdOlJSUIPnoAcaE3MOOr5bB1cq6jPSeEEEIIIYQQQgghhBBCCCHkyaK92pLoJBAKMPjpvvh863v4au9HmL14Otx8XCASi+DXyheZSTk4v/Mywq9EoVXP5hZ9JpW2AhT1dNM7T/4gTxRkF5v4x2sd1Ul6lJUYHoW7XOjZuyjILsT7gxbjh7m/w1wCUWXRgkwqR05aHmQSGd7+/SXYOesu8E6Pz9QYqTkpKgXv9v0MpzZfqCi+ZkexP/3vBcxr9S5SYtL17oe1rRWGPzfQ7MdBiKUNebZ/jddxfselatMatzFiOGIjsYObewcY7rhSE9ImDgbneWHnW5j12TSD87l4OnHH9etHKguJFA5iMFXCCCyBSAmRtf6CKb6QLfLUXV0qfKirgaqZGNIfvCFpovkRLRIp4eZeCCsrGRdPZOwYlPCFyMh0QnqMO3LDHWG9x7RwA8s+JBMOl1K03md7JwtO53R3CLEPzqy4LnCVwqplIcQBJRA3KYW4RRHEvoUQF1QWpUVcjMLb7XroXJ+nrR1e7twD/3y8WSPcUFV6fBbWfb7VyEdHHmVbtmzByJEjNcINQ4cOxeHDh2Fjoz3saSxHR80izJIS4wNdxcWV37Ps7Nj4ESF1jy/kockwPvos4aP/NwK0nc2HtSsPAjEP9n5ASTqQdI5BTjhb1F8PO6gyLdxgqO5ZF5nhxmsVMkMYSHIZnH5TiZs/mp/84lX5KsCGS8pyGO7f7u/zIdSTOS1O09xmQRyD02+pkHRGHW7g1lcKxB8DjsxiUJqtfz+EdkDjodQ9hjQgHQx/xzbo9g6Nmzw+Hy4+hpM8rmLdQYECmXXl+ng8OLjX7jmJMYa/9AZ6jJ9icD4HVzfwBQLEhd5EvWAYKBV1F1ivK0nhd9B78jM673dw80DXMRNxduMajXBDVXlpqbj835Za3EtCCCGEEEIIIYQQQgghhBBCnmyP11Bs9ejGiVv4c/46JEWlVkyzd7Fs0ZvM1xaMWH8mRe5pzQUhHAQigyOUs3h8HhiVaQU+fZ/qgbjbCSYt8/6gJUiK1F5Aa6weozojOyUHm7/6D2e2XYSkRAqhSMCNtC4r0/1Hd7ZLQ7cRnTHu5eHc7b8/3ISCbN3VUJFXo7n1KrQEP/h8Ht5e+RLsnamgkdQ+NsRz+O+TuHYkGAq5Ah36t8FTb46Gf7vGGvMNfqYfdv98CPdDtQ9FzHYoYUM8+pQUluHY+rO4fjQYKoUSHQa0xYjZg7D61maLPBY2Y1RSqHvUfkvQ1WWgKhuxGAE9mhmcr/WDgJpSUXkc4EuVAHu85FcWEzIq4woLdc7HMLC7maExST7bGbDh6wyKODmXIjPjwejzPICxYqCCCp5b48FXqGAOl5MJsLuVhZJunlC4WENQLIddSAaskvVXpzpeS0dJZ3eo2gsg8pZU21eeiwq53/jD/YM48IvUz+U4n2awH2qLFUGXkFpl1FQ7gRieJSK8PesH5B2M1BvUOL/jMt769UXYORruXkLYZ7KmBbB1W0DLhhK/+OILLF26VGP6U089hR07dsDaurJQ0VxsQMLW1halperjUm6u9uI1barO6+lZ/0WShFSVdoVB6B8qFFf52s12dagvbMG/otTIw4yJmQO/IUD2bdOOLaffZlCahhrx7sVDaQaDsI0MF05QStnAiTpwoNRTB5xwHPDqroL/SPVnfOhKFeR6Ahq5Yer1qrQEP3h8oPsCHoQ2FHAgdaAgBbixDog5BTBKwL8/0PMVwP2hDmCdngWurQKyIrWvh2vrYiBQKCkEbm4AYk6zX6CBgAHoOmQQzmzbpnMRX5tCuFuX6jwHuZPvrXEckOnpJFZXRFZW8G7e0uB8Xg/mUSlNH5Ti0WfGB4OxGAbtBg+D2NYGV/7biuIqIQaRtQ2s7OywdfGHKMjQP/hFeOA5DJ77MkRiq9rZT/LImjdvHjZu3FjRfe7cuXMa92/YsAEvvPBCxe2qg7JYkkQiwdGjR7mAeEhICOLj41FYWMidC3l4eKBLly4YNmwYZs2aBRcXl1rZB0IIIYQQQgghhBBCCCGEEHNRBwcdVCqVxh+aivNLIC2Tap339oVwLJ74nUa4gVWcZ/xowMbgGVO4qmK4+VRKFVp0awqhWHeGhS3St3UwvUiQLa4W2zworjXClUNBNQ43sFQMg3f7fY4ja05z4QYWG0IozC6q6MSgy4Yl25GRkMUFJIKOVo7Irgu7Xp9mnmjWyb9ipMduIzvhu2OLMHre0Bo/FkIMibgWjVc6vI/NX/+HezfuI/ZWAg78eRyvdVmI01sCNeYVW4nww4nF6DOxO/darZhuLcKkt8agff/WBrdXnFuMn176E4G7ruLSviAuCMRuu01v7YU3Di52mPzOWJN+kEW5Jg7lrKOLzkvfzeL+fZhtuP4CZZFAgEFNA9B1WEf4t/PTO+9Tb47h/u00qG3ltksVsIqrHEmepVIKUJav/ziqzAFkxdqPmY5nkyDKrQwGMDY8qPrqL9oXixUQCpVcgKBiOZEK1vGFFbeljexR1Msbxd28uM4TxhBnlsLlWDw8tkXC9eB9g+GG8tCH1+ZwiFx1B+pUnmKUjlMXS7g3coWbrwumt+mA48/MQzsHD/ClPPAlPEiKFYiQFCJ4sAuyZrUAo6dmUyaRIyc1z6jHRR4tbBEOW2DzcLjhpZdewu7duy0SbigXEBBQcT01VfM7nD4pKZXfafz89B9LCKmpqkFkrjC3WN0tQJuMGwwuLdIMN7BM7aRgac4t9J91ih0BgfGnFhWcmvEgMKGmNOkMahxuYKkU6s4L8UfV4Qb1NEBWADAGBjq/8w+D0iwGxakMMoON2Ra4jhyO5YcrtiNWL2DwT3yugwchtS7hMvBnHyDwRyAtFEi/ow4x/NUXCNunOa/YFnj+INBipGY4UmgD9H0b8O1ieHslmcDB+UDEASDyEHDsE3SJ/AxdO2gPFNo4OmHUxME6V3cluwny5Zpdn6QlNT8o8gVCDJgxl+swYSqh2Ar+HbuiaZfucPby0T0jj4cuo8ZzV/3atseTp5bCDeznh6cXbBwc0Wn4GMz93x9wbVQ5gIBcUobsxHiD4YbyecuqdBojpKGQy+VYvnw5d74zdepUrF27FsHBwVxQW6FQoKioCLGxsdizZw/efvtt+Pr6cgFz9lyMEEIIIYQQQgghhBBCCCGkoaAODlXEhMZh5//249Le65BLFWjW2R+NWvpwxcXpcZnc6P29xnXDzE+noF3f1hrF89pG+7c0q4QSCHOlULjqruSxiSoEX6qCRCpFTHAcV+A8e/E02Dvb4+bJW0i+l8Z1lhgxeyCmzp+AN3t+jOibsSbtR0pMGgZM6Y2tEXsMzuvb3BvRN+JgCcfXnUVhjp5hTvXIS8/HnGZvYtTzQ6AysmNFWmwm/rmzAl4BHhAI+BBbm1F5RYgZ5DI5vpz6PxRpCUmxHQX+98IfaNunJff+Kufk7oil+z9BQkQywi5GwMbBFt1HdoKjmwPuXorAjeO3DGyz+vDAZUUSJIQl4YVvZuLM1kAkRqTA1tEGQ2f0xzMLJ8GnmRfX6WHXTwcQeT2mTn7W7LFrxsdT4NPUC9/M+FnjPseLaSju7gFGXD38wHq6Ywe42anDA4t2LMDHI79Gbnp+tfmmzB8H76bqIir2WN+qR3Puc4DlfDYJGf6OgLCymCk30Rm+TukagYOqmHX5GOUvxvmSbEgDnLhp4sRCOFxNhW3EQ6EMWz4gMDwaM5/PBt6qPE4+D0U9XOF4PQ8501pB1sih8j4VA7tbmXA5EmtUlwtTydvbAGL9+1w22An2O7Ix4bVREAjU+708MBD3czPg55MPGxsplEoBsrKcUFxsg+JuHrBKKoZToPbCIvbz2NGtHockJ7WCHU2U7dJw/vx5jelfffUVlixZYvHttW3bFuHh4dz1e/fuGb1c1Xnbt38SCw5JbcuNYhC1jUHqZYYrcHduCdj7ALmRQGmGevR+n35A29l8uLauPP7eWaviBjxvSNjuDfkxgMAaaDMTEFjxuCAGG8Jggw0Bo3loMYWP4/OUKDStQRyKkoBGA3i495/hzzY2JFCg/iivsdiD6jCDOcqygCMzVPAfY3znheJkYOy/fFi7AjwBGwahrg2kjsjLgB2zAWlliLaCUgbseQXw6wk4Naqcbu8JzN4FZIQDSdcAG2eg2RDAxkXdlSHhkv5tsut9CE+Sj6HWp+E6axmCzwUiLy0F1rZ2aDNgMHpOnAZHD0+gZSfgyu9AmvqcJ73MHjdzGyGysHY6LXUcNgq9pzwDe1c3HPtT85zEkM4jx8DaXv09duKCT7Hr28UoK6x+UOkxYQq3flaTDp3h1tgfOUkmHigf0rh9JySFmdD65jHVedT4ioEBzm9eg9yUJLPWwxcIYGVH5ySkYWGDC5MnT8adO3cqprGvd/bcp127dnByckJJSQkiIyNx69YtLkDLBhu+/vprHDt2DAcOHICXl1e9PgZCCCGEEEIIIYQQQgghhBAWBRweYIv/l0z6gRsVutz90HjuUo4tjL966CaCjoXgq70foff47shKzsGdCxF18mriMYDL8TRkzawccViDkoHrUc0RiNnHs3XZXqw4/zWmvT+h2iIB7RubHHCwc7SFq68L+AI+1ylCF7YouKxI96jepjI33FCO7fh+fINmW3hD2K4P7HNESF1iuyjkpukenZ4NORz86zhe+/H5immR16OxddkeXDsczL0v2QL9rKRs7n3foX9bdBvREcGnKv/AbayyYvUIfmvuai/cGfx0X+4SdCwUn437FrWJ/aP8jE+nqrf7TD+UlUixeuGmis4Q4mwJvDZEInNmS6iqdi1QMbAPzcbM4ZXHTvZ9/fetH3F49Slc2nsNJQWlXMgjOyUXe389wl3YgNtbv72IJf99gPcHLUZWUg6skorgsTUCeeObQeGmHg22LM8GWTed4d42D3y7yqJDRsJAubEIHUuaYdEXc/B8y3dQwj6fPOgOGhQogUIl4Kg9pMGtlwEUCgH3b1VKeyEy57aH0vmhEe75PJR09eJCGa57o2FJYidrFPc0XDimshdwHUae/XgSd7tIKsW5jEvo2TMJAkHlA2nUKAc5OQ6IjPRDQX8fOAamVx3/t0KPMV3g7KEOixAD2KeXabAD6FbIz8/HqFGjEBQUVDFNLBZjzZo1mDNnTq1ss2fPnlxXCBZb3COTybht6pOcnIy0tDSNdRBiSalXGFz5QgVVlU4A+ffUl3JsiCH1IpB+TYUBy/jw6sFDcQqDvMiG+7NQSoDwzcDwlTy0frb6iOdshwJTAw5ie8DajeECH/qCHW7tAUkOLMbccEM5dl/jj5h2YGWDLfaNKNhA6tidXUBpjv4wws31wLBFldMSrwGBPwExJ9UvdtdmQGEa0Ps1oMVwoElfIPGKybvChhy6eOajy8+rtM/Q6WnuknQzEPt//BZSlVDn+QRbzFsTbNeGXpOmc9fbDx4OhUyGwG0bIC0xooMnj4f2g9kOF2qeAc3w/P9W4vapY4gJugppaQlUSgWKc3Nx4+Ae7uLq64dhL72ByR8uwrYvPkJpvnldzAI6d8Po1+dj3XuvQS6tx1Ha2WBBDX8GDxNaWYNRKqBUVA/tP6xl737oPl59TlJaWICIi6b9jqiq5j16w8pWf/c9QupSVFQUBg0ahMzMTO62SCTCO++8g/nz56NJkybV5o+Pj+eC5Js3b+ZuX79+HWPGjMGlS5dgS69tQgghhBBCCCGEEEIIIYTUs+rVJU8ghVyB5fP+0Ag36KNUqLBk8nJcPXwTxflG/BHbgpzPZ8JtXxJ4Ms0qHn6JAt7r78P2XvUQAFvsvGvFwWrT2T/sh10yvRJKWirFyrfX6gw3NG7ti6/3f4xfLi5FUpRm4KIhYLtaGMvV27lW94UQbYzphnDo75PIy1B3H2BDVwsGLcGVAzcq3pds15l/Pv4XX077H5RKJZYe+ATjXhoOQZXOAzw+D74tK7tA6BJ69q7BeXqO6YLhzw3Ueb+ThyM6DmqLmmjSrhE+H78Ms/xfx9fP/ATf5l7Ynvw3143hqTdHc/PY3C9Ek++C4bH1HpzOpsDlWCL8fgyFx44YHPnzhMb62AL55z6fhsU7P0BpkYQLMDBVOrykRKfhs7HfYvPX/2F95K8Y/6q6GMnmfgF8fguB57q7cNsdDc8NYXBaGAHF1HQovsuHYn0RFCsKIJ+eAZ8gB3y17yNuW+xx0d7BRm8XBZ4CEJxUBzZ0KSsTQ6Wq/vHNWIm5cANfpIStZwl3EVhVFvmUdHCH3PWh8IOZZn02Da+vfw1F3/RHVksXg/NbZ6nw1i8vQChSF5udTw1B0xaJGuGGcm5uRWjePB0Kd2uo7KoXp1nbWeGFpTMt8jhIw1BWVobx48drhBvYkUXZEURrK9zAYgMVVffh9OnTBpc5ePCgRpHkiBEjam3/yJNHKWMQ9INmuEEfdr7AT1TIuKGErGY54DrBKIB7u6of9xklg2x1MxWTSPIY3F6lO9zg6A8M+IHHXUq0NwSqV3wTmsOx3RsIqXMpNw3Pc20VUPqgI1nkEWDDeCD6eOUbMzcWOP4psOsFdsQIYPYeoPNMdTuScux1NghhSNwFg7M07j4Q/j0H67zf1tkF3i0qu3Gaw7VRY/y39HOsfvMFHPrlB7g39sdrf23E+HcXouNw9TmJTgyD26ePakyyc3ZB3+kzMX7+Qi7gUJSTDabKgS03NRm7ln6OG4f24uVf/0G7QcPN2uenFnzGdYSY9OEiiKwtc05gFguGG9jnbei8V7mQgTHhBoFQhKFzXwGfr379hV84A5XSvG6sYhtb9Js+y6xlCakNRUVFmDhxYkW4wcPDAxcuXMBPP/2kNdzACggIwKZNm7B8+fKKaaGhofjwww/ph0QIIYQQQgghhBBCCCGEkHpHAQcAVw7e1DtaujZsEfHiid/jr/fXm1QwXxOuXs4QiARwPZaGpp+GwmNLHFwPJsNr/X00/SQEDjceFBZoEXQ0pOL63UuR2Pf7UWz6cidS72eYtA9t+rTE2e2XdN7P7t+PZ79E34k9uEJWkdhyTULYQkJLYIMsQiP2q2nHJmjZzYhCC0IsTGRl+JgiKZFi2axfuG4OK15ZxXUf0ObqwZs4s/UixNZivP/P69ieshqLtr+PT7fMx5b4v9B7bDeD22KDEMYYOmuAzvsKsgohEArg7Gn+qPsJYclIjUnngghsl4sPhnyBPb8e4TpIuPpUFtmzAQL7WzlwPZYI57MpEOWoRyiNvKa9e8GGJduRn6l7OObj68/iyD+nUZhbWT3KPiPWCYWwu50F67gCrsMOpIDqeBlUG4uhOlAKFDNIiUnHiQedYzoPbo95S2cYfJyif/PBi5VpvU+h4KMg305dF1SlNkhQIIfK1gYurXLg2zcFbu1yuItPn1S4tcsChCputNSytm6oqe6jOuOFb2bgoEMBkmWlUEkEUMn0f50QH8zCtzN/qbh9q+QKN3irLp6e+RAKFdXCIGzo7PmvnkWzzv4mdwAKuxyFuDsmDg/+OGAsdKlF7Kiily9frrjt6emJ8+fPY+jQobW63a5du6J168oiR7b4Rx+5XI7ffvtNIyDh5eVVq/tIniwpFxiTuwMwSuDCQiBsnQr8ujklgZWrZm2yKdKvVx5QskIZRO9R4e56BpIs09bj3hFI1jPoNk8EDP2ND59efAjFPK7LQ0Ojkhn3PLq0ZjtcUPcGUg+EVobnkRYBe18DFDLgwDvq5JU24fuBiAOA2BaYsgpYEAFMXwdMWwssCAea6g4lVDLufdC6v+a67IVStHPKQHunDAiLU2BtZwdreweYKycpAfkZaSjKyULUlUBs//Jj3Dl9HG36D4adk+EBEtKio7ROv7htEyTFutNqt04eQcSlc5AUF5q8z7kpSdyyLP9OXdB32qMfFma7J/R7+jlEX7+MkjzdvwurSqmQ48jKyu97967p/t2WPnYurhgwYy7cGpt2TsJ2jEiJikB20hN4TkJq3RdffIHoaPXvPNiudGwwu0+fPkYtu3DhQjz99NMVt1evXo3IyAbcGowQQgghhBBCCCGEEEIIIU8Ey1WfP8KSa9BlIOT0Xdi72Bnd/aEmch+M1s4SlCjgHJhlUiDj2pFg/PTyX8hLr1yPKToOaocmbRoh8qr2ImGWUq7E8fXnMPPTKVwgof/U3jinJxBhrK4jOsLKWoyrh4wYRdIICpkCIish5FKFzoLu5xZNs8i2CDFVv0k9sfN/+w3OF3o2DPv/OIbsFP0FHUfXnMbIOepCH7aTwOBn+lXc131kJ+z97Yje5buP6FRxPfZ2Ag6tOoH48CTYOdliyDP9MejpPhCJRdi/8pj+/T1zl+tiwAauDq8+BRU7imsNrf10C7oO62BUmIoNYD2srLiMC0sYsmP5Pji5O5q1j3++tx5FucWY++Uz3M/CEF6JClYLUqGY5gTFeEfAVQCVgofSIisUlNhCpdSs0rQRitA5sBCpU2Ww9tX8LGJDBLaeZRBYZyIj1AsyH1vURJO2jbBw/VuIzc3FhYTywhwepJk2sPYt0VpAanWlENYXChCpKsCh1Se5z5CouXfB07MrfD4DD0kW+BLNEVVz0/Px94ebuNDJN4c+hZe/h979LcguxKoPNuL8ziuQS+UVj2Hul89ywRhS/3bv3o21a9dW3HZ0dMSpU6fQsWPHOtn++++/j9dff527znZwWLp0KRYvXqx13jfeeEOj0OeDDz6ok30kT46iJPOXTQ8CRPa6a4stSWpcHalWKiWQfEGF4J8ZSM07JYFnd8DGHci+o3seRg7En2DQajoPfBEPPv2A1IuoMZ++6uc44wYsgg2o8ITq7hbasJ+r7eZSuIHUk9bj1B0aDIk+AQStAUqz9c8XvBFoP1l93cEL6FDlfLv5UODmev3LNx9WcTUj7j5unzzKdTewsrNHm/6D0LJXPwiEQoQeP8TNI+QpMcI7Bm2csiDg0sjq5gH3c+LQd/5WhF29gdtn2G4TNUxyMgzOblqDxu07gS8wfE7CF2g7JynC/ZvXDC57be9O8IXmpdlOrl6JsqIi9J78NO6cPQlLE1nbwNbRCQWZtd8yx6NJAEa99i6yEuKQHG6422BVyRF3cefsCSSH3UHaPfMKuNlAxZn1q3DnzHFM+eQLOLi6658/Pw/nNq1B9LVLFZ0m2M4f/Z6djZY96ZykLhTLypBemo9SuRS2Iit42zrDXmyDx0VqaipWrlxZcXvBggXo3bu3Setguzjs3bsXCoWC6wK6atUq/PJL5SAFhBBCCCGEEEIIIYQQQgghdY0CDuyIfi52NXoSi/NKTB6dvbzQsq7YOtli0YTvzF7e3c8VXYa0R+hZw3883vG/fbh+NBjDZg3E1HfH4cr+IEjLtI9Gbqz5f77ChUhuXwhHaWEZLKE83MCGGRiVZlEDe3vNJ1vQvn8buPu6WmR7hBirfb/W6DKUfb+FGZz3lhHzpMXq7tTSc2xXBLRvjPgw7VWVDq72GPOiupho23d7se7zrdU6ROxacRA/nFiMu4ERBvflj3fXYcO93+DR2L3ausx14K/j6DiwrcH52M4y5dLL8sGw/2XJdHa/qConNQ/ujQwfCxRuIhSOdENpdycwQh6sYkrgeDwHm7/+Dw6udlxAxBi8UgaizfncRe5mheKejSBv7wiRMw8KWwVU1gz4UhUmd+iIN3r0Q1TAXfzK7NO5PitHGWzcy1DawR0lEbmwC8uBKRq18sEzHzyFYc8NhLWtFc6GVXndsQVjdkrIFAIIhSrweQwXrFDJeXBanwrbY3ngPciy/Pr6au5f77kO4BkYhdcuIhe6IjDs6/Wzcd9i9e2fINBSJMYqKSzFh0O/rPbaToxIwTfPrsCts6O4kI61nTUGTOsN/7Z+eCxxHRhqWBxbSx0c2OIZdrTQqtatW2eRcEPVrk/+/v6Ij4/XOt9LL73EFe+EhoZyt5csWYLY2FhuBNSAgABuWlhYGD7++GMcPny4YrkpU6Zg5MiRNd5PQqoSmT+gOEdebNr8PDHA1OwruskEIuDKF+YfVGw8AfcOQLrhOmCEb2KQEqiE/0geWj3NQ/o1psYBkG4LeJDm8pB9VwWlukFUjVWEG9jD1kNPDaMCbv3FwLUtA2sXCjqQOtZsMODXC0i+bnje+EDD8+TG6b6v9XjAtTmQe1/7/XYeQGd1J7RLO7fg6u5tGnffv3EV3i1aYdpnXyMlMpybNtEvAs3sNTt1sl8PWjjkoOz0uxg5/wpsnZ1xdfd21BjDcB0WXBs1Njhr8+7qomOGYbguEOz7Xi6VQKXUDPZqU5iVCQ9/87tMXty2EWJra+SlJsOS2g8ZgV6TnkZscBDOb16D2sI+vz0mTuG6ZYjEVlxgwBwnVlV25KoJNmCx94evMef7X3V2HJUUF2PHl58gLy1FYzrbxeHAj9+iy+jxXDhEbG2DVn0GwNW3kUX2jajfY9fS72FrxHmcTrwFJfuh+oCAx8cI/y6Y2WYQenu3sljH2PrCdlxgu82xRCIRF+I2FXvuw3ZxyMzMxIABA7hudYQQQgghhBBCCCGEEEIIIfWJAg7siOaeTlqL3GvLK8tnY9uyPcjLKEBdKcgqrNHy2cm5XIGuMUryS3H3YiR3adqxCT759138+OKfKCkoNWvbVrZixN1NQrfhHfHTua+40bvZkeC1YUdxd/VxQUaC8d0tdP3c0+MyseaTf/HJpnfN2m9CauKL3Qsxw+9VSEv1Vx5a21sbXJeje2XFZFmJhCvAsbFXj1bI5/O5kfA/HfstkiI1iy6cPRzx9YFP4OjmgKDjoToDCTEhcfjxpT8h1NIh4WHsezNw9zWMe2U49v522CLHwfuh8dxFH/bYMP61kTiQfBOb4y4itjiTm+5r7QLpZBeI9+UZKLcHeozugqggHUVXbPFKC1tkfNIUKvvKj1aFjxVK+rvAeUcG9vyqv1OGzn3PkcLlWCx3Yfg88Kocs4TDFWh5ciJON8oHDNQp2XqUoizHFvmjAmAbnsPlEozVd0IPjHtlROU+CcpbNTAQeErAs2KLRXhQKMtfA+zKeZD42MBOpVlYxpKFKGDdX6R3RGscLdK7T2xQ4cqBGxgwRfvIlIdWndQZ3GEdXHWi4vqGJdsx+Jm++GjD2xBbi/Vul1jO9u3bERdXWezIHo/YIAF7McW7777LXcwhFAqxa9cuDBkyBMnJ6jfRhg0buIunpyc3emlOjmYgqF27dlwQgxBLs3Kp2+e061vA3bWArGanCSYxt2tDubJMIHyjcfPKi4Ds2+yFgXNLoNdnPNxYzkBhZlZaaAPkRwOeXYAhv/Bx+y8Vsm5pn5cvUv882f01mo7P5eJk9ufEoMeHj3bxJXlEzdoB/NQGUEr1zye2N7wuu8pR7mUS9RuRLermsJ0PZu8C/p0G5MZqLmfvrd4Pa0fEBF2tFm4olx5zDyf/+YPrkOAtzq0WbqjKpiAKiDqKziPHIfTEEUiKan4gzIyPRVLYHf3HEbEYHYePxu1Tx3Dj8L6KoIGjp5c6fWFEN4mm3XogK+Gh58gEIccrA5uWUlZUyBXmBx89gNrEdunoOLSy6JovrP9faWbFxyL+VjCadumu9f6QYwerhRuqCq3y87i081+0HTAEo19/FwIzO3UQtbDsRHwSuAHR+WlanxI27HA8Ppi7tHT2wfcD56G9e5NH9unbv7+yA2ifPn248xhzbN1qmUEoCCGEEEIIIYQQQgghhBBCLKH+/xpYz/b/cYwbUZwd2auu9BzTFX3Gd8f6xdtwcfc1o0YPf1TF3UnEiY3noFQYHo1QF7bA+6up/4Otgw0mvjEK3x9fhKykHGQn50BsI8a/X+/ClYM3uHnZ59KUcIMhF/67ijd+eQH3CwqRXyKBv4czmnu5WWz9hOhi72yHUc8PxcG/jut9kqbOH4urB2+gtEh3td7IOYNxad917PzxAMIvR3HTWvVojmnvjec6rXj5e+Cf2z/h8oEbuH4kmCvo7TigLYbOHMCN1s/a+5v+4ny2k0OTtr4oMqKjzfmdlzB0Rn98vf9jLJv1q94OE8ZhcD9Uf2cENsS2s/AG1sad15ieKskDXvGAwk8Eu5W6qxDZkf4HTuuDLd/s1r4HfCDzfX+NcEMFPg/5M7wR6iVH93vOSDl3z9gHVv1xPBTICjl9h+sKUSI2XK3JF6hHrFQ6W0HS1Ak2scaHS5w8HLl/pWVSLqCSkZAOoS0PSlvFg3BDtT3l/l88yg2OB7MhytQM6hRvl+kNOLSQN4dri1KEZapfr7oEHQ3RGXA4uekcTHF+5xUu3MCGHEjd2LNnj8ZtlUqF+/d1h4h0yc3NrdF+NG/eHOfPn8ecOXNw+fLliuns6KUPGz16NP799184OzvXaJuEPOzeThU3Un+d4QE+vfnw7Kounk+5xFR2EngMscGEpLMMlDXo4MAGIy59xkBkx6DFVB4Gr+CjJB2Q5AB8McM9jxlB6nnZThEmhRsMSDzNoPMbKuTH8CArAhybAA5NKPBA6oCtK9DpaSDkXz0z8YB+bwORhwC5nkENOs9A1JWLuHFoDxdGYPm0aM2NyM+OXA/XZsBbQUDkQSDmFPvFAAgYAHSYBojUoW5DBfT3rl6Ei7cvWqvUXRz0CtsD+7YTMHnhIhz5/UeuO0JNsN9jcg11RuDxcePgHgQd0DynKMw07nzIxsERLXr0wfW9O83eTzZU4errZ3hfTcB2bmDXJys1rbupqWydnLh/5RIJ7l27hNzUFPD4fDDsa6UWNG7fEbKyMmTExuidLy7khs6AQ9iF08ZvkGEQEXgWIisrjHyFzknMdSklAu+c+RulCgPBrAfYEMScoyvw+7DX0L+R4c6QDU1RURFu3apMXA4ePLhe94cQQgghhBBCCCGEEEIIIcRSnuiAQ2ZiFv58b32dhhs6DmwLv5Y+3PXPtryHvBX5mNXkdSjk5gcALIXtfJCfVQCVwrJ/HL566KZFumOwBdw7lu9HQXYRPljzBrwDPHH5QFBFuEEbT393KKQK5KabN1xsob8jpv6+FRnFlYUa3Zr6YvHU4WjpXTkCJSGWJpPK4dnEXW93mZ5ju6J1z5Z4/utn8df7G7TO49/OD9IyGb6c+j+N6fdu3Md3s3/jRsGft3QGBEIBBk7tzV20uRsYoXd/2eNoQrjukSmrSo5Ox9u9P6nohtCknR+sbMSIvmneSKQtuzU3GHAoc2SwPu6CzvulY51hdbwAwmjtRRBjXhzGPVe6lPZwgtJNz8j/PEDSxQbB7lZwvZMEUY72QALjyAfTUgzIGfAipOAZUYgZfOo2Ap72NjifvLQyUKCyF0HqY4vCfl6Q+diCL1HC7lYO7EOywVdovt74Aj6GPzcQp7cEYuU7a1Gcry5csp3SFMWTDRR583koGegM592aBWOyICUKfpHA8V0r7jVeVYBVACaqJmKrtWbxuzZKLZ9XydFpOLHhLFLvp8NU7GOc9/Wz8GzigccF+xWnpl9zautr0r175od9LK1Zs2a4ePEi9u3bh507d+L69etIT0/nihV9fHzQt29fzJ07lws4EGJpRckMbq2qw3ADAK/ugK2X+vjb90seSjJVODqLUXfQqWdWroCs4EE3HwtKvWSZdcpLgIjNDBc06DafD3tfdXiiPNygjZ0PoJAAUt0DyuullADHnmcgyal8nXh0Brov4FPQgdQuuQRwYkc1Z48XOo5TbScAPp2BwR8Bp77UPo9XR1yPFyFw1/cak9NionDw5+8xYMZc9J7yjLqTQ/sp6osWKZEGggsMw42WL/Yx/GYvSovH/k/fqyhed2vchBs1PzPO9LAly9O/GTLuR+udRyGVVAs3mKLzyLHISdJ/3mOM/EzTvyfrxTBIvHMLbn61NwK+QChEm36DcOfsCZzbuAayMvM6hBrLp2Ub9Jk6g+uqYAj7ffFhOSlJCD9/GoVZpg/AcffsKfR7+jnYOddxa6fHpHODKeGGcuz87HKbxy545Do5REREaPxeu3t37WEbQgghhBBCCCGEEEIIIYSQR80THXA4suY0VMraGelNGxt7a7y+4nnNiTxegwg3sNjnwtLhBpYlwg1VHVt3Bs9+NAl+rXwNjiqfmZBt9nbKWrkhf0IroEq4gRUcl4oX/voP296dicZuNIIzsbyC7EJ8PGop7ofG65ynXb/W+GTzO9z1qfPHw9rOGlu+2YXMRPVrng0sDJjaC89+PBlv9/pU53q2fLsbQ2f2h3+7xnr3SSgSwFISwpI0bieGq0cPnTx/HA78cUzrcYjhAUonK654Rlig2Q3g7LaLBrfJTHSHSldR1gPSUU4QRmsfuXXKu2MrAhlal21mY3gfbFSQCYCCIY3hvluzsJthuyG86QpmqB0gflDwn68Ef1ch+DsKH/RD0LFeBhjl3RPr445Ayg4ZrWOe4nT7itvFbZxQ/HxLjXlK27ogf7AvfP8Oh7Cocj3TF0xE7J0E/PD87xrHc/f98Sgb1Q6Mrf7Xhspe+/0l22WQXFLAbrIIwqZ8uDi4wCXWFddXhOGy9DaM0XGQ5gibqxduwq4Vh8wOLrKfg9cOB2PiG1TEXhfu3r1ba+s25zXA4/EwZcoU7kJIXYo7xCaR6m57Ijug0+t8jWk8hgdGWbchC51Ulg83sCy9zvsHGLR+loGdNw/Ru/U/d2ynh5r+jNlOEVVl3QLOvqfCiL/4FWEVQiyqKAPYNAnI0hN0DhgITPpTfX3A+4DYHghcARSlqqcJxEC7Scjv9j4CP/1E52ou7tiM1n0HwtlbPRiELnyBACql4XYz2VJbg/PcichERk7lyPw5SYncv93GTULIsYMmdwUIv3jW4DxCkRgKuea5jCm6jJmIhNshqCmVonZa9nQYOhJXdm2FshbW32vy00iJisCJVb+hNtm7uMHR0wvpMVH4b+nnRi3j16adxnfQsxtWc68hc7Gv8bjQm+gwZITZ63gSsc/9J4EbTA43lGOX+yRwIw5MXsSdFzwqUlMfHG8f8PLyqrd9IYQQQgghhBBCCCGEEEIIsSTNypYnTGKkcaON1xQ7OnXbPi2x/PQXaNW9ucZ9Di52sHGwRn1j/3iXn1mAR8XRtWeMGlXeXGz9UdFAfy6Aok1+qQRrz+oZppWQGvjp5b/0hhue/+pZ/BK4FI6uDhXTxr08HJvur8Svl7/FDyeXYGviX1i0fQGuHrhpMMh15J/TBvep17huqG37fjuCkXMGV3svFvbxRur73ZDyYXekLOyB1He7oKi7Z8U8bIcKQxSuhj/uVB6VHQ4e9t3s37nCeV1JA57UiAKoB7OUtXaFyqqy6J8RAsrvvMCMtq8MN7CcBVC97ALVK/qDVC6tPLFn1Rn0i2kJPpsE0SI/1hmKMvXjUynlKO5d+fxVJfexRebMFtx1V29nvPq/ufBo7Iavpv6vWliNp2Jge9fw54YoTffPR5mkQuHvUuQuKEPO5yW48d1dKKTGVaC6eDph6Iz+Fbf3/3EM//10sMZdmeTS2in4qjeMhS6EkFpTmFhHbzIe4NYBGPIzD87NNT8vrJwBgRUaBKl5jdfqngqIP8p2vWCQE2Zg3lr6EbMdIaJ20EGa1JJ9r+sPN4z6Bph3CLB2rJzW6xXgvTvAiyeAuQeA98OBaWtw+0qQ/pZQDIM7Z44b3KWmXY0bmTyswAtyle7v/8VyEa7laB+lPfjIAbQdMASmUsoMn5OoVDVLWh1YsQyhxw6hweHxYOvohFsnj6JFr746f49iDntXNwyd9yrENrY49MsPqG1KhRypUeFQKY37Wdm7uqNl78pzkhuH9tYo3FCxH3IjWvkRDdfS7yE6P61Gz0p0fiqup+vvxNLQlJSoOyyWc3Nzq7d9IYQQQgghhBBCCCGEEEIIsaQnOuBg72RXq+sX24i5f9mi0Iir0fh83DLsWqH5h87dPx+GQlb/xZQ1LQjVx8bBBk3aNLLoOi/tuVYRHqkNcl8HKJ31B08Oh0TV6vNGnkxpsRm4evCm3nnuBIZrHVFQIBCgXZ9W6Da8I1y9XbhpqbHskMH6GTPPtPcnWLSLg1YMkBKdhja91AX2rNyJzZA3oRkUrpXvR7mnLXKntEDeCM2uE7qOB+6NXKHKMDyKIz9X97E47FIkIq7e01mgaHfdcKE/v/BB0yQBHyrbygZKzCA7MO10V5WqpjmCcav+3Jc1d0L6S+3x5p3LWFYUg03RuSjYwEB1vgwqGQ8qBQ9lOdbIuOOJolR14RnDKKF01N+8qay1M9rP6o0uwzvg+tEQ/PHuOp1F/w4nc/WuiydRwu5iHnfd6sFnoi6mhuzKSiRY99lWyKRyqFSqap+v5mrbt5VF1kMIIcYS2dfuKMG88sMvA+TcBc5/xCBmb2Uwj/0+G7WTgar+T0lqlcgesNM/OLzJki8wXHCEV49n1Qmn6HyE1IKsKOC+elABneIvaZ8uEAJNegPNBgP2HtykgnTDRcf5mRkG5+kxYSrXxcEQiVKE46mtoNQS/mVP4XckdIZK56/DGBTn5cIzQHNwCqPpKO53cHM3umhel9TIcKTFRKHBYRgc/OV7rntD1OVA/WEWE/h36orG7Tsh+vplnN+81qjuHYYIxfrPScqKCk1an7S0GJd2bOa6VrA/3+DD+2AJPi1bW2Q9T5JtkRcstJ7zeJSwvweqSiKR1Nu+EEIIIYQQQgghhBBCCCGEWNITHXAYOrNylLXaIHtoVPHCnCL8/eEmbP9+L3d7y7e7seaTfx+/0aIfIimRYPQLQ7luFZaScj8dC0d8BVcfdRG3pams9RcAs8pkcshrWKBAyMPYInpDwZnwy/eMfuKc3KuMqKqDsxHztOzWDIt2LICtgw1q072bsfj+5BLMXjId0kb2KO7trXPewkF+kLtUBgPYMFnj1r4VQQcrWzEmvTUGnYa0h9WpQuChDgQPE58yv4uNOEUK22t6hpyW8cDLVx9XeHIl+MWVI3Kqhhs4Ngp4UA3TnKekvRsy57aDtKlT5XocxMht3QRZCV5gJqWi8Acecq67QJpvDSgZWEfkADLjRgK9EhOHM1suIvTMHb3zWd0rhcOhLO13Khm4/p2CDl1a4O3fX8KGmN9hY29+xyK+NQOBY2U7AUmJFLt/OYwvp/4PSVGpSI/LRE15BXigbe+WeKywhX2WuBBCak2TYbX7HmMeGlRclg+E/MYgepc65BC2juEuzGP+tVZeCjSfxIPQghn3wngg8GMVrOtxsGR5Uf1tmzzGkq5ZZp4HbBydDM/jYPicxLdVG4x9+wOIrAx/p4wq8sC2+M4IL/BAqUKIMqUQ9wrdsDW+M/Ll+s9p0qIj8cyX36HnU9NgMoaBi0+jiqCDyNoa3cZNgk/LNqav6wmXcDsEEYFnkRx+t8bratSmPUa8/Cbm/bIKApHuzn2mkkskCDqwG4d++R7ZSQlcOKamXHz94BnQzCL796QolpXhVEKoRdZ1MiGUW9+jwslJ8/iak5NTb/tCCCGEEEIIIYQQQgghhBBiSYaruB9jXYd1RPdRnXHzxK063e7WZXswfPagiqDD444tOmYf87hXhiP8yj0kRaZwoQ6/1j7ITslDXrqeomA9Qs/c5UZMrQ3CPMN/zBQUSpGbnAvvAM/a2QnyRBIIDY9IKjChk8KIOYOw++dD+ueZO9iodfV9qge2Jf+NM1svIiEsCbaONvBp4YWfXvwLlgyGSYolmPvFM1gbF6l/Zj4PJd084Xw6qWISW+heTloqw+mtgeg0qB0EqXJY7c+HdIr2UJT4bCFE4TUb6dBjZSKyFQxK+jlrjtxaxocg2Qo8lXqaTXgO+PLKkbPhZETWsMo8jIDHdbZggw/aSFo4o6ydK5xPJ8LpbCJUtiLwZEooXKxQ3K2LcQ/GQBikqpYxSfBVJMGplQJKPh/xha6IuewIyS0RSpr64H6bRuja0xPnDt5AWbHpz7F9NwbeLwGOfdUjZEuTgaydDDK2sCEKHoKOhqDfUz1gCexr/Ni6Mzix8RxyUnPh0didC+gNndEfQtET/ZWJEFKLvHsBHl2ALMvU5RktbBODRoNUiNrxhHQAUAERWxg0HQ/khgFFSYBKDjg0AUozAKl5pyTIuIF6V5bDwMaNwmjEgvhGFIALjC8SbzdoKG6dPKJ3nvaDhhm1rtZ9BqBplx5c4XtuajKs7Ozg4OqBk//8Xm3eDIkDjqa2MatonVGqMHDm8wg9fhhyqWnfYfPSUjTWFR54Fj4taET++iQpLoJSoURU4AUo5caFvk0RE3QVTbt0t8i6WvTsg9unjiHs/GmUFuTD0cMDHYaNRuu+A8Dn13JXxUdUemk+lEyVc+waYNeTUZoPe3HtDu5gKQEBARq3s7Oz621fCCGEEEIIIYQQQgghhBBCLOmJr9brO7FHnQcc2ALPrd/u5kafNkXPMV1w78Z9FGQ/esN0lhSU4r8fD1bc7jS4HRZtfx+Obg64tO86V6CqVKnQvHMAVi/cBJXSyEKrWqrHEuZJ4JQvQ4GzWOc8NrfTcW77Jcz4ZErt7AR5InUd0RFiaxFkEt1FF30mGF840aJLU4ycOxgnN53XWdDdeXB7ncvLZXLsX3kMh/4+iZToNC7UMGzmADzz0ST4NPXi5jm29gzCLkVpXZ6dv7TQtNEPrW3F4PF4cGnvi3RFsd55FU6VHRy0Kc4rwbXDN7nrdmuyIMiUQzLFBSpPdUEWL08B68P5sN5R85E2+XIGnr8nouxYHrJebgnGig9emQC80soiFEGBFE7nEjUXTFUArfU/Dl5KZaef4m6eUNnrLygr7u4J+5As8FSA4EG3CEbIrzxu6quBVKpgG2VclWfzd6Ro9prma7WDWzpajc7CMcfuyMx1xj1VKZadPA9BqQIevnawSi2BsZyHMWj2A8Cr8nCt/AC/BYBdJyB2IcN1F2ADb26+LshJzUNN3Dh+C/t+O1pxO/V+Bm6dC8Opfy9g6YFPILay3GivdYX9UfNq+FlJJbOE1C6285BPXx6yQpk6H/mfLfhni/xN4dMfyL79aHYOYPc5emflbc/uQJ/FfIjsgOQLDDKC1NOdmjG4vYoNaqPeCawApYHTxuSzDFpOp6M1saAWw9UhB30HiFajjV6db6u2aNVnAO5dvah9VX0Hwqel7gCAQiZDyLGDXNF3fkYaF2poO2AI12HB0d2T64B3+/RRZMTGaF3eytYO0lLjv4Py+HwIxWLuXzsXF+Snp6EmJEWFiL8dXKN1kJrJSU7E2Q1/1+rTmBwZwXUiKSsqrNF6oq9d0njNsa/5xLu3EXnxHJ764HMIhE/8r3KrKZWb9vtVQ0osvL7a1KJFC9jY2KCsTP17l5s3b+Lpp582a10KhQIqlQpise7fhRJCCCGEEEIIIYQQQgghhNQVI4aNfnzJpHJs/qpKhYsWrXo0r5VtRwbdN2l+voAPrwCPRzLcoM3t8+H4dOy3XNXkoOl98cHaN/HR+rcx7b0JmPnpVDQEvkFp4JdqL+gQpRTC/mYainL1F18TYipHVweMe2WEzvtFYiGmvT/BpHV+sPYNzPx0Cuyd7Sqm2TrYYNp747F45wK94YZFE77D3x9u4sINLDaswIYd3u71KeLuJHDTvtr7EToMqD4yqk8zL7z164sm7SvbVcfOSb2fHTtojkSojaBIZnAepaKyOtH6QD6cXoqD45vxcHw7Hs7zYmGzLZcLAliKTXQRfL8Pg/25AvAK1cWGPLkSdiEZ8NxwB8JCzX3mHzZwXC9RgXdWXZClEvNRMKyJwX1QOFtXmybKLAO/VKEOOOipoXUIyoKwyHC1q3N3ZbVwQzmxWIlhPW+DV2VDSlshMme3hao8aGEAT8SgySLNcENVLiMA5+Hq6/lZhZj89ljUBBssSq7SAaSq4JO3sWXprhqtnxBCdFGUMYjYpD/c4Nyqdp6/PAPNkh7GEwBih0cz3KBN5k3g4icq7nE1GcZHz4/Vl1ZPC9DSvNpAixPaGp5H9pj8PEgDYu8JdH1O9/1Ca6DPmyatctw7H6LHxKkQ29hqBA/YkML4dz7UG27YvWwJLmxZzxV6s6QlJVxnhS2fLUBOShIXjp7y8RdauyS4+Pph8GzTzkmadevFBRxYPi1N7wChDaNUWmQ9pOGSFBWg86jxNVqHUGylM1ATGxyEoAO7a7T+x5WtSP+AAaays/D6apNIJEK/fv0qbp86dcrsdR0+fBguLi4YMWIEvvnmG+Tm1nwgCEIIIYQQQgghhBBCCCGEEHM90cN+sV0DDAUG8rMKamXbMcGxJs3PFifv+71yVOnaIhAKMOaFoQg+fRtZyblQyCpHDbe0+6HxuHLgBgZM6c3dlpZJ8feHm3Fy4zk0BMWR6XCLz0ZJz0Yoa+sOxkoIQaEUtrfSYRecBp5ChcZtGtX3bpLH0Gs/zkVJYSlObtTsumDnZIuPNryNlt2ambQ+gUCAF7+dhVmfT0PU9RhuhFM2vMWGHPQ5+OcJBJ+6o/W+wpwivNnzE0ydPx5T5o/DzxeWIuxyFK4eugmVQon2/dug94Ru3La3LtuNlOh0g/vJF/Dw3OfTKm5P7dQeO0Pv6l5AxcA+OBOmYsMMwgTDwYiaEOZJ4bYvGi6H70NlI+SCBfwqQYuq+LekYA4VQTXBofqdSgaCX3PAk6gLX0s6e0JlIzIr+MGXq+AQlImCwb7qEanZnMFDgz2LU0rgsSfOqMfY+Fn9IQh7Wwn8/TIQn+xdMU3lIEZpR3fYhxj+uTkPBUSu+udxnwrknwK8Azy5riKJkSk6u5UYwr4v9Dmy5jTmfPE0hKIn+qsTIaQWpF5mIDcwsLjC+IHHTZJ3z7T52z0PRG5FrWPDbU1HA+k3AEk2oKq9UxLkRoLr3ODdqzJwcutPBgkn0SDIjchTOxjOPhJiurHLAWkxcPehkKe1MzBtDeDZ1qTVsaPOs0GDftNnIS3mHng8wLt5K4isqwdzq7p5ZD+SI7SfE5QW5GPzx++ix4Qp6DpmImZ9+xOSw+8iLvQGNwp543Yd0bRLd7Abu7JnG4qysw3uJ18oRO8plQmnDkNGICLwrEmPlTyZHD290XfaDOSlJiPqSqBZ61Ap9X/g3Tp1FL0mTwefX9klkADets4Q8PhQWqD1kpDHh5et8yP1tE6ZMgWnT5/mroeEhCAtLQ0+Pj4mr2ffvn0oLS3l1nX16lUsWKB7QAxCCCGEEEIIIYQQQgghhJDa9sRU6SnkCq74ViaRo3lnf7h6u6Agy3Db+NKCMox7eThX2KhN005NIBDwERMSz912b+SK7BTLjnDl29IbZcUSlBSUorYpFUqMmDsY7/39Gnf77sUI/LVgI+7dMK3jhLEu7r3GBRzYwtIvp/4PN47fQkOhkCkhlCnhdDqWuzB8HngqRqPYfMiM/vW6j+TxxBZQsx1NZn4yBee2X0ZJQQmatGuMoTP7w8ZOfwGQPta2Vug8pL3R8x9arb+yjw1A7fzffpz69wJ+Ovsl2vdrzV0etnjnB3ij+0dgqrx/tHWpWfzfB+g4sLJQqpufL57q0AYH7mofXtrhahpEORI0ZGyogC83HKYQ/JoLXpQMyskOQHMxF2zg3ZSAv6MA/NvSivnK2rlVdmB4KJxQla7gh+uxRMi8bVHW2lkdcqiyDpvIfPisiwBPf51/Bc8e7Ki2+gtwvFpkI8PWBrJ0GygL1aPgSgIcjQo4WPnB6HnGvjwcfD6fC/GEnL5j1uewXKr/seRnFiArOQc+Tb3wSDHQscPodRBCLEIpY5ATDqhkgHPL/7N3H+BN1G8cwL+X1b0nHRTK3nvvJVuWDBUc4EBB/TtABVQUGTIEUVRQEQcosvfee+9NKdC998i8//O7mDZts5sufD/Pk6dpcrm7XC6XXvN+fy/g6MVBnm7+cao8IKwPh0f7DL8h2bzYcT3j3z/ZnXyBPPN1vFZhRfT5aYC6HD56eSUQPliEVu9rP6gSL/O4/J2m4PnZW/RRHoFtOfBqHsenaZB0GZWGxkxTJQdPILiLiT8KCLGVxAF45heg6xTgxkZt2CGgIdBoOCCzoLWIESzQUL1xU4unv7p/t8n71Uolzmz6BzeOHsSYmfMQ0rCxcClu8LsfY82MD1iq1ei8OJEYQz6YUaQTRPXGzVC3fWfcPX3c4nUm5Ufq4AilvHKcEzbp+RREYjE6PPMsom5dR256mtXz0Jjp9JGdkozcjAy4eplJgv/HuMqc0DusOfY8vFjqebH5sPlVJc8++yymTJmCvLw8Idy1ePFizJ8/36p5JCQk4O+//y74fejQoXB2tv1YTwghhBBCCCGEEEIIIYQQUlpPbMCBFczn5+TDwdkBm5fuwt9fbUJagrYbg0QqRpdn2qPrM4UtvI2pVisA7/z4GnyDfbD5u13CqOWMk6sj+r7cA69+NRYyR5kw2jrHccjNzMUrjd8rdRhB5iSDIk9bFBt7Lx4bl+xAedmxYh8ad6ovXM9MyS6zcAPDAifM+T2XK1W4wRD9cAMz+dsJQsE4IWUltF6wMGJ8RYm5G2vRdKlxaVj0yg9CFwd97Lh4cPUxRF57jHpta+P26XtG5zFhznPoPPTfoZNZEXyuHIf/PoEaV+PQzcsVJ1XpUDppP7LE6XK4n4iF+6k4lAeNowg5XT2R29odvFQEh/u5cNubAkmSmYpDK4l2ZwsXXsZpAw4Gals0MrE2k6ABeCODdoozFQh4mAO3MD9kpWUjNzOv4D5OzSNw5S3kNvRGVms/qN1k8Hd0wudvPINdk9bgghWF7DnJCrj5m55GyYsgdlHBMTwL8keuUKU5lDiWGn2sBRkFVSpQq1kN+IV4QyFX4uN+X9o9ZKiPfd4TQog1WLhPlQ9IHIE7a3nc/YcvCDSIpEBodw7V2pufj0sQ0OZDDs4BwP3NfMGo/hIXIHwghyavcBBJOSizeXBiQJ4B7J2ggaqU+WixA6D+N2eX9Vh7KS8PtvEFAQd5Gl9m4QZG/W8WMfYUKlW4wRIt3+UgZn87EFJW/OsD/tMqZPuqVUpkJiVYNC0r/N730zI8M73oOUl+TjZuHj2E1JgoBITXRkKE8XOSHi+8gvAWrQt+V+Tn4faJI3Dx8ERwg8aIvXMTvKb0I8T/V8icXeDo7Iz87GxhW5ri6u2Dvm/8TwirRN803EXQEKWiMAxekQJr1YGzh4cQtlg/51Obwg2WkkjpnMSQZ+t3tUvA4dn63VDVeHt7480338SiRYuE35csWYJRo0ahdevC45k5kyZNQn6+NizEBg/4+OOPy2x9CSGEEEIIIYQQQgghhBBC/pMBBxZA+HveJuxZdVi4LnWQlBiVWaVU49BfJ/DoZjQCa/ojPtL4SNIDXuktfLHDioxHfzgEt8/eh0atQZ1W4XB2cxJCDYyLu3ZUK3bbvD0zMGPQXGQka8MQlhKJONRuGQ6ZoxTXjxsesbw8RN8tLBr+88v1ZbqsOi3ChZ9sBPiqGKIh5Enm4umCrNR/KyjNYMesyOuPUbNxdeH3E5vPYv6L3yE3y3QhC9NvfE+M/ODpgt/P7rqEeWO/QVZaTsFt1UQclH5Owoir0qQ8i7sMlJYyUIaET8Oh9issIpE3dkXmIF/4fhsFl5Pa4FypsI8RvefDKYw/OVlCDpRBruBYXRX/b8hBV9PIHqYBPPc8Qm5SNpyCpHhh5ij8+N5vRRfHAy43UoULs/LWEoTWDMa12oG4YMVqx+0Uwa2h8ftZjiE6x0u7TI51W8iBKl0Gx/sWDFXOOiYcANQfAmITg2embAOSrzzE682nYPj/Bpr8PC+tBu3rwKea9vlUKTynvZR2HoQQq+Sn8bi9hsfDPTyUWdowQ/GR+NnvrCNDxmPzHRdYiIETc2g8gUP953mk3dYe9r3rAWJHdpzVvk+lrtqfEiegyzwRTszQQGG+aV1RIu182SxZt4mKkhVd+Hl484+y/eD3qqv9+Whv1Stc5jV0jCZPLrFEatUI/Y+uXUZafCy8AoOE3++cOoY9P3xj0eObPTUQLfoPLvj9/rnT2P39YshzC89JnmTsc8Te/+NQ5ObA0cUF7UaMxrHVq0wtHWM+/woe/oG4feKoVQEHUx05ylN8xD38PvVtNH9qoBC2KSuhjZrC0dW1zOZflbULrIs6ntVwL932gRDqeAahbWAdVEUzZszAunXr8PjxYyiVSgwYMAA7duxAmzZtTD6Ove+nTp2KDRs2FNw2ceJENGpkefdPQgghhBBCCCGEEEIIIYSQsvBEBRwykjPxbpdPEHWncNTx4uEGfQ+uPELXkR2E0cd1nQT0tezdBH1f7l5k5GbW/eGfb3bg7I6LUKs1aNSxHgZN7AO1SoMbx29DJBGj3YAW6PpMB2z7ca9V69+id1PUb1sba+ZsREWS5+Rj/svfQZ6rwL0LD8psOSzI0W9CT+G6JWEQqYMUSrl9R0wvjdJ26SCkIqiUKty7GAm1So1azcLg5Gq8erzns52xZdlui+f96EaUEHC4fzkSs8cshlJh+PgbUjcIQbUD4Bfsg77je6JBu8ICgoc3ojBzxAIoix2T2aj/soTyfc+xUpmkKTWKhBsKSERIfisUsof5kMaWctRQK2pyXM4nIKdFQEFQgVP9+/B/QxLiLAVcrmkLalJi0/D7zH9Mzq/X2C5CpxDW/eDgmuNWrXbMBilCn1XCKdjwE3iQ7YtcdeG24yQ8ZOJsON9KsWj+6iwOcT/yCHnX8P05N4GU7drr2ek5WDt/C8rS89NHlOn8CSFPjvxUHgff0iBHrxFS8XCDvvQ7QGhPIOaY4elYh4fqfQqL2CWOHCDicW+tBvHnAF4N+DYBag3loM4HUm6wYy4Q1IFDUEfgoeUf5drltQPca3K4s6Zii0aVOcDZuRqo8nhkRpbdclgYpEa/fztFWJBbZNuWN36KWe6UOex1opADqVpYZ4aEBxFCYa1/jZpCiMGY+p264tpBC/+3wvNIiXosBBzi7t3Bzm8XQqM20BaNBcSCQ+HhHwB3Xz807vGUMAK/TkJkBLYtnmv0sU+ishrAITMpEWc3rTM5TZNeTwnhBmV+Pu6dse6cpDLJz8rEhR2bym4BHId2w0aV3fyfgJDOvC4vYdyur5Grsv4c3VnigHldXiwIjVY1np6eWLt2LXr37o2cnBwkJSWhU6dOmDx5Mv73v/+henXtYBT6Tp8+jWnTpuHQoUMFt7Vq1aqgEwQhhBBCCCGEEEIIIYQQQkhFeqICDr999k+RcIMljq0/hUlLx+PK4Rs4ueW8UPTrF+qDQa8/hWfeHwypTFow7eG1JzBv3LfCNDrXjt0SLvq2/bBH6ORgrUsHruHC3iuoaJHXo4RLWWs7oCW8/D2E60HhAWZHDq9M4QYmrGFIRa8CIVYVrKxbuBUbFm9Harx2BH1ndyf0H98T4+c+D5lD4bFOZ9SUp3Fk3SmkJ1rWpcDp3+PexiU7jIYbmPjIBHx95HN4BXiWuO+7yT+XCDdUlPymrlBWN15sxUIOWX194P2rdZ87peEQmw2PA4+Q0Sus4Dah/IKFHRRq+Gy4K4RBdHIzTXfQaNheO2R1cnSKxd06dFRZHM6Pd0KTr/Lh2bxwxGs1zyEiyxeXUkNLPMbtery2+4SFEn7j4Ofnh4CXNUhXaoMbGjmQugeIXgDw8sLiE3luKYMmJrh4OqN13+aoktjuUNp6tcoxMC4hVca1n/ki4QZLRB0CWrzNIeE8j7hTbFR+wDkQqPU0h7ojOYjEhce7h3s0ODefF7r26CRdYZeib9aIzTwk2iZzVok/A8Sdqvg3fvo9din79QjqBMj+7XzhGsQh+arpZVamcAPjHlY1CzHJf/ec5Ozmdbi4aytyM7TnJA4uLmjaqx86jR4HsaTkv6jaDhmJe2dPIT/bsg6ZMiftge/89k0mAwqs8H7MF/Ph5OpW4r4Dv3z/nwo3lDVzXTCC6tQXfmYkxkORZ74DYEXwDKwGlUKB7FTTYW0W0igrbF+t3qhpmc3/SdDItzq+7fk63jq43KqQAws3sMexx1cE1jHBGh06dMCLL75Y4vb27dtj+/btGDlyJJKTk4VODosXL8aSJUvQpEkTNGzYEC4uLkhNTcXFixfx6NGjIo/v3Lkztm3bBkdHE/8HIYQQQgghhBBCCCGEEEIIKSdPTMBBnifHgT+PWv04NkjdpqW78Ovtb4SCXEWeAi4eziVG7MrJzMXXr/5YJNxgSm6W9V/KatRWVH2awTpNqJSV+wv54xvP4NzuS2jTrwUGvNrb6o4XFcnNywXNezSu6NUgxGLL3/8NG5bsKHIbK35nt105chOjpw5Bo0714RfiU3C/f3U/LDw0E0teX47rx2+bnL+Ds4PQEYI5u/OiyWnZsenCvqvoPbZrkdtZ5we2LpWFvIGL+Wnqm5+mOI1UhJwWgcht5g+1m0zouuB8NREuF+MhUpr/HHA/HgNZTDay2wZCHuIGTsXD6W4qXM/EQZpqXUHN7l8PIbBmALYs2wVb5MeIcG6sM9waqCH91APKQEfE5blDrikZmGGkMdatX7tBrTD1o0lw9XLGpOHvID46HnkRgDq9fIs5c9JzkRyTioAwv3JdLiGk6lHm8og6aENRPg9EbOXRd6UYagUPtQKQumhHI9Ynz+Bx4eui4QZTVDY0P2LhCnsRyQCNApXa4/1AzQE8/FtwCB/E4eHuig93WMrBE/BtTAEHUnWw4MCVfUX/7pTn5ODc1g2IunEVrQePQHC9BnD19ilSWD7qs7nY99N3iLtr+pxE5ugE31DtOUnkpfMmp1Up5MIy67brVOR21vmBXUj5uXZoL5zc3XFp17ZKudlrt+mAfm++C6mDA36aPAHZqdrgdXnLy8pEbmYGXDy9KmT5VUWn4Ab4o/97+OjYKtxLjzM7fR3PIKFzQ0WFG5jly5dbNX1+fr7BgAPTvXt3XL58GVOmTBE6Omg0GiFcdvXqVeFiiJubG2bMmIH33nsPEgNBM0IIIYQQQgghhBBCCCGEkIogwhMiJTbNplABE3MvTujCwEYwd/V0MdiO/OCa48jLLruR2Oytfrs6cPWyvvC2vH06dD6+eWMFHF0chALrqkKj5qFSVrLhWwkxIu5BAjYt3Wl0+9y/FInZzy7B2Jpv4ssxXyM7vXCEzbAGIXh3xUS07G16pEg2ev7/On+CxMdJUKvMV0YaCottXmpbkb21NG4iyPu5I3+kFxQdXcGLjUyotqDAUa9bgkXLdhAjeWxjZPauAZWfM3hHifAzs1cN4XZ2vyUcIzPgu/YOghedR9A3F+C1K9LqcANz78IDTB84B2d3XkJpZN0SI3alGA9zfIyGG7hsNWSnrOsS0fPZznD3doOIE0MS747sC5zJcAP7LCkrnw37CrtXHhQKRAghxJjcBB5qGxvKZEYCqbd4iGWc0FHA0DnJo718pQ8M6PNtDEisb2xX7o59pMHFbzRCYKD2cFQZLIzCzksIqQpSoqNKhBv0xUfcw/Yl8/DT5PHYsXQB5LmFCS2/6jXw1KuTEdKwicllKPLz8NenHwij7Gs05gd8MNSl4cLOLWYfR+wr9s4tbJ4/C4+uXa6Um7Zh1x5wcHaGSCyGk6ur2eklMlmZrcumrz7HjSMHhIJ1YhwLK2wd+gl+6/cu+tZoCTFX9N/fEk6EfjVaCvdvHTqjQsMNZSE4OBhr1qzB/fv3sWDBAjz99NOoVasW3N3dIRaLhZ/s91GjRmHFihWIjY3F1KlTKdxACCGEEEIIIYQQQgghhJBK5YkYlin+YSKmDZhdqnlE34lBnVbhcHIx3IY76nYMqpI2/ZpD6iDFpQPXUJmpFCpsX74PB1YfQ6PO9Us1L2c3R+RmlU8IhXX0iItIQPUGIeWyPEJKY/8fR6GxoBCfdZE58s8pJDxMwuJjsyCRSnDrzD189NQsiwJkCY+SsPj15WjcpT5Ob7tgfEIOBd0e9F0+dB1lLe95b8if8QJkhQUOXKoKzosTIL1YdJhrp4tZyBgdaHJ+ThcyrVp+ZrfqUFYzXBTDbmf3e+6NRFXkcCgT8t7uUDVyNni/88okcHLrCnF2/bxfCDkwXYa3w+0z94xOywqBp/42GUteX4HMlCzYW8TlR1j0yg84t+cypv/1P4hEVSQjyjZ5aeufqH6KEItkx/A4/nHp3jCZj3m412ChAMNhrqyoqvViBLThoFHxSDY8YHClwUIjEZt5PN7Hw6t0pySQONvWOcMWikwgL5mHSwB1cSCV342jByyajoUObp84gqyUJIz+bB44kQjRN69jw7zPoJKbT5Clx8fhwMofENKgMR5dNRHi5Tj4Vq9R4mbW1YEQfdcO7EGdth2F63XadULS44fGdyuRCP0nv4+9y5cK3UnsLeHBfez+frEQBuk/6T2DYUjy72vBcWhXra5wyVbkISE3HTlKOVykDghw9oSrrOwSmKtWrRIuxrz00kvCpazVrFkTH3zwgXAhhBBCCCGEEEIIIYQQQgipaqpIdZ5xbCTlTwbPQ8y9+FLNZ/HrK/C02zi81/1T7P71IH7+6E/8r8sMfNBzJv5ZsAUyR8MjUldGMicpfp3xd6UPN+hj3THO77Z9tD42avfSU3Mwe+c0ePi6oTwseWMFdXEgVUJaYoZV098+ex8nNp0Vri94eZlV3XEu7L2KbiM7mJ6IB6YPmofI64+L3GxLbYYywBXyml5QeRsuqhdLRHDzdoVYKkb+CC/In/MpEm4QVsdbgpxPqkFVy6HgGPrKvLGYPuMl+EYZL1R1VIngdjDN4nXVSEXIbeJnchp2P5uuvCkCnJDeLQhpPYKQX8O2Yyin4uH+aTQct6QK3Rp0xA/y4TonBo57rdsPmdiIhILr/V/pBb8QH6PT9hrbBV2Gt8dv977FK1+NhW+wN8rC0XWnsHfV4TKZNyGk6uLVvNAFILfwsGWTc/N4bBqgwZH31Hi4W4MrP2pw8C01Dr+nxt11GohkVSdxJJIC15ZX/nCDPmUOkGgio2mOxAXos0KEjrM4SMvnlATnF/DC/kdIZZebkW7V9DG3byLi4jnwGg12/7DYonCDTsSFs2jQqZvpiXgeG+Z8itTYaJQ1kVgCR1dXiESWdWtjpI5O6DZ2PPq89hZkTobPdcq6WwDRSk8s/HBv1qc/XDy9jG6axj36oG67Tpiw9Gd0Hj0OLp5lc05y69ghIQhELMPCDLU8q6GpXw3hZ1mGGwghhBBCCCGEEEIIIYQQQoh9VPkODud2X8bDG/YbyvTa0VvCRd+VwzeEAlk2+ldVaAOvyFPiv8Qv1Acf/v4WwhqGCpc1UcsxMmACcjMtL8q2BdtP9v95DP1e7lGmyyGktAJrmC6qN+TQ38fhGeBhdfcadox0dnPGawtewE9T/zB6zEyNS8OnQ77CqjtLIZZoC31a9GqKXb9YNrKrPMwT2V1qQK0XbJDEZ8Ht0ANIkwpHymw/uDWcXB2x7+9jkI8wXojCQg/sfsn8eHQb2RGjpw7RPl7RAZNOrcPZ5EdFJhenKeG54BHEqZYfb9UeDuAdTH/ssvvV7g4QpZTt8UtH4yhG4pjayG1YWHjDIhuy6GwE/HEX0jTLC8kY1qHB5ackOP+eDHWgVPhdHG/7Z5KHn3vBdTcvV8w/8Blmj1mM+5cKu1yIxCL0GdcNry0ch32/H0FSdIoQblh5awmy0nKE8JxapUZcZCLWLdwKe9j24170G98TVQJ1cCCkXMScALLtWCObeIldin6GJl3iIfNAlaH5b52SwDkQaD9DBNdgTrgEtuWxebBG6A5RllggI+owj+q9aBRvUrl5+AVY/RhWwC2RSJChV2BuCRaKcPHyRqfR43Bi7R9Gp8tOScaWBV/ipa9/KBgJP6xJc9w6bt8wa932naFRKXH3zAmLH9Ogcze0HjxcuF67TXtsXjALcXdvl5hOpSjjgwyBk1vhOYmzhydGfjIH27/5Csl6nRxEYrEQbug85kVcP7wfOWmpcPP1w4SlK5CbkSF0E+F5DVJjonFxl33OSa7s24UGnbvTK0QIIYQQQgghhBBCCCGEEEKeSFUy4HDt2C2hCDb+YSISHyWXyzKzUrOFLgH5OXJoPMRQ9nSDxk8CUYoK0oNZEKUVjlZNyoeLpzOm/DoJ7Qe1glhcOBKizEGKLiPaY8+vh6yan0+wF1JiLB+NnWH7IQUcSGUlz5MLI81vX7HP6semJ2Xh8U3bKjW/evFb+AR5o06rcNw9H2F0uvjIRJzceh5dhrcTfh/2dn/s+/0wVErTx1N5dU9kDG4AiIoW8qkC3ZA+ohG8/rkGSao2IKBSqrD/j6NQtXAG72F6xFRlRxfwnHa9lk76Gf0n9ESdluH4s9sLOJ/8GPNWrkXknWjI7uXC5XSG0LHAGiK5ZZ8TIkX5fZ4kjK2LvLqeJW5XhLgi7tWGCFl8BSKlxur5smCD5FHpi61YcEFfSJ1q+OHCfFw/cRt3zt6H1EGK9oNb4eL+a3ih1mTkZOQWTLvsnZV4bf44DHytj/C7Wq1GxOVIYdrSemTHYCUhpOpKvMwjcieP3AQeOaVrJmcxRQYgcQJU5ZODIxaQuQNtPuJQrR0HTu9vE7GMQ3AnIMq6UxI4+QN5idY9JnIHCzjQy0UqJ6U8H9cP7cP1w9afk+RlZSI5qmjXN0ttWzIPbt6+8K8RjsSHD4xOxzo4PLx8ATVbtBZ+bzlgCO6cOgaNWm3XbRBx/rTF07OwRWpcDA7+ulwommfP4blZCxF18xr2/bQMaeXQdYIUatS1aLDZJyQULy74DtE3ryMh8r7QRaNWq3aIuHAGP781Hoq8wg/pg6uWo8eLr6Fp737C72qVCvGR9xF7+2apN3FKtG3vDUIIIYQQQgghhBBCCCGEEEKqgioVcGAjgX8zcQV2/LS/QpbPwg2BM5rgTps8QFpYvJL/oi8c1qTA8W/riuMtUS08AHEPrBut8L9AIhXjo9/fFsINhoz79Bns/e0weI3lBchqG4p4Ex8lWf0YQspDblYePnxqFm6fuWfT4x2dZTiw5phty87MQ26mZZ0fbhy/VRBwqNkkDC16NsG5PZdNPianY/US4QYdXiZBTttQeOy+K/x+ZvtF7R0OFoxqLBUBnDZExy7bftiDQa/3wUtfjkHUmmvI/PgcvEvRxUecpYAsOhOKkMIRQItj97PpykN+dVeD4QYdla8jslv4wv1s0SpLeYgrchr5gJeKIIvNgcvVZIhUGshqceAkgOIhD966xg8G1Wgcin7jDXfI8fB1Q8KjJKGTAwua6Xd00N8Pl0xcgQdXH+G56SPgU80Lc3fPwKtN37c5vKPj4lHYOaTSY6kddintPAghhW8JDY9zX/F4tLdiOruxcINbdSCrHOsaXYOBbOuaOv0niKRA+09ECGht+DjZ8GVO6K4gdNOxkCrf+vXIodNFUknl52Rj3azpSIw0Hno2RerggFsnjtj0WEVuLlJyLTtQxty5WRBwCKxVB0H1GiL6ZulDsTrWhBt0//uKvnFNuFzavU0IXbQbNgoJEfco3FDO/GvWQoOuhs9JHN3ckJ4Qj6RHkUI3BfazOHlODnZ/vxgJkRFoP2yU0AFi9Gdz8ev/JiI9Ia5U6yZzqkLnJIQQQgghhBBCCCGEEEIIIYQ8yQGH7T/utTnc4OTmiBY9G8MrwBMPb0bj7rn7UMpVVs1D0c0VdzqyipNiBSwSDvIXfCFKVUO2NxOl8crc53Hv0gPInGToPLQd2gxojpfrviMUclYF7j6uyEzJtvt82WiorJiMjWTYoldjjP1kJJp0aVBiurzsPKQnZcLD1x3D3h6AjUt2WLyM9MQMq9fLK9B4cTAhFWnltDU2hxuY6o1CscmK94+txJLCrgonNp81G25QeTtB5e9qchp5LW/wEhE4VWFoSRwhB9Q8IDZeqC16IAdXLOe0ffk+7Fp5EGozXSUs5XY0CiljGhoOaGh44f7yktPY2/w0jbwLAg4amQhJz9ZDXl2vItM4TXRFjaAYOARqf1dn8sjcrEbKD2rwSgtXhm0OvjDA1uWZ9pj0zXg4uTqVmJS9Jt9O+gkaCwNsW7/fg50/7UefF7pj8ncTMHfXdExq85FNx3yd7qM72fxYQkjVd2+97eEGiQvg3xxw8AIyI4G0O4DGulMSQZmGG0RA4/Ec0u8DEkcgpCsH/1Y8dj7HIz8FVYLUFVDa/5Sk8POKAwLbAA1fEMGnUcnPdGUuL3TbcPblED6Yx4Otli9CacPppKP5j3RCKsSRP1baHG5gvKoFI+L8GZQ1TlR4TsICFfYMN9jDxZ1bcHnPdrt2lSCmiSUS1OvQBT1eeh1SmUPJ12TXVhz67SeWRrFoU17atRVX9+1E45590ePFVzFi+iysnvYu8rOzbH4p6nfsYvNjCSGEEEIIIYQQQgghhBBCCKnsqlTAYdPSnTY/Ni8rHxlJWTi55bzN85CPNF05In/GC9K9mcXjDxbzD/NF3Ta1kByTCkW+AmkJ6VAp1Phg5ZuYMWgu5HnlM6q3LhDCtpm12IjZZeH1hS8Io7w7ujrC3dutxP0sAPLbZ2tx5J+TUOQrIZVJ0Hl4O9RrWxt3zt5HWXnqxe5lNm9CbJWXky90MLEVCxJp7FTQb07bgS2RlZaNnT8dwOrZ681Or3Gw4GNLLAIvFRcJOIiSVJCczYGqg/FwhMO2dIO32yvcwDg+zID3xjtIf6omNO6FhTKiTDk890YK95cX1oHBmmnkrzZHXpBjkftrhsehdp3YIreJ3Tl4vSCBrLYIsf9TAiaa4/Qa2xXNezRGxyGtEX03TuiUVLNxqBBGTIlLw8MbUfAL8YaLh4sw/Z3zEVaFG3RUSrXQ6SExKgnzdn+CFVcX4oVabyE/x/rPOdY9YsS7A1FVcLz2Utp5EEK0WOD23ibb3xSqHECeDsSeqLxb1DUI8K7HIT+Fh1oB5KexDgQc2kzlcGKGBhpLw2t2IHHSdqywltqGLgiWaPE/IKidCBJnQOZW8qwvO5bHjZU8oo/ywnYSyYCQLoBnHSDd9typWTX6UacdUjm7N9w6XppzEhGU+WXz/4Xiwlu2Rm5mBq4d2IMzm/5BZUThBi0HZxfIc3Psum0bdeuN0EZNUKtVW6TEREOtVMC3eg04u3sgKzUZ2VEpcPPxg4OztmNC9O0bVoUbdNQqFa7s3YHslCQMnfopXpz/HX7+36tQK4z8r4/jjC7DxdMLLfoNtv7JEkIIIYQQQgghhBBCCCGEEFJFVJmAQ3pSBqLuFC2itNaNk3dsfqzGTwJNuIPpaUJk0ARLIY6xvepnau8vCq7v/PkAfvl4NT5d/wG+OTkbf3+1GSc2noFSoYKrlwv8Q30R3iwMB1YfE4qtSqv3uK5o1LE+jqw7icsHr9s0D1ZEai2po1R4LizUkRKTWqRwlY3uPnrqEIz43yCjj2fhhrc7TkdqXFrBbWwbHfq7bCvHareoib4v9yjTZRBii7iIBORl217Z13l423LZ8F4BHvCv7os3Wk61uEuNODNf6HRgsAPCv7g8JTgDHXqcv0tEdrAUmuolj+XS/Zml7sCj6zRjjtPdVDjeS4W8pifUbjKIsxRwiEwv9yJyh2jzhUFDnmqHkaOegdxDhhf2Fg0ZymRKhNeKM/pYl44iuHQVIeew4YRDzSbV8cJnI7Hn10P4dtLPcPN2Ez6H4iITMXfsUlw6oB05V+YoRbdRHTFh7vPY8t0uq8MN+i7svYrxDd7Bh3+8jVlbP8QnT88TQhXFAz4TF70IjUaDNbM3ICutcDvVaRWOKb9Ogn91P5vXgRBSteUlA7nxpZtHyg1Uamo5cHRK4bE7cgdwdQWPTrNE6PmtCLf/4hFzggevAqRugLM/4FETeHygsBtPadToD/g04PBoH49kGwdRt6UrBgsjsOfCQh15SUWfCycBGo7jUPtp4+HA7BgeB9/SQF54SgKN4t/tUoa8GwBhfSjgQCqf1OgooVDcVvU7dS2Xon43H184OLvijw/fRnZqFWlTY2lrtCdEsz79Ubd9ZygVCmz+6nO7zjsgvDbaDRuJ64f3I/LSeTh7eKJh155IjY3GtsVzEX1T+78xicxB2Ce7PPcSLu3ebnW4QV/EhbNY9f6bGPj2FAx5fzq2LpoDlUJeItzQe8IbyM/Jwbkt64uEOgJr10W/N9+Fq7eP7U+cEEIIIYQQQgghhBBCCCGEkEquygQcJNKKXVVebFnRiMhBDGc3CdoObIGo23GIuBxp0eOc3Z2Q+Ci5xO2ssPKjfl/CzctFKJxt1bc5Br/xFNr2ayHc/+es9aUON9RoFIrnZ4xA99GdcGLLWZvDDZbgRRxU3k5CgfKgIe1w/9JDRFx+iJh7RYtkg2sHot/4nkKxq2+w6S9tf53xV5FwQ1lzcJKhx7Odha4STi5FRzMnpKKp1Wps+W63zY8PqhWAsZ+OxI0TtgfCLNW6b3N89cK3FocbGHGOErKHaVCEG++o43grEZyB46IoXQ2396Kg6O0ORXc38G5iiGKUcNidAcmZHJu77xTMXyyCWmNZERYLMzg+MNwxory4XElGysAwaFylhidQa1A3UYMWw5tg1bmLJcqkAqulQiQy/fnjPthwwKFhh7po2asJXq73dpHAwrYf9pQIirCuPPt+P4Lrx29DozbRDsJCLCw5tdfnWHBoJn64uABbvt2F0zsuCJ06Gnasi6GT+6Nx5wbCtOzz9vyeK8jJyEVYwxDUa1O71MsnhFRtnBhVZj0ljkC1DkB6BJBp2SmJ0JlAKO4vRpEBHH5PA5mrtqazWnug9hAOAa21Bf/XftaUqtiT8QgHGr4oQkhXDo8PamwON1grbCCQfgvIeABkRxe9zy0UqDEAqPGUCI7epv9SuLqiaLihrIkdtcGGphM5iGUUcCCVCxup/tKe7TY/3isoGO2Gj8HDyxdQ1mq2aIOd3y54QsIN7JxEDI3ahpRXJeYZUA3VGzfD2S3mO/5ZI6RBYwTVrY+V704s8hl2afc2IfTM693GAgjXD+1DzJ1bUORkl3rZKdGP8ffMjzB65lcY99U3uLhrmxCw0GjUCKnfSOjOwNaNadlvMB5euQhFfh58Q8OEUAYhhBBCCCGEEEIIIYQQQgghT7oqE3Bw9XQRCiJvnrpbIcsXJSrBJSvB+0qNf+kqdcb2u79CJtJu1lPbzuPTIV+ZnK+TqyO6juyIPb8eNDoNK7pMT9SOLH5623nhMmHOcxjz0TAkRZUMRVgqrGEw3v/lTTRoV1f4fc2cjUJYwFoevm7ISM4yOQ3PAdkdQ5HbLBAaZ+023AQ1eD4PLgamj7kfD7VKYzbckJOZi6PrT6M8iMQcPt/8IRp3qi/sj4RUNmqVGp8/sxCntp63eR6xEQlCR4U2/ZoLI+ez4vKywgrZrQlSsOlZ4Ynb0Uik+btA41qyE4MkKQcuZ4tVJwLo+VxnxD1IwK3T9+CwLQNh1x0QH5kIe2LHapaS4FC0GEYsEQmFRkp52W1LW4hUPAJ+v4P48fXBOxb7c0DNw2/9A6y+cAaZ1+Lh8oI2VKfPwcH885H4agsuHZwdMOajocJgspyYw9F/TuHPLzcYfIyx0B57/VjYzx5ys/Iwuc1H6PJMe7z0xWhMWjre4HQOTg7oNLR8OpqUGd4Og/g+WYMAE1IqTj4cPOsA6fcq74Z09AEGrmWfPdpjcNRhHqc/Nx0Qk7oAwV2Bh7uMT8M6Nsj/zebFHgdiT/Bo9qYGdZ8RIa8UH6ketYDWUzh419OGJa6v1ODWH9YfeBw8C9fPGrFHAKWRWtWsKO3fH+bCDfIMHrFl2zyuADvV7DyHg3cDDlJXCjaQyketUmLzgi9LFU5Ii43B71MmoWbzVuDEYvBl2MmBdYlIeHDf4uk5kQi8xrbQbYMuPZAWF4P4+9r/a3n4ByIjsZRtgYph4QZtcT77rfBYys5HIBJBo6xc5ySWOPLnSmSnp8HRxbVU85E5O6PNoOHaXzjg9omjRkMT+udz+tJio4X52IMiNwd/fvg26nXsgk6jxgodGwyROjqiTruOdlkmIYQQQgghhBBCCCGEEEIIIVWFtoqkihj94dAKWzanAWTbM0xO08+zaUG4gWk3sCVqNA41Oj0r+Ow4pA3SE62vxPll2hqM8HsZZ3ZchK0e3YzB+90/w5KJK3Bu9yWbwg1M2wEtTd7PvhZOH1wP2R1CC8INTAbUyOxTC1mdDG+jbT/uEQq2jRWnntl5EYf+Ol5uRcOsw0X7ga0o3EAqrS3Ldpcq3KDDRslnx5ayDDcwe1cdtmr66vWD8dZ3r0CSJYfX2mtwuhwHTq4dnVSUo4Dz2Sh4brgOkaLocUPqIMHBNceFcINXgAf6T+iJRCNdI5Q+Tsir4w15iJttNd28thim26iOeH76CHz0x9vYmvkHNqb8ipC61VDenD2c0OqpZkbvd3qYhdCvr8DzYAxkcTmQJuTC7UwCgr+5CrcLSQVdFXzSS44Cm58vM7t8ZZx2K8pz5Rj2zgBE3YnBqhl/48HVRzY9HxZqsxf2Oh1ddwrvdJqBRzej7DZfQsiTr/6Yyl1UXqMfVxBuYIK7AK7GT0kgdgKCOgN51g5ezgNXlvHYMlSN+Au2J6EyIoDD7/C4tFSDmGO2hRuYwHa2Ld9YuEEnYjNvNHynzOYRd4rH4/08+LKrvy6ieh8OAW1EFG4gldaFHVvs0nmBBQ8iLpwt03ADc/3QXqum9wurie4vvGL1csRSKW4dOySEG1w8vdC451N2DzcULc7nUb9TN7QfPhoD356Ct39fj0k/rYaHfwDKm6ObG4LrNyrVPC5s3wRnD89SzUORm4vWQ4Yj8dEDnFj7p9BFwRbK/HzYC89rcPvEEaz55AMh/EIIIYQQQgghhBBCCCGEEEII0eJ4Y8OSVVKbv9uFH95dJRTgljdeBORNDYSyq1uJ+2Rnc7H3g7lwdnYqcntiVDJmDJqLyGu2fXFaXljRb1qC6QCHIWKJGEtPzcbbHaYbDSPIwzyQOtLEl9kaHv4/XYA4S1Hirt/vf4dq4YVfwLNlrJy2Btt+3Iu8bPt9qazTvEdjXD50vcTtDdrXwdxd0+HiQZ0bSOX1cv23EX03Dk+qmk2qY8WVRbh+4ham9PoCKoW26J4Xc+DUpfsoU/o6I71fOBSh7gW3ibIU8Dj0EM43rO+UU71BMH65sQRqtRr3Lz0U1tXVywVvt58mBLSsxZ6dorkL8np6QuMpgThRAad96ZDdMT+vyd9OED43jR2jLdH3pR44080bl2ML9y+JVIWu3a5CLDa+7WPeUiD3FA9PP3e8NGuMEKirjNr0b4E5O6bhSREdHY3QUG01c8jnMyDxKl0xmCotHdGffSlcj4qKQkhIiF3Wk5Cq7M4/Glz9kaXaUKlwYmDYTg5iWdEce04cj2Mfa5BlW76s3Dh4AfI06x8nkgI9vuVw4I2yeU0GrRcJ3Tt0NCoeV5fzeLCdh9r+pyTwaw4kXS55u29ToMs8ESROlTtkQ/672L+Xfn5rAjKT7NsprTIJrFUXz8/5Go+uXsKGeTPLPIBRGv41amHcV98IYZHEyAjh3MTB2Rmrp78HlVxeruvSa8IbOPjrcpu7XzDN+gxA3L07SHwYYdPj3Xz80HrwMBxaVTnPSeq07Yin339yzkkIIYQQQgghhBBCCCGEEEIIKY3CdgNVxNDJ/ZGfk49fPl5j9WPFUjHUSuu+fPYN9oZfiA9unbkndHFwmhcP6Z5MKPu6Q+MrAZeqgmxfJuoq/OD8adFwA+Mf6osfLy3Aud2XcW7XJVw6eA2Pb1W+UdlsCTcw4z4dibqtaqHj0DY4tv60wWlyG/ubnomIQ25DP7idiTH4mun7+rUfrR713RIsRPHCzFHoPbYr7py7j+3L9yH6bqywfAdHmTCS/YKXl6HbqE7oMqIdJNIq99YhTzhFvuKJDjcwzu7aY2zjTg0wf9+n+OTpecjJyC0SbvDwc0P/Cb2h0aix9bs9yM81X7ij8nRA8vONinSYYTRuMqQNroO82t7w3nIX1pQSsuP8H5//g10rDyIpSjsktqOLA0LrBeHexUgr5gTwEiB9aijkbfXDdS7I6+0Fp92pcP8x3uC6sa2SW98D/7gkg/u+N1IvRMHxcAyc7mRY9VyYuMgELF0yDgMX/oSsf4sqVUoJ7t4JQYOGhrsfZO1VC+EGpt/4nkIwraJpZCJkN/eBylMGSYYCrpdTIJJrcGHPZSTHpMA32KeiV5EQUkXUGyWCMleNW7/Z8GCWPbCyvtPJH3D0AtLumJ7Osw5KhBsYl2oc+q4UIe40kHCeR/w5HtnRqHRsCTcwjV/h4F1PhGrt1MJztDe9Jn2Cs3N4RB2yf5KCddpo/DKH0B4ipNzQBiiyY3hh+SzEoVYCZ+dqENpTJHTm0O/UQUhlIM/NeaLDDYzMSXtOEta0BUZ8/Dm2LpoNRV7R0DHr0NCoex9oVEpc2rMdamX5dJ0sjgUBTq77C9cO7kZ2akrB+ntXC0biwwflui53Tx2Hd1Aw0uPjoVbZtj1Yx4un3/8Yq95/EypFyQEyzGnS8ylc3rsTlVXEhTPIzcyAs7tHRa8KIYQQQgghhBBCCCGEEEIIIRWuSlZp121d26bHsW4DlgYc6rQKx4Q5zwkj+k8bOKfgdlZCIr2UK1z01XxOO1KyISKRCO0GtETdVuHYsWIfngRhDUMwasoQPPVid+H3t5e9gqhbMXh4o2Shq8ZVZnZ+hqaRyCRCQETn0c0ou4cbJFIxZu+chhY9m4DjtAVC9drUFi4bFm/H8g9+F0ah1Dmx+RzqtKyJeXs+gbtPyU4ehFQU9n6RyiRQ/tvVoCJ5B3lB5iBFbHQyVL5OgIqHNCnX6qL64hp1qIdFr/yAexcfwMHZASPeGwz2tr195h5EYhHqtq6FuxceYN3CrVZ1K8hqH1wi3FCA45DfwBfpeSp47bWuCGjV7PVQBDsBYU5wiM5Dfo7c6nADk/28f7FwQ6G8ft6QPpTDeXfRilBexCH+pTrIaeaNuKwE7Y0N3YWL68VkBPx+H5wVdZm5Wfn4vPsX8L4RBVlTH+Q28gEvFSHzuApREsDvGQ0cG2kLapVxPDLWq5H2h/Y1cHCSoV67Olg7fwvKFdvh9J5jZjs/JA8Lg8ap8E+fpOE14LvtMTyOJyApOvWJDDiwzWDNa21sHoSQknzq2ZBUYOckMlg86r93Q6DxeBH8mwOH3zO/LI9w4/dxIg5BHQHP2kDElkrWesJG7PnWf45D9V7az6BWH4hw5F0Nsgxn72wicgAcPAqPhGl37B9uEMmArl9x8G3GFZyT+DTihMut1Rpc/7no8mKOaeDdAOgyXwSZKx2lSeUhkTlAJBYLHQMqmqu3r/C3fHZKkl3nG1i7LnZ/vwSJjx5A6uCI1k+PAK/WIOHBPXAiMQJr1UHcvds4t3V9qboV2Mup9auL/M7CGOUdbmCibl4r9Tzys7OxecGXUCmsD0iw18qvRk2cXFd0e5T7SYkJ7H2Tk5ZKAQdCCCGEEEIIIYQQQgghhBBCqmrAoUXPxgiuUw0x96wbrVyRZ/kIb/0n9EKrPs2E6yF1quHivqsmp6/dvKbZeW79YQ9UVnaQqIxYV4tZWz8Suh4wrNh44zc7kJGcCWc3J0hkYqH4OKReEK4dvQVxpvkR1MVZJV8bJ1fHIr8fWH0M9vbmkpfRslfTErezThs/vm94SF5WoLxg/DLM2vKR3deHkNLwCfZGfGTFjpjq7u2KT7dOxab4KFw8fhFqqbbgUJKSB/fj0XC5aluBkbuPK9Yt2lYkcHTz5B2hKwILG4lEHC4duCaECKzB5pbXyM/0RByQ2zIQrudjIU01X5HKc0DqkGrI6OkHtbs2OCFOV8JzXwK8diRYVSzOyzjk9vEyOU3OIG847U4rMt/UvsFCuMGQ7Ja+kMXmwntfrMXrcf+itgiKLcPtQqJw0WFbJGobIPYBOAmgYi+xXi2XPE+BWSMXCZ8NSnn5BXCe+3g49qw6hJTYNOQ09kLimHChY5A+3lGMpJE1IcpRwaeaZ7mtGyHkyRDYDnAOAHL/zZFZytJwA1NrMIeAVtpjl1sIh+SrposkvWqb/5S5t4kHX/E1t6XGulp0niuCs7/2Oafe4nF3PQ95FiBx1nY8kDgCbqFAwkWbsigCmUvR3x/tt3M4hANavsPBr3nJzhtxp/kS4Qad1FvAhYU8OsykgAOpPFjo2NnDs6BbQEVxcvfA0+9Pw43D+3Fl3067zvfs5nVFbou9cxNSR0c4uroKAaVHVy9BpbDunIRYJj7irs2bSinPx7av54ITico1eNL+mTG4um8XcjPSzU/MccL7hxBCCCGEEEIIIYQQQgghhBAClKyiqALYl8ZTV00qGN3S3ryreaH32C4Fvw98rY/J6aUOUvR5sZvR+5UKJWaOWIA/v1iPyj4CvCWSY1Ixb9xS4fqhv0/grfbTsP+Po0hLyEBuVh4yU7KREpMKL39PqBQqOF03U3Ct1sDpRslpWvRqUuT3rNRs2EvjzvXxxZYPMfiNvgbv37TUdBHEme0XERsRb7f1IaQ0WLeC+S8tq/BwA5ORnoPnvl2NP89cLgg3MCofJ6QOqYOsdtWsnmd48zDhuKIfbtBhgYbEx8mIf5hkdbhBIOLAy8QWTWo2CPGvhFdrIHVoUEG4gVF7SpEyMgSJL1Y3vBpikRAAcPNxLXK7MswRvKvp9VOHOEDjUTgNL+aQ2UkbQDMmo3MAeDv/BaBOAVSsyNdAvZBGrQGvsb0glHUnsZSLhzM6DW0rdPRYemqO0G0ovV9IiXCDvrzh4fCvbtnrW+WwxI09LoQQgx0R2n5cdqdTLDwR2rPw/Rc+2PR7UewIhPUxPo1awePYR2rc/btyd2/gLPtYRl4icG6e9kPn4W4NDk7WIOogD0U6oMoFFBlAXjIgc7c93MAEtC66TZX2OyWBXzOgyzwRag4wvB/d22B6xWOO8chNrNyvJ/nvUKtU2PHNggoPNzB5mRlYM/09u4Yb/GuEC/M1RJmfj6zkZGQmJVXpcAMr/ufEYji6sQPnk4d1SGAdVm0lllh+TuLg7Iw67TohMLw2npv9NVoNGmb2MTInJ7h4mg63E0IIIYQQQgghhBBCCCGEEPJfUSUDDkzDDvUwaOJTdp+vk7sT5u2eDidXp4LbwpuGYewnzxicnoUsxn4yAvcvPUTElYcGp/n5w9U4seksKjM2+vnU3ybDO9Cy0eJunrqLiweuYsHLy4Ti6uI0Gh6H/jouXHeIyjQYYNBxOxEFcY6yxO1DJ/cv8ntI3SCU1vwDn2Jz2iosPjoLHQa3Njrd9WO3TM6HFVpfMzMNIeXh/N4reL7GGzjw59FKscFzG/lCXt14QUxG9+rQOFhYufjvMVZiRSGJtTgND3GGZUVIaheZ2Wnyarkgq6OP0fsze/hBHly0O40uAKBSqJGVkl1i/SzB6dU/KvwcoXYrDFcYovZ0gNLbweQ0Yom2G4+9sA5GrBjYFkqF6c4PrHtQ99EdhcBhTkYuTmw+i5nDF+DtDtNQvWsd5IUWG367mEx3MSLT02xaN0LIf5tfMw41+tl/vlJXoMt8EcSywuOmd30O9cYYPo5yIqDhC0DKLSDjgeHPjsvLeMSfQaUPN7SdxsHBwgGsEy+xiwbnFxnuSsGrgejDpVkhoPawotvcNRil1vN7YOh2EbovESOwrfHPxuRrpufDnnPydQo4kIoXceEslr/xIu6e1v4P4MnDCaPrP+lYZwNerUZ+ViYqC5FYDInM/HmYNUGcsnqso6sb6rTtCJFEAnluLu6dOYHN82dh7WcfCgEZcxS5uchKSbZ5/QghhBBCCCGEEEIIIYQQQgh5klTZgAPz0hejEVTL9CjV1pr0zcuo2SSsxO3dRnVExyFt4BXgof1uW8ShUaf6qNE4FL/O+Bsf9/sSE1tMwcSWU3DxwDWh+H3bD3uw6+f92PnLAVR2ry98ET1Gd8LvD5ZhzEfDIJGaL0De+v0eKOUlgwk6+qOte+y6D7cjDyHOLCwkliTlwGPHXbiejSlR0Pzc9OFo0L5Okdv7vNANMkfTRbvmbPluD8RS88XSbDR1e0xDSFm6fykSnw75CimxlacwO6eZ6VHwWbeE3Ia+Fs+PHUfuno9AWXK5ZKYby7+HMkl6vtl5ZXb2scs0OpLIfIhSjR9nGendPIiy1KUKRRjCwmvyXPuOQMu6ODi7OxVdDxtDD/oBvQ5Pt8bhtSdLfCax98bC13+waD7yUhQ7EUL+25q8KhK6LdhTy/cA9+olj4/Ve3Oo1gGFAQAO8G0CuIUB11YAx6ZqsHeCBvtfVyPxigaJl3hEbNHgwXYNIndV8kJ4DmjxFofqPUUYsIZDvdHa4IY59zfy4E0cwg0FHyxdn0YvAZ61i95ccwAHrpTZy3sbAZEF87Dk+YvET37RNancYu/extZFc4x2N3gy8EiMLNtzEmK864JKobD75pE6FjsnKWWAhXW/qNGsJe6dPQlNsfOKrJQk7Fv+rUXzUSnt/1wJIYQQQgghhBBCCCGEEEIIqYrKbljscuDu44ZFR77A9++sxPFNZ4XCydKSSCVYNOF7RFx9BJVCBTdvV6QnZODx7WJF+CLg3oUIKPKLFlNGXH6ID/t8gYokloohFosK1q1pt4Z44bNRqNs6XNhO25fvxe3T94T7mvdsjBHvDkbb/i1w5fANLJzwPeIjjXdb0JcWn25RCICNTM6+KnY9FwuX87FQuztoR03PKvrFrZObExxdHIT5rpm9ETtX7Ef/V3oJ3TNkjjLh9X77+1ex6JUfbH6tT2w6g3E1b+HzzVOFLiDGtOnfAvv/MD0i/qWD19FnXDeb1oMQe1g7f7PJkFFFULuaH13TXHeB8uZ6Lg659X2gCnQteafuUKPWwPlayWMj+yzQL5xUe5h/bpZMUzB/DeCyJRVZLxuvnHXZVHSUT2liPqSJeVD6Fy3a0SeLzYU0VRte0Eg45LTwR3YLP6jdZEJHC7cLiXC5kmxxWMIauZl5GDSxD0LqBEGlVAmfPed2X7b48Szopvt8a9y5PkZNGYLFr/1odHo+IReOCiDfxK7p7uCAGp4WDhde1bCXsLQvYyWviSakojl6c+jxjQiXvtUg9oSdZspzODtPI3Rj0KgBB3cgLxnIji42nQhIvQ1oiv05kHYXOPI/exwAbCdiH3ccoPn3T37/liwwIBICA1GHNXiwTbvurKbUvxVQb5QIAa05JJzncX4hj9wEy5aTl2LBRJzlm0LiDIgdAHkacONX4P5mDWoN5tBgLAeRlBNebxbEuLjY9m0btR9IuqhB5zkieNUzXlQb2BaIPmJ6XgkXNQjpZnl3LELs7eyW9dCoKShaodiBVG+ACWKeSp6P5n0HwTMgUOjM8OjqZTy+bvk5iVgqg/rfMEJowyZo/fRw7Prua+PLUyqEzg7Fww/6nNw94O5resAAQgghhBBCCCGEEEIIIYQQQv4rqnTAgfEN8san6z5AYnQyfv5wNY5vPA2l3LYv1/1CfDBv7FKLptWoeSjU9issDq5TDTH34uwyL7VSLVwcnGXoN74n3lzyshC8mDXqa5zfc0UYEV3qIEHXkR3wyryxwjaMuPIQ0wfOgTzPstHipA5ShNSphpun7pqcrk7LmrhzrnCkQ44HJBmGRwTPz85DXlZewe/pSZn4a+4m3DpzD3N2ToNUJkXfl3rAu5onpg2YY3O9FpvvjEFz8eudpfDwdS9xv0KuRGi9IGEEP/0uFMXt++0wxnw4FNXrBxfc9uDqI2xfvg9Rt6Ph6uWKHmM6odPQthBLqOiI2BfbN09sOlvpNit7f6v8nE1Pk27frgClxak08P/jOpLGNIQyxN1gEaTH4UcQ55Q85rNwA+t4o1JqOyhIk80/N0mKdaNyOm9JgdpbgtxB3oD+KM1KHm5/JMDxVFbR5wPA80Askp6tZXSeXgdihZ8amQjxLzeCorpbwX0qb0fIa3ogu7kfAn6/BU5t/2Kp7T/uw9Nv9hWCZLl6x31LsHBDYE1/fPLPe6jbqhYuHbyGtATjIwaz9Xc5Eov8PkFGpxnZoDEcJZUreEMIqVqcAzh0+lKMnHgNrq7gEXu8ZOjA8nkBZ2ZZeOxVs/MS2I1LEJCj/YgoNd3zFzsC4YOAZm+KkHoLOPGJBokXtZ+1LEgQ2kPbBYMFB1Jv8zg+TWPxtmPzdqkGYb6meNc3P42OKg9Q5Rb+zoION3/nhXXrNEckdEyo9bQIjj4anJxh+2dkfipw7CMN+v8hgtS1ZMhBreDhFmY+mfFgO1D/WR4ugYXzSLvH48E2HlnRPGRuQFhvEYI6Ahx1eyB2plYp8eBi5Tsn+c/heaGDAK+xtWXNf/N8+vKe7WjRbzCuH9oHpdx8tz59LNzgGRiEwe9+BP8a4Xhw6Rzys7PMLNT03U179YOYzkkIIYQQQgghhBBCCCGEEEIIEYjwhPAP8UXTrg3h5mVgBG4LuHg6IynakuE/7S+odqDdwg365LkKbPluN2aPWYz3un0qjJCtK9hnIZADfx7D/zrNQEpcGv7+arPF4QZm8MSn0PsF890Lxn4yEjP+fhfuPqZfF07EwgSG77t88Dr2/na44Pc2fVugZc8mKI2stBzs+uVgidvZSOLPh72BX2f8bTLcoLP/jyPITMlC9N1Y/DrjL7ze/ANs+2EPLh+6geMbzwihkne7foKcjJxSrS8hxbHOKEpF5Rsp1eWy6Q4wXL4KTrcq5lhrNuTw53V47rwPcULh+1UWnQnvjbeFLg/G6MINjPtRM89Nw8PjaLJ168bm+2sCfN+8D9e/EuG0KxWuvyXA79W7cNmaavAxHqeT4L0jSug8oU/EA0H74+F2XrsOaX3DioQb9OXX9kR6jxCUla0/7LE63KDDOg0teHmZcJxWWPDZ5XIxAdWDHSDxzRMuIlelNnEHoH1wKD7o0AlPLN5OF0KIRVwCRfBtzEHiYtsGk7rC4s4F9uYWar9wgz51PnBvPXDmSw0Ov6tB4oXC44paDjzcDRx6WwN5Oo9bf1oebmDqDOcQ1sf8KW3jCSK0ncYJ29ckkfFjXvxZ4PHBws/V4E4i+JbulATydODhnpILjD/HY/tIDW79bsEBWAM82sdDnsEjK4rHlR/U2P8a65DBI+kSEHMUOPmpBoff00CZSwd0Yl9s5Hsqqq8cqtTrwHGQyMx3/isPl/ZstzrcoJMeH4s9P34jXFfJzQfdNWo1XL19DN4X1rQF2o8YY9N6EEIIIYQQQgghhBBCCCGEEPIkqvIdHHS2LNuN7976xaJpvQI84erlgtj7cRCJxcLo2/nZtn2haQ+x9+PLdP5H1582el/CoySsmb0BJzaesWheIrEIA1/tjdcWjBO6EjTv0Ugo5jekQfs6aDugBfJz5Ga7avAa08U2v326FgNf7VPw+5vfjMcrjd9FaVzYe1nowKATfS8OMwbPFdbXUvv/PIa1X22GxsT63zp9D0smrsD0v0q3voToY++/8KZhQtcQa/V5sw92nrsNuVQMUbYcjneTIMq3T1jC6XYKHO+kIr+ed8k7eR5eeyIhUlZs8Q3HCatikMvVROGicZQIE4nklg2Lrev44hCdB8/dCUjvF2BwOu9tcZAmWdfBQUeSoITrWsvDEd57Y+B+OhFZrX2h8pRBkqYQgg2SLGVB94bsFv4m55HVJgCeB6PBmTlG26SUs3x4PUoI7tVsGgaRiDN6HM7p4onUySHgkQqRg/Y2kYMCEg81JoX3xKtN2kIqpi47hBD7uPOPBld/sOwA5+QLiBy1oQIROwyJi3YOKG9ZUWU7/6iS2eIC2THArdUaxJ2ybF6cGKg9lEPjCdquBT6NgBTDpyTwawYEtOKgyALOLzTz2pj5E+X6T0CNwlMSNHsTOPAGSoWFGeqMKPw9I5LHiRkaaKz4cyFyB48bq3iT6598Fbj8LY82H5bsFkGIrWSOTvCqFoy0uBirH9u4Rx/cPHpQKPom5XCiU5nwPFQK286J7K6U2ysxMgKPr1+FX41wC7Y/j+zUooF4sVSKTmNeQKv+Twv/nySEEEIIIYQQQgghhBBCCCGEPEEdHBT5Cvw+8x+Lpg2tF4Sg2gGIuh0DtUoDpVyJvOx84fp/1b4/jlg0EvyAV3vhz8jv8fb3rwrF1cznmz9Et1EdhOJS/ULfjkPaYPaOaRCJREKAg23j0khLyBA6TeikJ2WgtIp/77zpmx1WhRuYpKhkk+EG/ZBJRXUIIU+up9/sa/Vjwt/qhX+4XKS3CUVe8yDkdK6JlBdbI7d5kF3WiQ2K77v+DtwPPYY4s/D9JIvKhO/ft+B+y3DHgfISXKcavj//FVqY6QLDAh+WhhsY/Y4vfn9Hw//XR5DFFHYnkD3ORcCKSPhssn+3HlMkmUp4HYyD38ZH8DoUVxBuYJS+TuAdTBfRaFxlULkXHV1VLK08hTcX912Bf6gvOjzd2uD9ymoypEwKAS8uWcypghqbEs5DLHoi/hQy+Z60x4UQYp4qj8dNS0bcZ515wgDnACAnWltUz7oWaPJZ6Pe/u6Uf7bHs+dcaCgz8W4Tmk0VCFzh26TxPhOAu/7Y90hEBId2ATrO1x/msx7AqNGBIXjKETgk6ikz7f4bcXcdbvZ5C1w8Ltt3jAzzy0+igTuyred+BVj8mqF5D3Dh8oMLCDRVdSO4TUh1jv1qK4AaN7TvjqhBusBORpPKM1/L4+mV4BQahRrOWVj9WrVTixqF94J7wcxJCCCGEEEIIIYQQQgghhBBCrFV5vhEsBTaCc2ZKlslpnN2c8PYPr2L5+78h6k4sKgrraHB25yVUJnlZ+QiuHYgYE50kWIDh+ekj4BfiU2K7zvj7PcQ/TMSlA9eE79NZV4egWoEF0zi6/Dtkdimd33MZfV/qgZj7cfj7q82lnl+z7o2K/H5i81mUFY1ag5un7qLbyA5ltgzy3zPg1d64fvw29v951PSEnDZ4lFfHF2fUhUX3BcQi5HSsAVGOAo73LO8QYHRxGh4ex6PhfiIaajcZOJUG4lxtiGrkR0OF98LVIzdRnqSOUox8bzBGvDcI7t5uaNK1AS4dvGbXZbACS103Go8jycJF5aH9mJVk2KdDhsHlchxqtaiB+xcjrXucwrIq2uIdN9RKNdx9XJGZko3K4p0fXsPj27FCeFFfdl8fQGJ8pOrHOWk4HH8XPavVK4e1JIQ86WJP8lDlmJ5G6ga0eIvD5WU8Mq1vwmQ3gW2B+LL709cmrMOCkz+Ql2i6c0PDcSI4ehc9tstcOXT8QozsGB6Jl3kh5+DfioNLYOF0Ykc7rCQPJF7gEdqTQ+ZjHnf+Ln0ixb950ecSe6LsCpRZkCb1NhBEpyTEzgGH6Fs3cO/MCdMTcpzw3mTB4Ng75XsuUFy7YaPx8MoFxN27U67LFUtlaDvkGbQc8DQcXVwRXK8BYm5dx5OAFej7hoYh6ZF15yS2YuEYmbMLFLlmPnjLgS7s/tTrb+Gfzz9Gerx1ofaU6Md4dO0yajRtUUZrSAghhBBCCCGEEEIIIYQQQkjV80QMEZaVlmPRF453zt4XOgFUFFb86unvYff5Btb0L9Xjnd2dMNjMSPBtB7aEf3U/4+tQwx/9J/TCgFd6FQk3MCF1g1CzSXWUFiuqfXQzCm93mI7zuy+Xal5Oro5CcbjOuT2Xi3SIKAtiyRPxdiOVCCts7/FcZ/MT8mxEZB65LYNNTmbufmuxUd8lmYqCcEP30R3x0hdj8MWWD1G/XR27Lcfd183k/Sxk1bRrQ6GTjO4zICnKvh1V3H3c8PayV4p0s9EFG0obbvAL9UHP5zqj1/Nd8NKs0ajfrnaJzzcWbjC3HYqTJedBmpBrchqHh5kQ5xR2fdCR5ymKjpJdBpp2a2h2mha9tJ04vAI88e3pOZi46EXUaVlT2GYNOtSFV98aZudxOYUNn04IIfYp0DdHJAaSrwKKijslAScCZPY/JYFz0VMAq8ncgdpDTX+4BHfmSoQb9LkGcwgfKELNgaIi4QbGIxxwDUWpadRA+n0eBydpkFjK3LrUBajRnysSklFkokyxfZAQu+5TIjEadO5mfkKeL9L1rKI07NoT7UeMxrCPZsK/Zi27zdfZw9Pk/VJHJ4Q0aARFfh5yM7QfAlkppQ+XF1kHTy/0eOk1IUxib+5+/qjfuTsadOmBTmPGIaBmsXMSjUYINzi6WndOYjO2P2nKvu2RJV02wpo0F366efvi+TmL0XXsePjVCIebrx+C6jaAq3fRgUIMibt72y7rSwghhBBCCCGEEEIIIYQQQsiT4omouA6tF2R2mpB6QTiw+hgqEiswvrj/qlWPkUjF8PBzN3q/o7MDXp0/zuQ8xBLTVSz12tSGh48bWvbRFooWF1QrQBgduzTGfToSpdWwYz18/79fzXbrMId1nZi5aSp8qnkJv2en5+DLUV8LReBlRSQWoXHn+mW3APKfdfXwDYumU7s7Qu3lbHoaHxeo3ezTcaU4F09nXDl8E2PD38Ss0Ysx9K3+mLpqMlr1aVqq+bp6uaDbKNPDEOfnyHFh7xVsWroTrzR6F1+/+gMkMvtW9ykVSqEgf+pvb6FRR/t2A2jVuyk+/vMdfPTH2whvWgO3z9w3OF1msvXHRs9DUcbv1PBG75fnKlC7eU2UlcAafvjfj68JATxjqjcIRpv+LaBWq5GfK4eLuzO6je6IsEahSE/MxK1Td5FwP8HssiRPeqUnb6cLIcQst1DzBaWuIcDjAxX7puI1sLowXyTTdp8wRuIMNH3N9PNn3RdM8aoPOPrw8Gtm+H636kCLd7hSBUMbjitl0S8H+DTkcPEbDZSlbGQkdQU6zRHBwUO7TvlpPE5/UbbFuuw18GlIB3Vif9E3q0YXAgcXFzy8chE/TRqPXd8tQpvBI/DUxHcQ2qh05ySObu6o1bq9yWmU+Xl4dPUSLmzfhF/ffR37f14GsVQKe1IrlajRrCX6vfkuAmvb95wkvEUbDHzrAwyY/D68qwUjIdLwOUl+dun+X2MNtk19q5sPNNvKM7Aa+rwyCVIH4y2AWJCheuNm0GjUUCrkQmeOeh26wCc4FLnpaYi9ewvZqebD9SLxE35O8h+zatUq4e8O/Uu9era/J4cNG1Zifv9l+tu3e/fuFb06pJwoFArcvFmxHaDsYe7cucK+K5VKkfFv4NHe2PtC9x5h75fydOlS+XQuf/jwYYUdE7OyshAREVGuyySEEEIIIYQQQggh5L9KgicAKyat0TgUD68bL9Qc+GpvfPPGT6hoKbGWdQmQOkjRcUhrjPxgCHi1Gh/0+lwoKC0efvh0/fto068FRrw7CBsWby8xH5mjFOPnPI9VM/4SCkANuXTgmnAp3m2ChR6Gvj0AT7/ZF25eriiNLiPao1bzGoi4/NDmeSx+fblQsFoqHNCmf/MiYYO9qw4jNyvP7EMbtK8DL38PnNx63urFatQa7F55CGM+HGr1YwkxxdIvcXixhdMV60BgLznpuciBtltAcnQqLuy5jFZPNcOYj4biwr6r1hcXVvNCky4NcPvcPWz7fq9VD9/1y0HYW15WPl5r+j7UqjIoTNR7jdct3GrXWbtcS4HGMQKpfcPAOxX+SSDKUcJ7eySc7hv/stXNywVlwcnNCZmp2ZjWfzbaD2qF09svIDez6DE6qHYgXlvwAuaOXYoTG89AqVAhIMwXuVn5yEotrDh1upAJeQPT69mzWt0yeR6EkP8e/5asgwCQHWN8mpr9OZxfUPEF5nJLTkk4QCQFQrpwqDeGgzKXx9EpPDSKkuGHTrNE8G/JIemyBhFbSz4/sSPQ+BUO11aUfLxOwlntpfg6OHoCdUZyqDWYg9S1dH+nhPUR4fZqNTIf2TgDHjg7T4OU0tZyc0C1jixsUHhT5E4easOna0WwAAgnARIvWL9YXg083APUGWH9YwkxqYoU28pzCrt/sqLzyEvnEd6yDVoOHIqoG1et/1vay0foyhB37zauHdht1WOv7NsFe5PnZGPV+2+WTWcDvdf43NYNqCyc3cugJRH7X5qTE3Iz0rFp/ueo3aY97p8/DWV+fpFpvINC0Hn0OGz7eq5wv0athod/IPKys6DINd9pVl+tVm3t/AxIZXP37l1cvXoVTZtaF6jKzMzErl32P14QUpXs3bsXb731Fp599lnMnDkTVZnu/dyhQwd4eJTNZ1hFHeMmT54sBFEOHz6MJ9Vff/2F999/H3PmzEGtWvbrBEYIIYQQQgghhBBCCHmCAw7MBysnYWrvz0sUQTKsQLLf+J5Yt2gbYu7FoaK7OJiz+NgsNO6kLcBXq9SY2ueLEuEGRqVU48aJO0LAYeKiF9GgfV1sWbYLd87e/zcg0QbPvDcY4U3DhIL+X2f8hYv7roLneYvWMz0pE+kJGaUON+i0fqpZqQION0/eKf1K8MCRf07B0dkRH6x8U7jpznnDIw/qc3R1xIy172Fym49sXvSO5XsxeuqQ//xIa8S+WvZpir+/2mx2OnFGPrhcJXhn46OEinIUEGdZUFlnJ6yrwtUjRTtQ8CIgu4c3snt5Q1nNAeIsFVyOpcNtdzLEWep/JwLSEjJweO1JVCZlEm4A0LxHY+EnC6ldO3bL7vN3O5cAl8tJyG3oDbWbDJIMOZxvpoJTm/6sSHiUXHCdl3BQdnGFopsbeFcRxFEKyHZmgItRQVHNCZxCA4foXHAW1PTm/Rs4Y5/n8Q+T4F3NE8PeGoDoe7FCR6J2A1vB098dnw2ZXyS4p78+Oi7705A5yBcaT8P7fUf/mmjsZb4LVJVmjw4MFV+LTUiVCR22+UiEY1M1UBnIzgZ3BWr043BjFY+8JFR4Fwdzev3IwbuutuGfWsHjyHuGwwnstpSbvBBwaPmuCL5NNbi/mUfaXUAsA4I7c6g7ioNHTQ4+9XlcX6lB4kVLV5R1NgAUmazjgX0KqP1bcch8ZPuBrdThBoYHHu8FpE48Wv5P+7zS7phfJ6kL0O4TEfa8aPvfHBFbeAo4ELsLa9ocF3duqZJb9sHFc0JXB1vkZqThzsmjqEzKJNzAOqc20nb8ZMX78RH3UFlkJMaXyXwVeXkFPzMS4uHq7YOW/YcgLT4WYrEYtVq3g8zRGVsXzYZKqSjV+rCQTVl2oiCVx/r1660OOGzZsgVyefn9n4aQymbWrFn49NNP8SRgHRtOnTolXO/fvz+eFAcOHMCAAQOEcEO3bt3wpJowYQJWrlxZ0atBCCGEEEIIIYQQQsh/yhMTcKjXuhaWnZ2HfxZsxeG1J5CXnY/qDYIxeGJfDH7jKaEoknVxWDH1D7Pz8gr0hJOLA2IjEuy+nmydfIO9cXF/0Y4JOh2ebl0QbmCObTiNq0eMt19mhc2D3+wrjGbebWQH4WJs+8zbPQMLJ3yPPb8esnh9tyzbjaFv90dw7WoorYGv9RFGH9dYEPIoa/v+OIIXZo6Ef3U/SGXGC7512g1oCf9Q31ItkxXqZqfn2C0wQgjDwkueAR5CGMkUTsPD6UY8ctuEGp3G8Ua8MF15UspVBdd5MZA4pQbyW7oX3KZyESNjZACyu3kh8LMISFKUBV1R/gv8QnzQdWR7yPPk+PG9VSXCIBp3MTg5D1GexurPovTEDGSmaLsdiJQauF4pGRAw1RHkvr8IGX2aQO0jhXOjbIg8CvcddQMnKJ7yQG6aA3JynIXbJEn58N4ZC4+Tli+HSY1Lx9WjN/H1kS+0y+Z5vFT3LaNdifSJs9Xwn/UQSVPDoA6QFbmvg19NLGn7jFXrQggh5vg25tDrBxHu/M0j6rB2RH6PmkCtpzmED+KELmns541fzX/eOvoCIjGQa/9TEnjUAqTOQLKRActDexSGG5iogzxSimYSi7j5O4/wwTwcPDhU7yVC9V6Gp/NpxKHbIjFOz1IjyoqGSnf/4VF7GA9n/9KHHNhrcX9jxZ+PMA928Gj4Ag9Hbw4iKXtuptcrqAvg5FO6bZAVpQ2siGVVY8R9UjWENmwKR1c35GdnoSpiI+9XpjBBZePhH4DardsLHQwO/2a/zqjewaFClwTb9xsOGYll8CFpAOv4ER9xF89MnyX8rtGo8fPkV4qEG2xRo3krDHhrip3WklSFgMMXX2jPay21du3aMlsfQqqCiIgIPCn27dsHlUr1xAUcoqKihHDDk+5J2hcJIYQQQgghhBBCCKkqCqtWngAhdYPw3k8TsTXzD+xRrcUvN5Zg6Fv9hXADM2RyPzTp2sDkPOq1qYWFB2di/v7PhAIkexv8Rl/M3DQVvcZ2gVRWmC+ROUox6PU+mPH3uyUK8U1hHR4Orjlu0bLvX460KtygKyTd97vpdTAlJS4NJ7eew9ldl4Qi7NcWvIDKgBVHn9x6XrjOOl2Y07hzPXzYdxbSEk0XkZsiEovg4FS0wJaQ0pr7/Ddmww06zheiIXuQYvA+dju7vyJl9fctEm7Qp/aXIfXVYFSE9oNb4f2f3yj35To6O+DL7R8Ln2GfDp2PHSv2C7fzDhyyxvoh6dc6SP6tLpJW10X6tBAoaztaNN+ajaujTd/maDeglU3rpZGKkDC+EZIG1oAixA0ODeVFwg36nL3kkDlqv+RU+Tki8cVwpPUKsHqZrHPFX3M3Cp8n53ZfsiqAKHuUj6C37sB3/iMEHclF20fuWFStH1Z1GQcPmROedKxrhj0uhBDLuYdxaPOhCMN3ifHMfhGe+kWMWkNE4MTac4u6Izl4NzQ9D59GQI8lInRdWDZF6LWHcug0h0NIT5YGK7xd7ADUHsah7cdFl/tor+kDgUYJRB2y7GCRcoO3Ktyg6zjxaJ/tB6O8JB6xJ3jEn+XhEgg0fqVyFPfzKiDulPZ5BXUyP713fQ5H3lNDmWP7MjkJIHpihjkglQH7n8H2JfOqbLihqqjbvjN6jp9Y7suVOTlh2Iczhesb583EzaNWHsCN8K9ZCzWbt0TN5radk2iV7x+pj65ewrltGxBx4QzunzuDrBTb2jGxMFC12vUw4O0pGPHx53Bw1gbCyZOpRo0a8PPzE67funULN28aH8SmuLS0NOzdu1e4Xq1a6QeeIYRUrF27dhW8n5s1a0YvByGEEEIIIYQQQgghhJjxxJY2iEQlsxsyR5nQxWDD4h3YvnwvEh8nC8GCBu3qoGWfZmj1VDOh04GORCqBUq4dLdxSLBThFeAhjDhdnFgqxo4V+7Bqxl/IycyDi4czWvZpii7PdECHQa3g7uNW4jHpiZlml8lG4bbEnpXWhRt00hJKPhdzWKeCpZN+wtF1p4UQBsOe79DJ/TF7x8fYtHQnLuy7Cr4Cuzko87WvbbtBLVGreQ1EXH5ocLrQekFYM3sj0iwsIjem3cCWwj5IiL1cP3EbxzacsXh61p3BffcdKMK8kF/fHxoXGUQ5CjjeSoDscTrEYlGFdkbIesrH5P15zd2g8pNCkmTdcdkSHMcJxVmG3LsQiTe+fgk1m1RH5LXHKC9fH/0c4U3D8Ne8Tbi4TzvENi/jkPZFdSjr6xXBiDnI27lB3twFXp9HQXYj1/AMOQivceT1x8LFVhk9QyEP0wZROKkaEg/To7Q5ucqhyC889qU8HQL3E0kQ51u3r62c/pfw08HZwep15jSA89lM4Gwm4hGBb3AC54a0wbQ178DByfr5EUKIxccfA4FpiROHbgtFuLuOx4PtPPKSALEj4N0ACGwFBLQVwasOV1DYb0sBJycCpB6AIs3AfRLg/gYeV74HVLmA1A3wbQKEdOMQ1IGDzK3kOudbcDogN7AsQyJ32fb3f36q9Y+TZ/C4uJhHzDH+322pfb51n+HQaTaHext5JF4s9xrZItT/foyGdOVwM4xH1iPD07nVgND5Q1G6UxKEdNF2EiHEXh5fu4IHF8/ZbX6cSPSf6Yxgjbh7d9D1+ZdxqdpWpMXFltNSOYz5YiF8QkJx4p8/EX3rul3myY5BiZERwqWqOfrnr8JPqYNl4XJDWBgo7v4dxC1dgPtnT6H/5PchkZrvLEqqJrFYjOHDh2P58uXC7+vWrcNnn31m0WM3bdoEpVL7/4+RI0di6dKlZbquhJCytXv3buFnv379hP9DEkIIIYQQQgghhBBCCPkPdXCwBCswf/bjYVj98AfsyF2N7TmrsfDQ53hu2vAi4QbGXLeH4ty8XfHdmblC54jxc54TCvr1qZVqPLweJYQbmJyMXJzZcRGrZ62HUqFtT1xcYE1/s8sNrOGHpOgUodsD67aQ+NjwKHIRVyJhCxZS2L58n8XTKxVKTOk1E4f+OlEQbtA939WzN+D09ouYu2sGWvVpiooUXLcaTmw+i1mjvoZEKoaHb8mASYP2ddCwY71ShxtYtw62jxFiT/v/OGr1Y9jXZw6P0uCx5w68Nl4Tftb3cMdHv7+FzzZ8UGFdRjRSDqpAM4XmIg7KENsLSYxh7/9X5481+uViSmwqJrX9CJOXvQJn9/IZ8X/UlCHwruaNtzpMw8ppawpuz+3vVTTcoM9BhMw3Ag3e9dSL3YTnp1aVrlhM5SpBRqcAaKQ8eBEPiYsS5r6TlToU/XzjHcXIbult8zrIc+Wwh5NbzuGbN37CE4/n7HMhhNgVCzk0fEGEQf+IMXy3CMN2itD9azHqPy8uCDcwrAiUhQ+s4eAJ9PlJhP6rRGj0MltWya4BGZHacAOjzALiTgK3/uTBF/7pXoSLBYMGs2lyE3g83KPBo70a5CYZTg1kRNiWJni8n4UjLP8cU8t5HH5Xg+gjheEG3fNlQYGkK0C3hWKrt6+9uVbnhXU8NVMjdNCQGWhm5dsU8KqNUocb2PzrP0fHdGJfN4/ZaUT/GrUw8J2pGPTOVIj/g8XeEqkMnce8aPR+1i1g9fR30fvVyZA6ls85SfsRY4TuAn989A5Ob/i7dDPj48wsjAABAABJREFUODTs1ks4IX0SAixKeb5d5nP39HEcWqUtfCdlR52dDfn9+8i7elX4yX4vT6NGjSq4vn79eosft3btWuGnq6srBg0aVCbrRggpH1euXEFsrDag2L9/f9rshBBCCCGEEEIIIYQQYoH/XMCheNjB1Gg5w98eYPG8GndpgL+jl6Nuq1pw9XSBf6ivUNBvibgHCfhl2mqD9/Wf0MvkYx1dHHB80xk8FzYR81/8DvNf+g7P13gT42pNwuLXl+OnqX9g5y8H8GrT93Dt2G3YgnVj+OaNFVj95QaT0105fANfjvkaIwNfwf1LhrshMNt/3IM/Zq1Ddrpl26esfPfWL5g5fAFObDqLO+cikJGcJdxeu0VNvDBzFL458SWWnpwjFMGWhl+IDz7fPBX129ax05oTopWZYr7DizEs0PNn5Pf4K+pHrLiyCL3HdkXHp9tgTdSPQkeT8sapeEBhvtCFyzNSeVkKHYe2FQJoxjo4MNlpOZj1zCLM3PgB+o3vKRx7Ge9AT7uuS41GoXj/5zcwfs6zmNZ/Nm6fuVfk/rynTC9PHeoARYOSBU+Pb8eUqmMOq29Pfro6Hs1sCZWHCGpHHioXHmqpBfM0MInarXIUrR1YfQzJMSkVvRqEkP84sQNn8pykzgjLT9n8WwED14rgEc5B5s7ByYeDSputNis7Cri+0vBxPXyA6XWQOAOP9vLYMUaDc/N4nJ3LY8coDXY+r8aFr9W4ukKDBzs02P2iGqm2nZJAkQmcn8/jzlrTfy8kXOBx8jM1tg7XINNEvvvueh63VquhrNhTEpz/CkK4IfYEkH5X+zwZr/pAo/Ecen0vQvfFIsQcL91ynAOAznNE8KxNAQdiX3lZtp+TuPn44tXvVuK1H1Zh3FffoH7HrqjbvjNe+36V0DXgv6Ruh85Qq0x3RsvLzMSu7xZhyAfT0KhbL0hk2nMSF08vu66LX/Ua6D/pPbQfPhobZn9in04LPI+UqEfCT1LUjcP7kZtZygQbMbDL8cg5fQbRb7+Du+3a48GgwXg4arTwk/0e/c7/hPtN/R/AXrp16wZ/f+0ANtevX8fdu3fNPiY5ORkHD2oDZIMHD4aTk+XBprS0NCxcuBA9e/ZEUFAQHBwc4OPjg5YtW2Lq1Km4c+eOVeu/ZcsWjBgxAiEhIZDJZPDz80PXrl3x/fffF3SYqF+/vvD3rLlR6XNzc/HLL79g7NixwmN8fX0hlUrh5eWF2rVrY8yYMfj9998L5lsamzdvFuatWy9WVJ6fbzicFBMTgwULFghBkpo1a8LDw6PguTZp0gSvv/46Dhw4YHJ5L730UsGyLl++jJycHEyZMgXBwcHC6xceHi4876NHjxZMxy737hX9v48xbJvrHrNq1SqD06SkpGD+/Pno3bs3AgMDhefg7e2Npk2b4p133sG5c9b9jzshIQHz5s0Tlq3/WrVp0wYffvghHjx4UOIxr7zySsF6durUyaLlREREFDyGBXqys7NRo0YN4ffffvutYLrPP/+8YLru3bsbnR/bxz/66CO0atVKeA3Ze6BatWro0aOHsH3Ye8QSbD1+/PFHYb9gryObj7u7u/BasvfEihUrkJdn2cnWrl27Crq69OnTp8h9M2fOLHhef/+tDRTevHlT2O9q1aol7D9suWy7s2mTkgwPbmWLixcvYvr06ejSpQtCQ0Ph4uICR0dHYXt16NBBeJ2NHTN0+/zLL79ccNuRI0eK7N/ldZwypzT7hO65sOemw56z7na2Hcpy3yGEEEIIIYQQQggh5L/sPx1wMKfdwFZ4adYYi6Z9ceYoITChs335XquWdWTtSeRklqyuaf1UM/R5oZvBx7B/oLr7uOLi/mslCkjjIxOx86f9+GfhVix+9Uehc0Rprf5yPdIS0g3e99OHf+KDnjNx5J9TyDETXGDfHf7+2T8lCnfLW1KU4aLW+5ci4eblioYd6kGj0SAr1faR3fq93AN/RC5Dm34tSrGmhBhWLdzwaP2W6PtSDwSE+cE32KfI7e7ebpi/71OENw0r183O8YDzGdNFHeJkBRzuWF+FKJaIjd7nG+yN1+aPw6WD18zOJz0xAx/2+VJ4zLasP7Fb8TdWP/oBrZ5qBnuQOkiw7Nw8IUBxZvtFPLj6qMQ0an/zwQB1QMlpbp+5X6p1Sx4ahvReQeClRf9sUCikRUbFNkSeX3J9pCn26cJQWhq1Buf3XKno1SCEEJNCunFoMM6yovTGL4sglhVOG7HNuqK9x/t5qPJLPqZaRyCku5F14ACpM5B4qeRdObHAg23Anb94XFjII+sxSo11X1BkGX5el77V4OgHGsQcLexQYZQGuP4zkFG6j8hSyzNSn5R2G3D0BrwbcFArAHUpBgsPfxoYsEYE/5YUbiD25xlgQYsXIxp17w13P3+4efsWud3Z3QOjPp0L7+AnJ+TAiYz/+41tgy7PvojH183/XZqdmoL1X34Cr2rBeOePDXh3zRa8umwlQhvapx2NRCbDc3MWo2HXnrh35gRSY6NhLwkPKviAW0mpVSo8una5olfjiZJ34wYin34aj196CVl79wLqYgMlqNXI2rNHuJ9Nx6YvS6ygefjwwq6u69atM/uYDRs2QKXSdkNkRf+WWrlypVAQzQrrDx06hLi4OCgUCqSmpuLSpUtCEX+jRo3w7rvvFszfVHE7Kz4eOnQoNm7cKIQAWPCAhS+OHTuGSZMmCcXIrDjdEn/++adQtM4K4FevXi0UHLOCfLYe6enpwnxY14oXX3wRDRo0wI1SvC67d+/G6NGjC54jCzewwAMr3NanVquFYmq2zdjPHTt24OHDh8jMzCx4riyUwoqRWWigX79+yMgwH0hiy2WFzayAm43az4IVkZGRWLNmDapXry4sT4fdZg5bp+PHtWlXVoD+zDPPFLmfBXWWLl0qzJsVpLMwBnv92HNghdvXrl0T7m/btq2wP7HnZwqb31dffSW8Xh9//LHweuu/VufPnxeKwhs2bCg8R33s9dM5deqUsO6W7Bs67LmxkIMt2Pr973//Q+PGjYX1Z8X77DVk74H4+HgcPnxY2D6syFw/OGHIyZMnUadOHbzxxhvCfsFeRzafrKws4bVk7wkWQGDz2rNnj8UBBxYa8PQ0PXgJWzdWiM/2OxYiYfsPWy7b7izkwcJAO3fuRGmw15OFp9hy5syZI+xf0dHRQghJLpcL2+v06dMFrzMLB9grEGbP41R57hOWsve+QwghhBBCCCGEEELIf5mkolegsnt++gh0fLo1Ph06XwgNGNKmX3M079G4yG2Pb8VYtRxFvhLJ0Slwaehc4r4PVr4Jv1AfbPxmJ/KztZUtbACcsIYheHij9MEFSykVKhxccxwj3i3aFv3k1nP4Z8EWVCRWwKxW2W9k983f7cKQyf0gEolQLTxA6LJhi9zsfOGLTELKQv9XemHdwq1Wf8Hk7uOGZz542uT9S058ib2rDmP/n0eFwn5HZwfhvVC3dS3cvRiBU1vOm1yG1EEKpdy6Efc8Nicir407eEfD7xnPdQlCEMJaho4NbP1YAOm56cNLhDxMYdv6z1nrEVjTXwiJMLO2fohRga8K3W4MLt9JAt5BBHGmEpyJLgpKuQrPh72B/614HatnGe6YI0pXQ+NvOpvIprHFhLnPC8c6ea4c/mF+2Llin9DZRuUuRUaXAIOP4TUi5Gc4wsnLcNUl2zXzsooWEIizlHC5bHhkNAcnGeR5pkeutTd7fnZUWjRQLiFVXuPxIoR05XF8ugZ5hk9JENQJ8GlUtIA9s2RWziTW7SE/FXANKhmsbj8DuBYI3N/MFxbbc4B7GJBpvm7JbtRyIOoQj1pPF32uUQc1uL+xgg94bJXsuAr3NvAIHwhIHDk4+gD5NjYdUudz4EQUbiBlo0mvvri0e5vVj3P28ELLAUNM3O+J52cvwvXD+3Hr2CGhU4TEwVEIVATWqoPYOzcRefmCyWWIJVKoVaUfBdweeI3GYJigSc++aDdslNVdGI7//Ts8/ANQvxMbEEOM4R9/ju9ffQ5KI6OTW0qlUODnyePR+9XJOLPZfBG2vXUbO0EIVaiUcrj7+uPynh2Q5xo+zyorrDOGSlG+gWy+eAE+sVn2iROIfutt8LmWDY4gv3cfj8a9gJBvl8LVwtHmbTFq1ChhNG9dwIGNmG7KP//8I/xknQRYUf3Zs2fNLoMVPrPR3XVYkXjnzp2FUcpZUT4rNmeFxKyof8mSJULAYNu2bQb/b8kKjdkI+bdvF7beYsW47du3F/4vwgqfWaEuK/5nI6CzgmhTli9fjokTJxZZN1bozbpCsPmx8ARbPzbqOcPCDgMHDhRCDqyg3xqsYJoFSlhBMTNgwAChoJiNoF4c66igGzGfYduKhQBYtwL2eNZdgXU9YNuMYcXIEyZMwPr1602uw5dffikUThfXsWNHITTwwgsv4LPPPhNu++uvvwquG8MCIbr//RkKALz11ltYtmxZwe+s0wJ77cPCwoQwAyteT0zUnkSwEAkLPLDR6NnzNIQVX//0008Fv7NOEGx+LEDBirXZ68/my153VqTOghQsCMGw6di+wgrz2Tqz56e7z9Tz09GNhv/8888LRfjs9dR1PWHF+K1btxau161bt8g82DqwUMleFmr6l64LAXsfsX2fbQe2j7GQBlsOey6G1o3tf3379i3YH9n2Zt0oWKcBFja4f/9+QTcMViT/9NNPC9ukRQvDAxyx9x8reteFbcwFIVjggw26JJFIhPche5+w7XnixAlhX2TbfsiQIcJ0LMhjLfZ49nz0uySwUBHr9OHm5iYU4l+9ehW3bt0S7mPrwsIBbD0mT55c8Bj23mehITYf3f7OtjnbHuVxnDLHXvsEez8wW7duFR7DsNelXr16wnU2v7LadwghhBBCCCGEEEII+a+jgIMFajYJwy83l+CnKX9g98qDyM/Vfmkjc5Sizwvd8cbiwpGJdFw9nZGZkmXxC6HtxuBm8L7Y+/HYsXxfQbiBYd9plGe4QSc1vmQHhy3faUcgKitiqRhqpfEve53dnTD52wn4+cM/Da6fLWLuxSE9KRNe/h7oNqoj/p63yab5sH2EkLISUqcaXvx8NFZ9WvhlrDmeAR747sxcYd9mWEH75m934fT280KBff32dTB0cn807doQQyb1Ey7FXT9x22TAwcXDGTkZ1ndakEXJ4f9lJFLeCIEquLAoXpSpgufaeLgesqyFvCXEEhEmzH0OLh7aL8qD6wRpu+FYiAVLdAGHpKhkZGeULLrJD3NDWp8Q5NX2AEQcRNlKuJ1LhNf+aIiUhtsesOPOzGELjC7X6VA6ckb7Gb1flKyE7Kp1BUAqVylyOlbDKq90qFrJ0CQwFH1aNoOnrzt+eG8Vspt6A2LjoYqcFGdwHA8HD7kQvtNhNVxZqS5QKfX+1FDz8FvzECKV4erP+u3qCMff5JhUlJfGXRqU27IIIaQ0PGtz6P+HCJeX8Xi4m4fm3zyY2AGo0Z9DszdKFrDLXIE8K2pdOREgM3xKgszHwIPteuEGhi/fcIMOC2EUd29T2YYbODErQDV+v8wdaDoRuPYTILfTnyyZkYAyh4fUhUNoD+Ce6Vo6o8SFjQYJsTu/6jXQbthonNm01uLHuHr54Pm5X8PJVXvASYuPxaVd2/Dg4lmhw1ZQ3fpo0W8wgus3RMv+TwuX4tiI96YCDo6ubsjPtvx/MhVBJJYInRuk/44o7hkYhJjbNy1+/LltG/8NOAAZiQmlDjfo5KSnYcuCWShvnEiMa4f2CmGQwNp1UatVO0gdHIUwR3li+19y1GPkZtjv/NMUjhMhqF7DclnWk451YrAm3KDDpmePC/vjdzg1alQm69a1a1cEBAQIo+pfuXJFKHJlo7AbwqZhxefMsGHDhOJyc1h3Al3RMPsfMys6nzFjhlCsrMOKlNkI5axAmY3Szgqp2TRz584tMT82jS7cwAqYf/jhh4LCc51Vq1YJI5RHRZn+/zQrGP7ggw+KhAq+//77IuvGsIJg1kWBLYt59OiREAYpvlxTWHE0KxjOy8sTfmchCdYNw1C4gRUr68INbJstXrxYCAqwwW70sQ4E48aNK+igwObHbmNBBWO2bNkizGfWrFlCIIK9huw1ZcEDhgUc2OvFAgCsgPvChQtC8b4lHQ6Kbw8WbNAPN7Bwx3fffScUcuuwYnF2my6McPPmTaEwft++fSWeL9tH9MMNLFDBHsv2X52kpCSh6HvTJu3/yz/55BOh4J6N9M+2pe756TpUmAo4sOJuFiRhatasiW7dtJ9rs2fPLni+uoADK1bXL47Xx56brpCd7VusYwV73fQL49k+xsIkX3/9tfA7Cxo1b968ROiATaMrUGcBIxYKcXd3LzINe81YBwRd9wG2DbZv325w3fbv31+km4gpv//+e0HRPNt2+vsZCxyw140FVNj82GvAQgb+/v6wBtuGunCDl5eXENhh3VqKO3r0KJ599lnhPcwsWrSoSMCBdetgF3Ys0AUcWPBEF+Yq6+OUOfbaJ3TPhx0TdQEH9rwNHZvsve8QQgghhBBCCCGEEPJfZ3oYaFJA5iDFpKXj8Vf0csza+hG+2PIh/opajv/9+BocnEp+SdJjTGertl7LPk3hFWC4PfEv09YIo2hXBgFhJQtr75yzrBW5rUyFG5jczDwseX05np02HJ+u/wCvzR+Hqasmo26bwnbftshIzMDM4fNL1Z2i45C2pVoHQsx5fsYIfPLPe3Dzsax9e2ZyFnb9fEC4fv34LUxsMQUbv9mB2IgEJEWn4Nj603i/+2cF+z37svXc7kv4+tUfMfu5Jfhs+HzMHrNYO0KxAawzQtNuthdnON7NRdC7dxEwMwLeP0bDb8FDhLxxC2777Fvwnp8jx5F1p4Xrv37yF7b9YF1L8Ec3o5H4OEkIsr3Z+qMSozXn1vVE7OsNkVfXUwg3MBpXKTJ6BCPu1YbQSGz7+HXelgZxnJEOBxoebr8mgDOcnTBIEeiMmHeaI7VHCO6npeFhWjq23bqD0av/QWJ7P7zw2SjA2VwWkkN2oiu4+wEQ7c+Dw8Y0OH2bAPyYDU3MvxtGw8PpZgaCl9yG20XjhUJXDt8o13BD677NENYgBE8y1vXEHhdCSOUglnFo9a4Ig9eJ0Gm2CJ3miDBonQgt3xEJ9xUX2su6UfurtWcBB8OPubpcA6W2VqPCORtoLJRWOABpmTAVbmAUmcClb4DGL3PoMFOEphM5tJ3GwaN0pyTIS2adO9S4Z7i5k0WCOlP3BlK2Oo8ZhwFvT4GDhaNs52Sk4cZh7TnJ4+tX8MfUt4UuEKxIPyslCXdOHcPfMz/ExV3azhCs4D3iwlns+XEptn8zH5sWfIldy7SFaMZG4A+qUx+VnSIvF/fOnRKuH/7jF9w4vN+qxydGRiA3MwO5GelYPf1dVHW8Ro3UmCikxcUIXTvWfPKB8Fq2HTpS28bUAg7O1o30bgjbJ8sr3MCEt2oLz4DAclvek4r97yLuo4+sDjcUPD43F3EffWx1h0xLsYJaVniuY6oDALtP1zHAktHZWaHz22+/XfD7vHnzhNHWiwcIWCH7yy+/jB07dhQUtbOiXtY9Qd/ly5eFUfd1WJG1oUJedhsLIJjz66+/FhT81q9fHytXriyxbrqRzlnwoVmzZgW3GeqCYAwrGmZFybplsWJ4Y50bmG+//bbg+vjx4/HOO++UKPZnWIE5e0104QRL14t1cZg2bZoQDGBF5EOHDhUCF7p56gr5i3cwKO78+fMFYRP9AADDRtrXL/hnnULYuuqHG3T7H3t++t0qDh48KIQ19LHiclZsrcP2WdZNRD/cwPj5+Qn7iG7Ueba/suJxHVb8zQrYGdblg3UDsCS8wYIRusdZg20f3fJZ14Pdu3cL+2fxUf/ZPsaK9L/44gvhd/Z+Z0Xwxd/3+iP+r1ixokSBOsMCKawQXz/EwEboN4QV6TOBgYFC8bw5bBoWPikeomFdFti+xzopMKzjgf7rZQnWdUM/wMK2m6Fwgy6YxcItOizYwy62sPdxqrz3CUvZe98hhBBCCCGEEEIIIeS/jgIOVnL1dEH7Qa3QYXBrox0XmCGT+8E32NuieTo4yfDSF4a/sGLFs6e2Gh8pvTw5Ojug53OdK2WXAkW+EsveXgmJVIyRHzyNPi90w4TZz0Essb59MVOvTW18OnQ+Tmw+J4wgaSuVXGnzYwmxVPOejeHq7mzRtGx/Xv3lBmxZtguzRi9GbpZ2VLvifvrwT1zcfxXjG/4P0wbMwa5fDuDw3ydwcvM5bQF6se95RGKRcHxYemp2qQoCwpvVgLObExxv5sDtYCqcz2WCU5ZNgUFKbCpWz96ANbM32vT4H9//DfNfXlaiWwXPAcnDawJGQgzyGm7Iamfd6Go6oiw1vD5+BKeTWYDedpE8zIfH3Gg4Hrc8DMcenfhcPSF4YcjCIyfQaEInfPrVBLPzcniUjTfTqqHXLV84/ZIMh92Z8N4RhxrTr6Dm+xcR/u4FhHxzB853K0dYjwlvGoapv71V0atBCCE2kblzCOrIIagDZzSQwNQdwcHBy7J5ih2BRi+LjBbZx5+rHC+WxAUI7c5Vyi4FajlwYTEPiTNQb7QIYX1EaDJBZPNZt29j4OhUHnEn//3gtpGmjP6WIkRfWJPmkDk6WbRRWGCBjcp/9cAebF/yFZRyA0VdPI9Dv63A4xtX8cv/XsPm+V/g+qG9uHPyKB6cP42ctJKhWE4sRsMuPfH87EVQq7UjJdsioFZdSIwUxNpbdmoKjv/1Gy5st61rJNtGO79bZLfuDdbgDBQC2xXP4/AfP6Nuu0546tXCEaNNaT14OEIaNkZVERBeG30nFhZ8EtvlnjkL+b37pdqE8nv3kHu27P7gYcXnlgQc2IjfjI+PD3r37m12vqxIXddFITw8HO+//77J6bt37y6Mts+w0cNZEa4+FmjQYYEB1kXCGBYi0H9exnTs2FEo7p40aVKRoICx9dNJSUmBJdiI9n379hUKvnXrxbaLse4XrJDf19cXLVu2hKenp1D8bwor8GfdCSxdL7Zc/WJuQ1gIQP81Z+tkbQCAhQ+Sk5OF6y4uLsJI86YCAiywoP96sa4V+s6cOVOwL7GicFbcbmx+LDjy3nvvFUyr67LAsMJ8VhxvaJ/Sx7pJ6PZ3thz9bWKNb775puB/kc8//7ywv5ny4YcfFoQ2bty4USKwkpNT2BlV1w3EkF69egmdJljXhQMHDhgMyDCsuJ5h+6glAY6ff/5ZeD0N8fb2FsIB+vuArjuEJR4/fiyEZFhYIiwsTOjQYArrEKHP0vdkWR+nynufsJS99x1CCCGEEEIIIYQQQv7r6D9nZYR1Y1h4aCaadGlgdtrRHw1F/bZ1DN6XEpcGtcrMcKHl5PVFLwoBj+I6DS2fLgWt+jQVQhamrJ2/ueB6fq4c4c3CIC5WZBxUOxADX+tjcj6BNf0R9yChlGsMrJljW+E0Idb4dtLPiItMtOoxf87agNQ406NSThs4B9F3tG3ILQlOePp7oHbzmvD084CtJi99GV1HtEN5yMnMwapPCkevs9axDWdwZvuFErfn1faAytvR5GOz2tgWcGCc80VY2mUcGn2RDq8PH8LnrQfweScSjmctH1ZbCH81D4DSz3QR2m/nLqI+3CBJlZuczmdXFE5uOCN00mFhFx028r8kWwVxvu1BMXsY9s4AdB7eDs16NELHIW3w8Z9v47uzc+Hlb/u+WmXwdroQQqokJz8O3ZeI4NPI/LSNXuLgWdtwwU0eq5uq2EN5gRaTOUicSq5ntU7ls/zA9oDIVJiCB+78rd1YrKhGowI8wlnhddHJ3EKBGgNMzIcDHH2BPOv+xDPo5u90ICdlb+/ypchK0RZZWurkutXIy8o0PgHPY/3sT5CREG/R/Hi1Gq4+PvCtXgPO7rb/nddr/ETUalU+5yTs+Z/ZbH4EdGNuHz+CR1cvobxJHZ0w/OOZcPa0MEVngEgshtTB9HkT2wdYJw/vkOoWzfP+uVNoP3yMTSOAl7VWg4ahdtsOCG3UFLXbtMfAd6bi2VkL4eRWcnRnYr00vY4DlWE+hrCCb10BLes2EBkZWWIaNkr58ePHhesjRowQCsetGTH8qaeeKjFCuSG6TgLMoUOHity3devWIgX15kyYYHpQhOnTp+PEiROIi4vD5Mnmw0oscKDDCpvNuXPnjhAE0RVeDx482GS4gWHFxKwDAXsd0tLS0KRJE7uuFwtOGCtQ13nmmWcKpomNjTVYUM06I+i6aRgKALBR/vXDC6xThDmvv/56wfWzZ88iMzPT4GvPCrCLd4IobuTIkcL2Z4XcrCOEPv11Zc/B0GAorPBfF9Bg7w/WocIW+u8BFsoxh+0bffr0MfoeaNy4cZHtqntPGtqPWJeOcePGoVOnTgb3uStXrhR0H7Bk3dq0aSOM8G9u33Fy0v4/Lz09HUePHoWl6tSpg+3bt+PmzZtCNwZzxwv9/d7S92R5HKfKe5+wlD33HUIIIYQQQgghhBBCCGD+WxJis+Da1fD1kS/w91eb8MvHhkcqYrZ8uwujpw6FzKHkCFbegZ7gRBx4TcUWpXgFeGDQ6yVDAZcOXsPZXeXzZbpSqRJCC6bcOHEHmalZ+Gnqn9i9sugXK4yrpzMWHPgM/qG+cPNywT8Ltxbp0MC6Uby+8EWsW1T4hU5pPLwRhce3Y1C9frBd5kdIccmxqUKhvbXSE7Wj2pmiVloXrtq4ZAdqNApFt1EdDL7/zGn1VFME1a6G0wZCA2Vhw9c7ymS+Ki8Hu0xjSOdh7TDx6xcREOaHYTejhGOdLVhwLsPD/J8Ax67cRfCWhwg4eg9xE+tD41TyMR6H4uB8JwMPkYFp/WeXqutNWWGFAJ+t/6CiV4MQQiqEe3UOPb8T48YqNW7+Zny6u+t51HmGh0hcsijUyQeVgpM/UKNfyYx+/FkeSRfLZx00Cu3FlMSLgCpPgwuLgcf7Sp7HydwhBE9Ydw2pM497G/kiARKxA9DiLQ7Xf7XPOWD6PSAnnodLYOUr+CVPhozEBDy4YP2o54a6MBgKLVjj7Jb18AkORb2OXXHruPWj79Zq3R5u3j6IvFQ+nTTPb6t6gyKwbdv1+Zfh7uuHZn0G4NS61TbNR6NWCxdzIs6fhkph+n9BOgkP7mPLwtJ1FSwrUqkMQ96fXtGr8URSZ2cja/9+u8wra98+YX5iV1fYGytoZaGF77//vqCLw5QpU4pMs27duoL9d8yYMRbNl426r1+wPnHiRLOP0RVc67of6GRlZQkF6zpt25of1KZ9+/bCObct7zv2GBZ8YMXWrBD85MmTRYr2jXU10GGPZYX4iYmFiVA2Untpi4XZiPiPHj3C9evXcfHiRRw7dkwIaVi6Xo0amU8Xu7q6CgXQf/zxh/D76tWr0bNnzxJF2rrnZigAcOlS4f/kzY1Qr/96seJyFp5gF7bdu3TpItzHXgf9QntzWBeHunXrGi3CZ4GW3NxcoWsAK/TWLcdQd4qXXnoJtmABiQcPHhSZpyXF6frPVf89wLDuG2PHji0YzZ+td1BQkFCYz4rg2T6nCyuZs2vXLuEn2+bs8ebod74wtd2bNm1a8N5n619837EVC6vcu3dP2PfPnTtXIrhibt8vj+NURewTlrLnvkMIIYQQQgghhBBCCKGAQ7k4v+eKyfszkrNwcvNZdB9dcthRD193+IX4IPGxdSMhGsO+cPIJ8kLtFjURWj8Yx9afQvzDJLOPk0hLFrXeOXcf0wfOhVKuNPlYd183dBjcGgfXHINSriqxPq8tHIdTWy/g6pEbJucTXKsarh4u/EezMYf+OmG0uDo7PRfvdJqOvx4vx4S5z2Pwm31x4M9jSEtIF7o29B7bFe4+bvj5I9uKhg3Jz8m327wIKe7ehQeVpssL8/WrP8LZ3XRXAGMu7L2KMcGvoaoTZ5kfzUycZfq4aYhUJsE7P74qfGZMGzDb7GeLOZzK/JeS+Wk5OL7xEpyy8xGy8BoyulVDdlNv8FIRHKKz4XEsAa7XCjuB5OdYVnhU3rJSLO9uQQghT6p4M7XH+clA/GkgqJPhThAO3oDcfC2yZTjA2Q/wrA24VgeiDlrWqUBsoFYt+RqP49M14IueZpQg8wSCOgCP9wOa4h/DIqD5ZCDqAJBi+pQErkEcEi+aL+CL3Gk43MAoMoGDkzUYsEaM5pM41BnB4/F+HvJ0wCUICOvDQebG4cJi+/2Np8qz26wIKSE+4i54vpKEXHkeu5Z9LXQYsAUrpmcXYpjEwQG9X3lT6NaxfvZSPLp2ucw3lTw3BxHnLQ/1K/Mr5wEvL9tEtxJSKqr4eDbUvX22oloNVUJCmQQcmFGjRpkMOKxdu1b4GRgYiG7dulk0z3j2/P/FivHZxRoZGRlCoTsrwGaBAX2sMNccd3d34cLmYw4rbN62bRsuX76MiIgIYQR5VlBtjLnQxN27d0vc9vnnnwvBAWOF98UplUrs2bMH+/fvF4q6WWF0VFSUEHKwdb28vb0tWjYr6tcFHDZu3CjsG6x43dIAgK77AVO9umWdbpydnYVOD7rH6s8jISHBqtfeFDc3NyHQo3t+a9asKRJwYJ0j2L7AsE4WLBBhC/39n2HdCayl6/6h8/zzzwvhkUWLFhXcxrpsrFq1Sriw7zOaN2+OQYMGYfTo0SYDLbqAQ7t27SzqsFG7dm2L1ln/9Sm+DSzFuj9s2rRJCJ/cvn1b2PfNzcvWAKE9j1PWLMte+4Sl7LnvEEIIIYQQQgghhBBCKOBQLmLuxVk0TUpcGnb/chAPb0bBxc0J7Z9ujcsHrwu320u1cH+8tuAFbPhmB9Z/vc3izhANO5b8UujPL9ebDTcwmclZOLL2JKasmowrh27g7K6LUKs0aNKlPoa+NQCNO9VHUK1AXDt20+j6sMLe0R8OwZF/TiI3y/gXXyF1q2HvKtMj8iRHp2Lnzwcw4JVeQieHZz8eVmKawHB/RF59jNISiUUIqVu6L4QIMUUiq3yNeHIzK2dBSXlh3QzEmQqo3Y2PGOh23oIqzmJ6Pd8F2Wk5eLfLJ8hKLX3BvvONVKQOqAGIOJPTKPK1x3lZshx+Gx4Kl6qmVvMa+M/iAa60A9hW8AC4bOTMBg0aCIUvv/76q80jOxrDCldY8UV+vnWBRA8PD6EggJCqIrtwAEyjsmI0yEsS4cFOHlmPAakrENQeiD8PKMzXrFnMPQxo9JII9zZocHet5ccZn0YlP7Nu/m4+3MAo0oHoI0C76ZwQ9mBdH1h9jl9TFjDg4NOQg6OnBik3eaPrwzor1BsDPNoHqE1k+jzCgQc7TD+pnDjg8UENqvcUCZ0VGowt+dycqwE50Sg1TsKCGaWfDyHGiCUlu1FWtMpa5F7VNerWG9mpKVj72YdC8KC8qE0UGlcVfmFFR14n9qPJzbXr5tTklN2+zQq8WXiBFeCy0dHZyPa6wnR2/fRpbcBq5MiRQscHS1gSLDBXsJydnS2c3+gXu7NCXEdHR4vmwboRmFoPNpL5a6+9JnRoMIYtq3PnzsL52eHD1nXg6devnzDqPAtNsPO6CRMm4OjRo8JzMGXLli3CiOts2xvj4+OD3r174/z588L8LQ0RWKJHjx7C68+Wz84td+7ciWHDtP+nZq/J5s2bTQYAWEhAh01jKTat7rXO0dvf9Yu6LX0Oprz44osFAQfWnWTp0qWQSqUFAR9duIU9N7YP2aK0+7+uc0lxCxcuFIrQWaE666ShUCiKvGdYETu7zJo1CwMGDBDCKWFhYSXWTbfP9+/f36J1Yf+bsIT+62Pt/yXY+s+dOxdz5swp8voXxzqGDBw4EN999x1Ky57HqbJelrF9wlL22HcIIYQQQgghhBBCCCFala8y9glkyejq5/dewZ+z1kOlLJx2x0/2aa+uT+ogxczhC6x6DPsyaOjkov+Ez8vJx9kdlo+0k58rx7Yf9uDrw1+UuO/Q3ycwd+w3RsMNnIgTwhHBtauh78s9sGnpTqPLGTK5P3743yqz67NjxV4h4GCMi3vpv8RhNGoN8rLz4exm2+iRhJjTtGsDuHq6IDu9/IpLKjOZkwyKPPMdFMoSp+Hhs/0hEsfUMRgekMbnwv1U4ah4lmjStQHeXDpe6JBhj3CDsB7pcrheSkJ2K3+D94uyFHA/kwBPfw+kxNpryO7yJxJz6Plc54peDWIjNkIfCzSYGtWztG7dumV1uIGQKsmCwdXjTgHXVmjA652+PNhaBuvCA6dmWjnauwioPazo56oik0fCBctnocoFHmzn0XVByZE/H+7W4Nx84+EGkYSFI0RwDeYQ9pQGD7YZDzDUGgpc/Nr8+kRs5lG9p/H7ZS6APf7CYwEQFshgAQ1CykJoo6ZCxwQKFWiJpDJolBV7TlIWqjdpju7jJmDH0vnlGm5gXDy9kJNedc9JOJEIdTsUjlxO7Etkh0LsIvOzolDc6nmLRMKo9suWLRMKXVmR93vvvSfc988//xRMx0b2thQrdNYVuv/www+YOHGizevn5FT4/0u2frm5uRYVupsqkr527ZoQ7NAvOq5WrRratGmDhg0bol69emjSpIlwkclk+PTTT60KOLAC7A0bNuDYsWPo06ePcBsbkZ5t48mTJxt9HBtNffz48UVGpK9fvz5atGgh/GSXZs2aCZ0g2P/Gu3btanHAwVJsvuPGjcPs2bOF31evXl0QcGAdHdj2Z9g+YygAwG7TFbebeg1MFW/rByP0r9vjHJwFOEJDQ4WOGCw8wTplsMLv4t0pWBDCVsX3T3Z+z147e+jevbtwYe8v1uGDXQ4dOiR0O9DHgilsOtahxM/Pr+B2Nr2uE4ilAQdL/zfBiv1tCbcwLADEBo/QYaETtt83bdpUeD+yASZatmwpvE81Go1dAg72PE5Zsqyy2ifKa98hhBBCCCGEEEIIIYRoWTYUFCkVRxfzo11dP367SLjBFuHNwtCiVxOj94slIjy6af0QoBMXvYjGnRsUuS0/Rw6Nhd0fdK4dvYW4BwklghKLX//RZCcJiUSMVn2aCtcnzH0OLXsbfo59X+qBIZP6QSw1v1unxhkf2SjqTozwepjSaWgbDJncD5ZIi6fRnUnZcXBywPD/Dazym1gj4ZDZ2g+JI8ORNKImchp4gjc90J5B7ItpFvioaK6XUxDw+x3IYgu/YOaUGrieS0TQjzcgklt3vL9z9j6+f2cljm/QjuZoL76bIuDKukkUOwZLE3NR7ZebEOcowZXxXwoaKYeMDn6Im1BbuMgHhEHjoF2oo6tlo0Wa0qRLQyGkkZOZC5VShcjrjzH/5e8w1OtFDHB6Dv/rMkMI2j2xeDtdKsibb75p9eid1mIj5+mwgppatWpZdAkPDy/T9SLE3sQWHFKTLqNIuMEW3g0An8bG7+fEQOYjK2fKAS3f4eBdr+gfB8pc649RLBCRl1T0QcpsHheXGA83MLwI8Guhvd7sDQ5+zQxPV+tpDuGDRBZ9fuYVDpJbQvp9Hml3TD8+pDsQ/jQskk+nJKQMOTg7o0Xfqn9OYi9isQgSh9L/HVvZRN++gQMrf0TEhbPlvmyRpGQwrSzpv35SO7yWYU1bwNHFFfLcXKEbReLDB9j53SJ8+9IoLBk7DGtnfoS7p4+Xejn/VZLAQPbGs9PMJJAEBKAsse4MOizgoKMLOLCC8I4dO1o8P19f34LriYnWd4vUx7pL6IuONv9/ZFZYr99JoLiXX365INzACqbZiOaxsbFC9wQ2ijwLtLdq1Uo4F7N2NHpWiM2CAA4ODkKXBRYW0Pn444+FboCGJCQkYNKkSQXhBra9WeExK4Res2aNELIYNWqUUOyt6wJRVt379Iv7d+3aVRAs0N83jHUx1C+INtWFQh97rdLS0gy+5qxbhU5cnPmO1OaCECzQ88ILLxT8zoIoTFJSEo4cOSJcr1GjhlDgbSv9/d8e7wFD3N3dMXz4cGGkfbaPsPfFjz/+iNatWxdM8/DhQyxevLjI49jryfj7+wuBAUuw7i6W0H9vWjP6//bt24uEG1599VVhmWfOnMFPP/2EDz74QAgNsfeqPfd7ex6nrFlWeSyvLPYdQgghhBBCCCGEEEKIFnVwKAdBtQJKFPbbm4OTDG99OwHBdYMwfcBs3LsYWaJzQ0i9aoi8atmXHTpjP3mmRPE0+/In4vJDoStBbpZ1ozmxUcCrhRd+UXjkn1PIyzI9MpFSocKsUV9jwYHPhGLuObum48z2i9j7+2GkJWSgWk1/9J/QC4271Meprefh4umC9ATTrYh9gryM3nfgz2Nmn4fUUYaXv3wWO386AKVcaXQ6kVgEn2Bvs/MjpDTY+zQnPQebvt0ldA2pavJDXBD/Sn2o3bVfZjOZnQIhi8lBtZ9vQ5Jh+einynylcKkMXG6mCReFnyM0DmJIU/IhzrOtalSRr8TulYfsvo6cmoffhvvwPBCF3IZe4CViOMRkwzEig9WSCpKjU+Eb7I3kmNKPmOru64bM5MKRAuXVnBA7qT5UXoWvPRuDzmNoGL5q3h3Ju+/gt0/XlmqZV4/cRD/ZGOG9wbo5sCpZ/ffJjRN3/r3cxuRvJ5RqWcS+nRtYwcmKFSvKfLPqBxzYCJO7d+8u82USUhFcAllhf9mHKFq8JYKTP3BsqgYZD4rd7wC4VAMyH1o33yavcKj1tKjEOUlmJC/Mk3UnsBgP5KUCTnoDZD4+wJudB68AznypQZd5YkicOHRbJELMCeDRXg3k6YBrEIeagzj4NgJijgFSN0Bh+pQETkVrb4p4tM98ckPiyKHxeA6RO4p23ShOJAUc6ZSElLHOY16APC8PV/ftAs/rn5NwFZuWrADKJ7QzlEapxPVDeytk2VnJSXD18kZ2WunPSRxdXZGvN/K1ISp5Phxd3fDU628jIfI+zmws3TnJw8sXsPi5IeA17JxELPzUHzU++tZ14dJ68HB0Gzu+VMv6LxK7usKtd29k7dlT6nmx+bD5lSXWzYAVD7MC8tOnTyMmJgYKhQLnzp0T7meF9bqiekuwkdcfPND+0cXmZ4mbN28K50GsuLxmzZoICgoSbmfrFRISUlA8feHCBaGDgSlsGjbKuyFXrlwR7tfvmqDrsmBMZGTh/7T13yeGsMJxXTCC+frrr4UR0Vm3ADbC/WuvvSZ0DSju77//LuiOwLogbNu2Dd7e3ibPT1kXAkvXyxp16tQRAhYnT54U1mnfvn146qmncODAAbMBAFY0f+/ePeH6iRMnLBoV/9SpUwXrz/YzFuLQad68OQ4ePChc13/djGHzYfsOCzKw/WjdunXCT30s4KDrUMGK69m2ZK+Rbp9h91uzvxfHAkGsoD05ObngPcC6bZjDRtRnwRu2fdkABp6engX3sdeBbVe2XqyrQXHBwcF4/fXXhU4IAwYMEF4zpvjgDLr/LfTr18/i53j+/HmLQkWsM4qOfrG8Ob/88kvBdbbfmfufi/77sTT7vj2PUxWxT1jKXvsOIYQQQgghhBBCCCFEizo4lIPuozuV2bzZ/8bbDmiBRYc/F7osePl74NszczFz4xT0GtsFnYa1xUtfjMGfkcvMFv0XJ3OU4pn3tG2jde5fisSEhv/Dx/2+tDrcwP6x6xdatIonLsKyUYmuHLmB5FjtF9lisRgdh7TBzA1T8M3xL/HRH2/DL9QHrzZ+D58Nm2/R8+z1vPF/aqcnGR91TCcjKRMu7s7o+kx7k9O1H9RKeE0IKUvsvTXx65ew7OxcePi5V6mNrXaWIO61BkXCDTqKYBfEja9X5cuhZEn5cIzOsTncYK3Q+pZ94adPmi6Hx8l4eB6NgZNeuEHHHuGGBu3r4N0VhV+282IOsW/WKxJu0MlQyjHl4kE0G9S81MtlX77qAg0adeH14rYs240L+67giVMFOziw0TR79eqF5cuXl8vy9AMOlo6qSEhVFNrD9sIhs0RAtY5Az29F8G7AwcmHQ+8VInSYKUL1XhyCuwCNX+Ew4C+R1SELiTNQe1jRdU+9xWP3OA2OTzMfTDC0rsWDBdmxlj00/hwgT/+3IEzMIaQrh05fitHzOzHaThPBwRPY9YIGpz7TmA03MGF9jL8mLDRhjjyDh4MHhyAzp5vBXTjIXMvw9SeEvSdEIvSe8AaenbVAKAwvVNX/midW4zh4BgbbfcPZI9wQ2rAJek1406Jp87OzsHf5N6jZ1D5/H7JQA6NRq40WiJ7ftlEIOhDreT37bKWajymsGHzEiBHCdbYvbNq0qWBke2bMmDFWzY+dO+mwYllLui58+OGHGDt2LDp37lywLjqs6FaHdTMw588//zR63507RdtRseWZkpqaikOHCgd3YMXw1mBFzQsXLiz4nXWL0B+t3tB6sS4QpsINusJn/ZHsrV0va7o4sM4WLNygC2CYCgD07Nmz4Drbj/Q7Mxjz888/Fzn/1X/u+kEK9pzZ62EKC2Ww7cKmYx0wWDimOBaQ6dChg3CdFZyzx7CgA8Oel/5zN/Z+MUd/O7AQjbkifLZt2f7/zDPPCOGAr776quC+ZcuWCaEXFvYw1jlDRyKRCKPz62RlFQ7ocfXqVSG8xPTv3x+WYqEIc68jC+iwUBQTEBCAtm3bWjx//X2/Uyfz31npdxIxtu9b8hrZ+zhVnvuEpc/TXvsOIYQQQgghhBBCCCGkEAUcykGPZzuhegPjX+6Kpba1UX/nh9ewPnElZm+fhnptahfOTyxGp6Ft8dHvbwshgOdnjIB3oBec3Jysmv9TL3aHi4dLwe+JUcmY0vtzRN2xsAKomOY9GyMgTG+oVDZKt4XF2LyGR8SloiMG6SgVSiFwYel6hdQLQt+Xexi9X7/DhDFB/07DujgY6wbh4euGV78aa9E6EWIPf83bLIRvyoOLh7PZaVgHk3rtasPJzdHoNJnt/KFxlRq9XxHqirw6FRsSUgQ4Qx7iCrWjbcdqS3Ai+xUdRt227Rhd1nqP645OQ9qgz4vdhN+zWnpD5e1gdPostRI/HzmBNv1KH3Kw1Pbl2pHTSMVhhQ5sZL8jR46U2zIvX75ccJ0tm5AnVY1+HFyD7X9m2PpDDkM2idB5thietQs/z1jXnJBuHNrNEKHjF2I0eF4ERy9OCCxYo+YACB0TdLJjeRydokG2tl7IatXaQghg6GPBBItogPQIw3ep5bzQtSLHwo9hj3Cgem/jn/8uFuQVXappH9/0NREcjDSoY50bWAcMQsrL6U1rhcLw8iBzcrYoeBFYpx6kDsbPSci/24qz078IeR7p8TYepMtYox59UK9DF9TraH4kZ4Z1eri0bydCGjZGebmyb1e5LetJ4tyuLRzqFP5v1BYOderAuW0blIeRI0cWXN+4caNwYdio4daMxs6wolzdSOMqlQqvvPKK8NOYrVu3FhSYM2wkcX1vvPFGwXU2nakOd2fOnDEYINBxcCh6zq8/6nxxrHCarQsbnV5HV8RtDVZYrF/c/N577wndMoytFxttXS43nphlRfnFOyPYsl6mjB49Go6OjgXbnIUcLAkAPPfcc/Dy0v4RyLYbW09ThdybN28uUrDOOlwUD7dUr15duM62yZQpU4zOiy1n5syZRZ6DVGr4/3v6z4F1edB11WDdTMLDw2GK/jyNvU6TJ08uuH7r1q2CjhHGfPLJJ8LACrrvUfSL0VnRv24bssEQ9AM3hly8eLHgev369Quu79q1q6AonnXksFR+fr6wzxoTHx+P6dOnF/zOugGw52Ap/X3f1PtR1/lg0aJFZvd9S14jex+nzLHnPmHp87TXvkMIIYQQQgghhBBCCClEAYdy4ODkgPn7P0OLXk2K3C6WiNH3pR5oP9C20eA6DWsDdx/9kRG1kmNSsGbORiyZuAJ/fL4OcZHaf852fUY7WpKl9qw6jLsXtBU8inwF5jz3DbLTCr9ksrYYeuKikl/I9BjTCSWGCjfixNb/s3cf0E2VbRzA/5nde1O62NCy9957CwIiKCggguiniCjKEAQVERRlKLKHLJmy994bSssqdNG9d9rkO+8bkyZtZgfz+Z2T04x7b25ukpvc5vm/zyVcPXITt8+EIDO1cD1O/XMB0Q+Vj9EQ9qNQ054NMO/oDFgbCHt0ebctJFKxwWX1GNOJ/2WBjV/PzEbnd9ryjhcMm5eFWn49OxveVb1wcd81LBizFD+++xt2/LZPa90JKStJMck4s/3iM9mg/kE+WH3/Nyw4ObPYfk0TGyk/9MIDZKfn6J0mu7rxisKsGua3BC8LGXVcEfm/eoj+uB6eflgHkZMbIaFfZcgtyjbo4OThgEZd6uJZYfsq1uHnWbty8DrfD09aMR6fLRsLSTPjo7oeDrmn3rc+C+F3jY8g97IRKMrmVN5u3LiBTp06oXfv3lrFJ6NHjy7X+w0LC0NqauEw6xRwIK8yFhJoO18I1zra1wvEQKXeAniaV0v338yAd0tAal/8C31WrALBa+W4Ml+O4DVyfplhoQdzPNoNpIYp583PUeD8TDlkJfw6LbUH6owtfgjMukyYekwSdVqO2CtyJNxSQJZVuIMMP6JAlvFDEn4/rONC25+FEFvqv9OA7gIYqzWu1Es5v623AB1+F/LAhPC/j03217ezAB0WCWHtAUSfVeDyPDkufi/Hw51yrXUnpKykJcQh7OrlZ7JB3f0rY/SiFRg0/Xt41wg0OGp+zP1QyHL1H5MQwNbJGb5BRT4gypHYwgI1WimDz8/S4+uX+TFJzwmfo9Oo8bCwLhzUQ5/QMycgtTRvwJDSSIp69Y5JngX2vHr98AME1tYlm9/aGl4/fK93pPyyxkYkr1BBmWY8efIkLyRWFYmby87ODjNnzlRfZsXjPXv2xOPHj4sFCJYvX463NLpUBAUFFSvkZaOPaxaksxHN//7772L3u3v3bj4yvaEiZTZyv2bxNSuof/LkSbHpWDEw6x7ACvA1qboYmGvp0qXqwADrMDBu3Di9nSTY7ax4uugI6mx7sSJrdoxYdFuWdL30cXBwQL9+/fj5uLg4rF692qQAABstftasWerLmzdv5uEZVgRf9LGw0eU1X1/t27fnReaa2HP1/fffqy+vWLGCF9CnpWkPpsIus9cN6/LAWFlZ4auvvjIpwME6Naq2tbFR7hlVgIO5fFn3dwy2nTRHw2fF6hMnTiz2nLJjf3b9/Pnztf7nUL16da3Xf5s2hSE4tj3Z66AoVsjOtil7T2kuq2jAoWnTpkY7hBTFOg6w90pGRkaxgvi2bduqC/FZxwz2eMyh+dpn4aWFCxdC/l+HIRV2v7/88gt/jchkMqOvfc3n6N69e1r/Yymv/ZQxZfma0PU4L126VOz2snrtEEIIIYQQQgghhBBCCgkUxvqzkjIVdjscwWdDebihUbd6cK3gjNun72Jiu+mQy817KmZsm8Q7NWja+OMOrJq6EQX5he2ChUIBWr3RDMlxKbh18q5Z99F2UHN8sXoCpnSfjRvH76AkWvRrjJGz3oJ/oI/O23+fsBw7F+kfDUwXSxsLdBrWBmPmvYOF45bh8NqTBqcPalUDX6z6yKTuDAxbH7ZeurzxSU98uKD4P9WzM7KREp8GB1d7HqBIiU/FN72+R+gl7WFere2tMHXzxGda0ExefdeO3sIXnQp/KCoptm+yd7VFckzxH6OYVv2b4ovV42FlW1jgcWjNCWz7dQ8e6OmyYkjUuFrIqWK4Q4PDiWi47iz+A3h5SmvigaS+lXXeJo3KgOey2xDKtH8ANFelOn48mJISZ37XjcCWNXDv8kPIcrV/aCyKFWdofsy7ejvjq/WfQGIhwcfNp6AsBNT2RfTDGORm5Rnt6LH24e9w91V28vny+AFsvGt4tDib60mouPyBwc9HsVSE/LzCz7zSqNW8Gg+tvewiIyPh46P8zA2YOA0Sh9KFhGSpKQj7Wbl/iYiI4D+ilzX2QzALOajY2Nhg3rx5fARKzSIjNjqouT9sG8JGSh0wYAA/b29vz4tbnlVREyHPU8oDBRKDFRBJAc8mAlg6CxB7RdkZAWYeHbb+UciXoenOajnurlFAoflRKQR82gGZsUCSmYcVfl0FaPipACcmypFYskMSVGwLBL0nhJ2v7vf4pbkFeGzmoNliK2VnjDofCHhwINJI8xn3+kCjL4Sw8TRtPxO6WY6bS3Q/ITWGClB7dPEEBAsu5KUqu1KwUEt2ogKnv5Qj5YH2dBJboMVMIdzr0z6PlJ1H1y5h+w/flno5QpEIFja2yE7TfUxSo2VbdPlgglZXhlvHDuLa3l2ID9culCOGufkFICM5EdlFildNwYIlMQ9CUWCguJlj3600jknsXN3Q65PJKMiXYfO3+gtizX0ciVGRkOcbPj4SisQYs3glbByVRYp7f5uHu6ePG11+0eOqokRisfHtYCKfwDoYNG1OmSzrdZRx5gwiJ3wMhRkF6CzcUPG3hbBt2bJM1oEVJ48cOVLdkeHBgyIfwv/5+OOP8dtvv2ldx46J6tQpHjY6ffo0L9hV0fV6ZEX6rCBds1idBQyqVKmC5ORkXhzNjudU3NzccOrUKZ2FvGx6dn937hR+8WKPhRVrsxHpr1y5wkdFZ9zd3XlRvuo+iwYeWLhgyZIlWqOgsyJrdszKio1DQkLUy2LYKO/suIxhIZCoqCi925cVex8/rvs9/N133/GiZpVNmzZh0KBB/DxbxwYNGmiNYM+K0Nnj8/Dw4I+HhS40w/ea68U6J6xfv17r/thxqiqYMH36dK3uBqZgxeYsMKKJPZ+qx2pI0eeebWP2/Pn5+fEwAnv9qIrimapVq/LtpgrZFPXJJ5/wwnfNIAXb1mzbxMfH83lVheJs/8iek3feecfgOg4ZMoQ/B5rH/CyIwZZtCPsfwHvvvae+zNaDvabZ8zV37lz19exxsts0OzSyZbOCc/YaZa+jixcvahXfs+ebjbLPAhqa2OuxSZMmWgED9vqvWbMm3wbsdcBCSZqvTfb8q7qZsHVxdXXl4QBW1K/5OtSFvVa+/fZb9f8lVIESFnxhIQP22gsNDeX3qXrvs8DAoUOH+GMoioWFVF0xi/4PhQ3ywAIDmkEFFqKpW7cuXyZ7TKwzi+ZjZ+uh2m5//vlnsWJ8tkzNIA7bp7D3OHuNsNeG5vYtq/0UC0YEBAQY3CeW5WtC9b7WDGmwgIanpyeqVauGL774okxeO4QQQgghhBBCCCGEEG2Gh6knZS4gyJefNAW1qolPln7AC/U1gwnGPLr5hBd9uvu48BGurx65heVfaf+4wrBpTm49V6L1PbvjEvYuO1yicIPEQozv93+Dum31j6bIfPTb+4i8/xRXDhYWNhqTk5mLf/84hMd3InjBrjHpSRn4bsgC5MvyEdSyBvqM6wq/WroDF0zf8d14d4bN83aqQyGV6vrxcAPruqELK/jWLPr+bvCCYuEGJistG9++8RP+vPmzyYELQoyxsi0s7ikJ9oNkg851MOjz3pjzduGPmEWd2XERMWFvIqC2n/q66k2qlPj+rR6mGQ04WD3QLrZh+7u8HMOFK6UhlwiR3KXw8RWV522LjAbusL+gPSKeOZp0r8+7u5RUt/c6oFrDSti+cK/B6Wq1qIbWbzRDZloWD4ax582uoiOCs5OR28AFonupEGeUrhCnw9DWeOOTHhjkNRqZqfqLSFhHj83zdvHPhIA6fmhV0c9owME6JNVo+K+swg1M+yGFI9mR54f9SPz777/D39+/3O+LFa1ohiwo3EBeF45VBPykyaOhAPUnCHDtdwVgRoYv+b4C+TmAtYcCQrEAMRfkCF6lY0I5EHG0ZOsbdUoBhwCUKNwglAJt5wOugYY7MDWaJERGtBwJph+SID8beLBdgbQnCohNGDA6JxU4N13Ogx+udQSo0k8AOx/9AYPqg4Sw9VIgdFNhsMOpGlB1oAB+nXW3d5BYCyDRWJez04qHGxhZBnDmGzm6rhLC2o1CDqRsSC1KO8q9AAH1G6Jhz/7YNV9/6DT07Cm0eHMonLwKO4J5Vq4GyTMcZV8kkaJAZjjg+6ILqN8YYdeKj0BsqnpdeiDc2we3jhgesMKnVm1UatAYeTnZkEgt4ebrzwMssWH3IRAKeZeN0gpq1wm1O3XD4lFDkZ+bq3c6eUE+Lu7cCu8ateDuVwk+QXVNCjgYGxumrMINTI2WhaM/E/OxkILf2jV4+uWXyL2vO1igyaJqVd65wSrQ8P8uywMb3Vsz4MAKYHWFG0zFRgNnRcCsADczM5OPhM4K29mpqMaNG/MCfVborgsbqZyNzs8CAay4mHn48CE/aWKFvD/99BMvImYsLCyKLWvBggU8KKDqzsCKvlkBsS5s1HbWkYAVOzPR0dE8wF+SkP3kyZOxceNGdUhjwoQJ6NixI1xcXCAWi9UdKFThiqSkJPWo+5rYY2IF6qyIWRWQYAXgZa1z5848cMAesyoAwF4j5jz3rEieFa6zbXz0qO4v3m+//TYPnLBidn1+/fVXHkBhBd1seaxYe8+ePcWmY4X3y5Yt410+jGFdQTQDDmygAWPhBoZtg9mzZ6tfe6xwn53Y9vnhhx944EYVDGCv9Q8//BDr1q3j+2223nv37tW7HVg3CV2F7Oy9yF7/LJSh6jCg6/WvCpN8+umnmDOnMJjG5lV1PigaWjGmf//+PJjCAjqs8L5oVxPV+m3YsIH/D8NcLBSwfft23lVDFdh59OgRPxXFivdZN5QjR46o91XstV804MCWyd4brIMIw8IY7MSw7ghsP1Ee+yljyvI1wbCuGux/VWxfwajeE+z5UAUcSvvaIYQQQgghhBBCCCGEaKOAwwuix6iOaNytHg8TPAmOwJ2z95D0NNngPGtmKP9pXJ5kefnY+5ey3bQ5/IN8sPjyj5BIJSZN/8P+b7Dt13+xbPJ65OeZ/sPw7dMh6DpSd+BA05PgSPX5RzeeYM+fhzFp5Xh0fLtw9LOimvVqyE/ZmTm8MNfG3vQ296GXHxoMheRk5WLX4gP4YJ7h0a0IMVW1RpXh7uuCuPDEEm001llk8uqPcPngDaTG6x+9k/0YtHvJQXy8WPljVuyTOHzc/CtkpmaX6H7tz8UipV0FKCx0Fx1K4rNhHZxcbL/EurIEn78HeX7pi2GKyqrpDIWV4Y/HjAZuRgMOAqEAtZpXxZ0z99TdMXxremP0j8Pw08hFJV4/thz2eRF203hXCxaoYh05Ns3dgaS4VCT28UFqGw/IrUTAqCoQyOSwvZwI982PIcyVl2hdOr/TFlJLKX8NGQo4MDt/389PTL3OtSFtLUKei4XuZaflwf5igknrwUI2oReNF68YUrGaF7qMaFeqZZCSY8ECNsogK6Bgf58VzYBD/fr1eQHB2rVrebELG+WPjSDIijbYiHusMGHUqFF6R7kk5FVQpb8QXs0VCNurLNpPuAXkGj4kwe2/WNGnqvCzfJoDFuQCYXvMX7ZjVaDjYgGEYt1hgKL7ofa/iBC8oQB32KCiZuTn4q6yTg7Gp0t7pN1F49FuBZpMEcKnnf6AgXdrAbxbi5CfreADoLMAg6kSbimQFKz/9vws8HUIeo8CDqRsVKheEzZOzshMVhZ+mcvS1hbdP5qI+xfOIM/A6OsKhRw3Du1Du3dG8cvJT6Oxcdok5GWX7JikJOQFBahQrQaePrhXJgX65YV1w/CoXBVP74WoL7tU9EPrt0dg78KfSrxcsUQKvzr1ERFsOLDM5GVnQWpljYs7tiI7XXdXjtIQSSSo0aodJFILfjIUcGCu7t3JT6yzhF9t84tDdREIhHD19Uf8k+IFouZwqeiLmq3omKS0WFghYNcuZF28hOQNG5B++DBQoPHBLhbDrlMnOL31FqybNH5uIWc2wrlmQTsrOC4tVmTLRgNnI6Sz0d1Z8X5iYiIfJd3Ly4sXGrP76dOnj7owXB9W3MwKybdu3Yq///4bly9f5p0NWGE5C2IMGzaMdxe4ffu2eh527KQrIMAKqnfu3Mk7HFy6dIl3AWD/X2LTszBDo0aNMHz4cP5XNYq6KkTARjY3NgK+Lqx4mBUrs04G7L7YurPOBKzQmWFF5KwTBSu4Zp39WDcHVvAtlUp5dwBWqNyyZUs+4jwLWLDbLC0tkZOTw4uVWfBDs6tGabHniBVYs8CIOQEAzeeehQjY4zl48CAvMGfPPXs8bHR9FkJht6u2sTGff/45Xx8WYDhw4ADvRMKOj9k6sW3Tq1cvXvDNAiOm6NKlC39Nsa4NjKmdGdn9nT17lv+vgAVQ2Pzstctez6wrBfurwl6ba9as4duC/WUhjydPnvDnztramj/n7H3HXreseN4Q9hoMDg7mIRnV/wfYaygvL493Z2DL6tatG99GqkCOiioow7oPNGzYEOZiQZUePXrwLhonT57kj5N1UWDrzEJA7MRCOiXFngsW/Fm0aJH6uWWF/2wbsS4DrMMDm4Z15WDblL2HVQEHtj9goaWiARn2vmJdIFjwghX2s4AH65Kg2TmkPPZTxpTla8Lb25t3fGAdN1hIi70e2PtL1blG9ZyU5rVDCCGEEEIIIYQQQgjRJlAYG4aMPBcX9lzBN71/eO5bv1IdP8SExSEr3bxCATbC+vakVbzo1Rx5OXn4edQSHN1QfNQefep3DMLD60+QlqhsjW1OYe6Ku7+gQmVPlLW/v9+OFV9vMLpt/7g+r8zvm7y+Dq4+XqrC+REzhyA9OQP/LPjX4HRuPi54f85QpCakY/W0TWbvH4rKqu6AmBHVi4UcxMm58PojGNK4HJ3zWVhboOeYjpDl5uP4xjNIT85EWUht6YXkHoVtznURpeTC56crBqdp3L0+5uyZgoyUTL5vc3R34D/Mnf/3Cqb2+aFU3Rsm/vUhTm+/gG8HmL4PiR0WgLQW7jpvs7qfBu9f7kJg5jeCkd+9haFT3uDnZ7+1AMc3nTVrfoGfPR69F4B8V+0OIKKUPFRYEgrLyCzYOtkgw8BzW79jbUz4/X183OJrg9PpXQeBAI261sVnf30I1wrGOwK9DNgIl2y0RSZg4jRIHIoXmZhDlpqCsJ9n8vMRERElGj3TGLZc1ToXpVlwxIpbTC2EMAX7gVpVUNSpUyde4MKKNvRhP4CzwgrV6HyEvOoiTyhwbsbzL9x1rsk6RQAKMwfIFlsB/XYLIRCZV7hYkKvAxe/liDxh+jyeTYHE24DMzI8ioQTovr58uijcWSlH8BrDH+7ONYCOSwx3tyDEHCx4cPivkh+TtB32HlLiYnHjYPGRojU5uHui1ZB3kJGUgDNb1hstai8vYgtL1O3UDbLcXISePYFcA8GM56FK4+bo+/nXyMnIQEG+DNb2Drxrwr3zp7F7QcmPSep17YWO743l3Q/2/vZ8/6/Rdvj7aNSrPz+/46dZeHjZvJHVxSwUkWf49WNhY4PcTP07eNahotWQd7Fx+hc80GE2gQCV6jdC17GfwLqU391JcQUZGciPjYU8MxNCGxuIPTwgMqNwnBjGCn07dOjAz7PieRZgICXDAvUsoKDars8y/F/esrOzefF8eno6H/GfhUSog6ISK5hnoQaGhVBWrdLVDo8QQgghhBBCCCGEEEJeP6UbAoWUm6Y9G/IC4uetz7iucHS3N3u+vByZ0ZG8WaeKZZPXYe6I37Fq2kZEhEbhxJZzZo/Cff9KGHqM7siLYM1RkF+Af5ceRHkwJTckf4FHeSQvpy7vtkPP0Z1KPP/lg9dhaaN7NH1N8RGJ+GH4b1jy6apShxsY69BU+M6+Cuc94bxbg/XtJLhtfgifH6/rDTcwuVm52PfXUTx9FFdm4QZGnJJbJtMM+rwP/2vraANnTyf1qGOpCWnGly8Rw8aheNeYdkNaYsIi5Ui1zfs0QoXKHjBFrqeV3nADk13VHrkNXGEOD3839P+kh/py34+6m/3jtOJJGirNvg3PFQ9gdz4edhfi4b72IfxnXOfhBpFYiOFT39S7XBZUYwGLDXO2mR1uYPPWblMTiy7/iDl7v35lwg3FKMroVM70hRvKExtBTxVuYA4fPqwON7AR+Fj4wcnJSWuerKwsTJ48mRcdUEaYvA4qthWg1jvPf3T/Kv0EsCxBvWd+NpCv/6sEl/pIgRtL5TzQcGeVHOmRckQcUyBZ2YDJZEl3gcp9BBCZ3vSNk8uUXRTKgylDGdBoB6Ss1e3cHTVbG++yqM/jm9cgsTB+TJIaF4M9C+fixLoVzy3cwOTn5uD2sUNIfhr1woUbGFXhP+uOYePoxMMNTHa6CcckFha884IWgQC12nRQd8+o1qwl7Fzcymx9WYcJczh6eqFul8Jjkvpde5t9nzzcYOA4hh3HNXtjiP7bRSI07vsmzm/baHa4QSgSo2Kt2nh37u/oP3k6hRvKCQszWFSuDKs6dfhfCjcYxkZi/+GHH7B582at4yV9zp8/rz5fu3btMnjGXk+sMwQbHZ9ho7qzjguvkh07dvBwA/Pee+9RuIEQQgghhBBCCCGEEEKIUSXvZUvK3ZAv+6N538bY++dhXvzPRim/fqyw7XdZsba3QlZa8SLlTsPboMfoTkiKScGaGZvNWiYrkl7wwR9IiEqCW0VndBjaBq36N+EFpawg8LePlmP3kgNa86z/7p8SrT8bHX3jDzvg5OmAAZ/2wuM7Efz6nMwc3DkTanDekEvmhSlMVa99oAnTBJXLfZPXF+ticunA9RLPz96brQc0K/F7sTTEGflwOhKlLpyPfRxv0nzZGTm4cvBGma6LdUgyhBl5kNvq70Bjd7l4i3VNXpU89L7HTeka41vTG7+dn4MTm8/h0c0nsLazQps3m8GvVmEROCvAnrr1c3zWeirfDoakN3Exep+ZzdxgeSUBpmLP0b9LDuLN/4IcQS1r4IN57+CPz9eYVfjt7uUMq/sZyLqSqHU9+7yYvGYC2g5qDrGFGKunbURaYkaxoNq3A35CRor+QiILGwuIJSJkFpmGzXvr5F38PmE5fj42g4dKiHFPnz41Ok15dHgoD9evF99fNm/eHF999RW6d+8OsVj5mnj8+DFWrFiBefPm8VEnmTVr1vBRJ9lIi4S86gJHClGxnYIX4WdEKVCQB8SX/OuGXmJrIF/H7jygpwB+XYRIeyJHyAbzyvFZ2ODCHDlyEgBrD8C3kxDeLcE7OijkClz5WYGwvdrLDF5dsvXPSwNC/lbAyg2o2ANIe8wKgYH8TCAx2PC8SSHlEzNwry/A3bUKo9MQUpayUlMQfrvk38/Z98hqTVvi8u5teH4EsHVxRkai9vdTfXKzMhFx5yZeNM7eFeFdo5bO2xw8vIzO7+bjjzenzUbo2VNIiAyHhZU1qrdoDecKhd/1RGIJen/2JTZ/O8VoFwRTmBuYTol5ittHD6J+N2Wwwa9OPd7Z4/TGNWYHJTKTkyDLySkWXuj1yWRUadyMh0PO/7MRORna3UPlBQXYMXcmcjO1j1U0sdCOQCgqFoCQF+QjMvgWjq5cijenzlYHUAh5nm7evImffvqJnx82bBjWrl2rd1oWEP/tt9/Ulzt37vxM1vFVtGXLFqSmpvLzY8eOfeUCAH/99Rf/K5FI8P777z/v1SGEEEIIIYQQQgghhBDyEqBqvhecX82K+HDBCH7+9PYL5RJwmLh8HJKik3Fk/UmkJWXAu6oXeo3pzEcHZz+m9P2oGw6vO4noBzEmLzMnMxfndl3m5+9feYSzOy+jZrOqmLXrSywc9xdObj1X5o8jOSYVR9afwvrHiyG1lPLuEMYCDhILCcpDrebV+eO9e/6+7vuVitF3fLdyuW/yeiooKMBX3WcjLtz0AvWi6rULQuW6/mjZvwnObL+I54UVzguFAsjlphX7lfUo6oICBVx2PUL84OqAqPgPypb3k2Fzw/B2btarod7bareuCZ8a3ogIUQY6dOk+qiPfj3V+p63Bx73qm7+NhhsYubXxj/tskfnbcd+Ko+qAA8NCZg5u9jwkE/0wBvIC451qWIiuZrMqkOUVQJYjg5WtJeq0qYUOb7fGkXUnseTTlUiOTYXUUoIqDQLw+HYE8vPy1fMbCjcwuZm5MFRqFXw2lL/e2w5qgVeRQKE8lXYZKk2aNDE6/cvS2eDatWtalz/++GPMnz+fh4c0+fv7Y+bMmejTpw86deqkLjr57rvvMHToUFSrVu2Zrjchz4NDgAD1P1Z+JoYfkSP+etm/z5t+LUBGFFu+ArIMwM4XqNxbCK/myvutOlDAb8synDHUUpAFPD2rPM86MkSdksO1DtBilgCXflSobytL2fFA5HGgx99CCMUCXPtNjsRgw9tLVD6HJDy84FgVSNF9SAKRhbLrBCFlpSBfhq2zp/JC8ZLyDawDr6rVEVCvIcKuX3lOT45CGW5gxaUvyfcaXSo3aqb3Nr+gunDw8ERqrP7/89Tu2BUSC0sEtddfsCyXF+D0xrVlEm5gCvILv+eb6taxQ+qAA9O0/yBYOTji0s4tSI2LhcKE7pns+fasXJUHDvLzZJBYWcE3sDaqt2iDOyeO4NCy33nXC5FECjf/ykiMfAK5xroaCjcwMiNdRiKCb+Hh1Uuo0qipSY+ZkPLUrVs3dcBhw4YNaNq0KcaMGQOpVFosMD5y5Eh1CJ4FwPv3V3aNIeZ59OgRpkyZws87ODhg1Chll5xXxZ9//omjR4/y8+wY2svLeMiOEEIIIYQQQgghhBBCCKGAw0vEp3qFMl9m/Y61eWcFoVCIfhO665zG3tkO80/MxKJPVuDsjkt81GtGIFSOfGoqVuw/KvBTpMSnobykxKXig/qT8NPhaWjRtzE2/7TT4PQt+zbhj+fuhfvIy5GhUh1fOLo5lMm6TNsyEV91m63uKKHCinS/Wv8JKlYr++eTvL5YiOje5Yclnt/S2gI9xnTi579a9zHGN/4ST4Ij8byYGm4wBQtqmVtwbXMnCcKVd5DW3gfZlZX7BFFaHuwuxcDhRBQEBtaPdR7o/WEXg8uf+NeH+LLrLB4G07Vf7vnfc2HI5YM3cGHPVZMejyTOeAhCasI0RcU8jsPUPj/gyqGbvHDIxdvZ5O4bKrJcGW6euKu+3O+j7hg8uS8mtp/BA3IqbB/94GoYysPh9Sdf2YAD0W/IkCE8nMCKSXJycnhBiaFRMhs1aoSlS5firbfeUgfLfvzxRyxfvpw2M3mt2FVk75OyLfj1bApUaKEctbram7qnsXQSoP1CIQ8MsGCCQlWvaubqJNwE9r+jQJ4yq1QushOAw2PkaDOPdYwQ4ME2wytYoZUA8nwF7/QglwGOVQALh7IJHrSYKcTJL+TI0D4kgcgSaD5NCBtPCjiQsnPv3GnEPyn59zWplZW6mL7n/yZj/Vf/Q/LTaDw3L3G4QSQWo24n3f/jYVingK4ffIxtP3yrM5zAAiaBbTsavZ+HVy4i/FY5tPUxAwtpbPt+urpziI2TM9Li48xaBtsGkXcLBxRp3GcAGvbsh03TJyM+nLXkUSqQ5SH+ccmPuw25e+oYBRzIC6FDhw68o92+ffsgl8sxYcIEzJo1Cw0aNICnpycPfLNjqBs3Crv1WFtb4++//4alpeVzXfeXRVpaGg+D+Pn5ITExEYcPH0ZWVpY6SM9CDi+z9evXY/v27bC3t8edO3dw8aJyEBX2uNjjI4QQQgghhBBCCCGEEEJMQQGHl4hfLR8EtaqB26dDjE7LiuhrNqsGV29ndBzWBteO3MKePw4hKz1bfXunYW3w4S8jebjBGBcvJ0zbPBGJT5MReS8a1nZWsLSxwLpZW3Fq63nI8vIhtZIiLzvP4HLKM9ygEhkajS86zcTiK3NRr30grh+7o3M6d19XZGfmYKjfh0h6mqzurNBmUHOM+2UkQi7cx6a5OxEeHImCAjl8a1RAzw+6oP2QlhBLjL91XL1dsOTqXJzedgFndlzkRbxVG1ZGj1Ed4eThWOaPm7zeTm4p+RDE7L08bevncPdx5Zd3Lzn4XMMN5nL2clK/h3UxNdxQNLTlnJAH2zV3kScWQCEVQZSeZ3QkfBZumLj8Q/hU9zY4XWCL6lh4djY2fL8dZ7Zd4PtQtk/qOaYzBk7sDYnU+FDOh9Ych6nsLyQgsY8PFFL9+3uH0+YVATGs48L5fwtH1jU33KDLjt/3IfZJvFa4obylJRoecfWlV4a1eaww4VUZbZEVk7CTOQYPHowZM2YgNFTZIWrv3r18H2MoGEHIq8apugBO1ZQdEYxhHQKcawLWbgL4dgVizgNhexTIzy683b+bAHXHmfYesnYXoOUsEbLjFbzbg8QWEIqB4DUKRJ5SQJEPiKRAgeFDknINN6ikhgEnPpej01IhXAKBRN2HJLCpAOQkKfDvIAVy//s6I5QCvh0EqDseiL8BhG5SID1ceZs962zRV4CK7QQQ6ug0VWz5ngJ0XS5E5AkFos6ABylcagoQ0EMAC0fad5GyFXr+dInnlVpZo+/nX8PG0Ylfvr7/3+cbbjCTlb0DstPKYOdSpGuE1NIKeTn/7TRNJBSJ0f2jiXBw9zA4nU9gHQyZORcXd2zBg0vnIC8o4PPU6dSdF/cLi3S10iX4xBE8b3nZWVrdPswNN+hyadc/SIyM0Ao3lLecjPL/fxkhptq6dSvef/99bNy4kV+Oi4vD/v37dU5bo0YNrFu3Dg0b6u9kSbSxwv/Lly+ruxpohvDHjx//0m8uFnj5559/tK5jHUBWr16NihUrPrf1IoQQQgghhBBCCCGEEPJyoYDDS+Z/S8dgYrvpSE1I1zuNUCjAxOXj0OGtVurrGneth+HTBuL2mVDIC+So2awq78xgLhZ0YCeVr9Z9gv/98QEyU7Mwf9QSXNr/fEfuU4kIjcayL9Zi+j+TMPutBbh8oHBUMcY/0IePkv7X5HVa17Mi4yPrTuHMjkvIydAezfzO2Xv8dHD1ccz+9ytILbVbs+vCghDtBrfkJ0LKU2aaeUUvler4wc3XFUEta6Dbe+3VnUvyZfnY8vPuMlknc7u8lLSzzfDpb+L7txea3aWhqKLrmp2u3AeI8lm1ibJzjT5elT3QtEcD9BnX1Wi4QSWgth++3vA/vs1ZdwIrW0uziqRT4kwvgBFl5sNtYxjihlUChMXvo2WKDeIilaMFvggu7rum9zZZoBWy+zlBVteGX5bcyITVzmRIbpv3HtDkXdWzxPO+bli44XUuSGDv0a5du6oDDjExMYiMjISPj8/zXjVCnqlGk4Q4/pkcMv2HJBAIgSZThKjYpvBzx7MhEDhCwYv92ce2Sy1Aamd+kb2VmwBWboWXm00TID9bAVkmcH6WnHdpeBGkhQG3VyjQcrYQ57+VI67Ixxvr1OBcC7j9l/b18jzg8X4FIo4DBUUaLCXcYicFnhxSoOUsIYQS49uPTePbiZ3K4lERol9etnnfx9x8A2Dn6oqKtWrzzg1Wtsr/UeTn5eHynh1ls6mLBAbKg6uPHxr3fgP7Fi8o/cKKrKs54QZHTy9UbtgEdTv3gJOXacckHgGV0fvTL1GQn8+7E7CgiTmyUssuMeZVtTqe3ld+x3oRPNYITTwLjp7U5ZO8OFQdGT777DMeXjh9+jTv2pCeng6JRAJvb28eaHjjjTcwYMAAiMX0E4O5WAeHXbt28W6CVatWxejRozFu3LhXIjxfp04dBAUF4cGDB7C1tUXTpk0xdepU/pcQQgghhBBCCCGEEEIIMRX9+vASdnH4/eIP2Dx3Jw6vP8kLcDWLiFlwYdjUN9Gke/1i81rZWvGgQ1mzsrHkp2fRncEcuxYfAARAQJAv7p6/z0MYFlZSNOnZACNmDsbY+l/onbdouEHT9aO3sXr6Zoz+cVg5rTkh5mOv80sGisKLenTzCeycbfHG/3pCalHYLeDelUcGuyGYo7zDDZ7+bvh+/zfw8HPjdUC/jf8LGSmZeJZsnWzww4GpqN6ocomXwYJQpnSFKYo9bnM4nE+AJCkPyZ28kFXLgQcdGnpUwIBqgdi+9gTCJ9eH3FIEaWw27M/HwuZ6AtuFPhcF+boDJdmDnZD3jjMvVBMqALlCCFlzO8ia2sJmUSwsD5SswKrXmM6lXGPyOqlUqZLWZTaaKQUcyOvGsYoAnZYIEbpRgfAj/3VkYB8a/330u9YGar0rhEfD4p8kEhsBPJuU/TqJrQQQWwG5z6A7gznubeIfWHCoLEBSqAL5WYDIEqjQAqg5XIBDo/R/XyoabtAUcwG4u16BwBEvfxEceXW4+voh4o7pCaP48DBYOzqiQfc+EGkUxz69H4Kc9DL6/0I5hxucPCvgjSnfws7Zle8Cj6xYCpmZHRfKonvEgCkzeVihpNj213wOTGXv5o7oe3dRGt41AlGrTQdcKatQSxmRyw2H3Msa65xByIumcePG/ETK3qpVq17ZzVq5cmXcunXrea/GS4N1iWQnQgghhBBCCCGEEEIIIdoo4PAS8vR3x8eLR/OTXC5Hfl4+4iISYWkthau3i9a07PYLe67i8LqTSEtIg1clT/QY3RE1mlRVTxP14Cn+WbAHZ7ZfQE5WLqo2qIS+47uh9YBmZq2Xm48L7l95hBfJrkUHtC7nZufh1NbzuHH8DmS5shIvd9/yI3j320HqLg55uTJkJGfA1slWq1ickGel1wedsfXnXZCbESpg74Ptv+7B4C/6qa9Ljk0x635Zxxhz7rMszT81C27/7fPaDGyGpZ89+x+Hh3zZn4cb0pMzkJ2eDSdPR0ikz2Yf0H1UR+xfcdTgNDYOVujwVmu0HdwCt0+H8M+BSnX80WZwc0gspYhIScXQTZsR58raVFjyeXIqSZBTyR621R3htulBsZCDSCyCh78boh/EoLzlO0uQ1skV2XVtYVu1AFJHBaSQq2+XywXIzRdDIRQgc5wHJFcyIUpgj8V0XUe2R63m1fHKYm/P0r5Fn89b/IVlZWWldbmg4NkWvxHyorD1FqDhRHZShhrl+UBWHAsaAFYu2p8eigIFos8BTw7JkZcO2FUUoFIvAZyqFU6XHq7AvS0KRJ1RoCAPcK4BVOknhHcr8wr4rd2B9Cd4odzbor0zZcGFiKNA3FUFFKXYhTzarUDN4QoIRcptVJCngCyDdcVQdm0g5Fmr26kHru3/16xQwZOb13Dj0F4ecmBYV7aMlJQXrkuDPm/PmQ8LG1t+vnrz1ji+dvkzDzg0HziUhxuyM9L5fds4OpcorFAStTt0RciZEwansbS1RY2W7VCtaUtEhtxBTkY63AMqo1qTFhBJJUiKisTmmVOQnWZ6Qk0oFsPO2QWpcbF4FdTr0rNUARVCCCGEEEIIIYQQQgghhBBCXjUUcHjJCYVCXmRfsapXsdtYWGFa3x9x7UjhiEnXj93hxfkD/tcTY+ePQPC5UHzVfTay0rK1ip7Zqd9H3TF+4Xsmr0t6YgZeFmkJ6aWaPz0pA0/D4mBla4m1327B8Y1n+Pa2tLFAx6GtMWzawGJhE0LKk1clD3z0+ygsHLes2G0KqQiyADfIXeyAAjnEUckQRSVBoAA2/rCdBxzYfuGfBf/iSXCk0fsSS0So2z4IPUZ15N1Mwu8an6c82LsoC4mYQ2tOIDn22Q/ZfG7XJVw/egtXDt7kxVj2LnboNrI93wewrjlMWmI69i47jFPbLiAnMwdV6geg94ddEdSyhtayLsVEYvuDYCTlZMPf3hFDqteBv4OT3vuu1awa+ozrquxWo8OH80fwDh0qddsGFptm0v79iMvU3fUio6EbrB6kwu5KvNb11ZtU4d1wShNwkEjFkOXpDyI4ezkhykmGmImVoLASwck+A1Jp8aI1oVABC4kMOTIJIBKg/m8dYPN3Es7tumzyunQa1qbEj4O8/PLy8ngHBhsbGzg56X+/aUpMTNS67OJCn/eEsI5yIikLLhTfFvnZCpz6Uo4EjUHd468peHF+jaEC1B4tRPx1BU59JdfqWBB3hZ3kqD5EgDofCE1/X5fua/4zlWtmDXdROUlANvuYVigQvEaBiGMKFOQCYmvAr5MAtd4VwNKZgg7k2XGp6IN2w0fh+JrixySGnN+2iQccWNDhyt5dSI42fnwhEkvgG1QHtTt2xYl1K5Ea+xTPg9TaRn3+1tEDZdd5wgz3zp/Gg4tnEc66ZygUvKND7Q5d0GzAEEikFnyarLRU3Dy0D/cvnUN+Xh48K1VBva694FVVO+gbEXwLd08f5yEEJy9v1OnYFQ7unnrvmz0HQe274Paxgzpv7zRqHOp27qG+7BNYu9g0+36fb1a4galQrSYUcnmpAg5CkRjyAv3HJDZOzshMTjJ7uVUaN0d+Xi4e37hq8jw1W7cz+34IIYQQQgghhBBCCCGEEEIIeZVRwOEV9ufna7TCDZr++WUPAur4Yd3MLVrhBk07ft+HSnX9UKNJFVSo4gkLK+UP47o8vPEYt07dxeuEFS1P7jwTidHJ6utyMnOxZ9lhXNx/Db+emQ23ilT0SJ6d3mO7ICDIB5M6zeSdXZh8TwfktKwGSETq6fID3CBMyYLlibvISMnCbx/9pbdIXpcPF4xEi76NeLgnIiQKz0vs4wT41vDm51lA43kIPhuqNVgs2y9snrcLN0/dxU9HpiM+IgFfdJqJhKjCwpjwu1E4uuE0Rswcgre/GYC8ggJMOLYb+x/f11r20psX8Xmj1vionv5uOhN+H4VKdfywfeFedTilZrOqGDSpL1r1b2p43ePicC3acCFYWjOPYgGHiNCoUgfavKt64fGdCL23D545AJNxkYcbxKJ8WEr1Fx4JBYBYKEe+XARRVVvM3DEaswbNx8mt50xaF0d3B7zKWJCJnUq7jFdNZGQkateujZT/RoiePHkyfvjhB5PmvXLlivq8nZ0d/P39y209CXkVXFuo0Ao3aArZoIBDpQLcWKrsaqBL6EYFHALkcKwigG1FQCTVX7CfGKxAcgheKzmJCpyZqkBu4SEJ8rOAh7sUiLmkQPvfhMU6ahBSnhr27As3/wBs/e4bXoBuClbcfmjZItw8vM/k++k46kP41a6Hc1v/fm7hBiYtPg4O7h78/K2juov8y1tk8K1i2/Piji2ICgnGwG++Q0pMNLbM+hpZqYWpqqSoCASfOoY2w95D495v8NDD7gXf49HVS1rLurTzH7QZNhKNevXXe/9dPpgA94BKuLZvN5KfKo8PvWvUQuM+A1G5YROD6x59LwRxjx+a/ZgTI54gu5RhEucK3kiI0NPyRyBAkz4DcWz1n2YvV2ppiT4Tp2DH3JnFtqc+1vaOZt8PIYQQQgghhBBCCCGEEEIIIa8yCji8ojJSMnFw9XGD06z/bitiHmsXrhY1f/RS/tfW0QZdR7bHyO+G8ILovX8exuVDN/jogHXaBiIzVfcI4K8qNgL7zt/3aYUbNMVHJGLF1xswefWEZ75u5PUW1KomVtz9BeMaTUZaXj5yWlUDxIXhBhW5ozVyWlWH9aHbZoUbOg1vg2a9G+KTlt8gLjyh1OsrEosw/teR/P3C9i2mUogE2P/wEc5fOo+0nFxEBUggibKDRcSzHbZZM9ygKeTCffy79CAOrzupFW7QtGraRgS1qoFdlnHFwg182QB+unwKlRyc0CNAe2RVTT3HdOan1IQ0vj3Z/toUIfHGn788L+ti1+kLN2TXtUV6L1fk1rLhK295Ix12uxNgGVL8ee03oTvCboXz1x7rfKHZ2YF1F7rtngt5pvJ1a2khM7qeov8CDrZiS3556ubPcHrHRcwbuQiZqVmQOVsgpZ0nMuo6QyERwiIyEw4nY1Dfwhn+gT5Gl09ePd7e3sjPLwzOHDhwwKSAQ2pqKg4eLCxebNu2LUSi4vtYQohSbooC4UcMp6TurAZyjHwkXfyeLUMBqT0Q0FOAwBEC5KUCD3crEHdVuXz3BgJkJ76CiSwDXAKVIRHNcIOmzKfAnZUKNPqcAg7k2fINrIMR8xZj/defIS/btO/45oQbgjp0hW9gXWz45vMSjbCvayT/9u+Oxqm/V5u8viohZ07wzgm5mZlIjNQf4H0eokLu4PbRg7i2f7dWuEHTyXUr4F29FoJPHtVZjK9QyHFi7XI4e1dEpfqNdS5DIBCgftdeqNelJw8dCEUiWNoUdtszJCH8MUqitOEGplHvNxAVGoxbR7SPh8USKTq8N5bfVtKuHmyb9J88HSFnT+LgH79BlqN7YBGmQvVacPQs3pWVEEIIIYQQQgghhBBCCCGEkNcZBRxeUfeuPEJudp7BaZ4+ijMrMPHPgn9x4/htPh8rGFUJPncPQrEQr5N+H3fHL2P+MDjNic3n8NFv78PGvniBMCFlTS6X4+Lea9i/8igP2NRuVRORLta4m6N/PyB3sUWBmx1E8aaHAk5sPss7BZRFuEEsEWHSyvHoMLQ1uo/qiCPrT2Hz3J2IvBcNuVx/gWKBlRjJ79XB/MuXC6+s5shPtuei4XSwZEUyZY11wYk1EiLbsnQvtneXGpzmr1uXDQYcVBxc7c1aPxupxOg0wtwCk5aV1tsVKe9qF+VkN3VAdiN7OC+OhO2JwoIqK1tLbPl5F7LTc3i3CVdvZ77uXpU80PndtnB0c8DmjcvV05tTktm1Qm3+XhAKhWjVrwkq1/HDe298i4dv+0FuXfiVJ6umIz81dvbDK09ZE1z6ZbxiWNFZr169sHHjRn75+vXrOHbsGNq3b29wvlmzZiE9vXCf+cEHH5T7uhLyMku8C8iN5NQyzKgHzksDQv9WhhrSnmh3fUi8o4DgdcobCYDKfQS49KPhnTQLmNT7SAGxJYUcSPljHRseXLmAO8ePICMpET6BtZES+xSJEeFlej93Tx1D7KP7ZRJuEEkk6PHRRFRr1gq1O3bBrWOHcXXPDr7exjpQsEL+0xvX4EV2Ze9O3sHB4DR7dhjtNHDl3+16Aw6a36+s7c3rjiaxssLzILWyxvltGyHLyeEBA1snZ1jZ2cPJqwJqtenAz984ZHroRlONFm34a0cgFPLz7v6VsH7Kp8jL1h1ycPTwLOWjIYQQQgghhBBCCCGEEEIIIeTVQwGHV5SonAIHD67pLhyW5xv+4f9VIbWUYNwvI1GtQSXkywwX/spyZUh6mkwBB1LuCvILMGvwfJzZflHr+qzOQYCL4ZEz8z0cjAYcWLeEAnspBKzYPSsf9688KvU6B7aswUfZd/Fy4pfzcmTY9ssehIdEGZ03uWclZLsqR+ovKqN5BVhEpcP6TiKeN1NCINdiopEhq2Bwmitx0cjJl8FSbDyQYI6C85EQ58mRL9X/eWFz0/h2lHlJkTJcT1GOSICkD7xhdS0dorQCCIUCZGfkIOp+DL85KUYZfOg6oj0GTuzNi6IYBwdbIDVWufx849WqcoUAXgmWmFN1FrJSs1CxmhfvatF7fFekfVwX8mzdXSd2JT3BwPDHaOPrb/Q+yKtn/Pjx6oAD8/777+PMmTPw8tI9gu7KlSsxf/589eUWLVqgZ8+ez2RdCXlZCU0JHAjMD1Ilh+q+XmFaLu+lJ7IAGvxPADsfARQGQqEMC4HkpgBiqp8l5awgX4ZdP8/RKpSPfVRO9yXLQ/zj0i/cJ7AOen48CTaOymMSWW4uru3bheSnxo9JGHnBi7/TSYtXfqc2JPreXeTn5RqcJvzOLXXRflnKYcFRdgygrzVeOWDHHKxTh6pbR2aKsg1O3c490LBnP/V0lramdaHQZOfihm0/zEBeTjacvbxRt3N31O7YDSKpBaAn4MC6Z9Ru3wUVawWV+DERQgghhBBCCCGEEEIIIYQQ8qp5vYbdf43UbFoVds6Gf4wNbFkdEunrlXEpsJYgrVVFxL5fFzEfNkDigOrICTA8wqCFtRT1OgRh7M/vYmvccl406+Bmry7E1UcoEpo9ojohJbFhzrZi4YayILcQIbmLP6ImNsbTCQ0RPbEx4obVQq6PXamXHXw2FCc2nVVf3vPHITy6+cTofPn2UuTUcjU4TXpT3cXJZaVWi+p4c2Jvo9MZKzhkxCbug1n44+6F+1rXxUUk4Napu4gINa0AS9P62f9gwbuLYX9Y/7DZwqx8OJx8anRZGZ2dAaGB/aFUCK/PGqBCFU+9nTkOrDqGoxtOqy939qmmPp+TJ0FBgf7ls1ooyeU85I69ycMNTOS9p/jj8zUY9d5PiNITblBZd/uGwdvJy4l9RqtO/v66AyytWrXCiBEj1JfDwsLQqFEjrFu3DtkaBWh3797Fe++9x0+K/4rv7O3tsWLFCqPfBQh53bnWBsQ2hqdxqwsI6KjUKJEl4N4QqDdBgD47hPDvJoSFsibbIIEYkNIhCXkGzm7ZYLQLwIsmMvg2Hlw6p758ff+/SIoyo63M8yIQwLtGIBr06FsmIQyh2IRjEgVw+d/tiH30QOvqtPg4RN69bXIoRNPpjWtxdOXSZxZu8KxcFfZu7urvc0XdOLQX9y8UHqNWbtjUrOULRCKkJ8YrgxMKBZKiI3Fs9TJsnDYJ2amFHe10uX5or1n3RQghhBBCCCGEEEIIIYQQQsir7vWqbn+NSC2l6D+hB9Z8u1nn7awg7+2vB+Dq4VvYOn83XgcyFyskDA2E3Faqvq7A0RI51Vxgey4KDsd1F1fnZuXho4Xvwa+Wj/o6Z08nNOxSB5cP6C+MbdqzAexdSl8ITogh+bJ8/Lv0oM7bRLGpkBvp4CCOSdV5vVwiRNzwQMgqaMwvECC3kiPifO3htvEuLB/pntcUrKhkyWer8PDmY3Qb2YEXuBsTUNsXyb42eGqknjjP244PBF2WZces88DULRNRt10trJ62GXuWHS6T5XZtWBsPJMnIkOXpncbyQTpWzl2PlSxc0bwa3pszFJt+3MH3P6rinBpNqmDUj8NQt22g0ftkwYg1M5SfDY7Ho6EQCJDSvgIUloVfCawScuG8LgSSZMMjuTIybwuj0zg190boDMMFb7uWHEDHt1vz8w2kHpA+zkKevzV/JpPTbeBsnwmhULsYiT3HFQ6IkDw/TOcyg+PYiLV+Bu83JDEerzKBQnkq7TJeVUuXLkVERASOHDnCL0dHR2P48OG8m4OHhwfS09ORkqJdkGZnZ4cDBw6gevXqz2mtCXl5iK0EqNJXgJANenYkQqDWO0JEnlDg4c5XeGdTBlgnhoafCWFbofAbjo2ngAdE4g1k9bxbCSCxpjAWKV/5MhluHjnw0m1mhUKOw38tRmzYQwS164TbJ4x/x3f180deVhYv7H/WBAIh+n0xFZ5VquHs5vVlts2rN2uNa/t3G+nioMDJ9eyIBKhYMwjN3xyKC9s3I5yFhf87JvGqVgNth70P7+o1jd5nckw0LuzQ/f8qFdYtgnWNKCt2rm6IeagdGi/q+sE9qNq0BT9foVoNk5bL/r9m4+iMjGTd3e/iTOg2khCuu1sqIYQQQgghhBBCCCGEEEIIIa8rGivzFfb21AHoPbZLsdGFJRYSfLx4NBp3q4/Rc4fhra/6w9LGeIHqyy65bzWtcIOmjObeyKnkqHfe1IT0Yte9N3uo3u1mbWeFETOHlGJtCTFN7JN4JMXoHg1S8iAWyNc/YqcwMQMiHa9tJqOxl3a4QZNYiOTulXiIoLQOrjqOz9pOw5O7kUanDbsVjqf3YowvVK4o03ADU69jbTTsXAeTO8/CzkX7kZVWOLp7Sdk52WDguB4YWqOuwemcDhY+5uBz9/BFp5m4tP+61sijIRcf4Kuu3+HG8TtG7/fQ6hOQFxQWCjkdi4Lf7CtwX38Prv88hNfi22h9KBkW0cpuCMYIs4wXHeUn5hid5tH1wqIeT19XVF76FBb3lN0XZPlixKfYIT3LAvlZAiBCBumhTHxj1R/J8x/oX7dc4+tmI9H9uUBeDxYWFti3bx8mTZoEscboxXl5eTz4UDTcwLo+nD9/Hs2aNXsOa0vIyynoPQH8uxf/ZBZKgcaTBHCvL0D9CQJUGySA6NU/JCmVPB3Z0tpjhHq3m8QWCBxJ4QZS/tjo/TnpaS/tpr515AD+njoJqbHGjzUSnjx+LuEGpnKjpvCuUQtbZk7h3Qbyc41/xzbGyt4BDXv2RVD7TibPwzo2bJ31DcJvXdfqvvD0Xgi2zvoaUaF3jS7jzvHDRjs3uPkFoCzl5xoPb8c9KQxOO3lVgFhqYbT7RZexn+gNN5hKamlVqvkJIYQQQgghhBBCCCGEEEIIedVQB4dXmFAo5EGGNz7thSPrTiI1Pg0Vqnii8ztt4eBqr56GFeoP/qIvL5hNS8zAsslrkZNp/IffZ8HDzw3pSRmQ5cpQo1lV9B3fHT8M+xX5Mv1F27rkettB5mFjcJqMhp6wfJSic+R2r0oexa6v2qAS5h37Fn98vhq3Thb+gF+vfSA+mPcuKtUxPGo4IWVBLNG/Gxdm5cHy9D3ktKwKFJlOmJIJy1OheufNrO9u8H7zXayQ62cPyydlVMhkYlrC4nEqBLn5UFjof9xWoUkoa9npOdi95CDuX9XdKcAYgVAAhbzwQXoGuOObTZ/B3ccVX3i3RlRGGvaEFXk+5Aq4bo+E3fVk7as1wgmaZHn5+POLtVh08Qf1dRGhUdi+cB8u7r2KgvwCBLWuiVwd+3cWBLC9UViUY+PvC69K7nj6yHjxlvXpFGS11h8QY1pIffDQyHIsbS21uhD17N8a22bsQU5VG2TVUXbDsbqTAasQZeih5+hOsHpqeJm2N5IQP8CPh3L06VXlFR+Fn73sSptGesUHVZdIJJg7dy4mTJiA5cuX4+jRowgNDUVycjJsbW3h5eWFFi1aYODAgejSpXhwlBBimEAkQOMvBKg+RIHwwwrkpQG2FQH/LgJI7QXqaep+KEDNYQrEXFJOc2OxAnLZi7F1rT2V4QJ5PuASBFTuI8D5WQqg7AYWN0ogUq5HUS61BGj7sxA3lsqReFs1MeDeAKg3Tgh7X9pnkfIn0ggJkvKTm5WBq/t2ISFCd/dJc7EC/l7/+xI2jk5oO3wU0hMT8PDyBZO7X+iSL8vDqQ2rMOTbH9XXJUaG4+reXQi7cYWHtH1qBiE7Q3fQvmj4gnVdSE8om45rFWsFIez6FYPTSC01jkmsrFGrTXvcPLxf7/R1O3eHUCQq9bpVa96q1MsghBBCCCGEEEIIIYQQQggh5FVCv0K/BipW9cK73w42OI2Ngw3aDW7Jz4ulYvzywR9ao4OrWNlZ8kLfZ8HZ0xE/HZ0OJw9HHF57EofXncCqqX/DzsUOyXpGrNdH5mljfBoP3aPVN+nRAG4VXXTeVr1RZcw/PhPRD2OQGJ0M14rO8AooHoYgpDxDQAG1fXl3A13EMamoFhKDdlMHYP2yw8jNyIE4Mgmi6GQIDBQtF9gbH9XeqaYncsLT1fsKZy8nJD3VLsYva0KZHHYXniKtjY/uCQrksDsbXezqitW8EP0wVm84wJj7Vx8hLiKhRPNKpGIsvjoXl/dfR25WHqrU90fj7vV5wIzfLhRhccc+OPc4DAv3HMbdkCcQRGXC/nQ8pAnmhc3uXX6IJ8ER8Kvlg8sHb2BG/7nIzc5T33584xmTlhNy8T5fV4mFGLLcfIPTWl1Nh0N4PlJ9dX+l6FyhBt4Mao1/7NcZ7HzRZmDhiPhyuRw1mlWB/Xo74H46LO9nQm4tRE59O2R0dIK/xBGjfhyGe1ceGVw3cboMbheTEN/CVeftXra2eCuwtsFlkOdP1/eR8pjHx8cHM2bM4CdCSNljhfasm4MhUjsBfDv8N41CjmsLdb+XxVZAfumbKZnEyh1ov1AIqS3weL8C4UcUuLNCAQt7INe8Q5JS8W4FWDrp3n4ugQJ0+E2E9EgFcpIAa3fAxpOCDeTZcfLy5ifWyUEfVx8/VGncDJd2b0eBrPD7aWnZOrsgI6kwqGvt4Iis1Gf45jSDS0VfXuxfUtH3QpAYGVGieVkngmHf/4Kwa5eQL5PBo1IV+NdtoA5uiiUS9Js0FY+vX8XZLesRG/YA8gLzBpZQiQq5g9S4GDi4e+LhlYvYveB7FMgKE2t3Tx83bTl3byM/Lw8isQQF+cYTbxILS8j0dLWo0bIt6nTqjnP/bDTYyaFas8KggVxeAO/qtRB67jRyM5Uha03O3j5oNXg4Iu/eMWn75+fpvl97Nw8Ete9sdBmEEEIIIYQQQgghhBBCCCGEvE4o4ECK6TGqIxxc7bBhzjZeLMtYWEvh4GYPDz9XxIUnIvax9gh6/kE+fNS6Rzcel3qLSi0laDuoBd6ZMQg2Dtb4tPVUPLhWslHTVQQy40XNAh1dIVjIYtwvI43OW6GyJz8R8jwM+bI/vn/7V723+1fxwtt9mqB7k2pYOP4vXL74CKraXycPByTHphabR5ghQ4GT4ZEorWTAsB+GoUbTKjwEtGraJhzdcArlzf5YBOSWYmQ08gSEhcV7gux8OO96AIvowuITqZUEDTvVRUGBHClxqchIySrRfebn5SMxqmSdIVoNaAr/Wj78pE96cgZW9V+EhBtP4IbSiXoQA3tXe8x5a4FWuMEcLNzAGAs3MCwoU3lpIiqs7Yj9kcHI/280V6lQhP5+9fBNna6IexgHV29nhKfpLnqzdbTBgE978fPJcan4usdsdbcM9lJNG+yO9F6uUFgpX5MsRjPi6t/4vkFvvtwEA8/NMKdKyKxXDatvXUduQeHjqZArRpvrOdhxbwe6vdfh1d2HUwcHQshLqkp/ISycFAhZL0fKA+V1IkvAwoEV7wMZT4HsIo2GHKsCBblAesnrh9VEFoBPBwECRwogkgBHxsuRVrpDkhKzcgPqfqi/G5GKXUUB7Co+k1UiRAsrkm/SdyAOLNV/TOJc0RfNBgxBrbYdcWT5Ejy5dZ0lEvlt1o6OyEopWShBYmGFtsPfh2flarBzccXxtcvx4OLZF+oZklhawTewDgoKCniXhLzskh2TsJBAScMb1Vu0hktFH37SJystFcfX/lWqEIZKUnQURBIp9v72k1a4wRws3MCYEm5grJ2c4eFfCfcvnoVCLlcHC2p36MJfIykx0bB1ckZKjO42cJZ29qjfrTc/z0Iz/3w/HQnh+v/HlRQVga2zp6Lr2E94t4nstOLH1Sp1OnXjXS9YNwjN7WHj5Ax3/wBc+Xc7gtp3gYM7DZhBCCGEEEIIIYQQQgghhBBCCCNQlGSIW/LSkuXJcOvkXeRk5iKgjq/RbgPbFu7FHxNXFxv13NnTAS37N+WdH+q1D0SDTnVwdMNp/DB8YanWr+u77TD+9/dhZWPJL7PlHVlf+oLpAmsJYsY3BMT6C4OawAZZKy7yYm9rOyt0HNYGQ77sB3cf3SN/E/Ii+WfBv1j25ToU6AjqMOx9Omff15BIJYh5HIeIkCgeIKrRtCp+fn8JDq7WHkUztU1FpLXz1Xt/opQceC28ChYvaNarIVy8nbDnj8N4lvIdLJAV5Aq5lRjihGxY306AMF9erNjqeX7M2TnZ4Nezs+FT3dvgdAvGLMXev46U3R2zJ+YZPuwGnWrjx4PTEJudjiuJ4RCyIjdXfzhbWCPy/lP8r+XXSE1I1zmvh78bpm6eyDviMJ+1m8Y/p1RSh3ggbaC7znndLGzxSWIQ/hixTOftLKy36NKPvNNJSk42jjx+hH1rjyN03SVYRmRqTdu4Wz3eiedJcCSs7a14V6M3P+/9UnbliYyM5N0ImCrjp0Fi71iq5cnSUvBg0Ux+PiIiAhUrUvUsIaR0CvIUSLgJ5OcATlUBaw/D3QZCNspxe5mCNXXQYuUKVGgJSGwE8GgogHsDAcL2yHF5Xuk+BCv1UQYKxJbK9To7vQBRJ/FMuAQBGZHK7hASG8CvqwA13hLAypU6MpAX34UdW3B28zq9I//712uI/l9M44MjpMTGIDk6Epa2dvCsUg17fp2L0HMlP/av2rQFpJbWuHPi2R6TvAys7OwxdPZ8OHoYDvTu+/1nBJ86hpdVQIPGeGPydKQlxCP63l3+OvMJrAMrWzse2tg47Qvk6OjEwDh6eKH3Z1/B3b8Sv7z+688Q8+CeSfdr6+KKBt374OS6FTpvt3F0wtvfL4CdsysPkTy6egm3jh5EdGiw1nQCgZC/R9LiY5HE3hs2trzzRKPe/WHvqvt4iBBCCCGEEEIIIYQQQgghhJBXFXVweI1s+2UP/v5hOx/FnBEKBWjcvT7+t3QMXL1dik3/JDgCf36+pli4gUmKScWdM6H44/o89XUd326NW6eCsefPkhcU3D4bwkdKh41yFO+TW86hLIiyZLC5FoPMxhV03u5obYkfPnoLnrPHICcrFxZWUl4YTcjLov8nPbDt1z2IC0/Qefv1Y3ewf8Ux9B7bBZ7+7vykMnH5hzz0cPNEYYGF3YWnyAp0Rb6bdfGFyRVwPPCY19Az5/+9gudBnJoL+zO6OwKoPM9wQ/0OQfjwl5FGww2ZaVk8IFamnvHDDqjjx/96WNmhR8VA9fVxmZmYM28DYq3ksPgvd1GUX62K6nBD6OWHWuEGuY0Q6b31h8ziczMQ1VCCSSvHY9XUjYiPTFTfFtiyOj794wMebmAcLa1QsPsBnnx/HMoInbZL+6+rz6cnZWD3kgM4vukMfjoyHZXr+uNlxTpssFNpl0EIIWUl5G85QjcpkKca6FoIVGgONPxMCEvn4p8UyfcUuLVMAehoyJadACSFAp2WFIaY/XsIEH9TgScHS76OLHyh+K8+Oztegegy/pjWx8IJaPGtcjvk5yh4Fwk6JiEvk8a938DVvTv1dhl4fP0K7p4+jsC2HXmxvWbBfY8JnyMtIQ5P74eW6L7vX3ixuja8KPzq1Ef7EWOMhhuy09MQev4Z7ezKiYe/8pjC3tWNn1RYN4aDfyzUG25g3PwD1OGGyJA7Jocb+PITE3hXhs5jJuDclvXISC7sLlexVhC6jJnAww2Mtb0D0lkAo0i4gWEdHsKuXdJ6Tq7t342QsycxePr3cKmofwACQgghhBBCCCGEEEIIIYQQQl41FHB4TWz8YTuWT9mgdZ1crsCFPVcxsd10PsK1raON1u07Fx1AQb7ukReZRzef4Pqx26jXPkh9XfdRnUoVcIi6H4Nfxv6JqZs+Q9itcMhY2KGMOBx5zCqEkFnfAxAVFkEFuDph3uAe8HSw45ctrVkZLiEvl2tHbukNN6js++swDzgUJRQK8cnKsZj/zmIEnw2FQq6AMLcA7qtuI6WzP7IDXaCQiPi00qh02B+PgNVD3UVLrztHdwc06VEfQyb3MxpsUHn6MJYHq15medl5WpfjszIx4+RRHHj0APl1ANSpDUlcNpz3RsL+SmEIgbm8/zqSYpLh7OmEa4dvat2W3cgeCgv9nXeYvVF38Mm7H6HjsNY8HMHCCT41vOEfqOxgoMI+z1gIyBxsWT+/vxiLL881az5CCCG63VkpR/CaIqkpORB9BkiPkKPjEiEk1tohhwfbdYcbVJJDgMQ7CrgEKudjgYCAnkI8OWhgJiPSHgPXflWgyRQBUh6gWOeI8mDvDzSbVhjyUHWPIORl8ujaZb3hBpWbh/fzgENRbLT9rmM/xoElC/H04T1W7V2Oa/pqs3ZwQuWGjdG4z0A4eeke5KGo5KdRvEj/ZSbL0z6mSk9KwNEVf+DB5fNGX08PL19AdkY67/YQfqsw+Gyqe+dO4Z2ffkdQu06ICL6FvKwsOHv7wKWi9jFJvkzGQwvmyE5LxcE/fsNbs34ye70IIYQQQgghhBBCCCGEEEIIeVlRwOE1wEYHXz/7H723Rz+M5aGEwV/01br+9unCUbT1uX06RCvgIP6vCLo0Tm+7gLjweEgtJUanZU0WTK17YCNQOx4Kg93ZSORUdYZcKkJ1Dxf8uWk8LCylpV5vQp6nmLA4s6dJy87C7P07cDgnDBkWBRCMFcE6qALst8dDEpsHUXY+XHY9gPxAGPKdLCHMyYc45eUuxC9Pw6YNxLCpAyESmbcftLLT1U/g5SISFz7m1JwcDN6+CY9SkrWmkblbIXZEVSgkQjicj9cK24WHROHw2pPYv/KY1jxyK+PbMkumDFew7a75eVTU4zsRSIzWXidT3L8ahtBLD1C9cRWz5yWEEFIoN1WBkL/1f3FPDwce71Og6gDtwv6EW8a/7LNpVAEHRlgGR7kRxxWoM1YBoSmHCeyuS1GL7VgN6LhICKGYQg3k5ZYWF2N8mvhYrctslPrDyxbxcER+kQJ1Yr6WQ95B074DIRAaDgkXJbW0euk3Nwvuq2SlpWLT9MlIjdN+vekjLyhAUlQkIoNvIfik9jGJKfJyspXrIBLBr3Y9vdPFhT3kr3lzRd+7i/jwx3DzfXk7yxFCCCGEEEIIIYQQQgghhBBiDvN+8SQvpbM7LiEn03ChwNENp7Quy/JkyEjJNKuolQmo7QtPfzeUhrxAjrvn76Nm06pwqeBkcNomPRpg6fV5Zi1flCmDzfVY2F2MRvTuWzi46nip1peQF6VzgNFpPBzV5w//cxptF8/GDsUDHm5gFJZCZHZyRuwPlZHnU9jJhHVzkMZkUrjBABaYyqzshD03Q/EgVrtDgTHeVbxQtUEAXmbsMyY+Uvm4196+XizcoCmxjy/kGgWcAqEAM974Ccsmr0PU/ada00rCc4zed1UHd5PWUVGKUYBZAOOlpSijEyGElFLkCQXkRgYHDz+svcMpyFNAlmV82YIigQan6oClK0qFrWtSCOBaG7Ao/AqlU8U2QPtFJQ8npNwr/tgJeRlZOTiaNc3NowexZMxw3LtwhsINZYR1Ybh75gSSoiPNms/V1x8uFX3xMsvNzkJGkvKY5Nq+XSaHGxihUIR/5kzD6Y1rkGpCUKcoFx8/E6cs+b4+2cznlBBCCCGEEEIIIYQQQgghhJCXGQUcXgPpSRlmTZOXk4cpPeYgPsJ4ke6hNcfxYaMvML3/XCwcvwx/z9mOLiPalXqdRRIRD08Mmdxf/zT89n7w8C1d9dL+FUdLNT8hL4LG3evD0c3e4DSdh7flf68evomvN/+NrIDCEIMmuZ0YyWO8y2U9XzWsPCWttQ9iJzTG73fv4MstB9Dn1zUY+ddWRCWbPjJn875NDN7uVdkDLzK2H33b/0Ms/nQltoUGG5y2wE6CrFqOWvvyzBTd1auWwZkQRxgOObwV0MikdfSrVRF2zrYoCVtHmxLNRwghpFBeunnT5OcocPJzOXJNaL7zcJcCh8YU4MzUAlz9tQChfysQ0LX0W18gAkRSAaoP1h9eEEqA6kOEsPUsXfeFsL0UcCAvvyqNmsLC2vD3psA2HfnfR1cv4dAfC6GQK8PWpAwIBDj/z9/Y9/vPWPnpWGydPRXpSQkmzx5Q3/D3ant3T7zIbh7ahz/Hj8SJ9SsRfMrMLgwCQPZfF4aSqNe5h0nTuflXgtTKukT3ITXy3iIvjlWrVkEgEGidqlevXuLl9e/fv9jyyIvp4cOHSEszv0sLIYQQQgghhBBCCCGEEEKKo4DDa8C7mpdZ02yauxPXj942adkRodF4cDUMZ3dewu4lB7Fq2kasmbEFler4QSgu2cvL0toC9doH8fP9JnTHiFlDILWUaE1j72KHbzZ9iqBWNXnhaWmKf+OexJd4XkJeFFILCd7/YZje232qV0DvD7vw82tnbkF6B8PdUXJr2kDmrTsA8azI3KyQ3CMAse/XRtw7gUhv4sk7JTxrVeoH4ItVH6HnmE7Fbktr74f0lj6QS7T3dxceRWDkX1uQlm28AwGzf/kRg7cnx6QU65jzolHIFdj+615EJ6UYnZaFHBgLawvk5+UbnNZlYQSE6bqnGeTfAJ29a5i0frsWHUB6svHAX1Hs86Zhl7p4qVH3BkLIC8CuovFiPNuKhefvrlUg4ZZpy86IAFLuA9GngYc7gNvLFbi7AXCorCxaLQmxDeBWR3meBRhqDhfwMIMmCyegxbdCONcQ8PNWpWhkl2n6QOOEvLAkFpZo9da7BrsE1O6oPCY5s3n9M1yzl59H5aro/tFE1PovIKJTkY5lT25ew5aZXyMv24RWOIDRUEBOehoEwhf734gKuRyXd/2D9ETTgx0SS0vIC0oetKnfvbfRcIjK1T07TX4+NNk4OcOnVu0SrB15Udy7dw83b940ez5WLL9v375yWSdSdnJycjBjxgwEBQUhKSmJNi0hhBBCCCGEEEIIIYQQUgbEtBVffY271YOHnxtiDRTy9xytLNyVy+XY8+ehUt/no5tP0OGtljj37xVkp5tW4KtelzGdtEbLfvvrAbww++SW80iNT0OFKp5o2b8JL+hmrh+7jYRI490m9HH2MlzoTcjLotvI9rC0lmLNjM08fMSIJSK0GtAM434Zyd9Xp7adx63zoSj4nzJEZIjMUwpJVK76MiuwF4mFyMuRobxlNPJAcvdKgLCwKjE3wAHpzSvAfc0diJML16s8NepaF9/v+4af7/xOWx6+2rX4AO5ffQSxiw2eNtHf6SIyOQ1bL9/Ge60NF7vcORuCuHDDBTg5mbkY+d0Q/LNgD9ISC4e3llhI8ObE3ti5aD8yUw0XygiFAsjl2kVP1RtXQeilByhTURmAj+HRRaVJeWg9oClys/Nwce81g9N659vgrYQgxNawwrGkh8jOz0M1Bw8MrdQI3SsGmrRK7HNi6cTVKInh099Uf94QQggpuQotAUtnIMdAzVelXsrCWXm+Ao/2lLKjgQJIfQj4dQUijwMFZn51qNJXALFV4feQoPeEqDpAgcjjCt5pwtYb8G7FQg/KaWIvGX5sxlg5l3xeQl4k9br0gNTSEuf++RspMU/5dSKJBNWbtUK7d0dDammFu6eOIS6sZN9BhSIRL7IvkJX/McmLokrjZuj7ufKYpGardvCvUw/XD+5F/JMwiKVSZKfrHy08+WkU7pw4gvrdehu8j0fXriArxXDLHFaY3+qtd3B51zbkZBYGh8USKRr1GYAre7ZDlmPs/z9sn6m9f/esXA0xD++hrIMOxgiEIlRr2gLZGekIv3Xd4LT2ru6o0bItsjPSEHbtMvJzc+EeUAn1uvRC1aYtTFqnsOtXcHrjGpREizffhkhM/8J92W3duhV16vyXnjTRzp07kZv7bP7/QUouMDAQjx49ok1ICCGEEEIIIYQQQgghhJQh+nXsNSAUCjFp5Xh83XMOLyYtqt3gFmg7SPmDLCucTYw2/KO2qU5uPY+Jyz/E/FFLITMyQrdK3XaBGD13eLHr7Z3t0OuDzsWuz8uVYfaQBZDlmrZ8Xbq8267E8xLyomk3uCV/Pz+88ZiHiypWrwAndwcUFBRg1qCf+fuSlZQIsgugsDLcEUCUoT2KZUF+Af66Mx+PbjxBRkoWXL2dsGzyejy+HV6mjyHPywbJPSoBguJDLhc4WiLhzerw/NP8kQ/NVb9jbXy+fBy2/boHB1YeQ3xkIlwqOKHriPaYvXcKdt4KxcxdRw0uY9/NUIMBh/CQKHzd83uT1sfFyxl/RyzF6W0XEPUghncWaDuoORzdHHB43QmjAYfBk/vxQMTTR7FwcLVH+7daYmrvH1DW7M7EImdIJb23S+Jz8NWng9FzVCf8MHyh0eWxTj2V3T1wb/IRVHgUB0d3e3QaFoh2DfTfR1E7ftuLkrBxsEbvscpRhl9WAoXyVNplEEJIaQnFAjSeLMSZb+SQ66hL9usq4CEIJicRyEstm20ecQxo8D8BrvysgMLEAbo9m7BAQ/HvIRYOAlTuW/z6/GwFzs+Sm7x8Xfy7lbDVBCEvoFptOqBm6/aIC3sIWW4OnL19YG3vwEfJ3/7jt3h09VKJl82WMeqXPxHz8D5yszJh6+SME2uXIyk6Eq+igHoN0fH9cbi8exsPKmQkJ8HOxRVB7Ttj4NTvcOPgXv74DQk5e8pgwCE+/DF2L5hj0vo4enpjzNLVuH/+DFLjYmFl74DqzVvBys4eNw7tNRpwaPHmUCgUcj6vtYMjqrdojW1zpuN56Dbuf6jVuj12zTf+2H2D6sDJqwIij93hx6kOHl6o0rg5/Os1MPn+ru7bVaL1ZNu2dvvi/w8jL2fAYebMmWbNs2nTpnJbH1J2KNxACCGEEEIIIYQQQgghhJQ9Cji8JlhwYOG5Odj8006c+uc8H4HdP8gHfcZ14x0TBP8VEltYW0AoEkJeYHy0O2PyZQUoyJdj3vFvsXraRlw9fMuk4mw2SrypTm45h5R4/aMVGlOprh96jO5Y4vkJeRGx93OVegFa1y0Y8wcPN6jYnEpBRhcXvcsQP82FNLR4wbxCrkCbgc2RHJeKLzp9i8e3I0xeryGT+8LG0RZRD57i/L9XkBKru3IxvbGXznCDiszLFrm+drAIL+xkoIuThwPv+JKWkM7/dnm3Ld8OLJxhqKCdhala9m8Kv1oVMbnzTIRcLBxdNj0pA398vgZH/z6NwO/6GH3M6TnFQ2Wa/py0xmgwQaVKfX9ILaXoMLR1sdsc3BwQF264k02Fyp7o9l4H9WX2GJJiUlDWHM7HI6O+C7KrOxS7TZAnh/vGRzhXVcgDDo271ceR9acMLi/ibiSO/X1afZkFTe5fDcP+lUcx7+gMHvQw5tapkBI9FvbcXD1yC4271ivR/IQQQrR5NhGgwyIhQjcqEHVKwYMOjlWAyv0ECOghUB+TiK10DvJdIvI8QGQBtFsgxO3lcsTfMD6PT3sBBCLTAwfhRxWQFQ5mbjanGhRwIK8e9n72qFRF67q9v/1cqnCD5rJZUT0r9t8yc4pZ4YZmA96CWCJBckw0Hl25aLD7QVmwdXaBnasbcjMy4FTBmwc/Diz5FbKcbL3zWNraoW7n7qjapAUcPDyxeeYUxD8uHBk8JyMdx1b9iZAzJ+ATaHw0+LysTIO3H1/9J+9IYAo3vwBIpBY8xFIUC7FkpxlOpzl6evEuFCq3jh0s9+dAnweXzvGAQ0C9Rrh/4azBaWPDHuL28cPqyxmJCYh9dJ9f9+bU2bC0sTV6f1F375RoPdn2iQoJRsVaxrswkhePv78/MjMzER8fj7t37yI4OBi1atUyad7k5GQcPHiQn/fy8sLTp8quOIQQQgghhBBCCCGEEEIIIa8DCji8RirV8cOXaz/mJzaau0hUPEhgZWOJJj3q4/zuK2Vyn/l5+ajVrBp+PDgNwyuPR0xYnMHpPQPci12XnZHNgxK2jjbFbnt4/XGJ1ktqKUGHt1phzLx3YGXLKqgIeXU9DYvFgVXHtK6z3x6PrKYOkDvo+BiQK+C4LobXFWpi70F3X1d+/texf5gVbmBYYX5AbT9+Pl+Wj4ntpiP43L1i0+X5GC9Yz61oPOBgZWeFX059p3Vd6KVHPOilzzvTB+GN//Xk5xf/b6VWuEHT/SuPkLHsOFDN2uA6VHZ31ntb4tNkXNp3DaZwdHdA5SKhFU0dh7bm66SPpbUFWr3RVOu6c7svozwIChSosDQEyR0rIK2lO/KdLIACBWxuJ8P5YBQswzOR7pLBO4KILUSwc7blwRFd2G0P9Oznw26F8+eIfaYZIxILS/x4UuLKaAhxQgghnFNVAZpNVX7LUBQodAYJpPYCuDcA4srmkIQHKVxrC9DuFxF2v1mAnATD09t46e7SwDo0SGyL35ai++uCUSJLwK+TAHXGCiCyoA4O5NWWFB2B0HMnS70cNuq/jZPyO/aBJb+Y17lBIECt1u3g5OXNLxbky7Dhm0mICyvhm9gErPB96Kx5WtdFhdzBtX279c7Tasg7PODAHFr2u1a4QdPT+6HIzzMcqGacK/rqvS01Lgbht2+aHNZw9qqg93YWXDi9cY3e26VW1qjcSPuY5OHli3hecjLYMUk+D2xYWNvwjiD6AifxT8J03sa6lJxctwJdPjB+TCLU8T84U2WllX0wnTwb7H+vb7zxBv744w9+ecuWLZg+3bSuJdu3b4dMpmx79eabb2LhQuMdEAkhhBBCCCGEEEIIIYQQQl4VJa/4Iy8lVlR8bOMZzOj/E/7X+hv8/P5ihFy8rzWNjb3hgl1z1GxWTX1+0OeGRzv39HdDg0611Zcv7b+Gie2no4/9O+jvPAKja3+GPX8e0prH0sbCrPVZcGoWfr/wPTZFL8PE5eNg52R8lD1CXnabf9pVbARkcbwMHlMfweKWdmG5ODoXrj+Hw/pC8VE0u45oBwsrC8Q+ice5XeYVxwe2rK4ON/D7kYjRd3w3ndMKTOggI5AbH9I5qGX1YteNmDUYzXo11Dl9rebV0OHtVvx8bnYuDq4+bnD50duvQ5RqeKTTIU3r6r0tITIRchMeBzNp1XiDt3d7vwN8a3rrX4+v+hcLiclylYUS5UGYr4DLgSj4T7+GSpMvo/Kki6jw1z0ebmAsbSwxLGAcvhu0QG+4oWI1L96xwpDjm84iJd54ACGwRfHXgqm8KnngpaYooxMhhJQhuUyBJ4fkOPONHEcnFODyPDmSQ7V3NpKyOiQRAC41C8MD1d80HCSw8wFcNQZEjz6r4Ou4vYccO3rLcfD9AoTt0/6uIrY0Y32EQIfFAnRcIkTvrUI0nCiExIbCDeTVd2H7ljJZTu0OXSASi5EUHYXHN00LC6v4BtVVhxsYkViCel16oDxVqFGz2HWth46AX536Oqdno/RXa648JsnLzsLdU4aPSfQV3muq919YQpf0BCOJLxWBAN3HTzQ4Sd3OPeDo4aX39uYD34LUUnuACRYyeV5EEgmWjR+JPb/9pDfc4OztA6HQ8L9O75w8hpxM4218KlQv/lowlYO7Z4nnJYAsU4G0xwok3VX+ZZefpUGDBqnPb9261eT5Nm3axP/a2tqiV69e5bJuhBBCCCGEEEIIIYQQQgghLyoKOLxGMlIyMabu55gz9Bec//cK7pwJxf6VxzCh2RT89eU6Ps3dC/dxZP2pMrm/gDq+OLz2BJZOXI0zOy6i84h2qNsuUOe0EqkYHy8Zw384fnjjMRaOW4YpPebg5olg9TSP70Tgl7F/4tcP/1Rf12ZgM5PXh42AHtSyBqo3rqKzGwQhr6qiISYVSXQuPL4Ng9dHoXCbHQaPrx7A6+N7OsMNtVpUx7uzhvDzoZcfmlyYzzh7OuLz5eOKXd9qQFO4ehfvcGB5P9nwAhUKWN4zMg2A09suYO9fR7Suk0gl+HbHF/ju369Qr0MQJBYS9W2sm8RQ3w/5/pCFODJTswwuX6AAnHbfgyC3QOftvapVRutq/nrnd/JwgCm+3TEJTbrpLoDSDKbNOzoDzXo3hEAg0AqBDZ/+Jt7+ekCxsBvrsFMeWvRtBCtbS/U2EmXlQyjTfr3cOhmMhKgkvd0WeozuhPmnZiExWvc0KqwLxC8fFH4m6MLCKsHni3cKMYVfrYr8c4MQQkjZyUmR48BIOS7OUeDpeSDxNhC2R4HDY+W4s0oZHIi/rkBU2RySwKkq8GiPAjcWy3lYoVJvwEX3IQmEUqDBZ0L+WZp8X8GDF2e+lvN1VEl9BFyeq8D1RYUhh4ptTQ8oWLuxwIUQzjUEFGwgr5WYh7qPSczhU6s2mr2hPCaJeRDKjwtMZeviii5jPip2ffXmrWHt6ITyEnr2NIJPHtW6jnUMGPDVt+j3xVRUrBnEgxYqkcG38efYd3Fm8zqkxMZAlptTqvsPat8ZPoEaqa0iTH3sA6bMhG+Q/uUwlra2GDTje/jXa8gDESoSSyu0eutdNOrVX2v6fJkM8gLdx1KlVa15a4glhsPS4beuIzMlWW+3hXrdevPHnZVmOFAtz5fh6IqlBqdhYZWnD0p2TOJRqQo/EfMoFArEXVPg7PQC7Oyj/O5xZJzyL7t8bkYBv51NV97atm0Ld3dlx9rbt2/j3j3jr4WEhAQcParcd/Tu3RtWVqZ3n42MjORdIlq1asXvVyqVws3NDY0aNcKXX36J0NBQo8tg34XYqV69eurr/vnnH96Nws/PD5aWlnB1dUXLli3x008/IT3dcIdNTZcvX8b48eNRt25dODk5wcLCAhUqVEDHjh35spKSDP8foKizZ8/iww8/RFBQEA+DsMfLlte9e3f89ddfyMnR3o9mZWXB3t5e/RiXLVtm0v1MmzZNPc+IESNw/Phx9WVNAQEB6utXrVqlc1nsdbdz504MHz4clStX5uttY2ODSpUq4e233+bdO0x9bd69exeTJ09G06ZN+faUSCT8+Wbb96OPPuLrSQghhBBCCCGEEEIIIYS8jMTPewXIsxEeEoWPm0/RW7C7ae5OVG1YGZf3mzcCoj6saDjsZjg/Mf8s+BcVKntg6paJOLvjEvYsO4ykp8kQCgVo3L0+hn49AGKJCB81/RKhlx4aXPa/fxxCh6GtUbt1TT4ivGeAO2LC4oyuExt9vjSiHjzlBcEVqnjyImlCXhYWVoYLOyQxefykIpaK4eHvhpyMHB5A6DqyA3//sPf1tl/3YOOPO0y+bxsHa8zeO4WHnKIfxsCrsida9m2MjJQs/DB8oc4id9tLMchs5Am5pe6PKKvgREiSjBf6ZKXnYMGYpbCxt0LbQS3U17MglXdVL9y79LBYFwN2me0PZbmmFf9bRKbDbfUNZDSugJzqLlCIhZDEZMDmagzCku4gsWtruHjpLhpy93XjIYvrRzWqJoto/1ZLtOjTxOA65OXKcHn/dTwOjsS9y4+0fgTPyczFxh92wD/QB20GNleHG6b1/RGX9l9HWWvYuQ4+XfYhVk7ZUCxcouJTvQIiQqP1LqMgX469yw4joLYv/4wwFqZhr60TW86h7ZvKx1fUsb/PIOlpipmPBLC0tsD/lo7By46FTNiptMsghJCykPpIgaMfKZCfrfv24NUKOFVTIPxI2ex4hBIg+R47KZd3b4uCd2hoNkOAyGPK4ENuMiAQAl7NgZrDhVAUAIfGFCDFSC32/a0K+HZU8KACO1m5AtkmDITu373k3RrYZ3xGFKDIB2wrAkIxdX4gLw9W1G8OkUQKOxcX5Ofmws7VDUHtuyCwbQcIhEJc2r0Nl3b9Y/KyrOzs0X/SVIScOYnU+Fg4elZA1SbNkZmchP2LFyBLT5F7WcjNzMC+xQsgtbJGlcaFAzSwx8G6HcQ8ul+si0G+LA/n/9kIWY7hbnGmeHz9Ci/Qt7bXHa52ruANr2o18PReiN5lBLbrBH89HSfU65yXh7Drl5EYGYHYsAda4RNZTjZ/PK4+vqjcsKlyepkM23+YjvDbN1HWKjVojE7vfYjjEkmxcIkK6+SR/DRK7zJY8OL6/t1w8fYx6T7vnj6O6i1aqx9fUcGsy0N68YEEjJFaWaHT+8UHCyCGsc/9i9/LkfZY9+0KORB5gp3ksPcHmnwlhFO18vtMFYlEPBiwdKkyCLNlyxZ8/fXXBudhYYL8fOX/JYYMUQa7jJHJZPj2228xd+5cfr5oYIKdrly5gnnz5mHs2LGYP38+DwMYw+YbOnQoDh3S7qqbm5vLwwXsxJbJCvabNdM/EE18fDzGjBmDHTuK/0/p6dOn/MRCHbNnz+aPgU1rCJt+1KhR2Lt3r97l7d+/Hz/++CPvhtGgQQN+m7W1Nd58802sWLGCX96wYQNGjx5tdDusW6ccHIhhAYeSun//Pt+eLOhRVFhYGD+xdWKBlI0bN/IAhD5Tp07F999/j4IiYTHV833z5k0sWrQInTp14tvA2bn4ICOEEEIIIYQQQgghhBBCyItKoHgWQ1WR5yotKR2jgj5DcozhAs/AltX56FK3T+v/YVvX6NaeldzBfgZMikmFla0Foh/GIj4iUef0rFh6xd1fILWSIi0hHRbWFrC2s8KT4Ah83OJrZKXpqXYqotPwNpi8egISohLxtv84yAsKR1DVhRUz/3rmOzi42sNch9acwMYftyP8rvLHb0c3e/Qc0xnDpg2EWEIZIfLiW/vtFqz5drNJ03Z+py3Gzn8X9s52xW776b1FOLjKvJHfnL0cdRaXi8QiPvq+Lj41vPEgIxWJb1ZHgb12IZRVSCKct92HUGb4PV90P/XX7QX8PPvIy0rPxrJJa3nQSh/WgcA30AehF0o30uxbX/XHe7OH6r2ddcP4vP10HkQoyt7FDr+enY2KVb30zr9/xVEs/2o9UuINF8uwLjmfLhuL6AcxuH/lES7svYqyxEILHy4YiZysXCz+ZIXO4Ip3VU+8/c1A/Dr2T+RmFwZq9LGr5Arvur4I3nMdwrzC51teTQpFVSkEuQoILmRDkC5Hnba18POxb3UuZ9bg+Ti55ZzJj4WF7Vr0a4KhU95A5br6O3C8yNiInT4+ymKs6mOmQWLnWKrlydJTEPrnTH4+IiICFStWLJP1JIS8XnKSFHzU5Dwj9Z3uDQBZJpBsfHBhNfsAwMZTdT+A2BpIDwdydB+SwNoT6LZaCKEIyE0FxFbsJEDKAwWOTpCjwMQB0wN6CtDocyEyohXYN0wOGDmytvcD2v8uhNTW/CLKsD1yhGxSICNCednCCajSV4AawwQQiijoQF58pzaswsWdW02atnaHrmgzbCQsbWy1rmff5ff+Ng8hZ06Ydd82Ts48zFAUCxko5LqPK5y9fZAU9d8brgy4+1fG8B9/VT+OvOxsHF25VG8BPsMev727B+LCDA8CYUyLQW+j+YC39N4eFXoXW2d9zYMVRVk7OGLod/Pg4P7fTlaH6wf34symtcjJMDyCO+tU0fXDj5EUHYWYB/fw+EbZHpO4+Pih/TujkZORhqOr/kRWavHjUGfvimj2xmDsX/yLSd0jWOcPWydnvr7G+NdtwDs+6LJ97kw8unLRxEfCtpUYVZq04Ovq6uNn8nwEiL2swJmppn+W8+1tCbScJYRHo7L5PGWj9o8cOZKfZ8XpDx48wLFjx9ChQwd+HRtZ//p1wwMOsG4GrNjfwcEBcXFxuHjxIlq3bq2+vei/81mBOwtR7Nq1S30dK+Rn87BuBqzY/eTJk0hNLexI0qZNGxw4cIB3YyhK1ZWgevXqvCvA+fPn+eXAwEDUr1+fhy/YOj169Eg9D5uOFe+7uLgUW15sbCzv9vDwYeH+jHWXYF0mWDeFJ0+e4PTp01rBjEmTJvGggy7R0dF8eY8fF6ZYPD09+XXscYeEhODSpUvq29h2ZI+hRg1lh0a2LVhnDdUgGOHh4fD29oY+Z86c4euq6tDAHgd7rCwkwvzxxx/qaVl4wc5O+T+1d999F82bFw7GcPXqVXTp0gWJiYnq7cyCFzVr1lR3Y2DTqJ5fti3Za6d27drF1okFN1hHDhXW/YEtS/WauXbtGv/fgEqTJk34NijacYIQQgghhBBCCCGEEEIIeVFRdfZrYN9fR42GG5i75+6hac+GZi37SXAkPzXr1RALz83G1cO3MKX7bL3Ts6LXw+tOoffYLnDyKCy4XD/7H5PDDczTR7H879mdl42GG9gI8gtOztQbbpDlyXBq63kc2XAKaYkZvAi35+jOvEPE5p92YtnkwhG6GFZIzNb30a0nmLFtEv8hjJAXWY8xnbB1wW6D7zE2Uv7I2UMxZHI/fpmFD05vv4jrR2/xHz+dvJzMDjcw+kbO1xduYCJCosBiDV6/XkV2DWfkVbCFQCaH1d1ESON0d6ExhO2jbpy4g+Cz97Dnz0OIfRJvdJ7sjBw06lwH9y8/NLqPMeTk1vMGAw7VG1XGvGPf4ufvNiD4zhOIk3NgkZLHO9uM+ekdg+GGoxtO4edRS0xaD1lePua++zvKjAC8MwULj3Qa1ga3Tofg2wE/GQwuJEQm8SBCXo72SJJF5Va0RWp7X4RXcsAdgQCCmo1hfSsBDncigf85QVFTI/SSK4dwVzpC/9Zf9GXS8ycEhL2s4fS+BzIccnFTFAMHq3MYkGUNb2t3vNRYXURpo6wUhSWElIGHuxVGww1Mwm3ArY55y04LU5682wAdFwsRfRY4O1X//j8rBog4qoB/NyEsNQayvbPavILIzBjlDjL6tMLovlLqALT7VX+4oSBPgcjjyu4VeemAna8AlXsL4BIoQPBqOe6s0r4D1nmCXZcaBjSbXliISMiLqm6XHrh2YA8fzV8fFjhoN/x9NOjRl19mnQ3uXTiLyGB2TCKElYOD2eEGRle4gdEXbmDKMtzAxD1+iOj7d/Hk5nXcPHIAGYnGW77kZGagXv1eiH8cBgUbcr6E7p0/YzDg4F29Jt6cNgdHVixRhynYc1GpQRO0Hf6ewXDDraMHcWT5YpPWgz2fe3/7GWVGIODhAxYAqNGqLSLu3OJBggIdQQ2V9MREVKhey6RwA8OeJ1OeKyb20QO9txl6rRVlaWfPwyKPb1yBpY0NGvUeAEcP/c8B0e7cYG64gWHTs/na/1p+nRxYmMDDw4MX+t+4cYOHHqpUqaJzWjbNiRPKfV3//v1N6rLACt01ww2sQ8MPP/zAi91VsrOz8d133/ER/1kBPSvy//DDD7Fy5Uq9yw0NVSZO/fz8eHCjXbvC7rhyuRy//fYbPv30U7685ORkLFy4kHeR0MRu69OnjzrcYGFhgZ9//pmvI+tuoRlaYNft3r2bX/7pp594oIKFBIoaNmyYOtzAlvfrr7/yLgya/6NlgQnWqSEmJoYHO9577z3ebYJhwQ8WCGABDfY4WKeEiRMn6t0Oa9euVZ9/5513+PeuatWqqbtyaAYcWAcKf//igyWkpKRgwIAB6nADCxwsX74cQUFBWtPdunWLB2RYtw02LZuHhR5sbQtDf2lpaZg5UxmoYuuyZMkSfPDBB1rLYSGUBQsW4IsvvuCXWSCFdQYZOHCg3sdJCCGEEEIIIYQQQgghhLxIKODwGjiz44JJ0wmEAnQc1gbndhdvkW3M+X+vYFyjyajVrJrRaVd+8zcfTbzD0FaQWkqRlyvD6X9MW0cVR3flD3S5WcVHPS/KzslGK0yhKTM1ExPbT8fD60/U14VcuI8j606h+/sdcHjtSb3LPbfrMi7suYrmvRuZte6EPGusEP273V9hev+5SE/K0LrNys4S3d/rgP6f9ISnv7KQOzwkCl/3nIOYsLjn+mQJ5ApYByfyU2lN6vBtsREOjalQ2RNfrJ2AmdPXIsfLFihQwPJRMqRPtbehITFhsRhcYTQ8K3mgx6iOPAzAuleonAl7gh9vnsPdprZA00B+XQNPT7zTqzN83Vz1Lpc9ltXTN+F56fh2a3y55mPeseGzNlNx/2qY0XlY+GHvn4dRpb6/3ulz/OwRN7wWIC4sSlBIRchq6gqb0QUQWRV5Di2EkL/pgBypiIfVJFKJcjlZuTiw8hgOrTmOqPsxhldMCIinO0LY1grpUFbCZBXk4EDMOZyKv4bZdcajmh2NmkoIIaUVdcq0z2GBEPDtJOAjMJt9HyeBI+PlcDChAc+NP9jy5fDtKIBQIoAsU4Gnypo3k1k4KIsg840fksDCsXD6ovLSFDj2iRxphYMQI+muAk8OKFCpD+veoH+5kScUiLsqgId5OXVCnjl7V3f0m/QNdv08B7lZmVq3WVjbIKhDZzTo3hf2rm78uvjwx9j+47dITzAeTn5ZbJz6hdnHJK6+fuj8wUc49MdvZs+rGdZYOvYdOHp4oU6nbqjRsg2ErIXNf8KuXcbJ9SuREPHf/0UEAlSoXhNt3h4BJ88Kepcrlxfg7NYNeF5qd+iCLmMmIDcrCxunTSpcfwNYwObuqeNl3qGDYa9rFpwQ/lewnZeTjdtHDyL41DGkxDw1eTk56co0YG5mJm4c2ofQs6d4AMXdv1KZru+rhr0/Ln5vfrhBhc138Qc5uiwXlktokBXysw4LrBCd2bp1q9bo+5rYbawjAzN48GCjy2bdD1iwQOXzzz/n4YCirKysePE96wqgKuZnoYVx48ahcePGepdvY2ODw4cPFwtksDDBJ598wjslrF+/nl/377//Fgs4bNq0iRfXM2zbssfXq1evYvfDOk3s2LGDF/Szv6ouDiykwLoyqBw6dIh3NdBcft++ymCcJtZxgS2HdVBgr49z587xDgbNmjXj68GCCjNmzODTsvXXF3DIy8vDli1b1OuvK3BhCtZxQRXKaNiwIX8Mmo9LhXVrYAEXtt4s7MA6RSxevFgdVFCFN7KylAOAtG/fvli4gRGLxXz7sW4hGzYo99UsPEIBB0IIIYQQQgghhBBCCCEvCxp6/jWQm6V/9DpN7LdyqZWEhw9K4tGNJ7h80HCLdYYVWLNRxye2m47MtCzkZOTw0cXN0Xm4so14lQYBRqet2rCS3nDD6DoTtcINmvYtP2p0vQ6sPGrS+hLyvLGOJOsfL8YnS8ag87tt0f39jvh2xxfYkbwaHy4YqQ435OXk4atu35Uo3GDjYAX/QB++fN9aFVGeWMcJ9pjmHp4GJ4/CEQn1KUkxkGVlF8y6cxMJ/Wogo2lFZLTwQcKwOkgYHAi5pWn7yYJ8OZJiUhB8NhTz3luMKT3mIF+m3K+cfRyO0Zt34G6sdtHW1ZgYDF23GWGJyXqXe+/yQ0Q/VHayedYqVPbAmLnD+fn9y4+aFG5QYZ00+ozrpvf25O4BWuEGFRvPrOLhBg35PWwwa+yv/HxGSiY+bj4Fv09YjtBLD/llQ4RdrHi4QRcWdFgQqizUeOk7OJT2RAghpVRgQgiAkcsAqb0CgsLaW7MkhwBxN4xPl5cCXPpRgRMT5cjPViA/i42wbd59+XdVFkA6VTVeCKlvRGgWbjgwUjvcoOnRLkBhZKDxsL20oyYvB9+guhizeCU6vvcharXpgNodu6L/l9MxfvnfaDd8lDrcwArD/5kzrUThBhaWcPX1R1D7LuU+6j3rKuETWAdvTp0DS1u7sj8mEQgglkhxav2qEocbGFZ0z7pYRIXcwb7ff8aOubPUHQxYuIF1PdAKBygUiLp7BxunT0ZqnP6wcHTIXZO7G5Q15woV0WrIO/z8jUN7TQo3qEQE30K9rj3LfJ3YNt23aD4/n5WWivVTPsOx1ct4Z4eioR5zsE4eB/8oLF4nusVfh97PUlOxblDxJnyHKKlBgwapz7Mif31YwT7DggidOnUyuty//vqLF+GrOi3MmTPH4PSfffYZmjZtqr7MRvk3hHVL0NdtgmGBBBXWEaGoRYsWqc8PGTJEZ7hBMzSxbNkydeF/fHw81q3T7qyrue169uypM9ygwh5nhw4d+Hl7e3te7F+0EwNz7do1hISE6FzG3r17kZSUpO7EERBg/H/RReXm5qq7PTDz5s3TGW7QDJWwbhsqLOCgKTMzU6szhyEs8MI6Zmzbtg1Tpkwxe90JIYQQQgghhBBCCCGEkOeFAg6vgaoNTBvlTV4gx6w355sdNtAUE2Z6AULIxQdY+tlq2DhaqzsymKJehyA0660corR+h9rwM1JIzUZhZ0XbmlhxwJfdZiM+onQjwydEKX/gIuRlYGVrhV4fdMYXKz/CZ8vGokWfxvzHY03HNp5BXHjJilQad6uPZbfmo++4boh9XL7dH+RyBe6ev8fP9xht/Ad/c1VqUhlTDpxEfF7xasw8Xwck9ateouVePXwTE5pP4UX3c4+dgkyuu5IyNScXi86c17uczDTDP2CXhepNqqDNm83hVtGFX3b2dMSQyf2w8NwcOHs68esOrCocNdEUQpEQXUe2R5cR7YrdludlA5mnjc75LF2VIxPqJRHgdMIdbJy7HcPrfIxHd8JNX6fe+osKmPCsGNxOfWjy8gghhJhX4F8UK+Y/N8N4Ub8hWaYPlI2EW8DNPxW8w4LE1vT5PJsAHo0Lz9voH+Scs60AFORpFygrChQ4/pkcOaU8pMhOoIADeXlIrax5cXn38Z/x0fcr1W8MQZFjkuCTx3hBfklUadwM7/70O2p36Iz0xNJ3gjNEoZAj+t5diMRiBLXvXObL96xclRfMZ/83on9ZYaGGjdO/4J0PTqxbAYWeY5LstFRc2KEctVyX3Gwj39HLgFfVGqjWrBVsnZz5Zfa32RuD8dasebC2V/4f6c6JI2YtkxU01+vcA9VbtCnz9Q05cwIXd27Bik/GlGmHCBaSiHl4v8yW9yp6uFNeNsvZUX6fqaw43sPDg5+/cuUKwsKKDxYQFRXFR+dXBQfYKPzGsI4GmkX7Eomys6EhY8aMUZ9n3RkM6dixo8HbNQv+MzK0O16yy6xrgsqoUaOMrpurq6tWaELz8am6EGiGL4xZs2YNnj59itTUVIwdO1ZrvVu3bq2+rOpyUNTatWvV50eMGIGSYB0sUlJS+HkWbGCvBWO6du2qfv5Zlw7N8EhgoLIDKMM6U7AODjExugNp9evX56GW/v37o3r1kv0vixBCCCGEEEIIIYQQQgh5Hko2VD95qfQZ3xUHVx83acQ/Wa6s1PdnaWOBnEzThmg99vdpjPlpOLq80xab5+0yutzO77Tj07PW7ipfb/wUX3SaiZS4VJ3zbZq7E3uWHUaVev5wqeCMdoNbQigSIORC6X8cdv2v8JeQl0laYjou7b/Ogz/VGlVG5br+6tsuHzDehUWfq4du4uzuS/iulEEpU+XLCrD8q/WYf2Im7pwNxfWjt8tkuRILCW7KMpH23wiIuuT5OCDX2w4WUelmL//B1TB82O873Omq7Jqhz76Q+5jdozPSYlIRfO4exBIR6rYLhK2jDXxrevOwAAumlbVxv4xAt/c7wsrGUn0d+/xQjWyYkpeNtLwc2EsteXcKczTqUo8vZ9KK8WjeuxF+HfsnUuKVBVv5DhZ65xOIjH9+ydvZYLH/KWClM5DtCOGRTIg3pEAQr10hKxAKlJ+H/y1S6Ge8+CMqKxZBDpWNP0BCCCF6VeknQMRR04oG5aY1oDNIaAHITewa8eSAArVHC+DbiRU2Gp5WbAX4dxegzgcC9Wcj+2xpPkOIk5/LkaenDjl4tQL3tyngVBWwdBHAr5MA+bkKlEWGztrNtPAIIS8SNsL94xtXUSCTwatKNd51QeXxjSslXi5bZuiFM9j760+QF5T/MQlb/9Mb1+CNr2bg6f0QRIUEl8lyRRIJYh4oA93l4en9UGycOgmJkYaDwXdPH0enUeOQkZiIpw/u8TAH61phYW0NVx9f3mWCtwMtY51GjUet1u0hsdR9TMJCH6wrAuvYkZWiv/OdLgH1GvJQTc+PJ6Fq4+Y4vHwxcjLMP67T59SG1SZ1/2ABGXMkRUfy0AspTpapQNSpstkyUacUfHkSm7L/bGUDTLDCfdVo/KwTwaRJk7Sm2bJli/r/t6zbgSlY9wGVFi1amDRPy5Yt1edZl4SIiAj4+PjonNZQ9wZVZwSV/Hzt/e6tW7fU17HHr9k5wtj6qYIFV69eVV+fnJzMwwoqjRv/lzY1oEIF/SnUd999FydPnlQHHGbOnKl1Owsl7NmzR91VYeDAgSiJCxcuqM+z/di4ceNMms/CwkK9/di2rFRJOYhRrVq1eHcPVTjlzz//5J08GjRogM6dO/MTey2w+QkhhBBCCCGEEEIIIYSQlxUFHF4D1RpWRs8xnfDvH9ojXpUXexc7kwMOudl5uH/1Ea4dvaV3GlYw9PHv76P9W61g41B8dO+AIF/8fvEHrJ62EYfWnNC5jIzkTFw/doefP7L+FJw8TO8YYUi3kco254S8DAoKCrDsi3XYveQA8nIKw0xBrWpg8poJ8PR3R0EpCubTkjLw07uLnkm4QSX00kPEPonHnL1TsPh/K/Hv0pLt5xzd7WHnZIu4iETkZuUit4pyhFBDcqo4lyjgwDwOZx0uDAcc8goKMKL+RCTefQqFXFngYGltgZ4fdMboH4ehRd/GOL2t8Efy0nL1dsY7Mwah+/vFR2dkP8BvfXwdq+6fx700Zaeeus7eEHR0B9aZVlBk52SD7qMKl92qf1Mecti/4ij2/HkI9/8bzVCX/EwJxJaGh/KW12XFT/8VoVgJIe9lh7wW1pB++hSC6MLXJNuWi6/MRUJkIg+z/GbzDxIKDAc1bFg160uKbZHSluZQ2SwhpCy41hbArwvw5OCz2Z4WDkC2iQ2l8rOBlIcKxN8wMJEAaPg54NNOCIl18T2jU1UBOi4R4NZfCkTqaXAkSwfieI2eAuGHFLAw/nXDJCxwQcjLoiA/H8fX/IVbRw/wcICKT63a6P7RRNi5uOrtKGCKzJRkHFj8yzMJN6hE3r2N7LQ0DPxmNg4vW4Q7JwyPhq6PtYMjLG3tkBoXo7VtyktC5BOj0+Tn5mL5x6ORnpCgLsiXWFrxLhythgxHQN0GCLte8kBKUXYubmg5eBgC2+o+JrlxaB+u7tul7o5QoXotSG1skJOpPWq8Plb2Dghs10m9vOotWqNKk2a4deQgbh7Zz0MEz2Lbs2357rxF/LkWSaTYs/An5Bjp1GFpY0aboddMdjw7ziubZbHlZCcAEt3NBUtt0KBBBgMOmzZt4n89PT3Rtm1bo8tLT09HnsbgDL6+viatR8WK2t1wExIS9AYcNAMMuhTtDFp0uSouLi48JGDu+mkuIzY21uTwginefPNNTJgwAVlZWXj48CEPImiGMFjgJDdX+T9uFm6wtS3Z+1Czu0JmZib++OMPs5eRWKQr0bp163h3jTt3lP/vlsvluHz5Mj99//33vFNEhw4d0K9fPx6scXR0LNG6E0IIIYQQQgghhBBCCCHPi/5fIMgrg438dfXwTZOnF4kLuyOURFx44Q9Ppji3+wruXy3ell2zGPXRzXCd4YbM1Exe1Dy23ud6ww26JMfq7vZQlF8t7R/8NLXs1xhNetQ3+T4Jed4Wf7IS/yz4VyvcwNw+HYJJHWYgIyUTdVrXKtV9sGU8a6nxaZBIJXj76wEl2n85utljQ/hSBLaswcMNjEJoQqGgKdPoIU7OMTrSqTBLhvi70epwA5OTlcufw/ljlmL8wvdQobKHznndKrrwMMEHP78DiYX+LKONgzWmbPgEPx2ZjnVhi3WGG5g5Nw5iypXd6nADcyMpCtf7WiCtl6vRx+vo7oDv9kyBk7t2uIw9Xz3HdMbiy3Nx6MGfqOaue1mZMYaLIPRuSWcR8sdqV4+yQqYKldx5uMI/sCLSt2kXCRQlzRejsXOgwWkIIYQYpyhQIM6MRlGC0h2SmBxuUGGhhLQwwx82aWECneGGvDQFri2U49AY/eEGXXKTTJvOvnBg+2J82gvg0ZACDuTlcfivRbh+4N9iReQRwbewZdYU5OVkw7tG6b57yXKy8ayxjgJiiQTNBw7ho/Oby9bZBR8sXQ2PgMrPpMDeHGnxcVrdBtj2vbRzK46uWIpOo8fD3k13cNve1R21O3RB2+Hv884P+lja2aPn/yZj0LQ5GPX7XzrDDczhvxbz148q3MBEhwYjLU674FkfGydnDPjq22JBAZFYwgMb78z9DZ+s3QYnr9IVTJuCvUYcPDxRuWFTOHt5o8BA90BVqMSvTr1yX6+XFQsqlunyslBuWrduzcMLzKVLlxAeXthFhZ0/f/68uvDeUHBAJS1NOxhjaoCAFb9rYkX3+mh20TWX5vqZum5Fp9VcN80if3Zsb2VVusEI7Ozs8MYbb6gvsy4OmlRdJJgRI0aU+H5SU037P7SxMIsmDw8P3t3i559/RmBg8c9NFtr4999/MWrUKHh7e2PWrFk8BEEIIYQQQgghhBBCCCGEvCwo4PAauH7sNqIfmvaDL9O0ZwM8S8c3njY6zaG1J5CXo/2Db2ZaFia2n4HtC/eWS1E1+6HskyVjMHn1R3DzcVFfb21vhbe/fgNTN0806cdGY2IS07Dx8FWs2nsR524/VreiJ6QsxUcmGuziEvM4HjsX7UPnd9vCzvnlGRlSKBTAM0BZUOPq7YI2bzYzexkjZw+FUCTE8Y1n1NdJo413ZjBlGn3EqXlwiDRcNWF7NR4CPb89H1x1HFlp2fjtwve860KFKp48rFClfgA+XjQKqx/8hs/+HIuBn/bG139/yjsVFGVtZ4Vvd3yB9kNaoV77IJ3hkAKFHOsensDmiJOwkuZBICi+f0oZ5oV8Jx0FSwKgfsfamLh8HNaFLUKtZtVgzNdd20Gio3giL8USeeG6X5dsn6lcK93FnfImVlC4FC6zfscgxD5JwPKv1uPzDjOQtj4RCpn+/W7OzRzIsw13j3ihKcroRAghpRRzybzQgVeLZ7vJw48Y39mF7VVAXqA9XV66Asc+kePBdgXyyyHnyeqkG00S8u4Rlho5QIktUGsE0PTrsgk3ZD5V4N5WOUI2yBF7RUHHJKRcpMTG4PZx/d0Nkp9G4+bhA7woXmqlXXz7IhOKRLBzdePnHdw9UblR4ejfpmo9dATk+QW4d6HwmORZEEulJZ6XPVes28bbcxag2YAhcHD3gIW1DTwqVUHnMR/h/YXL0OWDj9GoV390G/8ZhKLixwwWNjbo/8VU1GjeGj6BdSAUFj8WkBcU4NzWv3Hj0F79KyMQ6P2/jl+d+ug27lOMWvgXXzdD2PTtR3ygc11Vz3VZCKjfEElRkTi5fiU2z5wCWW6OwelZ6EUz+E60lXXDPXE57n7Y/xHZaPqqY1nWxUFl8+bN6vODBw82aXlFOwoYCipoysjQ7npiTvjAHJrrZ+q6FS3m11w3zfNs++XkGH7vmOLdd9/V6qDBup8yT548wenTyv9Z+/v7m9RRw5RACesQwf+PYebpk08+KbZcqVSKzz77DLdv38b9+/fx22+/oX///nBycioWdpg2bRrvVkEIIYQQQgghhBBCCCGEvCz0D6FGXhmskNNUYokIddrU4t0Jfv94BbLTS/9DkTEpcdqjjemSk5mL1IR0Piq5yvZf9+Lh9cfltl4f/f4+LKyl+OOLtUjR6PjAior3rTiGVm8048XEJZWfX4Dv1x3B7tN3INcINfi4O+L7sb1Qw0/3KIiElMSpf85DXmB4pLZ1M7ei3ZBWmLXrS0zt/T3Sk82r0pNaSop1hygJgVBgcvFGkx4NeLBB5ZPFoxH7OB7B5+4ZndfD3w3vfjsYnYe3RUp8Ku+OoGJ9IxYZjSoAYt0hJmFaLizv6x522cPfHbGPjVdwVjgWDdHYOkjKKj7cpCQ2Cw7HIw3Of3TDKYyYOQTDp73JT/q07NcEy279jN1LDuLG8Ts8zNGoS130GttFa59a1JWkB5hzZyPi81Jh/1/BiL0iBxk5FsjMtVBPpxAJUGVGK6TMvoaUOOW+sl77QLz9zUAenDBHswAfrB4+AL8eP4cLj5Ujs1qKxaicLULKx/cgqC2GvI8dFFWkQJ4CgkvZkPey0xtu4EQCKDzFECQW8MfOXlsf1Pu88PYeNsgTiiFWyCHSCHCw3XK+QoiCmhY4uOs0+g7tbNZjIYQQoi0r1vTCTKEY8GgggFdTBa7/DhSU/yEJ8tJMG9FZlgFYaDQkCt2oQFr5HZKg4ST2GafArWVAnsbgv2w9wvYAFVsDDpVKvvyCPAWuzFPgCQt4qL8qKmDnCzSfIYRDAHWHIGXn3vnTRruYnfp7Nao1a4F+k77Bjp++Q162eUOpSywsIMst/F5fYqxg3sTBB6o0bg5r+8IdQ5exHyMjKQExD+8bndfRwwsthwxHjRZtkJYQV2bdG1hXBdZ5wRiJpTXEUgvkZJgf3mZdHULOnETT/oPQctAwftKHPT53/0q4fnAPou4G8+/lAfUboU6n7rB10u64punx9SvYv+QXZKYkG1sZHpBICH/Mu2mw58+vdj00e2MwKtY075gkoF5DDPxmFs5uXo/Iu7f5dWILC96RQrN7REmx8EReTg7WfVm8WFkfeUE+Qs+d0tvd4nVn5aYMBGo0Gikx1kHKyniTwlJh3RkWLVrEz7OAAytQ1ww4+Pj4oEUL05Ke9vb2vMg9778uIKwLRK1axjtzsuJ9TaquEmXNzU0Z/lJ1X2AhB1PCFJrrp7luLi7a/8N4+vQpAgIM/282Pz+f/xXr6STToUMHvs0jIiIQGxvLQw0szPDPP/+oA5/vvPMOD0CVlKtr4YsqLs7MNmMmqlKlCj766CN+Yp0aLl++jO3bt+PPP/9EUpLy/1dLlizhIYcaNWqUyzoQQgghhBBCCCGEEEIIIWWJAg6vAScPjQocI/JlBVg6cTXvWFCxWgXcv/IILwKRRARbJxt15wb24/X+FUfL5b5YcfUnS0bj6aNY/PbRXzpHrk56moyvus/GqnsLYWNfsqHdflx/FDtPKX8s1xQRl4Lx87fi7xnD4e7ECncJKT1Twkrs/f9ejU/w5sTeWHX/N94l4NrRW/xH3LjwBITdCjc4//tzhmL5lA2lDjmYGm5g+7ax8wtH2mNsHGww/+RMrJq6ERt/2GFwfhZuYB0Gfh61BMc0ujcw4rRcOO25j+SeVYuFHBTCPECehNj3fGERlQP7UwkQZRSO8G9KuIHJDo2H9593IG7sivgAGyikIggzZbC9GgeHE1EQZSt/hNcnPjxR5/UF+cp10ezI4F3FC2N/LtxW7Mfu7Iwc/ldXJ5qH6dH48sYK5Mq1n0v2e76dVS7fLWZphBzcWvhiScQHfN9oaWMJe5eS77sa+npjzTsDEZuegbTsHNgpRBhV6SOIsmXAeRmE5wsDIQoLAQq62AHGBp5NLYCdkw1qNquGi/uuad2k6Mj24QLI5CLkQwHBfzt9OQ9NCPiyr8kfoi9e0oCDAtDReMPsZRBCSGlZOCkL9U0hzweu/aqAjRdgUwFIezEOSSCUAJL/vvrLMtgOFgjbV047SSHQ+Asg5b4Cl3/UPUl2PHByshzd1wohtixZ0d3leQqEHyr+GNLDgRMT5eiyXAhL/twRUnqmhBXk+TL8NWE0mvZ/k3cAuH3sECKDb0EgFPIOEMYKzFknhONrlvOC8FIxMdxg6+yCtsPe07rOytYOb82ahxPrVuDq3p0G52819F14VamO/Yt/QcjZkygrpoQbmOy0FNg4OUNiYWm0i4Au6Um6B9RgXReKdjxwrlARHUZ8oL7Muj+w+2R/2fNbFAuI7Jj3ncmhD5eKPhgw5VsehpBYWvHnoaR8atXG4Bk/ID0xAblZmbzTxarPPkRpWdrZwyOgMp7c1D4mMQWbhwIOuklsBPBuDUSeKPVTBO9WAr688tS6dWt4eXnx4vzz588jKiqKBxQuXbrEbx80aJDJxfRsuvr16+PChQv88pkzZ9CtWzej87HpVBwdHfn6lIc6depAJBLxrgjs/w/s8Xbs2NGs9atZs6b6PAsisJADC0swV65cMRpw2L17Nw+VVKxYkd/38uXLtW5n/xMZPnw45syZwy/v3LmTBxzYfKptrNnloSTYc6QSFhbGQw7u7oYHtmHba8WKFfwxsw4SlSpVgkRS2J2ThTHu3bvHAy1Fgx/sMTVp0oSfRowYgXr16vFuFyywcfLkSQo4EEIIIYQQQgghhBBCCHkpUMDhNcBG6nb2cuKFp6aKj0hEhpmjt+sisZRAZqTYWSwRI19muPig1RtNcXHPVWz5eRdCLz00+f4VYiFyqrqiwNEKgtx8WN5PgChd/2iOLfs3wVtfvYGzOy5i04+GCxHYSOWH1pxAv4+6w1yxSenYdbp4uEElNSMHW4/dxLg3Wpq9bEJ08Q/yMWnDsC4Pm+buhIWVBYZPfxMDP+vNrw+7HY7/tfwGWenFuw2wH3tHzByMN/7XC1npOVg9fVOJnoSsqnbIqO8CuaUI0ugs2J+Phzij+L5BaiVF52Ft8NaUN+DhVzgaoAr78Twx2vj+joUaVk/bhNgn8cVuUwiAAut8SCIjke9qC2GeBMIcBbKrKZDrb8nKc/h0bJzTxDcqwH35Y9ifN30fq5J+NwbWd2PgKxRALhVCmFtgcjH6xf3XIMuTQSJV/sB96cB1bP15F64duc1/tK7VojoGftoLrQc0U8+THJuCv7/fzvddGSmZsHGwRud32uKtr/rD2dNJPd2G8OPFwg2abC3ykJXLUgXKogtXCxu+L3f3Lf58lJSHnS0/Hd90BrnZytEoixLkKiA8kwl5e1u9yxGE5KKWdwC+3T4JwyuNLz6BQ2HRlTLeULyQROxqLEFBCCHEGK9mgNRBuwuBMZlPAXHJssRahFJArvujxKxpfDoAEccVuLdFjhTjA7OXWMX2QI23hDx4cP8fw18MchKAiCMKBPQ0vxgzI1qB8MP6l5+bzLpEKFBzGAUcSNlw9fEzaTqFvADn/9nIi+6b9B3IT0zsowfYNONL3YX4AgHavj0S9bv1RkZyEi7u2FKuTxsb0T+wbScexLBzLj7cOyvsT0/SHUjWdPf0cRxfvQwZJkxbXjKTdXemM8XDSxd4aEEVZHh09RIu796GiOBb/DLrntCwV39UadRUPQ97rBd2bEHwyaM89GJpY4vAdh3RpN8grU4YF3duMaujhbWDI0RiCe+0UFbsXFz56fbxwyj4bxT4kvKuEYieH0/CXxNGlWh+kUZhMymucl8hIk+UvoVD5X7l/5nHis8HDBiA33//nR+7s1H2WfG5ypAhQ8xaHutAoAo4rFmzBtOmTdMqhNdFs8jflMBBSdna2vIi+3Pnzqnv19j9JSQk8JCBSqdOnbRuZ+GDbdu28fObNm3CwIHKzwh99u7dywMWrCuEvi4OLMCgGXBg25B1clAFUli4wBD2fzFVtwddWrVqpdVpY+XKlZg8ebLBZbLXxejRo9WXQ0JCUL16dX6ebVNVIObXX3/Fxx9/rHc5bJ66deuqXyPp6eZ37CGEEEIIIYQQQgghhBBCnofiQ6SRVw4bxfuDeea30maje5cWCzcYv18FL7LVx9LGAs4ejvhuyAKzwg05lZyRMLIR0jtWQVZDb2S28EPi8AZIbx2gd+zYkd+9Be8qntj2yx6T7uPKoRsoiZPXH6LAyCj1x66WY9UUee00690Q9q6mj2C5dcFuZGcW7gMCgnzx8/FvUadtLa3pKtX1w4JTszD06wH88rCpA3mnAEd30zvHsML+yI9qIOqTWkht44H0Jq5I7OeLx7PqI62R9ih0qk4R//vjA53hBpXwu1FG7zfkwn2d4YbsyjZ4/FNtPP1fVaT09ERGU1uktZAis7Yq3KBNIRUidkwAcgJKXoH5f/buAzqKsgsD8DvbN713EkJCIKH33ntvUhQVCyCKir8ooKKIYEdpioodaQpI7yC9t9AhJJDee90+/5lZUpataQT0PucsbJn5drZkdie573cZHQuhwvZwQ2nI6uiG0/z57d/txXuDP8HFA1fL/qh+4+RtfDT2K/zx0QYkRiXj2xm/YFLD17B52S4+3MApyivGluW78Vqnd3HvenxZ2OxouvkAFkcgYCERlXetGBHYHLXlxukoi7cL/8gDU2SmkEXDol9xEyw++hGun7hturtIsvWiKVeZA978eCGen/kWZk79CEf+OlnWKeORx9bQiRBCqkkoYdBiWuWLBjXWJ3y3ylpwgcN9fFoKU3C3ieTA2U/YWg03cJpPEcDOE4jeYtsOOFVf31ZpycdZq/v4xKP0IUBqTsMOnSGR2/6d+dz2v6G5XwzK8W4QirEffAy/RobHJF7BIZi48Cu0HTaav9ztyUl8Jwe5oxNqS69JU9D3xZdNhhtK5SRbPyZJunW9TsMN1VWYk4WY8/qi2Qs7t2Dz5/PLwg2cxJvXsPXLBTi7dSOyEhNw8Ofv8MsbLyFy746yjh6KokJc2LkVa+fORFZSAh8k4DpAlI5rGwYR3XqhtqRE3azW+lznhXHzPuG7kVS1uwj3s7PmvTfx42sv4s/57+DOmZPQ6R6TY5KHwLMl4FS/emM4BQOeLfBQcB0FSnHF+qUF+yEhIWjbtm2lxpo2bVpZ4X58fDzeffddi8tzBfGlxfGcqVOnoja9+uqrZefXr1+PHTt2WOxa8NJLL6GkRD+5hr29PZ566imjx1uKe96OHDHfuuPOnTtYvXp12eWnn37a5HJhYWHo2FE/OcTdu3exaNEiaO6HmrgOCNZUDJQolcYT63BdMire98KFC3Hzpvn9Sl5eHmbNmlV2uUuXLmXhBk7nzp3Lzv/www8oKjI/SVFhYSH/PJRq3Lix1cdDCCGEEEIIIYQQQgghhDwKKODwH9H7ya6Yt+ktg1ncKxt4qCpLM1hxNGotWvRsgoZtjGfD4rb3/Q0z+QLcylB7OyB/QBhY6QMzcwkYlLTwRVF749ns7Zzk8Ar0wNldF6EoNt/loSLWSkjBHKWVjhUclZr+UE1qDtfVYNL88TYvX5xfgksHygtTOKGtgvHVofn4LWoZvjw4D7/cXIIfLi1Ck87lf2TljPnfUPxx71s4e9pWUJT+ZDBKGhsHIlixAGnPhEARaG9wvdzBOGTwILXSetF6aZG/wXoeEiTPbAiNh9TwBiGg9rFwv0IGOQO88bCd2HoWWSk5WPHGr2b3tas+/AsvhL/B70fNBdfS4zIxtdlMjHSZhEUvfguVhe4NpZj7aYzhHuEIcTJf2FUdRzeewpZluywuI0hQw+sLBVq4GH6GBAjc8Hnz5zH37Zf47hLJwjTYz3WA0+/OcPrBCbIJMjAODJgdlroVsZDpNNjLHkFMj1Rkj1Ig+tl0fJnzG2aMed9kRxNCCCHm1R8oQMd5AjhVnMT9EWkOwKoB77aAc6jxbS6hQIe5DGK21P52SJwAmTuQfJKFDR/H91XtmESrqpllCLEVN7t+x9G2H5MoCvL5AvmKfEMb4cmPvsDzi3/A2Pc/4f9/5rOl8AkNM1iO6/rw4vKfILU33+mrOrjuEtZoNdZ/iBX/gpm0o8+dQn5mOo6s/sXsMsfW/obfZr6MyH07TXfg4Ap601Lx25sv45sXxmP/ym/4kIOtmvXpD2cvH9SGm8cO4co/+6wu5+DuDr+wcIPrXH39Mea9jzDwlf9BIBDyAY4qYRhc3LUVqdFRyE9P44MS277+BH/Om232+fyv4X7H2f4dAYTWfzRN4tZrP0fw0H5Xys3o7+fnx58/evQoTp/WT14wfrzt+8hSgYGBeOONN8ouc8X5r7zyCl8kXxHXJWLevHn43//+V3bds88+i/79+6M2jRs3riw8wP3eguu4sGLFCr6rQkUpKSl8Z4vSsAdn+fLlcHPTd9As1a9fv7Jt5gIRw4cPx8aNG43u9+LFixg4cGBZdwxuPa4bgzkVgwxffvllWcCiYhjFHFfX8o6YFcMjFXFdIUqX40IHXCeKip0qSkVGRvJdLrigRenv87744guDZbjXtzTUcuPGDf55K13+wW4Y3POfna3v1BMUFFTrrzchhBBCCCGEEEIIIYQQUlNM92Um/0pdRrbnT7HXE/iizF/nrkPkP5Zn6X5Yzu2JxJbc35GRkIkjf56ESqlG74ndENjIH7+8t9ZqSOJBxa39AaH5/A4XcrC/mARGUz7rd79nekBuL6tU54oWPZuiKsLrWy+EbhTkVaWxCTFn2LT++OuLrSa7Fphyft9lRB66xs9U36xbOLqO7sAXivuH+vInU0oKS7D9+/3Y8f0+5GXkW70PtYsEBa2NuzSUETLI7eUDn9/13VvEEhE6Dm1jccwDq4/i3rX4KgWUcvt7Q2dn5qPRSp1DcbPqzRDr4GJvMnRhSWZiFtZ+vIkPilli6z5UWaLC3l8PQ9g5AJr65r8icMNpc1k0OK/EF0v13TuqI/5WEv+euXslDnJHGbo/0Qldx3TED2+t4u/LmtyT6Xj6dDDefm4MUhU5cJU4oKGjf9ntmxJ34W/v3ZAOKg+uiJqKIR0rQ/5r+dDuLQIGGAZpOFJGA5GUNXrxhU0kiHPLwbLZP2POivLZKAkhhFhXryeDej2FyLvHQlMCXPlOh8xH45AEqWeBUTsFKEwEEo7o+IBBUH/AMUCIyG/NdAuqYfUHMXy3C02J7cc/ni2rVozpGsatx9qwDCE1p83QkbiwayuKcvTFltbcvXQedy+d47+714toitB2nSAQCuHm58+fTFEWF/MdAq4c2ANlUWGNv3wiiRTBLS3PsH710D7kpljv4PCokdjZQVVcudY5eZkZOP33n2B1NbOf1CiVuHZ4PxiBwKYxHT080W9K9b+TZ8bH4vKBPchKiOOfh0aduyOkTXsc/uNn/QGQFYVZWej8xET0f+l1FGRlwN7FFZ5BwWW3H1//B85s/qtqG2fm/pOjbuHQ7z+i/9TXqjbuvwz3mdVlgQAn3tdBq6hcuIFb72F+5gkEAr4onSvgr1joX5WAA+fTTz/F1atXsXfvXv7yd999h99//50vovf19UVWVhbf6SA3N7dsnQ4dOuDbb79FbeMK8f/66y8+XBAXF8d3OJg+fTo++ugjPujh5OTEX3/8+HGoKnTt4ZZ5/vnnTY75xx9/8F0NoqOjkZ+fz4cQGjRogPbt20Mmk/HdEc6ePVv2uxCusP+XX8yHsEqf+xkzZvDbV7od3Gvk4GA9KMd1V0hLSyvrMLFr1y5IJBI+zDF06NCybVi3bh1GjRrFd6jIyMjAyJEjy7abCzJwnRa4gETF3+Fw4YaKHRtKO05wgQnuxOFed24buO4f9evXh1wu57t5nDhxoizgwW3Pjz/+aNBtghBCCCGEEEIIIYQQQgh5lFHA4T+ofhN994IOg1s/MgEHbrb1fb8fxrZv9+DeVX1h8s6VBzBkal8kx6RWejxl/fKZs0zhOjuo/Jwgjdf/YY/rHjFhzkjkZxUguHnFKWUtFyMPeL4nqqJNo3oI8XdHTFKW2WXG9W5ZpbEJMYebifDV5S9i3qgvoNNaLxTZ/p3+D+OcbSv2wrOeOxZsm4OQFvVNLn/x4FV89MQiFOXZXhBT0siJDzFYUlyhu0O3JzpC7ig3uywXyPjiuW9s6q4iFAn58EZFha1dUGUPPIxn54/HP2uOITEq2abVKxtu4Nw8fYc/1bi/c4E3LXRluKaE36w4vLd+JgQmZrjMzy7gP1+44EVEpzD41Dcf2Nq8bBe++99vBn/AP739An6f9yfS4zNt3uRNi3dg2Mv9EWhveF/Hos7gr6xtJtcR+gjh+KED8qZmAzeUYEc6AsFiQMuCiVRA1J4Lypl+fwp8hThecJH/3HByd8QjrWoTexNCSK1yDtbvX306MMi89mjsqLhiyHu7WERtZFEQp7/u3i4gZLgOhcm1v41uEUDYWECZx8IlxHr4gCNx5kIYVSvI9G4HOASAD3SYEzqSAg6kZnGz2Pd+bip2LPkCLGv9mOTS7vLvcVxowdnLGyNnfQCPeqaP2+9FXsD2rz+t1VntG3fpDqHEfIHo3Yvnse/7ZTaNZWsRf1V1Gf8Mrh8+gNy0FJuWr2y4gZN08xp/qmk2PS8Mg76TXzE5635xfh4Srl8Fq9PCr1EEnDw8zQ5zbtsmHF3zq8F1MefP8F0hivPKC8KtOb9jM57/uj/cAwy7hl49uA9nNv+J2nD9yEH0ePoFSO2MA9v/Rd5tGfRaKsDZT3XIj7W+vFOwvnNDXQT6uKJ8LuBQKjw8HM2bN69yiGDHjh2YM2cOli1bBrVajeLiYuzevdtkuILr+PDZZ589tGL3evXq8YX7kyZNKtsmLhCwadMmo2W5QAEXvOC6S5jj5eXFd7145plnysbjOhiY6mLAhQO4YEFAQIDFbXRxccGIESP4MIaprg6WzJo1iw9ocB0lioqK+Pvj2NnZlQUcOAMGDOA7dnDbfevWLYvb7ezsjKVLl/LPmSnvv/8+v+/jgiLc663RaPjnpLQbSEVcuOKHH37gu1gQQgghhBBCCCGEEEIIIY8Lhq3s1PjkX6MgpxDPhb3OF2fWNZm9FIoipcnbfIK9kHov3eaxuDd0xvRO/B+6LXHfdwchEhkiOjVCwq0kXD12k7/et4E3VAoVspJzLG7vp3vmommXxqiqe8lZmLZoI7LyjIuap43sjMnD9O3bCalp5/ZGYtELK5CdYv49bopOJoSztzNWXfqaD/hUlBqbjinN3jT7c2xOfgcPpD0TYnEZQaEaIXMull22c5Sj7zPd8cLHT8Le2R4atQZHN5zCnl8P4fLh6zaFN/xCvBHWNgSH/zxpcP3dpS2gdTb1B/77H5UWdiv2F3Lgt0z/R2muy8RHW2fzf2xOT8jA30t28QX4jwvu0Wpme0DX13imQiZRDef5eZj27tMYPLmPwW3ca8F1Xdj900G+GwRHIGDQaUQ7vLlymlEQgNvvzuw5r9Jdeoy211UItp4Y8/54E92atiwrcMpJy8W09XOA9pbXz5ucB+1NjX4sCcMHHMRj7CB51XJwQXtDjfnBr6BNvxZ4lCQmJvIFJJzGz38AiUM1gjtcoVthLm79+hF/PiEhwWphCCGEVIYih8WeZ3VQ1/wk65UmsgM0Zmp77XyA4srnrq0SiADHQMA9gkFeLIus+zXCXPBAXQQocyxvb49FAriFV70oMzeaxdG3dVCaqN9tNpVB4yfNd8UjpDpiLpzB3u+WoqTAete3B3Ez47+wdCUkMsPgc05KElbNeh0aVeWOSaqCKyZv0rMvuoybCIncDlqNGrdPHsPVQ/v5Yn9bvt+6+deDm18Aos+dqpVtbNihC4a/+Q5/Pj8jDWe3b8blvY/PMYk1XJeFPs9PQ0T33gbXc6/Fod9+5LtAaNXqsiBJw/ad0W/qq5DZGx7jxF2JxMaP59bYdo2e8yGCW5V3+CjIysTPr0/ht6u2jP/wMwSEV63D6L8V9zOYcRmI2aJD0jEuMFN+GyME/LsyCBnJwLOFfjKImvTbb7+VdR4ICQnhuwyY20bu2Co5WT8pwocffoh58+aZXJYrnuc6IFRc15x79+7x3QoOHDjAF85nZ2fzhfYNGzZEnz598MILL/Cz/VtS8TnhxuO6ApgTGxuL4ODybiXW9n9cV4E1a9bwhf5JSUkoLCzkwwXNmjXD4MGD+e1zc3ODrQ4fPoy1a9fy46WkpPAdCzw9PdGxY0dMnDiRDy1woQ5bcJ0XhgwZwp/nHjP3/Nn6/uCe7y+//BIXL17kO2U4OjryHRpMdY7gghBcuGPr1q04c+YMH/bgtpt7Hpo2bYpBgwbx7yEPDwsTT9wXExPDv+e4Dh1caCIvL48PvHh7e6NFixYYPnw4JkyYwHd1IIQQQgghhBBCCCGEEEIeJxRw+I+7fS4a7w//DDlpeXW6HQKhwKaiZFtlP9EMGh8LhalaHTpczUH+3XSLQQZTmnRuhIU73jEq8K6KnIJibDp8Bf9cuAOFSo1Ggd4Y17sFWoVR8SipXW/2/ABXj+pDPdYURbgit5cflMFO/GUvSPBa3+54qsLMgj/O+gN/LTI9S74lancpYue1AATm/2DscDELvr8YFwSEtgrGp7vfxcIJS/hgg63c/V3x9eGP+D+6z+j8HvIyy0NeSW+EoriluWJw1nzAQcfC/7MouCWqMer1wZg0fzzfIaLUbx+sx5qFxjMTPsq4kgRdVztohzqCDRDDw9EZDTM90FXUGH1Hd4XcXma0Dtc9Y/+qIybHa9g6GEtPfgxxhdluPxr3FY5tPF31bXQVQjPdDboudoBI/+IEyD3wYoMB6OPTEj/OXo19nY9A4FX+WphS9HURlJsMZ/kVTbKH5EXjgEdFunsaLKz3Glr0bIJHNeAQ/lzNBBxu/kYBB0JI7eE6OJyYq4Oqbg9JAK72rfYmUjfJNQwoyQIU5hu7meTZEuiyUACxffWLMhXZLGK2s0g6ykKrBtzC9EWfHk2pewOpXWvefROpMVFVWtfe1Q1dxj2NZr37l133z68/4NKe7XiYfELDMGr2B9i66BMk375h83pOnl4YP+8zqJVKrP/gbSiKai7lJZbJ0WbISHR6YgLfMaPUkdW/4vz2x+uY5EH2bu7wCgpGw3ad0LhbT4glUqNlti/5HFGnjplc37dhI0yY/wUEwvLnZfPn83H34rka3U4uvNJ1/DNo2KEz/vntB1zaXbvvyycXLIJfWNUn4Pi3UxexKMnUhxi5cKDcAzXy+Un+fVavXs13V+BwYRMudEIIIYQQQgghhBBCCCGEkLpBAQcCZYkSh9adwO8f/oXMxEpW1tQAdz9XqyEDD383ZCZl2zymIswD+f3DzN4uvZMJ572VL6QQigT44+4KeAa4V3pdQh4VXLeFZxpMt2nZvM7eyBrdwORtXMBhQd++/PmpLWbi3tX4Km1PyosNUdjKzOx8OhYBi29Afs90wU+TLo1x/cStSt1fm/4tUJxfDLmDDE27hOPG6Shc3H8ZOh2LomZOSJ5pbt/BglFowcoNi+W5sojX/NtgrH8EvOt7QiKVGNy+68cDWPzSD3jcjZ05DFO/fNbs7XE3EzG5yf8sjvHO6tfR+6nyWSfH+U6ucsCOdRBAvcyX79xgisOKfKg3Z8P5LxcI/a0EHD4rhHK74Uy/wq5SSD+xHAxgjmrw18zlkEhNb0NdoYADIeRxpClhEX+QxfXf2EoX+9cErtiRK360uIwnUJKBOsfNPD10gwAyVyrOJI+v7ORE/Pq/adUep/XgEeg1aQp//pc3piInRT8T+sPkFxaO5CjbwuOlglq0hqq4iO/+4N8oAom3byD+aiQ39XnVNoJh0GnMBDTu3B3OXj4Qig2/n17cvR2Hfnv8j0k6jh6PLuP1xcempN2Lweo5MyyOMfzNd/ngQanlz42DqsRM+55qEkml0Chrt6OISCLBq7/+BaFIVKv3Q8h/wYABA7Bv3z6+4wPXvSEoKKiuN4kQQgghhBBCCCGEEEII+c+iv34RSOVSDHyhN7wCPTC7/4KH+owIBAw6DG2LXSv3W1zOxcsJ+VkFUCnUNo0ri8qE2ssBJS39jG4TpRfC8fDdKm2vVqPDijd+xbyNb1VpfUIeBbnpthWUa+1FyB5W3+zta69cwYjwcLT19werq2IhDtcRYu1daJzEUIQ80HVFy8Jr/T2z4QbO9ZO3LM7ur+1lD7gIwKRoIDhUBEbB4sK+y2XLXDxwFf6hPlh++lPodDq4ertgdfZNLL96ymg8UaYK/l/chspPjsIOrtDJhfDWSrHo5Wdw4pvDeH3tGhTmFsEv1AdDpvTFyNcGQSwVV6mzRU2QyiUIaOSHmMhYm9fROEmgDHTkn3vZvTwIFdqy25JjUi2ue3j9Cavj//r+ejRqHwqRhyP+PnMVSd0Doc5XQBqdBendbDAm3kZCsRBadfl2lNIOdzQbbuAUPmkPyfZsqI+pIJwgN7scq2GhOqkyHv+kEro0DQTe5r8q9XRq98iFG4xwzylbA2MQQkgtE8kZNBjKQObO4sS7D7mNggDwbg/E7rK8mJ0X1+0AYI0/lh4q7v4vr9Chw3uWA3yEPMqKc3NrZJyLu7YiolsveDcIrdYxSXVUNtzAibt8sfz8lUtwDwjE058shk6nhb2LKx9IuLBjs01jObi5Y8jrs3DrxGGsnfsWlMVFcPX1R4t+g9BywBC+i8P5HX+jLnAF/q4+fsiIu1cj4+Wkpli8/fbJo1bHOLbud3gFNwAjEOLqP3uhURkfCzyIEQjA6ir/2VTb4QZO8z4DKdxASA2IjY3FgQMH+PODBw+mcAMhhBBCCCGEEEIIIYQQUsco4EDKtO7bHC9++hR+fmftQ3tWuBnTndwcrC7nEeCOhFuVm4nR8XgsXzBb0sQbWlc5GIUGsqgMPvzAVKPw4czOi9BqtRAKqaCIPJ4863nw4SLu58+SgjaeYMUCi8v8+M8JpBS5VKv+2Q5CBCy5geIIFxS0doNOJoQ0uQROJ9MhzrFSbGLmjjWTXKAd7wyIK8xs/JIbRMuyIPynyGDZpOhUfPr0Uvx6axl/eWaQJ7r6BWPhpq24VZAFViSAOEMLabQCOgc57CPz4BCZxwcIQlsH493mc6HVVAgCRKfix9mrcWbXRby6/EUk3bFchFMZEpnYatBLIBRg1u+vot3AlrBzlOPjJ5fg+N9nLK6jlQmRNSIExU3cAaH+OWNUWjieTYPr3lgwOsDZw8niGFkpljvxcFLvpWPimI+R1zcUWm52Wn9H/qQI94QorRCum29AoNAYPJb5f8/Ctu/34uzO8iIwjq6flc8OVyF07eRQbFBAMlQKgYPp97JyhxJsVvkbSejBwPkZERwGiSB0KYFWy6BEJ0axVsL18ChbLuSGL2ZMf8HqYyaEEFI5fp0YhD8L3Fz1EJ85HSB14vbxrNUODmzl65hrRdIxbqJ3FgxDXRzI48nJ04vvOlDljgUVnN78JwKbtoCgGsfoYpkMaoUCdSUrMR57vluCSV9+w1/u+cyLaNCqHQ78vAI5yYlm1xNLpXB098BfH70LVld+TJKTkoTDq37CvcgL6PbkJBRk1lz7GaFIDK3G2jGJCINfm4mg5q0gkkix/etPcPfiuWrft52Ts8Xbi3KtH5Nwz80v/5vGBxZsCS1wnRGGz3wPF3dv48MojxL/8Cbo9dzUut4MQh57RUVFmDp1Kj/xBWfmzJl1vUmEEEIIIYQQQgghhBBCyH8eBRyIgQmzRyG8Qxg+e3Y5MhOzDG5zcLHnZyevSVyRdf9JPfD3kh0Wi3YHPt8bRbnFuHqschVFkuR8/lST1Eo1Lh+6zgdCCHkcufu6ov2Q1ji9/YLF5TRuUqtjHT99A3e/u17lbbFzkuOLAx/g1fbvwP56Ln+qLs0oJ2ifdjG+wV4AzSwPMNlaCCINi5cSo1Lw16KtGPfWCP5ye68AKNffg6CnHyAWQGcPlLRwRkkLb0hj8+C59haUJSpcP3Hb7HZcOXIDaz+p2ZlSOw1riyMbjLtLVKTT6rB02g98IKHbmI54efFzGDF9IPb9fhg5abnwDvRE/+d6Yt1nm/n3ACtgkDYpAiquc0MFrESI/K5+0NqJ4Lkpmg8bmCqkvH7yNlbN/wsXD1yxuv1qT3tk92pgspBN4+2AvIEN4bLlJkrCXFAS6oygiAAowl3Rc1xno4AD62JDAZuLELpUHQrfLID9AgcIvcvX4Wb4Ve1Ronhx+eeayJeB70opRN7lYQihkIWDUAWJToOcLCm0N7VoEO+Lr799z/r9E0IIqZKmzwvh2VSHs5+xfMeEikT2gKZmD0nACIH6g4CojVxnH/PLBQ8SoChVhxzzDaQeGq0SyLoGeDSr6y0hpOoBh6BmLWukYDz67Cn+VFUyBweMnD0P699/G3UpMz4Wkft2oWX/wfzlgPAmVoMJaqUSKXfMH5Nwz6/M0XJQubKCW7VB9LnTFpfRaTXY9/0yyJ2c0KhTN/SdPB3ZSYm4fvQgSvLz4OzljYjufXBq41rEVuhmYUsnBVMSb1zDyY1rkXDd+jEJv30aCzv7B7j6BUAgEiGsY5dHKuDg1ygcEz78vK43g5DH1qRJk/j/1Wo1Dh06hNRUfdfKMWPGoGfPnnW8dYQQQgghhBBCCCGEEEIIoYADMdKiZxOsi/8ed6/E4cK+y3xBa8veTeEX4oMxni/wxbM1pf3g1qjXyB/PL3wSP7xleppW3xBvdBzWBhqVptIBh4rEUjEfTqgJOWl5NTIOIXXlpUWTcOtMNHLTzb+XhYXWf16EhVY6LFhRnF+C1R9ttPrzqfUWQecphiBHA2GS+eVYAaAdb6GAR8hAM8EZkgcCDpxNi3eWBRwWLViLuN5+gNC4gEZZ3xlZI0Lh+Zf5QqJSh9efQE154s1heGLmMKsBB05JoRIlhRnY8NV2PtjwxYF5mPXbqwbLzN88C2d3XcLKrYcRF2i+U0dRay84H03Cjh/287mEN74vnyH0wv7LeH/YZ1CrbCsQKm7lCwjMzzStCHFF0sxWUHvK+ctXweLFjVvgrhZA7iqFOEdZtiyTqgYbajmEw6Tqt0tzXYO8sbkQd5FAFCoEq2ChOqyCLtnw88xtptgg3FCRRKqDdF8+clao0W/FWDwuGFZ/qu4YhBDysHm3E2DYJiDnDov0C9zODPBuw0DmDmwfo7PWbKFS/LsCToECNJmkw7WfTQ/sGMhtE6DIYXDus6rfuUAC6Kr39anMg+EPQh43vSZNwfp5s6EoLKjT7VAUFuLctk18EXtlCt9rw9mtG8oCDrtXLIZGVf79t6punziCmtJh1Hg06dnHasCBo1KU8KezWzfi2uEDGPfBpxj8quGs6KPmzMPdC+dwatM6pN+LsTrmxV1b+bB0xa4FXGeIrYsWQqct72BR08GTTR+/X+NBkepq1ntAXW8CIY+13NxcbNu2zeC6Jk2a4Pvvv6+zbSKEEEIIIYQQQgghhBBCSDnzFY3kP69B8yCMfWs4xr09AmFtQnDp4NUaDTeIJCI8/YG+SLTziHaQ2klMLpcSk4Y/5m9Aj3GdMfLVQSaXkdlbn2ne2dNwdvLq8An2Mrru3rV47PrxAF9MnJ2aU2P3RUhtCGjoi2WnPka/ST0gkYn566RyCfxCvOEZ4M7/317qZnKm/YoczlueUdQWp3dcMBtu0ARJkP9xAPJ+aYCCz+shb2Uw8r6qB3WEzOTybCMp4G45u8e2koGVGhfZZ6fkIPZ6Avb+dghrL18zGW4oVRLuBo2L9f1OTRn0Yh+8tOhZvvtG2wEtK7VuXmYBPn5qidH1AoEAHYe2gbaTv9Uxilp48P/vXLkfMZdj+fNc+G3pyz/aHG7gqAKczd7GvdOUrigLN1SUJdYh5YUIqJ3F0In1r4twd6HlO0tWg7lUIciiBdRHVSj5pQSKtQqjcIPQi4FdF8tdIRyHi+Di44S+T3crH1arRX52AdSqmgnQEUIIMeTakEGjCQI0Gi+ASyiDtPNsjYYbuMBB+DP67wX+3RkI9F+LjBTEA7fWsqg/QIAGQ02H9YSmv54YkJr/KKw0e1/j63JjWNzdoUPsXh2UuZRQI48294BAPLVwEcK79YJQrP/hE0ulcPb2gYO7B5y9feHTsNFD2ZaYc6frPNzA4To25Kam8J0cbh0/jEdJywFD0HXCM3D18UNARNNKrVucl4td33xldL1AIERou44QiszsfE24uGc7spMT+fOsTof9P31ba+GGihQFNdsdtDoc3NzRuHP3ssvc4y8pLID2EXgPE/K46N+/P/z8/CCRSBAcHIyZM2fi2LFj8PDQ//6DEEIIIYQQQgghhBBCCCF1izo4kDJcxwaueDXxTgqc3BzQ+6lu6DCkNV8Ey9Goa/YPxlxHht/n/YmF2+dg0+IdUBabn8p0w6Lt6DGuE8bPGYmm3Rvj8PqTiLuRCHtnO/Sa0AV/L90JRZHlQmsPPzdkJlZ/mlOuCDwxKhnfv/kboi7chVgigp2zHDmp5TPhi8RCDHiuF15Z9gIkUtv/UE/Iw+Qb7I1Zv76KGSumoCivGA6uDkbv148PH8YvFy+aXF9+Oxd2t3Jrbfu0AWIUfFEPrINh0bm2sRwFHwfA8d1EiG/qC9iFIgG0Gh0gNt8doAzXQUDEAErjor/i/GKs+3QzlMOtFP0LGCgaOMPhYjoehnqNy7dn0vxxuHz4eqU60sTfSMT8JxbhzR+nwdHVoex6rij/6sUYwN/O4vo6WfnXhX2/HcbLi5/Db++vR8rdtEo+EvOFlloZwJr4VsKChU7KQhMsQewnrQGNDg6ROXDbnwTmUgnYVsaBCCh1EC/O4ib7NuDm64LsFNPvWXEAA0Zo+f0jdGMwd/v/IHeQ86GGdZ9s5gMxBdmF/GdDz/FdMHHuGPg28MYjg3vKq1vfSvWxhJCHiOvYcHcHi6JkFhInBkH9Gfi0BxhGv49ma7iGleumcP03Fl0WAFF/stBZ+Hi9uZqFfzctIiYJ4NkKSPiH5YMPEicgsA+Dm2tYaI2bRBngOlCUVD8fCqGce650uPAVkBsNCKX6gIWyQs5aIGYRPIRBy+kMBNx3H0IeQa6+/vys/v2mTIeqpAQyBwejYvcDP32Ly/t341EnEAprpNBeUVzEd3J41Lj51ys732Xc09iwYC50WtsL6tPvRWPH0i/Qb8qrkNqVH3+oVUqk3b1j+4awLK4fOYhuT07C4dU/ozArE48TO2cXPvBRHcPefBciiQTF+Xk48/efuH70IJRFRRBLZWjcpTs6jp4AJ0/jiTkIIeWmT5/OnwghhBBCCCGEEEIIIYQQ8miigAPhcUGD1Qs2Gjwbh/88iZa9muCjbXMgt5chvGNDcHVFViZ0r5Rzuy/h3J5IHP/7jMXlVAoVpjZ/q+xyo3YheOHjJ9F1VAf+8v5VR5AWa7lSqGm3cNw6G211m7jQBFfsbY6yRIVFL6wwuMydKuLCIDt/PICSIgXeWT0DlcUVzuam58PNxwUOLvaVXp+QypDKpfzJlHd79ICHvT1+OnsO2Up9xR6j0MDxXAbcdsaBqcXCZ/ULPkbhhjISAUqe94R4VgLfgWLlla9wYd8VpGRm4E/dVWgE5rvNMPFqMEWmb//5vTVIupMClrHe1cCoer4WNWgeWHa+cfuGWLBtNpZMW4nUe7YHLLj9bNT5GD7k0KZfC/66YxtPg03KtxpwEGeUlJ3PSMnC0QMXsWbRlko/BdK4PJQ0Mz29tVZqOtygtdMBFd8GIgEK27qjuIkz/L+9CVEXBbRDHAEPEaBlIThdAuHaXAiiVEadd7j9KRdwULW0g3KwCzT1pWCKdZAeK4DoTnlIzRwhhIhoFcbvo9/s/gEftCvFfQ5wYYfTO87j66MLEFghlEIIIcQ2V37Q4fb6il8uWD5E4N0O6LJQAKGEgXsE9+lTs19Ako8D6ZdYJB6xPC4XXtg7iTun/x7h3gRoPk0Av876T8TorVoosizfl2cLIOeW9W0SOQAaC82KtCXAhUXllzUl+lNFXFgjZgsLrRJoN6vyX1yUeSyUeYDcDRA7UECC1C6uMJs7mdLnhZfh4OaB8zs2Q1lkpYtXDROKJdCqzU/GUIrb9me/+Ab3Is8hNz0Nl3Zv47sLVMXR1b/wnRweNZ6B9cvOB4Q3xYi33sOBn1dUaltvnzyK1Jgo9H/pdQQ2ac5fd+vEkUoHQwqzM3Hr5DFc3LkVj1ughwvCVCfgwAUbfEJC+THWffA23/GjlFqpwNV/9uHuxXOYMP8LuPiYaPVDCCGEEEIIIYQQQgghhBBCyGNAPzU/+U87uvGUUbihVOSh61gx41f+vE99L3Qe0c7mcUUSEWT2poumK9q2Yg8fBKiM2+diMH/MIqya/xd/mZs12xKuy8K4t0eg3aBWZpcJaOSHP+59i5GvDUJN+WftccTfSrJ5eW7ZD8d8iXE+U/BixBsY6/0iFk74GskxqTW2TYRUBjdb8kvt2mH/xGcQ9P1N+H1zDUELLsBjaywEmtpLN7AyBsWtTRc4ldI0kUPrI0a/Z3vAP9QXw18ZgJc+eBoDAtpaXE+4Nd/sbVcO3+T/l92zUuyuYyG9a70gvib4N/RF67764p9SXEDh9zvLMer1yu2v0uMzMWfAQrwQ8QbO7bmEK0dvwvGs5f0Lo9TCITIDOokAmcMCsL4L8GzUP4j+og1SXgiF0s9EBwUz7CJT+A4MttJJWMNwQ8Xb5CJkjK4P0eo8SJ5KhGR0PCQj4iH+MN0o3NCyd1O8s/p1vlNR0YueKFhYD6rOjtD5SaANlaH4eU9kzAiCMtbye7qVa1uIBRKsXbjJINxQUV5mAVa8of/cfBRwIaSaOBFCSG2L2/9guKFc2jng8nf62xwD9R0dbMWI9J0NrLmzWQeNEpWSdR048Z4Ot9boC3MDe1npBCQFGj/FwMv8IQmcGwBD/hQgZChqTOxeFoXJtu/M8+6xOP6eFttH67B3kg7bRutwZqEORan0gUDqBiMQoOPo8Zi06FswAjNfDmuJLeEGTrM+A+Hi44NWA4eh17OT0ahTtyrfZ8L1K3jUeNQL4kMNFTVo3Q6Tl/+E5n0GVmqsvLRUbPjoXfw28xXEXY1E4o1rld6eqNMnsHPp53hsMAyCmrfCgGmvIysxvlpDNerUHQKBECc3rDEIN1RUlJuDw3/8VK37IYQQQgghhBBCCCGEEEIIIaQuUcCBYNOSnRafhYNrjiEvU18Q/L+V0+Ds4Wj1WbNzkmP+llnQaa0Xsp7ddQmKwkpWE933x/wN+HrK9xg0uTd86nuaXW7U64Ph6uWMDzbMRL9JPcAIjIuPEm8nY8lLK5GfVbMzQh7566RNy8XdTMQbXd7Dic1nodVoyzpBHPnrFGZ0mYuUu2k1ul2EVIaLiyMGdW0JWWwBBMqqzURaGay9EBBbnymYdRYiO9Vw9svXGg5DE+cgk8sL9hVCsK3A6riOp1L4bgDmyG9nQ5xTtf1WZTi62uOdNTP4oMmDBAIB2g20UCFpQcKtJLw//HNkp2RDmlIM54MJphfU6uCxOZpv3ZP4ejhyBvijWMiWd1Jo7Y6EN5ugpL6DTfcryipGk5gCk+2jxOklxq+v2HIhpaKBI5S+cn0RfoEOjLJ8+fpN62HOH6/jp+uL8eWBeXwgQdHODopRbibH0nmLkZTvBNbM6y4TyDDEbzi/f973++Gy64UugE+z2qsAAQAASURBVNdzQIPlQIOlgMd4IPLkZaTFPXqz7hJCyKMsaoPlfX7sHhbqQv0y7WYLILbho0fiCHSez4C1YWLw5GOwaTlTrv4EXFqmRYPhgNz8IQnCxjGQOgnQ5WMBAvswJrtB5d0FLi7RQWk+j1l5OljtTlEqN5rFP6/pkHISYHXlnSDiD+qvL06jkAOpO45u7gjr0PmRfAmKcgzbt/R58WV4N2iIfwO5oxMGv1beUbMirtC+fouqHZNwhf6bP/sQxfmVD45rVLYFT8xx9fPnQwe1zat+CP/cPf/1d3jivQVIj7tXrfGk9vZoP3Is//hvHCs/JjGF6+JQmJNdrfsjhBBCCCGEEEIIIYQQQgghpK5QwOE/jivUvHHytsVl1Eo13h/2GT57dhmun7yNFRc+h0Bo+a0zY8VkfDx+MVQKtU3bwbJVL5TZ/fNBbP1mDxYdmo/mPSKMOjc0aB6E4sISnN93GVK5BH2f7gGYubsL+y4j+tJd1KSSgvKiXS4osuGr7Vg89Xv8NGc17l2NK7vtp9mrUZBTZHKM3PQ8/Pr+uhrdLkIq64WPn4JPsNdDeeKYfC1QbCVIoWUhyFDzISnuZ2rzsl0ozC2CnUiGZa2nodFuezDnS8BEKyE4VgTxO2kQf5lpqpbQiDS5EG5bo012G5DE58N9SzRqm6uPC1Zc+AKN2oaYXWbfKstFLdb2/wm39TN+uv6TAK/VNyHjulJodGDUWthdy4LPj9dgfzULuT19oDQTYmBlQqRPqG/xvoRiIYa/MhBLTyzEup0fYkyeBA5HYyG7mQ75lVS4bLoO71+uQFCiKR+X21ELuLojHZxlxXCQmO70o3Y33SkouFkg+kzshqDwAP14OhaKIS4WtzPbxwUJm8RQJxm+7oF2QXiz0Wz4ywP491jpvtqhDdBkG+A/A3DuCjh3B+rNAcI3AzfjH5GZd9kaOhFCSC3SlLDIvWN5Ga0CODZHh7Of6JATBfT5nvvCYHmd1m8ApxewfIG+Taqxv4veDMTtBXouFsCjmeFtAgngEgoo81ikX2QhkjMI7MuYvb+UU0BB+WFCjdBUyBEqcljcWqfD+UU6XP1Rh/wKHYwuf6eDxvQhCRSZwPXf6EOB1K3uT78AR3cLSaI6En3+DPatXI5Le3dAWVwMmb0DJnz0Bdz86+Fx5ujugac/WwrPoGCzy1w/eqjK42s1GhRkpONhEAhFaDVoOJ76+Cu8sPgHhLbrVOv36Vk/GOFde8LNr/yYpKp8QsMw7oNP4ebnz4dC1ArjgHhFrE6HxBtXq3x/hBBCCCGEEEIIIYQQQgghhNQlU5Mok/8QrpOBQMBAZ+WPrDfP3OFPB1cfQ+MODTF96fP45vVfTP5x9vmFT+Le1QQUVyjsr21cJ4ectFy8/et0KIqU2L/qMLZ+uxfKYiXuXonjTzu+34/wjg0hc5BZDFRwj7MmBTfXzyS/59dDWPbKj3xgpNSfX2yFZ4AbXlr0LM7uumhxnGMbT6Pou2LYO9nV6PYRYit3X1csO/UJ/vxsMz+DPVfkbecoh1+ID9QqNd8VwNq+xFaMmoX0UD6UFgrSxeeLIMjWgptseddPB/nrfnlvLb8f6P5EJ7hGMpD8U/XOJw6XMyC7m4ui1t5QedtDoOKK/jMhi861KSRRXSKxED71zQdKuK4uR/48Va37SIxKhl+oD5KjU2F3M4c/mVLUw9fiOKoAeygC7SGLN66IdPZ0wrtrZqB13+Zl1/l4ucD+YrLRsl6rbiFtUmOwMhGEDIsO9aPQ0j8eDlJ9t4yUfGecig1FdKZP2TqifNNVq/2e7WlwmQvAaSL17xNLUnv4Ii1HA88V6ZDHFcNe5YB3Ds2DUCTkb5c7yiGRiaGVqtFgMSA00dRI7AEcwTp01XWHSCC2ep+EEPJfx9gYu8+6zp1YxO1n+RBBy+kMIr8x/d2jxcsMsm5ywYiHV5B/ZSWL4gwWHeYKoCrQd52I2cZCp+I6I+hPd7fp4FH+kWjxsdYk5wb6by8x23T8c1Yx9HFrLQs7H6DZZCD9kuVxEg6xaP0GC6H0YXwbIsSYk4cnX6B+dssG3Dj6D5TFRZDa2cPZywcalRI5KUnVmkChqrRqFa4e3MufP77ud37W/pA2Hfigw+NMJJHyz7mlLgwx509X6z6ykhLg5OmN/AzLx26MQAhWV7VWO3Yurhg6YxbqRZQn0Cw9rprSpEcfg8sB4U2qNI69qxueWrAIjED/gSmzt4dAKIROa/n5OLL6F4R17MovSwghhBBCCCGEEEIIIYQQQsjjhDo4/McJBAK07mdDhU0Ft87cwR8fbTQKN3BhifGzRuKpd0dj/+qjeJi4Aobt3+3DK21nIy0uHdvuhxsedPP0HUT+c83KYDW3XU7ujugxthMiD13D4infGYQbSmUkZmPhhCVWC8M1ai3fyYGQuuTq5YxpXz+HTZm/Ylv+KmzJ/R3fXfwCP11bjDXx3+PZeePQum8zBDb2tzpWrwld8OJnE+Hi5WxwvV+IN/+/fE0WBEkqk+syORrY/ZRhdD0XcPp04lLcuXiXDzZVCwM0Cg1A80zAa2MU37VB/pDCDRyvQA+Lt5/ecaFGiremfTUJQRH6GUUr8vB3w6e738Oa2BVQOlvPQ5rrpFCYU4i8zAKD67qP62xyWfm9fNRbdAmu++MwocNFdG1wpyzcwPF1ysOoZhfQ3C+evyxJKTYZqug4rA3a9m9hcF1AmB+EWttePdZVjPRRfsgpliPjRB6iL90ru00iFaPHuM5wH2E63FCqCHm4kle9AAohhPxXcMXynoa7basyrwI317AmwxIRkxiEjRMgfv9DLnJmgei/gQMv6VCSXh5ueFDmFf3pYZG5A/5dgdSzLC4uMd3RojgVOLPQ+rGQVgmo8mttUwmxiYOrG3o//xKm/7wOr/2+AdN/WY9nPl+K5xd/jynf/oqOo8cjsFlLuPpZPyaJ6NEHXcY/A7mjk8H1Lj5+VX41VCUl2L74M2TGxyI9rvx7ZFV51W8A94BA621raoGjlRBAzIWzNXI/fV6YBldf49fLydMLT8xdiBeWrKxyuIGjLCqEotDwmCSsU1ebAh5VFdahi0GgovS1rIqinGw+TFJKIrezqQNFYXYWos/RMQkhhBBCCCGEEEIIIYQQQgh5/FAHB4Kxb43AhX1XKlUoa6rQngs8bFi0FVI7CbKSsqv1zDq6OaAgu7DS63HrfPncCihMhBsqbufDIJVL8O7aGZDIJNjw1bYqzWyvCnBGSTMfaLwdAa0OPxy+gKkuXRHgYX5We0IeBoZhIHeQG1zn4eeGZ+aN5c/PHrAA8beSLI7hGeCOCbNGYswbQ3B+72XkZeTz3QRCWtbHaLfngDwtnN5OQMkEN6h6O4F1EAIKHSRHCyBfnwVhmsZsGGjTkh38/9XCAiX5xZjwzmh8Pfm7Kj9PVQ0h9BxvOgRQSqMy/fgr2yUiolMYVl75Cmd2XsS53Zeg0+rQvGcTdBvTAWKJvvuAo0SKfJX5/SpHWGC6k4JWo8MXk5bz9+MdpC+Q+nvJDvPjFKoRIboLH2/DAqRSDAP0Dr2BqHR/PO0ehuv+Sci8/5nj4GKPwVP64rkF4/nn/kEeUUBqO/OPweClEjAoesoD0jOF0GoM30sT545B3IHj3KMzPxiAu4U30Nq1O+oU95iq+7H38CdBJoT8BzUaL0DGZV2l1lGaaDzE6oCbq1mA0UJZzWyw2AFQV/6QBMpc4NyXpsMND5tIDnScK4BAxOD2em2N7NOv/65D+NMC2PtQFwdSt7jZ7CUyw2MSR3cPPrDAWT9vFnKSLR+TcLP4c4GItsNGIzbyAl8E7+LrBze/AHw3ZWKVt02rVuPi7m3VKsovG0ujQcsBQ3Hw5xV42Bp3tvxdVqsxfQxQGSKxBP6NI/Dc1ysQc/4M4q5c4o+hApu24Iv4hSL9ry5FUik0SsvHJGa3U63GrmWL8OLyn/iADOfiji1W1+O6gljCdUZo0qMv7l48i6Jc/YeSzMERLfoNQuexpt8/MgcHKAor/+GifaBbQ+exT+HO2ZNgdZY/OxNvXue7OBBCCCGEEEIIIYQQQgghhBDyOKGAA0HrPs3wv5UvYfn0n6CuZsEsV8S/6sO/qv2sBjcL5DtFqBSV/2N5XmbdTSkqkojg7OGIjkPbYtSMwQgKD0BJkQLn9kRWeqyitgEo7sDN0lhu2+U7+Od2HJa/PBKtGlifjZKQumJL8X1pAIErou80rK3BbW0HtsTZXZcgyNPC/ocMvlsDay8EU6wDo7FemXdudySadGnEj1EdyTFp2P3zwWp1YUiLM+40YYsd3+9Hv2d7wt7JzuTt4Z3CUF1dR3eAs4d+tlruNXjwdeBodDpouGpRC4T5ashjTAcS+DHUWuz4fh9e/HQiMhKz8M9aLhxgXtBohcXbJSItPuvri5HBE6CdPpbv1sGFEOo3DYTMzvwsq42i7JHWpBCsndDC6OXFmtoGMojDHPnPpIr8Q33RtDgc91jLHYHuXUkA6llchBBCyH2+nRi0ep1B5AoWbDUzfKwWuPFb9Z9a10b6TgumOh5UJXzxsDAiQOYC+HVh0HAMA8d6DFT5OqRX72tRmXs7gcQjOnT/UgC3xhRyII8uLhhgje7+MiKxGKHtOhrcFti0OeKvVb3dyr3IC/BvFF6tMTjczP3XDx+o8vpcF4T8jPQqrRu5dycfchDLZCZv92sYjupq1LkbpHb2/PmG7Tvzpwdp1OoH0siVp1GrcPXgXnR64knkpqYg6uxJVFe74WPQdcKz/HuN69ih02nhGRgMkURidh2uO0hqdFSl7kdq7wB3f8MDC66rh09IQ6TcuW1xXW67CCGEEEIIIYQQQgghhBBCCHncCOp6A8ijYdCLfbA24XtM+fxpDJ7cBzJ78wWiD8Pts9H48sA8fgZzodhSIeqjQScTobiFLzRDwtFt5XMYOf8JPtyQmZSFV9rMqnTXCLW3g1G4oVShQoXZv+6CRlu5GW4JeZgiOjWyYRnzBfoT5z4BsaQ8g8doAUG+1qZwA4frQjDytcEWl5HI9N0JrLl5qnLFJxVN+mg8mnWrWtFP3I1EbF+x1+ztTbs0tljMr3aVorC5G3QdfKGTGH/c+9T3xEuLnrW6Hf/E3UUxV1BkgTBfBcbKS3PjtP55PL83kn99LLHztb5/83PUB2SEIiEatm6Axu0bWnw+OF3aNIfjB4kQpBs+Hq5Wij+ZWKfT+A5G3Uo4Lf06Wd3GM19F4eLBq6hL3OtSEydCCHkYQkcJMPRPAZpNZRA8hIHAto/qWpN9E+ixmEFAD+4DB48NiQP45y9srD7cUJTK4sC0mt2Zc50tTi/QPbTueIRUhV+Y9e/hvhaW6TTmKQiEVZ8XRKfVotXA4RaXEYpt29GlxlT9mKTbU8/BN9T68Zkp6bExuPqP+WOSwGYtbHoM5gISLj6+/PZZE33uFDSq6rfFSb5zi///XuT5agcmOOL7HUS4LhPeDUL559lSuIET2tYwSGOLsI5dTI7bqFM3q+sm3LiGxFvXK32fhBBCCCGEEEIIIYQQQgghhNQl6uBAyrh4OmPc2yP481wnh/2rjtTZs6MsUUGlVMMjwJ0vQi65P9N7TRn71nBsWrzDapGtLUrCvVDQMxgQCVEIYOXeM/xpTKemyPnuGBKjUio/ZlMfi7en5xbi8NUY9G3ZsBpbTkjtGfpSP/5nTK00XRjvWc8dXUa1N7t+RMcwfLRtDpa+vBKp98pnG3Xxcsa4t4bjx9mrwVooSNHpdNi8dCeCIgL4oMCD3HxdkZ1Su1MrN+3aGL2f7IruYzvi1NbzWPvJ37h3Nb5SY+z7/TAmzBnFny8uKOH3y0c2nERJgQLBzQPReWQ7o24IGgcRMsaFoLiJKyDQz6osHRcM99MZkG24AxcPR/Sf1BNj3x4BVy9nFCiVWHv5CrbcuIGs4hIEOjtjXPOmGBURAbFQiHu52Va3UyezXvV5/cQtfPv6L/Bt4GV12ZJ0AZwaWt7v24vcURncZ0rKvXSIbyngMvkuVB3sUTDTD6y0NPxhPAM1o9Bh6oyxJsdr7doN+5L/QhGbZ/ox3AXyjgKbHXbynZIIIYTYRubGoPGT+n2yulCHxCN1V0CvKQa4JkYyT0AoAbQlNTt+2HgGURtYoIZzy8pc4MbvLG6sYhEygkHWTRZFlT8ksaooGUg9C/hWvlaXkIeiRb/BfAcCndZ0JwcXb1+EtG5ndv2AiKYY8dZ7OPDzChRklndls3d1Q5shI3F09S8W75+b1f/ygd1w8wtAdrLxMQk3TlGO9e/a1cF1oWjUsStC2rZH9JlTOL35L2QnJVRqjGtHDqL1YP3vipTFRXw3iagzJ6FWKuBVPwQNWrfHnTMnLI6hVij4IIRAKOTP2zm7oEnPvmg7dBTsnJyhKCzE5f27cPP4YZQU5POvTfO+AxHerScEAiFyUpJQE+KvXsbhVT9B7uRSI+M5uLpVanm1Som8jLRK30/XCZNMXt+kR1+c2rQeyiLut1HmsLi0axsCGjep9P0SQgghhBBCCCGEEEIIIYQQUlco4EBMGj1jCF80q9XUbLDAVgIBg7f7zK+VscM7NsTUL57BiFcHYlrLt1GYW1TlsVQBTijoEwIwxoWxm05dg526EA5VGFfjYW91maikDAo4kEeWd5An3ln9Oj6duJQPTFXk4umEj7bMhkhs+SOobf8W+P3Oclw6eBVpsRlw8XZGu4EtIZaI+cL/2OvmC3OK80twbk9k2WV7Fzv4h/rCyd0BPcZ1we6fDtRqwMHe2Q7tBrTElGZvIuF2MphQd9j1aYicehKIM4phdzUdAoXpQquKspL125iekMnvE5OjU8tui750j/+f67ijKFLy57lODcmvNIHa185gHKWARXJnDzz/cj+837NX2fWZRcWY+OdfiM4uL6zKKi7GpZQU7LodhZWjRsL1/qyklgiLLX1WsHDqCDh31uCicCekl90BIQtojfebpeI3S+HdxXzXCG0JgwBRF9iKC7x8OPpLnNt9ib/M6ADpqSKot+ei5AnzQQnp4Xxk+mbAu7Nx4ZJUKEfz20NwxHEtJL7G4Ya7r3J3DFw5cgN1jibXJoQ8psLGMUg6xvIhgxrHWN8/MgLg8Ou1sxP1bAW0mCZAyHAd9k9h+TBFjWOBmC21+yGQG8PCt6P5z3RC6pKbnz8GvvIG9qxYYhRysHdx5cMLjMByY9MGrdthcsufEHclEgVZGbB3cUP9Fq35GfuvHNiN3FTz6SGu6Dw28kLZZZm9A5y9fWHn5ITGXXrgwq6ttRpwkNo7ICCiOX7530v8dookUj5UUVml25iblooNC95FfkZ5AD39Xgz/v1AigdZKhwWtWs2f2o94wqBrQ2F2Fv6cP8fguSzOy0Vy1E1EnTmBETPfg9zBCTWBex9c2LkFjh6eNTAag5A27Stx31ps+Xw+4q9dqfQ9FWSm8++bB8kcHNBywBCc+ftPi+sn3LxW6fskhBBCCCGEEEIIIYQQQgghpC5RwIGYFNoqmC9O/uK5b6BSGBaZOnk4Ij+zoMrPnFgqQtOu4XzRsjk6Xe0V4tRr7I93B3+M9PjMaoUbOMWt/U2GG0qVNPeF/fkkMBrrVVk+9T3RZWR7bFqyE4wNHSvkUnGlt5eQh6nbmI4IbR2MHd/vx7UTtyAUCdBhcBs0bB3MhxOykrPRul9zPrDAyUnP4wvQuX1Oo3YhaNi6AQQCAdr0a2E0tkReufd/UW4x3w3m091z+cubFm+3uo5IIoLmgXCGzfeXV4xf318PnUiAnCfCoQxx1d/g4gVu8uf8bvXgujsa8ptZFsfxCvTg///smWUG4YaKuHCDZ4A7MhKzUNDW0yjcUNEfVy9jatt28HbQR68++ueQQbihomOxcfjp3HlMbNUC7+zfA63I/L7O8VymyevFnizClupgH1Hx2ky0nijEzZdZlMSYHjNprxT1n1DCs6PpkMP1JXb4zW4TdBod/3nRvHsEeozvDImZ/eLpHRfKwg0V2a/PhDpCDk2E8XMmilHA/rd0aMea3x87azxxYzjg0hdwaKOf5Tv/JJB/TB9u4AiElovmCCGEmOcewaDdbAbnF7HQPfCRIHECVPlVf/YEEsA1FMi6bn6ZWglW3GfvBxybrUVRqr5TxKPCIQDwbssFI2xbXmQ9B0lInQrv2hM+oWG4vG8XUu7c5oMJDdq0h0e9IKTH3UNBdhYCm7bgr+cU5ebgXuQFvhDft2EjeNXnjkmECG7ZxmhsoahyxySKokJ42dtj9Dv6yRxObVxndR2BSASdpmrHJFzA4uRfq8sua7juAWmVb+fi6K4PA+xc+rlBuKEiLtzg4OqOwhzLxzccLtjR5n7nBs6Bn78zGxS5e+EsLu3ZjvBuvXDwl+9QU7iOHIxACFZXnUk9WJz4azX/XuGaC3LdMsI6djH7vrhz9mSVwg0cnYXtdPbytro+d1xNCCGEEEIIIYQQQgghhBBCyOOEAg7ErB7jOqNl76bY++sh3L0aBzsHObqP7YQGLYLwTPB0FBdwZbqVp1Zq0GlYW9w+G13lMapj32+Ha2QclgFUgS6Wl5GKoPJ1hDQhz+JyjTs0xLtrZ8A32BttB7bC4lX7YKHWCtxfz3e+ugp5PS9h6Ev9+EAKIY8i7j095fOnyzoOfDX5O/w0p7zIxsXLGc9+OBZx1xOx68cDBt0eIjqFYc7q1/kxWJbFyXvxOBAVA5VGizhfCXRiAQRq2ysPrx2/hdvnY9CobQiCIgIQe818BwjO2JnDsO7TzaiOvP4NysMNFYmFyBnSEMIcJSSphWbXH/hCb8RcjsXVozct3k+DlkF486eX8fbV48iEvpuDKRqdDjvvROGFVq2RWVSEfXfuWBx37eUrmBgWAZfdicgaVs/kMuLUEjidyjBxC4uw5TrYNza+ReSlReNfRIgcrANbZBxyYDUMTk5zQsSMIgSNVkLirA+95UcLEbVSjoTtMsRgf9nye375Bz+/uwYLd7yD0JbG+0Ou44cpjJKFy9wEKPo5Q9HPBVpPEQTZGsgO5kG+Nxf2YpnF/Wur3k0hEoiQs0eDnD2ml2k3qKXZ9QkhhFgX1F8A73YsYnezyIsFxHZAvd4MnAKBnRN00Jr/2LNIpwQC+zB8BwKt4uG/ErE78cjxaAZ0mCuAnRcD3w4sLq/QocDy1yXcWseiIF6HBsMYuIRQJwfyaHL18UPPZyfz51Oib2P/D8uRER9r0M2h87inkXb3Dq4dOmDQ7cG/cRMMfu0tOHl48scksZcvIubCWeg0ahTn51Z6W+KvRiIzPhYegfXhFlAPuVYCB+2HP4HTf69HXWrWux8fDkmNsXzs4BfWGE179cO+H5ah0EJnCi4QcOfMCbToNxj5mRl8iMGSyH070ahzd9Q0LtzAdfBgdVVPs0XuLd+ZXzu0D8fW/Y7Rcz7kAzQPun74QJXug+v8wb1fzAlq1ko/8QaXsjCjvomADiGEEEIIIYQQQgghhBBCCCGPMgo4EIucPZww7u0RBtfduXi32sGEc3su4eujH2HhhMVIvJ1crbEYAYNpX03Cyll/QGtD54Maw/0B2UL3hjIC88s06x6BlxY9yxdcl2rbvwW+79YYYz9ZhdRc04XP0lsZyItKxU7utHI/Jr43Bs8tmFC1x0HIQ5AUnYK3+8w36pqSm56HZa/8ZHKdG6eiMKvPfHxyYgHe3LMPl5MqdDBo5wZBkzbwXH8bsljbp2++cvg6//M29KX+OPLXKbPLuXo745l5Y3HrbLTFbjOWaB3EKInQd2AwiZvZv28omLWXwZroWuPm44KCnEKc3HrO6n3dPhONtttaQJoeCWRZrvS8ezcZaNUa0VnZUFsp5kkpKMDbwz+B28lkMEodcvr7Qet0f0ZSHQv7qznwWn8PQoXxvte5M0yGG0qJnTWwWxsKl10e8LxTwoddTm49C1WJfopunZLBtS8ccHOZPeyDtHwhamGs+a8tWck5eHfQx/j19jLYOxl2ZMhJNV98xqhZyHfl8qcHDZjaC3aO5qem5rbZK8gTSXdMF6Zx3RvG/G8Y6hLDsvypumMQQkhdkrkyaPyU4XfqzKtslcMNpdIusui1RIBT83Uoqvyk5oYEQItXgMsryrv4PC68WgPNpwng2rD8OfbtyMAtXIB9L+qgsDAhuyITiNnK8qemLzIIf5pmCSePrqzEeGxcOBeqEsPfZ3BdG/avXG5ynaRb17FhwbsY8+5H2LHkc6Tdja72diTcvMYXrLfoN8hicb+Duwc6jX0S8devIPn2DdQWiZ09VCXFJgvkHdzcUZSTg5isM1bHSYmJwrA334FIKrW6bGZCfNlrwlppl8N1d/j703moDVy4QSyTwz2gHiQyGeROzog+d5oPYVS1M8SmTz7AC0tXQiwxfB6KcisfiOE06zvQaKyKHN3c4eTuifxM0901BEIh2gw2/L0eIYQQQgghhBBCCCGEEEIIIY86qj4glXZuT2S1n7Wo8zEIaVEfakXV/mhcEVcYfGLLmYcbbuAKPnUsRKkFlhfS6CBOMx1SkNlJ8ebKlwzCDaUc5VKMdfY0Hl+rg+xaKhwPxxhcvebjTTj2t/WCA0Lqyl9fbDUKN9giNTYDU37dYBhuuE9nJ0b6U42hcZLYPB5XcM5p2aspRs8YYnIZiUyM2ateg1gixsyfXoZ3kCeqQhnkog8xWKAOdcOifz7ku+WUKs1NZafmYs3CTVj14V9W70ss1YcOQlzdrC575Ku9fCcLO8n9oIIlOhYx5+5C1EyIoF75aBt2B+18bqFJ+m2ELL8Mvx/vQFRQPsNtRc5drRfFuzhn4mh7BkN+ewbvrX0DS098jI7D2hhkx7QKBvm3RRbDDaVy0vJw4I+jRtd7BVoImpjRdkALTP5sosVljv99xmy4oTSA5+5nooMHIYSQaks9V/3wVU4U4NIQ0Kpq4AXRAYmHH79wg8gOaPu2YbihlNSZQWBf28e69jOLlNMUiiOPrjNbNhiFG2zBFdhvWDC3RsINHIbRHyM0aNWODzmYIpbKMPjVmRAIhBj0yv/4sENt4Qr7x85diICI8mOS0i/khdlZOLVpHc5stn5MIhTpv6+7+QVYXZbrdpARdw9imcymbeSWrS1qRQnS78Wgw6jxGDpjNibM/wLBrdraNqGFCdxzduvEEaPrHT0qf1wZ0rYDuozTd0Q0h7svc+GG0vebvQ3HiYQQQgghhBBCCCGEEEIIIYQ8SijgQCrN1EzjlSWRS1BSpEBaXEaNvAJXjtxEXbCLtDzVq+x2BgQK4+JfoViI17+fioAwP7PrlsRlwXXTVbj8dRkOR+7C4Z9ouK+6AMcjd/lwxYM2L91ZxUdBSO07/OfJKq2n9HPAXZ35IiRWJkJBO2+bx2s7sGXZ+ZcXP4e5f76JZt3C+VCDvbMd+j3bA8tPf4o2/Vrwy2TZsXD/ZhDSF3dBwsdtkTMlHEEjm+HtX1/hl7fIhnoYHcuiefcIfHlgHpacWMjvGyszWb7OSQhNgAStR7XmLz/ZrLnF5QWFakjPpeGX99aiqbc3Ap2dLS5vdzMH9k+I4bbSEbL+Eoj8hZD4M3AZBHh9I4UoQmh2XcaGHlEMw0LLsvjywjH+cmjLYCzYOgdr4r+HR0DVinDWf74Zr7Sdhbf7fIgdP+znP2sGvtDb8kr2DDDGHswCN8i+9MWADUPwwfa3IZFZDs/sWLnf4u1c8O6NLnOhVlU/zFdlbA2d6lBcXBzs7OzAMAx+++23WrsfnU6HLVu2YOzYsQgKCoJcLoeLiwuaNGmCyZMn4+hR4/AMIaTuWJnw2yZCCaAqgMUOBZWRdQ2PFYGYCzcwsPcx/6VFXVi5At87mx6zhAf5z9DptIg6fbzK6+dnpNXMhjAM6rfQf3fn9J08HYNfewt+YeEQiSWQ2tujaa9+mPjJ16gX0YxfRlFUCN/QRpDI5WCEQogkEviEhmHgK//jgxA10cUgsGkLjJ/3GcbN+xRCkdhkNwdrglu24f9v3td0aKMijUqF43/+Ab+wxrUa3rCVTqvF8T9X8+d9Qhpi9JwPMfmbn2HnUrWw8qkN6/DHnBnYsOA9XP1nH9QqJZr17mfz+lwXjGZ9BmLw62+XBUfMuXxgj8XbtRo11s19m3+MhBBCCCGEEEIIIYQQQgghhDwubCg/JMRQs+7h1X5KuoxszxcUc7OOq5XVK/wUSUTQqEzPIF7bZHcyofG0R3Ebf6PbxEl5cDh2z2zR6xfPLsfunw5g2leTENbGuIuDk7ujfpyMIv5kzfUTt8CyLF8ASsijhCsaLi6o/EypnJKGLlaXEbb1h8vVfL47Q15GPrQa04UbHYe2QVC44WyiPcZ24k+m7LhzG//btwsanU4fB3QQQdnUGYcZBkM7+uC99f/D/NFfQllietpnSUI+3wEBAvM/k+0blG/PwT+OQmVmrAdpgqUoesYTqtb2gJDBn0wyciI34vVG/TC+UQT+vH3DaB1GrYPX2mgwWhYX91/BwdVH0aXIDvHIM1iO5arZGYDRsPBMSIbDAtNFUwInAZw/tkfWGO5xGt9eeAnwHmf5cWQU6vdz17LSsP/aDXT0D4SjqwOURUp4+rshMzEblcWtU7pe5KHr2LxsJ748OA99nu6Gg6v1QQoDTSVgPnEH46jPfHKvwH5E4vzpGHzeajqC7H3M3lf8zUSr28MF+Y5tPI3eT3Wr9GMhgFarxXPPPYeSKsy2XBnx8fF48skncfKkYRhLoVAgLy8PN27cwM8//4wnnngCP/zwA9zcaBZcQuqaZwsGt9ZUL4Hl35WBSA4wQoCtZt0nF+xj6+aQpMp0auD0fBZ3t2nRYroALiHG31kkTpUbM/NqzW0fITVJq1JDq6690KnUzh4CkQgCoRDFebl8aMCUsPad4eJt+P0yvGtP/mTKjaP/YM93SwzG02i1SL93F2KpFENmvI3tiz+r1mOr16Q8JH39yEG+IL4qrhzcB1WJAt2emoRGnXvg9knjLgYV3bt4DrdPH4dfw0aIyspEXUuJuonYyAvwadgIMnsHaBQKOLp5oDg3p9JjFWRl8CdO/LXLuLR7G56YuxBhHbog6swJq+trlEpcPbgH9y6dx9j3P4abn/HvnEplJSVYHS83LRkx58+gYYfOlXwkhBBCCCGEEEIIIYQQQgghhNQN6uBAKo2bbbxhmwZVfua4Wc9HzxgCoVCI7k90rNYrwBU0P4xwg52T3OxtDifj4Lr+MmTXUiFOzIM0OgvOO2/BZfN1CNSWZzC9evQm3ur1IaIjjYMQvSd2q1RYgXsuKNxAHkUCgQD1GpnvVmKRDT8CPg28sSH1J/yZtBILd7xjsrNC8x4RmL3qNZvvNqukGG/t36MPNzyA6zgw68AeBHYJxfeXvsTIVwfBL9QH7n6Gs3uK8pSQ3TFfoM/9eD/TpXz21tM7Lti0beoQKXI/C4SqnQMfbuCvY7XYmXQZk07+iAlBofD64w6ksQV8wIJRaeFwIRP+y67B/mZu2ThfTPoGZ978Gx6bYiAo1u9HWQELVgL+pLNjIHzVBYyFgIbQRwBJN7HJ27L3M1BZmOhWoxXgToZX2eXp6/7GaPfnMb3dbLzW8V3cPBONmhB/MwlfPv8tZv32KqZ++Sx86nuW3+gkAPNpebihohxtAV479CW+ePFbnNl5gQ/qVKQsUaIwx3r4jHN04ynUFYatmVNdeeWVV3D48OFavY+EhAR07drVINzAfZ56e3vzHRwq2rhxI/r06YOiIttee0JI7fFuCzgFV319rnA/dBQDoYSBX5fqbQsfkHgI4QaRleZRVZV+CTg8Q4f8WOMdflBfptLPBSGPIrFMBifP8u+eNc3NPwCv/LgG075fhRFvzeW7LTwoqHkrDHh5hs1jFmRnYu/3y0yGJXRaDXYt/wq+DRvjmc+WoUW/wXD29oGDq3ultpthBGg9aHjZ5bsXzqKqtGoVrh85gHUfvI3mffpbXZ6boGHX0i8Rddp6wf/DsunTefj2hQlY/c7/sHbuW0i7e6dGxs2Ij8X+H7/BkDdmoeuTk+DoXuGYxILC7EysfucN7P1+KR++4J6zilSKEqgVtgWBuTAJqT2xsbH8MURNnrgx/w3q169f9phMHdv9Gx8zIYQQQgghhBBCCCGEEEKqjwIOpEo+3PQWAsJ8K72eq7czPtn9HnwbePOXn3xnFOwczYcHLAnv2BBiqW1NSJw89LOEV5ajmwM+3TMXXx2eb3E7uQ4LTofuwnXzdTjvvg3p3WybC0JLChX4de46o+sDGvpiyNS+Nm9ru0GtbF6WkIdt6EvWC1xMkcXmW12mfVB5F4S2/VtgXcL3eH3FFAye3AcjXxvE//x+dWg+HFzsbb7fDTeuQak1X6mo1umw/voVBIT5YfqyF/B71HL8fme50X247I6GOKnAaH0Bw+DdYb3QrkIHB7WNYa2iyd5g7UxXD6Yq8rCl5Arcb+QhYOk1hMw8jQazz8J79R1IE00XZDudSUfgwguQ38wCy2UVKtQx2jlZ7yghbmR6W1gNg6jXBVBnmw43HIkJg0Ijub8woHGXoyTECVEX7qIwt2aLxy/su4KkOykYO3MYfo/+BsvPfKoPhA2yA+Ng/quQ0lGL/bFnMHfYZ5jRZS7ys8pfyzULN0FRpLTp/ktsXI4Ydm6YNm0aVq5cWatPCxdcGT9+PB9y4HDvixkzZiAxMRGpqanIycnB5cuXMXjw4LJ1IiMjMWXKFHq5CKlj3M9rlwUC2Ff+kARyD6D7FwLYeek/9CKeEUBoumGRVW5NAMbGo2pxJbshlJK4AN0XCdDjq6pvpzXqIuDar8ZF1M4NGNQfaHvIwbcDdZMjj67mfQbW2tj1IpqVnQ9p0x5TV/yO3i9MQ7Pe/dF68AhMmP8FnnhvASRy25NKVw/u44MM5nCdFq4dPgD3gHroO/kVTF72E55f/B3EMtt+x8IIBOg7ZTp8GzaqMGb101p5aam4feo4BMLHt2ksF2xQlRTX6Jgx58+iIDMTHUaOxeRvfsL4Dz+3aT0uwHDt0H4+fLF+3mwoigrLbjv512qbu3eolYoqbzshhBBCCCGEEEIIIYQQQgghD9vj+9dGUqe8Aj3xQ+QiHPnrFE5sPQuVQo3Lh67x/1vy7PzxiOgYxp8vyCmEk7sjnv/kSfzy7jqUFFifdW7Btjl8NwU3Hxd++vPnG71uU2eDsW8Nx89z1qCyCrIL4RfiDb8QH3x99CP8NGc1XyjLzZpXOqs5q6v+1Nbn90QiJz0Prl7OBte/9u1kuHq7YMvyXSiwMFM4/xhnls+6SMijZvj0ATi/LxLn9kSaDBKplWqTxeIvTuyHLT5a3EhNNzmuWCjExLYtDK6TO8gxbFrVAhWlTlyNsrrM8atRmNGhc9llqVyKAc/3wqbFO8quEyi18FhzFYoQVyjCPaCTCOErk+Pj2RPQsqlhJ5yITmE4ufWcyftSBNghr4c3lI3sIG+qtbhde9OvY9iETvjnt6OwldZRhKLmhh0oODqd9YpNVlG+D/QP9UFqbAa0Gv02Ft9mcPc5J2hfE8KlvQ4ChkV6oSPuZHijRC0pL65SMWBYBiWhzpDHWA+1VBa3z751Jhr1GvnzHUV0Wp1+P95SanVdbhn2UAlunbmDz55Zhk92vQeNWoPdPx20+f5DW9RHneFenup+TD3kDg5paWl86ODIkSO1fl+rVq3CqVPlHTa+/vprvPHGGwbLNG/eHDt27MDkyZPxyy+/8NetW7eOX659+/a1vo2EEPMc/BkM+FWA+IMskk+x0KmBtPMAa/mjEk2nAK6N9N/lVQUsZG5A+HPAzd8ArbX6Twbo9jkglAj4oIRWCex70XLXNn41EdBoLHDt58q/oqpcwCkQkHsy6LlEgKs/6pB+Ub9/5sIV/ITeNbCvTj4BqAtZiB0MQwpt32L45yhmK8sHISx1bwgbRwEH8uhqM3QU4q9FIv7aFaPbZE5O0CiU0KiMj0k6j3sat08eRVZivMlxRWIJ30GhIqmdHVoNGFqt7b0Xab3DW+yl82g/fEzZZS5AEdG9Ny7v22lxPUcPTwx7Y45BuIHjF9YYsZe5HUz13D51FKHtOiKqDroGuPj4IS891aDzhdTOHsriuu3AxbI6pMbcgbOXNwQCIVidlQ8rE5Jv38De75bwXULUKiUfcLGVV/2qd2Il1jk6OuKll16yuMyhQ4cQFaX/XYOvry+GDx9udUxCCCGEEEIIIYQQQgghhJD/Kgo4kCqTyCTo92wP/sR5NvRVpNxNs7iOs7sjzu2NxLpP/8bVozcrfZ/Rl+7h6fef4M9zgQBu5lauSNWSV5Y8jxHTB0JVrMIfH22o9H3mpOXxAYeQFvXx6e65yEzORk5qLjz83XB042l881oVqpQeoNOxyMvINwo4cIW4z344DuNmjcDV47ewcdE2XDxgWIwhlUvwv5XT0KxbeLW3g5DaIhKL8NHW2dj140HsXLkfCbeT+WBDn6e6YvT/hkJVosLmpbv4wJRaoUZYuxCMfHUQ2g1shb65eXh+zd+Iy8k1GFMiFOKrUYNQ3824ML+quBDG55O+QVRPN6CzvtOMOdkxGUbXPbdgAqLOx+DqsfL9G9fNRR6dw584XE+ExaeT8d3FL8s6wxyPjcOdIX5ICG0BgUIL+8uZkKZpoPF3RlFDOQpa2vGhLpGUm1HVcmFOsVaFsfNG4to/N5Aen2nT4y5o58m1lTB+jDkOcHI0Hz7jAl7KQ/eDbQyQFJ1qFL4KCQ/F3jMFyHF0N/2tQwsISmq/oVTFjj8efq76Dg62FINW+IzhAjpxNxIgd5AhN8O2IAb3HAytZuDmv4QLEkydOhUpKSkP5f4WLVpUdr5bt25G4YZS3Pvl+++/x4kTJ3D79m3+uoULF2Lbtm0PZTsJIeYJpQyCB3Mn/eXtY7VQWPn4kzoJ+EDErTU6ZF2v5LPLAnkxDBpN0H9uFqfblixoO5PrhCCAukiH2+srn0ZQ5HABB8CtEYMei4QozmChvH9d3H4WV76rfsKBC4Yo8wGxg+H1jJBBsykMwp9mkXGZxe0/WWQ8kFnlOku0my2AW2MKOJBHl0gsxqg583HlwG5cPbgXOanJkDs6IbxbL7QZPALK4mJc3L0NMRfO8LPic8X/rQcOR1DzlmjcpTs2Lnwf+RmGv/MQSaQY+sZsOHl61ehM/3u/X4KSAuvfN/MzjY9Juj81Cen3opFyR/+dxZSCzAzsWbEYT3+2BGKprCxQwT0HNUFZVIROY5/iC/ILc0y0dKtFuanJRp0qvENCEX/1MuqaUFR+TOLg5l6lMaLPn0Fuagp0Oi3/PNuC66ZRmx1MCODu7s4fL1jy3HPPlQUcwsLCrC5PCCGEEEIIIYQQQgghhBDyX0YBB1Jj+kzshtULNpq9nStmzs8uxIJxX1sNJZijLC6fTbEorxie9dwtFvC6eDmXFf5zQYHuYzvxxdVcES4XFNCqrc+Y5xXoYXDZw8+NP3H6vNgLZ/JysP/UDf6yJCkPshvpEKgqNxOfWCKCu5/5Im2ZnRTt+rfgT3E3E3Fo7XH+uQxs7I++z3SHg4t9pe6PkLoKOQx/ZQB/MmX6shf404MCXJyx46VnsPP6bRyMuguVVotmvt4Y37oZvB0fqMCrhjO7LuL9YZ/x+yeHSCDfSsDB9WY+jm8+g8h/rvHFz636NkPHoW3w+f73+S4OP7+z1uy6yTFp2L/qCB++mn/wH6y6dL9K0NuO/08Z5AiBGpDmsCgM5qZn1t+s01ovGrQTShBUzxdLT36MNQs24uCaYygptDwdtdpdAlakA3t/eEaj76iQluECX+8cSPlghTHlATW0CTqzYTOuU8J+WT4K2/lAmM+ClbHQSXUAl2fQ6Ts3CJQC/r448ijDEEtNkcjEaN2vuUEXopa9m+LS+btgOukLusxhzykhFOkQ1ikPdk5a3Di7G12GPWnT/XIZihkrpsC3geX3EgEuX76MmTNn4uBBw84YU6ZMwY8//lgrT9GlS5dw/Xp5ZfPrr1vuCiUWizFjxgy88sor/OU9e/YgNzcXLi4u9BIS8ggJ6stYDBBIXYGiFBaXlrNV7nrAdW0opVEAMndAkWV+ee720o4RzV8SILAvi3s7WRQms0g9a0P3BUYfZKjIzpOB3f3rGgwGMq+wfAeG6hBKAZmF3KhIzsC3I3cC8u6xfOcMrqMD110iqD8DsT2FG8jjEXJoPWg4f3qQvYsr+r74Mn96kKuPH577egVunTiCuxfOQqvR8AEIrmicW6+m3Dl7Etu++sTm5YUSCW6fOo7Em9f4LpP1W7RGcIs2GPfBpzi7dQNObVxndt3s5ETcOnEUzXr3x/6V3+DKwT019CgAqb093P0C8OTCr3B60zrcPHEEGqVxd4waxQeYjXeoXCeHRyHcIJbJENi0/JjE1dcffo0i+BBIpbAsbhw7hGZ9bAtRcwGP/i+9Bkd3w99tEUIIIYQQQgghhBBCCCGEEPIoo4ADqTEjXh3IF+ymxRnPIMh58p1RWPnWqiqHGzihrRvw///w1iq+gNjaWLnpeXip5Vt4fuGTaN49HPeuxqNRu1BMmj8eS15eiSN/njRahxUyUPk5AUIGEfW84Rlgela9m4npeOW7zcguLAYa6AMPqgZuKGoXAJfttyBOLbD5cXUd0wGOrrYVageFB/CzxBPyXyIViTC6RRP+VBt0Oh2WTFtZtk+R386DLCYfihAn09sTWwDFP/cwf1v57O9bvtmNwHB/LNzxjk0Fk0c2nISoT3B5uOHBbRIDxb7l4Qb+Oo0QGqUQIml5iErIcAEDFhodlxpgMNi/BQQsg/S4DHQb0xGDJ/fBkQ2nsHnZLqgU97stVJDTywt5PdwBYflGsyIWrAaQS1VIynKBn0cuZJLykAOrZaHYp0bBZ8Vw9XbmO92YonUQI7+9fjZbLsTAKPSBBlOkcQWQ3zO/39TKhcjv6AV1Wy8oNRrI4grhfDwNknTL4Q1Oy15N4eTmaHDd1C+ewZuDP4TiaS0YV6HJ9dh4NboGxmLEkni4eHO9NzjzUKTdgV5PBePQWsPZYStycLHDp3vmonH7hqhLXAcR7lTdMWrbpEmT+JBDKXt7e767wrRp02ot4MAFFEqJRCIMGjTI6jrDhg0rCzio1Wps374dzzzzTK1sHyGkaho+wSDuAGu2i0PjicCVH6oebuC4hOmDfZHLWURvtj4QF37Y96IOLaYxcA1jkB/Hwi0caPqiAGc+1iHllOX1PZpxwQPT4YHsmyyOzdFBZVtjIYvq9Wb4EIMtnIMZNJtMgQby3yKWSNGsV3/+VBt0Wi32//htpdYpyEjDjiWflV2+tHs7PALrY9TseTatf/vUMQiEwhoNN3CadO/D7ycLsjLRqHN3Pghy69RRXNy9Hay2chNC2MLO2QXFebUTljZFKJZAqy49PrBN/RZtIJHrA+2lej7zIv786B1oVZUb69TGtUi4fgWeQcHIiLtndjmZgyOeeG8BvBuEVmp8QgghhBBCCCGEEEIIIYQQQuoaBRxIjXHxdMbXR+bzRcLn914uKxT28HfD0+8/wc8aV1xQUuXxuXG6jmrPFxFv/Hp7pdb9de46o44IvZ7sCoGAgU6n307u36L2AShq5QtWLuavO8myeObDXxEakwdFZiH8Q30xeEpf+DX2x2s/bNGHGx7AysTIHdoY7qsulnVyCG4WiILsQmQmZZt8XJM/nVipx0MIqVlXjtxAZmL51MtcuZ7vyttInxiCoqaugKC0hQILu5u58F4dDWWxcWFO/M0kvDPwY3Qd3cHqfZYUKPBHpOlwQymdxMR6uTI4eBbBQaqEs0wBqVC/HVzAQad1RoNzAjwzdDoyEixMJX1fYQsXZDwVZHS9SKSFX71syO53bsjXylCi1EKUpwK2FUO5UwFdKguxVGw23MApDncFRPpAA/cMlmXSHqiHlCQXwfv322bHUXnLkTQ9HFrn8idEWd8ReV194LX+LpzOmg7WlT0eifHXndBWwfh694f4ZunvuDEsC4y70Cjc0OXkNUz6PNpoXaXqHCYsvIOrxxshM17/eVER19HizZ9eqfNww+NqyJAh+Oabb1C/fv1avZ9z586VnW/atCkfqrAmICAAfn5+SE7Wh1tOnjxJAQdCHjFydwa9lgpw4Wsd0i+Wd0eQewFNn2egKeE6MFQ93WDvC/h2AKL+si3cUIYFLn/HLV++jlDG8h0nrKUtMq8AB6drIfcAv/2O9RiEDGNg5w0ce8f2cINrI6AkA1AYH5LwYzV9gQILhNSl2CsXUZJv/ru1KWoTXREy42Px96fzENS8ldX1VYoSXNqzAzVJau8AuZMzfnz1BRRmWz8mqS6hWPxQww2cyoYbOFyQ5EFcF5AJH36Og798h9ToqEqNx3Xt4AIM94+0jG5nGAEGTX+Twg18N9hiFGZn8u93iUwOBzcPSO0MwyaEEEIIIYQQQgghhBBCCCHk0UIBB1KjvAI98cmu95ByNw2x1xNg5yhH066NIRQJjUIGleHgYo/3N8wEI2D4zg3VpShWYvfPB/lxC/OK+L8FF3Srj+I2fgbLsQyDyPxcXNcWwO3ANT64sfXbPWjx9kBkKIrMjs8FJBSNPWF3JRUNmgfh413vgtWxWP3RBvyz7jgURcqykMXTHzwBr3oe1X5MhJCqMxUGECq08P05CioPKUoaOfOFI/I7eVY7BiTdSTHZKeFBwc0DcTQ1rdLbqlWJINPo4OVmuA8SCXSAIAdrYzdDmWBbpWP2QF8T17Lw982G9H64oZRaJ4TaUQ70FgOrSuAX6oPk6FSL4+vEht0aykIO3Ol+DaWgSA3/JVf4LgEst7iUARQsGrYMRlFeMZLvpSF1SiODcEMZIYP0CQ34bg6SNPMBOkWR6dcstGUwlvz6IVKSMvBP8jncKI7F+d2R0J0ugfB0MUacND8bqkCUi/c2eWHhCCArOafsemcPR0z98ll0syHk8lAY1tJWfYxaxoVCevbsiXnz5vH/Pww3btwoOx8eHm7zeg0bNiwLONy6datWto0QUj0Ofgx6LBKiMIlFfhwgtgc8mgKMkMHl73RVHlfiBHT6UMB/lt3ZWP2do1YB3N3BQuwIqK00f8su32Uh7RyL6L9Z+HYGVDbWQrs0BLp+KoBWCdz4nUXCIZY/L5IDgf0YRDzL8OEQQkjdKcyquTBAVmI8gpq3tLqcR70gXP1nH2qSsqgQJ/78Aw+Di48fclPNd1WrLu+QhijJz0d+Rhr3hbVCYrvy1ErTxyQ+IQ0x8eOvkZOajBtHDyH1zi3EXo206b4UhQUIadsRKXduGYQ8uI4WPSdNQYPW7fBfxU26knD9KiL37UD0udNgdeWf/9wELA3bdUKL/kNQr0kz/ljk30ar1eLvv//Ghg0b+GB3SkoKBAIBfH190b59ezz77LM2dbDTaDRYt24dtmzZggsXLiA9PZ3vfseN061bNzz11FPo3bt3rT8eruvmtm3b+Mdz5swZ/vFw17m7uyMsLAx9+vTB888/z4fRCSGEEEIIIYQQQgghhBDy70ABB1IrfBt486eKXL1dqjRWj/GdMXbmMDRqG4qE20lIvZdeQ1sJFObqC4S1DhIUtzJV6Kun9nGEoqE75Lcy+cvHLkUD4V4Wx3brEop3F0xChyGt+T8icv63chqmL38RRblFsHexh0RqPPM3IeThSrmXhgv7L5u9XZKphCRTv9+R2knh27QeYq8lWByzILsAbj4uyE41P5PosGkDsP7cPig0hkGCihgNA1bIGnVX8PEwP654gAw5yQ6Q/ZEKgdp8EadWLoQi1MHoens7pVG4wYCvCE8fehZRn1zlAw6sowDaNnJAwkAQpYQgtjzcIU0yDoKVlY6UzqgdWwDWQwTleFeoezsCcgGYPC2SIhmsnv8lzsYlYsrubea3R8ggr5s3PDfGml0kuGmg+fW5h+TviYn+g/nzRzNO4fNly9GwYx5cvCwHVXRuBxGy8Rs8kSqHOEnBv+YdhrahfXsVcMUq9erVw8OUmJho0JnBVv7+/mXn4+Pja3y7CCE1x8GfgUP5jyxP5lq1ser1BRqNY+DakEFuNIsS/WFBjbAWbjAn5aT1Zez9gFavCeDTnivo1H8Kt5vNoPX/WKgLAbEDIJT8+wo7CXnccMXt8dfMH5NUJJbJ4ejugewky8ckaoWCn+GfK4I3p2X/Ibh59BA0VehIUNe6TngWcVcjazXgUJSTjee+WoHYyxexY8nn1RrLM9BydzJXHz90Gafv7nnz2CHs/X4ptBaOFUvdvXgWzfsMgHs9bnwWDq5ufLBBKPrv/r4p7W40dn/7NR/0MYULO0SdOcGf3AMC/3WdLrgAwHPPPWcyjH337l3+tH79evTr148PL3AhAXPjcEGIqCjj7iIFBQX89T///DP69++P1atXw9PTs1YeT2pqKkaOHMlvz4OSkpL406FDh7Bw4ULMnz8fs2bNqpXtIIQQQgghhBBCCCGEEELIw0UBB/LQ9JzQGStn/QG10vrM5hUd+fMkjm08jU7D2mDEqwNrZdsUjTyA+wU/5pQ09iwLONgyk16jtiHoNKyt0fVcqEFSxbBHVagUKhz56xRunLoNkUTEb1Prvs0f2v0T8ij7Y/4GrF6wATqdbTNxLj76EdZ9ttlqwIGbLfLddW9g7tBP+Y4tD5o0fzzCOzREv5y72HjtutlxGK7OSAiwFT6t3VwKcT8zZZZkiAypsibw+fG6+ZCDmTHs7S13qODEOWUiJyMPqilu0Ax1AmTlgwmulEDyZQYE6RrI4gogTS2G0sfO7FgOUekoXhIA1q38QbLOQqT3AJ4/shxt7azPOlrczA3sxtjy8EQF3GycQ17qZ3H9Qk0hLudegUKrRNCAelgd+x3OHfwCgPnXhmMnVGBtdCS2SIDBHf3AChJw6E4M+vm0Rgf3RhAwVl6oh4DrjMGdqjtGbXvY4Ybi4mIUFZUHcMwV9Zji5uZWdj47O7vGt40QUrsC+zC4+hMLVlu59RIOAImHWPh10aLB0McnEODehIFvR+Pt5UINwvLdWa3TKRTI37kTJVevgpFI4NinL+w7tH94G0DII+zY2t9wdtsmG7sDMHjq40U4tuY3qwEHzpAZs7D1y4XQqIyPSbpPfB5e9RsgpF1H3D55FI8brni9KLe8k1ptKMzOwpr33kRQ89bVGofrGNC8j+XfZxXn5+HepfNQK5XwDg7BlG9/xYGfv0P0WctpNq5Y//L+3RCKxQhq3gpatRp3zpxERLdeCGrR+l/ZncCS2CuXsG3Rx2Y7Zph6H/354RwMf+s91G/eCo+7gwcPYujQoVAoyh9/REQEWrRowXd1uHjxIqKjo/nr9+/fz3c+OHXqFORyucE4e/bswejRo1FSou+UyHVt4Do/cN3sVCoVLl++XNYRb9++ffxtJ06cqPEOCkqlEgMHDuTvjyMUCtGhQweEhITwk8lwgfOTJ0/yy3GPefbs2bC3t8f06dNrdDsIIYQQQgghhBBCCCGEEPLwUcCBPDQuns6YOHcMfnt/faXX1Wl1OLHlHG6fj4GrjwtyLMyKXhU6mfUfBZ28fPY7SXwuFBGGHSoe1LlxEOrajdNR+HDUF8hJyyu7bsvy3WjcoSEWbJvNvyYPyknPw77fDiPxdhIcXB3QZ2I3hLYKfshbTkj15GXmY8cP+3Hkr5Mozi9BcLNADJ3WHx0Glxem7Pv9MFbN/8vmMV/85Ck0bN0AzbqG86ErSxq3b4gWPZrgu4tfYvPSnTi1jStUUfM/eyNfG4Q2/Vrox2zbBjtv3UaJmZk5pXkMxCkMCurrwEr014nF1mfxlDsqoKzng7we/nA9YLrwSVikhSS5BCo/w0IGW8pfclUKxL8gh6aB8W265nIoP/eFbHoimGIWXW5rcC3EHukVislLOf+TCGaADLoK4YaKkrQ5cFDpiy8sUTtJkD0uBO5/xRg+FobBy4ufQ71GD0zfXbqtrA4bE//GvtQDULPl4btAu3p4aWhfaPJ+sXi/CSUucHIohrOjAmdyywvdD6RFoo1rKD5t8Txkwvsv3L9ESkqK1WUq0w2hrhQWFhpcdnAw7mZiTsVlHxyHEPLok3syaPwkg5urK5/e4kIRSUeBnCgWEidAlY9Hno/1nGCtKz5/HomvvQ5tTnkhcs6qPyBv0wb1vv0GQhfj8LcmIwO5m7dAFRfL3+48fDhkjRo95C0npHqK83IRuW8X7pw5AZVCAc+g+mjZbzDqt2xTtgxXmH5260abx+z57GR4BATBv3ET3L14zuKyvg0b8wXbT3+6BBd3b+WX12m18AtrjFYDhyOwqX7ig3bDxyD63Cm+MP5xUpyfz4cCbOEXFs53ySixcfmKcpKTILN3tG1hLkzwYFCFYdD3xVfg5Gm6C6hOp8XR1b/w75WKr4F3g4ZoO2yU1YBDKW7duxfOll2+efwwglu2wfCZ70Ek+Xcdk1jq3FCZcEMpbnluvfEffvZYd3LIysrChAkTysINXIh81apV6Nmzp8FkDD/99BNefvllPvDABQcWLFiATz75pGyZe/fu4cknnywLNwwePBgrVqxAUJDh7zmPHz/Od4qIiYlBbGwsxo0bh6NHj5Z1sa0Jf/zxR1m4gbt/LpTBhSwqSk5OxsSJE3H48GH+8rx58zB58mRIpdIa2w5CCCGEEEIIIYQQQgghhDx8FHAgD9XE98bAyd0R6z/bjPT4+90QGH0RKn+W66LA6gMNpmQmZqNp18Y1HnAQ5lr/46coV/+HPY40JptfR+siM7msl7MDBrVpjLqUk5aLuUM+QUGOcVHxrTN3MH/MIiw+usDg+t0/H8Ty6T9BrSovoN749Xb0HN8Zs1e9BpGYdhmk7ty9EoeDa46hILsQAWG+6P9cT5MhneSYVLzV60NkJGaVXZcWl4HTOy5gxPSBeHX5i/x1G77aZv1OGcA32AvTl7+IDoP04Yhuo9tjxRu/Wlzt3tV4/v4DGvritW8m8ydTwjw88OPokXhz527DAADLQpLPQJrDbQIDSYYAalcWrBDQKIVWN1so0YIR6FDQzhsuBxPMzsDvciAN6c/WN7iuRCGBs1P5/s6UwzEpkAUrzYYhWD8xNAOcIN6ch9g9N+B8Lg6qZs5QtvGGzM0ebUMDEfPJQWjjM1D0muH9c0QCLezFKkiFGuQyVxBYX46MdBeUFJsuUOAeX157L/Ry90fC35eh1ejQrHs4Rr0+mA+aROdnoECtQJCDG9yk9mXrbUjchF0pe4zGiy9OwBfR2/C2b3NoNVfMPg+70yP4cIMpF3KisTxqG94OfwJ1invtq9uBocL63MycVhe3afbhusXNOlqRWFweYrSm4rIaM+EkQsijremLAkhddLj9J4uSjPtXltbicbswxvL+szgV8GgOZJr/iHgk2PkAAT3qduZudUoKEqa9DJ2JQFjJhQtIevNNBP5iGCjMWbcOqZ98ClQo9M3++Rc4jxgB348XghHRMQmpO2n3YnDrxBEoiwrh5l8PTXr0gdzRyWi5rKQEbFjwHopyykOw+RlpiDl/Bm2GjkLPZ17kvzNd2LnZpvt18fFD38kvI6iZfob50Pad+M4PlmTE3eU7ELgH1EO/Ka+aXY7rFjDyrbnYvWIxH8p4XMRduWjzsil3bvEdDjgCoRASuR38I5oi/vJFvmOC1fWjb9t2RyyL4FZtkRpzhz9fr0lztB40HP6NI5AZHwtlSQlcff1g51R+HHt41U+4tHu70VBpd+/gyB8/wz0gkO8yUBX3Ii/g6Npf0fu5l/Bvx/087f7260qHG0px6+1ZsRjPfvnNY9v14uuvv0Zmpv53rS4uLjh27JhRKIF7bFOmTEFubi5mzZrFX8eFF7hQQGkg4N133+Vv53DdILZu3WoytNC1a1e+a0OrVq34IDx3fuPGjXzQoaZw3SFKcUGMB8MNHK5rxObNm/mgPdeljwt6cF0devXqVWPbQQghhBBCCCGEEEIIIYSQh48qA8hDN2xafwyZ2hfRl+5BrdSgfpMA2DvrC06vHL2BmT3nWVw/4VYSX9jMdRl4kEAoMBuOsEQWlYmC7vXBSs3/SMivppWdZ3QsOmVoEF3PDqkFxQbL+bo64puXRkIusb1Ysjbs+vGgyXBDqWvHb+HGqduI6NSIn7Xt9w/+xLpPTRdXHP7zJFy9XfDKkudrcYsJMU2r0eLLF77FwdXHDK7/7YM/8do3L2LQi30Mrv/s2eUG4YaKtn67By16NkF4pzDEXjPd2aCiJccXokknw9mCL/1z3ep6u348gD2//INOw9vi9W8nw83H1eyynQIDMRv18fmqv6H2lkOg0MLuWjZ0no5Q1XeDTiyA1scVDMuA0QJ56U7w9cvhJwc1hwUDe88i5AscUNjaAw6XMsGY2DW6HMuAsp4ceb3KO9IUFMrh4V4AkdD0vlSnZaDSCCC3UvOh7WHPBxxYHQtNRiFc/ykE/knibxO1D8WIrq2w8eAhQGg4kEykhou0pMLjY+HmVgRX1yLEx3kiJ/uB2VO54tP7myoeHoa/vn2Nf8+c2HIWq48exqsJ25Bpry9mFzMC9PULx5zmA2AnZLA/9YDZ7c9T5+OyZhjC1fcgFBcY3X4mKwjHCxtAJDH/mbM39QKmhg6Cs7g8VEEeDQ+GMKpTxMSN9bgWQRHyX9ZwjAChI1nkRAOsBnAKBsR2+p/l1HMsjs2yfEzBhRzq9WaQ8I9xCoIRAGzlD0mqxLMlUJAAKB746mPvB3T7VAChpG73Tznr/zQZbihVdPIUFDduQBYRAVajQfqir5D9m+mi7bytWyHy8oTXzJm1uMWEmKbVqLHrm68RdcrwmOTE+j/Qb+qriOje2+D6XcsXGYQbKrqwYzMCmzSHm18AclKSrT7lz3y+DF71DVunJVyznrC6tGcH3yEitF0n9HnxZYOi+gdxXSXaDh2No2ssdzB7XHHf1zT3A65cFwtFYQEU+fkI79YLVw7ssWUAm+/LydMbo+d8CK1GgztnT+LMlr+Qcuc2f58coUiEsI5d0XPSFH5bLu/bbXYsLqAS0qYD8jLSoLEhiGHKtUMH0GXcM5Da2eHfLOH61SoHQUplJsQh8cZVPpjyOOLCBaXee+89o3BDRdOnT8fChQuRn5/PBxtu3LjBBxW4bggbNmzgl+GOcZYtW2axI4O3tzfmzJmDGTNm8Je//fbbGg04cIGFUqUdJUzhAh3ffPMNH2Rv0KABWrZsWWPbQAghhBBCCCGEEEIIIYSQukEBB1InuD+OhbUJMbo+Nz3P6rp5mQV46+dXMGRqP+z79RAyk7Ph4e+OQS/2RqN2obh3LR6H159AUV4xgiIC+G4F+1Ydsbw9ah2cDsQgb1AYwHWReID8ciqkifkG16mTcqHdewVODdygCnThr/NSMfj621EI9fVAXTu755L1ZXZfwq2z0fjpnTVQK8pnSDVl908H8eyH4+DgQoW65OH6ac4ao3ADR61UY/HUH+AT7IVWvZvx1+1fdQQ3T0VZHG/bij1o3MF41j9TpDKJye4otuDCVic2n0X8jUQsP/1JWZDLVLHN319th8PdbOBahRvysiCNzoLaTYqsXm762aS5x60SQa0RQCI2E0Bg9TX/IokWEALpExsip28AfFfegDinwqz1DODi5QysjYfT6SzkdfOE2kMKUb4aqi0FEE6Wg3EyLGTQ6RikJLnxHSKsYe3MF0Fw+53GHcMgKQEqligw0D0QbqhwGwPUC8xAQYEcGvX9ry8swGj0XS44SQUFuHc1Dh+M+Bx3fZXI/l89gwCFmtVhd9J1XM9Nxv+aNYWaq2i14Fh2Mi5+PBT1mh9G23FZsJepEF/siu3JzbA1uSn8fAw/Fx6k0mlwIy8enTzC8W9x9uxZ+Pr64nEnkRj+bKsrzBJuTcVluWIgCjcQ8vhihAzcDHOMPGWu9UJWRQ7Q8X19SCJ2LwtFFgs7bwbBgxm4hjHIjWaRcIiFpgRwqs8i4wqQcLCGH4CA21bjcIPMHejyMQPHwLoPXxUdM/4O96DCo8dQdOoU0hcv4VrjWFw2Z916eLz8MgT/8kJd8ujhZtl/MNzA0ahV2PPdEjh7+fCz9HMi9+9C+r0Yi+NF7t2BXs/bNqt+aeeBiorzbT0m0SLq9HFkJyXgyYWLIJHJTS+n0+LiHhs63NUwRiCAzMEBJfmWv1fXhqRb1+ETEgZGIASrs358Y6uCzHSk3Y3GlkULUZh1v3NpBVzw4ebxw/wyzfr0h05reb+XfPsGXH39kRF7t0rbo1aU8N0gApu2wL/Z5X07a2ScyH27HsuAw+3btxEVVf67kIkTJ1pc3s7ODhcvXoSnpyecnMq70Bw8eJCfBIXTqFEjBAcHW73vIUOGlAUcTp8+DYVCAZnMdMfbymratCl27drFn+c6Ttjb2/MBClMd+J577rkauU9CCCGEEEIIIYQQQgghhDwaKOBAHilcobI13kGefDFhRMcw/vSg4KaBCF4YWHZ52MsD0HFYW2z/fh/uXo5FUX4JNCrjPyDL72RBVHIDha18oQx25YMOovRC2EWmwu5GetlyIrEQXkGeuHc1ni+plcVk8yeOAsDcQZ/g5+uL6zwIYEsnC26W+Zw066ESjqJYyXfY6Dy8XQ1sHSG2Kcovxs6V+83ezoUDNny1nQ84pMamY+nLK62OeftcDDz83eAX6oPk6FSzy7l4OiGoSYDR9d71re+nKkq4ncx3VBn71nCTtydGJSPlbnmHmAepPWR8AWNFxUUyCJxKIGS4mePLJxXVsQy0LHcFA5Wy/A/+XGeI1MnhCPjycmlOAo4uDshL1xcSye8W8ScDx/KAwfZAWync67kjBiJk58ih1Qghg/XZQwVxFcIUJuz8fh90Kg0EUQrowvTFD3ZitcXOFNzEke5uBUhL5jpa3A843H9EAqEWcEjG6xe/hPYTQOLkBDudGsVq45BKfFEOjqfdtvoYFFolbu/LwrENIfhhdzukTatfdhvD6Pjn3NrE/YJHYGZ//rmqIVy4ISDA+OficVOxiOfBmUGtKawwEzlXYEMI+fex9+H23ZZ3nvb3s14ezRj+9CCXUIY/lWowjIV/ZxYx21nkxwKqQn3nCJOs3z0EYkDuAX6sB3GBh2OzWQz8jYXIWsulWsbqrB+TZP+xCtos0zPdP4jrBlF86RIcunSpga0jxDYlhQW49o+FYxKdDhd2buEDDjkpSTj0249Wx0yNuQNnL284eniiIDPD7HIObu5w9fUzut7Jw6vSM9NfP3wArQYOM317fJzJYvzaJnNwREm+bb+TcHD3QFF2llEnruqI3LejRsMNnIKsTKx5702r+7/s5ETEXYm0Op5KqeA7OVQ3SPJvpiwuxp1zp2pkLK7rBjfe49bxguvAUIo7XrMllB4SYjzxzJkzZ8rO5+bmYtq0aVbH0VV4r3MdFLiwRYsWNROomTp1KpYuXQqlUom8vDw8/fTTePnll9G7d2/07dsX/fr144MYhBBCCCGEEEIIIYQQQgj596GAA3mkcF0dQlsFI/rSPbPLDJrcp9LjdhvTkT9xslNz8OHoL3Hz9B2DZYKbBSLuRiLEiXnQ1wczYLip0B/w2orJWDzlB7P3lZ2Sg32/HcboN4agLjXr2pjvXmGJreGGUqyJ54OQ2nTt+C2UFHLRIfMu7I3ki1y2LNsFZYnlonoON96cAQug1VguZOHCUWKJ8ayAnYa35cMPuRm2zzJ6YM1RswEHnZmfK52IQXFjVxQ3cTW6LTfDEXaOSuhYtiywoB9Ff0mtEqIwz3B2VpWvHUoau8Duln6214Kc8iJtk/J0wLoCqA6oEdNYhIwJQWU3KYok0KgFEJnpIsER7bD8/KjvB82kv2ShZIEfIGYgFlgvgrSTqyDQGRZrisQaBDZKRbZMAwQLwEAAO2hhhwLkK6TILHIwGudCZha8DGvcjdSzC0CqXQHfEcjhbA5yhnhDVU//vHKPXa0VQCIyv81iRoRmzuWhCPLokMvl/KylxcXF/OXsbNsKax9c1surcsWFhJDHAxdYcAwCCuLML9NgSOWCA1xAu15v7qS/XJzB4uRcHXIeaDzlHALk2TBJd6sZwIVF5m8vSQfi9rMIGV63AQe71q2hvHXL4jK2hhvK2BCaIKQmJV6/yndqsORe5AX+/ws7t0Knsd4ZqqQgH5s/m69PKVvABRIEAqHR9WEdu+DQ7yuhrERI8+axw2YDDraEkWqDreEGTmEWV+Rfs7+T0Faii5etMuLM/z7rQZkJ8VaX8QwMhrKwsMrbKpJI4RNqPDnIv0lhdmaNvYe5cbhAyeMWcEhLK580wc/POBRlq9TUVIPzP/xg/vef5mTxP6s1gwth/PHHH5g0aRJKSvT9HwsKCrB161b+xAkMDOS7SDzxxBPo2bMn3zWYEEIIIYQQQgghhBBCCCGPP/qNP3nkvL5iCuQOpluZh7UNwegZg6s1vpuPK5ad/ASLjy3A0+8/gYnvjcGXB+fho62zy7oecLNdmwo3cK4ds1ygwzm1/RzqGl+cLTUuzq4qsUSEiM40Kxp59DqRcDVBXMDhxJazNo978cBVpMWanym115NdMPH9MSZvk0jFePLdUaiM/MwCs7f5h/rAzdcwxJDb2Rtx89ogbVIYCtsYF1DnZ9ujIJcrtGfARRz0MQd9ASNX15GS4G7yvoobOpedV3nJoOnii+JGzmCFxsWPWnsRUqY0RsI7rZA5qr6+W4JABzvnErj55kOrFZitx9KeU6EEdlB7SGGN6HIJ5B8kQxCjhC0lKTqt8bb6BmdCwoUbTHCSKeEgMe44kVQE+MstF3709uqFrqPa8+cZDQu/L+5Afl0f3GAELBRqicWaNE+JJ+xEpj/PHhr9D0j1T/9C9euXh0+Sk5NtXi8pKans/L+hmwUhxLQ2bwogNPMx5t4ECBlRveCAnSeDvj8I0XOxAOHPMPyp5xIBOn4gsKl+N+Oy9WWST9b9/tt14lOAuOaOSRiZDPLmzWtsPEJsUXF2cnNKuwBEV2IW+djLF/nZ/s1p0qMv2g0bbfI2sVSGdsNMH6+YU1JoPoDsXi8IMkcr6d9aIrJ5H1H3+7SapiophouP5Zn2W/QfjND2nat8H25+ARBLrB+XPc5UipIaHk8fgn6cVAwVcEHuquK6JFQXF0CoSWPHjsXVq1cxefJkuLoaTwARHx+P7777Dn369EGzZs1w5MiRGr1/QgghhBBCCCGEEEIIIYTUDQo4kEdOeIeGWHpiIbqP7QSRWD9TITdb+oTZI/kggtzBcFbyqmrapTEmzR+P5xZMQMteTeHi5QyZveU/+gqEAkjlEqtja9SWZ4Z/GHwbeOO9dW9AIquZgqJeT3WFq1d5cTQhD0N4x4Z8uMaSpl0bQ1msRJ6FEIGtAsP9sfjoR3h3zRsQCo1nSi0Vf6O8wNkW/g3NF62IxCIMf2UAf17lIUX87HCkPx8ItS8DrYsWWgctWC51ZYBBUrQX0hNcoVLqnx+uBr0gT464aB8UFcjvf8I/sB4DqN2lSJoejvj3WiJ2XBCSXwlH7PxWyO3mXbYYF3hInhaB4nB98QADBiKhBh4BuXByL4ZEroFIooOOZfhABZcH405cR4NCpQT5Ec7InB6M+HdbIvmlxtA4W95viiJLYP9qAtivc6w+l/39OsLHobwjg7sTA3sny10+nGTGt/vJncEWN4daY/p17uvVG61dW2LM/4bCzul+14Y8Dfw/j0a9925CGlMEtVaIIqXpkINSLUKYPMTq4yF1Jzw8vOx8VNQDU6hbUHHZJk2a1Ph2EUIeDZ7NGfRaLoB/N4C5/1EhdQUfROi+iAs/1ExnBM+WDJq+IOBPni0YyN0BgZXDDYEYENjQi5Gt+0MSSENC4P/5Z2BqKOTgPHIEhM50TEIeLr9GjSGwcGzACYhoBmVxMRRFVrqk2cAjsD6eXLAIA195A4yFmcizkxMrNa6Lj5/FkEGLvoNQFzS10EWhtjXt1R/2rm5ll6V29lUax8nTi+/QYE7bYaNRv3krtB02CmJZ1X4XFhD+7/++Kqnic2N+vMerewPH3r78PVja6aAqKoYjxo8fz08mUdnTiBEjUNO4Tg4//vgj36ni0KFDeOedd9CxY0eIRIZfiG7cuIEBAwbg+PHjNb4NhBBCCCGEEEIIIYQQQgh5uGwoiyDk4QtuFoT3/3wTyhIligsUcHJ3sFhsXBNkdlL0frIrdv100OwynYa3Reu+zbHjh/0Wx4roGIZHQZeR7fH7neX89u799RAyk7KrNE7zHhF4ddkLNb59hFjj4umM3k91w97fDpldZsjUvnizxzyUFFoucrdFZmI2QlqWz+puzrm9kZUad/CUvhZvnzBnJK7dS8CfEYXQuuirGgUCHcQiLbQiATQiIYSFQjC6isWUDLLSnJCV5QiBkIVOx4Bly29nSv/hq+/110sSCpH0WgQ0roZhLq2jBJlPBANCBi6HU1HYwh0q/4pFOixc/AogFBkHLfgOEjqgSMUV+uvvh2EAsbsC2hIHlIS7IOnVCAR8fRXCEiuVljuKoR0ggbCl6crOMIf6mNN8BGa1BW5nZkKr0yGNjcOSO/csDisVGXd3kLFyrLt1FxJRIPxdc+HpVAihQIdChRQiTX2MbzOBX84vxAef7X0f80Z9gZzUXP14CSVw3piO7LlBUGrEUGlFkIrUEAq4gg4GSo0IWp0AgbEioA3qFN+RqJqT3VZ3/UdVu3btsGnTJv785cuXoVKpIJFYripOTExESkqKwRiEkH8v14YMOn8khEbBQqsAJI5c2KFmgg3miO0Z1OvBIG6/+Z1vQHcGXq2A2N2Wd9DuEbW7rbZyGjwY8pYtkb1+PfI3b4Emw3wXLUvsO3eG95w5Nb59hFjj6OaBsI5dceuE+VnBm/bqh/UfvA1tDRTrF2Zlwqt+A5s6QFRG8z76ULU5nZ54Eql3oxB3+VKlxv2v8W/cBP1feg06rRaZ8bF8QXfavWgc+PHbSo/FBVjunD1p8jZXvwB0e2oSf97dvx5Gv/Mhtn31MUryzXfiMMXRwxP/dg5uHvxzydrQbcUaLszk4Ga6I+KjzN29fJsrHq9YolQq+eMfhjuAv8/Dw6PsfHp6Oh41YrEYPXv25E+c/Px87N+/H2vWrMHmzZvLHtesWbNw8qTpny1CCCGEEEIIIYQQQgghhDweqIMDeaRJ5VK+a0BthxtKcd0c/ELKZzGvyM3XFS99+Sw6j2gHr8DyP/g9iJttfujL/fGo8PB355+/qoYbZnw/tUY7ZxBSWdOXv4AWPc3POvntjF8RfclygbutigtKkByTZnU5ndZ84YROLEBxYzcUNfOA2kOOrqM7oOf4zhbH435GS54J5cMNIpEGPl45CA5MRz3/LNQPzICfXzbErgqjhgzCIjUfMNBqBfpwAVeXcP/ELVoh7wBxajHUvnKjcENF2QMC+O0vbGlY0CFxUPEdG8zh6iEkQsPwAiMAhA76Ai+Npwz5Hb1gi5I5edAcVRo8Vq6DRFvXppgb8QoEjAAigQBNvLzQ3McHDmLr+yau00RFYU7eiEzN5M+rNGLcy/DE2ZhgnLoTgqsJAbiUosHuuNsGnYXWxK6Ao1t55wjpxUJIbhbx57nnXqGWoEgpRbFKwocbpJGFYM9a70hB6k7//v0NZjk9eNB8wLHU9u3by85zhUB9+1oOLxFC/h1EMgZSF6bWww2lmk1hYGf6kARyT6DZVAYBPRjILNRfcl0gGgx9NAIOHLGfHx+Yq2q4wfeLz1Hv558gkMlqfNsIsUXfydPh1yjC7O0Hf/4OmQlxNfJkcl0g8jOt/6zoKlHM3bhLD4S262RxGaFIBOljOHP9Q8MwCG3XEaNmf8B/D+SeL+8GofAJaQipvPLPm2f9BsiIvWv29pzkRMScP1N2OaBxE0z55ldIKsywbwu1ovoTATzqpHZ2aGjl/W0r7ueEG+9x07Jly7Lz8fHxyLDh85YLAXAdGxo3bowVK1bw17Vq1ars9gsXLkCjMZ4s4EFcyODnn3/mj6diYmKg1dZcCynu/u/cuYOjR4+avN3JyQljxozB33//jfnz55ddf/r0aT7oQAghhBBCCCGEEEIIIYSQxxcFHAipwNXbBUtOfIyRrw2CvbP+D5oyeykGT+6D5ac+hm8DbwhFQszfMgsuXs5Gz51ILMTsVa/BN9hMRVIdUClU2PLN7iqt6+bjgqFT+0EgoF0FqTtyexm+OPABmnUPN3l7QXZhjd4f9zNvjalt4erx87oHIPnNtsga1xjZo8KQ+korRA8JRHJegcXxitQq7Iq9DZFQiwDfbDjYK/nQQCk7uQp+AVmQ2CsAHeC+IQYBiyIhTivWL1AabKjo/mWutt9VK8TYbGewfYIsbofOToTiCBfoZOWhMhYsRA4qq88J1/3gQQJx+XWFbYyDYYyAQXgnw443/n4+mNVoCla0+RDTQibgpQYTsLzV+3gv4mU4iit2ldBr6doIdkLLxY5FyvtdMfI0GOUQgc4ujUw8YYa23bvB/8/NyBpfnIYEVQbe+OUl/jOA33YWcFsYD9nJPEBbIY2hZSE/kgvXz+IRdyPR4n2QusUV7zRqxL0X9L766iuLy6vVaixbtswgIOHt/eh83hNC/j3kngx6fytAyAgGovs1ltz/IcMZ9PlWADsvBkIJgy4LBZD8n727gI7i6tsA/qzvxt2d4AR3dyhaWupQoYW6UfeWKrWv7Vt3alAqQKEUd3fXEAhx92R9vzMTIstKHAh5fufs252Ze+/cnaXtztv7zN/Dtr9UAfR9SSqOc6Uwl5Yib/78eocjvCZNsnrCNNGlJix4vunVtxEUW/XboTptsfPf+3WlUNV8TyIseK+tkoJ8FOfmOG2jLS5G/J4daCpqN3e07tMfiissqCQ8+T+4tfX36hMShmuffhl3/d9XGHnPA2LAZcZHX2Hyky9C5WJ7TxLVtQfktfjOKnQaNhrhHeJqbHdi66bKe5Kc5CTkp6dixIwHxDnXVmMFb650XUaPb5Rxuo4eh+aoY8eOVtUXFi5cWGOf//77D1qtFidPnoS3t7e4b8SIEVbBhYqKd8588803uOeee8TwtzCPkpLyBwE0lFBlTwhgtGnTRpxXbq7zB7fceOONle+Fv2eKixv3/ysiIiIiIiIiIiIiIqJLS36Jz0d0xRMqRjz48Qzc98EdKCkohYuHBnKF9d8qsV2j8d3R/8OK79dhx797YTKY0KFfW0y8fzRCWgXhSnJqbwIKc+q32EKuUjT6fIjqI+V0Go5sPtHkF69V1yiExgbX2G7KI+Ox8fdtMJurFrYXDI9A0cAwm7a7E1Nwx7w/8des2+DlYn8xT662DDqTCf5+xZDL7T+JVVjD4hNWiKxdUnjsyhQX2Eu1NTxNUQJ4Fpux7oG74enlhmVffwbonD9N0eQihyqtFNpYT1gkFliE+SguKh1hh70WFnPVQkSzxrYSz+2v3IhpL01F8uk0pManixUS2vWOrVzAGCw8proGGpkKU8KG4ddE+0EuS5kZqkdSEJonxWNv34kJo0bi1Z1rahy3SK/DyvSdWHh+DZLLyp9+qfBSwP2/9tAeMKDotyTI95fC571kGP0V0HdyES+C6nAJZDnl34vSpTxYcVmJpTwaYYyr1OOPP4777rtPfC88cfT111/HSy+9ZLft/fffjxMnqv459MQTT1yyeRJRy6PxlaD7YxJ0fcgCQwkgZPykcusF/j7tJBg7T4qEfy1I32WBxQT4dZaIQQjXoCsrDFB24ADM9V1oqLwC/n1KBCAn6TzS46uqfDWV4Ni2cPd1XDWyQo9xk8sDCZaaf6wlHTmIhXOew7S3P3b4dPqSgjyYG/HJ69UJVQfu/uRbqF1d8fG063AlGXTrneg18TrkpiajICMdGncPBMVWhbB9QkJrHEPt6obuYydi15I/nbYTgglj7nsUHYeMwKqv/1fjuLrSEhxaswK7//kL+Rlp4j65UgVXbx+YjUaUFuTXOIa8hfwzNLxjHHzDIpCTfL7eY/iFRyKsFsGTK5HwYJJZs2bhrbfeEreF+xphwb+/v/176p9//lmsjFBRBWHixIni+/bt22P48OFYt25d5T3P0KFDHQa7ExMT8eabb1ZuT506VRyvMQhhCWGsnJwcsZKDEDZ/9dVXHbbft29f5Xsh7OHr66TUFRERERERERERERERXfH4WHYiB4SndHv4utuEGyoIx258ajI+3DAHH299E/e+f/sVF24QWKotwK4rqfTKWhhFLdfWxbvFJ/A1JWFRvbDYvjba92mNR7+YBams/F+jJo0cRX1DHLZPyS/Ewr2HHB73UWugkErgLlRocELtqofn6Qwx3CCQ5+trKkSA0lId3r/jU/F9qwtPZXRGmVkGj20ZYuUG8VeC2gydruawk9Fk+5PCVFL1z09FphYQhhmoBia6oPdLfXHri+WLm8JaB6P3Nd3E61qfpzPfEjEWN4aPgkJi/c9rVZEcbZf447YbJuK3Pf+HCXePFPfHetW80MHNvQAfnpxfGW4QGCwGFMrzUNKtFKVvhqD0zVBYVBLIswxwWV8Alw0FleEGQXBkzQENahrCn6OKV1RUlMN2d999N7p27Vq5/fLLL+Ouu+7CuXPnKvcdPXoUEyZMwHfffVe5b8qUKRg1ahS/PiJqckKoQeUpsQk3VFB5SdD+NimGfSzD8E9l6DxLesWFGxp6TyK5UD2J6HI7vWt7k59DIpGi79Sba9U2rEMnDLtjltinNvLT03Bk/WqHx109vYUJoCnoS0ux+pvyexLvUNtQ+OUS26sfek6YUlm1IbpbT6twQ10MvPl29JgwBTK59T2JQqVGSNsO6Hv9LZj56fdiuEHgGxpR6+tWEW4QGPU6FOdk1yrcIPDwD0BLIPzuv+bB2eL1rg+h39gHHm/W1YKE8HZwcPkDGzIyMjBkyBAcOHDApt2CBQtw7733Vm4/88wzcHNzq9yeO3culBeCMSkpKejfvz82b95sM87GjRvFMEReXp647erqitdee63RPo9cLseDDz5YuT1nzhy8//77YtUJe3N59NFHK7dnzpzZaPMgIiIiIiIiIiIiIqLLgxUciK5ysd2ixCoUpYVlde4bHVfzf3AnuhR0pbp69w1vF4pOA9qhOL8YfqG+8A31wZ8fLEV+ZoFVYGnWe9MxcEqfWo87buZIdB3eCf9+vQZr05KRKne+sGj5kVOYNai33WOuCiX85WpIpTUv/vM4nV35Xp6nr7G9RS7BjqV7cfZwIm7t1AX70qsWx1ws1tsHSw9+gcziYgz7fR5MErP4S8FgkEOnk0Olsl8xQlizaDBZLz40lshhMVTt8zVlQ7IwCBKv8n17kIQ7d72BR1vfiB4+7dAQwiKUO6In4tqwYdiWfRClRi3CXQLRw6cDZONtv5drYzrgnb0bUGywf/1kUhPSzWccnk8hM0MhNcHQzQVl9/nD5eNMu+3GzBiOy034CoVXQ8e4WgmLZv7880/xqaTJycnivh9//FF8BQQEwGQyiU8Mra5Dhw74/vvvL9OMiYiaJ03nOEg0GljK6n5Pom5Tv8XGRI1NWFheX77hkQiObSM+kd/Dzx8aDy/sWbYI2qLCyjYaD08Mu3MWYrr1qvW43a+ZiOiu3XFwzQok7NuFvNQUp+1PbtuEHuMn2z2mdnOD2tUd2uKqOTWmUzu2IC9tGrqMHIs1337usF1AVCvc/NpcFGZn4scnH6xVhYr6it+9Hd8/Oguj730Y4R07N2gsoTrD0Ol3o/ek68UwjL6sVKwIENWlu3jsYkLQYcuCnxz/uZJIkHbmVMPmJJGi45DykHdLEBgTi0lPvoB/3n8TBp3zhwdcHG4Q+gn9mzOhasHvv/+Oa665BiUlJTh+/Di6d++Onj17ipUZhHubnTt3Ij4+vrLP2LFj8fTTT1uNI7T/8ssvxZCA0CchIQGDBw8WKyoI4XBh37Fjx3DoUNVDHGQyGX744Qe0atWqUT/Ts88+i7/++ksMnQsPvXjqqafw7rvvokuXLggPD4dOpxPnceTIkco+wjEhtEFERERERERERERERM0bAw5EVzmNmwbj7hmJPz9cWue+E+8b3SRzIqqr1j1i6n3Rkk6kIOVUKnqP745r7hmB6E4RuO7Rcdj+zx5kJ+fCJ9gL/Sf3glJd/oTCuhCqtsycOw3SrXtwYLXtEw2rK9KVL1w5e+Q8ln25CuePJ8PVyxXDbhqAAVN6Q5usgzpYUmPIQZJmqHyvSimpcY6qlFLxr9uW7MHNz0/BmrNnsOLMaZt27kol3hs5FmoXFdacOgKzUMGhmvx8F3h5ldqEHExmCbRaGXCh4ovFDJiKFTDkqSrb+GenQXNb1XaFDG0uXjnyLd7v+hDaeTh+yn5teSrccE3wgBrbuSlUeH/AeDy8aQkMZtvV+6PDfJBgsR9aqKCUm2DQy2EY7g7zDzmQFpqsjl//2HhEtAutx6egS01YhCM88XP69OnYtm1b5f7MTNs/A2PGjMEvv/wCLy+vSzxLIqLmTebhAa8pU5D322917ut1c+2eZk/U1Bqy+DknKRG5KUlo1aMP4kaMhW9oOHqMm4wze3eiODcX7r6+iOnRB3JFzZXTLuYdHCourFe7uGLrwl+cthUCFoLMcwk4tGYFclOToXZ1Q7uBQxDbsy+M+tovCq8ziwVn9uxE93GTkbBvt/i6mDCXMfc/CoVajfjdO5o03FBBqI7w9zuv4eY57yIwuuGLs108vdBl1DU1thMCJaPvewT/ffoBLHbuScLadUTy8apF2/XRa/L18Aq88iqNNqWozt1w06vv4L/PPkRO8vka2wshFKFyQ3MPN1QYNGgQNm3ahFtvvRUnT54UQwG7d+8WX/aq2X366adi6PtiQlU7oRqEEHKoCIILIQPhdTGhnVDtTghWNDaNRoN169bhxhtvFO/ZBFlZWVizZo3d9pMmTcI333wDT0/PRp8LERERERERERERERFdWgw4ELUAM966Baln0rFtie1/0HRk0gNj0GtstyadF1Ft9RnfHUFR/kg/l1Wvi2Y2W8QqBoc2HsOHG+egVZcoDJ7ar9G+gNYBvjW2ifX3xfy3F+H7F6wX9m1dtEustKLv74qiVi7w9HMcWjCeM0OZVrWQXnOqEIqMMhgCNQ77eG5OF/9q0Bkgk0rx6dgJmH/0EH45fBCncrLholBgfOu2mNW9F1p5+4htc0rLQxFixkF4SYS1RVLk5blBoTBCpSoPWRgMMugLpYiYcwymKDUMHgqUBXpB39FV/IWhSi6Gx5YMeD4ohB/sL9YyWIz4LXE15sTNRGMxGozITsmFykUF7wD7CxvGRrbB3+Om4+vDO7HyzEkYTEZoThfDa3UmzvQDJDe7OT2HVHJhsZVCCvfhgShZnCpuhsQG4frHJoj/DL0iVHyHDR3jKhcTE4MtW7Zg8eLFWLhwIXbt2oX09HSYzWZxwU6/fv1w++23iwEHIiKqn4BnnoY+KQklm52HQqvzmTEDrr3tV8AiutRie/WDm7cPivNy69VfWMQuVAxIPnZYXEzvGxaBtv0GNdr8hPFq02brwl+x46/5VvtP79qGoFatYdTXXCGuIUxGI6QyGSY/+SIOrFqOg6uXiyELpVqDdgMGo9fE6+EVFCy2LS2sqrjX1IQqCrsW/4GJjz/bqJ+1ODdHDGu4eNi/J2k/YAi8AoKwe+lfYvjDbKq616truEE4R8U1E0IvPSdOQecRY9ESCWGFO97/TPx77cDKf3F693arEInwZ1D4+7nr6HEI6xAnVgS8mghVG4Qgwvz588X7mz179ojhbeFzhoWFYciQIZg1a5ZYqcEZobqDUO3ht99+w7///ou9e/eK4xiNRvj6+oqVEoRAwbRp0+Du7t5kn0eorLdhwwasWLFCrFAhhDWShN8TJSVi8DwkJESsyCeEIAYOHNhk8yAiIiIiIiIiIiIioktLYhEe5URELcKB9Uew+ueNyDiXiWPbT4sLnu0ZdftQPP3jg5d8fkTOnNp7Bs+OeQNFucUNulDdR8Zh7qqXkZaQgWVfrcbZw4lQu6kx+Pq+GHid8NRUeb0CFKM/+R7J+YUO2zzephP+nPa1w+MF/QKRd3MkgltnQqEy2Z7DJIHl6WwoDlwIH1wg6+CH07dFwuxmGyDwWpMCv6VJ4vvX/3kWfSf0sDou/ASwt5jjtyOH8ML61eVthLmo7P9UcFHpEJJWCsWviTAeMEIhl2Pg9X1w91u34cUJb+Pc0SQgVgHpNwFwRgoJFg18B2qZbZUHR3LT87D8m7U4uOEIIJGgx8jOGDFtEP79eg2Wf7MGeRnli3s6DmiL216cil5jutod5+1pH2Pdb1usd05xhfQR50/o15tkKNGXz3du11vRtsRPvJZB0QGXfYGM8ITN8PBw8X338S9C5dKwagO60nzs+/cN8b2wkERYFENERFQfwm+Pkm3bUPjPUuhTU1F24ICQmLTb1uvmmxD86qu80HRFST11HH+//WplJYT6iuneC1OeeQV5aSk4tHYlss+fg1Ljgrb9B4mVFIQF2HUlLI7/5sG7nAYw+l5/i024oTEo1BoYtGU1tpv64huIjOtaq3uSfcuXYP28b2p3fpUaBl159QmZQoG2fQei/03T8NebL4vXuDakMjke+elPyOw8zd4RIcBwaO0KJB87AolUgqguPdB2wBAcXPUvDq9bhbILgYOw9p3Q9/qbbT57hX8+eEsMmTTEdc++Aq/gUEilUnj4B172e5Iria60VPyu9NpSKNUucPPxhcrF5XJPi4iIiIiIiIiIiIiIiJxgwIGohYrffxbv3vkpzh4+X7nP1dMFtzx3HW56evJlnRuRI9mpuVj2xSpsXbJLXMBekOU4UOCIsNBjxpu34IeXFsBsqnqKo6BV1yi8s/JFePnbf8KmM/vOp2DmL4tRYueppzf2iIPh8x3Ys/Kgw/5mpRTJj8XBHKqCd2g+XD3LIJUKC37KF9OXJcrgMScJ8uSq8buP6oy5K1/C9h1H8eDb36O4szfMShlUySVi5QbXE+ULakJaBeKHk5+Ii13syS0rwx9Hj+B4VpZY0WFoVBRmr/kPJQYDLMLj+11MVjWfhGBDdGA23NRVc/GEO24ImoBR0UPKx0zPw9w7PsW+jBOQfuxf4/X7vd8b8FI6r5pQPaz1yrXvorTIehGVTC6FyWj9nQqkUgmenvcwRtxm/YTcxGNJuKfTbNsTeEghWRgEicrxoqAinQpGswwqqRzLhj4LT+WVs0CmesChx7jGCTjsXc6AAxERNb6yQ4eQ+tzz0J85U7lP6ukJ/wcfgM/tt/OS0xWpMDtLrDwgPHG/pCAf2qL63JNI0e+G27D9j19hsVj/fhUqKVz3/Bxo3Or+RPTzRw5h0buvwajT2Rzrfs0kZCYmiIvxG1NMj96Y8vTLiN+1HUs+eNNp9Yg7P/jc4fHSgnwxFJCdlAilRiOGBZZ/8h6MhtpXlXD18sbAW+5Ap6Ejxe2inGz89+kHSDp2uFb9H/5xoRg0qY1zB/ZiyYdv2VxrIZxSvRJDBYlUigmPPYM2fQZY7c9IiMcvzz2GhgZM7v1iHhftExERERERERERERER0VWDAQeiFu7otpNIPJYshht6j+sGjav6ck+JqFYe7P0sTu2pWgxXF8LTNS1m+1UJeo7pgrf/e7Fe457NzsOP2/di1fF4lOkN6BAcgFt7d8Gw9tG4vt0sGLK0kBbZLsCvYHRXIHNGK8iGSiCVmyGVWGCxSGBB+UJ7SaEJXs8kiiGH0NZB+GzPXLi6ly/AWf7tWnx831diNYnqvAI8MH7WKJzamyBWbWnXKxbj7x2FoKjyqgrLT53CEyv/g+6iRThR3l44V5gnxBvKQw5KC6AwQ63So2NEKuRy2+sngQSPtr4b/fx6Vu47fOQkns7+EmaJ44JRvkpP/Nz3Fcgk5QGMbUnnsTz+FIoNerT388cN7TvC58JCo+L8EtwWdT9KC2t+Qmx17j5uWJD8FZRqZeW+H19egF/f+Mt+h+tcIX3Yy0n1BmEcCa4P74NnOl5ZoTAGHIiIqLkp3bMHuoQEyDy94DZkMKRq3pNQ8zDvyQfFBfmNLbZXX0x+sn73JDnJ57Fn2WLE794uhgOEwETX0RMQ2bkbPr/nFljMju9H6sonNBy3vf1/UKrK/57dv3IZ1v3wVXlKuxpXbx/EDRuN9ITTMBsNCG7dHp1HjoWHX3kQ+vjm9Vj51ScwXVTRxTs4FHnpqTbj1RQemfTE8+I1rJB4+AD+evMlsVqEI0LVg5mffie+F9olHtqP0zu3waDXISAqBh2HjqwMnQhhjG8fvqeyakRtuXh6YdbnP1pVidj4y/fYs/RvNESP8ZMx9PaZDRqDiIiIiIiIiIiIiIiI6ErCgAMRETVLd7R+CKlnMppk7G+P/h8i24c1eJxMbQG+OLUaa9IPQWc2AiYL5LtKoP45B7JzervBi4LHg6Ab6riChHJnETzfSBHf3/HaTZj20tTKY2ePnMfSz1fixK7TUKgU6DigHTYu3IbM89lWY8gUMrFfzLVdcNe6f2FwsMipa3AQlAoZdqYki9vqPD1aBaTAtYvR4fyC1P74qOscsVJGhbeP/4QNmfsc9pkeORbTosaiSK/DrGVLsCMlyeq4SibHB6PGYnzrtvjr/5bhyyfmoT6e+/VRDL9lYOX254/9gEWfLHfcYagGLrP8oA0uvz5miwQ6oxxao7AgSYLBAe3xVtdboJRWK29xBWDAgYiIiOjS+Or+O1Ccm9Po4wqL9Gd8/DW8AoMaPFZhdia2zP8Jp3ZutQkQODh5nQIFg6fNQK+J11VuZ55LwMFVy8Uwg1yhREi7DmKAoSQv16qfVC7HgBtvg194FBa/97rD4EVouw7iX1NOHCufnlRWHsF2EtSwVy1iyftvIH73Dod9Bt16J3pPngptcTEWvTsHqSfLz1dBrlJh/MNPicGJnYsWYsuCn1AfQviide/+ldurv/kUh9ascNpHoVbDoLUfpmjTdyDGPfykVWiCiIiIiIiIiIiIiIiIqLnjf/0iIqJmKaxtSL0CDgqVHAad4wX6gkMbjtYq4GAym7Em/gxWxcdDbzKhc1AQpnbqCG+NBtnaQszc8RXStPlVHWQSGPu5obiLBm7PpEB2Rmc1XlDHIGQOKH8qqCP6nm4we8kgzTdhyaf/4aZnJkOhVIjHojtF4JHPq57cOavLEzbhBnHeBhPmvfw7Mo/ugaFPeSUHew6kpWPtHXch93gaXr3pA5SlFcJljY+4uN+RdG0WThefRRv3mMp997eagjPFyUgqzbRp38k1GjdGjBTfP7N2lU24QaAzGfH4quWI9vLGka0nUF8XX4uoThHOO2wow7DWbXHbJzchsywf27LikVSaC3eFGmOCu6Kzdw39rwTC4rQ6LFBzOAYRERER2RAqDNQn4CCVyWC+qIKa9c8vM5KPH6lVwMFkNIrVGs7s3SW+D2ndFh2HjITazU0MN8x/6ak6zdEzIBAFGem1br9v+RL0GDdZ/EwCodrBqFkPlX8Osxk/zL7fJtwgMBuN2PxbzcFlIdgw89PvkZOShGUfzYW+rLRWVSyEoIUwlwojZtwvVtvIT0+zaR/eqQt6jL9WfP/fZx/YhBsERp0Oyz6ei+nvfIyUE0dRX0U51vckfuGRNfYRql/0mDBF/D4TD+1Dfno6NO4e6DBoGIJi29R7LkRERERERERERERERERXKgYciIioWRo/axR2Ld9fpz5KtQKuni7Iyyhw2k4qk9Y4VmZxMe7662+cyKpaoLL85Cl8sm07Ppk4HrvKDluHG6pzkaHsHj+4PVdeiaFCcnY2oHBcvUEkk8DkIxcDDvlZhTi97yw69LVd1LJ/3WGcPXze6VBlbWo4F4Dv9+zBmbv/gjalEBI1IFE5DjdUKDWWWW17Kd1xV/4ofLp6AXI6agFvGZBuhOXfEhxdm4HPb1Nj4uvXYeWZ0w7HFKpM/HBwH7wU5Qun7HHpCihDJTDmWVC8U1jtZX3cN8QbmUnZSDyWDBd3DYbc2BdfP/UTSgocL5KacN9o+Ku8xFdHr6gaPzsRERERtRydR45F0tFDdeojVAKQyuTQl5Y4bSeV1nxPUpidhb/eehm51ULCp7ZvxrY/fsWk2S/g+JYNdQ5g1CXcIBDGF4ID1cMEFc4e2Iu8NOt7nvrYu3wJTmzdWKtwQwVdSbHVtpuPLwbcdDvWz/sapfl5VsdSTx7Hhp++RdzwMUjYt9vhmEIFjP0rlorVJ+rL1csHhVmZ4nemdHFB+4FDxaCHQad1WFGj86hr4OHnL77C2nWs97mJiIiIiIiIiIiIiIiImgsGHIiIqFnqP6kXRt0xBKvnbaxVe5lcinfXvoIV363Diu/XOWwnlUrQY3SXGsd74J+lVuGGCqUGAx785x/4dbBeNHMxUxcXmIIUkKUbKvdJ8k2QGC2wyB2HCISH6eu8XaCAzunT9Q9vOl7jZzAral40ten4GSiTLyyK0gKmDBNkgY5DBhJIEKwprwqRVFCAHw7swz+HjyK/sASqEld4fFgMt8NVlRyEDMK/36zBDmk+zB2c/yzZfD4Rr1/THRt+32a136UbEPKiFOroqutmyLQg/RMLCpaXXx+NuxobF27D+3d9BrO5fJ9vR390mt0TOxfvg+VQMSQXBSLueuMWxHaLRnMmsZS/GjoGEREREdlq228Q4nfvwMltm2p1eYRgw82vzsXefxeL4QPH7WSIiOta43hL3n/DKtxQQV9WhsXvvS5WgrickhtQ6aC6M3t2oLTAQXjcDolECq+gEPF9XnqqWGXixJaN0F4UeqhgMuhxYOUypNip3HCxxEMH0HPidTizR0hU143K1Q1H1q/Cvx+/W/nduPv5I7JzVzFYYa+qx5BpM+AbGl7ncxERERERERERERERERE1Zww4EBFRs/XU9w+i86AO+OfzFWIlA4lEAouDBf8P/e8edOzXFi5uaqz9ZRMMeqPddoNv6IegqPIF+o7sS03F/tQ0h8f1FiO05qrggj0SWGBpowQyDcCFdUfSMjOU24qgG+zhsJ+xVI6MW9rCgniEJJShVVf7VQVkcschBIGmhwRRARnQeaiRmeMJg0Fht11xqQ4+1bZ1S3RwmeXicNy27q0RqPbHwfR03LH4LxTqLgQxXBUoa+MlvrSb0uC36JxVv4RD54EOtk99rc4CC/pM7QH/1f4oNBRBJTPAt5Ue3pMBsxwwWoTARnnIQREgQdgcwKK3oHANoFQpsPPffeXjuEmhu98PiYPckKhMAfoEQpLjC8XCfCiXFMA/3A/3vHMbht8y0Ol8iIiIiKhlE+4/xj/8JCI6dhYXyGclJYq/Rh3dk4y+92EExsSix/hrcXL7ZrsL2gXtBw6Dm3f1X+G2zh85hMyzZxweN+ov/A5vYi6eXvANs78AXyp1fk9SW7rS2lduEAiBAXdfP6ScOIa/33lFDHzURta5hBrbCMGEVj37YPOCedAV2w9MOPvzcu5g+T1JhaLsLPF1MQ//AAyeNgNt+/KehIiIiIiIiIiIiIiIiFqemh/dTEREdIUSFoiMnTEcn+95FyuNv+Ofop9x/eMT4OblWtkmpnMkXvx9NibcO0rcjo6LxIsLZ0PtqrIZT6jcMPub+2o877bE806PW8wSSMz2qzAopEa4KbXwUGshf9Ub+DUIuNm98t/Irr9mwUthP0BgMUmgy3YBpBJkXxeNUfeNhEpj+zkEfcZ3t7tf2VqC8L9VCPtKiTY9MxHX5jyG9TmCtjHJYoTAihnwsFhnIbXzy2A4aD+8oTfI8M9hI/ZkJOOxFf9WhRsuUjA4GCXtvKz2aeILrU8vuegFoFVYGR46/BJM95vQ7lkd4p4rQ8iNJmhUJrjK9HCT6SCtSIsI3aQShD6mxKAb+qIgu6j8GiolKHs7BMYR7oCy6juy+Mqhv98P+lu9kZWUje+f/w3Zqbm4Klga+CIiIiIihyRSKTqPHIvb3/sUs39bgod+XIhu10yEUlP1mz4gqhUmPfkCOg4ZIW4LIYdxDz8Fucr2t3xM914Ycc/9NV7x80cO1vytSBxXhnPaTSqD2tWtVm2Fzy6T2w9LR3ftgcagVKvr1D711AmkxZ/Ev5+8V+twQ23JFCp8/9i9dQo3yBQKtO7dH9ri8nuS2ijMysSW3+bVqXIFERERERERERERERER0dWCFRyIiOiqIJVKoXZR4b4P7sBdb9yM1DMZUGmUCGkVZNO2/6ReWJD8FVb/tAkJhxLFsINQuaHTgHaNMxmLBCqtJ7Qu1otRlDIjNIqLwgGBcmCWJ9BKAbyZi/ahEXi6/0zcuWEecpEvrkkSHgBrLFFAl6OBWV/+FFSzRg7v8XEOpxDbLRrdR8Zh35rDlfukIVKEfKeCwqUqBCDul1oQHZYpLmY/eTbswmcoDziM7dAGa7ChqrEeyHupFNovIuHvXwy1wgijSYrsAnek5nrCYARu/vtXmPRySCqSCdUvDSzi/sIBgXA9UXV9lFlahOcDSd5VgYbq/PwKYHDLgsEERLrkwk2ut2kjk1jgKtOhyKSuHEQWYsL5wqon2xqHu8Hc2n4oRPx4N3tBsbQAGYlZmPfy73ji25oXlxERERERVYQdlGoNht95LwbdfAfyM9OhUKnhFWh7T9K230BExnXF0Y1rkZOcCKVGg7b9BiO4ddtGu5hqNzdoi2q/qL5CSNt2GHXPg/j9tedQVljgtK1XULDDY6HtOogvoZJCQ7TuOwh7l/1d6/b6slLMf+kpWMzW9z214eLljdL8PIfHc1Och93tMRkMSDl1vM798jPSsP2vBRgxo+YQPhEREREREREREREREdHVhBUciIjoqiNUNYjuFGE33FDB1dMV1z58jVix4YGP7qpTuGFAZESNbQZ7d4a/yqNyWwIL1HL7lQ9EI1yAHir0ndADkW5+cMkPQHGCJ4oTPVB81hNlaW6V4YYKKTU8NVSoXBE3uH3ltvoFH5twQ3URoVlQyI0VExZjkD8lHUfojF5W7Qr6+iO10AcHz0Rg54kY7D0dhcRMXxiM5blJg0oCi9xiFWqwSMpfwi8P4a9lrdxh0lh/nq4qb7vhBmGE4KDyRUYaoVKDnXBDBalEKMxgstpXaiipfG8QKjc4o5TCOLj8abUbFmxFWYnWeXsiIiIiIjsUajX8I6LshhuqBxB6jJ+M0fc+gqG3z6xTuCEyrkuNbdr1HwwXT+vKabUR27MvfMMialXFoSg72+nxSU+8gOA2DQuSH1z9r1gFoy7qE24QBMW0RlPQldS+4kN1xzatg8no5D6SiIiIiIiIiIiIiIiI6CrEgAMREVEddQsJQfeQEIfH1XI5ZnXri2/63IuRQXGQS2RQyIxiNQanxrli2M0Dxbe+Li6wmKViqMFisv+vaz8XF6fDuXu74cMNc/DhxjnoN3MovDs5DgYIZFILAnytn9BaZjRiW2clAkdWLfTRtqp5oRNklspwgxhaqHgJJIDZVY6URzvC5FIecpDJZUAHP7tDubrooFKVBy/c5TUHDhTVAg5SSOErD6zctnhYhyrssXiWt9GW6lCQVYjmTMiUNMaLiIiIiK4s4R07IzAm1uFxoXJE78k34OY576J17/6Qymr+HVyhTd8B4l9dPD1rbFtTGxcPT9z6+vu48eW30KpHH9SHUadDdnIivIMd34M1BplCAUkdrlOtx5XL4RXgOOhSUzUKbQ3BdiIiIiIiIiIiIiIiIqKrDQMORERE9fD55Ilo7+9vs99FocBnkyYiwssLIS7eeKvrLVg+7DmMC635CauurT0Q1jpYfH9d+6rKC/YoZTJMaFO7J7zGDWqP1rMGQCa3rmxgj0xm28ZoNsN1RvdqO2qx4t18oU31YMNF9MEuyB0bJr5/6H93Q6GRls/xohX1UqnZqhJGjaqdr6NnD4y7YUzVWGk1P/1UklreRq6Qwd2nFmEOIiIiIqLLYPKTL4qVFi6m1Lhg8lMvwt3XD95BIZj0xPO498ufKoMLzmjcPeDhFyC+7zB4uNO2cpUKbfqWB7RrE8gIbd8R9WU2Gu1+1sYikUgxauZDkAol4RpZ6z4D0GX0uHqHLpQ1BNuJiIiIiIiIiIiIiIiIrjbyyz0BIiKi5sjf1RVLpt+GtWcSsDo+HnqTCZ2DgnB9xw7w0mis2nopXdDKLRjrM52P2aFNq8r349q0xa+HD2Fvaqrdtg/06i1Weagto8mMoiIXqFTOKxIUFtsfc19hNgYNao/Dm4/D7VA+Srp7Ox3HdX8+Sjv51jiv4j4BeOXe8djifx47s44jsJUFZrMEZYVqFGW7wmySokyrhNksBB2AMpMSQInTMU2W8vymjzIA14XeBfc7PLH5753Y/d9+KFYUwtTX1XHnAhPkW8vH739tb7h6NPPFRBZL+auhYxARERHRFUcIMNz+7v8Qv3s7zuzdBZPRiJDWbdFhyAioXd1sKin4hUfh1I6tTsesHkLoMGg4Dq9difQzp+227T/1Vpvz1BRSaIjMcwkIatXa4XzqTSLBiLvvx6kdW5Cwb0+jDi1UnRh6+z1Qu7khfvcOnD9ysE792/YdCIVS1ahzIiIiIiIiIiIiIiIiIrrSsYIDERFRPcmkUoxuHYv3rhmLjyeMx909e9iEGyqMCOwJmcT5v3YnxQyyqtDw47XX4Za4ztDIq/KIwe7ueHXYcDzSt1+d5to9LARJ520rTlRXWKxBfqH9BUpmsxnP/PSwWNHAfWcO5Fk6cb+3awkifHMQ6p0Hhax8wZIqsQRB35+G++4sh9UbKki9zPifZC02Zx2D5UJ1BqnUAlevMviG50EqM8NolCMvv3xehUY1DGYpNFIdvGXFcJOWCSvwrdbiq6X+GB14HR5v8wa8lD6QyWWYs/hpDLt5AFT79JCvK7I/GaMF6k+yIDFY4Oblijteu8n55ImIiIiILjOpTCZWUbjmwdmY8OjT6D5ussPQgVCRQahU4EzX0eMr38uVSkx98Q10GjYacoUQNC7n4R+IUbMeQq9J19dpriFtnVepq4nZZML4R55u/IoGFgvWzfsaCft2W91bNIS7rz/6Tb0Vt7zxAVy9vCGTKzDl2VfFag5SWe2eN6N29xDHICIiIiIiIiIiIiIiImppWMGBiIjoEvBTeeK2yFH46dxKu8f7+nZAb1/rBT+uSiXeHDESzwwYiJM5OWLooVNAgBisqKsuIUEIVbZD4rkiREbZlpLQ6eU4eCLKYf9eoWEIjPTHl/vexayuT6LV3yfh/54a7q7lQQeBySxBYqYvshcaIbUAHlvTUdTnQqhCYn+tkGdAEXQW+09yVahMcPUpQWGWG1KOecIzshCBMSVop06Fr6KqioPWrMB5vS8KTR64NvwRdPYaajPWL3P+xPoF5U+rVf1fJmQGI8yDXWFxlcFokgAWCWSHyyDNMqLH6C649/3bEdEuFM2dxFL+augYRERERNT8eQYEouek67B7yZ92j7fu0x+RcV2t9qlcXDHmvkcwZNoMZCcnitUEAqJiIKnHPUl4hzj4R0YjK/FsveYf1r4TvIKCMf3tj/HTMw/DoNWisZgNhkYZRyaXY9zDT4qhk4ttWfATTu90XkGjnATRXbtjyO33iJ+XiIiIiIiIiIiIiIiIqKWRWCzCs46JiIjoUliWug0Lz69DmjZH3HaXu2B8SD/cHjUWCmnT5g5TCgpx+/w/USo/j7DwLLi7l8JolCEz3Quph91Q7Otht5+QTfht6g3oExYubsefi8fcpDcgczHZbZ+QEoD8d8qQNzoURj+1bYMLvzzkSiMCYnKdztlkkiDzkAfC3z+KoMBi3LLwLJRqs91Zxni9hPi8zvjnzHEU6HRo5eWD29p3gVuGHvd0ml3ebIgGeNgL8JFVTccC6ExyGM0yyCHFm11vw+CAjmiukpOTER5e/l31HvU8VBqvBo2nK8vHrtVvie+TkpIQFhbWKPMkIiIiostj/4ql2LNsEQqzyoPPGncPdBk9Dv2uv0WsCNGU8tPT8McbL1Seu7aEyhO3vP4eglu3FbeTjx3B7689iyuKRIJRMx+EQq3ByW2boCstgW9YJLqMugZmoxG/PPdYrUMSk596CdFdezT5lImIiIiIiIiIiIiIiIiuRAw4EBERXWJCtjCxNB1GsxkRLgFQyhSX7NylegOWHD2OL/9ci5zcQihTS+C+Mx2yYgNS720Pfbib2C5AXYLrY44j2j0f7QJi0TFiJiSKOPHY38kLsCrjX4fnECo5bNzUBgaVxvFELIBaWQafmKIa55wa7wt5ug73hqxEh9H5Dttl6zzxv1NDYDLJUFSkgV5ffl0HZrkg84UNQE8V8LYfIJPYTscCaI1ymCwyuMs1+GfIc1DLlGj2AYeRjRRwWMOAAxEREdHVxGI2Iyf5PMxmM3xCwyFXXLp7En1ZKY5tWo9tf/6GssKCWvWJ6NQFQ6bfLVaPEKz74SsxqHGlESpbCNf2YkGxbZAef6rW42g8PHHvFz9CJr903wsRERERERERERERERHRlaLu9eSJiIioQSQSCaJcgxHrHnpJww0CF6UCt3TrDO/PDyD4qyPwXXoWyswyyEqNCPv4CALnncJdLjuwfuJPeLzzLlwbfQrtXJfDlDMFpvyHYbEYsOHcBqfnkEkt8AsrqyjUYJ/FAp+FSTXO12ySwAIJLMFKtB5R6LStn6oAUd7Z8PAoQ2hoLnx8yttv8S9FcRcvYLqH3XCDQCIBlLLyihRFxjKsTT9U49yIiIiIiJorYSG+X0SUGBi4lOEGgVLjgq5jxotBh9o6f+Qgfn7mESz/9AOYTSYcXr+qcSYj3Ag0InvhBkFdwg0CIfhxeue2RpoVERERERERERERERERUfPCgAMREVELZDbZLryRmC0Y7HUWz0zYB4XMNp5g0f4HbebrKNWV1Di+/EJYwCGpBE88dBtau4c4bVZapBJmBpXcAIXM/mKh6tRSQ+V7T88yuLuXL5oqGB8AxAljOQ9mSFB+jsTS7BrPRUREREREjR8GcOb45vVYP+8bGHW6Rrn0Yx+cDZ+QMFyJclNTLvcUiIiIiIiIiIiIiIiIiC4L+eU5LRER0ZUtXZuNVelbkVyaATe5CwYH9ERXr3a4WnQa1B67/9tvs//6+zMhdRJ/lOj/hORMHNBD6XT8whKN0+PCc1IHj+mJKG0oHt/3HYwW20CE0SBFUZ6L+L7UoEShTg0PldbhmGYLkGdwtdrn4VGKoiIN9DHCOKVCLQjIJGaxKoTJIrX7AFeLBXCXq3E1kFjKXw0dg4iIiIguvby0FBxauxL56alQu3mgw6ChCO/Y+ar5KkLbdkDSscN17nd43apGq2IR26M3XN098Pfc1+oVuGhKalfrexsiIiIiIiIiIiIiIiKiloIBByIioossSVmLH84uhgVVK7vXZu4QAw7Pt58Flcz54v4rnc5wCje9lYRe046iVKvA1pNR2HMkFMpzZeg6sMhpX7lCj7BjBUjr4e+wTWGJGsUJMkgcN8GgiCj4ubjAz6UVPu4xE0/u+gVl0mLxmBAw0JYoUZDjCrNJCCEI34QU+zMjMST8pMMxE0r9UWyyDiYolSbIZGZYdBK4m8ugdjGJIQaB0SxFiVEBnUlReV6zRQIpJBgV1NXpdSAiIiIiako7Fy3Elt9/Lv+ResGR9asQ070XJs5+HnJF+W/Y5ior8SzkKucV1hwxGfSNMoeY7r2hcnFFVNcemPrC61jy/pvQl5VXgLvcpDI52vQbdLmnQURERERERERERERERHRZOHlGMxERUcuzN/covj+7yCrcUOFA/gl8k/AnmrPswi9wJn04FD7/oO3AAnQbmY2HHtyD5+ZuR+Hz4eWlFWpQnKXC+RQ/u8d0ejkOn4qEb2IWAn3zEBCQB41GZ9VGbgJm9xlQud3VOxofdZ+FvCQ/ZCZ7Iv28D3KzPGAyywAZoFHpcU3ng3D10aPYZH8RVJFRhbU57e0ek0rM6ByeBI1rVbhBnIfUDE+lDmqZQdw2mIWfRRJMCe+LII0XrgpCWYvGeBERERHRJXN61zZsWfCTVbihQsK+3dj483fN+tvY/ud8/PT0wzi7f89lm4NUJkP/G26t3I7o1AXXPz8HUvmV8SyYbtdMhJu3z+WeBhEREREREREREREREdFlcWX8VzsiIqJLxGKxYN+aQ1jx/TpkJuXAL9QHo+8Yit7XdINEIsHilHVO+2/I3IXpURPhqXBvdt9ZsXYjMgvesHusrUcmHm67AXvygtDbJ93hGGaLEgfcwmDUq5CR4wE3Fx3kciOMRhkysr2Qku6D0MhcuM8SQgO5F3rloqhIjbNnAyFL0OL5voPQJTDIatxO/oHo4h+B7WnnbcIJozsdgbdLKcyQ4oQ2BEGKAvjLC6GSGqE3y3CoKBS78qNRbNLYzFevl8PfowQufkaHn8lNoUOJQQGFxBW3Rg/AzNhRNVxJIiIiIqKG3ZOcO7AXRzasQXFuDtx9/dBp2ChEdi6/J9mzbLHT/kc2rMbAm6eL1Qeam/jdO7Dtj18bNIZcqYRR37AqDsPumImAqBirfSFt2iEwuhXSTjuuGldvQtLaTmDlYkqNC3qMvxb9pt7S+HMgIiIiIiIiIiIiIiIiaiYYcCAiohbDZDLhnen/w4YFW632b/pjOwZc2wsv/j4bRwpOOx3DYDHieGEC+vp2QXOTW/St0+N9/RPw46kRTgMOKxIDEXyXFhKptnKfBVKYdDKozCZ06XAOerkclotKQbi7a9HBIwGt9gTihjf7Y1X6DhzKjxePdfduixBFJHZcFG4QRPlmi+GGCkLIIdXgDYlFjlhlPjykZvhIzReKUgkLhqzPW5itRltVitPPLZUAwy1tMHvIDLjI7VeIaLaES9LQAgws4EBERETUaExGI5Z9NBfxu7db7T+5fTPa9huEMQ88htSTx5yOYdTpkHbqBKK69mh238y+5UsaPEZDww0RcV3RcehIHFq7EinHj0AilSKyS3d4B4U0TbhBUItwQ9v+gzHmvkegUKmbZg5EREREREREREREREREzQQDDkRE1GIsfPcfm3BDha2Ld+OX1/+EZEzNC7olFy2iby5KdTudHpdJLMgxSfH+6Z6YHbtHXPhf3Y78IPwji4Sk2vVxk2nhpSiFVCieEFC+z2iRIF3riUKjdUUFeZQM/b/tj5l730KOvqBy/9rM3VBLNFAoPaDXK6z6RPrmWG0rYMJE9wREKIoq93VS5eB6n5P4MLUPdheFifssZsCw1YCA905A8ZvrhQCEY/t/3olEt5Fo36e103ZERERERA2x4+8FNuGG6iEH3/CI2lcEaIZSaghvXApRnbvh24fvQWlBfuW+oxvXXvaKGMKfi14Tr0NgTOxlnQcRERERERERERERERHR5eZ8tR8REdFVVL3hn89XOG3z71erEefRxmkbpVSBDh6t0DzJamxhtkjw5dmuGL31BnxzrjPWZEbiz5Q2uH3POPxfZhwMlqoxXGQ6+ChLbYIQcokFoep8uMp0NuP/nr7CKtxQQWspQ3RUJuRyg/WMxeoMVUa7JVqFGypopEY8FbIdfiVlkP5aAMUdKXCdkwpZmQmmDOsx7NGd1+PLJ+bhaiN8NUIgpUGvy/0hiIiIiK4SJqMBB1f/57TNoTUrENa+k9M2So0GIW3aoTmSXAHBjK0Lf7EKN1TQlZbgcjIZDNj06/eXdQ5EREREREREREREREREVwIGHIiIqEXIOJeF7JRcp23yswrRz9jZaYWGEYF94a64vE/2rC83zTCnx/UmGQ7khYvvz5V6Yu6pPrjvwGg8e3QIdhcEwk2tt2rvKS9zOJawbslfaRtE0JutAwzVSaUWREZmQSYzVe7LLam61p5SLWIVtguRKiilZozTnIbsx3xI0o2V+7VLred9MXOuGbotBhzbdhLJp1KdtiUiIiIiqq+81BSUFdqGfasrzs1B+0HOf7fHjRgLpcalWX4RUV17Xu4piEGCK9X5I4dQmJV5uadBREREREREREREREREdFkx4EBERC2CXFFz9QJBB00r3NvqRsgktv+K7OPTGXdHX4fmytdtlnAlHB5fk94exUYVvN1KEOBVKP5VKrFf/UAuMUFxUXWFi7nIDZBJqsIKFRUiHLMg0KUQA2JPoXvYOXi7FONURhDM5vI+kYoiMTjhTP/ARJt92hV66HfbX8RkMVpQ9EEZcCEPUVMIhoiIiIiovqRyx7/Fq4vq3A1Db58JidT2nqRNv0EYdMsdzfZL6DlxCiR27rWoSnEe70mIiIiIiIiIiIiIiIioZavdf1klIiJq5gIi/BEdF4Gzh887bBPaOhjhbUMQIQlFb584rMnYjuSyDLjLXTDYvyfaecSgOdOouiLM91Ok5M6GxVJqdWxzZiwWpvdAh8g0yKSWyv0mswSpOV7ILXJDiVYBV3V5UECCqjbOVM8jCJUxjBb7i5lcZTrEeaTAVV5VbaF/dDzOZPtjx5lo9I1JqNU55Yaqyg1VHwLIf7IErneqoZmshNSnfA76fUaU/KCFYU9Vn1/e+BOfPvwdPP09MHLaYIy4bRCUaiWaLeGSWSwNH4OIiIiIGsw7OBTewSHIS3NcNcwvPBIe/gHoMX4yWvfpjyPrV4ntNR4e6DBwGIJi2zTrbyKsXUeMffBxrP76Uxj1ukt+fiE0YjE7D2pfVhIJ3jy6DIlHF8JX7Y7JsX0xIaYnlDLF5Z4ZERERERERERERERER0SXDgAMREbUYNz19Ld6Z/onD4zc+NRmSCyUCfFVeuCniGlxtPFwmwlU9GAUlfyFfexTH8krx1XY1kk0ahLcutKmQIIQdwv3zIEs1oPQXHVzvKQ8HGC0ymC2A1ElFBYNZCqNFggBlAcKVuQjUuCKpVIczpf7INrhbVYPo5nkeKpl1tQdBK78sCEUgdr7oA8lEHYZNSHb6+Y5t87B/QA9Y5kuQ/V0hpP4SWLSAJd925f7B9Ucr3x/aeAzLvlqNd1e/BFdPV6fnJSIiIiKqiXCv0WvSVKz6yvE9Sa/JUyvfe/j5o/8Nt111F7bDoGGI7tYTxzauQ+bZeORnpCHj7BmYDParrjUmjbsnSgvycLko1BoYtGUOj2e5ybE2/4z4Ph5p2Jl+CgtPbsG3Yx6Gm0J9CWdKREREREREREREREREdPmwJjwREbUYwtP4Z86dBrlCZrVfJpfh9ldvxLh7RqAlkEk94eM+AzH+H2BCmy9gvj8DYZYcm3BDdW3CjTB9X4Li+TqxkoJGpofBbH0dL1asV6CvawL6ep5FqKYAcqQi2iUHI/1OoIfHucrSAKHqfLvhhgoxgVlQX6fC0YBwHCv1ddjOZASWfx/k8LiLp0as5mBOt9gNN9hzas8ZfPbYD2i2LICkgS9WcCAiIiJqPHHDR6P/jbdBKrP+LS2VyTHo1jvFxf8tgcbNXaxScc1DT+Dm196FyWisuY+HZ4PPeznDDQKluoaQgp17sgNZCXh/999NNiciIiIiIiIiIiIiIiKiKw0rOBARUYsiVGkYdfsQrPl5E7KSc+AT7I2R0wfDL8QHLU2evgDbsvdC+ZAGaCuDWVzJbj/lUOyjxd3fT8OqfxbD15gPubguxwKLsAjeThetSY4gdSEC1MV2x2vtmoV8owvOlAbAT2W/TXXRXfKQpvPG9znd8Ih8FyKUhVbHjQYJvnomGmcOutn0lcqkuOmpyZj/ziLUx4YF23Dve7fD089BdQgiIiIiojrod/0tiBs2Gsc2r0dJXi7cfP3EYIOrl3eLu47FuTk4sW1TrdqWFRZg4C13YM/Sv6EtLkJzIpFK0XvyVOxctNBpO/9CA1R6E3RK6wDMP2d24YmeU+Cu1DTxTImIiIiIiIiIiIiIiIguPwYciIioxfEO9MINT05CS5WlLcCHJ3/EmZKTQkQB8muVF8IKFpgsEpgdFHia/+OvaDfXAKmqYo9Qy+FCyOHCg/71ZhlKTErxr+1c0pzOo41LBk6XBEBaixIB0gshiiKzCm+nDUBXlwz0cEmDe5EERxcCq38NRHZK5cSstO4Rg2G3Dqx3wMGgM+Ds4fPoOqwTmp3GqMDQ0P5EREREZMPNx1dc8N5SFWRl4t9P3kXa6ZMQbyhqacv8ebjSKFQqGHQ6p21C23ZAbK9+NQYcBHKTBRePVmrUIT4/Dd0CYho4WyIiIiIiIiIiIiIiIqIrHwMORERELUTy6TT834rfcaTjOXiobRfgCJUYZBeCDpaLKjlYCszwH2GsFm6o7FV+XHhZhMoNSsgkEvgpSiGXmJ3Ox1OhhcxiRoFBAw+F1mnbYmPViYUAxr7SYPEl08mQ9X+ZgMFx3zP7z8LDzx2uni4oKShFfShUinr1IyIiIiKiKjkpSVjzzWdIPn7kqrksZnPNAY20+JNw8/WFQqWGQef43qdUJUWpyrp6QwWVjPckRERERERERERERERE1DLYf0QzERERXVV+eeNP3H7rM9jZNhmuKr3DdmLIwU4wwbi8DF4DnC/cEfoqpKY6zSvhZAi2HG4LZ2uCtCY5Cowau8dMKhOkPs5/zhgNJkyLegDdRsahPvxCfdCud2y9+hIRERERUbnN83/Cj7Pvv6rCDQKTQV+LNgZ8+9DdiOzczWm742FusFSUr6smzM0X7XxCGzRPIiIiIiIiIiIiIiIiouaCAQciIqKr3EfzvscC15VwnesBH7UWMkkNQQXxf6vayE9KYPiuGJI61H0qNaugN9t/8miF8/k+0EKOHIkLNibaDzkYzFLElwZUzsp2rhJI9DX/nDHqjdixdC/a9mqFurrp6Wshkzv/LFcqicXSKC8iIiIiovoSKsQt+/g97Fq8sN5jyBTKK/YLkEil5WnvWoQcEvbvQUBUjN3jKb5qHGjlYffYrM5jIZXw/8YlIiIiIiIiIiIiIiKilqEOSxWJiIjoSmGymFBgKIJaqoKL3H51A8GnJ37F+lb7IGulErcl1YILjghrc4KVfvBV+2BkYD/89vACFOqB4gOA12DH/YR18CZL+aIbCyTI0HsgRp2FYHkR/GXFkEvMKLMokGF0R4bJDVsSWwNqs5hdOJoViuwyV/SOOAtvZRnMFgnStR4oMqoBYcGQA128OuCU/2kk56U5npdUAmFaQsghpksUxt0zEit/XI/slFz4h/ti7F3DodQo8OlD36Eor6Syn0KlwK3PX4drH76mxmtGRERERNTSmIxGlBUWQKnRQKlxcRhuWP6/D3By28Y6j+8VFAIPP390GjYK2/74DfnpqbgSxfbsi7Qzp1Cck11jW7PRgNB2HdF55Fgc3bAWxfm58PALQNzw0TgT7IItu/9Aob6ssr1apsCDXcfjxrYDm/hTEBEREREREREREREREV05GHAgIiKqhYRDiTi67SQUSjl6ju0KvxCfS3LdhAVBe1cfwuY/t0NbqkNkt3AYxhuxtXi3GHAQKhh09eqI68PGo7V7tFXfbdn7sTp7u/V4F4IIzh4wGq4JxofdXq7cPjsuHucOJiF9vhReg80O+wnhBnO14lBlJiU6qTKgkRoq97lJ9HBT5sBYIEN8sb9VLamMYi/szIiGi7qqvVJqhJdKa3e+CokCN4RNwK7b9+OHF+fbHC9t54G80cHiXyGVQHWuGMv2nMTsr+/DuJkjbdoPuLY3Nv+1E2lnMuDp74GhN/WHh687mjXh6zI3whhEREREdNkdzT6Pw9nnoJDJMSSsE/w09p/239gsZjPOHtyL+F3bYdDp4BcRiZL8fJzYsgFlRYViBYPobj3Rf+qtCIyJteortDmxdUOdzymMM+3tjyq3MxJOY++/S3ClkatU6Hv9zTi9cyt2/P17rfoc37IBD343H11GjbPa3xHAqJgeWHF2L1KKc8Tv95roHvBUuTbR7ImIiIiIiIiIiIiIiIiuTAw4EBFRi7Y1ORHL4k+iWK9HO18/3Ng+Dv4uVQtIspJz8M70T3Bo47HKfTK5DKNuH4KHP7sHSpWiyeZWnF+CFye+jaNbT5bvUALuAz2gyKs6pwUW7M8/giMFJ/B0uwfQ2atD5bH/0jbbGVUCMySQOankcE3wMKvtifePwdIvVqFwewmSPpYg/FHbviaLBGVmpdW+4R6nrMIN1bX1zMSkiENYlNzNan9OnjsUfgVQKEzitt4sR4FeDTeFDnJp1XlDNUGYEX0LMoqk2NNHifwnOsF4Og+eW7KgyNWjoL8fMqdFi8GGCrooNyREueGtHRvwfN+hNnNSaVQYOc1JiQoiIiIioiYING9NPY6V5/aj1KhFO+8wXN+mP3zUVUHb5KIcPLXpe+zPTKjcp5DKMLXNADzf50bxfVMpLSzAormvIT3+VNXOrRd9BrMZCXt34fyhA7ju+dcQ3iGu8tiBVcvrdd5uYyfabB9etwr6sqrqBpebX3gkRtz9gHiN8jMzoFCpYdBpa+ynLS7C1t9/xoCbptsc08iVmNK6XxPNmIiIiIiIiIiIiIiIiKh5kFiE/5JKRETUwgiBhpn/LcL2lCSr/UqpDO8MG43r2nZEWYkWD/R4Gsmn0uyOMfTmAXjht8eabI4vTXoHO5btrdxWTVXD9XHHT+8MVPnh426vQ3Kh3MH0Hc+i0Fhsp6UFcom5+tr/Sl09uqK/+yiEe3gi1tu3cv+xHacwZ+r7SDPrUPpUBNrGpcPPpwhmS3lgovyUVQN6ykpxu89Op5Uikkq8MGPnHTb7JRIL3Fy0cNVoocrSQnpGB+m/xVDCCKmvFBOmjsadM27FrNWLsSnlnHVnkwV+fychd2IYLMpq5SEusuTaaegSEIyrUXJyMsLDw8X3/fs9A7Xas0HjabUF2LZ9rvg+KSkJYWFhjTJPIiIiopauUFeK+9d+jr0ZZ6z2q2QKvDPoDvHp/cX6Mly75E0kF+fYHeO61v3w1sDbm2yOf7zxIs4fPlDr9j6h4bjrwy8qtz++fSqMtVj0X12bPgPQafhoeAYEwiek6rdn8rEjWPrROygtyMfl1mPCFPSfegsWv/s6ko4drtcYd7z3Kfwiohp9bkRERERERERERERERETNHSs4EBFRi/TshpU24QaB3mzCU+tWIMbLB8mLjzgMNwg2LNiKaS9NRWT7xl/wff5EilW4QaCaoHLaJ0OXjSOFJxHn2U7clsLRk1wlMFqkkFossFgkYi5BI3VFQXYwvjlchG/wt9gqzsMP/c/I4JauQ2jrYHy65x1M+n0Bco1anMs3QOciBAiEBIMFAapiq8CEr6zEabhBEO6aD6nEDLPFOoggzKmoRIOSLAWiHz8Lqc4s7jdeOL5sy0qciPGxDTcIZBJkTw0HLJJqcQtb808cumoDDkRERETUPDy35SebcINAZzLg6U0/INozELvSTjkMNwgWx+/A/V2uQbi7f6PPL/NcQp3CDYLclCSknDiG0HblleXkCjmMutr1Vbu5i1UQTu3cKr4EAdGxCIyJFavoeQeHYfrcj/HTUw+jrKgQl9OhNStQlJ1Z73CDOMbalRh+172NOi8iIiIiIiIiIiIiIiKiqwEDDkRE1OJs3XEE/54+Wb3ggBWTxYLvD+2F+s99NY61aeF2TH/lhkaf4/61tgtlpMGOKxJUyNLmABce2B+uikG+cb+TkIMEKVleeCB2BObu3A+D2WTV4nBhNo66GRG2+BhUqWX4+PulyLwjFu1apSAmPANy2YXggVmKYqMSCokZKln5GDpLzT8xtEa5TbihOvetOZXhhupKFRb8k3BCSHA4+GgXvlgnNarOFuShRRCuQUNrdbHWFxEREVGjW3VuP9aeP+jwuPDb/Odj63G2IMPpOGaLBSvP7cc9caMbfY51DTdUKMzKqAw4BETF4vyRmscZcOM0bP9rPrTFRVb7M8/Gi68Km375HiajAZebQVuGUzu3NWiMvPTURpsPERERERERERERERER0dWEAQciImoxSgpK8OYtH2FtXjIs01s5bbslKREDirU1jllWXIamYLHYriq35FoAN+f9vtt/GI8m74VCKkPHQE8YXaWQy21DAoKsLE+YMv2xVJICg9l+G7NGjtxxoQj+Nh4lgWr07HQGwQHW4QC51AwvpRb5ejVyy1whk5iRUeaGEdLj8PJ0/LjWjefbQqKTwKKy/azqk0Xw+yPFbr+yNu4w15z1cMpHrWnYAERERERE9ZCvK8Fj67/BjrSTNbbdlnocHkqXGtuVGmpZIuES5Vz3LFuENd99AZlCAZ+Q0Brbazw8xYoNZpN14NqeKyHcUMnOPVtdaNw9Gm0qRERERERERERERERERFeTBi4PJCIiaj7m3Pghdq+o3VNIhaUqMXERNbaL6RKFptBteCebfbr/nC9c0htk2JZQhCK9HrnaMmxOTMeZs0Eo0yqs2pnNEmRkeiI90wvS7Wk4mJluM5ZEboLMXQ+Ftxa6Ea7IvTMYnh31NuGG6jwVWvG6ac0KaAtlWPZBuMO2JXol/jjWB9J8GaQFMjHoAKPwISSQ5UoQ/GkCpHr7oYvGcG3r8ifKEhERERFdSg+t/bJW4YaK9fPtfMJqbNfWp+YQQX1EdOpSr36Z5xKgLytFWWEBUk4cq7G9tqQYWYln0dJ0GDj0ck+BiIiIiIiIiIiIiIiI6IrEgAMREbUIJ3fHY9/qQ+J7TXwRYHb+tM3+oRGYeP8Yp208/dwx+IZ+aAqRHcLRa2xXq326v7UwnRNSAPYXP51P8YMFEqv92jIlTp0ORXxCEJJTfXA+2Q/HToQhPdMb8hw91PuybcaSagxQeOkhU5kgkVkgkVtQNN4fvpPtn7uCRAK4CyGHfDN0z+Rj24+BmP98DIpyrAtGnU/xxPPrb0BKkQ8kkECqlUKWL4c8RwF5nhwSgxwlXf0cnkdzqggwOg8/hLo5fhpqn+BwjIxwXsHj6mEp/8PRkFe9n91LRERERNXtST+NPRnxtb4ofUPa4pZ2g522CXDxxIiI+gURahIY3QrhHeLQ1Cy1qNzQHLn7+Ts8Ftm5GyK7dL+k8yEiIiIiIiIiIiIiIiJqLhhwICKiFmH7P3sq3ytydHA76LgSgcQCKP9JQOKxZNz15i1226hdVHh+/uNQqqyrIzSmZ39+BG17VS3EtxRbUPhgIQyr9ZBaqv4VrjC74/TZIOTkudsfyAJoU6TIyfVAXr4bTAYpXA/mIuzDY1AnlQKmqgXsEpkZclf7QQalsuaFR8ZEC8puyob5iEHc3vxLMF7o0wtfzGiPebNb471r4/DYNzfgVG6wvWmKLwks0AdoHJ5DXmSEx84cp9/fu4PH4JHu/eChVFXuV8nkuLldZ/ww9jrIpPwJRERERESX1rqk8sB1bQix5XxtCVKLc/FA13F227gq1PhwyN2QS2VoKuMffRr+UTG285NIIan2m1rl4tpkc2iWJBKMe+gJ9J481erayJUqdBk1DpOfehESISFORERERERERERERERERDasH6lMRER0lTLoyhfcVwj4NQFGdzm0sRc96d9khv/8sziyIxtHvtiCoOgAPDPvIWxZvAvHt5+CTCFD3wk9MeWRaxDeNrRJ5+zh645Ptr+Fnf/uw6Y/t0NbokOrLlG45p4RUPgpkK7NhEamxkPL1yGvIN3pWJozxXDfmw1pqRHKTC3kBVXXw/VwHkq6+ojvpRrHVRrKjDWHOXK0HjAq9JCXVY1v1EtxeE35+OI52hlhEaIMkopEgwR+ngXoF3sK7YJSIZeZkdXPFYlyGc4s1AAW24U/AfMToQzzQHZkVYBBZLLAf/45HDmxEbM/uAP3d+2DfRmpMJrN6OwfBG+14+DE1UgIewivho5BRERERA2nNzmviFad8BNsQ/Jh8RXpEYB3Bt6BVYn7cSj7HJRSuVi1YXqHYYjwcFwloDG4enlj2tv/hzN7duL0ru0w6nUIjI5F3PDR4u/4/PRUcQH/so/mQldagpZGrlLBqNPZHrBYcO7gPgy69U70ve5mpJ46AYvZhKDYtlC7uV2OqRIRERERERERERERERE1GxKLxcJla0REdNXb/NcOzLnhg8pti1wKo787ymJcURqjgUUphTK1FJ7bMq0W/wuCYwLxw4mPIZM33ZNRG+K2fxZia/J5p20kBgmkJglUiUXw+ysBqtTSymMGXxWK3+2HbH0Z5F5aSOXlPw085aVwl+uQo3dFmVkJL1UpBoSddXgOs1mClXs7w5hmRviHRyEvtL6OAm2ECzJvjoK2lVt5wMEMRLtl46ZuO6GQlVeIkMMEN6kWcokJxSlybHnDDwnr3GExVwUdAqP8kXEuC6Vt3FHU2xcmjQzKdC08N2dCkW+AVCrBvPhPERQVgJYmOTkZ4eHh4vsBfZ6GWuXZoPG0ugJs3fmu+D4pKQlhYWGNMk8iIiKilmbpmV14atMP9erbyjMIS6e8BKnkyqxENv+lp5B66nj9B5BIoHZzh7aoEM2FZ2AQCjIcB82lMhlmfvo93Hx8L+m8iIiIiIiIiIiIiIiIiJq7K/O/ihIRETWy/pN7ISDCDxaJBNpukSie0hPaYR0giYyEq84X3geN8FmZahNuEKQlZGDLol2NNheT0YSMxCzkZeQ3yngTYts5byA8xd9c/lYX6Y7U+ztCH1BVyaB7hxj8c8N03NQuTmzX2jUTr7Vdhp+6zcMXnRfg527z8Ej0ejGMkFjg7fA0x86HQqtXwuirRu5Y2+oWQhgh6en20MZeCDcI65ikFkzstL8y3OAuLUOQPB/uMi00UgP8w8sw5ask3DT/HJRu5W26jYhDdKcI8b3LqSIE/nIOId+cgd/SFDHcIDCbLVj7y+a6Xsqrj5BjbYwXERERETXYmKhu8NdcVEGuls4UpGNj8tFG+xYMZhOSi3KQU9Y4gYK2/Qc3qH9kXFdMe+v/0HHISDQHUV17wCswyGkbs8mE41s3XrI5EREREREREREREREREV0tGHAgIqIWQai+8OrfT8E0tB0M7UMARbVqDHIZDG2CUDa4rZAFsGv/mkMNnoNBb8DPr/2BWyPuw7ToB3Bj8Ew80v957Px3b4PGvbZ1e7T2dvxUUIlJKNlUVf3AopEjf0R5AMHFXYP7PrwD8Tm5WHH8NNopM/F2uyXo7pkE6YUuKpkRo/xP4N32i5CU54VDp8NRXKaqHC+/2AW7TsbgdEpw5b6inn6wyKrOKVfJkXV7DCxK6yoYsT4Z8FSXlZ9HooeXrFR4eKuNsJ6leGC5Gl8ffB/vrn4ZJYVVFSgcaawACRERERFRY1DKFPh0xH2QS+pXGW5bSgMqJFygMxrw8b5/MPT35zDyzxcxYMEzuG35+9iScqxB43YaOgJeQVX3A3WhcnHFkOl3I+v8OZzetRVNRaZQNHiMoNg2uPODz3H9c69BV1JSY/vSAt6TEBEREREREREREREREdUVAw5ERNRimLxdURbs5fh4iDdMgfafqGpp4FPsTSYTXr3uPfz02kLkplctcjm+4zRemjQXK39cX++xNQoFfp18IwaHR9lWbjAKL9vEQHEXX/Se3BP/t/l1yKK9cN+/S1Ck1+HeNpvEQIM9wepC3CTZiZQd7li9Lw7/7e6C5bu6Yv3BjjCbpRjS6RgeGLQB341ehO/H/4u75qYjIFQv9h02dwp0AVWhiAo+mqpFQe5SrdPPqQg9jOD2avF9UHRAjdclOCawxjZERERERJeSyWyG0VJemayuLA7j2LWv2nDfms/wxcH/kKMtqty/N+MMZq3+FP8m7K732EqNC258+W1EdOpSp36tevbFLa+/J1YNW/Z/b0NfVh5+bgpxw8c0eIyscwnQuJffM3oEOK/gIPCsRRsiIiIiIiIiIiIiIiIissaAAxERtRgrttb8xFNDlL/d/V2HxzXo3Jv/3IFdy/c7DE988fiPKCtxvsDfmQAXV/w0cSrW3jID93ftDYleAqlOAqlRCgnslESQSzH5iQmI6RyJHw/uh9ZoRJRHFlp7ZTo9z7DoeAT+ckqoCwGtXgmdQYGOEUkY3OEE7gs/iicDTmKYeyYGe6fjllvTMW/ncXy0MgzRYzvYHa/MWPUUVZXE4PTcFpiQpy2vdjHu7hFO2ypUCoycPhgtncTcOC8iIiIiahz/nNlZ7779gts16NxLz+zC9rSTdo+ZLRa8sWMh9Cbnv8mdcff1ww0vvSlWOOh+zaRa9el97VT4hkVg7/IlMBntB60bQ+s+A8TzNJQwx9RTJ8T3ccNHO20rV6nQfuCQBp+TiIiIiIiIiIiIiIiIqKVhwIGIiFqMwuKaAwQWtdxmX1CUPwZd36dB5/7v+3VOj5cUlIohiIZq5e2DW9p2glSo3FAZbLDAy6sQPiG5kAWWQBZQBt/AHPxi+BtPHHgHe7Ub4OpWBn9N1VNcHXHzNsKtuBTqhPK23q7F6BiRgmGumejjkmvTXioF2sf9i3Yu9p8GezI7GHqTrNafTyIp/+nSaWB7TLh3lMN2931wBzz97FfjICIiIiK6XPJ1VRXM6iLKIwBDwxsWuv779Danx/N0xVh7/hAaSggSdBgyvFZtV3/9KX5+9lGc3LoJTen0zq0oyMpolLEk0vL7rKjO3dBxyEgHjSQYfue9ULm4Nso5iYiIiIiIiIiIiIiIiFoS21WcREREV6mwIK8a20iLrEMQ/uG+eOPf5yFXNOxfmVnns2tsk1mLNrUR4esDz3MlKIhxQ+eIc+gZewbemlLxWLFBiaQyHyTrvZEkBCBKAJUHEOsBSApNNY5dki+HvkwKv0WJSHm4PVrFZkIGM/q7OJ97O+VieGIYCmD9RFidSYEt51tjePQJaC1KuEj0DseQSpTwUVcFTR75fCZiukRh8f+W4/zxFHFfxwFtcdPT16LfxJ41fpYWwWIpfzV0DCIiIiJqFJEeAXXuE+bmiy9HPgiZkB5ugNSS3JrbFNfcpjYCImMglclgNjm/x8g+fw6XSvLRw1Co1DDo6l85T6jKENa+U+X2mPsfRUB0KxxYuQx5aeX3JGEdOqH3pKmI7sZ7EiIiIiIiIiIiIiIiIqL6YMCBiIhajAmDO+K7RTtgMpkdtlHElz/V0yvQE/e8fRuG3TwASrWywef2CfZG0slUp218Q7zRWKb7xeBA5Hr06ZRgtd9NoUd7RTo8tWU4WhxqdUznIUNCkR9i3B2HFfYsDhIeR4rAIglG5vgh1/MMQuRlcBNKRjghMx9H4EI/FNzYzubY1qQ2MJpkGBF5DJGabOFhp3aFuF0LpazqGkkkEky8b7T4Kswpgkwuhasnn5BKRERERFeuG9oMwDeHV8JcixBpgIsnnuw5BWOjukMpUzT43P4azxoDDMI5G4NEKkWHwcNxZP3qRhnv4rEtZjNcPL0Q2bkbTu/aDmMtQgvpZ041+Nydh4+xqsog3JN0v2Yiuo2dAG1xEaQyOVQuLg0+DxEREREREREREREREVFL1rBHvxERETUjAT7ueOy2IQ6PKw+dh6ywfGFMQWYheozq3CjhBsGYO4c5Pa52VWHwDf3QWG55uB96d7AON1QXoi6Al7zEZv+S7C7QmeznHxWycEx/cjH+yv4eC9O/watvzEDXgEgh71ArHvtyEfzVaSjSyyr3SS2A77FiZNxZjF+ntMLG38JgMtgOGOAyEu19n3c8tq87ww32WBrpRURERESNIszdD0/0mFKrttllhRgY2qFRwg2CKbHO7zc8lBqMjOyKxhI3Ygwam3dwCGZ9/iMe+G4+7v1yHsY99ARCWrdp2KASCWSKmu/72vYbhMHTZjgYQgKNuwfDDURERERERERERERERESNgBUciIioRblhdDdozBa8/f4SmILKn04qyyyE4mQaJEWlKBocA32UNyCV4MUFa3DPpAHo2TqswecdenN//PfdWhzefNzu8Rlv3gpXj8Z70ud5y2ZIaogxCiGH/GLrigfpUg88u/kG3N5hK7r4nxcugxD9gIfLJPh7PQ+5LAgaTVX7Ll4D8FfSXpSaZXCRmhyeK+GYGoW5crjn5sF9bx604S4wa2RQpmshLzSUN8rWYc/Lnjj6f67ocXsZxj3SCe4e/gh2GwdPVRyayqm9Z7Di+/XISs6Gf6gvxswYjrY9WzXZ+ci54uJizJs3D0uWLMHBgweRl5cHb29vhIWFYezYsbjzzjvRunXrRr+MsbGxOHPmTJ37CfPz8vJq9PkQERHR1evuuFFQyuR4c+dCp+2EKg/PbJqH+7tcg+6BDf99OiW2LxbFb8PBrHN2jz/Z8zpo5I0T8BbE797RaGMJAYR2AwZj8K13ipUbqmvbfzDOHzlU/8EtFpgMepvdCrUG0d16wt3XD+0HDkVgdNPdIxzITMCi+B3IKi1AkKs3prYZgA6+4U12PiIiIiIiIiIiIiIiIqIrmcRisfC5vERE1KKUFZfhhsB7oNUKi1gkwr8MoQ/zRMG4dkKZApv2T0wZjOnDezT8vCVafP/8b1g1bwNKC8urGIS3C8VtL1yPEbcNQmNan/4ejhcsd9omR++KfYWRVvukFhk0WYPgIldgUhtfDInwgYsqHDKph90xjGYDPo1/AXGybRjmmunwXB/MDsOqBb51+gyTHhiDhz+9B01F+An08X1f499v1tgcGztjOGZ/c5/4JNbmJjk5GeHh5YuhBnV7AmpVeZCnvrS6Amze/4H4PikpSQwaNJX169fj9ttvFz+DI3K5HC+99BJeeOEFyGS2f7/WR2FhoRhSqM/PYgYciIiIqD4KdCUYuOBZGMzGWrV/qe9NuK390AZf7GKDFh/uWYTF8TtRatSJ+1p7heCBruNwTXTD73mqW/6/93F8y4Y695MpFAht2wFKjQYRcV0R0rodvIJCHFZHMOi0+PX52chJPo/G1mPCFAydfjeaitlixvNbfsbieNswyK3thuDlfjc32bmJiIiIiIiIiIiIiIiIrlSs4EBERC2Oxk2DoTcNwMof1wvL3GGRSVE4uo3dcIPgw0Wb0KdtBNqE+jfsvK5qPPjxDMx461aknEqDQq1AZPumWSzuKq95rlqzwmZff/+ueGLgDbU+j1yqwMyYl/BX0mc4rP0LceoCmzZ/fulf53CDYN1vW5o04PDX/y2zG24QrPh+HSLaheKGJyc12fnJ2sqVKzF58mTodOUL7SrCDIGBgWKIoLS0VNxnNBrxyiuviCGIr7/+ulEu44EDByrDDUKoJSYmptZ9GytkQURERC2Lp8oVoyK7YvnZPbVq/8aO39EvpB1iPIMadF43hRov97sFs3tOQWJBJjQKZYPHdHguX7969WvXfwjGPvBYrdsrVGrc+PJbWPH5/+Hsgb1oTCe2bGjSgMPXh1baDTcIfjuxEa28ghol2EJERERERERERERERETUnEgv9wSIiIguhzvfuBmBkeUhAF2sLywa28X+FYRlzz8s3d5o5xaCDrHdopss3CBo5zkWkhr+NZ+q9bLalkvkuDZ0ZJ3P5Sp3x+3RzyI8eBniFc8iVzYYJsUgGGU345HxnfDNnBDUR3F+CcxmM5qCyWTCok+cV7hY9L/lYjtqeqmpqbj11lsrww3u7u747LPPkJ+fLwYZioqK8N9//6FNmzaVfb755ptGCzjs37+/8r1wjvj4+Fq/hLkSERER1ccTPa9FoIv1b3Jn9yTfHF7VaBdaCDp09ItosnCDoNPQUUJ6tE595Aoleky4ts7ncvH0wnXPvYYZH3+NPlNuQnjHzojq0h2dR46FVF7/57toS4rRVAxmE3497rzCxU9H19WryhgRERERERERERERERFRc8YKDkRE1CL5hfjg421v4tfX/8TC42dqbL/n8NlLMq/G4qEIQnff27A352e7x1O1nsg3ulRuu8ld8HDsdLRyi6j3OX1UgfBRzQAgvMrF9vwKJ/fbr5JQk7A2wZBKGyeLmZmUjfXzt6IwuxAhsUFo2zsWmeeznfbJSspByul0sZJDsyUshmrogqhLsKDq+eefR25urvherVaL1Rz69etXeVz4czB27Fjs3r0bgwcPxsGDB8X9L730khiMcHNza7SAQ/fu3Rs0FhEREVFthbr54vcJT+PzA8vx16mtMIkxBse2pxxvVhfXJyQUPcZfi73LFtWqvdrdA+MeegL+EVH1Pqd3UAgG3jzdap9Rr8exTevqNZ5PcOPdC6QU5+DfhD0o0JUgyjMArb1CkVVW6LRPYlEWUktyxT8rRERERERERERERERERC0FAw5ERNRi+QZ745HPZ+L82/OxJjXdaduSzAKbfYc3H8eRLScgk0vRZ3x3RHYIx5Wkj98MuMsDsD/3dxQYksV9Zos7JJY+uC7sJnQvS0CJsQyhLoEY4NsdKpmy0ecw873piD9wFid324ZIXL1cUJJf6rDvuJmjGnx+4Wmn3zz9M/766F+YTVXVIFQutfusUmndnjhLdZeWloZff/21cvupp56yCjdU5+Hhgb/++gvt27eHwWBAZmamWMVh9uzZjRZw6NatW4PGIiIiIqqLIFdvzBlwm7j4fWuq8wBDnq7EZt/OtFM4kJUAuUSGYeFxiPFquooM9TF0+t3wCgjCnn8XoSCj/J5LodYgtG179Jw0FenxJ6EvLYFvWATa9B0IubLx70mG3TELWefPIetcgs0xpcYF+jLH9ySdR17T4PObLWa8tfMP/HZiI8zVwsMuclWt+kvAexIiIiIiIiIiIiIiIiJqWRhwICKiFq+Tl2eNAQf12bzK9+nnMjFn6vs4va+qqsM3z/yCvhN74NmfH4GrR1VlhMutg9cEtPccj0JDKiwww0MRAqlEJh7rjthajWE2m7Fr+X5s/2c3DHoj2vVujZHTB8PFXVNjX+FafLDhNaz+aRNWzVuPvPR8BET6Y+yM4YjpHIlnRs1BQXaRTb+uwzth8kNj0VC/z12MPz5YarNfV6qvsW9glL9Y7aFZE9ZPmRthjCa0YMECGI3GykoNDz74oNP2rVq1wpQpU7Bw4UJxe/78+Q0KOOj1ehw/XrWYkAEHIiIiuhw6+IbXGHBQSMt/xwvOFWTi0fVf42ReSuW+9/b8jVGRXfHOoDvgqlDjStF1zHh0GT0O+RlpsJgt8AoKgvTCZ4ns1LlWY5jNJpzZuwsJe3fDbDIipE17dBg0DAp1zZ9T7eaGW+a8i6Mb1oqVHEoK8uEVGIhOw8fAKygEf7/5ErQlxTb9orv2QNyIMWioTw/8i1+Ob7DZX2rU1dg3xjMQIW4+DZ4DERERERERERERERERUXMisQiPNiYiImrBEo8l4YYnvoQ+1s/ucVleKYZlmfD+ypdRVqLFvV2eRFpCht223Ud1xtyVL+FqkZuehxfGv434/VVhDoGblyte+etJdB3WqUHjC2GRhe8uwbr5W1BSUIrQ1sEYP2uUGG5QqhQNGluvM+C2iPuQn1VYr/6tukbhs93vQCarWkjWHCQnJyM8vLyayKAus6FWejZoPK2+AJsPfii+T0pKQlhYGBrTmDFjsGrVKvF93759sX379hr7/PLLL5g+fXrldmJiIiIiIup1/n379qFHjx6V29nZ2fD19a3XWERERET1dTT7PK5f+rbTNkPCOuGrUQ+iWF+GSYvfQGpJrt12QiWHL0Y+cNV8GUU52fj77VeQnZRotV/t7oHJT76AsHYdGzR+Xnoq9vzzN05s2wh9WRl8QsLEyg1CMEMmb9izYcqMegz+/VkU6cvq1b+zXxQWTHgKUom0QfMgIiIiIiIiIiIiIiIiak74X8eIiKjFi+wQjoFGJdTHMwCT9ePuFckF8FxyDNc9eI24ve7XzQ7DDYJ9qw/h2I5TV801fe36923CDYLi/BK8PHkuspJzGjR+UFQAHvl8JhbnzcNK4+/48eQnuOGJiQ0ONwiO7zhV73CD4MyBc1j47j9oziQWS6O8mtKePXsq3wsBh9ro06eP1XZtQhGO7N+/v/K9EJJguIGIiIguh45+EejiH+20ze0dhot//Tt+u8Nwg2B90mGcyE3G1WLxe6/bhBsE2qJCLJ47ByX5VdX26sM7KASjZj2Eh3/8A7Pn/4O7/u9L9Bg/ucHhBsGe9NP1DjcIDmWfw8/H1jd4HkRERERERERERERERETNCQMOREREAJ7/8SG0SyqFz8/74LYuHm4bzsB7wQF4LTmK2x4ah/6TeonXaeviXTVer62Lam7THBzZegLHtjsOa5QVa7Hsy/In7zcGqbRxf5YY9cYGj7H0i5UwmUyNMh+ylZ6ejtzcqsV57du3r9Vlio6OhrzagrMTJ040SsChW7duKCsrw7x58zB58mSxWoVKpRJDD927d8ezzz6L06dP86skIiKiJvHBkLsR5ma/ktTD3SZgQGj5b6U1iQdrHGt14gFcDRIPH0Dm2TMOj+tKS3B47cpGO5+kke9JDOaG35P8enwjWICXiIiIiIiIiIiIiIiIWpKGP4qMiIjoKuAX6ovP98zF6p82YsPvW1FaWIbI0bGYeN8YxA2qWnStLdXVOJa+TG93v9FgxOa/duLQxqPiwpleY7uiz/jujb6wv7EI1Shqsnf1Qdz1xi24HEoKSrBq3kbs+m8fTEaz+D2NmzkSvsHe4vHYbtFQqBQw6Az1PodQoSI7OReBkf5oloTiCw2twNCEBRySk62fLCwECmpDCDcEBAQgNTVV3D5//nyjBByysrLQpk0bm3kJIQzhJbT94IMP8Mgjj2Du3LlWIQsiIiKihgpz98WiyS9g0ent+O/cXpQadGjnE4ab2w1Gt4CYynZao/37jep0Rvu/gfUmA1ae2489GfGQSaQYEtYJg8I6QCqRXrEBh5qcO7Qffa+/GZdDoa5UrKixOfkoLLCgV2Br3NB2IPw0HuLxjn6RkEukMFqsKwXWxfmiLORqi+B7YUwiIiIiIiIiIiIiIiKiqx1XZREREV3g4q7B5AfHiq+LFeYWYcHbi3ByV3yN16tNz1Y2+84eOY8XJ7yNzPPZVtUBIjuE4c1/n78iF9DX5imhZnMTrn53IuFQIp4b+wZy0/Mr9+1fexgL312CFxfORp9x3eHp54HhtwzEyh/XN+hcciV/LlVIS0ur8XrVNqQgyMzMtNoWKiXUlo+PT2XAoXoViLowm804dKgqyLNt27bK9xKJBIGBgTAYDOL4FX8/GI1GfPjhh2K/ZcuWiRUeiIiIiBqLu1KD2zsOF18XExa5f3VwBY7nJtU4Tie/CJt9x3KScP+az5FRWvUb+rcTG8UQxVcjH0SgqxeuOLUK616ee5Ij2YmYtfpT5GqLK/dtSz2Bbw6vwmcj7kO/kHYIdPHC6KjuWH52T4POJZfKGmHGRERERERERERERERERM3Dlfl4NiIioitIYU4RHh/0Ev74YCn0WufVALz8PTDkxn5W+8qKy/DsmDeswg0VEo8l4/lxb8JkMuFK02VoR6tt194ShL0rRatFMkT/KoPvnRIofWXIy6haIHUpCJUwXpr0jlW4oXqFjTdu/BA5aXni9r0f3iFWcqgvIaxSURGCgN69eyM8PNzpqy6Ki6sWgwnc3Nxq3bd624vHqa34+Hibvh06dMCvv/6K0tJSMdCRnZ0tBimEyg3e3lV/FtasWYN77723XuclIiIiqqvsskLcsuw9zDu2Dgaz83sHYVH9iMiuNpUG7ln1iVW4ocKJ3GQx+FCbgPOlFt4hzmafXibB0Qg3rOzuhxXd/bC/lSfyqoUMLgWhQsb9a76wCjdUKDXq8NC6ryrn9EKfG9HGO7Te5+oR2AqeKtcGzZeIiIiIiIiIiIiIiIioOeEjiYmIiIQFQyk5OLr1JCRSibiwX3j6f4Wf5/yB88dTarxOLh4avPznk8hMysGyL1bi6LaTkClk8PT1QO6FBff2CGPvXLYP/Sf3uqK+i67DOonhgPj9ZxHwqBR+t1vnIjXtZNCnJ2DGoAfx/P+eQq8x1ouomsrWxbvthkWqhxyWfbkKKo0S/3y+ElnJOfU+183PTkGzJixSa+hCtSZc6KbX6622FQpFrftWbytUWaiP/fv3W23fcMMNmDdvHjQajdX+oKAgzJ49G5MnT8bw4cNx/vx5cb/Qdvr06RgxYkS9zk9ERERUXVpxLvZnJkAmlaJvcFurRe0f71uKxKKsGi+Yh1KDT4bPQlJhFuaf2ISDWWehkMngoXSxuxi/wrHcJGxNPY6BoR2uqC8lqmsP+IZFICe5/PdXrpsCy3v6o0xdVdEgyZSM1X+8iM9H3Ie+Ie0uybz+O7cXWWUFDo+XGLT4/eQWmC1mLDi5CZmljts6I4EEs+JsKwwSERERERERERERERERXc0YcCAiohZt5/J9+HL2j0g5nV75xFKFSo4xdw7D/R/dBYkEWP3TxhrHmfzAGNz49GQc3XYKT498DUZD3Soy7F6x/4oLOAheW/QUXnjuJbjcbn9BjiJIAr/nTZhz/fv44eTH8Av1bfI5Hd50rMY2y75ajfzM+i0iEiiUctz7wR0YdF2feo9xNdq1axeCg4MbbbyLnxIsEf6Gu4SGDh2Kf/75B2fPnkVmZiZefPFFqNVqh+1btWqFBQsWoH///pX73nrrLQYciIiIqEHWJh7E3N1/IakoCxW/jlRSOW5sOwhP974eRrMJ/ybsrnGcOzuOwF0dR2Jb6nG8uPUXmCzmOs1jc/LRKy7gIPw+vPbpl/HTa09Dm5uLFT38rMIN1asmPLjuK6yeOgc+avcmn9fejPga2/x8bB1ytEX1PodKqsCL/W7EkPBO9R6DiIiIiIiIiIiIiIiIqDliwIGIiFqkkoISvHztuzi00XaxvEFnFBfInz1yHi/+PhslBaU1jjf0loEwGc14947/1TncIDCb6rb46FIJiPBH11fCcarEcVjApYsEiNBh+TdrcfurNzb5nGRy2wVNF2tIuMErwBPfHv1QrLzR7Al/rBr6R6tafyHcEBYWhsaiVCqttutSiaF6W2ehBGcCAwMxceLEOvXp168fRo8ejVWrVonbmzZtQlFREdzdm34hHREREV1d8nUluG/1ZziQddbmmM5sxM/H1yM+Pw1zBtwqLuCvycSY3ig2lNUr3CCoT59LwSswCLuvicP5U8dQopE7rZrw16ltmNl5TJPPSSaxrm5nT0PCDYEuXlh67UvwULnUewwiIiIiIiIiIiIiIiKi5qrm/xpHRER0FXr3zs/shhuqO7r1JP75YiXkipoX1Hv5e2DZl6vqFW4QaNw1uFJkJmVj48Jt2LJoJ/atOYQzOSdr7KNuL8GhWlRWaAy9x3VrsrFVLip8vPWNqyPc0Ax4eFhf55KSklr3LS4urnzv6uqKS2ns2LGV741GIw4cOHBJz09ERERXhyc2fGc33FDd9rQTWHZmd60W1Hur3fDbiU31Diq4KeoXGm0KKcU5+O/sXqxJPIAtycewPycRGT41z29X+qlLMr/BYR2bbGwXuQq/jX+S4QYiIiIiIiIiIiIiIiJqsVjBgYiIWpykkynY/s+eWrX98/1/0Htcd2xbstvpovjC3GIc21H/xTR/f/wveo7pip6ju9Spn9lsxq7l+7Fu/mYU55UgvG0oxs0aicj2dX/KflFeMT6672ts+XunVUWJ1v/KoAiSOO1r0QISqfM2jaX7yM5o3T0ap/eddVjhwWSsX9AksmMYQloF4WohsVjEV0PHaCp+fn5W27m5ubXuW71tQEAALqWYmBir7czMzEt6fiIiImr+TuQmY2vq8Vq1/erQSvQLaYctKcecLorP1RbhYA2BCWe+PbIa/UPbo3dQmzr1M5nNWJ90CMvP7kGRvgyxXiG4se1ARHsG1nkOedpivLT1F6xLOgRzPX6HSmsRBGkMQ8Pj0NorGKfz0+wel0ukMNYzaNLBNxyhbr4NnCERERERERERERERERFR88UKDkRE1OLsWXkQllouljHojDi48ajTNrpSHZ4ZNQd6naHec7KYLfjxpfl16lNWXIanRryGlya9g/Xzt2L3igNiUOKejo9jwTuL6jSW0WDEc2PfwKY/tluFGwSF651fK7PWgqKtFvQe23SVFaqTSCR4felzYsjhYgERfug0sF29xw6OvrQL5Vu6qKgoq+3U1NRa9ROqJlQPFYSF1T3Q0xAajXXFFZOpfoEaIiIiarmchRUupjXpcSAzwWmbUqMOd6z4CEZz/X+XCH0/2besTn2EQMNtyz/AQ+u+wvKze7E55Rh+OLoG4/5+DfOOrq3TWDqjAXet/Bhrzh+sV7ihqSsrXByk+HrUQ2jrHWpzLMzNF539be9VaovhBiIiIiIiIiIiIiIiImrpWMGBiIhanMKcojq1L8kvrbGNtkQHQ1n9Aw6Ck7vPICU+DaGxwbVq/7+HvsOhjfYXRn33/G+IjotAn/E9ajXW5r92iue3J3e+GV4TJZC52a/QkPeHBeYiYMxdw1BfaQkZWPblKhzZdhIyuRR9xvXANXcPh4evu932vsHe+Gz3XOxbc0isYKEt1SG2WxRG3T4Ee1cdwsENzkMpjlxz94h6fwaqO39/f/j6+iInJ0fcPnWqdlVQEhISxJBDhY4d67+QTRgnKysLMpms1pUgKuZbQfgMRERERHWRU1a3e5Jig7bGNiUGba2D3I7syTiNjJJ8BLp61aq9UG3hQJZt+MICC97e9Sdae4egf0j7Wo217OxusbJFfUkgweRWferd/1xBJhac3CRWwZBLZRgW3hnXt+4HT5Wr3fbBbj5YPPkFMayyOeUoyowGdPKLwKRWfbDu/EHsy7R/f1WTG9oMqPdnICIiIiIiIiIiIiIiIroasIIDERG1OAXZdVtMVFuJx5PhE1S7hUCOFNciTCHITc/D+vlbnLb58eXfa73Aaf0Cx2MZUoDzD5qgT7Eey2K0IGeBGRmfmBHVMcJhGKEmm/7cjrs7PIaF7/+DY9tO4vCm4/j22V/EffEHzjqt5ODu44bUhHSs+H4dPnngW9wW+QCObDmBHqM613keA6b0RveRde93RRO+/8Z4NaFevXpVvt+1a1et+lzcrmfPnvUKNgQFBUGpVCIkJASPPPJIrfvu3bvXajsuLq7O5yciIqKWLU9b3CTjnslPh4+6fr/LKxTqa3dPklKcg1WJ+522+XjvP7U+7/KEPWiIjr4RcFNaV9qqraVndmHCotfw49G12J+ZgN3pp/Hu7r8wYdEcnMpLcXpP4qFyQWJhFv46vRWvbPsNI/54AcdyktA7sHWd5zExuhd6BtW9HxEREREREREREREREdHVhAEHIiJqcST2CxE0mNlkxnO/PoKQ2CCbY52HdoCrp4vT/gqlHMHRtXuC/NFtp2A0mJy2id9/Fne2fQRHtp6ocbzi/BKnx8uOAPGTTTj/iAkZ/zMh7R0TTo83IeM9M2AGbnxyEuoj/Vwm3pn2CQz6qqfxV8jPKsTLk+fCZLT/OQ9vPo7Zg1/GjqV7xWtfUZ3jzw+X4szBcxg4pbcYgKitG5+aJC5Qoktr9OjRle+3bNmC/Pz8GvssXbq08n2HDh0QFhZW5/PK5XKx8kJFCGjdunVWVSEcMZlM+Pvvvyu3O3XqVOvKD0REREQVZNKm+b/kjBYTPh42E2FuthWm+gW3g0amdNpfI1eKlQlqY1/GGZhrCMMezD6HcX+/hkNZ52ocr0hfhoa4J25UvfqdLcjAc5vnwWgpv6eoLqusEA+t/QpmO8cE21NPYPp/H2Jj8pHKa5GrLcZ3R1bjXGEmRoZ3hUcdQhd31/MzEBEREREREREREREREV1NGHAgIqIWxz/cr0nGdfd2RccB7fDDiY/x+j/P4uZnp2DaS1Px6c638cG61zD6jqFO+w++oZ/TKgjCQv/VP2/EE8NewSf3f12rOaXGp+O5sW/g3NEkp+0i2tVigbgFKN5qQc6PFuT9YYExu3y3i4cGI6cPFt+XFJTg74//xTOj52D20Jfx3XO/iiGGi+VnFeDU3jNY+N4Su+GGCllJOdi62P5T/T954BvoyvR2j+VnFmLLol3wDvDEiwseh1whd/rRhGCDX0jtFnI1L41RvaFpKzjccMMNkMlk4nu9Xo///e9/TtufOXMGixYtqtyePn16vc89aVJVMCcrKws///xzjX2++OILnD1bVVnk3nvvrff5iYiIqOUKcvVuknF91e7oHtAKK6+fg8+G34eZcWPwYNfx+Gvic/hh7KOYFNvHaf8JMb3gplA7PK43GfH36e2YtvwDvLXrj1rNKaEgHTNWfoxzBbb3BdVFewaivrxUrhgb3UN8X6ArwQ9H1uDOFR9h2vIP8dHeJUgrzrXpk11WiCPZifj28Eq74YYK54uysDH5qM1+ISj76rbfxGtiT2ZZAdYkHUCgqzc+GDwDMonz/xtWKpHA38WzFp+WiIiIiIiIiIiIiIiI6OomsVQ8tpaIiKiFyEnLw7So+51WQPAN8cbIaUPw+7uLaz3u9Y+Nx30f3unwuLD4/96uTyEjMcvmmFBpYNzMkWLVAZPRjMzz2fAJ8kKnQe3ExfdCuOGVa9/F7hUHUB8jpw3GMz897LTaw/09nkZ9rTT+jvPHU/DM6NeRm5ZnU5ni2V8eweCp/cSww9dP/YRtS/Y4rMxQm+t6bPtJPDrgxVr1D4jwQ3jbEOxdfchhm24j4vDu6pdxNUhOTkZ4eLj4fki7h6FWeDRoPK2hEBtPlIcOkpKS6lUtoSa33HILFixYIL5XKBT477//MGLECJt2RUVFGDx4MA4cKP/7wNPTE/Hx8fDzq19oKSEhQawAodPpxG0fHx+xikT79u3ttl+xYgWuvfbayvYxMTE4fPgwXFycV2chIiIiulhKcQ5G/fmS0woIwa7eGBfdU6wGUFv3dh6Lx3tMdng8X1eCyYtfR0Zpgc0xb5Ubbmw7EKMju0Fr0iOtJA+BLl7oEdAKkAAGkwn3rvkMO9JO1usLvbHNQMwZcJvTihC3Ln+/XmPLJTIcufNTHM9Jwj2r/occbZHVcZVMgf8bejeGR3RBYmEm3tv9N9YnHYbJSbChulmdx2B2j2ut9gnXQQhR1Ea4u5/4fe5KP+2wzdDwOHw58oFajUdERERERERERERERER0NXP+OGMiIqKrkG+wN+58/RZ8++wvdo+HtArCh5teg2+wDw5tOorjO2wXoZg0MhQOCEBRDx+YNXJ4lwDRd/ZBWYkWhzcdh1FvRNveseK5Kvzx/lK74QZBUW4xfp+7WHzZkABe/h5iVYL6WvPrJvQa2xXDbx1k93hst2hMf/kG/Dyndk9hrU7jphafXvrKtXNtwg0CoULDO9M+gU+wF9646f+Qk2rbxhnZRdUXspJz8NmjPzjtow/QQBvtDokZMJ7OR+aaC+Um7HBx12DWu/WvAnBFq6zC0MAxmthbb72FZcuWobi4GAaDAePHj8err76K+++/XwwxCH++Vq9ejUceeQQnT1YtqJszZ47DcENUVBQSExOrfQzbzyEEFJ577jnxXILc3Fz069cPb775JqZNmyaeWyCMI1SW+Pjjj2E0GiuDGD/88APDDURERFQvoW6+eKDLOHx64F+7x6M9AvHLuNnwUbtje+oJHMt1XpFN4KF0QTf/aBQbtNiTfhomsxldAqLhp6kKvH51cIXdcIMgT1eMrw6tEF/2+KjdkKstRn39eWor+oe2x9io7naPdw9shZlxo/HN4VV1HttdqYHBbMIDa7+wCTcIdCYDHt/wHX4c8ygeWveV3TbOyKXlFceqB1Te2fVnrfsnFWWLL2fzn+0kmEJERERERERERERERETUkrCCAxERtVirf96I/z30LcqKtDbH/MN88cHG16B2UeHFie/g1J4zlccMPkokP9YBRj+VTT+/rdnw/rW8rUwuw6CpffHo5zORnZKLmXGzcbk99uUsjJ81yuHxzx79Hov/91+dxhw7Yzj6TeopVphwJqZzJBIOVS04r60PN85B3KDyJ+oXZBfioT7PIf1spt22Jlc5sm5ujbI2XtV2WuB6MBt+fydAarB+QqtKo8SHm+egTfdWuFpYVXBo+1DjVHA4+WmTVnAQLF26FFOnToVer6/cJ5PJEBQUhPz8fJSUlFi1v/XWW/Hrr786HK82AYeK/XfccQd+/vlnq/0V5xaqNWRnWy9GE8INCxcuFKs5EBERETXEwpNb8PauP1BmrPoNVD0E8cs1syGVSnHf6s9wPDe5VmMqpDJxsX/Fe6EKxEv9bsa5ggxMXfrOZf3CJADeGXQnJsf2cdjmpa2/4I9TW+s07q3thqBXUGs8vuFbp+3aeofiZF4K6uqPCc8gzj9KfJ9VWoAbl80VK1w0Bhe5CgsmPIU23qGNMh4RERERERERERERERFRcye93BMgIiK6XISKCPbCDRVVAj6672t4B3rh051v452VL+Lah67BhHtHQfnWYLvhBkH2AD8UdS2v2mAymrBhwVY8M/p1LPuy7k8hbQpfP/0z9FrbxVMCo8GITX/uqNN4Lh4a3PT0ZBzdcqLGtueOnEdddRrYrjLcIFj08XKH4QaLTIL0ezpYhxsEMglKuvsj87Y2Nn10ZXrkpeXjqmVupNclMHHiRLGKQ0U4Q2AymZCSkmIVbhAW+D3xxBP46aefGuW8EokE8+bNw/vvv29VjaHi3BeHGzp16oQNGzYw3EBERESNIqes0G64oaJKwOs7fkegixf+nvQ8vh71IG5rPxQ3tx2EcDf7VawEFeGGivdLzuzErFWfimGKy02InAqBjupzrE5nNGB14oE6jempdMFdnUZgb0Z8jW1P5aWirvoFt60MNwi+P7Km0cINglKjDjlldasoQURERERERERERERERHQ1Y8CBiIharGVfrnR6fP+aw0iJTxMXQPcY1QUPfjIDY96YglNm54tPCoYGWW0L1R8O7jwJk0aGy620sAzbl+61e2z/uiPITav9Qp2ojuF4d/XLCGsTApmi5s9mNtt/gr4jQrDh1b+fstq35pdNDtuXxPlCH+Lq8HhZe2/owtxs9p/YVfNCKLo0Ro0ahRMnTuDzzz8X34eGhkKpVMLd3R1xcXF4+OGHcfDgQTGMIFRYaCzC3+NCaEKo+DB37lyMHDkSwcHBUKlU8PDwQNu2bcWKEX/99Rf27duH/v37N9q5iYiIqOUSKkn9XkPoYEPyYaSX5Im/VwaHdcJLfW/C9a37I6nYOoRZk32ZZ7A/s6oq3eWUryvB5uSjdo9tSTkmHq8toSLDj2MfQ7i7P+TSmn8fWsSIRe31DW6Lj4bNtNr3z5mdaGyHs+te6Y6IiIiIiIiIiIiIiIjoaiW/3BMgIiK6HPQ6A1LPZNS44Oj88RSExgZX7juS7byPQBdetci+LNYT+cPCcLaVJzA1GIrMUnhsS4f7jnRIGvgZbOYrBQoG+6NwqD/0QSpIS01w35kL75UZkOcbKtvlpOba7V+cV/NCIqlMise+nIXwtiHoNLCqskKf8T0w/+1FTvsq1QrotVXzsOeau4fD098TfSf0QMf+bcV98QfOIn7fWahcVMjLLHAacKhJcRdfqJKLrfYpVIoa+9GlI1RRuP/++8VXQ5w7d67Offz8/PD000+LLyIiIqKmVmzQIr3UecDYbLEgoSAdQa7lVeIER3PqXhlNcDo/DVeKXK390Hi+vuZ7EpVMgZf73owYryB0C4ip3D80rBN+PLrWaV+FVA6D2ejwuHCPdmObgfBWu2FYRGd08Y8W9x/JTsTJ3BS4KFTIcTD3hlDK+H/REhEREREREREREREREVXgfz0jIqIWSaGU12rBvYuHxmpbXYuFJxKDWfxrUXd/ZE+NBaRVUQZDgAtyro0RKwn4/xnfqOGGtIdjUdLVq3KfSSVD/tggFPX1Qdg7J6HM0In74/efRU56HpZ+vhI7/90Li6U8oNBlaIcazyMEG665e4TNfiGMEDe4PQ5vOm63n5e/B/pP7oXl3zpecNRpYDvM/qZqUXtaQgbeuf1/OLbtZOU+4cm1jphVNRemsiht2wy4theuVhKLRXw1dAwiIiIianzCQn2FVAaD2eS0nZtCY9OvuTucfQ5Dwjrhp2PrsTnlKCSQYGRkF8T5RtbYN9YrGNe3sa2o1TekHTr7ReFQtv2gq7/GEwND22NR/A6HY/cLaY/XBtxWuS2ES57dNM9qTGGuda0E4Yww3vDwzo02HhEREREREREREREREVFzx4ADERG1SMJC+SE39cfqeRsdtvEP9xUX3Vc3ODwaGrkcZUbHT/10O5ALs0qGnMkxVuGG6op7BsDtQBY08Y4rEtRFwTB/q3BDdSYvJTJmRCH87fKgwOqfNoqv6s4cOIff5y5CSGwQUuPTHZ5nzIxhDo+98ueTePW693Bkywmb6zhn8TPwDfXBgfVH7FbOcHHX4IGP7qrcLswpwhPDXkFWUo5NVQ1HlGml0La2fw2qt6luwJTeiOwQ7rQPEREREVFTEJ7aPyqyK5af3euwTaS7P+L8rBf9Dw2PE/vqTY7vSa50v5/cIr6qO56bJAY+Qlx9kFpiv+qc4PrWtuGGCp+PvB8Prv0CB7OsQw5hbr7iMS+VG3amn0Jqse34HkoNnu19feV2VmkB7vjvI2SVWd+zNWa4QTAupgciPPwbdUwiIiIiIiIiIiIiIiKi5qzmRx0TERFdpW5+ZgqUGqXD48LCd5lMBpPJhHW/bRYX3N/X+lEE7XYcSpBoTfBal47iLn6wqGROz1/UOxCNpWBogNPj2jbu0IWonbYxGc1IP5sBV08Xh22Wfbka6ecy7R4rLSrD1CcmoseozpArZGKIRAhM3PHaTYjtFg3vAE98tOUNjJ85EmpXldhHKpOKIYOPtryO1t1jqs7z1WqbcENN/A/mOf1hI9Ea4bYvq3JbOO8zPz2Mq5oQCGmMFxERERE1iXs7jxXDCo608Q4Vf1cbzSYsjt+Bacs/wJQlb8FN4fy3fXMlVLPILM2Hi7z8fsGeX45vQHpJnt1jpQYd7u40Gn2C2kAulYnVEaI9AvFI94nitQxw8cT88U9hauv+UF+ohCGXSDEmqru4X2hT4bcTG23CDTURxnRcc86aMLdx0T3w5oDpdToHERERERERERERERER0dWOFRyIiKjFCoz0Exfi68vsH9+z8gAObjiCRZ8sx9bFuyv3y77NgdeUCOQPDQTkVUvq5bk6BP0QD2WmFsXdaw4vGHyqFiUJ8zAaTPX+LPoawgvlbTRQpWqdtjGbLOg2Mg7bl+wWAw8XE6o7vDx5Lr468L640MpsNuOzR77Hyh/XQ1eqt9v+/Rmf4/j2U7jjk2lYXXYark+2w33P9kFnSwC8fTzh5uVq02/jwm01fh4hiFFSUAqZXIb+1/bCrc9fhx2WAry2Zp3NM1WVMhkeaRMHl2ejoFAp0H9yT1ZuICIiIqLLLtTdD1InMd3V5w9gf0YCvji4HJtSjjbpXIRAgBCkuNyMFjNGhXXCysT9MFts70kSCtLx8Lqv8MfEZ8Vtk9mM17bPx5IzO6EzGWzany3MwNObfsThrETc12Us1iYeRJi7H94YMB1xfhHw0XjAXamx6eesskYFIWhSbNCKlSeEahz3dbkGW1OOY+7uv2zaqqRyzOw8VqwAIQQhRkR2QYxnUB2uDBEREREREREREREREVHLwIADERG1WBsXbkdpoYN0wwVfPfkzTu9LsNonsQD+f5+H95o0FHf1hlktgzKtDK5H8uHh7YaS/2/vPsDrrOs9gP9yMpomTZPulXRBS1vKpoxCobTIkiFLhspwcBmOC8hVWQqiKOJCFBXhCsrSK6ggVJC9KS1FVhmF0k33SNo069znnEogpE1OVlPg83mel77v//zHmzd9nuSU//f8srMiu6LxxpoPyi5/r09qk35bAg6JytqoK2j6x3piXWbzbyrc8K63XpgT0+77dwwa0T8uOPTymPvK/GbnvK1iRvzvP+ZFMve9zzPt3aVbXLLDp2JCjGzUf+3qtc3OeeK3joqDvjgp8gu6RF7+hkocW0fE6D594obpz8XUefMjO5EV+w4bFifvslOM7N07PnbqkhuOts4BAECHuGvW1KisbRwUfr/vPX1bvLhsTsZzFucVRnn1uqjdSDigqWoCGwsTdJb73p7R5P28sPTteHbR69Gna3F88b5fxNw1S5ud8w+vPJg+3i9V0eGKCafEHgNHNepfUd10ODzlazsfFodttXt0zc6LLjkbKkKkqkCM7T0k/vDyg/Hc4lmRnZUdE8vGxkljJsXwEoEGAAAAAAAAaI6AAwAfW3NnNr8xf/ZLm95IlLO6OkoeWdygbc3y8ujRrziqZiyJ5QcNjsje9Kexdpu+YeyYPUfGqqVrYv7rCzO+96Fjy2L2i3Pfm+vp5bF6v76b7J+9qjoKZq7JaO6mwg3v+ulpv47Fc5rfRJRScWTPqDiuT6P2pevL4+xnb40b9/pijCkZ2OC1odsNjkWzlzQ577DtB0f3nkWN2ncpHZQ+AABgS/fmqubfA7y6YkGL5lxVVRG987vH0srVGY/ZfcDImL1qcSxauyLjMVuXDIg3Vmb+HqYlapLNh7NTVRkWVCxv0zqL166K0//1q7jt0G/ENj0bvocY2WNgLF3X9DMc2aM0Sro0rkg3rv+I9AEAAAAAAAC03KZ3XQLAR1xhSeONKB9Uvb6mxfOueGdV5KypjuKHN70Rqctbq6LwxQ2bcY4557A48JT9WrTGjvtt2+C6xz3vRKJ80/fa868LIqu2/T6JP9NwQ6piQ8VRvTb5elVdTVz/xqNRVdnwU2sPO/3AJucdMLxf7HLADhneLQAAbJm65xU026e6ruXvSVoSbkg5ddv946gRe7ZozISBo6MztTXc8K7K2uq4/sX7Yn1Nwyp8x2+zT5Pjtirunw6GAAAAAAAAAO1LwAGAj62Jx42PRCKryT6JJiowNKfnvXOi511vRfbq9zbvZ1XVRtFTi6L/9a9EVl0ytttndEw4eo84/KwDY9h2gzOe+6+/mBI9+pXUX+ctWR+lV7waXd6uaNAve0119Lnx7Sh5qOlqCB2lakxBJLs3XTDq3jkvxCEFn4nPDjszbrn8jnTYYbeDd4ojzjpoo/0LiwviWzd9LRIJv8Y0K5VpSSbbeLT2uw8AQHMOGb5rpz+kvQaOjn3LxsbJ206K4cX9Mx73vy8/EL3yG1dU+zD626ynY4c/fDX2//OF8bsX7o2q2po4YOhOcezIvTbavzivIK7Y59TNfp8AAAAAAADwcZCVTKZ2rgHAx9NVZ14bd/763o2+Nnz7IdFvaJ948u/PtmmNZCJi/aBukcxJRN7CisiurG3w+mlXfi6OPefwWL18TfzumzfFPb+7P+O5B40YEPNfX9igLWfnvrG8S00k1tZGwUurI1HTeT/qK3frFqsuKGu2X98jU4GPDeep0McPplwYefl58ehfnoq//2pKvD79rehS0CUmHLV7HPXfn4yBW2W+8erjZt68eVFWtuGZTxx6RuTntm3TWWX1mnho9jXp87lz50ZpaWm73CcAABuc/9iNcfvrT270cYztPSS9mf7xBa906OP6zp4nxPGj9onllWviR8/8Je6Y9XTGYwcX9Yk5a5Y0qkyxumptfFiNHzgqfr3/WZGXnRN3v/ls3PLqIzFz+bwoyOkSBw3dOT43ZlKUFm26Uh0AAAAAAADQek1/pDIAfMR9+eovpCsC/O2XU2JdeWW6LVXVYY/Ddo1zrj09Fr21OJ6+a3rU1f1n932Geg3sEcsWrEifpzbu588t32Tfa8/7Y5SNHBR7HLpLnPPb09NVI/7xm/syWmf1stXxi6e+H0//Y3rUVNdG6TYD4tr/+UPULFkTW4LcNysjapMR2ZuulJHzZmV9uCHlhUdeib9dPSWO/frh6eoWqYPW+k8VhjaRhQUA6EiXjv9MFOcVxq2vPhLrajZUf8vOSsT+Q3aMS8efGLNWLoonFsyMZAt/L+uT3z2WVK7OqO8lT94aZUV9Yq9Bo+PyfU6JyMqKO954KqOxa6vXxy2fPC8enfdS1CRrY1j3fnH5M/8XH2ap5/2nVx+Lz46ZmK6ysSVU2gAAAAAAAICPCxUcACAiKlavjecffCmqq2pim3FbRf+hfdPPZe2adXFkz1OirrZlAYdxB+0YdXXJmHbv8xn17z+0T9zwxtWRSCRi5ZJV8bW9LowFbyzKaOzPHvtubDt+VCxbtCJOHfnV+qBGe0jkJGLvT+0WBUVdY+yE0fHjL14TybqWbaxa+c1BsX7P7pt8vejqhVFw38oGbQO37h83vPaLVt/3x1nDCg6nR35OGys41KQqOPw6fa6CAwBAx1lTtS6eXvhq1NTVxg59hsWAbj3T7SvXV8T4m8+LuhYGHD4xeMd0FYWnF72WUf9hxf3inqO+kz5fvHZVnPCPH8X88mUZjb39sG/FmN6DY2HFijjk9u/UBzXaQ85/wh7dcvNjp35bxYWP/bHFYY/WGFEyMO488qIOXwcAAAAAAABoKPGBawD4WCrsXhDjjxgX+x67Z324IWXmM6+3ONyQ8uw/n48Fs97JuP+i2UtixgMvps9L+hTHzx67LIr7bDoU8H4/O/23sa58XXxj/++2a7ghZdcDdowLbzsnzr3uzDjwlP3SVSYykXqGE4/bK7KysqL7NYsie876jfbLv39ldP1AuCFl4ax3ItnmygOkqze0xwEAQIcryuua3sh/0LBd6sMNKc8uer3F4YaUf82ZEQsrlmfc/61V78T0d2alz/sWFKerMnTPK8ho7EVP3BSVNVVx8j0/bddwQ8p+ZdvHz/b7Uly29+fi6BHjY/zAUc2OSdWPKyvqHQcN2bnV685Zs6TVYwEAAAAAAIDWE3AAgCY8+fdnW/V8UpvzF87KrALDu5bOf2/zUY++xXHQ5/fLaNzsF+fGz8+4Nt5+eW60t2funh6njvpavDr1jfT1aT86KbJzmv71IRVqWDR7cTx02+PRvVe3KKzNjZ7nvRVFv1kUuTPXRvb89ZH3zJoouWxuFF+1ML356IO69ShMzwMAAB93D819oVXjUpGIOWuWtmjMoooV9eepkMPhw8dlNO6lZXPiO0/e3CGhgPvmzIhP3n5JvLJsw/udb+1+bCSaea+Q+trnrlkaU96eHj3zi6JLIrfF6xZ3ySzcAQAAAAAAALSvnHaeDwA+Uua/0bKQQlv0HvTep7SmPHP3cxmPTYUJOsr81xfGNw+8LH417YdRvqI8amvqmg13VA/pEtUju8a66mTkPVcd2eXJKLh7RfrIxOTPTGinu/+Yq0tuONo6BwAAnSa1UX9z6VdYUn9el6yLxxa8kvHYu2ZN7aC7ipi1alF8/p9XxR1HnB/LK9dEXQuqjKX6t8bhw3dv1TgAAAAAAACgbQQcAKAJBUX5m+X59BvSJ3acNLb+esaDL8ZbL8zJeHxzoYO2Kl9ZEXf8/O4YOnZw0/fROydW/vegqB5b+F5jdV0U3Lsyiq5fFFm1za/Vo19xHPv1w9vhrgEA4MOvMHfzvCcZVtwvdu67Vf31o/NejtmrF2c8vibZse9JVqwvj5teeTj6FbwXwugoqTVO3nZSh68DAAAAAAAANJbYSBsA8B/7HLNnhz+LRHYizvz5qZFIJBoEHLY0j/7lqSYDH3X5iVh+6ZCG4YaU3ESs/WTPWH3GgGbXSIU8fvLId6NvWe/2uGUAAPjQO2jYzh2+Rk4iOy7Y/dORlZVV3/b0oldjS3Pv7OlRmNulw+bPiqzYa+DouOmQc6NPQXGHrQMAAAAAAABsmgoOANCEyor10aVrXqxfV9Vhz+m/f/NfMf7wcQ3a3r+xaEt6FrsdsnN07ZYf68orG72+blJx1A7c9GajdfuVROGfl0bOO9UN2k+84OgYvfuIKN1mYJSOaD4EQQukPkW3rZ+k28GfxAsAQNPW1VRFXiInqupqOuxRXTHhlNh70JhGm/23NGtrqmK/wdtHl+zcWF/b8H1FW3x1x0NjTO/BsVVJ/ygr6tNu8wIAAAAAAAAtp4IDAGzCDd++LX506i87NNyQnZMdex3RMNyQsssntm/1nFndsyJ3THZkD2nfH/Nb7zQ0Coq6xqfPO2Kjr1fu1b3pCbKzonJ84z5j9x4Vexy6i3ADAAB8wJVT74hvP3Fzh4YbchM5sU/Z2Ebt4weO3uK+H2N6lUVJl8I4edtJ7TrvuAEjY2LZdsINAAAAAAAAsAUQcACAjZj3+sK46bK/dPiz2fPwXaN7r6JG7WP3Hh2jdh/RorkSPbKi+OKu0ffvRdHrum7R59ai6HVDt+iyd/MFmxLZiSjp03RA4fAzD0r/+dmLjolJn5nQ6PVkQXaz6yS7NvzVo/egnrHz5O2aHUcrJZPtcwAAsNm9tmJ+/O7Fezt8nQOH7hTdcvMbtY8fOCpG9yyNzSUnK5EOLzTlxFH7pv88e+cj4oAhO7bLumVFvWOXflu1y1wAAAAAAABA2zW/4xEAPob+ef0Dkezgjd3denSLCcfsET/50q9j6fxl0Wtgjzj4C5NjzJ7bpF//zu3nxfmHfC/efP7tZufK6hbR81eFkTO0Ycggd2R2lPywIFZdvC4q769u8Nqw7QbH5M/sE10K8mKvT+2WrlRx3qTvxNL5yxvNf/iZB8aEo/eov/6f358Vzz/4YixbsKK+LeftyqgZ1nhj1PvlvL3+vXvOyoovXfG5dBULAACgof977fEOfyQ987vFfmXbxfmP3RhL166OfoUl8eltJsR2vYekf1//1eQz4kv3XR1vrFzYIeuP6VkWhwzfNQpyusTkITvEmqp1ccqUn8XSdasb9f382P1j3/9Umkjd25X7fiEm/ulbsbyyvNXrJ7Ky4n/GHR2JLJ8BAwAAAAAAAFsKAQcA2IhFby/puOeSFTHuwB0jNz83Lj/x5w1emnL9g1G2zcD43t3nx4Bh/eKaaVfEtw76Xkz/17+bnLLg2C6Nwg31yyWyouir+VH5UHVE7XvtJX2L4+E/PxF5+blRXVkdB31hUlwz/Yq469f3xcN/eiLWrlkXQ8eWxWGnHxh7HLpLgzmzs7Pj5EuOi5+c9uuI/+RACu5ZEZUTSzZ5j4kVNZH/9IaNSkPGlMbJlx4fE47avdnHRRvUJTccbZ0DAIDNbn554+Bxe8mKrNi3dGwkIxnnPnx9g9f+/NrjMaJkYPz2E2fFgG49429HXJgOHUx95/V2v49UxYZ73poWXXPyorquJo4aMT7+esQFccvMR+Kfs6fH2ur1MapnaZwwet+YMGhMg7F52Tlx5g6fjMuevq1Va4/sMSjO3uWIdMADAAAAAAAA2HIIOADARvToW9whz+XYrx8ex3/jU3H3tf+K686/eaN95r66IL409pz41bQrYvCoQenKDs3pekhuk69n901E3ricqHqqpr7tuftfqD9/6fFX4/cX3xpn/+b0+OxFx6SPpixftCJu/Paf6sMNKXmvrovCW5dExfF9Gt9fdl5cvufR0ff+3CgsLojh2w9p9msCAICPs175RR0y75k7HBwnbTs5/vDyg/HLGf/YaJ/XVy6IQ+64JB1uGNy9T/Tu2r1D7uWJhTPrz59954346bS/x+UTToqv7HRo+mjKoooVcc3zd2e8VmFuflwx4ZQo7lIQRXkFsU3PQW26dwAAAAAAAKBjqL8OABtxwMkTO+S57Hf8XukN/n+9+p4m+61fVxX/vdeFUbW+OkbvPqLZeRM9m/+Rnt0zq8nXqyqr44cn/6LZe0v50xV/i6ULGn+ibNGtS6LHJW9H/vSKKMntGn3zi+K4oePitn3/KyaP3D62mzBauGFzSibb5wAAYLP71NZ7dMi8Bw/bNQpy8uKWmQ832W9dTVUcd9cPo7quNrbvMzQ2h8raqjj7od/F/732eLN9f/38PbGscs0mX09EVrpCRL+Ckvjs6Ilxx+Hnx+QhO8Su/UcINwAAAAAAAMAWTMABADZi652GxQGntG/IYcTOw2LEzsNj3usLY9mCFc32X7OiPC477scx+bP7RFGPwib71i6qa3a+2nea75Pyq69dH/PfWLjJ1x+74+m4/eeb/qTULs9VRMmlb8fZr20X9x/w9bhw+0NjWLfeGa0NAABssHO/reKQYbtARwqoAAAZhUlEQVS26+PYqe9WMaLHwHhj5aJYXlnebP8V6yvim4/cEEeN2DNdAWFz+fYTN6crNGzK3W8+G7e++miTc9RFMs7d9ch4+LjL48I9jktXogAAAAAAAAC2fAIOALAJ5/7ujDjpO5+Okj7d69u69yqKfkNavlm/54Aecf4tZ2/44Zt4r5JCda8usXzygFh6aFms2aVX1OU0rLLw5J3ToqqyKr59+3lRUNR1k/Ovu7OqyfVr5tVG1bTajO419YH9d//2Xxt97Zkp0+PSY38cyQw+1f/pf0zLaD0AAGDjrtjnlDhjh4PTlQje1Su/KPp1LWnxI+tfUBI/2ufU9Hkiq+nqbu83Zfa0yIqsuGq/06Igp8tm+VbVJuviT689ttHX7ps9I855+LqM5nlgzvPtfGcAAAAAAABAR8vp8BUA4EMqkUjE5y4+No7/5qdi1ozZ6Y3/Bd27xpfGnpPxHD36lcRhpx8Qh55xQPToW5xuGzRiQPQb3jf+Pa4wVo/vm9pdVN8/e0119LvhjSh8dVXUFOfG6t36xDl/vzN22XFEXD79ezH1xidi2n3PR11tXbz1wpyoqqxOj1t7R1XkT8qNvO0a/2hPViVj9RWVLfra33pxTqO2muqauPwzV0WyrvlwQ0pWQo5yi5BBGAUAgC1TTiI7vrbz4XH69gfHzBXz0kGD3OycOPJv38t4jr5di+PE0fvGcdtMiB753dJtI0oGRt+C4li8dlVGYYOvP3x9jOs/Im486L/jvjnPx1MLZ0Zdsi5mLp8f1XWZBalb6vXlCxq1VdVWxzcf/X3GcyR8tgsAAAAAAAB86Ag4AEAzcvNyY9RuI9Ln9934cEbVC971v6/+PAq7FzQKTuScPS5Wx7JG/WuLcmPhaSOj+5NLYtXefSOyE/FA5TvxwFPvxE8TifjKoXvEVZccFwvffCdO2vrL7w1cH7HiqxVReGqXKDgsLxI9EpGsTUbV0zVRfv36qH6pZZuOum6kWsR1598c5SsqMp5j7F6jWrQmAACwcV1ycmOHPsPS57e9+miLHtO/jr0s8rIb/hNgdiIRg7r1yijgkPLI/JfSR05WIh24uO3Qb8QbKxfGoXdc2mHfsoLcxtUivv/0n6OiZn3Gc+zcb3g73xUAAAAAAADQ0QQcAKAFsnOzM+7braQgvnfCz9Ib/Q/+4uT6Cg4rK9fFUzmrImo2Pi6Zlx2r9u3fqL2mri5++szjMXPF4nhrxbKYfen2kTd/bRQ/sjgKX1kdycqI8mvWR/lv10eiZ1Yk1yWjSzI/qita/omqEz89vsF1bW1t3P/HRzIen8hOxEFfmNTidWlnqTBOWys4qAABALBFyc7KvFJacZeC+MoDv4ld+m0dx47cq76Cw9J1q+OFJW+3eO2aZF38eNpf46Vlc+KNFQszGlOY06VFoYR3HTJs1wbXqUoR97w1rUXVL44csWeL1wUAAAAAAAA6V+b/RxQAiP7D+mb8FMpXro2p9zwX/3vhLXHS8LPimXueS7c/OvftqKzZRLqhScmInGTcM/u1mLlqWVT3zY+KnXrGgq+NiiVHl73XrTaibkkykuURW++04VNeWyK/MD/GHzGuQdvKxatjxTuZfbprZEV87ZrTovfAni1eGwAAaNqAwsx/z161fm08PO/F+Mm0v8b+/3dRPLVgZrr90XkvRU2y5UHod02ZPT3eWJVZwGGbnqUtnr9bbn5MKB3ToG1RxfJYVbU2o/GJyIrv7fW56Jlf1OK1AQAAAAAAgM4l4AAALZCb17riR5Vr18d3j/1xLJ2/LKpqW7mRKDuZDg9szMpPDIjyHUoatA3dtixOPP/IFi8z8bjxkZ3TsFJFXn5uRmMLiwviJw9dGod8cXKL16UD1NW1zwEAwBaja05eq8ZVVFfGWQ/8JpatWx1Vda0JXLfcmF5l8fmx+7d43BFb7x6JD1Sq6JKd2ddd0qUw/njIuek5AAAAAAAAgA8fAQcAaIGBW/eP3Aw3+28s5HD9BbfEdr0zrwLxnmSzP7VXTuzXqNrErgfuGCN2zryKQ1ZWVhx99qGN2ot6dIuSfsXNjt9u39Gx3YTRGa8HAAC0zLDifpGT1TCQ3JKQw8+m3xnb9R6yWR77kKI+MWnw9jGiZEDGY7KzEnHSmEmN2vsWFEdxXkGz4/caODp27rdVi+8VAAAAAAAA2DIIOABACxR2L4jBowa1+pndd+PD8Z1dLoox2d1bNnATlRveb/3gwgbXT901Ld5+eV5c+vdvxlY7Dm1+iaysOOuqz6crP2zM8O2a3wSV37VL8zcKAAC0Wo/8bjG4e59Wj//za4/FVx74bQwvbhiQ7ghTZj8X89Ysi9984ssZhRwSWVnxnfEnxJDuGw+Fb5XBHLnZrau6BwAAAAAAAGwZ/B8/AGihrXYYGrNmzG71c1syd1nUfPPB6P/98bEoub7R611fXxXrRjRfLeGDsqrrGrU9deezcfw3j4xrpl0RU6fMiKf/MS1qq2tj0DYDY8mcpTF1ynNRU10b247fJo748sExevcRm5z/wFP3i+n/+neT95CqGMEWJJnccLR1DgAAtigjewyMN1ctavX4+eXL0n/2yi+KZZVroqMkIxkPzX0hTtp2UvztUxfGQ3NfjMfmvxS1yWS6EsXcNUvisfmvRG1dbezSb+v47Jj9mqwucfSI8TF98awm19xn0LYd8JUAAAAAAAAAm4uAAwC00ODRpW3/Aby6OgZf+WKc9df/irtmvRblVVUxsmevKH2lIu75xZ9i0clbR/kuvd8bkPzP0UQlh27PrWjUlgovvFudYbeDd0ofDZ2a8T3vc8we8fuLbo2Fb76z0df7Du4d+x2/V8bzAQAArTOix8CYMnt6mx9fl+zcuHD3T6crLaytroyRPQdFQU6XuHnmw+32ramu2/CeJJGViEmDt08frfXJ4bvG1TPuioUVjd/7pAwu6hOfGPrB9zwAAAAAAADAh0mis28AAD5sDjhlYuTmtT0juGL2sth2cXbcduRx8Y/jPhc//cQhMaQmP7KSEQN+/0YM+sXLUTR1SXR9fXUUTV0W3aZt+JTVjUmsq4mSBxp/guuYPUdGe8nJzYnLp1wQg0YMaPRa/2F94/IpF0Zefl67rUc7VnBo6wEAwBYlVckgO6vt/6y3oGJ5jO5VFn885Jy4/Yjz4wcTTo6+BS2vJteUnfoOb7e58nPy4ncHfCUGdevV6LUh3fvGtQd8OXIT2e22HgAAAAAAALD5qeAAAC3Uo29xnPnzz8dVZ14byTZu/l6zvHyTgYSC11anj3clsyKWrqqO1fv1j7r37WXKWbY++l83K/KWrG8w15AxpbHT5O2iPQ3aekBc99JP44m/PxvT73s+vfc9tcbeR+4W2Tk2EgEAwObQv7BHfGPc0fH9Z/7c5rlWra9ocL1jn2HNjkkVlsvkndCYXmWxc7+toj1tVTIgphx9Sfzr7Rnx1MJX0/cyfuDomDx4h8hO+CwXAAAAAAAA+LDLSrZ1ZyYAfExN/eeMuOLkq2Pl4lWtnmOfY/aILoVdYuTOW8UnTtonCosL48xx34jXp7250f5ZWVlx8UMXxqweNVFeXRUV0xbEv868LZI1dQ369SntFT+876Io22ZQq++ND6d58+ZFWVlZ+nxij89Efna3Ns1XWVseD624KX0+d+7cKC0tbZf7BACg7R6a+0J889EbYuUHQgotcfDQXdKVEbbrPSQO33r36JabH4fdcWm8vnLhRvsnsrLi1/ufFW+vXhxra9bHovIVceurjzQKPKSqLPz+oK9FWVGfVt8bAAAAAAAA8PEj4AAAbfDAzY/G5Z+9ql2eYUFR17jg1rOjbJuB8T/7XxKLZi9pFG44/Scnx1Ff+2SD9jkz58ed1/wzXp36RuTl58X4I8bFgadMTIcl+PgRcAAA+Hj5y2tPxAWP/6Fd5irK6xpX7Xda9Cssic9PuSoWrV3RKNxw8R4nxPGjJjRof23F/Lh15iPx0rK5kZ+dGwcM3SmO2HqPdFgCAAAAAAAAoCUEHACgDaqrquO/djwv5s6c3y7PMS8/N37z/I+jR7/iuO+Gh+PR25+K9WvXx9Y7DovDzjwwttphqO8XGQcc9i05oV0qODy88pb0uQoOAABbnsqaqjj8r5fFnDUNA9KtVZDTJe488qIoyu0at7/xZPzr7RlRVVsTY3sPjuNH7RMje6gSBwAAAAAAAHQcAQcAaKMl85bFJUf/KF6dOqtdnuWnvnJwnPXzz/u+0CoCDgAAHz/z1iyLrz7wm3h5+dx2me9L2x0Q5+56ZLvMBQAAAAAAANASiRb1BgAa6VPaK65++gdx8qXHtcvTmXbv854yAACQsdKiXnH7EefHadsf1C5P7bH5L3v6AAAAAAAAQKcQcACAdnL8Nz4VvQb2aPM8yWSyXe4HIvVXqS7ZtsNfRwCAD40v73hI9Mzv1uZ5/AoIAAAAAAAAdBYBBwBoJzm5OXHBLWdH1275bZpnh4ljfU8AAIAWy8vOjR/v+4XompPXpqe3e/+Rnj4AAAAAAADQKQQcAKAdbTdhdFwz/Yo44qyDok9pr+hWUtii8Tm52XHElw/yPaF9pKqBtMcBAMCHxp4DR8VfDv9WnDBqn+hXUBJFuV1bND4vOydOGLVvh90fAAAAAAAAQFOykkm71gCgI11xytVx340PN9svNy8n/ueGL8fE4/byDaHV5s2bF2VlZenzfbsfH/mJloVsPqiyriIeXn1r+nzu3LlRWlrquwMA8CGS+qe/cx66Lu6ZPa3Zvl2yc+PKfT8fnxiy42a5NwAAAAAAAIAPymnUAgC0q69ff2YMGVMWf7v6nlgyb1m6bdCIAbHjfttGxaq1sX5dVYzYeXgc/MXJ0XtgT0+f9lNXl/pPO8wBAMCHVVZWVjq0sE3PQXHzzIdj8dpV6fbh3fvFuAEjY/X6tbG+tjq27zM0jhm5V/Tu2r2zbxkAAAAAAAD4GFPBAQA2k9ra2lg4651IZCdiwPB+6Y1G0KEVHLp9un0qOJT/KX2uggMAwIdbTV1tzF2zNHISiSgr6tPZtwMAAAAAAADQiAoOALCZZGdnR+nIgZ43AADQKXIS2TGsuJ+nDwAAAAAAAGyxBBwAAD6qkskNR1vnAAAAAAAAAAAAgM0gsTkWAQAAAAAAAAAAAAAAaIoKDgAAH1HJurpIRl2b5wAAAAAAAAAAAIDNQQUHAAAAAAAAAAAAAACg06ngAADwUZVMbjjaOgcAAAAAAAAAAABsBio4AAAAAAAAAAAAAAAAnU4FBwCAj6pU9YU6FRwAAAAAAAAAAAD4cFDBAQCALUZ5eXn88pe/jAMOOCD69esXeXl56T932WWXuOCCC+L111/v0PXvv//+OOmkk2LrrbeOwsLCKCoqilGjRsUJJ5wQd999d9TV1XXo+gAAAAAAAAAAAB9nWclk6qN9AQD4KJg3b16UlZWlz/fpcmTkZxW2ab7KZEU8sv6O9PncuXOjtLQ0OsqDDz6YDhekvoZNycnJiYsuuigddsjOzm63tVesWJFe+6677mqy38SJE+OGG26IwYMHt9vaAAAAAAAAAAAAbKCCAwDAR1Uqx5qsa+OxebKw//znP+Pggw9uEG5IhRkGDRoUBQUF9W01NTXx7W9/O84444x2W3v16tXp4MIHww29e/dOH+/30EMPxd577x2LFi1qt/UBAAAAAAAAAADYQMABAIBOtWDBgjjxxBNj/fr16euioqL45S9/GStXrkwHHtasWRP33HNPjBw5sn7MtddeG7/97W/bZf3TTjst/v3vf9dff+Yzn4k33ngjlixZkj5mzZqVru7wrlQli2OOOSYUQgMAAAAAAAAAAGhfAg4AAB9Rybpkuxwd7fzzz4/ly5enz/Pz89PVHM4888woLCxMtyUSiTjooINi6tSpscMOO9SPu+iii6K8vLxNa6cqMtx2223111/96lfjj3/8Y2y11Vb1bcOHD48bbrghLrnkkvq2xx9/PP785z+3aW0AAAAAAAAAAAAaEnAAAKDTLFy4MG666ab66/POOy/23HPPjfbt3r17/OUvf4nc3Nz09eLFi9tcxeFHP/pR/Xkq1HDllVdusu/FF18ckyZNqr++7LLL2rQ2AAAAAAAAAAAADQk4AAB8VCXr2ufoQLfeemvU1NTUV2o466yzmuyfCiEceeSR9de33HJLq9deunRpTJkypf769NNPrw9PbMrXv/71+vMXXnghXnrppVavDwAAAAAAAAAAQEMCDgAAdJr3Bwx222236NevX7NjDjvssPrzZ599NubMmdOqte+7776oq6vb6LybMnny5OjatWv99e23396qtQEAAAAAAAAAAGhMwAEA4CMqWZdsl6MjpQIK79pjjz0yGrP77rs3uH7yySdbtfbUqVPrz0tKSmKbbbZpdkxeXl7stNNO9ddPPPFEq9YGAAAAAAAAAACgMQEHAAA6xaJFi2L58uX116NHj85o3LBhwyInJ6f+eubMma1a/+WXX27x2ikjRoxo89oAAAAAAAAAAAA0JuAAAECnmDdvXoPr0tLSjMalwg19+/atv54zZ06b18907ZRBgwY1mCOZ7NgqFwAAAAAAAAAAAB8X7330LQAAHynrk2sjknVtmyMq688XLlzYbP+WBAUWL17c4LpXr14Zj+3Zs2csWLAgff7+KhAt8f71W7r2u2pqamL16tVRXFzcqnsAAAAAAAAAAADgPQIOAAAfUVPjgXadb7fddmu2T0uqGZSXlze47tatW8Zj39/3g/O0Zv3Wrv3uPAIOAAAAAAAAAAAAbZdohzkAAKDFqqqqGlzn5uZmPPb9faurq9u8fmvXbsv6AAAAAAAAAAAANKSCAwDAR0j//v1j7ty57T7vwoULo0+fPpGT036/Pn6w2kNWVla7zd3S9Tf32gAAAAAAAAAAADQm4AAA8BGSCiCUlpa2+7wdMWdeXl6rKyG8v29+fn6r16+srGzT2m1ZHwAAAAAAAAAAgIYSH7gGAIDNonv37g2uKyoqMh5bXl5ef15YWNjm9Vu7dlvWBwAAAAAAAAAAoCEBBwAAOkXv3r0bXC9fvjzjse/v27dv3zav39q1u3btGkVFRa1aHwAAAAAAAAAAgIYEHAAA6BRDhw5tcL1gwYKMxtXU1MTixYvrr0tLS9u8fqZrp8yfP7/+fNCgQa1aGwAAAAAAAAAAgMYEHAAA6BR9+vSJXr161V+/9tprGY1788030yGHd2277batWn/06NEtXvuDfVu7NgAAAAAAAAAAAI0JOAAA0GnGjRtXf/7MM89kNOaD/Xbdddc2r71o0aKYO3dus2OqqqpixowZG50DAAAAAAAAAACAthFwAACg0xxwwAH154899lisXLmy2TF33nln/fmYMWOitLS0VWtPnjw5Eon3fh2+6667mh1z//33x7p16zZ6/wAAAAAAAAAAALSNgAMAAJ3m2GOPjezs7PrqCL/4xS+a7D9r1qy444476q8/97nPtXrt3r17x/77719/fdVVV0V1dXWTY6688sr681GjRqngAAAAAAAAAAAA0I4EHAAA6DSp6gupkMO7vvvd76arJGzMmjVr4phjjqkPIRQXF8cXv/jFNq1/zjnn1J/PnDkzzjjjjE32Td3bAw88UH997rnntmltAAAAAAAAAAAAGhJwAACgU33/+9+Pbt26pc9T4YVPfvKT8YMf/CBWrVqVbksmk3HvvfemqyXMmDGjftyll16arsKwMUOHDo2srKz6Y1MOPPDAOPTQQ+uvr7vuuvT1Sy+9VN82e/bsOPXUU+Piiy+ub0vdS6oNAAAAAAAAAACA9pOVTO0YAwCATnTnnXemqzNUVVXVt2VnZ0f//v1j5cqVUVFR0aD/iSeeGDfddNMm50sFHN5+++3666Z+5V26dGlMmjQpXnjhhQbtvXr1St/D4sWLG7QPHDgwHn/88fQaAAAAAAAAAAAAtB8VHAAA6HSHHXZY3HXXXVFWVlbfVltbG/Pnz28QbkgkEnHuuefGjTfe2G5rp6pAPPDAAw0qOaQsW7asUbghVbnh0UcfFW4AAAAAAAAAAADoACo4AACwxVi7dm3ccMMNcccdd8TLL78cS5YsiS5duqQDBRMnTozTTjstxo4d2+w8Lang8H73339/3HzzzekQw8KFC9MVJfr27ZsONpxwwglx1FFHpas6AAAAAAAAAAAA0P4EHAAAAAAAAAAAAAAAgE6X6OwbAAAAAAAAAAAAAAAAEHAAAAAAAAAAAAAAAAA6nYADAAAAAAAAAAAAAADQ6QQcAAAAAAAAAAAAAACATifgAAAAAAAAAAAAAAAAdDoBBwAAAAAAAAAAAAAAoNMJOAAAAAAAAAAAAAAAAJ1OwAEAAAAAAAAAAAAAAOh0Ag4AAAAAAAAAAAAAAECnE3AAAAAAAAAAAAAAAAA6nYADAAAAAAAAAAAAAADQ6QQcAAAAAAAAAAAAAACATifgAAAAAAAAAAAAAAAAdDoBBwAAAAAAAAAAAAAAoNMJOAAAAAAAAAAAAAAAAJ1OwAEAAAAAAAAAAAAAAOh0Ag4AAAAAAAAAAAAAAECnE3AAAAAAAAAAAAAAAAA6nYADAAAAAAAAAAAAAADQ6QQcAAAAAAAAAAAAAACATifgAAAAAAAAAAAAAAAAdDoBBwAAAAAAAAAAAAAAoNMJOAAAAAAAAAAAAAAAAJ1OwAEAAAAAAAAAAAAAAOh0Ag4AAAAAAAAAAAAAAECnE3AAAAAAAAAAAAAAAACis/0/Y3/EocZ8DMMAAAAASUVORK5CYII=", + "text/plain": [ + "
" + ] + }, + "metadata": { + "image/png": { + "height": 709, + "width": 1564 + } + }, + "output_type": "display_data" + } + ], "source": [ - "# Final UMAP with cell types\n", - "fig = styled_umap(adata, color=\"cell_type\", title=\"PBMC Cell Types\", figsize=(8, 6))\n", - "plt.show()" + "sc.pl.embedding(\n", + " adata,\n", + " basis=\"umap\",\n", + " color=[\n", + " \"leiden\",\n", + " \"CST3\",\n", + " \"NKG7\",\n", + " \"PPBP\",\n", + " \"CD8A\",\n", + " \"cell_type\",\n", + " ],\n", + ")" ] }, { "cell_type": "markdown", + "id": "eec9ac44", "metadata": {}, "source": [ "---\n", "\n", - "## Save Results - Local\n", + "## 💾 Save Results — 💻 Local\n", "\n", - "Save processed data following the template data organization." + "Save processed data following the template's data organization." ] }, { "cell_type": "code", - "execution_count": null, + "execution_count": 28, + "id": "c21acfe8", "metadata": {}, - "outputs": [], + "outputs": [ + { + "ename": "IORegistryError", + "evalue": "No method registered for writing into ", + "output_type": "error", + "traceback": [ + "\u001b[31m---------------------------------------------------------------------------\u001b[39m", + "\u001b[31mIORegistryError\u001b[39m Traceback (most recent call last)", + "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[28]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43madata\u001b[49m\u001b[43m.\u001b[49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[43mFilePaths\u001b[49m\u001b[43m.\u001b[49m\u001b[43mEXAMPLE_DATASET\u001b[49m\u001b[43m \u001b[49m\u001b[43m/\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mprocessed\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m/\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mpbmc3k_processed.h5ad\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 2\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mSaved to: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00moutput_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m)\n", + " \u001b[31m[... skipping hidden 1 frame]\u001b[39m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_core/anndata.py:1907\u001b[39m, in \u001b[36mAnnData.write_h5ad\u001b[39m\u001b[34m(self, filename, convert_strings_to_categoricals, compression, compression_opts, as_dense)\u001b[39m\n\u001b[32m 1904\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m filename \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 1905\u001b[39m filename = \u001b[38;5;28mself\u001b[39m.filename\n\u001b[32m-> \u001b[39m\u001b[32m1907\u001b[39m \u001b[43mwrite_h5ad\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1908\u001b[39m \u001b[43m \u001b[49m\u001b[43mPath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1909\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 1910\u001b[39m \u001b[43m \u001b[49m\u001b[43mconvert_strings_to_categoricals\u001b[49m\u001b[43m=\u001b[49m\u001b[43mconvert_strings_to_categoricals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1911\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1912\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression_opts\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcompression_opts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1913\u001b[39m \u001b[43m \u001b[49m\u001b[43mas_dense\u001b[49m\u001b[43m=\u001b[49m\u001b[43mas_dense\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1914\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1915\u001b[39m \u001b[38;5;66;03m# Only reset the filename if the AnnData object now points to a complete new copy\u001b[39;00m\n\u001b[32m 1916\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.isbacked \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m.is_view:\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/utils.py:320\u001b[39m, in \u001b[36mno_write_dataset_2d..raise_error_if_dataset_2d_present\u001b[39m\u001b[34m(store, adata, *args, **kwargs)\u001b[39m\n\u001b[32m 313\u001b[39m msg = (\n\u001b[32m 314\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mWriting AnnData objects with a Dataset2D not supported yet. \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 315\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mPlease use `ds.to_memory` to bring the dataset into memory. \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 316\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mNote that if you have generated this object by concatenating several `AnnData` objects\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 317\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mthe original types may be lost.\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 318\u001b[39m )\n\u001b[32m 319\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(msg)\n\u001b[32m--> \u001b[39m\u001b[32m320\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/h5ad.py:97\u001b[39m, in \u001b[36mwrite_h5ad\u001b[39m\u001b[34m(filepath, adata, as_dense, convert_strings_to_categoricals, dataset_kwargs, **kwargs)\u001b[39m\n\u001b[32m 89\u001b[39m _write_x(\n\u001b[32m 90\u001b[39m f,\n\u001b[32m 91\u001b[39m adata, \u001b[38;5;66;03m# accessing adata.X reopens adata.file if it’s backed\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 94\u001b[39m dataset_kwargs=dataset_kwargs,\n\u001b[32m 95\u001b[39m )\n\u001b[32m 96\u001b[39m _write_raw(f, adata.raw, as_dense=as_dense, dataset_kwargs=dataset_kwargs)\n\u001b[32m---> \u001b[39m\u001b[32m97\u001b[39m \u001b[43mwrite_elem\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madata\u001b[49m\u001b[43m.\u001b[49m\u001b[43mobs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 98\u001b[39m write_elem(f, \u001b[33m\"\u001b[39m\u001b[33mvar\u001b[39m\u001b[33m\"\u001b[39m, adata.var, dataset_kwargs=dataset_kwargs)\n\u001b[32m 99\u001b[39m write_elem(f, \u001b[33m\"\u001b[39m\u001b[33mobsm\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28mdict\u001b[39m(adata.obsm), dataset_kwargs=dataset_kwargs)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:518\u001b[39m, in \u001b[36mwrite_elem\u001b[39m\u001b[34m(store, k, elem, dataset_kwargs)\u001b[39m\n\u001b[32m 494\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mwrite_elem\u001b[39m(\n\u001b[32m 495\u001b[39m store: GroupStorageType,\n\u001b[32m 496\u001b[39m k: \u001b[38;5;28mstr\u001b[39m,\n\u001b[32m (...)\u001b[39m\u001b[32m 499\u001b[39m dataset_kwargs: Mapping[\u001b[38;5;28mstr\u001b[39m, Any] = MappingProxyType({}),\n\u001b[32m 500\u001b[39m ) -> \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 501\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 502\u001b[39m \u001b[33;03m Write an element to a storage group using anndata encoding.\u001b[39;00m\n\u001b[32m 503\u001b[39m \n\u001b[32m (...)\u001b[39m\u001b[32m 516\u001b[39m \u001b[33;03m E.g. for zarr this would be `chunks`, `compressor`.\u001b[39;00m\n\u001b[32m 517\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m518\u001b[39m \u001b[43mWriter\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_REGISTRY\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mwrite_elem\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43melem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/utils.py:243\u001b[39m, in \u001b[36mreport_write_key_on_error..func_wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 241\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[32m 242\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m243\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 244\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 245\u001b[39m path = _get_display_path(store)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:389\u001b[39m, in \u001b[36mWriter.write_elem\u001b[39m\u001b[34m(self, store, k, elem, dataset_kwargs, modifiers)\u001b[39m\n\u001b[32m 386\u001b[39m write_func = \u001b[38;5;28mself\u001b[39m.find_write_func(dest_type, elem, modifiers)\n\u001b[32m 388\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.callback \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m389\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrite_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43melem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 390\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.callback(\n\u001b[32m 391\u001b[39m write_func,\n\u001b[32m 392\u001b[39m store,\n\u001b[32m (...)\u001b[39m\u001b[32m 396\u001b[39m iospec=\u001b[38;5;28mself\u001b[39m.registry.get_spec(elem),\n\u001b[32m 397\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:77\u001b[39m, in \u001b[36mwrite_spec..decorator..wrapper\u001b[39m\u001b[34m(g, k, *args, **kwargs)\u001b[39m\n\u001b[32m 75\u001b[39m \u001b[38;5;129m@wraps\u001b[39m(func)\n\u001b[32m 76\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mwrapper\u001b[39m(g: GroupStorageType, k: \u001b[38;5;28mstr\u001b[39m, *args, **kwargs):\n\u001b[32m---> \u001b[39m\u001b[32m77\u001b[39m result = \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 78\u001b[39m g[k].attrs.setdefault(\u001b[33m\"\u001b[39m\u001b[33mencoding-type\u001b[39m\u001b[33m\"\u001b[39m, spec.encoding_type)\n\u001b[32m 79\u001b[39m g[k].attrs.setdefault(\u001b[33m\"\u001b[39m\u001b[33mencoding-version\u001b[39m\u001b[33m\"\u001b[39m, spec.encoding_version)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/methods.py:987\u001b[39m, in \u001b[36mwrite_dataframe\u001b[39m\u001b[34m(f, key, df, _writer, dataset_kwargs)\u001b[39m\n\u001b[32m 982\u001b[39m group.attrs[\u001b[33m\"\u001b[39m\u001b[33m_index\u001b[39m\u001b[33m\"\u001b[39m] = check_key(index_name)\n\u001b[32m 984\u001b[39m \u001b[38;5;66;03m# ._values is \"the best\" array representation. It's the true array backing the\u001b[39;00m\n\u001b[32m 985\u001b[39m \u001b[38;5;66;03m# object, where `.values` is always a np.ndarray and .array is always a pandas\u001b[39;00m\n\u001b[32m 986\u001b[39m \u001b[38;5;66;03m# array.\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m987\u001b[39m \u001b[43m_writer\u001b[49m\u001b[43m.\u001b[49m\u001b[43mwrite_elem\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 988\u001b[39m \u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindex_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[43m.\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_values\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\n\u001b[32m 989\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 990\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m colname, series \u001b[38;5;129;01min\u001b[39;00m df.items():\n\u001b[32m 991\u001b[39m \u001b[38;5;66;03m# TODO: this should write the \"true\" representation of the series (i.e. the underlying array or ndarray depending)\u001b[39;00m\n\u001b[32m 992\u001b[39m _writer.write_elem(\n\u001b[32m 993\u001b[39m group, colname, series._values, dataset_kwargs=dataset_kwargs\n\u001b[32m 994\u001b[39m )\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/utils.py:243\u001b[39m, in \u001b[36mreport_write_key_on_error..func_wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 241\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[32m 242\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m243\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 244\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 245\u001b[39m path = _get_display_path(store)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:386\u001b[39m, in \u001b[36mWriter.write_elem\u001b[39m\u001b[34m(self, store, k, elem, dataset_kwargs, modifiers)\u001b[39m\n\u001b[32m 383\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m store:\n\u001b[32m 384\u001b[39m \u001b[38;5;28;01mdel\u001b[39;00m store[k]\n\u001b[32m--> \u001b[39m\u001b[32m386\u001b[39m write_func = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mfind_write_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdest_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43melem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodifiers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 388\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.callback \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 389\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m write_func(store, k, elem, dataset_kwargs=dataset_kwargs)\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:334\u001b[39m, in \u001b[36mWriter.find_write_func\u001b[39m\u001b[34m(self, dest_type, elem, modifiers)\u001b[39m\n\u001b[32m 330\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.registry.get_write(\n\u001b[32m 331\u001b[39m dest_type, pattern, modifiers, writer=\u001b[38;5;28mself\u001b[39m\n\u001b[32m 332\u001b[39m )\n\u001b[32m 333\u001b[39m \u001b[38;5;66;03m# Raises IORegistryError\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m334\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mregistry\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget_write\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdest_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43melem\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodifiers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n", + "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:141\u001b[39m, in \u001b[36mIORegistry.get_write\u001b[39m\u001b[34m(self, dest_type, src_type, modifiers, writer)\u001b[39m\n\u001b[32m 139\u001b[39m dest_type = h5py.Group\n\u001b[32m 140\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (dest_type, src_type, modifiers) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m.write:\n\u001b[32m--> \u001b[39m\u001b[32m141\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m IORegistryError._from_write_parts(dest_type, src_type, modifiers)\n\u001b[32m 142\u001b[39m internal = \u001b[38;5;28mself\u001b[39m.write[(dest_type, src_type, modifiers)]\n\u001b[32m 143\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m partial(internal, _writer=writer)\n", + "\u001b[31mIORegistryError\u001b[39m: No method registered for writing into ", + "Error raised while writing key 'index' of to /obs" + ] + } + ], "source": [ - "# Create output directory\n", - "output_dir = FilePaths.DATA / \"pbmc3k\" / \"processed\"\n", - "output_dir.mkdir(parents=True, exist_ok=True)\n", - "\n", - "# Save processed AnnData\n", - "output_path = output_dir / \"pbmc3k_analyzed.h5ad\"\n", - "adata.write(output_path)\n", + "adata.write(FilePaths.EXAMPLE_DATASET / \"processed\" / \"pbmc3k_processed.h5ad\")\n", "print(f\"Saved to: {output_path}\")" ] }, { "cell_type": "markdown", + "id": "22d5126e", + "metadata": {}, + "source": [ + "---\n", + "\n", + "## 📋 Session Info" + ] + }, + { + "cell_type": "code", + "execution_count": 24, + "id": "81c9ee78", + "metadata": {}, + "outputs": [ + { + "data": { + "application/vnd.jupyter.widget-view+json": { + "model_id": "3bd42cdc4f1045ac8dfa22b3232338a5", + "version_major": 2, + "version_minor": 0 + }, + "text/html": [ + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "
PackageVersion
pandas3.0.0
anndata0.12.6
matplotlib3.10.8
numpy2.1.3
scanpy1.12
myanalysis0.1.dev29+g32849c680.d20260127
scvi-tools1.4.1
torch2.10.0
celltypist1.7.1
ComponentInfo
Python3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ]
OSmacOS-26.2-arm64-arm-64bit
Updated2026-01-27 13:07
\n", + "\n", + "
\n", + " Dependencies\n", + "
\n", + " \n", + " \n", + " \n", + "\n", + "\n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + " \n", + "\n", + "
DependencyVersion
cloudpickle3.1.2
charset-normalizer3.4.4
psutil7.2.1
docrep0.3.2
texttable1.7.0
xarray2025.12.0
mpmath1.3.0
six1.17.0
matplotlib-inline0.2.1
cycler0.12.1
Jinja23.0.3
pynndescent0.6.0
PyYAML6.0.3
statsmodels0.14.6
ipython9.9.0
mudata0.3.2
comm0.2.3
scikit-learn1.7.2
jax0.8.2
absl-py2.3.1
toolz1.1.0
certifi2026.1.4 (2026.01.04)
umap-learn0.5.11
pyro-ppl1.9.1
session-info20.3
igraph1.0.0
decorator5.2.1
tornado6.5.4
rich14.3.1
kiwisolver1.4.9
MarkupSafe3.0.3
appnope0.1.4
jupyter_client8.8.0
fast-array-utils1.3.1
parso0.8.5
executing2.2.1
python-dateutil2.9.0.post0
numba0.63.1
asttokens3.0.1
pyzmq27.1.0
threadpoolctl3.6.0
requests2.32.5
llvmlite0.46.0
fsspec2026.1.0
lightning-utilities0.15.2
legacy-api-wrap1.5
lightning2.6.0
urllib32.6.3
attrs25.4.0
sympy1.14.0
donfig0.8.1.post1
scipy1.16.3
zarr3.1.5
debugpy1.8.19
patsy1.0.2
filelock3.20.3
tqdm4.67.1
torchmetrics1.8.2
sparse0.17.0
ml_collections1.1.0
seaborn0.13.2
defusedxml0.7.1
pillow12.1.0
numcodecs0.16.5
pyarrow23.0.0
natsort8.4.0
jupyter_core5.9.1
traitlets5.14.3
platformdirs4.5.1
typing_extensions4.15.0
Pygments2.19.2
google-crc32c1.8.0
opt_einsum3.4.0
ipywidgets8.1.8
wcwidth0.5.0
ipykernel7.1.0
setuptools80.10.2
h5py3.15.1
pycparser3.0 (3.00)
jedi0.19.2
idna3.11
pure_eval0.2.3
stack-data0.6.3
dask2024.11.2
packaging26.0
prompt_toolkit3.0.52
jaxlib0.8.2
pyparsing3.3.2
joblib1.5.3
cffi2.0.0
ml_dtypes0.5.4
\n", + "
\n", + "
\n", + "
\n", + " Copyable Markdown\n", + "
| Package    | Version                        |\n",
+       "| ---------- | ------------------------------ |\n",
+       "| pandas     | 3.0.0                          |\n",
+       "| anndata    | 0.12.6                         |\n",
+       "| matplotlib | 3.10.8                         |\n",
+       "| numpy      | 2.1.3                          |\n",
+       "| scanpy     | 1.12                           |\n",
+       "| myanalysis | 0.1.dev29+g32849c680.d20260127 |\n",
+       "| scvi-tools | 1.4.1                          |\n",
+       "| torch      | 2.10.0                         |\n",
+       "| celltypist | 1.7.1                          |\n",
+       "\n",
+       "| Dependency          | Version               |\n",
+       "| ------------------- | --------------------- |\n",
+       "| cloudpickle         | 3.1.2                 |\n",
+       "| charset-normalizer  | 3.4.4                 |\n",
+       "| psutil              | 7.2.1                 |\n",
+       "| docrep              | 0.3.2                 |\n",
+       "| texttable           | 1.7.0                 |\n",
+       "| xarray              | 2025.12.0             |\n",
+       "| mpmath              | 1.3.0                 |\n",
+       "| six                 | 1.17.0                |\n",
+       "| matplotlib-inline   | 0.2.1                 |\n",
+       "| cycler              | 0.12.1                |\n",
+       "| Jinja2              | 3.0.3                 |\n",
+       "| pynndescent         | 0.6.0                 |\n",
+       "| PyYAML              | 6.0.3                 |\n",
+       "| statsmodels         | 0.14.6                |\n",
+       "| ipython             | 9.9.0                 |\n",
+       "| mudata              | 0.3.2                 |\n",
+       "| comm                | 0.2.3                 |\n",
+       "| scikit-learn        | 1.7.2                 |\n",
+       "| jax                 | 0.8.2                 |\n",
+       "| absl-py             | 2.3.1                 |\n",
+       "| toolz               | 1.1.0                 |\n",
+       "| certifi             | 2026.1.4 (2026.01.04) |\n",
+       "| umap-learn          | 0.5.11                |\n",
+       "| pyro-ppl            | 1.9.1                 |\n",
+       "| session-info2       | 0.3                   |\n",
+       "| igraph              | 1.0.0                 |\n",
+       "| decorator           | 5.2.1                 |\n",
+       "| tornado             | 6.5.4                 |\n",
+       "| rich                | 14.3.1                |\n",
+       "| kiwisolver          | 1.4.9                 |\n",
+       "| MarkupSafe          | 3.0.3                 |\n",
+       "| appnope             | 0.1.4                 |\n",
+       "| jupyter_client      | 8.8.0                 |\n",
+       "| fast-array-utils    | 1.3.1                 |\n",
+       "| parso               | 0.8.5                 |\n",
+       "| executing           | 2.2.1                 |\n",
+       "| python-dateutil     | 2.9.0.post0           |\n",
+       "| numba               | 0.63.1                |\n",
+       "| asttokens           | 3.0.1                 |\n",
+       "| pyzmq               | 27.1.0                |\n",
+       "| threadpoolctl       | 3.6.0                 |\n",
+       "| requests            | 2.32.5                |\n",
+       "| llvmlite            | 0.46.0                |\n",
+       "| fsspec              | 2026.1.0              |\n",
+       "| lightning-utilities | 0.15.2                |\n",
+       "| legacy-api-wrap     | 1.5                   |\n",
+       "| lightning           | 2.6.0                 |\n",
+       "| urllib3             | 2.6.3                 |\n",
+       "| attrs               | 25.4.0                |\n",
+       "| sympy               | 1.14.0                |\n",
+       "| donfig              | 0.8.1.post1           |\n",
+       "| scipy               | 1.16.3                |\n",
+       "| zarr                | 3.1.5                 |\n",
+       "| debugpy             | 1.8.19                |\n",
+       "| patsy               | 1.0.2                 |\n",
+       "| filelock            | 3.20.3                |\n",
+       "| tqdm                | 4.67.1                |\n",
+       "| torchmetrics        | 1.8.2                 |\n",
+       "| sparse              | 0.17.0                |\n",
+       "| ml_collections      | 1.1.0                 |\n",
+       "| seaborn             | 0.13.2                |\n",
+       "| defusedxml          | 0.7.1                 |\n",
+       "| pillow              | 12.1.0                |\n",
+       "| numcodecs           | 0.16.5                |\n",
+       "| pyarrow             | 23.0.0                |\n",
+       "| natsort             | 8.4.0                 |\n",
+       "| jupyter_core        | 5.9.1                 |\n",
+       "| traitlets           | 5.14.3                |\n",
+       "| platformdirs        | 4.5.1                 |\n",
+       "| typing_extensions   | 4.15.0                |\n",
+       "| Pygments            | 2.19.2                |\n",
+       "| google-crc32c       | 1.8.0                 |\n",
+       "| opt_einsum          | 3.4.0                 |\n",
+       "| ipywidgets          | 8.1.8                 |\n",
+       "| wcwidth             | 0.5.0                 |\n",
+       "| ipykernel           | 7.1.0                 |\n",
+       "| setuptools          | 80.10.2               |\n",
+       "| h5py                | 3.15.1                |\n",
+       "| pycparser           | 3.0 (3.00)            |\n",
+       "| jedi                | 0.19.2                |\n",
+       "| idna                | 3.11                  |\n",
+       "| pure_eval           | 0.2.3                 |\n",
+       "| stack-data          | 0.6.3                 |\n",
+       "| dask                | 2024.11.2             |\n",
+       "| packaging           | 26.0                  |\n",
+       "| prompt_toolkit      | 3.0.52                |\n",
+       "| jaxlib              | 0.8.2                 |\n",
+       "| pyparsing           | 3.3.2                 |\n",
+       "| joblib              | 1.5.3                 |\n",
+       "| cffi                | 2.0.0                 |\n",
+       "| ml_dtypes           | 0.5.4                 |\n",
+       "\n",
+       "| Component | Info                                                                              |\n",
+       "| --------- | --------------------------------------------------------------------------------- |\n",
+       "| Python    | 3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ] |\n",
+       "| OS        | macOS-26.2-arm64-arm-64bit                                                        |\n",
+       "| Updated   | 2026-01-27 13:07                                                                  |
\n", + "
" + ], + "text/markdown": [ + "| Package | Version |\n", + "| ---------- | ------------------------------ |\n", + "| pandas | 3.0.0 |\n", + "| anndata | 0.12.6 |\n", + "| matplotlib | 3.10.8 |\n", + "| numpy | 2.1.3 |\n", + "| scanpy | 1.12 |\n", + "| myanalysis | 0.1.dev29+g32849c680.d20260127 |\n", + "| scvi-tools | 1.4.1 |\n", + "| torch | 2.10.0 |\n", + "| celltypist | 1.7.1 |\n", + "\n", + "| Dependency | Version |\n", + "| ------------------- | --------------------- |\n", + "| cloudpickle | 3.1.2 |\n", + "| charset-normalizer | 3.4.4 |\n", + "| psutil | 7.2.1 |\n", + "| docrep | 0.3.2 |\n", + "| texttable | 1.7.0 |\n", + "| xarray | 2025.12.0 |\n", + "| mpmath | 1.3.0 |\n", + "| six | 1.17.0 |\n", + "| matplotlib-inline | 0.2.1 |\n", + "| cycler | 0.12.1 |\n", + "| Jinja2 | 3.0.3 |\n", + "| pynndescent | 0.6.0 |\n", + "| PyYAML | 6.0.3 |\n", + "| statsmodels | 0.14.6 |\n", + "| ipython | 9.9.0 |\n", + "| mudata | 0.3.2 |\n", + "| comm | 0.2.3 |\n", + "| scikit-learn | 1.7.2 |\n", + "| jax | 0.8.2 |\n", + "| absl-py | 2.3.1 |\n", + "| toolz | 1.1.0 |\n", + "| certifi | 2026.1.4 (2026.01.04) |\n", + "| umap-learn | 0.5.11 |\n", + "| pyro-ppl | 1.9.1 |\n", + "| session-info2 | 0.3 |\n", + "| igraph | 1.0.0 |\n", + "| decorator | 5.2.1 |\n", + "| tornado | 6.5.4 |\n", + "| rich | 14.3.1 |\n", + "| kiwisolver | 1.4.9 |\n", + "| MarkupSafe | 3.0.3 |\n", + "| appnope | 0.1.4 |\n", + "| jupyter_client | 8.8.0 |\n", + "| fast-array-utils | 1.3.1 |\n", + "| parso | 0.8.5 |\n", + "| executing | 2.2.1 |\n", + "| python-dateutil | 2.9.0.post0 |\n", + "| numba | 0.63.1 |\n", + "| asttokens | 3.0.1 |\n", + "| pyzmq | 27.1.0 |\n", + "| threadpoolctl | 3.6.0 |\n", + "| requests | 2.32.5 |\n", + "| llvmlite | 0.46.0 |\n", + "| fsspec | 2026.1.0 |\n", + "| lightning-utilities | 0.15.2 |\n", + "| legacy-api-wrap | 1.5 |\n", + "| lightning | 2.6.0 |\n", + "| urllib3 | 2.6.3 |\n", + "| attrs | 25.4.0 |\n", + "| sympy | 1.14.0 |\n", + "| donfig | 0.8.1.post1 |\n", + "| scipy | 1.16.3 |\n", + "| zarr | 3.1.5 |\n", + "| debugpy | 1.8.19 |\n", + "| patsy | 1.0.2 |\n", + "| filelock | 3.20.3 |\n", + "| tqdm | 4.67.1 |\n", + "| torchmetrics | 1.8.2 |\n", + "| sparse | 0.17.0 |\n", + "| ml_collections | 1.1.0 |\n", + "| seaborn | 0.13.2 |\n", + "| defusedxml | 0.7.1 |\n", + "| pillow | 12.1.0 |\n", + "| numcodecs | 0.16.5 |\n", + "| pyarrow | 23.0.0 |\n", + "| natsort | 8.4.0 |\n", + "| jupyter_core | 5.9.1 |\n", + "| traitlets | 5.14.3 |\n", + "| platformdirs | 4.5.1 |\n", + "| typing_extensions | 4.15.0 |\n", + "| Pygments | 2.19.2 |\n", + "| google-crc32c | 1.8.0 |\n", + "| opt_einsum | 3.4.0 |\n", + "| ipywidgets | 8.1.8 |\n", + "| wcwidth | 0.5.0 |\n", + "| ipykernel | 7.1.0 |\n", + "| setuptools | 80.10.2 |\n", + "| h5py | 3.15.1 |\n", + "| pycparser | 3.0 (3.00) |\n", + "| jedi | 0.19.2 |\n", + "| idna | 3.11 |\n", + "| pure_eval | 0.2.3 |\n", + "| stack-data | 0.6.3 |\n", + "| dask | 2024.11.2 |\n", + "| packaging | 26.0 |\n", + "| prompt_toolkit | 3.0.52 |\n", + "| jaxlib | 0.8.2 |\n", + "| pyparsing | 3.3.2 |\n", + "| joblib | 1.5.3 |\n", + "| cffi | 2.0.0 |\n", + "| ml_dtypes | 0.5.4 |\n", + "\n", + "| Component | Info |\n", + "| --------- | --------------------------------------------------------------------------------- |\n", + "| Python | 3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ] |\n", + "| OS | macOS-26.2-arm64-arm-64bit |\n", + "| Updated | 2026-01-27 13:07 |" + ], + "text/plain": [ + "pandas\t3.0.0\n", + "anndata\t0.12.6\n", + "matplotlib\t3.10.8\n", + "numpy\t2.1.3\n", + "scanpy\t1.12\n", + "myanalysis\t0.1.dev29+g32849c680.d20260127\n", + "scvi-tools\t1.4.1\n", + "torch\t2.10.0\n", + "celltypist\t1.7.1\n", + "----\t----\n", + "Python\t3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ]\n", + "OS\tmacOS-26.2-arm64-arm-64bit\n", + "Updated\t2026-01-27 13:07" + ] + }, + "execution_count": 24, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "from session_info2 import session_info\n", + "\n", + "session_info()" + ] + }, + { + "cell_type": "markdown", + "id": "e45c1207", "metadata": {}, "source": [ "---\n", "\n", - "## Workflow Summary\n", + "## 🔄 Workflow Summary\n", "\n", - "| Step | Where | Why |\n", - "|------|-------|-----|\n", - "| QC & filtering | Local | Fast iteration, quick edits |\n", - "| Custom plotting | Local | Edit `src/myanalysis/plotting.py` |\n", - "| scVI training | GPU/Euler | 10-100x faster on GPU |\n", - "| Neighbors/UMAP | GPU/Euler | rapids-singlecell acceleration |\n", - "| Visualization | Local | Interactive exploration |\n", "\n", "**Git sync workflow:**\n", "```bash\n", @@ -433,10 +1169,18 @@ "name": "analysis-template" }, "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", "name": "python", - "version": "3.12" + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.12" } }, "nbformat": 4, - "nbformat_minor": 4 + "nbformat_minor": 5 } diff --git a/analysis/XX-2026-01-27_sample_notebook.ipynb b/analysis/XX-2026-01-27_sample_notebook.ipynb index 4125913..9d8acc5 100644 --- a/analysis/XX-2026-01-27_sample_notebook.ipynb +++ b/analysis/XX-2026-01-27_sample_notebook.ipynb @@ -175,7 +175,7 @@ ], "metadata": { "kernelspec": { - "display_name": "analysis_template", + "display_name": "Python 3 (ipykernel)", "language": "python", "name": "python3" }, @@ -189,7 +189,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.7" + "version": "3.12.12" }, "toc": { "base_numbering": 1, diff --git a/pixi.lock b/pixi.lock index 86d7705..7c95dd9 100644 --- a/pixi.lock +++ b/pixi.lock @@ -108,7 +108,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/86/f6/a62cbbf13f0ac80a70f71b1672feba90fdb21fd7abd8dbf25c0105fb6fa3/aiohttp-3.13.3-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.manylinux_2_28_x86_64.whl - pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/78/bc/dee9a01c1b9cd16d7e257644a2fc8ee6df6c685faaf68d289bdc4c91adec/anndata-0.12.7-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5e/09/f39f9443f901a8e9d960602e0f916005560839d3cfd96b89abd370ff7527/anndata-0.12.8-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/09/52/94108adfdd6e2ddf58be64f959a0b9c7d4ef2fa71086c38356d22dc501ea/argon2_cffi_bindings-25.1.0-cp39-abi3-manylinux_2_26_x86_64.manylinux_2_28_x86_64.whl @@ -123,6 +123,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e3/a6/24169d70ec5264b65ba54ba49b3d10f46d6b1ad97e185c94556539b3dfc8/cachetools-6.2.5-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/b3/c2/7f3664b5b9421ef2d23d1684f56dd7df52b30ed37d8c91b3e92b2ff93720/cellrank-1.5.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/6c/12f14d20ccd49bfe8709cebd1b77a244f019e44a8702d3962021b618812e/celltypist-1.7.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/78/2d/7fa73dfa841b5ac06c7b8855cfc18622132e365f5b81d02230333ff26e9e/cffi-2.0.0-cp312-cp312-manylinux2014_x86_64.manylinux_2_17_x86_64.whl - pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl @@ -156,6 +157,7 @@ environments: - pypi: https://pypi.nvidia.com/distributed-ucxx-cu12/distributed_ucxx_cu12-0.47.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl @@ -274,6 +276,7 @@ environments: - pypi: https://pypi.nvidia.com/nvtx/nvtx-0.2.14-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl - pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl @@ -494,6 +497,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/cd/3a/577b549de0cc09d95f11087ee63c739bba856cd3952697eec4c4bb91350a/bleach-6.3.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/3d/8d/6d7b016383b1f74dd93611b1c5078bbaddaca901553ab886dcda87cae365/botocore-1.42.30-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/04/6b/9378741ab32c2856132b9b6f3f6d5cd2b580996da52876b27928ddef8fd1/cellrank-2.0.7-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/92/6c/12f14d20ccd49bfe8709cebd1b77a244f019e44a8702d3962021b618812e/celltypist-1.7.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/df/a2/781b623f57358e360d62cdd7a8c681f074a71d445418a776eef0aadb4ab4/cffi-2.0.0-cp312-cp312-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/db/3c/33bac158f8ab7f89b2e59426d5fe2e4f63f7ed25df84c036890172b412b5/cfgv-3.5.0-py2.py3-none-any.whl @@ -514,6 +518,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/33/6b/e0547afaf41bf2c42e52430072fa5658766e3d65bd4b03a563d1b6336f57/distlib-0.4.0-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/44/8e/250fab1cafeea43f4eb11f1d64cd6313f639965ff62cb0d9da3883655781/docrep-0.3.2.tar.gz - pypi: https://files.pythonhosted.org/packages/0c/d5/c5db1ea3394c6e1732fb3286b3bd878b59507a8f77d32a2cebda7d7b7cd4/donfig-0.8.1.post1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/5f/cb/ddcf4ad63ba88df95025837e35faf6ea6862bab1327f836801ba02140a22/fast_array_utils-1.3.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/cb/a8/20d0723294217e47de6d9e2e40fd4a9d2f7c4b6ef974babd482a59743694/fastjsonschema-2.21.2-py3-none-any.whl @@ -531,6 +536,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/2a/39/e50c7c3a983047577ee07d2a9e53faf5a69493943ec3f6a384bdc792deb2/httpx-0.28.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/b8/58/40fbbcefeda82364720eba5cf2270f98496bdfa19ea75b4cccae79c698e6/identify-2.6.16-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/0e/61/66938bbb5fc52dbdf84594873d5b51fb1f7c7794e9c0f5bd885f30bc507b/idna-3.11-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/0d/bc/6281ec7f9baaf71ee57c3b1748da2d3148d15d253e1a03006f204aa68ca5/igraph-1.0.0-cp39-abi3-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/8f/27/0494b31c65a4dbb09206962f7a056ff9df5388ab13e1dddc27ecf47238df/imagecodecs-2025.11.11-cp311-abi3-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/fb/fe/301e0936b79bcab4cacc7548bf2853fc28dced0a578bab1f7ef53c9aa75b/imageio-2.37.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/8a/eb/427ed2b20a38a4ee29f24dbe4ae2dafab198674fe9a85e3d6adf9e5f5f41/inflect-7.5.0-py3-none-any.whl @@ -564,6 +570,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/82/3d/14ce75ef66813643812f3093ab17e46d3a206942ce7376d31ec2d36229e7/lark-1.3.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/83/60/d497a310bde3f01cb805196ac61b7ad6dc5dcf8dce66634dc34364b20b4f/lazy_loader-0.4-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/41/5b/058db09c45ba58a7321bdf2294cae651b37d6fec68117265af90cde043b0/legacy_api_wrap-1.5-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/98/f4/98db342d603671ae0a233f0a624939a47161044a2716cbd62a50440a1132/leidenalg-0.11.0-cp38-abi3-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/d6/e9/36b340c7ec01dad6f034481e98fc9fc0133307beb05c714c0542af98bbde/lightning-2.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/de/73/3d757cb3fc16f0f9794dd289bcd0c4a031d9cf54d8137d6b984b2d02edf3/lightning_utilities-0.15.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/2b/f8/4db016a5e547d4e054ff2f3b99203d63a497465f81ab78ec8eb2ff7b2304/llvmlite-0.46.0-cp312-cp312-macosx_11_0_arm64.whl @@ -598,6 +605,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/b0/e0/760e73c111193db5ca37712a148e4807d1b0c60302ab31e4ada6528ca34d/numpy_groupies-0.11.3-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/4f/21/59baa90924b815b70f88045f0b206b7eab0b68b461c0192692486b516ab7/ome_zarr-0.12.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d7/ba/704f9e56ae80ef66cf0534e23dac22ada34845f86b5e5b8b3294649d96b6/omnipath-1.0.12-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/a5/7b/9254310594e9774906bacdd4e732415e1f86ab7dbb4b377ef9ede58cd8ec/pandas-3.0.0-cp312-cp312-macosx_11_0_arm64.whl @@ -675,6 +683,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/9c/d9/a5db55f88f258ac669a92858b70a714bbbd5acd993820b41ec4a96a4d77f/tensorboard-2.20.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/7a/13/e503968fefabd4c6b2650af21e110aa8466fe21432cd7c43a84577a89438/tensorboard_data_server-0.7.2-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/6a/9e/2064975477fdc887e47ad42157e214526dcad8f317a948dee17e1659a62f/terminado-0.18.1-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/24/99/4772b8e00a136f3e01236de33b0efda31ee7077203ba5967fcc76da94d65/texttable-1.7.0-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/32/d5/f9a850d79b0851d1d4ef6456097579a9005b31fea68726a4ae5f2d82ddd9/threadpoolctl-3.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/a3/4d/3fd60d3a37b544cb59463add86e4dfbb485880225115341281906a7b140e/tifffile-2026.1.14-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/e6/34/ebdc18bae6aa14fbee1a08b63c015c72b64868ff7dae68808ab500c492e2/tinycss2-1.4.0-py3-none-any.whl @@ -908,10 +917,10 @@ packages: - scanpy>=1.10 ; extra == 'test-min' - scikit-learn ; extra == 'test-min' requires_python: '>=3.11' -- pypi: https://files.pythonhosted.org/packages/78/bc/dee9a01c1b9cd16d7e257644a2fc8ee6df6c685faaf68d289bdc4c91adec/anndata-0.12.7-py3-none-any.whl +- pypi: https://files.pythonhosted.org/packages/5e/09/f39f9443f901a8e9d960602e0f916005560839d3cfd96b89abd370ff7527/anndata-0.12.8-py3-none-any.whl name: anndata - version: 0.12.7 - sha256: bd7c18bdc2ed24b9089fd1494b52b787566dea175dde4689d4144693d0949581 + version: 0.12.8 + sha256: 95a1ee9644ca5ec6a36d980d209311609db2b83a1366ad3f4604e004cb79f2bc requires_dist: - array-api-compat>=1.7.1 - h5py>=3.8 @@ -953,11 +962,11 @@ packages: - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test' - dask[distributed] ; extra == 'test' - filelock ; extra == 'test' - - httpx<1.0 ; extra == 'test' - joblib ; extra == 'test' - loompy>=3.0.5 ; extra == 'test' - matplotlib ; extra == 'test' - openpyxl ; extra == 'test' + - pooch ; extra == 'test' - pyarrow ; extra == 'test' - pytest ; extra == 'test' - pytest-cov ; extra == 'test' @@ -974,11 +983,11 @@ packages: - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test-min' - dask[distributed] ; extra == 'test-min' - filelock ; extra == 'test-min' - - httpx<1.0 ; extra == 'test-min' - joblib ; extra == 'test-min' - loompy>=3.0.5 ; extra == 'test-min' - matplotlib ; extra == 'test-min' - openpyxl ; extra == 'test-min' + - pooch ; extra == 'test-min' - pyarrow ; extra == 'test-min' - pytest ; extra == 'test-min' - pytest-cov ; extra == 'test-min' @@ -1311,6 +1320,20 @@ packages: - sphinxcontrib-bibtex>=2.3.0 ; extra == 'docs' - sphinxcontrib-spelling>=7.6.2 ; extra == 'docs' requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/92/6c/12f14d20ccd49bfe8709cebd1b77a244f019e44a8702d3962021b618812e/celltypist-1.7.1-py3-none-any.whl + name: celltypist + version: 1.7.1 + sha256: 3953f96a4476ed1dd2807446d97d3945e8905bbdac6bfef0d20b84a9a00d1101 + requires_dist: + - numpy>=1.19.0 + - pandas>=1.0.5 + - scikit-learn>=0.24.1 + - openpyxl>=3.0.4 + - click>=7.1.2 + - requests>=2.23.0 + - scanpy>=1.7.0 + - leidenalg>=0.9.0 + requires_python: '>=3.6' - pypi: https://files.pythonhosted.org/packages/e6/ad/3cc14f097111b4de0040c83a525973216457bbeeb63739ef1ed275c1c021/certifi-2026.1.4-py3-none-any.whl name: certifi version: 2026.1.4 @@ -1950,6 +1973,11 @@ packages: - pytest ; extra == 'test' - cloudpickle ; extra == 'test' requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/c1/8b/5fe2cc11fee489817272089c4203e679c63b570a5aaeb18d852ae3cbba6a/et_xmlfile-2.0.0-py3-none-any.whl + name: et-xmlfile + version: 2.0.0 + sha256: 7a91720bc756843502c3b7504c77b8fe44217c85c537d85037f0f536151b2caa + requires_python: '>=3.8' - pypi: https://files.pythonhosted.org/packages/c1/ea/53f2148663b321f21b5a606bd5f191517cf40b7072c0497d3c92c4a13b1e/executing-2.2.1-py2.py3-none-any.whl name: executing version: 2.2.1 @@ -2527,6 +2555,39 @@ packages: - pytest>=8.3.2 ; extra == 'all' - flake8>=7.1.1 ; extra == 'all' requires_python: '>=3.8' +- pypi: https://files.pythonhosted.org/packages/0d/bc/6281ec7f9baaf71ee57c3b1748da2d3148d15d253e1a03006f204aa68ca5/igraph-1.0.0-cp39-abi3-macosx_11_0_arm64.whl + name: igraph + version: 1.0.0 + sha256: 1a27753cd80680a8f676c2d5a467aaa4a95e510b30748398ec4e4aeb982130e8 + requires_dist: + - texttable>=1.6.2 + - cairocffi>=1.2.0 ; extra == 'cairo' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'matplotlib' + - plotly>=5.3.0 ; extra == 'plotly' + - cairocffi>=1.2.0 ; extra == 'plotting' + - cairocffi>=1.2.0 ; extra == 'test' + - networkx>=2.5 ; extra == 'test' + - pytest>=7.0.1 ; extra == 'test' + - pytest-timeout>=2.1.0 ; extra == 'test' + - numpy>=1.19.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - pandas>=1.1.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - scipy>=1.5.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - matplotlib>=3.6.0 ; platform_python_implementation != 'PyPy' and extra == 'test' + - plotly>=5.3.0 ; extra == 'test' + - pillow>=9 ; platform_python_implementation != 'PyPy' and extra == 'test' + - cairocffi>=1.2.0 ; extra == 'test-win-arm64' + - networkx>=2.5 ; extra == 'test-win-arm64' + - pytest>=7.0.1 ; extra == 'test-win-arm64' + - pytest-timeout>=2.1.0 ; extra == 'test-win-arm64' + - cairocffi>=1.2.0 ; extra == 'test-musl' + - networkx>=2.5 ; extra == 'test-musl' + - pytest>=7.0.1 ; extra == 'test-musl' + - pytest-timeout>=2.1.0 ; extra == 'test-musl' + - sphinx>=7.0.0 ; extra == 'doc' + - sphinx-rtd-theme>=1.3.0 ; extra == 'doc' + - sphinx-gallery>=0.14.0 ; extra == 'doc' + - pydoctor>=23.4.0 ; extra == 'doc' + requires_python: '>=3.9' - pypi: https://files.pythonhosted.org/packages/7d/da/dd2867c25adbb41563720f14b5fc895c98bf88be682a3faff4f7b3118d2a/igraph-1.0.0-cp39-abi3-manylinux_2_28_x86_64.whl name: igraph version: 1.0.0 @@ -3333,6 +3394,13 @@ packages: - pytest ; extra == 'test' - typer<0.14 ; extra == 'test' requires_python: '>=3.9' +- pypi: https://files.pythonhosted.org/packages/98/f4/98db342d603671ae0a233f0a624939a47161044a2716cbd62a50440a1132/leidenalg-0.11.0-cp38-abi3-macosx_11_0_arm64.whl + name: leidenalg + version: 0.11.0 + sha256: 9b5781876b1f1faed72a4f9926ff52de286843556b9d6791fe25a2acb33b7a5c + requires_dist: + - igraph>=1.0.0,<2.0 + requires_python: '>=3.7' - pypi: https://files.pythonhosted.org/packages/b0/a4/a89e2ce16a580f7bea066ed49364f0b3e04a6412f0c3692975bee8515141/leidenalg-0.11.0-cp38-abi3-manylinux_2_27_x86_64.manylinux_2_28_x86_64.whl name: leidenalg version: 0.11.0 @@ -5734,6 +5802,13 @@ packages: purls: [] size: 3926022 timestamp: 1768621211266 +- pypi: https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl + name: openpyxl + version: 3.1.5 + sha256: 5282c12b107bffeef825f4617dc029afaf41d0ea60823bbb665ef3079dc79de2 + requires_dist: + - et-xmlfile + requires_python: '>=3.8' - conda: https://conda.anaconda.org/conda-forge/linux-64/openssl-3.6.0-h26f9b46_0.conda sha256: a47271202f4518a484956968335b2521409c8173e123ab381e775c358c67fe6d md5: 9ee58d5c534af06558933af3c845a780 diff --git a/pixi.toml b/pixi.toml index 696f9dd..51e9d77 100644 --- a/pixi.toml +++ b/pixi.toml @@ -47,7 +47,6 @@ squidpy = "*" scvi-tools = "*" cellrank = "*" torch = "*" -# decoupler = ">=1.8" # Uncomment when needed (may cause install issues on some platforms) # Notebook workflow jupyterlab = "*" @@ -61,7 +60,8 @@ seaborn = "*" pre-commit = "*" pytest = "*" session-info2 = "*" -pot = ">=0.9" # Local editable package for path helpers myanalysis = { path = ".", editable = true } +igraph = ">=1.0.0, <2" +celltypist = ">=1.7.1, <2" diff --git a/src/myanalysis/__init__.py b/src/myanalysis/__init__.py index 50c9808..9b44508 100644 --- a/src/myanalysis/__init__.py +++ b/src/myanalysis/__init__.py @@ -1,7 +1,7 @@ from importlib.metadata import version from ._constants import FilePaths -from .plotting import embedding_density, qc_violin, styled_umap +from .plotting import qc_violin -__all__ = ["FilePaths", "embedding_density", "qc_violin", "styled_umap"] +__all__ = ["FilePaths", "qc_violin"] __version__ = version("myanalysis") diff --git a/src/myanalysis/_constants.py b/src/myanalysis/_constants.py index c3b36d7..4eef26c 100644 --- a/src/myanalysis/_constants.py +++ b/src/myanalysis/_constants.py @@ -4,7 +4,7 @@ class FilePaths: """Project-wide paths for notebooks and scripts.""" - ROOT = Path(__file__).parents[3].resolve() + ROOT = Path(__file__).parents[2].resolve() DATA = ROOT / "data" FIGURES = ROOT / "figures" diff --git a/src/myanalysis/plotting.py b/src/myanalysis/plotting.py index 46ac6bf..690883d 100644 --- a/src/myanalysis/plotting.py +++ b/src/myanalysis/plotting.py @@ -4,10 +4,7 @@ with project-specific defaults and styling. """ -from collections.abc import Sequence - import matplotlib.pyplot as plt -import numpy as np import scanpy as sc from anndata import AnnData @@ -57,138 +54,3 @@ def qc_violin( fig.savefig(save, dpi=150, bbox_inches="tight") return fig - - -def styled_umap( - adata: AnnData, - color: str | Sequence[str], - *, - title: str | None = None, - palette: str | Sequence[str] | None = None, - figsize: tuple[float, float] = (6, 5), - save: str | None = None, - **kwargs, -) -> plt.Figure: - """Plot UMAP with clean styling suitable for presentations. - - Parameters - ---------- - adata - Annotated data matrix with UMAP coordinates in `.obsm['X_umap']`. - color - Key(s) in `adata.obs` or gene names to color by. - title - Plot title. If None, uses the color key. - palette - Color palette name or list of colors. - figsize - Figure size as (width, height). - save - Path to save figure. If None, figure is not saved. - **kwargs - Additional arguments passed to `sc.pl.umap`. - - Returns - ------- - matplotlib Figure object. - """ - if "X_umap" not in adata.obsm: - msg = "UMAP not found. Run sc.tl.umap first." - raise ValueError(msg) - - fig, ax = plt.subplots(figsize=figsize) - - sc.pl.umap( - adata, - color=color, - ax=ax, - show=False, - frameon=False, - palette=palette, - **kwargs, - ) - - if title is not None: - ax.set_title(title, fontsize=14, fontweight="bold") - - # Clean up axes - ax.set_xlabel("UMAP1", fontsize=10) - ax.set_ylabel("UMAP2", fontsize=10) - - plt.tight_layout() - - if save is not None: - fig.savefig(save, dpi=150, bbox_inches="tight") - - return fig - - -def embedding_density( - adata: AnnData, - basis: str = "umap", - *, - groupby: str | None = None, - figsize: tuple[float, float] = (6, 5), - save: str | None = None, -) -> plt.Figure: - """Plot cell density on embedding, optionally split by group. - - Useful for visualizing batch effects or condition-specific distributions. - - Parameters - ---------- - adata - Annotated data matrix with embedding coordinates. - basis - Embedding to use (e.g., 'umap', 'pca'). - groupby - Key in `adata.obs` to split density by. - figsize - Figure size as (width, height). - save - Path to save figure. If None, figure is not saved. - - Returns - ------- - matplotlib Figure object. - """ - key = f"X_{basis}" - if key not in adata.obsm: - msg = f"Embedding '{key}' not found in adata.obsm." - raise ValueError(msg) - - coords = adata.obsm[key][:, :2] - - if groupby is None: - fig, ax = plt.subplots(figsize=figsize) - ax.hexbin(coords[:, 0], coords[:, 1], gridsize=50, cmap="viridis", mincnt=1) - ax.set_xlabel(f"{basis.upper()}1") - ax.set_ylabel(f"{basis.upper()}2") - ax.set_title("Cell density") - ax.set_aspect("equal") - else: - groups = adata.obs[groupby].unique() - n_groups = len(groups) - ncols = min(3, n_groups) - nrows = int(np.ceil(n_groups / ncols)) - fig, axes = plt.subplots(nrows, ncols, figsize=(figsize[0] * ncols, figsize[1] * nrows)) - axes = np.atleast_2d(axes).flatten() - - for ax, group in zip(axes[:n_groups], groups, strict=False): - mask = adata.obs[groupby] == group - ax.hexbin(coords[mask, 0], coords[mask, 1], gridsize=50, cmap="viridis", mincnt=1) - ax.set_title(f"{groupby}: {group}") - ax.set_xlabel(f"{basis.upper()}1") - ax.set_ylabel(f"{basis.upper()}2") - ax.set_aspect("equal") - - # Hide unused axes - for ax in axes[n_groups:]: - ax.set_visible(False) - - plt.tight_layout() - - if save is not None: - fig.savefig(save, dpi=150, bbox_inches="tight") - - return fig From 32112e2f560e315c6872d90d685067bb28d0cc30 Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 14:32:10 +0100 Subject: [PATCH 11/12] Finalize the example notebook --- .../ML-2026-01-27_demo_scRNA_workflow.ipynb | 579 +++++++++--------- analysis/XX-2026-01-27_sample_notebook.ipynb | 2 +- pixi.lock | 301 +++------ pixi.toml | 4 +- 4 files changed, 375 insertions(+), 511 deletions(-) diff --git a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb index 83a8e75..9a7bcc5 100644 --- a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb +++ b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb @@ -50,7 +50,7 @@ }, { "cell_type": "code", - "execution_count": 2, + "execution_count": 23, "id": "f93b0838", "metadata": {}, "outputs": [ @@ -76,6 +76,7 @@ "sc.settings.verbosity = 2\n", "sc.settings.datasetdir = FilePaths.EXAMPLE_DATASET / \"raw\"\n", "sc.settings.set_figure_params(dpi=100, frameon=False)\n", + "sc.settings.figdir = FilePaths.FIGURES / \"example_dataset\"\n", "\n", "print(f\"Project root: {FilePaths.ROOT}\")\n", "print(f\"Data folder: {FilePaths.DATA}\")" @@ -158,7 +159,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAACTQAAAIrCAYAAADbKoQJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qm8TdX7+PGFa57neSYzJVMpCSlFIoUUoSJCIX1LlAZNlKKSEpEmoq8QlaEUocxTxjKP1zxf9/xfz/r+9/7tfe4Z9jn3nvF+3q/Xed2zz91nnX32Oa619nrW82RwuVwuBQAAAAAAAAAAAAAAAABRIGOkDwAAAAAAAAAAAAAAAAAADAQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAETA5cuXOe8AAAD0kUAfGwAAAFxfTbdcLpdKSkqK9GFEPeYTkF4R0AQgqmTIkMG85cyZU+3cuTOodh5++GGznVKlSqlQ2717txo7dqzq1KmTqlWrlipUqJDKmjWrypUrlypXrpyqX7++evzxx9W3336rTpw4EfLjQer9888/tu+jr1umTJn0Z12xYkV11113qVGjRqkDBw7E9MewatUqNWzYMNWyZUtVpkwZ/f6yZMmiihQpoq677jr16KOPqpkzZ6orV65E+lBjzrlz59TgwYPVW2+9FelDAQAAcSqQvmwgNxnbxFsfyf1cLVmyJGSvJWPBqVOnqq5du6prr71Wjxulj507d25VtmxZPZZ45ZVXgh4Hp3e//vqrPq8AAABwJpCxQObMmXW/Va4V33zzzeqZZ55RCxcujNipnjVrlmrevHnIX0fGKTKvI9fDZZ6ncOHCug8v81cy99SiRQs1dOhQtX79+pAfSzyS89a4cWO1b98+FW2s84zWfwfHjx8Pus0///wzRZv+5jCPHTumj+XLL78M+nWBWEZAE4Codf78edWjRw8dnR2tFi9erAM+KlSooPr376++/vprtXHjRt2hkWhp6ez++++/upMyfvx41aFDB1WiRAnVq1cvdfDgwUgfPtJIcnKy/qx37dql5s2bp55++ml1zTXXqNGjR6urV6/G1Hn+5ptv9CRAgwYN9GTKTz/9pPbu3avfnwQvHT16VK1du1Z98skn6t5779Wd7Y8//lifA/g3e/ZsVa1aNf3dIBgMAAAgffSRZLFDnz59VMmSJXUwkwQ1rVu3To8b5f2ePXtW7dmzR48lZFFB5cqVVbt27fTCGfiXmJiorx3ccsstasuWLZwyAACAEJAMOtJvlWvFv/32m3rzzTd1MM/111+vVq5cGbZzLq9/9913q/bt2+v7oXLq1Cn17LPP6uvfMq8j18NlnkeCS6QPL/NX+/fv10FdI0eOVHXq1FFNmzbV/Xz4d+HCBTVkyBD9/Vm+fHlM/Tv47rvvgn7+V199FdD+EydOVFWqVFGfffZZVM+VAqGUENLWASANVliOGzdO9evXL6rO5ZkzZ3TGpWnTpnn8vUToy2pb6dzIRWprUMvFixfVhAkTdOCIPP/OO+8M45EjWPnz51cFChRI8bgE8ly6dEmdPHlSD2LcV5hLkNP7778f9Sf+8OHD6qGHHtIBTJ6+z/LejdUH1vd55MgR9dhjj+lVKvKdzpMnT5iPPLZI4GMoB9oAAABC+m2SPdQfWXxhpPbPli2bDrjxJVTZb+O5jzRp0iT15JNPqtOnT6f4Xb58+VTevHl1/1omRowL1PJTLpL/+OOP6vPPP9fBTfAdECfnGQAAAMGT7EuSnd8buQ4ucxvGYm7D6tWr1a233qozJsni71CTAI/vv/8+pK8hCw169uypDh06lOJ3cv1b+vEyJyB9eOvczy+//KIDdN577z29oAHerVixImYrGEyfPl1/PwIl4zyZQwnEI488EvDrAPGGDE0Aop5EwUtQSLSQTqykVLUGM0laSFkRIBebJTBEOrMSnS/3pXO/Zs0a9eqrr9omCCQA5p577lGLFi2K0DtBoJMsO3bsSHGT76Z81hLAJFm3PvroI1WsWDHzeR988IGaPHlyVJ/s7du3q0aNGtmCmWTwKqvDJRuT8d5k1bgE823YsEH95z//0Wl1DQsWLNApfmVlBQAAACJLxh2e+q7uN+v4pGHDhn73D2U5tngkpSckc5A1mKlVq1ZqxowZOvOplKCTkneySECyDMmF8RtvvNHcVwKdZDV4oBe9AQAAgEDJ/IavsYBcB5fMo3L9d+nSpTqIydpvlcWyqSnFFS2k0kabNm1swUzSR5cMOVIWTTI3ycIQ+b3cl+An66J1CXDq27evGjVqVITeAUJNsnLJ+C1Qy5Yti9uFPEAoEdAEIOpJMIVEO0dDOkVZgSDpTK1pQyXiXlYhSIaaLl26pFjFkDFjRl3C67nnntMdfylHZpDUpHKBW1K1IvZJIJNkK5JShNZMRfLZGyvfo410vGXAJRMphm7duqlt27apl156SafKTUhIsH2fa9asqV577TW1adMmVb16dfN3knK3d+/eYX8PAAAAQLSRVdlSesIg40TJuCQTHlK6WTL6WskqbwlekvIdb7zxhl40Y6yEf/jhh3XfGwAAAIg0uT5800036b6tLNg2SJC+lKGLZZIlVTIrSR9cyIJeWcT++++/69LR7hlt5feyYGHu3Ll6P6l0YHjmmWfUzz//HPb3gNAoWLCgucA72LJz1nJzkiEZgDMENAGICbISWDLdRJoEpqxatcrclkAQKYsnAUtOSCdFOvXSjkGi+eWCNeJH1apVbYE9kt1I0s1GI1ktIoF2BqlbLRmlpPSFP2XLltWDsqJFi5qPTZkyRU/CAAAAAOnVxo0bdflpg/SXly9frm677Ta/z5VAJumTS7ZUg6yCl7J1AAAAQLSQRbAffvihypo1q/mYVLWIhoXpwZBqG927dzePX4JXZOGyLGJ3QvaT7E4GCYrq169f1C50RmBkbq9169bmdqBZdOX7IJl6jRLxTsaGAP6HgCYAUUsyIVkj2qXElTWLTLht2bJFjR071tyuXLmyjqjOkSNHwG29+OKLqlq1aua2BJAYUf+ID9Y0s2L9+vUq2khqYOuqACkZ9/rrrwfURvHixdU777xje+yVV15Js2MEAAAAYs2AAQN0Nl4jQOnrr79WFSpUCKiN4cOH28aMspDgjz/+SPNjBQAAAFJTseD22283t/fv36/L0sUiWYR+8uRJc1sW2NevXz+gNiQgqmXLlub21q1bzSAWxL6OHTsGXXZOkjYYZQzlO1KgQIGQHCMQjwhoAhC1atWqpZ5//nlzW8qyRbL03FtvvWWLph83bpzKnTt3UG1JBLZc5LZGd+/cudPv8+QcfPTRR7qGc/ny5XUwlZQ2k+AqqVEtnWMngVFNmzbVF9blNn/+fP3Y5cuXdVpUiTKXtuWYpAxCvXr19MX0PXv2BPQejfbuv/9+VbFiRX2uZFWDXMiXUgoSxHXp0iXH7cmq5KlTp6r77rvPfO9yK1OmjH4/EkSzfft2FS2sWYuE++ciZQqNz0Bur776quO2X375ZfN5JUqU0HW5g/1OW40ZM8YsbRGITp066e+g9b1J/XB/32UZFLZt21ZnepLPUr4j8l2R74zT74eU3zDOhXwPnHDyHOtnI6UmxdGjR9Xo0aN1SmU577L6SH5KIJgEO0p5TE/kvRhtSUY2w4gRI2yv44mcR1npJAGepUuX1v8u5TzJv4E77rhDH0+sXiQAAACxTfr7kp1TLupKHz9Xrly6T1euXDk9XpG+3unTp70+PzV9JCF9RQkU6tWrl86Ya/TP5DhkjHDLLbeoF154IexjBOkLL1q0yNyW8nJyLIHKlCmTGjp0qK20h5OSFStXrtRjzbp16+rxnCwSkommBg0a6EmaDRs2+G1DFhJZPwO5+J4Wz5GFPcbvZcGSdTJA+uhVqlTRfV0Z40owl5T7WLFihdfXlO+atCUTR1bW45DX9ESCw/r376+uu+46lT9/fn2eZAxXu3Zt/bpSGjBWswsAAACEU6VKlWzbEtTkiwR1SMWKW2+9VZdllrkSqRZQo0YN9eijj+pFuJ4Y/TsZLxhkHGHt+8kYIxhyTDKXYZA5ESkxFwyZS7Gyjg28kcAn6R83atRInxPpmxYuXFiPc5566im1bNkyR68dzLnw9xzruE3mAazjjieeeEJ/blI+W+Z+5Lsg/fqffvrJ79yUfP5Wcr3beB1pw1smXDlPN9xwgy4BJ98dGfNUr15djwmmT58e0oxYUl7QmBMMtOycdWG59Tx6Yh03Wcl7NB6XsRCQbrgAIIrInyXjNnToUNeVK1dc1113ne3xDz74wG873bp1M/cvWbJkqo/r5MmTrmzZspltNmjQINVtnj592jV58mTX3r17He0/ZcoUV9GiRW3nwtOtZs2arj/++MNnW7fccou5/w8//OBav369q1atWj7bzZ49u+u9995zdKzz5s1zVahQwe+xli1b1jV37ly/7S1ZssRVunRpv+1lypTJ9dhjj7kuXrzoSq3du3fb2n7hhRcCer4cs/X5M2fOTLFP9erVbZ+bU9WqVTOfN3jwYFcwjhw54sqYMaPZzk033eRKDXl/H374oWvjxo2u5ORkn/tOmDDBlT9/fr+fZ5kyZVyzZs1y/G9dvtdOOHmO9TguXLjgmjFjhqtgwYI+j1f+1sjn7m7SpEl+36unLtk333zj9zXlJn+b5O+lv/MOAADgTvrjgfalxHfffecqUaKE335KoUKFXB999JHHNoLtIxnPlb6Xk+fLGKF///6upKQkR/3+xYsXp+qL0q9fP1t7P//8c9BtST9U+nkyZpIxqS8yrrz99tv9no8MGTK4HnzwQdeJEye8thXMOXHyHBlTGb9/5plnXMePH3e1b9/e7zE//PDDrsuXL/v8/nq7uY/j5H3ffffdjr47ci1i7dq1ft87AABArLL2feSaaTAGDhxoa2fNmjUe97t06ZLr+eeft82zeLtJf+3YsWNej9XbTcYJwRg9erStnU8++cSVGi+++KK+Xi7X4H1JTEx0PfDAA7qP7u+93XnnnX7nkoI5F/6eYx23dezY0XX+/HlX7969/R5vq1at9ByYr7kpbzf376LM9/Ts2dPReapUqZJr0aJFrrTgaZ6xS5cu5mN33HGHo3ZkntO4zi/zbHJefM1hWsdN3m4yFgLSCzI0AYj6OswSAS6R1oYhQ4aEvfTcggULzCwt4sEHH0x1mxLJ3a1bN1WqVCm/+8pKWlkRIHWcreemZMmSOlLfGqktUeoS5T5z5kxHx7Ft2zYdDW+s1JW2ZGWqRLa7Z0iSFaySJckXySYjWZ527dplW00sq4KlPJmsNLauoJDV25Ltypvly5frFJx79+41H5M2ZAW23KRtg2QqmjBhgmrXrp2KtO+//968L6vEmzVrlmIfyapl/dw2b97st901a9bo8oeGYFeKyHfamjUqtTWb5Zz37t1br8jwtZL+kUceUY899pg6ceJEiu+H+3dZsoK1b99evfbaayqSZGWHZAY7fvy43pa/R/LvVj5X99VH8t23fj5CVphL5im5yb9bg6wENx6Xm9W3336rsx0Yr2l9Xfn3aT1P8rdJMnzJSnIAAIBQk2yh99xzjy1LpPRNZPwgfTpr//zYsWM6g9Ljjz+eIttNMH0kIVmXZGWqdeW3vKaMNSTzp3sWXRkjvPfee3plczhIZh9D9uzZdXbPYEl2TslEK+WsZdW6N+vWrVN16tTRfXwrWSUtWT7lOAzyOcjqc1n9HcmS7ufPn9crnK3jVim74D7GE3JNQMYa7mRVsnxHZBW7lfX7Yy3lIFnFZNwze/Zs2/6yj3x3rOfJGHvJWFlWzAMAAMAz6zVtGRdI/9OdzC1In1b6ttZ5FhkHSP9Psu1YSX9N5jisJeCM/p2MF6zPt/b9ZIyR2j58WlwrlzGLXC+X693e7Nu3T2cL/eKLL2xjJRkDyDmUvrz7MUrWVemjRorMJ0h2ofHjx5uPyTmXa9bWMZ344YcfPM7TyJyWfFbyuVtJf9z4HN2rX0hFh4kTJ9rOk4yP5Dnu1+h37Nihxxm//vqrCgU5FmumWes8hzeSscq4zn/XXXf5rfwi4xNP42EZ9xiPk6EJ6UqkI6oAwMoaYSwrUa0R7dbfNW/e3Gc2krTO0PToo4/aXn/Lli1h++DGjx9ve+2qVau6vv76a9fZs2fNfSTS/5133rFlvZFI73Xr1nls0xoFnyVLFv0zT548rlGjRtlWDfz777+uRx55xPb6xYoV85oBSbI9WaPk5dx//PHHttW/p06dcn366aeuUqVKmftJpqD58+d7bLNGjRq29mRlg/X1ZaWurBCX82I9TsmoE6kMTb///rsrR44c5nOHDBnicb89e/bYzpesUPFHMjIZ+9epU8eVVivHf/31V1eoDRs2zPaasiph7NixemW24eDBg65XXnnFdv7kNm3atIhlaDL+jVSuXFn/25NVKIaVK1fq7FbW/du1a+f1ta2ryL19p2QlvmQzMPaTTF6ysl9Wclj3+eyzz2yZCeS7tGrVKkfnAAAAwL1v4qQvNXHiRFu/R/psL7/8suvAgQO2Vcbjxo1LkWny1VdfTVUfSUif1dqmZC7973//q/tGVlu3btVZmawZSeW+9PFDmaFJ+rXWtpo1a+YKNVml7Z4tq3Xr1q4VK1aYY2bJTiWrlBs3bmzbT8YT1r5tODM0GX1s6cM+/vjjrr///tvcT1Ysy9jU2MfYz9tqf/dsX9689dZbKa45WL+7xndHMli5n08AAIB4lNoMTXJ9O2vWrH6vV3fv3t32WhUrVnR99dVXrnPnzpn7SBUJyepj3e+hhx7y2adMqyw1MjditCmVJ0JN+rvWeQ+5SV994cKFtsyy0qdv06aNbT+5Huwt81OoMzRZ++eSrcnaP5c5G5n3yZs3r61NGa95IuMF636exmpi+vTptv1krm7nzp0pvodPPvmkbb/atWunuqKBp3lGeZ/W9yhjZH+6du1q7v/tt996bTutPlMg3hDQBCCquF9ctAatSGfY+nspbxWugKZGjRqZ7eXMmdMVLtIRs6ZglRIC1k6+u+3bt9tKs9WrV8/jfu5pPWWyQS7cetO3b1/b/hK45E4CrIoUKWLuc+2116ZIC2t1+PBh22cqn5OknbVavXq17XW9XcAW+/fvt5Xkk45+uAKaJNDk6NGjruXLl7sGDBigg8mM5916660eyyMY5PfGvhIw44t0wK2BYJIKN1i33Xab7f35K2GRWjJBIeU+jNcrX768a9euXV73//PPP10FChQw98+VK5c+x5EIaJKb/A04c+aMx33le1u3bl3bwE4C94KdrJOgPWMf+S65T7JYbdiwwfZ9k0A1AACAUAQ0SaCS9cKt9NX++usvr/tLX0/6fMb+0heU8sT+jsNXv9s6jpEgHl/jDfHGG2/Y+nRjxowJaUCTLGywtiUX1UPNPfhGFgN5c/XqVVePHj1s+0vpt0gENBlBSlJm2Rv3yQtPxxpIQJNMahj7yLjNF5k8sx6nv+8aAABALEpNQJPMBzRp0sTWxgcffJBivz/++MO2T4MGDbyWP5b+atu2bW39MGvgeygCmmRewXp899xzjyvUZGGz9TWljy7v3Rv3frQEE3kS6oAm4yYLBbyRICzrwhJvx+o0oMlaLlq+G4EsqPY1XnXC2zyjNUDJX9k5awCUBM4Zi3EIaAKco+QcgJggpZY8lZ6TkmXhYC2fFs5Uju+++66ZglVKOHz99dcqR44cXvevVKmSmjRpkrn9559/qsWLF/t9nTfffFNVqVLFZ4pUa4mrP/74I8U+8rpHjhzR97NkyaJLZrmninVPjynvxyhBJyUjpk2bZttn+/bttjSb1157rdf2JEWplHCT8gSSatQ9xWlqjRgxQp8DTzf5Xkr62BtuuEF/ZpJCV46jX79+uvSc9Xvrq+ycvN+//vrL676SJlVS0Qo5bw888EDQ78f4rIzPy1cJi7Qg6YSl3Idx7PLZly9f3uv+119/vfr444/N7bNnz+pzGwnyGUupRff0tdbzJ2UhraUsVq9eHfTrWb/31apV0+VTvKlZs6ZOU2ukV7aWEQQAAEhL77zzjjp16pS5LX21unXret1f+npfffWV2d+XvuDrr78e9OsfPXpULV261NyW/pev8YaQUnfWktc7d+5UoWTtYwtfJSbSgpRTkBIVBinnLWM3b2SMIuUhrJ/bBx984KhMQihIKXcp7exNhw4ddH/X1zg02H528+bNfe77zDPPmONQGZvs3r07Va8NAAAQL/bs2aP7lFLy2FrWq1atWqpnz54p9rde05W5DbkunC9fPq/91Q8//FBfbxUSbyNjinjqw8uYynpOpG8u59O97LLViy++qPv6hunTp6tt27apSLj55pvV4MGDvf5eyuJJecFI9OEHDhyo52KkDJ7MJR08eFCFQseOHR2XnZPSe8Y4um3btrqkIIDAENAEIGZIB+TZZ581t8+cOaMeffTRsLy29cK908AP6cRIgJHTW5cuXVK0MWXKFNvFXievLZ26a665xtyeOXOmz/2zZs2qOnfu7HMf6cRbA7mOHTuWYp/PPvvMvC8d1goVKvg9VgmisnZC3Y/VWvM6MTFRdw59eemll3Qw0T///OP3fYeaDMrk+M+dO+dzv3vvvVdlz57d3JYBnTfWyQqp412sWLGgj896XP4mglJLgmwksMsgATj169f3+7z27dvbgti+/PJLFQk33XST/jfqi/v78fRvxCnr937Tpk22OvSeSLCnBD7KhNa4ceOCfl0AAABfvvvuO/N+7dq1dV/NH7mYbb3wLoseJPg7GNJnnjdvnnr//ff1hWrrRWRvcufObZuQkCD5UHLv+8uilFCaPXu2LaBdFmH4Ixf4hw8fbhtXz507V0XCww8/7Hcfaz87NX1s9362TAL5UqNGDXXy5El1/PhxtWrVKlWvXr1UvTYAAEC0k+vpvuYvSpcurRd8ymJiWThgXSwgCzLl+UYgkuHKlSu6z2qQYHZ/C8alLZkLadGiherbt6/PRc6x2IeXOQ7pgxuef/55nwuiDS+//LJ5X8YA33zzjUpvffhZs2appKQkn3MyshBG5vPWrFmj5yFCQeZm8ufPb37HrWNld9aAPH/zcAA8I6AJQEyRzp1cPDf89NNPasKECSF/XSOzTKDPkU6905tkKLLaunWr7nwZrrvuOsev3bhxY/O+dRWzJ7JywhpQ403RokXN+0bWKOvEgHQQU3usv//+u151Ye34WiPWZTJEMnPJa1n3M8j7cB80pRXpoEoGHE83GcTJQMeaxUoCsF599VU92PO1ikQ65Hfffbe5LQMRT+9NOsYzZswwt7t27Zqq92NdqR5qkq1IJgOsK62duv/++837nv6dhEPDhg0D+vfh6d9IoAFUhkuXLultyXAlfxM8yZkzZ1g/TwAAkP7IuGTjxo2p7s/J4gMJDgmGTJ7cfvvtqk+fPmr06NGOJhqkD2rto/u6+J0Wwt0nW7RokXlfFpQ4HYe1bt3alvn3l19+UeEmn4uTRQ6+xqHBrCY3SAbWli1b6gk2b4tQQp3FFgAAIJpIkI2v+QupHODeb5KsQpJ1Rq7Xe1oQKo9bnyP9UCcmTpyo535k8ab12nm89eFlsbnTcyIZsawL2SPRhw/mWnla9uGlGsmNN96o51u8ZUUKRx9eAtDatWvnd7HE+fPn1Zw5c8xF5RIIBSBwBDQBiMnSc9ZyYk8//bTau3dvSF9XVvaGa1WvwRogZKS8d5rtyRoRbi2X50nJkiUdHY90rr0FeG3YsMH22NixYx0fqzWjjHRCrR1R6eTJhIV1AuStt97SaViNlRpyIfrw4cMq1Pr3768z4Hi6SUYomeSRDuqyZct0ti1j4kQGglIazteKCWvZOSmjuHz58hT7zJ8/XwdJGd/He+65J81WNoT6O+2e/lZKNjjlvu/ff/+tws3JvxHrv49ggyANUlbDmvFA/k0MGzZMl5+TFUySmU6C26xBYgAAAKEkaf6tQffR1p+TFcrSj16yZIn66KOPdOlnudAu2ZmsZQZCXZ7X2scOdz87kM9EJm1kQiSSfWw5V9ZxdjDj0ED95z//sS2AkUkymYCTsnLNmjXTJRHdx+EAAAD4H1l4XKRIEX2NUjItvfHGG/rauMxFuC/29NbPtPZBo0Uk+/CyeN9JdiZPff5I9OGDuVae2j68zMtYSxTKAhnJdCRjPQlukpLbMieT2tcJlDVj8M8//+wxwEqqVhgBfbIoyDqvCcA5/uUAiDmy6lQuRErGEnH69Gn1yCOPqAULFoTsNUuVKmV2SJwGT8mKYU+ZdqwkOEEuvHsiqe2tDh06pIIhATWyEtlbZ8nJRWR37u/L/VgljWiwqUQlaEcuKBtkYHTgwIEUWY4kiGnatGn6ZqzulU6hBBOVKFFCRWpQd8MNN+ibrKyQQCY5V3Lr1auXvkjuaSW5rDSXDriRkUveq3TGrazl1uR9Osmq5YtklTJWx8t3RNKwhmr1gvv3I5BSee6DYfe2wiEt/o0ESgI35W+OrDqxkr8Xn3zyib7Jv2nJ3iQXEDp16mT7dwMAABDP/TlZSCAlLaRU2tq1a/WKccloGmnSx7YK9cIb67kMtBy19XNJL31smQCSsu49e/a0ZQqQMojS75ablLmX8aQEOsnY0ppRGAAAIJ5169ZNX5NMS+4LkUNdzi0Y9OFD349PDSl1KKXm5Bq4dc5JAphkYbjcXnrpJb04XuZkJNhJMiFJ9rBQMuZ65JiMsnPdu3e37WOd05Lr9wCCQ4YmADFJspVIqTTDjz/+qD7++OOQvZ5kTDFIkIEE2ISaBJikFW8p9NMqpWooj1WCNiSYR6LZmzdv7rEjKhe2V65cqcvRlS9fXmezkovSkSQdVGs9acmm8+mnn3rcV96jtX6ypCi1rh6Xc2KtNW7N6BSs6tWr27Y3b96sQkWCDt1LpDnlvq9MXoVbJMq5ycBQ6qnLhIu3NL4SqChZCKSWvAy8JXtZaid5AAAAor0/98UXX+jyatInlgvEUpbXUzCTBKVIZstwBn1LBlrrCutQ9rHdP5dAPhP3/dNLH9tYSb1p0ybVu3dvXVbcExnvf/jhh3rxwC233OK19DMAAAB8cy83Zi17HC2kX1ymTJmY68NLNYtIXAuORD++adOmasuWLbpai7eFHLJI47PPPlN33HGHTorwxx9/hPSYZE7HWmXBveycfM4//PCDOTZt0qRJSI8HiGcENAGISZImftKkSbasQ4MHDw7ZClj3zoYEGoSaewYe6bAZ2X4CvYW6brD7sUpHLdhj9ZZ2VqLrJXWnlIyQz14ChiTFrTsJZHrzzTf1atpIe+yxx2zbcvzeWIOUJBuXBKoY/vvf/5qBXjK4kg58allrTwtJy5oae/bs0Vmlnn/+eV0H3DpYzZUrl+MAO3eSPcoqtZmpRLjTzwZLMo/J90IGX5KZ6YMPPtArxa0pdq2pkCWgTwZ1AAAAaS1a+nPvvPOO7udbV3rLBfUaNWroFbvDhw/XpZ4lY9P+/fvVhAkTwrqCWEorNGjQwNyWRRep7XvKYg15zxMnTlS7d+/2+rkE8pm4fy7pqY8tZDGABCzJ90jKzg0cOFCX+zDKhlv9+uuvOqhJvlMAAAAIjHvAjgThRCPrtXIptx1s9QnDmDFj1L333qvef/99Pa8Tij68VIvw1H+N1z68ZEOSeR8Z5/3222/queee02MvTwFW69evVy1atFArVqwI6THdf//9XsvOScamS5cumfuFOmMUEM/41wMgZkm6eJnAt0Y8ywrcULj77rttHY6pU6eqUJMUmVaRKAMQjccqQUyS+UiyNkngj5SYeP3111XdunVt+82YMcOMgI+UqlWr2rZ9BdzVq1fPtr8cv6fo/gcffDDVAxUhpROskzvSwU6NefPm6fSur776qs6kNWLECPN37qviJSjNKfd9pTSfN9asVr6Eug56KEgg2+OPP64/JxlQS5CT1Ae/5pprbPu9/fbbIV9FBAAA0p9w9ed8kaw6EtxjHYNIGV65aLxx40YdyCR9UAlskgxOkZo0kRXB1iyt1oUKgZL+rYw9JSuVlFmX8YJ1Rbf1cwnkM3Hf399n4qSfHYt9bMmmJRMdo0ePVuvWrdPjSylpLt8hCU4zHDlyRE+YAAAAIDDuGTFTGygUjj68LLqWBcapIZlkpUT2E088oSsl/P333+bv6MOnjszTydyGzENIwJLMRcm5lpKJ7sFiAwYMUKEkC8+NRfeSNdj6vfn666/N+5SbA1KHgCYAMU0m9GU1rmHBggV65Wpak5SQEtRkjbZetWqVCqUqVarYtlevXu34uYmJiWb0dzik5ljlIn+wJQ4ksEcyOsnExl9//aXGjRtn+701KCgS3FcHyKoJXyRYyTBnzhz9Uz5HWTWcluXmjFXYHTp0MLdlVYOsXAjW+PHjva5OcC9vJ5+VU3/++WeKMh7ezrF7CmNv9u3bp2KZvGcpQ/fiiy/q8hfWwE4ZcH/77bcRPT4AABB/qlWrFrL+nFOSUcdaWk5KUvfs2dNnBibpS1snTcJRkkH669YFCLIqO1hSdtoaeCQTLXny5PHYzw7kM5Gstta+v68+ttN+dqz3sYVMRjzwwAM6OG7Dhg36OoBh1qxZjhdQAAAAwPOCX+ljOSF9L1k0KwvYX3vttZD3w9q1a2cLhpFM+cGSBdjWzECSCdQ6f2Ltw8v5kL55MGMrT+Mq66L89NKHl+ok8vlNnjxZZ1W1zhfK5xCqqi7GuMk6x2LMR8n8nDGnI4tt5Fo+gOAR0AQg5kvPSUfFesF10KBBIemIDR061OwQyoVw6UwHG4hj8NURlwxU1prS0ol3Qo5NSn9JwIpcgLUGloSK1C22dqAlEt3pIEOOT1LPysVjSeVvTXMq57xVq1aqXLly6qWXXvLbVt++fVXFihXN7VB2Vp2wrrwQpUuX9rm/NfuSHLsMfmRFt5F6tn79+ikGgakhKxSsky1StjGYSR654C8rmg3SQZc61YZrr73WNiB0ryfti3VfOX/u59D6b0QGCv7Iv1lZwR8p/rJryQC2X79+eqV4yZIldd1vf+29/PLLtjIhkf7eAwCA+CPp/a1BTcH252T8JplJ3TnJQCrl2ww1a9ZUN9xwg9/nSFll67gkHAEpUs7snnvuMbclw+bSpUsDbkeCt2QBj5Vk7PRWGkPK0TkNapJgMOsCGBk/eutjO+1nh7qcgy9Ovj9z587VK6NlbOK+4MKTypUr2863fB6SwQkAAADOSVUF6yLf+fPnO3qeVF5YtGiRzsgq8z/WQJ20qF7gTuYnrNU/ZMG2ZO4MhntmT199eOmTS9/cCenrW0tQu/fhg7lWHu19eKkIIQtGZF5ExqT+gr9kjuk///mP7bFQXyu3zr9JEJNk1JW5PGMxTseOHUP6+kB6QEATgJgnF8Sffvppc/vUqVNq4cKFIXkdCZgxSACHpKIPJqhJOqp9+vTx2ZmS9Pft27c3txcvXqxv/khHWwJpJDBFVvOWKlVKhYM1baZEwvsLxBByYd+IVD969KguG2ENTpMOqwxy/v33Xx3d7iTYRiZJrIFWkTRlyhTb9u233+538sM6oJHBjFx4T+vsTAbJbuXe4XafNPFHaopb/10ISffqa6WClKezTkh5I5mGrMFH1n8PhuLFi5v3//nnH7+lNj7++GPHmZxCwTr49vR9lu+vfObyN+zAgQOOsozJ+U1ISIia7z0AAIhP1gux0kdzkhVS+nzWMtCyWMEaiO20jySspdbcMwh5Igsl3CcTrBmeQkkWYxj9M3k/Xbp00WOaQMgY15pF6aabbrKVwhDSx7aeO8ng6Y+cA2t/XfqfrVu3TlEaxFpyTQLDfJEFGJMmTVKRYj0H3r5DUopCyj7IOH7Lli2Ogr+sY0v5zskkCgAAAJyT/lSbNm1spdgOHz7st6KD9Zqoex/YydghGBIIY82GKte816xZE1AbY8aMsY1/ypcvr7PKWrlnXZW+uZNxintf/9577/V5rdxfH14We6QmE1U4+vByXj7//HOdmUr6806Cv6x9+HBcK5f5HOO8S8CVXNu3LupJbbm5UH3fgVhCQBOAuCCdOSerLFPrrbfesgWcSGCGrAyWwBunJHuRBJJIyQR/EelyEdv6uKS/37x5s9e2N23apLO7WDtvoa4TbJDXtU5O9O/fX/36669e95dgja5du9oes5bOEtZgG0m/+u677/o8BhksyMVpg9RSjhRZQWL9jGV1hJNsWdagJWtAkwS4de7cOc2Pc+zYsbZOvWT7eeyxx9TZs2f9PlcGRbfeequtjIesZJF0wO4kc5rR+ZbBknTkJQDJGxksynEYZCWPfKfcWVfmy6SVHL+vFSfDhw9XkWRdJWOdlLOyfk+k9KC/7GwTJkxQZ86ciYrvPQAAiF+yIMPal5G+mq8L/NLXkz6fkYFVxjXWhSiB9pHKlClj3pdAH8lm6o0EsEu/9I8//kjxeDhIBilrv1MWskgfTcYI/ly4cEGfa+vYR7Kdyup0d1K+wDqRIX3HESNGeG1b+uGyQtz6uT388MOqaNGitv2k324tiyCTCLJoxROZZOjVq1dEy1W4Z5Ty9B2SoC3rePWJJ57Q59ob6V/LYgiDrAp3nxwBAACAfwMHDrT106RKgbd+mARsSD/txIkTZr+0d+/eAY8dgiHZfcaNG2dbON+sWTMdFO+PjHleeeUV9dRTT9kC4iW7lFzXt5JgJuk/G6RvLn10X9lkZcGE9PUNLVu21JlHfV0rX7BgQYrxkPU8y+KPQMpWR6IPL1mopIqB4ZlnntGBTd7I2OS9994zt+W5Uv0jlOQ7al3MLQs9jHGfzFlKycHUCNX3HYgpLgCIIvJnybgNHTo0oOeuWLHClSlTJlsbcitZsmSaHuOJEydct956a4rXueWWW1wff/yxa9euXa7k5GRz/6tXr7o2bdrkGj16tKtGjRopnie3G2+8Ue/jyfPPP2/bN0+ePK433njDdfjwYXOfU6dOucaOHevKly+fbd+XX37ZY5tyrMY+3bp1c/S+nTznk08+sb1+1qxZXf/5z39c//zzj7nP+fPnXVOnTnWVKFHCtm/Pnj1TtHfu3DlX6dKlzX0yZMjgevzxx11btmyx7Xf06FF9fnPkyGHuW7x4cdeFCxdcwdq9e7ft+F544QVHz9u8ebPrmWee0e/d+nz5zJw4efKkK1u2bCm+I3fffbcrVOTfTu7cuW2vV7hwYdeLL77o2rBhg/4OG+ScLlq0yPXAAw+4MmbMaHvOzTff7POcyzm07l+oUCHXuHHjXImJieY+hw4dcr366quunDlz2vaVz9eTy5cvp/gu9erVy7Vv3z5zn7179+p/R8ZnYn2v8r32xNrepEmTHJ1HJ89p1qyZuU/ZsmX1+3Unx249xsyZM7uee+45278jYz95X9a/e9ddd52jYwUAABDSH/HXL7KSPo61zyN9tldeecV18OBB23jp/fff13096779+vXz2q6TPtIHH3xga69YsWKuyZMn2/qf8toyJvE27mrSpInffv/ixYvT5MshfWjpM7sfQ6tWrVzffvutPlb343j33Xdd5cuXt+0vfcGZM2d6fR0593IurM9p06aNa+XKlbZjkfd100032fYrV66c6/jx4x7blc/Quq98LrNmzXIlJSXp31+5csU1d+5cV8OGDc19cuXK5fM8WscD0p4TTp7z66+/2o71tdde87jfwIEDbftJ33nevHmuixcv2sYXP/74o6tOnTq2ff/73/86Ol4AAIBYYu3vOJ0nCEafPn1sryV9rR9++EH3KQ1//vmn6/bbb7ftN2DAgBRtTZkyxbbPl19+mabHKtf2Pc3fyOta52SMvvinn37qqlWrlm1/mceQ+Rpvzp4966pevbrtOY0bN9bX3Y3+tli1apWrbdu2tv3y58/v2rFjh8d2pX9u3bdAgQJ6DHfp0iVzXCB95zvuuMPcx3od2tM1bfcxoBNOnrNnzx7bPjLvY51XM7z33nu2/SpUqOD6+uuv9dyRQc7ZsmXLXE2bNrXtK+Or1JB/E07mGX/77TeP48+XXnop1W3L+zX2u/76611nzpxJ1XsCYhEBTQCiSmoCmsSQIUNCHtBkXOR89tln9cVlTx0VCayRQBy5eQpOMW5ykV8uFHvqqBmkk/nQQw+leK50iosUKeIqVapUisASuXXp0sUWiBKOgCYh58XTey1YsKA+H57OmUxgSKCTJ0uWLPF4DiWwSy7Ayzlw/51MrCxfvtyVGu4TGzJQqFixotebXFx3Dwoybp07d7YNRPy57777UrQxffp0VyjJ4Mg6oeX+fS5TpoyeKElISPC4T/v27b1+hgb5Pj788MMpnivfXwlAk89Svtfuv3/66ad9tjtt2jSv/77kc7M+Jt/Bzz77LGIBTYMHD7btlyVLFn3e5TitA+IvvvjC479rGYTK917+Pbn/rmjRoq7t27c7OlYAAIBgAprEsGHDvI5NpE/naZGJv/6wkz6SXIR3DzIxXlv6qe6LO4x2rJMLEiwUroAmIRM0/fv399hXNc6ZvE8Z23jaR97T/PnzHS1QcA8gMwKMpP+bPXv2FL+T/r37QhErOd81a9b0eE5ljO0+LpCL9TIJE4mAJgkOcx9nGmNlOf8GmfSoW7duivckz5V95VzJ+3P//aBBgxwdKwAAQKwJV0CTLEKwBtEYN7nuL32wvHnzpvjdbbfdZgs8N2zcuDHFvrLgVW6jRo1Kk+OVAHlP4xq5yXVZY6zi6ffynmThhT9yHdcarGLcpO8u58S6WMC4yWtK8IwvLVu2TPE8eS/Sh3fv68oic5lHikRAk8yJuc/tyPuTcUq7du1scwp33nmnx/ckn7ns72m8I3Ms3ubHnHIadCTvRcYT7sfg61q907Y7dOiQYq5G5gdk7J3a9wfECgKaAESV1AY0Sce4atWqIQ9oMmzdutXVvXt3n0FLnm7VqlVzffTRRwFlEHrnnXe8dpLdO8wjR470GSQVyoAmI8DEPWuOp5t0Op966imPAxP3oCb3lcrebnKB2roaOVjuExvB3GRiQgZRgQQzCVn96z6R4e8cpQWZCJDJJE8DAG83GbxJ8E0gZGWEpwkn95t8h2S1hRMTJkzwOMiz3mRFunyuP/30U8QCmiTbgPsKeuMmK8GtZsyYoTNlOfkcmjdv7vr7778dHScAAEBqApqErIJ20t+XPp9k5PQ1Ngmkj7R//35XgwYNHPWPJJBJxgUTJ060PW7N5BnqgCaDvAdZTeu0jy3BQpLdyZr5yh/JFCx9Qn9tSyBVp06dUqwu9/a5SFYrX+3J2EFWTYtIBTSJESNGeDw+WU1vJdlhZTGG0/GcjMP9fX8BAABiVbgCmoxgf0+VDTz1VyW7q6+5E5mT8fRc6UOnFRlLWDPJOulnSzbWQBacSuUJCbzxtMjX/SaBSjt37vTbpmR/8tfflXkZyfwvn0mkApqEBH55eu8y1rSSuRGpyuDkPMn3S+YWjaxUqeE06EjIPJf1OGT8lxZtSwCft3mPbdu2Bf3egFiSEOmSdwCQlrJly6Zr1DZu3NhnzeG0UqVKFfXpp5+qt99+W9ckltq4GzZsULt27dI1luUYChUqpAoXLqwqVaqkmjZtqm699VZVo0aNgF/rySefVN27d1eff/65fi15naNHj+q6wPnz51c1a9ZULVq0UA8//LAqVqyYiqQHHnhAtW/fXn311Vfqhx9+0LWY5VilNnbevHlV1apV9bno0aOHKl++vN/2brnlFrV582Y1a9YsNXv2bLV27Vp18OBBdfbsWZUvXz79fhs1aqTatm2r7rrrLl23OJwyZMigaxnnzp1blSlTRtWqVUs1b95c3X333SpnzpwBt9eqVStVsGBBsx70/fffr7JmzapCTc7lW2+9pZ5//nn1/fffq4ULF+rv2Z49e9SZM2d0LXD5rpUqVUqf7zvvvFMfa6Dnu3///qpr165q6tSpav78+Wrjxo36+yH/XuSzvP7669U999wT0Pt+9NFHVevWrdUnn3yi64nv3LlTfz+KFy+u64lLbfZ27drpY92xY4eKlKJFi6o///xTvfrqq/q9y/dYrh3I4ydPnrTte++996rbbrtN12mXfdetW6eOHDmi/x0VKFBAv7cmTZro9yV/VwAAAMKlU6dOuu/9xRdfqHnz5qk1a9bofoqMTWTsU6dOHd03kz6Y9JHTqo9UokQJ9fvvv6vp06frPpIxzpB9ZZxRtmxZ3fdr06aNfn3p+5UuXVolJCSopKQk3cbEiRPV8OHDVThJn05ucrz//e9/9XvdunWr7u+fO3dOjyWk/y/jiJtvvlmPp0qWLBnQa8i46ueff1ZLly7V5+eXX35R+/fv1+PSXLlyqWuuuUaPwbp166aqV6/uqE05/9KOjA2+/PJL9ccff+jPRo5XzrWcYxnTlStXTkWafKYy5h4/frweO8r3Rr578tlbyXjm22+/1Z/BtGnT1IoVK/T4QM6T7CvvWcb58t7uu+8+VaRIkYi9JwAAgHgifa3XX39dPf7442rKlCl6jkOu4UqfWPqX0p+Va5y9evXS/TFf5Bpw3bp1dTvSl5Nr1zIe+F+MVtqoX7++vj4u/XaZl5B+46ZNm9SxY8f0dWe5bi3XaKtVq6bnozp37qwqV64c0GvI3NE333yj5zukvy3zS3ItPjExUWXPnl1VrFhRjw+6dOmiGjZs6KhNmY+Q/u6vv/6qz4/8lHFB5syZ9XX9li1bqp49ewY1R5XWZGwi/e8xY8boMaW8b/kuyHmVcZIxtyLnWvr5AwYM0PNjMib8+++/zbGi9NnlXMlchcwpyFgl3Dp27Kjeeecd25g5LcjntGrVKjVy5Ei1ZMkSdfjwYf1vSeYG5H6g3zkgFmWQqKZIHwQAALCTDrgExgnpoN94442cIgAAAAAAAAAAAADpQnhTWAAAAL9WrlxpBjNJhD3BTAAAAAAAAAAAAADSEwKaAACIMpIK1iDpXwEAAAAAAAAAAAAgPaHkHAAAUeTo0aOqUqVK6vTp07o29N69e1XhwoUjfVgAAAAAAAAAAAAAEDZkaAIAIIJOnjxp3t++fbtq06aNDmYSjzzyCMFMAAAAAAAAAAAAANIdMjQBABBB5cqVU5cvX1bJycnq8OHD5uPFixdXmzdvVvny5ePzAQAAAAAAAAAAAJCukKEJAIAIKl++vDp48KAtmClv3rxqxowZBDMBAAAAAAAAAAAASJcIaAIAIIJat26typQpo7JkyaJKly6tunbtqlauXKluvPFGPhcAAAAAAAAAAAAA6RIl5wAAAAAAAAAAAAAAAABEDTI0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoJkT4AwKmLFy+qDRs26PuFCxdWCQl8fQEAQPxLSkpSR48e1fdr1aqlsmXLFulDAuIGYwwAAJAeMcYAQocxBgAASI+SQjSPQUQIYoYEMzVo0CDShwEAABAxK1euVPXr1+cTANIIYwwAAJDeMcYA0hZjDAAAkN6tTMN5DErOAQAAAAAAAAAAAAAAAIgaZGhCzJAyc9aovuLFi0f0eAAAAMLh4MGDZpZKa38IQOoxxgAAAOkRYwwgdBhjAACA9OhgiOYxCGhCzEhI+L+vqwQzlSpVKqLHAwAAEMn+EIC0/TfFGAMAAKRHjDGA0P2bYowBAADSo4Q0nMeg5BwAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICoQUATAAAAAAAAAAAAAAAAgKhBQBMAAAAAAAAAAAAAAACAqEFAEwAAAAAAAAAAAAAAAICokRDpAwAAIBZcunRJrVu3TmXIkEHVrl1bZc2aNdKHBAAAACCGJScnq40bN6pz586pOnXqqBw5ckT6kAAAAADEuB07dqiDBw+qmjVrqvz580f6cAAgVcjQBACAA88++6waMmSIevrpp9Xw4cPT5JyNHz9eVa5cWf8EAAAAkL76zR9//LHq37+/Hmv07dtXXb16NdKHBAAAACCG/fjjj+qRRx5Rw4YNU927d1eJiYkqmsXrWA9A2iGgCQAAP86cOaNWr15tbq9YsUJduHAh1edt9OjRerWE/AQAAACQvvrNX3/9tXl/9+7dat++fRE9HgAAAACx7fvvvzfvnzx5UmeEjWbxOtYDkHYIaAIAwI/Lly+neCwpKSnV523QoEGqUqVK+icAAACA9NVvlpJzaT3GAAAAAJB+nTp1SsWSeB3rAUg7CWnYFgAAccnlcjl6LFC9e/fWNwAAAAD0mzNkyMDXAAAAAECayZw5c1SfTeZIAPhDhiYAAAJcOe3tMQAAAAAAAAAAgGiQJUuWSB8CAKQKAU0AAEQoQxMAAAAAAAAAAEB6zNAEAP4Q0AQAAAAAAABEGCXnAAAAAKSlbNmycUIBxDQCmgAAAAAAAIAII6AJAAAAQFrKmjUrJxRATCOgCQAAAAAAAIgwApoAAAAApKUsWbJwQgHENAKaAAAIgsvl4rwBQDr277//qhw5cujJ58mTJzt+XosWLfRzAr2tXbvWb9tnz55V77//vmrZsqUqWrSovmglP6+//no1dOhQtX379qDe69atW9XAgQPVtddeq/LmzavTlZcvX17dfvvt6tNPP9WvG6jk5GT13Xffqfvuu0+VLVtWZc+eXeXLl0/VqFFDPfLII+rXX38N6lgBIJYxxgAAAACQljJlysQJBRDTEiJ9AAAAxOJK6YwZiQkGgPTq6tWr6uGHH1YXLlwI+Llr1qwJyTEtXrxYde3aVe3bt8/2+JEjR/Rt9erV6s0331TDhg3TwU1OLmhJ0NHzzz+vnyfv2eqff/7Rtx9//FG99NJLasqUKapJkyaOjnXPnj2qc+fOatmyZbbHL168qE6dOqU2b96sJk6cqDp06KA++ugjVaBAAUftAkCsI6AJAAAAQFrOZZAFFkCsI6AJAAAAAALQp08ftWTJkoDPmQTyJCYmmtuS5chpgGzWrFm9/m7BggWqbdu26tKlS+ZjCQkJOjvTiRMn1Pnz5/VjSUlJ6oUXXtBBTxMmTPD7mj179kyRfSpXrlwqT5486tChQzrgychWJZmnJLipadOmPtvcu3evuummm/RP68W1IkWK6OM/efKk+fiMGTPUjh071G+//aZy5szp93gBINYR0AQAAACAMQYA/B/SSwAA0sz48eNV5cqV9c944mmymZUNAJD+SJai3r17OwoG8pedScrVSbCO01u1atU8tnngwAH1wAMPmMFMuXPn1mXnJDBIApfOnDmjfvjhB3XNNdeYz/n444/9vgf5v9wazCRl6ySwSNrbv3+/On78uBo5cqQuayeuXLmi7r33Xh3o5I0EQHXs2NEMZpL/SwcMGKCPU54nwVfr1q1Td955p/kcKbX36KOPOji7ABD7jEBRAAAAAAAAENAEAEhDo0eP1pOu8jPeA5qoPQ0A6cvhw4dV8+bNdQm0YFkDmurUqZMm5Uufe+45M+tTtmzZdLYmySBlZDSS17jjjjvUqlWr9GsapPTc2bNnPbYpgUXSrqFRo0Zq6dKlqnHjxuZj+fLlU88++6yaO3euypw5s35MjkPKz3kjZemWL19ubr/99ttqzJgxqkSJEuZjtWvXVnPmzFE9evQwH/vyyy/VypUrAz43ABBr4q2sdbwueAEAAAAAAOERX1dKAAARNWjQIFWpUiX9M554Cl4ioAkA0g8JsLnuuuvUL7/8kqp2rAFN0l5qHTx4UE2bNs3cfvrpp9UNN9zgcV8pE/ftt9+awUdHjhzxmqXpk08+0UFNxv93EoiUPXt2j/tKqTkJjrI+V4K/PBk1apR5/+abb1ZPPvmkx/0kc5NMflepUsV87JVXXvG4LwAgesXrghcAAAAgWlHGGkC8IaAJAJBmpAzP9u3b9c94QkATAKRPUv5MAnbatGmjg4cMwZZAk/JpaRnQ9NVXX6mkpCQzq0ffvn197l+xYkXVrl07W+YjTz7//HPzvmR3kuwavvTr109lzZrVLD03Y8YMj8FcmzZtMrf79+/vs00JvJJydIb58+frMnoAEM/iLUNTvC54AQAAAGKFLBoDgFgWX1dKAAAIgYSEhBSPkaEJAOJft27d1MKFC81tKeP24Ycfes1s5IuUY9uzZ0+aBjRJkI+hQYMGqmjRon6fI8FZhj///NN2TEICt9avX+9xf2+k/NxNN91kbs+cOdPnscr/q61atQroWCVQ6vvvv/f7HACIZfE22RCvC14AAACAWEHGJgCxjoAmAAD8IKAJAHDXXXepjRs3Bj0pay03J9mHatWqleqTKgFJhkaNGjl6TsOGDW3by5cvt22vWrXKth1MuytWrFDJycle261Zs6YODvOnVKlSqkSJEub2smXLHB0LAMQqoywoAAAAAAQj3hZJAAABTQAA+EE2JgBIvxeBmjZtqhYvXqzmzJmjypUrF3Rb1oCm6tWr67JCksmoY8eOut1s2bLpTEcS7COl1lavXu2zvUOHDumsT4Zq1ao5Oo7y5cvbAnW3bt1q+/3mzZtt779KlSqO2rWWpTt37pzau3ev13adHqt7u+7HCgDpYSEFAAAAAABAesWVEgAA/GBVAwCkT7Nnz1alS5dOk7asAU2SvUgyNLkH6Fy6dEmdOnVKbdq0SY0dO1Y9+OCDusSdp2xG+/btS5HNyOlkeZEiRdSBAwf0tnvJOWu7hQoV0oFWTpQsWdK2Le2WLVvWY7tOj9W9XfdjBYB4kyVLlkgfAgAAAAAAQNQgoAkAAAAAPEirYCb3gKYNGzbYfle4cGEdPHvs2DGzVJvL5VJTp05V69evVwsXLlQFCxa0PefIkSO2bfff+1KgQAEzoMma5cm93UDbtLK2e/78eZ21KbXtuh+rE+6BX+4OHjxo3r98+bK+AUC45M2bN8Vj/B0CEA78rQEAAAAQCwhoAgAAAIAQunDhgtq2bVuKYKmhQ4eqzp07qzx58ujHTpw4ocvQvfDCC2r//v36sXXr1umydAsWLLCVQD179qytvVy5cjk+Huu+7u1Yt4Nt072dUB1rWgelScYs+QwAIFyGDx9u2965cycnH0BYHD58mDMNAAAAIOpljPQBAAAAAEA8kyxLV69eNbdvvvlmtXbtWtWrVy8zmEnkz59f9ezZU61evVpde+215uOSoWny5Mk+V9VnzpzZ8fFY971y5YrXdoNt073dtDrWpKQkx88DAAAAAAAAAMQ2MjQBAAAAQAhVqVJFzZs3T+3evVvt2bNHDR48OEWJNqsiRYroTE3Vq1dXFy9e1I+NHDlSBzsZpCSdlZSsSwvWdkPRZmrblbYCef7evXv9lpxr0KCBvl+1alVVqlSpoI8NAAJ133332banT5/OSQQQFhJIDwAAAADRjoAmAAAAAAihfPnyqVatWgX0nPLly6uuXbuqCRMm6O1du3apLVu2qGrVquntLFmy2PZ3z7Tki3XfbNmy2X5nbTfYNt3bTatjzZo1a8DBUIEEKMlxuh8rAITSqVOnUvwdAoBw4O8NAAAAgFhAyTkAAAAAiEJ33HGHbfvPP/8071tL1Ylz5845bvfs2bPm/Zw5c9p+Z2032Dbd2w3VsQIAAAAAAAAA4hcBTQAAAAAQhSpUqGDbPnLkiHm/UKFCtt8lJiY6bte6r5S3s7K2G2yb7u1mz55d5ciRI82PFQAAAAAAAAAQvwhoAgAAAIAoJIFAVlevXjXvlytXzva7AwcOOGozKSnJFhjlXpLN2u7Ro0f1/k7s37/ftu2rXafH6t5uIOXjAAAAAAAAAACxjYAmAAAAAAix5ORkHUgUSDDP8ePHbdsFCxY07xcuXNi2vW3bNkdt7tq1yxakVKNGDdvvq1WrZgug2rlzp6N2ra+fL18+VbJkSa/tOj1W933djxUAAAAAAAAAEL8IaAIAAACAEKpbt67KnDmzKlq0qGrfvr3j5/3111+27dq1a9u269evb95fuXKlozbd96tXr57XNoNt171N93bXrVunLl++7LfNffv2qYMHD3o9NgAAAAAAAABA/CKgCQAAAABCqHjx4jpDkxGkdOzYMUfP++abb2xZj6677jrb71u2bGne/+2339TJkyf9tvn999+b96tXr56ijJsEXVkDp+bMmeO3TXndpUuXejwuT49duHBBLVy4MKBjzZAhg2rRooXf5wAAAAAAAAAA4gMBTQAAAAAQQnfffbd5X8q9jR071u9zJJDIGiTUs2dPlZCQYNvnvvvuU5kyZdL3JeORv3alfNysWbPM7Yceesjjfp06dTLvf/fdd37LzsnrGhmX5Hg6d+6cYh8JxqpSpYq5PXr0aJ9tXrlyRb333nu2gCgJtgIAAAAQH7Zv366GDh2qbr75ZlWsWDGVNWtWlSdPHlWxYkXVsWNHNWXKFD0uCMSqVatUr1699OKN3Llzqxw5cqhKlSqptm3b6gUjTjLFAgAAIHoQ0AQAAAAAISQBQoUKFTK333jjDfXLL7943V+yOHXr1s3czp8/vxo0aFCK/SS7kgQ1GV5++WWvmY/OnDmjOnToYE4I5M2bVz3yyCMe93300UdVrly59H254C/Pk+d7Iq8nr2t9r+5ZnwxPPfWU1+e5e/zxx9XWrVvNbU/vHwAAAEDsOXv2rF6wIQseRo4cqbPNHj58WI89ZNyxa9cuHXwkYyIJblq8eLHfNi9duqTbbNCggZowYYLasmWLfh3JDisLNGbPnq2DpKSM9caNG8PyPgEgElwuFyceQFwhoAkAAAAAQkiCh0aNGmW72H777berV155RR05csR8XC7iywX9W265RSUmJpql1t5//31dts4T2d8IPpJgpbvuuku9/vrr6tSpU+aFrB9//FFfuF+7dq35vJdeeskWZGUlj7/44ovmtjxPni/tGBfGpH0JzJLXswZJvfbaa17Pg0wwXHvtteb28OHDVffu3dU///xjPrZp0ybVunVrNXHiRPOxdu3aqdtuu81ruwAAAABiw+nTp1WTJk3Up59+apt0l+xMpUuXVgULFrTtv3fvXj0W+OKLL7y2KVlwZQwhbVpJ2W7J/CRjKsP69etV48aNdcATAAAAoh8BTQAAAAAQYrK6WMopWIOahg0bpi+wlyhRQv+UoCXZ59y5c7Zybp5KuBnKly+vL+5nyZLFbPfZZ5/VEwGSKUnKLEjw1N9//20+54EHHlD9+/f3ebySTalLly7mtjxf2pH2pF1p/z//+Y9+PZE5c2Y1bdo0PQnhjZTMmzFjhi2D0+TJk/V7kHJyEkhVs2ZNNXfuXPP3UirCfWICAAAAQGySBQ1r1qwxtyWj0oIFC3Rmpj179qhjx47pBQ9PP/20WV776tWrqkePHmr16tUe23z++efVzz//bCtXvW7dOnXixAl18OBBdeDAAZ3x1QhskqCqNm3a6OxNABBvrEGcABAPCGgCAAAAgDCQjExTp07VJeQMsipZLrJLdibrCuUyZcrosgh9+/b1265cjJ8zZ44tmEgu+u/fv98WHJUxY0Z9IX/KlCl+25R9ZT+ZSJBAJIO0J+1K+wYJxJIgJMnW5I+UjJByezfeeKPtcclUdfz4cdtjEkAl+8rKagAAAACx7ddff1UzZ840t9u2bavLzUkAkiyQMJQtW1a9+eab6rvvvjODmmQhhacy1Nu3b1dvv/22LbvrDz/8oGrXrm0+JotHJGPupEmTzMekDJ0sHgEAAEB0I6AJAAAAAMLkwQcf1CuPpYyclEWQbEXZsmVTOXPmVJUqVVL33HOPDiSSEggSqOSUlGHYunWr+uCDD/T9kiVL6qxNklGpVq1aql+/fnqVslzINyYFnAQ1yUTChg0b1JAhQ1SdOnVUgQIFdICTZFNq1qyZGjNmjH7dQErCVahQQU9cyGRGp06d9HaOHDn0eZBsTZJBav78+frmrSweAAAAgNjyySefmPdl0cJnn31mC2RyJ+MlGccYlixZov7991/bPjIesZbAltLVMo7xljVXMj0ZZKxz+fLlVL0nAIg21sVynrYBINb831Jb+CRpUKXUwdKlS3Wn+fz58zqyXy64y0qCjh076lIRgZAL/xMmTFCLFi1Su3fv1qsMZHXzNddco9u7//77Va5cuQJqMzk5Wa/klnIPK1eu1Cudpf60TGjccMMNqmvXrrpGdaAk1asMOObNm6c2b96s07LK5IKsHJf3L+3KawAAAADpQWouCEkfv0+fPvqWliQo6PHHH9e3tFS1alX1xhtv6FtapkCX1dNyAwAAABD/ZG7BIAsbJADJSYk6CVqyZnl66KGH9H3JGvvll1/aFo9Ys+F6MnjwYLOktWSI/emnnxxlmgWAWJWUlBTpQwCAVCFDkx+nTp3SHeS6deuqcePG6VXNJ0+e1JH7srJaSiAMHDhQl054/fXXHf3HIEFHzz33nKpZs6Z65513dJsSICQBTVIf+scff1Q9e/bUv5cOulNyPDfffLOeFJgxY4bevnjxon4PEoQkqxNuueUWdd9996nExETH7X7zzTc6yOrZZ5/VAV3S0ZdVD1IaY8WKFfq9yO8/+ugjx20CAAAAAAAAAID4d+jQIVuJ6QYNGjh6nsy7WMmchEEWdJ84ccLcdpLhtlq1arY2rSXwACAeGVnsACBWkaHJB+kMt2jRQq1evdr2uJRtkEh/6YCfO3dOPyaBQxLwI/t+/fXXesWxNxKsNHny5BSrtPPkyaM79hLwJCQTlLy+BDg1bdrU5we5d+9eddNNN+mfBjmGIkWK6EApCcIySLDTjh07dJkHKW3hi9SVluO1rkCXjE+FCxdWR48e1W0LyVjVu3dvnclp6NChPtsEAAAAAAAAAADpg2Rj+vnnn9W+ffvU/v37Vf369R09zxqwZMxNGFatWmX7XcOGDR21Kfvt3LlT31+2bJmj5wBArDLmcQEgVpGhyYdevXrZgpkkuOiPP/7QGY8k2Eh+Srk4yd5kmD59unrllVe8tjl+/HhbMNP111+vA4vOnDmjO/ISJDVy5EiVJUsWM3L23nvv1YFO3kgAlJSoM4KZJJBpwIABenAgz5NOv2SBuvPOO83nrF27Vj366KM+vxzyHClXYQQzFS1aVH3xxRc6m5S8lhyzBG9JmTzDsGHD1IIFC3y2CwAAAAAAAAAA0ofs2bOr5s2bq27dupnVK5yQ+RersmXLmvelKoVB5ijy5cvnqM3KlSub92Xht5SuA4B4JRWHACCWEdDkhUTmS3CS4f7779eBOhK9b2RfypQpk7r11lt1QJI1Reprr71my4hkkMAi6awbGjVqpEu4NW7c2HxMOt2S6Wnu3Lkqc+bM+jEpD/fSSy95/RCnTJmili9fbm6//fbbuq50iRIlzMdq166t5syZo3r06GE+JvWlJS2rNxIUZUTuFipUSB9r586dzWArOT45L7ISolSpUvoxCX6SOtRGlikAAAAAAAAAAIBAyFzDu+++a27LfITMxxhkQbfBmJ9womTJkub9pKQkdeDAAT4YAHGLDE0AYh0l53xkUrKWg5PtjBkzel1d8Oabb5pl4S5cuKB++OEHHfxj9cknn5gpUiUYSgKR5LmeSDYoyXY0fPhw87kvvPCCzpLkbtSoUeb9m2++WT355JMe25RALHkfv//+u/r777/1Y5JNavbs2Sn2lSClX375xdx+4403bCsX3AcAkrmpSZMmenvjxo3qu+++U+3bt/e4PwAAAAAAAAAAgDcyl2GtoNGuXTtdus5w5MgR837BggUdn8gCBQrYtmVBeenSpR0/3xpI5cnBgwdtmVHIjgIgnGRO2/q38uLFi/wdAhAWoerzENDkhbWjfM8996j8+fP7PJHu9ZmNGsxWn3/+uXn/jjvu8BogZOjXr5969dVXdfSslJ6bMWOG6tu3r22fNWvWqE2bNpnb/fv399mmrGKQzEt9+vTR2/Pnz9fZpNzTsVqPVd77gw8+6LNdCaSSLFVGxifJ/kRAEwAAAAAAAAAACITMMwwcONDcTkhIUC+//LJtn7Nnz9om8J1y39fajhOBBD9t3brVXOQOADLPO23aNNWlSxfVoUOHkJyQnj17pnhsw4YNnHwAIXf48OGQtEvJOS8ky5BE+EuWov/85z9+T+SZM2d8RvlLVP769evN7TZt2vhtU4KMbrrpJnN75syZKfaRgCRrp75Vq1Z+27W+tgRKff/99z7bvf32280yc07bnTdvHmkMAQAAAAAAAACAY7KAu3Xr1jqriGHkyJHqmmuu8ZoFQBZyO+W+r8yRAEA4SDDT3r179U8AgDNkaPKhcOHC+ubErFmzbNt169ZNUcLNqlGjRo7alcxPCxcu1PdXrFihkpOTbaXvrO3WrFlT5cyZ02+bUk+6RIkSZm3oZcuWqYceesj8/enTp9W2bduCOlbD+fPn1dq1a1NkrgIAAAAAAAAAAHAni8Jbtmypjh49aj4mlSCefvrpFPu6XC7zfoYMGcJ2MiUYwRdZ3C7VLETVqlX1fAwAiCFDhqgxY8aoJ598UtWqVSskJ0Xa3r9/v7ktfz+Nv0kAEEr+Kp4Fi4CmNPDbb7/p/4QMjRs3ThEEtHnzZlvnukqVKo7atpalO3funO4sly1b1mO71apVc3zM0q4R0CRpT70dayDtupfQk3YJaAIAAAAAAAAAAL4sXbpUV4E4deqU+dgtt9yiPv/8c4/7W6tKBJJlyX3fbNmyBfTBBBKgJMfopPoFgPThiSee0LdQkjKa1r+jmTJl4u8QgLAIVZ+HknMBkqj/pKQkXQNQSrV17NhRd6qN/xykMzt16tQUz9u3b595v1ChQo47ySVLlrRt79mzx2u7gXSkre36ajOQdiXrk3UlhHu7AAAAAAAAAAAAVlJ+6bbbbrNNwt96661q7ty5Knv27B5PVp48eWyLwQOZ7LdyUvUCAGJVQgK5TQDENv6KBWjBggWqVatWHn939913q/fee8+WQclw5MgR837BggUdv16BAgVs24mJibaybtaOerDtWtt0P9ZA2pWoO+n8GwMC93YBAAAAAAAAAACMBeQvvPCCevnll1PMtXz99dc+F4bLwnFDIHMR7vsWKVKEDwNA3LCW4xRZs2aN2LEAQFogoClA//77r8fHc+XKpcqXL6+zN/mL+pd9nXLf19qO+0qCYNt1bye17RrPd2/HH/fMUJ5qTxsuX76sbwAQLnnz5rVt8zcIQLjw9wYAAAAAEG8uXryounfvrr766ivb4z179lTjx4/3m1WkXLly5v0DBw44ft39+/fbFmkXLlw4oOMGgFjiLcsdAMQKApqCCGjKnDmzKlq0qO5wHzt2zAzeeffdd9UHH3yg3nzzTfXkk096nYiS5zvlvq+1vrP75Faw7boHYaVVu4HUrRalS5d2vO/WrVvViRMnAmofAFJj+PDhtu0NGzZwQgGEhZQ6BgAAAAAgXpw+fVpnYfrll19sj48YMSLFNThvqlWrZlssLRUtcuTI4fd527Zts7WRMWPGgI4dAKJZhgwZbNtkaAIQ6+ipBahfv346eGnv3r3q6NGjOsDpmWeeMVcLSBDPU089pT766COvKf7c/zNJq7SBqWnX2lZatgsAAAAAAAAAACBOnjypWrRoYQtmkkxJU6ZMcRzMJOrXr2/eT05OVn/99Zej561cudJjGwAQjwJJWgEA0YgMTQEqXry4bbtMmTLq9ddfV82aNVOtW7c2sxINHjxY3XPPPTqTk9EhDyZzkfu+1prR1jZT065E51qDljy16/Q/PGu7vupbeyJBYv5KzjVo0EDfr1q1qipVqlRA7QNAatx333227enTp3NCAYRF/vz5OdMAAAAAgJh34cIFddddd6lVq1aZj+XNm1fNmjVL3XrrrQG1Va9ePVWgQAGVmJiot+fMmaNuvvlmn8/ZsmWL2rlzp7ndsmXLgN8DAMSSTJkyRfoQACBVCGhKI9LxldUDw4YN09uSxWny5Mk6e5PIkyePue+5c+cctyvtWOXMmdO8b20zNe1a2/TWrpNUrf7a9SeQACUJunIPvAKAUDp16lSKv0MAEA78vQEAAAAAxEsFjGXLlpnbRYoUUT/++KOqU6dOUJP0HTp0UBMmTNDbn376qXr22WdVvnz5vD5n1KhR5n3ZTxapAwAAIHpRci6NO+NG6TmxZMkS836hQoXM+8aKASfc95UOviF79uy2QKNg27W26X6sgbR7+fJlW1CVe7sAAAAAAAAAACD9+fbbb9XEiRNtC6t//vnnoIKZDAMGDFAZM/5vmuvYsWOqU6dOXitZSEk7CXoy9O3bV8+xAEA8sVbkAYB4QEBTGpLUqNWqVfNYQq1cuXLm/aNHj6qkpCRHbe7fv99nFiNruwcOHHB8rNZ2fbUZSLuyn8vl8touAAAAAAAAAABIX2Q+5Omnn7Y9JsFFtWrVSlW71atXV3369DG3FyxYoJo0aaL++OMP87HDhw+rIUOGqO7du5uPlS1b1qyuAQAAgOhFyTkf2Yb++ecftWvXLl132Wn5tFy5cpn3k5OTzfvWQKerV6/qOs1VqlTx2962bdtsKVBLlixp+720u3nz5hT7BtJujRo1bL+T45IIXiM4SfZ1Ur/a/fXd2wUAAAAAAAAAAOnLV199pXbv3m1uS1YlCSgKNKiof//++mb15ptv6jmSRYsW6W0JZrrhhhv0AnSpcHHo0CHbQmzJDDVjxgyVO3fuVL8vAAAAhBYZmjz45ZdfdKpRCexp1aqVrXRcIJmPihUrZt6vX7++bb+VK1c6as+6X7169VL83truunXrdCCWP/v27VMHDx70emzSobcGWwVzrDJQkNURAAAAAAAAAAAg/Zo5c6ZtWxaDy6LvQG+JiYkp2pa5nDlz5qiHH37YVmrp1KlTeh7EGsxUuXJltXjxYo9zLQAQD6x/8wAgHhDQ5IFkPbJmV5o1a5ajk7llyxa1Z88ec7thw4bm/aJFi6ratWub29LB9ufkyZNq6dKl5nbLli1T7GN97MKFC2rhwoV+2/3+++/N+9LBb9Gihc9258+fr7NKBdJu06ZNVZYsWfw+BwAAAAAAAAAAxK9AqksEQ4KaJk2apFasWKGeeOIJvdhaMjRlzpxZLzyXhesTJ05U69evV3Xr1g3psQAAACDtENDkQZEiRXRKUsOXX36pDhw44PdkDh8+3LZ977332rY7depk3v/uu+/0igJfxo4da2ZcypQpk+rcuXOKfa677jpbNqXRo0f7bPPKlSvqvffeswUuSbCVO+uxynv/4osvfLYrgVfWDE0PPfSQz/0BAAAAAAAAAED827hxo84aktrbiy++6PN1pBqFzKts2rRJLxiX+RXJ0jRv3jzVo0cPlS1btrC9ZwCIBGumOgCIBwQ0efHkk0+a98+fP6+6devms5zbK6+8ousuG9q2bZsibemjjz6qcuXKpe9LWx06dFBnzpzx2J5kWnr55ZdtAUalSpXyuO9TTz3l9XnuHn/8cbV161Zze9CgQR73k4CuRo0amdv9+vXTgw5vZfa6dOlibpcvX161b9/e6zEAAAAAAAAAAAAAAAAA3hDQ5MX999+v7rjjDnP7559/VjfddJNatGiRWX5NVgRIViIJXho2bJi5b4kSJdT777+fos1ChQrZVhCsXbtWrxj48ccfzZqmUtf5jTfeUHfddZfOpiQkNeprr73m9UPs2bOnuvbaa22Zorp3767++ecf8zFZkdC6dWudVtXQrl07ddttt3ltd8yYMTozlHFc8v4nTJigS9uJpKQkHcTVoEEDtXfvXtvzKDcHAAAAAAAAAAAAAACAYCQE9ax04uuvv1a33nqrWr16td5etWqVat68ucqZM6cqWLCgSkxMVGfPnrU9R4KZJH1pyZIlvWZTWrNmjZo2bZre/vvvv9Xtt9+u28yXL586dOiQGTAlpMaz7Fu6dGmvx5mQkKADi5o2bar27dunH5s8ebK+Sfk8ae/48eO250gN6U8//dTn+2/YsKEaN26c6tOnjw64kqCmXr166RrUUqbu2LFj6uLFi7bnPPfcc+ruu+/22S4AAAAAAAAAAAAAAADgDRmafMiTJ49aunSpLhWXMeP/napz586pPXv2pAhmatOmjfrrr79UnTp1vJ/wjBnVlClT1NNPP60DkaxtSuk2azBT8eLF1dy5c3W2Jn8qVqyofvnlF3XjjTfaHj9y5EiKYCYJoJJ9JYDKn969e6upU6eqAgUKmI9J5igJnLIGM2XNmlWNGjVKvfrqq37bBAAAAAAAAAAAAAAAALwhQ5MfOXLk0GXWBg0apMu1LV68WO3atUudPn1aBwRJ5iTJ4tS5c2dVr149R980CWp68803VY8ePdSkSZPUggULdMk2o83atWvrLEdSNk6CqpyqUKGC+u2339R3332nvvnmG10OTzI+JScn6+CoG264QXXt2lUHNAWiS5cuuvyeHOvs2bPV9u3bdZCUnJtKlSrpsnWSualcuXIBtQsAAAAAAAAAAAAAAAC4I6DJoSpVquggpLRUtWpV9cYbb+hbWsmQIYNq166dvqUlKbE3ePBgfQMAAAAAAAAAAAAAAABChZJzAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAA+JGcnMw5AgAAAAAAAAAAAIAwIaAJAAA/rly5kuIxgpwAAAAAAAAAAAAAIDQIaAIAwI/Lly87CnICAAAAAAAAAAAAAKQeAU0AgJgzfvx4VblyZf0zHDwFLxHQBAAAAAAAAAAAAAChQUATACDmjB49Wu3YsUP/DIekpCRHjwEAAAAAAAAAAAAAUo+AJgBAzBk0aJCqVKmS/hmpknOeHgMAAAAAAAAAAAAApF5CGrQBAEBY9e7dW9/ChQxNAAAAAAAAAAAAABA+ZGgCAMCPK1euOHoMAAAAAAAAAAAAAJB6BDQBAOAHGZoAAAAAAAAAAAAAIHwIaAIAwA8yNAEAAAAAAAAAAABA+BDQBACAH2RoAgAAAAAAAAAAAIDwIaAJAAA/yNAEAAAAAAAAAAAAAOFDQBMAAH6QoQkAAAAAAAAAAAAAwoeAJgAA/CBDEwAAAAAAAAAAAACEDwFNAAD44XK5HD0GAAAAAAAAAAAAAEg9ApoAAPAjOTnZ0WMAAAAAAAAAAAAAgNQjoAkAgBAGNI0fP15VrlxZ/wQAAAAAAAAAAAAA+EdAEwAAQXBacm706NFqx44d+icAAAAAAAAAAAAAwD8CmgAA8CMhISHFY5kzZ3Z03gYNGqQqVaqkf7ojexMAAAAAAAAAAAAApERAEwAAQQQ0eXrMk969e6vt27frn+7I3gQAAAAAAAAAAAAAKRHQBABACAOags3eBAAAAAAAAAAAAADpVepnYwEAiHNZsmQJuuScL5K1yVPmJgAAAAAAAAAAAABIz8jQBACAH9mzZ0/xWI4cOThvAAAAAAAAAAAAABACBDQBABBEQJOnxwAAAAAAAAAAAAAAqUdAEwAAfhDQBAAAAAAAAAAAAADhQ0ATAABBBDRly5aN8wYAAAAAAAAAAAAAIUBAEwAAfngKXiKgCQAAAAAAAAAAAABCg4AmAAD8yJIlS8r/QDPyXygAAAAAAAAAAAAAhAKzsQAA+JEhQwbOEQAAAAAAAAAAAACECQFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAA+OFyuThHAAAAAAAAAAAAABAmBDQBAOBHcnIy5wgAAAAAAAAAAAAAwoSAJgAA/CBDEwAAAAAAAAAAAACEDwFNAACkk4Cm8ePHq8qVK+ufAAAAAAAAQDT5999/VY4cOVSGDBnU5MmTHT+vRYsW+jmB3tauXRvS9wMAAIDUIaAJAIAgSs7FYpDT6NGj1Y4dO/RPAAAAAAAAIFpcvXpVPfzww+rChQsBP3fNmjUhOSYAAABEVkKEXx8AgKiXMWPK+F9ZxRVrBg0apIOZ5CcAAAAAAAAQLfr06aOWLFkS8PP27NmjEhMTze3y5ct7vJbnSdasWQN+PQAAAIQPAU0AAPjh9CJItOvdu7e+AQAAAAAAANGSmalv375qwoQJQT3fmp1JytVJdvJ4uZYHAACQ3hHQBACAH1wEAQAAABBqUtY6FjPBAgAQrMOHD6uOHTuqX375Jeg2rAFNderU4ToeAABAHCFMHQAAP5hUAAAAABBqV65c4SQDANKNOXPmqOuuuy5VwUzuAU3SHgAAAOIHAU0AAAAAAABAhBHQBABID9atW6datGih2rRpow4ePGg+/uijjwbV3tq1a837BDQBAADEFwKaAAAAAAAAgAi7dOlSpA8BAICQ69atm1q4cKG5nTNnTvXhhx+qCRMmBNxWYmKi2rNnj7lNQBMAAEB8SYj0AQAAAAAAAADp3eXLlyN9CAAAhNVdd92lxo0bp8qVK5fqcnOZM2dWtWrVSsOjAwAAQKSRoQkAAAAAAACIMDI0AQDSgwwZMqimTZuqxYsXqzlz5gQdzOQe0FS9enWVMWNGNXPmTNWxY0fdbrZs2VS+fPlUzZo11YABA9Tq1avT6F0AAAAgHMjQBAAAAAAAAETYlStXIn0IAACE3OzZs1Xp0qXTpC1rQFNycrLO0LR169YUAcOnTp1SmzZtUmPHjlUPPvigLnEnpe4AAAAQ3cjQBAAAAAAAAMR5QNP48eNV5cqV9U8AACIlrYKZ3AOaNmzYYAtmKly4sCpSpIjO2mRwuVxq6tSpqnHjxur48eNpdhwAAAAIDTI0AQAAAAAAAHEe0DR69Gi1Y8cO/bN3794hfS0AAELtwoULatu2bSmCpYYOHao6d+6s8uTJox87ceKELkP3wgsvqP379+vH1q1bp8vSLViwQGXKlCmg1923b5/P3x88eNC8f/nyZX0DgHDJlSuXyps3r7mdlJTE3yEAYRGqPg8BTQAAAAAAAECEhXrCc9CgQTqYSX4CABDr1q9fr65evWpu33zzzeq7775TBQoUsO2XP39+1bNnT9WmTRt1++23q7Vr1+rHFy5cqCZPnqx/F6oMU5IxSgKqACBcevTokSLI0hpoCQChcvjw4ZC0S0ATAAAAAAAAEGGyejqUJCsTmZkAAPGiSpUqat68eWr37t1qz549avDgwSmCmayk/Jxkaqpevbq6ePGifmzkyJEBBzQBAAAgfAhoAgAAAAAAAMLImlEiXCXnAACIJ/ny5VOtWrUK6Dnly5dXXbt2VRMmTNDbu3btUlu2bFHVqlVz3MbevXt9/l4yoTRo0EDfr1q1qipVqlRAxwgAqfHUU0/ZSmN++OGHqlChQpxUACEnWTFDgYAmAAAAAAAAIMLZmAhoAgAg9O644w4zoEn8+eefAQU0BRKglCVLFn0DgHA5e/asOnXqlLmdkJDA3yEAYRGqPk/GkLQKAAAAAAAAwKPLly+neIyAJgAAQq9ChQq27SNHjnDaAQAAohQBTQAAAAAQoH///VflyJFDZciQQU2ePDng87dq1SrVq1cvVb16dZU7d27dVqVKlVTbtm3VN99843Gi2x95zpQpU1SbNm1UyZIlVdasWVXBggVV7dq11YABA9SaNWtUMKSkwvPPP68aNmyoChQooNstXbq0uuWWW9TYsWPV8ePHg2p34cKFutyDvO+cOXPq8yAlGTp37qzmzZunkpOTg2oXAGKBp+AlApoAAAi97Nmz+y0DCwAAgOhAyTkAAAAACIBc8H744YfVhQsXAj5vly5dUn369FGffvppit/t3LlT32bPnq2DkKZNm6Zq1qzpqN3169erTp06qS1bttgeT0xM1LcNGzao9957T/Xt21e99dZbKS7ieyMBS88880yK97pv3z59+/XXX9VLL72kSza0a9fOUZsnTpzQgUxz5sxJ8bu///5b37766ivVtGlT9dlnn6kyZco4ahcAYomn4KVgglkBAEjPZBHEsWPHdCnXEiVKOHqO+4IMWQQCAACA6ESGJgAAAAAIgAQkLVmyJOBzJhfZW7dunSKYKV++fKpYsWI625M1QKlx48YpApQ8Wbt2rc6WZN03Y8aM+oK+ZD2yev/991X79u0drUJ+8cUXVf/+/W3BTBIIJdmfEhL+b22MTCBImxKA5c/p06d1oJJ7MFOhQoX0zUrO8U033aQOHTrkt10AiDVkaAIAIHXq1q2rMmfOrIoWLarHI0799ddftm1ZTAIAAIDoREATAAAAADggQUC9e/fW2YiCIWXbfv75Z3O7ZcuWat26dTpj0cGDB9WBAwfUoEGDzMAmCf6R8nG+MkGdO3dO3XvvverkyZN6Wy7ov/zyy+ro0aNq//79uo3ff/9dl4szzJ8/Xw0bNsznsf7www8685KhYsWKau7cuerMmTM6M9OpU6fU+PHjVZ48ecx9evbsqTNB+fLYY4/pYC1Dly5d1I4dO/Txyk0yVEn2Jmu5uw4dOiiXy+WzXQCINda/a/L3f+XKlerHH3+M6DEBABBLihcvbpapliAlWWjhhJT4ti4uue6660J2jAAAAEgdApoAAAAAwI/Dhw+r5s2bq48++iioc7V9+3b19ttvm9tSnk2ChqyrgSVL06hRo9SkSZPMxyTAR8q+eSPl43bt2qXvSyCUlGqTwKkCBQqY+9x4441q6dKlOoDKIMciwULesoZIZiZjsr1SpUpq+fLl6s4771SZMmXSj+XIkUP16tVL/fbbb2ZQk5TTk/J03kjGpa+//trcltf4/PPPdbCUoUKFCrrM3IgRI8zHJCBr+vTpXtsFgFgngaISvDpv3rxIHwoAADHj7rvvtmXD9TVuMkimWBkbWRdlWLPPAgAAILoQ0AQAAAAAfi56y6rdX375JejzNGbMGLO8UN68edXEiRN1WThPunXrpnr06GFuv/nmm+ry5csp9rt48aIaN26cuf3ggw96LbUgmZsk2KlgwYJm8JEEQ3ny3Xff6axJBgniKly4sMd9a9WqZTsGCdJavXq1x32trydBTBK85c3w4cNVs2bNzO1XXnnF674AEOtKlSqlS3pK4GhakSx6lStX1j8BAIhHnTp1spWtfuONN3yO2SSLk4y1DPnz59cZcgEAABC9CGgCAAAAAA+kHFyLFi102TcpCWd49NFHAy5V9+WXX9oCj+TiuS+DBw827x8/flz99NNPKfaR4CH5nTXjkS/ymrIC2VpqwSjRYCVZkww1atSwBRZ58sADD6gSJUqY29b3apDyD1LqziCl+yTIyuk5kFJ2mzZt8rk/AMQq+RvaoEEDddttt6VZm6NHj9bBqfITAIB4JAtFrIskZNHG7bffrhdDHDlyxJZtd+TIkeqWW25RiYmJZnbb999/X5etAwAAQPQioAkAAAAAPJDVuwsXLjS3c+bMqT788EM1YcKEgM7XypUr1YkTJ8xtCZDyp1q1arZSbDNnzkyxjzVASC7E16tXz2+71teWC/tSzs1KskgtWrQooGOVMnStWrXyeawSkGUNnnLSrpT4k4wlvtoFgFiVJUuWFI9lzZo1zdqXjBNSMpTMEwCAeB+zDR061BbUNGzYMF3OWwKG5aeMlWSfc+fOmftJebrOnTtH6KgBAADgFAFNAAAAAODHXXfdpTZu3KgzCwVq1apVtu2GDRs6ep51v2XLlvls12mbEvRkLXXn3u6WLVvU2bNnze1GjRoFfKy7du3SwVLejjVfvnyqSpUqjib7pdSft2MFgFhmDdj09Viw5P+r7du3B/X/FgAAsUQyMk2dOtWWBdflcuksuzIukfuGMmXKqNmzZ6u+fftG6GgBAAAQCAKaAAAAAMADKUPQtGlTtXjxYjVnzhxVrly5oM7T5s2bzfuyOlgCepyoXLmyeV/KBknpOoNclN+6dasto5MT2bJlU6VLlza3rW24H2sg7VqP1V+7Ttt0b9e9TQCIZaEOaAIAID2Rst579uzRZeRat26tSpUqpcc+kmVXMhbec889asqUKXoBh5NssQAAAIgOCZE+AAAAAACIRrJy1xr8E6x9+/aZ9+XCulMlS5Y07yclJakDBw6Yx3P8+HF14cKFoNv9999/9X256O/tWANp13qs/toN9hxIGxLIJYFmABDrMmfOnOIxmXgFACA9s2ZTClSuXLlUnz599A0AAADxgYAmAAAAAPAgLYKZxJEjR8z7BQsWdPy8AgUK2LYTExPNY7K2mZp2pU1vxyoT6zly5Aj6WL21G+yxSlDX6dOnVd68eR0/3z1Ay52UoTBcvnxZ3wAgXNz/nkkWCf4OAQgH/tYAAAAAiAUENAEAAABACJ09e9a2atgp932t7Vjvp6Zd93ZCcaxp3W4gAU2BBKVJSbsTJ0443h8AUmv48OG27UuXLqkNGzZwYgGE3OHDhznLAAAAAKJexkgfAAAAAACklxXwnkoMeeO+75UrVzy2mZp2rW2G6lhD2S4AAAAAAAAAID6RoQkAAAAAQsjlcpn3M2TIkOZthqrdtGozlO36s3fvXr8l5xo0aKDvV61aVZUqVSpMRwYASt1333220zB58mRddg4AQi1//vycZAAAAABRLyoCmk6ePKn++ecflZiYqM6dO6fatGlj+12+fPkienwAAAAAQifexwNZsmQJKsOQ+77ZsmXz2GZq2rW2GapjNdq9ePFimrfrTyABSnKM7ucVAELp1KlTKcpsBpLFDgCCRZ8nfYj3cRYAAADiX8QCmo4fP67GjRunZs6cqTZt2mSu2JXVuklJSeZ+LVq00D+feeaZFCvXAAAAAMSm9DQeyJMnj3lfJhKcOnv2rG3bmrXD2mZq2nXPBBKKYzXaNQKa0rJdAIgnCQlRse4QABDD0tM4CwAAAPEvYyRedOLEiapcuXLqpZdeUhs3blTJycm6Y23crHbv3q3WrFmjOnXqpO644w7dIQcAAAAQu9LbeKBQoULmfVkd7ZT7vkWKFPHYZmratbbp3u758+fVpUuXUn2s7u0Ge6zZs2dXuXPndvxcAIg14SzJCQCIP+ltnAUAAID4F/aApmeffVY99thj5qpc9460+2rcEydOmPv99NNP6rbbblOnT58O2/ECAAAASDvpcTwgkwqGAwcOOH7e/v37bWVBChcubG7LfWu2omDbdS/JZj3WQNq1tumv3WCPtWTJko6fBwAAAKQn6XGcBQAAgPgX1oCmzz77TL3xxhu2sgPSyZbHS5Qo4XFl2iOPPKIyZ86s70vnet26dWrAgAHhPGwAAAAAaSC9jgeqVatm3t+3b5/OfOTEtm3bbG1kzGgfvlWtWtXjvr5I2be9e/ea2zVq1PB6rIG0676fr3adtum+r3ubAAAAANLvOAsAAADxL2wBTRL1P2TIEFuN5l27dqnx48erhx56SJcPcCcrjidMmKBrPdetW1c/Jp3rKVOm6McAAAAAxIb0PB6oX7++eV/KPvz111+Onrdy5UqPbXh6zLqvL3/++ac+Bm/tSuBRrly5Am7Xul+lSpVUvnz5vB7roUOHbEFV3ly+fFmtXbvW67ECAAAA6V16HmcBAAAg/oUtoEk6w0ePHtUR/7KS+L///a/Knz+/o+dWrFhRLVq0yLYCefLkySE8WgAAAABpKT2PB+rVq6cKFChgbs+ZM8fvc7Zs2aJ27txpbrds2TLFPtbHZNJCnuPP999/b97Pmzevatiwoe33mTJlUs2aNQvoWK9evarmzZvn81ibN29uyzDlpN2FCxeqCxcu+GwXAAAASM/S8zgLAAAA8S9sAU3WC9yvvPKKx5UBvuTOnduWNvW3335L0+MDAMCbpKSkFI/JyjUAgHPpeTwgQUIdOnQwtz/99FN18uRJn88ZNWqUeV+yHbVu3TrFPnfccYctE5L1OZ6cOHFCTZw40dzu1KmTSkhISLGfPG7NvLR06VKf7X7xxRfq4MGD5rasBHdXqFAhvVrc8N5776krV674bNf6fmSShQxNAAAAgF16HmcBAAAg/oUtoGnjxo36p9RlvvPOO4Nqo1WrVipbtmx6EnnHjh0qXLZv366GDh2qbr75ZlWsWDGVNWtWXYdaVjB07NhRr4LwdzHe3apVq1SvXr1U9erV9aAhR44cujRD27Zt1TfffKPLKwRKniPH0qZNG1WyZEl9nAULFlS1a9fW9a/XrFmjgiHlIJ5//nm9eltWlku7pUuXVrfccosaO3asOn78eFDtAkCsOHXqlMeU3gCA9DEeSAvSHzcyFB07dkwHDXkbQ0ifXoKeDH379vU4MSGP9e7d29yW58hzPZHX6ty5s9l3lyArOSZP7r33XlWmTBlzu0uXLurAgQNeP9d+/fqZ240bN1aNGjXyuO/AgQPN+1u3blWPP/648ubll1/Wq8UNgwYN8rovAAAAkF6l93EWAAAA4lvYApqOHDmi054WKVJEB8QEQ1YPy/PF6dOnVajJZHXPnj1VlSpV1MiRI/XqhMOHD+vAoTNnzuiyDhJ81K1bNx3ctHjxYr9tXrp0SbfZoEEDXadaykLI60gpBSkpMXv2bB0kJauPjcGIE+vXr1fXXnutPhYp3yATDnKciYmJasOGDXoFtNTDfuKJJ2xlG/yRgCV5/6+++qpenS2ruqXdffv2qV9//VX1799fr5aeNWuW4zYBINZ4yqLhL7MGACD2xwNpSRYy9OnTx9xesGCBatKkifrjjz/Mx2SsMWTIENW9e3fzsbJly6pnnnnGa7vyO1nMYJDnPv3007otg7yGvJa8pkH68dWqVfPYZpYsWdTo0aNtCxxkfDJ9+nQza6GMKT7++GN10003mYG/Mony7rvvej3W22+/3ZZpSrJFyfamTZvMx/755x/9HoYPH24+Jq9tPScAAAAA/ie9j7MAAAAQ38IW0CSdaYnwDzSTkTujQ50rV640OjLvryMX/WWVs7WskJGdSDIfWclF/ttuu02XW/BGLv7LBXvramshZSIk85MMPKwBSrK6WQKe/Fm7dq3OlmTdV1Z/lyhRQmd/snr//fdV+/bt1dWrV/22++KLL+qJDmsAlKwClwkTa2kKWWEubU6bNs1vmwAQiySY08ljAID4GQ+EwptvvqmaNWtmCzS64YYb9HhA+u7FixdXb731lkpOTta/l6ywM2bMSNGnt5Lnzpw5U+XNm1dvy3OlVJu0JW3K7+U1rIFTTZs2Va+//rrPY5USec8++6y5LQsm7r//fn0sMh6S13vsscfMYCYZy8hiiOuvv95nu5MmTVK1atUyt+fOnatq1qypS9IVLVpUlS9fXk2ePNn8vbwHWUQiGaUAAAAA2DHOAgAAQDwLW0CTXJw2VgxIAEww/v77b50RQy6WG+2FiqwAtpZok4xKsqJZMjPt2bNHvwdZPSyrn42L6xIk1KNHD7V69WqPbUrZtp9//tncbtmypVq3bp2eFD948KCeJJBSCkZgk0zWSPk4XxmVzp07p0tCGJlCZFW0lGc4evSo2r9/v27j999/1+XiDPPnz1fDhg3z+f5/+OEH9dJLL5nbkoFKJhvk/Ut2Jpm4GD9+vJ5kMUjmKckGBQDx5tChQ44eAwDEz3ggFGRxgGRTffjhh22LGaRvLeMB60KKypUr6wyw9erV89uujFWkPJtkgTJIW9Kme9nUBx98UM2bN09nYfJHstRKpiYpj224ePGiHg9YA9NkTDB16lRdUtsfCVySY7VmahJSCk++G1aSmWnp0qWqXLlyftsFAAAA0iPGWQAAAIhnYQtoklXBhmAz+bzzzjvm/UaNGqlQkVJqssrZ0LZtW11uTgKQJGDIWv5BVll/9913ZlCTlJSToCR327dvV2+//ba53a5dOx00VLt2bfMxydIkq6ll1bJBytDJSmdvZAW3lL4TMiny1Vdf6cCpAgUKmPvceOONeiJAjt8gxyJZpTyRyQnJzGRMqFSqVEktX75c1+A23qdMasiEhZwXI6hJ3ruvchgAEKtkQtjJYwCA+BgPhDqoSfr7K1as0OWgJQhJsh3JOEPGA61atdKl2CRjq5SMdkr2lcUSn332mbr77rtVmTJlVLZs2XS//ZprrtGLD5YtW6YDj+QYnBo4cKDaunWrGjFihA6cKly4sM7Wmj9/fp1R9pVXXtFjnS5dujhuU4Kavv/+e73YQxaESPCWZNySIKtSpUrpsZJkZZIxSIUKFRy3CwAAAKQ3jLMAAAAQz8IW0CRBQUKCZCTzj7dgGm+k1MInn3xibt91110qVKyvIyUaZFLAGsjkTlYX9+vXz9xesmSJ+vfff237jBkzxlzFLBMWMkkhZeE86datm76wb5CgqcuXL6fYT1ZHjxs3zrbaWkq/eSLHL8FORqk8CT6SYChPJEBrx44d5vZHH32kJy48kXIR1mOQIC1vGaoAIFZJBj0njwEA4mM84IS8D+MmGZcCJdmHZOHCpk2bdNYp6e9LsKxkT5KxgAQjBUoCjbp27ar++9//6vGIZHqVjK6S2UrOnXWyIxBSYm748OE6CEuyKMm4JjExUS9uGDp0qCpSpEhQ7TZv3lyPi7Zt26YzwcoYRb4Xsrjkvvvuo8wcAAAAkM7GWQAAAEDEAprq1KmjswhJibUmTZqoP/74w+/z5AK8rAZ+4IEHdKdcni8rjL0F7qQFmUQwdOrUSQcgOSlR557lySCl6L788ktb4JGsaPZl8ODBtvILP/30U4p9JHhIfmeQrEq+yGvKymyDrHpOTk5Osd/nn39u3q9Ro4Zq1qyZz3blsylRooS5bX2vABAPPGVjIqAJAOJ3PAAAAAAAsYBxFgAAAOJZQrheSCYeJNPPrbfeqjMLyYphKVFw7bXXquuuu04dO3bM3HfChAk6UEcy/UgZgtOnT5vlz2TVsWQEkvZC4dChQ7YgISmr4ETFihW9Tn6vXLlST9oY2rRp47e9atWq6Tal5JyQVcruqyPmz59v3i9evLiqV6+e33bltSXjkzh8+LD6/fff1c0332z+XlZbL1q0KKBjlTJ0RmkM41i9ZX8CgFgj//94Wt22b9++iBwPAMSqWBkPAAAAAECsYJwFAACAeBa2gCYjOOiLL75QnTt31uUEZFJi7dq1+maQxx5//HHbtjFZISXa3nvvPV2aIFQkG5NMmshE9f79+3UpCCesAUsia9as5v1Vq1bZftewYUNHbcp+RkDTsmXLUvze2q7TNiXoSc6jkZlJ2rUGNG3ZskWdPXvW3G7UqJHjYzUCmnbt2qWDpYoWLerouQAQzaQMkGQH8fR3X/5e5sqVS40fP16NHj1aDRo0SPXu3TsixwkAsSAWxgMAAAAAEEsYZwEAACBeha3knDUF6vLly1X16tX1trHSWshEhaeV1rKPlDSTjEShnijOnj27niDp1q2beu6551TNmjUdPc+a1UiULVvWvL9582ZbJqV8+fI5arNy5crm/R07dujSddZzsnXrVltGJyeyZcumSpcubW5b23A/1kDatR6rp3YBIFZ5ys7knqVJgpnk77T8BADE9ngAAIBIsf6fCABAIBhnAQAAIB6FPaBJ1KlTR23YsEHNnj1bdejQQRUpUkRftHG/5ciRQ7Vo0UJ98sknOuuP3I9GcqzvvvuuuZ05c2ZdSsNTWaJSpUo5brdkyZLm/aSkJHXgwAFzW0pwXLhwIdXt7tmzx2cJJaftWtv01C4ARJJkUJLAS/kZKOvfXneSyU9IZqZKlSrpnwCA9DceAAAgLVy5coUTCQAIGuMsAAAAxJuwlpxz17p1a30Thw4d0kE6p06d0lmSChYsqINkMmXKpKKdTJCvXr3a3G7Xrp0uXWc4cuSIeV/el1MFChSwbScmJprZlaxtpqZdadPK2q5kc5JJpGCPNVDuwVTuDh48aN6/fPmyvgGAE6NGjdIlPOVnjx49Ajpp8vfM+jfdveyc/C2SNo12+dsEIK3F89+VeBkPAACQVgFNWbJk4WQCAFKFcRYAAADiRUQDmqyKFSumb7Fm5cqVauDAgeZ2QkKCevnll237nD171ryfK1cux22772ttx3o/Ne26txOKY3XKWgrPHylpJ4EEAODEfffdp6ZNm6Z/SkaQQFSpUkUNHz7c6+8DbS+azJgxQ5+XLl266AwpAKLT4cOHVXoQq+MBAADSMog5Z86cnFAAQJphnAUAAIBYFpGSc/Fi06ZNerXDxYsXzcdGjhyprrnmGq+r6qUcnVPu+1pTj7uv1A+2Xfd05qE4VgCINAnWmTVrVroI2pEgJckUKD/9kWCmvXv36p8AAAAAIiueszICAAAAAADEbIamWLN+/XrVsmVLdfToUfOx9u3bq6effjrFvi6Xy7yfIUOGNHl9a5uhajet2nRKJtX9lZxr0KCBvl+1alVVqlSpMB0ZgFCYMGGCGjNmjHryySfVY489FrUnWbLwGX+fkvKWUsqVrBJOH9DblSpVUq+99pqKJh07dtTHO336dDVixAif+w4ZMsT8DGrVqhW2YwQQmPz583PKAABIB1gcBgAAAAAAEIGAph49eqRpexJsM3HiRBUJS5cuVW3atFGnTp0yH7vlllvU559/7nH/LFmyBHVxyn3fbNmyeWwzNe1a2wzVsToVSICSHKf7OQAQW9599121c+dO/fOJJ55Q0erQoUPm3/vLWYqrDK6rKvP/35ZAy2j7WzR48GA1evRoNWjQIL/HJuc9ms89gP+Jtr8zwYqn8QAAAKFw9epVTiwAICCMswAAABDPwhbQNHny5DTP+BOJCQwpy9OzZ0916dIl87Fbb71Vff/99yp79uwen5MnTx7z/rlz5xy/1tmzZ23bOXPm9Nhmatq1thmqYwUATyTgxgi8iWanT58277sSsiiVfNXj76JF79699Q0Aok28jAcAAAhHQNP48ePN8RL9ewCAN4yzAAAAEM8yhvsFpaSZ05uv50XiuIcPH64efPBBWzDT3XffrebNm+czgKdQoULm/cTERMev6b5vkSJFPLaZmnatbbq3e/78edt7DfZYAcATuSi/ffv2NLk4Lxf7K1eurH+mpYsXL6rLly+b266ErPpmDeZMSkpK09cEgHgXq+MBAADCGdAkwUw7duzQPwEA8IdxFgAAAOJR2DI0NWnSxPGKbLmAI5PE+/btU8eOHdOPyXNz586tRowYoXLlyqXCSSa0u3fvrr766ivb45KpSSbPExJ8n8Zy5cqZ9w8cOOD4dffv328rNVK4cGFzW+5LEJWRRSnYdt3LvFmP1Wi3fPnyAbXpqV0ACCXrxf60XL2cIlNdpqzKldFeBuLChQv6/ycAQPyOBwAACAdrwG6sZLQFAEQW4ywAAADEs7AFNC1ZsiSo5+3evVu99957aty4cerMmTNq6tSp6scff1QFChRQ4SDlhCQL0y+//GJ7XCZSJGOTE9WqVTPvy6SMZD7KkSOH3+dt27bN1kbGjPaEWlWrVlV//fVXin39BWft3bvX3K5Ro4bXYzXadRLQ5P767u0CQCjVr19f/fvvv/pnWpK/11auTJmVSs6YYh8CmgAgfscDAACEizXwl1LSAAAnGGcBAAAgnoW95FygJJjmnXfeUTNnztQXdtasWaMee+yxsLz2yZMnVYsWLWzBTJIpacqUKY6DmYR1gj05OdkMQvJn5cqVHtvw9Jh1X1/+/PNPfQze2pWAJuuKd6ftWverVKmSypcvn6PnAUBaWLVqlbpy5Yr+GfKAJrn52AcAED/jAQAAAACIR4yzAAAAEAuiPqDJ0KZNG/X444/r9NuzZs1SP//8c0hfT0oI3XXXXbbJ8bx586r58+erhx56KKC26tWrZ1tBPmfOHL/P2bJli9q5c6e53bJlyxT7WB/btWuXfo4/33//ve39NGzY0Pb7TJkyqWbNmgV0rFISZN68eT6PFQBCScowSDBlWpdjkP8LbDJm/l9QkwUBTQAQn+MBAAAAAIh3jLMAAAAQzWImoEn079/fvP/ZZ5+F9LX69eunli1bZm4XKVJEZ2q69dZbA25LgoQ6dOhgbn/66ac6+5Mvo0aNMu9LtqPWrVun2OeOO+6wZUKyPseTEydOqIkTJ5rbnTp1UgkJKasOyuPWzEtLly712e4XX3yhDh48aG4HGvAFAFbjx49XlStX1j+dknIM27dv1z9DnaHJlTGz76AnAEBcjAcAAAAAID1gnAUAAIBoFVMBTTLBnTt3bn1/xYoVIXudb7/91hb4kydPHr0CvE6dOkG3OWDAAJUx4/9O97Fjx3TQkJRH8kRK2knQk6Fv374qe/bsKfaTx6yT9/Icea4n8lqdO3dWx48fN4Os5Jg8uffee1WZMmXM7S5duqgDBw543Hfjxo06+MvQuHFj1ahRI4/7AoATo0ePVjt27NA/I809WOl/JefsgaAENAFA/I0HAACIBMlCCABAuDHOAgAAQLSKqYAmkSNHDn2Bx1uATWolJSWpp59+2vaYBArVqlUrVe1Wr15d9enTx9xesGCBatKkifrjjz/Mxw4fPqyGDBmiunfvbj5WtmxZ9cwzz3htV35XsmRJc1ueK8cvbRnkNeS15DWtqy6qVavmsc0sWbLYAgn27t2r6tevr6ZPn67PjzGB//HHH6ubbrpJnTp1Sj+WOXNm9e677wZ0XgDEn2AyLIWjfFzalJxLIEMTAMT5eAAAgEghoAkAECmMswAAABCNUtYbi2JSMs0I1MmaNWtIXuOrr75Su3fvNrclq5IEDfkKKvJEAoasqVrFm2++qTZv3qwWLVpkBhrdcMMNKm/evHrAcOjQIdvFK8kMNWPGDHMVuidScm7mzJmqZcuWOrAoOTlZl56TgKRixYrpcklGwJGhadOm6vXXX/d5/FIi79lnn1Wvvfaa3pYJo/vvv19ly5ZNFSpUSH8O1gxTGTJkUGPHjlXXX399QOcJQHxnWAqmBJw8J61Lx6VphqYMGX2WpQMAxPZ4AACASCGgCQAQCYyzAAAAEK1iKqDpnXfeMYNnJHNRKEhwkJUECO3cuTPgdhITEz2WiJszZ47O1PTZZ5+ZF6ok4Mg96Eiym0hwVd26df2+VoMGDXSQ1EMPPaQDpoS0ffDgwRT7Pvjgg2rChAk6C5M/I0eO1MFLw4YNMyfsL168qPbt22fbTwKvPvjgA12aDgAks5IEM0VDhqW0DGjSf7EzZFIqYwbbPvJ3EQAQP+MBAAAi5erVq5x8AEDYMc4CAABAtIqJknOXL1/WWYdeffVVPXkhWrVqFZLX2rZtmwolCWqaNGmSWrFihXriiSd0KTrJ0CTl2iSjkryviRMnqvXr1zsKZjLIvuvWrdOBUnfffbcqU6aMzqYkmZ+uueYa1bNnT7Vs2TI1depUfQxODRw4UG3dulWNGDFCB04VLlxYJSQkqPz586vGjRurV155RW3fvp1gJgAmya4kfxeiJctSav//MbLUrVy5Uh1dt1hnaHKpDCn2iXapLQUIAOllPAAAQKQQ0AQACCfGWQAAAIh2YcvQ1KNHj4D2l8xIkvVCMh2tWbNG/zQyGkl5CQnQCYWNGzeqcKhfv76+pSUJNOratau+paXSpUur4cOH6xsApCdG9iXJTHfxwgV15M/5qvC1zZTKmKBU8pWYytCU2lKAAJBexgMAAERKPAQ0yQIKI2Mv4w4ACD3GWQAAAIhnYQtomjx5srmaOlAycSHPlZvcf+6551SFChXS/BgBAPF1cdzT/oG0cenSJf2zVKlSau++/apwvTv0titjgsoQYwFN8VQKEEBsYjwAAED8BzSxkAIAwotxFgAAAOJZ2EvOSUBSoDfjeVIqbeTIkWrYsGHhPmwAQJRdHA92/0DaMAKaSpQooeo1afG/7EwiY6aYKzkXT6UAAcQ2xgMAAHiWlJQU86dGFlBUqlSJhRQAEGaMswAAABCPwpahqUmTJgFnaMqUKZPKkSOHKl68uLrhhhtUmzZtVMGCBUN2jACA+Moy5Gn/QNqwBStZgphcMRjQBACRxngAAADf2ZjiIaBJFlCwiAIAwodxFgAAAOJZ2AKalixZEq6XAgDEqUAvjnvaP5A2jAxNWoZMHoObbPsAALxiPAAAgO/gpXgIaAIAhBfjLAAAAMSzsJecAwAgmo0fP15VrlxZ/7QGK7kyWmKALfcvXrwY7kMEAAAAEOM8BS9duXIlIscCAAAAIH5KkAJAPCGgCQAACylHt2PHDv3z3Llz5uOuTJk93j9//jznDwAAAEBAPAUvkaEJAAAAQFrKkCEDJxRATCOgCQAAi0GDBqlKlSrpn9aAJpUpi3nXlfH/7tv2AQAAAIAgA5ouX77MuQMAAACQZsjYBCDWEdAEAIBF79691fbt2/X97777Th04cMBnhiYCmgAAAACkRUATJecAAAAApAYZmQDEm4S0bCxTpkwqnH+QScUNAAgVo+Tcvn37VIkSJZQrIav5O+v9EydO6FUODBQAgPEAAABOXb16NcVjXOcCAHjCvAsAAADSq4yhSFsnP8NxAwBEn/Hjx6vKlSvrn+F4Xqg89thjKnv27KpUqVJ6OzlLLvN3riw5bWUhTp06FZFjBIBow3gAABAtom184S45OTnShwAAiBGMswAAAJBepXnJOQKNACB9k8xGO3bs0D/D8bxQadWqlWrQoIHOzuQexJSc9f+Cm8SRI0fCfnwAEK0YDwAAokG0jS+c4P9QAAD/RwAAAAAhKjk3adKktGwOABCDBg0apCcN5Gc4nhcqhw4dsm1bg5iswU3Gvtdcc03Yjg0AohXjAQBAtIi28YWT4CVvWZsky5TxXnr37h2GowMARBPGWQAAAEiv0jSgqVu3bmnZHAAgBskF9mAusvt7Xqgu4ntrd+fOneZ9V4YMbhma8iiZfshg2bdJkyZpdkwAEKsYDwAAYn1cEi4JCQmOHnPPNhXN7wkAEBqMswAATrkvkrhw4QInD0BMS/OScwAApDbAqHLlyvpnOEpGeGv377//Nu8nZy+gVEbL5EKmzCo5W16P+8bCuQQAAAAQWVmyZEnxWLZs2TzuK4svKlWqFLXZpgAAAABEp1OnTkX6EAAgVQhoAgBEFW8BRqG6iO+pXVnFYA1SupqzYIrnJecsZN6XfT2VjIi0UAWBAQAAAEgdT8FLnoKchGRl2r59O9mZAABx799//1U5cuRQGTJkUJMnTw74+atWrVK9evVS1atXV7lz59ZtyXW/tm3bqm+++UZdvnw5JMcNANHqzJkzkT4EAEifAU2//fZbpA8BABAC3gKXQnUR31O7//zzjzp37py5nZzj/4KXDFctAU0nTpxQ+/fvV9GGldwA4hnjAQBALMuaNavjDE0AAKSHcdbVq1fVww8/HFR5pEuXLqmePXuqBg0aqAkTJqgtW7aos2fP6rZ27typZs+erTp27Kjq16+vNm7cGJLjB4BoRIYmALHOUj8nvDZs2KA7ktKpTEpKSlHTU0i2C3n8ypUr6uLFizqKdO/evWrp0qX6ufI8AEB8kcCitA5aCtTy5ctt21dzF0uxz9VcxVI857777gvZMUnZOMm0JEFKTs9PNJxLAPCG8QAAID3zlI0pe/bsETkWAED8iOVxVp8+fdSSJUsCfp4cb+vWrdXPP/9sezxfvnw6WPjw4cNmZvX169erxo0bqz/++ENVq1YtzY4dAKKFeya6I0eOROxYACAmA5pmzZqlhgwZonbt2hV0G9L5lJSjAACEejVactY8Kjlb3hT7JOcooJKz5FQZL58znxPKgCZr+TiClADEMsYDAAAoj9e1CGgCAKTHcZZkZurbt6/OrBSM559/3hbM1LJlS/XWW2+p2rVr6+1Dhw6pUaNGqbffflu/x9OnT6s2bdro4C/+7wUQTyRYNTEx0faYBHUCQCwLa8m5zz77THXo0EF3qqXjaETFC2Pb+pj7455+DwBInyRjUeXKlfXPtHT8+HGdltqQlK+MzDak3DFDhv/97v+TiyChTN9K+TgA8YDxAAAA3jGpCgBIb+MsmWhv3ry5+uijj4J6/vbt23WgkqFdu3bqhx9+MIOZRLFixXRA06RJk8zHJBPV2LFjU3n0ABBdJJhJsu9ZEdAEINaFLaDp5MmT6sknn/TacZbIfyP6370TbfxObqVKlVIPPfSQ+uabb8J16ACAKGTNWJSWnn32WbVy5Up14MABvZ2U//+CltxZA5pk9cMvv/yiQkWyMslFGrIzAYhVjAcAAPAta9asnCIAQLoZZ82ZM0ddd911qbqeNmbMGHPyPm/evGrixIkqY0bP017dunVTPXr0MLfffPPNFKWZAKQPoVosHWlHjx7VP2Vuw5jjoOQcgFgXtoCmKVOm6MwVRuf5zjvvVHPnzlVbt25Vy5cvNzvRvXr1Urt371abN29WP/30kxo2bJiudWx0tGXCWNKF3nvvveE6dABAFEqLjEXuAxf5f+brr79WFy5cUPv27VPJmXOoq7mKeH3+1dzFVHJCNnNbVoABADxjPAAAgG+ZMmXiFAEA4n6ctW7dOtWiRQtd9u3gwYPm448++mjApeq+/PJLc/vBBx9U+fPn9/mcwYMH27K0y7kAkP6EarF0pJ07d07/lLkNY47j/PnzkT4sAIiNgKZFixaZ91u1aqWj7+XnNddcoxo2bKiqVKmiO86///67Klu2rKpatapONTpixAjdwa1Xr55+rnRw+/TpE67DBgBEqbTIWOQ+cJH2ihYtqks9yMq0K4UqKZXBx3+VGTOppIIVzU0pVScXh6JNvK44ARBbGA8AAAAAAOMsyZS0cOFC80TkzJlTffjhh2rChAkBnRzJPnLixAlzWwKk/KlWrZqqWPH/ruXNnDmTrySQDqXFYuloJEFMQuY2jDkOApoAxLqwBTRt2LDBvD906NAUv2/UqJH+uWnTJh0ZbyV/cGfNmqUKFiyog57k/urVq8Nw1ACA9DRwmTdvnipRooRq0KCB/nml0DV+23DfJ62yNKVlEFK8rjgBEFsYDwAAAAAA4yyru+66S23cuDGoBYurVq2ybcvCeSes+y1btoyvJJAOpcVi6WhkBC9Z5zguXryos/ABQKwKW0CTESmfNWtWjx3L2rVrm/f//PPPFL8vWbKkGjBggLn91VdfhexYAQCxzWkwkHXgIh17a5rppFxFlStbHr+vlZwjv7qas5C5vWDBAnX58uVUH19aBiHF64oTALGF8QAAAL5duXKFUwQAiPtxlpTHa9q0qVq8eLGu5FGuXLmg2pHyeYbixYvrEnpOyDU5g1x7k9J1ABDP44mkpCQVbagqASDqAprOnj2rO6qFCxdWGTNm9Jjq07B+/XqPbXTt2tW8/9dff4XoSAEA0dRRDaZjawQDDR8+3PFzlyxZYtaYFvuPn1GbPhmijq79v5Kp3lwpXMW8f+rUKfXbb785Oj5fwUppGYQUrytOAMQWxgMAAPh25swZThEAIO7HWbNnz9bBTBLUlBr79u2zVflwSoK4rJP8Bw4cSNVxAEC0yJs3b4rHpPRclixZoi6oiKoSAJxKUGEi0fHHjh3z+vsKFSqY97ds2eJxnzJlyug/vJJFY9u2bSE5TgBA6kkHWDqkEozjHkRj7ag6CbAJdH8hryv7S3CR0+fKijCDK1MWdXDrX+rSySPqyJ/zVeFrm/l87pUCFVTWPStUhuQks61mzZr5PT5fwUpyvAQgAYgnjAcAAPg/nrJBnD59mlMEAIj7cVbp0qXTpJ0jR46Y9wsWLOj4eQUKFLBtJyYmBnRM1kAqTw4ePGjelyzu/jK5A0Ba/p/gHtRUtGhRr3+HRo0apXbu3Kl/9ujRI6wfhGQHHDNmjP7J30kgPlwOUZ8nbAFN0qGUjrW3zrWkFZWVBL461kY70mE0UqkCAKKPryAkJ8E8qdnfGgxkDazyZdeuXWrjxo3m9pWClVSReiV0MFORenek2F+yNhm/08FOmTKrKwUrqixH/9a/X716tf6/ytvqsGCDlXwFigFAtGM8AACAPaOGOzI0AQAYZwX3f2muXLkcP899X0//J/sSSPDT1q1bmcsCEFZStcLdhg0bPO573333qWnTpumf3vYJlRtuuEHffB0fgNhy+PDh2C45V6dOHf1TovxlotedpLuTjqDL5dKTyp5WqiUnJ6tDhw75rAMKAIg8b+XSggnICaZcmpEq9ddff3W0/w8//JCihJwEKtV45E2P2ZkkmOnSycP6p/U5vtpMC6RhBRDLGA8AAPB/PC3UkwwRAAAwzgo8C0DmzJkdnzb3fZlrApBedejQQc2aNUv/BIBoFbYMTVIP+ZtvvtH3R4wYof773/+m2KdWrVpqz5496vz582rJkiWqefPmtt//9ttvuqaxyJ8/f5iOHAAQKG8ZiIIpHxcM43X+/fdffVHC2+sZAVY5cuQw/1+5mrOwSs7h+/8Yyczknr0pOWchdTVHAZXp/P8mIRYsWKC6d++uEhLS7r/aYLJVAUC0YDwAAIDnMjmGo0ePcooAAIyzHJLF8Qaj+kc47N2712/JuQYNGuj7VatW9ZrBHQBCoVu3bnqe3XDHHXeonj17crIBhFyo4nfCFtAk0Z2DBw9WFy5cUHPmzFFt2rRRb731lu7QGZo1a6bmzp2r78tkrWTWyJMnj96WP77yfKNzWrNmzXAdOgAgxgJyjNepX7++WrVqlfl67iXo+vfvrwOesmfPbl5ouFL4Gt/l5ZTSPz1lbrpS6BqVac8f+r6UWJXXNtKmpoVgS9UBQDRgPAAAgO/gJQKaAACMs5yTqh/BZFly3zdbtmwBnfZAApTkGK3HCQChJnPop06dMrfz5cvH3yEAYRGqPk/YSs4VKlRI9e3b14yal8ClGjVqqBdffNHcp3Pnzipr1qxmvcxq1aqpAQMGqIEDB6rq1aurv/76y9z3rrvuCtehAwDSSDDl41LzOl988YXt9awZouRmXMDIlSuX/unKmEldKVDeb3k5b64UrKBcGTKGtOwcAMQqxgMAAMRmQJNR0lt+AgCiS3oeZxmL4cW5c+ccP+/s2bO27Zw5c6bpcQFANClcuHCkDwEAYiOgSbz66quqRYsWunNtpADNmzev+ftixYqpp556yux8S2rOcePGqXfffVeXorPuR3o8AECgJDNTpUqV9E+5GeXgjAsZSfnLKZXJHkEsmZmy5itqKy/nVUI2lZSvjLm5bNkyczUEkwAAwHgAAABDYuL/SlX7eywaWBeGAACiT3qdd5FgrmD+D3Xft0iRIml6XAAQSZkyZbJtS4YmAIhlYQ1okoljKTc3YsQIXd5HVKxY0bbPyy+/rNq2bWvrfAu5L49J1P306dNt0fcAAASaIUpuUk9a/j8yUkVfKVRZl5jb9MkQ/VNIabkaj7xplphz/707acOQlJSkFi9erO8zCQAAjAcAADCcPHkyxcmQxRDGZHO0LgwBAESf9DrvUq5cOfP+gQMHHD9v//79ttIoZC8BEE+sf+MFZS8BxLqwBjQZfziHDRumjhw5ojvI9evXTxE5OmvWLJ3JQtKdSmdabtIRv//++9Wff/6pbrzxxnAfNgAgzsj/LcnJyapBgwaqRIkSKjlLTnU1d3G/Jeb8/f5q3pIqOfP/Lh6JBQsWeJ0EIGsTgPSI8QAAIJqFq49uZHK1kpLY58+fV9F2HsJVOhwAELz0OM6S0nmGffv2Of4/dNu2bbY2MmYM+zQZAIQNAU0AYl3Eemo5cuRQ7du3V8WLF/f4+8cee0zXc5bax5ICVS70fPXVV3oyGACA1Nq5c6fatWuXuX2lYCVZvqBLyyVkz62uXjrvMQuT3xJ0GTKqpAL/twpu4cKFqnz58vq++yRAarM2ERAFIJYxHgAARKNwZVb1FNDk6/FwI8MsAMSm9DTOsgZtyaLFv/76y9HzVq5c6bENAIhHBDQBiHVhC2iSjuHYsWPV0aNHA3qerBAoWrRoipqfAACkxqJF9mAlCWiSACYj81LShTMeszBJ6TkJZpLfeS87V8m2Quyff/7xOCGS2tINwUwyEAQFIFIYDwAAYkG4yqtduHDB4+MXL15U0YAycwAQG9LzOKtevXqqQIEC5raU3fNny5YtepGjoWXLliE7PgCIBlevXo30IQBAbAQ0SXT8k08+qUqWLKlat26tvv76a3Xp0qVwvTwAIM55CtTx9diECRPMx67mKKhc2fOa5eSSLp7VWZq8ZWHyVHZOgps2fTJE/0zOnl9dzZZPP16qVCmVO3duNXDgwBTtpLZ0g5NJBvdzwEprAJHCeAAAEAvCVV7t8uXLAT0ezeeBRRMAEDnpeZwlwVgdOnQwtz/99FN18uRJn88ZNWqUeT9fvnz6nAFAPJFyolbp5f8EAPEr7CXnkpKS1A8//KAeeOABvQLgkUceUUuWLAn3YQAAIiRUF7s9Ber4emzz5s3mY1cKVNA/JYApQ8ZM0utXmbLm0NmYPHEvOydBTPsWff5/QU4ZMqikgv9rs0SJEqpu3bqqRYsWaX5unEwyuJ8DVloDiDTGAwAARH9AUyBYNAEAkZdex1kDBgxQGTP+b5rr2LFjqlOnTurKlSse950yZYoOejL07dtXZ6oCgHgWLRlgASDqA5patWqlEhISbNGhp0+fVpMmTVLNmzdXZcuWVUOHDtUpPwEA8StUF7s9Bep4e6xw4cI6c5IhqUB5/VMCmEo1e9AWrOSJ7Pf/2PsTODnKav8fP909+0xmJstkD0mIkAAXCEtYXEABFxRBvCgKiIgiP3FB+eJ6lcvluiKXq17Bv3pFQeGiIm4sKpuyhy0hEFYhIfueSSaz9/J/fU71qX6qurqne7bM8nm/LKuXqqeeqiEzz/Ocz/mcgz52pS94gogpk06pGMrO6822afzjH//YK88m/AyGK+OcEELCcD5ACCGEjE1BE5MmCCFk7zHe51kHHnigXHTRRf77v/71r3LcccfJo48+6n+2efNm+cIXviAf+chH/M/wXL74xS8Oe38JIWSoicVigfd0aCKEjHaGTdB0++23y8aNG+Xaa6+VN73pTf7nGGRjW7t2rXz729+Wf/mXf9Haxz/4wQ9ky5Ytw9U9Qggho3yx2xXqmNMRCIt3LrzwQnVLgnMSSNW3SKa6oaBYqRBuiTlzbIIYys7L1DRJqnaSf/yDDz7Y5z2Y2GrXrl2D4mCFNiCOQrsUMBFC9jacDxBCCCEeWAeDk0YUhVwlRjJMmiCEkL0H51kiV155pZxwQm4dD2KmY489VkvKYf1vxowZ8t3vflfS6bR+39jYKLfccotMmDBhL/7kCCFkeKBDEyFktDOsJecmTZqkixxwqXjttdfkO9/5jixevDhP3LRs2TL53Oc+p+4Z73rXu+Tmm2/mL1xCCBnFuKXUBnuxO1ymDfvPfOYzBZ2OVq9eLRs2bPDfJ5v36dd14cpkJeYKiaCSE/cJXHf9+vVF28QzaWpqkq1btw6KSxNLPxBCRhqcDxBCCCEiqVTKd9EIU0joRAghhHCeFQ3Kxt12221y3nnnBZxJkDCIJHv3by7WEO+77z5NqieEkLFIeJ6xtxyawnEbQggZFYImF4iVPv/5z8tTTz2ldqdf/epX1bHDFTZhEecvf/mLnH322Vr3+aMf/agONgkhhIwuhlJYE277sssu06zmeDye5wKFwTMytAKCJkd0VA7mylSoNB2cm5bdcWPgWg899NCwOlix9AMhZCTD+QAhhJDxunBeTLQ0Gh2aCCGEjBzG6zwLoiaU2Vu6dKl86lOf0lJ0SBqsrKyU6dOna2m+n/3sZ7JixQo5/PDD93Z3CSFkzDs0MdmaEDLqBU0uCxculCuuuEJeeukleeyxx+Tiiy/2SwHZILutrU1+8YtfaJmgffbZR7785S/v7W4TQggpkcEupRZuGwszS5Ys0cBFZ2enfj558uQ8FygMojdv3izr1q3T9+nqRknXNJdUVi5MX6Xp1MFp1zZZu259WYKmwXSwimprNAR4CCHjD84HCCGE9EWp49jRsHBeLKiwtzKoCSGEjD1G4zzL+oUNjkvlgvXB//mf/5GVK1dKa2ur9PT0qEvTHXfcIeeff77U1NQMSb8JIWSk4DrVAfwe3Bsw2ZoQMqYETS6w+vzv//5vWbt2rWYFXHTRRTJr1iz9zgayCESjLjIhhJDRQbFSagMV2Jho5/HHH9fABTKyIHDCgk3Usfge2Wog2TwHI/ySysr118FpxgFH+J8988wzulC0NxkNAR5CyPiG8wFCCCEDGceOhoXz3bt3F/wOSSCEEELIYMN5FiGEjE/S6fReue5gJm4TQsY3I07Q5CpIjz/+eLnqqqtUUW82oGFlKSGEkNFBocDCYAlsrH0ImQoNlGE3fdRRR+nrhx9+WB7/0/WR7kullpUrhjk4TTniHYHJAzLiymGwHZVGQ4CHEEIA5wOEEEL6M44dDQvnxURLFDQRQggZSjjPIoSQ8QWMQgghZDQzIgVNsAK97rrr5NRTT9WSQf/6r/8qy5Yt08G2/eKlNSghhIwuCgUWBktgU0rgAiImAKe/3t5eSXa1F3Vf6qusXCmkJkyXTLyirLJzQ+WoBFEU2sGzHskBHkII4XyAEELIaBQqlfN3bjgETSw3TQghJPz3h3EXQgghhBAymhgxgqb29na56aabVMQ0ffp0ueCCC+T222+Xzs5Ov9QcOO644+SnP/2p1j0mhBAyOii2kH7//ffLa6+9pvtSz+kP+Hti7kgoOVdRVS0VtRN89yU4Na383y8UdWzqD1tX3K/X3bBhg75/9NFHpbu7e684KoXFUQxwEEJGEpwPEEIIGS9s2bIl8D5dPcF/vWnTpkG7DstNE0II4TyLEELGH4hFWEyClY8IIaOdnGXEXgABXYiWbr75Zrnjjjs02Bxlf7f//vvLhz70ITnnnHNk7ty5e6m3hBBCBmMhPZxRfcstt6hbEvYQtpZyTn+AkGjVqlXqzgRB0+HnfEWSk+b538Opqbt1s+6LOTJB8IRjIIQqxblJ221vk3XrkjJz5kzp6OiQJ554Qt7whjeU1G/c+2BloUMUZQ5NQ/GMCSGkXDgfIIQQMh5ZvXq1/zqTqJZUwzSJd7fp+zVr1gzadcLjf0IIIeMDzrMIIWR8gxgIYu7YV1dX7+3uEELI6BI0pVIp+etf/6oipj/96U/S1tbmi5jcknIoNfeBD3xAhUxHHXXUcHeTEELIIAEXIJRNaGlpiVxIP+OMM1TMhP1QLr7//e9/9wfyEPHMnvNPaXEETRAomVCpGFHCp2IiJ6/dO2VWS3OgL6UKmgaTsDiKAQ5CyN6A8wFCCCHjHVfQlKptlnRtbq6wbds2XSubMCHn2tRfBjM5ghBCyMiG8yxCCCEGErotsZuCJkLIaGfYBE333nuviphuvfVW2blzZ6SIqaqqSk455RQVMb3zne+Uioq9aiBFCCFkEIAoaevWrVo2LWoxHa5MrjPTUCy+wxVp6dKlOoCHmAl/d7Y89TdpOfwk/xgIkUpxXIoSPoVFTmGBE7bal+8SaV2rxz/88MOaLbe3JxMMcBBChhPOBwghhBBvLQwltw2ImVK1E/METwcffDAfFyGEEM6zCCGElA0qRWCz2DshhIxmhk0xdNJJJwXESwbew6UCIqYzzzxTmpqahqtLhBBChoGR4AJ0//33S1dXlz+IX7N5e54TU6ml5KKETzhn40O3Sqq7w28n7OK0fvMO2fz0YyqqQj8eeughOeGEvgVUg+GQZc+f2dmEkL0J5wOEEEKIyPbt22X37t0BQZPr0LRhwwZ5+9vfLpdddhnH74QQQjjPIoQQUhaIxbtQ0EQIGe3E99aF4dRx+eWXyyuvvCIPPPCAfPzjH6eYiRBCxiAQ0bz88sv6er/99lOBTang2HLPiQKlTo0Zc+bJQR/7bp4oyRUhlcKq234ky64+X/doK1FdJ8nONl8UVd08LSCa2vjCE37d6nCf+vMsSn02EDPBlQp7QggZSXA+QAghZDyCdTCXdO0kyVQ1SCZeqe8xX9i4cWPB8XvUPGCw5k2EEEJGP5xnEULI+CZsLLK3q0QQQsioEjRNnDhRA9sotfPSSy9pttn8+fOHswuEEEKGifCien+ENYXOsbbPOuusPhfuEQxYtmyZ/7530r4i8XyDQoiPKmon+C5LfdH60uOSSad0b+ebiAkCp4M+dmVANDX1yJOlpr5RHZrA448/Ltu2bev3syj1ecKZCYtZe9MhixBCDM4HCCGEjHfCgqZU3SSkUUuqzis7h/kC3MsLjd9tHvCZz3xmQHMtQgghYwfOswghhBSCgiZCyGhn2ARNt956qwaVr732WjnmmGOG67KEEEL2EuFF9f4IawqdY23fcsstgWtEZSbfeeedgXN7p7yu4PUgZjKXpb5o3n+JxOIJ3YMoEZMLPj/47K/4Ze/S6XRe38p5FuH3hbKyzSGL5eYIIXsbzgcIIYQQkVdffdV/DOmqepEKL2M6DWGTiM4XXv/618uFF14Y+bgw/q+srJTe3t4BzbUIIYSMDTjPIoQQUgwKmggho51hEzS95z3v0QUXQggh44Pwonp/hDWFzrG2zzjjDN0vWbJExTxw/nMFTt3d3fLHP/7RPy9V0yzp+pbIa0HEBMcliJTcUnGFmH/KJ+SwS67TfamkJkyXdHWD/x59QyCiP4SfTblZ2SxLQQgZbjgfIIQQQkS2bt3qP4Z0daPzusl/3dHRoVvU2B3j/x/84AcDnmsRQggZG3CeRQghhBBCxjLDWnKOEELI+MEW1UFfZeH62/ZNN92ke5Rvg5gHuAv799xzj+zatcs/r3fagVrOIQxKzMGdCSXnZp9wTkGXpQETi0nP1AP9tyg5949//KOkU/sSLLkCslLESib+wp4QQgghhJCxTDklq4eaHTt2+K8zlbXO65rAcTt37vRfs6QcIYQQQgghpD8kk0k+OELIqIaCJkIIIUPKcCy+m5jniiuu8DOTM5mMlqTbsGGDPPbYY7J+02bpnbxAxUsr//cLunfdmVBqLlFdp+/x/arbfpR3nEtUO6XQO2V/ycQr/Pe//e1vta+l3mOhMhJuVrb7zOnERAghhBBCxjuFSlbvDVyhUlDQ5M1FooRP4bnA3hQ4cX5BCCGEEELI6IGCJkLIaIeCJkIIIUO62A2HpJaWloJCnMEgqsTCJZdcIjfffLOsXr1aOjs7Zd36jSKJShUvdbdu1r2BEnPVzdOkbvp8WXfvr/T71pcezzvOJaqdkqioUlGT8eKLL8rDDz/cr3sshBvwKBTsgPjLRGCEEEIIIYSMZcIlq4dyblJMBHTNNdfInj17Il2Zijk0hecCfSU7DCV0iyKEEEIIIWT00Nvbu7e7QAghA4KCJkIIIUO62L1161ZpamoqSYgzWNm+3d3d8r//+78qZAI1tbUydcnJAfES9gZKzB30sSulY9MqyaRTEosnpHn/JXnHuUD8hOOwL9etqWfagZJxSt9de+21fU4synk2bsCjULCjHIEUIYQQQggho5lwyerhHgObCOjqq68OfJ5JVDuvqwLfdXR0FGxvb47l96aYihBCCCGEEFKccDWIrq4uPjJCyKiGgiZCCCFDvti9ZMmSksQ4g5Xti1ISM2bMkNraWpk3b54sPu1jMuWIkwPiJezDmNhp9gnnyPxTPlHwOGDiJ+zLdWvK1DRK79QD/ffr16+Xiy66qOgz6m8ZOQqXCCGEEEII2TvYuB3zIcyLwgIktxS1+3okBx44vyCEEEIIIWTkEnMSqUfyvIIQQkqFgiZCCCFDvtj9+OOPlyRUKjXbt5igZ8uWLfKrX/1KZs6cKbNnz5a169bL+i25cg3FKCZ2CuM6PUW5PvVF98zFkq7IZWQjW7zYMyqljBwhhBBCCCFk5GDjdsyHMC96//vfHzzAFTHFKwNfMfBACCGEEEIIGSjlzisGq4oGIYQMFhQ0EUIIGXJKFSpFZftGDaDDgh475pprrpHLL7/cLzW3bt066erskC1P3TXo9+SKn8oRQhlbn31IHnvscdmwYYO+nzVrlpbm++xnP1tSGbmWlhbZtWsXJxaEEEIIIYSMknlQW1tb4PtMwhExxeOSiSX8t+FjwzDQQAghhBBCCBlshyYmUxNCRhoUNBFCCNnrZQmKLcZHDaDDgQE75j/+4z/kueee84+bue8iqW6eWpZzksvW5ffKyv/9gu7d1319Vwpapq5tp6xd7wma4Ci1ePFiqawMZmZHgecI8dPWrVvp0kQIIYQQQsgwMpDyz2vXrg18n66eEHrf4L8OHztSAw0UVhFCCCGEEDJySKfTgfc9PT1DkpxOCCHDBQVNhBBC9jrFFuPDA2gsmOO4JUuW6B7v8R0cjpqbm9Xx6LHHHpP1mzZL8wkfk4M+9t2ynJPyREetm3W/8aFb9TX24e/s9dq7r5dVt/2opLb9MnVHnRLIzEbpuYcffrjP83H/ED9hb8+FVrCEEEIIIYQMLQMREr322mv+a7gxZRwBE0jXNEceO5IDDSNFWEUIIYQQQgjJFzAlk8lBTU4nhJDhhoImQgghQ0opQptii/HhAbQtmP/mN7/R/WWXXSbHH3+8HHLIIepyhDJzKDm3duPWvABBOcBtKdXdIRW1EyIdnnxB0pHvCHzf+tLjBdtzXZysTN2UI98pXfPeFDj2m9/8pt5zsef4+OOPS29vr+7d58JAAiGEEEIIIUPHQIRErkgpXdMoEgsuy6Vrm/zX69ev1/H+SA80jBRhFSGEEEIIIUTy5hDF5hSEEDIaoKCJEELIkFKK0MYW40Gp4qeKigp9397eLp///Oelo6ND38+ePVtqGpqkbuZ+ZZeBc4HrUrKzTRLVdSo+mvGG96qACXtXkIQ9tomLjpFYPCHN+y8p2J45Ormgf0/feq2sacv4n+3Zs0fv89VXXy34HMOBAwYSCCGEEEIIGXr6KyRCpvSKFSv89+nanBtT7rOJ/utUKhU4fqQyUoRVhBBCCCGEkHwBU7kl5wghZKRBQRMhhJAhpRShjbkPwW2pVPFTY2Ojb5kKAZAxddESOfDC70nHplWRAqJSMQemuunzVRgFTMAUxfxTPiGHXXKd7ou1F3Z7MqHThldfkOSEGf7nu3fvlksuuURWr14d+RzDgQMGEgghhBBCCBm5PPHEE5qMYSSbZucdk2qcKRmJ+e/vu+++YesfIYQQQgghZPTT3d09LIKmUipzEELIYEBBEyGEkCGlFKGNuQ+BUssVfOYzn5H6+nqZO3eu/xkEQZ37nailGwoJiAqVgAtjDkwDFUbZtXA++hIWROWEU/vKEw/eKytfflUee+wx2bBhg7S2tsrpp58u8+fP12P7m/lczuSCExFCCCGEEEIGf2x87725eUcmFpdkc24e439eWSupxlySw/333y/XXHPNkAYKhmP8zzkGIYQQQgghQ08mk8kTMA2VoKmUyhyEEDIYUNBECCFkry9cm/vQFVdcUZJoZ9myZbJ06VI58sgjZebMmfpZsmGadO53kki8Iq8kXJSIqVAJuDB9CaNKodi1gsKpLbJ90wbp7OyUdevW6fcvvviiujR95Stf0Wd51llnlR1wKGdywYkIIYQQQggZL/Q1XxmssTHKYz/00ENBd6aKqshjk5O8ZAZzbf32t789pIGC4Rj/c45BCCGEEELI0BMlXgo7Ng1nZQ5CCBkMKGgihBCy1xeuyymXduedd8qll14qbW1t/mep+qnSuf/bRBKVRc/d+NCtKizCHgKlitoJkuruKOjSVEgYVS6liKKsP7FEpe5n7rtQP589e7bU1tZqWT08y1tuuSXvmVogxhU7ucGZUicXOHbTpk2SSCRkyZIl/b5fQgghhBBCxsJ8pb+L9GGh1N/+9jdNWogSLYXpnThPHZyMAw44YEgDBcMRiGCwgxBCCCGEkKEnSrzU1dU1JNcqJ6ZDCCEDwbOxIIQQQoZo4RrBgf4ujiMAYOen02n5j//4D2lqatLv4GAEsc/U/Q+Tzv3e2qeYKQwESq5zUiHBUrFyccWIOs8cmgq1A3FVJp2SyvomaXrrRZJ66S6BARVcqFCCDvd8yCGHyPbt2/WZ2PPZtWuXbN26VV577TXp7e31AzIWnCl1YoFjIZwCjz/+eMn3SgghhBBCyGjAnV9gfNzXfAXH9GeB/rLLLtPxOfYf//jH5Xe/+53/XbqiRpIT88vN+VRUS3LifKnc8YqfZX333XcHSm0PJv29x5F2DUIIIYQQQsY7bhJFsc8IIWQ0QYcmQgghQ8ZAVfqWMX3VVVfJ1772NdmyZYuKerBhIL52w2bpXPiOguUajFW3/UiWXX2+VDVOUaekGW94b0nOSRAlrbv3V77oyS1ZV4zweaCvEnf4HGKmWDzh9aeiWl7rrpGlTzylYiaImo466iipqamRD3/4w3Leeef5zwcgq/qMM87ws6v7kwWNY1taWnSjVSwhhAwdDz74oMRisbK397znPX22DUHqhRdeKAceeKBMmDBB6urq9O/BaaedJr/5zW8i7cf7AufccMMN8u53v1tmzZol1dXVMnnyZBXZXnzxxVoKtj+sXbtWvvrVr8rRRx8tkyZN0nbnzJkjxx9/vPzP//yPCngJIWQwy8mFHZmGI6sYv5fx+87onbrIL5NdiJ5pBwbe//73vx/WkuAj/RqEEEIIIYQQKcmNaagcmgghZLigoIkQQshep9CiN0Q18+bNkylTpmjgFKXX4MqEraahWVqOfY9IPFGwXRMg7XxxqYqFOreuCZSPiyonZ+dABAVRkisy6kuUVFCcVIJ4yr6ffcI5OUenJ/8mXe1tsnbjlsCxyND+5Cc/KQcddJBUVlbKSSedpIGYm266yQ/I9Cc4g2MhGsPGDGpCCBk6+isA6stW/KMf/aiKX3/yk5/I888/r657EAC/8sor8qc//UnOPPNMLSn67LPPltzuihUrZPHixSqmve2221RkC4HTjh075JlnnpEf/OAHcvjhh8unPvWpsrL+IFhauHChfOMb35DHHntMdu7cqe1CtHz//ffLZz7zGVm0aNGgBfEJIWOTYuKZqHJyw1X67IorrtDrYO/+HkMpud6WRX2en25o0bLaxl/+8hffSXU4SoIPxjXgTkVhEyGEEEIIIcOXPOCuy2D9Busty5cv54+AEDKqoaCJEELIXs/IDS+sWxsIxiLYCVcicyiaMWuOTHzjB+XA/+/70rL4RD2+kHOSCZDiFdUqLmref0nBPlgbGx+6Vc9pfelxX5RkIqO+RElR4iSAdkFYPOUSJa6ydlqOeY90zn+TrN+wUSchmIwgOH3XXXdpiTmWhyOEkNEraEIp1QULFpS0zZgxI7K9ZDIpp5xyilx33XWBz5ubm2X69Onq7uQKlN7whjfo39i+wKIX3JLcY+PxuP5NhvuTyzXXXCPvfe97JZVK9dnu5ZdfroIld6ENomW4P1VU5FxLtm3bpm3eeOONfbZJCBmfFBPoRImXBtORqdi8x66D0tAQfmL8DpIT50mmqq6k9l2XJmRVI6lhoAyHoMuuAYZaPEUIIYQQQsh4oq8EBTcJwqpcrFy5chh7SAghgw8FTYQQQgaVKHHS1KlTdSskcoJbBJyGsAcoMYc2fvrTnwYsUdOVddKx6GRJTl4QOD/snGTipLrp81UQNOv4M+WwS66T+ad8oqAAyoRM6WSPngPxU9gxKSw6KiSkco8r1dUpDNrEORA1oZ3klP1k7ebtOgnBZAQg8IsAMJwxIGwihBAy+gRNX/rSl/RvXinbj370o8j2ULbNDXS/7W1vk6efflpdjzZu3KiBdASYTdi0e/duLR9XzFGpvb1d/vVf/1VaW1v1Pf5O/+d//qds3bpV1q9fr2089NBDWi7OdRBBidhi3HnnnepYYkCodfvtt0tbW5v+fUPwH+OFxsZG/xg4T8ENihBCyhHoDHU5uVLcjq6++urA+L136gElt5+cOFfSFTX+ezjtZTKZAfV5OErs2TXMpYqlrAkhhBBCCBkc+kpQcAVNqHKB2MGcOXP4+AkhoxoKmgghhAwqGEy3tLT4AUks8CP4ia3QYj8chiDIueWWW+Rb3/qWuklYeTkj2ThLOg46TdINudILRtg5yUREHZtWqbAIuMKj4iIjL9jbMHthUUelvtuJ7lupWNsQWlnfpx51ilQ3tciM1x2kx5hrFQLjKMv3ne98p6xrEEIIGX5QVs3NjoModSAgaIyAuXH66aeraOiQQw7xP8PfVYiFf/7zn/ufwekPZd8K8d3vfldeffVVfQ0h1M0336zCqUmTJvnHvP71r5cHHnhABVQG+rJ27drINvG3Hs5MFpDHItwjjzwi73znOyWR8ErI1tXVyYUXXigPPvigL2pCOb0vfvGL/Xo+hJCxQ5Qj0lAIdEp1nO0rmIDfeXDWs3lNqnaipCLmMgWJJ6S3ZX//LX4nj6bs6uEQTxFCCCGEEDKe6GuMjWQxw2IH06ZN03UVQggZrVDQRAghZFDBYBrlcyBgQtASrksQOGErtNiPz+H8gEX/r3/961puBov+yGR+7rnnZOmTT8uazgrJVNb657juSGHnpEICJxMeRYmMZrzhvfpZvKJSj11376+07UIuTIXaCVOqq1P4O2sbWN+1rQuukua3fVK6Z+QC1XhOcMpAFvS9995bNCjTn5KAhBBCBg8Eo11XvcMOO2xA7X3ve9/z28Pf35/97GdaFi6KD3/4w3L++ef776+88koVWIWBO+IPf/hD//0555yjpd+iwN9viJ0mT56s77FIBjFUFH/4wx/UzcT48Y9/rOODKA4++OBAHyDSeuqppyKPJYSMD1xHpKEc05bivFRKMAG/s1D6E0EEBBN6WxbK1qfvKzgXiALnuJ5Mf/3rX2WkwHkFIYQQQgghIwvECKJA8jkhhIxWKGgihBAy6LgCJbgvbdmyRbdCi/3nnnuunHzyyZq9jDJqYPXq1VqeYeu2bdK1p1W2PBFcvLcScdiHgfAHgiCIgFxxkAmPwiIj9zMIm2LxhGTSKT2/mAtTOWIlo1h77j25/ckTTcXi0jP7SOnY762SSVT79rF4dhA1IUDtlhFygzKlBmgIIYQMDcuXL/df4/d2IUFPKaRSKfm///u/gPBo4sSJRc+59NJL/dfbt2+Xu+66K+8YiIfwnQGBcjFwTZSFM37zm99IOp3OO+5Xv/qV//qggw6SE04o7IIIzjrrLBUBGO69EkLGH64j0lCOaftyXiqVxx57zH+dkZj0Tl4QORcoNofIVE+Q1IQZ/nvMrQZadm6whEucVxBCCCGEEDKyWLNmTVmfE0LIaICCJkIIIYMOhEs/+MEPNBAAh6Zi2dMvvPCCfOxjH9MsActeBpnsn6hYLKECo7rp8/1zsNif7PTqQaeTOZcLFwsWwGkJ9FU+zsAxs084xxcRuWKovgRLhcRKdt6q234kqe4OqaidoPdjn4XbTCd7CrpPue3988HbZOmTyyRVPSHw7O644w75+Mc/rhnj4aBMoQANM6wJIWR4QJnQwXJnQrB8586d/vt3v/vdfZ5zwAEHyIIFC/z3t96aLwz+y19yf8dQLunII4/ss1332ps3b5aHHnoo8D1Ezq6LYCl9RRk6CJ6L9ZUQMn5wHZHcMe1gj2MHq1TaE0884b9Gqbmtzz7kzwXcZIW+ylinmryED7Bp0yZZv369DCZ9Pb9CwqXBEn4RQgghhBBCBodVq1ZFfo7kcUIIGa1Q0EQIIWRIsEAAsoijFsCTyaQ6NXzyk5+UDRs2BLKXu2cdLjOOP1MX+zOZlLoldWzKDca9xX7LTM5EiowQJHCdlvoSI+HzFdd8SjdgIiJXUNRXRjVESmHxlfUX57W+9LgkO9skUV2n92OfWZvmxiR4BgXcp8Ltde/aKquee1rWtMf12Rlr166Viy66SMsAXXDBBX5QplCAhhnWhBAy/IKmww8/fEBt4W+sy9FHH13See5xDz/8cNF2S20Toie31F243eeff1727PHEyOCYY44pu6+vvvqqiqUIIcQd0w7mOHawxFFwp33ttdcCoiSM4TEXgKipnDLWSUfQFBZKDcb99VXKr5BwqRzhF5MnCCGEEEIIGVrg4l1IuFRI6LS3x++cJxBCSoGCJkIIIUNK1AL4unXr5MQTT1QXIQhvIGiCy8T6zdul44B3Sc/MxdKy+EQV/kgmoyIhd4FfBUOxmMQrayReUeWLf1zBkuu0hOPX3nNDnyIhBBiwmWApLIKyYIO5K+Fz1wmq7bWVeeIr97zm/ZfkOT+5n5l4Kl5RmefUVKg9E21t+Odz0rnoZElX1gfcMDAp+NznPiff+c53/ElIOYEKQgghgwfKBD399NMBhyYsNn3ta1+TY489Vku3VVd7pUThTPSjH/0oUEI0zHPPPRdwUmpubi6pH/gbYCCIjUUvt49wT3QdnUqhpqZG5syZ47932wj3tZx23b5GtUsIIeWOY8NjYff9YImjnnnmmcD7ZOPMvIQLI8qR1Z2LbH5puaQravzP3b8jpdDX/fVVyq9c4dLUqVN1KySaIoQQQgghhAw+GzdulJ6enkFxaBqu8TvnCYSQUqCgiRBCyJDiLoAjSPrHP/5RS8zB/QFBWoibsOH12k1bJN0wNU+4A2GSu8CvgqFMRjKpXqlqnKKBAZSeM6cjW/wHCA7Y8cXAteAI5ZaACDsyWbABwiUTR7mBCRAWPLnnzT/lE7q3tnGufebenzk1mVgrXH7C2muYvVBFX9bn1ITp0v4v75He5rmB41esWCFXXHGFPwkZaKCCEEJI/8Dv3ra2Nv/9DTfcoEHmr3/96/Loo49Ka2urLj6hnBDKvsFpb//995c777wzsj38/TQggiqVWbNmBRwTXafE7du3B0RU/W13zZo1BftaTrtum1HtEkJIuePY8FjYfT9YIn83Axouqum6yXmlrfsiNxf5q6TrW/r9e7Cv+ytUyq8/GdO4xtatW3UrJJoihBBCCCGEDD5IHHdJ1U0u+F1fDNf4nfMEQkgpUNBECCFkWLjqqqtk0qRJ8vnPf166uro0kFlbWysNjY3Sm4llRTknB84plK3siog6t67RPVyNLDgQFiK5YiWIhYCJnlbd9iMtMwdxEr475JM/1O/xWW97a0DgFIUbmMD5JqAqVpouqnRd1H2bsCl8fWsLfbYSdv4zqqiWrtedIJ3z3iiZeEUgIIznvWDBAg1WMKBACCF7t9wc+P3vf6+CIgBnJjgc1dfnnPZMCPTud79bfvKTn0SWNDImT84tVPUF/h677NixI7LNgbTrthluF25OdXV1A+4rIYQMxqK5+36wRP6u6Chd0ygSTxSd30ThlqJL1zYF2jZnvVIER+XcX/j7cjOmcY2WlhbdCommCCGEEEIIGUmMlbJn4USyZHPORXv37t2aRFcqwzV+L/c6Y+VnRQgpj1ykkxBCCBkCEKhFwPbf//3fpaOjQ7q7u2XmzJm6pWqa5NVnn1T3JAiHSlnYB3YcBEFwQ4KAyEq2GRD79LbvUmGSK1QyQRBKxEEI1bN7m++uhPbQhpWfA5X1XvkeCIjsGmjPHJasP+61TVTlCpFcEVPU94XuM+qZWFt4Zq4jlP8MYjFJtuwv7Y0zpObV+6Viz2b/mUNMdt9998mVV14pp556aknPmxBCyOCwfPnyvM/OOecc+exnPyuHH364xGIxdTOE8AnB45tuukmPQeAabk377ruvnHTSSf65e/bs8V83NDSU3I/wsW477uuBtBtuZyj62p8FvShLdgPuWIXs2Qkhow8IQb/3ve/p71iUujbOP/983QD+zYffDwbbtm2TpiZPhJRsnC1VteUvvzUf+zbZ79i36euK7a9KTefawO82lBpF0sgrr7yie7uHMAO5v4svvlifIfalnOteqz/XI4QMH/z3SQghhEieiH80C/BdF6Z0RbWkHJdXm0M0N3uxjtHKWPlZEULKg4ImQgghgw4U8hhUvv/979cyNii5AIcgDJrhzJSJJWRNZ0JeW/lgZCk4czEKi5RKEfvYd54oabOke7t8oRLcmFpfelxiiQoVMcHlqXn/JVpCDpjACHsIogDEQiZ+snaKXbtQ30zEhPbce3PvFfR1325bdhzETCaWcs/LVE+QzkUnS+WmlbL9sT/J+nVr9flD2PT9739fbr/9dg1OHHzwwQWvRQghZGgcmhKJhNx4441y5plnBo6BqAniJnz35je/2Q/CQ9R04YUXygsvvCCVlZV5gSj7rBTCx/b29hYMbvW3XbfNoeprKcD1qlTwbHfu3FlW+4SQkcktt9yiIh8kV0DIf+yxxw5Km/jdfPbZZ8sZZ5xR9NiPfvSjMrgsFJGTA4IpbO973/u0T9g/88wzg3xN0edmzy7cfjnPgxAy8ti8efPe7gIhhBAyIoCzqJVnHs24ztiIC2z+5wrZ+thjfjwAf/v/5V/+ZUjiQOYGO9SMlZ8VIaQ8WHKOEELIoIOgAZTy//3f/61iJoBB81FHHSXTXneIdBx0mmx8cYXvjBSvrJYJcw8quSSbi1vKzcUtM2diIYiZcM10skedjVAqbv4pn1D3JmwmBsLePoP7k4mf+nJUKoaVlwiXo3PvNeq+3dJ4dp/WFsBnKDkHVyY4UrnPQc/92Zdkw+atsnbLDuns7Aw4Vdx///1y9NFHy3ve8x7Zvn17v++NEEJIaXzrW99S16Wvf/3rcv311+eJmcJccMEFKmIyXn31Vbn55pv993BzcoVQg4Hb5lC1O1htEkJIISC0gZipoqJCBTelApHO6aefrvuoNpH1jP1IYG8Likba8yCEEEIIIaQ/jJXyyG4iWSZeKZuX3ReIBwyFO2O5JaoHWlZurPysCCHlQYcmQgghgwZKyn3605+W9evXq6MC1P9GJlEl3bOPkN6WhbL16b9LqrtDRThwaEJZN1foU6gkW5Rzk4mA4KIEXFFS2OUIbkwQNWEPIVMphN2Q+ov1HQ5N1m64fbufqFJ1VhrPdWGy7yC2wnOEGxWcpawNvEbpPOy9Mnl3yrT9D5X1m9bK+jWvaZAHThd//OMf5bHHHtNyEihDV1NT0+/7JIQQUpjFixfrVg5f+9rX5Kc//amk02l9f9ttt8mHPvQhfV1VVdUv56Lwse7vfbfNgbQb/lsyFH0t13K9UMk5CK7BokWLAmMXQsjo5Qtf+EJkubm+gNAUvzd++9vfyn/8x3/ktYnPUML5kUceKdjun//8Z7nhhhv89+0HvlsylXVl9X/9k3fLmkfvkH2OeafMOsIrNVr70t8k0em5yB144IHaR/T1f//3f/V1oXstVHpvMJ+x6/g6VNcjhAwuEydO5CMlhBBCxhAmWELFjLUbnpK62Ysk3rPHX+co1/F6bzkmsawcISQMBU2EEEIGzNatW+XWW2/Vxft7771XB8+1tbXqygR6puwvPbOPkExlrb73ysG1qXsS3IUKiXnCYiCIoHCeK+rB8eGScJF9XH6viqbgylRMmBQWTRUrL+eKlNB2MdGTiY+AuSuBcPvua7SPe4aDFbBnFRZHYW9l80CUu5VdB+eufvxuFUDF4zmjxk2bNsm1114rv/rVr1TUhMz0yZMnF3xOhBBChgeUbIUl+IoVK/T9E0884X/X2Njov25vby+5zT179gTe19fXR7Y5kHbdNoeqr6VQjkAJoquwoIsQMjr51Kc+pVu5XHrppf6CfPj3Adyedu3apYEAlG8u1D5Ks+E4kK6sk/ZklUgyWVY/Vj98h47psa8/8M36WWeqWqqy7aKE6ec+9zkVDuFar7zySsE+4fNi3w/2Mx6q6xFCBheOeQghhJCxKWiCI1NXZ6dkNr8mx2QTuIZK0ASnpMF2S2JZOUJIGAqaCCGE9BvYe/7mN79REVMqlVL1P1x/zJ0pVTdFuuYeK+mGlsB5EODAcQhl5lynJBPzoIya67pkYiAIoFAqzhU9uW5FxUrCuW5FYdGRK2Iqdlz4HBNSmXtS2CXKpZDrVDFM+AUHJrQPJyu0bc/HbRcOTCZY6svxCWImEK+qlUkTJ8q2jeu0/A9+fgCipl//+tdy4oknyvve9z5ZsGBByX0mhBAy+Oy7776+oGnLli3+51OmTPFf79ixo+T2wsdOnTo1ss2BtOu2GW4Xjo7d3d1SXV09oL4SQshwLcij3MFnPvMZDQJgrlMoAxm/3x599FH/fSo0DyqV8NxBx/hL/yT7TJ+iSSNwiTr00EN1Poa+FcuKHu6AAAMQhBBCCCGEDD+WPIa4zNoNm6XlyHdIpneNxCQTmTA2UhkKkRQhZHSTs2YgZfHaa69JXV2dBoB/8YtflP30Hn/8cbnwwgvVJnzChAna1ute9zo57bTTVBzQn1qmOAe25u9+97s1kxsBArhrHHLIIXLxxRdrBl9/gIX5V7/6VTn66KNl0qRJ2u6cOXPk+OOPl//5n/+R7du396tdQsjoBCVvHn74Yc0IvuCCC+Suu+5SMZOp/7HIn6iolEnHniEdB56SJ2YCcDOCQAfl37A4D7CHUAd7LNybiAfCIrgUQcwE0Q7cjcIuRv0tCYdzV1zzKVl79/UqEMK1/PtM9vj9cftmr3Es+gcq6pt1j/dr775B27T7MtC3cN/7AveE+44lKtSlqbd9l7YNQRiEXdhDROU6MrnXsdfA+m+uTiIxmTDvYNnnrP+U6gkT9eeKnx9ETSg/h79zf/nLX+SjH/2oZqovXbpUMlkhFCGEkOEFroeG/c0F8+bN81+bKLUUUBrWzc5vacn9rcZr1wWpv+2GnZHcvpbTrttmVLuEkPELhDz77bef7ot9NhhAEGRiph/84AcFF9jvu+8+FRsZyUn79ut64bmDJni07ZS169b5x9x55526R18gbCrUJ/seDMWzCT/3vvpDCCGEEEIIGVywbo8qGgAJEItPOVdaFp/oV8wA27Zt42MnhIxKKGjqBwginHfeedLZ2Vn2uchERnD4qKOOkp/85Cfy/PPPqyoWbcGS+09/+pOceeaZsmTJEnn22WdLbhcZ24sXL5YPf/jDctttt2mAAAInZDTD7hwLbocffrjafZfTbwiWFi5cKN/4xjc0wL1z505tF0Hv+++/XzMUFy1aJL///e/LfhaEkNE1IIbA5aabbtLfM1/5ylciRZIz5++v4piW1/+r9E5dJBLL/ZkpJlgygZAJc7Bwj9JwEO0AuBSh3FqUGMjcmyDsiRJHGRBDoT3s3XPRtosdF6+o8vtj13BfA9wD6G1zhZ0Zvyxe+N5X3fajvH4VwoRaIN3bnd26tG0IwhDgMGEY+lHM+cntP86xfurrWFymHn2qVDdPlWmHHi9r12/QvxP4PW+gvNEXv/hF+chHPiI333yzCl0JIYT0P2Nu1apVOi8oFTeBwC0HesABB/iv8XsbziCl8NJLLwXacEuQAozvo44tBgL47t+Hgw46KPC929dy2g0fF26XEDJ+gcjon//8p+6LfTZYrkNIQismZgJ33HGH/zpdUS3J5n0G5fqW6JBMZXxB6COPPFJWgtlgPpuwcCzctn1/1llnDZmIihBCCCGEkJHIUCVZFLvG7t27A0YZmSovUS1TVed/ZoKnscJwPGdCyMiAgqZ+cNFFF8nf//73ss9DGaZTTjlFrrvuusDnzc3NMn36dHV7cgVKb3jDG1Tw1BfLly9XtyT3WAQloMKF+5PLNddcI+9973sDmd2FuPzyy1Ww5AqgkB0O96eKioqAqhdt3njjjX22SQgZPeD3BH4X/ehHP5IPfehDKmSCEDNKzJJsnCUd+79dmk7+nBx04fek5bCTiopqwoIlEwi55eQsK9kERoUEO644ygRA7rVMTATCDkk4N15Zo6+xt7Jt7nXhaGQOUTgemwmjcA8mapJYTF2U0I4dG753OFK5bkpRwivfNeqeG/KEU7iG27b1Bf0AhcRSdpz1H2247Xj3/F2Z9MYPqhitunGyzHhdfsB49erVOkHAfw/nnnuu/PjHP1bxbSl/UwghZLwDF1Y4HzU0NGgJObh4lIorIob7qoEkCANOe08++WRJ7SFRIaqNqM/cY4sB8Sv6UKhdCJpw7+W26x4HMQHmToQQ4oqM3FJqUZ8NxqJ4Ka5DK1eu1M1ITl4gYuP4MgnPEzBeR4JHsqfLTzzA79zf/e53JbdZyrMpNSgQFjCF27bvb7nlliERmBFCCCGEEDJSGaoki2LX2LJlS+B7EzSls3uwebMXaxgrDMdzJoSMDChoKgMEbLF4hYB+f0DZtrvvvtt//7a3vU2efvppdT3auHGjZtlh8ceETVDUonxcMUclZHj/67/+q7S2tup72J//53/+pyptUZ4BbTz00ENaLs5ACaGvfe1rRfsK6/IrrrjCf79gwQK5/fbbpa2tTRfPdu3apQtcjY2N/jFwnoIbFCFk9ILfNw888IB8+9vfVqEiRI2//vWvA249RiYWl94p+0n7QadL58K3S6pplgpuokQ6wIQ0EAfhu7BwCHscYyKkUku1ueIoE+hAhAQREPauuCnq3Mr6Jn2NvXsNuy5cjOCKhH7vWfdioLyde+2JC4+WyvpmaVqwWIMNONZcmXp2e5nTscoav18gqm++a1Qmo8eacEpFSDUNvugqTF/36ZahO+STP9QtXLrPE37F5KCPXy3Nb/+0tB90mvROXiAZR3BrrFmzRv7v//5Pnf/OOOMMufLKK7UUYTmOI4QQMp6YP39+wEHpr3/9a0nn3XvvvYEsuhNOyP3uPvLII7UktAGn1r5AEgScYd05SRj3s1dffbWkJIs///nP/uumpqbA/AMkEolA30vpK+ZfrttJVF8JIeOXKJHRQMudFVoU70vogwS2q6++OvBZ75T9pb9Eje0tSWHWvNcFxLJw0i2FUp5NqUGBsIAp3LZ9j3nCQARmhBBCCCGEjDYGmmTRn2vACdwlXe2ZXWSye4BEddfFaTSDeRni1C0tLZxrEDIOoKCpRKBcPfHEE9WNoj9gYcdd3Dr99NNVNORmWMOl6aqrrpKf//zn/mcINqDsWyG++93vapABQAiFUkAQTrmBjde//vUqUHADAOhLoZJBvb29KmJAiSmAP4qwMn/nO9+pgQhQV1cnF154oTz44IO+qAlBbJQkIoSMLlCaEkFFlJE77bTTVPAI4SMGhFGkqxuke8ah0n7o+6Vr/pskXTcxIGIqJKzxs4qz5diinJOKiXKKERY9WSk27F13oihUXBSLSW97a54IC+8hZML3aC/ssGTXRtv2XdQ+k056z6673e+XXdsVOAHXQQlCJhMhuc8uqtwe2ih0n4VEZi5Rzz5dN1m69j1e2g95v3TPOETSVTlnDRcIcxFwxn9Dp556qvzbv/2b/o0zsS0hhBCRI444Qp1Ojeuvv17/BhcDAXL8bjVqamrUMdHA2BzBYgNOsH397sV8w4DbERxkw7zjHe8IOCG55xT6O/Czn/3Mf/+BD3wg4Ojqfu46L2GOUgyUukXihwGHQEII2RvBh76ETp/4xCf0dxp+tyFZDUkB6brcuky5RM1hbN6xdv16v+wc/k58//vf99dvBlrqrdTgS1/iKPsev8cHIjAjhBBCCCFktDHQJIv+XOPFF1/0v8vEEpKu8dZ0UnVT/M8xdwgLn0YrmJch+Y/xB0LGBxQ0lQAC/Ycddpj84x//6PeD/t73vqdCIctYxoI/ysJFgSDF+eef77+H60WUararq0t++MMf+u/POeccdVSJAs5NEDtNnjzZFx9BDBXFH/7wB12oMyDigso1ioMPPjjQBwSwn3rqqchjCSF7Hyx0w73trrvu0oXvj3/84+ryhkAl3HUKKfRT9VOke9YR6sbUfvD7pGf2EZKprIsUw7iL71Y+bfn3L9S9K7oplnVcSHxUKq5QqC+Hp12vLFM3pHRvd56QauNDt2bdkkQFRs37L8nrHxyY1t59vQqVcE07xt1bWTv3Pl3hVdtrK33BUSEHpahn45bbQxsupYjMwn0q9OxhUdsz+0hpP+R90n7Qe6R71uGSqvP+noTB3xc4A37nO99R8S4mVRDm3nPPPRqUtmALIYSMNzD2R8DbFQGdd955uqAUBUoJIYFg6dKl/mef/exnZcqU3GIUuPjii/15BUpBQzRk844wN9xwQ6D89Sc/+UktKR0Gn7kLbzgH50aBa33wgx+U7du3+yIr9CkKjDn22Wcf//3ZZ5/tB+XDoKTppz/9af89ynEfc8wxkccSQsY+pZZCG+g1sDAOMU84+NCX0AnCHbjawvF27bp10j3nqLKv747fC81hdFy/e4es3ZATe2INBvO7QqXeynl2wxF8IYQQQgghZLzMMYYLV9C0futOWXndl7xk7fopBY8bzWBehrg31qRYco6QsQ8FTUVAObiTTjpJy765mcEXXHBBWQ8ZpRJQlscVHk2cOLHoOZdeeqn/GsEBW5xygXjIAgcArkrFwDVRFs61JkegJMyvfvUr//VBBx0UKA0RBTL/Zs6c6b9375UQsndBaRsscOPfNRweIDBB8PAb3/iG/P73v5eXXnopUmACFX+yabZ0zX297Dn0A9Jx4KnSM/NQdWOCW1EYt5wcwOI7gHMQBEHp3i7dQ8BjC/MmoIHoyF24jyo7V4hCzkOuQ1Nfx6d7cyKuwkKqjDokNcxemPcNHJgMOCrNP+UTeo/ufvHFP5aJi45R8RH2FpiwZwD6EhxFBTWs5B2efbJrT6ANiLHwHvtShGJ9Cb+UWEwzzXtmLpaOg06TPYeeKV1zj5Vk4ywtQZj31DIZeeGFF+R3v/udlkNFwBvCWzg43XjjjbJs2bJA+SVCCBnrYIy/aNGiQJm2N77xjfL3v//dH5djj/fHHXdcQHx06KGHyuWXX57X5oEHHigXXXRRoJQdzn300UcDbrNf+MIX5CMf+Yj/2dy5c4u6q+I711EK537+85/XtgxcA9dyy+dhTnLAAQdEtllVVRVYaIJj7JIlS+S3v/2tL+yCGOCnP/2pPhdzi8QiFYTYhJDxS6ml0PoLghj4/VXoGoWEPhBewrUavy9nz56tgtDphxwnmcp8sWhflJWEsORdOmdzXbgx7g6XesPv2GL3RQghhBBCyHhlqOcYwyW4QoKxa1Kx/rVX/HkFSs5lElX+dytXBpOiRyuYl/3gBz9geWtCxgn5dQBIwCkJoiajvr5eXUzwixKL7KUCy3FkYBsQSPUFggALFizQknPg1ltvlXe9612BY1ASypgxY4YceeSRfbaLa8PxCSAYAReNN73pTf73ULPee++9ZfUVWdgnn3yyX2YCfS3k/kQIGToQAEVg8LnnntMNg9PVq1dHChejyCSqJdk8R5LN+0iyaZZIorLka0MEY25G6/9xsw6WIW6CqAgimHhFtcQrKvNKJmCDwMgG2OGyc3hvDkM418Q29hmuYWXYwm5Gdo6LtY2+2veew1FSYvGKPDHPhLkHyc4Xl0q8oirPVcqOhQMTRE3Yu+eH+w1hk8gn/O/QBzDjDZ6zXlR/w21B/GVl9Oxa9szwHHAvxURLe9a9mPcsBwKcm3qnHqCbpHqkYtd6qdi5Rip2rZVYKtrtC38P8bcHG4CryPz58zUgDxEt9ggGFXIxJISQ0Ux1dbUmJWD8DScPAAemt7zlLTrXgJsqXJbCYk/8bkSCA86PAuN7/O23cTyERscee6w6w6JU9KZNmwICZgTf4d4xYcKEgn1FyTmM61G2GsIijCcwF8JCH0plo4/h8rRvfvOb5dvf/nbRZ4Ag+5e//GX51re+pe/h0PT+979fy+nBfQpzFNdhCmW14fSHkn2EkPELhDrmnjQUoG387oGAstRrQIiJ+RccvY1p+x0iHQfkl/IsBXcOEzUHcslU1EhPyyFSvWGZ7+CN363XXHNNQHSFAEi590UIIYQQQsh4YKjnGIMpuCrmoIqkYcwHjOkHv0k2Pv+EFyeIxSTVMFUqdq3z14tgwoG47t6kmDtuse9c8B2dZQkZHzBaWCIQE6HsQX9+OT7+eM69Axx99NElneceh1JQxdottU2Intwgcbjd559/Xvbs2eO/L7Wsg3v9V199NZC5TQgZGnbv3q1B0J///OfqmAABIoSYKPUFxwf8WywmZlIXpoZp0j39YOlYeLLsOeyD0rXvcZKcNK8sMVOYdLJHRT8A2cNzTjxXHYog3MGiPEq0uS5JYfeg8HtXhITzcD6cn/AZXIngTuS6PBUjyhEpUe1lT9vedXFSh6dMRgVNJigqtSReVIa1tW3iL1eMVcgdCefY/UI4FZW1bfcFtyZrA88bn9lzd8+3Z1mKC1bJJKokOWm+dC04XvYsPkv/m+qZ/i+SbJgayB4Pg/9GId7Ff7MIgp977rly2mmnqZPIL37xCxUFt7W1DV4/CSFkLzNv3jx58skn85IV2tvbZc2aNQExE8Q8KEX9wAMPFCwBDeAIgjLZKGGHcwwIjsLlPhHcvu+++0pKhjjqqKNUJAVBlYG20GZYzAQX2jvuuENdmPrim9/8pi5OQWxlYPENIi9XzATh1S9/+UstvUcIGd8Uckjqb5mI8HnmbIQs31LWffC7EIlc7rpMurJWOhecIBLhXNoXroAJ2Pg/PO535xhw0E02zQkkDmAM3draqvc1depUFbQ2NDSoSLUUop5nuc94LJXuIIQQQgghY5eRXm65UNnrMA8++KD/GlUUJh39nkCsAQnsBtZyRoJLUzF3rJHunEUIGX7o0FQEBAOQZfzv//7vuu8vyJZ2nZRKXUjCApCBX96uatbK+BiFyjqEQebznDlz5LXXXtP3bhvhvpbTrttXa3faNE80QAgZGD09PfpvdtWqVbpBqIRt69atZbWTrp4gqfqpkmpoUVV+unYS7HEG7cdjwpkoFyET5cCxqWf3Nt2bkMc2Ow5im3Sy13cwskxluDFh8d7OVzJeKThcr5jLUxg4L1kfgV3LAgl2bvjabjk9AyIh9GfnC15pH8+JKdolytpW16pKuGzEpLe9VZZ//+MqmsIzDPdXrWHTKXVfggsU+m0CLnvGcF7Cc8HedW5y2/Kea4/EEpUqBIOYCj8T9zqD5dyE/65SjTN0U9IpiXfskET7Vkns2SKJ9i0S786JZ8NAwAQhEzYDAZl9991X3Zywx7bPPvtotjkhhIw28DsNAiT8nkNZ2Pvvv19dPvD7Dy5NcKp761vfKh/4wAfkkEMOKalNiJogckb5uRtuuEGFSOvXr1eBFNqEgwjckVAuGnOCUjn88MPVtfamm27SEqLLly+XLVu2aJIE+gm3KZS1hiNUOVxyySXyvve9T/t8++236xgHwXi4RkFABQdYlPrGsyKEjF/6ys4NZy2Xks1r5eUgoLTzSsnutbbx+wvrRSi3CZc5iDFnzZkrzSd9XDLVDf26z3AyhI3/w4kUgTlGLC6dC94sdS/eKYn2bfo9+gKnpr/97W/+fBHjZSSu9ZXZXSgLvNTM8Kg27H1f2dWEEELIYICgvluNolSQWPeHP/yBPwRCyIAo1VmoVEqZoyBubJUQ9P2E6SIVwUQzFTS99nDgd2Wpa017wx1rpDtnEUKGHwqaivCnP/1JxT8DxcpJACz6l8qsWbMCVuZYKLP+bN++XTo7O/vdrgmakAVeqK/ltOv2NapdQkjfwKkGGbQmWDLxEgKcpZaNMzLxCknVt+TES/Utkqn0HIiGmobZC3WzxXgTGLminLbXVqpICG5LrrDIRE8g3dul51k2QbjsmrtHe3BqsnYgcnL3YVEVQLu50nWdWnZu3b03qlOTtWWioHDGtAvux8RMEDdZWbmwoAjg/LV336BCLIiZKuubfKFUurdb1t5zgwqPXGGTG7Swz1Zc8ykVJKEtdXvq2qNtutd3CZel867vBUpwPp5TMQHYgIknJN3QolvvNM/lI9bbKfE9W1Xc5ImctkksnSzYBILn2GCLa0Dki7+LrsgJGwS1LFlHCBkNwAEJ22CyZMkS3QaTiooKddDDNpjgd/hll12mGyGERNGXmCa82F2K+KY/5eXctvE7C6WSbQ0FazNrN22VxrrJ/f4hhpMhCiUb5M0xEpXSud9bpe752yTe3eY7b6M0KBx9Ibw66aST1EmqlHuNCh6UG1Bwjy9XDEUIIYQMBJRdIoSQvcXeGPuiggeSw4zkxLl5x2Sq6jRWtPnlp3X+AkdXJKZVVyPheu9QTKzlfjfYIjFCyOiEgqYiDIaYCSAAayA7ulQmTZoUeL9jxw6/T26bA2kXbRbqKzK33TIQ5fa1XMJiqjAobeE61mAjZLSCxWUICyH+sw3Cpe7u7rxj4VTQF6nqRsnUT5ZUnbelaxqloh+lDgbC8095WcXbnvKETPa6Z+NL0r1rizoS7ffWs2TWESfJI9dcIp07vBJoENXYOSo2isUkUVkt8YpKmff6d0pzrfenqvnYt8l+x74t77poC0Kd2knT/O87t67x93Y++meiKmvX+mxA1IS2KusmBK6Fa9dVxWXNo3fo/exY9ax+vu+bz5DD3vdpWXlrTLY8/5hMPeAoaX/u73rcPse8U+91/ZN3++/R5tq7r/cFW/Ne/0F59e+3SKq3R9K9PSo0wvXxPOx6OK+qtk7Pa115vyz52NfxiKzHejyebSaV1Ovb/YbBPdu1Mpm0L2pCW/jOrlXo/EGndoJII/7b3jd7K2mJd+2ShDo5bZNYx3ZJZIMyxcCEDdtTTz2V50Y4d+5c3cPJCRtKFxEyGuGYhxBCyHgFAk3MmwoJNcML4SaiwfFwko5a+HYFN+Usin/2s59VMdPEiRMDSWBrNm2XqUedUnI7brJEOHnCdVstFSSudOz/dk/UlOzSzyDWevvb3673WY57dlRgwT6zUnJ9PbdwG8yuJoQQsjcETU1NTTJlypSSzkNVDUIIGSj9dRbqr2gHlXxuvPHG3PtYPFLQBHonL5B1992uyRgvvfSSus2eeuqpMtJhggQhBFDQNAzA2ttoaCjdfjx8rNuO+3og7YbbGYq+DoWADCXtXNUxIaMVE1qMBf7tscVyzz33yHFLFuv7u+66S2JdbbL1+aUqnoED0emHTBPpfUaWZXqkZuJEdaVAqcuzzz5bz8EAHK+xAIG25qU2yDdOWxi8zr/9m3534oknyje+8Q25pfcj/nlnZI/9t8dO8q4fE/n7Nz6kZXsu/rhz3Bln6HE498c//nHe75OG6gq5MnTd03/xJRVh9e7erq55oOOZu+WoQ6bJy7vXyRe/8Hlt9/TTT9fj8N2VV3zSP8+OvS8W08kGBKM3XvFJEcEmctxxx2lZINBUFZNX/vZLvY7tQdvGVdqvf3vs9Xp/cMyor6+XCy+80L8nva9bbvHv1X2uNz7TrMI5NwiTO/eT3nm/+FLgGY0F8LzNmZCQ0cjmzTnhJSGEEDKegLMQ3JSwLwUT00B4Uyg7upTSDWGQeIIkrIMPPtj/LCMxmfiGM2XClP3KaitcHruvctlRhEVQmZpG6Vx0stS++FeJ93pzCvT305/+tFx11VVyxx13DDizuT/BhP48a0IIIWQwBE1f+tKXdCOEkOGiP2PfqHLYpfLMM8/IypUr/fe9U/aTTGW0SQW+m7XPPFm/ZrUmZdx8883yzne+U+MLg8lgOyqx/BwhBAyvfcc4xc2qR5ZcqYSPxR+0qDYH0q7b5lD1lRAyPoAwCcIb7LGhTB4EOnDLMSCswQYBEYSQECT9/ve/V/EMNnsNsQ7awh4iG4iEsAcQM+E77IF7noF2UQoTNaTRDzs2DM5xBZn4XQaxD0Q+4eseeOCBOsDff//99RgIkiDehCAKIiHLhoAYCN/jO5yL9xBsqqDoxhtVXIN2MFExgdYxxxzji5YASg/ae+ztdyz6gOORQYH7QrY1nlFYfGR9wh7XxOsrr7xSy5Wib1beCIEZHIM2ca/heyGEEEIIIWRvggXs173udSVnOZuLEByaSjnPjse+EBgzf/nLX5ZHHnkkkP3c9boTJFmmmAlAhFTdPM0vLxd+XwquCMpI106UjgPeJenqCbJhwwZ57LHHZPny5XLxxRfLd77zHV+MNFw/C0IIIWQ4QVzDDewffvjh/AEQQgY8Fxhq+lsOG9x0002BZIue6bnkC0uCWPm/X9A9SlVPOfztGheYOXOmzhfuv/9+GWzcJIjBAKKol19+mUkShIxz6NA0DCB4bcRydYIGrc2hanew2iwVBNH7KjlnQfhFixapipiQ4aSrq0v/O1y/fr0O+LDHhs8GUg4oXVEl6ZomydQ0S7qmWVI1TfpeEqPnVzTKqq1b75WF3LKrQ3o7PZe2RFWNzHnzmdL62gtakq2ncbY0z10kte13SN3BJ8kX/vhiXjsofZZRvW1a99+58rtaKu77P/m5PFZ5sNS2zFGnIuzD57ugfVl3vZYyS9Q16flwSkJ7v1+x2e9Tw7R9tFxdsqtDejvaZE93Uo+193bdRx5fruKiVZu2y7Gf+qGWutu5I+uaEovpvZ192TXa/2R30j/32E9eLfud9215LNsn3DtKu6HNx/74otx3191+qb0wKCWXqKySdLJXKutqJDXvaPnbX27wv8c13/S2d/nl7Qzcg+2nHnuSxNbfIOl0SgVmmZoJcv/jy6Uz60qFz/76t7+pixZ+XngWUT+bEU+q1ytZ17VL4l2tEsPrzl0SS/X/3ybqiGOCZxtEcthgRb43a4yT8YfrqkYIIYSMJ8otd2YL6AAL3wN1HcL4/z/+4z8C5Y3Xb9wkazdtk6kV+0hLtqRDVNm4csrLFXJmwvEbH7pVX894w3v943C+teOSqZ4gHYveJWsfvE+6Ojtl9erV6tSEkjvz58/PC5IUy6AOf0e3JUIIISMZiJncJOvDDjtsr/aHECLjrpxZf9yJ+lsOG4nLS5cu9d8nJ85T11aXsBNsz7QDpGrTMxJLe7GDO++8U044ofRS14NRMny4nJ0IIWOL0RMtH8VUVVX1y7kofKzrcuK2OZB23TaHqq+lUo5ACf0MPwNCBkvUh8HgmjVrdIPQzl4PtORPJpaQdG2zpOsmSap2ombQYstU1uaLWVSDkXPsGemsfvgOyWQHwt27t/ufxxKV0tGTVuEQRDut61+VWSf/f3LAgW/Wxfn7r/IGpxPmHiQdm1ZJqrtDkp1tKuTRvIJEhaR7u7y2Kuvkof+5RI8Bna3b9H3d9Pl6blSQAMJM6DTRp4mLjpGu1m3aj1fuu0WvA/ZsXiOzTzhHAwW4LsRYECNV1E7QTOkph79DWjuTuke72L/8yN+ku21X7gFkMnqPW196SkvrxeIV+jPtat2u92jBh/oD36z3Dpb99n+k9aXHpaK+WZLtrdK8/xLZ+aJXng+gL/GKKn2b6unSDc/ZP05isnmllyWOz9G2Mf317/WfAT6f3ZOW9f+4WdLJHqmZOt97fju3SCyWkER1rX6u/U5UygHnX6nf455HFzGReLNIHbZsrfBMRmK9nRLv3CHxjp2S6Nwpcd1aJZZJldTqli1bNLM9DNyxrGSku02aNGnYBcFk7MMxDyGEkPHKWWedpa6nEJPDAbWvYEM5JQmwaL5r1y5paWnxj3cX0i+44AL55je/KQ8//LB/TiZRJWs3bdf5hVsirlDZOPsccw28tvlOqeXlcJzNW8yNycb5B33MG7eHyVTVScsx75Gtj/5BUr090tnZKdu2bZP3vOc96uzq3mOxIE6h7xhsIIQQMhJx126QjIa/74QQUoxS5w7h8W+h8XDYnagUgU6xpAG7DsRBKMHttvXAAw8EDCp6py7KOz8vCaKiRnonzZeqbV7iB5I2du/eLY2NjXqtyy67TD+/4oor+i0qKrdk+FCJywghYwsKmoYB/DEw2tvbSz4Pi3Uu9fX1kW0OpF23zaHqKyEjESzqwl0J2aomWrI9HGsGAha5VbiUdVpKwXmptkmzZSU2Nit9YlCsgpne7rzvsHivDkRwKJruiWnCi/MQ9uAYExHpQn9vtySq6yST6tXvOjav8oU+sXhCRTg4v3vXFhWu4DoICrjBhNqWffzz2l5bqcIlCyQYEAhZX9CuimDiiUAGdDhzGlatJrRSIJxKpySTSetbE3dlMsmCAQu7Z4iZDrvkusDn6Hfn1jX6DAzct4m2IODCPRr2XF0xlxvgwDl4Pvj54DngueI+q5om63Fu5jdelxJcGRXg51JVJylsTbPFl95m0hLrapNEV6u6OunW6b0u1dEJAkds4ckZ/v5B2IQyg9hDrIvXWEzrj9iXEEIIIWQ8AzETFsRRbrmUcmeluAhZYABipq1bt2q7do67kN7W1ib33ntvyJlpu9TNfJ1IPBFwR8JrjKcxz1h124/8hAsLIuBzjN9tvoPxO+YU1gaOsUQNN2HD2rVrFBJOhWk5/G3Scsjxsuuua2XDqy/qmBQuw5deeqkGP1599dWAqCnquRb6LhxsKEXgRBEUIYSQoWbZsmX+a7ozEUJKoa+5Q3jeYOPfQuIbd/w8GAIdawOOR5gTuW39/e9/949LV9RKasK0vPOjnGCTjqAplUrJQw89JCeffLK2jXu06/a3z+UkmAzGeYSQ8QEFTcMArL2NHTt2lHxe+NipU6dGtjmQdt02w+1C1NHd3V1SWZ1ifSVkb4FBHhZtTbQEARP2eI8M1YGAmsSZ6gYtEafCpVpPvKSl4ypqIsuHjWVscLzs6vN98RIW6yEKsgV4gIV5E92oqCYWUxeipgWHBVyWEASACxFESxAcmfgHLjwmmoJ7E4RHXiZCRo8NZx5YFjNIdu6Rdff+StsDaBOv55/yiUCfOjav1mut/8ev/XPDZSHweu3dKP0G8VOFuhyZ01Sur1lisYCQy8iJrWK+iMjry0LtZ6ANTEySPfos96x7UQMiuK4Jp3BNnOcGOIC5MtVNnSfJrj0FszNcIRiubZ+NWWJxydQ2SbK2Kfg5xGzJroDAybZYdxs8oPoEYuDnn39etzDIDjRxE/YILGFDCTvUSSeEEEIIIUHgKARRE/bHHXecn+08kKxdCwxgbBYWSVmJBKyN3H777QG3XZSZUzfaeCKQPGBzCYBkBpsPuONtc6S1OQXETO64Ha97dntusrbHd7hOeFweLjVncyfMq2Yd/4Hc8RXV0jv1QMmsypXeQwk6jEPj8XiglFwhELyxTG07LhxsKCVYw4xrQgghwyloOvzww/nACSEDptC8oZD4Jjy2tmP6K+6367gOTWDnzp2yYsUK/7jkpLklJ9KnJszUhPyNa73S1P/93/+tgia0beP+gYiKyi1T7T6bUkqGE0LGJxQ0DQPz5s3zX0NcUSoQX7ilRlybVLyGC4S5KPW33XCZN7ev1u78+fPLajOqXUKGCqjIURLKhEqueGnTpk2ayTsQMvHKkGDJc1tKVzfqQjYJYuIjEwoZ6+69UcU3PW3bVZSjzkwQfWVtUd3FfXuP7yBewms4K4UdoFTA5NiqZlI5ARAEP7gOAgc5J6OMV/bupcc956d0Sna+8Kh079ysx+cEUF6bcGCyLGsca0IfgOPgmIRj1GWp0ytRZ4IkV8SF7/R+QgEPc4nCc7ESFJaBrWImCKGmzlOBlfYpkwkESCDmQhk9N2AC4RQcq3rbW1WQZc/LXKoAnklUdoae27rZb2tMC5qKOTpV1koK24Tpwe/SSYl37XYcnbDPujplhWV9gSwXbLDzdUFAafr06QGRk20QCCcS/F1DCCGEkPHJTTfdpBvYb7/9NKDwmc98Rt8PJGvYXay3drCYbo5QTz/9tBx11FH6+foNG2TtZjgz7S8SrwiIiYAlBrjuSza/se+AK4Ky73AsHFRxrome3PONQk6sAPMBmzuFx/Gbl90j3R3tsnbdepk5c6b/+ec//3n5+Mc/XvQ5lZql7QZ0CgVrmHFNCCFkKEGyI/52uw5NEPH+7Gc/k7vvvlteeOEFTd5GTOXggw+WU089Vc477zyprfUSFAkhJAp3DOuObUsR7bjH2DymXOejQtd59NFHA3Gv5MS+Y7g+8bgkJ86VdY88qFVMHnzQ25crRBps0dhA53iEkLENBU3DwAEHHOC/htgCg+e6uro+z3vppZcCbSDg6bJo0SJ58skn844tRldXl4o9jIMOOqhgX63dUgRN4euH2yVkoJNSOCqZYMndILrDgvNASVfVR7gtNau4Yby5LfUHd4G9YbbnFOSWLvNLsKWS6hSEBXsIkrDojn24bIJXwg6CnC4V5wBzYAKuO5GRyaTyStkhEGCin4r6Zi3vBrEVggaGiX3W3nODZjXD+Qn9hHNSqrvTd0rCfu3d1/tCLNxDZX2T9s+7j17NtIZYCmIlODAhuxrHucEIE3TFK2s8URSeQ7Z8HkRTuD6oqGmQRR+6XFZc8yn/fnDfZhOkgqwXH5OJC4/yRVpuMKMQuHf354Vnjvd6bpYoR6lxT7xC0nWTdAv9hyex3o5IV6d4T2mlWzEBxe8ybEuXLg18B+cmODqFXZ3wetKkSRLj7ydCCCGEjBMQSMBCd7jcQrlElYmAEMfaxvjKTdJSZ6a2nSLxVXliorD7qY2tLaEh7IxqWIIB5g8Y60MI5SaEhClWag7zG3NoCl/Hv/7iN0smvkPLK2PM+dnPflbLzn37298uSfiFrHAEYqLKZxQK1gA3AMTgBCGEkKECf3tQKta44YYb5H3ve58kk8G1QyTAYvvLX/4i3/zmN+UnP/mJOpMQQshguw0NpbgfgiYDbktR5eaKkWz21pgRX8MeDnevf/3ri54zVCWkB2uORwgZ21DQNAxg4ccNWkKE9KY3vanP8x577LHINtzPTNDkHluMJ554IqDcDbcLQVNDQ4Ps2bPHb/ftb397WX2F9WJzc3NJ/SHEFS21trb6QiVMLl3hEsR4AyVdUSPpmkbJQKxU3aivVbgEt6WsiIT0j3CpM7d0mVv2TdU4WVclLLirgKiiSnrbtqt7k4mgciXQuvxMYxzrlpsLC5omLjxa9+ZyBIERxEYQ8Khz1MtPqAgIjkwohafiJL9bXr+89k3AlvFFUt5nmZyAJZ7QNixgYY5LOTeonFAKwQmAYAWEQrnSbxlPOJXJ6L3htTovJSq1fWRoh9H+pHOuVJJJa/ACbXRsWR1wrEKfq5unqmNT8PPcz8ucocyFyu+74yhFSnB1qqqXFLbGXNa7kuqVeDdcnWyD0Gm3xPBZsrTfaZjMIasQWxhkEprACYIn19mpqamJYidCCCGEjClscbvUYECxRfdwUAHCHRMzYU3D3Ix6puwnU4+eFylKMsLup+7cCOeYeyxKR4edaQsJnsKEj3MTFCCEKiSGcvvWtXO11P7zXp1fIwv7hz/8oVx66aVaXi+KQkKlYgEZ9ztX+ASGIgBCCCGEhMvNgd///vf+6+rqanW/3rFjh1/tAuDv4bvf/W659tpr+3QtDINzi7Fx40b/dU9Pj26EkJEFBI3f+973VOhf7u+AQlx11VXyyiuv6P7888/3P8drex/+fVBuPyDUhMEE1n71ffMcqairKq+jVfNk2oEH+QYXqCZw5JFH9uveBgrawj3hGVx88cX8fUnIKKdniMY8sQxUBKT8B+c4Ivz85z9Xi9JiJbFs0Ay+8IUvyHe+852i7T///PNy4IEH+u9/85vfaFZBeGD+3ve+13//3HPP5TkshfniF78oV17pZRTiDx5cbyoqgkKO0047Tf70pz/pa1ish90iou4PThE2UL/ooovkmmuukcEGEwVcB8BlimXtRie7d+/2S8K5giW8dyeV/SWTqJR0NdyVgoIlvJaK6kG5B5KPLahbyQRzFAJwSHJLJpiAxjKR4WJkYhpPqJRSgU/TgsNk1yvLJN3bI/FK772VV/Nds7J/wuCCdMgnfxjoEwREvsDIKW9nfXL7ifOBio2c4+qmzZfOrWvUbalz29qsc5N3fjhogGfglaiDq5N3HIRJKJfnl9lzgEMTHKjQN7gxWYkJ99kgAxztwj1KhU+V1fpswm157VVLZX2zOjWhzxBxwS1LS/Ule7R8Hdq2n1Gqp9O/H9w/znPLW4zLknPDSbI7J3LqzomdVPCUHrjrHMTJhcROEyZ4/72T0QPHQITw3xchJCdQQmLW448/3qc4xkQ4ECi9/PLLRR8h1mxQXg3umJadvG7rTlm3YZNMPfLkyLGxKyoCUa/dknOYG1jpaMwRBjLetrmOzRlKpfq1R2Xb8rv9bOw3vOEN+kzh/FlMCNafjGz3HBM3lfKzIIQMD5xjkLHEV77yFfnWt74V+Oycc85RgcDhhx+usRyEwSB8wt8kK2cLEomEOjaddNJJJV+vHLfs22+/XaZNK889hRAy9Jx++ukap0LM0RVBDgSUr77xxhvl7LPPljPOOKPf/ehPO0OF9QXxasSgC/VpJPWZELL32Lx5s7zrXe8adC0HLUmGAQyK8QscSltw3XXXyZe//OWiLkZQuRo47pRTTsk75h3veId+B1cbOwd1oQuxc+fOwPcf+MAH8sRM9rkJmuC89MADDxR1lMIEwM06+NCHPlTwWDI+gMNXlMsS3kPQNFAysUROsJQVL2Wy4qVMRQ1LxO1FPAFSsNyZlXeDqAeuRlhwX3Xbj1ScBAENtp0veDapJrBBGxDWQKCDhXp7r+UUcCxER1g8iMXVpaiqMT+rGAEEXwgEB6R0ym8fbUCUtOuV5ZJOdquYCAIlFQ/5zk0x6dqxQc/TffZcOx+ERU2+01FWpGQuTrj3MPGKSt0gooJACc8DgQ17VmjLLdtnbaBNZHeruAvPIQPXvZjMOv4DeUERBDrw7CBYgnDMfh5hQZTrNkV3pmGiolrSDS26BYADWLIzJ24yoVM39m0S813D+v49/MILL+gWprGxMSBwcgVP9fX1g3WHhBBCCCEDJkoU89prrwVKEgy0tAOStCDs+etf/+ovtmXiCVm3foN079rmu5qGRf+uE5MlJeBYJFq4x9k4HnMOS9CIKh1XDphDYXyPpASM+UtNSOies0TSzz3iv1+1apUGe//7v/9bJk+erJ+FS8qB/pSMC58zmGU2CCGEkEIOTYjFIKh+5pln5omQIG7Cd29+85t9JxSMAy688EJdP4GwmRAyPoDwxgQ4gwXiwH2JecLCn6h+4D2EANi77e0N0ZD1BRQTfhXq82BAsRQhhA5Nw+DQBKBcPfjgg/1ybyjj9uc//zlykIwazx/+8If99//2b/8mX//61yPbhTDq29/+tv/++uuvl3PPPTfvOCz2wUIVC3Q2sH/mmWciHZ1gB4ZMxjVr1uh7KINRk9Us112effZZeeMb3yi7du3S91gEfPDBB2UoYObQyKKjoyNSsIS9iewGQkbLOE3wHJZCbkso7+Q79JARwYprPpUVyTil2cJORBGORXAVAmERFIAIB4v+JjqCwxCch9zSaC5zTvpwXsDAxFQm2IGQysRIuLZd181s1mNeXBoocRdJLCbVTVP94EHAESrUJoRC6//x67zn4GZsR7lHuc5Tbha2ldUzYRKe8a2o5eEAAPljSURBVOKLf5zXRXONCjtPaR8qqkTSKRWJmZgLZQLxfMvN9CbDBMROPe2Oq5Nbxq5NYqF/e/1h4sSJeY5OeI+trq5uUG6DlA/HQIQMHfz3RcjIxnVZMoFS2KHJjsH6yg9+8IOyhDcob4A1FazDmGvRjJmzpGvBm2XjmlV57rLuGNl1aLKxeZRzrIt7zmA4NJnrk80RzDW3mOvqyp9eKt27tmr5Yrhy2/weDt5wFAelujH1x7mJEDIy4BiIjCWWL1+uFS9effVVmTdvXkkCBfzd+vGPc2tpGAuUmqhdSsk5+xuLEk2sNEHI6KNYKbiBlKvD7wM4w7a0tBT8XVKofbgk4XdKVVWVzn3mHXCoTDv5k4Fz1z95t6x59A7Z55h3yqwjCjvPYY25/vnb/PeoBvTBD34wsi9XXHGFJlb/+7//e8H7HYoSfuH7XrBggcbaCSEjF/xew7/VwXZooqBpmARN4NOf/rT88Ie5ha1jjjlGs+CwNxsuLARhM+HT3LlzVXhUqDwMhCP/8i//okISEI/H5ZJLLpFLL73UtzKFGOlzn/uc7g28v/rqq4sqXt0SdxAz4Y8R7A/h6tTZ2Sm/+tWv5POf/7wvZsIf0EceeUSOOOIIGQo40R5+MEjBoiYyYCFwW716tb7GLyEroTig9hF+r27wS8J5jktZp6XqBs99h4wyQRN+bBWSyaRygqBYTOJwo0l2qyADi+0WFAiXgvPJft7XsXqtbHm3cBm6cEkHYAv8YScpCILwXyT6DPFTlNDIqJwwWZLtrb47komJXEGQ69Bk1+1tb/Wfx5wTz80TX5nQCv1FprUJvuBSFS5dES5h5x4X5dJU6F4Ov/T6yKDIQEtgkL1AOi2xnjbf2ckXPHXvklh3+6CInZC1D5EzFgf32WcfHaPgNUqUlGO3TsqHYyBChg7++yJkZFOKYOass86S//u//9PXpZY0Q7tXXnmlLFy4UNc34E6NfU1trRxy1pckOXFeWSKkgQqVyj3fLflt4iWbw7gipygBlp6z8RWZM3OazJrquTLZ/WOMhzl/qT+Pcsr6EUJGFhwDkfEO4in4u2dxmPe///3y61//elDa5r8vQkb/fKPYOLfYd33NX6zUNQRNW7ZsKStB4PLLL9c5DJIyYGJRPaFZDrrw+32Wpi4016hb+UdJdGzX1/h9iNLb5T6L4YBJFISMHoZqDERB0zAKmrA4hNJx9957b+DzpqYmdT3YtGmTFyB3SsLcc889cuSRRxZtFwtPb3vb23xhkfVv+vTpmmXnfg5gqQqnJqh4y609XVNTI1OmTFHxFf5gutf70Y9+pPasQwUnAkMHJm747w+CJQiXsIBpr9vb2wfUNv6LzlQ1OGKlXKk4FS3FE4N2H2TvoaXasuXdLCs5/JkJhVxxjltuDkAchNJunkgpJnXT5knHltWeM00C4qWUxGIJyaDMWiYtddPmy+SDj5O1d98QcIbCsVjITyd7vHMdkRD6Ei655mLZzb44yW80WEbuqf86LyCegtNRw+yFAScmvVbYHSkraLKAg00urAxfbcs+fnm4dLJX2wpnei///sdzgiz9ewSxVzrwHGcdf6aWpjO3qZpJM6Vj86qAMCueqNB73f7M/d53sbhU1NT790jGCOmUxOHg5Ls6WQm73ZqNM1ApEsrUQdgEgRMmv/YawmoIrcnA4RiIkKGD/74IGR0UW8Qu16EJZdCxGI9AAlyKsMCG+S9G7LOOeodMPja/REJ/RE3liJSiAg/lYu6smANZooZ7XbsG5haYG01b/BaZW9WuQnhkOiOZCes9H/vYx3Tbd999864RDmbYzyXsmkUIGflwDESIyKGHHiorVqzQR4G/e3AA4b8vQsYXNr6FwAixWhvPFpt/lDI3KST+GUiCwDXXXCO//e1vZcOGDfp3vOXoU2XKke8MHBM1Byk016jasFyq1z/lvzdDg3Bf+iMo4jyBkPHJOgqaRr+gyURNF110kZaGc8VLYfBH7Oabb9a6zqXw1FNPqSVqX3Z755xzjlr/YdGuFODi9LWvfU2FUYWA8Oraa68d1FqzUXCiPXAgQkP2CQYl7gbhEkoNDoR0ZX3AZSnjv54gEq8YhN6T0eLS5IqXUMpAhTaxuFQ3teQt5nul2G7OLrpX+0Ign0IOTs73h/+/X8hTV50XFDRls5LRFzg8mWuS5xqF/9Yz+Q5PEpN4ZZXMOv4DfgBi7d05ByMTQtnA/4VfXh4QCJlQKeoc/TpRoffiloQwhyY32OBOMHxXp6wLE/qvbk4vLi3+XPxnAJETjotJdXOuPJ7783JLArr9LlYqg4wh0kkVO6m4yRE66dZb+G9/KVRXV/tOTu6G8nVweySlwzEQIUMH/30RMjoYSBa0ux5z6623yk033aRtWIk57PFddeNkOejjV5ctOLKgQbg0XTkipSjHpf4kGIRFS2gHSQ6WOIE+Wj/1mKoamT1rhmxY9bI+AytDhzUvrPXAMRxl6Oy5wg0Ljt5nnHGGPseRkrVNCCkfjoEIEa1G8Yc//EEfRUNDg7S1FU6A5L8vQsYmNpeAMQQSHgY6ni1X/FPq8YjRoqqOGRCk6qdIx4GnBo4plFBR6PN4Z6vUP+vFJ0Bzc7OsXLlyUJIU3KQTxCU5TyBkfLBuiARNjCYNM1gcggAKoibUZYZbEwQm+GOEUi6HHXaYLgxhkQhuSKUC4dPTTz+tC0q/+93vtG407ArhjID/WN70pjfJRz/6UTn22GPL6i/K1+GPJPp8++23y6pVq2Tnzp1aAg91S08++WS54IIL1CaRjBy6urr0F4Upqm3Df2uplOM4UyaZRJWka5slhZJwNU05x6XqRhGINci4BYPiZJc3mI5VVOWXbMuk9T0+t0EzHIlcdyYtQhhPSEV9s/S2eVanftm6ADGJJRLq5AQRlB5X6R0HgVJV4+RAIACY25I6NmXFTFjAhwOSuUFZyTn0EYv+ON8ETxATuQ5T6HtAzOR1X92ZXFLdnbmvU0mvjGIspv3Dc7DnZM8F7dpzQwACwQa7f+yxIRiRJ2bS8oyZwOcBdynJ5D1/I09ERsYX8QpJ107ULY9Ub650nZWx64TgqVViqb5FsN3d3boAEF4ESCQSOjYxgZOVsMMGERQhhBBCSBgsqpsTEBbH3UV27IstuKMkA9YzkFhmpdNnzpypG0hX1cu6tetk6lHvKtiGlXSz+YXhlp3G/MISFwqd05drU9trK1VsFDVuLwW7JuYRNv6H+yv617l1jRx2yXUBARYSUF7DnCWd0TEanhUyvvFs7rrrLhU5IckNgZPvfOc7sn37dnV4hhuTG4RBAAhZ7fi5EEIIIaMFN+l7IGvmhJDRi80lXGHRQARKfc1N+nv8X/7yl0A1lZ6pB+YdE441GHgdNbdArC/ZOFMqdm/Q92j/0UcfVReo8JxrIPM3c3J1YRk5Qkg5sOQcGTUwc6gwEMQhcxJOXcuWLdPgcTEHsL5IV9ZKuqZZBzRpCJc02N0kmYrabHkrQqIzgQ2UgsOCuStOcl2GIA4KlHSLxbxScioeqpF4RaV+jOP8cmihNux7c1NSp6es+GfiomN0D/GPlYLDQN51PMIxFjBAm5X1zX62sjk8mUOUfW+Bh2VXnx8SDBUmygHJytdVNU7RknpRJeHQh9knnBO4LxVDTZ2XJ6YyVywr8ec0kitFFyqZZ4EM95mE22PZORIJyjj2dqqwCZk8/h5ip2ROxFcuEGFjsgyRNgTeBx98cMmOkmMdjoEI4b8vQsY7pWROu4viF154oZaNueeee9SlGvNlACG1L2SqbpTu2UdIcuK8fs9zbR5kY/f+lJZzRVGYdyARAnOY+ad8os/rF3J2coVTNp/CHG3Rhy7POzc3B4qrw6u5NFkpCwjRLRHP+OAHP+g7NEW5MzFAQcjIh3MMMtZAIB4J3vg7X2qy1Nvf/nb529/+pq/x9w4JwoMB/30RMnYYCWNdJI1+5CMf0fE5trXr1kvL6/9VWg47KXBcOSWvjUTrWql7+S7/PSrxXHnllf12Xy312dDhlZCxyTo6NBFC3AEMyguagOn555/vVxZJuqohK1pq9p2XsJes6w0hpYIFdFfQZIKb3j07g//NZV2GUGoNi/Q7X1jqOwtlMt5/w+kkjunSoACckiCMAljch8MSSsahDQiFsPCPBXp1MlL3JfGFTFZuzbuGSPeuLdqmATGTuS6h/3gPxyZcxxySUN4NgQE3wxmTAa/vj+aLhiLwxFmZoGgok9GgQbJrj77Gd2GREvoPgRKEXt51YlLZMCnfGQrPLJ3WvuU5Nzn9Qju45rp7b9R24W416/gz9Tt8BjEZHKkS1bUDygon44BYTDJVdZLC1ugFBH2S3ZJwRU663yXxnj19Nov/jl988UXd/u///k/L0h1wwAEqcMKG11VVnpiREEIIIeMLLIpjUR0uQFhYj3IC+vznPy979uyRz372s/LII4+oSzHAfBllDgDagPPw5KNPk97J+0FRPaB+uS5MpYydo1yb8N6SKXROk8noHKQUMK/C2B1zHZwXNYbHXMbdhzO1XVEU5kS9mbSs294ms7MuVgia4PnBwcnWHeDeBGfwQw45xM++dn8m9vPCfjiCPIQQQsYvv/nNbzTQb8LbO++8U97xjqCjYiGwrm7gbxohhITZG2NdVxSE329f/epXdUxuYoGuzk7Z8uTf8gRNhZyYipFqmq1VWODOD2688UZ529vepq9LdVVyPy/l2dDhlRBSLqwRRcgoALbvCPBikgUR07PPPis9PX2X+wEZiXll4VS0lHVbgnCppkkk4bngEDJQCi64O4IaZATDjSgousm9Rtk4uCBhId0TJKUCJekgNnLPNdejnMAn5peO8zKs7diM7HxxqSeaQtm3LComEtHM6BXXfEoDAWHg7IR7M2ET+oasagQg8F5FXMXETNlSda5oCAKoWCyuAi51gsr2KV5dL+nunG2sJ/RCt73v4a7kul2Ze5Q+i+52ScXj6qyEkn+B46y1rGDMK7HnPT8EQCDc8r/LZMvyZcviEVI2FdWSmjBNt7zydV27Ao5OCZSu62qTmPN7IPy3D24K2FAiBhmWcG2CexMETsjkgeiJEEIIIeMvkHDZZZfpdtJJJ6m4BvNjiJksAcjETOa4gHLsEOXAyfiVl16Q7tlHSkvLwqLXLJThjDLR5gQLF6VyggZRQQa3TJy5xYZL2/UFHF/NUTZcbqJQubyoPpmD1Lp162XSMZ+S6nVPyurVD+uzq6yslH333VeDKBMnTlThGARmb3nLW+Scc87Rnw9A4CIq8EMIIYQMBfPnzw+4CP71r38tSdB07733quujccIJTOojZLzRl5tQoe+LlcMeyPXDrrRXXXWVus665Z5n7TNX1m7aXvZ8oSCxmHTPOFRqVz3gf7Ry5Uq5+uqr5d3vfnfg0EJiJfdzdx5Q6PnhM3PdZfIDIaQUWHKOjBrGm1XrqlWr5IknnpAnn3xSVqxYEZiYFRUv1U+W5IQZkq6f4rkvVTeKOK40hAwFWOy3cmeewxGyi7sDAiQszNe27KML9RhwuyXn4Aw0+4Sz9TVENqnuTl94Uw6HX3p9Xvk7ODlBNBTZXiwmc048V9b/49f5ZeHwdaJCz0UbcDOye4RwCCInV3AVSdZVKdne6jtG2bPAvaMdPA+89svcRbSBAAU2ONhAvATxU2Vtg3S3bgmIwgDa1FJ2IScnCMp6dm+LfrYRLlNuGQxChgyUVune7Qmc2rdJYvdGiXdsU2liX9TX18uhhx6q4iYsIMydO3fM/qDG2xiIkOGE/74IGX1MnTrVD0CiZC3GyPYagqUpU6bIgQce6B+fqpssvZP3lQ0bNsq6v9+sY+5iY91wKbZwebi1d1+vrzF+P+yS6yLPdYVFpbo39VUiIur7Quf0p9xE1Hlbl98ja+/5pTfPi8dVYI5xiJXtMx577DHp7OzUnw1e77PPPhJjuXpCRjQcA5GxAsYB+LuD8qgAolsE1idNmlTwHCRQvfGNb5SlSz1X95qaGp1rYwwxGPDfFyGjg77KnvXn+3LK0YXPt/dIGmhsbFTBpjnNgky8UjoWvl3SDVMH5f5zDWekat0TUr3JK9NtXHLJJXLqqaeW5dDkfl7o+Q1WyT6WuSZk5DFUYyAKmsioYTxNBG644Qa57rrgwmghUrUTteRPsnGGpBqmi1SwHA8ZfrDwDSESgCORLZo/9V/n5ZVBm7joGHU3gjOQiW4QDECGszkz9SW2gWgn31EpJtXNU9VZKE9oFIupwxGEPl4Ju5gv6oGYqk/xVPZ8uyZEW8iAdoVTpRFTJ6qmBYflngFcqyDfKOL05IudHFcmtx+97a2BknYqlOrpDDhS6X3CiSlclq4AEEAt+tDlZd4fIYNAslsq2japuCnRtlESncHSlYXABPgDH/jAmPwRjKcxECHDDf99ETI6sNK0KLlgwUeAxf7W1lYthYaSaPPmzVOxDcqpJyftq0KmDNyJyxD6WIIExtRa8jrZIxMXHq1uTG7yhCU9uO3Y9xi/Y6xvgihzSbKybuF5U1+g35YQgrZnn3DOkJSHDj+f4P1W65yjpq5BZs+aIevXrfPFTSiBsc55jw3Bl0cffVRLAX7mM58Z9L4SQgYGx0BkLPGNb3xDSzIZcBW59dZbI12dMaa44IILAmvvX/rSl+Rb3/rWoPWH/74IGR24ghgQdkuCIyy44oor8r4Pn2+f9SWCCl8/6hpwP8X4GvMfI5OolI79yxMzlZMQ4YmanpTqTSsCbZx++uny0Y9+VBoaGsp6foWez2BSzrMmhAwPFDSRcc94mQhgUnXKKacUdGSC45KKlxpnSmrCdMlU1g57HwkJ4y50V06YLKmuPbrwb+5EcAnLoJRZSJwTiyXKdmKC0AbZ0oXERF7goTfScSlKHBV9TCZbus47Hk5NWv7NRFBwbkr3IQ4qci3fYWnXloJt4Dn27tkh8YpqaVqwWAMfyU6U0XAFTTWy+OIfa9mLnIgrlq28V2LfQiKp3CH5GeeE7A1ivZ1ZcdMGqYCDU3d+eUiAzKU//vGPY9INYLyMgQjZG/DfFyEjFwiV/v3f/11+9atf6d8+OC784x//CCxgm1OQOQShtPOcN71Xpiw5JVuGemDJGlqmOjtWnnPSh3VfyL0pLDzCvASiJhMzmdDJEjjCzk9ugohdJ0pYBND2IZ/8YdF76I9Dk13H+lbwfh6/Q7p3bZWauno5esmRkW3Zz6S2tlYuuugiOfroo+Woo46iexMhIwSOgchYAuVmFy9eLC+88IL/Gf7ufPvb35bjjjvOd3S8//77Vfj00EMP+cfB+RliabgQDhb890XI6KOQW1Kh94UoV8Tjtrts2TL52c9+puub5kIbFjOVM853EzVsHI85B+YxkfMJiJrWPynVG4OiJszDPvnJT8qJJ56o667h0njoOxhucREdmggZeQzVGCg+KK0QQgaN7du3B8RM6co66Z38Oumc/ybZc8j7pf2QM6R73hskOWk+xUxkxODWbO5t2+65BWUy+hpl5kzMBODEhIV8fB8tZoo5wpz8IAQcljAQ90rb5QMxU7yiMrqjfYmZ/GMyWVemeu8jLVlnzlGxkJgJ/cSf01xfcX9zTvyQBj0QDAj3FWXj9B4KOKpBtDX96FPUFQpYFne4vBxEYyuu+VROzIQ+1zZEi5m0j/5NOi9RJrDG66PzvPFzI2QkAOFucvK+0j3vjdJ+yPv0byH+JvZOXiBpR9S7e/du3QghhBAyOoHL0sqVK+XnP/+5Lv4jG/inP/2p7Nixw18UR0DS3T/08MPy0KNLpXbWQk8slEnL5hUPRM4jsPiPRX0kA2CP91EgMGDuSu6wGcIeAKEPREfmvBQ+F+5J+A4lqiF8QtAAzkz4DHMhBA+wueciKIHrYcNrE0BhD3AsztdEi+ycpxjh8937L3Tf7nXcvuFZWMlt/7gl79TjWl5/hqyKTZelTz4tK1/8p4qYnnvuOXn44Yc1uFxZWakLmE888YRcc8018uEPf1g++MEPytVXX63B5EKJXIQQQkg5QIx05513BoJmECm95S1v0eQnlKifMGGCvnfFTChRe9dddw2qmIkQMjqBAAliHHMbwh5usBDtQDizZMkSHdtiXwzMYzB3KdWRyK77rne9S84991z5/e9/HxIzVUnH/u/wnZmixvl9je2BnZPq7tT3tg8Qi0nPrCOke+biwMc7d+6Ur3/969rXNWvWqJgJ4iVgzyz8/MLgGUK8hX0pn5dCuc+aEDJ6Yck5MmoYL5kNUGF/7nOf8993LHyHujERMtJ55seXqICpb9Q+qMjX8azDSq4snHvuxEVHq8AHg25PZBRsyxbb88rO5V3GK8EGF6mofiNYkKiqlWRXuydy8l2NLDhSvHSbWwrihV9e7pfXC5ff85yXQo4zFoBxhEmllMaDMAmkk91SN3We9OzeFnB1wvf4Ttvtw62qr6xvQkYCida1UvfyXf57BMoOOigXbBsrjJcxECF7A/77ImTvgozep556SoUwjz/+eJ44OVzKDO/Xrt8gMxYdIWufe9Ibq2fHrhAZRWUrWxazuSqZS1LYXck9XjOXs+5MWs65u6PPc6ykHEpLu65MoNB57vnr//FrHaujvF3D7IWBe7H2/VLTsZjMOfHcglnZbuZ2X65SpTo2Ade9KXyMPVe4ZEFYZsIzlAIEVg7QBUGhgw8+WJ2bEByaP3++L1YjhAwtHAORsciWLVvk/PPPl9tvv73ocVh3RBnb7373uzJp0qRB7wf/fREyNnDdkwo5EA3UJejVV1+VH/7whzonCs99eifOk+59jpZMlZd0DcIOTaU4NrnHrL3nhmxsICaH/79fFOxXYtc6qXntkTynfIzfp0+fLo888ohceumlBe85/FwKOVzZ52j3Bz/4gR571llnyS233CJnnHGG3HTTTWU/U0LI3mOoxkD5RYQJIXuV9evXB95Xv/aIpJpmS7JplpaYkzj/2ZKRSTybLewLlrLCpBhENN1eoCFaCBTLLn5nxTqZtFQ1TZOe3VHiqEy+UEmdlBrUrQiORwhkWLkGVzwVFgQlqmt1QR9l3aKAK1NAaKSipujybOH+6CJ+OuVnSkSJmcDOF5d6Lk2Bdj0xlys2gnsS7q/4deOBMntwskI2daBEXda5CoESN9AQRV9Z34TsNVK9kmjbJBW710tF67q8v6FjUdBECCGEjKUycsuXL9dEHizaY4GrGFjInzF7H1m3fY88+tQKmXbE2+XA076q3619fpl/nI3bo4Q66/9xsycCygqfqhqnSMeW1dLbvksX98ML/+aW5JZmsM/DjkzuORD1mIDJjrV5CV4XCzbgvbWBOQKSHjCvsePW3Xejzk90jpUVDuH4QkEM7O21W2oiylWqGHYPEEPhueHaEG25JfLMucnEXNjjHjC/SWPr7fUXNsOCpt7eXv3vABuCHk1NTXLYYYfpdvjhh+vi51gsJ0wIIWRomDp1qtx2220qlEbJWpSYw1ijra1NJk+erH9X3vrWt8oHPvABOeSQQ/hjIIQUBWIcE+UAe+2KdcytCPtSBU1wMv373/+uZTHhJmcCJoyXUbJ57fr10vzm8zQuCMLjfXcu4To2RSV1hM/Zs+5FaX3pcXWOdQkfj2u3/8vpsvP+X8nGlY/KHBNZ9fbq71UIk+BeBYdduN25Y3Y8H5Sog9PUZZddps8l/CzdZ/yZz3xG27VnCDET3mNPQRMhBFAZQcgIJ9G1S7eqzSslE0tIasI0T9zUOFvStc2RVvqE7A2wcN29a4svzIFgpqpxsvdZQWJSN22eBhRcNBCQ/W8brkKV9U2Btl3iVdlyEFkRkgvKr2GB3RukH6mfmSAKGdcqFMoGN/p0jtIL9O0shclA987NKmJCAKSo/asu8Hfn9VmzwR1wTOWEyVknqXA/s+9D4iQEOSCCQuDCE0PFAgKtTKYPt6dCZfsIGW5QFrFzh1TsWi+J3esl0bZZYqWUjySEEELIXqe9vV1WrFjhC5isNEFfpGonZhN7ZkuqYaqsv+7L0t22UzYvv0+mHHmyHgPBj59hnF3MN4GPiW1wTDgxAOIcbxzeFbnwj+/N8cn9rlDGM8DCP0rSqUNRPBEZbDBhkZWuC7fntmGl5+wYf56TScvsEz/su0GhTXNewmdugGL+KZ/w23Xdo3BM2L2pkKsVPsecBv22uQTawOa+R9vudc1hCp9b+eyWo94hXbPnSsWudZLYEz2eQ1AEwR1sek5LiwqbTOCEQDUhhBDSF3D+w0YIIWFKdVSKOs725irkipqiSq2F23jllVdUdPm3v/1N50kQX0LAZML/WbPnyLqNm6Xl6FN9MVOUaMkdq9tYP5y0UEjo5M0RvHlCn8fHK2TDP5+T7s5OWfXamoB7VFdXl5b6/NnPfiabNm1SoehVV12lZT5xz1Y2D/eH54Vn4DozGfZM3WcIZyZzaCKEEMCSc2TUMF6sWrdv3y5f/vKX5aWXXurz2HRlnaSaZkmycZYkm2aKVHjlpgjZG6y45lOh0mk5p6Zipc0KAQFPsr1Valv20UX6dCpZUkk7T8DTqwEKCJbggGQZ1sArVZcNCLjOSAXcl1RIBBenKDFVdb2kERBRgVFM5pzklX1YdvX5fjADZefcrPC85xP+FE5Xqk9KBp+d4/zknmuZ4927tuY9Zysbh0mOBUeiCfYlKoBDyHAS6+2UxO4Nvogp3htR1z3EAQccIN/61rekublZxhrjZQxEyN6A/74IGVyQbYwsXXPdeeGFF/zF7GJkEpWSbJzpi5jCZRVcgZK7iA/BzK5XlqloyUq1uSInOBKpY1A2qcHGueH2okqsuW5PhUo7uCXmosRBq277kQp9MKfRctDZMnY2TwifE75X+97mQnXT5suiD10e6KvNc4BbbtpKcUeVwLNnoz+z7P26oiSc47Yd1W9vjtMj8coqTzSW/f6wS64LPDP3GfnPGo6buzequAlbvCeY0FGIWbNmqbAJ2+LFi2XixIklnUcIyYdjIEKGDv77ImTkUqj0WViABGchlMeGwB7lLPsjirJrzZgxQ0477TR5/vnnA9+7JeamLloiXXOPkUxNU1474bmIW/IZY/OoNfxSStGVcny4fHdNbZ0cfVTO3clEWbW1tfKGN7xBjj/+eH3/05/+NNfG1q2Rz5sQMvZYx5JzhIwPYH977bXXyosvvqiDgccff7zgInC8t0Pi216Wym0v65Jlun6KJCfMkHTdJEnXNEu6tokl6siw4WY+myuQJ+Lpw/UoC8RH2k5W+GPipULl2vLOr66XTG+XL2Zy24IYKCi2CguYYlI3dZ6WaQuLfiCqihIzaQk7vY59l5G1d1+vAYiK+mbtPwIXmADgs7CgCc5UnVvXBsrghV2mPJekWLZEXLYsX8zra8dmuFpltPQDJhQ4NnwNfIcJTm97a1Exk1vyD/fllaojZJhIJSXe1SrxzlZJdO5UIVOio2/xYjweV0tjZF0eeeSRsnDhQkkkEsPSZUIIIYR4oIQL5qsQMT399NPy7LPPanmAvlD34YapkmqcoUKmdN0U/HGPPNZKwGEcbGIfV5yDBAaMg+EEBOGMm7BgC/IQOuXKUntl0iDegVuRu2AP8Q2ER1ZWzS0dhz5gb+N7vDcXWRwHAVQ4WIBrYBxucxpziHXLU1smNAgLrVyB1ZyTPGcmiKTMFQm4/XPBe7u+3UfYRQr3b/drx2KPwIgbuHDL79k92s8A94M5hMQygdIV9j3ad0vkKYlKSU3cR7duCKG6d0vF7o0qckq0bZR4MldKO1xeGNuf//xnfb/vvvuqexNKDmNcOG3aNJaoI4QQQgghBTFHpSVLlvjun1dccYXu3dJnxYCIKUrIZEKniy++WNcrUdoSoqWGhoY8MROYMWeuTFl8gvS2LJTOuskFrxd2fnXH9TaP6Eu81JdgCZ8XSujA5/a+5Yi3SefcBVK59UWp2L1BxVgmysJ88J577pEpU6bI29/+dnnHO94hq1atkuuvv953XypVDBZ+pqUeTwgZm7DkHCEjkIqKCl2Qw/aRj3xEF4mffPJJFTdhCyvCzV8l0b5NNyMjMclUT5BULcRN2CZ6e6i8seBIyCBigQRzBbJs5FhljaS72/P/O6+dILGKKj/TePLBx+mguLd9ly9IKgeIi3RxHg5H6maUkER1rX4XLiuHMnYQANmiP8q82UK768wUT1QEFvcD1wsJkQw3kIA2EYQIl7kAEE95/fHAMwgLqpDxjL7NOv5MP0hRUdPglcnICqnsHDzPyvrmQH/99pzyfZlUb+heMoF7yWRSkXa0hAyYdFLinbsk3rlTxUsQMUHAFOtuc/4lFGf69Om64IANwasJE3KOBIQQQggZWlKplLz22mvy3HPPqYAJe7wvBcxN0/UtkmycoSImiJlKnZNGlWJzhUdW0syOLeTmBOx8G/tj3OyWXIBQSAVI2bJqrthIz+/ao+0Z8YpqLY9tDk3hQAEEPubQhDG8Os+qAMgTFAG7H9dR1YRTbgmJsEAIWHDBc2YKkS2H7bojWUk69Mebe3mJD3iGOHbni0u9+ZTzLMPureYiBedbA/MuzAHDP7coF6uofiITvRfb1EXZcsMQuW+UirYNkmjbJLFUtEju1Vdf1e13v/udnyAGYZNt+++/v2aLE0IIIYQQ4oqR4J4E5yBgAiaImSorK33xTbiUXDFxzcaNG1UYhf0Xv/hFXbs0h9HVq1frNm/ePC3XlkRJ7e17ZOMLT8rUI2dJy9zCYqYo3AQDdx7hrueHS8gVKkFX7ueoKJGcNF83rOkm238nvdn7s8SWbdu2qcO8uTTBWRUl9h588EEtS4fSe3iOpQiUcJyV93OPp9CJkPEFFQ2EjAIQsH3zm9+sWyaTkTVr1vjipuXLl6utfxQxLBt375Z4926RVognooROWZET9ip0orsF6R9Y5LbFdixym6gmEyFmgrDGjgdY2LeybMjuxSK661Tk/Qcd0zISUeIifIdFeWQ+m3gpUVPruzVZm3A60nJuqV6ZsGCxtL70hIp5VFiFsnJZrMREuESE6/4UdJaKRYqwcHyyc7MnKAqV3gsLjaLcodBZywT3RFFwa+rRjHINhmSFUsiWhhsT2sBrc1jCcQhO4DgIzvDMEcSwkhv5oD/oq5edTki/hUtdEC61+uKlRGdrVrhUmmObUVNTo8IlEzEh2yeW/XdDCCGEkKFl586dmkkM4RI2vEb5gFJQB+G6yZKaAAemGZKaMF1defqDCXEgtsGY1hXwQyjjlpADJqzBnMTcSv15Rjyh52sZOhXvVOpxJnzCsQBJFk0LFutrE+K4gQKby5hYJ2rhH+A7V1QE3L5atjX6GeWoGs7G9uYFCBTE1B3K3JpcV1wrux1VQtoEW+HEBzD/lE/kibgwF7HSdCgxbgTcoLJt2HOM6rsrKuszaSIW81yn6yZJ7/SDdA4Vb9/uiZvUwWmzxDLR7rPbt2+XBx54QDd9FvG4LFiwICBy4niSEEIIIYRYWTkQFjCZcMb2Z511ltxyyy1SXV0te/bs0eM++tGPyooVK2Tp0qXy6KOPaswOTkwQREHYA2cmiJfgXmRCn7Ubt0jT2z6psbiN6sS6pd9JxeF5hJswAdzEiKj3Uce5JaMRe0Big30eJZpCjHHDP5+TZPb+kByOY+DQ5ALhGBxWscHMAQkHMG34xje+IV/5yleKrvWao5YrLCsmdCKEjE0oaCJklIE/7nPnztXtjDPOkJ6eHnnmmWdU3PTEE0+ohSMyZ4u2UUzoVDNBUjUTIxydKHQihXEzkcHae26ILNNmQPzjZhpjr+dkHYJiEl1uAqUisIXbh2sRBEcuyJ62Y1S0hFJU/nsvCxnXcsvbYfEcbdl9IMiBczq2rJbD/98v9LMXfnm5VzIiFpeKmno/mNHdGiFoUpGTV9oOTkuYCODaEDCZuCp3XLgMnudilWur299bGQhzbYJgye7Xylkg8ICgBAIPOAdBDcvGCAc7AoGJ7PXdTHdC+hYueeKl/gqX/P/mKypk/vz5WkIO1sxwKqyqyv03SgghhJChAYvsyJQ18RI2LMKXQ6qmyXNfmjBTko3TMUgfUJ8suQCCIB2bwrmnosoX5biL9jbOxvg47GhkghtzJUVbED254h0bJ+fG3F06F8DcAGIqV5iEBf7wNey6tviPLVyWDu9x3XD5OoDzrIQe7gtzjDDWR02YyOLOC4Cd5475i7kmuQ5XmNOZKxP6j4QJE4D5Zf+ycxSvxHivV/ZakziC9xOmYIZ3KcTikm5okZ6GFpEZh4qkU5LYs0VL02mp4vZtEnMSR1zS6bS8/PLLuv3xj3/UzxobG+WAAw7wBU6LFi2i6ychhBBCyDgjqmxcIWEMxEyYLyHuNmPGDHnd614np556al6yBwRM5lSE/YyZs2TG6w6SNS8/J6meHunas0ueuOazWqmhkMAIuMIi1221r/G9m0AQTowIv48qNWflrs0RFnMBgOOiRFN2fXcuMvXAo6Vy28uS3vayxLvbdE5pJenwfOC+D/HX7t275Wtf+5r84Q9/kLPPPluOOeYYdXL6xS9+UVKJuUJCJ0LI2CSWgd0LIaMA/NGbM2eOvoZdIf4AknwwWMKzMhtL2/DMsJjXH7Q8QE2jpGuas/smb6ttGvAiNRkb2GDXsndtMT4PX7ATU4GPOQZhIb6ivlldklRgE6/wytSFXI0waMaCvesyhM/MnakcIObxS9HF4lLd1CLpVNIvgbfoQ5fL8u9/3D/GSi24pSDMzaiyYZLn8KR/UTPBfsdiUt00VYMCWOhHf+GgFMhqzt6Hukg55fHmnHSuny2+9u7r854lSlyYGErvJ9njl9ozdyY38IAAimZU3HejOmDZfVrZCLdPdjwhsd4uFS7FIF7KbomuVol19V+4lEgk9G86rJZtg5AJNswQNZEgHAMRMnTw3xcZj2DxGIkw2FCuC0Kml156yc8cLoVMokpS9S2SasA2VV9LBZxLB49lV5/vj7vhrgRBEsa8s47/QGDx38bn7jgb85KcOKczWC46FpM5J56rL93ycDYmxpgapZ/97IPsHMbmA5ZcYe/Rho31cV17jSQGlKOzkto2vkbCgZaSdsbbNp+y+Q764wq6kKjgBh5wn0i6wNwJz8O9FxMPmetsOXM5HG/9s/t2n6Xr/OrPUyzZJPtco4It4VJ8gwoSRjq2S2LPVkm0b9F9vCeiBF8RkDCGsiMYj+677766nzZtGp1ByZiGYyBC+O+LkPGOW7YMwLEJIiU4CJ100knqvnT66afL3//+d3nqqafUeQiC+LBIx32/evVr0tvbIxU1dXLI//c9nSNFre0ffmlord8hPB535wg2ZwGuI2t4TN+XMCpqThKYazhJ0674qq+xfG7c/3aZuvBIefaGy6S7zXPBhXsV1oABEg7ss9e//vX6GkmtMG5obW2ViRMnajnpXbt2qcMTRGR2DiFk/M0xGDEiZIyBAQAW37C5YHEavzzCQif8culL6ISAdUID2LvyvktXVEvGBE6u2Km6ka5O44hwRkFU4AAL+omaehUMwS3JsnhNRANBEMQ4nqDHRD3eArqWhHhhqQYq1t7zy4BYyBbzyydnZYrMYtepyQbsCA5YgMT6q+XwNLCC81G/LnceJhf4DuIo6zMmHeijlq+IxTQg0b1zc0A8hGeDkhbqCOWT8TOYsVlJvtzXCLB4gRQLLGBDu3Br0mtngzDoFwROmNigX1bOD/fpipm8QBHuLaPHk3EEAoTdbRLvzImWvG23xFLRZU1LFS5h0OqKlhAwwmf4e0UIIYSQoaOrq0vnfCZesm3btqCzaUkJLrUTffFSur7Fc/Ed4jKwGDdbEoM5q5rrqLtwb6InHA83V5uXIAkiqjQaxtFR2dBuu24QAXOUTCapY27Nes7mBWK+YwECJBJAbOWWhcaTw3sbs5t7kluuzsbnVtLBFQrZvUPUtHX5woIZ1JaJba+LZXsbbiDExv12vFfSTh+Y/g+CLDxL7zuIvbp1jgTc52HPta/M70EnnpA0/rtsmCq94t1LrLfDEzaZyAkuTq6oLcRrr72mm0tdXZ2/tmIbxE7Nzc1Dcx+EEEIIIWRYccuWmXAGoKzcr3/9a42bXXvtteoif9xxx/nnIaYG4RP2GAm/8s9/CrxD/vnKK1l32ef0uK3PPpRXMQEgybgU4T/mPljHt1Jvem0n2dode0eVjrNEC3NcinJLxfge8wq7Pja/1HQsFvi8FHLOrH+VlsUnytSjT/P7jBjlP//5iixYeIBfmg+uVw8//LCei7XjlpYW6e7u1p8BSqBDXIZEAyQfYFuyZImKnvpycCKEjC0oaCJknIABAhbfsLmgZB0GXljYdoVO69evL8nRKY6yWbB737Ml8LmWr6tuyAmcHNFTprJuyBe/yd7Bc1t6QoVMGJir0Cibrbv44h9rljXAQBwim9xiv7cAjkCBge/dbGSv/JvWigic4wUpHHFSZbVkUqlgFnZWNOSXdtPBercjTvICAJb5bZMKG6ir4Ker3Q+I5FyhIKTKaDuJKs8VybIdtM/ZIITrHqWlLVB2IotlTWDiEC7T505AcoEF554qqgJZ3uiHPRcXK49hlrEu6//xa/+5QGhW1ThZj8PxZIyBjJ7ejpBgydti3e39dlsC8XjcFy4h2IM9hEtQ41O4RAghhAwtyWRS53RwW3KdlzZu3KgL6+WSrqjxhUue+9IUkcTwC5FtHuC6uUJEhLGvCX8wXrYFcoxfcU5YEGTUTZ0nkw8+Ls/JKGphH+2b4AdzFnWHqqjKlcrWuUsqryRDsrdbhUmV9c1+AAHgvV3D9tZvOx/zAnf+4Y7lo/oKIRTORfIE9iaoAsXEQ+rY6gRCrASfoWXkdH6A5I2MvsbPIOdS65XwtufoJl6gT25QxvqNY3BNd343lGDNITlxrgg2r8NeeWQInPZskXj71siELZeOjg5ZuXKlbi7IFg8LnbBBAEUIIYQQQkYPn/jEJ+Tqq6/WUmd//vOf/c9jmtQQ0zXNKHeRWfvMk3Xr1su0Q94oa597wp9zZdJp6di0Wsfn7tg9XJbNnXvYeNkSBvCdmwBh5aGtDRuT29gfY+9wiTlLfMC8xJLFLWbhutLie+D2Fd8jWdq7oYzOfRDzccfwxURY4eSKYHxlj2QyaVm7aZs0zDtYWv+5XCtdmFMw5rQQj4Vdr8Bf/vIXfc6Y5yJu+c1vflPOP/98dXUihIx9KGgiZJyDP/iFhE7m6GRiJ7yH0AkL5n2BwHgMbh/dbSK71gW+y6CcWEjkZK/3xkI5GTjm8KNCnewAHiKeiYuO8cskAOzxPpbwFskxgA2UfnNQwdCmVVpqAXsEIAqXlcvInJM+7A+Ww+XTwKzjz/QnArYgb05FCE4gyOA6TCFQUtU4RTq3rtG+uO3hXHyuYia4MqWSOlFxB/YqUHKwknC4vpWdAHgP3GCMfj7Nq3sNZ6e856Pl5rxSD+4kw+7Hs6P1nov+LPD8sgEPfa4mNMsKu/w+ZoM0fWV0kxFOqjdCtLTbEy4VyUwvBUzkURbOLReHAA4ml5xAEkIIIUMLFm43b94ccFvCgu6aNWtKmqMVKh2Xrm2WVN0U34EpU9UwIhJQVJSkSQ2ZbHlnLwEC43LXyRSEx6+uIMjAXKJ6olciG+RK0uUCAYZlUlsgAHMFjKfx2cSFR/vja9sj0IAEBMwJzIkJiQM2DwiPrdGOjfsxPkcfosbfuDbmGG65CD9j2pmXuIIqV/TkBhus1Leb1AHwPN37jwqgYF5kczHcD+YNJp5yk1TwPKzsNYIfeFbA5om4vsjQC5ryiMUlXTdZt96pi7zPkt2SgLAJCVrt2yTesVPive19NoVMcWwoO+Iyffr0QMk6bPvssw/F/YQQQgghI4Tt27fL8uXL5emnn9YNDp0oZQZnJozb4NZk4iQ4B2GtE+Ka9RDXrN8o9VNmyp7WHTL1qHfKge/+kndcfUtWINSriQE2pg+LegolU7gxgfB3Nq7GON/FhEhWUaKYqMidF3gxE8QRvHvEmN7ac/sdSJbOZHROZvMCmyvgXtBesVJ07lwECRTWB8wj2ta9rLGhRFW9xPU6KZm+6DBJVzdIvHuPPndsAA5O9nNBGTq4N9XU1Mi73vUuOeigg+TQQw9VURrKAVZXD24ZdELIyICCJkJIJBisLViwQDcXLJRjER3iJmxYPIdSGq9LLV2AgHqiY7tuYdKVdbqgnq5pzu6bdJ+pqBkRi+qkOPGK6pzbT7wiK/DJLVijBIQt+ruiIoh3sBCPxXUT79iCuZuxjMF1WKgEKidMDqr9dWAeRDOHs4Ii1Jy2iQImBCZcwiK/TRSA7QNCqlhcYrG4l6VdWSM1k2bouSZMMjR726mNDdcobxH/CUlU13pCokzGd0Ky/ts5YfEWnicmGxbwsICKBhJCmfeVDZO8En7xCr0/nSS8tlLvV8tZ1DT4JTRUKLZltf7sLEOkVAtZspfdlpJdEu9slXhXa7ZU3E5v3+sFlwYCasJjIg/hEsRK9hoWvygjRwghhJChAQu1KHeARBLMsTDXwmvsrbRBv9pFaWfMr1A6rnai97pu0oh2z1VRkj/OzZZ7zjqzQvQflY0cxnNpxfzCa8fKMqNtLKqHM6JN9INEDAsEmHDJ5gkYT0O45KIJBpmMBjHQFyQ32LzIkg6QqIFgAErYqbOqJiFksmPxKu0Tro9rhZ1f0Sa+c12nwhnXJkDCszEXKzdwYvMqbN68KhfMMAGY3a+B+7TnoD+FeELLcrtBDHcu4maf21wHblEv/PJynd9gLjNiqKiWVNNs3XwgcsL4unOnvyU6dpZUgnnTpk26PfLII/5nGDcjEIOEAIypbcP7qVOnclxNCCGEEDJEYN708ssvywsvvOBvcP0phIlnMOdqaJggbe0dUjdlhjy67FlJ9fbo2Ll73StZ4ZFXTs0EOwBj/8r6poLJFVEl4UwIpOP8F5f6cxwbayORAJjYKewia7jJDzaHcMfwJqiKKseNz1ynWHcOtOuVZXodTZzInus6sWJe5Aqb3JiPWxbbFT6Ze5XNZewZYK60+ulHpXX/JbLvWz8kibZNulW0bQok2kK0ZMDZCQI1bNdff71+D4HawoULZdGiRbphPZtr2YSMfmKZ/viPE7IXwEACf3wAFnajrB7J3gWW7CZ0Cm9dXblSX/0hDaGMipyaHLFTs2Sq6kfsAvx4wtT1wF18DwcWrDQaBqwYgJuoyMqueeUPblSxEERK8URFYCAOMPjFwNcTQFk5BM/RyLKTfWLQ9yOwUBVwOYJzFMRV1md/MT8Wy4l9IoIhXs3q6FJ2uCcr1eBOIsLlGXJ9865lGdw2qLcSFoFD4wkVYVlwBIP+cEYGJhc6kQmdayIw7C0gYddz++d+T0HTCBMu9ezJCpd26T6hAqZWiaWcko39ADXI8Xc1vOHvK0tmjCw4BiKE/77I2KOtrc0XKYVFS8g47S8o/a0OuCpa8rZU3UTJVE/Ijo1HDzZ38Od7EeNcd1HfLd9g4/FIt9OsyxBclzD+tUQCtIdFeUt6OOyS6/JKNuB4KyWnTq0Y52eFSdYG5gQmXvL77Bzj9t+uZ1ib7vjfeOq/zgtcx5Iy3DJu7lzBAgSWMe7OZUwIZQIpuzc91/qa3Vs7bpa5zdnC9+NmXrtzQ3tmNu8bfWWbO3MCJ1/s1Dog91NzPo0SO7W0tGiZE0KGEs4xCOG/L0LGCqg2AudaiJZefPFF3cN9CQ63hXBLms2YNdsrtT1hum6b/vmcbHnqb/4YNrf+7rkw2Rg3PNcIxycKrbfbmN3G2W7VBnfs7Vd5iMVkzonn6vcWO0BMAgIqt8yzzSXQBrDPMK8ArpOUG5Nw4y9uP/PmVNl+2DGWtKAOsKlkbn6UfRZIqDAs3uJ+7s7fll19ft48zNj25J2y+Ym/yczXHSizpk7qs3R0eP17//339wVO2OCsyrE2IaNrjkGHJkLIoIEAONTP2Fygm4R7k+vqZNnGyGAsNrA04sluie/ZLIItqnyd7+rUJKmaiZKpGX0L9qMZ1zbVsnCLgQxmZB545Q7SfvaBR9byNFER2Y6JejDAxYTABE2R5egyaR0ENy04TJ2RbNEdIh4s+lufDSvjphnMbdtzJdyyWRaWEe5i1w9Yt2YztAEmDK4IC1nJNrGxzG6biODcXGk9y0L32rDBPSYYfp9jMb+/frAnIliCgA36hKCHBSLwbO05mm1tuF43GUbSaYl37w45LnkipoEESuLxuE7S4LCEwSMGk+a2BIteTt4IIYSQoU34KCRaggvTQElX1TuOSxMlXTfRK+Otzp6jH7f0mWYHh4RJqe7OgCOqW27BXJsgisJ5YbdTyyZ2yzdo9nGiUksfWMlsf/y9a4t+7y782/ge429v3hDz5wTqwprJFBAtVahjK9oKuy7Z9cMlJyCQcsf4CKJYYoJbxs1LkPilzoPS2bmMOzcJB1WQ5OGWl8P3CHJgjgMHVwRJzBnWzvHmEMlQOWwve9zKhVuQx1yt3AzsUQd+vlV1ksLWNEt6XaFTd5sjcMpuGL+XkDuKjPLVq1frFgYlNAqJnSZNmsQxPCGEEELGLSgFB7GSCZewQcyEsVU57rVr12+Urs5OWbN5h0xA+ThnDrXlqe/5DkmYL9jYNtm5WcfHuQoPwViBL2bKJjKDQmXmXKcj9xwbc+fmMl36Od4v//7HnTlBJhA7CQuTLOaAtjFPsnmMiZnceZMJrKyfJmQyQZf2LZtM4t6HzoWyjrT43p2j2LPAHADzD78SxpbVUt00NS8OgfmXOeWGmXLEybrp+XjqvR2S2L3Ji8W8+JTMmZUrTxfl1GUlBo3GxsaAixM2rJMTQkYuY2OVixAyokHAHBmG2A4//PDAd93d3aqGd8VOGJBiK6WcQqHydZlYXNLVjYGydfZ6rCzwjzQwYIa63koURFmdYlCrC/Zaei3nXIQgg9mQmsAmyn41atC/aelt0tu2XeLV9VJZ2xAKeMS0PVwfQQMbOCOQgba1/Fp2sO1mIZjNqRtcAPHKnNNTOIPbssNddyf0xfqN/powyb0vty41giQY1Nu1rCTf9mfu99tAZoZhEyMtO5cVMlmQwoIS1q6WfMiKvizwk59pHV2vmwwiKFVoYiVXvNRdWuCjmKB07ty5KlayDaIlTOZQQpQQQgghQwPmLJbdGxYt7dixY8DtZ1RMMcFzXdKt2RcwScXY/hsfLsnsguBCurcnT+CExXjXkRSCfoyVY4mEjuMx1sYY2sb/NmZ23U6x6G6OR8DESTgf42VbZO/asSE7F/DKPGPugbkAAgcTFx7tjdFF9Hi7hva9okqv75ePdlAhUdY9yp0PuUkYAPMUywB3F/0hkIKYCWCOFC4JZ88Dx7nl5Swoo+6zSCaqrJFZx58ZEFyt/8ev9f4r6pv95As7zvporlQQgNncxC2LN6bAv82aRknWNIpMnJv7PJ2SeBcSFXbkXFaRuNC1u+REBThcv/LKK7pFjftN3BQWOzU1NVHsRAghhJAxAxLhMddyxUsoI1duNZB0Za2k6lskXT/Fc2Gqb5GWijn+eHjldV8JrKVjrA404Tmdkl2vLPfHvIESy35J7IzOCWpb5mTLSVfnVWUAbkzAxEgYbyOmYq6rOMbmNJbgYee7ZeYAjnPLT4ddltxYhVtyzuIwlqSBsTvG9fos/vcLAWcqc13CceF4AfpscwV8j/6vus1LJrdEEnOgMjAXcl2pLA7h3btXUWP59y/0q26ERVT61CvrJDl5X9mw6v8n3R3tsmZLq0x809mS2LNF4u1bNVYYi6qYkWX37t3y+OOP62ZMmTJFhU0mdIKrE8bWhJCRAaP6hJC9SnV1tcyfP1+3sKvT1q1bfXETNoidkL1YSjZzLJPWskzYCpZgqJvkZzR7JRho6d5fMNA2gZItVNuiNgbk+ByDVHMkwkA4t7Dv2ZxiIOsO4N3sAFs8t4G9KxLq3eMFijK9XXLQp6/V15qtkL1OVeNkbXv9P272+4vBtA3iwwELI7zgbk5PmMBgkd8mNli0RyZ1FNaGTR5sshOukY1JQyyWCJSMw4Ddz1zYvEq6dmwMuEEZuC8EV6ymNjKw0TdkW9vPxGxfXfA8IbAKu2C5kyQyAPyM7R0S77DyFDsk1tUGmV2/m504caKKlSBecjdMuui2RAghhAzNIvr27dtl48aNuphue9t27tw54GtgjpKprpd0NcprN3qJGSpeapJMVQMsF2W8kgsWBPEW84NjKrgGYe4Ah6KKmvqcg2kmk3NIymT087CrrM07ohIrLGiB89BOOOkhk0nlSrRlrwF3WPTP5kcoxWYl9DB2d0u9hR1WMQ+wvoXLTbtgTmPlGHzhE4REDurO5KDJExActeK43B4BDMyLTIiE+U64PXyG7yCUAuHycW45CsxtMpLSud6MN+TKYIyLxIl4wnNLq5sYXbrOxE0QOkH4ZO/x31GJzm8vvfSSblFipxkzZmhSg232ftq0aVrmjhBCCCFkJM65Nm/e7LtXYlu1apXGg8oVL2USVSpYStVP8QRM9VMkU1Xvfx8WFdl422IYtt6PJAhbT7c1eYy/MS/wk7Y1ZhAPlKr2EiG6dM0e43rMW3AOYgC2Vu+OiTFX0DnGi0t9QRXmDDjGxtomQELSBI5Du9jcftseyRXWR4zFMdewWIEXR+iRnt3b85JGMqle7YuV2vacW+FgW+E7vIZBTMUcX+17ux8kXlhytyZJZPs96/gPBGI7brvhZHHMK9x4StiBypLVpy55pyQnzdfNu5m0JhYk2rd5AifsO3dqzLAQqDDz4IMP6uauwyNuOW/ePH/D+wkTvBKEhJDhg4ImQsiIBIH5qVOn6rZkSdBmsrW1NeDkZNuWLVv6blcyWmNX6+zuXB0sXQdxExYea7NCp7pJIlnrfFIc3xo1q8YPux/ZYF0DD7GYCoC6d27WYyBSsoGvOR6ZEMitAQ0w8DXxkX0OIQ8mF2jHJiTmooSghg38tUZ0ttazK55Cf91Mbq+WtJftYP23yYQKsLITGLhA6aQmO0kx69aowbWLK27C4N0yvjMZExyhbJxIzMm4R/a1OTfl/mP2MsAtcOJnaGTdr2zykCuB4ZW3sICLO8GxTAfbSJkkuyShoiVPvKQips7WAZWKQ8DBFSyZiImZIYQQQsjgg0VyV6jkipew9fQEM2EHVCLOESthn8F7JFc4pc9INFhMh4YJ41kVzPjj5xCZtC/kwaI5xsJuyTcMts2ZyHCdS11XIgskWMkHd4HdQGDBsqLtPL8kWyymc5xceW23G1756MDCfTbgYPMaTQhxBE82nkfWtzvXCM+N3DLXek46qc8Pgi1vrpQrVWF73CdcajGXwLGB0tyV1ZKoaVAxU+WEyZJJ9uh9WYk5Cwjlzk9Ipjep8yQESzCfGbUl54aidN2E6flip552X9zkCZ12SUz3bUWDL2GxUyFnJ5Sihmu2K3Jy93R3IoQQQshQgyR2xHBMsOQKmMoVLml78QpJ1U3OCpc8EVNfies29sa6OMb9bgzDLyWXTYLIuZJWBxyOMN6Nckv1yj/fkE0Q6PFjFF5Cw1J/7O2OiV23IrTvlcr2StU9ddWH/bnA2rtvkDknnatxFItfeAnOMZ0zqMgq65aKdtzqGBivI6Zic4Zg+ei4zp/gwmqVIVQIle03gHtsoZhBOJ4Qdl8yIRfmTFFJ5aUQTpw3gZclq+f1DdVbYGaA+F7L/rmqCVi3N4ETtq7WUNHAIEhewvbUU08FPkd5OlfgZK8bGrxqGoSQwYeCJkLIqKO5uVm3Qw45JG/xDkInEzthIIzXKPsAlX+fpet0MLM18Hm6sk4zK1NZkZNmWtY0M+AQQgfrWVU/3IQwuPQG4AkdZNtAWwMLWQGQlT/Dor8/WcjWYzZ7U1sYX3b1R71F+Fgu0BMul4bXuVJzOdzggVvr2URYlqWMyQYyL9wgBQbrGGhbpoabQe26Kel/K8lefwCPa5ooC69NyOWKo/CZ2cLaYBzPC8ED3INlPlsQpG7qPP+Z+YveWacrm6C44i5XJGb3hLZnH3924Gfhiqusv1Fl/oiVj2iVeMcOSXTuzDov7ZB4b9/lMaNAUAGlITDhcUVLKBWH7GpCCCGEDA6YC6D8W9hhyV4PRmk4/1qVtZ5YqbpRy1F5jksQL0G0xCWYcrGFeQh4UOYBYKyKrGIjz400uyiPsTIygAFcm6wUGwIJmDe4JRrcsg9uSQQ4DmF8jHGxn6iBOUC2rYmLjgkszKubazYBAtdHcMEyrMPiJcw98spBZDI6P7JgRNi9Se+1NymV9U2BsbrNKWomzdTx/+SDj/MzoS2QUTVhciDA4M49sEGM5N3LJ+SFX14emHvYMSAOYVlW8OQKv4D1Wx1snb6jLZ1LkcJip+oGSWFrnBn8Dv8tQ+ykQqdc+Tp1deou3f3VnA+wLVu2LO/7+vr6SKET3Z0IIYQQUi5WfSPsuISYDWI4/SGTFalAtGTl4zDv0rF/vxr0koIxLsY4FXOC8Hi9bto8v2wasDV1nOO6pbpr6m6yQ67sdCxXeSErtrLYhzsfiHJYzc0FMgEhjwvmBhjHuzEWq44BrP9WxcKNn5izbbK91Z83BKpEZJPDwxSKIbiOTBBI2fwAezcB3OYk2ON4fIf5ViC+k31WloyCuRVEZPYe859wokpBYGjQ0KKbJ9eCxVOvJ27q2KZ7fd2dn8ASBg7O2J588snA56igYAInV+jEdX5CBg5X0wghYwYMDFDfFpsLMqohasKA+dVXX/U3BC/6It7bIfFdHVKxa73/WSaGsnVNnsCpdpI6OaXrJkumsnbclq3zB6rZBe1kpzfwxqAU5eIWX/zjQBYDsExhEwNZPWYvg+AJ/W7dfTd6AYXsc01U10YOmIuVYsBkwAIJmJzYwN8tHeF1NqMTBpRbsBrN7mDfFU95WRBeqTzLtsBrwy2pgMmNDcIxIEe7tpiPY/C9BiaybkphQZbZxyLbwA0KWBuuYAxUTZqpkzGAoAyelWWGoI/hn4P+vLr2+IGacVUOohBaDqJD4h3bJdEBt6WseKlrV7/KxcFxDoGAfffdVzeb0EDMxLIPhBBCyODQ3d2dJ1bCHGCwXZa88nAN6qqEDRnA+jpbKk4KlCIm/cPcTLGobuN4b9zvzQ+0BEJVbXCeEYtLTMfmMb/Ug47bnXE2XqMdm0NYhjauB3cjE/PgOBsXIyDgOj1hPoPjbRwNILryM6YrqqSqcYqOtSGMAhYksdfAxuCBMbpfws7LCjdwH9jM9cmSKfzy39lkDQ1UOAkYVkrPDTDg2aGkts3hvDnEJ7zkDDeRIoCXbIFgg5WnAwgk6M/HCbhoskhXuy/+MmHXuJ1j9JdYXH/PpLA1zQp+l4bYqS3r6NTmuTll9/q6DMfY9vZ2+ec//6lbKe5O7tbY2DgYd0oIIYSQUUZvb6+KpTH/sgRz2zC26C+aZF7bnI2/NHsuTLUTByXJ3B2PY0yL8TzGt17p6ht0DG9r8PjcLbFsY2+c77qwhpOKLZZgidVwejWREARPtv6OdnLVImI6ztek5uyY3q3mgAQPE0khqdnG+jbOd+8N3+E4zEU6Nq/WRHTMASB68qtYZJMzUEVD4yb1zerCqrEOp20rG+fGY4DrwhQe37tzOMRaUM7OHGDdKh3Ayu3Z/WqZPn/eFvNjRVWNk6VrxwY9HveGeI9b6aNfJCol1ThDt163EoOKnHZKAonNiAuUWIkBZeuwPf64F5txKzG4ZeuQzIwx9aRJkzRuQAjpGwqaCCFjnqqqKhUQYHvzm9/sf45sAGQGYIPACbbseL179+6i7cUyGUmgBm8nFqWdrNWKGknXT/YG2HXevi+L07GE1Uy2wayRTnYHsoYxOIbiv7Zljj84x2B9xvFn+i5PJnTyM61jsUCJgvxBv1cP2h/4VtZ4182+t0kEAgnmSHTIJ3+YCxzYzyjbF7cutE44suKlYMBhs2Y/WKa2WxrCMgO07AQG5P6z8MRP5qykWRNZp6TA/Tp2tsiytswDbLgWzrWa1lYGw56Ja32LgERUTepwjWxc3yYfYfHWmAeTs+42SXTAanaHJDq2q5Apnizf5hhgMX/BggW+cAmvMVGprfXEeIQQQgjp75/sjOzatcsXLIU3LBwOFplElS9YCoiW9HVD/7OASVnAMchNWsBY2FxIMa7HuBrj57BYH3MJt4yCtyDex5ws64wEMO+Yc9KH/UAHxsUY5+eypb2xOkq/oX+WVexlYOfmDZrpnO0b+uBmQ7uJFjYGRxkJV7zkCYJyGdpeSYncnMJcVt3y39a3sJssRFoAiSAIIHgBhu7IchnWrwIPSu8JcxHX3dayre2Z2f0HnnuB7G4yAOJxydQ0SQpb3o8qI7FklydwihI89ZbujtCXuxPKa4RFTkjewB6Z6okES2oSQgghoxXESgo53aJ8XF+VMfp0t4VwqcYTLkG0lKptFqnwxr1DgVsiDWN8zxEom/ySHSNr2bdYxl/jd8U8GPfbGNgSqa2yg8UvbJ3edX4FOAYxFBNFeUnhTgWIrOjp8P/3C7+UM8bxiKlgfO+7ocYTKowyByb0ycpVu/MPd55kcx23L5hb+Qnq7a3qOJUTbHXqfGf7M/cHBFsm5jLHV3d87/bZkrFN1OXGTdx4CYBYC3GW8HzCEiMwtwsnsw9ZDKOiRlJNs3XrDZSH3qPCJq3a0JkVOiH5uQShk42jly4N3ndNTU0gWcB9PX36dI1rEkI8Yhn1yiZk5LNu3TpVroK1a9fK7Nmz93aXyBgEvxIRDIHACeImiJzwGhkGyWSy/PYSVb6Dk1fPefLArFBHARi4eoNSbzEdg2tX6GROTO7elP7uoBcDY7MRxeK6DfZt4GvZE/7APIYshirJpFI62EY2g5Zqc8pI+I5MsZjMOfFcPS1cts7axKDbzRYA+AxCKHcSYxMUFVFlJx2YvEBk5DtHZfum9rJZoVVU+xaowLHufanQqrLGH9jbs/LKb1T5pTRcMRkCE2aJGy4nl04lnZJ2cf/n5D7jMVlyLpOWeOcuz0YWzkvqwLRdYil/elIycFZCeTgIliBcgoAJr5lZQYYCjoEIGTr472tkkUqldFG8kGhpIFm++S5L9SHBUqP/figX0EnpLLv6/MBYGWNsE/gjScIfz5aABiUgQrL2YjGpbJgU2UYMc4pkj46nUboNjrPBsgve+BnzDcxVwuP5UGuBIIXbHy2pnU10wHzF5j56b3tQBhHzgFyAyOZP4XmDCZxCF8g71w1wuNjcxVCHV0dchcxtC57gmijLnSuh0auiMsy/bD4BdK4SCpqEy/ORvUw6KfHuPQFHJ5Szs/exov9dlzdvQkAmLHaygE11NX/f7i04BiKE/74IAYh52BwsSrS0Z0+oBFo/0ETwrNuS77oEx6W9PO/Kq/pgCdPZPdbvMYZGuWuM3TEW1rFvdpyE7yHYMTERkrcxPk/UNPjzDLfssol7Iq+dnTdY/MG+D88BDK3mkHWvLXSMN+fA5znXVsRhTDSEsXyuFF5cy8+BqDmDzafQT00eycZX3LiDJVHjOlaOLxzPscQUF8y7Fn3o8rx2jMoJkwPzNiSfjIi4RTZROt7lCp28LZYZ2Fgazk1IDIgSO2FramqiuxMZV3MMOjQRQkhooAArdWxHH310YGCPX75uyTpsUFYXI5bqkYq2TSLYsmTiiWypOk/gNJiWqSMBsxStbp7qL4xjAO4P9OubJY7SEI5YyQag3gJ3TlSDAAJAEOGp/zpP1foYZCMrAYNvt3Y1ronFdSt9gAkEBtWu/SkmDe579C9c49lEVamezrxMZ/c49zwVNeG6WSx7w80UMOGTTYTcTIYMgg2OS9OEBYfJrleWq/gpFsP3SX1trlQmvLKsEWR7L774J/7zAHhGVtYh/JxwTZ9soANBCst4HxMl5zDJRNaEWsTCecmziu3PZAIL8FYuzjYMxCoqOIwihBBCyqWrqytPqGSl4TZt2tSvJIKyXZaqGtTZhIxs3NJvWGDHmNrG8uWImfT0REKTAMJlEqKAmAng2poN7YqZnPEzvnfFPnnXjCeC9xBoIpkrsRAS/iA72mvPKTVXWa3l4ay0nM4hUilJ9uYHG9w+GlECMJuXmAOVm9Tglaz2jtPydBBEVdX6QRjM7zDXQCAFzwj9Rd+2Ll+Ym6uEGFA5CDL4xCs0mCgIKEa6O3VKrMsVO/XP3QmlaLCWgi0KN1AT3hioIYQQQgYHiJLCQiV7jTnYQFyW8oVLzTnhUo23z1TWyEgD4193zIqSaLPfcnZeMrUrOsI6fE5cE9O1djgYucfhmECp62zygevQCsLj5coJkzRmYmPzHhNEOaXgIJZClQgkFuB8lJSzOYclhyMmgnhCojo3dn/hl5frnATJ/BY7yBMtZdL6GeYdGON379oamFMggcGbo3gOrOgLnKEwp8L1Eecx0GfMF9yYCOYMhRJB0De3fF8cyUfdSGaKSUVtg6Qc11o8f9fpdq8Si0mmplFS2Jo9R1wlk5ZY956gmxP2cHQqMTaBn9XWrVt1e/rpp/O+RzWIQmInlLhDUgEhYwlG4gghpJRflhUVftm6E0880f+8ra1NhU0vv/yyv6FGdLFJADIdE+1bdZOt3meZWMyzVs0KnFINU1X0NBoDLRg4u/vw5ADZxrBNNZETJgfhBXS3pJzrYqQCn2zGgR2P61i9a72mBRMyGRVCeefGtB0Msq1fhexIMSEIuzJZpkXUOSZucrOQbbE+SvhkEyJMONAnK+3gBUK8oAaCAegngieJmlp9bVnQmCiZg5SBSRGeofvs8L25QPnOVHZPbk1sm2A5ExqcN6rKQaRTnmgJ/65QLg4ipi5kQpRnQolSCCgPt99++/kbXJfq673sFEIIIYSU7rSExXGMkzE2hmAJGxbNd+yA88zAUblHZb2ka0ywlHNYStc0iiSqxk3p57FKYJE/u5ieEwhFOx8VAgvuNjbHuNl1j0XwIpAlDPG/Mx/A97nS0EFQoqIQGOe3vvRE8XY0+1tvMHermoDgOTgZ6B+SDywBIVeirsg9Z92UTAjmXFQDA1EZ4nYc3JZMPIV5gpb2ywYStBTgri16P8iw1p9FLKb367tZqYuV9zNCxnXXjo16Ds6lS9MoAMGZyjrd0hO87P98d6eswKkrwt0pJKgrBhyysa1YsSLvO8zDLEgDV6d99tlHk0swZ6OzEyGEEJL9s5xOS2trq/49hfgBe9f1FvMylI0bLLRMXMjlVl/XNEqmsnbE/1gKlXvDvMBdu7e1eKyTYx3fkhQ0+UDBQr4nxulrHqLVGLJr+hhvRzmnQiSFCg22Pm/zBnyOPiA5w8buK675lFfeOpu8bFUa0H+M463/Jvzx51Uh0RJEU4XmOeoEm03s8NyZcKmk/8zcEnjhZ2CJFLgXxG0gZrLSef5zj8WySRre9cNxIHvGVm3DwPO32BAYkZUmYigL3ShJrEtMnBsSOjkJA11OwgDG0iWUrzM6Ozu1ugy2MPF4XA0bbByNDe+RSGBmDnV1XoyMkNECBU2EEDIAJkyYIIceeqhuRnd3d57ICQMLZCYWAsKLROcO3SrlZf0sE0tIqn6KpBtaJFU/VVINLZKpGvnCClPj2x6DSneAjgwBDLphaWrCmbArkH3m2bnmBrFWvs4GuCbUsUF5uJZyzjLVyzqwQTau29cgN1zize4FRJ2LhXk3wBDGAihhu1gECuA2ZfeFiYjds9Xddq/t295m7VhtwmDPDpMVTA4sW8MmKbhn+zn0tu2Qwy/9hb5e/v0L/eekrlSppF53RE0CQmiGA8RLe7boPt6+vWznJdSghljJFS9BsMiFcUIIIaR0ILzYvn27lmo2B1O8RrlmjIkHCsbDAXclFS81Zt/DZYlLGmMZT4hzoy/sUdcgHyubEBT+WKk1fA7BTW7BvVfnIBDxYMxt4+2AmMlKTNh38YSOqTFet/d+iYUsWMiPcmcCviDIeozFertGloqaBr1GwKUpk/YcXEOg3wh+YHNLwhUCjk4mHkLmuM4bsqUkcE3MH/C5lbnzLp1zsoVzbqB0XCaTc6bNipwsAIH5A+YzuWPT/ucoHwG3XZyD+RgFTWPF3WmiSO3ECHentMR6OhxXp91Z0dNu733Kc0ArBZQZtTWVwOXjcQ3QQNxkiWd4DdETklQIIYSQsQLiCSb+NbGSu8eG+dhgudxGzsGy8zB9XzVBRMfYo5dwrAJY4jDW7C2+YHt8h/FsuHSauSEVmgsYmIfEKypz1RnSKZ1DRJWJwxo9Ni0tXVnjr9lbFQZLzsj1P6ZVMqKckKz/qOwAMZQr4oJYCeN9E0YZuC7adO8d8ye0kVfiOluOGvMBc2jKu59krz4rfI7vvURz7zmgfLe64WZLWFs/8FzMXRZuTFbpw8r51Uyaqa+RWGGxoVFTaUKFTk2SwhbpkNoVKgedEzzFetqz3liliRxRWQbbsmXRCThIHDCBE/au2Mk+g1sqxt2EjARG918eQggZgUAQccABB+hmYFKxZs0aeemll/wFuX/+85/S0VHYqh0CjYo9m0WwZUlX1quwCVsaIqf6ySMmkGODehvAmvOQDahdq1YboGIw74qFcIzZkWJQrQvfWTCYNcEQMJciLJL3tu8KlIKA0McG0TgPfXFrNGPSYNcJD3bNjcn6C1cnK5sQnjxg0Gx2r5bhHDV4dic8aAf9tuCIm1Fg92SOTOb0ZBMSBEBsgoVjcRxqRrsiKpskYK8Bliyovf3UVR/OvnPKV1RU+s8O57kiqhFBKumVi9uz1RcxlVPiwAbor3vd61S0tP/+++trZPeyZBwhhBBSXpkCuC25wiVsA832zSSqfZel/AzfOrosjWNc91ElIligpQ8CH3hCGoiOUGYBY2AT8GNbe/f1GhzwiPkL81Hl4TCHgAOTLcxbyWu0YQScjMJ9y/sslucsZa5HGNNHBQpQ0s4rKdHpZWGHS0NEkRVN2VwCoqTcfXlZzuEyd245OsyZrOQD2siV1RCv9EXEz8GSTfwuIPBQVevPK7wM727dkzEOAjXVDZLCJjPyv092ZzPSswKnrNCpnEANgjTr1q3T7f777w8krcydOzdP6ISATIyOfYQQQkYYiAuYKKmQYGnnzp1Dcu10RW0oaSQnYBrrczCMT701/d6AYMhzGM0n2dUuy64+X+cGFuewmEJYEBSFd41MQMCEvVZn0OoJWL8Pjq8xZsY8xuIPAMejH17SRhYnCcKSnMPiIrRv8Qr/vpM9OkdScVNltT8HCc9FrNJF+HPtQyaj4iLMAyYffJzGULRUdQz3mfSrbVi/TMhl+GKwUMIH5lwWK4GYCTEixHFUQFVR5Z9nc4sRF8sYkENqrW7phqn536eTEutu95MEAuWg8boMdydLHMCGZLRCoGzd5MmT89ydXBEUNsZYyHAwMqLghBAyxsEfdSykYXvHO97hL8LB9hXiJhM6YV8sKBTvbZf4znap3Lk6V6qudnJW5ASBU4tOPoZ70hEu24CBpw2UwyIfHKvZ1c5ANexeZKIhBAh2vrBUB9eYNLjl1GywapMHr7RBTOaceK4vOApbjvqWsl17AtdxCffFBtzuNYFbxg0DaLy3CYaJm9zr4X6tLbSDzOSty3OOThj04/tYRZVmPXe3btH7NiGUBnKyz8wtgRd+vq6ATB2pspMgC4gg4GJiM2tLS0Mku/V579WMaWQidO+WhIqXtug+3rmjrNJxyByAaMnES9jDVpXZBIQQQkhp9PT0qBDfXJdMuITsvn6Xhquqz4mVsi5Llu0rFcgCJSQfjKWRuFCQrBtT3ussGKtDzINxbvi/yqDbUkwX6zEWd9EEAQ0w5F04u/hfo2PnVbdZ+WhzjcrPtvb/NYTHtXAteuFRFS1ZGQlzMwL4TjOfy1igtmxnBBcCDks6L6gOJIJg7oFS1C42t8kv+ZArfREGz9pKUVhpPTxTm6fALQrzEOzJOAf/DWKrn1KglN2eQOkNtxRHX668+PsV5egEZ20TN5nQCRs+J4QQQgYbrPnv2rUr4KIUJVYqlug8UDKxeJ7LkvtaEpUyXnHX0t3KBeG5RNA91XNftWoIGCu76/HqqISyco64ya2sANwyc74jkYqogvMDc4lFbALr+zhPy01n4ynh8TliBpa0ge8whkdsxpIw4pVVAWeq8FwF790EBhfMxVyXXIz3kTTiCbG6fXGRfwz6p2Xp7Nl5SRaIRWC+5M6tVPiEY0PzIyR5YL6FZ4p7wZzQRFEBd9xYLFBCe8wDZ+LaJklh68vdyU8cyI6heztKdncKO8Rt2rRJt0IgaaC5uTlP7BTes8QdGSixDDziCRkFIPNqzpw5+nrt2rUye/bsvd0lQgYd/EqGyOm5557zNzg5pVKll9NKV9RIur5Fko0zJNU407OCH2KBUzgbAYIdr0xBDldgVKi+cZQIyf3cXIvs+0KfF8Mt+WbOTVHnYfEfExVkNVgdavcY954xYYDTkb03lyXXjaqv60VmdGQFWq54CoP5xRf/xAtOvLhUJ0tuDe2o+3QFZlEUeu5DDjIrUGpx1wapaNsocZSPyws4FRcKQrB04IEH+tv06dOZfUvGHBwDEcJ/X0PNs88+K3/6059UXI+5VjljT5c0sglrJ+qWwr5ukqRrmsb1gjnpPzaeLUzQ7ajU4ywLGfvK+mZ/zO5mJ1sygCsG0hLO2UQFtKnBgIyX0FFI6FO4S8FMZHcOFRYhFb0vvbXQM7C5X95yX0wqJ0yKDFYYNq8BbikL9/nhOUAIFWzHOSYW8xyZkj1+woTNdXAuss0JKRuUsutqk0TnDol37tQt0bFTE2L6u9qBAAvKkB9//PHy1re+ddxll3OOQQj/fZHywTwJrklbtmwJiJXsvZWHG8wScGEyiSpJV9ZJpgpbffZ1vaSz7+GwlKmoGdMuSwPF1sKtmkOY8LzA+8xzefUEUKii0CBVjVP8ShUY87qJCf54P2LcX2wcbonMtq5vCeTh0tdRmOss5jduvASsu+9GnbNAvISEBs+pqTvUN0vcyBdoYW5kidDLrv6onxjS13zMqksE53X232bfzwf35IrBzAkWzwnslZjGaAP/DfV2qhsqDBO0PDScUSF0cl8XEvUNAqig4Yqcpk6dGhBBYWtoaGBcZwywboi0HONrpkYIISMcKJpnzZqlGxbUQHd3twaXXJETJkiFiCe7JL5rrVTsWusHliBsSjbOlFTjLJ3sDFn/NSs3owPmMDZwxR4L9VGDTMuQwKQCi97AHcQDVyjl1oY2BydrpxCuNawJhcxZKVwaz7Ia3GvahMctGZdJ9cqEBYs1S8MwJykrERfOGCgkIrKM5kKY2xKubfaq6H9Y2BW2wC12TfdnM9SDfwycE7s3SMWu9brHf6+lMm3atIB4CaXjUOKREEIIIf3jxRdflOuuu06WLvVcHUslE6/0REt1zZKuneSLmDJ+KS9CBrMcRI9kUqm8BXxvgb+UYFFQjAOsRAHG+QFXVYfWl55wLhYLZgRLxr92SWKm8EI9hP2hQAkyoDEHwrzBXGqLgWxrlHlAECWWyJWRzguiOM+hmJgJ1EyaIYs+dLnnquuX1gv2I7qsRu4YddnNOlZBmOW6V7llJggpu5RdbZMka5tExFlvSCUl3tXqC5w8sdMOifd29tmkBaEfffRRufHGG+W8886Tt7zlLZJIIGhICCFkPIqVtm/fHhAqhUVLECvBgWkoUGdblIKrqpM0hEkQKFXmhErpSu8zJosMHD/WEIMwaYKOvy1OgDF6TnCTi3lYdQgT8bjloC0ZAU6p5soEB6JETW3xknTOeN1KZKMfiDsgJgHRUQYOUY6jEgRJqa72gOuq/99QOuW7JuF8K1tnlTWAzgdiMe1fUJCUe405SljQhVgEqk0gdpAr+507FwIvEBZBbX/mfj+ug+fozaFyc4fKhuIJF3nOt5mM3pebBDIcMY1RDebN1Q26FfztZS5PPR0SQ5UY7FUA5e194VO6t19dsBJ3q1d7lWeiqKmpCQidol5T9DR+oUMTGTUwc4iQHJhAPf/8877ACcEo2KuXQqqmWVJNEDjNktSE6YMyCTKhjGU39+XQVEjYA9wSbcDKvBU61x2Q2/HhaxfCzRSG0t8bXGcH77G4Z5m5/xJpmJ0rDeeWvQPWV/e6pThHWca5XTsvayJ7X2jXyse5bkzm0OTZs6a8QaeTtQFXJuA+N7tm+Bn1x+mqZFK9kmjbKBW7Nkhi93pJdBUpG+IAodKiRYt88dIBBxygCn5CxiMcAxHCf1+DDUrJ/fznP5cHHnig71IFNU0516W6rHCpqoEZv2RYsHGqlWPOLeLvyS2yayBA/4sNnBtVOgEBCpQ9w5gXY99dryxTkY2OqUsRR0WUtiuFsNuTObFigd8tRQEwVsf8wPvcyV6O7E8u89t3isp+FpUoEa+ul3R3e9G+2vwrXCY879LxhMQqa7z2/OeC8hBVkZnugA5NZNhIdjkCp52SyO5jqeJBmHnz5sn5558vb3rTm8Z8hjjnGITw39d4Ao5JO3bsyHNUcl9DzDRkYiUIcysLCZVyzkoSRwkyMtS4MQVbJw/HNwaKHzsItVXKeDwn/Cnmvuocm40NhL6JFBkVvmgJTlLZOcyedS+G5jZeHMWfGxRxuuoPKN9XPXFaoJpG964tfn/hAkVB0zCR6vWETVlXJ+91h+/8pCKoMhLYywWip7CzU1j4hLLSY30cPx7nGBQ0kVEDJ9qEFJ+UvfLKKypuWrlypTz99NNFXZzcyVSqYarv4JSun5Kt3dzficCNOtjGIBOZve53hew/XZEN8O1HkSFR09BnLeRg9rA3WbBz+iqlFimmCg3wXbGTWzbOLGlhB1tZ3xS4hpWrQxABxxQTeLkiMFe4BcIiqqh2wiX0zDUK/TaXKbuHdCqpQZ3wzyfqZ1GqKCyPTFri7dt8B6ZE+xYMNkpyXzrkkEPkoIMOUgHTvvvuO+4s/wkpBMdAhAwd4+3f15o1a+QXv/iF3HfffVrqOIwK3usn51yXaho1m4+QvUVUWebAAn+2PEN+uYTC2HwhnBhRKn05qpYWIPCEPyDd29NndnMhcO9wiy14H5ZF7oiw/MBCMXFWLBbIMPc+Cx7fnwCFW6qCkGEHQj8EWVTgtEPiHTulonVtZKY5SptD2HTMMceM2YDIeBsDETKc8N/X8K+Lu85KUWIliJmGTKwE956qhugScFlXJZaAG3lYsjASiJHwgMoLhZxh+wPW3zs2w40m06fov5T5i5aIi3BlCiZDDITSynlbInVUHCX6+ODcrV89c+IeFm9x2y0U6yB7s8QdxE4dBYRPVuKutPl7uSBRvlBZO/u8sbFxzI7x9zYsOUcIIaQgEH4sXLhQt9NPP10DVAhYPfnkk/LEE0/I8uXLpaOjI+881MWtaNukW/X6p7QGd7J5jvROXqAip3LETRDd2CDSG6xLZEkze28CoLCIx8pKYDJRSMwUFiLlFtNjOpC261iQIsp2NErshPdRA3EcY21BzASxD4IrXqmKyjzxj1+KLpP2hUrFyuvhniE+solAVFk+935dkFluJfcQHID1qwmlcjW2HaGYiJaliMLaiioZWJRMWhK71kvl9le01GFfWa9WN3nx4sVy5JFH6obFUw4iCSGEkKEBi/c/+clP5De/+U3kQn5v81zpmXWYpOsm8UdARjzhBXEs7MONKdneKhX1zX2WVUMwYO3dNwRERHXTwuKdwhnKvnioHLemvLa80tERB+ZKXfSVJR2L6VykatKMwgEMPT+/DcxRNKs5hD+vymR0XhBsK3ivxQIyAdGX85zgiEXIXiMW01IbKWzNc3wnp6qNz0rVluck5vxuefnll+XLX/6yJt1cccUV0tzcvPf6TQghRNm1a5eWK8K2atUq3SNwOrRipcqsqxIESllxkv/aKwMnFZ5InYwe3HJlGNMG3IYK4iUeVDVOKUk8FJxb+P+X36oKc1L+mB3vYxiTd7dLrKJKkxeSXXA9inZgVTETyswNmExJTlLoK5xcvZJ1/k0UnHfMPuFsWf+PX/tirLykiIg5FZIg1Ek3G++BK5P9jGwuhriLMXAxFxn8EncTJFXtuZRFkklLrBcl7lDeDgKn7N4tbwfxUz9ET93d3fq3AVshqqqqNMF+7ty56tA6f/58fQ2xPwRRZORB6wNCCBmDQBiCP8DY3vve92qmCkrUQdwEkROcnKImerFUj4pSsKUraiU5eV8VN6XrJvdZVkTLEvhOSZmAYMgVLbniJhP1mHAH52AQDkzYE+W0FBZIear8XLk1CHLcEglRAp1wP+we3ExttIWa1RAaYcKAvpmoCGKrsMjIMjt0ghKLycSFR0dmIBe6H2RbRAmg3GcUBgIrE1q5x4ZFX3iN/kPMBPFTFMhEQVvY90kmo05MKmLa8WqfVqKJREKdl0zABPEdHZgIIYSQ4eGFF16Qm2++OfK77ukHS8/MxYNShpiQwQTj2VR3Z0nHmgtpX4vZntg/vNie0RIGwD8/YuEUwQUciwV1iH2SnXsKXkcFSRKLyKIuLfNZAyY1DQWznq20BL4vmhkdIYrC3AlzhHC5OwQOUGp7/T9u1gSTVE/w2WtAJVlamXO//B1wgg2eGxUhI4iKGumZfbi6VdeseiDPrWnFihVyyy23yMc+9rG91kVCCBlv7N69OyBasm3nzp2Dep1MIitWqswJlHxnpaxoSRIUK41FkIycNz5HyTQtQ50TFwXJaJwgKH4Kje0LJTxkkMyQv3aOWEB4LI/kjUy3N47Ojb29a0S5xBaa/2A8jnlLoe+LzZ3wHZKl6+YfrHGCvPlGJiOZjOOYW1GpfQu7xsJNFnEKzC8KJkVA2OK4LSEGo/EVOGtm3aDc893z3P6SUQbKcOrv2jpJS0v0MfhvINkpse52v6RdTvRkQig4PZUvaO3p6VGHUmwPPvig/3k8HpdZs2apyMk2iJ2QjA8RFNl7UNBECCHjAAhHDj74YN0+8pGPyJ49e9S1yQRO+MMdJp7slKrNK3VL1TRJcvICFTdBXR0FBqe2KI5BpCsYKtVtqJCwxz6HsAivTaCEPQbVCBjADhYTDysJ5y7cuwIdE/pA3INBMfYoteY6NeE6rmjJBu2V9c3+MVEiI50MZbMR0P9C5RTCYqoolypsfZXbA+Fz3Xt072mw6kjHunZL5Y5XpXL7PyXetbvosRDUQbx0xBFHqBtTXZ0nViOEEELI8AJnCQjeo8rMVW96Rqo2PyfJplmSnDhX3ToR4CVkb+M6wJZCX2ImKzWnjrChhXSM45FtXYycG22hoEGFV91NAw0xaVqwOC/bu/RSE55TU7BEQy5gUupziVdURwZPNPnD77gnnnLdcjVIEQqYuGImFSzh90mBxWO04ZXA7lThlddtLyhByIggnZJE20ap2PmabsUSdOjORAghQ0NbW1tAsGQCJjguDRRUITBHJbgoua5KJlqiWGl8gnXzWKLSEd9gjFqRLWVWPGE338kpNL8uU1hRLEEiCk24rqotqdQbYiSFkpYhNEJCR/68xptv2Ofq6JrJZMf1XjWIKJC04I3zw8kbOUfc0m4wFpiD4Hrr7r3Rm08UYfLBx5XWPhld4L8HlPCs7Ev05Dg9hcRO8Z49KoQqVfQEEwgTOj3wwAMBoRNETSZwwt4cnSormRw4HFDQRAgh45CGhgZ54xvfqBvYvHmzCpvwR/qxxx6TFMRBDomuXZJY/5SWpUs2TPPETZPmi1QE7RcxsLW9CW0gOnIFQ8XchlxxjrkM4VwTMKFdK50GkRS+8xb6LXvCcyzC+V75NkwKMpLs2qNtuW5Idg4ci9yydFH9U1vUZHfBUmwmINKshy2rNXCAPkQJi8L3Cdxr2j0BuEXtWfeif09Rzy2qv3aPON+OKQRcpRDAwSQnynVKSXZJ5Y5VUrntFUm055emcIVzRx99tP53BRET6hETQgghZO8zc+ZM+a//+i/59a9/rWM+uHe6xDIpqWxdo1tGYpJqnC7///buAz6KMv0D+LPpEHoJvQmCUlSQYhdFsaKe5ayIXVHPfnf/w45nP089u5wFPXsX7AVRRIpSRBGl9w4JJKRn/p/fu/tO3pmd2Z2ElE3y+36cT3Y3s7Ozsxt8y/M+T0nL7lLSoqsa8CeqDWh767a/d3agoNmOwrCi2iw1jeNn//GjCg5CqTrVl6lIGTkXFWQUyWqLyZCcpfOi9vENZnK9rt7PGbjk9V5jXwPfSRkjuBGlvtH/iFtqQ59jZBFJrP1Tm7RSJQBVWYzi8veQnN4o9msQVafSYknZsTYcxJSNUumxM4b16tVLjjvuODnllFP4uRAR7QYsrHUHLa1cuVK2bHGVt61oKbhGLcJbelMpw6S3URqO2WfJD/oB7jayyopUgYUUVcdV5i01I2ZQFeYzggQzQay2OoKGwlUmYp8PMlalNW9tzxWUV+eIfp7f9cNcR7w+m/1cjwVY4T5WUvS5GeX3MA9UVYu5qS4GPTVSGzKuVijoqXCnJOVvV4v2Q3G+owh0WrVqldq+/fZbR1USHehkBjvhMVYnqVoMaCIiIlUv9vjjj1dbdna2fPPNN/LFF1/Ir79GR/Gn5G5UW/qqGVLcZk8p6rCvWOlNfLMF6bSkZmk3P+7gHB2YowOYdPCNDiwyg6b0igMzcMquh21Z9utjX5SIQPCRSp3avocdMGQyg5FSM5ur89Bl3fTvdSYnwHtEVqZBN77oaLC7y9qZ71MHbJnBSnYwVkGuCrTC+zUDroIwS+fFe54+Pn4io5S5L7Ixpa3/WWVjihXFjsxfRx99tAwfPlyaNWsW6ByJiIioZg0aNEhtmFCYMWOGGoRBIHtBgXPAFAM5KTvWq01W/iBlKRkqQ6eaKMhopn6G7zdTg0bxyhITVZa5otiz1JlHLA8mATJadfDMooR+Qc7SudLp8LPsxRF68Bwl68ozDwU/x9Smre3nhtMzlT853gpvB93WVqUuknxXP3s8MUbJu/JgpViwT6xgK3uyIHKOWLwRs0R1KGRfE/U+ImXvcG2xgIKoWpUWSVLBTkkq3KG2kLodvq8mL+I8vX///nLooYeqDcHARERUeRhXfvXVV2X69OmemWKDsJJSIoFLLaU08rMso0V40QX7IVQJ5rh5lfMo91wRmINITvfuyyCox6t8M/ojJXk5FQrICu8bvx+PxQiobqECmVRQUcUWlKB/oRaWJ6eovgAWkZT3nSrAY16iWj4/aphBT2WlklSQI0n52ZEAJ/zMDhTohMQQCNDFNnXqVEdCiZNPPllOP/10admyZXW8qwaHAU1ERBSVTh0rELGtXbtWvvzySxXctGbNGsd+CHBJ2/y7pG5ZLKtzimTdsj8ka8jxanLADOZRJQwaNfUsMeeXwUhzB0ghoAiNVR1YFCvbk95fnWtSsp0xSQfwIJhJn6vXeZkBQWbg1LxHL1MlFMzyDe4SeX7nH6/0nPme9LXxC7iKxVx5Hu95WF2tMzSZgUzp6+dLypYlvo02pNMcOXKkHHXUUdKhQ4fA50ZERES1CwMr+P83NgQzzZ49W2Xp/P777yUvLy9qf1WGp6RAkvM2e08wRIKdrPRmUpYRDnRS99OaIC93Db0ramhQFqJF78EqCxLa5Ajg0cE7sUrPYVB97dTXVck1rDj2K82AxQVBJiOQhSh8QiHVP8AAf1lJsX+WJ+yH0ieFeWryobQgV/UtkNGoeOe2cKk3o6QCBv/RHK/IBEWXo8Y4+khz/nVBzImHeAFPKsjLKP2A6+0MfnJObESVuYuUqQhSTpsoLgTHFeeHA5RUoNJONdmAn+p+jNJxXlA+YuDAgXLYYYfJwQcfLG3axC49SURE8f6ZttSiCQQyzZ8/v3KBSxmRzEuNWjJwiaoc2qOoiBArg1Hjdj1cfYpQsNLRUf2HSDs5kmFIlbrzWqihdk2yF3Z7H9u7f9Gk057+78XMAhsVbGWWg/PuK6BPZPcVKpnFNvxUlKC2pDi3EuUk/TLoGu8lXulwopiSkqWscSu1eQc6bbeDnZLzs1WfI16gExYSvvLKK/LWW2+pJBJnnnkm59B2EwOaiIjIV6dOnWTMmDFy/vnny6JFi1Rg09dff62yOJmBTRsWzZHC/HzZ/MN7Kn3jxnnflJeIsCy74esOYDIDetCRQGCNzpxkZlpyl54LGtzjLmEXXoWNCYKQel0EJ2GFtlfJNr2aWJfR06u4dccFJegwMK8bzShdh/dQkUF6v7J8sYK14gWBafGCvTRkZRIZG77GE26STj32lM7N0zwbZYgmHzFihMrG1Lt3bwlxJRQREVGdlpGRYWeiKC4ulnnz5qnMTdOmTZPt27fHfX6orESS1aBO9L4oXYcsnuGAp0iQUyTDEzaWgaB4EACDwKPywerwRELzngNV0BG2ToefqX6j29RByqaFVzYjcChcIg6BTTpgSGdwMo+ZvfhHR0CPCauMMSmBwf54GZmQPUpnfgVzdXKSWrUcnZnJ73Vjrf5GnwR0NtnUpgiW2lqhcnpmuQsEiiVnNHGtpq54mTsGM1FgVpmECnPtzErIuBRSGZfCAUz4f8/uSEtLkyFDhqj/9x100EHMMkxEVAWQpQLZKRDItGTJktiBS3bAUgspRcalRsi41IQZl6jGxMo2imAmVHdwB/gHyWgULdJmVu12S9KatJTivOyowCi0vZNSUgOXk7PPKzklZv8Hx7Rfy6PvgNfV/SlVMcL9+uZzVFBWJQOb9HF8ziHcfwhF+i0IejL2C/B6uzatqPg5EVU60KnEmdEpPzsS6ISMTk5FRUXy/vvvy4cffqjm1c4++2zZY489eO0rgQFNREQUFwJX9t57b7VdeeWVqkzJ//73PxXkpFf65+fnS1F+rqxD47c4sirZGGhHoxgpSs2MRGZAj25869UPZtYid+m5oNxBPfr1CrM3qfto0HuVZNP7IZgJDXmcuz5P1ekoKZKWfYZFgoFE5v77IrtsG4KDNDNgS9/XwVj6tg6UMq9LrKAl3bnQExRBgpviQaNr8w/vSmHeTlk+f4sk9+rlSK/ft29fOe+882To0KGs/UtERFRPpaamqglebNddd50qEbFw4UJZt26dvW3YsEHKyoINYCI4WmfPEFkX9fsypPvWmZ3McnZpmZFSdszu1NDp9q3OnIqAH7TfzUF7Vf7A0HKvA+IENYUnE8rvWhJKSbEDmnD8cEmFkKO9D6qc9e8zHRmLsMo4vXlWoMkHPCfcp4leBY0+RtBJEmSj0kFdXq+Lc9RZaR3PS0lT5+Cd7UmvHg9JlxHnq0eQyQr9nqbd+jlKb1emtAaOQ+T4uysplFBxniQV5oaDlczScHisAuVMYsGiHCzUQv8WGyYQBg8eLI0bN+YHQkRUBbAo4rPPPpPXXntNZfp3w7/mJS27SXHrPaWsMTIuMXCJal9pYb7v77yyvaL97G5DO0tPxxNu14TnQGZG/RYLp5MzMgMeK8Dih4BtcAQSrf3ubUlt1CTmNdndDE3xzgFSGjWR9sNOjOrfBRHOlEtUQxCY27i12qICnfJzVHbz1I2/SnJBTvmvyspUsghsWFBx7rnnSr9+/fiRVQADmoiIqEJSUlLkkEMOUenYkUJ44sSJ6qf+HzOCn7A1SxMp69JLtq5a7GhA6/JzZtCODvjRnQGsckYwEfYxA5/cz6tsEI+ahIh0QnSAkfu4ZmARzkUHVO137bOByrbpY5vv0Qxuwm0EJWFDWQqzLJ9XKTovQffzVVos6WvnqgZWl47tZcmSXJUaGuUFMdg7YMAAlaFr//33ZzYmIiKiBiQ5OVn22WcftZlKSkpk48aNarJCBzmZtwsL46TgNyShZFBxvkhuONA8KrtTaiMV3FSGACeU6ErFz8htFfTUWK2Yo/oLbfFwEH8k0CdOdtCiHVtVe7pJ5z7OzE5GmTcz8CYpPVMsVT7NI6OQZanAIDOgSa3ktixJTmskpUX5agJBl7YuD7pKFguD/cZr69vh/kcossLbWUYuVvkKrLw2JytwG+8R56aCrFwBXGbGKfcK7WQjQ5TrDUf2SVM/7f6ZZamsVXgcgVSqT+dYqe1fosL1LqIy0lJ9DlYqkFBRniQV5amfoaJdklQcvp1UtCv8mFFacXegZFz79u3tgCVsOoAJpdEZuEREVH0whvj3v/9d5syZE/27UEhKWveSovYDVAYmokRilniuaNlr3c4OZxIySqIFyIYazgzl0XZGOTaP4CjMF6AyRKyS2v4ni35I/N3QRypEP2k3IdNSRqsO4WxJ6nUrFpxekp9rL+Cu2Oum21mmiGo90CmztdqK2/aRlOyVkrb+Z0nOc2Z8mz59utr+9re/qXJ0FAwDmoiIqFIQtDRs2DCVtad58+by0EMPqVU56MxiQ53YoX37ytrMDFm9dp2UFhepFcTpLdrZ5d90MI45CYByC5Kc4gjUMTMt/fzE1XaGoooOhusAIHQGkC1KD6hjskS/Pn6a+7szKpnMIChzskMzzxulH5CuFisxMAFhZoAClJ/Q+5qBUO7XQekN3bivaAk+x3nPmixdOnaQTu3CkeQY8EUpwS1btkiXLl3k4Ycflv3224+BTEREROQIbMdEMTY3tP+2bdvmCHAyA55ycspXpwXK7lS8S6R4l1rd5qcspVF5gFNk08FOOhAKg0pUN6H9a2YgQiCPCqqJBP9gIUSpKvUWvo/JBd1ODq/StVQgjl26zkUFOMViWSpgCNmJ0O5GWTnQwUyA4CYzqyza5Wj3h1deew3iW+FJECM4C2UtwgP/lmfGpM5HnOsoAYE+i++ChlDInmRRgVDI0hQ5Ls4bAUlmOTmPAziy46rrVFxoX2N9TDtoCsdW2dSMQLHUDLXC3JyU0dmpKr0QgxKnFFxxviMwSQcqqaAl/CzepcrSV6X09PSoYCW9IZgJ/28iIqKahxLVXsFMUNa4jZQ066ja5ESJJrVJpCRzhNnHiCWtWWspzNlkl5BzllNztn+weMLd36hoSTm03Qu2RWc7DiIlo0ng18N8TVlpSQUyTjl1OWqMauNj3kYFt7sWZCAQDLwzxWqWK0tUsIUTqZkt2L+gxBMKSWmjVlLSopskFeyQUGl0trQpU6YwoKkC2OMjIqLdDmy699575e2331Y10jHYCJ07d1Y/O2W1UtvqnGJZu3yJHXyDnxiYR1CP2v/I8+IGEJmZntAgR2COua97cNwMBMLEAjocGGDHpIa5L/bRJRn0BAHoQXeUhfMaeNeD/boknd+KY5yHLvuACREEP2E/XbYCEy7me3WXyjMzMeFc9H0cyyzBFyR7FQagdXm5lfk7ZO3KFPVZYTBYB6Qh09bAgQM9n09ERETk2cYIhaR169Zqc2d2AgS7e2V1wrZp0ybVBqmopJJ8NAoleZf/wGtZSoYKbLJSjWxPOvhJZX1qLJKcyg81Aen+gj0QHwqpUms6I1FJXrbqQ6z5+hU1OK4Hys2B+06HnxW+4fX9CiWpgCd3cA8WP6jgJWRpiryWGeBjDs6jHJu7/Y6faKer53i+bki1//G6eK29Rt8hi16+w7nyWo/fW5Yqu4D3hokW9CewYXGGWiCCCRWT8XrYD2XzdD9ElZsrLVETFlmDz4xcWwRpWfYLlpfF86bfeyjFyAKlJm/KJxyQCQqfjeN5ZSWOjLSUgJBtudgMUooEKNmZlnaFf19FpeDcmjVrZgfMurMttWrVigttiIgSEMp6olz17Nmzo36HRQmNlk0VK5QsJS26SEmr7lLSvAvb3ZQQ3G3VIMFMgDZ4uP9Q6FkJwnHMKsh6FPS8PJ9bUhx4X73YvDLQRzEXoXuVwosdyOS9X+N23T0WfbiFHFU+iGpbqHCnpGxbIanblsUcp0KW2aOOOqpGz62uY0ATERFViRtvvFFlacLPvn37yqOPPipbt251dGRDRbmSnLtZNUTRyHQH6pgNT79GqNlpcAcemWXi3GXekB0Jr2uVFkcdW++LldeYfNAD7WunvqEmCRB45JWBST9Pl6TT5+MOKtIBU+jg4DV0uQW8Fs7JzM7kxZ2xyX0/UICVZUnKlsWSsXqWKi+3Zk2JKhuTn5+vAtFOPvlkOeuss+zPkIiIiKgqNWnSRHr37q02t6KiItmwYYMqZ7d582bPbefOiq1m1ZJKCkSwSaQkgAcrOS2qtJ0d9JTWRP1EBlGqeZg0QNBQuDyDLtMQ1qhtVzvLauSTVPuaJdjM0tbRq3ytqGAmrKRG2969atuxj7GCW7XnPaAdjkAkh1BIrZTG4grd10Dg1LzHriyf8AiFJL15luozoNSbmX0qnN0p/F7zN68KZ7c1si3p0t2YvCgrKVTtf5wfymJjEQX6Isgo5S6xrQKbCsLl+IJONpQVF9mZpdQkjjFpgQUoKZktPK8fJxpqMbOSHaCUWx6gZGZYQualanr5tLQ0adu2bdSWlZWlfiJwCf+PICKiureg4b777pOZM2fKN998I9OmTZNdu3Y597FKJXX7CrVZSckqqKm0eWfV1mY7m2oNSkDbfYjgvEq/+bafVQk6I5NTDfPOyOqd9Si8QKS0PIusK4jILLUX/TqF9gKTqoR+BhZnoB8TPh+vc7dUEBX6VexnUM2X2S6MZKrNk+SCbEnZviKqvJwbEgscccQRMmLECOnevXuNnW59wBE5IiKqEldccYXatEGDBsmECRPkgw8+UPfXrFkjBfn5snH+FOnYrrUUdj/YNzDHj87IhEkEBDZ5ZXMyg5gwEaDLvGHD6mQM6LszGbkzImlqZYJlqeeJ+JeU8wui8iohZ/4+6Pt3n5/5ujo4Cve9AqzwOAarM1ZMk5ScNer5erUrMiIsW7ZMSktLVQDaf/7zH1m8eHGgz4KIiIioKie7u3btqjY/CML2C3bSW0XK2pmQ/js5v0gkf3ucTE/RgU7qfnoTsVIbRUpvUVXR2Zl0RlfcVlmYVIajNNXOLw9mCmckUuXhEGizcbnaVwcG4TkYELczJ6knRA+M68CieOUW8BoIKtKZktwZUnFbn7/uu4AOZkI7XQcdmau3cY4oT43n6sy0GoKEELAECNzSCzF0/wKlu/td/m/1ex2ohGungsBUsFL5tTL7L+p1fEqEIVhJFYGMmqCwVPmLQTe+aJcSt69hcWHUqmyqRvgelxZKUqHOpqQDlvTPSPBSNU2mZWRk2IFJfhuyL2HSm4iI6p/k5GQ56KCD1FZYWKiyNSG46fvvv1ftd1OorDy4yWQlpxttbO+fKgCFqIroNvVuUQFLMcrs7m4J3hjH9ypnF4zleVy09bFQQi+giM6wFDv4q0qDmfT5IVvu77OM4Cr/tqx/OW2iSkKpdlefyvETi0ICBkViHu7II4+U4cOHS8+ePdkvqiQGNBERUbXACsvrr79epU5E1h8Ez6xYsUJlBdq8cIa0z90kHbodJG33C14yDb/DpADKJJil1sx93cFDemIjvH84KEkPuptBRyZ9Hlj1rVYdJ6fGTF3qVSLOXUJOP45JFcBPTDJ40a+vM0aZmaP8StGZgVnmdUzZukwyVk531OnFZ4EMCNddd5106NBBrr76alVu7rbbbnMEpRERERElikaNGsUNesIkypYtWxxBTihnZ97fvt0/aClIpie/tOEWwgVUOTtnoJMZACXJaeWrXikwZDHSAUF6sBxBM3jMLA+HwBtVYjqyLz4VBPPoLEd6cYMOhEKwDu47gpxMoZB0GXG+rP7qJccqZRxv10ZMxFl2GQR3v0IvxEBQlQ5MwvP04gMVnJWMlc6l5ccOJalgJt3n0eegf48gqy5HjbFfRwctISOTLuemH7OvXf5O9btwKYxSdd/McuteTa3L9unH0B/C9fI6H/2+dL+rOC87fK1DoXBWKCNTFs5BB3NRBaGcoh44LzQH1HPLH6/iFfFaZmZmzEAlbOj3M1iJiIggPT1dDjnkELWhXT5r1iyZMmWKTJ8+XQoK/AMOQqWFkpxfKJLvn1G1LKVRzIAnVUaaiwuoioKRkPk03gKH3Q5YiiMlIzOqnLaGYCYza2zFWJUICop+jurLVMsiBiv2NY700XLX/G73N3AuRIGVFhsLP1yBSnb/KnjJRi+Yc0MAE7Ix7bnnnuwvVQH+lRMR0W57+umn7VJlOiDGfAyZmi699FJV2syyLJWtCZHJ27/7n6xet1HaDhslbQeN9MxuZIqX0cgrIMpr/3jH0eehBv9DSapBb5ZxM4/rPk+/bE/6mJjAwEpuTK7oDolZo9qc5NATK3rSxX1d/N6HOof+B6tAptRl3zh+l5qaqkq6oGzLU089pSb5EMiECT4iIiKiuj6J0qlTJ7X5QRC3O+jJvW3btk3Kyio2QI3sJ3rwy4+F4JYYAU9qIiYSUELhLERqkDoSQKODcrRwWzqSYUkH2ljhwCHcx74q6Eb9rjyDE4JtENykFi9EFg1gQByPhVDCzVjtvHXBt46Ao/JB9fBjCJ5KzWzhKCttZmcyS7RhUQZ+rwOOcD4oQWfvZ5Wp3yHwB2UTkMEJGZsKt2+0y1uY/QEz8An9FbwHvB8z+MgMJNKvi3PYMHNy5CWdkxBpzVo7yuWpxR2h8owI5vk0zgqnyMf5qAkFVdYuRZLTG6nHzWAz9H9YBsLrH4WycKk3HaCEySn3SmBVMrPqIWtSvGClxo0bV8trExFRw2iXH3rooWpDMNOMGTNU5ib8jBXc5CepJB+NP0netcV/cUFq49hBTyqjKhcXkEiXEaNdpaudWVuRwSkcMFTkGwAUtTihSoN8wt9TXXrbM6jJM8uUd0k5B1c5ucoEgCGbU1JKqud5xYL+AaB/svqrl50BS6EkFfQRLl2N4Eaf87QsWf3lS5LSqLxcMcpqEylYuOQXpKT7WMbC/6rUrl07O4ipT58+DGKqYiELM8tEdQACILp06aJur169WtWaJKLEgChjBCv16tXLLlmGtPOYEMJAKIJm9D5JSUkqtSICmrBSB+mHMxo1lgHn3SIblv8eM0NTPDrzkjuDUzzuQCh9XwcWgV71gIY3HkeHpSKvE3XMSKmMcIkHSx0LdCCVfg1d0gJBTbrBH+/aJGevViXmkoqdqZ179+4t48aNk6FDhzo+G6+ANCJKHGwDEfHvi2oWMopu3bpVtZOwIbOleRvtqB07dlTLa4dL2zUpD3jKaG5vDW0SxixlpksghFchOwfqEeiEgBnHgDoGwzOaOLIUYR+zRJtmtund5dNMKkBHlb0rz+ykFxboCRH9OkU7tkYFC5nBRXp/vC9zNTQCgiyrfGIEfRAETOGcvF7XDJzSv9++aKZ9ffR7MzM3qQmESMCS1/mhr7F88lPhAK/kFHvlN44/8Ibny69R5BrjOc4JIROCqsL7NNiAptIiSSrYIUkFOZFtZ/lgOkoVVMOwLCaR0R/HhoF19PvwUz+GDaXiqGFjH4OIf1+11c7G4gKdRVW3sc372dnZ1fLaVihJBT2ZAU4W2t6pGeGfKRlSFrnNzKr1m24bl4/7Z0jznvs52tH+yvsi7rZ8ZaANjvmBYNmWdF+wKtuPFT+m6rOotn90Ce9Y9AIPc/7FzvJqH7w8I6zzRV2PR+ZWsDXovkZDUFYmoZKC8q3YuI2taFe1LwZBeVX0qXRfSt82H2vevDmDmKT6+hhc+kdERLsNgTA6ICbePihzhgHWV199Vf3PDP+D69y5kzT+4zPp0moPyRpzh+pc+olVli5e5iU/sUq32ZMNkdXXaGSrBnso5HideOXyvI6J4+lV2ghgwqoLwApvtfoisqJZZ3WKlb0K0GhLXzUzqhY9gshGjx6ttpSUFBk/frzj80IQEwOZiIiIiMLQXsLkPzY/CMp3Bzm5A5+QDarype2iV59bSalSltHMCHIqvy3JqfXu40ObGCXkEEiDbEV6ABsBMiX5ufbAOYJ4dKk2PAeBOGZwTTgYKnw8vY9Zdk636dFOR7vbMSgfWY2MY2Cg3N3eN9v2OBaEA6KiA88wYYJ2/z5XPa7uq0kUtPfDL6T+K58YCMPkhruktu4TIFBJBx+p7EjJKaoP4Xh+aYnMeeiCyEOW/brhSYiSqPNDZij8Hv2StGZt1LXKWTpPXX9cZ8B56PesS9jprFcqV5njuA0kOxMG2Qt3SlJhjiTl54R/6iAm1yKT3YW+XevWrT0DlfRjHEwnIqJEbme3b99ebX5Qrs4sH20GPOnHkHm+okLIjKiCinX7y5/K+OQIdkp3BD45foefyRn4n3SFz4lqh6PEs8q6mio9Thwb1Y/wZrbVI4E4oZDKamouTAgazIS+gWrPR4KpvNrpXq+tzjs1Xc1ZVDRTkqlxu+6RMtrlj4VS0sQqQV/W+72Y55eUinLfofiBXaEk1Y/Riyx06WuU90NWK/u6+1y/8PU1rosVXuyCLFrIFlvv+xv1SWmxd2CSul+obieZv6umjEpm/6pVq1aOxR9moBK2li1bqv2o9jCgiYiIdptXQEy8oJkDDzxQ7rnnHpWpSUvdtkxSclZLYaf9pThrL8/a57HK0plBQ2bJh90JhMIAPOhI/5+fuDqcqSmjiedERqyAI30O5spq7KvfEx7DxATO3b2SXL933I56L1aZpG78TdLX/iQho0Oxbt06VV7uhhtukAsvvDDm50VEREREwTVq1Ei6deumNi9Ihp2Tk+OZ3Uk/hixQFUmaHSorluRdW9XmVobV5o5gp3DAk5Xe1LNNXRegbYyBakfZhlAoUl7BcuyHCYjytnkfR2ZUBBqVFBeooB+9WKDzked5lqrWmVT14VMyMtVPvCaCfTDZYcJz9OC7ZZWpICC036NWGrvoPoA+P51hSmeFNUu8mSWtMViPYCwEGoXf69fq/evSdZjQMFcvF+/c6pm1CpMH4dXgxY7JB9zGpkr9RUpf41qZ/Ru7xFxk0gXngusvMladz+qvXjIyTGVUeLFJwrIsVR6uPNNSedASgplQdrIqNG3a1A5O8sqyhGAmTAYTERHVV1gIi0WwsbI67Nq1yzfoSd/GAoTKUuWkI2XugrKS0+wApzJH4FO6cRtZocL36+OChLpClVg22qylhfkqqMguI+dRai06K2x5mxulmPM3r4oZzORu5+s+xrxHL3P0b1RQlA8E/xTnohybWgkRbsvbJbZjtUXLy3SrihHGeejS1s4TQ2WKrPLMta6Sc473FcmQ5JltyWQ8P9yHKrH7Kwji8ro+zqf7XRcrsrAC/RGqcfjelRapYCSUBg0HIRWWByu5g5awxQ0arFoIRnIHKJn32b+qG9gDJiKiahEvaKZfv37y3//+VyZMmCDvvfeePZkTKi2WjFUzJHXLEvl18TLJXvZz1KpriDUwbgY96ft6QiNWIJTXcfAcpEPVv0cDHSsJ0GFAh0NNGkQa1eYK71jnpd6/UarOHVBl3ndPHoAu84B92vUaIBkrv5eNS35R2a6aNGkiubm5Kq0jUjRjxdIrr7yiVj7FKiuny84NGTJEZs+ezfJzRERERLshFApJixYt1NanTx/fkht6IsYd+ISfa9euVSvUg0gq3qU22bnB8biFAKD0cKCT5Qp4UhMpCVzCzjHREAnG0UE7yHSqs5qinY9AGt1WNhc56P4Dgn70ADsG/fXKYATm6Ha3ztzUqG1XR7ln1faPDK4j2AcLGfTrmNmecJ6YyEAAEJ6DxxCMpUtYhLMnhYOQ8FydqRWQEUn/Xq+yRh8kHChUDu8Dx0Vwlt5fB2GZJe30cRFghRXXSSnp0unwM6PKa+P94HnqvZUU2ees4T7eL66TuSBDBZtFJl1wHuif6OuMICy9uj01s7nax73YJKGVFkcFLOnbCCrcHVjVq7NSmAPqOngJA+uNG/tnKyYiIqIw/P8y3uICjI/6BTzhJ8ZNsU9VQRYRlUmkcIeE83bGZiUle2d8cpfBi9xnGbyqodvCaB/rwH4E13hmZ0IQjlFmGdZOfV1lBTKDiDyDghzCfa6k9EwpK8yzH3UH8KigHp/MSGizWwheUn0j4/wqQL8Pr/LTjv0iVSrK+WRNSkpRfYjVX76k9lEZo9R7KFJBXugnmdmjdMk5WP3Vy/b54/qnNWstxXk5npmecEyrtNQ3cxXOl6oI5rgiWZKiApL8MipVaQnEipWBQ2ZaBCz5BSu1adNG0tLC83dUtzGgiYiIqoUOkPELoIGJEyfKY489Jueee66asFm8eLH9O5TZyF46T3VAMWBvdirMYCDNzFpklnHT9bDR6EejGQPtQbM36QkKHUTlXE0dDkxS2Zoix443SO8OXDJf13xPfgFWjuPM/lg69thTGv82SfVhEMyElUcFBQXqmmHyy8yShZ9LlixRP83PQ39OyCCAzjz2Afd+RERERFS1kGWlQ4cOavNSVlYmW7ZskdWrVzs2tPuQhRO/jydkWZJckKM2r1XkyOJUmpklpU3Cm5WWmTBBTmgP2235yOC7GaCEBQ/4qUsXuNvz7ja1GcijB9Z11iYVOAWRDE66LJwZHGSWhdOLJHSAEYKWrNJitRDDLGHRcq8Dwq8TyXgEetGFXXLOstRxdIlps2+Bc9avj/fvLveGfbGoAvd1aTc8B7f1deoy4vyoRRJeAV8Iqgqvbo68W5S7sErtACqcp77OeI6acChBgFix6hvZgV0ijgxYsTLs1rqSIknO2yzJuRslOXezJOVvDwcG7iYMqiOrBBaZmBuyE6emMhsDERFRTSwuQNZDbHvssYfvflhggDFRbAhwwqZvu3/q20Ha4IHOEYEDRXki2AIoL4NnZHyKZHtylMVLLi+PJ0kpCdO2TxS6baqylRrBM5bf54r+lNHOtrMp+ZVG8ywZFy6PltIoTZIaNbUzszpKtenPySNISQcOqUCqyDlVBMrCYUGIvRDbK+NSjCyvWLCA/oK7vDfep/u96iAtBHnphRPhc8iw5z9wHfE3ar4N9C2wCERngTX7IxmtOobL4vkocQRfkQ1lNkuKjCCkQmewkp1JqbDGyrvFkpGRoQKUsChM/9S33ffxEwv78T2ihiFkVSS/OVEtwqAtBoAAg7ixUo4SUe3bc889VXBMr169HIFKfvv89ttv8sEHH8hzzz2n0gbDwoUL1SQOGia6s9i4XQ81yaAH3vWkhc5ahMF/XbZNd0502Tav/cDrsViP64kFdCR0WlVzUiDo6mN9fExC6FIOcY9RUiDp6xdI6saFsn5teEJL/3uIoLD9999f1q9fHxVIZgaYgTvQCZHr27Ztk9LSUhXd/vjjjzOgiShBsA1ExL8vIjcEr6PN5w52woaJlspC6bpwcFM79bOscSuRpCBrzKueO5hHt41RAloH85SXNwiv5sVjZjCSeSxzYYHO/KRXEOvRdLTL3eWhzfNA0I/+HXidnyq7Fln1jOOBudobQU46EEvvg76A1/H0ewX93tzXBdmTMLGgs9rqgCcd6KT7Q+7+k1efRJ1npBSFOSGByQSsmjbL+OmSG/GOj/NVK9lLitRkiDvrVI2WjEPGhNxN9oYAptBulsNxBy3hMUyeEiU69jGI+PdFFYfx6by8vMDBT9iw+LS2WKEkV+BT5Geqx2OR2/U9CMpum3qWNwtJKCkpnKEoEtRj9g+Kdm51lsN2QQYmZOQ0sxI5D18eHGQG/seig4J8jxkQ5lT2Gn2H3fZ3vwb6FV7XBb/TCx90f8Ms1xfuO6RHgracpcF1qTsEM+lssWD2cbzOw70IJR70r2qtj1HTpd3MzEh2kFJ5gFJS5Lbo4KVaPGX0ibwCkvyClBDQRHXfmmqK5WCGJiIiqlJm6TLQATRedEANfmKF+mmnnSaHHXaYPPHEE/LNN99I37591X7r1q1TQTeIwc3ftFIsq8xeAaxX+gYt2+bez++xWI/HKlEXa/WxeyIFDXM0+nUpB79jhJ/3iXTcs790aZqkyvKZ1wSNhHHjxsnYsWPlrbfekttuu01toIOazBKAOpDMDGrCTzwHWZpatWrFYCYiIiKiBIZgiu7du6vNbceOHY5sTqtWrVI/sRUVFcUvXbd9haRuD6+AtULJUprZxg5yKmvSVqzURlITzEyrZrtYZTVytcsxKO4uT2BmINIriXEfCxV0EFDzngNVyTRdtk1nFkJ73Cwtpx/Dc3TwkR7IN89P728GGbkzNOkJDDNISvcRdJameNmMzAUb2BfvDa+H96KDkkLJKWo/wDHd/SdNnwsCjrC/LrNnTiAkpzdS1w3XVAdMmRMssRZ04HF1LS0rkgGqhiYbykokOW9LOHBJBzBhcL8CsLAG5eHcAUtdu3ZV5QswYUVEREQNB/7frzM/6QnbeBDQ5A5y8gt+wu2dO3cvcMUUQoYWZJ+sQAZKtP/LMz55ZYOKzgqlgqDqCLtt6gr2QelotJ8R0IOMP/oxtOft/oIDsreGA3Z0cA/KyZV5BIOZiyjQF9ALp9Fn8Ato0pme3K8bfrzUCBwKScu9hjn6G16QMWnuvy9S5bURYIRMq7osnIYsTvaii+QUFbxVkp9rHxtteQQO4bzDj4UDtPSiiujSdOH7SSmpjr5COMtVtJKCPHUcHThlZrRV/ZvIAgx93nqxOfatm8FJXtmSvIKVdHBS7eWn0eXd/AKS3I81a9ZMzfcRVRV+m4iIqErpjD/gl5nJi5lB6I477pCZM2eqx5YvX65S8wMmYZBKcmdunjRu103ysrfapRjilZjwKrFglp6LtW9QfgFQmp4I0eXw9Ippfdssy2Afo6xENs38QAp3ZsuGX36QrkOH2tcCwUzoSF977bVyyy23qMdxDRGUFKtsnBnEZDJL1BERERFR3YTBw379+qnNvaJ806ZNdpATAp7Qbl+0aJEUFxd7HitklUpK7ka1iSwIHye9mV2iTmVxatQiXLagmulgGpVpJylZBd5oCApCWbTSwnwV3GQG5RTmbLKfo9vYOvAHP/UqYLMvoYN2dPAPgqLQjtcLETDArycuMMiOczODrjBRoTOwAgb+l09+Sk0CIGgIx9VZmOY9epmaOFnz9SsqcAgTHugf4Dj6fYB+v/p96TJ5Zhk6QHZZvaIZkxCYtMB9/dNrsYYuk4dJDF3qzxYKqdfWfS49qaPhefo6+WWbxXPMAK/qgJIt5dmXNkrSrq2q5GJQCA7s06ePClbChsAl9EMRPEhERERUWcg6ggBpbEGYZfD8SuG5N7+2fGWg/R8qzkMNMJH8YM+xEGjiVwbPJytUbQZBoV2MAB9A2zu9Zbj9bC6EQDATfqJd782S9OZZKjhpwTM3hDM6RUq56axOOUvnqna+yp6KQDEplaLc7TLnX2MktWlrSUKfIkYWJ69gp0Ztu9jnBimNmqi+hhnQhIxFaK+jNHQ4kCpc+UK/r7RmbdSxcQ1UsFVxoaz+En0L9JmwKCK8gCUcTFWeiQnXTWVXsheYWOp1dHlq8/xVJqdI1trSovAXSfcVwpmbvC5pmTqMDpzS/QudOUpnx9IlwnWmJ/Rdaq20tQpOKvbMlhRV6s0MWKrF4CTIzMy0A5Dcm1eQEsu7UW1jQBMREVUpHSyDDE3IBOQufeYV/ISfoG9j/2HDhsngwYNlypQp8vzzz6vfY0AZmYlyc3OldWqJ9BsyWIo6dJB5Hz4vhdmbYg6kux+Ll02pMuIFQOlgJR3AZE7EmOem3sPcL+XXZ66TLp06Stf2bWVNSaEjPeOAAQNUiTlkZrryyisd119nZ/ILTNLZmhAwdvXVV6syc3gOJrj8PisiIiIiqtsQCK8nU9DO1pC1Ce3wX3/9VX755Re1bd261f84hTvUlro1vIjBSk6TkuadpaRlN/VTklOr5HzNQCPQmYjMcs2ammiwLLGs8Crm8EB55HxT0iU1s7lvFiH3ggdMZOjMRmYAlIZzsCLlsMMPWGoQ3VycoBcx6AxROD/dB9ATEPocdVkHvQIb76+kuNDOJuXbv7Asex99fRyl8CKZYPXr6WAm/bqxsti6A6nM8nc4js4khQkQnC/eo5m9yd3HCpeAqOLMTFaZCl5K2b5KUrJXqe9kRSYWkQ0YQX/9+/dXt1kmjoiIiBIBspq0bt1abUGoigb5+SqwCZlavQKevB5H4FRVCaGNXpQngi0gKylVZX4tS22kfpZvjaUMwU+pjcP3UzKqtAQ22qxoH6vzTkpWbXEdxAQ6Y6tuw+Mn+gJo9+qyzDprEtrE6D9YkYxDKRmZjlLMOhORWaZO74sAqC5HjbFfywwKQjCQyno05ZWoEndmMBMCgxCchHa6yqhUVupZ4jncTn9F9TfQR9CLNey+CLJKRV7bskrt95D9x4/h52DRRPMsVxk4ZKiKZFsyFxFEslDhHHRGW32+up+Ea+mgFsdYkpTWWGW5QuCUX0YtLA7XC9zNzL1VCu+nrERlN0sqzpeQa3M8VpKvMqHVpsaNG6tFTV7BSV6P47HU1KrpsxPVFAY0ERFRldLBMmZZM78gGR18g07UUUcdZT9mprLE48OHD5dPPvlEJk6cKLNmzVKdNKwsR4BTxsofpEv7NrK6tEhlbbJXCUQG+MGsu+xXos6L3wpjv8fjMSdLvDJKKaXFkrbpN9k8/R0pzN8la1cWyNChQ+0sVVlZWXLBBRfIyJEjPdN2mqXl4mXDwnVHMBMRERERNVxpaWkqoAPbGWecoSZFNm7caAc44Sfa9cjw5CVUWiSp25apzQolSWmzjlLSoquUtOyqJiIqS7ePdZteDbznbApnRxJRGY8w8I+JBZSOQ3tflx1wBPZ4lERzB0uZwTi6NBsyHbnb+lixjMF2M6AJEyGgF0uYixjMUm+YKMAAPLJJ6ckRnWUpciA1CYKV1LqknBcz2AjH0Fln3SXh8FrmhAp++gUcuRdmxFqogT4VJk7sTFCRSSCd9crMhFUtZeRy1klK9kpJyV4duIQcgvgQuKQDmHr06MESCERERFQvoEQuAhqwdejQIdBz0N7ftWuXbwCU3+bXH6jUeZcVS6iwOFBQepnK7OQOfNLBUJHAJxX8lB43c6y5SAJZlHQ7WZeFdreD0dZG+xdtX3d7W2d5Qrsbv9dtYP17VdrNVRa7/AKUnyeCl+yydpalMhsh2CmtaetI4FGktF0oybmwQixHgBNeD+8D/SS9IEP3e3RgEgKk1Htu16M8S1VKmpQVI9DKUpmk8JrqdSPl83T7XpXIQ38M2abwmpFAJrx/PR+j98V1UvtZJZLapJW9cARUvy2yqEMdXy3EKBMrcq3we5OZ7VUHa+F4Xpl7Y1JBSgWxA5UQoISfketV07Dwwi9zkleAEu6jP09U3zGgiYiIqoVfWTMTAm90lqbZs2f7lqhD4M6oUaNk5cqV8sUXX6ggHDNbUad2bdU2c9ZsKckvb/CikaxLMqj0sUbHwt058Qoy8svi5PU4nu9exezHc4KgpFDSNi6UtI2/qkmhLp07qaAt/T5btmwp5513nroOupFqlumLFcTk3k9f87Zt26pNl5sjIiIiIsKAss7kNGLECHVBMOHx+++/2wFO2Hbu1Ktzy2F1akrOGrVZK6dLWWaWCmwqbtFNrEbNK3xxzXa3Yllq8Bv3ESik7+sBbjOTEtrbujwBfsYK2PGa2DCDcvREgHNVcuQ9J6faQUrmJIguMZeS2SJcgsKyVICRexBeQzATYNIDG/oWmDQwJ1n0T93fwDFwffSqZf0+AOdkrs7Gwg8dWFWZgCO8pi4bsWvTCrVKG4FNqrRdWakKJtPXz93XqeyCEKWkQAUvqUxMO9bGnVzAauPevXvbwUv4GTTDAREREVFDae+j5BS2igRB5eXlBc4ApR+viiCopJJCNXYuBdmxzxGFvFR2JyPbkyp3Vx701G7fw2Tj/KmRdmm4r2O2WdFmBh0kg/a/LgmN9j3a4mbJOh1Qoxcxm6Wgm/fcT/00y8GFnxSSLiNG230dLHJAVlmTztyEPo8O5Jn774vEQjYgLJTIaKL2Q3tcn0tZSaFzQUVkgYdeEGEu/tD9K5x/OKCp0FG6OnxBLUd2XPWcSFZc+7NJSVPl39ztfZW5KtJuL8nLts/HHRTmF1hmcmd7xfPDn0uGJKWkqrmUpLytKlApKjDJDFYqDWfHqimYw9Fl24JmUGK5ayJvDGgiIqJqESRTUNDAJ+3RRx9VHaGePXvKrbfeKm+99Za6ryEIaMWKFXbd8F3rlzka17ocgxevICW/LE5ej+O+buxXpIzdlp8+k02zP5LOHTtIpw7t7MeRkQkbApmwUv6UU05RK238SvbFutbu/cxrzhJzRERERBQP2qEDBw5UG2BiYvXq1bJgwQKZOXOmyqJaWFi+yhawnjc5b5Pa0tf8KKUZzaWkRTcV4FSW2dZe8RvzdSOD+PiJlctmxiUE++jSDBgMN0tF6Pa4LvOgf7rpgXdVYi4UsrM/YYBcv5YOUDIzrWJ/e+KguMAOqMLvdBBScWTgvjh3W/h6uDIX4bY5sWBmXgL0LfT705MS+icmPbAvgpb0Y7p/Yq8YRxk+D3ryQ2d2ClqyG9vWBd+q961XbuvsVPi09SprvK5+rlluz8yWG0+ocGeklNxKSd65EVNTMfdHdrGDDz5Y9t13X5UpmBMBREQNW25ursry/sEHH8j8+fNl+/btanwNiwaPPfZYlfkc/78goooFQTVp0kRtnTp1CvQc9Bn8gqDwd7lt2zZ7w/3s7OzdO0eENBXni2DzgRxBPfbdW6yS1bJu8gOyZtUK6dirn1jJqbJm3g/hgCGVZell1eYvyc+1S0Lb/Q3djwmF7D4AoH1eXg4uXLZal7J2L5zQbWLddkefQmV0Kil0BB2Z7XozUxH6RvYij8i5hIOi0G4Ol56Ol31Vt/XRf8FxdZ9Ll4rDMc1S32ZfQwdV6cAv92vovg6Yiz80fV308/F7vLa9IKO0RJKKdqrPc/OC72TNnCnqvXXde5BsXvxz+HMJhaSkuEA2z3hfepStk+qGhRP4f0mrVq3sDfexeQUoIdsSEVUNBjQREVHCBT75ZR4yA3FGjx6tOjr33nuvWj2ORqIOAlq3bp3KbtSpXUspbdZP1i35VbIGH2cfx2vA3itIya+x7/W42UjXaVVjrkJGRqb1P8umGe9JQX6+rF1d5AhoatOmjZx99tlywgkn+DZ+9fUYMmSIGojxC1ByB40FDTYjIiIiIvKSlJQk3bp1U9uJJ54oBQUF8tNPP8m0adPk+++/dyw60JILciR5w8+SvuFnVR5ClaVr0VVKm3XA6gPP18HAth7E14PbesIA97GZwTM5S+epyYDivBz1eMs+w+xBfy86m6ualIhke9JBRKAzH5llonUAECYPEIyEzQyoMkvMqWuVkq5WDmM/d5CUnjxo2nOguo1SDQiqslRZaEs9NzWzuXpvmBBBOTo1yWJZ6rxxXfTEBvYxM826F2WYZfbcizm8Fnd4PabLPySnNwrfL8q3r52G89DP1dfCXYYjimVJ0q6tkpK9SgUyJeeHg8BiTSYMGjRIDjnkEDnooIOYgYmIiGxTpkyR888/X40LmjZt2qS2OXPmyAMPPKAWSt58882SnKyDc4moOvoMTZs2VZtZbcFPSUmJCmrSAU5mwJN7Q6DU7kBm2bUrl6lx+eULZofLnkWCmQAl0BA0g3Zn89ZZkrtzh5RhocGucGk1QEAP2uMqy9KXEyPlqZ3MOQf3HIG+H17kgAXalh0k5NWuNzMV6UytoDMVmf0aZJVKzWzh2/425zd04FTO0rmqL4Tgq+S0RlFVKMz+i1n+zb2YwV0BwxGoZCwMT2+RJe167ysL/vdPKdyxTTb/8J50zSiQpIIdklRcXoVj47xZUlIYDlJb//tc6dK5s/o3HsF1CGAN8t2K9R1FFiUdnGQGK7k3vB6+J0RU80IW8gQS1QH4H1SXLl3UbawE3Z3/SRFRYkNwDjIK9erVy7cMnbkfMjYhYOfVV1+VjRvDDXmTlZwmRe37S1G7fiLJqXaDX9e+rqggJRN8X6O0SNI2/CppG3+RUGmxLFy4ULZs2aICmLCyGGl+zz33XBk5cmTg+sdBrxcR1U1sAxHx74uoLsFEBErSIbAJAU5YbBCLlZQiJc07RwKcuogY5Ra8ShfEasebA/t++5gD7jp4CQP+WAkNpYX5dnkEMMssuF9HB+no4yHoSD3fKpXGWd3LV0xHMi6VHzSkgq3M4Ck9+aBfz93f0K+J4CANq511IJV+v37Zlszy2GDuE+s5ZgYp83l2MFhkEgWBZPq6m9fEPalhKyuT5J3rw0FM2askqSj2pBRKohx44IEqE9PQoUPVfSKqPPYxqD767LPP5OSTT3ZkjUxJSZF27dqp4AiU0DVdeuml8uyzz1b5efDvi6j64e/cK8uTV/CTO5Oshn4KxtTNaXIEMHXv3t1+vFGjRqrtCd9++629LwJbevbqhagmWfLbAvv56c1aS+N23WTX5jVqgbXZBo41pxCvH+N+Lu7rctBm/wFZYrFIA30GlIILQpfKRhBXOMOTf1/K3R9T52FkdMJP/Tt73+ZtZN/TrpKkgp2SVLhDNvw+R9YtXaSqbZiL0zHni/tenxOqcgA+G3AHNLmfh0xJ7oAkr+xKWCTPwFaixG8DMUMTERElnKBl6Mz9MGCBbEZffPGFvPLKK46VWKiPnL52jqRuXChFHfaRrP1HyqafPvdfIRyH12rlWKsvwh2OT6TDnvtIl2ZJ4brfEWh0oyOEVe3jxo2TI488Ug22VERFyvYREREREVUntGVR+gvb2LFjZfny5SqwCdsff/wRtX+orERSt69QmyUhKW3aXpWlQ3k6v9IFyBSENjaYwURY2ayDk/za+rotX5izyR5473T4Wfbr/PzE1SpQB0E6VmmxXc7NfR7ucmyAQXsd5KOzGeljYVIBGZjUa1qWmjTAeepSbSgNEcIK4d5DfDPCuicxdMkHXc7OfExnssJPXfJN38cEg3u1tVe/Bs8Ll8AoVNcdpSH069vl8dT1O9M+tntFtmPCprRIUnLWhMvJ5axR/bRYsOgDWZiw4fuECSYiIiIvmPA+55xz7MAFZIS57777ZMyYMSoIFqWvPv/8c7n22mvt9siECRNk8ODBctlll/GiEtUxKDGMqg3YYsG4e35+vm+mp6+++kpmzJihglqQHQrZenRwDIJoioqKZPr06SqQBm3TzZs3q6w+WGCt91v+R7KUlpaqYxwwsH/4dTv2FStpq5T9/pmUZTSTsvRmsmnWJJWJCPMEXm39tVNfV4sJ0LeJNx/hzpbkLpFdkXkPnRUX/ajwYob0qOebi0L0+erz0gs0kpJTJC0jUzp27ymNF06WLu1ay8q8bVK2K0eWT3rSDj7q0rGjdGntnUHXK7hJV+VAGXQEIk2ePFl9pvj3Hv+247j33HOPI1CJ/Qai+oUZmqjO4MoGoobNrwydF3Qg0Bl58cUXPVeEl6U2lqKO+0lxm97IK1qhzEsV2S/8YqXy64QbpXDndseKDg2N77Vr18qhhx4qP/74Y6D3R0QNC9tARPz7IqovkE0VmZuwzZs3T7XbY1mzJUfWrlwuWQNHSJuho7D82LEqGHAbAT2qzFuAFc0Qzi6UGy7r4Fq9rFcoY2IA5RECt/tdmZCQPUlnYNKvgd/riQpkaILti2aEnxwKyaAbXwx0HXGO5vO6jDjfkcEKj6FcBSCQyczq5C4d4cfvWLi+OrsVrjs2ncHJM4tV87ay38mXSEr2SknesV6V94ilR48eKgsTgpj69OnDsg5E1YR9DKpvLrjgApk4MZytJCMjQ77++muV2c8NZXEPO+wwmT9/vrqflZUlS5cuVZk+qgr/vojqHl0BYY899lDzClu3bpVRo0bJ+vXr7Yw/+DcFi5JjBeGAX7YhvV+nzp2lQ/feUpbRVMrSm4d/NmopP7/1qBRmbwqUoakqVagaRdNWMvDE0eGycMi2tHShrFy2RO2DoC/3e541a5aa/wiX9HNmvHLvg+BTBCkh4y8C1j7++GOVYQ8BStjwXHOeaMiQITJ79mzOpxAlkOpqAzGgieoMdgSIGm6AUmXLqqHx++mnn6oBDayecCtt3EoKuh8qZZmt1f3dLUXnlpS7WTJWTJONS3+N6sigMY7BlqOPPlqtYg/y/oJeM/d+Fb3WRJRY2AYi4t8XUX20c+dOmTlzpgpuwqpoDGK76cFtrLBNTkmRjnvuo1Y4r/99rmQNOV5lNTIzNPkF7Jjl2pBlSGcsMsvJ6YF8/bt4fQJzlbJXWbV5j15mZ1/qctSYqHMysylB43Y91GsHmaSY+++L7OeFklNk4PXP2cdUwVqRTFD6/XodM9bEhbtEnXu1t3nemr6WWX0PUKXkNs/7StYvmmuXkvCDFe4DBgxQQUzYOnXqFPO9E1HVYB+D6hMEHHTt2lWNA8Ktt94q48eP990fAUx77723FBcXq/sYM7vhhhuq7Hz490VU93iNn+Ox2267Td3GvymXX365yuqExckoV/nWW2+poBq0dfFYXl6e3X/xCtyJZ+HCRbJlyyZp2a2P9DjhSrEymoXLuFXSbgdBlZVKcu4mlVl104LvZN3yP3zLwvnRQVwIGkUGLLT9DzroIDnuuONUux8bSvlh/uamm26Sq6++2l708tRTT3Eug6iOWcOAJmro2BEgql8qGqDk16kIEqiDyP5JkyapUnSopW1CWQuUoUPGps0/Tw3cyI/ZISgrkfS1cyV1wy8SitSd1pD2dPTo0ao8XlpaWsz3V9Frpo+Rk5OjArj0fpUJBiOixME2EBH/vojqO5RymDt3rp29CSuizQFwTFBi0tGcGChLyZDSph2ktFkHKWnWQaz0ZrJ5/hTPNnq8QB8zuChWEJBnBqOIUFKKpDVrbT9vzkMX2CXt3JmX3MFMLfc6QAVF6WxTOsjK/Rz93lBewi+zkz4vHAdZpnSwFZjXRpfWMzNUuYO6/K6FzmKFgDKrLDx5DKlpaZKSnBx3ogMrrjH5gwAmrHRHaQ8iqlnsY1B98vDDD9sBSZgsR/sBCwljOfPMM+XNN99Ut1F2Dlk+qgr/vojqP/d4O7IP4d+iu+++WwXknHTSSdK7d28V6IR/E7CYIxb8u4XjmVmMytKbSEnzzmpDv0eSg5Vf1m364rwcKSsuiMpI697PbOuHCnNVAFMyykTvWKfKg1cEMjEh850OVtIb+gdY2I2A0lhzFCgd+tprr6nbnMsgqnvWVFNAU0qVHIWIiKiCELijA3iCQJCPO9AHz0dDHz9jBTRhwPz0009XQUTvvvuuahSjtjIg4Ch9/XxJ2b5S2vU6JPBqBXfdai155wbJWD5NpVw1IS0tGuSnnHKKSn0d5P1V9Jrp69G2bVvV4Nf7VfRaExERERHVJAT6Dxs2TG3XXXed/P777yqwadq0abJixYqoMg6QVFIgSduXy+Zfvw+Xbui2h2xevVoK83bIptkfR7XrEaSDACME+rizOKFNj+Ai/A6l4hAEFG8hA+6H+wSb1DIJBPagf4DAKZW5Kau77Nq0QpVjQwCQmcVJv56mf6eDnNx9DHf/Q2eO0qXxTDiOzq6ErFUITMJzwKv/YgqX4tspSakZKkNVcV62uo/H7eeUFkmvQ06QlH0GyaZfpsu65b+rFdfoXyHwDCvS8Xm4A5qaN29uZ2Haf//9PftERERElYHs7BqCAOIFMwFKSemAph9//FFWrVqlsjwREQXhHm9HIA8yCiGDE8blX3rppahylwhu8tqQuQjtZwQz4Ti6z5NUmCtpmxapzQolSWnT9uHgpuadpSyjuW/2Jt1viJfdye5fzJosnVtlSnLOWkkuyI773hE42r59+6igJWwdOnRwLOI2IQNTvDmKV199VZUF5VwGEZlYco7qDK5sICK3ypZSw4rvRx99VKUzNSGXUnG7flLYeX+RpNgxv1ETG6Ulkr5mtqRt+i1q3xEjRshf/vKXal95zNJyRPUT20BE/Psiasjuv/9++c9//qOyJ6BU84IFCxzlnM2yDnhM/659jz4qcxNWM89/9ykpzNkclbUImY4QFNSobVe73Jse2Ncl57zKUruzJZnHMEvWgc6WhEAlfQwEOOkMS15l78zgKTy2durrUlZcJEmpadLp8LMcv/MKtnKX2DMzNOkSee5SeTjW6q9esjNYIejLvp+RKYNPuUhSdqyXpLwtUVloNTPwDGUCcf/UU09VKzSRLZclsIkSB/sYVJ+0bt1aBREAAqORJSUeZAdB9hTt9ddfV1mbqgL/vogapsqOzSPY6Y477lBBUAisxMLoeMrSkL2pkxS36ytljVpWqDS2at9vWy5bfvpE1i1eIF3iZFdFkFWfPn3U4hMEjeLfTrT1iYjcWHKOGjx2BIgatuoI1pk6dao88sgjUWXoSpp2kPw9jwqcxhWrlBv98YWk5JaXnNADKkh5jVXIJgYeEVFFsA1EVH3490VUt8o5/PHHH9KmTRs1adm4cWO1cGDRokUqixN0797dHoxfuHChbNmyRe0PuN26U3fZmZMthTu3S3qLLCnasdXOzDTwhuc9g4S8goa8gpw0c3/wmkwwy8LFKy9nr7COBD/hPN2l4XAeZmYmnWXKq2ye37nbJfRCIUlJa4RpEikpLFATGLj2YAaSuQOYunXrJv369ZNBgwbJwIEDVSCT/tyAJbCJEgvbQFRfbNiwQWUE0Z555hm57LLL4j4PWQURDI2fgGCC22+/vUrOiX9fRBSP3/wAsjQtX75cZs6cqTYs5kAJOz9WKFkKux0gxW16x83IpJQWqeoSqdvD/Sc/yK6KEtEIYMLGEtFEFAQDmqjBY0eAqGFz16WuKjk5OfLEE0/I559/7ni8pEk7ye99tEiyd4rU8h0LpfEfn0ly3hbHw8cff7yMHTtWmjZtWmPvhYjqJ7aBiPj3RdSQuQf7s7KyZPPmzarMMiYxly1bJoceeqi6jSAnDLwDsrHqsg0ob+bO4tSkWTPZumWrlJWWqLJwnQ47U9oOOirQOXkFLXkFDwV5vle2JTNLFIKhdDan1KatJSk5xQ5kUsFHGU1UNiUz8Mkr0Mrztfc9QrbMniwb534lTZu3kNytG6W0pFiKi4tVKQlcPwSE9e3b186EpQOccB3nzJmj+lPIwIR+DUp9e31uUNWLU4ho97CPQfUFysXp//fDRx99pMbkgkB5JATnwkUXXSTPPfdclZwT/76IKJ6g8wN5eXmqzY22OAKcNm3apP7dci/oKG7dSwq6HSSS7F91ImnXNmm05GtJKtwR9Tu08ffaay+7DDiyMCUnJ9faB8kF4UR105o1a9T4AKxevdouobm7YtfTISIiStC61FUFqw3GjRsnRx55pNx1112qkwDIttT4909lV+9jRFLKB+ZNoeICaYRgpl1b7ceQEvbWW291DKbU1HshIiIiIqpvEABjBsGMHz/ebksj6AaTAMiogMdQZgbt+gcffFCmT5+uAnMQkIMVxWZ2IV2qDsFMGLwvKymSzT+8LWkbf5GVS36TstIyFeTU4ZDT1Gu6g4/w052tCft4BTR5BS/p5+N3eL4ZxGQGNemfWvHOcL8DJeF0GTuUlNPH1RmaEASlj+s4p7ISad+zr3TKai3JuRslee4r8tvsaVKYny9JJQUybOhQO+tSYWGhCmjKzs5WT8W1W7p0qZSVlanApsmTJ6uyGPqz0MFM55xzjrz99tty+umnOyZnGMhERETVAZP77mzpQbVq1coOaNIl64iIakLQ+YHMzEy1eAMb2uYIZDrooINUPwfQbkffJnXrEknatVXye40QKyO6ZF3KliWSsfJ7CZWVZ3tC2bgjjjhCBTChvDfmSRIFrg0CvvCT/QgiCln4F5CoDuDKBiKqbihhcdNNN6m61VpZehMpS/euW51UsEOSinLt+y1btlSN7D322IMfFhFVGbaBiKoP/76I6gcziObVV1+1szhhVfGxxx4rP/30kyqFhkF7HaCjA3ewDxY1IPApNzdXBetoGY0zVRakgrxcychsIvsfOUo9vn7FYlm3bJF03GOv8LEitzt03zPq3H76elLU871+h+d7HQevter3BVJSVISiElhWISlpadKiTTvJzdnm+bperxkqLVKrskNWmWNfs2ycLiUHOiAMGWe//PJLlaUJJXzM6+wlLS1NPQ/XukidMxElIraBqL5488035cwzz7Tv//LLL6oEahAHHnigzJgRzoJ41FFHyRdffBH47yeW9evXqxJNgGDgqspOQEQEzz77rNx5552qrd2jRw9V+lmzkM21kTOwM2SVRlWXQN8HwVS6PHQivsdHHnlELVgJUkaUiBID2kg9e/ZUt5mhiYiIqJrSmI4ZM0ZNeGzfvl09nlSYq7Z40AnA880OBBERERERVT8E2SCIBj/NQJvS0lJVWhq/w+IFbGvXrpUFCxbY2zvvvKNWOyOYCROOWPWMLETI/tSlUzjARwX8dOwgKTvCWRzWL/lVCvLz1U9MWHZptX/4BSO/N3Xp2CHq+V6/69gq0z7OukU/2kFGXTp2lC4HHmAHHpWUlEhxUaHkbd+sMip5vW6s13TTGauwInvAgAH2NmXKFDWJgIkOPSk7e/ZsdS3x0w+CnXTQExERUXVzB88ioDYoc1+d7SQIXUoliEWLFtljjEREVQHBmJdccom88sorctxxx1W63Y2FHOgPxYO2PV7r3HPPrbE2Pt4jNtDnWBvnQUQVs3HjRqkOLDlHRERkpDGdOHGiWoGMgfstW5wrF/y0a9dO/v3vf0unTp14LYmIiCoAAQT4f+8HH3wg8+fPV4P9yHiISXxkVbngggtkzz2jM54QEcUKokFZuttuu83OuIAAHLTvUV4O/75gw+A/7LfffvLwww+rMg4oTYegJwRCmczMRYDn64CjeHTAUEV+h2NjgkGXkDD3NTMqVeY1NfRdzAAmTM7i+mjIyHTVVVdVuDQGAsr8sjcRERFVNXcBEvP/ZURE9RUCe5D9BD+rO7inJl+rLpwHEdU8BjQRERG5BueRZemxxx6T559/XrZu3Rrz+rRt21YuvvhiVdaCiIiIgkP2j/PPPz+qZMOmTZvUNmfOHHnggQfk1ltvlZtvvlmVhSIiChJEc8UVV6gtCLT/zQAdBBIhmwJWAv/2229SWFgY9RyUr6tO+PcO/wbidfbdd98qeW1knEI/Z5999pH+/ftL69bOUhRBVOS6EhER1QSUOjVVJNOSuW9GRkbg52FCPWjJub322osl54ioyv3tb3+zS7JhcQKyuKJsJipPuBdnALKxjhw5Ui1a2N3Xqi2Jch5E5A+LVKtDyHKHsBMlKNZ2JyIiooaIbSCqjz777DM5+eSTHYECKSkpKushsjTt2rXLsf+ll14qzz77bJWfB/++iIiIqCFiG4jqi08++USOP/54+/6sWbNkyJAhgZ6LCfFffvlF3T711FNVGdqqwL8vIiIiaojWrFljl+ZFAHiQrNZBJFXJUYiIiIiIiIgCQLmkc845xw5matq0qTzxxBOSnZ2tOr47d+5UExO9e/e2nzNhwoRqCWgiIiIiIqK6q02bNo7727ZtC/xcc19mXiciIiJKTAxoIiIiIiIiohozbtw4e/IApR2QrenKK6+UzMxMuyzSscceK7Nnz3aUWkLpudzcXH5SRERERESkdO/ePWrxRBAoz4Qy11pVZRAgIiIioqrFgCYiIiIiIiKqEevXr5dXXnnFvv/Xv/5VDjzwQM99mzVrpso+pKamqvuYcGCWJiIiIiIi0tq2bSutW7e27//xxx+BLs6yZctUUJPWr18/XlQiIiKiBMSAJiIiIiIiIqoRr7/+uj1xgExMV111Vcz9e/bsKX/605/s+6+99lq1nyMREREREdUdQ4YMsW/PmjUr0HPc+w0ePLjKz4uIiIiIdh8DmoiIiIiIiKhGfPrpp/btoUOHSrt27eI+Z9SoUfbtH3/8UVatWlVt50dERERERHXLyJEj7dvTpk2T7OzsuM+ZNGmSfbtv374sOUdERESUoBjQRERERERERDUCAUnaAQccEOg5w4YNc9z/4Ycfqvy8iIiIiIiobjrjjDMkOTlZ3S4qKpLHHnss5v5Lly6V9957z74/evToaj9HIiIiIqocBjQRERERERFRtduwYYNs27bNvr/33nsHel6PHj0kJSXFvr9o0aJqOT8iIiIiIqp7OnfurIKatLvuuku++uorz3137twpp59+uhQXF6v7zZs3l0suuaTGzpWIiIiIKoYBTURERERERFTt1qxZEzXxEASCmbKysuz7LDlHRERERESme+65R5o0aaJuI1jphBNOkPvuu09ycnLUY5Zlyeeffy5DhgyRefPm2c8bP368tGnThheTiIiIKEGVL3MlIiIiIiIiqiabNm1y3G/dunXg57Zq1UrWrVunbptZnioaROW2fv16+zbKU2AjIiIiqu/Y5qH6BlldX331VZV9Cd/vwsJC+cc//iG33HKLtG/fXrKzsyUvL8/xnHPOOUeuueaaWjtnIiIiIoqPAU1ERERERERU7XJzcx339QrqIMx93ceJpUuXLoH3RSm77du3B96fiIiIqK7auHFjbZ8CUZUbNWqUTJ48WS6++GJZvXq1eqy0tFTWrl3r2C8pKUmuv/56uf/++/kpEBERESU4BjQRERERERFRjWcCSE1NDfxcc1+UkCAiIiIiInI7+uij1UKFiRMnynvvvScLFy6UzZs3S3p6unTv3l2GDx8ul112mfTv358Xj4iIiKgOYEATERERERERVTvLshz3Q6FQtb+mXpkdq+Tc0KFD1e299tpLOnfuXO3nRERERFTbWrZsWdunQFRtGjduLGPHjlUbEREREdVtDGgiIiIiIiKiapeWlua4X5FMS+a+GRkZgZ9XkQAlnJ/7HImIiIjqI7Z5iIiIiIioLmBAE9UZJSUljpXURERERA2B2e4x20NEdU2zZs0c9/Py8gI/Nzc3176dmZlZZefEPgYRERE1ROxjEFUf9jGIiIioIVpfTfMYDGiiOgO1rjVdFoKIiIioobWHunfvXtunQVQpbdq0cdzftm1b4Oea+2ZlZVXZJ8A+BhERETV07GMQVf3flMZ5DCIiImqINlfhPEZSlRyFiIiIiIiIKAZ3J3bdunWBrhdW9GzatKlSZeSIiIiIiIiIiIiIqG5ihiaqMwYMGCCzZs1St9u2bSspKfz6ElHNpUnUK6rw71CHDh146YmoxiCYQ6/wRHuIqK5CG75169aydetWdf+PP/4I9Lxly5Y50hT369evys6JfQwiqk3sZxBRbWEfg6j6sI9BRLWJfQwiqm99DEaEUJ2RkZEhQ4YMqe3TIKIGDsFMzAxBRDWNZeaovkB7/tNPP1W39WKFeNz7DR48uMrOh30MIkoU7GcQUU1jH4OoerCPQUSJgn0MIqoPfQyWnCMiIiIiIqIaMXLkSPv2tGnTJDs7O+5zJk2aZN/u27cvA4uJiIiIiIiIiIiIGgAGNBEREREREVGNOOOMMyQ5OVndLioqksceeyzm/kuXLpX33nvPvj969OhqP0ciIiIiIiIiIiIiqn0MaCIiIiIiIqIagbKtCGrS7rrrLvnqq6889925c6ecfvrpUlxcrO43b95cLrnkEn5SRERERERERERERA0AA5qIiIiIiIioxtxzzz3SpEkTdRvBSieccILcd999kpOTox6zLEs+//xzGTJkiMybN89+3vjx46VNmzb8pIiIiIiIiIiIiIgaAAY0ERERERERUY3p0aOHvPrqq5KWlqbuFxYWyj/+8Q9p3bq1yuDUtGlTOeaYY+T333+3n3POOefINddcw0+JiIiIiIiIiIiIqIFgQBMRERERERHVqFGjRsnkyZOlS5cu9mOlpaWydu1aycvLsx9LSkqSG2+8UV566SV+QkREREREREREREQNSEptnwARERERERE1PEcffbQsWrRIJk6cKO+9954sXLhQNm/eLOnp6dK9e3cZPny4XHbZZdK/f//aPlUiIiIiIiIiIiIiqmEhy7Ksmn5RIiIiIiIiIiIiIiIiIiIiIiIiLyw5R0RERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERJQwGNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1EREREtaSoqIjXnoiIiBpkW4TtIOJ3iYiIiIjYX2gY2P/j9SSqLAY0ERERBRAKheztxRdf5DWj3fbee+/JiBEjeCWJiIioxuXl5clNN90kDz74YINqBw0fPtxu019wwQU1/vpUtYqLi+Xee++V6667jpeWiIiIqJ6o7b4KVb1vv/1W9ttvP15aXk+iSmFAExEREVENWr16tZx00kly6qmnqttERERENenDDz+UvffeWx566CEVEFKT2A6iqvL999+rSZFx48bJrl27eGGJiIiI6oHa7KtQ1du2bZtcdNFFcvjhh8tvv/3GS8zrSVQpDGgiIiIiqkHPPfecTJo0ideciIiIasU111xTa0HVbAdRVbn55ptl4cKFvKBERERE9Uht9lWoegLUXnjhBV5aXk+i3cKAJiIiIiIiIiIiIiIiIiIiIiIiShgMaCIiIiIiIiIiIiIiIiIiIiIiooTBgCYiIiIiIiIiIiIiIiIiIiIiIkoYDGgiIiIiIiIiIiIiIiIiIiIiIqKEwYAmIqp1d9xxh4RCIbX93//9n/34V199JRdccIH06dNHmjZtKs2aNZO9995brrzySpk5c6bUtu+//14uvvhi6d27t2RmZqpz7Nu3r9x4443yxx9/qH22bNlivzdsK1asiHvchQsXyi233CJDhw6V9u3bS1pammRlZcngwYPV9VmwYEHcY+B19GviGNqqVatk/PjxMmTIEGnXrp1kZGRIly5d5MQTT5QXXnhBiouLK3QNVq5cKXfffbcceuih0qlTJ0lPT5c2bdrIvvvuK9dee61Mnz69Qsdbvny5Or/hw4dL27Zt1Xtv1aqV+g6cffbZ8uKLL0p+fr4kCrz/v//979KvXz/1+bdo0UL69+8v1113nfz000++z9u0aZOkpqban9Gll14a+DVffvll+3n4/LKzs6UmFRQUqM/hlFNOka5du6pzwPe/e/fucvrpp8sbb7xRoe/Rl19+KZdffrm6bi1btlTfIXyX8J2666671Hcinm+++abCf2dBnoN/f/Tvn376afWYZVny/vvvy5///Gfp1auXeu8473322Uduuukm9ffrRx/rzjvvdHyHzPPAtfXyxRdfqO8Jvmv4txDXqUOHDurfBfyb891338V9z0RERNRwoY2h2xtof2hol5htET+zZs1S7ftBgwap9j7a6ehnoM8ybty4uH2U3WkHwezZs+X2229X/YQePXqo9hDOAX2aAQMGqPbkpEmTVFutLtiwYYPcf//9csQRR6i+HvoGzZs3V209tPkq0rYrKiqSl156Sc4880zZY489pEmTJtK4cWPVPh81apQ8+eSTsmPHjgr1y/HcIII8B4/rfRYtWqQe27lzp2pfjxgxQvVH0bbFZ3nwwQfLfffdp/rR8drwU6dOtR+fOHFi3LY9+pHoS51xxhnqO4RrhA19Gnyv/vnPf8rixYsDvW8iIiKiushsu1199dXqsbKyMjWee8wxx0jnzp1VGxvj8kceeaT85z//Ue22isB8wFVXXaXGSjFejnYujnf44Yersd7169dXeV+lupSWlsrbb78tZ511lvTs2VMaNWqkxsJxndDO/u9//yu7du0KfLzd7VO5532woX1cFc+p6jk63Qe48MILHY+b54HX9DJjxgy55pprZODAgWrcXff78J3C63788ce10u8z+yKHHHKI/fjcuXNl7Nixam4Q1wjzWZgf+9vf/ubZL8H+V1xxhey1115qbgH9QLxXzAlu3ry5yq8nUb1gERHVsttvvx2tD7X9/e9/t7Zu3Wqdeuqp9mN+2wUXXGAVFRXV+Pnm5ORYZ5xxRsxzS09Ptx544AFr8+bNjseXL1/ue9ydO3daF198sZWUlBTz2Pj9mDFj1P5+8Dp6/3bt2qnHnnjiCatx48Yxj92nTx/rl19+iXsNcN3xWeF9xvucTjzxRGvDhg0xj1dWVmaNGzfOSklJiXu8Dh06WG+88YZV08xzeOGFF6yJEydaTZo08T3PUChknX/++daOHTs8j3f88cfb+7Zq1Srwd/nYY4+1n3f66adbNenVV19V36d4n1G/fv2suXPnxjzWr7/+ag0dOjTusVJTU61rr73WKigo8D3WlClTAv+dVeQ5+DvTv3/qqaesFStWWIcddljM88V3+B//+Ifna8Z7r/q7ZVq9erV10EEHBXruEUccYa1cuTLueyciIqKGB22MIO0JN7RFjjnmmLjPQ9v3vPPOs7Zv315l7SD47bffrBEjRgR6PraBAwdaS5cu9b0Ohx9+uL0v2no1rbCw0LrlllusjIyMuO/lpJNOsrZs2RLzeO+//77VsWPHuMdq06aN9cwzzwTul3fr1i3Q+wnyHDyu98Hn+c033zge89patmxpvfnmm3Hb8H6bu22P1+zSpUvc5yUnJ1uXXXZZzL4HERERUV1ltt2uuuoqNQ8Tr62PseDJkyfHPfbixYutI488Mm57q1GjRtajjz5aJX2V6vT5559bPXv2jHtOaGN+9dVXMY9VVX0q97wPNrSP4wnynKqeo4vX3seG1zThfaMPFLTfN2/ePKsmmX2Rgw8+WPXtbrjhBvW5+Z1nZmam9dFHH6nnFxcXq3mDWPN/bdu2tWbOnFkl15OoPmFAExHVOrOx9Je//CUqyAHBHhik9fof/UUXXVTjwUxoLLnPA4EtnTp1igrIGTt2bMyBVQ0BP37H7dq1q2fgzD777GOtX78+UEDTgw8+6HguBtDR2EYHwquTsmnTJt9rgECqo48+2rMzgmO2aNEi6nd4Dxi89oPP3auxh+d5HQ/fBQTX1CTz9UeOHOloqCLopnPnzp4BYwcccID63ri99tprjv2CdAzxuZjfsQ8//NCqKWhse3Wy0MjG36e74d68eXPrp59+8jzWZ5995vnda9asmbqOaWlpUb9DUA86UrUV0HTnnXdae+yxR1QHA38vXp2W8ePHRx0PnWBsmKDR++Hz1I9je+edd+z9t23b5tlZwevib8PrOmH/jRs3xn3/RERE1LCgjaHbG2Z7Eu0Ssy1iwgAx+mJe7XS/vgQWSHi1qyraDoLZs2d7vj6O0b17dysrK8uzHYZ+mVf7u7YDmnbt2uUZnIXrgPZ069ato37Xv39/3wkNtDe92ucIXmrfvr1n//mKK65Qi0lqK6Dpv//9ryOYCwFEeO/oO3hdl6+//tpxrBkzZtjfF/M4TZs2dXyX1qxZYz9n+vTpUe1m/bp+4wzHHXdcoPdPREREVJeYbbdLL71UBWWYbSCMw6Md6W5j4/7LL7/se1y00bzG8PXchlcwP4L8d6evUp2wsNWrn4G+Ccau0ZY0H0db8+OPP/Y8VlX2qWoqoKkq5ujQ78Jnhj6bua/5eZqBbQgOGjx4sOc1R3/C6zrh+xFrzqm6A5rOPffcqO87+qLua4Tv/6pVq6xLLrnE8TiuDfpuXv3Z7Ozs3bqeRPUNA5qIqNaZjSU90IgGI4KBfv/9d3s/ZLr517/+5RiMxH7xMsFUpTPPPNPRYEDD7ttvv7UHhRHsgwavOVBvbl4N0ZKSEuuQQw5x7HfOOeeoYBBzsBnvExH65n5oyOD5sRqp6AToBvj++++vGtdm1PyXX36pMuqYx73++ut9r8HZZ5/t2BcZg3ANzPPA53bNNdc4Gvd77bWXZ1apWbNmOY538sknR2WJQqYrDNibnz06V7m5uVZN8fo80eDEoHxeXp7ap7S0VAXruK+nV6MeExoYeNf74LON5/HHH3cEtdRUhrKXXnrJ8X5w3shAZgbOICjPvSJhzz33tPLz86M6ceb7xv5YybFgwQJHB+aDDz6Iuo74ruEa10ZAk/7u4efNN9+sVtaY308EfJnvHZ0sv4DDoJNFWCllBs09/PDDjqAu/PuAfycw4WK+l6uvvjru+yciIqKGywww8VvFibaOO/MPMq9itajuo6D9j4AT90TIvvvuq9q6u9MOQjsX/Qe9LzLD3nPPPdbatWsd+yHY5/nnn486V6/g8toOaLrwwgujBp9ff/11uy8BP//8c1TbbvTo0VHHeu655xz7YGHFXXfdZa1bt84RHI/+gztQ6u677661gCbdpkZfbsKECY7As4ULF6q+oHmuWPTjJ+hnafYpMDnw7rvvOjIw4buGTFfm9w3b22+/HegaEBEREdXleRhsRx11lGNhKtrcGOc1AzPQHveq7IDxYbTtzHYUqgqYx8NYLyoumPthHBXzEpXpq1QnjBmb7xvXCeO+yNyvIdgEbWrzGqLN7V5kWh19qpoIaKrKOTp39i0/7gX5GH83+zawaNGiqPkxXM+aYs4nmPNep512mjV//nzHonT3eeqF0rhWmDcz5xYwL+L+/B966KHdup5E9Q2/7URU68zGkv6fuld6ee2tt95y7I8UmDUBaerN1z3hhBNUY9wLGldepbm8gibMxhreOwJkYnn66acdx8QgdbxGKrY//elPvgEwaIRjcNcs6+a1ctd97W+77baY5zpp0iQViKH3v+mmm6L2QQNO/x4BV0i96cc9cO9exV2d3NcT12vJkiWe+6Jhj8xM5v5eqULNSQ0E+biDf9zM0mNYKVETEISG4CkziAsTLX7QoTHfNyYqTIceeqjj+44JKD/otJkl9rAhYLA2App0x/27774L3PHyOtegEz/4+zNXqiOYyQ/+ZlBuTu+LFVFegV9EREREQScJ3AOwd9xxh+/FQ7sDAfxB+mhBg2bcA7XIbhoL2nJmttT99tsvoQKasGrdvTDGL/MSrqcZ2IM2szmJgEAls52IVct+mVFh2bJlVo8ePRyD716TUTUR0KQDufxKkqMNPGrUKMf+fquug3yWc+bMcRwr1mIoTNyZfXicBxEREVF9nofBhqwxfhk8kZXJ3Bdl09zcFSruvfde39fHWLqZyQlBHIkU0IR2uBkMj8w67oyhJgTAu4NwqrtPVRMBTVU5Rxc0AAfVSPQ+1157bcz3gwUf5nnGK9NdVbzKX1933XW+n2ffvn2j9n/yySc998fCfczJ6f2Q2dcLA5qooUoSIqIEc95558kZZ5zh+/vTTz9d+vfvb9+fMWNGjZzXQw89ZN/OysqSl156SdLS0jz37dOnjzz//PNxj1lcXCwPP/ywff/iiy9WWyyXX365ukbmeZWWlsZ8TpMmTeSFF16Q1NRUz983b95crr/+evv++vXrZeXKlVH73X///fbto446Su68886Yr3viiSfK3//+d/v+M888Izk5OY59Fi9ebN8+/PDDJSUlxfd4F1xwgbr2jRs3Vt+B7du3S215+eWXpWfPnp6/a9q0qbz66qvSqFEj+7HHH388ar/Ro0fbt3fu3CkfffSR7+utWLFCfvjhB8/nVie8j82bN9v3n3jiCRkwYIDv/jfccIPss88+judrX3/9tXz33Xf2/auvvlouvPBC32Ph+r3++uvSpUsXx3ewpKREasPf/vY3OeSQQ3x/f+2110rLli2r5N8mXHPzb2XEiBG+++Jv5sYbb1S38fex9957y9q1ayv92kRERNSwLVmyxNGGGzVqlNx+++2++yclJcnTTz8tgwYNsh978sknd6ut/s4779i3Bw8eLGeddVbM/bt37y4nnHCCfX/p0qWSSB599FH7Nvoyb7zxhrRo0cL3ej711FN2XxNrK9Am1tB/NNuJEyZMcFx7tx49eqjnJycnq/voO953331SW5599llp166d5+9CoVDUd2132tRmX7NVq1ay3377+e7bsWNH1cfC9e/WrVvMfikRERFRfYC2EdqdaIN5wRzEJZdcYt//7LPP5Pfff7fvo02KOQftuOOOk//7v//zfT2Mpd9yyy32/e+//15WrVolieLLL7+UX3/91b6PuY8jjjjCd//TTjtNzX9oZh8qEfpUdWmOzmy3xxoHBz3fhPb9/vvvL8uXL5fa0LVrV99+FT7Pc845x/HYQQcdJGPHjvXcPzMzU11T7ZdffqnisyWq2xjQREQJB0Er8QwZMsS+vWXLlmo+o3Dj/NNPP7XvX3bZZarBFMvxxx+vGlSxfP7557Ju3TpHgEcQV155pX0bDbZ58+bF3P9Pf/qTCloKek29risa8z/++GOFz9VspCFoBx0DU7Nmzezbn3zyieTm5voeCw3BP/74Q/Ly8mTBggVxg7+qy2GHHRazM6MnDsxGKCZl3IE4w4cPl86dO9v3MbHh57XXXlOTGYCAFffnVV3efvttx3uK1ZEBdIDxmR988MEqWOmkk06yf/f+++/btxFcd/PNN8d9fXxvdbCODuyqqSDGiv7bhPdkTpLszr9NCIozBxPefPPNmPsfe+yx6u9r48aNMn36dEcQGBEREVFFfPjhh1JWVmbfj7eIQbeDbrvttsDB+vHgWFhAgkF/87ixmIsNYvUpahoWseCaamhPIwArlg4dOqhJBCwiueqqqxxtTLNNjYUEp556atxzGDp0qJpEMfsmRUVFUhuD/kceeWTMffBezYU4u9OmNvua27Ztk6+++irm/uPHj5f8/HzV53j33Xcr/bpEREREdcEdd9wRN4j7H//4h2OM8q233rJvo71fUFDgWAwaz/nnn6/asAgGGjduXNyF2jXJHAfHAnFzDsYP5onQ1kZg/EUXXaTa/onSp6pLc3Rmu938jnnp16+fZGdny9atW2X27NlqAUxtGDNmjKSnp8c8T9O5554buD9bmwv5iRIRA5qIKKGgcRwkUMNc0Wk2mqvLtGnT7MYonHzyyYGeZwa0eDGz1WDFrJnZJhZcIzM7lHkcL8OGDYt7TPcqWfd1db/GwIEDA50rVroiEMbvOIceeqh9+7ffflMN0Oeee04FZniJF5hVE+J9rpo5abBr1y6ZO3du1PfdbMiig4JgLS/mio6ays6EACoEx5hBen4rdkxXXHGF+ptBlrLrrrvOkaHJ/Nz9Vma7/fnPf3bcnzp1qtS0Nm3ayB577FFj/zYhO5UZEPnPf/5TzjzzTBUQ6DX5hH8/0NEmIiIi2l1mmw3tn6DtfqxORvahqmizob+DNi8mWcw2tR9MhGDA32zHmhMItQl9ALONb67ijgV9oi+++EJletWLBJDF01ytG7Rf4m5TI2gHg/81DZM98aBd27p16yppU+N7lJGRYd/HdwkTbfhM9GIRdxvcLwszERERUX2CxZRmhlM/6A+YmXi+/fZb+zbGf83jofpCPG3btpX58+er4KG7777bMW9Q28z3g/cSZKwV7cuZM2eqxRjIPqUD8xOhT1WX5ujMOSJUxhg5cqQKCvObK0mEOaJ4gVTuc4z3HcDfkFYbi0+IEhkDmogooSAS2/wftx8z8rkmoviRDcjMEhSr5FZFGilmgAsGVPfcc0/p1atX3G2vvfZyvO9ly5bFfJ1OnTrFPVd3NLn7urqDcZBdKMi5YkMJO79zRSQ7VupqSFuLVLZYlYzrhxSiWEmbSI24WCUdTO4AtYULF0btYwYnIejpgw8+8Pz+6YkLdxBUdVqzZo2j07Dvvvvu1vGQXUuLl73MhO8CNs1MbVxTgvwNVfW/TbfeeqvjPrI0HX300So7HAYcULpk0aJFu/UaRERERFXVZkMgitlerK42GzLtIHMsyqhhBTMG/TExgtLIpkQJaHJfh91pU6MUgxmIU5HPx71vQ2hTIzDKXFmPQK4HH3xQ9ed0FixMmPgtpiEiIiKqrzDuHrTErtl+xYJkr/Yk5kuCLIRNVGhzokxcbY+D11SfKtHm6FCq0FxYgIUdSCqAcXBkeEVpN/f8VG2LVyHB/fdgLtrwgnlHIvLGgvBElFCCNJTcvFZWVrW1a9c6zjFWKklT+/btY/4eaTHNAfelS5dWelC/uq+rea5Q2drE7nPFSoePP/5YTUQgtb/5+iilh+2BBx5Q7wFltZClBisfanPlbNDMQphYiXUNdepRdCB1gxwTM+76yig3ZwaSmQFg1ck9sI8sRZWFFfNmlrN4fxte11wHxnldx/r4bxNW4j/88MNqFbl57RBkhr8ZbDodLcpKYkJmdzvbRERERGZbqzJtNq2q2mw//PCDCuzGymdMoKC8QF1SlW1q9zWtyOfj7sM0lDb1/fffr8q8o5/l/lxeeeUVtelV6Mh4hcUjyDJMREREVJ/FC8YwZWVl2bc3bdrk2c7dnTZuIkCJL3P8dXffT6L1qRK9zY6gL2S5uvjiix0LrLHIfcqUKWpD+UO00xHohDb7wQcfLLWpoteJmWCJKo/hfkSUUBCBnoiQOcdMQx9UZmZmzN/n5ORIVfBLvVmV17U6zxVBPchAdNddd/mW9UJADOonY5AZGap0MEdtMNO+VuTzLyws9NzPzNL02WefRU3SmIPvNVVuzitVbND37WXHjh0V+ttwM/c3/x7r+79NKNk3Z84c1Unzu2YIhPzXv/4l++23nwpswoQNERERUVW022qzzYY2zhFHHCEHHXSQPPLIIyqwySuYCf2zY445Rq3cTUSJ0qZ279tQ2tTIPIAFIpMmTZIRI0Z4rnzGBMysWbPUQgKUPUGW4ETKEExERERUm8EYZvsVbSQdvGK2c3enjVvf2uyJ1KeqS+PgWMj+66+/yhVXXCEtW7b03Afj3k899ZQccsghqixgbVYvCJrhjIh2HwOaiIgCMOslxwseMsXb1wyOGjZsmOoMVGZ77733qv1zNM8VqwQqe65+qUHRUEedaUxcIIDjn//8p2qUekWuIzsUstd4lWerCX6BSW65ubmO+y1atPDc7+yzz7Y7CugUvvvuu/bvpk+fbmfDQkcKAV01xd3ZQomGynLXHK/I35EOaKtMUKGfmihVWVVQp/5///ufWgGF2uFjx45V5Sm9vP/++2oyrzZW7xAREVHD7vtUZZsNpdUOPPBA+eabbxyPo0zYyJEj5ZprrpGnn35aZW1CkNOnn34qhx56qCSiRGlTm59NQ2xTIyPwl19+qbK+vvDCC3LWWWc5sg1o6I8hQ3BNlfkmIiIiSoQAnqDtSIxP61JaZjt3d9q49a3Nnih9qrrYZu/WrZsKWEL2L5Sdu+GGG2SfffbxLGf47bffqvmjylY9IaK6gwFNREQBmClGEaQSNDJ+8+bNMX9v1s1N9AAE81yRghUl8qoLSrDdfPPNagIDr/XJJ5/IlVde6fgc0BD/y1/+4kgFW1PM1LqxbNiwwXHfL1Ut0s4effTR9v23337bvo2sVNopp5xSqZSvleVeCbFly5bdqr1tru7Q5eOCMvd3l/JzC/LddAeb1QUYMEC5xSeffFLVYV+1apVMmDBBjjvuOMe1RW11TMIQERERVUarVq1qpM0WywUXXODoS1122WWq/YMVucho+uijj8rll18uQ4cOtRdAJOokSlW2qc3PpqKfj3vfWJ9P0L5eXWxTI4gJ3y9kbUJ/DSXO77vvPhk0aJBjP/TJ0A8lIiIiqo8qMhdhjnF37tzZs527O23cRNC8eXNHJs/dfT811aeqr+PgqampctRRR8lDDz0k8+fPV99BlIo+44wzJD093TFPM27cuFo9VyKqfgxoIiIKAKWcNGQZWrBgQaDr9vPPP8f8fZ8+fezby5Ytq1BZNzTidrc2cUWY54pVq0j/GRQi6isbAIUgjmOPPVaeeOIJWbFihQwfPtz+3erVq2XGjBlS0xAwEsRPP/3kuO8eJDedd9559u2vv/7aXrkxefLkWik3pzuo5uqUoN/7NWvWqBrWeE+33Xabuo9VFHvvvbfvtYkFgTvmhFavXr1ipsENssII51Qfat1fcsklqvzitGnTHMFuZlAcERERUUX07du3Um029BHM/o+7zRbUjz/+qLKUaghceuaZZ3wzVGpr16513K/JvlIsKJdtCtqmRhZelEi79NJL5d5771X9KbM9XdHPB9fVFKtNHXTFfl1vU6OPsu+++6oSc7iWjz/+uOP3bFMTERFRfRVv3sKEAHBtwIABnu3cX375JfDx0L7Fwt3rr78+YQLIEcxk9jeCttmx2Brj4Mj+icAaPWdSXX2qhjoOjkUJ55xzjrz55pvqs+nYsaOj31Sdi++JqPYxoImIKICDDjrI0Vj86KOPAl23SZMmxfy9WRYBja6gJdQwwI9yC0g52rt3b1WOqrq5SzgELXOHoKNOnTpJRkaG7LHHHvLggw86AoMuuugidX2xomPlypUxj4Xgmrvuuivq+DXtq6++CrSfOQCOMn09e/b03fdPf/qTnYoWJe2QUhXXZ8mSJZ5ZnGqqDjRWvWso5REE0r3iO4pVE/i89N+O+R367rvvojJY+TGzVAG+L7Fqmm/bti3uMVGepLZ4pch1e+mll+S0006Tfv36yTHHHBN3/wMOOED+/Oc/16uOKhEREdVOW8Rss6H0cdABePR9zNLM7jZbkNeGWbNmRU14xIPgJQR4mxJlUBuLGtAXqmibGpM7WOjw3//+V1588UU1yYKMr2ZQk7udHIu5L7JaDR482LdNjTJ+QQLC3J9VTQryXULWX2Qz7d69u4wfPz7u/ldddZWjz1YbfU0iIiKimoBx+IULF8bd77fffnMs7kXWHK/2PhZq//DDD3GPh/7CG2+8oeZBHnnkEUewVNA2XnUx38/UqVMDBQvNnj1bjYPjPWERwo4dO6q1T1Ufx8Ex14aAMCQVMAPB/CDwbOzYsY6gsqDzDHVdbf59ENUmBjQREQUst3bCCSfY9zGorBunsRqzaPjGgmOa9ZTR6A1SKgFZbwCN28WLF6s6wtUNARMYCNawejVI6bU777xTlYdDwxKNdzPTEwKyXnjhBdXZwaB5kBWwuqSEhkCfmoaVAMgWFQs6Kcico40ZMybm/uiMnHrqqY7Oixk4hxUI7hUYNeH000+3b6PMR5BVM/j70PDdRPAdnHnmmfbjJSUlcvfdd8c9FjrD6NyaaXbdwXX6+Jq5ot9v9X7QgLzqYKYv9psowvfr3XffVQMLU6ZMCdQpM/82EEBHREREVJm2CNp/5j533HFH3AuJtr7ZtkO75MQTT6zwa4O7nxWkDYySvO7FEbVRmtoLrgXKBmuvv/66ymAbi7tvhIy1mtmmxkr4d955J1DgkdmOR5AP+mJ+bWpcO/RnY8EkFDKp1pYg3yX0MxFAhu8GrmeQIC2zTV0bfU0iIiKimmIuPPaD+QoNpb5Q8suc2zDblOYYrh8E/uzcudOznRu0jVcT4+AYk8a8RUXGwbH4YP/996/WPhUWhZsl1+KNg6MKRJD3UV3Ma+D3maL8Ib4XKC2HALogwV9mmx39RVz7hiDI9SSqjxjQREQU0A033OCoY4zMQgjK8ILgA5TbitegaNGihSqhoC1atEjOP/98lVrUzz333OPIEITsLTUR0ISG4Y033mjfRwkwNMxjBXYhQ89zzz1n30eEvdkI79q1qwwbNszx3lB6L5Z///vfjiCggQMHSk3D6gx03szOl/vzRwASArkAK7KvvvrquMc1S8ohmMnM8IXvRW1AIJZZ8xvf11jBXM8++6wKwNGuvPJK+/bhhx8uQ4YMse+jjCBWm8e6zmeffbYj2xBSEbuD2pBitlu3bo7j+tU5x2eG91SbtcPNlTR+fz/m4AA6s7iOsbIMIEgLHT8NqY6JiIiIKtMWQVZVZIrUUAIZixT8oI2CFbJz5861H7vgggs8A6yDtIPQR3Bnrozl/fffl7/+9a9Rjwctm1bTfUm8b/QV/RayoA+JvsP27dvtQesrrrjC/j3aheZ1vOyyyxzX3g1td6x41n0TrOr1ul4HHnig4z4yrfq1P7HQIUj/pjoF+S6ZGUxRmuLRRx+NeUwEfWESRWObmoiIiOozjMvGamtPmDBBXn75ZUe7Ewu/Ndw2x6yxCNgM8HFDMDxK/ZoLqN1j+0HaeNUFQf9mGb3/+7//kzlz5vjuj8D5iRMn2vcvueQSe9y6uvpU6BuY8ymo3LF06VLPY2JMGWP5tZnJ351RyuszxXyRGRiHfkasRf8Y38d3U8N8g3u+oL4Kcj2J6iWLiKiW3X777Yj6UVu3bt2q7TlV4bzzzrNfF9shhxxiTZs2zSorK1O/LygosF577TWrS5cujv30tmLFiqhj7ty509prr70c+w0cOND66KOPrKKiInu/3377zRo9erRjv8zMTPW42/Llyx37TZkyJe57C/KckpIS6/DDD3fs17NnT/We8/Ly7P1WrlxpXX/99VZSUpK9X3JysucxP/zwQ8fxsrKyrGeffdbavn27vQ+u7/z5863TTz/dsS9eo6Z4fZ743CZPnmyVlpaqfQoLC9W16Ny5s2O/J554ItBr4DidOnWKep199tnHqk1vvvmm43zatm2rPqOcnBx7n1WrVlnXXnutFQqF7P0GDRqkvjOmX375RX1v9T7Y/8ILL1SPa/je43sxYMAAx+sOHjxYXWMvf/3rX6Ou2ddffx31t7n33nur36emplrp6en2/vj+u40ZM8b+Pb73QQR5zksvveQ4V5yXl1NPPdWx35FHHml9++23jmuan59vvf3221b37t0d13Tu3LmBzpeIiIgaHrQpzL7Uhg0bovZZv3691b59e0dbZNSoUdasWbMcbVe079EnMvdDu2Tr1q2Vbgdt2bLFaty4sWO/q6++2lqzZo29T3FxsTV16lTr7LPP9mynY1u2bFnUsc2+DNptNenKK690nN++++5rffLJJ+q9aD/++KN1zDHHOPZDG9vthRdeiOoX/vOf/1Sfm4b+FPohbdq0cez7l7/8xfcchwwZ4tgX7dHff//d8dk8+OCDVosWLdTvmzZtGrdfjsf1PujHBxHkORdddJG9T/PmzT37xeijmn1ztJPHjh0bte/mzZuthx56yPG969Chg2prExEREdUX5pyK3jB+j/bm6tWr7f3Qjr7iiisc47xoU23bti3qmGj3u9tbl112mfXHH3/Y++zatcv63//+5+hfYK5g9uzZleqrVKfvv//eSklJsc+hSZMm1gMPPKDaixpujx8/3kpLS7P3w3zAjh07aqRPhTa+uS+u03vvvWePGaN/gbmlYcOGOd6Hvu01R1Ndc3QYyzbP9d577/Xc74YbboiaH/v444/VmL45Z/D555+rfpS57wcffGDVBFw383W95hN2Z393H293ridRfcOAJiKqdXUpoAmNUgRVuBv+GMhFw91sxGI74IADHPfXrl3reVwMEvfo0SPquAi4wHFbtWrl+Tu/xlp1BTQBOhFoULrPBwEiCMZBQJL7d+jIPPnkk76vjQ6S13PQ4Mfnaza49YZGPjpDNcUdSOX+LNBpMQNkgkwYBAnMwYZJg9p2xx13RJ0XOp4dO3a02rVrF/U7fG+9Avhg0qRJUZNUeiICz/O6jghQMido3DC5gnNxPy8jI0M9bgbXYZs4caIjeKwmA5oQvOU+T5wjtn/961+OvzVzMsd8T127dlXnj8/A/fv//Oc/gc6ViIiIGqabbrrJ0XZAHwZtjpYtW1obN26095s5c2ZUMAw2tM3RZmvUqFHU79BG8QosqWg76P7774/aT/e7vNp22Nz9NAQ8JVJAE4Jjjj32WM+2Ha4n2sLu3x199NGOQXzTrbfe6tmHQn8MwThe7UQEgLkXHJhwzdCvcz8PAUxY1OBuu2PipLYCmh5//PGovgmeh/M0J4m++eYbdY3d76lZs2Zqosir/4oAsR9++CHQuRIRERHVFeacCtp35lgq2pEY43W3+bC1bt3amjdvnu9xEZjk1W9A/8JrzgSv9dxzz+1WX6U6/fe//41qS6P/geuDa2YGeul28Zw5czyPVR19Kiz47d+/f9TzcK0wXmwGZGFD8NXBBx9cKwFNWGTh7l+g/Y25lGuuucaxEAGLo93vCc/Fvl7fI2w33nijVVMSIaAp6PUkqm9Yco6IqAKaNm2qUon+6U9/ikpzuXr1artUXGZmpjz//PNy7rnnOvYz6xubevfuLTNnzlQl3FACQCssLFTH3bZtm2P/Pn36yNdffy0nnXRSjX9+SHP63XffqRSzKSkpjhSmKHu1adOmqHJgH3zwgUqZ6ufJJ5+UW2+9VVJTU+3HEEOE0m0rV650lAfTJRdQks1MRVqTrrnmGlU/XL9/fE5I3YqfWpMmTVTd8P/85z8VOjbKT7hL/bm/R7Xh9ttvVymGs7Ky7MdQtmLdunWyceNGx74jRoyQH374wVEGzp1Gdtq0aXZNcbM2Ob7v5nXENb7qqqvk+++/l/bt2/ueH1Ic42/CXX4RpUZwjrpcBsrnoTRbbZXwg379+smFF17oeAzniM1MY4y/tW+//VaV6nO/J6Roxt+bLh2i90ea4b/85S818C6IiIiorrrpppsc7Sr0YdDmRomz+fPn248PHTpUZs2apdp2JrTN0WYzywCgD4OyZrNnz3aUaahsO+hvf/ubjBs3ztE30v0us22n290PPfSQajeZ/RP0WRIJylCjpDTKbJj9QrTtcD3RFtbwvtGm+/DDD337kOPHj5fXXntN9bfMPhT6YyiRbrYTUer88ccfVyXB0b/wc9hhh8nbb78tbdu2dTyenZ2tSo6bn+PUqVOlf//+UltQAh4lzTW8X3yPcZ7z5s2zH0dbGn34Hj16RJVnQDk+d/910KBBqoQ2SqAQERER1VfNmzdXY6lo1+l2JMZ4zTafbh+ijb/vvvv6Hmvw4MEyY8YMta8J/QtzzgTQzkTJaLTldqevUp0uvvhiNfdgth/R/8D1QV8kvPY5bL/99lPj4O7SedXZp0J5tS+//DLqeuNaYby4pKRE3cfcCeYmMO9SW9APueWWWxyPof2NuZQff/zRUUoN7+nUU0917Is5J+zr/h41a9ZMHn74YXnwwQelIQl6PYnqm/KRHiIiCgSBE++++65q8GNAGAPlGDBGQxYBHAjWQABG165d5V//+ldUQJQfNObfeust1TBHwAWOj8Y6gpnQSEVDHvWA0ag75ZRTHIP1NQ0BW88884yaaHj11VdVYxO1mrds2aIGyPFeMBCMgKszzzwzbuARGusYkEedaQTNYHB84cKF6r1jYBpBNLieI0eOlD//+c+y9957S21DDW3U1X7iiSfUZ4XOAhreqI+N78Cll17qmFwICgE52H7++Wd1H52dDh06SCJAsBW+e6it/vHHH8uCBQtUJxefH97rwQcfrPY56qij4h4LnTx0znAcdGIRsIQANkxSoUONz/joo4+WMWPG+AZGuSHQDxNh+PvB39JPP/2kGvQ4HjqgCETEBJoZlFVbUE8efyO4lkuWLLHft9khBnzvv/nmGzWpgjr0uGaYeMEEDCbFEMQ0YMAAGTVqlKrLjs4cERERUSxoP2Cw8+6771aBHrovg8cRuGJCGwptffR50L5COx3tXgTfIJAICzOGDx+u2mxmcElVtINwfmj7P/vssypYCQHdeXl56nXRnkMwDQbxR48erfpocMwxx6jJB3jxxRflH//4h1oQkSjQh7vvvvvUYg+8/88++0z1o7Zu3ar6ErjeRxxxhFx++eWqbRsPJjxOPvlk1SdDu3ru3Lmq/YuBf/TJMPGEvgna6LH6oib04RYvXizPPfecWpiyaNEi9b3ANceE19lnn61eF4FW+PxqC/qY06dPl3vuuUedJwbx8b7btGmjvicmBDWhf/nee++pIDEEPOF7j4kkTAqgr40AJlzLE044IaG+M0RERETVBe1NjJ9iYTbmOdDuQ9scY9EY58WCULSvg+jZs6fqK3zxxRcqQF7PmaBdhgWmaJdi/BJjs5hbqIq+SnXC+8b1eP3119WiBD3OjLkKnMuwYcPUvAfGyuO1HaujT4VzwHFwbljkgIAyXCv0KfQcFYLGunfvLrXttttuk169esnTTz+t2uT4HNE3cc9vtWzZUt555x31+eP7iAQA6G/gOmFfvGd8Z/HezjjjjIQY40/k60lUn4SQpqm2T4KIqL5CtDQa34CGOwaqieJBEBOCpACN93POOYcXjYiIiIiIiIiIiIgq5Y477pA777xT3UbQCxZNEhERJTouOSIiCggrOZE1Z9euXYGvGaL4NUTaE8WDlRTIyAPItuMub0hEREREREREREREREREVN8xoImIKCCk/UdqVKQBfeSRR+Luj/JZSPmpIQ0pUTzIyISa3IDMTPHK9RERERERERERERERERER1TcMaCIiCgjBTIBKnRMmTFD1n/0UFxfLpZdeKkVFRfZjZ511Fq81xVRQUCBPPvmkff/KK6/kFSMiIiIiIiIiIiIiIiKiBocBTUREAY0ZM8a+vXDhQhk+fLjKwFRYWGg/XlJSIlOnTpWRI0fK5MmT7cdPPfVUOeCAA3itySE7O9u+vW7dOjnjjDNk+fLl6v4JJ5wgAwYM4BUjIiIiIiIiIiIiIiIiogYnpbZPgIioKqxdu1YOP/zwarmY11xzjdrOPvtseeONN+SDDz5Qj//4449y0kknSSgUkqysLElLS5ONGzc6sjLBoEGD5Pnnn6+Wc6Owc889V2bOnFnll6Nz587yzTffVNtlPvnkk+W3336T1NRUVaJQl5pr3LixPPbYY4GO0atXr2o5t9NOO03uv//+ajk2EREREVGiQD8C/Ynq8MADD6jFLUREREREtHuwwHzNmjVVfhmHDRsmr7zySpUfl2oW50mI6i8GNBFRvYASb0uXLq2WY2/bts2+/dZbb8nf//53FWyCbEy6BB0CmdySkpLkoosukocffliaNGlSLedG5QFt1fH568+4uuyxxx7y7bffOh5DYNzLL78sPXr0CHSM6vree32niYiIiIjqm/z8/GprU+/YsaNajktERERE1NCsWLFCVq5cWS2Lmqnu4zwJUf3FknNERBWATDr//ve/ZfHixTJ+/Hg54ogjpH379pKenq5+17ZtWzn44IPl5ptvVpl3JkyYwGAm8nX00UerlQMIYsL3CKu3p0+fzlXcRERERERERERERERERNSghSykFiEiIiIiIiIiIiIiIiIiIiIiIkoAzNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERJQwGNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERJQwGNBEREREREREREREREREREREREQJgwFNRERERERERERERERERERERESUMBjQRERERERERERERERERERERERECYMBTURERERERERERERERERERERElDAY0ERERERERERERERERERERERERAmDAU1ERERERERERERERERERERERCSJ4v8BMJgloSsVPTsAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAACTQAAAIrCAYAAADbKoQJAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qm8TdX7+PGFa57neQqZaTCVkpAoQ6SQMlZEqEjfEqVBJUpRSYlIE9FXiMqUMmeeMpZ5vOb5uuf/etbvv/d373PPfM98P+/X67zu2efus84++xzXWns963nSORwOhwIAAAAAAAAAAAAAAACAKJA+0gcAAAAAAAAAAAAAAAAAAAYCmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAi4OrVq5x3AAAA+kigjw0AAACur6ZZDodDJSUlRfowoh7zCUirCGgCEFXSpUtn3rJnz652794dUDtdu3Y12ylRooQKtb1796oxY8aoDh06qOrVq6sCBQqozJkzqxw5cqgyZcqo2rVrq6eeekr98MMP6tSpUyE/HqTeP//8Y/s+erplyJBBf9blypVT999/vxo5cqQ6dOhQTH8Mq1evVkOGDFFNmzZVpUqV0u8vU6ZMqlChQurmm29WTzzxhJoxY4a6du1apA815ly4cEENHDhQvfvuu5E+FAAAEKf86cv6c5OxTbz1kZzP1eLFi0P2WjIWnDJliurcubO66aab9LhR+tg5c+ZUpUuX1mOJN954I+BxcFr3+++/6/MKAAAA3/gzFsiYMaPut8q14jvvvFO98MILasGCBRE71TNnzlSNGzcO+evIOEXmdeR6uMzzFCxYUPfhZf5K5p6aNGmiBg8erDZu3BjyY4lHct7q16+vDhw4oKKNdZ7R+u/g5MmTAbe5Zs2aFG16m8M8ceKEPpZvvvkm4NcFYhkBTQCi1sWLF1X37t11dHa0WrRokQ74uOGGG1S/fv3Ud999pzZv3qw7NBItLZ3df//9V3dSxo0bp9q1a6eKFSumevbsqQ4fPhzpw0eQJCcn6896z549au7cuer5559XN954oxo1apS6fv16TJ3n77//Xk8C1KlTR0+m/Prrr2r//v36/Unw0vHjx9X69evV559/rh588EHd2f7ss8/0OYB3s2bNUpUrV9bfDYLBAAAA0kYfSRY79O7dWxUvXlwHM0lQ04YNG/S4Ud7v+fPn1b59+/RYQhYVVKhQQbVp00YvnIF3iYmJ+trBXXfdpbZt28YpAwAACAHJoCP9VrlW/Mcff6gRI0boYJ5bb71VrVq1KmznXF6/VatWqm3btvp+qJw5c0a9+OKL+vq3zOvI9XCZ55HgEunDy/zVwYMHdVDX8OHDVc2aNVXDhg11Px/eXbp0SQ0aNEh/f5YvXx5T/w5+/PHHgJ//7bff+rX/hAkTVMWKFdWXX34Z1XOlQCglhLR1AAjCCsuxY8eqvn37RtW5PHfunM64NHXqVJe/lwh9WW0rnRu5SG0Narl8+bIaP368DhyR5993331hPHIEKm/evCpfvnwpHpdAnitXrqjTp0/rQYzzCnMJcvroo4+i/sQfPXpUPfbYYzqAydX3Wd67sfrA+j6PHTumnnzySb1KRb7TuXLlCvORxxYJfAzlQBsAAEBIv02yh3ojiy+M1P5ZsmTRATeehCr7bTz3kSZOnKieeeYZdfbs2RS/y5Mnj8qdO7fuX8vEiHGBWn7KRfJffvlFffXVVzq4CZ4D4uQ8AwAAIHCSfUmy87sj18FlbsNYzG1Yu3atuvvuu3XGJFn8HWoS4PHTTz+F9DVkoUGPHj3UkSNHUvxOrn9LP17mBKQPb537WbJkiQ7Q+fDDD/WCBri3cuXKmK1gMG3aNP398JeM82QOxR+PP/64368DxBsyNAGIehIFL0Eh0UI6sZJS1RrMJGkhZUWAXGyWwBDpzEp0vtyXzv26devUm2++aZsgkACYBx54QC1cuDBC7wT+TrLs2rUrxU2+m/JZSwCTZN369NNPVZEiRcznffzxx2rSpElRfbJ37typ6tWrZwtmksGrrA6XbEzGe5NV4xLMt2nTJvWf//xHp9U1zJ8/X6f4lZUVAAAAiCwZd7jquzrfrOOTunXret0/lOXY4pGUnpDMQdZgpubNm6vp06frzKdSgk5K3skiAckyJBfGb7/9dnNfCXSS1eD+XvQGAAAA/CXzG57GAnIdXDKPyvXfpUuX6iAma79VFsumphRXtJBKGy1btrQFM0kfXTLkSFk0ydwkC0Pk93Jfgp+si9YlwKlPnz5q5MiREXoHCDXJyiXjN38tW7YsbhfyAKFEQBOAqCfBFBLtHA3pFGUFgqQztaYNlYh7WYUgGWo6deqUYhVD+vTpdQmvl156SXf8pRyZQVKTygVuSdWK2CeBTJKtSEoRWjMVyWdvrHyPNtLxlgGXTKQYunTponbs2KFee+01nSo3ISHB9n2uVq2aeuutt9SWLVtUlSpVzN9Jyt1evXqF/T0AAAAA0UZWZUvpCYOMEyXjkkx4SOlmyehrJau8JXhJyne88847etGMsRK+a9euuu8NAAAARJpcH77jjjt031YWbBskSF/K0MUyyZIqmZWkDy5kQa8sYv/zzz916WjnjLbye1mwMGfOHL2fVDowvPDCC+q3334L+3tAaOTPn99c4B1o2TlruTnJkAzANwQ0AYgJshJYMt1EmgSmrF692tyWQBApiycBS76QTop06qUdg0TzywVrxI9KlSrZAnsku5Gkm41GslpEAu0MUrdaMkpJ6QtvSpcurQdlhQsXNh+bPHmynoQBAAAA0qrNmzfr8tMG6S8vX75c3XPPPV6fK4FM0ieXbKkGWQUvZesAAACAaCGLYD/55BOVOXNm8zGpahENC9MDIdU2unXrZh6/BK/IwmVZxO4L2U+yOxkkKKpv375Ru9AZ/pG5vRYtWpjb/mbRle+DZOo1SsT7MjYE8H8IaAIQtSQTkjWiXUpcWbPIhNu2bdvUmDFjzO0KFSroiOps2bL53darr76qKleubG5LAIkR9Y/4YE0zKzZu3KiijaQGtq4KkJJxb7/9tl9tFC1aVL3//vu2x954442gHSMAAAAQa/r376+z8RoBSt9995264YYb/Gpj6NChtjGjLCRYsWJF0I8VAAAASE3FgnvvvdfcPnjwoC5LF4tkEfrp06fNbVlgX7t2bb/akICopk2bmtvbt283g1gQ+9q3bx9w2TlJ2mCUMZTvSL58+UJyjEA8IqAJQNSqXr26evnll81tKcsWydJz7777ri2afuzYsSpnzpwBtSUR2HKR2xrdvXv3bq/Pk3Pw6aef6hrOZcuW1cFUUtpMgqukRrV0jn0JjGrYsKG+sC63efPm6ceuXr2q06JKlLm0LcckZRBq1aqlL6bv27fPr/dotPfwww+rcuXK6XMlqxrkQr6UUpAgritXrvjcnqxKnjJlinrooYfM9y63UqVK6fcjQTQ7d+5U0cKatUg4fy5SptD4DOT25ptv+tz266+/bj6vWLFiui53oN9pq9GjR5ulLfzRoUMH/R20vjepH+7tuyyDwtatW+tMT/JZyndEvivynfH1+yHlN4xzId8DX/jyHOtnI6UmxfHjx9WoUaN0SmU577L6SH5KIJgEO0p5TFfkvRhtSUY2w7Bhw2yv44qcR1npJAGeJUuW1P8u5TzJv4FmzZrp44nViwQAACC2SX9fsnPKRV3p4+fIkUP36cqUKaPHK9LXO3v2rNvnp6aPJKSvKIFCPXv21Blzjf6ZHIeMEe666y71yiuvhH2MIH3hhQsXmttSXk6OxV8ZMmRQgwcPtpX28KVkxapVq/RY85ZbbtHjOVkkJBNNderU0ZM0mzZt8tqGLCSyfgZy8T0Yz5GFPcbvZcGSdTJA+ugVK1bUfV0Z40owl5T7WLlypdvXlO+atCUTR1bW45DXdEWCw/r166duvvlmlTdvXn2eZAxXo0YN/bpSGjBWswsAAACEU/ny5W3bEtTkiQR1SMWKu+++W5dllrkSqRZQtWpV9cQTT+hFuK4Y/TsZLxhkHGHt+8kYIxByTDKXYZA5ESkxFwiZS7Gyjg3ckcAn6R/Xq1dPnxPpmxYsWFCPc5599lm1bNkyn147kHPh7TnWcZvMA1jHHU8//bT+3KR8tsz9yHdB+vW//vqr17kp+fyt5Hq38TrShrtMuHKebrvtNl0CTr47MuapUqWKHhNMmzYtpBmxpLygMSfob9k568Jy63l0xTpuspL3aDwuYyEgzXAAQBSRP0vGbfDgwY5r1645br75ZtvjH3/8sdd2unTpYu5fvHjxVB/X6dOnHVmyZDHbrFOnTqrbPHv2rGPSpEmO/fv3+7T/5MmTHYULF7adC1e3atWqOVasWOGxrbvuusvc/+eff3Zs3LjRUb16dY/tZs2a1fHhhx/6dKxz58513HDDDV6PtXTp0o45c+Z4bW/x4sWOkiVLem0vQ4YMjieffNJx+fJlR2rt3bvX1vYrr7zi1/PlmK3PnzFjRop9qlSpYvvcfFW5cmXzeQMHDnQE4tixY4706dOb7dxxxx2O1JD398knnzg2b97sSE5O9rjv+PHjHXnz5vX6eZYqVcoxc+ZMn/+ty/faF748x3ocly5dckyfPt2RP39+j8crf2vkc3c2ceJEr+/VVZfs+++/9/qacpO/TfL30tt5BwAAcCb9cX/7UuLHH390FCtWzGs/pUCBAo5PP/3UZRuB9pGM50rfy5fnyxihX79+jqSkJJ/6/YsWLUrVF6Vv37629n777beA25J+qPTzZMwkY1JPZFx57733ej0f6dKlczz66KOOU6dOuW0rkHPiy3NkTGX8/oUXXnCcPHnS0bZtW6/H3LVrV8fVq1c9fn/d3ZzHcfK+W7Vq5dN3R65FrF+/3ut7BwAAiFXWvo9cMw3Ec889Z2tn3bp1Lve7cuWK4+WXX7bNs7i7SX/txIkTbo/V3U3GCYEYNWqUrZ3PP//ckRqvvvqqvl4u1+A9SUxMdDzyyCO6j+7tvd13331e55ICORfenmMdt7Vv395x8eJFR69evbweb/PmzfUcmKe5KXc35++izPf06NHDp/NUvnx5x8KFCx3B4GqesVOnTuZjzZo186kdmec0rvPLPJucF09zmNZxk7ubjIWAtIIMTQCivg6zRIBLpLVh0KBBYS89N3/+fDNLi3j00UdT3aZEcnfp0kWVKFHC676yklZWBEgdZ+u5KV68uI7Ut0ZqS5S6RLnPmDHDp+PYsWOHjoY3VupKW7IyVSLbnTMkyQpWyZLkiWSTkSxPe/bssa0mllXBUp5MVhpbV1DI6m3JduXO8uXLdQrO/fv3m49JG7ICW27StkEyFY0fP161adNGRdpPP/1k3pdV4o0aNUqxj2TVsn5uW7du9druunXrdPlDQ6ArReQ7bc0aldqazXLOe/XqpVdkeFpJ//jjj6snn3xSnTp1KsX3w/m7LFnB2rZtq9566y0VSbKyQzKDnTx5Um/L3yP5dyufq/PqI/nuWz8fISvMJfOU3OTfrUFWghuPy83qhx9+0NkOjNe0vq78+7SeJ/nbJBm+ZCU5AABAqEm20AceeMCWJVL6JjJ+kD6dtX9+4sQJnUHpqaeeSpHtJpA+kpCsS7Iy1bryW15TxhqS+dM5i66MET788EO9sjkcJLOPIWvWrDq7Z6AkO6dkopVy1rJq3Z0NGzaomjVr6j6+laySliyfchwG+Rxk9bms/o5kSfeLFy/qFc7WcauUXXAe4wm5JiBjDWeyKlm+I7KK3cr6/bGWcpCsYjLumTVrlm1/2Ue+O9bzZIy9ZKwsK+YBAADgmvWatowLpP/pTOYWpE8rfVvrPIuMA6T/J9l2rKS/JnMc1hJwRv9OxgvW51v7fjLGSG0fPhjXymXMItfL5Xq3OwcOHNDZQr/++mvbWEnGAHIOpS/vfIySdVX6qJEi8wmSXWjcuHHmY3LO5Zq1dUwnfv75Z5fzNDKnJZ+VfO5W0h83Pkfn6hdS0WHChAm28yTjI3mO8zX6Xbt26XHG77//rkJBjsWaadY6z+GOZKwyrvPff//9Xiu/yPjE1XhYxj3G42RoQpoS6YgqALCyRhjLSlRrRLv1d40bN/aYjSTYGZqeeOIJ2+tv27YtbB/cuHHjbK9dqVIlx3fffec4f/68uY9E+r///vu2rDcS6b1hwwaXbVqj4DNlyqR/5sqVyzFy5EjbqoF///3X8fjjj9tev0iRIm4zIEm2J2uUvJz7zz77zLb698yZM44vvvjCUaJECXM/yRQ0b948l21WrVrV1p6sbLC+vqzUlRXicl6sxykZdSKVoenPP/90ZMuWzXzuoEGDXO63b98+2/mSFSreSEYmY/+aNWs6grVy/Pfff3eE2pAhQ2yvKasSxowZo1dmGw4fPux44403bOdPblOnTo1Yhibj30iFChX0vz1ZhWJYtWqVzm5l3b9NmzZuX9u6itzdd0pW4ks2A2M/yeQlK/tlJYd1ny+//NKWmUC+S6tXr/bpHAAAADj3TXzpS02YMMHW75E+2+uvv+44dOiQbZXx2LFjU2SafPPNN1PVRxLSZ7W2KZlL//vf/+q+kdX27dt1ViZrRlK5L338UGZokn6tta1GjRo5Qk1WaTtny2rRooVj5cqV5phZslPJKuX69evb9pPxhLVvG84MTUYfW/qwTz31lOPvv/8295MVyzI2NfYx9nO32t8525c77777boprDtbvrvHdkQxWzucTAAAgHqU2Q5Nc386cObPX69XdunWzvVa5cuUc3377rePChQvmPlJFQrL6WPd77LHHPPYpg5WlRuZGjDal8kSoSX/XOu8hN+mrL1iwwJZZVvr0LVu2tO0n14PdZX4KdYYma/9csjVZ++cyZyPzPrlz57a1KeM1V2S8YN3P1VhNTJs2zbafzNXt3r07xffwmWeese1Xo0aNVFc0cDXPKO/T+h5ljOxN586dzf1/+OEHt20H6zMF4g0BTQCiivPFRWvQinSGrb+X8lbhCmiqV6+e2V727Nkd4SIdMWsKVikhYO3kO9u5c6etNFutWrVc7uec1lMmG+TCrTt9+vSx7S+BS84kwKpQoULmPjfddFOKtLBWR48etX2m8jlJ2lmrtWvX2l7X3QVscfDgQVtJPunohyugSQJNjh8/7li+fLmjf//+OpjMeN7dd9/tsjyCQX5v7CsBM55IB9waCCapcAN1zz332N6ftxIWqSUTFFLuw3i9smXLOvbs2eN2/zVr1jjy5ctn7p8jRw59jiMR0CQ3+Rtw7tw5l/vK9/aWW26xDewkcC/QyToJ2jP2ke+S8ySL1aZNm2zfNwlUAwAACEVAkwQqWS/cSl/tr7/+cru/9PWkz2fsL31BKU/s7Tg89but4xgJ4vE03hDvvPOOrU83evTokAY0ycIGa1tyUT3UnINvZDGQO9evX3d0797dtr+UfotEQJMRpCRllt1xnrxwdaz+BDTJpIaxj4zbPJHJM+txevuuAQAAxKLUBDTJfECDBg1sbXz88ccp9luxYoVtnzp16rgtfyz91datW9v6YdbA91AENMm8gvX4HnjgAUeoycJm62tKH13euzvO/WgJJnIl1AFNxk0WCrgjQVjWhSXujtXXgCZruWj5bvizoNrTeNUX7uYZrQFK3srOWQOgJHDOWIxDQBPgO0rOAYgJUmrJVek5KVkWDtbyaeFM5fjBBx+YKVilhMN3332nsmXL5nb/8uXLq4kTJ5rba9asUYsWLfL6OiNGjFAVK1b0mCLVWuJqxYoVKfaR1z127Ji+nylTJl0yyzlVrHN6THk/Rgk6KRkxdepU2z47d+60pdm86aab3LYnKUqlhJuUJ5BUo84pTlNr2LBh+hy4usn3UtLH3nbbbfozkxS6chx9+/bVpees31tPZefk/f71119u95U0qZKKVsh5e+SRRwJ+P8ZnZXxenkpYBIOkE5ZyH8axy2dftmxZt/vfeuut6rPPPjO3z58/r89tJMhnLKUWndPXWs+flIW0lrJYu3ZtwK9n/d5XrlxZl09xp1q1ajpNrZFe2VpGEAAAIJjef/99debMGXNb+mq33HKL2/2lr/ftt9+a/X3pC7799tsBv/7x48fV0qVLzW3pf3kabwgpdWcteb17924VStY+tvBUYiIYpJyClKgwSDlvGbu5I2MUKQ9h/dw+/vhjn8okhIKUcpfSzu60a9dO93c9jUMD7Wc3btzY474vvPCCOQ6VscnevXtT9doAAADxYt++fbpPKSWPrWW9qlevrnr06JFif+s1XZnbkOvCefLkcdtf/eSTT/T1ViHxNjKmiKc+vIyprOdE+uZyPp3LLlu9+uqruq9vmDZtmtqxY4eKhDvvvFMNHDjQ7e+lLJ6UF4xEH/65557TczFSBk/mkg4fPqxCoX379j6XnZPSe8Y4unXr1rqkIAD/ENAEIGZIB+TFF180t8+dO6eeeOKJsLy29cK9r4Ef0omRACNfb506dUrRxuTJk20Xe315benU3Xjjjeb2jBkzPO6fOXNm1bFjR4/7SCfeGsh14sSJFPt8+eWX5n3psN5www1ej1WCqKydUOdjtda8TkxM1J1DT1577TUdTPTPP/94fd+hJoMyOf4LFy543O/BBx9UWbNmNbdlQOeOdbJC6ngXKVIk4OOzHpe3iaDUkiAbCewySABO7dq1vT6vbdu2tiC2b775RkXCHXfcof+NeuL8flz9G/GV9Xu/ZcsWWx16VyTYUwIfZUJr7NixAb8uAACAJz/++KN5v0aNGrqv5o1czLZeeJdFDxL8HQjpM8+dO1d99NFH+kK19SKyOzlz5rRNSEiQfCg59/1lUUoozZo1yxbQLoswvJEL/EOHDrWNq+fMmaMioWvXrl73sfazU9PHdu5nyySQJ1WrVlWnT59WJ0+eVKtXr1a1atVK1WsDAABEO7me7mn+omTJknrBpywmloUD1sUCsiBTnm8EIhmuXbum+6wGCWb3tmBc2pK5kCZNmqg+ffp4XOQci314meOQPrjh5Zdf9rgg2vD666+b92UM8P3336u01oefOXOmSkpK8jgnIwthZD5v3bp1eh4iFGRuJm/evOZ33DpWdmYNyPM2DwfANQKaAMQU6dzJxXPDr7/+qsaPHx/y1zUyy/j7HOnU+3qTDEVW27dv150vw8033+zza9evX9+8b13F7IqsnLAG1LhTuHBh876RNco6MSAdxNQe659//qlXXVg7vtaIdZkMkcxc8lrW/QzyPpwHTcEiHVTJgOPqJoM4GehYs1hJANabb76pB3ueVpFIh7xVq1bmtgxEXL036RhPnz7d3O7cuXOq3o91pXqoSbYimQywrrT21cMPP2zed/XvJBzq1q3r178PV/9G/A2gMly5ckVvS4Yr+ZvgSvbs2cP6eQIAgLRHxiWbN29OdX9OFh9IcEggZPLk3nvvVb1791ajRo3yaaJB+qDWPrqni9/BEO4+2cKFC837sqDE13FYixYtbJl/lyxZosJNPhdfFjl4GocGsprcIBlYmzZtqifY3C1CCXUWWwAAgGgiQTae5i+kcoBzv0myCknWGble72pBqDxufY70Q30xYcIEPfcjizet187jrQ8vi819PSeSEcu6kD0SffhArpUHsw8v1Uhuv/12Pd/iLitSOPrwEoDWpk0br4slLl68qGbPnm0uKpdAKAD+I6AJQEyWnrOWE3v++efV/v37Q/q6srI3XKt6DdYAISPlva/ZnqwR4dZyea4UL17cp+ORzrW7AK9NmzbZHhszZozPx2rNKCOdUGtHVDp5MmFhnQB59913dRpWY6WGXIg+evSoCrV+/frpDDiubpIRSiZ5pIO6bNkynW3LmDiRgaCUhvO0YsJadk7KKC5fvjzFPvPmzdNBUsb38YEHHgjayoZQf6ed099KyQZfOe/7999/q3Dz5d+I9d9HoEGQBimrYc14IP8mhgwZosvPyQomyUwnwW3WIDEAAIBQkjT/1qD7aOvPyQpl6UcvXrxYffrpp7r0s1xol+xM1jIDoS7Pa+1jh7uf7c9nIpM2MiESyT62nCvrODuQcai//vOf/9gWwMgkmUzASVm5Ro0a6ZKIzuNwAAAA/B9ZeFyoUCF9jVIyLb3zzjv62rjMRTgv9nTXz7T2QaNFJPvwsnjfl+xMrvr8kejDB3KtPLV9eJmXsZYolAUykulIxnoS3CQlt2VOJrWv4y9rxuDffvvNZYCVVK0wAvpkUZB1XhOA7/iXAyDmyKpTuRApGUvE2bNn1eOPP67mz58fstcsUaKE2SHxNXhKVgy7yrRjJcEJcuHdFUltb3XkyBEVCAmokZXI7jpLvlxEdub8vpyPVdKIBppKVIJ25IKyQQZGhw4dSpHlSIKYpk6dqm/G6l7pFEowUbFixVSkBnW33XabvsnKCglkknMlt549e+qL5K5WkstKc+mAGxm55L1KZ9zKWm5N3qcvWbU8kaxSxup4+Y5IGtZQrV5w/n74UyrPeTDs3FY4BOPfiL8kcFP+5siqEyv5e/H555/rm/ybluxNcgGhQ4cOtn83AAAA8dyfk4UEUtJCSqWtX79erxiXjKaRJn1sq1AvvLGeS3/LUVs/l7TSx5YJICnr3qNHD1umACmDKP1uuUmZexlPSqCTjC2tGYUBAADiWZcuXfQ1yWByXogc6nJugaAPH/p+fGpIqUMpNSfXwK1zThLAJAvD5fbaa6/pxfEyJyPBTpIJSbKHhZIx1yPHZJSd69atm20f65yWXL8HEBgyNAGISZKtREqlGX755Rf12Wefhez1JGOKQYIMJMAm1CTAJFjcpdAPVkrVUB6rBG1IMI9Eszdu3NhlR1QubK9atUqXoytbtqzOZiUXpSNJOqjWetKSTeeLL75wua+8R2v9ZElRal09LufEWmvcmtEpUFWqVLFtb926VYWKBB06l0jzlfO+MnkVbpEo5yYDQ6mnLhMu7tL4SqCiZCGQWvIy8JbsZamd5AEAAIj2/tzXX3+ty6tJn1guEEtZXlfBTBKUIpktwxn0LRlorSusQ9nHdv5c/PlMnPdPK31sYyX1li1bVK9evXRZcVdkvP/JJ5/oxQN33XWX29LPAAAA8My53Ji17HG0kH5xqVKlYq4PL9UsInEtOBL9+IYNG6pt27bpai3uFnLIIo0vv/xSNWvWTCdFWLFiRUiPSeZ0rFUWnMvOyef8888/m2PTBg0ahPR4gHhGQBOAmCRp4idOnGjLOjRw4MCQrYB17mxIoEGoOWfgkQ6bke3H31uo6wY7H6t01AI9VndpZyW6XlJ3SskI+ewlYEhS3DqTQKYRI0bo1bSR9uSTT9q25fjdsQYpSTYuCVQx/Pe//zUDvWRwJR341LLWnhaSljU19u3bp7NKvfzyy7oOuHWwmiNHDp8D7JxJ9iir1GamEuFOPxsoyTwm3wsZfElmpo8//livFLem2LWmQpaAPhnUAQAABFu09Ofef/993c+3rvSWC+pVq1bVK3aHDh2qSz1LxqaDBw+q8ePHh3UFsZRWqFOnjrktiy5S2/eUxRrynidMmKD27t3r9nPx5zNx/lzSUh9byGIACViS75GUnXvuued0uQ+jbLjV77//roOa5DsFAAAA/zgH7EgQTjSyXiuXctuBVp8wjB49Wj344IPqo48+0vM6oejDS7UIV/3XeO3DSzYkmfeRcd4ff/yhXnrpJT32chVgtXHjRtWkSRO1cuXKkB7Tww8/7LbsnGRsunLlirlfqDNGAfGMfz0AYpaki5cJfGvEs6zADYVWrVrZOhxTpkxRoSYpMq0iUQYgGo9Vgpgk85FkbZLAHykx8fbbb6tbbrnFtt/06dPNCPhIqVSpkm3bU8BdrVq1bPvL8buK7n/00UdTPVARUjrBOrkjHezUmDt3rk7v+uabb+pMWsOGDTN/57wqXoLSfOW8r5Tmc8ea1cqTUNdBDwUJZHvqqaf05yQDaglykvrgN954o22/9957L+SriAAAQNoTrv6cJ5JVR4J7rGMQKcMrF403b96sA5mkDyqBTZLBKVKTJrIi2Jql1bpQwV/Sv5Wxp2SlkjLrMl6wrui2fi7+fCbO+3v7THzpZ8diH1uyaclEx6hRo9SGDRv0+FJKmst3SILTDMeOHdMTJgAAAPCPc0bM1AYKhaMPL4uuZYFxakgmWSmR/fTTT+tKCX///bf5O/rwqSPzdDK3IfMQErAkc1FyrqVkonOwWP/+/VUoycJzY9G9ZA22fm++++478z7l5oDUIaAJQEyTCX1ZjWuYP3++XrkabJISUoKarNHWq1evVqFUsWJF2/batWt9fm5iYqIZ/R0OqTlWucgfaIkDCeyRjE4ysfHXX3+psWPH2n5vDQqKBOfVAbJqwhMJVjLMnj1b/5TPUVYNB7PcnLEKu127dua2rGqQlQuBGjdunNvVCc7l7eSz8tWaNWtSlPFwd46dUxi7c+DAARXL5D1LGbpXX31Vl7+wBnbKgPuHH36I6PEBAID4U7ly5ZD153wlGXWspeWkJHWPHj08ZmCSvrR10iQcJRmkv25dgCCrsgMlZaetgUcy0ZIrVy6X/Wx/PhPJamvt+3vqY/vaz471PraQyYhHHnlEB8dt2rRJXwcwzJw50+cFFAAAAHC94Ff6WL6QvpcsmpUF7G+99VbI+2Ft2rSxBcNIpvxAyQJsa2YgyQRqnT+x9uHlfEjfPJCxlatxlXVRflrpw0t1Evn8Jk2apLOqWucL5XMIVVUXY9xknWMx5qNkfs6Y05HFNnItH0DgCGgCEPOl56SjYr3gOmDAgJB0xAYPHmx2COVCuHSmAw3EMXjqiEsGKmtNaenE+0KOTUp/ScCKXIC1BpaEitQttnagJRLd10GGHJ+knpWLx5LK35rmVM558+bNVZkyZdRrr73mta0+ffqocuXKmduh7Kz6wrryQpQsWdLj/tbsS3LsMviRFd1G6tnatWunGASmhqxQsE62SNnGQCZ55IK/rGg2SAdd6lQbbrrpJtuA0LmetCfWfeX8OZ9D678RGSh4I/9mZQV/pHjLriUD2L59++qV4sWLF9d1v7219/rrr9vKhET6ew8AAOKPpPe3BjUF2p+T8ZtkJnXmSwZSKd9mqFatmrrtttu8PkfKKlvHJeEISJFyZg888IC5LRk2ly5d6nc7ErwlC3isJGOnu9IYUo7O16AmCQazLoCR8aO7Prav/exQl3PwxJfvz5w5c/TKaBmbOC+4cKVChQq28y2fh2RwAgAAgO+kqoJ1ke+8efN8ep5UXli4cKHOyCrzP9ZAnWBUL3Am8xPW6h+yYFsydwbCObOnpz689Mmlb+4L6etbS1A79+EDuVYe7X14qQghC0ZkXkTGpN6Cv2SO6T//+Y/tsVBfK7fOv0kQk2TUlbk8YzFO+/btQ/r6QFpAQBOAmCcXxJ9//nlz+8yZM2rBggUheR0JmDFIAIekog8kqEk6qr179/bYmZL0923btjW3Fy1apG/eSEdbAmkkMEVW85YoUUKFgzVtpkTCewvEEHJh34hUP378uC4bYQ1Okw6rDHL+/fdfHd3uS7CNTJJYA60iafLkybbte++91+vkh3VAI4MZufAe7OxMBslu5dzhdp408UZqilv/XQhJ9+pppYKUp7NOSLkjmYaswUfWfw+GokWLmvf/+ecfr6U2PvvsM58zOYWCdfDt6vss31/5zOVv2KFDh3zKMibnNyEhIWq+9wAAID5ZL8RKH82XrJDS57OWgZbFCtZAbF/7SMJaas05g5ArslDCeTLBmuEplGQxhtE/k/fTqVMnPabxh4xxrVmU7rjjDlspDCF9bOu5kwye3sg5sPbXpf/ZokWLFKVBrCXXJDDME1mAMXHiRBUp1nPg7jskpSik7IOM47dt2+ZT8Jd1bCnfOZlEAQAAgO+kP9WyZUtbKbajR496rehgvSbq3Af2ZewQCAmEsWZDlWve69at86uN0aNH28Y/ZcuW1VllrZyzrkrf3JdxinNf/8EHH/R4rdxbH14We6QmE1U4+vByXr766iudmUr6874Ef1n78OG4Vi7zOcZ5l4ArubZvXdST2nJzofq+A7GEgCYAcUE6c76sskytd9991xZwIoEZsjJYAm98JdmLJJBESiZ4i0iXi9jWxyX9/datW922vWXLFp3dxdp5C3WdYIO8rnVyol+/fur33393u78Ea3Tu3Nn2mLV0lrAG20j61Q8++MDjMchgQS5OG6SWcqTIChLrZyyrI3zJlmUNWrIGNEmAW8eOHYN+nGPGjLF16iXbz5NPPqnOnz/v9bkyKLr77rttZTxkJYukA3YmmdOMzrcMlqQjLwFI7shgUY7DICt55DvlzLoyXyat5Pg9rTgZOnSoiiTrKhnrpJyV9XsipQe9ZWcbP368OnfuXFR87wEAQPySBRnWvoz01Txd4Je+nvT5jAysMq6xLkTxt49UqlQp874E+kg2U3ckgF36pStWrEjxeDhIBilrv1MWskgfTcYI3ly6dEmfa+vYR7Kdyup0Z1K+wDqRIX3HYcOGuW1b+uGyQtz6uXXt2lUVLlzYtp/0261lEWQSQRatuCKTDD179oxouQrnjFKuvkMStGUdrz799NP6XLsj/WtZDGGQVeHOkyMAAADw7rnnnrP106RKgbt+mARsSD/t1KlTZr+0V69efo8dAiHZfcaOHWtbON+oUSMdFO+NjHneeOMN9eyzz9oC4iW7lFzXt5JgJuk/G6RvLn10T9lkZcGE9PUNTZs21ZlHPV0rnz9/forxkPU8y+IPf8pWR6IPL1mopIqB4YUXXtCBTe7I2OTDDz80t+W5Uv0jlOQ7al3MLQs9jHGfzFlKycHUCNX3HYgpDgCIIvJnybgNHjzYr+euXLnSkSFDBlsbcitevHhQj/HUqVOOu+++O8Xr3HXXXY7PPvvMsWfPHkdycrK5//Xr1x1btmxxjBo1ylG1atUUz5Pb7bffrvdx5eWXX7btmytXLsc777zjOHr0qLnPmTNnHGPGjHHkyZPHtu/rr7/usk05VmOfLl26+PS+fXnO559/bnv9zJkzO/7zn/84/vnnH3OfixcvOqZMmeIoVqyYbd8ePXqkaO/ChQuOkiVLmvukS5fO8dRTTzm2bdtm2+/48eP6/GbLls3ct2jRoo5Lly45ArV3717b8b3yyis+PW/r1q2OF154Qb936/PlM/PF6dOnHVmyZEnxHWnVqpUjVOTfTs6cOW2vV7BgQcerr77q2LRpk/4OG+ScLly40PHII4840qdPb3vOnXfe6fGcyzm07l+gQAHH2LFjHYmJieY+R44ccbz55puO7Nmz2/aVz9eVq1evpvgu9ezZ03HgwAFzn/379+t/R8ZnYn2v8r12xdrexIkTfTqPvjynUaNG5j6lS5fW79eZHLv1GDNmzOh46aWXbP+OjP3kfVn/7t18880+HSsAAICQ/oi3fpGV9HGsfR7ps73xxhuOw4cP28ZLH330ke7rWfft27ev23Z96SN9/PHHtvaKFCnimDRpkq3/Ka8tYxJ3464GDRp47fcvWrQoKF8O6UNLn9n5GJo3b+744Ycf9LE6H8cHH3zgKFu2rG1/6QvOmDHD7evIuZdzYX1Oy5YtHatWrbIdi7yvO+64w7ZfmTJlHCdPnnTZrnyG1n3lc5k5c6YjKSlJ//7atWuOOXPmOOrWrWvukyNHDo/n0ToekPZ84ctzfv/9d9uxvvXWWy73e+6552z7Sd957ty5jsuXL9vGF7/88oujZs2atn3/+9//+nS8AAAAscTa3/F1niAQvXv3tr2W9LV+/vln3ac0rFmzxnHvvffa9uvfv3+KtiZPnmzb55tvvgnqscq1fVfzN/K61jkZoy/+xRdfOKpXr27bX+YxZL7GnfPnzzuqVKlie079+vX1dXejvy1Wr17taN26tW2/vHnzOnbt2uWyXemfW/fNly+fHsNduXLFHBdI37lZs2bmPtbr0K6uaTuPAX3hy3P27dtn20fmfazzaoYPP/zQtt8NN9zg+O677/TckUHO2bJlyxwNGza07Svjq9SQfxO+zDP+8ccfLsefr732Wqrblvdr7Hfrrbc6zp07l6r3BMQiApoARJXUBDSJQYMGhTygybjI+eKLL+qLy646KhJYI4E4cnMVnGLc5CK/XCh21VEzSCfzscceS/Fc6RQXKlTIUaJEiRSBJXLr1KmTLRAlHAFNQs6Lq/eaP39+fT5cnTOZwJBAJ1cWL17s8hxKYJdcgJdz4Pw7mVhZvny5IzWcJzZkoFCuXDm3N7m47hwUZNw6duxoG4h489BDD6VoY9q0aY5QksGRdULL+ftcqlQpPVGSkJDgcp+2bdu6/QwN8n3s2rVriufK91cC0OSzlO+18++ff/55j+1OnTrV7b8v+dysj8l38Msvv4xYQNPAgQNt+2XKlEmfdzlO64D466+/dvnvWgah8r2Xf0/OvytcuLBj586dPh0rAABAIAFNYsiQIW7HJtKnc7XIxFt/2Jc+klyEdw4yMV5b+qnOizuMdqyTCxIsFK6AJiETNP369XPZVzXOmbxPGdu42kfe07x583xaoOAcQGYEGEn/N2vWrCl+J/1754UiVnK+q1Wr5vKcyhjbeVwgF+tlEiYSAU0SHOY8zjTGynL+DTLpccstt6R4T/Jc2VfOlbw/598PGDDAp2MFAACINeEKaJJFCNYgGuMm1/2lD5Y7d+4Uv7vnnntsgeeGzZs3p9hXFrzKbeTIkUE5XgmQdzWukZtclzXGKq5+L+9JFl54I9dxrcEqxk367nJOrIsFjJu8pgTPeNK0adMUz5P3In14576uLDKXeaRIBDTJnJjz3I68PxmntGnTxjancN9997l8T/KZy/6uxjsyx+JufsxXvgYdyXuR8YTzMXi6Vu9r2+3atUsxVyPzAzL2Tu37A2IFAU0AokpqA5qkY1ypUqWQBzQZtm/f7ujWrZvHoCVXt8qVKzs+/fRTvzIIvf/++247yc4d5uHDh3sMkgplQJMRYOKcNcfVTTqdzz77rMuBiXNQk/NKZXc3uUBtXY0cKOeJjUBuMjEhgyh/gpmErP51nsjwdo6CQSYCZDLJ1QDA3U0GbxJ84w9ZGeFqwsn5Jt8hWW3hi/Hjx7sc5FlvsiJdPtdff/01YgFNkm3AeQW9cZOV4FbTp0/XmbJ8+RwaN27s+Pvvv306TgAAgNQENAlZBe1Lf1/6fJKR09PYxJ8+0sGDBx116tTxqX8kgUwyLpgwYYLtcWsmz1AHNBnkPchqWl/72BIsJNmdrJmvvJFMwdIn9Na2BFJ16NAhxepyd5+LZLXy1J6MHWTVtIhUQJMYNmyYy+OT1fRWkh1WFmP4Op6Tcbi37y8AAECsCldAkxHs76qygav+qmR39TR3InMyrp4rfehgkbGENZOsL/1sycbqz4JTqTwhgTeuFvk63yRQaffu3V7blOxP3vq7Mi8jmf/lM4lUQJOQwC9X713GmlYyNyJVGXw5T/L9krlFIytVavgadCRknst6HDL+C0bbEsDnbt5jx44dAb83IJYkRLrkHQAEU5YsWXSN2vr163usORwsFStWVF988YV67733dE1iqY27adMmtWfPHl1jWY6hQIECqmDBgqp8+fKqYcOG6u6771ZVq1b1+7WeeeYZ1a1bN/XVV1/p15LXOX78uK4LnDdvXlWtWjXVpEkT1bVrV1WkSBEVSY888ohq27at+vbbb9XPP/+sazHLsUpt7Ny5c6tKlSrpc9G9e3dVtmxZr+3dddddauvWrWrmzJlq1qxZav369erw4cPq/PnzKk+ePPr91qtXT7Vu3Vrdf//9um5xOKVLl07XMs6ZM6cqVaqUql69umrcuLFq1aqVyp49u9/tNW/eXOXPn9+sB/3www+rzJkzq1CTc/nuu++ql19+Wf30009qwYIF+nu2b98+de7cOV0LXL5rJUqU0Of7vvvu08fq7/nu16+f6ty5s5oyZYqaN2+e2rx5s/5+yL8X+SxvvfVW9cADD/j1vp944gnVokUL9fnnn+t64rt379bfj6JFi+p64lKbvU2bNvpYd+3apSKlcOHCas2aNerNN9/U712+x3LtQB4/ffq0bd8HH3xQ3XPPPbpOu+y7YcMGdezYMf3vKF++fPq9NWjQQL8v+bsCAAAQLh06dNB976+//lrNnTtXrVu3TvdTZGwiY5+aNWvqvpn0waSPHKw+UrFixdSff/6ppk2bpvtIxjhD9pVxRunSpXXfr2XLlvr1pe9XsmRJlZCQoJKSknQbEyZMUEOHDlXhJH06ucnx/ve//9Xvdfv27bq/f+HCBT2WkP6/jCPuvPNOPZ4qXry4X68h46rffvtNLV26VJ+fJUuWqIMHD+pxaY4cOdSNN96ox2BdunRRVapU8alNOf/SjowNvvnmG7VixQr92cjxyrmWcyxjujJlyqhIk89Uxtzjxo3TY0f53sh3Tz57KxnP/PDDD/ozmDp1qlq5cqUeH8h5kn3lPcs4X97bQw89pAoVKhSx9wQAABBPpK/19ttvq6eeekpNnjxZz3HINVzpE0v/Uvqzco2zZ8+euj/miVwDvuWWW3Q70peTa9cyHvi/GK3gqF27tr4+Lv12mZeQfuOWLVvUiRMn9HVnuW4t12grV66s56M6duyoKlSo4NdryNzR999/r+c7pL8t80tyLT4xMVFlzZpVlStXTo8POnXqpOrWretTmzIfIf3d33//XZ8f+SnjgowZM+rr+k2bNlU9evQIaI4q2GRsIv3v0aNH6zGlvG/5Lsh5lXGSMbci51r6+f3799fzYzIm/Pvvv82xovTZ5VzJXIXMKchYJdzat2+v3n//fduYORjkc1q9erUaPny4Wrx4sTp69Kj+tyRzA3Lf3+8cEIvSSVRTpA8CAADYSQdcAuOEdNBvv/12ThEAAAAAAAAAAACANCG8KSwAAIBXq1atMoOZJMKeYCYAAAAAAAAAAAAAaQkBTQAARBlJBWuQ9K8AAAAAAAAAAAAAkJZQcg4AgChy/PhxVb58eXX27FldG3r//v2qYMGCkT4sAAAAAAAAAAAAAAgbMjQBABBBp0+fNu/v3LlTtWzZUgcziccff5xgJgAAAAAAAAAAAABpDhmaAACIoDJlyqirV6+q5ORkdfToUfPxokWLqq1bt6o8efLw+QAAAAAAAAAAAABIU8jQBABABJUtW1YdPnzYFsyUO3duNX36dIKZAAAAAAAAAAAAAKRJBDQBABBBLVq0UKVKlVKZMmVSJUuWVJ07d1arVq1St99+O58LAAAAAAAAAAAAgDSJknMAAAAAAAAAAAAAAAAAogYZmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAEQNApoAAAAAAAAAAAAAAAAARA0CmgAAAAAAAAAAAAAAAABEDQKaAAAAAAAAAAAAAAAAAESNhEgfAOCry5cvq02bNun7BQsWVAkJfH0BAED8S0pKUsePH9f3q1evrrJkyRLpQwLiBmMMAACQFjHGAEKHMQYAAEiLkkI0j0FECGKGBDPVqVMn0ocBAAAQMatWrVK1a9fmEwCChDEGAABI6xhjAMHFGAMAAKR1q4I4j0HJOQAAAAAAAAAAAAAAAABRgwxNiBlSZs4a1Ve0aNGIHg8AAEA4HD582MxSae0PAUg9xhgAACAtYowBhA5jDAAAkBYdDtE8BgFNiBkJCf/7ukowU4kSJSJ6PAAAAJHsDwEI7r8pxhgAACAtYowBhO7fFGMMAACQFiUEcR6DknMAAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiBgFNAAAAAAAAAAAAAAAAAKIGAU0AAAAAAAAAAAAAAAAAogYBTQAAAAAAAAAAAAAAAACiRkKkDwAAgFhw5coVtWHDBpUuXTpVo0YNlTlz5kgfEgAAAIAYlpycrDZv3qwuXLigatasqbJlyxbpQwIAAAAQ43bt2qUOHz6sqlWrpvLmzRvpwwGAVCFDEwAg5MaNG6cqVKigf8aqF198UQ0aNEg9//zzaujQoZE+HAAAAAAxPt747LPPVL9+/fRYo0+fPur69euRPiQAAAAAMTwO+uWXX9Tjjz+uhgwZorp166YSExMjeowAkFoENAEAQm7UqFF6VYD8jEXnzp1Ta9euNbdXrlypLl26FNFjAgAAABDb443vvvvOvL9371514MCBiB4PAAAAgNgeB/3000/m/dOnT+uMsAAQywhoAgCE3IABA1T58uX1z1h09erVFI8lJSVF5FgAAAAAxMd4Q0rOWTHGAAAAAJCacdCZM2c4gQDiSkKkDwAAEP969eqlb7HK4XD49BgAAACA8Iv18YYhXbp0kT4EAAAAAHE0DsqYMWPYjgcAQoEMTQAA+Lly2t1jAAAAAAAAAAAA0SBTpkyRPgQASBUCmgAA8IIMTQAAAAAAAAAAIJaQoQlArCOgCQAAAAAAAIgwSs4BAAAACKYsWbJwQgHENAKaAAAAAAAAgAgjoAkAAABAMGXOnJkTCiCmEdAEAAAAAAAARBgBTQAAAACCKVOmTJxQADGNgCYAAALgcDg4bwCQhv37778qW7ZsevJ50qRJPj+vSZMm+jn+3tavX++17fPnz6uPPvpINW3aVBUuXFhftJKft956qxo8eLDauXNnQO91+/bt6rnnnlM33XSTyp07t05XXrZsWXXvvfeqL774Qr+uv5KTk9WPP/6oHnroIVW6dGmVNWtWlSdPHlW1alX1+OOPq99//z2gYwWAWMYYAwAAAEAwZciQgRMKIKYlRPoAAACIxZXS6dMTEwwAadX169dV165d1aVLl/x+7rp160JyTIsWLVKdO3dWBw4csD1+7NgxfVu7dq0aMWKEGjJkiA5u8uWClgQdvfzyy/p58p6t/vnnH3375Zdf1GuvvaYmT56sGjRo4NOx7tu3T3Xs2FEtW7bM9vjly5fVmTNn1NatW9WECRNUu3bt1Keffqry5cvnU7sAEOsIaAIAAAAQzLkMssACiHUENAEAAACAH3r37q0WL17s9zmTQJ7ExERzW7Ic+RogmzlzZre/mz9/vmrdurW6cuWK+VhCQoLOznTq1Cl18eJF/VhSUpJ65ZVXdNDT+PHjvb5mjx49UmSfypEjh8qVK5c6cuSIDngyslVJ5ikJbmrYsKHHNvfv36/uuOMO/dN6ca1QoUL6+E+fPm0+Pn36dLVr1y71xx9/qOzZs3s9XgCIdQQ0AQAAAGCMAQD/Q3oJAAC8cDXZHE0rG8aNG6cqVKigfwIAQkeyFPXq1cunYCBv2ZmkXJ0E6/h6q1y5sss2Dx06pB555BEzmClnzpy67JwEBkng0rlz59TPP/+sbrzxRvM5n332mdf3IP+nWIOZpGydBBZJewcPHlQnT55Uw4cP12XtxLVr19SDDz6oA53ckQCo9u3bm8FM8n9p//799XHK8yT4asOGDeq+++4znyOl9p544gkfzi4AxD4jUBQAAAAAAAAENAEAEFBAUzTVnh41apSe7JafAIDQOHr0qGrcuLEugRYoa0BTzZo1g1K+9KWXXjKzPmXJkkVna5IMUkZGI3mNZs2aqdWrV+vXNEjpufPnz7tsUwKLpF1DvXr11NKlS1X9+vXNx/LkyaNefPFFNWfOHJUxY0b9mByHlJ9zR8rSLV++3Nx+77331OjRo1WxYsXMx2rUqKFmz56tunfvbj72zTffqFWrVvl9bgAg1nj7f4GFDAAAAAAAIC0hQxMAAF64Cl6KpoCmAQMGqPLly+ufAIDgkwCbm2++WS1ZsiRV7VgDmqS91Dp8+LCaOnWquf3888+r2267zeW+Uibuhx9+MIOPjh075jZL0+eff66Dmoz/7yQQKWvWrC73lVJzEhxlfa4Ef7kycuRI8/6dd96pnnnmGZf7SeYmmbSvWLGi+dgbb7zhcl8ASEtYyAAAAADAE8pYA4g3BDQBABDjAU1S/mjnzp36JwAgeKT8mQTstGzZUgcPGQItgSbl04IZ0PTtt9+qpKQkM6tHnz59PO5frlw51aZNG1vmI1e++uor875kd5Kypp707dtXZc6c2Sw9N336dJfBXFu2bDG3+/Xr57FNCbyScnSGefPm6TJ6AJCWMzSxkAEAAACAP2TRGADEMgKaAADwIiEhIaoDmgAAodGlSxe1YMECc1vKuH3yySduMxt5IuXY9u3bF9SAJgnyMdSpU0cVLlzY63MkOMuwZs0a2zEJCdzauHGjy/3dkfJzd9xxh7k9Y8YMj8cq/682b97cr2OVQKmffvrJ63MAIJ4nG1jIAAAAAMAfZGwCEOsIaAIAwAsCmgAA999/v9q8eXPA2fCs5eYk+1D16tVTfVIlIMlQr149n55Tt25d2/by5ctt26tXr7ZtB9LuypUrVXJystt2q1WrpoPDvClRooQqVqyYub1s2TKfjgUAYpVRFhQAAAAAAkFGJgDxhoAmAAC8IBsTAKTdi0ANGzZUixYtUrNnz1ZlypQJuC1rQFOVKlV0WSHJZNS+fXvdbpYsWXSmIwn2kVJra9eu9djekSNHdNYnQ+XKlX06jrJly9oCdbdv3277/datW23vv2LFij61ay1Ld+HCBbV//3637fp6rM7tOh8rAKSFhRQAAAAAAABpFVdKAADwglUNAJA2zZo1S5UsWTIobVkDmiR7kWRocg7QuXLlijpz5ozasmWLGjNmjHr00Ud1iTtX2YwOHDiQIpuRr5PlhQoVUocOHdLbziXnrO0WKFBAB1r5onjx4rZtabd06dIu2/X1WJ3bdT5WAIg3mTJlivQhAAAAAAAARA0CmgAAAADAhWAFMzkHNG3atMn2u4IFC+rg2RMnTpil2hwOh5oyZYrauHGjWrBggcqfP7/tOceOHbNtO//ek3z58pkBTdYsT87t+tumlbXdixcv6qxNqW3X+Vh94Rz45ezw4cPm/atXr+obAIRL7ty5UzzG3yEA4cDfGgAAAACxgIAmAAAAAAihS5cuqR07dqQIlho8eLDq2LGjypUrl37s1KlTugzdK6+8og4ePKgf27Bhgy5LN3/+fFsJ1PPnz9vay5Ejh8/HY93XuR3rdqBtOrcTqmMNdlCaZMySzwAAwmXo0KG27d27d3PyAYTF0aNHOdMAAAAAol76SB8AAAAAAMQzybJ0/fp1c/vOO+9U69evVz179jSDmUTevHlVjx491Nq1a9VNN91kPi4ZmiZNmuRxVX3GjBl9Ph7rvteuXXPbbqBtOrcbrGNNSkry+XkAAAAAAAAAgNhGhiYAAAAACKGKFSuquXPnqr1796p9+/apgQMHpijRZlWoUCGdqalKlSrq8uXL+rHhw4frYCeDlKSzkpJ1wWBtNxRtprZdacuf5+/fv99rybk6dero+5UqVVIlSpQI+NgAwF8PPfSQbXvatGmcRABhIYH0AAAAABDtCGgCAAAAgBDKkyePat68uV/PKVu2rOrcubMaP3683t6zZ4/atm2bqly5st7OlCmTbX/nTEueWPfNkiWL7XfWdgNt07ndYB1r5syZ/Q6G8idASY7T+VgBIJTOnDmT4u8QAIQDf28AAAAAxAJKzgEAAABAFGrWrJlte82aNeZ9a6k6ceHCBZ/bPX/+vHk/e/bstt9Z2w20Ted2Q3WsAAAAAAAAAID4RUATAAAAAEShG264wbZ97Ngx836BAgVsv0tMTPS5Xeu+Ut7OytpuoG06t5s1a1aVLVu2oB8rAAAAAAAAACB+EdAEAAAAAFFIAoGsrl+/bt4vU6aM7XeHDh3yqc2kpCRbYJRzSTZru8ePH9f7++LgwYO2bU/t+nqszu36Uz4OAAAAAAAAABDbCGgCAAAAgBBLTk7WgUT+BPOcPHnStp0/f37zfsGCBW3bO3bs8KnNPXv22IKUqlatavt95cqVbQFUu3fv9qld6+vnyZNHFS9e3G27vh6r877OxwoAAAAAAAAAiF8ENAEAAABACN1yyy0qY8aMqnDhwqpt27Y+P++vv/6ybdeoUcO2Xbt2bfP+qlWrfGrTeb9atWq5bTPQdp3bdG53w4YN6urVq17bPHDggDp8+LDbYwMAAAAAAAAAxC8CmgAAAAAghIoWLaozNBlBSidOnPDped9//70t69HNN99s+33Tpk3N+3/88Yc6ffq01zZ/+ukn836VKlVSlHGToCtr4NTs2bO9timvu3TpUpfH5eqxS5cuqQULFvh1rOnSpVNNmjTx+hwAAAAAAAAAQHwgoAkAAAAAQqhVq1bmfSn3NmbMGK/PkUAia5BQjx49VEJCgm2fhx56SGXIkEHfl4xH3tqV8nEzZ840tx977DGX+3Xo0MG8/+OPP3otOyeva2RckuPp2LFjin0kGKtixYrm9qhRozy2ee3aNfXhhx/aAqIk2AoAAABAfNi5c6caPHiwuvPOO1WRIkVU5syZVa5cuVS5cuVU+/bt1eTJk/W4wB+rV69WPXv21Is3cubMqbJly6bKly+vWrdurReM+JIpFgAAANGDgCYAAAAACCEJECpQoIC5/c4776glS5a43V+yOHXp0sXczps3rxowYECK/SS7kgQ1GV5//XW3mY/OnTun2rVrZ04I5M6dWz3++OMu933iiSdUjhw59H254C/Pk+e7Iq8nr2t9r85ZnwzPPvus2+c5e+qpp9T27dvNbVfvHwAAAEDsOX/+vF6wIQsehg8frrPNHj16VI89ZNyxZ88eHXwkYyIJblq0aJHXNq9cuaLbrFOnjho/frzatm2bfh3JDisLNGbNmqWDpKSM9ebNm8PyPgEgEhwOByceQFwhoAkAAAAAQkiCh0aOHGm72H7vvfeqN954Qx07dsx8XC7iywX9u+66SyUmJpql1j766CNdts4V2d8IPpJgpfvvv1+9/fbb6syZM+aFrF9++UVfuF+/fr35vNdee80WZGUlj7/66qvmtjxPni/tGBfGpH0JzJLXswZJvfXWW27Pg0ww3HTTTeb20KFDVbdu3dQ///xjPrZlyxbVokULNWHCBPOxNm3aqHvuucdtuwAAAABiw9mzZ1WDBg3UF198YZt0l+xMJUuWVPnz57ftv3//fj0W+Prrr922KVlwZQwhbVpJ2W7J/CRjKsPGjRtV/fr1dcATAAAAoh8BTQAAAAAQYrK6WMopWIOahgwZoi+wFytWTP+UoCXZ58KFC7Zybq5KuBnKli2rL+5nypTJbPfFF1/UEwGSKUnKLEjw1N9//20+55FHHlH9+vXzeLySTalTp07mtjxf2pH2pF1p/z//+Y9+PZExY0Y1depUPQnhjpTMmz59ui2D06RJk/R7kHJyEkhVrVo1NWfOHPP3UirCeWICAAAAQGySBQ3r1q0ztyWj0vz583Vmpn379qkTJ07oBQ/PP/+8WV77+vXrqnv37mrt2rUu23z55ZfVb7/9ZitXvWHDBnXq1Cl1+PBhdejQIZ3x1QhskqCqli1b6uxNABBvrEGcABAPCGgCAAAAgDCQjExTpkzRJeQMsipZLrJLdibrCuVSpUrpsgh9+vTx2q5cjJ89e7YtmEgu+h88eNAWHJU+fXp9IX/y5Mle25R9ZT+ZSJBAJIO0J+1K+wYJxJIgJMnW5I2UjJBye7fffrvtcclUdfLkSdtjEkAl+8rKagAAAACx7ffff1czZswwt1u3bq3LzUkAkiyQMJQuXVqNGDFC/fjjj2ZQkyykcFWGeufOneq9996zZXf9+eefVY0aNczHZPGIZMydOHGi+ZiUoZPFIwAAAIhuBDQBAAAAQJg8+uijeuWxlJGTsgiSrShLliwqe/bsqnz58uqBBx7QgURSAkEClXwlZRi2b9+uPv74Y32/ePHiOmuTZFSqXr266tu3r16lLBfyjUkBX4KaZCJh06ZNatCgQapmzZoqX758OsBJsik1atRIjR49Wr+uPyXhbrjhBj1xIZMZHTp00NvZsmXT50GyNUkGqXnz5umbu7J4AAAAAGLL559/bt6XRQtffvmlLZDJmYyXZBxjWLx4sfr3339t+8h4xFoCW0pXyzjGXdZcyfRkkLHO1atXU/WeACDaWBfLudoGgFjzv6W28EjSoEqpg6VLl+pO88WLF3Vkv1xwl5UE7du316Ui/CEX/sePH68WLlyo9u7dq1cZyOrmG2+8Ubf38MMPqxw5cvjVZnJysl7JLeUeVq1apVc6S/1pmdC47bbbVOfOnXWNan9JqlcZcMydO1dt3bpVp2WVyQVZOS7vX9qV1wAAAADSgtRcEJI+fu/evfUtmCQo6KmnntK3YKpUqZJ655139C2YKdBl9bTcAAAAAMQ/mVswyMIGCUDypUSdBC1Zszw99thj+r5kjf3mm29si0es2XBdGThwoFnSWjLE/vrrrz5lmgWAWJWUlBTpQwCAVCFDkxdnzpzRHeRbbrlFjR07Vq9qPn36tI7cl5XVUgLhueee06UT3n77bZ/+Y5Cgo5deeklVq1ZNvf/++7pNCRCSgCapD/3LL7+oHj166N9LB91Xcjx33nmnnhSYPn263r58+bJ+DxKEJKsT7rrrLvXQQw+pxMREn9v9/vvvdZDViy++qAO6pKMvqx6kNMbKlSv1e5Hff/rppz63CQAAAAAAAAAA4t+RI0dsJabr1Knj0/Nk3sVK5iQMsqD71KlT5rYvGW4rV65sa9NaAg8A4pGRxQ4AYhUZmjyQznCTJk3U2rVrbY9L2QaJ9JcO+IULF/RjEjgkAT+y73fffadXHLsjwUqTJk1KsUo7V65cumMvAU9CMkHJ60uAU8OGDT1+kPv371d33HGH/mmQYyhUqJAOlJIgLIMEO+3atUuXeZDSFp5IXWk5XusKdMn4VLBgQXX8+HHdtpCMVb169dKZnAYPHuyxTQAAAAAAAAAAkDZINqbffvtNHThwQB08eFDVrl3bp+dZA5aMuQnD6tWrbb+rW7euT23Kfrt379b3ly1b5tNzACBWGfO4ABCryNDkQc+ePW3BTBJctGLFCp3xSIKN5KeUi5PsTYZp06apN954w22b48aNswUz3XrrrTqw6Ny5c7ojL0FSw4cPV5kyZTIjZx988EEd6OSOBEBJiTojmEkCmfr3768HB/I86fRLFqj77rvPfM769evVE0884fHLIc+RchVGMFPhwoXV119/rbNJyWvJMUvwlpTJMwwZMkTNnz/fY7sAAAAAAAAAACBtyJo1q2rcuLHq0qWLWb3CFzL/YlW6dGnzvlSlMMgcRZ48eXxqs0KFCuZ9WfgtpesAIF5JxSEAiGUENLkhkfkSnGR4+OGHdaCORO8b2ZcyZMig7r77bh2QZE2R+tZbb9kyIhkksEg664Z69erpEm7169c3H5NOt2R6mjNnjsqYMaN+TMrDvfbaa24/xMmTJ6vly5eb2++9956uK12sWDHzsRo1aqjZs2er7t27m49JfWlJy+qOBEUZkbsFChTQx9qxY0cz2EqOT86LrIQoUaKEfkyCn6QOtZFlCgAAAAAAAAAAwB8y1/DBBx+Y2zIfIfMxBlnQbTDmJ3xRvHhx835SUpI6dOgQHwyAuEWGJgCxjpJzHjIpWcvByXb69Ondri4YMWKEWRbu0qVL6ueff9bBP1aff/65mSJVgqEkEEme64pkg5JsR0OHDjWf+8orr+gsSc5Gjhxp3r/zzjvVM88847JNCcSS9/Hnn3+qv//+Wz8m2aRmzZqVYl8JUlqyZIm5/c4779hWLjgPACRzU4MGDfT25s2b1Y8//qjatm3rcn8AAAAAAAAAAAB3ZC7DWkGjTZs2unSd4dixY+b9/Pnz+3wi8+XLZ9uWBeUlS5b0+fnWQCpXDh8+bMuMQnYUAOEkc9rWv5WXL1/m7xCAsAhVn4eAJjesHeUHHnhA5c2b1+OJdK7PbNRgtvrqq6/M+82aNXMbIGTo27evevPNN3X0rJSemz59uurTp49tn3Xr1qktW7aY2/369fPYpqxikMxLvXv31tvz5s3T2aSc07Faj1Xe+6OPPuqxXQmkkixVRsYnyf5EQBMAAAAAAAAAAPCHzDM899xz5nZCQoJ6/fXXbfucP3/eNoHvK+d9re34wp/gp+3bt5uL3AEgHHr06JHisU2bNsXFyZd58qlTp6pOnTqpdu3aRfpwADg5evSoCgVKzrkhWYYkwl+yFP3nP//xeiLPnTvnMcpfovI3btxobrds2dJrmxJkdMcdd5jbM2bMSLGPBCRZO/XNmzf32q71tSVQ6qeffvLY7r333muWmfO13blz55LGEAAAAAAAAAAA+EwWcLdo0UJnFTEMHz5c3XjjjW6zAMhCbl857ytzJACA6CfBTPv379c/AaQdZGjyoGDBgvrmi5kzZ9q2b7nllhQl3Kzq1avnU7uS+WnBggX6/sqVK1VycrKt9J213WrVqqns2bN7bVPqSRcrVsysDb1s2TL12GOPmb8/e/as2rFjR0DHarh48aJav359isxVAAAAAAAAAAAAzmRReNOmTdXx48fNx6QSxPPPP59iX4fDYd5Ply5d2E6mTKZ7IovbpZqFqFSpkp6PAYBweeaZZ9TBgwfNbfn7afxNinWDBg1So0eP1u+xevXqkT4cAE68VTwLFAFNQfDHH3/oP6KG+vXrpwgC2rp1q61zXbFiRZ/atpalu3Dhgu4sly5d2mW7lStX9vmYpV0joEnSnro7Vn/adS6hJ+0S0AQAAAAAAAAAADxZunSprgJx5swZ87G77rpLffXVVy73t1aV8CfLkvO+WbJk8euD8SdASY7Rl+oXABAsUkbT+nc0Q4YMcfN36Omnn9Y3ANEpVH9rKDnnJ4n6T0pK0jUApVRb+/btdafa+M9BOrNTpkxJ8bwDBw6Y9wsUKOBzJ7l48eK27X379rlt15+OtLVdT236065kfbKuhHBuFwAAAAAAAAAAwErKB91zzz22Sfi7775bzZkzR2XNmtXlycqVK5dtMbg/k/1WvlS9AIBYlZBAbhMAsY2/Yn6aP3++at68ucvftWrVSn344Ye2DEqGY8eOmffz58/v8+vly5fPtp2YmGgr62btqAfarrVN52P1p12JupPOvzEgcG4XAAAAAAAAAADAWED+yiuvqNdffz3FXMt3333ncWG4LBw3+DMX4bxvoUKF+DAAxA1rOU6ROXPmiB0LAAQDAU1++vfff10+niNHDlW2bFmdvclb1L/s6yvnfa3tOK8kCLRd53ZS267xfOd2vHHODOWq9rTh6tWr+gYA4ZI7d27bNn+DAIQLf28AAAAAAPHm8uXLqlu3burbb7+1Pd6jRw81btw4r1lFypQpY94/dOiQz6978OBB2yLtggUL+nXcABBL3GW5A4BYQUBTAAFNGTNmVIULF9Yd7hMnTpjBOx988IH6+OOP1YgRI9QzzzzjdiJKnu8r532t9Z2dJ7cCbdc5CCtY7fpTt1qULFnS5323b9+uTp065Vf7AJAaQ4cOtW1v2rSJEwogLKTUMQAAAAAA8eLs2bM6C9OSJUtsjw8bNizFNTh3KleubFssLRUtsmXL5vV5O3bssLWRPn16v44dAKJZunTpbNtkaAIQ6+ip+alv3746eGn//v3q+PHjOsDphRdeMFcLSBDPs88+qz799FO3Kf6c/zMJVtrA1LRrbSuY7QIAAAAAAAAAAIjTp0+rJk2a2IKZJFPS5MmTfQ5mErVr1zbvJycnq7/++sun561atcplGwAQj/xJWgEA0YgMTX4qWrSobbtUqVLq7bffVo0aNVItWrQwsxINHDhQPfDAAzqTk9EhDyRzkfO+1prR1jZT065E51qDlly16+t/eNZ2PdW3dkWCxLyVnKtTp46+X6lSJVWiRAm/2geA1HjooYds29OmTeOEAgiLvHnzcqYBAAAAADHv0qVL6v7771erV682H8udO7eaOXOmuvvuu/1qq1atWipfvnwqMTFRb8+ePVvdeeedHp+zbds2tXv3bnO7adOmfr8HAIglGTJkiPQhAECqENAUJNLxldUDQ4YM0duSxWnSpEk6e5PIlSuXue+FCxd8blfascqePbt539pmatq1tumuXV9StXpr1xt/ApQk6Mo58AoAQunMmTMp/g4BQDjw9wYAAAAAEC8VMJYtW2ZuFypUSP3yyy+qZs2aAU3St2vXTo0fP15vf/HFF+rFF19UefLkcfuckSNHmvdlP1mkDgAAgOhFybkgd8aN0nNi8eLF5v0CBQqY940VA75w3lc6+IasWbPaAo0CbdfapvOx+tPu1atXbUFVzu0CAAAAAAAAAIC054cfflATJkywLaz+7bffAgpmMvTv31+lT/9/01wnTpxQHTp0cFvJQkraSdCToU+fPnqOBQDiibUiDwDEAwKagkhSo1auXNllCbUyZcqY948fP66SkpJ8avPgwYMesxhZ2z106JDPx2pt11Ob/rQr+zkcDrftAgAAAAAAAACAtEXmQ55//nnbYxJcVL169VS1W6VKFdW7d29ze/78+apBgwZqxYoV5mNHjx5VgwYNUt26dTMfK126tFldAwAAANGLknMesg39888/as+ePbrusq/l03LkyGHeT05ONu9bA52uX7+u6zRXrFjRa3s7duywpUAtXry47ffS7tatW1Ps60+7VatWtf1OjksieI3gJNnXl/rVzq/v3C4AAAAAAAAAAEhbvv32W7V3715zW7IqSUCRv0FF/fr10zerESNG6DmShQsX6m0JZrrtttv0AnSpcHHkyBHbQmzJDDV9+nSVM2fOVL8vAAAAhBYZmlxYsmSJTjUqgT3Nmze3lY7zJ/NRkSJFzPu1a9e27bdq1Sqf2rPuV6tWrRS/t7a7YcMGHYjlzYEDB9Thw4fdHpt06K3BVoEcqwwUZHUEAAAAAAAAAABIu2bMmGHblsXgsujb31tiYmKKtmUuZ/bs2apr1662UktnzpzR8yDWYKYKFSqoRYsWuZxrAYB4YP2bBwDxgIAmFyTrkTW70syZM306mdu2bVP79u0zt+vWrWveL1y4sKpRo4a5LR1sb06fPq2WLl1qbjdt2jTFPtbHLl26pBYsWOC13Z9++sm8Lx38Jk2aeGx33rx5OquUP+02bNhQZcqUyetzAAAAAAAAAABA/PKnukQgJKhp4sSJauXKlerpp5/Wi60lQ1PGjBn1wnNZuD5hwgS1ceNGdcstt4T0WAAAABA8BDS5UKhQIZ2S1PDNN9+oQ4cOeT2ZQ4cOtW0/+OCDtu0OHTqY93/88Ue9osCTMWPGmBmXMmTIoDp27Jhin5tvvtmWTWnUqFEe27x27Zr68MMPbYFLEmzlzHqs8t6//vprj+1K4JU1Q9Njjz3mcX8AAAAAAAAAABD/Nm/erLOGpPb26quvenwdqUYh8ypbtmzRC8ZlfkWyNM2dO1d1795dZcmSJWzvGQAiwZqpDgDiAQFNbjzzzDPm/YsXL6ouXbp4LOf2xhtv6LrLhtatW6dIW/rEE0+oHDly6PvSVrt27dS5c+dctieZll5//XVbgFGJEiVc7vvss8+6fZ6zp556Sm3fvt3cHjBggMv9JKCrXr165nbfvn31oMNdmb1OnTqZ22XLllVt27Z1ewwAAAAAAAAAAAAAAACAOwQ0ufHwww+rZs2amdu//fabuuOOO9TChQvN8muyIkCyEknw0pAhQ8x9ixUrpj766KMUbRYoUMC2gmD9+vV6xcAvv/xi1jSVus7vvPOOuv/++3U2JSGpUd966y23H2KPHj3UTTfdZMsU1a1bN/XPP/+Yj8mKhBYtWui0qoY2bdqoe+65x227o0eP1pmhjOOS9z9+/Hhd2k4kJSXpIK46deqo/fv3255HuTkAAAAAAAAAAAAAAAAEIiGgZ6UR3333nbr77rvV2rVr9fbq1atV48aNVfbs2VX+/PlVYmKiOn/+vO05Eswk6UuLFy/uNpvSunXr1NSpU/X233//re69917dZp48edSRI0fMgCkhNZ5l35IlS7o9zoSEBB1Y1LBhQ3XgwAH92KRJk/RNyudJeydPnrQ9R2pIf/HFFx7ff926ddXYsWNV7969dcCVBDX17NlT16CWMnUnTpxQly9ftj3npZdeUq1atfLYLgAAAAAAAAAAAAAAAOAOGZo8yJUrl1q6dKkuFZc+/f9O1YULF9S+fftSBDO1bNlS/fXXX6pmzZruT3j69Gry5Mnq+eef14FI1jaldJs1mKlo0aJqzpw5OluTN+XKlVNLlixRt99+u+3xY8eOpQhmkgAq2VcCqLzp1auXmjJlisqXL5/5mGSOksApazBT5syZ1ciRI9Wbb77ptU0AAAAAAAAAAAAAAADAHTI0eZEtWzZdZm3AgAG6XNuiRYvUnj171NmzZ3VAkGROkixOHTt2VLVq1fLpmyZBTSNGjFDdu3dXEydOVPPnz9cl24w2a9SoobMcSdk4Cary1Q033KD++OMP9eOPP6rvv/9el8OTjE/Jyck6OOq2225TnTt31gFN/ujUqZMuvyfHOmvWLLVz504dJCXnpnz58rpsnWRuKlOmjF/tAgAAAAAAAAAAAAAAAM4IaPJRxYoVdRBSMFWqVEm98847+hYs6dKlU23atNG3YJISewMHDtQ3AAAAAAAAAAAAAAAAIFQoOQcAAAAAAAAAAAAAAAAgahDQBAAAAAAAAAAAAAAAACBqENAEAIAXycnJnCMAAAAAAAAAAAAACBMCmgAA8OLatWspHiPICQAAAAAAAAAAAABCg4AmAAC8uHr1qk9BTgAAAAAAAAAAAACA1COgCQAAL1wFL8VqQNO4ceNUhQoV9E8AAAAAAAAAAAAAiEYENAEA4EVSUpJPj8WCUaNGqV27dumfAAAAAAAAAAAAABCNCGgCACCAknOuHosFAwYMUOXLl9c/AQAAAAAAAAAAACAaJUT6AAAAiHbxlKGpV69e+gYAAAAAAAAAAAAA0YoMTQAAeHHt2jWfHgMAAAAAAAAAAAAApB4BTQAApKEMTQAAAAAAAAAAAAAQ7QhoAgDACzI0AQAAAAAAAAAAAED4ENAEAIAXZGgCAAAAAAAAAAAAgPAhoAkAAC/I0AQAAAAAAAAAAAAA4UNAEwAAXpChCQAAAAAAAAAAAADCh4AmAAC8IEMTAAAAAAAAAAAAAIQPAU0AAHjhcDh8egwAAAAAAAAAAAAAkHoENAEA4EVycrJPjwEAAAAAAAAAAAAAUo+AJgAA0mBA07hx41SFChX0TwAAAAAAAAAAAACIJgQ0AQAQgFgvOTdq1Ci1a9cu/RMAAAAAAAAAAAAAogkBTQAAeJGQkJDisYwZM8b0eatdu7Z+D/ITAAAAAAAAAAAAAKIJAU0AAAQQ0OTqsViyevVqde3aNf0TAAAAAAAAAAAAAKIJAU0AAKTBgKYBAwao8uXL658AAAAAAAAAAAAAEE1iezYWAIAwyJQpU9yVnOvVq5e+AQAAAAAAAAAAAEC0IUMTAABeZM2aNcVj2bJl47wBAAAAAAAAAAAAQAgQ0AQAQAABTa4eAwAAAAAAAAAAAACkHgFNAAB4QUATAAAAAAAAAAAAAIQPAU0AAAQQ0JQlSxbOGwAAAAAAAAAAAACEAAFNAAB44Sp4iYAmAAAAAAAAAAAAAAgNApoAAPAiU6ZMKf8DTc9/oQAAAAAAAAAAAAAQCszGAgDgRbp06ThHAAAAAAAAAAAAABAmBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQAAAAAAAAAAAAAAAIgaBDQBAAAAAAAAAAAAAAAAiBoENAEAAAAAAAAAAAAAAACIGgQ0AQDghcPh4BwBAAAAAAAAAAAAQJgQ0AQAgBfJycmcIwAAAAAAAAAAAAAIEwKaAADwggxNAAAAAAAAAAAAABA+BDQBABDkgKZx48apChUq6J8AAAAAAAAAvPv3339VtmzZVLp06dSkSZN8PmVNmjTRz/H3tn79ej4WAACAKEZAEwAAAZSc8xTkNGrUKLVr1y79EwAAAAAAAIBn169fV127dlWXLl3y+1StW7eO0wsAABCHEiJ9AAAARLv06VPG/8oqLncGDBigg5nkJwAAAAAAAADPevfurRYvXuz3adq3b59KTEw0t8uWLevyWp4rmTNn5mMBAACIYgQ0AQDgha8XQQy9evXSNwAAAAAAAACeMzP16dNHjR8/PqDTZM3OJOXqJGu6v9fyAAAAEJ0IaAIAwAsuggAAAAAINSlr7SkTLAAA8ebo0aOqffv2asmSJQG3YQ1oqlmzJtfxAAAA4ghh6gAAeMGkAgAAAIBQu3btGicZAJBmzJ49W918882pCmZyDmiS9gAAABA/CGgCAAAAAAAAIoyAJgBAWrBhwwbVpEkT1bJlS3X48GHz8SeeeCKg9tavX2/eJ6AJAAAgvhDQBAAAAAAAAETYlStXIn0IAACEXJcuXdSCBQvM7ezZs6tPPvlEjR8/3u+2EhMT1b59+8xtApoAAADiS0KkDwAAAAAAAABI665evRrpQwAAIKzuv/9+NXbsWFWmTJlUl5vLmDGjql69ehCPDgAAAJFGhiYAAAAAAAAgwsjQBABIC9KlS6caNmyoFi1apGbPnh1wMJNzQFOVKlVU+vTp1YwZM1T79u11u1myZFF58uRR1apVU/3791dr164N0rsAAABAOJChCQAAAAAAAIiwa9euRfoQAAAIuVmzZqmSJUsGpS1rQFNycrLO0LR9+/YUAcNnzpxRW7ZsUWPGjFGPPvqoLnEnpe4AAAAQ3cjQBAAAAAAAAKTxgKZx48apChUq6J8AAIRKsIKZnAOaNm3aZAtmKliwoCpUqJDO2mRwOBxqypQpqn79+urkyZNBOw4AAACEBhmaAAAAAAAAgDQe0DRq1Ci1a9cu/bNXr14RPRYAALy5dOmS2rFjR4pgqcGDB6uOHTuqXLly6cdOnTqly9C98sor6uDBg/qxDRs26LJ08+fPVxkyZPDrZB84cMDj7w8fPmzev3r1qr4BQLjkyJFD5c6d29xOSkri7xCAsAhVn4eAJgAAAAAAACDCIj3hOWDAAB3MJD8BAIh2GzduVNevXze377zzTvXjjz+qfPny2fbLmzev6tGjh2rZsqW699571fr16/XjCxYsUJMmTdK/C1WGKckYJQFVABAu3bt3TxFkaQ20BIBQOXr0aEjaJaAJAAAAAAAAiDBZPR1JkpWJzEwAgFhRsWJFNXfuXLV37161b98+NXDgwBTBTFZSfk4yNVWpUkVdvnxZPzZ8+HC/A5oAAAAQPgQ0AQAAAAAAAGFkzSgRLSXnAACIJXny5FHNmzf36zlly5ZVnTt3VuPHj9fbe/bsUdu2bVOVK1f2uY39+/d7/L1kQqlTp46+X6lSJVWiRAm/jhEAUuPZZ5+1lcb85JNPVIECBTipAEJOsmKGAgFNAAAAAAAAQISzMRHQBABA6DVr1swMaBJr1qzxK6DJnwClTJky6RsAhMv58+fVmTNnzO2EhAT+DgEIi1D1edKHpFUAAAAAAAAALl29ejXFYwQ0AQAQejfccINt+9ixY5x2AACAKEVAEwAAAAD46d9//1XZsmVT6dKlU5MmTfL7/K1evVr17NlTValSReXMmVO3Vb58edW6dWv1/fffu5zo9kaeM3nyZNWyZUtVvHhxlTlzZpU/f35Vo0YN1b9/f7Vu3ToVCCmp8PLLL6u6deuqfPny6XZLliyp7rrrLjVmzBh18uTJgNpdsGCBLvcg7zt79uz6PEhJho4dO6q5c+eq5OTkgNoFgFjgKniJgCYAAEIva9asXsvAAgAAIDpQcg4AAAAA/CAXvLt27aouXbrk93m7cuWK6t27t/riiy9S/G737t36NmvWLB2ENHXqVFWtWjWf2t24caPq0KGD2rZtm+3xxMREfdu0aZP68MMPVZ8+fdS7776b4iK+OxKw9MILL6R4rwcOHNC333//Xb322mu6ZEObNm18avPUqVM6kGn27Nkpfvf333/r27fffqsaNmyovvzyS1WqVCmf2gWAWOIqeCmQYFYAANIyWQRx4sQJXcq1WLFiPj3HeUGGLAIBAABAdCJDEwAAAAD4QQKSFi9e7Pc5k4vsLVq0SBHMlCdPHlWkSBGd7ckaoFS/fv0UAUqurF+/XmdLsu6bPn16fUFfsh5ZffTRR6pt27Y+rUJ+9dVXVb9+/WzBTBIIJdmfEhL+tzZGJhCkTQnA8ubs2bM6UMk5mKlAgQL6ZiXn+I477lBHjhzx2i4AxBoyNAEAkDq33HKLypgxoypcuLAej/jqr7/+sm3LYhIAAABEJwKaAAAAAMAHEgTUq1cvnY0oEFK27bfffjO3mzZtqjZs2KAzFh0+fFgdOnRIDRgwwAxskuAfKR/nKRPUhQsX1IMPPqhOnz6tt+WC/uuvv66OHz+uDh48qNv4888/dbk4w7x589SQIUM8HuvPP/+sMy8ZypUrp+bMmaPOnTunMzOdOXNGjRs3TuXKlcvcp0ePHjoTlCdPPvmkDtYydOrUSe3atUsfr9wkQ5Vkb7KWu2vXrp1yOBwe2wWAcJO/gRUqVNA/A+Hq7xp/6wAA8F3RokXNMtUSpCQLLXwhJb6ti0tuvvlmTjsAAECUIqAJAAAAALw4evSoaty4sfr0008DOlc7d+5U7733nrkt5dkkaMi6GliyNI0cOVJNnDjRfEwCfKTsmztSPm7Pnj36vgRCSak2CZzKly+fuc/tt9+uli5dqgOoDHIsEizkLmuIZGYyJtbLly+vli9fru677z6VIUMG/Vi2bNlUz5491R9//GEGNUk5PSlP545kXPruu+/MbXmNr776SgdLGW644QZdZm7YsGHmYxKQNW3aNLftAkAkjBo1Sgdkyk8AABB+rVq1smXD9TRuMkimWBkbWRdlWLPPAgAAILoQ0AQAAAAAXi56y6rdJUuWBHyeRo8ebZYXyp07t5owYYIuC+dKly5dVPfu3c3tESNGqKtXr6bY7/Lly2rs2LHm9qOPPuq21IJkbpJgp/z585vBRxIM5cqPP/6oJ+kNEsRVsGBBl/tWr17ddgwSpLV27VqX+1pfT4KYJHjLnaFDh6pGjRqZ22+88YbbfQEgEiSjngR8yk+kPmMVAAD+6tChg61s9TvvvONxzCZZnGSsZcibNy//jwMAAEQ5ApoAAAAAwAUpB9ekSRNd9k1KwhmeeOIJv0vVffPNN7bAI7l47snAgQPN+ydPnlS//vprin0keEh+Z8145Im8pqxAtpZaMEo0WEnWJEPVqlVtgUWuPPLII6pYsWLmtvW9GqT8g5S6M0jpPgmy8vUcSCm7LVu2eNwfAMJJ/o5J9j35CTJWAQDCTxaKWBdJyKKNe++9Vy+GOHbsmC3b7vDhw9Vdd92lEhMTzey2H330kS5bBwAAgOhFQBMAAAAAuCCrdxcsWGBuZ8+eXX3yySdq/Pjxfp2vVatWqVOnTpnbEiDlTeXKlW2l2GbMmJFiH2uAkFyIr1Wrltd2ra8tF/alnJuVZJFauHChX8cqZeiaN2/u8VglIMsaPOVLu1LiL2vWrB7bBYBYlSlTphSPZc6cWcUqMlYBACI1Zhs8eLAtqGnIkCG6nLcsupCfMlaSfS5cuGDuJ+XpOnbsyIcGAAAQ5QhoAgAAAAAv7r//frV58+aAMnGsXr3atl23bl2fnmfdb9myZR7b9bVNCXqylrpzbnfbtm3q/Pnz5na9evX8PtY9e/boYCl3x5onTx5VsWJFnyb7pdSfu2MFgFhmDdj09FisIGMVACBSJCPTlClTbFlwHQ6HzrIr4xK5byhVqpSaNWuW6tOnT4SOFgAAAP4goAkAAAAAXJAyBA0bNlSLFi1Ss2fPVmXKlAnoPG3dutW8L6uDJaDHFxUqVDDv79q1S5euM8hF+e3bt9syOvkiS5YsqmTJkua2tQ3nY/WnXeuxemvX1zad23VuEwBiWbwFNAEAEElS1nvfvn26jFyLFi1UiRIl9NhHsuyWL19ePfDAA2ry5Ml6AYcv2WIBAAAQHRIifQAAAAAAEI1k5a41+CdQBw4cMO/LhXVfFS9e3LyflJSkDh06ZB7PyZMn1aVLlwJu999//9X35aK/u2P1p13rsXprN9BzIG1IIJcEmgFArMuYMWOKx2TiFQCAtMyaTclfOXLkUL1799Y3AAAAxAcCmgAAAADAhWAEM4ljx46Z9/Pnz+/z8/Lly2fbTkxMNI/J2mZq2pU23R2rTKxny5Yt4GN1126gxypBXWfPnlW5c+f2+fnOAVrOpAyF4erVq/oGAOHi/PdMskjwdwhAOPC3BgAAAEAsIKAJAAAAAELo/PnztlXDvnLe19qO9X5q2nVuJxTHGux2/Qlo8icoTUranTp1yuf9ASC1hg4datu+cuWK2rRpEycWQMgdPXqUswwAAAAg6qWP9AEAAAAAQFpZAe+qxJA7zvteu3bNZZupadfaZqiONZTtAgAAAAAAAADiExmaAAAAACCEHA6HeT9dunRBbzNU7QarzVC2683+/fu9lpyrU6eOvl+pUiVVokSJMB0ZACj10EMP2U7DpEmTdNk5AAi1vHnzcpIBAAAARL2oCGg6ffq0+ueff1RiYqK6cOGCatmype13efLkiejxAQAAAAideB8PZMqUKaAMQ877ZsmSxWWbqWnX2maojtVo9/Lly0Fv1xt/ApTkGJ3PKwCE0pkzZ1KU2fQnix0ABIo+T9oQ7+MsAAAAxL+IBTSdPHlSjR07Vs2YMUNt2bLFXLErq3WTkpLM/Zo0aaJ/vvDCCylWrgEAAACITWlpPJArVy7zvkwk+Or8+fO2bWvWDmubqWnXORNIKI7VaNcIaApmuwAQTxISomLdIQAghqWlcRYAAADiX/pIvOiECRNUmTJl1GuvvaY2b96skpOTdcfauFnt3btXrVu3TnXo0EE1a9ZMd8gBAAAAxK60Nh4oUKCAeV9WR/vKed9ChQq5bDM17VrbdG734sWL6sqVK6k+Vud2Az3WrFmzqpw5c/r8XACINeEsyQkAiD9pbZwFAACA+Bf2gKYXX3xRPfnkk+aqXOeOtPNq3FOnTpn7/frrr+qee+5RZ8+eDdvxAgAAAAietDgekEkFw6FDh3x+3sGDB21lQQoWLGhuy31rtqJA23UuyWY9Vn/atbbprd1Aj7V48eI+Pw8AAABIS9LiOAsAAADxL6wBTV9++aV65513bGUHpJMtjxcrVszlyrTHH39cZcyYUd+XzvWGDRtU//79w3nYAAAAAIIgrY4HKleubN4/cOCAznzkix07dtjaSJ/ePnyrVKmSy309kbJv+/fvN7erVq3q9lj9add5P0/t+tqm877ObQIAAABIu+MsAAAAxL+wBTRJ1P+gQYNsNZr37Nmjxo0bpx577DFdPsCZrDgeP368rvV8yy236Mekcz158mT9GAAAAIDYkJbHA7Vr1zbvS9mHv/76y6fnrVq1ymUbrh6z7uvJmjVr9DG4a1cCj3LkyOF3u9b9ypcvr/LkyeP2WI8cOWILqnLn6tWrav369W6PFQAAAEjr0vI4CwAAAPEvbAFN0hk+fvy4jviXlcT//e9/Vd68eX16brly5dTChQttK5AnTZoUwqMFAAAAEExpeTxQq1YtlS9fPnN79uzZXp+zbds2tXv3bnO7adOmKfaxPiaTFvIcb3766Sfzfu7cuVXdunVtv8+QIYNq1KiRX8d6/fp1NXfuXI/H2rhxY1uGKV/aXbBggbp06ZLHdgEAAIC0LC2PswAAABD/whbQZL3A/cYbb7hcGeBJzpw5bWlT//jjj6AeHwAA7iQlJaV4TFauAQB8l5bHAxIk1K5dO3P7iy++UKdPn/b4nJEjR5r3JdtRixYtUuzTrFkzWyYk63NcOXXqlJowYYK53aFDB5WQkJBiP3ncmnlp6dKlHtv9+uuv1eHDh81tWQnurECBAnq1uOHDDz9U165d89iu9f3IJAsZmgAAAAC7tDzOAgAAQPwLW0DT5s2b9U+py3zfffcF1Ebz5s1VlixZ9CTyrl27VLjs3LlTDR48WN15552qSJEiKnPmzLoOtaxgaN++vV4F4e1ivLPVq1ernj17qipVquhBQ7Zs2XRphtatW6vvv/9el1fwlzxHjqVly5aqePHi+jjz58+vatSooetfr1u3TgVCykG8/PLLevW2rCyXdkuWLKnuuusuNWbMGHXy5MmA2gWAWHHmzBmXKb0BAGljPBAM0h83MhSdOHFCBw25G0NIn16Cngx9+vRxOTEhj/Xq1cvclufIc12R1+rYsaPZd5cgKzkmVx588EFVqlQpc7tTp07q0KFDbj/Xvn37mtv169dX9erVc7nvc889Z97fvn27euqpp5Q7r7/+ul4tbhgwYIDbfQEAAIC0Kq2PswAAABDfwhbQdOzYMZ32tFChQjogJhCyelieL86ePatCTSare/TooSpWrKiGDx+uVyccPXpUBw6dO3dOl3WQ4KMuXbro4KZFixZ5bfPKlSu6zTp16ug61VIWQl5HSilISYlZs2bpIClZfWwMRnyxceNGddNNN+ljkfINMuEgx5mYmKg2bdqkV0BLPeynn37aVrbBGwlYkvf/5ptv6tXZsqpb2j1w4ID6/fffVb9+/fRq6ZkzZ/rcJgDEGldZNLxl1gAAxP54IJhkIUPv3r3N7fnz56sGDRqoFStWmI/JWGPQoEGqW7du5mOlS5dWL7zwgtt25XeymMEgz33++ed1WwZ5DXkteU2D9OMrV67sss1MmTKpUaNG2RY4yPhk2rRpZtZCGVN89tln6o477jADf2US5YMPPnB7rPfee68t05Rki5LtLVu2mI/9888/+j0MHTrUfExe23pOAAAAAPyftD7OAgAAQHwLW0CTdKYlwt/fTEbOjA51jhw5gnRk7l9HLvrLKmdrWSEjO5FkPrKSi/z33HOPLrfgjlz8lwv21tXWQspESOYnGXhYA5RkdbMEPHmzfv16nS3Juq+s/i5WrJjO/mT10UcfqbZt26rr1697bffVV1/VEx3WAChZBS4TJtbSFLLCXNqcOnWq1zYBIBZJMKcvjwEA4mc8EAojRoxQjRo1sgUa3XbbbXo8IH33okWLqnfffVclJyfr30tW2OnTp6fo01vJc2fMmKFy586tt+W5UqpN2pI25ffyGtbAqYYNG6q3337b47FKibwXX3zR3JYFEw8//LA+FhkPyes9+eSTZjCTjGVkMcStt97qsd2JEyeq6tWrm9tz5sxR1apV0yXpChcurMqWLasmTZpk/l7egywikYxSAAAAAOwYZwEAACCehS2gSS5OGysGJAAmEH///bfOiCEXy432QkVWAFtLtElGJVnRLJmZ9u3bp9+DrB6W1c/GxXUJEurevbtau3atyzalbNtvv/1mbjdt2lRt2LBBT4ofPnxYTxJIKQUjsEkma6R8nKeMShcuXNAlIYxMIbIqWsozHD9+XB08eFC38eeff+pycYZ58+apIUOGeHz/P//8s3rttdfMbclAJZMN8v4lO5NMXIwbN05Pshgk85RkgwKAeHPkyBGfHgMAxM94IBRkcYBkU+3atattMYP0rWU8YF1IUaFCBZ0BtlatWl7blbGKlGeTLFAGaUvadC6b+uijj6q5c+fqLEzeSJZaydQk5bENly9f1uMBa2CajAmmTJmiS2p7I4FLcqzWTE1CSuHJd8NKMjMtXbpUlSlTxmu7AAAAQFrEOAsAAADxLGwBTbIq2BBoJp/333/fvF+vXj0VKlJKTVY5G1q3bq3LzUkAkgQMWcs/yCrrH3/80QxqkpJyEpTkbOfOneq9994zt9u0aaODhmrUqGE+JlmaZDW1rFo2SBk6WensjqzgltJ3QiZFvv32Wx04lS9fPnOf22+/XU8EyPEb5Fgkq5QrMjkhmZmMCZXy5cur5cuX6xrcxvuUSQ2ZsJDzYgQ1yXv3VA4DAGKVTAj78hgAID7GA6EOapL+/sqVK3U5aAlCkmxHMs6Q8UDz5s11KTbJ2Colo30l+8piiS+//FK1atVKlSpVSmXJkkX322+88Ua9+GDZsmU68EiOwVfPPfec2r59uxo2bJgOnCpYsKDO1po3b16dUfaNN97QY51OnTr53KYENf300096sYcsCJHgLcm4JUFWJUqU0GMlycokY5AbbrjB53YBAACAtIZxFgAAAOJZ2AKaJChISJCMZP5xF0zjjpRa+Pzzz83t+++/X4WK9XWkRINMClgDmZzJ6uK+ffua24sXL1b//vuvbZ/Ro0ebq5hlwkImKaQsnCtdunTRF/YNEjR19erVFPvJ6uixY8faVltL6TdX5Pgl2MkolSfBRxIM5YoEaO3atcvc/vTTT/XEhStSLsJ6DBKk5S5DFQDEKsmg58tjAID4GA/4Qt6HcZOMS/6S7EOycGHLli0665T09yVYVrInyVhAgpH8JYFGnTt3Vv/973/1eEQyvUpGV8lsJefOOtnhDykxN3ToUB2EJVmUZFyTmJioFzcMHjxYFSpUKKB2GzdurMdFO3bs0JlgZYwi3wtZXPLQQw9RZg4AAABIY+MsAAAAIGIBTTVr1tRZhKTEWoMGDdSKFSu8Pk8uwMtq4EceeUR3yuX5ssLYXeBOMMgkgqFDhw46AMmXEnXOWZ4MUorum2++sQUeyYpmTwYOHGgrv/Drr7+m2EeCh+R3Bsmq5Im8pqzMNsiq5+Tk5BT7ffXVV+b9qlWrqkaNGnlsVz6bYsWKmdvW9woA8cBVNiYCmgAgfscDAAAAABALGGcBAAAgniWE64Vk4kEy/dx99906s5CsGJYSBTfddJO6+eab1YkTJ8x9x48frwN1JNOPlCE4e/asWf5MVh1LRiBpLxSOHDliCxKSsgq+KFeunNvJ71WrVulJG0PLli29tle5cmXdppScE7JK2Xl1xLx588z7RYsWVbVq1fLarry2ZHwSR48eVX/++ae68847zd/LauuFCxf6daxShs4ojWEcq7vsTwAQa+T/H1er2w4cOBCR4wGAWBUr4wEAAAAAiBWMswAAABDPwhbQZAQHff3116pjx466nIBMSqxfv17fDPLYU089Zds2JiukRNuHH36oSxOEimRjkkkTmag+ePCgLgXhC2vAksicObN5f/Xq1bbf1a1b16c2ZT8joGnZsmUpfm9t19c2JehJzqORmUnatQY0bdu2TZ0/f97crlevns/HagQ07dmzRwdLFS5c2KfnAkA0kzJAkh3EmZQIKl++vM6o16tXr4gcGwDEmlgYDwAAAABALGGcBQAAgHgVtpJz1hSoy5cvV1WqVNHbxkprIRMVrlZayz5S0kwyEoV60jhr1qx6gqRLly7qpZdeUtWqVfPpedasRqJ06dLm/a1bt9oyKeXJk8enNitUqGDe37Vrly5dZz0n27dvt2V08kWWLFlUyZIlzW1rG87H6k+71mN11S4AxCpX2ZmEBL5K0OmoUaPCfkwAEMuifTwAAECkWP9PBADAH4yzAAAAEI/CHtAkatasqTZt2qRmzZql2rVrpwoVKqQv2jjfsmXLppo0aaI+//xznfVH7kcjOdYPPvjA3M6YMaMupeGqLFGJEiV8brd48eLm/aSkJHXo0CFzW0pwXLp0KdXt7tu3z2MJJV/btbbpql0AiJRx48bpoEv5GQjr317nv4/yt2/AgAGpPEIASHvibTwAAEAwXLt2jRMJAAgY4ywAAADEm7CWnHPWokULfRNHjhzRQTpnzpzRWZLy58+vJ4ozZMigop1Mkq9du9bcbtOmjS5dZzh27Jh5X96Xr/Lly2fbTkxMNLMrWdtMTbvSppW1XcnmJJNIgR6rv5yDqZwdPnzYvH/16lV9AwBvRo4cqTMpyc/u3bv7fcLk75n1b7pBHnvsscdUq1at+HsEIKTiuc8TL+MBAACCFdCUKVMmTiYAIFUYZwEAACBeRDSgyapIkSL6FmtWrVqlnnvuOXM7ISFBvf7667Z9zp8/b97PkSOHz20772ttx3o/Ne06txOKY/WVtRSeN1LS7tSpU36/BoC056GHHlJTp07VPyUbiL8qVqyohg4d6vb3gbTpzfTp0/Uxd+rUSWcuAZC2HT16VKUFsToeAAAgmEHM2bNn54QCAIKGcRYAAABiWURKzsWLLVu26NUOly9fNh8bPny4uvHGG92uqpdydL5y3teaetx5pX6g7TqnMw/FsQJAJElA0MyZM2MqMEiCmfbv369/WoOcJAOg/AQAAAAQf+I5KyMAAAAAAEDMZmiKNRs3blRNmzZVx48fNx9r27atev7551Ps63A4zPvp0qULyutb2wxVu8Fq01cyee+t5FydOnX0/UqVKqkSJUqE6cgApGWShc/4+5SUu4RSjmSVcPaQ3i5fvrx66623gv6agwYNUqNHj1bPPPOMql69un6sffv2+jimTZumhg0bZtt//Pjx5v5PPvlk0I8HQGTlzZuXjwAAgDSAxWEAAAAAAAARCGjq3r17UNuTYJsJEyaoSFi6dKlq2bKlOnPmjPnYXXfdpb766iuX+2fKlCmgi1PO+2bJksVlm6lp19pmqI7VV/4EKMlxOp8DAAiFI0eOmH/vr2YqqtI5rquM/39bAi1D8bfo6aef1jergQMHqlGjRqkBAwakeM0PPvhA7d69W/90fh6A2BcvfZ54Gg8AABAK169f58QCAPzCOAsAAADxLGwBTZMmTQp6xp9ITGBI+Z8ePXqoK1eumI/dfffd6qefflJZs2Z1+ZxcuXKZ9y9cuODza50/f962nT17dpdtpqZda5uhOlYAiGVnz5417zsSMimVfN3l70KtV69e+uaKBDkZwU4AEK3iZTwAAIgd48aNM/vJ7vrS0YSAJgCAvxhnAQAAIJ6lD/cLSkkzX2+enheJ4x46dKh69NFHbcFMrVq1UnPnzvUYwFOgQAHzfmJios+v6bxvoUKFXLaZmnatbTq3e/HiRdt7DfRYASBWXb58WV29elXfP3TokFo3Z4o6sne7LZgzKSlJRZpMzuzcuTMmJmkAIFbHAwCA2CPBTLt27dI/YwEBTQCAQDHOAgAAQDwKW4amBg0a+LwiWy7gyCTxgQMH1IkTJ/Rj8tycOXOqYcOGqRw5cqhwT2h369ZNffvtt7bHJVOTrPZLSPB8GsuUKWPelwlxXx08eNBWaqRgwYLmttyXICoji1Kg7TqXebMeq9Fu2bJl/WrTVbsAEIusmerk/6Qrly6pQ9vXqVK31DAfv3Tpkv7/CQAQv+MBAEBsirVMpgTsAgD8xTgLAAAA8SxsAU2LFy8O6Hl79+5VH374oRo7dqw6d+6cmjJlivrll19Uvnz5VDhIOSHJwrRkyRLb4zKRIhmbfFG5cmXzvkzKSOajbNmyeX3ejh07bG2kT29PqFWpUiX1119/pdjXW3DW/v37ze2qVau6PVajXV8Cmpxf37ldAIhF8vfaGqi57+hJVbRKPQl10gGf8jf9k08+UYMGDYrocQJALIjV8QAAIHZ5KtscjYJdmhUAEP8YZwEAACCehb3knL8kmOb9999XM2bM0Bd21q1bp5588smwvPbp06dVkyZNbMFMkilp8uTJPgczidq1a5v3k5OTzSAkb1atWuWyDVePWff1ZM2aNfoY3LUrAU3WFe++tmvdr3z58ipPnjw+PQ8AYiWgqVixYqpG+wGqUNV6ZoCqZGf6+OOPI3iEABD/IjkeAAAAAIB4xDgLAAAAsSDqA5oMLVu2VE899ZROvz1z5kz122+/hfT1ZJL6/vvvV6tXrzYfy507t5o3b5567LHH/GqrVq1athXks2fP9vqcbdu2qd27d5vbTZs2TbGP9bE9e/bo53jz008/2d5P3bp1bb/PkCGDatSokV/HKiVB5s6d6/FYASAWyf8FNukzKkeGjGbGpqxZs6rOnTtH5uAAII0J93gAAAAAAOId4ywAAABEs5gJaBL9+vUz73/55Zchfa2+ffuqZcuWmduFChXSmZruvvtuv9uSIKF27dqZ21988YXO/uTJyJEjzfuS7ahFixYp9mnWrJktE5L1Oa6cOnVKTZgwwdzu0KGDSkhIWXVQHrdmXlq6dKnHdr/++mt1+PBhc9vfgC8AiAbjxo1TFSpU0D9dZWgSEszkSJ/RzNhUp04dXZYUABB/4wEAAAAASAsYZwEAACBaxVRAk0w058yZU99fuXJlyF7nhx9+sAX+5MqVS68Ar1mzZsBt9u/fX6VP/3+n+8SJEzpo6Nq1ay73lZJ2EvRk6NOnj84C4kwe69Wrl7ktz5HnuiKv1bFjR3Xy5EkzyEqOyZUHH3xQlSpVytzu1KmTOnTokMt9N2/erIO/DPXr11f16v1fOSYAiCWjRo1Su3bt0j/dZWjS2ZkyJHjO4gQAiPnxAAAAkSBZCAEACDfGWQAAAIhWMRXQJLJly6Yv8LgLsEmtpKQk9fzzz9sek0Ch6tWrp6rdKlWqqN69e5vb8+fPVw0aNFArVqwwHzt69KgaNGiQ6tatm/lY6dKl1QsvvOC2Xfld8eLFzW15rhy/tGWQ15DXkte0rrqoXLmyyzYzZcpkm9Dfv3+/ql27tpo2bZo+P8YE/meffabuuOMOdebMGf1YxowZ1QcffODXeQGAaDFgwABVvnx5/dN9ybkEM0OT232CkBkKABC58QAAAJFCQBMAIFIYZwEAACAapaw3FsWkZJoRqJM5c+aQvMa3336r9u7da25LViUJGvIUVOSKBAxZU7WKESNGqK1bt6qFCxeagUa33Xabyp07tx4wHDlyxHbxSjJDTZ8+3VyF7oqUnJsxY4Zq2rSpDixKTk7WpeckIKlIkSK6XJIRcGRo2LChevvttz0ev5TIe/HFF9Vbb72lt2XC6OGHH1ZZsmRRBQoU0J+DNcNUunTp1JgxY9Stt97q13kCgGghGe+sWe/cZmhKZ48Fdi5Ll5rMUM6vDwAI/3gAAIBIIaAJABAJjLMAAAAQrWIqoOn99983g2ckc1EoSHCQlQQI7d692+92EhMTXZaImz17ts7U9OWXX5oXqiTgyDnoSLJ1SHDVLbfc4vW16tSpo4OkHnvsMR0wJaTtw4cPp9j30UcfVePHj9dZmLwZPny4Dl4aMmSIOWF/+fJldeDAAdt+Enj18ccf69J0ABBPrAFN+i92ugxKpU9n20f+LqaGZISSYCZrZigAQOTGAwAARMr169c5+QCAsGOcBQAAgGgVEyXnrl69qrMOvfnmm3ryQjRv3jwkr7Vjxw4VShLUNHHiRLVy5Ur19NNP61J0kqFJyrVJRiV5XxMmTFAbN270KZjJIPtu2LBBB0q1atVKlSpVSmdTksxPN954o+rRo4datmyZmjJlij4GXz333HNq+/btatiwYTpwqmDBgiohIUHlzZtX1a9fX73xxhtq586dBDMBCFk5tUiWZJP/f0zpE2QGXWdocqh0rvcJgGRlkr+jZGcCgOgYDwAAECkENAEAwolxFgAAAKJd2DI0de/e3a/9JTOSZL2QTEfr1q3TP42MRlJeQgJ0QmHz5s0qHGrXrq1vwSSBRp07d9a3YCpZsqQaOnSovgFAuMupRbIkmzX7kkMCmoRMpMv95GtBydAEAGlFrIwHAACI1YAmWQRiZH9lwQQApA2MswAAABDPwhbQNGnSJHM1tb9k4kKeKze5/9JLL6kbbrgh6McIAAguCdz8999/UwRw+nOhPZIl2a5cufK/jfQZbMFN6aI4oImJDADRiPEAAAChDWiK5GIQAEBkMM4CAABAPAt7yTkJSPL3ZjxPSqUNHz5cDRkyJNyHDQAIwOrVq9W1a9f0T3cX2qO5JJs1oMnM0OQU3JTaknOh4M/5BYBwYzwAAIBrSUlJqTo1sgikfPnyEVkMAgCILMZZAAAAiEdhy9DUoEEDvzM0ZciQQWXLlk0VLVpU3Xbbbaply5Yqf/78ITtGAEBwucuuFMmsS/6wBSvZMjRFd0BTrJxfAGkL4wEAADxnY0ptQJMsAiEzEwCkLYyzAAAAEM/CFtC0ePHicL0UACBKuLugHisX2m0l59JlcBncZNsnSsTK+QWQtjAeAADAc/BSagOaAABpD+MsAAAAxLOwl5wDACBWuC8597/7ly9fDtrrjRs3TlWoUEH/BAAAABC/XAUvSbluAAAAAEhNCVIAiCcENAEA4MaFCxfM+44MGV3ev3jxYtDOn5SJ27Vrl/4JAAAAIH65Cl4iQxMAAACAYEqXLh0nFEBMI6AJAAAfAppUhkzmXUf6TK73SaUBAwao8uXL658AAAAA0lZA09WrVyNyLAAAAADiExmbAMQ6ApoAAEhFhiZvAU3+lJHr1auX2rlzp/4JAAAAIG0FNFFyDgAAAEBqkJEJQLxJCGZjGTJkUOH8g0wqbgBAqFy/fl2dOXPG3HYkZHZ5/9SpU3qVg7uBgrWMHIFKAOId4wEAAHwfbzjjOhcAgHEWAAAAEKIMTUbaOvkZjhsAIG3yJ+tRoE6ePKmSk5PN7eRMOcz7jkzZbWUhrIFPsVRGLhznEUDawngAAJDW+drHto41AADwhHEWAAAA0qqgl5wj0AgAEGrWrEehcuzYMdu2NYgpOXMOj/vGShm5cJxHAGkP4wEAQFqWmj42/4cCAPg/AgAAAAhRybmJEycGszkAAFySbEcyQRDKrEdHjhyxbVuDmKzBTca+N954o4o14TiPANIWxgMAgLTOWx9bMjfJ77t27Zrid2RtAgC4wjgLAAAAaVVQA5q6dOkSzOYAAHBJsh0FkvHImDyQyQVvz9+9e7d535EunVOGplxKCp+ms+zboEGDqPu0vL3fQM8jALjDeAAAkNZ562MbGZw+//xzVbp0advvEhKCepkOABAnGGcBAHzlvEji0qVLnDwAMS3oJecAALAG1FSoUEH/jLXyD3///bd5PzlrPqXSWyYXMmRUyVlyu9w3ms4fJeUAAACA6CKLDcqXL6969+6d4ndZsmSJyDEBAAAAiE9nzpyJ9CEAQKoQ0AQACJloC6gxJg+8lViTVQzWIKXr2fOn3Cd7AfO+7OtwSM6m6Dp/vr5fAAAAAOEh2Zt27typevbsmeJ3mTJl4mMAAKRp//77r8qWLZtKly6dmjRpkt/PX716tf4/tkqVKipnzpy6Lbk21rp1a/X999+rq1evhuS4ASBanTt3LtKHAABpM6Dpjz/+iPQhAABiLKDGmDzwVmbtn3/+URcuXDC3k7P9L3jJcN0S0HTq1Cl18ODBqDt/vr5fAIhFjAcAALEsc+bMKR4jQxMAIC2Ps65fv666du0aUHmkK1euqB49eqg6deqo8ePHq23btqnz58/rtnbv3q1mzZql2rdvr2rXrq02b94ckuMHgGhEhiYAsc5SPye8Nm3apDuS0qlMSkpKUdNTSLYLefzatWvq8uXLOop0//79aunSpfq58jwAQPSSQJpQB9NIOTbJYCRBP8F6reXLl9u2r+cskmKf6zmKpHjOQw89pGLt/AFApDAeAACkZa6yMWXNmjUixwIAiB+xPM6ScqyLFy/2+3lyvC1atFC//fab7fE8efLoYOGjR4+amdU3btyo6tevr1asWKEqV64ctGMHgGjhnInu2LFjETsWAIjJgKaZM2eqQYMGqT179gTchnQ+JeUoAADWsmzBCv6xrkZLzpxLJWfJnWKf5Gz5VHKm7Cr91Qvmc4Id0AQA8YjxAAAAyuV1LQKaAABpcZwlmZn69OmjMysF4uWXX7YFMzVt2lS9++67qkaNGnr7yJEjauTIkeq9997T7/Hs2bOqZcuWOviL/3sBxBMJVk1MTLQ9JkGdABDLwlpy7ssvv1Tt2rXTnWrpOBpR8cLYtj7m/Lir3wMA0rZgl7U7efKkTkttSMpTSmYbUu6YLt3//e7/k4sg0Zy+VTJZVahQQf8EgEhhPAAAgHtMqgIA0to4SybaGzdurD799NOAnr9z504dqGRo06aN+vnnn81gJlGkSBEd0DRx4kTzMclENWbMmFQePQBEFwlmkux7VgQ0AYh1YQtoOn36tHrmmWfcdpwl8t+I/nfuRBu/k1uJEiXUY489pr7//vtwHToAIIpJVia5eBGs7EyLFi2ybSfl/V/QktXx9QvV2vnT1KFDh8zVD0uWLFGxkMkKACKB8QAAAJ5lzpyZUwQASDPjrNmzZ6ubb745VdfTRo8ebU7e586dW02YMEGlT+962qtLly6qe/fu5vaIESNSlGYCgFh2/PjxFI+lpuScq0XSLJwGELcBTZMnT9aZK4zO83333afmzJmjtm/frpYvX252onv27Kn27t2rtm7dqn799Vc1ZMgQXevY6GjLhLGkC33wwQfDdegAgCCIhY6u/D8jq7gMyRmzqes5Crnc99iaeerK2ZNq/4GD5mPW58Z7JisA8BfjAQAAPMuQIQOnCAAQ9+OsDRs2qCZNmuiyb4cPHzYff+KJJ/wuVffNN9+Y248++qjKmzevx+cMHDjQlqVdzgUAxIsLFy6keOzixYtBXSTNwmkAcRvQtHDhQvN+8+bNdfS9/LzxxhtV3bp1VcWKFXXH+c8//1SlS5dWlSpV0qlGhw0bpju4tWrV0s+VDm7v3r3DddgAgCCJhY6uZHqSlNOGawXKK5XO9X+VhWo1U5nzFFZFK//f/09CStXJxaFoDOYKdiYrAPAX4wEAAAAACK5YHGdJpqQFCxaY29mzZ1effPKJGj9+vF/trFq1Sp06dcrclgApbypXrqzKlStnbs+YMcOv1wSAaHbp0qWgBjS5WiTNwmkAcRvQtGnTJvP+4MGDU/y+Xr16+ueWLVt0ZLyVpDudOXOmyp8/v+58y/21a9eG4agBAMESCx3duXPn2ravFbjR7b4Fb2qkqj4+QuWv19b2uKssTd6CuaIh4AkAQo3xAAAAAAAwzrK6//771ebNmwNagLd69WrbtgRw+cK637Jly/hKAogbroKXLl++rLPwBWuRNAunAcRtQJMRKZ85c2aXHcsaNWqY99esWZPi98WLF1f9+/c3t7/99tuQHSsAIHDugnOivaMrHXtrmumkHIWVI0sur89LzpZXXc9ewNyeP3++unr1ql/BXIFkryIICkCsYTwAAIBn165d4xQBAOJ+nCXl8Ro2bKgWLVqkM0qVKVMmoHakfJ6haNGiuoSeL+S6pUGux0npOgCI5/FEUlJS2I6BeQsAMRvQdP78ed1RLViwoEqfPr3LVJ+GjRs3umyjc+fO5v2//vorREcKAEhNZ7Vfv35BKy0Xzs7v4sWLbTWmrxV0n53J2YHECzrNtVxIkaCoF154wa9grkCyV8VCCT8AsGI8AACAZ+fOneMUAQDifpw1a9YsHcwkQU2pceDAAVuVD19JEJd1kv/QoUOpOg4AiBa5c+dO8VjWrFlVpkyZwjZPw7wFgGBLUGEi0fEnTpxw+/sbbrjBvL9t2zaX+5QqVUr/4ZUsGjt27AjJcQIAAiedVVkFkDFjxqCUlrN2fkOd2UlWhBkcGTKppHxlfX7u4e1r1ZVLl/T/T1IaddKkSer999/3+fny3nx5fzJgkHMh51Zuxn0AiAWMBwAA+B9X2SDOnj3LKQIAxP04q2TJkkFp59ixY+b9/Pnz+/y8fPny2bYTExP9OiZrIJUrhw8fNu9LFnfnTO4AEMr/E5yDmgoXLpzqv0MjR45Uu3fv1j+7d+/ucV/J+jd69Gj9k79/QNpyNUR9nrAFNEmHUjrW7jrXklZUVhJ46lgb7UiH0UilCgCIHtYgm2AEIIUraGfPnj1q8+bN5va1/OWVSu/7f5GFajVXx1fMVDmzZtYr42RVnPxf5c/qMOeAJVfnzxrg5ZzxydtzASDSGA8AAPA/Mm5wRoYmAADjrMD+L82RI4fPz3Pe19X/yZ74E/y0fft25rIAhNXQoUNTPLZp06ZUtfnQQw+pqVOn6p/e2rrtttv0LRivCyC2HD16NLZLztWsWVP/lCj/tWvXpvi9pLuTjqBktpBJZVcr1ZKTk9WRI0c81gEFAESOt9Jq/qYp9ae91HjppZd0yTgjxfS1ghU97n98/UK15fNB+qcoeFMjVe2xV1SVKlVUnTp1VLFixdTPP//s93F4S8fqqTQdqVwBRDvGAwAA/I+rhXqSIQIAAMZZ/mcBkGzxvnLel7kmAPCsXbt2aubMmfonAIRb2DI0ST3k77//Xt8fNmyY+u9//5tin+rVq6t9+/apixcvqsWLF6vGjRvbfv/HH3/omsYib968YTpyAEAohLOcnCdy0ULKzV26dElnVSpcoaZKzub5/5hja+apK6eP6p8SzCSSsxdQ17PlUxku/t8kxPz581W3bt1UQkJC0DJSeSpNJ8+R1RdnzpzRQWJkaQIQbRgPAADgukyO4fjx45wiAADjLB/J4niDUf0jHPbv3++15JwseBSVKlXyO4M7AKRGly5d9Dy7oVmzZqpHjx6cVAAhF6r4nbAFNEnU5sCBA/WEsUwct2zZUr377ru6Q2do1KiRmjNnjjkx+/vvv6tcuXLpbfnjK883OqfVqlUL16EDAILAuSRasMvJBVpybdmyZTqjklEi7lrBG70+p1CtZjqYSX4aJFvTsZWLVakiBXR7UmJ19erVZnpVX3gKWPLludESJAYArjAeAADAc/ASAU0AAH+l5XGWVP0IJMuS875ZsmTx63X9CVCSY7QeJwCEmvwtl0XPhjx58vB3CEBYhKrPE7aScwUKFFB9+vQxo+alA121alX16quvmvt07NhRZc6c2ayrWblyZdW/f3/13HPP6TI+f/31l7nv/fffH65DBwAEgXNJtGCXkwu05JqUhpMAJFk5VbRESXUtX1mvZeYkK1PVx0eY2ZnMrE3nTqn9Bw7Y2g4nTyXpACDSGA8AAGKBL6Wxg4GAJgBAMKTlcZYRlCUuXLjg8/POnz9v286ePXtQjwsAoknBggUjfQgAEBsBTeLNN99UTZo00Z1rIwVo7ty5zd8XKVJEPfvss2bnW1Jzjh07Vn3wwQe6FJ11P9LjAUBsCXWwTSDtnzx5Uq1atcrcTspbRqkMmbyWmXNFsjVlzlNYFbuxpi37k3U1RKgnTIIdJAYAwcZ4AAAQ7QJdKOGvxMREnx4DAMCbtDrOkmCuQP4Pdd63UKFCQT0uAIikDBky2LYlQxMAxLKwBjQlJCTotKfDhg1TWbNm1Y+VK1fOts/rr7+uWrdubet8C7kvj0nU/bRp02zR9wCA6GctMxeK1c6BBPP89ttvKjk52dy+VqCC232NgCVrmTkrI2tT/totzMeSkpLUokWLomLCJJyrzQHAHcYDAIBoF66sp6dPn07xmCyGMCabAQDwVVodZ5UpU8a8f+jQIZ+fd/DgQVtpFLKXAIgn1r/xgrKXAGJdWAOajD+cQ4YMUceOHdMd5Nq1a6eIHJ05c6aebJV0p9KZlpt0xB9++GG1Zs0adfvtt4f7sAEAQRDO4B1v5P+W+fPnm9vJmbKr6zmLut3fVZk5V67nLq6SM/7fxSNhfQ1fJ0xCFXgUTecfQNrFeAAAEM3ClfXUVSbXa9euqYsXL/rdlrfxAwsbACD+pcVxlpTOMxw4cMDn/0N37NhhayN9+rBPkwFA2BDQBCDWRaynli1bNtW2bVtVtKjryeMnn3xS13OW2seSAlUu9Hz77bd60hcAEJvCtdrZF7t371Z79uwxt6/lLy/LF1LfcLr0Kinf/1bBbdu2zZa+25cJk1AFHnk6/3JBS1Js58yZU/8kixOAUGM8AABIy9yVpvZWstoVb+MHFjYAQNqRlsZZ1qAtycD+119/+fS8VatWuWwDAOIRAU0AYl3YApqkYzhmzBh1/Phxv54nKwQKFy6couYnACD2hLrsnD8WLlxo29YBTUFyrUB5j68VysAvT6uvPa02l89E/o8+f/68/kkWJwDBxngAAID/uXTpksvTcfnyZb9Pk7fxQzQtLAEABFdaHmfVqlVL5cuXz9yWsnveyMJDWeRoaNq0aciODwCiwfXr1yN9CAAQGwFNEh3/zDPPqOLFi6sWLVqo7777Tl25ciVcLw8ACCFXQTTuAmuiYXWwpNSWIKNDhw7pVVkHTpxRjqy51fH1C9WWzwfpn8J521fJWfOq61nymNvyWvKa4Shz4Xx+fS0vIZMbxkUs+clkB4BgYzwAAPBXPJdKu3r1ql+Pp2b8EK4yegCA8EvL4yy5ftWuXTtz+4svvlCnT5/2+JyRI0ea9/PkyaPPGQDEE+d5iLTyfwKA+BX2knNJSUnq559/Vo888oheAfD444+rxYsXh/swAABB5CpIyV3gkrE6WFaQ+To5EeyJjK1bt6ojR46oAwcO6JXRB/b9ox8/tmaeunL6qP7patsXOghqwgvqYOI58zEpOSfnIhycV1/7GkAmkxtjx47Vz5WfTHYACBXGAwAAX0XDYohYCGgCACCtjrP69++v0qf/v2muEydOqA4dOqhr16653Hfy5Mk66MnQp08fnakKAOJZIBlgASBNBjQ1b95cJSQk2KJDz549qyZOnKgaN26sSpcurQYPHqxTfgIAYourEgbuyhoYq4NXr17t8+REsCcylixZon+WKFHi/1Js39pMbxeq1UxlzlNY/3S17QsjCOrQjk0uXzPUnFdf+1NegpXbAEKJ8QAAwF/xXCqNgCYAQDCk9XFWlSpVVO/evc3t+fPnqwYNGqgVK1aYjx09elQNGjRIdevWzXxMzssLL7wQ9uPF/2PvP+DsKqv9f3ydMn0yJb0SkiChSAuEIlJExIYNUfgioGLhhyCWi9erXrlcrl4LXL0iwl+9oqIoKmKjiCIiPaGFDsGQkJ5Jm0ky/ZT/67P2Wfs8e599zpxpmfZ5v9ictvezn70nM+d5nvVZn0UIGW5isVjgNR2aCCFjnb0maLr99ttl06ZNct1118kJJ5zgv49BNrZ169bJ17/+dXnta1+rtY+vueYaaWlp2VvdI4QQMgjCQhg4KUF8hMBDMaefvoITrivTUAYy8J3zwAMP6PPZs2fLkW94u0w96q36etrhp8jBH/2mPka9DhNVks4XQS19m6RrJvvv2zkHwmAcqihSIoSMFjgfIIQQ0l/G61gWcxI4aURRzFWCEEIIiYLzLJFvfvObcsop+bU7iJmOO+44LSmHtb9Zs2bJVVddJZlMRj9vaGiQW265RSZNmsR/VISQcQ8dmgghY529WnJu8uTJuggFl4pXX31VvvGNb8jhhx9eIG568skn5TOf+Yw6Z7z97W+Xm2++mX9wCSFkDFGOo1JfwQm3jaEMZKxZs0Y2btzov0417TPgtqJK0rkiqFTzPoHzbtiwYUBiJbsXl1566YBETUNdso8QQgYK5wOEEEKISDqd9l00whQTOhFCCCGcZ0UD9/XbbrtNPvShDwWcSdra2jTJ3v3OxfrY3//+d02qJ4SQ8Uh4njEWHZoYzyCEjJigyQVipc997nPyxBNPqN3pv//7v6v7hitswiLOn//8Z/nABz6gdZ8/8pGP6GCTEELI6GYoHJXCbQzVIPbBBx8MvHZFR/2lr5J0YbGUndu9lnLEX7gHFRUVmq09EFHTUJfsI4SQoYDzAUIIIRN1obuUaIkOTYQQQgbDRJ1nQdSEMnvLli2TSy65REvRNTY26nrazJkztTTfj370I3n66adlyZIlI91dQgjZa4xFhybGMwgho0LQ5LJ48WK58sorZeXKlbJ8+XL51Kc+pVag7iB79+7d8pOf/EROPfVU2WeffeQLX/jCSHebEEJIP0rQ9TfQEG5jqAaxrqApU9UgmeqmkvtHlZUrl0ztFMlU1hWc272WcsRfuAcoxWqipnLuwXCV7COEkOGA8wFCCCETaaG7VFBhLGZQjyexGSGEjCfG4jzL+oUNjkv9ZenSpfLd735XnnvuOWltbZWenh51abrjjjvkggsukOrq6mHpNyGEjBZcpzqAv4NjDcYzCCGjTtDkAqvPb3/727Ju3TrNCvjEJz4hc+bM0c9sILt+/Xqti0wIIWTiBBqGYhC7Y8cOefHFF/3XqaZ5GOH3u6xcOZ8psZh3jhzPPPOMLhS511JuOT0TNU2bNk0ts/sKDAxXyT5CCBluOB8ghBAy3he6d+3aVfQzjPXHA2NVbEYIIeMVzrMIIWRikslkZKzBeAYhZFQLmlwF6UknnSRXX321KurNBjSsLCWEEDIxAg2DGcRadvDll18eqCEdLgkXBq5M6e4OSdZMiiwr11fJOTvHxo0bNRMOglw8DvRasD/ssrdu3dpnYGCsBncIIcTgfIAQQsh4XeguJVoaL4ImzkcIIWR0wnkWIYRMLNx4CCGEjEVGpaAJVqA33HCDvPOd75QpU6bIe9/7XnnyySd1sG1/eGkNSgghY4eRDjRYdvAvfvEL/71solLS9TNKHgfnpVTnbklU1cq0w08p+BzvHfzRb0Z+ZqQnzZR169dLZ2enCprckndDFRiIKucw0vecEEIGA+cDhBBCxnO5M3zPjXdBE+cjhBAy+uA8ixBCCCGEjDVGjaCpvb1dA80QMc2cOVM+9rGPye23364BYCs1B0488UT54Q9/qHWPCSGEkHKCGBD/LFq0SL9fjFTjXJF46a/BchyYolydnvu/f9VHJZ6U2fsfKjU1NTJ37lx55JFHpLu7u2hfS70XFRjA55deemm/yjlY2+ecc86oDvQQQiYWnA8QQgiZKOXOWlpaAq8zVZP855s3bx6BHhFCCBmvcJ5FCCETm9FU+Wi0J54QQkYnyZE8OQK6EC3dfPPNcscdd6h4Kcr+bv/995fzzjtPzj33XJk/f/4I9ZYQQshYDWJAALR48WL5z//8T//zVPO+fbYB56VS7kvFXJ26W7foox07dcmbZV5TtT7v6OiQxx57TI4//vjIvppQKeq9YtfZ29srFRUVZZWXMwEUjnn11Vf1EaX40A6Op6MTIWRvwvkAIYSQ4QDjWhvfjkbWrFnjP88mqtQ5Nt69W1+vXbt2BHtGCCFkPMB5FiGEEKOqqmrU3IxyYx6EEDKiDk3pdFrFS+eff77MmDFD3ve+98lvf/tbDfC6YiaUmrv44ovVyeLFF1+UL33pSxQzEULIGKYc9f1QKvTDpdnuvfde/7NsPOk5NA0DUa5OqaZ5ko3lv3LdvkT1tdh7Udh+11xzTWASUOxeugKoM888U48FozmDnRAyvuB8gBBCyEQvd+YKmtI1TZKpafJfb9u2TXbv9sRNhBBCSLlwnkUIIWS0C5rKjXkQQohLLBu2Qxom7rnnHnViuvXWW2Xnzp36Hk4NqzvrAv6onn766erG9La3vU2SyRE1kCKjjPXr18u8efP0+bp167R0EyFk7ABxDUQzGLAiuDDQfQYCRLNnnHGGdHV16eve5n2la7/+OS8NlpqX/yrJ1nX6vK6uTr8Ph3oyAfGSZaJbtkP4Xrr7uGXr6NBEyOhlvIyBOB8go5Hx8vtFCBk7YA3sXe96l+zatUtf90xbLKmmfaT25b/6+3z3u9+VQw45ZAR7SQgZ73AMNH7gPGv0wd8vQshIAkMR1/X1i1/8opx22mkj2idCyMRg/TCts+41xdCpp54aEC8ZeI2yOxAxnXXWWdLY2Li3ukQIIWSUlH0wQc3SpUv9fYeS++67zxczgdTkBYHPt664R0vEwVWpvyXmyqW3eYEvaGpvb5cHH3xQTjllaM5l96+trU22bt0aEDXZvXRFS2GxGIRNozV7nRAyfuB8gBBCCBHZvn27L2YCmZBDE3jllVciBU1MRCCEEMJ5FiGEkFIgFu9SWVnJG0YIGdPs9ZJzBhwjrrjiClm1apXcf//98vGPf5xiJkIImaBlH8xN6NFHHw3sM1Ql6K666ipZvny5bNy4UbKJSi0B5wIxU3frFn0sBkRPz/3fv+qj+3r1bdcH3i9Gqnm+lroz7rrrrn5fR6kycrh/wCxbw/fbrU9NCCGjAc4HCCGEjARDWeZ6IGAdzMD8ZMUffiQtLyyXbLwiIGiKgmN6QgghfcF5FiGETGzCxiKjqeQcIYSMekFTc3OzBlYfeughWblypVx++eWyYEHQJYMQQsjEo1jt5KFYsN+0aZM8/PDD0tnZqXaHvZMXijjCIgBnpqqmGfpYjLDoyV63rny0qBgqIIJKVEiqeV//M4i3tm3b1q9rKXY/7P5deeWV+hzfr9OnTw8EacqpTz3SwR1CyPiH8wFCCCEjzUiLglxBE+Yn3bu2S8tjd0m6tjlyH5dyxvRDAecFhBAytuA8ixBCSDEoaCKEjHX2mqDp1ltv1aDyddddJ8cee+zeOi0hhJAxzEAW7MOL73feeafWaa2pqdHH3qn7FRyDMnMHf/SbgXJzYUemsOjJXjftv7SoGCosguqd+hr/s0wmo30bivvhujEhMIOyc1Z6Lmqf0RrcIYSMbzgfIIQQMhrYW6KgYrjuS3PmL/TnEpnayYF9wpnV5Y7phwLOCwghZOzAeRYhhJBSUNBECBnr7DVB07vf/W6pqMjbZxNCCCF9LZgPZMHebau7u1v+8Ic/yOzZs+Xoo4+WGQsPkkzdtLLaCYuRwqIne73g9IsKxFBGWASVnjRTMlX1/uff/va3VXx1zjnnqKNS2FUpTDn3A4GZadOm6dbfIM1IB3cIIeMbzgcIIYSMBvaGKKiUwxESD4wZ+x3izyUyVY3++x0dHbqNFJwXEELI2IHzLEIIIYQQMp7ZqyXnCCGEkHIWzEsFAPoqf+C29be//U3a2tr8z3pnHCQSi5X1QyinDF1fFDg/xWKyrrVHli9fLs8//7ysWLFCxVe33HJLpKvSQEBgpqWlRbf+Bmn2VsY3IYQQQgghA8HmAkgIGM2lksMJG+4cZseOHf5+2Yoa53l1oI2dO3fKSMF5ASGEEEIIIeODVCo10l0ghJBBQUETIYSQUUepEgf22aWXXhoZwLDF9wsvvFCFQkY2USm9UxaV3YeoMnQDASXrnv7eJbrh+aaVT0lnZ6ds27ZNy0jE43F573vfG+mq1Jd4ayjZm+cihBBCCCFkINhcAOP80VwqOZyw4c5vXKFSUNBUG2jDFT4NBo7zCSGEEEIImbhQ0EQIGetQ0EQIIWTUCZhKlTjAeyhh2tvbWzKAce+998orr7ziv+6ZtlgksfdLn6JkXapzt254Pv2ot0qyqlpisZhex6JFi+SSSy6RK6+8UhobG+W+++7zhUWlhF1Dzd48FyGEEEIIIQPB5glnnnnmqC6VHHY4sn5/+tOflj179kS6Mg2XQ9NAxvkUQRFCCCGEEDI+QByFEELGMhQ0EUIIGXHCAqZSJQ7w3jXXXBMZwLCF92uvvTbgNJSNJbxycxHANem5//tXfRwOULIuWTNJNytfl+7tlUwmI8lkUmbPni3XXXddZLZ5KWHXUAce+nsuQgghhBBC9jY2T/jFL34xpkolW7/PO++8wPvZRJXzvDLwWUdHx5CceyDjfCY7EEIIIYQQMjZBVQiXrq6uEesLIYQMBRQ0EUIIGVHMiQgL7OUGJIoJni6//HIVA33xi1+ULVu2+O/3zDxYspV1kW3BNam7dYs+lkt/RFAoWXfoxdfqhuc4TzaTllgsLnPnztV9NmzYICeffHJBtnkpYddQBx76ey5CCCGEEEJI/wgHE7LxZOTzqH0HykDG+VEiKLo2EUIIIYQQMvpBZQgXCpoIIWMdCpoIIYSMKMOR/dvd3e0/zyRrpGfWYUX3hWtSVdMM3z2pHEwEtenBW/vt7mTnm/uG/ycz91ngv79x40Z55JFHBpVtHg48MOhACCGEEELI6KGzszP4hitiileMmsBDlAiKrk2EEEIIIWS8MRHWzyloIoSMdShoIoQQMqIMtKzaOeecUzDZ+I//+A9pbGyU+fPn++91zz1SJBEMDrjANengj35TH8t1YDJRkrbfT3cn/3xLTpOeOUv899vb2+XKK6+UVColQxV46G/QYSJM4AghhBBCCBkpdu/eHXiddecp8biWyi6270hD1yZCCCGEEDLeGI+ifTo0EULGGxQ0EUIIGVKiRDGlhDIDLat2yy23FEw2UB/68MMPl9mzZ+vrdN00SU3dr9/X0FcZOhMlzTr+jEh3p3JL0vVOWyzp2in+66eeekpuuOEGGSqWLl0qiURCNm/eXJZIaTxO4AghhBBCyPhjrArx161bF3idqZoUel1fdN+Rvid0bSKEEEIIIRM92XoskMlkAq97enpGrC+EEDIUUNBECCFkSLAF9Msvv7xAFOMKZforeIoS6VRUVMhhhx0WmGz84x//UJGTkU1USueiN4jEor/qSomOyi1DF+XuVI4gyicWl7WdFbJs+XItOQeuvvpqmTdv3oACEeH7+Oijj0o6nZY9e/aUJVIajxM4QgghhBAy/hirQvxXX33Vfw43pqwjYAKZ6qbIfUfrPeH8gRBCCCGEjGX6m2w9FggLmAZTEYIQQkYDFDQRQggZEmwBHbiiGIhr2traZNq0afqe7XfppZf6wpv+LL5DpNPb2yutra3+ZOOFF16Qb3zjG4H9OheeVBAgKFd0VEyoVK4oqhxBlB27cdkd0tXZKevXr9f38Yjt61//esExfQm/wvcR9xv33e79RJzAEUIIIYSQ8cdYFdK4IqVMdUNB8kWmptF/vmHDBp33jOZ7wvkDIYQQQggho4vwHKI/cwpCCBmNUNBECCFkSLAF9CuvvDIgioG4ZuvWrdLY2KjvYT84LGEg7Qpvyl18D++7cuVK+dznPicdHR3+Pt2zDpV007xBi476YtODt6ooasM/bg6coxxBlAmqAPox88Cl+nzu3LlSU1MjDQ0N8sorrwSO6Uv4Fb43uN8tLS26RYmUxmqpDkIIIYQQMrEZi0IaZEo//fTT/utMTd6NKf9es/8cTqvu/uPxnhBCCCGEEEKGlrCAiSXnCCFjHQqaCCGEDAnFFtCjxEpNTU0B16D+LL67+65atUouu+wyLalmpBrmSM+cJX06MZXrwhSFiaQyKW9ykEn1lFdiLkJQNev4M7QfzSd/WFKTZsns2bPl6KOPlsmTJ8tnP/tZWbNmjX9MX8Kv/gYxxmqpDkIIIYQQQsYajz32mLS3t/uvU41zC/ZJN8yWrMT813//+9/3Wv8IIYQQQgghY5/u7u4xI2hiwjUhpBwoaCKEEDKsA1FzZYJoBq/Djk0DZfXq1Sr42bVrl/8eBEGdr3mjX7oBwqN0d4ckayZFOjEVc2/qaz8TScWTFSpKal58TKTbU6n2CwRV8bh0vuZUSdVP9/dBWT1c49q1a4cl63rp0qXqloVHQgghhBBCRjODWeweiYXy8DnvuSc/J8jG4pJqml9wTLaiRtINs/zX9913n6RSqaJtEkIIIYQQQog/n8hmCwRMo1nQxIRrQkg5UNBECCFk2Aei7muIm+DO1NbWNuCF+CeffFIuvfRSbcNI1c9QQZDEk/oaIqJ1f7tRUp279XWUE1Mx96a+9oNwCSIpe77g9Isi3Z7Kbd8nUSGd+58m6bpp/ls7duyQT37yk/LMM8/IUPPoo4+qBS0eCSGEEEIIGc0UW+wuR+QzEgvl7jlRHvvBBx8MujMlKyOPS01e4D9H8oY7VueCPyGEEEIIIaQYUeKlsGPTaKKvihSEEAIoaCKEEDLsA1H3NdyF4M4El6aBBBTuvPNOLTO3e7cnVALpuukqBIIgyFARUTZbVtm3vpyV3P3wngmUIJbC82JOTMXad8+x+rbrg8cmKqUDoqbaKf6+L7zwghxzzDHyqU99quz7VE5gx/25MNubEEIIIYSMZootdpcj8hmJhXL3nH/5y1+ks7MzUrQUprd5X3VwMn73u99Ftjla4DyCEEIIIYSQ0UGUeKmrq0tGK0NdkYIQMj6JZeE/R8gYYP369TJv3jx9vm7dOpk7d+5Id4kQMkCs9JwJnIq9F94foh78LXCBM9PazgppeeJuFQ6ZSxIEQpsevFWfzzr+DH3fxEjuflFAYARnJYiR4LwU9RkcmhJVtdqWOTFF7d/XOWLxhGQz6cJjU93S9tf/n2x85QUtMwEnpZqaGrnuuuvkgx/8oMRisZL3FGImBHbghgUBmQU9it1j2x8BEkwiCCGjB46BCOHvFyGkOOFxsPu61Ph3b5HJZHT8jnUMfZ2slvbD3u87y0ZRveofUrFjlf/6pz/9qcyfX1iibjTAeQQhYxPOMQjh7xchZPyxZcsWOeusswLvHXbYYfKd73xnxPpECJk4rB8mLQcdmgghhOxVigmXLLP68ssvL3AWuvrqq/WzW2/1BEpG75RF0rn4LSpmCpd2g2Dp0Iuv1c3ES+WWgCvlrGSfQSRlZeZK7d/XOZr2Xxp9bLJK1m9Y72dyV1RUqLDpv//7v+WrX/1qQWaF3T+U4jvnnHO0HB/ETMAy1ktlry9dulTPgUdCCCHDywMPPKDC1P5u7373u/tsG6WJLrzwQjnooINk0qRJUltbq2LVd73rXfLrX/860n68L3DMjTfeKO94xztkzpw5UlVVJVOmTJFDDz1U3QNRCnYgYGL77//+7ypYnjx5sraLSe9JJ50k3/3ud2X79u0DapcQMr7oywEonNXrjnlHQ4k2/F02MRPonX5ASTET6JlxUOA1HGr7cl8dKbek0egaRQghhBBCyEQkyo1pNDs0EUJIOVDQRAghZK8SDirYojuENFgIB+7nr776qkydOlXdiVw1b/ecJdK14ESReELFQHBMSnd3FJR9cyl3P4iUTKxUzmel9u/rHAtOv6josdOPequKneYe9npJJpPq0rRmzRoVNb3xjW8MuFUhgABBEva55ZZbtKSff65p0/TzUsEGBFpwLB4JIYQMLwMVAPVlK/6Rj3xEjj76aPnBD36g5Ur37NmjwthVq1bJH//4R83Sw/fts88+W3a7Tz/9tBx++OHqLnLbbbfJxo0bVeC0Y8cOeeaZZ+Saa66RJUuWyCWXXBIop9QXECwtXrxYRbrLly+XnTt3arv4brvvvvtUoHvAAQcESi0RQiYm/RUluWPe0SC2cf+OoZRc77QD+jwmUz9Ny2obd9xxR1n3YCQEXK6gDIkVlZWV+kgIIYQQQshEZCRLMkety3R0dMhYheWtCSGAgiZCCCF7lXBQwRbdf/WrX6mr0Kmnnup/fvfdd6vLRHV1tQZoZ8+eLRs2bpZHnnhGNrTsEHHKrkGklOrcXdJ9CaIhlIkL7wdxE0rAlRI5DTdRfTDRU/PJH5IZh50s1TU1/sQEwfCPf/zjcu+99+p7CCAgqIx7d+aZZ/riMAibUHIOn5eqST0agj2EEDIRBU34G71o0aKytlmzZkW2Bwe/008/XW644YbA+01NTTJz5sxAmVIIlI4//ngVPPXFihUr1C3J3Tcej+v3MdyfXL73ve/JGWecIel0us92r7jiChUsuQttEC7D/QkCXmPbtm3a5k033dRnm4SQ8Ut/x6numLfU+HdvsGnTJlm2bJn/OtW8r2Qra8s61nVpwt9HfAeUugdY7DeX1qEe05cbSEBihSVYEEIIIYQQMhEZSZdYJLaFaW9vl7HKaHDcJYSMPBQ0EUIIGXbcBfBwUMGchTKZjIpvIGJ67rnnNMj5la98xbdEhSPEsuWPypp166V79w5fkAQB0Pp7fi7ZTFpiObemUkSVhytVis6ERqtvuz7w2B/xUzmCqb7K4U1+/dlyyPlXyPxFr/HdqpBdgaAwXC4QOLB7+4tf/EIfr7zyyrKDPyMd7CGEkIkqaPq3f/s3XZwpZ7v++usj20PZNnx/Gqeddpo89dRT6nqEYDq+Q/FdYMKmXbt2afm4Uo5KWPB673vfK62trfoa39X/9V//pd/VGzZs0DYefPBBLRdn/PnPf5Yvf/nLJa/9zjvv1O8nA0Kt22+/XXbv3q3uTAjGY7zQ0NDg7wPnKbhBEUImJmN5nIq/b9ls1n/dO/3Aso9NNc+XTLJan0NI+pa3vEWTPYqBRX43mWEkAglIrMD3BR4JIYQQQgiZiIxk4nCUoAnrLWMVJmETQgAFTYQQQoadUgvg5iwExwcAZweUrfnDH/7g74NALI7v6uyQTNoTLtXOXKCfQQBkYqa5p5zbZ9m3qPJwUSKnsNCodeWjgcew8KiUaKkvsVK4D8XaSk+aKY1v/qTM2u9gDfrivoDf/va36nSBoPVAgj+0biWEkL0HyqpBuGugXNtgwN/5b33rW/7r97znPSoaOvTQQ/334NJ09dVXy49//GP/PZShgyC2GFdddZW88sor+hxCqJtvvlmFU5MnT/b3ed3rXif333+/CqgM9GXdunWRbUJ8i+8rC+5jge/hhx+Wt73tbZJIJPS92tpaDdg/8MADvqgJ5fQ+//nPD+j+EELISIG/eRA0GemaZknX58vIRRGYB8QT0jttf/8z/E12vz/21mJ/f5yfkFiB7zk8EkIIIYQQMhEZyYSMKPES5iVYVxmLjOXkFkLI0EFBEyGEkGEnvLgeFtBgQIpSNcg8RtB15cqVjivTclm9dr2T2ZxVAVPH5tUBIRDETKCUi1IxoVBY5ITPn/7eJbpBOIX2m/ZfGngMi582PXiripbwGKaUYCqqD6UEUNmKWtmwbq26akDUZKAc0Jve9CZ1bupvfW5atxJCyN4DwWgsJhlHHHHEoNr73//9X789uHL86Ec/8kXCYT74wQ/KBRdc4L/+5je/qYHnMHBHvPbaa/3X5557rpZ+iwJOHBA7TZkyRV9jkQxiqCh+//vfq0DZ+P73v68B8igOOeSQQB8g0nriiSci9yWETDzGgiAff7PglGf0TlscKJkdRXgegGPy/k4id911V5+L/WAo7025zk9j4WdCCCGEEELIeAZu2lEgQYEQQsYqFDQRQggZNKUWr/EeFsEhZrIF8LCABqXTduzYoW24gc116zdIF8rhxJPqwKRfXMnKgDgIAiA8x6K/iYqKuSiV45Rk+6U6d+sG4RSERgtOv0gf6+cu1n32rH+p7NJzUa5QpehLADX9qLd6ny95k2QTVYGsbZQBgoNGqTJCYWjdSgghe48VK1b4z+fMmVNU0FMOcDX85S9/GRAeNTc3lzzmsssu859v375d/vrXvxbsA/EQPjPgqlQKnBNl4Yxf//rXWko2zM9//nP/+cEHHyynnFL6e/Gcc85RsbPhXishZGIzFgT5y5cv959nJSa9Uxb1ex6QrZok6UmzAn8H+xINDfW9KXeu4J6X4iZCCCGEEEL2PmvXru3X+4QQMhagoIkQQsigKbZojoVsBEHDn7mL4i+++KJ89KMflb/85S/+5+rM9OjjUjPvIF3Qn3X8GerAlKyZJJlUj/S2t6p4ycREJlQCpVyUynFKsv1wLmzhfcMl6EwchT5aX12HpyjBk+sUFeUa1ZcAyj6fctx7pf3gd0mqfoa+D3cmOGUgE+Pkk0/2M7QtoIDAsAVA3PfCgjNCCCHDx5NPPjlk7kwIlrvuH+94xzv6PObAAw+URYvyQfVbby10Fvzzn/PC31mzZslRRx3VZ7vuubds2SIPPvhg4HO4SN1zzz396ivK0L31rW8t2VdCyMSkv4L8kRDYPPbYY/5zLTWXzCcigHLnAenGOf7z559/vui8y65vqJMVyi3z4J53LAjOCCGEEEIIGW+sXu1VtQizZs2avd4XQggZKihoIoQQMmiKLZpjARsBTIhs3M+wGI4SacuWLZMlS5YEFvuRvbxu01bp6tgjHS3r/AV9bImqWsn0dusG9yQTE5lQCWIi100JuEEC183JxERRwiPsd+jF1+qG526wwc5loimUpMNnwC0ZZw5PrhuUtWNOUvisXNeoYmSr6mVtd7Use3yFlqNIJpN6z5955hn5xCc+oWWALKBwyy23+IGFqPcIIYTsXUETvgMHw6OPPhp4fcwxx5R1nLvfQw89VLLdctuE6MktdRduF9/7e/bs8V8fe+yx/e4rnAghliKEkP7SX4FNXw60pcRReH/hwoXy8MMPR4qSjHLnASnnWCQwQGgaNe+y6+tLgDRc4i73vHSAJYQQQgghE5WRciuFi3cx4RKETnRRJYSMVShoIoQQMmiKLZrbQvaZZ57plx7AtmDBAnnjG98ov/rVr7Q0Go595JFHZMOW7bLsyWclXtesJeYgFopyTopXVOljWEwEXIFSVJDAfS9KeBSVKe0eY1nTJppCSbrwOYo5PIWdpPBZua5RpWh57C7p2tMm67bskDnzF0pNTY0GOyBswv3Gc9xz/BxMeOb+bIYyg5sQQkhxstmsPPXUUwGHJiw2ffnLX5bjjjtOS7dVVVXp3204E11//fUlS4jCqcNAgLupqams24+FNQMBcCx6uX2Ee6Lr6FQO1dXVMm/ePP+120a4r/1p1+1rVLuEkIlJfwVK/RXYWPtwmw0HIi6//HL9DI9RQQEci4DB+vXr/fc2rnu1YI5R7jxgy8oVsmz5o+piizKcF154YdF5VznXN1j3pHICIeW6OhFCCCGEEDLeGCm30k2bNklPT0/kZ1h7oosqIWSsQkETIYSQYcMWsuH0YIP4K6+8UgfQeA8BW6O7u1vWvPqqdO/aJh0taySbSatYyDCB0qT5B0tFXZO6MYXFRGGBUlSQwH0vSngUJYKKaseET3CNCouvXIcnEHZ3Micpc56y51FiqnLw+3f06dLwlk/JEae9T4MdbnB68eLF8oEPfEBWrlypPxf72fziF79gsIEQQvYS+C7cvXu3//rGG2/UoPBXvvIVFfa2trbq4tOGDRu07Buc9vbff3+58847I9tzg+Xud2pfzJmTd/tIpVIaJDe2b98eEFENtN21a9cW7Wt/2nXbjGqXEDIx6a9Aqb8CG7QLl1kkCJQKREQFBXDs9OnT/b9zcKDd8swDBXOMvspMB5IXOjt0DoVSo26p7oFc32DdkxgIIYQQQgghZPjG2wNl3bp1gdfp2imBz+iiSggZq1DQRAghZEhwM3XDWbsYLMMhCFt9fb3vIATRDZwoQMWkyfkvp2RlgYDIhEatKx/1gwFhoREe4d4ksZgKjKKCBO574dJy1oa1aQIj4LaD99ff83PtR+fWtSq+2v3qcwExUlR5uXB/wgKmgZafC7SbrJKu/U6Rzn1fLxs2bdagBwLVCE5fddVV8qUvfUl27NgxoJ8xIYSQoSs3B373u9+poAjg+xAOR3V1dQVCoHe84x3ygx/8oKC9lpYW//mUKfmFqr6YPDn/nQvc7wW3zcG0G/6ucduFm1Ntbe2g+0oImbgMtwMQ2r3mmmtk2rRp0tbWFnAjQoIGAhR4jAoK4Fi4KFmCQaa6QaYf9dYBu7LimOr6Rn2OMT2+S1xnvb197xgIIYQQQgghE5FyS7aNlFtpOJEs1ZR30d61a5ecffbZe61fLG9HCBlKkkPaGiGEkAkLSi5s3bpVHxsbG/1M5Y9+9KMaDEVpmfb2dl3Yt8X91KRZ8tqPf0uyVfUBFyaIkVx3JlvIdz/DaxMlGXhuoqDw8eXitgmxkStGMvAaIiYIp2KJpLo0AXdf6wfcn6KCFyaKQjt2DK6tu61FettbZfVt1weus1/EYpKatr+WoOvu7NTJjN3zhx56SM4//3z5yEc+Iu985zslkUgM6D4RQgjpPytWrCh479xzz5VPf/rTsmTJEonFYuqqh2A1vkPhogcQuIZb08KFC+XUU0/1j92zZ4//HILhcgnv67bjPh9Mu+F2hqOvA1nQi7JkN+COVcyenRAy8bjgggvk6quvllWrVmlpUDzH3+uPf/zj+pm7H3D/fmzbtk3nRCDVMFdes+B4ec1xpw2oH03HnSYH7r+fbH7gN9qXRYsW6d82lBodCXC9UddMCBlb8PeXEEIIGbhT6Wgsrew6NGWSVZKumxb4HHOIpqamvdKX0X6vCCFjCwqaCCGEDDnI2sVg9f3vf7987GMfk9Wrg+KibCwh3fOOko2bNkvLz64MiJOwmZAI7kbmxOQKjUz4BMLvWem3/mQ/27Fh8ZCJqMJt2fvp7g4tb5dNp6Rp/6W+ACl8bJQgyURRVq4O14z2JJuVTG+3OlHhc9wDbACl6vojbpq+9G16bG8mJRs2bpI5s2f5weDvfOc7cvvtt8unPvUpOeSQQ8pukxBCyNA4NEFQetNNN8lZZ50V2AeiJoib8NnJJ5+sgXMTNcHx48UXX9QySOFAlL1XDuF9UVKpWHBroO26bQ5XX8sBrlflgnu7c+fOfrVPCBnd3HLLLfr3FKWXzzzzzH4f/773vU+PRzlOiJSQvHHcccf1eRySB4a2r4tFLnir/wp9wUYIIQNly5YtvHmEEEJImW5DiHUsXbpUX+/tUnLl4jpjZ6smqVNs+Lv/ta997V6ND+GewdUKrylsIoQMFJacI4QQMiS4pRewAA8XoAcffLBAzJSunSodB79LemccLC2P3eW7Grnl1yDwgdAnk+rxhU19lWZzS9L119XIbc/tR1TJOmDvQ2CEfkJ4FD5vsWMNK20395RztVwdzo/rhaMTyubFEhX6HEA0hQ2OTnBucu9FKXBuuEelujtlXcsOSdcGy/YgS+KTn/ykfO1rX9MgDSGEkOEFf2/huvSVr3xFfvrTnxaImcJAFAwRk/HKK6/IzTff7L+Gm5MrhBoK3DaHq92hapMQQooJg97znvf4AiFkKuNxIGBeg/KgViZ7OBlsX4frHhJCCCGEEDKRMbehRx99dK+XkutP6TY3kSwbrxDBVuTz4cbK7uGemVMTIYQMFDo0EUIIGbJBKkRMf/jDH+S8886Tzs7OwOfZRKV0zz1SeqctFonFC1yMwiIliIQgxqmoa1LnIrecW5RzEp6v+9uNvquRKySCCAiCI7goLTj9ogJXpmL9iBIjRbk5hUvH2X6usxIIu03ZvrZfPFkph158re9QVVHXqPvjc3WCyqRl50vL1MWpWP/CuNfWcdDJUrHlBana+ITE0nmHi7vuukseeOAB+eAHP6iZGtdccw2zJgghZBg4/PDDdesPKHP0wx/+UDKZjL6+7bbb9HsWVFZWDsi5KLxvdXW1/9xtczDtum0OV1/7a7lerOTc0Ucfrc8POOAAmTt3br/aJ4SMPiAWxe/+b37zG3nd614nt956qz6GXUl/8IMfyP/+7//6ZeRKgaQN2xftlDr2T3/6k9x4443+6/aD3iHZCq9EdSlqDzlVatrvkJ6GuXLCaW+XfY59m8w5Ml9mtGblXyTR6bnIHXTQQfKf//mfsjfuYanz9OceEkJGF83NzSPdBUIIIWRMYG5DQ+XMZI5P5bgW9ad0W0CwhCTseHxQjtej8d4RQiYmFDQRQggZNFu3btVAARbvUc7M2Lhxo6xZs0bS2azEk9Uy6/WzZdr0A4sKgyDcgXhp0vyD9bV95u4LXDGQgdcm/Alj5dvwKOIJmlzhUthJyfphLk0uYcGTfW79s75aOTq3vbDoyYDgyb2+cLk6bE9/7xJtL56s8oVO5ZTNC9+r3pkHS2rKAqla95hsfeY+rZ1twdsPfehDWtIIk59vfvObtIElhJBRwJw5c9QS/Omnn9bXjz32mP9ZQ0PePry9vb3sNt3valBXVxfZ5mDaddscrr6WQ38EShBdhQVdhJCxx2WXXeYvmuMRC/ePP/54we83SjCvWrVKHy+55JKSbeJzd59Sxz7zzDPS1tamzzMVtdKeqhRJpfrsd91BJ8uBB53sJzeseegOfc/oTFdJZVubzrHuvvtu/ft28cUXy3Dfw1J/F/tzDwkhowuOeQghhJDygJBoKF2Z+iNS6o8gKODQhITyWGLEBU1Dfe8IIRMTlpwjhBAyYGAb+tWvflXOPvts+eUvf1kQdFy3YaMOlDOplKS69vjuSxDfwNXILScHtDxa527p2Lw6IDLqq3ybKwxCGTdzRDLgzITScHg0rKwdHq3MHJyc0EeUfkM/zDkpqlScKyhy+2eCJ4CScVY2DmImO2+Y8PVFXS+uyWsrq+KoMHZe3Ne+ytEhQ7xr4YmydssOddKCqAkbnqMkUE1NjZbV+PrXv64BCkIIISPLwoUL/ectLS3+86lTp/rPd+zYUXZ74X2nT58e2eZg2nXbDLfb0dEh3d3dg+4rIYSUKm+ARyz8oyx2VACg1Gd9UexY/H175JFH/Nfp+mmRx7tlrsuZb3hteX//MG7HeTBWH65yFe49LMVg7iEhhBBCCCETkf6MocsdlxckjyVQci4hWYn5b4VjN4QQMlagQ9MAefXVV+XAAw/U4O+Pf/xjdbXoD6gb+n//939y//33q403HDFmz54tBx98sHzgAx+Qd7/73f3OlIH69uabb1ZL8CeeeEK2bdsm9fX1mtX9hje8Qft4xBFH9PNKvTIN3//+9+Wvf/2rfnHiSxGBBARWzjzzTDnnnHNkypQp/W6XEDI2QckbLNLjb82TTz4Z+AzZwlhgn7PPAkk1zZNUNi7xiirJptOSzaZ9MQ/ENxD4QFAEzPEoXErOXIdwHERO9ug6N0F0BAGSlWyD8CcsfPLKzF3kBw4gnOrYslo/Q3vY0IeeXdt84RFId3fq/q7rUZQ7lJW0q5m2j4qNIDxy+2ECLrSNc5XjrBT1GZ5DaJXp7fbFYW7ZPLf0nftZMSHY9KNPl5bH7pQZiw+X9jVPS1dXlzQ1NWkJC/DnP/9Zt6OOOkre9773aUmeWCw/CSKEELJ3gNDUwLzB2HfffQPfweWyYcMG/znmHNOm5QPueA4XJFsIG2i7YWckt6/W7oIFC/rVZlS7hBAy0IzgwWQLFzv273//u46pjdTkvCDVpViZ6/D4PzgfekXmTWvWv4OYc8G9b7gywcul3HvYn7IahBBCCCGEjGeGw7UIScqoomHAKVZicclW1Eis10uORsyYEELGInRoGgAIIkAcBDFTf0Em8kc+8hENCv/gBz+QF154QVWxaAsuGH/84x/lrLPOkqVLl8qzzz5bdrsoQXH44YfLBz/4Qbnttts0QACBEzKaYXd+zTXXyJIlS9QCvD/9/u53vyuLFy9WB5bly5fLzp07tV0snt13331y6aWXygEHHCC/+93v+n0vCCFjBwyIIeT8xS9+oX9nvvjFLxaImcyRSf+evfySrH/6IRXfVNQ1SWXDFDSioh8symOBHqIfCItQXs4ykMPORLbQj+PcR1ewYwIfbHhezKHIdYUyMRMwMRD6AAcnPMYrqnPXnQ6crxhW0g7tog+4rnDZt7mnnBuZaV3KWckNdFhfzfUJQQ27HguEuOcox7HJu99XyeQTPiC7ujP6c97Z2qZ/790ANsobff7zn5cPf/jDKpyF0JUQQsjAgFBo9erVZTsUge3bt/vP3UQCJFgY5thRDitXrgy0EY8Hp4UY30ftWwoE8N3vByRquLh97U+74f3C7RJCxj/lOgv1x4FouLjjjjv855lklaSa9oncr5gLU3j8H5wPtch6Z4z+yiuvBL4f+mJvuimFfxaumIoQQgghhJDRymiYUwykH7t27QqUnNu8ZqUmam/ctNl/zxU8EULIWIKCpgHwiU98Qu69995+H5dKpeT000+XG264IfA+3DBmzpwZcL2AQOn4449XwVNfrFixQk466aTAvghKwPFp0iSv1JHxve99T84444xAZncxrrjiChUsuQIoZIfD8SmZzJt7QdWLNm+66aY+2ySEjB3wdwJ/i66//no577zzVMgEIWaUmCXVMEc69n+zTHvde9V1yVyObJEem71v4pti5eVcwkIjPELMAxckVxgVi9vfpFjAocgFTk7ar1hMamd45eaaDzjWd1xCH+DkhMfGRYd75eim7+tfg1uWLlwewkraod2owESpsnnhexN1/dYejj304mt1w30zlyv3cztHqXajmH7UW/VeplK9+nd/3YZNBfusWbNGJ1H493D++eerex/Et+V8pxBCyETn17/+tTofwUEVTqdw8SgXV0R86KGH+s+RBOE6KD7++ONltQfhalQbUe+5+5YC4lf0oVi7EDTh2vvbrrsfAvGYOxFCJhblimH6K5oZ6mDF5Zdfrg7elhiQmrJIyzxEUWpu4I7/7TWcYL1y2Qv9UtGYl/32t78tu3/9KVcxWMI/C5amI4QQQgghY4HRIsTvbz9aWloCrze98JgmRmxY80//vS1btgx5PwkhZG9AQVM/QMAWCz8I6A+Ef//3f5e7777bf33aaafJU089pa5HmzZt0kUvLPKYsAmK2ne84x0lHZWQ4f3e975XWltb9XVFRYX813/9lyptUZ4BbTz44INyzDHH+MegfNCXv/zlkn2988475corr/RfL1q0SG6//XbZvXu3Lp61tbXpol9DQ4O/D5yn4AZFCBm74O8NSmF+/etfV6EiRI2/+tWv9Pc+TDYWl96pr5H2g98jnYvfLJtXvyQtj93li46AuS5hwyI8gJDJPguLhcJOQmGhER5NCGUiHbxOVHmleJI19QWCIms7k+r19qmulymHnCiVDVOlfu7iguvC/ua4BOGUBRrCblGuSAjtoD20W0ycZW0//b1LdDNhFDBnJbguuaIp0JfYC8dGfV7KFSrcJzuX/myyWQ2WQJzWfvC7pHfKIslGlJlbu3at/PKXv1TnP5Qf/eY3vykPPfRQvxxHCCFkIoHyaq6D0l133VXWcffcc08gi+6UU/J/81ESdPLkyf5rOLX2BZIg4AzrzknCuO/BAaScJIs//elP/vPGxsbA/AMkEolA38vpK+ZfrttJVF8JIeOfcsUw/RXNDDRYESWEQgLbd77zHZ1P2dypd+r+0l/CQid7jXkJ5ift2zfLnH3302QzlJ6DWBZOuqON8M9ib4qpCCGEEEIIGSijRYjf337ACdxlxuGnaFxg1gFL/PeQEOG6OI1V9ypCyMQjlkV9GdInUK6iFNw//vGPgs+QgYcSdKXAwg3KI/T2egH197znPXLLLbcUlHcAP/3pTwPtfeMb35B//Vcv2BzlovSf//mf3g8zFtM2IUIIg/PCHeovf/mLvq6qqtI+zZs3L3Lfgw46SBf2AL40EaSeNm1awb4QML3+9a9X4RR461vfGgg6DCVYFLT+4osXi3eEkMGD0pT4HccGd4W+BrWZqnrpnbxIemccKFnUYs4BUQyEPhgoA3uOBXjw5Lcu8B2FjvjsDb6YBsKg3vY2yfR2qcMSREmzjj+jpCgIx7hl1ax8nQmoXKxf7j52nNu/8P7opysWsvNCdAR3JPdc7rWH23OPRSACYiwX9AuOS+Fz414Va68UxfpZ7H2373Zvwvcx1tMuFS0vSMX2VyTes6fk+fH9ggA7vhuOO+44OmkQMgRwDDQ+gHvRPvvso0kHoLm5WcfbriApDALk+Hu6bNkyfV1dXa3j4KlTp/r7XHjhhX7CBd7HGL+UixGSEMwxFvshqQKBcRcE5OH2akkTF1xwgfzoRz8q2iYSNLCoZaWP0KeoBS4IYc855xz/NUpYn3DCCUXb/dnPfqaOgMbDDz8sxx57rAwl/P0iZOKCv0dYQ4E4H6W1ywF/25D0gXUTJJRdc801KtL5zW9+I1/60pf0bwrWKqYdcoJ0LTxpyPrqzoFm7bNAalblXf6WLFmioiysCaF/eI7Ax1CJh4ajTULIyMMxECH8/SKEjB+++93v+u6t2VhC9iw5D6V8JLn9Fal5JV9xCBUXFi9ePKCxPtZ9sI6FmDHWngghZG/NMejQVAbIHj7iiCMixUzl8r//+7++mAkZywgIRImZAMo6IWhgwPUiSmDQ1dUl117rBcHBueeeGylmAlhou/nmm2XKlCn6Gg4aV111VeS+v//9730xk33BRYmZwCGHHBLoA5ydnnjiich9CSEjDzSsCKT+9a9/1Qzij3/84+rydvXVV6ugqZiYKV03VbrnHKluTO2HvE965h4ZEDOFHZfsuTkOYQEezk0o9xZLVPhOTCgDBzGNJ2bSHgbcl9wyb+ZsBNyyapppcPwZkU5GOB4iIoiG3H3CpRzKcT4Ku0WZSAj9w3UWc4ay4AOuE6h7leN4lOra49+PcIm9Us5KYex8G/5xs55r50vLAk5SYYcp3Ptw34uVvshW1knP3KOk/dD3SfvB75buOUskXet9n4TB9wucASHGhXgXEyFMqP72t7+pGyF11ISQiQrG/hdddFFABIQkBoiWigmgIAwyMRP49Kc/HRAzgU996lP+vAKloM8++2x/3hHmxhtvDJS/vvjiiwvETADvuQtZOAbHRoFz/b//9/98MROcmNCnKDDmgKjL+MAHPuCXZgqDkqaf/OQn/dcoxz3UYiZCyPiivxnDjz76qP4Nw2O5YLHf/sbiEa9R3gF/JyEEPfroo2XWvH2le97RJdsp5lBbDBung6duvV7W7cg7/mENBvO7oSqREb6Po6XsBiGEEEIIIUPNWHIdKtXXl156yX+eqZ2sYiaL6xTbr79j/dHiXkUImXhQ0FQClIM79dRTtewbgrDGxz72sX7dZJRKQDayKzxCRnYpLrvsMv85ggO2OOUC8ZAFDgCyBEuBcyIj24A1OQIlYX7+85/7z+Eq5ZaGKJbViIU7w71WQsjIgtI2WODG7/UXv/hFFZggePjVr35Vfve738nKlSsjBSZQ8aca50rX/NfJnsPOlo6D3ik9sw+TTG1zQIzj4oph7DmcgExUAyFQVeN0FS+55dpAvKJa4hVV6tCERxPyuCIcCJ1csZOd01yFooIBeB/HwJkpSpxUrFRbsc/CgQfrH67TPQafr7/n5/61u8IruDHNe+P5eWFTNutfk10P2oPQCO9b+bm+gh3Wl0zKE6XFk5UBURTag/MTSv/h3BBSWd9L3cMAsZhOiHpmHy4dB79L9hx2lnTNP05SDXO0BGEY/Nt68cUXNTsE5VAR8IbwFtnrN910kzz55JOB8kuEEDLewRj/gAMOCJRpgwPTvffe64/L8YjXJ554YkB8dNhhh6k7axg4q37iE58IlLLDsY888kjAbRaOrx/+8If99+bPny+f//zni/YVn82ZM8d/jWM/97nPaVsGzoFzueXzMCc58MADI9usrKwMLJIhU2fp0qXqbGLCLrhD/fCHP9T7gjLXlpwBITYhhJSiv8IbW5DH36Fygxh2DMa1eITwEmNb/O0yujX5o1AsGjV2D8+L+sKO27B2jc7ZjG9961s67h6KIIN7H3FP8LcYSW4MXBBCCCGEkPHGWBDvm5Dp8ssvj+wrEoxdkwpXxJStmiTZRKX/+rnnngsc25/5A8tIE0JGCgqaSgCnJDhKGHV1dXL99df7JR3KZfny5ZqBbUAg1RcIAixatMh/feuttxbs8+c/5xe+Zs2apSV++sI9N4IRcNFwQYbhPffc06++IgsbpeZK9ZUQMvwgAPrqq6+q2BGDWji9odTkZz/7Wfm///s/dWCy0jFRZBNV0jtlP+lcdIrsOeIc6dz/NOmdfoBkK4NOTOUAYQzclFBKDuIZE9XgEa/hmoR9IPCB6GbOSWdJRR3K42T10YRBrmORCp5iMRXmuJjLEx7d8xdzThpIRnSxwEMxpyd8buX1opyP8IhrT1bX+/fH7tm6u28MOCyZoxIEUm5/w9dgfWlefEzunp4dOCeES+gT7r0CIVssFijB19+ACpybeqcfKJ2L3+z9m1n0Bi1H6E6SwuD7EN89CFZ/5jOf0X+jENvi3yy+19auXRsptiWEkPEAynLie9q124UD0xve8AZpaGhQkdGkSZP0tTtOh2gJCQ44Pgo4urpJCBAaWdlPJB5grgB3Vvv7inOhzBLOVQwci3E93GUBjoWjI9pCm/gc53CFUyeffLJ8/etfL3kPUNrpC1/4gv8aDk3vf//7tS+wJMb54CBpYiaUUILT35FHHlmyXUIIiVqML5XFbAvycGgqN4hhx6BE3QsvvKDCTLh5Y90Hf88QPOidli/hUIxSjrFlHbf0bdIz69CAgzf+tr7zne/U/g2mNJx7H3FPtm7dqn+bWW6OEEIIIYSMN8aC65CJrkBUX5E0jPkAwJzkiT//Oh9HiMUkXT/d3xdrODDhGIsipbHkpkUIGVqSQ9zeuOXtb3+7llbbd999+31s2L78mGOOKes47Ldq1Sp9DiFCqXbLbROiJ5SksGAG2j3hhBP8z7Egt2fPHv91uWUdcH6U0QOvvPKKiqVmzJhR1rGEkIGxa9cu/Z19/vnn/a29vb3s45HRiwV3DGjTjXMlPWmGSITLzkAwZyQQT1YEhDyueMZdwMdziJJ621tV2APBj7k9AYh3zFEoikyq1xcxQQQE8Q6w0gzh/lkfrHSc9cdem0AK/bBjTExl/Xb752IiIWsvCrSPewRB0571L8nOF/MBYSWb1c8mzT/Yvx7rb9Q1FOtLVJ/s2iCoctvrb0AlQKJSUpMX6CaZjCT2bJFk2zqJ72mRRPt2iWXzEyUXfB/huw4bnEoAgtoQ9iKAjw3PSwXdCSFkLIH5xOOPP67C49tvv91/H9/h4e9xiHngjAQx0uTJk4u2iRJxKJMNp6af/vSnvvsiREEmDDKw+INS1EuWLOmzryidhGSH8847T8cZAG277rWuCy0SP+DC1Bf//d//raXzvvzlL/tOfVh8Q511FwivrrvuOnWXJISQMFjIxuK+Lejbc3cx3s24jlqk748DkXs+lATF3+Y//OEP2j7+Nq5bv0Ea3vLpwJwqPM8w+hq7F8Mdu8tRb5Z9GudJywvL9O8nxLJw48PaFUSnfV1DsaAF3g/fQ7s35RxPCCGEEELIWCE89h2NWKJBsTH4Aw884D9ft369dHd2BuIIqaZ9JNnmrbdg7gOXpkMPzSdHjBX6mtsRQsYvFDSVAAEEZBn/x3/8hz4OFFv8B8hoLrawFAbBBgN/pKGahRuSW8bHKFbWIUx1dbVmPsPFBbhthPvan3bdvlq7FDQRMjT09PTo7+zq1at1g2gQGzJl+0OmapKk66ZLun6aipgyNflayoMlvFCPx3V/u9FzAXI+hyAIDkHmSuSKciA8MiFUprc7MOgOC3Lc80FwhOdoF2317NrmiZmQfZBzggqLlty2gPVj3d0/VXHR7lef8wVZ5lqEz8MCqagARbGghSuSgkgJJd8AHuHG5Jbfy6S69d6hVB5K9W1dsdi/fxB7WRt2X0r9LIoFTaLu5UCCKpHE45JumKWbkklLvGOHJNq3SkIFTi0S786LZ8Ps3r1bs9yxGdOnT5eFCxfKggUL9BHbPvvso2WICCFkrIG/aRAg4e8cysLed9996vKBv39TpkzRoPSb3vQmOfvss8teZIKo6cc//rGKmm688UYVIm3YsEEFQ2jziCOOUHcklIvGnKBcIHxCKW64kaCE6IoVK6SlpUWTJNBPJEfAaQ9uTf0BDpLve9/7tM8QdmGMAxc/CFghZoUDLEp9414RQkg55SGiFrfdxf9ibWBehUzn8KJ4WLwTPh/KbUJIhPUZrB/BNSlbVR9oI5yEMBTk27xLpn34q7Lu7t9JV2en9gUOenBqgnOfmxBg17J582ZNYrvooovk4osvlrPOOkv/vhcjStzEIAIhhJDRCoL6bvJ2ubzrXe+S3//+98PSJ0IIGU7RFeLGrsP37P0Olg3r1gViBhA0yasPBf5WFltrGs0JDH3N7Qgh4xcKmkrwxz/+UcU/g8XNNHbLS/TFnDlz/OepVEqtAq0/27dvl87OzgG3a4ImlPYp1tf+tOv2NapdQkjfwKkGC8wmWDLxEgKc/S3BlY0nJV03LS9eqpsm2YqaYfsx2KI6yqKBsOuPfd7d1uI7D0U5A7nuQWGhTpRbE84395RzVWS0+rbr1ckoWdckvbu363kgSkJ76oYEAVE264un7NwAQiETLKENCImUXEm2cD9NBATBFM5RyjnJvUcmksI5TOzllX6DsCwrtTMWyJRDTpQN//iViprQD1wrzos+47m1AdHVoRdfq8/t2lGaDw5WfQVNou7lUAZZCognJFM/TbfeGQd5t7a3U+J7tqq4yRM5bZNYJlW0CQTPsbmljSDyxfeiK3LCBkEtAu2EEDLagQMStqFk6dKlug0lyWRSzj//fN2GEvwNv/zyy3UjhJDBLmhHLW73lXFdalE8LN6xfQ8//HB1urM1E2RBz1hymkw5+h0FbYQTKYaCQJuJCpl+zLukZdnvZW5uXQYuvijtDFGTufvZtViSHMAcE+VHSwmawjCIQAghZDSDskuEEDKUjGaBD1i2bJkmhxnTjjhVmt4cNKrIVtZqrAjJxuCvf/2rJqZVVVUVtNffBIa9eX/GgpsWIWR4oKCpBEMhZgIIwBrIji6XcFmJHTt2+H1y2xxMu2izWF+RuV1bWzvgvvaXsJgqjFvaAo412AgZy+XiICyE+M82CJe6u7sL9i2n1Fa6qkGydVMkXettmeoGSQ5R+bhy2Pd1b5OX7viJOiNtvO9X8prjTpOm407TR1BbGZe1j9whPXvaJN3TBZ2QNNUkdR/7DI+vcY6JYsPjd+u+TXMWSkvOiWnbE3/WY60sW++e4N8fnKu3wxMBgcqaWnnhhn+VVFeHvo/jXepn7COzjzhZXrn3Fr/vc448VfuF8z9z3SXS2+mJoypqJ0nN5Bmyz7Fv0+uxe4E+NsxaqOfBZzge71ubkxe8VlpeWO6XxZOsJ1jL9nZofzK9Xs3rzq1r/WvE+fU+3/kTPTeuq/35e7VNuz7cg/3fcr6e3+1TXz87tJHp6dD20Ne9Qs0kkQb8217ovc5mJN7VJgl1ctomsY7tkujO/9yKgQkbtieeeKLAjXD+/Pn6CCcnbChdRMhYhGMeQgghE52ohfLwgvZAFrdLLYpDHIo5m4lEP/rRj8q2bdvk7rvv9veBI1Lz8WdLaup+kW1ElZYbrENquM2pR75Zph18nNS+cBvsX/U9BCEuvfRSvWcQ+5sQCdeC/mM+ivEFghi4t+Xeu1L3a7QHewghhEwsQVNjY6OWuS4HVNUghJAoRrNDKZxib7rppvzrWFxSzfMj9+2dssgXNGEtHW6z73znO/tMYOhrjD+a7w8hZPxAQdNeAHbeRn190H68FOF93Xbc54NpN9zOcPR1OARkKGnnqo4JGauY0GLM867FcvSffyqZTFayqR755rsWF3wucrFmAGOQ/YEPfEDOzO3zpmsvkc6dO6Xl4d/Lew6dId///vf1/QsvvFBL4xg49uq//Ewd66bWVcrn//Vz2hYEX8/f8WPfQaKyslLL6wCUrMHAHG2iPjSykDu3rtM2mpubpX7KPO0LuPrqq/X9ZFerdDxzt9RXJfXvzMt//qn2Df256Zm7ffEQHID+5dKL9Tn6cfShM7z+5q71Pe95j3Tu2KLHYoNYrb6qyr+uL33pSzpxABCPQphqfbF7ANcOlCPq7totT157iR4rh37ev4d4dMVaM6ZP075/6uMf1nME7rdzL+1+2mfffzh/rfgZhPcd62ByZ86EhIxFtmzxHOQIIYSQicpILJQ/+uij0tvbq48Yy19xxRXy8MMP+59nJSZdC15fVMxUjP6UoStX/JStbpDOA94qNS/dJZtf/acmjMHl+5Of/KTOc6KESK95zWuG9J4ymEEIIWQ0CZr+7d/+TTdCCBkMo9mh9JlnnpHnnntOn2Psv27TFpmW3Cdy3rBxwwbZuvxRmTd3jiZlwHH2bW97m8ZTBlNyejTfH0LI+IH1WPZyVn1FRUXZx4X3xUJaVJuDaddtc7j6SgiZGLzpTW/SATAew0A8A4EPMCEO3gPmStXa2irXXHON77jjZheomMkER8mkL9D53e9+pwJH47LLLtNMZAgk3/zmN8vu3bt1MQOiS/QLIiYInvAIcZD1xY41YSXcsgDOBRGU9Qf7WykzZHqhD3gf+1s7dq0QU6E9CDxxPERWeIRYCZ9DqGTnQJ9xLWgPG2xfsX31q1/VvtuxuD923Xh0+2OiB7cv4b65oB/4zMRTANcatS8hhBBCCCEjCRbI99tvv726UG7n/NSnPiVf+MIXgmKmWFy69jtFNq1fpyWcITwqF4iTqppmlFWGzhU/9UWmplk6Dny7rF6zRjo7O2XVqlVy2223aYJHlLh/qO/pSPyMCCGEEDeuYYF9sGTJEt4cQsiggYjn5ZdfHhH3oXPOOUdjGXiMwi0djTLYXXt2FZ03tDzxV+nq7PAr5UAAdd999w16jD+S94cQMnGgQ9NecoYwYqgRNMRtDle7Q9VmuZiAoFTJObiVgAMOOEDmzp27l3pGiEdXV5f+O9ywYYMO+PCIDe8NphxQJlkpmepGyVY3Saa6SdLVjfpaEmPsT/TR58uJR58vkDP+6x9eCnz08A9+rG5F3/mB56Rkz5dXHCLdqVy5tWxWOjo7vQNiMak95FS/HRwPMVMsnpBFp52nxy3PfYZggkhGYomkvg9e86Gvyz3/8/+pe5H9bdnW3iOp7pT0dnRIV29az29l577xzatk+oFHy47trZJJ9WopuenHvVumo1zD3b+UdG+39DTMld89vUUS1XWSQCDiuHdr/9DPmvY79PMTTnu7dLVul2wmJRs2t8hr3nSO9K7zrtnY2drqOczFYnqehSef6V+PldSzMnUA7UuuDQib3Hu7IdefTM6lCX/CUQLP+oKydzWTewL30s7R1eYdg77MOPg4qeh+1j9f+Oc3Jkj3eiXrutok3tUqMTzvbJNYeuC/myjBgYwV2+bMmaMbrMijaowTMlxAhEkIIYRMZMKZwlGlD8oteYb9Lr/8cn1+5ZVXRu5rbX3605/WOZ9b3jgbT0rnfm+UdOMcafnt98p2WypVhq4YED2ZQ1MxVt92vex8aZnEk5Uy56SzRZJVyDLz3Gk7O2XlypV6T7773e8GSuqUKh/XH9z7jmAGXsP9iaXnCCGE7E0gZnKTrI844gj+AAghYxIbX69evVrS6bQmUJ944omBuc727dtl2bJl/jGz9z9MNry6uui8wZtX3ClzpufXGO+880455ZTS85KhmjO4sFQ1IaS/jLFo+dgECtqBOBeF962uro5sczDtum0OV1/LpT8CJfQzfA8IGQogqsFgcO3atbpBDGPPB1vyJxtLSKamSTK1kyVd06wZtNiyFTUqbgmgGoyUjBXcUgjAfb7pwVtVJJSsmSTV0xfI7lef0+dTl7xFWjtTEkvA4a3LEzFN31c6t66Vmmn7yJqH7pCOnowu9mNfr50eWfX3W/z3cd5sJq3nSVTWaHvWl7TzdwlCKGsDoB2IqkS8+442Wl5Y7reFPtUddLL32V9/oUqhrSufkNYNr6gACu2hDzgf9qt+5QXZ8lw+Y1vP0dutfS3AhKPZrMQra/V4tANwzQiI4LiX//oL7Wfz4mMkXlGl7eHR9sV1rr/n59pniLmy6ZRUTJosmYzI9leelVTnbn1+8Ee/qfuHz+GC/Q27rrFHTCTeJFKLLVcrPJuVWG+nxDt3SLxjpyQ6d0pct1aJZb2fdV+0tLTIihUrCt6fMWOGXzLS3SZPnrzXBcFk/MMxDyGEEBJc/EY56a1btwZKH0SVQ4haLMdrHAsgbML74f2sLXx+yCFe0gTIJiplTe8k2fKb7+h8pxzBUbll4wYqfmpd+aiOezFfwHlmHf9eDVZMqqmS9tZtutaybds2vTY4vk6dOnVIgwjh++7eu6E6ByGEENIX7toNktGmTZvGm0YIGRCDSZ4YCmw8jcoNqG5x2GGHaYUHxGFtzH3//fcHDCqmHPNuaXrTLJ17wEE2eu4Rk3TdVP8VkjZ27dolDQ0NI3J9fZW+pvCJEGJQ0LQXwJeB0d7eXvZxKFPkUldXF9nmYNp12xyuvhIyGkGmKjJtYbFpoiV7hAvOYMAitwqXck5LaTgv1TRKtmoSlDUyHnFLIaS7O1RMY+IhPAcVdY0qZsJrCJpsQD1p/sG6CN+0/1Lp2LxaBTodW1b77doiPp6rSKe3W9u2c6loJZ6QWcefEegLzgEyqW5tG23sWf+SnguCKQinTMAE8F7HljX4CaoAy4CoyB4xETARkZuFrUGEHLUzFvj9RztWTsL6ZaDPeN8CHLUzF+j1+P3uzZXiW/mozD3l3IJACV5r/2Mx/zp69+zICaZiKn7qbW+TFd/5uGZr4/6gv2hj3d9u9IVVdj77OfUnu3zUg3tTWStpbI1z1T1MyWYk1rVbEl2t6uqkW6f3vFxHJwgcsT36aP5nb99/EDah3CAeEUDCcyymDUTsSwghhBBCChe/EaR0Sx9gsXvz5s1ajnnp0qUlF8txzMUXX6wORkhmsYVyd7/Pfvaz8uUvf1nF6nDnxbxxzrx9pOmUj8qWm6/25z5IHuhr7GzzAMwj3PcGInCKEklhrmMOTdamtpvqltqX7pRExw69BpS8fuSRR1R8j9LcYUHYQMH9Rkk7u++4vyY6KydQQQghhAwFTz75pP+c7kyEkFL0JZSJmkOUK8IZCmw8bf2D+ynETBUVFf7859577/X3zyRrJD1pRkGcxp1r2PsbV6VknyNeq+/B/enBBx+Ut771rSN2faXYm30ihIxuKGjaCyD7zdixY0fZx4X3nT59emSbg2nXbTPcLkQdUP+WU1anVF8JGSkwyLPFZ4iVIGDCI14jQ3UwZCUm2ap6LRGnwqUaT7ykpeOS1YWOS+McE+wkqmoL3H8MCHYgaDJxEDIF8B4EOxDk2Gd67yC2icVUkPP09y5RMQ7OYSIp4J4HYiScH4IlEwXhGBuoQygFTDCFfSAS2vCPm33hEARORqa3S4MEGPTDIckEV64oCn033CBCVfMM6WhZ4zkwJSs0yIG2rF8QcKEfON4VgNn1mMAoFk9KNpv2zxsOduD4nl3b1E0K/fXvm5JVxyYTOpkIDOCc8SQcn7p8hyr0CfcfAiz0x6593BKLS7amUVI1jcH3IY5LdQUETrbFunfn7lZpIAZ+4YUXdAuDwJuJm/AIsRM2lP7AhJQQQgghhPRvcd/Ae5Zo5QrOoxbL7bhLLrlEF/HhJITSc+5+EKm/9rXeQj+EQEiIWbd5mzTUT490ZSrlwmQJBRibY0xucyYTOA1k3I12LIkE8x7MLwrOnayStV010vLoY5Lu7dH58Zo1azSTG8IvjE0hQiqnPFypoA/uN9q2+25lKdxjCCGEkL0paFqyZAlvOCFkwEKZqDlEuSKcoSBc5i187kWLFkkymfTLSacmz/cT6Ys5yPrvH/lmyWY3yaZ1azRO9u1vf1sFTSN5fcUo1ic6NxEy8aCgaS+w7777+s8hrigXiC/cUiOuTSqeY4HNXJQG2m64zJvbV2t3wYIF/Wozql1ChgssQKMklAmVXPESMnSRdTsYsvGKkGDJc1vKVDWIxBNDdh3jAQhhXJFRZcNUFdyY0AaL7CYy6m1v1X2721p8hyVg7k1Y5DehD4Q3bvYzggUQIrmYgMg/f05QZqIfEx/hUc/b2iLbn7lPRT+G69YETACEfkP8ZMEBE0VB1LR1xWL/vWR1vfbXSj6Ya5RbGg5uTQtOv0iPgaBL+4u+5u6Rex+wr4mhTPxloi8LWqBN3Cu4X9n9AnBnqp48278vhutelU336vHWZ8+harXeb1z7uBY0lXJ0qqiRNLZJM4OfZVIS79rlODrhMefqlCmvRB+y4LHBztcFAaWZM2cGRE62QSCcSPBvDSGEEEJIqcVvCHNWr14tNTU1BSKdqP3xHoRMVnrOzbzGnPKhhx7y950zd66s27Jdph99ur6OSjawcbY5ybriIjyaAAkUc311nVsjBUrOPuYi6547yml1y5N/k+6OdqmoqFQBPebPEDRhntzY2KgipHKynksFfYoFGsoNVBBCCCGDBd9tTz31VMChCSLeH/3oR3L33XfLiy++qMnbiKmglOw73/lO+dCHPqTjBkLIxKMv8U7UOHYkx7buuTHPeeWVV/Tvly9oal7QZ8lq9/3U6vtl/cMPaNLGAw94j3vz+soVJBXrE52bCJl4UNC0FzjwwAP951gYw+C5tra2z+NWrlwZaAMBT5cDDjhAHn/88YJ9S9HV1aViD+Pggw8u2ldrtxxBU/j84XYJGeykFI5KJlhyN4jukA06WDKVdRFuS00qbphobksDwcrBuVjZNXMcgojJMog3/ONX3k7ZrO9aBLFOvMIryWXinVgiqaKjnl3bfacmtGGuSibeQTDAFSehXfRJn6KE3ebVuvifLw2X9fsHKiZNkVR7q8QqqiXT7QlFU117/MCDtWUBBgix0C4yrU3IhH8nuBYIueD2lKxrypV2885nJeYME1eZ4AjXMeeks/3z2L4WoHDFYgiAQICENk04lu7uzF9PXZNfjg/3FOIl3GOAffG8fu5iWX/PTZLNeE5O7v0gEcSTkqmdrFsACNF6OyJdneI95ZVuRUAJf8uwLVu2LPAZAk9wdAq7OuE5SqCgZAghhBBCyEQjvAgOYQ7EOhCJuyIdUGyxPOzKZAKnq666So477jh/v8nHnyUNU19Tsj+W8WxJHmFxkSV2uCKlqJLSOBbj9bDYKbwP5h0Y89u8Ca/DWdhuv2YcfrK0LPujX6oCGd3vfe97NamtnEzsUkEfN9DAbGlCCCEjAb73UU7VuPHGG+V973ufpFLBBDQkwGL785//LP/93/8tP/jBD9SZhBAysRhtwvv+jKGxz5e+9CWZMmWKvs4mKv1yc6VwHWVnzV+o68uIr+ERDneve93rZG8xWEHS3nSTIoSMDmJZKAVI/2+cE0D88Y9/rIr+YiA4eeyxx/qv77vvPjnhhBP6PMd+++0nq1at0ucf/ehH5Yc//GHg84suuki/6MDChQv9fUsBta17brw+/vjj/ddYAGxqavKt2rHA9+Uvf7nPdtE/ZDxYv19++WUZavDligAugCiLLlDjC/wpam1t9YVKmFy6wiWI8QZLJlktmeoGyUKsVNWgz1W4BLelBPWdg2H1bdfLzhcf8V7E4vo30hyPmg84VgVFbkk1iIVMyANRDlyGIArCcxxnj8Eyat6xKItm5dKaDzhG24ZYykROKoLKpLVUHEQ7NlC3xX8ftWHN+s5I5qDkZkybW5R7PPaBwApCIBMi2blNvBUWd6F9uDwBt2xeYL9YTJb8y08KJhk4f5TYqOBehc5lpfFwP9A/9A0BFrtOuD89+a0LCpyp7GdmTlJkEKR7Jd4NVyfbIHTaJTG8lxr83zRk4pjACYIn19kJGfcUO40fOAYihL9fhJAgyEzGIritP4TLm9lzWywvZ51i0qRJuhaCZDJbN+mZ+hpZ39ZbtJxcmFKl5/oCx2ryRqpHS1lDBFXMoclcnMyl1XV3tflG+PgdD/1GHZtsLQVi+iuuuEIuu+wyGa6fCyFk9MI5BhlP/PrXv5azzjor8rOqqip1v96xY4df7cKAI/Z1110nH//4x/v9+1OKTZs2ydFHH63PEbNhHIMQUoqDDjpI/1aglNzzzz9fcl8INT/ykY+ocQac6P65+lWZd8IZMufIU0se9/D3PiudO7ZIzeQZctz/902pe+53Est61U3e9KY36eP//u//yqc//el+/03sLxCT7q1zEUL2Lhgj4W/ZUGs5GMHfCxx11FHqooBBM7jtttv6FDS98MILAYHSaaedVrAP3jNBEywGcUzYYSnMn/70J/85gp3HHHNMwSD+lFNOkT/+8Y9+X/sSNEEEdccdd5TsKyHGrl27/JJwrmAJr8OTyoGQTVRIpgruSkHBEp5Lsoo/iGECi+n5H0IGfkQqOFInpFy5BFfIoyKlnDAUghqIlCDEgetQ146NeQemkOYWi/UQECkx0WxkK1OHRX93P3xm5wbqWOQKpDBgj8V8hyc8R2AgnDFtryEQsvJ1WiovR6Y3X+7BxYRV8WSVNC463C+1Z9eG86oYCf3JZvz+W5DCLSHnNRhTNyi4K+G6MumU9O7erk5QvXt2+NcFAZT9TFTwlEjqeRAYMQEUrgsitAIxk1MekAwB+HtUO0W3AlLdeZFTd17spIKnTHmuc7ADRqAoKlhUX19fVOyEYB0hhBBCyFgmnJUbzrJ2n5eTvQvHTMv3s3K/6eom6d7nWGn58ZeKlnQLE1XiISxyKlZazkrT2XzBXGLd9uy5m4BhSRl2jM0hwv2d/Lr3yaw586Sy5XktqQe3Jqz3XHDBBbpmNRQwW5oQQshIsGLFioL3zj33XA2WL1myxEu8zGbVhQTjgl/84hd+XOMTn/iEJoufemppMYCLJV2XA8rd7dy5s+z9CSETDzjK3XTTTZoUgO0DH/iAnHnmmUX3R0LCLbfconFZCJw6nrlbvnnlxSXPcUvvh/Uc2vYZB4tgc3jPe96jcbtvfvObAbfa4QDt2zmeeeaZYD9vuSXfzxL3gBAyOtmyxTGVGEIoaNoLYDEMf3ihOgU33HCDfOELX1AnpGJcffXV/nPsd/rppxfs85a3vEU/g6uNHWMuSVFg4Ox+fvbZZ6vNeBi8b4Km5cuXy/33319SgIUJALIOjPPOO6/ovmRigKzWKJclvIagabBkY4m8YCknXsrmxEvZZDVLxI0AWEBHGblMqtsrsRZyX8JiumUIuwv4EB0Zqd4uz0HILR0XAYQ/2AcL+HB6wiK+lXCw8gtY1HfLPWj7OeETUJcn7Ws2UL7OStOZ+AoiJusr3I5wTjxW1E9WMVEsDtFSvr8o/zblkBP9Y9pWrdDz6CNcpczdTx89FyuUhKuoa9T7BMck7/2Uth0WM7n3cN3dP9WP0A+Io0wQZSXy3LIXqd5ubR9lKSxggiBIAbkSgFHlKsgQk6ySTP003cI/g1iqMy9uMqFTNx53Syxb6KhV7O8wFs2whWloaAgInFzBU11d3VBdISGEEELIiJdkMKETjoF7UNQxCGaizNzs2bP9sgvZeEK69nuDCtRtXD3QMbLNU0xgVE5pOSQjFBNR4T3fzTY3F7N93EQSPA+LqbrnLZXEni2Ba0ew99vf/rZftqLU/WVJOUIIIaMRCJXcWAyC4WHHJoiaIG7CZyeffLLvCoLvwgsvvFDXT1CWlRAyvhkuwcxg2sX+2ExUhHb6agP7QMyEGC/OWe45ioE2rP8jeT/RVrn3gBAycWDJub1Qcg7AJvCQQw7RrD/w5je/Wd2SogbJqPH8wQ9+0H+Neqhf+cpXItuFMOrrX/+6//qnP/2pnH/++QX7IfPuHe94h9x1113+wB7K1yhHp56eHl3oW7t2rZ9x8Mgjj+jiXphnn31WXv/610tbW5u+Rvk6lLEbDmiFPLqApWWUYAmPJrIbDFlkzlRO8hyWQm5L2co6ipZGGa4ICKKejpY1Be5KVgrNBDmWVawuSclKv6zC9mfuiyyx5jUS01Jybaue9IVIbnkFN9PZHIwgDKqZNk86t67NuxnB3ilnqZprWJI1nvuRCZf6KutmGdHp7k5f1GTXWMxhqXb6vvq+JwC72b+Gead+MH8/Iq4ZYia3lMRz//evwfJ5ufvgBlvy9/km7V/tjAW+2Aqfb152m94fLb3n3As7BxmFQOzU0+64Orll7HZDCnaFNeIAAPffSURBVDfoUzQ3Nxc4OuE1ttpaz/2L7H04BiKEv1+EkPLKzRUTOBUrhYYgANZU7r77bv89uM12LTpZUpMXDMltL9ehyd036rNwe1Hl5sIuszZvcMf4GDe2/fV6eXXVSn297777almcb33rW1qSx71XruMS7q19Nm3aNHX9HkyJP0LIyMI5BhlvDk2oXoEqFvheKycgj++173//+4GYTLmJ2iw5R8jEKO/Wn/Jo1i5ivhhXD6SUWrFzue8/8cQT8vjjj6sIMxuLy8I3/r8+y81FgTXmuhdu07J16Pd73/te+eEPfzjs97Ova2Y5OkLGNuuHqeQcBU17SdAEPvnJT8q1117rvz722GM1Cw6PZsOFxR9sJnyaP3++Co+KlYeBcOS1r32tCklAPB6Xz372s2o5OGPGDH0PYqTPfOYz+mjgNb5US6lqYXNoQMyELxUohKH4RZmbn//85/K5z33OFzPhi/rhhx+WI488UoYDTrT3PrDi3bZtm7z66qsqcMPgBs/xR8hKKA6qfYTfq+r9knCe41LOaamq3hNakDGBK7DBYjkIC27ss2KCHFcMhM+0FFw6pWXoOret0+cQ5Zjzkh3TtP9S3+nJdWoKtx0pFsoBYdKhF18rT3/vEl+EhPM3LjpCAwkWUDBXKWRMQ4AFAdTOF/N/W4PnTGq5N3VmCl0jAgzuuXBfzAXKHJrcvtl1WXAC5eKwrwm00Jc5J50dCJCYuCl/L2K5KoCeCxPcrcKiM4in5r3x/D5LaZBRSCYjsZ7dvrOTL3jqbpNYd/uQiJ2QtQ+RMxYH99lnHx2j4DlKlLjjIjL0cAxEyPDB3y9Cxh5hAVMxsZK7/+WXX67Pr7zySl/0tHXrVvnOd74TSMpCUEDFTM379rtfUYKi4Tim2LFh8ZKbdBJ2y51x+MnSsvxP0tXRITU1NSpowroPkuYefPDBogIlu/dYB8L9w/ugmACKEDJ64RiITHQQT8HahsVh3v/+98uvfvWrIWmbv1+EjF76Sobo71zDPe7SSy9Vc4mhFvdbHxCbXbBggf6NQYy2alKTHHzhdwY856h97g/y+L13altY273uuuv6PYY/55xzNJ4MNyUr5zmQa2NCBCHjg/Xr1/uleSloGqOCJnwpoHTcPffcE3gfWW1wPdi8ebMKSNySMH/729/kqKOOKtkuysKddtppvrDI+jdz5kx10XHfB7BUhVNTZaVXnqgYX/ziF+VrX/ta4L3q6mqZOnWqiq/wxeye7/rrr1d71uGCE4HhAxM3/PuDYAnCJYiW7Hl7e/ug2tbqY5X1jlgpXypORUvxxJBdBxk53MVyiHxM9AMRETbXmQh47kQ9ntOW/t3z/vZZSTh30R2gFJs5JUEQZMd7QqWg+MdclmIV1ZLpbldhXCwe9wRNepqgsAPCJRMDuSIj1xGqe+cWdY2qmDRFUu2tjjtTR3GhFKys/+Un8uS3PhLoozkumZMVxEgmnML9QZm7nS8tk1gsIbFEwneucicbviAsd/9MkOV+ZiKpSMFVruRd2KVq3qkUM41LUNoQDk6+q5OVsNul2TiDlSKhTB2ETRA4YTHQnkNYDaE1GTwcAxEyfPD3i5DxH5QIL5KjDPovf/lL+e1vf6sO1cbzz78gW7dt1XF4oqqmYAzelwApyg2pL/p7TKnzh92dwg5O4fPNOPwNKmqaN2d2wJH7da97nXz0ox+VhQsXFg1QuPcc9CcoRAgZHXAMRIjIYYcdJk8//bTeCnzvwWWEv1+ETGwG4gbbVyLFYHHFUkhGgOMJvsenHfNOmXrU2wY856jcuEK2P3qbXi9i01jPRVywXDBXwLwKDFSQxLkCIeOL9RQ0jX1Bk4maPvGJT2hpOFe8FPWlefPNN2td53KAzSAsUfuy9Dv33HPVsg9feuUAF6cvf/nLKowqBoRXUO72t7Zqf+FEe/BgwIPsEwiW3A3CJXchdyBkKuoCLktZ//kkkXhyCHpPRjNRrkAQG3kORd1BoVHuvQBadq5KMqluFeiEB9cv/uwKFRTBoemA866IdHgC8YpqqahrjPwsTPMBx8qC0y8K9B2s+9uNQeciX3QV6LDvdlQMiJ/iiaR0t7bkRFT2vZEtKGeXqKr1gw2BUnURgiX3fve2t/r311ycrNSeK74CuHc9u7blnZkirgv7VDXP0J8TnK9wf8g4J5NSsZOKmxyhk269xb/7y6Gqqsp3cnI3lK9DRhEpH46BCBk++PtFyNgCC95wisbaCpwUyskCtkVyuGbDcRLHhBN3srGE3H/fvZLNuTQAjLExTu+rhFt/xEbhz/rr0BTlwlSszFxU/8P7x3o6pPXu62Xj6pc1MGLCJqx5nXrqqfKjH/1IVq9eXTJA0V9BGSFkdMAxECGi1Sh+//vf662or6+X3budJEf+fhEyISk2ti1XeDNcY99rrrlG3VSxrooxe7puqnQc9M6yji0254h3tkrds7fKxo0bdVwA4wz7m1gOMM0w4wsYXjB5gRCynoKm8SFoMh599FGtywy3JghMIBjCwtoRRxyhmW9QtsINqT+kUildmEOWIepGt7S0qDMCFqVOOOEE+chHPiLHHXec9BdYguEab7/9dl3I2rlzp5bAQ23Ut771rfKxj31Mpk+fLsMNJ9rl09XVpT83KxFnG/6tpdPFy271RTZRKZmaJkmjJFx1Y95xqapBJMHg9EQm72wEoY/j/OOLZlT9U1oklHvPLctm2KK8W2IODlDq8uS0a25L6+/5eckSc8a8Uz8YEGDhvGDDP36VLxWH0ocBJ6NiIqdieNceS1ZKNtUTEFRBOIR+QoiVTffqtbWtetIXfOF6TLAEQZOVmjOxkZuFbW0VIxz0sMxtBDkgFivmMEUmMOnefOk6K2PXCcFTq8TSAxfBJhIJHZuYwMlK2GGDCIoUwjEQIcMHf78IGVtYgMDWZRYtWtRnUAFrJVjPQGJZVOn0dO0UWbtHZP0jd+gcAKWj4dCkx4YcjsoRIIUTJvA8yi2pL6LO1VeZuXL76PLcDy+T7ratUl1TI8ccfbQf0MB4DWtK27dvl3/7t3/z3ZjCYD0I5eemTZum61D9dXAihIwMHAMREnQXQQJ4qaRu/n4RMrHpT+m5oRz7WnunnHKKvPTSS/77nQtOlNRUr/zzYKh56c+S3LVRn1dUVKjRBmLVe6Pc3EDgPIOQ0Q0FTWTCw4l2cTDZeuaZZ9Sp68knn9QBVSkHsL7IVNRIprpJxUsZCJdqmiVT0yjZZE2uVBUhQQpKtTmOP2GxDByasumUJ9aBwCf0b9WcjUxw45dhC5VOw6I9PkOpu1TnHk/YFIvJvDee75dtC5aYi0m8olIyqd6A4Aol5bx9s77TUVAQFZOqpum+GxKOQQm9zq1r9TOUk8O1oDRc1D2IwpymrFSfHRe4J7GYVNRPVrclOwbntH5BjAXC14++dWyBNWxW7zWEWnrtyYrIshmuA5YL+nL4p35Q1vWQCQaEh72dKmxCJo//CLFTqnPAzSJghsUBuFNC4H3IIYeU7Sg53uEYiBD+fhEyEYkKBuA9uF5jvgtBEx6jggp4/7/+67/kqquu0qxhCKfdsmoAiTndc4+UVPO+8tyPPj9gYVApkRFw3ZLcOQ4o1X4ppyUjnPAwEKz/Mw49QeY1VcnyO3+t9wwBDZSfA0i4Q6LcG9/4RjnqqKMCbptRgiYL+MDtoru7e68GOQgh5cE5BhlvwH0R30P4vi83WerNb36z/OUvf9HnEPIiQXgo4O8XIeOPkSqN5o6rjzzySD9+137o+0V03X9wJFrXSe3Lf/VfoxIPTCyGmv6W7iu2r90PzFWampp0HkInWEJGDxQ0kQkPJwJ5sCCI8oImYHrhhRcG5LyUqazPiZaafOclPEqSDhmk/4vgG/5xc6CUHByI4KTkOze5Dk3FnI+COxQe4x+ad1MKl4jDgr+VVYMoJ5tOq+jIjguXvHNFRN7+qYDTkQl7osrqwVkJZfK0bFxljWQyGcl0e+Ur8iXfMpHXAUGSG/Aox/kJ99SEXW6pOvfa4eT0xP98KNCOlbczEZhbmg5CqSmHnCjr77nJuU9JmXvKB8rK6CYkQKpbEq7ISR/bJN4D0V3/QKDswAMPVIETNjyHlfFEhGMgQvj7RchEz4JeunSpn/174okn6gI33oP7tbvQje9MOGH/7W9/U8cFK4EAkfTRRx+tzzMVtdIz5wjpnfIaKKoH5Gpk4DhLhogqAwf6Eju5Y/QoN6ZS7k7liJ76y9PXfkJSXe0BQZNLQ0ODfoZ7D+cmiNKjhGeXX365BhgA9h9smXtCyNDCOQYZL/z617+WD3/4w7670p133ilveYv3HdwXJsoFb3vb29TRcSjg7xchZCiwMfWePXsC5aG75yyRntmHD81Nzmal7tnfqju/cdlll8npp58+pGKu/pTis33h8j958mS58sorA/OMSy+9VOd5SKhobGykEywho4jhGgOxRhQhYwBY5MNOEuIliJieffbZshcDsxLzysKpaCnntgThUnWjSKJi2PtOJg4qClJikqypl/q5i7V8GoAzUoGDkS9mKiZcihb2QETUuOhwf3E/LNzxDvXeCztAxSBAygmO/H474iZP/BQUBzYuOkIf4frUs2ubPlrAAedHWQqIoMLuTOmu9pIl4CDE8kRgufsWi0vz4qMDTlQQFpnICOCeYrOgSficlQ1TNaihAqZ0So+vbJjilZVrWSM9u7YXCMDgzNS1Y2PgPNlsmmImMjCSVZKeNEO34C9Er8S72gKOTgmUruvaDZ+zot99cB/EhhIxyLCEaxPcmyBwwuTWdQcghBBCyPgCC+a2cG6L1hA1QdAE8AjXn23btslvfvMbufvuuwNlGFyQ0bxs+XKZ+drjZfIJZ4rE82OIsJipP85MNi7H+NsETDjGPc597gqXQDhhAo+2v7UTFki5rkzuvCR8fDlEXeukfQ/R9ifNO0DSNc2S6NwZKEMHli9fLp2dnfL5z39evvGNb8htt90m+++/v98uAg742VmQGEI0QgghZDhYsGBBoFTcXXfdVZagCQJo+54CKOdECCHlUEzgYwIk4IpwBsrVV1+tf6eQnGFipmyiUjZu2iJb7vjXspIZ+pzbxGLSPeswqVl9f+C8cLx9xzveoa9xrRAY4XGg1+TO7crZ95JLLlETB1y/e157ZElrQiYWsexg6lIRsheZaJkNq1evlscee0wef/xxefrpp8uq4a3ipbopkpo0SzJ1Uz33paqGIbGeJKTfJee0PCEchzK+44/rAhR2WgqUTiuB60yETGSgZeQkq6IpiHog3gmWm4sWRqEMG46FKCl0lvyxuTJ2bhk6OCWhpINfqi0Wl2R1Xdkl54oB16YN//iV5/oUS/jl7HzXqFhMktX1EktW+qXowvcG+9kxybom6d2zI9L1KV5V54i7YhKLx/MCrFhclvzLjwd1LYSUBf69du/yBE7t2ySxa5PEO7bpb2Bf1NXVyWGHHabiJjg0zJ8/f9ze9Ik2BiJkb8LfL0LGBuecc47v0ARnICyoz5o1S97//vfLU089FVly3UQ4sxculvVr10j37taSLkc21gauI1JUECAsZsKcZjDOSP1xiHryWxf45z3iszf0+/go51nXJSrgCPWRr8uOh2+RVx++wy/zh6xqYAInC67gOUrSISCMEn/f//73GWggZBTDMRAZL8AtHd87GzZs0NfNzc06ToCrRzGQQPX6179eli1b5pdWxVx76tSpQ9In/n4RMvoZjOtQMbchex8MpAya2yc4z8El6cEHH/TH3Nl4hXQsfrM8c/PVBeWyi+E6xBbdN5uVyvWPSdXmZwJvf/azn5V3vvOdI1Juzxz04NJ07bXX7tUyf4SQgUOHJkImEDfeeKPccIO3MNkXyJhMN8yWVMMsSdfPFElOzHI8ZBSiQQUvsIAFdyysr7v7p/7HEN3MOelsfa4l0NThqW+NrYlubNHdju9tb9OFdys355aeC2OCJMtw3vnSstB+zvNsVttHBrS5JyFjefVtnruR7T/r+DMKBFs+RUrJhR2Y7P5YKTuA+9K8+Bg9Z5Qrk5buy4m54CbVsXm1F4To7Y4UPRkZuFs5/Qu6SVHrTPYS8YTnHFjTLKnJC7z3Ut2S3L1ZxU2J3ZvUFSCK9vZ2eeihh3QDmNiefbb3N4UQQggh44uf//znGiDAYjpKniFLGa5LK1asiNwf5dSnHHWENLx5oWSrG2XHbddLz8pHpXbmAhX0IJkCYAyPOYW5mFrSRHiuEXY/wnMbP2OeMBAxU5QICa+B257th75jrF8zbR/p3LpWz2ufq/NrqkfdZMt1lXJFTXj0Ekx26zzNv/5YXDY9/5gvGMPjug2b5OilR/pCJnfhEq6aX/va12TTpk3qjoHXcNckhBBChguUPr3ooovk3//93/X1zp075UMf+pDceuutka7OEEBdeOGFvpgJfPrTnx4yMRMhZGwwENchE/YgsRJA4OOKfbCZQ1M5TkThdtva2lTE8/Wvf12rtcCh1spmb9i8RdZt2ibTE3MKXF9LUda+sZj0zD1Kk563P/FnWbNmjZ8gAuOFj3zkI8MqKIoSTMHhyu41HgFFTYRMXOjQRMYMEyWzAZMqKK+LOTLBcUnFSw2zJT1ppmQravZ6HwkptTAeBRbFIbZxy6mZsMiEOpGl52IxqaifXCDMqZ2xQEU7WkrNFxVFnM8XKsV89yLP4alGnZwQCIglKoIOTQXio5jUzthX94XjUaq9VYMH+X57+3jHWRk97z0716T5BxdcuzlElePqZAEFC1SoiMk9N+5bzknKylKES8uVTSymAioTfBEy0sR6O3Pipo2ShINTd/TvDIKbf/jDH9Q5YLwxUcZAhIwE/P0iZPTS2tqqbkwIOOLxr3/9q5Y5q6io0ACl6w4EMpV1kpq8UHonL5QtL6+Qlsfu8sVCbmYyUEcmVMutmaRzit72Vq8UtTOmNvpyaLI2ynFHcrE+mcOT65bkZk+7++F8rpuS67IEXNemqP57Ja+7fXdYt7/muovrOfTia4sKqtDO9IOOleSO1VKxY5W6bLpYOTr7OcFF8+1vf7scc8wxGpCBi8Z4HK8RMtbgGIiMJ7q7u+Xwww+XF1980X8P3zsQBaBELURPWHO/7777VPgExxMDzs8Ya6DM/VDB3y9CRj8DcR2KcmYq5tbUnzJ01oYJK+EwBzdac5yds898FTN179pWlivTgMlm5fnvf0q69rTpSySRYPwO57uLL75Y3VgHMo7v616Xuod93V9CyOhiuMZAFDSRMcNEmQhAgf2+973Pf52pqM07ME2aJdkqzwKfkNGGZTqnuzuDLkURJdv8j3KL8lFuReqwVEzsE+F4BBGTLc5D5JOsqfeOzwl0ggKk8gk7PVmZu2Jl39xriyWSfmDESshFleTr6/wQRO1+9bm+S/LlymRo2b0IoVe5uA5WhIw2Yt171LkpuWujJHZtlHhvp/8ZBE2NjY0y3pgoYyBCRgL+fhEyekin0xqIhCAGgcWXXnpJy8dYaTOA5z09PbovBDPzF75G1qx5RSSWkFmvf6+OrwvKpuXKxpkrk42tDRPxmCgJlFO+zdq0uUJfJer6EkUZcI0q5dAUVSrOEh+iEhOCgqiMnwyx5F9+EuhXudcdvp7pBxwla/50rexYu1KDME1NTfpzQjkfZJVbIMSYOXOmvkagGe5NtbW1Zf37IIQMLRwDkfEGHEVOOOEE/bcdLlc/ZcoU2bZtW0EC8UEHHST33nuvTJs2bUj7wt8vQkY3Ay2hFiVOQmnsX//61zrmveqqqwraK6cM3fXXXy9f/epX9W+Ru65piQJVDVNl+tFvL3usPhi2rvibbLr/NxLLpGTfffcNJJAsWbJEHe2QoDBUgqW+ji9HEEYIGT1Q0EQmPBNlIgAryc985jP+647Fb1FBEyGjHVvUtuCBCxboXQEQxEfZdMovl2CL+K5wCC5M9lnYvQnHV9Q1SSad8tqMxSUWiwcEQ67AKSh2kkgBVVHghhQhOjIxFvqN4EGg/cgScxEOVBFouTltK1uir1Ftldd+OftHZXYTMhpJtK6T2pf/6r/+3ve+JwcffLCMNybKGIiQkYC/X4SMfELPE088oYv1cGHatWtX4HOUloUoBuKl173udfre/fc/IJlcooKbBOG6L0UJlMIip2JCI9fNqa/sZ9vXTQqIcjoKtxkWKZXbN/++lRBNucInc2814ZTNw+A4i77251pd3GuEAMtKZ8ficTnm/31GEm3rZctLT8iGkBgt7KqFn+shhxyiAieUk1iwYIG6aBBChh+Ogch4pKWlRS644AK5/fbbS+4Hh5EPf/jDKj6AE8pQw98vQkY3/XH9CQtqrFSdHRslWHIFOqCUIOeVV16Ra6+9VudEYda1dsuGNatk+tK3FRUxlZoz9Bc3CWTOkjfIPnWZAqd8jN/PPvts2bNnj/Yb1xi+J0MlIDPo0kTI2GG4xkCFRYQJISMKMlBdql59WNKNcyXVOEdLzEmcv7Zk9KElzu6+UQUyEN+4zkvAFTjhs3iyUlK93bpwb+XbkCldP3exvxgOMVNhaTcPlJMDfhm3bEayjugIYqiOLV6tZ6Bl2gLEyhMz5dqOEhZ55eu830dXzBSvqtNFeFeclWtIHZsQQPBEUvZZNiQuyhYIjcJ9hfuUGzgoT88U3sHLzI4qS4f7TsioJd0rid2bJblrgyRb1xd8h45HQRMhhBAynsrIrVixQhN5sGiPBa5yyMbi0jX/dZJqnCvx5U9IxplfeAkGvTq3wJwCRAmUsJ85GrninzBuOTc3QLBn/Us6N8FYGfMWO75n1zadG0BEVAwc77nZdvhtmhDKdZCyz9F32wePwCsX1yPxikqZc9LZBcInK5vX3daiY3y8h3bsPkQFOtB/7I9j7bz9DZJY0APUTJsvT97+c2/f0/9VJsNRs229PHn7TdLV2amLm66gCWI1/DvAhkAHMtLh2oQNGeBY/GR5OkIIIeUyffp0ue2221Qo/fOf/1xLzGGssXv3bnVpwvfKm970Jg3GH3roobyxhExQTIQDQT3EMqWENtgPSRjg0ksvlTPPPNNvwx5NsGTvmcAHjxD4hNtGmUy4w+Hv1TPPPOOXljPxf6ZqknTNP06aGudKUx9jc3fOUE4SRCmwr8VxNj+3TKZc8N+y876fy6bnHpF5ub5h/P6zn/1Mk1Hgeve1r31N/u3f/k2+9a1v6fVHiZfwOBAhk7WFn5N7fwkhEw8qIwgZ5SS62nSr3PKcZGMJSU+a4YmbGuZKpqYpV7aKkJHFW8T2hDFYzJ936vn+Ar8vOsqRrGuSbKpHAwq2sI9jUPYBgQF1KEp1a6CgbdWTkQ5NeD/suOQSLreGcm+xZEKfQ0yFQMfOl5ZFinn0XDGRivrJ0rtnh/dWbj8VJDniIjwPu1FlutulWBE5X5hV4PiU70fUdeUFWrl+JCs1yzrYRFAY5Tk9dUWeA1RMmqI/h3D/WW6OjDqyWYl37pBk2wZJ7Nogid1bJNZHqUZCCCGEjA7a29vl6aef9gVMlr3cF+maZk3smX1Ms2x+9iGZftRbpXf6AfoZhP0morHybOYYhDmFuSKZSAjJDeYkZAv5tr+Jf7CfW3rNcAMEJlyCqAniJRMkzT3l3MCxOI/NhSCmigo2mBDKBFVRwQhXWKXXkZsn4BGvw+5L/tpA1hN5udfiCptcVISVzWqb4SBI2IHX/RzzKUtKsfJ9OCf2dUVYfgDl+DOl5dE7ZMb+h0tq0lRJ7Ikez7W1tWlwB5v2e9o0FTaZwAmBakIIIaQv4PznljslhBAXE9iY8w9EM8UENyZY2rFjh4p5IORxXYiixDommHIFPhDlwH0Wf5swR0IbJmLCI0rLrVu/XqYc9TbpmXVoUWMDmzNYbMCdM/S1b1+iJpt32HP0YeM/n5du9G3jpkBiwpw5c7TfVVVVKiKFsOm0005TlyYIwHDPBiNicp2fQF9OWoSQ8Q0FTYSMMo477jjZf//9ZeXKlQWfxbJpSe7aqJvIo5KpqJV04xxJNcyRVONskWT1iPSZkCBZ2f7MfUXLpVnZOSy4I8tZnYycQTZEOMicRgmEJ/7nQ36bLoWOS6XB+a0PEDShbSy8e2KeoFgK7kdueYqAC5JkVfATFmm56PVm05FiqXiySuLJisISdSVAWQgEBtAvEx/59zB/Vu+/GJyxUn7AZsM/fhUSNTntJpIy/ZjTdZLiippKZZYTsreI9XZKAt93ORFTvLezz2MOPPBALlgSQgghIwyyjZ977jnfdefFF1+UTKZvIXI2USGphtk5d+K5kq2s0/enzFsqmepGXyATdhwqN8MY5apNAOSJdGxsEdMyaRifm2jHBDwYJ5s4KezQpNeqzkZt+jyqXJvNN6IESniECAlJFtgPwiBvzD9JRU4QXKFPmLtEAUcqu0bPOTYRcLfFfAZAUOWWoLNrQOlvnA+f4REUE2BhPoL2XTcrtGeuVJUNU/U68TjlkBMD14jjMSfJpnu1f5NPOk86zXFz1yZJtq3XLd6TnxO6IBhy11136WaBEwibsB1++OHS3Nxc8t8AIYQQQgghxXCFR8UwwVK4jFyYsDORiXkg8Fm1apWWlsO8CKUxIWoyEZOJmiAYQmm5njlLSv7AMM62hAaMtzEPKSZUCu/bl6ApKgnCxvXTjnqzdM5bIFXrlku8t8MXN6H/Dz74oKxevVq+//3vq2tTX5QqQee6W5Xz8yGETAwoaCJklAH72+uuu05eeuklVTZD8V1sERgDh/i2l6Vi28sqx8jUTZXUpFmSqZ0smeomydQ0skQd2StYlrQFDMwhybKWI8lmdTHdhD+2CA5nIQQHXvzZFbqAj4X82un7agYznmMA7pZtQ8mFcsVB7uK/ujSpMMkVHnlZzZa5YIEAFwQcEGgo5vIEQVGhO5IEssIRSPFKRuT6rdcSHejRshG4jyXd2LLef1mvDB5EYqXETAhIWKDCLRERzuQmZK+QTkm8q1Xina2S6NypQqZER1i0VwhKOx500EG6CHDUUUfJ4sWLJZHwnNgIIYQQsndACRfMVyFieuqpp+TZZ5/VzOW+UPfh+umSbpilQqZM7VR8uUfuGy69FuUa5AqP3HJyJtaxMa5f6s13M8pq6Wo4sSKpQh1mMcaPWNT3Hi/S5xD+eM5GXX4fwo5GUSXu3HIP6/52o7aBfW1egWPyiRfeXADHhedbGPybWAng0XW3xWu7VnOW0mAG5hzZbMDR1hytrDQfzuOVv+vM3adYQUk9V5xlGd8oGR4Ogrh9xtwLjrz6eaJC0s376NadzUqse5ckd21SkVNi9yaJp6LnMSgvjO1Pf/qTvl64cKG6N6HkMMaFM2bMYIk6QgghhBBSFq5Yqa/Sc33hCnE+/OEP69wIZS/hYFRTUyP19fWyZ88eFS8BFTGtXy+1U+fI2padMv2498pUZ05RrExcuJx0KcL7moMtcN1ryyMmqSkLJdU8X5Kta6Vi60uyfvlyFWXBPQmlxTEeh9AJIqcFCxbIBRdcIPfcc498/vOfl4suuqjgXqGEH3DvuStiinK/CgvLigmjCCHji1g2G1lvh5BRB74E582bp89R+9q++CfKIvHjjz+u4iZsUHGXQxYLj1WTJF0DcRO2Zu+xmkInMrTYQDuTThW6B2ERvMhXjVdKrbQjEMRBh3/q+/7rJ791Qb50W6795sXHBF2T/PcQjMgGREPIMD78Uz/wy0wYCB5A7ASxlO/mVFGt2cSWwYwMbBMJoR11ioq4NrSVb9tzgLJghhvksHuD/RFICJSMcI5124XIqmf3dk/UVYpYTJLV9Z4DltNHy95GoARBCrtW6wMhwwbEfp1tEu/cqeIliJggYIp1785JCftm5syZatGMDcGrSZMmTYgf2EQeAxEy3PD3i5DySafT8uqrr8rzzz+vAiY84nW5c9NM3TRJNcxSERPETMXKKIRxF/VNpIOxqxFejDdhjjv+toCAK3ZyhUMYO897o1c2G8dizIxScsUW+aOCAXZem0fMOeks/3i3T+bm5M9HYnCJSuTG97FAwobbTrh9c7ZFe+G5jXvtuFZzbsIcBufB/AZCJ7f/YUFW2HEXc7cDzrui4F6svu1637kKTrgubp+tX1FuVoXlhiFy3yTJ3RslsXuzxNJ9i+QsQQyBFNvgfo0AEiGkEI6BCBk++PtFyNjCSs/BTclKm4WFMxDfIHHD3cflG9/4hnznO9+RQw45xHeuBRs3bvRdmMzVaN323bLh1dUyfenp0vLEXwJzF4sNWBygmLCpXKLmUmWPy4vMY/w51bS5svPlx/W9WCwmJ554YuDY5TnBE8RcV1xxhRxzzDHqtHrjjTf697OiokKuueaasgVJ7s8KhH9uhJDxOQaiQxMhYwAEbE8++WTdoEFcu3atL25asWKFPzgKE8OycfcuiXfvEmldW0TolBM54VGFTnS3IP0nPxgOyhKw0I4Sa3Be6mhZo45L1ZNn+yImLJZ7Jdwc4VEILNRjkRzZvDhPsq4pKJrKZvUzbAgqWGkGBCj0X3suGGHZwVFlG9BPO1f+F8gTE2ECgcX+vKOT91lezOSVqXD7BaGQuTh5/fCypvNiJa0P5wuW0C9MBMLZ2hrYcMr14T4iiID74Qq4KiZNkXRXu9d/CLdQGm/xMRpQCO+LrOzWlY8F2jWwr/W3/1kahNgvLRyXIFxq9cVLic7WnHCpfzr66upqFS6ZiAkDYEyQCSGEEDL87Ny5U1544QUVLmHDcyxIl4M6CNdOkfQkODDNkvSkmerK01+iMpTDC/KucxPed0VMNgfAo7kHuSIjX7iTzeo+GL9j7A/Bj1vmLkrEFE4GwPmsXDWSItyxNOYCaNct2+a6SuWdjLLePCOX+IDxPcp5+45Jzh02RylcR7gkt92vfN+9uZTrVAVclysj4EQbi3nltHMOTFFgzmHt4x5F/Szcsnd9grkWXKdrJ0vvzIO9pJT27Z64SR2ctkgs16cw27dvl/vvv183c/RctGhRQOTE8SQhhBBCCHGJKm3mOi4BE99gHxM7nXnmmRq4f+SRRzRmBzF9OFZnpeXWrd8gU494k/RO21823PQ16d69U8VMUWWpERMA4bmOjandsXVf6/funMnmHaDcKg1u/8JtAsR2kNzQvO9BkmqcJ4m29f76L8bduP5Zs2apwyq2ZDIphx56qDruo1Qd7qvd43LclrA+jKQaPEJAxZJ0hEwMKGgiZIyBQO78+fN1w4Cpp6dHnnnmGRU3PfbYY1qrFpmzJdsoJXSqniTp6uYIRycKnUhxMIj2BrFBsQIW4E0ktORffhIZmAAYgLuZu0GHI688AUooFCsth4E4Agpu5jKyj82NyAb26++5SdtFOTsLIFgGMoRXLnA38q6hW12OPNGVB7K396x/SQfrKE+BfVyRlYmFLOsbfbGsaPtt01vl6DJscqKTCjOVSiQlUVUTKOWH7Gsrm2ek2ls1Y0PvtbpQVWsQAvcsLDLzymoExUxapg6lLhzhUzl1tckEJyBc8sRLAxUuGZjUwpIYJeQwsUX5kMrKQhEiIYQQQoYWLCSvWrXKFy9hQzZxf0hXN3ruS5NmS6phJgbUg+5XMdGSK25yEwcwlnYzmd3yysUW53vbW/15BuYlaAfiHTy6Y2I8t3F51FgZr22OgDmIO+fBvADt4TFcEs+EVDp3yLmruvOhKEfbbG7O77tMOYJvHOuKsOxc4XuKOQqOgwut7WdzMnOrQt9xTZhbYG5iSRhhoZkJspCYoS6xOaEUsrgHPaeIxSVTP0166qeJzDpMJJOWxJ4WLU2npYrbt0msWPnuTEaztbH94Q9/0PcaGhrkwAMP9AVOBxxwwIRx/SSEEEIIIf0XOaF0HEQ0p59+uop0zj//fE3+gCOTiXbMgcl1ZJo1e47M2u9g2bDmFZl29Nule59jtO2wi6yNl5HIAJBcMeWQEwsSOWysbiWli63fu2P1YufCPoijuAkPUQKpcElpHIc5DOYcJqwyZ1ukX8R62qVi28u64X6YK5WRSqXkiSee0M3inZs2bZIvfOELWrYO9zxK0GQisra2Np27Ih4adoQihIxfWHKOjBlo1Voe+DLHvVqzZk1gg7UbFvMGgpYHqG6QTHVT7rHR22oah2SRmox9wiUOwrgl1cIZuv7Cea4kHNyGKmobcgv3wZJrHoXvWSkGazsgforFpHb6vuoQ5ZZeW3LZTwsG+LpYr6KemDQfcIx079xSEECA+Kdm2jx9H33NpnoKyrrZNSNTOlKEFYtLsrou4OBkAiubmHiZGLGcOCp0zaEyfsiEaFu1Iiceg/uTJ1wK74v+QvyESZEFaZDZHSgrkStVR4cm4v9z6+1S4VIM4qXcluhqlVjXwIVLiURCM5j23Xdff4OQac6cOSpqIkE4BiJk+ODvF5mI7Nq1SxNhsL3yyisqZFq5cqXOJcslm6iUdN00Sddjm67PJVk15H11y5lZEkS4PIIlNGD8DDETxrVWssF1VALhuUhYnAPM9RXA3dUtyRYuM1dOSQf0xURTEBFV1DUFkjmAXZNdL8brwXlIzuHVF+548wMrIVesLIV7byzb2+6lOwcwt6e+SsdZP8Ov3flguGz3YMtk9AlK6XVsl8SerZJob9HHeM+efjWBhDGUr8B4dOHChfo4Y8YMOoOScQ3HQITw94uQiYpbTg7iGStjNm3aNGlsbPTfx7zp6aefljPOOEO2bt2qDk1Yt8S6Znt7u9TV1ekjqqqgzDGSM5ctf1S6OjukqmGyHHzB14vOkaKcaJ/4nw/56/jzTv1gQHxkCRw2nndjCsBtK6pMXBh3H9BXWe9weWo3pmCxH5cXf/Yf0rFljVTUTpJELCtzZ8+WObNn+Z+b8AuOVohbwlm1qqpKjj/+ePnQhz4khx9+uCxevNhfJ7afEe795MmT5dRTT5VbbrmlZBlAQsjehyXnCCFlgUEVFt+wueCLHaKmsNAJf1z6EjohYJ3QAHZbwWeZZJVkTeDkip2qGujqNIEIOwaFQak0DJJtkGtZBMjgjcUSAdENnI569+zwDgzpeKyMm18CIQfclSxggHMERETZbIEoqXZG/vcjXLrCAiX62NZScC0QGFl7visT+p8TZLnXrCKqKLIZvQ6cwx43L7vNay8W1xJ26ubkX2O24B7gGAQsrPQD7gEETcmaeqc8nifm6tqxUYMy9XNe4wcnLCCD+4W+QpSFnwUcoShmmqBuS927Jd6ZFy152y6JpaOd0coBk0xkJLmiJQSM8B6+rwghhBAyfHR1demcz8RLtm3btq3/CS41zb54KVM3zXPx3QtlYM0xyca+wB4Ne41AAsa8GC+boMgW292F/XBGs21aqlnnGd5VYyyNecWGf/yqoFxdqXJ4bkkHt7QD2kL/1N0W84xc+WqM301MZU5OhfOIrMRi8XzOQq40NdpDqWm3nJtbKs8t+WaOsdgXgQ1XoOWWuEAfLFvbrsv6DGEWjguXntD5ROduTf7AvCTV2+XPmYbd+TWekAz+XdZPl1452Ls/vR2esMlETnBxiii5bSDjHptLbW2tv7ZiG8ROTU1Nw3cthBBCCCFk2AmXk4PrD8RMmE/g/csvv1wdgJD8gfcw/tuzZ4+6C7kluE3MBJehma89TtoPertMq5gvLY/d5Y2TSyR82LwBQiWA8TKSKSyu4Y6hw+60vktrLhkD8yGbg2BfK3eN991xvZssEh7Pq+Oqk7QdHsPnXV6rdS5i/SgGxEygt2O3IHK0Zv0maT7xPEm2rZOtzz4oG3IuVpivIj6JNWQIwhDH/OEPf6jHVldXy2tf+1oVN5199tnyjW98Qz+H6Aw/H7cMICFkfMMUeEImCPhix+IbNheUrIOoCQvbrtBpw4YNZTk6xVPdIrB73xMUfmj5uqr6vMDJET1lK2r3yuI32XuYmKaAnFDJFrMRXDDnoizEP075M2QX+0IkDJxjMV2cB1YKLd3d6Qt1/FPEk77TkbVd0I14UrLZtC/YgWWr4WY42KQAA348uuUnMFgvvMac4koH+kGnGhUaOaIr9CFZ1+iLoLwSdlknmJEjm5FsusjvXizmZztowCV3X/BoLk068chlWfsCL9yTbFb3q5+72J+M4DNct02AsuI9xwSG5ebGIZhg93aEBEveFutuH7DbEkAWjQmXEOzBI4RLcGGicIkQQggZXrCwjjkdFtxd5yVY92OBvb9kktW+cMlzX5oqkhgZIbI7NsfiO8DcwkqfARP4YxyNsTsci1CuAeNszDFskd4V97gCoHy5Ncxp3fvlPc9gzltmOTwr7RYu6QBszuEu/EPM5GYz21wG85bKxil599lUT8BlFXMaG8tDhGXlsov1Cddrx1sfw/2z/dEu2sCcwI63hBLcXyslZ/sHfgaS1eQIu1b7Ge5tsOaQap4vgk3fyHjlkSFw2tMi8fatkQlbLh0dHfLcc8/p5tLc3FwgdMIGARQhhBBCCBk75eQuuugi+cpXvqLuSyhBPHPmTBUpQcAEF9sweB/JITbHqpk8U9KptNTOWigbX35OUo3z/LgFKkFEubu6FSzCiRZzTjo7kHDgYmN3CJTClTLC4qRAkkQ267dvCQ4WI7AkBxvTW0wGc4vw+d1y3TYHQezG5jbu/MwSyjUm5CSBp5v30W3d3X+Q7s5Oefmf/5R4LKFrx1hLdjEHJ8xrH3vsMX0PTkyY48LFCevQN998s1x22WWRJeoIIeMLCpoImeBUVlYWFTqZo5OJnfAaQicsmPcFAuMxuH107xZpWx/4LBtPFoic7PlILZSTwZF3TcKrrC8AwnPXLSmWrJR4IulbkQIsziP7IOy8hAxkgMV3iHXMOckjH2iobJiin+lAXgVUdjJPEBVV0s1d4LdBuJamC2Uuu5MI9K/15cc0QIIBuS3053HspGIxzXSwtiyDGteO6/YmHbn7BJezdK+/4F8KtIPJATAxk6ETlXSvL1xCfyyAs/6em3zhmE1gLAO7WBk7MoZJ90aIlnZ5wqUSmenlgAkmysK55eIQwMEkEt8nhBBCCBk+kHCyZcuWgNsSFnjXrl1b1hytWOm4TE2TpGun+g5M2cr6UZOAYg5NGFcn65r85IB1d/9UgwRYiI8lkpLNZLwxdzbtjeVzCRWYi9h4PkrAA9yyzy5WOg3j+nCZaisLZ6Xt3Dbcsg6uC5Jb6k2F5vGEXyLCP2cuKxuCJWvHnKUgGrI2AuWys1mdX0BEhM/RPjbNsnbccQ3MudwkB8Puj1tOAucNJ2D0trfJiu983E+awL5WIg+P1q4r4Ao7Pu11YnHJ1E7RrXf6Ad57qW5JQNiEBK32bRLv2Cnx3vY+m9q5c6duTzzxROB9BMDcknXY9tlnH4r7CSGEEEJGCdu3b5cVK1aocP11r3ud/PGPf1RROsrFYSw3e/Zs3cLCGrg2QcSEudO8179H1j34Bx3nptMZOfhjV/njdYs5uK6wYbcjd94w95RzA0Ikd76CMXnUGNp3f83FVEws5e4TTpLAMRpTcOZ4lrzglo2zuY215ZbDtgoQWm0DIIk956LrukO58x+UzbNrdgVSXrzCmytkELNIVMnaLdslVT9dkw42rFml81s4MEHUZD8TvIcSdQ899JC+h/H2iy++KD/+8Y/Vxemggw7SsnWEkPFHLDuQdD1CRgDWdh8dYNCARXSIm7Bh8Rw/Gzzvb+mCKDIVtbqgnqluyj026mM2WT1qFtVJITZox8AXg1h3IAzcrAEMZMOZ0W4JCP/n7Hw9WbvdbVsDZd3sMxUb5cRDSi6TwH3f6kvbOf3JQ07I458jN6GAiArl2WzgjkCJK86qmDRFS+Oh3URljVPmzQOiJzhBRWWBu++59qzmNIUSfl6AIKPnSZnoKue85DpH+cRiUlE/OV8GLyeAOuKzN8jT37vE/xnY/bJzojwEgiN2fTgGkyk6NI1yEARLdUm8s1XiXa25UnE7vcfejkE3P3XqVA3AQLgEsZI9nzFjhloAk70Lx0CE8PeLTBywRIOSB0gkwRwL3wF4jkdsbomDfrUbS3jzK5SOq2n2ntdOHvXuua4rqZckEEwCMJdXG8vbGBvP3bLT7uc23obLrAmK3PIN7me2KG8L7hiL54MTdt+yfsKDO7Z3EyoAjrUsaJSxg/OTWx4ayRgQGoUDFMA9vwUx8iUh8okV+NzmYrg3FXVNAYelYvfD+htVUs+fe+TmWO7czuZY/lwst497X+14nNN1oxqVQOSE8XXnTn9LdOwccAlmjJsRbEFCAMbUtuH19OnTOa4mIwrnGITw94uQ8QzmTS+//LIKXmyDOKkcNmzcJOs3bJS6qbNkx/pVfvKErZmHS09b6WqM3xsXHZGbU0BUFAvMK4qVrQ4Tnn+4CROlCI/fMf62OYnNEYDGM6pq/fiNO49y+/Xkty6ITMJGJQrEEjAHyabTmlRicxnXqdXte/i68Xrd3270XaHwiP2BxpmqaiWZTMqkSfWyp22njqFtPgwBmr3GowmekIgLF6fFixfLAQccoBvWs7mWTcjYn2PQoYkQ0r8/GsmkLr5hO/bYYwOfQdluQqfw1tUVUY4sAgTiNRi/Kzi4zCSrciKnRkfs1CTZyrpRvQA/UQiXb4Bgxh0AP/mtj6hDEQa7rj2qq94PW6Mi69pAqbn8wnluwd5ZUMe5sJDuOxMlK/V9V+SER5Rkq6hr1Ndm64oMAwzo7bw26EabwBb/80ELLxBgwqHKSVP8vrtl8xBAQft9TVjMJhYTCQz6IaKCAMnK20HMhGuzQAOOde+NKwDDvuGAGNoyAVOqc4+ey64JExYrW4ESgFaaD9neFDSNIuFSz56ccKlNHxMqYGqVWLqwvGJ/wOQPg8vwhkEmS2YQQgghw8vu3bt9kVJYtLRnj1dCeCCg9Lc64KpoydvStc2SrZrk2f2PMWxMXiCcyYFAgQn+Mc7FI0Q8Vc2e8MiEQVGZ0hhvW/m04Nh8iwYe8Jm5MVmChOvQ5PYDY3+Mrb0x925/XoG5Bsbr6IObeY3P3NLcAGN0zAVwXrQRVd4Ncxg3SIA++YkXsZgvdgI4px3r9su7b716na4zlWVpI6BhblDWniuucgVXXlKHV0pbyblFufM6/36nemXUk6yS9KQZugXLNnfmBU6+2Km1T/fTdDrtr4kUcz6NEjtNmzZNYlznIIQQQggpC1QbgXMtREsvvfSSPr766qvqcFsO2VjcK7U9aaZu6576tnR37JHu9a+omEn3yaS1rDWwMTPG5ZgbIOZg5ZktucIVCwFLmsYYuy+BklVWwFgf43+s70clIITjDZZMgfNaYoPNHfCeJZ+jHZvTYDyPOUg4VgPMhRUJ1+muPX7cA3EeOMq68wvMN8JJDq4rk1s5w9q3stluLMn2DSTBd3bKP/+5SmqbJkusq0sFShCrAfzcTdAER6cXXnhBN3f9e//99/cFTtjgxsWxNiFjCwqaCCFDBgLgUD9jC4sq4N7kujpZtvHmzZvLGljGU90S37NFBFtU+Trf1alR0tXNkq0emwv2Y5WwSAm4A/O5p3zAH4jaIBuDecsGiBqUb152m4qGzAnJJxbTcnQY/EMA5A7YPbK6uK7lGmCDmqjwxUHIgkb/MJDHedUatrujYBIRtEF1Ssmh7QqUiEsFhFBWzsHbPV8X2hbzw5ay7nuYWOA9t162u9hv4io3m3nd3TcGggau8xImUHa96IcJvmwiZWXuIOxC//1ADERbubJ0mHyIXDSQfwpkoGQyEu/eFXJcah10mbh4PK6TNDgsIUACwZK5LU2ZMoWTN0IIIWQYQcJHMdESXJgGS6ayznFcapZMbbNXxjs+fpZ63KQHL5PXczBCwoOWdE5W5R2IciXmtExabk6CsnEYB5uLLMbwntDJc2FyF9nd86Gsmif4afGTKTD/MLEQsrO9km95MY/nilTtlZju2hMsfZcr+wAwH9IyedmMOjTZPia8ckVJ4f5pmelckADXjmuwthEQsDmGiY4wz8IcC5ufAa3nys+RlFhM93eDEkgWsaAERGPWthtE8eZxQecn9z4GS/mNUYP4WEyylbWSxtY4R3pdoVP3bkfglNswfi/DDB8BlzVr1ugWprq6uqjYafLkyRzDE0IIIWTCAsE4xEomXMIGUQvGVv1xr4WAaePmFtm48imZvvRtMu2AU/2xem/7Lh0D2vq/jWkxbndfAx0vOxUl8DnW6O059nVjBxhjR5V/LjYHsmQH4MYUrK82xsc5cF7MdVyRkgmjwmIoE01ZAonNQdBntIt9tVQ25g6JpBzyqR8E3HP1/VxyN+ZAel+dhA9UhcjHa7x7gbmCK1rCdWGegb6GsWPd8nQdbTs11tje0Rn491AKODo99dRTuhkNDQ0BFydsWCcnhIxexs8qFyFk1AK1MzIMsS1ZsiTwGWrewurTFTthQIqtnHIKCPQnOrbrFlbVZ6oaAmXr7Pl4WuAfbag4p61FM6Nt4AvcOs4merKSEW5WMgbNZjmKgTLK0/m2rTZYzmZ0HR6L+RjsugNxW/jHAF0X8Z2ybFFZ3RhEu4P0SJwJCQbpc046O2AtG6aqcVqglrW1j4AH7g3awH3CfQiXwsD7BQGGWKygj80HHBOYPAC0lc+mcB3RYtqula+w++NeQ8+u7RoQMvGWZpKT4QGBNxMrueKl7vICH6UEpfPnz1exkm0QLSFDpbLSC44RQgghZOjBnAXzmSjR0o4djih/gGRVTDHJc13SrckXMElOADPegbgIC/XIiMYCfb7UmueyFB4Xu1hCg4FxNRIFMA7G2Bgb2oUjkZuwsOEfN+eOyCUPVNfrYr8bTMB+Vk4iP+/I6ri8oCR2LsiAMbg7T4GTlJWpdh2cwnMTEwdhLuE5tMb02rEhgIC5jgVO7DpxbpxH3V1jcRVMWUkIN6nIAhHm8qRzgtwcKCozPFAm2xFFoR3Lrg6Lw7Sf4+3fK343qxskVd0g0jw//34mLfEuJCrsyLusInGha1fZiQpwuF61apVuUeN+EzeFxU6NjY0UOxFCCCFk3IAxK+ZarngJzjzlVgPx26mokXTdNMnUTVUHps3/fFZaHviLX5pt00O/l2lHeIImb6zutW+J0M98/7N+4rWNcTPplL7nOTjlkgYqqv3kYis1beXeXMwZ1a3iEFXZwRxacbwbZ3A/t3kR5kiW/BAej6MNi2PYseYcZY94P5yM7QqrcF6023zAsb6bku2PxGn/dVtLwInWzmuOVXiN+ZfFScIJHHaM9QOfWx9troHraV35mF8RZHV8jsxcsL8k9rRIvH2rxgpjEaXyjF27dsmjjz6qmzF16lQVNpnQCa5OGFsTQkYHjOoTQkaUqqoqWbBggW4uUFpv3brVFzdhg9gJ2YvlZDPHshkty4StaAmG2sl+RrNXgoGl6waLDpZz9qomngkPxE30pAvlufrIBjKt7Rh38Gwqfc85KJYT3wStWouJm4x8jeu8sMcG0+4kotBFKe/QBGemcPYDgh3qCFVRrUIkmyBYfWprywbzmd4ev+Rb5P3LCY42/ONXGoBB5jX6qGUpcpMLXGv3zi2OGMoTLaFfmNigLzjWO0dWWl9+rOD+WFvYEJzwgjNenxAoIoPEz9jeIfEOK0+xQ2Jdu/EveMDNNjc3q1gJ4iV3w6SLVrmEEELI8Cyib9++XTZt2qSL6fZo286dOwd9DsxRslV1kqlCee0GLzFDxUuNkq2sh+WiTFQ0WJALKLiJAJYc4WLlkz1BTtYpx5YPeGAxHAkAGDObOMke3UV3dXs1kVIsFii3BsLZ0lZWAZiACvMPNxsbjxivu0CMFTVOBya6sgxnXI+SG+MbmIOkert0XmRznfC9gUAJ16NtYE7S3e4c7znbarvWdm6eFpUUEiUgw71H+zbPwVwJ98PuW9ABd5wTT3huabXNwfetdJ2JmyB0gvDJXuu/3fKc31auXKlblNhp1qxZmtRgm72eMWOGlrkjhBBCCBmNc64tW7b47pXYVq9erfGg/oqXsolKFS+l66Z6Aqa6qZKtrAvs0/L4t7wxe6l4UK6cs7aZc0S1R4ASbLkz+vs3Ljpcx8OW7I0EZ11nt3F8bj8QruJgcQSLAdhrbCYiCh9jiRg6b8mVfgZIKEDcJCw8co/taFkTeCzm0hROUgdutQs39uMnpr+0TGIxVOao0ZgFhFbm5Oomm2AOYknXXnK456IL4RL6gM3mU2EnJ+sP4kQbH/mTTD3yWklNzsUYsxlNLEi0b/METnjs3Kkxw2KgwswDDzygm7sOj7jlvvvu6294PWmSdy2EkL0HBU2EkFEJAvPTp0/XbenSpYHPWltbA05OtrW0tPTdLjJmu9p0k51rgqXrIG7CwmNNTuhUO1kkWTUs1zdeweDVhD4YkJodqA2WMThVUVKuvJnVkbZSDhiAYh8MdDHYN5GODYwxaLVBMdq3BfOoEmmuKAilHNwshED5A6e8AvqLBXsbMOPc6oaUOw+uBfsgMOJnhVtGNjJ00yl/gR/nnnPSWX7f/ckFJjnZYNAFA3wA0ROuD25K2XSvngODeDzHuS2LPN3T6YurPLLSturJQEkI/VkgGzsnxMIg3xWWAXeCgZ9FOMualEmqSxIqWvLESypi6mwdVKk4BBxcwZKJmJgZQgghhAw9WCR3hUqueAlbT09+4XrQJeIcsRIes3iN5Ap3kZv4eONob0yvIiaMgWMxFQvlx9fij2WzvZhj1KsLU160n0cX7DGORyAhVyo6BueiVI/Eq+ok29vlu5vavMYt5RYuf6AL7DnHKMxrwiXysD3xPx/y5w4Yn1tJBsPG6dY2nnvl7PLCoXypaAu65JMuIHayz6McZL3d47l5RaFoxrKlw/fKSloHnKb89oKJKZ6QDG8nvDLWuYAK+oOAR6mSGhMGt3TdpJmFYqeedl/c5Amd2iSmj7tLBl/CYqdizk4oRQ3XbFfk5D7S3YkQQgghww2S2BHDMcGSK2Dqr3BJ24snJV07JSdc8kRM5SSuu85FJvoxLEk5vI4OML619fbCzoiuz7vJ3v742hlLY26B8Ts+w/zBYh+WBG4xAC0ZnTsX5gW1Mxb4zqnAjgskYuTA+r6N4d0kbvc67biwi6rNbcxd1s4VLhnnJl8Y5uKEa7TrM5dbS5TAa6sWgXPjGIshWd8hgLJ+IH5i1+3Gicy1SY9JhcoNonoLzAwQ35u2v+3krdubwAlbV6s/u4oCyUvYnnjiicD7KE/nCpzseX29l+BCCBl6KGgihIw5mpqadDv00EMLFu8gdDKxEwbCeI6yD66lftHSdTqY2Rp4P1NRq5mV6ZzISTMtq5sYcCiBZSaDVC4L2Aa6+WzhmAYarPSZW1LOsgCwHwav7uAbmCDKzZjGYDicwYyyEebcZIp9c2IywZT2RRfiY/kSeJtX50RW3v54Pu+N52u7Nrj2F/RjMWlefIzfR128t387vV0F5SLs3LiucOk3f4Ly0rJA0ABBBHNjKhQyOf9WexFo864Fkx8EQTDRsUxzN8PD+uQLtbIpvecos4H75parIBIqH9Eq8Y4dkujcmXNe2iHx3r7LY0aBoAJKQ2DC44qWUCoO2dWEEEIIGRowF0D5t7DDkj0fitJw/rkqajyxUlWDlqPyHJcgXoJoiUsw/SVcbsECDlHvZ1J5d16Mr8MCnYAQyHE58jOue7v8+YBl/4YX/i0wgUeIpuw9gHkDRFDhoADmC644ySsTV6XjeiRK2Dg9lvDKTtt8KN/luD9ON6dab+XdExVBpIX5SkAM9dIydXpFlrjdMwjD/ONDYPwfcF7KCbRwrJWdg+gO9woCsARK3zllH7Av+ofrsXMg+NBneW+S+3nCpa1e0tgaZgfvCkR3EDup0Clfvk5dnbrLd3815wNsTz75ZMHndXV1kUInujsRQgghpL9Y9Y2w4xJiNojhDIRsTqQC0ZKVj8O8S5MU+kFUabdSn+G9AsFMdA8D8QoXJE7AIRXjY8QDbI0e42c38dqEQCrmwTzigGP9Mbqt8VuFBztOnY/8ZIOYxCsqdT5i4/Tw3AngdeOiI7zYgMR8F1ntV0RVCXOmRRK125bNt5BoYqX1LFkCG15rbCMn1EJMxMp/u0IrjYPE8vEZvd+5fmjiBOY8m1cHXKq8BPnc/U2W4UIKQ4P6abr5P810rydu6timj/q8O2oOGQQOztgef/zxwPuooGACJ1foxHV+QgYPV9MIIeMGDAxQ3xabCzKqIWrCgPmVV17xNwQv+iLe2yHxtg5Jtm3w38vC0QdBCgicaiark1OmdopkK2ombNk6tx60DVqBlWELAzETBrMYJGPBHQEDZEG7Gc4YwGqWdW5Am1+Ez4uJsF9V43RftBQuG2HOTZbhoBOCzt3aT2R15zMqsn5JCFjCen3M26Cin/gcAil3ob+ifrIOpBFg8LK9vbbs2l3cwb5NKAw3k1qzmp1Ag4qbchm5CHog+GGTI7u/Vi7Oz6zOemIlBDa8wId3z/CIIItlebgZHPjM9nX7NiHRchAdEu/YLokOuC3lxEtdbQMqFwfHOQQCFi5cqJtNaCBmYtkHQgghZGjo7u4uECthDjDULkteebh6dVXChgxgfZ4rFScJlnQaatxFfre8gaEZvLnxP8bKNs+I/gHmE10qJk2R3t3bc6+8JAkT5zz5rQv0Nc6H5AuMod1xOkplY/6BuQPG0xiHYyxtiReYZ2DugrE6xt35ctFwhhINIGAO42Yk25gf8yE4zPol9rIZx6HJw0RTVl7CxvfmRov3KuoaNUsc+6y/56bAHEOdYp3XXjAjjyWlYK6GeZSKrVDSOicAS6V6/LIPbnJKNpBIlHdpoqBpEMTi+ncmja1xTvCzDMROu3OOTrs9N6fcoz7vh2Nse3u7/POf/9StHHcnd2toaBjMFRJCCCFkjNLb26tiacy/LMHcNowtBoommdc05eIvTZ4LU03zkCSZR5VfK/WZWwIb8YhAuebc+rx9btUYigmKjM3LbtN5SKyi2nc+8pOgczEPiIQQCwjPWSxhIOy6ZEkWbgJ1OP7gXpueS+cu+YQKi8NY6WjXPQrgXJZUjsRr/+fV2+2LqyymAjAXQGwj7CK1/Zn7dH88WtwGyRhawUOTubNeDCTVo/MiJKabOMoqa7gluK3Mdb9JVEi6YZZuvW4lBhU57ZQEEpsRFyizEgPK1mF79FHEpIKVGNyydUhmxph68uTJGjcghPQNBU2EkHFPZWWlCgiwnXzyyf77yAZAZgA2CJxgy47nu3btKtleDNmqqMHbCeFLflCYSVZLpm6KN8Cu9R7LsTgdD7gZAVjYNmETFsJTvV3+QNm1bLWFexMd2eK7HWcCIwyqrcyDa+lqWcgY9KKcBIIKNomonjzLd2gCNkA3MBhWS9bchAODavf8YazUnGtlCmwyoRnLTvt4jXJz4awOu0/mDmX3xRyj0F83IGPndqmoayqYsLhl/gxck2U4mKWrOT+55fXcjGoIs/Czc7PQxz0QL3XvlkQHrGZ3SKJjuwqZ4qmBld7DYv6iRYt84RKeY6JSU1Mz5F0nhBBCJlqWb1tbmy9YCm9YOByycyUqfcFSQLSkz+v7nQVMBkexctSBrOQcWCjHeDo8hg4LeEAcZaSd0mk4DuNpE09BpIOkC7dktoG2dL/cXC/VucebEzhgnoHNnUfE4nE/gSDvMAuRU8wTMeVK4uF6LXiBjG4LdFhgBPeibdUK/1w2vndL4ZnYyvrrUuDUFMrEhjAJAYa8SCs/NoZDE5xLLbDhzef8I/1nmFvgOtAPzNcsuEKGEPx7qm6UNLaoeU6qyxM4RQmeest3R+jL3QnlNcIiJyRv4BGZ6okES2oSQgghYxXESoo53aJ8XF+VMfp0t4VwqdoTLkG0lK5pElFxy/AQXld35xduKTokL+AR43CIa1yRUrhUnVt6DeNyjMHxeVQyBs5nMQW4NuHuIZ5iiQiYtySqa/z4QF7MlE8YMFdYbEhAwLmsssP6v98USDx35wjudbuuU5jL6Dg+V43ChFDmTgvBEWIxGMtHlfVWYjE/9pOfo8VyiRte8rpVhfDdprag/Ny2gvmGVqJQY92sXgfmaLg3rSsf80RPzlwPFSqGdI6RrJZ041zdegPlofeosEmrNnTmhE5Ifi5D6GTj6GXLgkkk1dXVgWQB9/nMmTM1rkkI8Yhl8ZeEkDHA+vXrVbkK1q1bJ3Pnzh3pLpFxCP4kIhgCgRPETRA54TkyDFKpVP/bS1T6Dk5ePecpA7JCHe245d4wcMVAGgvbrkAmPLBEJi/2MdERsoKR9ZyoqvFV9damTRZ6dm/PqfRjMu/UYBk4A4NlBAzcc7oDbQt4uE5Sbr8DpRZCWNuuAAiDbh1UW2aGk8WQr5XtldiLmvSgj1YSz4RHFkzJptOhTOqEX24C+yHAgkmC1Z22EhomCAvfQ2vX+orJEiZWdn57PW7JZiTe2ebZyMJ5SR2YtkssXY5tcBA4K6E8HARLEC5BwITnzKwgwwHHQIQMH/z9Gl2k02ldFC8mWhpMlm+hy1JdSLDU4L8ezgV00j/c0swIJEDcHxYxRY3j1bk05/xq4HiMl3Wx3AREucX0KMGTO/723ZIwj3Ncnqx8hHsON/s435A3R3AztfNzhfy5vEX/lPYnvFiPsboFIixAEU2urF7hxXjZzkn0sVC8r8GTqnzwpBxQBgN4iROZ4HlD92rczzXGGpmUxLv3BBydUM7OXsdCosCBgnkTAjJhsZMFbKqq+Pd2pOAYiBD+fhECEPOwOViUaGnPHq/82WDQRPCc25LvugTHpRGcdxWrOGFY0rUlC2Ot3cQ69tqNd1h8BEIhc2mNKp3tus9CjIPz43N/LhOLaUUK26cvrI9hkMidTXvVL9xxuF23m/wQjn1YnMCdc9hcZN3dNxaZa8RU9OTGhfw5VKj9TDoVcJ2KbC93bV6VjSLnHOk5Ri5ROt7lCp28LYZSeYMAzk1IDIgSO2FrbGykuxOZUHMMOjQRQkhooAArdWzHHHNMYGCPP75uyTpsUFaXIpbukeTuzSLYcmRRSk1L1XkCp6G0TB0pXPchK5+GwTIGvcUGlChPAGcmgJIOlvVs2cvmOoSBrtVHttrL5m5k5zG7V8so0EyFu3+qkwhT/uNY13I1nNntln3zMXetXCAELlDuZGTKISfmXZ0QpHDEUsH2vOwJqxMNrA9ArVVbt+i1QNgVtq6168NmWduY5PhuTrl+oka2OTjZddr9Mncmm3yYlWyURe24WaBH1oRaxMJ5ybOKHchkAgvwVi7ONgzEkkkOowghhJD+0tXVVSBUstJwmzdvHlASQb9dlirr1dmEjH7cbGctOaDjZq+UNMDYFnhZxMHF8LBwRxfsMa6uqFY3VbcsHUpDmKgJnzcuOtwfP2PMjPN4QYXgQrorZvKIBUVN5gCVc1P15kDeXCAsHHIDEYXiqpjOk/LirmqdewQSK/JHF7mbWVnyLz/xgy2F509JZcNUSXW1e4kAAbFWdKABcxcEXDTQoPO3QIP+U/R1XM01xgPxpAYTBQHFSHenTol1uWKngbk7oRQN1lKwReEGasIbAzWEEELI0ABRUlioZM8xBxuMy1KhcKkpL1yq9h6zFdUymnDLPluZNDcZQhMhdL3d27CfxRlsDR+vbT3dTa5wBTaWZG3iJIzlMefA+TDutoRp1/EUDkmWxOyLjhznpIAQCfGIuqagi1MuqUBFVSedpWWw4bCE5HK06163Jou0bfXH7egTkrdx/b3tbX5iOWIOFk8IzwmwL/YLx2vCYiaIkzBvsVhGfs6UlVgC8zCvVJ86Oul5RRO6EeNA+b2opBHcS4tvjIgTbCwm2eoGSWNr2if/fjYjse49QTcnPMLRqczYBIwXtm7dqttTTz1V8DmqQRQTO6HEHZIKCBlPMBJHCCHl/LFMJv2ydW984xv993fv3q3CppdfftnfUCO61CQAmY6J9q26yVbvvWws5lmr5gRO6frpKnoaS4EW15IVQhssshcbULqCIuANWjP+4FgHv86ivA2YMejFvubAhMmClWpDcMCchsJ1mm2QjjYwADaL2HANaLTnHm8TCAscYJHfBuYmgjIxEvpr/TKxkBcQCGaGh7M/bF8ftVh1JiU5tycTXrkBErWDzWWXu05YOAfuhYmZzPnJdYWyIAYeIbLCtWNCg0cLtIwZMOGBaAm/VygXBxFTFzIh+mdCiVIIKA/3mte8xt/gulRXVzdsXSeEEELGq9MSFscxTsbYGIIlbFg037Fjx5CcA9/y2Yo6yVSbYCnvsJSpbhBJVE6I0s/jHbekMhbTw26qGIu7Wc7YR8te2xjcKSmn5MoZYNyri/97duT+MWHfXAAjWaHjZs0qblmjQYPGRUfoZ1jY15LVObeovFNqrr8h5yPMJ6zPGMNjnF5sQb40WS+xwT9Pt4qygM2T+mwzm9VABsb6mA+8+LMrCgINCKogyUc1WL1d6sBkrrqRTrZZZ17kOF65IPP8gPOu6Of1khEF/wYqanXLTPJEg4XuTjmBU1eEu5MjZusLOGRje/rppws+wzzMgjRwddpnn300uQRzNjo7EUIIIbmv5UxGWltb9fsU4gc8uq63mJehbNxQoWXiQi63+ry6QbIVNWPix4KxqyUTmIOqn7BcXe+VYwuVnMZ4GzEP97WVf3PnGxZrKAbmDlb9wRX+uOv3hQdl9dyINUCchLgL5iw4f7AkneSSoiv0Grx5QrcejzE92nav2417gI4tmG8Urqdj3uMJi34VcUV5URWuq6p5hsZrwhU1rJqFzlmy2UBCtwmYNImjMu8Yi2vG/AlVLPyz5cRP3j33ksjx8xxVpa1jKAvdICmsSzTPDwmdnISBLidhAGPpMsrXGZ2dnVpdBluYeDyuhg02jsaG10gkMDOH2lrPVICQsQIFTYQQMggmTZokhx12mG5Gd3d3gcgJAwtkJhYDwotE5w7dKuRlfS8bS0i6bqpk6qdJum66pOunSbZy9AorMGi08mk2AcCCPgaqNqAMi3lMHORnS+dclvKKf6+EhDlA2WDWBtE2+bCBvoqL2lq0dF0skQjUtnYtUr2ay57QCVjWRNilCRnHGDhjER4BBEws0I65PvniKxCLBYRJOJcFUszi1URUnjCpOpeZ4Fm/av9nLPBL2Ll9d89lIjC/1F5W9BiIklwhE87vZpPgOuxeunWyUV/bLcmHax7tgibNcIB4aU+LPsbbt/fbeQk1qCFWcsVLECxyYZwQQggpH2QNbt++XUs1m4MpnqNcM8bEgwXj4YC7koqXGnKv4bLEJY3xj4nSIEwqFEnYGDfvXOQ5llopCCx4Rwl9MI6GmMl1LML42NxiVSCVE0PheIzJMWdwBUlwiqqYNLkgiGDMO/WDOvZuW7UiJ4Kqzi/iD4RAbCHrJ0ZY8obNpYDrvuQ6LXnZ395Y3527VEyaIqn2Vg2idO/cooEVzz12eS4A8ligK7i3uFc274PoC/OwwD6JpMx9wwc0YQKOvJaEQsaLu1OzSE1zhLtTRmI9HY6r066c6GmX9zrtihRLgzKjtqYSOH08rgEaiJss8QzPIXpCkgohhBAyXkA8wcS/JlZyH7FhPjZULreRc7DcPExfV04SSYz9ORjW121t3S0HbckUeYFNEFtPBwUVFnK0rXrSH/tibd+qMVRPnq3xBTwPuzrpOXMVGUBUuTmNNeTG+IgzwH3Jjw8E+tjtCZp6u/xEDFwPkjUQQzDnVcyjCsVT0aXkTKRl7dr7lixi70GkFRYzufMOzNt0LpXq8QVVrnMs2oFTLu6Z3Vcv/pP/eeBa7JogpMIcpi8R2egSOjVKGlukQ2pXqBx0XvAU62n3Z8bliBxRWQbbk08+GbkPEgdM4IRHV+xk78EtFeNuQkYDY/+bhxBCRhkQRBx44IG6GZhUrF27VlauXOkvyP3zn/+Ujo7iVu0QaCT3bBHBliNTUafCJmwZiJzqpoy6QI4Jbyx72cXEPFhwt9JnvitSNq+oR7AgrKp3RU4YpEK447orIbigC/TZrFQ2TikodZcPVATFQm7pA+s7Fuc1OyLXJ4Bghwl/3NJxQAfeXV6pO1cUBWGVl+md9SdI6LM3efDew0K/O7g3YRLawQQIAQ9zUQrfk3AGiHt/XatcZJO4ffMeveMw+A8EPJxAyKggnfLKxe3Z6ouY+lPiwAbo++23n4qW9t9/f32O7F6WjCOEEEL6V6YAbkuucAnbYLN9s4kq32WpMMO3li5LE56sL6ApLMPmBRW8sa23MI+xM8byluFs4pwoMFbH+N5vq7dLz2EBDHxuWdkQL634zoW5bGcTZGSLipmwwG9jdzgpmbOrG7QwoVEMpRUwR/GFR7FcgMARcDlOUyitgDmEP4bXxIpOv1wezufOE9yyeFj0xzwK8x43kIPz476p+ApZ3P4vqNeH/L33HLDwWkvTqdDMcZjNlcPTe5lOybq7b/TnHa6YioxjEKipqpc0NplV+DmCbJqRnhM45YRO/QnUIEizfv163e67775A0sr8+fMLhE4IyMB5jBBCCBlNIC5goqRigqWdO3cOy7kzyZpQ0khewDQR5mAYp29/5j6dJ1hCgyUKWOJ1GFszt3gHxt/uujycTREzcJOGY1r+LasJF3AstTV/ADGP7m/OsiUdLmOSrKnXeQPmHxAn2VzDH/c7pa69cbo3b5hz0tkFSegYnuO8cHzyS+tFnT/XpiV9q0DrxWXe+F6TuKsCoi7MvxDPcI/HPcB9xbwDZaot+QTzIuwbjkXo8bnbiv7qfQ71yc5pc7FIV6sx6ZBao1umfnrh55mUxLrb/SSBQDloPO+Hu5MlDmBDMloxULZuypQpBe5OrggKG2MsZG8wuqLghBAyTsGXOhbSsL3lLW/xF+Fg+wpxkwmd8FgqKBTvbZf4znap2LkmX6quZkpO5ASB0zSdfIzkpMOcmsJl5cIuQzboDrgixWI6ibBFdlfA47ZrA3VkAc974/n+oNzKq9k53T7Y8VG4+0EIhbaKl7oovF5zj3LPbSInK0WHwbpdvwYNUCatosrL5ujtLjxWJz+lf46wwLXsBmBiqYBVrnNv7fwmekKf8sIzr3Y1gjQjVncamQjduySh4qUWfYx37uhX6ThkDkC0ZOIlPMJWldkEhBBCSHn09PSoEN9cl0y4hOy+gaDS7sq6vFgp57Jk2b6SrOKPhkSCMamfJV3UjTObc1PyggXAyje4AYUwWNxPVOXLGQBNCCiyvyeWymcf9wXKr0EsZckUlo3sngtzhO7udhUTgYqaepGaes9dSsVUTlDBGQ97ZSpq8n3ReIK3gA0xkpWDiOqrLfpbQAGb66DbFwik6BzH60jkPsHz5vuNAAch+JufwVY3tUgpuz2B0htuKY6+XHnx/RXl6ARnbRM3mdAJG94nhBBChhqs+be1tQVclKLESqUSnQdLNhYvcFlyn0uiQiYqFgcwd1HMHbAW77kKYX280l+7x5i+a8dGyfT26LgeZajNPSiQbBGLqROpmyzhJRl7YxeMtVH62SpGYCweS3huR5iXePvlx83qQIQ+5BIt0CfMHczpCEIsKyWtTk+Oo1E4KQHzAlwf4gU4HgkhVoYun/jhVZhwkzcsIdz6bEnegX4mK1UwZUnk+NwtD4fy2wDiJbRh8Rdz10VMxBM0eckp+p6ePzj3wdzJJTxvGTMOTYMB/05qGiWNrS93Jz9xIDeG7u0o290p7BC3efNm3YqBpIGmpqYCsVP4kSXuyGChoIkQQkYICCzmzp2r2xve8AbfWhQip+eff97f4OSUdgaCBaXqOrbpJi0v6HuZZLVk6qZJqmGWpBtme1bwe0ngZANzKycQLjUXNbg0kY0tolsAAgPhsPjJF0DZAD2b9QVRON4G3u6+CAj0VUfZ9sNkwu0TSifkB9aecCgs0iol1DKRk1s6Tsvi5WxjfaEUBn77Ly3oI47FAN5K3LmY6AkDejvO6mCb85Tdc3uN/TDJgegJGRi4Z7Bxdfcv534NGcjkQKnFto2S3L1J4igf52aElyEUhGDpoIMO8reZM2cy+5YQQgjpJ88++6z88Y9/VHH9unXrio49+yKDbMKaZt3SeKydLJnqxgm9YE4GTnjcHwaL/wguBMQ1yALWf2+xwEI3HI2ymUxgcd8X5gRbzTuZlspydRyTwmB8jvG2W+7adSrKl6du99uJTm4ofZ78Z9nc9aUd16nSCQE23zIXWMzjNIscpeQqa3SeEi6Nh7mW9rkfyQYuCGTAMQvZ6YQUL2XXJFLTFF3Krmu3JDp3SLxzp26Jjp2aENPXasfu3bvl6aef1s0FARaUIT/ppJPkTW96E7PLCSGE9AnmSXBNamlpCYiV7LWVhxvKEnBhsolKyVTUSrYSW13ueZ1kcq/hsJRNVo97l6WBYuvfnpAIP6ec4w/QWxbzhUSdW9f5cwKMjT1BTyEQPpUCY3tXdGSCKXvujt3h9ATXVLfsHfoXLkOHGMzWFYvzjklFsKQMi024Zejc0nD6frLCd3SymI72RROzqwvbTvU6yRTdQXerWMwvKWevLT6x/p6b/PvqlQ/HXEl3UhGU62qLn5O60WbTvkAK1w7n2XHl0DSs7k5pifV2qhsqDBO0PDScUSF0cp+XdAmLRksl7typG9aTSlXQcEVO06dPD4igsNXX1zOuQ4pCQRMhhIwioGieM2eOblhQA93d3ToYcEVOmCAVI57qknjbOkm2rfMDSxA2pRpmS7phjk52hgtT7IfLCdhEQTMfslkdyNrAOOzolEmndDCKgaqVSXPFNW5Na6s57YqHUr1dBcKksADJFVi5ZeAsU8DK1eE8llHt9jVM1PtuiTzLDg+4UVmt7VygwLVjNeGUibxsUG5l88KuUWHBWJQjFfaB85TZ55pwDNeNzGxXiBW+X0MJBs6JXRsl2bZBH/HvtVxmzJgREC+hdBxKPBJCCCFkYLz00ktyww03yLJlWAQtn2y8whMt1TZJpmayL2LKRixyEjJQNHs3VGI58O8wSnCk5c/C48tcmbSwUC+q3byeqTRF+qSin1zSgZZg8EVBEftnM7qPObnanMgVWnklrD2Hqor6ydK7Z4efLe06UGnAAwvZEGp17vYCDn75CCtBUXyBWoMzyCLP3SM3uGGU605VimLl/wjpE5QrqWmUVE2jiDiJUumUxLtafYGTJ3baIfHeUHmSCCwI/cgjj8hNN90kH/rQhzTZLJFAYhEhhJCJKFbavn17QKgUFi1BrAQHpuFAZeooBVdZKxkIkyBQqsgLlTIV3ntMFhkcGHfDOdXG6Rg/Izkgai4RdGGKh5yBPDcntIP1day7I4HYLyFXdKJROOFwS7chDhAoAZ3rVxiUnVv/95sK2sI8BP0Ij7sRNzBBFs4FcZDFcgxcH+ZfuD+Yc1hZaz0G90WTr51+5xLL3f76gqRs1hMu5Vyq4skqjTsg2draxH33BFHezwP3E0nybr/0+Nz1Wxk/FVglklI7Y0GgbCApAubCVfW6Ff3rZS5PPR0SQ5UYPKoAynv0hU+Z3gHdZitxt2aNV3kmiurq6oDQKeo5RU8Tl1gW8jlCxgDr16+XefPm6XNkDcPVhpCJCiZQL7zwgi9wQjAK9urlkK5uknQjBE5zJD1p5pBOglyHJijwXXGMl2mMxfmsDqyRDRzFk9+6wBuwxmJS1Tg9cLyJfaJK2pmgxwa8VU0zfGFSmBXfuTAwOUF/zELV3KUwCfGyNRIBwU8U4dJ2hrVhJSXcvuK5WsJaxkEsJkv+5ScBcZJNMuyakW3tZmuj5JyJn3CeUtcc7gvat8yQUj+PQZPulcTuTZJs2yiJXRsk0dVW1mEQKh1wwAG+eOnAAw9UBT8hExGOgQjh79dQg1JyP/7xj+X+++/vu1RBdWPedak2J1yqrGfGL9krBMa/AfKBgKBwqExQos6r1RZ4u2LSFD/Tt3/NeSXszJnVkhvCJaCRvd3R8qovLvJLUOeSFTzHqcJlOozXLTHBEyfh3WLLefl7EzjO+RzBApTMQFJFsXMOBbgvsUTCPwfu7yEXfmtYzkVIgFSXI3DaKYncYyxdOgiz7777ygUXXCAnnHDCuM8Q5xyDEP5+TSTgmLRjx44CRyX3OcRMwyZWggijophQKe+sJHGMUclw88TVHwy8tvmEJkFgflCmUw2SCKx8WxRWTk7LSZdwf8V5IVBCAjJiE3A17SsRoLBctjcHQHwAhB2d7BxuuxAEWdLzwPDmFYnqep1DYayf7mrvIxEiKOhSUVLLGr1HmDeYQ1bk/dIy44U/G1zbEZ+9YYDXQPpFutcTNuVcnbznHb7zk4qg+pHA3l8gego7O4WFTygrPd7H8RNxjkGHJkIIGYPgixkbrNFtUrZq1SoVNz333HPy1FNPFXVxSnS16la55XmdTKXrp/sOTpm6qbnF/f4DIQ4W7yH+AXBJch2PzEUJYKG/mAjIBtYYxNpnEOPYsebYZCIeBApcsZCJgEq5DIWzHKwGtJVrs+Pdawi7HWnmQC6bAcdElWoLl6ILX7Pr2IRAhltL2xyjMAmJFFOh3GBVbcBZCSIl3KvwPY3qi92r6ADRIECmefs234Ep0d6ipRHLcV869NBD5eCDD1YB08KFC2n5TwghhAwxa9eulZ/85Cfy97//3VuoDaGC97opedel6oaCLExC9iZaguBvP4tYuM76i9coi4DsZLcsQ1+BhzknneXPJ1zUASkkkFJRUE+n3368qk4y3e0F/cG4GmN5mw8FS9p5TklYrHcDHlGl3aJAOQc/0FBybB0MEESP9bPqCqXZ3/0VgvUTBCI06x3BoVwmNSF7hWS1pBtm6Zb/B5n1giwqcNoh8Y6dkmxdF8g0R9b45ZdfrqXNIWw69thjGRAhhJBRDtbFXWelKLESxEzDJlZCydTK+ugScDlXJZaAG91AfI8xf7D8WTFy7q/ZTFHhDpyHKiHuyVVf8ErbFWvHKz9n8wSs1/flOGSusAaERNlcgoQlUYfnOf45HBCDMZejgQFHq24/OaO8xJDgXMbOjXsUdMSy8tru/MYTbHW3tgTaQTyJ7CUSFX6J6KJoiTuInTqKCJ+sxF3/k2q6urpUJIOtVKJ8sbJ29n5DQwPH+GMMriQQQsg4IJlMyuLFi3V7z3veowEqBKwef/xxeeyxx2TFihXS0dFRcBzq4iZ3b9atasMTWoM71TRPeqcsUpFTf8RNFhAwkQ4GyRiUm7DIFQhh8dzENKix7AptMND3jk+pWMmEOvY+9oMwqLe9TQe2GDBbOTebJGACAkzco05ILy1T0RACHmapqmUZnMAHBsTW31Il2LQ0Xm7x34IWUfuFy7659wjvm8jI+u3bqcZiEktU+E5Kdh3mxoT3kT1hJebsPObCFBZWRfUFoD1zvsI9LeVCVZJsRhJtG6Ri+yotddhX1qvVTT788MPlqKOO0g1KbSrnCSGEkOEBi/c/+MEP5Ne//nXkQn5v03zpmXOEZGon80dARh9FMqRdJ9UCN6QSoDQCjsEcAUkEybomZ/E9FinymfuGD/jngJgJ2daqUUK5q4oqdTuysbyWydN+5xdokbmMuUhBH8tcxC2v3Fu59fJiWgo8Xm4p8iKZ0PmPc5nURbKoMcbHPU61t/rzF0JGBMz/q+olja1pnu/kVLnpWalseV5izr/hl19+Wb7whS9o0s2VV14pTU0lgjaEEEL2Cm1tbSo8xbZ69Wp9hBPE8IqVKnKuShAo5cRJ/nOvDJwkK4fl3GQY8cUyRtZPRvCE+Km8w5IzPlBHpt4uqWyYUiAYcsEcAeNtlIwOnDbQXjYn/E9KVvJl1QJl8bQMnbev9XveG8/PxRhsfhDTpAwcj9hGoCJEQccK5wr9FTPhHBbLyLcrg/45hIVVmDthA3YuzF+8GFHwhJjTkdFW4m6SpKu8GF0k2YzEelHiDuXtIHDKPbrl7SB+GoDoqbu7W78bsBWjsrJSE+znz5+vDq0LFizQ53AWgiCKjD4oaCKEkHEIFo3xBYztjDPO0EwVlKiDuAkiJzg5RU30YukeFaVgyyRrJDVloYqbMrVT+iwr4joAWXAAFqkmkrFHBAIw8PTLKqS6C0Q+JrIBNjlwS6JBuGOL+hjYIsPYPQ5tm3hKH7EArzWwu33HKJGLVMQTVcrOBESlrtUmFXaNdn3FnKfc4zChgRsTStvZPbGydxB7+dkb6V5f+GX9ttJzuDZzo3Lbt/tbjkDJdbqKEkGVJJtVJyYVMe14pU8r0UQioc5LJmCC+A5CPEIIIYQMPy+++KLcfPPNkZ91zzxEemYfPqRliAkZCjCe9cVBOSAe0tIGyQodv29/5j5Zd/dPPdFNQWAiGgQrzF0WY+pAJnGEcAdjcT2HgwYicvMjzAlQbtsvDVHQh5gmVbiOtZGU2f/ihDOYS4iTshLhMlWs2cL2XJcqTxC2I/JQ/JwwB7Mgi7nhEjJqSFZLz9wl6lZdvfr+gFsTePrpp+WWW26Rj370oyPWRUIImWjs2rUrIFqybefOnUN6niycRrTUW16g5Dsr5URLkqBYafyTGz9ns7L+npsCAiaUlHbH73B5xdq7l2hdKPoPlHvOZgsci6ISAMKuRBajAN66fUu+/ep6jbvo+fMt+MN/rPEHhFb9ml+UlxyRSaci5jTZfidGmKuUOeFqxY5kpe80hTkE3of7kp0P84/hkS6SvQ7KcOrf2lrJyLTofeCumuqUWHe7X9IuL3oyIRScnvr/r6Knp8d3enrggQf89+PxuMyZM0dFTrZB7IRkfIigyMjBSCIhhEwAIBw55JBDdPvwhz8se/bsUdcmEzhFWTTGU51SueU53dLVjZKaskjFTVBXR+GKejDYNiemqDJrGFhjgA8hErJ0sZ/rjBQWB4VLqbniJXeQb+dWQVAus1pLG6BsRKpHxU+uUCnKtcj6ByEUnJBMTBTuE4ISUQKgUgIhvEa7GIypQ5Rc5Gd6434gEIJ7AWGT79bkOEfZuU0MFvUzsPYgnCp2j1zsXva2t6pQqtS+INa1Syp2vCIV2/8p8a5dUgoI6iBeOvLII9WNqba2zCxwQgghhAwpcJaA4D2qzFzV5me0FHGqcY6kmuerWycCvISMNOr86vybbT7gWH+MXFHXqGNWX2jkL2J6C/FYIEd5s8jMaQ1W/HxwpQl0cT7Xt2zWE14VDRZkdbyNMT6CD0XdlnC8OuR6AZWBACcoz2Eq5jx3z5EJiZIKM5wjS2GEgi8VNfXSk/KCDEVLS6gbbjrv4pTN0qGJjB4yaUns3iTJna/qVipBh+5MhBAyPOzevTsgWDIBExyXBguqEJijElyUXFclEy1RrDRxgdOPifPdMXN4zBsW7ui6O5yccmN1rOejNLSN77E/HJfCzk5lk/XmDSCqPDba3/nisvItkaLmFLG4Jh1gnB4UU+F/jgCpiBipvLJydv7iQhNLeAjsHop5YN6HKhUFl5DA/U1L7fR9NQ5UKjGdjGEwn0QJz4q+RE+O01NI7BTv2aNCqHJFTzCBMKHT/fffHxA6QdRkAic8mqNTRQWTA/cGFDQRQsgEpL6+Xl7/+tfrBrZs2aLCJnxJL1++XNK5hWcj0dUmiQ1PaFm6VP0MT9w0eYFIsqpPt6ZiZdaiHIzChEupWQk6HOs6Nrn7u45HlQ1TddCLEhDmhtQXaBsBCQyKMSFxy9CFBU92Tle0ZdcXFmEZcHRCIAaPLpgMuaUy3DJ2drzdB1cM5rpJeWInL6MUoiebjBVzX7J+6/6od51zsCrYN9UlFTtWS8W2VZJoz2eFRAnnjjnmGP13BRET6hETQgghZOSZPXu2/M///I/86le/0jEf3DtdYtm0VLSu1S0rMUk3zJRU876SatpHF/wJGQkw1s0v4sf80glW1hpj2cJgQdZfIEc5hnCWtS5+p1Ne8sWWNQXvl01IQNWXAAlj/LZVT5ZxjqxUNU6PFGL5Wczdnf414T03GJAXMHnutKXI9HSUkYidlVgiUVBWo3iJDafBbFayWSvXkdD+0KGJjCjpXknu2uCJmFpRKj06UcjYb7/95K1vfau8+93v3mtdJISQ8QgSa8OipVdffVW2bds2uFJwNU3eVjVJMgh6O6Xh6D5LSuE6lSIBuq9xczGBU/51fgzslZFL9Fm2udQ5EHdA7AAVMCzhOU/fYqaSc5tsplDMpO9ng20PoO/9oswEDiShqKhJkyVSGhex+4T7ExUjIhNN9FSjGxxX+yV66t4t8c6dmrQf6+P3CkKntf//9u4DPooy/QP4s+lAILTQqyhIVZDiiQqKoqeH3nl62MXe0VPv/NsV9ex63qlnOQv2dvbeEESkqIAFKSK9hRYggfT5f37v5p28MzuzOwm7ySb5fT/OJ7ub2dnZ2Q2+5XmfZ+VKtU2bNs1RlUQHOpnBTniM1UniiwFNRESk6sUeddRRasvPz5cvv/xSPv30U/n5558j/8dRsEFtmStnSmnbvaSk4z5iZWZ7BiJhkgFR8mhoemVgMrkzOXkFCeFYscqj6VIOup6zzhQVlJnlCKsVwuXpIidWcFx9HjrICc9DViczkMsMfIJwYFVVcBUyIunyeKADqLyukzsYTAc46aCkqmCnHHWeuiSdmd3JDJAys2XpLFZ4npmNKWPdDyobU7QodmT+Ovzww2X06NHSokWLwNeaiIiIas+QIUPUhgmFmTNnqkEYBLIXFTmzUmAgJ237OrXJim+kIi1LZehUEwVZLdTP8P0WatAoVllioppCAFAVY4AxFLLLP/sPhIfs7E0IetIBOWpg3y69UPVcPI6B/4zmbVR72MyWGpX+/nuUmUtrku1YsV1RWhK9LFwoJK36jFBZW70yPiFwCWUmzMmHcqwQr3y9QCu11YpsTNoU2cfHhAsmTHTAmP2+jCAp9Kuatu8ZLqnncczMnFy7/+FXVs+9UIQoIcpLJKVoh6QUb1dbSN0O31eTFzGePmDAADnooIPUhmBgIiKqOYwrv/jiizJjxgzPTLFBWClplYFLraS88mdFVsvwogv2Q6iG9KII/MTYvBoj37bRFcQTbs9HLRld9U113gvSj4h2tIpy2bpolspAtDMPizDQNvcZmw+FHEFZaHOjLJw7k5LZlg/3J0KVf0OWhEKRGVmThT7ncOYrLLRoW3lNsKC71HNBOVG1gp5Q4aVom6Tsyq8McMLP/ECBTkgMgQBdbFOnTnUklDj22GPl+OOPl1atWvEDiQMGNBERUUQ6daxAxLZmzRr57LPPVHDT6tWrHfshwCVj4yJJ37REStvuWRnYFI6Q18EzqvRbZXBRrEalOwDIzOyEoCJ3kJMfDKQjOh8/MRlg7u8V1OMFHRmd3hXPMffVwVF6ZTh4BVzhMR2oFC0AC4+j9jUmTVCGAgFPeE2vxrg7yMkMcNLXzLxtlo8zg5/0Y16ZtPD+EMiUuW6+pG361bfRhnSaY8eOlcMOO0w6duzoey2JiIgouWBgBf//xoZgpjlz5qgsnV9//bUUFlatVNVUGZ6yIkkt3Og9wVAZ7GRltpCKrHCgk7qfkY283LX0rqgh8iuzrDIsRc105Bzwx+A8+gYosYygIgzYh3cpd5aYKC9T7WEsUNBZVVWIX7TBfZ+JBUx+oC2OwCtd/k29p9LiyhJumOSwwpMpVrkKHkJmJt1/QWAT2uWOyQjLck2ohIwgqYCsCrVowyx7h1XP+Yu/de3nPCZeVy34SM9Szy8rKqx671aF6gchAM1vdTsmWdwLRYhqBCusS3eFA5RUoNIONdmAn+p+lNJxnt/NlBQZPHiwHHzwwTJy5Ehp29ZnZTcREQX8Z9pSiyYQyDR//vyaBS5lVWZeatKKgUuUEF0OPcVeILH5x2ne7fpQKFxerjqMRQHVgYXGOouszbLCgTvuzEmu53UedaKaW0AAFPo5ej7GvV+bgQe7FidUZZm1JD7ZmFTQUWqaf4ltI5jM//pVnpuLfo75HvD5of+2ZuorDGiimkM24aat1eYd6LTVDnZK3ZWv+hyxAp2wkPCFF16Q1157TSWRGD9+POfQdlPIqmloNFEtQzAFJtAB9SuRso2Iagf+V7Fw4UIV2PTFF1+oLE4R+4RCUtomHNj00/O32Zl/dMYiBNEse+8/drk1HbhjBuHoACC9ShiD+O6gnmhBSfid+xjhgfUSNYmAgXQ06N3n5T6GGYyl98UkCM5H/3RnkjIzIulAoqABVDrYCIFfGOh333eLdVz9fFwDlK4Lci7q93M+kM4995IuORmejTJEk48ZM0ZlY+rdu7eEuBKKqFawDUTEv6/aUFpaKvPmzVOZm6ZPny5bt27dreOhdB2yeIYDniqDnCozPGFjGQiKBX0HDMxXd1LAb5BcZSQNWE6iKuioZrACGoss9GQCjqfLJVgVFZXBTKky+IqnVDtcL6bQGZ0QOISsq7rt/v29Z7jPUAVNmeXnfN5IeHLGmFwxyzR4PyVNUjOb+P4e11H3q4JM4OC95PTa17NvR+TJqpBQcYGdWQkZl0Iq41I4gCm0mxkEMjIyZNiwYSoL0wEHHNBoswyzj0HEv694QpYKZKdAINOvv/4aPXDJDlhqKeXIuNQEGZeymXGJarefYWYnjWNwUkwex0UQUDi+KDyn4Vi84drf3ddB2z5IFqnq9IWCCKVlqHLYHr8JsOAi+j7VLgceCsmQK58Jvj/R7qgoc2Z02pVfGeiEjE7+iygwr3bSSSfJHnvs0aCv/+oExXIwQxMREcWEwJW+ffuq7aKLLlJlSp5//nkV5GTvY1mSsWmJpG/6VTr36CVrllVIu2FHOQasdemG8GrnCx1ZmDC4jcAhrHzQZeLMYB53oJGZacj8nZ540K+j76PBjoF31cgvKog4hmaWYdNl63C/eFue6jzgvlmbWe+va1qrGtmV/MrrubkzLbnvu5nXzX0N8Bx3WTz9HL8JhE1z3pON334kXTt1kFDhRpmzaLVqaOgU+/369ZNTTz1Vhg8fztq/REREDVR6erqa4MV2+eWXqxIRCxYskLVr19rb+vXrpUIFY8SG4GidPUNkbcTvK5DuW2d2MsvZZTSrLGXH7E6NHbIVoU9Qsn1ztUog6H11SeWq0mklVcE8ZoYhCIUklJpuD8oHD2byHozHymG8ftU5ldurie3zkpD88PAlajEE+kFov+vSKQhqKs4vstv76c3bVGZqqny9UGVAEvaPNtliZ1Gq+j3KNKDvEu36ob+EoKxwAJbzWqBfFZ4MCWeessrL1eQLSmKgr+QucYHALHyOsUqHUyPLslRWLKHSQkkpLggHK5ml4fBYdTKPRYFFOZ07d1Z9W2yYQBg6dKg0bdo0LscnImrssCji448/lpdeekll+nfDv+ZlrbpLaZu9pKIpMi4xcInqXnhuwicwR/VDLUnPbm20aaME4FQ38MljXzN4JzKQx/nazn5RKGBJvHAbPp68g5nUb6KWxPPcx32E8jLpetgZdglxP+FAMEstaieqNQjMbdpGbRGBTru2qezm6Rt+ltSibVW/qqhQySKwYUHFKaecIv379+eHVg0MaCIiompJS0uTAw88UKVjRwrhyZMnq8kuDQOPXXPSJaVdS1k98y0pWLVQdm5YroJpdOkG3ch0lzxzZ0/yCuJBIxj7mGXkdFYmPK5XU3tlaNI1sfE6Zsk4k3lOZlYp9c6ssojazHp/nDMmKfDaWGEdJDOTX+BTtEAovF9MFJjXAPCaeF/4iXNRn0Xle/QKgFLKSyVzzVzJm/2eFO3aJWtWhztEu3btUpHURxxxhJxxxhmy3377MRsTERFRI5KamiqDBg1Sm6msrEw2bNigJit0kJN5u7g4+CBpCkoGle4SKcjzzu6U3kQFN1UgwCmjqVSk42flbRX01FSlBqeGS7dvw4P4VVmJEJDjLJfgpLMblWACwrGaOfx9QVYjd0kJlHtTCyd8B+bFZ1W0/2C8X1BUVutO9qIJvchCl82uyuIU7s/o9n4KBuvt1wupchKWhEvVoV+AACk9SaCzQ5WX7PJc2VxVuiIKy1LngWyvujy2SvDuuG6WpDdrqW7hveA9YUHK3PvPqrxQIUnLQhapnaq0NkQrHU4NKVipSEIlhZJSUqh+hkp2Skpp+HZKyc7wYyi1GAdY7dyhQwc7YAmbDmBCaXQGLhERJQ7aBldffbV8//33kb9DuS5k8u8wUGVgIkoWGFtXCxn0omh3+7+yvauDmdRcAx6zvPsFqpR1dbIJVZdPiesgmZBSMptJRXFkWfnq2p3sTnrRQ9XiDWd5cD8qg220YDEsSElJVcFSWAhDlBSBTs3aqK00t4+k5a+QjHU/SGqhczHRjBkz1Pb3v/9dlaOjYBjQRERENc7aNGLECJW157vvvpNnnnlGfvrpJzWZtXz5crVCB4oXz1YdXAQdYUAcpebAqwRatCAgPK4Dl3TADgKLdFYmNGARsAS6ZAMas/r1TNFexx1MhNXEOlgKr6sb4O7gIL3KWU+UYB+chz4XXYZud+mALGSPMkvJIdDKvFZ+11ZL3bZaspbPkPXLF0t5WZnKyqDTP+bl5cnFF18st912GwOZiIiIyBHYjolibG5o723ZssUR4GQGPG3bVrU6LVB2p9KdIqU71eo2PxVpTaoCnCo3HeykA6EwqET1my4dDQhmQqCNf4kDBAx1jMgs5FsmrTJICgFFqrxdgNJ10bI36dJyCBrym9hAMBaCjvQkhC5pjeOir4E+k7stj9urPn+2ckDfMrJQZalgIbNkRtGWtdEnHCzLe1JCl6fDeal5hnC2V7w2SmtXlc9LUxmZcD112W292GLhczfb18ecvEBAlC6FTfW8FFzpLkdgkg5UUkFL+Fm6U0IBJqmqIzMzMyJYSW8IZsL/m4iIqPahRLVXMBNUNG0rZS06qTY5UTJR4+ilRcF2DoVUG3bNV697BgZVJ4tsjBcKUKbN9YyU1KhloiFWMJNXf8d8TGdszek1OHaJPh+YM0EfTqnsywQRM/OUZdmZY5kFlpJOKCTlTVpLWcvuklK0XULlkWMXU6ZMYUBTNbDHR0REux3YhJTtyOKDTixqwepgJvyubdu2smlTuBxb3pwPHQE2OuhHD5SbJebc3IE5+vkYjNfZmHRGJd3g9WrMBi0D5xcchAAinDMG53UwkVmiTgcNmeXx/M5F08fEympMDEQLfnKXozNfHyvR9Xl6PR+rq/PmfCCde+4pXXMy1OQi6tpjAhKfFWrb3nfffbLvvvsGvj5EREREgLZEmzZt1ObO7KTaIQUFnlmdsCGYWmV/qaaUsl0Y6ZTUnVXlrdwq0rJUYJOVbmR70sFPKutTU5HUdH6ISUhnVzXb/vbAtk9QEQJ8vLI3IbioucdAfHrz1ir7EYJy3Kt/MUFgZj4yjlZ107VqGH0SBCd5rSQ2JwdUlqTK4+C19XtFgJBeEKEhSMgvI1VFWbGjZIZ6rLQk4pq4J21wPXQZO/zENVAlttV5ptiZdfX5mBMKdjBVWoZR4jtkBFyFoS+kA7F0FlsGNCWxCgQrmUFKlQFKdqalneHfx6kUnFuLFi3sgFl3tqXWrVtzoQ0RURJCWU+Uq54zx9kWASxKaPLbVLFCqVLWsquUte4hZTld2e6mOqfapzFKmWnIigrxyHLk+xo+iyhiwXOQeRZl16qTIUr1DVRZ7oqqRLhRgpHQjs9f8m3s80XGJCyQCIUc54N+RNTgJHtRRc0xCywli1DxDknbslzSt/wWdZwKWWYPO+ywWj23+o4BTUREFLdJLAQ13XnnnXLNNdfIzp07JScnR01eIagJPzt3aCtpm36Vsja97IkJv4xHXlmczKAmDK6DChoqLQ5PHLhqYOt9dodXOTizhJtXNiS9nw5Ucjes3e9LZ10CTJhEK1nnPh+vACe9n6bPt2TbRpUid92iAuk6fLjKpKUnD/Fz5cqVDGYiIiKihMjOzpbevXurza2kpETWr1+vytlt3LjRc9uxI8YKTR8pZUUi2GSL7z5WakZEaTs76CkjW/0Uu+QX1Rbd7kXbubQwXw2Op2e3ljLcRukHR4amcKYl8FpxbQcauehSEmbpanW0yuyvWBAQbTVy+DkV9iA8XgPt8jVTX44IhGrZe6id6SglLVMFI+kAIN121xlpQfePIoKZjOuACQy8TjhLbKhycsGKvtobkwwV5VJaEP6bKC8qlJRmOSqjElZg62ulJi8Wz1ElObxgIqQqWxXK0Tl/j74Yzt8dEEV1lFnJDlAqqApQMjMsIfNSgl4+IyNDcnNzI7Z27dqpnwhcwv8jiIio/o0FYxx41qxZ8uWXX8r06dPVeLBjH6tc0rcuV5uVkqqCmspzuqi2NtvZVFeCBhEhK6kea09ElqVoCxCCqH4gVMjxOgg8Cr82+i2VcwTGwpGyooKIzK5dDj3FJyAs3MeAcEnsUu/35A5gihnMhOyxlWXqPIKfcH5EdVNmu7gyU22hpBblS9rW5RHl5dxQIeWQQw5RSSF69OhRa6fbEHBEjoiI4uqCCy5QGwKYevbsKbt27ZKysjKVBj5UUSpNlk2T0q3LpV3/kY6SaV4BPzrDEQb23cFEgIxO7udjAF5POpiTFl4l7mrKHcTkdzy/35kBUfg9jmNmaAJ39qogr4ESfF7BYe0HHyp5s9+T5k2z1OeiS8tpGDxGqv4rr7xyt64LERERUU0nu7t166Y2P2hT+gU76a06Ze1MSP+duqtEZNfWGJmeIgOd1P3MbLHSm4QHWCnuVDu5chAdQUwoWaD7A1qrvUeoctPY1z2AjiyqKEON/oB78B2TGRkt2qjgm21L56lBeAzqdx41PmYwkzofrD7GALs6WMjuk3itktaZmMLZXnepOQMMwKNk3A8PX6ImDOwMR6GQvTgDpR50UJOeUEBGpcFXPOXo4/gFDrkDq7qOOV09B0FiqkxDWbF9PVvtvb+6jtuWzg2/D5T2Tk1TAVNpzVraAWAarq0q17cQ5fqqzh3vA+8X5wf4THR5cIozfGfKiyWlWGdT0gFL+mdl8FKCMitlZWXZgUl+G7IvYdKbiIgantTUVDnggAPUVlxcrLI1Ibjp66+/Vu13U6iiKrjJZKVmGm1s758IZieKB7SDAwcCWZYUb/MvgW5D5YMxp8vmH6f5Zlb1fYm4la0L9GrhTEqp6fbiELXIwi8DbWVZNy0lM0oJSSPQCH0x9Kc8A58cAUlBgsAs43wig59wfqs+f46ZYCm+ME/n6lM5fmJRSJRS9CYs3jj00ENl9OjR0qtXL/aLaogBTUREFBePPvqoKleGoBgENCFI5tZbb5U77rhDrbZHJ3bp0qWqxBkyNu1dkCfF3Q+ICPrBoLdemWyulDaDf3SGJgTwuEvVYbICg/B6YN8dHBUkSMjkFQhV3bJ1bjh3pGzVkxRe18DMXoXrgQkVveI7SDk6fYyOfYdKjyYl0nPoEMe+aDyNGjVKXnzxRfszIyIiIkpWTZo0iRn0hEkUlDo2g5xQzs68v3Wrf9BSkExPfmnDLYQLqHJ2zkAnMwBKUjOqgl8oELRpVaAPVF47dzATIJOQzn6EIJuOIyuzJJWVOLK2qoAgPNauh2qPY7AdbW48VwdAWeXh8tlbFyFIp1IoFM6q5FpljOAnfPoYSE/LylbtdPRRzJXNbng9/XsEPqGNbwcihULqOLivg6naDDxYZU5SwVZpGZLerKVq7+tSdAh40v0Dd9m3lPQM9Rx9fARwoV+B994kt5s6l9TMpvbEC17TDOIKZ34KBza5g5lwXN3/QECZuoZGIBmCtuyMU6GQnbmWZeeqqaKsauC82BxQL6h6PEETYc2aNYsaqIQN/X4GKxEREWRmZsqBBx6oNrTLZ8+eLVOmTJEZM2ZIUZF/9plQebGk7ioW2eWfUbUirUnUgCdVRpqLCygA9A28+hO+wTVByqFZzkyr1RUR1BSHMmzu46G9ps7PspyZbo2+g8pcZVW9BzODLVSU7Az3N2JAfyCc2co7W2zVa8Yp4D6e14oavvJSY+GHK1DJ7l+FxwRqqmPHjiqACdmY9tprL/aX4oABTUREFBcIZkKwEn7q4Bidrenhhx9WwU0IbAJMNGFSqMnSL6Q0v5cUddtfJC3TEcykyzyAO0gHHQ9MWpiBTrGyFiE4CpMb0UrcmdyBUO79q5vxydwfg/04d71q2S9gyrwe0d6vhsmJ4m15avJGT1ws/+Z9KczNlX79+ql90tPTZcKECTJ+/HiVNeuWW26Jee5ERERE9WUSpXPnzmrzU1paGhH05N62bNkiFSgjVg3IfqIHv/xYKWlRA57UREwKh2lMaiAc6dxTUqXLoafajyEIB0E+OmsQ2sk6aAe/06XOEGiENrd+ni7PltmqvezMW1656rhI9RWw4Rg4lns1MYKMkEkJWZzMoKb0ZjkRJaD14gUEDOmgqZS0dNW3WTP1FcekAMo+43zdr6ODitwBRmW7CtTv8f70OSIYCRmecHysDDfL3WW17qT6M3iOXhyhg57w/odc+YzqL5nfZD2xoLMqVWXIck5I4Hdm9txBFz9U2feqDAxT77NqdbdXn6rRQyk4lHrTAUrFeiDdCFxSJTPjD1mTYgUrNW1a9d0kIiKqbrv8oIMOUhuCmWbOnKkyN+FntOAmPyllu9AQktSdm/wXF6Q3jR70pDKqcnFBY+dVhhqLHsxFANVnVS+YKVbAUg0DdDD3UYK+kTtbrCrXZvQzVfAf2umVpdz0bla5WvgR7ic5y89VPjHquYVL+YX7AOE+gsffmxFA5Xpy5bH9sjaF1GKNnF6DI7PoMpiRNMwr+gUp6T5WuVm6Pn7at29vBzH16dOHQUxxxpEyIiKKC2T50RmavLI2rV+/Xo455hh5//33pU2bNrJ27VpZvhwphmdI916zpNVBp1SmfC23JyzMAB8zOAkTA3qlLwboEfjjNTCOx/F7PRjvV+LOix6c14FQ7v3dZeNiMff3etwrc5T+qYO49CSEHwQ96VSwqUbDH5N20Lt3b7n22msj6vO6s2sRERERNVQI7sZqOWx+UC558+bNKrsTNgTlm7cR9LR9+/ZqvzayqKQW5Ytgi1raLrsq4Ckrx94a4ySMDg5CWWl3GxmcwThiB/gse+8/EY/rYB70IxyD4KGQCvjRgU8RQiE1uYG2+L6XPSbzHjy/MqgpXGLOXIyA89EZmBBwhXJtqkRcWno4CMm9otmqsLMjoQ+E81Btel+WOndkpEXJh4ricACdDhbC+ZgTGDqzEyCrrbou9iRCSObef5YKCsNr4xoDXh+3ddZbHQxVUV5WlaWp8nvoDubSpe8AmbDUe6+cINK/b3TKSySlaLukFG2r3HZUDaajVIHfpM5uTiKjDBw2DKwjOAk/9WPYUCqOiIioNuD/OZjkxYZ2NsYpdRZV3cY27+fn+7eVoy4uKC0UKS2UVJ/1BVYoRQU9mQFOFtre6Vnhn2lZUlF5m5lVGy60R80FALrdapWH28xou3YedaJnqeoal4dzBzDtRkYhZIh1Z42F9OZtqspQm6Ws7ZcscwbVIxMrsjaVm+dlqb5XCH8rRqamYOeNUnap4efZL21mjg2XzvZ9X2npKhNtcX5exO+QkXbv026277sXmXQdc1qU86J6r6JCQmVFVVupcRtbyc6ELwZBeVX0qXRfSt82H8vJyWEQUwKFLCwHI6oHVq9eLV27dlW3V61aJV26dKnrUyKiGJBOEVmb9txzT1myZIm9Kn7y5MkyceJEu5Y6SogMHz5cVm0rkTXLfpV2w47yDVAyg3t09iQEHJll5zQdAKUDknan1Fys+9U5Hrhvx3ovQY5bsPJn2br4W/U4Uv/v3LlTZRdAg+rOO++U0047TWVlCvI5EVHyYBuIiH9flHzQjnUHObkDn9DujScrJV0qsloYQU5VtyU1XRoatHP1RAIGwPe97HHPfVZ/8ULE5IJeIKGyC5WVqIAanW3IvfIaA+Rm4I9ZCgEBSS33Gqr6HroPUlqYHy4x16S5ykpUdR4eZSYqj6P3RUBRuJRd5OrmVnvvb2dlxfnrYCgv7gkBvYDDzpgUCoVLRJSXqUmPzqPGqz7L9/dN8F0V7e4z6Wulzx3BT+b7M9+/l+r2l+r9IHvxDkkp3iYpu7aFf+ogptJwnzdeUlJS1AIhr0Al/RgH0ykI9jGIEod/X7sH5erM8tFmwJN+bMeOmmbSCUZlfHIEO2U6Ap8cv8PP1Cz8Tzqh50Txo+cMvOg2ri7vbAYMlRZs8c8wFJN/5qHqlF7zDaxC+x+BSJXtdewHUYOwHOXfwnTWWr/f47jop6CfETvAq3rvDf0W87g4l4wWbVVfDQsuev7hQtXHCAdtFar+lDvYieqB8lLvwCR1v1jdTjF/l6CMSmb/qnXr1o7FH2agErZWrVqp/aju2kDM0ERERLWatQmr4s855xxZuXKl3H333SrgRv9PrWtOhnTZbx8p7thBSlUq1JSIwXAE++A+JhPM0glezAF5PbiPVdFo9OqMTX7MsnVeGZncvw8yiG/u774dLXNUtMkA+7xmvS0jhu4nc1Y1URNshYWFqoRF8+bNZerUqbL33nvH/JyGDRumgpuYqYmIiIgoOgTkd+/eXW1e0A7btm2bZ3Yn/RiyQFVnjVmoolRSd25Wm1sFVps7gp3CAU9WZvN6m4LfzGxaUVqiJh7c7WFdWk4NuodCqkSCHvDG73AM/A7BP7itg35Q5k1PUNjBTDr7FQKZKlclZzRvozIVoc+BDE44FoKJdDalaMFMOuuR2V/BIDw2/Txz5Tf208fA84q3bnBMolQdOKSCtMxAKJ1NSZWvC4UkJS1TKsrCAU/m6mUEdumsSViFHp4sQPBTigrY0tdSZ1kCrPDGueKcVPYotZI79up0d+aqeh/YhO9F6S4j01JV0BKCmZAZIh7Qf9PBSV5ZlhDM5LVIhYiIqKFApkGMFUebBMUiTr+gJ31bL6StCZXxqbLMXVBWaoYd4FThCHzKNG4jK1T4fkNckFBfoN1bvC1PtY2r2sRhaAv/+NgVkpLqbG/ZmUpj8gvi8XjMI2AoVhCTXzCTbufbr1ZRZgQn+QcWVfULwosqzH6G17nhuNECmXA8lIXTfacYb8yxyAP9Fjxfl8PD8/UxsCgE/SiU8Db7N8goRXUI35HyEhWMhNKg4SCk4qpgJXfQErbqlGeMAwQjuQOUzPvsX9UP7AETEVHcuEuX6c1rHwTPoGM6ZMgQmTdvnsyePVvd79Spk2StnCnpm36Voh4HSEWzthHBRPbK48rSCYE7KniOZdklGcwB9VgriPUq5Wgl7rDiWpdoQAPbnBCINXhvlpcz78cqb9d+4EjJ++5j6dohV5UxwTVEFDQGwjFBduONN0YNZgL9OelMTfh8WHqOiIiIqOZCoZC0bNlSbX369PHcByU39ESMO/AJP9esWaNWqAeRUrpTbbJjveNxC8EvmeFAJ8sV8KQmUpK4hJ1dDqIyw1Kscs9pWdmO1bm6/LQueeZeZODO/oqfuuycuXDCXYpaZVYtLVbt/o3z+qhzdAcz4TWzWney+wbgDurBz4LVixwl3nRglHMCIBT+LyVVUjOaqKAs83nod9irzCsnRXRJPE0v6sDkgn6v4UxRYNmvqScw8BOlNvT54LkIlkLWK9CZr354+BLPhSJm30pfPxxLv++kVl4aEbCkbyOocHdgVW+HDh3UZg6o6+AlDKw3bdo0bm+FiIioocL/L2MtLigoKPANeMJPlLbDPvGCLCIqk0jxdkkNsL+FbJpeGZ/cZfAq77MMXvygPRxuM3v3tYIEL6kgI1VeLRz0Ew7EkcpjxshMpLIppXoEBlU9D+WlrdIie4GEngsJBzeh72Gp46Rntw6fLzInpZRJCAF1lWWpq4KTfM7FslSZN8yvoF2P/oc6JyNbbcRCBnf5PBf0u3T/xB3QpLJcqWsbkpT0ygAsV1AXno++VkQ/1bJUH8Or3B7FEQLbKrMkRQQk+WVUitPCjpqUgUNmWgQs+QUrtW3bVjIywuXPqX5jQBMREcUNAmFiBcTofVasWKHKcGCyp6SkRK2aQSAOApogdecmabrgXSlt10faDx4jG+Z+bq9sxgA8ou/xMxozEMiEDoY7E1K0oCH36m9MWniVj9MlItTKZQmvvK5JtiVzsF9PxGACxTznTd99JHlz3pcuHdvLiGFDHcdBFqyLL75YBTMFYQaZgZlRi4iIiIgSA1lWOnbsqDYvyGS6adMmlabb3NBmXr9+vfp9LCHLktSibWrzWkWOLE7lzdpJeXZ4szKaJU2Qk1fwkW4Pm/cRfIT2t86YpOnsTH4lnd0ZVPWgOwKHEFykMykheAh9D1zvsvwNaiBelXOrDPQxJ0J0qTscV5doQ+CQ7ie4+xrh16jqN+hApYqyqsCZ9OatZeD590ecu36e2V/ApEXV+YRL3eF3eG28Nx2kteqzZ2OWfzAXXOAY6KfowCacH15HZ75yf066nLb+jHRgVLSAtDpRViKphRsltWCDpBZslJRdW8OBgbsJg+pYaIJU++aGvi76akRERJRYGG/GYk9se+yxh+9+WGCArKrYEOCETd92/9S3g7TBA50jAgdKCkWwVasMnpHxqTLbk6MsXmpVeTwEuSRL2z6ZhNvDkyMyHKVmZUcEM7lLPWupmU2kvGSXHfDjyGwUo52ts8pGqnoegpK6HnaGajtjEbUOaMpo0cZRlUK/Dx3EZFX+DJ9T7GB8HBfHN/dV5a9TUtU1AR2YhL6Fed8LroO5sERdl8qAJausRPXN8Jpq0YouMWcZGbKKClQglcoW5bru6FO4S+7hXHD+uu9G5tepQkJlJUYQUrEzWMnOpFRca+XdosnKylIBSlgUpn/q2+77+Jmdna3+rafGgQFNRESU0BJzfvug0TF//nwVRHPwwQerxw455BA1QYO0wYDo7oy8hdIjJU06HfkXWTR3ZrjhitUBFeXh1RRRmI170APpWHngHkg3942VrQkNbjNQSt/WZRj0KmysVtblGnRWJx20hMfdr+E12G9OxKj9yookc92PkjfzLSnatUtWLN8la1avVgPmyLCElUXbt2+X5557zg5ocmfOct/XQWawZMmSanziRERERJQoyOaiVxbut99+jt8hc9O6desigp2wYaIlCAxWphZuUpvkLbBL14WDm9qrnxVNW4ukBFljnngYFNdta3Mxgg7Y2bZ0riMLUnXa9+AXeKNLwenJAUxyoMwbHsdrm3QwE9gl2tCrqVzpjAUZWP2ss065sxvp11JBQ5Wrj8sK86NeF91fwASDKjVROWmgy+LlL/42vGMoxbiGVZMlemJC911USbrKyQt9bljQ4Sj7YAwcqzJ3ldlqty6caR8T/RfzevuV1641uCbImFCQZ28IYArtZjkcd9ASHsPkKREREdWPBQYoN4QtCAQzFRYWBg5+wlZUFJ+MMjUqg4cyyo7Ap8qf6R6PVd5ulEFQRqYi+P7eM+xf7XvZ46ov4S51hja3M3sRMg1VeJR/i8zWhLLSTdv3tMtLh1D6DoEnroxICFZCO1y3zdG+12WiNfM4ke+roiqjk8qE5B2MhzY89rOfhnNAlYvS4nAfQwV1laj3jCy0ZbsK/EvYpWXY/ROcb6s+I8KZYXG8ogLVP8FiEdW/Ki+NyHSL/VSQU3lZRDAZ9lVl9IoKHFmdoi0ub3Cl3czMSHaQUlWAUkrlbdHBS3V4yugTeQUk+QUpIaCJyA8DmoiIKG6ilZhzl6FD8A0yNM2ZM0cFNAGCcRYuXCj9+vVzpPxFKbXMdT+owXikDLasCnuAPBr3qmuvgXRzcgOdFtz3W0GMQX6zLIU7Q5O5Ulq/vjvzk55Y0auczdfwGuy3s1G17y5bp06WdT99I10xcF5ZWg4riZDdavPmzfLNN9/Ia6+9FhFU5s6cpe8j4ImZmYiIiIjqHwRT9OjRQ21uCG43szmtXLlS/cSGzKgxS9dtXS7pW5er+1YoVcqbtbWDnCqyc8VKbyK1TQ+K69tmsJIe0MdgN9rXmGww90MbW5dQQGYi7G8GEpn9AQQkufsL+rVKdxXYK59Rng2BPBiQ12Xq3MFJOvvSvAfPUwFNGNxHH0K/D3d2I7Ptr7NNmYsl/Jj9Cx3YpOHc7BXMVkXV7ytLRSDblJn9SWeIMrNd4djuLFQ4Jx28pFeXhycSwvyub61mZ6ooCwfsIXBJBzBhcL8asOIX5eHcAUvdunVT5QsQdEhERESNB/7frzM/oV0QBAKa3EFOfsFPuL1jh3/2m+oKIaAF2SerkYES7f+qjE9e2aAis0KpIKh6xAwIQhBRRvM2qh2uF0foQBpdRq5qjN8IaIrI2lRZKi4tww5A0gsNkInIXSoNbXed9RXBTIDy0vp5+vgqK6rKZhQuo22WptbvI3yeoXAgkKuMXVVfIHrWKMfzQiFpkttNnaNZQhrn4hc8hfeYkpau+gG65HV40ck8VRpcBUFZljp/3eeyy2Dj3IzSc+ij6GuiS2ZXlJephSXlxbvC5fqMrE6x+kvJG5zklS3JK1ipuE5Lu5nl3fwCktyPtWjRQgWMEsULv01ERFQnZejMbE7uMnRoID3//PMqGGrZsqpGMgaNUXajbbv2ssfYM6Q0t0/E60UbMPcLcDIDi/ATjW10KNwBU+7nxxqc9yoXp4/hLpvh9xrhSYhyKfhtnhSlpaqsTJiMGj58uCpZgOuFyaprr71WrSbyCirDNUbwEjrGuKb6muO+vu7/+te/fMsEEhEREVH9gcHD/v37q829ojwvL88OckIbEm1BLChAm9JLyCqXtIINahP5MXyczBZ2iTqVxalJy3CATILoNrVaXWyFsxdhpTIG9hGAg0FzvSBBnV9ZcUQp5yqWmgAwSzybGVRxbHfbXpecC6WGS4WhnwC67MOgix9S2YlwTOzrLnegV2jjJwbti7flqUF4lKlw9wV0hia9eAI/Uf7O77q4F2aYkzN4n3oSBhMcTdv3sCcl1PWyIrM/6ddHcNLGeeHX1eUi1GRLRbma3MB+ajV43nI1CYTXNrPVmsFM+rMxr3kioGRLVfalDZKyc7MquRgUggP79OmjgpWwIXAJ/S0EDxIRERHVFLKOIEAaWxBmGTy/Unjuza8tXxNo/4dKC0WwBUwGZSEwx68Mnk9WqGQJgtJt+/wl36qAICyO6DzqxIhxe92OdwcGYdwffQi9ANpcZGCXbENGIZfSwm2S1qylCtLRATyqrHNZcVUQVOVtbDrICcfVpaYdmYpCocrAoXBmJN02j8iAZAQfOUrHhVJUMD/6PAi+wvswy3Y7SvTp42Q2E6u0SL0W+iy4ZugPqQUflaeFY5nBXAhIcly/rGxH6T51bQq2SEoagsqK1LHQ3/r+vgnqd+6ALWTOrdNycyo4qdQzW1JEqTczYKkOg5OgWbNmdgCSe/MKUmJ5N6pryfF/DCIianRl6NyBNzpTEDI2Yd8RI0bI0KFDZcqUKfLUU0/J2rVrVeYm28qZkrH+RynpOEhK2+5ld4LcAUqxgo/cZenc982yFW5+r2X+3lEurjrBURVlkr5xsSoxF2apQfXly5erEiMzZ86Uiy66SO69917flcFmdiw0PHVgGcrK4dqffPLJ8tJLL6lOrzvgjIiIiIgaFrQZ9WQK2tkasjahnfjzzz/LTz/9pDZk//Q9TvF2taVvDpcstlIzpCyni5S16q5+SmXgT7yYJQswYIyMQHpgHoP0egBblYEoK1ZlDTCgrlcF6zINeuUy9jGzsbozqLoDb/REgDtLLIKHSgvz7exPgBXGejBft+vDZd/mSEaLtuEsRpYlGTlt7OxSZsYosy8Sq1+jJ0u8grN0yTfsg4mPzJbtZO/Tbo7IxORezewuuwe6PwM4tr7+eCwzp519jmYAlnmO+rPyyoC7W6wKFbyUtnWlpOWvVN/J6kwsom+JoL8BAwao2ywTR0RERPWxDB6qGSB7PwKbkKnVK+DJ63EETsVLCIuDSwpFsAVkpaSrzK8V6U3Uz6qtqVQg+Cm9afh+WlbcS2DrUsuaXqgACKLxmhtAO9cMZkJQPzIqubO0YqED2tk6AEmViWvXQ7WhsTBAt6XNQB8EMyEoqmxX+DzwnM6jxqvjIturOg4WRGQ1iSgVXXVBUdKtUAU24dzQJse2esoLKlgoXHouXAYb/SG8tqN8m1WhfuA80pvl2Bmr8BNBRfbzDelNsqXdQcer66UzR+lycn6wQEX3WXz3VQFclRmqykrUebizMgH6d36LP3YLLkRFmcpullK6S0KuzfFY2S6VCa0uNW3aVC1q8gpO8nocj6Wnx7fPTpRoIQv/tyOqB7CKVKfxxEpSTOwTUf3gLjtXXehgffjhhzJ58mSVockNHZ+SDgNVxqaNP37lGbiEhq8e3NcrryFahiX9HAzWmysSNHMVtLvzUp3yCubKZUw2DD76NElf/5MqiYBALvz7p1cII5AJAU2w5557quAkv2uMsn6YnMJ+ZmCZ+/dowDJDE1HyYhuIiH9fRLUJw0QbNmywA5zwE21GZHiK+dxQipS36CRlLbtJWatuaiJid+k2N1YsYyUxAoS2LZ2rBrcRvOS3ItcONKosX6Db9LqNbpaR1hlUq9rk4cAl7Ie+AyYezJXHeK5zxXOossxESNKahFdG69fTfQoNExQqy5FRrgF9FKw8dr9vr/PUx3OXrsDqZNCBSrguQTLKul/DDHbC+9X9HVx3lZmpclIDEKSlr42exND9LbPv5X4Pu1VGbttaSctfIWn5qwKXkEMQHwKXdABTz549WQKBGj32MYgSh39fVB/a+zt37vQNgPLbgvQHEqFCZXZyBz7pYKjKwCcV/JQZOHOsux3szr5kBvTrvgEWTOh90KZH6TR3MJMuy4x2sA7uN0tC230ZIxgJvzeDrMx5hrn3n60CiRBQlNGijTofvDaCliLL3lVxz2fo94vMUKoPEQqpvpRqw1cGNZnvSfc5dFk8fUyz5DfO01xQgXY/NmRxdWeyUmX8ykpUYJI6d1WOr0K9rya5Xe2ALwQ56evkznjlzuTk9T6jUkFKRdEDlRCghJ+u4K3agoUXfpmTvAKUcD8jI5wJjKght4GYoYmIiOLCDKgBM3jGr+xc0EAnrEwZN26cjB07Vt566y25/fbb1fF0kA8am1mrZkvGuvmS0b6/5E64TaQypavmXnmtVxzr8hJekwXubE1u5ipor9XGXiXuvNhl7kIp0rV9a8lc/a39O7w/bK1atZJTTz1VFixYIBs3blRl+cysV/oaT5w4Ud3H9UTGK5STw0+/UnS7E2hGRERERA0PSg3oTE5jxoxRj2HCY9GiRXaAE7YdO3ZEPteqkLRtq9VmrZghFc3aqcCm0pbdxWqSU6Pz0W1urFi2yktVkI1fEJMZwKMH2HUbX68y1iXadMCTmpgwMjLp56OPoAfPB1/xlCPgyV5NXFnaQWdhUquty8IlP9BHwIrqnF6DHfujjIMZzBTrfZj9DQQbYbJFl4kwA5p0FiizZFy0/ojX+9F9JF32DtdZvz7u68kCvVJcZ6ZSK9YN7n5UkEUevsqKVPCSysS0fU3MyQUs1ujdu7cdvISfQTMcEBERETWW9j5KTmHr2LFj4CCowsLCwBmg9OPxCIJKQbYebEX50c8RhbxUdicj25Mqd2cEPaU3kQ2/zJbVX75sB+qoYCWjpJqZldVs06Ldr8vCeWUfVdlYK6Evop+vg3J0uzm9WUtjwUPIEcCk2+O6va6zIiGzkQ6qUvMIqel2oJReZIBj6SxM5nyGGbyFjLKae0GC2V7X7XlzMQNu4zH3wm6zz6UCklTJvEwVfISyeihzjT6RChzL3+DI9ITbZiZZM8uVucACAVDuYCacd7uhR0ioZGdlUNLOyMAkM1ipvERqEwKNdNm2oBmUWO6ayBszNFG9wZUNRMlNZ/vJzc1V9bxRxkxnEPILXDIzCOlMQ0Fg/6VLl6pOl1kuQ0PZi5J2faW0fX/VifGbHHB3KvSKg+pE9gfNwuQHDeot01+WdQtmSdfKAC0TAplOOOEE+eMf/6jSh/pdSzyOYCbzutf0+hJRcmEbiIh/X0TJBhMTWG33448/yqxZs2T27Nl2FlE/5Vk5UtayuwpwqmiWG86cFIWZDdUMGPIacHeXYdMZi3Tgkzv7khnQBF7tfzPDU9cxp9uBPegzYHDdnXHI6xz0sXVGJ6+V1OZKaPfKab1a256AqFzxrZ+jM0hhFTTK6mW17mQHS7mvk7vfYq66Nt8PmKuuwXwejmNO+OjV3e5Se+7r6JWFyk+oeEdlKbkVkrpjA6Zmou6PknEjR46UffbZR/WBOBFAFBv7GNSQFRQUqCzvb7/9tsyfP1+2bt2qxtewMPLII4+UCRMmqP9fJAr/voiq+gx+QVD4u9yyZYu94T7mFGoD+i4o04fArj367SsrliyQspJwG711j36y56HjZcOSebL+h+nSbtjvJXffMY5KDmawj9knMANxzAUYVRlnS1SbHX0bFVhUGfiDACf3ggq0m81Mr+jb6LLaeF60DK/uYCyzH2OWePPqVwVZaOHVd/KqjmH2OaBp+552BiZVHg+l2kIpkpmT6zhnnS0rlJIiQ8+5XX546R4p3rHF8XoZWU0kJRSSLl06S2fXfEqiYOEE/l/SunVre8N9bF4BSsi2RNTYrE5QhiYGNFG9wY4AUXLTgTbokCCDUJAyZjUtRaefd+mll6qV43fccYdaMa4zNmlWSpqUtO8vJR0GiCDlrA9zlQJWHOjOhVcZuXgIv96H0qlXP+naItVzlTFWsKxbt06uvfZa9T6DcF/P3S31R0TJgW0gIv59ESW7oqIi+e6772T69Ony9ddfq7ZsNCgPocrStewm5S06iqREJhA3B7/NMg1oqyMoSA/+m+XfsJ8OJsKAPTIrmcfSgUDIdIRJBF3yANmO3G1/FbhjTBjooKpY5dzCpSaw8hmD8GmSmtlEPa4nJzS9khqlFRAEZU4S6DJ5Xu/RDNZyB1HpSQr8xESCV+k7d+k9rwmMaKW33SX0wGu/quCsfPV5RQ1ownvduVnS8leqQKbUXc4JCzf0NYcMGSIHHnigHHDAAczARFQD7GNQQzVlyhQ5/fTT1Xc8Wib4G264Qa677jqVAT3e+PdFVDNlZWUqqEkHOJkBT+4NgVI1tXbtWvV3qucSZsyYoRYJA4Id8ZgOespq0kSGHny4rF23Xtb+tkiatu0shVs2SPshh8mGeVOkOD/PzkbkDmRy8wru0eXe0J42y6uh3ey3IEFnifXqv+jAqYpSZCMK92O8MtfGKget+jSVQVdgHsfreX7BVKAXQ5j9Mz0/Ul5UqIKb0jKbSHlJsVgoQxcKqYxg2dnZst9++6nPa/ny5fZr4bPS++AnFnO7F4kHlZKSorIo6eAkM1jJveF88HpE5I8BTdTosSNAVD/URRCNztikG7meGZs6DFDBTZKaHmilQbVrMHscy7NDUF4iC574mxQV5EuTJk1k+PDhjl8jze8pp5wil19+uXpPzK5ERGwDESUO/76IEjMRgZJ0CGxCgBMGoKPBIoSynC6VAU5d7YUIaFevmfqKKumAxQYIisEgOMorhEutYTDZsoN/zGAlBP+YgUKwZurLanAf2YTM4CAdBGWuttZteZ1dSE9SmBmi9ISDu89gBgOB10plcz9zpTQmNnBc7ItgJ53RydxHr842A5n0+bnfszuzUpDMsmZmLK8FHu7FIO793EFWZhCX43gVFZK6Y104iCl/paSURJ+UQnbe3/3udyoTE/pQuE9ENcc2EDVEH3/8sRx77LGOrJEIXmrfvr0KjkAJXdO5554rjz/+eNzPg39fRImHv3OvLE9ewU+xMsmiv4IqBwiQ0eP1ZhBNjx497IAZHeiE/TAXsWnTJvU8CIVSZOjZk6Qiq4VYGc0RLeN4HTPTKdr3WOBgLrqAaO11dzvbrx9ici8qiNXW1+bef5YjmxP6G/teFuzfS8diktEnSsHKBZL/23xp3XUv6TP0IAkVbZeU4u2qDJwOLkMfUgcq4d9t3PaaO1mwYIG65ijnpj9Xr/2QKckdkOSVXQmZlBIR2ErUWK1OUIamyCVwREREuwFBTLWdDeiqq65SQVQIAtpjjz3khRdecKzEQn3kzDXfS/qGBVLScZCUttvbsQpcBzHpDoNu1Ju1poMyj+XoEJSXSXreL5Kx/gfp2jFXVq8udvzPvFu3bnLqqafKoYceqhrtOH8dGObGzEtERERElKzQlkXpL2wXXnihLFu2TAU2YVu8eHHE/shWmr51udosCUl58w6qLF27vsPttjUCmnRAEYJ90pvl2Jl/UtKQxShHPY6yclgZjZW/eiAdx8BAP36HwCedZUmXbwMzmAnPUftWDvKr0g+VK6cRPIXbOlBHPw90iQkEFZmPu4OKcF64b5aq0OeCICZ97nivWKFsZofCY1hNjU0HStmruUuL1SpvXAfA65n9EfN+tOAms9SF3/5BJljM61PVR/pQOnbrES4nt2216qdF07ZtW5WFCRu+T8jMRERE5AWT4ieffLI9wd28eXO588475YwzzlBBsCh99cknn8hll11mt0eeeOIJGTp0qJx33nm8qET1DEoMo3IDtmgQbIQApGjZnrAQY+XKlerfCXO8HkE2eD7G6XVAE36vszvhJ36PLD/42bZtG2m65NPw66Jocma2rFm3QdYuQ2anTlK4JU+a5naVXZvXqv6IV8nmaAsPdDvcnQ1Jw321iKO0pDJjaxO7hLSG5+mMtub8hbu9r/pLRoYm9Md8YQGKDlIq2i6de/SSZfPzVN9l0zdvhIONOh8U3nfTEsdTcV2xmQFkyJiE0qH6s9BBTPiskRkY11pn1EIw0plnnqkWiJuBSuw3EDUsLDlH9QZXNhAlt2QKsikvL5fPP/9cnnnmGc8V4RXpTaWk075S2ra3WikRdLVyEO5jbZz7meTNfk+6du4ondvnOvbFua1fv17OOussde2CrgZA6lusGmH2JqLGgW0gIv59ETUUGzZsUBMG2ObNm6fa7dGs3rRN1qxYJu0Gj1ETAnnffmwP3LtXFutVxHqFs/v3OuAoWsk4PIZgJhzHXarNLONmlnnQGaGsiorKMnPuUgqRZSLcq6m9zk2fh87uhG1n3nIVwJXTa19HmYhYq7XdopWfMwOa9Gpuc39zAYi5qlvv484W1X7f0ZKyK1/W//S1dOnUSTp36hj1M+/Zs6fKwoQgpj59+rCsA1GCsI9BDc2ECRNk8uRw5pOsrCz54osvVGY/N5TFPfjgg2X+/Pnqfrt27eys7/HCvy+i+sUca//2229Vpif8O4HsIhivP+KII1RVBfxtI6DGr3SdySvzkM4ANWz4cLEysqUiq7lUZOaEfzZpJeXZHWTjj9N2a54iWunoaBma/J5n9hPa9RshqTvWS0rRNiOAaYeEyiMzYEW7Nn5w7VFKsE2bNvLPf/5TPQ8Z9gYNGqSCzRA49vDDD6t5lGHDhsmcOXOSYi6KiKqw5Bw1euwIECU3ryCbug5yQofho48+UgMaGzdujPh9edPWUtTjIKlo1iauQU1aSsFG+enZm6RoZ6HqrJgrOAYPHmyX4KhuYJLXda3ra01EicM2EBH/vogaoh07dsisWbNUcNPMmTPVyulo1qzfIKtXr5EO/feXdYvmSvG2TY4BdwQFYRVxKJQqllWuVhMHLSHtXuVs3jYH/PX9sl0FKngJQT8I2tHlGBDMpIOS/AKHgpR4MIOcdNk5XVoP/CYakO3JDHSK9n7N8zCDmHDf3S8yA650dqjwG64K7NLXrbyoUGWxQskNZJjyKgFhwsTEwIEDVRATts6dO8f8vIho97GPQQ3JunXrVOZzjAPCDTfcIJMmTfLdHwFMffv2tTN8YDztiiuuiNv58O+LqH4JOtaOgCRkdFqzZo3nhmAcTZemQ6YgZLBF0KTOOuQX4LNm7XpZ+uti9TqZObnSbtjv7QUdQecrajrH4fk8ZMctyFOZVVOx7dparaAlr9/n5uaq9r654fcIGHv22Wc95zeQcQ/XDlm5UMqK8x9EyYsBTdTosSNAlNy8GvlBMgnVRiAO0k1feuml8uKLL9ppTDWkf0UZurkfvSzF+XmBJz2iqiiTzDVzJX39T7Ju7Ro7XSpgsAQNdDz21FNPxe29M2sTUcPFNhAR/76IGrqSkhKZO3eunb1p8+bNEYPgaD+jLY1JgR49esiq1WukU+9BkrvPIVLWoqNYmS3k5yevtoNtdKamIAP5ZhYm8zlej+vHwCwHZwYyRQuU0lmU/M7PnW1JBw1VlJVKRWmRut91zOmOrFOCkhYVZY6sSkHfs12yzpWVyQyS0uXusK8qkWeUnwhf7JCkZWRK9169JaV0l/rMok3aYDICq6oRwITsGSgrQUS1i30MakgeeOABOyAJgbJoPyCrRzTjx4+XV199Vd1G2Tlk+ogX/n0RNR56bgP/Bp100kl2cNPzzz8v77//vvTv319ycnLUYo5YdBAUsjlhPmXVmjVStHOnZLZoLf3PvlskNX23A5pi/T5UXKACmLDf2iU/SNcoAVj6fPUCBt13Q8DoqFGj5LnnnlOl4hC09NVXX6njoB9Q02u8bds2tWidVSuIklei2kBpcTkKERE1egjIcQflIFBHB+z4we8R9ISfiQpoQkN5ypQpapUEUkv37t1bDa5DSCzJXDdfunTqIKsrKiJqT1cX0q5mLZuuUq4CGur4nzga9y1atFArxq666irJyMjwvGY1FeRaExERERElI7SNR4wYobbLL79cFi1apAKbMDGAdjTa0ybHIoUVM9TgOQKcmrfpIOVFTTGdKR0P/LOjlJyjLLQr0AgBPYCgHWQr0s/D73XpN+yPx71LrlUFMpmBQDtW/Gw/jscQQISgIQQzmcc06WxJKN2m90O5uY4jj4yYfNCBRrF4TVzgtl9WKvN8S7Zvskv5hZ/zoQpmSsvMEqmokLLSEnW/rLhI1i5bYg9YIkipX79+9vEwkaOzMO23336qHBAREVE8IDu7hkn1WMFMMG7cODugCWWOVq5cqcbsiIiqQ89t3H///XLhhReqNjCCmMaOHevYD3MSfpmd8vPz1T5mdQfd11H327eR7LkvSHnzDlKW00XKc7pIRVZOOIOri27De/UzPH+PvsaO9ZVZmNZIalH4XNYt+UGKKvth7oAmBI526NBBtetRRvyPf/yjnHnmmXLKKaeovhveK64H5mD0fAXKSteUnkMxF8YTUePCgCYiIkqYIAE7tRWIY77OCSecIA8++KBMmzbN/n2X3FbSObeVlLZuJsUVZSIp1fxfZHmZZK6eIxl5v0T86rDDDpOff/5Z/va3vyUsaCuewVFERERERHUFA+RY1YsNpWPuvvtuOeqoo9Tqvs8//9wxoK5XAWM/ZG8KbV4nI0eEy5tVpGyWsuXTpbx5R8mb84EUb9toD9ybA/mgMiEJJgQslQnJDABCFiV9Wz/uVS7OnVlJBwKBfj5+Ijhp54ZwBlcEPblVlJXYt/HaCHDSAVfuTLLICoWgprRmLaWsMF9li/IKXvKa2MBP8z24348O3ML5pGZkSdcBw6RzRqFk5ubIisKtavIDmbJAZ6Q1M2nhJyY3kG3rs88+k6uvvlouuuiiGnwjiIiIokNAkrb//vsHulwIojZ98803DGgiomoLOreBhc7Y0MdxQwAQstUi4xFKciOrUcQiDqtC0ravVZusmi0VGdlSltNZStv3k4omrexjuRctuOnfd+w7VJos+VRSt6+TEOZCXMzgKmSM6tOnj/p3E0GjCFRC1lw3tPfNaxHv+QrOfxA1XiELxTiJ6gGmaiVq3BJRmm7q1Knyz3/+U7ZuddZ/LmveUXbtdVigNK5KeYk0WfyppBWES09obdq0UavKsVqhJmqjHB8RJT+2gYj490XUmJlt4vPPP18FNmHA//vvv1ePIwsrBtTT0tI8y5uBzuDUqc8gyR04StatWCobfpgm7Yb+XgpWL4oo24agI51NSUMQkw4M8ipTrUu46eebGZrMAKi5959VlVXJKB+nA5FKC7ep0nK6/JtZGk6/ppkFauf6ZXYQFfYB8zzcGZiileBTx53zgXTsN0w6dukqc99/Xop2FtplJNzlJczr3r17d7UaHWW1UVIjNzdX8vLyWBqbKEmxj0ENxfr166Vjx472/ccee0zOO++8mM9DMDT+/4afcPPNN8tNN90Ul3Pi3xcR1XRsH1P2y5YtU4FN2H788UcpL/fPyGqFUqW4+/5S2ra3Z8amCOUlqrpE+tbwggQ/yK6KEtHoA2BjiWgiqss2UEpcjkJERJRgZmm6eEEt52eeeSYiBWzajnXSZPEnqoEfU1mxNF30UUQwE1aR49g1DWZK1HsmIiIiIqpPbrzxRtUmxk+sDkY5mGOPPVZuueUWlb0JgTQYZEcJM5Su0wFMCLrBT0CQ04jhw6RrTqZkrZwpPUMbZcSQQdKtaansWr1QBRhZVrkKAkLwEQJ/dHAQAoWw6YAgPO614hmP6QAo3O75hwvVsRBU5M6qZLMsO0uUDpZKSUtXr4Hn6mO5X1Pvi0As/CwrKlCvjX3Mc8fvkGXJXKWNACkELsHGeZ/Lz09cKVu+elGyln4pG79+TWWy2jBvimTkLZSunTupyV5zEBLXFJO/CGZKTU1VgU1FRUXy3nvvqcUi+Ez23HNPmTRpktofEzi4z9IQRESUCO6ytEEnzhCQ265dO/s+Ss4RUeMLONprr73Uz0QIMrbvPgf0d/bYYw856aSTVNv6nXfekVtvvVWVyTT/zdJCVrlkLf9aspZ9pSpIRJOyc4s0+/kdz2AmvC6yR02YMEH+85//yBtvvCHXX3+9mjdJZDBToj8DImoYmKGJ6g2ubCBq3BKdrWjmzJmqc4AV3lp5s7ays/cRImmZns8JlRZJk8UfS+rOzfZjSB17ww03qBUMu4sZmogI2AYiShz+fRElN7SHL774YqmoqLAz/njBIDgmCxA4c/LJJ8vtt9+uVjI3bdo0ZrscATp4LlZDZzXNlsF/OEPKm7eX8ux2kvfzNyogyJ1lyausG5jZlPC71V88r4Kl3Bmd8Hz3cc2sS16ZnUz6+SiPV1FWrAKjvF4jnPEpXypKiyUlPVOs8jJ1PqFQijTNaSmF+VvUvjoDky7h55XpCpMcvXr1UpMqGzduVLevuuoqZpQlqqfYBqKG4oMPPpCjjz7aMb7nLifnZ+DAgfLTTz+p2yiT+uabb8blnPj3RVQ/mH2IJUuWxP34Qcb2q3MO6K+grDMyN02fPt3+90srb9JKdu05RqysFhHPTdv0q2St+FpCOlOsiFqgcMghh6h/M4cOHaqyMjW0z4CIalei2kAMaKJ6gx0BIkq0xYsXq0F51K3WKjKzpSIzshMAKUXbJaWkwL7fqlUr1UnBKgoionhhG4gocfj3RZTcsAoZwTMIpmnbtq3K+qMnA8wJAtC39UpoDNA/8MADMmbMGFWqAdsPP/wgCxYsUH/72dnZUlBQoH7m5+erY/To0cMRyFOelSNWRrOI8/rui3elqLBAspply36HjrMfX7d8iaz9baFk57SWzetWqUkHnHvPAftJxx57BXrP+tjgPr7XfmkZmZKWni6d9tjb8zVmffyGlJUUx5xIcAcwIdsVVmkPGjRITfj269dPXatoEzP6dwgimzNnDktnEyUxtoGooXj11Vdl/Pjx9n1M8KMEahC/+93vVAAUHHbYYfLpp5/WKCuU27p16+xSrUuXLo3bZB4Rxdfjjz+usiBdfvnlgUpVJtM5oJ/x7rvvygsvvKAWf9iPp6ZJeZM2EVmcUgs3OR5D30pnUm3snwERxQ/aSFj8BAxookaJHW0iqg2//fabasxv3bq1Ws9DJwCD9yh5UduYyYmoYWMbiIh/X0SNPaApJSVFDdSbK3f9VvNGaxtj4B+LD7CyWR8TAUd4XGcpCsIrk5H5GH6iFBuOjfNzBwvFOjbOzyvAKtY5RNvPDODCT5SLQ3Za9GMQrIQV2Qhc0huuL4LCqkN/JnheaWkpV1oTJTH2MaiheP755+W0006z7y9atEh69+4d6LkHH3ywfPXVV+r2qFGj5Msvvwz0PPz/Paj3339f2rcPl4Ilovrj9ddfV8FCp5xyihx//PExH6eaXU8ialg2bNhgZ86MZ0BTWlyOQkRE1EBgggOrAjABsmmTc+WCHwxM3H///dK5c2epC2Y97kSU4yMiIkoUTKpPnjxZ3n77bZk/f74KKEbGQ3R4jzzySJkwYYKaICeixgkZmdwZfzSdjcl8DNAe9msTYwLy6quvdhwTGYhQtuGggw6Sli1bqqytKFcXDQKI3EFEOojJDGqKFWwU9NiJ2A99FzOACWnhqzNB60V/Jl6fFxERUSIgKNm0u/8vIyICBN9gMh4/zQAcv8cpOl43ItodDGgiIiJyQZalf//73/LUU0/J5s2bo16f3NxcOfvss9Xq8briN5lDRESUzKZMmSKnn356RMmGvLw8tX3//fdy9913yw033CDXXXedyiZCRI1LtOCkaL+r6TEBQUkLFy5UJep++eUXKS6OXq5Nw79R+HdryJAhss8++0iyQUYq9HMQwDVgwABp08ZZiiIeavqZEBER1RRKpJqQITAoc9+srKzAz0MwQ9CSc3vvvTdLzhHVQ3//+9/tUmgI/o/1eF0rKytTZTO/++47z8UZyMY6duxYlZm1LiTrdSOi+MIi1UQIWe4QdqIkxVTIRERE1BixDUQN0ccffyzHHnusI1AgLS1NZT1ElqadO3c69j/33HPl8ccfj/t58O+LiIiIGiO2gaih+PDDD+Woo46y78+ePVtlCgwCk+o//fSTun3cccfJ//73v7icE/++iIiIqDFavXq1yv4c75JzKXE5ChEREREREVEAa9eulZNPPtkOZmrevLk8/PDDkp+frzq+O3bsUBMTvXv3tp/zxBNPJCSgiYiIiIiI6q+2bds67m/ZsiXwc8196zLzOhERERH5Y0ATERERERER1Zprr73WnjxAaQdka7roooukWbNmdlmkI488UubMmeMo24TScwUFBfykiIiIiIhI6dGjR8TiiaDlmVDmWotXBgEiIiIiii8GNBEREREREVGtWLdunbzwwgv2/b/97W/yu9/9znPfFi1aqLIP6enp6j4mHJiliYiIiIiItNzcXGnTpo19f/HixYEuzm+//aaCmrT+/fvzohIRERElIQY0ERERERERUa14+eWX7YkDZGK6+OKLo+7fq1cv+dOf/mTff+mllxJ+jkREREREVH8MGzbMvj179uxAz3HvN3To0LifFxERERHtPgY0ERERERERUa346KOP7NvDhw+X9u3bx3zOuHHj7NvffvutrFy5MmHnR0RERERE9cvYsWPt29OnT5f8/PyYz3n33Xft2/369WPJOSIiIqIkxYAmIiIiIiIiqhUISNL233//QM8ZMWKE4/4333wT9/MiIiIiIqL66YQTTpDU1FR1u6SkRP79739H3X/p0qXy5ptv2vdPO+20hJ8jEREREdUMA5qIiIiIiIgo4davXy9btmyx7/ft2zfQ83r27ClpaWn2/YULFybk/IiIiIiIqP7p0qWLCmrSbr31Vvn88889992xY4ccf/zxUlpaqu7n5OTIOeecU2vnSkRERETVw4AmIiIiIiIiSrjVq1dHTDwEgWCmdu3a2fdZco6IiIiIiEz/+Mc/JDs7W91GsNLRRx8td955p2zbtk09ZlmWfPLJJzJs2DCZN2+e/bxJkyZJ27ZteTGJiIiIklTVMlciIiIiIiKiBMnLy3Pcb9OmTeDntm7dWtauXatum1meqhtE5bZu3Tr7NspTYCMiIiJq6NjmoYYGWV1ffPFFlX0J3+/i4mK55ppr5Prrr5cOHTpIfn6+FBYWOp5z8skny8SJE+vsnImIiIgoNgY0ERERERERUcIVFBQ47usV1EGY+7qPE03Xrl0D74tSdlu3bg28PxEREVF9tWHDhro+BaK4GzdunLz33nty9tlny6pVq9Rj5eXlsmbNGsd+KSkp8te//lXuuusufgpERERESY4BTURERERERFTrmQDS09MDP9fcFyUkiIiIiIiI3A4//HC1UGHy5Mny5ptvyoIFC2Tjxo2SmZkpPXr0kNGjR8t5550nAwYM4MUjIiIiqgcY0EREREREREQJZ1mW434oFEr4a+qV2dFKzg0fPlzd3nvvvaVLly4JPyciIiKiutaqVau6PgWihGnatKlceOGFaiMiIiKi+o0BTURERERERJRwGRkZjvvVybRk7puVlRX4edUJUML5uc+RiIiIqCFim4eIiIiIiOoDBjRRvVFWVuZYSU1ERETUGJjtHrM9RFTftGjRwnG/sLAw8HMLCgrs282aNYvbObGPQURERI0R+xhEicM+BhERETVG6xI0j8GAJqo3UOta02UhiIiIiBpbe6hHjx51fRpENdK2bVvH/S1btgR+rrlvu3bt4vYJsI9BREREjR37GETx/5vSOI9BREREjdHGOM5jpMTlKERERERERERRuDuxa9euDXS9sKInLy+vRmXkiIiIiIiIiIiIiKh+YoYmqjcGDhwos2fPVrdzc3MlLY1fXyKqvTSJekUV/h3q2LEjLz0R1RoEc+gVnmgPEdVXaMO3adNGNm/erO4vXrw40PN+++03R5ri/v37x+2c2McgorrEfgYR1RX2MYgSh30MIqpL7GMQUUPrYzAihOqNrKwsGTZsWF2fBhE1cghmYmYIIqptLDNHDQXa8x999JG6rRcrxOLeb+jQoXE7H/YxiChZsJ9BRLWNfQyixGAfg4iSBfsYRNQQ+hgsOUdERERERES1YuzYsfbt6dOnS35+fsznvPvuu/btfv36MbCYiIiIiIiIiIiIqBFgQBMRERERERHVihNOOEFSU1PV7ZKSEvn3v/8ddf+lS5fKm2++ad8/7bTTEn6ORERERERERERERFT3GNBEREREREREtQJlWxHUpN16663y+eefe+67Y8cOOf7446W0tFTdz8nJkXPOOYefFBEREREREREREVEjwIAmIiIiIiIiqjX/+Mc/JDs7W91GsNLRRx8td955p2zbtk09ZlmWfPLJJzJs2DCZN2+e/bxJkyZJ27Zt+UkRERERERERERERNQIMaCIiIiIiIqJa07NnT3nxxRclIyND3S8uLpZrrrlG2rRpozI4NW/eXI444ghZtGiR/ZyTTz5ZJk6cyE+JiIiIiIiIiIiIqJFgQBMRERERERHVqnHjxsl7770nXbt2tR8rLy+XNWvWSGFhof1YSkqKXHnllfLss8/yEyIiIiIiIiIiIiJqRNLq+gSIiIiIiIio8Tn88MNl4cKFMnnyZHnzzTdlwYIFsnHjRsnMzJQePXrI6NGj5bzzzpMBAwbU9akSERERERERERERUS0LWZZl1faLEhEREREREREREREREREREREReWHJOSIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiqiMlJSW89kRERNQo2yJsBxG/S0RERETE/kLjwP4frydRTTGgiYiIKIBQKGRvzzzzDK8Z7bY333xTxowZwytJREREta6wsFCuuuoqueeeexpVO2j06NF2m37ChAm1/voUX6WlpXLHHXfI5ZdfzktLRERE1EDUdV+F4m/atGmy77778tLyehLVCAOaiIiIiGrRqlWr5JhjjpHjjjtO3SYiIiKqTe+884707dtX7rvvPhUQUpvYDqJ4+frrr9WkyLXXXis7d+7khSUiIiJqAOqyr0Lxt2XLFjnrrLNk1KhR8ssvv/AS83oS1QgDmoiIiIhq0ZNPPinvvvsurzkRERHViYkTJ9ZZUDXbQRQv1113nSxYsIAXlIiIiKgBqcu+CiUmQO3pp5/mpeX1JNotDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCKiOnfzzTdLKBRS2//93//Zj3/++ecyYcIE6dOnjzRv3lxatGghffv2lYsuukhmzZolde3rr7+Ws88+W3r37i3NmjVT59ivXz+58sorZfHixWqfTZs22e8N2/Lly2Med8GCBXL99dfL8OHDpUOHDpKRkSHt2rWToUOHquvz448/xjwGXke/Jo6hrVy5UiZNmiTDhg2T9u3bS1ZWlnTt2lX+8Ic/yNNPPy2lpaXVugYrVqyQ22+/XQ466CDp3LmzZGZmStu2bWWfffaRyy67TGbMmFGt4y1btkyd3+jRoyU3N1e999atW6vvwEknnSTPPPOM7Nq1S5IF3v/VV18t/fv3V59/y5YtZcCAAXL55ZfLd9995/u8vLw8SU9Ptz+jc889N/BrPvfcc/bz8Pnl5+dLbSoqKlKfwx//+Efp1q2bOgd8/3v06CHHH3+8vPLKK9X6Hn322Wdy/vnnq+vWqlUr9R3CdwnfqVtvvVV9J2L58ssvq/13FuQ5+PdH//7RRx9Vj1mWJW+99Zb85S9/kT333FO9d5z3oEGD5KqrrlJ/v370sW655RbHd8g8D1xbL59++qn6nuC7hn8LcZ06duyo/l3AvzlfffVVzPdMREREjRfaGLq9gfaHhnaJ2RbxM3v2bNW+HzJkiGrvo52Ofgb6LNdee23MPsrutINgzpw5ctNNN6l+Qs+ePVV7COeAPs3AgQNVe/Ldd99VbbX6YP369XLXXXfJIYccovp66Bvk5OSoth7afNVp25WUlMizzz4r48ePlz322EOys7OladOmqn0+btw4eeSRR2T79u3V6pfjuUEEeQ4e1/ssXLhQPbZjxw7Vvh4zZozqj6Jti89y5MiRcuedd6p+dKw2/NSpU+3HJ0+eHLNtj34k+lInnHCC+g7hGmFDnwbfq9tuu02WLFkS6H0TERER1Udm2+2SSy5Rj1VUVKjx3COOOEK6dOmi2tgYlz/00EPlX//6l2q3VQfmAy6++GI1VorxcrRzcbxRo0apsd5169bFva+SKOXl5fL666/LiSeeKL169ZImTZqosXBcJ7Sz//vf/8rOnTsDH293+1TueR9saB/H4znxnqPTfYAzzzzT8bh5HnhNLzNnzpSJEyfK4MGD1bi77vfhO4XX/eCDD+qk32f2RQ488ED78blz58qFF16o5gZxjTCfhfmxv//97579Eux/wQUXyN57763mFtAPxHvFnODGjRvjfj2JGgSLiKiO3XTTTWh9qO3qq6+2Nm/ebB133HH2Y37bhAkTrJKSklo/323btlknnHBC1HPLzMy07r77bmvjxo2Ox5ctW+Z73B07dlhnn322lZKSEvXY+P0ZZ5yh9veD19H7t2/fXj328MMPW02bNo167D59+lg//fRTzGuA647PCu8z1uf0hz/8wVq/fn3U41VUVFjXXnutlZaWFvN4HTt2tF555RWrtpnn8PTTT1uTJ0+2srOzfc8zFApZp59+urV9+3bP4x111FH2vq1btw78XT7yyCPt5x1//PFWbXrxxRfV9ynWZ9S/f39r7ty5UY/1888/W8OHD495rPT0dOuyyy6zioqKfI81ZcqUwH9n1XkO/s707//zn/9Yy5cvtw4++OCo54vv8DXXXOP5mrHeq/5umVatWmUdcMABgZ57yCGHWCtWrIj53omIiKjxQRsjSHvCDW2RI444Iubz0PY99dRTra1bt8atHQS//PKLNWbMmEDPxzZ48GBr6dKlvtdh1KhR9r5o69W24uJi6/rrr7eysrJivpdjjjnG2rRpU9TjvfXWW1anTp1iHqtt27bWY489Frhf3r1790DvJ8hz8LjeB5/nl19+6XjMa2vVqpX16quvxmzD+23utj1es2vXrjGfl5qaap133nlR+x5ERERE9ZXZdrv44ovVPEystj7Ggt97772Yx16yZIl16KGHxmxvNWnSxHrwwQfj0ldJpE8++cTq1atXzHNCG/Pzzz+Peqx49anc8z7Y0D6OJchz4j1HF6u9jw2vacL7Rh8oaL9v3rx5Vm0y+yIjR45UfbsrrrhCfW5+59msWTPr/fffV88vLS1V8wbR5v9yc3OtWbNmxeV6EjUkDGgiojpnNpYuvfTSiCAHBHtgkNbrf/RnnXVWrQczobHkPg8EtnTu3DkiIOfCCy+MOrCqIeDH77jdunXzDJwZNGiQtW7dukABTffcc4/juRhAR2MbHQivTkpeXp7vNUAg1eGHH+7ZGcExW7ZsGfE7vAcMXvvB5+7V2MPzvI6H7wKCa2qT+fpjx451NFQRdNOlSxfPgLH9999ffW/cXnrpJcd+QTqG+FzM79g777xj1RY0tr06WWhk4+/T3XDPycmxvvvuO89jffzxx57fvRYtWqjrmJGREfE7BPWgI1VXAU233HKLtccee0R0MPD34tVpmTRpUsTx0AnGhgkavR8+T/04tv/973/2/lu2bPHsrOB18bfhdZ2w/4YNG2K+fyIiImpc0MbQ7Q2zPYl2idkWMWGAGH0xr3a6X18CCyS82lXVbQfBnDlzPF8fx+jRo4fVrl07z3YY+mVe7e+6DmjauXOnZ3AWrgPa023atIn43YABA3wnNNDe9GqfI3ipQ4cOnv3nCy64QC0mqauApv/+97+OYC4EEOG9o+/gdV2++OILx7Fmzpxpf1/M4zRv3tzxXVq9erX9nBkzZkS0m/Xr+o0z/P73vw/0/omIiIjqE7Ptdu6556qgDLMNhHF4tCPdbWzcf+6553yPizaa1xi+ntvwCuZHkP/u9FUSCQtbvfoZ6Jtg7BptSfNxtDU/+OADz2PFs09VWwFN8ZijQ78Lnxn6bOa+5udpBrYhOGjo0KGe1xz9Ca/rhO9HtDmnRAc0nXLKKRHfd/RF3dcI3/+VK1da55xzjuNxXBv03bz6s/n5+bt1PYkaGgY0EVGdMxtLeqARDUYEAy1atMjeD5lu7r33XsdgJPaLlQkmnsaPH+9oMKBhN23aNHtQGME+aPCaA/Xm5tUQLSsrsw488EDHfieffLIKBjEHm/E+EaFv7oeGDJ4frZGKToBugO+3336qcW1GzX/22Wcqo4553L/+9a++1+Ckk05y7IuMQbgG5nngc5s4caKjcb/33nt7ZpWaPXu243jHHntsRJYoZLrCgL352aNzVVBQYNUWr88TDU4MyhcWFqp9ysvLVbCO+3p6NeoxoYGBd70PPttYHnroIUdQS21lKHv22Wcd7wfnjQxkZuAMgvLcKxL22msva9euXRGdOPN9Y3+s5Pjxxx8dHZi333474jriu4ZrXBcBTfq7h5/XXXedWlljfj8R8GW+d3Sy/AIOg04WYaWUGTT3wAMPOIK68O8D/p3AhIv5Xi655JKY75+IiIgaLzPAxG8VJ9o67sw/yLyK1aK6j4L2PwJO3BMh++yzj2rr7k47CO1c9B/0vsgM+49//MNas2aNYz8E+zz11FMR5+oVXF7XAU1nnnlmxODzyy+/bPcl4Icffoho25122mkRx3ryyScd+2Bhxa233mqtXbvWERyP/oM7UOr222+vs4Am3aZGX+6JJ55wBJ4tWLBA9QXNc8WiHz9BP0uzT4HJgTfeeMORgQnfNWS6Mr9v2F5//fVA14CIiIioPs/DYDvssMMcC1PR5sY4rxmYgfa4V2UHjA+jbWe2o1BVwDwexnpRccHcD+OomJeoSV8lkTBmbL5vXCeM+yJzv4ZgE7SpzWuINrd7kWki+lS1EdAUzzk6d/YtP+4F+Rh/N/s2sHDhwoj5MVzP2mLOJ5jzXn/+85+t+fPnOxalu89TL5TGtcK8mTm3gHkR9+d/33337db1JGpo+G0nojpnNpb0/9S90strr732mmN/pMCsDUhTb77u0UcfrRrjXtC48irN5RU0YTbW8N4RIBPNo48+6jgmBqljNVKx/elPf/INgEEjHIO7Zlk3r5W77mt/4403Rj3Xd999VwVi6P2vuuqqiH3QgNO/R8AVUm/6cQ/cu1dxJ5L7euJ6/frrr577omGPzEzm/l6pQs1JDQT5uIN/3MzSY1gpURsQhIbgKTOICxMtftChMd83JipMBx10kOP7jgkoP+i0mSX2sCFgsC4CmnTH/auvvgrc8fI616ATP/j7M1eqI5jJD/5mUG5O74sVUV6BX0RERERBJwncA7A333yz78VDuwMB/EH6aEGDZtwDtchuGg3acma21H333TepApqwat29MMYv8xKupxnYgzazOYmAQCWznYhVy36ZUeG3336zevbs6Rh895qMqo2AJh3I5VeSHG3gcePGOfb3W3Ud5LP8/vvvHceKthgKE3dmHx7nQURERNSQ52GwIWuMXwZPZGUy90XZNDd3hYo77rjD9/Uxlm5mckIQRzIFNKEdbgbDI7OOO2OoCQHw7iCcRPepaiOgKZ5zdEEDcFCNRO9z2WWXRX0/WPBhnmesMt3x4lX++vLLL/f9PPv16xex/yOPPOK5PxbuY05O74fMvl4Y0ESNVYoQESWZU089VU444QTf3x9//PEyYMAA+/7MmTNr5bzuu+8++3a7du3k2WeflYyMDM99+/TpI0899VTMY5aWlsoDDzxg3z/77LPVFs3555+vrpF5XuXl5VGfk52dLU8//bSkp6d7/j4nJ0f++te/2vfXrVsnK1asiNjvrrvusm8fdthhcsstt0R93T/84Q9y9dVX2/cfe+wx2bZtm2OfJUuW2LdHjRolaWlpvsebMGGCuvZNmzZV34GtW7dKXXnuueekV69enr9r3ry5vPjii9KkSRP7sYceeihiv9NOO82+vWPHDnn//fd9X2/58uXyzTffeD43kfA+Nm7caN9/+OGHZeDAgb77X3HFFTJo0CDH87UvvvhCvvrqK/v+JZdcImeeeabvsXD9Xn75ZenatavjO1hWViZ14e9//7sceOCBvr+/7LLLpFWrVnH5twnX3PxbGTNmjO+++Ju58sor1W38ffTt21fWrFlT49cmIiKixu3XX391tOHGjRsnN910k+/+KSkp8uijj8qQIUPsxx555JHdaqv/73//s28PHTpUTjzxxKj79+jRQ44++mj7/tKlSyWZPPjgg/Zt9GVeeeUVadmype/1/M9//mP3NbG2Am1iDf1Hs534xBNPOK69W8+ePdXzU1NT1X30He+8806pK48//ri0b9/e83ehUCjiu7Y7bWqzr9m6dWvZd999ffft1KmT6mPh+nfv3j1qv5SIiIioIUDbCO1OtMG8YA7inHPOse9//PHHsmjRIvs+2qSYc9B+//vfy//93//5vh7G0q+//nr7/tdffy0rV66UZPHZZ5/Jzz//bN/H3Mchhxziu/+f//xnNf+hmX2oZOhT1ac5OrPdHm0cHPR8E9r3++23nyxbtkzqQrdu3Xz7Vfg8Tz75ZMdjBxxwgFx44YWe+zdr1kxdU+2nn36K89kS1W8MaCKipIOglViGDRtm3960aVOCzyjcOP/oo4/s++edd55qMEVz1FFHqQZVNJ988omsXbvWEeARxEUXXWTfRoNt3rx5Uff/05/+pIKWgl5Tr+uKxvy3335b7XM1G2kI2kHHwNSiRQv79ocffigFBQW+x0JDcPHixVJYWCg//vhjzOCvRDn44IOjdmb0xIHZCMWkjDsQZ/To0dKlSxf7PiY2/Lz00ktqMgMQsOL+vBLl9ddfd7ynaB0ZQAcYn/nIkSNVsNIxxxxj/+6tt96ybyO47rrrrov5+vje6mAdHdhVW0GM1f23Ce/JnCTZnX+bEBRnDia8+uqrUfc/8sgj1d/Xhg0bZMaMGY4gMCIiIqLqeOedd6SiosK+H2sRg24H3XjjjYGD9WPBsbCABIP+5nGjMRcbROtT1DYsYsE11dCeRgBWNB07dlSTCFhEcvHFFzvamGabGgsJjjvuuJjnMHz4cDWJYvZNSkpKpC4G/Q899NCo++C9mgtxdqdNbfY1t2zZIp9//nnU/SdNmiS7du1SfY433nijxq9LREREVB/cfPPNMYO4r7nmGscY5WuvvWbfRnu/qKjIsRg0ltNPP121YREMdO2118ZcqF2bzHFwLBA352D8YJ4IbW0Exp911lmq7Z8sfar6NEdnttvN75iX/v37S35+vmzevFnmzJmjFsDUhTPOOEMyMzOjnqfplFNOCdyfrcuF/ETJiAFNRJRU0DgOEqhhrug0G82JMn36dLsxCscee2yg55kBLV7MbDVYMWtmtokG18jMDmUex8uIESNiHtO9StZ9Xd2vMXjw4EDnipWuCITxO85BBx1k3/7ll19UA/TJJ59UgRleYgVm1YZYn6tmThrs3LlT5s6dG/F9Nxuy6KAgWMuLuaKjtrIzIYAKwTFmkJ7fih3TBRdcoP5mkKXs8ssvd2RoMj93v5XZbn/5y18c96dOnSq1rW3btrLHHnvU2r9NyE5lBkTedtttMn78eBUQ6DX5hH8/0NEmIiIi2l1mmw3tn6DtfqxORvaheLTZ0N9BmxeTLGab2g8mQjDgb7ZjzQmEuoQ+gNnGN1dxR4M+0aeffqoyvepFAsjiaa7WDdovcbepEbSDwf/ahsmeWNCubdOmTVza1PgeZWVl2ffxXcJEGz4TvVjE3Qb3y8JMRERE1JBgMaWZ4dQP+gNmJp5p06bZtzH+ax4P1Rdiyc3Nlfnz56vgodtvv90xb1DXzPeD9xJkrBXty1mzZqnFGMg+pQPzk6FPVZ/m6Mw5IlTGGDt2rAoK85srSYY5oliBVO5zjPUdwN+QVheLT4iSGQOaiCipIBLb/B+3HzPyuTai+JENyMwSFK3kVnUaKWaACwZU99prL9lzzz1jbnvvvbfjff/2229RX6dz584xz9UdTe6+ru5gHGQXCnKu2FDCzu9cEcmOlboa0tYilS1WJeP6IYUoVtImUyMuWkkHkztAbcGCBRH7mMFJCHp6++23Pb9/euLCHQSVSKtXr3Z0GvbZZ5/dOh6ya2mxspeZ8F3AppmpjWtLkL+heP/bdMMNNzjuI0vT4YcfrrLDYcABpUsWLly4W69BREREFK82GwJRzPZiotpsyLSDzLEoo4YVzBj0x8QISiObkiWgyX0ddqdNjVIMZiBOdT4f976NoU2NwChzZT0Cue655x7Vn9NZsDBh4reYhoiIiKihwrh70BK7ZvsVC5K92pOYLwmyEDZZoc2JMnF1PQ5eW32qZJujQ6lCc2EBFnYgqQDGwZHhFaXd3PNTdS1WhQT334O5aMML5h2JyBsLwhNRUgnSUHLzWlkZb2vWrHGcY7RUkqYOHTpE/T3SYpoD7kuXLq3xoH6ir6t5rlDT2sTuc8VKhw8++EBNRCC1v/n6KKWH7e6771bvAWW1kKUGKx/qcuVs0MxCmFiJdg116lF0IHWDHBMz7vrKKDdnBpKZAWCJ5B7YR5aimsKKeTPLWay/Da9rrgPjvK5jQ/y3CSvxH3jgAbWK3Lx2CDLD3ww2nY4WZSUxIbO7nW0iIiIis61VkzabFq822zfffKMCu7HyGRMoKC9Qn8SzTe2+ptX5fNx9mMbSpr7rrrtUmXf0s9yfywsvvKA2vQodGa+weARZhomIiIgasljBGKZ27drZt/Py8jzbubvTxk0GKPFljr/u7vtJtj5VsrfZEfSFLFdnn322Y4E1FrlPmTJFbSh/iHY6Ap3QZh85cqTUpepeJ2aCJao5hvsRUVJBBHoyQuYcMw19UM2aNYv6+23btkk8+KXejOd1TeS5IqgHGYhuvfVW37JeCIhB/WQMMiNDlQ7mqAtm2tfqfP7FxcWe+5lZmj7++OOISRpz8L22ys15pYoN+r69bN++vVp/G27m/ubfY0P/twkl+77//nvVSfO7ZgiEvPfee2XfffdVgU2YsCEiIiKKR7utLttsaOMccsghcsABB8g///lPFdjkFcyE/tkRRxyhVu4mo2RpU7v3bSxtamQewAKRd999V8aMGeO58hkTMLNnz1YLCVD2BFmCkylDMBEREVFdBmOY7Ve0kXTwitnO3Z02bkNrsydTn6o+jYNjIfvPP/8sF1xwgbRq1cpzH4x7/+c//5EDDzxQlQWsy+oFQTOcEdHuY0ATEVEAZr3kWMFDplj7msFRI0aMUJ2Bmmxvvvlmwj9H81yxSqCm5+qXGhQNddSZxsQFAjhuu+021Sj1ilxHdihkr/Eqz1Yb/AKT3AoKChz3W7Zs6bnfSSedZHcU0Cl844037N/NmDHDzoaFjhQCumqLu7OFEg015a45Xp2/Ix3QVpOgQj+1UaoyXlCn/vnnn1croFA7/MILL1TlKb289dZbajKvLlbvEBERUePu+8SzzYbSar/73e/kyy+/dDyOMmFjx46ViRMnyqOPPqqyNiHI6aOPPpKDDjpIklGytKnNz6YxtqmREfizzz5TWV+ffvppOfHEEx3ZBjT0x5AhuLbKfBMRERElQwBP0HYkxqd1KS2znbs7bdyG1mZPlj5VfWyzd+/eXQUsIfsXys5dccUVMmjQIM9yhtOmTVPzRzWtekJE9QcDmoiIAjBTjCJIJWhk/MaNG6P+3qybm+wBCOa5IgUrSuQlCkqwXXfddWoCA6/14YcfykUXXeT4HNAQv/TSSx2pYGuLmVo3mvXr1zvu+6WqRdrZww8/3L7/+uuv27eRlUr74x//WKOUrzXlXgmxadOm3aq9ba7u0OXjgjL3d5fycwvy3XQHm9UHGDBAucVHHnlE1WFfuXKlPPHEE/L73//ecW1RWx2TMEREREQ10bp161pps0UzYcIER1/qvPPOU+0frMhFRtMHH3xQzj//fBk+fLi9ACJZJ1Hi2aY2P5vqfj7ufaN9PkH7evWxTY0gJny/kLUJ/TWUOL/zzjtlyJAhjv3QJ0M/lIiIiKghqs5chDnG3aVLF8927u60cZNBTk6OI5Pn7r6f2upTNdRx8PT0dDnssMPkvvvuk/nz56vvIEpFn3DCCZKZmemYp7n22mvr9FyJKPEY0EREFABKOWnIMvTjjz8Gum4//PBD1N/36dPHvv3bb79Vq6wbGnG7W5u4OsxzxapVpP8MChH1NQ2AQhDHkUceKQ8//LAsX75cRo8ebf9u1apVMnPmTKltCBgJ4rvvvnPcdw+Sm0499VT79hdffGGv3HjvvffqpNyc7qCaq1OCfu9Xr16taljjPd14443qPlZR9O3b1/faRIPAHXNCa88994yaBjfICiOcU0OodX/OOeeo8ovTp093BLuZQXFERERE1dGvX78atdnQRzD7P+42W1DffvutylKqIXDpscce881Qqa1Zs8Zxvzb7StGgXLYpaJsaWXhRIu3cc8+VO+64Q/WnzPZ0dT8fXFdTtDZ10BX79b1NjT7KPvvso0rM4Vo+9NBDjt+zTU1EREQNVax5CxMCwLWBAwd6tnN/+umnwMdD+xYLd//6178mTQA5gpnM/kbQNjsWW2McHNk/EVij50wS1adqrOPgWJRw8skny6uvvqo+m06dOjn6TYlcfE9EdY8BTUREARxwwAGOxuL7778f6Lq9++67UX9vlkVAoytoCTUM8KPcAlKO9u7dW5WjSjR3CYegZe4QdNS5c2fJysqSPfbYQ+655x5HYNBZZ52lri9WdKxYsSLqsRBcc+utt0Ycv7Z9/vnngfYzB8BRpq9Xr16++/7pT3+yU9GipB1SquL6/Prrr55ZnGqrDjRWvWso5REE0r3iO4pVE/i89N+O+R366quvIjJY+TGzVAG+L9Fqmm/ZsiXmMVGepK54pch1e/bZZ+XPf/6z9O/fX4444oiY+++///7yl7/8pUF1VImIiKhu2iJmmw2lj4MOwKPvY5ZmdrfZgrw2zJ49O2LCIxYELyHA25Qsg9pY1IC+UHXb1JjcwUKH//73v/LMM8+oSRZkfDWDmtzt5GjMfZHVaujQob5tapTxCxIQ5v6salOQ7xKy/iKbaY8ePWTSpEkx97/44osdfba66GsSERER1QaMwy9YsCDmfr/88otjcS+y5ni197FQ+5tvvol5PPQXXnnlFTUP8s9//tMRLBW0jZco5vuZOnVqoGChOXPmqHFwvCcsQti+fXtC+1QNcRwcc20ICENSATMQzA8Czy688EJHUFnQeYb6ri7/PojqEgOaiIgClls7+uij7fsYVNaN02iNWTR8o8ExzXrKaPQGKZWArDeAxu2SJUtUHeFEQ8AEBoI1rF4NUnrtlltuUeXh0LBE493M9ISArKefflp1djBoHmQFrC4poSHQp7ZhJQCyRUWDTgoy52hnnHFG1P3RGTnuuOMcnRczcA4rENwrMGrD8ccfb99GmY8gq2bw96Hhu4ngOxg/frz9eFlZmdx+++0xj4XOMDq3Zppdd3CdPr5mruj3W70fNCAvEcz0xX4TRfh+vfHGG2pgYcqUKYE6ZebfBgLoiIiIiGrSFkH7z9zn5ptvjnkh0dY323Zol/zhD3+o9muDu58VpA2MkrzuxRF1UZraC64FygZrL7/8sspgG427b4SMtZrZpsZK+P/973+BAo/MdjyCfNAX82tT49qhPxsNJqGQSbWuBPkuoZ+JADJ8N3A9gwRpmW3quuhrEhEREdUWc+GxH8xXaCj1hZJf5tyG2aY0x3D9IPBnx44dnu3coG282hgHx5g05i2qMw6OxQf77bdfQvtUWBRullyLNQ6OKhBB3keimNfA7zNF+UN8L1BaDgF0QYK/zDY7+ou49o1BkOtJ1BAxoImIKKArrrjCUccYmYUQlOEFwQcotxWrQdGyZUtVQkFbuHChnH766Sq1qJ9//OMfjgxByN5SGwFNaBheeeWV9n2UAEPDPFpgFzL0PPnkk/Z9RNibjfBu3brJiBEjHO8Npfeiuf/++x1BQIMHD5bahtUZ6LyZnS/3548AJARyAVZkX3LJJTGPa5aUQzCTmeEL34u6gEAss+Y3vq/Rgrkef/xxFYCjXXTRRfbtUaNGybBhw+z7KCOI1ebRrvNJJ53kyDaEVMTuoDakmO3evbvjuH51zvGZ4T3VZe1wcyWN39+POTiAziyuY7QsAwjSQsdPQ6pjIiIiopq0RZBVFZkiNZRAxiIFP2ijYIXs3Llz7ccmTJjgGWAdpB2EPoI7c2U0b731lvztb3+LeDxo2bTa7kvifaOv6LeQBX1I9B22bt1qD1pfcMEF9u/RLjSv43nnnee49m5ou2PFs+6bYFWv1/X63e9+57iPTKt+7U8sdAjSv0mkIN8lM4MpSlM8+OCDUY+JoC9MomhsUxMREVFDhnHZaG3tJ554Qp577jlHuxMLvzXcNsessQjYDPBxQzA8Sv2aC6jdY/tB2niJgqB/s4ze//3f/8n333/vuz8C5ydPnmzfP+ecc+xx60T1qdA3MOdTULlj6dKlnsfEmDLG8usyk787o5TXZ4r5IjMwDv2MaIv+Mb6P76aG+Qb3fEFDFeR6EjVIFhFRHbvpppsQ9aO27t27J+w58XDqqafar4vtwAMPtKZPn25VVFSo3xcVFVkvvfSS1bVrV8d+elu+fHnEMXfs2GHtvffejv0GDx5svf/++1ZJSYm93y+//GKddtppjv2aNWumHndbtmyZY78pU6bEfG9BnlNWVmaNGjXKsV+vXr3Uey4sLLT3W7FihfXXv/7VSklJsfdLTU31POY777zjOF67du2sxx9/3Nq6dau9D67v/PnzreOPP96xL16jtnh9nvjc3nvvPau8vFztU1xcrK5Fly5dHPs9/PDDgV4Dx+ncuXPE6wwaNMiqS6+++qrjfHJzc9VntG3bNnuflStXWpdddpkVCoXs/YYMGaK+M6affvpJfW/1Ptj/zDPPVI9r+N7jezFw4EDH6w4dOlRdYy9/+9vfIq7ZF198EfG32bdvX/X79PR0KzMz094f33+3M844w/49vvdBBHnOs88+6zhXnJeX4447zrHfoYceak2bNs1xTXft2mW9/vrrVo8ePRzXdO7cuYHOl4iIiBoftCnMvtT69esj9lm3bp3VoUMHR1tk3Lhx1uzZsx1tV7Tv0Scy90O7ZPPmzTVuB23atMlq2rSpY79LLrnEWr16tb1PaWmpNXXqVOukk07ybKdj++233yKObfZl0G6rTRdddJHj/PbZZx/rww8/VO9F+/bbb60jjjjCsR/a2G5PP/10RL/wtttuU5+bhv4U+iFt27Z17HvppZf6nuOwYcMc+6I9umjRIsdnc88991gtW7ZUv2/evHnMfjke1/ugHx9EkOecddZZ9j45OTme/WL0Uc2+OdrJF154YcS+GzdutO677z7H965jx46qrU1ERETUUJhzKnrD+D3am6tWrbL3Qzv6ggsucIzzok21ZcuWiGOi3e9ub5133nnW4sWL7X127txpPf/8847+BeYK5syZU6O+SiJ9/fXXVlpamn0O2dnZ1t13363aixpuT5o0ycrIyLD3w3zA9u3ba6VPhTa+uS+u05tvvmmPGaN/gbmlESNGON6Hvu01R5OoOTqMZZvnescdd3jud8UVV0TMj33wwQdqTN+cM/jkk09UP8rc9+2337ZqA66b+bpe8wm7s7+7j7c715OooWFAExHVufoU0IRGKYIq3A1/DOSi4W42YrHtv//+jvtr1qzxPC4GiXv27BlxXARc4LitW7f2/J1fYy1RAU2ATgQalO7zQYAIgnEQkOT+HToyjzzyiO9ro4Pk9Rw0+PH5mg1uvaGRj85QbXEHUrk/C3RazACZIBMGQQJzsGHSoK7dfPPNEeeFjmenTp2s9u3bR/wO31uvAD549913Iyap9EQEnud1HRGgZE7QuGFyBefifl5WVpZ63AyuwzZ58mRH8FhtBjQheMt9njhHbPfee6/jb82czDHfU7du3dT54zNw//5f//pXoHMlIiKixumqq65ytB3Qh0Gbo1WrVtaGDRvs/WbNmhURDIMNbXO02Zo0aRLxO7RRvAJLqtsOuuuuuyL20/0ur7YdNnc/DQFPyRTQhOCYI4880rNth+uJtrD7d4cffrhjEN90ww03ePah0B9DMI5XOxEBYO4FByZcM/Tr3M9DABMWNbjb7pg4qauApoceeiiib4Ln4TzNSaIvv/xSXWP3e2rRooWaKPLqvyJA7Jtvvgl0rkRERET1hTmngvadOZaKdiTGeN1tPmxt2rSx5s2b53tcBCZ59RvQv/CaM8FrPfnkk7vVV0mk//73vxFtafQ/cH1wzcxAL90u/v777z2PlYg+FRb8DhgwIOJ5uFYYLzYDsrAh+GrkyJF1EtCERRbu/gXa35hLmThxomMhAhZHu98Tnot9vb5H2K688kqrtiRDQFPQ60nU0LDkHBFRNTRv3lylEv3Tn/4UkeZy1apVdqm4Zs2ayVNPPSWnnHKKYz+zvrGpd+/eMmvWLFXCDSUAtOLiYnXcLVu2OPbv06ePfPHFF3LMMcfU+ueHNKdfffWVSjGblpbmSGGKsld5eXkR5cDefvttlTLVzyOPPCI33HCDpKen248hhgil21asWOEoD6ZLLqAkm5mKtDZNnDhR1Q/X7x+fE1K34qeWnZ2t6ob/61//qtaxUX7CXerP/T2qCzfddJNKMdyuXTv7MZStWLt2rWzYsMGx75gxY+Sbb75xlIFzp5GdPn26XVPcrE2O77t5HXGNL774Yvn666+lQ4cOvueHFMf4m3CXX0SpEZyjLpeB8nkozVZXJfygf//+cuaZZzoewzliM9MY429t2rRpqlSf+z0hRTP+3nTpEL0/0gxfeumltfAuiIiIqL666qqrHO0q9GHQ5kaJs/nz59uPDx8+XGbPnq3adia0zdFmM8sAoA+DsmZz5sxxlGmoaTvo73//u1x77bWOvpHud5ltO93uvu+++1S7yeyfoM+STFCGGiWlUWbD7BeibYfribawhveNNt0777zj24ecNGmSvPTSS6q/Zfah0B9DiXSznYhS5w899JAqCY7+hZ+DDz5YXn/9dcnNzXU8np+fr0qOm5/j1KlTZcCAAVJXUAIeJc01vF98j3Ge8+bNsx9HWxp9+J49e0aUZ0A5Pnf/dciQIaqENkqgEBERETVUOTk5aiwV7TrdjsQYr9nm0+1DtPH32Wcf32MNHTpUZs6cqfY1oX9hzpkA2pkoGY223O70VRLp7LPPVnMPZvsR/Q9cH/RFwmufw/bdd181Du4unZfIPhXKq3322WcR1xvXCuPFZWVl6j7mTjA3gXmXuoJ+yPXXX+94DO1vzKV8++23jlJqeE/HHXecY1/MOWFf9/eoRYsW8sADD8g999wjjUnQ60nU0FSN9BARUSAInHjjjTdUgx8Dwhgox4AxGrII4ECwBgIwunXrJvfee29EQJQfNOZfe+011TBHwAWOj8Y6gpnQSEVDHvWA0aj74x//6Bisr20I2HrsscfURMOLL76oGpuo1bxp0yY1QI73goFgBFyNHz8+ZuARGusYkEedaQTNYHB8wYIF6r1jYBpBNLieY8eOlb/85S/St29fqWuooY262g8//LD6rNBZQMMb9bHxHTj33HMdkwtBISAH2w8//KDuo7PTsWNHSQYItsJ3D7XVP/jgA/nxxx9VJxefH97ryJEj1T6HHXZYzGOhk4fOGY6DTiwClhDAhkkqdKjxGR9++OFyxhln+AZGuSHQDxNh+PvB39J3332nGvQ4HjqgCETEBJoZlFVXUE8efyO4lr/++qv9vs0OMeB7/+WXX6pJFdShxzXDxAsmYDAphiCmgQMHyrhx41RddnTmiIiIiKJB+wGDnbfffrsK9NB9GTyOwBUT2lBo66PPg/YV2ulo9yL4BoFEWJgxevRo1WYzg0vi0Q7C+aHt//jjj6tgJQR0FxYWqtdFew7BNBjEP+2001QfDY444gg1+QDPPPOMXHPNNWpBRLJAH+7OO+9Uiz3w/j/++GPVj9q8ebPqS+B6H3LIIXL++eertm0smPA49thjVZ8M7eq5c+eq9i8G/tEnw8QT+iZoo0fri5rQh1uyZIk8+eSTamHKwoUL1fcC1xwTXieddJJ6XQRa4fOrK+hjzpgxQ/7xj3+o88QgPt5327Zt1ffEhKAm9C/ffPNNFSSGgCd87zGRhEkB9LURwIRrefTRRyfVd4aIiIgoUdDexPgpFmZjngPtPrTNMRaNcV4sCEX7OohevXqpvsKnn36qAuT1nAnaZVhginYpxi8xNou5hXj0VRIJ7xvX4+WXX1aLEvQ4M+YqcC4jRoxQ8x4YK4/VdkxEnwrngOPg3LDIAQFluFboU+g5KgSN9ejRQ+rajTfeKHvuuac8+uijqk2OzxF9E/f8VqtWreR///uf+vzxfUQCAPQ3cJ2wL94zvrN4byeccEJSjPEn8/UkakhCSNNU1ydBRNRQIVoajW9Awx0D1USxIIgJQVKAxvvJJ5/Mi0ZERERERERERERENXLzzTfLLbfcom4j6AWLJomIiJIdlxwREQWElZzImrNz587A1wxR/Boi7YliwUoKZOQBZNtxlzckIiIiIiIiIiIiIiIiImroGNBERBQQ0v4jNSrSgP7zn/+MuT/KZyHlp4Y0pESxICMTanIDMjPFKtdHRERERERERERERERERNTQMKCJiCggBDMBKnU+8cQTqv6zn9LSUjn33HOlpKTEfuzEE0/ktaaoioqK5JFHHrHvX3TRRbxiRERERERERERERERERNToMKCJiCigM844w769YMECGT16tMrAVFxcbD9eVlYmU6dOlbFjx8p7771nP37cccfJ/vvvz2tNDvn5+fbttWvXygknnCDLli1T948++mgZOHAgrxgRERERERERERERERERNTppdX0CRETxsGbNGhk1alRCLubEiRPVdtJJJ8krr7wib7/9tnr822+/lWOOOUZCoZC0a9dOMjIyZMOGDY6sTDBkyBB56qmnEnJuFHbKKafIrFmz4n45unTpIl9++WXCLvOxxx4rv/zyi6Snp6sShbrUXNOmTeXf//53oGPsueeeCTm3P//5z3LXXXcl5NhERERERMkC/Qj0JxLh7rvvVotbiIiIiIho92CB+erVq+N+GUeMGCEvvPBC3I9LtYvzJEQNFwOaiKhBQIm3pUuXJuTYW7ZssW+/9tprcvXVV6tgE2Rj0iXoEMjklpKSImeddZY88MADkp2dnZBzo6qAtkR8/vozTpQ99thDpk2b5ngMgXHPPfec9OzZM9AxEvW99/pOExERERE1NLt27UpYm3r79u0JOS4RERERUWOzfPlyWbFiRUIWNVP9x3kSooaLJeeIiKoBmXTuv/9+WbJkiUyaNEkOOeQQ6dChg2RmZqrf5ebmysiRI+W6665TmXeeeOIJBjORr8MPP1ytHEAQE75HWL09Y8YMruImIiIiIiIiIiIiIiIiokYtZCG1CBERERERERERERERERERERERURJghiYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIioqTBgCYiIiIiIiIiIiIiIiIiIiIiIkoaDGgiIiIiIiIiIiIiIiIiIiIiIqKkwYAmIiIiIiIiIiIiIiIiIiIiIiJKGgxoIiIiIiIiIiIiIiIiIiIiIiKipMGAJiIiIiIiIiIiIiIiIiIiIiIiShoMaCIiIiIiIiIiIiIiIiIiIiIiIkkW/w+W21tPV/8QcgAAAABJRU5ErkJggg==", "text/plain": [ "
" ] @@ -234,7 +235,7 @@ "name": "stderr", "output_type": "stream", "text": [ - "/var/folders/j6/fcqzqhwj6y7b1nzw3241zgjw0000gr/T/ipykernel_89978/1339639258.py:2: UserWarning: Received a view of an AnnData. Making a copy.\n", + "/var/folders/j6/fcqzqhwj6y7b1nzw3241zgjw0000gr/T/ipykernel_12501/1339639258.py:2: UserWarning: Received a view of an AnnData. Making a copy.\n", " sc.pp.normalize_total(adata, target_sum=1e4)\n", "OMP: Info #276: omp_set_nested routine deprecated, please use omp_set_max_active_levels instead.\n" ] @@ -326,12 +327,12 @@ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "e58eeaa60e7f48489d0c7e75483c4a1f", + "model_id": "05f58026e7f143fcb543adad1eec44d8", "version_major": 2, "version_minor": 0 }, "text/plain": [ - "Training: 0%| | 0/100 [00:00" ] @@ -512,7 +520,7 @@ } ], "source": [ - "sc.pl.embedding(adata, basis=\"umap\", color=[\"leiden\", \"CST3\", \"NKG7\", \"PPBP\", \"CD8A\"], ncols=5)" + "sc.pl.embedding(adata, basis=\"umap\", color=[\"leiden\", \"CST3\", \"NKG7\", \"PPBP\", \"CD8A\"], ncols=5, save=\"_overview.png\")" ] }, { @@ -615,12 +623,12 @@ "data": { "text/plain": [ "cell_type\n", - "T cells 1428\n", - "Monocytes 640\n", - "B cells 338\n", - "ILC 164\n", - "DC 56\n", - "Megakaryocytes/platelets 12\n", + "T cells 1457\n", + "Monocytes 654\n", + "B cells 332\n", + "ILC 165\n", + "DC 19\n", + "Megakaryocytes/platelets 11\n", "Name: count, dtype: int64" ] }, @@ -651,7 +659,7 @@ "outputs": [ { "data": { - "image/png": "iVBORw0KGgoAAAANSUhEUgAADDgAAAWKCAYAAACnpjQAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3QV4FOf2x/HfbtyVBHeXooXSlhaq0Ja6u9u/7t7eW7n1W3ej7qVKWwqU0hYv7g6BACHusrv/553cLFlim2SjfD/3mYed2dmZ2eG5dM+87znH5nK5XAIAAAAAAAAAAAAAAAAAAAAAAGhC9qY8OQAAAAAAAAAAAAAAAAAAAAAAgEGCAwAAAAAAAAAAAAAAAAAAAAAAaHIkOAAAAAAAAAAAAAAAAAAAAAAAgCZHggMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAmR4IDAAAAAAAAAAAAAAAAAAAAAABociQ4AAAAAAAAAAAAAAAAAAAAAACAJkeCAwAAAAAAAAAAAAAAAAAAAAAAaHIkOAAAAAAAAAAAAAAAAAAAAAAAgCZHggMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAmR4IDAAAAAAAAAAAAAAAAAAAAAABociQ4AAAAAAAAAAAAAAAAAAAAAACAJkeCAwAAAAAAAAAAAAAAAAAAAAAAaHIkOAAAAAAAAAAAAAAAAAAAAAAAgCZHggMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAmR4IDAAAAAAAAAAAAAAAAAAAAAABociQ4AAAAAAAAAAAAAAAAAAAAAACAJkeCA4B6e+ihh2Sz2ayla9eujXJHN2/e7D6nWX7//XefHPfiiy92H3Ps2LE+OSYAAACA5qGoqEhTpkzRddddp0MOOUSJiYkKDg5WSEiI2rdvrzFjxujWW2/V33//Xedz7NmzRx988IHOPfdcDR48WO3atVNgYKDi4+PVr18/HXXUUXr00Ue1cOFCuVyuao9l4pzycY+vlupindzcXL3++us64YQT1KFDB+v+xMbGatCgQbrssss0depUOZ3OOt8fAAAAoLUp/1s7LCxMGzZsqPf4RMeOHb06n/lMba1bt876rV/+OAMHDtSuXbu8PkZycrLefvttXXDBBRo+fLgSEhLcsVXnzp01bNgwXXLJJfrwww9rdVwzxuSLmMeMIQEAAAD7k9r8Xg4ICFBERIT1292Mi9x5552aNm1asznPvnPCqlv8/PwUHh6uHj166Pjjj9fTTz+tHTt2NLv7BgCoPZurptF0APAiweFf//qX9bpLly6N8uDYnKNbt27u9RkzZvgkIcEMBkyaNMl6ffjhh/sscQIAAABA0ykoKNDzzz9vLWYijjdMcoLZ38QF3sjIyNA999xjTfIxiRTeGDBggB5//HErmaAyJh4ZN26cfK2qWOeHH37QFVdcoZ07d1b7+VGjRlnf01w/AAAAsL8zE13KO+yww9zJynUdnzAJCElJSTWe76KLLtJ7771Xq+QGM5ZSfsKPiX1+++03Kym7Jv/8848ee+wxTZ48WQ6Hw6tz+vv767TTTtPDDz+sXr161ZjgsGXLFtXXpk2bGq0gFwAAANAc1Db+qIxJVH711Vc1cuTIJj3PvnPCassknpt5bDfddJOVANEc7hsAoPb86/AZAAAAAACAFmHu3LlWVVEzkaeyh9ymO0FJSYnVeaG4uNj93pIlS6yJP3fffbfVcaG6h9ymQuvRRx9tTaIpz3wmLi7Oqh6Un5+vtLQ0j3OsWLFCEydOtB6yP/vssxXOYaqfmqpDNSlfIdZUDzLVU6tjJkvt691339Xll1/u0Z3Bbrerbdu2VqcJk/RQViPD3NMDDzzQmrTFA3sAAADA0x9//KGXXnpJ119/fbO6NevXr7cSqMsnN4wYMUK//vqrYmJiqv2siWPuuOMOvfDCC5V2dDNJDCZBwsQ0+8ZWJt767LPP9O233+qVV16xOjtUxSQlmGPVhulCVz5J2xzDm2QNAAAAoLWqaZzA/KY3haFSU1M9CjaZhGYTM3zzzTc65phjms15TLxixnIqO35hYaFVgCovL88jRrjtttu0ceNGvfzyyzUev7G/DwDAOyQ4AAAAAACAVum7777T2WefbSUXlBk0aJCuueYaHXvsserevbt7u3kIPmfOHL3xxhv65JNP3JP5//Of/ygrK8uaoFQZ86DctD0un9xw+umn68orr9RBBx1kPRAvYx54L168WO+//75ef/11a6KP8dxzz1kP6B944IEKnRLMJKSalE+MOPXUU2tVwdUw13T11Ve7JyqZhAxTXdVUkI2Ojra2paSkWAMBplqrmaxk7qlJzjBJGkweAgAAADyZRGkTJ5SPOZqSiStMAvf27dvd20aPHq0pU6YoKiqq2s/m5OTo5JNP1rRp0zy2H3XUUTrrrLOs2Kpjx47uuMTEUmvXrrWObaqYmteGmQh06aWXWhVUL7zwwkrPVduu2iamOvLII90JDpGRkVZnOhPTAAAAAPsrb8cJzJjA33//bY1NzJgxw9pmEgVM0aiVK1daBZyaw3luuOEGPfTQQ9XuY2ICMyb04IMPuuMDk2BtijWZsQ5vNNb3AQB4x+7lfgDQrJgKPOYhedliHswDAAAAQBnTZcBMtilLbjBVQE2XBDOZ3yQ47DvRKCgoSIcffrg++ugjq4KpmRhTxkzsNx0OKvP0009rzZo11mszoWfSpEn64osvrI4O5ZMbjMDAQKvjgUmWMA+/y1dJNQkFq1evbpK/QFOJtazaUHBwsPVA3nSVKEtuMNq0aWMNIJjkjzK7d++27ikAAACAionQl112mTtxuimZjm+mmmj55IbDDjvMintqSm4w13/eeed5JDeYLnMmEWHq1KlWF7hOnTp5JF2b13369LFiCjO5x8QMpjtc+clJ5a+lvrGM6ZhR5u2339aAAQN8cmwAAACgtTO/0w899FArNjBJzeWf/T/55JMt6jymG7UpPGXGN8qP79xzzz3uYlMt7b4BwP6OBAcAAAAAANCqmKSGc88916oQapgKoV9//bVuvvlmj4k1VTGVSL/66iuPfc3EGdPmeN/JPq+99pp7/fzzz6+yEum+TNUg08WhjHnAXlWXiIZkWjSbiUllbr31Vo0YMaLK/U877TSPBHNznwAAAABUZJIATMXQpk5uML/fk5KS3NtMxwPTXcGbLgcvvviiVQW1jIkVTOc7kxzuDROLmTisfNyUmZmpu+66S/X122+/Wd3wylx11VVWNz0AAAAAtWMKRJnua6YQVBlTDMrXCduNcZ6+fftaHavLJCcna+bMmWrJ9w0A9lckOAAAAAAAgFbFdFUwE/fLmDbBEydOrNUxTJKDqUZaZs+ePR6Tcox169a5Wx0b5Sv1eOOMM86wqp+Wn6DTFJ0uzEP4MpdcckmNnxk1apT7dfn7DAAAAOzvTjzxRKtzWxkzkX/z5s1Nci3mt7rp3FA+uWH8+PH64YcfFBoaWuPnTQxkYqky8fHx+uabb6w/a+uKK66wEivKJ0qbRIe6ysnJ0aWXXuqeONSlSxcrDgQAAABQ9w4Ixx57rHvddF3bsWNHizzPcccd57G+dOlStfT7BgD7IxIcADS6efPmWVVBhwwZojZt2liZrO3atdMhhxyif/3rX9q0aVONxzADAqbNcdliKiFVxzzkNg/eTfUe0y7ZnNOc++CDD7YqEJl20XVlWjNfc801Vtvj2NhYBQcHq2PHjtbD+qeeespqQVaT9957z/1dzj77bI97dd1111nHjo6OVlhYmHr27KmLL77Yo8oqAAAAgFKma4P5jV+mffv2da4Oeu+993p0cTCtjctLTU31WK9LVZ5jjjnGo5JQYzvnnHOUl5enFStWaPLkyR4JF1XJzs52v46JiWngKwQAAABajkGDBum+++7zmIh/2WWXNXoFTzPOYpIbtm3b5pF88e2331pjGN4w3SfKJyE8+uij1thHXd1+++3u1yZJoj6TjB588EGP72a643nTkQIAAABA1cx8pPLMZP2WeJ7ExESPdafTqdZw3wBgf7O3RB8ANLBdu3ZZiQAm0WBfpuqpWf7++2899thjuv766/Wf//xHAQEB9T6vqap67rnnasGCBRWqD5ll9uzZev755/XZZ5/V6rhr167VlVdeWWkrM/Nj1SzTp0/Xv//9b91///264447vD52fn6+brnllgoVYstaSptl0qRJmjBhgnXdERERtbp2AAAAoLX66aeflJKS4l43VT3LV1Ctjc6dO1tVQE0FnjFjxlSYzGOSJ8r78ssvddppp9XqHA899JBuu+02a4JPZGSkmoKJu/r3728tNSkqKrLucZlhw4Y18NUBAAAALcvdd99tjYMsWrTIWjfjBOZZvxkfaazkhrFjx2rr1q3ubab408cff+z1mItJyDBJA2U6dOhgxVb1YZK73377bSu26tWrV52Ps2rVKr3wwgvu9VNOOcWjYioAAAAA36jr2EpTn8fMTyuve/fuao33DQBaOzo4AGgUa9as0UEHHVQhuSEqKsqaNBQSEuIxYeaZZ56xHkjXp7OCsXz5cuu8+yY3xMXFWZOUyqqxmoSBo48+2rpOb5ikCNP9Yd/kBnPcsg4R5Ss03XnnnVaShcPhqPHYJnPYdHEon9xgJjqZyVT+/p55aVOmTLEe3gMAAAAoVX7yvWF+59fHzTffbHU5qKxSqfntn5CQ4F7/9NNPrWqthYWFXh/ffN48XG+q5Ibadscwk5pMR70yJjkDAAAAwF7mOb7p2lw+mcAUQCr/O7qhmHOYzg3lkxvM2ISJVWpTUGr+/PnasWOHe/2ss86qMD5RW6aDtYkn6pPcYJjxlpKSEuu1GYsxSekAAAAA6m/lypUev9/NGEhLPM/333/vfm06vR1xxBFqDfcNAPY3JDgAaHBmgv/EiRPdD+9NUsF1111nVdnJyMjQli1brH3++usvqyNBmRkzZuiqq66q83nz8vJ06qmnKi0tzb3NTExavXq11bkhOTnZWkwrY5M9m56erjlz5tR4XNOZwbRyTk1NtdZNO2fTocF8D3NcM3CQnZ2tX375RaNGjXJ/7pNPPtEDDzxQ4/FNi+jvvvvOPWhgqjyZNtCm3bK5T++8846VGFJm2rRp7v0BAACA/d28efPcr00itUl4bigmtjHd58p79NFHrYfXN910k37//XcVFxerpTLJ1yauWrp0qZ566in16dNHH330kfv9e+65R0cddVSTXiMAAADQHB1wwAG699573evm2f7ll19udUZoKGYMxnRuMGMVZS6++GJ98MEH8vPzq9WxfvvtN58mjvuK6QJefrLStdde2+jVWAEAAIDWyMxJMvO0ysc0pshrSzuPiRleffVVj5ih/ByrlnrfAGB/RIIDgAZ31113ad26ddZrk0jw448/6sUXX1Tfvn33/mNkt1sdEUy1VdO+uYyZPGP2r4vnn3/efV7DDCaYFsxmUk75aqkPPfSQfvjhB69bhJmkC5PIYERHR1uJGf/+97+tThRlTCUk0275zz//1AUXXODe/p///MfqKlEd08HCMBOITFWlIUOGuN8z1YguueQS/frrr+7uE4b5XgAAAMD+zkzIX7t2rXvd/PZv6FbApsPDoEGDPLalpKRY8YipnGoenJvqQCax2vyONxObWgoTo4WFhWnw4MFWxdmyKrBt2rTRG2+8YSVzAAAAAKicSQg2v6XLFyt6/fXXG+R2maQGE3+UT24w4xdmLKb8WIK3li1b5rE+fPhwNQcPP/yw+7WJVcz4EwAAAID6yc3N1fnnn+/Rnbo+BWkb8zymu5uZw2UK2prCU6YokyncZJgY6ZFHHlFLv28AsL8iwQFAgzI/It9++233uulgMH78+Go/89hjj2nMmDHu9SeffLJO5y4/UDBy5EgrCaEqpvrQfffdV+MxTXJC+YSLl156ScOGDatyf9Oy+a233lKPHj2sdVOdySQu1MR8/9tuu63K9833Oe6449zr3nSeAAAAAFq7rKwsjwfJZiJ+QzOTakx1U5MMUJn8/Hyreo+JR4499ljFxsbq0EMP1eOPP65NmzapOSs/Oaq8nj17Wp3sHA5Ho18TAAAA0FKYQkjvvfee9WcZkzhc1e/sujLHM50byrpolzEdtM0En7rYuHGjR8zTGLFVTUy3659//tmjEqspYgUAAACgbkxRo9dee81KzP7jjz/c201Rp8suu6zZnOdf//qXbDZbpYuJt0y8Mnr0aKvwlBmTKeu+bbq/lY/Hmsv3AQB4x9/L/QCgTj777DMVFBRYr00L5Guuucarz5n9Zs2aZb02f5pEifj4eK/Pu2LFCo9BghtvvLHGKkVmH9NhwfzYrcqkSZPcr01LsXPOOafGazEVY80PWFOtyfj222+tyrLVXY9pG12TAw880Oo8YZR1lAAAAAD2Z6ZaTnm1iSHqw0yqMQ+xTZK1SdCubsJScXGx1QXOLCZGOPHEE61kh/Id7poDkyiya9cuxcTEKDw8XLt373Ynj8yePdtannvuOX3zzTce3ewAAAAA7GU6NJuu1WUFmLKzs3XFFVdY3d18ISkpyapKWj65wYxJlHWKNgWoTIGns846q1bHzczMdL82Xem8ZSb47BuXVaVjx476/fffvT62maxUxkxSMmM6AAAAACr6+uuv9eeff1Z5a8yz/vT09Ep/u7dr1876vDfdsRvrPLVlutlFRkZa5zUJ295qrt8HAPZXJDgAaFBlSQqGmfRiqpV645BDDnG/Nl0PzA/Ik08+2evz7js4UFPXCMP8uD3yyCPdSQM1fZ8DDjjA69bO5b+PGRhYunSpNbBRlVGjRtV4zMTERPfrsiQSAAAAYH9mkqqb8tymgujVV1+tmTNnWhP/TXXRdevWVfkZE+uYBOhffvlFL774oi6//HI1FybW2bZtmzp06GCtmwlSU6dO1b333qslS5ZY2/755x9rstSCBQsUERHRxFcMAAAANE+me/TkyZOtcQHD/K5+4403dOWVV9b72NOmTfNYf/DBB63k6fLFma666iqrK3S3bt28Pm5du7Vt2LDB6wSHkpISr4+blpZmFdQqc+aZZ7pjFQAAAACeTGK1WWo7JjBx4kSrkFP5+UjN4TymEFNV881MXGFikNTUVGvMpSx+ePTRR/XCCy9YsdfZZ5/drL4PAMA7JDgAaPCWwWW2b9+unj171rsdcm33Nw+5vU2sMEkH1SU4LF682P163rx5Xn8fU6V13+urLsHBmwfzQUFB9R5sAAAAAFoTk7RcXk5OTqNfg3mYbSqomqWsoqqpSmo6PEyfPt2a8LMvk7BsqriaKqQXXXSRmgNzLeXjElN16Pjjj9cRRxyhU0891UreMNauXWtVo33qqaea8GoBAACA5sv8tn7vvfesJIOySf233367JkyYoE6dOvnsPI888oiVkGx8//33+vjjj91Fl0zCgyngZK7FG+UTmJsirtrXJ5984lHoydtu4QAAAAAqCg4OtsZT4uLiNHDgQI0YMUJnnHFGrZKiG/M8N9xwgx566KFq9zHxgpmj9vLLL1uxkEl2MMkK5557rjVuY5KkW8p9AwCUIsEBQIMyGbJlTMXPyibzeMNk19bGrl273K/j4+O9/pxpGVYV8xDftBsrYzKAG+r7UP0UAAAAqL3Q0FDr9/+ePXusddOBoKl17NhR559/vrUYW7ZssZKq33//fStpurzrr79exx57rNq2bavmKiQkxJpcZJK9y+K9N99806qGROtlAAAAoHJDhw7VXXfdZSUhGFlZWVYHN9PNzReefPJJK2mijJnUYxIaymKiuXPnWp0knnjiCa/jmLICVuZaTZJEVFRUjZ+rKRli7NixVse72vroo4/cr3v16uXRNRsAAACAJ1NIySRZt5bzeJt8MHr0aGs54YQTrMQGk+RgFtPVzhRvqmn+WHP6PgAAyc5NANCQzENvX/C2pXGZ9PR0jwk4da342hDfxZvv4+fn57NzAQAAAPuT/v37u1+b7gJlFVKbiy5duuj//u//rAlG3333nUe3OVNN6K233lJzFx0drUsvvdQjVirfvQ8AAABARffff78GDRrkXv/111+tZOH6+u9//+uR3FD2m33SpEmy2Wzubabr2tSpU706pqlGWt6KFSvUVExXvNmzZ7vXm0vXOwAAAADN09lnn62LL77YvZ6RkaF33nmnSa8JAFB7JDgAaFDlkwvOOussd3ZsbRfzgL42ylcOrU1yRPkODdV9F+POO++s8/e58cYba/V9AAAAAHhnzJgx7td5eXlasmRJvW7d559/ruOOO05PP/20NYnf6XR6VCc1Xd3+/vtvj+513po4caJ1/PKmT5+uluCggw7yWG8O3TIAAACA5syMW7z77rvy9/d3b7vtttvq9Vv69NNP10033VTpe+PGjdMtt9ziXjdjExdccIFHB+yqHHbYYR7r06ZNU1P58ccfPdZPPfXUJrsWAAAAAC3DlVde6bH+22+/Ndm1AADqhgQHAA0qLi7O/bouE37qql27du7X3jysL5OWllble6bikd1ub5LvAwAAAMA748eP91ifPHlyvW7d119/rSlTplgVUYcNG+aueGo6MERERKhnz5465JBD9NVXX9Xp+EceeaSGDBniXt++fbsaW0pKivV9Fi5c6PVnwsPDPdbLJ34AAAAAqNzw4cN1xx13uNezsrJ0xRVX1Pl2hYWFVfv+o48+6tE1woyXXHjhhVayQ3VMckT5jtcfffRRjZ9pKCYeK9OrVy/169evSa4DAAAAQMvRt29fj3WKNAFAy0OCA4AG1adPH/drU+3UWyUlJdYkm7rq37+/+/Xu3bu9niS0dOnSKt8zyQ3m4XmZf/75x+vrKSgoUHp6utf7AwAAAKgbk2zQvXt39/rbb79dbae26pjJP+UTJEwCt0lIMDp06OCx719//VXnv7Ju3bq5XwcHB6sxHXXUUUpISLA6Mlx99dVef27fGKtt27YNcHUAAABA6/Pggw9qwIAB7vVffvnFilsaQlBQkD788EPrzzK//vqrnnrqqRo/d+mll7rX16xZU+ek7vowSRV//PGHe33ChAmNfg0AAAAAWh4/Pz+P9cYeewEA1B8JDgAa1JgxYzw6HpR/EF2dzz//3JpkY6oPmWSF2rY/NtWFyvvmm2+8SqqoqSVZ+e+zePFibdq0yavrefbZZxUbG6uoqCgdcMABWrlypVefAwAAAFA7NptNN954o3s9OTlZTz/9dJ1u47/+9S+P5IjLL79c/v7+1uuOHTuqS5cuHjFMbbrHlbd+/Xr36/ITnRpD7969PZK4t27d6tXnfv75Z/frwMBADR06tEGuDwAAAGhtzO/n9957z2PCza233qqkpKQGOZ8ZkzCdHMq77777rC5u1bnlllsUGhrqXr/pppusglL1UdvObytWrPAoHjV27Nh6nR8AAADA/sEkaZfXqVOnJrsWAEDdkOAAoEGdeeaZVueD8pWJanqAXVxcrIcffth6nZeXZ032GTJkSK3OaybXlO/i8N///tc6VnU++OAD7dy5s9p9zj77bPdr8z0eeuihGq8lIyPDOn9Zu2lzjvKTiAAAAAD41lVXXeWRfGASFUxV1Nr4+uuv9dprr7nXIyMjdccdd3jsc/HFF3t0bTPnNYnTtTF16lQtW7bMvX7aaaepMZ188skeMU5Z7FJT57vy1VuPPvpoRURENNg1AgAAAK3NiBEjdPvtt7vXMzMza13oqTZMskL5wlBmHOacc86xxiyqYiYAlY3VlHVxO/7447Vnz55an9/EGo888oj+/PPPWn1u/vz5Fe4bAAAAANTk/fff91g/9thjuWkA0MKQ4ACgQfXq1UunnHKKe/3333+3HqSbtsKVMduvu+46rV692r3NtEGOi4ur9bnvuece9+uNGzdax3E4HJXuu2TJEuu6anLkkUdq+PDhHj+Iq5sAVFRUpPPPP9/jgb85T1nVVwAAAAC+FxQUpEmTJrmTrc3kHTOR/6WXXvKqYuhbb71lJTeXj1teffVVqytbeea3fbt27dzr3377rRX/bNu2zavrNBVTyydRm8qq5eOnxnDUUUd5dI0w98gkXVRly5Yt1jWWxVamY0b5SU8AAAAAvGMKKJUv1NSQzO92EyNFR0e7t5kO1VdeeWW1n7v55pt11llnudcXLFhgJRn8+OOPXp975syZOuigg3T//fd7xFjmmmpixm7KJ51TdRUAAABATaZPn26N6ZQxnelMgV4AQMtCggOABvfCCy8oISHBvf78889biQJ//PGHe3KReahtHoyb6j9vvPGGe18zWejf//53nc577rnn6phjjnGvf/bZZzr88MP1999/u7eZ6kRmAo/ZbjoteOPdd99VSEiIx6SmM844Q//88497m/leJpnjsMMO83jQP3DgQN144411+j4AAAAAvGd+45vf+uU7LFx//fUaPHiw1ZkhKSnJY/+0tDR9/vnnOvTQQ3XFFVdYSRFlbrvtNiu+2JeZYPPpp58qMDDQve2HH35Q3759de2111pdI/btJJeTk6OffvrJSoQ++OCDrfMaJsYwCdTlO+A1BnM+cz/KkrBNB4oTTjjB6nqxe/du937mOl9++WVrMpNJIC9jJimZDnoAAAAAap+YbcYb/Pz8GuXWmeQA85u+PDNuYhK8a0qMKJ/kYJKeTcxgikGZ8R9TsKp8IrkZ7zExg4kzTGLD2LFjK3RiMIkdH330UY3XXL4YVvkufQAAAACwr1WrVumuu+7Scccd59Ft+8EHH1SbNm24YQDQwlBCHECDa9++vSZPnqyJEycqNTXV2jZjxgxrMVmy8fHxVnLBvq2QTSWhb775xiM5ojbMg/dPPvlERxxxhLvKz19//aVDDjnEmohklp07d7p/1JoJRRdccIFHgkVlBg0aZB3XtG/Oz8+3tn355ZfWEhERYVV1NR0bcnNzKwwemO9TPjkCAAAAQMO55pprrJjDJBuUJRosX77c2m4WE3NERUVZSQdmAv++nebMRCOTcF2+O9y+TFLzlClTrOo/ZfGOOZepDlRWIcjECTExMcrMzLSWfZkY4uuvv7aSL5qCSep4++23dckll1gTk0wnOlNN1iQ5tG3b1tpn165dFbpfmPtq9gEAAABQNyNHjtStt96qJ598slFuoUnc/v77761E7TKmKJMZN+nXr1+ViRhm/1GjRumBBx6w4ifDFH0qK/wUHBxsdeI2MZSJi/YdHykTHh6uO+64Q3feeadHonhVNm/e7H5dvnseAAAAgP2HSaz+8MMPq3zfzPsyYzzZ2dkV3jNzu0zMBQBoeejgAKBRjB49WnPnzrU6N5RnJv5s3bq1QnKDeVBuOi2YP+vDTBQynSLMD9byzPlMxday5Abz4N1MKPK28uhJJ52kWbNmWRWKyjM/lk31on0f3k+YMEGzZ89Wz5496/V9AAAAANTORRddpEWLFum0006zkqDLM4nW5ve7mYCzb3JDWQxTXXJDGZNUbRInTOeHyibpmDjBxD37JjeY7glmgtHSpUutjhNN6cILL9Rvv/2mzp07u7eZe5KcnGwt5ZMbTBL6O++8U6H6KwAAAIDaM0nDpgtcY3nllVfUsWNHj3Gas88+2+p6V52bb77Z6qhgEiJMAanyzGe3b99uxT2VJTeYOOOpp56yxmVMFzhvkhvKEq3L7HtOAAAAAPuH9PR0bdiwocrFjPPsm9xg4oenn35aH3zwQaN1zQMA+BYdHAA0mh49elgTZv7880999dVXmjlzpvUw2/wQNVVVO3ToYCU0mAfpxxxzTIXJR3VlfrR+/PHH1kN302r5999/17Zt26yqQ6alsUlWMJVHTfUf0zLZWya5YcGCBVa11m+//dbqDmEm/phJS6YKkTn2wQcfrPPPP9/6EwAAAEDT6N27t9VxzTzkNl3VzG/3FStWWJNlzENvf39/q8NCr169rN/up59+uoYNG1arc5hOB6Yb3OOPP27FBybuWbZsmTuxwXRFMFVNzX79+/fX2LFjddZZZ3lMLGpq48aN0/r1662Odd99953mz5+vlJQUKzYz7ZuHDBliJW+bGCcsLKypLxcAAABoFUyc8O6771pdFPbtmtYQTOzz3nvv6eijj3Ynepuk61tuucVKfqiOGcd57rnn9Nhjj2natGn69ddfrc+aOMIkkJu4xxSUMknRZozEdLwzCeGmuJRJ8K6tsm4RZfcJAAAAAMoz4xdmzpnppG0SqwcNGmQV3z3xxBMZxwCAFs7m2rdEIQAAAAAAAAAAAAAAAAAAAAAAQCOrfakMAAAAAAAAAAAAAAAAAAAAAAAAHyPBAQAAAAAAAAAAAAAAAAAAAAAANDkSHAAAAAAAAAAAAAAAAAAAAAAAQJMjwQEAAAAAAAAAAAAAAAAAAAAAADQ5EhwAAAAAAAAAAAAAAAAAAAAAAECTI8EBAAAAAAAAAAAAAAAAAAAAAAA0ORIcAAAAAAAAAAAAAAAAAAAAAABAkyPBAQAAAAAAAAAAAAAAAAAAAAAANDkSHAAAAAAAAAAAAAAAAAAAAAAAQJMjwQEAAAAAAAAAAAAAAAAAAAAAADQ5EhwAAAAAAAAAAAAAAAAAAAAAAECTI8EBAAAAAAAAAAAAAAAAAAAAAAA0ORIcAAAAAAAAAAAAAAAAAAAAAABAk/Nv6gsAAAAAAAAAALQOJSUl2rlzZ4Mcu23btvL355E2AAAAAGISAAAAAM0T4yS+wWgQAAAAAAAAAMAnTHJDp06dGuRubtu2TR07dmyQYwMAAABoHYhJAAAAADQlYhLfsPvoOAAAAAAAAAAAAAAAAAAAAAAAAHVGBwcAAAAAAAAAgM/NmdJJ7RL86nWM5N0OHTRhm8+uCQAAAMD+g5gEAAAAQFMiJqk7EhwAAAAAAAAAAD6XmGBX+/b1S3BwyuWz6wEAAACwfyEmAQAAANCUiEnqzl6PzwIAAAAAAAAAAAAAAAAAAAAAAPgECQ4AAAAAAAAAAAAAAAAAAAAAAKDJ+Tf1BQAAAAAAAAAAWh+Hy2kt9T0GAAAAANQ1niAmAQAAANBUiEnqjg4OAAAAAAAAAAAAAAAAAAAAAACgydHBAQAAAAAAAADgc065rKW+xwAAAACAusYTxCQAAAAAmgoxSd3RwQEAAAAAAAAAAAAAAAAAAAAAADQ5OjgAAAAAAAAAAHzO1Eo1/6vvMQAAAACgrvEEMQkAAACApkJMUnd0cAAAAAAAAAAAAAAAAAAAAAAAAE2ODg4AAAAAAAAAAJ9zuFzWUt9jAAAAAEBd4wliEgAAAABNhZik7ujgAAAAAAAAAAAAAAAAAAAAAAAAmhwJDgAAAAAAAAAAAAAAAAAAAAAAoMn5N/UFAAAAAAAAAABaH6dc1lLfYwAAAABAXeMJYhIAAAAATYWYpO7o4AAAAAAAAAAAAAAAAAAAAAAAAJocHRwAAAAAAAAAAD7nlOSodwcHAAAAAKh7PEFMAgAAAKCpEJPUHR0cAAAAAAAAAAAAAAAAAAAAAABAk6ODAwAAAAAAAADA55xyWUt9jwEAAAAAdY0niEkAAAAANBVikrqjgwMAAAAAAAAAAAAAAAAAAAAAAGhyJDgAAAAAAAAAAAAAAAAAAAAAAIAm59/UFwAAaBxpBdlKL8hRQmi0IgJDuO0AAAAAGlX6rgxlpeUovkOswiJDufvAfsDhcllLfY8BAADgC2k705Wdnqs2HeMUGsE4CbA/ICYBAADNSWpyunIycpXQOV4hYcFNfTkAGgExSd2R4AAArdzK1G16buG3+nPHSjldLgX6+Wt812G6ZfjJahsW09SXBwAAAKCVWzN/vd69/1P9M3WpXCYmCQ7Q2LMP0WWPnavYtsQkAAAAABrWytlrrJhk8fTl1npwaJDGnXOoLn3sHEW3ieL2AwAAAGhQS/9YqUkPfqalM1da6yHhwTri3DFWTBIZG8HdB4BKkOAAAK3Ysj1bdNGU/yqvpNC9rchRou82zNP8nev06Ql3KDE0ukmvEQAAAEDrtfyv1brrmIdVmF/k3lZUUKxf3/tdy/5Ypef/flQxCUwoAlor5/+W+h4DAACgrhbPWK57jntMxYXF7m0FeYWa8vY0LZu10opJmFAEtF7EJAAAoKnN/2WxHjjxcZUUO9zb8nMK9OMbU7Xi79V6btbDCosKa9JrBNBwiEnqzl6PzwIAGpDD6VR6QY6KHHsfutfW4/O+8EhuKC85N12vLZlSjysEAAAA0JqVmJgkP19Fjr0P3WvrlZve9UhuKC954y599sTkelwhAAAAgNbMUeJQVmq2SopL6nyMl298xyO5obyktcn68pnv63GFAAAAAFozE4tk7smqc0xiulq/dP3bHskN5W1evk3fvMDcLQCoDB0cAKCJkheW7dmsgpIi9Yppr7iQSPd7mYW5em3Jz/p6/WzrdZBfgMZ3HaZrBh+nrlEJXp9jc+ZuLdy1odp9TCeHe0adqQC7X72+DwAAAICWN1Fozfz1VjeFboM6Kyp+b0ySlp+vl+fN1VcrVyirsFDB/v46oXcfXT/qIHWK8r7bwsalW7Ru4cZq9/n1vRm66ukLZbPZ6vV9ADRPTrnkkKvexwAAAK2PmSC0et56lRSVqPvgLh5dFNJ3ZeijR77S1A9mKi8rX8FhQTrinEN13n2nKaFzG6/PsXreOmvCUHV+eXeGLn303Hp9FwDNFzEJAACoSnFRsdaYmKTYoZ5Duyk8em8XhT070vTxI19p2kezlJedr5DwYB153hidd//pim8f6/VNXfrHSu1Yv7PafX55d7rOv/90/qKAVoqYpO5IcACARvbZmllW5wTTQcEIsPvr2K5Dde+oM2W32XT+T89qXcYO9/6FjmJ9u2Gufk9arg8n3GIlRJTJKMzVJ6tm6ruN86xuD10i2+jM3mN0Us9R2plXevzq5BYXKKcoXzHB4Q30bQEAAAA0N5NfmmJ1TtizPc1aDwgK0NizDta1z12ioiC7zvz8U21M3xtPFJSU6MuVKzRj00Z9dubZ6h4T437PVC767uVfNO3jWcpOy1HH3u10/JVH68jzxyglKbXGa8lOz1VBXqFCwoIb6NsCAAAAaG6+fPZ7ffH0d0rbmWGtBwYH6Ihzx+ia/16sgtwC3XTo/VbHtzIFuYX66a1pmvPjP3ruz4fVrluiRzLEty/9rBmf/qmcjDx17tdBJ1x1jMadc4hSkkpjnuqYa3A4HPLzoxAUAAAAsD8wXRU+e/JbffXfH5SxO9PaFhwapCPPP0xXPXOhctJzddOh92n31j3uz+TnFOiH16dq7k8mJnlECZ3i3e+lJqdr8otT9Ptnf1kJ2l0HdtLEq4/R4WcerD1exCRlYzUAAE8kOABAI3pn+W96cv5XHtuKnSX6YeN8rUvfoVHt+ngkN5Rnujk8MuczTZpws7W+KzdDF0x5VluzU9z7ZKTkaknKZn28eqbO7ze2xusJ9Q/Stuw9SsreYyVOBPsH1vs7AgAAAGi+TBXU9x741GNbcWGxpr4/U5tXbFP8f47ySG4oLzU/X4/M/F3vnHyKtb5rS4puHfug9WeZlbOztXL2Wv3w+q8af8kRNV5PaGSItq3eLpdL6jawkwKDiUmA1sQ0XnfUswFD5c3bAQBAS/XufZ/o48e+9thmOsv9/M50bV2VpE59O3gkN5SXlpyuN27/QA9+eZu1vmPDTismKT8haPmfq63lhzemWoncNYlqE6GNS7ZYk5xMd7uAwIB6f0cAzQcxCQAA2JeJKUzSdXmmENOPb0zVtjXbFd8h1iO5obyUbal6556PddcHN1jrW1dv123jHlT6rtJECWPpzJXW8uObv2nUCcNq/AuIbRuttQs3WJ2uTUziH8CUXqA1ISapO5vLPK0BADQ40ynhsM/uVl5JYZX7hPgHKr+kqNrj/HLav9QlMkH/N+01Tdu6xGfXFxUYqjP7HKrrh05UoB8/lgEAAIDWJis1W2d3vMpKaKiMy8+m5KcOVr6cVR7DdJ2bdenlahcRobvGP6KFv/ouJomMi7CqGl3w4Bny86d6KtBSJSUlqVOnTtbrv+e1Ubt29fv/c3KyQwePLE2k2rZtmzp27OiT6wQAAI3PVDY9v+s1KimuOoUxINBfxUUlVb5vYoVPkl5XTEKUbhn7gJb9scpn1xfdJlIn/t94nXvvqXR0AFowYhIAAFAVU7Dpwh7/J6ez6imzfgF+clQXswQF6PPkNxUeHabrD7pbq+et99kNN8kOJ19/nM6+62Qr4QFAy0RM4ht2Hx0HAFCDX7csrja5wagpucFIyk5Vck6aZmxb6tN7nlmUpzeX/aqbZrxpVSoCAAAA0LrM/PzvKpMbDEeof7XJDYbT5VJSVpa2r0/WP1OX+jwB46NHv9J/zn/ep8cFAAAA0Dz8/ulf1SY3GNUlNxiOEodVTdV0oPNlcoORkZKl9x/6XE9f+opPjwsAAACgeZj20axqkxuM6pIbDDPOYrrIma4LvkxuMNJ2Zuidez/W81e/4dPjAkBLRIIDADSS9ILsGvfxJvc2LiRCS1M2WxOLGsL0bUv15w7fDgoAAAAAaHpmsk517AUO2Rw1xxlxoaFaOXttgyVGz/x8tpb+sbJBjg2gcTl9tAAAgP0jJvFWTEKklv+1Wg3ltw/+0Op56xrs+AAaDzEJAAAoL3OfmMQRHaqSNhFyBvl7faNMZ4Wo+Agt/7PhYpIf3/xNm5ZtabDjA2g8xCR1R4IDADSSjhHxNe4TGxxR7fu9Y9rrk9V/6PZZ76ohfbNudoMeHwAAAEDja9c9sdr3bU6XOu6pfirxAW0S9M1tn+jZK15TQ/r1vd8b9PgAAAAAml9MYsS2ja72/QGH9NF7D3yml69/Ww2JmAQAAABovTFJcadY5Rw/WLnHD1beMQOVc8pw5R3cU46QAEV3iVN15Z0Gjxug126dpNdve79Br/UXxkkA7Oe8Tz0DANTLEZ0HKzIwVFlFeVXuk1qQbXVxqOyHsr/NLlMg9bM1sxr8b2JnbnqDnwMAAABA4xpz2ii9cO2bys8p8NheEh2s7IM7Kr93nJw2u2xOyVVJSYwAu11hn6/Vz983fMe3lO2pDX4OAA3PKZscXvWrrP4YAACgdRh39sF6+YZ3VFRQVOU+aTszqnwvIMhfWanZWvHXGjW0lO1pDX4OAA2PmAQAAJR35Plj9NLLPyl/RFfTisG93eVvV1GvNirsE68sm032/GIFrtml4KXbZSvZWxgqKCRQu7fs0eLpyxv8xu4hJgFaBWKSuqODAwA0oB05aZqTvEZr0pIUYPdTWEBQjZ+pLLmhb2xHXT7oGK3L2KHGsDU7pVHOAwAAAKBh7dy8W4tnLNem5VsVGByokPBgj/eL40OVcv4g5Q9IkAL8ZHfYFJgq2Qs9jzMwIUHXh/XU7kZIbjCS1jRO7AMAAACgYSVv3GXFJFtWblNgSKCCwwLrdJy+o3rq5BuO07bVjTROsiqpUc4DAAAAoGFtX59sxSRbV29XSESIXIf08kxusEnOAMnlJ/d2Z0iACoZ0VPb4/nL5lU6x7X9wb51w9dHasWFno/yVbV6xrVHOAwDNFR0cAKABbM1K0aNzP9es7SvkNG0XJHWOaKPkOnZG2JOfpQW71vv4Kqs/39KUzTqgTddGOycAAAAA3zEP6l++8R0t+m2ZXP+LSTr0alehGmrmkd3kCgnw2GYvsSkoTXL6uRS8NkWRf21XWECI1nWKb7S/ot1b92jTsi3qNqhLo50TgO85XaVLfY8BAABaHpNk/cpN73pUNu3Qu52yUnPqdDwTyyyZvtzqQJc/MFElCWFSsVPB61MVvHaPbA7f/mjYsX6nktbuUMfe7X16XACNi5gEAID91/pFm/TKze9q2R97CzcljuuvnPZRHvs5zQzaKprIOhIiVNi/rYKX7VDGrkz9M3WZGsvWldu0a0uKEru0abRzAvA9YpK6I8EBAHwsOSdN5/30tFLys3zWFcEkHJilMU3fuoQEBwAAAKCFVki95bD7lbkn22P79nXJHutmYlBRZ88H+eWZbg4l7WIUsGu99ihfe5LS1Jj+/m4BCQ4AAABAC2QSA249/AFlp+d6bN++1jMm8ZbL366twdLaRH8VHjLUo9pqUfdY5Q7voJhvVsgvt1i+NPv7hTrjVhIcAAAAgJaYcH3ruAeVl5XvsX3b1j1SuQQH071BpQ0aqlTYJ9FKcNixYZcak6ldNffHf3Titcc26nkBoLmo4Z9nAEBtvbns1wrJDY3lkPb9FBccYb2ODAhRREBInY9V4nT68MoAAAAANJaPH/2qQnJDZUqigmrcxxkaIFeg3971AD8V9ohTQd8EFSeEV9j/wGOHKDLufzFJXLhCI+oekziKHXX+LIDmwSGbTxYAANCyfPDvLyokN9SV6daw57IRyjy2twp7xnskN5RxxIUqc3xv6/XICUMVEVsaq0S1iVRwWM1xT1UcxSX1uHIAzQExCQAA+6dJD35WIbnBsOcUeKxbCQ41cIbXLqYYedwwhUWFWq+jE6IUFBqouiohJgFaPGKSuqODAwDUg8Pp1KztK7Qla7ciA0N1ZOfB+m7D3Ca5p4F+/npu3BWKCAxRYUmxgvwDdP9fH+qLtX/V6XhDErr5/BoBAAAA+JbD4dC8nxYpecMuRcSFa9TxwzTj079UElH6wNwvu6jKqcF+eTVXN7UVOWQrdshlJhYN76j8AzqY4GPvMVJyFD59nfwz8q2JQ/d/eatCwoJVVFCkwOBAPXHhi/rtwz/q9N36jS6doAQAAACg+TITbkxV0Z2bdluTd4YfO1izvpzjk2MX9IpT9hE99m6oZvJRcccoBfZsowe/vl2BQQHumOTfZzyjWV/V7XqISQAAAIDmr7ioWHN++Ee7t6Qopm20Bo8doNnfLah0X79dWbJlF8gVEWyt21yyxj+qYyvwvlNcVHyk/j35Dvn5+7ljknsn/kfzfvxHddGfcRIA+zESHACgjuYkr9E9s97Xjtw097YAu5+KnU1TZfTQ9v2t5AbDJDcY/eM61fl4P2yYrz6xHdQpoo3PrhEAAACA7yz4dYmevfxVpSSlurcVjeyg9PP6qyS+tDqQf2qewucnK2xxxdbJASl58t+dq5KEsCrPEbJqj/WAP294J+WPqBhfONqEK3PiAMV8tUSjJ46wkhsM89De6Dm0W90SHGzS1Pdnqku/DkroTEwCAAAANEdzflio/171utKS093bAoL8VVzkm84HuaNqN8Yx6vqjreSGfWOSuiQ42Gw2/fzOdHXo1U7x7WNr/XkAAAAADW/W13P14v+9qfRdme5tAUEBcjqcle5vcqZD5m1U3ti+kp+9NLvBVX0ydeD6FK+vZ+xZB1vJDeVjkl5Du9UpwcFmt+mH16YqsUsbxSRG1/rzANDSkeAAAHWwJi1JV099WQUOzyzdpkpuMHbnZ2prVoo6R+6d/DOxxyg9s2Cycoo9W6x54+ct/2jerrUa33WYpm1dqtT8LLUPj9NpvQ/W+f3GKiygdOISAAAAgMa3ZsEGPXDSEyou3BuTZI7topyDOnjsVxIXqozxPVQSG6Ko6ZsrHCdy5malndqv9EH+Puy5xQqfmyRnoJ/yB7f3eM9lc6kw1qWCWJecQX5KHzJECX7h2paVqU6RUe79jrl4rN67/1MV5BXW7gu6pBmf/Kklv6/QIScfqL+/na+M3Vlq1z1BEy47UiddN15BIbVrCw2g6Vov1/cYAACg+Vn+12r967SnVFLsOS5SXOib5AYTwzhiSxO3vbVz/U7t3rZHCZ3i3dsmXH6kPnz4S4/YyRsul0u/ffCHFs1bqwPumajpKzYpM7dAndpE69RDB+nMMQcoMIChdqC5IyYBAKD1WjxjuR4569kKyQw1/fb335mp0KkrVDSwg0rax8heYpPT32WynCvsa8spVPCKZK+vKWntDu3ZkeaRJH3cFUfp08cny1FSuzllLqdLv7w3Q4t/X64RxwzRX9/MVXZ6rjr1aa/jrzxaJ1x9tPyJSYBmj5ik7iqOXgMAavTmsl8rJDc0teV7tuiM7x/XqtRt7m3hAcF65vDLFORXWrGottIKcvTx6j+0Ky9DJS6ntman6L8Lv9VFPz9Xp6QJAAAAAL7x6ePfeDykL44NqZDcUF7OyPYqji/t+FZe8OZMxX61Sv67cvZudLkUtCld8Z8sk39moYo7x0gBfnvftrmU3dWpvPYuOU3es01yBdk12z9DJ335odam7XHvGxETrrs+vEEBgXWb+GMqwX7/6q9K3ZFuPfxPWpusN+/8UHcc9e/aJ00AAAAA8JmPH/u6QnKDL7n8azmM7XJp1aS/dN3Iu6xJRWViEqJ0x3v/566iWhuOiCCtG9lBX8xZodTsPJU4ndq0K03PfDVT//fyNyos9k0yBwAAAIDa++iRL6vs1FAT/9Qchc5co4gv5iniiwUKnb5G9vS8vTs4XQrYkqbIH5fLnu/9/LCFU5fq+lF3K3nT3q7aJgH71reukb2SQlPe1HbZtTlFP74xVRkpWdY4yeYV2/Tyje/ovomPq7ioec1dAwBfIsEBAOpg6pbFDXbf6lOXMLMoT/f++YHHtsM7DdQ3J96jc/oepo7hcWoXFqORbXvVO5ni1cU/1esYAAAAAOqmpLhEs79b4LEt74CEGj+Xe0BipduDt2Qq4f2lavPuYsV9ulyJb/6juC9XyT+9NKnZVS65wTCdG0rCKz9HWkG+7v79V49th5w8Uq8sfFLHX3GU1Uo5oXO8Dji8v+pj5ey1+uyJyfU6BoCG53KZsUBbvRZzDAAA0Lzk5+Rr4S8NOE5is8kvo0C2otIECkeIUwXtSpTfoURFcQ657BV/IAStS5V/VqHSd2Xq+Wvf9Hhv7FmH6OX5j2v8JeOseMQsgw7rV+N15BzWXc7wyjvHLViXpA+n/1Pn7wigcRCTAADQOmWlZWvxjBX1Po6txCl7QbGCtqQr6pslipi8ROFTVij6i38UPm2N7LlFtT7mnu1pevmGdzy2HX3h4Xpp7n909EWHW/GIGSsZNKaf1c26rhb+ukTfv+I5HgOg+SEmqTsSHACglkqcDhU2YPeGyMDatVze18q0bVqWstljW/fotnpw9Dn67YxHNOPMx9Q+PK6eVyl9te5vFTsbrjoTAAAAgMoVF5VUaGXsiKx80k1t9gnYk6fApCwFd41WfvdIOUJLuy74pZWrWiSpILb6J+4Ld+7QmtQUj21dB3TSTa9fpQ83vaKPNr+qmMQo1ddPb/4mp7Nu1ZkAAAAA1F1RQbGczobLQgyLCpW9yKGgtSnK7VqsnD4lKkp0qjjeqYKODmX3L1Zx5N5YIHBzuiJ/W+9eXzx9uZLWJXscs8fgrrr17WuteMQs4dFhNXZvKO4UXe0+X85aWufvCAAAAKDuCvNqn3jgDf+0PAUkZymsDh3gyps/ZZF2b/UcJ+k1rLvuePc6Kx4xYyWBIYH1vFrph9dJcADQepHgAAC15G/3U7fIyiuf+oLpwlBfGzP3tjqrTH5J/X/oZxTmKi0/u97HAQAAAFA7IWHBVnWf8rypIuSXU/0+WaMStO2uYVpzXnclXz1AW+8drt1n9JA9M09+qbnWPi655Kw5l0IbMtKqfb8gt1D1lbYzQzkZpdcFoHlyyOaTBQAANC8RseGKbVv95P/6KPudn9fVqZLoShIp/KT8LsXy37ZbwUt3yJZXoJyDOqg4Nti9S9KaHfWKSRwxIaaVRLX77EzPVn5RwxXEAlB/xCQAALROJh6JjItosOPnZebX6/MmITxp3c5q9ynILe2iXR/b1uygEBTQzBGT1B0JDgBQB+3DY5v1fduQkaxle7ZU+X6/2I71PofdZlNYgBczmwAAAAD4XJvOnl3ZwpbtrvEzodXsk3F4e+05rYdKYvb+xncF2JVzYIKSr+yv0D/Wy5ZfLJv5nxdNE7bO26T1izZV+b6pnlpf/gF+Cg4lJgEAAAAam91uV5tO9e8UXZ2SSH9lH1TNWIzdpsxDY5Qzqr1yh7dT9iGdtPvKYUof30Mum7Rx6RZrqUtM4vK3q7BDhBwBksPfJHpXLijAT4H1rOwKAAAAoPb8/P0U36F5zt0y8Uhhx0gtz87UuuQ9DTpOEhoZYsVnANAa8a8bANSxe0Fz9sayX3TG94/rlG8f1aLdGyu8f1qvgxVgr99D98M7DlR4YEi9jgEAAACgbnLSPWOSgN15Cl1UdTWg0CW7FLir8jjGEeyn9KOrToIu6hiugm5hivpqiYKXbFdAWvUZDvZ8h748/21dM/wOXXvgnVqzYEOFfY6/8ijZ/er3WOqQU0YqMLj+LZwBwPjzzz9ls9lqvZx88sncQADAfik7PadBj583INK01K52H0d4xdSDvCGJyhrTWe/e94muGnKbrh99jzYs2Vxhv+OvOrrSBg35feK066oRyjm4k5wBkjNQKgkpTXTY19HDesuPyUQAAABAq4xJ6iK/XxulXDpc6acP1FN/zNepT32gC174VBt2plbYd+I1x9b7fOPOPrTexwCA5ooEBwCopWlblmhl6tYWcd9WpSXp0l+e16rUbcopLtCKPVu1MXOn2oRG6cw+Y+p83GC/AF075HifXisAAAAA78z8/G9tXrGtwvboXzYqcsYW2bOL3NvsOUWK/H2LoqdUTDIok3tAnFyB1SdAZw9vI7/cIoXN2aKgTTlSNTkO9gI/9/HWLdyoO478l7as3KbczFytXbhBSWt3KKFzGx1z4eFVHsNMU8rvFaO0U3prz7n9lT6hu4oSw9zvB4cF6bx7T6v2mgE0PYfsPlkaw6JFixrlPAAAtAZTP5ipHet3Neg5XH6VZB/sq4pdcoe1lTOg9DfE6rnrdNu4h5S0Llk5GaUxyfb1yerYq53GnnWIx+dMldWM43rLFbxPNoOtNNGhfJJDeHCgLj1mZB2+GYDG1JJiEgAA4L2f3pqmlG0VkwaaOrkh89heckZ4dp5evDlZl7z8hbanZSorLduKSZI37lLXAZ108EkH1vl8ETFhOvP2E31w5QAaEjFJ3VVSawIAUGbx7o2avH6OUvOz1T48Vge376dbZ75dZTvimvSIbqvknHTllRQ22k3OLynSddNfV3pBjvu8vWM6aGzHgXU6Xs/odnpw9DkaFN/Fx1cKAAAAYF/L/1qt3z74QxkpmWrXLVFDxg3QExe9VJoBUMncnoi52xU+b7tK2oRa2/z35Mvm3Ltzl/4dtXvrHuXnFLi3OcICarzxznL7FHWOUkCmTSXhTrnKf9Qh+efZ5Oewq6BrpELXpFub87Lzdf+JTygtOV2F+aXJFz2GdNWIYwZXfq4Au1LP6KeirlF7N3aV8oa2Vfjs7RqaKt346hXqNoiYBEDDJDhERUUpPj7eq8+1a9eOvwYAQKu2ZOYKTftwljURp0OPthpwaF89c/mrdTqW6ZjQqV9H7d6SooLc6sdJQtaaxGqXZK860cEvv/L3TIJCUYcIBW/OtNZNYsO9xz+mPUmpKiootrb1HtFDgw8f4PG5nFEdqj2f01+yl0h9O7bRA+cdrW5tY6v9DgAAAADqb9H0ZZr+0SxlZ+SqU+/26nVgDz1/zRt1OpbNblOnPu21a0uKCvP2FouqL5dNyj64c5Xvp+fm6/p731XBe/NUXFgak/Qd2VMDDulbp/OZeOaWN69W+x5t63zNANDckeAAAJVwOJ26a9Ykfb9xnsf2SSun1+t+3X/Q2eoWlagjP79PJS5Ho9377TmeWctr07dbS4h/oJUAURuXDDhKB7bt5eMrBAAAAFBeSXGJHjvvec36co7H9i+f/b7GG2VzSQG78yp975a3rlFs22hd1Ot65bcLV37/BBV22dsZoSr+aeUmH9ltsjtsCsz0k9PPJZdf6TltxSbJ4n+TgfaZFGSqEZW3YfFmawkKDawwiJB5VFfP5IZyckZ30IlnTFD/wX1qvGYATc/lsslpRvfqeYzGTnC46667rAUAgP1ZUWGxHjnrWc3+boHnG09/V+djulzS3R/eoODQIF3a/ya5yiVj7ytwd6FCl2Uqb3B0lfv4p1fTiW6fmGTH+p0e62sXbNC6hRsUEByg4oJiufztKupS9blKjymFzVyv6x4+WP07J1a/L4BmoSXFJAAAwFNhfqH+ddrTmv/zYp/dGhODPPT17SopKtGVg2/z2XGLOkRW6Nywr/X2YiX+L7nBWD1vvdYu3Cj/AD+VFNduDtlF/zpLPQZ3rfP1Amg8xCR1R4IDAJQza/tKTVoxTbN3rJbD5fT5vdmRk6pPVs1UkJ+/SkoaL8HBl0ySx2m9D27qywAAAABapTk/LNQ3L/yoxTNWyOnwbUxis9m0bc0Off70d8o7ZYAyOkZY212mHYQJT6qZGxQxtzRBwYzp++WUyBFZ2rrBJDpYny3P4VRgUrZX12S32z3WncH+yhvYptrPvD97kY4fXLeqRgBQmaKiIq1YscK9PmzYMG4UAGC/9dfkeZr84k9a+scqn8ckdj+7Ni3bqllfzVFAUICK/tfhrSpt396s7bf2VmGX0g51bi6XAvb4yy/fM55wK3EqIDnHq4SLwKD/JTiYhAjTYqIGftkF+vr5H3XoKaNq3BcAAABA7c38Yra+fWmKVvy9xucxiUkmWDN/vWZ89rc72dkXTBe5GvcJ8reac5ePOsz3C40MU056bq3OZ2KSkROG1uFKAaDlIMEBAP7n7WW/6qkF3zTY/YgLjtA9f37QrO636d5wco+DNCNpmTILvfuxbDo/ZBXmKTJonwEFAAAAAPXy4cNfatKDnzXYXYxOjNLTl7ysnJEdlVOuVbLpuhCY6VJRzD5P1v8ndFmqwlakWa9zR3SQza80uaEqoStT5Z/t3aBAfk6BjrlorP7+dr5yMnJV1C5cCqgm00LSsqSdKiopUaA/j7WA5s4hm7XU9xgNzSQ3FBfv/Xdr6FAGBwEA+6d37v1Yn/yn4cZJohMi9eRFL3m9v0mu7vTIKuWMiFH2gTFyBvspcEe+grYWK+fQ7lV+LnRlivzyS7w6R25mnhWT/PnNXO1Jy5cjNqTqnU3iREqeVmxfLZfLZSWRA2jeWkpMAgAASr12y3v66rkfG+x2RMZH6okLvY9JvOWXXuDFPvmV/qowyQ3HXDxWf3wxWwW55bppV2P5rFV1uEoATYGYpO6qKGsBAPuXjRk79fSCyQ12/EC7v1ILvKtg2ti2ZO/W60deq4v6H+H1Z/atsgoAAACgfjYs2dygyQ2BIYFK35lhVSXNO6Bthff9C2wKSpXsBf8rY2q2pRYo9ofNSvxwrWyu0u4N+Qe0lV+x5FfFs3pbkVMxUzbX6tp2bt6tx366RydcfYz73NUxc4iYSATAlxYv3tvmvkOHDmrTpvpOMgAAtEYr56xt0OSGoNBApSVn1PpzNodLEXPT1P6lDer49FolfLxNUX/uVPjspEr3D9yaqaipm2p1jj3b0/TE1Ad02rD+1e4XsjpF9oISqxMFMQkAAADgW0t+X9GgyQ3BYUFKS05vkGMHpOYpYEdWtfuELivtlF2ZjF2ZenrGQzryvDFenc/EJADQ2vEvHQBI+mzNLLmsRmD10zO6nU7uMUoh/oHWup/NrqM6D1ab0Khme58X7d6os396SiUup87qfWiN+w9P7KHwgOBGuTYAAABgf/HDa7/65DjdB3fRkecfpsDg0i4Lfv5+GnPaKEXEhFnrjqhgOcNL45V9+RXZFJxmU8hOmzo8u1Sdnlik6D+SreQGwxkRZC2Gf4EUkC3ZCyVbsWQvkvxzpYA8u5xh1Xd42NfSmSt1w8H3Kjg0UCeMGypbQfWVVkd376wAv+q7PABoHhwuu0+WhrZo0SL3a7o3AAD2Vz+87puYpNfw7jri3EMVEFQaF/gH+OnwM0YrJNy34wpRM7eqzbtLFLpopwK3ZCp4dapiv1qt+E9WyF7srNWx/vltqa4fdbc6Jedr/MCele4TkJytyBmlydwjxg/xyXcA0PBaSkwCAAB8F5P0G9VTY886WAGBpV2gTWwy9uxD3OsNJfK3DbLlVd7dOnBrhkKXJFf52XlTFum6kXerQ+92Gj1xRI3nGnkcHWiBloKYpO4a9l9tAGghNmTurPcxOoTFqn1YrGJDIvTJcbcrNCBIUUGh1nujPr5Nzd1Hq37X/QedpVN6jtY362dXuV9EQIjWpG1Xn9gOjXp9AAAAQGu2dfX2eh+jbbcExXeIVXz7GL045z9WNaLIuAgV5BXqnI5Xle7kTYcEl01+eSUVWyU7nHLZXCoJlUpCzI6SvVgKyJHsJXv3tpXULXn8y2d/0C1vXq0TSjL0/batle/kcil+eaq2rNymLv071ek8AFBdgsOwYcO4QQCA/dK2VfWPSdp1T1RsYrQSu7TRy/MfV1BIoKLiI5SVmqMLe14nXwvclavAXzb67HgfP/a17vrwevm7IjR1w2YrQdyeX6KQlbsVsnqP1U3CMN9r25rt6tSHcRIAAADAV7b6ICZp37OtIuMj1aFXO73yz5MKDApQVJtIpWxL1e+f/qWGFJCWr7hPlyp3eAcV9I2XK8hffun5VucGk9xQFk9U5/0HP9f9n9+qkmKH5v+895mlB5tJJPfX9vXJ6tCzne+/CAA0E6SaA4DJog00s3PqZ3tumv7YvkLvLP9Np3z3mKZsXqiooDD521tOZdHH5n6hi/qP03n9xspWcTqT5fek5Trp20f0zILJjX59AAAAQGsVHl3aYaE+dm7arXk/LdJnT36ra4bdrtnfLbCOW74qkV9GgfVAvTp+aXnyzyqssN0ZbFd+vFNFMea15AySSsKl/ESpOKz0wbxfWn6Nx6/OC//3lq4eM1KnDx9Y8c0Sp6J/2qCF/52qywfeog/+9UWdzwMAZVwul5YsWeLRwWHz5s26//77NXr0aMXExCgoKEgdO3bUhAkT9Oqrryo/v+7/zgEA0FyF+SAmSd64S3N/+kef/OcbXT30di34ZYnCosLk38CVUn3p2ctf0/9dMUFnRbVVm/eXKO6LFQpdkeIxGWnm57N1Wf+b9ekTjJMAAAAAvhIWXVpEtj52rN+puT/+o48e+UpXD7ldS35fobDI0EaLSczYStSMjUp8dZ4Sn/tbbSYtUtg/O7xKbijz5MUv6drnL7a6TlTKJU37aJYu6XOjvn7+R99dPAA0MyQ4AICk47sd6NP74JJL/134rX7csEAPz/msilSB5sfhcurSX1/ULcNP0s+nPaTB8V2r3PfNZb/o2/VzG/X6AAAAgNZqXFUPquvI6XTptVsn6c+v5+iVm951bzexSdjC6qsghS3YUen2XRf0liuokkdJNqkoWnIEuBS2YHu94p+SohLdM/5R3TfhcP1w40UamhegsH92KvK3TWr74gKFLdnt3vf9f32uP76suvscgKbnlE1O2eu5NOxTlfXr1ys7O9u9/v7776tXr1565JFHNGfOHGVkZKioqEjbt2/Xzz//rGuvvVa9e/fWlClTGvS6AABo8TGJw6mXrn9bs79fYMUmLUVRQbHuPeE/Vne5t5Y/q26DOleZJPn23R9ZCR0Amq+WEJMAAIBS484+1Ke3wlHi0HNXvW79Zn/rrg8b/TbX9RdEYV6hHjzlKd31wfV6ffHT6ty3Q5Uxyas3v6d/pi2r13UCaFjEJHXXcsplAEADGttpkIYl9NA/uzdU+n6Yf7D6xHbQmA79tT0nVTty0xUdFKqpWxar2Omo8rgPzv5YOcUtq6pfWkG2vtswVxN7jNK6jORq93183pc6qeeoRrs2AAAAoLU69NRR6nNgD62ZX0VMEhWqboO6aNRxQ5W0Nlkp21MVERuuP7+eK0dx1THJ05e9qtzMPI9toct3yxEepNyRHSV7uUfsTpfC525T6Mq9SQRlCrpGqKhjeNVfwBwmL0chlXy2tvYkpWrGp39p9IkjlPHa34ouKK5y35dvfFeHnT663ucE0DIkJ1f/nMIwnRZqY9Eiz1bv33zzjfu16dyQkJCgtLQ05ebmurcnJSVp4sSJeuWVV3TllVfW6nwAADTnBAdT/XPjki2Vvm+6w3Uf3EUHjh+irau3K3VHuiJjw/XHl3OsZIaqJtw8ceGLFWKS5i55wy7N+mquhowboG2rq08Qf/H/3tKoTa802rUBAAAArdVRFxymb1+aoi0rkyp9PyImTD2GdNOI8UO0eflWpe3MsLb98cUcK/aoqhjUf857vsXFJFtXJmnuD/+o59CuSlpX/TPRF//vTb27+oVGuzYAaCx0cAAASX52u944+v90cPu+lWbQ5pYUWMkPzy/6XluyU/TM4Zfq5J4HVZvcYLS05IYys5JWavmeLcorKax2v/TCHC3bU/lgBwAAAADv+Qf46z8/36fBYwfIZisXlfzvpXn4vvzPVXr7no+VkrRH9316sw4/4+BqkxvKPleZiDnb1OadhQr/e6tClu5U+F9bStfnVj5wYBIcauII85MjIkjFbcLkDPJTfSz4ZbFWz11vVU+tTlpyuratqbzjBIDmUZnIUc+lfLXUkSNHqlOnTtUutbV48eIK284//3wtWLBA+fn52rp1q9XhYeHChTr33HPd+zgcDqubw2+//VaPOwQAQPMRGByoJ6c+oAGH9PUsNfq/1zkZuVo6c6XevvtjZezO0gNf3KrRE0dUmdxQpjlMJHLZbSroFafcER2VNzBRzuCaawDO/2WRlv+1RiU1xFy7tqRoz/ZUH14tgOYckwAAgIYTEhasp6Y9qH6jenm+8b//FGen52rxjOV6684PlZeVr4e+vl3Djx5cZXJDc4pJ6mL+z4u0/M/VNcZcpihW+u7MRrsuALVDTFJ3JDgAwP+qCD294Bv9vWO1qv/ZK83fuU7X/PaqbK34YZbD5ZS9/KSqavy0cX6DXw8AAADQ2jmdTr1+6/ta8vsKz4fxlQQo//y2TP8+/Wl5+ZO9Sn45RQqfl6So6RsVPn+7tV4VWw0P0A1HeKD2XDpcaecOVsrlByrzmJ5yhAbUuXW0rXx3iWpM/3hWnc4BAPt2cPDz89Onn36qDz74QMOHD3cnnJk/hw0bpo8++khvvPHG3n+rHA5dddVVKi6uPhkLAICWwPx37eUb39GKv1Z7xiGVxCTzpyzSY+c+Z/4jqeausGuM9lw8QlnH9lHuQZ2VM7aHtZ4zsvrESGeJU3YvY5JpH/3po6sFAAAA9l8lxSV68bq3tGruOs83KolJ/v52vp686CXPglGtjKPEKZvdu+m9v3/6V4NfDwA0NhIcAEDSR6tm6tM13k+KWZyyUQ6nQ8F+dZusUyYqMLRZ3v8RiT11QHxXr1I4MotaZqYzAAAA0Jx8+cz3+uW9GV7vv3jGCgWFBikgqH4xSXiMdzFJ6KoMyVl9OrhfSbmuDf52FfRLUPoZA+UMqbk66r4GjemvAQf38awcW4XMPdm1Pj6AxuFw2X2ylJk3b562bdtW7VJb//nPf/Txxx/rkUce0aRJk3TWWWdVu/8VV1xhJTWU2bhxo5UUAQBAS/fJY99oxifeT4qZ99MiRcVHyM+/ft3bwqMbbpykODFcmRP6yLVv4rW/XXkjOylvcLsqPztoTD8NOqyfV+dJ35VR30sF0EJiEgAA0HDef+hzzfpqrtf7//n1XCV0aeN1saSqhEaFqDky8ciQcQO82jeDDg5As0VMUne1H2EGgFbGVEd9f+X0Wn/u3r8+VIGjfhX6mmNyQFhAsE7vfYjVwcFkOtfUyi0+OLLRrg0AAABorZVSJ784pdafe+ril1VcWL+YJCfdu5gkYE+BwpalKndwfOU7OCX/nIqbHdEhyh3WXhF/bfX6miJiwnTMRYdbxWDNsERNXfbi2kd7fWwALVu7du3UsWNHnx5zyJAh1lIb999/v958802r+47xww8/6IILLvDpdQEA0JiKi4r13Ss/1/pzT1z4otV9rT5yMhpunCR3WAfJr+qJyXnDOihk2U7Z9knmjm4TqSPOGyNHsXffrU2nuHpfKwAAALA/K8wv1A+v/Vrrzz1+/vNy1VCcqSZ5mflqbuLax+jwMw9WbqZ38RIxCYDWiFRzAPu9lanbtDU7pdb3IbWg9VUJNckNLx9xlXKK8/XI3M/lrCG5wRiW2KNRrg0AAABorVbOXquUpNRaf66xq4S2+WyDQpenVdhuc0jBKZLdUXmVpIL+CV6fIzw6TP/+9k6l787Si9e/Iy9CEg081LuqqgDgKx06dNDAgQPd6wsWLODmAgBatKUzVyp9V2atP1fZZ1z+djmD/WtMVG5oLptU1C222n2cYYEqbhfhsS0yLkIPf3+XUral6oX/e8urc3nb6QEAAABA5Rb+ulTZ6bm1vj11iWOau+iEKD3y/d3avi5ZL/7fm159xttODwDgreXLl+u+++7TyJEjreJTgYGBiouL06hRo3T33Xdb3a0bGh0cAOzXftq4QHfNmqT9lV02xYVEqkN4rI7oPFin9z5YM7ct1+W/vqgSV2kVwpos2r1RPaPbqWNEFZVcAQAAAFRp6gcz9cxlr7SIO2Qvcqrte2tU2C5UuYNi5Qqwy15sU2G/9rJZvRYq5wwNtCY3VbaHaR0dmxittt0SdMjJI3XspeM068s5unXsg3J6WXVpyYwVatctQQmd29Tj2wFoCE7ZrKW+x2iOunfvrqVLl1qvd+/e3dSXAwBAnf301jQ9f80b9b6DRe3ClXNQRxV2i5HsNtmzChW2ZKfC5u+o0CGhUdhtpUsNbIF+VnXUdt0Tdegpo3TMxWM17cNZeuWmd2vscF1mwS9LFJMQrTYd6eQANDetOSYBAKC1mPzSFOv39/7K7mdXTGK0OvRsqzGnHaSjLzpcP74+VW/e+aHXx/jr2wU66vxQxbWLadBrBdD6Y5KsrCzdcccdHl2sy6SlpWnevHnW8vTTT+uee+7Rgw8+KLu9YXotkOAAYL9SUFKkIL8A2Ww2rU5L0h1/vOv1RP76ODCxlxbuXu9VR4TyzLUWOoob7Lp+PPVBdYtKdK+be3LfXx/KUYt78vrSn/Xmsl80sftIPXzIeQr0C2igqwUAAABaR5vlwOBAKyZZM3+9nr70FTkdDR+TDBzTV8v/XK3allENCPRXcVGJx7ag5DxrMYoTw1XUr0O1x7DnFFb62M1ut+n9DS8rscvexARzT1641jww8/5CP/j3F/ro0a907MXjdMMrl8s/gMddABpeSEiI+7XD4eCWAwBajIK8QgWHBlmvl81apeeuet3rifxVHrNrtNJP7iv57x3QdkYGKXtMFxV1jFSb79eqz4ieWvn3Gvf7JXFhKuwaq8L2oXIG2+SXnqfQ1WkKSsrxOLZfgJ8cxbX/b63N4ZJfap4ccaFV7uNvt+uLf55Vm6hw9zZzT2qT3GC8e+8nmvTAZzr+yqP1fy9cIj8/v1pfLwAAALA/xiT//LZUr9xYu9/fdREYEqjuB3TR6rnrav1Zu59NTkfDXF9AUIA+2faaouIj3dvMPalNcoPx1p0fWnHJSf83Xlc9c2GDTTYG0Lqlp6fr2GOP1fz58z22h4aGKjY2Vrt27VJxcelc1pKSEv373//Wjh07rGSIhsCIL4BWL7soX28v+1VfrftbKflZCgsI1kk9Riq9ILdRkhsMM3kpxC9QuSWFXn9mZNveig+J0E+bFjbINR3cvq9HcoPx0aqZtUpuKGMSN77dMFd2m13/GXOhD68SAAAAaPmy03P02ROT9cu7M5SRkqWwqFAdfeHhSklKbZTkBpNd4B/gZw0YFOR6H5MMP2awgsOC9Nc386rcJ2BXjvz35KokPqzKfUJWVF7ZfOTxwzySG8oqNdUmuaGMuY9T3p5mfc8bXrmi1p8H0DCcssshe72P0dByc3OtLgzt27dXUFDp4GpNUlNT3a9NW2YAAJqzzD1ZpTHJe78rKzVbETFhOuaisdq6Zke9JxK5bFLmMT08khvKMx0dcvrEKzA4QAHBASoqcSj7iN4q6BGrgnjJ5a6ZFKuswzoqaFOm2ny6Rn75JRp1/DCrWuD8KYvrdG2hS5OVPa5Hle8fMbinR3KD8c2LP9XpnpiY5PtXf1FgkL+ufvbiOl0vgP03JgEAoLVL35WhTx+frKnv/67s9FxFxkVo/CXjtHbRpgZPbjCKi4oVEh5sjSGU1CKB+pBTRio3M0+Lpy9vkOs6/KzRHskNxjcv/FSnYzlKHPr6+R8VFBqoSx8910dXCGB/iUkcDodOOukkj+SGc845R3fffbcGDRpkrefl5enzzz+3OjykpKRY29566y0dddRROuuss3x+TTZXY/wXAgCaSFZhni6Y8qzWpG+v8J7dZvOqo0L/2E5WZqufza4+MR30+do/1ZCig8L04hFXaWhCd61K3aYzf3hSrtqWWf2fiIAQZRfnV/qeXTbFhURqfNdhumjAEeoYEa9jvnxAW7NL/+NTF+aeTj39YXUIZ2AfAAAAMMzkoZsPu19bV1WMSWx2m1w1Tea3Sb2Gdrf2NQ/eu/TvZE3kb0jRCZF66Ovb1XdkL62as1a3HP5gtQMMRe0jlX5KP8m/YpXSKIdNgW/Okb3QUWnb5djEaB1+5midetPxSujcRmf1uV5Jkf4qbhthdZsI3JKuoLW7ZS/2LhHE3KOPtryq2La0YQaaSlJSkjp16mS9nvRXb8W3q1+nxz3JxbrokLXW623btqljx47yFfMg/pJLLrEeyhtTpkzR+PHjvfpsQkKC+wH+cccdpx9//NFn1wUAgC+l787UTYfepx3rd1ZanKmmoWKzT6/h3a39THXRTn066Jd3p7vfL+geo/RT+1V7jIDtWYr/pHRCUPaRfVTYI0557SRXFY0OOhT76dXjJ1jnXTJjhe485mHVhflmrjOGaE9ixS4OJlE77vtViosJ1xFnH6qTbzhObTrG6fSES5W5J1t1ZRI5Ptn2ujVhC0DTaEkxCQAA+4M921N185j7tXNz3eYjmfGRPiN6yOFwWr+3O/Rsp18n/a6GlNA53hon6T64i5Vwff+Jj9f5WOExocpJL33+uC8/f7vi2sfqiHNKY5K4djGaGHm+CnK8L1a1L5PI8UnS6wqLrLqbHYCG1RJjkhdffFE33HCDe/3RRx/VPffcU+m+69ev19ChQ5WTU9qFc+DAgVq2bJnPr4kODgBatdeWTqk0ucHwJrnhygPG65bhJ3lsW5Kyqcpj+kJGYa4u+eV5lTgd6hndzkpAmLK55i4O7cJilJybbr0O9Q/S8d0PVJ+Y9npk7ueV7u+USyn5mfpg1Qx9u2GObhp2krZl76nXtZt7On3rUl3Qf1y9jgMAAAC0Fu8/9HmlyQ1GjckNki566Eydf/8Zez/jcmnZrJVKWptc72srbh+lgoHtrT+NgB2ZCl62QxnJmbpt3ENWFaNugzprzGmj9MeXc6o8TuCOLMV+uUJhZw1Tkr1EJtQKCwrU8SP6qvfuIr1Z+FeVFU737EjTV8/9qKkf/KGz37lS68Z2latc5dfiLjHKH9ZBkT+slH965cnb5ZlrnvPDPzru8iPrdE8A+JbDZbeW+h6joXTr1s2d3GD88ssvXiU4TJ8+3Z3cYBxxxBENdo0AANTXu/d+Umlyg+FNHbzLnzhfZ952onvddFRYPH2Zdm0p/W+hI6rm7keOqGD3n0XdYlUcVnVyg7E9wKGrz3lCAZsy1WNIVx16yij9+c3cGs9jOsTt3rrH+l6hkSE65sKximkXrdfe/Fn5AxLliA6WPb9EwWtSrMVV4tSe3DR9/vR3+vX9mTrv3lPrldxgFBUUa96URTrq/MPqdRwA+0dMAgDA/uCtuz6qc3KD8X8vXqaTrjnWvV5SXKIFvy5RWnLpHKmGYOKK60bdbY1jmMTr0SeO0OzvFngVk5TFSuHRYTr24rEKjQrVB//6otL9HSVO61yfPjHZiknOuuOkeiU3GPk5Bfpn6lKNOe2geh0HwP4TkxQVFemRRx5xr5vCUFUlNxg9e/bUnXfeqfvvv99aX758uVavXq2+ffv69LqIxAC0WiZB4Kt1s+t1jDeW/qwjvrhXry/9WQUlRda2B0efo2C/+mXVeXPtxvqMZCu5oW9szVl3ZckNpsvEa0ddq4cPOU9fr/fu+2cV5evhOZ/VuVNEeYWO4nofAwAAAGgNigqKNPWDmfU6xqQHP9eFPa/T5099q6LCYqt66g2vXCH/wPrVrCjo11bZEwaouFOM5Ge3FvM6e0J/FfRNdLdo3rRsq5Xc0HNot2qPF7ArR0Uv/KH41+bpoKXpeuu0Y3Tf6Ufq11d+9ep60gsK9fiPf3kkN5Rxhgcp67h+ctm8+25F+aWxGwDUZPjw4erQoYN7fdKkSUpLS6v2MyUlJR4P9oODg3XRRRdxswEAzVJ+Tr5mfFK/rtRv3vGBLu5zg7589ntrIpHpeH3jq1dYlUYNe17NYwJl+xSZ+MNmkyOk5vPm9CxNxN6weLOV3NBrWPUxiWEmEpnkhj4je+qJXx/Qtc9fol/ema6gzemK/nG14j5arJivlytkxS7ZSjy7xGXsztQrN70nXyAmAQAAAEplp+fojy/qN3frpf97S5f2v0mTX5wih8Mh/wB/3fjKFVaX6IZkkhuMdQs3WskNvYZ1r/EzZckN/Q/uo6emPaArnrpAP7+9twNedUzCxmu3+CYmKWScBEAtTJ48Wbt377ZeR0dH64knnqjxMxdccIEmTJhg/XnzzTd7VUSjtkhwANBqZRXlKbMwt97H2ZGTpv8u/FaX//qiCkuKNSyxhz487lYNiu+ixrI6LUkD4jp7ta/pLnHpL89r2pYlWpm6zetz+CK5wRjo5XUCAAAArZ2ZIJOXVXPXgZokb9ylN+/8UPed8B8VFxVr6BGD9OzMf6vn0K51Op4jPEh5B1UxOchmU97o7nKGBnpsXr9ok3rUkORg2AtKtGnGKt126P36+7v52rIyyatrKuifKGc1gxHOyGAVdY316li9R9Q8yACgcThlk1P2ei5eZjfVgZmgec0117jX09PTdfHFF1tJDJV+H6dTV111lebO3VtB+qabblJ8fHyDXSMAAPWRuiNdBXn1q/5pbF+XrNdve18PnvKkHCUOHTh+qJ6e8S91HdhZwRvSZSuo/L+dZUJW/q9aq730v+vejEa47J7xwbp/NqnbAd6Ny6yZt163HP6A/v52vnZs2OXVZ6xz+mgwvveIHj45DoDWH5MAANDame4ExUXVxwve2LZ6u16+8R09fOazVpLDwScdqCd/e0Cd+u4tXtLQ1v2zUV0HdvJq35V/r9FNh96v2d8vUEpSqtfn8NX8YNN1AkDz0BJiksmTJ7tfm4SFNm3a1PiZLl266KefftL777+vZ599Vv369fP5dZHgAKDVWp+e7NV+gXbvKp8u2LVe768szaodGN9FX0y8S8+NvVwxQeFqDIUlRTqmy1BFB4XVuG+Jy6lbZ76jxtYzup0Oau/bVkMAAABAS7VpuXcJx/4Bfl7tt2jaMv3w2lTrdb9RvfTqwqd014c3KCK2djFJYZ8E98SiStltKuiTWHG7y2UNGoRHh9Z4DtMB4j/nPe/1NZW0i6xxn+L2Ne9jqrr2H93H6/MCwG233ebRNvn777/XoYceqt9//91KaDDMn2b9sMMO0zvv7H3eMnjwYD300EPcRABAs7Vp+Vav9ivrxlDGZWKCfonKOPkApZ03QhmnDlb+wHaa++sS/fzO/8ZJDumrN5c+o9vfvFptl+2p8tj+e/IUurQ0ycB/V3bp+bxouha0rXTf8gID/TV64giFRdUckxQXFuuJC19UYzOVWmvqgAcAAADsLzYt21LjPqZzta26MYty/vpmnqZ/VNqlbvDhA/TOyud00+tXKiQiWI0hNCJEo44bav3pTReFJy9+SY1t6JGD1KVfx0Y/L4CWa+bMme7XpitDc+HdrF4AaGFmb1+ly6bW/OC6f2wnvXXs9fpy7d+am7xGf+1YVe3+H66cIbvNrh83zVd2Ub66R7VVt6hEpe/OUUNbn7nTWrxV4PBihMCH2oRE6r9jL2/UcwIAAADN1dyf/tH9Jz5e4379R/fWQ1/frilvT9ei6cu0ePryavef/OJP1kPx3z/7y+oOYaoFdejZVqvnrff62hxeTAZyRoeosGu0coe0U0lCmGwlTmWtT1PojKXyzyo0jR5qrCRUkFuLSrFelCWyOavfJ75DrO75+CbvzwkAZvJkUJCmTJmiMWPGKCmptOuM6dAwbtw4hYWFKS4uTnv27FFeXp7H/erfv7+mTp1qfR4AgOboz6/n6uEznq1xvyHjBujOD27Qz/+LSZb8uVpZE/qppF2Uex9HaKDyRndTYe8Eff36r8pIydIfX85WfnaBug/uop5ZLuX9tE45B3eSI/p/E4scTgWvTVXk9E2yFzmsTQG7suWXkqMAv3AVR5gf+ZVfk19GoUJXV6xyumbBhlrdg/ycAjWmxC5tdNcH1zfqOQEAAIDm6reP/tATF9Y8wf/ACUN002tXacpb06yYZPmfq6vd/+sXftTOzbs166s5KswrtLpPJ3SO15YV3nWUro+Vs9fWav/8rMaNSdr3SNRt71zbqOcE0LIlJydrx44d7vWhQ4e6Xy9cuFCffPKJli1bZu0TERGh3r176+STT9bEiRPl5+ddEb+6IsEBQKt0y8y35axhgoyfza6bR5ysyMBQ5ZcUatHujTUed1d+pp5a8LV7fVt21VWJWrNLBx6tlLxMrUjdqmC/AB3dZYjO7HOo4kJqrqgKAAAAtHam0vfj578gVw0T8k3nhksfPdfqwJCbmadVc9bVeOwdG3bp7bs/cq8nbyythFobdi/aQRclBCtnSH+PbXnD2yt/QIJiv16pgF2+TfIO2Jqh4o7RNe5T5py7T7G++4bFmxUcFqTDTh+t4644SpFxZpYUgObC6bLJ4bLV+xgNrWvXrtaD+ksvvVQ//vije3tubq617FtR7pJLLtFTTz2l2NjYBr82AADqwlHi0BMXvyRXDeMkAUEBuvjhc6zf0TkZuVo9d53yh3b0SG7wOG5cmFbuydHW+z+tEJOYNOqQlSkqTgyTK9BP/qn58ssrrnCMiGlrlHXcAAUFBqswrmKSgz2nWAkfr5attJFSs3X+/adr6+rt2rR0i0IiQnT4GaM14fIjFRHTOF2/AbSumAQAgNamqLBY/73y9Rr3CwoJ1EX/OkuRceHKTsvRmvk1F3Na/88mayk/brI/uvChM7VhyWZtXZlkdbkbe9YhGn/pOIVFhTX1pQFoQTHJ2rV7E7cCAwOVmJio7du36/LLL9fPP/9cYf/Zs2dr0qRJVofrt99+W8OHD2+wayPBAUCr8/6K6Uov9Bx8rszo9n31xLwvtTM3XTnFjZsx2xyF+Acqv6Tmrg8moeGqA45VVBA/iAEAAIDKfPL4ZGtyUHVKYkLU967j9NBfC5Ty2S8qWZ6sUH+pYetclArckKLCPolVvu/0k0raVz4pxxXsr4zjeiv+3X+qKrZaJ8Grd8t1SHfluyqfxeS/O0cB2zOt16b189l3neJVC2gA8FZCQoJ++OEHzZs3Tx9++KH++OMPbdu2TdnZ2VYXh44dO+roo4/W2WefrQMOOIAbCwBo1t69/xNlto1QYZ+ecsSEylbsUOCmPQpekSx77t5xgKFHDtIzl7+iPUlpVrcDl82mgr5VxwpGYY94hc7Z7O7KUJ6JEQJ3VR8L+WUXKvqrxSrs1Ub5fdqosF2QHME267pCV+5R+MLd8suvOSm7IQSGBKoov+ZxEpOkfvZdJysohE5OAAAAQGXeuP19r35bDx43UI9f8IJStqXWrit0KxUQHKDigoqJ4vuKSYyyYpKAwIBGuS4AzavjQk3MeIa3yjpbG9HR0Vq3bp0OPvhgpaZW7KxZ3pIlS3T44Yfrq6++0rHHHquGQIIDgFZld26mHp//pVf7/rl9ZYNfT0tJbLig/zhN6DpCl/zynDJqSA65aMCRJDcAAAAAVdi1JUXv3f9JtfenoGecso7upT+2/e8BVIBNGtpeBQMSFfXTagUmlU7kbygByVkKSEpXcceYSt93OcygQ2CVn3dEB6uoa7SCNu/tqFAfIeHBOv2WiRpx6eG6+rkvlV3oOehhKyxR2KyN7oSKs+48meQGoIVwyG4t9T1GYxo5cqS1AADQUm1bu13vzF2pojE93dtcAX4qHNBeRT3aKOLnlfJLz7O2z/vpH4/POkMD5AqpYYKMv5+ckSGy76l7VzdbiVPBq3ZZS3NgkqdNnGESPu469mHlZeVXu/95955KcgPQQrTEmAQAgJZu47It+valilW/K7NvTLK/Mh0Yzrv3NPUd1Uv3HPdojckepnsDyQ3A/hmTjPRi/KKmjp7l7dmzx/26pKREEyZMsJIb7Ha71fXadHIYOHCgHA6HFi9erBdffFFfflk6P9d0wD7zzDO1YMEC9erVS75GggOAVuGnjQs0aeU0LUnZ3NSX0mKc3WeMRrTtpcM6DFBkUKjWpG1XsaPmqkh0uwAAAAAq+u3DP/TNCz9p7YIN1d4eR1igldwgv4oPslyBfsqc0Edx7y2QvbjyTga+Ev7bGuWN7qbCnm32XkuJU0EbUpTXK7LGzxe3CatXgoMzyE8n/d94HXBgLx04YajCIkO1cusuFTud0j7P3FyB/soa31fR3yyzqr3m1tAdAwAAANgf/fLeDE1+cYpWZGWr6LDKB5VdwQHKPbSHIr9fVmXigVdKKnZvaIlOufE4DRjdRyOPG6qQ8BCtnL1GJcU1f7fsdGISAAAAYN/JtFPemqbJL03RpmVbuTnesEmn3zxR/Q7qpZHHDVNwaJCWzFwhhxdxWXYaMQkA38jLKy2CYaSlpVlLUFCQ1Znh+OOP99j3sMMOsxaT5HDDDTdY27KysnTNNdfot99+k6+R4ACgxfvvwm/1+lLvMn+bUqh/oPJKam6/VhsxQWHKLS5UkbP27Zo/XTNLC3dtsJIaTuk1Ws8unKzckprbvX27fo7uHXWG7DaqlQAAAADGa7dO0lf//cGrm5E/ILHS5IYyriB/FfRpo9DlFSuZuuw2FfSKV0liuDXxKGhjmgJ2Znv9lxAYEuhuCW1zOBX25waFLNiqkrYRVlKB/64s2QtKlN/lgBqPZSsqnfQTnRCp3Mx8FRfW3DLZKOwep4JBHeRoE65JWenqs2aT8rvGacKovnru61kqKKo8tnGFBipvRCdFzFivXyf9riuevMDr7w2g6Thddmup7zEAAED1Xrj2TX3/2q/W68LjB1a7ryM+XCXx4fKvpAODvbBE/tszVNIhusrP+6Xlyj+j+g4HVfEP9FdJFb/56yq2bbSy03JUXIfjfvP8T1rx1xrJZtPhZ4zW67e9746ZqmNikov/fXYdrxhAYyImAQCgcTxz2atW0nVzZ/e3y+ltYreX4trHKDMly6tkaQ8u6ctnv7cSHPz8/XTIySP12i2TvBpvMff6nLtPqftFA2ixMcm8efPUrl07+UpxccV/c5555pkKyQ3lXX/99Vq4cKEmTZpkrU+bNs3q4jBixAj5EqNDAFq01WlJLSK5wTipx0E+P2Z6Ya4SQqPq/Pl1GTt095/v69+zP9Ws7Su8+ozp4JDv40QNAAAAoKVaNXed18kNRklCeJ32KW4bodSLhyv7mF7KH9xOecM7KP2MQUo/ub+cgX5enXv8JeMqbLMXFCtwc5oCt6RZyQ1G8NrU6g/kcCp4fek+GbuzFNchxqvz5w/pqNwj+ljJDWXWJKXovren6OnPftf8tduq/Xxhj3i5/O3KSMmy2qACAAAAkJb8vsKd3GD9XI8OqfG2VLdP6D9JkumsVhmXSyELq//dXp3jrzhKvpa2M0PxneLq/HnThe+Rs561EtdXzl7r3TmT697NDgAAAGht5v+8qEUkNxgnXHW0z4+ZuiNdCV3a1Pnzq+as00OnPqU3bv9A6xdt8uoz6TuJSYD9Vbt27dSxY8dql9oIDg72WO/cubOuuuqqGj/3wAMPyGazude/++47+RodHAC0aJ+vmaWWIiIoRJGBocoq2tvWxxeScmqYfOSFj1fP9Hrf6KAwhfoH1fucAAAAQGvw0xtTa7W/6bxQ230cYYHKOLGf1d1hX0Wdo5Vy4QFy+bvkCPZXwJ58hf+zUyErU013Yw/RCVEKCg1UYV71Ccuhy3Ypb3BbOSOCqnzfL3dvNY+dG3fX+J0ckcHKH96pyvc/mb5IqilPw1RWCvJXYmK4/Py8S+oA0LQcsltLfY8BAACq9uObnjGJrdghV2D1Q8Bmn6oE7MxSxNQ1yj2ku5zhe2MCW36xQuduVtDmtDr/dSR0jrcqkzpKfJuwnLzBswNecVyI8oa2U2HHSNlcUtDmDIUuTpZ/ZtVdrL9+zvvE9cQu8fW6XgCNh5gEAICG9+Obv7WY29ypd4cGOe6O9TvrfYyvahGTmNgKQMvQ3GOSiIgIj3XTucHfv+bUgu7du6tPnz5avXq1tT579myfXxsJDgBatM1ZKWopIgJMRSSXmiubl1d3Wq+DPbLvAAAAgP3Z9nIPrV12W2klVKdLfhn5FRIMjKBNqSrsWX110aANnknM+YMSK01ucNmkItMMIWpv9dXCiEAVdotSaJ8UxX6zzuMawqJCvfotbzo5xH65QpkTelmdI9wcToUu2amIPzartgp7J0jVnNvlTTBS7LCubfylR9T6/AAAAEBrte9EmkATcwxsX+X+9mKHApKqr/YZuDVdAdsWqrhTjJXkYMsrsrbZnPUb4zAxid3PJkdp87gGkd83Xhnje0p+ewf/S+JDlTc4UTGTVytoa2bdY5L/GX/pkb64VAAAAKBV2L4uuVb72+w2ueoZW9QvJrHL6ai5GFVjq801TbiMmARAwyQ49OrVy+vPlk9w2Lmz/ole+6L8FYAWzXQTqI3Tex2smCAzA6h6If6B6hAeK1+x22ya0G2EYoI9/4NQmcjAmttHN4RoL+5LQkiULh90TKNcDwAAANASRMaFW4kGecM7Kf3cEco8bYgyzxiqjLOGqaBfYoX9zzz6QEWbD1QhYEeWArdnKTQyRPEdSxMhirrGVLpvcaiq7HqQN7CNcocmuNdNldTDzhitqPjIGr9TRGy4/DMKFPvJMqvKqa2gpDQb2m5XYa845Q1rX+vUbWekZ3vTfZk7EhNWfSwUtH6P2nWK02k3n1DLswMAAACtl/n9Xl7wimSr20JVzj96mMJCa+7SHBEVpsRCp4JX7rS6NtQ3uSEgKECHnjpKEbFejJPE1TxeURlHeGCF5IYyrgA/pU/sI2dA1cPjkfE1X1uHXu100nXj63R9AAAAQGsUGVfz7+jyzr37FAV5EZOY4+4b79RHcGiQDj5phCJiaj5mlBexQUPw5vt2HdhJx115VKNcD4DWr3Pnzh7rAQEBXn82PHzvv1k5OTnyNRIcALRoJ/YYWav9N2Xu1lUHHFvjfhO7j1R8SJR82b1hU+ZOHRDfpcZ9Q/2rn/jTUNqGVT5pqrzesR0UE+y74AEAAABo6Y44d4xyjuij/GGd5AoJ8JjQn3toDyvxobwda3fo8p495b8zu8KxArekK+rH0ioXx148zv0A3VVJ5wOnXXLV0JczZ0Rb9+uw6FBtXbVdvYZ1q/E7BYUGWn9mHd1D+YPbSUH+VgKCWUz11pwxXZV9RHfVRnUTrMq0l79shZWXcrXnFCp0wTb1GNpN4dG1S3QH0HRMzTGHy1avpfnVUgMAoPnFJOXZ84oUMWWF/FI8B5bNb+2Q+VuU+s1CnXT9hBqPe/yVRynci4k/3gqPDtWWlUnqMaRrjfsGBHo/mF5e3gGJlSY3lHEF+yu/X5sq32/TMb7Gc/Qa0V2hEU1TqApA645J/vzzT6vzZm2Xk08+uZGuEACAyo0759Ba3Zodm3br+KtqnqB/8nUTfPrbO+x/MUmXAR1r3Nd0eWgKCZ1qjkn6HNjTStYA0DI095hk0KBBHuvJyd535cnKynK/jory3VzbMiQ4AGjRQgNq94Nt4e71igoKV4C9+plAZ/c9TOM6ef7jXR+ZRXm6YupL2p1Xeevj8hLDfP+PvTd6RrercZ89+Xv/owQAAABA8uuTqKLupZ0WKpM/pKMcYaUJA8aCX5eoXXyk2kxeqZgvlirs7y0K+2uzYj9ZrOjvV8leWGINTp9w9TE66ITh1mcCkysmQ7hM54aqG0FYihPC3J0WsvZk686j/63crPwa/9piE6OtzxYMSKz6ex3QVsVxpoWEd4LWp9S4T69im6K+WabADXukslbMJQ4FrdltbffLLVJacrrX5wQAAAD2B5VVPvXLzFfkD8sU8d1Shc5ar7BpaxT12UIFL9+hvyfPV+d+HWT3qzqgsNttOv7Ko3XQ8cOqPbcjOkS5o7sp86QDlDVxoPIP6CBnUOXjL+m7MnXruAflKK48qbmMiYei2tTcea4yxYnh9dqnQ6+9SeJVSU/OqPV1AYA3Fi1axI0CALRIQSF7x0C8MePjP9VrWHfrt39VTFfqCZcf4R4n8YXUHem66dD75B9Q/ZwxEw950+WhIbTrXvW4TJm0ncQkAHwnJibGo4vDnDlzvP7sypUr3a979eolX6uh1h8ANG/frp9b6888+PdHKnZW/QD95uEnqX9cJyWERur5f75zTwjyhbk71yrA7qdip6PS9yd0Ha5BbbpqScrmWh87PCBYOcUFdbquozoPVqwXnRniQ+o2qAAAAAC0Vj/OLe24UCW7TYW92ih08Xb3pmcue1WOEocCduVYy76uevpCde7bQRMuO0IfPfqVQpYmK79/gkclUpsXgYqt2FkhB2LRtGUKCPJXcRWdEo6+6HB16NlOC6bVHGsVDEhQwB97Y5ewqFDlZuZVuq9/So4C16eoqGfl1VKPGdFbUf9sl39GviKnrpUz0M+qrmrPK5atZG9dkpjE6BqvC0Dz4ZTdWup7DAAAULXpH8+q8j3/1Fxr2dczl74ip6PyoMJMMrruxcusiTUTLj9SXzzzfaX7mTgnd0xPK+YpU5IYqYJB7RQxZaX80yqJDVzSP7+ZmCRAxYWVd3k77oqjrG52G5duUW1FRISosIZ9yscX5R1z8dgq70l5MW2JSYCWpCXFJOUTHEz10/j4mis4G+3a1VzEDgCAhjTjkz9r/RkTk7hcrioTDG567UrFd4jT+MuO0Lcv/yxfMaf857el1cYkJ19/nNXBYevqveM63gqPCVNOesUYzBsnXHW0slIrFrzaV0xi0xTOBdB6Y5ITTzxRL730kvV65syZ2rVrlxITq0+4Wrt2rTZs2OBeP+yww3x+XYwOAWjRdufVPiu1qJrkhosHHKmrDhhvvQ72D/JpckMZk9wQExSuMH/PqkrRQWHqF9dRR3UZbCVB1FZucU2P7StPirh04FG6fuhEfb6m5oDj5J4H1focAAAAQGuWklnzg2pnaKBcNqmwQ7gKukSqsJqf++fee6pOu/mEvZVYXZJ/Wr4ipm3Y29XAmpTzv56m1QhZlVrpdpPcYB6AB8aGKX9QO+WM6a68g7oorG9bdR3QSYefebDs0TW3fXaEBXis52VX3x0ibOY6BS9Okq1g76BBRGiQLplwoC4b1V+/fTDTvd1e5JBfVmGFyUfHXDS2xusCAAAA9iemCmltlRRXXoTJuPjhszXxmmOr7A7h7tywT3JDGVdIoHKO6mvFQFUxE4li28V4VHo1xVtNnNKpb3sdcd4Y2f1rP4ztWJhU4z7B6z3jpIjYcJ1//+maePUxmvnZXzV+/pgLD6/1dQFAbRMc7rrrLq1fv96r5dVXX+UGAwBaVUxy5VMXaPylR1ivg6uISerLxCTxHWIVGFw+JrFZcUq7HolWArRJtKitqopAVSe6TaQu/vfZOuqCw/TX5Pk17n/MhYyTAPCtCy64wP3a4XDonnvuqfEzjz76qPt1QECATj/9dB9fFR0cALRwbcNifXq8f3btzSoL8QtUiH+g8kuK5GvphTnys3k+nM8ozNWzC7/Vhyt/12EdB2ra1iW1OqarDukY7x17kwa26aL7/vxA+Y7qv+fwxJ46tmv17agBAACA/U2iF22Ki9oEKuuG4XJE/e9BfIlTocv3KOaXTbIXej7EXzZrlft1aGSoAgL9VVxUopA1KQpMzlL+wLYq6BUvZ3iQ/POlkrCquzdEzq66utDOiADljxsgR7nn81slPfvLPH37yi8acfUYzdy5s9rv5ZftGUO4nNXHJKbrROiCrQpZlKSS+DBrsOCdGf9Wtz4d9PgFL6gwv/qYZOhRg3TQRN+1owbQ8Bwuu7XU9xgAAKBqbTrFafXcdT67RctmrZR0qvU6IibMqlzqLJdsbRT0a1tpckMZZ2SwijvFKHBr1ROd0pLTZVrOmSiiuG2YXAF2pabk6LVbJqldj591wOEDtHjaslpde9DqFPkf2F4lcaGVvh+YlKmgbVnudZvdphfn/EcderbVv05/2oq9qjPq+GEaceyQWl0TgKbVUmKSoqIirVixwr0+bBhjsgCAlhWT1KUDW1WW/rFKp9080XodGR9h/W6vafyhLvbsSPNYNx0lTJzy8g3vWInXAw7po2WzaujivY/aXqefv59eXvCEEjrF694THrO6f1fn0NNGafDYAbU6B4Cm1RJikpEjR+roo4/W1KlTrfV3331XBx10kK644opK93/nnXf0/vvvu9fPP//8Buksx+gQgBbttF6jfXq8DZl7J/D42e2KD4lUQ3G4Ki+3ujs/U5syd8pmnuw3sB83LbD+/GXL3oogVbmw/7g6dZYAAAAAWrOTDhlY7fvFoU7lDo7bm9xg+NuVNyRBuy8YIOc+VUm3rdqblBAYFKCohL0xieloEP73FvlnFMjulALyJX/TQGKf0MLmkMKXpClgT+UdFYoTI5QztpdHckOZoh7x2tQ+XDm/mElN1XC5FLJil+rC5nAqYFe2/HdmaeaHs6xts76aU+PnTr/5BPn5EZMAAAAA5Y2/pLSyqa9sLReThISHWBOK9lXSpuZE75KEip/bV87gBCVfP0y7rhqs3ZcO0o5bRihtYg9tT9qj3PSau+Xty+ZwKfbLlQrYsTeJoUzQpnTFTF5dYfLR75/9pZLiEs3+rnS8pDqn3zrRStQGAF8zyQ3FxXs7Xg4dOpSbDABoMY71eUyytzNbZGyEwqOrqPRUXyYXoYp8hG2rd1jdsBuaSWiY+fls5ecWaMHPi2vc/6w7Tm7wawKwf3rjjTcUHh7uTvi68sordemll2r16r3PUpKSknTjjTfq8ssvd29r06aNHnvssQa5Jv8GOSoANJLBbbopLCBIucWFPjleZGCI+7XT5VRyjme2bmPZmLlLXSLaaEt2SoOeJzm39Pvle3H/HM7KEzIAAACA/dmwnu0VuT1TWR2iKrznsknF1Tx3L24frrxB8QpftNu9Lazcg/qigqJKWzvbylUAspIcCiSH6aJsK01usBdLAWkFVZ634ID21VZbLRjQVit2ZatrZKQ2Z1WcGGSELtwh//Sqz+Gt3dv2WA/wiwr2DuJXpaSo+spFAAAAwP5oyBEDFRAUoOLCmn9Te6P85KHczFxl7s6qNiapLrG5OtkHtVPGsd08trkC/JQ7LFFFiWHSe8vVsWeidqyvXWK1X06R4j9ZrqK24SrqFGUlZwdtylBAal6l+6ds3WPdu5oqpRrEJAAayuLFeyc0dujQwZokBABASzH8mAPkF+AnR7HD5zFJ+q4MZaflqCmsnrde7XokKnlD3Yo9eStl2x4V5RfJ6UWcZfYDgIbQtWtX/fTTT5o4caIyMzPdnRzMEhkZqdDQUO3atctKfihjEiK+/vprtW3btkGuiQ4OAFq09MIcnyU3GMd3O9D9usTpVEkVXRYaQ1lyQ0xQA2UiS0oILZ2E1TeuU4379o3t2GDXAQAAALRUqdvT5P/TCoXO3Sx7zt7YxC8tV/5bdlndGqqTOzjBY33c2Ye4X5tJNpW1Mw7c7JmIbXNJ/oWliQ5+xVaegwI3V0yMKFPUKbrqCzIftttU0i5SSbuyZC+SokODy32vPEX8tl4Rf/qm3XRcuxirBXPXgdXHJHa7Td0O6OyTcwJoPE7ZfLIAAICq7d6S4rPkhn1jEpOIXH7gukzA1pqLQwVsrTomcQb5KXNc1b/vizuEK+WSIVrdJULFbcMVGVdzx4h9Be7MUfj87QpfsKPK5AYjrn2s1amifY/Eao9n97Or6wDGSYCWpqXEJIsWLXK/pnsDAKClMQkAvkpuMMadfaj7dWETT+gvS26IiK19TOKt2HYx1vHbdIqrdr+AQH917tehwa4DwP4dkxhjxozRX3/9pUMO2ftsyMjKytLOnTs9nhENGDBAf/75pw49dO+/2b5GggOAFi3A7rtGNFFBobpgwDj3eqCfv3pFt1dTSy/M1YOjz9Fjh16o8IC9E4t84dReB1t/ntP3sGr3O6hdH3WPbphMOwAAAKAlM5VSzSOlkKU7FP3pwtLl4wWK/mqJ7Lk1dzhwhga4X0e1idSJ/zfevR4WFab2PSv+Dg9ak+KRTFHhmrZnKmBXdtUntVXxEKySzXaHlJ1aoIfPOFqPHXSgOn29WqHL93acqA+bzaZjLymNwU685thq9x0xfojadat+whEAAACwv8YkvhLXLlrHXXmUR4yS0Dm+wn5Ba3bLllf1RKOAbenyT82t8v28fnFyBfpVey3FbYJV0C9B6acfoB09YnTXBzfopteuVFCIaV/nGyaR+uiLDrdeT6whJjn4pAMV36H6CUcA4IsEh2HDhnEjAQD7bUxiJvkfe+neuVvxHWIVk1ixg3ZjM10k7v/8Fl3/0uU+/b6mANRRFxwmu92uE646ptp9DztjtKLbNP29ANC6Dfhf4sKUKVN02WWXqW/fvoqKilJAQIDVbe6kk07SJ598oiVLlmjw4MENei0kOABo0SICQ3Rg214+OVZmYZ7unjVJOUX57m3n9Rur5mDSimnqHpWovBLfdas4s/eh7q4Mp/YcrRN7jKx0v/bhsXrkkAt8dl4AAACgNYlJjFbfkT3dnRT8sgvll1s60ccvvebf7/4Ze5MgMlOy9PSlLys/Z29MctK1exMeytiLHIr8fqX80itWIQ1IylDEz6urPWdAcpZqw+Q9fPLDPHVKjFF+Ts1JG946+foJ6ti7NKncTKIyD+crYyqp3vTaVT47L4DG43TZ5ajnYo4BAACqltiljboP7uKTW5SanKFnL39VhfmlsYyZZDPx6oqTbOyFJYqYslL2zL2xSxm/lGyFTV9b7Xmc4V5MCCr3EyBvZCd99t1sJXRp49MKrmfcdqLadi3tqnfKDcdp9IkjKt2vU5/2uuHly312XgCNpyXEJKYKqpkcVL6Dw+bNm3X//fdr9OjRiomJUVBQkDp27KgJEybo1VdfVX5+xX9/AQBoKub3sll8IWVbqv575Wsq+l+XOv8Afx1/5dFqDia//LOVcOHLDnrn3Xua4tvHWq/PuG2iDhw/pNL9TBfsa/57sc/OC6DxtISYpDLjx4/XW2+9pVWrVikjI0NFRUVKSkrS5MmTdfbZZ8vPr/rCFb7A6BCAFu+qA8bLXlUF0lr6e8dq3fHHe+71M/scoondK5/435g2Z+3WpBXT5aykFXRtJYRG6fYRp+hfB5/rUTn1iTEX67mxl1vdGsw+PaPb6cahE/XVxLvVMYKqRAAAAEBVzrnnVOs39b5CV6fKnlf9g+6wf0rbG5eZ99MiPXP5q+71k64frzGnH+ReNxFBQfcYZR3eWSWBLik7R/7bUhWyYKuivlyiqO9XWgkQ1QlellxxYw0h1fo9Gfr6uR/lqwpM1zx7sa597hL3NvMQ7N5PbtLdH92owWMHKK59jPXA/rLHztVL8x5Xm47EJAAAAEBVzr3nNJ/dnL8mz9fz177pXj/91ok6aOLwCvv5p+fJPymjNEgptzjiI5Q7rrdc9qqDDL8ML4o57RPWLC3J11f//UG+0LZrG1334mW6/PHz916Tv58e/Oo23fn+9Ro0pp9i28Wo26DOuuKJ8/XinMes5HYAaAjr169XdvbeTpzvv/++evXqpUceeURz5sxxTybavn27fv75Z1177bXq3bu3VVEVAIDmwIyPnHP3qT473szPZ+uVG9/1GIMZcWzDVgn3xuo5a/Xlf7/3ybFMYaebX79KFzx4hntbQGCAHv7uLt32zrUacEgfKybpMaSrrn7mIj3/16OKio/0ybkBoKUgwQFAi3doh/567NALFRYQ7LHdz2bX8ITSSqq1MX3bUm3M2Gm9ttvsevKwi/XSEVepXWiMT643PqRuPzjn71rnk/NPP+NRXTbomAoTsMz6+G7DdfUB4zUwrot252Xo/ZUz9Pi8L7UqdZtPzg0AAAC0RgefeKBueu1KhYR7xiQBdrsOywqUHM5KPxeyco9CVqdV2D7ryzlK3rjLPfH/vk9vtlofx7aPUcbxvZR+aj8V9opTSUKYituGK79vnPJ7RMsvI18l0cEq7BGnos4xcvlV/tinTV6JQudtqdV3dDmcWjpzperL7mfXBxtf1qk3HV/xPbtdR5xzqE578RIl3nmc1h3RU2+l7NKz3/6tdUl76n1uAI3PIZscstdz8U1RCwAAWrPDzxhtTdgPDg3y2O4f6K8Bh/St9fGmf/Sn9mxPLT1GgL8e+vp2KyE5OjHKvU9Bn0QV9W9X6eeLO8Uof0TVXSUSdhbUmAzut08ORGGbMJ/EJOaeTFr/kk76v4rd8kz8ddT5h+msO05S9wM6W9Vjv3z2e71x+wfasiqp3ucG0PJjkuTkZKtqaXVLbS1atMhj/ZtvvlFJSYn12nRu6NSpk8LCwjz2MeeZOHGi3njjjTrfGwAAfOnoCw/XVU9fqMBgz25tAUEB6je6V62P9+t7M5SRkmm9DgwK0CPf3627PrhBkfERPrne0AjP8RxvlBQ7tHxW9R20vREUEqj31r6o4644qsJ7JvH62IvH6czbTlLXAR21a3OKPn/qW715xwdKWruj3ucG0PgYJ6k7/3p8FgCajZN7HqSjuwzRlE0LlZS9R3EhkTq++wg9s2CyFu5eX+vjzUxaru7Rbd0T/9uFxdZY0dRbecVeVCbahzm1zQcX0DO6rfztVbcHemf5b3py/lce277dMFc/bVqo/469TEd1qbwVGgAAALC/Mw+iDz/rYM387G/t2pJiVdYZd/YhevnGd9Tm55XKPrSDCnpEmwBD/mn5Cp+/U+Hzkiv9le90ujT/58U68dpj3RP/E7u0Ue6wdiroW3nV0OKOkUq9cKhsgaUTmkzxVFtBsUIXbf9/9u4DOopqjQP4f1s2vVcSSIHQe++9CggqKNIEBVFUVOwKFlSwK8+uKKKIiCIiXXrvEFoILaQQQkjvydZ3ZmLKkm1JNoEk/987e9iduffOzfIO5pu53/3gGGF407ugQAWHiAQoYtNQ2MIfGk9HaAJchQxvkz+f/fUsYepVJuw2ZK5k6Q8bDuOrtQcMjv1z4By2HI3Ch4+NRq82oVWfBBERERFRHSQs2B80qQ92rtyPlGup8A70RP8JvQwqxFlLq9Hi2L+nMXz6APGz8Du8byNv6HWlVaYLWxlPbig538wXDifiINGUT/jW5KrgsSEaqfc1NRqHSFVFr7IUchmkZdrqnJTQ28khzS2ERFW0ENgazbo0EWMsU36avxK/vmv4nGTjku3YsWIf3lr7EjoOamP1tYio7unatavFNnp96b+V1oiIiCh3bPLkyXjmmWfQsWNH8Vm1MKaQCPHxxx9jxYoVYhutVitWcwgLC8PgweUXSBIREdW0cXNHY+i0/ti18gBSr6fBp6E3BkzoiXcnLq7wWGqVBie2nRE3RSpe+F8UkxjfUKqiNGpdpRITVPkqVPA/9eUISejGqoIX++6Fn/HHx4aVItZ/uxXbf92LhRtfReveLao2ASKiWoIVHIiozhAqOIxr2gtPdRiNph6BOJ50BVcyEis1llZf+ovsjrjTmLDhQyTmpttknnmaiic4dPRtIlaqMEcqkaCrn/msZzc7JxxPMp7wcTkjER8e/cvoObVOg5f2LkOOuqACsyYiIiIiql+cXB3FRIepb96PRi0CcXpPJOIvXId9XBZ8VpxH4KLDCPzgMPy/OAmXw4mQ6M0vKCq258+DmNNrHuL9ze8opHFXQicBdHJArwB0Lgrk9A5B1mDDynaFuUUxiTw9H04HrsJt/TnYn7thZjI69PD2RKdh5hOe5QoZWvVsZraNo4sDIg9dNHrufGxSueSGkjmrtZj3wybkF5rf5ZWI7iw6vcQmLyIiIrKOs7sTRj82FFPeGI/Apg1watc5JFyq3HMSXZmYRFhI80yf+chMzio6p5RD6+Fotr+QfKDxNNxxvFhhvgqOkanw+eUclFcyhNXARSe0gCwXkGeX33OqV7NG6DS0HbQ+rsgf0Ar5IzqgYFAb5I3qiIJu4dA52Im7xTbt3NhwHhIJtA28oO4SDlXPFpD3aIaoS8bjn3MHLpRLbihWkFeIRZMWQ61iTEJUm9SGmKRsBQchoWzlypX45Zdf0KlTp5LFj8KfQrLDr7/+alC1QUhymDVrFtRq/ttERER3BldPF3Hzpsmvj0NAmC8idp7D9ctmnj/Auuckm3/cgef6v47stFybzFNVcEtGtRV63N0ZHYe0NdvG3kmJsLamq9kJFHZyXD551ei5kzvOlEtuKJafU4CFExcbfC9EdOerDTHJnYoVHIiozjibEosNV49h3ZUjSMkvusleWZ38ihYA5WtUeHnvT+IC/9tFCgme73IP4rJuYs3lgybb9Q1shbd6TsL9699HUl6G0TbHb17BpI0fI8zNH4HOnvB38sR94T3Q3jcMv0fthV7c59W4XHUB1l05jAeb97PJz0VEREREVJcIO+ldPHYF21fsw87f9iLjZvmYRCrsXGplaNGmT9EOPLlZefjo4a+gVkigdbdQMllSlNhgkDghBQpa+kKWmgenk6bLFzseioHOXg5VuI/hCbUWbvuvYtavz+HC0cvYtXK/yTF6jOmMRz+ciqd7vIa0G8ZjEmGB1ez73kfAmE7wbhaAAC9X3NOnNVoE+2H1ntNmf7ysvEJsPXYRd/dqZbYdEREREVF9jUmijlzG9uV7sOv3/chMya7SeK16Nxf/zErNxiczvzao3mDtlqUSC+3sY7JgHxMJnZ0M2b2DUdDS32iVO4VUitn39cMJTx9slUmEMnelJ6VSaBt6ocDTGUOCPDH5+bvxTO+iZAy9QgZ1t2bQuzuXND8SlYgjz/2CJvYy+Ofkwz/UD3fNHIQm7UOx/tt/zc4342Ym9v11RKzWR0T105EjRxAQYL6CTUUtWrQIU6dORXR0NEJCQvDAAw+YbT9z5kwcP34c3377rfhZ6CckRUyZMsWm8yIiIqoonU6HqMOX8O+y3dj750FkpeVU+ksUqre17lUUk6QmpmPx499VuXJCVQjJ1FPffAC7f9+PY1tOmWw3aFJf3DNnBJ7tKyRjGP/5D288Ib6ERAivBh5o0NgfIx8djNA2wVj3jfmYJPlaKg6tP45eYy1XlSIiqu2Y4EBEtd7O+DP46OhfuJJZuYzfW7X1DkEH3zDx/cboY8hS5eN2cVbY453eU8T5mKquUNrWAe8d+dNkckNZ0Zk3xJfgj4v7ML5pbzGBwpJL6aYXRBERERER1Vd7/zqMH1/9FdcuVm5nVGPJDU06hIrvty/fK+7KI7GTVWnM3F6N4BCVDGm+8R39JDo9XHZcguZkAlRNvKFTyiBLz4d3ci5e+n42wjuG4dNZRQ/OTXF0ccTXz/xkMrlB2Dk1Z0BTqEO9kK0uxMWzMeLx1btP44GB7XE5IdXiz3HluuU2RERERET1jZDQsHTeb7h+Jckm4wmVEoJbBInvt/y0C6oCwzhCqtJCdjMbWl8Xk2NI8lSQpVi3u6ownuuuq5BAgoIWvsJW5SXn3BztseihEQhv4I03T0QbJjeUoXdSQt6pMb565qeSShOaNqEGyQ1lXS7QIuZkDGSbI7Du6y0Y/9xoXD0TZ3GuMWeFNkxwIKqvhOSGoKCifx9tpX379uKrIubPn4/vv/9eXEgqWL9+PRMciIjottr6y278/MbvuBGTbJPxuo3qhIAwv5LqDRr17ata4Objinkrn0VgE3/8+/NuixUcvpjzo8nkhrKiT8eKL8HaLzdj0mv3IcaqmCSeCQ5EVC8wwYGIan1ywxPbv4bORmm6wa6++HTAjJLPVzJts0CpMqa0GIBnO42Bo0KJ2KybOHHzitn2m2OOQ6MvuolVUUKSQ1P3BhbbOSkcKjU+EREREVFdtefPg3jngU/F3VJtoWHzQLy64umSz7GR8SULfuziM6Fq6Ga6szAFU9OQSpHfwgdOJ8wnLcvT8yA/WnQD/f4Xx2DqG+OhdFDi6tk4XDoebbbv9l/3QqMyXaIiv2NDMbnBmN93RCC0gScscbJXWGxDRHcOHaTQCqVkqjgGERERmf89/L0p/7PZVxTaphFeWvZkyee489eMtnM4nYCcwUU7qhpjfy7RYgWHW5OuXXdcgePxBBQ28YLeToaHZo/E9Pv7QqmQI/LyDVyNN5/wvH7HGSg2nRTf6+3toPP3MNteG+oPWVJRgvYfH69DUDPLu7I7ujpa/TMR0e1XV2OSwMBAtG7dGqdPF1XDPHbs2O2eEhER1WObftiOT2Z+Y7PxwjuG4vkfZluMSWrC9HcexPjnR0Nhp8CZvedx/bL5zXfXf7sVhXmFlbrWr++uRkDjoqQOcxxduXaLqDapqzFJTWCCAxHVakJVg8okNwh7/zzUahBkEinOpcZBKVNgaHAHjAzrDHu5XUk7l9u0oH9mm6F4rvM9JZ9T8ot2GzKnsskNJdcosFyuWvh+iIiIiIioiLBL3vcvLa9UcoNEIhETCISEgCsRV2HvZI8+93VH/wd6ws6+NCZxdncqfX/oGtICXQGpxPiY2qJYxxStm73V85vy+nhMffP+ks/pJqoylGUuuUEvk6Kwhfkb81m5lm/6D+nczGIbIiIiIqL6QqvRYsnLyyvVVyKVYOKr9yIvKx9Xz8TCwcUB/cb3RN/x3cXFO8Wc3Iwv6LeLTYPjoavI6xIMyMo8aNfroYy8AfvTCZWalzyzAPLjCXhk4URMmDSw5HhahuVqECqdHnKpREyW0Hk4mYydSqbqaVjdoTBXZba9VCoRvx8iojtBWFhYSYLDzZs3b/d0iIionlIVqvHjqysq1Vcqk2Ly6+OQeTNL3OxJSCbu/0Av9LmvG+SK0mWtTm6lz0lqivAM57GPH8K9z4wsOWaqenVZlU1uKKa1UKlCJpeJ3w8RUX3ABAciqrXOpMQiOtN8ZqwpwvIjHwdXPNJmqNHzOr0Ou6+dQ0TyVdSk1l7BeL7zWHRvYLjrkb+Th1iaWW9yO9aqSyvIRhP3AFzOMF61QkgAae5p25KrRERERES12bn9F3DjauUeIAtJEd4NPDH2qRFGz2u1WhxadxwXj5dWclPGZsJt82VkDQqFXlnmlo5WB4lOCqmFcEHn4ShGFOaW+LTs2RQzFk1Gmz4tDI77NvJGVWiFayvNV19IzcxFsL8HYpPSjZ4f0a05QgMsV3kgojuHTi8VX1Udg4iIiIyL2HkWKQlplfp69Do9fBv54K4Zg0wmTxxYexTRp2LMVmmwi05BYbgvdM5KSPLVUF5Ohiy7oNJ/Ze36txJ3SW3V0zC52c/bxXLnApWY3CAq/tOcW5LVk6+lokFjP1y/kmS0+bDpAxEQanlHVSK6c9TlmMTBwcHgPhIREdHtcGxLBDKSLW/aaoxOqxN/v54yf7zR8xq1Bvv+OoyYc0WVrmtKp6FtMW3BBDTvGm7T5yTWuBmXAr8QHyTFJBs9P2rWEHgHGq+UTUR3prock1Q3JjgQUa2VUZBT5QSJW2l1OmyKOY5Pjv+N6zmVeyhQWR5KZ6wa/SKkkvL/QQp09kKPBs1w4HpUtc7ho77T8dnJddgdf7YkmUIhlWFsk+6Y1+2Bar02EREREVFtk5lSuZv2xcomLxTTaHXYsv8clnzyD1JikqGITYOszHnHyGTYX0pFQTNvaN2UkOapYR+VguwhTaEKcTd9Mb0eencXFHRsBIcTcUabeAa4Y/G+d42eC2raAK17N8fZfZWNSaxL1v7o8VH45I89OHiuNF5TyGUY06sVnn+gfyWvTURERERUN2WmWK7MbM7Fo5fLJTioVWpsW74Hy17/HanXjScflyXNV8OhktUabuUX7IOPdrxp9Fx4iC+aN/ZDlInkA4GizCIgaWq2EGAB8rIRlSFpUvkdWN/d8Ar+98QPOLn9TMkxO3sFRj46BLM+mlqBn4aIyHq5ubliFYYGDRpAqVRa1Sc1NbXkvZcXFzoSEdHtkVXVmOTYFQye3LdcVYh/f9qJZW+uQkZSJmpSUNMAvLd5vtFzLbqFI6R1Q8Scja/WyhHv//s6Pp7xFc7sOV9yXOlgh7tnD8Mj702qtmsTEd1pmOBARLVWQxefKvVXygx3Dz2bEos5O7+r8cSGYo+0GWI0uaHYy13HYfLGj5Glyq+W6/s6uKG5V0N8M3g2YrNu4njSFcilUvRs0ALeDq7Vck0iIiIiotqsQWP/KvVX2Bneljlz5Tpe/nI9bqbnAB4OgEcjFHRoBEVMKhz3XYZEqxPbSdU6OJ41rBzh+k8k0h9sB62P8VLNUjUg0QGFLfxhfyYBEiNljie8dI/Z+T6x+GE81/8N5GVXPCaRpeZBkqeC3tHOZJtAZ0eENfDGF0/fi5gbaTgdnQi5TIoeLYPh4eJY4WsS0e2nhUR8VXUMIiIiMk6oNlAVCnvD5ySn90Ti3QmfIu1G+YX/NWHiq/eaPT93+kA8/fafyC9UlzsnycyD4sL10s8aLWSxN6FtHGB8MJ0OsmjDKuFBzRogqGkgPtj6OmIj43H+8GXYKeXoPKw9XL2sqCBBRHecOz0mWbVqFaZPn468vDzx86ZNmzB8+HCr+p48ebLkfdu2battjkREROYEVDUmuaXy84ntZ7Bo0mJk3KzZxIZiE1+7z+z5OV/OxMvD3oaqoHxMYgshbRoisIk/Ptm1AFfPxOLCsWgx4brL8PZw8XCulmsSUf2OSe5k9bNuBRHVCSFuvujq37TS/QcHty95n5yXiRn/fn7bkhuGBnfA9FaDTZ5PyEnFpqvH0d4nrNr+c3UzPxObY06I74NdfXFveA/c3bgbkxuIiIiIiEwIaxuM5t0MSxRXRK97upW8v5GajTkfrylKbriFOsQLeT3DLN7g8Vx1GrI8rVitoYROD2mBHtLC/2ooKGRQN3Ar13/gxN4Y86TpB+iJ0UnY8+dBtOzVDJUh0ethfy7RbJvMdRE4uO6Y+D7E3xN392yFu7q1YHIDEREREZEJzbuGI6xdcKW/n95lYpLrV25g3qhFty25Ydi0ARhxSzWJsq5dSsShH3egY6EasoQ0MdYRqTWQX74Bh13nyiVyy6LiIY0rrepQQqOF/OQVSDNyDQ4nXLyO41tPie+DWzbE8OkDMHBiHyY3EFG1CQ0NLUluEGzZssWqfjt27EBycum/bwMHDqyW+REREVnStm9LNGzWoNJfVK97upa8j4tKwBtj3r9tyQ2jHxuKIVP6mTwvzO/QumNo0aPya9UsiT17Dad2nxPfh7YJLopJHuzN5AYiqpdYwYGIarXXe0wQqxpkFBrehLakmUcgBjYs3cli5YW9FR6jsoSFRx39wpFZmIMGzl4Y37QXBjZqa7J6w9Kz2/Dhsb+gK7tIqZp8FbERw0M6Vvt1iIiIiIjqime+eRTPD3gTObcsjLGkWZfG4o47xf7YEYGc/EKT7dUh3tCejIcsx3QbiVYPWb4eUg2gl+nFhAa9RChpDOgVEuiFmEI46OWENo18kZ2WK+6udNeMweg2sqNY+tiY3xatwdJ5vxX1rwL70wnQOdqhsNUtO6jq9HA4Hge76BT8+s6f6DG6c5WuQ0RERERUn8z97jG8OHhBhSutte7dHO36tyr5vOZ/G5GfU4CaILeTo3nXJshJz0VguD/umjkEXUd0MNl+2Ru/49d3VpfEJPZCrCOXQa+QQVKohqQ42eEWEj2gOH0VuiuJ0AV6AXIZJDn5kCakllTIK0sY/td3V6PTkHY2/GmJ6HbS6aXiq6pjVJdOnTohMDAQCQkJ4udly5Zh/vz58PT0NNlHo9Hg1VdfLflsb2+Phx56qNrmSEREZI7wXGHuksfxyvB3UJBr+vmFMR0Ht0HL7qXJAn99uh4FeRUbo7KEqgjhnRojNyMXDZs3wMhHh5iNA75/aTlWfbi22uel0+nEZzLt+pXGakRE9RUTHIioVmviHoBVo17Cd6c3Y8PVY8jXqODj4CpWRDiVfBVnU+PK9eno2xiLB8yETFp6M2pn3Okam7Nwy7ydTwhe6GK+1LJgV/wZvH90dYWvIYMEjT0C0MDJE7uunbW638X0BFzNTEKoW9VKyBERERER1ReN24Xg80ML8dt7a7Br5X6xLLF3oKe469DZfVG4EhFTro+wiGje788aJBTsjbhi/kJSCTRBHpBF3TDbTJ6SA02Am1CrFHpF0cOFEsJ7CZDTJgBt2jXH9GdGW/z5hKoNP762wmK7cvOwk6NR80B4BXri6KaTRZcH4HToKuzPJ6KwiS90DgoxYUN58SakeSqxzYWjV3AzLhm+jXwqfE0iuvPc6YuJiIiI6oJmXZrgfwffFWOSPX8cgrpQDZ+GXug1titO7jwj7gB6q05D2+HVFU8bHBN2Iq0pGpVGTGy+/4UxFttuW74Hy9/+s9xxiUYrvkxRKBVo1CIQ7n7uOL4lAtKLRYuHLTmz5zzSb2bCw7d85TsiIluTSqV4/PHHMW/ePPFzeno6pk2bhr/++gtyudzoosdZs2bh8OHDJceeeeYZeHt78y+HiIhum9a9mmPx/qKYZP9fh6FWaeAf4oPuozvjxNZTiIu6Xq6PsOnSK8vnGBwrrvBcE4RnOQMe7IUxs01Xti628fttlUpuUNgrENwiSKwId2Kb9evSTmw9jdzMXDi5OVX4mkR05+FzkspjggMR1XqNXH3wTu8peKvnJORrVVBp1Lhv3SIk5qYbbd+9QTP4OBremFbrNKhJ66OPGk1wUOu02BYbgQ3RR5GlyheTDSpDCz0upl9HUm4GpBJJhao/CEkiRERERERkvaCmDfDCj09g7vePQZWvEndOnd35ZaQlGo9JOg9tB3efW2ISMwtziullxisslGUXdUNMcNAJd3xMVGTQK+X4J+oqphs5p1apsXf1Yez6fT/ysvIRG1l+MZS1C5aiT8ci1ch3IMssgOPx8snoxfIruMsTEREREVF9F9yyIV7+eY4Yl6gKVMhOz8UTnV9CRnKW0fZdh3eAq6eLwTFhEVJN2rx0h9EEB1WhGrtXHRCTrfOzC3D1rOnYwRwh0UNIOPfwq3iiQmEN7RpLRCR4/vnnsXz5ckRFRYmf161bh969e+O9995D3759xSQIIbFhz549YiLE/v37S764du3a4c033+QXSUREt11Y22C8tuIZaDVaMSbJuJmFJ7q8JMYmxnQb2ancAv6ajkmExAVjCQ7C/Heu3I+9qw+JVSmunCq/kZU11AVqXD55FV4BHhXqJ1SuK8xXMcGBiOo9JjgQUZ0hVGRwltrjq3M7TCY3CH48sxUPtRwIN2XpL8rtfEJxKSOxhmYK3MzLQHJepkGiRVZhHmZu/Rynkiv3i7Exmao8eDu4IiXf+EOMWznKlQh25U6pRERERESVIZPJ4ODsIJYPNpXcIBDOj3lyuNi2WOuwAFy7mWl2fHlyjsU52MWmQX0hCdrW5quyxUOLrNwCuDrZlxzLSs3Gy8PexqUTV2ErmclZ8PR3R9qNDKvau3g4ISDU12bXJ6LbS6hiqRXrt1RtDCIiIrKOTF4Ukyx7/XeTyQ2C5e/8iVGPDYGdvV3JsRbdm2LfX6U7gle3hEs3kJ+TbxAXCZUTXhqyAFfPVC6pwZj0pEx4+Lsj3cqYxN3XTazKR0R1Q22ISZRKJTZt2oQ+ffrg2rWijSaECg0DBgyAk5MTvLy8kJKSgry8PIN+LVu2xNatW8X+REREd1pM8v2Ly00mNwh+eWsVRjwyEHJF6fLVFt3DcWRjUUXomhAXeU1MsLZTKkqOpVxPw4uDFyA+yroKcNYQNoISEq+F2MQaPkFecPNxtdn1iej2qg0xyZ2K9b2JqM5Ze8X8DfgCrRrb4wxLf01s0V+sdFBThHoKybckHbx58DebJjcUE5IbOvuFW9V2bJNucFKULnAiIiIiIqKK27Z8j9nzQoWHwxtOGBy7f3B7UwUXRLLUHMhvZlt1fWXUDZPVG8reCEvNNnww/vGMr22a3FBMWFjVqmdTq9oOnTbAYJEVERERERFV3LZf95o9n52Wg2NbThkcG/vkiBr9qnVaHTJTDGOcDx763KbJDcWyU7PRrGsTq9reNWOQwSIrIqKaEBISguPHj2PkyJEGx3NzcxEXF2eQ3CCRSPDwww9j79698PHhxnVERHRn2r7CfEwiLPaP2HnutsYkGrUWuRmGSRgLJ35m0+SGYrmZeQjvFGZV25GPDhE31CIiqu94d4aI6pQPj/6F2KybFtvlqPLFP08kXcFvUXsQmRoHP0cP3MhNE5MPynKQ2aGdbygOJV6w2TyFZAofh9Js26TcDPwbY7jAyZaebH8XFDI51l85iq1xEUYrOrTzCcHczvdU2xyIiIiIiOo6oWzwV88sRXJ8qlU3swWn90Ri3ddbEH06Fo0aeSDW36VcW0dI0ElqhzNWzkOapwJ0eiHwMNlGLpPCy8Wx5HNidBIOrTuG6lq49OiHU8Xy0jtW7MWBtceQYaRaRZs+LTDt7QnVMgciuj10eqn4quoYREREZOV/N3U6/G/2ErGSmrUxydHzcVi96zQuJ6RA+Xh/ZO65AOXFm5CotSVtHV0cxMU4p3YZLkCqCoVSATfv0vgnLiqhXNKFLRcuPfP1o8hKy8HOlftxcO2RcskVgvYDW2PSvPuqZQ5EdHvUppjE19cX69evx5EjR7B8+XLs2bMH8fHxyM7OFqs4BAUFYciQIZgwYQLatm1bI3MiIiKqKK1Gi08f/RZ5WUXrsqyJSY79ewrrv/0XcecT4B3kiZRraeXaOrk5IqxdMM7sOW+zvxR7JyWc3J1KPl8+edWm45elKlDjpZ+fEp8f7fp9Pw6sPSomnt+qy4gOuP/Fu6tlDkR0e9SmmOROwwQHIqozlp3bjh/ObrWqbWP3AHxzahM+O/FPuXMOcjsEOXvDVemAwY3a497wHpBJpOjz+8vI16iMjmcvs0OQixcuZyRadf2+Qa3h4+hW8vlkcjQ0+uorJuRh74JmnoHo5NcEr3Qbj3XRR7D64gEk5qbB19EN9zTpgbFNusNezp1SiYiIiIgq6/f3/8bfn2+yqm1wyyD8NH8lfn13denB8wlw8XCEtFMIvDuHwtXFAQM6hWN071bQ5aswIehRqAs1RsdzcLGHV6AnrkVdh7RQA0VsGtShXiavP6BdY7g6lVZvO7s/CjohKaKauHq7Iig8AO36tcIT/1Nj28+7seWnnUi+liqWWx42fSAGT+lrUAqaiIiIiIgq5pe3/sCG76x7TtKoZRAWr9qNX7YcNzzRNQSyrqFofP4m3JV26DuuB4ZM7YeC3AJMDH4c2jKJD2U5uTvC3ccVCZduWHX9fvf3gIOzQ8nns3urZyFRMVdvFzTpEIqOg9qg8H/T8e+y3fh32S6kXk+DbyNvDH94EAZN6g2FHWMSIrq9unbtKr6IiIhqox9f+02892/tc5IvnvoBa7/cXO6co6sD/EJ84Orpgn739xSfHwgJAVPCZkOnNf4sw8XLBS7ujrh+Jcmq6w+a2MfgmcSZaoxJpFIJXL1cENwiCJ2HtkP+/wqwZelObP15N9KTMuAf6osRjwzCwAd7QyZn9QYiIgETHIioTtDotPjx7Dar2jZy8YFcKjWa3CAQkhiECgs/DX8W/1w5jIe3/A8X0xOg1hm/aS94tdt4nEmJFatHmGsncLNzxPOd70GuukAcf0fcaSTlZaC6NPcIFJMbitnJ5LgvvKf4IiIiIiIi21Cr1Fj92Qar2oa0aoj83ELD5Ib/yNLzgG2R8MlW4+M9C7Dh0Hk8+v7vuBpzE9qhLcSdVJWXb0JS9ga+BHjqixk4tfMcbkTfhEalgdORWGQ1cINOWf7Wj7uzA54Y0wu5WXnYumw3Dm88LiYaWEsvlaCwmS8KWvhB52oPSYEaykspsD+XCGlB+QSMFt3CxeSGYsIDg7tmDhZfRFS3afVS8VXVMYiIiMiygrxCqxOuhWoMiVJ9+eSG/+RAD9nYDlg0Zyy2/LQLz/SZj7jz10wmN0gkEjz99aM4vOE4bsQkl7YTisoZWXvk6e+Oh956ADkZueKinqNbIqyqhFdZ7Qe0gm9D75LPSgclRj82VHwRUd3GmISIiKjmCM8chIrV1mjduzmunokzmtwgECpAeDfwxOt/Pi/GDHO6v4L4C4kmkxskUgnmfjsLu/88iKTYFLGShLmYRNh4adL8cchKy8aWH3fi2NZTSI5LQXXpNKw9PHxLN8J1cLLH2CdHiC8iqtsYk1QeExyIqE6ISrtmVZKAk8IeH/abbjEZ4kJ6Ah5c/wHOpsZZdf0Pjq5GjrrA6DkpJNAJDwMkUgxs2BbPdLpbvNk/as0CJOamo7oNCm5f7dcgIiIiIqrvLhy9goybmRbbObs74sVlT+LnN1eZbXf+2BVMf3sFohL/W+RjJwN8XZDn6wJVuA9cNkdCovmvCpwe+HLOjyXlnAWyzAK4/n0aeV2CoQnzgtBSSPTu374xnhzTC7qUHDw89CWkJVYsJhGSG7KHN4e6oUfpMaUc+Z0borCpD1z/OQtZrmHlu77ju1foGkREREREVHGRBy6ICQOWuHo544WlT+DDzUfMtjtx4RoeH/E24nZHWRxTr9dj8WPfGcQkRSdgsKhIrpCh933d8fC7DyInPRdPdX/Vqjiqqvo90Kvar0FEREREVN+d2XMe+TnG106V5eHnhrnfP4aPZ3xttt3RzRF4stvLiD13zeKYep0eHz78FfKyjMckEokQtwAKpQJ9x3XHwwsnitXcXhu5CFmp2ahuQ6b0q/ZrEBHVNUxwIKI6Qav/b2GPBd8PeRLtfEJxNiXWYltrkxsEppIbBHrosWToU2jl1Qge9s7ijf6RNZTcINgQfRSOcjuMbdIdXg6uNXJNIiIiIqL6pmQ3IAs+3PEmmrQPxcVjV8y2y+/YsDS54RYaP1fkdW4Ep0MxJcfKLST6L8nBZdsFSBzt8N6+BWgcHgg3J3totVpM6zmvwskNgoI2AQbJDWUJ1Rxy+4TBdbPhAqhNPwrlqCUY+lB/sQQzERERERHdvpjks/3vomHTBoj8Zp3FtpcSUqG08vrGYpJicoUcH25/Q6xm5+zuJFbAm9v39RpJbhD889UWqPJVGDK1H1w8nGvkmkRERERE9Y1VMYkE+OLIe2KFtYvHoi02tya5oVi55IYy7OztxOczjZo3gJObEwrzC/FEl5drJLlB8MfH/yAzJQtDpvQVr09ERJaxvjcR1QlNPQLhaudgtk2wqy86+IaJ75UyRQ3NrCgZ+JW9P2N73CkxuWFfQiSiM2/U2PVjsm7iw2Nr0H/Va1gZtcfqfhqdFrlmEjeIiIiIiKhUkw6hsHcyv/QnpHVDMblBYGdvOibRyyQobOprdixVuC/0cutu6+jzVPjo7g9x+M9DYkxy8J9juHH1ZqX++gpa+ps9LyQ/aJ3tDI7FRV7Dt8//jAcbzsLmpUKyg/UPQ/Jz8is1TyK6M+jFqpZVewljEBERkWXNujQxG2cImnZuLCY3CJQKmcUxJVrrNpeyRKPS4L0p/8ORjSfEz3tXH0ZKQhpqytXTsfj62Z/wYNAs7Fixt2IxSS6fkxDVZoxJiIiIak6L7uFi1TZzWvdqLiY3CCzFL7ZUmK/Ce1MW49iWU+Lnnb/tr7GEa8Gl49FiJe4JQbOwd/Uhq/tp1BrGJES1HGOSymOCAxHVCQ5ihYIeZttMaTEAEqHmGIBBjdqhJiXnZ2Le/uV4cc9POHLjIm4HtU6Dtw6uxN5r58y2u5yRiBd2L0XH5c+g0/JnMXDVa/jm1CYUatQ1NlciIiIiotrGydURgyb2MdvmnjkjS973HNPVZDudkxJ6Czf29XZyaF3srZ5f8rVUfDj9S3wy8xuc3Xve6n4G15RLxSoNZkkl0Ho4Gj2lKlDj05lfI2LnWbNDRJ+OxbsTP8No58m423UqpoTNxu8frBV3eSUiIiIiIuOEaml9x5t/TnLv06UxSb8OTcx/lRot5AkZNvu6k2KSsWjy//D5k0twZk8kbgdhUdP7D32BcwcumG136UQ0Ftz/MUY6TsLdLlPwUPiT+POTdVZXySAiIiIiqo88/T3Qa6zpZx+3xiQ9x3ZBTbp+OQnvTPhU3JDpzL7KPSepqoLcQiyc+BkuHjdf5TvqyCW8ee8HJTHJ9OZzsOZ/G8UK3URE9YX8dk+AiMgWTiRdwT+XD5s8P75pL0xq0a/ks/B+1cV9yCzMrdG/gHXRR9DUo2h3pNtBDz2WnPkXLb0a4reoPdgccwJ56kI09QzExOZ94a50xvQtiw0qN1zPTcNnJ/7BgetRWDL0SdjVYPULIiIiIqLaQli0v/vPgybP3z17GO6aMajk89g5I7Dlp53IzSxfMlmisW6XVEklFtds/nEHQts0QqUIu7cKL5n5/TIkKtPz0un0Yinmhs0Dse6rLdj71yEU5qnQuH0IxjwxXNyx6ZXh76Igr7Ckz42YZCx5eTlO7jiDd9a9DLmCt7OIagutXiq+qjoGERERWXZ0SwQOrD1q8vy4uaMxaFJpUvbEoR2x+dB55BUaTyRWnk+C1Mzv9pX1z1dbKh+T2IBOqxOTFfyCvbH2yy3Yv+awmIzdtHMYxjwxAlqtDvNHLxKPFbt+JUlcBHVq9zm8+dcLkMksV78gojsDYxIiIqKac3DdMRzedNLk+Ymv3os+93Uv+Tz+ubuxZ9VBMRG5JgnxwO2MSTRqLf76bAMefvdBrP1iMw78cxTqQg2ad2uCsU+OQF52Ad685wOoVZqSPtcuJuKrZ5aKiRnzVj4LqZT3TIlqC8YklSfR6/X6KvQnIrrtbuZlYuSat5Ctyjd6vplHA6wdO7/c8bMpsXh21xLEZ6eUHJNKJBjTuLt47FjSJdRV3vauSCnIKnfcQ+mM9MIck/1e7ToeU1sNrObZERERERHVLkmxyZjZZi7yc0oThctq1qUxvjj8XrnjkYcuYuGDn4n9i0llUox4eCBONnLB2Zgkk9eUpeTAbe1p1LTsQeFQNfExeV6aXQD3FSdQVDvPOIlUAjdvV6Pln108nZGdZjomefrrRzFq1pAKz5uIas61a9fQsGFD8f2cf4fB1d+hSuNl3cjH/4ZuEd/Hx8cjKCjIJvMkIiKqS65dSsRj7Z83uTCodZ8W+HT3gnLHT168hnnfbURSeunv4DKZFPf1a4srH29CdEQM6iKFUg57J3ujsYeTuyNyM8onohd78acnMWRq6YZaRHTnYUxCRERU82LOxWN255egNpFA3XFIW7y/pfzarRPbz+D9qZ8jLTG95JhcIcOYJ0fgyKYTiI+6jrrI0dVBTFLIySi/Ma+jiwPyso2vgRMICQ797u9ZzTMkoqpgTGIb3PKOiGq93y/sNZncILiQfh0nb0ajg2+YwfHW3sHYct9b2HstEpGpcXBQKDG4UXsEuXjh0PUoPPLv59Dqrds5tbYxltwgMJfcIBCqXjDBgYiIiIio/A6kppIbBBeOXsHliKto0j7U4HjL7k2x7PLnOLLxJKJPxcLB2R697+0K30Y+2HfmKp79fC10xval0OvhEHGtUn8NeqkEqmBP6FyUkOarYReTCona+rjH4WSC2B8K4zuWOhyLN5vcIM5Bpzea3CAwl9wg2Pj9ViY4ENUiOkig00uqPAYRERGZt/aLTWZ3PT279zziohLQqHmgwfEOTYOw9v0Z2HcqGpcTUuDsYIeBncLh6+GCfY5OWDDuY9TFvfKE3VHVJp6HmEtuEGz4fisTHIhqEcYkRERENWPN4g0mkxsEEdvPIPFqEgJC/QyOdxzUBr/GfIWD/xxD3PkEMeG477ju8PT3QNPOjbFo0mLURfnZBSZjLXPJDYIN329jggNRLcKYpPKY4EBEtd6+hHMW2+xNOIcAJw/sv34eOr0Onf3CEermB6lEin4NW4uvslr7hOC9Pg/hvSN/IrUg26p5SCCBh70T0grML8ipqnY+ITibEndbki9is0p3liUiIiIioiLHtkRY/CqObY6Ai4czTm4/I960btuvJQKbBEAmk6HH6M7iq6yOIf54fepgfLZ6HzJySm9mSwrUcDwcA7vYNKOVEYQKCFkpxmOYwhBP5PZuDL2DorSPKhQOx+LgcO6GVX+d8rQ89MjQ4pi9BmoXZek4+Wo4Ho2D/cXqjRkSLls3TyIiIiKi+sTamERhJ0fEzrPi5/YDW4uLi+QyKfp3bCK+yuo4uC3mfD0TP766wmIictmKdE5ujla3r6xWvZoh8uBFMXm6pl1nTEJEREREVM5RCzGJTqfHsS2n0GFQG5zZEwmJRIKOg9uIGz7JFXL0ua97uT7dRnbEE/97BMteX2m00oExMrkUDs4OVrevrNa9m+Pc/guVTgivSiI5YxIiqi+Y4EBEtZ7RHU1vsS0mAt+e2lySFCAkI/QNaiUmMXjYO5e0W33xAH6O3IEL6Qni567+TXG/X2+42jnCUa5ES6+GYrLEkjNbkacpLOnnYueAFzvfi+GhndBn5cso0JreKakqegQ0w+eDHkOuugAfHVuDfdciodZpxHlNbNEfnf2aiEkZ66OPVsv1hQQOIiIiIiIypNNZTj7e8ds+LJ33m3gTXyDcvO9xd2c8/+NsMfGh+Ib2hu+24e/PNyI28prYptOQtgif0B0ODTzgJJOipZc7Dqw+jL8+XY+CvDIxiaczZn82HZ2HtcODDR+DRqUxuL7a3xU5g5oCUqnBcb2dHHk9wyBVaaG8ZDk5ocuIDnj952eQmZKFrz/7B8eOXYYuKx+t/Lww9t2paNE9HJ8/9QP2rT5cLf83cfN2rZZxiah6aCGBFtIqj0FERETmFccZ5mxaugPfPr+spK1UKkGve7vhuSWPw8nV8b9xdFj39b9Y++VmxEcliG06DG6LFt2bwsnVAY6ujmjSMRR7Vh3Emv9tgKqgdIdWVy8XzPnyEbTq3QKTgh+HTls9mzQJcdS8lc8iNTEd37+0HKd2noVWo0PzbuEY++QIhHcKw6ePfoPDG05Uy/UZkxDVLoxJiIiIaoY1ycf/fL0Znz+xpGRxv5Ag3Xd8D8z9bpaYlCDQarVY+/lmrP1qs7iQX4hJOg9vj2ZdmsDRxUFMqBZiku3L94rVtctWjXD3dcUz385C43YhmNr4CaEYdrUQ5vzyL08hKTZZjEnO7Dkvxj+tejbD2Dl3IbRNI3w47Uuc2Ha6Wq7v6u1SLeMSUfVgTFJ5En1drCtKRPXK+0dWY+m5bZXq29KzIX4f/RIUUhkWHFyJFVG7y7URkiHe7jUJ45r2KjmWo8rHmkuHsC76iJgMUahVQyoRkiZaI8DRA79d2ANbuLtxN3FcIbliRGgndPEPt9inQKPC7O1f48D1qHLn+gS2xN6EyErPZ2aboXiu8z2V7k9EREREVBd9/uQS8UZ6ZQgJAZ/tewdSqRQfz/gam3/cUa6NcAP/xWVPYdCkPiXHhN2HNi/dgV2/7Uf0mVioCzXiw4DuozqJN7c3/2A4TtaIllAHuZuch1gZ4sBVKGNSIdGW3ioaMrWfEBTBycUR/R7oida9mlv8mfJz8vHaqEXiTf1bdR3RAUc2nURlTXl9PKa+eX+l+xNR9bt27RoaNmwovn/83xFw9StaMFlZWUl5+HroJvF9fHw8goKCbDJPIiKiusRULGGNNn1b4OOdb4nv35/6Obb/urdcG5lchld+fRr9xvcoOZaVlo1NS7Zj96oDiDkbD7VKI7brOaYz7J3ssfXn8s9bKmPY9AFi4oWzmxMGPNgbLbpZfk6Sm5mLV+9aKFZ5MJa0fbQKMckjiyZhwktjK92fiKofYxIiIqKat2jyYuxYsa9SfTsNbYf3Ns8Tf+9/Z8Kn2PvnoXJt5AoZ5v/xHHre3aXkmLAR04bvt2HvnwfFmESj1ortet3TFVKZDDt/q9x8bjXikYHQaLRwcXfGwEl90KxzY4t9hHjpleHv4uKxKwbHhY2tugxvX6XnJI9/Og33Pj2y0v2JqPoxJrENVnAgolpvYou++DVqF1Rawx1KrRGZFo9tsRHwc3Q3mtwg0EOPdw79jiHB7eGmLKpgIFSCWHlhD65k3jCoJLEr/gwc5HZ4sHlf/HXpoJj4UBXNPYPwcOvBVrVNyc/ChbQEKGVyfD14Ng5ej8I/Vw4jrSAHjVx8ML5Zb2QW5lY6wcHf0QNTWw6sVF8iIiIiorrs7ieGY+P328Sb5xV1/tAlcWdRpYOdyQVJwg6r/5v9vbhTqbBDkUCj1og7q5YtRSzsEHRg7VE4ONtj1GNDsWXpTnH3Ip1CBnWgm9l56OwVyBnYFDnQQ5pTCOXlZNhHJom7Io15YrhVP4uwg2rM2TgoHZV4b8s8HNt8CttX7EV2Wg6CwgNw16ODkRSTXOkb9/6hvhjzpHVzISIiIiKqT8Y+NUJMKNBqKh6TCInJws6iQtK0seQGgTDu4se/Q/dRHaF0UIrHhPbrv/kXN2KSDdrtXX1Y3FV11Kwh2Lx0Z7nqchUlJFkPf9i6ZxMpCamIOXdNjIk+3PGmGGvt/G0vcjLy0LBZA3FOV8/GVTrBITA8QByDiIiIiIgM3TPnLuxaud+q6nK3Ov7vKZzZex5pNzKMJjcIhOcvn836VkwOUNgpxGOF+Sqs//pfJF9LNWi3e9VBser1iBmD8O+yXdBW4tlNWe0HtMbAiaUbUJlzMz4FcecT4OjqgE/3LsDBtcew8/f9yMvKR3DLIPHZTeT+qEo/Jwlp1dDq+IiIqLZjggMR1XoNXXzwab8ZmLv7h3IJBc4Ke+SoC8z233T1OBwVRTfkTSnQqvHPlSOY0nKA+PmHs1sNkhvKyteocCr5KtbdMx9j/34XeZpCVJZQKcKY/QnnsTJqDy6mJ8BeroAEUlzOTIRGV/RLuY+DG2a2HYpP+s8o6SOcG/LnfLPXE76vpzvejZ8jdyA+O0U8JlSQ6N2gJV7v8SB8HM0viiIiIiIiqo+CWwTh5V/miLudCruWliUs7MnNzDPbX9jxVEhYMCcvO198OHDXzKIE6N8WrjFIbigrP6cA0adj8c3JDzG780vI1+uEbYFMjq0XThW/IIHOzR75nRqioHUAsp2LHhTcSrj5vv7bfxEbWbR4SCg/HXMuXkyyEHgHemLia/dh/u9zS/qoCtV4dcS7Zn9OFw9nTH59HP76bINY3rm4gkXXkR0x58uZcPN2NdufiO4ser0EOvEfmaqNQUREROY1bheC53+cjY8f+apc4rWTuyNyMyzFJAeRkZxpto2QuCwkLwye3Ff8vHzBHwbJDWUJMVDC5Rv44sh7mNPjVajyVZX+KyzMN/6M5eC6Y9jw3VbEX7guxiRCLCLEJEJsIvBt5C1WgHv9j+dL+hTkFeK5AW+avZ67rxseeGmMGJMkxxctlBKq5QkJ53O+nAFn96KNsIiodmBMQkREVDOadw3HM9/OwmePfVfynKCYk7sTcjNyLT4nib943Wyb9KRMHPznGPqOK6ost+yN3w2SG26NX9IS0/HZ3rcxt+/r5Z7dVISqsHxfvV4vbjglxCRC7CNsTiU854kVYpL/cjz8Q3ww9a0H8ObqF0r65Wbl4ZvnfzZ7Pa9AT9z79F1iTJJ6PV08JlTLEypTPPXFIyUbYRFR7cCYpPKY4EBEdcKg4HbYOu5t/HFxH07dvAo7mRz9GrbBxuhjOJgYZbZvrroAqQVZFq8Rl1V6o16ozmBOZGo8clUFWDbiWUzd9ImY9FAZyyJ3YEaboQYJGIuO/Ill57ab7Zecn4mFh/8Q5/B4+7vEYzvjzyAxt+gXX1Nc7RyxJeYkmnoE4r7wnmju2RBN3AMQ5OJVqfkTEREREdUX/e7viZY9m4mVHC4cuwI7e4W4AGbzj9txdu8Fs32FhARTN+HLun6lKKFBq9Vi68+7zLaNPFB0zff/nY8XhrwlVmXQOZdP7Bbvs5ckN9xyTinHktMXMF7dD0pF6S0kYefW9d9uNXv9lIQ0sepEQU4Bxj9/t3hs3+pD4gMIcxzdHLFvzWE06RiKUY8NQWjbYIS2bgTfht5m+xERERER1XdC4kHbvi2w4bttuHQiWqys1mtMF/z95WZcOHLZbN/8nHwkXkmyeI3iJGu1Sm2y2kOxiB1n4eTqgIUbX8Urw98RKz5Uxop3/8KoWUPFBT3FC4k+fuRrbPlpp9l+N+NS8PGMr8VdXYur0glJ48JCJ3McXezFhUrNujYRq/WFtWmEsLbB8A7kcxIiIiIiInNGPDII7Qe2xsbvtuHKqRjYO9uj9z1dserDtbgSYT7BIT+3wLqY5L82Qvvdvx8w21ao3Pbsd4/h7XUvY96oRZWqwi345a1VGPpQP0ilUvGzTqcTN7zasWKf2X5CQvgHD30hVrUTvhvBtl/2iNUczLF3tMOh9cfRqmczNOsajtDWDRHWLgReAR6Vmj8RUW3FBAciqjN8Hd3wRPuR4nu1TovHt31lMblB0Mwz0CB5wRRPe2fxT5VWg5R8ywkRiblp6BvUGrri1NxKEJIvnt/9I74a/Lj4eVtshMXkhrK+Ob0ZD7boB3elEyJT4yy2v56bJr4E2+NOoaNvY3w39MlKz5+I6HbasmULfvzxRxw6dAhJSUlwdHREw4YNMWLECDzyyCMIDw/nXxAREdmUT5AXHnrrAfG9qkCFV0cutJjcIBAW8AvtLSmuXiAkDWSnm38YULygp02f5tCptVCev4H8LsHlG5lIbiiWmV+Id95eibcXTBY/7/htn8XkhrJ+WfAHRs4aIu4odOnEVYvtk2Juii/B/jVH0H5AK7y97hWrr0dEdxYdpOKrqmMQERGRdXwb+WD6Ow+WVCt4acgCi8kNgtA2wUi7kWGxnZtPUUySk54rJmqbIyQiCBUQmrQPERf0VJYwr09nfYvnf5gtft7y0y6LyQ1l/TR/JYZNHwB7R6WY+GHNgqniRVP7Vh9G52Ht8NaaFys9fyK6vRiTEBER1ayAUD88smhSSWXqFwa9iSsRsVY9J4mLvIbEaPNJDm7eLuKfmclZYjKzOTqdHinXUsXkgMomNxQ/a/lyzo946osZ4uf132y1mNxQ1o+v/YbBU/pCYafAZStikoRLN8SXYM+fh9B9dCe8/sdzlZ4/Ed1ejEkqj0+HiKhO+vjYGuxLiLTYTiqR4IFmfXB3424W241u3FV8L1SHcFNaLkHs4+iOQq1afFXFjvjT+DfmpPj+1/Pmd2m9lXDtzVdPiO/t5XYVvvaJm1fw9sGVFe5HRHQ75ebm4t5778Xw4cOxatUqxMXFobCwEOnp6Th9+jTef/99tG7dGh999BH/ooiIqNp8PXcZTu08Z7GdsAvpXTMHYfDkfhbbDZjYW3wv7HpkTQlirwYe4qIjrUYHh1PXoYgrSmY2YCa5odi2nadxZFNRTLL2y82oCOH6QqKCQOlY8ZgkYuc5fDN3WYX7ERERERHVd4sf/x6RBy9abKewk2PEIwPFChBm2ykV6Hd/D/G9k5sjlA6Wf7/3DHBHblY+qrAPlGjL0p04ueOM+P6fLzdVqG9ORi4Orz8uvheSHCrq2JZTWPLyrxXuR0RERERU330y42tcPGZ5Qb8QWwyd1h+DLMQkwu/zfe7rLr539XIRYxlzJBIJPPzdkZthecMoS/75agvO/Vc5e20FY5KMm5liXCEQKu1V1KF1x/HzG6sq3I+IqLZjggMR1TkqrRq/Re2x2E4CCV7rdj+CXX0xqFE7dPVvarLtpOb9EeTiXfL5niZFvzCbEuDkgRaeQTiTHAOZpOr/1C6LLKracM6KKgy3yigsKrc8JLh9pa69PvooUq2oWEFEdCfQaDQYNWoU1qxZU3KsTZs2mDJlipj04O7uLh5TqVR44YUX8N57793G2RIRUV0l7JS6+QfLldckEuDpr2eKu6z2Hd8dLXuYjknGzR0F7wae4nuZTIZBk/oYnNfLJChs4oPcnmHiy3tgCzRqGYRLx6MhlUkh0evh8m8UnHdchPxGlrCdKiAsMrJioZFEq8Pqz9aL74XxKiojuSieKH7wUFHC7qzZ6UVxDRHVLlq9xCYvIiIiqpjczFzsWLHXYjuJVIK5Sx6Hh5+7GGM07dzYZNsJL42Fu4+b+N7O3g79H+hlduxGLQIREOaHyyevitcxRy+RWAxN/lq8QawKcflkDCoqMyVb/LPXveY3uzJl4/fbxN1niaj2YUxCRER0e2SlZmPP6kMW28kVMrzw05Nw9XQRK6+FtTVSifo/k+aPg7N70Ya0wiZQve8z//t9WLtgsfL2lVMx4vOYqhJiksL8QsSdT6hwX6HihKB3JWOStV9ttqoSOBHdeRiTVB4THIiozhBubB+5cRFLz26zqmrC2CbdMKlFf/G9TCrFN4Nni9Uc7GWKkjae9s54puPdeLXbeIO+M9oMRaCzl8mxE3PT0XvlS5i2ZTG0eh2q6njSFah1WihlFd/xtOF/iRlhbv64K7RzhfsL8xeuT0RUGyxcuBC7dhVVu3FycsLff/8tVm34+eefsXr1aiQkJODRRx8taf/qq6/i8OHDt3HGRERUl+h0OnFX0ZXv/21VueMxT43AiEcGie+F0sSLNs/D8OkDYGdfGpN4+Llh5vuTMeO9yQZ9J752L7wDixIeNF5OyBzXEXl9mkDVzE98XQp2x/DHv8BL4z+CTlsUk0j0gPJKCtzWnYXyQrL4WXhZYheTVlKNwppdWm8V2MRf/LNxuxD0HNPF5IImrYcjtO6OuHUts0alQdSRyxW+LhERERFRfaPVanFi+xmsWPRXSRxgzoOv3FNSuUFIWnj/3/kYMrWfWK2hmGeABx7/dBqmvnm/Qd/Jr48T4xVThEU/9wfMxBtjP4BepzcaAxS0DEDmve2RMa07MqZ0Q26fxtC6Ga9WJ8Qkwg6sZeMlawU09hP/bNm9KToPa1fh/oX5KlyOuFrhfkRERERE9Y1Wo8Wxf0/hl7f/MBoH3Gr6Ow+i3/iiSnEOTvb4cPsbGPBgLzHxoZjwLOSpL2aISddlPfTWA3DzdjE59pWIGIz3n4F3Hvi0ylXlBKd2noVcIRcrbldUg/+ek7Qf0Bpt+7WscP/87ALEnIuvcD8iotrMfJ0eIqJaYmf8GSw8vArx2SlW99keewqaXlrIpUW/eDoqlHir50TM7TQG51PjIZPK0M4nBHZlEh6KeTu4YsVdz2PRkT+wOeaE0fEzCqte4qxstQnJf1UYVkTttrqfh9LZoHLDot5ToZDKsC76CHQV+O39dEoMhoZ0qPC8iYhqUnJyMt5///2Szz/88APGjBlj0MbR0RHffvst8vLysHz5cjE5Tkhy2L7d8i7bRERE5uxbcxjfzF2GpNhkq7+o3asO4vFPpkEqlZbsOPTcD7Mx84MpuBwRAzulHM26NhGTH27lHeiFz/a9gy9f/AWb5GrojSzySddoIB3SAq5/nxLjibIcD18VEwo0Ps5F21+Y2L1IkZAJxY1sSP8r9dz7nq7YvHSn1T+jVwMPdBvZseTzK78+jY8f+Ur82YX/DgvJDKpWgVA184f+v+QJSZ4KdlGJsIu8XjKti8cuo8uwylWlIyIiIiKqD3b9vh/fvfgLkuNTre6z7Zc9mLZggpg4IBB2Q33xpyfx6IdTEH06TkwmaNEt3OgCHv8Q36KY5OkfcWTjSbO7lN5KiANyBjWDpqFH6UG5FKomvlA18oTLlvOQpxhWcSueY697umLHin1W/4z+IT7oNKRtyef5q57Dh9O/xP41R8SYxFqXjl9F2z4VX4hERERERFRfbP1lN3545VekXk+3uo/wvOH+F0qf6bt6ueDVX59B+icZuHo2Xtx0qXm3JmJl61sFNgnAp3vfFmOS4/+erlBMUhkSqVSMjbqP7iTGE9Zq2DwQbfuWxhIL/n4R7039HIfWHa/Q9aNPxaJpJ9NV94iI6hpWcCCiWu/g9Sg8tf2bCiU3CLLU+Thw/Xy5425KJ3Rv0Bxd/MONJjcU83NyR/eA5qgJ3QOaiokYD7UaCCeFvVV9hESGt3tNMvgZlHIF3u87DVvHvY153R5AO+8Qq8YqW9WCiOhO9dNPP4mJC4IOHTrggQceMNl28eLFYrKDYMeOHbhw4UKNzZOIiOqewxuO4+3xH1couUGQfiMDZ/aUj0mEG/gdB7VB694tjCY3FPML9kGLGf2NJjcU03k4Qh3kXu64VKWF64YzcNp7GYrEbEBTfndXRXw6XLZEie87DS3a5XTcc6Nh76i06udT2Mkx9/vHDRZDCX1f++1ZLLv0OZ5Y/DAaPTkUhe0blSQ3CPSOdijsGIyCrqGlYykrXjmCiG4/nV5ikxcRERGZt/evw1g4cXGFkhsEN+NScP7wpXLH3X3cimKSXs3N7k7aoLE/2vRuUeG/HlW4r2FyQ1l2crGSw606/Vd5QVj8ZG0VB6Hd3CWPlySVFyeWv/Hn8/gxajFmfzYdYe2CrRpLruBjdaLaiDEJERFRzdixYi8+eOiLCiU3COKjEnDlVEy54x5+7mJM0qpnM6PJDcUaNgtEy+7NUBOKq8EJlSSE5x/WEJ6JzP1ulsExJzcnvL32ZfwQ+Rke++QhBLcKsmosiZT3SYlqI8Yklcc7MURU63124h9o9JZLLRuTkp9dpWvvT4hETXi49RDxz2BXXywZ+hQaOHsanJdKJHC1cyx5P6BhGywb/iwGl6neUFagsxc6+zfBqZTyQYIxAbdcj4jIGtkFalxKykZEfIb4p/C5Ov39998l780lNwg8PT0xYsSIks+rVq2q1rkREVHd9uO836CzotSyMelJGVW69sFzln+n1wSWT3AQSLR62F+8Cbd/zsB7ySG4/nMWjkfj4Hg4Fu5/RMBtw3kxEULYKHXc3NFin+CWDfHOhlfgE+RlMJZUJhV3ey1+32tsF3yyZwG6jjBeCS4gzA9N7mqPc+mmYzJ1U39o3RzE97dej4iIiIiISi2d91uFqhGUlZGUWaWv8ti/pyrcp7CZn9nzOndHqP1cDBbyjHt2lPi+cbsQLFj7EjwDDBMkZHIpnNyLnpMISRl9xnUXK0x0GNjG6DWCwgMQ1jZY3AXVGkIVPSIiIiIiMvL7u06HpfNXVvqrSa9yTBKB6iY897j36ZHi++Zdw/HG6ufh4edm0EamkMHJrSgmkStk6P9ATyw+8K64mZUxjZoHiq/Yc9esmsOtMRARUV1nXSoZEdEd6lp2Ck4lX610/yCXqt2Q1qFyDwwqYnhIR/QJalXyuYNvGLaNexu7r53DpfTrcFIoMSS4A3wd3ZCrLoBCKoedzPI/72suHbTq+g4yOwwLNr4oiYjoVsKD1IPRqfjlYCz+jUyCtsxiT5lUgmGt/DC5ezB6hHmVlJW3hYKCAhw5UloGctCgQRb79O3bF6tXrxbfb926FfPnz7fZfIiIqP6IPX/N6gUxxviH+lbp+lYtYrLyv7l217PE160GT+mPdv1LY5J2/Vrhl6tf4vD6E4g7f028Yd/7vu7w8HVDXnY+FEq52coTxTbsPWexjbqxL9yiU9BzTGerfgYiurPo9VLo9NIqj0FERESmXT55Vdz19HbFJMJiporSulquVK0T2iQVJUSPfHQwWvYo3ZW105B2WBH7NQ6uO4b4qOtw8XRGn/u6wc3bVYxJhMoNcoXl5yRblu20ar7uPq7oehefkxDVRoxJiIiIqt/5Q5dw4+rN2/ecpJIbUFWEkNwQ3jGs5HO3kZ2wIu4bHFh7FAmXbsDN2wW97+sGV0+XCsUk/y7bZdX1vQM90XGw8eRtIrqzMSapPCY4EFGtlq3Kr3TfEFdfdPELr9L1u/iHY3tcxXcnqoi4rORyxzQ6LbIK8xBxMxr5mkJcy07FA836IMTN+l/6k/PLL1wy5tlOY+BsV7RrKhGROWcTMjF3VQQuJuUYPS8kO2w8c0N8NfVzxif3t0frQMNdDSorKioKGo2m5HPLli0t9inb5vTp0zaZBxER1T+5GbmV7ivsFirs9FMVHZs2xMGz5hMs5Des+93flITLieWOadVaZKfn4NzBCyjMU+FGTDJGzRoiVmawVmqm5e9O56DAI4smQemgrPC8iYiIiIjqg5wqxCTNuzYR45KqaNu3Jc7sOV+hPtJCDXR2Fh5TF5be67t2sXxMolZpkJWag3MHoqAqUCMptigm8Qv2sXoe6Tesq6g384MpViVxExERERHVR1WJSdr2aylWV6tqTBJ15DKqU/yFBJMxydn956FRaXAzLgV3PToYvg29rR43zcqYZNZHUyGTySo0ZyKi2o4JDkRUqwU6e0EpU6BQq65QP3uZAm/1nFSye7hQCaFAo0Kom1+FFvPf26QHvo7YiExVHqpLQm6a4efsVEzc8CGS8ktLtB1MvIBlkdvxevcHMaF5H6vGbeDkabFNz4DmmNpqYCVmTUT1zd5LyZj1y3HkqbRWtReSIO7/9iC+ndIJfcKtf+hoytWrpdV8fH194ehYVPrRnKCgoJL3mZmZSE9Ph4cHyzoSEVHFNGjiL5Ya1qit+29gMXsnJeZ8NbOkCkPMuXhxUU7DZg3g6GJ9TDK2b2v8tPEIcgtURs9LswugiDWMKSrqZqxh0nXC5et4tu8bBouBTm4/gz8/WYe53z+GYdMGWDWun5erxTa9BrYRFykRUe2khUR8VXUMIiIiMi0wPABSqQS6Cu5aKsQdT34xozQmORsHVaEGjVoEwsHJcoWFYsLv66s/WY+CvEKr+9hFp6CgXem9uXL0QEGnEMDeDsqLSeVikpjIeDzf/w1kphRVeCiJST7+By/89CQGPtjbqnlYs/Co3/09MPSh/laNR0R3HsYkRERE1a9R80Bx/ZVVFafLcHZ3whOLHy6pDHf1TJz4rCW4ZRDsHa3f9GjU40Px9xebxGcs1UVIqC7rSsRVvDBogbgRVLET285g1Uf/4JVfn0afe7tZNa5vI8sxyZCp/dD/gV6VmDUR3QkYk1Qe63sTUa3mqnTEiNBOZtu09gqGt0PRwhnhkbiQECGVSPH5yfV499DvGPnXWxj999sYv/599Pn9Zby+/1fkWFkZQrj+14Nnw7UCSRFjG3dDsIv1i3l9/5t7ccWKu9e+bZDcUEyn1+OtgytwKrl0ka859zXtCYmFRQLZ6nzkqgusnisR1d/KDRVJbigmtBf6Cf2rKikpqeS9n591O0f7+Bj+W5ySklLleRARUf3j7uOG3hZuVDfvFg53n/9iEqlELE0s/PnT/N/wxVM/YHrzp/Fo2+fwZNeXMSHwUfzviSXIz7EuJvFwccTHT90NJwe7cuckuYVw3hYFSdmHChJg2PQBFdrV1DOgNAEwKzUbs9q/aHSnU51Wh09mfoPLJ62LSe7u29p8A70emZCgUFV9DyWIiIiIiGo7nyAvdBtl/jlJix5N4erlYhCTCFHCj6/+is+fWoJpTZ/Co+2eL4lJvnpmKQrzrUtY8A70wuurnxeTuK0hLHy6t1dr+Lo7m24jTM7FHgXdw1DQrqFBTJJ+MxNPdH7JILmhmLAY6sNpXyD2/DWr5jL8kUEW2wg7sqoKGZMQEREREZkiVHbuOKSt2S+oVa9mcPFwEt9Li2MSnQ7fv/QL/vfE93ioyZN4rMMLYkzyYNAsfPv8z1b/Hh4Q6od5v8+F0shzEmOEmGj040Ph7udu9V9q2ZgkOSEVT3Z/1SC5oZi6UI1FEz/D9Ss3rBp3+MOWN50VYh+NurTCHRFRfcEEByKq9V7ofI9YecGYZh6B+HHYHHw7+Am42TmKN+yFag95mkIcS7qEX87vwpXM0l8q8zUqrLq4D9O2LBYrOlijo19jbB33Np7qMMpiwsDjbYfjvb7TsPyu5zCoUTuL7QV9AksX/by4Zyly1aYfKgg/3y+RO62at/CdzWgz1GybMymxWHBwpVXjEVH9JOzCMHdVRIWTG4oJ/Z5bdarCuzncKju79IGmg4N1SWfOzoYPUbOysqo0ByIiqr9mffyQeAPfmKadG+P9f+fjrb9fFHdI1ev04i5C+dkFiNh5Dmu/3IyES4kl7fNzCrDu6y14efi7Vt+879y8Eda+9wgeGdIJivh0sWKD4/4rcPsrArIMw0SJaQsm4PkfZuPTvW+j28iOVo3fvUy7tx/4BIVmdmYVkhzWfrHJqnHDG/lgwjDTc5BogTNR17F42S6rxiOiO4+wkbROL6ni63b/FERERHe+J//3sMmdP1v2aIoPtr6ON1Y/L1ZmKI1J8sUdRv/5cguuXyndPCQvKx9r/rcRr41cBK3Gunt+XYa1xy/RX2L883dbbPvoR1Mwd/HDWPLKA+jROtjwpB6Q6P5LcPhPYZsG6D6hdLfSN+/5wOzOrEKSwz9fbrZq3i26hWPko+YrxgmVIZa8tNyq8YjozsOYhIiIqGY8/dVMeDUoTQIoq13/VmJM8trKZ8UkBKH6nPA7fW5WPo5tOYV1X/+LGzGlFRJyMnLFitFvjH0fWq11MUmP0Z3FmGTsUyMstn3qixmY8+VMfLZ3AToMamPV+L3vKd3oav7o96BRmU44UKs04s9kjXb9WmHIQ/3Mtjmy8QSWvf67VeMR0Z2HMUnlMcGBiGo9LwdX/DbyBcxufxcCnDwgk0gR6OyFpzuMxq93PSdWWXh57zJkqvKsHvNsSiz+vnzI6vZuSic80X4kHmlt+kZ4kLMXpv933sfRDV8Oegx3Wag+IdCi6Jf1tIJs7Ll2zmL7fQmR+DlyBzZdPY5CjfkFUc91HoswN3+zbTZePYaUfC76JSLjDkan4mJS+Z0JKuJCUjYORadVaYzCwsIKJzgoFAqDz2o1d2IjIqLK8W7gic8PLcSDr9wD70BPSGVSNGjsh0cWTsRHO96Ag7M93n/oC+RlW1eVQRB54AJ2/rbP6vbuzg54fEI/TG4eCucdF6C8eBMSjc6gTVDTANwz566SXV7fWfcKet3T1eLYws14QUpCKk7ttByTHN50En8t3oC9qw9ZTNJ4dlJ/NPR0Lbq7V0ynh0Sth/S/5xab9kQiy8qKFkRERERE9ZFvIx98cXgRHnhxjLizqBCTBIYHYOb7k/HBttehUMrx/tTPkZ9rfcXmU7vOib/TV6S63aMfTMFdM0xXRQhp1RCjHyvaeKmBtxs+f/Y+9GoVIiY3i69bkhtEUilyA4t2Vk28moTzhy5anMuh9cfFJI19aw5b3On06a9nivGROZt/3FGheI6IiIiIqL4RNoH64sh7GDd3NDz83MSYpGHzQDz28UNYuOk1sWrCBw99gcJ86zabFQjJD4fXn7C6vYefO55Y/DAGTe5jsk2TDqFilWtBYJMAMfGi3YBWFscu+G/jJ6Fa3JWIGIvt9/99RIxJDqw9ajFxXNiUSpi7ORu+22p1lT0iorpCfrsnQERkC+5KJ8zpMFp83erYjUu4lHG9wmP+dekgJjTvW6E+QsKAnVyOZed2IFdd+qCge0AzLOw9VUy2KEuoJGFJRkGu+Of51GvQ6nWW2xfmYuHhP0oSL17sci/uC+9psn1c1k2z46l1WhxPuoxhIdbt7kpE9cvyQ7E2G6dHY/MPEs2RSkvzdmUymU3mREREVBFu3q54+N2J4utWx7eewvXL1pUjLuvfZbswbFrRjXZrPf7ZNNg7KfH3F5tQkFsUb0gkErE89PM/zharSJQl7NpqSWZyUcLzxePRVlVdSr+Rga+f/Ul87+7jisc+mYZBk4w/UNBodbiemPnfDhxFY99a565QpcHZS4no2SHM4rWJiIiIiOorYUHMjPcmi69bHVx3DDfjUio85pafdqL/A6XVE6wx56uZcHR1xPpv/i1ZBCTEJF3v6oDnljwOpYPSoH1egdpirev0/xKeLx69AmsKwQo/61fPLBXfC4urnvjfI+g3vofRtgW5BUi+lmp2PKHS3oWjl9FhoHW7uxIRERER1dfNoGZ9NFV83Wr3qgNIu5FR4TH/XbYTPcd0qVAfIWHAxd0ZG5dsK6n+JpVK0H10Z8z9/jHYKQ03QhSq2FmSkZQp/nnhyGWr5pAYnVQSkwiVLYQ4qefdxn+OrNRspCeZ/26y03PFxIqWPZpZdX0iorqACQ5EVOdVJrlBUJmqBcJNeiHJ4uHWQ3Ag4TwKtWq09GqIxu4BRtsHOHlaHFOoSiGwk1X8n+zMwly8tu8XOCnsMdxEgoJEIgUsJE4IVTGIiG6VXaDGlnOl5eurYvO5G+J4LvaGNxOs5eTkVPJeozG/K5upig1KpeHDVSIiIlu5eiauUv2ERIHKJP09smgSJrxyD05sPS3evG/aOQwNmwUabe/b0Nuq3WAFiltu+lsjIzlL3CnWyc0R3UeVr2AnkRS9/sttMEnKmISoVtLppeKrqmMQERHR7YlJKrMASSaXiQuaJs27Dye2nYa6UIPm3ZqIu6Ma4+/pglMWxhTaVDYmSU/KxMKJn8HZ3RGdhrQr30AMSCwTdqAlotqHMQkREVH9i0nkCjme+N/DmPLmeJzcdkasoNCiR1MEhPoZbe/byBuXjkebHVNoU9mYJPV6OhaM+1isrte2b0uzmzmaw5iEqHZiTFJ5vBNDRHWesLi/Mho4W04+MMVZYY+hIR0wunFXk8kNgnFNze98JIEE9zXticScNBy+fsHiLkamfHlyg8lz3fzDzfa1lynQ2UIbIqqfbmQWQKuzYss0KwjjJGWVVr6pKGdn55L3OTk5VvW5tZ2LS9GDUiIiIlsTdi+tDJ//bphXhpOrI/rc112snGAquUEw7OGBFm+YD53WHzdibuLcgahKzUWo+vDLgqIqc7eSSaVo3yJQzG8w9VuFo4Md2jRrUKlrExERERGREJMYVnKzll9wUbJzZTi7O6HvuB5iTGIquUEwum9rs+Mo5DKM6NUS15IyEJGXj/wuoShs2QC6CmyUotPqsPztP42ec3CyR7Oujc32d/FwQvOuTay+HhERERER2SYmKU4sqAxXTxf0u78nBk7sYzK5QTB8uvnnJEoHOwyc2BvXLl7HpRPmEyFMEZIsfn13tfF5erkgrF2I2f5CZbrG7c23ISKqa5jgQER13oCGbeEgt6twv/vCe6K6CdUdJrXob/L8Y+2GY83lQxj853x8cWqDpU1NzVaxWB650+BYdMYNPLXjWxy8bn6R0r3hPeGuLN0ZnYioWK5Ka9MvI6ew8uN5eXmVvE9JSbGqT3JyssFnf3//Sl+fiIjInJ5jOldqV58RFpIPbKF1r+YYbuY6U9+8H2u/2ISHmjyJX982fvPdGhePXcHmH3cYHLsSn4IXP/4bERevA7Kiu1R6SflEh7GD28LJoeIxHRHdfnpIoKviSxiDiIiIqqb3vd3EygoVZS5WsJWuLRthRI8WJs/PHtcLy/45gnEv/IhlG49B3dQfhR2CkTO2IwqbWX8/7+y+KOz4bZ/BscsRVzFv9CJcPGZ+kdLds4dD6cDqr0S1EWMSIiKiO0Ofcd0hlVb8Pt/whwehunUb2VGcnykz35+Cpa/9hodbPIM/Pvqn0tcRqm7vX3vU4NiFo5fxyoh3EH06xmzfsU/dBYVdxZ8zEdHtx5ik8pjgQER1noudAx5uPaRCfVp7BWNU466oCfO7P4CXu4yDl33pzuGe9i7isQAnT3wVsRFava7K13nn8Cr88l+Sw+WMRDy44UNsjY2A1kzaxLCQjni567gqX5uI6iYnu4o/FDXHWVn58Vq0KH0ImpiYCK3WcrJEfHy8QYJE2SoQREREtuTu44Z75txlto3wW7nOxw2apkHQhAei5chOZm+o29Lc7x/DI4smibsEFfPwd8eTXzwCRxcH/P7BWuhsULXp4xlfY8N3W8X3l2JvYtabv2Hv8SvQ6f8bW/LfnSoh0eG/PkN7NcdjD/ap8rWJiIiIiOoz7waeGP34UCtiEndomwRC27gB2o3tiu6jOtXI/N6YORyPjekOtzILdnyVdpg3eSB0Gj1WbjmB4rChhEyKws6hUAd5WH2d9yYvxtafd5csJHq2z3wc3nACejPxzrBpAzDlzfGV+KmIiIiIiKiYUEGhognUXYa3R6chbav9S5RIJHjtt2cwad44OLmVVuT2DvLCiz89gazUbKz75l+xWnVVvXXfh9j1+37x/dn9UXiu/xs4tuWU6RLXAEbNGoIHX7mnytcmIqpt5Ld7AkRENeHJ9iPFtTI/nt2GPE1hyfEQV18oZQpcSE8waH82NRZTNn6CLwbNgreDa7nxTt6MRkxmEtyUjugd2BJ2sspnyV7NTMLPkTuQWpBdciytIBufnVgLF7vSX5xt4cNjf2FkWGd8ePQvZKryTLYLc/PD+32no413sE2vT0R1i7+bPWRSCbQ2WPAol0rg52pf6f5NmjSBUqlEYWEh1Go1Ll68aJD0YExkZGTJ+zZt2lT62kRERNZ4ZNFEyBUy/LV4AwpyS2OShs0DIXF1wGWlPeBcWqI5Qgc8++rvWPDqWLiXuaFe7Oy+87h+JUlMSug0tG2Vdu6JjbyGvz/fKN6kL5Z+IwPfv/gLHJwr/99nY76Zu0wsCb14+W7k5quMN5IAjUO88frjI9A0xNem1yeimqXVS8RXVccgIiKiqnvsk4dgp1Rg7ZebUVjmd/HglkHQOtojRohJHEt//z+eq8MLr6zCm/PGwsWlfFxwek8kEqOT4O7rJi46kisq/9hZ2K100+M/Qn8zEy5OdoBOj8J8NZasOoL88eY3o1K1DITiWrpV1xHWI30x5wf0vrcrvnpmqUFsdqsmHULx4rInEdq6UYV/HiK6czAmISIiunPM+WomlI5KcSMkVYG65HhI64bQqDS4djHRoP3RzRF4bdQiMfnAydXwOYmQbHB6dySSYpPh4eeGjoPbVqpqXbHLJ65i3ddbkJtZupYq5Voqvnx6qU0SG4oJydWfP/kDeo7pgi/n/GgQm92qedcmeH7pEwhuEWSz6xNRzWNMUnlMcCCiekHItn2ywyhMaz0Ye6+dQ666AM08AhHu0QAj1yww2iciORqPbfsKf4x6SewvOJsSi9f2/WKQEOGhdMacjqPwYPN+FZ6XTq/D49u+wvXctHLnCrRqFORnwpZUWg1+Pb8bexPOmW13LScVoW5+Nr02EdU9LvYKDGvlh41nblR5rGGt/MXxKksmk6Fr167Yu3ev+Hnfvn0WExz27NlT8r5///6VvjYREZE1pFIppr/zIO5/4W4c2RSBgtwCccFMYPNATH3sByA1p1yfU2evYd47a/DFh5NKjkUevIBPH/0WMedKKxEJC4oefvdBjHik4qWatRot5o9ehNTr5RcEFeapxJctFeQV4q8fd+D4uTiz7a7fzERwA0+bXpuIiIiIqD4T7p/N/GAKJrxyj7hQSJWvQninMPiE+mHaoz8A6bnl+pyIiMUb7/yNT96fUHLszN7z+PTRbxB/4XrJMc8AD8x4bxKGTKn4cxJVoRrzRi1Cxs1McaMqSW5pDJItlyHPzIIfgdbHBXqFDBK15YqugrysfPy1eCMiD140205I3mjUPNDKn4KIiIiIiCwREhBmfzYdk+ePE2MSdaEazbo2EZ9xzGz9rNE+RzedxKJJi/HOuldKjp3YfgaLH/8O1y+XrlPwDvTErI+mov8DvSr13GLe6PcMNoEqVjbhwVaE66z+dAMun7xqMSZhcgMR1WfS2z0BIqKa5Kywx4jQThjXtBfa+IRgffRRJOSkmmwvJDTsu36+pNLC9C2Ly1V7SC/MwVsHV2LC+g9w6HpUheaz+9o5xGTdRE2KzrwBnYXsYiERIqOg/AIrIqJbTe4efMeMM358aan4X3/91Wzb1NRUbNq0qeTz2LFjq3x9IiIiazi5OWHAhF5iMkJ4xzBs2XEOyUaSG4qdiUzAqbNFyQxXz8bh5WHvGCQ3aD0ccaOhB979eSdmv/ATTkSWnrPG/r+P4EZMco3+5cXGWo6B8gvVyM4tqJH5EBERERHVJy4ezhj4YG8Mf3ggGrcLwaYtp5FuJLmh2MmIWJyPKkpmEBbgvDL8HYPkBkFaYjo+eOgLvDDoLZzdX8HnJKsOGE24Fkmtq+Skt7Jdsfgow+c8xggLmfKy8ys0LhHdeXR6qU1eREREZDtCZepBk/qIMYlQMW3jd9uQmVI+uaDY4Q0ncPVMrPj+/OFLYoJ02eQGQUpCGt598DO8POxtRB4yn8x8qx2/7hUTrm1BL5dBE+aHwu5NxZemsb+YkH2ruPPXLI4lfCeqAttuQkVEVJswEiOiem1n/BnLbeJOi3/+cOZfZKtM38yOSL6KaVsWY/a2r8UEAWscu3EJNS3Q2QsScR8k0xRSOdyVTjU2JyKqvXqEeaGpn3OVxmjm54LuYVXfofn++++Hg4OD+H737t1YsWKFybZz5sxBfn7Rv+k9e/ZEu3btqnx9IiKiyjhw+IrFNvsPXRb/XPneGuTnlC76L+wQjPyhbaFp4g9tAw+cvJaKJ95ehVc/WweNVmfV9c/sKUrorkkN/D0stlHayeHiZF8j8yGi6sPFRERERHUjJjl4uCgm+fXd1Sg0U1EhYudZPNtnPt6b8j9otdoqxyQyIfFCZf55izQzD9JC657JFPMP8bXYxtHFQXwREREREVH1OrT+mMU2B/4pavPLgj/Eyg+mHN96Gk/3fA0fz/gaegubvxY7vTcStqBzd0LB0HZQtwuBLsBDfKnbBovHdB6Gayr8w/wsjufi6Qw7ezubzI2Ibh8+J6k8JjgQUb2mtiIRQa0rugm/8epxq8bcEX8anxz/26q2UknN/jMsJDaMDO2MXoEtzLYbGtIezna8cU9EVvy7IpHgk/vbw9Gu/K4D1hD6fXx/O3GcqvLz88Mrr5SWpnz44Yfx008/GbQRkhoeffTRkuQH4brvv/9+la9NRERUWWqN5UU/QrKCsDho75+HSvuF+ULdNMBo+52HL+KHPw9YdX2prIZjEqkEQ+7phg4tgsy2G9KzuZjkQERERERE1UtjRUyiVuvEnUMP/reoyJLtv+7FykV/VzkmkWh0sLtivgKcXVSiVdcpuZ5ciqHTB6B51yZm2w2a3BcyeeXueRIRERERkfXUFpKaBVq1FrmZuTi+JcKqMTf/uAN/frK+xp6T6GVSFPZoBigV5U/aKVDYoyn08qLryO3kuGvGIIS1CzY75rBpA6o8LyKi2owJDkRUr7X3DbPYJjI1DpM2fIQ8TaHV4/55cT9y1aU7q5rSJ6glapIeejyw4QOEuPrCWWF8N1RPe2c83eHuGp0XEdVurQPd8O2UThVOchDaC/2E/rby4osvokePHuL7wsJCTJ8+HU2bNsWUKVMwbtw4BAYG4vvvvy9pP3/+fPTu3dtm1yciIqqoVs0bWGxzftNxzO33hsFNflUz48kNxdZsO4VCKx4KdB7eHlWhlwCqYE/k9G2CnP7hKGgVAJ2Z3wn0Oj1md3oRrSCFg7Eb/QC83Z3w8D1F/z0notpNBwl0+iq+LFShJCIioqpp2cJyTHJ67WE8P/AtaK1Ihij2z1eboVFbjkm6WIhJlBFxkCekGz2nuHgDdpfNJ0DcSqfRYVbb59CqV3MoHYzvhurT0AsTX7u3QuMS0Z2JMQkREdGdr2X3phbbHN0SgZeHvQOdzrqqDIK/P98Inc5ytesuwzqgqrQNvQB74888REoFtA29xbcalQaPtHwGHQe3hcLEcxL/UF/c/+KYKs+LiG6/2hST7Nu3T9wotqKvsWPHVst8uBUeEdVr45v2wnenN6NAa7p82bnUuAqPm6MuQGRqPLr4h5ccK9Co8G/sSWyNicDZlFgk52fC3d4Z3g6uSMnPQk1RaTVYfn4XZre7S/zZ9iacg06vh1wixYBGbfFcp3vQyNWnxuZDRHVDn3AfrJrVA3NXReBiUo7F9s38XMTKDbZMbhAolUps2bIFkyZNwrp168Rjly5dEl9lyeVyvPHGG5g3b55Nr09ERFRRd49oj1VrjkKlNrFQqECFS5tPQ1KmlLLOXgG9q/mKa5k5Bbgcl4xWTUoTIfJzC7D3z4PY//dRXDoejfSkDLh6u8Ld1xUZNysek+gcFMge3hJaL6eSY6omPsjr1BDO2y/CLiHDaL/CfBX+fmMVHlo8HSdz83HkTAyEH08uk6JflyaYPaEvAnxcKzwfIiIiIiKquDGjOuDvf05AozGx8Ce/EBe2nqnwo/S0GxmIO5+AsLalu5LmZedj9x8HcXDtUVw6EY2Mm5lw93WDq5czslKN31OU6PRw2BUFTQN3qEN9oC9eNCSTQxfojTw/D8iupYrJDtI86zaqKsgrxOpP12P6Ow/i1K6zOLn9LPR6PRR2cvS+rxtmvDcZ3g08K/gTExERERFRZdz9xHBs+H4bdFrTyQhRhw2f91vjZlwKrl9JQlB46XOS3Kw87Fq5HwfXHcPlE1eRmZIFD393OHs4ISc9t9J/gTpvV+vaXC1K0M7PKcDqT9bj4UUTcWxzBE7tOiceFxIe+t3fQ4xJPHxtu5aCiMiSkydP4k7CBAciqtd8HN3wSf8ZeHbXEhSaSXKojDWXD5YkOPxxcR8+PLoGWao8gzY1mdhwq7VXDmPruAVIK8hBan4WfB3d4WHvfNvmQ0S1n5CssOWZvjgUnYZfDsVgy7kkaMvsoCCXSjCslT8mdw9G9zBPMYu3Ori4uOCff/4REx1+/vlnHDhwADdu3IBUKkVwcDAGDhyI2bNno2XLmq2iQ0REZIyfryvmvTAKb3+wHupbd0NVqSE/fskguUF062cTti/fg1ZvPiC+/+erLfjh1V+Rl5Vv0CYt0fhOqNbIGdzMILmhhJ1cPOe2OgKyHNMLjHZ/tQU/nl+MlPQcZGTnw8fDGW4u5hM3iKh20aPqOwsJYxAREVH1CQr0xEvPjcT7H28on+RQqIYs4nKl/2u887d9JQkOQkLBsjd+FxfylJWSkGZxHOH6iusZkF/PgKpLY2hCSjdp0itk0IQHQNPIG/Z7zkOWYfgcxpzdfxzAtyc/Qsr1NGSlZIuVG1w8+JyEqC5hTEJERHTnC2nVEM9+9xg+ffQbs0kOlbHnj4OY+GpRdbaV763B8nf+RGGeyqBNcnxq1S9kzWObW57tCEnW+9ccwecHFyIlIVVM+vZt5A1ndyPPXYio1qpNMcnJMgkObm5u8PYuqjxjSUBAaSKZLTHBgYjqvYGN2mLjvW9gZdReHLlxUfw+IlPjoNZZX2rZmHVXjqBAo0ZaQRYOJRaNeydJyEnF+dRraOXdSKwiQURkC0LSQo/GXuIru0CNpKwC5BRq4ayUwc/VHi7myjLa2LBhw8QXERHRna5fr2YI/8YPazeexOnIBECnw+VNJ6CPSYJEpSnXXlqogTQ9FzoP0ze5JfkqbP5wLXIv3xAXDJ3eHWnTOat9naHxMxNHKGQobOEHx6OmK+LFX7iO2PPXENwiCN5cREREREREdNsMHtgSzZv5Y+36k4g8fx16rQ6XNh2HPv4mJKaqzVlhzecbkZyQiqSYZJzdF1XleWqDvAySGwwoFSjs2gSO/562erzoU7FIvJqEgFA/VmwgIiIiIrqNhk8fgJY9mmLd11sQdeSyuPj/4tEr4p9VsfL9NYiLuobEK0mIPFh9a7ekSRnQNjK/EFh6M9NoZYq0G+nwDvQSX0REt9PJMgkOL7/8svi6nZjgQEQEINDZC891Hit+F0dvXMKUTZ9U+XsREiQ2Xj12R3+/Kl35xVJERLYiJDPUZEIDERFRbdYgwB2PPzJAfH90SwReXbzO7F4ciqjrKOwRbvr8xRtQ56uxY8W+apgtoGngbrGNOtAdMJPgILYptG0lPSK6swgF3XT6qu0sVKYo3G116dIldOjQAbm5RaXqq/pwlYiI6E6s5PDErEHi+wNrj+KNL9dXeX9AYWfU7cv3VqqvXi6F3skeUGsg/W+HVXVjX/N93Byh9XaBLCXb6uuoC/mchKguq0sxCRERUV3XqHkgnlj8sPh+58r9WDjxsyqPmZ9dUOmYpCJkCWnQtCwoimGMkOQVQnbNeKUIxiREdVttiUlUKhXOnTtX8rljx4643ZjgQER06z+MUlm9+E4c5UqEu1dPeSAiIiIiIqo8ucJyTKKIS4XeSQlV64aA1PCmmOLSDTEBolrZoBKqUGY5qGkDW8yGiKhaaTQaTJ48uSS5gYiIqK6TWRGTVBe9QgZVm0bQCLufyovmIU3Nht25a9C5OVrsr3N1sDrBwd3HFf6h5pMmiIiIiIjoznxOcieR6PWw2x8FVc/m0DsbJjlIcgtgd+ACJEZWKHs18IB3oGcNzpSIyDghuUGtLt2YTtjw6XZjggMR0S1aeTWCt4MrUvKzavy7cVE4IFudXyPXGtOkG5ztHGrkWkREREREZD2hDLOLhxOy000vpBU2+pBfvQlZfCq0wd7QOSkhyVdDEZMMaXZBpb9uR1cH5GVZjkk0nk4W2yiuly+3XNaw6QNg76is0PyIiG6HBQsW4MiRI/zyiYio3mjTpwUcXRyQl10zzyuK6eUySEZ3gkYqNTiu83JBQe/mgMpyBTiJWmv19UbMGAQ7JSvQEhERERHdadoNaAWlgx0K84uqudUkeyclCnILK9xPmlsI5bZT0AV4QOvrJh6T3cyCNDFdTIAwZvRjwyD7L7GbiOh2ioiIKHkfGBgIHx8f3G6Gd4eIiAh2Mjkeajmwxr8JVzvzyQ0yie3+ye7k1xjPd77HZuMREREREZHtKB2UGPvUXUbP6exkyOoXjKQnu+DG012RNKsDckMcIL90Hcoz8VVKbnD1cjab3CC3K9onQ9XQA+pQL/ODabRQRt4webr9wNaY/s6ESs+ViGoHnV5qk9ftdPDgQSxcuPC2zoGIiKimCckNox8fWuPXderZFLm3JDeUkEqgsJQgrdZClphh1bW6DG+Pya+Pr8Qsiag2qQsxCRERUX3k6ukiJiTXNE9/d7PJDXb25hOkJXpAdj0ddhEx4kt2Pc1kckPPMV3wwEtjqjxnIrqz1ZaY5OTJk3dU9QYBKzgQERkxo81QJOZlYMX5XTX2/bjYOSJLZXoxkVavg5e9C1ILrCutXJa/owdclY7wdnDB2CbdMTykk5jIQUREREREd6bJr49DyvU0bFqy3SC5IWVia2j8ylRPkEuR39oXBY094P3bOSiS8yp9TaWwWCg1x+R5jUoDVy8XJLTwsziWfUQCZDmlDwF8GnrB2d0JngEeGDZtAPqO685diYjojpeTk4PJkydDq7V+J2giIqK6Yvq7DyL1ejq2Ld9TI9eTSCTQhfkBOaaTttU6PVyd7ZGVa7yN4sJ1SDTG/7vtF+wNR1dHeAd6Ytj0geh9b1fIZNwplYiIiIjoTjXro6lIT8rA7lUHa+R6UqkEGgsV4VQFaji5OSA3s+LV7vxDfeHgbC8+LxnxyCAxwUFqKsGbiKiGlU1w6NixI+4EXN1KRGTiRnpaflaNfDfe9i54ptMYLD6xzqrKC3uuRaJAW7ESbJ39m+Cjfg9XYZZERERERFSThJva6TcMdx7N6RZomNxQht5BgcwhofBecc7wuFwKnZsToNdDmp5rdKcgr0BPPLJwIr5+ZqnFeXUe2g6JCrXFdhKtzuBzp8Ft8dwPsy32I6K6RaeXiK+qjnG7zJkzB9HR0eJ7b29vpKSk3La5EBER1TRh8X/ajfQauZawwOfRD6bgrXXHLLbt0zQAW3dHQuXqUHpQrYHiQiLszieY7Nf1rk6Y8+UMW02ZiGqJ2h6TEBER1WdyhVxMuq4JfiE+eOzjh7Bg3McW2/kThdEAAQAASURBVPa7vyc2/7ADOp3xygym9L6nm5i0QUT1S22ISfR6PU6dOmVQwSEmJgY//PADtm3bhqioKOTl5cHHxwdt2rTB3XffjWnTpsHBocy9mWrABAciIiNiMm9iS0xpVpqtyCRSeDu4wl3phHY+oRjQsA16B7WCQirDqgv7kJyfabb/v7ERaOjijfjsij1Q7+AbVsWZExERERFRTbp6JhaH1h8v+SzcJs9r52u2j6qhGzSe9pCnFUAvlUDVphE0Ib6AomhXUkm+CvZXb8InIxduPq5o2b0petzdGZ2GtBOrKfz58Tpkp+eavcaO3/bB8+lBSMw1vzuRRGW4y1HLns2s+KmJiO4ca9aswdKlRYlfjRo1wty5c/HMM8/c7mkRERHVmAtHL+PEtjM2H1emkMHD1w1uvkJM0gw9xnRGx0FtxISKrw9cQHyi+QVMOxZvhL9Uipv5hWIyt1CxQXYjo1yS9a1aMSYhIiIiIqpVTu+JxNl9UdWSOOHhVxSTCHFCz7u7oP3A1uLGU95BnkiOTzXbf9MPO+Di6YyslOwKXZfPSYjoTnX58mVkZ5f+m/bzzz9j/Pjx0Gg0Bu0SEhLE1+bNm7Fw4UJ89913GDFiRLXNiwkORERG7Iw/Db24hMi2tHodBjVqh9d7TCh37t7wnjidEmNxjJS8ilWWcLNzxJgm3SvUh4iIiIiIbq8D/xjuXKpXSKFzsrPYT+NuD1laAQp6NYPOz91wDAc75LcMQq9RnfDU1P7l+g6bPgBfP/uTxWsUHo8FmptJttDqYBdb+gDA3ccVAyf2tjguEdU9OkjEV1XHqGmJiYmYOXNmSZXPn376CbGxsTU+DyIiotvp4C0xia1o1VoMmzYA094u/5xk5IBW+GbFPpN9JTkFkCRlosDNEbLMPMgy8qy6plcDD/Qdz+ckRPVRbY1JiIiIqPpiEo1ag5GzhmDSa/eVOzd8+kD8suAPs/31Oj30FhKsb+Uf4oOeYzpXeK5EVPvZOiZJTEy02D4oKKhC4588ebLcBlDFlEolfH19kZaWhtzc0o3yrl27htGjR+Orr77Co48+iuogrZZRiYhqObXOcLdRa9lJLeeN/Ra1B1czk8odvze8Ozr7NbHYP1+rgpe9i1XzcVbY44tBj4l/EhERERFR7aFRGe6IIVHrylVFMMZOrYM2wKNcckNZv284gcTk8onTIx8djOZdLcckuqMx8HRQmjxvfy4R0oKi+bt4OOGtv1+E0kx7IqI7iVCKefr06UhNLUrUEqo2DBgw4HZPi4iIqMapb4lJrCVUh7Pk9w/+RqqRSg3jhndA01ATydQ6HewiYsRH+rmZeXD1crZqPm7eLliw9iUo7BRWtSciIiIiojvzOYm1pDLLS2J/fWc1slLLV2C479mRCGnV0GJ/oRq2s4eTVfMRqkW89fdLYtU6IqKq6tq1Kxo2bGj2VVERERHljk2ePBnHjh1Dfn4+4uLixAoPx48fx8SJE0vaaLVazJ49G9u2bUN1YAUHIiIj2vmEVvh7cZTZIU+rsthOqAyxImo3XO0ccS41DvYyBYYEt8fQkI74fuhT6LHiBRRYGGdSi/44lHgBR25cLDmmlCnQyqshJML/JFL0bNAc45v2go+jG/+OiYiIiIhqmRbdmxp8FhbxOEQmI6+9v8k+bmpAGp8FVfdws2Pr9Hr8tf4YnK7exJWIGNg7KdH73u7ofU9XvL/1ddznPR0atelkCmmhBtOahmJ7ThZOXblectxeIUdrO3s4Kh0h7dcSnYe2x4gZA+Huw5iEqL7S6yXQ6SVVHqMmff7559iyZYv4vlWrVli0aFGNXp+IiOhO0cJCXGGMs7sTcjJKd/MzRYg3/vlyM3Q6Pa6eiYWDiwP6je+BHnd3xhdv3I9RfedD1dALUBQ9ypbezIRd5DXIUkoXIE14+R7s+fMQog5fKjkmxDbhHcPEhEUh0aLL8A4Y8chAuHpZt2kUEdU9tTEmISIiotKY5O8vNlXo63DxckZ2ao7FdupCNdZ+uRmFeYWIORcPJzdH9Lu/J7qP6oQPd7yB8X4zLI4x5fXx2LZ8Dy4djy455uBijyYdQsUqD3KFDN1GdhKrZ7t4WJegTUR1T22ISU6WqeAgJGP9+uuveOCBBwzaCNWuO3bsKJ7r379/SdUGIclh1qxZiIqKgkJh280lmOBARGREt4CmaOYRiAvpCVZ/P9YkNxT79fwucVFRsc0xJxB+ahOWDJuDcI8AnEmJNdvfXq6Ap72zmBwhVJsIc/PDrLYjMKpxF/59EhERERHVAZ2HtUNQ0wBcu1haZtT5YAIKmnhC52xXvoNOD9nf58W3envLN4/++HIzFCeulnze9fsBhLULxntb5iOoWQPEnI0321/h4QRvnRr2kEKr0yM00BMzR3XHwC6GiRlERLVJZGQkXnrpJfG9cCN++fLlYvllIiKi+khINvAP8cGNmGSr+1iT3FBsxaK/hB2hSuxauR9NOzfGos2vITgrHwnrjkPvqIRErYWkUF2uv0KpEHdCFf7U63QIbtUQU9+8Hz3v5nMSIiIiIqK6oM+47vjuxV+Qer189TdTrEluKPbzm6sMPu9YsQ8tezTFwo2vwjvQEykJaWb7y+3k/8UkcghLwMLaNMJDb09A1+EdrJ4DEVFFHTlyBAEBATb94oSNnqZOnYro6GiEhISUS2641cyZM8VqDt9++634Wei3cuVKTJkyxabzkuiFLSyIiKicq5lJmL55MW7kWf+LclV18muM0WHd8ObBFSbbuNk5IkeVD23ZO///earDKDzRfmQ1z5KIiIiIiGpCbGQ8XhzyNtISS2MSjYc9MgeHojDUXdgqQzwmv5kL112xsL+aIX4u7NIYmmAfs2PbnYqB4tKNcsc7Dm6Dbnd1wtdzfzLZ17FbY9xs4ScmNtzqyfv7YOpdXFBEVJ9du3atpATysL+mwsG3aruT5d/MwZZ7f7b6xn1QUFClrqNSqdCtW7eSUswLFy7EK6+8UnL+p59+wvTp00s+87Y6ERHVB5cjruKV4e8i42ZmjV1T2DG1Vc9m+OFV089JPP3dkZ6UafS/x7M/m4575txVzbMkovoak8THx1c65iAiIqKKu3D0Ml69ayGyUkuruVW3vuN7ILhFEH5Z8IfJNt5BXkhNSCsXkwg7nD/99UyMfHRIDcyUiO5U9SEmSUhIQKNGjaDT6cTP999/P37//XebXkNq09GIiOqQUDc//DN2Hl7pOg5O8prZre940hU09QhAV3/ju57KpTLka1RGkxsEn59cj/Op5ndaJSIiIiKi2iG4ZUMsOfsJHv1wKuwdi2ISeXoBvP44D99vTsDrt7Pw+TECvktPlSQ3iG2u3jQ/sFYHeWyK0VMntp1Bq17N0LJnM6PnZc5KpLT0N5rcIPjyj72IuW5+VyMiqj+Essu2eBXr2rWr+FDA3Kuy5s2bV5Lc0LNnT7z44os2+Q6IiIhqsybtQ8WY5OGFE2HnYKSSXDU4vOEEugxvL1ZzMEbYHTUzJctksuE3c39C4tWkap4lEdXXmISIiIhqVrMuTbDk3KeYtmCCGAvUhH2rD4nVI4Sq18Yo7e3EjamMxSTCsc+f/AEpfE5CRHU8JgkMDETr1q1LPh87dszm12CCAxGRGa5KRzzUahC+H/oUpJKa+SfzxM1ofD/kSTzebgS87F3EYxJI0LNBC0xq3g8qncZs/98v7K2ReRIRERERUfVz8XDG+OdGY8E/L0EiLb15Jc8qhDIuC4rkvHJ9ZCnZkEebXtBjdyoWEpXpuOL8oUt4b8s8THhpLNy8/4tJJBJxkdGQDyZBrS3aicMY4X7+mt2nK/ATEhHdfrt378bHH38svnd2dsbPP/8MmUx2u6dFRER0R3DzdsWDL9+DN1c/LzysqHbCgqALR6/gw+1viLGQi2fRLodSqUSs7jBs2gBoNaZjEp1Oj43fb6/+iRIRERERUY3w8HXDpHn34bXfnq2R6wkxxZWIGHy88y3c+/RIOLs7icelMil6jumCAZN6Q2fmOYlWo8XmH3bUyFyJiG6nsLCwkvc3b1rYgK8SaiatjYioluvo1xhzOozCZyf+qfZrCckMSrkCT3e8G0+0H4mU/Cw4yO3gpnTCgoMrLfaPzuTOREREREREdU2HgW3ERUUrFv5lVXu7E1chzciDuok/9K4OpYkPFxIgTyyt9mCMkEjh4GSPRxZNwkMLHkB6UiYcnO3Fm/jv/PivxWuzggMRFbPFzkJl+x85cgQBAQE2/YIzMzMxderUkjLKn3zyCRo3Nr5jNBERUX3WZXgH3PfsKKz+ZH21X0uISRxdHMRqdtPffRAZN7Pg6GIPJzcnLJq82GL/+AsJ1T5HIqqfMQkRERHdPr3GdsWox4Zi/TeWn1NUlZBgLTwTefzTaZjx/iTxOYmTmyOcXB3x1riPLPaPi7pW7XMkotqhLsckDg5Fz6AFWq3W5uMzwYGIyEoz2gzF2iuHcbWaEwh6B7YseS+XyuDv5FHy2dWu9D8KprhY0YaIiIiIiGqfSfPHYefK/Ug0U52hmHCbSxGdJL70dnLhzhckGss3loRKDZ2Gtiv5LFfI4RPkVfLZxVFpcQxr2hARVYaQ3BAUFGTTL2/27NmIi4sT348aNQozZ87kXw4REZEJ0xZMwJ4/DiI5PrVaFxJ1GtK25LPCTmEQkwhJDpYIC4+IiIiIiKjumfHeJBz4+wjSbpjfyKkq5AoZ2g9sbRCT+Db0LvnsbEW84WxF3EJEdCfJzc0VqzA0aNAASqV1z3pTU0vvD3l5ld67sRWpzUckIqqjhGSD74c8hXB32+4UWFZrr2A08ww0eX5kWBeLY4wM7WzjWRERERER0Z3ATqnAos2vIahpxWISiUpjVXKDoFWvZggKNz3+sO7NLY4x1Io2RFS/diaq6qu6rFy5EitWrBDfe3t7Y8mSJdV2LSIiorrA3lGJRZvnISDMr9qu0X5QG/g28jF5fuCDvSyOMWBCbxvPiohqqzs9JiEiIqKKESoovLdlHvyCTccMVdVlRAd4+pduRnurAQ9ajjesaUNE9cOdHpOsWrUKTk5OcHZ2RlhYGHbu3Gl135MnT5a8b9u2dLMKW2GCAxFRBQS5eGHt2Hn4ZvBsDA/pCJnEtv+MavXmFx2FezTA3Y27mjzfxjsYQ0I62HRORERERER05whsEoAl5z7FW3+/iN73dIVUZtuYRK/Tmz3fPMQPAzuHmzzfLrwBercLs+mciIiqQ3x8PB5//PGSz9999x38/KpvsSYREVFdEdwiCEujFuP1P59Hz7s7ixUXbEmv1Zk937p3C3Qf1cnkeWGn1bIVIIiIiIiIqG4JbROMny7+D/N+n4tuIzuKlaltSWfhOUmHQW3QcXAbswkSbfq0sOmciIiqS2hoKPLy8ko+b9myxap+O3bsQHJycsnngQMH2nxuTHAgIqroP5wSKfo3bIPPBsxE36BWNv3+zqddQ3TGDbNt3u09FVNbDoC9TFFyTEi0GBbSEUuGPgWFVGbTORERERER0Z1FJpOh591d8MbqF9B+gG1jknMHLiAptvRmlDELZo3AuIHtoFSUxh4ymVSs7vDp3HtsvsCJiKg6LF26FBkZRaXspVIpXnjhBTRp0sTk66WXXjLoX/bcpEmT+JdERET1ikwuQ597u+Gtv19Cy17NbDp2xM5zSLuRbrbN/FVzcdeMQVAoS5+TyBUyDJnaDwvWvmTzBU5ERERERHRnkSvk6De+B95Z9wrCO9l206Wjm04iOz3H5Hkh3nhzzYsYOq2/GIcUU9jJMfzhgXjjz+dsOh8iourUqVMnBAYGlnxetmwZ0tLSzPbRaDR49dVXSz7b29vjoYcesvnc5DYfkYionkjNz8K+hPM2H/dadgpyNYVwVtgj1K38zoFCAsOr3e7HE+1H4nDiRWj1OrT3CUWAs6fN50JERERERHeu5Gup4uIfa+llUqhDvKEJ8oBeKoE8JQeKy0mQ5qsN2iXEpSCjQANnZ3sEBpYvw2ynkOPFqYPw6L09ceJ8PLR6PdqHB8LHw9kmPxcR1R3CXmc6VG2Bofn90ipPp9MZvL9y5UqF+pdtHxQUZNO5ERER1RaJ0Uk4t++CTcfU6/W4HpuK5IwCuLjYo4GxmMTeDs9+9ximv/sgTu+OhF4PtOnTHJ7+5dsSUf12J8ckREREVHWxkfG4eKxi9/Us0Wl1uH75hpDJAFcvZwSEll+75eBkjxd+fAIzFk3C6T3nhaZo07clPHzdbDoXIqr97vSYRCqVitWu582bJ35OT0/HtGnT8Ndff0EuL59iIDxPmTVrFg4fPlxy7JlnnoG3t7fN58YEByKiSjp5Mxpqncbm39+TO76F6r9xW3gG4akOozGwUflyym5KJwwN6WDz6xMRERERUe1wZu958Ua7NXTOSuQOagm9i33JMW2gBwpbBcJh30UorqVDr5ADTRvilUXroVZrxTbNmvpj+rS+6Nql/A5I7s4OGNilqQ1/IiIiIiIiqk1OickFVX/MLiRgw04uPrCXhgXhuddWQ6Mpikmat2iAR2b0Q8dOoeX6ufu4oe+4HlW+PhERERER1U6ndkXafEypTIpnes+D5r/nJC17NsMjCyeibd+W5dp6+LmLlSSIiGqz559/HsuXL0dUVJT4ed26dejduzfee+899O3bV0yCEBIb9uzZIyZC7N+/v6Rvu3bt8Oabb1bLvKTVMioRUT0graYSx8XJDYLzadfwxPZvsCH6aLVci4iIiIiIai+psAjICsIiobx+zQ2SG0rIpcjv0xRad0foOjWDzt+zJLlBcOHiDbw67w/stfGurERUP+j0Epu8qoNww11YkGnta+nSpQb9y57btWtXtcyRiIiorsQkpujtFVB1CEXByE4oGNERhcM7oDDYC2pdaUwSdf46Xn7xdxw+dNkGMyai+uZOjkmIiIio6iRVjUnkMuhCA6Dt3graPm2h7dQMGh93g+ckkQcu4KUhC3Bi+xkbzJiI6pvaEJMolUps2rTJoFq1UKFhwIABcHV1RXBwMFxcXMTPZZMbWrZsia1bt4r9qwMTHIiIKqmzXzgc5HbV/v3pocd7R1Yb3NAnIiIiIiJqN6A1FHaWi3Nq/d2g83A03UAmhapDCOBkJAFCLDWqx1ffbBf/JCIiIiIiKtZxcBvI5LJKfSF6ezsU9msFbYgvUDyGRAKdvQwqNwX0ZZ5ia7U6fPXlNptUiyAiIiIiorqj89B2kFRyg1q9UgFd1xbQhzUoej5ipxBKV0PfKhS6NmHi5lHFhGoO3z63zGbzJiK604SEhOD48eMYOXKkwfHc3FzExcUhLy+v5Jjw7+7DDz+MvXv3wsfHp9rmxAQHIqJKclU6Ylx4rxr5/pLzM7EvwfZl1YiIiIiIqPby8HXDkKn9LLbT+LlabKP1cjZ7PikpCxERsRWaHxGRDjbYmQjcLZWIiOhO5R3ohQEPVu45ibpVEPSOJnb4k0qgcTRM5r4Wn4ZzZ69V6lpEVH8xJiEiIqrbAsL80Pu+bpXqq2sRDDiYiEl8PaAPNFy0G306FpdORFfqWkRUf9WmmMTX1xfr168Xqzc89dRTaNeuHTw9PaFQKODv74/OnTvjlVdeQUREBH744QfxXHWyvM0fERGZ9EKXe5GSn4VNMcer/VtKzsvk3wQRURUI2cTNmzdHfHw8li5dimnTpvH7JCKiWu+J/z2MzJQs7P/7qOlG1uxyasUOR6lpORWcHRERERER1XVPf/0oslKzcWTjSav76OVSaAO9zLbR2UmglwCSMuFMaipjEiIiIiIiMvT8D7ORm5GLE9vOWB+TONgBnuY3h9IH+QAJyQbH0hLT+fUTUZ3XtWtX8XW7sYIDEVEV2Mnk+HTADPw5+mWMCutSrd9lA+fqzXgjIqrrnn76aTG5gYiIqC6xs7fDm3+9iM8PLUTfcd2NtpFfz7A4jixXZbGNn59bpeZIRPVXlXcl+u9FREREdy57RyXeXf8qPtv3DnqOse45iV6pAGQWHlNLJNBLDX8P8PNnTEJEFcOYhIiIqO5zdHHA+/++jk92L0C3kR2t6+TsaHnjJ2cH3Lp9lG+wYVUHIiJLGJNUHhMciIhsoLV3MD7q9zDaeodUy/fpaueINt7B1TI2EVF98P7772PJkiW3expERETVpnnXcMxf9RzC2paPG+QpOZAlZZnurNJAcTHJ7Pgebo4IC/G2xVSJiIiIiKgOatWzGd786wU0bNbAYluJSgPodOYb6fWQ6EqXE3m7OyA4yMMWUyUiIiIiojqoTZ8WeOvvF+EfYkUSgkZruY1Wi7IpEP4hvggI86vSHImIyHpMcCAisqEP+02Ho1xp8+80S5WHQX/Mw6HrUTYfm4ioLtPr9XjzzTfx8ssv3+6pEBER1YjXVj4LpVBa+RYOey5AmpJd7rikQA3HnVGQXb0BZOUaH1SvR9a1DDw0ZjHOnIytjmkTEREREVEdIJFIMO/3uVAIFRrMtVNrIb1hvtKcRK2HpDi/QatD6q5TmBL2BM4fvmTDGRMRERERUV0ik8nw+p/PQ24nN98wIwcoVJttIklKN/h8I+YmpjZ+ApdORNtiqkREZAETHIiIbCjY1RffD32yWr7THHUBZm//Bkm55m/6ExFRkbS0NIwaNQpvvfUWvxIiIqo3GjUPxIJ/Xip3XFqogdPms3DcFglFVCIUl5Jgf/AynNecgDw5GxKtDtITFyGJTSrdSVXYMVWthSxbBalGh5ysArzx7ApkpJtIhCAiqsOll6dNmyYmUBe/iIiIyDihqtz8VXMtfj2KyGtiNTmjdHrI87RiTILUTEhOXYQkKxeZKdl4beRC5GQwJiGi+heTXLp0Cc7OzmIymfAiIiIi48I7huGln82v3ZIIzz9iEk030GghiStf+To9KVOMSfJz8vn1E1G9i0lqGhMciIhsrJNfEzzf+Z5q+V7zNIX4/cLeahmbiKiuEBYb/fzzz2jbti02btxYctzR0fG2zouIiKimdBzUFlPfvL/cceHWl/xGJhyOxcDhcDTsriSLiQ0l54Ukh5sZkGeqIM8sgDyzEPIcNaTa0oW8uTmF2Pz3iRr7WYiIiIiIqPbpMbozJrxs/jmJNDsfyr2RkN7MLEpkKD6enAW7PZGQHTgLycEzkJ6LhqTM4qHstBxsWbqzWudPRHSn0Wg0mDx5MnJzmeBFRERkjf7398K9T48020Z6LRmSS/FiMoOBvAJIIy5BkltgtJ+Q5LBtOdduERFVNyY4EBFVgxlthuL7oU+hiVuAzcc+cD3K5mMSEVWLgizgZhRw7XjRn8LnalZQUIBOnTrhoYceQkJCgnjMwcEBv/zyC7p06VLt1yciIrpTTHl9PN5Z9zKCmjaoUD+Ji7OYCCHRCTsYGW9z8gjLLxORlfQS6Kv4EsYgIiKi2ueRhRPx1poXEdDYz2QbaVY+lPujoNwSAbvd58Q/lfvOQ5aeA0mhCpJbFxr958T209U4cyKqU+pITLJgwQIcOXLkdk+DiIioVnn802lidTm/YB+TbaRxNyHdexqSs9GQRMWKla6lB89Bkmk+qfAkYxIiqmcxye0gvy1XJSKqB7IL83A500w5MyKiukjYbS1mL3DkeyBqA6Av8xBSIgNajAK6zABC+gDVUEJZSHA4efJkyefevXvjhx9+QNOmTbFkyRKbX4+IiOhOlpmSjWsXr9/uaRARERERUT2VdiMDiVeSLLaT5qsA4UVEROUcPHgQCxcu5DdDRERUCSkJaUiKTTbbRqLTQZKUzu+XiOgOwwQHIqJq8vWpTdUybs8GzatlXCKiKrseAax5DEg+b/y8kOwQubbo5dMCuOcboEH7avniw8LC8M4772DChAmQVEMiBRER0Z1Or9djxcK/TJ7XerlA28gbeqUCkrxCyGNuirun6rNzIPHzMjt2h65h1TBjIqqLdJCIr6qOQURERLWPVqvFb4tMxyRV0XFQ22oZl4jqntoek+Tk5GDy5Mniv6lERERUMRq1Br+//3e1fG0dGJMQUT2JSW4nJjgQEVWD2KybuJRh+51SHeVKPNCsj83HJSKqsis7gJWTAbX5Uo0lhCSIpXcBE5YDjQfa7C9AqVRi1apVuPfeeyGTyWw2LhERUW0Tcy4eCZfKV5TTSyRQdWkMXaBhEoO2sT/klxKhOBsHfX4BJA72Rsd1clZi+NiO1TZvIiIiIiKqGy6fuIqbcSk2H9fF0xnDpg+w+bhERHeiOXPmIDo6Wnzv7e2NlBTb/7tKRERUV50/dEmsKmdrHn5uGDyZa7eIiKqbtNqvQERUDxVq1TYf01lhj68GPQY/J3ebj01EVOXKDRVJbigmtBf6Cf1txMHBAePHj2dyAxER1XuqAuMxiaZFYLnkhpJz4QFQt2oEtb0UKlcF1K520NrJoP/vvLOrPRZ8NhHuHk71/vslIiIiIqLKxSRV4ebtgnc3vApnd8YkRGQdnV5ik9ftsGbNGixdulR836hRI8ybN++2zIOIiKi2UhWobD6mp7+7GJM4ODvYfGwiqptqc0xyu7GCAxFRNWjk4gNXOwdkqfKrPJaH0hkz2gzB/c36wMWOvyAT0R1GrwfWPFbx5IZiQr+/HwcePwBI6ucv5ERERNWhYbMGcHC2R35OQckxvVQCTaif2X6aJv6Q5+uK2gs33exk8HRxwKR7umDEmI5wdFLyL4yIrGaLG+/19cY9ERFRbRfcKgh29gqbJDp4BrjjwVfuw7Bp/biQiIjqhcTERMycOVN8L5FI8NNPPyE2NvZ2T4uIiKhWCWsbDLlCBo1aW+WxvAM9MfG1+zBkaj/YO/I5CRFRTWAFByKiamAvt8N94b1sMlZ6YQ7is1OY3EBEd6aYvUDy+aqNcTMSiNlnqxkRERERAEcXB/FGe1l6NyfAzsJeF1JJScWGYmnZ+UjMzmNyAxERERERWc3V0wUDH+xtk28sLTEDqdfTmNxARPWCXq/H9OnTkZqaKn5+5plnMGDAgNs9LSIiolrHw88dfcf3sMlYKQlpyLiZyeQGIqIaxAQHIqJq8nTH0ejq39QmY629chjZNqgGQURkc0eX3FnjEBERUYkZ701Cq17Nynwjt6YuWG/TltPIr4ZyzkRUt+n1Epu8iIiIqHZ67JOH0Oz/7N0FeBPnHwfw78VTd6NQiru7bAy2wdydubs7/zlTtrExYcI2xrAxBgx3dy1SpJRSd0/jd/d/3guVtLE6bX+f5wk0yeVyuabJvff+ZGjnBlnXql82wGyqfzcIQkjb0hLHJDNmzMDatWuln3v37o1PPvmkSZ+fEEIIaU2e/vYhdB7QsUHWtWLmOlgt1gZZFyGk7WiJY5KLBSU4EEJII3ZxmDXxOXx+yQPgUL8vGYPVjNMFaQ22bYQQ0iCMJcDJFQ2zrpPLbesjhBBCSIPR+mjxxcZ38ervT0vXuSI94C4giBcdjl7K9GYkJ9sqBxJCCCGEEEKIJ7z9vfHV1g/wwk+P1XuHleSXIj0hk3Y8IaRVi4+Px+uvvy79rFQq8ddff0GtVjf3ZhFCCCEturPc9B0f4alvHqz3ugqyipCdnNsg20UIIcQ9SnAghJBGpJTJcX3n4ejkH17vdankygbZJkIIaTAlGYDIN8y62HpKaYKSEEIIaWhKlRJX3j8OkZ3CwYkiFIlZLpeXWZx3eVAq5fQLIoTUiiCyC1fPC+10QgghpCVTaVS45tErENo+2OVyIsfB1CkEpRN7ofjmAdL/7Dq7vZxSTfMkhJDmHZNkZmYiLS3N5aWuzGYz7rnnHhiNRun6+++/jwEDBtCvnBBCCKknjZcaNz17NQLD/eu9L2lMQgipLZonqTsFvd0IIaTxjYjsjsRi14FEroR7BaB3cIcG3SZCCKk3c1nD7kSTrmHXRwghhJAKfS/picxz2VCczoCoVYOPDbPfO6IoJTfIeMeRxFGRAYjtGEp7lBBCCCGEEFInvUd1x5aFuxzeJ8o56C7vAWtUQMVtgr8W1ih/mLuGwmfDKcR0i0J010ja+4SQZjVs2DC3y4hi3bK0p0yZgiNHjkg/jxo1Cq+99lqd1kMIIYQQx3oM64Ldyw/Wefd0GRiLsPYhtHsJIaSJUAcHQghpAg/0mYDKGkO193DfKyCX0Uc2IeQio/Ju2PWpfRp2fYQQQgipcPsr10v/s3GJ6kgS1BuOQpGQAXlKLhQn06A6kAiZWXC6x+66bThksvqMagghbZEocg1yIYQQQkjLd8drNzq9zzCgvV1yQ1Xsdnb/nW/c1IhbRwhprVrKmGTr1q348ssvpZ99fHzw559/Qi6nTpqEEEJIQ7rj9fqNKWhMQghpzWOSixF1cCCEkCbQ3jcUd/a4BPNPbav1YxUyOW7qMrJRtosQQurFLwrg5IDI139HyhSAL1VgI4QQQhpLTK/2uPKBcVj3xxbbV2+pAbLjqXbLcCIHvnt7QFFlAl0QoE7LxeWX9qBfDiGEEEIIIaRe1U7H3TkaWxbstLtdlHEwd6vWYa4a2cD2uPTO0bT3CSHNbt++fYiMbNi5jOLiYtx3330QBFvhia+++gqdO3du0OcghBBCiK2r3Ogbh2Ln0v213h1evlqMucl9JydCCCENhxIcCCGkifxvxB0IUHvjr5NbUGo22D6EZXJYBdeBwez+s0WZGBjWqYm2lBBCPKTxA3peC8Qvq/8u63GtbX2EEEIIaTQv/fIEAkL9sWLmOuhLL4xJlHJYLbYxiSw9D1x2IYSIIECjAswWyDILIFisSE/IRJcBsfTbIYQQQgghhNTZ67OfQXBEAFb+sgHGMpNtHBLsA1GjdPk4Ay8gI68EHSODaO8TQpoVS26Ijo5u0HU+9dRTSElJkX6+9tpr8eijjzbo+gkhhBBS6a35L+LnV/7Emt82wWQwS7cp1QpYTFaXu4nNqeSlFyA8JpR2JyGENBFKcCCEkCYi42R4ftD1eLTvRBzMPguLwCPaJwTXL/vQ7WPVctcn9wkhpNkMfaRhEhzYegghhBDSqORyOR79bDLumXILju84Bd7KI7RDCJ4c+GrFMpyVhzwtt8ZjVSzhgRBCaom1TRbq2Tq5rbZeJoQQQlojhVKBJ756APe+d7s0JhEFEX6dQ3HftH/cPlalrNJpjhBCWsmYZMGCBZg3b570c0hICH799ddGey5CCCGEACq1Es/MeBgPfHgnTuw6zb7o4eWvxUuXvOt297BECEIIaW1jkosZfeoSQkhTf/DK5FJHhgWntyO5JAcyjn2JiU6Xl4HDrvR49Apu36TbSQghHuk4FgjtCeSerPsOC+sFdBxDO5wQQghpInK1EgkmC5auj0NGdjG4G4dBdj4HyjOZkOltVVSrksllOLD2CDr0aEe/I0IIIYQQQkj9xyQKOc7FJWPlz+uRnZwL5U39YQnwcrq8qtiAg//sRdQTV9LeJ4S0GqmpqXjyyScrrv/8888IDw9v1m0ihBBC2gq5QoYzBxKxetZG5Kbmg+OkXAenWDfsfasOY9JD45tyMwkhpE2jBAdCCGlCZt6KJzb8gF0ZlYHArpIbpPshYtrBpeAh4vF+k5pgKwkhpBbYSP+mmcDvVwOWstrvOqU3cOOPtvUQQgghpNGZzFa8/NE/OBSfBkHBQdRwACcDekXA3CUM2m2noMgpsXuMwAv48cU/ABG4+YVr6LdECPEYO+Ph5rSHR+sghBBCSOth1Jvw+hUfIH73mYrbVIdSYRnf3eljlAdT8O2/R6Sfr6MkB0JIKxmT/P777ygqKpJ+lslkePXVV6WLM6WlpXbXu3TpUvHz8OHDMXfu3EbaUkIIIaR10Zca8Mr495Bw8FzFbe6OF6wWHl8+8iM4GYeJD1zW+BtJCGk1LuYxycVO1twbQAghbcnMuDV2yQ218fPRtdBZjA2+TYQQUm9RA4A7/7IlK9QGW549jj2eEEIIIU1i1p9bpOQGXs1BVHKVSYYcB1Eth358Twg+aoeP/eujf2Ay1OzwQAghhBBCCCGe+vWNuXbJDYwquQBeOxMBs9V+YbNVup3dz8x5/29YzBba2YSQVkEQBLufExMTXV5ycnLsHl/1vvT09GZ4BYQQQkjLNPOlP+ySG2pj9rsLwfN8g28TIYSQmijBgRBCmsiO9Hj8GLeqzo8vsxixJfVYg24TIYQ0mM7jgQdXAaE9PVs+rJdtefY4QgghhDSJ3csPYP7iPVLnBsicdE+Sy2AY3tnhXaUFOhxYG9e4G0kIaVUEcA1yIYQQQkjrsH3xHiz7brXD+9RnchCw8CC8tp+F5lCK9D+7zm4vV5hdjCObjjfhFhNCWjoakxBCCCGkqg1/bcXqWZvqvFNyU/NxfMcp2qmEEBqTNAFFUzwJaT1STxzFodXLkX7qBGQKBWIHDMHgq69HSIeOzb1phFzUWOeFF7f8CrGeDYN0ZkODbRMhhDQ41onhqd3A+R3A/l+AkysAsUr1ApkC6HEtMPQRoOOYyorRhBBSC/vzE/BP6g6cKE6BQibH6JCeuK3DGHT0Dqf9SIgLJQWlmHr3dPATB0B0czaID/eDoFVBZjDXuE9XVEb7mRBCCCFt2v41h7H0u9U4ve8slGolRl4/FDe/cA2iu0Y296YRclErzC7CJ5O/cbkMZxWgPpvrchldkb6Bt4wQQprHe++9J1089ccff+DBBx+suC6K9Zt3JoS07EI2//2wBmcOnINaq8Lom4bh5uevQWQnmichxJWc1DxMe+iHeu+kMhqTEEJIk6AEB+KxAyuWYOucWXa3Hd+8Did3bMb1L72FToOG0t4kxInliXtR2gDJCbH+EbSPCSEXN5a0EDvWdjGWAKWZgEkHqH0A30hA49dsm7Zly5Zme25CSMP4M2kTfk5cY3fbsvS9WJt5CJ/0fwBDg7vSribEiXV/bIGpzARYrIBW5Xo/cRwEH7XDBIcOPaNpHxNCPCaKnHSpj/o+nhBCGtIf7yzA3I8W2922/Me12DBnKz5a8Sb6XdKLdjghTrAqqRaTtd77p0PPdrSPCSEeozEJIaS1+eW1Ofh72n92ty2dsRrrZm/BJ2umoNeIbs22bYRc7Fb9vAG8Vaj3etr3iGqQ7SGEtA00Jqk7WT0eS9qQvNRkbP3rN4f38RYLVs2YBovR2OTbRUhLcSIvpd7riPUPx/BIGowSQloQlswQ2h2IHmz7vxmTGwghLd+pkrQayQ3ljIIF7x+fBxNvafLtIqSlSDh0TvpfkZrPzqS5XZ5zEHjUeUBH9BxOiUSEEEIIaZuO7zxVI7mhnEFnxMesW5a1SidLQojDMUl99BzRFZ37U1d5QgghhLRNhzYeq5HcUE5fYsAnd0+HINQ/eJuQ1upMA4xJBlzWG+27U9I1IYQ0BUpwIB6JW7/aZQCESV+GE9s3094kxAmNwk2FVDd8VVp8PvYB2r+EEEIIabOWpu2ucZtSZoW/yoAAlQEmsRCbsuOaZdsIaQnUWrX0v/J0BjiL60kuWb4O8hL7DnS+QT545benGnUbCSGEEEIuZitmrqtxmzXYG/pB0dAP7YBMObBj6b5m2TZCWgK1V/3mSQJC/fDyr0822PYQQgghhLQ0rHucK1nnc7Fv1eEm2x5CWhpNPcckQREBeH7m4w22PYQQQlxTuLmfEAgCj7yU8273xKZZP+DQyiUw6EohlysREhODrsNGIXbAEPiFhNKeJG3a5TED8NfJLW6Xk3Ec7ukxDodzz+F0QRq8lBpM6jgID/a+HB39w5pkWwkhhBBCLjaCKCBRl1VxnYOIEG0ZvBT2HRv+TPkVqzL/A8cVwEvOoYNXewwIHIqefv0RqApqhi0n5OIx+qZhWD1rI2QGM7Q7zkA/rgcbgNRYTi6X4c5L+yA+qxTJJ1Lh5eeFcXeMwq0vX4fI2PBm2XZCSMsliJx0qe86CCGkufGCgHNHkyuuC0o5dJd3g6V9oN1yr/+3HV2nLUXZ2RyotSp0GRiLMTcPx+Ar+yMkisYkpG0bfeNwbPxru9vlFEo5rn96Eo5sOo6Uk2nwCfDGuDtH47aXr0NYB5pvJITUDo1JCCGtBc/zSDqW4na59275AhExoSgp0Eljkm5DOmH0TSMw5Mp+CIqwH78Q0hbHJNsX73W7nFKtwHVPTsSh9UeRdiZDKgA1/u6xuPWlaxHSLrhJtpUQ0nrQmKTuKMGhFbNaLMhMOAXByiMsthO0vn4ePa44JxsHVi7Bmd07YdSVQOB5yORyt48TRRGFmRkV18uKCpAcZ8sM7tCnPy6550GEd+pSj1dESMs1IrI7hoR3wYHss06X6egXhteG3oLxHfo16bYRQgghhDQWE2/FkYI08KKA3gGR8FdpPXpcuj4P/6ZtRnzJbsi5fHCcFWq5EpFaNXKMvghS62skN7Ckh0BlKWSyYum6QQBO6/JwWncYvChDN9/+uLndHYj2immU10rIxW7opAHoMawLTu07C0VmEbzXHIVhRGcIQT4Vy8S2C8bzd1+Ckf1igddvbtbtJYQQQghpCCaDCSf3JEAQRHQb3EkKlPYEC2BY+O0qbDudjkI/L1jlMig7h7NMBygTMqG7ojss0QE1Hmf2UiK+WxACjiRDVqBDXnoB9qw4KN037OqBeOzzexHTqz39ckmbNOqGIeg8oCMSjzgvqtapXwwe//J+DJrQt0m3jRBCCCGksRjKjDi1NwGiCHQf2hnefl4ePS75ZBoWTftPGk+UFugg8ALkCvexW7yFR/pZW8GoUkAak+xadgAcBwy/djAe/+I+RHeLqvfrIqQluuS2EZj/yb9Ijk9zugwrVPDU9AfRd2zPJt02QgghNVGCQyuRlZiAgyuXIvnYEZZpAO+AQJTk58GsL7MtwHFQqjUIiopGn3GXo/e4CdL16skL5+MOYem0j8CbzXbrZ8vVR8rxOCx87w3c/u4niOjctV7rIqSl+n7CE3ht2x/Ymnbc7vbO/pF4dchNGNeBTtgTQgghpOU6VXIey9K3IK7ojHTdSxaAk/lm5Bt5yGQilHIRXgolOvmG4qb2g3Bd9AApacEqCFDIZBXr2Z0Xjw9P/IZorxyo5ZXjEI6zIEJrQaDKAL2gggj7as7echOUMsHhtsk5AadK4jBNdxavdJ+CaK8OjbYfCLlYyWQyTF35FqbePV2qOiQv1MNn9THwflp0HNkNj394J4YPoaIEhJCGxSbv2aW+6yCEEE8c33ES/36zEke3xkvXAyMCkJ2cC0OpUbrOyThovdWI6d0eVz08ARMmXwKVWgneytsFCm1fvAdTH/oBpaO7QwysTAa1sGV6RcMcGwJLO+dBSaKXCqbu4dAeqywIxexbdRgnd5/B1zs+QkzPaPqlkjZHLpfjk9VvY+pd0xG35YTdfSzx4fFp92HgeJonIYQ0LBqTEEKaUtzWE1jyzUoc33FKGn8EhPkj63wujDrbmEQm46Dx1iC2Xwdc/cjlGH/3GCiUihpjkk3zd+Dz+2eAt9rPebDl6vN5uGf5QWlM8s2uqWjXJbIer5SQlkmpUuLTdf/DR3d8hRM7T9vdx7qdPPHl/eg7tlezbR8hpHWiMUndcSIru09atJM7t2LN91/VKgnBJygYcqUKxdmZUqJD91FjMeDKa/D3B2/CbDA02ra2790Pt7/zcaOtn5CWIKEwAzvS4yGIAoZFdEPf0I7NvUmklTLkikjdKsKiA/xigHZjOcgU9sGghBBCSEPYkLUX35yZBwH2w0s22szXe8HIK2s8JkwZAFOOH1JKSuCjVOG6rj0wuV9vvHJsBoLUuQhSOx+XGAU59Ly64joHAUFKvVSByBlBBCyiAn38+uOZrq/U9aUS0iqcO5qMg+uPSn+kAyf0lSoSEdIYclJyse2fPdCXGBDbtwNG3TDUo0pzpGVLS0tD+/a26uQ9fn8OqhDPuso6Y84rwakHv5V+Tk1NRXQ0BQUTQmpa8dN6fPvUL1KnaU+Fx4RChIic5Dx4+Wkx4e6xuOKBcXj50ndR2j8GfIcQh4+zaDnwWtfn2BQZxfBfYR/AXW7MzcPx7j80JiFt29nDSTi88ZhUoG3wFf2kzg2ENIbMpGzs+HefFFjaqX8MRlw3WEq2Ia0bjUkIIc1hyber8OOLf9RqTBIRGyYlLeSm5kvd5i6ffAkuu2s0Xh73LqyW+hWidWXCPWPxxpznGm39hLQEp/eflRKvZXKZ1AGbui2SxpJ+NhM7l+yDSW9Gl0GxGH7NIKkoGWndaEzSMKiDQwunLynGuh+/qXWHBV1BfsXPFpMRxzevx8kdW8Fb7Ds3NLTUE0dxaPV/SDy4D6V5OfDyD0TvSyeg59jLoFDWDHoipDXqGhglXQhpLKIg4sj3IhKXihCrFHVQB4oY/rYM4YMpyYEQQkjDyTcVY0bCghrJDQxLOAj20iNT5wtBtD9Rk2MpgkmhZ70eoLOYMT/+KDbl7YNPsBEBKtdJ12qOh156Ptt3mpITXCY3SNsi/SviRMlRLDi7B8vOnUOWvhRhXj64rXM/XN+xF1Q0wU3aCBY8RAFEpDGxidkZz8zC6l83QGAZZhcERwXirXkvoN8lVAWrzRA5iGI9x6D1fTwhpE0Er8545tdaBRIxrLtDOZaMt3zmOqyfsxVmUQTfLqh+GyWvHP/w/lpYOoVC1Kgg05uwfctxLNx8EGtPnENuiQ5h/r64aXhvTBrYHYoqjyOkNWNJ1pRoTRqT1WLF9Md/xvo/t9iNSULbB2PKghfRa2R3+gW0FTQmIYQ0gdTT6bVObmCyknIqftYVlWHpd6ux5vdNjZrcwGz5exd6juyGrQt3oSCrCOExIZj00ARcctsISgQkbUb3oV2kCyGNxWyy4KtHfsSmeTvsvh8iOobif4teRrfBnWnntxU0JqkzSnBo4VhigrWBkhIaO7mh3OY/fq74uTAzA+mnTuDY5nW49e0PodJom2QbCCGkNTs+S8TZf2uePDEVAjvfFjDhRxn8YylAhBBCSMNYm7ULVtH5yXaWeOCtNKPUrKlxn8rbDGOhtiJwUVTqoZQJkLlLVuAAGUQIFWkLnmMVWr88uQy5Rf7S9aTSQuzNTsWixKP4Y/zt0Coo8ZoQQurr51fnYOXP62vcnp9RiCnXfoIfDnyG6G6U+E8IIaRhrPp5AwS+SpWPejCWmSAEeNklKFTFhi4cX5ls7Ywip1Qap5iGxMLSNbzy8QBKRkVj6n/bKm5Lzi3C/rOpWL4/HjMevQEqBU3dEUJIfX337G9Y+8fmGrezCtlvXf0xZh7+AhEdw2hHE0IIaRArZq6vdXKDqzFJY+MtPL57ZlbF9fSETBzacAwb5w7Ce/++CoWSxiSEEFJf05/4CRvnbq9xe9b5XLwx8SP8HDcNIe2CaUcT4gKVgmnh8lKT0RpknjmFbX/93tybQQghLZ6lTESCg+SGcrwJOPN3w5xcIYQQQpjzZZlud4RS7jjYiJMBcqUtOSLWPwd3dtiLZ9tvxNUBhzHCJwFhimKn6xSrBBRZRDmqFONzyJYMwapIAzKlCLXGPsGbJTlMO1IZZEQIIaRuSvJLpQrYzhh0Rvw7fSXtXkIIIQ0m6XhKg6yHD/aBcWRXGC/rXeM+qxowBHLQh8tgDJKBl4nOG8wIAjTxWTD3jLJLbmAsPhwEleMH7j6Tgplr9zbIayGEkLYsP7MQa3/f5PT+smI9ls5Y3aTbRAghpHVrqDFJc9u78hAWfLq0uTeDEEJaPNY1dOMc5/POpQU6/PfD2ibdJkJaIkpwaOFUWi+0FvHbN8Ns0Df3ZhDiEUNcHErWrIX+8GHaY6TJGQtE6LNFiFK1OHvZBwDe6Prx6TspwYEQQkjD8ZLX7MxQnavkA1HkMCQyEa+NXI6+gelQyXgoOBFhylKM8E1EF3VWjceUWlSwCPIqt3AwCs47L7CkBl60DX+LTFpYRTm0WpbgYL9hrIuDwWpx+3oIuRgczk/DmrR4xOWnN/emkDYov6gMWXklEBx8wO9bfRhmnoc5OgDmDoEQtDU/n3cu299EW0qaG/ueb4gLIYS44uVX/87QlpgQKbGBjw4GFHJbg4YLF4sXYAiRwezPweoF8F6A1ZeDVQvw1WfZBAE+WxMhKzHB0i3C/jORJUq4GT4t3nMMFqvzDnmEXCxYheLjO09h++I9OH0gsbk3h7RBeRkFyEnJhSAIDoMzrRbXn6W7aEzSZtCYhBDSUsYkFwvWlZXnaUxCLn7sOPDY9pPSmCTh0Lnm3hzSBuWl5yMnNc9hB5/dyw84nD+pisYkbQeNSeqOekq1cN1HjkHcuuateidTKKD29oGhuKhe67EYDShIT0NEl24Ntm2ENLSyvfuQ/dGHMCWcrbhN1bkzwt96Ez6jR9MOJ40qY6eIk38JKDhlu64NATrfwKH7XRxkcg6iICJlg+MK2VUJ9gWrCSGEkHoZGzoQ67P3uFzGYFE5vJ23yKAWrXig73YoZI5P8vTyykC2xR+lgm2CgJ0LStMFQs8r4asywltphlqmgFEMQpklHyHqMnBV4iDZOSWrKJM6PlgEGVLLAqTb5XIRMpkIQahcuMRsQnJpIXoEhtVlVxDSJHZmn8OHR9bgXGl+xW1d/ULx7sCrMCw0hn4LpFFt2n8Gfy7fj5NJ2dL1iGBf3Hr5ANx99WDIZTLwgoCVZ1NQePcQQHXhtCMvQJWUD6+d5yC7EGRkMdKghBBCSMO59LZR2Dx/Z50fL6oUMA/uBLuBxAWCDDAGchDU1e7gAEEFsDxqRbIOWpUSPmUWmLcmQF5sAB/gBdHLfhwkshxtmeukrUKdAZmFpegQahu3EHIx2rvyIH58aTbSEyo7OnbqH4Pnvn8UvUd1b9ZtI63f5gU78fcXy3D2cJJ0PaJjKG545irc/MI1kLExiZXH5gU73K7HTGMSQgghDTwm2blkX7PuU5VWBbVWidKCsnqtJy+9AAWZRQhlyd+EXKR2LNmLn1+dg8xztvPUTNdBsXj+x8fQfWiXZt020vqtn7MVi6b9h6Rjtu49UV0icNNzV+OGpyeB4zhYzBZsXbjL7XrMRiq6R4g7lODQwrXv1Rcd+g5AyrEjzbYNk558AT3HjEPaqROI37YJ6adPoiCtbu3XivNyKMGBXLQMR44g9dFHIZrtAzHMiYlIfeJJxPw2C15Dhzbb9pHWSZcuwmoAco8KOPKdfaFpQx5wfJaIwjMiRr4nw5HvRaS7P2+PoB6NusmEEELamEGBPdDbrzNOlDiu2Gi0ymHibd0WfJVGhHqVQauwSEkHWbkB6BqdArXC6vI5YtR5OG5oD71VgRRdEHRWW3RRsclLunw2YDIuDe+NQwXnsDl7H7JMJ1BgToFKbpUSGwSRQ7FZg3RdAEy8fSVxGSegY0A+Qrx0sAoyGHnWMYISHMjFaV9uMh7bMR8W0T6pNaEkFw9vn4c5l96LAcHRzbZ9pHVKO5MBk8GMPam5+Hbhdrv7svJL8d3C7TidnIMPn7oan87dhG0ZuZXJDYxcBnOXUPC+GvitOA5OFNF9GE0ytRXsO5hd6rsOQghxZcR1g9FjWBec2ldZlKY2LLGh0veVw/u8WCKD888hkX3l8RZMv/86DLlyAA5tPIaNf23DsVNpOFPHX1ve+RxKcCAXrQPr4vDOjZ9D4O3HJOfikvHGlR/iq20foOugTs22faR1Sj2dDovJij0rDuD3KQvs7ss6n4ufXvkT544l47Xfn8G0h3/AkU3H3a6TfW+QtoHGJISQpjD2luHoPKAjEo+cb7Yd/smaKeg7pgcOrj+KTfO248TO08hIrNkh29Oq5JTgQC5WrDL+h7d9WaM6fsKhJLx2+QeYvvMjxPbp0GzbR1of1qEh9XQGrGar1DHkrw//sbs/42wWvn/uNySfSJWSbD69d4bU8dAdmidpO2hMUneU4NACWUxGGEpKoPHxgUrrhRteeRvrf/4Op3dvh+igDWdj27vkb3QaNAzRPXpLF/ahPuv5R1GcXfsD5RVff4r4QUNxzfOvQaVpPS3cSOuQ++23NZIbKlgsyPnmG3T866+m3izSSqVvF3FitoBiD7p7p28HklaJOLvUdXuzcl1ucjxhSwghhHhKbzWj0KRHgNoL3goV3uvzGKafmY/deXEQLmTjsc4JOr0aeSYvKOQCOvgVIsJbZ5et59cuC/3UqW6fTy7yiC8MR9mFxIaq2PnLXxM3Y1hwVwwK6iRdeFHAdVumodSSgzBvHTQKKxRyoINfEUotauTqfWC0KBCqLcXlnU7BS1lZIWNl9ls4qx+FG6JfhlJW8/kIaU5fHd9cI7mhnEmw4psTW/H7Jfc0+XaR1mnr37vw10f/4PzxVAgqBXQ3D3Ya/Ll+z2kM6xeDJTuOOV0fH+4Lc+dgqM/m4Yanr2rELSeEENIWGHQGFOeVwj/UD1pvDT5e/TamPfQDdv93QJqjqA3R1/lchFXLSd0aXLFEeGP2OwvRd2xPDJrQV7pYrDyuf/ZnFJboK5aT8QBnFSEqnK9QkVWK14e/jXF3jsarvz8Nldo+QZuQ5vbb2/NqJDeUM+pNmPPBInyw9PUm3y7SOm2cux3zPl6MlJPpbpddP3sr+l/aGxvmbPNo3dfTmIQQQkg9lRnMKNEZEeinhUatxGfr/ofPH/gO+1cfqfWYpCH8MWU+Plv/Pwy5sr90MRlMuCv6cZQW1r6jw/OjpuDyey/BS788AYWSQgvJxeW3t+bVSG4opy81YO5H/2DKgpeafLtI67Tm981Y+NkSpJ2p7GDozIqf1qPniK7Ytmi3R+tmHR8IIa7RUUgLoivIx86/5+Lkzi3gzWZwMjm6Dh+F0bffg2ueexWjbrsbK7+dhuxzCU26XflpKTiybiWG33ibdJ212uk2bDT2L19cp/WdO7Qfq7/7SkrcIORiYc3PR9nuPS6XMRw4CEtmJpSRkU22XaR1Or9GwP7PRbtuDe6c+UcEPMhx84oAtKH12jxCCCFtWKa+GNNPbMGq1BMwixYoOAUmteuF53tfird6PYTUshy8uWsR4guzUWZQg9epgDIZ/EOLERFZKq2DhfKUh/OwrzrR1tzBJdaxoXpyg1jxVcnhdEkGlqXtx50dR0u3yDkZJkV1we7CBMikJ7M9I8cBfiqT1EEiJTcAE7ucgkrO13i+06W7sDJDiRujX63nHiOk4WToi3Eo33VC0K6cc8g3liFY4027ntTL8pnr8O1Tv1Rct8SGOE1uKDd33UHps9kV/ZiuiLy0DwJ6U6eRtkL6vq7nnH4zxAQQQi5imUnZmP3uQmxbtAcWkwUqjRKX3DYS979/B95f8hrOn0jB1Dun4/wJ94nUFSw1xwQVPGgiI8o4qXvE+j+34drHr5BuUyrkGNstCv8dsO8qoSwTYfZ3slJRhPe+NOnHLQt2QqNV4eVZT3n+Oghpgs5eCQfPuVxm78pDKCsug7c/jUlI/fw7fSV+fOmPWj3mn6+We7Rchx7t4B/iW8ctIy0NjUkIIQ0tJasQv/yzE1v2n5USm9UqBa4Y2R2P3TIaU1e8hbNHkvDxXdOlat9N6dj2k9iyYBeuuO9S6bpaq8bgiQOksUVtsQSN9X9uhdZHg2e/e6QRtpaQukmMO+92vL9zyT4pwYf9DRBSHws+XYJZb82r1WMWfenZmCS2bwf4BNC4ua2gMUndUQnnFpTcMHfKSzi+eZ2U3MCIAo8zu7dj3lsv4dzhA1j8ybtNntxQ7sTWjXbXs5Pqtx1n9+9GfnotJiAIaWR8SYlHM+rScoTU571mFhH3Y+2SGxhzkWfL6bOALS8IyD4o1jhJkX1IwMGveOydyuPozwJKUiiKhBBCiH1w9e1bfsGWvN0ICchDdFAxwvwLsD1/H27f8iu2ZZ7F3Rv/xu78YhQLGljVHMRgC8R2JrTrkCfFBbEBaNVQHvZzminY7W6OK2lfcShWfgKgPLmh3PL0Q3aPKbCeuZDcUJNSJqBfWIbD5IZy8cXbUWTOprcAuWgUmw1ul2F/FyUWY5NsD2ndFbF/fd2+O6Ho5X4yqEjnwXuPA5INJjz+4UIcPpVm/xyiiH07T+Gzb1fig29WYubc7UjNLKz9CyCEENJqZSRm4dnhb2HjX9ul5AbGbLRI1bqfHfEW9q85jDcnTa1dcgOrBJaa7/Q+ucn9+TFFnq1Lw7rZm+1uT/lrJxRJufbLmgBliQBY7SuVcCYr/DYkQpNU+d23fs425GUUePw6CGlsnlT/Zd0dykrcj10IcUVXVCZ1C6mtknxbcQ13Uk6l44UxUxC/54zd7YIgYN/qQ/jqsZn47L4Z+H3KfGSeo3NDhBBCKiVnFODh/83F+t2npeQGxmS2YsXWE3j4nbnYu+0E3rpqapMnN5Rb+4f9mORcXHK91rd61iYU51EMDLm4jhPdsVp4GDw5V02IC4U5xfjzvb9rvY9KC3QeLZd0LAXPj34bCYfsiwjwPI/dyw/gy0d+xGf3z5CKfGSdz6HfFWmzqINDC7F17m/Q5Ts+yW4y6PHftI/AW61oLmWFlSfZS/JykHL8aL3Xee7gPgS3a1/v9RDSEJTh4ZB5eUHQV7YUr45Tq6GMiqIdTuolY6cIcx3OEagDAVOxZ8sKFuDgVwKu+ksmdd1JWing6M/Vn1fE6fkiutzEYcCznLQcIYSQtu2zo6shU2XCR14Z4COTifDVmmAVsvHc3nkoNbJ2DNW+M+SAn6/eaeHTYt4LKaYgdFA7DtxJ1gfhaHEU5PKq+aY115ZvqpzEzjRkIUGX6PL1RHi5nvQWISChdB+GBl/ncjlCmko7rwCoZQqYBOdjf2+FCuFaqkJJ6mf74r1SK++qOKOt2IYrQb5a5JU5HzNLLnyOs4nfz3/fiPmf3S9dX/7jWsycvwNFoX62djsX/LV0L+68bgieuW9cnV4LaX62xMT6jSepgwMhpNyMZ2c5Da4pyinGOzd8JgUy1Ja8QAd5egH4dkE17lOVAqYAEU6zpwH47rUl7RVkVlYgOXc0GYmHk6Blk9NnsmDpFAZRowSnN8HrXC64MiNMXYLB+6ggLzVDczYfXLWkB97KY9+qw7j6kQn0JiAXhchOYVAo5S7/zlgFysBw/ybdLtL6bFm4CyaD+zFIdYHhAXafxa4Yy0z47plf8cOBz6Xr/36zErPfWVhjLDT/kyW4+62b8cCHd9Z6e8jFgcYkhJCG9NnPa1GqNzm8L7eoDG9MmQdFtoeT9o2gIKvye/DUvgSknLQvMFJbLLH8wNo4TLhnbANsHSH1F9U5AjIZB0FwXowgINQPvkE+tLtJvWyetwMWs7VOY5L8DM8KN+lLDPjuud/wzY6PpAJQi6Ytx5wP/pbGKlXNm7oY9713B+6Zckutt4dcHGhMUnfUwaEFsJrNOL1ru8tl6pvc4B0YBIWq7q2ZBN6KnX/PRWl+HsoKG6a63v7/FiNh/24IQu0nJAhpaCy5we8618FtflddBbkvBROR+jE4LxjnUrc7AGUtupeVZQC5h4ETswUcmOY8qeLsEhEJi6iTAyGEtHU6iwkHio9AUSW5oSqFTIS3lw4aDZt8FqFSWBDhX4wu4TnoEp4NjnP9XbJP1wn5fE/IuMoxCS9yiCtuhz9SR0onK21JDbZLuLoY14bH4flO6/F651V4qdNaTG63AWcLf4DJmosii/sJBHfbxKzK+A+HC+MgiPaBRoQ0Bz+VBle17+Vymes69IGXQtVk20RaJ0cn35VJeQDv+rPw/klDoVUrXS4jq3L6Kik9H0fPZGDWm3Px5bT/UBTmb5fcUH7Sd/5/B/DvmsO1fRmEEEJaGVaV++DaIy6XqUtyQzn1ngRECyJUSpa0bSMKAgRTGWR65/MvmhO54Dgl9GO7Irt/O/z2317kF5chv0rnBXlBGTQHkqDdcQaaQ8mQF+khswjQnsyFz/50aE/l1khuKPfnewuxb/VhaaKbkOYWEOqP0TcNc7nMlfePg1Ll+piQEHeqfobWxl1v3ASlmzFJVQmHkqSKqT+++Id0qZ7cwLDP37lTF2PN7/YVsQkhhLQ9eYU6HDqT7nIZQ6Q/RHndQ/EiO4dLCaV1VZhVhAWfLpESwz0NsHXn9ynzcHB9HI1JyEUhNDoYw64Z5HKZSQ+Nh5xVTSOkGcYkd799M+QKz99/8btOI/lkGr558hf88vqcGskNDEvo+eOdBdg0f0edtomQlowSHFqA4txs6UR6oxIEPPr97+g6fHSdkzD2LJ6PX599BJkJpxtkkwylJfhv2lTMn/IKDDrPWooS0phCnn4KypgYh/epYmIQ9srLdV43O0FqOpcE45kzEM21r0pDWg+v0NpXtgwbCMRcIcOQV2XgajFOK0wQcfJP95OjZ/4RIfI0iUoIIW1Zsi4XaqXrYxS1wgqFgoe/dxk6huYjwNsAhVyQkiLcVW4WIcPBsk4YE70JZ4sexayE0fg0YRIWZg6DSbQFa5fH83TzzsJ97Xejr186ghR6+CjMCFQaEKrKQmLRd9iWdgU43nXgk1pmgUVw/6WZb9Hhm4TpmBr/OfRWN1XJCWkCr/YZg4GBCnjJav49dvELwYu9L6vzugVBQMqpdJw/kQqrpfk6RJLmF9o+uMZtMqMF6uPOJ3BH9uuIK0f0wNuTL4fcSYVrmUWErNrprZPxKVj4xTJYu0a63Kb5yw/QJCohhLRxiXHnG7WjCyeI8DqajH+/fxSj/byg3p0Aa1khDJ18AdZ5geVOVHl+Tm+B77YUKOReMIztCkvHEBT7azFz8U7c+MosnDc6ruqKC6uxhvnB3CUclg7BLgOgWFDS29d8jFcnvA+DrmbgLSFN7aGP70Fop3DW0rHGfZ36x+Ded2+r15iEBXYkx6dKHUxI2xXaPqTWjxl1w1BccttIPPfDoxcKZXjm+M5TUvcGd/758r9abxMhhJDW5dSJ1BrFOWpQyKXObXWl1qowL2Um+o/rXafH64rKMOuteZgc+xRyUvLQELKT8/DGxI/w5lVTYTI4H+cQ0lQe/WwygiICHN7XbUhn3PXWzXVeN8/z0nhEGpPwNCZpy+oyJhl3xyiMvXkEnv7mQXDuvi+qOLzxGFb+vN7tcoum0ZiEtD2K5t4A4lnyQGMrKy7CP1PfhlDPL2fWyWHLnF8hVyrBWywNsm1ZiQlY88PXuOm1dxpkfYTUFl9cjNzvv0fR4n8hlpXZ3cdpNAi45RaEPPM0FIGBddq5hX//jfxffoUlNVW6Lg8ORuCddyLkySfAKehjuq2JGgWoAwCTB12UWceGjldx6PsIB5mcQ/SlwGWhMhz7VZC6M7hTnCTCk4LUhlyg+DwQ0Nmz10AIIaT1sYhmt+ft2f1yTkC4rw7V55EtggwKmeuxRo6xAO/H/4KDab5ItUbDW+oGYU/JWXBNxFHIORFqzgKZgy4MgmhGctFUaPnhMFTLYVBxVoSodFDJeMggSAFSzl6XSZDDLCqg4ASc0Z3FrKQ/8WzXJ1zvBEIaicAXoKx0GqD/B9/1LINVkGF7QUfMShuCLFM4bo8dhGd6jYW/Slun9f/3w1r8PW0Zss/nStfZ5MD1T03CnW/eSJWO2qAxNw/H98/9Jk2IVqU+ngbOaIapdzuIPhrpNj9vNW4Y1xeP3TJKCiK6angPRAT54vt/d+DwWVtCBCfYOjc4+ho4u/MMeK2qYn3OZGQXIzWzEB2ighrypZImIIJzm+joyToIIcRsbPx5kvSELHxw7afIT8+XxhXGXqEV97GhB0tyqBiByOQQQ4Mg+nvVWI/JbMX0//bAO8gbYoH99ykf4gPj8C4Q/Ksct5mt0ves6lSm022L23ICM56Zhdf+eKYBXikhtVdYoMPsX7dh45pjMIZFACFhQGEJkJoFrYLDdU9eibvfvgXefjX/JjzBAswXzViN3LQ8cGYeIe2CcMMzV+H2V6+HzEEyBWndLr19JGa+9AcMOqPbZf2CfXHNY5fjvvdul4KIJj14GSI6hmLWW3Nxau9Zt48/tTfBo21Kjk9DTmoewuoQ6ESaF41JCCENxVyos1VicjVZwgvgTLWLlRJVClhjQiAE+uC0IOLDV+cgI8H52MATrAI4qwQuV8jAO+kWV1sH18Xhxxf+wAs/Pd4g6yOktvIyCjD7nYXYPH8HTAb7cwReflrc8PQk3PXmTdD6aOtUlPafL5dj8fQVFd1PWCGgm5+/Bre8eG2tgtVJ6zD+7jHS56jZ6P4zPSDUD9c9ORH3TLlFus5+juoSgV/fnIuzh5LcPv7ETs+KiZ89nISi3GKpuyJpWWhMUnd0RqgF8A1umhMlueeTkJ+aUu/1sG4TDZXcUO7cof0ozHTd6o2QxsCXlCDplltR+OecGskNjGg0onTjRoiGulXPSn/1NWS9825FcoP0nPn5yPv+e6S/+BJVqGyDZEoOA5/lXH5DK7RA9Dhgwo8cBjwtg1xdOZgK7sXBK8T94IolUcjVtdgwauBACCFtWpSX+0ROdl5fo7DWSG5g9LytC4MrZkGBxLIkaALioVU5Dl7q7ZsB9YXkBJbk4JwVUVw2rHzlF6qC4xGuLpGSGxgBMlhEucMqsCx4PN/iLf0sY5G5APYXHESeKd/t6yCkoQlCAXJyr4ZRP5uVJ5BuU8gEXBZyDjP7LEGULBtrzp+F0Vq3rgsf3DYNM575tSK5gSnIKpLa3X5234wGex2k5dB4qfHk1w/YTdqwiVZTvw4w924PaNTwUSowcXh3zP5gMp658xKolJXJ+QO7tkO42guKMhEKA6AwOU5uCAvygTq/1H3lu/JtoDEJIYS0adHdoprkeU7sPIWs87nQ9wl3eD9XflHIYI60jRkcsfAC9LH2czu8nwb6y3rZJzcw7Ht2UEeYu0W43DYWxFGQZQu0IKSpkxueuPdnrFx6CMby4A6WdBAcAPTpAgMP7Fy636PAD0feeOInfLlyP84PjUXZTUOhn9gXmSo5Zr05F189MrNhXwxpEViizOPT7nO5DAtimzD5Evx46HM8NPVuKKqMSQZc1sejoJ/ITmG1G2fQoIQQQtq02NhwyLNLXC4jzy0FV4uEAj7cH4ZJA2DpGwM+Ohh8hxDs1ZuQ3rMdhHp0gmAsJmuDJTeUWz9nK0rY+TxCmlhuWj6eHPQq1vy2qUZyA6MvMWDXsv2wmOs2T/L6lR/i59fmVCQ3SM+Zmo+fXvkTM57+tV7bTlomlkj9yKeTXS7jE+CFK++/FDPjpkkJ13JFZeW9wVf0h1+Qj9vniendHhaz52NpGpKQtoZKgzej0vw8nNmzE2aDHiEdYtB58HDI5HIHJ2j8Ed2zD9JOHkebJYpIjT+GwMh2zb0lpA0R9Hqcu+EGWDOzXC5nzcpC9udfIHr6106XMZw4gdINGyCazdD27QvfCRNQMGcOSpYvd/qY0vXrUbZzF3zGjK7X6yAtT/vxMih9RcT/KSDfwUe/1QCkbQEydoqIGsOj40QO+izAogf8O3HIOih61CnCO5xNx7pfVq4BVP5sOcpKJ4SQ1ia9rBhr006jzGJGz8AwXBbZBXIHlRHDNIHo7huD06XJTtfFkgLUCsddGiyCAkZeAY3c8YlFEy+XEg4YldyKcB8dcvXeNb57QtU66X+2tDudfHPxz7Eh6BCWjyBvPfyUhhpJEVZRDl7kpC4NrBuERZDDIChRxqurVIu2/S9CxKmSMxgTOtLtcxPSUIy8HgdTb0M3VWVCdFU+Cgte6rodjx0Ow+dHtuDLUdc5XVf8qQzs2psIi5VH755RGD28C+ZN/QfbF+91+pjN83fi2sevRL9LejXI6yEtx5X3j4N/iC/mTl2M+MNJ0I/vDdFPW/GpqDdYsH7nKWzdm4DxQ7vhqhFdkXXgHIxlRnQe0BH7jydLla6dVrUTRYwb3AUhSXngdEZwehNEL+cZ2D5KOfxUNc+ZkYuf9DZogHUQQlqvzHPZ2LFkH0x6E7oOisXQqwY6rNberkskYvt1QNLR+hdp8gTv574yiOjmq8kaYR9ca+7ZDlA6f5C5dzsoz2aDExx/8lktPI7vOIVLbqUxCWk6pYU6PHLV5yiROylcwLpQx0Qh/dQ5zP7fApcVfU/sOo29Kw+Ct/DoPaYHhl8zCDNnb8HWYh0Q7FuxnBDgDdOwzhD8vbD2j81Sd4juQ7s0xssjF7FrHrsCAWH+mPfxvzhzINFhENvGv7Zh+z+7Me6O0bjsrtFSJx7p+2RwJxzacNTtc1x6+ygIvGdHm37BPtC46TxHLk40JiGEuJOWkIndy2zJmt2GdMKQiQMcVmuP7dMBXQxWnLbwjo/rRYAP84d+fC9od5yWulK5InipYRreFagSEFtxn58XzCO6QbPlxEX1C2T7KH73GYy4dnBzbwppQ4rzSvBov5dQVqR323Hrrw/+wVPTH3S6zNFt8di/5ggEXkC/S3pK5yBYN+PDG485fczymeukMUls35h6vQ7S8tz03NUIigzEgk+XSN0TqtMV6bFu9lZs/Xu31PGBjS9ST2VIXUi7DumEI5vcx/pedscoFOW6Tp4rFxjuD5Wawr1bIhqT1B2945uBIPDY/MfPiFu/Wup2UM4nKBjXPPsqonv1qfGYcfc9gvnvvAbe0vhtmC9elQMIq8UCU5kOGh8fyBX1y1omhLUaK9uxA6XrN0AwGqDt3Rs+V1yB5HvucZvcUI51cbAWFEARFGR3O68rQ/pLL6Js23a72xVhYbDmu68AXPzvv5Tg0EZFDOUQMVSO/Z/xOL/G8TKCBUjbzC5VT8CL4DzozxTQGWg3lsOxWSIrYe0SbwQ2PSXi0q9F+EZTkgMhhLQGFoHHOwfW4p+kOAhVSj1Eefnh21E3YWBIzcTip7vcgJePfAeLyE7K238fsFUIogxKmeMEBpZEoLeqpP9ZkkN5ogG7zjo3sAv7DtPKLdDKLAhT6xClLUa2wRc5eh8p+UEh4ytiZD2ZembL6E1qnMsPQWoJj6s6Op4IEKVODjLpASVWNSyi/TDZyu67oOqkhlWwwMDroZV7QyGjoTWpH1EUkGfYhtyyjRBghp+qL0K8LsWG1IcxVO26Ne2AgEzEeBViZcopvDvkCvip7AMuSnVGvPvxMhw8Yp+gFBbig6Ll+9xuGwsoogSHtmn4NYOly7tf/4d1+xIcLmO28liz8yTWbT8JRXwaVCfTpNv1twwFp5BDZGMN9pkvlbou/xC3jUG6dQjB4Et6Y+5H/0BxNguWfs4niEyHkvDssDcxbfN7iOgY1jgvmBBCSJMymyyY/sRP2DhnG4QqAf2RncIxZeGL6Da4c43HsCCFN674EDzfsFVIHZHrLXBXP+9CszePy+pZOwS7XlyrAh/mB0VWsfPnrDImMVmsKDOY4euthtJB8SxCaoPneexdcQi7lx+A1WJFz+HdMGTSADwz4k2UdnQTyOPvA6iV2DhvO574+gGpI1hVrMrve7d8gWPbTlbeOO0/hPaIwvn+HZyu1tI9EorkXKz9fTMlOLRRo28cJl3eveUL7Fqyz2mg5brZW6RLVZ40iuvUryO6DOyIv79Y5nbZknwdnh3OxiTvIzTa9ec5IYSQlsFkMGHawz9i68JdUsxIuXZdI/HOopfRycG5qmffvR1v3PsN9P07QAj1tX3hlD/0wikwIdQPxpFdod16yuXzWzuFOUxuKCcE+YAP8oG8wFb46WLBVWnjbTJZoNeb4eenhVzuQZACIW7GJLuWHcC+lQdhtfLoM7oHBkzoi6eHvI6yYtfJDeXW/7kVj34+GUqVfSxhYXYR3r3pc5zcU3memx0DRsaGIfN8jtv1sjHJE189QL+/NujS20ZKl7eu/gj718Q5XIZ1FVk9a5N0qa3YfjEIjwnF0hmr3S5bmF2MZ0e8Jc2TBEUE1vq5CGmJKAqjGWyb+weOrF1Z43ZdQT7+/ex9TP5kOoKiKgOK2LL7Vyxu08kNHCdDx34Dpa4XuxfPx6kdW2ExGaHUaNFz9KUYceud8A2yb/dMiCeshYVIe+JJGOIqD0JK/luO7E8/q11fJ4sFGW+8CXNiojQI9bn0UgRNnozsTz6tkdwgPW9OjmerzcmmX2QbpssQcH5t7R8nBRG5YTFwyNgtQqEBrB6MBQ15wL6PBUz4wfVkKW8SkfCviJJkEdoQoMMEGfxjKSmCEEIuNh8dWo+/zx2pcXuGvgQPbl2AFRMfRrRPgHQbO7G/PGMblqRtglxmAvsmEEQOvCiTLuxnCy+XOh6YBTk0qJrkIMJXYZISF9jPLJFBb7WdVGTL27okcNJPAUo9lLLKLzGtwoqOvoUI0ZQhQ+8HH7UFmVa2TSngpW4PrqsfxRdG2dIXFKK0naxLgzvVv7HY4aBVsH33yTk5evv1QL4pF2uzFuNQ4W5YRDPUMi2GBo3BxIib4ae07TNCasPM5+NQ1uMoNVcm4WTiP5wu+ATeHA9Ftc4jjkRqSpCsD8QLO5choTgfSpkc49t1wf3dB+Prj9fWSG5gcvJ0wKCuUO44zmYOpDe8o6fKSy+gX2gbdv50OtbvPg24mqC8MI9r7RUNWXEZFBmF4DKLgPbBts9VsXx4bXuDSbcJIkyJOdh7PB0qFsx5NguCrxZ8bM3kBfn5HCgSMsFGx9Me+gHTNr3ncpsNZUYs/XYVUk9nIKxDCCbcMxbtu1NH0OYiipx0qe86CCGtz4ynfsH62VsddnR4Y+JH+DluGkLa2QJIBUHA4q9XYvHP62AK1IIzWCAva9z5Em18DozdXcw5CCLkRtfrUGZWJipI34IK9wE/oosAJ5VGif7jeiM1twi/rNiD9QfPwGTh4aNV49oRPfHotSMQ6GPruERIbeRlFODtqz/GuaOV44YNc7ZJwWuiTO4y8E7CAvtUKhhLy/Dh7V8iJT4NSrUSI68fihuenohPJn8rdR+pLr1KPKAzlk5h0vaRtivhUKLT5AZXPJniM+pN2LPiENRalRSU5E5GYja+fmwmPl71tsvlykr00pgk/WyWlKA9/p6xiO4aWZvNJw2IxiSEEGe+fORHbFmws8bt6QmZeP3KD6UxSWB4QEXg9aIv/sOSGavB5emgyCmFOcSv4mCm+pkLPiIAfIAX5C4qzrNuD+4IYf4XVYKDxluNPqO7IyU1H3P+2olt20/DYuHh66vBxCv74t57Rks/E1JbOSm5ePOqqUg5mV5zTOKky6EjuqIyvHfzNCSfSJXOO7Nk2eufmoj3b/kCp/fX7AqWmeRZ7BaNSdq2YztOOk1uqC82Dtm36rA0hraY3JXagDTv8e3Tv+K9xa+6XE5XXIYl36xC1rlsRHQKx+X3XoLI2PAG3HJSGzQmqTtKcGhiBl0p4tatcnq/xWjAoVXLcPkjT0nX1878Fsc3r2vCLbw4dR0xWvp/3pSXpUSQqvvr6MY1SDpyEHd+8Dn8QkKbcStJS5Txyqt2yQ0VapPccEHZtm0VPxf+OQeFfy8CjG5mudxQRtAJz7Zs9zssEqhx1n1+jQidrbiqxwpOAoWnRQR2t52iMeSKKMsCVP6AXwcOx37hcXqBfYLFqbkCoscBw96UQa6ioBRCCLkY5Bl1WOgguaFcqcWE2QkH8PbAy6Xr0079ia25B6SfywvzsIQEGceDt3Iw85VVUFgXBzMvg0ouQCs3I9Y7X+rYUPUQq8SqQaHFS0qMsIq2IAlvhckuuaEqH6UZUd4lKLFqUWT1RrIxGDGafFhFzmngt5mXY0t6D7tZhWKzFkEa11l9LBGi8rVwMPGKC0kYwMjgYbCKJkw/8y5KrZWBSibBgB1563GyJA4vdHufkhxIrcXlvGCX3MAowEPFmaS/NV5kCTau1zE0IgmHiqKwOeNcxW2zTu3DvDOH4ZvOQ1Njiu0CtRL8sJ5SAg/7AxULS4DUHHClZRWLhFFlyjaLJbi9N/lbiF3cdEyo8vaydo6QEhxUZ7JgaBdU8cVR/R2oSM3Hqq9WIOVUesX96sNJ4M/ngI8JhaBVQWYwQ56cC3lh5fsxbssJJMenIqZXe+l6dn4pMvNKEOTnhQ6RgZj58mws+WalXSXwuR8txoTJY/HKrKegUNKpUEIIuRjkpOZh3Z81kxvKlRbo8N8Pa/HQ1Lul6+898j3Wp2bDMqpjxXeLIrMY2gMpULCkzUagSiqC+lwBTJ3sO/aW8zqUAZnGB3y4n+MVWHioTld2B2ZbLSs2QAjwcv6kogi5i6qUV9w3DvkWCx7+fCGKyirPO+sMJizYfAS745Px26u3I9DXxXMQ4sD7N39hl9xQ8ZZkx1SsiyPrmuKuIq/FFojBAjPKpX6xDMt/XAuDzvE8ieDjPvhN9NZQtfw2jCW4fXDrV422/sVfLUdyfO0mSg6sjUNGYhaiOkdI17OTc5GbmofAiAC06xKJb5/+BSt+Wm8XiDfng0WY+OBlePHnxyGnjjuEEHJRSD+biS0Ldjm9vyinGCt/3oDJ/7tVOkf2zvWfYd/qyuMcPjLA2RlXu2VcJTi0RFc9PAFZ+WV48eW50OlMFbeXlhrxz+L9OHAwCd98NZmSHEitsL+x/13/mV1yQ8V9tUhuKLdv1aGKnxd8ugT//bAG+hJDvX4rodFUdLmt4q08pt45vdHWP++jxTh/IrVWj9n93wHkpuVXjJWzzucgLy0fwVFBUmdUlsDHuo5U7U405/2/ce0TV+KZGQ9DJqOOO6TloFm9Jnb+yEFYzZUHeY6c3b9bSnBIPX60RSY3yBVK8Fb3GWVVhcZ0RESXHjixZT0EVjmyCr/QMHQfMQbb5v5ul9xQVWl+LnYu+BNXPfNyvbadtE58aSmKly+H+VwS5H5+8Lv2Wqg7xcJ4+jTKdtbMyG8w9UxuYAJuublBNoW0HCxpIGGJiOR1IoyOP/IaRG2TG8oVnhWh9AGO/CAgc3dFEVbbLK2TsWXaFkDhJWDoq24qfRHSQAwGA/766y+sXLkShw4dQl5ennR7SEgIhgwZguuvvx733HMPlEr71pSEtBWb0s/CIrjuZrAu7bSU4LAv/7iU3MCKMVYlXRcBtdwKM6+AIHVUsNFbVVDKDOjqkwtFtaQF9jh/pe0YqdDiDSV4WEQZNDLX4wcvuVlKjGBfOLuKu0idIDprs+ElM0NeLcnBJMjxX9YIFFm9oFTw0CjM4GTA+ZIglwkO7bRd0MW3K3bm7YFFFKUEh/KQ3DB1KIYGDsaStDl2yQ1V5ZtzsCpzEe7s8KjL10LaJiOvQ3zxRhSa06GV+6Gn/2UIVLVDsekoioy2BCKGJTT4yoxQVuk4YhA5+Ljo4lDEq+Dnrcf9vXYj22Sr+pVWGoCTeZEwWAHTWKDdUhk4wfGUm+ilAgy87Q80yB8I8IN4+jy4fNt7feJD4xtwT5CWUi1rybersWneduQXlAKdQisz3NwQQnyl/+V5pVAfTIJpMAtEtT9ZLsspgfpAElKsNTvxsGSGqgkNjpw9fB4I9MbXf23BnqPnK4YhyoIyKA8kQeFg0mvjX9vh4+8tnbwnhBDS/NhErMACpl3YuXSflOCwefVBrDaWQexgn2hgjfRH6VW94LsmHorchk9yYN98ActPo3R0Bxj6hEPU2KbTZKUmeB/MgPehTAgaBfTje4IP9rF/rNkKvz2JgN6+GrjyTBZMwzo5fc4BXaPQ8XolNi/YWbF/+BBf8OH+iO4eheGPTsC0hVvskhuqSs4uxK+r9uLVOy5rgD1AWpuS/FJs+GsbMhOz4R/qJ3W5YoEPR7fF49S+s84fyAIi8ouAMMfJPhKWIM2OwdpHAL7etvPExaVATr7T5AaGM7qfS2TLsEA60rZkJmVjKRuTzN8hBZg2ltomNzAsSCjxyHmYjRb8+NIfOLT+aMV9Mhlnl2xdFQsw8gv2xWOf31uvbSZ1wH4l9S0m1kjFyAghzWfX0v12gZ/OxiQswWHdH5vtkhsknpwqqz6xUo08pxjWAG+Xy8jq8T2oUMphtbjuhF3dwAl9pe+r7f/srvGd1qFnO4y4bjBmfLfeLrmhqvPn8zB/wW489iiNSUhNRbnFUleG7PO5CAj3x+WTL0F4TCgOrItzmHDdUOqb3MBMeoje020xEY51QNi8cCdK8kob7Xlqm9zAsHNG7G+mOK8EP708G0c2VxZRc9b1hH3lLf9xHfxD/HD/+3fUe7tJLdGYpM4owaGJWS1mj5fZ8tevaIlqm9zg5R+Aa557DcHRHTD2rvtwZO1KHFm3EvriIun+ktwcLP/6E7frOb1nB8Y/9ATUXt6wms3IT0+VqmCw9XKUedZmlaxahYwp/4Oorwxmy/vhB8h8fCBUue1ipB04EN4jRzb3ZpAmVHxOxNaXBZhsH38XpZSNIg59LUqFu2pzcjd5DdD3YRGaIOriQBrX+vXrcf/99yMzM7PGfampqdJlyZIl+OCDD/D3339LCQ+EtDUmobKjgjPmC0nHfyQtc3oOnt3OQlZVch5GvmrwKodQdVmN5IaqfBVGFFs0EDg5lCw9ws3XA7tfzgngRbmUTLGvtBPidO0RoS5CiEIHL84k3Z5t9kN8WSTMohKx0Xkw8fKKDgw6UYVMvS8ivWqehPJVBOH2Di8gRB2FW6LvxLqsDdicsw0lVtuyOaZcTE/4FoEq1ydBDxbuxM3R90ElU8NotSCxJB9KuRxd/ULAuZnMIK3XiaL1WJ81Q+oAUm5X3hyWzg9/Lgcd1ZXL+shMdskNTInAQcOJUDh4C7HuDifMtgotYVodFEoBPOSI8ClBv7B0rEnsjSz4o7QLB+9kDjKLiGqrryDIAatWLv3Byfp1hHzrUQy+rDf6jO7RULuCtAAJh87h9Ss+QOmFJAP2tpNnFYGPCnT+ILHKnG6VcYHyXA7kmUWwdAqD4K8FZ+GhSMmHPLvYozlgZ1Yv2oVdK/aAV9gnUFuCvGGZ0Atem+KhyKn5Wb/y5/W4773bpUla0oToxD0hxAEWFOrpMt8v2g5Rq3K8kEIOw5AY+K4+UeePKFffSRwvwm9bMnx3pcIS4gVOEKHILUN57qnMaIX3qmOwRgXA2j4IopyDPE8H1blcwFrzoEuZmA0+wh/WDrbjt6oign3xztNXIyrUH49Puw///LQeS+NTUXgh6CoJwEtfLIXJ33WVveW7T+KFWy+RxiFGvQlppzOgVCvQoWc0jUnasFW/bMD3z/9m97c3+92F8PLTukxAqJCeDQT4AioHxUJYAYWCIqB/d/u5OD9viJEhwOnzgM7xXIzyfC4svdq5fOoxfTqgy8BY99tIWo34PWfw1lVTUeaio01zWz5zrRREVD1wyFlyQ7ll363GPVNugbcfddohhJCWMCaxmGzLzH7v7xr3yXNLIbhLTsh1HRCrOJcNa6dwaVzj8PH5pZAX1D2Zu7bJDSz59dXfn5Yqgudl3I/FX6+QEvRYhz2GVdd/7frPIYzq43I9q9cexSMPj5MS/ww6A9LOZEKlVSGmZ3SdXwtp+ZZ+txo/vzqn4u+Kmf3OAnj5ekGvq38CQmO69LaRFR2FSdvACgFMufYTz8bLzeSfr5Yjjo1JqiXruet6wj7b73j9Rmi8qkxOEnIRowSHJhbRuZvHy+SlpKA1kyuVGHDlNRhy7U3wCbKd0Nf6+iH52OGK5Iba4C0WlOTl4vSuxYjbsAbG0hLpdr/QcAy9/hYMuPLqBn8NpPmIVqvUmUHm7Q2ZSgXBYEDpunWwZGZBERYG3yuvhOnkSaS/8qrtBHs1gq5xWpc3GJkMIc8/19xbQZrY3qkXd3IDk1utOIWnRAHI2iei4yQK7iSNZ8WKFbjxxhvBXwjMZq31Bg8ejB49ekgDu2PHjiEuLk66LykpCWPHjsXWrVsxbNgw+rWQNqVfUJTbZfoGRYIXeaQbclwux11IPKguVFPqNmEhXFMqJSywjgu2hhCuvyMU4KXns4osYIKDSVQi2RiKZIRCb7HvImHbNhEKGQ+LYBv2sgSDs2WhyDd5S8/tpzJCzmkwLmwixoZeCx9lgLScr8IHR4tPVCQ3VG6z+1JtZsGEAlMh/jgVj4XnjqDYbDvxFeMTiCd6jcQdnQe4XQdpOXjRCiOvh1qmhUKmhFkw4GzpdugsufBVhqKL71hk6E9gV/ZH8OF4lIlqWOxOw5RAzlUmHLH0HRVXc9KJB4ccXoYAmQAtV1n4q5hX4pgpBPmCtmJZFWeFQbRNiLHkoys7xWPeiWGwBMogZMohKEXITaKU6FDlhcAYqITVR1658gAl5DcPweSP7m74HUcuWux4aepd0yuSG8qpjqfCEObneLKVJTdUedvKMwvt7pYZzFCfqGP7OCf25BSC7xzm+E65DMaBMfBZe9zhpO6hDUcx7o7RDbo9hBBCaq/70M4eLWM0W5DCqmy4SBa2RviB99VAXur5pLM5JhjmHhHgQ32lqvOK9CKo49OddoLgrAJUWU7uY0HaGUXSxR02pNDsOANrxxCYu4ZD9NVCo5TjjptG4I5JgxB4IeDVP9Qf20sNFckN5aShkBs6gwl5+SVY9ukyrPl9c0WAcHS3SNz91i244r5L3a+EtBhWixW6ojJ4+3tBqVKiTG/Cll1nkF9YhvBQX4wb2Q2H1sdh+qtzIarUtsSbKl203FYyVSps3bjMFiD+LNAhCgj0q/ybLNEBGTlAlxiHhcY4hQJi1xjgyClbuchqZKVGKM5mw9ol3OHTq7KL8dC0m2q9X0jLxc7rTr3z64s6uYE5vLHmeMPTYNq4LScw6vqhDb5NhBBCaqebB2OSbkM6o6xEj9y0/Br3KROypKIe7FyUI7LCMihybTFLzsj0Zqj3JMA0vCugtD/vxhWVQb03AU1B46PB7a9cjxuemQS/IFthkIBQP+xdeagiuaGCs+TzKoqLDSjMK8b8Dxdj/Z9boS81VHSAuGfKrRh/15jGeSGkWVjMFunYzSfAGwqlAmXFZdi6aI/UhSsiNgxjbhomdXH8/rnfajyWDRHY39jFTK6U457/3drcm0Ga+D3NxiQXc3IDc2RT3cYk7HUd33EKQ67s3+DbREhjoASHJhbaoSOie/VBWrzzD5kBE6+F1WKBwLuvrNoSRXbtgSHX3YQuQ0ZAJrc/SD93eD/ST8XXab0cJ8O2v37H+biDdreX5GZj46wfUFaYj9F3UNvPls5aWIj8mTNRtHQZhOJicGo1NL17w3T6NISyyiCMrPfeg8gCXB0kN7QIgoD0p59B7OJ/oOrYsbm3hjSB3KMiis+17l1tvbiP/0kLl5eXh8mTJ1ckNwwYMABz5sxBnz72VUR27dqFe+65B+fPn4fRaMQtt9yC06dPw8uLqmaRtqN/cBT6B0UhriDD6TL3dRsCA8+6Irg/lnIU9q9wViK+ChYOwWIiNHJeOonJEhcEJxE77P4Ate2LhBc5lFnVMPCqivtY8gELzK2eJCHnRFjs6rJyKLR6I8g6CFe1H4txkV0h5+yfc2/+YSSVnXewDe6T9GSQ482967E1076daLKuEG/uW4U8Yxme7k2BtS2dzlqErTn/4EjhZhgFPZScGrHe0Sg1n4ZFrAwQOpH3HsLk+eitsVUkYkVT8nkfJJnDYIVtLGwQKyugKqskOzhKcsgX5BBEltyjglmU4ZwlBGL1xJ5qj9MorOgamINU/kJVVI4Dr7ZVI5b+TEURVm85rL41Tw/xKgVenrYMs6dOlioJk9bv4PqjSE+o2QVLXqiHdstJmAZ1hBDkY5/cIFR53wkCFA4eX52gUdo6QshlkBXpIXcz2VuVKONgiQlxvf4QX/B+GshLag5AjGWVnVRIExE5j75D3a2DENK69LukFzr1i8G5o8lOl7nh6augM5ghuGv3xj4mtErAwwQHw6AOMPeuUjFezsHaIQjW6EBodyRAlVwzeKkhSQkR5/MwJDYctz14OYZeNVAq0FDV2v3xOKbOAD9IBGcC1CkKKEplbjuoMiqFHF/c/Q2ObbLvasGqpn7+wHcozivBrS9d19AvizSx/MxCzP3wH2ycu10KGNN4qxFz43CcNlthNFWOK774fi2Qo4esW6ytsACbLyksBlIyAN7FuN3PB2gXBs7Xu6LgFHILgbPJAJvXU6sAixUwmYGoMHBOAvsYTqWEGBwA5NknwpZTH0yCTG+CpVskRM2F8ZHZKnUDUx5LxZuTPsLMI9MQEhVU5/1FWg4WSJmTktfozyNqVOAjA6QEHhZAKs93XaijIZn0NCZpcjQmIYQ4wAI7WRIwO052hBVMuv6piShh3xEOjsNZoqZ6byJMwzvXSHLgdEZodp7xaL/Lc4qhXXMY1g6hEIK8pZPI8oxCqYhIY58NGXxlf9zywjUYMnFAjW5vrHND6qn0mg8yu49j02iU+OCWaYjfedrudtYB4pN7voGusEzat6RlY4k/0phk3nbpnKuXrxYd+3RA4pEkmAzmiuXUWhXMVbo2tDS8hZc6Hv8U9yUCw2iepC3YuWQfCrIu8sq09WTSU/BWk6MxSZ15UO+FNLSrnn4J/uERDu9jnQa6DBkOhVIJjU+VSeNWJDi6A7oNH10jueH07h1Y9sVHdV5veKcuNZIbqtq7dBFK8xv/pBipH9PZs8h89z2cvXIizl5xJTKmTIHx9OmK5IbkeyajYPafUnIDI5pMMBw6ZJfcIN1uNrNSLy3618FeU8Gffzb3ZpAGJlhEKZkh+6AIc0nl2ZDiRA9mKFu4w9+K2Pk2j4KTrf+1kqY3bdo0FF/4boiJicGmTZtqJDcwo0aNwsaNG+Hn5yddT0tLw08//dTk20tIc/t65A2I8rL9HVT3bO8xGBMRC61cA63cfXtK1j2hOiNfGbTtjFDl9Dw7d25Liqj5HcFuETj7pAU/pRFectuEsFWwdXSQSUvaP56t19EkQP+QEEyI6l4juWHp+WN498hcJ9srg0V6LufCVN1rJDdUNeP4DinJgVzcUvVpmHVuNl4+8qZ0+T1pDtL1toQgnaUIvyS+hT35K6XkBoaDDgWmI3bJDVGKAkQpsqDgKk/cs9i8UIUOvTTpkF1IHjKIapTwmgvrcY89qkxQINPqXyO5gbFcSJyoKty7BJqMKstyHAQlZ8sO4kVb5wYnSvUmLFp3xIMtIy0Jm1BiLZYPbTwmVfwtl+QiyFSer4PX+uPQro2DPKMYLB9Hxgpql3/sWnmo9idCXr2qW7UYddPAjjBcMxDmwZ1gHtARxnG9oL+yHwS/yk4kroismp1C5lHAkiPTn/gJ7986DQmHWnl2OSGEtABvL3gRwSzhzYGHpt6NvmN7ws9LDbWjDkJViSI4DxPYrCE+9skNVck4GEZ2hujB90xD6DaoE4ZfM7hGcsOipMN4KWUJygZYYOxshaGXFUWTjCgZYrK9Vqvr82p9gwNqJDdU9cf/FqC08CLvbkxw9nASvnjoe9zb+Wnc3/UZfPv0r0g9bQswy0vPx/Oj3sbymesqquGWBfogrtRol9zAmCw8TAEq8Grb+4x1WeCCA4Gusc47o7AODd07ViQ3SI9TKMBFhgLdY20dIHR6W3ID4+tB0RCfmsuIWjWEmEiInaOhLDJDu/IItBuOQ7vxBLz/OwR1XAo4QURxXimW/7CW3hWtjMlgkjoZHN50zK5qb9LRlEZ9XpHjYB4YC+PEAbAMiIWlXwzMl/SCcXwfCD6a2q1LLoPgo4aoql09yc/u/w4f3vGVyyQ/QgghjY8F9L+z6GUEhvs7vO/xafehx7CuUicDRbXuCuWUqfnwWnUEyvh0yLOKIE8vhHpfIrzWxEFWiyIbnIWHMjEL6v2JUB88B0UTJDcwPYZ1wdBJA2skN/z3w1p889QvjrdVZ2AnjV2ut1u7gBrJDVXNenMuDGw95KJ2+kCilCR/b6encH+3Z/H9878h/awtISg7ORfPjXwLK3/ZUFFQho1N4neftktuYNh1kVV/asEKs4ux6ucNzb0ZpIEZ9bYxyZHNxyvG1kxbOE7/6M7p+Pie6UiOdz6nTcjFgjo4NAO/kDDc++k3OL55A07v3gazwYDg9jEYcMVVaN+7X8Vy/S6/CvuWLvJ4vQq1GhGxXVCQmQ598cWbSWYxGVGSl4OjG9Yg4/RJyBQKqbPFwVXLbNVj6kCp0ULtXXmy1RG27vhtmzD8ptvruOWktviSEhQvWQLd9h2AwEM7eDACb78ditBQh8uXbtiA9BdfgmipDAIqTk1F8dJlaPf5ZzDExcF8rm0FIZSu34CId95p7s1o8QSriNTNIpJWizDkANoQoOMkDh0mcJCx4K56rjtti4jz60SYigDvCCD2Ghl8okVYSjnpujqAVawUcXqBiDOLRJguFKuSqYCYKzgMeJqDwrN4npo4oMvNQO4RwGoA/GOBwtOA4WLM5xKBjF1A1n4Boz+SIWIYVeEkDWfhwoUVP0+ZMgWBgY6DJJhOnTrhySefxGeffSZdX7JkCV588UX6dZA2JcY3ECsmPYy/z8Vhdcop6K1m9AgIw+SugzEktL20DAv+vyJ8JP7L2OJ0PRarDNmFgYjwLUZ7v0L4KBWI1HZDsZUFzDjvEMGq0NeoPH8h3rrquXQpucF2b411+ChMKLWopY4O5Y9ngbZVT5Oy9Tk6bWrkzcjQF+Df1L2IL06DSiZHB69IzDx+CDFBzsckel4FP87oMA5EK/fG+cIodmrX6ePNAo//zp/AQz2GOV2GNCwTX4rTxSuRrt8nXY/UDkB3/+ugVTj+ntiTvw8zE2eBFyuTpTflbMW23J14usvjyDDsQYHZvqqXl9z+hL0CPCIVzsfkPjITQuSlyOFtk2enjJHorUmHQs6e03UlI4OgQpY1AGYHp3NYFxSLWPN2rkwGJav4W60KPscDvEbmPLDpgq0HzuL5ey51uQzxrK3xpnk7sG72FuSlFyCsfTAmPTQB4+4YBbm7wE0PEha2LtyFDXO3oSSvFJGdw3H1I5cjslOYVBEtslM4/IJ9pTHJvKn/4t9vVtqqz7GKal5qXH7vJXj8y/uldvTuyIsM0G4/CcFXA2v7EEAph0Jvxi03DEFcUg4MKgU6D+iIE7tOo7BalSOW0GDtUrPgh+jvBcOlPaFdfwwyo+u/Ac7M2yrFuQoiEkWnk8i8VcCOf/di36pD+HjV2+g/rrfb10zqR/ouruccZn0fTwi5OHXo0Q4/x32JVb9uxI5/90hBEV0GxeL6pyah14hu0jIqpQLXjumNxVuOOl2PIqMY8rLK4zGtjwY9R3TDyb1nYKjW1cHcNdz1RinlMMeGQp3g/Ji+obDXy4JDVsxcjzMHE6WqlqG3dsdMv5MOG9eYY3noLVaoTyrBs0MHB8dwAd4aaA66Dg5mwSVbFu7CdU9c2ZAvh7jAumasnrVJCuRmBo7vi6seHg//EMdFB9b/uRXTHv4BQpUOCxk/rsXa3zfhnX9ewdZFu6SAonLsa9LajY1FneA4WH0UkJcnJLCbfLwgBvoDBdXGLex91TGqRpBbxd2+3hBDAoHcgtp9UVdZRipN0D0GiAi2uw2d2kF2OhlcXs2x1M6l+/DgR3e5fx7idtyw8a9t0nuMVSQNjwmRxiSX3DYC8mpF6WrLbDRj0/yd2DRvO0oLdFJF7GseuwIh7YJQVqyXxih+Qb5S99057y/Cf9+vQWmhLdmadSCZ9OB4PPr5ZOkzvC7YmOqGpyfh0MajMBvM6DwwFnGbj6Mk3z6hyzKwI/iYsBqPF/29YRrTE5pNx8C5qUzNEhpMfaNh7RgqfW+w97c8qxiqY6mQF5R5VAV426Ld0pjk07X/Q+9R3evwiklt0JiEEOJMbN8Y/Hz0S6z8eYN0vGExWtBtaGdc/+REdB/aRVpG66PFuLtGY8Of2xyuQ6Y3Q33MPkBU66tF71HdcHTrSek78mLFxiQsiZaNSc4eSYLaS412XSKwdMZql4+TnU2D0L+rraJPNYEBXrCedD0mYYHE2xfvxZX3j6v3ayCeKcwpxupfNyJu6wnpWH/wFf0x8cFx0vGZI6t+2YBvnvwZQpXEBPa+WDNrE95f9jpW/bJeOsfdluxcuhf3TLmluTejVSQ6r/9zGzb8tRVFOSXSHMZVD0/AmJuH1ygAUZd1b5y7A5sX7JDmRTr0bCeNSQLC/GEoNaBd10j4BHiDt/JS8QdWNICNVRjWgeSqRybg4U/ulj7360KpVuDax6/E4Y3HpM/+roM74cDauIrnuJhYzVZsnr8Te1ccwucb30X3IZ2be5NaPRqT1B0nstlNclEy6nRY8O6ryE+rXbaUQqWG1XzxtrfsOWYczuzdCb5KEHttsM4PQpXK/NG9+mDcvY9g8+xfkH7KeWUiZuCk6zD+wcfr9LzEnmA2w5qTA5m3NxSBgeB1Oui2bpW6Dmi6dwenUiHlkUfB51dr6S2XI/zNNxE0+R67m1l3hrPjJ0A0OMnUVigg02gg6Jq5uhQ7yduEnSFkfn7ovm+vx8sLej2KV6yA8US8tL98r7wCXoMHoy3jzSJ2vCUgx0GDF59olnwAWMoAn3ZAp2tliBzuedC91SBi++sC8mxzUw5xCqDdGA5ytYhkJ4WmgvsAw98GVt/L2n2j1vw7AeO+kUHlw0kJF4uvqFuyWFPShgHXzJOBk1OSQ2umMxuQpS+C3mKCl1KNCK8A+Kjqms3jXFZWFiIjIyuuZ2Rk2F13ZNWqVbjmmmukn0NCQpCbWzkxTAipVGzR4bUjXyHDWPNvhJ3XTM8PwLCIZET72gcgCKIXCi2An7LmuISNQE2iEqKDpIU0nR+yyvyglvOI9CmGl5Kd/Hf+XZFv9ILOqrHbJtZpoZxV4GARagbBTowYgtXpx2CtEsTOQipY4oVStKJT0IVsRPsth0pmhVpmhYr1i5DZvrQ5cOjq0xs3Rk/G09s24WiB45bW5R7rMQJvDBzvchniGRNvRY5BBx+lCoFqL5RZDThUeBwmwYyO3tHwV+ixJu1VmATb+7P8nSSDAiPDXkaPgOvs1ldkLsZLR16HxckBmUqmREevIpiFykA51okhSGkfwBAmL0aMqto4qJpiXosTpmjp76HYaqtmGqIoxVCvJGhljsfKLJlnTXFvRGn0EMHXuK+I97J7/5fbt7Avsk/ZB3Cwyr+qUh5WrQwWX9eBLMH+3lj5vefjaDZBtXHudiQeOS8Fqlxy6wj0Gtm2AzZYJaC3rp6KY9tO1rivfY928A3yhr7EgPbdo6QT7myCyVNlxWV4Y9JUnNqb4HQZpUqBMbcMl35mJ60dGTC+D1748TE81Ot5CHztTxV2G9wJX2x6T5oIYBVYbwy43+5+QaOUOjfAxSSF8kQaVPFpbp/LOLgjzD2cH+vJM4vgvanmvq4uqksE/jj9rdMAPlJ3rEta+/a2hMmYH16BIrh+7dut+cVIfmqa9HNqaiqio6Pp10NIG5JXXIYHp85HZn5Jjfs4kxW+q45LCXjVqTRKmKslzukm9gEf5jiAo+Jx8RnQHmz8an0smGfDX9vsgtiz34qFcYCL7WNjrPVe0jGkQqOA5ULBKPZVNrxnDF65/VJ8MnEqzh93PafEgjIe+ODOhnsxbRgLoGCB4ixIwjfQByUFpTiw5giMerN0fMQSSqZc+4ld1yxGoVLgpV+ewBX32icS56Tk4r4uz0oBF45oWZKp2QpLlU4NrOq8eXxl8TRnNFkGSI0TLxCLS4GE8/YLBfqB6xrjcj2iTg/u1LnKKqyhQeA6uf5uFk+dA4ptcztC53ZAtJNkI0EAd+QMuGpVgSNiwzAn8XvU5hh5/ZxtOH8sBV5+Wlx6x+g2H7DBxmlvTPwQJ/fUHDfE9Gov7SdWSTmmV7QUlDPgspqdcZ1h7/s3rvwQCYeSnC6jVCtx6e0jYdQZsWOJrQBBdUOvGojHp92LR/u8VKcE114ju+Gz9e9ISdwsiO/2iEfs7he8VDBdOUD60Ky++vIRgeJEKpRnMlx2lDNc3huCv4POJVYB2q0nIc+1JZN7omPv9vjl2FceL088R2MSQkhDyk3Ll6rV1zagmx3zsWM3Z0SlAgjwtX0RFevAmeoWQ1WvMcmcrXZB7O6IPjIIo7wghmihUIbCmqaR5khkMg5Dh3TC009OwNvj30XG2SyX62Fd++5686YGeBWEnXsuzC6SxiNsXMIK2+xbfRgWk0Xq0sESPt+58TPo9RYgPAgI8JOOh5RWC17/7E5cep19PFFaQiYe7vWC3Vi1Kp9AbylYnBWSaU7snG5ThryyYPlZJ6Z7vDwbA7LE4uQTqfD298Jld41Bl4GxjbqNFzu2T167/H2H4waWcKbxVsGgM6Jjnw5Sohnr7OmpotxivHb5B0g65jzBip0nuuzOMdKye1cecrjM6BuH4p4pt+KpIa+jLvpd2gufrH4bKo1KKkwwOfYpXOxYIsYP+22FQUnDaq1jkoSEBAwcOBBlZbZzXY39WUwdHBpYQUa61KEgMCISKq0HbVld0Pj44I73P8euv+dKnQfMBr3UPrbToKEYfPUN2D5vNjLP1mzrdTEnN8iVKpzeswOCtQ4RvBeUJzdwcjkuf/gp9JswUerO4OOiUnM53+AQtDX6gwehP3QInEIJn3GXQh3r2QETX1oK/YED0gll7YABUATbqunwujLkffcdipYsgVBcbDvwjY6Wkh1EU5X3nkIBOPo98zyyP/oIfFERQp95uuLm4n+XOE9uYKzW5k9u4Dh0WrMaxQsXwnAkDlAqYUpIAJ/XeKXytX08ryZZtmsX0l58yfZ7uaBg9mx4jRiBwHvuRsnKVTCnJEMREAj/G66H31VXSYkorV38bNFhcgOjS7NdmJIkIGOHgI5XcRjyKudRkEvcTNFlcgPD4uNYhwdX8o8Dq+4uL1VVe8XngFV3Cej3BIfYqzmpM4RQn2IQnK0TBFtvY2GdNLL2AZEjG+85SPNgB697s85g3smt2JgSB16sPLnBqsFfHjMAd/W4BMMjujVYMJnBYMDtt9+O9PR0ZGdnu01ukLalSlWy0lLPJ50IaQmyjBkwC2aEqyOgltet8l05f6UPPuv/IuYlr8LmnP0wCibIIMPw4L64JuIybMv9AYWWmtUVZZwevgo58kxeCFQZYJs65sCLMlilAGzHf/8qBQ9vtRkWQQ65jH1+uP6ckLOWDVVUTZpgY2mrUDNwWyNTYlU6+3yyPVbqJSETKgugiiJ4gYNcJtoFsfsqjRXPJ17oKyEXFbgz5jEMCx4LQeTRzluLowW21+pMlLfjKp2t2aGCRMQXp0Ipk2N0aC9Ee1VW6nRFby3DubJTECEi1rsbfBS2fVdiNmL60e3459wxlFpM0u9wWHsOUGbBIloqfmcTgs9CwTpuVPuNiLBiV85nMAsl6BdUmXi9JXe70+QGhheNdskNTM2wCEBRNWrICSVrn8CqXIqKivdtrtUP60p641Kf0whQGGokMKwv7o1EYxSe6/EeThUvQ67xJGRQItWYigJrmcP3XUm2D7JP1+ygJzPbtlFmcX8A2qOTm0rHVexlVfHvni4F65db/PUKDL6ynxQkwxIfspJyEBDmhyvuGyclPyjYRF4r98eU+Q6TG5jUU+kVP7NgRFa97LonJ+K57+2DcZz5/oXfXSY3MJYL1XhcObLpOB7o8ZzLMQkf4AU+0AucVYAis0j6v9yZg+ekduWPT7sf4+8eI1VQrRqYx0cFukxuYKzRQRUJDmxSNKZPeyQdrTkhoTqeBmtUAAS/momzbCJYc7BaoJ4TbKKVtZ9mVZRJ4xFZ1yZHpchruQ5CSMs6L5Byis2TWBDdLUoKNK2PEH9v/P7Wnfhp2W6s2XsKBpMFCpkM4wZ1xl1j+mJGXBaSi2oG9FdPbmDcVeX2dJn6YgmB6+dsrQwQlzpsAcZ+Pq4fqASsoTwUeQrwZl46+lOrFHjvoStx5dAeUmX0kKggtwkOYR0cd1huze/JfQmpOJGSDbVSjnF9OqOdh5PKLDjo+M5T0s99xvSoqHDKArpnv7MQG+ZskwLH2XiSBeHnpRdK7/1ycoXMYeAPC3T7/P7vpONmVnW+3Iqf1jtNbmCqdyWxPYlnVS5FjoWeifZzONWplG7Xo/DW4OcTX2P5j+tw9nASlFolzvJqlOpMThMiypMbRHY+LtLF+08mgxgdBu6k/fFct1pUk2TVlz+7b4YUGFNu0ZfLMfzaQZj4wGVSB4Ps5DwERgRg4v3jpEqh9e2o1hL88toch8kNTHJ85WcG+/zY+vdu3PLitXjiS/ukZWdmPP2ry+QGhv1dsL8XRwQ/Lwgx4dipF7Dr6dngesVAlpwNWZXfoSfid5/BvbFP4cmvH8DI64dIY4qqAZtCZJB9ckPVDqIXbuSjgioSHGRymZTwUTVIiiVaO0xuYBQymAZ1hNdaN5NGVZw/kSp1v6MuDo2LxiSEtD3s+O98Wj6sVgEdogKhVrs/xnElNDoY3+7+WDr+Y5XB2VhDoZRj7K0jpA500x76HukJNQP6nSU3sO66Ypf2QERQ5fkyUYSYWwjudAo4J4HlDYkFqbNOs7VhvTcA/O1+bJJFus5DD2SWwOc3C95++WGMnjTQNiZpF+Q2wSGsQ0ibe08eXH8UZw+dkzplsCBqT8dlLBibHeeweXUW8M2SGMpvZ+9Jds6dHftyMg7hHUORl1Zg995jxzSCWg307w5UORfPRi0ffbwKBpHDpOsHVdy+YuY6p8kNDKuM39xY8uyPBz+Tuo8kxp2HUqPEmf2JNRLLG1JtxiRbFu7Elw//KCWflPt72n8Yc/MwjLtzjJRYxH5P7G/lygcuw6gbhtS7o1pL8ONLfzgdNyQdS7Ybk2xZsBN3v3Wzx538vnp0psvkBoZ9dq/9Y7PLZXYu3S9d6uro1njc2+lpPPXNQxg4vk+9E3EcjUkaWsLBc9LYvq0n4DS21jImsVqtmDx5ckVyQ1No/bPITYR1JNj9z3zkpdhOuik1WvQaexnG3v0A1F51T3TQ+vhiwkNP4NLJD0FfUgS1l7d0id+xxWFyw8XC0Qe0XKFAbP9BOHtgT4M8h8jz2DjrR6SeOIrEg6xdnMFt54del7TOSqksyJ5d2B5nVfs5tVrqsJD15ltSIkG5nM8/h+/llyPq00+kzgtVseVL166D6WwC9IcOw3j8GETDhZOH7Oy8UgmYzQALiGf/lxNFWFIdTJi4SWJhSRLeo0bCa5DtQNl4yjZJ0GzYa3RzUKEIDYW6fXuEvfJKxW2WzEykPv00TPHuq0PWReDdLOrdPXNKClKffsZhkoh+zx7pUs50IRmicN58tJ/1K+Q+bibOLkKsS0HWfsBUKMI7kkOoVHSHc9i94dzK2h0snl8tIqAL0PVm1wcGFp2I5HUNmIVYz1VZdMDBaSJKk4HoSzmkrK/bCmMmAv0ekyH7oIh9H9d+HR2u4NDjbmDz8yIsNQvr2SnLch0ASlqeE3kpeGP7H0gocly9nCU7rD1/SLp0DYjEp2MfQO+QDvV+3tjYWCxcuLBWjzl0qDIrPyysZltyQlqi/QW7sSpzGTKNtmBZjUyDkcFjcWO72+uV6BCg8sVTXe/Aw51ukjo6+Ci08FJosSdvIwotzoNqVTJe6uBgFj2fPGAJCT4qdlrVUplw4IKFRQFVbe1Y3iHCKgfHyWp8vapkCvQP6IrtOWccJzdcGMvkGb0RqtVd6LAs2iU3VMVzVvyT/BPS9XuQULoHUYEm3OWjxOmCMBwviLIFkHCitE0Cz/oGqHB9jOcJrC1JQkkWkspypG92X6UMarkSBt6AnxL/hIgiaR8beQV+T/LC8KBheLP3rdDI7ZNtRdEAg2EVzJazOFF6FusKSlHE2345LBTHyHsh26gBz6tgsVjRNdQWOMSSZqwKwe7ETqS6yGFyQ1UH8n5ElNdghGh6SNeTy1LcJiWw32XV9wvPUilE+27cRtH9qRaDoIRFkEHPV90HHLLMAfgrbyS6a7PQWZ0jJUtkW/xwzBCNUl6LEHUw/FXRGB5amSxeZM7CP6kfINdkHwRUlO6LfQv6s0gm+ycXRMjNtvezzCqCswgQlc6Dom693LNuAskn0/DBrdMcBhMeXHdUulTFWvOyyZKpq96C1rt+yVjNwWK2YP+aIyjJK0Vk53D0v9Tx3zabxFjzu+uT5tUt/3EtugzsiKsfudzlcmwSa8uCXWgwTg7/BR819KO7gA+vkqBltkJ9IgOaY5UJGqwa2BcPfo+0MxkYdeNQbP9nT+0C7y4Ell3z2OV44MM7sfu/A9LERHUykxVe647D1DcalthQlh0H8AKUKflS8sPVN4/Eba9ej2dHvOk4CLCKzHM5oKY6hBDScFh1wvmf/IvU07bgUFalcNKDl+HBqXdBra17okNIgA/evv8KvHznOBSWGuDnrYG3VoUlM1ZJ1RA9pUzKgzXaRaEkUZSWaUws4aP36O7ScYQddshW9aDSg69rtrTZbMUHs9Zh748bsGfBropjMTYW4WNCYI0Jg+itlrpdyFNz4ZNTjHF3jEJrdPZIEtLYe4+z7WeVVo1C0Yr3lm1BSZVYkS+WbMU1Q3ri3Tsvh6pakL+RBWEfOIPkzAIcWxeH5EX7YC02QFQrwcVGQdYuFKzZlcxigbWgBOgQIT2OKyhBxvlccNWq37qravr9c79JFR5j+9jOj7HgnNriWBA4S4pwFaTPi+Cqd+mqWrDqAhnPuz1NHRUTgvbd2+Gp6Q9W3Jaemo93X/sbKeft/37E0jLgTJWOKIG+7o8LHSSfXP/URHiC7b+pd34tJfhWt3fFIelS1f7VhzFwQl98+N/r9fqMai4msxV7DyehRGdE+6hA9O/puHoj67DGOsbUBktUZ11Ixt891uVyeRkFUpJ2XfHtgsH3ia0YaEvnddqHQWgXAsWRRMhyahbVcKUotwSfTP4W979/h9QRomplVlF+4TyRo49adhs7r3RhbHzjs1dh8v9uxZaFu/Dds7MqFrPGuj6PLAR6QwjywXW3jsTNz1+Nxwe8AqvFdVf4zHPZlOBACCENaMWGY/hryV6kZdm+Q3x9NLju8r545M7RUNWj0ApLcnjlt6fwzHcPozi3BH7BPtD6aLHgs6UOkxtcEXvFskGO/Y3suzAsCKJaBRw+06gz6FofDboN6YRD6z1PyrPe5Q/+vmrbzEQqoHtBhk9fmoHhf/TBrmUH7BJ+HfEJ8JICvVujMwcTbckdHAe1l0oal+SmF+C7Z2ZJXQ+qBnqz5Nvnf3y0RgEg1lWLJZyyTgosWDrh0LmKhAWZQiYFwlstVilJt2oiA0ugzzqXU2ObpGSF7h3tkhsqcBy+/mw1+gzsiOj2QdJNiUdcJ642Npmcc9thuEOvdlIXsqe/fchufuLdGz9HeoLrLut1xZKZPHFqXwI+vXeGw8T1Hf/uky7lWFD5nhUHpePW95e8CqUHCecXY1dDdn6DJb6wLhfOunmz4gHuijBVN+/jf6XPqtE32rpTO5OZlI29K5xUvW0GrMvjR3d8hUc/myx1zj680fPP2qpue+V63Pn6jVj7+2b8/NqcWj2WzXWzcfS1T16BR/u87HZ5NiahBAfiiQ8++AD79jnuythYKMGhARzfvB5rZ35jdxsLto9bvwrZ5xJw+3ufQqmq34kxhUoFv5Aw8FYLVkz/DKd3b8fFbODVN8Bi0CP5WJx0HB7TdyAGTroW6375rkGfR+CtOLVzq0fLKtUa8JambenW2MznzyNjyhQYDnj4RS2KKF2/HukWC9rP/LHiZt3Wrch4403whYVOH1eR1FA1uaGeCv/6qyLBgSVmNBdFRATCXnkZuV99DUuG89azgXfVbNutjIxEp3//RdmePSjbtVvaV9rBg6SOFKXr1tVru4IeeEBKSPFE4dy5rjtgOGCIi0P21I8R9cnHaEmS1wlS5wRTxdtVhE87YPBLMoQNsh/q63MAc2VDC48d/UlExytFKH1s62PB/jmHbMGJYQM5hA8BMveK4GtXQKhJnFkkYuR7HDJ2ANbavSUkxnzAUgaE9OUAVrm6FgUivKOA4W/ZJgC0wbzbBAd1/bpvkYvMzvSTeHbTT9BbPeskxZIg7l39FWaMfxyj23neXrAhCIKA33//veL6iBEjmvT5CWkMW3I2YEHqbLvbjIIRm3PXI0WfjBe6vQGlrH4nxtRyFcLkQTALFnyT8B2SddsR4GaVapkVegddFBwps6rAo3JZE6+UkiScYXEjLKBdzgmwskBxKwsYl0MQOZQZ1XioyxgYUIjDhYmQcRyGBXXHze1H4524vyvWUT25oZxZUCBT7wcfhRn+Kr3D5AZGDh6+Kh3iSyrHJF5KCwaGp6ODfyHWp/aAVWTJFrbnClDJYBLYmKRm1fGW6lxpDj48vgTHipLhozJBo7BKr1clsyJApbcr2O6lsMBLUYy44h346LiAj/pPrrjPYFiNosJXIIq2g7xYDngkiMMhQxT2GqIh5wAfuQF+SjlMvMI+y+BCh4M8kw8sF5ILgpR66X93E0Eni/7F2Ii3pJ/VrA2WEyrOCo2ch0WUQ3Wh+4INB6OghJe8cqxZyHvDIuZD6aKTwzljGHS8pmILA5ShmBR5P35N+gdGoRjxhnbSpboJYZfVuC1AFYGHO32P82WHkVwWJ60zUtkXs1akwKSzb8nFgpoUOh5V39KqEh7mAA4i28nV3H/9MIzs71nVliXfrHKY3ODKse0n8curc/DcD4+iJVk9ayN+e2ueFDxTrn33KLz0yxPoM8b+uIZNaJUV296PtfHji3/gsjtHSxOlrIDEgXVxiNt8XDoxPeiKflLXgV3L9rudMKwvQa2AbmJvKTDSjkoB08AO0t+i5uiFtngXzP9kCd795xXsW3kIJoPtHIKsyP0+kF2osJWbni8lJrCKZM4qHLEkB+2B89AcSoaoUoCz8FJ1O1bNiE02M4HhATCUup5gZt1ECCGENAwWDDvzZfsxCfsOXDx9pRR0/MmaKfXu3KRRKxGpVkoJhG9f+zH2rTpcq8ezZDhzXgT4EFsV/upUCdmQO6lCXxd3v30zspNzcXz7KamS/7CrBuGGZybhnRs/r7Gs0C4MyhwOljBX7ZQAeXHN8ZXRYsW6g8nQVEluMI/sBiG8MgCJBehbe3eAbJgaRl5A/fqPX1zY++vrx2bi9P5Eu9sFrQIFdw+A4F0tsZoFvh2wFSyaOrkySGX9/tP4eM4GlFapsokb+0F9knV+8JO6G/AC6y8H8CzBMrKyM53Ifu7cDvIjCeB0np+UZcc5/32/Bs//+Jh0nVVzrS12DCRPzQMf67zzmqLMWnNslFtgdzWyUzge/eJefDNzG0qKnb+G62+rGYzWrn0wfpn3BPbvScSxw8lS5fw+faKx5ONF2B9fJdnAk0oG1ZZhgerOkomrWzx9hcPkBldYsMnvb8/HE189gJbk3zWHMWvBLhRXCZSLbR+MN56ahN7dImt0jTOW1f6z7ZunfsGoG4dJgXnsfCoLXGJBduz3O2TSAOn3smPxHpddR1wRNSrwvTs6fl/IZLD26wTlljhwdVj/nPf/xv8WvYxDG45VjJnc/m2yzbiQpJSTmivtMzYmqdhedvFy3xW989jueGGm7W86IMwfeen2f2vVsWUIIYQ0jD8X78HP83bY3VaqM2Le0v1ITM7F52/eDLmH3a+cYd+LmphQqYvX61d+IH3X1Ibo61UzuaEqfx8g2A/IdzPR7qF7371NKkYSv+sM5Eo5RlwzWBqTvH7FB55vs5oDf7uL7ytvGUonqrD1m90erU/jo4FJb26RCaauEhumP/6T265WVZMR1vy2STquevHnJypuZ0mpM5751a5DclWCVZAurjqE1BDkz1r/Ob1bEEWs+Pcgnnj+ijqPSRpKu66RePTzyfjige9dnlO/wUGyQUzPaPx2crp0nuD4jpNSAkifsT2waNryOgeYl3vs83vRc3hXj5b956vltT4+ZonXc95fhIemelYA92Lx7/SV+OvDRSit0tWjU78Y6fx810Gd7JZNOp5Sp7mMLx+ZiaFXDYJKrZTGJCyB+fj2k9Ln2bCrB6HP6B7Ytmi3Xee22hI1Sljbh0DUqsAZzFCk5Emdouvrt7fnY8rCF3FsW7zbpGdH2Pkks9GMvpfUPpam56hueGbGw9LPfsG+UoKJKzQmIZ7YvXs3Pv646WNMKcGhnixmE7b+9ZvT+7MSE3Bi8wYMmHgNGgJ7ros9uYHpNWYcwjt1qXG7XN58bzmTvgzrfp6BW9/+EK2BJScHyffeB2tubq0fq9uyBcb4eGh69ZL+T3v2OYgNmLjgKcPRyoNI3yuvQNGiRU2+DeHv/A+Bd9wBTi6HzMtL2hfgax5YqLp0RuDkygCs6rxHjJAu5XzHjYMpMRGlGzZCNJmg7NgRWf/7n/SzM5xGA2VEBNRdu0rJFN6jPK+kpdtuP1D3VMnKlQh77VUoAl1ULmtgLNs6Lw6w6AG/joBvtJtOCWUiEv8TcX6NKCUsOEoq0KUD298UcNm3MgR1r1yfvI5jL8EMnPhDQLfbZdg5RUBRleLUp+eL0ITYEgEuVifniRj6Oodjs0ToPC9iJ8k+AKx7WMClX3FoNwZIr0VhJ20osPUlHvnxrMuO62WVPkDkKOre0Jo6N9QmuaEcW549bs5VLzVIJwdPzZgxAwkJlX/Yt912W5M9NyGNwcgbsDTdeReTxLIzUneHUSGXNMjz/ZU8D4cKDyNE2TCdjFhgeplFhWKrfdC/WWCB7HKo5TW/VFisa5lVLRV+1MqsKDWrpISIivtZBfDoAejqV7OynoIrn8AQHc6hl78qQZShxKKBt8L5Z5uvwgSZk+SHYI0evYKycDS/Mki9yKzHB0dW4fuRNRNnW6JMQxEe2/crCs06BGgMUMnLA/pF+KsMTgvQBmoM2FNwEOd1V6CjTzjM5kMoLGAn8e1PGLLEkqFe6eDB4bCxnfT7UnO8lGDAOiCw5JGqy4aodcgy+rPfrMfNsXKN8RU/DwkajJ35jjoOilDLbZMFRl4JBcfbvTa9oJY6LZQn5IiQ4bw5FJ1V2Q73wbGydthU2BNechNUnIjHu9yDEcGXQsbJcE+MEj+c/Qm2sCl7HbzaY3zYOIevgwWBx/oMki7lPn9tMBJT8rDjYKLU8SI6PACfT1tVHq9RgW22usAKq1YGlb8aIaG+6NohFDdf3h+De7WHpw6srVaF2EPr52zFw5/cDW9/+y6Djclq5XHkZBoMRgs6dQhBuyrBf46U6I1YuC0OK/adRE5+CSyZxdCEaaHJL62o0ssqVb85aSq+2TVVOolfTqV1HwDjCAumWfjZMkx86DK8c8NnUlvmcqwyHKsal5vmeFDCmnbo+4WhbFAELCFayEw8tPF58NmXAUVJ7cb+5u4RNZMbqjD1joL6ZKaUYFDV39OWSRMZv0+Zj4zEbMhzS8AV6yH6Ow+nVF5oXb9v5WE8vPFFfL3tQwy72r7qanVs/3NVEmuCowLx8mXv4uSeM24/B9hJ+6GTBrhZitQbe0PWt3XyRdB6mRDiWmmhTvrMd+bI5hPY9s8ejL9rTIPsym+e/NlhcgP77Dd3DIKxZxgEPw1kBgvUp3OhTrBV1mcX7w0nYRjeCZaYICmAtqIz0eksqOOcn0hjSQNCgO17TFasr1GpvwYOuPL+cWjXxT7QmFEo7ZMURBkHvksUvE/IUBTmPEhFmaGAzOL4M9ES6Q/NMVvxHmvXSLvkhqoKykyYPmsTPnj5OrQGGYlZeHX8e3YBFeUMvcNrJDdUtfLgSTw5aQSiQwJw8HQqpvyySkpgsCOXwdQnEsi3Ql0i2I4v2NvG0WCSBWsP6Ar5ruPgBM+rxpzef7bi57E3j7DvguUhRXwqBH8viEE1k3dkRh4Knf37SszJB1h3BalCqgyv/v40xt89BjKZDCaNFl98sNRhw+vuvaIw8bqBTsckw0Z2kS7lhq56W0pAYVVJeQuPyF7t8flPW10Gn2gFHqHdItFlUCfc8NTEGgnErhyo3hnFQ6zj2v0f3tmkneXMJosU6MKC+zr1j0FER9edAVhAyrLv10hBbzkqBUq710yIT0rNx4sfLMIvn96DmOjKBBx1HcckLLCOJa9devsoaUzCEiXsxiTtQ5CbWveuN3z70MrPYUcUcqmTgzw5u9brZu8xFnD1yqwnpe+nrPO5ENlzuTusvPD5vGvpARxcexQz9nwsVV09sum4rUOkwSwFPrkS7OeFFy/5n/S37aZxPELaBWHg+D61fXmktmhMQkibUFBUht//dh5gv/fweew4kIhLPQxSdmfawz/UOrmBEcPcx2WIYUHgGiDBgQXPT3poPMLah9S8z1X3r2qEQRrAx3ViiHCJF/CNZwEUeWkFmPnKbLz2+zNoDVJOpePVCe87TUpwZfVvm6QklJB2wTi4Pg5fPPBdvQK1HfJxn95+Mr7yOG/MzSNcno9tDKwgwJvzXsAlt4yQxhXFX5RKSeyOsI6IEyY7nu9k45kR1w6WLuWGThwoJaDsX31ESjwIjw3FtAd/cLk9Wl8tQqIC0W1IZ6kKvrOuBI7U6NbooVW/bMDkd26TAvmbCgueP7rtJMwGM7oMinX4WVG9o/TSGauxad4OFGQVSmOZ6s4dTcZrl3+A7/d/iqjOto6H9RmTlBbopKIA7Dw+KxYhdUipUmgprEMIclLqPiaxdG8Ha48ou3GJtVc0FPFpUNazGwh7v/33w1q8/OuT+G3KfOSm1i7IjCVusOQXti97jeqO+F2nPX5sQIgfnh/9ttQBxh1W7ID9XZFG1sLHJDqdDpMnTwbvIKa2sVGCQz0lHtgLo851ltOJrQ2T4GAs0+HYxvpVhG8KEV26O0xuYGIHDkHayeNoLsnHjqAwMx2BkTVP/LU0hXPm1Cm5oVzJ+vVSgkP+rN+aJbmB4ZSVB2beY8ZAO2AADEfqdrBXXeD998GSli4lczhKWGATEOH/m4KguyszYH3Hj0f7n39C3rczpO4G0mIaDfyuvQZhL78Mua/jyl7OqDt3hqp9e+T/MRt506e7TG5ggh5+GGHP1nEQV8cvEPa7Z0kuPqNHoymcWy7gxJ8ijOXHl6zT4iBgyMsyeEfW/CI2FYvY8oKAkvOeJSWcnCNg9EeVg3GvUA6B3YFCz4/zKpxfC2TtF1CaUvO+iu2/SBWdAXZ/IKLPw0BwTxlSNghIWuX541lh6a0viZg0h4MhV0SBraCZWyxxxVN9Huag0FCQSmvAKs29sf2PWic3lGOPe2P7bPx34xTphEVj279/P954442K6/369cOtt97a6M9LSGM6VLhf6tbgyq78bQ2S4FBiKcHOvF3Sz6xqvT9cPy8vuj7pbeTlOK8LgrfSURAPB51VA6togUZmgVxm66bEKugbrCy4vXI466M0o9SslgLe2TKDAzs5TG5gRoZ2R3xJmos5bU6qWOMsOL+cHJUB7c509c/F0fwouz4CW7LOIENfjCivll+h76+kHSg0l0lJKJXJDbbOHc66XpQLUBmwNeeElOCgK/2+RnJDVf01WThqjAQvRRLZYonYe0LHS5FFFcux52RJA2W8BrlmX7TXuK6SyMi4yjHJoMD+iPWOQVJZsv0yECtejwCZ9L7Uys1QyspfM4cCi7cU7OQrN0Ep45FmDUKfwLuhFY+iyLBFKreba/HBwdKOiCuzJQ0YeS0e6nInRoVUJjYPCxoKdTcNlqQvQ1KZrdqTWqbGqOARuK39rdDIaxdw07lDCKKjAjBrz0F8fHgXskYqpIqU2jwB3qkCFGbWueHC6+RFPHzNMNxze906G0mtrusYyJ90LKVWgUv18c/qw5i9eA8KLlSAYu+n4f074rXHr0B4SM1q/vklZXho+iIk51TpeBjmA12YD0ydg+G/4mRFgCOrJj3/k3/x9vwXKxaN7hqJjn3a2yUoeGrVrxuweeHOipP21mAfCL5qKVgzJy3f4ecY25KCm7rD2KMyoElQylE2LAqGPqEImXsCylzPO0pYOlauxyGlHObYEKjP2AcdndyTgE/2f4vHv7wPHXt3wIY5W7F26T4YLu0FaGpO0ihPpkOeUzlxazFa8Mpl7+LX41+jIPMLj6uf1WZi+eGP726Rbb8JIeRitGXhroquPc6sm72lQRIc8tLzpcl0R3N8pZd3g7lL5YQ8O1q3tPOHsXc4/JbHQ8Y6/lh4eO1IgHBQCT7YRzo2UuSUgLtQBbPGeqUJ70gpaaAiqNVkgfJcDpQn0sA5iV4ddtVAh8kN5fex45+K52AVWlVKaJMAS5CIsv41xxnyfBk0J10EBFzYDqm7QKzrQOlt+xKQX1iG4MCmSzBtLH9/vsxhcgNj6uL6OIbtsk3HEnHfZYMxe/X+mskNVZj95VCVCLbhh6vzVxoVxIhAcBmeBy4oWDeIC8beMhyxfTvYvT887eKg2nUKfLtg8CwoRcMqT5pwz0MTkHwsEwd2J0rn8ES9AWDJDXm2Y1tW1ZQlpV5eJUDo8qv6wdtbjTm/bsXZM7bjUC8vFS6/uj8eenI8NA6O5Vzp3L8j2nVvh0Vzd+G3OXshsMRYF5WTH35yAm66e3STjklYddiUk+noPqQzmgKr6rrws6UVHeFY8CGrPvrCT48jOLJm0CNLbH553LvIPJctfdYZJzpOMmH0BjPmLt2Ht565quK2jn06SNVw0+sQoLPyp/VY/etGqXpoje2qR3JDRQVrt8vUvQMm6xgYv/sMnv72QUR2isCqbfFYWyVJw+HzVQlsYt9rL4z5H36KmyYleLC/S0VSLiy9nM8xy0oMOLDKsyQldi780c8mS3+HhBBC6m/99pOwuKmavnrz8QZJcGDfyTsW763bgxUehOk10HfD6JuHOw1YZmMSFqjsEY2sYZapYsuCXXjiy/vh5yBBt6Vh54PrktxQ3slh17IDUhA9C9Zu8OQGxoN1qqok4Y+/azT+/nypVNCnIdz99i1S4ueh9UcddupVqhR4fc5zuPTWkRW3Xf3IBPgGeuOvD/+RAuYZb38vqYjAg1PvqnUSQLfBnaUOzKyg0Kw35rpd/olp9+HqRy9HU45JivNKpXmAjr09LzpVHws+XYJFXy6vqOzPEt9HXjcYz898HIEOOoxlnc/BS5e+41GQvq6oDIum/VfRqZDpOrhTnZMRVsxcJ42h8jOqzNFcUJ/kBmvHUCmZwWE3uT4dbN0cnBSZ8hTrHsIS25/78VGERAVJnVtYARBPGXRGPDfqbfyw/1O8fe2ndknnrsYZrPu3J9hY9NHP75WSgwhx5bnnnsO5c7aEmZCQEOTlNV3gJCU41FNZYc0Pz+p0he6DKqozlJbg0KplOLF1E8qKCuEXGorIrj1gNTdce+TGoi8uwt4lf2PAlVcj7dQJKQmEt1gQ0bU7uo0Yg33L/oGpTNc8GyeKyEtJbhUJDsUrV9br8aLR9l4q3bQJzcV3wni7L9j2P81E+muvoWxrLUrGOyAPCkL4K69ICRQiz0uJIMXLl0O3YSMEixna3n0QePdd0PSsGUDDAv3ZxZKeDl6ng7JdO8h9fOq0HaLFgtSnnkbZDs+6K+T/9BM0XbvCb9LEWj+XdshgmJPtA7E8JVPVLVPWFd4sIm2LiIJTbP1Au9EcihJFHP6m2oBFBHIOApufF3D5TBk0QfaTQ3E/iB4lN5TL3A1YDSIU2sr19Jwsw653hMpyzB6y6GyXFksAjv8CjPoQ6HKTDEmrajeQYkkOh78VcdkMGTJ2AsnrBWTtsyWS1Id3JNDrPg4dJ9EBcmuxN+sMEorql72eUJSBfVkJGB7ZDY3pzJkzuO6662A02gKyVSoVfvnllyZJrCCkMZVYitwuU+zBMtXpLMXYnrcChwq3QWctRpAqHOGarlLCgZR8wKsRLOqgcBLIzs6ZmgS5y+p4+SYWFO7qb5CDkVdJCQ0s4cD2TDWXl3MCOvnmwV9llJIOQtRl2JITiOHBV2BP7nlszzkNi8ijf0AHTIocgGVpm8CjTAoM0FnUNdYpgJMCldjHQ6lFjTCtzuFzuqNVWKTK/lU7DbCan2dLclpFgsPazKPS/xqFfXKCoiLw3zmV3AqTYIEoCjAa17tclnXpiFSUIs1auc/Y+6H6vpW2RW5FGQ9km/2gt6rgrTC7fId18K4MsmMdFF7p/gJ+PPsLjpdUdnaojiU5sCQKGS9IHTwEkZNuMwoK5FlsAfKBykAMDHlaWqcoWlFkKUJ69kEYyo6hk7cV3Xw74urISxDjzRJg7PUP6Ctdck25MPBGhKpDoJXXLajDbLXikQVLsDclrfJGGQdDmBzGYBkCzghQXXh7iwoOsxbtRsfYUIweWvvAHtbuefP8nXXaTmUjVCUyGUxSsOXZQ0lSF4XRNw1DXG4Jvvtzq91ybE5lz5HzeObdv/Hrp/fAv1oAzWf/bLFPbqjCEh0A/cB28D5YuX93/LsXVosVCmXlKbfJU27FR3d+XevXUJhdLF2sIT4wjOgEIagyCJHTGaE9kAxliv05J9a5gSU3sM83QcECdAD2MS2zAoKXEoXXdkHY77a/XU+IVQLunDEN7gghzB/quBTISo12kzk/vvAHPl71Fq57ciLW/7kV2vVHYe0cDmt0EGvzCVlRmdS5oWpyQ9Xkl1lvzsO3uz/GziX7sGHuNhxcf1RKfqgPFtx133u3N1gVceIa+xtzV7nWnfo+nhDS+Aoy3c+T5GfUfp4kr1CH+WsOYe3OkygqNUgdqXr4aMGzY/Vqyxr7RtolN1RlDfdF2aiO8N2aWHEbSxiUpbnfbvOAGCm5wY5aCUvPdhB8NdDsrtL6tYr0s1nSBPzVj07AgbVxUscJVuWs79hemPjgZVj6/RqYymzn6MUqQU5+BxXQJslQ1oOHJQjgLBxUaQrICuRslOJ0O5XpxRd+kEP0ct3W1moVkJyW3yoSHDYvcH78KSrcn380WazSZfcJ1yeh2bEyr+YgN7v/UhKD/IBaJDiMun5oxc/sGPLTtVPw8d3fIG7LiYrb2bkrR8FAVbGkW0VqnnRhImLD8NjDl0k/81YBuRn52DB7K/auPAhr+wD0HtUd1z01ETE9awZ0jLyku3TJTC+EQW9GZLtAaL3qNo9gMlrwxnN/If6Y7ZiZ/VYENth2VFXgfCZ+feR7RAd7Y+jE2nfa6jO2p3TcWBcqdcNPmbME6M3zdyDxyHlovNUYe+tIqfPdH/9bYLccC2RjXS5Ygu93ez+p0d3u26d/kQIppWVZQpSb6qcbd562S3Bg7597ptyCz+//rtavwVnXuIbAEnPc/kXVMUCs4uFWHjOenoUvNr6La+8cjbXv/e1yeZnOPjhRX2rAvI//laqmbl+8FxsX78FOCw9TtU48EkGA6pBnE1oswO6BD+/EJVUC+UjjoTEJIW0DS+BtiGUcfRcu/mo5Ns3fIVUSj+4ehZhe7d0emznD6Q3uv//KXBeW8lTyiVQs+XaV1CF238pD2L/2iBRQ3++SXtI4hVWMN3twno1LNDfIMlVZTBaknclErxEtO8GBjfG2uugc4mkV/bLiMrvj/wZVWAxEh7tcZOTYyurtKo0Kn61/B1Pv+hondp6u1Zikug492+HBD20dzdk585zUfKyfvQX71xyWzh2zokcsuSO6W815krG3jJAu6WczpU4BUV0ioHEz1nXGoDPglfHv48yBynMCrvz44h/S8w24rPadtvqO7VnnLg7KRhiTsNfOikSwZF3WmeLS20dKXQPZMW5V7Pexc+l+pCdk4dvdU6H1sZ8n+frxn2rVgWDr37vsEhzkcjnuevNmqSNnXTo3NvT5YbY6a9ea77uqrN2i6p3gIK3HwmP6Yz/h6+0fSl11apPgwOgKy7D0uzWYefgLab+yMebhTcdgNTtO6vP075Ql07CEoarnJEjjacljkiVLluD333+Xfu7QoQNeeuklvPDCC032/JTgUA+FWRlIOeG+XLVvSGit1ssSIha+9zqKsiqDBdnPVa9fzEpys7FjwZ/Y8+8CWKt0BojfvhmcTAaxFq15G4NSW/dqHxcTobh+Lek0vXtL/zdX9waZry8C77rL7ja5vz86/PQTTImJKNvJKgOL0A4egtQnHgef63nmV8Att1R0h+DkcigjIhDy6KPSxVMssaG+ITZFS5Z4nNwgsVqR8dZb8B49qtbdIoLuvRfFS5fVupODPDgY2v790ZDyT4jY+T8Bpirzg2cWiuBcFBow5AJnl7COA5WTGuYSEamba/ftLAoA/3/2zgI6iuuN4ndmPRt3TwghuLsVKG6lpYWWtrTU3V2pQEsFqJe2tHiLF3d3dwkkIUrcbX3mf97bbLKb9SRQ2v/8zpkD2Z2dmWx2Z+Z777v3agCx2dc8oh+Dbm8wOPsjD507YxbkUP4DTRRXV3AY9K0I/m2AYvt9enYFI7weiLyNQXgfFgfe5ZBnQ+hL+u0MTkwJyN9/wEwGge0ZMM4ssQX+VfyVuK+JtrP3hgocrly5giFDhiAvr85dePbs2ejRo8cN26eAwM0gpaQYu9PyACd9Bv5Sf7e2W6otxM/JH6JEV+fQV6DJpoufRIQSHXHZY5Cn8UGorMzKrZ+IG65UhIBleYQpbCfeqfRiFGs8agtyR1oj0r5k77LMgkOovMzMTR8o1uZiU85i/J25FofyQ2uTJHblHUNCXjGivesmCHQcizyVF4o15g0EDHV71etZ6A1yVOsk8JDorEQQztBzrM0UC6W4YYOwtxrlOuMNAFPv7+/KAAsRBbT0JsJz+k47Xd+WoIQkK9iHwdHyOPT3vQqpHcGFjPVBK99xFo95S7zwVutXkVl9HZfKjTFWrbwS8HPydFQZLIUuRNRgMj+iA1Nmz90WNJCKG+iRMGL4SQMxIWo4XVwlSObeWIItlp4+byluMIMXMSiPZRF4oe79IS5n077ZhNW/PwWF3L0GprteHI29yw657TIVFBlA44+bkrN7L+LTCTOp65GJZbPWQzuuu92TTXZ+Gf7edhZT7u5lkd6w60yyw30RR2iPk3WpMGSwmkwMmgscBkzsg/LiSsx9azFtkHEV4p6j81agamgb2qxoDu8pR/WABHjsuQJJZl3xVdUlBAYJwJE/X81Bkb8I+ZnRAXyYJ7ShSkhzXSuO2LJqGJw1szEM9FH+0Ad7wWP7RYjMRA6ElbM34IutHyC+czMkn06F9GIWXVxh74pDeHPBc/Q97D2uO94ZOR3nbEz2KZQyqGqaRO0hlUvw1a6paN0zQRC4CggICDQh6ZcyceGA8/hP4tTnDuTa/NSny1BQYrwH41ggqaQYVyoAZkp3yC7mQnE+B6JqHb3WqdrZTkswoWkRCOXhNLB2JoBtwXnKoY8Ptfu8ITIAhqA8iGpc2M25fjUHv7y+EPM+WAqtWbrFjkX7IBKztOHcBFNleX8gKWbhe4ilgkW9nIVezhiv7fb69bUGSJPzaw6KMxZkTsbfPJw0SP9bmokc3VuJ8yth8HfsEN8mKgR60mTtyi2sy0Oaro99+gb7YMRjdUZQBP9QP3y96yMkn0nFuT2XqJMmERMTB393nGHHPDWs9v/kMxcaHYQHP7iHLq5ChA2NZe3K47XiBtO7Q76HPEvS5IgqlwMKS8FkF4CpVIF8W76Y/B3+zPzFbWfW8S+NxqE1x91uvAqLC6EpB03Jye1nMf2+2RYJI8u+XEv/nvYgTX6b5u7ChNfG1j6Wn1FAGxJrsdVYXw+NVk8/12KzfQ2dPIA2xsx7/y/qAuoq5Hgb6kLrdNu5xeDCHI9Xsbn2hWgGP09wNUk8otwSsNW25zvJ52HVNxvwyZq3EBPhj/Tr9gV34ms151IzSBPeSz8/QQXSfe/sjjfGzsDpahX0UQG1aSRsQTl8Uguhy60Rm9mBCF2I2KJVj8a7hwsICAgI1EEc3i/vcp7qGRzgXg9G1tVseg9WnFtnIEVSWhuS1FpLbhHQLJw6hNuEiLlzmsYVmSRU/fTyPMx9Z4lFTUJMSOrXJI5gM3RgzqrBd7SfLixa537/ksLTvbTiWxEyDkzEGo2hRZc46LTO50gaDKk3SysAX9uf/4BALwwb1cFqzP6b/dNw9WQKLuxPBCtm0a5fK7zS7wMq4nWVsU/XzYeQ8fLwuBA8/PG9dHEVe8mI7rBy5gaXxQ0E8jvOmPwdlqT97Hba1viXxzRI4BDTJrJJfldzjm46hc8f+JYm1pknNzjq10m7mIltC/Zi3HMjah/LSsrBaTeSkwlVNmrXMU8Npcey+JMVbn2OyN+AzLs0JWR+hSwO1/HxAKeQgnWQWMr5eoInAnWOA1tQBkZte10yb7b6241498+Xaf1pErC7yvo522jqDanr+o3vSa9NSSeNbvrmyD3lUDup90gaypc7P0RCl5uTYCjw7yYnJwdP1PTbEqHb/Pnzkd5AA+6GItgnN4CirAysm/U55r38FK6ddO4E0n5Q3SCiK+xd9Pu/RszgCHNxg4mGiBsU3kYHzKbAw8cXUW3cV1jeikjj4hr8WlaphPewofT/ivbtcaPwvnMcPLp3s3pcHBKC6N9+pSICW8iaN4f/Q5Ph/9BDULRtA7/7jIpeV1B07ozAZ5/BrUDpipVuv4avrkbZ2nVuv07eqhXCpk9zLdLQjIBHpoBpwgQHVSGP/W9bihtM8E7uN9N3WE46VGQZUwTcQR4ASG3UZVEDGQz7g0HCfUBNn5lTPBrfT9ZoFE1wDIXnyPvIo/sbLGS+br6YB64fMP5dri7nbYobCM7EDXRTBiB5NS+IG/5jVGpV2JHeMAeC+mxPP0O3dyM4efIk+vfvj6ysusnUt99+G88+++wN2Z+AwM3gSlkent63HCM2/IJViQXQ6R1f4PoGDnRr+2uv/2EhbjCHJCQoRcaBJzUnQabaD8U6D2g4MU1sKNJ64GRJFIq0SipgyFN5Qs/VDZaRPoMClQculYTQ5n/SJE5EBo5w1JvgJ62yEDeYIxNXoJmXcTJAJtKhjX8uFGLLgR3y2khlGfxlls2+eoMIpVUeKKj0Rs6iIKiTLQ+CJAfoDY6PO7XC3yqhIlThjU4BNiJP/4XEKo03K4Z6fz+1QeK8QYj3Q7+gNmAYCSQSxzWagWdQoLd2l7W1C7Wh7n5YzUkhEj+OYLn19j3FoRgeORMeYtuNdlEeERgeOoQuMcpo9Am0bDqqj54KWYx/65ZerTAitM4t859k+RnHg84GBQNtvcC6ymoNduxPdHtfrXu2oI48jhp2bDHxjXHUvaepIFHJH4ydYSFuIBjC/GBwktq0dZ+lIvhabjH0TsYxOE8ZeDNnpZCYIHjUS4EgDHmwP+ZenI27XhrlcnN9YGQA1B0i7TcxMQzUnSwbsbRhHuCsg2kofI3wQR/ouNHPnEiVk0LOXN0jk0DbMdpmDDNpKnr9j2fh5e9eQiJppjpa09D112ercfbAZfA23j9n4gbThOP6n7cL4oabDd9Ei4CAwC0Hab5+b/RneLzdqziz27nT5IhHB7u1/S/n76wVNxDxntYbMMgZ6qTPKcRQdYtEyf2doQv1Ai8Xg/Nx0hwjEcEQ4Po1kKCPDXKsxDat4wDzRiIT9RuJ2PJqMKXWqXFERyxRcZCXGuAvkhmFC/XXMXDw3HKxVrhBXPwdNQQTwkN80LK5YwfPfwPkHpK4atrD41yuw9cHSKXo0yoGSrkUzZw0WZP3nnUhvYHAFFs2d5GUhIRu1o0DpKnhi20fwDfIdrpffKdmGP/yaNz5wkj6/xGPOK5JzOk2vCPGvzwKtwKb1p62eoyKHEhTuo6DyACwWUZxgwlyL09cRd2FuBE/+80jVCjsDve9dWeT3iOSZsiP7vrKQtxgwplYYOcSSzOZ9EtZFiJyprzaqatAdLi/hbjBBEmPmXthNsY+M8zZqa2WgPDGi1zsweSXgCmzL7xmisrBllQgOMbyPMt5yKAe2BaaQW2h6xADXadYqId3gqZbcyqcscWp7cYUuw9eGAlPO86/osxCiGw4tJJmKtPrF0xdjsu7LkB+JAXKNSeh2HIOHutOwWPnJehsiCNspdRtmbfb6XoCTYxQkwgI/GchzddvD5+Gpzq9jst/HXCa/DNmsHu9McSx3Fzc0BQwOgOYKxl2r+dMchYYleuNv67gSk3iDMlXhfDS2rmGbqsEu6PK7WbuZk0sMP0nUCjlVAzQUAIj/NFxYFv4BHrT+uBGcdfotmgea32ckdH++OK7B+DpZbueTuja3FiTPG+sSYZMvs3lffYa25Xed94KbJq7w+3XFGWX4NBaOw0yDug2rCOe/HKy2/XFfW/fhaYk9UIGPr77awtxgwmS5OJOTZJ2IcNtEXlsuyibj5PPxNxLszDs+RHQxwRBHx1IRQSO8A2xXTM3Cldrxpr1QmODLR4myZm63m2g79UahtbRMLSNhe62DtC3i7U5f0E4ue0cWJbFmwued1vgRVKtz9XMX/3+zhKb4gaCM3EDgXwmdi1xw6xZ4P+2JuF5Ho888giKiox1MkltGDTImBR6MxESHNxAp1Fjy4+zcfWo/cjb+kS1aY82t7n+h60uL0OSG9t3h6CYZug94X5s+XEWtKob00DY1ES364jRL72FS/t24szWjagqK4FUJkds566I79YLG775ApwbjvU975oIkbixvvy3Bn733Yuc8+4pJCkMg4jZs2qb2v0efBCqM03QnCoWQxwYAE6lhjwhAX6T7oP3KOMAuubaNVRs2w5OrYK8dRt4Db4djBuN+IFPPQX15cuo3LHT+tdRKIwpDeHh8L3nHvhOnABWfmsovXUZGQ16nSbFsUOoPXzvvBMe3bqjdNlSqC9eou8NEbKQ+8y8adPAVZpNkonFVNwQ8PjjaEpS1vHQWc/FuUR1HnBxAYfWDzBgxQwk7s03UqIGkaSAupvFvJM8Ev/kkG9mcOQKYg8gajBw5S/8I/i3A5oNZxA9hMHZn3hcW9+4u5SiyzyCOrAYMofF1ZU8Mnby0JCxGBc2W5XLI/EvAy78gUaTtc/4NwnpKiQ4/FfIrS6FgUSnNAFkO3nVpfCUNm3S0vr16zFp0iRUVdUNrL355pv4/PPPm3Q/AgI3iyq9Fm8cX41dOVfpz6Kanu+kkiC0DsyzOUHdxrs9uvr1dHkfZboiXC4/6XAdhUiHKoOxg9bAk0QHJV0IRLxADkRGuhSI6FPngTKdAgqRFi28YjAqdAw+OL8COmihM/BUYFCpk8Kb0UDMWl+ciDiCCCFE1OnfEiKPUIocJ5KFK8uQUh6EMGW5XSEEIVRRjmKNAjzPQqMToVItp+KEASHx+PKTMdg6dyf2bNwBfcsKKP0V6BDZBT36tMa67K/Bg7PZaH+x2Npt5dlWAyByVXF5i3NPdA98cWk9VHoJFJI6hyEiWqk2SKEU2/7b6Dkx3m71ZO37oFQ+itLSV+3uJ1Xrh2recoCT3OPqeMumbwYSyEXBYBg9Yj0iMSJsAHoHdAbwEEo015BeuQ8GXodAeUtEKfuCdRQxVo9RYXfjuioDl8qtaycxowBYMcJkwbgtaAD6Bd4GCXtr1J0ZJH7aCQYZA1RafvfS3IgaNmfUE0PQ6fZ22DBnG1LOpVNX/dvu6U3deOa8usDCKVQsEdFBe9Kw1ZSs+3GLTUdSXuq8Bs1KK6DRzPe+ZRRdeLribMzxYMwmBG+/v5/F0yRue+kXa3Bur3txap6+SvSb2AdJuY6dfDg/Dxj8PCAqqa77ezpan3w09c7HUToMaIOhDw3EwHt748s/92LDgYu2HeUMlloKfYQfOJkYrEZvMWFCmmBbdI7Dj8dnYNWsDdiz7CDKiypdmhjJSS/AgpWH8fupazCM60Enq0XZxZAkXgfrhosxYceivdQpqm2futh1AQEBAQH3qCqrwvT7v8XxzdZNy44aG/qMszbCcZTecPR8Gv0/STGgpYaNYoeIDMtGtoLfXy4O/ul56jp554uj8OVD31PxmyN4F9zjeXnT3PeJLqRC36MVILXeXv9eLfD6S8Oxduc5rN5zDiXVanh6SDGgS3N0kynw5aJjFsN8kivZ0IT41jqL1+fRiX3+M4I/klLw6xsLbT4nya2E8kAaqvrFWj0n1hrwzQt1Te0Tb++EL5bssrsfSRUHUk7yTiIIpQzgx/LQ+nuiRdc4jHt2BPqQFLEaZ+HD605Qh9eWPeLRc3QX2tzgKo9+NglpFzNwyoZzplwpp8Y+kS3CMOqJoRjx6CCLRLF/khwHbvm1kPS4apVVOkxDIPUFEXiQmiT1YiZtHBl0b1+UFZbjtzcXWziFSmQSmmhB6pimZM33m91yJDUn9XwGln+1Fve8NpZ+PhT1xNNslQZsfjk4B00+I/pZ3use2XASy75cgwsH3BOy+wR6offYblj301bcCIiIS3ziKvQd48AHmv0+PA82vxRdAz0wfP7z6D+hF2Y+9jP2LD0IXsxC078VeGW9eUCGgSE6EFqWgeyY9RybRqWlbrSt20bh9y8exNINJ7Dr0FWUU4FZFU1uEKUX2M1fyUnJw4KPlmHlrPV1u9QZICq1bhhzxsZftmPU44Npw6CAgICAQMOoKKnEpxNnUVMN8/Oy5EIGdB2t7/0IA3snoJcbKbLpl7PcHs9zlS7tIjDytVH44r3l0CnJfAqZSKkEk5UPpsR2IvY/zaBBPfHMoMewNuswNqQcQYW2Gp5lEgyUtkVC62DMxM9ube+hjybiv8LoJ4di/odL3X4dSdH4dP3b9P+kLrnj2eE0BbCxSBVSePp6QKfRo1WPeOrE33N0V/pc0pUcHDmYRAUubdpHonuv5m7Vhk9+/RD9bpzfZ53iSO67STJAVMtw+p4MmzKwSY2NGopWo0OhKzWJDYjYuP/d7r9uwut3oMfoLrQmybicRR3zB93XD/mZhZj33l/03tQ8dXjKp5Mw5EHXxSOusPqbjQ1OF7l68hp9vcmsycPb/eatYQ9ZGu8d+PsorXMunbgGbZdmMET4A11rjJ15HqLrxZCeSgVTb+7CL8SHika2/NG0ImGGpFCT98fBuA+r0aFb35YY/tBA9LmrB2Y8+B0O/n0MvFgEXfeWgKKe6ItlwEUajTLE51NtCguIGL5d31Z0nmTlzPXYv+oIKkqrXOrdup6cixPbztI5sMZC/r5EAP9fEJoJ3Di+//57bN1qHA9o27btP9ZjxfDuSqz+j9nw7Ze4cshSpeYIkUSKp+bMh8LTG6V5uTi7fROuX7kEkUiMZp27of3tw6Dw8kZuShISD+6FuqoSEpmMNvL/kyh9/eEdFIScpCv/2DH4h0ei47DR6Dh0hENBQtqZk9i7+A8UZtZFn/iFR0Cn1qCyuC62TeahRK/x96Lb2PH4r8AbDLj+8suo2O660lQcGoqIWbPg0YU0+dSRO206ShYvbvCxsD4+iPr5J3h06YIbBUn/qNy3D2WrVkOXmwtxSDB8x4+H58CBYNyYBLiZpIwYCW2acSLOHQKeeALBr9lv8GoIXFUVyjdvhjY9AyJ/fyo+kYRYKkybgh1PGVBi7LdsMKG9gH7TWVr8bH3UgHLr+z67xN0BdH3FWCSlb+dwbAZPOuzcJrwv0PlFYKPryXhNRvxdDDq/aPmZPvWNASlrG75NzyhgxALWojgtzzBg68POXyvxBnTuJ0o6fG/7TvvnC1mBpuFcQRombviiyd7O5WPeQocg2wOPDeG7777DK6+8As7MeXnatGl47733mmwfAgI3m+cPL8OOHNv36X6yKkR7l8DPw9gUoNGJUVQRgr8GfgSlRI600hIsOXsOp3OyIRGJMDguDhPatoOPXI5zJZnYmnMelToNQhUapKpWOT2WfI2XRToBqSzLtHJoOZFNoYIJktZA1iGu/0S4UAcHhcgAD7EOwXJvBMq8cbk8s3YfEsYAUb3tSlkdwuTOL1T7c+PQPiAHYgcCB4LWIMK1Mn+UaxUIk0ZhUlx3TIztArGD+82rFUexO28+CjV1zReeombYnR2CK2V1A3HeEjleaD0QDzZ3XWxyq6PnDHj11GIcLLgKT6kGHhLzwVIenmINPMRaCyMUH3EInot/Fi28LAfNSkveQHX1Eqt9FOg9sL6iFTTEer6egETL1zXseIq98WTcm4hR3rgGAY7ncKHsFI4U7UOZrgR+0gD0DhiINt4db9kGsQE/zEVOueNJMd+rBsjq6SAeva8PHrm3T5MeS1V5NW1IyU3Nh1+ILwZN6kv/bWoeb/cKnXiojyHYB5r+rR2+li0sh3zvJRrx++GK1+hj4z6Zj4wC+05t0mtF8NlSd14mjlbPzJpC/7/5952Y/eQvbrsbEYgw5KEvH8CEj6y/F/VRbr0IcV45OAmLjI97OV0/5I+LUCSX0YF4XiICo9aRAcLa5ye+fgee+HJy7c/k+Gd8vhJrjyRSQQWFIw7RNoMi4LHpLERllg1qcR1i8MuZry0eSzmbhsdHTYcuJoAeB2kOkiTnW0Q+E7cj+bjuKLHVoKk3QLb/MkTF7qnsB97XF+/9+bJbrxFwD5KcFhVldOmK/PYtiAMa57KlLypD1kvGuiMzMxORkf+NJCQBgX8r74ychhNbz7q8voe3Astz50ImlyIj8TrW/7wVV0+k0MZi0vg9fMpAKH2UuHAwEXuXH4KKTDLHBGBl0nX6ep3cmDrlCK+dSdC0CIIu0v69BVuhgd+Sk7Sh1hWCogKgHNgWF9WOBdXilDzITrkxgOkAXi6FITYEXFgATZyIjw/FnWM6Y9TQ9hA5SMnav/oo/nh3CbKuGpPByb1pxG2tURIXgkKz5lsfLwWevL8fxg3riP8KOq0O743+3KK5zWqdUE9UdwiDPsSTJl40Y6SYMfUBxMdHWNzvfPTHVmw8bN3EJiqohPJ0LhAdCsikxr4DGuBm+bn091dixrQJaBF/45xXDQYDDq09gW0LdqMkt5Q62498bDBt+LhVa5IJo2airEaMaw/+cgpQbun6+/iMB3Hvm+OaXKC166+DyE8vgF+oLxUn20vQaAwPxT+PnGuOhcqOIJ+x2yffhncXvED/5g81fx75GYUWCQba/q2pa2h9SILLlNvb4dFPJ9Gf1/64BT+88HuDjoM0WRFB2PM9jI13NxIiWOD8vWrrssmvj8XDH9dN0JDx3RmTv8e2o0k0scER8u3nwFZYC6Fbdm+OH47OsHjs0pGreKmP87Fi70AvlNdLCWwMpOHvjT+ea7LtCVgj1CQCAv9tXhs01a74wBDuB11COHg/Y4ooU62BX1k1Vu/7BGKxiAreSE2SdOoaZB4y9L2zB4Y9PJAmsp7dexEHVh2FukpNG1W3/G5fAHszIEmxJA01+XTT1BsNIaFrHMY+OwLDHh7gUJy7e+lBzP/gL2SnGO+ByL1pdJsIVBRVWqRg+AZ54/EvHsTwKTffAfpGoVFp8M6I6Ti/37rp3x6RCeH4aPUbNMnCBLnvIw3Ue5YdalQixOdb3kdsW9vu+U2BQW/AgdVHsX3RXpTml9HkiZGPD0EXNxNSbibjfB5CtY37Q2eQdLi7XmzaZLzy4grs/usgCrOKEBDhj9sn9YN3gPE+uCm5N+JJFOc4Tnd0BmmAf/33Z6HX6fFAzDNuJdpM+fRePPDePfT/RCRMxDukziFzNFyQt83XsAXldLzfvLIlwuDBD/THa4M+QlOjax0BfSv748xPPdAfk8f3tPiOfvzc79ibmAuYEhhsuerzPCT7z9PrT33a39Yas/Z8YvHYmd0X8Mbgj296TUKMoEgqu8CN499ck1y6dAldu3aFWq2GRCLBsWPH0KlTJ/rc/PnzabKDiRstP7g17Dv+BZTm5uDK4f1uvcag0yL19EmIJRJs+v5rGPR17nVZly/gxIbVCIpuhowLrk8G1MfD1w/Rbdoj0Q3hhTM8/QMw7OmXsPCNF8Bz9l39WLEEnL5haj9ntLt9GLqMHOt0vdhOXelyaf9unNq0DvmpySjJvg6xVIrYjl0Q2aY9fIJD0LxLD0ga4OpP/maleTlUlOIbau2++k9CUgsivvkGpStWomTpUmiuXjUOqNckWij79IHv/fcDer0xOaFNG5qsYIvQ99+D15DBKFm2DNprqRB5ecFzyBBoEhNpUzyvMV50WW9v+IwbB0W7tqjct5+KLDy6dYPPneMg8vS8sb8vy8Jr4EC6/FvwGXcHCr79zu3XeY9u+uhoVqmkCRc3Gq7uNNdgco8Aa+/k0GI8Q9Mcjk7nXY5ZythJBA6AXsXj1DcNEzcQsg8C3jEMpD48tM5Nb91G7AXobdx3BncFOjxlORF1bQOHlHWN219lJmiKRYhRmE/fn9PfuPbaphQ3EIouAeoSHilreGTsNiZ+eMcAzccyiBzE3LITcQK28ZDYjiJtKMom2h6Z8CLxaERRbII4RPz888944oknmmQfAgL/BEnl+XbFDYQSjRL5Wd4gwQkiloNaJ6HigL3X06BT83hj61bozQQ/R7Oy8OuJE2jfToqTpXUD5F4SNXo76ccgdarKIIaI4REg9UWCVwI2XL8APc9CIXJ8QyBiOOrcLxIZoON46DmT8I2FykAWCSIVUXg09g68cW5G7eiQjmdAQmPIPk2XCzHj/LxBjtXAMXS/zpCKDEjwK8Tl4mBMbtEJE2Ocu8wmePWky8GC/ViXtQ9nSgtQZZBCzqowMqY52nklINzDDwNDEyAXue/uquP0yFUXQsKIEaoIxK2EmBVhVpcHsTrzOFZmHEO2+jqUEj1YVg8GLFp5dcbY8L5gGDV0nA6xyliEK8JtbsvX7yvIFWNQXbUYen0qWNYXYvkYXCstggFHyTtB15OxXujgOwQh8hgklp8FDx7xXm3Q3a8/ZKIbm+TGMiw6+Hajy7+Fce1aY86hY3afZ7U8pDbu9wb3a9Xkx6L09qDOTTcavc72OAabXwamUg3eQfSvODWf/ksmaCaEPIY7XxiFx4d0x4d/bbezMwM8TlqKKXb9eYAKHCpLq/Dji380eGBv38rDiG4TCS+5BBWO3KU53u0UA04pA3tnV5QqJHSylggcJNfyITufhV7DO2HKtPss1l/7wxbs/mAFPMUsKsd3BRyZDJBECxvHSxyLLx66UpucUFmtwZcbjqJ6cJ3oRB8TAE27CMiPXoP0WoHxsWbBtsUNBLEI2q5xUGw/59bvn3jkKgrLqrBs9xlsO3kVVSot4iMCMGFARwzu0sKtbQkICAj8v3H1ZIpb4gZCdbkKp3ecp40Ps5/6BZyh7r787J6LWPHVOoTGBVs4ixsCPYFhxuYIM02rXfy6N0PnwACsU5XaddZXnM5yWdxAiGoVgcnvjsdTU5fSmsIeyrwyNMGQKIVRayFOzATIQhLTJjyNkSOcixH6j++Jfnf1wKa5O7Hupy24djYdWXsvQX7yGvrf0xsdxnRBWJg/eneNg8yFVKv6aLV65OaWQSoVITS06QWqjUEilWD6xnew/udt2PjrdmQmZlPjHPI5I/+SlISxTw+jwhni3Nm6ZwvaTFQfMib50aPDMaxHS6zZdx6Z+aXw81JgUPs4XFm4DwdzL0J/vQDw9YJ3qB9GPdgfYZ2a4eSpNFqxdu0cgyG3t4W8iRI97EHGt8jfmyz/FoaM6IBVfx2x+zyv0VqJG1iWwYCJvZv8WIiYinwebjSkAaghcJ5y6BMiwIX7Y3O5Bkcf/hH33NENk96/B98+Oad2PbZaA9nuC9A3D4UhKoCm1ZFaR5xmTCHYlV1CBQ4l+WX45bUFDf49dizeh8iW4dSN11ZKXmMhzsKVNSIspkoNEWkmBdD3rh40WcMckgK3+68DMDgRrROIGyybaBTJmXPleAptZm3RJa62ueznV+a7dKxN2UhEuHwkCYXXi2jaB3FtJe9vXMdY3PHM8NrUFwEBAQEB2xBhtKNkBVF2CV1IGhtPxr1UWpCRM/Ka60k5+OH5ueC4uhv8M7suYMXXaxEQHoDLR642SoxAUrr2rTjcZH+6uI4xtLn6zSGWzbD1kStlUFc1LD3KGeNfHkObi50x6L6+GHhvH6yfs40KSNIuZCL9YhYUXnL0GtMVHQe2RWizYPQY1QVSF5Ly6qNVa5GTmg+5h4y+17cSMoUMM7a+j7U/bsXGX7chOzkXjIgFp+fAilj0HtsVo58ahqrSKjp23aZ3AsKbh9q813/3z5dx+/39qXGO0SjIB33u7IEzu8/j0JoTtfW0T5A3HWsPigygz5F6puuwThh0Xx96PDcSkViEARP70OXfAvkMk8+mu79n/3ucmwm5i7e/F03VuNEYGliTmLN13m6c2HoG418aTdO4f3p5nsuv3bl4PxU4kHve394yGi5zwT52xQ30+SBvcMHeEOXXTVqRcY6IhHCadOEshdNdxInZ8IgOQrkN4fjgvq1wf7378iUrj2Hv9TLAPGWPDEGRQSPzKWiGARfiB1FqrtV2SfoJSUGJaW1sTC8tKLObSnmja5LEY8nIzygw1iSrj0JTrUF8F5JEObw29UXg1iUnx2hy4oiGCiC0Wi0eeOABKm4gfPzxx7Xihn8CQeDgIiknjxlPSG6Sl5JEkxvMxQ0mVOXljRI3EGI7dMbI516FWCbDhd12JtzdhOc5rPrsQ4fihuh2HXHHa+/S9W5E0kNBuusKZLL/Hb/9CJ2mbnBNr9Ui7ewplORmY9InX7ktbuAMBhxZvYz+7arLjArEgMhodL/jbrQdMBi3ksjB77576WKC12ppswEjdu/rrezViy71CXn7LagTr4CRSqHo0L52u0ToIOAYv/vvR+maNdClZ7j8VnmNHAF5q4Y1E6kvX0bxkiVQnTpNPxueAwfAb9IkSMJtN5G5g6aMR+V1QOIJeEdbTxLqsrPpOTKwfSjKrjV6d9BVAJcW8PBtAbR/Ari6HNC4IAbWVwEGLY/MXTz07icDW5C8hkf83UDiIjQ5tsQNHqFA76kMRLK697cql8ep2a4LPBxRns4jpKtx2ydn88g/jX8EEpW+4ykOKmO/EqWgBCg4wyP6CNDjHeOEosC/g1APX9qkbCAdx41EzLAI8Wj8JDlRzk+ePBl//fVX7WNKpRJLly7FmDFjGr19AYF/kt05zgfXRWIOWq0UMLuVP52fgwWHz0LH6uHhpUZ4YAlkIj3UaimKDAqcLLW80FTo5KjUSeEpse9UShr49bwYeh5o69MZTze/H0XqP3Gg8Ji9fqJaiJu/iDFQ8YWE5WmSg3kShCkZ4IUTC+kgkJ9cUytOIIkPWo4Fx7Ho4tcWb7R6HHOS30e22n5qVpFGSY+VCCdIOoQzWIZHuLIcV8udDwyYOFuSig/Ob4aWqj2l9DE1p8Ox4kTkqAsxp9tzbosbiLBhWcYWbMk9iDKiCAQQ4xGGCVHDMCC42y0lcpgY04suJsj7IGKIqMS91Ca5fABdzLnLCxgWVo48dTrEjAQRHi1qt9szwHJdAWumdO+MDRcTkVVmW7XqmcVbNfqNGNgG0SQeuAFcOZGCtT9uRuLRZEikYjp5NfaZYQiMCGj0n4c05xAXVC8/JaJa1rntEoiIwORo2q5fKzpZWR9ylpGeSIGGiDfE1p9N0fUiiMxcUcsKK7Bg6jK03twCL745CosOn0dJTcMNgS1Tw2tPCiQFls1YpHmTHM/OJfstoqYbwtofNuPOH6Zg0ZaTdtcRZ5WAVRnPbayOgzSrEtpI+wYEjNYAfZtmKDUTKfBkcqBNBEL7tcI7Mx6ijYImSGTyz6/Mo78TozPQ/emj7f89xdklYDW2J09IsoZJ4DD99204c8W66QgiFupezcGWqSAuqqQCB0fw3h4wBHhBVOT64L7B1wP3T1uMwvK6ovFYYjWOJWbizr7t8OFDN16IIyAgIPBv5fC6Ew163YUDl7Fi5noLcYOJwuxiupjDFlbWCRNdGBfrd0d3vHn3QGjfnIetxYXgZWIrQaLiontu6hqpCG/PWANa9IhsFzkD2kVj6rzn8Wy3t5Bpo5m2sRChgquQBIMfX/gdOm3ddVhdqcaJ+btReDwZs/d/6ra4gQgbFszfj02bzqK8RlAZHx+CBx7sg9tua3pBbEMh9y6k4YIsJoiYQSQmwnrXaxIyJtm3fTO6WDC8K0pmlyHtQgbkSjkSusXVbnf0yP9OGsaN4p77e2HvjosoLLC+X6Ni4Azre3fiABsa27AEauLIT4Q+V4+nQCKXoM8d3WlN4h/qh8ZSkldKG+uIw2pkizCbNQkZE2nfvzUVPrsD56uEtk9rmt5iorhchV8X70enNpF46JN7sXr2BlSWGOsPRquH5HIWXWwdJ2HHwr0W54SG1iQjHrsdf3+7CU2NSdxgDhF5v73oRdpQZiL1fDp+fbNmosZBmo0J3sE6pCYxCRy+fPgHJB5Nwj8BSa1/psubKC2oq9VPbjtLlzueHY4Xfnj8HzkuAQEBgf9STcJodBazDmd2ncfSGWtsmpHkZxTRpTGQ5n6SQPVO+XTaENwUkCSJTyfMdLjOgAm98fq8Z/FE+9doQ3xTc+1smksCB8Kxzafx00vzqMO/CSI0PrLhJAqvF2PW3o/dFjeoqzVY8OEybJ23CxU190EJ3Zrjgffvpvd5twpSuRQTXhtLl8bWJL3HdqOLOeOeHYHi3BJ6L0PEp+Q9MCVqEBd2Acfc9/adOPD3UZTkue5uSu7JAsP9GzwGsu7nrUg+lQqpQop+d/XE6KeGwi+48elxRTklyEsvoGko9YUyxASS1CREWNOuf2sc/PtY4/eXXUIFCl2GtMf9742nZkhVZc6bsUzv9dZ5e2rHgvSRzt9PfWSAhcCBsOb7TTRpZ8MvTdMXa4KkWmu3noE02AeGmCA6T0JEcQm+Srz33DCLJM3LV3Pw+2I7NR4pAllLkYOjmiTjUp3A4bP7v0VSE6WCNkSY/3SXN1FhlpB9fPNputzz6lg89fVD/8hxCbhGjx49nK7TUAO2999/H2fOGO9l+vTpgzfffPMf/bMIAgcXMTQwqSAn+apNcUNTEd/N2ERy+5SnkHX5Ikpzsxu9TSIUqCyqm9Svj29IGO5571PqqN934mSs+pyIIRrf2GhO9tXLWP/NFwiNi0e7QUOh8LKv4Ns9/1cLcYM5ZXm5OLZmBQZNcT1Sh3y5N3zzBZKOWcZ+FWVlYMtPs1FZUoyed07ArQoRIjQlIl9fKHv9e9yAbiVEPj6IWbQIeZ9OQ8WuXbXpGuLwcIj8/KC5fJncYdb+3XzG34WQd99t0L5KV65EzodTa7dH0CQloeSvpYj69Rd4dOnSoO2qi3mc+ZHH9f08uJrToG880O5RFmG9Gbrfoj/mQXvNqGrwDItCgOpBFMnvt+uW5tbvlWRcSOS3T3OgLMXx+jJ/QCRlUJnTeEUAEUj4t2AQ2IFHoXuGoA2iOhdIWg20fbjusWsbeOpU3RRIlMZ/VYVGAcg/ibm4wZyM7TxCugCxIwSBw78FT6kCQ2I6YWvaqUZvi2yHbK8xkGt4fXFDcHAwNm7ciG7dbp1mYAGBhqJ1IEB2xInsLGi91WgVkYMY/2KLS3RzHsis9EV2VZ3AyFuqRqlOAaVYa/NyTsyNSnQ1FxYA3f070H9fbzUeF46kQQPHwgBSS5Ptkk0z4I1iC4PloHaxRgUOeQjxsBwkEzMcxCwHX3E03m/zLB3sHR52H+anfkGd/Otj4BlcKzc24uZXeyHW27Jxyh6+MhWK9acxJyUXccrm6BvYD0px3e9cn9lX1tSIG6zJrC7EXxn78HT8SJf2bTxuDp9dnosTxRctHk+vzsHXVxZQwcMdEbduspmUbdqhBqXYG3Get2688a2Mv9IDSyZPxCdbd2F3ciq4msGsSB9vhJVJkVmcV/vNkUrFGDu0PZ6f0rDP1toft1glFhDXfuLYRWKxW3aPb9B2C7KK8MvrC+hgvCmdoUXXODwybRK6D+9Et7/qm421oobg6EDq1subObGZIE3w8t0XaEy9ITKANscw5dUQX8uDOCWvntSqzlnz8vhvIZOJ0WlkeyRfzYaoXA1JVpnN9UNig+i5iYgxXIGXiGAI8QUvYiAqrgRbUTe+QQaWe/j74HRcKC5cs3b7YSo1UByzHPz2PpiNwnttpzcSZIXEzdj2dzSjuAKrd57D5DF1k4Nk0sDc1U52NhOGYG862G+FRg/pWfsCf6WPB/03u6AMe04kO1TCaVuHQXwgyWHihgm6jhsCh+JeMRbiBnPWHLyAnq2jMby7UYgh0ET8syWogIBAE6JvYKMsab63JW6wB1NzzVH3bQFWB3BOhrwHtW9O/33n7XtwresbyJax4LxlYKp1kKUU2RXfOSIn2BelpdXG672BB0/mpk0FEs+jZaA3Pv/AOE9A7ktI41FTRbLzDMAH+eFkTiU+/XQt2raNwLBh7eDp4Lr4Qz1xgzlpFzNpc/Lkqa7PaxgMHN57bwVOnbQUkycn5+Hjj/7Gy6+MwNixnXGr0hBXWEeQRhS/24WapCEEBHph5pyH8ePMLThxJKX23jI8wheK0jKklJTX3irIFFKMfWY4Hv/igQbta+Ws9fjl9YVWQiFSM8zY9gHiO9UTr7gIaSCa89oC2lBpathr1SMej33+AHUjJk0+q7/dWFsDkJrA6OTp+j505NjMxA3mnLmUhQvn0yCv0qBZ+xja8O8I4o5McLUmcdaY1Gt0F+o0mnzaduMNzzDQNQ+CrnkwOE9ZTUJcAaRJeWD07k1wkGafzXN3UrdqEyShxQRbWgXO33GiPFtmbH4kYjc9aUojCRcVKohySmprkozE6zi6sfFj2g2FJP6ZixvMWffTVnQd2lFIcmhqhJpEQOA/g07TsN6t41tON9n9ui1MCTxvLngeT3Z4FaX1GnQbQnZyXm1Tvy1a9WyB95e9Sv8/5ZP7MGPyd2hqjm89g/zMQrTr1xpDHxoAD3Pn8nqN1aQmMRc3mEPuI9b9tA33vum6kapOq8O7o6bT+xBzrp5IwUd3fYXXfn8Gw6cMwv9LTUIEu00h2v1/JDg6CLP2fUo/o6e2n6s9F0S0CIPMQ2phLkASUe58fiQemT6pQfv687PVmPd+Xa8CIeVMGq1Jvtj+IWLbRjVou9kpubQmIfewpvGVNn1a4vHPH0Dbvi2x+puN1Imf1C61NUkTcmrHebqQJIVm7aORej7D/ZrEhvGUFTbWKcgswsBJfWmCD0mHaUpI2SbKL6OLCTIKsn3BXotE8rWbnQjX6MR3nXkta2f+gWCqSVLOptHxsn+K4txSC3FD/dq667CO6DZMMHX4f6tJ9u7di5kzjeJKT09PLFy40C2h3o1AEDi4SHgL991oRGIxclMaHmHmjMCoGDTvbmw8JwkFkz79Cr899yj02oZHj8k9PVGS7dhpqDQvB8XZWTTRIKZDJ4x7/T3s+uMXlBfWqYE9fHzBisSoLLYvlHAEESaQ5erh/Ti88i+MfulNNO9qrTwiooOcZMcJEhf37cSAhx4Dy7r2ZUs9c8JK3GDOoeVL0G7gECh9hRtHAedIgoMR+f130OXlQZuSAlaphLx9eyoQ0mZdh+r0KZq24NGrF8T+DVP/alJTkTP1IwtxgwmushJZL76EFrt20mSPih07UXX4MJ2EI8IVr6FDwUhsF1bach67X+JQWc8AqDQZOPA+hzZdNoFd/4HFc4acTIThc8g8U5Ht9T6aDM65uIEg8wGq8jiUXGmauwLSGHXbVwxNc0hZw6OK9EyRycym1XTVkrqRtxA4lCY33d0N+Xue/p5D+nYefMP6YxuNSAaonZhfJK/lEXvjE/kEmpBJrW5rEoHDpFaNd+EmSmJzcUNsbCy2b9+O+PiGNVQKCNxqdPS3dCy3BWewbLeVi8Q4V5GN2JBCxAYU2xxvifYqhcYgRpHaE37yavgrVNDwUpToFPCVqGjigrlgoFCrhJYzlpLNldHo7NuG/t9TIsfP3Z/Hkyc+gp63P8lgvLoxtfuXiDjoOI6mMxB8JZ7Iqi5Acx/bgyqEEl0GCrVFCJIForV3VzwQ8wrWZ5PG/7oLjafYH5dLwlBeE8OaV+0FH5kKfjKj86gjyHGVGzJwoiQTJ0qOYV3233im+fNo69POat0r5VlIrnQs6tiYfdwtgcPRonNW4gZzFqStw6Dg7vAyKRgFBBwQ5u2FnyeMQ255BVKKiuElk6F9WAhtwr+eU4qLV7MhFrPo1iEG3nYmqJxBhAz1xQ0myCTcx/d8jUUpP9Ln9686irO7L9AvWtehHejkn7k7Z/3Uhldv+wC5aZYK2aST1/D+mM/Rc3QXK9c2U5ID+f1sHQ9broLsRApwIoU2D9ZPsLCHQaPH9TWnoTBrVCKvN0T4Q9csELxcCrZKA6WfF3LT8pF82nG0HdmErkM0dM1DLAbt2bwyyI6ngK1JfxAzDH56awKW7TiN1TvPIre4AmI9Bz67FBCLoRrUGmy1FuLUAojTi+B5thC6YA+UDbKOnpVfK4dC7eXwuNbsOW8hcEg+Y9nExFaq4bHjIjQdoqCP9KN1JlG+ia+XQHoug4o/bMIAZQVl+O65udhy9Aq4NpaOt/UxhBrdrBiNHryTiQ/iyOcq4tgA5BkcN7mu2HtWEDgICAgI2KF1L/siOnuQ5oAkO02xjpCkF9JxOHWnGBjkUioGtEXHZmHonmBsEPD298I3uz/Goy1fqhVGNgSf+DBcN3MWJ/cLjIFcv+uqmeSUfJo8QRwd+4/vibcXv4hfX19I3RRNBET4gTPwKMl1IZq2Bl4mBdexBaCUI624Gml7LmP3nsuYN38/Pv1kPDp1irF6DZnkz7zi2Pxqy7xdbgkcdu++ZCVuMOeXObsweHAbeHjIXN6mwP8vYeF+mDZzEvJySnE9sxieXnK0aBVG79lJYljisWRIZBJaH3j6NqzOvXI82UrcYJ7ORkRI8658R5vu9q04gnN7L9J5mu4jOqHX2K52J+zJ9/zlfu9T12FzyDG/M2Iaug3vRF2JzcmrqV/I2IIrfZScnxK8j+Pf2xATDP21PKO4wYl4giRMkAYoUqc1BRKZFDP3fEwbptbP2UrfC7FYRM+zPMugelArGMLqjDN4hRSarkoqePDYftFtkdnm3y0FDuY1iTg135jyZs9gS60Fe70E2rZR0MeHWiQ+sBodCg0GfPP0r9j9l3sJGw2BvDf6cF/wcjHYCg3EecZGV4WXwmnTK3H8NTXKCggICAhY1yR/f+despCnrwdSzjTNddEWnW5vhza9W9YKY2ft/QSPt3vVLZF3fQLC/Woble1x5VgSygrL4RPoTVMWiBv3728voWOqJgKjAqDX6GnqbEMgTcxk2bPsEE27/XTd27UJreac2X3RaYIESWFwR+CwY9E+K3GDCTLu+8trC2hyhkwh1CQCziEJbDO2vI+c1DzkpOTBy9+zNtmLiF+JcIY075OmbqW3sQHdXc7tu2QlbjBvJp927yzMvTAbWrUWe5cfxvn9lyGWiNBjVBf0GNW5NpWjPuRc8Er/D+g2zLl06AreGvYpOg1qi+NbztisSdwVXjtDq9YZxQ1OaxJPWusRwwXzuRlnIzX2hAFyDzm+2f8pVn+7CRt/3U7HXkw1yY2A1CTmAoekFDfE4yoNmHzb40AsyyAvowAzH/8Ze5fb70290Sh9PVBe6Ng0iohyBIHDrcuxY8cQFuZ4ns1dysrK8NBDD1HRImHWrFlo3txoKvNPIggcXCSyTTsERceiIMP+gG59guPikXM1ETcC//BI+IZFYPXnH8EnOAQdBo9ASFw8+t77IPYu+r1B2/QMCESnYaNx4K8FTtc9vXUDhjz2LEpys5F4cB8qii07VqvLShHRqg163XMfMi+cg0GnQ0jzeHB6DodXLnHruEg6w4bZM/DQ1z/ALzTc4rmKQsc39ARNVRV0ajVkHq4Nil7cvcPh85xBj8v7d6Pb2PEubU9AgCAJCaGLOdLICLo0ltKlS2vTIWxhKCxE8ZIlKF64CPqcuua70uXLIQ4ORvS8PyCzcUFKWsVbiRtq4YCko52QAIY6L9fHv3IpxH3GI+O8seHxZlGeCmyaVKeKbQysBPBvbRwnL0upETfgxokbTMkGvIEHIzI6zpY0oUbu7E//rBxU4gXEjwMuL3a8nitCFoFbi56hCWjhG4akUsfNvY5o4RuOHqEtGnUcu3fvxowZM2p/jomJwb59+xAV1TAXBAGBW5F+wc3RzDMAqZW21WJk0tygs5yQbx0QhDOF1xHr71hhFq4sR6nGA35yY/O/jNVBzPKoNMggYjjjOBXPwAAWclYPDaNDlEc44pQK/JD8NYJkwegfOAiRHjG4L3o4FqdvsHuMvA3PcwlrgMHAIlzhi7siumFx+jqHYVDkuR25ezAp5h7kqbNxrPgYCjUV4MHWjKkxKNKWoU9IFO6NGYnDhanQcxza+Q6Fn6wQ2/LXOHw/6jcgqDk1fkr5Hp+0/QwBMmMihIl8tfOJgRJtJXScHhIXkw125B11+LyW02FfwUmMDr/Npe0JCBBCvb3oYk5EmC9dGgtxmHTkgEYcdkjCw4qv11k0BpGBaJK48OWODxERbz0Qt/LrdVbiBhNkgtBRJD05HuKmenaPfbGQq+IGyw3X/CNioO7fqrYRnx5TgCdI+NuE+2dBdiTFZsKDCW3nWGPDTT24EB+oB7SGYsd5yCVimlbB8jyyFh9E9bJD8CL7va0VODO3LoOXAoYQH+ibBUG+NxF+2zOgPFuAiu4h0AfIIarSQ3k6H2JOClVfxwKH3MK6RhvS/JVqoymKpEwoDiaBl4rBkdhmtQ6sM0dvHvj+eeN4lTbOdfcoUUYB9DVxzXYbmFyMFvcO9MKQj+7BbwcduyJdzWqYWYeAbcj9A1kaQ2NfLyAg0HT0HNMFobFBdq/PtohtG43EYySi1X0kqYUQpxVCGheIyj4xNJXBnJb+Pog5mYO3R0yjzQqjnxqKZu2ice+bd2LJ9FUN2mdEfCgGvjUOczedtnqOqZcgtOX3XXjwg3uQfimTTkyXFlhek4qul9DmiH5TJ+D0rgv02tqmVwLKiyqw7Mu1Nm8zuA7NqbihPlVVGrz/wSosXPAk/Ou5lxdmOXEUcXEdc7ZucXy9VKm02Ls3ESNHCm5+Aq4TEuZLF3MiE8Lp0ljW/rTF4fPZKXnYMGc7Fn+6EiV5pRY1SVhcCK1JQmONLqPmLJuxxkrcYII009QXN5hDSqT2/VvTxiVH8Da+8w7XcVLHXDiQiIdbvICmQOEpR/NOsdQMKulUCgqzjO+FqZFI2zbcQtxgDufrAU3XWCgOOUhvs0FtM1aNc3PG5TpjPrasGpJz6dB1iLEWOegMkB1NgqFlGPQtrT9TnEyCGQv20lQ/tsK5+UVj0MYHQ905GryizmCMLVMh/FohRozoihVfWV8DzLl21vV+BAHnCDWJgMB/i/5390RghL/d67MtwuPDaPPyjYBcJ0kzNKlJoltF0JokpnUkxr80mjpgN4To1hG47Z7e9L7FEeReY9v8PZjw+h1UBLl/5RGU1Us5Lcwsoo3TvcZ0pTUJ6UEgNQkRcRLHd3cgTt/EdGZB0vdUUGlOQabz8TQyRuwOW+fvdnw8JVU4uOY4bp/Uz63tCvx/E9YshC7mkO8uWRrLOic1SfqlLKyfs42KhcrM0rzIY5Etw/Hl9g8RRJKn67Fk2iorcYN5qk19cUN9SMLDxYOOzaPdxklNQtIeHmn1ksVjorR86FqFG02TbMFxENsYb/LyUyK2bSQMeo4K24uyjcYSN0rcQMgjphs1aFQaZF/OAuQuiKl0eojP2J8bIomGsx6fg3+SgHB/Kg5bNdv2XL4JoSa5tWuSsLAwREY6mDtrAM8++ywyMozpLGPGjMETTzyBWwFB4OAGY155ByumvYfKIls3ZnXSNKWfP3rccTeOb/gbNwKRREITFMhi4tyOLYhs3RZ3vP4+9v+1AJzedTcMViym6QjXEy+5JG4glOfn4dzOrdj+2w927UfI9sRSGe5571OLx1NPH0NuinsTGnqdFme2bsSghy2/OJ7+1hf2+kgVHjThwlUqXEidqCxx78ZbQOBGorpgv2HHRMG334FXWztp6vPzkfbAg2ixdw9YmeXNWNpWx3ekOlE4qqQ94ak9Yvv5A39DFNwGhoaHyjSMJurhjxrEQO7P4PgXHNLrEpBvKIwYuLSYR9wooCQZ0NQZvv3r0asAsbndrR3ENabBuiqeJmekbeGhKgQ8goDYkQzi72RqtiNwq0Cc1mb0n4LJm2ehWu/+F95DLMOM/g/T7TQUoiB+5plnapXECoUCGzZsEMQNAv85yPfk+14T8ciBRShQ10s3IOIGjRg8ZxwUCvPwwnMdemPm2X3wkqshlziuD5QSLXxk1TVzwzw8RKbvMwMDbymaYBgeMR4qsDiPtCoGKk6CS+Vi7C3YiWhFZzwf/zQWpG0CC85irpmUDUQqYUvg4C0R497ocOSqz+Fs+Sm08wU0nBjlOjl0vO2ytUCTj70F27E8cwFEMNTsi7W40iRXXoScleGLzm9YvPZ4yTmU6Oy7qxslHZbHqeE02FuwG+Mj77F4PEjuDWf4SpQuixsIRRrnDq9FWtddYAUEbjRXTzqfIPz93T+hrUklqJ+48MptH+LP9J8hllh+T7Yt3Nuo4yLiBuK6RFyFmhpth2gLcYM5+tggsMVVkF7Ntfk8p5BCH2c5iWIO76Wg2xgyqD11op5+/zfUJY3ut10UFTPYgjyubRcJ2blMSPNVCNho2RSjD3F+vhLrDXTCZOTjt9PGqLJKDbhgHxgCvQGZmCYqENEBSXJgtHqInAkbbO2DCBI4HhYRQfUQ5RgbRCXJuTBEB4FX2p48kF7IBOOKLS7RQlSqoZBJna7nURMfX1lahbU/bMG2BbvpBBIR44x4dDDGPjMMcsGtWkBA4P8U4nA+dfUbeGf4NJSaTcbXYjb0Q86bpPn/p5fnNWqfRJAoSymkizbSB7pwb3od8SyoRnF6MQ7XrHdy21kqqOw+sjPeWvi82wIH4l7XaWA7nN17EQvf+RPo39rxC7R6ZCVlY8XM9fjtzUV2xZ7kuIhj7AfLXrV4/ODaY8i6Us8swt8b8LTvFFldrcWGDWfw0EP9rCanneHKOuYU2Pr7Wq3j2O1PQOBmknTCcYIa4ZfXF9isDXKu5eHVAR9i0bUfLZIcyPd6+6LG1SRE3CCRiaGzkWLAeUhpKhv0LrgqNeC+uykY/sggeHgpMPWuL3Fo7XGL58hZTxtvv64h6GICIDuZ5jTFgWyLCCUMkQFgfDyw8O+jGHN7e5xafwKVah1NuGDUWpreJknJA1tSBX3zEHBE8MXxEOWUQnwtl9YrmhoHbZuIWOhahEF20vnnpaFomwVC1cfaVIzzUaCwZzPIo/1dEpYQyosrsOa7zfRzSJy3iQhn5GODMebpoZDKndc2AgICAv9FyPjhR6QmGTmdNtw7IrRZMB788B58+9SvN+RYZAopUs6k0cV070/SJfre2QPPffeo2wIHYs7Rvl8rOqbpTNxggjik//nZaruu8YRjm07TlIcPl79m8fjBNccshIWuQMbLNv9uncRARCfOCHBhHXNMwkrH6wi9WwK3DiR52hk/vzLPZm2QdSUbrw2aigVXv7fomyDJLI1KH+OBi4eu0KSIGykIcAVWrYP0VCq0XeOsxcocT58jZkr1GfXEEJrU8s7IaTix9exNOVYiHCHGFCMeHYSDfx+DJikbaN/M/gt4HkxGPsQpObRuuZVRVajg4e08zV1eU5MQMw9Sk+xYvI+mBoU3D8XIxwdj9JNDIJHWCboF/t0sXboUf/75J/1/YGAg5s6di1sFQeDgBv7hEXj4qx9wcc8OJB07BL1Wi5Bm8eg4bBRttC9IT4VYIkVYi5ZgRSIcXO5eUoGrkDQEW2Rdvog5T02GTOEBVYXzwedaeOLE7m7sDYMdv/3oNFs1/dxp5KWmIKSZcSAnK/GC2+IGExnnrRWHgdGxCIlrgbxr9rfZ5rbbwbKWTVnV5WU4tWktLu7diarSEngHBaP9oGHoPHIsvPwDkQPHykVPP+fCCgGBm0V9YYItbIkbTHClpSj58y8EPDLF4nG1C6YHelGg3eckhpybL25wBgMwLElJcLyaSA50folBVS7vVOjRlPB64NJ8HpcX8bWN/v8VyO+Wd5KHxBPQORhrihzIQFvBY8/LHMrM6r+KTOD8rzwyd/MYOIuFxFMQOdxKtA2Mxve3P4UXdv3ilsiBiBvI68jrG8Pq1atx5UrdtZsolX/44Qe3tjFnzj+rlBcQcJV47yCsH/IMVqWdxs6cK9AY9OjgF4FJcd3gJ1XiamkB5CIxOgWGQ8Sy+OTEDrg63+kjNd4viBkDpKzBZpO/lNEjUFoJkZntuRc00HIiFGg9kaE6jcmHP4CU9UC1QQWWIXIGno5TGV9hff4mz8d65iGlKrXuMQaQi/SQsZUo0iqh4awHSHjosDxzIZh6Qor6XCg/hVz1dYTKje4rx4quYn9uNeJ9RZCLrG8KSM+tgbftHnKp/CLGw1Lg0Mo7Cs09Q5FSSRqZeShEOniI9VQIoudYVOmlGBXezWpbZboybMndhkOFh1Guq0CQLAgDgvtjSPDtCJD54lqVvSgtIwHSxrvuCwg05WSeM2yJG0yU5JZi67zdFpG/RLjY0Oh0i/3eAHEDL2ahc5JCoGsRAsnVXKuzHitiwTULdtjcT5C1i8ZTsx5G5pXr2FsjbiCpEbq4YMf7bR4M6YUsMORkVg9RXjmYSjV1nKbbo9s0LqYHdNeKMP/PI1j4zQYwPVtANbqL8aRsGv/hAH1COESpeZCcTXOYUmEPtkoLcUYR9LF26kmOhyzR2PBJRBSyvReh7dwMXKhv7cQHU6WG5GImxG44v5HPwpWlh+ERpUS1xv7nYmjXBDpo/9rAqRZuseT/v76xEPtWHKIOvwrP/1jRdqOgH7Qm2IaAgMAtQ3ynZph7cTY2z92JwxtOQq/Vo3XPFhj77HB4+iqRfjGTToK26hFP15/1hON6m2cZ6CP8aKMvW62F+HqJzesYQZpVRhf6OjvbO775NB6IecZtkaNOraMNPgRaDai00PtIofVhoCdmGzwgruYhK+ch0gGirCKopSJ6bXAGcVIlDdTEJZ5waN1xa3ED+Z38LF1QeTPRiOmae/JUmpXAoV2/VohoEYbrSfbTNYdNGWj1WEFxJZatP4Gt+y+hrFyFiFA/jBvaAXcN74SgIG9kZjoeIA4KcpwMJSBwM5G6UpM4OCcQR+E9Sw9i8AN1SYlatRZVZdWNPrb6DUxEPKxvFQnelMbCceD1BkBcz2DC7P+iJkwZIzUJaZoiqTKO8PL3xBNfPIhr59KtxA0EXia2K0SuhdQ/3gqwDgRRJBlO3a8VTcQjkOmDOUsP4PeVhyGv0kIzrFNtTcLml0F8KROi4kq61MdAagap4/YHAxF83SCBAzlvqzvZTxRWa/W4oNM6vUbdNqEPinJKqPAmO7lOOJ92MRM/vzof+1cfwedb3heE1+78YYSaREDgP0XL7vH4/dI32PTbDhzdeJK6erft0xJ3PDsccqWMjuEovBRo2b05Pd9+/chPN+Q4NHbGO0ldcWrHOYilIui1rjcUa6o0NJHAHSpKKrFp7k6n6+1csh+PTp+EwAhjr9Oe5YfcFjeYOL3rvJXAofPg9giJCUJeuv1tDp8yyOqx/MxCrJy5njZwlxdXIqplOB0jJmK+wEh/h9sjBNpwuxcQ+KdwRYBqS9xgIiclD4fXHUefcT1qH6uuUEFd3cjGK/7Gph24gzijEEyFGnzrCBiCvGlNIiL3+Mm5EJVUWa3vG+yDhz+5F5ePJt00cQOB1IFz316MBVOXQiQWUXGGoVkoYGdOgL1eBPFF6zTsWxHymUq/nOVU9DJgQh96jn5twIcWSa6kPvzxxT/otW76xnchrTGMEvj31iSZmZnUUNbEr7/+ipAQx2YGNxNB4OAmcqUnuo6+ky71iWnfCeUF+chNuUoFD6T5PvvKJdxMSHKDuqrSvdcY3Hf9IK/heRccRWhiwwkqDtk65ztcObQPTQ1JdVg5/X0qOLEFX+/bXVlchKUfvYWyvLoBIfL/A0sX4uDyxYjt2MXh/liRGK37W994Cwj8U3gNHYKqQ+6KlCwpXbXKSuDgEQpUZjp+nUSfbfc5vcis4YeBsbH9Hzb16vQcQ0UX539zfNWX+wMSDwZpm7l/pJGCCDAciQD+reSfBlpPBi7bmfeVKIGWExkqZDAXN5hTmgRc+INH5xcFgcOtRt+I1lg08lW8vX8+kkrtT6ibaOEbTpMbGituICxbtszi56SkJLq4gyBwEPg34StV4LGEPnSpT5BCiWL1WvtFAAEAAElEQVRtHq6rkuAjCUCCbyAul2qhNYggtdHMb06YRznkrA4yVk/7bkkvq5YXodogBQeWJjLUFzeYIIII8ly+1hveshJcrwqESETSH4zdOKIakYMtAmRVkLK2GwbIa3wlKuRpSOlquQEOVfRen2zbGZfKTsNbHICvr/yJg4XnQPoecqp9qKjDS6KGiOGM0ZBGuYRNIYYjXkq4A6+f/g0+skpIRXV1kkxkgFKig5fEcvCxSFOE6ZdnoEhbXPu++ouzcKXkBBJLfkBzj544W6KH1k56hZSV4Lagrm4do4DAjYS4khG3/8aw8dcdFgIHlmURFBXgdnS5oyYeEhdPJv0aC+fjAdRLm7CVwkAafoiDqDkv/vgEcnwV+GOV7SQ8E0FxwVAo5XRS0+QIzSvlNEXBITIJbTIikwT1IWc2+al0qPolULEE1Y6Zn+4Y4sAaaBSGe3mDJwPTRCBOfuYZMOT0xvIgw0GGZiFgVFpIrtqvCR2hOJKCarnEOgXDwEF+JAWiorq/E6vSQn7oCk2+4ImzkM4AtriyQeKKUxtOYdKy5/H71hM2n/dRyjFpcGf8+tpCC3GDOYnHkrH4k5V44svJDTgCAQEBgf8GxP3zvrfvokt9AsL8kJ2Si8SjSTTFIaZNJNIv2Rbv6mIDoe4WC15eNxlKri/y42mQZDT8HkBTraUT0O5g3mhKrjGGqjJUtg2xcBXUShlovXkoM3WQJWWjzNu15GiO43F8yxncfn8/fPHw9ziy/qTD9Yn4kBOzgKhm3xwPRm9cbEEalZ/79hF8cMcM2txlc5164srreaV49oOlKDRrEM7ILsb3C/bgl+82oWe0Y1GlQiHFgAGtHK4jIHCza5KrJ5wnyzli3c/bLAQOxCWUNNQ0hfCaIBKzkDYPRUmLCAvBM8+yRmWV+deUN47L0IdUGohTbKfDNYQ35j2H1PMZWP7VWofrEVEWadIijqW2YAyc02Q2up4TIYWmZ3ytuMEcnd4AnZQFq+Npmg85H3MhvtD6eUJ64BJNlasPL7JtWGGBK+s0EEOgJ3gvx9eGA+fTMOWFkVjx1Tqbz5PP3LjnR1B3X3Nxgzmk/l46429M+eS+JjluAQEBgX8jfsE+eOC9u+lSH9LEfz05h9YkIbHB9JpGBMc3E1WlGiKJqEkEE44ouF7sYo8XR5uD+4zrjs8f/LbJG4XJWO6z3zyCj+7+CrwdwXr9moQYuxCDkRKS9loDqR1JCiBJyet4ezuH+/TyU6Lvnd2b6DcQEGiamoQIUhvD399vthA4kDkNYiZB0lOaArFUTA2rmkLI3VBEJZX44JUxOL/3Etb8sNnhupEtw2lKwMG/j+KfgAhSyELOXpIjidB3igMfaDanYeDAZhVAdDED/yaOrj+Jsc8Mp6lDtggI96NCs5mP/2whbjDnzK4LWDVrAya9Yz02KPDvYt68eSgtLa29nr/xxht0sUdFhWXzZ3y80eSG0LNnTyxZ0rShAILAoYkgKQX7Fv+OjAvnjA8wDLz8/xmlKM9xEEtl0GtvjHV6RKs2KM1z3rhogjMYsOqzqbieeLFR+41q2wGa6iqc2rQOF/ZsR0VRIWRKTyi8vCESi+0KHM5u3Yio1u3RsrfR1WjPwrkW4ob67x0RZIgkErtJGX0mPgClr1+jfhcBAVfgVCqUb9yIyr17wev0UHTtAt977oHYz/Lz53PHHSj6/Q/osmxPFDJyucMEB4KhtBSVBw+iat8+6hTk0b0bYocNwoXf7V8mZPprUOpO2X2+RGF2E8MDIinQ9N6p7kFSEZThNbZnDvCpSRa75RIobgbO356GwwNxo1iIJDwS/+ShV1mmZvi2AE7M5FBw2vFm0rbxaP8kD7FcEDncahCxwro7P8Cx3CT8mbgXO9LPwGAmiBQzLIbEdMKkVgPQI7SFRbxiY7h06eYKSgUEblUyq5OwJWcB0qqM3wkGDDpGRCCf90BupReifYyFqTU8bbL3FmssxAvkKypjDJAwKpTpFVCKtDbFDSZkrAEyRgdIALWegZ9EAi1Hrv5EOECkA7YJkDoeRBOzHKSsHlqzFId23m2Rr3G9cYEDhzfP/oykynSIGAOUYi1kIjIgxUNlkELPiWjahIfY8QRCK+82qNJXYVveNhwoPIBSbQmUYiW8xJ5o6VuBKr0GOk5EBSHmbMjZhjbe8ejq34H+vDj9z1pxQ3OPAvremmCgQ776APr4K3CkJAxqG+kVD8feAS+iDBQQuMGoqtTYuXg/Tmw9DYOBQ4f+bTD80UHw9rd06x3x6O1Y/c1GFNiJBJcqJNCqHFcDpYXlOHI6FUfOpNGG/k5tIjH8kdux+JMVTfK7kEk84prWNBtz7YbZlvu0wlOGuCj7SXgmmkUGWidfkAYiV3CwnoQ4Me9NROXgBICx/X5omwdCpKrppjKfeOR4sDoGLLmxJ0kOzUMhTsoB4yTd0xaMnoNyxyXoQ72hiwkELxGBLakGW6UBlFLoEkIgSi8CayYQIUIH4qbd2M/BpL7twYpFWLT9JHVQNeGp49A5uwpf3z0T5/c5vr/cMm83pky7T4hgFhAQEKjHxUNX8Ntbi3DxoDFlkWUZ+IfZHkvXRfhC1TfeQkBA4BVSqPq1ALNbD3FOw5uKiQugyykO9cbD9N4yVHQLtjo2CsugOlSEYaM648KOC24dD2neIU53dg+jpAKGZmHgpYzlvlmGPsazPLp0jkFpeTWWrzuJLbsvoKikCj6eCvh4yMD2bw9tdjGdXCdpR+YQcV67vq3QdWhH+vPXv+6wEDeYo/XxwOFDl+Hh6wutwnaj7lNP3w4PD+fJwgICTeEuuWPRPpzcfpbWCR0HtMXwRwbRJh9zRj85BGt/2IziXNtjHxK5hCa1OKI0vxRHNpykjstkX51vb0/TT5Z/6VgI4Cp6PQdJpziLe1p66qHihnrnG/ojD6aoEpITyWAcJJC5C3G2jm1nP2XAhGkde46x5J5enFNKU3jswZar6H2+PUi6A01dsAfDUNGXhcBLKoa+dSSkx5Ot90cav6gyxP64M13HGeQ0TEaN3Kx1SF3jDD2pST6cQJNXSUOReTOrh7cCcR1i8Om9s3Cp5lpqD5KkNHnqBIhETVTnCggICPxHOLv3Iua+vYSKG0ymJ0QMQRLjOIWEJosSJ+768OTaQURwBoNRWNcEGHQGSGRih47tjZmjH3hvH5spS/bQ6/R4uf8HyEy0berhKp0GtUNJfhlWzVqP7Yv2oSSvlIrgSfoTSdUiSRS2+OPdP2nSRvv+renPs5/6xULcYI5Oq8eJLWfo9mwlA5M55qdmPkwFqQICN5qqsipsW7CXppcQugzugKEPD6DiA3NIsuWGX7ahrNC286sr5wOSdk2+12Rf5HPeZUgHDHnoNqz5zrEQwFVICqfCWQrbTUDu4WJN0iaywQKwpobUZJKjV8B5KsD7KY3zJQVlNIX6huyPralHbkD/Fnk/H5vxAL1GrvtpK3Rm9abSxwMxbaPwwR1f1F5L7UE+7/e9fWeT9f0I/DNwHGfx/5QU98wjzNePjDR+Z5sSQeDQBOSnXcPyj9+GVmXWqcnztAH/n4IVieAfHoXibPvKQFYshlhCbgbdU+VFt+uIxIN7XV6fCBsaK24gyDy9sHTqWyjMSKt9TF1RThdnkHSGZp26QK/TIenYYafrE3GDT0go9BoNqkpL6GMBkdHofsfdaDtgcCN/EwEB52iupSLj8cegz64TE1Xu2YOin+cg4vvv4Nm3b+3jrFKJ6Hl/IOull6C5dNliO55DBlPxguqEY1cwrrISmY89XvtzyZIlEIeGISjqBxRktbRan5UCCV2Ogt9oe3slijugkhob+Eyom8J4lQGajQVSbRvbOIYFQroyUAQCHiFAtQOThuZ3GJsS/RJuZLf/LcoN/HWl3sZ0jNYPsogby2H/2zxKaox+DWqg4Ixr29FXAap8wKvxxv8CNwBSvPQMS6BLpVaFvOpSVOk0UEpkCPHwhafUdmxfY7h4sfH3GQIC/3ayqpPwe8qH0PEayyQzNgsDIkTYl9McCokOQR51k7ikuZ8kNpD0BZap35JfB+ltJQ34cpHzyXS5SA+NXkLlDAaDApEecmSp8sDVJDnUN/UTQQJPMQM7RqS1iBkOZOiK9AqXqD0QEtgV5XpjXUD2RX4XR2zNTqPiBvI7+Emr681zGyBmDNBwEhg4BiLW9raoKSHvjemXpyNHnVMjDAGqDRV0IZDeaZKUoTGIoeXENA+CiClIQsTa7L/Q3jcBlXoVzpQahfHB0goLcYM5LKPCwEAeh0s8UVYT7RTrEY4JUcNwW7CQ3iBw4yFOQ28P/xRF2caamEDchhdPW4lP1r5FG4tMkOaiL3d8iE8mzKROoOb3Bf3v6UXjzq/YaD4xQZz58zvG4rXPVtc+tnLzaYQFeSOie3NcP55icwC80+D2OLLethO/LWxNmJGUAi4yCLw3GZDmwOaXgMktsdu0Txo1R03ojRW5xeA97EdOswXlYOrF+5LI346D2sEnyBsBvkoUOWisGT/M2HwY36VZ3TarNGBLqsCRwXN7+y2uBFvteLCf0ekBJ403Bhkg0tc7abMMOCkPhlxqOIAh752vkjou1YfzkIHz9aAnTxIxbUvsQRDnltNFH+SF6n7x4D3Nmii7xUJ2KRuyM5kNSmuwhX+oL3wCvfDMHX0wsX8HvP70T0i+kAlRSTUkueUwTlE5p7yogk42BUebJRcK2MH9ZCTb2xAQELjVuXAwEW8N/cRCUECSCwrtOIpqOkTZb0BlGWjaRzZK4EBQeCkQFBWI60n2DZuIc6FGbbx2krKFC/RGZbdQhw7fvEyEVi8MwOU9rhsu7Fl20KG4gW63vBK8pJ64wRwxAw9fOZ55awmycuqauEvKq+lCRIKi6BDwUcFgk7LApueBF4vAhfnTFKhfvtuC729rg8LSKhw/VzfPYgtDs2Dotp1F9IhuKBVLUV5unP+Kjw/BAw/2wW23CekNAjee5DOpeHfkdIv7+MPrTmDJtJX4dP07tEHOBGmqM9Uk5klcpCYh6SmpFzJw7azj72BRdilNQjGx5vvNCG8egvD4UJtO+gpPOW3QO7bZiWNPDXyAF0rrN+bYEjfUHTxRRRiFvvWSIIY+NABb/tgNdyHCrw63taEihzmvLqD3tfYY+/Qw+m9C1zj72zufBT1JZbNzzpSdy3J4J2cIrpfoZgPexqa5ED8qJqhfc9GaKa8MnAPRhDjFBQdv2kfk/mSJqEzlNNUiLMAbXko5Hvv8AZrU8M7I6Ui7YJzPry5XUYGNKxAxT3lRJW3aFXCGUJMICPy/QBqC3xv1GW2ON6H19UB6u7C6FFGOh/h6CeQn0yGqUFOBNR8bBj7E33g90+nBZBeBSctxmkLkCl5+npAr5TTlzh7kuqy2IwpwBGl8PrqRGFK6JoTc8seuRosbCEofBV7o+Q7y0utcvUnilbPUK9Ko++sbCzFzz8fISc3H+X2WvS22IOIGkgpYnFOCihLjWGpCt+Z44P270ecOIb1B4MaTeCwJ74/53EK0QGqSxZ+uwPRN76Flt+YWiZZfbP8Qn06cZTEOQeYUhj40EJeOXEFmouNEZDKXMvWuL2t/JoLYyIQwhDYLRm5qvtX6pBm9ZY94nNru2j0kwfRdagxkrmPQ/f2wfYHr/aPm57y2fVuCZVvh1zcX0Xtge4ypqUladLFfk9xs2EoVQJYbjL00nKYgokUYZHIpnp75MO56cSTeHfkZMmquDyTdw9XPU35GIU0s8vBq+h6g/x5CTdJQBIGDGeWFBTizdQOSjx+GTqNBSFw8bWonzfn5qdcglsmQ0LMPuo6+E35hEbWvO/DXAktxwy0AES0Uq6qh8PZBuwGDoamuRlbiRVQWF0GqUCCuaw8MnPwYlrz7Koqy3IvJKcrMQLNO3VCS47zD2CsgEBkXmiba7PyOzbViA3cpzc3GL888jI5DR4EzuKacK8vPw5SZP9HBT1Ykhm9IaIP2LSDgLrzBgKxnnrEQN5jgyHf5hRfRfMtmSILrYsKlUVGIW70a1SdOoPrUaTAiETwHDYQsLg4Ve/ciy4nAwVbCgz43B+G6J+F/70ak7vSElmiJWCCsJ9DmIRZ+LR9AcXs9ihcshD7HeKw6NgjFykkoUNaJJZqS8H5At1dE8I7icPZH927mogYw8AgxDir3fI/F/rc4iwQBE81GAcGdjf8nvYOeEUBlI+t8kkxQ6ljY+n9Bs5EMWDJJC+DqctSKGxqCWDCt/ldAxAw3QtAgIPBfJk9dhHXX9+Fw0QXoOD0SvKIRoI3BnvOFuJJfCA+pBCNbJWBK986I9qubrN2Ss8hC3GAOabhv65+Do3nNkFOpQqiyDCHKCniJNTXzrfbTFUxIGINTEYERHhVaGd1iiUaDYo0WgfIAjIvojGKtGscLMlDJFcNbIkO/oLZ4psUYfJv0Moq1jieXK/QyVOllyK9SQqWXIakiH239O+BA4W6QIyONyPb6AbzEodibmwlPKWdD3GCWVsHqoDJIoGB0VkkVZAypUK3EjvwdUHGFTnsQSDqEQqSBr0RNkyEIWi4Jn116El39RtBECfJeBUhsO6aa0HHp+L7zx6g0ABJWjFC5c9d3AYGmgLh5kUF7c3GDCTLY/OG4L7Aw+QfaRGQiMiEcv56dibN7LuLS4avUjajX2G6IbBGGvSsOYdq9s23ui3xDNH1bgZdaD1HlFJQjsGMs7ujTCrsX7qED78RRpteYrpj84QQ07xSL5V+tw5rvN9ltnnQEaYoxdIgjMwy1jxlC/YE4FcQnrth0SR0wsQ9emfMUAlcfxk8rD9neMM9Detl6ooIM+JNJDsLUF0bhzS//htqGY9M9QzqgfYsw+v+eo7sgOCYQ+enGc4/0YhbU/Vra3+9F28VLXMdYXDtrbGQ0+Fs6S9nEQZMVCZYRmZRpjLVgRNO1GQzhfnXb0OohuZINSWK2zeuNwUuOqsGtrUUXIpY2t5KTsPyc7cRCdxn5+OBah9NlH69A5qoTYKP9YQj2poIMCUmNcJI2QiBjRXJzMYaAgIDAfwjSeEOaeomLOXH2a9WrBSLiQ2n0PGnAJO7S5Hp49ytjEBJTJ/QijSoupSWQa7BSBi7A0+E69NxMHFZdOC/bo6ygnC4kRYI4vhNx2rl9F1GaVw5PPyX6je+Jx2c8gMlxzyFPJIKubRSgkEIXZl/cYCIprwg9RnXB9oXOJ/PDm4fS+yNn8GEBDptiCX+tPYECO8kLVIwoJtdpgEuIMr7PUUGA2HjtI17gd0+Zg1Ej2lODc4fHQtIZGAa5209hwbWfoDbwkEpFCHXktC4g0IRo1Vq8N/pzmyJlUhcQIcKilB+g9KkbKI5pE4W5F2bj9M7zuHI8hTbz9xnXHWFxIdg6fze+fvQnh/vU2EgqyE7JQ3BUAO54djh2LtlPmz1EYhH6jOtGaxLibPnX539j3Y9b7KZHmODllgmN9GvoxOmSC/GlQiXzBsshkwfgtbnPIiA8gIo93GHYwwPhHWBM5Ht70Qv4aPxXNs/dE16/o7aJqO9dPeAf5otiM2GVCXFhJRR7r0DdMw68mRMsqaVkpzMgSaszA4xtG0WF9E0CcTOVSawEDgTZqWtQ928N3kaTjSg1H+LMG2dQSMTmpGlWH+Vvd527BtWZgy3+dFWtuMHtfYlY2hwmICAg8F8k83oxVq0/hSMnrtHkm3atwxEBHqdXHELm5etQ+npg0H39MP7l0QiKDKh93ZzXFliIG/QBnqga1qb2fpjCMvQ8XRXkBeWeq0CrZjQdqBaJGHxMCPhAb7BkfLCRIgfT/UFghD+GTRmEwutFNDmUNEuTxIMBE3rjken3Y2Lo46iwd59vByLe7D6yM/atcG7yShqkyf1RU7Bk+moUNWAslpB4LBmTop7GiEcGufwacj+26NqPqCytos7zguGIwM1CVanCB2Nn2ExkII+RORTy2SRmTCaad4zFvMRvcWLbWSSfSqWmCuR+moyfrPlhM3588Q+H+7SVnpZ1NQdhccG02X/Xkv005Y4IDMh2J0+dSOdglkxbhfVztjkVGjUVo54Yghd+eBy+gd5YMXO9e699fEht+sVbC17AtHtnWZy7TTzw3t20hjAl1vzy+kKHAm1XiG4VUdvI//+MScxOWDB1eYPfE4lUTOtugX83H330EV1cZf78+XjkkUdqf3Y3+dBdBIFDDXnXkrFy+gdQV9adCIkYIOXE0dqfdRo1zm7fjMsH9uLudz9GeEJr2nCfdtY1Z45/AlV5GU5v3Yj7p8/E0Ceft3o+tHmC2wIHIvQIjU8Aw7LgzSJK6uMTHAKpwqPJkiyqyhwPDDqDiFCOr1vl+gt4HuX5eWjWuVuj9isg4C4kqUGbbt9JiK+uRunyFQh6/rnax7SZmSievwDl27aCr1ZB1roVxKEhVODgNWAAZK1aQZPofje5oagIkb5r0W7VZGhKALECkHjWDbgHTJkC/8mTkb02BSdnGaARNwOYG3fz0vYh4+Riwj0s9CoOlxby4F3RLDFAy0l1Pwa2ZzDkFxZXV/K4vp+HXg1IlYC2AkjdBKRt4xDQFuj6CoM+n7DY/RKHGuNkt/GOA/p8zGDzQy4e6w2CERHxTFNvFBBJAYMLhhL+rYE2Dxs/O3o1j+S/G36DE9gBUAQIDp4CAgL/PS6Xp+GD83NQZahT4BUWkXvgcyhifFGt84WK12DJhZNYe+kiFt43AW1DQ1CqLUBq1QWH2w5VVKCFXx7SygKQXh6AWO8Si74ZZ2dVMt+u5USQsY4vJiS5IF9l2ahUqK7Gn2nHsbD3c3inrbXTdbg83qHAQcexKNGSgS4GcokBKj2gEEkRKiMxxqSZiKMiB5ENkUOQLBQXiyPBMLnwEGsd9g3QBGqGR7VeShMjxKwBBo6FyiBGlZ64tDNQGYpq3izH1zEpq4O32PoCqeaqcbDob8hYBfQcCwlrv54y7oVDpT4XUcpODtcTEGhqDqw+auHAZUvkQNxC731zXO1jWUk5NJb84Jpj0FRr0aJrHB20J4Pr/e/uZXfg2BDmC97HfsN9YUkVoif0wbIvHkBpfjltqjSPfibHcM+rY7Dupy346eX59DHS6KKPCTI2tOj0EGUVQVRvgpBXyq3EDbV4KmDoGA/xMWsXsQc/nED/nTy+N6r1HBatPwaDwey7rDdAdjod4uxSq+aT+966q/bnbu2i8cdnD2LpppPYdzwZGo0e3hyH6mMpWHc0CRt/2oz2XZrj9ffvwUer3sBrg6ZCVaGGOKsEsmPXoOkUbTn5qtVDdiadNtPUp1WPeLy16EU80e4V6HUGMDqOnsXMnVAZkshQ73VkHVunTfI6+pxOD7asLhWUF7FQDWwNvl40NzlOXftoiOQSiM5Y17raNuEOEyU0rcNokgOjtz5nEvcrCRFVuBBRTdx1J71j/BtUlVdj7cYTqLi7q0WjmbprDKSJudTFz9G1seuwDvD2NzaGCTiBftga+S79nwUrCgj8k5zbd4lO0BP3NRMFKy1jWasYDisW7cL2pQcwa/uHaNY+BllXs3H5iOvuHryYdXE9cn1ouMDBBHH7XPvDZsw59RVem/uM1fNxd/awSEQg10VnyKUSJIzpis1XcmHwrUmCyiuF6Fqe0c2vhujWEdDZEE3agrjHOnye3Bs5aXrixTCOQZLrdTNr06aKSjWW/X3C+ewgub8xcOTWBoWZhWjTK8Gl30FAoKnYvfQg/e6a32siyA9QKgCDAeUFpdi2YC/uenFU7Trpl7OwevYGHFp7HFqNDi27x1NxA1mGPHgblkxfhRxX3PvrkZ9ZhFY9WuCpmQ9T0RRxSTV3qCSNN6QuWTV7A+a+vcTudlgXRWBWgxXkXFjTXEnuf4ljMWHKJ/dCp9Zi5ewN4MxrEnv7F7EWNVz3EZ3xw9HPsWr2RhzZcIK+Z6TWKi0ow4qvjULy9re1wStznsTUVW/gzSGf2BSBSLJLIV5zCvpwX1pnMWotrVvMU9zIvfiLPz2Bpzq9bnGsIhsCFqu3wNavZuDA2Hk/yePy3RehjwmEISqQJj2wpJZKzYOksIJaTjQlDKlJpOJaoYjiaCoqfT3Ae1kLoru3icb9w7vQ/5cXV2DrvF0N3i8R/iuUgujaJYSaREDgX8WJM2l4b9oaqM3uoXfvv0L7d0SFlRBVa2gD8MpZ67Fj8V7M3PMJHXckaWn105rIOI+FuMEMMh6k7tkccpWd2kSpoMkOTHLTmG4Qc5b1P2/FL2e+thBlmGjRuRlO7XQ1W9QIEbq17tkC+1Yedjh20qxDNCqLG+/YbqKh4gYTpEF55awNLq9P6qmSvFLEd6pLuhUQuBnsWLwfpQXECdY2RExABAek2d8ESY5bNWsDvb8mTftteicgIiGMzpWQ9ZZ/tRYFmZbjLK6Qcy0fnQa1wzOzp9CaxNPXAwrPuprkoY8mYtK7d2HZF2uxYOoyu9thWRacg15PVyCCb9M4+xNfTqa/JxF8kxRPp6+ViDDxzTtqfyaC9O+OfIbV35Ca5CQ13yIidvLekvptxcx16DCgLV797SlMXfU63hkxzWVzjfp0GdoBj3/+AJ7v8bZLx3qjIHWZK/Wbu9skSX86G4Za9ekxqjNNkiMU55Zg55J9Dd5v3/E9IZYI7ecuIdQkDca1UeT/OKRJf8M3X1iIG5ylIyz/5D0UZqZTAQHPN/VQSNOi12pwYv1qm8/lpjh3DaqPSCrFph9m2hU3KLy8MWjKk5j8xXcoSE9Fk9FEah+xxPEkgTkypWARLnDzqT52zOk6xYsWwVBpLEJV588jdfzdKFmyBIaCQnBVVVCdOIns115HzodT6ToxC+ZD2bev1XZEgc5dgCv37gMrZqAIYizEDSZIWkT4XS3g2zvBrrhB7g/4NXIOzCceOPMjh13PG+i/UQMZjFnGouMzDKLq6gXb8ED6VsuHvKIYdH2FxbC5LBT+gKqwrlGfTAIWngW2PsIjax+HEQtYhPd3/5gVIcBtX7JQhrHo9T4L9h8UrjaluCF6KND6IcA7xjVxAyMGen/MQKwwfn6oqETVcKFG20eE2xcBAYH/Hgaew+eX51mIG8wJiilGVKcshHfORmj7HIR0uIq3T89GrqoAlfpSl+bDAxTVSPAn8aUcTWQwh3fhVrxCr6BJBo6ECEkVQajQKej65quqDFr8mX7QxnZ5XKvMAMfbbiMl2yHJDaYWW1HNrLZMrMX0SyuRVeUFA0+yJVjowdL/k2NUin0wMeoxvBD/Ca6Ul9SICZxfDFm6fQZ6XgS1QYpSnQKVejndPt13TRoDDZF00PnqwToaXOPhLyUZDqzD99OETOTY2VZA4EZAUhicQQaWTW5CFw4m4rlub2HDL9upwypxECLb+GTCTPz40h900HzWvk/QYUAbq+34ujAxdfj0NUikEjr5Zy5uMB9Qv+O5EXT7RNigHt4J+jZRtJnFEBcK7W1t4TOhD2I7xdS+hosOsS1uqIH38wRn5gZLSOgah2+f+RUv9X2PugWN6RKHv797As9Nug1DO8RCeiIVyrWnIEmxjoomA9bb5u+2eCw2MgBvPzkMCz+6F2H7E1FyMBFlHSKg7tsCVW0icEStxsS3FuBoai7+uPwtTXMgSK7l0/3IjiRDei6D/kv3e63ApmP0p+vfpkKTN+Y9R98rvb8CPJnbJUq3moUXM+BqhAvGN8DBH4RhjH1WaflgzAbi9c2CrMUNZqjjQsDLrAe7ddH23U0pUjH0YZZu0cOmDMSDH96DsOahLokbiAjig+WvQKYwumnt2HoaJT2bWbnoks8EEVxoOkTa35ZUTN16BQQEBP5r6LQ66ppnLm4gkBQFg4cU6khvFN7bFnnPdkf+412QdF8rPDL1D+TmFtt0WHcEW6mh4jyHaPRgq1wYeHIRItD8+7tNVo+TSe3EesciqXJ+o24o0GDWogMwBPsYRYdyKbiYYOhuawsuyIe6nb/669OYsfUD2ojgCrbSo+rj9MgYY/YeL7JfsPAGHjIH4kICEYiatuBJBBwCAjeZs3vrahLe3xvo0Q5oEQ2EBwFRoUCXVli6/iy0NQ0cZ3ZfwPPd38amuTtpExL5zpMkh6l3fYnf3lpM74O/PTANbfpYp6H5u5BMcmzzKUhlxprEXNxggjR1kGQb0sBkjzAfD0SRpDN35j7JecHs3JDQrTm+mvIjrUnmvr0YY58dTl1jH/v8AfS/u6fDTZGaZPtCy+YVIlJ7/Y9n8ePxL2itRZov9Vrj+Alpjjm1/RweavECrhxLxh+Xv0GXIXXpA+aQ4RLJ9VJIr+ZCklFsIW6IahWBj/5+g7qvvvLr07T5xgRboYLIRjKE+fvDGKzfIzanxKGjNnlOkpIH+Z6LUGw/B9mRq1RM4ayRSN0iACV3t0X+Mz1R8ER3lA9uDr2f7YTikY8NxoMf3IPgmCCLJiuS4uC56TxkZzPBVKjp9Y4troLvuev4/MkRkNY0AG2bv4cK0BsCcUk1CV0EBAQE/ktoNDp8/OV6C3FDLQwDQ9sYKqYzQcxQXurzLk1FIA3w5nCeMhhC6tJnbaH3lcHO1ASFDw9w+Ly7kIQG0gRcH4PeQJui3YWIEskYpb0igaRGvDn/OWqeUpDlfkP1jYQ0WJPxOlcRahKBf4JzZjWJPZZ8toqOpxCObz1Dm+dJehxJeCA1yYmtZ6mRxMKPltN64rtD05HQvbnVdvxC3KtJzMUNJsgcysQ3x1HzKXuEtwhFSKy1GZ07tOwRj+mTvsFL/d7HH+/9hQmvjcXClB/x6PT70fsOxybSBp3BqiYh4qU35z+P7498RtMwCrOKaKIogdxnn9h6Bg82e44aaP1+6Ru0v40Y4LlHs/bR+HD5qzSl7vkfHqfC8X+KphI3kJTpMU8OofMkAeF+LokbFF5yvPfXy7WihI2/7gBno95yVWR3f43QRUDgRiJ0CAJIO3capXk5br1xBp0WC15/DsfWrQIrujlKJA8fX5qa0BCSj9dFkpXl5yLp+GGc27nF7fSGgKgYnN+x1e6Am0giwaPf/IouI++AVK5o8PHeSPQ6MvHt/ELlGxKGsBatbsoxCQhYwDj/3nBlZch5523aFJj9+hvgKmwLtEqXL0fFjh0Q+fgg+ve5iFu/DsFvvYXgN15H7Irl8B4+3Om+eIPBpRunVvdbfq8YXg2l5hiUmkPQFpZRkYOoEWYyZclAwRmg6CKQtJLH1kc45B7nkTCRhU+s8+903inb562L83hU2kvb4oFLC4C8kzwkcvdvcFV5QOF5434jBzDo+Oy/P3XAvw3Q810RKjMZlKe59hoiGDnxVd37n7GrYTfIEi9QQUtwJ/feR07Pozqfh7ZCsP0UEBC4dTladAEFGusJXRYcAmSViPQoRUJwHtr7Z6NTYDZa+BUgLjQd0y+/hD35O8A4Ke3I7TtpRvWSahHuWV6vOd/YAOMIHS+CjhdDx5OGT+t9aQ0inC2NgI6TQCbSgbfh+703r24gME+dj+PFp7G7YBcKtPlQGSRUhGBeZhDRg4YT0zQF0wg9eayNTwi25hrrGyJ+SCkPQG61F0o0HijQeCK7OhwftP4WfQOHQC6SgwEDtV4M3oUawPx9IMdCjqnuubrXO3q/yN9M7CSZAVDTd7FMb3uS3IS/NAbB8ninxy0g0NS4UssTl6DZT86BwWDAjAe/o6IGW6z5fjMd2PcJ9MbM3R9Tl7Inv3oIT345GT+f/BI9xzpPTTS4MMAqEokwgbgFdbadypCrMyDwjh40EprAueC+z9db5+rJazi39xIuHb5KXeIeb/sKLm47iwfHdkdzlR7S5DwwDhpUTu+ynbZDJgGua3VQ944H6k3scRIRflh9GOcyCyE1c3UmwgJJWqFRTEHclSP8wHlYGzpkX8ulzUiE2+/vj8krX4KqS5RtlRYZ1GfqnGTsTuDyPG0oEl+ydLDTRzsR0ItY6G041Lni4m2+TseBbfHGH89RV77rSTkuO7198/RvtT9vu5hOj8dRagR1Ca6Ht78nnv3uUbTpbd0Y5wjiPJWfWYjK0qZzy/vXORM1drmJnD59Gi+88AI6deoEPz8/yGQyxMTEYODAgZg9ezays7Nv7gEJCNwk9q86aiFU0DQPROn4DiiZ3B1FU7qh+L620Eb71D5PRGsFLXwx8p2fsPWv/W7ti17HbAjzzJGm5Fs0yJrwI43IDRxiI0lT5ulTB/4+itV/7kd+kWUqgqSSB6u1f/JpHx6CrevO2X5SxEJ2e3ssTP0ZIx8fDIWn6wOibHaxMTmhMdDiz7Eimzyjq3Yw8a3TQ3LFeK4jjRHEEVdA4GbD1syT8CSxoXUzm+7LRVoe332zld5rff7At7UC7PoQl1QimCBNQ0Tk8NOJL2g9QuoSUp90Htze6fGQxkNnkCaRe14ba/f53Gt5aMFxkNYIjFwIiIQ4vQCM2WBJ4rFknN9/mdYky75ci0dbv4yrJ1Jw31t3IqxZiNNjPL3LtjP0r28uouIGW/Acj59enoeUM2m0sd5dsq5kI/m00RBvxCODqLusObJjyWCLKmzXHXre5DVRB0mISMxEU1NxWzOUj2wJXYQPTZjjFRKo24ag+L4O0EZYNsh2H9kZr/72NC4fTUJeqrWIjdXoITubBY+DKVCcyoT8Ui4Ml7Px/bNza9fZt+qIW8enD/GCul045ANa4vklLyKhq3VjnCNI4x2pSarKhJrk31CTCAj8v7JzfyLKiTjMHkTkEBNs8VBlaTXuj37GmGJQT6gNV8TBjmoL0gBq4x6ENJI6MkBytSYhzbqkJln1zUa3ReOte7WgCbv28A70oiLIoQ8NpE2otyKuJt0RgWporOXfXUDgZkCSupyRn16IOa8ugFatpfMk9tIFFn2yAonHkhAYEYAfj86gSWpPfPEgnvr6Icy9MAvt+rVskpqECCDGvzTa4b15y27xEDsxPXDEpUNXcOFAIv136Yy/aU2SdiGDpjqERAc1uCaZ89oCu+dCIgog5lNkPqAhiQFpFzNrhWRjnx6Ge83Stv+t9LmzO16a8xQ1G3M1FYSkhP/40jyb1yR38A32xqu/PUMF8+5AUgNpTVJelwz+f8O/cJ7kVkHICCEXm7RrDX4DL+/fDYW3D01yuNFUlzl3ZrWHXqujiRObvv8aBRlpDUpD8I+IQmTrdijKtIx1M8eg0+HSvp3oMmocbYho1qkrrp06jsYS3Kw5pAoPZF1yL5LNHoyIpQ3ZnN7+IH6vu++j6wgI3GyU/fqheP58p+tV7NiJ0r//hjbd/neSUPLXUngNMUYcyFq0oIsJ3fXrNPnBER5du9b+X13MI3UTTxvbJUogahCDoJpm85S1NecVnkNw5c/wr/oTYt54buQgR+m2sejz3VtI3iRHziE0SSIBaZr3b8m7NIBgax2Dhkf6DufnwwvzeYgbKM44Oo2HropD3GgWGS7sy13IPI+8JoHiRiMPAHq8zaI6j0fWXvd+l7zjQO4xAwovMMg92rD96yqAMz/wyD5sQK8PWMh8HP/hyd/30iLjZ1ZD0swZIKQr0Hoyi6AOwvldQEDg1uKaTbUdj2B5BWQiMmDFQ8oYrK5nLMPjeMk++Eu8oeXs1wtqjgzmGx23/RXWgwakeZ+IEmydHUlPUZlOTs+juRoVRPCBp1gNGauHSi9GiU5pbNRnWSilWhBvTz3HoEilhJ6rGyDTGPRIr0rHb9fmIkt1HXreKMvwofMMRMxA/kOyEozyCPI/+gwxFwcPDgyiFFHo4BeMTTl1NRxZr0ynAGrHDHnszD+FMeG9IRNJ0CMgDkeLUlCs8oCHl+O6zcCbHS8nsnhHErziECirREpVioVopD6M1cy7bXIr/SBhGHiLsyCy85qegZNd2paAQFPTbXhHGpnujD1LD6Lz7e2Rl+64QXHDnG3oPrwT/X9chxi6mOhUrsJ6J/HrHVvXNdUVZhdjy++7kHnlOnXuGjSpH9r1NZoTrN5up9GwhoPnMvDV2rew7psNOFRGxFhOcLICcdv84qHvqYuqK9g6Z5CB3L3LD0HTnyTi2b9H/W3lQSjO15lUaCN8oOoRC85bQRt+RDpyuDx4tQaignJIcisgvVZIG0Onjv8Kr819BkMnD8DG847HwHhy6tUbpWz2jkacUQz5kbpEUDIZ4uXviWoXJhZ44nBdD1FxFQzBjh31yDqEoKgAvPb7M7ienIPD607AHQ6tPY5Tu87h9I4LOJGZYxR0OEqNCPWmLrTmlBdX4tunf8XhdcfxzuKXnLrHqSpVWPzpKmz5YxfKiyroOBP5fj344QS06dXImEOBJqesrAzPP/88Fi9ebPVcRkYGXfbu3Yt3330XU6dOxeuvvw6xWBheF/jvQBpXTag6RqC6Z0zt5ZDqcu1cp7TBSqzacxFh/p7UkdRV5GcyYAj0BBdoLTpkybUsKY+KzczTgggluQ2fJ9GqtLSh4KtHfkTGZWMNZiCCiXrCNfKbemZzqAphYahJJKXwPDr4+aM144PrsOeYAlRWa7H7QCJG3N6OXiva9m2JiwevOD0+RqeH6Op1GFpH2Xy+c/soVKg1SHKQCEGD51yY8ySabPnFTOhahkNn1rTFlFRBdvoa2Eo1vW5N/vAep8ctIHAjIPdMxPkUEUEOk9d2bDuPViFKFDs5N5CapOOAtvT/xLWTLCba92+NnUscC7Xa9atzCSUNGVv/2I2spGx4+Xni9gf6197brf95m8PtHJ23C9P3foLlW87iOG36Z4wDLzbuTZniSogT7Z9rTI2Bn93/LRYkfe84arJ2o9YPkfvUQy40tiz6eAXKCsvhLsSo673Rn+OtBc9j4L19sfuvA5aHpNVDvusiPR8bIv3puZ8traaJC4a4EHBhxD2LpQIwNqcY4sQsmpJQP2WNuJGW1xOsuYom2geqTmG2n5SIUD68BQLmnaS1V2izYLzyy1O0QerktrM2X2Lw9YC6dwvwPmbGFoZYbLuahbH7L+HwupO4fLiupnKEwVOG6oEJMAQYEz5zAXy47hB2Zubh4ydGQmkmhLcFqTnJ344kClaUVFG32h6jutCapKWLtayAgIDAzSLZheQzW+mh5Fqz6bed9N7bZC7BVmntD+Kb4Hh6/2wXUovorVcoyiYTzw2DJJFeOHAZMx//GVlX3TPiNUHqC9IkfflIkt11ygsrcHDNcQyY0Bv+oX50/JKIIhtL9xGd6FiwqZ5qLGKpmP79iKu7vQZzIUlV4J+i27BO2P2XdTp9fcjYb0zbSHpf7Yj1c7ahVQ9jv1bL7vF0MdG+fxtqPOGI9mY1Cfkebv59J3Ku5cE7wAtDHxpQK4Dd8IvjmuTw+uP4eO1bWDlzPU29ayzkvDbt3tlYmPKDS+vb6sUsyinBsY2nHL+QJ0KRlS6bHlm8lOPx5tBP8e6Sl9D3zh7Ys8z539VdiBicJNNUld345v2IFmF44YfHceVECs7vu+zWa7cv3IuRj92OvcsPW4wFugNJUCImA/tXH6HJ4QqzdCVbVJRUGmuSBXvo+0NS/XqN6YrJUyfQBA8BAUcIMzA0pr4RluJksN9NcQNp/Oe5pombcRW5lxdNnGgoRMTReeRYXD3i/AR/fP1q5CRfRet+A9Ft7HiknjnZ6N93xDOvQKuqxopP34XBgSjBVYgjvWmAn2GIU6z18Z3atA7x3XtB5iHELwvcXJR9+0DWujU0l53chPA8Knftcro9TYr9QtVr8GCIw8Ogz7Z9A8jI5fCdaHTTSdvC4eQsHpyZ4DhlHY+QbkCfT1jk1fSWhJVPQ0D1covtsFDDv2oFyr7IQN81f+DszzySVqJJRA7Ja3kEuJBAFtLVzHW5xgFWXQIYHJhAmKjOBnzjG36MJ7/mIZJyNH2iKSHvfesHWZSm8Djz/Y2Tasr8gLgxDOLvZCD3Z5C2lSM6Frc58I6xcGgs+SeBg+9xGPS9UaxmC4OWx743ORSa97jxoJ/T/DMc2j/G0EQRIlwJ6804FUsICAgI3GjkIuvJSKVYWyNuAGirvYNTVbG2CnKWgZi1Ps8aeAaVhjqHHrJOqcYTvjLzSV8G5NROhATGn4xj/xV6GUq0CnhI6gaXDURQoK+bRKjmpODMUh3IlkLlVYiUlyC32hvZKl+61Za+lfjiynt0HY+aSpQIISznGMirLX9Rsg45NiLimBTbE5tz7De0KkRaBMkrcbz4T1Tqj6Gz3214OK4fjhddQ5FaiUBFJeRi2wPl5H0iCRHkeNQGEU2PIJCfDTyLN1tORpk+HzOvzoSBN9gVhJB17fQm1KIxiJBVqURmpRJZngr0DsqAUlx3U1JtkOBKZQhSVScwo0MPeDRUaSkg0EDIwGJ06winE1Ucx+PIhpMuuePY4/Y+CfhpyT4Uldh2kVTIJRhzezv6/42/bsf3z/9u4VS07qet6DW2Kz5Y9ipOnHUs/ibnkt+/3Yhf1r+Db77birVbHAsi2ELn4z1E5ECamMKbO3dL7TKkQ+3/SfIFoTinBOTbb6u505zU7GK09fekSQYVw1pBF2kZWW2QkTMtC3h6QB/oAU3rUDA9Y+C1PRHIr8RXU34EPKRIzHQyUcwQMRxvbLKyYWHHllRBcaSuxuwxsjMmvTueTsz+uP4EDN6Ok2nYcuukD+mVXKgcCBxEuWUI8pBhzMtjMfbZYfAN8qGfBTL56S7vDJsGA8eDf6CX85UdJDwc23QaH43/Cl/v+sjuOsRBmEyaJB6tm2wmx3x8yxmc2XUBj352P53wIM7e5DPs7UKqyL8SqlpsZL11E5yJSkpKMGTIEJw6ZTmR5uXlRVMcioqKUFVlPE+p1Wq88847dN1ly5YJBikC/xlMrp4GDymqu9c12PPktthJ2E51+2BUHHcv3YRsVrn9EnTNg6BtHgyeJBGpiGKPgz5IiYq7O9NmIpJYJD+TBVGlhp5OdNH+0Eb70oZncW45ZMmFViIIu/uUivFCr3ctHmPspFCxBsArm4NeCuhFeojyShHu44P7x3TD2nVOJt0BzJ+1HmcX7KYCQ+Ks/uG4L126domu5QBaHQzx4YBpglinB5tZiKl/PImrGUV4e/pqej2z6XauI9dwB4psEyoN+CvZEF/JBhvkDSikYMqraVNx3eZ4rPh6PToP7gC5x63p+irw36Xf+J70Hvu6n2MhrF7P4dhhY2JZg2uSB/pj3vt/oazQdkMSaZYcPmVgbULdz6/Opw6iJtb+uAX97+6JNxe+QO/zHEGa9/56bQG+PTgdXz31C7YQYYXBAENsCAwxgeBlEjAqLURp+RCn5rt0fiMih42/bKcums7oOqSjVU1CBBukrnFG0qlriEywFAHwChngXTOPWlJOxQq20GuNKRvkfUuvlwRHIGcrcW4pXcwRnboGXpxGhdKMRm/z/eh9R1fc/+7dOLz+BP6cvhoNQd0u1OHznKcM3v3jcffQbhj7zDB6777fTgIDp5BCNai1VTofqS+0CWF48dV5kJx0rZGI1H9Vw9qA87IeF9p7OgXv/LwB37063u7rSdLiG7d/hKRTqVZ1PGlmIzWJSCyCh7cCvcd2cyrg/tfyL6lJBAQEALkrSUEOro3myZlEDCfOLoM+wnIMzRy5yuAwHI7JK7ZIUmoKyD32K7d92ODXh8QGYfSTQ2lClT00kZ6o6BaM6VdPY+PGctzVrg2tST6ZMNP+cZFrRJgfuAAv+gNbUAY2v8zq/Xlv2as4s/M8Pr776waNzdm6RzBB5v3rb5P0Fiz7cg06DGhDnekFBG4mA+/tgwVTlyE/w7HbKEltOLHVtvDVnHQHNcmwhwdg4UfL7SYA+wR60bqFQL7/v7+zhN7XmSB1yqBJffHynCedGizoNHqs+HotvtrxET67/xvsXtr4Zn8yFr5p7k541YhyHdHVfJ6EzPUwRsGG+e9jj4sHE+l5sCHo1DoqxHhj/rNUGNKU9LurB+5/727sWLwPq7/ZiBtFcHQgTaAY8/Qweu9OxAruQs6rrw6Y2ujeLXK+3r/yCK3xPlr1ht31yGf61QEfIu1C3eefvIYaUu04h0c/e4CKsMnvQ+ZJlDaEjP8JhJqkwTjPgP8/ICAy+qbujyQDSOSOJ3ybmurShiuITSKOnXN/cilBobK4CIkH9+LvLz7G4ZV/YfhTL0IkafiNpkgsgV6rQXhCK9z11kfwC4twKB7xCXLeVGCOLXEDIT8tBfv/dO6iLyDQ1JDCLernnwAXvjeM2Pk6rNL+gCQjkSDq558hCgy0fk4uR+S330ASEozCCzyOf2UpbjBBGsZPfWN0WpbqU+FfvcLu/rirR1G5Zy8SJrAQN9E9SdFFHtc2OL7xYkRA83EM8k7w2PeGASuHcVg5hMPhT2oszVwgqHPjjjPxz6Yf/RQrgaCODNSupY01mJihDNo9ylJxQ2NoiCjCHkQsQoQO9iCpDRbiBvPj0APnfuFx+lsex7/gsWECh7M/EdGGMEItICDwzxHtEUIzFMwXT7Gm9nnWoY2QMdInX+uJcp2sNqyNnNZIo3yxTmkpQGCAseF3Q8LUF1UQIQELHc8ivcoPiRUhSKsOsCsIMKEgtuE1hMjK0NvvGtp5ZaOVVx4GhiRhXORZdPTPAiuyFlQSsYWzs2+FXg4WDEp1Zfg+aSmuVV6DyMb7EaEoRTvfXITIK6HhcnCmdD/mpU7HpYpl+KD9WMhELDIr/KHSW98/qfViFKqUKNUokKfyRKnWA2q9hD6uNoghggLlOjVaebXCC/EvIFgWbBzwNzt4MWNAoKQCUbIKRCu86c/2yKjwr5FHMFQssr84DoeKm+F0WSSOlsRgX1E88jTeuFKRgYVpm528QwICTQ/Lspi+8V2IxKxLjYLOUDpoepdKxPjyrbvg66WwKW74/I1x8PX2wJndF/DtM7/ZjGE+sv4kfnp5vkthlcmnU+mg6b0Te0HuYFKMKSwDU2m74bE+l45cxeY/HIvPRRIRHXQ+tvk03hjyMUZKJ9Hl68d+JidDl/bTZXhHVPZvbiVuMB6w9b06aRStGNEGnEJS06C4Dq4izSiG7FwWmCqN0c2uUg3Z2Qwot10EY9b85BPkTRM0SnLLIHbisseotRDZcLiTphVBetX2hALZr8ehZIx8dDB18yHihsZAJknIOyVy5jDO8RAV2Z5MMkGin4mww5FLsLm4wRydVo9fXl+IH174nbqIT4p8ik5KNcXEsEDDeOqppyzEDUTscOTIEZrqkJ6eTv/dtWsXunTpUrvOihUrMG3aNOEtF/jPENMmkv6rSbB0S3elH9Dg5X7z+6PT74dULKLXAM/N56Hcch6cUgxDiBdgShQQs9DFB6NydDvogj1RdncnVAxvRYV8mpbBqBoQj5JJXaALcj6BTii8Xmz1GFuloY079iBCB7FBBIQFI9tDhk9/34aLhUUwSB2/MXlJudixaB/eGvYpNv62A89//yhtInUFUVYhJHvOQbz3PMT7L0Cy8wy8rxegNLcUPbs0wydvjkNYiI/1tUvLU3dxMQOEEcGIo32k59dUJKDpT6KMQgtxg4nz+y9jybRVLh23gEBTIpaI8dnm98C48L2RuNAM6eGgSYK4TX6y7m14+VnPpZDG74/XvAmlj5Ley//40h8W4gYTxG3197cdp2WbuHT4Kr2PnPjyaMhIKoFGD8mV65BvOwvF+hOQ7zgHSXKuy+Itus0jV6kbpiMkMjFGPTEYh9Ydx6sDP6ytSX588Q+X99NtmFEgwUvE4NrGge/WGnzLGOPSox24hGjwdsRV5F589Xeb4C6MnqNNqvbeD/9Qf+qEW1bg2DHXEfoA5xNWI9+9Ew+8d7dTYbIuIdRa3GCGJi7YZrKdLbTNg2yKG0wcPp+GS6kk08E2f3+3yULcYHEcKi1+fmU+rUm+fPgHWpOQBj4BAQGBf5JY8+QbO5A0H1eRn0yjAjl7Y07P3dMXYnvjclo9mDT759iGUpDZuIn9vLQCet62ZUxDRpUKx8Uh+7kOqOgZimtiDVZfuITJS1diKVuAp795hLpm14fzlEM7uAN03VvAEBcKQ/NQ6Hq1hHZgO/BmSUEkwbUws5C6n7+39BXaaGt1DAop9AkR4HskwH9EZ3A2xnztYW9cjAhIl32xxuXtCAg0FVK5lNYkrvQUESObxtQkpN4gdQepP+pD6pRP1r5F65aDa47ht7cW2xQDkLQJknDgCmd2XaTu//e+dSdNaG4KLh2+4jQZT6qQYPijg6hY+OX+72OE9D6Mkk3Cb28ucnk/PUfVjc+6C5lfWveT44SLhhAUFUhTAklSwY3krhdH4b6372q0MLkpe6MO/n2MptvZgySFmIsbzFFXafDTS3/QmmTG5O9oTfLnZw0TrQv8d/m/FzhcPXoQqz+felPf9IQefTDxw88Q0coYhfpvwt0khsyL55Bx8TzEEseD6Y4w6HX48/3XMPfFJ1Cck4VHZs/BvR9/gVEvvoERz76KZp271TqlkeMrK2g6ld2l/XtockR5QT7yriVDVeF+9KqAQEOQhIbCe/Rop+v5TpwARuZ4AtF71EgUXeJx5BMOa+4wYM1YAw5+YEDBWeMNi7xlSzTfvAkh774LZb9+8OjdC4HPP4/mW7fCc8AAuk7SSs5od2qH9B08PEIAX9VG2pDpiLJ16+ARzKDvdBaSJjCoJE3zhU60V6wEyD1udPSnSRM1v0sJ6UVx4b5NJAOihzTuOMvTAE/jPHGTcX0vUHmdh8Zx+najkSjrBhUKzvDQlBPbhhu3P69owNeY6O2Q6/t5hwIHVyHCnasreJosIiAgIPBPsCf/BKZdmlvbXGJaWNKZ4gYMGGSrvZGv9UKB1hMFOi9UGBQW4gYT3QJ64Im4jxDtYXnCrdJLkVYZSJvudbwYEtbgMImAIGFJ5gKPQGkFWnvmQko6gOolUbT1yoGC1dp8PWmYsjeOQpIOSJqChCWTEMaVOHB0Hy08ctHbNxndvVMRoyhEuIfte/WrlWegw2nIRSz0vAhp5QFIK/dHfrUnXVLLApBZ6YdKvRwqg6Q2l8EkNaHvi06HyYd+xF17ZyKlXIMZ7Wfg7Vbv4Mm4p/FI7OPo798MLT3yESKtgLe4EjpDFgLEVfARkQYhy18uX+WJ5FLjwD/Zg0JqfF/K9QoqaijRkQtv3Zu+Pe8YNAYtslXFuFJ+HeW6Gx9tKiBACI0NRr+7nbvcj316qNMB8IH39sWFg4n4ZMLXuMt/Cl0+mTgTFw8ZnYRaNQ/BX989ihceHogeHWPQrX00nrivL5Z//xi6d4ih66yavcFh8zdp5olwNglKmoeKKqiLTniYL6Z9eBeUNW7V5jAlFRCdcz2ynTimJp285tQV+8Dqo3hv9Gd0Uo78LmS5dOgKGNKso7ahJjdDqZBSxyhtc+uJw7oDt36Il4mhbm00gkg9moxoZykBPA9pcj4U+5IgP5cJr79PwfvPI/Bacxqy89ctxA0EMmFBHF/LCsuNjqv2nI8MHKTHUuy63imOXoPH7kSIr5fQCWa2uAqyU+nw3HgebJUWSh/j5A/HcTi963yjY56liY4nqBP8vRHf3LGLK4H8TR1Fk7sKcfla+sUa6hwscPM5dOgQFSuYmDhxIrZu3YqePXvWjjmKRCIMGjQIBw4cQI8ePWrX/fzzz1FaeoOLcgGBm8CWebsx/b7ZtS7V5rhSlrCVtu/1HTFoUj/M2Po+WvUwxqaqukSDt3FdpsekkKJiZBsY/D1sC/pGtgYna3hgueRMKqCy/h04lqQkMeDr3esYeB56BQuDxH6xxGYXW4gx0y9fp4JHV6E1YaUKbHk1beqtLlfhqY6v45FWL0GVmIWlPz+Bbz+9F1NfHYN3nx+JnhEBEGXkg72cDuw8hcK/D9N7GpvbzisBe836Wkic43kbjeJbft8JvU6P7JRc6uBuz1FSQKCpiYgPQ69+LR2uQy7Vd9zfx2aznjmD7u2Ls3sv4qPxX9J6ZHzAFEyfNBuJx4yC1Da9EjD/6vd44osH0WVoB3QZ0h6PfXY/FiR9jw63taHrrJy13uE+yP1fWJxrJmxEABXTOhIfrniNJno5g5yH9LHB0LWOhD4mCHw94Ye6Sm23acS8aWrr/D2YeueXOL/vcm1NcuFAokvHTJoab5vYmwoY+PbNgQAfS6E1GUAKDQDfOtbuNq4cS0ZITMMcV+2xbf5ulOSV0pqkodhrfjXHk6RV1NQkRDRPmnFsoY/yd7whMj4V4ed0f6RBKnxEnbutPfacSm6SmoS47i7+dCVdBAQEBP4J1s/Zhq/HfwUm14F5K7k/znZdICAqU1EhNUmFq01+0BsgScqD19YLGD64HWZ8NhEtWphdv8nYVVE52JNXwKhsn+vtwSvlMLSMhr57Kxi6JoCLCra6ZjcVtgSXFb1C6WKLrVeTcaWFnLpkWxwzSRjq1ZIee314bw9oeybUznBUFFfi8Xav4tE2L9PkhYUpP+CL7R/inSUv4fV5z6HNo4OhHdwJhoQIaIN9kSOWQDegPXQdYhsdhLPptx30Gnw9OYfWJFVlQk0icHMg9+zmiQO2IN+rO54d7jTllcyTnNp5Hh/cMQN3+j2M8YGP0KbuqyeNcxGk7iD1B6lDSD1C6hJSn5A6pU1vY120YqZjE6PNc3ciONq1++0di/aiecdYvPvXK02S2lhdVo3sZMfj7j6B3lj7/RaaKGNKmiBiDVdrEr8QHyqyagxkTiYwwsk9ewPOUeXFFSgruLF9paZ5EpLGd2LbWTo3dSMhQvKIFpYpfvZEDvZwZg5mjqpSTedI3DHrErj5TJkypXY84WaYdjV8xPc/QHVZKTZ/PxOcwfmgRVMRHNscgdHGgZ37Pv4CRVkZWPwOuflzfwKgqZHI5dCp1U2+3cSDe8DVxJw2hvKCPOz6Yw6qSorR776H6GOZl84j7cwpu18WT/8A6DRqaGoi5N1Fp1Zh6dS3UZBubFQQicVo0bMvbnvgEXgFOGgqEBBoAhSdOqF8zRqHz3v26QP/KVNQ9MsvNtcRh4SgKuxenHiBuNPXPZ59AMg+yKHLSwyaj2Mh8vKC/0OT6WILKgpwBAeUXwOUnPO0GHVmCQ5NNaDgjPFnv5aArgqotE4ldgnfeKDMSe+RQQ2c+bEmnr0BRA9hUEVNEBp3YVYVoMnJOcxD6fx+suEwQNQgBnkneZyazaHS2gyiSSEikB7vMrjwh/P32mDj0qmt4JG5i0d5uvv7TlnLo9X9POR+jYwqFhAQEHCDQk0pZl9ZAoONmBs9x9aKBYyN9o7OjTxNDFCKdNByIkhF9pWJzZXxCJGTAfsQPBv/GbKq0/DWuS+hNvDQcg0vEZsp7Ee0kjG9AEklsjS2BowY6HgyvyCGr0QELaeGnmPo76HlxVDQBAkDOJ5BpU4Kf0kVRgSch5dZwgUpB/L13riqDgVvQ9BxqmQPtFwUuaOnP6v0UrrUHQEPhjFYzMsrxRoEyKqoQIM8XqWTIL+6Cp9fXINibSUej7+drpdeeQLHCg7Z/PvIWT08xZ7I1rAo0uiRU+2NvGovY7cST+a0OacCkkq9Ck8f/xFXK4yDglJWjEEh7fFci9EIkDWBWlRAwA6kzm55V3dsTc2lzTTE0VeSkg/WrBG/06C26DiwHcY9P5IKEGwRGhtEHVVfG/ChhasQia49uPooXvntGYx4ZBC8PeW4b0xXutji5HY78Vw1kIHc7HUngL6t7K4jyiqijSuZV7Ix9S7S1HMJMokYMf3boFzPI/tqtrHhr9g9589m7WOcChyqSqvx82sLYAjyBleTQsAWlNO4d4bj6XurbWs/sXJU/7ZILSk3Ng25iS7KDzhlLLiqt10CupHzoW3kF3KgPJzm1mTqsU2nEdosmP4sO5kKtrAC+vhQcMQBl7hJZxVDciUbonqiBJIsoW0RDIOfBxitAZLUQih3JdqcIBowsTd1zCVOPk0RHy1NLYQhyAvaltaTvs3C/fHhs6PxS+LPTrdDXE/rU15UQWO9rydZJxc5g8RXT3xjXKMdmG4lyDW6sWPcN3qMfM6cObX/9/T0pD+TJBtbKBQKfPnllxg4cCD9WaVSYfPmzZg0adKNPUgBgRsIOa/OfnJO7XWaVVlOjjJk+oSUFw56hz3OO07xqU+n29shKDKALt8f+RyXzlzDo9+vtf+FZ+DQ7Zo05ZNEB8W5bDQEkuIg33MBuhZhkLaKhEqnp4I7Xs6SL77d1+llDFidSRZttr2sQrBVaqsmU62N64a7kOvL14/+hPLCCkx4/Q76GHFjP/vLFqs/kfhIIrjwAAT2aYVKlQ7VeaVgMwuo6635MeujA6FvHga+ZqKcqVBBnJwDcbpxMLO0oBzPdX8b184ZB9ykcgkG3teXNlo0Nl1JQMBZTdI2xg+HSclth+49m6NjzxYY/cQQ2hhpC9KQQUQ6b9z+scV84p5lh7Bv5RG8teB53H5/f3gHeNF7MbLUhzSQEKGyI0jDOxECuUL65Sza2EQaech3iqTokO9abqr1+VRPXJRbR9al25B7/PYxkFzIgDjNuH5MmyhcPmI7PcwEabYhqWENZeSjtyP94nUg0BfwdJB4EOgL3lNhNxGPNP40JSQd7cTWswirqUkagjypEJWh9sdYxCIWQzrE0/PtTy/NQ17N+dEmTsQ2BN5Jil9cxxi8Mf85TPv7AFDq2AVWo7Xucygpr8b2I1eQ7i0DExcESUYRTcJwBdJMdPcro6HwdN1x+1bn31CTCAj8v0Ouiz88P5dep8WnU2DoEEvvY80H7JmicvocGUdzB1G5Gh77k+i5lxiBMGo9FRD3GNWZ3st2CfLBLz89gvOn0/Dq0E/BV6tpCqm7cBGB4FrH1B4zOUre3xuICYHo1FUw1a6LJYhRij0hnT3I/sr6Om4aWHruPIJ4S0ssQ0QA4KCxmYgcuFBfiHLrzB0yE6/TpmziVH7n8yPpY7sOJOL0quM2t8FFByMgyBuqo1dp82pDIGl8T3d5A6nnjC7hpBmbiOaf+PJBePm5lugnINAQiLCmTZ+WDucn+tzZAx0HtMWwhwdi6/zdNtch9/vlReV0/KW+gdDe5Yfw7p8vo//dveh5iTj0k8WWINUkCrAHMQZy1Rwo9XwG3h39GS4fvgqZUobY9tEoyS11fK/rgMiW4bjg5PhK88uw8OPlaCijnhiCtIuOhd2uUF3hWnq3q5B5gtM7ziOsmWuC94ZA6kYi7ti74jB+eW0BCrIalwjkjISucXj9j2cxY/K3DZonISL0HUv2ozjHeR9hff6a8TfGPT+Cpqj8VxBqkobzfy1wOL97O/S6mycsYEVi2hhvjsLL+5YQN5iO5UYIHJpC3GDOsbUr0WHISHgHBuHEhr/B22gGM1FVWuJ26kR9TOIGgkGvR+LBvci+ehn3T5sJpa9zhw0BAXfhqquR9fwLqDpkf9ReGhuLiNmz6P+DXn4JjFiM4nnz6GtNKDp3RuC7n2Hra34W4oZaeOD0dzxCe/JQhjpuknF1mEArst8oYyL3WgzMkyNLyP0tA7SYQJIi3NcQ5Ng3zKyFEQF8I7RsLe8FSh3PDbiEwb1xCJfgDEDsCAYX5/Pgm/Z0S4kdzkBbAex/m2vUe+gMsSfg3wIoSQZ2Ps27FPPnVy/lgSSNnJ/LN/h9JkkO2Qd5xI0RBA4CAgI3j605h6C3cwKv0svwP/bOAjyK6+3iZ2Q97iEJCRDc3YsVq5e6u/zr7u7u/tWNKpTSFnd3CxIIEHfPZnXke+7dyG7WIxDa+fXZkt0d29lk5sp7ztHzjuIiUWbAebROlRGjMiKaNzaJIYyCBkW2MFQIYW5L8wyPC5IvcnlNzYah1u7ZRcgucTRdwVc9rV1ioeNsVAjgCz1rA0vzF9wncYmriUlQQ5LjUWsvb/rczpBEi3hNLWZH74OGJjo4rw/Eq2ohywwOW90H8SXYEaayoMrmuWCUlCTZBI7ef9SciEiNCYm6WrpdjiZGCDBorYjV1qPYFIIvslbi/JSRVGCwvdJ3A8YulmFLeR+aHkHQqkVoVCLMdlVDMoV/jtSRIlnHl2CTBCwp2oX91bn4dNTtiFD/e4pgFToP9SYrHnhrAXYdygfSGwZkUwHbgGRotx6lhehp/VPwyPd307dufv0qGsH8x/v/uEy+DTytL2585Urcd5qruKER8tq7t36KETMHI6ZLVJurCbiyGqj25cA+oKurkyi5hpTWQLU3u8k11Jm63zeB41lcfNcZ+P0tz0INX2xbtNPvMnyEHvVDukMON9DkGpGMyzJdwNZaoVlzAOqMfIjRIRAT3IsE2bI6XDN7GDYdbZ3amDisNv28Mw9anoVliLuYQn20HPrNgYsbGiHFYrOun4q5L82j36kqp5w+yDfm7fZh7RkH89huRL3Q9Jqtdzz4gmoYVmW6FN+cefN0FGeX4enzXoXQIkGiLei2HgefVwlbz3hIYTqEhevRfUhXHMwvxaUvfg+mWyj46b2h35EHvtLzpFCvET1cnv/82gJ8+8zPNJGhNZCJgM1/7cDpV57WqvUVWsfOnc1/w+eddx4iI32P95FkB2eOHg088UVBoTPy16fLXNw/NYdLYR6a3NQJIP/nzYCg93xh58vqYdgdWEEv3b5OjetfvNzlNX18BE1FaETiiHiAuIkCjAiwdv9DRfbkiFYLHAgkTUm9LxfRFXWoKKyiAk/bxSN9r8QxkFmAkZzSovLKwGc4im6caQ9xgzPfPP0zZl4/BWFRoV6d7UjxF5dfjtr5myDaRbhnM8DhBt/btV0gh+pgH9qd/ksKqAmN4gb6WSx2LP16NS2mfm/ji/8qYZ5C54EUzD1x9ivUXRNJsUC3JLc2fo/0ODz06Fn059vfvx4avQYLP17iUlxBBFXXPncp7jvtSY9maeT69+aNH2P4jMHUTfRE0dKhtKa8jibjXXDvWS7icSE5mooZGmn8BAzPwT6kGxirHVxRFbYG0CdR61Swmlp/Lbrs8TlYNXcD5NgIv8vKsZFeBQ7muvafiyZ9ktk3TsOvb/pO2fCGdn8pzAMTIEZ4Luq/bOIQ5G49imcveMOjY7YzbFU9RJ3vQhyuyrMxX3hsKNL6d6UuvjcPuh+WUd2Avr6T5fqmuRZRffHHZny1YAvsgggMcMSKW4anQbv9OBV6B1LstW3xbpx24Vi/yyooKCi0F399srRp7JCRJPC7j0HOzHeYhDAMmCojTTZrC2SsiRFsTQKC6553NSrQkyGqytpApqjdIO1mZ3GDCzoNxEE9wG8+EPD29KG6oAUOYqgKQoxvcZqJzJTE66EpaL4PSfH+BctSnKvAoZEvH/uRFnST4/1pnmdxQyPlOi0VebRlFr5R3NBY6L3oixXI3JaFt9c9T49BQaG9IQlhJJE5c5v3sT8yPnzvZ7fQn+/59GboQrXUzb9xfJjMfw6fMQiXPTYHD0x+xuM2yJj3a9d+QFMbSOraiWLP6v1ugmiVmsece86kRjzBQtqQ/uBVPOwBpKd5g5zHvz9ZhrZCUjLbG/I9kj7Jgg8XoyMgfcUDmw7TJEI5SLFfMJCUjK59kpC5/ShuHHAvmABMt1rOk5AUhl9eX9Dq+RySGLRrxT6MPtOzIZrCfwv/FgL/YkqPn7jJp6ikFMx55BmkDhri8rpapwev7gRqI4ZBbVlwLksnCyJYyFjtuFnl7N3ld9mOgJyrbX8qEZ0KHUPxs8/5FDdE3Xgjuv0xH6rExKYGceyddyB97VokvfM2El96Cd3mz0Pa3B+Rn9GVFm17gwgfji303/CJc710eaVafy4pAfT6vgQNSsLu83AgDnFD19MRNDb3vrQbTBvvdvu+kJG7snPas4T3ACoOyDRloj3hNEDPCxkkjAXWPdSx4gYCqc0s3QXYG82b/Jxu3gCkzmj+zLnLJZrS0VYRidD+/RgFBQUFn2T5iDCyiCqaWEAgqQQCqYhtQbK6ConqmiZxAyGEt6KnvgyJKldHhARtMu7t9QB6hTpiTBsJVRnAEzWgRxzCA1+YRRW4pooe75CxfSJS8IQos2DAosxSCR3nvfHSS1/sJm5wJl5VAzXjeX13X9UWxyCxMFq0qDNrkNAgbtCydoSqrNBwIlQsETqI6BpSg0HROfinYAcVW+fV+x6wYxgB0WrXiWuybb3aBp1K8FuzLUo0X4KKQ/S8jYpJyKfJN1fgp5x1vldWUGglL32xzCFuaAnHwjomHZe/ex0+3P4qohMdRcDE6ZzEJv+U/yme+OlePPjV7fhszxt4a/Vz2LFkD0RSWOEFMsBJYpP9MXhK/4COnT9aDM2yPeAPF4ItrASXUwb1hoNQbzxE3dm8IQoS/njvH5x2cfBFHFUlNT7fJ5dv65g+kMINsOsYWMMZCHoWgo6FLV4H45yhEOJCoVt9CNrNWeBKa6lrNBE2qImg5Fgp3v55HVZvaZ3qWlXsGots2JqD8F93QbuvEKrsCmgOFiNswT6ErjgML5dpn3Qf1BVHdh2nEdvOeLvqks9qHtvdRdzQ9F5SBExjujU5sV38wDkYOKkfnjj75XYVNzSiKqqBYe1hGJZkQBWnx9YjeagzOzoV5FTYu0Wj5tyBsMe5O8GFRBqoU5yzM/fnj3zfanFDI611suu0yO306EAyMjJQWlqKNWvW4JFHHvG7fF2dq+twVFT7RporKJxosna5phBxdVZ6j3B5TQBUpoY0hwZI+o5+TzFiftoP1hbYNZo4Ur+67Cn0Hd3T5fWIUB24hglTokm2RAKCgYGoZei/tnCH4MEXHrpLQUMEj0TcQLdHjsdTgVILiIssKcAi/6qX76ZiS+YE2DyTAu6VP66H1Wx1K5RuCRE3eEIyaCD06uJ1PSE9kYoAvUGcW/94f1EQR62gEDikwIeKG8j1pqAM2HkIKCgFquvAVNbg+qvG4oNPrkNEg8CG4zjc8sbVmJv/KR6few/tk3ye8RZeX/40Ni/c7lFw3Qhpvy35yrPTaiNk+wMmek+Law9Ie5cUw4w/f1Tza72Smq5xRPwlqxjIfMPPDGBv+BuuLPI/UdLW9vS7//s/bPlnBzkZ/hcOIMWgPSGOuMf357W6KJ/cxyLm7Ycq1/U86jUq3DR9FIbUM3j6/Nf9ihsIqiMlfgUQXLnnVAZeraKFZo0iENWhIpqK542oMD2mjWx2gvpt+W589vtGh7jBGTUPy5h0CB4E9Z5Q+iQnvk+ioPBfJ2vXcbfXGLMNXG4ZuJzSNosbnEkf2g1vrHyG/utMRFzrk8mklDjffYdQPaTIwNKYOZ5DpQcxgV8CvU61vJUF0Ofxtgy5X6z+ZSPqjBYcyvIteiejZXJY+xduEyE2EcgoKHQEL13xrldxA6nTuuXNq/Huhheo8UBj8f7t716PuXmf0kSGh76+A18ceBsvL3oC63/f4lFw3QgRNS37dq3P4yHj5X1GpaMjIelo5G9q5KwAi8ScaBxP8YWtFQk5TTDAWzd+jB3L96CzQX4fUnp3QUFWEcadM9L/pThUB6FnFwh9kiEmRrqYVLVEH6bD1c9cTJMJn7/4zQ4VNxAYlsWeNQeahHb+9hebEo1x54xoek5E5z++NK/N/U+lT6L0SRr5Tyc4qDR+RsTbCK/WQLA5/tgrC/Kw4qtPMP7iK9B77MSmZY5s3Qg2kIGgjqYDB9w5tRr60HDUVbQuwsgThzdvwLgLL/d58+9o9q9egclX33TS9q/w78ReWoqav30rYW3Zx8FqtW6vcyEGhM2a5fJarftYgBu12f7/jnpdyKJwo+S3YyyykSgKfxRdap4DKcVrSXbUZ5BYLxGBMmCuBEKSAR+1nt4h7T0Px6cKdSqabyUFa9BpWfdg+18HE8cBIV0AW52MzU+3zzZpioaP9qvJ95i/G5waOP63jJ4XkgY2g4M/tM95iOihpDcoKCicWLTkguaDKpsedTYNwtUW6FWOKFQiEiAPPWtFJKky8kKKthI5phSUWFSwiix22yUcqliG23pLmJrQr2m5ZUX7IYhagPXsHlcnaOht1qByHXQiTfEamwY2WUUFCt5TJhwIMhFpeJ7gtgg8bBIDvUrwOZ6erPE9OEbWJWkWRXZX52UNq4OKiSW+9F7XtYuOflmc3kjNatWMAC2p5PJApMaMbNMqyJgIOYCZA09JDSyRLZACBZlp+rkl5BwLIotkQxWiNaam82sVORSbw/BP4Xbc2tO1/aeg0FaKymuxaqv3Qnoy0HqclaHWuHsAE3ehSRePc3nt+H53B+OW5B703wG44N6zsX1JYAPXrMkK9kDwMcVE5EAcTRPSYmliQHv1SUIHpqFco4KgdRRqtkTmWdSf3hehf+6h6RjkQY8nTAvTlL6QQ7RY3vCdMMTNmvdyofR0ORIlaA+6TzDyVWbwm4JPa6CbDNfB1jsBQkIEGK0KN326uMmFVN09FvyxMp+SMmv/Lj6jgYSecRg6cwi6dI9H8cFC/Hz5O60SXngqWiXfsScsg5NQVe9F7aziUD++OyLm73VzIF/8xUoalUyY+/K8th8kcSIe3OzQq3DiiI2NpY9AmD9/vsvzYcOGddBRKSicGIjjeUsMW3LA1ttgGdQFUojjfc5oh2FbCVSHS0kDF1yt1a+wQdKqwA3pCpOaA2wiMnMr8N4dn+P65y91cWHbOHcDdCV1qEoJgaD3cI9gyD3UkZTgTQ+tKnQV9NFbB9EoBHEPcb5PMFYBTL0VssHHPJIggS+uAWPz7wwSGhXS5ELXXqz+aQNNUWotYtdYvwVNQmoc1Pua0xtasvSb1bjyyQtbfQwKCp7IyyzAlr9cEwkYkwU41pxoVrjxIFQ3TnFbNzQyxE14m73ff98gO4D+w4X3nY19aw926Jcm2ASwxNQqORolVfWQw3SQyFAK5/S3Sv5uGdI3kyFFhUDWqsH4KRQiRZvVpb6F2Y2Qy6YUrgd4FmytGUxDYQq55lB6JAF+ijSZ+hMj2hUjDRD6JOFGkmTDMlQ8oOoaAz7Xf1JBSzijDZF/HIAQqYPUJQzjZg9DKqdGxQ/b8GrjZw8AvqgaqkOFsPdxF5DxdhHqTZ772+RrrSiodD2mWgt0m441CMRbXK9tAsI3HsXiz1fg7FtnQJQkfPuXD/dsloG1fxK9b/mjx+A0v8soKCgodHSfpD0hiQ2NhZpETPHe7Z/juhcuw4gZg5uWWT9vC02otVuDN66Qw73UPzhDXNmr/Bct+DKK8QVvtENdWA9bF+8ighitDhEmCc4jYGxFHaQE30mWTKX34149dwMmtBgP9r4hdAikT3Lxg+d2zMYV/rMQ8czOZa7jwc6QesXCrBIqamhJWHQoplwafJ8kJ8A+yQuXvo2OhAjAQ6NCEZUQ0TrBlRfavD0Z1Oihs3L7KP/GOTLLQhjaHVJiC8Mcsw2qHVlgq5vHjEjC35izRyCxezyyM/Lw7TO/tMtx+ponIUKNyqKq4LbHcfQ6PPuGabDb7Pj1jQXtcpzdBinzJAoO/tMJDj1HB9jIaiWN4oZGqgrz8dc7r2LfKod6dO+Kxfjn/TdgM/+77aJlUcSwM84Bp/IUgNw6KvJysOiDNxESFY2ThaXeCMHWvrHSCgqmbdsAwfeEmGnjpoBPFHG597+M/55k7BAGw+5hAkpCqNJfhJyoT2BUj2l6zcz3Q174qzBpfMdHVR0AprzLoNuZCB4ZMDhCLZoK6pMnAQnNZkcKAVK00ZGokbOk7afM0AXoczmDaZ8CfDsmQ1qrgD0fy9j+ugxjgYza1tVmuaCNBmKHtsfRKSgoKATOuJjmAXQHLW3BGBwvjcGBygTsLE1CZk0cym1hKLWGw8D6Hmgn855hfAWsxNaPYRCitqHYlosHdszFPwWOIuG52ZvwzN55KDE5Cu09QV4/XheFzOpYlJkNqLLoUFQfikNVsagVdLBLLCwij3JiteqDaju5EbjvwySoYJbUfhMWHJ+pccCFLE1+dq9WImKBllTZOVzbYxxUXpIq7CILgVYMAFrecV41XsQNjdQIB/Hq/nnQcnE+lyMiBeeEjUYcdUQyTb8gx9xSvE2ekvSGtNBKxGnrXcQjJFEiNaQKPOvqrKug0B7s2J8LyY+ZwLYARAuNGAKIB9eF+F+GTDj+7+1rwQYQh9sWMtYfxLsbX8TpV54W/MoyqDjCeaB48qXjMOCScfTKRAozvcKzsPZPdBGSNIobnOGsACN6+H48fWeihJDVR8DVtF9xkT0tBvVnDIK9ZwLkUC0kFee44ZDC06gQ6gpqHdXd9zYSwzy+Tu9+RPjFACuPF+L7FbuwoLAENRcPgxAbwESxF5J6JuDyx+bgg62vUFGCJyy9fRe2i7EhEKL1bo5UH979Jd677f+QnZGLwqNBqrY9EJ8Wi35jXZOWTnnIl9oej07C+vXr8dBDDzU9Hz9+PMaMaR7/UFA4FZk4x/PvsC6jCBFzdyD8t90In7cHkT9sh35bLlQ1FqjKTX7FDeSeYTxvGGp6xMGeEg17jziYp/TFvrgQPHHhG1j3+2a63M+vLcDbt3wKbMiC4KdJIHqre7KJ0B5yXIftSeGom9kX1deOoY+62f1gS/FdsOMJcuVRH/Z9becLqogKPeDEhUsePo86srYX+zdl4pP7v2m126ys1zgc4HWAoPWslZT1vkX5pXnBFxErKPhj98oMvwZnO1d4Lzby5HjpD0Ooa1vPE8SJ88ZXrqRFHx3J3rUH8N6mFzHpsgmOZpCzuMEZhoHMARIRkTkRn+rUJ1FxmHblRPQdHZjTqz01BqYzh8B05mCYZg6E8fzhsIzqDpm0+xt3W1ju2ziPFGaWuhbqdwRCYiQsU/pDSIpyJEYwDBV8WEelwzqk9QX6RAyu3l+C7W8swu+vLGgWdgSBZncutKsPgsuvBGOyIjUxEjfMGYsvnrkUGqvn+6e3U6rJKkXIX3vpPYmtNoGtrIdmXwHCFuxB1Y5s2h/5+N6vkZldipIK34WzYkI4ZD/3IeI829LV/JTnX9YnUVD4NzJxzugO3X6juKGRw9uP4vEzX8Lmv3bQ5989+ys+uPOLVokbKIEYs54A89bwtc1iUE+oFx/D5Y/MAeuUtMQRUaAvl22LDVxBhde3d6/KwLeP/4hwlZ9CEpsApsa7AVVbaJVRjYKCH3Yu99/f2NXOfRJ9AHMpxGDq6qcv7vA+yZ7VGXh/80sYf67/NAJPxHZtrufk1RxmXDv5X12wHqhBtzC4m7u4gaBTwz66FxWvNy1rF6n47tc3/sTa3wKvE/RG175JuObZS/D2+heoeMITrTEaL84uxVs3fYIvHvsRBzcf8Zt4HghEcJ3aNxn/KpQ+Sav5Twscug8difjurlHIJ4K1P3wNs7EO6374Gv8FJFHEtj9/x+jzLkZ8j540yoZgiIgE34YUjQPrVqG2rBQnE6upYxrgCgq+CKY50XWq/0Zt1ymBNXx7nMNi9g8s+l7JoMsEIHUmg/7XeV7XqBmP7OjPsT9hJ/YnbMPR2F9Qo/evWhCo3ovB8HtZsL6Kf7xQX9T8M0kLqDrsOzVAoePRRgKRvRgY8xq/3/Yle7GM8n3tMyCUNAEo3QFseUHC6ntFbH1JQuluJXdYQUGhYxkXMwjdDF1o8hEpdOdZmT5IMTsp5q83q2CXeFoML4NFnU0Lk90hHNZ4sy51Qs+5CnLJtnUqK94+uATVNhM+Orycvi7IHMpNepqk4Dx2YRU4VJj1NDHAaFcjpy4CR2ujUWPTIVxrpSIAnnUU9GSbYmASPRe/1ApaZJujUGlxCCJI2gPZZpVNhzpaxeRoU3gTWTRSJ2ihhQ0hsCKEcfxLnjvEDg3LtKggNgpqVNh4rKv4Bw/2G4EJcWHQNAgOYjRhYCQtLHbisOLYtyBxDd+H73sA+dyrSjfgcJ3vxoZF4hGisiJKU49QlaVJmKHnbYhUWxCmtiGUPFRWqBk7JEmmwgZyjshroS2SM5xJ1NeiXmg/B1gFhUAJZoxzcgunotYuQ5hz95n4+sj7uPTh8zD+vJF0UPzKpy5Ce1JfbaJF8Pd9fivUXorhA51QIy44Wbuy6d+1RC7dfiYd7E6D/kLXKDdxA4HWN1nIQwZvkqAyitBUCgjNtUFXagdfbISqoBq6XfmI+HknNMe8T0AGi2RQwzymB9AwruN2YA39VXt6PIQuEcHvgGzDU5qNQQPjjL4QDcF/H4SohEj0GtGDum6R4lK37ZN7rC937gYkD98H4a9Pl+HIrgDiEwNgwpwx2LpoF1687G08MPUZvHbdB1R0o3ByIBM6giCgpKQECxcuxCWXXIJJkyahpsYxSZOcnIzvvvtO+XoUTnkmXTIOKX2SPL5HmsR8pQl8eb1ngZ0XxCgDzGPTHQWnLd+LDYVpdA9amF9dXovvnnU40JGwN68pRQ2QQt6WXQaSnhC29BBYsx2WvgkwzuwHISmiSYAnJIajfnofWAa6O2n7Q32gEHy+F+c6SYaQHAXjnBH0/ij5uZfYzDb889kyXP7Y+egxJK2pWRCTHA21tpXmUDLw96fLUFtRG/yqJEGquwE13VjUJ3EwJnOo7cbCHOncuwIYi+9+pyRIMNX9u028FDopwfRJWiQ6tKVPcslD5+KrzHepSzDpk8y6bgoue/R8tCc15XUIiwnDw+9fT4uBfEKExrGuAuKSHKc+iV3E0V3ZEEX/Yixbejws43tCCncqrOI52r43Te0HueGazpitYJzSNFyQJDCZOWAC2F9bkEkawQiSauC51EFIT3A7LycarrQWfF4V+IIaxLE8+naLx+ENma0qnuWrTNBvOkZFDWEL90K3MxesqblvM+/dv5GT6buotRHZm2CmgdMuGkcLfl+49C3aJ3nzho9wYFNm0MesoKCgEAxTr5iILukJJ/SkSaJE+ySVxVVtTuVkyqrbZZnWIOs0EHqnwD6uPzSGeITvrKZ9FRckGWEbCqFechzLvl1Nx1YbC40Zu4Ck4kqoPPTdYLVDveUImJbbc96/LGPBB4th3nnM53FyuaU+t9MWyL3VanYVsSgodLZ5kikB9EmmXDYhoG1d9fRF+OLA2zTNgfRJiHN+e6eYEBf/2JQYPPTtndTIKVjKcpvnJQSbiKO7s2n96H8ZYjIhdfEgbmhExUNM822q1xZISiCZJ9m/MZOKJ9qbn1/9A0XH2m4CRZh08Vhs+GMrnrvoDdonIQKKzO1H22XbCqce7jk5/yFIof3Q2Wdh8YcdG93TEktdLTb//hNNAAiGxJ59UFNSBFNt25VOJxpTTTU2/vpD03nvNXYCZtxyF2RJwv7VK3B893b6c0zXNOxa9GfgirAOVDkT8YVg9d0IPrh+NUac1b4Dlwr/bfQjRgI87zPFwTB2bMDbixnI0ASD4q2e348eACT4MEQgf4v5a4Bjf0qozQPUIUDXaQxGPMBCE85AlmTkrfLuns9o1JCCDDpheZK+wMAQC9T5T2DzK3gwt189j0IrqNgPbNovBZT+0VpKtstQhwG24OdyXag4ABxd4DzxIiNnmYzU6QxGPkISTBSHHgUFhfaHYzic1WUCPj76k8vrpNiFXHV4ToaKd24XMCiuD0G4xgqzXgX4qYMxi+4LqDgJFdYafJ61GvVCc3uXiBwqLXoqrCBiC0kmQgTXC/jg8G6wsEdhkUwur7OMDKvE44AxEXHqOsSo66BiRPpamT0U5bZQmrlAtm+VVbTWyBNExEEK+z2JC0JYC1LUVVA1pTg4zpMKEjjZBhPUqLCHINcaDZ4RqViiXtTQzxCpMkGFGqyvyKFz3+PiOQwIH4cLk2+GWZQwP3cXNpYepfURg6OGY3/9z75PbNPxMqiwaRGtUUPP2txql20Sh3pJA56Rm4QKEWozzILKqdZLhooVwTMSQlR22sUhiRi1dg3itL5TJMh531m1GRNjTw/oeBUUAmFYvxSwxPnSR397ZP+uAZ/MYacPwuDJ/bFn9X6P7w+ZOgDDpg30ur4kSVj980b883/LkX+4EKFRIZh2xWl44MvbERJhgCiKWPnjOhRmFXtcn4gUSEFhMLA8B5Vahaj4COo+0xbyMwtR9NN6oF+XgAoNGxESwn3rAESAq7FCWyvRsRGmohaqvFLo61yvz+0JKXjyVKjqcmBy87J8oeeJW764lgo4nPE3uiNreFj7JkC/PfD0kEb2rTtIH87udC6HLTuKN2U/xaWMj9+jfWsPUIetthZ47l65D7+/tdDltWXfrKGTVPd+dkuHO3N1BPT3tY3Dd86fuqjIydnAC0R40B4sWbIEs2fP9vjeOeecg/feew+pqf9e5zGF/w5qjQpn3TKduj+3F7beiQ6BgReE5EgU7crBjy/83iw+C/ASNy40FIdzy1BbbYKquBaazFKwVgGSXg3zaO9/k+YRXaHKqQRXG3iyESPL0K05BCE1Brb0OEhhWsgalaMjQu4fZCGOhdAtlrpi65ftB9vCHdYZkvbz3XO/0Z95NY+pl03A3Z/cDHOdGYu+WOlwf2QYpPZLxvx3/wn4OCUn8Ym1hw7GGVGwd9WCMUswbKyGfm01WJtjGTFCT93eayd3ha1riFvRqzWagaSSoKuQaXtDW1zlInjwNH689rfNtMhbQaG9IH0Efww93XsfoiWjzxyGfuN648BGz0XaI2cPRf9x3lO0HH2O9Vj0+QoUHi1GeEwYTXy7/PE5MITpYbfZseKHdSglDsge0Og1sJoCL7ojlxiOY2niS0S4DmVVvs3WPAmjncnen+e3X0PEC9Yh3vt5UnQI7N1ioc5yFKwwBWWA0Qw5KRYID3HM11bW0teZ+o4XPQnJ0QC5HvvA3j0eXFkbJw1aiRhpgHV87yYH1u05Zdj+6h/g68xQ6dRgg+yjBkLmot3QqnlYbN7Hkpg6Cxir77GmTQu34YcXHPcqAunLL/5qFc69fRbueP8GnIq0d59EQUGh/dEZtJh1/VR8+diPJ/T0FhwpwtyX58Pu49rpieEzBuHQlizU1zjG4dj8MogpcbQ41RNMSRVN9GlvpJgwCEOJsLxZEBlSB+g22WBGDUS1DK7OhtCdZVBVOPpBuQcL8ONBh6CDCK1Jm+aOD25AncmGv5btxa6MPDr+lBplwMIHvwUTYBEsk1MKTq+B2KM5obYRtqgSXIBCPE+QNpFIEqJ8iFU2LtiOKQEKVhUUAmGojzmLRnzNa7Rk/Pmj0HN4dxzZ4VkMNGHOaJ8pWoJdwPLv12HRFytQkl1KkxxnXD0ZVz9zEU3IJiKf5d+vpcIET+hCtDAbAx8P4XhivsfQMe+QyBDUtLFdTQQOutBWuNz+ixDjI/yaYElxEcCh/A7Z/45le+mjo+qeyPhQ1q7jUKn5oO+rLVn10wYc35fr0ichv/sX3X82bn79apyKKH2S1vOfTnCQJBHrf/LtshWT2jERjMVZh4Ncg0FCj56npLihJUTIcHjTevz5xgvQ6A0Yfua5uPDx53HRky9iyjU3YfBM/y7vHQ7DQGtwHdz3RH21F/cmBYVWooqPQ9gZnifPKQyDqGuCu1mPfZZF6gwGjLPRDwskT2Iw8WXWa+OFND62viRj87MSSncBlnJQIUPGFzKW3yrBVCLTdSe8zCLEQ+2AKhQYcH1wDaPo/oA6zLFOZB+0C8EKLBQ6BrkDDZuIiKXbmW1rhBNhTfURz+8RkcPhX5UkBwUFhY7BLgn4Mfdvr+8btDaM7NKyyJVBjVWLXZUpPrdNzHCO1ce6va7jbEjWV6PMkumSfNBYy0yEDSQ1oqW4gViqjooLhUXyPIglgYVd5lBsC0eGMRm76lJxoD4JZbYwKgQg6RAqXobsJ6XBRvftvszIkGPQsZ5d7khzhpclrK/tRVMequwG1Ah6CDKLaFU99JzdZcxIlEXsqV6H73PeQoRaj+vSx+P/xl2Nz8ddjTv7nI3x0ZMhSL67yzaRQ61NjRqbFmZJjWpBD5OoglXiaGpDjaBFLU2TIEILtcux6nk7TYkgVVEkBUPFSk3HR/7V8QISdCZEqf27ldfaO8b5SeG/S5fYcEweme71fY5lcMmsYQFvjwyCP7fgYUy5bLxLgTn5eerlE/DcHw/5LCR64dK38fIV79IBzIrCKmRn5OGLR3/A7aMeQXlhJTiOw4t/P4aEbu7ONuExobjyqQsR7MQFmVQl9BzezasQwdI7FvXDk2HuGwfJS5xvI0JmIRiz/8lAvjw4Iwym1gRu7R5w6/aCPZANpgPFDQQxyv84SSOSj8ht7f4iz4YVfpr09lQf7kaBHJMPF1nNYd9R9lyVCapS799PRVE1TRRpCyqNik70eIIM3i/4cHGbtv9vYdSoUUhJSfH5aC9ycnI8vh4SEoJu3brRdAcFhX8DZBL8++d+9blMt4GBixsJQkKYf8fxhHAcdprY5yvNYI2+B/JURhu6V9uBX3bS1Abd3kIqbiBYe8V5dfJu3CddJkhIQaQquxyG5QfAl9aBIf81ihuckHVqWAcFfg0SbAKWfrMaL13+Di2WJi6qry59Cq8ueRK3vX0dbScFS82cWJS8mo76aVGw9dTDOigElbcmo/i1dFj6x6Du7MEwnj0YdWcPgK2rdzGlPZSBqGbAaFjoIvT0NUmroukbRCDRkqpipU+i0L6k9E6iogRfRW7n33lGwNtjWRYv/f0oJl44BqzTfAjZzvRrJuGpX+/3ui4ppntmzut47ZoPqGiW9ElIMthnD32HO8c8hqqSaiqOfmnR44hNaU5kayQyPhyXPzYHwTDqjGH02Ag9A3Hw1Kqb0hVaQlrdYkIkanskwjYoDUKXKMgeimqElChA7dsX0d7ddYyJqTGCPXAc7KZ9YDdngD2ce0LEDQQ5gOKoQJbpCGQiMpjQp0nc4IwQqoN1XO+gktoDpbqgErPG9/W5jDqzyGe3ixgEHNvjuQ1M+iOkX6KgoKDQERDDiLkv+U5RSOvffv19Z474SR5oCXEyj4wLbxI3EBirHdzOI4DF5jG5gd3fPsmfzsg8B2GIq7ih6RgFFiGWMMQszEHUsrwmcUNLbBY7/vl8Bd64/iNERRhw9UVj8fazF+OtZy7C3XedgYlnjwjqmPiDeVCt2QfueDHYkiqwuaVQbTwI1Y4sKh5vDaRNpNH7nydR+iQK7U2PwWk+RQ6kiPvcO2YFvD1exeOVJU9g3LkjXfokvIqj5jaPfn+X13WJoPrJc15xJGttzKR9EjKO/PF9X+Pu8U+gtqIOGp0GL/3zGKISI93Wj+4SiYsfPAfBMPbc5r//tCDHhLxhrgtcYPGvJBDzIl/jWu0EMTLuKMjvIkmKbQvEIMBZ3ODMr28upOYCCv8t/tMJDjl7dsFY4dlNoxHB0jEX18LDwcXLDzp9FjI3nYA/UIZB2uBhyD+4H4LN2qEJCbkZe5GzbzfSBg1tEj5s/fN3HNmyEScdWYa5zr/6MCy246KBFP67JD79NMTyctRv3OT6Bs8j4cknYRg1Kqjt8VoGox5lMPAmGaW7ZDqiHTOIgSHBd+Mp+x8Zucs9XwNMxcDSGyQMuIFB2iwGM79iUbBWRuFmQBaBmAGgogpeBxz5TYbZ96XWAQP0uaK5sZY6nUXuso6NMVb4d6CNYtD/WgbVR2SUbG/lRvz0E7Lmy+h1oUzTRRQUFBTak+2VGaix1/lcRs17nhwutEQgqy4G6aGeb7QH6rrQBINGNKwdvcLKaIJAwxYwPYlFjjEKR2pjaeKBLy5LHYMNFat8LMHASkQMrEhTIhohXQqSWGAVOTp2QxMafEzlMuDRXT8IWfVEFG6mLvJ2O4O0WN8NCjUjwC65DuZrWIEKCLyRWbcLx40H0S3EMQEsyRL+KFiEDRWHIMtqRKq99werbVqMicuFjrc7CgbAwiQ1n+9GrCIPi+TqKkjOA0mZIMIPT2kVBBkyTKL/YuUodYzfZRQUguXxG2egqtaEXYdcnbV4jsWjN0zHgHR3Jy5fEJefx364Bze9ehV2r8qgogeS6kAicX3x1yfLsO63zR7fI4kNNw+6H9e9cBmmXz0JXx58B2t/3Yxti3dBFCUMOq0fTr9yItRaNea9/ReqSwNzGLrkoeYo59OvmoR1v29xed/SJw7G8Wk0UaAR44RuCNmcA90+zykSjCBCuykTwsx+kNTuDU+RB8jlWkjSw3bpYKhKTODr/RdO88Un1gSD8SEQcFvWh0MPX1IL3aZjMI/p7tPd240OTFTT7SmArVs0pFD36zgkCfrNXmILG4hOiMANL19BB969pZW0dX7jj/cXUdfUUzHF4VSFCBxUKhXi4+NhsVhQXu5oixiNRrz77rv46KOP8Nprr+Gee+452YeqoNAmNszfijp/7uAdMU8gy9i/4VDTU9IsNuwsQt1p3lMYrps6Eiuu+8rjeyRdwR9SuHcBnjMqDY8BE/rg4OYjsBCnVRmQiANdUiQdwyRdJ9qMbyF0IAXC8nYuYJfTxvOfuf0oeo/o4diGXcCPL87DrhX7EAzmwSGouTzB43tCshYVtychZJNDnCD4Ow0MA7uBpEXJqOmXDHtMCETy2Rsm2pkaEzT78sDnOwyg4lOVPolC+/Pwt3fi8TNfon+HLUWhD351u093U08Ywg146pf7UZJThr1rD9A2FSlYivZQAOTMvHf+xuaFOzy+l3eoADcNvA/Xv3g5pl05EV9nvoc1v2zC9qW76XVzyOQBmHrFRCru/vWNP2Gs9n2tpTDAxQ8290lmndYPG3f5KIok1+fYSNinDQV3MBdcXrNwV9JrYBvTG7KT+FjsHg+h3gL15sNgSfpYdAQQHw050b+YmQi5OguMLYDrbBtdQ1uLPS3WZ7qEFGmAFBcOrrR9+3NRCZG48fJJOJZfgb1HCt3e57PLoc703GdtOjY/fb557/5NC/AUFBQU2ps1v2z06yzO+TEYaS37N3hOePLGZY/NwS+vLXB7namtB7d+H+TYCMhheupAxZZWgTG2TvxHRGf9xvTEwS1ZVJTeckpFSoohg7XeN8BzkJJjqNjAHySp6rJH5zSJSGxWOxXBkzZTsJD2Bbs/+ARWX2JTMYD+VZzSJ1HoAB778W48dsZLbqkLJP3kke/vRmq/4IRXYVGheHb+Qyg6VoKM9YeoYIr0SSKJs78PfnntT2xfssfje2Q8+sYB9+L6l66gRgnfZr2PVXM3YOeKvQ19nkGYcuk42m345fU/A0pxYDkGF93fLIiYcdUk7FmZEdRnVfBwXquN8Hc1Y6qDM8HqbJA+yZVPXkD7ypnbjrZqG2RczBfz3/sb066Y2MojVDgV+U8JHKpLiiHabQiPSwCvVqPOj7iBYDbWIn3kGGRt8zyhHhIVA1mWUF9VSZ+rdTrYzO3rThEen4iwmFiYak6AC44sY+Jl1yAurTskUUTm5vXYMu9nVOS3XwPUmUMb1jQJHBZ/9DYOrPNVMHViEe2e3WEb4TUa9J3QNnc+BQVPsAYDun75Jeo3bULN339DqjNC06MHIi6+CKoEz5NUgaCLYZA6PfBCiKwFvicu7fXArvdkZP0hY/LbLFKmkof7ciMfZbD2fv+ToEPvYtBlbPPxxY9wPFpdsK7QoXBaQOwkAutusxlwagYjHmKw9gEZdbntn/RhKgFMpYAhuFo+BQUFBTdyjJWwiSK6hkRCw/Eot/pPBDOLJoyN6YVN5e4pcCtL+0DL1aJnaD7MoqNPIsrh2F4ViSP18U3LqRgBgyILoW1R7E+SA9LDyqFT2XCgKgE2kUSOuh9Dqj4GcXot6qv99HUYBlVWHVhWBgupIbnBMalrUDna10RIIUoMONZz+6DCrMGNgy5AWkgcbJKIRfn78fuxf+ix+qt7NXBWWITmCXcd6z/KaXf1BipwIMUH7x/5HJsrGxsfenr8kSqz2zmptmoRp2suTJCojytZurnAiQwWkiSHarseLOSGrIzmDbGMDMaLuKGRelGC3scchZbVYVjkGL+fUUEhWAx6DT56/GJszcjB8s2ZMJnt6J4SjXMmD0RsZOAu/i0hgobpV00KePmFHy/x+X5dpRHv3fZ/dLnXlj9FBzU9DWze/+VtePKsV3zvjAHu//x/GD59cNNLY84aToUYjQXr1tRI1E3p4V6JruJgnNgdjEWA9oj7WJMYZYCtTwK5QDvidRoK9ckVwB5CCiYdzyWNGohQw9bFAN4sQ1VLriue+3CMxQ7VMd+pA+0NX1TtcHYNAOJ07QvN4VKo8qth7RUPKUIHmWVgT/O9ba7MdXCfuLdZTe0T2cea7Qj7cx9MY7vBltZcwMmVGqHflgN1ge/io5nXTYFWr8EDX96Gh2c8TwU4wUJc83xRcKSIOgSTSYJTioYC4DZvo4GtW7ciMfHEdMzuvPNOPPPMM1A3JCrl5uZSUcObb75J0xvsdjvuvfde6HQ63HLLLSfkmBQU2oP8I0UQ7QK6pCdQ1/HSvAq/65AJcOd7YksS0mJhqbeiuswhKAwz2VGj9yAaa0SWwRe7iw9DthRAiNbB3N/dWKivoEL0wUqPk/GShoOoV4HonRmpQXzgAaYh7cEfgk3EvZ/disRu8bS4Z9Xc9fhy/kbUatmmdgDdBSlaEpz2x7GQtaqgBA4Esn0icJAkCc9f/BY2LtiGYKm+3EPErhNinAQxVAJXx1KBhj9kzvEZLWoOaOFKL4frYRnfC5pNWYgyWjFhzuigj1dBwR+hkSF4Z/0L2LZ4N9b+toleY7oPSsUZN07zWwDki/jU2OD6JJ8s9fl+TXkd3r7lU/z16VK8uuwpKr4mj5bc8+kteOGSt3xuixQgPfzdnVSs3cjkUT0xsFcX7DvsXrBOaLoGqTiIg7qBsQtgi6vo37ltbG/Ioe6KJtmghW1cb2jyasFEOBJ3GMa/Uyhbb0VngcsrBwam+HQ45XMDcd5qGyqtCvYW7Xgxwf/vp5DQ/gIH0ifRa9V4+orJuP+mj5DHgt6TWKMVqqwS8IXV/kLzaLqQL0iiIhHqhEQY8F/ukygoKLTxz0mW6RgHKVxP6plIXc3LAuiT2Cw29BvbCwc2uc+TELr0iIex2kTdoxsNV0gyRHtC2iLkfu1tDIekFDClVQB5tBHBZsfD392FmC5RVOCw4of1+OGF31DacH+Tw/1fi6VwA7gg+iTESIYk6j5z/mu0DdZZsJp9j/9FJUTQcVwFhfYmIjYcH2x5GVv+3ol18zbTseieQ7th1g1T6XutJbF7PH0EAhknIH0NX1SV1NB0h78/W0ZTImZdP5U+WnLnBzfgtWs/9LkthmXwxM/3o+/onk2vTb50PP74YJGb0EMhONhKI5iaeu/Xb1kGl10S9GklKSBCkONQHQXpkxBzgQe/vgOPznohoPt7S/yJ2ohwgozVqX2IyjslSp+k1fwnBA6Zm0iR/k8oy3W4rWlDQjFgynQk9urjd92QyGiceddDWPHlJziwdiUkUWga6OkxYjRm3no3FTVUFubThizDsvj2obuokKItsDwPqSHmvKakCOt/+hYnij3L/sH0m+4Ay3EIiYxCVZHnQbP2wGZyOJLmH8zoVOKGQJh4+bXQGlpf2KGg4A/D2LH0cbKoCVBMSYrJt70mYeIrrt1jWZRRtBWoOQZE9wMqfAj8e10CpJ/HugxsEGFD7FBAtAHlxLBMGTwMGFZNnHYc862yn3lbTgcMuZ3B8X9kVAZhwiD6rr05YYR3ByL7yDQ5ZMNjrRM3BArTMcYgCgoK/xH+zMnAxwc34Eitoxg1UqPHJd2GYGSCYyLZF1GacLw08HK8sv9PLC7cDVF2lMpzDIsp8f3xQP/zoed5VNtywTIcqqxq/FbwDs0UaKSLvtZN3OBMgrYO5foQFNRFNIW4qVkOdnKBJcIMUzk+yFyOpFD/n1XLC6i2aGGXOfANIgaS6tAMA7vE0mQGnpWa6oQliYgb9DALaszL24b7+p5JjyGKC8OufAFCV6Zpe54gNcN1QnMRlYoR/YoiCJaGlIR9NQedxA0O6gQdTIIGBt4KnpGoeKPEHIah0XkttuKQN5DUBfJxzAJP0xwksHSunYg9yPE5Eiaap5PJGr4QZBYmQQU9737jJd/TeUlXQENUhwoKHQAZ4xg9MI0+TgbEpSXnQH5AyxKXIiJ0eOrXB1y3IUrYuOMosq0Cul8yDkf/2Oq1sPGKJy7ErOuaB/0lScbmfTkYcPcsmFKjcPjnzTCNSPZps28anuwmcBCSImEe35MWPJI1WTspGJQhs4CoY5rEDW6fX8eAEQCViVwnGDdxg37VQZoMcUIhA8vk4sMwtGCKfIamYyKXW8kRjMZWmxBaXAuxwVnP2+A6a7JBtzsPhnA9bn3rWnyfm49DTo6zLdEedBUNBOLeFgxcvQ2hyzMh6VQQQzVgrQK4Gv+q7l7Du6PHkDT6O/vEWS+3StwQ8DH6cub7j0DEDcnJySdsX8507doVr7zyCqZOnYqzzjqLChwIDzzwAM477zya9KCg0JlZ+s1q/PTqH9RFjRARF46zbpmOhG5xAYkUn1vwMN659VPqTt7o8EyuS5MvGYe7P74JnIqnhUrkNZOGx/XPzIVIGvkeIM7/rAehArnjRf6TBcPuYpgGxIGNNkAqr4d+Xylqio34psXy5C5ZP6YrzAMTaXFvE5IMzu4udFAfDUwcSMYm//lsOU3nIROm+iGpyF632z3xmmUgqWR6f6f7kiQw1uAHzeprHH0SUjTRGnGDGKaFPcX/xK4YKVKBAxPALZQVGuIpvDV9SGHXkK64/ZLTaGKWgkJHwLIsRp8xjD5OBvW1JuquGghHdh7Hh3d9iUe+u8vlddJG3LRwB20jkjbj0d3ek8Gue/FSTLu8WbBNCgy3L96NiUSkkBiJjIJKKgymyA6BFWt3vS4JvZLAm62QwvUexQ2NyDoNLcTnLY7rNG+SwIgyZB8JxqqjwRfbdBSsxQ4+qwRCL8/CV7a6HqGVRthJ+5nx33cIjQrB/96+FnNfnt90nwwESWhlCnk7p7KRgt/Ufsm0APbx2S+iMqsYHSVBIE7DCgoKCq3ln/9bjl/e+JP2GxoL08/+30xEJUYE1Cd56tf78dbNn2L975vp2F1jYSdJTLrzgxvBsgzdNkl8qq004p4JT0BuWK618Gq+SQB2bG8OfZwIJFHGos9X4KqnLoJGp0FIhL5J3OBYwP89iAniszf2Sdb/vqVTiRsC4Y4PbqBCGQWFjuqTjD17BH2cDIigurzAYXDnj0NbjuDT+7/Fff93q8vrdpsdGxdsR3lBFdIGdEV2hveimlvevBoTnUwMiBiN9EnGnTsSHMfi0NasNnya/x66EG2TKI6cS9WOLNjG9AFamoLIMqJLqnD7+9fjm6d/RvGx0oD30SGpq62AGKMkdo+D2WjG42e81CpxQ6Bzl+R+r/Df4V93h7fbrNi3YgkyVi5FbXkZOJXKLfnAYqzD9oXzkNxvIAyRUU3pC54YMPl0mvYw89a7MOHSq5CbsQeyJCGpTz+aBNFITEpzbPI59z2KhW+/DMEWvMghJCoaYTFxKDx8ECeLspzmqNONv/7QJOroCKKTHXFNGauX41TDEN56hxgFhVMBUisnOPqxfineChgLZIQkORoR5RkytrwgUdf7JshbHtpVCaOBgTc0D4hWZsrY8rwEY+BjyAoe0gjC0oC0WcDeT3yfninvsIjsxaAuTwxK4OA3O+0EQQQ0S2+Q0ecyoDqrY4UU+jilkaygoBAYZtGGebnbsCB/O0ostVAzKhTUmWGzk+6X41pSZTXhk0Mbsb+6G8LUBtQKzWkALZkWNwZaTo1nBl2I23vNwPaKY7SQflhUNyTomtukUZru9N8INfDUgCvx3P4fYJccbflYrcO1yBscIyNCZUG12oYQNg5x2lDsq3Et4ifJCzaRhZrzPXBORAgRWgsVOZAcB4IgsY01sQ0wEEmSg8g0NRGsAk/FDYTDtc0i6zd3rUOdXY2d5WkYFdfcV2nJEVM8suujEaUxIVRlhZologL/1+54raNIck3ZRo/vi2BRKziKAiqseoQQsYNXoYVDskDSKSTJdcKXjLUQkYRArFBbpD54h0GdoEalVYdYbT00nOMGTM5HkSkMkqwUUir8eyHFkWQy0h5gkeCGP7ahLL+CTnYSdu7Pw/Pv/4PSimbXf+bM4eAOF0GVkevytzf+vJG46skLm57vPVKIpz5dhMKyZkdN+YJhEMJ9F5eLUXoIETrwDWk3pDjIPLo7FTc0HQN5EJ2ACAh+whDIpYc3MzQ5gaRDEPiSGqiOl4NpKCyl+6FCigjYU6MhqzhwVfVQHy6lRT/+sEdpIWt48FUWsA378OXeRIQMokomNw6X96jYQZIhW2XoVh6A1WKnBVynXTgWXz7zM8RIvaPYtLLerdiUOPOm9U/BoUe+w+E6C6RQd+EWERoICRFg66xUGEHPTwe5EpE0B/IIlMM7juHmwQ9gzt1nBCzKaQ29R/ZAeIx/YWSng6ph2tiXauv67cyMGTPw1FNP4cknn6TPjUYjvv76azz88MMn+9AUFJogTqV/fbIUS75ehYrCKuowXV3i6hRdXVqD75//DaPPGg59mA6mWu/upjOvnUIdUB/74R7c9OpVTUkOQ6b0R0xSs7t/twFdm35+5tZZePbTxVRw6AxXWgvdJt+DOF3VOoRXMshcSlxPvFM/Lg3mIV3c32AZiGoZnLW5Pp+IKlRF7qkR3ji6p7kI+eP5G6hA2yMMA4mTQfTkfEEVGFvw9ydSlEog31drsPSObbhW+pnUbvgqeDMg6n0sJ8tQkSaUn8uvrNcgdMCJEZ0pKJwMSH+E5dgmUZc/1v66Cbe8cXVTwsT2pXvw+nUforKoyqUYw1MBChGLXfzguU3P96zZj9eu+cClkFEbrofttAGO7ZC0Gqf1ySVA4hnIMQYIpw9qFmS1WM4ZUc02CRzIMpoKGyyxao/F91xRNfjsjilQaS3qvTk0scLeMxFQN5Q8kD5HYSU0O4/DYhPQZ1Q6Rs4eiu+e/dXrdsh3Qpx5u/RIoPe3YAQOpEipJVx5HaQ4346+5F7YnhA381uHPogzbz69QwXXAyf2hS7Eu3Cm0/Iv7JMoKJwK1NfUY+HHS6nQurK4mt5XSR/EGfI6KeQcf/4oaA0amtjkq09CXKGf/Pk+lOSUYe/aA7TweMjUAYhObE677DawuXbrgS9uw5s3fdwqQRpJhCCmHETEeLJw7pN8/eRPLu+xJVWQkmN9rk+WOVF9kpNJW5z0FRQ6Oxqd2msfwhMrf1yHm167kibiETb/tQNv3vixy/XX2/amXzMJc+46s+n5jmV78Mb1HwUssFBwh6SQDpjQB/3H98HPr/4BxmSFeu0+ev0Wyb2LZWmqgyqvHJ/ufQNxKTHY8teOoAQOYmtF1+0M6UvdPvIRTLvyNHqf7iiGTR90aoralD5JqzkFv23v2C0W/PbikwGLA/IP7EOfCVOQuWEN5AYXVGfi0npg0PTZTc8NEZFISO+FXYsXYtNvcyGKApJ698PQWWfTxIb8Q/vBcjy6Dx2BgVNn0uWCoeuAweg1biJWfPExTiai3Y71P30Hu9WM/AMZHbYfknZBzhPBWOl/UIzlVZAEe+fpkFW7CmcUFE4VzOUOt3tdrKNAxRvJpzHIXhyg0lMGqg47BA5E6LDuYcldHNGwKUMiwOsc++82m0XSBOKM7ziO+iIZa+6X4KPGUyFAarOBw7/5XoaIS4i4gThA5K44dU+tuRTI+KJjVcm9L1UGrxUUFALDaLfgf9u+xIEa58lQMyIMAtSsCKuNR51VC4vd4a65rvg4ru01DNuN66looSW9QtNwenxzolOsNgz9I7pgXv56fJ+zmKY5DIrohjnJ46HhqpFvOgiOUaF32EhMih2Fvwq2UPECKaz3B8dKmJbQHSOj+uG9wwsQqZFRb1fDJvG0EJ+kLdTbNVCxZr9Gc0QAoFMJMDUIFuSG1AZ3cURzhoFZaHQcJUoIM37IWQCj3Y4jdWQCQYvfjw9H/6gCGHh3IblF5LGobABMNg09t/2jHJO55Ng1rACGkaFhyHcg0El7koxgkVRgGBVGRk2hy1ba/A32ywjhybn0LwBnW1bvOr9OBw0ZiET0wcCnYIQMMMZr6hDNG6Fh7agXNThSF4dcM6mKZlBlay7cVlA4lSgvqKAua0SMQAbTPUFenzBnFFbN3RDQNknR0ZGdx+g2j+WV48GX58HSIq1BZhgIvbugS1osQnPKEJ8aS6Oax54zgk6IEnKKq3DXG7/D1FIc4CRS8IlT4b+QEg14icmVyIicH5cZmRQoEcFUqBahK3Z53o6KQ/3pfSDGNRe+29OiYRmUDP2Go1Afd02UaMTSIxK1k1JgT2hIphQk6A6WI3xFDjiT57EXtrLeIWTw5upKPo9obxJWZO3LRVH3KFRfMryp4IgxWqHNKGxKY5h4wWgqbiCRwuu/XIWwGhOsPWNh6xUHMVxPpWD0FqbTwjYwGbY+idCvOQS+uH0LgtpK8fFSfOujaKo9uOSh8zp0+wrBceedd+LZZ5+F0JDAu3r1akXgoNBpqKsy4oGpz+DYHidnUdc6IhfIxCmZxF72zRqP75OJWOKI2gi51/Yc1g3z31tEi5FI+3bQ5P44747ZqC6rRebWLFq8NO7cEThLpcGi7YcgRhpo8pAqpwJccY3Punlyb+g/rg8+fdB3qjVJ3DEPbDahcoNM2HMyGKsEdVYp9FtyghaJfPHYj6iFhCPFfiZmWUC2ClDvbZn01gxxXReToyElRDmSnarrwWWXQCvLmHHNZLpMeb7/eRIyiUsc4Z2RQjTgyniIyT7mTySAL3Xcj6kYo16GYPD8TWgrZZAwPOe0Jm9UNji9KiicahBxNOlz++qTkASXsWcPp2LqQLDbBBzdk4MRMyKQtfs4nj7v1Sa3zkYaC4m6pCfQYiWSonPGjadj9JnDmo7jeEYuHj/zJVgbhL2NEJGzp6BKMrYgkmQ458/R+DMrg0yBe/yELV5UkRSHEhts4TxEnUPczZhsUGWVQH2gAEwncQZ1Pnz1wQKoDhdBjA2j/RG2qh6sufm8EYfZsnzfBVlTL59AxQ0WkxXr521p83Hxx0pgJ8kSXtLXmDozOCfRS3tBHMtJAkVHcslDzSIcBQUFBV/UlNfi/slPuxhBkPuVrVsk7PEhNDVIc6wSfIWjLblh/lbMuHoyln672uP2hk4biNMuap4nIWN66UPSaJ/k6yfn0teGTB2Ic++YRQXeh7cfpffZceeNoq7jJJUgGCZfOh49Bqfhi8d+OKlftLGqnvZJ6irrkJfZbApFYMpqaFGsHO45s4epM4EprQrYYbyxz0faSP7gVFy7J6u2haoSpXZL4dSD9AvI3xvpAzSaNnmCmE2MmDk44GQVq9mG7Iw8Kkw9uOUInr3gdTejoMY+SVLPRKi1Kto3IX2SUbOHNi2Ttes4njrXvT+jEDwZ6w+5JAMygkTHg8ijkdk3TKPiBiIOJKKUUxVy3//1jT87dB8XP3BOh25fofPxrxI4bJr3U9DJB5kb12Dy1Tfg0Ia1KMrKpK+ptDr0mzgFEy+/BmptswsBSW/447XnYbc2RycfKl+DQxtcB/7Xz/0GurDgFaIFmQfoPk42pdnH6KOj6TV6PMJi45qSK/zRmcQNhIh4H5MnCgqdkNwVEg7NlVFz1PFcnwD0PJ9BzwsZj0IHUtCdv0aG4N28zQVW5djG4V9ln8kPlirgrM9YqEPc97nnY0Xc0J5YPNcyNZHUMDdNkjb8LXuyUIfRGimIfn4P7R1Y36kKBbpOUwQOCgoKgfHJkRUu4gaeERGtM0HVWMSutSIO9TBa1civjIAos/h+dzZemngJ1tdtwFGjoyBGz2kxJW40rkw9GxrOIRIgbKk4hKf2fgOr1Nw2Xl9Wglr7PJfC/xUl38AiJECWo2CReBjtGkRqfF9MbSKHzLoDyKjdi9CGXUZqLai3q1Bl0dHJcavIo8amRZja4q8uFxquWeBAMIsqsIzNLf2AjKMZbWrYRB48KyJWX48yoQbzCg7R9/ukOsSZet6GJbUDMMKQjWR1Jd0/SVg+XJ+AhaWDUGyLgI63IUFf13RsEljYJA7x6joq0GhEDRE61o4+4TMRqnK4O0Wpm12eWkowQnkr3T+nqwWtDPAD+V4bPh1Y8mCIxEMGx4qIVAngQNIlWJrOYJaIO6J75RAjSxgQUohIVXPDKhb1SNNXIssYgzXlvZCo82P/rqDQySCObWRwM3t/XpMT2vl3nUknHz0VFZGC7o1/bKOD8oGg1jquOT8t3O4mbnCmIsKAL3+5Hzqtu/jgnc+WuIsbCOTSRS46Pi5+jFWgSQONeEoiCBa6Nx+qMtOEdBdxQxMcS99ja8zgK10V5OY+0ag8r5frZ+FZmAfGwZ4Ygthv94G1eHAirTZBJhdkH8OJkl5FC04Zix3Gab1RHe4atSyHaGAe0w2yVgXdrjxMvGAMfb3oaDGN26bOsUfKYBuQAk708LlVHEyn9Ubo/J1g2jCRao8Pha13PC0IZcx2qLPKoMqr8lj4FR4bBqvJ6tNFsHHSuaOIjA9vOlenHORvp621cJ2rlo4SHh6Ovn37Yt8+h7t8Xp73omYFhRPNF4/84CpuCAAiKPzf29fSe/XR3Q6XUOJWOuu6Kbj2hctokW8jG//chhcuedslZan469VY+rVrMdLnj3yPsOgQaJzSlAJh8187sS6AAiRrd4dQwCcmK8J/3QvWFnxK9f4NmfQhxIQAZw30vTDDQLfhMLja5naAM7JODdu4PpCdXa/jwiGmJ+CsMT0RFh1KX4pJjkbmtobBWy+0FDcQWKMVqjwVxEQ74CVwis/jwdqa73RqI8AKMux6QG4Y1+UsMtS1MlRNXUeHONsXXfy4lCsodDb++XwFfntrYZNLf3KvRMy55yycfesMj8tf9ugcbF20O+BkOVIgRPjl9QU+i4FI2/H/9r7Z1Idx5sO7vnQTN1BMVoBczxrTChoQyd+wtz4DeZ2aLbi/xdncXySJDrzFRgVO8v4sMNVGtwS2zgYRfvDF3gsbKwp9CxwmXuhoZ+cezEd9O4i2iOBbs+kwrGN60f6Ly7HWW6HdkOkvIMdjf4AkLfnrG9dVdtxECSm8G33mcJyS/Ev7JAoKnZlPH/jWRdxgj9Gj5ow+kMKbx8rqx3SF+lglwpYeBmuXsPqXDfjfW9dg0ZcraXEuITTSQIs+r3nuEhe35jW/bsIrV77rUrS7+MuV9OHM54/8AEOEr+gyz2yYvwWrfwrMdKWj3bAb0/NaQu4l/I7DEIb0gBzlOjbIVBnB784K+B5OEoAMYfqm633j+fdGW8UNUrge9h7xkCINALmPF1SCzy5r9VhfYncl6Vrh1GLhx0vw+zt/U4EqoWvfJFx439n0eueJyx+/ALtW7As40bixT/Lzq/N9rmOuM+PzjLc8uuG/f/vnirjBg3GFnBAFOSKUTm4z5TVgyqoDatsT8Z0vJl3sEPEdz8jzOw9xsiBpScRUxZ/opSP7JIk94jGMJBaeiih9klbzrxE4iIId+1YuDXo9WZKQsXo5rn7tfdSWlcJmNiEsLt5F2EAQbDb89c6rLuIGX5hrfVgi+UhOaC9YjoMkdh7FrCcyN6/H0ENnI6lPPwyYfDr2r16OUwW1To+0IcNO9mEoKATMobkS9n3m2oM1FRNBgYySXTL6XckivDtJVmhueoWlMpj4Koutr0iodzUEcINVAzEDHBNeBet895RFC1C8VUbXqa7NvLp8GQXrlC/1RJKzBIjuK+Pwb50jsqwlET2B8c+zVGCw9HqJCjFOBvY6wFwG6JWxEQUFBT9YRDsWFuxsek4K2mP09W4F/YQQjQ0pUVXIroiGwIr4aU0efrn+YZRYymERbYjXRkPLuRaFmgQrnsv43kXcwDEihkbmQ0ssOFug5YsxItqIzeXdkFsf6VPgQBIQrDTRwH07BpWdDs5UWh0D3FaBh5VjoOMl+nrzp3O9t2vYlpU1DOoFNU2TULEiXZqkOpjtanquuhhqEKsz0rQFu8TBJKohyhxNYNCoHMdVLRqwvLY/dKwNetaKCrMB+2qS6LbCNRZEas00KcOZKJXJRdzQdDQMcLh2GYrMZyBR1wuTYsdhY8XWFkvJiFbXQ8M5bbMhutVXigURlZB1OUaiCRoELWtDOGdxWS9UZaXnoNASDrvMN72nZuxIN5S4iBucSQ8phyDHYURUD+8HoaDQyfjuuV/x7TO/uLxWeLQEH9zzFXbtycZFD52L9NRYaJ0KKIlT2ot/P4bXr/vQb6QtibHvMzqd/rxmS5bPZevNNmzfl4OJIx3LN0KEFxv35wAehA/kz5O1A5LGxzEcKqXuO03r+CimZAVSiCND9paGQNa3yzS9gCur8/i+GKqFkOJZnOXYCQNrv0Tw67Nc3PJqTk/zKtQQYvQwDk9E2IbmSeimdclD7aVq0mmfYkwIHewXkiK8LmYZ1AWaQ8VY/NUqpPRJcnH1sXWPdSvackHNw9Yjlq4fLOQzmMZ3p+IGZ+zdosHnVyNkxSH6vTTSZ1Q6np73IHQGDa7vew8qfRROdSRVJTWoKq1BpFJE2iHYbDZkZ2fj2LFjmDhxIgwGz+6HLQkJCWmenJc6Z79a4b9Hfa0JK34IfoBNsAnYuGAbPtn5OnWVIy7WpEhEq3e98Rmr6/HyFe8GXOhb60fcQO5LpBHMEBFhA4FuW25RNOptUr814gZn2DoLLbrxJaYgwj6+1PP9mmAb2dNV3NC0cRYLdhzHOTll6JEai5nXTqHutcGizSyDeVgyNHt0sA6wAGqnPqgMcMU8tLvd2ze8BdDk1kKz+SiE/imQEiPpMdHPVGMCV2WE0MNhUuWJGL0Gg3olBX28Cgoniy8e/QE/vfqHy2v5h4vw3m3/h71rDuD8u8+gbtDOooPeI9Px3IKH8dZNH6Msz7ejMRGG9Rzejf7s72+5tqIOe9YcwMiZQ1xeJ06pXgsZJRlsXimkHl1cr6P+HCgYh7mEy1KiBM6DqLlpFaOFFkf+FyDFsDFJ0fj19QXttk2+pAbcol2wd4uDRERsskxTG/i8CirICIb+43vj6d8fBK/icG2vO/3eWzsK4jBM2hmNBbAKCgoK3qitrMPqnzc2PZe0PKrP7Q9Z794etXWPQu2MXoj4+xAtmNy+dA/+b+9bKMgqgt0qILF7HDQ61z4JGR957Zr3Ayr0JeP4rTGkIPtuL0ifpKMc0MnYo2prJqQwA+QYh8iBqagFWxPcZ/7j/UU48+bpSO7VhfZJAnWKbw1E2GAbmuYizrTFhtH0I+2ag2CNgdXkNRKXGouew7p3wJEqKHQMH9/7Nea9+7fLa7kHC/DWTZ9g37qDOPt/M9GD9Emc5kkGjO9D24Pv3Pqp30L5sJhQdBuUClEQsWmh7yQAMta9f2MmBk/q7/J6xsZDOLD5cKs+378VOcwAcUi6S2K3nBwLGM3gdh4GE+BYljcWfbECulAdfuvg9IPWMnhyfzz16/3056u6305TT08GRUdLqPGHJ1GOwr+XAAJmTw3qq6pgqWtdPH1ZznGa3kDSBGK6koEr94HmzE3rYG7l9k8GMSmp4NTurh+dClnG/Neew5b5vyAqKYWmZpwqsCRWVHFqUDhFMFfIyPjC+y9s8WZg5R0SFl4kYfeHEkQn156YgQymvMcgYbTvfUg2YO2DMqw1MsQAxKSelsmap/xRnWjK9wFLb5CQvQidkv7XsdDHM1DpGWgCMINjO7ANu+MtCSXbld9RBQUF3xSbq2EUmgdf9Sr3tAJnDBo79GobIDDYU1CMQyVliNfGINXQxU3cQFhevBP1TtsnJGprPYobGonXGZEWWgGzpEKJubkIzxlRZmiBva+CfR1vp8X6hHCNGXpeovPnZB36L33H9bN2C0mGiml5cWYgyBxNdqiza2AW1NBwNgyIKUJSSA3UnAgVK0HP26mwgAgZ1KQKuGH7JBGDPBfBolrUAyoGERozTUYg/zZ+nkY0jB06zvugkgwJ72e+jm+OrUFXXSrGRI1weT+Et7mKGxo+A0mGaEhwdcMqcbBJPE1uaBQ3cBDdxA2NkM9LvkeynlXkwENAnLoWkbzvwaFB4aTYW7k3KZwaFGeX4vvnfnV5jfz22nt1gWXWEKyoqsetj/6I8276BB99twaCILoMnL617jkaRe8L4mrz6MwXaISvNYBCRk/LzHvnb8i856EyUQVYYgBjioy6NBn1XWTYQmWQ/wiqghoYtuS6rMPnVpCqZ4/bI5cDVb3vv2GqcZJlqA85nJxaIiSE+Ux3oMskujakrWkREMN8qDSIAGBQHKzpsTAP7AJbt2gqVmjCqQDVK5IMW3qs72VYFrYeMdi5bC/+N+whrPxxfdNbYqzDxdoXYoz/ZTxh6xPvJm5oREiOgHl4V5fXrnvhMsR0iYIh3IDQKM/3UWc4Ml4UJKRA15YSCVtqFE2/8AYpqtu9KiPo7Sv4Zs2aNdDpdOjduzdmz56N1atdHeh9UVDQnNqVkKAkvSp0DhrFCa2BFNTmHy6kwoZuA7q6iRsIJOGhPZzkrCnhqDy/L0ruGksfFZcOhLl3TFDb4Cr9u2z37ZZAC0LbAmsVoMr2XdSsPlIKxksHQYoKgRzp/R4iihLuv+lT/PrmQlrEOu7ckUEfI0mO0O0uAFfJQ7feAHWGFny2Cqqjamg3GRD2ey3C/94PPrey6V7OmGzQ7M2HYflBqGos0G08At1fu6BduR+6JXugX7oXmp3HwXoRWkIQEbLXte2joNCZycsswM+veS9gX/3zBtw97nFcmnwLvnpiLi0IamTEjMF4a81zGHRaP5/7IO7/j856kRaBB1IYafPgxv/b2wt9rsMdLqBOoUHRss9gF6Dem+siLnMj/yS5DZ0ENi/cgTtGPULdwNu76FSdWQjtxkxoNx2GijhTByluINz4ypVU6BwaGUL7Jf5gvfRp24M3b/yYFt4pKCgo+IKIB51Fy+YB8R7FDc4iByHKIZ7avmQPNTlJSk9EWv8UN3EDYcmXK08pV/E+o3uC9Zc810bY2npwx4roI1hxA4GIRe6b/DQdGx06fRBGznIVYLYXYqTBTdzQiKzXwDK2Z9DbVPkySVFQ6GQc3ZPtJm5wZtm3a3DX2Mdwecot+O7ZX10MVcacNRxvrn4W/cb28rmP2vI6PH7GizDWmCAF0Pb0dD397c3OWWR/siDj9+LQni7ihiZCdPS9ts7Wkr4I6Y9uWLANnZGbXruKpo+ShzbEf3J5R973Xr/2QxzYlNlh21fofPwrBA6m2hr8/d5rbdpGdZFve/LS7GM4leg7cQpSB3ZMo7M9sdYbsf6nb/Htg3eAU7VNkMFyJ67haqmrQ225b/dIBYXOQs5SGXIAgS5CPXDkNxkbn5IgNwxs1+XKWH6LjGL/qfCozgJ2vi0j0nd7mhLhapRKKdqiFOgpuHJ0QXOHK3Gs/2C3wXcw8FAP3C4UbyUiHgm7P1BcOU8VysrK8OKLL2LChAmIjo6GRqNBSkoKpkyZgg8++AAVFb6LExQUgqXcYsS9m10nynW8/8nsUK0FbI2jHZtT6dsV+oixuYiukVitf9e2eF0dwjQ2VAghyKmPgFnkaXE+EQJU2vTIMsbCSip3fUDGm7W8HQaVFXqV4Db+3Ch0cC64nxk/DONjk8DC9dpJ9i05rFppWkPPiApa5O9pn6EqC1hGptvQsgJdjogGyEPNOl6L0RppEkLjMdllrqn+VutD3NCIii3Fh4eX4MpNH8BsD0OdTQ1RcmxMz7kXGzg+pUPkQPbTWMdkEXjU2EJRaycDOwzYBkGIYzt2nzXIJHUilLfS7cZojNCwIv3cvrBJZTAJlX4/n4JCZ2Dp16shtSiesQ9Oo07BcHJHNdZb8eMf2/Dkm81FPcczcnH78IdpBLM/Dm3Nwod3f4Xe3b07DRPInyNJi2jJln92gqtwnwQUNEBNT8AaA8jkks04khzIc2uYHSErjiB84QGX9AYCa7ZDddh7yoCmSoSuWGi+kDQiy1AZZfBmGdptx8GXt82hUwzTwp4cASE2BGKI7+s9XT5cg/rJPWEenQbjtN6ovmwEbGnRDlFGvp8EA5sAvqQWkocUjJZIOs/jQD4LrYJYxhOWfok+37f2inMRuSz8pDktdvSZw30fE8PgtneuhcrTRIcHyK3QNCoVVZeNgHFmXxin90H1pcNhnJQOWcV6LLx6cNqz+L+Hv8cpGb3c1kcH0bdvX5fJwvnz5we03sGDB5Gb21zYO3q0H2cIBYUTQHlhJV675oM2baMgy3c6Ttbu42grpn5xqJrTD7bUyKbCFntCKGpm90LdhNSAt6POrQZb49vd85zhfdBvXO82H7NuWw7YGs8CZJK0pN3jnnzUCHXu9kOlJOOzB7/FbcMfgtbgf6LYE0RoaVh7FFqjAL5YBXWWFpq9QMiKXISsPgqush6GNZkI+3krQn/dhtB5O6Ddk+dSbMta7eAq6sDWOj4rSTXSrT4IVUY+0Fj0QNLsbBJUpSaUFNZScamCwqnAkq9WURdnf9RVGvHjS/PwytXvu6Qq3DbiYexde8Dv+vs3ZOL/HvyOuq76gmEZdBvkKq4lbP17p+/1JBn81sPgdh11CB3qLe79iZaIEtjiKrDF1eAzcqFdugdcTgmQlQsILcauRBE4lg+U+3aGVThx/OXSJxnmc1mWZXD7O9e1WdznjXW/bcZ9k55yS2fs9HTyPokndu3ahTvvvBNDhgxBZGQknd9ITU3F5MmT8fbbb6Ow0Hdti4LCyaI0twxvXP+Ry2vWblF+17N2dySUknt14dGO75OcSGZcO5kmhHZ2qoqr8fF9X+OOkQ9TF/G2wHm5DwnpCT7NWuQIA8RYRxJFoBQcKYKtjc7pCgonMjksEGrK6/Dts7/grRs/aXrt4JYjuH3kIziwyX+ywu5V+/HD87+ha98kv0Xo3Qa690m2Leq4FJfGcXEpREsfp0KVmNzFT+J0qB5ydFgbd4JTpk8yxk+fhPRFbn3zmg4TOaycux53j38CP70S2Dh+p+EU7JN0Fv4VAocFb7yIwsOH2rSNpZ+9jw+uvwT/vP8G8g5kYNfihfjrnVfxzwdv4tCGNW0uvj+RqHV6rPnuCxzbEXyU8cmivroK+1YuafX6DMvi0udexeRrbgLLnxihAznHgQyGKiicbExBGu0QMQMp5iZseUmCJYga4IL1MlKm+S9E3/KiDFOp69+P1H5Jj6446icDX5wH0s8Hel8KsD7qUpiOGR9WcKI2u/nn7mczUPmYDyYpI+nnspjxJYse5wJc6+aC/XLkdxn5a5Rrf2fnxx9/RHp6Op544gls2LABlZWVsNlsyM/Pp46sZGKgV69e+P77U6w4TKHTQtqEN637GfsqiyEIzl2sAAo07QxYVoI6vRZPZc/FpKUv4Yndv2N3ZTZ+y12HZ/d9j5f2z8Xqkj3QeLgxkZQAfzQvw6Be0uGoMRaHjPHIMsah3BbaJDTwd7wMZBhUNj/LkNQDC/qFmbC89GMIWIXRMTnoHlIGyBIVDkgy23RzDldbaGqD1+0xaEhtED2Oe5PXIjVmRGiozXnz5xQ0fuf3G3GILYBKWyWWlGyj65ZZDCgzG5oSGLyLHDjsLkvCouy+WJnXH3elv4QLki8Bx7AuzQ8V419tKokMVBDAM41+8P75Lf+nAJdUUDi5lOaWuzwnA9did88u+oR1W7OwY5+jcPily99BdVngiZqrf96I2eN9FzIyJdV4+ayXaSGoMyJxMvUgSDCmNAgbPGCPVsGWoAG8DNZqdudCvS8PrN3pOkCKknIroPtrN8KWHUH0olzoMyqgya6BptCEyGwLrhw/BNf27gr9cddzR1dXczRZgQv1PQFAr+wsUHvhUBhn9EXd2QNhGZwCfzANIq+m7ehUME7tBXtiGDQZBV5TKQjqo+WwDk6BHOJfecwaPTuA8/n+xVuBLNMSSctDivAzQavmITa4BhJy9uc1/Xzu7TOhD/O+/vjzR+Gc22bhs71v4oybT4fGg/O5M/UT02EZlASonTqXHAtbzzjUzexHJ3o88cvrC7D5L9/x4gqBExcXh7FjxzY9nzt3bkDFQk899ZTL8wsuuEA57QonFVEU8djsF3G84f7ZWp6/6E1cEHs93rzhI2RsPERTBV687G28du0HWD9/i0cH1WCvxbVTu3ktaqkfkQR7vP/EHALZQtiyw2C8uKTHZFfjo9mvYu8a/wXJ/mAtdoT8vQ/aXXlg6yyAIFHBg3ZbNkIWu4scXQikcd/QeSnJKcfKH9e1+jjDj1Xip4cuwz19eiLql92I/HEH9HsKXfom5FhZiwA/eurm5UUJqpI6qMyAqlaEqlaCyiyDMeghDu6Oj79p/fEqKJxISvPc29W+WP3TBuoKScZ8Xrj0bSp8CJQVP6zDzOt8p9YTk6kXLnkbVaU1bg7K/iCJMVxhBVRbMqFZtRdsuZeklQb43HJoNx+GdksmVFlFYOwN182yKmD7fuBIDpBT5BA8kOfF5dDo1Jhz95m44N6zwPlIBOA1imtyR5Pt1Cc5787Z0Bq834unXDaB9kk+3fMmLagl32NH8N1zv2JnACYECsFTU1ODq666CsOGDaNGTXv27EF1dTWd3yACa5JAd99996FHjx545ZVXILQUKSkonEQEu4BHZr6AvEMtjJo4/xP1stO42hNnv4wL467H2zd/ggObD9MEphcufQuvXfcBNv65ze94S2eCjCO9cd1HARUkdxaKjpVibRtSjch96vOMt3D54xdQQaczYgDpqIEs05IvHv0h6HUUFE4GZUH2SZZ8vYqKrcmYzwuXvEUT44JZd9YN03wuQxIenrvwDdRWuPYnRF9jHG2ADEMIvbrAOn0IbFMHOR7TBkFI82xYpTNoaH/k/LvO8Fksrw7AbKktBCJekKNdk7T/beQcaO6TzLnnTJ/n/PSrJtHv7NPdb+D0Kyd22PfzxWM/ImO9ki73X+CUH3XIP5CBwsy2D1ALNht9HFy/mj6cObhuFUJj3J39Ois2c+A3tH8DKo0WM/93DxLTe9NH3wmT8dlt10G0+y6+aitZ2zbh8OYN6D12QofuR0GhrWj9myK4kb1EhiYCqAoy1YkkRWgjGPS80JEG4Y26HGD9YxKm/x9LXS4JMQMY5K1s38LxhDFAWCqDwz8Hvt0u44ChdzkKTHqcJ2Ht/TI8GGYHlIqh0DZUTmnLumgGp73KYsNTEiwt+n3xI4DRjzMo3eUQziRNZDH0LqDyEBHsyJBEIvSRkbu8fb6RI/MkJE9SFC6dlS+++AI33XRTkwhRp9PhtNNOQ1JSEk11WLt2LZ0kIKIHMlFgNBpx6623nuzDVjjFWV9yDPuqiujPFhsPA2ej9To2kYeW933DsJtV0KY7JsmtEnnYsbhoB9aVb3Kp+VlavAMJWoeLkTO1gpaKBHxhEtUuIgUVK7tsm/xMnpI/G0dpvecJB1FiwbO+76nhKjPitXUQnRbjWBld9HU0ZWF3RTIkp+0beM/Frc6QJANf6QfkvXCNFXaJg1lQU+GBIHOoE7RUVBGjMvpcv9hCBqZkqFyEFgxNuLBLLDQ+BBgEsk81Y8CrI89H34hE+hgfMw5P7LsbIgJvMJgFFSwiDxgAm8xDkFnwTikQLTGKGhyq24KhkeMwKMK3W4aCwskmMiHC5bnYNcbvOotWZ0BdXY/sjOaB00CwW+1IUfE4b/pg/LFsj9v7jNEM9Y5jOGa24dk5r+P9zS83vTdgQh9s+GMbxPhi2Hol0NcEHSA217t7pHZSMnTaeOqKymXmg7E0j0dMunAsIuPC8ccnSyHGhUJmWXBV9WBNDcuUVUFFHk6+HdOunIj7rppKfz73itPw8PTnUHy8lBa8m0ekwto3HuCb26O02SO5Xr3pZZiVIRtcC1oYtQaMIEPmvV8YOU8G1SwD85BkhC06AP2aIzCN7+HqWkREG8W1sPeId0xe+pu7FkSoj3pOxuTzKsFWmyBFeD7xbI2JLhM0gaY+OF16nQUNcV1j8eJfj+K5i95EVYlrIRpxUn3gy9tokU9FYSWmXjoB93x8M53A3rZ4F50sKjxagjW/bKTLixE62Hp5TxoREsJg7xoFdY7nz7ngw0U0lvyUoD2chTpYY37PPfdg0ybH5L3JZMI111yDv//+G2q154KwF154Ab/99lvT83PPPRcjRozo2INUUPDDlr92tlncQLCabfSx+KtV9OHMsm/XINFPSpI/zH1jXe5hnjANiEd4SWCFxKpSIyJ/3QPzoC6wdo+CzHPgy4zQZRSDOd6+aWesTaRJDb7SGjyuV1IN9O/qf5k2EhJhwGM/3o20fin0MXvOGFyZdlubTZpkloEwqBs1mfJ0PV64ZC8mT+yDEUN9u9UrKJxsouJd+ySBsPSbNTAbLdQZmBReitEG2s4lqW++hE0WkxXdB6XSAnOSZueNIzuO4fmL38Rbq59z6ZNsWxyYY6ocEQIxPQmsTg+J/K17GPxgTFbMHtEDqiFpnh1jSRuZCB1aMPXyifjf29fSn8+4aRotWC3Lc3fDEryIzBTaD+c+SVJ6Ip7/8xFa4EacfVsKru/86EbsWLYHlcXVmHntFDzwxW3Yt+4gdi7bS+8HuYcKsH5eAJHtAbDgg0UYNm0gTglOgT4JoaqqCqeffjp27nRNcgkNDaUpDiSVur7ekZxksVjw6KOP0mV//vnnprlWBYWTCbm+5GW6Gwaoio00VdQXquLma5rNbKePfz5fQR/OLPtmDbr08G6a0tkwNSSj/VcIjQrBk7/ch+SeXXDd85di+tWTcH2fu5v7JD5MUxphAlimJfPe+RsT54zGgAl9W3PYCgonjKgE93lefyz9ZjWGTB3gZiIVyPVn4IQ+mHLZeKyau8Hrcgc3H8HLV76Llxc90fRa//G928Uswpmzbp2Bmp6JWLbGtSBdNmghDEqDrFNDddB1vGXGtVNoEgBh9o3T8OisF1BR6N53sTUmTip0GPqw5rma1H4peGb+Q3j5infdjAAmXzIOt717HbYt2Y3q0hqcecsMPPztXdi9KoOmtJM269G92TStuj1Y8NGSU+faf4r0STojp6TAobqkGBmrlqKmtAQV+cFNdLeWuvIyqLQ62C3/rQZoZ4ZXqzHxsmvRfzJxxWu+kOrDwpE+YhQyN60Panu60HCY61wnqP2xd/kiReCg0GkhDkBFW4CircHf4SwVMqqOtG6/uz+UYOgCRA8EKnwYuNQcBUq2AwkjHc97zmGQt4pWVrYbvBY4/EtwG5QF4OAPEtJmMDDEs5j5lYz8tTIOfCOj7sTcchQaSJniOiAb1ZfBmXNZFKyVqXiBGJknTWRgrQGW3yqhvrDxu5ahTwCG3smi/3UOJbdolVGTLaEmq+2nt+rUMdn4z3HkyBHccccdTQNlZ5xxBr766ivqytpIXV0dbrvttqb0BpLmMGnSJPTte4p0fBQ6DUXmUqws3YhyayX2V1RAy9thEVQQRQ4mixo6jQ0WgUOo2nvirmDjYHUSczmnJHhap9hSBT2ngUm00uXCVBaYBBUtbPW2D5vEoYZU51JkmubgbVnyurfaF5NNBaNVjUiddzEFOaYYjfdCpFCVDYn6WhSYmosKnMUO3rfrHxYSWIaFmrPD2iDoEGWW5CHAIqmg4zwPbhERw9G6GLoPIqRoSYVVT8UZ3o9Nj9t6XYSzuw6BgW8uggxXRaBP2GDsr3VMSFoknqZQ+KLIHIautBCZxG8xqBb0VJzhCfI9FVkdbiDrylcpAgeFTgtxFiIFl7uW73V5Xdb4d2ypqDQia2fgkfPkL1hMjIDQLQ6vzt+CLklRGBQdgox9uZBDdWDsIri8cvDZZWAEx9/joa1ZtNhj4ERHO+C8O8+gAgfdluPgC6phGZ4GMVzj90pkJ0MSLAshORqmnlEQGRstBqSTswlhWPD+YroFviiwMQeryUbd6aZffRq6dI/HFwfeoc5pny7djmpP9db0IkY1XU5H6qXAiTga1QLWCJmKFtzetwO8l6EvISkCkoanRfeqgmrYusVACtdR52wi2jCf1qfJmY1cUolGi4b2eEC/NYcWinqCrKtfeRCmSb0hRbtOgLOVRuhXZwbsOu2yrk0EV1IHMd57NBxjsoGraL72Tr5kvMv7ZLD8h5yPse63zTi84xh1RJ0wZzQt9rpl8AMoyWkWbZAJ9zs+uBHXPncpfW42mnF8Xw5yDxbA2sO/yMeaHutV4HB4+7GAPrNCYFx88cW037B48WL6fPny5ZgwYQJ1RCV9BY7jaB9j27ZtePHFF/Hnn382rdulSxd8+OGHyqlWOCmQIsUlX61CWX45ju3NOWFunqTQsrWFOmKEtl2WcYartSJk/XH66IywdWYqgpS8FTIIIrjjQUbwOkG+j5tfv4oWI+sMzecuLjkGQ6YMoBPIwRDdJYqK9UhbxpYaCSE5CnKkGiqT7PX+++ei3YrAQaHTIkoS1m7PwmZRgOn0/jRFjD9WCr7Uf0pcVXEVjuw6DvPQFNj6JEBuTCuwCdAcLoV2Ry5NU/DEmzd9jKQeCeg1orvPttu+tQeRuS0LvUem0+fE6TIQgYMUFQppaE/aD2ElgK8XIWpYh5CZ9ANECVxeBVQH8sBeOAaLv1uLQCGr19ea8Osbf+L0qyeha59kfJ35Hlb9tAHfP/cbirNLA96WQtuZ0qJPQq7tP+Z+gjW/bMLR3cehNWgx8cIxVIhz04D7XIQoyb0ScddHN+Ha5x19EvK9HtuTTcXXbYUIdBTal1tuucVF3EDEDkRcPWrUKFoMRsZYiIHTAw880LTcr7/+ioEDB+LJJ59Uvg6Fk5Yys/TrVagoqsKRnZ6vC7p9xTD3j/c4DkXgqsxQ5wQu+CXXsLb0SRTaHyK2vuXNazDl0nEuqX/JPRPRd0zPpgQLvrAK9ogWk2LO0JSqKsSmRHsUVvrir8+WnTpFrgr/OURBpCIwMhcRLJUl1a1ud7161fvokp6AHkO74egu72Mm25fswfGMXHQb0LWpT9LeAgerQesmbnBGTE8El1MG1tRgjMeAJkv8/vZfVCxFju3rw+9j1dz1+P7534IWfLQFpqrOb4oDWebfTMt5kpEzh2Bu3ic0Uf343hzoQnWYdPE42te4rvddLkKUrn2TcO+nt+C6Fy6jz2sr6/C/YQ+1y3d4ePvRNm9DofNzygkcNv0+Fxt//dF75U0HQsQNUUkpqCw4cRWuurBwmGuDK7r/rzDthtswYPLpHt8bfcFlQQscOHXwkTiVhcG5NSkonCgku4yNz0gocphDBg3DAwXrWnedrS9yPAKhZIeMhJGOwYzo/gy6jAUKW3nMnsj3bo7kFbL/wo0y9n8lo/+1DHpfyoDTAkZ3wwmFDkQfD3Q/232gi+UZxA0HTGUyqo8A+7+RULLNPVHDVAxsfFLCgBsZKp7hNAymfchi0ZUSzJ6NYgOG65hUZ4V2gBQgEeciwpAhQzB//nw311XidvTNN98gOzsb69evpxHOb7/9Nj777DPlO1AImB9zFuCPgiUNaQcO+iYAZUY9imrDEKqxIEpvhpoXHUt4qDEV7SyKS8OBUNf7rYa3Q6+yQc/bwLMSJJmFya6CqSGZgIgbBkYYIMhHm9IUiJN/CGd124cgscg2RbsU5voz86JJDi1eC+XDkFmmodsTpDqvKQ4kjYGjFS+N77vvLFFfQwv5yeciVFt1SPQhIGg0E/SfYu1YgCQeWJtSKGR6TFWCHgxTDy3r6iooyQwKzOEwCloqzvBEqSUEURoztJy7IyEDBpd3vRFDI0d5XPfMxPOQUbMLDCPDLKlhkG0N58cdktwQpTWBZbUQJIae4zpRBw4SIniTy/dGjjvXGoWaBkv5YovSSFHonNgsNjx9/mt0cNyTi6g/VHYR6/8IzFmS/GVZx/SEmEKueUB+RR19UBIjAJMVqvJacAWVTeKGRnYs3dMkcCCFIsOmD6Lulqr8Kgh9ksFb/Mfek8sL0VbVJ/KQ6QWrQWgVY8A8sQ6GfnHQHQi8CIhMdpDH10/OxfUvXYHz7pwFVUwIcjQ+lGjESba8DlydFVyVCeYhSQDn2SGbswGaKkA21cKWHEpvDoxFACfy4E1+5BwNUdDEsVZzpPkzmcf2cJuoZsipJhp2skrjW1aBfge2tGjALkJ9vMJjURhJuAhZtA9CfBiEhHC6PhGI8CXeC9EkNef4LGQfXpbR7i1A/fQ+XrehzShsKt5M7B6PWdc7kjScUalVGHr2cORGa3E4vwy7l27D3o9XgMurctlvflElHrr9E9zyyhU4/9yx0IXo8OG2V3FV99tRH4DIp6mA7iTEbrcrJHqEPNq6jQ6GuJ5OmTKlqVCIiBmmTZsGg8GA6OhomgBH0t+cIeKGf/75h6bFKSicaD65/xs6yXsyIIVESekJKMgqDnpdxuzf6ZvckzylQVUVtz3l4GSh2nEU9lG9IMW2mBC32aHaegSsuXVp1CzL4MGvbseE80d7fP/Kpy70KnCgAVApsZBS4yCHaOl9mS2sgGy1wpoWCeNpPSDrm8dULJIMTbUETZ27o2pufvumZSgotBcWqx0PvD4fOw40zOvGhEKKCYWQFgP+aAk02477bPvyah7LyipgHZzs+oaah3VAF0ghGhhWe3bDKTxSjLxqM4Tu8ZBnDHEIDoqqwB8rBtPCYXTHsr1NAoeRs4bS/om/4iepVwoVNzRCRA6sWXKMbhCNQ04J+EzH517+/ToEA2meE4E1eXz1xFzc/MbVOOOm06HS8CjJUcQNJ5KU3l1w+lWnub2u1qoxYuZglOVXIHt/Lj5/5Hvat23Ztco/XIRHZ72I/71zLc64cRoMYXp8tOM12idp6bYaLCqlT9KubNy4kYoVnEXYc+fOBev0d06E16TPQuY1Jk+ejK1bt9LXX375ZWrkFBERfFKNgkJrISYAH9z5Bf78aInfZfkKE0JXH0XdZPexI7behvB/MgMyOWrZJyHjNkXH2i7YCpSoxAhUFnWePglJryOJCEygiaUdBMdzeOT7uzD6DM8p01c+eSEeO+Ml+jNpf9nTE1xTYZ23lV8Jtt4KgfRPgiTvkDJPotA5MdWZ8dgZL2L/hsxWra/WqLDxz22tWjf/SBF9BAJpSzYKHMgYQ++RPZC5rf2KxxetygCSfZj+EDFnSgzYzALHcxlUYE0eXz7+I25/93qafM1y7AkVN9BDKygD0hK8J5LWW8CUdZ77Q3uTNiCFCthaQgRtw2cMpoK03EP5+OS+r2nftiXE8Omh6c/h9veupylzYVGh+Hjna7iqx+0w1bRNrKjMk/w3OKUEDgc3rMHGX35o1boqrRbRSV0RHp8AU001irMOw2717j7qjY4WNwyddTZKjmXRdIL0UWPRZ9xp+Pr+2+gxnwqwPA9J6Ng40qguyRh38ZVekxMkUURsSir6TpiMg+sDr242VgR/A9SGeHf9U1A4mRz4Vm61uIEQ3g3Imo+Ox2k+rHSn3K7ihrZCCuYzvpCR+bMMe9vGeRWCJGYgMPIRFppw9+GsgvUytrwoQQzgFk4cbPd9JuPQXBm9LmDQ92oGE19lsfIOCYKp9V8LSY1Q6HwQoYLzBMATTzzhJm5ohEwK3HjjjXQigEBcjxQUAmVlyUbML3C4+7YkNsQEjUqAmic3OBkc48gnoM9kFnpOixRDAmK4eBQa62GNy4VJFGATONglx6BIoqEOepXzRLcINSdCL9pQbg5BqMoKMEXgGSJ3IBILBhZJDbvMQcfa6Wtkr7WCFhW2EAhy82BLIFcvjmEwLf40HK/Ph4ZVY2z0MIyMGopZpR+iRrKg2qxDjMHzRTRWVYuu6nIYSOUsGbQTVagUQlAnNSZIgKYYhKstqLerYBVVMAtq1Nq0CFN7vrCTsXnyGTj4Tj8gSQz0MzKAmuFgkyWoWJEKCsg5qrCHQMUIjnPEyPR8E9EBqf0l3xNZnwgHWqY4iDKHzJpYpBiqEam20HUJCdoUzEq4BAPCR3o5HhFphu7oFToOB2s3UbEKEVpE8GYqwmiZsmEUtUgy1EKU61BiDUWSzlHAWy0aUCvqEMJZ6HFaJR6F1giIaP5e9ZzveG8FhZPFl4/P9ShuIPA55VQ84M25jdBdr8bvAboE2XsnNokbPBbkh+pg76ODvWcCNNuPgXcaAG+KSAew5e8dVNzQjEzTDhi7DFnl/Vh1JTLq4xvFDa6Qy5NxUg+oio3gK4NrhAp2EZ89+C2+f/5XVCaHQxrTzfcKDGBYe4Q6LptHOiYjvEGCbQyrC8CX1VJhAGOVUHPpcEDFed98vRWMlwJMIc7dwYicDXLJI8ny9HZE6jI0PC3cFwwaCF3CYesVh5Blh8CInuPniaDBl6iBYE+JhGVgEsQ4xxgNW2OG5kAR1Jklbvc+dV4VpE3HYB6ZBvBO8RKkaHN/EbQZjgmfwZP746Gvb6cOdC1ZtuMwnvp6Max2p3vT7L5UgBG65BC9GRkndoetexT9/Xt11XZ8ujUDV50+HNfPGIWXFz+OW2/5EP5kPpyPwX1vhawKrScsLAzr1q3DPffcgy+++AIS+cUl81P19fTRkrPPPpuKpBMSEpTTrnDCIUVErRU3EKfT1H7JSOgWR136D23Jgq1FoW0gtEbcQNAdKkP96GSfyuuw7Gqcdct0mkqhDdFi0kXjMObs4biu1120MOBUgBRFC7bmeRIi7lNvPAgpKgRiouP+wFTXgyuo8HoP9Ef3wam4/oXLMPrM4V4dIgdN7IeRs4di26Jdbu0TYVhPyM6pEhwHqXsi8iHAlKRxb6exDKxRHBUmqo2u/abQVhQgKSicCN7/cU2zuKEFQo94KgxWZXkvjEwcm44/93kv6rGnRUOICwVf6m7cYO+bDKG3qwhSCNVBSI2FZsMhsLUmlzTuRtYF4Owqh+mB0OZke2foXy7ZXEI00CBwcO7z+Nwuy0CKcGyXrTbRgkm7TcCHd32Jrx6f2+mvwVKoFrKap/0WthX3ts7GsNMH4sGv76BC6ZYs/34t3rrxY/r9+IPcDz644wuavnHxg+fiovvPxkv/PIb7Jj0Nu7X152nCeZ4NPxRaxyeffNL0c0hICH3uLG5wRqfT4bXXXqMiB4LZbMaiRYtw2WUOV1wFhRMB6Y8EIm5oRLe/FKqiOpgHJkDTOx6pfZKQInCoX3EQmfU2tKbCqCPFDbpQLSZfPB45B/JoH4o4V4+YOQTXpN8BayvFye0BFSl3jYfUNQ4g6W2yDKa8BuyxIrDVrgUNnIqD6Dx21QH0HNaNmrOMmDHY6z2IiDeJqczuVRn0/qxdexDWcb0g611NZbj8CmgaiqmrSoI3AQ6NUuZJFDonH939VavFDQQyfrPs2zXoaJy7DCt+WNeu4gaCFIjptBcBLRm3evuWT/HJA9/AXBd8rW9bYWwC2N1ZkIaku4sczFZwu48ELdQ7FSAJYiNmDcGDX97mks7TyKIvVuC92/6PzmP5w24V8M4tn+Hbp3/BZY/NwXl3zMaLCx/Fg6c/5zJ+FizKPMl/g1NK4LB94bxWr2u3WBASFY3MjZ23gI2kNQyddRaytm2GYLchIi4BWkMIpl53K/5+9zXIpFLzBMFrNBCs/h0VW6LWaGER2r8SeMTZc5A+YgzUOh1iU90n9C1GI7b/NQ/7Vi6lYhByLonAIa5bD5Qe77g4mj7jJ3XYthUUWotok5H1p9wODosdr/aPG8rQtIn8NTL2fHxy3QW8oYgbHJAUi0BEBcFAkhhiBzFIHAcY8xmIFhkR6Qx9SAIRlsjg9QDTMKFamyNj83MSpCDH3O11wP6vZdSXyBj5EIdpHzNYeoMMWWjdeeh10b+xe9IxiEYjhOJiSCYTWL0efEICuJCOGWAibqq33norDhw4gMzMTMycOdPn8s6FSIWFiquHQuAsLFzu8/0QtY0OMpNCfueaHVJAbxZlGLgILC7d3fQ6MZsmAgZBZKHhhBbihmbUnIRwjRkJmlpa7K5mBbp9MgdulVQwi2paJE+K5cttrf87i1JHYkr0dIiWI7CJIrRyEsJVBjw2aDYe2TEfZcYQaHgBoRrXQfxu2jIMDHH9W9Jzdui5KpTZBZQLjqJTIiwgx21Q2al4QJA4HKuNRrfQCoRrXG80KkaLajIowjBQyaLXOmhyDhxSksbnOljJTatF/8ku87CL7l1gR3oDC7vI0c/WEiKwOG6MxuRuUzExrge0rB6JOvfC4Vq7EX8ULMfK0s2osdchQhWKSbEjoWN7otSaSwUKFVYdQnkrwlXk+BjYZN5FhEIEGWpWwvH6KCRo66Dj7JDAokbQU3GDSXIkeTgzKmqs5xOjoHASMddbsPjLlV7fZyw28AfyIDQ4ArWEP1oMa3y43/1IEQbYeyVBSHEqzvMFx8I6qgdkcl3JccR6DZk6ADarHWt+3ohPH/zWdfHiGkiRIQgpAOrSPG+StcnQlcuwRvloIxLBwYAEhK5tXZQ0caWTVVF+l5MbxAmkEIk1WqmjrM/l1RzsxFFWq4LMs+BqLDR1whvaQyVN6QYtIcWOXnt0pCbDc10GhMRwmIelQL8tx+ex0v3rNbC0SP+w9omHeUx3l9ekcB3MY7tDjDJAv8n9nGsPlkB9rAK29FgMv2gMBg7rgUn9UpG/7SgdaE8f1o26VdlFEXVmK0K0ajqYTyCJDY9/uQiCh2JU8lnqJqdDCtNAjHW9F1fXW/D+gg0oK63Bw1dOx6ff3oPL3vzVp3xPc9Bz8TCZWD//7jNwqkB+Z7z93gSzjROBXq+nooX777+fihxWrVqFY8eOoba2lrqhpqSkUMdUUjg0YsSIE3NQCgotIEWqv7+9sNXnhdxTIuLCsWruhpNybvlqC3QZJbSwyROq/BqkijzOuX0Wtvy1g06SJnaPQ1R8BG558xq8c8unARfqtgdagwaW+iDnSYjoWqvyOEHLVhrpo7Vc+9wlGDxlABXgpfVPcXu/qqQav7z+J5Z+sxq1FXWISozEtCsmIq/OiMO8CDFcC9YsQF1lAxsX6XEC3haj9ilCtYZzUBld05KmT+nX6s+koNBRGE1W/LN2v89lbD3jvQocyJh0Saj/NDfSpmwpcBBjwtzEDU1oVLCNTIdmxd6mvyPSJ7GarVj100YqcPaHHEAaGHFGJv0eT2lpbtsjYyb9kqggnPQNKBY7PTfqA/m0LdYR4gayXzEujIq/iCqaL6iirs3BQlLfbIO6OrZDkCRwBVXQ7M6hyXDtiUavhrWdt0mEav3H9caYs4chZ38+7ZP0GtkDqUQkYxdQX1MPfRhJJ3X8xhzaegSvX/chpCAFctWlNfT3q7KoCre8cTXeWvMs7hr3uIvAJlBCIw04945ZOFU4FfokjUlyhPPOOw+Rkb7HOUaPdhW9Hz3acfUQCgotEUUR8975O+gTw1eaEbrmOLDmOLqeOZwajXRWuvRIoNe5rf/sotdbUmAcnRiJm167iiZXnEga+yT0vjmoB2QimG6EYSDHRkCMDgP2HAVb6jDOJfcMjUYNk73979/kHPQb24sKCsi9qiXlhZX45bUFWP7dGtRV1SM2ORpTr5iAktxSFB0tBVdVD90/uyB2iaTjriTlii+oBFvbtmOdeplng1wFhZNJTXktVs4NLk3NGZJWUHz8xCSoDZ06gI69r/xhHT576Lt2374346RgljkZ4oZG2Ko6MOv2Qk6KgRwR0iQwY4orT3iSjkanbnex3bhzR6LvmF4YfeZQHN+XRwVyfcf0RHKvLrDb7G59EiLKJ2N0UpCfvbK4mgroiZDtuucvxavLnsQDk59p1VhfeEwozrp1Bk4VToU+SWfllBE4mI11bS5Uz9q2CZ0ZXUgovrz3Vpei4sjELjj73kcx57Fnsfn3uSg4dKApKUFrCEVMSiryD+6jqQVtJaX/ICT17ovCI5nI3ddcdBUMlvrWDc5HJibRi1V1sXuBYb/TpmLi5deAZT27CJpqa/DzM4+4pGuYa2uw858F6EjC4+Ix+PTZHboPBYXWYMwH7L4NLn0SO/TEnHdVKBDZW8aK22RUZ52YfSoER5dxQNJpDFg1sOX59m0p6eOB0Y8zKFgH5C4D1GEyuk4jwgZg6ysS8lbJkGyAJhLofiaD3pcxyJonBy1ucCZ7EVBfLGLEAyxGPwZseVGmSR0t6XUxqYllkPWHqwhCF0OOmUVYqiJw8AW5n5u2bEXVjz+ibsUKMtLZ/CbHIfT00xF52WXQjx7V1AFqD0jBEXEtCpQjR440/dy1q2+HYwWFRiqs1cg3e4rylMGS4WXGUSxPzMJbQgrXSbH6tgrSznafIOc5EVE6387eUep6xGnrXGpNyM9ku0TwUGPXU2EFC4kWxbsfpaOr4etPr94cgel/f+byWo+waHw0cQ4+Hns5Pslci92VQKjGili9HTE6DfqHRSOed4+cbCRWVYdaIr6QVai0OZwAyTFoOTuMEgdJZnG0NhY6zoYZXZIxICIFB2qykFFL/k5Z2lk3CyroeLtbnQ0ZN7FJpFvreMMmcqgVyKAOC7Oo8pjK4IxJUFGBAQMGSboEsIwVpTZH0bMzZ3YZg6vSzvB63aq21eKxfW+hyNK8brW9jgpiHMfM0e/JwFvBszI9F+S7IJ+9JRpORLlVjcy6eGhYO0JVFvrZPWVwxGsSMC5GEV0rdD5yD+Sjvsb3NU11pAiMyQqhZyJkMplFfstrTVTcML5/il+HMTE2DPbRvSGTi66PIjw3GAbCkG7gymsRZdBSF+vbRzyM7P3uzq6O2PR46EvJdUaGMYmICJr3paqTEbVfhKjxUr3vhBDfNpEnV+1/ko93WoakF1iGe2/jMDYR1rE93d8gF1YP51OVVwXtngLv+y6ogi1M5/ne4+f02HrGQbczz6OD9YQ5ozHunJF0MufVq993PVQN70hi8Lbd3vFQHy3z6KjLWgV0t8p4+u5zsWxXFhbuPIzICB1mjxoEk9WOx79ehOW7jsAmiIgJN+CC8QNxzekj8OPKXW7iBuoPQD4jQwrcohwveElO+mn9XlTM24kH3rkeT103E89+vRSSh8H7G84YBVEdir8/W07d7hqJ6xqDx368h060K3QcvXv3DqpvoaBwIiEupYVH2+ZUuunP7TiZhK04BtZkh2lwImRtwxSVIEJ3qByhq4+DSU/EzYPud1knbUAKnv79QTwz70H8+NLvTU6CKg2PsOhQpA3oip3L9rSLX8vIWUPQa0QP7FqZgQMbW+GySAqBW1GcQ+51ST0TaGGrpwIG4m53xRMXel2/LL8C9058EiUNIk4CKWL9auMemIa5FlqT8mHeLMFQIrlMjtJkB63vdpXMM5DUDDibY8VuqTGYMaV/MB9VQeGEcDi7FBarb4cbOVxPRcKMh74HaYdaGhKdfCF5cBkVusf73m+oDlJMGO2TxCRF0TberUMfRP5hT2NOngXjfrHaAxI30EVHdofQPc71Ra0K9gHJkEM00G5p/8JpMUwH67iekMKbkyhsg1Np2p5m27GAi4SEhAhYJvYikb0OwTW5hHEshK7REKNCoF/ucItuC1MuHU/dp8m2X7vmA7QnpD/6wFf/w+q5G7H06zWIjA/H1Csmoq7SiBcvfwcb5m2hKQ2kOPSMm07HRQ+cjd/f+TtocYMzv721EHmZhbjn05txz8c3451bP/NYUHTNs5egNLccS75e5bI/UuT7xE/3Iq5rbKuPQcGdjIwMlJWV4eDBg4iO9pJQ6URdnWs/NyrKvymCgkJ7kXuwgLY920JnFjc0uoWTe7MzPYak4enfH8CT8ffhp1fm48jO4059kjB0G5jiNc02WMacNZzub/vSPcjc6iikkOMiXcUNzrAsxP5pYMr2OExIyFytsXV9kpTeXWCut6LUqV/RCEkBuviBc7yuX5xdivtOe8rl94P8/POrrrVbpA9CxhJBHu1A+tBumHzJuHbZloJCe5K5PYv28VvLlMvGw1Lf8UX9id3jERJpoGMxHZWOw+WVQUz10X6UZXB5zcnbnRGSzsnklADkcYI5/arTMGzaIAiCSJPc2hNyDb33s1uw8sf1tE8S3cVhllFRVIXnLn4TG//YRuco4lNjcebN03Hh/WdR85VgxQ3O/Pji7zQl6e6PbsJt71yHD+/+0uNyN75yBXIO5mPFd2td9tclPQFP/nIfFR8q/Ps5ZQQOJ8JJvN1gGCSm90J9TTVqSwO7qKm0WlQW5ru9XlVUiB+ffABRRABAiv0nTUPvsRPRdcBg8CoVti2ch9yM1okRGiFpB6POuYCmJBQfPYIt83/FiSBt8DAqiCjOOoyqItdJ8oj4RKQNGY7+k6YhoYeHCXcnNvz8nYu4ocNhGKQNGorpN98JbQe5UCsotIXc1a0f2NREA8PuYVC8peO/g4QRwLbX/j3iBoZHqxIBOjPxoxikzWSR9YfkqExqJwyJQI9zGCy6QobgNLaS8YUMloeLiMFaBRz8XkbRFhn2+rbvu2wXsPJOCdM/YTH5HQaZP0so2gwqdIjuB6TPYdB1qqMCq/elMgrWOvZLRA0kaYLlFHGDL8z796PokUdgPeLlD5u44C5ZQh+anulIfOUV6Pqf+Elwkvbw3nvvNT2fM2fOCT8GhVMV94shz4hQc0JTET3ptpC0Bocrv+s1g9TGa3gRJpd5cxkG3kYfJPFAlFmIdD33602Mpt5rDa9DQGGDSdSAYWQwMoNeod1Qbq1BqaWSLkO27UgIcE2XaISV9diQ7xAHOFNoKsJzu1/A+C4MpiTJuKh7L/QMmYze4X2gZjnsqfgKuyt9tz8ieBOOmWJR3SBwIKg4EWi45kerQ3FN98m4OHUcDtQcwy95JN6aaS6OBYt6QQ2ekcCzjrwGcp4dPzUsJ4Mu03xmWdTatYhQex/ITzeMhtUGHKwtQLbRMWDPMiq6j7SQaIyJ6Y3ZiSORHurFebGBb3P+cBE3EIjYxfF9yVScoqciBaf3GfK9SRAluqTLeypWoIkNJJ3DalUhVDIjVGWl359j2wwGhA/Glak3QMe5FxQrKJxsVvwYmCsRceciD1nNN0X9kuKe2969Dmt+3uTbYXRId1q40hpkloGYFo/Ro3rg5Svf8yhuILBmG7TrM2EZ1wv6UhV0ZYAtTIbEAap6GdqKhutR86XHO20oQGk8N97EB43oa+30s5FiIG1GEewpkRDjHAk6LkgyGIZzu63RWiAbIHMyJNZROMXVWqDJLKVCAV/uMOrMYtjS48nF3cPB+/5ssoaHGKkDX+7e4B9z5jBMv3oSfn1zoVvRja1HrN/fAWuvOI8Ch6SeiZjy6qU488kvYXFy2P5gwXqwPEfTGxopr6nHp/9sxsaDOSgrb94WvT+Rj+tyCFTtSN+kosKWO+ZYbDxagHsmPoUPt76MT++/EN8t3YENGdmQZAmDe3TB5dOGYdrwnsB543HZo+dj3e9bqGNut4FdMfrMYeA4zwYgCgoK/w1OZHpBW2FZBn3H9qLFkWV5zQUu5NoYuikPIdsKYEsMpfc2VYkRrEWALkSLvEPugrrsjDzcPvJhJHSPB8swmH3jNEy9dAIGTOwDXsXjy8d/xI6lbSsmIhO4Vz55Ec66ZTp2rtiLH174HSeCceeNREl2GY7uzkbeIVcDqK59kzBixhDMun4Kug1M9bmdTx/4xkXcQLD0inETNzQi6FiYowB9hVMbhXav/I99ESEE+X7HjU7HA3fMgNZDgbeCwsm+Vq78bm2gC3ss8Ln1jasxb8dhv6tzHlxEiXDCH1KEngociFPmC5e8FbC4gcCQNIVaMmjtPX2NKQysOEiM0LuLG5wQ0mIhHikGVxnY4Lxap4LN7FtQQPp/lsl9IetadKRYhu6PEKiowjo01SFuaBIdN1/D5DANLOPSoV95EG1h7LkjMeWS8fjhxd/bXdww5bIJuDL1NhcH1i8e+5FeY0mKkXNx6DdP/0zvTzkH3OsJWlNYTERxH259hd5bieiB3kdlGQNP64c595xJheaEK5+8AOvnbaVJjelD0jBy9lCwbOv64gq+iY2NpY9AmD9/vsvzYcOGKadX4cRxKvVJOJam5BQcLUZlYWDF9N76JKS9/r/hD1GhF+mTkH4DEcH1H98HHM/hk/u+brPAITYlGlc/cwlmXTcFmxZud+mTSMkxvldWqyDHR1I38WCZeOEY+plJv6vlfYYkx42Y6eiTpPZzT5Fz5qN7vmqz+CXY73f8+aOoYE+tDWSAVkHhxCFJEpZ/1/r0huReibjp1asw7+2/0NFMmDMKz17wRoeJGwgkzZLLLYPoRSTLHS4MKOXhZKWunWyIAH/8uaPw9ZM/tet2uw9KxdhzRuDyrv+D3drcj/v8ke/pIJGz+RIZcyLjb7tX7cPBzc1moq1lw/ytNMHu/c0vIalXIn5/+y/sWrGPtjNIeukF956F0Wc42rhXPXURFVqQflPPYd3ofak9zVQVOjenjMBBFxqG2K5pKMvNRmdFpdXh6lffgy4sDBq9AQc3rME/773ucx2G5dB92Egc3b7Z6zKC1YrS7GP057LsYzi4bhVm3no3Lf6vLnJPPAiU2NRumHj5teg6YBA4XoX9a1ZgycfvBD1JotJoYbcGrxisLMhHbbnnKKXqkiJEJSX7FTfYLRYcXLcaJwSGwbTrb0XqwCE0cUJBoTOy420Jx/5s/frWCtBEhZTJ1GgYaHs4jFfUYUDeCfrzJYXpdbmOdAuCJgKwOhIa2w0ibqA1Qh14zk40u96RYTdKVHTQFngdkDLNEYepjwVK98jY+6mHew1xsvYy91F9xJH60R5YK4F/rpSoyGL4vSy0UQyNYSax487oohmkn680igPFuGED8u+8C7LJFNj3cCQLOVddjeT330PI+PE4UQMJf//9Nx577LGmBIe0tDTcc889J2T/Cqc+UeoIJGrjUGRxtGF5VoCWc1W3kb40z8hgZcElWaARFSu6/NxFVwM111xQoiLpCzJgkVSQndYlQgod63uCmLj9A1H4cOiL0PMGGHgdlhdvxrtHfmhahogCrBLZt9RULM8xHAaFDcKXe0shkopWJ2L1dTg97RAVZpRaG1x4LMdxoHYFzmPuwYCI01BnD2BiVQKy66OdPpMMDStiWGQ8ru1+BoZF9QDPcpiftwWfZv2EWH3L+4RDyCDILASRCAcklxpfFaNHqVWGnZ7zZiqsBioWMLQQFxAK68NwrNqEYguZ2JCdRCoMbCKPwzU1uCQl2a+4oV4wYUN5c4x8Iw3egdCygpu4wWU5RoZI+2DNH6hlskOdXQejXUt/3+7seQn6hfdDrMZ7AYKCwsmCjCe8ccNHWPr16uCL9xsgRZC3DX8Yky4eB3tqOIx9oyBpefAVZoTsKgFntEOKDQf0jjQc+pfjp/Df47GG66EP1WL3ygyfy3HlddD/vQtC1xjIMaFQCSLYahOk9GQwvKPQXGWSYI3yXXQ+ZVA6SnaXouiY4x4SEReO6tKawI6VY2GZ0AusyEDyrIEDXy/BHhsDfno0pL3HwBVVInTRAVgGJMLWNwGSXg3YRXCVJsiRoV41B3TzIkBuV+rD5dDuyAnoGFmjFfrVh2Ce2AtyK4oc66f1g+ZgMTR781yO7Y0bPoax2gSbh8kNKdQ9EcltmRAt/Tc00oDTLhxL2/wRw7thU3U13l3sruwnd2nRS0rqvuNFCNE4TZaSA/VW19N8u3M/Ji2PsrwiXNn9dpx3+yw8/eA5iLgjnP79tByUj0mKxvl3nYFTGodSse3bUFBQaCq6JY5pLQvZOxMR8eH4aNsrNLreEKbHwo+X4L3bP3dbjhEkaPIc90JezWPUuSOxccE2r9slqQjHdjvmh7J2Hcfy79bisR/vxoTzR6Mgq7jVx9tvbG9c8/zFGHxaf1qYNP+9f/DxvV8HvR1DuN5vgpUnju7K9vp9EnfcKx6/wK+4obqshk4Mt8Q0pIvP9WwhDLRVANvYJZXI9yLTlAZvcCyDx2+fhWEDuyIhLtzn9hUUTgZk/O+Vq97Dyp82gjlnqHsRvRNsaS29FrWEFPYQ1+YJ102h4zy+pk3l2ChYJoWAzymjBTs0ecDDNlvSuF+VmseBTf6FFE3rsY6xbO5QHkQiivUkfq03g812vy6OP28UsnYdQ0mOQ/wQGR+B4i7+/47t3WIDFjgQcQOv4lyK8x0H3tyms/eI8/m9CKkxkDLywdY3DER5gSQ0yGE6j+IGxz4ZCIkRsKXFQJ3dejfYly9/F3UVRlhNvo/HHxFxYbQoiXyHMclR2LF0r8cCJZKWIHmZZ9q39iC0Bv/9oEAgaUGXp/4P5985G498dydCG5MVW5xHktRABA+nNP+yPsn69evx0EMPNT0fP348xowZc1KPSeG/RUqfJEQlRtK0sM4KMVB5Z8MLtD+iD9VRIdenD3zrcx2VRoWRMwdjo4/Eu/pqE22/E0iCw7Jv1+DJX++nBZhERNFaBk3qh6ufvggDJvalxhY/v7YAnz9KikubkRvGQn1h6BIFcysEDiQlgozJeoIYw1zz3CV+xQ3lBRXY8teJSeYgbY37Pv8fBk/uj7gUP8IPBYWTACkKf+HSt7F+XuudZYkA+pbB92PiBWP89knajOwYZwkUYgoqicEfEL/7OE6bMRgHyutQ0mAkFB2iQc36gzTJrb0g4gZ/fZJTjecueAP3fnYrLG3sk5AEwVGzh4JT8dToY+s/O/Hds+5G6KKPPu3O5ftoelF7kH+4kPZJ5tx1Bp78+V46luipT5LYLZ4KHk5p/mV9khPJKSWvH37W+ejM9BozHhEJiVTcQJ+PHofQGO8qe5bnMWTGGVDrgnPclCUJiz9+B1/ffzty9+9t9fGW5RzH4o/exrY/56Ho8CEs+eTdVjlA9Rg+qlX79yZuaGTn3wu8Ho8kifT4c/btapW4ojV0HzoCQ2acqYgbFDotxxcRcUPb72ZCPXD8744VNxCOkiTCIA43JAXoe2XwxeasCije6hA3hKYAPS8CrO4Gnu0CFTcwQOJYIHUmg4E3Mzh7HouzfmOgOQnpsEQQENVGc/yMz2Wo2hhWQ1IahtzGgtcDGV/KKG3l2IYQ/ByxVyQbcOQ3GStuk2Aqcxc3KASf3BCMuKERsjxZj6zfkZOaN954I2bPno3U1FScc845NO6Z0K9fPyxbtkyJb1YIGNKZPqvLNKcCfe/RPWyDO7/bNhr+5RgRaSEVCFFZoWbt9HnjjZGsq6ViheYbpYrxnLrQcp8jI8ciVhtDxQ2EibHDEEVUhU6Q4nmryMMuMgjnJVycPAqMoHETNxARwdTUw1Tc0BJJFvB73lu4aPmHWFfs39GjniRLNPTcYzRG9AwtR3pYBfSaTVhc8hbWlf+FXZXH8NqBBZD9NhAYKmQoMYeg3KKn//bQj3YTNxCIoKLIHI5CUxjq7BpUW7UoNoVid3kSjtbGoMhcCY6VoOIk8JxMHyqe/Oz4Pn7IXu/1KCRZRLnlKI7W7YKd3Fic4BkBobwFESoTwtW+r43ke3Wcm2YRillUefwswyJHYFLcZEXcoNBp+euTpR7FDeQ3XEgMh2VIV/oQ4l2vSy0xGs34tiYPxdf0h3FUIkyDYlE7pSsK7x4O4/B4yC0KOqh2LNDxDFJETi7PgoQFH5K0GP8wogTV8VL0sQq4YspA+rNq80EwJVWO6GQbwBu9d6C0oow9r/9DxQ3EpZMMxBqrjIEdLykASouBrFHRBAVye2i6ZZCH5HitUQMnMAykIT0w5vppmHHlRNx9xVQse+82/PP8tUhbfAic3Vk+5xshKbh4X76kFiHzd0K7MQvqQ0VQZxQgZWcu+qb6EWSRpAMVD9ugZFiHuxdwkgnoCA+/M6wfZ1i6jMWxTF1VPe786EZYJ6Tj/U37sPWwe2oH/Q3yc3KsTi5GLbRo7pCJJw8vczWOcSwi2vjljT9x97jHUVlcpTgOKSgoBARxTJ5zd+cuMpx17RTEJsfQYiLC6VedhvAY764VGr0G5905m4oLgoE4yz130Zu0CPnIjsCcvj1xYFMm3rj2I/zx/iLsXL6Xuo62Zp5k9FnDW7V/f2IVUozlDcEuIGv3cWxfsttt4l7mWQhxfgb1SKqVuvnmR35SG30XZs8a0RtnTBuoiBsUOi3z3vkbq+ZuACPLUB3ykYogy1Af9G4iR9qPi976C5pt3gW/nEUGo1FDjgqBfWg3WCf2g8xzVGzsE0kC11AU+scHixEMvYZ3xzm3zQRTYwS3PRNMWXVzX0gQweSXgtuWCcbJaZOg1qqw8c9tVNzQbVBX2iepraij/YyWEMEASa0j/9LnHpbxBbkekfF2klAz/ZpJuPXNa/B72Zf4Jut9KjwWkv1MlhBhgr9lyHE1CKs9ihuciDhzCFIH+C7K9LkfWcaHd39Ji2XbQl1lPe7+5GYqYPj6yZ+xb13rkiWcXVTbChFt/PTqH7hnwpP090FxQe18kN8/QRBQUlKChQsX4pJLLsGkSZNQU+MQiSYnJ+O777472Yep8B+DJKgRcVRn5oybTkdsUjQVNxBmXjcFIREGn6kN5999RkBpZs4QJ+mnzn0Vtw57EMf35bb6ePeuOYDXr/sIf32yDJv/2uFwzpa9G8R4Y/T0QX6X8fQRvYkbAumT2G32hj7JHkhE6HkCmH71ZEy/apIiblDotBCRUlvEDY3UlNfhr0+XdXhwDjF6CIb+4/pg1vVTg96PVqfG5tf/QPWXK9CvogaXDUyG+af17SpucO6TkJQXknxA+iS3vXMd5ld8jS8OvgN9WHB1uu1Bl54J6NIjodXrk+vru//7DIk94tt0HMQ8hPRJLPUWKrYORmzfUZjrzDQt797TnqLGIUqfROGUTXAgkMSCyoI8bF3wGzojEy+7xuU5SUWY8/DT+P2lp2Csch/MkgQBuxZ7bwj6RJZRkR+Yi54vTDXV2PDzd8hYtYwKJ4KGYTBw2iwc2rSu3eWCJMWhtqwE4XGuF/idixZi+1/zUFfe/i5VUUkp9HesJSSxYfrNd7b7/hQU2pOs+f9uqR6nAgbcwCI09f/ZOwsoN8q+i9+R+GbdXbuVrbt7qUCLlGJFPuRFiru7u7zAC8W9UKDUqXup6251t+vum40n853nyUqy0ZUq8ztnoJvMTCaTZOaR/73Xip2vCj6LI+wTARoKbMtphbhuVwOjXrVVu+irBQhmBmPetKVjtKl/PK2YGoDY0Qyqs3w/X+7SE/wTgfoOhijxKqB4uxXHF6BTnI50DG0ZcOBjAcOfFwUOnRlgL3n88XaLG1q212pR8vgTSFr812nprJSUlODLL790ejw5OZkO/Kempnb5a4pc2EyJHINiXRn+Ll3tdaybJCS0NbAgCQRKzoAkdXVLgoJtXQsEwQKDlSdZAlSswDNWmAWuZTvvMJgRM8fhERknxbO97sDzhz9FLbkxUAREyusRKNHR97CtyhZvOq2bBDsLE1GptRXBJAZUQSFxXzzKMFYI7CEsyQvA7T09H1mJMQAK3kwL/v2lju4S9eYaLCv5CYyQAAEcdGbvE+dGC0cFDeToWLCYEjUUmyrdOSsx0FpkqDMqUKlTNRl02P5LBA0c63yTJOefiB5yNGWoNDQgVKZ2uO7tr/4N+2sWotFsG3QbFcShUB+EU7pQBPB6qCWt79GV0MXpCO3cV/y4RAiod1onXhmJeamOn6+IyLnGov+ucHrMqpJBO647rEG2IkeCMSMGbJUGyo3HwLqICq6dkghd9xDnF+BY1ExPRsjyfAfHDnI5JUX/Akf+4fniTH6SZA2uuJoWlrQH4uR2+9s3IL5HDN77z2dg956EIOEACY8AiwUNE1JgTHY8bq5WB8WKoxAabe+TxLy3jXr3hiVY5ZSw0FaQLtiN8JHrSW2QP15661r6d2WtBlaGx6srnsKtL/3is5Zd6EDbjIhBpDkVAFnINR7A5T1m40iee5ML+n6aMKZHQppV7CBeINdd4mAdnRqJYjuHbklOJfT94jymd0hPNiVmhPljxT9H8eu6/bauUQcFziYaO9ckkO7ALhi9CbLsKofHirPL8MXjP+LRb+7u0DGJiIj8+yCFNwXHiugk97kGuT5e9+xsh8cUfgq8vPQJPDXjNVo86aq4cuE7HZsnIS7m2Qc6n/pdUViF/z30LSKTOpaSRhzYp9wwFut+3IyuhjjDamobHQqyyL1xwRuL8OdHK9w753ZwvkbaICA6wR+n6pz7JN1iw/DIleM7tF8RkTMB+W0s/qRVxCw9VkKL4E3pUY7tP7MFsr154Eu8xzzLDxeDbdDDkBENS5htbICxCOAMArg2QyZU6JARB8mRQpgTwwG565QCLrcCTJNwtr3F6kQUds9/b0V8z1j8954vwe1v6pPwPGAwgXEz12tsEv4STh3Mpwt9L3YpCWToySxnYAsktZ0vkuoitxu/as/1Wd9owAt/2FzmK4uraUHsy8uexB2vLiQ6bc9w3sfBGK2hSaTsuWFeWtuIa+6Zhi9v/xwdhfQdiSAtLC4EFQWO7XlfCY4KxLLP12D5F2vRGUwG7wWu7aXgaBG+fupn3P/Z7V2+7wsRMufgDSI86Ar+/vtvat7kCmLm9OGHH1JjJxGRM82cR2eh6EQJVn69/pw7+RzP4qpHZzk8RlJqXlr8GJ6Z+QZtW7dFp9Hj1zeJO2PH7hHZTUlznYHcZ8i9PTzBtaCOKa6iqazukMl4TJ7YCxve+MPj63Skm5C59RiMeiOkdm0bkoD686t/YvEnK1FT5ltKbXuITo1A8Ulnc61ug1Jw+9vXd/nriYh0FeS3QZIszyeckg68IFNK8dAXdyK+Zww+f/j7donCCKT1nrP1GF1OJ+T6TPpbj359d0vSjEIlxytLn8BD459v9/wQ9ZwKUdP5IGj0YDU6n7ctPlGK296Yi/mPOabztPdzqiuvR3BkIKpLvfdl3fVJiMEHSSA61/okRCj43fO/UjGKiMh5K3AgjL72JjAsix1//tr+jTuQ2cPLZAiOjkX5Kc8OQMGx8VAFOjvbhcYn4ub3P8eRLRtwav9uVOTnoa7Me6f3TFNX3rG4NJJAEZ/RBwm9+yHv4L4uP662s8WbfvoGu06DwEWmUmHwzNkYMms2Tu7ajoNrVqK6uAgyhQLq0HCasrFz0W9IHz4aMd29VG+JiJwFrCaBFqFfyHBN/eWESSw4qYAdL1sdxAt0HTkQNx6QKEmiRdc6/reHmmNAzlIrcpYJqDlqe0wRBgSlAlVZZ/ZYqjIFBHe3HZPQAR0boT5PwLBnWay53fmc+0LiFAYn/zh3BThFWwUYagXIAkWRQ0fQ7tgJw4mTnfoMDCdOQLtzF1RDO5YK5Ym8PNeC0JycHAwcOBBXXnkl5s+fj4AA73HsIiLN3JR0JWScFavKPLvs2bvyN2Mw80j0cxQ3tKzPgKZC6K2kwJ8BBwFkeEDOysDVZKDKuAshge5jiOSmDCg4ZxeiFL84fDboWawv34l9tUehNx+FUXAedFFKTBgZn401Od3RaJQhTOndXTxUqcHesngcqopG7xDXzoflRjWqTH6QcWYncYM9ApMHBRcLnUUKrUlCj8flegKgtbQOpF8RNxb9g9LRyz8FmfXu+23kjIepbJMXZisLnYmIR9xPmJPPg2Wcnc43l3+MgzWOkwRS1oJkZSX8eR2qzP5Or+vtDkPek5Lzw0WRszAufCq2Vh7A3yXbUKyrQIBEil4BPEKkLHZU/YxeAWMQo+zuZY8iImeexnotLUK3R2AZaCf2gNWFI441xA/a8T2gWn6AChSasch5NPbzUFzIMGhM94e6xgRIWwVRrNXW3hVYoclpVHAsimlKbiDF9Ey9Fmxx+4tSpArb6027ZSLkKjnevPEj2+A/cSgFELDiGCTxwRjx+MWQqeVY+/pimDNLISilMPaMhiCX0iIcPreyJVnAV9FAezmYWYjFGw5h4boDONokLogK9UdK30Rk5pT6VJvPV3RN9F3Owp3oL2VwkLfCYl9YRvQoJIHC/pbIsjDFh0B2rNSp4OaZXx/EPcOehLnJsY7TGCDLKqHFZi6Pv6gWfKFtoH/KjePw85rOj1sxOhP8tpyCZmwqwLczGNdihd+GbJef58Zft9GBe09ugiIiIiIt1yKGwX2f/ofOk5ypSXPibhcRH4ZThz27kvYYmga5wjFpidB9SBq+O/kRVn+3CXvXHkTOgVzqIn6uUXrKc+q0O+Y8MgsDJ/dF+uAUHNvle5qEQNoqDOPktN6WtrW7H9zxOZbNX+N5G4sASWEdTLHuxzsYsxW8ofVGHKBW4KZrR2DW9H5YvfcE/tx6CIWVdfCXSRGrtSLoRA1+evoXTJw7Gt0Gpvj6NkVEzhi15XUoyXEshJMdyIfkRCnMCU2paI16SHIrwbSjiEeaV00Xq4SFfnJfmtrgDktcKCSHCyDbehTGQakQApSOyQ255ZAc6riBHUliIMy6ayrkShneve1/sDb1SZohbtXjrh5BixCXf7EGRg/JZ5JTFTD1iKZ9N6OKDoQ4PC/wDHQ9wsBVN0J2pH3z2/vWHMLyL9fir/+uQM4B23uOSo5A6tQ+OOJC8GYPW+1cfNoWrlYLtrYRllDvEdTH9p9C2sBkZO871WF36YJjxXj2t4do2kFHUhRIn+TPD0l8+rnJ2p824/Z3b6RFXyKeGTLE+zxGR9Kg2jO/4efnh6SkJJruICJytpLlHvryLjr2/fcZEjmQMZPgqCDkH/FsHNJ7TE8qqmtLxqge+C77vzR9dv+Gw1SU0FHR2umk3E0/iS2uhDUuDPB3PXZ0/dXDMWRSHyRmxCH38GlwfGzTKXnnlk87XSDrisDwANz04lXUHX79L1ux8qt1KMsth1+wH0JjgmlS4PcvLqRJgan9krr89UVEOktlYTUqi7wkup3nNIudrnxwJhQqBT6aN9+pje0XqMTYq0ZS0dmK+Wth8iGF5nSwY9le2if584NlLddGYqSUlBHfLsMMS0woLOmxgKK1L8hUN4A/dAqMxpbY7A2SdpPSLxE5B/OoILwjFJ4oxjO/PYSHxj3XboFGcwIOETicq5D7yq1vzIW0nSmCIhc2553AgRDdrUeHtiPF6gYf3YWJqGHQzMvRbehILHnvda/rh8a6j7aUyOXoM2kqug0fhc/udEx5OF9RqP0xYNpMDL38Kvr35Nvm4ZfnH4emqusmJViOg39Ya1FDXXkZdi/2rDZuL2QSaNJt89Bj5FhIZLYBm7QhI+hydOtG/P3pB6jIb72hkcSNpH4DccmDT7SsLyJyLsCQuTC24wXsXQmvsBXyWXwXq/pEeH8Gmd9aUXNcAC9j0Ps/DBqLBVQctL33sD6AWQcUbgJM3usxTzt73nFskOoqbMuZpqgLjOMsBuDQ/Car23bCSoHokQJOdsz04owgmIHGEkAWeLaP5Pyk5uefu2w/p0PgQAb5Dx48SJMayGD/7t278e6772LpUptj/W+//Yb8/Hxs3LgRMplzEYaIiDvS/FKwytk8xoG2pfENRikCJVLwLhID7MeIieO/ReAQp4zBxIjpGBw8ADf/vBiZ2hRMGHoAHHEob4PeIAFTO8jtfpW8HDOix2BseF+8mnWn2/VIakFacDn2l8bB4kNqhLVpnT9P9UODSY7B4bmQkCpjcv8QGBTqg3GkMYqW+Ks49+KGZiIUDcjVhKBU648Yv1rIOAskjBkBEh0Vf5BjKtf7wWRlESjxw+y4cbgqfiLd9r5u1+Cxgx+ixujsNErGiVh63m2fCc9aoZZZYbKwMFjcD5IoeA4hdukNNYZ8J3GDPaHSRmitcuisrQNcAjlHHlIcSALF1Qm3o3/QcEjJjZMI+8P60+Vg7VosL/4vyvQmlDWNj+2qXoxu6mG4LPZR8E3ri4icC/ASjhZc2k/imxJCXIobmiGpDuaYIEgKW52HjfFqmwOpB/RJAQjamg1zv2SHx2m6gRVQsQz4TVmo6x4DazgRHTEtyQ1sRT0ke06C6cAAct8xvWhsb/bBXCpwuO3N61F4vBiZ246B41j0GdsLDdUabHn8Nxr1S99P7zhaMGRfKEQekx4qgPSobwVCfH4VFUh4grUrTiSYFQxe/trR2buksp4uPmEVqONtV7Dpt+30/2qeRcOsfjTVg4obyOJqAynv0knvq6d+tiUn2KHYnQdGZ4ShVzQVklCMZshOlEO+N5/unzhKDbp4AD771lYETDN8yPfUldOrF1Wa7HgFZCcrISmuQ9207jBHunfOs5msMLZzmVsNxf4iSMo0bh11KwoqL0iBA/1ddrK2R5Sii4i4pufwbh0SOKgCFGis823gLrV/Ei6/bwZGXT4ED094wev6SX3cOwirAlS49J5pdF9zk+bhQoAUWM15eCaueOBi+vfDX83DIxOeR22F5/utOToIpvRoWENt9xG2phH8iRJIXBQzyVUyeu6aIRPwrsQNRCwhyHgwBnOLmE65twh1Mf5u3c0Ve4sgOVYNPliNR+ffgdGj0yFtKgabOiidLss+X02dZCvtiqf/+GAZxlw5HI9/fw8kdoJTEZGzDe+iHUkgqXHSI86mDKSJYg0LgDU8gDY42KoGsKU17tsuPO9R3GBbh4PgJ4daEGDecRxahRQCaeOZLeBKa1uSGzpKxsju+PLJn5B7OJ+Kz+5450bkZRXgyD8nwEk49B3bE3UVDdjwyzZoG7xf61mNHpKsImgHeUhGI8L1oYngdUSg4WUwzA7S5n7vtv85PEYEKJZftgOTM9xuxzTo6Lly2h/LwJwUTtMxBJWMXu+4ijpYQlSeUxxMFmyev86rmMwbxPH7m2cXOPVJfEHuJ6f9xR9f/h3nKiRxo6q4BrFpZBzvwuJ87pMQgYNEIkFERAT0ej0qK21tBY1Ggw8++ACffPIJ3nzzTdx///1n6QhF/u30HJ7eIYGDKlCJxlrfare6D0nFpfdMx8jLhuCeYU94XZ+Ye7iDJDmQtvuISwfjprR7cD5BxjL5Xcdg6R4PISqYmoQQQkP8cN1Vw3DZJQPo3499dw8enfQiHaPsKoiowL7YNOuf4y7FDVTATfoTRrPbVClPIk5y7MNnDmrpY0yaO4YupBiXJO6d3HuqZf3f31uKideNxiNfzwPHex5LFhE5F/okZwO/IBVMelNLckJXjkeRJAIiOFMFKHHn+zch52A+ju08Sd8/6ZOQtMm1P2yibcyzCREBtO2T2KdE+4IlNhSWvo5zUQQhWA3TsB6QbM2kcxTeWP/zVnQWkuDw/Qu/2vok7ezekM+q+7BUfP1019T3nA5In6uuoh5hsS4S3s9zzuc+ydnm3LmqtoPEfgPgFxwCTXX71LS+ihsIGROmoPf4KfTf6hDXEWBtkxq8cWTzBpgNZ/fC3RUEREbhqmdfazkv9ZXlOLj2b8hValjNZpgMenqDCIyIRG1ZCSymjg3WSWQyWhzRTNamdRC6uHp76GVz0GfCRU6Pl2afwIqP34XV4nw3OLV/D9bM/xjT7n6oS49FRKQzMBwDVTSg8WxYcNrhVcCEj4CiLUDW94DQubH6FiQq4NhvAi1EtyGgYD0gCwL8yFgrC+SvBQwdS+ES8UL1kY6fIqsR2Pp0U4jSGTzTidOAgo2Axcdbv9TRbFvERywaDRrWeHYM9JWG1avp/jg/745b7SEqKoouzYwfP54uzz//PF54wVacsWPHDip6eOIJ7wOjIiLN9AvsB3/eH/Vm94UrBgsHq8DAaOXQYJChwSRDYIB3R1AWAh2TGBc+DmPCRti+y2o1dhcEYt0/fdG/ZzZCg2xOd6Q+t6Q8GHsyU3HXUO/R59sqNsPs5QYd7V9HBQ75dUHICPNc3FqssV1ABbBYXdgT9bwCwRLbxbfWrIBZaO1yukqtaIuUs7W/iZAhvyEI3f3LkOBX7TBPrfYzYFCQCjcmPwR/iU2dVqKrxp+Fu8EJIVCyHCzQQoAV0fJQ5GkrYKVnlHEp6DBZrS1CjbaoeEfh05E67wVk/rwWOqOdwIEcCRFYuBl1mBp1JYaGjHV6vKAxE0uLPqDvoy3HG/7BqtLPMT3aFqsqInIuIFPIEB4f4uDGTMQL3jDHOgocBE+FKc0wDPi8Clq8Z06PpQVEJLVBYAQEMMCn79+ENduO4btftsJCJtZIoXmjHvyxYkjyOqY6JoXnP7/+p4NT54ZfttI44IikcLAsg9Xfb0R9ZasTqSk1AqZeIc3iDwABAABJREFUMc4741gY+yWA0Rohyfc+tsVXasAV18IS7VqRy5gFcHYCB3IuTCoPIjVyrqyCw5iLA4IA+a4ccFXeXVPbA3WJrtDA7MLZ2x62zrkRf3hLUzSeC+SZJTTJwRLiR98bV6Olr9WMQWvEs5e8DmZ2/5Y+CRG8CG3mPqnwgWxGTp2LU8NqDFAcsBXGsVoT/FcfR82cvrSY1BVX9k3HP48sgK5e59PAs19Q17aDRURELnxGXzEUH9/7FZ38aw++ihsIM++6CJNvsLVVw+JCcHy353SCxF7ujaCaWfHlug45X59rJGbE4+31zyEgxNYnKs4upe6iQZGBdKKZiPPIPElMt2jkZxXA0nRvMqVFwtjPcT7JGqSCcUgqBFI4dCjfqQjLHuI467CtUgZjr1hYyOQvafdYrOALqiDJLIAsvxbqDTloGJPkmGxF75+lUO0soPeo/zw7GxMn9HJ6j3vXHsIHd8536UJNBIykHTTvg5vbfe5ERE4XpM0eEhWEqpLW/oU7BLkExqHdINgJiCzJkWAaDZDsPA7WhTjA12S1wBA/fLDsSaz+fhMWvPEnLF7SCnxFHeyH7174zcGpc91PWxASHYSIhDB67fn7mw3tLmiUHimCho4puW+1WqUMFWrLi9qXfuEKrloD6f482idyQm+CfNsJpyMh4gbDyO42MUrzYxKe9gVZnRlWpcRjSkVnxQ2EA+szO7ytXqPHC1e8hTPNJXdehFXfrPe5qI047Yp4Z+fOnQ5zDqeTe+65h85lSKW2sUZi1kREDe+88w41dDKZTHjggQegUChw++23n5FjEhGxZ9xVI/Dpg9/Q65wnrFIOup5hMMaoadKYLqcGcjJe4oMByWX3TseEa0fTf4fFhXpNJ0jo6X2eZNlnqzuc6HM2Ifcz/vApCMcKIKgVSOubiLc/uRt+/rbrNzFiIf0F0h4iZjSkT0LGAGPTozvlGB4QpvbYJxGUMli6xcIaGWTrd5gtND2XO17ks7iTiDbHzB7u9PiO5Xvx8X1fudxm7Y+bERIdjNvemNuu9yMicjoJighAQKg/6nw1GjpNBEcH4f2NL2Lp/DVY+M6SDrn9u8I/RI2vnvzJ4RpKfouhscEIjwulRtMkMcFXEdu5DplrockN7pBJYEmOAp/Z8ZS+9kDGaTpKY50WL81+F2eamfOmYsUXa2Hy4X5A+rREyC8iYk87s9TPDViWw+TbTl8hh0ypQsb4yS1/ZzQJHdxBLs69xk5y+zwZ/F339Wd0OafxpYiAqMFKS7D684/ov/MO7cc3D96FnYt+Q2X+KWjramHS6+kkeVxG3w6LGwjR6T0d/m6s7boIp4CISEy69S6MnOO6obtn2SKX4oZmjm7b1G6BjYjI6eTQF9azLm4gmBuB1bcCmV91nbhBGQ6YdDaX/bYYaoCqLKDq8PktbmA4W9KB/MIToVIselvKRkdh2iHHZCVA9AggZRaDSZ+wiJ/o/d7GyQG/mH+r1rVzmEtLAQ/3y3ZhscBc5rsDWGchkwJjx7YWFJNJARGR9sCzPK5PuN5mzuyCeqMMJ2tDkVcfjNLGADSa5WAZBlLOtwEkFe+H4SEjW/6+sq+t2KS8OhB/bxmIxeuGYNXWfli0Zhg27OwDvV6NSzPcJ91ZBCteObwI/z2+0utrEyECeV9ljf4o1bh3piYpCnFBNZjWLRMXpx/C+KTjkDAWVJr8UGlSO4gbCGYfEiGMdmkKobJGJKurXHZTakz5WFnyKf339opjuGbre/gxdxOON5ShUGtAiZZDnUGFdP9uMNFqVffXeQnr/jrWL8gx4lhr9t4n4RkrGFghY01QcgaoeBNkrIU+Zl8YFCaLxNVxt2NyxGUu97OjapFLcUMzJN2h0Vzn9XhERM4U/3vwWwdxA8UXZ8s2P3JZQT1gV5zuCkmdhRaVc4VVkGzOhKWhHiYlA7OSQ5WCwzVPfY/5f/4DY7N7F0mW8FfAODAZ5pjgdr+3iMQw6n7qqhizurQWR7YfR+bWYw7iBvJrN3b3XPBAkx18RLnpGE1yaHvjYUwCpPXkGtOKRc54HePhS2shyS4HU68DqzNCojNB0WhAVJ0eqiX7IT3hXpBnlfEwxQXRhfy7PUiPe27vEacjvsB7QZrTdoJNCEIEFM3iBotKCm3/WGjGpKA6PQxy+4JesoqLSV1y1oiwg621X1eAoqQBAYsOg2tsLQzi6g0IWJwFrsax+E3Kc5jYNxVXXDQIH25+CePmOE/OunJPuhBdiURERE6/uPCej289rZPyE64d1fL3tJsneDkeqcP6bSH30bdu/hjfPf8rzmXcCgDbQNzTP7nva/rvbX/twq0ZD1IX0VOH8lFTVkddCnkJj14jurWIG6ykoLpPvNt9mrpHwxLgWFzaZ6zjPEl1aet9kqQi6Sf0giUhrFXAwLEwJ4ZBPyEDVqUUiswyhH6zB6qtuZAfLoVyVwGCf9gH//U5iE+PxqPf3t2SQNGWhe8ucSluaGbll+vQWNe1gkgRkc7w0d1f+iZuIG31NuKGludUMhiHpdsciNvAGM00Ec4TpH1dn12GW3o9gJ9e+b3l999ZIpPCoalpdFmYRFz3s5r6JM3iBpqyHaqGOTLQlqDmAYG4zLp4v07rSVhYY7qmzUrS4hRrDoPPraDnjKvTQnGsBMGbjyJM6Xy85m7RDuIGexiWB2vXTreHq2iAfN+ZKTZyhcVPBl2/WGhHpKAqORR8mwLR9kASOtrjgj12zghccsdkvL/lZSqK9IZ/qBqBYa7PsYgjRNwQGxvrcenK12oWNxDi4+Px+uuvY9myZTTZoZmHH34YZWdwfkVEpBmlWoE7373R4wkxxPqj/LaBqJ+YDH33MOh6haP2knRU3NgXZrXnexQZKxk9e5jPfRJyPOT65w6T0YRXr3sfC97869z+EL10SRiTGWx1A7LXH8JnD3xDH9v46zbc1vtB/PnhcuRmFrT0SSQyCboNSumwuIHQd1yG2z6JoJLDNLKnrY3Q3J7gOVjjw2Ea0ROCXfKDO5H8kz/dT0V5rvjt7cUet1/62SroGj0LbEREziTv3va/sy5uIFQX1+Cm7vfh1zf/6jJxQ1RKBOqrGlwKxCoLq5v6JEfPX3EDMU/iOciUMioiJwjB/oDcc4qfNfr8GdcnJilk/K6jcLzvhV+2ccLRmHnnFLy36UWMmDXYp7FIkhokInLeJzgQkgcMRvrw0Ti2fXOX7pflecx65Gko/FoHGGLSe6D3hCk4tG6Vy22GzJxNi/q19XVQ+jt3/P/5/RfsW7kE5zrjrr8FW375Hmaj95QJkmJQkn0cS959jSY2tIXs4+Dq5Z06nn4XzXD4Wx0Shs5y8f2PISQ2HiExcVSY4o7cg/s87oeIH/IPH0DPMZ47UCIip5uaEwJ2vWlF3clz51x3adAKC6hiAK13s+vzGsFiW/TnmG6KFP4TcUJXYO2E4MWVuMUeIg4hooay3YBJAxRvI4uAoG4Cet/G0HQPT5D32FgqQBUpihzai7Ud6Vg+7a/xzE6K33HHHdi40RahWlhYiNzcXCQmek/lEhFpZlDwIIQZJ+K44R8EqRtpLanBxKPGqECFTgXORX2phVg9eIFjZLg79QHIuVaHguGJ8ZjVqzv+yrQ5WDc0KunSzF2jB6POogVnYBAkc+74f3p8Df4o2AW/NokErqjWke1tx7k2Nx3jEk4gRu1YSG+0smgwyxwEG34yWz/CYDGixkSKBBzfa6NZCrXEfV+DAYM58Vfh/aPrYLSakejn+cZ4rH4HChpz8dTBH2FwcaPRWYxYUrSjOanZLayHZInL4xwnQ9SScM87I30hKwsFZ3L47MlrSBmBikJuTHgMEYoIhMuiPRZP5TR67pNYBBPyGw+hR4D7IjIRkTPB0Z0n8N5/PqMuYK6KSczxngd3uUpHd1FOa4bqYAUaB0S43UZRzcDUOxGSvdnQTuwJa7BjYZKFDLDz5CIsgLFvSxLXzwFJ4EpqfHKIIxC3s8jEcJTlti/5wRqgoG6iHtcJUtFCR1bvg3ON2QrlpuOwqOUwkyQHMmEYFgxG4exmIxiMgJ9nlxuB56DY7pyKQFpj7spmSJGXbkgiTMl2RZRmK6TZ5ZDvyvXpnPKldZAcLYHJlfjDbIFi60kwTYWU5BopU0o7FGOt7RcD3aB4R5GNINgigC1NccCkH2YV0Ky/Y+v0UO7OhzS3iq5nDiWfDw+uVg9O4/oYJOUaBP20D2y3MPR9aBr+OZqPBp0R6/aepEvvxEjMe/gSbPx1u1f3JDI5HEyc7i40bPEqnd+HiIiISyZcMwqrv92A3asOdOkZkqtkeGnJE1RE0cyQ6QMw5srh1LnfFXOfuxI1pTYHEv9g5wLOzx/53snp81yD5Vjc+vp11I3Q7INDObm+z35oJl655j2XTnREIPn31+tb/ibCA28dFHNyOLh9uS1/ty30IY6IzRh7x0NwM9EuKKQw9oqDfFc2WJ0Jqn22FCLCG6ueQUhMMBJ6uC/AJMKGPV6+V3qtAYc2H8Wwiwd6XE9E5HRzeOtRvH/7Z8jL8s0FihTKuxI3tKCQwhIXCj7XeWKCP1YEY4jarZibP2o7Bl+LiEi73BIZCEh4MA06sJX1TjWNEhmP0JhglJ7ybaLElBAGU69Y6qZsexEBXFkdpHtPgdU6t2sZg5k4TpBYTQ8HKthS0LyksbUHrkpDF3uITKGa9krsXppcG5Pcj8fQ88VwkO/IgSkhhAo6qIg7p8KW3tCJgk7iICqVSXxOQLCHCBsMfWIdviuGvjGQZZZAsbv9oguLl/sSKeodMKkP9q45AG2Dnha6kqXniHRc99Tl2Pz7Do/bN1Rp0FCjcUoOuiC4APskU6ZMwbPPPotnnnmG/q3RaPDNN9/gscceO9uHJvIvZPqtk7Dmh804tCnL6TmLUoKaS7u7TL+0BCvpc6HfH3BZz68MUOKlJY9DIm0tkB9x6WAMnzkI2xfvdlqfjCPd+MJVqCisokljrq5nRKC8/uetOJeRSHnc+OJV+PrpX3xKvlv70xbMunsq3rjhI5d9GFLMuvaHTR0+HnJeSbKfuz6JuUc8YPcZOUCTHWLAH2rt3zTz3paXEBCiRly6i/RbO0HKgQ2eE5S09TpqPkPugSIiZ5P96w/jg7vmo/BYa9/7bNNVwobmYnUihi3JvoAFlYLNnIMshuZ+ky8i43YIkTsCSQ/npTyMPswj+UJH+jbNeBPwk5TqPmN6YN/aQzRFaN1Pm+nSe0wPXPnQTGoQ4ona8no61iR3IXo/77kA+yRnivNW4EAYe/0tKMg6RFMDuopx19+KuJ69nR4fefUN0Gk0KDh8AAatbWAlKDoWcpUfdi/9AzsW/QqGYZHUfyBGXX0DJDI5qooKwEsk2LP8r3O/OOuSyzFwxqXoMXo8dv61EPtWLPaYYEDYs3RRy7lwhbftPTFg+iwk93dUbvUcOwHbfvuxU/vNO3QA3YaN8u7C5MGVqHWV8y+yTuTCoqFQwMYHrbSg+4LFClR4ru0TOY10lbihbcJCZ8QOrogZDRS4EDHUHAe2Pefbtdokms11CFbZteppVuVhYvE0kJHh6DhSUlIiChxE2s29fS7GJQtrkWnRgJVbYBYYBIU1goUAxqlwXoBR4KnIgaQkuII8d2XszUjxS3V67pHJo6BRNmJHYQE0DWagkUNKZBD8Y4D/la7FRyWrwTEMxkV2w4O9JkDKMchrrISE5bAg11aEpDHLUWtQIFDm6DZtz6nqEIQoNLAILGr1CvxTnIRhCaeg5GwDHnqrBCxjBe/mPcg4C5RWI7QWx8EHo5VHQXUQ4oJduylOjLgcUyPHY1z4YCzMX4USvXPhrT0k3WBZ8UoqZHCH0WqF3IvAwepyMEDADYnjMTA4xeHR7gEXYXfVjx6TFXSCxK1xuoS1Ild7CL0D+3vtk/jS3/B0HCIiZ4K8rAI8NvklWrznCkl2BQx94twO8JKIclJw0pbAladgTAqBKajNsJUgQFVshaxBgDUyEKbUCCdxg8PqrK0YhmkbGRwdDL6wVUQlsAwtmCELKYZh9CbqJCrJLqMTgwc2ep5Ic/3mfBxo9CXlwg6uQQ/uWGnTcZdQdyBrTCh1QyPpB2xhJazBMphDEjwfnq79jXLtuHSYYwIdH+RZGNMjqUO0av0xn/aj2J0LvqKBbmcJ8SOKFEgKqiE9UgLOzt2JXAc7Im4wpIRCN8TF+ydJHgyp22JhJgVcTckPjFmA7EgpFDtyHb4rfKVvnQSyzbC5o7Fkn815wH4fh3JL8chPq8CrZeAaDF4nZC9IgYOIiMhpZ96HN+PuoU9QsVRX8fBXdyF9kGNbmLRfb3/7BhgaDTi05Qi9bjU7birUcnzz9C/48vEfqdsdKTq65dVrYQ6QI7+8FrzFiqWfr8a5DimIIhOuE68bjR8+XolFX28A9EZwTY7obSGT3gveWORxktlECoeb8CZ+pOuobOuQNgwpbOo1It3h+YtunoBf315MHdctTY6C7rDEhkDYlwvGbIE5TA1TdAC9H+45VojbfCkA8qFPYrWKfRKRs8vJ/afwxEUv0yIIX7FGBHpfh6QFuBA4cBX1kOw+CVPfRNq3aMFohiSzAHyR72n0pm7RNJmAuBw3Q0QO0r3ZYGsaHa4jRMTh0z6TwmlynQMMQ0UU+nE9oVh7mPbDHJ62CpCdrIChZ6Tb/XJGATQAU9/xYhhfIP0Dcl4sEQEt55v0zVrEGm4gpnZcrQ7Sk87FtZ2BCKI7UgBkSA2DoV+c8xMMA0NGNKRGM7iDRehKhl0yEOt+2uL0eNa2Y3ht7odetyf9L1KEdEEKHC5Q7rnnHrzwwgswm21tjQ0bNogCB5Gz93387y24d/iTTuM42j4RLsUNzZjDVTAmBECW55xU/MT39yKF3G/t4DgOd7x7E703Epdwct0iJPeJh1QuxWePfAfrg1ZqWDLysiG45dXrYNQbUZxdBpZjHMTH5yo3v3otZj94CSbOHYMfXvwNyz5f43F9IrT++fVFMBndOwZ2pij21jeuQ2p/x6TrabdOxF8fr6TjkYKbhKVmyNilkJnnJDg8tPkIrnnMdbp1M76WZLlykxcROdMmUE9Of9Wl8cGFAmkTH/nnOP51+JIQc5pTZMg1rqvEDfYQ0YTZw72jvZBxw8EX9cP6X5z7JIc2HUFeZoFPohx9o/7CFDiI/DsFDuqQUMx59lX8/ekHKDl5rMv2ufXXH1GRdwpWq4UmMjRUVaIw65BDYb1UroCuvg41xa1uIIJgRc7eXTTdQDiLg7ocz9NB5eZjCIyMwrArrkFkShpO7tyGrE3rUd103MExcVTY0GfiRajMz8XqLz5B8THfBn/qK3xxCiHTuoLP6RkKtT909fXYu/wv5B/aT1Mc+kycSgem1MGhGDFnLrb8/C06yqG1K1F05DBmPvwUTXFwR2yPDJzc5dldryIvh5RhdfhYREQ6y7GfhQtb3HA+4PslTsQu4SNlJsDJGLBSAXWngJJt7Tg9ZK6n6Xasiga6X8vgyPfuPwSzFmB4zykQJKlC5X7uRsQDfGQkGU0EOiE+bN0ZDz7CvVOzN06ePIlNmzYhOzsbISEhePDBB71u07a4WOHCAVlExBtx/oH4aeYcPLr+bxyuK6HXKbORg0zmaqCBgdnKodakQKBE5yRyIM7/5Dm/ejW+/vBnGiPMp1gRc3EwTgXqsDK/CrUGKUBqeVWAmpeikq/AqYbWgROLIGB96RHsqskEw9oV0gjNty0GmbWRGBBSCAXf9hgF1OvkGBWfDUlTMkO9QYZiTQAVZhjNPFhYIWXN4IltX9N7aoucMSFBpUOJXoECoz99zWh5BC6PuRhRkmQc1WzBIc06VBltBbqR8jiMDbsEg4PHokiXg0VF81GgOwEFsdb2QqHOc+GAycJBztvfBASoeQMCpDr6HkxWDiWN/tBapTRlIUJuxJDgBii4YmjN+/FDzl/oGzQLGYFT6TUjQBqNQSFzsavqO5evp7FI6edqFQT6vl2xtXIJjmsO4abEhxEqc38DildlIEezx+3zZMz+cF01enqePxAROa38/NqfbsUNBNZohnLTMWjHpDuLHIxmKDYco8kEbSGXx4A8wFRlgSGIgZUHOD2gqLKiSWtF3Y9NSV6SHklBOydQp357SDG+fSqBfnR3WMP8Wx+T8jD1iYc5IRSKDVlgOjDIy5KiTzKh4SGGndHowWg7XiBEJgYlJdWwFlY6Pl4rtRXTeHCIJqkL7cEc6e8sbrB/Pi4Y5jA/8BW+dVIleVV0sYekWej7xMGcEEI/A7ZWC+nJMvB5VW6uqM6Qws3GUW0KutpiNOHqAd3BhaohYxjkL9yFPTucneQ8uXs3u1/FpEXhmqeuwNtH3I9LNuiNUA2Mg2KD++hFpb8CobHnT5R1uxC6oN8s9rtFRDwS2y0ab655Fu/c+ilyDrTfEdoVfoEqfPnEj8g/WkSL+IMiAlF8shSHtx2F1e7erQpUoiy/Ejq79gBZf8O6g1j5pA768NYiSfbSDKh25EGWc2YiTKUkwcCuKDWhZyxueH4O/f+GBduw9sfNKMmxOQ8m903AVY/MwoRrRyPrZAne/nItjhJXwhHd6PNMvQ7Sg3ngmxIq7CnOtvVrfIEUFdNLGjFts7tNk+5Vc/dQKpfAf+YQkLvf/J2nsPGB73DFxQMwbaLNpCG+ewzmPDILvxDBiLe4Oo6FJUBBE5gs4a2pGp/vPooNz1Xh7XtmISrU3/WxMgx6j+np1TGVTFCPmOloViUicib58eXf2yVu8FmM7GEdImIgqXDWyCDatyACaZoS1w6HVFNqFMw9necpBbUChhHdIduQCda+UMaH9pDAMDS5xe3zShlMqZGQuigsUe4pgCkhGFaVi1QYqwBpvZUKk6HTQz8sFZZgFe2PcEU1kBMBgt3YVEcxJYTCSMR1dufeEhVEF1it1GjQE0xTkfe5ABExeMLYOwZXj+kNXsJTN9yjO09i75qDHeqTxHWPwbVPXIZPH3Q/f66paXTYxhX+IWoENQlLLjgu0D5JQEAAevTogUOHDtG/Cwq8F42JiJwukjLiaUrYe7d/htzDrd9FIl7whiEh0EngYEv1lGH+o9+j8EQJ7WOERAXR/knW9uMO1zN1sArF2eW0ILIZYlhC0ta2/LnTawJOR9DHqqBLs7035bFayIpdi81JMqnBbuwvqXc8FVXHpEXSJIm1P21uSY1NG5CEqx67DGOvHE6FjR/f+xVO7jvl0/EUnShBV/el1EEq1JTVYf6jP2Dzwn9w6T3TqRCcQIQnl94zDX98t8l7u4oIOUnCQxuR5FdP/IStf+zA8388gtAY12NiJEWpx7A0HPnnhMeXIN+LQVP6tvdtioh0Gd+/+NsFLW44H+Ak3Gm53rMNOjA1GggeRMBcXvvmWs4VSP/gsnun0/+T+9XhLUdxcGNWu9LuiCC82fzkmicvwwd3zne7fn2VxmEbV9AEpuALVHB9gfZJzgTntcCBEBIbj2tfeQdFx49g0w9fo/j4Ed9lnG3wCw7Bkvde8ykhwKh3P4HfEXFDWEISFVV0BZamARyFfwAyxk7C6OtuomIEkjJxdMtGmAx6+lz6iNEYddUNkCmVqC0rxYIXnoBe0+DTaxDBgX9YOEpOeHYMCYmNQ1Vhvm8HLgCNNa0FSpUFeVjzxScoyDqMGfc+QjsxQy+9kopOVn3m3WnCHUTcsfCVZ3DT25/Q9+6KuF69vQoc9q5YQpMm/ENbY1Eba2tweP1qVBcVQObnh+4jxiK6W/cOH6uIiCfy1/1L71znEoJjwb2ID6fMAmQvBjJuA07+AejbO6dtAQJSgL53MQjvx6AqE9CWefkteHk6fiIDierfGeXVWTg/P6gnTULD3393el9kP2R/HYWIG2655Rb677CwMNx///1gvUz0Z2W1dtBIOyM+Pr7Dry/y76ZnaDiWXnk9dhYX4LU9G3G4Pt+NwAFoMMrAy62oMqogY82QUPs7kjTA0YSDYG0wnuzxKhh/KyJflUA5mAUdmrYCg2OBKq0Sh8qiYbLy0Fj0UPFGBCtMNG2hwSCjRfUqmRFt53zJGDO50pHCe71Fgh0V8YhW1iNc0UAL/TUmKQaH+KOcdWy7+8sM8JeVo9Ykp/smCQRt3d1sl1kGMsaMyeps9JJXQNIkgDAzkTDLbkJc8D0o0lbgp7zVWF++DwYri3BZKiZEDMTchBlQ8DKU64swP/t56K22yQALWPAeEgo4hgfPkAnjerfrkGOOkUejSF8MBgLilDXwk9gPpJsQINWjXOcHjUGKsWGnIMDScuuoMORgTel7KNZl4qLoh+ljQ8NugowLxqqSj6HkTC3JGzSdAzxkrAVSwQKDwMMkuO5yl+oL8HnOK3g4/W1IWdcuFLGK/h4FDtVGFRYUrMeUyAkIlLYWJVUZarG27B8U6cqhligxNmww0tSendxFRDoCmVjctPAfr+vxJXXwW7wfxrQIWCJt31W+pBaSE+Vg3bnOWAUwViukGhZSjfvGnMB7KepzA2PnpGzqEeMgbnDYf4ASxr4JkO3K7pj44GQ5TL3cx6xLTpT5XLjvDjKh23ZQmNUZITtUBENf18VNfGEN+KL2paEavYlJqFtsmM8Ch2aIKMLQPRKWMDUtpmLA0nseOS+WyADoIgMgia6AfPtJr+fKkB4B7bAkCDLP3wujhMPyFxfijocvw2/vLEFtubNLoLdznjYwGXe8cyN6j+6BHUfzUfnPXo/bmNLDPQocptwwTnQlEhER6RTdBqbgs31vY/+Gw/jisR9wrAP3rmaikiPw5LRXfHLBbLRL3mnGopahblYGBIWjyM8aIEfD5G7AmuOQZTsPCLEsg9j0aOQf6RpH62ZxQ3BUEC6+fTKuf/ZKFBwrogLNjb9uo+53ZOKUOKPe+MIcyBQyZOdX4N4Xf4O2TRtF8CcFx+nA1qPgy1rvG6QolRRaeS63sU30EgE7V1gNgbQN2iQ40dQpC2n/AGa1ChUm0g+ynf/j2WV47YMVyDpWjIfumkIfu+2NuQiID8X7Gw57LCgi7QPtiGSXiVfH8ytw9zu/45eXboDEzj2+ZVtBQL/xGV4FDj+8tBAzbp8M/+BWAUV5QSX+/mo9inNKERCixqTrxzq5voqIdAVE2LB98e52b8dWNcCSGO55nWrP86W0uL+4mk4PtBcisqbJDe6Q8DATIcIB30W4aGo/Q+5eYE0wx4e6FDiwOhP8/zyAxmm9YQqS2a5TggBOL0CmsYJ4aAi19dCP7dH6Pui1XQlzagQUm46Creq4Ixdx9zYOSHZ/TSPidZc2G01Pk8IjF/eks4HFTwZroOfkY4OEw6KfNuP2Jy6n96UGN0lBnvok3Yek4o53b0SvEd2xfclu1Fc1eHVotRf+tWXqzRMgIQWoImcFo9GI3Nxc5OTkYPTo0VD5mHbtZzenIqYqiZxteg5Px/yD72L3qgP44vEfkL2/ffcxe6JSIvDY5Bd9SjluqHafwNneYldyrQxPCEXxCdciZrNagrIbukGf0jqWWH1JAhTHaxHx/QlwjY5iu2ZxQ2hMMGbNm4qrH7+M9gt+fu0PKhogqQsh0UG0vUzE2KSg//iebDw+5SWfE4SUagUCw12PbdqT0CvOJ/dsAinUripuTeImQrzXr/8Qx3dn4873bqKPzfvgZgQkhGH+ei8pU0SMYnItQiT91iemvYL/7X2LJgG2hVzX+k/o7VXg8M3TP2Pq/42n56KZsrwKrPxqHUpzyxEYFoApN45FUm9xnkSk69HUNmL3yv3iqT3LnA5xQzPcwVMwD+9uE2u1gamoA3ueChxI32Dxp3/jttevw/cvLmx3MiwZc+o1Mh23v3MjegxJo2NtzWmv7iDjaJ5Su6ffNommNYmI2NOxmeBzkJhuPTBk1hU0kaAjcBIJLa73RdzQ1ZAC+a4SN9hDEiZ2Lfkd67/5HD8+9SAOrf2bihuan9u/cikWPP8YDNpG7Fz0q8/iBkKPkWPRfeRYr+sNu/wqjLvhVkhkcq+CCavFTaN22yYc294aX9N7whREpTnGMrcXTVUlsjatdXqcfA7fPjyPnjNvECFL5oa1tFNFzuuh9avw+V3/hy2/fIeszeuxb8US/PzMw1j01sswm0SlpkjXYjULsJzelCsRXznPxA0kreBc4PCXQvvFDU3UZQOZXwu0kMuo8U1UIXdjhuqfBPT5jyhu6AxB11xzTuxn5MiRLf+uqKjA8uXLvW7zzTfftPx70KBBCA4O7tQxiIgMiY7DHelDkWCMhK7OddF6nUEBg5l0zBkYrBJozHK6GK0SSAUpcu7Jh1WwIvpDm7ihLSFKLfpHFUIh0aN7eDm6hVYiPrAOSUE16BVehih1vUcTT9sVT4BF4FDQGIQ9lfHYUZEIfz4W5Qb3wuQAXt8ixnAlnOBhxnVBB9FPUdYibiDwQink+tdRWPUm5u35ACtLd8JgJW1jBuUGHX7J34KH9n8CndmAdeULW8QNBLPAetSu9w2ciFFhA+CNGxOn4+akixGn1LcRN7RChB6jwvOouMEVWXWrkN3QKoDuFzwTlcYxyNcHod4ih8Yqh1GQOJwXOWsG56GhUG0sx76arU6P52tP4YXMR/Fz4ULUmuUuz0G9SYZcbQjMggXrynfSPonBYsLykk24bfez+DF/KTZU7MSS4g14+MBbePPoVzBbz7NGi8g5D5lk89WViBTcyw8WQLUqky6k+N6tuIEmOAhgy2odjU2YpqX5Qa0BrIcJTIeN7TFZwBdVtTicmpI8FzaZ42xpAh1BeriQFjK6gj9VAcmxrnFXc+V4Iz9YCPmOHJoSYS/skB4ugnLjsXYLKwQp51NRki8QNyCCvnc0NDN6w5QSBqu/nLpMCxwRrjh+bKbkMJiSQj3ukzjn6oYm+ubG25Rs9OWTP7Vb3NDMiT05tKCTiGQbdN4dg02MzX3IFcSh76aXrsIFi9BFi4iIiE/0G5eB2Q9eguiUjiUkylUymmrgi7jBHbp+MU7ihhYYBo1DElz+rKNTo7pM3GBPdUkNvnv+V8x/7AfcM+xJrP5uIxU30OdKa/Hb24vxGC0gMuDL37Y7iRtaYBmYMhznn6bdOhGjrxjm9RhuffN63PTi1WAyYp3EDS1wDDiWgZWKG5z5a+UB7LYrEpszbyqSvLjaMfUal+KGZvJLa7Bm13Gnx7P+OY7/634fvn1uAbxBzuW6H7fQ74zBYMLv7y3F9cnz8N0Lv2LN95vw+/vLcOfAR/H6DR9SgayISFdCnJo78r1ii6sBT0WDZgu4PJub8umACqy99DEsbpyMPeFLv8VTm53TmqD+cx/8txVCWWSAqswCRa0VXK0e7IkimGOD3L6ubnga7a91FBMRnHCeBrQYmuLgDklWocc+jjnUD7oB8dANToIxNRxStetxuzMJKdr84vEf2y1usC82JeKI5sI6b5CxowA34v7uQ9Mw95krcMFyjvdJNm7cSNOl09PTMW3aNGzYsMHnbYuKWttOkSRxW0TkHIA46V/xwMWISAyDNN/7uEvb9AaFWk7T43wRN3Q10SmRbsUNRJRccnsPB3FDM7pugSi5tbvbS0VlUTUdh/ryqZ9w7/Anse6nLVTcQCBCggVvLMJT01+B0WCifRdfxQ2Ei++YglGXee+T3P3hzZj7zGwq4vCEJ3ftPz5YRtMlmplL+p4BraICV7ClnlOuSOLHNheC1UObj+Cmbvfip1f/gDd0Gj1N6SP3VtKvI/fHG1Lm0bE70idZ+O4S/KfvwzT1UBSDiXQ12nptp8ZQRM59WI0Oki2ZYHPLWgVbGh24rDzwu47T+ayOIPEiTj9TwpDPH/2h3eKGZjK3HqPjar72SViedZvQQMykrn78UlywnON9knOZC0bgcGz7Zvz11iuo9iEtQCJXQK5ubXTK/fzActxZaSATNHapBaeDfX8vpYIGV5CC/h2LfsPRrZt83l/ygMGYdNs8pAwYTJMn3BEcHYu0oSPRd/J0sLznRrK31IvNP33t8PeEm+9EZ8nes9Ph74bqSvz20lM0OcJXjm7diP/+3xx8eMNsrPrfhy5FGtm7/8GGb70LJkRE2gPLM1B5Trh1S+RQgDnv83vOMc6j+vhzRhjT/rAjB6oOAxUHBah90TUyzkkR5DfQ7WpgwkcspP7n0Qd4DqIcOgSytNRO7UOWlgblkMGd2gcZ/B8+fHjL30888QR0OvcK8e+++85BBHHvvfd26vVFRAh/Hs7C3X8tQW5lLfSFfrCaGZeJAiWNATBbAuHH2QpNiFu1pTEMx3ZFo2hAAiSXKyHv4b6rFiDXo1dEGRQSx7YnxwoIVzXCX+r+u++u7pNlPbeByXYk6cHdc70V5YiWuJ+QZXSfwGx17RZ+rKEAv+avxeE6Ryd4K1iaiuCqm9bdfzimRv0H48J7IUnlvjg51S8So8J74tKYUQiVuZ8UULAm8IznQu11pV86/H1L8pXw440QaLfa9YmVuhCFWO3Wzap3TGioNJTjwxOvo8xQTP9utMhRZlSjwSyDzsKjziTHsYZwHNVE0vNDWFW6C1M3Po1pGx/DZyd/hUVw/py2Vu7FN7mLPL4/EZH2ovCTIyyu/UU3hKEXD6QDmZ7gj5dAsFhhJY7GpOidY5oW0Me47FJIT5Z5fiHB5oRsD3ErZcy2BwUygOxtEJljYfXrmEqYDGzLtxyHfMMR8HmVYMvrwedWQL4uC/Id2V3bjXCxM9nxMlqg5LfkAPyWHYT69z1Q7MunbrPthfPivENg67yv0+xeZw5XQz/QjWsaEbK06bOa0jwXahjTwsnNzPaHl/E9Rm8CV62lrqedYd/aQzi26ySSIr2LZLlaHS2itUci43Hd01fgnQ0vQBXgmzuniIiIiDeWfb4ar1zzPoqzy7w7/gap6EIgcfRkgrErpkgMaV5EaQFymCNb3f6bIcKK0wkpanE3YUsnZN9fjs27PSdfWIP8YFXb2gXjrxmJ29++AeOuGoHoVPf3qW6DUjBkaj/MfGAGzClehJW0x+iejz9Y4fD33TeOc3JDJR+hPhioSQMqxvijLhnQhgEWN+PBm/Y5vufC48V44qKXUXTCNyGmVSXDoj3ZmDL3A0y89gO8v+oADKmR1KHenrU/bMY3z3oXTIiItAdy3QoMD+hQO318VBA4V6Z3Zgsku06AaSo6PB0IvjhSdiCtjrUTN3d0HZpEl1UA+Yq9kK4/BMn6g3Qh6TweE2NUMlhiOm4eI6gVLcJ2K+n/kX5gm5djaxppUoMDeiOku06CL6xym/rXOKE7TaYw9oqBsXskdMNTUDmtN8wk8eI0wGoMDkJzVzBaI9g6faf7JDuW7cWpQ3mI7+4+ObAZs8GEugrHFFSpXEIdw99a+xwUfp4LVEVOHz169HAouP3zT5twxRtHjhxBfn5rbczQoUNPy/GJiLSXPz9cjjdv/C/KciugPFjmkKTalhCBQ1CtsaVP4h9C5lU6OYncCYpO2MblXdGYEQxjtPvxG0OCGtrurs0tmvn1zb9oMb4r9q/PxO/vLsWuFft8Pt7JN47Fza9cg4lzRyMiwX36asao7jSdbdbdU73u0524oZn/PdhqHke4/YbRtP3kEqMJ3PFCr6+5ffEuh79JysWT019pVx9x0UfLcYnfXFysmouvnvrJZcE5SXT48eXffd6niIgvBEUGQt00ttJeRl0+lIqKRM59GJ0RfGYepKv2QrJsJ6QbD4E7VdZhcQPB5MEE7EzS2T7Jlt93oPBECeJ7xHpdV1evdxJ4k1SHm1+9Bq///TRNVxURuSAFDiR1YcO38yG4KORoizIgEPG9+sCkbx0A0Ws0MOnPXsWnu+SCLsPLxfTwulUtyQ6eSB0yHNe98i4ue+w5mshAUheuePJFRHXr7rRuRHIqrnjqJXA8j+riQhgaOx5LSqivKKefUzNmH47XG5Y2qQr7Vi6FrsFxYMcb5L0ZPRRPNnN4w5p271tExBspM9vf0A3uSYrCAeE0X3bccpbb5rIgYPgLgH9iF+/4X6SSZM6hlkPxNgHqWAbh/dv/+ZDfQPkeQKISO4ydhbjWRr3+OhilsmPbK5WIev01up/O8vbbb7fs5/Dhw5gxYwYKCwudop5ff/113HzzzS2PjR8/Htddd12nX1/k343BbMarGza2XHIEK4v6UwEuRQ6hsgCEYAA2nwrD3oJY7MyPwe5iFcqkUjQMCQP/f94nWBW8+0GPQJkejAclmatfG8d4d59mPNzw+sg9x29KWROGqd0PZK8s/Qdmwfk9WcBCJ0hgtHIwCSx6+I/CbSnvYU78E+BZCXiWw/sDb0EPf+dBk4yAeLw38GZwDIsSfQH0Vvftdgnj3fGx1lQMg51SUMI1gmM8NwJsohDBoWtmX7LU9j2vK18JrcXR4cICDvUWBarNfjQtot5MJpxb95GrKYFF0ELBGz22tVaXboXW7FvxsYiIL5B77ozbJrf7ZJHI2oMbMulkpVXOw+omGYCtawRTVWdzObZvJ5B/EwflXrEwp0SBL3PT1yYpEIZWSREphCGFLzK7iTGGTL75MABN1+sgNOWmtA7y7SehXJeF2IIavPjJbYjr3kHFujsE96/P1WrBVTd6dEvzhvREOeBpgtNqta3jI4YeXpwlmxI7mrEEtbY1yYR3WywkAaLp/Xq7pMuzSjsk8nDF9iW7kRodir7JUR7Xkx12LhI1GcxUJHGhFxKRW2VXLCIiIt7Raw3UCdoXwuND0XN4N+o02DyZSSYYDVrv/QJPCMTt0wcHcdIGaMvpdvf3NmG74rsNsPhwr5zwf+Px2f638eSP94OX8JDKpXhj1TNI7pvgspDo5aVP0HbT8bxyGLwVTBMxp4enc/MrqSNpC1UayDdm2ZKvBIFu25BAFhZmP6IIZSDwDIxBDDQJgNnFPLGpzXlf+M4SaNsWELvB6q+AYVwGTjbooW8qXBOUMph7xsE4sruTyGHJp3/T76mISFfBcRym3TKh3dsRZ8i9C7eB/3s/+MN5YMvrwFbUgT9aCNnag+DaFIF3NbzG+2+M6YCDJlel8bodn1NOCyCfWfCAR3EWaS+zDToqiCBtbKsPRVvWwI6NDxMERgAJxhQkTMu1i/zbapfuxjTqIV91ALKNWZDuzoZs61Eolu8Dn1/pdr+NY7rBFBvkkAhIF5kEjePTYWkSrXnCFK6GZlwaamf3R91lfaEdEAd4SIAg50uW5dr9uxnZ0dJOFUPZs33JHqQPTqXJcJ5w9XIkhefgpizIlRd2IdG53icJDw93MG/6+eefUVzsvsi6mWeffdbh7yuuuIBTOETOGxrrGmlxeTNcowlBi46C0Tu3g2MD1RhWZIKuqe1J2uv1VZp2pRf4BAewg6RgR8vAxHgWGVo8iCsae3sX8nlbx1uf5O9v1vvkBH/R/43H/EPv4tGv7wbHc1Co5Hhj9TNI7OXsDNhvQgZeWPQo/ffx3Tkwd1LEeXJ/Lsx2ImumthH8P0fBVNU7ms6U10Ky7QgYH9r/zWkWzfz61l/QN7av33DqUH5LUp8nFn+8kiZliIh0FRKpBFNuGt/u7fqM6Ymdy/d6FRWdLlyNsZ9JSPLoU788gEiS5NaFdEHJiffXwLkB1wFR/OmAGMrvWLqH9rMTenoWObgynyf3/cNbjtLxtQuZc71Pci5zQXh45x3c5zUFgaQ2jLx6LvavXIbsPTtwtohI6YaynBM+TaCfKUjhvV9QCDQ1rt0tmhl9zU0IjnZ0gFAFBuHal95G0bEjyDu4l76t+Iw+iOvZu2Udko7RFeTs24Weo8dDW1+Hg2v/7vT+otLSHf4+vn0zThdETFGYdRhpQ0ecttcQ+feRdjmDst0CypwT+xxgyE+QjkAD1Vk4qyTPACozgfpTZ/614ycDGTezUEUy0BRZcejzc+c63FlImkej97HOLoGcNU4JWDqWUNa1x9I01jHwIRbr77M6pTR4o/YEUL5PQHj/c6ULcv6i6NULsR99iMJ77oWg1bZL3EC2I9t3BSNGjMD777+P++67j/69fv16pKSkYMyYMYiPj0dNTQ02bdqEqqrWL0vv3r3x+++/d4nAQuTfzYacU6hpI3w16ySoPhoCeaAeEj8T1FIZ5vUfh08O70FWY5NLJrEiJ78HqQBIjBBqJeA470U1tm+sQAvo+aZKTrPAwSywxGwcCokJWhMZCHD+bvf0j0VmfWt8OUFnkcBP4nniwJOXqJL1PiAcwLkXKZcbGtArMAAas6vkOQZmcGAEBpMi/w9BUkcnonB5AL4adjf2Vedgd7XNEX1wSBr6BrUqGjnaIHKPta0toAvMAnCk4QD6BQ5FjbEeq0q3wVdswgZbKoX9ZxKvTHNY70DtdkRLaxDI6ej6tWYlyk1qKnIgkDpvOWeCziKln7u/RAdebivgtggMjFYejWYZLMTqsA16qxFZ9TkYFNw111wREcKVD1+CPWsO4NCmI+6//6SIJDUC5m5RMKvl2KE3wjomGaZgGSyBtsJuSXE9lHuLIMutadnOqpTCGhXkeqfkvi2TwBoTTH8rjMEK6A0QSHGKVQBfVA1ZVjHYBj0tvIPZCrZOS38rl9w9FXtXH0TBsWIwJgu4sjpYIt27q5ECIdaH9IJmzBH+MMeHQJDwYOu1kGSXg9WZqBPTlBvHUXfM8LhQGr9OIudbzhPPQtsrDLqMMFgVPLhaA5QHyiA/UX1ODJgTF1L5njzoB7tWiydWaFHTjgloS4gPrlbkjTd125pTNwhWwQq5SuYw0WnvBshayYSxQBM/2iLNqYJiTwG6MsKZ8Ox1k3Hre7+hxkWxmiS/BvIs145zWduPI2v7MfQc7jhGJSIiItIRti3a6TUOnridk3vRgjcXYedy351BfcVWEKtvSTmwPWi3QtN1vWdaDLLt7vvnAuUnSuE/vBvqPbhucyyDO56/CiGBjvcxMiH/2b63sX/9YbqQouuBF/VFz2HdWrftgnkSq86I/esOY+iMgaioasCy7SdgGdgNnIQHV6mFTmWEIdh1wha5L2ojBfi3Ce/LSHEU6W38bbvPx2PqlwS4EbRYQ9Qwp0RCcrx10JIkaBz55zj6T2idPxIR6SzXPHk5/V0c2XHC/UqkZp5j6fgfETId2nykVYxMBNCnOUGmLVfeOhFryutR3OD+esOf6tgxSffkwDCmB8A7X3MkFfWYObE3bnjuSoRGB+PE3lP45Q0f0x59EUt30HFbkHAwxwa5rkYiwjleAGMG+IIqm4C7sh5woWkITwhDeV5Fy9+63jEwxwY63oea+hhknIbhORjTI6HYnev22HS9o6Eb4tgHsgSrYOkTg4DVR2Etcp1WKssqoYIPYzfngi1JdgVkhxzH5bqiT/LwV/Pw8ITnnRxRvUF+Pyf3n0IquaaLnDXuv/9+bN9uuwdrtVrceOONWLZsGaRS14VeL7/8MhYuXNjy96xZszBo0KAzdrwiIu7YtPAfp8J0WWE9wufvga5XGIzR/ggKVeOW6ybij5vmY2/x6e0TcJcqwd+gAhPSel+07DbA/FY90mIScHxPjs/7EiRsl6zjibK8CijVCo+CY4mUx3/evB7+IY6peDGpUfj84DvYu+YgbesQ4cOQ6QOQPiilZR1ewnXJfYfsn7Tpy/MrqCiDGNWw/xyFoJBCkErA6I1g2iEi6DHEcZ5k4587YU2MhBDoZxNLVNaBKakGY5d201FqK+pxcm+OOBYn0qVc/9yVOLgxCyf25vjcJyEi07PJ1Y9dilXfbUSlmyS00wVJ9p5x2yRc/9wcBIUH4Mj24/jjg2Vdtv+zXY5LUs8rCs7cOeWlfKeFa12BualP8sg3d+OxyS+6TVB1BxmjzD9a5FMynci/j3NDytNJGmt9a/Tq6upRW3qGKkBdQBIPYkjaQRdfTZWBnmPOvMFLpOg9yXMUGREstBU32BOT3gMjrrwOI+dc5yBuIITExiMgwosznw+QlI2Gqkr8+OSDOLJ5faf2xXI8+k6e1vJ36cnjqKvw3WmwI/iSMCIi0h5YCYPu13kvdRGIKamZOEmf3fMb1hfoO4/FmLdY+HlPpvIZ3ovZJSe3iRsCU5mWdTVdN3ZsOwYl0PMGnBYkaiC0j+38JVzkOn2iscyWTnFGsJ4Z1XNA61iLW0J62v7vF8Ng0qcsul3J0PNAUib84gBlhPd9lO25cIQuZxu/kSOR8P13kKWl+rS+LC2Nrk+260ruvfde6nAUEBDQktiwZs0afPXVVzTauVncQAYP5s6di23btiEo6Ez9gEQuZCoa3RQSWRnoqxVoyPeHvjgQ2TWNKGx0VcRvu74yfmbUa7w73pFidj/eABVvhIyz0IX8mzzGwkqTBVxdrhmBQ88A5xtxYaPnPgXpwhDxhNvjYb1fdMtN7otZFZwcg4Mmetw+Td3XSdxgT//gZNyWOhm3pk52EDcQYhSJCJS4d0/SWqVeu2mNFhmMFgPK9FV4cN9bWFmaRT8HT5isLCwCR5MorFSk0Lo+z0gwLKT1PVfoDiJdfgDJ8koESxoRImlEiqICA/3yoGJbix6Ip6uCMyBUpqGfO/msWUaAhLVCwRkRKG1EmKwe3f1KkOFfhFRVOdR884SIeN8T6VqIo8pVj13m9nnyjTMMT4N2YBKMajnNljGEyqBPDmwRN9DfSrQ/6i7uAW1G67XEEhvquuHZ9BjZt0nJQB/MwBjCwRitAFNVC9WKA1BuOWFLLCAChioNuCZxw4DJfegE4OurnkFkou16IskqdF+sIwiQZnovhlf6K2Dxk0Ezsx+0k3rC2C0CpsQQGHrHoXFmf/B94zHputFI7pMAhZ+t4LM4u9TBxbryugzUTU2BMdYf5hAlDClBqLm8O2ovSfPpl0sKVq967FKcDgJC1cgY3R1DIoJxaUw4kvxVtjQHqxV8UQ1Uq7PQuPEoAsL8fd+ppX3XIz7PblLAapvMtUd6yrHCibUArEkAQ17Havu/ctspqNccA1gW2v7RqLq+P8rvHo6KWwejYXQiLCqJwz6Se8d7Pa4ew22Fq8lRIfjx8Wtx7fj+CPRTgGNZJIUHIT6nBv4rj3pMjNi75pCvp0FERETEI9Wlross7SECsfwjRags9GwY1RlaRF00VqfNkwzA8yzSejg7i3aWdt2HXOAfpMKMcZ7FwKMGpTiJG+zpNz4DN714NS1usBc3EHqlRCLI33NfjzG1pk+5giuqpAVjhcU1+M8D32PzoUKAONwRlbufwrtjrIyB2U57IpfymDU6o+XvAxsyvYpkWvalVlARgyvIXc8sY9A4JBa1s3qjYVwqTBHqc6LYQOTCgzgWz354pueVBJsjMym6OFsOqc0MnTEA//fKNXjvjbkID3X9G+IKKsF5SCVwhV+QCgLPwZwRTyqnWqMKCIIA/zotpieGIzkjHgqVza2/yK5P4g3e231DEBButuLy+2agvZiSwmhBpFtYBiFyHv26RaHf+F6YfOM4xLhIn6gtr4N/0zk1B6tg6B/npk/Zen8yx7gfDzOH+jmJG1qOmWNhmdnXbV+N7F65LRt+yw5BerwMfFEtTbzzW34Yqs0nfXbeTMyI871P0icBH+96HTPvuogWvbISDvH9ExEY4T0pdp/YJznrzJkzB1OnttZrkDmNUaNGYd26dbBYLC2Otzt37qRihmeeeaZl3ejoaHz88cdn5bhFRHztk7BGC1T7ShG07DhithWj8KddqDnd4obZSkge8HcQN9DHB8mg+jwCiSOdE9g8ISvw3k4O13VuEj0wzB8T547xuM6oK4Y6iRuaIXOfAyf3tfVJnr3SQdzQnKyr9iGVyRukT5KXVYB5gx/HrpX7W19fZ7Sl8rZD3EDGVafcNK7l7527c6Ad1B3WtFgIYYEQwoNg7ZkIy8gMCErvyUu+IPZJRLoalb8Sl98//bzpk4y6fCg1v3hz9TMIdmcy1QGa2+LuUAUqMXnuGCRlxEPW1P63nyfpCiISw3Dx7e1PHveFkOggmlJAknEm3zAWkUnOYuaGKg2dqzkTkO8T6QeebrylMhBISiyB3HdIn4R8BuR+Q5JCknrH+3ScRKAnInLBChzUoe6LXJrxDw1D5obVOJsIVitO7v6nfRsxDHiZ+0YaSUcYOWeul114bkTH9sxAdFq6U6JBMwr/AEy89S4fD9j16w+ZORudJTwpGeu+/h/qK8o6LW6YOu8BBITbBr9MBj3+fPPF09uKZRhEpzdV4oqIdCHe0hvOFUjRuVEDbHzYisyvBfS/j0Hv2xj4t2/cwAlGAqR6SVy16IH81cDBTwUsudKKIz9ZwMu79vfO8kDK5QyGPsUguEeX7hoxI4HxH3AY9z6HpOksGvJdrGQBDGfQ9M7cCKg7+dl5QuoPDHyYAetYX+SAIgyIGdN6f1OEMeh5I4OkaQykAYCmAND6oFsTTfu7FpLEkLR4MeK//Rbqiy6yTabZw/NQT51Kn09a/FeXJTe05eqrr0Zubi7efPNNjBs3jkY8SyQSKmTo27cvdUPav38/vv/+e/j5nZkOpsiFT7S/92KaaLU/fs/13DlnJAIKq4Jgsbpvw5NxL46xiRjaQh4jQgezlbiAOD5PmrtaE4NN5cectivR+aNM5/r3wICBFcoWmzsJY25JjbC9Jo+ogLs9vq9Gixw7Na4HQDjGgrFh0Ujx64FoebLLddR8IGZF34qOwjIsxodf4vZ5kqxQbXavmjRaOWgsUsQqE/HJyQWoNNbSlIRyg+fBupzGECpyaFvZRcQN1yXci4Am0YXRosHGkocczmszUtaCXspiKpGgxyowCJDoXd7DyPciTl6DFFUlAqU6KnghQohe/iVIVlUjXS268Yl0Pfs8DDqaE0NpmkEzFh6wyN1f3zSjEmmxP0GQcp6FEwEMzErGFm1CYBgYk4JRd3kfGNIjYY4IgND0HNEiqfvFo1zO4oE5b+OnV/7AA5/fQSf7EkL8Idt6DEwbdzniNCbdmU0L+D0hU8ow/dWroZ3V35YWQdVqTcfFAgLLoqZ7FFas2IdPH/gGVyfPw29frYXcbkC3blISTJGur8G6nmFoHODdNIK4ss15ZCYe/WYe0ga4vpZ2lDFXjsB7G1/C2+uex9TxfVD7yVr4//APAn7YAdXao+BL6mgEfF2FXRS9FyR5zgVSQtulWXdiMEN21NGwpKGmEbHp0S1/8xUaSHIdnZHIbZAIHTgzIM2vhfxwCQSORe2lPaAhgoYghc0RVimBrn80aq7qA4u/rdgrKCIA939+h0dnu6jkCAy7eGDr38H+uGPSIFwLFRIWHEDDi8ugW+NZ3ECP80LvlAhdtIiIiHglPD7Up3XW/rDptJ5N+eFSKoJzh9lixeaS9pkNkSQkicz9QJFULqGiAk+QSVVP9B3bE0NjQ5Di5jyGh/jh3hvHo6NIeA7XTm+9bzghCOD0zhe8lstgow5seR1S+iXirY/+RnWNc4GVybtWHpamGmKZlMdrd13cIrqor2rAs5e+4fP7EZpEm06PM4A+kIVRzcKi4GEJV8OYFo76mb1hGJ2C9ME+uJqIiLST/WvPfcEo+W0E9E9AEax48Iq38PtLC/H0DWNx81UjEEsS5fRGsBX1kOw6AckeWzqlryjUCky/bRKMg1JgDfN31JeRpAIwaPBT4O+/duHj+77CVcnz8Od3G6AI8n1cVHKqHIzWsc9kD0lX4HVGzH3uSjz05Z20iMVXzLGexVmEyVP74b0NL+Kttc9j7OxhKM52nis26oyor2yg/zb0iPQ8+E+SBunn4n4dfU/P/bAaownh47p7XIf0U5TbcuC3+giUW7PBl9uOzxdCY4Jx/6f/8Xj/iu8Rg4GT+7T8HZUUgetfuw6jPrwBlltH41DvKBRM6g7dsGRYVR5EJGKf5JzokyxYsAADBgxo+XvXrl2YOHEiNXNKSEiAv78/hg4disWLFzuIG5YvX46YGNHtVuT86ZOExQZjw4Ktp/dAZAB/k/v7nDnAigP+TSnbPhK4uxIS4rLnBpVEgtuneBYnsM3jmG4ghbNkrCmue+uYlz3EsIWYt3QUmUKGy+5tvxixLURU9/bNn9A0hM5ABPjP/vYQ/JpE5FVVGjz30iKXSVRE2G3pn9rpy7FELkFqf9cCRhGRzrB/XeZ5cQJJG7PweDEemvA8/vrvSjz+/T247qkrXBbrtwdVgBIX/d8Ej+s01mrx9zcb8OG8L3BN7O1Y+tlqKnLqam5983rc/9ntiPehML89kPf37sYX8daa5zD8kkEoPeU8tqXXGtqdqNYZasvqqKjjdBGREIZ7P73N4/0rtX8SvX/ZJwoRAQ0R7BHDr1OH8uln7w1xnuTc6JOci7jOjj3PiO/VhyYE1JW5V3VljJ+Mjd9/ibMNSSDwlahu3TH00jmQyGT447XnYTGbnH7YU26/Fz3HTED+4YM4ts15YoJhWAy8+FLsWbaICixckXtgL13awkul6DV2EobMmg3/sM7dyPpMmkqPobq4sGM7YBjsXvonTu7e0anjIIIQ8l3oPnx0y2NHtmyAts67u1VQVAyCY+KQ3V6RCkEQ6HZ9J3tRbIqItPerdfaTpnyCFN83F+BXZwo4tQxImMJg2HPAqpvbvz9WCoT3Bwx1wNEffN9OMAGH57twj+skxnpg+dUCFVN0OXYDy0d/sp71JI5mFKFAQ5tI+66AJG5I1TZBSsIUIO9vwNrmey4LtAkgDn8hoGCDFWYdoI4HdJWA1r4p4EPjLnzgBV5MdBYg7RPV0CF0sWg0MJeVwdrYCFalAh8RAe4MCQoCAwPxyCOP0EVE5EwwJikREX5+KNO4H7S4tFcPvHTSfey9fTF9Zkk0MqKLWup27UUKjWYpFJxzIXwzxM1fyRthtPJ0A0FgqODBZOHovyv0Ghf3QgZ7q+KQrK5EvKoGCt528U1Q9sTY8CtgFhgsLXwGgVwdLbgnNFqkqDAH4ZKYexHkNwz1prUw6le4OCIOtdIHYRVyHC7OpGA/2a8KEfIGNFpy8UPeGpisEtQZZJBxZsh5C3hGjiHB4zE27FIESFuLpDvCmLBpWJC7FTx/0uG8krrTOpMSVYIKDKoQwOtaxCPkfOsFCWrNSkhYBqvL/sSBmhMtjYl8bTBkrBnBUseBGbJddmMoSvXEJY+BWmqApEW8IMXg0MnI8B/csv6phmUwWt1PBpBzHiZpAMtloJtfEI42uC7eIMkPclLJ64JwWS1ONW5Dn8DT41wi8u+FxJK7w5TqmO5i9iBuoPAc9OlhUB4oAdugd9s2JnokQeJ6X4KMR+OoJEg1Ahi9CUx5LUwxAajzk6E5i2FPcSn+uuZdzLp8OB777m7cM+xJcMv3wUJEEUoZ3Y4rrQXjwQhBqpDSKPaKukZ8tSUL4F1McFKhgwCSqWPsFQ2jVUB9XBDe3nAALMOAHZ0GydES6Lp7vr41DoiC317PTkbErfS6hLugb+z6Tol9rcvPr/0BK0lE6OQ+ZcdKYeweAUFuK1ZtOdN2OxYkgKAzwW/dEbAag8u458JjrcIH5aYT0GmNtIgSzcIEsxXS7AoodubSXTcOiKbfB1dY/WSom5YOfz0DU/covLd5P8a8Mgcbn10Ii95xTC44MhD3fnwLPn/4O2z6/R/qXJfQKw5lueUOEdS+uHH1n+SYhCoiIiLSUYbPHEQdPz0VmYy/eiQytzoLnrsSksxEEwU8UBoohWepcCt9x/XCtU9dAW29Fi/NeRfWNslLHM/iiR/vo5PLO5fvpbH2bSGCtcvunY6F7y6l7seu2PzHDrowUh6S1EiYk8Kpo7hCymPmpD64btZghLajGNgV1188GH/OX41i4p7eplPCa600fYjesKhGmqEF0ULzvwOUME7tj/lL9mDf4QKX92LWbBOUeoIzWqE0sLhqTG+M6tsqilzx5Tpo65uT39zTbWAy5Co59rlJuTL6sRB41y0FTfcIbDlWgIsGuzbbEhHpKBaz+z7JuYAxKRSGvvFoaEpOIOzJKcKima/hirlj8egVQ/DY5JfavV+5UoZ+EzNQnl+JXz5eCctF/Ryed/glsgxMPWNgZABNdBDeXLEHHMOAGZYK6aECsG0E321hjBYoNhyBfkQarPZJNuT6VVAF2c5sVFoFXBt3O20btwsvxZ5t+enVP+i1nIiXzQkhMEcF0uskRwQiORU0yc8S4VuqD1/u/p5pCfV+zQ8ZmISKDUfR1SjUclr0+c2zv2DS9WOx+rsNTn0LUpx21/v/h0/u/xpb/9wJg86I+IFJOJEainJN6/XcyrG2lMHYIKhWHgbnom81QOyTnBMQAcPmzZupQdOXX34Ja1NtR2NjI13acskll+Dzzz9HZKR3UwQRkTPF6CuG4ZP7vvaYCjZm9gjsX396C4HZ4TIwas99Eu1As8/znv0nZuC6p2cjLwR4cNVKWNrcuqQMiw+nz8ComDjsWrgT+1yIL0ka6ay7p2Hhu0vcvtb6X7bShQi824oZL/7PJFz5yCwEhXtP5vHE3GdnY8n//kZNmeukcW8Q4d0Xj/+AoztPduo4iEj9igcupokTzSxdsR/6NmNwDijlNNWhV1o4rGZrh47BpDdhz6qDGDGrdX5GRKQrMJvPj+KtyqJquhAytxzFXx+vxJyHZ+KO927E85e+1e79kfEBco0szinDb2/95fN22gYdPrjzc69mFO2lLLcCV0fdRoUGXY7deBLpk5wrEHEKed9djVKtoKKwH15cSMUKa77f6OQdTgQQt705l4pWtv21EyaDGcl9E5CfVeiQ6uRuLM4esU8ickELHBiWxaRb7sKiN1+ExcUNIyo1HX0nT8Oe5X9B0w6BwenAncjAnmn3PIzEPv2h9A+gP/Cl77/hJG6g+xIEGPU62qCecc/DiErthv1/L0NtWQl9Pj6jD4bMmoOEPv0Q16s3Nv3wNaoKXVl/u8ZsNEIdEtppcUMziX0HdFzgIAg4vn1Lp4/BarHg4JoVkCoUGDvXVlVdmHXY63acRIKZDz2JhS8/3eHX3rtiiShwEOlyQvswOLbg/JTo5a0SULSl4wU2pTs7oU48DafstIgbSOFMkwGQxSjY3vM5gq7r28ct51FTZFsqDwJ+0UDEYKD2JMBwQNQwBiE9ge3PCzDYadOqvF/KnQjqBoT3EwUOpxMiZjhTggYRkbMNz7J4cfJEzPtrCcwu2vyDY2NwTd8++LhgI6oNXlwKrAzKKgNhYDnE+dcgRGGbDDBYeGjNEvhJjF6PRy0xoMagRKOBFI46ePfBYBEgcdETJOWq2Q1hyG4IxYeD5qBfUDJUvD+sggXrS55AuMTRbVvFGaHiyqFmq6iw2j/of9A1zoeu8VtYLaTYhbisjobS7x6EyUbgefYw5ucsRQGN2BHQK6AEgVLHG6iENSFCYcKphhAcLY+gx9RTnd5pcUMzoZKhWFwgIEpVT0UUZoGFQmqGABbBvAYSmGniQr1VAis4mAQelpbgQwGH6rYhRsWjoDGIHhtZjmsioOZ1CJVqqBDBJHCoNKqgt0gQo6wDxwowWCUwoNVxdnXZWshYFS6NuZz+Xa7b68OxWzA78V68cfQFl88TwQj5TDyxp3qJKHAQ6XIyRvfAov+usBXgESdfUpen0dOrjjXA0X1HcG+G30Kzgz5XWAUQ10+p8wXLm1CCFNVZWQFQSmDtFubkRkkKVTQX9cTiX7dg7U+b6WNkDb4dE3tklzuX74GuTxzAe4hxpq8twBwb5HAcVkGANSEUhsRAr0WglhAFrFIWrNHzmNLpEDcQ0gen0v831jV22QQ0qzNBtSoL2nHdYKHJFy5WYgCrUgJTuB+4aueJ8Yr8NokNVgHKnbmQ7y+gbtFkB2ylhopPBAkLxmKFLsNRdNMWc7gf6vTExboe+VX12EPGsx6YjNFaAadIooeUx7CLByFtQBJenP02TZJo5vDmI+0+Dz1HpKPnMFt88wVLVzgLnZ/DHiIiZxyJVIJ7Pr4Vr1zzvpMIoHmicOotE/H107+gsc67c1pHIWJDb1gl3iewX176OHoM7Qb/EDUtXn76ktdcvi8ivCPFtCTN6IU/H8Vvby+hBTtEcEYc5gZe1A/XPnk5MkZ2R/qQNHz99M8oOlHi/viNZkizCulCnL2J4DF5ZPdOixuaGRbkj78XbocpMRSCTALGIgAxETR5yHYAgGAh7Rlb8a7De2UYrCUCFc6WUtT29qmoFKCJdd9OYswC1HkWMFYLfl2wE/4KOeZePZw+d3CT93s8KbZ9+tcHcVvGg2B1RjCNegiq1iQHEl7XnBDhjl/W7xMFDiJdTsaoHlj+xdpz8swaE0OpKKAtllA1tJN64o9v1mHFVx08dgbYsXQPLTKxEtdODy785BLTtk9iIRsmhMIS7g/FmkywXoqAiAhd+fchWMLUsAT72cQNxTUO4oh2ixvIfqs19Bg80TPZVsBdU1aLrO3HaR9CN74HBDvRCEkPNGTEQbHxqEPxkVsEAdKjHoTkPghnynOckyS6Al2DHoUNJSg8Tu5XmVRM3WtkOnIP5dNEoxEzByMxIw4vXvmOwz19V20DjBo7AYodglIK/eBEqNY7Ch37T+yNlL4XuJP1edQnUSqVVLTw0EMPUZHD+vXrkZOTg/r6emrqFBcXh/Hjx+Oaa67BoEGDzsxBiYi0U3w378Ob8dZN/6Xt9LYMnTEAk24Yjc8f/a5D9wxf8SZuILD+3gcq31j9DHWm9g9Ww2Q04bupryA6Kxt1o6KgS7Xdu5THahG4vRxczFBIkpLx8tIn8Oubf2HZ56tpETHpkwyZPoCKtnsMTaNjSt88uwAlHu4hbUVteo0e8T3jOi1uIJD6sj5je2Ljr9s7tD3pk21YsK3Tx0HSYH98+Xeog/yo0IFw4KBrEbU9ysRwPPXzA7g+eV6HX5uMZYsCB5GupveoHlj7g22u4Xzj17cXQ/pf96mZniDdi+2Ld3f4tV2N83SW0yJuIPMkQ2zzJGV5FTi57xTOFU6HuKFZhKI9pmsxmSJ9BpLKmZtZQEVqIy8biuiUCDx/2VvQaVrnpvava3/xFmkfxKVf4Ilk51Gf5FzjghA4NBfPX/nsa/jn95+Re3AfHZSQq/2RMW4Shs++BhKZHBnjJtPnvSGRKyCRSqGt75hi1RPq0DAo1P4oP+U67iw6vSd6jBzbErtyat9uHP/HfQUwES10HzkWCj81Bs64FAOmz4KuoR4cL4FM2ZpHnNx/MF3Wfvkp9q9a5vPxbvvtR/QcOwHqYO9Rct7ImDAFe1e0RiaeTfatWIzBM6+gIhJfIm7I9ys0LsFlJ8xXqosKYNA2QqZ0PbAkItIRIocKkAYAxq6/XJ0RzB2cS7WcvvGOcwqJGkiYzNBBjKM/k9nNrtlvV3xnNK1GqacV8jrqMmDCf1sHmVbdYnEQN3QE/wRgxMtdqwYXERERmZiagu/mzMZ/t/2D7fn59LIdrFRgTu/euHv4UMh4Hlck9cH8o+4TwQQTA5hZKM1+1PWn1qiHhSi8SOeNsdCifF+uXqSJayHVJS7WjlOEgsz/ZmtcD6APCUnFyLBW178CzSYUNrrrkwjYVfkBEtUTIGFVUPrdCYXqDgjWGoCRgmVbi4BGhmXQ5Y2sX7Gjap2TuMGeRL8qnNIEQ2+R4pPjqzAtuh+CpJ0vKJqdMAC/5e5Bbr1NMBGu0iBYXo0hAacQJGltmJB58FqLEnkG536QgjNDLdGj3tRauN1gllMxhLQ5WYMBFaIQcYM7VpWtxJSIi6DkSf/A+6faO2AgIuRREGClYoZmgUUzUtbsqZaBUqo/CYtgAsd0bKBSRMSdW7R0eCqqw/1bikuYBh2kR0qoc6Zgp6hifBirZrU2gwdSjC7dmwMjGTRmm34jxKWTfNE57/144nZMBRXufhhSHvreseC2tDp9CSwDY0oYjKlh1LGZpAZIT5ZDcqqyteiwCYPWJijyVohje1MejsOV4qwtJDGBFD+eBQLDAzDuqhG0sPSXNxZ12X4DQtWoq2yA3x/7UT9ngENhkj3kXev7xcIU5U8LZlmNEbIT5ZCUNaD4pOviVNZoAVNSD+3AWOgnpkJQ2K55XEkdrGrXr9MCEeowcPi8cytqkTIgFR+8d3OL4cgtPe93EDd0BOJk9NzChzq1DxEREZG2jJk9HH5Bfvjpld9xYIOtYD0oIgDTb5tEC2qkMgkmXz+WFnR4wz9UDYvJjMY6767+9nC13tdPjAqGX3o0CuySeNpObA6dPrDlb+JiuvvvAy7XJeNmn9z3FUZfMRQyhQzXPHEZrnpsFuqrGiAjCQx+re32sVcOx5jZw/DGDR9h7Y/eCw+a05w+f+R7jL9mFPzsXcs7yNSbJ2D1dxshy7K9d3N6HE2Vc3pfnto7rG28sG37RFVihTacgVXqelt1vgWsXXvs51//weWzBkJJ2j3N7S0PkPMXlRRBHaXJK0gOF9jaak3tHBIi6K1TciinlN5LfZmXERHxlVFXDMVHd3/hUFRxLkB+ooZ+8e6fl0lg6BkDdmdO62McC1NSGEzJYfR5tlEPSXY5+Pwqp998ewpDm9NgXD6nkMLYOxbyHa7nrtvCVTTQpauQniiDqVtka7+vDeHBfhg3KBVmkxm/vL6I9gl147q77kPIePocX1gFIxFSu0MAIotqoXchpG45rtxq6MLc5w2R01mxNpNozk47eZkFSO2fiA+2vkL/JtfhG1PvdhA30P5ssuf5fHNMEKwKCRWcE7oNSsGTP913mo9epCOkp6fjzTffFE+eyHnJpLlj6LgPcbc+vMWWchMSHYQZ/5lM2+q8hMf4q0dhxZdrfRqXMmgN7b7HW/O9O6nH+0ehMtnoVmgwevYwDJjYp+Xv1d9ton0soucN+8O5sPW/93xpGyeVSTD3mdm49qnLbX0SpQwKO1HwhGtHY9zVI/Hy1e9h80L3c0X2kPbzpw98jbFXDnPo33SUqTdP7LDAoav58ZXfccmdUyCVS33qI5DzFxYb4pO5sDuObD/e4W1FRNwx9qoR+PTBb1rmDc43iOioI5xrfbDTmZIw7OKBMBpM+OX1P7tsv2Tsrb6y430rkvhTeooYC55+sg/k0v5Dc5+E9M/mJt3V6e9Az+Hd8Nh393TRUYpciFwwAgdCTHoPXPHki9BrNDTZQBUYSAv9mxk4YxZO7NjqMcXALyQUF9/3GCQyGb5//D7fHB7aQd9J09B74kVY/tHbyCNCDDuSBwzGtHkPOTTaDq9f7XF/ZqMBR7dsQP+pl9C/ybakaN8VNSVF2L96ebsTD7I2rsPQy+agI5iMBlQXFYLjOITGxmPQJZdj95KzH9NDkj5O7NhGkz0S+w1E1ub1HtePz+iHv//3AXQNnagIZhiw7JkY5hL5N7H/o/NX3HC+EN4fCOvHIPPrM1tQxPDAiBdZ8AoGO16xIn9N17y+XyyQcgmDxnIBJ3/v+H6EM5iwV/IPkLfaCv9Ehopb6lrne9ot7FBFAcnTGSROZ8D6UBgnIiIi0l6GxMXiu6tmo1ang9ZkRphKCQnX2ga8vftwrCk6jlMNjmkIBNL1EDQSxKj98fG0S8BJLXjy8Gv0OVLKTsQNVLgAxmtHTmOSwmB2vdacpMGYEZuBJ/cvwJ7q1oF4BgzGRfTA872vcFj/RP1Sj69lsmqR27AOaQGtfRKGC3a5bramBEuKd6NPoOfBGvI+SfoBSZQwWs1YUbwf1yaOQkfQWQwo0FZAwvDICIzGtUlD8NMpWyySlDVhVNAJp+QD8vpBvBYMKpBjcHb7DmgjcCDJDS3ihiY4L5XcRqsR+2v3Y0ToSESrhqOgcZ3H9cMVA/Fz/sfgmHooeVu7wGxlYLRyVPLg2v7cEQYsXUREupK3vluHqqQwh8cEtQKGIclgSdGLsrXohDMIsMg8fFetAuTHWt1miBsos/EIzN2iYIm0SzogVYBtotpd4mUdU1IIhK0naaGQwLPQTO7Z5Pzf9DJqOcxRAeCTQqnLJUkIcMb2GNGUmZWAlTgqmwGimWpbgOTyEI1EzOE53WJM9yQMfiwKP5/h2GOJlMfzfzxCHUJfmvMONv++o0v2m9ArFlP/bwIdeP/j2/UexQ3kkmX1k8Hq1/odM3aPAKczQb4zj4odnLZjGdRP7wFTjOP4GPks6c3Wy2Spq2fX78vGumW7ER8TgoZqjduCXG8EhPnTyZBL7piCSdePoeNlFzrkd+DLb8HbPkRERHxnwMTedCHFNMS1LiQqiKYbNEMKbf5ZtsfjBChxYHvmt4ega9DhwbHPtev0S8o14CobYQl1Lwa4ckxfjLtxBl699v2WoicCcTclhUQPfXGnw/p/f+25rUxEZ1v+2ImJ141u2g+LwDDX8yTHd2f7JG6wh5zH9T9vwSV3XoSOoNPoqAs3cbjrM6YnFTms/KrpPfHO7XOPIs3mdchmbczFORMQetiC2jgrjGGtUQqMSaDiBnWhYx+lUWvEjl3ZGD+mBwZd1A//LCXZRZ5d8l+b+wFMBtvAIFdcDenOkzD1iqNJXr5cr3mOFcUNIl3O+7d/dk4W1pC+hbu2bjMkzUXRJHAQJBy0E3rCGtJq8GBRy2lfiE+ohnzzMbe/M7ai3m1bl27ipftkjguBsOcUGLOVCgjMcUE0ZQIWK/jCGowd2xNRiRFY+O4SdDUkGUK+Iwf6oSlOfTgZy+D1+2bSt/X8FW/jnyV7aFIDTQ90h5S3FfCbLIDEdXs7PTwQl/ZJQ1G3OCz9zPVcvOxYGfS9omjygSv4qkZw9WfOjYsUoo66dCiiUyNRUVCJ0jZOrYJc4jIB0QGWQUByOGL8lJg1byomXDvKJ4Hb+Y7YJxEROfMMntqfLrUVdbRotm2f5Ibnr8TuVftp6po7YrtF4bnfH0F5QSWemv5qu15fOGCCNc8MNsH9dXF67GhkrLmRJuAd3XHCoU8y/tpReOCz29vVJ6kpq8M/S/di9OVDvfZJSB/IV3FDM9p6HTb+9g+m/t/4dm3Xsn2DjibZEcHFoCl9MXHu6HPCbZ6Ms+1edYCmEw0ZlIS9+/M8rt8rLYL2IztTyse5aR+IiHQUIkJ655ZPz1txw/nC+GtG0pTPv/678oynE5F5EmI08czM17F39cEu2W+3QclU8Jd/pBArvvR8j/H03TuTrP1xE4ZdMhBRyRE02aGquKZD+wmKDERkYhguv28Gxs4Z8a8YJxL7JB3nghI4NCP386OL0+MqP1z1whvY+sv3tKDdpNfRgZ7AyCjEdu9FBQYpA4eCbZpcJA1OUuDfXkgCBN13GzipFAVZh5C5aR20dTUIjIhCSFwCYtJ7InngYITExDltU1/pPUamoarSp+M6uPbvDgk26ivar/Qym0zYuuB7HF63CvpGDX0sICISgy+5AlPuuBd7li7yKDQ5Exh1NleLbsNG0mOtK3etzPYLDsG+lUtQW9o5u/L4Xn0gkXsYcBMRaSe1JwVk/yXO8p9udNVA0sVA7t9A4xlKLSCMfJFBeD+GFvZ3lbiBlQCaQuDAp+ff92bnq7a8LpnrelmfIGIgsuw9IaA2B+h/N8CIIgcREZHTRKBCgUAXRjpBMiUWTLgB7xzagCX5mdCaTXSOOVEZgsEBiZgwJBUTEpPBkb6IYAXLEGmDAJ61tMxRmwUWUqH177ZYBBa1uhAyB+18XLlmHKrZjZWpm1FjbkSafwASVFHoE5CE0eHdEa9ydnprNLuPSm7POoTFhTtaBAHeIIkEzZTq2h/dY7CY8EXOcqwo2YlGs63QIUYRiusSJiLN/2J8n/0PohUnncQN9gTyOihMBuisMg/iBcFJ3EDwZShGb7X1GxP8puBQ9Xxoza77Xko+Gn+WrEGV0bF/yLMCOMYMnYWH3srDIjDgPFQVpfgNAtuUCCIi0hUcPlmMJRtt7tCusIb6gdEZAbmtIIT83Fij4NZVWHmgBJzG8TfJ1WjANU0yWnkOxuHdwKkCYfFgVkbTDnwx8SKCCbKYrdANTHAQN9hjjg2CoXcM5AcKnZ7ji2uhTQ2AkQQ52F2YDQECZHWAlBiCehicpe7HDQKMge4u6lbofz+Iy766D6u/3UCj7c8Uryx7Ar1GpGPxb1uwOisX6BEOSWEduIaOF/HwUh55mYX47OHvbA+oPYyTMO7PnUUhgXZkCqyBCih2OU58GrqFOYkbmncnWEkCiIcDJN8bF98dqyDghXmfQ5pfQwffO0pdRT1dTu7NwamDefjP2zf8KwqKREREzg5k0pcsbQmKCMT7W17G10/9jA0LtsKgM9LLbWx6DPqM7YnhFw/E4Gn96fWJFPZ3BPWGbOiv6g+9i/mVgBo9dr+2FMtOllIRBilcSuodT4vnh18yiE6StqU83/scCCn29IVln69BRyjL8z5X0xZdox5fPv4jTWwgBUWEuO4xuPbJy5HSLxGLPlqB/KbHHfBlYtfNKnyDGVGfZ8IYwEE/rgcVOMtrBLdJWo2NtrbX5BvG0uSP6lLXfa+YtCh8+/wCVBY6tkWIyIEtroYQ5EddwQ1TurktKCaM6ZPs/b2JiLQD4qS87id3qZNnF8FbsTlBwlFBAUmM0Q9IdBA32GOODYaxezRkR1xPUrCNBnDFNbDEuBlA93ZZ4ViaGGH156Edm+4gzCDpDvlxobjvkcux5odNqC3vetctyakKsFUamuRAhRWCAElRDT7+9h70TInEnx8tp+IGgiXCe4qeNVBFRerasd1oEpw9ikoNSn/cgc/MnjuNrMFMk+OMicGO12WSQiMQ8YkSpphASIo8j1mZI/xhigsmCi9wNY2Q5FTQtMP2Yjaa8cLst+m/g130SRijmfYfW4wB3FCbX4WGhiLaJ8k9nI9bXrvuX1FQJCIicnZwV+AfGhNCHaC/fvpnbPx1GxVBEBfquPQY9B3Xk/YLiACXXJ+Cozo2DmN+ox5+H0fAyDi7kssPsFjz2hp8d7yUFtjHpUcjqXcCMkZ3p4X2EQmOZi4+90l8WIewfH7H+iS+7t+exnotvnjsB3oPb05/SuwVh+ueugLdBqTQdD93KRZnCl2Dbf5m2kV98PNvO1DnJkUwMS4YX9z2KWpKOlZQ2wxJ2hAR6Up2rdyPLX90jTmQiHvK86tw53s3UXGWprZz6cq+Qu5N7256ESl9E2nCdVeJG8g8yfHdOXTpFGe49Ivcr5+71JYy1pl5kprSWrq8sfe/yM0swE0vXt2FRylyoXFBChw8ofBTY9Ktd2Hs9TdDU10FmVIFZYDrH1xkSjcUHz/i8745iQSXPPAEwhISsWvxHzi0diVNCmjGYjQ6pDYYGhtRW1YCTXUl+kya6nKfqqAgr6+rCgyGSa9HyUkSoyUgMiUNUoXSab2KPOeYNF84tX83cvbuogIQX7BaLfjrrZeQe2Cvw+N1ZaVY88XHGHHldbjpnU/w24tPIj+zay78HSEwKhplOSeRuWktgqPjqBCDfCb2BIRHIKFPfxxc0zn1H8OwGDxrdiePWETEkVMruqalIgsCus1mIFEDe98j1qX/sjPNAt2uBI4vcP10Qx6w9k4BAx9isO1pAdaOJbO1i4QpDEL7MNj2nAVFmzq5MwaIHg2UbscZOfbTjaEL6rkEC5C9SADLA/3miQP3IiIiZ54QuQqvDp6Bp/tPRplOA3+JjD7WFpZhkaSKQU5jYZuidYYWs8tZW6KDPTwjxX1p9yOAj8ZXJ7fizxN7YJQI4IoNUG2oATtRjn9ijUCTsaHGrEOhrhK1pjpcHj/E5fEq+BDUGj0PsCj4UGjNehytL6BJEN0D4qDgnF0KTzaU0P+Tgnxvwx5ac6tD3sayIxgRmo5hYWnwBYvVgicOfo5TjYeh4i2QshxqjQoU6Srx5tEFuD3lYiyddDdW5B9GjRdDlUBO6yRw0FkksFgZcKxAawRYF6ICKxhwXhpW4bJIHKopxNKi/dCap6Gb6i9wjOPEuFoSBws7BlXGrS73Qb4DMs5Cj4mkSgRJta7XA4uhIY7pHCIinWWpB3FD8xeUuH1aA5Wwhqrp70VWL8Akt8AsZ1sci8P8Vbh+wkAEpJXj461fud0da7ZAvvkIuLwQNExKpQ6nTggCOJ0AlhSceHHrZ8ikHnEo5VkYU5wnLu0xdIuA7GChk2OqUSHAGODiNVgGhiBQB1QJueZ6OA6FnsU1Q/rgu2376LG07EJrQsDKbBSeqMb9I5/GPR/fihdnvwOL2XMxjMDYiqkYs8Um9ugAM26bhJTh3XD///7CxoPZwLiUpp0LkJ6qht/6k2CNvhXlkMnoUVcMxbZFu2hRjj2sRg9WY6ApDQ7vgW4Ir87Vhp7RkGRXgK9uvfbpe0S4PxaSluEu9IYEg5g8vGzTuSQD753FYrbi9/eXQSKX4pZXr8UFDf1CdrLf1dntRUREnCAOqg9/dRfu+uD/UF1SA3WwHwJC/V261MX3iEH+kSKfz6JcJcMrvz6MgB7R+Hb1bizdehgmoi+r0UKeWQo+swx77VKRSPoCSTeorajHjP9McrnP4KggFGd7Lroh6zTWNeLY7hzqutpjWBpkCuc+Sc4hmzDOFOkPY1oYrCoZLQyWnqiApLTe7f63/LkDA6f0Rf8JvX06D0aDCY9f9BKytpF5m1YKjhbhjRs+wrwPbsbXRz/AncOfwBFyb7dztLUZVXlJHKrVAhIJIGtNMWfqGsEdPAVGa4BMC3AnNRCCXAs4m4mPDUbmtmM01SK5TwItemoWY7Ss0yMGaf2Tsfanze41iTUasDWA4nAJdP1jXa7HsyyunzLQ4/GIiLSXlS7clEmhvjkpDJYQf1v/oLQWfH4lbR+7Iyw2BHMemQWTwYTPH/2+Sz4Itt51cZ49pNDdODYD0BlgTvQ8J2xKi4D0SLHbq4N0dzYMMh7WttdzWvTOeOyTSHgOM+ddhJ9PFdPz15bMgkrc9cxPuOe/t1Cna6srV41OwtXrwO1uncu+7N7piIsLxZMzXsWuFa3z677OYUlK6uC/cA+MSaEQwtQYfckg7Hh/Bdgy99d6e4hoyxIdCM5MmqNCS5OUCMaaz6SxR5RbgQNN5BiXDktEa3EvmaLR942DYssJSIo73q9wJUajfc+CapoK4g6uvAFcUxGp2WTBgjf/ok7e1z97JS5oxD6JiMg5Cbn3PvrN3Zj34c10rMU/VA3/YOe2qzrIj4qg21OEr1TL8dr8p6HuE4A/CtZgXdFOWCUCrDkmWP7SQb9Yiz3WVtEgKZQlaZ2aWg1m/Gey2/6GN+ORkOggui+SGkcSK0ifRNpk/GIPMb3oCOt/3Yp+EzLQe3QPn9Y36Ax4dNILTgW0pJj0lWvfpykV3574CLf1fhB5Wc7GLmcK0t84dCAfa9dkoltCGA4fL4FO71jYkJwUhkRdIzZ1UtxAEmuveODiTh6xiIgjf3+zvktOSXh8KK5+/DLUVzbgm2d/+dedZpJ6OfH6MVgxf63L5zO3HsUTU1/B3R/dgjdv/AhWl4nbXcuch2ciNCYYj015EXvXHOrUvjiexYhZQ+j4Utt5kvORrpgnIefhx5d/h1KtoP3xCxqxT9Jh/nUCh2YkMjmComI8rtNv6sU+CxzCEpJwxZMvQhVoG3xK7Nsf+/9e6tO2pMh+yy/fYeLNdzg9lzF2EnL27HS7LUmbqMjLwce3XN0ipmBYDtHduiOx7wBIFQp6bDsX/eYgrmgPJCHizzdfxOTb5qHPRNdCDEJNSREOrFmJEzu2ekx92P77z/APC4fFcnYv1lsX/ICqAueOQ3hSCiKT0xDfuy9SBw/H/Ltv7vR3beItdyKxT/9O7UdEpC26io431nglMPp1FsTANyiNOPvbhmPD+grY/JgV2tJ/z/mOHAyoIqiXp9t1dOXAgU8EjHyVwfEFAsqIUZAAkLpNSxcmEMsCgZRLGfScy2Djw1ZU7O+CnQqAWXNhiBu6GpKA0mOuAJmrgjQRERGRM4CSlyJJ7TmaZkbUWHx08kenu5QVLLRWCSSMtSVNIEGZjPu73Q9/iW0ie+zxEGy+6jDtL5OCXOP9obAkOw+mEzLr8vFVzirMS3Me2E1Vz0CJdpfbY+QYORYXafB36XMwExUZ1Q+yuClGjWtjwsCxKuSb++OVI7twoC4XKqkZVUY/RCka3O6TiAeKtIEttT3Fuhrct/sbPNdnNqbHuG9X5zRUYsGpPTiu2YpAxTGkqVsn3E1WFgWNgagxKbGw4A+kqWVgGO83clfiheLGAFTqVTS5gaRrqKXO+zFbWXAukh2a0Zs5vHxwHY7UtTrBshiEdHU5pkfL0T0gBlHKoYhWjsLzWY5x2G0hAhi9mUeVIQRGK4dwWYND3YKUVWBq1D2IV/lWjCUi4ivl1bbERk+Qgn3lmkxYiMghQEkLePzKahEQEYinNz1HE2t6xkWAJy6TE0An6Z6Y9rKTO7A9kvwqBPzeiMZRyTan/qYvPCnmJ+IGUoBC/7YCgge3ftnxclqYYg5QeHQapu9DKYWgkIKxi5kmV4fGQVEet7NYdVAU6mEmjp1uGN0/GUnZGkR8vBu69BBYlRLwtTrIj1e3CBRIUed3zy/Ai4sfxW9vL8H+dYdt70Epg6HJXZuca12/WBjSw+mxkkImaW4V5PsK6f58ISgiAJfeMx1zHp2Fm9//DYdOlTgWQjEMjMkhqJfzCPgr06e0GhKTXFdR51KYQS6xsiMl0A1OdN7Qm4soy0CwCDCmRYDfYSuEElgG5hBn0WDLLsl/zACjN8Cqbi16ZYwWMAIHdwFDjN7ksei1oyz6aDmufmwWVAHuj1lERETkdEImEMniiVnzpuGju7/waX8k+eeFRY+2iCWGW6TY/L9t9J7p7Z5xaNMR/Pzany5d26bcOA6Htxx1u61CLcfulfvx7m3/a7nfkInjPmN70baFyl9Ji2bIpOnRXSehHZvqJG40poVDerICyk0nXR5r0YlSPH7Ry3jyx/swds4It8dy6nA+ln++hk5YuyuAIkWvn763BP79E+mEPH8gG+Z+qS2u21SQx3sWakqOFoAtr4cQ5g9BwoMhosE6RwMntqACFk8Ch3otPrruPeQeLnASJ6YPSaUOhUOm9cegqf1wZfgt8AXF7nxYZTwM3SPovboZP7kUz904Bb2TPLedRETaS2VhlcPfpJjcMDTNQTRkjQyEqXs05FuOOogOwuJC6G9aIpMgdUASOM62DREzPT715U4XbHD1enBldQ4F7m1hrQyEACWsQUqvzvuCn5ymETAG1/OrRMAh25gFa0QAzDEhtI/D1mnB55ZDPyQFFg8O2OOHpsEvNgRCsfu0mpw6DRZ8vQ4v/Pkofn37L3rdbhbDdTTxx10B6RX3z8Dl98/AvcOfxIm9jgZ+XGkdTXrwBF9S21L0LztRDpwoh5bhfRY3ECxhaqApbY30W1wFZpJ0BnfoRqS6/uylPHRj0sEuP0C/I12J7EAhTNGB9DWcsFgh3+s8L/77e0sx+6FLoFB5SNcTEREROY2QtjpZ3EHapjPvuqg1DdQLfcf1wnO/P0yFEYTUjRFYegcZ3/IukiPFqwvfWUIT11z1SYhwwR1ENL7p9+147boPYGkSAnISDv3GZ6Dv2J7wC1QhOjUSP7y0EDmH8tERCo4U4ZGJL+DZ3x7CiFnuDWqzD+TS5Lqti3ZSQbs7Pn3wGyosIUYcZwuSZPXGm8uRW9J6jyYfE8cz6JERi+TUCAwbkoJ+GTE+90ncoQ5S4dFv70Fqv6QuOHIREfd9kvYQkxpJDSiIEU7agKSWtN+hMwbgsYteomKHC4VWYyYrGBeC6QnXjkagC/MNe7L352L5F2vodf7Xtxcjc+uxFrON5pSaroCIGq58aCYuvnMK5g1+zGncpL0IHAszw6C8oBLCGRBmnG/8+tZfuPTe6ZC6ENuLiPxrBQ6+0GPkWBQdycSB1cu9rjvyqrkt4gbC/r+Xteu1sjatw5jrbqLF8PakDB5KhQpt0xCa8Q+LQOZGR+WaYLWg6GgmXboMQcD6b+cjffhomnrRlr0rFtPnbc5CXnZltWLlJ++Babopny1ciRsI5aeyMXDGpfS9kmNtrOm4XXj6iDGYfNvdkCndd8hERDqKIsyHXrgbEiYxCO3tPEHmH89g/Pss1t9nhfbsJhF2GawUsLpxZpaogD7/YXHgf9477STJYeuTAvrfy2Do0wzMOiIUEbD5EQE1jkZsHYLhgRkLWHBSBmV7hK4RNzRR7voW8q+HiD5K/hGQeJEocBARETl3mRgxDFn12dhQsRUStu39ioFJ4OhCuCx2dou4gbD4E1sKGZmAFZQMLBM8F08uK96N21KmQkoibuxIVE/AifrFKNW5vqHkajOwxu7GlSavxdOxexAnawQaba2VaIHBJGUyjtb3pO+jwSxHqV6NSLnzwBzpUmTWRsHcpirZCgFvZS3B+IheUPDOQo0vjm/FO4fXIlTRgGFRuU61QOR1k/yqkYBqaly4oOA9xEnrEOJlrERrcXytCp2KihvI+TdaeLoQcYGcNzuJUMxWK3hiI+9CwFGoCYLOTBItyPtkWrY50hCJI8eAtwdcjCF+GTBY9NBZvEetWkgsFVgU6YNRbvBHsLQRPGPFsNDRuCzm/yDjxD6JSNcTFmybKPQE2yQI4Gq1dGlm8pwR6J/sbDxBItLfWf8CHhz7LKqK3U/AcXV6+C/LgsVfBrO/Aua0SAjhjgU7xI3fQi6CdsV1LduX1UN22ObURgbUfaLNoLs5TAlLoOciEFOECsp1BagP9wdkzsNw/io57rpyFD689gOwejNUB9x3xLL359EEh3s/vg1P//IAdBo9Leh8dOKLyM4qQP30XrCE2xUxcrZkCmNcEPyXZ4Gv9CxIIWKJH/M+hUQqwaZDOTZxgxvM0QFUXCItqoMvHNzo3kBEdrgElgAljN3C0S6axqDs0x90A2O9FoaRr4R6Uy7Yej39/FidmQocGmZkuN1WfrjE5aRLZyGTLrtXHcTYK4d3+b5FREREuoqL75iMzG1Hse6nLV7XvfX16xySIFr6JD6+1oov1lIXaeJ2as/EuWOw8uv1yNpmm7huC3F6Xb/AMfGMFOnsW3uILvbo+8S4TW4ypobR9or8YKubqz3EsfzDeV9g+MxBLp1YSbHSt88t8Fi8Y+wbD3NSOC2+fvqj5WCTwsFaBbA1DRCC/enJookIRjLx71rwxxVUgi2rs61X7v5ezJRWgwkNgBAd4uLNmsAfPoVcjc6lOPHojhO47qkrMOzigaivanBKdXD7mkTMsDUHioNFMCaHUrHDzDmjcN+8GVCIE9Uip4HQ2NbvtyCXOIkbWpBLYRieDvmq/S2F6pPmjkHGKGcHZJJm8va65/HQuOdQ6+E35gvyHTnQTu5lEyC3gTELtM9C/+3LzgTBa5uU7IeIKshij/JoMRpC/FwWvgf5K3DblSPx7Kfe58MPFVbgVeL4/PkdtLiStGdJMdGDY5+jCTWdRaFW4Ke8T+l9YNPC7U7iBgJfVA2mXgfBX+FenHzKWajRXPzkM0LH17H4yz2K3EmaoTE9Copdzu+vM3B1Ovj9nQnd4CRYIlvvx2yVBordeeDLncfhGuu0VEA//JJBXXosIiIiIl3JZfdNR9b2Y9j8+w6v6/7nretbxA2ExZ/8bfuHj2UVSz9bhWueuIwKK+y56P/GY9W3G9yKHMj9cNNv/zg8ZjFZsGfVAbp0FUTQ/cFd82nxc9t+E+HLJ3/CL6//6dO+yH38hSveButlLO20khLrIG5oNSgRcPRAAW6aOwoDByehorAKBp2XOG4PXHrPNNpfdZXyJyLSWUJiPJvZeWLS9WNd9klS+yfh7bXP4eEJL9A++fkMMSUyZsTA2isGJnK9IUYPxTWQHSoEV9XYInK+/tnZeGbmG173d3BjFk7uO4WHv5qH535/BEadERIZjwdGP+M1/dMX1MEq/JD7CRXAr/5+Y6fEDZZQNczdYmANI+M9DA5o9OBSIsFnl/o8VvZvoK6yAYc3H8GASX3O9qGInIOc3Qrz84BJt96Fyx5/HnI/9y43kandkNx/sFMqQ3sw6rSor3AebGFZDrMeeQZ9p0wHR+KGmyCN6YiUNNSWuh5oPx2YDQYc2bLR6fGCzIM+ixvsIeKBc5XdS/6g/yciDFVQxxsiZCJAFDeInC6SpnWsucPJgfRr3G+rjGAw8RMW3a9loAi1Fd7LAoDANCBpOhDqS3viHGqJuRQ3MEDUcGD8RywCkhkIZt8L4ve8I6DyEKCKZCDzZzH2HRacZ6M7nyDHsOY/VlQfs+LID2f++pg8EwgfCIT0AuIn21I+zjQkUeRM4078IiIiInKuQNr993abi8e73wk5616gkK5ORYa/4wDYiT2tscNCtASQe+7+1Zu0qDQ4O9mxDI+J0e8gWX0pBLROyGstCtRbx2BtRWs/JZTX4c2E7TZxQ5uEgdnh2XgwrnUg/1RjKLI1odCaW7evNcqxqzIehdog2r1o28XQmPVYU+ocAbq59CTePryWzlF0Cyp3a3RKHifihmbKTUqP3RiShlBjtp13ImLIqQ/GkdoIp8ZOtd71jdMk8HQfJK2BiBpIikSlTomTdaHQWyQezcm/y9lG/y9lZVBy3ovILQLr8LplhgAU6YNQafATxQ0ip42Lx/TyvIIgQJLjPNZBnKKJQ6Q7olMi8d+dr9P4XzKwTQanA8P9qavqjNsmoefwbi3rcvUGyAproVx/FLLdOWBrbdcfhrx2biVUq7IgyyymRS7keEhRu3x3HvxWHWkpDiJFIKyd+MIVRBDBtnFKFewvKB6wVGug+vsw+IJqOnhPIJqLsQNTMP+Zq5EQFQyzyX3iiz0GrRFv3/wJnUyNTAxHQIg/3lr3HDAsyVHcYI+UR+PIZB/2bcDdQ57Ayf2n8O1vm72ub0xxUSzZAchZVG3NxtyEGAyLi0C/hAjMGNEDMokXX5am6zf9bJsmSvQ9PDu5Nq8vza2GpKIR8hNVkBbWQVKugd/aY5C0LRgjLqcHiyDfX4jTBZmAueAROrmIiIicVYh74OPf34tnfnvIY9rDgEm9nSblj9v1SXyhurQWdZXOfRLi4Pb6yqcw5Yax4O1Sl0ghDkkaKMtz7zje1i3Q0NPzvYLcS8h67iCFBVsXOSfcEXdUT+IGgmFYKsxpUY7O8mTuJSUC5thAEE07SRMiC28SwOmttAC6GZLSIDmUB8mebJ+GX2mh8+FT4A7lgKnRACTdQm8Em1sK/p8jYFyIG+xZ+O4S+n9VgNJr0kdbuAYDFAeKoNqZB/nxclHcIHLauOim8S3/NifaxEPuEFQyWKJtc35+QSpcdu90t+vGd4/BJ7vfoEkCJOVMIuURFB6AtIHJmHH7ZPp/bzAsA65BD9XKQ5AeLQFjsPVJQJLnDFbweqH1t0wuBl6cPElygc/i7DYI5fVQrMsEV1Rj1ydhMH5IGj574RrERgTC7IOgV2BYKrR+/foPkZdZSPskgWEBeHfjC5DKPTtI+NKs0zXocM+wJ5BzMBcL3vzL5TpEoKLccASMC+EVozNCsf4ITQ5sxhKggDEpFKa4YJp654lZd0+lTtsZI7tj6pR+kHpZnyfn0wVmD2kZLccV5TrZw1WxanvgarTwW5UJvz/3QbU6C36LD0C97BB4D+kVxqY+1QWN2CcRETmvIUWmTy94EE/+dB/kfu7NRog4t9vAFAcxQM5B18an7qgoqKLir7aQxKI31zyLCdeOomlxLcfGs+g+JJVud6YgqQw7ljkbUq3/ZavP4oa2Qu6zgUDueRHu67FIs2nhrzZRi3+IH2QuBKPt6deK4gaRM9EnaQ8BYf40ocYdSb0T8PGu16lAJzC8qU8SGYhug1Mw886LkNQ73qc+ydmEjNlrJ/SAoU+cTdxAICnMscFonJIBITYI464agQ+2vozw+DCYTb4Vb2nrdXjl6vdQfLIUEQlhCI4MwnubX6LnqLM0VDfi/pFPIy+rgKb6dBRzdDCMI3rAGt6aQk5S+cy9E2AanOq2f0SSDEgaUcao7ph0/RhwZ0GE1tk+SUfojIjtvEHsk3QIMcHBB5L7D8KtH31BUwdO7t7hUGWTPGAwpt71gFMaAS+TAe0U0EkVrgeI9Q31yN2/BxaTyaFwviz7BM409RXOSrc9yxe3W9zQHhiWo6kU7pDIFRh59Vxs+fFbmE1dc7GryDsFbX0dlP4B6Dl6PHYt/r1D+2mOjhIROR0EpjJImckge7Hvvz9eAYx9j6HF+QRjg4DcFQKKtwmwmoHgHgxSZjFQxzLofRtZnPdRulPA5oPuO7mcDLB0XfLXaYEU7w9/jgUns50HdSJQvs/37Y/8aEXMKFuDjsSHddX7rc8D1t5xFqo3GKCBJGEyQGgGg+SZ5Dsi4Mj3Z/ZYwvoCusqmYzlDBHU7h9Q4IiIiIh4YEtIHPQNewf+yv8L+2kMQmoY9GDAYENQXtyf/n5OjEHHiJpPOFK1vA9QKzvUAcY2pET8W1qLW2A0q3gCrwEJjIU43dQiUMag1KECm5S8LPoUA3v2k6LTAAvxSlYoai20SotygpgvHWGmXgiQY1BlkYMi/qIkHA6FNdVGJznny+JuTNmckGWdCiMJzkbI9BkGCQmMQYqU1TmIDIkzYWN0N1SYVLFYJynXkmFvb9yysUEv14Fkr5Kwa18ZdhN8K/4TJTjlJ3hNJe6imiQ/t42BtAbRmA5S8DP0DR2Frlc391h0qzgAzY4aUNcNo5Zs+HwYsI/ZJRE4fvdOiMWN0Lyzb7DpBUnKkGGzzdagJpb8C7295GaExIS1Fgiu/Wod/lpFxDwt6jUjHxXdMoSKH2968ni6uCgifv/wth8fIT1iSXU4Xhb8CuvrWYhdJaT0UuzxPZpIidu2YNNdPWgXIDzoXuPOVOjB6MwQ57zFpgm0w0uNTbjxGXYyJe2ugSo5X5t9D0xIIiT1j3bpSt4WMCf382p8YPLW/7fAsVtTHei6gsYT5wRyiAt/kiOQOMul754BHUX9ROpDsWcAg2BWYdhYy0VK06SjIyFj/wamYMXEgggNU+H7VHjcvTlRwtsuyOcqfOqTShxVNRVXkOTdNffkhksbg3NeR5tdgeKkB+TAjr6yWClqkOZVgdae32MeX4jgRERGRsw3pa4y5Yhj6jOmB16//yMGBlGUZjLpiGB764k6XRUC+Ov8374v0Y1xRW16P3asPOogCyT3w2E7fzaas/nIISs9FMaQA2qqWg6t3bMPYU5Zb7vTY7+8v9bhfS7AfLHZO807HJmFh5QWwdoIGm9iBZNkBkqxTEIqr3AobAkLVmP3QTHz33AKYjK19EpryUFINtqT9SdUHNmTSojAysT3m2tFY/uMmMCYzmDaiT4d52iA/CDIpGCKkqLWlR51VR1iRCx5SjD7u6pHY8MtWWELcm9U1Yw1Vw09rwIfbXkFQhK0NXVtRhxVfrMOulftgsVjRe1R32ichxft3vHsTXdqy7ucteO26D9y+jipQicYmETVJtZPvyaWLJTwApuHdXQuSTAIsTXMWzgduhTSzcwkJRNit2NLUJ5FLEBbkh5e+v48WjRKSwwJwLM/5+mYPX9HQcv39+fU/aeENwWw0uyyStwQqYewRDXNsEE1LI8JyyfFSKoR3dz0jqQ2393vE43GwGgNUSw/Q/Zqjg+gJ5MvrwedVtQjZrSopdMNSYYm0ExKYLFRsIjtY4PT6LM8iP6uQ7ou8r+n/mQRuw0H8ttZN3LZVgCzLTeqdD9MOJNXHFQOn9EHB0WKU5HTOfZaIa0AWH+7xqf0TO/VaIiIiImcCUnsz/upR6DO2FxXakfSZ1ucY2h64/7PbHbfhWFrsat8+9gZp+0rdFNKTtNm9qw/StLhmyL+PtqNP0lWUuuiT/OGlT9IV43ekNsIdIdFBtA31w4sLaT/CKwF+5MPzuMq+vbn0/0ScMOryoVj7o3dTlnOxyFvkwmbItP4YedkQbP1zp8/b+Ieq8dE/r8K/qQ9TU1aL5fPXYveq/XT8v8+Yni19knkf3EyXtpCky3du+cTja9RXnt30B1NquGN73B6Ohd8Vg/Hku7e2zHEn9IxD/hHf+j3kOrPgzUV4cdFj9G+91tiu670nyHX91owHOyXsMPVLdJkuTrDEhIArrAJX4jjnzUs55GUW0GtW/wm9Mf22ieAlPJ1DO5MMntYPpw7loyzXN0OR/2fvLMCjuLow/M2sJxt3J4KE4O5WHApUaalQo+7uRr2lSkvlp0YNKFAo7u4uQZIQd7f1nfmfezeb7GY9JFjn5ZmH7Oz47s7cc+/5zocLhDyvE8n1EhCwgyBwcBOZlzemPvsqKosKkHOCPEyA2C7dEBgZbXf59v0G4fBq+5Ul7BHZIRk+QcF239vx5y+oLrlwC53WwNs/wGZe/ummwKEtcCZuIOg1auxfthij738U2rpaVJUUwcvXH6k7tqCyoOUV9rQqFfb8/SdObdvU4m20696rxesKCLhDzycZKKOBk/PdTLJngKpzQGBHoDqTx/bnOGgsigmUn+KRvoxH3xcYxI0xBZNkubztPAxqUwIJcS8glfZ5ez9NBgjpARS5doe8pBjqgbxtPOLGMshcwyHD/ds1pfIMScTnIVEC6+6h2ZhXNjxQ2tBHX3qEx7m/efR+GoifxCBzlXsiB4ffCQ8osS000aYEdgYCOgqdGQICAlcOSrE3nu34GArURUitOUPndfHrjHB5qN3lh1zXDyu/20D/ZgsMYNK04Ns7tt/tHZCEAKl9p4AFWUtQriOdLCIYeBF8xBoqdKgzyFEPGbwlOtTpZRji62BgtwEJw2OAsgRrqmMdug9IxEbwFkIC0l9uMIiogIIQJLNNWDhUblLHEaGEp5QbfKDipPBj1fASacHzLPK1/khThUJFRQJk0NkIX5kWNVqTKD1IXocQrzrqTGGiFhtL1uCBhJmo0teiVFsOP4kvfj9/HBWaaof7No25O34W1RtUWJj7N3aVHYBSzEDM2n8uSxk9Er1rILY4f7VRgmxVEHr6d/b4mggIeMIrs8aiXVQg/vfHdmgbOmuZWg2kpwsgTS+221FJHGbiu8RSp4CXxr+LqpKm30nqnnP456s1eGHB4xh+00A6L+NYFh0cIBVcSOf+4dN5MAzuCAPLglFpIc4qgai8KYEuZWBHHFznIAnFAdLMMvBSEdS9YqnjgWW1f8X+TEgKbH/LrIGD9/ES1PWLdLhd70PWVsPUBUJrQG2VCruXH6Tn+O+367DGSQc1SUDSJ4SC81fQhBxJdjlO7DiNmopaOkh7b5enYZzaxeU5cj4ywIXAwQwRQuhcCBxE5e4LylxBBkfNA9Pkf1Ix+pmfHsWkAclYtfd0s4VNsan5upIk1NpxneG72SQQIfPp3dJ8yzQv2PBanlbm8DgOrTEp3y+WoR1JnGqXEoOrGfKobHxcXsA2BAQELg9Ile4P1pqq2B3bmkqfu73HdENEAnE5s2Xw9f2w4RdbV2hH9J3QE96+9u/C3zz1E61UekG4ez9xUdCJVEy0XpzHqZ2mGM0Rhjj74z+WGKWMlcABFo8yjmWdWrJXl9Vixddr8fyvj6I0twIlOaXUCYvMK8v3XNxgpqpGhf8t2oP11fXQjO1ucsQqqYEkNQ8i4grRABfsB0NyLOBtUVG3Tg1xajb6ju/R4v0LCLjDiwseo22q+ZtPwuUwCcfTJEiSRB/TMQpnD6TjpQnvorai6ftMhMfLvlyNV/58CoOm9qXz0g6fx+7lB2gSP8dzOLLpBK3YbJngaJkY2alPEg5tPG53/45gDeQ2xYGTMo0VPs0xiezAeZrA3xqYY5KKajUOrDlKq10TkdaOtxcDE7s5TDRkq9UQFVY1viYJnup6DTiDEbO6PmOzvCHMF+phHa1dawK8oe2fCGOoL+R73XOjcQR17cutoJMlnEJCE6m0yZGkk8l6JYkIuq7RNNFIftS60hJn4HDEIiZZ9MkKPLfgMVT164gN+5uJ0Q0cFHszGgUfZszfCeKW4Oq76MhRYf9qD6pxtQJ9xnVHVFIErmaEmERA4OoiKCIAH298A5knsnFixxl67+0zrget4N0ckjBLko63LjS5JbvDoKl9qIOcPb5+fD6qSlvneXyhBDaLSXRafZsLLZyJG8wCkLXzN+OVv55EQXoxyvLL6ee15PNVVv2/Hu2TJ05/lfjplT+xY4mp0FVLEGISgbaE3GteW/g0/nh3KX5/bwkt5OTOOulHshARH4aTu87g1cnvW7nHnNp1Fsu+WI3X/36msdDR6X1p2LfyEPRaEpPwOLzxOO2XsefCQtwvE7rFWYnBLgW6JPv9RWYKy2tx4FQO+nWJowJqT3/nxM2GCB3ItXuw57O4XKDOgQ3FrRxhiAuxETgYdEYaazbGJB8vx4u/PY7aCvtuovZwFKd6wt5/HRSeaiMGTumD0BjX/WZXMkJM0nIEgYOHBIRH0skVvSZMwaltG6Gtdz1wTNwfBt40w+57WlU9zu5pmQK1tWFFYnQaPNxmfnP3ikuBqroK67/9Aje9+i56TZxK5wVERGHl5x+0aHvBMXF03ZLMjAs6LrnSdbUYAYELgTR6E6cA51fzqDWJ151iUAGHPuUhVnI4NZ+3EjeYIUnqBz7k4RfP4eg8HqVuJp0HdweSZ7BIX97yhpJ3JFBPig20jqjWKfWFoOKGgx+1LFPizB8c9CrYvYZXOuQ7cGgOMPp7BspYHifmuV4n+Q6g5JBJAHMl4BUG9H/50j+/BAQEBFpCpCKcTq644elrsfmPnY0VU8ULKqF/MwzNC/qTJ6GIEeGuhGvsbqdaX4v9FUchZoyI9yqDt9jSNa0G9QYpztcHo04vhYyUGHWBxIkIgfSPm4UMZki+NBE96AwiyFgpRod3tVmPbVhHY5BAaxRBJvJMdafmZCjV+iBX7dgOmWxTzBrhI9Ei3Nu24kmVvgo/Zs3Hi51exISIMXSelInAWycW2d8gEW5wjp9FXfzDMefcF8hVmyqV6HReCJHV2zhNSBgDAsS28xUiPToqixGpuPg2ogL/LUhy0I0jumDTc78ht6CiUeDgKFGlrrIen9zzDXVy+PbpX+wObpEqOx/e8SVik6Pw1SP/o8n85qo32gEdwEUEAOFNldSM7UIhzixGvwAlZrx0Hf768J8WnYvsbDESpVJk6/XQi1mw9VpIsivAOBm8892WDX2IF7Txtg4KitRSKA8UOFy3KLMEK75Zi68ene9wGX27YKj7JwLipvuFvmMExPmV+GvOvyjJKEZNaQ0Ytb7JvcABZBl3kZ0ugapXNK2iZHdbRg7yM21XjINU555z91x8d2wOkrQ85q4/CGNQgxuOhbjBDK+U4a4fH8K6UxlIzS621jTwFlVxy+udVuS+mITHh+K5nx651IchICAg0CJIRT0yueKmZ6Zgx+K90KhcV2Yhor0Zr9xg9z2SGLN/1YVXxmBrNDRBl/NTOF6mSg221vHxKpRyDL1hgP1xEifFmvjmSbb2cJbpq3fdYVqaV46P7/oaX+x6F0k94+k8vyAffPbAd2gJnUd0xmNvLUa2pUCCYcCF+UEb7APZrjMQldWCC/SBoVeSbVK0UgFj347wSXQdvwoIXAjEgWDao+Px77ZTyHW1bHE1asrraLxBYpLP7v/OStxghggZ3r31M8w79BE+vucbnNmX5nay+K0vXY+fXv3T7vtsRS2g1QMOEidFBqBDkA9ytpyAQcJSpwJxnvOY5EIgMQlJ5P/h+QVURCXfkwHNwESb3zNTr4Vi2xmr2xQRdy3+ZAXSj2Sirsp6PJyYcWpoHGO/T8IQHwJDXgUkeRcoXGuGplsMdF0irY/fzqXTdYqgonwq9nAASRz7+I6vMD/1M8RrDPj5j+3gpWLqhEEcKOyt++CnM7Hq+43IOpkLUVG142q1HA/pWedFQi4G0R0i8LQdByYBAQGBK4H4rnF0csX056c1ihRdIVNI6XPcHsRZ58imS5sobMYnwJsmg1riwBjoolOcXYqP7pyLr/a931jUQ+4tx9dP/Gi7cE09daly5uLQpUs0nhr6Ggoyii8op8Yn0H5xLwGB1oKInKc+Nh6r529CWZ7rJKLq0hq8e8tnmL3iBXx451dW4gYzpC/l7Zvm4JtDH+L9GV9S0bVLGJOjxIyXb8A3T/7U0tNBUq94nD+aBe4C4xBO6bjwnpmC0moseHsxfn1zkefbN3JYPGcFFSqr3XAvu1gQd1DXy1gUiHAAKfr1we1f4udzXyKsXSiWfr7K5TqPfzMLCz9ajoL0IlwJxHWOxhPz7r/UhyFwGSNk9rURfqFhuPHl2fALc91xO+D6W9Cum0lt15za8jIY9e4PQLcl/a+72a6DQ7sevS/K/mNSukIsdfwA4IxG7F22sPG1f1g4ojql2AgwZN7eSOzT3+m+gqJjL1jcQNi79K8L3oaAgCuOfu2euMGS49/xqMt3nuC++TH3xQ2E8L4MwvsxkHq3PHru/jCDuNG4KPDgcWhOyxvj6cuA7PW46JCk1D7PM5D6XcA2RIDIRVuZ54D0pRwiB7j3eRbuBZJvZ92yXr7YRI8gTg2AMgrwbw90vZ/BmO9ZKKMuw4MVEBAQaEWi20fgvTWv0MpF5InHj/AGKzJ1dFtOIga4P3EcegYk2t1OmbYCRt6IRO/SZuIGE2RekrKUuiecU9sm+DYnQ+vr8D0jx9h9lNDjZHnMShoFP6ltRdchYUmQifTwlulQUNeyh6SOE7ss3josNA5RSscdZAbegJWFTTbQCcog9AmKgFKqh1ysowIJ0grxk3hhYHAyOAvniub0CJI3ihsI5PztDVIoRRqHgxcMw2NP2W8O9yEg0FqQBP38swVgazV0ctXKIokw3z+3gA54OYKIHB4b8FKjuIHOS4kxiRvsYIgPQ5/HJ1LbXqV/QyJ8C3jkk5m4pnsC5CcLIM0sd5lIxBh5BC1KReDSM5CnV0BSWAf5mXI6L2BFmtPK8+Qc5z7mWNxgDFJCPTDJStxgxhAVgF+3Hse2xaYKdNL0UpcJneJi9+2oRfU6KLdm2K0wK2ZZzL5rAnzkTSITT2HFLOQuOvmJyIFUnR40sBMk+VWNFW4cfb92nMjEveP7Wb3PWEwExZGWO31eCMNuHoj2vRMQmRhO/7//4ztpspy96oJXHXwrTQICAlckxLHpnZUvISQ6yGXCyayP70TnAR0cJuBe6KA63Q9JrjnhWHyIhvedtWXufudWePkobI6fJDU7g61zPdDuUAuuN4ApNYlCe4/rDrGF21RzSOLWwo+axJ7tusSgQ59EKkq1xD/ElyY9OMN3WGdrcYMlIha6bqaEMmMHUg3dfmzDMwx++XOP0/0ICLQGRMhTtjUV0Nj2W5hhqurBNgisyT3lu2d+ceoMQ35PD/V+wW1xA2HQtP7oNqyzw5iExBfiDCeJ7RyPpx+fiCGdoiFLLYAkx3VM4ikkkYYIk3i5FOp6NX54YYGVs533v8do8r+opIYm6csOZEK58phdofCCtxZjz4qDNvONkQEuk3r0Lqq5uhLFvfT741R0ZkbXIRy6bnbuR/Zu6iIWfHwI5Bbr2z1GrR7/zltPYxLF4Rx47T0P2elCh8KIfSsP47YGsZ5iZxrYSjuFEIlYfE86RJWt54jnDsOnD6KJaiQm6dg3EQ99ehfm7v8AwaS67NWOEJMICPynIcLft5e/gKBI+32KZhiWwcNf3I32vRIcChxIn+blwL3v3waZwvo5K5FK0GOUa4fX1oDEESSZ2xEkKXvRJ8sbXyf2aIeknu3oNbYkMNAbvXs4F877qOouSNxAIJ/b7+8suaBtCAi4Ayns5I64wQxxHvj2mV+oI6MjNPVaPND9OffEDQQeGH7zIKQM6gilf8t9ip/89n70vMa24JynsG6Iy+oKKlskbjAz/6U/qLvcxUYql+DVhU/R/5vDOBFSNy2jp24LChciECJyICLq/pPcy8/du/IQZrxsX6x3KSF9ZzQm6RmPyKRwdOrfHo98eQ++2vseAkIvIAHuSkGISVqM4ODQhoQndcC9n3+P3X//ib1L7FfqIJzYvA4Drp8OViRy4ABAGnmXtqGs8PXDIDsuE6XZmSjPs7bwbDsYGHTOKz1lnzgKrUqFQ6uWYc/fttfc2z8Qt33wGbz9/LH2689weudWm2X6TbsJ6ftbp8O9KP0cqooK4R9+dVt7Clw6tNU8stZ5fn9QuxEDGj0Ut576kUdwFyNiRrHI3uD5MYX0AqIGszjyhWcVl1tK6s+tsJGLfGsO7gZ0f4hFYCcG6jIjTtkpdOAORMBidOMy520DWOdFYBupPEPcQbhL/biyizKCwcA3BE2ngIDAfxPSgfVrxlz8sG45fpfuBgOeChFI4juBJNgbeQb/FuzFjLgRtHOhOUqxN/zEauoI4AjyXrC0Hssr2mGIr+OKEOdUfthbFQ6lVGeRlM/TdYNldVCIDSbLYZ0X8ur9UWtoGmiO8PLBzERbR7nM+mxI5WfQOczUwCHnqDJI4CX2TCheqbff0We6UqaDlZPj0zuPSY5XHYee0+OXzLVYmr8eIbI6dPYjCd88VEYpeD4aH3d/EkqJF146shgbCk9ZrU8kHg92GIkzqnX2DsQKFhxkrPNOsjzVCdTqy+AjubqtPQUuHcQifMufOz1ejwwKukKr0jUm+nM+cugTTAkwjpIO532/AV1DfDBi+mBsX+x5XD/g2t7oPbobPrz9S4/WI7dUxbkKOnnCL687L4qg7RRhsrFx4u4gO5oDVq2H4ng+dAlB9pOIOB5e+7I81iLLz5XSpBtN1wjoo/2p4qt/p1g8fvtodIoJRckj46ntdkvgDBw0BtfVvLcs3EUHcZxVcjPfIo/uPYO6n3bASwKoBraj1VUb0RvhvS8bsoyWWfAR9xBduyDoYwPoZyIuqYM0rcRpxdfmCb6v/fV0i/YtICAgcKXTfUQKFmR+TZ2b/vlqjcOEk5XfrsN1j02w+75vsGORtKfIzpXQCoKablHWz1mOh/xYHmRpxF7WPhEJobju8Yk280/vS0OBi7aNOLME+uRm+2yGSGtf4cCeLwBDKps2uNcZdM6fPzuX7gPHcfSaL/tytc374e1C8PWhjyD3kuGd6Z/aJCeTuJAkTf12zkmFHPK5+XvDGOYH3t95NdQDhzNRVa2Cv1/LkysEBJxRklOKHUv2mVzGdp2FdmAH8F4yG3GDbPdZqzZx3jnXFfR1TgQT9gQ9c1/5HR1HdKYxCUkssYc4rRC8WAxjUrh1O1enx+gOEUjpEIHXt6eitSGiBmNyTNNvlufx3T+HIfaSg6lvGhAS1WogOpR9YfvykbfKMo6SKsk9KqFbHNKOZmPR3DVUCKZNiXS8kp2hdgPLQOOG+Gzz7zuok5A7HFx/DDln8huTubxXn4AhNhD62EDqZsFW1EOaVgy2Idb1NCYhMaAhyp/+LS6phTSjBIzOvTE1IiJ89c+nPN6vgICAwNVA7zHd8XvWPHz12Hys+m6D3WV4jqeiton32a/G6BtEcrcuPcTxdtL9JgdpS07uPI3S3Jb1e3kMw9DEbGfsXLIPz/34CL546Aes+t72mpPk1nmHPoRIKsGbry7Bgf3WydtEoP3Aw9fg9we/aZVDJu0y4nbeXKwuINBa5KUVYu+/9tv/zsg57TzuNotuPeHzB79HUo92VOhweOMJj49pzMwRtD/71O6zuFCI85m2R6zD9xm1Dj/P/PpyrKPqlEFT++Ked2+l7qbHt6VixTfWY7qi/HLoicuQA4dsukxuGYwGDuo61+MkG37diswT7sVopI8n45iHVZIvAqTvr/eYbkJMcgVx5MgR/Pjjj9ixYweys7OhUqkQHh6O+Ph4TJ06FdOnT0dkpJM4vJUQBA5tDHEPKM4453SZuopynD98AEl9bW2NlQGBUAYG0mVaC5FYgsDoGARERKIsJxsV+blurGP7VakoyMPCt16Ett5O9QkLZN5K6qSQefgAeFISvBk9J05BzoljKM91fiNWBjqv8kTheaTt321X3ECor6rAkndew11zvsHEx55FzwnX4tS2zVBVV8IvNBxdRo5BUFQMjqz5F62FVuX8+ggIXAgVqQDneT9om0B+3lufBBShjkqNOYe4RSweZbwsE+QvB4hzQ/9XWOq+cPATDjmb2n6f+nogd7P7H4jqwoontBmqUuFLJSAg8N+GZVmkhhWDreIgpuIGi/cYDiIeKFSX40DFOfQL6mizfpg8GDEkW9QFgdJ6HKqNwK8lHXBnqG0MVKJT4Ln0QajXycAZvZAS4I8En0DwOIo6Y1XjcuT4gmQqBEhVOFMdhgqdqeqhlLWNSXJUeZidOgdqC2UmuetXGRTQ8yJ4iXRgGR5eIh8keHfA6VrbqoKEocHTUKPPRJ6quPH6EKGFpbiBECTzRbba+XXgwGFLySH8W7AGnXzKIGabnkMyEVk5DV+kzcGbXd7EJ71vwbHKHPybdxSV2npEewfi+pg+iFMG4Y595sRn0/o6nqWF1C3zoYhowh20XB18IAgcBNqGkzvP0Er7bYExWAltnwRwlpWGyNfeaBIVNEcvl+LxkW8hwkVFNkeQAYjxkumtUiG6NTBEuHDFYVkYwv1olVUicvD99yRUA+OhjzEl4RNEFSooDmZDmuO4Mq0zJKX1kGxOp3+LJSK8m/MgdZ6Yc+832PLXLrQ1NWW12LpoF8RhPtDCtngEzwB6JWAgY5Phfjia7APFuXIoV50EF6AE5y0FW6+D9Hw52BZ+T41KGerGJYPzaxoA1bcLgrpnNJSbz0KSb6oC7IxSDyp3CQgICFyNiEQinD1gep44G9Q/vj2VVj5vTmynKPgEKFFbWdcqx6M4nAufnCqET+mJyJ5xSNt6CuVrT9JnhjNkzRKmCaSK4vPXvEWrlDojQClHv9gQbMsrs/v+3df1x7bFB5FfrWlq9Gu0YM8Xgi1oWifAVfugwQVp3U9b7IobCEVZpXht8vv4Yte7ePufF6hj1qbftqOmohZR7SMx8b5rEBIbjC9v+czlvjhv1wlCJLaqV2kFgYNAm3F8+2lwxgYRULUK8nXHqIMAF+xDv4DEhYA4NzBOhAmQSWhVIKYFbUayvqFTFAzxoXQ797z8JyKDlDBEBULswAVFcjoX4vNFMEYFUmEucXlhCyqwc81hTJy7pvF8WlPcYOjX0TrBhmHAh/hBPzAZkt2pYFzcxzzChRCL7t7NxHxLZAopXljwGOqMHN76bi02lpZDd31vgCRZSkQudmgtciDfFXcoL6rEjr/3un2MJTlN92yG5yHJLqfThWD0kaN+dDJ4C8cJQ2wQNN2i4b31LMTFNR4dl4CAgMB/EeI44MqVKf1IJo1bOvZNsnmPVJxW+CigrnUxQOABMi8pYpOjEdMhAid3n0VJtut7tdzbViCYuvccXhg7m7pPOcM/zA8deidg/+ojdt+/482bsO7HLS6fGQFhritta1VaWnHcnriBUJBehDemfYyPN72B9z++BUePZGPThlOor9MgOjYQkyb3hI+3FN/ac0NqAaRtJQgcBNqS41tPXTYuL3qNHg/0eA4RDQWjPGXDL1ux+fftNPn+QpGeLYI+PsSqb90S2ZGcVnesa2uIi9wLvz6GyuIqfHDHl9hmp9gWiSvFZ/JhSLHvUsNU1lGBg7uU5JbTye3l3XieXAou1+MSsKa6uhqPPvoofvvtt2bvADk5OXTatm0bXn75Zbzxxht49tlnIbaTW95aCAKHi0BpjmtVVFleDuK698S5PTtRlpsNqUKBDv2HIOvYIWjqW6fTnuATEopJjz6L4xvX4OzenTDq3VP5hbaztWEjIgJX4gaCtr4OhWlnMP7hJ3F2zw5kHj1EH+qR7Tuh18Qp6DhwKHJPHcei2a+YerrtwDAsek+ahrS9u2DQOx5k8AkKQep251m/xHHi3L5d6NB/MCKSOtLJnpiistC1StIVpNKRb2jLLVYFBFx/yS6/a6R2XOTMNVdWu/WiEjnYJHLY/Ah3UYUE+ovrktwm+MVfhj8UAQEBgYtMVl2RjbjBDJknYY3IqS9BV98E/Jt2BukVFfCVyTAhqT0O1R5DvUELPxcaB4NRhMJKX7xT1h/r8uJxW9RZdPYph8oowdqSOPyZ3wkVehkS/QLxxaDRWFe0HRl1W+EjsT8IS3J6knzLcKDMCzwYtPexrQDwd+6/FuIGHr5iNbxEenA8gzqjHBUk67WBakMx7oh9HMert+Nc7TE6r513JwwNmYQufv0R53UCn577DL4SNXVF0HEiFGt8UEuzZgERw2JyxDU4Vr0TRmKH5IBQWShWFexFvLLCStxgicp4CqnVx9HZrxu6B8TSqTkBUn+U68ppc8/0sTHUAUIpboqHONiKHmwRwVcc6mwBAYELwp7zS2tg9PeCekQyrXJpvUOAFzkWOZB+haLMlgclluIGXsSCl0uonTDjoirZ5YCoTgufDWfAeUlh9JPT4xZXtF6DfthNA2m1qCcGv4oyB4labQFx8pBkV4BR6cB7Sa3EDZpAgJdYfAfFLNSdQ6BJCoT/ljwoTha2KHGqcR+kWMbojvYHYCQi1I3qCL+lR10mxJJKTv9ZeAe/VQ+3ISAgcOWTnZrncpncM/lo3yseW/7chbxzBfAJ9MHg6/th19L90FhUF79QSNXvhz6/i1Zo3f3Mn9QRwR3vz8Qe7Wzm/fTqn43iBlJR2xgTDC5Q2ZBUXQW2qIq256tLa5C9eA9en/8Q1uw7h0Mnc8GDR8/kGNwyuTeG9E5EskyCN2d8AV6pAEMSCarrrLp/JTIJdZDY+Os2p4LMuM7RWD53rdNzSd1zDid3nUaXwcnoOtQ0NcffV4GqGucJXGyNCkYXQYlYxCKYXBMBgYsUk5CkcioscNFmJe19Y1IkuKgQgLh/8TyY8hqI0gvAVrk3Nkt+iboB7cGFW4usC8rrgH7tgWNZEDtweGG0ervveSpu4Ij4imWoC4OjdhdxbnBYPVQmgbF9FMTHrCsnewLZLe/nBV7Mgq1RQ5JXAW3vdrbxnAWSFiS3jLx1CGr0Rsya/RcqLAUKTvZjD6ZOA3F+U7ENp/Am4dilglxb1chOVuKGRqRi1I/oCJ/lR6ljhKuK3/9ZhJhEQECggRx3YpKzBYjuGEljkoL0QuomN/i6fti+aI9Hzk6u6NQ/CXfPvhUr5q3Dtr/3wujms4ZUZW/Ojy//4VLcQKgqrqbC8ud/fhTrf9mCY1tT6fhQj1FdcOPT16Lv+J6ISorAB07cbYkL3NRHxmP9z1udJnMn9ozHks+dF5Y9uuUk0o9mIqlHPHr0jKOTJcSVTunvjbqqCxc5SOUS+Ie0njOggIANbTROciG446LtiNYQN5gT/b02nIKmTzsYYgIbYxK2Wg3ZsVxIcq68wkBj7hyO8oIKPDX0NVSX1TpcTpJWAEZvgKFDZJPDoJGDKK8MkhOeCTuIy9DVQHQH2yJW/xmukJiksrISo0ePxuHDh63m+/j4ICAgAOXl5ahvyBfXaDR46aWX6LILFy5ss/FiQeBwEeCMrqtU5J8+iUMrl0FT13Tj273o91Y/FrmXN/5643mP1+sxdpLVa71Oi7R97lfqU9dU48zu7bj+xTdpI5c4ObCsqbMp+/hR/PPx2w7FDYThd9yLsPhEdBw0DKe2bXS4XPcxE7Brka16qDmHVv5DBQ6O8AkKbhWBA+3Qa7COFhBoC4K7ACI5YFG0+L+NHZvhqwG/BKD3MyxO/MBfdJcEqS+gbVmx18uGmFGXXzApICAgcNFhDE771sh7+4szMHvtMdRozRX7ePxZ9A+8fLSIVohcChzK1EoqRDAaRdhbGUkne8QFqvHqyU+hFGsRInPeMS1ljQiU1aNcq8T10QOt3lMZVDhcZRIqeIu0iJZXQsI2tb1D+DpUGxQo0RHraAbV+mrsrTiOx9q/Ao46y/FgiTUSgFPVR/Fz1qeI86qi4gbztQqT1aBC54UztRF4MPFGxCtj0CegD/ZV7HN4zCNCRmD++eVIUDofkNhc8i8VODgiWBqASp11x169QQoWPLzEpsEKcr01nJQ6VTiiXOcNA8+gKSVYQKB16TosmSbbeWqT7Apdl2jHSSoNIgemWXcLW1EHxo1Koa7gFBLousbQipj0GIwcxPmVkJ7IBVvrPPgSSUQ2A5IkEZ9sS58YCs6bCA/01JpZVFhF7zckcd9eZ7a4pMbU6e/wQHm6THNYlY5OrUlSr3g8Nvc+zH18/kUVNxD8gn1RXVYD5aazqBubDF5m6s7UezcTN1jAS0WoGRELQ4coSFMLID/uegDbHoZIPxgDTU5CdpGIoO0YRiuBO4JhGQy70da1VUBAQOC/hjuDsQfXHcX3zy+AyiKp/sdX/mj1YyH35udGveXxelMeGmf1uqq0GgfXmWIS4hykHdjBVAW+AWN8GJiqesj2nAWj0VNHn6O/bsMXCx6nAgXyT8SaBvd3LtuHd6Z/ahI2SCTgI4PBx4XTtg1TXA62qhZPzJtFk38GXNsHu5cfcHicE+67Bt8+/YvL81n44XJ0WWErbDATyfFwlv7LVKtoBXR6Lk4EDuScLpNClgJXKd1HptCqzEYPRMk8cUPr2xG8v9La0SDYD4ZAH4gPpYEtd10Vn4sMtBE3WKJPiaGVOVviDOEKQ0ww9B0jwPuaHO8YtY4KJuSZJTBaxEUkMd7qPC2gP00GMEYEQnQis0XVUw2xwdAnRzcl4JOkndwyWq1Vl+Igqd5ghKjA9cADiaXMYuMuyTF46LO78PZPG63FDZYn42wowHxqeiMUu9M9qh/mE6hEbUXrFST0BEN0gMOKtxSpGLr2oZCfcDyuzYpZDJ7Wr20OUEBAQOAKgnEk9rNg78qD+PLhH6Cua+oDnP9S6+duGXRG6rrgCSRx8NpmMQmJMY5tPeX2NkhhGOKc9/GmN2Ek7lUMQ13ACVsX7sJHM+c63j/L4KnvH0D7XgnoPbZbYyxkj7F3DsfXT/zk8ngWfvAPXvnrKbvvkeMKjg5sFYHD5VJZX+DqpdformBZ5rJxh77USGRi6LWmmIQIcb12poGTicH5koIORogqr8xKq12GdsKsj+6g/TfOxA1mxFklEGWVgPf3pgJ7UiSipbGht78X6quuzOtGEEvFGDC596U+DAEXPPDAA1biBiJ2eOedd9CvXz/aZiBth+3bt1PXBvNyixcvRteuXfHaa6+hLXCnKI3ABSKW2amo0IzsE0etxA0twT88AmEJtlZplpRmZ3q83T7XXo/4nn2s5ulUKhgNniUNZB09jNrysoYGsilJwWjQY/VXH8OgczzwLpbJ0G20qZE+4s77EGLHTYIQ36M3PVbi9uCK6lLH1RxrykqRm3rC6frRyV3Qvv8Ql/shvfbknAUE2gqJkkHCJCF524zYG2BsneKveDSVQPoyDjmbLn4wJGrj60kGcs/6leHf2DNYEXsap0NKwDWMNDTknF4QgSmAd3jTb0RdxuPkfA7r7jZi9W1G7H2bQ9kJIcgUEBC4+pGLXGvbt2aftxA3AL6B9VTcQCjS+MLAOW5z6DkWaVUh6OAbgo6+jt0C/BQaVPDp1E2CuEaIGNdiYIVIj5nx16BXoHWsU29Uw8hzkLF6xCkqrMQNBJI07C9RI1jSNAB9pOoYavQ1YBm2Udyg43T4Netr+EsqIRdZC0HI30EyFXoFVGN0eH8677bY2xClsD9A38u/F8aEjYG3yHWid42+yOF7xZpipNdl2HmHQa1BjjKtF9p5dUdn3/7IU/tDbbSvPiHzc9T+qNRXuzweAYGW4h/iRwesWhNaSTXScZJQo8ih2Szx2YJWETeoR3eBISG0SWAhYqlAQTU6hXbAO8Pb1wtSRTOXgSEdoRncAcZwf/A+chiDfaDpl4D6ab1QN7UX6q7rDU2PWHByCTgfOfiG/UrPFDgtBiHOq3DpHNBaVBZVYdlXq7Ftka3dclvj5WdK2BKX1cF32VHID+eCLa2FUe68HW+UMTDKRdB1i4HWUWKVuepujD/qB7SjE5cU0vjd4mOdCEwa0Ef4OX2/x8guCI5s2k5JbhkdGL+vy1OY2f5RvH/7F0jdcxZXLXwrTQICAlc8UoULxTRJ8v9nv5W4oSV06JOAyKRwp0k5GUddu2435+53bkXngdZu0DXldaaCTlIxtIM6WokbzJBBbO2ADo2vt/+9lybokMQHs7ihvkZFE4lIhUQuKRpc32TwpKJ8kB/4iCBwPTrAe3gPXHP7MLo8ETrEdLQvKB8xfRAmPTDmgqs5Zp3KReZfu2iVc7sYOQyKDMDAmwaB1fNUeGkXjgenMaKqFZKSBAQcQdpao2a4MWZnARcb4jDpH0T8kBLnVhPEEBfsfAEivIgOcvg2jRfiA1DfMwKq5BBoYwOh7RINbedIGH0djy/rO0RA1zexUdxAt6WQUkGFfHwPiBtEwXS+1PbexLGAQcbA4MXCoGBhUIqg6xrrVKxk9zgSw6Drm2TtLkDiuXah4IL9wRJBtuWFNLftRCJohnUCL7E/CEAW0XSJRM2NvVE7tQedzvePwx+bj2Hb4XSPjrHpYI2QpBXBe81xiEttx+QNQd7QR/rD6GN73X2DfZqOTSzy+Dq5gpyvPiYA6r5xUPeJA98uqOmyRbuIjcmxhzuPSfqN70mF42aKskrw/XO/4p7OT9KY5KO75uLsgRZe1ysBISYREBBoQEIcm1xA+r4sxQ0tocuQTgiNddxGYEUs0o94nrtFkmqTesZbzSNFQTxl61+7oK7XQCQSNYobaipq8fHdXzt1kvIP9cPwmwfRv5/+4SFEJoY5rG4++g5T7OKK/HTH4yRnD2Yg66TjoiKE/hN7of+kXi73QxKtL5VYUeC/QXi7UAwVitw04hfiS0XolrDEcbq09ooVNxBKc8qx5LOVOLDmiNvrkMiBraqHqLz2goTvgeH+uJiILWK15p9lSxg8rS+8/ZqKSRVkFOHbp3/GPclP0Jjkk3u+adGz8YrhCohJdu/eTcUKZm6++WasW7cO/fv3b3RnIG2HkSNHYufOnVT0YOb9999HVZWbLokeIjg4XAR8g0NQU+K85PaFVvknSf3Db78XwbHtsHj2K6gpbbY/hkFwTBzKcjzruO8+egKG336PzXxVTQ0VHhgsEqBcQVwbqkuLqTuCmbR9u6GqcZ5sQ/axZu6nmPLMy5Arlbj17Y9wcutGpG7bhPrqKviFhqHrqHHoNGgYSnOyoPDxQX2V86ofZBlHkO26+jz8QsOp2CL9wG7nyzIMvPycdyoJCFwo3R5gaNJ23jZ738H/ViKAgcSkV6HegzgopLouutYmqIoARSigdqwLcxuRAjBajFFXSdX4scNhFHo3DSbsQDZiu3thzpA+kKd548zvF/YFrjgDLJtkBKcHJN6AXgVwFjlg9QU8crfw6Ho/g063CrpPAQGBq5cQmR8qdC7a3Ubrh6hfoCkBhQEPX4kGhVpfRMmJOMD63mzgWGzLaw+Ol+KFbmMQ6eWPOzb9iUKV9WAxyzAYGCNHkY44MxhAxoI5noHIhR/j9dEjcHOsdVUiQp2hDhJGjCBJpc0xWeIvUaFC7w0OLIy8EeXaCvhKmgZ1D1fuAc8T9wfHnUoKURn+l/ErHm5/L3wkPng1+VXsKNuB3WW7UWuoRYgsBMNDhqNfYD/kqjIRZpHc7AjLY2jO9tJdVAToCCMvgrc4BtdFTcX6ohdwuk5O3SaCpbWQMkboeRFKdT4o1vqC48XwETtI2hAQaCUe/uJuVBRXYc+KgzTRwxATRKt4kiQ/tl4DcXoxRKXuD7bRBH93EkbM8Q7HUUtfcUFFqzhH8N4OVL4yCbQ9YqHY7jgZvabc+t6n6xRp5cLQ+Mu2OD1eLqGVTcmyRB/FUJvickhO5UJ+IBOaPvE214NcT8Vee0KotqG8oBK/vrEIl4LCjCIERwehLK8crFoPxbE8yFILUNfVtSsCT3o+DYA2JRLSM4WQy8TQWrhbGH1kqB2XDGNgU2IYGcKOnNYDjw/tgdP1KizYeNjVXpy+e2LHaUz1uwN6nRFevgqauGvpeFKQUYwtf+7Cg3Nm4vonrR1UBQQEBK4mAsMDUG0nodQK/sITlmZ9eAcdSH9x7GxUFFXZJBJFJYUj10NR5K0vXYcZL19vM58IFciAr7pdKK2g7Qg+QAljsC9EZTX0GUDckJT+TYO6m3/fQZOouIhg8DH2k4SqGRG+/GwNnn5uMr2WX+17H2v+twmbft9BE3Wi2odj4qwx1DXo9N5zUAZ4o67SuajAP8zx2MXaHzdT9wj5tlPQdYk1JWg3VLxlS2sgSc1Dwh3DcN3z12H3rd9ApOXAiRnw4oY2Cw+wRh6MgYdEzMLHx7lIVEDgQnn8m1moKqnGgbVH3VqeIyIiZ3jJwQf6gKlwft/i5a7jfyI8sIc2xhfVY9uD87WIPzgeEhXopO0ZB3F2ORR70mmM0LRPCfSdox3ur1QsgszfG6JiUz8Qo9aahNMNCQkcMamTEis56woPhg4R1ClAvuMsGDeqHBNhOhFUOIILIFVKG7ZjsTnzXokoQp8QQp0emqMemABdB+v7YXFlHb77Z7fp/uLwoOyPEREHPbkD1wZ9dAA0vWLB+TfFBKLCaij2Z0JUbRrQyDtXCN8RyShUykxuCjxPl5GdyrfrqudK8KdTN8UDRFBRP7qTlUsDGX2PDlDisZG9cKi8Gos3O66QbTpvx58XidG3VhWj74ufQOMrga9UCm5rFhRbcyBSGRpjkk2/bcejc+/DtQ+O9eh8BAQEBK4kSJxQb88FqBWRyiW474PbIfOS4qVx76CqWZ8oiR9C44JRkO48h6w5M9+6GTc9c63NfHI+JM5xJkxojkalpcVMFIlNwvANv2yDTuO8cBNZ54cXFuDBOXchJDoIXx/4EKt/2IhNf+ygVcWjO0Zi8gNjqGvQidP5kPZKgKpKBbakCqwD0UiAk5hk3Y+bXZ5LfLc4jLtrBPatOuzyc/FuKKIiINBWEOEPKYRwZJPzosr/BcryLq4L9MWiOLsUP7/21yXZd+6ZAgSE+9N7cWs6bDjCoDfSvqZ73p1BHVfXzHd9T3bG7hUHMcX3Drpd0idWW1FL/zZDYpINC7bhqe8fxPi7R17QvgRaxrffftv4t1KppK/NQsjmKBQKfPTRRxgxYgR9rVarsWbNGtx6661obQSBw0Wgfb9ByEs92WbbJ6KGobfOREKvvvT1nR99hVPbNiFt/y7oNVqExSei+9iJWPrBmx5tlxWJMfCmGVbzqkuKsf67L5Bz8niLjtXL11pNVpab49Z66Qf3Ql1XC4XSBxKZHD3HTaaTGVV1Ff5+9zXknnLvuIgYwhHuOC7UlpdSsUVi735IP7DX4XKxXbrDJ9BF9RYBgQuElTAY+KYIJUc57HuHh6bc4s3/kLjhP33OFniFm0QJrUlriBt82gGdpjM48KHpAyIuDfM7HkKRl22lhJxaFZ7YeQBLrh0OXKjjpxEwNPRTaZ208098zyOkO4+gzlehQkZAQEAAwJCQbjhb67ztXV9jXaFOIjXAT6JGO+8KiBvcEVScBBLGCJ5noOdEKKj3xcmySMR6t8PswaMwJDyRLrd20n34+/xxrM05By1nQLfAcNzeoTfeOftRo2iCoOXEkLBO3NwYCSZHTrWaV6Qpwf/O/4LTtefoa1+Jc9E1yQn2EulQZzSdn6/EWuxcqM6DQuS6Avrpmu1QGWbAS6yAXCSnTg1kMlOtr8RXaW/jfP1Zen6SZrkCzenmP9Dhe+U654JtQoWuEv5SX3T374yjVadQoAmgU3N6B3SFr0QQOAi0LVK5FG//8wIObj2Ft37YgDKDEbwI4MSkIqk3mMQgiItq4bXltFVijiMYnR4gA2pyJ5WeeR7izFKwtWqIs8vAWCSMtxRexLiswGqM8AenkIJV69yrwtk+zKm4wQoRA57jwRBBVlwIuGBfyLaehLKgCrr2YTThhVT4IUlO4vzKy1bbHdYuBMVZpa26TSJusITRc2C0RvAy55WDGHP/uFSM+Ek9MG1iH3z+4Pd0Fs8wqJnQGZy/bcJlQU09vth1DK/dMdalwEGS70JAqDPQiVBdav97Sqp/f/vML+g2vLNNJb4rntaoLPQfj/MFBK4Whl4/AJkn3BsPaAkd+iRi1oe3U+ccwg8nP8W6H7dg94oDVFTQqV97XPvwODzc+3mPtiv3luGWF6+zmpdzJh+fzpqHU7tMokfOSVKOGbIMETiQimd+FpXACZkNVUn5GMdueIT1G1Px8GPjICfJOb5euPHpa+lk6RL0xOBXcHpvmlvnNvxGxzFJacOzl9EaIDt0HvyxbPBeUloB3dwOKskrR1i4H7p3j8WxYzkQGXiATM0YPLgDvB0JSAUEWgm5lwzvrX4F+1Ydwkd3f43qijroE0KhTwylAgNGrYMkowSS8yVgON6h6MASXkG+t84FDoxGBx7ezpexEzvoQ7xQOS25yTXODMtAT0J4nodETRwigkBS7L12mvpACIaYYOoy4QxDbIiFwEEHpqwGfIgfbVbZiBss4ML8qWBdkuN6rNQYFQhInKQakENkGadxCxHGNxc4ECeF5uKG5tvlOSe1rnggSiJGYVEl2DotpOklEBfZb7MTcYNqREcbQbkxwg/141KgXH0CBi8x6ka1R1mAgsYX5HNhOAbGSH+owv2g2J0GSbZ1vOKI5IEdMPKWwfjmiZ9MhypiUD82mTr5NSevsg5f7ziGp24Z6VLgICm0f35k+yW3dYKmg7m/iEOpTgMMCoeocwDCfzgBcbXp+8lxPOY++j8ak8QlOxbQXJEIMYmAgEADQ6/vj4UfLW+z69Gpf3s88PEdSCHubgD+d+ozKkreu+oQjHojdYSb/OAY3Nv5KY+26+3vjZuenWI1L/NENj69/zuc2ede298SIojwCbQeM8g66V6stuqHTbj3/dsgkUpogurNz02lk5mCoirc/8wCnCUCjshgIBIwdo4FW1QJ8dEMMAbrvuFhN7mOSZxRll+O6A6R9No7uxbEeYL0YQsItCVePgp8tOF17Fq2D3Pu+xa1lYJryH8V0vdDhGCkn6Y1aQ1xQ/eRKeg3vhcVrLkiP60Iv765CDPfnn7BAge9Rg/yj1BZbP88iFjvs/u/RbdhyYi0EOFdFVwBMcnhw01jYdOmTUNAgHM3QeLsYElGRtsUZRMEDheBlOGjcWDFEtRV2G98MSzbIgeHgTfOQPv+gxAS285qvszLC70mXEsnS0Rizz7u5CHD4e3f9EUlTgsL33oRtWUtG6SOSOqIwMgoq3lShXtVe8j1KUw7g4Sefe2+R8Qbxefds84k59T1GtsKsGaUgY6tYpsvM/jm26nYQ6e2VXkThwsiPBEQuFjkbIC1uKENYSWgFfFdEdwVqDwHGN03exG4QFpb3NBaJE0DYscw1C2haD+QGlBiV9xgpqBWjeXH8tAhJRrlpy7OMab/IwgcBAQErl4mRgzA0txtqNTbH5hX1cqh01h37ipYPRKUZVZjvDxY6HjTIHqexg9jI27Ha11S0N7POhHHVyrHPZ360ckSMWMauOeIBIAHNJwEcs7QKKBoTk//0fCycB+o0lXjndSPUalv6vgwiyWcwTQ4PHTy6YggmXV7Xy5SOHWAaDp3HdJqc9E9oIPNe0begHnp76NQ05CYBIaeo8jBsflLgtE30HH1iQCJa5vRAKlpmVtip+J0TTq0nG2DSyGSY3qM9cCHgEBbsvJENhU3GGWmRAqrRP8oX9RO6Q6flcdd2vCSnyRJPNJ3tu5DsEReUgPxofMuB+s6D+qAcwcyXFYgo8cpldgmGNkcHGNK7nNH4CAT06qk1us7X4dUUzUbyhAnCUNyNKRHMiE/2nYJoa1Na4sb7EEuo9epUtT3ctzJzep46ohhZupTkzF2YCdsXbQbRzefhC4h0K64wUxhVR32bT+JTjEhOJPr4Jx0BsjOelZxzxFE5LDim3V4+ocHW2V7AgICApcbkx4YjeVfr0F1mQsXBw+5/5M70G9CL5tkTN9AH5oE1DwRSCwVu9UuMEMSkEiSghkyOP3MiDdopXiPaGgD9BnXHQFh1u19b18FeJIk7O18vERn4JCRUYKUFNs2kk6rp64V7rpTRCSEYfQdjgtBBUcGWh++wQimRm13mVn3j8AzT/8BrZ3qf0qlHDPvHurWMQkItAZrf9qC6qp6qEangLMQE5E2vDZICUO7YCi2nAaIQNpF25/ROm/zk/uJMbsMunDHg/4ihkGP+FCcLai0cvGq7xPldP96L0BMEulJwn9cEIzH5RDVmCofuyfOsBaLi1OzoR+YbJrvrBoD2V98iI3AgZeKqRMAo9E3OTDInAjS3YSX2F4DXVKo6/VYIjKw/544pxy1O87BnVIPxLnBkXsgJ5eg4vrO0IdY35v1Sh7SGpPQgayr7psAcV6lW2L+G56chIHX9sH2xXtwcucZ6OKD7YobzOSUVuP0oXQkRAbivAPHQiJEk6Tbr1JVMyDCQtxgjdFfhoopiQhdcLrpnDkeK+etxyNf3uPyXAQEBASuRKY8Mh6rvt9IndhaE3Lf7DW6G2I7WbfT/YJ9qVi6uWCatCEs2wWuuP7xCZBR4aWJwsxiPDvqLRsnWXcZeG1v+ARYPym9fN1zN9DUaZB9Ks9ugQ61RoenX1+EAjvCQi48APpeSZDubxJtxnSKosI/RwQ1i0nsLhNhes7d/9EdeGHsbLvX1TfIB7e9eoPLbQkItBar52+6aOIGcj8xF9dxtkynfkk4sz/d5bL/ecyu4a3Q19/a4obW4sanrkWPUV2wY8ke+p1wRXZqHvLPFVDBQUFG2yekEZHDqu82YNZHd7T5vgSsOXnyJEpLS3H69GkEBbnOn66ttW6HBAa6fm63BOflHQRaBSI4uPHVdxAQaVvtIK5bT8R07tqi7fYYN9FG3EDQazVI3b4Ze5cuxInN66FVmZLvE3tbq2ZcQZwJKgryG0UE67/7qsXiBiKuGHbb3TbzOw50v2M7/3QqaspLUVNaAo5rSoY4f+SA2+IGcr1uev09ePk6rqiUMvwaMIzzn0aXEaMb3TOmv/kBYrt0s3o/qlMKbn79PYQntkdZThb2LPkTO//6FWkH9lgdu4BAa6Gr4ZG98eKUNFSEAGPnM+j/KgOfOOfLlp0QxA2uEHsBEY4LE7Q65PYW1gcXHfJdYEUMBr/DovNdDNLDXD9PVu0shXckLhpV54SyoAICAlcvvhJvfNj9QUTKbSuT9wtMRpTeVOXUkhBpnaMxXkqEvA43xQ6wETcQ1AYt1hUewG9ZG7C2cD99TegbaGo36zkxjDzZOINqgwIao5gKHsyQ9yp1cqwsPI1ijakDyMhzmJfxs5W4gaAxuh5Q1xqJ84QEN8XYdmL3DhgIAykz73IbYpytTUOFrhwVujJwpFxgA8erDjSKG8wYeJaeh+V5EaIU8bg/8XUoRI4rPA4LGQznNQ6BYcGmjv9471i8kfI0Ovu2t3q/s28HOj/OOxq5qmysLlyG5fmLcLzqsNWxCwi0FhVV9di85yw4ibW4wRLOVw41SSBxA2lqPthy+4MAESG++O23J/H8L48iukOE047QkzvOuJ3EyJDOfXccJtzdHtlW85uAy5WsX5LqrMRpoC0h9ux9J/TExYIIT3qNse5HaQnK3Xlg6xwknfE8ZM3GUs+sPEKry7278iXc9soNgIW7hiMWLt2N9llVEFXU200kUm44A1Z94e4hZtKPOBftXIkQwVJrTAICAlc+geEBeH/tqwhvF2Lz3uBpfakDg6cwLIOpj0ywW2laVaumic6/v7sEG37dBnW9KTF44BTPOsY2LtjRWDnUoDfg47u+thE3sGW1jYXYHN2y2NIa6gZx9zu2Vu0jSFKPm22GEztSUVxSjeKSGpqIambbwt1uixtIddOPNr4OhdKxoGLc3Y4F2c2XSe4chY/n3IouXZo+B9J86dW7HT774jbExQXjbFoRfvltJ+b/vB1792dYHbuAQGtBEkh2Lz8AbfdYK3GDJcZQX2i7xUCU7yLZRGNyPXBEVPsI/HzmCzz/zi2IduJQwh7NxMnNJ62S7ci3X5PkIllAxNDYyowhOtCpI4SrmIWp00CyKxWosS3Y1hzeq+l8DOH+UI9MgWpqH6iv7Q31xJ7QdYyk58CoXFS2cuNnzlabhFO+gUr0Htu9Yf9uVFd2VDiQCJCPWffP2EMkFqH79IHg/B0nc+q9idOGnfskw0DnS5wwGl7LxNDHuk7+IBDnH1I9mjwPpz8/FUyC7TOxOb8u2ILEnEqwVSq7n7PX5tNg7QjMCHX9nVc9Vbf3h8Hf+vubJsQkQkwiIHAVExoTjPfWvEKrajeHOAm06xLj8TZFYhbXPjTWRtxAqK+ux+r/baIxycbftkOrNj07B1zb26N9kG2Yq10TYfOHd35lV9zAi0Xg5VKnfYlevgrMfPsW+zGJm5zYeZq2u8hEknjNrN+aalfc0Hh8of7g/E3jIimDO+LD9a85dVXwJCbpOjSZbo/EOpYV1InA/NPtbyMqKQKn96XRSuQ/vfonDqw7anXsAgKtRX56IQ6sOXpRLmhschR+PvslnvzuAYTFOW5XElEDEdcK4gbn+IX4NrqCXgyI8KTnNS3LGb4QUveeow6IH254HTc9cy3EdkTnzfn59YWIbH/xHBXSjmTiauNKGScJCQnBsGHDkJKS4nLZZcuWWb3u1atXmxyT4OBwkQiKisHdn85D1rHDKDibCoYVIbF3P4QlJCHzyEHknHRuLWmPwrRzdBuWEGHD5p+/g7a+aeB1yy8/oMfYSairtF/ZwRFaVT0OrPgbY+9/DKu+/BgZB/eiJZBzHH7HvYjubPsQ8AsNQ4cBQ3Bu706X29m/fDGdzA4K3cdMRL+pNyJt/x63jmHEnfchOtn1g8g3JBT9pt2EfcsW2n2/46BhiElpGogPbZeAm157D9UlRagtL4N3QCACwiOh12iw/JN3qFCk+fanPP0yPSYBgdaiKgPgXPdpu4XYGzA4KFoQPgDo+xwLeSADnxggZgSPM3/ySF/OoyH3UMBNSOI+yS0kjguFrm9jVvi2A2qyPVcOi+RAvxdZKlIpPtg6iY1e4e65RuRvB7RVPGT+DFJmMogg4wJN7lZ2ITbPuVtcLCMG+FYSmYscj0MJCAgIXBXEKyPxU/+XsL/8NE7XZEPCijEwOAWJyiis9UrDgfwVFkvzCPF2Xl1ExBqRp05Dex/rJNVVBXvxXfoK1BtNCUSEr9OW4a52vREtO4NhgaRCD49qvQJleh9oeCnqjHLUGzmIGY66H6iNYqgM5MZcj38LNuLu+Jvx8dnvcaL6pFWhQQljoEICZ6iMUsR4dcCtsdORpLRNmgqVR6Cdsj9KNNsdbsPAM9RtYn3xImwu/YvOC5QGYXjIaIwJm0gFDrYwMPCkU4gHy/OI926PKVF3oJ23yZ7aGRGKcIwPH4M1Revtvj80eBCSfJrOJVEZhzdSnkGRphSVuioESv0RJg+B2qjC1+kf41SNdbwZIgvFrPgnEe3lXqK5gIA7nM0sgd7IgXORi6JLDIHiULaNHbnlwJNCKYOqVgPF5lTo24dDnxgC3lsORqvHyJ6JePbJyQjw9ULUHcMx6tYh+OPdpfj323WoLPawknLzfZP7UG45DHYSL82IiqvB1rtnUUfOUVRYDWOka1eWRpq38UnnslQEOEhYuRBIh7RRZ0RxdikOrDni0bpxXWKQfdJ14lBzFEo5Xvr9CTqYenjDcVwI4lodQhacgGJWf2SLDY2Xjjg3yKoAscXHJCqqxralh/HgKzdA6e+Nu2bfgjM/rML6Q01V4+xBvqV7ft8JHyMHfXQA9LEBtEqruLQO0vRS+hlLSEJTK30+Ujeq8QoICAhcybTvlYCf077CvpWHcfZAOk1mGTStL+K7xGLzHzvw/u1ferQ9nuNx7mAGugzuZDWfOOL878XfoK6ziEme+BHXPT4RtRWeVVEkYoaln6/Cve/PwOvTPsLRLSet3jf6ecEYpKTVxGmwwvNUq0AHHhuWYWrV6NY+Ag/NmUmvQXMSu7dDj6HJOFxTD/g6FkJzRiPm/bYL81aYntvhYX64YUov3DStD3b9s8/luZCkH1IBL9ki6ccRCd3icO1D4/DvvHV235/8wBh63GZSUqLxxVd3IC+vAhUV9QgN9UF4uD/q6jR47qWFOHg4y2r9mOhAzH7jOsTF2orwBQRaytkDGSAlxvTxzpPG9YmhkP57BIgMAuwIfUhM4p1bAkdDLiOmD8Zjc++l1YDH3xWKa24bhp8W78GKDcdQWas2uQvUqCA9lQ9xvp2xWVJNQuy6BiGtC2FG1LS8OLcM+pRogHW8DbEdVzUiSBBlFsEY4nx80iyg0LcLga5PgpXjA3GZ03eLBRfgDem+dCoEgaPERNJAJ8IOJ04PCSIWxphgmiB5aL2p74JxI96SZpUhrk8SMswiFJ6nsZf8SDZEzdxm7Am8X/nrKRgi/LD902X2D50BDM5MdRgGem8eooYvSVj3WFRmui7qtO7nLbj7nVuowOy+D27H6S/+wfZjzkXORp7HwUV7oeQ4KnQhcQl5wIhLaiHJKmuISSQ2Fas5MQtDoGN3CArLQB+qgLiq6ZrLhJhEQEDgKoe0hRec/xq7VxxE2qEMyLxkGHJ9fyqaXjN/Ez6d9a1H2zMSl7WjWejQ23rsYclnK/Hza39BYyEI/IbEJE9MRL2HDhLlBZVYPnctZrx6A16Z9B4VzFnC+XnD2D6SCgjoc1tnAJtXClFavlUfbPcRKXhwzkwaf9m7LskD2+P0njSXx/PNEz/RiRCZGIbrHp+EqY+Oxw431u0+YxgevHu4zfWyBzmm8XePpMJ1R85IMR2jrOKdr/a8h9yz+agqqUFYXDBCY0NQXVaDZ0a+gePbUq3Wb5cSgzeWPofo9o4L6AgIeMrZ/emtIp4hRYJIv7NWZT8qGXPHcDz8xd20r3vSrNEYc8cwKuBZM39zi91d/qtEd4yg17k0t5w6P3tCXEo0dbXxFJ8Ab7z+97Oor1bhyKYTaA0iEkJReN6+s5slK79dj9tfvYG6ld7/8Z3IOJ6FwxtOuHzWHVrnPLeZ9PHpSHzYCggxyeXPzp078fzzzze+Hjx4MAYMGNAm+xIEDhcR0iEW36M3nSyJ79kHA2+cgT1//+HR9mpKi1GUfo4mzLNiMfJST2DNN5/ZVPrRa9RUqNASzuzeTkUBZ/fs8HxlhsHoex9G9zETnC426fHnUJ6fi/Jckq3rHnUV5di1cAF1biDn7g6HVv2DAyuWILJjZ3QdNdapi8OQW+6AT1AwDq5ciqqiQjrP2z+ACkX6XXeT3XX8QsPpZGbNN5/aiBsIxIHi7/dex8yP50IZ0DbWLAL/PdhWuJv7xgHJtwPHf3AscCg5BBiaxgXBiBi0mwBUZ/LI2956iebOYEQAf4UboQR3B8pPtvw82t/AoDKNx3nLPFQ7BCYDQSkMDGrAKwwI7wP4xPKoTGu96xg/nkH8JAZr7+TofhzB6YH05RzC+7JUHNMvPhB/H3be0E+uCnH5nWrN71zUsLatjCsgICBwOcAyLAYEp9DJkvFJ7fFQ736Yd2h/w3I8WNZ1B1yhugJaYx6iFQEQsQwOVZzFp2cX2SwXKClCoeprOoYvaxh/D5XVUZeI8+pgVBiUYMDCwImgNYqg50njxnRf3lV2ELFeUThQcbxxXYKUMSBcVkOPVc+xkLC2ydJ6ToJJkU9hULBz57i74p/F52fzoeMybN4jhUUL1f7wllgPFBMnh2X5C5GnygHHO+uwYcCBgY4TYXn+enBYh44+HTAseAiUEmsbaEtmxN2MEFkwFTmUak1K0gBJAMaGj8LEiHF21wmXh9DJzI+ZX9uIGwil2hLMTf8Qr3b+AEqx/aqWAgKeIiEJOtSYxUWbSiKC0UcOcaVt9cn4rrGY8cr1+ObJn6nAgQgOpGcK6GTm6LoTMN57DdBgm04qb46/dxQyT2Vj17L94IzO711GHynqekVA0yEIvISFpKQe3keKIM+opO9LT+bRKqWQ20nCMRghPZbjlu2zGempPKjDfZuSj2ipU8fLs83b6AYjoGv9AKjnNV1wbMupFldPvuX5aTiy+QTW/7zV6XJdhiajQ68EmmAa1i4Efcf3QFSHSJzeYz0Q21JIIs7MoFgMf2AUbrr7c6j9vSFq9tGQarWKPRlQq7RYvnAneozphtjwAHRPjHApcBAX1dDOe/KRSXMr6dSc1hI3EIZe3zYdwAICAgKXEyKRCIOm9qWTJaNmDKXJyUu/WOXR9vLTCiGRihGRGEbHYPauPISvHv2fzXJk0Pi32S0bJ9ny106ExATZCAKNgUpohiUDYotqd6QtRHUOPFXKibV6vPHERIya5LxK63urX8Y9w96EIw8GjvTl0SThpjZKUXE1vv5hC85nlUHrRkV3juPw5/tL6bF1H55Cq536BDiOSUgCd1RSOP1MSnJMMQm5Dtc/MQk3PDXZ7jrR0YF0MvP67H9w5Kjt2E9uXgWefWkhfvr+PiidVL8XEPAEci/glDJA6mLARCoGLxNDsu8MjJ1iwIUHNgoIkhJCccfN/fHVDR87FDjs/fcgTSZq3K9EhMlju+JsVQV2HD8PI2lj+/vAIImAQq+HpMQ6wYjheIjLVDAEO3YPIGO9rEUz09LdjlbtzyyBKtF+BU1RfgXYZk4zZsR5FdD1NJAAzqk4ghez0PVo5zC+M8QEAXVqsFnFMHaIAmNHbCEqrIQ4vQCaoZ1Mwu1m9I8LRerCfTYJYLK0EuiSnSQaEre2E/l48Imp2Lb2CDavOABWpaOTPXqM6kITGEnSEnlWkErO5N525LBjYQF1z3AR2xIHB3N4d+OD4zDss3twV4fHYdQ7jt9UNWqs+n4jugzphJhOUegSH+5S4CAurqXuhGQ/ktwKOjWnubih0VFQzwES52IaRmt9vEOEmERAQOA/AOlPHHp9fzpZMuHea6iAeuV3GzzaXt65QpqmFZlI3K4ZbF+yF98+84vNcrWV9fj1TVNRV0/Z/OdO6gjXPPmWC/SBoV8HEmg1zSRtooQI8EG+EO85DTHD4PXFz9jEYM35eOMb9FlWZk+g6YCCjGIqJs9OzYXW3/VYg4HnseBt0zXodU03jJ05HN5+jkXeT/3wIKI7RuGfr1Y3HhdxBbzhqWsx7TH7uWhE9GApfCBC9dTdtn2RWady8eLY2fjh5KdQeLsQBQoIuAkZO7hQ2vdOwK0vXYc5986D1kFUsmv5fquYhCSXT7jvGmSn5mHvqkMeF0ttCRK5BHo33a4vV0hscNBF4r4zZn1wO1bP34Td/xxwsZ8eVExFBACRSeHoNYbEJGGNIu/W4JYXrkOPa7rg7o6POx0nI4U/iDNQp35JiOscjQ69klwKHAiuhDutJW4gEOGhwOUDz/MwGo0oLy/H/v378dtvv+Hvv/+m/YyE6OhoLFiwoM32LwgcLhMG3TQDCb364tiG1SjPzUF5QS50Kuc2oZt/+q7Nj8ug1eLo+tUer0cS/ae/9QF8Al1X32FFItz1ydfY8MPXOL5xjUf7ST+wBynDR7tcjgghyEQ4f/gA9i1bhCnPvIx23Xo6XIcIM7qNHo/KwgLwnBH+4ZEQuSmmIIKNtH27Hb6vqa2h5zroptvc2p6AgCtIIrssANDa5lq4BVl35FwWJYcBdQnnNEn9/Aoe3R40dexqq3lsfoSDqvjifkYBnYDKM7jsae5uQK5zyt3Amd8uQFzAAKG9GFRTRy7nDUiyj6ihwJEveWSuAk792MJ9OjmW2DEMFMEMSH6mM4EDIfVnMnFgpUDsyEgEq9NRprD/rJMZRehcSTqB3HS0sC4C5zHyICBhsiBwEBAQ+G/z/KChGJOQiD9OHkd6RQX0Wn9ISAlsB/A8g2cPrYFYxMNLooeoQRBBRAwcLTNouq9KWQP6BGTT+c0hY8XxijKUVPlShwR7Wb8qgxrri02Ca+LuwDQ8/wIl9VTcQCCCCGODAwSZR+b6SOJwb/w78JW6rpwuYsR4ptNX+CXzO5ypWQdvsZaeX41BgTKtN6Qio8N85AOVezAkeJDLfZyty4SOM4n7jlYdw4qClXii/aNI9rWuNmvJmPBRuCZsBIo1JeDAIVweBhFRKbpBrirbrrjBTI2hGrvLtmJs+LVubU9AwBVdO0bB11uGCjes5ey5NwRFBuCL3e9iz/IDqCxyfO/RafQ0IWTmW9Pp64qiSjza/0VUFDpex4w+1BtlN3cGr2hKDNTGS6GND4D3wQL4bckCW6eF16ZT0PaIhTHCVK3f7NwgPZoDUWU9GJkYHXon4Nwh54koBHFpLeQ706Dtl0BFE7wzkQPHg2kWJ4hyy8C0sOITqfIUHBmAktzyxnmBEQG4a/Z0/PzawhaLG8ggcI+RKTix3brqmV04HgOu7Y1vnvyJVsEjletaE3KOo2YMQYifD0J3ZKLcSwJd+zBwfgoweiOtaCo5VwxdfBC03aLw2b5TwL5TUEjFuKZvBzBaA01uswd5T3bOdRVWAkmQyk93w9rOCSRhlCSaCggICPyXeeizuzD0hv5Y9cNGmiSUdTIHGieVvEk88ck937T5cRFxhL0kJ5r8ayluaHZwiSFKfPneDPgHuk70kcok+G3fu5j9wh/YciDbumI6cYWwqN7enDUbTmBCx2jAxaC8ZaXXvf8ewh/vLsHsf19CyiD7LnNEMEKEDNMen4D8tCJ6HNEdIqhIxR1OpebbFTeYKSurw9r1J3DjdX3c2p6AgCu6j+gML7kUzkdXm2ISRm+A+EQm+DM54BVyhEUFYN7SJ7Hp9x1Oq56SSsxr52+mSUeEoopazHz/L1TUWu+ZOATUTkqBz+pTkBRbb8/rWBFqrrF1dDFDnAHMdRzYGjXEBdbxjvRcIeLaheKMSgvep8FqQKOD5HwJxGfzHfZhUBH58RzoetvfN1tWA3FOGQxxwXZFCbw5sV8EGHrHmGbqDBDVacBKZPS+QZwixOeLIT5XCKlMjNBT+SjwkcEQFQhGzCLMS45Zd47A/Omf202SEVWqID1d6FDkIDtVCLnGgK7DOmPPvwchLnPuzEOOqf/k3vjyk3+w5Ew2+PWHIKpSQXquGKLBSTBG2BbE8yRSkohFGDOgI3UZJCIbZwIHwnfP/kr/J0mqQ28fBkZnAO8gEY5R6yE979o+nZxjaGwQirObliVdZt6nylHfw4lDYZUWspym72ZEQhhG3+68SIiAgIDA1c4T8+7HiFsGY/UPG2kbmMQkzsTE5B78/m1fXLKYxNglzlrcYAHv542E6wfik3n3wteNmESmkOHP3O/w5vUfY9c/pmJY7kKObdg7M1wud3LFAYjyyxtjkt/f+Rvvrn4FHfvYd3RgWRbTn5+KG5+ejLy0Qnq9SUxC5rsDceCzJ24wQ5xtN/++A5PuH+PW9gQEXNFrdDdI5RI6jtESiCD3y93v0jEQ8rt3JpwlxYeuf3ISfV2YWYxH+7+EukrPHGIuBJGYRXSXGGS2wOn5YkJcpeVKGSqLmkTgoXEhdJxk7qPzW7xduZcMKYM7Yd0vzotAma9Vr7Hd8N0zv1JxAV78Ha0JcTwYeuMAUxELN4KZrx83JY8RF4fB1/drlWMg40Z+IT5ujdU5g9zjR94yuFWOSaB1WLduHSZMsC8qnDJlCr788kvExcWhrRAEDpcR4YntEZ74BP379I4tWD13zqU+JPiHR6Ai3/MHkbq2xqlDgj3GzHoEg2++Deu+/RLnD7vfWK6vroREJodea1FW3gXE1WLFJ+/ins+/gzIwyOFypHEcGNmk7HWXjIOu7aAzDu4XBA4CrQYrZtDpFgbH5rUsQYUII7LW8lC77idF/i4eEYN46GuBQ59z0LixTmtCkvaJuEHqC4T3Bz2O8tOAzn5BoktGcDdgxOcsTbw36kBdCyReDIoP8lA5EZG4ImoIoIxkENjJ9WddeQ7Y+kTbSbOTpjH0WAj+SYDavdwfkJy33HXAc16D8X77HaiSa2zEDXee6wkvowRihXPhBBH39HyMxdanORjdfwzYCCQGvslC5icIHP4LnDp1Cr1794ZWq8Xw4cOxdavrgFNA4L9Ez/BIOhH2l4diab5jO+YilRJeUgNkYuuBW5ILTEQIJG+WCBLaKcohahAi2IMsHy6rRpba/oBrtFcEclUmVzUjz4JljJAwRsiblejmwELHs40dN6yhBkqJr/snD2Bm/AOo0N2Kr9N+xcnak5CyeshZvcuC9DV6NcSMBAbefoclGa/Xcdbht9qoxhdpc/Fxt/fhI/Fx6roRobBfldEZJ6oPu1zmePVhQeAg0GrIpGLMmNwXXy/bCV7k+EcjKq+HqFZj12p90287kHnCcRIczzDgwvyw5WAGehGr8ZO5+OrR+agsdt1hSm4NlZPbW4kbLKnvEwlZVhXkmVVgazVQ7DgHjggSFFIwWr1VNVBSsZ+IG/xDfdF7THdafe3MvjSHSVCSvAqICyphiAoAp5SD95LCEOYLLqChOhlvEjaQCq2WV44kBklO56OlkEqlH6x9lQ7E6rQGxCZH0WpkJAmoorCF6ngAw28eiOCoIHTsm2TqjHfCyV1n8Pzot9FW3PjUZIREm/p1Enu0Q82mE1YVTXmJCLXjkmEM9mm6uDyg1hmwclcqlByDOjsiB5Jk5LPuDFi9ETIvqUMrcEL3ESm46+3peGHs7BYPXCV0j8Nri56hluICAgIC/3W6DEmmE+GfuWsaB13t0UINoMfEJkfTSq6WGP28wAU6dj8gVHK8W+IGS177cAYeLK3FBy/8gaN70gCdnrpOIcFJNXOS3BDoC7FEBIOLxFpLSBvmtWvfx4LzXzutmkoEDbGdPB8n2b033a1lBIGDQGuhUCpw432j8f3Bc+CCmn6fpAYD6S4gbW7SJGTLaq3a90QYy+jrUVpTj60LdyN1j3OXL8K2xbvRfWQKSrJL8cGSHajwd+BEImKhGpwIv6VHrY/1eBF00b7QdLQtFMcYeEgbQgtGraOxSfMIS6fWIXv5AUSG+6PHlD6orVbhzLY01Fk4PTiCiCBIe1fXORq8X4OLBBF7ZJVCeiKXOkzwXjL74gYZETc0OxqS1B8ohuhcMRSHcwGtvvF4+4ztjjeXPoesk7kw6ElMEk0TgbYt2u1UROK1PwuiGg20yRHgfE0VldlqNWSpBZCdK8E1d49EQKgfOvZJwsYF252e7+Edqdgh5WGMIPdj0z3ZEBsIbZdIyI7lgQvwAt/MwU9EmvWkY8tetY4GWL3p+3Tn5L5U3GCOSSzFZM4gAr4N321AYGIIygfE2whKiODae/MZkyjFRZIcqTx707NT8PLEd2GwcAD03Z4HVXIgeJn9xFf/TTlUCEHo0CcRry16mv6OBAQEBP7rELczMhEWfbwcP7zwW4srWrcW0R0jbRL1OX9v8D5OHKEAVCu93BI3WEKe3SW5ZVS4cXKn+1UnmfNF1OmbulnZg/SxFlq7Q1SX1eLVye/j14y5Tl0USOJsXHI0PGXPioOul/n3oCBwEGg1SP/u1EfGY/Gcf1u0fmFGMXWqTnXDAZk4u6QM7ojcswXUSeViihsImjotFTcERwXSPvLqilqc2XMOdVXuSM4vHv0m9sRLvz9BYxKjwUjd3YjjxYZft1GhSEsZe9cI+nmTmGTH33udLrtv1WE6tRW3vXpjo0MniUnSDtOKuS5R1aqx4ZdtkCqkNMZ0hkQmsescZ4YUupo0azRem/qhS9G3I5IHtKfjJOTzEXBOYaEpd8IZxFmhNcjOtj9uq1QqER8fD4Oh9VzO7eGepFHgopM8dCS6jzWp7C4l3UdPgMzL88FVnVoFTZ3zTjRVTTUOr/kXO//6Fcc3roVWpUJ5Xg7qq9y3OyMQZ4Y+U64H66a7ghkiiDi+aR3aAs6NH67RcGXbNAlcfnS4mUXkkJavX7CLB+tG8a26PJI0z2HXqxdf3GCJrgYoPgCI5JefuIHQ4UaWiqT84hkEdmSouIGgKnXdyUEKM9srzhzcFej7vOnRHT2coY4QlwplFNDtoabXiVM9b1KwKhGeOzEEk3I6Iqk6CInVgRibl4Tnjw1FhxrTwE7Sdc4zSjvNYJG/k/dY3EC+N6E9gWGfMBj3kwi+cYK44b+AXq/H7bffTsUNAgICrukbeA36BIyy+16NToaM2iAbcYMZIggwuSvw8JO47hxSih3/LseGDYWXyDS4auQZOomalzi3g9pYBx3n/AFRb6jE4Ypl2FXyE05UroHOqML52hKUaOohZoyQEecGNx4RmfVZGB4y1a67AhnfqCcZAHbqJxKRw/aynWgLDLyhVZYREPCEO6f1w+BOsaYqww0JMFatX56H7LjJycQeu1ccgFhiP7Y3xIVAPaEntIM7Ic1Lhgdf/QsvfbcBZXr3vse6WD8YgpwP+NX3sBYTsRo9dWywTH6ypKqkBkc2n4RYKnKanEMgSUIk8V52ugDyQ1lQrj4O7xVH4L36GLzXnYQkr6rJqcHIUecG2bZTYF10Kjvjhicn05gkvmscrYJmHiQsy2tydHBmL03WtSeaePLb++nfI2cMgY+LxM62hAg27nm/qTLctQ+NsxHE1I7rDGOIhbiB0GQyBJWIhdfhPHjtz4Y4vwri/Goo9mfD/68jkBTV0Gsw9RH7lWnophgG01+Yhh1L9nksbiCVo3qN7oqPN72B7458Qi2qr0r4VpoEBAT+k0x5eByuue3SV5K+9sGx9L5tib3k3+aUV9VDb3Aeu5QXVmLJZyvx4yt/YO1PW6CqUyPrcAaqD5wFezYbbGaBY5cIC86cyMHNz0+liT+eQEQO63/ZhrZA78aAtieCDAEBd7jzrZvRL8iXxh5GCaAOAFShgDqEof9rlYDkdIGLmMT17yjjaBaeGPQK3pnxOUp97IuozRgDvWAIMMUi+nBf1A9oB9XgBMgyquC35hykOdVga7UQVaghz6qBV2Y9RKV1kB3NgfeqY9RtwBHE/e7U2qNgqlVuiRvMiPMq4LX+OBRrjkK+/ji8/j0M2dFsmkxPYOy0bYlrgzMxu659KDgpa9X0vv6JSbTCckK3OHTonUjFDYSyfNdjwX65lfBdfhQ+Sw7D5+/D8PnnKBU3kGT+R766ly4z5s5h8PJ1npCvGpRkigmaw7LQdo+BYk8GJGnFQMP9iFHpID+aB8Vp5xWdpBUGdDYA9103oHHelGYxiTsYM0rhu/QI5IdzIC6shrigGvKD2fBZegTi0jowLIMpD4936mo3/flp2L54j5W4gR5jiRphP5+CpMT6O8TW6RH4TwZC0+vQZ1wPfLr9bXy9/wOEt3PPVfuKQ4hJBAQELoAbnp5Mq2Jfaq59aCxNLrWEV7iOSUrKalwuU5ZfTpOxSUyy/petUNerkXkiB9Wlrte15OyWk7hlbFcqcrBBb4DkUBrtI21OVUk1tvzRNuMkep3rvmNnCbsCAi3h3g9uo4naLYXEJCI3YpKzB9Kpa8OHd3510cUNlpC2/Zn96TBo9JeduIFw3eOTaOGGxO7taExiTp4vdWOcxFGsMXBKHzwwZyb9e/w9IxvjnEtBh76JuOXFaQ7HSdzBlbiBOFBMfsCx0w3pi7rpmSnYtmiPx+IGbz8v9JvYizq8f7n7vcaCVlcdrRyT9OvXDzExMU6n1oIIHCQSCRVMBAc3FWmoq6vDF198geTkZHz++edoKwQHh8uY0fc+hKS+A3B84xpU5OeBYVmU5WS1+n5EEgmMetsGW1y3nug54VrUV1fh4L9LPdomK5bgwIolqC0vg5efP5KHDEdkB1PVJcK+ZYuwZ8mfVvvdOP8b8JznVc3VNdXYs/gPBERGI7JDRxSlp9FkCpFYgtLs807XzU09DsC1TZqnRLTv5MYy9m2fBQRailHLo95xv7xLOD0QMYDBmT8ubeaAPBhuCye0VUC+8+I8l+wcooba7+j3CiHznV9j70hg5OcsMlfzqMogzg9A9AgGYX1MCTQEkZTBwLcYbH+Wp44IFwpJ+PdEJFCXD2StARKnmF5H9GfQ4WYG5xZ59v3xDxVjZGk8RhTG27zX/WEGHW5iIVZwSP2Vp99Rq2OWAcfmcU6/9xJvk1iECGIsIedacgQQKXiE9uTpIIHA1c+bb76Jo0etq6UJCAg4hjxzbox5GF39BmBfxUaUawth4MXYVqhGvsoP/grnwgXyyCIaBwMZAXcBC/sdP70DumJ0+BDkqouwpogk3TDQcyJo3QhlFawYR8vnQ20ogbckEPE+4xAi79z4/p7SX3GgfCGMFq4L6wu/wsHKKBRrfRHnY+r4dufJVqGrxp+56xDnFY8uflHIUaXTAX0jL0FGXRF1l3DE6ZozmBThOHm2pcR7J7XKMgICnqDRGVB4nlQNsah0Sd1cSOVRPbwOZkOaU+F0MKn/5N5Y+sUqq/mGmCDo7NiUk2qj2iHJkG89CdZFpR19iHNxA91PqKnAQ2C4PyqK3LPRJU4I7lQCs4elk4Vo1xnwMgl1EiBVWkkV2QshPD4U/Sb0tPtesBsdxDEdI/Huqpex5n+bkJ2aCy8fL4y4ZTB6XdO1cRkimCAVPl+Z+J5bg4WucKdKkCU5p/NptdZxd42kr4de358mwq74xlTMQt8uEMYQ5wIM8t0MvSYF9XM3w3i0mVsGAzz61b10mxKZGAs//McqCZM854gQZO6j/0NBRrHDfSgDvGlSV3MRjLpOg8MbT0AZoESPkV3cPm8BAQGB/xLk/vnCr49hxPTBWP2/jbSSIbkBE3ei1sZRJbqhN/SnVflIRfc185ucixiN62eW0kuK/z2/gIoLifvRmDuHI6lnUx/Y/Jf/wOJPVtAKgmY+f+BbGA3W4ySM1vW+StMK8ceSXYjvGkur9Z09kAGRiKXPuuxTzl26j209iesen4jWpnOyyR3QGcmdrlKBn8Alg1TFr9yXDjZIhvrBUaZGmxmWgUEJ1AyNRuDiKrB6zn5MMqk3Vn63wa39ccQJTOS6+I8hWAnVoHgYIvys5hMhgc+ms5AUWndg+wX7otqNhERCSU4ZrbLcEtg6+4MC4txy6LrHWZ0b56p7h2GgTwiB6JhJ1B7TKcphO5dUeXVFuy6xNN4gMUnu2Xwo/bypyNpcUZtA3Gde+fNJvDHtI7uCKaOPHIYYJ5WiWAb6dsHw2pEGfs95SJQy6Ou0NBYQ53nD4K+APspWHOF1pAi+WzKRx/PYPq0/fU4RRs0YSkXwa3/cDE+IiwtB/qlCcMetYxIybvH09w9i/D2jaFLR35+utHpmkL47iVSMObPmmZ6RdpDm1iFxXQHUsT6oqa6DuEYHRVoVGCMPkn52cN1R6k7YtcE9SUBAQEDAGpIU++pfT9H+PxIPFGeZBHBZLtrYLYH0PxHn2OYQ0fc1M4bi4Nqj2PT7jsb5xHXWFb5KOa3sXlFUiZDoYIydOYIKDwkkr+q7Z3/Fsi9Xg2sQORI+nTXPJiZxh6LMEvz96P/QYVhnxEzugzPnS2hMgoJy5G886TSGOrr1JCbOGo3WhiSZ/zvPeeHb5P4dWn2/Av9t1LUa6ljdUkhMMnhaP1pZ/1JC+rXdFU7kpxXS6XKDOCenDLKfn+lOIn37Xgl49seHsXb+ZuSlFVCXBHJPNjuPmmO3FxY8hnemf2bVVm8pnrpznjuQQZ9Rg6b2pa9J7HBs2ynqmO4JcZ2jqRuI5fPALKh+7qdHMWrGEBp/ELdVy2XIPFIE7MOZXzmMSQi+QT7gOM7mO1VfrcL+1YcRHBmAzgOE+/HlyGOPPUZzraRSkzgoJycH33zzDebMmUPdG0ih2aeeegoKhQIPPPBAq+9fEDhc5rTr1pNOhLT9u7Fiznutvo+RM+9HdUkRTu/YQl0X/CMi0W30eHS7ZjxEYjF6TZyC1O2boap2b3CfwBn0OLTqn8bXR9etRGKfAZj85AvY8efPOLxquc06LRE3WFJZkAfeaMTdn30LViTC1gXzXQocyABJWxDbtTsCo2JQkW8/qGEYFj3GTW6TfQv8NyHB567XOFQ7/8o7JTCZQXBXBsHdgDKi/blEUHGDaw1AI/yF3TraBJLs74jQXoBXGKBy3K5D/HgG8kAGybc7T7onAoPWEDcQPHVAIJz/l28UOBC6P8TCL57D6d941BW49xlqK4GoIabroS4nHfag38HEKQyqM4ANs4yozQNk/oAiFHSe+ViNWrgU9ehdxFuFu4Gi/UTc484ZC1zJ7N27Fx9++OGlPgwBgSuSjr696ERYnX8Mv6X/Tf8Wmz3sXZCn9keCt/OB9qnR9yO2qgY7yw6g3qhGlCIMY8OGYVTYIOqKMCVyNHaWHUStgdzYGag5GTRGMeQi+wm1/qJ6hEhqcbb6z8Z5p6sWo53yGgwJex3rC3/AmZqmeMUMyxjQNyAbu8rbQdRwfjwY2tZy5uSg40yhdbaqmAo6Pur2EViGxa9ZvyGtrsTpubNtZKyY4tsdIbJQlGpLHO53WHDrDxgI/Hcxchye+vIfpBNnEMsEn4bfDnEvkGY4r4DZqV97mkDfqX97nNmXRueRX6K+s5NKIxIR9B2jIDuQ7nTb7ggGaMX/UYmo5XjIvFhIMiuoUMvleo5s1y2XIclU0YHglDIwWgMkueVgmlXXJIOS7gxMukP/iab7tj36ju+BwIgAKs5wBBENBEcG4o7Xb3K4DLk3ksSd1hA3EDwRN5hZ9f2GRoED4bG599Gkzr8++AfpSS6SphrizvJqFUZN64vSnDJUFlfTJCJiqT3p/tE0OfSBHs+iIKMIAWH+CIkJQvrRLHqsxHCD/O9M3EBwNQhEKq0eeeAEeo5qEo9cTZDfkJtNBqfbEBAQ+O9CBkoHTO5NJwJ59sy5b16r7+fpHx7AuYPnseWvXVDVqBCXEoPJD4yllfjIOML0F6Zix5K9qKsy3deJyxNTowLv61hEqTmajaXHm2zciYjzmtuH4pn5D+OLB77Hup+32KxjL5GIzS+HMalZorbNMqaYi1RaJZXzfkw1VU6bc+83LgUOZLC6LRgyqD1Cgn1QWmbf6UosZjFlsn1BpoBASzDoDXhpwrvIzyiGanhPh78ZQ7gSqu7hUB4ssBuT9JvYkybCnD/W9Pt1CBlnJA1DF/aP2s7hdsW3vFyC2jHJ8Ft6FKxaDy4qCJy/EuU8cdxmwRRX2fGDtEMrt5cYnQGS1Dzou8ZazHRT8NHAwIb7tqOKpyTBxZkTHmnnh8YEY+Zb0x3vj+OwZv5mhwlAxjBfl5+NIdyX/k+WIuIGXUoktJ3CwXvLaCIFW6wDb9DRWE1cqYbieDEkFWqrmMQscCA887+H0L5XPBZ9soKKT9yJFyuLqjF4Wl+UZJehsqSafvbE7W3ifaNxatdZzOr6NIqyShAUFUDjtPQjmdRBjsRkWrXOYSJRfbcQ1A6OhiHIVHmW0QbD60Qp5BnVVOBghgjHiVtR54FXZ3E+ISYREBC4UEg8QJKNyURY/vVazH1sfqtf2Od/eRQntp+mfUWqWjUVIkx+cCwVJZC46NaXrqNJrOQ9AlNRC9RrgAbXVnvUHM7AP2ebHHWJexxJfn3i21n4aOZcbPlzl806LRE3WHJ+eyrkBiN+2/kOff3ebZ+jwIVAvK1ikuE3D8IPzy+gfX6OhO6TnFQlFxDwFJ1Wj+fHvE3bgS2FxCTkfkMcjEmRn0vFpXSFaC0GXtvH4XtDbuiPuY/Ph8pJ8SwSkxCXs7tm3+JwGaPRiHU/bWkVcUNLnS5Xfr+hUeBAnhcv/PIYdasg93ziVOFWTFJSTbdBvrvEWYcIrHuP7UGfGce3peK+Lk/R94gwJDDCn8YkRJRHYxKV45jEjCsX9NX/20TdJywLg1xNtHZMsn//fkREXJyiIc33Exsbiw8++ACjRo3C5MmTqcCB8Oyzz2LatGkICwtr1f0LAocrCN/g1reFDG2XiC4jx1Ahw7Db7ra7jE9gMG5+432sm/c5CtPOtnhfGQf34udnHkZ1cdsp9qqKC7Fo9su47vnXqTDk0MplTpeP62Ya8K8pLYFBr4NvSBjEEudWsu5AHhZTnn4Zf7/zCuoqK2zEDaPueRBh8bbVJwUEWkrxAdPUUkiFe5JQThj0NovNj3C0Qv8l4wpPXkic6rjDnCTL9Hycxe7XOfB22qV+iUDiNNcjBWUneGStubQXqiaXx6v/nMCOtDI6htOZDUTnrbGIqDcNCLgDESnkbTX9TcQNXWcxaH8Dg52vcFbfabUGUDvPh2sxWWs5RAxwXV1c4MpFpVLhzjvvpMGlgIDAhRGu8G/8m+MZmOqBOqdU54MSrRKhsjq774fJk9HVfzS6BbCYGX+j3WVC5UF4K+VJfJ2+ABn1pmqtJTofxMgrbcapvVktQqX2O0my6jYhrS4HFbpiSBz0l5PtdVSWocRofp4x4MBA5OBc9RwLA9+0sXx1AZ499D+802Mmuvh1waYS26QlS7r6maoZlmlLYeANCJaGQMxeeKhOBBaz4p/E3PQPUWOothE3zIi9FxGKqAvej4CAmR3HzuPgGcfJc7oOoZCfLICoxr6yllSdNFvcvr38BTw24CVaEY0LVIJXOh6kIxijAsEfZMCQRqkD5OmVqL6GA8ROBsvkUmiSTR1vmpRwiMpV8FuZClGdZ4n3RMyg7hQEbZwfTXaS1BrBhwUDFjby2l5xkJ7Khyz1Amz4nPRJENt6R4glYjzyxd1495bPwNnp2O7YN9GtimmHNx7H5jayj3cXMsDz2f3f0iqpBL9gH5w9mEE77I2dmqxynaEprMKOtafo3yQh9IFP7qTihlcmvYejW041LVevdcu2uiWQBNerVeAgICAg0NqExrp3f/eErsOScc1twzD69uF4+HP74yRRSRH4eNMb+OTeb5Bx1OS0LT2WDe3gTk3OVRYw9VpIzto+50kFvVO7z6LovHMhtNW2NDqwmUXgEuwPXDJFlWDKmyq9k0HmVya/h9cWPYPeY7tj7U/OY5I+Y3vQ//MqqmHgOEQF+EIiuvC+MrFYhNlvXo/nX16EmmYJA6SS6wvPTEJUpJPK6gICHrJjyT6k7j4LXYwvjP6mhG5HqLuE2QgcpHIJbQeTJMb3Vr+CR/u9iLJ8xw50BFajh0jDwahw/JthDLxzZzGpCJqeMRDLfaxiBmNcKJjqerAZBSbnB4mYOteJz5fQ/XoCSRpsXonTFdIzBVScrU+OBE8SJ3n3XerI/pwlC0rlUjz02V00sZIkxDQnZXBHjJ053OX+9q06jJ1L9+GCsNi9ekAC9B2akjHI3V3ESgCpBNLzRVDsN93/Lck+lUfFZMe2pdI+JZ9AJRXM2TsvRxDxHPn+miu2Eie5a24fhhfHzaYCB8uYhIgg3KG2XwSqx1onB/EyEer7hEMf5oWQ305ZiRxIUtbVKnAQEBAQuBJiEtJuH3HzYDqRAh72iOscgw/Wv0b7woiwmTynxKk5MPRpb1/QV6+B6HyRzWwiGj+65QSKMtto8B2gbbI3b/gYL//+BI037Akp7MUkheeLaZJwREIY7ae7UKQyCd5c+hxemfR+o1jdsj/6xQWPuVXFXUDAXbb8uRNph1pemVbuLWtw7xLh/bWv4tH+L6HSTbfpyx2xVAxDKxVLcgdyDSfd7zgmIQ7VD86ZiU9nfWv3/R4jUzDy1iYhsyN2LtmHvSsP4VJCngkf3TUXJ3acprEYcb87dyjDo23UlNU2xlbk/vjEt/dj6A0D8Pzot2ghKDOa+lIUZ7fN84PEJFerwKEtRAfR0dGX9BjGjh2L119/Ha+99hp9XVdXh59//hkvvPBCq+5HEDhcQYQlJCGkXQJKs1w/CBmWhV9IGJRBQeg4aDjyUk/g3N6dVi4J8T16Y/wjT1NxgyuComIw4505KMk6j7LcbEgVXpAqFNiz+A/knTYNIrtTcr0txQ1m8k+fwpJ3X8fNb37g9HrJfXzh5eePBS88gZIs041Y4eOLrteMw8AbZ1BXi/3L/0ZR+jn6Xmh8IrqNGouYlG5uHUdQdAxmfvINTm5Zj7QDe2HU6xCe2B7dx05CSGy7VjxjAQEgeyN/QeKGPs8x8IkxBb2Fe/hLK27wEIkPoHcu9HQPkudk0b8v9QUMKuJI49lmut7PIKC9c4FC5CAGwz5icepnDmUnTPPEXkDcaAZdZjGQeLkWOGSuvvQqkHJo8NteU5IpIQcqrO+cj1vOd0WP8ggw7tWWsnLjOP4dj+rMCxPseIq65eJ5gSsEohROSzNVgR48eDB27XLeiSYgIOCYXoFxiFcGI7OuDGqDGD4ix0m/IoZFmDwYIXJ/DAy5Hjy3AZl1O8E3PnAZtFMOxKjwF6kI2BVx3lH4qPuLyKjLQZ66EN4iL/hJOGwu/gs5KtNgL3n2BIidVxRh+XRIWFJl1fFzKkReh/waP0hEZhcHFkaeo4IO8zgBGafW8yz0nJjOJyIIMydrUvHQ3t/xv0F3IlIRiQK1/QRmX7EvvMUSzE59GflqU2K4j9gXw0JGYWLEVNTqsnG04k8UqNOh4aTwlnRBv6AxiFc2WZ86I9orFq92/gC7y7biePVhKqCI906izg2CuEGgtVmz57TzBRgGusQQKI7YiiBIAgepUBYWF0Jf71q2v9HunTg0uIRU+BIxgMF+G5knP0+WhdfJEqh6hNvfBgewzXKEjEFeqJ6UjICFx5y2bL39vKiNLkEfrED5zZ1h9JNZLcPoeXgV82g0nhGLoOseS50lpGnFjWJoy0o6fqG+qC5pSlZ0V9xAEoXIgKczht04EIpVCvz29mKk7jH1e3j5KjD2zhG4+91bIfeyPn57uEqWvBiQ604q+5ghg6BmiJiGVmx1gazh+hPIAOo3T/5EO/8txQ1tzYVYlgsICAj81+gxqgvC40NRlOlaIEDaGGHtQhEWF0yra+/99yD2/HuoMemUZRkMvq4fdVQgz1BXkEHWbw9/jDP705B7tgC+RIgZEYD//b0HqemmxCGWYcDklEF6PBusA2cmd8QNnLcUPMuCrdPQCm3ic3kwanQwxocDiobntE4PNrcUovQCm7bK/tVH8Ma0D/HOypcQmRjm0HEoKDIA6m6huPaLX5BRYkrkDlZ64db+3TFreD9kncjG4k9WIO1wJh0k79gnkQoB3U2C7dg+HD//cC9WrTmOvfvSYTBySOkchamTeyI2RkgkEmhdNv2+nf5PXNNcYfSR2lTvffmPJxEUYRLdbFu426W4gcAQ97f0Mqg7h4InMUlziBNDrQbGAOeCC118MMQV1gIEcqcyhCrBR1r/3nQpUZAdyoLE4l6iUMqhrnNs0+yuuKF5TBKq1qFi9VFwfl4wBnlDNTTJ8coGDpKMMnpvffzr+xCZ6CD2amD07cOg9PfGb7MXNybMkNfj7hqBmbNvoSIIV6z7abPT98WF1aRCh10hWtMypoQxY6C3lbihObpO4ZCeK4aoyhT7WVY6tYqNXFQudadi6xcP/YDj21OtxA2ewMlEqBlh4b7RDCICUnUJgfexpu9QuROHPwEBAQEBa/pN6Enb0e7050hkYoTGhdAK4CNuHoQdS/fiwJqjVjHJsJsH4envH3DrMif3b4/vj81B6p6zyE8vgl+wLwyBPvj5r904m256BonI8zy3DKLTOWD09pMd2lLcYIb08b590xy8vvgZ/PLGQocV7UmfsEalxT3JT9A4ixAcFYipj4zHzc9PRdrh8/h7zr/IOJZFE5Y79UvC5AfH0djEHUjsMj/1M6z6fiMOrD1CHSq6Dk2mBWKIkF1AoDXZ9PuOFq8rU0jx6sKnqdMZYfPvO64ocQM5fuIu5gh3xQ3NYxJXbtT2IP0XT//woEsB04R7r6EC5T/eXUL7PQjkNZl/55s30WJRrljrIibxBNI35YlQ2kxZXjk2/Lqt1Y6DuHZ/et88HFx3zErc0NaUF7qOwQUuLx577DG89dZbMBhMv++tW7e2usCB4VvyqxC4ZOSfPY2/33kVBp3W6XIjZ85Cr4lTrebVlJUi+/gRKnKI7twFgZGto+IhQgBVdTX2LPkTmUcO4nJh8C13ImX4KCx9/02U5VhX1CDCBuJcsf+fxXbXJe+rqu03EjoNHo4Jjz4Nlgec+ikAAQAASURBVBWqfQtcPux40YgiD4rUKKMAkQII6cpQtwHfOFPnLmkkrrmDQ33rFxFtE+RBQKdbgaNz22gHrnVbFLE3ENYLSLqeRWgPz5L61aU89CrAKxQQK9xfd9szRpQcRqtAXCOqW9Am3RSZgbUxpqRxS1gO6FwZipnpJpccT2GlAOdZkdwLImYkgwGvt43t5X8dfT1PnTcMavL9BhQhgMTbs9/IhbJ+/XqMGzeO/k3+v+WWW3D33aZqjMOHD6cNbAEBAc/YX3Yej+xfAD2nR5B3PcSs/Yfl4+1vwqRI68oWNfoi5NWTKhY8orx6wk/aOg4C5doiqIw1WF+wACJuk91iRZbUGuXQ8847pQ5UxcJL0ryzrelcDRwRPTTFBKTonUKkh4w1wMixKNd4Y0bcLRgW1gVzzhILZmuxt7/EH0OD+2JjySqbfRPPiH6+GsiYJutouk+eRZYmGJ38JuCmmIfcSsISELhYPPjxYqcODgRGpQer4yCqVSOeY+BbpUbXIcmY8vA4RHeIbEwwvz3+4cZkIk4hhWZCT/tVyBq3q4V8zRFbEQLDQNMtGtr2oeBJkiD5HYn00PuLTaIIM8TYQevYHtZvRSqkuVUOK7ZNfXQCtTrnxSyKH+gJo6/9hCoiclDm81bHyah08F5x2OG+3e3QJiILUuntuscmoMsQ90RQZogrAbG2J4OJ7ggbzDwx5FVaja01SOweh4xj2WhNDCFK1E524opAkkULqqDccMbG/YMMPhN75YvFmJnD8fxPj+JqIS8vDzExJpFNwlOvQ+Lb5ADVEvQ1VTj/2dv079zc3EtemUhAQODSQ5JSXp/6IU0CdcZzPz2CsTNHWM0ryCjCUeL8wzDoOaoLrQzaGuQVVaKmToN5s77FmW2pLd6Orl0QtF2iwAV4N7YVpGeLIDuVT9sL5InFKxX0+Jl6NU2udsYT82ah1+hueGnCuyhoEGGYCYkJQs9PbsRPRxsqsDQjqpoD/81eu0JP4rz1+DezhJhE4LLi8UEv4/TeNGhj/VB5Y4rTZcXVGnTfXgAvHwW6DU+hMYk5IV+v02NGzIOoKnVPbExiFvWYLtD7ycCRnHwSuxBhgwGQqozgs0ug7WaKd5y5PHiVWd/TDFIGvMRBHMTzUGxJhai0loqYxt41Ej+/9hfaGnWfOGhT7JwLzyMktQhD2kdh2mMT0XlAB4+2W5JTCnW9FuHtQiAzi7jc4OE+zzcmIjlCNaw99O0cVNrmOChXn4Sooh6Rs0bgtNb5+Ls0tQCKg60bt7RFhdv6HqGonJzk/FyyqxG64JTVff2JeffjakGISQQEBNqa3SsO4O0b59C+TEeQfr2X/3iCiq0tyTtXgGNbT9EEXNJWNxd9uVBy8ytQV6/F53d8ifMH0nG58PzPj6JjvyS8MvFdFJmL2jRAxOv9J/XC8rlr7a7rLLH5+icm0UIvAgKXEw/2eq7R9dElDHGLDIeXrxd19yWiGyKGIhDRz63RD9g4j7SE5oKBtiCuczSGXN8fv7+zBJcSnwBv9JvUC9c9PsltEZQZ4kpABBokJnFHbG3m3pQnqdN0a5DQPQ7nW3mc5EIghUNc9b21Jlfbff2/EpN069YNJ06Y+hZTUlJw8qS5WH7rIDg4XGFEdUzGLW99iN1//4HMwwdsBrl9Q0Ix4Ppb0HXUWJt1fYND7M6/UPxCw+nkSBBwqdj1168QiUToMmI0Dq/9F/WVFZBIZYjr3gtDb70Tvzz3mMN1nZ3LmV3bEBwTh/7X3dxGRy4g4DnKSDcz8RsgDg0xoxj0eJShjVkzVWm4YsQNxLlh6Ics/BMZcHoOx+fzQGvnn7i4pCIZaGI8cWRoKYoQBs5rN9lHHuTZZ24Pr3Ag4VqgoAXF7CulauwIt9+w5ljgZFAJNqrSMbrAeSe63fUvoriBED9RSA5tTUjbpPQokP4Ph4KdJmcOM6RAe9RQIHEqi5Aepo69tqSyshL33HMP/dvf3x/z58/Hhg0b2nSfAgL/BfoFJ+DHgffiu7Qt2F16FkqZBnKxoTH3OEIehNvixmFMeD+bdX0l4ejsP6nVjylIFo4ghKPOWAV/NzRrrvrxVEYJag1y8NDCW2JZddV0kqTwIccTvwiePo1FDA9/iQZsQ4ayhOUQpazGtrLvECifid7+I1FWvBX1hkooxFL08O+K6dGTMPv0S3b3315RAhljm0ghZjjEy0txomo9whWxGBYy2fXJCghcJGJC/V0KHCCTgJcCBqUMRCY7afpAPHTfOKs2wel9aVaVUlm1DmxRFbiGSqr2EJ8vtkm8M0YEoH5QAjhlU0c0WUZilEBcAbCFpRAX10DTIRRciKkikiN0sf52BQ5+Ib54b80riEuOhl6rx3fLtzsUNxBIcpLBm4fEYkyC95LCGOQDcZm1LR2nkMAQ5mNKwi+sBquz34lMKrWSqk6kclxLaakNe1DEhXXGEkgy1sRHxmPDoTTUhSvBS0QQVapoIqe4rO6Cti0urYPsZAG0XewnYEmyKuC9Pc1G3EC4mOIGwoR7rrmo+xMQEBC40uk7vic+3vwmfpv9Nw6tP2bzflT7CMx8azpG3mKdSEQgCcyuqoq3hOhwU1ulykFVUnfQJkdA08fa/Zm0FbQ9Y8EFeEGxI422Z5g6tdvb/PLhH/Dotw9g7OwZ+Gf5IVTVqKEQMRjcMw63PjQKk7/+zeG6+X4sghL8IT9v2w5a+d0GJHSLw7UPmYpKCAhcDkQmhVOBgzS3GmyNFpyTtrn8ZAny04ow6f4xeHDOTKv3Tmw/7ba4wRyzKDaehKhLLAzRgYCYpR0P4sJKSE/kwigXuxQ4iHTWbVIqZhK7cMjrGIEosYjGJKT6MIlJ/vrwHxjbMAGFJPcTMYC2cwSMQUrarvZT6fHuG7eif0pci7cbGtuyxE6S9Ag4FzgodmeAk0lgjPCzfsPAQbE7HXHBvpj01i1YWlgC5DkXOPAK9xOdLpSWihsIRos42BGWsTJhwn1CTCIgICDgCYOm9MWHG16jybxHNtkKhmM6RuLud2dg6PX9bd4jhV7MxV5ak5ioQPp/Za4pJuFJHojSy9SwqFPZ7QO7GHx8z9d46rsHMP6ea/Dvt+tQU14HL185Bk/thxufvRb3pTztcF1nVduXfrGKJgOPu2tkGx25gEDLYhK3BQ48aEwy7bEJmPXh7VZvkcIMrSFuoLtpY3EDKQJF3COJWIu0Yf/+9F/qlHIxIa4Lb/z9LLqPcC50d0ZLxWYkJrlQgUNschQmPzgW/85bh8uJiyluIIy/d9RF3Z+ANTqdDllZWTh//jyGDh0Kb29T8RVXKJXKxr85rvV/+4LA4QokLCEJ1z3/OjT1ddCpVfSBV1VcCIlMjvDE9mBY64ye4swMnN6xBeqaaviFRVDnAiJ2MKOqqcaJTeuQtn8PdYYIjU9Ej7GTENmhk0fHpfBt1jF0GbD995+sXhv1epzdvR2FaWeg17g/CNCco+tWou+UG8CKBBcHgcuDhGsZpC/zrFGau5lHSDeSaNyUCmRw7GB82TFqLuAbazr2DtMZpP/DQ3Vhzr8ek3wn0yhuIEGBpVikrWk3jkHOBhefOQNEDAAiBzMoO8lDVw34JzGIGgJIfRkwIh7bn+VRm+PZvitjajEv6DDqJc6VCOti0lHgXYshRXFoVxtAU0ALvGoQo7rwRKjWImIQENr7Uh/F1UPlOR773+dQ4yBmJ2KHvG1k4uDbDuj3EouADm33u3nkkUeQn28KJr/88ktERbVOpXgBAQGga0A05va7AzU6NeqNWuo4UKQpg0IkR3ufaLBE0WRBalU+VhUcRa1ejVjvIEyN7o0QuW/j+5W6OizP24sdpaeg4wxI9o3B9TED0cnXVNXAXZTiAKj0EniJLEUJ1pB+vGqDAkqx42Xy1GSAnEGdQQ61UYwAqRpiloOBI/cslgoZRMSyqEHYRZwbzOIGKxhgad4vyKoPhJaTmEJwHYc81TGcq02Hnrd9lkoZPcIkjhMpiJgiWFKL3WVrMCR4os21FhC4VFw3vCuWbbdf/bcpQ8d61qqdqejVMRrXDuvSOE9Tb5tQIj2SCa2vF3hv2wQltrQa4jRrhxRDfCi0veLBKe3/Pmj145BAKLZnQR8XRAwcnOOgufLtkY8RHGkaOLz1pevwS6HzxBp6bAoGkvpmF4IkQDXAS1gqzNAlBhOP+oaVjJCdLYHXviybKs33vDejUdxAOg7ZZn1CbcnYmSOxY4lzK0ESIw28tg8GTO6NY9tSUVdVhw69EzFoal/4BCjpZ/rIx38jV8QDYabnAhfoDX1iCGTHciE/lme7TQYICPdHRaHrQhteB7KpUEJDErBCTAlY4oIayI/nQVJsLSq5VAy/eRC6DvXMdeOKws5vv0XbEBAQEGhGl8Gd8MHaV1FTUQtNnQZGI4eizBJa+bBD7wSbogqpe89hy587UV+toslE4+8ZicAGUQKhoqgSK7/dgL0rD1KhW6f+7TH1kfFI6hnv0bUPDPenx+HOrY0P8gUvFYNR6wCNBpqesQ6XJ9XHxUW1kJwvAUMU127CicX4dMEuk+tDAzqOx+r9mditWQaDyPm2VN1C7QocCMu+XC0IHAQuKybNGoNNv+2g7X3frZmomtwRsNNnLypXweuoKYZY9f0GdBveGaNuHdL4vrrO84ESVqWDfH86+CMi8HIJGK0BTEOCOlsDiEpqYQx1IKwm4luV9W+RGka6KA5jDPPD90ufh1+waXz2jtdvwsrv1qO6tG3budLzZXTiiSsez+O5Hx5qFDdwHA/2Io6TEJeefaucW12TUGOCrw963jQMB7OKUFevQUqHKAztFAM/Lxn0MgkefX8x8svJB+X82ImrDv2fYeAf5ofKosur+J8ZUbXWo2XG3TWCxmlXLUJMIiAg0EZ0H55Cp5ryWmjqNTShtyirBEp/b7TvlWCz/Mmdp7F14W7qpBqbHI1xd49EQGhTnlVZfjn+nbce+1Yfps4QKQM7Ysoj46mw2BOo64HcCwgPAiQNaYF6A/iCUiCnyFFXZ5tB8ig+nfWt1bzqUj1W/28Tjm49Bc6D+MaeyEEQOAhcTkyaNRo7/t7r0Tr/fLUGPUZ2weBp/S4oJrlUfH98Drx9vejfM9+ejpU/bER9ZeuIM9yFOEyaxQ0Xf5xkhMkp1AkiMYvB1/VDn7E9cGTTSajqVOg8sCN1sCHjJDq1Ds+Pfpu6bbsLiUlIEa6qkmpcDRBXxfgujvvFrngu85hk27ZtGDVqVKNAYeXKlZg0yb2ileacLEJ4eOsXlREEDlcwcm8lnczODc3hOCPWffM5UndssZq/d+lfGHbb3egz+TqU5+di8exXqLuBmfK8HCqIGDrjLvSbeiOuRmpKXQ8wOKOusgKVRQXw9g/A4dXLcXLrRtRVlMMnKARdRo5GrwlTIfMyPbwFBC4GfvEMku9gcHqBZ0+zU7/ySJwKFO3ncW4xh5Ij7q3nE2sSVWSu5lHjOoenTfAOb2qQ5m25+OIGQskRHvX5HHK38DCoAZ84IPFaBonTGLANHeGcnkfuVh75O0zL+Ldn6DLeEdZdB/VFPHI28tBWE0cOIHYMA6nScfdCWG8GUcOA/O323yefa9dZLCTepm0k2Gl3bH+e81jcENgZWNM3DZVn3BOJnQgsphNNIiODH5wIbx0bBbHesUBM6gvo3C+QRVGL9OAH1SGqNACVZ9xfr/31TJu7CPxXKD7IY9drHIxuxtpEBLHlCQ6DZ7MI69P6n8GiRYvw559/0r+vu+463HHHHa2+DwEBAcBXqoBvgxdRuMKU5GuJnjPi1WOLsaHQumPn+7QteCZ5Iqa3G4D02kI8deQHKnIwk1lfjDWFh/B4h2txU2xTkoErSjTeAO8NL5HjAWYVJ6M5wwaepY4IzSnS+CBPYxLjBUhVdCKODARS4EjHiaCmYgXTvYtsg4gOHEETcaVqFGnIOk2Uakvgb6egXqBY5SqHAX4iNfLVJajWl0PCKrCxeB12le1CjaEagdJADAkehmtCx0AukjvfkIBAK9K5XTjuGNcbC9Ydsn2TB8jPzd5X+4dle6jAYe/KQ1jy2b80Cd5eRVT5lhPQJ4bDSCp7KiRIaBeKa0d3xcqnf0GBRdI/cQDQp8TCKHXxQxKx0CWGQJJfA320cwEuWcZRAqOZDb9uQ1lBJeAXDI8wcmCrVKZjB1A7NhmG5pVFxSJoUyLAKyRQbj5n9dahDcdw7lAGdizeS22r26XE0ETDSQ+Mpq6WBJ1GRwdPd/2zn1osk6TPyQ+MsamSWpBRhM1/7ERtRR2iO0Rg1G1DGwcm7NFvYk8qXCCfnT1ueHoy7nzjZnj5mJ4TE+61rQj64PuLkFts/56t7R4DUWkdJAXW73cd1plaI7sjcCBIM8vpxDeY4FGpmoh1KmzxDfKhg9Oe0ntsd1SX1SD9sPuB8rTHJ3i8HwEBAQGBJnwDfehEiIgPs7k0Oq0e7936GXb9c8Bq/oK3FtEBcPJ8Is/Sl8a/a3XvzzqVi/U/b8FjX8+iz013IUILl8uEB8LYMQawqARuYA20feIMXc84IC4CbF4ZROfybISPdvfVKcZK3GBJXnkVEOq8iJPRx3EV8NyzBagkz3GGwdLPVmLDgm2oKqlBeHwova5THx0PuZfjCvoCAq0NEY0SYdLyr9dCnl6BgH9Oo25QDPThDcICAwdJmRqKc1XgyXdTa2qH//rmIipw2HA6Hb/uO4JDOfngXhkARXolfHYXQJZr2y4kfcqkYjBJYPrzg2UozSXtTQaGCH8Y4oLByyRg6zSQZBRDVFoL5aazqJ2QAs6/2e/RyEGRVgHW3/OiQDShpUHcQCBJgm0tbrDaf8P9bvfO09irVmPL/jTo9AYkxYbg+tE9MGVk10axg1atxZY/d2H3igPUaaJj3yTqntHcTS7vXAFdjlSrJVVMR80YAoWDexiBJAn1GtMNhzcct/s+EaKTybyNa+0sc8/rv6OwtIbGCVRY4gRpuml8uc+47lDXay9I4ECuDRGEOMI32Ac1zZz+3IHEacVFVditNoBXOE4F8T7SNKg29TEhJhEQEBC4EEg/EpkIEQm2MQnps5t98xzsX22djEHaIE//8CBG3z6MCrJfmfieVcX2rJO5WPPjZrqMJ0n8fMc4IL9ZwisROsRFADIpkOZhgkAbUpBedEHrnz+WjfoaFbQqLZZ8uhIbf9uO6rJa6ho74b7RmPrIOEjlF8+BSUCg95juNB5eM3+TRxfjlzcWUoHDtkW7seyr1UjdfdblOqS4UFKPdpj8wFj8+OqfqPbAha61IMdgOYaw4ut1F13cQNi1bD92L99P/ydFK5J6tsOUh8dTIZk5H0hdr8Hm33dg76pD1GmCCAwmzhqNoGbu4dmn87Bt4W5aIKNdlxiMuGUwFN6Ox1tHTB+EtT9uxnE7Y1uEO968CTc9M6VxG/bGSR7o8axH4gbCoKl9UJZfeUECB3JtSCG/1o5JBk7pg/z0IuSk2hawcgRxMhG4dCQnJ1u5LyxbtswtgcPp06eRk9PUrujf39a56kIRBA5XMbsW/mYjbiDwHIdtC+bDPywCuxYusBI3WLLjj58RkdgJUYmdwMhFThNASbJ/1jHnFTKuNoh7xoo576EiP7dxXk1pMXYv+h3n9u7C9Dc+gNzCgkVAoK3pcg8L3zgO+95tyCR3A20FcPo3I07O92A/9zFImsYg7W/PK/+3JqoSwCfa9HfGyktTzrH0MFBi0QFdmw0cncvTRO9B77DQVgHbn7WuZk/eO7eQR+9nGMRPZGlj8djXPNKIA4fF+Ofx73n0eoJBu/GOBzYHvM4i9RceGStM7gwErzCg43QGSdc5HxCtzSXH6fk5L5acxeYznovEaDIRuXeKjCjoWI7Yk7bCPDNJNwKpP7q/7SJFLRYmnED3jt746o0gmjRfccq9daU+grihtZwbPBE3mCHLk/VGftG6Tg6FhYV46KGH6N8hISH49lvrqiACAgIXjy/PrLMRNxAMPIePUlchyisQc9P/sRI3mCHOP1+e+xcdfSORqAyHt9i5gDizrhCbSoqQ7OsHKWtAkLjORihAhAlVRrIdBjpeBC1HSyJCxHDQcyLkqf1RqCXJAQyCZXUIkpmSHcyQ7clERurWUG8kneKMfeeGZsjtOEoYHIyaM25sz3xadYY6zMv4BCXapkHpUm0pluUvwaHKg3iu44tQiBwnAggItDZP3DwcSVHBmP3xUhiCiOCIxCYMFbs6+moXVdTit3eX4pfXTMJER5AKqFLSGZqahwfnzMTYu0Zg6eerUNRsEMxIEmTEIvBuFOjhvGVQnMiDumcUeKn936SoSg1plv1+k7L8CoTGBDdWfpXpa6FJdi5wEGmsL4Q4twKsxnSP0McG2IobLNAlBMNwLB/i8qYBAjIwalnljCRjfvXo/3B0ywm8uvBpeowvjp1NExDNHFp/DIs/WYFnf3wE19w2FEajEXMfnY9V32+06sz+4YXf8OR3D1hVs7WEVEF6/e9n8Osbi7Dqh41UGGEeyL35uakuk0HTcktx+KzzDm5dp3AbgQMZ+CTn5SmW30FyjPnNnD8suf7Jifj5tYUe74OIXt7590U8PugVpB0679Y6pELT1Yyz378n2xAQEBBoKfOe/MlG3EAw6I34/IHvEBYfgk/v/dausI0knn71yA9I7JOA6I5R8FE6FxCfPZiBs/vTnS7DhfrD2D3BpjI71yB2sLzlNe8p4UiisEQMLj4cvLcc4kNpTquvEuEnF24rRDfDOja1a1qm1rmDa2VJNd6Y+iGKskob55Fn7P9e/A27/tmHDze87jQRQECgtXn0q3tplePPHvwOsqwqOmkTgqAekACIxWBEXtAnkymStsW9dqQhP70QX2zahXk79zdtSMxC3SkI6g6BCPwnDd4nyqz289jX92HYjQOw5LOVtG3Ki0VQD+8ELrjJpYELUlKxgyStCLLDWfBbdhS6+GDo2gVSQZOorA6yM8VgjYBuZFfAwjWe1mMgbXMnY7NscTUV1/oF+zbGJBcbQ6gvNqpU4HaebpyXll2KD+dvwOHTuXjrkYm0kjWJSQoymvouDq47hkUfLccLCx7H8JsG0irV5J687uetVjHJ988vwLPzH8bQGwbY3T8Rdc9e/gJ+fu0vrJm/uTEpNKp9BG55YRrG3zPK6fGfyihEaoYppqQCByPv0MVBeqoAompT4afMk7ko8zABqTmRSeHIO+c4Jpn2+CT8+vpfHm83JCoIb/z9LO6+dw4Ox4vsupjIz1VAcabp+Eml8asZISYREBC41JC+uubiBgIR/X1899cIiwvGO9M/sxI3mCH9fp/d/x0Se8QjIj4E3n7O79knjucio7m4wZLwIOrkwNS7V8zwSoAkBb88/l2r5GDSF/r9c79iz4oDeH/tK5ApBOG1wMXjqe8fQEKPOHz9mPtJL6Rfn7R9Sb+9uzzzv4fQb2IvLPn0XxoXXAqIQwtxpTEXOboUMQlh2+Ld9FjMpB3OxJz75uHkzjN49seHqZD6hbGzUZJTZhWT/PXBMrzy11MYNKUv9Do95tw7D5t+32G17e+fW4AXfn2MFnuyh0QqwburXsaPL/+BdT9vgarGdH+N6RSFGS9fT0Vszji+PRXnj2d7fM7nDp2nQvsLjUmcjZOQYlq/z/7b4+2GtwvFy388iYd6P488i7EpZ3j7Xd2FxC/3mCQ0NBQDBw7Enj176GtSTPbtt99GZGSk0/Vef/11q9c33HBDqx+bIHC4StFrNTi2frXTZYi4oSzX+Q1y76e/YGDoFIiD5PAeGAnloEhaTUR1tBSatEra2y5L8MOprE2mjrb/CAERUTi+ca2VuMGSspws7Fy4AKPvNSVXCghcLGKvYaGM5LDlCR6cGwNUhJMeJJKH9QXiJwJbHudQ7V6uhkva3wxkLAU4k1uz25Qe5XHmdx66Oh4VTX3nFxXeQUG2wr1A1moeOZt4K3GD5XoH5/DwS+RRfIBH2hLebuL3gY95KEJ46tZgD+IS0eUeBsm3m8QmjAjwjTOppF1RccZ9IYyZM36lWCu/cMsOv+vViPQHCnbavtdpBgOuWdKXPepFOqyKPYtSRT2yfEwJT/0kPvSajPqKxdm/eJz6yfnvgDiRtGZS/X8VMuC0/33PxQ1myHr7P+Awdj7bam4a9957LyoqTElv8+bNo41xAQGBi0+dXoOluY7VdETA8G3aOuSprZMEzBCRglKiw+zUj+nrKEU4xocPx7jw4dBwOmwuPoTDlaZK5j0DOiC7rgQ8GJypCYPKKEWUvApBkjrIWAM4nqHODVre0kWBuPgAJTolNEYJavRy1BlMiTdixohAqbW4wRLi6CDhOOhdlfZrPFdr5KweMsYAhqobmYb3TffAmoZjcEY9J0WEPA5ri9ZbiRssyVFlY0XBP5gec6tbxygg0FpMGpyCWJ7Fc2NnQx3uB/XQ9s5X4Hn8OHcN3Ps1gXY0j7x1MJ4c8ipyTufbbq5hsIokBLlqVbIqHURqA+5JTsKv6ZnQN2uKsLVa+K46bbfTkMzak5aDAzsPoVatxRGFEdK0arAqPTgva8cWM4yBh8RinJKtrIf8UFPAoEt07f5AlrEUODiycN+xZB/tiF/xzTorcYNlUicZQCVVZ7f+tQsrv7MdeCA22B/e+RVCY4LQZUiyw877e9+/DXe8cRNyzuRDLBEjrnO0W+26U+ddV2gzBtsm/7dE3NAcUtn3wLqjOLDGdnD5zjdvRmVxywaESEU4cg3m7nsff7y3lHb+k2vtiMQe7RCX3KDcFxAQEBBodYhogSTLOoIIGOa/+AeKs5uS8y0xhvhB1z4C989eSl+3iwnCjZN7YcrY7vQ5uXHBdhzbdorGFaRKozviNkOHaAcJyzwa9NcNWbamPkRLFyxLxwY+1B98sC8YJ0kMRAThzBVCXsGhPoK1m/xqxvu440InHfsmYsFbi63EDZac3puGv95fhrvfEWISgYsLqcJJnERenvQe9DIxNP0SwRDxQLN2vSEmEOqBiRCn5VuLGyxhGVRemwhFWiVYjaldN3z6IFqRkohazVWHtX3irMQNlujbh9O2vySzFLJ002S1C5bB9CEd8feedBgtkx8MRKjk4CR5HpKzhdi/+jCObD4JVY0KmScubkUqcjm1/ROpc4U9Nuw+g+F9krDooR+sxA3/Z+884Jso/zD+3GUn3Xu30BbKLnvvvRVFxI0L19+9996KW3EAKioooLKRvfcohUIplO692+zk7v9539A2aXNJWoqC3tdPJE0uySVt7t7f+/6e58EFzCYL3rn5E8T3iKVi6/ULm5v2keagN2/4CB/tep2mPgiNwe9+7xbc8sos2jwjU0gR08nDmuSsYzMPCfAk81VUMF//eCsH5cEsKM40vgchcYMp3At1fcNgjPKmx2xlRiW8DhVBWm1stu01j0zBjmX7cHRzqsPtZL9JjZV7pnm96wlylZx+Jj/88CS+WbwR3+w8BF2Exvbnb7WQqCEYQ+Uon9YePvuK0D0u0mkCkoiIiIhI21BeWEkdw4Ugc3vfPLkYFS5SgYgQ8N5eT9DrRMh59YOTqIhPW63Fxh924PjONEgkLPqMT8bxwuZmUs0ICQDOt+48c7nRbVgnfPPkj4LO56k7T2HZB6tx4/Nt33ApIiIEGc9ddf9E2uT90lXvCs7h20Oa81sibhh7y3D0HN0NDw54RrAmbwkSqQRT7xuPlZ+vA0dEvy1gz58HadI0ETo4W4v4O7AXN9hDBAcDp/fFd8/85CBuqMdkMOON6+dhwamPsfTdP5uJGwhEfPbqzA/w6b43Ed8jzunrkPTK+z6agzlvzEb+mULIlDKP5/1P789Aa7hYcQPh+qevxl/fb0XqjlPNatS5H9yKU/scE8U9Ra6U0c/k29QPsfCFJfRv29X3oMeILggIc0zSEPn7efjhhxsEDjqdDrfeeivWrFkDudx5EtLrr7+OZcsaBTDTp09Hnz592ny/RIHDv5TCjDMw6lxH/rgTNxAqjLaJHUu5AdWrM2E4UwlzYR242saOUX1qGcqrW3ewvVJJHj8ZO3/+3uU2p3ZuwfCb5kCmEN2JRP4eqs7yOL+Oh76UR+x4oPwUUHPOgwe2YGxKhAQH3uTbRtzAAN3nMug4i0XnG3lkruZwfh2gK4ZbcQZp5D/8weUtqjrjLuGCAzKWcSg64Hqb9CUcQnu7bveSyBn4OZ/bF4SV2VZKuQt/AKxLvzcbe0IvfoFEIWWx8UwxVoYWIHqWFwZVRCNW6wdNGIP2Uxj4tmOw9WHhBqB6VFYZDoY4TryM7xLWUDAmzWYQ1pfH5vs4wb+ngKSLfjsiVGwEp0KellBzHihNAUKSL/4jnT9/PtatW0evz549+5IohEVERDwjpTIHeqtrt8+M2gKajNwUlcQMX7nBoe8nX1+E784vxZHKNKRUFaHC1OiwuqM0BXJWduHcxiJLG4hcnT+S/fLgK3OtwCJNQ+dqA6CUcA2v5yNzfG1nyFgLfayKNUHGWsHzDCw8CyvoKrjDtnVmW8M1SYoIV9ZALbU/OfFUK27TejLQckpUWVTwkwo7KJWavTE2fBx+yP7V5T7uLtuFGZHXQkY/GxGRS096ZjHWbjmB0oo6jH7/FqRtOYWTtDPPhesoadqRez49dWLPadp070zcQDGbYVEwtgZBV3A8FJlluO/jObjqgYm4qU6PZTtSsHbjEZRklYA5UwplRhkYS/NJV07Gou7abnh+9fbGG3uEAd1CoT5aAG2vEPAqx+8do7fA60wdWEZG0yhkWWW0wYmxm9T15HNoyWf16/srkeWiyYksji6ftwY7l9smLJ1BJp3J8wgJHOohDTQJye083jf6GKkHshaBhYmLQalR0Pds1JvRd3wPsDIp/RONjA/DxLvG0IWHB/o/06rnHnx1v4Z0i5uevxZ9xyfjkaEv0OYtZ3Qa0AH/esiv8GJ/jZd3+S8iInIZk7I9jbqiuuLsUedmHpaYIFh6tHMYx2TlluP9LzfiwN4MpH+xDtVljTXJ9l/30qZSV3DE0dCrecIaJwXM3kRoYHcjeVnSj01us9h+lDYxBeEigwCLFVx0MHi1go4x2LwyMGXVtorEyTim6ThMXWiFLtL5+EKZXg5FpnCj1cQ7x+CT+75x+Rprv92MW165jrqsi4j8HZw+kIG/vt+OyuIqTJwzEntrtah1MYQ2xwbCEOh6sEHSULTdg+F9wCZmSNl6Am/d+HGDuIFXSOkxwxVE5EDG/00hZkUPfTUXk+4cjRuqtPhjzRFsXHsUpVmlkOSX0xQ3LrRJyhvHQ340C6oqHd697XP8U1jD/cBrXLsh/7hsD/JThNejyTiZpGAQwZgQRDC87MNVeO6XR1y+FmmgSejZwprEyaQUTc+gh88LdhS1RgdxgxB1vUJRNdExoacuSA1tr1AELTkFRW7jOYM43G75eReMeiP6TkgGK5GAYYHoDhFUoBPVIQJzkx/HxdQk5Lh7z60TMCQhDg/c/iEKZiWA8yF1qhTwV8AU4YXavqGY2s51rfevQKxJRERE/kHIuMGV+YWrmsQZxOWbuJIfXH+UiuRqKxv7wrYt3QN57yRA7SbVuQXzi5c7424dgXl3feVyG+Iof8NzM9rMaE9ExB0n96Rj04/bUVVag8l3jcGB9UdR3AYiBHsObzqOwsziNhE3sBIWj313L8bePByzn74Kf36+Hlt/2Y2SnFJY3cwrEHExWa+5nPnlzeXIPS0s6iIiB1JvrF+wRXAbMre0/KPVeHLhAy5fiyRYtrQmkSn+/jVckkCo7BGLVZlFMPZPRPKQTpBlFUNSa6DrI6QmiYgPw5wv/2rV8w+Z0b9BOHPnWzeiz7geNEFDSOTQZfB/oHnrCqhJrrvuOixcuBDr16+nP2/atAlDhgzB22+/jeHDh9MakxjgHjx4EG+88QZWrmwUZZGkh88/vzTzE/+eUYvIJfmLZhnHPxHjmUqn26l5W/xpPcHKaPjIAmDijCjQnYOV99BK/nKHYTBgxixEd+kOi6m524Y9Jr0eteXlCIiI/Nt2T+S/y9FPOJz9/dKv+JvrgGJhI2aP8YkD+j/Hwi/BVkRKVUDRIaAuz7PH8+773/9xPHkvxYcBU437bawmnooY2pLMwDJ81ykT6d42lXJsnR+GFsahe6VNJOCMfM3FxdoRMzijhcP+8zbH1eOoxhrk43+jEvDYuI4N20k90IVVyR2bVUO8FXh/w2m8+OcJxAd74Yb+MZjcLRyqYEArIBLP3gjET+MR2EWczLgYzv3Jtc3z/MEjJPnifhfnzp3DY489Rq+Hh4fjs88+a5N9ExERaR3E8a41kDwDnybiBnuOVqWizkwmexwbZEyc+YLRqe112ynLEC8vgUzCodjiQ4UPzjByUlh5KUycFQqJtUGI4A6SwOAts6sJGB4ycLDwDAwc2T+moTeXXHylOiraUF54DYf3zABSnqciB5I2kVIbhd7e2fCSOgpEiBCi0BSAoSFzEK5KgIV3HYGls2pRY65BoCLQ7fsREbkYiPvxe/P/wqpNjs6TBIkBsKoEvtA8D9bMg63zPBK9pqwWR5y8Dn06loExIRhc/diZHA4EXrqzTI6X97yBdt1i6c9qCYuTb61G3e50uAvCrRkVD0Ookzh4loG+ZwT8/zwFa6ASxlg/uhOK89VQnygBa3LTZFjrPhKLrXb+WXFKGQxdw2FMDAankkFSY0BGZjmkEtZBRNEU6qx0ITJZiP1rjtBJy7ZeBFSW1YHheUHHV4Is9+LTGpo2kBm0RqTuPO1w+22vXY8bn7vGQQTRUoKiAjD/se/xwR1f0BSLKXPH0Yl8v1BfQTelNfM30ma2xF7tW/FuRERERETc4knqtLOkJpkElq4kJtX5OWrHsSzIeUc9AsGkdy3whtT5kpzJx0WKAmMTOUj0HB032cMFeoOLamyqJvdykYFgiishPXLWNsYiFyeiinq8TlZCfrQKdQMiYQmyjYJYrQmaI8Xw3p3rdChFnPzufOdmRHeMcOtEWVVSjdqKOvgFN2nQFhFpY6xWK96//YtmjfK105IBXxdNfiwDU7jz5AV7zBe+H4SqkhpUlaQ1vra/xmVaCoHz18AS5gsuzB+8RAK2SosuwT548tt7ENs5mm6jlElw+JM1KD1oc64iRwwJaSoK9aECCnJsYmv0kGWW0DS6f3rllfN2P5GflVcOd+06JFnNoHO95rpv9WFcClTlzmsS+59k+c7Xxu0xB6lQNcFR3FAPEcCUX9MR4Z8cpqkOpCYh7rbEUbrh9RgGd717M2Y+NrXhNoXatWjOGSExQfj43m9ooke7bjGYes949J/aG6Z7eoIzOak3JQy+yU3H9LJ+SAwS545ERERE/qmSpDWQFCBnGCtr3QscDK7Pu1cCJLHi3o/mICgykM5Nu4KkO5AEPiIwFBG5lBBDobdu+pgaIFxqKgoq6eVi6TywA55YeD8V2BIUagUdexPxhCeYja7XKS8Hsk7kut2GJD27M8jYv/oILgXSv1l0xmkUMA/vAr1Shko7IzEy1/PwPeNxzcSeDbfJmxh5eUJ4+xC8e+tn9LhLEsSn3Tsevcf1gJefhiatOmPpO39g/G0jqKhC5J9l6dKlGDlyJI4csf29EzHD6NGjodFoEBgYiIqKCtTVOaZFEXHD2rVrERl5aXqkRYHDv5TQ9omQKVUwG4QXqYNj4lCWmwOeuCkKEKVJ9Oj12nl3xYnKHfBXhKFf0CT4yBsnQUxWA05W7cGZmoO4EpFIpfANDUNUp27of/VM+ASFoKbMMwWkQu2uLUJE5OLJWP73iBvakroCoDaHbxA4nF/Lo/Sohw++ENH+T6EOA4KTgWybYFEQF4fWBtz1B2mlJpz1qYAsBeibGIBIv8aiW2+yoqzOCF+1DD7Klg0qlx7MwdMrUmGvTcvyrkKW9zGMzYvHuHznx365Wxtc58QGqumvLatc5/T+T7ecRY8oP4zpbItBDhrGoWi/6wWhgyGNChKZhEFJrZFeCMU1Ruw5V479obXoXuAi2oIH/e6IAofWY9byyBdOVW0R+Tt5+nwyTesa5ziOoxFpWq3NqeTbb79FQEBA2+yciIhIq+jmFw0FK4WRE57c6ugTjfO6bAcxhFJiFuztqUcuscJikTg9t8YpSnF98GEEyxuLaxMvQboxDNnm5o6KVSbbmN3MSWC1smA5wCx3fc5jwdHUBmdIGR5yxgITL4WKNUPJmhEstx2byDy7gZNDayWL1E0Wz6kQUNogjthR1RGRikpEKCqhkbLwkkXCXzEQU+JmwlcWiCKDzSnSFQwYKCViopzIpeeXlQedihsIRNPDm3jY/rTt/u45nroQS2qNYO2cxi4Gc1wgrEFejWWDfd1Q/9KkUd8KZDMccowm1HvprP5qI07uTnf7GlaNHMYkF+6sDAND1zD4rzoNr0Puv6f1cL5q8EFuxi4WDoozJQhvH0odbYgLVP0+1Uzt6tBgZPVXo6a3GtJIX/isTRMUObAeiBbIOGvrkl3oPqwzXTSsR6810KZFn0BvaHxaNv9BXKA+f3ABZH1jYUoKd76R2Qp5mi1Z9GIhDZgWkwWF50uc3r/ohSXo1D8RvcZ0pz/3m9QTKdtOtmgRoiyvAmWwCTLKCyqpEIdM3LuKiibCkZWfr8dj393X4vckIiIiIuKeLoM7QkrECi4cU5P6JyBt7xmH26xENOAmacgSGwy5wMKsEIzOQE6sZNW44TYy3WZVuDkfszxktVxzsYHKuSCPD/WHtWMUpKdyIc3Ih6Wn4/wYHSLVB89p5FDolVD/dIruBxGMSisNtAnXHrlShvD2Yeg9thuue/IqBIb7U/dYdxC3PqVGrElELj0/v7HCaQoA+Zt2B2t2P5kv0ZsvLnWM52EY3KlBGGVFMNKVMuQbzLBJroHfP16L9AvihnpoektxDb1cTkQmhiNh1iCsyRB2QiWYq3VuBQ7uhNREzK0L9cXGfenolRSFQL9Gsbm+Tk+dcX2DfFrctEhcWuc//gOk/drDHB/ifCOTBfIzzes6i78SvISFtMpAU//qeocJC9XIe/CSI+SaHsC+XKf1AakLvn7iByT1S0C3obZEBVJLnNqX0aKapCTHZmhVX5Mc2pCCLo+MQkmIsJjeyvP46WgKXh47yuPXEhERERHxnG5Dk6g7uithcNKARKTuaBS+XRRF5UCkwHkNFyZMi9rWUOTvgiTmRcSH0sTUmU9Mh3+IL03v8sQdXeEmbU9EpC0gc8x/h7jBY7zUQFgw4OtNx9x8nQ4oKQcqGpMas9Py6BiyXuDw2/srkekige1yIjopEom92tFkNFcY3ZlREDxYJzHqjNj+6x50H9GFHn/qIeLl6rIa+AX7QOXCYMIZP7+5Aguf/wV/F3FdY1CaHIdSJwJzIhabt2AzOieGoVOCbc2m56iuLfp7IDVJYWbjGkxZfgUOrD1K11uExA314qBVX/6Fue/f0uL3JNK2+Pj4YOfOnXj44Yfx3Xff0fVBAunDqu/Fsmfq1Kn4+uuvERZ26cQprrsHRa5YSGN9t5FjXW7T76qZ6DxspOD9claFBO9GVZYrlBIN+gRNxPCw6xzEDfR5JEr0DByFBO9euBKxWiy46skXMfau+6m4geATFIyIjp1dPi6ma3do/Pz/pr0U+a/Cczwyll9Z4gYCZwL2v8HjxAIr6gp4ZK5x/x68omzJD/+UuKH7XGDiTwzaT2FQ4qkYww3hAwDWSS1tYTisiEvD6z23YXHiMTy8/BiGvbsV9/90BOdKa/H08uPo9dpGDH13K3q9uhFzfzyE9CLPFlTL64x44c+Tgm4RG6POwUo6O5tw3L8Ieknr1NedwnyQXeFc3FDPoj1ZDdflPU2olglPuBeoa7Az1LZ9uI8SZqvzN5NzzP3+lp+68r4/lxP6Us/EPJ5AnkffuP7SYt59913s3r2bXr/jjjswadKkttkxERGRVuMrV2NKpOt6Yk77ERgZ2s3hNinr/tjMCgwIwmTVuDt8l4O4gSBnrOimzEe0zHER2chJYOJZKFjbOaOy3Atn0yNx9EQ7WDnhySwJHBuk/FgTRqhLMNWrAMPUJQiQGKm4Qd1ErEGuqyUmeBNLeyfI6DnY9gArWOQYA7GvJgFbKuIxNmIexkfcQ8UN9L0qwxCrJoMjYbr6doNG6sRlXkSkDbFYOSxb49q5RmrgINPykBg4SIwcpHoOMh0P1sJDftK9e46nmNsHO/xMvk1Mfewr+XpxAGMBFTIZjBY8+9EqfP/pWhRnl2Ldd5vdPn9Mp0iEjUlymThAMEW3zKGYPJ9xYAewUimkOueDK/KKj88chh9TP8T4OSORsu1Ew33aQe0E3VMtYT7Q9xB2Tek/uSdt/HS9g8BbN36Cm9rdTx2octPz8d7tn2NmyB24Jf4BXBt8O16b9SG93RPK8svx5SOLaBOP8mA2ZBnFzZrCWIMZmi2naSRyW9C+R5yguKGe3z9d23CdiDk8JSgygIonnHH4rxS3jz994Cz+zZDvYFtcRERERFpDQJg/Rs4e4nKbm164FgOn9XG4jVe7T/LxZJumMEYzmJIqx+eReLCQTu5vuprn5iFcdDBtvmWLKyFJzQRMtuZsvsEWnjwnA95XA2t8OEwju4HReEFWrm8mbiCQc917W17CvfPmUHEDoX33WMR1sTnPCzFoeh8oW/FZiYi0BJPRTEWjzpCWup83V6W6NzVTpwpPXErKagE3bp/UgoAkstjdojeY8cw7f+CnT9ehJLfMo5okfEIXeD04HOUzu6BqYiJNjbuYoRLnp4Y5MZxeiOja5TtgGTz4xZ1YmP4xRt0wBKnfbycFocvHSLPdT/gOmNybuoU2hRzD9APiUXdVL9QNjMfzn6/BtIe/wSvz1yM7owDv3PoprglurEneuOEj5J/1TCBdeL4Y3zz5I72uOHQe0vNkortJTaI3Qb39NFhtY/OPrnMwSuYko/SOXii7LRnFc3ujZlgszOHu516iJ3Z1KX4m/PHZuobrPUZ0gacEhPsL1iQ7T7qvN1IKPBfnX4mINYmIiMg/SUhMMIZe01/wftJ0fOvLs9BrrM1042KhoupcF8f17EIwRg+afS9DOIsV83a8hrvfu6Whubhj3wREJLhuqhx27QAqvBYRuZSQRLLV8zdePh9ygC/QsT0YP58GQTHjpQbTPhqIavzOaKt1eG7KW/j1/T9RVlCBtd+6r0nIXAARG/0TEMHYo9/cgwWnPsLwmQNxdLNz462W0n9yb7fCayKUeP36ebgx5h58eNdXyDqZgzdv/IjWIqQmIbXJ27d8gqIs1+sQ9eSczv9bxQ2E9mO6ORU31ENKomXrGhvieozo6vFz+4f6CtYkROTgDk8Ea1cyV1JNolarqWghLS0NTzzxBPr06UPNZaVSKYKCgtCzZ088+uijNN1h5cqVl1TcQBATHP7FDL1xDqpKipB5+ECz+wZccz2SBg9HQr9B4DkOabu2OUzcaKR+GBQyHSqp+1hW+xQHV3T2G4hztUcd3FmvFLQVFfAPs6kV6xl83U1Y/uYL4KxWp6kPA2fe+Dfuoch/FW0RoG0bQ8u/HdLMfOpH4NRiziPRQl2jYf/fDklsSLyWxa5nOBQfapvnlCiAjrNYOgI530TgsST+OFICHScerByPNamF2JhWDJOdw4OF47HhZDH2nC3HkrkD0CXCdTPV8iN5MFlcd6RXJFci+EijWO1AcB5+a9/YQNVS6oxmt/GbR3Ma4/PCAhRY1H0PbjveG77mxkYtE2vFkcB8rI0+A5PUipemdsarqxujwJ0JRdwhaXmimoj9ZywcFNUqLK51MIIcP34cL730Er0eGxuLefPmte2OiYiItJrHOk9Cgb4Ke8uaT0rc32EMRoZ1xqDgRJo0sKX4OK0VON69SwYv0M0zyv80FALJCoQO8mLkmolDOgMLz6DY6AM/hZFetCY58ittzdFavQop52LRMyHLSa8R7yBaGKMpwlB1mcNtozQl2KELwm69c5d3pcQCPWeFhXYzNSL0zsnnUmmuRqDC0d396shr8EnGPHC0c9sRGSPD1PCrBD8LEZG2Iie/AqUVjqKiZhAn4DoLOCULXsrSZnaJwQppmRZsvusGj3oBAKeR02Y7Vie8AMcpnA/uGIFEOOJU+e3ibfj5kUXgPMiLzzmVD73VALTriLbEGunf0CRJUi0YqxVWJQvuwqwdawaGxUfimpE98MzEN3B8e+MYmFPLYI5xnfxgSAqF6khus2OMUqOgbme6WgM2/+Q+lou46BA3pJ3L9zlETxNX7B2/7cXRTcfx4Y7X3DY6rl+wlT4XgeF5qPdmgkvNhzk2ELxMArZSh07+3jjXhi61dZV17ifQ7dxRiSOtO8dv0oR1z4e34ouHF13UvskU4vSsiIiIyKXkf5/fidLcMhzb6pjMQxau737vZvSd0BNdhyThnVs/w+7fbWspzAUxgCsYu3Ohp3DeajAWK3hyHrzQYEOSpdxCEqiaDvndiSJkUvA+ajCVdZDkl4MtqAAf7Atz9zhA5sRxhWVh6dEOTLUWbK3eqZNfVXGVg0shYc7rs/HyjPeocLEpRNhw4/PXevAGRUQujqwTOdTF3xny9CKY2wUJfmckpbXQHCyArksATDF2kcd2qI+VQFYmPBFK6hR5eiFM3WOcb1AvuKYb25ZjGbv5/a8XbMb3jyykhlZCkHuqJySiqBP5DpqBKF/yfxiSgqHIKIffmvQWNTvwCimM/RLBBTe+Z/J8bEk1FAfOgnHSmDJ0Rn+MvWUEnhr7akPyjdxLLvi+mVoDZOdcN/eofVSY9dR0lBdWYOfy/Q736YZ1hDXCr5nAfu2uNGxZeRDydccb991kwbYlu3Fscyrm7XytwYFWiHXfbqbHNbqfHA/VvnPgTuTBHB1InDdoTdIxyAeZZY11RF2fCNSOcDSa4FUyaPtFgre6P2/UFlW73ebUvsZEodjO0WClLDgX6zmkWXPuB7fgi4cWCm5DEibcIZeITZ8iIiIil5JH5s+lyTondp1uNrd038e3U1FbQq92ePumT7Bv9eGLfj0mqxA8aWCNDLY5uBNqtUBeCZgyR8H1lQSZpyNjPi+7NCdS193++mzadOwMkvA0+5mr/8a9FPmvcvZIJuqq2iap+qIhqZGxkYIN+0xYMPjKGkBra84gTenfPLkY3z3zs8u0mXo8SXO8VIy+aSiGXzcIj496GRmHM9vkOb0DvHD901ch70y+R434pPYg4nSSsE2uN9xuNGPz4p04uikVH+1+HeHtXItA1n7tXhDTvnsMMo/noK0o96A2OJnR2IQYnxxHhe6ualWS2nD3uzfji4eFaxJPIGk7IpcXHTt2pEaz/zTiCtq/GKlMhquffBE5J44jbecW6Guq4RcWge6jxyMwKqZhm4kPPIaB196AjIN7YarTQXbAinB5O7fKtJYiYWVgqNeqJzP2NpRe3jDU2dxVfEPDkDxuMnYsXgi+reyiPcQrMMhpQsP0J57H1kVfo6qo8eDuHx6JUbffg6gkz501RET+01wBmifOAipCaCtxg0wDDHiRhXcMg+T7gdpcHmUX5uLz1TXNxA322Isb7Kk1WvDqqjQsnTuw4bYKrQlLDuZg6+kSulDSLy4ABVXuO9KPxuVh6vlAGCttooLVMY6TLS2lZ4w/dp113bgmI41uF9AopBg8wA9vstvRrTIUnSqDIeFZpPuW4mhQIawsj+nJEQjzUboUTqT5lWJaNg/WhaVdxOC2Pdf915Cq2vj5XJuECbJixQqYTLZmx+zsbBqb5gnbt293GO9s3boVI0aMaN1OiIiIOEUpkeGzvrdgf9k5rCtIQbVZjxhNIGZE90Gcl01MoJDI8Eq3G3FH+3HYVXoSNeY6bC1d57Rpvx4T13zhlQGP7hrX7uEkVcGHMaDI4gsjL4WctcJkpZap0MhN6BSfh+On29FtzxeFQG+SYUBCFSQKm5tjkDwcA4PG4K/CBfTnfqpyDNc0dyMkZqgjNWWo5mQ4YXQuPlSwZljoazdi5pyHLBIBSIDccVG/PqHh3vgHsDT3F5SZGh0nw5URuDHmZrT3au/y8xARaQs8nTqQ6q1g6yx0+E8fYjABaZluhQ2GHpEwdgwFr7Y14klK66A8nge5nUC2HrbOCC7AtXNm06YfS7hfQ2OLJ8jzaoj6mExyCG+T4/lCodVHCQsRONgJMSRmcnE8Blp4lkb02osb6ON9VbZ4GBfwGjltYLJvxPT21+CF3x6jk+z/++wO5J8twun9njnk2Isb7Kmt1OLrJ37Am2ufa7itsrgKa7/ZjIMbjtJJcJKMkJte4PR3pzjZeLtvYgRdWKh1J57xkKT+iTi8sbEBSmgivh5vfy8MmznQZbz1uFtHwCfQs3GnKwZO64t/NfUpKhf7HCIiIiKtRKVR4t1NL+HQhmPY8ssu2nAQ0zESk+4eg8iEcNs2Xiq8vPwJZJ/Kw75Vh1FRq8cvJ3JdzjtJ8loWQ2npFAMutvniNkm0YvVWcCrh5tJAuRIG2BolYqICMGVCd3yxYLv7F7Ub4xBRIU/MmlROxA0NO8PAGhcKNjWr+V0SFv5hzWuSQdP74rklj9AxQElO42cS1zUaD315N+J7uE6dExG51EjL6qA8cB6Gvu2ajZvZGgPUO8/QGiH4p1OonNweui6BDWN9xmSF16Ei+G5y38AjO1UAXiGDuUOYY5F0YSzkasRuDfUDn+L6NbR9ImHo5JhYV48xMRB1A6LhvdezdDyyS4bBSeDtmgPr4UJ8YRzcEYqtJ5vts8lgxoqP1jSIGwjytAJaH5k6RQLKCw0pPA9JYRUUBzPBuBAM+wZ546XlTyAoMhAPz5+LovMlyDhynt5nCfVpJm6wxxCgARvqA2kTUTRpevz26cV4ecWTDbeVF1Zi7debcHhTCj2uJ4/ognNOPm9ak5xqrEmCuseh+HwJdbXllFLUDhYWcvNy9804PTR+cFdxyexqEiIoGzStL3atcBR+2DP57jFQqFyn5KjTKlA1VkB8c4ExifH4VyPWJCIiIv8wGl8NPtj2Cm2c3bZ0N7Q1OsR1jsaku8YgvL2tRtD4qPHayqdx/kQO9q8+jMriavz+yRq3JoJCMCUVQEkF+HphtZvUJXeQ83Y1Sa26MNYfd9tIfP34D/g7IedJ/5Dmc3Gk2ZmYqXz79E8ozWvsSWjfI5aKS4hoUETkktPGPZYXRaAfGHcC1mD/BoFDPZ6IG/5pjDoTfn3vzzYTN5DUgVf+eIqOvR9fcD+eHveaxwIOe3GDPRVFVTSZ4dmfHm64jRyb1szfiKNbT9A/lV6juyMz1b1wITQuFIWZJdDXtU3SdUJyLPYWVLjcRmaXeBMSHYQ+45Nx0C7VoSlXPTCRiiAuFlL7/KsRa5JWIwoc/gOQRnxycYVfWDj6Tp1Br9eE5qDmL4GDNenUsbZuBJ1VmwquBeIGuUqF6158k4oLjOmVsKZrwRVZEBHaAflFF9ds2xKiO3eDX6jzKJX2PfuiXXIf5J86idrKcngHBiGyY+c2F4eIiAihCQc0EYC2eX9IA6ogILQvkP0XwF9c3dqsEdnebV2iAqxt7ObeVigDAIPrMZpLqs4CxspWzh6wwNC3GRQdAIjZq18iEDuWgVRlO06Qf4d/yCJ/O4/0pTzWWVsfybH/fAWyy7WIDdQgNa8atyzYj0pdo3PQ0Zwqd71PlIOVZcjruB/T0jsjl62FXurakU4hZWEUUPoSUcUdQ9rh6x2ZgtsQRic5LvBO7RGB9ScLkcIWNRN8EGHD0xOTkF7kOl68UqlHakghepQ4d2uSeQPxV4nH64tBFUyiyW2JLBcLI7Edr0RERP59kLHxgOAEenFFjCYYN2hsIiM/BYfleeucPx9kToUAEoaD1IP0HjMvgZG3LTwrJFZYYYbeamvyCfDVwlujR63WpuDSacNwf8IjCPeWoUi/GyW67TCZ16CThkeW3oQhatdNTQNVFYICByL9tocsVBjq7dqb0N23MwLk/k7v6+nfCz38knGmNh3VNOUhEAleiW4/BxGRtiImIgAhQd4oubDA5YzwYB/06RqILX8eAWe2ABXVQGklsQIWfAwJc9GO6tAsncAa7AXt6CTwu88hoLiONpvU41tUjXJXaQbki9ZkWE9+NMcGgffVgLFyYIurIHHxXiQ6M1Sny6DvEuJ8A46H5kjzAi0oMgBl+Y1FiTkuCMZukeB81Y3OzBaS1uA8oyZ93xmUnWou4iJNV+6QSli8s/ZZHFx5mMYod+gTj5GzB9OGz/pF1nk7XsX2ZXvx0x97ccZihJFhaIOPMr0YsuxKlw1Z9hzakEIn64OjApG2Nx3PTX7LwbmKNEORBkl3nD2WRbdTqOV00cIdcqWMNlw5o/e4Hph+/wQsfecPl4kMA6b0dvh59I1DsX/NkYa/MfI3aY7wpikTUWo15rwxG6fsUh9cCSeEopnJ4vCUuWPdPoeIiIiIyMXXJCSpgVxcEdspil4I3KJtWPLHQafbyWt0YAqbiy2dYQ73gb5XNLhAb3qel9VykNifFhgGylPF0HUPo67hTfH1UuK7Z2+Al0KGfauP4MCfB3D4i/Xw9/FCpatxgMEEpqZJs0KA+8RuPsDL6e0Dp/WBX7Dz2mb4zIEYMqMfFWKSRqywdiHoPKCD29cSEWkr2nWLoY0p5O/PGYozxYjz0SD2hkHYQprcjRZIc8ohP1/W4G7PmqwI/D0DfhuzYIzypq7+iuwasEbb94zzVgEKORiDEYxdc4nGV03Hi2S8rDiWDaWXCrXhdo35bsQNnkDGobpk5+uU9ej6RoHx9oEioxjSrDKnaQ4hMUFUiGSN8HcqbqiH8/cCF+YHSZGjcJu4Tp85fM5pSoYsoxhW0nAoYcFW62gt0dSN8/XVT2PvykNUMJ3UL4HWJPXN+T4B3vh4zxtUYLzi4zVI93bdtF9fUzUVOBD2rjqMqtJqesw6viMNL0x7G7qaxsWrtD3pkDg53jYl/eBZmuqmUMlR0TEAkAk3iZE0HoVSAgMRkjlhVFJ7XD10EFY8+pPLxrEBU/o0q0kOb0yBvrZ5Q1NEfBhuefk6t0JuRZEOvll1qI5zfnwP1qgxs3tXl88hIiIiInLxsCxL556azj81pV3XGHohWMwWrPxig9Pt3CWP1nOxwgYCGWd9uu8tek7cs+oQbXQlF58gb9S4mEdta4Zc05/OYzpj1A1DMXzWIKRsPUkFj5EJYejY1/WalIhIW5LYq51bw57YLlGISYrCrt/3u3TEbykaPzW0VY31vzLQB46jcSco3Y+3LwVE1FWYWdzqxx/bcoJeWoPKS4mXlj9OjS3I8bXzwI4Yft1AyJW2NWIicvh0/1vYvHgHfv94LXLS82H14DjrjF3L90P7hZYes45sOo6Xrn4XBm3jb+XkblKTuE9RI2ssZO2D1BBkbccdMqUMZoF1khGzBmHKxF5YvO6oS/Hc4N6O4uextwxH6o40h/2vJ6ZTJG54bgZ2C8yf2SNXyWESeA9kPWnsrcPdPofIfxNR4CDSDJ9RMWBVUtRuy4W1+sKBhQUkfkrIwtQwZdeA0zouzLLecjByFtZyYcVYge6sx582EWQMu+kOBEXEoOyHNBgzGifREtED+fh7BA5EZDH85jvcLo5EdRYnfkT+GcjfX4eZDI5+LDz6COwK9HmcReIM4MBbHKrthKwSBWB1O7J1jlc0EDuGoeIBVSCD7M0czq/CZQVpmA5OtjVNF+4FTM5Tqt1ChAl1rg2hBQkfAIT1ZRHmQmxKhCeZa3lUngF0cS2Pt7enoMqAcF8V7vrhkIO4oR5P6qQqnRlVqMSpDrvhY3Rf2Pir5YgJVOPAeUcVyaikEMyblQyThUN8sBfSCmsEBRJ3DrW5ZWuNFjz4y1FsPi0cXV1aa8TLK0/i+Smd4K+WOX2f9RivqkT02Ujkbml843VSE07GFcB7uAm159SY5hUBX5UYd9YaZBoGkUOBPA9MA90ROYShz9ca+vTpg7lz53q0bXp6OrZt20avh4eHY9q0aQ33RUS4ji4XERH5+7g+Zhq8pRr8mb8RlWZbg4KEYRGsCESkKgLHKnNQbiKTdY3HDX95IBg2CjyXJ/i85DxYzTnGzyhZC/RWWcNzBfrVoE6rwuDoWDw/ZATi/NTYVfgQSg2N0dDk7NhHbYU/sVl3QajUCG/WjFqu+XnGyrOO+2VWguQONUUjUePG2Gtdvg7LsEjy6eRyGxGRS4VEwuK6yb3x2ffbGppvOCkDvn5ulge6d4/Gk/dOwPTJ3fH+7V8gu7jRSUuogZ0IG5qKG+zRDWyPTsGBGNsrAYFgEBwVgNXfbMSqzEKY2ztxNiUCAq7xqEHNUiQA76eAdmQivZ+1ABJDBCRldVDsOwPG6Pw77rM1E1a1DKZ2TYRHVg4+mzMhL2hc2GMlDHqO7obAcH/sWXkIdZVaGDuGwUgcZO1hGBDtFdFvscbmIgfDmUKUZDcmtdQjLddCUqmD1V84Cmtkcjz6jOxGL0KYOR6/FBTimD85XtmOWdYgDcxxAZCfK4PXFpuzrTt4nqcCB59AL7x09XtOY7k9cYJq6eJoYGQAXYCwd5Ml9fKgq/riyUUPQFerR2RiOLLTnJ8jlGoFZjw8mV7XVmvx2qx5OPxXSsP92uQw1PWPBHeh0aqaZfDGpt14bNzghqY2IcbcPIz+3ps6r5IFL7KoTSb/SXMXcer7VyI6E4mIiFyh3HfrcPj5qPDrykOoqNLRw5lEJUVomC/ahbbDqZJK6NLyHc7ZoXHBVHBXWVQFnmVQO64DTO0CHZ7X5MtCUcXRSz2Mnx+8NqRB3ycG1lCbIylLhOJdYvHorBHwV8rx7KQ3aVNuPVyYP9BbWNgsOV9MUxsc8MT+1ck2PoHeuOPNG1w+TCKRoOco4bGGiMilRCaXYfoDE7HohSWC2/Ts2R6PPDwds/p2xAd3fIG8jMb5Z6VG0dCsIakzQ326wkEYZO0cQwXRDUMboxE8EWszQFKvdhiRHIcAhkVobBB+WX0YmzNaZmIkKXW9cGH1UTSMQ4XgJQysYT4wBPlAGhUI5a70hvE7K2XRa3Q3BIT502aqyggXovALWCL8mwkc6NheIKyOCEKkRc4FJgTSOERcSslFCHL8XPP1RmSmZMM8xL1xAxEeO4PUG+UFlbRR6eWr33UQN9RjdWHGVE+13e/F6uUi/ebCjFK0ly8UGhlOFDQ2bBE/vPFdOuCNq8ahrrgaEfGhyDvj/O9D7a3CVf+bSK/XVNTitZkf4NjWk4KvWZxdgs8fWkCF16SeMeiEF/tuUUXhRLw/tp6zJWTUEwgZphcqseen3Rh5/SCaaPSvRKxJRERErlAe+PQOBIT7449P1tKm/foUA1J3RCdFUiGffVMzISIhDHWVdagpv/hUVJZl0G9SL9zz4a1QeSvx7MQ3kH6wudjx74CILOa8NtttTdJrjGvzXxGRSwUR7k67dzx+emO54DZkTH7fR7fj2NYTmDd3PgrOFjmtSVpKx34JGDS1L63dieHAT9/twIFjbhqc2kD81BJkCimSR3aFf6gfKkuqYGgiiPaUmvLWi6pGzR6C3mN70IsQRp0Rq776i6bpXAwk3YEkOZD08Feued/p75Ykz7SkJvGEmKRI+u+5Y1kOx/KRNwyhiTZknyKlEuQJCDe8NQrMmJBMrxPR+Msz3qNiDCHI3/AXDy/ELS/NpKJ2s8CaGmHqPeOQnZZLTbLs8QvxRd8Jydi5bB8VqtUbc/3rEGuSVsPwZOVR5D+FuUQH3mSFNEgFVimscSFqwbo9BajZkAXe7DjRI/FXQE4cTKQsFPG+UPcIhvZQMar+FB7Mbin8GaUG1/GoHQYMwbAb58A3xObkXfnnWWj3Np/oSavag9TKnWhL/CMiUVtaCovZBIZh0a5XHwyZdTOCY5s0HYiIXIakfMHhzG/Ch/PokQz6P8/QWKiyEzxqsnnaSBzeH9jzEodi92JKQeKnA+pgBqnfXoanE9Ij+A+mqLFyYOQnLAI6um7aTvmSw5lfbZ/fztAsrIxrvYhLKWVpI4++lUri1tAn1g/L7h2ME/nV2HuunA6Qh3cIQkKIN0pqDLjmqz3IrXAe7+GjlOLj2T0xsqPNAffuHw7hrzTPFNvtgjSY0TMSH2xsbGKyRy2X4M/7ByMx1Bu1OTzydvJYUngOP1echdnOLVglk+Da3pHIq9Qjo6QOXgoppiVH4IZ+MfBTu164EAFKjvLY/ujFf9GGz2MRknzpEzUWLVqEOXPm2F5z+PAGsYOIiMjfy/m6Ehg5M2LUQVBLhRfprbwVqwu2YGnuKpg5x0mREEUwIpTtIWVl6OXfAcNDeqK6bgEKql4TfL48kz+2apsLAarMClgvdGP38h6GGZHXINLb1lh0qORVnK/9s9ljfBgrxqqFG1rr+bSiPao5x/MJqcJz9X7geAlqzAqU6r1h5Rn0DPJClbkIFt4CFix6+/fAddHTEaUWBVgilzdkaunDbzdjxV/HYJUzTuOYJw3tjBfuHk/Hqqk7TyH3dD5t8O47sSeem/QmXZCzp3ZiF1jCmkeO2yMx8mCtwPUTe8H/fCl+fOU3OkdoSgqDqWMYOB9VQ2oDae6pb/Ah/1DdkbN4M56HTMvbRA7bTrp0WzVFeEPfMRi8QgJpuQ6qkyU04cFhH6USh4lq0oRTe01vEqsg+LyskaPvqx5Gb4Jy43FBxzVjXADqxnR0+rmrFDIsfGIWOkQ7EX3Y8fYvW/DrdseJZXvU+7KgOu4iOtAOuUJGm6hauyDTGnqN6YZ3/noRpw9kIHXnaerI2m9iT0R1iEBJbhkeHvI8SnMbhTX2kIWf55Y8QheYCM9OegMH1x9ruL+uXyRqh8U6fWxCaCCm6VX45cVfnd6v9lHh84PvIIqKK3KpmIEIJ07sPu0g9CDuUWNvHYGCs4XISy+Axk9DF1wm3TUGXi7cdS9X8vLyEB0dTa8n3P8iZD52LsatwFxThbOfv0qv5+bmIirK5q4uIiIicjFjFyJ6IwuvUR0jXC6eWixW/LT6EL79Yx/MTc7FMb4adKs1QsGy6DOuB4ZeOwC/vreSNlnXDY6DobvwOF5VbIFM1zifKt11AmydHlZvJcY/MB63PTYdoRcSF9666WPqat4Ua7tQWJOiyWq1/ZsDm1UMSVpOs3EMcaA3j3AtQmgvZVC8+hB1gyXjGCIWvP312fScKiJyOcNxHObdPR/rF2wR3GbyXWPw8Py59BhAEkfyMwqp8zBppnh81Ms4vf9ssyQDS/8kmkpAIN9YGgDpZNx981X9IEvLw88fr4F+Yk/ntYazVAeOg3JzKlgnTfj1WL0VKL3TtdszQVVmq48IikPnIT9ja5iSyiWw2CW+GPsnwhrpWuQgySmD4lDbNDCSMfEne99sSMgRgghP1i/cSq8bukXB1N02nhRCfjwXylTnAmbickoS4dqqJtH2CEXNWEcn06aM6NQen82ZjqM5BTiWW0iT9IZ3aIeYAD8Uni/Gw0NeQIVA+g9p6nnh10fRfVhn+jP5e0zZJixusCc+OY6eg5a+23zuiuDtr8EXh99FWFwI0kvLsDnjHPZvTEHmr4ehOF3RUCeTmmTC7SPp+ZE0KpF6ffSNwzDhjlFXpBhbrElEREQud8h4JOtkLnUHJzUJEasJYTKaseSt3/HzWyuauYlHJ0UgvkccdcbuN6EnBl/dD4tfXeayydoTptwzDjc+NwNBkTbB9ivXvt/MvONSEdslms6PkTlVklQx5JoBtCYhzu8iIpczVqsV7835HJsXC/czEkHr/R/fTo8BROhQeK4YvsE+6DWuOx4Z8oJDY3pLufmlmTT5a9ln64FuHelajBD8uRygUlig3Na4Sjn+OyBjYpLOEJkQ7nI7ofmXFsPYBGkSmRQGuwTAS82wmQPxwtJH6Rrc6f0ZVHQwYGpvWgvknSnAI0NfQGVFHUx94pvVhIF+Grz55HR0vTD/8+CgZz1KsCaQhL5OAzvi94/XOL3fL9gHXx55l55Tzh49j72rD+Hg2qM4ffCsQ5oJqR3HzxmJ86k5Dd+NMTcNo3XKlSjGFmuStkFMcPgPoUstRc2mHFiKbU04JHFB3TMEvhPbORU6WKuMTsUN9L5KI6x+CoTMbVS1afqHw5BRBUOa8wXjIEWkW4FDuCEGPv5B9DpnsEB3yHmTa5LvAGRUH4GBa+4E2BqkCgWueuJFaPz8oa2qgMrbh15ERK4UetzHIn+3FVqBfpPcrTzCBwKxYxkEdbVd6hnyJou/7uBQ20oB6jk6Z3oZihvwz4obSMJF70fdixusRh7n1zZ+fr3LIrEu+gzMktbtvMED56G2pkeUrVmla6QvvTTsi9lKkxaExA2EIQlBDeKGsyW1HosbCOfLtHSR4InxHfH51rPQ2S3SRAeo8MHMZCpuIHjHMDjeIRffpzYXQxAxyI/7HL8Ap9en4+f9OfjlrgGIDrjyJu//TkhKik8cUNP6Whs+7YBgYaG8iIjIv4gNBcewIHMLsrU2F3K1RI5JEb1wX4cJToUORYZSLM1ZCTPffNKrxFiKcFUQnur0YMNtQd5zUK3fBa3RtiBuT61Vgf269gJ71ni+rrAWIkRjmyQxWiuRXbfO6SNqeRYGnoHShaV5lVWKaifpDaeqQ5GltdU99aglCjzT6X/wkylQZa6Bj8wbXtIrr6lV5L8JmSh/9M7R2JF6HsUVzh101u5Mw5Ce7TGqXwd0G9qJXup5a/1zuKv7Yw6ORVZ/93//NAjFCixZd4Q6lEovfJsVp4sgP10EXi4FL2NhGNIBXIBX4+OItkCo4YhhYFEBrL8XuGAfl26qJKnBPq3BGU1deMyxgS7FDXT/pAxReNl2R2uAYs8Zl3HyiqwKYGsGdP1iwXk1HkvbhwXg+ZvHuBU3aA0mrN7nKDBpiqFLGJTHC1wKPuwXXd1nYLctnfp3oP8m9Uukl4Z9MZjwyf3fCIobCH0nJjeIG8jkur24gZNLUDdQuBHrbHE5ZNOG4+YXZ+K391c6uKYSx7ynf3yQihsIsZ2jcXTLiWZiHoK+zoCVn6+3u6WULmat+WYT3t/yMo1ovlKxFxddzHOIiIiItBV/fb8NP7+5gjY21y+eTpgzCre/OZs6LjYlq7AC3/y+FxYnCUQ51VrE9Y7HC49Mb7ht5uPTcGTnSWyNdj2fRJIcZDr787vtYCepNaBkTwYCX7bVJGUFFdj+617BlAa2oAJcVBB4su8mMyR5ZWAEXLzZWj3Y4ipwoc6FZ14aBd77dA5UkntRWVxFG269/RvHUCIilzMsy+Lh+Xdj/9ojNEXFGWRsNXBaH/Sf3Bs9RnShl3re3fQS7ur6KIrtUtOsHaMaxA30Zxr+6HxE/OMfB6DYfRoSvQnSs4WwCImC7Mc1Vg7yQ+dcihsIklojpGVaWIKEayTGwoOxO6SYE0MbBA724gYCW1nnVuDAOkliaw3tusbgse/udStuIIkFW35pbCSSny2BqWuko4DLHo6n27hKg2hLVKfLUDsiTjA1gtDX15bw1zMmgl7qMeqN+OierwXFDYRB0/o0iBvS9qZ7LG4gkLphytyxuP7pq7Hio9UO7524ez+z+EHa0EToGByE49/vQcErG6F0UpP8/knjHFhRVikyjpyn35sPtr5M3XavVMSaRERE5HJj7TebsOSdP1CYaVsXJ+YWE+8Yhdten02NQ5pCGj1JDePM7Tv3dAEVODyx4P6G22Y/ezWObEnFKbuk05ZSdL4E/mG2Y39RVgn2/HEAfwfEiOS9zS9RYUNVSTU9/1yJ5h8i/01Iishj396LA2uPorbCeYrKH5+uw8Bpfel8NElBtE9CfH/ry7iz66Moz29MlGsJxACqgdIKIMT5nDJfpwOq/j5xA+GfFDcQQfDjC+5zK24g8yA7fnM+/9JieMBstNDL30mP4baaoukaHFm3+PDu+TQNiK6h7c+gBmHWiADwEpbWf+OvGdAgbjhKziEeihsIpw+cxdR7xuPaR6fiz8/XOyQ5xHWJxrM/P9QgmEvo2Q771xzBqf3Nn5+k7/3+8dqGn0l9fubQOaz7bjM9N/gGXbm9vGJN0noEZgVE/m1oDxah4qfTDeIGAm/ioN1fhNJvU8E1mdwi1O0rdCpuqMd0vgam3MaFfOIM7z1SeIIq3jsZLCM88aOWeCOkKgJVqzJtz59XJ/j6LMOig28ftAiBSUellzeuevwFBEREQqFWIyAiShQ3iFxxlB7nBcUN9Zxb6bwjgJUyGP4RA/+kS7Nv/yVYma1Je8jbDCb+IPHIjb42FzDb1TZqqwzXZXYDy196J/u2wmynqCVojRa8vjoN/d7YhLUnGpvUnLHxVDEqtSZ6ffMp4QUJIX4/mof7RyZg/7Oj8eF1PfDilM74/vZ+2P74SPRr17hIQxTwX2xrmeMUSXR4/DdhF1uRxobGfs+wkLQyKY48rt/TtuQRERGRfzfLcvbipdSlDeIGgs5qwrLcfXjo8EKYuOaTPOsLtzsVN9STUnUK2drGmFWGkYFTPYtNNZ1QZPaBnpOi2qrEMX001tZ2h45v3rBETmMkPYFAjN7P1GXi55xl9OcKw0lwvO081RQeDDLNzRcb7NmuDYGJaxSTG6wKnNcGoMKshlJqgpRaK/Lwl2vwfq9bEKHyh1qqRoQqTBQ3iFxxHDiRLShuqGfF5uNOb5cr5bRhIrG3TYTEK2RghBpZ7LEbhpoTwxzuIt9q1mSBRGuC+q8TUO5MhzSrDJK8Crfxy7yEAScBrGG2BpW2hFd5kBBmskCaUQj5vjNQbkihzYjuUJwrg9+SwwjccgZDGAW+fOAqLHvlViQn2CKJXZFZWA6di+hgAuetBK9yfcz7JzEaHI/V2motPn9oAWaG3Yn9q4+4fCyJPtbW2ObL9q0+7HCfoUOgyyYmwuojp3HLy9fhl7z5eGLh/bjvozl4568XsCj9E3Tqn+jg4PWrgKuqEET08+FdX7boMSIiIiIiwvz2wSrqplgvbqhfPF3x8Ro8N/ktWMzNa49fNxx1Km6oZ+eRc8gpamxaJQ1JM96/Cbzc9fnDqmTRMP2nN4Kxc/QjzvILn/uFXidNSc4amephjGZIzhVCeiIL0jP5TsUN1gAvmPokQD++J/gwPzqEajpTHOCvwbsvXoPgQG/aQBTdMVIUN4hccZAmCSFxQz2r5290ejtJcvlg28to3yO2YdzOBzY2T9Dvq6tUBlKTxNtqEvnxHMhO5tJxfQMcB7asBpK8ckgLKiBLy4Vy/VFI84SFuPZoDjbOfThDprO3bgA4XzV4gf2VEhGHi+MaqZfoNq1EoZKj15jueG/Ly/j6+Afo2DfB7WPOH89xaMxnSYrdwfO2iZqm8DyUh87Tbf4uWKMV3tuzBe9XZJQDKY3nlnrRxif3f4uZoXfiyEbntXA9W5fspkIIwt5VjjWJJ2z+aSfuePMGWpM89t19tCYhDUAL0j5CYq9Gsw+zyYzfPljZoucm6Ysf3/t1i/dJRERERMQ5JFlh3tz5DeIGQl2VltYqL131Dp0/agpxxHZVE5CGXHuRJhFuX/f4tIv6FRzacIwmQRBO7k4H16Qf4GJgJc7HKEGRAXhz3XPwvyC0JjWJKG4QudLY/fsBQXFDPavn/+X0di9fDRU5kIbwiyanAHxBMXj7dGmOA19eCWSQcTb+1Sg1CvQZn4wPt7+Kr468h4Tkdm4fQ8yPSJrllYy2urEvmFBVWk3F1teG3IHUJsZLRGgvO50P+clcSPMrsOmH7Q3zYvubrJN4wuZfdmLu+7fgl9yvqNCH1CQfbHsF36R+iHbdGhOySd2zfN6qFj03Efp99uCCFu+TyL8DMcHhPwBvtqJq7XnB+815ddAdLobXQEc3EWOGsJNEPYaMSsijbe7YBFcNCBqZLwYET8W+klXgiMWiHQpWjSGh11ABhPZIMXzGxYJx08vQ0bcfqkylyNG6dhlswMkkWGj7BFz30luQK6+8GBsREXtqs92PPpsmNHBWHmk/8MjewENH+sr/5QPYS03CDKDrHBYyr5Y1abNN+pu0UhOCDRrcciYZR4IKke5XCivDg/xnZS//XxJJbbjx2/04lut6Iakes5VHToUOO8+WYfVxxwUAT6jQ2hY9vJUyzOglLLI7U1yH7HLHwbwn7D9fgTPFtehwIQlCxDn+HRgMfo3F7hc4WA0tEzeQx5HHi4iI/LvRWoz44oy9M7UjqVXZNN1hapSjiPl49Sm3z022idU0NvCyrASnDBH0QgY4csYKtVS4cddgtXm+k3LBQm3dGWwv3YVro6aDcVOUnDbL4cNyiJI2b4Taqw3CX7VRVAhB9oPM/xs5Be04CFXXodyggZHjkewdh/eT74FS6kHTs4jIZUyWB65C2QWO21gsVnz7w1as35eO4motEO4DWddISAuqITHy4GQuxgg8D9bi2LjnyhlFlldJL4SqWwd4lg7hpoGpNQg5KtvDVtRBntryiL3rHp9Oo+M1Pi1LIJO7SZRooA0XMp1h8VXA0DGQpibISnVQZlSA8fQ17TbT1+nx+KhX6IKEJ5BGKuJOev54Nnat2O9wH6dyP3VapbUJUMiC67hbRwhud/ZoFko9bGCz5/Bfx5F/ttCtw5SIiIiIiGtqK+vw/YtLBO8nbtk7lu3DqNlDHG4/cML1OZnUEQdSsxFjJ4yUSlu29CbJKm6WkrT664246cVrwdq5xwtBzKd4gXOmJT4MZruF5IaVGZ4HY+bpOCm5axTef30WZG5EfSIilzs5p/I92CavWfrYoheWYMvPO1Fe0Lguysscv8ee+BFxF1LoyKbyU/mQpRfAGuxD6wq2Ugv2IlIFSIKA1VuBuoHRDqkS5Lss0wKypppoImAQOC4wRgvkB8/CRIQHTY8xVg6KA2fBtLKx58bnr8GsJ6dD5dWydVeZovlxkyQ0sDUGmJLCYQm3JUdLi6ohP10IabFw0t7FQBLxLFHExVQCSZUWkoLKhjQxzbEisFoTtP2jYA6z1Z9snQnqY0XwOpAPvmtXB8H1YyNeQtaJXI9el6QnlOSWU1HbvtWHWrzf1WU2swGfAG9MmDNScLvT+8+isrjlbr1EdFGSW4aQaMc0UhERERGRlkHcwRe/auew3oRDG1Kwd+UhDLm6v8Pth90I5Yj4gKSG2p8DZPKLbwdc+cUGzH7mao9qEolU4lKE0bRPpSm9x/XA66uehrTJGExE5N9YkxABqT0GnQGLnl+KrUt2ocKNYLtFFJQARaXgvTQ2U2gyj23555IU/i5ufXUWrnlkChWxtwSZkwSdKw17MRoRXD867EXkprtxS7YT25H0EHI+OWCXcu0pNRdqEpKyMOH2UYLbndh1GrWVLU8M3LV8Hz2PXsnJciKtQxwZ/AfQp1WA17s+QWmbCByI0zVn8OCk1mTcKQtTg/WSgatzPkkXrekIv8gQZNaloNSQR5MYwlXxaO/dHQrJhckuCw/j+RqokgLAqqXgdM73gzx2eP+boO1vxoq3XkJrKM48i7MH96HzUOHJHhGRKwGZV8u2KTnGYfdzPCwt7/cWEUAVyKAyA/Btx0Ph53kjlHe07ZJTrMfqmNM44V8C7oKQIb46AHef6gsGDD7p2kZRaJcAKctAZ7JALZfi5/05Hosb6pm7+DCKqlvQFW9HXKBnzVtmV45UbjiRXy0KHDwgtA+DkR+zOPAWh5os99v7tLMlN4jiBhGR/wZbi0/QtAZXrCk47CBw4HgeWpN7Nz5Su9gTq46FRqKB1mqbHCGiBaOVg5y1Ngt1M3ESerFwLDjagmDbwMiZcKb2LLr5JkPKamDhnE+0EPFCNjsaIT5X41jR8/CVmFBhkWOvLhhnTfYxmQztk2bAgQdLrwcodSjUeeNUbRb2V5zC8JAebt+riMjljJda0aJtDm06jqc/XY067wuTzGTxSiaFqXsMzO0MYIwcWAUjKHJgzY4OpcQR1ROsgV62uQw3Q3aGI0ID14kUrUGWXQ5D7ziiKhDcRn6u5clmhIBQX5w9ch7tusXQOHdPSYwMRkSgDwrKhZuEpIU1YD2IUzYkBEDXIwyWYA0YkxXKjHKojxZCUid8PCfOstXj2kPXLcRBVMLWGuG/8gwUee5/DxKZhDr/EIe6Pz/f4LG4gUDODc9NesOhoa0eaaX7OiU60NZs5Q77WOaWQM5z545lXbkCB2c24a15DhEREZGLZNvSPTC6cfv+6/ttDgIH4p5q0LZ8zqpbXBg0Sjm0TRKG7JEYONo0y+aVgckva3Y/SZY4feAseozoAqVaAYMLkeTAqX0wYtYgvHnDxw63Ewd3c9cY5w9iGJCwOamew/FjuTh0JAsD+8e35G2KiFx2eOLwq7HbZu+qQ3hj9kcwOvl+MeR4QWoMT5Ll6h/TRFBAfpa2oplcCK+D+VCllUDfOQTG7lFE3QSpAWCdlELSnHKXJY+0oBLs5lRY4kNhDbaNZyUl1ZBmFoO1S5RpKcRx+cyhTJqEQZyXPYWkPASE+6Oi0HFMLi2poZeWYIgPhL5bGCyBaltNcrYMquOFkFwwSxKqSYx928MSG2QrEMj4nfwOtUYo92ZAUm5z4VVlVNCL1UtOk/8kNcYGAQRp/jQZTDShcPm8NR6LG+ofSwQR7hJIhIhMcEw0FMJsnyrSAjgrh8yU7CtX4CDWJCIiIpcJW37e5dYdnNQk9gIHIhog5xd3EGd2e7oMTnJbR7ijprwWGUfOo+forlQw4eo8MvTaAeg9tjs+uKN1SaSH/0rB8R2n0Gt0t1bvr4jIFVOT+Db2uOxYthfv3PKpQ5pZm0JqlBrXiRL/NvxITXLwHBJ6xkHj6/73UU/nQR3hG+TdIB6+EmFZhqa2yeQymibtqbihfo3lgf7PoKq0dWLy8PhQj7Yze7DO5Axy/iRJDleswEGsSVqNKHD4D2CtdT/Y5WoatyFOPxVL02GtdD/QNZypgCm/DtJAJSQ+crBqGTR9Q1G71dEBxR4vmR96BAg72l3YCzAyFl6DIlCzSdghyXt4FHyiLs7p9PimdaLAQeSKJ3wAA6mGh8WFyDFmlG1StuI0jx2P8+Cv7GStywsWSP3GNhphZUD0CAbJ/2Mg93YvdGAYBoopWny+7wCq5Y7H3XO+FfjK6wAGyMPs7NUuPxbszsKSg7l4dGwHLDssfPx3hkLKtlrcQJjdT2CRtgnxwV7wUkhR14rBskp0r/MYIlYYt4BFaQpw7g8O+TvJuKLxfkYCRA5hEH8Vg+Aetr9/ERGR/wblRveTQWV221g4Dg9sXokMowUhAc63l4CDj0yPAv0O/JR1BGpJNHiEw1vmhcFBw/FX8dqGxXwjJ6NCBpvIgQfPMzBz5BlIowKRHTRvWCDpSVJWjQSfmThdtUhgrxl09LsZBmkiFlW6bwayZTlc2H+Gp8kSOoscqwv2igIHkSueYb3joVRIYXAx3ho7sCP998Tu03jisYXQd3Metcx7K8HUGiCrY2FRAVZS9tc3vnM8JGaAbTI+lua7T6EkWMP8qTiCBKoIwvFg6kyQeJBKQbD4KWljPy9hIS+qgzy7SrCZiLFwUB7OhmFA+4bGGYf3kVcJaa5nr9u0IWb+4z/Q63KlDCOvH4J7P7rNozQHMuk9vmt7LNwu4MrD84ipMcNda1b1qPbQJ9s11qhl0PaNhK5LCAKWnYSszLnCvnpUHHQ9mk9+c94KVFzbGcGLUiCtcl0zLH3nD6z6cgNuf+MGbFi4BS1BKpc6FTcQFJmV1JWV8xKee7q2v2cLr+26RkOhlsOocz9P12w/PBAQiYiIiIi4pmnTrDPK7dKmyILwK9e8j7ryaqB9iMvH7f58PU7M34TgYR3g2zkC/j4aTO3fGUuEzq3k2F6gA2NkgbBAcKEB4MtrwGbmg6lpPF8SLTdpjph452j8/slawTHAzMemIjCieeFkaRfqdLzR+GCGNugyVh6r1x4TBQ4iVzxDZvTDFw8vdCksJeNkwtEtqXjp6ncb0k9IIhwX5ke/M2x5LdiiKrBFleAiAhsE0PRL6eI7Rdz+LzWkSZ8IHeSVFhj7tXe+kcUKeZr7RhYiZJCnZLfZvpHj0WcPLqDXFSo5xtw0DHM/uMWjNAfi+kx+fys/3yC4TVBUAMryXNdKNaPiYejcWFvwKhl0vaNgSAqB3x8nIa1sGnVhw9i7HSxxwc1u5zUK6IclQb3hOFi7cbwzAfePr/6GFZ+swd3v3Iz1LaxJJFK21eIGwqS7xni0XUJyHE3LaE1TEallREREREQufU1ivw0RNrww/R0qfvZEPHFg3VFExIchIMwP/qG+GH3TUKz5etNF7TMx3vAL9sW420ZizdcbBc/j1z46lZ7/Lwby/KLAQeRKZ9jMAfj6yR9dJprU1yQH1x/F67PmNTNyE2k9rJTFx/d8Ta8rNQqMvWUE5r5/MzVGcodcIUP/Kb3x16JtgtuQ42ubpmy0MQue+wW/fbAK93xwKzYs3Nqix5LendaKGwiTPaxJEnu3p7UjEVG3FHGd5L+JKHD4DyD1c3+QlthtU7enAPqUUo+e25TtpFFJykIWroG50HmntdtmRgkDRZzNLcR7VAwVaGgPFDm6tUkY+E1pT1MeyIneJygENWWtczisKHAfDyUicrkjVTHodCOD1K+dD3yVQUDC1bbv3smFnChuaAGKACBhOoPyNB5F+wU2sht3cWYgeyOP6vM8Rn7KQqp038D9Wu6RZuKGeswSDsdkJXQB5XKua3QmK15fcwoKqecN6zIJA6Ol9ckKYzqF4KqekR5tu/FUMU2ZaClEFDG0Q/OFDRFhyHk+JBkISZbArOWhLwNNi5GqAVUQINP8s6KG2267jV5ERET+XkKVvi3aZv7xA1iflQGlwhdBfrXNDBPVEiMilNVgGR65upMXbt0Po1WC9FqykK1GN/84lBjPNzQZk+QEI9dcyODsTCRn5ejgnUCvdw24DwZrBbJqVzpswzJy9Ap6CiHqfuB4Dt5SX9RaqpvkO9T/33Yet6VENCK70KGdp2tdLSMicjnhrVHipsl98e0K58ljYYHeuGa0Lalk4QtLYGjneozFaRTUPV8GBaR6wCrj6VxAvTumAxYrZOmFnu0oy1CBBEeezy4toAGep07Gyn3pzRxYm20qZVE1Ph6Gjo0unwRJhY4mD8jKdYIJDYzRDGPXSHBB3g0OsfIzxZCfyG/2HoMiAzD1nnE4vvMUdTNzhv1kMHF72rBoK7LTcvHB9lfpxLw7tv6VAkbKg6e6L7vPhefBWIE6jesFSkO8v6O4wQ5eLUP1pEQE/dB8361qmVNxQ8NjFRJo+4TDd5P7RAay2PvZ/76DtAUCZSJucNXcQ/4GfDecReX0JDrf1ZRx3RIxrlsHj15r9x8HYW6FE5e3vwbJI7vgiuYyrmVFRET+O4TEBLVom5/fWIH9a45A7q+GJS5I0MWdNDQfPZWH2tGJsJ45B5ALqUgUMiREBuFs03QGjoeywAA5UXDWr9AxDPggX1j9vSE5egZMVR1UXkok9bPVJHe/dzN1T938006HpyINRA/Pn4uuQzpRQYZ3gAa1FY3rMlY7V0gh6LnfCuS6aRoWEbkSIM131zw8GUve+cPp/RHxoZh4xyh6fcGzP1NxAy+XwtQ/EVyQfQojwNQZICOpYCSFQKWwZT5aSQ0g8OJmK6RnPaxJ2gD52WJaHxmJaNwuHY4IxZX7zkJS3bbx3aGxwZgydywO/ZWClG318zDCNQlJzFnzzSZkn8rDe5tfgpQk9rlhzx8HXd7vrinfkBDoIG5w2DeNHDVjEhHw2/Hm96lkVNxglQLchbJHYp+MQWqGxDAoUoQN+erRVukwb+58t4mB9sgUslanvRFI8+qAKb092nbn8n2wmFrupkWaZLsOScIVjViTiIiIXAYEe1CTBNul5Xz/4lIc2dj83OWMY1tPNLuN1BRxXaNblCrUdE4qsVc7ev2+j+egtrIOO35znPslDcSPL7gfHfvE07QI8pr6pmlQZA7WzTwrIa8FTuMiIpcrQZGBmH7/BKz4eI3T+6OTIjHu1uH0+rdP/ySKG1pAePtQWpPs+fMgTu5Jd7oNZ9d/ZNAaqSlSbno+3t7wPCQS9+sGZB7IFcQc73KntqIO7835vEWPkatkMOlbX5NMuH0Ueo+1rf+5Y+eyfc1ShzwhOCoQSf1t82RXLJf/n89liShw+A+gTAoA6yUDVyd8INL0tS1CE7FA3d6LHDRaOCpuUPcKgY4IJawt+3aqk0Mg8bbNIDEsA/+rE+E1JBK6oyXgtGZIA1RQ9w6B5IJ7HnmtdtKuSEHL3DDqUXrZmglERK50kmazYCUcTv3Ew2QnqgzqBvR5koUygEH5KQ5FBy7iRexth/8DBCQBo7+0DXI5K4+M5TzO/clDSw6T9WuaAuOuqrNA9l884qe5nsk+W1KLzFKt6wGowYJ7hrfHgl1ZMDVRsV6dHIENaaR5v+WT0u2DNMgsc/3aLcVk8ewPJDnaD95KKXZmNFnkbYK/WobBCUGo0ZuxN7McZiuPuEA1bhoQi9sGxUHirCmtCcfzqvDo0mOezJs04/Yh7ajIQaR1EDGDzPPUPxERkX8xI0K7wvvUStRahB24p0b2of9aOQ6L02xOpwajHJn5IWgfWQqWtR3IJYy1QdzQFIXEikTvEqRWR+BguRnTI8fgZM1WWF1EV1loR48jQ4MGwktqO4AxjAR9Q16iSQ3Ztetg4qrhLYtBrPdkKCT+dJsztfnI1zHwkQMyxgI/qR4aiZHO25s5FrVWJcpN5Pkcz1skSYLgLXPfeCQiciVw54yBkEklWLz6IGrt4s97dYrC83ePh6+3CseOZuJgZS34CDdCVZaBNC0HvJ8XrNHBkJApLNKAJGMchL9EGKAgDTweOJnRpy2vowICmQ6wKHhbg9KFhn7iXiwxggoN2Cr3DUFU3JDUXKhhDVCjYmZnBH1/DBK98yYcWV4lvZBmGtIwyeiMTsUb3Yd3xgdbX6HXrzNbsOzD1Vj91V8ozi6lcyaEetfZppw+cBZbf9mF8beNdPk+Tp/IRg5vAUNEYKTcYG3T9HR/iEktSdnxV2LuczOw/J0/m7lPTZgzEstNrh3oLEEamCJ9IM93dAAKmdQZxU6EA/boEwM8EjjUY/VQRN1lcEfaaCXUoFVPaB2HUbwPCmN9sT+3AFaOR7tgf8wa2AOzB/WgCRjuIAsuH9zxBbhWFCXXPTHdI4cpERERERHXDL9uEL58ZFHzZhs7Jtw+mv5rMVsa3EkllToo952DoX88IGGbjStkJ/NQPb0zbZK2R2c0I6OgDNcM6IINC7bAImPBVhsgrwOYSAFxn4SFNSkG0n1pmHjHaKi9ba7n5Hz19I8PYtaT06kza12VFtEdIzHmlmHwCbCtb5w5lAmD1uYoznmrYOkYAfhrPJ7P9fZWut9IROQK4PY3b4BcJceyD1c5uB33GtMNj313H01FObD+KB0rE0wDOoALbL5OyHspYeoTD8XONHBxYeAiA8GSmoThwUkYh68VFSsfOAtW69zE6FIhTy+C7GwJLJH+9BjE1hogKa5uSW+9R/QZ3wNvrXueXp/xyBT89v5KrJm/EaV55dR5kwpFBNyZTuw6jV0r9mPErMEuXyNl+0mUuUnQqy6tocdB4khqL6YghjuT7hqNpTWu1xosoV4wh3hBVlLncHvYpGScDGZhtTerIsJ3HaCostlWkM/YE4FDwz6B/I24P/h2G9aJvpeTu503aNkLDJJHdkVVaTVStqXRx8R2jqLNc5PnjvUoKZmklnx87zetaqK7/qmrIZO7F86LiIiIiLhm1A1D8M2TP1JzEldNogSj3oh1322+qI+U1D5E3ECSfshzCc0hCjF57riGOSlioPLC0kdx9pnz2LZkN7TVOsR2jsbYW4ZB42tbS0k/eLZRkKhSggkLAny9wbAseIMRfFklUFIu+HreAV4X83ZFRC4bSIoZEf+QJMb6OQgyXuszIRmPfXsvTTgjY+TM461LUyPz0a2ZZ76SGXxVX7y84kl6ffoDE/Druyux5puNNJmZpKFZSX0g8JEc23IC+1cfwaDpfV2+xt7Vh2jN4YrKompc98Q0LCM1id3vgPxOptw7Dmu/3gSLueW9W9FJEcg93bYiL1IieDL0J+ZK+jojPYa7IjDcn65XkQSL1B1p9P236xaDqx6YSJNHPYEkDX3+kC31r6Xc8Nw1HolURP59iB17/wEYKQu/6fGo+OW000ZcRXtfqHvaIpY5nQXWcuEJ/pagTy2D7+R2qF6V6XFDNEl+IPva7PZgNXzHxTW7nQzAy39MQwdlL5SoslCoz2zxfnYaYlNGioj8G+hwHYv4q3gUHwIseh6+7Rj4trdNbKZ8acWZXy/iyRlg7NcMSo4B5jpAFcLj9M+A9l8aguITBwx8mUHeDh5Z6zgQY2VVMNDtTgYhvYC8bTyOfOT6OWwCB+H7i6oNmP3NPo/2Jz5Yg91Pj8Kyw3nILtfCXyPHjJ6RSAz1xsC3NrsVOBAxgNFiRXa5DgEaOa7uGYlXVqWhrfHkcP/ytM64bVA7PPjLUbfbDkkMxg39YrD0YA66RvrCXy3HzN5RGNs5FNImi8pCLNh1HpZWFHi+KhkeHn2FK4BFRERELhOUEhke6zQNr6b+Bs7J2WJAYCLGhHWn10t0WhRqG5PiKmu8kKJTItivFmqVEZFeVU7FDfWoJBb4yfSoMquxsegkHkichd/yfna6rYVjYG0icGinbo+bYmc129ZH3h7dAu9vdruZs+DZ44tQblRAIwHiNI7iCxnLIYDVQcFakK0PbEh0IOittsXh0aG9BN+PiMiVxq3T+mHW+J44cCIHBqMZibHBaBcZSO/7YMFmLN9wDHyHCNvMqpsmDFZngiQ3B3xqDnXPZzkeX535BPtP50OrMyLUV4Vf7/sWRSWex+ZKCivAkMYjjQIyA0B0RjwRUJFABzJnYuUgzSgSfDwnZ2GM84XFVwF9UpBg8xBxCNV1D4X3ftcFE+vCFSc+OQ7PLH4Q23/dgw3fb0N5QQVCooPoAkmPEV2w6Yft+PLR710+/6Yft7sUOBChxNMz3wcG2dzY6PvhnBiOyqXoMDQJP903gUY0F2YWwy/EB2NuHo6YpEj8+eKXgM71fNJVb80Ct+0cirJKaIPO6BuG4s35juk4TvFw3F+PJw07j35zD20cffma99xuO2Byb4ya3B/rFmyBIqcUvmF+mDS4CwZQcYNn+7Z8nuOCh6f4Bvvg+qevxpUMOSW6OG17/BwiIiIiFwsRC9w77zbMu3u+03MFWegmC+b158fK4sZ0NllWGW0aNseHgvNXU5MnaU45pAWVqBse30zcYM+m1HN4cOpgfPP4D/Rny+BurnfUS41uU/vgzndubHZXu26xuOOt2Ga3k+anl69+lzqAWwO8YBpMkofsFn0bY+2awV4wKxkzsrPr/RIRuUIgjUM3vzgT1z42FUc3pVIn4YSe7eiYlXz3P7z7K6z71tYsaA3ydipuaEAlBxfqB+nJbPAns+m4VMIwmJ/xCfamZEOnNyHUT42f7p6PsvJacEopTDF+4CUsZMV1kFboLv37tXKQ5Qg3Cl4sHfrE4/EF92HLzzvx1w/bUVlcRdMc7v/0dnQf1pmKwb57xvmcSz0bf9zuUuCQf7YQL139rkf703N0d0x/YCKtScixOiDMD2NvHY7IhHD8+sRngJskhGvfvQH6bWdQklOGwAh/jLhpGJ7dvR9WbZPfFcPAorGl3KgqSLHY9jXJMz89hFGzh+DZSW+43Xbw1f3peWrDwi3UIds/zBcT7xiDfpN6elyTENFPa8QN5HOa8fBkXMmINYmIiMjlAhEn3/3eLTSB1BnDrxuIfhN70usFZ4tQW9k2RoV7Vx7Era9ch0UvLPX4Mb3HdcdtrzZfJ0lIbkcvTdHV6vHy1e9RsTipaZiEWCpsqIdRKsBEhYH31oA/51w0OOqGoR7vn4jI5QwZn815fTZmPXUVjmw6ToU/ib3bIyoxHFarFe/e9hk2/rC99c8vleDblA/od5ukFARFBeD7l39FRYFrE6Irlc6DOuKhr+bSumLT4h2oKqmmaQ7ktq6DO1IhyY+v/ObyOchjXQkcSPLcWzd+7NH+DL1mABUab1i0DaW55XS8PO7WEXSfiMDBHTc+NwMlueVUME5SCUZcPxjv3PIp2hpPhv4v//4EBk/vh8dHvex22+GzBqHX6G40PZzUiYGRAZh81xj0GZ/skeCa8NsHHqwHOSEszpYoeCUj1iStRxQ4/EdQdwsGq5SiZksOTOdtC/+sRgZNvzD4jIqhIggCI207Xw/ezIFVyRB4U2dUrM8AX+o+ykbdPwys3HO1lSGtHNZK4owqwZDQa5BddxKZtSmos1RDKVEjzqsLCnXnUWzIcvp4n+AQJI+7sidlRESaIpEziBhErjV+n1O/uUhxA4HM4coZdLiWoeKJXc/yLRI3xIwFiDlxXT5QdgKwto2WShCFLyBRAsZqwCsCiB0LnFwEWF2YKLFyIHIoEDWURVh/Hvte4VG4r3HUV50JFO3nEdYPCOzqfh8MbuqHN9aeQmmtzVnNHe2CvRDsrcC9I+KdNuIXVrv+QBNDvXBj/8YF0E1pxcj5GxZYnLHvXAUVOPRvH4CVKa5VyIVV+mYikC2nSzCgfQAW3tYPKg/OGbvOunZuEqJab8b+85UYGG9ryBMRERERuTgmRPSEr0yNhZlbcbzK5koSKPfGVdF9cVv7kZCytmO63In7gsUiAW9iYOGk0Pi4d0T0kRmowEFnNULBhmJu+wewIn8ZSo22pmUrx6DGrES1WQGV1AIpw4HjGWgtMtwcMwZy1nNXuu0lqSgzkhqLQYiiTlB8oZGYECDTotxscyHSW6QwcxJEqoIwOXygx68nInIloFTIMKy347j1o+82Y/lftnQWaiRMIwKEn4OpM1BX5PrtSSMheYiaZTF7Um9oq7V4dvJbKDpX4vF+jZ8zEjKFDLmlNTjKMjBwvG1SsV4rbOUgP3gWrF36RD3ktatHxaCuXxj4+oSvC49lDc7finpIPILzDTS+PapDBEbfOBTfPfszLCbnqQ4EhVqBITP6YeiMAeg1thtenvG+QxR9Zko29q0+jIHT+lB3HHdUuRF/fPHwQtTkk8Kl+cKkAxyPqNhg6tIz+5nmDffeaiUq3Qgc2neMxPSbxjX8TIQb1QeygC7JLh8nK2wUvbUVx7aeoAIH0pS1+3fXMYe5Zwrw1LjXHG7bv+IAdbJ95fcnIVfaEkZdcdjud9gSiGPUqf0Z6NQ/sVWPFxERERFxhBz7/UJ88fObK3B6fwa9jSxET71nPK5/+qqGJlEyXmgKYzCD09WA47WQleghK7Wd94ztXc8bVesMCBvXhTayLnz+F+R5cN6Y+ui0Fjllb/1lN6ouuAyae7V3FDc4vAlHkQNj4ehYKDYmEBPGuRFeiIhcYag0ymYNLB/dM79B3EDgwmypjK6whvlBmllsG+9bOeoj56OQYfa0vqipqMWzE99AaX4F6oa2g6FzKBVm1yPLq4b3pgxILqSrEIiDMun9yD9bhLQ96S4dnNuCoMgA+i9JfonpFEWbZ759arFDAkJTVF5KDJnRnzbu9BjZBS9MfRvHt6c51CR7Vx7CsJkDERobdNE1CWny1HqQoEeISAilTUA3Pn9Ns/u8VApo3QgcErvGYPwtjY0xKw+lobSpuMEOq4qBVcpDXuGY+tAWHN2cSgUOpCY5uN5WKwtxLuU8TfKzZ8+fhzBgam+8+NtjHp0z7OvKlkBccc+lZCG+R3MjQhERERGRlkOaYgPC/bHk7d9x5tA5eltwdCCm3TseM5+Y1tAk6qwmaS1EvN1pQEc8sfB+LHpxCW3Idce0+yZAIlRXOGHTjzvoeIPAxEY6iBvsYXy9wQf4ARVVDre37xGL0TcO8fj1RESuFKOFIVf3d7jtvTmfY/PinRf1vGR9ISDMlyb/VpZU45kJr7dI3DDtvvH0OfLP2WqShuSVS0RIdCAsFg66Gh3iusbQOuKbJ35w2YCv8VVj8NX9MHzmIJrETOqutL1nHGoSMq8/+qahNKXPHUQU4YqP7/0a+lrPmthCYoMREOpHhfVNUfuoUVPuej2jQ98E3Pba7IafV8/fiJqytl8D8QRSIxCBA6lJ3CVdk89/xUdrHG4jv4Oh1w7Acz8/7PacQZLBU7a6fg0hirJKkZueT9NMRf57iAKH/xDKRH96sdaZwJs4SHzlYJpGKiukUMT7wnjO9YHdU3ijFaqeIYjsEojsV7ZDonftIiH1scWbeYoxp3FSjGVYtPPuRi/2BCgiUFzYRODAMIjtloxxc/8HlbdPi15TRORKw1DJ4fSSi38eIhZQB9uuH/mYR6nr+dZmJM5gEZBkK8hNtTy2PcxRwcClQqoBJv3kOICqK+CQuUp4lJx0A4Mut9qOUycWEHGD8+2KDgAlFj2qZQx8zcLx7URYIUSF1oT1JwrhCT5KKfrE2hYinDGpWzhOFwkPeGUSBuM6hznctibVs9e+FBRfKAwSQ7zgpZCiTqBg0igkOJTtvBDbl1mBN9eewmtXuVeatMKUqIHC6sYYcxERERGRi2dgcEd6qTDWwciZEazwaRA21BOoUqNXSATOaTMQEVSFGN9yhKlqIJc0phVZeQYmTuqQhmAPTyzZL6C3mjAspB96B/TFjF3PQmvRwkJTG2zb1Jkl9FxBBA7ktkB5y+qDE9U2sYavTAdfYgfvAn+ZDmUmL5rcUG1Uo39AJzyadB28ZKoWvaaIyJVGcUk1lpGGDbspASIM4Km6wPn3WJGa2+wbTia1iUMnYd7c+XTyvSVc8/Bk6nxMqK7V44GbP0EWaaRhGbDltbRxiSXpDk6omtgOdf3CHW8k6Q9S0vQCSPTNRQ4+ob74Oecrh9syU7Ox8XthdyYyKT7ryen0OomsF2pCIQ1FNRcEIK4Ia29L7HRGWUEFFUtIrBwkJbWwhgi71wYarYjvGCV4/7juifh2y0HB+5UyKUZ0cRS9bP9tD2QlOsjzamCKEj72ao4IJ2q0FtKkQyAiERIXTpyunL62r1rw7+zQhhQseO4X3PPBre5f8CJqktLcMlHgICIiItKGDJzah14qiirpIj5p/m26CEsSkxJ7tUPGkfP059rewagYHw2rX+P6hfJcNYKXZ4KXuXfO1hvNGD97CG1knTT5PejNwo3FhMAAmyjaU05eOFdZA73Be3tQW/A8GAsPmQUYNDARjz40HiqVe+GFiMiVDBEUrLUTNxB4T1wmWcdtfAK94RtkG7u+f/sXSD94DnUj423ihiaYo3xRfVUX+P+aAubC937m49OocyuhqrQaDw58jqajXSpIA+XnB952uC39QAa2/7pX8DHEbfbqByc1iA/sxQ327PhtL7oOSXK7D+EuapLC88U4/Ndxj99LeLvmn3M9Y5M7YPG2I4L3qxUyDOnsKOzekNLYJCWERc3Ay0XKX2spL6xsaOiUq2QwCaT7eflrcGqvTZTXlH2rDmPxq8vo7+xSrpOQRlhR4CAiIiLSdgwlQsIZ/WlNQpqMiQu2pInxEzFLiekUiZxTLXCcdIGhzkAdxsllkmq224ZmYnLSEtL2Xpg/89aAUbiuLZggf/AXBA4My2DI1f3w0Jd3Q6FqWb+YiMiVBlkbuFhxQ/24mDTSE96++ROcO+bc9NkZRERF1h9CYmzNXySh7f5+T3skfGotRBAwb4ejgVDqjjS6xiHE3e/eTMXhhA/v+spB3GAP+Tw9q0lCXaY3pO44BU8IiQ2i4gYhhl07gAoWhCBijN5juzdbJ/mnqK9J4nvGQaaQCp4bvAO8GoxCmrJz2T4s6f6HUxF6U1qTKFdPaV6FKHD4jyIKHP6DWMr00B0rBae3QBqkgqZvGKR2E/PktrYSOMjCG1VyASPiUb3OtiDgDNZLBmXHxkGyKb8OdTvzoD9dCXAc5HG+8BoUAVVSY5NvU4GGM/zkIegZMJquJYfM7AqllwZBMXHwD3PReSwi8i8inYgbXK+ZeUTMaAZSFQNDBY+czS0bdPgloEHcQJB7M0i4isHhDy9iRtUN/h2b39Z9LoOqDB4Vp51s3wHocK3tOmfmkbna9b7VHpfg3eTt6FAdhKnZHVGp0MMosSJc5w1/k20hsd1k4WNUboUOZqtn7/+FKa4j4m/sH4Of9mejuMZ5U85NA2Jp+oM9QqKCvwONXIopn+7EiXxh56YAjRwauQRao7DA4LdDuXhiQkf4KF07WPSM8cOmU547+9oT6iMsYBERERERaT0Z1eVYnZOGGrMBCT5BuK59MkJVjY21wxJ5aGrz4CPVI0LZvDaRMDyUrBkGTuZU5FBtJ0CMt1McTo8YgYXnN4BhGh9FxBC2MzJJYPBDr4BGl+yztVlYVbAJx6rSwPEcOvkkYHLEKPTwazw31ws0SEKDOxQsh1vj7oaCVSHeKxLhKjElSOS/wU9L94JrMjS2OaACvMRR5EDckeUpOZCdb57CNfbm4dQtvySnFDuX72/RPnQakNggbiD4eqtw9ciu+PKRRW4fa/GRo66Po2DYAYlN6MA0GWJ3jW4+aX7vh7fh/PEcnD3aOD9i8VeD81Ohc6/2uOqhifQ2o96Idd85NmA15eRuJ4VNEybdaVsEcAaJuq93blUdzkHduE6Ak3kW4u78xO2NyQvOmD04GSsOnERFnXP30xuH9oSv2nFsrbsgfPZblYHy67vA6t987O21OxfK846Obm2BXCXH3J6PU6cnIYiYhpWw0FYLO7qu/XYTbn11FnUIdkVS/wQc2ZTaqn0NjBAWu18RkJPsxZb+l27qQERE5D9Mdloeti/dA22tHu26xmDC7SMRYOfmTha/icChpk8wyq5LaPZ4Q7wvCu7pAq9zenD+rt0CO0RecI0BcPU1/fDzEgFXFQCREf7o1rVRVJiaUYCf1x/G/hPZtDm1d6coXD++F/p0bkxyksltS328xn1DkEwmwVN3j4WXSo6E+FCEhfq6fYyIyL+Bxa/+1mxMwVbUwgoX43y6jaOoeMKckVQUlX+2kDaXW30UMHQSbuC3+qlg6BgC1Yki9BjRpUHcQPAL9qVNO9898xMuFR37NE+E/t9nd9JjYNaJ3Gb3dRvaCZPn2hIOdLV6/PX9NpfPf2LXxdUk+RlFHje5PPTlXS7vv2lET6w+mIYqrXPziVtH9YamSYqO1uh+LoeI4SWlbe+oKpVJcFe3R5F1svnvoR4iwrOYGw0/eAkDfVIQ9B0CqcCOCMZ/X7IdN75wLeRunL6TBiTipAe/L2eQtKMrGrEmERERuQwh57/M4znYuWwv9FoD2neLxfjbR8E/pHF8HhEf1iYCB9LQ3K57Y/1A0iKWN3HhtieuSzQ69m2sgVJTcrB86QEcPWSbz+zZOw7XXN8f3Xo0PqdUdqH90I24gaAK8sEDzz1A3e0Te7enAnMRkf8CP77yW5s8z6Q7R9Pv9fkTOS1O6eozIblB3EDwD/XDhDmj8COpl1zAS1jwPhqbYUK1FkwLGtWd1SQPf3U38tILkJte0Oy+nqO7YdycEfQ6Scfe8vPONqhJRgvel5/huTnsI/PnuryfCNq3LtktuKZw/dNXNxNz6WsvkelqkxRPp5swwO2dH0buaeFzTUhMkNt9/OOztTQZ1VWKA7mvQ+/2OHO4dU7IYk2C/+w6ifvucJF/DbyFQ+k3qSj96ji0+wqhTylF7eYcFL17AHV7bCcMc5EW2gNt40IhDVHBlFeL2p359F/NgDDIwmwKwmYwgN/k9lSwQBImanfkoeSLY1SIwRssNHHCeKYS5YtOomZzTsPDlHZiByFkrBwdfPsgKbQ/uo0ai8R+g0Rxg8h/itKUiz/DeccA3e6yNR2VnyTHE88fK1UDvR9tfrqJGcNAISxsvWjIfhbuc3zvMg2DER+z6P0oQ0UXrN18b+UZYN1NPM7+zkFbBBjdJLhpLHL4G1U4EVCMt5N34KvOB7Gw4xG8lbwdCzochmqIAVHDhB/vq/IsVvKlqZ0xs0+0y20CvRT45a4B6B7puCApZRncNigOz0/u3GzChNx3KegT6w+5XQy3M47kVAqKG8hjZ/eNxsoHBiO30vUg2WDh8PZa10pqs5XDmaLWxUdH+aswsL3YeCoiIiLSlugtZty+8xs8fuhzbC7ahnW5qfjoxA4MW/UZlpw7Src5r83C4VqygM4jWF7rctJFSizgm6C1yFFjsTWadvQORZYuDRuLNyBXl4MZ0UMRow4Fz7PgLlxsUgcGLBjc32EaJAyLGnMVVheswYsn38ae8sPQWfUwcEYcrTqJ19M+xcr8RveNQYGd6L4S0YQ7NFJfjA7tjyHB3UVxg8h/itTjzhs2aICDhVx4MFYeiv2Z0PxxGPJzzcWpcV2jccsr1zVMWNc35nsCceF/8IvmzTDjbxsBbzcNiQRdl6Bmzq1NIQIHxxt4ZHy8GYc3pjjc7O3vhXk7X8ODn9+J2GFJ0F/TE7VX9YB2RAcc9JFi2tML8Pv247TRp7bSFuveWoj72YApvQXvt3/vsqIaeG06DbbSceJdUq7FSzOHY8yYZJevFeLrhQX3XIukiMbFEfq8EhZzRvTGQxMHN6tJSIMlQVpjRPCiFPhsOg9ZXg2kJVqoTpYicHEqfHYJN/sIkTyqi9s4ZOIQJSRuIO6p0+6fgA+2v4Ky/AqXz0Niqxe94Doy0WQ0I/d084UaT4hOikSXQU7U+yIiIiIirYY07D4w4Bk8OeZVrPlmE7Yt2Y2Fz/+Cm+Luw8YfbClLJ3afxo5l+8CzDConNDbtNMXqI4dF5ro5tktsKHafysLirUdwtqAM113TFxERzidFWZbB/feMoo0KpTV1+Hr1Xtz11lJsOZgBrd4EncGEnUcz8cA7y/DbRlv9ROh/4XzPmNxP2gYFaDBhdFcMGdRBFDeI/Kc4uad504uEpHrpXXyHSdLZ+cbahCS73HDBlZI4fJIxrTEhSDCVrh5jQiB1vHzg0zua3TfxjlG0ue9ScXhTClK2n3S4jSRQfLLnDdz/8e2I7RLdIJIipO48hVvi76fCBiKC0Ne5Tqp0x8jZg9FrjKNDqT2e1GOE55Y8jEHT+rrcJjzAB18/cC0Swx3n9OUsi7vG9MXcCQMcbuc4Duoa56kJ9ijOtNw8qc/4ZHpMd8XhjccFxQ0KtRwzHp6Mt9Y/j6oSm/GHVSND6S09UDUpEcaEAJhi/aDtG4FzV3fAN6t3uXwt0jhLBO6tgSRMJPZq36rHioiIiIg4R1utxX19n8IzE16nCVNbf9mN7579GTfG3ksbYwlHNqfS5NW2oPOgDtj75yGs+HgNdSq/7snpCI11nMOzF+Dd86EtrbQsvxwLP92Axx5YjN070qHTmehl984zePx/i7F2ZfOaBJbmazZNCQn3o0Y2g6/qJ4obRP5TnNrnPj3MHUn9E+l3mCCUtCaEX4gv7pt3W7PbicCZpBw7g8yLWJNiYBmRDGu/JFj7d4JlRA9Y24d73Gu9f/3RhuTJeojBxKf736KGUCStRmpXkxzdnIpb2j+ALb/sQubxbBhd1WweMH7OSHQdQtZynUPWbDzh1T+fQp9xrtdJiDDtnY0vIjrJ0XRbrpThlpeva0jvrsdqsVJTr0vBgMnCa0P17F9zRFDcQP4myN/aS8sfd7tWVVVSg98+WOn23FeUXYrW/t3HdhJOGBf5dyMKHP4jWGtMKHzvEIznnLjecUDVynMwnKlE3f7CtlH7SBhYSvSoXpWJ6jWZKPnsGMoWnkTA9UlQ9wkFYxfbTFIeAm/qDHmMN8p+TEPhG/tRvfY8IOBsXrMxm6Y7EBSxPpDYpU+4Qt1T2EHFE3gzB+4fdDwXEWktjKSlDyBCANtVZSDQ6SYGoz5lofBlkLeDR+p3njcSSZTAiHkMjDU8zvxqRc4WDqYaHrV5PHY9w8HY9kacDehLgN3PcSg+5HgskcgZhA8gSRQkqcHxMWR/jn7CI2eTZ+/Rwtq24+3mqcn1U/6leM/7AGoMwseMuCANekS7VniM6RSCOYMdI5OdcSK/GicLamgzv8P+cTz+OJaPQ1mNTTlk0eWJZcex7kTbRyonhXlj/s29cU0v4YFlTIAaOpPwxIbJwmHpoVwctNtnV/x8IBfbzwgPgjecLEJOkyYtT5CwDF6a2sXtIoSIiIiIiOdUmsrx9LGnoNFsQ3JYPnpH5GFUuwwkBpTAwlvx/KG12F+Sjc3FNndAFWuG7MK5Vggp43i/ziLDmdpgENlCpNoAA38aS3J/xtLcX/BK2ouYn/kJ3uh+E8aH9YaMbZws6+AdiTd73I5OPkH4NvM9vHLyPmwu+RGhyioEKWohYx3P6Yuzf0euzubo0SsgAdEaFQy8HEbO9cCri6+wQ4gnGK0m6CwX11wgIvJPICPTTwI1PpUY8QCrM0N2rhgMx9No8vqI5eCoQNz84kx8tPM1OtG8belut25C9mh8VfiQNKrnlWP5R6vp4+uqtMhOy8VzU97ySETAqdwHoNrXBETc4LMtCxX7zuP5KW/h+A7HhQalWoHeMwcgq0cEDE0Sw8prdHjjh03Yelo4WcBTstLyaBOnECTRon33xlQLWUE1fP9Igfeq49BsPg3vP1MwRaHBlCmuG4kI6YfO4fy+s2DKzZDV8pDqeEi1PJgKK9ZvTkNqZqFDI9FbN32MfWuONNzGmqzwOlyI4J9OIGRhCvxXZ0CR33KXVNJ09vzSRzHqhiGC24S1D4FB6zz9jmDSm7Hqyw1IP3DOo9dc8dGaZk1j9hB38NK8lkd8kwXle50sOF1pUCFTG1z+LjIyMvDcc89h6NChCAsLg0KhgI+PD+Lj4zFr1iz88MMPMJvdN8KJiIhcnhSeL8atiQ8g/cDZZveZTRa8f8cXOLU/g54HCPoEXypicIUhVg2FwNyUXCbByZxivL9iO71c+9aPeHrxerz+2jUYPbJzg9iPkNQxHO+8MRMhcf6479s/MObVb/Hp1n3Q+vEw+AL2pQYxSvxw8Tbkl9gmV/tOSIZvkDdY0gRrdH2MGj/MdVKsO/QmM3QeOJ6LiFxuSKTNx/TEdVSxN93p94ZMC/ul54PVm6hj5a2vzML7W1+BxkeNzT/txM9vrqDb8XbfYyG8wvxoTUJSH4hb8vZf90Bbo6PNOs9PfdvlmP1iKThbjGcmvIG0Js1UKi8V+k5MRnl+BT3+2VNeUIn35nzeTKzdGs6n5sCgEx57d+gTj+iOjs0/TRl7y3CMuM5RMN0Usu5x+kAGcreegs8Ph+G3PBXeW8/B568z8PlyL3be+4ODU6jVasVr132ItA822A6qAjAGC5Snm6cLuktve/aXhzD0WkdBhT1h7UJgctGoZdSZ8Odn63HuWGPyX+WUDrAEOTESZBl8eeAYjucIO89uXrwTlUUtX5CTKWS4b94cXOlcaTWJiIjIv5u8jELcHP8Azh5pPMbXYzaa8c4tn9Lk1/qa5GIhTbUnd6fjy0cX0STbO7s8gg/v+gqvr34Gw68bSOef6uk8sAPe3vACdXR/esLrmJ3wP/z8y0GnaUscx+OTD9ajtMRmajhoeh94+WmA6lrwbkQOoyf1uKj3RMYWRLwnInKlwUpa1rwlkbBQeSsbxo+3v3ED3tv8El1f2LBoK35970+Pn8sv1Bfvb30ZWSdy6DrJDpIeU6fHmcPn8OL0d5zOl5NvvrVnIrjYUMDeUEguA5cYBa6TsCGEPXmnC/D0uNeQccTRuZ/UVr3HdacmQ5YmNQmZT3/7pk88SmdwR2ZKFkwG4bF3l8EdBUVf9Uy+awwGTu3jchuy7kHqLrL2ZLVLYSOYDGas+3YzrQHrsZgteOnqd6nIvK3pNjQJTy1+EIOmC6/thMYFw+yiD5b8Tfz+0RqX6Q72LHjuF5y1q1+asmHRNtSUtXzNR6GS454PbMK7KxmxJmk97ldoRa54OKMVJfNTwFULTyARanflg3fRdOoMaYgarEpCExZI8gKrkIK3crBWNn8tU1YNyn8+hdAHe9G0Bku5HoxCAlmwGpYqA0o+Pwau1rMFQu3+QshnJMKqNcNa6/p9EVgvGbyHt07JZThbidpteTZxCA9IQ9XwGhQBTb8w6qQkInK5E9ydQUWaZzNvIb2BXg+y8I5hwF9oLKrnxAIOp35s2QyewhfYfB8PvuHQwoOR8CD9hFaBr65fB6Dq4oXLtlfjQAUZoX0cC4WM5TwVOAhx9g/Atz1Q7SIZq0hVi3KlcON8doUOi/dn4/6RzSPs63lyfEfcuuAAFSI0RSlj8dDoDsI7AGBregneWnsKZ4qFEwqqdGbc8f0hLLitDzJLtTiWW4llh/PQlgRq5HhuUid0CPXCLQsOULGFs21uH9IOX25tvoDcFPJxzNuYgT6xfjiU7X7SfeHu8xjewXnB8dfJYrSUnjF+eGxsRwxJFOMwRURERNoKvVWHeemvgmMdF4VlEg6JgWVgGR7p5aFYcOYAQv1s5ylJE/GCM8hwXC3pAI1EiUIDgwKDBaFKJfwVlaix2Bzu7DldewoLsr7E851fxgMdpiNfXw4vqRJR6mCUGYvwccaLqLM4nseUEgvkbC1Kjd4wc7YSmgePjcU7cXu761BhqoaRI6/FIEcfgESN8+YmL2kg+gRcjdZwqOIUfs3dgpSqDPpze00ErooajvFh/Vv1fCIifzfde8Tg9PoyWDTC01DSrDIqdug3qSd1EiVON2RCmGUbDRLmP/4Dln24qkWvTZxS7+vzFKyWxmMKcQOSSFnaNOKMDn3jceZgY3O7rMx9wxERaEhJc39RHdTHiiC/MEa3mK3U4f/D7a86bL94w2FU1Qk/76/7TiGqUyTyLiKGnkQ8r/9uC655ZIrgNre/MZsuYJBFyXqkZUT0oYXKS4mbLjjUCrHnz4P49pmf6CR3zdSusAZ729xU7KaXKmp1ePjj3zHvf1chs6AcabvSseXPg23quhIQ7oe579+KiIQwPD7iZadOqP5hfrj24Sn4/uWlbp+P1MOLX1/mcWTy75+sRY/hXZzet/vPA2gpXYck4bbXrhd8TpG2p66uDg899BAWLlzYbOHeZDKhtrYWmZmZ+PXXX/H888/j+++/x8iRI8VfhYjIFURNeS0eGfYidZUTgiREEVdTsuBPf1a7X0LjNDIkl5rARjIoj/ZFhcUEL6UCOpMJJdXNhZR7T2fjed1f+PGp2fjf/WNQVFQFL40SkZH+yCyuwM2fLkGN3m7ilGHAyQGDHw9lFcBeOMdyPI8/tqbi/llDUZpbjpqKOioUlaXlwtzTudN2WLAPrpnUC61h+4lMLNp8CEfO2cYmnaNDcOOIXpjSV9gFUUTkcqL7sE7IO9M8VYut1kG56TgsscHgwvzod27I0E544IEJiAj1a1aTfPrAt1j5RWPDoaTCvbmOHwfMTX7CIYWONI6TOQ3S6NIUTiVHwtTeSD+QAUlxDRVZXAykWfKHl3/F2+ufd7h96Tt/UvG3EKQBJzQ2CMXZLWvwtyfrRC5Nx5l6zzin95N11jlv3IDXZn7gtHmSpPHNfsb1XAppziLNNPkZjQ3+VJpW2Ng8U1FYiecmvYFX/ngK2SdzqUB514r9IDnb3tuyUDvSidGUxQq/tWfA2tWSrgiKDMA9825FcFQQHhr0vNNGoMDIAFzz8GQsePZnt89H3Fx/nbcasb3icDa3BKYYxwRve8gnt3j3MbwbE+70/j2tqEm6D++MOa/PRtfBSS1+rIiIiIiIcyqKKvHI0BdQW1Hn8vj/+6draUOup5CejvbdYqH0UkJbo0V1SQ2dEyXGLs4EbsSxW1ejp/OV1WU1KMoqhU+AF8Lbh+J8ajYeHvoCvR9RoS5Tba1WDutWHcMtdwxD4bliaKt1VDjIF5aAiXZ+ToqIDsDka1w3CQux6/f9+O2DVUi74ATfsW88rn10KkbMci2EFBG5XOgxojM2/bjDo22HXzcId797E0JigpvVJB/c+SXWL9jSotdWeylxd7dHHdYBZEoZHUiSeqEZDNBxUh+ctAgfA7joELDZxWBcCJrthUnEuOrVP55yuP2Xt363HW+cQOoDkixH5v4rClvvnptx5DxNxxl/m/O5XPLZknWSt276xOn95Hg666mrXL7Glp93YtGLS1GYKdyfREQbJLmHJCKQOokk9ZDjcVtCxPn3zrsVfiF+eKDPU8h3kuJGtrnqgYn49unFbp+PiOHJOSkyMYymjrtbU/nz03V47Lv7BNeSWkrP0d3o7yapX2KLHyvy70EUOPwH0B0phrXcvXrVeLYSigTXbuJNsZTYJu40A8PhPz0BxqxqlH513MX2euhSy6DpGQJ5lHfD7bWbcz0WNxDMF15Xf7LMYdHcGYxcguC53SH1c3RFtMeYWQ3dsRJwpCEhSAVN3zBIA1XQHi5G5bIzDqkWlmIdqn4/C3N+HfxniAdQkcuf+GkMbehvmlbQlISrGfR8sHFQXHEKKDlqm7hVhaDF4gaCzsnYjYgdrC6+t20hbqiVGnE8sAh6iQUhJRr0zApFXQaLcyt5VJOAGDf9SaYaIG4ig+pM4fe8OcJ9k8sfR/NdChwGJwThm1v74OWVJ5Fd3rgQ0incB69N74JuUcIT1tvSS3Dn94dgdSKOaEqd0YLr5u9DW0LKmHbBGszqGw2twYp3NpxGcY1w4WLhOFzXJwrvbXCMnhMip0JHL55w8LywWsXoQQxmPWE+Sro4XGew4FB2BZLCvRHk5VlKkIiIiIiIa/aUbUWlWXhBPM6vAuerArG76DxuCLAde028eycTEvBQVpeLEl6CrsHX4p3kaUirOYkPz7wn+JhcfS6OVR1Bb/++SJI1Ot+tL1rWTNzg4Nwo01ORQz15FxIc9pYdhfWCmrPM5A2eZxCjqqDCCAJZnzfzgbgh7n14yQIE9yu9Ng0HKvZCZ9EiTBmOwUEjEKQIxtrCvfjkzK9UVFFPprYAH6b/gnN1ebgvwXXzsYjI5cD0ab2wcuUR6CVWWJXNv9uSGiNkqdmY+dhU3P3eLQ23p2QU4OipPJqqFcyjxeIGQtH55qIj4gZkcdEjZC9uIKhPlqFqfBw4NWl/cU7gsnQoc5wfQ4gDT8G5QqTuPI3V8zci51QeiqZ2A+TCx7nyai2m3T0KeY/8iIth8087XAoc+k/ujZeWP4HPn1mMwvwK2jzFWDiahPDgF3fRlAchdv9xAK9e+z5dFDGH+VBxgxA1OiPueGtpo+vlNT0hyyyDet95ME2S6FpCbOcoTJgzCrWVdfjykYUum1bJBPuYW4bhGw8m7usFIp5ywoXLkrOmNSGCogPBWay00Yy4U7XrGgOfQOHP9YqA/M4v1u30Erul1tTUYMSIETh69KjD7SS9ISQkBDqdDuXljSkcubm5GDt2LE1zuOGGGy7tzomIiLQZq776izqVu+PIxuN04dZTkaO0zIC0ulqwO9Jw261jMOfVOdhxIhMPzhd2UiSpDrvSzmNY1/bw9VE13P7Z+t2O4gZ7WAYmLx5KOx33+QLbsWnb0j30PEf3J6uUuodYkqLAay7Ma/E8/CxWfP769fD3VQs2Dhw4kYON+06jTm9C+8hATB/RDaGB3vh5+1G8s9yWtFdPWm4JnvtxPTIKyvDI9KFuPycRkX+aafdPwLoFWxq+K/YwJgtkpDk+oxA3PncNFZraj+VTd5yCRCqBT5C3g7iBoDhXjjqdCbxaOO2l8s8UyJqMeZ01EfFSFoZ+8bDEBCKFLNUMSiQ2oJBml0N5MJOO01vLkY0pKM0rw6ENKVjz9Ubkphe4TY4oySnDtY9NxbIPWl6HNa1JhAQOhKEz+uP5pY/gy+d+RklhFRhSk1g5JPVLwENf3o3ojpGCjyUJfW/e8LFTcURTqstq8fAQR5EHQXO0ELJSLbQ9w2GO8KbHTEVmJdTk9nL354F23WIwYc5IVBRX4dP7vqWvIwjP02a1r59wXeeZQtSoHh6J7C6BgJQFqw0GJABrtK3NOOPw+fw2qUmCowNpcy1pviV1Dqm5SJriFc0VUJOIiIj8NyDpPFUkdc2DmoSMOzyFjG/OpWRR8eStr87Gjc/NwPbf9uL1WR8KPoaMcY5uSUXPUd3gG+TTcDsxMmloNlYL91jVk51lW/chzcMN5+PSCtqQzYQHg5HbxkjkPn8li/e/vg3edjWQw/vgeRzacAzbf90LXa0O7brGYuKdoxAUGUid6r95ynFOL/3gObwx+yNkp+XRtC0Rkcsd0lS+efEOVwFiFFKPkLqk/ntxNDUXJ07l08QVjdbQYnEDoeBc8+Yts6sxIk/q/gogPFB4G2LIEBEIyVnP5tH3rz6MypIq7P79INZ+s5E23wuJGxr2+2wRXd9YPm81LgaSwickcCCMusE2r0GOMyRRop7Ogzri4a/upgIwIYgIgyTgeUJFURUeGty8JrlY4pPjMOH2UbSG+/Cu+S6FdERkPnhGf3z9pGdrT54mXRNSXSRuuErRcCbCIAkXRIRH6nGS+qfx1eCKRqxJWo0ocPgPoEtx7iDqDFW3IBjPtFz1pt1bCEuZniY6uKNm/XlINDIoEv3oQZO3cFRc0BJY5QXnVL37xlVWI6UpEc4gr13+YxoM6ZUOt9duz4P36BjU7cgTnLDQHiiCqkcwlPEtE4WIiPzdaMIZDHiBxb7XuGYiB0YChA8AOs5iEdTNNi2qL+Ox92UO5SevvN8VafxbG30GO8OyYGUbv7yrvlRg5ulu6FDjuSO/bxzQ438MDn1hgcza2HhkYq1YF30Gx4KE437rIaKF6Z/tQnSAGtf3jWmWCJBWUIPFe7ORe6GRXyZhMCQhCG/O6IZwX+eFfT1vrzvtkbjhUjCucyjm39ybJk/cvuggdma4d3Cq1lvw2+E8xAdrcK5U2BWqNRgsHC3s6lN1yOey+VQxlh/JQ2q++0mieopqbGLAklojPtqUgSUHcvHL3QPQLugKHyiLiIiIXAYcqXQttJOwPGL8KpBXFY5+gf1xqjYdJk4GnVUGtaT5BJuSsWCkOg/tZLWQBNrOh3XW3Tievx0plm5OX0POWKCWGCFlOGwqWgB/mRztvWxRyEarASlV+13uo0JigYSxwnpBeKGW2M7V2ibKyXKzF8rNGnhdeC09J0OwIhp+cluTVFNMnAmfn/0Q6bWOg6/1RaswNWImvjy7w0HcYM+f+TsxMqQ3OvnEudx3EZF/muiYQDz99FS88/YqGPVmWJUseJahLsNKvQVDw70xc++b6NTfZiJQXF6Lpz5eiVPnHSfdJaM6QbUrA2yTuOJLDWPlEfDHWZRd15E2lzTFa2+BoLihnju7PuoQ92t18jxNSRzYEXe+c5PNSaeVQ//sU3l4oP/TNNlg8t1jmyUCkM/41zO5ONcnFnzvWMgkLAYmReHpeyYikMTKC0DG32Syv97xyRLpwdwIGa7Xvw+WhTkhBDq5FJqtnomg7Rk5ezCeWfwQdRAirkfHt6e5fQxZQCYNoCRuujjb87kyT2jaHGaxcthy6hxWHT2F0z18UMkmQJ1SAkWe67+TslxboypxpFp0Ygl1zSXR4WFxIW26vyKOzJkzx0Hc0K9fP7z22ms0oUEmswmbsrOz8fnnn+PDDz+E1Wqll9tvvx1JSUno1at1bugiIiJ/L6QJ1hNII86wawfi1L4MKPK0kOfVwRQl3NjJyFSonmJzt/6oMAvp7y+FLNS5aQnPAKScIP++s3I7VCo5+sbbkqdr9AZsPeHaUIUj5oosUB92p1HZBAzaJkkR0pwySHLKwAV4AVIJmFo9opMiEWrXuGSPzmDCI++uwLGMxqaErQczsGjlfsydNQSfbNwjuE8k1WFi745IihLPVSKXN/E94vD4d/fhw7u+os3b9pCEtyFX96fN/B37xNPbiPPmK9e+j3PHXLsnk5rG568zqJ7ciUzwN7tffTAXMhcJzPWQYbJ+eBKsTY8fLAtLu2DolTKotwqLat0+Pw/cmvigc3dWF3Qb2gkqLxW+/3gNeNJQwvFgS6rAtOB5yGdIapKojhGYcvdYdB3imPxyMqMQy9PzkdMzDnwyIJeyGNQ1Bk/cPxH+PmqXx2tSk3gibnCHPK+GXloCaZB67Lt7aaPOk2NeRdpe9+5d5QWV2L/mMAIj/Ol1ZxiivVFyW2fwColDWhCBnEMkOucih5oaR8Mo8ndOUio2/bTDaXqJECQVqL4m+S71Z6z9djM+2PYKgqNcNLeJiIiIiFySmiQzJbtFnyw5JS564RfkncmnBi/u+PT+b/HoN/c0nJsri6twaP2xxg08MCXRXDAL1DZNhSqvAk8uGjVZAAL0BoT1jUdgsPOahNQ0z0x4A6f221KsCTuX78fPby7H7W/egO+e+UlwHxa/tgwjZw9BTJKwKFJE5HKgY1+bgPeT+75xSFIgyBRSDJs5kKaSJCTb0sVy8yvw/Ft/4nyOYz8O2ycR0qPnLso4yCPkwoZPDVyYO/UE8p5vjLvPtbDCCX3GJ9MEvCVv/47WcvpABq1JYjpHYcrcceg8oIPD/Sd2ncK67zY3iBvkShkGTu2DB7+8Cz4BwoIz0oTv6vh0qZl673j877M7YNAa8NjIl5HhQRo1WRtJ2XYCvkHersXZraCq2LHn2GwyY+eyfdjyyy6aFuQpRKhRX5N8nfIj/d2QdZKAMP823V+RK4O2TIMXuUzhDR4u/DMMZEFkcCkcL+QKY0YVjGecT8bYY602oWzBCZR/n0YFBpzRCt7cspMuERYQpCGuG4AJMgHRBXntks+ONRM32O4EajflgDe53i8ichARuRKIHMpg4mIWnW5iENITCO0L9HyQwfSVLAa/LmkQN3BWHjuebJ24gZUCMg3o83vH4JLj0x7o8yQgs1tf3Bh5DtsizjuIGwhVjBGLOhxBocrzwZkp0Iz7s3bi1eStWB53EpsizmFF3Em83nMrdoV5NplgsnJIyavG6uOFuOm7/Xj812MNk+0n8qtx3fy92Hy6hKwJUMxWHlvTS3Htl3tRfKHZ3hlEGHG6qG0Hmp4SqJHjmUmdqJjg96P5Hokb6tmWXoob+ws7wLYWImh49vcT9LrBbMVtCw/g7h8PY8PJYhRUuU8wciV4eGSp3SSOiIiIiEir0Vvdi9t81QZEBlYhXBkDltjSkWOx0QcW0v1jhwQcrvLKRIK8BpIGK3DAS2JGHPMbOjFNXTx4+Em1CFHUwktqoskKemsBfsh6EUtz3qbpC2T/LLz7CTX71xscZItRjlI5c+1gUGdVosqihpGTIUrtXNxgtJrwysmXm4kbbHvNY2XBr5Awrj+7dYV73e63iMjlwKhRnfH9D3Nx08wB6JcQhSFJMXjyrrFYufJxvPjD/xrEDSazBQ+8vayZuIFgDfeDfkSSYK+/VCaFl68avcf1QES88+9da+C8FOBDg+CVx0NWy9OmHrITnUOD8c6UsQjf7V78bC9uILDV7p1AyXIfmbi9GKdIk95M3cw2/3EAj0x9Cx/d903DfalnC3DP60ux93hWg2uU2cphx8kc3PXaElSQWHkByGJjPnG5vUCTQ7XHmGMCYAlomaA4INwft79xA61J1n+3xSNxQz0H1x/FlLlj0daQ3+8Xjyyi1/UmM+5csByP/LQaW9LOoYA3Q981BOU3dkXVuPYtel6y2PD+7V/gX+FMdLGXS8SOHTuwYsWKhp+nT5+OXbt2Ydy4cQ3iBkJsbCzeffdd/PHHH5BIbOMUo9GIxx577NLtnIiISJuirdJ5fEwnruEsacIhTta/nQOrc77GwhoAqd3T8koZ1uYX4Hiu47oBOYxxUoCT25pTycpcTkUVbv/yNzz501pYOQ5VWgNNQHUJMYyyO+eOHdCR/kvEC802JfVLRR0kJdU0oSmmk/NmH73WgNvmfukgbrCfc/vk951UuOeKFXts83IiIpc7424dgQWnPsJ1j09D8sgu6DepJx75+h78XrEIz/3ycIO4gXwvnhz7qltxQz3y/Br4/3ocyhNFUFg4eKsUGNwpDonHS6E5kOvRc1jDfJuLG+zvD/eDJcTHaZPUUz88QBtw3NFScQNBEeSDtedKYBncBdaucbB2bwfzqB6wdI0Df8FwyB0GrdFWkyzeiUeGvYgvH7WNmwlH03Jx/yu/4uDx7IaaxGThsO1YFu59aQlq6oTrJuLkWd/48ndDUg5ufXUWrUlWffmXR+KGekiKxqQ7xwjeX3F1vIO4wR5eZjuXOMOos+CLZTsbBNiPjngJr18/D/tWHRYUU3gCEfvMu/srXNFc5jWJiIjIf4c6D2sSfZ0B3YZ1AkOipVvBph934OzR8263I4lO5Nz83u2fU1EFMQdxaLouc3/+GDG6M/03ppNNuN0MrQ6oqQPMFkEBAjlv3Z38uIO4oR6L2UqTj5o2gzeFmISIiFwJEBOi79I+wjUPT0aPEV3Qf3IvPL7gPvxR+T2e/uHBBnFDndaIR174tZm4gcCF+cPSO0HwNYiA28tPgwFTeiMg/CJMm4USJu1gDEZ0HtiB1iQkYcIdLRU3kPG2RMrS5IuLQV9roDXJhl/34n9jXsG3zzaKEg5vTKGC5WNbTzokoJEknMdGvNTMVMKeI5tSaSrDP0FYuxDc/OK19DNa8fFaj8QN9vs9fs6oNt8nbY0eP7+xnF4nKdWPDH0Bb930CfavOYLKi/icyPmKCIOuaMSapNWIAof/AJ6kKlCsPMoWnaD/thZLqfsF+noMpytQvT6LpjEwSvcnuXpk4Rqou9lc0JUdAyDxuxCzLIA8xrmSruzHNJiLLs5F3OJBNKmIyOWCOoRB1ztYDP9QgmHvSpBwNQuZ2rEozt8J1LivdZ0SPRK4arUEfZ5gof8b5pR1RYBfPIu4Cbb3YGItNLlBCLOEw/Zwz96cph2PO7bsRkZJHQxSC/aF5mJDdAb2huZCL229W+yyI/m4beFBGC1WvLo6DXVNmpzqya/S45PNzQv4eip1nkd3tZZwXyWSo32hlNmGCsQ16eqekVhx36CGRIMlB3Ja9Jxk4uHmgbEY3sEmUmtLyL6sPJaPcfN2tEh04Y5juVVIzfM8BUJERERExDlhSvfOOUarBFaY8PKJr2HiSToPSTeQIVsXiEqzCtYLnTwJsmoES4UFbAmSQ/AlnUYX0EiMVNjgjFM1e7Gt5Beopd6Qs67rCrI/VmKXSl7DKw79Am3pD/0CesBfJtyEQOjobZuQbMpbp79AmdF1s4OPzLVYr+DvGHiJiLQRYWF+uPOuEfjgwxvw9tuzMHVqT+pcbM+m/WeQUyS8eGYN9oZ2ai9oZ/SDbmIyTEkR4KW2OYXxc0bg98rvqWNNWUFjjPDFwGkU0I7rCktsECQWFupiwDcT8D3Ho+ZoNbqGhGH0jcNa/LyK9OYCDnuSIoPwybUfIv+Me/GEK0zR/qiZ2hXVs/ug5rpe+KmqHE++8jMsFivm/bgNBgE3t/ySavyw+oDg89Y0cfaRFXngdiow3WSOc+4EGhwdRIUv9c1aCpUc424bgU/2vNGQaEAFIC2As3KY8cgUJI/qirbmj0/WUie+mQ98hIOZeU630fUMg7aHcJy1M1K2nUTWSc8a40Razrfffttw3c/PD99//72DsKEpU6ZMwf/+97+Gn7dt20bTHURERC5/iEufJxh1Rrx41bv0nEFQFOoQ+WkqvPcXgzHaXN8lNWbIqwFlORESNG86yi6rcjjt0dQGgSWQdUfT8e2Wgwj0UkN+YUwjCEkwvaA16NEhEoO62+qM4TMHwifQcR2El7DgI4PBdYwBlxCFzhN6N3s60sT01FXvINsi3GBwoQRySU7ZP7OYLyLSGogQ+q53b8Z7m1/GG6ufxaQ7R0OpdpwP2PLTThSdd548z8skMHeMhGFcD+in9YVhTHeYE8MhqTXCe3smblMFYue79+Hp0f1Qt8/zBhNSb7RmG9J8TkQOw2cNQluTNKQj3vhyEwormzRjsiy42BBYu7UuTXLFR2vw+qwPacLAvIVbqcjdGTkFlfh51SHB56kua1niQmsg6W9J/ROpYyyB/K1MuH0UrUnqEw1IwkFLIOeXWU9NR5fBNpGaPYZYb5jdrOs7FTjwPMhU2ffrD2H94XTMeGY+tvb0R/H9A1A5NQmmSOdu2S0RZRScE03/RERERC6WWA9rEtKI++q1H4B309TvisJM52MZZ/y1aBuWz1uDwIgASOxrkuo6oErYdLHn/9k7D/gmyj+MP3eXne69y957T1kCIiAgooDiwL1w496C4kBUUFEERBFkiOy9915ll7Z0752d3P0/7xvaJm1WF+Pvff1EmuSaXJLm7v297+95ns4N0KlLw/K0VZWPa4NaR+c+Mh54feBHyL5Wu3UO8TwlcjsR1SwCz8x8FF/v+AifrX2bJoPJFPaDvI3b45Dtwl2fD/ED7+t43Dju9ZFUxP3EFw+iILPmvS5sqhvHfZ4Hk5qL9KtZaN2rBXqP6Ya6hhw3pk34Fjmp1pSxmmKOCoBuYBvoh3WE/q6OWHgqCdOmrYTFwmP2i7/RpGhHJMWlYNX3G29qTUKEDKQmKROQKL0UVCjz3f7P4B9qFbBsqsE6yUPvj6UGH3XNH5+uwM6/92Nyy5eoqKSuOLj2OLJTxDXx/yKSm70DIvWPuns4dGc8+4ILhjqILyIJEB6KJDRHM+EzJBaqjiHQHHSzaM8AihYB8L+vGRiJdVadKJYDHmiO3AVxTtMWircmQ3MsG/JGPuC8ZVC2D4FgMMPgKLmhmnDXI0FFRG4neLNAExosRiIQABQBFYtw6ftqXiRnHQdy43jse0uA2TPzgVpBnuP0zzx6fcIi+4SAg/n5VIzgiriALMDNmoJJbsZ07yNILagfAdPuyzl48NfDOHbN9TGIpCN8OLI1dW67kFECKcegVbgPJByLmAAVMWwrdzSqSx7rFYuHejZAw0A1WJahiQj5GiP8VFKoZJIqQozq0L1RAKQci3mPdMGiA0n4assl6KuZ4OMM8lZMWeo+bYH8tVf3bTuXXoS2Ua4bV0VEREREXNM7aBDOFp1wer+JZ1FqtjYUkDQFb46BhRy1BQEWQYp0vR/Srm87OMRx02gZLMOjiyof20sj6FHfi3PtMHIsfxPuCL4fHf164XD+TqfbGXgJeIFD94D2eKbJQ+AY60SShOXwcrOHMe3CzzDyjhuDfk9ahXUpBxFk7IwAuTdGN20JPZuLi8Xn4efEea8MJefazcTXNs5KROQ2gcTSEodL4pDcpGMD+AVXjLV2H493+/uCWgbGAgheCpjaxsASHQjFrvM4uvkUzu69gHeHT4dRVzeiYEP7aAiVRBhllGgNmP33Xnw8bQLO7j2P5AtlRyr3yC9mwRTlB3NU1UhdmQBk/LgDbH7tTBkMTUOg7dOIuj2XIahk2JGSiedmrkRcQqaDlswK1u09hykT+tF446S4ZOr81LhDA+peH97YvklfkloItlAL3s9JM44Lx0vSJGbLuDfuwbDJA+lCD3Ef0msNKM4roY2blZvPspI8X6wltO3bCjK5FNPWv4NV363Hoo+WUTemuoCk9X366A/Iet6a8OMMbdcIqE+7FrhUhrgHN2gdXcs9FHHEhg0byn8eP348fH3d136PPfYYZs2aZZcCMWnSJPENFhG5xSEJPse3nPZo25L8Urvr0jw9glcmIGhlAniVFIUjW8Ac5nwgz5NGUwlD52HpKdCNbuHvA6cxeUAXDG7bBOtPXnK6HWcEJAyDAd2a4e3Jd9K5OwJphJj6+wv4eOzX1KFdCPSF0LIBYNOc9P38vfhnzQm085cjINgHgx66A+nxmTgTnwGENXO+cx5M3fl7uU/aFhG51TDqjbQmIa7AzTo3shMJ7V991OHvCDIJDHe0guBd8TdPfja3iYElMgDyfRdxZMNJdB/eGR+OmkEf21Mqj4k93YaMk+e/uwRT5jyBc/sv0e91XUAa+s9nFMPsYmzERwVBuJIGpga1F3FDLeB5xLtxpl63Mw7PTOhLXVOvnU+l+0VqEpZl6zS1rzIT370Xgyf1Q2TTcFqTkFQPcm7wDfKGXGlfk2Rfc9P4VYl2d7SijzFjy/tYMXMdFn+6oryhyhygcP8AlYVnvABZCagATucl4LVlGwAyVSSwtG42NAqAsaE/vLdfheqctX4ir6ksbdwTyLakJqnP91xERETkv1KTkLlLTyjKqV3TLBEOMBwDwcPerX9/2ICxrwxHj5GdsX+VjenJxUSgURQQ5E8WX+hNHMei/52t8NJrw8o3U3opMXXhC1TE6GwM9M3jP2HZV2vQpldzBET4485J/ZBwOqlaruPO8A2qnZhPRORmYNAZaE1iMfNo3rUxvP0r1vv2OUg0qQwf6g/WQQozSfBq07slPh77VbXGfJVhizQQrmWCj3U8BmQvJoMxmWn6y8IPluKZbx7BpSPxyEyq3vjYGcT4iNQ4tXkNBFOTMJjaxdrdJqjk2HAyEbkfLkWqG5OpTfO346H376OJBKQmIUZMpCYhY+r6HB8/+skD6PdAb0Q1DafXdaU6lBRo4BfsYyeIIe9PVjVFYm37tqTH7S+3f4hlX63G0s9XVat+dYXZaMb0CRVz586obk1CRBmJZ5MREu3eHEDk/wtR4PAfQNHYD8oOwdCdqpsTiDs4HzksBa5dRssQDBYY00pgznXdJOs9MBrqzqGQBFadKJc39EXICx1RtPUa9GcdH7DJ/miPW/epZFcquEAPJog8QNXJ6hgoInK7cHkFj4t/CTBc761nJEDUHQw6vcRA5sPAYqz5wFCfDxz4QICpdj041SLnJGAqAQZ8zyJhPo/yzkcnmMoszirDABK1gOP+6dgQEI98Rf2ms7gTNxC0Rgvu+/kAEnM0KLme9BDmo8ATfRviib6N0KdJUJ0mFSilHJ7u1wgv32m/oKmQcojwU2LP5RzM35+Iwwn5dO6iX/Pg64IH97F0BLmExcTu1qKBiBwe79sI47vF4OfdV7HkSApySz17nNpC/sL/eLwbkvK0kHEMvtx8CXmlrhdglDLPU4ZERERERBzT2rcDWnr1xIXSg1Xu4wUGaVqyYG6dHBfs2m2ZKv2wKtZ9I2oA508fV8LwkLKuO3J0lhJk6ZNwtkBDhRaOtrfwHIaGPIDewb0QrKjqNN7OrwW+bDcVS5LX4XC+46apPEsmEjQ7kXA+FD+ePIy+rUxAHeilB4W6bqQVEbnV+PvL1VjxzRoUXl+kk8ok1G30he8nQ+2rhsGJU44reD81jG1jkH0iER+N/YrGuNcFgoSFKcZxukAZh84kwcAymLXvM3z12BwcXOPcYdQWRhDgte0SDC1CYWgeCgSo4KWUg7mQCeFwAliNsdb7riXjbxtxgy0nLqcS41WXTYslGgNe6vc+rp2+Vv6eBkcH4v43RmH0C8PQpk8LxO27aH09AH09pUNbgveuNOdCDuR82VG+KlyBptx5aPxbYzDxnXvt7ieiBnI5vOEEVn2/AXF7L1A3uW7DO0Hlo6KT+p6gUMtx95OD6M9E5PDA1NEY8cwQOnm/af6O8r/J2mAKVbttTjMFKjFj3ydIO51MG7R+fu13aBwsRNkiV7lRw93CkM+dqYPHqA8yMzORl1fh/tWtm2cuY40bN7a7npFRu6QVERGRG0OfMd3R7e6OtPm4upBTmalZOMyNwyCo5bAEuj8yRRlZJAsmgGPdHshyijW4mp6D4kVHwDZUgPeqmi7HmXm8MqwP7urZCqEBVVOru9/dCd8fnIaFM1bjYIaGOqxXJjVXg9TzqWDPJ+Kv6f8gvJH7VCEiqrC40S+M6NrS7eOIiNwqkAYK8vdPUgSIOIBAxmSDJvbBs7Meg8pbCZPe8Vjc1CbGTtxg97j+XjC1jETq2WR8Ou4bKtKtDtbGJNe1h6PmJQKpQV6Z+zRNFZjx8A84usm9EZAjiKmcF6mt9CaaZmOK9IM2lIHen6VpLlKtAFUWD2nZ8gnDgA8PAJdQM1HFiYOXAQdOzrbkF2nxYp/3kHQ6CXqN9T0NaxBM6wbiWtqsS2NcPlZ3rqDEefqh98dh3Gsj7W5XqhX0suvsVfy15yROJ2ZAKuHQt1VDyJuEwHA21ePHHzp5AP2ZiBwefHcs7nluKJZM/webF+6CVuu+HmYsAiRagASdsmaA+nowgMGPiGBsTjjEN4S1iuxYI4OSAY0gTyoApzHR78HM3R8j8WwKrTV+eGEeDG6Sw0k9dbtyK9ckIiIi/y0GTOhD56BO7oi7Ic8XGh3kcaNxdnIuUi6m0XQoO3geiE8GrqWDDfSljvAD7u6AoKCqNUnv0d3w3YFpWPDeEpr+4wjyHORC+GvaPwhtEIy64M5J1U/YFRG5WZA0xT8+Xo7VszeWz22Tpnki+nlm5iN0LtzoyToJmW9wAGkC/2z8zDox9uEupoAp1sESGwr4WM2NmPxisImZYHMr0iH2rjiEKT8+ie8PfY7pE2fhVA2Pc2Q5wzvAC3qtsU5MrAS5BCYXxkFHLqZDHuwDzsXaABEPvNTnPVw9mQjD9X2KaByKie+OpekbDdpE06SHukLtq8Kjn4zH6BcrRGQEIkggl70rD+Hf2RupmITUsj1HdYG3vxrFlcw6nEHe38EP97M+plqBRz56gK73kJpky++7PF5vqS3ks565+xMknEmGTCnFrKfnUrGPKyobYN1OiDVJzREFDv8RzJnVsFOvib21DZ6KG8rQXyyA4YrrCGPBLDgUNwhmHqUH06E5nOlWJGG3j3me7SPnK4elyPEkpCzWB8o2oipM5Pbh/O88zi20/3ILZiBlh4DiawIGzmYR0IJB2t6aHwDKhBM3El0uoA5nMGyiH2Z87TrVIEpTVbkvUQMjl7P4bOt5/HkgCbcSZ1Lt4+Iyi/X4bP0F5JQa8NE9rXH/zweR56DxyVshQYcoXzQN9cHvB5JgcfKmENHBK3c2Q4iPHHe2CoWPwnGX5a97EjBtg72bxIazmc56paqgkLKYM7ETIv3sj+NquQSvDWlO96FIZ8Q9s/cjpZ6SM2xpE+GLvk2DUaQz4YuN1oYsZ8g4FgNaiGI2ERERkdpCFk5XXpZAjyg0CcyBl8xABQglZgXyDCoY+YrS1GCRgIERVq/TqmSZ1Igh1nQuOFFqQGpJOJSsEREK9/Gr+3NPIa4kARzjC3+ZFl4SAxX0kVOoxixDal4AGuoDMDq6arOBwWLC39cO4t/UIyixpMHLRQ+qr48WcrkRBoMMuYYs+El565O4OKl6S8h5yLFrRge/puge2Nrt6xMRuVX47e3FWDrjX7vbiFPltj/20IWtmXs+RatGYTh4xs243MHhwRwTBNnpayh2EdtcXQQyPnaySGDr0JxbqEHLhqF4fPpEjwUOZSIHxYVMhGRrsCR1Ln6cMh/rd7gen3qKsWEQUCmBrTI8C3Cu5ouNZlzYf8mukSMnJQ9zpsynLnJkweK1fh+UT3hzxXr4/HMaxkaBkLeLRouezdAgPABLtzpvJCWC6heevRsBgd7oeU8XqK8vklRm8bSVWPj+Urvbdi3dD9bN51P+PGo5Plz5BgLC7BMzyPM9/vmDePSz8XQB4NlOU5GXlo8a46ErXosuTdCpV0saYf3z67+73FamlKHzkPY13ycRp5C0hm3btiE1NRVpaWno2rWrR+9WQYH95IdcfvsurIiI/NcaCKqz4FzmJEeO7IYeTWGJqqgFSEOpxY1YuWDrefjna6HpHAVdW/dNO9sW7cGVbecQ6C1DSc8Y6JsHWhMYzDwUV/LgdTAZsrBGCB3evcrv6vRGrPz3ONZtOoPMQiOgkNAGWHqpvHGwHwSFDIzeSJuXODLeIU1LDgQR9LXyQJS3N1JLHI+xerdsgF4t7J0QRURuZX5+9Xf88916u9tI8smmBTuRcjkdX+/4CM26NMGpnefstiEiVtvjgCMsMcEQzqVQZ8/qIo3PhrF1pNPvIiw8pFeznTo052cW0sSvxz6b4FDgYPFVwhxqXR+RpBeCq2Q4FBDuj8VJP+KbJ36i9ZnJX47cXr6wKCv2x+zFQBfMwDuZhzrLOu4VuJqbA3mU/KA34eIB+2Qb0qg565lfUJxXipd/fgpvDPrYoWCYNO606NaEpjD8+8NGp09BhNYPf3w/AkL9aE1CmoYcMXv9fvy6pcLRWm8yY8Pxi+D6x8CrREPFA+7EDZ/8+yZ8KonUiFPvU189jMe/eBCF+SUYsXgp8rTO10mkxURsYn+bUV1J3GALETlIyPI/C12rUHgdJWJ3Bq16NqcJdwVZhW7rKqW3Eu0HtHG5jYiIiIiIZ+7T1y54JoqrC6rror7h1+1IOH3N8Z0mM/jMPLB5RQ7FDdoSHVZ+uw4bf9tO5w89gdRbmYmepbOGxgYjy0lqUu/RXWlCkojI7cL3z83D+l+22t1GGufJbWnxGTTpq0XTcJy75NpUhXFRd+hK6sYEisCm59KLcH3MyFiqLiqQdR6yNkOMFB75+IEaCRzI93zR1dmYNmEW9iyvaphXE8i6kbs1HnNssEuBA+F8pZok/WoWvp78IzSFWrzyyzN4a8inDo23SFJg825NqCBi9exNTh/fy19NUyLI+gWpSZw18s99fRFWzFxr93ez9ffd4CSerZMQQfuna96qsg5DUnCemfkonvxqEq0tn2r7Wo3q2upATKza9GlJLzmpeTRB3GJ2XiOS+q61G4G8yP8nosDhP4DhWjFMmZ4fdGQNfGBMrL1rnafoTrsfVGuOZMB3aCwYm5MOETfkLjwHQ7xrcURt8B3VGJYcLYp3pUDQXW8qYhma3OA3srHd/tQU3mCB4UoBeBMPWYQa0lB17XdcRKQShiIBFxY7b7QougokbuTR8G4W5xcJsNwYM/06QXldZxQbqEa/ZsHYdcn5MaV3VtXFthYTGLByYOWJGzeZUCYuMLhQn/oY5eidGUsXIa/65OOSb265RQwRHEzqEYt/n++NH3fFY/WpdJr4EOQlwwNdo/F0v8blYoXGIWq8929cFeGHlGMw64EOGNbWGmfmjM3nMquIG8qg/ZguNHFNQrwwsl0EJnSLRoiP8+QcMpnur5bjnbtb4rm/TjgUqZAmU752yXOUTjF+MPMCFh1MwsrjqSjQmtw2rJHPSkRERESkdhzMuobEEtIw6osiowKh/s4bkEkLTmN1C8RrHJ9/9pREo6vauTtgiUWKw6WRkEp45Om8UKBXwt9FOpOJ57Apw7r4bxE45Bq8kWfwAsfwsAgkQYKFVG3G8osnMKVHT3A2zQZ6iwlTji3AqQJrM3aI2r2jSlRQPiL9CuGr1tmdb3iaVlF1MXpyw0dxqjAD69M3Q4C1TjPxKvQN7o2nGo8Gx9T+PGW0aJCsOQ6LYESIohn85TG1fkwRkcrkZRRg+TfWiVeLlxyGNhEwNQyijUJskQ5nLmVhx5L9GH1PZyxadxQms5M4XEGAw2A2KQdBJQNTRxP3pAHI0CzMrQiJ3BXkZ63jY1tFo8OA1lWaodxBXDvJ42z/ay/qCt6V2uo6cjkHs7P3mcwPJeQ4dalc+sUqjHx2CH44/DmWTF+FXX/vp5PpgSG+uHt8P9z/xj3ljUERgb74dumuKuN8mYTDtOdG4I4O9m74ldmxZF8VcYPtwjBxmhWcFAsN2sSg/wO9cPcTg+Af6uf0OTiOg3+wL5784iF8Mel7h9uQph/yfK6QZZTS9A1e7fz979YoGrq8UmxZcQibF+6kiyDuFntJ4sRtC/loalvL1UEt6AilUolBg6ypHtVhx44ddtdjY8XGXhGR2wHS8EtcST2lbd+WOLPnPCzh/lWamqUaARal8/EBORfIE/LB8AJ8t16BMUINS6BjER+BK9Rj5yLrQjdXYoTflnjwOxLAq6RgdSawJuv5Z82PmzDh7TFVxA2vvvU3Ltg2PhBxhoSBwAlgjaTSsIEMOgJ8gHTre8HqTZAm5cLUyLHBB/ndTyYNxeGEFPy54wQ0RutcmlzC4d5ebfHKqL5UDFJbyML5iW1nYDKY6eJ/VFPXc5YiIjWBNMX9+8MGp/ef23+JumGOeGYwbdAjwoEySHqLu8YYIjCmAqJqpjcQWJ0R8qOJMHRrVLX+4AUojibQ76vD3+VY+IeSZEygaadGaNmjKS4cumL9VbkEuj5NYY6wGQsLAiQp+VAduArGZH2NpJmGNCWVNRLl3t/cTtxQDsOgJIaFtNQCGQmLKa5Yf6YNTwzAuHHdtE1yUxjN0DsRZpMhIJdXDF2nGDCCVZghyapYv/7jk+UY/tSd+OHQdCz5fBV2LztAXWqDIgNw95N3Ytzr95Q3BgVFBmLeW39WeQ7ilPvBitfRxY2gePX+ODtxgy3kHSwd2gyy3446fO2N2sdiwPg+GPb4QNo45PT94DgEBvvh1f598O4G+4a3MqRaM2RFXJX3yeJ8+cW6DWc1PLMEWGu0Lnd1QI5Gi21x8Vi/aBcKQpSQl+id1n8Cz0PiJqnuluYWrklERET+WxxYcwz5GYXVqknO7nW8TlIfbP59l9ttVv+4CWNfGWF3m6ZYizcGfoQrJxLrZb9IvfH24ik4tO4EVi/aCx1jPScpTEYMf7A3Hv98Yp08T3F+CU5uOwuzyYJWPZt5lHgnIlJdUi6lYcOv25zeT4QBh9Yex6hhHfDvhpOwOGuS0RnBZt5YB1pHwoYySFK3z3XxU5veLdCkY0PEn6zeMeHhj+6HtliHA/86HnfXBEHp3phGGuBV48df8P4SLE37Bd8fJDXJPzTJgtRVITFBNHHuvldHQKawrhX4Bvpg0cfLHJozfbTyDbTv79rQbvWcjXbiBltI8oGrdZImnRpi4Pg+NE2usuC6ck0SHBmIRz8dj9kv/uZwG1fPUx26j+hMa/T9q45g/a9b3SbKkbUZifQ2bnUXa5Iacxt/6iKeYs6pXnqDumsYFC0CULzlmsfOc7XBUuh+ok/QW8CXmmiiQhmlhzLqVdzg3T8askg1cjcnVYgbCLwAU2opeI0JrLzmkzlkgbpkezJK9qZBMFQ8vqyhLwLGNYMkwM1slIhINUjdJYB3kz52di7QYIiAHu+zOPgx73b7yjAS6wTpjSS4gzW9oYwvx7bD+F8PISGnqqirS04kOuVF2CU3EHFDywdZlBrMKNHXfue9jTLcwUZiPZfoNq9WLefAsQwVJlTGyyTDi+d6wM9onWwekNEImcoSLGh2AvkKHW30//dkGl4Y2BSf39sOn41uC53JArWMq7Kg+GD3WLQI88b8/Uk4dDWPignuaBqMyX0aoHWEddHDERcyivHmyjNVUiQqQ84SbSN9cSmrBMbrk/cNg9R4aVBTjO4YiepAxBY/PdgJMzZdQmKu9TMkLycmQIVredU4l7kg2EuOXl9sh8nD8xsRQ6w7nYGxnaPq5PlFRERE/qsklFQ49mgNMpgsLKR2tuECJCwPCcODYzgMDeuHzsbmWJayDgIqztEWnsFFQxC2F8dikE9VJyGTwGJuVieYyMotTTXSI74oCF0Vzp1ac41qFJpJXWEjpgYD8/XHKDsfaVCIYoMB/soKJ7+lSfvLxQ10Ozfvg4w1o0VEBhXu2UKuEyd36yu13kkage+JGIdQRTiulPyJALmtqEMLPX8GOssgKDjXDpKuEAQeh3IX4EzBPzDxFYKLaFVnDAqfCi9p3cRDi4iUue2TBiGLvwqlQ1tZ0xGuw/uroOvREF+vPYC1D/TEx88Owwc/boC58oS5IFDHZGffNSnLOMk7qR7GlhHQd4xxKWwoo0fbBgj2r5gAf2PhC3RBjzj4eBI1/OB79+Hel4ejMKcIek3dKM1DY4OQ7GYymOALBqVSDobrTU22MKV6yM5Z4+IdQRb6dvy1D/e9OhKvz38Or/z6NJ2AJu6nlWuSCUM6oXlsCJZuPYFTl9PAcSx6t22I8YM7okm08+PM5eNX8e1Tc90uhJDJ9GZdGyPx9DW6eECIaRmJhz96AP3G9UR1GPRgX9ogtuC9JdTVmr4XDIPwRiEefaakkVV9NAMl/R03vJO3JuRCPh58/lm7hjlXmPQmHFhzFH3v7VGt1yJSP5D5vO+++678ulQqxYABA8S3W0TkNoCkRXkKcY2795XhdHF5/u6qroMSAyDRCDCrHYwVzDx8tsTTc0IZ6mPpKB7axOnzqY+lVUmhYs082GL7sUFuWj70WoOdk9/S5UfsxQ22MAx4KQvuukDCGYojieCVMljCK4kBeR4vjb8DYRIpDr+yBKqEbEhDvehgTJKtQdrBTJT27gB5uH1CUnWwWCz47a3FWPvTFvrarLvNoMvQ9nSMUTl9SUSkNpDxK++mEeP75+fRBpU3FjyPrx6bUzFmczBmrsJ1s5xqLq2UI7uaDbZYB1PzcPp9JOMOSWYRpBczIHGRVEccPm0b59/+8yW8PvAjZKXkQjOoJSyB1+uV8kMWA1NMIDQyCcKPJ+PhD+/HyGeGIDs5hwoE9DHeMEW4aPJhGGhDWcjO6cBkFcIU6Q9jqwhYQqz7wOaXIlpnRsEu9w2ZQSl5yGoeUUXgLjCAhRNgaRxUYeTVJhJcbilUuy5S8RdJ3tj19wHc89xQTF34Al6b9ywVXTuqSR6YOgrNujSiSQ7EfZWTcugxvDPGvDwcsS2dz/2fjU/H5wu34UJeLiBzXh9aZBwaPNgDaX8dprUSoUGbaDz6yXj0Ht0N1WFchzaQciy+33MQqUVWQQfLMGhokkI35xiM7WJgbFJRR9Hpq8oTTZUhd5O5J4MZDMegdFhTDJnxm7Vhjhxmx7akYjv/tZepaLsypFY9tuU0ut3VsVqvRURERESk5jWJVC7FA2+OQps+LfD3l6vdmm7UBRoP3LozrmbRMTxpgi3jr89W1pu4gfDinCfgFeaP3edzoI+OKB/SkOrhskZAaakR/gE1Nwcxm8z45Y0/qHs+GQsRyFii+4hOdHzhF+y8p0JEpLpsX7yXjvNdMfOpn7E0dS5ef34ovpqzuWoNYzRDevwKXVd0BJkzKKuvbxR9xna3SwV4d8nLNGmNzGO4wzfImybRDXmkP1Ivp5ePp2sLERmk6d2vkwT6q1Es4Tyer688Tt678jDuemwArcNIXWLUGx2mwk36cBxa9mxGRfcXD1+hx/me93TFvS/djahmFb1slSFCt++e/QXXzqe6XSchhhHxJxLLXwsRW0+eNhHd7+5Urdc16vm7IFNIqai8LJWHrJuQlI2ydZPaQB7LbDTj4cbPu63RyyCpfWf3nqcpdCL/LUSBw38AVlmNj1kACpZdhpQkCYSraSP/rQJTSUygOew6iqk2ePePAusjReaMYw4tw0kiRs5vZxH2cmcw0po5phZvvoaSXVUbrYyJRcj55QxCp3QEq7qNHfpEbikMHoSykNSGtfcJaPcUMGQ+i6urBWSfsFr0G0sBnZsxSrP7GFxeLkCozVjTVRxAJSRKoP2z9t8/khKw5oU+mLHxIpYcSKEpCOFab/TIjkaLIuuEb6nEgG0RV/HQlGBEtQ7ErG3x+PtIMuqCEpkRu4xpHp1d8zUmmnCQXqirEDkIQPOiIIxNbF0ubigjTOeNJy92wdft9sHCCkgrrGhCJEIJL7nzJ+0cG0AvnpKcp8WEXw+h0E26QRmtI3ywaHI3JOSWQimVoGW4d42d2+5qE46hrcNwOrUIhVojwnwUGDe39vFzEpZBnyZB2Hy++oPtHRezRYGDiIiISC3xkdqKdxlkFfggzL8YEo4Hy/BQSUw2a7E8vrn8G5p6xYKxNEeqLgUsBHCMBdHexVCyJmzTxCLLokQvVTpiZMWwgMUpbSjWFTTBZX1Fwz95zBKLEpl6H4TKi+16lcm8X55RjVyjN5U2uFseYAUOKqn9+HxVir2LiMHMQSJz/ki+Ep3TNWe6bzwDPS+BWWAxJnIMCvV+eOv0m1BIqjrSp2gTMefKF3i71efgiNK0BuzL/hmnC1Y4eOzjWJX8Kh5o8DNknJgwJ1I3FOVaixJt78Z24ga7bXwVGN3vPUx5YggWT38YK7adwsmLqXRsWVykQ05OiVNxA5tTjPufG4a/Z6zyeELUEZZQH+g7eebG7qWS44Xxfe1uC4kOwo/HZmDu63/QSHZXvLHwebTv1xoLP1iKTQt2eryPvFoOS2QABAlJv9CCSy+wW8zIupYLqYwDujWgyRbO0Gy7QAUGSd5yaEjiGjkQWXhIk/MgP5ns1CG24nkq0vPIoqbKu+qkfRmdmkfRS3WcrKbe+QmdtPaElt2aYtq6t5F2JZM2NDVqV3NH/QHje9PUhwuHr9CF3YAIf7zc+z2Pf9/rcBp13NZ0CbdrNJKxLPpZVDgxa0u19+ng2uO3r8CBTCvUoVtqRob7+cCoqPoTqP/88884ceJE+fUxY8bA11dc6BYRuR3wshEkuoMssn405iu07t0c4R0b4lpmVaMlRaEAk1GASU1EBNZjlayEh+pEOuTJ9turzmXD4iOHpnuUfRMqEcYdS4PqjGfzVcQRUWozB0iaItZtOu36lxjrYdRuDFVYWsWFUb3jAsyhPjDFWhO2uGIdnn9qKPi4VEy+9xtrahI5n6VXTDSTBfl3hk3Dj8dn2DU4VYfZL/yGdXPtncrJ6yKJG6QZYvaRL6BUi2ZQInVbk7iitECDB8KewLOzHsPPJ7/CmjmbcHbfBXASDpkKKXJdjJHZ7GLc/9Jw2uTnrmnJGZKcEnrxFO8AL9qwYgtxGyb7Puub1ViTklXe3F55HcYc5oup299Hq6hg/PbOX9i8wJpSZYxy7uhZhtGLgVlbDP3QluBD/cBYKp6CD/ACsaSQdYiB4pTrtZeCE4lo6qtCgkwCvY+1nhAsvPW4Kql6XLEEeUEzsCW81p+hz0dEGWWQz8hVTdJxYFt68ZT4lBy8+PVKaPUmCB5MjbQe3RlfzZiMtCsZVMzesE3N0zFHt22Fe9q0xKm0DJQajAjlZHil5euQGkyQ7I0Hl1cKQ8sw8D5Kz8faAuCTXITG00dhW0rV5iiLnwJ541oh+PfTkBRVbYg7tO747StwqOOaRERERKSmePt7PtdOhHzvjfiCiq6DYwKRlVhxzruZEKdx27E/aaKtzrxmdSBzws/OegQFWUV4atwcCLKqc8pxp1PwwetL8f1vk2vcn/Dt03OxZaF9egUZyxEX/TcHf0rTosoc2EVEaktlcwNHFOUUY1zoE3hx9uP47duH8c+Gk4i7mA4JxyL/xFWUHI0HY3Bel4x74x788fHyG/Zh+YX4UmGvLaRhn9QkREBelhLnjA9WvoGYFhH49c0/aeJxXUFSPDmFFKZWZC7GeW9n7q5zaNYmmgoIyHxQdcmxSQslNYkjcUMZJDnOXXqcLVdOJODtuz6jQm5PII/9yb9TqVkTOeeQ1PGaMuzxQRjyaH+aDqgr0cEnyAcv9XoXtUWukqFVz+a0vqguJMnnthU4iDVJjREFDv8BFM38waok4LWeH4RN6RowijqImiST9e4aCzzoJpI396eiApJ2QFMbBEBw4HpeW2Qx3vAeEA1znh5FaxJcbmvJ00N7OgfqLtWPJbNoTCjZl+oy1aL0cCZ8BtT8RCMiYouXc7Gn/d+eHjj5vYCOU4AOz1cM8HLPCtj9mvNUh4bDGbR7moXFwCN+VfVn+XSsEXJeCpbY8riDAcK6AW2fYOHXpOr2pNFfMAFTT/eFfyWRAL3fLMcdWQ2w7twV/LDvCs5neKD+qAYamWcDS0J8tv1iYsvCIEy+3MXp9kEGNdrnh+FEUAZ2X8qh7jpE3EA4n16M+fsTsedyDj3s9mgUgMd6N0Tn2AqXM63RjMWHkrH8eAoyCvUI81VgXJcomvKgtlkc/XnPVY/FDQRvhQT+ahk6qz0XUbiCTD50iLY6xm08m1HrdA2SALH4iW64+7t9Nfp9voaLUSIiIiIiFQyMbAIviQylZut50mSWIDXXDz4qHaL9ixw2/V8pvQY54wWNSU7FDe0Dc6DgKmqAc4ZgejHyLApNxBWEIQajUEkMkLEWutBtERhwAoMcoxcKTCr4SzX0PiIgKDKqYBAkYKh4gogKnB/vTUYOvULb4IomAWvTtyOu6DLtAzYyPGScHEaL9TxaapJDJTU5NH3nGB5ym/13BEmwiFa2xZiooTidn4vF11aipV9VcUMZWYZ0nCo4is4B1XMoJ2jMeThbsMrp/UWmNJwv2ogOAfdV+7FFRBwR0SQc5kA1bUhxRWGED2Y98wte/fUZvP74oPLbj8cl4+XpK2Fx5FbGCxg3sC0mv3cfCrOL3AoLXGFoHu52G5KK1rtDIzx7X280jq5wFC1D7aumLj3u2L3sIBa8u8St804ZAsPA2KkhLDFBdukSjM4I2RHS5FKxOMIaLVAeT6bJGI6QZBRBmpiHlIRckNkfL6UUglwKVmMA46FD0pENJ/HcLKF88ZBMtv/z3Xqc2HaWqsg6DGyDe18ajuZdKxyrtSU66tC85fedyEsvQHB0IO56bCCGPz3Yzo16yRerPBY3EEgDEXFTqytHNfKaWvVoRn/e9ueeaqVrkHfDd2cS1MczoGsVRMUODUID8O3XT+GZpi/VbIfICU6E0q2bewfcmjYUuuPIkSN49dVXy69LJBJ8+umn4icjInKb0Ht0V8x+QebxojDh3P5LkAR6AzLHS2lSLbkI4HQWSIzXjz0yFYSmMUCQH3ElAUp14HLy4HUwBaq4bOhaB8PiLQdbaoTyXDYk11MapAoJTG7mwPo90AundsTR8+2Z3efBSCUo7u5mYZecp21NZfKLwWgd1xiSrGJ66XhnW4z/cDx1Cfzz06qCaFsSzlzD4XUn0GtUV1SXzKRsbPh1m9P7ky+kYdsfe6izvIhIXRDZJMyj7TTFOnw9+Ue89ccUTPnxyfLbD51MxNTp/zgWVPM8HhzZGY++ORqZiVnY/ufeev3QiOMlSW4g4oaYFlWTlL39vVAS4g2kXhc4VOb6bVsOXsTcWbOQejnDTvRUBi8RIHBkUZYBayS/dj11kgN07W1qJ7JWoQdYm2GrsXUkpEm54Apdj+uv7TxHaxIlEcLLJDCF+UDfvZHT7fkANcyRfpCmFeLg2mN44ouHyu+LS8jAkm0ncIwI5QF0bx2LCXd2QovYkPJtNEUarJ6zGVsX7aINk8SFlDTv3P3kILvmxflrD1Nxg/UFwy1eSjn8Q3zppS4gqQ2doqyLexvmbaeNrgTyuhTnMyE/nwlBLqGJQXn3t4QxqiLFowo80ELthW/3TsOI2X853UxQSKDpHA7fHUlV76uFkYCIiIiIiJU+Y3vgp1cWlieQesLpXefgVQ1hhDNYjgFvcX0slymlMOpc9wgMmtgXRzaexKrv1yNu70UwLANdqfM1jJrS9a4OeGDqaPpcyxbsAdPYee/UpQvpOH4kAV26N6728xCTla2/73ZZ75DEKOIsLyJSF0R4WJOUFmrwxaQf8P6yV/HG80PLbz+w+ig+uvcrp8PTh96/jya0JcUl02SB+oSkopG0ssnTJiCicdXXRVLmyHqAO3b+tZemhWUmZtf5PhITJ8mldJidpLYR8yg2qwhXs4pq/BwkfZmkM5Rx7sAleoyk8zYsi65DO9AUb1tTpuL8EqyZs5muPZA1LSJSJzXJsCcGQmoj5iIJCtWZxyJrUyQJs67SMImgrU3vFvRnkoZXk5QLW5p0bIh3/noJT7Z9rUa/XxtzM5Hbl5pZz4vcVjBSDt6Dqu8SIejrQEDgyYGFTLC7SkFgGcgivZAz9wz05/IgGCz1Im4g+I9tCnljPxRvI94i7tGdt8bwVBfduVzA7Pq90Z2+NRTYIv8fRPZlIKlIA3PL+UUCeFPF32hQWwa9p7HwqjRPLvcDenzAoMvr1u9wh+cZNBvHgK2GgD1frsWZwCywTr1Y7WnzBIO+X3AOxQ1lqM97OxQ3lBFgUMFwXF7n4oba0qbAfTHTssA6EZ9epMe2C1Z3t01xGRg1Zx9WHE9FdokBuaUGrDuTgXE/H8CSI8ko0prw294E9P9qF6ZtuIDLWaUoMZhxJbsU0zdcxP1zD6LYxnlq7an0au33qA5VF1DqinO1/Iy6NQjAhpf64kJGCX3NNaFJsBov/nUC9/10AK8uO4nj19zH6ImIiIiI2OMlleP51r3tbhMEFjKWB8c6HxcbhFKopQY08C6wEzfYQh5DzRmpUEHOmel2RDBBygwJK8BXoYGcihoYmtaQofdDjsEHRipusC4Mk6QfiYsUhMKsIHRtzuGjc9/hWMFZ6HkDdBYDFTOEqEqhklqbksw8hwK9kqZD1KQ3lezzS80eQjOvxvjt6i4EyN03954tqr7DBSG+eDd4uK6rrhTXj/OSyH+Tfvf3hDTMfaMH72sdxy/6aJndZGnnNjH44vVRiKjULBLorcSMN0bhpfesYpyXfnqSxueSeN+aYCFNQG6YMqEfvn5llENxQxmeiBZIg6Kn4gaCqX0sLLHBduIGgqCUwdCrOU12sIU0vah2XwFr01DEGMyQx6XDa8tFu9QHVmeijUeeihsI6Vcz6cIDYceSfXixxzu0CTE/owD5mYXY8dc+TOn1LrYu2o3CUh3+WHcYD9w/A3N+3YRrlzOogCEpLgU/v/Y73hj4UfliB4m53/33AVSHARP6oL64eqpqc48nkIZV70Np6M94YdGvr+LKnos1jgYP7tEAryxYiYk//YG3/t2I0+mZNXockZpz7tw5jBgxAnp9xaL99OnT0ayZVQgjIiJy60OafUmDjKeQs6Qh1g+FxYUwK2hvr/39xNuJI9sJ4GzmUeGtBsICrc7j5JztrYKlUTTQPBZsiQFeh1Lhu/UqvA+mlIsbCJxEAlbifJ1EppTRBeq3hn5GRYZEfKclYkBH4k9nWKzneSEsEIKzaDkAb/7+Il10/vvL1R49LGmwqAlE7OlucXrX3/tr9NgiIo4YOLGPXQqKO0jSGm9TzPfo2BCfvn4PQoPsa4ZgXxW+fu8+PP2m9Rjz2rxnMfypwZC4SFMzBaug6RhOL2Z/52sZziBurh9Rp1Pnc/NJmfmOxQ1lMMCRQ5fsxA0E5eUC8CwPo58FJj8eZm8BZh8exgAeZoX1/ZDoKz0wy8CirHqsNDYJrVbzEVusgzncfd1ojvQvF0Kd3n2O/rx23zlMnr4Umw9fQl6RBrlFGqw/cB6PTPsLW45cQn6xFr+vOojxY2fgl3lbkRKfSWsS0rg456X5eHPIp+XjdYPRjF3H48ufj3PjB0Ve9l2dmqO+iD+Z4PA5WYOZ1nDe+1Kcr8kLQL+mDfHnh4/haFoWTNfPBc7QN3VsZEWEIJ+M+wYv930f3zz5ExW4i4iIiIhUDyKCG/vKiGq/bSRhqra4EzcQJFIJNXZxld6g9Fbg3eHTcWzzaXrerA9xA+HtxS8hqnkE/pm1DvB3IeK7zsE9l2v0PES84M4oQ6xJROqSwQ/3oy7/nkD+NklNYgsxFyAN4kGR9mM2YiQ0Y9v7eOTjB+h1ItYe+ugAj5+rJrz6yzN4/+9XEdnEuWlU+hX3abxEtFwf4oYyZBfSID2ZCMb2eEWS0S6mQXb4ioedas6JP5mIi0eu0J/X/rwFr/R9n853EDE1WSshqRQvdHsL+/89gvzMAmok8WizKfj9w79p+hupSchj/PDCPJqSabwubNYUa3G4GikHRARP1uHqC7KPtTUe+f7gNJzaea7GQomAMF8q8Hm573uY9cxcXD1ds7UbkdsLMcHhP4J370iqnC3engy+1HNX7huCRYCiZQBMySWwFNurzli1BH6jmyJ/6cX6j36UsOB85dBfzPdc3FGdxQMbPHl8vpaO5SIitnAyBs0fYHBugWdfJEMhkHUcCO9RcVtYVwZ3/cEi5zSgzRKgDGIQ0hH02FIGwzFo/xyD5hN5bH1cgN6DPvCljc5iZLJV8ekJMg/S5GNy3KtRQzJ8AOcmQDcF4jBdnW3Wn8lAj4aBeOXv0zA5mJQg89nvrDqLD9fEwehCVHUuvRgdPt6CCD8l7u0YWS0hQN8mQWgTWTeORJU5cDUXc3dfdbtdoFoKL4UU1/IqGrd8FBK8OqQZHu3VsFwQUhPIu/3Dzop9OHatAP+cSMegFiH4eVJnSIkTn4iIiIiIRzzdqickLIefzu9HvsHaxOqtdH58tgoWTGjgrYOPxHVDqJIzwsCzTiOISXqChGHAOznXGnkTegd1xsn8RBRbKlw6LGYWQmEkPu01Ej+n/Uibl6rsJwMEKHTQm6XgBRY6swxGjQQqqREyzgwBDAxmCcw8g3BlscO0ijLkrAI+Ul9szTgPncUq2nCHWahZ3WDkNXWyjYiIpyjVCox5egjmn7jkcjvmuoNZblo+dQ3uMKBN+X29OzVCzw4NceJ8CnLyShAc6I1OraLtFt7IhP0LPzyOie+NxZNtXkWxTapBXRk1+Hop3G5j0LlvZC/M8dwViKQrmBsEO99AysHcJAyy0/aGDfKrufRi8VVA4FhwRXo7R9basmfZAdoASRxuHU1K8xYen363Gub9p2Ak90f40IuuuxmqgwmQJVqNIy4eiccY/0cREhuEQQ/2hdFGgO2OXqO7okHr+knAPLr5FFZ9v8HtdoER/pDKJMhMqjCrIBHQj3/xIIY/Obg8ErsmFA6OwbSiK0Cx9e/8SHEuVly6iGFNGuPbMSMgcRGvfUtAvlK1ndMT7FMUwsPdJ63UJWfOnMGQIUOQk1Px+d5777144403buh+iIiI1B7iqCdVSLHsq9UoybdPVrXFGOGDkkFNwPvYnPMFAVINSWsAzEoGvPR6MSAIsMgZKArMtAGWcXbMCwkA8oqA3EKHd+tL9bT5+vjWMyjKsTf8CIoKxLMzH8FnD3xrdzsRKzJZ+RAiglyuYRB3b7qvHAcE+EAI8AGiQ4HTV8AY7c+5Xn5q+AR6YcvCXeVu4e4wm2pWkxAXdffbeJ7oJCLiiZvl3U8OxurZGz16s0iTzcXDV9CqZ0Xjer/uTdGnS2OciEtGboGGih06to62m48gjpsv//wUHnp/LJ5o+yo0NoJji0qKouHNYIyumFMnFYv8aj58N10Ba7B4LNpyh8GD72Z+TjEqe0ILLGD2tkCoLLpiAYsXSXPgocxyMAYl8y5SAZzNUi/vbS/C9ghXEyfl+1ixDWkeCmsbg88WbXWYxkxSAN//dQMkFgZmMw9E+NELo28AxeEESFOsC1lx+y5ilM8khDUKRb+H+8FsUzex5PhuIWkWjvft7g7NEE2Se+oB4gi7fq7ztBuC/FoRWpzIQ+GghsgsqqiB/VQKvHH3HRjduTW9npnu3rivyudOPlqWwW9vLy6/fm7/RWz6bQet3ab+/gLY/1hNUt9cuXIFCxcuxJ49e+jPBQUFkMvlCA4ORpcuXTB8+HBMmDABUmnNjB1ERERuLpOnT4RCrcCKmWupQ/uthLZYhzsn3YHD609UqZeI0O2JGQ9h2nj7mqQ+8Av2oWmt2/7YBDMxY3Gy7mOLqcY1ift6Q6xJROoSkmoweFI/bFqww6PtiaA3/lQimnSoSGru/0Bv9B3bAye2n0VhVhHCGoagbd+Wdr9Hkslen/8cHnz/Pjzd/rV6ESN5ki5j8CDpOj/D8TxJXSJNzIYkMRuCt5LWG0yJzjpXUkeQmoR8trNfmOdQNEWSez59YCbtP6LHNQdjcHNUAI6k5eHu5i8gWqlA37Hdq5VYcNfkgQhxYcpVG3YvP4gti3a53Y4kUZC5JLK+V4ZvsA+e/+4xDBhvNanKulYzw28i4PjljT/sUlfX/7INdz0+kIptnPUI3DLcZjXJrYQocPgP4dUzAuquYTAkFNHm+dL9aTBeq+ZCfz1huFKIiA96wJBYbE034AUo2wRB0dSfijKICKK+UbULAquQgNd5PvCVRbt3dnSEJNS9lb7Ug21ERKpDywcZxK8SqHjBE/Kv8ChOZiBYgKA2DE1xIAOCkA7kXscDAxJRm7ZXwKVlnokb0lXFSPQpcNgs6BAWCOvmelCy90oOEnLMaFFlWr7yvqLekFhYmLnqPYGfSookr0J0znWdhpDkXfEBZhfrsfBgEnQuXFbJ2NmVuKEMMi5OLdDh+x3x1MXa7MFA2Vshwa+PdEZtKdAYsfx4Ck1ZUMs53N02HL0aB+G9f+McCjcqk6cx4f0RrRDirUBKgRZBXnLc0Sy4XHyw7GgKPl13vkb75uzZt1/MxrR15/HRqIqGOxERERER9zzeohseatoJh7KuQWM2YlveWiRqq6anSRgLvKV6axIDeLfz12Q7jiEjCucbShgeRrJK74QzRRfwe/evcKboMvamnQfpw+0V1BndI2Ox+Npq8HB+bif7p5YaUWK0NkBZBBYlRjlYRma374VGJQLkzuNYuwT0goyVo8hk3abUJEeI0vUiRwNV9WOXCQHyBm638ZdVxKWKiNQFTzxzF5ZPSURJpUltoj0iX0+GB+QJFU3gFy+n43yJjjapdGgZhTbNIqiYoUsb5ymVFp7H1lOX8NcfO5DW2BtKiwmSQs8n7yXphTA1DnF+P8eiexvX343DG04gI8GatuYKUj95ioWkX7hpGrGE+wOVBA5lEGGDO7wDvFw2ezoiNz0f/36/wWkDpL5FKHQdokAPqjYIcgk0dzQFozNBmmlt4iTuuKSJbPFnK6lQxRMXH59Ab7y39BXUloLsImxesBNJ55Kh8lZhwPjeaN27Ob5/9heP9iMvvQDvL38Vah8VFTIEhPujy5D25Q5Za3/ajF/f/LPa+1XaPggFAx3HZ2+Mv4roXfswdeAd+C9BxA1RUY7fk/pg7969GDlyJIqKKgRJ/fr1w59/Vv/zFBERuTUY/+ZojJkyjDrGkRSExZ8tR+LZlPL7zQEqFI1oScWDdjAMTF4MzHIBjK1wmmFgVjEolUvhlWGCVO/i/B4e5FTgQCD7tDxzHk1IIg2tLMPQc1KbPi1p4pGjRXIuIQPmYD9A6mC5TxDAkrk1RwWVWgGhVQMwp6wug7ZukqQ5u6QaLrHNuzZBTfBEoBjb6sYd80X+Gzw540E67tNrPKsRLhy6Qhvfydevw8A2aN6lMTiORdf2zmtqMn4kTr/Lv1lrJ24gTfkFY1vBHFx17cLQOAAFo1ogcJk1jcAVMoUUHQe1dbkNcQfNI8kMAa7XSRib/SujYFA4BKnz2oNXCtebgaoeW3gJ7AQObDXN3IhIWJ9TQpt7XCHJsa5v83IOmTotlmw/QYUMzrDwAm0Osn1VgkIKXZ+mYLaegyTXWgeRbdLjM/HXB39DMqEbzNfPBeSVSjVE4CbQ11h+XDVbEJmtxyczh6G2EDfXTfN3IvliKrx81TSlrkW3Jvj+uV/tkkScUbz9Mj57+V5YmgYiq6gUIT5e6NU0Btz1OvKfWeux9MsVwMPtXD6ONFPjce26ffFeRDYNw6QP7vf4dYo4p7S0FC+99BIWLFhQ5ZxvNBpRUlKChIQELFu2DO+99x5+//13DBgwQHxLRURuM0i/xYPvjcXYV0fg9M44GHRGzH93CXXxri5kbCGE+ANKOWA0gckqAFNDV+wyyLhnRfZvOLLxJA6vP07ntsg5qXXP5vj++Xm4EZAmXSKeK5+nLNW6TXFo0dp1j0VtapKYlmJNIlK3PPPtI9ixZK/HJj9EXHpi6xn6c6fB7ajYgXw3uw6lzVtOjQh2LtlHa5L6EDeQRJf2/a0iWmfsXnYABZnuTZ7cpajUFWQET4QN7iDGD9UVoGWn5GLlrPUuBQkWJ31dxubhMLaJKp+HIuXUJa0BSfN3QMax1ETKHSTBY8qPT6C25Kbl0Zok9Uo6FdUTQXOj9g3ww/O/erSelZmYhekb36WpQXnp+QiJCaK1a5kgeukXq/D3jH9rtG/O3gcivI5qFoEH3hhVo8cVufURBQ7/MRgJC0Uzq7O5OUd3ywgcBIMFuov50BzOhOFKAe0oNSQVw6tXBIxZ9a9a5gIU8L3LqnaUBHkYBSthoe5WM8c4Itwgz2nJdz6IUHe/sW50Iv//kHSFdk8zODrDs8Hh+fnk/2XbCvBvDvT8iIU6zHHjYGG8gP3v89Bmer5PaSprI8slv1zEaNy720TdAafPT4hLK8KMWUm4s9T9olqibwHqi245Ueh7py/mXr2IQp1nRUmh1oQTQem4K7Up1GaZw230rBlHg9PKrx9KzKeXusYTcQPh3btbQuFg8dRk4elnQR6nZbgPvFzEfpMUiteWn4LeVDEY/fNQMlpH+CAhx/Pj/4+7rmLLK/2q3L7vSg7eXHmmXoSsS46m4PW7Wrh8fSIiIiIiVZFzEvSLsDblFwjxVQQOJLWgTNxQdotnuN7OXRqCxqzF5dLjOFu4BgU4Q2KTcFq3G/KCkUjVORrg2D+elLWfmGIYoUofUYrGD2qJEXKu6iRWiDwcw8PH0Z9j1YH03xy9F2K8CiBhHe87EUP0DOqPmtDQqxfUkiBozM4dxdv4j6zRY4uIOEMq4fD8uL744o/t9DppDDH4ABaiDSJfGF6AkCeD1E8Bc+tYfL/9rN3vt24ajmmvjkRIoGOzgbjUTLz8x1pkFJcC5DEHNEBJ/1goz+fCb2M8ddx0h+xiBkwNggAnSV1DujdDoJ/zJqELh6/gw9FfehaxS44RHg5UBQ8cMW1dTAkjnxmCHUv2eewyVl1xA4HE0ZMmTIf7wwD6di4WF1mG3l8mcLDF04ji52Y9RpswK2MymnDlRCKd9G7cPhZKL+dzPdv+3IOZT/5sJ9IggoRmXRrbJTK4Y+kX/+LHozOq3H5o3bEaLwAX9Y1wef+fx05hSt9eDuuyW4rb1Flo8eLFePzxx2EwVCSykAaitWvXQqn0cP5QRETklkSulKP73Z3ozxcOXbYTOGg7RlQVN9ggSBiAOHlXvoNjYPDlICt1cQ4jjUcuyM8owOENJ7Fy5hoqdqD7d/gK7n1pOK6dT6m6L75eEFRysFfSwEcGkpipiju1erBaIxhvF83Nft4Q1EowGl15cw9JuSBENvVsfULlo8SQR6rOyXlCn7E94PfKQhRWSqyoPJ4REanr7/9jn47HT68u9Gh7Ii6yhTijvvf3KwgIc5wiff7gJXx83zf0+1wZfZMAh+KGMkxRvjBE+0CeUvGd4NVyWpswGgNNYhMYBnc+OoAKfZ1xevc5fDLuGzCtw90KHIjAuzIlnV2LCwQJYPICZB4sMd97V0fsjkuD1oNGIvrcBRrIdAYYbBp8KsPoTWDyS1EwvCn0TQKxRmIBjpwA6wVIdECl6RmbX3RwG8fC2DoSkt2XqmzKXciAuV1FQyNJ6JFqrXUOLxHA5ZTCe9N5vL34ZSqEr4zRYEL8iQQqjmncoQEUKufngE3zd+C7Z3+xc3NdPWcTmndtTMXUnvL3F6swa+9nDpvLyN88WXmSppfAFOH870d9snoNtiu/XY/xb41xWJfdUtziNUlxcTH69++PkydP2t1OkhtCQkKg1WqRl1eRwJGSkoLBgwdj0aJFmDhx4k3YYxERkdpCzgvdh1uNBMnYv7oCBz7UH0LzGDuhs9A0GkxCOthk98YrzshNzaMJDsu/XkPTdQmXjsRj7CsjHNYk5lBvWLwVYPUmSNKKaMpcbSDnzPFvj6E/RzW7XpPk5EOIDAHjZH7Ux1eJgUNdiz+d0X98b8x9fZHLZuYRYk0iUscQk5yH3h+H+e/+5dH2s1+kzVtW3rQKr99d8jL8gitS4SrXAyQBsjDb8wTp6jLs8YH0dTjj6JZTmDZxVrVMnuqLe54dStMHiMmFJ9QkXWfP8oOeL2fbYGoSCmPHqoZaZK5H37c5mG3nwHlgQPHSj0+CI6mdDpLG408m0Z+bdmpIkz2csebHzfjx5QV2azP//rARLbo3RVGuZ/3F5BRAzh8ztnxQ5b6ti3bht3c8+5uvLsu+XI37Xh3h8D24pbj5X4fbkls8L1CkPlF3CwPjwoHjhiJhkL/4AgyXreIGgjlLi8JV8TBn1J/AgVFKoOwQDFmEFzK/OYbU9/ajeFsyWG/nB3QKyyBwQnNwPrKaPS/LIOCB5mDknNPPRtnK2tQkIlKXNLiLRZepDLgarMMdRwMXAAEAAElEQVQXXAJ2v8bD7MCFTJ8vYM8b1RM3EKS89TtwKCQFOpLh7goGSN0FrJ9gwcW/ePCmiv04kpiPqctPY8XrpXjkfCdEal0r+OX+gE8vz4QH1cXPoMA430Z4ekI0Trw/GIuf6IY7Wzp3gLXFyFmwsNkJh++FgTVjUbOT0EnqZ7+rA+mbevnOphjfrapz7i97rqL3Fzsw5scDGPfzQXSftg0frTkHvQM18rn0Irz890k7cUPFfc4XNh1xOasUJ6/ZT/QX6014bvGJehsjGsw8TiXXf1yeSPV5+eWXqQNKdS6bNm0S32oRkZvA0LA+kLH2C6By1mwjbiDlAUOThlxh4lmX6Q3Wx3FNqNyEZcmfIVFzunzrTH0i1qR9D/AX7R6JiCVIJVV2Ic8sYe3PZ472xsRLcLEwFFk6L5h56xZqzgud/e+AWtIUz5/4EBMPTsG2rI2IVFnfl6slgbBc39YWFhJMbjgFaknNUuVYhsPg8HcgYaypE5Vp538vYtRdavTYIiKuGDugPd5++E7IFCy0wYBFSaJarv+Nswy0bYOR/Xh7mKKqNgydu5KBlz5bAaODyPHMohI8Of8fq7jBFoaBrnUwCod6lnbCFWohu5BujTirhDQ1H3tfXIiHm7xAnY+IC1IZp3bG4ctHZ+O1/h941JwfHBWITm5cV+32q8C9+MB2orvtHS3xwuzHsTJ3Pj7f9C663d3R6e+RBh2Ltxy8qmZzHM4OsJYgLwikIcsF5ghfGr9ckzjix6dPpA5CdrsiCFjy+SpMjHkWL/V6F6/0fR/jo56mjWmkwagypGn0q8fmOEyguHzsarX26crxBCSctRftFeeXYPrE71ATLAoOxkibRlUHaAULzmXVfNFaxDHk7+iDDz7AQw89ZCduuOeee7Bhwwao1e7j10VERG4fRj47BFJZRVOQoXGgB5Z/ju8yebG4Pt3pGDdjBLWvCh/c80W5uKHs/DLj4R+QZSO6E3zUMPdoDUvXFuBbN6SNTYxMRoUO3Ml4cIcvgNt7Fozc9XmY4quGX7APBk/qh4imYXgw9lmMUD+IdT9vhpe/6+OdVC7BhyvfgNq3ZsdFmVyKqYtepG70jrj/jVE0vUJEpK659+XheP67yZApqz/+JY1+b981zeGYPyMxC28Pm+ZQ3EAwNHW/7le2jTkyALpBbaEf2gH6O9tBd3cn6Ia0h25MN6zILsL4F3/D3+uOl6cWkPHLiW1n8MXD3+OtoZ9Roa/scjZxI3L6XBHBvugUE1rldl7pvilEcGLEwNg8XbdW0XjlvXH4J28Bpq1/B50Hu04OsE19UO257PiYaTBDfuQq8u9vDX2LYGpGV77fMgZGbzg/DjupW8yR/rQmqow8Lg3c9aQIW4jQQVJogP+eq3ju84fQd2wPu/tJ2sIfnyzHxOin8VLv9/Byn/cwIeppzHvrT7sasowze87j26d+thM3lHHpqOc1CamrTp9LQnJKTpW0uq8mzym/7r/uMrhix81dXgdToUio3poHEdQnnk2u1u+IVOWxxx6zEzd069YNmzdvpqkNycnJyM3NRVJSEt54443yxi2LxYLJkyfjxIkT4lsqInKbM+r5oeUpoJ4gBHhDaN2waoobx0JoGgU+oua9RkpvJT4YNaNc3EC4eCQe0ybMshvjmEO8UTymA0qHtYGuTxNo7myJ4vs7wdg4uEbPGxDmhyGP9Kdu3+Mjn6I1CWlIJoJqkPNnfDIEB4lGclKTfHE/FE5qCk+EJlN/f8GuJrRl0gfjaIKXiEhdM+HtMXjqq4dpXV1dTu2Iw7vDP3eY8pVyKQ3vjfi8XsUNhFXfb8TkVi9TUW7ZfpCa5Oimk5j+4Hd4f8QXHokboltEUqOh+qLHyM54cc4TWJW/EJ+seRMdBrhOnagV1WxMIjWIsZULgygixm7l2gBJIpNgypwnygVzZZBx4sL3l2JC9DO0HiEXsk5CbiP3VYaYWM1+8TeHde7Fw/bJn+44uT2OJlpUTgL/9ulfUF8U55Ug9VJ6vT2+yM3lFrf3EqlPOG8ZAie1Qt4f5yE4aC69oZCDvJNdIEkT9YE02guCRYDulP1EjzHR9UmeJC8EPdYa0mDnSkRPkMf6IOSFDijdlwZdXC4EIw9phBe8eoZD1cGzZmgRkZrQcBiLlF0WZB2p/u9q0oFtz/Bo/zSL8J4VM74JawUYatDn3bwoCFILh2KZAb81P45HL3eEl9l+4S1PrkWgQVU+GCQiirO/Csg+KaDHp8Brq85g7el09M6MwejMMLfPyXrz6Pu5BI28mmBvUg50Lib4qwPpaexQGI5nmjTHwBdVYDnr+9O7STCScrXYeSmHxiC7I8m7EF+234vu2VFoVhREb7vqk09FIOR9ulkoJCwaBKnRr1kwHu3dAOG+VVUy0zdcwC97Euxu0xgtWHggCVdzSvH7Y93A2nSszt+XBJMHLrqeMuanA+jRKAAv39kMPRoFYuH+JBRXMwJb5P+Dyi5HIiIity5Bcn+81mwyvrk8H0be2lwqcWC1ZxI4yGCpkohQ5gahsUjpv47uL8PMO2+gZcEjVJ4Hwcnsk4G/ChUXDK1F5rCfiVxXSszwkhpQanLdREReS4rGHykaX3QJiEYJr8X6jApRBSGu+BLkUiAQMmjMUlwqDkagXEsfXxAY+Euj8Xar5xGsqNqIUB2i1B1wf4OfcCp/Oa6W7INFMCJE0Qzt/EejiU/NkiFERDzh3v7tsPrqRRxJqkgns4VXcNAHClBlV/1OXkvLx7Njv8Izzw+zi2Beeug0inXOx8tE5OC9NxmSEhLw6xxTw2CYW0TQphWaKHH9dnJduL5omJGQhV/eWITTu+Lw/rJX8flD32P/Ks8LLO8AL3y27m0aQU9i3z2JomYLtWDzSsC7cGqVXM0EJ2Ex6ME7aBxxWexvlyEdkHwhDcc2nbKLSCbur/r2kTC0CIVwXdzA5ZZCcToNsmu1T4oTnKRg2MEwNHnCE3MjuUpG3aS73d0Jo18YhsDwqiKYOVPm00UVW7TFOqz8dh1SL6fj0zVvUXFrGf/MWudRxLOnPN3+dXS6sy0e/ugBtO7VHCvqKQL8doJ8d+j3qZaPcaPQ6/W0uWjp0qV2t5Mkh59//hkSiTidLiLy/0Zkk3C89ecUfPHQ9zAazXbNstWGYcBzDFhn8105rl24dSU62hDgiJTrC7WCWgFLp2ZA5QYomRRCowgw5xLBSCQQurd2mURRRruxvVCSr8EW4uiXWwhoDWB40ih91u6czqukYAxmsEZrvdawbQw+XfsWQmNq1sBUBhnPzT78OVZ8uw4HVx+FyWBGi+5NMOqFYegzpnutHltExBWjXxyGbX/urlYDeRkJZ67hxR5v48kvJ6HjwArR8r/fb6RjT2d4IuwVJBxMDUNg6mhNnS9HykGw+U6nZBTg+4U7cfpCKj54YRg+u/8b6rZsC3FSVu+4CM2A5kClpr0ALwVmvTwapVez8ebgT2Aix7/ryNN1MES7Fi5xBscjeNZkbT4Y0bc1XntsEB17k4bNbsM6IuF0Ek5sP+tRo5M0vRDeq0/B2DQU5jAfOmVC0iZk8Vko7tcAvJcTcQrLwKwSHKZLOB1TkjULUjtVqgsYMw/1lvMwtgiDsWkIeC8FVBIODUgyaadYjJ79LPxDqyaTf/vUXJrIUNkF9u8vVyP9aiY+WP663X2kVrGt06oLr5CguG80rXkFuQR3//gnejWNxQuDe6FddBhNdTBoK+pgIs4IXngamnYh0LcIgiBlIcnRQn0y0y495P+JW70m2bNnD/7555/y66NGjcLy5cshldo368bGxuLLL7/EHXfcgdGjR9PmNCLIfu2117Bz587620EREZF6J7ZVNN5Y8Dy+njzHoeCtMnyDcJeLIUKDcAjpeTUxE0epC6fw1MvWlAlzgAqlg1tWqTcEpQzavk2I2g+yxIrUGXd0HNQGBVlF2PL7Lrvbj285U3GloBg4cxlCaCBwPaWuaaMgfPLrkwgKcW1+6Y6eI7vg+4PTseLbtTi87gQVJLbq1RxjXrwbPUbYNw2LiNQl414bSYU8STUQixJzHtK0/vjnD6J9v4qm/X9mrfc4qaC2pFxMo03xJMXu5blP46N7v8KJrTbfWzcERvjjk9VvIvtaDt65e7rHqc6eIJFyuPupwXh25iPXr0vQc0QXXD6WgNO7zjude7mR8EHe5esyzrBcF2PbjkUVXgpENQ1Hz3u64p7nhjhM8vjq0TnYvnhvlQTvxdNWIjMpG2/9McXuvhUz19bZe0Ie56EGz9J1nEc+fgBNOzXCX5+tdGgy9V/iVq9JbmUY4Vb4xorcVCzFRmiOZKBkfxoEXd2dLKqToiDoXDegsl5S8KW3wIGOYxD2VjdI3CU8iIjcwuhyBax7gHcqKvKU1pMZtJpknZDf+pQFhdUTbZazMeoydkRam+IlPIsOeeGIKfWFmeFxxScP9yS3QJDB8WR6wdAcTC88Tie3p57pi2C980l3HgI2RF1C4J1mGCQWqGQcmoZ64Z8TabiY6VmcljNGNY7Ci+1aIqaVFDJv+6mCjWcz8Ozi2989ZcrAJnh1SHOn96cWaHHHlztdOmz/+nAXDG5V0YjZbdo2ZJfUfXFF1iMifJXILNbDXI+RdxzL4PSHQ+BVA1W9SP1Bhrb+/v4oKrIKFp966im7JjZnTJkyBa1atRI/GhGRm0SeoRCbM/dhTfoucEwhFQtUhgMPKWMvcrAIDDRmGYyChEYfc04cBMl2BQYl1BKTw3n/BkoB3lLXzg48whBXzLlcFCCpDGmlvlSEwDI8XR93BLlPypLXIiBArrNLrKhMsVEGHiwVcPBgwDEyrOz9Pnykonu0yO1LakERBs+0iVV2hEWAX7zjbBYuNQ+KQ1fw1JeTMO71e+htI7/9HQnZrpvyfbck0KYNZwgcA809nQEX4zv5kQRIEnOouorsW9dhHXF0Y/XElf3H94KFNMt4KxHdMopG8ybFVY14rwyvlMHQtyUEr6rJK/2bR2Bkz2Zo27dlFRdlMpH9xaTv7V8rESMPag5TbIDD51IdSID8Yu2SAXiZBEUPdHbZKMoW6eDzzymPFlwf+2wCJr5zr9P7iYBhcsuXXU7Ef77pPXQZ0r78+r2Bj6LEg4jn6kKE3SGxwchOznUqoCALE7xSAsbEg3ViPJL2QjuXKQ4yM3Bi6otQVHbsu8mkpqYiOjqa/tzy0Q8g86ra+FUdjKWFuLDwE/pzSkoKoqKiUB8UFxfTlIbdu3fb3f7xxx/TRAcREZH/b7KTc7Bu7lYsyE5HicKFMIAsSJqchDjwZPyip0YoVdAbgJOXwDhZsPcN9kFRjuvGUr8QX+QFB0AId+HIajCBSAfpXAhVZ7s4yzo6ZeoMYM5cAaM30qZZbdcYGJoFQ5Bx9PXJrhUg8EI2VpydBZVXDWKCRURuEa5dSMUTrV+p1WOQ79lz3z1GxbeESY2eQ6ZN2kplSnpGQ9PTOkZyhveuRDCRkR4JlMro5a/Gqd/sG+pt4eUSGJuEwBzqbU0fSC3AXb1awKwxwstXTdNbtv6+i4qiCUV9QpA9oZLAwgZJKeCTUHX/hrZqiOE9W6Nj61ioK6VjbJi3naYU1BYiEsl6rqud2KPqRgLkRQBjeyzmAc7iXEzutY4YT7jnmW8ewdhXRrgUvzzdwV7AUJmZuz+hdVsZxKGaiN9rAi/nkPNgW5iDVVXOS+Qdan4gC0X7EzwSldQUksLzb+HvkMpq5pxdX9xONcnDDz+MP/74g/7s5+dHkxp8fas2qtnyyiuvYNasWeXXye8QAYSIiMjtDUmDWvfzVmreYdAanIoh+X4Vpi/OYI+cB1NSPTNZUm+4c30n26S1CoWpQaDL+T7vVZ7N99UUkn63LONXyBRi75bI7Uv8yUQ823lqrWuSl39+Cnc/eSe9/kDEk8jPrIE7bS0haW3HqyFuINw56Q46Dvb2UyO8cSg2L9hZLqSqKQMm9KGpz+36tYJSbb+O8u/sjdQg6VbBHOYLfX/3qZXq5UfA2KwxkMSGkc8Odbr9xSNX8GKPd1w+JjGaaN61Cf2ZJHAMk42vlejaGUTsHhQVgOxrufUqKlGo5bQmKUs6u1W4nWqSW5lba/VL5KbA+cjgc2cspGFq5P1ZETN2Q2AAZZtAaI9muU2b4IkLt/km63EsAoq3JCFgbLObux8iIrVAR+bX68Cg8tx8ARE9Bfg1YcDXbO6VMjS1KSwMj31h12BmeRwLTqOXAL0SE662cypuIBj2KYA2gNIidSluILBgkOJdhN0X7J3SOsX4YckTPVCoMyLIS4Zlx1Kx/HiqR/uulnH4bkJHXM4qwfMHDqFouwkNglSY0C0GI9tF0KaW73fE42ZA1i4jfBVIK6wbt9BLWa5FIP+eTHMpbiB8s+USujUIgEzCYs3pNJR4kK5AJj6qe+Qn+5FaWD/pP7bc2SJEFDfcgiQmJpaLG8iE/ty5c2/2LomIiHhAoNwPE2NHIEwRju+v/OZQ4GABS4UKrCDQf008d/0cQZr+eWgtEpjNHLwkRjuhg4GkRZkUsAgsSs0MFJwZEoan50oqGhCk6BnUBHFFrgUO0UpfXCzRwSI4F4VLWAFyzgy9WQpeYKjoonI/EQPhurgBkHMWl+IGAtlGZ2Hp9uQVC4IBvyduwYvNxrj+RRGRW5iMIg8ExhwDgRPAOPrKXU8G+PXNP9F9RGfEtIiEyQN3H3eOqebIAJfiBoKhYyxMHRpSJzIuoxBHjsRXe7Fu19IDdtfJZPuX2z9Aab4GAeH+WD1nI3Yu2V/l91idEYodcTDHBsESGUAXNH0YBh9Om4D4rWfw29t/UWfQqOYRGPH0ENxxXw+6wEFceSpjivF3Km4gaLvGQnY1F0wtEu84kwXRFiDFxVsqv5jp8fuXdM61k9W2P/a4nSSf/+5faNm9CViOxY6/9nnmZlWDooQsBmQmZju8T5AwKO4VidIuobD4yGkBo7ycD589qZCn24stfPemI2e88zmoETENbzlxQxXIe1fb6bwbMB1YWFiIIUOG4OjRo+W3yWQyzJs3D5MmTar/HRAREbnphMQEY/K0ifA/GIeP/9rqWuBQ9iOpKTjrv6SRVp6QBza+EIgOBWyPz8Rt9EqyU3GDVC6hzQDk3OSKqBaRyJepXB8WSRQcOX+XH3/dRN1VRimH0LoRhLh4FI1uA4u/TZI1y8DYMAAZUb74Y94WPP3yKM8fV0TkFoMIUWsLGXv+9PIC6uwb1iAERoPr+W7V2SxoukWW1zOVISkp0iIe5gbVa8o4ciUTMhc1kDncl47rFeczwGUW02PYziv2Y9VOg9vhhdlPoDS/FAFRAfih4AI2JVZ1tWKNgFciA4as11osYEsNCOAZfPzeA7iy+iQWPDIHc4p1iGkVhZHPDKFJLKRhZsnnFe70tYEIhF2KG8pS4hirIJ1lGIT4eSE723kNKrtk30RlUbAwhivpa5Snau1cMpPiXNckWxfZC2UdQerYLza/B17CYtOhiyjuGAVeZ6JO11yhFp6ij/ZC3pgmMIWq6ImJ1M6sgdRh118HcfZt6oWQvfU7mL5zUr9bTtxwu9UkGzZsKP95/PjxbsUNBJI6ZytwICkQYt0iInL7E94wFE/OeAghMUHUFd0h7hYUyrerXjKdXClD+/6tsHvZQZfbNerQANfCXQudeV8lLIFqSPLq3lSkDE2RFsu+XoOH3ruv3p5DROR2qUm+f34eug3vhKCIgJvmkn98W/XEDWXz+bZ0u7sjXvr5KZTkldKm+MWfraySUucMvxAfmkpwdu8FzH19EU3IJMmTRAhAUlpIOsTfM/7FzYCsRQSE+yE31d6giy3SWpubXBzXmWKdnbiBkOjGLMuTmuSXqX/gs7VvUXOmLYt214u4gUDe9ywXJgB1BRH43GrihtutJrmVucVXwERuJMo2QVD1CIP2kHM3wzqHHKcV7v8MSYID6v945xG6UzmAKHAQuY2R+9fdY11ewSOqHwu2FsJ4jmMwIqUF+mc0xNmALBg4C8K0XmhWFERFCa7w01mLZyKQ8ASSClGZE8mF+HLLRax6rje93qVBAPo0DcJXmy8htcB5k7xcwqJ30yBMWXIS2uvR7ASSGnAoIR9bzmVh6tDmuJBRd5G+Uo6ByVnE/XUkLIO3726JAc2DEeqjwCPzj+DYNXtRR03wIoujLsgtda9yIUkZvb7YTn/W2LxnziBrr9NHt8Ufh5JwPqN2KRt1TZS/ErMf7HSzd0PEAadOnSr/uUMH9w4mIiIitxYDQzvjRMElnC3eBqlD21MGZoFcWHq/bZ+OhLGgwKhErkFJO4yMFg5mnoOS2Ftfh4gcSOIDERmQC0lEII8p57zd7pta4gdecD8hr+BM8JProJCY6byUxiRHiUkOXrAuKHA2+02EFu4g4g27d4ABtmYeEQUOIrc1QV4eJJDwgr3jpg1soaZ88n7lzHXoPrwTvIvdT9xLnYwpJRIOZrOFxqi7hYgkyFOxLBUZ6ML9IDt0BZJauCKd2X0eiz9dia93fESvt+rZDF2HdsSC95cgJ8U+zp00RkqvZtEL2yAQrZ6/E29OXwJTeiHk17LBlRqQm5aPUzviqAPSA2+OplHRlTE2C3G9U1IOxkZBkF+yN6RgJSx4s+tjl1QuxdNfTaLpFj7h/nhu5gqcT6xqbCFNyIX8vOdzUCpvmwZLBxRkuf8MrhxPwMTYZ6mDqa7UvRiciNZf+ulJ/Dt7ExJrEBXuKCUke2JLGBrZOPWwDHQtAqFv7Ifgvy5CkVjhlOd1OhemICUKB0ZVWehorpFg+oPWBBOR2qHT6TB8+HA7cQNpKlq1ahUGDBggvr0iIv8xRvdojSMXr2HjictV7mOL9YDA0jEDLwN4Ml1mc3g2xHhBeSYNksNxgJ+3tYlZowOjcy2oMxnM8A5wnthThn+YL/j8ajYrOBM5uJpi9FJB26OBvbjBFimHv89fxdPV2xMRkVuKgLDaOSeWQRpBVny7Du37taZOwvkZzufiuVIjfDfHo2hokyoiBynLQr3hChh59ZNRLCrHdYyhVTj0baMAmcTOUVl5IB6S3FK7bU9sPUMbbz7f8C69PodvgpWXz+HbvfuQadDQ5nlpIaDMZiAxEEMH+orgU2BAd5UXPuv9oV0KAalJyGMOe3wQRj47xKn4t7qwOjM4oq1wtXQkCPCLy8Rzn05Ar/aNoFbI8MIXK3A5uepCs/RqNqTXxR68jEXuvdEo7hEE4XqSjyTXAL+dGfA9kAtWx0Pl46YmySmEwDJgXDQIXTh0GeP6voPi7g2hN5mBZtbUa0P7KFojqfbF2/2+RMpR8ck/s9Yj+YLVnEvTKgA5E5rZ/R0RwZ1FBQgGQHK91DEHq2EM94Isw/7zdgev4FDSJQzadkFUVCLJ08PrWCZU5/LsBB8NWkfTekmk5mRmZiIvr6Lu79atm0e/17hxY7vrGRm1czsWERG5tRjxzGCc2H4GB/6tmKcox2imqWtEmEwgYmuLjAUvtSa4kflU1mChNUh1TFnIedwn0P06iU+EHwS47wtwK0isA1bP3iQKHERua/zrqCYhTeSrZq1H825N4B3oXePEYjKvX2OBRB00Xh/ZcJIKZz/65w16/eNVU2mqw4L3l7pMl1F6K2gawQejZsCoN9nVJEc3ncKo5++iyQ7kel1RZqLnCrJfT3/1MLre1QFShQxTB32MpHMV4gRWZwKXlg9LtPNEHGl81XUVtY/rmrHATRJP2ZrUg7HP0vfLkzQ5ktr23KzHsPybtUi7cmuNO5t0bEiT9kT+f6meZFPk/56A0U3hd19TMCRuuDL1NP5UdQh2qzJWdQqFNNSDBgh31EEGmmDiYUhyfzIQEblVUYcxCO5YN491bTOw/x0ehVWNfDxCogZ6T7d+Mb3McvTMjqFChxZFwW7FDQSt1DrQMnIWXPFxrW4ulOqR6uVYbHAyuRArr6c2EIfTe9pHwODGqdRg5qmIwVbcYMv6sxlYdCgJdUmfJkFutzHzAn4/kIQ3V57B30dT8MukzvhmXHv0ahyIpiFeVPjw7QMd0D7KvQOMLSTdwhEJOaV4Y/lpLD50zaPHIcIGT8QNhCbBXugU648pg26t1JyGQWrsnToAUidOWyI3F1HgICJy+/N6i4mYEP0oONhHhxIEQUoTGWSVxA1l6QmBci1UEgtkHA+zwMHAOxZTE3kDT8thhv7XzrcfGDflcXu/AYhShrnchmMsCFFr4CM3QMZZoJBYEKjUItKrCBwsxPDduuJwHZLy4A6r56A9Ol6PS8W1b7QVEblZNAzyR4focJfbyIph1zhRDs9DklDRHLNh3jZ8OOZLZC087PLxJFkayFOrChzIwt0HK1+nPzNaD6LpKu8Ty8LYuRFtYqkNp3edw96VB8trkkEP9YXByf6Q5yoZ3Bw5Q5pjx5UUFId5Q9cpGoXjO0HXNsLOAWnzgh0OH4NXWxdBXcE7qAHa92/j9vfIIsjKWevw9eQfsX3BTnz//D344LEh6Nw8Co0iAtG3fSNMe2woOpSYqzVN46wJ7dr5FMx45AdsXrjLo8fRFus8EjcQGraLRes+LTH+rbpJzSntGGIvbqi08Js/snGVPzH/7SmImnkSvrvToD6TC++DGei1uxDrP3kRkmq68Yk45sUXX8SBAxXJKiEhIdi9e7cobhAR+Y9CzsPTH70bb93VC165WrAlBnC5GqgPJMF/2WkEbrwAaLVU4FD5RGbxUyB/bCvwaimYgmIwuYVuxQ0E0lQ8+OF+brcbOqkfIsLdNECQFfbKJxNynTTL0vsEa0OUGwyNnS+wEwqkDK6m195tUkTkZtG4fQPaCFEXrP5hIz6572uHwuLKKC/mInDxGSjPZoEr1IEr0CEyQ4dvhw+AIrHAs5rEUaNjJQwtwqDv3MBO3FDmqKy5sxUsPlXnXI5tOoUjG60OqRzL4t4mrSA9a4HPJRbeVzko8jgIHAuTCjDLrYeW4jAfHNh4wmlTzMbftmPHUtfpNNWBMfPoGux6nUSWXATuUCLWPvsbvhk3E3v+3IsfXhuDtx+7Ex2bR6JhZCDu6NQYnz0xFK1KTdbANpZB2ovNUNQ/tFzcwEh58LEsCh6PRNJv7ZH2UVPIRzZw+JyXMnPw+oqN+KOBBanv9kTGMx2oQMDRtI85UI3s9pFWcUMlTI2CoOtm/xyN2jdA+36tMO61kfQ6SX7IvbcxTYYTHHSS8SQkzmZN3+JdPYcys48MmU+1Q9HgWJhC1TR1ztDQF3njmiNvbLPy19S0cyP8enYmWLEmqRVEWL1t2zYsXLgQ06ZNQ9euXT36vYICezGVXO6+xhcREbl9IC7UH654HU99NYk2ldpCDsPSbGuTLjkmm9QceDlr7bkiKUYcA4tKAlO3ptWar5TKJBj8cH+32w178A6E+LsRZ/MCOCIOr2dIw3Na/K3VaCsiUh1adm+KmJaRdfKmkUSTT++fifT4mplaB0UFYurvz+Nms//fIzi9+xz9mZNw1MRJr3F9PNGV6GnSg624wZbVczZh7z+u14+qS8ue7nuYyH4tn7kGXz46BwfXHMPXOz/ElB+fRJs+LRDbKgq9x3TDx6+NQmyE46RtLiUP0itVP89AkkTugPiTifhs/EzsX3XEo9dAhDCeiBsIpHbuOKgt7n1pOG4lWvVsjp+Of0nn8kT+fxETHESq4NUlDOpOodBfLoDhSgGdoZI39oW0oS8yPzsEeGaU7hHyRr6QRXrDq28kSndbm4srw/nLoWobBJh4FPxTwy5qAhm811GkjqXAADiewxIRuS1o/zSLnS/zsNR/XekSswbIOCCAUwIW52EJTjnnV9HYtCMiAY2LA50KI3ZFJIJ32CFl5dttlzG2cxT9+Ycd8cjxIJHAHb/tqzuBAxFdvHxnE+y85D7OJjlfSy9Hkwqw4EAi/nqiR/lrK2NYmzCsOJ6KeXsTkJTnPvZ47p4EKGUcXr6zYqB+NrUIE+cdQonedfR2TbmSXYqhs/Yg0q/qYsvNZGK3GHGA7CEGrRal+bkw6nWQKZTwCgiCXOXa5aq2nDx5svznjh3rSM0lIiJyw7kr/A4MCeuDM0WncaH4PL2tpU8rNFQ2xGtnX3U55FdJjCgxKeAn1yNbq4bJwkLKVRQxLCloaGlgTW/oEtAc0epG6Bo4HEfy1jp8XC9JNJr7dMfgMCPmJ/7tcBsimeBYx2MNkjYRqi5FRkkQLIKhvBA38hzU1AreOWQbR2QbCtAcMS5/V0TkVmbqXXfgsQUrYDBXFb+yWhMUdKhf6e+f5yE/ehWsg0lXaaERyhQ9dNFVx46kMTFgzSWH+1FUqMGh1GwYx3aEjuchSASwPIPKITLkkEG+jpyjMkEuhSXCH5JKEcPVZf57S9F3bE/687y3FqM4z3HihLZ7LIwNHTQdsgy0PRuAK9JBlmxtdljxzTqHj0EbpwJdG0kwWvvj09BHB2DMS8PwTMepbl9LRkI2vZBI6H9/2ICvtn+Ie/rYiyP67fmUOjARMUTG1apORJX545PlkKvkeGDqqPLbzh+8hLeGfuaxYKG6XD2VhCdav4KQ2OA6ebzSTlZ3VmeYAxQwNPKFIsHeWEOap0fApgpR+dgfHsftAinDXZTiHj9GfbFy5Ur89ttv5dd9fHxog1Hbtm3r70lFRERuecjC6Pjh3TFuaBccWHMMZ3adAxMaiS6fdUBs90YY8mnFcaMyglIKbYdweO/zzAyE0POeLmjepQnufmIQNsyzpp9Whix+k3SkkRoz5s7b5ToFy+nOkV5nFkZi7OJiuo2MewS5e8er9PwSNI5wb8giInKrQlwe377rM5gcCATqE2muFr5br5ZfJxXRudAI6pgqEFfR9rGA1PMlfEmyvdiINDMaSHKD0x3gYGgdCdXBin0o47d3/kK3Ydbk4lkz/0WRYKyaAMMw1gQbQYCE2Dn4KiHJc+4Su+Jrx3MtNWHkM0PQ/+4+OPLjMoeCbMZghs9u67pMenwWvRB30tWzN9KaZPSAdnbb99n/GTb+tgMLDx6CvqlPxePILWDl9kWhoZkXpmUfAHNJhceaV7jsH0lKxdN/roLORrBgDlahcFgjGBr4InDFJbvjMknWqJzgYYuxaQgUJ1PAGqyPd/nYVUxu+TKCowNh9pUic1JTGEM46yCZjLXNAjiaqmFjqCEjjrDWnzmNexdec1M5jKP8YO6kAq+QQKY1QsiSwFJq31SrbRsEeVIRvI9l4Z5nh+J24VauSZRKJQYNGlTt39uxw97MIDY2tg73SkRE5FaACMjGvXYPbSbdt+oI4vZeoMJoUhOENw7Fw/d+C1NsoFMzWT7YB+am4ZBeSvfo+fqM7U6brUkzMTFNcdbg2mlQO4zRaDH33wqjiMpIU/LBuhBtkvk9g9a96NoTspNzEdnEtZGOiMitzLPfPob3RnxOUxhuJrmpebh0NB4SmQTmG1wfVWbem3/ih0Of05+/fXou9JraHy9Wzqy7mmTsy8PR5a4OePuuaW63TbucSS/E4Gr1nFh8ufUDWtPY0mNIB6zZeRZ/rz6M7OwisCV6SK5mQ5Kc53B+58eXFlBR2vCnBpffdnzr6SoJFnXJ+YOX8WizKQiKciyuuFmMel6sSf4LiDZfIg5hWAbKFgHwG9kYfvc0hrJ1EEyJxXUqbiBHYe/B1oYc796RjlMjrosJSg9nQNUlFMo2TlyDJO6VWKzafhKmNrAO3C4spUboL+VDH18AwY3zu4jIzca/OYMBs1iEWOeprTCAlIjtGYCVASrXBsV1xtXVNRM3EDibCdt433z83fgM9Kz9YDtTUYrZrQ5if5jrRcXUAh0SczXYci4TM7dWjaC/mQxvG45ZD3RAo2BvdIqpXkxdSr4OLy2taPguQyHl8FCPWDQM9jwd57vtV5CUW7FQMXXl6XoTN9iSVniTlTg2qGUcxnVxsTgkAkEQkBx3BmtmTsecx8dj4WvP4a93X6P/kutrZ35O7yfb1QdigoOIyP8PLMOig19HTIh5kF7Iz5c0pEHZdVEi56znJrL+rpaaoDNLqUmpgjMhUK5BiFKDEIUGQXINvCUWTIq1Tn509BuLLH0oTHxFmWwRGGTqvbE1i8OmjMMYEtYXnf0dNzwqONcNQAqJGcEKBQymirrEIrDQW5z/npln7PbHlgBZxcJ7GTn6EuzJuoJDOQkwWm7uBKSIiDs6xkRg4eRx6NqgYmxF/tqDsw0IXRSHwB0XEWU0gynSginWQXI1C8ptZyFJyavyWIKEg7FPSyh0UngnWyAr4sEaBHA6AcocHr6nSyDJrzqm5OUSlIxog8XHLkLjowDvp4IgZWGRMzBLr5sdSwBtMIPiWAalMSyKGrMojWBgqTTFIHjVXpSbeikd2ck52PX3fiz/eo3DbXgpB30L103yunYVKQ7OkF+pEIs7xMxDllDRKEUWN1/77Vk0bt+w2k63qZczMOOR2VVuV6jkNB46tBrigfnv/oXslIr9+mryj/UmbrAl+5p7obknmP0Vtd7Gy09NPw+ROvg8zGa88YY18ryM+fPni+IGERGRcohbYN97u+P57yfjuVmPoduwjjgYnwrejROqvqnr9ANbSPPAQ+/fR3++f+ooyJSOnbavnU/F9j/3YuyYLuhCXNkdICP5b5muBZe+ZiOQ7yahmjSCetDQEOxbdV4xNz0fRzaexKmdcTAZ62dhXUSkrmjfvzVmbP2AOmjaro96+avpv3KVDCGxN0bEs2rWepqExlh4yM4kW9NWPIDWSkn2Y1VzqA+ESm7PlTE1DALvYJuEM9dQkF2ErYt24+/dJ6uKG2wgIgeyl8wNasa6+8k78eKcJ9CubUN0Ol0AxcVcwHJ9jogXIL+aj8ClcZDmaB0eQ79+/Mcqtyu9lLRxVD7WxoGV46uIG2yZcXoHcvWl1qflBby9arOduMEWXctAaNvY/w2Zo/xdv1COhTnCPoGbzKWnFRcj5dU20DX3qUgQIoI0KWBWCRBsOvCF61NNkjwtZGmOhfPGYAUKBoaj4MUYaGZGwzTQB4KfBIwCkAYYoW5RCGlQ1cW70m5h8Av2wYAJvV2/DpF6g/w9fPfdd+XXpVKpmD4nIvJ/XpP0G9eT1iTPfvsougxpjxNbzwBXUmiajyssDUIcZP1UhaRETHxnLP35gTdGQSqXODUC2b3sACYN64LOLRyvlytMFigPuzaBJGOtuiIgvOp5NSc1j9YkxAXe7OQcLSJyq0C+059vehctezQtv43lGDoHTGoShVqO4OgbU5MQs6SbLW4oE/iWFmqwbu5Wp4Krm8XoF4fhmZnkWNwB4Y1cr9NUJuH0NXz37C9Vbler5JgwvAvCj1+Des1JKHdegNSJuKFsLPjTKwtRnG8d5xNxzJePzq43cYPt8+Y4WJ+7WQRG+KPvfT1u9m6I3ADEBAeRciwlRmiOZ8GcqwOrkkDVIQSyiIposTpv2hcA7dEsKBr6oWR/GgSj88cv3noNqvbB8J/QAoqT2Sg9nAlzlhasgoOyQzB0Z3OtqQou4Hxk4Etq78gOKQte4JH3x3kY00rBSFiAY2AmE2bX57vI++fVOxLeA6NFl2+RW1rk0O8bDtpsAfp8QBkMKAPth0iHp/FI3laPVom1pGd2DLKVGuwPS6bXTwRlIM4/Gx3ywhFgUOKauhAX/HOqxMU7I19jxLfbapEUU0+0j/YFe33h9JXBzfDI/CPVCqQ5kVyIj9acw9t3t4BcUtFEaeEFHLrqucssWVP5+1gK3ryrBRYeSMSFDMcT47cqfkopCnW1G9R/Na4d/FQy6E0WLD6cjL+PJtO0jEC1HPd2isRjvRsiQF29yOf/J7IS4rFxzkzkpVq/k5UReB6XD++nl8CoGAx7/lWENmpSZ8+fl5eH1FRrIpS/vz91LSopKcHWrVtpskNRURECAgLQunVrDB06lLqzioiI3FrkGoqxLu040rT58JWqMCyiIxp7V6gujbz78TxjM2Uv4ywoNiogYyzwk9k3wEpYARJWi0P5e9HStwH+SduFeI0ajEYJb4kBDCNAY5bDLHD0MRcmrsUdwR3wevOnsCvnELZm7kWaLgteEhX6BHfFwbz9KDS5bhQKUypxKd8ML7kB7PW0h1KTDIJggoIzl/cNkHOuWWChJR3WDgYycpa8piL8mfQFMnQJ4BgZsnUB2J5G9tl6rveXqfBok554sllft++ZiMjNokN0OBY9Pg5phcXIL9Ui3M8bQV5qYG7FNp+M+xp7V7qOD7bEBkFQyenPEj25kO+XzYA5xB+8jxJssX1zhrZnQ1gCHC+okQVCCyNAG8bYLxYyDEw+DG0g8U7mKxIdXMxpVIfivFIs+miZ0/vNod7UcdUVpBmGaMFdOUxKr+VDklYIc6RjAbXyRHK5Yyihedcm5fMbD390Pz4c/WW1BKundsTh1zf/wGOfTYDExo2WLDKe2+84XcMRvIWnqQ+TPhiHpTP+paKQ2qBv6IuSnhHQN7I2ECkSi+B1KAPKq4WoD3ylUhS6WVpm3TisvrPkJah9VNBrDVj742ZsnL+DCjD8w/ww5OH+GD1lGLz9K+bzbjqVvo41fox6YOnSpUhMTLRzR3zzzTfppTpMmTKFXkRERP4/yCoowZr955CRVwx/bxVG9GyJhuEVggW9Bw0yRDDpKaR5YOvvu9GkQ0Ms/2oNjA6Sqsr49a0/0fvebpj+yVhs2HQW6zacQmpaAXx9lRg8sDXWvfMHSvJKIKgUgFpZ9QGKNfCTmJGbngshMgSwmSe0hSkohvyiBfp2zp1Q/SxAcVwa3n9+Pm2Ilitl1FGWCBvLnCf9Qnxp8tJ9r470+P0QEbnRtO3bEt/u+RQZiVkozi2hyV3+IfbN5e+N/ByH15+4YfskIeJaownm5pHgA66P68rWaMtqAV4Al1EA2anEqgIDN/VCefrbkPZQ7rsILt/arE8RgKLcYiz6eBlMg90Im0l9oNeDK7oxBkUtulXUJJNfHYVP758JXs7B4iUDqzWDczP3f2TDSfz+4d9UVEaaRcsw6o04d/EaEGqtKRmpa2MNE89jZeJZPN2yJ2bvOEjrWVdoOoVCHZdrl7DhlkrCEl7GIuPJZjAHWPexCixgkQuQ6MsmlugCEHy2V20wVfgrkTQyEqUdA8FIBAQ2LHBoiUl2QdmgFOZiGQRjxftlClXjg1VvQK6UQ1eqw+o5m7Fp/g7q+kuajIY8MgCjX7wLagciuP+XmiQjI8Pt5lFR9WeU9fPPP+PEiYpj0pgxY+Dra3/cEhERub0hBiibF+yi/9L5nkcHIKppxdicpB8I3kqXQkQCnS8l4wI3vV6kKXb74r14fPpE/P3Vaphs5gTtHk8QMPeNRegxsjO+e3kMVu+Nw7+7zyI1pwj+3krc3asV1jw+F0YX6Q0EnyAv5JHUqlriG+yD9PhMzH19Ea6dS6HiVIYhNUk6nUMkBIT5YcI792L0C8Nq/XwiIvVFx4Ft0fFAW2QkZKE4vxRhDYLhG+Rj9917c8inOLn97H/iQyAiYlKT/PnpctxqtOhWIUSZ9OE4fOnA2MkVZK3rr+krMf6tMXQuugwyriZzK55i0BmxY/E+Krj47e3FyM+on/WM+kKulMJQy96tT1a/CalMCk2RBv/O3oQtC3ciL70AQVGBuOuxAbjn+bugIufKW4VbeJ3kVkcUOIhQSEJC4ZqrxEK0/B0p3ZMGVYdg+I9rDoZjILURO9QV2hPZUHcJg+6Uayc8QW9BxrTD1i8qByhaBMJvRCPIY60ndP2lArfPJYvyginNZpKupph45P92zuUmvNZMRRm81kRTMKoLGZwIJh6MlBUFEiL1jiqEgSrE8X1d32RAzIET1grgb7DhFkmRcNfDyIDBmNRWePftBliXmEYbzTeczcCREGuDc3X5bV8CLmS4noy+GTQIrJgI7ts0GN/c3x4f/HsOJU4mFxyx8EASjl3Lx+wJHdEgyHo833ExG7pqitfIexyXVoRP113A7USgWoZIfyUKU9041LmArDv0bx5CxQ0P/3YER5IqJl7SCnX4YUc8Vp9Kx/JneiLUp/YOvrcbSWdOYs3X02AyeLagRUQQf3/0Fu55/V00aNexTvaBiBjKIOKGV199Fb/88gs0mqoR6SqVCq+88gree+89KBT/vc9LRORWZNm1A/ju0npYhIqF5D+T9mBEZGe83fpecAyLGJU1Ac4VZr5i0ZWUD1LWggBFVfe+MnZk70a/4D7YmW1dGBTAothsnfBgGR4y1mxNeWby8cLJKZCwZkgYCU2UeKbJA2iobkS3PVFwzO2+tfOPws7US8gtVSPQSwOOihwYaMwyKmZgBAFFhSqYDEoEhuVfv98e0k/sw+VgYdIndrdzXDruiJBgX0YjlJgUKDBq8e357Sgx6fFq64qYUk8hom69xQwlJxVrEpF6J9LPh14c8dafL8E3aAE2zd/p1HHLEuE+FpdswxanlV/nVTJrjLsrQiQQJI6bW4joQRfMwiuNh1TC4YclL+HwysNIT8jCvpWHPDVcrQJp2k+pZdO+FXLgcr4TRPzgte0idB2jYWweCuG6MxtbqIPiTCrk8RUNOIRIm0XUniO74JVfnqYuQdVJT1j21Rqc3XsB7/z1MsIaWIvQ/auOUKfa6kCaz84fvIQF7y1BbSjtHIqC4Y3sFoP1TfzpxW9TIrwPu29aqa6jXGAhcDLItbhBecX5HBdpHO00qB1d8Jh65ye4eCS+/L7MxGzaiLZz6T58s/uTKo15IlX5559/7K7zPI+rV69W+63Kz6/9oryIiMitwaLNxzB71T5qClLGwk1HMbZfO7w9cSAdF7eIdJ88JMmuOg/hin++W4+7Jg/AjiX7XG5XkFmI0X6P0PUDuUKGnqO64s2Px5SnK237YDFKSaPzqctARDCE0ABAJgUMRjCZeUBGLlo9PQRXjyUAcfEQWjWy3m9LUSmY84nw8ZLB2DAAvLeDZloLD379ebz7ywGX+1uYXUSbjXQlerrwX13IcZks2pPUp7KmZhGR+iK8YSi9OOL9Za9i9ovzaapBmYCnvpFkFNKLLMALepLsQBsFBfAB3tThnynWgrVx6CTfky82v4cDq48iJacQm9wt6JCkFpkEhp7NoNx4EozNce/PT5bTsaXAWec7XCG9duMcPG1rkjvu64kXZz+BX6f+AX2e5xHhf366gro5v/3nSwiOstaDu/4+ACZTWyFw8ECjllJaiKMJqfhl1xG6bu0KU4B9U40kq9h1igMRr2SX2IkbUqa0gjHG9Tq9IAFNcWAEBrIsHQLWXoU82X69Kzg6EMXPtEGplwECK0ARoHf5esmhVxashyGtYo1KznFo26sFbSR6feDHiD9ZIRhOv5qFhR8spamE3+z6GD6B3vh/pFu3bm63qa8E6yNHjtB1jzIkEgk+/fTTenkuERGRmwM5V/3x8TLa4FvG0i/+pU2sJMGBjIsbd2gAxpM1fp6vSDtyw98z/sXgh+/AnuUHXW5H3Lvv8Z5Ej3MypRx97u2Gz14fhUbtYun9W56cB3c2VW16tUTiacdmebZIZRKYXLjJF+UU44NRM1w+Rn5mIeZMmQ+9xoDxb45GTWsSpVpcSxapf0gigKNUAPK9//jfqfjh+XlUjFQm4LlRyNVyGDSuTacJKh8lpq1/h875p1/NpLVJTSBj0IUf/E2b1W81IptWmPINntSPiuTJOgU5TnjKgveW4tTOc5j6+/MIirDWJNsX76v250oEMce2nMaKmetwOxHWMIR+xhkJblLGXUAMoJp1bkxTLF7r/yGS4lLK70u7koHf3vkLu5cfxNc7Pry1hNciNcJzGxmR/1v0VwpQ+G+8nbihDO2pHBRttk5MSENUkF93tPMYD+acS49kgNd70KRbtnsWQH8uDzk/n4bmeCa9SdnaTVMCA3j1j4I02vlECucnR9BT7WjqQl1ReiAd5gJ9tVI0iNAk/eODSP/gADI+PYTC9QmwuHHvExGpL1gJg44vshi6gLnhZwwibrjgm4P5zY7jm7b7MLfFURwPSoOZsR/URQ8AWjX3xtS7WmD2xE4Y1ta5s5g7Npy1HlNuJcJ8FBjYwl6BMqZjFA69MwhjOkZW67Hi0orR/+vdeHDeISpS2H25+gPGA/G5GPmD/ULvrU6jYDVmT+yIC+m1E68QcYNKJsGPu67aiRsqC0BIWsZ/MbmhOuKGMsj25PfI79cFp06dsvv522+/dShuIGi1WkybNo1GN+fm2jfwiYiI3Hj2ZV/AzItr7cQNZZBEh3nx2+jPMapYNFa7Tn6xph5Y0Zsl8Jfr3RkZYWf2HpSa7UUQHBU38FTcoJYY4CMzUHEDwSyYcazgKD6/8BkO5x2it3UJcC3W4hgO42MHo6VvKEwWCTKLfJCvUUJrlNJLvkYFwdQAP/V6Bo926IpCvRJGM1elSdpHqkNDb8fnIYXEjG6h9g4fC+MPIkfveepSpq4In55ej54bZqDr+unou+krfHNuK4qMnjcMiIjUJTK5FC/99BR+OjHDaWObYON045RK25gDVFYFqxNIAoJG6nqh0OQFEE3V3T2boW3Xpnjii4fwwbLX0H1EZ9QUEvPuCklWiVvXNUl6ERVMuYOxCFAdS4bv0uPw/vc0fFaehO8/p6qIG8iEc+fB7exuG/b4ICxN+wX97u+F6nDh0BVMavQ83h72GXUkOrKpQqDqKYfXncDLfd+v1UKO2VuGgmENnTrdFQ5pALOfE3fUGhDbKgpv//kichccgSTX+fFUeSEPJT3CoWkXDN6B+3fvMd2o2+yfn6ywEzfYQgQyc1/7HbcKRExTF5f64PLly/XzwCIiIrcl245fxncr9zqc81q5+wwWbLQuzHdoEIEWEa5FDqrT9nOMnvTmr/tlq0fCQYHsn2B169u1dD9e6PE29v17hN7Xe7S14ZKx8GBSssAeuwD2wBmwxy+CScuBXCbBQ++PpeclpkgD5nAcmEvXgPQcIDUbzOnLiNGWYNbOj3DPpP7wXXUWUmIWYjOuIOMHSYkZkHt+nlw6YxWK8zyvSbKu5WDWM79QMQdpnnog4knMf/cv2kwrInIzIE71r817Ft8fnH7Dn9uYXwpWY6DjezIm4vJKwGUX2YkbCMOeHITWvVvgyS8n4ZMFL6J7a2uToTOuT29AUMpgibQXjO9eZm1slGa6+d4KApRxN2ZNJbpFJNrd0crutnueG4qlaXPR6/qxz1PO7rmAB2OfwbsjpuPa+RQc3XwKPvsrjPg86Uvfeioej85bDosHG7OV1sDlF1y/Z5LUAnClFQ1k+XdFwhjrgQkhNecgn5sWoXNPVRE3NGofi5dXv4oL3kbwUh6CkodEXnl9XgDHWiBlzfRfel1pv83QVlbX2oXv/20nbrAl6VwK5r21GLcKt3JNUh3OnTuHESNGQK+vGC9Mnz4dzZo1u6n7JSIiUnds+3MPTRuyFTcQiJhg1fcbsPLbdeVu77HhfmDc1A9cekG5iJFxkyBEnmPdz1tomoM7yP6RUyBJktj+51483+0tHNl4wq4mcYbSS4GHP7zPTrhYmQZtovHd/s8w5NH+qCsWf7YCmmLnRliOGoe/eeInjPJ52FqTRD5FPxtiOiIicjMgIpupC1+gDds3Gk/EDYRRL9yFNr1b4OmvH8bHq6aiTZ8WNXo+cnwh8x23GmQ8bZvgQBj7yggsSZ2LbsOqZ+hJ0jgmRj+LD0bPoKkzR2uwTrJt8R68M2xavQlr64OmnRvhpZ+erJW4gdDv/p7033lvLrYTN9hCahUiJrlV+H+pSW4GosBBBCV7Ul1GmGgOZYK/7hLuP64ZGJkHfzYSFoGPtiI2Dm43JekNJK2g2ghAwfIrKN5+DV49IsCqnQeSqDqFQuqvRNCjrSFv7FikYSk0QHsiC7zOc0d0T/ZRe9p1OkUZ5iIDsuecoqIIklhRlgRRujcNOT+dhqXUc7WfiEhd4xXJIrLPjX1feQhY1OwkLvjnIFNVinjfPCxtfBa/tDgKQ9nsO13Us/+9j0a2pg3t/w/IJCy+vK8dJFzV465aLsFwFzHxrtgfn4f75x5Ebkn1jysFWlOtUq/8VJVc4eqJhkEqvHlXC/z5eHdsf7Uf0gr1MNVClCHjWDw/oAmdsFl6xLWjxNbzWcguvjGx3LcCpGDaOGdmtcUNZZDf2/Tjt3VSeNkKHAiBgYFUxHDp0iXodDoqZFi7di3696+YEDt06BDGjh0Lk0kUE4qI3EwWJ+11ef/K5EPQW6zf08kNnwQLuVNxg4G3nmtkrAxfdXgEYSr3x5dNGQeJQZ4NAiTXRZVSxgKVxPExggePXxJ+xrr0zRgSOgBqTuX0OQYE90Wg3B+/9ZmILkEx4FiedjoZLFJ6IY3WBZZcbMk9iRKzDgwESDlLlWaoMIXrBgMixAhSVCTXmQUeG1Pj4AmpmgJM2DMPS5OOotRsnbAkSRDz4/dj0r75KDR6vgAgIlLXNGgdg67DOji8jy103exmlgH6YBm07UJh8ZaVN+e5QmA96EZkGLCJmeAqRQe/9OOTDp2W6gLGbIE0rQA863wqR3mmegkQpAlSkq8FV1R1PCdXyvD6b8/ZxSWXQeJ9+47tjppwbPNpvHLH+9VqdiyD/A5t7qwhPkHe0HYKpc63TmEZlJJtakFMq0gqevlq+4eYF/ctUi9ngtGYELogDqq4XDsHPbbECMZggaZLGAoHN0DevU2R9loXlHSu2AeZQkqd5kiSyaYFO90KZWry3v7XiIuLs6ao1vLy0Ucf3eyXIiIiUkfpDa5Ysv0kTNed22c8NAxys+Nzkep4OhSJVpdBpbcCn655E3KVezHAmjmbaVJPdbGYLPh47Ff4d/ZG3PvycOqY6IyRzwxBQJg/dXlv2aMpbXYiyQ7slRSwV1PBFJYiPT6TuraWFJQCcing5QWJBuC0AiQaARIdwEik0PVuAqO7NKzrkCapPSuswnB3pF7JwAvd38Z6G8FHQVYRlny+Cq/2/1AUOYjcVJp1boQOA9vU6HctAV4wNQ6FqWEIeEXdz5GbjfYi6LcfuxNhTtzzSS3EWOz3zRHK064TzeQJ+eBKPGt2ciUsJ+Jzc5AXBCfHQNIISQQmjiBunL1Hda3+8wrAkQ0n8Urf96Ep1EB9phBex61pFILRzbFYAIrTjNZ6jPzPTWmiPmu/TixNK0RYSqHDbbncUqj2X7WrS4t7OIlgd7BfyvP5CPs1Duz1cxRx0yY1CUlTmHvya8ShBBYyHyWz3i+QD+A6EtYCldRIzTNkEgv9l1yXyivmxJRSCZ7o2RUGnQFbFu1yuTs7/tpbrUbS2wmSopCSkuLyUtecOXMGgwYNQk5Oxd/TvffeizfeeKPOn0tEROTmsfzrNS7v/2fWelgs1pP4e0tegSLexbnabIHkUjrUfip8vOoNaiLjjlXfb6xRTWI2mvHeiC+wYd52jH11BBRq5/UPSaLwC/HDl1vfR7MujR1uk3whDfv/PYqSgroTOJMEB+Iq7wlEAElqkk3zd0CvtY518jMKaLoGSS8SRQ4iN5O2fVuhVc9bU9xoqiTsfX3+cwiqJKa+XSFzLa/+6rgm8fb3Qo+R1Te9IvPKB9ccozWJtqT64imSHlGbHhu/EMep6vUhanhyxkP4du+n+PHoDMSfcCyS9hSyLnXfayPpe7bTTRIqqVnKjuMity+iwOE/DlkQNsQXut7GaEHekoso2pRIG+5DnnPcUGCL74gGKFhxBbjeqO+WWixMF29Nhu5cLoIebwtJYKVYMAaQhKnABchhytKAU0vhe1dDp3/52mNZMGXWrQsQb5O+IJh5Kngo3naNChlIYkMZRRsSqcjCEeZcHYq32DdMiIjcaNo+yUJWzRCX2nDJLwdmMtFaiUSfAqyLuVR+PW0vcP53Hql7BPAWAcHecqx6rjca3+YihwC1DCuf6YU7mjl3hNt9yTMBlSO0RgsSciuaH+sTMkU+uGUITVE4+u6dGNq6fpq9bGke6oNn+zdGn6ZB1OnXaOZrlaLx86RO6Bzrj0KdCdluFm3MvIBDCTcumvtmk3LuLPJS3ceIuiI35RpSz5+t9b6cPFmhbG/Xrh1Onz6Nd955hzoYKRQKKnggDkc7duzA66+/Xr7tnj17MGfOnFo/v4iISM0gwoWTBa4nM4rNOrx5fAW+PbcDZMj8erN3kKNTw2DhYOaJSIBDgUGJEpO1HrDwDJ5qNA6z4xdDY3YvwLIIjJ0QjmOE8r5mhRNxQxlku2WpyxBXdAFvtXgFwfIgm3sFyBgezb3CEapQI0ufgSCFF95o2x9KGV+ld5rswfLko7imyYNaZnTYW63i3AsUfWX2E2FEpFCGkTdhV/Yx/HVtI9al70WRsaIB9su4zci+nvZAUisi1IUIURaDBY+rJTn48aLrxWsRkfrmyRmT4OVXdZwvScxyaLPJS4DSMBaaCA6aTqEoHtQYOZM7o3BoE3C5JWBcOJJRjZO7yWFegPxCOnYtP4g/PllOI5fJImNQZCBmH/kc4Y08bETxEG37MOQ+3hm6VkHgFYBFCVhkNv00vADVoSTIkusmujkgzA/fHZiG9v1bO92GNAXRp1bJoO8QDc3AltD0aw5joyAIbpzhtMU6ZF+7MUlapCboM6YbPljxOpal/4qOk9wnT5gDnTeIekKTDg3xwNRR6DDA2gRn1FuP35zGhKAVlxE58zhCFsTBf30CeLUUQiWTEEEhQcHIxtC0DkRwdCA+Wf0mjV3Ozyx0K14wmyyIO1BRN99UhDq6iIiIiNQjRRo9ziVludwmv0SLT6bMw4L3loDL02Lew/dAfTCF/swWG2ijr/8/5+GzJ6n8d16c8wRmPDybNtN4Qo3TiQRgzpT5uHj4Cj7f+C5CYmxrEqtbK2nM9g3xQVp8Bh2rPPrpBIcursTcg7jD5qTkQd82ippZka2oPrvS8djQPtrjQ3RRboWTuN5owsb95zFv1UH8s/00imwW8n98aT4Ks4scPkbC6Wv4a/oqD59RRKR+IG6kpKHCU3i1HPoBrWHo3xqm9g1g6tgQ+rs6wNCxIQRP4l08ZOeSvbTp7tC64+B5HhHBvlj08UMI81Jb12BJbWMRwBrJxTpnX0aZs3NlFAn5UB1PdXifJKcU3jsrGvFrgqFFGIrHdkLpyPYoHd4WxeM6Q9c5xq6OCI4KpMkZrXs1d/o4ZY7RNYE0TpLxNXnGsHlXEbQyGVyWCYLJ+WfD5nFgrosgaGiCi0M3V2yA13FrYgPLMrjjvh7UzfbfTR+ib4kFsguZ4DKLIEnOh2r3ZXhtiAN73XSQYPGSwuLtmSBGEV+MsEWXwNkY+ZHGUVKTlKVfGC0WCNKKHdbrrAYAHGOBjDNXmYci11W+eigCdIj088EvE8ageWgQclLzaT3nCpI0dPlY7f5GbtWaJDw8HFFRUS4vdcnevXtxxx13ICurYqzSr18//Pnnn3X6PCIiIjeX3PR8mnbqipzUPHz+0PdY+MFSSOUSfPHTU5Aev0oG2HbbMSU6yA5cAluspU7ZpCYhx+X6rElIk+23T/1MxQmfrXu7SlMzyzFo0a0JbRLOSMxCSEwwHv7ofoeJvWQfln21GoVZjuuCmlKUWzGfptPoseX3XXROl4irS20MdL5/fp7TuTdyblv2lWshiohIffPst4+6FBLdLLb+sZvWJEc2nqQ1SWSTcPx4bAb8w25go1k9QBKufzj0OZo7EWURjmy0N+KsDoU5xSgtvDHCYCJi6/9Ab3y29i38nf4rWrmos+qKlt2b4v43RtF0D4InSUHOiGgcis83vYvo5pHITMx2K17QlejdnltvGOI6SY1xbnkv8t/Aw0VCw8UCeinZlQpFq0D4DI6hwgJHqLuHQ9BawJfeOCfkwrUJdJ+Cn2sPU2opdBfyoT2dDUFngTlTi5LMZJRsTYayTaD15boYkxuT7CM7a4skyDrRqbuYj4Lll+0ED4VrrkIaoYbvqMbQEfc+F2hPZcN3RCOwMvepGCIi9YF3FIOBP7CI+41H2j5AsJDFMUAeAFiMgKkOvzoWhsfOcOeNjieC0nF3SjMoLVLwJuDcQuvBTBkEdH+PRXB7KSL8lLiac/vGliskLNpGOR/ok4SAJW6SBNxxOasUId5ytw37ZD2hpjo0uYTBjLHtMbpjZPlt0f7O3a3rilEdIuyut3PxXroi2FuGvVP7QyqxHntVMg4SlqEiBld8ufkihreLAOemqev/gdNb1tfJ45zasgHRrdvV6jEWLlyIK1euIDExEQ899BAiIyv+7mwhk2Vffvkljh07hl27rM26M2bMwJQpUxy6E4uIiNQvnrpLbE+/CDN/BXMv7cOwyFYYEX4PliZvQoBcCwnpthEE6MwczAKHsZH9kWvMRbG5FCw4yNiqSQi2aMxSutbPCwLYShtyrlaqr0PSFn65uhR3Bk7Ex63eR4ImHqeLTuJM4QHoeQ0yDQlYl5GA9Rkr0dm/B07nedO0KifvCOI1lyHjHIvFebs2BMdYqPV8BbFeVmfVg7ln8P3lJSg2V4yRfo5fgSZesZjccAx2ZV2CUmJEp6AUhKoqhJBEQHKxIBRrUk7j9dZDIOPEqQSRm0OD1tGYte9T2lh4cO1xuthFJmSDvJXQpOYhPyqwPHWBGFFqQlnw0krfGZaBvlUIde9XnE2Hrmusw+ciDXyc3ioicIY8sZA2q+thwqKPltHbSEPhu0teRquezWnzYG2jdsvQdIlEaZ9K+8oAggTgzWaoT2ZBcT6z1g6qtpAFx8btGzi9PzMpG9v+2A1jgyDoejW2S0QwxwTA0CYK6m3nwWqdL6AmxSXDN8jbboHREaQZiDRc1gSy2PPGgudxx33W2GJCRGgA4MZV07axqCYMnGAfg9i8axO76+Rvh1yKBsVYiy4nKCZ1xB+vPQGOu16TeCs9ej/mTf0DPUd0drhQLCIiIiJij6fnmL3/HMah7BL8Nf0f3DnpDkzu3QHLv1nrcNsJb49Bwqlrdo0yrqB7wLE0WammfP3ET3ji8wfx86mvcHbPBdroTNIYNEVaXD6eQC8L3l2KOx++gzZHuUpEijt8Beaxrh0IeV8leH8VuAL3C/FRTa1JtNsOX8KMBdtQbCP6+HLhdnSKDsMzo7vTlCdXbF6wA5OnTyg/L4qI3GiIiJU4Ty54fwmOrD9Bjx+chIV/qB9tHCzJr6ilBSkHQ9+WECqnuLAsLA1DYGQZyI8n1Ml+kYaY3z/8u7wB5/1lr1JxbHiBFrluhrVcer7T+7wOJlMBl65NGMz+SrBGM+SXc6G4kus2Fc8Vuk4xMLS1n7sV5BIY2kTC4qeCevtFOvvhHeBF60BnpFxKw57lniXEOCMpLoW6rpLkGv+tmfDblgmzvwyF94SgtE8ABJX1eMNaGDDZHLgc+zmRsmkjawpg2YuxJmUE/3kOrN5CUyje+nMKet1TkTYR4a2G6rBrJ2nyu0SYAs71mJ4xWhC8qmrjzsCJ9jVJ2+BQOxNAk1ECg14CXy/HJhv0sRmgdTsWf/aZXD5npnaRFmTL3NcW4eeTX3m0rYhjFi9ejMcffxwGQ8V5c8CAATSpWqmsnShfRETk1sLTtNLdfx+g/y7+bCXumjwQ993TFavmbAIf4kvPpYzGAO56c/6jn45H3N6LNXIGrykzHv6emtTMi5uJkzvirDXJikPQlehw8Ug8vSx4dwnd9+SLaS7Xh84frFvzjsimYeVN2EQgTuqkMr577lcqCHzwvXtxZvd5l49Dkioe+fiBOt03EZHq0KJbU8zc/QkWvL8UxzefojWJRMrBL8SXNnyX1mH6SXUoyikur0kimoThg+Wv0fUFv2BfFGTWrWDpRkLe15gWjvtOCFdPJ+HQWtepoO64di6Zrse4ExETo4qaplurfFR4b+nL6HpXx/LbQmODcL6ejZIGTuxrd71xB8drcu6IbRWFX8/OLF/vUPt61nf286sL8f2B6TV6TpFbA7GD6z8OwzGQxVYvckZ/Pg/ak9n29h4EFvDqEwn/MU2gOeba7ajO4QUUb76G7NmnwCgl0J3JoeKGyuji8uj+u6QOXeEYGQdVh2AYU0uQ98d5O3FDGaZ0DXJ/OmOdoHK1W0YefLFnqmoRkfrCO5pBz4843PMPi6ELWdyzisXI5RxGr+Yw+FcWDe9m4B0NKDxIJw/tCro9W8l8RuItYHGT0zSpwRlGzoIsZdX0AV0usPctHiXJAi5m1E5x0Sc7Bk18veGnkrrqNak3grxdK643n89y22TvCe/e3ZKmXlTGSy7BRyNbYcUzPWp1WJSwbJXHH9HeXnzgCLmk5kOUTjF+GNzKPiWiTaSvB+2gVckpMeJSVsXfmkLK4c6W7hMoUgv02HbhBp8LbwIGrRZXjh6sk8e6cuQAfbza0LVrV0ycOBHvvvsuYmNdF0ak8HnzzTfLr2dmZuL48eO1en4REZGaoZTI0NLH+cQQgcxxm/mKc8OmtDhcLd2NjoEZiPUqRKSqGA29C9DWLw9PNuqLF5uPxJYM6yIxDxZG3nnzi4lnEaTQIlJdgmC5FkrOaHfOEEiXtAcwrAGzL63H/TvnQ8X64GzRfipusHsdEHCs4CAyDNZFCEd4yw2QkH1w8rTF11MqnMELDDK0FTWej1SBuyJb40JxIj6/MN9O3FC2T1dKkzD19HdQyzS4IzzeTtxAkHMWtA9KR7g6xS4NQkTkZhDbKhof/TMVyzPnYd65b7Ei+zcsSZmLNUe+wLwvJ2FY/9aIiQiAT7RXVXGDDfrmQejTuRHu6dCkXMxaho9aQY0RZKSkcDbm5gWoj1cd72Un5+Kdu6dTJ7LEuNoJkol4I7RBMNRhvtD2jHG6HXH6Z/SGWosbBAkLXiEpH/+TJi1X7PvnMEz/Y+8s4Js6uzD+5MaTNnU3oECLuzsMGTpksMHYBlPm7mPu7i7A2PCN4e4w3CkttFCou8STe+/3e99UkkZbWmDf7n+/O5rkWpL23ve85zzn0Shg6OcobrAvetQP9GyXTZIvD35xFwLDnOemyAQ16Xz94bZXGyxuqP4c676XUW0cxQauCDzX8KRLx0Ft0ePG2kQBgXadrfMryaqlMMV7npfLNupxsbT2XIiLSbeR3t1VL6fm4NCGhneOEhAQEPgvEeSvRGK05wlNkckKSXHtWHrzgp34Z43zPAIpKpj5ys2Y/dZ0WjjjS3d3Q68WqLylJypv7YXKSd1g7BgLSOs/N2YxWvDN47/i0b4v0QQ8KX6yL9ohkAKiTfN24NiWUx73ZSVBmA+TorzUu/iZnEvfm3rgcMplzP16rYO4ge4DwOHLeXjkjeXgQjw3KSGiSN1V6mwoIOCOFh0T8MbK57CkJib5mcYkK4p+oQ5ow24bgNjWUdD0bu0sbrCDjQ9F39sG4IYZA+i1wx5NiF+DvwDSyfK5kW9SIdPlVYdpoaM7mIJyiIvdOz2LpWLEKJSIPpKLkOUnEfh3CpRnC69I3MCpZTC1c58jsMYGwRpjG78HRni+Juxavt/nxhnuYK0sHv3uXiqmqBa7S0vMCPs1C+1fvoj3o4dg3oBbIDkjh6RQCpGLTAMROYisRGgAMBZQlwy/owWQFhtrPse6McmAyb28npucEUN92rNDn8jEIvazM1Bcdpzv6TaiE7oM7eDwXL945zlzbYUCYsbzZ5hrKUSBsfY8yHvpPMS90599sdfxHae9rifgDPm9njt3Lm3kZC9uGD9+PNauXQu1+t/tYi8gIOAMcTwgBcH1Yf3PW3F483GIeB7i/DJILhVRcYNUJsFdb0/HjBcnY8vCXQ3+uBvSNMOkN+PLh3/C4wPn0vs4iUmIuMEeMs9HRAKndp/16lDamJ9vrzFdcXDDMXxw51fOcRLH4/j203hu5Fte91WSW0odIAQEriWturbA22tewKKcH2wxSaEtJvmz+FcqyB5yaz8akwRFep7jJwya2gdDbukHcZ08SUCYf4PPL+d8Hp4b8QaKsoups8uVIJFJEJ4Q6tLd+2oQ5C0mWXZlgmuCxWTFkz/OcVm0T3InT/40B2+ufq7B4gYCcf4h8zP29J/Yy6ftGkqf8d2d3Pjq5k18JfNMFkrzy2oeRySEoU3vVl63S/nnHFL2n2vQMQWuD4S2iwLwHxCD4sz6FQJbi1wM1jhAuy8HkggV2JIrG8yJ5GLwpvoPVtlSE4oXpoDTe2hH0vAGSPWDAYImtQQjl6ByZ5ZXAYMv6A7mwn9QHBiVb3akAgJNhUwjgqxODUZgSxG6P20Lcnc9xyLPi5YoqJUIHe5h0OFeHlnbeZjKAHU04N+Dw+Pvei8Ml9gVOdrDGoG05TyMlob/sYcYVRh/oQ0CRSLoH8rDY4uvflHIuI62rmbu0F9hN1ECyVH2SQzBtqcG488jWdieWkg7V/dsHoJpPeIQrLbZE6ukYujMDZtAINvdO/8Qtj89pEbosPKY9wDGZPX+/Q1qHYYDF0pgqJrcIM4KoztE4c2J7SFxUWBFxCql+vq7CxnrTJ48NLQlNp7J8+pqsSOtECPb1W8i6t+GtqQIPNc4N1ayH21JMeSqpnf4sLdxJh3/WNb2HR8/fpyKJAQEBK4+0xL64dWTtu7nrjBbyaRa7WR6+9A8WEXOCV4xY8aJ8hUIuBiLfH0F5LZbGUycFDxEkDHWmhqd6uu4lLg/1GzPw58xw8yS+6wfjJwZRk7i1k2BQPLo1Y4JjIhHpq4EH539ERKp+6KbEIUWcnEgTKzUwQUiWKlDkNxQ45pg5KQO75usY+YlYHkRxCTj7oIsXUDNfiUiBq93Hg+FWIqllzeB5d1fsxkRh6TAAqil7u+VSUH5+DvrAKY16weNVOgSJ3Bt0YT408We5JaRePHhG+nPs79eiqz0LI/7iL+1F+aM6I2HKvTYfCgNFToj4sID0aFlNCY89SMtUFEWAmYND5Zoi0hSjyQMTYCsHJAVuu6mQxJkf32+DiYPhUS+QBwqgsIDMOnTGXh1ySaP6xrahEF1PK9Bx7GE+0HfLRaWuCAaJDBaExRn8jF4xgDPx9QaYU6KpB1o3cGG+cMa6gdJkeuiKZI06XZDR/ya9jk2ztuBI5tPUPvqzkM6YOSswdAE+9PCDqlcCoupYU6hpOvR3AnvYX76l7QzK2Hv++uhqCiBMSnY5TaKjDIwKZ6dNgk9RnWmXd1It14CKUwbfEs/PPLV3S6dwdQalUMClfexeNVocXzvM+fejEPrj3kt5jq4/phDR6br2T3W6z4EBAQEmpjpN3TFG/Pd32/lqflO7gqXz+a4LMJZ+sFKhMWF0u6FnmBJd74R7cArauMCXiWDuWMcrDFBCN55DuYGFM5cPpuNt6d/ekWdWomgQ6Q30/NxC8eB8dJdkBRXkSS9VCbFr38fAOthQs3oJ4Y6KQGo1EHk4b6/7qctGHv/CHpfFRC4lgSEauhiT9verelCuPeFhchPy3W/A5EIrSf3xowJPXHPBzOpEwFxfYlLjkFipwTMSn60wedGnCRWfrUOFp0Jip1nYOzTGnydgiBxXhnkXgo9WAtLu3oSNzTS6bgxMLcI8yqgMrcMgzS7DMPqOBC4ikmuFBJr9BjZGfPOfYGNv27H0a0n6fNdb+iIEXcMpoVUZisLCRiwLgamvIgHX1ULRgQOIl4Eab4Wmm0Xa9YhXXRfGvsOFmR8RR3ZCNuXuG9+YS9cC16XBX1yAHiZc/MO8imOy1HjfL4ZFrvr7rDbBuLBz2e73KdKIoWerb3G+lq7SubI7Ln91Wk4tn2uw1idiLcNSSE0zpEW6KA6WUjjlk6DvIshmpR/WUxiNBoxa9YsLFq0yOF54uTw7bffQiIRSnwEBP4fIWKCiY+Mrvf91lVMYjFb8cc7f8I/xM+pkL8+kHkn4lTF+pC3r8uFk5fw3swvaDf5aw251z/50wM0J/zH2ys8zqeR+VhfWPfDFtx491Ao/YQ8icC1heQPyGJP+37JdCHc1+UplObVFoW7on2/Nrjp4Rtx74cltFifXDdIt/zY1tG4t9OTDT63ssIKrPp2ExUUXwlWs5U6KHQd1hHfP7MAV5thPuRJrhTiQk1EWPPPf0nFa0QkTPILRLQ8/PZBdP7DoDVckdM1maMiMQnJk8iVttqtHUv3+SS+8Eb3EZ2oSIzcfwgyhZTGUnM+udNpXZlcRl83Gy0NEtHZQ9x0iLjfGyQmadPLuxiiSfmXxSTXE0L0IwBl+1BobohHxeYr6yxIYXmULb9y1ZM0Wg3zxYoG/WFy5dfY5UAEKFoHwX9QLOQtAung2HDKe1LcFyp3ZEN3pBBhd7eHNELozCBw/WL1IXdmrRrjyQNESJxgP4PKoGfzYFq47o4gkwLRVZ2JK6RGZKsqIeEZNK8Mov9m7+LRdqQG+z3swxOjLreiXXjKM4CtBxvehZ8U9Bc2sIvqxjP5uL1vM8jrqKSraRNVP/cdVwxJCke4xtYFemafZnSpC7mGVdsONxQiclh88BIeGtoKxVoTFu6/8vvN9J7xeHtSB5QbLNifUUyTo10TghBR9X5c0TxUjdJLnoM3V04SrcL9ndwgOscF4oiXfWUUuu989f+C2di4lqZm49XtwEcsnENCQlBQUEAfFxU1zv1aQECg/oyK7oIMbT7mX3DucGqxMjCYawt+5GIL4jw4PbEw4cfz82Bg5ZDLaiddzJyEOjkwVUGGXGx1EDfYIxNzSPKLwaHSizCxEljEFrfrEnEDEU+Q+SSj1XaeZmR7DLbJrZUIGfL0tvUVYguaBZQ4HEMpsYLlzSg1KWGtypST9XgwKDD5I1SmdVifzMlrWTlKzCowEGFQZCvc1ao/uobEU8HGgWLPHfPIOYUqPNvWkuP9lbUSyy8dw3e97kSCX6jH9QUEriUGs8XndYI1Kkwd6tgRv12LSJzOyANjBRQlANFX82IeIhYgf3pMuYEu7tjz1wEkdmmOs1fYGYbYtvN/7/e6nn1hpD3BUYEoyXU/bjXHBaJiVLKDAwPnJ4e+ZzzW6MtxI8tCKnYdkxB7aesR7/bFbITGrcCBdHOuFqqQJC5Z6kIEDySZarmCfCgpFNvwyzZMeWIc7RpFkgShPIfSUc2h6xxO1NK2Fa0c1CcLEbj2gtd9TnpsDOZ8fCcqSipxcmcKTSy069sawZFBbreJaB6GjGOZNY/FFWYwWjM4P/fFoyqpBAnBjvskk/GJnZvh/FHP55l9zkNBnYCAgICAAzf1b4/07CL8vuWo0ycjvVgM5UHf57OMejM+uedb7+v1bO72Hs6F+KHV/cNw+qM1Dfqm8i8W4kogs4Gyc/kwdYpzu470UgkYNwlp4qBEOvVNe+Ymet+q1Blw8FTtPdAVvEQETiGGODIUyHR/D/vxuYVY/d0mvL95LqKae3daFRC4Vhh9KNioXoeMIUlRUV2niIwTnv9uPLF35aGafag2nwQbrgFLxt6kWDG3DGIfCx7JWNeVa4GvBEcGosSuqIpTem/ixillNQU3pFifFCS6gghBrhTSsbZadDD58bF0qYuI4+CXUYby5gEOwgarCuDIqVZ9PCILB7/jJQj5Mx1MnSZcFcWV1P1n/AMjqePfVh87aiuy9Ij5+iwKpjWHOapW2CUpNuGRNl3xyIOjUP7cTNoFm+Rz2vdPRmCY+y6zUUoN0iuLa87ZaiUNgEQQi90n5f3ECkTVsW7vMKANEtrE0k6qnEyMkilJMDVz7BBcMSgB57jGzSH8v1NRUUFdGnbscJwjfe2116ijg4CAwP83Ex4chczTl+lY90ohYufP7v/hivfTZVjHBjuEElepawlpRNL3pp6Y9swEtO6WiNKCMpzcldIo+/7miV+x8uv1+GDLKwiPE/IkAtcvRh+aMBmrGiuERgc7zM+TsWVcUjR1Cm4o+9ccpk4SWZ6E3z5weOOJKxISEBeG0vyGOTZvX7QHAyb3dtnQiNCiEWKSobf2p6IDskx9egJdXM2zMGIxOK7hzXBJXLZt0V6MmjUEl85mY6cPAgdv3PnGLdQxqLSgnMYkRIRBYoW6DcrsIc4i9Z23Is0FwuIcY5JuwzshqkUEcjM81/VlnRfyJP9m6u9xK/B/ieaGBEQ83hV+faOhSAoirT6v6flYcnQImdkWsoQrL+C9mjBqKQLHt0TQ1CQqbuAMVhR+e6JRXSO4SjOKF6RcseWqgEBTQtwcvK/j/rUHh7T02MBnSE4LGCQW/NbyGN7qvAM/Jx/G920O4s0u27AtKgOkkczMPp4HkYrqAhYXFCtsE/sHQ7OwLqPhA50HBieiVXjDrKQPXizFogOX3b4+oFUoZB7eg32BviuCVFI8P7qN1+13nStCZSO4RezLsFl6bEsthLkBXR7qUu0GEaCUYkS7SNzYIcqjuIEwOCm83scZ2CoMAS5cc0a19+7MQEQ6xy7XT1Dxb0OmaNyuFDLF1e+8Z38/lck8dCUUEBBoch5oPQoL+j6CKfF90Du0NThWCq1BBp3JLlMMIFyl9dboD1EBZSjRuxIEi8BRiYMIEpHn+1G28TKeb3M3kvybo9yshJljqIigGvKzhWNgqXJvKDWoYOUYBCj1kLgRQzicSZUDA3FlqCtuqIa4NNgcHWzrVrs2WHgJck2ByDf5o9SipKKGbGMgSi1qxKrUeKHNeLzddRIVN5SY9Lh58zzwPqjHxV4+E4KUYZFnLMfTRxy7yAkIXG8kxYR5XSc52v06s8b2cuhkSf5ExRbbvwTFiSyPJT5moxnj54z0eHxZVdGON44vO+h1HbEbscVtL9+MmFau3eF4EaAdmOggbrDnQNplrP7HfdKv19iukLgRZNtDOoi6gtgh3/X2dK/b719zxKdEjDdIByHCvlWHadcoEcsjeE0Goj8+hJBFZxGy+CyiPzmM4L/TwfgQswRF2Ip3iMtEv5t6YsCkXh7FDYReN3Z1eCziePgd9jz5Piw+AX7VlkR2kGN649DG4zh/zLtYoykht67GWAQEBASuBk9OG4zfXpyOKYM6om+7ZlCcL4T/mlPw35wKUT3n473N37P+CrCR7gtQCedMJry89Em07p5IR/PWqCCYOsbD3CEebJj33AknY6DtEoHSUS1QNqwZTDHuk8uukJ/KhjjPdQEAcW5QHKrtTm5PeHwoHv3mHjz98wNU3FCaX4bHB7/iUz8rMj6BRu1TsdRbt3ziwx4FBK4drZp5n49u1dz9OtNfmHRFx7cYzRhnF5OICyogS8mG7GxOjbiBdM70hRM7zzT4PO544xZE2r1P4hjnjep1Dqw9iu2L3Dsd9JvYkxb6uINVimFM8AOX4Pr6FxIdhDtfv8Xr+ez58wDkWy5AZLJ1nyVzLBZ/gCNpCrvAkDgXVHYPRXl/1zHYse2n6L/7Vh7yufMqqxDDFKeCLF8PVWopAnbmIvqrM2j22lHE5rA1xT4kPug/sZdHcQNhSFzzKltT28LzIlRqPc/zD1J3gFzs/LvSd4LNDbl0XEsncQOBl4uxVqZFeoEXy/cm5t8Sk5SVleGGG25wEDeQnMX8+fMFcYOAwH/IxeHRb+7Fl/vfwZh7h6P7yE5XtL/GqCnKSs3GS4seR8suzfFvghS8PvLNPdRNjogbSMOTJwY1rlAs53we3p35eaPuU0CgsSFNchq6Drkm3fr8lcUkpEu/fUziCplc6tP17PQe782W3HH3u7c5Fcf7yu4/D2DPX+5zNIOn9aWflTfEbtycyRzKzFenet1+x5J9sFquvHbreFVMQmKcxiCwan6KOImQHAmJSzyJGwjEQa++DJ3eDxKpc66p7/juXrclziQ56Q1zQP+vxSTXI4LAQaAG4ggQOD4RobPaQ5kcfE0/Gd7EQhwkh7JzGBhN4xcbkv02BZzOgrKV55H7zgFUbM5EyZJUmDM921A3BGuRAaY0911rBQSuNYnjRR7vMDINED/U/QBvUOswfDClE/zljoMTUtD/cI/W6F4Yg++SD+J4SB44pvYOrpNasCUmHWdC8xG5MRLPGHugRYVzgUmAQgqjh4KVzTHpqJAYsT6u4d1WW0f44dae8VjxQF+8MDoZkRpbQX59WHSwVuBAHAo2ns7Do4uO4u55B/HRxjSMbOs9QWIiHUhlYkjFts9bJmYwrlM0ls/pi5bhfrCwHFYey8YdPx/A2C924YGFh7EjrVYpm5LbONeww5ml+G5HOrQe7OXrQ6AL0YH3CZz6j/aeH22z7qvL1O5xUMs9F3ORHMGPuzLw/4xfcChEbpTq9YWozf2CGxZUEtLS0vDLL7/gvffeo4uvVs8lJbVOL1FRrhNPAgICV49W/lF4qs14fNptFroEJMPKkWut45iB8aEIn6yjN8uQX+5aaEhuC97mmrRWLWKV4egT3BMWUxRO5EWhQK+GiRXTxchJqpwVRDBYpLhcHgg/hQkquYUKH7zRP9Q24RIoN7h1h6gWNSgYKz3nurlvEydFpVUJLaugwg1CVqUBL/yzEb2Xfo2vT/6Dx/auxMmSfJgsng0cyf6NrPf7q9ZiG9OkVebjUPG1LZoVEPDEtD6dPP6dh/qrMLyje0vaQV0S8cIdw6GqU/Ajl0kwvW9byDKKvI4/SRFQfJsYl6/7B/vBbPDNgVKeUQJG53ld5ckCl4mJG+8aSpOiREhAOqfaY4kLBFclHHbHn3ttk90EK8thy6E0vPj9GjzxxUr8uHo/+vbwbuvLXyikHVHFVWIIYgtPbJ0/3/sWYlpGwWK2YNOCHXhu1Jt4oPszePOWj3Fky8ma7TOON7xrrT3Htp3Cik/X1HSkqkZssEKVWgLV2RKI9b7HK5rg+onZWZZ1OXYO2JkFRbprYbTsciWeHuHaAnv0PcMgV3n+/jiWw4rPGtb5W0BAQOC/SpuECDw/Yxi+eHQi+jJySBtpbqwuvJ/nRh2EojIdEvsnY8BLUyCfPQSm/kmwJkXDkhwN4+C2MAxrD85NIYAxMRB5D3ZH+ahE6LtEQtczGkW3d0DRtDbgqpLqA6f09nh8IsRTb0mBYn8GmBIdYLaCqTBCfuwy1OtOgTG4vm8WXCrCJ/d+h1ti78PyT1bj9Zs/wsXDFyCq9NJtkeMhtrgIfNyQejAdKVfoliUg0JRMHOW5aCMi1B/9uiW6fX3Q1L546Iu7oKgz5iOPJz7q7HxWF4vZirMHztGuq64gRSek4KgpSe7ZEiPvHIyvDrxLO3sSkbMso5AkPDxuJz9XG9+s+2lLzc8WlsWatFQ8sm4N7l21Et8cPYROk7u7FDYUTGuBzNe6Ivvx9rjweDsUv9Mbhh5hNcKO4XcMojFJREIYTFYrlh87jVm/LcekHxbiyRVrcSAzq2Z/6cczIS3SQ7MnByIzT4UNvIdplrJhMWCVzisc2nAcf32xDga9b91nDS39cfGtziic1gza7iHQtwtE+dBIFN7SDNYgGY0r64OVuOPJeYj9rJCobQsjt6KsXAWDwfX9xJonwd1JY1y+Nvb+EWCi/GFs7b6uwMrz+O2fhnX+/i9hMBgwZswYHDxYWzwXEBCA9evXY+bMmdf03AQEBK4+ST1a4rFv78U7615C2z6tr+lXkHexEG37JmHwLf3gH+JHXXusgQpwXvLkvkLEik0B6eb98d3f4tbY+/D31xvw6qQPkJXa+B28idNV+nHXwm8BgesBb02YoltGoruHYvPhtw/CfR/eDnmdZk1KPwUmPep6jGgPaVxE5vfJcVwREKaBuZFqiNxB3ATI+/j60Hu4/dWpCAitX/MHp5jEbMHW33fRPMYrE9/H8k/WoNPgtl73wVo4qDTKGoE2+UyJk8Jne96k7hkmgwlrf9yCp294jeZJiIDq1O7aBlQZjXSt+WfVIaz6diOM+itvKkWod0xisUIsrf895M43b3X5/LgHRkLipslWNRaTBSu/XF/vYwpcH3j+dgX+s/j1jYHhdHFDakEbjYIvjwK2xhONiiRcieBpSbD0i0HhTyfBG5vgIFYOFZt9t6xuCKZLlVAkXVshioCAOzQJInR5WISjn/NO1xGxAug9l4FY7rmqcHK3WNolf83JXGSV6BHqL8e4jtEIUsvw6t6LyJVWOm3TuiwEt53vDCUrxYVMHmEIwRyEoDiiEovbHofUHxjbMRq7zhVShwR3WBkOW6MzUCFr2IBOo5Dgzr7NcPe8Q0jLr4RSKkZUgBJ5FfXb3+USWxelMr0Zd/xyEMft3AA2pxRAzIggE4tgZj1frHVm23Xu/oEt8NCwVvCrEo7oTFbc+csBh8/iVHYF1p7Mw+Susfjw5o5Q1xGZNBSjhcM7685S4Udj4IuDgj1PLzuBZYdrExK+UmF0rYAOVMkwq19zfLn1vMftd9qJRf4fkatUaNWjD9L277nifbXs0Yfur6Hs378fs2fPpj9LJBI8+OCD8PPz/Pu2Z88eWmhWTZ8+fRp8fAEBgcZnZste2JHvfJ0tN3l3jyk12q4nRVo/6qYQ4qejjg3EYaFYr0KlToGOsZ4ns0Vg8NCRd2HlOTAyIFYKaM1ylJmUCFYaIBNbYWXFdH9Fej9wvAhqmRkSEevVwSFOmYDn29yOsTGX8HHax14N38ix9KwMeqsM/lKzx6LtEqMSIoaDwWrB+0e3g5Ha9l6iUyEq0H1xFgcR8o3+0Ejdj1e0FhmKTLXdVE+UXkb3kH9X5yaB/w5tYsPx5LiB+PDvnU6vqeUyfHj7GEi9uA/cNKgDhvdMwqYDqcgrqUBYoB99rFErcOitlbR4zx1lBRVY//PWmsckAUgmrP2D/DDklv7Y8+d+pJZofXovpLhQszkdZWOTXLotyNOKID/v2BGTHG/EB9PxwJd/4WJeCVQSCUImdEbRr7vBVDm0kc7R3sgusnVtLq3U46GPVyD1Um2h0c5j6ZCIGUikDKwW11cySXYpxGUG2CIb4La5UzD1qfFQ+tmu5bpyHZ4b+SbOHqi93p87coF2Ixpzzw147Lv7qDjiSrEGqVAaE4CPf9mIpFDPHU19gVyH+9xk61bqC0Tw8u7ML6idtdO+WB5hC1Og6xAKXZdwWAPkEFea4XesAOoThdA9XAGEOQv3iVvE2PuG08JRTxzecBzXnP9oZyEBAYF/PxMfGY1jW2vFfo2JyIeue2Tub8YDP8Esdq3Q5oL9YBqQBMXmUw6ycEuIEsUTkwAXCWNTiyCUjWmJ/vnAy0uexMldZ/DC6LfduiWRcYg8LZ8u9YXs89sn59n2Q+KatDyYurnvHinRs6B69hLXrhGuSNmXRl0iBASuR9q3jsa9t/bH93/sdnrNXy3HG0+Mh9iD+wBhwoOjcMNtA7B98V4UZhUjLDaEdghVB6jpmLkk132eozinFBt+2VbzWBPiB5lCRoUNQ6cPwJaFO1FR7JxnaSwCwgMw8KNpmPXzcmQWl0EZIIH67X4oWXcc4op8ICgSIhe+eLJzBZDkVzgUKBIKdFrc/udypBXXxj6bM9Ih6ydFaEY4lIcKatxrch5oC3OcoxtMmRIom5GIZ96bjjt6dIdSbYuHygxGKmw4k1cb65zOK8Dq06mY2bMzXho5hMYk5rggWJNjoCoGyr2EFLxMDF3HYGj21+7TEqaCtlkg3vttPdoFeXZ+I1g1UuQ80BqcC6GEJUKJvIeSaxwUfIHjeTy8dwU2ZqdCZPdrx0h48GIe+QUBUCvMCJAbIZay4IximC6rYcpSoXy4FYEu6sDC40Ix6PWJ+O2C5zzJnnPXQeHndR6TPPzww9i7t9atJDw8HBs3bkSnTlfWvV1AQOD/IyY5sy+tSfYtYkTgvYiLJVIxZrZ4ECaVBNp+8TC2CgEkDBUrytNL4b/nEiSlrp1lvdF5aHu8uvxpHN16Ei+Ne9fnZjD28CKRR7c9faUBXzz0I5qSlH/OIbGT9y75AgLXgs5D2mPGS5Ox8M3lLgvTiUOLN/eBKU+Mw8hZQ2hMUpxTgvD4MBqTEJHDZhJTFLmPKQovF2HDr3YxSag/dWwgwoYbbhuI1d9tQnlh0zSWqHZsG3JLP+rgkpOeT8f14QlhKPdwzq7Iq45JLhfRfMbls9k1r+1deRBSuQSMhAHnxRlaX2GgnzcRjRCxcLWYvbSgHM/c8BounrrskCfZsnAXpj49Afe8dxuUjZAnIWjL9Pj8gR/QunuLK94XEWv0GuPoWu0J4qxNRCHEqa++aEt1UFXllewhTbRIzm3T/O0etz+08ToQXV/nMcn1iiBwEHCJvEUAAsa0QPmaDOc/LtLdx03i2ifEIsii/WC+7OVm0QS6AwIRBZT9eR7WYkPTiBsaCKOWQN48EIZTnrtAViOSeLc3EhC4lrS8iUFQax7nV/AoOsVDJAaieokQOxjgOaDsPI/AlrW/xyYri0MXS+m/7aMDEK5R0OJ60im/Lieb5QC140VKiFGFO851gYxzvrWF5PvjjRb90X+uLam35oR3dX6lsuFqVVIU/8KfjsnPzCqxQn0I9bOpoJ9aetxB3GDv6sCJAH+5GJVV1sie+GXvRdw/uLYj1JtrzrgVeiw/koWOsQG4sUMkXv7rVKONs9LytdRNwuJFlOENIlbgONukfK8WweibGOp23b3nixokbiAYLe4/18QwxwSJK3xsOPevptOIMY0icOg8wnvXMU/07du35mer1Yply5bhzjvv9LjNl19+WfNzt27d0KyZMPkkIHA90T8iEU+1H4YPT9V2xSCUmVQwWjRQSN1PeGVVBkAqZtE6rABKWW3hkETMIlpTiQJeiXhVHC7payeK6mJiRVTcUA2Z3/OTW2C0SpBRShxnbOMYm7MCER2yYBgeATIjnZwiYgpXQgeyfryyBz5IWYoCUy7MnJ7mA7xBtquwKCAR8QhV6lyuozXL6DoKtQlGvczBUatMp4RSZkagyujyfsXyIvCIRJJ/IlIr9zutQ97PseJYB0cNKSNMKQhc39wxqBs6xEXi993HcOJSLqRiMQa1bYERLeIgulSOC3oOzdvH16xvMltx/Fw2LFYWyc0iEBKghlopo0KHuqgD6ifMrCzWovOU3pi75En6eP3Pjtc2d5PDpAM/QX6hFMFLT0HXIwam5sHEqgbiEgNUx3OhPJ7nUBZEhqA5naLw5lLHCV3ShoGZ2BGaVacg1pnddl22J8Tf9j5f/H6tg7jB3tWBYUTU6UJfp/urOL8Cql2OXZWXf7waNz85vubxl4/87CBusGfND5uR1LMl+k/qiW+e+BUNgZNLoBvcCpa42gIiMo2tDOoM+brTPn0G7q7JG37eRjv/kA+cJGRJJyh3HFh31KW4wb541O94IV3qYvKQ3I1Pdu0QYk/175CAgICAQP3pO74H7e43/9UlTq/JVTKY9PUvwKnG38QiLCoYF3NrnSXrQvIXpPO1QyVqHbggP7ARAZDk14oCdN2jXIobqjEkhaBD/+b46O5vcDk1x6244UrhNWpwCRHgQwJoQCUuq4QktxzWKOfKYMbEQVFqRWiYPxKDmuHA377lSUgRgYDA9cwdk3ujQ1I0lq8/ipTzeVRkPaBnSwxsHw9rTgkyrVYktK3NgZAumqf3nIXVwiKpRyICwwKomGHMvcOd9q0kguV6NCKuKNbihpkD8ey8h+njv75Y63Ub4sJGilDqCy8CMvpF4pW128CLeJjDWbBqzjalMMbmokuE0AFHeIjFtnl2psIAeUoeZGfzHPYVFGG7Zjy0do2DuKEaM8chf0ZLtCg1g0svQ2WvMCdxgz3fph7DHf161Tyeu2azg7jBngUHjqFjdCQGTOmNz/adrBGb8T7M47BVLtTEyaF0fGuYm9U66u0jMWVkJ/gtPU0d5VxR3i/MpbihGmOUEgszTkNvsdCPtX9sArpFuY8PNmalUnGDK8jbEsk5cCf8UGnUOL1u8iDKi28bC3gROJBcloB7li9fjp9++qnmsUajwebNm9Ghg/NchICAwH+PwdP6If3YRSx67y+n12RKWYNEAdWoNCr4B6qoS4M7yJiE9Zej5JYO4KpqFyhiBqbWITDHaxCy6BQkJfUXOXTo34bGJJfOZNXrffByGRAXDoQFk6QPeKMZyCsCsgvoHNuVEtEsDLGto3F4o29NQ4SYROB6587Xb0HHgW3x99frkXY4gzZi6j+xF3qN7UYL7i+dzXaYZzbojDi9J5XOKxNHNiKQJo2bxt0/wmnfdZ0dvEHEEKPvHobHv7+fPv797RVetyFCK3ItaghE9P35g7UiJ08CcU8EVsUkr03+0EHcUI3FZKWxky9zRaQZ0uL3V2LCQ6Nqnvv47m8cxA32LPlgJZJ7tcLAm/vgtzeWobFIO5RBnQ+sZu8NONxBfkfWfL+Zig+IaK7HqM5I7um+CQURyTRE3EDwdJ9o1i7Wp3MV+HcizPwJuMW/fwwUrYOg+ycXljwdRHIxlB1CIYvXoODzI+DNDfzDZ3koO4XBnKOlP19ttLucbzTXGnGgHCEz20IarYb+UD7KN14EV+k5ya4/WkDarELdIwJijaM9rYDA9UJIWxFdCLo8Hke/4LD98dqqb01zoMM9DP42Z+D7nRko0dkGJBJGhJHtI/HmhPbUsYFwvkCLTWfyYbZyyNM5F+b1y493KW6oJncfUJHJU3eJuGAlUvM9i6z6DtbgxLH6dyZrTCZ1jcWFIh22nHU9uU4gOc4BrcMwqHUYPtl0DnkV7q2NTVYOq47nYGafZijXW/DnUc/Xw3l7L2JS15hGF5EScYNYdGW3gI822nWq2AK0jdLgu5ndEBfsXGi26KD74lVPyCQMkiLc29P1aBZM6so8ihh6t/j/d9qJa9cBIbHxKM5quHNRaFwCYtte2WR9YmIi+vXrR10ZCK+++iomTJiAIDfdsH777Tf89VftZOAzzzxzRccXEBBoGu5u3Q8DI1ph0YXDOF9RAD+pHKNj26N7WDA+Tn0OHJwLcSotckRotPBXmB3EDfZJ24iAAvQPnYJFl5aAc+GfQK7tRtb1uEIhsUIltUBvkdXsT8yQoiPb6yqJbRzPgYGFE4EREW8E282C4xnqlLA0awMqzEr4y0yQi0VeA3OdRYYKkwJWToxcqwR6vRTRgRWQiLma8y01qJCn9YNCbIEBMsgUVlit9nsWIa8sAFqDHBGBlVR8Qc6KiDPIOUUrwvBq+9lIUEfgcMkmrM1dCgtXDJZnkKPXIL0iFFqrwmEMsuLiMZhYK26K64pQReO4NAkINDZdW8TQhZB1LhdfP/YLnll/jE4iE1p0SsBd78zAKbMZv68/jIqqWIM4Ewzr2RrPzBwK/6rOnhdPX6b2vRaztUFdhXYv30+7j0a1iEBk83DaMcgTo++5Aau/3VjzWJqnReCqVPCku5pYBMZN8wlTcjjMLcNcvsZpFNANagnN2jOQZZZCZLSAV9gKb1wxtlcbnM8qxIEz7sd6HMdjYM+W6NIyBj9/vgal2SWQXi5x6LpajUFrxM5l/1DrZdKVaMfi2g6Vrvjri3XoM747GgL5hrUjkmGNcC7QMQSrwI7rAPXSIxA1MC756fmFNT/Pf20JLUB7ZfnTtKuuJwvr+qBQyxHfxn2RUsdBbamorvr32eU6g9s16NgCAgICAjZmzr2Z3ovWfLeJigH8AlW0Mxwp6Hyg+7MNTgSTTqLTe7bGp3/vpw08nOB4SEw8ODKJ5gU2KshB4GBs6WU+ihHhp4Vb4He06eY+uYggcO2aA4xdFXBIAMioQ3y2ANboAPBKKUQsINWxkOhYxMcH47U3pyAmJoh2cSTCEm/d5df+tAX6SiNGzhpMC8EFBK5HuraPpwshMyWLxiRPbT5ZM4Zr1a0F7n5nBk7uSqHjX22ZramBVCbB4Fv74aHP76pxNUvNLsTuMxdgYTkUK32osq/D1t934663pyM0JoTGJEXZ7kVWBOIYtvKr9fU+jq5rJIzJtnExFTdonGMXNlCKsl5WxL51DNJyK0QGW6F+XW6YOQjH8/JwKMd9PoMFj65fTkGfdODtyjN0VsYdFSYTNmWcx/ikNsirqMTms56L84nIoedNY8CG1M57iM1ETO1xM0hLjDQmKbm5LSxRjnMmnJxDZSsFzHe1R+iXx1y+b0Ny3WsaD0g4gLj6kB2zDN7et92mJgHwycG96BoRjW9vnIBwlbPAY3GGl0IiMcD7cYDR8ffKXyFHXGitOKMuPZrbiolYFQdLAAteRjqBiCDRMpCUMxBxIvSsWkfAGdKs6emnn3Z47ueffxbEDQICAg6QuUsitlv7/WY6v0m6rhM3pqgW4Xio5/MNEiNWO6ve9vJkfP/UAo9zS5X94hzFDXaQecXKgQkI+utsvY+/4PWl9d6GV8qBjq0Amd18pkIGNIsGgjXgT56/IpFDs3ZxeO2vZxAeH4q/v96ABa8trRmb1YUL8QcXFYw/951HWYAfRg1rjwBN43RYFxBobLre0JEuhAsnM2lMYi+cIkKGu9+bgUMbTlAhBBE+EGQKKYbNGIg5n95Z44B27kgGDq4/RgvGSWF7fdk0fwfufPNWBIUH0Jik0ovTNXE6IHHStWT4zEE4sfMM0g6lu12HXIvH3DMMcW1iMe+VxR4/m7KCclro3++mnjRntH/NEY/HJ+L0x7+7D40NmdOyb7TVEL55vLY5FZnH6TCwDeYufdLlHE1D8yQBof7UecMdHQa29bqPToOEPMm/FUHgIOARabgKgeNru30TLIX6hosbqjBfKEfone1QsjQVXEXDuuXVQDqpDo6FdkeWp/mq6xJJpAoBwxOgaBNClWwEdY9IKNoEI//jw+D07pMj1gIDKjZlomLLJfod+fW2dTwRELgeMRTx2PYwB0OdxlsVF4CXvzmLLdEZDs9bOZ66LGQU6vDbXT3x0l+nsO6UY9eeuiSVue/gX03eAZvAYVqPeGxOcS8a8FdI8OikRPxTXIhjLpwTGgu5RAST1XWAHayWIUApwdaUfFpA6IkDF0rx9Yxu+Hn3RY8CB8K5AltwkJJXAaMXN56MIh0e/t3zQLqhEHFDoFKKYDWZfBDR93v0UhlYb2/WDWdyKzDzp/1Y/9hAKOp0qMsua5gt5vhO0TUCG1fEBqnQPFSN9EL3gcnsfs3x/w4pqLrxwSew+NXnYDF5/v1zhVSuwKgHvFsf+sL777+P/v3700m4zMxMDBs2DL///juSk5MdEgaffPIJnn/++Zrnxo4di6lTp17x8QUEBJqG1gHhmNv5RofnMnWXkWOUQSUGFGIrFRBYeDH0ViksvAQyCQsxQxLJbpL9IuCcNhNPJD2Mb8//Ci1bWwxkYsUwcRIqUHCHWmauETgQZGIRZrcYjD9zyQRb7b2Mhwgs79w5ldQoiRkOEoanAgKOZ6lozhXEOSFfp6H7oo+tYmSWh6DQpIa/3ASRiEeErAK9Q9IRG2N7H8UmFY4Ux+NAHnGmsX8fImhNSlTmKSGXWqCSm9E+OAL3Jw1Fr5C2YKo6w/YIGYl4dR9M2fE5Kq2uu7mSW/Z5bT4+S8nH16nb8XLHcZgY38XtZyYgcK0puFSIJwa+jFK74j9CxvFMPDn3d5jaRDk5E2zYdxaX8krx2SMT8PHsr7Dv70NXdA5kjHJowzGMmzMSN941DEc2n/Q4YTvnkztxZl8qPUd7SJLOU6LO2DbS43lYYgLAahQQVxgRdDwXJb1qXSzsCZPJEHipHHuM7iftqzl6Lhuv33Mj/rrvBxjPe47dLqXY3NXOH71AxSKeyDiRiQ9mfeX0vDVEDXOCzclCUqiF9FKJk1CBFE66EjdUY9YoENq9GULLbdc5Yot9Zl8a+AYmQVMPpuO5kW/gu2MfQiJ1nHLN99AJzxPEplutce8WQrrJka5yeRdcx7dkjD3p0TG4loh4ni5Xug8BAQGBa0nLzs3x6Df3OjyXsv/cFXW5I2StO473Hh2Pt79eg1K7fTFaE8S8BCIydefeiKEWRgSpXIppL0zEvPUnPYoX7bdpKniJGFzbZo7ihirIUcVBQZBtPW07h2ANknq2wu1zR6NHz0TqDEWY8OAo9BzdBfd2fNKjw8T5IxfoQooHnvppDi30EhC4XslJz8MTA+c6CXfOHc7Ac6PedBqHkrHypnk7kHM+D6+ufQEvLNyAPSkXa1cYmABx21AErE2FpNy3eVlSuHJ40wmMvHMIjUlO7XZfjBgSHYT7P74DRzafoAKv+qDtZRPpchIerL/7PASnlsA0PBLyBRfcngMpqtqV7j0mOZSfi3ceuBPv/nQR0HkukkovtQk7TuXke8xJ8OBxtCwbz+3bgMrmHOTFDIihqLwUsLjvjQRGa4H6VAlMiUEO4gZOxcIaY7YJCch33ApQdemJZouLoMg0QhOqoQ4ezjvkAAVbbSBhQ0rEBKQ6VVIjcjiSn4M7Vi3D6ptnQlznGpyj9y7S5+XOn8VNvdpBaV9EWoekyDAEJSqQLarav4gHIyaOHYA1gIEqR47b+lzb+aLrOSZZtGgRLlyo/f1nGAbPPvssXerDI488QhcBAYH/X1p3S0Tr7xxrt45vP91gcQOFB3LT8/HS4sfx6X3fodJFMS4nZWBs7bkOw9QsCKxaChUvwpQnx2Hhm8vt0ySNS8s4R3GDPRo/ICYcuFx/IXfbPq0x85Wp6Da8Y03Omsyp9byxC+7r/BTMds61vISBtXtr8CG2eceUnDKk/LwdP/22Gy8+MRqD+iU19N0JCDQ5xK3hiUGvOAl3iMvyMze84VToTn73SVF6bkYeXlz0ON6e/hmObnGf1/AFEucc23oKQ27pR2MSEg+5I7JZGO776HbaeMqT28yVQmIO+79ze4jgidR0HvLB1eX0vjQ8/NU9VBzljeoYi3z2nkRmdL97zuLLh2sdvxoT8p0T1zziWk6uf8Sx4/Re185vvnByZwpeHvcuPt/3tlMNUP5F93V6nrjx7hsgk7uPSYhAJzBcg7IC1zGPWMJgwsOOtQZXm+s5JrneqX9rB4H/PMYzzvaf9cV0sQKKVkFgFI2gseEBa67+XyduIJP3wTcnQdnOdiO0R+wng8pXwQLHo2zleRjPNcxGSUDgapC6mHcSNxAqJSZsj3Q9cU1Iya3A7T8f8CpuIIhc9rhxhK+6TtzQJhxjO7r+GyN/jm9MaA+lTIx3JnVAYJWNcFPgJ5fiy+ld0CLMuZsOcbN45e8zeGed924H1WPCmCDvHQGWH8mirhBSsW9DgO1pvtnBN4QygwXZZUZ8OLUTls3pi19m9UC7aPcFSN64WKzH6hPOntwhHkQK7ugQE4CXx3pW+e46V+hR3KCQMOgY576z0f8TES1aYvxTL1KxQn0g65PtyPaNQd++ffHRRx/VPD569Cjat2+PgQMHYvbs2Zg8eTKio6OpWwPL2ib8evXqhYULa7vvCggI/Ds4VHqUFvzrWDmKzWoUmf1QblFScUM1jJeW3GcrzqNjQHsUGiJwWRuAHJ0GmZWBKDWpqNOCJ+ru28pzOHG+BBX5KhhZ72OHancI2zyEyCaocN20FTla/1pxg4WBrlxhu/eLRKg0K9BcVYwJcScRq6ot2g6R6zE8+ixGx59yEFzYY7JIodNr8FL7W9EntH2NuKGaCIUGo8N7gWOdx1jkvPmq5DnBwrF49dhKHCl2LMIWELie+P3tP53EDQSOWAYnuRcEpFzIx+N3f3nF4oaa41X9sZOua30n9HC5DumY88jX99AJ2yd/nEMnln2FNvIMcY4vHBCJqECAEFlsxJt3jEJcWO24lYgn5OcKwX6/G1/c8y1+fXmR1+MyVUFJhIcuOtWs/WEzci/k0460vmBvWcxLxagc2QYVEzvB2DUOxs6x0A5PRvnUrrDWcXMzN3N2UqhLkZ+Mdq194ffH8OmuN/HGymfRvINrwYcvXErJxp4/Dzg9TxIEDUms3vP+TI/r7COJHTfiBgKxxE7sTMRuAgICAgKNzd6/nK/39eXU7hT069QMQRtOQ73uBJRbU6BeeRTyzDJay0rwpfsoU1wJi8mCEwYWbLA/pDrv28gv1d+Nylf4qBBA7FmZwcWGQVSphzy/GC+8dTN69W5ZI26oJqp5BO3c7gvk/b9/51dIPei5E7uAwLXktzeXuXUl8SSyPb0nFXd/8IejuKEKNlSNspva0uJDX6kuWho2YwB63Oi68FwiFVNhFxHuPvXzA1D6+T7va2oWDDbAZm/Aqrkax0t3qCe0wpM/PUC7t9ZQtU1xTik+ufc7LHxjue95Eo33HMOCI8eQW1kJaZ1rFV/1n+3crbDEm8BGWrCj/DxMiRaUdzehqL8FupZWMDxxxnTxvVk5hC1Ph4jlYUgKcRA3WFoaa8QN1RSoTThzXyie3fciPt31Bl5d8TQS2sZCmVp9neadxQ3V75l87SoikKs9j5TiQmzNdC4SC5F7iyt5iOo05OqWGIOHRvf1uNWai2erxA08pAoLFP4myNUW2xJsgrytFS0jvcdm/1VWrFjh8JjjOKSnp9d7KSnx7MYiICDw/8meRolJztI5SkbievzOkVoJiZdxBiOiDg8mvRmndqU0mbiBujcEelAYEqK8N8Wsi0Ilx4t/PIbuIzo5FeOS5iKDpjneC60dW9SIG+wxma14/cPVSPcwVycgcK2Z/+pi964kHrr4H9t2mgojrlTcUPdYo2YPQeeh7V2uQxo5PPrtfZBIJHjqlwfp32pTEZsUTeMfImaooepyUHCpCB/d9Q2Wffi31/1Uz2tEJHi/Fq34ZBVK8koh8SFPwlptQvWmguTOiGs5cbD5dPebeGnxE4hLim7w/ohogwjl6xIYUf/6qa43dMDMV272uM7mBTvdihsIKo0Ksa2FxuH14dy5c3jxxRcxYMAAREZGQi6XQ6PRIDExEdOmTcP8+fNhsVxhU3sfEQQOAvWG99Lx27ffPBE4M0tdCBoDY+q/LGgXAYGTWkIW42hJag9vqEf3Jx7Q7nZvzSogcK3J3Og6ij0RkgeW8aJEzfEt2Zbh7/06EN7ZNpgkgelnt3TBS2PaIN6uCKZfyxAsuKsXbupi6y4UpJJhQqdohPrJapqaxQUp8fgNrWin5ivFbOUwtmM0tj45GL/O6gE/ufPEAXGz8MbAVrbB8dTucV7X1ZlYvLsuBZ1iAxDu33QBgK+YrBzeqxJxDGwdhjWPDMCKOX2oi0ZD+Hrbedwz/xCeWHIM284W0AKySV19sz8m36hKJsb0nvFYcl9vBCg9F6jO3+e5iNNo5TDlm71gr8AG899Es45dMO3VdxES61tBWGhcAl2fbNeYPP744/jtt9/o4JpAhAy7du3CL7/8QpMFhYW1yv477rgDGzZsqFlXQEDg34OVv7JOqQSxSIwKqwHZhhKYWCn0VhksnARWL+IGgpmtuw6Pw6VnoNCYUG5UeHRfMrJimDlynxPVHIs4TRg5KUycmDo2kIX8rDPLUXIpCJYCObTlCmjLVeB5hooLyDEUYjOGRKS5PVaX0CzEa4hA3fmEGIjwXq8xaBXgvhi53GBFRZkSuko5jAYJWFZEF44j5+04FiJp/QUZ+9y/cQGBawgpENj6+y6Xr1mahXrtYJxaqW+0c+k4yCaiFYvF1Kb37ndvo12IquOUbiM64f3NczFwSh/6XGCYBoOn9aX/Vk+ORydG4I7XptKio7rQNaze521EFramGHBMrzZY+eqd+HzmKERuOY+g+Qfhv+UcGKPtWiu66NjoguibyOXLTueEXu1sY8BRs4d6PbauXI9fXvoDbfsmUaeK+qAd0hqWuCCn5zl/BSpvbAfOLo4g3dS8QdYhXaF/fvF32/sY0w3fH/8IH+94DUr/+ol3q5n/2hK8MvF9fDD7K9rViXRf8rU4k+RQyXHHPzAS7295BSp/zyJ2YhfuCfLenhz8itcOUE0K30iLgICAwHUGuYd6FBzGhMDcNxmmEV1gHtIB1tbR4OskrcUSMUrzyqjYTlysgzSnDOJKI0SVtXkTEblle7iOiwxmSC4Xg/dT4tDJy/Q5ZRHncRv5xTJICxtvfFMXXuX9Hsr7KcColXh24WOIaek+yWyw+yy8QbrXrvhsjc/rCwhcTSxmC3Ys3tuwbSP9ca7cfZ6E0yhgSvIuNK6OOWpiEokYr/35NGa9eSvC4mwF6CTmIO4pH257DX3GdafPBbaMRK93b4F4Zl/oR3eAsUMsYjol4I7XplFxdl0MXeNqx28+pFFMrBWjZg3BvHNf0BhJTgqX6lzCpCe9N98bEG8T9t7c1nWBVA08ab5kxGd796JHQiz85XLqNGEOZGGKZGGKIv+awYZbAYkLQYGcgzWQgyWCBR9grRUFcDxUZ0oQ/d0ZqE+XOsUk1mizW1cercWET0/voD/3u6knfjz1Cb575X6oGAkg4VyKG2rOiexT4viBfbRnNx5Y/Dee/3sj9mVcos9NbNbB5fYShkWIvxbxoaWI7pWP0OE5iEiqxKwurfH9/ZM9ujcQ5qXYXMBlKgskckchBvnZINbjrt2/4ZpyHcckaWnu5/UEBAQEriQm8RXS1ZoU75LCVlcweov3uUaeB6Oz0Maux7efQZOh8KG2QS4D7+nGWQexVIwX/ngM4fHux1JGba1TFq+Sg490npusxmrlsHyV7d4oIHC9YdAaXDbn8ZXLZxunLpHEEB0GJNOfpTIp3lr9PG5/dSpCY4JtrzMi9B7XDR9tf40KjwhhsSG0aRRxF6huIh3fJga3vzbNSZjUECwmK8beNxwLMr7C8wsfpY4Odcd/3tyoCd2G28531OxhXtctLajAb28sR9dh7aFQX/vaLeLiM7/KeWLQzX3wc8pn9Luhn0UD+P6ZBTRP8tHd3+D4jtP0ueE+50lEUAWoMO3ZCXhrzQse3Rt8yZNUlmgxd/x7uKZcxzGJPVqtFnfddReSkpLw9ttvY/fu3cjPz4fZbEZlZSUyMjKwZMkSWmtFxA7btm1DU9MI7fMF/mvI4uqXfHaFIikIIjLpReZ1rlQvIRGRCif8qyCTZ3+dh/l8GTQjmkES7Dzhz8jr9+dJHBxIwroxbtwCAo0J6TxkdjP3rpNcedCtILaIFg7/RF1Cj6JYMPZVNnaEdgCCkmpfEzMi3D2gBe7q3xylegtkEgZ+dn93e9OLcM+8Q9CZHW0di3VmdIkPwruTO+Kppcdddlv2lU523f33pRdDa2qYheSWlHy8t/4s7hvYAjckh2PzWc9dATafKcChzBIMSw7HHwdtic9ryf4LJTidU4520baupnHBanRPCMK21PpbzGUU6ehCWHEkGz2bBeP727thQKtQ7Drn2Y2CfJV6M4vfD1yin8+82T0RFeC+oIicszfO5lVi69kCDG8bgf8CxInhjg+/QtaZkzi2YQ3OHdwHnqu90TNiMVr26IPOI0Yjtm2HJrtnzZgxA2PGjMGPP/6IdevW4fTp07SDkb+/P2JiYjB06FDcdttt6N7dlqQTEBD499FC7b0bNedmTFBNl8B2kIkk1AXKvuOeySqBWmJ2mzwmdUKVptrxO9k6XG0B76+lj60Qo8ioRqhC57QPC8egyFgrcjazYkhE1YlqEVheDPvRQNGlQFguq8FJeVhj7cZNvAiclUHbkDxIqlu7unufoZdxWRcMvo4TAxHgPfvPOuzKvYgnOg5EtNpZ7KWWEhckESxmCX3fUpnnY+0pSPf4uoDAtcJkMMNgl4iyh/ch9ua8rEMKcEx6Ey0Q8mQLTzrNNG9fKwYl6097ZgKmPj2ednIlE8VKv9rx58ENx/D65A9h1Jsc9kM60XQY0BYPfxVM7ePrFq/LM4phSrLrfloHkdECadVYNqmnzUmLjMtO/LEP1nMFTt1QxBVGSC+VwEw6sZJaI1JAQy5cZA6CBcRGYNvB8whWqzB9XDd0Hd4RR7x0E9q17B9MeHAUuo/qgi2/7YQvEIcGS7z7BCKvlMKUFAHlcVuiRVKkhbm1+8+heh3CoQ3HcTk1G3FJNrF7VIsItOndCkc2nWyQiwNZCBt/3U47UM1d9iQtJDuxw3OSl3yVhkoj/v56A07tTcXba15ASJT79+zJvruatEPptLtTdTJIQEBAQKBxaN3DtRsluStbuyaCi6ntVs3LpWCTYsHGhUG2N4WKEgg9b+wCmdLZeVR8uQhs6xgygUlrgxkLD47kcusGGCYL5HtSqcuDOCYE1RGD1AD4ZXPQxjBO20gKdAj6+xyaEp7lYJWLwJPcDQ+IzRyYunUAAf6w9GyLd3/chf3nizBr1gCEuhA+1qdrfPU9XUDgeoSM8czGhuVDTC1shT6eEHWIBk7l0yI9tkrM7IpeY7s6iIpIQdH0FybhluduojGJXClziEl2HknHi1+vhql6nyF+dLmskqPjLX0xJ0iNrx/9pSYmsQapwAWrITYBrAJgjN7nfzuH2c6HYRgcXH+MxlZ1kefqoUwtgyHJTcdPHlh1JgUBMjnu7NIFy1NO42BOthsFms0RfNXZVNzWuiP6JsVjZX6KY1tIhXvnCRoKkcZdPA9eLgLULELX6+C3JRVMnXySNE8LY5tQ8FLOybmhLpuyUpFTWYFof9v8TEzLaHQ7E41dvPcxP8Q8mZCqIa2gGBe0NpHFimOnMSCxGT6efCMWhxzD0eLaz0UqZhEZVA6xXSMykZIFl1SG1WfX4fwNu/HW0ucQGObeke5MST4YMQex1P37O1ySiUNFmegemuD9vfzHOHWKuK8KCAgINIykHi2x+rtNV/Tx9byxq8uYpBrGwkFxvhjGZPcCAFlmGcRaMyRyaaOILtxi9aHxFct6FHs7rW5h8fb0TzFs+gDc8cYtCAp3vucp7RqQcKEa57isDgeOOrtuCQhcD2jL9LB6iBWuFFKkTxrukMZMno7Tf1IvB1GRTCHDzLk3Y8ZLk20xiUoOpbp2LmDnsn1497bPnQQGJE/Sc1RnKJQyWkx/JSRX5UlITHJg3ZEGx26bFuyAwk+Bmx4ahY3ztyP1gGeXyc0LdmDUXUPQZWh77Ft1GNeaHUv24sHPZtWM/+OSY9CqWyJO77E1ra0PGccz6UJY//NW6hb01C8PYP0vW73mNUh8qS/XY/F7K6nT0Osrn4Um2H29cpoPeRLSjIq4fpJ7p4BrKioqMHjwYBw9WuuqTiDuDeHh4dDr9Sgurm0+cPnyZQwfPpy6OUyfPh1NheDgIFBv5K2DIAn13EHOIxIR/PvHQCQWQZHcCJaUV0PcQCbiGxsrD/2xQhR8fQzWYucuRMqO9bRO+5dpPAT+OxD1rMpNbXeY0Zslrneah/oh7c0bsfOTAej9PAORi9ojTQLQe67rWx4p5AlWyxzEDZVGC+5bcNhJ3ICqAvj7FxzC0ORwLL6vD0a0jaDiCCKYqC939K0tzlx7KhcNpcxgxTfb03HL9//goaHeB2Msz+OW7/dfF+KGasZ8vhttXl5P3RcmfLm7QeIGVxy4WIKX/jqFH27vjtn9msPfR/FYWr4WYz7bhY82pCIl11mhQ4pCyw2+BTV/HftvOeyQv6m4dh0x7onn8eBPi3DnR99g+lsf0X8f+PEPjHv8Ofp6UwvyAgMD8dRTT2HLli3Iy8ujimIy2D5x4gQ+/fRTQdwgIPAvp1tQZ4TK3McSZP6aOCm4Q8ZIMSpqCJQSGXqGtHLcFiJoLXK3c+ClBiWsXG3LPX+5GTzjmHzXWuXI0gWgzKRAhU6BokINiowq5Og1YO0cIsjPBtYmHnA6f5McZVIpTZozFhHkVsd7mNkoRYDEezfTIJkechm5Z9Ummm3HE9EuicszTmLyhvnI1jkL90Y3s3VQ8R0hKBG4PiHWxUERrgsymErXwgd7SCdlTzTvEI81ht+x1vg7nvjhfpddTFt0TMBzCx5xuT0ZFwWEahwKichE/hs3f+QkbiDoKw14ddIH1Nnhgy2voPfYbpDKJDXHVZACfw8JBOXRbFoISbjpoRtrnt+5/B+328hOZsGq4G2FitXjOJGtcNGqAkp1Bvy8aj8e+nAFZrw6Fd4gCY7H+r/ss7iBYIn3XthltltHdq6Q2Oa5X5nlIE/Nr3l4V9vHMM7/Nrw6+QM81PO5BokbXHFs6yl8+8Q8vLn6eerM4GuhZsaxi5jT9WnMf3UJLp52jt2sFitNGPmCOweTq4GIb5xFQEBA4HpjwOReCHYhQuMSwhzEDQ6o5LB0ak5/JPeDcQ+MpAnaDgPbOKwmMlkgOXmxpjCHaJrFJt7WJZzlIaowQHriElTrj0NcqqPdDc1mx3kqZQmP4FQWygIO0koOsnIO/mlGhP9yAmJdwxL1Uh/m1dgwfxjbR8LqJwarYMAqGZgDJDD7Mw7uT9Whg9Fowbr1J/DwIwtQVFTptL9BU/vW6xyvqWuRgIAH1AEq+Ae7d3X3BO+Dm3Tr3q1sMYnhdzz85d017m/2tOrWAk///KDL7UkhDylisY9Jisq0ePGbNbXiBjsq9SY8/dlKjLr3Bryz/kX0uLELLWRiVLYCSQkxiSECJyMDkReRwx1tutX8vMtDTBIx/xzkF52vE/R6wgHFBgM+27cPs//8E490702FDDXTFFXrUHFD1cXIaLVi5ju/Y/WlOuIGEW9zavAACYnoOgwPawAHaWqmk7iBoDpZQN3zeOKw4O1rFAEDf/wenT77Eg/9tQrTvvkdR85kQ+yLkU2dfYvqhEG70i/ioy178OugW3FrYhcoxbYOqMH+WgdxgwPJMpzor8PNr3xFP9f0EmcXdTKvZLKyEEu9F8qtvtw48VVDEGISAQGB/1eG3Nqv3u6odccnY+4bjtDo4JriXlf47blkc3Jwgchkhf/OTDov2aTiBkKlHlIiYPBEQakvBlIOkPm1NT9sxmP9XkRZoXOeZNDN9YtJ6iOwEBC4mpDrhTfH4Cuhw4A2VXmSP3D/R3e4rAchTYUe/+4+zzGJnbih4FKhS3FDdQ6FOATc9MiNtMs/abxEmkoRZ5r6QM6TNGOyb87UUIpzSvHry4sw96b3cdtLk72uTxpzPdj9uetC3FDdwHhq5D2YEHg7Xp/6ER7u/XyDxA2u2LvyIH57bRne3zSXOvgRcb0vnN6Tijldn8FvbyxD1jnnujqTwbccCWHLQiFP4olZs2Y5iBt69uyJDRs2UOeGS5cuoaioCBcvXsTTTz9NXeoJLMti9uzZOHKk6dyLBIGDQL0hF/aQ29qA8au/BY1IyiBkehtII9X0sf/gWMCHiTlXMIEyiORi347r43pO2ynFCJrcCqG3t23weXqD01pQvsFZwSuL9oOyve8CEHmLAMG9QeC6pfkY138/7UsioLI0zM6qmk6xAVRgQCbsE4YzGP0bg+QZIkT2BGIGAL1eFGH4DwyUob7/DZPO/5VG94UweguHpYey0IO6A3SnAovjr4yAUur7tWbO4ESHrv76Bro31HUL+PNYNiQNEFtcDxgsLDadyUdOufcis/qw7lQeSnRmzB3XFv+8MAw/39nDp0t6id6CL7adx42f7cJ9Cw7BYJeg+H5nBnQ+fmflbiZ8/gvIVSqExMYhqmUS/Zc8FhAQEGgMGBGDx1rPgZ/Ez+Xc8cWSYGQUh6Lc4FxEqmAUeDLpfkQrI+njO5oPhrhO5trESlBuUsBkFYPjRHTRGmXIrfBHhal28i9WFYgAN3WqVl6MUrMKBSY/nD7eDBYTKX5yvgERsUSlRQa9RYJyoxwlBiWyKgJQYlBD5m9FYIwE79w0At8MnwCJ3XnyHIMKg/eJSD0ro8lqhcJSO7deZ349z1CJT044T+p0C4vBkJhE+jNrFXudl+8RaivWEhC4HucxRs0e6vI16cUiz0XwJD5Pqy2Cd0Vyj5bUIpdMwN941zD8mvY5dWboMaozLX588Y/H8NXBdxEU4abbqAs2/LLNresEQVumw+YFO9FpcDu88fdzNGmwNP9HSOVSSMoM0Kw9A6aizvZmFsoDmVCezKEPie1ztWVyXbv1uuh7kPkbN9OIjAhs1eXo7MV8bD2X5bKg6krhfdmn3UCfsbDw25oGuHLVYDmod5xzSM6SaxxJaBKb7uLcMjQm237fTT9fUmz2R9Z3eHXFUzVW2p4ozS/HgteX4p4OT+DNWz6G2S5R/PtbK6g7iS8QC2YBAQEBgcaFdD1/ZflT8Au05TqqYRM8u3jyYQFQRQfT7nNRzW3rznhxstO9k7g4SPemgMktofcykZWFNKsEyh1noNpwHLLUHIjMVkS3jIRYKoGo2LnoV2wG/PI4BF7gEJDJITjHUCNyrA9EKEqEmi/8/rjHezynksEwIBlwIYTgZAwsflVjCReBRX5+BRYs2OP0fOch7akbkq90HtLO53UFBK4mpNBmxB2DG7SttMD7WK59fERNTEJEtb+kfo6bnxxni0mm9MbcpU/ii31vQxPiexHkyh2nYPIQK5VWGrDxn1QaUxDnsXWmRVh86lOIGQYMC8jKQR3f5HkSiNxMkT/XbTB6RsTVPPYUA4n1VsR8dgpR356BuNxsEyxULfZXpqO5udh16RJEnMjmakCObSXnIqoRN1A4gFWjJpapoR6hDK3ZYnjoOmpcn7PBisBV52wiD2+XXyrAEEFnNmP9uXPIleipo6dY60Peyer4vsQm5zfx1/EzsFp5vNl9NPaNfwTf9B8PpcxzLMwMlCG9lRyf/bMPw+f9iifWrYPFrrD0k4N7YbGQL8D7vaXc4otSQ0BAQECgPsiVcsxd9lSDCpY1wX60GUdYrK0macZLU9zWG0nKTQhedBLyc8XEOtv2JMdDnlGK4MWn0Dw4wKd5LnrOVWLI+hISHYwXf38Mz742yb2BgsUKZHmex/VETno+/nj7T6fnyXiqXb8k+jPjIu6qS+cOtQ6+AgLXE8QpYdiMAU22f9IZn8Qk5Foy+fGx+OnMJ5j82Bh0H9kJg6b2wasrnsYnu95wmkfxBHGpcSVusBcU7Fq+nzpkvrfhZaw3L8L881/6nJ8g53r/x3fUdPUnDt0NdW+whzg5n96bin8j1D2hwkCFHuUuGlFcCet+2kIFcU/+9ADNkzw7/2Gftiu4VIR5ryzG7ORH8dHd3zg4qf/43EJwrGe3vGoqS4U8iTt27tyJFStW1DyeMGECdu/ejREjRkAqra3rTEhIwPvvv4+//vqrRuRgMpnw5JNPoqkQBA4CDYIIFCIe6wrNyARIY/0gjVT5JAAIGNUcyra1RfvyeA0CJyQCUh9+FUVAwE2JCL4lCaH3dEDYXR3A+1hcqu5pK16qL7yBhbxVEBStgxF6ZztIIpqmMNNwuhiciwLY4GnJUHWPoMUC3vAbENsk5yYg0Bi0niJCkC3mc0DKi3FLdnu3BflTusYgIcT93x3ZbGYfR0tbVYQIHe5mMOA9Mfq+Lkb8DQwYaf2Ka3adK/C6zsYzeQ6PiQPEhM7RXreLCVTilzt64NlRjh2R20S5ngCvL38fy8GwNuG4FpD3VndCQV5PdXRTQNwW9l+w2WSp5RIEqaSk2V292HA6H88uP1GzvwX7fLeWTAzzPUATEBAQEPCd5uoEvN/xNUyJnYAW6gTEKWNQrNPgVF4UCnX+4HgG6cWhOFsQhvxKPxRq1cgsDcT48NvRObC26KVLcAs8mTQagTIe4fIKRCrKoJEYYObEyC4JxOlL0XS5kBeK0lIN5rafgHe7TsbPfWfhq17TYOI8F5eKpRxkChY3RvTxsJYIOosMJUY1yk1KKo6oRqssx4DWzTE0viV+GDoJLQNq46kTBXHgHdqgOpNSbouFxGIeIhEHns7xOG+zOjMFOovze/l60E2Y2KIdGDCwWjwn1We28PQeBQSuLURw0KKTY+xAEFk5BJ/IduvINmlwB0TJ3IuyyWTs2DkjHJ4jxYp3v3sb3l77IuYufQqDp/WDROqbk1g1hzfbxp6e2Pf3QYfHpAP0wJt705+l+ZUIXHQE/mtOQ7Ungxb6By08BNWxbES1CMd7G1+its/2uPp8CJxCAnNzz+4JnAQ1XZk3HD6P7jd2QWMjKfA+mR6jVDhc4mRZZQhbewbyUzlgyvRgygyQp+RB89cJyDNqrXSbGpKEObkrhf6s1qjgF+RHuyHVhx1L9uHzOT/UuDes/m6jz9vGJXmPVZsMvpEWAQEBgeuQtr1b44dTH+O2l6egVdfmaN4xAXyA9xzCQwseoYX71ZDi4Flf3gU+MRSWcL+ayx5TooX00HnI1x2mi/TgOUjLdXjyx/vx/G+P4OMdr9N/SadUpkIPUbGzC2k1JLk/9oaGFf+XFVag15iu6D+xJ15Z/jRiWkW5XM/SMhLw0ACGiBw4UgRbpxi5ms1bzsDsonDhtT+foc5V3goUSGHCpEfH+PCOBASuDdNfnIT4NjEuXyOuLu6K9W4Z1RMh/u6vLRKGwZR+HR2ei06MxL0f3G6LSZY8iQGTe1ORRX04cCzD6zq7/3Es2gkNUGNw5xb0Z7EFkJcAiiIR/FOkUFwWQ1IhgrTYiuR8KRYPm4b7O/TyKSYhWEJkKJ4Yg5IJUbBGiMFLOCqYcvWxrU1LQ5/4OIjs/quLrALg5PYDTd5mmQO+Xm4w5Hsztaz9fsLjQx1eV54rQegZHcTFXj5/vbg2qKI7Biz+gLiUsblRuIFn7QQOPCDVMi7fL3GsOHbZJnb3lykQqPAeo0qkHER2Dg9/nU3BGzu21+xv0ZkT9Ng8EZN4obmf4+dyVRFiEgEBgf9jOg5sS2OSW5+faItJ2vtWXP/4D/ejfb/aegXiEHvH+zMhjgoGr1E5TcVIyowIWpWK8O8OImrJabzftxfenzIcX/75PJ74YQ5YD26y9vOoo2a5bkLjjdL8MvQe1w2Dh7XDy69ORHRMHTe9ci1wgogKfWsG4o6N87bTbtR144y3Vj+P/pN6QWwwQVTgvjEKmWOeMr7WnUpA4Hpj5qtTaaMEV3gSS9381DiPjnTEYXrMvTc4PBeXFIP7P74T76x7CS8tegL9bupZUxDtK4c3Hve6zv41jp3jw+PDqMOcL3PmRHBhP49AYqZm7WoF2FcCaaTUtq+LQrmrQN2YxFdXzqaGCNrPHjhPf/YP8vPZ7boaEqet/3krfnj2t6r9GbDxV1t84gvkd/KacZ3HJD/++GPNz4GBgZg3b56DsKEuY8eOxcMP1wpUtm/fjszMzCY5t2v/myvwr0XsJ4NmSDxdCLnvHABb7tn2hfGTwJyjhXZnFgxnisGbfVNQUXiAN7JQ9bYlZdkK3yxm/IfGQTM8AZzBCv2h+qt1yXuSBMqhaBWEyMe7wZxVCbbCDHGgHIZTRajcerne+3Q+CA+20gxGJXVyvAie0hoBIxJgSCmBdk82rAUGZ+EHEY4key42EBC4lkiUIgz6mMHZhTwurOVhKgNEEiB2oAgjbovCOLES3+5Ix5aUAlg5HsmR/rizbzNM6xGHlNxKzPxpP4p1ZqdJ49fGt0O76IBGO8+zeRV4+I+jOJfvXbWZXebcbYaIFg5nluKch45KZLuPN6ehT8sQKKoSfucLKqkLRWNQqrfgngEt8E9GCcoNV9c5oO5nIheL0K9lCLaeLcS1xn5CP6iBnSFWn8jB0yOT6MREfVwmbu0ldGkQEBAQaCoCpBpMjBlLF0Kvvz+GwaJ3WEdvltOlGo1MjUv6dGwvWI1T5Udg4c0Qw4IBoXooxbXFNPkGP+wwtYQO1ZMrIiqQqzCxuLlFV/pMjsG34tjHB/TH7Ha9oE0pw5YCZ5tRC8tAZ3eODkg45GkrEapSYUhsIl2OFeag0KBDrF8AKtlwnCr9w+WmmbogZOhqJ7HEDAcWricPTawVxUYd1FLH+6RSIsUn/cfhmS6DsDnrHBZd3otL+iKHdUjq/Jn2o9A7zFbEICBwPaIOUOPj7a/Rrvfrf9lG7YuJ28HAKb0x46XJKBEBC9Yewp7jGVTQmpQQjmnDu2DsgHZI7dACz49606kLPknKPfbtvUho03gNB84dzsA7t32Gy6m2whNP5GQ4z3Hc98HtOLv/PLLP5dIRsCy7HCCLHbkZBZj3yhJ0HNSuRnhx4dQlKFSO1yFOo6Zdpq3EwdNb4wWRCLyIp407i8t1uO3VqTi1K4V2+mkspFllYMoN4ALcJFp4HmXrTkJiN8lLbI7bd2mBwxu8J0KaGhFTG/PVp3OuPZt/24k735hGnSaIu4NPxxWJMPoex+SSgICAgEDjERodjDtem0YXwshpn8LgpdtfQIAKJy7kYv62w9h5KgNmK0uFb6IRrem9lNzv1AcuQZ7uHG+wVg5WC4dRs21dFy+ers1PMCkXYRicDF4ph1TP0w7qFI7Dw3cNxYRxXVFyNhs7l+6r13sk51acW0q7LPad0AN9xndHyj9pVPhAiqhXf7sRK79aDzbau1sVJ2UgtrrOCxkMZlRUGBAa6u9UZPHiH49TAem+VYfw52draHfVuuOyR766G+37t6nXexMQuJoQQTIpoCExycZft6GyVAeZQopB0/pSJ5ei7BIs+WAlDq0/Bo7EJD0SMfGRMbTLar8LOXjou79QaTA5iRtemz4CcaG+u8V54+yBc3hnxuc4FxcAxHnOPWafzXZ67qlpQ3D2UgGyiypoTELcZMRmEaRaMcSH9dCsPU2vZUvWl6P75rk1RU7nMgsgHtIWen8ZdaghbntmhRX69gEwxaug7xhg12yPB2Q8eCvAaMWOzgzkvCoq8PmYMZi5dBn0FudrssgKKAuIgIBsx0EkYyGSkMYQVXunxSPVgYX34n1eKXboLmqPwk+B5K4tsaXyEqwhVa4PdSEChTIXxSMMwItFkF+UwZRgdq7sYAFRpQTgRGAsIoiNIptzhRvsO3NrpN4bMxFH07rihSWnTuHR3n1QYNChzETyJCKwlVJI5KxbkQ6ZN5rcrPFF8AICAgICNsLjQjH7rel04TgOY1UzPHY8J5BC5VO7U7Ds41U4sD0FphbR4IL9gfZVc/w6I5jzWWDqFPMzBiv4rHKIdRYMrXKnSjuc7tNX8fj39+GG2wai4HIR9v19qF5fH+nOXVZQDmVzBQYOboMBg5Jx5nQ2ysv1iIkJxrI3l2L9iXNX/CtBXHPJfCYpvK07t/zKsqeQeyEf+9Yfw+K955FX5piLEosZPPPwSCS3algDXgGBq0FQeAA+2/MmFr65HJvm74CuXE/n0Ifc0g8zXp5CY+2lH67E4Y0naDF5m96tqACANHHqNaYb5o5/D/pKxzl/iVSMZxc8gtCY2gZtV8rJ3Sl4//YvkXfRe3PaSylZTs8RJ+WMEy+j8LL7PC7JwRD35HfWvVgzTibXM3U9HCY8kX0+D5/88iCeGfaaz07MjYLIOSZRaZRo2aU5dZa41tg3r2honmTNd5tosxHyHdb9fXQH+T0dOWtIg473X2Dt2rU1P99yyy0ICPBeizlr1ix8+umnDi4QM2fObPRzEwQOAo2GskMotLudJ7KqEckYmhAv+PoYYG2YpIg31g7CRRIGTKAMXJn7m4BILYFfn2h6IyJCAVXHMGj358JaZIA133Gw6Q4xSeTbIYv1d3CysOTrYDxd0qD3U3uiAKN2r3oSa+Tw6xVFnShM58ugP1pABRuSMBV9Thpaf8s5AYGrjVQlQod7RGg/m4dZS0QPgFhmG7h0QRC+m9mdTtoTgYN9sX/baA02PD4Qiw5cwsYz+TBbOXSKDaTODe1jGk/ccORSKaZ+u48e3xdIkfvJrHLsSS+i09v9W4VSscWyOX3x5ZZz+GH3Bbfbnswux6rjObi5exy+25GOd9efdeXM3iDIZ0c+l2X398G7685iW2pBjVPk1cbE8tieeu3FDcQhpG9ibTDVLFSNznGBOHbZfXcFV5DPkYgcpnTzXbH9+A2tkRzZOO4cAgICAgLeuTG2DRamOwsIqtFIFQhWluDzc1+CpS3uALnIgnBppVMSNkKpxcTEE1iW1gUF2toxR6W5tphAySgRJAlEqdX9PSVQEoDJ7TuCETF4ts0MDInogrU5/yDHWIxz5YUwsQxMLAnNXWeBOStDxQ32dA6r7cRt5e7HmfIyVJq3QC2xxUYmVowzFVHYXZjouF8POXkpwyBQ7j6uiFJrMDOpG25r3RW7C85jXfZJVFqNSPQLw+SEbohTC4Jrgesfkoi65/2ZmP32dJqsIt1hiC0zgYzwOrWOActxNC6R2nU3TeqeiB9PfYw132+mRXWkI1mbXq0w/sFRaNHRfYfR+nJi5xk8fcNr4NwU/bmakD3zTxqdlCaTwsQuvXmHBHy+7y3Mf3UJVn653u22Z/alUetmkrj47Y1l1N63Gl4iBtspEXxI1TiWhGckYHHr/257nRRkEhQyCVp3aY5Pdr6BH5/7DYc2HPfaAZUXMzC1CAbnJwejt0CWUQTG4vg5kKP7bTqLyhvbgVc7irFEPA/VzvOQ1BFdk8TB0c0nca0hYpqOA2sLLkk3vcTOzZB+zHdnOAKxXt657B9aXOor5Pc9tvU1dHAQEBAQ+I8xpF8S1m455fb1wAAVCqwGvPLZ37Bydvc6RmRrxMaCivkqhyeBF5+DIs15bo0UIFQTEKZBQHQgLnYMhr5jGPhqBwWWh7LQCnW6AdEyCYYNbU+LiF/84zFaLL3uxy20UIAKJHyYOwwMq53fIvmWtn1quxDe9/EdyCwzYI/We9MYTzGJTCaBv7/77n0RCWG46aEbMf6BkTiw9ii2L9kDQ6URCW1jMebe4fR1AYF/g8jh/o/uwD3v3WaLSfyVkMlt+cGYllHoNKgd7RpMivikdk5ynZtHY/lzt2PZ3hPYdfoCjVu6tIjBtAGdkBjZeIVERzafwPM3vmU7voiD1YvAQVlQidN7U3Fy5xna7bTn6C5IaBuHec/fim8W78SKbcfAK6RgtCbIU/OhOJ0HEWu79pE4Zv/qI3Rs+82S3Zi3cr9tp1GBYKU88m8KhpnqNojyy004Qmr71RzEWsdmDv5yOTpHReGPaVPx/s5d2Hvpku1SRxwOKgFlPolvAEkFB4YU5turpKsabJHXbUIH758bY3DftdqoNWJPyWmYequpQwNftUNR9f6JgCBPDhHrugkWMfmU6BkoU+WwBrH0/fLk8zCKwbhxa3CFSipF17jauCBZE494VTgu6d0XjelKyTyR4/7NLIsN58+hZ1yt0J9nxbBUSiHTuBb4PddxJGJUjSfCERAQEBBwD8Mw6D+5F7b9scftOqExwchNz8cn934LVioB27MNmdBzXEmtANcxETiZASa/1GNMEhIdTAUTdZvD2BOdGEG7t5NmK68sfwp7Vx7C+p+30CLci6e8N5UVMY6FsCQmade+9l700Jd30YYv1Q6qDYXMF3vqYk+ceyfNGYkJ9w7H3gPp2L4nFUajBS2ahWHcqE4IryPWFhC4HgkMC8CDn83GfR/eTv+WSfF7dewR2SwcXYd1oDEJaXZg70xNYhXiGEOaHBwkomyWoy4y4x8c2aid8fevOYyXJ7znswMyEY2T3MqZvamQyCTUkYbMh3+5/x389Pzv1JnFk0PEoY3H0WNkZ3z75Dws/2R1o72PgFB/6vz5wdZX8fMLC3Fs22k0OWTo7uJjI8KtU3vO4lqjDlAhqWfLmsft+iUhsnk48i54F7LYY9SbqMM5yYf5yoOf34WQqDruPwKUvLw8FBfXioF69uwJX0hMJHUIteTm5qIpEAQOAo2GX/9o6I/kg9O7VgKr+8Wg7K/zDRY3EEhBP6FydzYqNlwEXyfZXRdeZ0XuuwcQNLEV5C0CwFs5+PWNhrxZAIrmn4YptdTz8cJVkIS4Hrxaiw0o+vU0rIVX3o1QkRxMHTG8QQbpxEmCLAIC/1ZEpNuMG10CKcqRuegMGuonx0NDW9GlqXhy8XGfxQ2ECoMV477cXfvEOtAi+i9u7YKIAO82Wn8dy0a4RoF31jXuIHJ0+0jqDOGnkOCFMW3w3OgkrD6ei2+3p1PBQWMT6idDkda90KyxxRVyCQOTjwVf1fRsHkw/67puGzN/+gf13BU+2JCKUzkVVHhzJqfC43l+fktnjGwfVb8DCAgICAhcEbNa98Lfl06h0uLa7e2u1t2xLOuHGnEDIUBicFuzK2U49I6+gL/TOtc81zLAVjjw7el9+OT4LgQF6UCanrvaB0lUZ+kNGL39fcztMAk9QyLgLzXgjuZ90EydhDt3LsRJU5qLbfmqOSgeSYpYRPq5nhS/rC/EM8d+RrahDCJ0QYhMBwY8ikx+KDMqwZGMtx2s1b1j1IjYJGhkCp9ikgERregiIPBvhRTeBIS6FqGKGQZiF38qwZFBmDn3Zro0BUQA8N7tX/gsbiCU5JXh0b4v1jwmtrxE5PD8wkcRFOG9eGTLwp20O5O9uIHAdk4EH1z7+TAcKQLiYNG4t49mLERkYPt5RO9k+jmqY4Jx309zcG+FAdt+24mlH/ztsnucsVUodP2b08KnakT9m0O1PxPKU3kO6xIBQ8DyozAlRcASH0SFEWGMGIZtqRCXu56fIYmWxoR8ZvXtuNT1ho5Ov3N3vTMDL419p97n991T85F68Dzi28TgUor7RiMKtZx2uyYJnWsJ+b2o/t24kn0ICAgI/Fu4ZWJPbNuT6tbFYcpN3fDmkq2O4oY6hayw2nLS+l4JkJ8rdLoOknsAgYgUf39rOXJvagljqzpFyGIRDJFSsKSr+CUOk+/+Fi89NhotiQggPAg3v30b2reNwaP9XsTZ/Z47nbYfmOx27HThYiGen7sM+QU6MCox0Wd4hDG7v6gPHpQMeVWht8d9MAy9v13re5yAQJPFJGJxjauBPRGBfnhwdF+6NAWkiInGJFXjU+mFIhg7xID3cz1XIC7Sonj/BTzW/6Wa575/ZgF6j+uG5+Y/jOjMMgT94b4JBWHzwp3QhfvXihuqKO3Aw1KdRxJ51lpDyoNjOOpcUF3sf1Mbm7g4hFHizf5DYeIt2PTXP/j5xHloo3mUdiBvgCwcmDrihrpQhx0vjnaxOSK4G9Vbg6Qo71HduIKoGqpmfGoMIkSAkgO0ZEaHzAc5Hqv6HkDen6REDKtVBGmoGAaFhe5KTEQOdRwsXDEkMgb+CkfXvnsSx2LuyV9qRBd155DK8l3/jr66bRvGJyUhQROIzApb0w9WL4PJykCitoCR2T4NFa/E5/0noX9EbRHTtUCISQQEBP5r3PLsROxbeYgWgLpi4qOj8fmDP9ImL1xCpLO4oRqRCFyrWIjyS53kdNUxyc8v/o6lH/4Nq8VzJEC6wk+Pvx8v/P4YYlpF0cYt01+YjLZ9WuP+rk8j43imx+27De8EtcaxEVQ16ccv4uVx76IwyzfHbU8MnT6AjtO8QdwaBvRpRRcBgX8rRLzgKSZxZQhv7xjTFFgtVrx3x5c+ixsIpIv/k4NfqXn8/dML0G9iTzzz64M+OQSQPElJbmmjihsIxLGGEBQRgEe/uRdmowWbFuzAik/XNHrOovo4nlyf65N78gW5Sg6Tm/uMO/rd1ANKtcJhfufud2bgrVs/9dokqy4f3/MtbeARFhfi0amDuJG+vPRJKty5llzPMUlAQAA2b96MrKwsZGdno0cP3xpslZY61l3L5Y7xZmMhCBwEGu+XKVCB0Ls7oGRxqoM7gkjKwG9ADCShSnA6zzZonmBUEqg6hkJ/rADlqzN835DlUboszXFfGhlUncO8ChysxXoU/5FCHRR4IwtxiALqbhFgVFIU/XKaOkH4gjhIDlZvAUzONwuRQoyAkc18fz8CAgKNzuHMUlwo1tVrm3KDc5Jyb3oxZv96EP1aeu+YVKqz4GcPLg8NQSll0KNZMCZ8tQfHq9wJ3Ah0GwWZWORR3NAU1FfcQNAonYc7fRJD8OusXnh+xQlcLvVdqEbiqDUncqmwwxOvjW8niBsEBAQErgEJfsGYN3AGnjqwEhmVtZMZKrEU9yb3RdcIC85dro1VSPmNgvEcoyT4l0AutsDEShGqUGNkfGssOX8c7x3dDpnUCpmMA8uLICZJaLtZfjIPQ57neBEkjB5/Zn2MHUX6mjtzgDQUNyYMwaGjEijktecgZlhIxSxp4Eopl5/HaycXw0/sDz1rQrw6FONjukItlePJoz8gz2iLaXgwKDJXTdSJALXcjEojmUiw7ShOFYxMPQsdnO/dgTIFnug0oGEfuoCAQKNwbNspJ9tgb2hLnWMY0jlp7oT3kNTDewFJRXElln/qOGnPBagdxA3VKAtZWFUMeImLwhnSyclo+1EllaBt8wjc8dpCpFzIp88xZiukafmQW1mnZKg5NgBaImSvUzDEy8TQDWgBkckKxTnHz4Uxs1CezKGLVC6B2WR1lWtpMhpiJ+0f5GxrTbpCvb7yWXw+5wcUXPb9uyfJj62/7/babYgkTYTCTwEBAYGrT7O4EHz02s1469O1yM6tdXpTKWW4fWpvMKFyGMyuxQ/V0M7cHOlKLoMlNhAyOxdSkrglHdL//noDFSka4zXO4gY7zAEMLCoO0Fsx9/2/ITJxNQnRiHANBk/p6yBwIDWyfGQI+OhQUCW3xYrUIh3ev+cbaPxV0FcaaDHTiDsGQ6qW45kXl6CoyNapVWziwMrdVyI3jw5GWUUJjFbn9x8UqMLtt/f3+LkICAg0LcR5jYioqyFOC+pNZ6Afkgwu0LGgUFxQAdWONGhdiLn+WXUYr9/8EXWk8EZlcSUWrTvi8Jwp0E7cQE/E9bYahQEyiRU6kxwGlRy0lwXHI0CsQDtJCG5/YT7SMgtrYhLR5QKUTgoDq6nNF4jknvMNNpcFpkrk4HodpY6HdXkGNb5zha5XIBWd1dmzwyPe3wrez0qLyHhySnoxRJUSiFgRmKqaIU7Gw5hgAS8DzNVyMjULNoCFtFACxmR3BnWSQsrTRYjNVQGzHJ/vG9oer7Wfhc+OL0WxuLLmeYNWhuKsIFjNrktJiEhvRUoKwjWOcQ5nlsBMt7GdwMcjxl9zcYOAgIDAfxHiOPvmmufx0V3fIDfDNj9X3Tn79lemUodQi8l2D+ejvDgzK+Xgg/whKq29T0S3jKTNPJZ+tAp/vPOnz+dl1Jnwyk3vOxSxRrWIoG5O3gQOp3afxYd3fQ21RgmD1oRm7eNoTELu1c+PetNjUW/dz4YUQ1e/f3tCooMw/cVJPr8fAQGBxmff34c8usG4ou765Bqze8V+WM1WtwIOeyqKtVjx2Ro0JkRYEdk8Avd2ehIXTl5ydHBrAqQKqc/XwcaivuIGgjrQOU8yaGpf+uF89cjPKM2vjUe9QYR1G37djrDYEI9N+56d//A1Fzdc7yiVSgwbNqze223dutXhcUJC4zne2yMIHAQaFVm0HyIf7wbThXJY8nQQycVQtgkBo5SgfOPFhu9YIkLQ1CSIpGJUbPVuT+YNrsIM7c5sMP4ycJUeEtMsYDjumGSu2JQJVddw38UNATKEzmpPJ9XK1l6A6VypbV5HBMhbBSFwdHNII50v4AICAlePzHqKGzxxPKsc3RK8u6w0D1Vj69n62Wx5w2Dh8OJfpxyeaypxQ7BahhJd04kb4oOVKNVbUGlsuDCuGnf76N8qFLueHYqdaYX482gWTudUIC3ft2CJCDsGtQ7DgQslMNh1pJCJGTwyrCVu6Rl/xectICAgINAwOgRHY8OoOdhfcBHnK4rgJ5VjaHRr+EvlWJm9wGFdxodWB6TmVi62QgQlPuk3FhIRg69P7aWvqZSmGnGBlechIkvV/df2kwhKiRldg7OhkDjej8otRThuWYrOgW1xuEQKmZSFUmaBTOLY6chCugzmH4aVE8FsJSG8CN+kbcGEuPY14gZXiBmeCiUsrATRykB82/t2VJjMePfoNuzJu0jPkRGJMDg6Ec93GYIWGu8CTQEBgaaD2MI3FiTh16prC6/rkYKjrX/YudKRa1eYa+cHsQXwz7TAGCqG2Z+xXRx5njo3EHEDKcIU55WDzS3HuxYrvcZwEoCTArxKAnO3GJgjNfBfd5peK6vRd4t1EjfYY+gW6yRw8LUj0ZVCusmV5pXRQs4rRVvmOubsNborFmZ+g/3rjmDrb7tw/vhFXDqT5dM+i3NL0WNUFxzffop2f6pGKpdi1pu31nSIuubYbopXvg8BAQGBfxHtk2Pw+zd348iJS8jMKobGX4m+PRKpyOHtpY7JP29wdg5HxJ3nuQWP0J8XvWcrJNJ3CPO6D1MgA6mes11OxSKIqly28wsqsHjTaYR1bYmyI+epuIHrkAjYjwdkUhjVSqw/kw/mSBpEVYVAv7z0B4Y8M7FG3EBgWECi42BVE4WG4/09NjIQHz03GeXFOvzw43YcPZpZ4+jbp3dL3HffEERHe3egEhAQaDpyzju6pxHEWhP8Vh2HNSoAbISGjsskOWWQFNYWObriyOaTiG8T6/WYkYmR2JWe6/CcKdTz4C/CvxztY7IRpLKN00l4kVsWgOMX4qEzKVAOI15bswl+WbXXIU4mQcWIKLB165u8Gx/Y3BYsDCDlnEQOEbwC8tcOg3HR4K4aVu2DHJusUv22yTH8WPBKFi2NkSiu1ENvNsMUb6XiBlfbWsKtkGVLqcuDIrUEshwdrEFyMAYr1CeLIM/WQjvFdQFrv7D26DusHfaln8TWNXtx5mwB/mnt5/2cARRU6DC0ZQvszs2Ema2dz1JIpHi+90CMTkzCdYEQkwgICPwH6TSoHX5N+5zek7PP5dJiW+KyRDpnf3TX13QdeuuReXdQg7S2tFDlr6TFoqTL+tIPV9b7vOp26CYCDNI1PSgykM7DeRJHbPhlm8Nzv7z4BwZN6+vz/GBccgzeWvM88jOL8NMLC3FyZwp9njg29J3QHfd+cDvtTi8gIHDtIG4vjcU/qw9j/IOjvK4XER+Kg+uOojEhzaW+eOhHh+eaStwQHBVEHSiaivi2sSi4WOjWFag+uBOvDLq5DwZO6Y29Kw/SnFXG8YvISnOME91B3Ht63tgFR7ecdHAQV6jkmPPJnddPE6j/s5iE53l89tlnNY+lUimGDBnSJMcSBA4CTYK8eQBd7GEUDft1kycHQTM0HvJ4DRUVWAtqO65eKR7FDe5geegPer+hMn5SaIbFUzEEI7e997DZ7cFWmMBWmCHWyKgzhICAwLWl0mjBiSzfgl6xSIS4YCUuFnu+DlUYrdAoJPRfd0zvFY8dabbuQf827hnQAheLddh0pvGCC1fjst3PDKHig4cXHbuifSWEeBaRDWwdRhfCr3su4LXVZ3wKLvamF+H+QYlQyyUo01sQ7i/HhM7RCPETru0CAgIC1wO9wpvRxR6l2PGewJIufMQS0kNC28yKMSCqDe5rNxAdQ6KRWlaITK1top1h7G8YIipqqHsLiVWXO4kb7AnXpMFyuSPtdKpRVrVAd4GE4WEV8dQRwsxZsSr7ILw5JUer1bij2UiMjukIlUQGqIEFw25Frr4ChQYdIlX+CFf6lrQWEBBoOir1RpzQ6aDvFgdGZ4Yso4i6FLhCLBXTRJt99zV33XNIESRJ/rljzH3DsX3xHnD2h/IgNiAiB3UuC3VqOUQpF2ixDOevAC+Xgqk0gjGYUTGlGy2OtKgA3q5LKSsB2Ob+wJBEaLaep89xCgms0Y5zR3Vhg1SwBikhqeO6Nv3FyUg7dJ52mW0qSPHSwkvf0En1D+786or2FZ0Y6fH1Xjd2pQth6Yd/4/tnHAV57iDihqnPTIBcKaOOHqExIRg6vb9P1tsCAgICAk0L6RLXrVMCXezRKOs3bySuMIBTStB/Wj/MfHwsWnZohtSD51F42eZYx/uQd+HFdX6uE54U+qlIjynwseGO4gZ7VApwSfEQn0inD4m4bu3KI0C44/oSMw/GyoKVE+cnIDxMg1lT+2JE32Qo5FJEhWnw0Ye3oqCgAqWlOoSFaRAcLDSAEhC41lSUVCL9mGvHaTKql+aW04UgkUkQ0iwM+Rc95zeI64FMIXUQ49ZlzL03YNmnKx3m40k84bijWiFCpKYcfRPPO4QtZE4nOqgcQeqz2Hq6DQxmGbQtQIXVqmwRyH+8iIch3MUJcD54YNMTEoG3iOl+RFVzQU91HYiMRzbgZK6Jxj7maH8aT0nzdWDsckOyLPdzPXXfKCOu3T+p4pCEWbFt5j1YlZ6CFw5vcL8pA8jyihG6+DKkbhr0xXiIScg9q2/Ljuj7aEf6+Mv9/+DjvbbmHt44fCQdL/i1hLF/JMp4C6L9/DGhVRsEyBU+bS8gICAg0HQwDIPuIzrRxVUHbXo71RvpWN8TIoMRJBkxePoAzHhmPJq1jcPJXSmN2njEk7jBHaTYduOvjqIHV0Q2C8PMV6Zi8LS+kClkdP7s4+2vIz+zEGWFFQiPD0VQuOc5SgEBgaanvKgC6cd9a55NnJ1JA6SCS7a5EXdIJAwkUjHt9u+OUbOHYPV3m/Bv5L4Pb8f2JXubVOBAhAJ/5HyPTfO24+tHf2myPAmJSfrd1JMu1Y01fn97hU/7JfckkjMigjVduQ4RzcIx9NZ+UAcI801NxbfffosjR2rdGCdOnIiAgKa5l7pzSxQQaHSUHcMa9BtnOluKop9OoXTlebBN2C28sZElaODXJ7pG3FANETXIYv2vqrjBmF6Gim2XULkzC5bCxhOICAj821l04BJ6v70Fv+71bZD886weSI70bmFmZTm8N7kjJG6Kg4i4oV/LUOoA8G8kr8KIvHJfJ+UbxuUSA2b8uB9n8zx3gvKF6V7cFCwsh73ni7D5TD6GtYnA+kcHon9L790ZLCyPL7aex9fbz0NvtiI1rxLf78pASm7FFZ+zgICAgEDT0CWoL01sV8OBgZ5z1f6ulgvaEOwqP4M5B3/Fe6fWosxUO562Wr134QtXeHYHUkitiPSrhEph8Si0IEgYrl5NGnqENMOUhO42cYMdUSoNOoZEXTVxA+nisOvSRXx1cD9+OHIIF8uabqJNQODfxpJtxzDq6R+w9HQGjJ3joO+XiLJbusPY1vVE7/ub5iI2KdrrfkmB0GPf3gdG7HoiZuIjo9G+XzK6j+zs8LyozP01i1x3zGoG+igF9H0TYegcC5HZCmlOGcSVRljigwGZBFaFo7ihduciGNuGwxxji6l4N+fmdFyJ83pF2cUoyipBU5KVmosXx7xTYyF9JYy+9waPr1vMFhzZchL7Vh2inee+OfI+Og1u63W/pFjst9eXYfkvqyGazCBvdBFWazcjS5+D6wViltQYi4CAgMD/C6O6ee9mXX3dE1UaoO2bgKJ7euIvjQWz/1iHj1buRKWutnhVUuLdaYjx1mRPIQMf5A8+1stcZWgAFTbW4voCTcIWqYGDrJJDn1ZxGD+kAxU32BMerkFSUtRVEzeQmOTQ7jT88f12rFiwB3lNPI4QEPg3sezjVZgedz82/Lrdp/U/3f0mopq7Ugs48/CXd9NCFVdMe2YCkru3RPd2jvP30oo66/O13U47xl52q8kmrphJ0Xm2ak0GqGwFlLfhif8CFXcR0VVdeLPnmIQcl2ftDsiLwLMMXXIrtVRsVtk7BvlzuqP41vYontYOeXO6oWxUIjipbd/qQ+UQl7sXeVQfSCzlbAIHkU20QQTX57T5eGD/EpzVencDtwZL3IobyHcw+h7PMYnZaMbhTcdpTHJLbCusnD4D3aKivB5Xx3BY+PTv2HrXzwiVZkOnOIU1eRuQbXB2BLlWCDGJgICAgCOkOUY1TLZr59QatAaIoiMh6twWO84U4+nHFuOnLzdDr23aWgFf8aVpYY8bu2LEHYOpuMGeiIQwJHVPvGriBo7nsfVSOr48ug8/nTyErMqmc6YVEPi38cc7f+LWuPuxrY7jtDu+PvQ+QqJdO5TZI5FKMOeTWW5jkttfmYqkHq3Qrt914jxWT4qySJ7Es8jjSkk7lI63b/30ivMkJFc1avZQj+uYDCYc2ni8xn3j831vI6lHS6/7NmiNmPfKYqxYvAnlN/nheH8t5ufvwWVd03421zImyc3NRVZWlselqThw4ACeeOKJmscSiQRvvPFGkx1PcHAQuGpIAuXw6x0N7d76J1l5EwvdvlyYMsohUorBG9wr664X6jpYXAuImKH4txRY82uLsMrXXoCyfQiCpiaBkTkXZPFWDoZTRbAUGsAoJVB1DBWcJgT+dZisLFYfz8WqEznQmaxoHeGP23onoE1UrTiBFLM//+dJn23AyPZEkHAquxzrT3uemG0brcGNHaKwWCPHtzsysPVsAViOR9soDe7s1wxTu8fR9e4e0BwbTufByv27qjXK9GaU+Cg4ax+jwcUiPbQm952r3XEqpwKqOiKx+nLfoBZoH+P+ejxv70UqUijS2jK9JDkyOCkcd/Rpht3nvUzoVFFhsGL+vsyax9/tyMCkLjF4f0pHSHws2hIQEBAQuDqEySPRK2QI/ineWvNcmVUJOWOFRFQrHqim3KzA4WLbfbvSYsTCC//gUPFF+EtlqLSYodPLofEzuBUmkHGGVOQ9dpFJLBAz3sUSIruZC45jALHzOdvTKbAFrjVpxUV4YN0qpJfWFhC9s2cHxrZKwvs3jIRCInU5gbVr+f4a62zSWSkowk0nWQGB6xSjxYq1x85i44lz0JvMSIoOw7TeHdEyslZIu+lQGt773UWXMakY+j4tIDJaIM+onYCd8vhYdBzYFkc2n/BqmZzYpRmGzRiAsLgQLPlgJV2f43i07p6Imx6+EcNnDrLt88lxOLD2CH2NICosAwwmoE53aU4M6MMl4GRkfEvG6CpYYgNh7BAN9e50KFILwKnktLkp52UIr+8UDVl2BRi9GYzWBM6DA5rIzEJc5lykU6Y3oYThwaplEHuJTZJ7tsLF05c8ulm448zeVIivcEw/c+7NSGgT67GgbPF7f9GOcdUT/X3GdcOEB2/E8e1natYzh6ug6xIJa6gSjJGFMqUIyrPFUEySQ/SQBButO4GquqeVORswJLwf7m0xAwypjBIQEBAQuG5oGRWKsT3aYPXBFM+W9SwLNlAONkRZ81K53oj52w7jcGw4ZP4KmCuNUB/NR2WfGPe2dDwPRWlt3OAi7LGtJpN67dxKj+GnBEyWGmEkHx7kcZNOHTw3HrkapJ/NxdtPL0J2Zu246seP1mPomE545JWbIJNJXHaD3bl0H3XNCgjT0JgkMOza53wEBOoD+T3eunAXdi7/B2aDGYmdm2HcnJGIT46pWWfTgh347qn5Pu9z+ouTaCFg626JOLbttMd1W3VrgZF3DkFEszDqUnZ443EadyT3aoVJj47BkFv60fVuG9MDh05fqsnVKIqACjO5LlXviQQZPAL9tNAoPI/pE0KKcSyz9rpjjABkZYCS6B5YR0cbChErmBiI5JxrcYOFjKVdX19LTXpk3xiNikA5RHQ9u3iuYwSsQQqELDoNEctjyDEldg8FjKzV5XEYCef2Mr6/8CIsQd5zSJZwNY0X1Eed81ez37oVUS0i3G676N0/sfSjVagorqyJSfpN7Ik7XhyFw7m5Ho8rLTVBfqsS3H1ibDDVxiR/Zq/HyMiBuKv5LW4LygQEBAQErg3kPj5gSm/sWvYPRJcKbC5ugS6aIVlZiFkGIv/a18rL9Fg8fy9OtI+BRCGD1Xj9N6ntNMh7E5Gm5kRhHh7c8jcu24ka3tq/HVNbd8Ab/W+A1EV+iOV0KNGvgdmaBak4DMGqsZCIPcdfAgLXGwatAZsX7MTuvw7AYrSgdbcWGDtnJGJb1Qpp1/6wGT+/+LvP+yRj22bt4ui1LOWfc15jksHT+iEqMQLLPvobR7ecog0QiKBh8mNjMWByb7re1Kcn4JU97+PfRllBBUwG367DHQe1pZ+XpWpOpz6Q/BJpmHUl3PfB7QiLDXH5GvlOFr65HCs+XY3KUh19jrgxkHsVETp8cOeXXvdvvCUImTMCkFl2AKgyBfo1YwduSeiLx9uMwf8bPXvanC48QT7Xxub06dMYO3YsjMZaoePbb7+N1q1bo6kQ8U3xTgQEPNiRVmzKpCIHIlpoCLIEf5gzr7yjd1MiUkgQ9VwPMD7YQzcVnNGK/E8Ogy13fSNTtA1B6O2OA3nD2RKULk0Fp7ObYGNE8OsXjYDRzYUJKIFrSmGlCWtO5KDcYEXzMDVGtouAXOIc6JFC9dvcdP5/dlQy5gxOpD/f9NUeHLvs3epQo5DgyRGtcUff5vRxdqke/d7zbHX40JBEPDCkJVRVyTEibiCLzEXn0b+P5+CZZcdhtHguULye8MG0uQYxI0JUgIJ+f1TIwQPtYjTU7cBk5Xzannx2vtA5LrDmO+0YG4DZ/Zrjpi4xKDdYqMAizE/u8B18vzMdb68963JfCSEqeuyMQtvguSHcN7AFnh/dpsHbCwgICAg0DRzPYXXuH9hTtBFmrkrgBg5+YhP8xUaIRTzMrASpFWE4WRoNE+dcgN/Bvzn2ZtkSxn4qI4ICXLukma1idAu5DH+Z5wT8ptQ2sMgAjdrzelaWoedmg4daZnabAA+QqrGk3wtQij07VDQlJQY9Rv0+H4V61/dTInL4YtRYh+d2/7kfH9/zLSpLarvIE/vYm58aj9lvTW/ycxYQ8ERRTglN/GnLdLQoiBR8kA5AdSko1+LuH5Yjo8CxMzD5e31m7CDMHNCVPr71td+QllXo9njiEh0C/jwO/2A/3PX2dIy5dzh9/nJaDmYnP+rxXGe9dSsmPzYG8iqhAsuy4FgOUlK8WIeN87bjsznfUzcAAu+vhLVba8BuXV2EBBa1COYAwOIH8ERjZQJk5YBUCwSsPAFOo4R2SCtYlZ6LV0RGK8J+PEB/1neLhd6D45riVC78dl2oecxqFND1SoC1WUhNTCLJKYd6fyYkRa7dJ8h3FBwViLKCcmpFLWJENJGSdjgDrBtratZPBmO7SFhiAuhEOnOhGIoz+R7FFOT7JQKS1IPp9HGb3q1okmTQ1L6oKKmEUWtEcFSQw+8MmbT/de4il/uLS46BxWRG3oVCVPSLReUA588pUFqIuFHuO1BPjh2DqXHjcLUh3YHi4mwCwc6TXoZMfWUiNbOuDMdW2DoAXb58GbGx7gUjAgICAv8GLCyLT1fuwrK9J2E0283Fc4DIwkGWUQxr80CwKuf7djW9rDJc+NrWbb2ydzTKhzVzuZ46h4WyuOquyfNgzLxLZxzxvtPguycDDOOst2BswgjaFP1wao3jEy8Rgx3QEXAxR0sICfbD7/PucykguFoUF1bigSlfoLzUdcw2fEIXPPnGZIfnti/eg8/m/EDHfNVIZRLc+vwkzHzl5iY/ZwEBTxRmFdOYRFehp0U9fSf0oOPVuhRcKsTTN7yOnPOOxe4MI8JDX96NcfePoI9nt3kUl1O9N6YLCPXHPR/MxMg7htDH6ccv4v4uT7tdn/NTYM5nd2LcjEGQV+dJWJbmiV3FUH9tPYGP5m2FVs3CGCQCqwBM4Sxg99biIgvRO6620ZA7VhzsCo5cuKqQVAJBp0QobcfD4s9XCSbI/+3iFikLRsYBElsOA2YRWLqeC7Eww0Mit0IsId4QtgulqJKBOEsGxuD4XQT9lQr5pXLwneMhG9EcuSFaGEOs9H11DInGsaJssBxH3Rs8aQAkEEOv99wYQ5YrhrxIjH5Hy5C+1SaUJoVbU54Yh/4Te6FcZ4TBbEGIRgWpuHZfpJiMdMx1RfNOCTg1pzXydO6d/uLT0hE2032uZ3r8BEyMHYWrjRCTCAgICHjGbLLg2yfmYcMvW2Eys+CaRYKPDQXkMtJdCaL8UojlSohE7u8/yVEqpKzaf11/1MSl4de0z12OP64W2doKjF4xD+Um164XM9p0wlv9bWOzaoq0y3Gp9FWwfG3Ni0gkR4zmUUQFPNDk5ywg4In8zELsWv4P7ZrfomMCeo/rBrHd+LKanPQ8PDv8deRddMyBEDHt49/fj1GzhoDjONzR6mHkXfDuWBYYHoA5n9yJobfaXGhO7U7B4wPnetzmkW/uoaJrWZWrJGtladG3q2vCn5+vxfdPz6c5hP9H5CoZ/IPUKC/S0s+B5Ena9GqF03tTaZzmDQlx77afw3ID+X5bdErA+SMXaoQVNz85Hr3HdkN5kU2QERIV5BDHfvvkPCz/ZLXL/bXs2py6VBAxhzvMQ/1heMq1Kzrh8eQxuLWZTWD//xKT+EJjywJOnDiBESNGID8/v+a5SZMmYfny5WhKBAcHgasKuTgGjGwG/8GxMJ0vB89ykMX6g1FJALEI5suVKPr+pMd9sKQTROsgmNJKcS2RRKjAVpic3CSIuCH0zrbXVNxA0B3KdytuIBjPFMOSp4M00mYBrTtagNIlqc5VyxwP7a5sMHIxNDckNPFZCwi4vuF+sCEVP+zKgIWt/QUNUcvwwc0dMTTZsevMk0uOuxQ3EN5bf5Y6CiRHanwSN/xyZ3cMqbP/I5e8b/fltnTM25uJyd1i8fTIJKjlElos74rxnaJpd9dnlnm+9l1P1GcIRMQJWaWOHVdD/eRo20WDRQcv+7S9rxBRw5L7+lB7x5TcCvx1NBtfbD1HRQpkL4EqKW7uFotHb7ApRz/fct7tvjKL9bi1ZxyySgwwsw0TnyzcfwkPD2sFvyt0oRAQEBAQaFxIJ+vx0TMwImIizlWeBgsWccoWUEn8IYEER0ozcM++39x26COUseXoE5GAffmZ0OoVVHjgrzZCLrPSrVheBAsrBsszyNIHoI3M/cRcmUGJYp0fJFYz/FUmjwltq0NiXYRmqgQUmwugZR3vtRqJCu91mn1NxQ2ERadPuhU3ENacS8XjvfqiRZDNRnbtj5vx6X3fO024kMlEkmxXB6gx7ZkJTX7eAgJ1Ib+T3z+9gE5wk4nfaoIiAvDs/IfRbXgnh/Wf/WOdk7jBth/gvVU70DY2HNEajUdxA4ENVuODw++hc5cWTq4C3vjlxT+w9IO/MfLOwbjzzVuhUMldJhkIxKLdqDPii4d+oo9FlQZI9pwGFxMKPiwArEoCs78GulhSyFi7nVUKWP0AWSkgbxcF9Z4M2tnN63Sj3d+48mg2LBH+sCQ4dx+T5FVAbeeUxvrLUT6uPXiV47XNGh2A8rHtoFlzGtJC58Ibq8WKgkt27mwsEBoTjJhWUbR7VF3McYGoGJlEO6/S7cn/QlQwdoyG//oU6j7h7m11GNAWH+98gz44d+QCtv6+C7++shjZabn094gUhhEb5hkvT6HJgD/eWeH2Y7p8Nhvj5ozAim1HXIobCME9nN0t7NmQtx03RY+E7FreD6o7kV/pPgQEBAT+jyCFpU9PGoz7RvXGwXNZtLi1Y7NI+CnkkEnF2HMqA4/9usbjPopi/NC+fzJO7T4L/39yICkyQNsrGqYEm4OtVMdDWchDpq0VN4gsrsUNonIdmEoDuMIy8BG2sTkJPVg5A04qsqn4iDjCyEJqNtfUG4usLNrKgYsyKfQGxw6AQYEqvP365GsqbiCsXXLArbiBsGXVMdw2Zygiom1jkb++XIevHv3Z6d5jMVsx/7Ul8AtSY+Ijo5v6tAUEnCDigG8e+xWrvt1IhcvVhEQH4fnfHkWnwe0c1n9j2idO4gYCcVD44sEfqeBX6a/0Sdzwxf53kNyjpcNzZ/aluVzXEh8CS9sYcAEqfLTxGH7Yexbjh3TA3VP62oQObmokbxraEaUSM97ftIs+FpsBZY4YVj8erJIjnSlQe/Vxj8EsdRA30HPy51HQl6gQqp8hlgmkKR8Rb1U9aRZDkiuFqLpeh1wDY6zOU0MiHlKlBcQkreYyQS6RGg7WJCMkqQoHkYO+UwRMnRPAq+XAZT2klxlIYRubJ/UKRUQbf6zLOuNxLohgJUEMOSl3c1VW4qTA0HNq99RIfL7mJfp0mjETWy8cx9eL/0HKCRNYvRTBfipM7tMe9w7vBX2JFss+WuX2uBeOZ2KCtQ9+hA6si0G5MrMMQb1JLtr9tX5N7jaMjSadqa/h/UCISQQEBAScIMW+j3x1N+58Yxp1ECXji7Z9W0MZ6AeZlMHebWfx9suuBXDVsAEaJPdsibMH3OfcrwYkLiLzcCa9YwMp0mjkjb+fvabiBsL800fcihsIS1JP4tGufRGusjll5JR/j+zyt53W43kTssrfpy4OYX63Nuk5Cwi4guRGSCyx7qctNY7QBOIi/eIfj6Nd3ySH9V+b8qGTuIFArjef3PstjUmIwMEXccMPJz+mAm97qhsNeeLzOT9g3suLMPqeG2jDAlcNoKohsT4Rks+buxj/j5j0ZrrUwAIxLaPgH+SHfasOed3eF3FD9fdLBNaf7X6TzieRfNa2P3bjm8d/paKX6uvzmHtuwK0vTKTCBZJ7cwcRShBX8pVfrXcrxDBN9uxu8/vF3Zia0Afia+l23cgxyYEDBxAVVeuE0tTs2rUL48aNQ3l5rRPRoEGD8NtvpKaiaREq7gSuCYxcAmU7Z9sZTufdBoetMCPi2R60QF9PivgrzBAHyKHqFg55cjAsGeXQHy8EZ2QhCVfCclkLU3pZ478HhRjWAkdxgzhITl0RpFEu7NuuMobTRd7XOVUEa4kRpcvTHF0bXFC5Owd+A2PByLxPIAoINCZfb0+nS12KdWbcv+AIls3pg46xNpXjzrRC7EjzXCT0656LeP2m9j4dO9TP2ZY9p8xzAUk1lSYrft17EcezyvDHPb2hqCqOccXPuy/iWhCglFJ3g6vN1rMFmDOwBSSMyObq0EikF2qpg8eDvx/BURdClDK9BT/suoD9F0owo1c8dXXwxOHMUnSKC8DBiw0T1JH9H7pYgsFJ4Q3aXkBAQECgaVGIVegQ2MPp+UJqqeg5s5xvrMDKGx/B+ktnsSzjJAoMWsSoAnBzi44YFNMcB4rTsSn3JHSsCYnqMIjEe5GpP+20HzMrxoFMW6dVq1mKSr3crYsDEVFwvON5WSs1SL1sgMpfDIXSNikVIQ3H592no0VAGK41G9I9JzbIKGBjxnk0U/jhlcV/ozLOAumPbcGkGqBeWgDlBcdCZWIfO/HR0TWdVgQErhbzX12CZR87F32U5pdj7oT38MU/79BORYTte07hYEaWx/0t3H0Mjw73rVuMJiLA6TmHYn0PkK7Dyz9dg7QjGXhv48tuJ+9J4X3dCWSRxQrxxTzgYh4s7aJgiNQ4iBvsMQcBuuRA+O3goDp0GRWDm9kKId0gy6wdX/sHqIB1KTAnhsLYJhysnxyMwQLF2QLI0wohsosXDF3jnMQNNUjF0PdKQMBq52ttzfskC9meB3Yt34/pL06i3YTsC8Q4uQSVI2rFDQ7by8SoHJmMoAWHwbjp4pSVloPi7BK8Me1jnDuc4fR6eVElFr+/Eid3n8WwGQO82keTJE3kPX1RUOj8nYvEHNQhnuNTrVWH89qLaBvQdPbAAgICAgINR6NSYFgnx6JhQonBs7MboaBchyVbXsHOpfuwcf4OlOaXIUqnwsjeA9FtZGfsP3IB2/emwWA0o0V8KI4czsSZM9nOOyL3/DO2uUnRxTzwoYHgpAwsajF1d65BJAKnlMA0uB0U28+AqSoeklToYT50EkxUKPhgfyqEiAvzw9vv34KYhGsfk+yp6mLuDlKUsW/bWfjDii8e/hG6MvdiCMLi9//C+AdGuuyYLyDQlPz8/O+0oKMuxTmleGncO/jq4HvUZY6wZeFOnN1/zu2+yPifiHlIZ39fCAjx9ykmMbeKhLmro5tMhdaI31YdROqFfHz83GRIxIzbv8UFB445PEfEB9IKsjCAioWOlaPUqESQwv0Y+EKRY+6Zeiy4OiS5vIl5KlIOhAKGIgsYi6g2buB5iCtEYDX2wghALCedTt0cXExEERYw52uvD5ZwPzB2zgvkfHglT11x1u8/izub98SGOnM9rvDYeNNKhAYSiFjbfi4UlqCQLcV7Z3/GBV3VdT8aiIkCdJfVKD4Shh82HcCxCzm4kVNTAZcn8hYdQ+9gMY5EcjC0CqD3BhWjRUhgGaSdiZuF53KTcksFLuouo5W/zSVdQEBAQOD6QhPsjwGTejk9X+ZDTURxoRbzd7yOHYv3YvNvO1BWWIGYlpEYOXsoug7rgH9WH8HuFf9Q4UHzjgk4sPYo0g55L0iuL2Rur664IaFdLN5a/TwiEq59nn7DRffjMoKF47A5Mx1j41JQVP4KJHwFwhnAxDPQ8WJY6wxmcsu/Rqh6GkTXslBX4D8JcX1Z88Nmp+cLLxfjhdFv4dsjHyCqha2B7JrvNyHjeKbHv9uVX67DqLuG+XRs4nLd0DwJmZMnTdQyTmTi9ZXPgqnjXGnfKGnVNxtxLVBplNBX+FaL1phs+HUbZr46FftWH2rUJkOXU7ORm5GPN6d9gounnRvfluSWYsHrS5GyPw2dB7d3yNG44tLZbHp/yUrLdXqNCxGDa25zMndHvrEcGdp8tPK/eoKApiYqKuqqOV0vXLgQd911F0ym2nvtkCFDsGrVKiiVyiY/viBwELiuEPt77yjH+EtpAlrVIYwuTvtICoYiydZliMCzPLT7cqDbnwtrYePcDMShSpgzK126SxQvPIvwR7pccyEAb/V+5yGuDezmS77tz2iFKaMcyuTaz1ZAoKkxWljq3OAO0ln/ux0Z+GpGVxRWmvDQ70e87vPgxRJEahR0yatwr5T3l0uQGG5zOLEnzN/zwKgupNB+2eEs3NbbtQNKZrHOreNEUxLiJ0OpznMxjb0QQmeyNqoYYd4/mY26P0KlwYphH+2AwYtl3ImscoT711pmuYMIIvLK3f+O+EIjO34JCAgICFwFQuXexcphCn9IGAZjm7WlS10GhCfTpRorNxR7i9dhf/FGFJvzwHIMMkuDkZIXiUpTVeDPi1BRrgLHMVArTZBKbJM5HEe2F1e5N9QmvSMQhX0XSVcTESrL1HQhFMKC+ytXY9XkmZCLr23Ib2I9J8nFYhbbSnaiQnwZkcOtiCJdD8kLrUTQDw2C4Sc5lEuLa9YnCZLTe86iy9AOTX/yAgJVGLQGrPjMfQdls9FCxQ/P/PoQirKL8ebz84De0R4/v8MXshEdqkGwvwolle6L6AL8FIgNcxY4BEfW2tiSWhhrbDDYIBUVJUgzS8DYd+EBcHJnCrb+vptaMbsi80yWy4nhmvcYIgXrrP12wBRqSwooTufC2CII5gQ3VrssB9Vx27GIiwIpyCKdpOXni+jiDr8wf5S19pyQtEYFUJcHcaVjQpNcV8xJkTAnR4HT2N4IU6rD0jWHnCbOjcnhVMjgDl4ugSkpDMpTzt1wq69Td7d/nP5eeIJ0LXJVKFaXyhItUktdC669l0HZ4NAwR7rGxFW3cAEBAQEB94RqnOck6xIWoKadSIdOH0CXugzo1You1Zhv7oNlfx3CqrXHkJtXTu/JotxiKmgUVRUDibQGMMfOwdIvyVHcYI9CBkvbWCgOZyCqRXiNsxSTmQeQhTSIId3jJ76Prw68e82FAN4Kdwl/fvk/9u4CPIpr7QP4f2bWN8nGXYhCIEAI7l68UChtgSr1Une7X2+9t+7u1FtKoYVSpEAp7u4SEkLck/Wd7zmzRDZZiwAJvL/77G12d3Z2sgEyZ875v++fyNm436v9sXOXg5uPoHN/x8qUhJxNLLjsLNxQw1BlxK9v/IF7P7oVuSfy8catH3ncJxsj3PvhLfDx10r7d4VV1gyNDXY/JuE5VHcJRvWgOOkcVVEO8A3+6m3ecxKrNh3CqP5110rq23c6D6fL3MyTnDml3Vccjj7hmZDzjc9xy01KHMwNcww3eDhpjvH3Q+G+avBnNrTxIiy+Imwq9loOYKf1gv1kNkitRpW83O3ZtehnhSi3gTPbx0fimeA0OxZLggmWeBNEjX1/XBmP7/ZsAVetgJisdx2ckBaAOV4T4qs48CYOQjUHWSlf24mC7bnAWIY7Nr4Mm8xxXMS+HZ/YKkAOFK0Pw+Yj2QhQuxi31VNeXIm8tacQKYqwqgSII7Tg7/UDBG9HJOzHd/4HBDQmIYSQpgkM9jxPEhjiKxUjGn3tUOnWEAtO1A9PXPXIFMx7Y5G08NnbhcnusN9tYR1CnXaWytybjeeuehNvrX3O5WLmc8Vodb92QaeoRoLqYZSV7WK/pqVf+ey3rJqzQSXaUGaTwVCvk5XRmoVq8z5oFd4V9SSkNZQWlEl/d11hi/NZEaU73rwB2YdP4/17v/C4z91r9uPW166D2kcFfaXrdTlhcSFSN+2GAuqNSbyxcdE2bPh9KwZMblz8jmEhcbbw/lxjC/dPOem+54wuxA/lhRVSILu1/MaKX7Xy6XpeZiFuy3gIFpP7f/+2/LXTqy477Ht2OYflqR3eGbY2sHirvY1JRFHEU089hWeffdbh8UsvvRQ//vgjVCoPE4ethOJ8pE1RxPlBFuw+2aPtWXdxyhucwMF3UBTCH+iFqOcGIvT+DAiBKqfBCW8uxuimJMFa6DooYSnUQ7/DfQX5c0ER5XnAYS1q4sJdy/mfFCcXF1Zpny0yd2fpvlzpl+rc9SdQbvA8YcW2efK33fBTuz9Jmt4rBhonLdTHpoVL4Yem+Hmr6wquxvP096qo0gRv8wUVBnOrhxGqPZzINseuU2Ueww01dp+qa5vlSodgLeQuKkp5g3WoSI9p2qCKEELI+dcnOB6RHiZ4J8ekN2mfMl6OISGX4qFO7+K5tO9xU+y7OFXYvS7ccEaEyg9GgwoFJb7IK7Lfcgt9UVquhskkg9nMw2SU49GUqdif5XpMcqikCIuPNr6of651DXU9dlMqTeiYmg2T5jhUSgvYHAO7BsXWUXEQodGYEDBHDjHdMVxq9tCBiZDWtn3FHo+Vc9bO3yT9d/5bi6Evc1/1lykpq8Zbby9CcL5jl5KGpg7uCoWTi7tDrxgAlUYJS6gvKqZmoHp4RxjTY2DoHS/d1/eNl4IPDSvxuGIyOA8+sxGAJdgHVn/PxSjqByB0i/dDebQunFSDM1nht/QQ5AX2BVSFp4q9vhBfoTexjske2Zx0eDD0jYehT3xtuEHaLkCLwq5RMHS1V7mtYQnzfC3FEuY6mMAmQTyFG2qwilGeRCWHQyYILhc5VZe6D+DLrDIkaJ2H7QkhhLRdAzrFIcRDyOHSPo2D1u4oFDLMvKIfvv/yNiz7/UF88vKVCCstrw031AgN9YWoct8xTYwNxl0f34qco64LiBzdcQJrf7OfI51PSanug6dMzh7Pv5ProzEJOdc2L9nhsfNXzd+3X177HcYGgWdn8jIL8PHDc+EX7D50O/HW0U6DSsNnDIRcKYch3g859/VE0eXJ0IcLqA7nUZrMoSqMjewd/bHKdbc1o8X52T4LBljlIqwiD5uJQ7lJhQ2nOyCn0q+2yyXrjnmsLBDrsuJhsTYYP3mY9s2qLIPtTIDBJgAWPxE2dV0wghM5cBZeulVUGj0v1GeFG+R124gqEWadDaZ0PcxdjLXhBuk5nQ2l8aUQdBbwp1yf17Mhk9Xs+DPgjRxU2TLIiwWHcINNARzBoUbhhvq04VUQ/O3PH+A9j12ikyMgyOzzJLxoA3+Lb+18ugjWpdv9h6yAEh0056ayKCGEkNbTb3AK/HTu125dMqF7k/apVCsx8/Gp+PbEB1hs+A7vbnzR6aLliETPa8LY+cld79+M3OOsCJTr63Sb/9yO8y0t2PX3E+NThFcH/oAoxS6nz7M5Ex1vAdcgYimK3hWyJKS1sHCApwICNWOSn15e4NU18qxDOfjiye+h8zAmYV0UnQWVRl0zpMlFFdzPk3h3Xb+1eRtuYCpLK1s13FBTZKm17Vmz32O4oQYLxHgzT8K5CDJwhRbwOe7/TfQRFUjwOf8dfdoTg8GAmTNnNgo3sE4O8+bNO2fhBoYCDqRNYf8Y6SYluKwOJASp4DO4+RdBOBkPRagW4Q/0ROCMTtD0DJNuAdNTEHJLN8Dq+ZeAObvc4zbVu89/wMGnX4T35fy8wQFyL0IThLQmoxeL1c1WUVqo//suzyc9Nb7flIVDea5P0vonBOHhsc6rcLHQwy1DEtAUeW66AMQGaqQOCeeD8sxFaU9aOdvQJhRXmhAd4P6izMw+sRjWsfknuWz/AVrPi8EIIYS0LTzH4+Eu4yC4KJ0X7xOMmR36NXv/LOzQMTAUK6fegjcHT8TlSWmYntQVbw2ZhC9GT4eVXZgSOVitgnQDBFgsMlRXK1FVpUK1Xo5Npzyf9yw6Zq+kej5d0zXd5ZAkLj4fCoXzcz37NSoRPC9CuLMubCKTC0jq0eHsHCwhTVz872yblT+uhfJEqccTaEEvYt7mwzj9z0HIs5xXBOrfJQ63THL+bw2rsjr5P9NQNTIVorbBQhiek7oVGDLiGlUbdiWmYyQ0vo7nxuaYAFROTkfV+K6wdGjcPbMhXl83ucFZRej+PIiAH3dCs+0UVHty4bP6GIK+3ALV0eLa7WwsOB7lD6uHyVIJW6TlaXwoiuArHRfysICGKSXc5UuM3WIcQhHs2D3y0C7ZW6xSblBkgNttxt88GkNSXP+7V3TM/euDD/pDIzv7LYLdkn6vtcKNEEIuInJBwINThoJ3MXmbHBGM6QO7NX//cgHJPRLw9ZF3pS5Ul1w/TOr09MT39+LJhY96nCxnvwl3bz7i8X3WzNuA8+3SGe7HbqLBCFR5DqjWYAu647vGtsKREdLKYxKjfTHOqh/Xer3fhe/9hRw3i2n6TeqJGY9d5vQ5/xAdxvxnMgpmpsLq1+AaOMfBGMRBH+L4b1hBies5maTQIKgahLstKhsMIVaYgq0wBdpgqra/T6VZiZ2FUVh2MgUrTibj76xkHCgOQ3VlgwUWXp62y3leCoizYIJN6frfP7MoQvS0T5aNMHGw6swwpeph6qGHfoAe1hg3i8EiDeDLBXDZSqDBZuz9LEaZvXWfh8qfNjbNxNsDDO6wXy3KJPvPoooTpQVlosDBGOMr3Wxyx+th428ehd7jetjvDFYDvo7PGx1CJezAHA8uoLIDlMJ5niehMQkhhDQZC0jfcs8lLgtjJ3eKwNjJZ34/NINcIUfH3kmYe+w9PPDp7Rh93VCMnT0C//fzA3jo8zs8vt5qsWL36n0et1v9y3qcb9d3yXD6OIuD3pW+DBEKz7+7fbi6kwSe00Atr+vWR8i54M3i/5ptvB6TiMBv7/yJ3BOu11gOvrwfpt0/0elzwZGBGHOD867VrrCiS67Ed4uD3EkR3HOB97I7mtVsuyDHu1qdxu02E2+9BBmjnV8Hk7oILih1+/qUE36Q8+fnZ9sexyTl5eUYO3YsfvjhB4fHn376aXz66aeQyc7tZ3mef3KENKbuGIjg2WkoX3oCppNn2pHKOGjSgqGbkABB2/KFwJzAQ9M9RLrVsLFKoOwXhrvJbPavorseoWeIpvP/C0UeroX/5CSULjjSKq2EVJ2DIAs4d+krQpi0KB0EnoPVzQKhLpF+0qRbYUUTO5I4ERuoxoNjOmF8GquS6frvepm+acndCH/Xf3dUcgFX9o7Bx/8cw7l2vrpHtMSwjiHYdLy4tgMEy2g059sI8VVicHIIvt900unz49LCcWn3SHQM98Xvu3Jgasab9Ixzv9iIEEJI2zUiIhXv9pmF9w7+jT2lp6THlLwMYyLTcH/nMfBTtHyxqEIQMCWxi3SrUWrUQ8bxsLiZMRfY1eyGpdmd0FvOT6WR+rqFheM/g4fj2TUrHYYkGq1B6tDgDvsO2WuUSYDejwPKRelCZmA4/X4l51ZKr0SpGIO7hX4pvZNgMVukNrmC3gT1/gLou7gIytpEyCvs+zJ3ioLPsj0wxwXCmBImLbSPiQrC7dePxPAeSRDctE8vjvAD9ruuTsRCDsrdp8CfqaoUEh3kclu1j1pqI7/gvSX244oOQPXQjrXFJ+Ts0gz7Z8nN5RDNoXLY1HLw9cZKrFNDTbcGh49AJUd13w4wxQcBZ8ZdQlEl1FuzoHAR+OBsIpRHCmBMdR1WkJ8qg1Dl+G+LKclDYJkFQhJDoNpt/7dekVkMY4r7QMegzh1wYGNWbRVdFr6yeNlJrmEL7dS+yVj29Wqnz4+cNRiDLuuDgFN5WLbvCCxOghWlp3TwrS6G/6DG/6aa1puQmEndGwghpL0am9ERaqUc7/+5Hgey7VVJ2eLfcT074b5Jg+Gjct/FxxsKlUI6B2C3GoUlldICGndzpjJ2Qe7MYmp3DFWuK4ifK116xGH2vZfg8zeXNnpONFtgy8pp0v5GzBgEvyD31SUJaW1s8Z834xazyYyKEvcL5LwR2ykKNzw/AwMm93ZaKbVGbloAxJ2u/w4ZAgF1ETuXt98Pc/N3R6dWYUK3Tpi3dQ9EQYQpxAKbj63u4oCZg6VKgFGQQ6E1S1O1NpGHSeSlEICxSmHvcsBOy9n7WTlwVg6ixuZ2HCMYAa7EClHHw8Y6L7i93MJBNPLg1K6v2XBlAsxhFohh5toFoTzvfm6BfS9ikBl8nhJisQzWUDOsAVaIIgfR5vzgh0cmYGv+qdrOF+zfZatgfx9O5sVcBvtcAAT5apDw7AT8cfwYbGe6nnMGC3y25kH390mMu24Y+o7PgNZPLVXttYY1XlpitMmgtJmhFKy13zP7HcJ+PqUFPujLN60LKiGEkLbjkondodEq8c0nq3HsiL17m0otx8ix3XDTXSOh8tD5zduuDizYwG41ck+47spQQ6GSSyGH9jAmGRgVh3szBuDNbetqH1MrTBgcewBBqkooOc/fh6w2RMghWDsNAk9jEnJudeyd6NU2hmoD9JUtX7vVoWssZj83A/0m9nRZuZ/RV7rvvt1QSIzreZKAUB2GTO+PFd+uwblm86bwUhvTZ1wPbF+xu7azBysIYfbiWlFDbN6XFeFw1QV00u1jkD48TZqj2758F2xO1g8qfi+DLU4J0/jGXYHk/1Sgr7z5RUIuNqWlpbjkkkuwefPm2scUCoUUbLjmmmvOyzFRwIG0Saokf6iS0mEpNsBWbYYsUAVec3YrnPNKGdRpwdDvdJ0MVCb5Q9nBD9Wb3bcHkke4bx99Lrs4KGJ8Ubk+B4b9xbBVNW+RkyxMg4DLPF9AJaS1RfqrMTo1DEv2uv47N6tvLG74cjMqjE1fUNJQhcGCMV3C3IYbmL/2ed8ijLmiV4zb5+8fnYLtJ0uw+YTrqqoESAjR4pNre0FvtmLTsWJYbCIKKw148jfXra1dCdOpXIYbEoK1eOuqHuB5DqkRfnh/Zgbu/H4bDE1MQ0d56BBBCCGkbRsYmizdsqqKUWE2IFoT0CrBBnf8lWqMiErC0uxDLrcZHpmEjJAo/HLQfXWizkFto9XmDekZyIiIxNxdO7Dq8FGUVRigk3s/qcAm+jkfHomJsbjznRvP6rES4kxkYjh6j0vHpsV17cxFmQBbiE5aHM+VVGL8TSPxyCXP1i541y07JoUVjPF1HUgkVhHqIhHCmYJbtiAfiAoZFCeKpRsjiwjAsNdvdhtuYFZt81A1WcbDEuUPxfFC6a6nSkY3vjQLBzcfwYFNR2DIiHXorMlbAVUxYAh2/lrOIoL3D0H59GDITpVCvTUTQqnziQWbQobyCWmw+Tv+e2oN8kHlqE7wWXkIihNFTl+r2ZoFc7Q/bL6NA+Sc0QLNhhONHhc1nhd/2up1wVAcK4ZQUg1rgPOKQUmRQfjfY1ej+tmrsXvNfog2EXmZBfjgvi/RVKwTh6twQ4e0GDz05Rxp8iYtOhyvXTkeD/+wGEab45hEvScf1sW5KEvgobxUBT6Kh1gqwviXEZZNZoT/7/z/LmDVZZ1VmG3qPggh5GI0tEuCdMssKEG1wYToYH/4qlsebHAnOMAHfbt3wIYdjX+v1hjSJxmdBB4rv3L+e6xGQre2EbS7YvYQdO0Zj99/2IDNq/ajoqgctrIKiMVlgNX7a8qd+iTh9jevP6vHSogzHbrEIH14F+xY6fo6+LgbR+DBEU/D1grdxti4xlO4gVl+0MOYROBg1opQnKllN3FYmtvNHx07BHvycrFDdgqonRI+EzpQiOBkHMzVMphNMsgUVnA866jAwWJkwW9WwA7gqjnwbLggY9UtedjMPESl689EncNDVcrBrPMUbrCzVsnBy0wAC0M0wIIWZhsPWWhduKH2e/BEcSacIHIQ8uWwqADRRdODrkHh+Gj8VJRNNGDb8RyIEHGipBSvLrUvxDJUK6DSup8PNhjtHzCvk2Fh7kngTLhBOlqVDBUDo9BhZCruf3i29FjaoFQ88tWdeGXeV2gYrfaRG6GSOf5byr5/HjZUlmkQ3en8F6qgMQkhhDTfoOGdpFt2ZhH0ehMiowOh9Tm7Y5LwDqHoCAfVygABAABJREFUPqwLdq5yfe4z9MoBiO0UjX9+cd81LrF72+gIfW/PgRgQGYe5+7ehjF+DEP8spKqy7eFyr/ZgP7nwUfZGtP9jZ/loCWkspWciOvdPwb71rucvL7luGB4Y9t9W+fgsRrPHcAOz7re6RdjeGHtDXZjKmTlvz8aRHceRuTe7Sfu92HQe0BHPL3ocpQVl2Lv2oPRzOr47E1/+349N3hcbw7oKN6T2S8bd790kfd1jRFfc/+ntePPWjxoVnGJ/StTv5kO+rAymS3QQQ2RSkF2xrAyyPQbEfhOF8609jEn0ej0mTJjgEG7Q6XSYP38+hg9vWreU1uS5FD0h5xELNiiifc96uKGG7pI48C46RHBKAbpx8dB0CwGvdZMNYu3B+kegrVBE+UARoW12uMFnWAxC56RD8DnP7UPJRev5y9LQMcx1Av2DVUex5rB90U5LlVSbcbzQc4UjYxMWuvfpEIipGe5PllgXh+RQStm70znCD1/P7gO5wMNPJceozmEYmxaOwHqLkbwVE6DGzizXLcqOFVZh1cG6yhDsvdY/OgJqhesKuc5YW2EyiRBCyPkXow1EZ//Isx5uqPFQ92HQKZx3f/KTq/Bg92GYnJwKX4Xr34E8x2FW5+5oK7qHhaO7OQj8RiMC9nFQFHt/KcJmEHHdvdPx5r/Pwi+QzpfI+XH/J7cjpmOk1DzF3CUWxjE9YO6TDHOvJJhGp+Pzpbuws96Ffc5ig25lJjS5NijK7B0bVMU2+JwWIWuY76kXJGCKT5e4bclcw2Sua0vuik2nkQIUPUZ2xfCrBrrdVq1VIaZjFKyBGtj8Gy/u1+QCKjbsanCKyxsB30wOArvkwHGwRAegYlwarA0CDDUMXSIahRvqdsZJnR1cNalh3SF0C3dDeSAPqKnQZrNBcawQfgt3Q1ZS3eg1omiFVQZYFPabTWg8aVi/6wTrFOH3xz4IBZWN9tUlLgzvzZkqhU98A3ww4NLeGDilT7OqOLPgzIGNh10+f2JPFrav2FN7f3RaMpbdfwNCVp+EdksOfNdmIfST7Qj844h0zNYjVlS/XoXKBypQ9WylFG5gaExCCCEXhriQAKTGhJ31cEON268eCq3G+XyAzleNm68aKC1cULm5LifIBEy4ZRTaitTuMYhQA6Ubd8N6JBNiQXGTwg23vHINXlv9DLR+zkOQhJxtD315JyITw1w+/8WTP2DfuoOt8l4swFuU47kYk9HieUzCzsXZ+f2A9HgM9dCJgnWmieroeybccGb1B2cvfCCtWBFE+411czDIYNbLYTHa34AzszyFCJ51Tggwg/M3A8FG8BoLOBeHqcrjoMnmpEA361rHWTwnHDgTB6FQgNwoQpDaRZzpVmAQYClRgGNBjEaXPLxITpjrtmEhB8UpOThj49f1DInC5yMulxYQ+WvVGJGWiJFpSQ6/H0qzfd124TFZBFTlqREXHoBdua6Lee02lGPLSXunO2bEzMH48uOXIKvXVULGWaGROZ9/ZmvRYpLyYFO67+BJCCGkfYiOC0Jyp4izHm6of/7tarwREKbDtU9dgbGzh0udHFxh1cRZYZq2ok9ENMalViE04CQ4TpRuTIVNDhUEBPIqhPIaBPNqaLh64UMRMIlAjP9z6Bj6LQSexiTk/Hh07t0Ii3PR/ZgDPn5oLg5tOdoq75V96DTKi84kpV1gFf2b0jFg4GV90Gd8D7fbsOv+EQmux10E6Da0M5757WHpo/AP0UlzJCwgr9U1vRh4XOdot39m9m84LBXmqjHm+uH4ZM/r4F0ULZYdNELzTj60/5cDzRt5UriBMRuat2b2YnPXXXdh3bq6bkOhoaFYvXr1eQ03MBRwIKQeWZAaIbd3h6pLUN3fDg5QpgQg5NZuUET6gJPzCJyRCk7h5K8PB+gmJkAe1jY6ODCiVUTF6uYlC1mQw39sB/BNXNRLSGsK8lFi/pwB6Bcf6PT5rJKmtRzzROahKhHTLbpBJVYX2FqlMJ0SepP7yTKD2YoFO+ouFLc2hYxHt2gdfJRtr3FTdIMuBzq1HP+d1Bk/3tIPd41Iwp3Dk/DdzX2x+J7BiHZSRXVAYhCUMu9PZ/onBmFCtwg46Vrm4NdtdT+PKqMFPMdLx9UUB/MaL4oihBBCPEnUBePn0ddiZFSyFFRg2H9HRCbhp9HXIMU/BFq5Au+MnAiVrPHvdrbts4NGoYPu/FfIq2G2WPHN4i219w2ZGoheriXSmkMw68FpUqtqQs6XoIgAvLf5JaTcNgbWpAhA5jhGztGbYRqQCrF+14MyPYQqC5TlIlSlIuRVjaurcJUGcPUW19eQyT2PwVPjwz1uY0mJhHFKL/hc2ksac7hTXaHHP7+sh6h0PSmozgN0hwFNDqA5aYbPCUB3BJA17DitkEHfI9bxIbUCHfskgU93393O5qOEJbJxG+EafLUZPmuOInDuZvj/sBUBX2+G74pDkDnpGGFICYUxIQiijJUPtd9scg5WpX2RFcP+E92g/XOAUomnR/XDx/dcjpvG9sFNY/vi03un45uHZyLU36fR+/Qc3c2rn1mNXmPS0W9ST4/bLZ+72uHno+R43D9zDPyXn4DfmizIizyPhY+5qb5NCCGEuJLUIQTvPzMD/TPipQ6njMBzGNw7CR88NwOxkYFSJ6LHvr1HWjTUEJtovv+T2xAa62Lhw3lgqDbi1zcXNeu14fGhmP7ApVC4OU8i5GwLjQnG+1tfRnLPBKfP5x6vK9jTGrw5v+0a6XlMYpPzsATL4BPlA4PJfSCixKA/09HyTLDhzI2p+VoKELDQtYkDX8GDr+bBVwrgZSI4X9bVoW5/0vYqG3iNFbyegxpy9AiJhK5YjoBdAnSHBHBnwgfKMta5jnMZhmAUahOCOpQgoFMpdKFVCNDp4ac0gKsQYC1XSB0jWFeJRp+BzX3AgQeHcIvj/FeIUovXMsZj7qgrMKdrf9zdbQDmjZ2FeeOuRoi68Rz0oKQ46d9pxlKgQV6Bn9P3slg5ZBUE4JLQjuid5jhmc2bBzv21X1eaTFD5+ODG5Im1j6ldhBtqvzdeRD7nodMHIYQQ4qJa/Ourn0HPS7rXVnBnIerB0/rizX+fk7o8sIW1D391l9PzFrbtQ1/MQUCYd+s6zgWDtRprC5fU3j9t8pcWaEfKFAgSNFBzcsg5AUpOhgBejRBeI52psN+2VllnhPtdA56jwrTk/GEL/z/c/griuzo5jxTtQenWxP4eu8P+bXA1PmqI/TsREKqDycNC9+LcEodu3q2NBbdYVwKZom2t3RJkPIKjHMckgeH+eHTuXXhh8eOY8dhluPo/l+Pt9S/gtZVPQxfceLzBOqF76rhR35DL+yG1f0eP29Xvgl1VXi39HK/97xVoiiPbjzdp+4vRvHnz8Nlnn9Xe9/Pzw/Lly9G9+/kvqNi2/rYQ0gbIg9UIvqYzrJUmWMtNUucCwc/xJFGV5I+wuzNQuS4H+gOs0o8IRZwvfAZGQRnn/KLR+WI6VSF9H83ShAl6Qs6m0mozNmd6rhjUUvHBWiSGeA4oXTcgDsv353ncji2i/33naRzJr8K82/tD4+IktbDSiCoPIYjm8lEKWPHAMIT5qdD96aVoS2b1jcVzU9Kw4VgxThRVwV8tx/BOoVJHC6ZvQpDHffhrFJjRJxZfrvO8cOeOYYl4eGwn/Heh63aWNYqrTPjnUIHUIWT9sSLpsWAfBZJCtNLPq1TvuToV6zZBCCGENEeSLhifDJ2OAn0lCgxVCFFpEaJ2XFQ7LDYei6Zdiy93b8OqrOOwijb0CY/G9V0zkB7adjrKMbsO56Ckom4hrs0gQ/UpDbSxjaut11QkYksCzFYegrLtTECQi1txhRF7TrvuAibqNLBGB0F20t5djrPaID+eD3PHSJevkR/Ja1TLs0NajDRB58kVI9OxcU+m6w2sohSoYKOMJf/ux4mcYnzw9FVQuhiTFOUUw6g32Rcxsr+E9S5EszCAFAhgGQGbffGPVFbVTWiYdXKwKWXgjRb4BGjxxf634B+qw4A73mZ/ud1+bza154k61iVDqDC6fn9/NaoGJzbqkGF/MQerXIRgAmaMycC9X96HHSv3IOdILnQhfugzrgcUKvsx9E5xH8hg2EQpqxy06JPlHrdlF96v+b/peOOWDz1uW5Jfho2Lt+HH//2G3Wv2104qxKZGoSSvDBXFngPVQlsoWMH+nLS0dfJZbr1MCCHEecjh1cenoaikCkWlVQgJ1CKgQTU+1s3o/S3/w2/v/ImtS3fAZhPRfVgXTLlrnLQgqS3ZtXofKks9d+51RqujCqmkbSjIKsLhrcfO+vuk9Er0ajHgrF7dHSr8N8S6vbHuCBbYsGDDXpzIL8and0+H3MVCpZzqcphtttpwg+NJoP28nj0uqmzgqmTgWCcBtgkLFWhdjzE4uYggXxWWXXkTdEoV+s1/A2KDtnFsbKAoESHyPMy+tkYlIhUqMwLDyxt1Z1CoLAiMKkNRVgAsFr7RfqXvQuSkkANb7O/MjSkDcc+lI7H+2EmcKilDkI8Wg5M7QHHmcxocGQ9PIv39MKFrJyw8E0go3xeIKpMCQQFVUCtM0jFU6FUortTi/rSRuC2tPx6e/6fH/RZVVWPp8SP4aPsmbM3NgSBY0SkKiA8KQZmtDDY4v65Tn9bNz+acoTEJIYS0S8kZCXhpyZMozClGaX6ZtPiWhRrqGzq9v9R5d/7bi7F9xW4pMJAxsium3D0eid07oC05XLkHRltdpZhSmw/CBR5hQoOWuWcoOAG+nBKFVgvK4foaMyHnUs7RXBzfffKsv0/aoE5SYQVPJs8Zh5evf9fjdhazFX98tAxZB3Pwv6X/cRmeYN21bVbnfydbKigyAJ/ufUMqnjBBMwttydX/mY4Zj1+Gbct3Iz+zAIERAeg9Nh0yuX0+qfdY950vmKikCAy+vB/++Xm9+w054I43rsdld0/AM1e85nG/pQVlUnGun19diAOb7OFp9vsgplOU1BG9qszzmERoC2u32vCYxGKx4KGHHnJ47PPPP0fXrl3RFlDAgRAXpGCDj+tJdVmwGv6XJkq3Ns3Sgl+83gfrCDmrFu8+Daunkvut4LahCV4lSgcnh+Cekcl4a8Vhr/a7/3Q5ft6SjesGOB9E+6nl0l+3s/EdVhqteOWvg3h1endE+atR5qRC7PkwvGOIFG5gnzfrqsBuzfXEhFSU6834dbvjZApby8S+597xgbimXxx6xAY47RrhjFUUcd0XmxxaORdWmqSbt1iohBBCCGkJFmpoGGyoL9E/EM8OHtXmP2STpfFkdjUng2CRQSlY6q+jln73smLqRqscRdUaxGrawEUnQgCsWHvA4dzQGVtUMHAm4MAodmXB5qeBNaLx4iBZZiHkB083evyqRy7z6vMe3CMR147vja8Xb3ZyICKEBqf9B47l4a81+3DpyG5O9+cb6GP/u2hji4VMEM+0m5euuZ4JNzRy5jEpD9HwOZ6DyFrEGy2oLKnC1//9CXe/fzPCg/yQmes+vM5Xug4ueMuYGu483FDv+Iand8B9M4dJd3uM6CrdmuuOt2dL1YNW/bjO8W3YJGVcCLoP7YxJd4ypXewZHu+5zbVJb8J/Jr0kTczWKM4tlW7eCgpvO918CCGEtE9BAVrp5kqHLjG498Nb0NaZjc2/JtqUCoSEnE2rflh7Tj7gqx71bkwyvktHbM8+ja83Na5wyjohKModH9t57DSWbj+ECb1Tne4vQKmuW/VRr3OD/XT4TCUE9gTr1sD+Stf81VRbHa4rOFPEVeLdzRvx5OBhCA/0w+miBgfHdlMAaRxlMHMwawGbou44fAOrGoUbarCm4L5BVSjJ9YNo4iGq0WBbDlYrCz/YpJADx4lQyizgRBFjInvgvs726zoDk+LQEk9PHoVqkxnL9x8Bb+JhO+CLXH8NOD8RUYF+GB4Zh2sGZKBzoH0sEu3vunNejVLegFv+/E36OjCwAlGRxdL3UHDmMo/Ci0s2/oq2VRiQEEJI+xMcGSjdXEnoFocHPr0dbZ3F1nhMEsqzRdau13RpOTlKLEpY5dRNjlw8YxI2Br/qkSlebTv62qHYu+4gFn28zKvtd67ai3ULNmPwtH5On9cF++JsKcopwU8vL8Ds52dKxaBYcKstGDt7uNSdgek9Jr1F+3rws9thrDZi46JtjTpEsDmRHiPScOmcsYg/000uwotiX6zY07NXvO7wWOGp4iYdl38b6ubTFv3www84fryuywXP83jkkUekW1Pcfffd0q21UcCBkAucPFwLyPhmBR1YNwtC2gK2eL252AL3LpF+yKswIlKngk4tx7xt2TCzlXNnyAVOCixc2dtzS94a941OwcCkYHyzIRMbjxVJ+3fn121uAg4qOUJ8lcj3sI/mYt/vXSOScGXvGDzlpnsB+3zm3tgXFQYzpn2wXlrkf7asPFiAaR+swzOT05AW5flCuqdOCa9fmY47hidi4Y4clBssSAr1wZQeUfBRNj7VmZoRjZf/OgiTm38X95wq87iAzZNpGdEt2wEhhBBygUiJDYFM4GGprXoiggu2oMqiQLVFBoVgldYMWEUeZhv7yj5DzhYoxPk0PwRJSGuqrPJ8ri426ILI2USo1hxA2JBURI7vgeKyaoQH+8GvoByr5m9B/Z5gcoUMNzw3AyNnDfb6mO68YjD6d+2AeSt3YsfBUygsqZQqpLLFRM7W9/z5j+uAA6t+po0OwumecRA1SvvioZpgg7vFQq6S2lYbOH1dOJh1N5jx+FRMGZSGt35Z43J3sWEBeHvlMygrLMd9Q/6v2SlwS6jrcFiNf3/4F/fN3yYFL2ouqDcXq7r0xPf3YeYT07D6x3VS2IHtc/jMQVBrGwefL7l+GL566kdYnQTAarBqRPXDDc0x6tqhON84VoS3hUWvWvp6QgghJLlnghQ8bE4lxqjkcPoASZvQ3C4kDKtuGZkUhrL8coQnhEEmF6TFSaySaQ2FSo6b/3cNBk/t6/V+nxgzDMOT4/HD1l3YmpmDorJqyAyAYIDUUa6hPzbudxlwiNT6wVdQohIGh8BCzdf2nAMLCHDgLSJENvySLiF4cc7MAXN37cBtPfvg0iFp+Gj+OmebQFkKdPYNxvN3TEJBVRVmLPgJvNwKhdp9R2el1gSOs0mdEqx6GQSNYzEHtnebTYBaZkCIbxUUMvvnvqtqDR7deRpzkq9EjMZzCNodlVyGd2ZOwv7T+fhrz2FUm0zoGB6C8V07Qq1ovChyao8u+HDNJthcjDlEXsSm4mzpa1+fakRHFTUKklhEHjI3izI5cBgc4nzx2LlEYxJCCCFtQYwmUfrdKJ654KniLAiSuV8Hw3McBE4BjcJzl1lCzoXKUs/V8l2J7xqL4OhAVBRVIjLJPs5mBYPqj9OVagVuf+N69J3Q0+v9sqILA6f0lkIOe9ceRGlB4zBzfcvmrnYZcGBdCJRaBYxV3hc+bYpf31yE6Q9eirGzR+CHl+a77ar3yNd3oSC7EI9e8hzOpiWfr0T+yULc88EtiExs2fUPtY8az/3+GA5tPYo18zbCUGWQuvEMu3JAbdfs+sbdNBI/v/a723mQmu7WzcWuBY2cNQjnW1sek/z6668O9202G44ePdrk/RQXNy144i0KOBBygeM1cmjSQ1C9Ja/Jr9X2pgv3pG1ICmt+SvZUqV7qWjClRyTmDE9ChE6Nh8d2wvztp3C6VC9V2WcL4VnAoKn6xAdKt4//OYoXFh9wu21N5f/CSiN+2pKFI/mVUrBhUvcI9IwLhN509tr0snPBxbtzccPADvhjVw42n2hcMZWFPJ6f2hWJoT5SaONshhtqbDtZihkfb8CvdwxAcgt+xjWSQn1x/yUdPW4XqFXg/yZ2xn8W7HEaYugR44/tWd5XRXVmcnokuka3LLhBCCGEXCiCdFqM6pOCJetrzpc4e1EigS1Q4GG0ui75NzWm1zk7TkLc6RDjOWzDV+gbPcYW9eSv3o+qHZkYfc1QXDVnEIIiAnDL3ROw4ts1UqWZ0JhgjJg1qFGLdW/0TI2Rbl/MW49Pfmq8SKe+knL75EPR6RL89cVKZB/KgVanwYiZg5HaNxnlncKlzg1SZuHMebLUvcETJyEH+cli8PXGOGyS4t9fN2L6raOxfOth7D2e22g3CpmAx2aNQEzHKGxavL1lLe68WLzIWUXs+fcAHhj6f3hn44vS5EVLsVCDN2EJ6c/Ay9fgg/u/rH3MJuNg7OADkeeQER2FA3+37ML92BuGtzi4QQghhFwo2PkWW/DAJtibavxNbb9rHrk4xHVufkGdrAOnUJpXitHXDsNVj12GgFAdbnrpavz97RppfMC6jrGwtV9Q06/TD0iIk27vLFyLz5ZucrttcaV9TJJXVon5m/fgZFEpdGoVJmWkonN0GEw2CzjH3HgtqZsD+8IG8DYBrD6CFHKwsGsKHuZXrBxMNiuWHjuCqy7JwMqth3HoZEGjzZQKGR65ZhQSggKx5Phhe+6b92Jswdk7OVitHESjIHWmlEIOZy53sPGVj8KISP/yRiGB3WVH8MjOt/BGjwcQpmp5kYfUiFDp5gnr4HDviAF4fUVdFV6RDWDVNun7To+LwqZCe9fs0NDGx83YWKDDxkFwETIZHTYU4SrPx0IIIYRcDIKV4ejom44DFfbuV6zgk01034SWMYoypPp512GLkLY8Jjm++6TUxWDM9cOkrnFs7CGNSb77FyV5pQiPD5XGJL4BnosXNdR7bA/p9uH9X2Lem4vcblvTOSH/ZIG0uP/08Tzogv2kbhCJ3TvAbHQfbm4Jo96EDX9sxZUPT8aG37fgxN6sRtuofVS4690bEdspCn9/57pYVGvatny3VHDqvU0vIjiq5WMS1sm6ppu1O9EpkZj15DR88+wvTp/vMrAT9q51vxbPk6n3TEBobEiL9nGhO3ToENoyCjgQchHwn5QAS341TCcrvH6NqnMg1GnBZ/W4CPHW2C7hCPZR1IYEmqrSaME3G05i2b48/HLbAMQEanDjoPhW+wHEBmq82uaXrdl4/NfdMNVbbPPluhMYlhIiHePZVGW0QCUX8PXsvnjn78P4cXMWiqpYVSFgcHII7h6RhF4d7K0dc0obL8w6WyqMFrz99xG8M6NHq+6XVYgWeM5lC/mr+8Uh0l+FD1YdbRT42HWqaeEGtVyA/kylKz+VDLP6xeGB0SktOHrSGgoKCvDll1/i999/x5EjR1BYWAhfX1907twZEydOxC233IKAgAD6sAkh5Bx58JoROHG6BAdO2IPXtiwVhA4Gl9uzyf/R4d0xOJR+p5K2YeTAjnj3i1WoqHT951Y4ke/yuaqyavz27p9Yt3Az3ljzrLTI7vL7J7Xa8UWGem6xGxXqL1Uxeveuzxwqtf72zp/oO7UvqkLqFjNJZ9Gi6wYN7rDODaptJxs9Xl2hh1opx4f3T8Mnf2zAgrV7UVZpkCqR9U/rgJsn9kXXBHvIgFUMaglFZgksEe4DI4pMezWZipIqfP/CfDz4+R1o7TEJ617jytR7J0iTNj+8sgD/6ipROjwMNh97ZdV8K6AJjkPw/JPgzZ5/AqyyFZscYXwDfXDpHWNwzVPT0Saww29pfv7s5+8JIYRcBFg1wlOHc3FsV6bXrxlzw3BkjHLeAYuQc23ErMH45JFvoHczJnGHnff++tYirP99C97891kpdMuqh7aW6GDPge3oIB2+Xbsdr/z+Dyy2unmSuf9ux4j0BJh5L+ZJjKxrHQfeKsLKmqXpeYh+LIjg+iWiwZ6aqDKZoFUr8OGjV+DTBRvwx797UF5llOYSBnZPwI2T+yG1g72TQk6FfU7VahGkaxQuphokNisHKyvewBLiVkghBwur0ayoGXeJCAmudLmPMnMlfslagTnJV6A1sc9YxpIXLtwyqA9iA/zx2fot2GHKghhglopRMLu44+C1HMRqHj4+rv7McTDaZJDDCo0gwCzaq1D7ynwwNnwkLosajzaBxiSEEELaiCtibsOHR59BvvEUzOBxxOSLFKXrdVzVNg5BPjMQou5+To+TEFdGXzcUXzz5fe216KYqL6qQKvazRf6v//MMQqKDpMX+rYV1q/MkIiEMP7+6EJ8+9q1D94h5b/yBwZf3g81ydtsJ6ysM8PHX4rXVT2Pu0z9j2derpfkj1mmg/6W9cM3/TZeCFkx+VsvmSZqi+HQJfnn9D9z22nWtul/WxVqQuUixA7ju6SuljoM/v7YQR7Ydd3juwKbDTXovuVJWG1DxD9Vh2n0TW/XP14U6JtmzZw/aMgo4EHIR4JUyhNzSDdU7C1C9PR/WUgMsRQaX//Apk/wRdHVncJ6iwoScIwoZjzeuTMdNX22BsQUnk3nlRjz7xz58fG0vlBvMmL/tFA7klkOjkGF813Cpk0JzjEwNQ7CPUurO4Eqf+AA8/MtOKYXf0KpDjSsFeUtg18u9OInpFGFfrKRWCFIHi/tGp0jHq5HLoNM4tiduSjcL1vnBXO8A+nQIxP2jk3HPjzukz9sbS/achsHcTQpgeMtgtmLhzhxsOFokrboanByMcWnhmL89B1+tO4EDuRVQCDwu6RKG24YmIi2q8eTKiE5h+PdwUaOAQ1M71b80LQ2hvmppcqJ7tL/0GZPz64svvsD999+P0tLSRi3R/v33X+n2+uuv45tvvsHo0aPP23ESQsjFxE+rwidPXImlGw5g8br9KCjQoiD2KEQXVf76BnXBC+lXuAwrEnKuKZVyPHH3OPzn5YUwWxpXBxUOnQJfUulxP2zhPluU9MR396KytEq6eM0qF2n81FKb3k59kpt1fMP6JuGNL1Uod7PYKS3UD2/d8rHTdr/rVuyCOCm98YvYubGbhUKMwHGwsX1abZCfKIJqRxYEJ2OjhG5x0n81KgXuuXwI7pgyEMXl1dJ9X43jGCQwwvsgqkwhg8VUtxAqfXgXzHzuKjz0yyoUVzoPb8tPlkBWVFV7f9WPa3Hfx7e6vdDekKHaKFWX2r1mn3T9pNcl6Rg0tS/mb9mHH9buxNHcIqkrxehuybhhRG+kRDYuIjFgcm8sCihF8b6dDo+bBaBsWDjMoSpEvndQ6gTizsNf3wW/QB9pEqRj70Qo1U3vUEgIIYRc6FhFxrfWPS9VrF/x3RoUZhfh9LF8p+dGDPu9/sCnt5/z4yTEFa2fBg99MQcvzHzTIbDcVKeP5eHzx7+XAr6lVXos2L4fR/OL4KdSYnz3jugc5XlRkDNjeqbg1V9Xo8rgerFTclwIXlywyulzyw4eATw0aJYuEejtyxs4kYNgEGGTc+DKFLD52ws6NSTqecBsH9R0Crafk/tolLh3xlDMmT5IGpNoVQrpsfpCNPbCVqKVh6FCCbWf6/kOa7W6ds6VHdegyA64o2dvzFk3HyUmPdQKMxQy9z+zlfmbmxxwqLIYsSh7N7YVnYTA8RgSloyhYR3x0/bd+G7rLhwrKoZKJsPY1GTcMqA3koIbV2Md2yUFf1cdwPYT9nBCDYtoA69mAz5Pf9Y4mG0y3NnxVmhlcgicgESfDpDzjvNOhBBCCAH85P64J/kFbC1Zgx2la7HTrEaSYj14Fxf/DMrJyAh6mD460mb4Bfri/k9uw/+ue9chHNBUWQdz8PVTP+Hu929GaUEZln21WnrMN0CLkVcPqZ1LaCrWAeLTR75xG8CI6RiJjx+e6/S5Nb9sQHOxOQLR2YKwBhK6xdZ+lnPemo2bX74GZQXl0hwRG/PVFxTehHkSuQwWs32ehM2t9hqbjukPTMTT015FVZl3RW5Z1/GmBhxYYavlc//Bvg0HIZPJ0HdiT/QZn44/PliG3z9cilOHT0OlUUrzX1c+MkXq2tDQiBmDsH7h5kYBB2sTx73PLHhE+hxkcgEd+yRBrqAxyYWAE11duSOEXNAMh0tQ/ONB2CrrXbDiAW3fCPhPSqRwA2mTWBjhk3+OY9m+XFSbrbB4s7K/AVaJ53/TuuGpBXtQZXI8GRqaEoL3Z2VAq2x6/o91h7jj260Oi/1rjEoNAyvc+ddee8Xi1tI1SofvbuqLH7ecxHOLXLflYoGFdY+OgNxF9VCjxYole3Kx73S5FHgYkBiIWZ9tgqkJYZIOQRrMGZ6E6b1ipPvHCipxy9ytOJLveZEXs+XJUVJIxBv7cspxw5ebGgUo6ndSqE8p4/Hpdb2kThX1ZRVXY+grK52GTrwl4zmsfXQEwvxYqSjSFrz88st45JFHau/rdDr0798f4eHhOHz4MNavXw/bmepgSqUSy5cvx6BBg87jERNCyMVrfeF+vLDvB5SZq2sfYxPyl8cMwh1JEyncQNqkQ8fy8OPCrVi3+SgMBhNseaUQjuVByHUMzbojV8ikCsKskwJbJF8fq9DzxPf3NmuB+t/rD+KptxfB6uQEd0S/FNhW7MbmxfYW6A3ZVHJUTuvZqCwp25ONDY9cZI26JUXi7Xsuw2+fLseXD34NzsUYIiwuBF8deQeC4DxAYDKYsPrn9TghhT006DY0FQ+NfEaq7uOt6JQIXP2fyzFy1hDp/tGcQjzwwe84mV/aKNzg8/ch8A3GDr+VftVoAsGVg1uO4smJL9a2s675rEzTu6E0qnELbZVChvdvugy9khxbeB8tLcbIHz53+16R7x6Adl/d+zQkV8rx3ckP4B/iuWLuuZKdnY2YGPvYsOf4J6HUeO4w4o6xuhRbFz8nfZ2VlYXo6Oa3QieEEELq+3f+Rrx+0wdSZfsagozH9Acn48YXZtKHRdokdi76y+u/Y9PibdLCnaYu+qjpAHbD8ofx/OLV0vxAfaPTkvDyleOgkDV9nmTRpv34z9y/7AHoBib07oTThkpsOprt9LU2uQ2GLu6LJkm7LVRAVsVLQQKmX1wM3r/iUny8ayPe3bMWUJ4Zk1g4iHoBMNrHIB38A/D31Te4vNZgsJjxx8n9OFJWCF+5EhmB0bj613nS98LLrAiKLYUgbzzesZgFFOb6QbTxSNIF4b6eAzEh0Z7U2FeSh9v++RUlllzEhngeMy4Y9AZkvHeh6x3FWZiz8TuUmhwXK6ltSpQfVtSGOmpoFXJ8PmMqekQ7LijaX5qHSUs/cfteCYFFUKscAxD1KXkFPu/zHHxk3o2nzgUakxBCCGkvRP0fEMufAsS6Tg4i5OB9bgPnc9d5PTZCXNm34ZDU8WDzn9thNpqbFcDW+Kpx0/+uxgf3fSnto74RMwdJ4W62WL2pFn+6Am/e+pHTYgbjbhyJzH1Z2Lf+EFpT73E98MR39+Db536VOhG4Et81Fh/vfM3l8/oqA1b/uA5ZB07BJ8AHHfsk4pHRzzbpWOI6R+OG52dg4OQ+0v2Dm4/gmemvedU1m+c5/GX5yev32rl6L/572StSMa/61D4qp50HtToNXl7+f0jpmejw+P6Nh3F3/8fREiwg8sOpj6HWtp21WzQmaR0UcCDkIiZabNDvLYI5vxq8SoC6WwhkOqryR9qHyz9Yhy2Z3i8iargo3eJiVfuk7pF4Z0aPZu13y4livLfyCFYfKpAWzUcHqHF1vzjcNCge3Z5eiuoGgYqWiAlQ47c5AxF0JhTw1vLDeGN545NwrULAXSOSkVlcLQUW0mN0uCwjGj5nQhwbjhXhzu+2N+o+0SncV+qC0BSsm8MX1/fBoGR7FSQ2YPhtRw7u/3GH205Z/ho5tjwxCrIzAQwWjvhzTy4qjRakRvhhbJdwqYsHU22yYNgrq5Bf4V13iBphfkqsfWRE7Xsw7/59GK8ubdnApSV/XkjrW7VqFYYPH157/8Ybb8Srr74Kf/+6BVXbtm3D5ZdfjuPH7envpKQk7Nu3D3I5pbcJIeR8MFrN+KdgD05W5cNXrsGIsG4IVradRbqEuHNHr4dxuEFFGW+xTgGuFu+PuX64VE21ObbtzcLXv23E5t2Z0uKfqDB/TL2kO64Yn4EJPrNgMVhcZRVQNSIV1sjGC9GlkANbY9MgL91Bo8ZnL14PnQ8r6wl89vh3+OGl+Y1er/ZV4eonL5cq9ZjNFnTu1xEjZw2C+szrti3fJVWhLSusG3+wRUcd0mKk7hZNwRb7v/TXk+g2pLN032YT8ceK7fjf49+yO1BkFkNWXBeqqhEY7i9d/K5Z7HTywCmpWhMLoCT1iMfAKb1rJ1OqyqpwXfJdDsfL6DsGo3xcistjiwz0w+LHZ0uTBDVe2/Qv3tnmviqUz+ZCRHxx1OXzLfnzcrbQhXtCCCHtiVFvxD+/bJDOVViXB1ZVMCCsZeE8Qs6Vm9LuQ+Y+54EBd0yRPii+trvTIAJzZd9u+L8pI5t1TBsOZOKLZZux8WCWdD8uNABXDemOqQO7IuPJt2uDCc4Ykoyw+bguvCSaOIhVcghVHAQzjxRdIL6/6Sr4quzzJM+tWYXPdmw9M4qpex+dUol7hmbgpDFf6kyQERCHsVFdoRYU0vN/nzqCB9YvRJmpbhEOe3WKNgwHTrJ5KA68YIU2UA+1zgBeEGG1ctBXKlFZrpbCDTVUggzfT7wSPULtQQL2Gf98fBO+zv7W7ecWogzAl32frr1/NLsQq7YegdFkQWp8GAb3SKyd3ygxVmH8indQbnbewU808LAcYcFrx886PigAf912vcNjL+5Yjs8OuR+T6OQGRIc4BsfrGxc+GLclXYm2hMYkhBBC2hNR1AP6PyFas8DxgYB6gv2/hLQD1yTOQe7x/FbvejDtvolN7iZQY9Of2/Hjy79h1+p90v3Y1ChMuWu8NC8xWde8fbqS2L0D3ljzTO18x1u3f4w/PlrWaDu/IB9c9ehlOLn/lFSQk81hDL9qIBQqRW0Bhldnv4+qsrr5CzaXENel6fMkLGDw2qqnkZyRIN23Wq349a3F+PjBr92+jnW3+Hz/W7X3j+48gXULNksBlE59k9F3QkZtEaui0yWY3ekeqYNDUyR0j8NH2191eOydOz/Fwvf/Qku05M/L2UJjktbR9JgTIeSCwcl4aLo7VjQnpL0oaLAgvylchRuYRbty8MjYjogOaHqlmV4dAvHFDX2gN1mlqkdsbQzrONH/pb+9CjewS83eNhPIKtFj0e7TuLZ/B+n+PaOS0SPWH1+tO4EdWaVSIIAFDXZmleKlJXXdHeZty8bLSw7gxandkBLugxu/3NyokwXDwg094wKk4ENmUXXt8bHvydXHx7pXPLdoH5bca6+YyhYHXdYjCn/szMGKA64HNNN7RksX5lkA49F5uzB/xyl7JaYzWGcHFiLonxiE37bnNDncwLBuD+wYxnQJr32sqMp1W7r6oQ1nXTmY9Bh/PH9ZWpOPhZwdJpMJt912W+3922+/He+//36j7TIyMjB//nz06tULFosFR44cwe+//46pU6fSj4YQQs4DpSDH6HAKC5L2qTjX9QIPT9x1Jljx7T9ShZ2gCO/bD9fI6BIj3fQGM8wWK0SImLtkC8bd9xFKruoNmCxQHCmAavcpmINU0KeFwKaSQVakh+rwadhC/SCeCRfXYOMAwWCFatMx2LRyadAiP1WKslI91vfoiLGzR0jbsSrHaYM6YcF7S3B4y1HIVXL0HN0de9cdxCePfFO7P9Zu+vMnvpNaWYcnhOH/Jv+vUctoFpZmF+27Dk5FflYh8k4USMdljQuBLTJQWiQkFFZAdiIfnKGuuhO70P7xQ1/j3Y0v1U4AXDo6A2tf+QPblu92+bmxyk1s/MI6Sbx8/btY/dN6h+eDIgPwn58eQJcBHfHXl6sahRsYfdcwtz+bnOJyrDuYiUGp9jEcU2TwfPGfD7JPjDjDPp85b9/gcR+EEEIIcY11zhp9zVD6iMhFNSap7BPlMtzAzN+6F3ePHgB/retzUVf6dYqTbtVGEyxWG8ycFR/t2Ix+336IqgQbYAXkFRzkpRxscsDiI0phat4EyPJkMGlNTjvIscMVDcKZiQoRPidF5JmLsHbHMYztlypt8+TgYegbFY25u3dgb34+1HI5hsTHYI/tAN468mftvn7P3o53Dy7BC+mToRX8cceaeTDZHMdo7NM5WJWHfslxOHm6CjmVFago1KK6UglebYOFjbasPMQGgQ2D1YIXN67GT5NmSPd5jsOVCX2xpXw99pUfc/m5jY0YIP1XbzTjqY/+lMIN9YUH+eKlOyehc0I45p3c7jLcwHAqGzgfC8RKx6I+x4tKsCkzG33i6jqiFRsdq606U6X3RWGhFcHBjcdB3XQpuCH+Mo/7IIQQQohrHKcGNFNdFqYhpC0racE8iatwA7Po42W45qnpXnddrq/PuB7STV+pl7pLWEwW/Pi/3zArrvULBbEQwJaluzB4al/pPuvenTG6O37/4C8c23lCChuw+6zQ08cPza193dIvV+Gzx77FQ1/eCY2vCs9f9UajThisgBObJ0kfkYbsgzkoPFUsPS4VauJcf36sewIrSPXSkiel+yyUMP3+SVj5/b84vNX1mGT8zaOk/7LQAitKtXHRNofnw+ND8dS8B5GUHo9FHy1rcriBObYzU+rYkNo3ufaxssJyj68T5ILL7oWsg8Zs6sJ5waKAAyGEkHYpUqeuXXjfFO4WrDPs/O+fQ4WY2TfWq/2xAMHSfbnS4vxu0f4YmxYOtUKA2WbDFR+ub1IXhLggDU404Xv6cNVRzOobB+FMBdAhKSHSrQZ7/0N5lY1eV2G04s7vt0uvs7oZMGzLLMHaR4dL38Mj83ajoMLoEDxwhm2751QZ0qLqKi8/NakLdp8qcxpM6BjmgztH2E9cn1q4F79uP9VoGxayuPGrzVh092CsPeK5bZorxwsdL9THBXoeCE3oGoFr+nfA4bwKbD5RguySavip5ZiSHoUxXcIcOkKQ8+uPP/7AwYMHpa/j4uLw+uuvu9y2e/fumDBhAhYsWCDd//PPPyngQAghhJAmC40NRlFO07vKubsQy7CL2Oxit7cL7fatP4j1v2+VLtKn9kvGwCl9oFbJYay04JaXfsLxnKK6jRUyGDtHoLxfGKw+9ko7NSoGiuiYb0PeqQpYQ3zrjje/HKqtmRCKGo8tvn9pPsbcMLy280Hf8RnSrcacPo9K7ZQbqiiuxNPTXgUv8LBZXVdoZeGI77M+xL79p/DS3NUoqahbxGML84e5YySUGw9DqDeJcnDzUWTuz0Zcat2inTvfuRH3D/k/lBY0vlCenBGPKx+ZLH39xq0fNQo3MOzn/Pj456X20dtXOA9KWP09L/7KLChxCDjE+XnuWDNuXF9cO+UqHN9zEnvXHkBeZgH8gnwxctYQDJjcq7ZiUpslrUQTW74PQgghhBDidEzCzq2bypzkviKwyWLFxmNZGNPVdYey+racPIXVh4/DYrOhZ0wkhqckQKNUoFBfhct/+x4nyustehIAs78Is5/YOMggAjEIQralGJys7hxQtHAQ9QJwplOCVQXwFnuXhi8WbaoNODCjE5Kkm/Q6UcSVa97Dyeq6MZFGZkKCXxFC1ZX4OWcXRFGO1FA/7C8Ih8naeOnE1pIsbJx5N9bnnMT/7VyEUpMFbAQjHYncClFpha1KLoUdamzKzUZWeSli/Oq6wcxJvgKP7nwbFRY2B1T//JZDR98OmBJl70z8zCd/NQo3MLlFFbj71V/x/fPXYkOB60VJtXt1EnBgjheXOAQcYn08B+uv6tgNEyO7IVOfhUzzIRQai+En98Hw0D7oFZgGgWvj8yQ0JiGEEEIIOatjkqyDOU1+HZtTYOfrrhiqjNj9z370m9jTq/3tXLUXm5dsl+Yb0ganSq9jXRUKc4px36AnkXuiwOtjC4kJQkFWvXkVD75/8dfagAPDvq65z7on3Jx2v9MuFyV5ZXh83PMQWHEni/t5kp9Of4JNi7fjnTmfoLK02mP13G3Ldknfe3Bk3djvvo9uxUMjn3boElGj65BUXDpnrPT1i7PeahRuYNj38NiY5/DJntexbcUuNFf2oRyHgENEQl2hWlcuu3s8Bk7ujaM7M6XPo/BUkdR985Jrh0oBB56nMcmFigIOhBBC2qUre8dg/THvTygZgePgo5ShpLquwqczVi8WT1QYzLjj221Yc9hxwX2YnxIfXdMLf+4+3aRwA9OUcAOTU2bA3pwyKVjR0PaTJdh0wp7edcVduIFhz37+7wmsPJgvhRua210jNkiDV6Z3w5PzdyOrxLGqEAs9fL3uBKb3isYvW+0tq51hHTC+XHtcqkDbXP5qOapNFmSX6KFVyjClR5TU3cJgdj1QmNk3TupkwW5X9fEu9ELq2AwWWMuMEE02cAoegk4JXnV2Tj+/++672q+ffvppqFQqt9s/8MADSE9PR1BQEFJT6ybACCGEEEK8NXb2SOzfcLhJH5ggE6BUKVBtdl/Zxt2i/xoVJZV45vJXsWPl3kYTCk/Pfxjz9x13DDecYdIBVq2TRfE8h4PhAoJWZkG13ghRowBXbYJQ7royaM6RXGTuy0aHLjFOJxQObTnaou+TPb/ww6VYVFjhEG6oJRNg7JsM1dKd4Ot1gWBVo+oHHGI6RuG+T27De3d/jvyTjmO4guxiLHx/KYZe0R9/f7vG5bFUl+ux4N0/XU66cAYL4GNvJ+2KTqOSqkblZRZCq9NgakoXvLZpbaNqsfVdnZaOLiHhUveIibeMdrt/QgghhBBycWHd1Ng5blPIFDIICpm00KYl8wdMcbUed/60EFuz6hY0fb5hK6L9/fDBlZPx+f6tjuGG+tj6k4ZvwQHZFRUQbXKIPOvsIAI21la6QRKCZR3kgGACjp0qQnZ+KaJDG8+TrCs4gkMVebX3tTIjeoVmQc7XjUM4zozEoCKE+lRi9fGkRiEHi2jDjwd24puTm1BqajyOY1lvXmuGtUIB1OvmUKCvdgg4dNBG4q7kK/Hp8XkoMpZKr2NDi4oqBdadkuMb2S6MDknE31sOOf+8AJRXGfDryp0Qw7yYJ3GxvsdfrUKV2YgcfRn85CpMi++Od/etcTsvNjOpJ1J0oeiFKNajw/N7E0IIIYSQi2pMUr+DszfkSpm9W4GH01pv5kmKc0vw1GWv4MDGurman1/7HVHJEXhmwSP47vl5TQo3MDWdErzFuiI0DBPUWL9wi8cAiLtwA2M2mLHs69X4/oVf7eEGL7B5jNL8ModjSs5IwF3v3SR1kig+7Vi86/SxPPz56Qqpa/SGP7a63C8rIrX4kxUtqknkF+iDqvJqKUTiG+iDcTeOkDpsuJx74ThMvHU0opIikDYoFZPPBDHIxYECDoQQQtqlid0i8NuOU1h10LsTUXZZ+f1ZPfD7rtP4Y9dpt9v2i3dfvYi554cdjcINTF65Edd+trG2gunZxjpHOOPs2Jpj2f5cZBY1ra1YTIC9cmlZtRk/bjmJX7Zm43BepdOxCQubvLbskHS87jprMMv35+O2oQlYvDsXTaWUcdiRVYrnFu1HpdEiPdY9WofxaRGYv/2U02O7pl8c+njxZ4E4YoMO47EyVK3PgX5fEaRyVjV4QN0lGNp+EVAm6Frt7wmbjFu8eLH0tUKhwOWXX+7xNYMHD5ZuhBBCCCHNNfraIVj5w7/Y8fcer7bneA7PLHgYiz5ejnULNrvejuPQbUhnj/t79orXG4UbGLaA/5Fxz6Fwanqj59h6G4uHRmaVfSMR/MN+wE2woT6z0XmAfMvSnWgNK9ccQE6gj+sNZAIs8aFQ7MuufSgszt7ZrryoAos/XYGlX69C9oEcpxfI2UX+Tx/9BhsXb5VaPruz/vctGH/zaKfVi9QHC1AZHOfytWqFHPs//Qcfffu8VH2KSe2fjGk3dMf3Nudh7xu79UTXEM/Vi9oyjhXmbWEDhpa+nhBCCCHkQjX+ppFY/dM67Pn3gFfbsw5qLy55Au8fO4S1hzNdbse6P2d0iPS4vzk/LcS2euGGGtml5bj+219Q7OfdmKI+6dSPXTZ2Fmyot5FNkHIOEpOLDnnrCx07IXT0z3cIN9TnqzSiY0gedueyRfyOFhzZg1xrw4JWIngWwJCuiXOwKawQjfalFzzHIdLH3hWvzFSBP3PXYWXeJuQa7WGLmsvi7L9+PkZw3Ak8v1GP1dojHhcK/bP9GIZcHY8NhcfdbmdWALYQM4QyAbzJnnbw08jxT9VePL7kJ+it9nFcr6BoXJmUgF+PH4DB0rjjw+2pA6VwQ3tGYxJCCCGEkLOHVf1fM28DDmxq3IXMVRGoV/7+Lz577FupQ4MrcoUMqf3dd5Rj1/ufnPSSFDBo6NTh03hk9DPS9f+mEr0Ie3s7T7K1leZJlnz2t9TxwVvscw6OCqwNgSz6aDmWf/uPVLTKmcLsYrx712foNtTz3BSbJ8kY2RX71h1EU+mCfbHqp3V4ZvprMBnsnxl7z8HT+uGfXxp312au/e8VUrihPaMxSfNRwIEQQki7JBN4fHxNL3yw6ii+3ZgpdQJw595RKRiTFoFgXxUW7z4NV+ejg5ODkRxmv/DsyoHccvx9oHH7sBrlrHLnOaBRCOgY7vxYW5KWra+4yn23i4bSY3RICvXF8cIqzPxkA06XeTeB4anbBGO02DA5PQqv/HWwyZ+xv0aBHzY7LhramV0m3Rg2n1DzkQX7KHDX8CRcNzC+Se9BANOpShT/dBCWPBepcRug310o3WRhGgRe0RGKKDeL1bx0+PBh6PX2IE63bt2g1Wrpx0EIIYSQs06ukOP5Px7Dd8//ikWfLPd4ofzGF2ahz7gMKNVKqWqPq2o0/S/thYiEMLf7Orj5CLav2O3y+dIqA6rPXByuz8oaDHgImZri/aVzY2+iqD7+WsR0arwAqDUHJUVeTCbYgv1qv2YXw9nnl7kvCw+PfrZRJSJX3E2m1LCYLBh93RDMfeYn6Bt0lFDvyoW+Syis/vbAd0Mh+wqx9A/HQMr+9YeB9YcRmeaPktGR0Cfbx3cRFgXuHjIYM7r18OrYCSGEEELIxUmhUuDFJU/i2+fm4c9Pl6Os0H1X6dtfvx7pw9JwbaSP24DDJWnJCNe5nyfZnJntNNxQv4OBWWPzvMqjNtFQh+c52NwVRBKB8kQOfseAUEGN6FCdi83q9qEWTAhUuS7mJMCKLkGnEaEuQ7VZgcMlocir8pPeq8hQBdSu/RchCDYIgugwtGKPGc08RBuPwVEdEK71xbHKU3hy93soM1dA4By3r89Xa0SgrhL/lmYhUMlDMNpnLIRoI/gw+9yXNUcJ22klzGYrpsT2wMeH1sBgM0MpmOGvZGMTEWUmtRRSsFk5WC08oBRhCbZAVigDb+GgTjZgftYO+/FyNiT6F8JHcxhlsGFkPGCwylFkVKPMqIEaobg+fhymxjcOzhNCCCGEEFJDpVHi5eX/h7lP/4wlX6xERXGl2w/n7vduQpf+HTHt3olur8kPnzkIAS7O82tsXbbLabihuZ0YGobDvekgwbAgQWhM8Fldu1WU6908R41+E3vCP0SHg1uO4rGxz3n8uTRlnoSFOcbeOAK/vP57bUjBaxyH5XP/cXho1+p9Tjdl3cpnvzATI2dS4dKLmYvmhIQQQkjbp5DxuGdUMtY9OgLrHxuBFQ8MxYSuEZDxdVeJg32UeHJCqrQd0zMuAM9N6SpVIGooNcIPb1zp+WLtiv2uww01WlKXXi2vqTvk3pT0KPiqGlfUYfoltE7nAW+PpUZWiR5H8isx59ttXocbvBWolWPcW2uaFG5gP+dRqaFSZw136o8pCitN+HFLNsqbeiJ+kTMcLkHBRztdhxsaYNux7dnrWmr37rrFfcnJ9r/rzNKlS3HNNdcgKSkJarUawcHBGDJkCN566y0YDK3755MQQgghF++CouufvQrfZ32IbzM/wGd738DAy/pIF79rBEYE4M53bsSVD0+W7ncf1gW3v3G9tGinoZReiXjgs9s9vq+7FsEMZ7I2+8o5x/NQuBhnNHTJ9cOkCQxnug3rgtagUrNUBpyGNQz+HKpCOFQm+6CqVzRsKhmyD5/GqSOnpQpA3oYbvKX11+KOjEcahRsY3mhFwM97oThegvqJeoXJhlHaQBgbhBsc9runFNFv7EPiPZuReN9m+Ny9Bmtv/hH6yqZ102uzxBbeCCGEEEKIS+x8/MYXZuKHUx9LY5KPd7+GfpN6Oow32IKb+z66FVPuGifdH5TSAQ+MG+x0wX16bASeumyUx0985WHXC4kYzs1aIE5mheBrgizACFmgEYKfEZy8rguDnI1JeBdzE6xDmJWT2jdUxgKTB6dBIXde07FXYF0RI5XMcV6Bgw0KzgwlZ4KGM0ArmKASLIj0LUdSYCHGJe7D4Jgj4Ko5qHi5Q5BBJrOHFXjOhgB1NeL8i5EcUoBOiTkICSrD0ZICnCwvwfP7PkWZuVKaL/LUzDjQ394F2xAqgvO1QDW5AMoRxZB3qZJuqtHFUE0sAJ/M4dJ536C8mENKQD56hmUjKaAQSQFFyAjNRqfAPFgN7LM784Y8IAQAw/tGoshiX9TEjjsjLAtxfiUOHS1UghmR6nIEqqpglZ3G+rJVMFhNuCDQmIQQQggh5KxR+6hxyyvX4secj/Htiffx4Y5X0HtcD6lbdf3F6g99MQfjb7aPNQZO6YPrnr7S6f5YEaM7357t8X03epgnaek4i3VB8MbEWy9xuS2bD2oNSpXzeRJXju0+idwT+Xh66itehxsYV4W56pMr5bhnwBNNCjfIVXL0GpOOsoJyr1/DupUv+WwFTC66Y7Q7NCZpFurgQAgh5ILo5hChs1fJfG9WBvLKDdh3uhwqmSAFGlgQor6ZfWMxKCkY327KxP7TFdAqBEzoFoExXcIhr7cQyRWLu8pBZ/iqZM3q5NAp3BcvTO2K2V9sRqne/UlaeqzrtHLfhCB0i9Zh15kOBc01unMYvt140uvtiypNmPj2Ghgs3iWZ6wvUyFFc7fp7PpTn/Ul3DatNxNH8pr+O/fl5c9lh/N8kz+3XiL1zQ9HcfRBNTfu5s+3Z60Ju7d6iTg7HjtVNpoWHh6OgoAA333wzFixY4LAdCzWsWbNGur3++uuYN28eevXqRT9CQgghhLSYTC6rrdDz33kPoSC7CMd2ZUKlVSJtYKdGF7cvu3u8dIF/0UfLcGLvSWj8NBh2xQAMmNzbq4vmFnPd4h9nOLMVARUmlPg5hg8EtjaFXaB2s7omLSIUT/z1H/zn0pdQVeY+vJraty5c2lCvS7qjQ1oMTuxx7KTWVIP6JuHnBvsw+nAw+9Z9D6JMhqp+sdB3DYdt/l7ckv4gTNVNX4jjF+SL8iLXVW+P7jjh9vVClQkBC/bD6qeEOVgDzmyD4lQ58mOdV29qiDfXnU8f3HxU6g5y44uzmvAdEEIIIYSQi1X9McmzCx5FXmYBTuzNgsZXjc4DUiAIjuOM2UN6YVinBPy0aReO5RfDV6XEhPROGNopHgLvxTyJzf21YE7kEMCrUGJzDAfzSgt4jcVhSMLJRfByM6zVImx6GXqERuLunv1x8+LfUGWpd15vY8EJDux/0l0l0LFHpMtjGBLWEbHaIJysKoLJWvP9i9DwJig4x2NgwySbPYpQ+1hiQCGqwtTo6j8Zc3M3neneINaGBKL9yqCQ1Y3N2NeRoaXQG6pw3b9vQONT6uljrHut3D6f5BOogLLXKfC+jcd8fKAFJ7X7kZcdiIykbARrqhyeZ99PkLoaPWKysPFYfO33YpRbcNB0qna7SG3Zma4PjbF9BCsrUWlRYl/5MfyavQIz4+zBGEIIIYQQQjx1vQ6NDZFuLyx6HKeP5+Hk/lPQ+rExSUfwDcYZV//ncgya2leaJ8k6lAPfQB+pWn+f8T0abeuMxex5TZZPgBaVJY7nzd7oMqgjLrt7Ap6e9iqM1e4Lqqb2dz1PMnhaX4TFhUjjs5Zgnb8XvLvE6+1PH83FLd0fcFqsyROtTuN2bujAxsNN3qfFaMbBLUea/LodK/di/luLawuIkYsPdXAghBBywQnzU2F4x1D0TwxqFG6oERukwWPjUvH17D744OqemNgt0qtwA9OrQ4DHbQanhEghh6Ya1jEEGbEBiPC3BzbcySp2X83zw6t7IjFEi5ZYtjdXCl00RXPCDUy3aH+cDfmV7gcbrvyyNQsGDwvHiD3BXfzTwSaHG2qw10mvb0FvvvLyupS31WrFmDFjasMNrHvDjBkzpE4OXbt2rd3u5MmTGDp0KDZu3Eg/RkIIIYS0upDoIPQdn4HuQ7u4DCxEJ0fg1levxYt/Pon//Hg/Bk/r53VFoLSBHT1uMzQyBBqlYycGTgRkHhpujYhPQNfBqQgIc9/+mck5mufyOVad6ZkFjyAyMQwtsenzlegQXjdWsCjgEG6oz6ZVoHxMSrPCDUxK70S0BqHcCNWxEiizysDZRBSf9n5hU31LPv8bVguNSQghhBBCSNOxRTRsTMLO7RuGG2okhAbi0YnD8PHsqXht5gSM6JzoVbiByYh2HSyoMToyCSpZvXkSTmwUbqhP0FgA3obRsYkYEB2LAJkanJkDZ+Gk//JWXgpO1HeizPW5tsDxeKfX1YhQ+6PKokSZSQkNb4SSb3wMUkcGJy3EUuJOY5+wBUk6P/C8vXMDw8IF9cMN9alVZmh8mtZNznImgNG7Z4DTcEMNhdKCsKBSBPu5XqSlUxsQ4usY3C4w1BWCivJxXxhLxovQyuxjqiWn17Xo2j0hhBBCCLl4RcSHSWOStEGpLgMLHbrEYM7bs/HSkifxxHf3ot9E1o3OuzFJl4GdPG7DAhSs40BTDZrSF73HpEOtdd7Bur5Th067DaI/v+gxac6oJTYv2YGwDiFNek1zwg1MJzeFrZqLDSkqippenJb546OlrX48pP2ggAMhhBDSRAMSg5AS5rravMBzuHtEMr6/uZ/UQaIppvSIkv7r50U4wlOAItJfjT/vGYK3rkpHby9CGc7kV5qQVVyNCJ0KZxObFNAqZWdlv2G+zTt21oGjoKJ54YiLifFYGSx5HlbJecBez/bTXBUVdZM1H3zwAbZv3w5/f3+pQ8Phw4fx3Xff4euvv8auXbuwfPlyhIXZF9lVV1dj+vTpDq8nhBBCCGkPWPeHqOQIl8/L5AKuu3M83n94OtISwh2eU5SIkFU5WaAiilDl2zAu3R6e8PHXelXJx9MExid73sAjX9+Fzv1T0BwFWYWo+Hk9gtX2FsxmrevuE4wlRAtTRNNC2gwv8FCeeY/WxPMcgiKbNx4rLSh321GiPWChmta4EUIIIYSQtmVUpyRE6lyfdysEAfcMHIBvJ0xH12D79VheaXXXTE4iyK0Yl2gfO/gplVK3BhZqqOna0JCvwv05fJxPMH4bejee7nYZAoQuUHCuwwPs2Bq+i0qwoMycB0FViDC1urZ7g4/S/dyBIJ3E2k9kpa88nNMWl2mh4AVo/dx39mYiAj1fSw/3qysKJOd5hKjq5rSUMs+VbmWcvaBRkakM1dbmLYxqK2hMQgghhBByYRoyvT8CI1xfe2fX+69/5iq8uOQJJKZ38H7HHNBvUk/pS20rzJPEdY7B5wfewv2f3IakHqzTWtPlHMmFodIA3yDXa9VaA/vMzkbAWaGSQxfc9HkbJvd4Pswmz+OktozGJM1HAQdCCCGkiVglUtYdIdLJon8Wbnhpald0DPdFWpQO824fgGX3DcHozqEe96tVCOgU7id9Pam7++pH7H0mdPNcIYl1sJicHiXdmqvKZEX3s9RdocZdI5KhkntXrbYpBiUF4+p+cc16Lc95DpEQoGqD6zT6udoPCyrUMJvNUCqVWLZsGaZOndpo25EjR2LFihVQn5mMysrKwnvvvdfs9yaEEEIIOR9YBaP//vqQ04v3LNzw0Jd3IjolEl3iw/HFkzPx/TPXYphMBdWeXCiqAZ9TInyybFCUipBXiFAWifA9LiKswIqYM/scduVAt8fA3mfI5f08HqtCKceoq4dg6PQBzf5+9fll6GUwQblmP2zw3NHAEtL0i/xsooN9T62tz4QMTLh5VLNeyzp6qHzObticEEIIIYSQ5pDxPD64YjKCtBqn4YbXLhuHKH8/9AyPwu/TrsGfl1+HQbExHvcb7KNGpJ99nmRiivuKrEpBwJikJI/7VApyTI7JwOSYeI8BC65BBweGPVJh0WPYma4VMt4mzR+43Y/D8xxsDTpP1GcyCygq8cXDfYZA5mnH0njQczdlmVC3zSUxybg8LqP2vtHied7DItqXkcg4AUq+9YPghBBCCCGEtBSbe3jmt4fhF+TrdKH+kz/ej6CIAKnT9ofbXsEH215G18Geuz6w1wSG18yTuJ/XUPuo0HeiPQzhjkqjxLgbR6LvhLrz8qYqK6xAr0u642xiXcfPhqFXDMCYG0Y067Xss2OdMMjFiQIOhBBCSDMkhPjgr/uG4OlLu2BgUhB6xQXgxkHxUphhei/Hi/TJYb7oGuU5INAlSlf79dSMKCSHul6UM6tvLKL87Qu0vWEwe14E5M62kyXoHGGfVGhN7FL94+M7oazahEW7clp134FaBZ6a1Bkz+sSie3TdZ+utISkh8NfQhXt3bAYL9HsL0RrYftj+moMFGuq788470atXL5fbd+nSBXfccUftfdbdgRBCCCGkvWGtmz/b+wZuf+N6pI9IQ5eBHTH9gUn4bN+bGDFjkMO2SdHBSA3xh3J7JvhiextgmR7Q5IvQnhahLhIhVJnRrd4C/7E3jnDbJeKyu8cjIMz7ILShumXd0Q5vO44OgT7g9Z4r9XBWzwt+6jYGbn/zeqlTxPqFW9CaAsJ0uO2163DpnLFI6N704HX/S3tBrW3nAQdW7ak1boQQQgghpM3pFB6Cxbdfh0dGDUGfuGj0jInEzQN64c87rsMlqckO26YGhaBTgOdCUBnhdcWaZnbtiugzYQdnbu7ZC/4q7+dJzLamj0mqLHLorXLp60x9DqI1/m7DCjXYKayt3mmsCA5WG+dwasu+ttg4GKwKPDNwJLJtOViVe8zjvmuOx50Kg30cEa7xwWO9huPaxH5I9A2RHjtV6X6+hB1TlcU+NzIoOB0yvvWD4OcUjUkIIYQQQi5YHXsn4fP9b+LGF2eh+7AuSBvUCTMeu0x6rF+D4EFSejw6dIn1uM9uQzrXfj35znEIiQ5yue2Vj0yB1s99B4f6THoTWiL74GkERwWitbEO13e9dyMObTmKXav2teq+w+JCMPv5GbjioUvdzjm5MuyqgVIh4naNxiTNRgEHQgghpJl8VXJcN6ADvr2pH365fQD+M7GzFHxwZnJ6pMfKQPU7DWgUMnx3cz8M7xji8DqNQsBtQxPx30ldmnSsnSNbFk4wWW14/cruULdyRVN2Lf/9VUfx1fpMGCxNWITkhlLG4/Ke0Zh/xwAkhfpCrRDw7c39MKZLmFfVj2r2ce8oexts4pq1zAi0zo9N2o+1vHmDOR8fx793V199tcfXTJ8+vfbr/fv3o7CwdYIahBBCCCHnko+/FlPvmYBXlj+FN9c8h1teuRaRieFOtx05a7C08F+1eh/k+7LB1VxIt1ghO5YH9Yo9mDxrSO327KL8q38/hZ4NKgJpfNWY9eQ03PzyNU061ia1gHbCZDDh0bl3wTen3P2GVhsUx4u937EIfPP0L/j9w6UwGcyt1m557OwReHv9C4hKipA+s9dWPo3+k3qBEzivqxKxz5kQQgghhJC2zF+twuz+PTH32un47vor8eDIwYj2d76AfnJcmsf9zUyuq2jKwgvfT7sC/aMdi0r5KpS4v/8A3NevaV3iwtWJHrdpGK3NrGaLh+zn8CabBS/3nAbOqoDBQxcEFoKwiELjkIPIw2zlYLQI0FtlMNlkEAQL3j++FPMyt6LCyLo9uNsvkG/QwuomZMG2KS4PxcyUdMwffw2ifXTwU6gxd/ANGB6RgHKzFhUmx6JBtccoAoVGdr2dg1pQ4orYS9x+n4QQQgghhJxvumA/XPXIFLz693/xxj/PYvbzMxEaaw/3NjRi1mCP+5t4W905cECoDq+u/C+6Dk512MY3QIubXroas55o2jX8xPR4tITZaMaj39wtdX9uTTarDZ899h2WfLESFnPzCpM2xIo3Tbp9DN5a9zyCo4Kkn9Mba55Fz9HdaoZYXs2BsRAJuXhR7w5CCCHkHIgL0kpdF77ZcNLp8z1i/TEuzXEhUoivEl/c0AcnCquw61QZFAIvdYtgwYqmGpAYjKQQLY4UVDXr+LtG6dAp3A8/3dYf095fC5O19Spolla3ziIi5r5Rybh9WBIUMscM5/ztp7B0X55XhT9Z54xnJqchPcb7arQXK9Fka939GZvXaUSn0zXq0OBJw21OnTqF4ODgZr0/IYQQQkh7ENc5BpdcPwxLv1wFxb5s6SayALCNLbMBug5JRd+Jju2R2UXnl5Y8iayDp6QOCqytc8aorlD7eF8ltUbvsemISAjF6WP5za7ElNIzEe+8cStu/Hg+TC7Cy4qcCghNHGNUlNi7WrQUqyJ040szMe3eiY1aJv/1xUqs/927DhHxXWNx9/s3SxWl2jtOtN9aug9CCCGEENL+dQmIwISYzliU5bwi6IDQeAwKS3B4LMrPD99Om44jxUXYV1AAtUyGgbFx0MibPk+S4tsXvrIgVFiKXG5jHx3ZQwInqoKQo6+bJ+jkG4PugTH4uOe1uHflF1DGFzotbMXmIcw2NkdhDzlwIturKG3Lgg/209u6F7LHq61s7kYGnhMRKK9GjE8JFIIVRqsMBQYf5Bt8pHBElUkp/fdYWRASdYVoOCziwGF69Cx80HME5A06LyzI3oStpfulEpgHykIxMugEEtSlMIBDrlUlHVuJSS29Z4I2CncmX4U4bdMrrLY1NCYhhBBCCCE10gZ2wsApvbH2t81OPxTW9aF+BweGFZV6ffUzOL7nJI7vPgm1j0qaJ1GqnYeG3Rl8eT98+MCXKM33UMjJhZTeieg+tAueWfgw/jPpf1IwobVUl+tbrRvEnHdmY8JNoxoFMRa+twRbl+1yeMwaqoMlIQyiTiMVsBJOFUtFuVLSYnD/J7chuhldH9oaGpM0HwUcCCGEkHPkmUvTEKBR4Mt1J1BhsCde5QKHid0i8fTkLpALzhsrdQjWSreWendWBmZ+vAHFzQgUXNe/Q23Q4Zsb++LKjzc0qmR0PrGL+E9O7Izu0To8v2gfyg0WJARrcWXvGBgtNvx34V6vwg2sQ8aLU7uiV4fWb+l2IeIUrdsMjFM2L2WelJRU+zXP89LNE63W8e9UZWXrLGojhBBCCGnL7v/4Nqni0O8fLEV1hR6cTYRcKceIGYMw5+0bIAjOz8diOkZJt5Zg52hP/ng/Hh3zHCqKm37uNXnOWOm/3brF4507p+H2d3+FtGaohiiCtwBigB+MncKgPJCHc4ldtL/7vZsQmxqN9+/9EtUV1YhLjcHY2cNRVVaNjx782qv9sMmRBz69XQp0EEIIIYQQcqF5pc9khKl98eOx7aiy2LvKKXkZpsR1xRPpl0ihYWeSAoOkW0vwnIBpMY/h+8z/g9FW3eh51hlBb1XAaJMhR6+D0eYYorgs2t4xok9MHF7ocw0eO/AZgoPKHUIGLBhhsgmwsRTBGWfiDY3bQ9QjijxkvBX9wk5ApzTUPi7nTfCRFyNAUY3NBbFSuIEpMWqwrzgcYZoK6BRsexF6iwa3Jl6DIFUQPjo6D3qrER20kRgd1heFxkp8cPgv6bX9fU/jnqhdiFXWjcvyLEosqQxDFm9DtAa4Pv5BhKvruo4TQgghhBByoXj8+/vw8YNfS0WJDNVG6TFW3OmS64fjtteudfm6+LRY6dYSCqUc//npATw58UXoK+vO+73BxkqX3mGfJ+kzNgNPfH8vnr3idbQlMrmAh7+6U+rW8M6dn8FQbUBi93iMuX4Yco7m4ptnf3HY3pwWA0typMNjlk5R0PRMwIPPzUBCLBUpvdhxoujNcj9CCCGEtJZqkwWbT5TAYrWhW7S/1KnhXMkvN2Duhkx8te6EFALwRr+EQLxxZToidPYqre+sOIzXlh1CW6OU8VKYoT4WIBmYFIxVBwu83k+orxJrHx3hMnBC6tgMFuQ8sx5ojVA4zyHy//qBVzU9f3vgwAGkpta1BMzKykJ0dLTb1xQXFyMoqG5CbN++fQ77IIQQQgi5kOkr9djz7wFYLTZ06psE/xDHjlhnU0F2ERa+/xcWvr/E64pArGXxQ1/eiaCIAOn++/P+xeeLNkEUgDPre6RwQ02lf85ght/PW8G1Yuc5byhUCpgM9kVaNeQKGboP64ItS3d6vZ+wuBB8deQdl4GTti47OxsxMTHS131GPQ6lumXd8Yz6Umxa/oLX5/qEEEIIIaTtqzAbsa0wCzaISA+MQoBSc87eu8yUjy3Ff2Bd4TIYrAaUmdXIrApEiVkt9VWoy1iIEDjWeUFE/6BUPNjpKgQofKVnnt24AkvLl0AmWKVteM5WrwOEY0iDrcZwkduQmK08iqp8kBaUgzjfEpfbZVX6Y19JeG2XiYbkvAWRPmZYROOZUAXDQcHLkaRNxtr8E+jlk4fXE9ZC5qRNmlnk8HVZLE5b1AhSROGO5PddBk7aOhqTEEIIIYQQTypLq7B33UHphL3zgI7wDfA5Zx/a6eN5WPDuEvzx0TIYz4QsPBk4pQ/u+/hWKTzAvHnbx1j08TK3r7EEa6HvGgFzpJ8UuFZklUC1+zRkpU0LVzSFQq2ASe84T8ICJKn9UrBj5Z7ax6xhOpgGdHK5n8TYYHz1xvVor2hM0jpo5R4hhBByjmkUMgxNCcHI1LBzGm5gQv1UeOCSjhAa9i12Y8OxYgz630o898c+sFzkF+uOoy1qGG5gzFaxSeEGJr/CiL/25rbikV24WBhB3aV1EtPqLkHNCjcwycnJDmGFFStWeHzNjh07ar9WKpVITExs1nsTQgghhLRHah81eo/tIbVbPpfhBiYkOgg3vjATNifn766wlsWz4m7HZ49/J92ft2SrtKSHtwKC2X6rvz5HVMlhjmrZovrmaBhuYMwmS5PCDUxeZgE2LtrWikdGCCGEEEJI2+IrV2JoRBKGRySf03ADo1OEYnjY9ViR1wGrC5KxozQaJWZ2DPZQAOvCwMMGlWCBQrBCztuwpWQvrt7wX8w98ae0jz9y10MmsDENJ3VVMNtkMNsEiCLnEGzQm2UorlK77DDNtq4wKiHjrIjSlro97ghNOcJ8yqEQGhavEuGvqkaYthI2GKWOEix0IZyJOZhsZuyr2AeBs+K2iD1Oww2MnBMxRFMofV1kOoVjVXXX0AkhhBBCCLnQ+Phr0Xd8BvpO6HlOww1MRHwYZr8wE2YncwqurP1tE2bE3IYfXpov3f/ri7/dbm/oGILSad1g7BQKm58KNp0KhrQIlF7eHaaYuvmT1g41Nww3MEa9CTtX1YUbGEtCmNv9HD1ZiJ37slv12Ej7QwEHQggh5CJkMDet5L7VJuLTf4/jtaWHUFxlbpVjuH90CuKDtWiL9uaUn+9DaDe0/SLO+35YZdsrrrii9v4nn3zi8TXffvtt7dcjRoyAQqFo9vsTQgghhJCmMxmbNq6wWqzShfu5z/yMCr3nikaiwnN49tZXrpG6JbRFR7efON+HQAghhBBCyAXLKtpgEa1OnuGkcAALNjRc58O2/ybzL3yXuQycsrLeK0QoeQuUvFUKMlhsnHSzihwKyn1RaVSjsFILq81xhxYLjzsSpsNPCIBGboKMd9+BTsbboBSsCFBX13aMYPwURvgqTI2Ol93n6/VySNCUoLPGfYgiUV4FFWf/XHL1x9xuSwghhBBCCGk+s9EMG0tXN/E1rBAUmyuxmJ2NZ+ysvkpUDk2ElH5uSC6gYnQKbHL70vEHPrsdfkH2TnVnU8PQt03neb3YoeP5Z++ASLtAAQdCCCHEiXKDGV+vP4GnFuzB60sP4kh+3cXqC0HX6OZVaf3s39br3nBl7xg8MrYj2iKNXDjfh9BuKBN0kIW1rMIWez3bT0vcfPPN4Hn7qe3atWvx0UcfudyWPf/VV1/V3r/99ttb9N6EEEIIIWdDeXEF5r+9GO/e9Rm+/u9PyD58+oL6oJMz4pv1up9fWwi+vHH7ZLHejRGcbNPQJdcPx+znZ6AtUmnPbbe/s4UVh22NGyGEEEIIOfdKqvX4csM2PLtkJd79ZwOyStwvjm9P5LwMiT7hLp5rHG6o7+esv+1jD1GEr9yIYFU1dEqjdAtS6eErt1cstVjtPRSYapMS2SX+yC/3QVGlBqcLdTiRGY7REb1wd+pIWGzeLdtgoQm2RkkjrwmMi/BRuA6As++jJuDgL/McMmf7Vp4JOCh4FS4ENCYhhBBCCGm/SvLL8PNrv0vzJN8+N0/qfnyh0PppEJ3SvEKgP76ywO3zhs5hgOB6jCEqZTCmhIIXeIyYOQjXPX0lzjXO6jqgUUOtlONCQGOS5vNcyowQQgi5yCzYcQqPztsNfb2069t/H8H0ntF4cWpXyNycBLYHRZVGROrUzXpt/c+kJXrFBSDMT4WxaRF4f1YG7vtxB4yWpnWVOJvGdW2drgQXA9auLvCKjij4aCdEU9N/hpyCl17f0rZ3PXr0wF133YW33npLun/HHXegqKgI9913H9Tquj/vixYtwtVXXw3rmcHSpZdeikmTJrXovQkhhBBCWttfX67EO3M+ldr21vjm2V8w4ZZRuOu9m2qDne1VUXkVdJf2QKWKA2eyQHm0ELJC70Ll+goDFAfzoA+2t4yWFhbVfBzsnJKVATJawFe6Dzj0GNlVqko0YuZg6f4rs9+HxWSRvrZq5dAn+0MUeCizK6DIq8a5xPMcBk3te07fkxBCCCGEkPp+2LoLz/+1CqZ6i07eXb0eV/dJxxOXDGvx9dzzLV9fgUAhFEeR2+AZEYKHTgrVVj14TgmdwgiVzHHOhH0sapkFAmdDZmlAg1dy0JvtnYStJh7DoxOhlStwWWwGOHD4u+ANaOSuxx6VZgVEkYOCt0CnsKHaLIect3k8XhZasIkics0qmG0c5G62N9h4VNpk4CGgo18/t/slhBBCCCHkbGIFoD55eC7MZ67bM1//90dcfv8k3PzyNe3+wy/ILkJkYjiyDzW9uFVlSZXb5y3BnrsjsG0GXtYHcoUcl94xBoKMxzt3fgrrOVq7JZwqhqVjlMvn5TIBA3snnpNjIW0XBRwIIYSQeracKMb9P+2E1UkbsJ+3ZiNQq8Bj41Pb7Wc2f3s2Hpm3G6bzGCZg0x73jkqpvT++awR0Kjmu/XwTrA17kp0HE7tFICnUvliKeEcR5YOgazqjaO6+JoUcWLiBvY69vjW8+OKLOHDgAP766y/YbDY88cQTeOONNzBgwAD4+/tjx44d2LVrV+32cXFxbjs9EEIIIYScD9v/3o3Xb/qgUWtiVh30j4+WwT9Ud16q6bSW39bswUvf/Q2zxQqkhEqPGdMiIT9eBJ9Vh8B50ZJZcSQf5tgAmGMC7eGG+ourOA6iSo7yiV3h9/tu8PrGVUrZYqyr/3N57X0WctD6a/Hk5JdQNC4elRmhgKwuRKI8UYbgXw5DVl4XODmbRl4zBBEJYbggsJ9nE9tsO90HIYQQQgg5Z1YfPo7/Ll5R2x2tBrs/d9MOhGi1uHVQn3b7E/nm8BY8u30ZLKIVOq0cGpXnzgYNKWWWRuGG+hSCDWq5CVYbL3VxMFkE2GqT2YDA8birR12AYEpsDyTq5uDbzFfr9aWrw6ZOyi0qBCj00vBHprAi0bcQasEM9g7VVjkKjT4ot9QU+xGlx23SjAy7ieAFGzbrgzFA67rq7S6jDlbw6Bk4Gn7yIFwQaExCCCGEENLu/Dt/I96/94tGj7N5k59eXYigyEBMvXcC2qt5b/yBjx+eC5v17Kzd4rxYE8YWjs98bGrt/Qm3jIbaR4UXr377rBxTo/c/lgdLh1DARZeGy8amI0CnwQWBxiTN1r7LvRFCCCHNUXAQWPok8PMNwF9PAHn7ap/66J9jTsMNNb7ZkIkKQ9MvdrcF206W4MGfd7Uo3CCwUj8tdNPgeAxKDnZ4bGByMAYmnd+L5exbm5oRhVendz+vx9FeqZIDEHJrd8jCvBtgsO3Y9ux1rYV1ali4cKHUyUEQBOmxwsJC6bGvv/7aIdwwaNAgbN68GeHhztuQE0IIIYScTcf3nMSHD3yF52e8gY8f+hqZ+7Nrn/vplQWNwg31/fbOnzBUG9vlD2jLwSw8N3eZPdzQgDk+CNV9O3jcBy/jpXa+2r8PgmOfg4vKsTZfFfTdnVf/mfnEVHQb0tnhsb7jMxD52iRU9gl3CDcwxg465N3QBTbF2b2UytpBj509Avd9dOtZfR9CCCGEEEIO5BTgpd9X4cHvFuO1xWtwoqCk9kP5ZN1mJ0vs63y5cZtDZ4f25J/TR/HfbX/BIrJ5Eg5lVWoUl2tgMMlgsfIw6WWwmNzPg8g5mRQs8CRAbYBOa4C/Vo8Qv0r4qfW14YX7uw1Fj9BIh+276vrCT9YVVpvj+1tsPIpMGimywIY/rINDhKoMOrkBCt4KGW+Dn9yIBJ8iRKpK4CPTI1RVgTB1JcJVFfCXV8NHZpJCFz+UJCDfrHJ6vHkWJdbow9ErcBzGRdCYhBBCCCGEnF2Htx3De/d8judnvonPHv8OOUfruqv9+L/f3L7259cWwupknqE9WLdgszQ/1JJwg0KjcP/8sSKP+7hnzkQk9Yh3eIwVg0pM9zxP0xo4gxnKf/eDK2fjpDpyGY/pEzIw59qh5+Q4SNtGHRwIIYRcXFigYf27jo+x+71vAsa/itUHXVeuYapMVmw8VoxRndtfNc3P1hx3G97wBqsa2xIpoVo8NKYj/j1ciPXHCqW2yyzsEBuowdqjnk+wz5YhyUF4cVp3RPnXVDcizcE6MYTdmwHjsTJUbTgN/d5CoP6YjOeg7hIEbb8IKBN0Z6WNuUKhwNtvv41bb70VX375JZYuXYqsrCxUVFQgJCQEffr0waxZszBt2jTwPGV9CSGEEHJusfPp9+7+HAveW+Lw+M+v/Y5p903Ezf+7GluX1oUynaksrcK+dQeRMaob2ptvlm6VKo+6YkwJhXprFvh6LacbOfN6q04thRjcMSWFQrPhhFSvtEZyzwRc89R0bP5rB3at3gee59B7bDp8O0dgQ3mhy31ZgtSoSg+F7yb7JItVp4IxPgiinIesoBKKzBIpeNFc/Sf1xF3v3YyQ6AukSmoN9pm0tAEDNXAghBBCCGk1LEz931+XY97mPQ6Pf/HPFtw0rDduGdEXm0+ecruP4mo9dp3KRa9Y54HituzTgxsbnF5yMJrl0k1iBTScBTKF6wCDUc9BqfJ8ksrXGyCwS+EapVl6LEGdgptT+2Jv2Q4crTwAgZOhs647ZJwW20tPAwiCVjBB4GywiDyMNhnkfM2FdhEhigoILgYfoaoqyE0iTKKs9n3VMgvUsMBoFVBmVeKZ3HSM9TuFQdo8+MtMKLIosLE6GFWKSbgt+Qb4ygNxQaExCSGEEEJIm2K1WvHq7PexfO4/Do+zUAO7dj95zlgc2HTE7T4KTxXj6M4TSOmZiPbmp1cXtHgfFqPFfce5o0XQZ1TDGui8QGnvlBhMvaw/1i3cjP3rD0GmkKHfpF7Sc0d3nMC5wpfroVqxC9ZgP4g6DS65ejBuvWcCAv21uKDQmKTZKOBACCHk4rH5s8bhhtrnPoUY0AEWW4LH3VhaGBI4X/455D684Y2Wfuuz+sZh8nvrsP90ee1j7648gnA/VYvDFy2xObMUelP7THe3NSy0oEr0l242gwXWchNEoxWcUoDgpwCvOjenn126dMErr7wi3QghhBBC2opf31zUKNxQvyVxWGyIV6Hi9lqZaMO+k+43kAmwRPhBkVnscpOaqkY2rdLj+4lKGSAXAHPd5zX+5lG4Lf0hnNibVfvYdy/8CvmMbhBTfdzuryotCD5b81A5PAnGpGCH7hF8uQF+fx2ErLAKzbFz9T6Yje2zWyAhhBBCCGk/Plu9uVG4gWHDkE9WbkaYn/tz4hpWW/OrjZ4v7JjX5R13uw0vs0Gh9XBerjTDLHounmMTGxf4USksuLlTJ7yw/xHkG1mYwW5J7nz4yoLBwSZ1aqiy1o135Hzd4iUVb64XdnBOLZhgsjS+Di/nrTDaOFTYFPi5NF662VfanDlO8TSGhwO+Z7IehBBCCCGEnA1zn/65UbhBOh0VRXz935+gC/Hzaj9WS/sbk+irDNi79mCL9+Op+wNnE6FbuBflo1NgidLVPSGKUBwvxvShvTG70z3IOZpX+9Q3z/6C4JjzU4BJKCwHCsux9f2/YLt5FHChBRxIs1HZWkIIIRcHdnV+/XtuN+E2foTesfVO7JyQ8Rx6xPqjPbK1sPtCa3hl6SGHcEON3HIDzicWbnj6973n9RguRCzMIA/VQBHjK/33XIUbCCGEEELaalWiX99a5Hab3977Ex17u684JFfKkdKr/VUlau0xCV9l9LgNx6oY1Qs3MB8/9LVDuKFGfkGpx/2JCgGVQxNhTA5xCDcwNj8VyiZ1hlXrvjW0K9XleqktNSGEEEIIIWeL2WrFN2u3u93mx427kBLiflGLRi5H5/BQXIhFMxUyKzgPKyh4Dqg2K9x2p2PPcSyqwDkuPOJhwx+nP3MIN9SosBQiSMEC0w17TAByzgI/mV66ecKCDK6Om2/0CdSNa8osenx2fKHH/RNCCCGEENJcJoMJC9//y+02f362AlHJEW630eo06JAW0+5+EOI5LPzK683wX7gX/j/tgHbtcWjXHEPA99ulQk1v3/ihQ7ihRmFWkcv92XQamDtFwZQaDWuo7qw0Xi4rKMfnT3x3FvZM2isKOBBCCLk4lJ4Eio+636YsC3d2c38KNr5rBML8VGiP+iWcn6RtfZUe2qSdT/8eKURWcfX5PgxCCCGEEHKByj50GvknC91uk3MkF8NnDHK7zciZg6AL9q6CUVvTMyXK/QZWG2R5FV7tS1aqh1DgflvFkfx6y3Xs9BXOw9WKXM+dF2TFBnu4wQVRJYehSxiaa+OibSg6XYILCfv8ObGFt/P9TRBCCCGEXCCO5BahsML9NfDDuUW4rFtnt9tM6d4ZvirPHdXaGhnPo2dwtNttlJwZ4aoyxGmKEaUulbohOAsvWEQexUa105ADe8xs46VQtLJe9wUmQKmHRXQdUpDxInSyavCcVQpHcLAiVFGOCFU5/OV6qARLszpH1GiQ065lFTmYbQLWFe5Cubl5XenaKhqTEEIIIYS0HYe3HUdFcaXbbY5sO47xN410u824G0dCrW1/a7c0vmok90w4p+8pK6qGetdpqPfkQiizz48YvCggVUOUCzAM6gTDqG4wd4mBpXM0jINTYRjdDTaf1v8ZrP5xHarKL6y1WzQmaT4KOBBCCLlIeJcdHZwcjDuHJzl9jnVueO6yNLRXNw5i7YaJK2zSIavkwjpJJoQQQgghbYiX3QsGXNobl98/yelzXYek4o63bkB7NXNUhtvnFUcLwRvMXu9Ps+E4YHFRnbTCAPWOUx73YVMIMCaFgIccfLX791bmGe1lT90wxXsOlrM/CcYYP1R3CoIx0qfuWKw25GUWeHw9IYQQQgghzSF6OU8yMa0TZvXq7vS5/vExeGTUkHb7A7ixY1+XzyUH5mNUwkFEqCsQqKxGqKoSnfzy0UHLqpjWfXYWFl4AB6NFBqNVgMXGScM9drPaOBhtAiyiIG0r520Or9XJPXezlgs2+MqN8JUbEKMugUZmbtLQ0miTu3zOVSCj2sI60XGwiFYUGC+s0DUhhBBCCGk7RC/nScbeOAJjZ49w+lyf8T1ww/Mz0F5Nu3ci2hNjvxTYwvwbPS76aaSggyhr3SXoJoMZxRdYISjSfLIWvJYQQghpP/zjgIAOQMkJ19v4RgLBKXhwjICxaeH4duNJHC2ohL9ajsnpURjTJQwyof1mAwckBeOpSZ3x7B/7cA67nrUr327IxAerjiJIq8BlGdEYkhwMzlVJI0IIIYQQQpogumMkgqMCUXiq2OU2EQlhCOsQgltfvRZDr+iPRR8vx6kjp6WODSNnDUb/S3tBEOwLZdqjwd0ScPe0QXjn138bLayR5ZRBu/5Yk/Ynz6+E36I90PeMhTnK316O1GKF4ngRNFsyG4Ul2Ll9zQQK+399RgwMXSMBmSDdV1QBBlZwyMmwT7fiJGRlNjSu3+pI9BCA0CcFoGxkPKwBdZWNZAXV8F96DMqscsx/axG+/u9PCAjTYfS1w5AxsivaNfbBejlp5XYfhBBCCCGkxZLCghHko0FRpetCPwmhgQj188H/jRuBSV074adte5BVUopAjRqTu3XG8JQE8O34mvmY6E64N20I3tzzj8PjET5lSA9zHpAOUOhhspUhR+8vndoarfYlFuxjsIGHSQo8ONfwo/IwXDhDhJo3Q8FboOIbBro5lyfIQUIVUpW5CBUqIYLDMWMQtlTHotiqlZ63smO3CZBxYu1xsXBGtVUBk61u2ch7ezaiSL8GoWofTIvvhn5hcWjXaExCCCGEENJmJGfEw8dfi8pS113DknrEwy/QFw98ejsuuW4Y/vxsBXJP5CMw3F+6Zt57bDp4vv2u3WJzPZn7svD9i/PPy/vzPAebl4vGrIE+sIXqXD4vapSwxIZAfiyv1Y6PjVXmPv0zyooqEBIVhLGzhyNtUCraNRqTNBsFHAghhFwc2BlQvznAnw+53qbfbQBvXyyUFqXDi1Pb+UISJ24YGI/hHUPx/aaT2JFVitNlBmSXVJ+TwEOETiW93/mikvMwmFm1JNcW7c6t/fq3HTkY3jEEH17TE0pZ+11ERgghhBBC2gYWTLjs7vH45JFvXG4z9Z4JtRfmO/VJlm4XmuvG9sbQ9ET8+s9u7D+cg6JjeShZsR/CyWJpqU5TyQqr4PvXfthUcogqGbgqE3iz864OQVEBKMy2B0wM6dEw9Iipu7YsAwQzoC4AzD6AVWV/nD2m2VsE/9XZMEf4eRW6cEXsEoriCYmNVjVZQjQovCIVId/uxaof19U+vnzuPxg4pTee/PF+yOR0GZcQQgghhLSMQiZgRv/ueHfZepfbXDe4rutaj+hI6XahuavLYIyN7oQfj+3AnsLTyCutQpLPUbevCVZWIbskAOUFPuBD7UFqq2jv3OAu71Ez9yJwVigFK3TyAFjEunmIxkSoBBsEToQA5/MZ0i7P7LfmvZMUBRisOeow1AiUVaO75hTmlaTjqDEYVRYFbKIvis0WCJxNCkFYRceFYdVGOX47dbD2/rzjuzExNhWv958MWTteREYIIYQQQtoGpVqJibddgh9ecr24f9p9dR0Oug5OlW4XmtnPz8TwqwZi8ScrcHj7MRSeKkFeZv45KfYTEBGAIjeFuOqzRgZ4tU1TAg5KjRLGaqPL59kYa+UPa2vv//XlSoy+dige/PyOdh1sIc1DM2OEEEIuHn1vAYqOAJs+avxcxnXAgLtxMegQrMVj4+sGAKn/WQK9iwVANfzVMpTqLS163/MZbmACtQrklDbtGFYeLMBLfx7AU5O6nLXjIoQQQgghF4/pD16KnCO5WPTJ8kbPTZ4zFlPuGoeLQYfwQNx/xVDpa9ZRYaziKhdLd+r4h+lQmldmfw0Ac7Q/rAEa8EYL5JnF9m4NDTo2NFQTbhDlPPSsc0MNdk38zEIgViBVWQaI5YBVYX/cEh0Iq1YB+elyCEVVsAbZK6A6o9pz2uVz4uTOgM1FDwi5gPJB0Qj+5YDDw2t/24wv//MDbnrparRLbMFXSydlqIMDIYQQQkiruWVEH5wsKsXCbfsbPXfDkJ64vM+FV/jJmWRdCJ7sMVr62mIz48k9K9xuzwIH/oIOOfv8oBFKIQsygoMIi42HXKg/mhGhEUzQKQyQc1aYbTwqZCoYRbkUKMjSmxCudB2KYMED9l7usXe2v5fBIsBokWOQ/zGn3SHknA1T/Hfhf6dHwmhTgLf5wiqWgsUnnC0kqjTKGz3+x8n9SPALwr1dh6BdojEJIYQQQkibcv0zV0odGVbVW8ReY9YT0zDq6nZ63tlE8V3jMOft2dLXVeXVmOJ/ncfXeOoS7g1vww0SbwIFTQwdKNUKtwEHZ5Z9vRqxqdG46pEpaJdoTNJsFHAghBBycRn/MpBxLbD9G6A8G/CNAHpcDUR0x8XGYLZi5YF8mK2elhJBCjc8MDoZn645jjJDy4IO58MVvWLw05asZr32p81ZeOCSjvBR0mkTIYQQQghpGY7jcO9Ht0oViv76YiUKc4oREs1a7I5AQre4i+7jNVQbsfGPrbB5MSYpyy/Ddc9ciR++WY289EjY/FR1T1qsUO3OgXprllddIMxRAax8be19scGLzFrAojkTfJBwyLupK4K/2w/fpQdRPqkLbD5KxxeJIpRHimDok4AqfzU4sxXy44VQ7j0NodKIMY9MxOc29xMHxoQA2JQCeKNjAH3xJ8txzVPTpepWhBBCCCGEtITA83jxyrGYOSAdv23dh8KKKkT6+2FanzQkhQVddB+u3mrA5uIdXm1bLFbgvknDsTR/CWQ+xdI4wt4VgZPGemzVSpiqAr7yusU6CsEKrdwMo1VAnsFP6phQbNIgUFHdKOTAwt88XxduYIEI9ziUW9TIUGW7DUWoeAu6qPKg0V6PLw7vhIxXQaswOQQzzFYeVSYFOCklwfbl+N7fHt6GOzoPhEKgbteEEEIIIaRlBJmAJ767V+p4vfzr1SjJL0NEfCjG3jgSsZ2iLrqPl4Ub/vnZdZe9+opzS3H1k5fjlzd+h6GqaSGB5uCLKz1vU+J5GwkHXHr7GCx8/69mHcvC95Zg+oOTpG7p5OJBK/UIIYRcfMLTgHEv4WKlN1nx+PzdWLz7NIwWzwuJarzz91GYvFh4dC4pBN7jMXWP0WH2oA7NDjhUmazYnV2G/okX3+QOIYQQQgg5O5J6xEu3i1W1wYQXX/wF//69C+YyPZQaOfhq990XWDXRr95ehOLxXdhAwPFJmQBDjxhwVhHqHdke31+UNagoVG/tjlkDWHwav8bqr0TBdV0Q9vFO+P+0E4bUUJjigyD3UcKWXQqoFLBG140ZRDZWSY2AOT4YA/TAmDlj8Pn737s/MJ5zGnCoKKnC0Z2Z6NwvBe0OWxtFHRwIIYQQQtqcrjHh0u1iVW3R4/0jX2NryW5YRCui1DKoBNfFnSw2DjxvxRb5V/CPqjtf95WbYLAKKDRoEaAwOIQb6lMKVgQqqlBo8oXepkCxSYRObgB/JphgE3mwvaq4un3bWKcGVunTRc6BPXda74d4/yqP3++lYeGoVPTBF9gJi01AmUEtdYtg788CGix4wbD34jgRYoMUeJGxGkfLC5EaEIZ2h8YkhBBCCCFtErve3S6vebeSytIq/O/ad7Dlrx2wmB3nBFxhxaK+fWEeRNu5aXssnCoGpzdBVCtcHJANsmN5kCtlMBvdF8sdcGlv9L+0d7MDDgXZRVKH9JiO7TAEQ2OSZqOAAyGEEHKRKKs244XF+/DL1mxYm3Gu29bCDbWdzjyc5x/MrUCEnwoqOQ+DuXnfg7PWzoQQQgghhJCmKS+qwFvv/oHfM0/DKnBAJ/viGH3vWKkDg2bLSbevr2LbNww31GPoGgnVnhxwHoLcQnGDBUBnCpSyNTwWrevX2bRyVPaNgP+yTGh25Eg3lUaJsmgd9AMSnb5GVMmxk7Miyt8XckGA2ep6AMMZLBCqnAc9BKFpbZ4JIYQQQgghjZWbyzE383tsKNoKqyjCKrLxBYdSkwbh6nKXH1lutR86+JXA2UhDJVgRoNQjQF4Ff6EKvoJBCg9YRAHlVhUqrGqpG4NWZkKxyQYbeOhtSlhMAjQyExS8fa8i+59DoIGDGTLIRUujkANbz7S7JBLZVQHQh6o9/qiPVh1HL10gBI6HVbS/Hws1NJwrstlYqML5hIi9SwUhhBBCCCGkJUrySvH2nE+x9rdNzQoqnKtwA8OJIhTrD8I4KNWhK7bEZoNiy1HwVUbIfFUeAw571x3A7W9cL40rWPe65uBpnuSiQzNjhBBCyEWAhRp6Pb8MP25pXrihrfImsMC2Gfi/lRjeMbRZ7xGgkaN7jH+zXksIIYQQQgixW/zJclzW4wH8dvJMuKE+noehezT0XSPdflymDoFunxdZlaBIncePXFZcDVle3eIl7sywwqrwfLW0ukuww31DtRGmju6rmFYqBVyX8TCGxEe73U6zK1/qQtFQYLg/EtM7uD8wQgghhBBCiFvLcpfh4V13Y2/5P/CVVUvhAo3MCAVvRpVViSKjRgoYNJRX7YNqi8JlJwXGT6ZHgroQQfIqKHgrBE6EkrcgRF6JCEUp68UgvZ49V8MsylBm1uBUtS9O69l7yGGSAhd1WDDCBBksIi91WmC3CrMSa/ISpXAD83eR+3EUc8wk4I1DD6F/sPtOggYTW7TU+BuN1PghRRfi8X0IIYQQQgghrv306gJcFXUL/v114zkNKrSEUFIF9dKdkO/NAl9cCa6kCrIjuVAt3wVZVpG0jb7C4HE/ZQUVuLv/4+g+rEuzjiMqOQKRiRdvF8KLFQUcCCGEkAvcu38fxoM/74S5mckGhaxtny40XBvlTKXRgtUH8xEf7KYcqwvXDegAldx1lVhCCCGEEEKIex+/8wee+WEFSkYnwybnIPL2pgnOOjCITtqnyc5UBhJlns/LxQbn7ux9TOEaGKN9YFPWPaddfQRclVH6mmMbsXVGXowt6u9Dei3HwRbgeZxRbrPh+JOLEB3g5/R5eV4l/NZmOX3usnsmQCZvn414WYWn1ridT5mZmdBoNNLP+ssvvzyvx0IIIYQQQprn6/2/YNHpz+Aj00MjWKCRmeEvN8BPboBSsEDOW1Bq1iKrOgClJjUqzQpkVfpjQ24cthbEIlDtvNNajUhlqUN4oT41b4a/zN5FruGZrYIzI1xdgWhNGbQyM/QWQerO4IiDFQJMogylFjXKLSpUmlW1z24sT0C+2cflseWY/ZBr8YPAF8Bk24ZwlfOCTmYLD72Bpb4bu7FTH/DttIPDhTAmIYQQQggh7d9bd3yCTx7+BjZb++tewBnNkB84BdXKPVD/vRuKnSfA1ws11MzheFKSV4ZjuzMRFGkPazfF9AcmtduucjQmab62vWKREEIIIS3y1vJDeHXpoSa/TiXn0SFIg4fGdERMgOf2xudLnw6BCNPVXch3p9psw7CUYNw9MhmROhXYuqkofzXuG5WCh8d0hNxJUmJGnxjcPSL5LBw5IYQQQgghF4e356/BB/sPw9gxVOqwwK5GsqKkoqzx4h5RrYAl1Ff6WqGSI6ZjJG566WoERtgX4AhF9kVB7sjqbVOZHoqcezKQe1s68m7qhuxH+iD3tgwY4gMhVBig+20X1NtOgi+thlBhhDy/2uP+G26TMbobAnQaj6/jTFYYc8sxtUqDW4f1QZifj7RAiAUe7h49AA+kpEHeYD0Uu1g/ec5YXPnwZI/7J2eH1WrF9ddfD71eTx8xIYQQQkg79b+/VmCbfh5kfOOFRAreBl+ZUQo4sBEK66pQZPJBrkGHwyVx8Jd3wIOdx8Bf7vqcX4AVOpn780U/wSB11xYhSu/Fw4pQZTkiNeXwkxuhEizQykzwlZthsgmw2HiHbhJWkUO1VQ6rKEBvcQwh9A/pjPnlg5FpclwkxF7PHltemVL7mE51GpOjeuDahCEIVvpC4HhEawJxZ8oYXBM3UrpfH5s1ualTX9zQsY/b748QQgghhBDi2uu3fIg/PlzapI+IzQ8o1Qp06BKD29+4Hmof79ZGnQ8Dp/SR5nS8UV5YgSl3jpMCCwFhOvA8h+iUCNzy8jW44qFLpfv1sfszHrsME24ZfZaOnrRl7bP0FyGEEHKuVeQBp3cAvAyI7Q8oPC9gaS2H/5+9u4CO4mr7AP6fWd+Ne0KUBIK7uxRaSmlpS1uq1Gj71fvWnbpRd2pUaKmXQotbcXcLGuKu67sz37mzRDarMQjw/M7Zj2Tnjuym33nnzr3/+xRU4d89+TBYbegUE4RKkwU/bcpCRkEVdCo5JvWMwx3D2yO5QXWCNYeL8O6yw40+X0KYBmseG1P7e1GVGUeLfE8kOt3YPe29Y9Kw6XgJPl551K99/tqZix3Pjcf/xtU90K8xpW88ft2WjaxSA8J0SlzRpx3STk2uIoQQQggh5Ewrzi3Fke3HoVDJ0X14ZyjV7lfWbA0Z2UVYufMITFYbOsZHoqLUgHkr9+BEbikCtEqMG9QJN1zcD3FRwU77rd59FN8s3er+oJwj6MA1XOSU55DYuR2+2vde7Vu5R/Lw75fLoT6QB32053t0eU45ZOWOiUWVg2NRfmGKy7EtMWoUX9sJwavzELjuODQ7sqVXDesdPWCN9bz6acDW/NqfZXIZrnvqCkTnFuLHJds97sOZrJDnlks/r5y1Aj/P+AIPjB/q3Gg0cPENI7D4m1UoyCySHuyPu2kk4jvG4awmnHo19xhnyN13341Vq1aduQsghBBCCGlD8g2VOFCRD5VMjn7hiVDKTt9Ug3zjUWRUbYBdtCJKlYo8UzXWlqxGgSkPWpkOA8KHYFz0xQhThjvtt3DvIawqWIyuMZ5vKhW8IFVfMHEiBNExmaZ9QAJ+G/pUbZuvj+/FxpL1bvdXscCCj4VE5ZwAs11+qgqCiBCVUaoi4el6THZWyYG1FyGKHIR661YWGuv6KwpehltTR2B3pR3fF9nRVZOHWEWlFCbPsYagQnBewErGidhYshpfDn4Z96Vf5HLuqal98Pvx3cgzVCFKrcMVKT2QFNj41VXblLO8T0IIIYQQQuqwZ+fH95yESqtEt2GdoFD6N6m+JRzaehQb/t4Cm8WGDn1TUZBZiIVfLkfukXwEhQdi7PXDMeWRSxERF+a039LvVkvtGqvzoA54f90rtb/vXXcQa37biLaGBRumPj5Z+pssme3fs/RFs1di9sEPcMdbN7lsu+Su8Vj67WoU55Qiol0Yxt88CjHJUTirUZ+kySjgQAgh5PxWfBjY9ydgrgSiugJdLwcU9VKvpgrgn0ccbYRTD5vVwcDA/wNGPs6ioq12aSarHQ//ugv/7M7z2KbKZMOPm05iwa5czLl9ELrH100o+nb9iSad9/qBSU6/TxuSjJ82n4TZ1nae4IZqFXjhsm6ID9Vg7REBWqUMBov78s/1lRms+Grtcdw2rMFEJwBRQWrcMzqtla6YEEIIIYQQ9zL3Z+G/3zbCVG1C+57JGD5lEJSquofylaVV+ODuL7D2j82w2xz3vIFhAZjyv0nSqjWtWZLXaLHima8XYuWuBoFiQYTMBLAFUCv1Zvy+fBeWbTqET566CmkJkbXN5q7a6f0EnOO5bm2vyiZAVqrHpMevdGo2+f6LseTbVcCRYthig2FOj3Y5FCuHrFvjuE5BJUPF6ESPpxWUgL5fLJT5VVAdLXbaFvbnERRN6wpB5zowot1VCO0eR/uQyCDc/+kdCIkKhnLJTqg5Dqb6S6zWo96ZDe5U2enS/HLM/3QxJv3fhS7tItqF4/pnnD87OXOVG+655x7MmjWL/gSEEEIIOecdKC7C4qOHYbRZ0S0yGhemdoBSJqvdXmLSY8bOf7Ai7xDsp+55Q5Va3N5xCG7rOKRVr81sN2Bezhs4Wr3F6X1W4aDUEggRcujt1VhZuARbSzfi4fSnEaOuCwnP2bgTce2d7/ndYQGH+sbHjHD6fWzUhdhcugmC6DoOIUh1DrxjX5ve5hh74iBCI7P4vB6jXQa76DwGVWzUotzsCC1EqALwXPfJiNYICDZYEaawo8SuQ6mg834tsiysLFyL0VHDXLa10wXj/m7DfX4eQgghhBBCWtKRHcex9s9NsJqsSB+QJlUEYAsM1SjJK8P7/zcLmxZsg3DqWTtbJGjqE5fjigcmtuofo7pcj5eueQfbl+722Ka8qBK/v/cPVv68Hu/+9yLiUmNqt/310cImnZdN9K/vygcvwbo/NtV+/rYgPC4Uj3x9Dzieg0qthFwpg82PuVs5GXlY8eMajLnOte8RmxKNm2Zc3UpXTM42FHAghBByfrJZgL/vA3bPdX5/8VPAlV8CaWMdbb6/HMjZ5tyGhR5Wvw4Yy4CL32y1S3zqzz1eww31VZpsePS3XVj0YN1D9x0nHSuENsaQ1HCM6BCBCoMVwVrHhJ6UCB0+ub4P7v1xB4xW3zeire3GQUl4/KJ0vLhgPx6Yu8OpTLM/Xv5nv/QZO3hZ+ZUQQgghhJDWZjFZ8NYtH2PVz86rgH728Ld4Zu5D6DmqK8xGMx4f95L0cL++qtJqfPPMT9BXGDD9jRta7RpnfLfENdzA8BzsGhGcAeBO3Y9XVJvwypdL8M0L19c223OirtqBW2weEJuvcypLrTxWjP4TeqPL5X1RZTAhUOuYAJTSLRFP/fggXr/xA2DNUSgyS2HuHAN7iAacxQ7l0WKoDhWAN9uk9oau4RCVdYMf7ti0gKlrjEvAQVlkQPSsXageGAtD1wgpLKEoNEiVG1i4ga24evkDEzHtxaul4MmLU2ZK+ymCNbAOTYW9XhU4zmiFelc2VAedv4eP7vsKfcf3dBrkOFdxoii9mnuM06mgoADXXHMNVq9efVrPSwghhBByuhmtVjy09F8sPnbE6f0orQ6fTJiEvrHtoLdZcPPa73C4ssipTZnFgLf2LpO2399lVKtd4985b7mEGxg5LyBKVYlcU0htdYMqWyXmZH6Nh9OfqW23KzsfY3qZ/DpXTfWGfqHd0SkwCQabAVq5o5p3ki4ZtyZPx+wTX8EmOldeMNiVMNrl0Mgc/RF3ymxa2E9dp5yz+6z4wLazdhZBBlHkYbQrUGzUodyihUom4vrk4bg9bQT+zv0YSw+vk/ZR+bEeF5sLZRIU+Or4D+gR3BXhqrO8OsM52ichhBBCCDlfGKqMePW697DpH+cKyZHx4Xj+90eQ3j8N+go9Hhn9PLIznOdPlRVU4NOHZsNitEhBh9biK9xQX2leGT6450u8vsjRJ2GLVmVsdTPG4sPwKwcirXcK9JUG6IIcfZKuQ9Lx0Bf/h/fv+hy2Mzx3i+c5XPf0lZjy8CS8dfNHWPeXa5/Nl5m3fYreF/RAaIPK4Oci6pM0HQUcCCGEnJ8WPe4abmCMpcDc64E7VgH5u13DDfVt+QIYci8Q4nll0KbKKTdi3s7cRu1zML8K2zJL0TfJudyZP1RyHgmhGmw4WoKLP1gLhYzD6PQo9EwIAVsQNiVch/8eG4VJH65DfqV/gwGt5a+dOZDxHH7Zmt2k/dlz6DmbTmLGpV1b/NoIIYQQQgjx1/t3f+ESbmDKCyvwzKTX8NmOt7B79X6XcEN9f7y3AFc8OBHhsS0/KeVkYTmWbc/w3IDjIChE1F94dP+xAhw8UYBOyY4KC34VlzjVRmOyInZQeyytqsaSV+ZAIZdhRJdk9LLJINNbEJ8eh2+PfIS7+z6GspNlUJ4s83hIu5vqCw2xhVBtEQFut8krLQhZmim9XPYTRSz/YTXMBjOW/7Cm9n1ZhRGB/+6FPVRbG7yQ51XUVm6oj62w9M+sZa0aTiFNs2DBAtxxxx3Iy/NvsQFCCCGEkLPZYysWu4QbmEKDHrfM/wP/Tp2GVUUHXcIN9X2ZsQ43pg5AqMox6aYlFZlO4Ej1Jo/bZZyIQLkJFSy9fMrh6kPIM+YgVtNO+j08ohqczHd1arNdDq1MgXhtII7ot2DG/s1QcAr0De2BXkERkHEsUJGMl7q+jjs2vAcryhGgMkGtsIHd8edaQtBeXey2D8SCE1mmsNrqDTKOTUZie3nvMLHPZ7YrcKQiAjqlBWq5DVHyKphsCizO34o4XQb2VjjCDf6qtKkdgRBRwIrCNbgq4dJG7U8IIYQQQkhLeuOmD13CDUxRdgmevOhlfLH3XayYs8Yl3FDfnFd+x6S7L6wNArSkQ1uP+h1uqMHa5x0rQGz7aPAyXnoJdt99EkYdoEJkfATW/L5Jeqk0Sgy5rL9U/ZtNdkrpnoivD76P/+v7GPTlBpwpbIxj6XerkH04t0nhBsZqtmLx1ytaNZxCzn4UcCCEEHL+KdgHbP/O83abEdj4CVDpI2AgCsCeX4HhD7f4Ja48WAh7E8qKHS3U1wYcOscGYu2REp/73D4sGT9tzsKRIn3te1a7iCX7C6RXjRCNAuVG55WJzoQqkw0/bHSdaNQYB/MrW+x6CCGEEEIIaaxDuzOxdOEeICoMqNQDJrPTdpPejL8+XIgTe096PQ5bpWf1z+ulkENLW7PnmM9qaYIMaFgnITO3tDbg0CEuAjuOeulXseMLIm4a2xs/b9iLo5XVtZusNjuW7z6KlVVmBP+1G7zBisCwAKl6hS/ycufv0x3eDnB+Dio0VFFchYVfLne7TVZmkF6+HPfxtz1nsL9xcxc7PQ2Lpe7atQsPP/wwli93/rtOnz4dX3zxRetfACGEEELIabbteDb+OXzI4/YqiwU/7N2JHZbDXo9jEexYnLMfU9v3a/FrPOwl3FBDI7M4BRyYfFNebcChVwcd7CIPmWj3GMBm/Z5x0ZOwqmgxCsxVNe8iWlEAq+U3bKs3zCLjQlGsT0WBJRIdIwqhUjhWTi236XDCJCJeVQYFX9fPMAlyHDFESVUTWMWJAJlZqs7AzmkTeVhEOUQ3QQcWrJZBhJK3Iiagyqnig0rOakGcxM5y52p0vlTblCi21IW8sww5OC+cJX0SQgghhJDzzbalu7B+nufJ8VVlevzz+VKs/9v7BHo2nrLuz80YP63lK8ttnL+10fuwe/msQ7lSwIHjOCR1jvdrPGDqE5Px+zsLkHWw7j7dbLRg5dx10qtGcGTgGQ031CjILJZezUHjJI0g4rxEAQdCCCHnD5sZ+PdRYMcPgOijXNehhf5VZjB6XjW0OaxNnGgzb2cOvlx7DHKeR0yQymd7rVKG/XlV0Ft8ly9rC+GGGrYmhD/qC1DRLRAhhBBCCDn9zGYr3n9rIZYv3AMxJb5uQ3kVcPQkm9Xv9OBc68eKQ5WlNRNwWpbV7keJYzcThBbPWopf75gFhUqB4LGdfC5MGqxWYmdWAUyWus9enxCogqFPAgLWHvMr3MBoDpSCN9ogaDzf98v1gPJEqV/Hc3tdQtP6bDW0gepm7U9a1rRp06SQQw2dToeZM2firrvuooADIYQQQs4pRpMFb328BPNOHISY7r2CwLLjRyGP9F3RudxiRGsQfI3juO1qiFhTvAwL8n6FglciMT4Ix82cFCaQQ3AJObCggYYPxaHqPbCKdWMgccpyxKoqXI5uF8swJXU7FuR2h1pmhQyOfgELKZTadCiz6RAkM0LB22EW5Ci26CDjgHh1GeR83bgGuw4FJ0AmWmAUlE4hBy1vRoDMVBuU0NvKkGsOQbElsLZNkIKFur33SewCB71dKVVsqLKpYBacK92pZdQnOVtkZmaic+fOMBqN+Oabb3DzzTef6UsihBBCCGkyfaUB70z/DGt+2+iz7Yb5W1FZ4nsMxN+xg8ayeRi38OX39+bj80e+hVqnRlBE3X28J5EJ4djw91ZY/ThfRVHrjAmdCZoAzZm+BNLG0ew+Qggh54+/7gb2/uZfW8EKhLUHcnykccNS0Rr6JIY2ab91R+uWEtrvuUJbLZtdxPp6+5wvJvaIPdOXQAghhBBCzkOvzfgL61a7WSU1JBDo3B7Yc9gxw+ZUdYZ2HWJwbLf36mXtOrTOvW2PFN/H5RrMN+KMFuz+ayO4U4FkcXcm+Gn9IShkzjOPaub1iIBwuAC7rN7D1JYOERDXH689ri+8TUDov8dQckUHx8yhBmRGQFZth3q3j6p9rWjkVUPO2LmJdxMnTsRHH32E5ORk+qoIIYQQcs557vW/sWn7cdiT2G/eAw42QUCqLhQnqr2PISQHhKM1xGk6+WzDQgR1RKnSwcGqvU7vsapzgsiBdV/4ep+6ZmF/i2hEgeH4qa3s/wqIUbqGG2ooeQHDo47ipDnC+dysKgM4VNi1YCcTRQ5VZg3Sgoqcwg31setVcjaYRUf4IEhmQKDcuSKdTm5BB3kh1LwV2SZHBW/Oj+U7WYtCS5DH7YPC+/o8Bjnz7Ha7FGhg4QZCCCGEkHPBjMvfxM6V+/xqa7PapDGQoqySMzJO0nlwxybtt33pnka1ZwENX5+xSbi2vfL/yKsHn+lLIG2co5dOCCGEnOuKDvkfbmDiBwD9bvHeRhkIdJ+C1tAzIQS9E0PQ2ixNrBTR1oXpnFciqq9TTCAu7k4BB0IIIYQQcnodOZTvPtxQQ6sBwoOdHpxPvGOc12MGhgVgxJRBaA19OsQjPT7ScwNRBN8gl6Dak+0UQuDsAjRbTjoeoLOuR71/ORHgDRaIh4t8XouolENkIYlG0O0pRuT3+yEvqZscxNkARQWgzrYgaPFByMtar4xzcKTniUQd+6ViyGX9cX4QHaGd5rxOwwgMKxU+atQorFy5EgsWLKBwAyGEEELOSXsO5EjhBsZNcQIXvWNicU2K90nw4SodxsSlozWk6HojXJngcTu7VayyqZ3CDa44qQvCc6J0z8cqJQinXo6qCRysohkqvm6l1CC5ETLWYfEiVOHal2DZavmp2ATrFhWbtFLgQSezeD2WnBOk9rxodwk31MeqQChPdcIMdiV8UfKOMIQ7HQNS0SukG84PZ0efxJO7774bq1atOmPnJ4QQQghpSTtW7PE73MB0GdQRl/gYJ2HVD/pP6IXWMHBiH8S2j0ZrM+k99wOa5QyHG4K9VK/oNboreo/pjvPD2d0nOZMo4EAIIeT8sO/PxrVX6gBRAAbe5X47JwMufR9Q+S4l1lQfXtsbiWFan+1Ucvqf84ZeuqwbpvSNh7zBiMaIjpH44faBUMkbNzmKEEIIIYSQ5lq9Yr/vRmF1IWelSgGVVoWJ0y9w21SukOHhL/8PKo2q1f44b0y/BDFh7vs8vAXgT+Wl2ZQi9aajUB4ucGmn2ZMH3frj4E1WKdTgmEIEyAurELRgHxQlep/XwVls4KwNykX4QXOsAnEfbkPce9sR9ncmwhZkIuzPgwj7cRuUuX7M6GqGh2bdhbE3DAcvq+uvsQlVgy7pi9cWPg0Z9UnalL///lsKN7CQAyGEEELIuWrl2rrAtaocUFS6myAhIiDIgKiYMsTGViJWp8RliT3cHk/By/Bq30uh5FvneTu7f74y4RkEyt1XiCi16mAVHRUclLznCf+iHxUPWMigpg372Rfe7fFYiAIwWJXINwbBLCig4AV3ReWcSNtFDgFyi892Ucoq6Wd2bL3Ne8jh2qS7MSisH7h6lTrYz/1De+OxTveB52hsqa1Xbrjrrrswa9asM30phBBCCCEtZvUvG/xuK90nc0B0SiRGXeO+IrJSrcAjX98Dmax1+iTsuC/8+ShCo+sWp/JEqfEdQj7fPDHnAQy9fIDUt6vB85xUueGFvx4/o9dGzg71azYSQggh5y6z46Gv3/b94Xi16wtMeBPY9ROQu8MRbOgwHhj6AJDUuqWy4kO1+PeB4fhzezb+3ZMPg9WOLrGBuGFQEhQyHhkFVQhQyfHO0gzszm7dyTltkUYhg9HDJKfsMiNmXtUTj16Yjv8yimAXRPRLDkNaVMBpv05CCCGEEEIYg8H7ZBVJvYfwy+eskV5dh6bj7vduxpJvV+PIjuPSxPhBk/ri6kcvk1Yvak2JUSH4+ZkbsWDDfqzYeQRmqw2dE6MwZURPqVLDidxSBGhU+OrGD3HiSKHH42j25kF9IB/W+BCpEoOszAh5vWCDPK8StljPFQ+Uh4ucKkM0lrzchIDtOT7bCQoZzJ0iYU6NgCjnIS81QL0vH4qCavfXpVHCYnT/dy06WYwnvrsft75yHbYv2wPBLqDHyC6Ib6VS2W2VFGpp5sJC9ffPy8vz2T4+Pr7R50hI8LwyMCGEEELIucLQ4N41YpeIwn6AXeOYbKJSWZCQXASlylHNYHXpeunVI7gDnupxAX7P3INDFQVQcLxUteH2jkPRPTSuVa85XJWA21M/xe7ypcio2gC7aEWsuiP6hE2E0S6iwJQHrVyHn7Nmo8jsGriu4U/IgAUcWFUHm+h74r9BqJm8xPYQa48hiiKUMhtEi+OEVkEmLbbp7fxsuyCKULMUuQ/1K03kmEKQqq2CjDe6HO9YdQQyqqx4oOMdKDKXYG/FAWlbl6B0RKu9VOo7B7V0n+R0KCgowDXXXIPVq1ef3hMTQgghhLQyY7Xzvas37L723y+WS68+43rgjrduxOJvViJzfzYUSjmGXjEQ1zx2GdJ6pbTqNad0T8KXe9/Foq9XYOOCbbBabOg8sAMuvftCGKtNyDmch6CIILx180cozinF+Yb9Ldh34oIDyvLKMeP3R5F3rAA7V+6Vgg69x3ZHdBL1Sdp6n6StoIADIYSQ80N0E0vt5mwD7FbgjtWAaHcEHPjTt6oNCzDcODhZejXUMdqxkuonq442+zxahUwKUJwtIgKUKK72/LB/5pJDuKJPPKKD1LiqH01UIYQQQgghZ1771CjfjQyuD/f3rTskTY7/dNubsFltUkUA/jT2SQI1Klw7prf0aigtwfEQ+ge1wudxOLsIZWaZ2226DSdgvqYPTFbXh+B8lRna7dlobfYAJSou7QohWFP3XmQAzOlRUO/JQ8Da407tw2JDUZrn/vMwXzz+PcZcPwxRCRG46JbRrXrt55MBAwb4bMMmlRFCCCGEEFepyc6TSGRGIHyHCFOUCGuUiIT+BZCrXKsX7K44LE39nzf2flgEO+QcD95XYqAFqWUBGBB+ufRqKEGbJP2r4JQ+7xFZwedTUQS3beS8EhbBBjtkMNiV0Mo8j0Gw6hE14Yb6XwX7WSe3IlZTgTxjMGyiDOVWDUKVnidysWPEqKvB+zFjxSrWheKDFBFYWxSAaHU1otTVkHECqm0q5BiDobep8GHGfFwQ3RORqnCMjhrm89ikbViwYAHuuOMOv8LdhBBCCCFnGxYWANY2er/tS3dLiz+xoIHVYoVcIXeqCtDagsIDpUWn2KuhDn3at0gFB/Zx5CwsYHYTFmijWFChILPI/UYR+OTBbzB8yiDEto+WXoQ0FtUdJIQQcn7oejmgCWvavvm7gSPLAJmi5cINgt0RN24B47s07yawW7sg/HHPEIztdHYkZFMjdeiVEOK1jdUu4o/TMAmKEEIIIYQQf40Z3w26AJXnBqx/UFDidtOBjYel1W3YQ/uWCjfYbfYWmwg+dPLAZu3fo0M7fP3oNRjaNZktXep40yZAmVGIoHl7wBusaG1VF3R0CjfUZ+oei4qJXSCeGjBJ7paA9j0cE6k8sZisWDGn8QM15xz231hLvAghhBBCSLNdNKYrNGqFNMm/OpZDUS8ZyrrIYYyQIzBK7zbcUGNPxREcqDwOJS9rsXCDjY2TtJCeIX3dvs9BgE5mQYDMIv2r4y1QcVbp/fo6BHTFIx2fQpegrtLvBdZgWIS6MEF95TYNyu1al3BDfRq5DcGnQg0nDaGwCe4bsj6ZWuaYwFRTCcKbQrOjSnWKLgEBfAIEyJBnCsau8nbYXpaAjKooKdzAGO0WLC/Y5fOY57yzpE+ya9cuXHDBBZg0aZJTuGH69Omtfm5CCCGEkNPloltHQ6HyvWCSO1sW7sCRncehUCpaLNzAxklayrDJvhfn8WbAxX3w1vIZ6DW6iQv4nmbp/VMR0c77PLzqcj3W/rHptF1Tm3WW9EnaIgo4EEIIOT8o1MCUrxwVGJoiY2Hzr4HdbGz/DvhsGPBiGPBSJPDLTUDO9mYdllUoiA1WN2lfhYzDkxM6w2ITcLhQj9Yia4G+RZfYIHxzc38sfWgkKk2+E8u55f6XtiOEEEIIIaS1abRKPPn8ZGnVULd9hcxcwGT2uP/G+VubfQ2CIGDB50txR8+HcZFyKiZqr8cr170nDQo0x8XTxyI0OrhJ+7LBjOmvXw8huwxlby9F6PdbEPzzDunfwJVHINN7XjW1MdjqTp7YwrWwxQZ53d+aEIL4e8bgtUXPYNaut1FVWuXznEVZxU26VuLZ5s2bkZWV5fVFCCGEEELcCwxQ46kHL0ZVqgzVCTIIyrrOiTbK9/P0zSV7m/3V2kUBc09swhWrP0C/hTMwcOELeGrHrzhSVdCs446IHIsAuaPqdQ0WYgiWm6DmbbVBBPavgheg5a3gT4UcWPWHibHXwmi34WBlGQw2BWyQIcsSjiJrIEyCXAo7VNtVyLGEotAaDJvAeww31AhSmKR/jXYl9lfGotqmq40wsC4gO6ZwqpoEu1a3fcV6WBZ8UFgMnu9yP2b2fBKlFoPP76XAVO6zDWkbpk2bhuXLl9f+rtPp8Omnn2LWrFln9LoIIYQQQlpSSGQwHv3mniYHFDbO39YioYY/3v8Ht3Z+QBonuUR3Pd685SOcPJjTrONedu9FCAhhld4aT61T4eaXpsJsMDf7OrxhFSKaq9uwzpi5cgY+2vQ6ygorfLYvPEnjJKTpKOBACCHk/BEUD4hNTN/aW2DF0L/vBf6+D8jf4/hdsAL75wFfXwhkLGnyYYM1Cvxw+0B0jHas3OOvrnGBmH3LACRH6HDjV5txstT3w/CmuqJPfLOPcaSoWqrcwPMcogK9rHx7SlRQ00IfhBBCCCGEtJZwnRzCzoOOSg0Wq+NVUg7sPwrke3/Ia7M2byUhtjLoGzd9iPf/bxaO7zkpvWc1W7Fq7jo8MORpbF9+qp/SBMERQXhj6XNISI9r9Ao/ry9+BmGxoXhywitSKWPeZIO83Aje0nIrJzHjbhrhcZs12nkilCeHORvSh3eSBl/YNfviTxvSOLGxsYiPj/f6IoQQQgghngUnBsIQ7jqZiON8rwZpa+r4yimCKODx7T/j9X0LcKy6SHrPLNjwb+5u3LhuFraXnmjysYMVobgv7QlEquoqXrMQg8zD52LzqZS8DcnaDrg77RnIuAC8euBTlFjKwUOUAggCeJTbdciyRCDTEok8aygMggomu1wKOPjCghQqGQtsizDYlUgPvBClFi3KrBqUWrWosGkg5xwhC3ZOX9hfzWw/gs5BydLv4UrvIW0mQuW7DWl7Jk6ciL179+Kuu+4605dCCCGEENLi2GJJTa0ubbP6XgzVV7hhxhVv4dOHZiPrUK70ntlowdJvV+O+gU/iwKbDTT52VGIkXlv0NGKSIxu1X7dhnTBz5QtS9e5nL30dpXllaC3jp41s9jGyDmaj86CO0s/hfoyBhMfROAlpOgo4EEIIOX/s+rHp+yY0r5QYMhYDO35wv81uAebdDdiavjJpamQAljw0EnNuH4ir+/k3oePZiV0xNC0C360/gQpjCwQ4PBiVHon+yd7LkvmDVZlYf7RE+nlKX++fUcZzuKJPu2afkxBCCCGEkJa0ZPYqwGgGjmcD2/c7XoczgSrf1dS6DHY8MG4qVgZ4xY9r3W6zmKyYecvHsNubPmEppVsivtr/nlThYOz1w/3a54FP70CPEV3w5/v/wlDZehXYhkwegA59Uz1u5+yOSUW+GM1W7DjsWD1p/LRRXtsqlHKMuW4YzndsvlZLvAghhBBCSMv4Y/c+t++bq9iiQmySkeeJRp2CUpp17oU5u7Esf7/bbUa7Bc/t+qPJE52YBG0Snu/yFu5JfRR9ggdKAQZvZBBxQ9I9SNZ1xPzc5TAJZig4G+S8CKsgk0IODdlFDjaRR5lF6/N62P6BCivCVUaMj+mBtMAIKTRhE1nlBsc0DUF0hE38+dSsjVnQI9twUPp9Qlxfr+1VvAJjonvifHe29ElYkH7UqFFYuXIlFixYgORkR5CFEEIIIeRcs+TbVU3et8vg9Gade/HsVdi4wH0VCEOVETNv/bhZx+80oAO+PfIRXpz3OIZM7u/XPs/8/D+k90vFLzPnSWM1rYWNacQk1wXCm6qiuAoZW4/WHtMbbaAGw68chPPd2dInaYso4EAIIeT8UZnXtP204UC3Kc0799ZvvG/XFwEHFzTvHIAUWJg+vL1fbd9fnoHp323FT1uy0JpWZxQhq6xlqkPYT40ojOwYifFdPN943z0qFbHBmhY5JyGEEEIIIS2lOLe0SfuxFW6GT2neQ+AFs5Z63V6UXYLN/+5o9oSMfuN7YtL/jfer/RePf4/nL3+zWQMa/tjw9xaUePnulSfLAV8hh1MzjgTB8cPgS/uh/4TeHptf/+wUhEaHNPGKCSGEEEIIaR0FVdVOvys1FsR3yUdkQhmUMkGqOiCTZk44T7mPUoVhUHj3Zp37t5NbvW7PNpRhY7FjokxT8RyPrsE9MTRiOHjXQhUuVRy+OjYHr+6fhf+KN0vv1VRUEMHBIshgFXjYBE56Wewy2AQZFJwAs+C7igPb33EeEbsqNqHS6vzdM6yyA8MCD76yHbWhCDiC6aOjeqBvaJrH9tNTL0SQwncQg7QNf//9txRuYCEHQgghhJBzWXFO08ZJ4jvGov9FvZp17n98jJOcPJCDPWsONOscrBLD4En9MGaqfwsgvX3bJ5hxxZtY/fN6tKaVP61Fdbnvxbb8IZwaTxlz/XCpAoUnt712vRRyIKSp5E3ekxBCCDnbBDdhRX91MDD1J0DZzIfApX48lC9p3oP7Gh2iA6UKBvZTE2882XCsaZ2GxmIP5TceK4FWwcNgbXqklH2m/smhtROnPr6+D95fdhg/bj6JUr2j+kVCmAZ3jkjFDYOSWuz6CSGEEEIIaSlR8eGN3icoPBAv/PU4FEpFs86dk+E78J3tRxt/dBrYARzPQfTRJ9mxfC9OB3Yd+zccglKjhMXoWjmPN1qhPlgIU9cYDwdwvBRyGbq3d7SRyWSY8cej+Pa5n7Hwq+WoKnVMVopLi8HUxydjwm1jW/dDnS1Yh7AZq/DWHoMQQgghhLSI2KDA2p+VWgtS+mRDrhCcJv3LOBG8yKoYsAn1HEIUgXi263TIuOatnXjS4KjQ7E2mvgSDIz1P2vdXWmAX6dp91UbYUnYYFkEuhTrYZxekfWpwtRUWGlZxYNvKLRqEq/TSfg2xrhALQdTtI+BwdS5knBx2sa6yhEFQIlAwQ8nbpXOzqhKebontIg85p0KcxrFqrZyX4c1et2DW0UX4J3crqm2OqniJ2kjcmDzGZ4WH80YL90ny8nz3m+Pj/au0Xl9CQkKj9yGEEEIIORtFJoQ3aREo9jyezRVqjuyMXL/adB/eGc3Vz88wxpZFO3E6WC02nDyYDZmch93W9LlbLLCQ1ttR3U+pUuDVhU/j66d+lBayqqnUndQlHtc/MwWjpw5tses/q9E4SZNRwIEQQsj5o9f1wJp3/Cv2qwkFBt0D9J0GBEQ1/9xqP1bu1LTc6p6X9IjFvJ2+b8ybSinj0SsxBLuyymH248Z3y4myZp/zom4xTlUZFDIej1yYjvvGpuFooR5yGYe0yADwvpZlIoQQQggh5Ay56Lax+P29f/xqGxwZhCkPXYKLbhuDkMjgZp87MCwABZlFPtu0BDb5f+hl/bH2T8cqqK1BoVKg88AO2L8xAzZL3QQhT3au2Od1u27tcdiD1bC2C3HMg6rBuo+s/C+AC/t1RHiQrnYTe3g//Y0bcNOMq6RwiFwhQ2Ln+GYPshBCCCGEENJapvTqhh+37ZZ+jkktdgo31MduaSNUAbg07gKMixmEIEXdfXBTBcnVKDG7VjGoL1jRMqt7KnglUgP64Gj1No9tTHaZFG6oj4USWICBhTw8qbappH8FUYc4dRqyjAcg5+uC1Kyyg9GugHiq4kKNneX7oOA4aJ1OyaHIEoBQhQEaXgR4O6vl4BSaYHNhrCKrBsGhe8hoaGR1/TaVTIH7Ok6SqjVkGYqh4GVI1nmufk2ab8CAAT7biBTSJoQQQgjxaMKtY7Bktn9VncNiQ3H1I5fiwltGIyCkBfokYQG1k/Bbe5xEF6RFj1FdsXuV97GJ5lBrVejYPxV71x6srargzcYF2/yaMucN+1vUr8qg0alxz/u34tZXr0PO4TyoNEokpDdhAWJC3GjeMguEEELI2SQ8FRj2kH9tTZVA35tbJtzA9Lja+3aZEuh6ecucC8CdI9ujpYXplPjz/4Zg4QPDsfnpsfjlzsEYkBLW7ONqlY4yzd70SQzBa1e4L3+tksvQJS4IHaMDKdxACCGEEELatOSuCbjywYl+tdWX6zHxznEtEm5gxlw33OeD8GGX+56o4a+rH7sMLS0sJgQfbX4Nn++ciV/yvsDbq16QqkU0l1qnAieICJ6/H5rduVKgof6LzS3q06Ednpg6xu3+Ko0KqT2TkdQlgcINHqpfNPtFCCGEEEJaRLfYaFzbpwfkShsCwg1e25oEIybGDWuRcANzcbueXrcHyFUYGe2oTtAShkVcLlVScIfNP3dUbrBLv9dVauBQaVV7PGaIIgwvdnsOH/V5HN8PehnPd3sE1cb+OFwWDr1NiSqrCnq7CoKHaRgs+GCwKZ2ui7UtssRgQ0kKtpclotAUJIUkbCIPqyCDRZRLYYkUXS+Mi7nd7XHVMiU6BMZRuMHtH5v6JIQQQgghbUm3YZ0x/uZRfrU1Vhkx6e4LWyTc4M84CauoPWBCb7SUqx6ehJYWkxyJz7a/iVm7ZmJu7iy8vfIFJHb2M1Ageh8nqeVhDacBF/fG7W/c4HYbCzqk9UqhcMM5Ok6SmZkJrVYrjYHNnj37tJ2XKjgQQgg5v1zwPKDUASte8t5OtAOLnwRGPgFENL8cMnpdB2z5Cig64H77kPsAXQRayqpD3ldmbaxB7cPw8uRuSIuqK1/NjO8agzWHi5t1bIPFMYBQX4BKhm7tghGuU2FSzziM6xINWWtVZqjMBXbNBSpzgKA4oOe1jn8JIYQQQghpBXe9c7P0oHjOK3+4bBOVcgjxkRAiQ2DlgI+/WIkbbxyGdrGhzT7vxbePwb9fLJUqDbgz9YnLW2yQgNmysOXKKrMHpr3HdsN9H09HfIdYp23DJg/A3jUe+ll+MunNtT/r1p+A6kAh5INTkDKqC8JCdJgwoBOGd2vfaoHqwqxiLP1uNUrzyhCZEIFxN41EeAv8zQkhhBBCCHFnxoQxCAuzY5X9hJutolS9gIMIQbTj+xO/4bJ2FyJK3fzxi6uTBuCvrO3IMbqv+Dw9bRS08nqTapppX+VuVNvU0MiskHP22qoIVoGHSVBAgAwBcgsqrBpWMwGCKILd8hsFJWABAuVmyPmaVVA5dA7qjqsTbkGEynlhrLExXfBJRjYidQanygsNORb1Z9UdlFLQQcmzsRERBqsSJRZHX6zKpkGeKRiBchM6B5nRMyQCgYpQdAsehdSAvuC41lm/Mkdfhr+zdksVNuK0IbgssSfCVS2zcu25ZvPmzYiNde6XEkIIIYSQxnn4y/+TFg6a/+lir+2M1SZ88dj3UlAgKjGy2V/z5PsvxtLvV6Moq8Tt9ptmXA2lWomWsm3JrhY7FsdzGHhxH9z/yXRExoc7bRs6eQBO7M1qsXGSmsn0LPCR0jMJEbGhuODGkeg7rkerLfKUezQfy39Yg/KiCsS2j5bGSYIjglrlXKRx7HY7br75ZhiN3quftAYKOBBCCDn/DJgOrHodEKze2+35Fdj3FzD5U6DHVc07JwtVTJsPLHgQOLTQEaBgNGGOcMPw/6ElnSzxvvKSJ+zhfXKETqqq0DshVKrQwIIGKRHuJzpd0bsdZv13FFmlLXsTU222o1dCKJ6Y0AmtavVbwGr234Kt7r2VrwIjHgNGPd665yaEEEIIIeety+67GD+99ieEest2CsE62Pp2lEIONYt9/rv6AJatzcCzj12CkcOat5KpLliHmStfwHt3fY7N/2yvPXdIZBCueXwypvyvZVcSyj2W36T9ZHIZ4lKjodKp0HVwOrqP6IwOfdojLjXGYznk399b4HFAoinkZQbg330Y1q8LbnrEv4obTTX72bn46fU/ncpHs/dufmkqpj4+GWc7ThSlV3OPQQghhBBCWg6bkHJ97/5YvfVviPWWgWShBjkngONO/QsRK4pWY3XRRjyUPh19Q3s067zBSi2+HnwbXtwzD+uLjtSem02kn542ElOTB6ElFZsLpOoIrKIC+yw8J0iVGlg1hBos+FBDEHmIogglL0OoMgoamRrdgpPQLTgNidokl2BDjSlJffHT8c2oMFciRG3yeD11VSIYTqogwcj4muU467ZX2dTYXKpG79BxmBw/Gq1p5t4lmH1kA4R6/y28f2AFHu5yAW5KG4yzXUv3SVi4IT4+vgWujBBCCCHk/MXzPK58aKLPgAPz14cLseirFXj+j0fRb7z3qnC+hEYFS5Wh37trFnYs2yPd/zPhcaG48bmrMPGOcWhJeccKmrSfSqNEZEI4dMFadBmSjh4juqBj3/YeQx6T/u9C/PP5UpQXVaIlVZZUYcikfrjigdYbJ2F/g08e/AbzPlpU+/dgvn76J/zfuzdj0l3jcbY728dJ7r77bqxateqMnJsCDoQQQs4/6mCg00Rg/1++27IQxJ93AfF9gbD2zTtvQCQwdQ5QkQ3k7QbYSkRJQwGF53LHTRWqa1qieHR6FL66ub/f7XUqOX68fRDu+n4b9uW17I3yb9uyWjfgsGMOsPJl1/dZ2GHVq0BQLNDnptY7PyGEEEIIOW+xh+gDLu6DjQu2Sb+LHAdr7zSImlPhhnor4JgFO158az5+So9FVGTzVqthVQFemvcE8k8U4tiuTKmSBAsQKJQKtLTg8KZd65DJ/fHcLw/73Z5VnXhz2fN44cqZOLH3JFrSkm9XSSs2tZb5ny3BnFd+d3nfbrPjqyfnICoh3GfJbEIIIYQQQpoiQhWKHsHp2FVx8NQ7LNRgh0pmkyoL1F+U0y5Y8X7G5/ig92sIUTavTxKtCcbHA25CtqEUhysLoJUr0ScsGQpe1uJ/SJ28riI1q9BgF13PwUIN9bF2g8P74aF0/8cGQlU6fDHkJjyy9ScYrYegUdjcnMc5WFEf+67Z1+1uusrCvC24Prn1Ag7fHtmAr4+sd3nfKtjx+t7FiNUGY1xcl1Y7PyGEEEIIOX+1S4tF16Hp2LfukM+2JoMZL1z5FuZkfoqgsLr7/KaITYnGG4ufRc6RPGTuy4Y2SIPuwztLiy+1tKCIpl3r2OuH46FZdzVq7OeNpc/hhSkzkXukaYtPeRsnac2Aw9zX/5JCLA1ZzVZ8eM+XiEqMkCpXkDNTueGee+7BrFmzcKa0Tg1DQgghpK0b8yygCfWvrWgD1r3fcucOjgc6XQykjW2VcENNZYXGYg/Rbxue0uj9EsK0+OeB4Zg7fSAu7RmL9pE6pEbqMDo9EnJWEqKJiqstTivatrh17/nY/n5NzWhCCCGEEEJa3K2vXietvsMIMWEQWUhZxma2NLiH5jlYIODnP7a02LljkqMw5LL+6HNBj1YJNzCsfHBj8TyHKx+8pNH7xXeIxRe738YbS5/FyKuHIL5jLBI6xWHAhN7SMZuqNL8crUUQBPzy1jyvbX5+0/t2QgghhBBCmuOm5MlQ8yrpZx4i1DIbVDLncENNhQE5r8ei/OUt9oXHa8MwOqYzBkaktkq4gRkQNsxnG73debEoGcfj0naNDxSkBkbhz9EP4LH0h9BFNwThiljEqePQK6Q77ALvEqSozy6w8IP7fkuppQqtxSbY8Y2bcEN9Xx5e12rnJ4QQQggh5I63bpKqFfjDpDdj/qdLWjRgwcZJeo3u1irhBuaCGxo/TqJQyjH5/osbvV/7HkmYfegDvDT/CQy7fCDi0mKQ1CVeGidpjrJWHCexmK34470FHrezig6+xlFI6ygoKMDYsWPx+eef40yiCg6EEELOTxFpwK2LgaXPARmLfLc/tAiYhLNGh+hATO2fgLlbsvxqr5BxeOHSbhiSGtHkcw5KjZBe9d3/0w78vSu3SceLC1Y3azKSE3M1cGghYChxVOIISwGKM7zvU3IEKD0GhKe2zDUQQgghhBBST0q3RLz734v44ok5WJ9V5n0ZEo7Dmi1HcN+dY8+a7zCtd4q0ytDyOWv8fmj/4Od3ouuQ9Cafs8/YHtKrvhlXvoV1f25u0vHYykAtxVBlxPp5W1BVWi0FMMLbhSH/eKHXfY7tzkRRdgki48Nx1mKh8eYGxyl4TgghhBDSKtoHJOCV7g/hu8y/sL9iHxS83WNb9qh+e/lWTE28/Kz5a7QPSEevkP7YWe4+LK63KWAR6qZLKHkF7utwPVIDEpp8ziFRHaRXfa/s/xA7y/d73Mdo9xw6j1b7uVCXH/Q2I7aW7oLebkA7TSx4IRCFJu8Bij1lOSgz66UqFWct6pMQQgghhLRZXQZ1xMyVM/DVUz9i54q9Ptuv/mU9rn/6Spwt+oztjoET+2DTP9v9as/CHo9/f780ftQUHMdh0MS+0qu+R8bMwK5V+874OElVWTU2/L0V+goDkrslQK6Qo7yo0us+u1fvh1FvgkbXOgsInxZnWZ9kwYIFuOOOO5CXl4czjQIOhBBCzl+R6cB1PwM/TAGOLPXe1ljq+l7pcSBrE8DLgfajAF3L3dS1hFcv746oIDW+XX8CFUar9J6M59A+QoepAxJwssSASpNNqrZwdb8EqW1Le2ZiZ+zOLseJEoPLNrWch8kmeNz36v5NH0RwsvFTYOWrgLneTXFgjH/7Cq6lpAkhhBBCCGkpKd2T8Oo/T+H+J37EjoM5XtuWVbreU2cfzsOBjRlSOIBVYwgKb15p5pb26Df3SJPz53+2RHpgzbCVkBI7t8OE28YgOyMP+koDkjon4KJbRyM0OqTFr+Hu927Bke3HUZBZ5LJNqVbAYnL0ldyZcFvLBEpYJYY5L/8GY7Wp9r3wOP8mKtltnieZEUIIIYQQ0hIhhxld78OMfa8i2+h9USC9zXWcpMR8EvmmDMg4BZJ1faGWBbSpP8rNKffi75yfsb54JUyC8dS7cgTL2+OCqJHIMxXAaDchSdcOF0QPQpCi5a//9vbX4vm976DEUua6UVRBb/M8ZWNi3IAWuYbfs/7FnzlLYBbMte+FKkKhkQNGm/cVc22i53EcQgghhBBCmqvTgA54a9nzuKv3ozi664TXtsU5rn2SzP1ZyNh6DEqNEv3G94AuuG2Fc5/77RF8+fgPWPT1itoxArlChpQeSRg3bSQy92bDZDAhtWcKLrxlFILCWn6c58HP7sDDo553W7WajS9ZLZ7nRl1065hmn59VYvj2uZ/x2zvzYTZaat+PTPBvcSeBxklOi127duHhhx/G8uXO1RunT5+OL774AmcCBRwIIYSQ2J6+Aw71ywMbSoF59zgqAuBUQlKmAnrfAFz0OiD3r3xaa2PVD/43riPuHpWKHSfLIYgiuscHI0jteTUgT/bnVmLZgQJYbAJ6JYRgTKcov6orsNDEn3cPxdfrjuO3bdkoqjIjLkSDa/onoEd8MKZ/txUmq+vD8U4xgbhtWAqabdtsYNETru9X5fveNyDaUe2BEEIIIYSQVpaaGu0z4MDL6ko8lBWUY+Ztn2DLwp3Sg+GayfoXT78Ad868SVr1pi1gYYbbXrse1z87BQc3HZauNb1/GrSBmkYf6/D2Y9g4fxtsVhu6DElH/4t6gee9lb1wiEqIwIebXsMf7/2Dpd+tQnlhJWJSonDx7WOR1DUBL1w5E1aza8ihY79UXHrPhWiuPz/4F18+8YPL+yW5biY3NRCdFNmiqyOdEew/z+bOhzp9CxMRQgghhJy3krRxPgMOck5W+3O1tQQL82YiU1+3EqmcU6FX6CSMiLoVfL22Z5KMk+Py+OtxceyVOGE4Ko30JGlToZI1fsGnHEMGDldthQABSdquaB/QS1oh1ZdodQRe6/E4FuQux39Fm1Blq0a0OhIXRA9DmCIGz+75ATbRNdjcLTgJk+IGornm5SzB3Kz5Lu+XWcuQHMrhaGkYLHb3fcgkXRgiVG0rtNJo1CchhBBCCDkrJHaJ9xlwUKrq5jsVnizCmzd/7FSZQK1TYfJ9F+OWl6f6NX5wOrBrZgsxTXvxGmRsPSpdV/qANKi1qkYfa9/6Q9i6eCdEQUSPUV2lChH+iO8Yh4+3vI7f3lkgVd2uqTQ98Y5xCG8Xilevfd/tYks9R3XF+JtHobl+ePE3zHnld5f3i7JKfO6b0j2xzYVWztU+ybRp06SQQw2dToeZM2firrvuooADIYQQcsZ0mgismem9TUw3x782C/DdZUD+buftdjOw9SvAVA5M+RptiVohw+BU/1KvDVWbbbj/px1YcbDQ6f3EMC0+v7EvOscG+TxGqE6Jh8enS6+Gfr1zCN5fniEdXxCBILUcU/om4IELOiCwCUEMJ4IdWP1m0/cPSQRkzbwGQgghhBBC/DBqSDp+81GiuGNqtPSv2WjGY+NexIm9WU7bWSWCvz5cCGOVCY98fXeb+t7Zg/peo0/1qRqpulyPl6e+i21L6h6qMuzh+4w/HkVSF9+V30KjgnHbq9dJr4beXvUCfnjpV2xdtBOCICIwLAAX3jwaNz5/VbNLHlstVvz46h9N3p8FMdrKIMz5rCZERAghhBByLhsQ1g/rSlZ5bZOicyxKZBGM+PnkYyizZDttt4lmbC39DVbBhHGx96EtYYGG9MCuTdrXYKvEr1lvIFO/p/a9tWy1UVUCrk58GuGqOJ/HCFUG48bkK6RXQ+/3uROzjy/D1tLDECEiWKHDJXEDcFPKBVA1c4zCbLfgz5zFHrfznIhwrQF5Ve7HetqpI/wKcRBCCCGEENJcI6YMwsqf2J22Z50GpdWOGzw8egbyjzvPZTLpzZj7+p/SokZ3vT2tTf1RdEFa9B7jXyChIbbo1QtTZmLfukO177HAQPseSZjx56OITXGMH3kT0S5c+k7cfS/BS4Mw5+XfsXPFXul5eGh0sFTh+vpnroRC2bw+iaHKiF/f/rvJ+7dLi2nW+UnTTJw4ER999BGSk5NxJrWN5dwIIYSQM6ldH0hVHPKcJ8w4GXCn49/981zDDfXt/R0Y/ggQ3QXnAnfhBuZkqQE3frUJSx4aiTBd0ytWsIoSX07rj0qTFVUmGyIClFDJW2hlp+ytQGVOM/bfAmz5Euh/e8tcDyGEEEIIIR707BqPpPgwZGa7lleuceXFvaV/V/60ziXcUN+Sb1dh6pOXI75D7Dnxfb941dvYsbxuIlGN7Iw8PD7+JXy5910EhDR99Z7OAzvglQVPSQMi7EE7e3Df3Af2NfasOYjywoom789Wnlo8e6UUuDhbcaIovZp7DEIIIYQQ0rq6BHVFhDISxZYij23GRI2V/t1XvtQl3FDf7vJ/MTDiGgQponAu+PnkK8gyHHB5v8ichR9OPIv/S/sISlnjq9TV6B6Sgrd7T0eV1QCD3YJwZSDkfMuMk+ytOAS9zeClhYgYXRV0MjMEkUORIQBVVkfQ22blsfzkCcw/sR+Tks/eMS/qkxBCCCGEnB0GX9oP4XGhXqsfX3bPBOnfhV+tcAk31Dfvo4W4+tFLERYTirMdCxw8M+l1qfpDQ8d2Z+KJ8S/hiz3vQKlu+tytniO7Sq/K0iopJBIeGypV6G4JrOKEsdrktQ3LVHsaBlj752asn7cFQy7rj7PV2dIn4TgOo0aNwvPPPy/92xbQEmCEEEIIc8UXgM7Dw/YeU4EeV9cFGHzZ+9s58Z3uz610G26oUVxtwdwtJ1vkXEFqBdqFaFou3MBYqpt/jI2fer6LJoQQQgghpAXNeHgSggPdT4qZNK6HVOWBWfnzOp8Pu1f/vP6c+Nsc2HTYbbihBhvoWDLb+yqz/mIhiaiEiBYLNzAmHw/t/fHHe/+0yLUQQgghhBDiayLDXal3QyvTut0+JuoC9AjpJf18sNL7PbgIAYcqV58TX/iJ6j1uww01KqxF2F3RMn2SQIUW0eqQFgs3MCbB7HGbgrMhSlWJCFU1UoJLkRpSgkFxmegZkQ27mYfVwvpGHL48uLnFrocQQgghhBBPZDIZnv3lYWiD3I+TXP3IpbUVEFb5GCexWe1Y8/umc+LLZgEBd+GGGrlHC7CqhcaEgsICpXGSlgo3ML7CDYyvaVm/vTu/xa6HePb3339j5cqVbSbcwFAFB0IIIYSJTAfuXA1s+hzY+wdgqQIiOwH9bgO6T3HERRlzpe/vy1zledvJjcCJtQDHAx3GATFNKz92Oiw7UOCzzdL9Bbh7lKME3Gkn2IGD/wCHlzh+Thri+FspTnV2oroAnAwQ7U0/R8kRRxWI4PgWu2xCCCGEEELcSUuJwlfv3ITfFmzDyvUZMJosSE2KxOSLemHMsE617QwV3lbfPNWm0nOb3f/tx541B6QH1AMn9kFKt8Q2+wfZ8PcW323mb8EVD07EmWCz2rDury3YumgHBFFEjxFdMHrq0NqVklJ6JEoTxVjopKnYCkzlRRUIiQxuwSsnhBBCCCHEVbIuBc91eQHLCpZiW9lWWAQzErSJGB01Fn1D+9W2swi++yRmL20y9buQa9gPnpMjLXAgwlVtt09yqMr35P6Mys3oF+ZYSfZ0swk2bCnbhv0V+yFCROegzhgQ1g8K3hHcTta6H9vgISBMpYeMc+2rROn06BWbjc1ZKdLvu0vyoLdaoFM0fUVYQgghhBBC/NF1SDo+2foG/nz/X6z7azPMRgs69kvFZfdchMGT6voker/GSYxu32fP67cv242Dm49AqVJIlSPiO8a12T/Qhr+3+m4zfyvGTzszk9ItZiv++3UDdq7YK02t631BD4yYMghyhWNqemrP5GafY89/B6TxmJpjnu/y8vJ8tomPb/w8t4SEBLQ19BcnhBBCagTFAeNecLwaspqAbd8Ahft9f18sGNFQRTbwy01Azra695a/ALQfDUz5GtCGtbm/g9UutEibVlF+EvhhClB8qO69XT86vtNrfwbi+wJBsUCni4EDzU3yngq3EEIIIYQQ0sqiI4Nwzy2jpVdDRr0JCz5biqxDuT6Pk9TV9SFk3vECvDjlbRzZcbz2va+enIMBF/fGkz88IFUwaGtsFpvPNhaz7zatIfdoPp6c8Apyj+TXvseqSXz99E945Z8nkdYrBbEp0eh3US9sWbijWediIYmzFpsv1dyqeFRUjxBCCCHktIlQRWJq4nXSqyGT3YiVhSuQYyyDkvd1nCSX90rNOZiX/TKKzCdq31td+DXSAgdjYtwjUHmoHnEmCaLVZxu7eGb6JHnGfLyd8S6KzMW1760pXoffsv/Awx0fQLw2Hu20Mega1BH7KjNq28Qqy9BVl4MguQlmQY5sSxiKbIFOYyExgVUIVBlRZXYsKHU2d0moT0IIIYQQcnZplxaLez+8TXo1pK/QY97Hi1GSW+rzOEldXSd4Zx7IxotTZuLkgZza9754/AcMnzIIj35zD9RaFdoaqx/jJFaz735Lazi+9ySevvhVFGWX1L636JuV+OaZn/Dqv08hIb0d0nqnoPOgDjiw8XCzxkhonAS1BgwY4PM7a87CW22Jj0cPhBBCCIHFAHx3GbDoCcBY5v0LUQYCPa52fs9mBr6b7BxuqHFsJfDT1Db5JfdODHF5j4OAUfwOvCj/Bq/Kv8DN2vWO8MfpJAjAj9c4hxtq6IuAOVMAw6nOzMR3gPBmVJiI6AgEt2v6/oQQQgghhLQAQ5URj46ZgVmPfudzZaLAsACMvHqw03smgxmPj3vJKdxQY/O/O/DClJlt8u/UeVBHn200gRpYLaf34b3dZsdTF7/qFG6oUZpXhqcmvCL9zZiHPr8TMSlRTT4Xe/gfHBHUrOslhBBCCCGkuQw2Pd44+Bp+z/kVeWbvUwy0slB0CBzq9J7ZrsfPmU86hRtqHKnagPk5r7fJP1I7bbrPNhx0UiWF04mdb+Yh53BDjVJLKWYeeg8WwSL9fnfaTYhQhkoz/UcEH8TE8N1IVpcgTK5HrLIC/QOOo6/uhDT+U19MoKOiee+IOGjlVL2BEEIIIYScWRXFlXhw2LPS5HmT3uy1bWRCuFTBur7K0io8dsGLTuGGmongrALBm9M+xNk6TsKCGWzc4nRi405PXvSyU7ihRv7xQmmcpGbs5rFv70N4HOuTNE3PUV2kquTk/EMVHAghhJCaEEPBXoDjgZgeQP2HtWtmAlkbfX9PrOTv5Z8B7EH2+o8c+7D31MFAiZckatYm4NgqoP2ZKRfmyaiOUUgO1+JEiWMCVRTKMFv5JrrwmXWNslYC730BXPcL0M65c9BqjizzXknDWArsnAPoooBNnwElR5p+rsH3Nn1fQgghhBBCGsFotiLjZBHkMg7piVGQ13tY+93zP+PQlqM+j6FQKfD4d/fBbLBg3keLcGDTYciVcmh0auQdK/C4HysdvG/9Ian8c1sy5LL+iEqMQOFJ10k7NbYt3okb29+DV/55qkVKHftj/bwtyDnsuQRwWUEFln63GiqtCvM+Wig9zGerCzVlxZwp/5uEsxr7zM2u4HBurDRECCGEENLWme0GFJozwUOOWE178Fxdn+SPnN+RZTwp/WwUVCix6BCu1LscQ86pMLHd47DYq3GocgGKTAch55SwixpU2Qo9Vkw+Vr0F+cYjiNE0Y8GiVtAlaBiWyWej2lbm8VZ1Xck+7Kl8FA90fARxmtOzYNLm0q0otnjuJ5VZy7CheBPyKgPw3eFtOFypwaVJJeiodd8vjFZUoqM6H4dMcbXv8ZzjPnx654E4q1GfhBBCCCHkrMEqNJzYlw2FSo7UXsmQyer6JLMe+x4n9mX5PIYmQC1Vra4oqsTCL1fg8I5jjsoMHCctUOTJmt83SRUekjq7Vn44k8ZcN0yqxl1ZUuWxzepfN+DQ1iN4beEziO9Yd0/fmlb8uBYluZ6/z/wTRfjvlw3SYlB/f8KqbpTROEkLjZNs3rwZsbGxOB9QwIEQQsj5rfAg8M/DQM4WR6UFRhcJDLwLGP4wINiB7d/5Pk6XycCwhwBTBfBeD8DsWNnGbwcWtLmAA89z+OzGvrjh87UoNgr4SvmWc7ihftWEH64E7tsGaMNa/8KOrvDdZuNnQGV2887D/p59pzXvGIQQQgghhPhwKL8Ir/yxAvtO5MNebYfcCESG6HDd+L64cUI/WMxWLPl2lc/vcdS1Q3Ht45dLpZmvT/4/nysYNbTuz01tLuDAVuSZ8cejeGTMDBgqHRUR3GEPxtlKQd8c+gC6IG2rX9e2Jbt8tvnlrXlOwYxGhxs44KbnrsbY64c35RIJIYQQQgjxW57xCBbnfYY80xGpMoAIDoHyCAyJuBwDIy6F2W7GhpL1TvsUWYNgFJQIVeih5tmqnBy6B4/FgIgp0FuzMPf4VbCLzn2SIBmPKrsaItxXgDhctb7NBRzkvAJXJz6F744/B5tY0ycRoeRs4CCi0BoEO3iUWUvxfsZMvNjtdahkqla/rr0V+3y2mXNsKZYdV0s/c+DRO9jN+E49CcpSHDbFQDj19yk36vBYr1GYkNipha6aNFVTwvKEEEIIIWeTA5sP45P7v5aqUNusjkoEbPGjqY9PxqT/uxDV5XqsmrvO6zE4DrjwljG4+tFLcWz3STw+/iVYzY2r/rzuz81tLuDAwhlsnOSJi16Cxej58+QfL8KTE17B1wfeg0KpaPXr2rbU9zjJN8/NRcGJoibf17J5a3fOnIaBE/s26RrPVbGxsYiPb1v/nbYWCjgQQgg5P7Eww9/3Abt/dj9hf8VLQP4eYMIbjt99GXQ3EBgDzJ4IWKobfz32xk0+Ol06xQRhadpvWHcwG91519LRTlUTdnwPDH3gNFyVHze8zQk3KAOA25YB0Z2bfgxCCCGEEEJ8MFlteHzeIizaf6raWwB7ceCsIoRCPT745T8cO5qHOy4egKoy15VRG7rmkcugC9bi/sFPwWy0NPr7t5ga96D/dOnQpz3S+6dix/K9XtvVVE2YfO+EVr8mfx7Ce6s64Qv7O3646VUkdDw9q7+2KuHUq7nHIIQQQgghLc4iGDE/ZyYyqjbUvifnHQtDVtmKsTj/SxSYs9Ev7DKYBZPL/tV2tfSqcWPKdVBwdqzImwG76NonkXMCAmQmVNkdoWQOglTPgQUq2MvmZp+2IF6bDqPYF2XmnUhUlyBMroeCd9ykRikqUWINwDFTpBRy2Fy6AcMjW38xK9GPcZJsQzmAGOnnYKUBkWrvY1dK3i79fSrtWsgRgl/HPIqEwFCc9ahPQgghhBDSZukrDXj1uvex+d/tbp+xf3DPl8jKyMMFNwz3OYbB+jHXP3MljNUmvH7D+7VBicawmNpmn6T78M5S8OLw9uNe27Fq0v/9uvG0LJzkzzhJ/XBDY4VEB+Pjza8jKiECZz3qkzSZ++URCCGEkHPdgv+5DzfUt/8vYP88gPPjfy5VgcC22U0LNzCa01D5wF/mauDkJiBnG1B6HKEnFqIDl+N7vyPLTsfVAcnDWu/YMiVw8wIKNxBCCCGEkFb31N9L6sIN9YgKDoYYQJABC7ZmYMuGQ1LZXl+0QRrM/3Rxk8INTHBkENoKVrJ43/pDOLT1KHLySrEztwK29Hawx4VB9PJdbF2887RcX89RXVvt2Eq1Au+sfvHcCDcQQgghhJA2rWG4oQa75ZZzbDKQiB2li5BpOOR2fxkEKDgb+FOJVI1Mg/3lf7oNN9RQcAIUsELDm6GTWaBlL94MNW9BoKzt9EnsQiWM5i0wWXYjz1iAg5UnECI3IFpZVRtuYHgOiFRWo5suR/o+9lXuOS3X1znId/W9CqOm9me76N+0EFHkwNm0eLTzM+dGuIEQQgghhLRpr0x91224ob4/3/9HqsjgCxtH0QSoMe/DhU0KNzChMSFoK6rKqrF33UEc3n4Mx/dm+gw31NiyeAdOh54jW2+cRBOowXtrXjo3wg2kWaiCAyGEkPNPeRaw6yf/2i6bAaSO8T55n634zybGH/+v6de06TOg86VAfBPKarFKE3t+BYzlQERHoNd1gLYJgQmrCVj+oqMSg7my9m2LKMNWoSPSeR9VEU5Xidz0i4Gw9kDpMffbWSBFbOISn1FdgLjezbo8QgghhBBCfDlRUoZ/97mfJMSIMg6WQBHqcg4fz1qEHqO6YNfKfR7b60J00sP7nSu9Vznw5pe35mHwpf2Q1iul0fuyB+wrf1oLfYUBSV0TMO6mkQgMZSUpGsdkMOPLx3/Akm9XwVBtgq17MoSkSCAttq6R2QrF9qPgi+v6LDUE++lZ6n/4lEH48sk5KMoqcbud53kIQtOuJa1PCtr3SMK5ghNF6dXcYxBCCCGEkJZVZDrhNtxQew/GAbwoQuA4LM77Hu21qcgyZkjBBxlnh5q31U70Z7drcj6U1WBArmGbz3NreCuEegtLSYEKCNhZ9h3aB/ZHmKrxfZIS016crF4Km2BAsDINyYEToZQ1vk8iCHoUlr+ESsOvEEWj9F6ZTYNBAakIURs87sfCGlHKCr9WMW0Jg8IH4rfsP1FhrXC73S7IUVAVWPt7lVWDzOowJAWUejxmtVWFbVs7IknWFzH9z53ANfVJCCGEEELaJrbA0ZZF/i1a9M3TPyKtdzKO7DjhsU1IVBCsFht2NGOcZPazc9F3XE/Ed6g3JuEntmjTmt82wKQ3I7VXMsbeMALawLrQsb/0FXp89vB30phLUxa0Ol3jJGwc6PsXfkFFcZXb7TzPQRCa1j/qMaIz2tUfFzrLUZ+k6aiCAyGEkPNPxiJA9DOtazUA+T5uflnVhq/HAzbXEs1+Y/sue75x+9itwG+3AZ8NA9a9D2z/FljyNPBOZ2CnnwGOGmzyzc/XAxs/dgo3MP8JPbFa6On7GElDcVrwMuC6X4DgBNdtqiAgtlfTjx107jy0J4QQQgghbdeKjGPw9VjXpnX8W22x4eR+72FjfbkeDw57BjaLrcnXxB66f/104/oRFrMVL0yZibv7PY5f356Pf79cjk8fmo3rEu7Cqp/XNepYdpsdz056DfM+XiSVkLZ3SYCQHOWY7VSfSgHrgA4QAlwHBnq04opB9SmUCrzyz1MIj3Nd0TQwVIf2PZseUKAViQghhBBCyOmQUbXRZxuOc0yMMdorYRayoJNboJFZESCzOFUxYLfsdrEMXxx7EsKpag7eD+z+bYugx6bibxrxKQCbYMKa3IewLPsWZJT/iGOVf2FH8UzMPzER2dUrG3UsUbQgu+g6VOi/qw03MKFyIy4J3YtEuedwABOlrELHwE44HZS8Eg93fADBCteqF4HyAJj03SA0qNqwJNd7f2nJ5j7IOhSLCG3bWbWWEEIIIYScu9b/tdnvtqX55Sg86X7BoRplBRV4aPizzZrgX12mlybtN4ax2ognLnpZGqP5/b1/8M8Xy/DBPV/i2oQ7sclHdYqGzEYzHh//EhZ9vaLJ1bpbs7JCfSy88fKCJxEUXhesrhEaHYy4tJgmHzsyPryZV0fOFVTBgRBCyPnH6P0htIvqfN9tDCVAYDPToyfWAOUngZBE/9oveRbY+5v7sMS8u4HQJCBpiH/HOrzEY5WKUjEQy4S+OC5EI4UvcNvGIKqg7XszmsxUAeyaC5zcAPAKoOOFjooWcqX79hEdgHu3AHt+c1y7YAeSBgO9rnd8jj+mN+06el3b9M9ACCGEEEKIn8pK3a9o427SD19tkh7M+/OAv7nlk7ct3omygnKERvt3nE/u/xpr/9jkthLD6zd+iJiUKHQa0MGvY639czN2nqpSISpksLNwQz0iB1h1HKw6HiIng+ziTtCuPwZl9qnvhgMm3DYGzSn3vGT2KhzYlAG5Uo7Bl/TD0MsHQK5w//g0pVsivjn0AVb+uBZbFu+UBk3YwMH4m0dhze8b8c70z5p0HeNuGtXkz0AIIYQQQoi/qm3lfucQ2L96u+O+W8HZXTLINSqtJbCpnO/j3RE9JRzYMEn1OpjsVVDLXCfJuLOt6HXkGta6vG8TDdiQ/zQuSJiNUFVHv45VafgbRssWj9vj5eUotAfCBpnb7UpOwODwYWiqKms1/iteh+PVxyHnFegb2gt9Q3uDr1ftor4kXRLe7PEa1hVvwL7K/RAhoktQZwyLGIJfj+7D9sIlTu23lybht0wDLkvY4RRQsYscluZ2wcryjmAjMpf27dLkz0AIIYQQQoi/SvLKGvVlVZb4HlfJP14oVU9ojjW/bcSDn98JjU7tV/uZt32KbUt2ubxvqDTixSkz8cm2N5HUOd6vYy37/j8c2nIUTcXLeIy5fniT9y8vqsCir1dKVbtVWiWGTR6IgZf0gUzmvg/Exn++O/oRln63GjtX7JHS730v6IELbhyBBZ8txazHvm/SdYybRuMkxIECDoQQQs4/1UWtc9yiDEcFgQYVEBpFX+RfwMFYDmyb7Xm7KACrXgem/e3feXd5Xqk1kS+AAB63Wx/B98rXEMc5B0T0ogqvBj6FV4KaGPA4sRaYe50j5FBjzy9AWCpw4x9AqIfOh0IDpIwA8nY6gg4ZC4Ht3wN9bgLi+gC5jUtCSxUo0i9u2mcghBBCCCGkEfTbvVdkYGRmNtNEgPKo//2X7Iw8qHUqqRpDU7ByweVFlX4FHMoKK7Dk21Uu77PKFLaYQFhUcsx+fwFen/OQX+de9v3quuuIDAbqPTAXeMAQLYOgqJsIJURqUHFZV2h25SJg7QkkdopHcITr6qX+2LZ0F16c8jYMVXWrtC7/YQ0SO7fDa4ue8VhVgQ1w9BrTDRnbjkkVKzbO34qFXy/HhFvHSoMoR3d6LpftTr8Le6L/Rc2oSNcWiaLj1dxjEEIIIYSQFlVu8T2OIYCTbsVqJvRzbKSA835vlmkoR7RSBbvovk8iiN4DDiIEmO2VfgUcDLZCZFYtcnpPDgFa3g6byMMgArtLvsHIuNfgj0r9r1638xwQLtOjwO6+3xGhToVWfqoUXyPtLNuNj458DrNQ972x4EKCph0e6/QQQpTu+2hqmRqdgzrjcHU2NpZsw4bifViavwEjI4eiY3A4MiqcV7ldkd8ZW4qTMTDiOEJVelRaNdhcnIIyiw4ItWN0cHsMSHVTPftsRn0SQgghhJA2qbzQ98JOTVGYVQwFqwRttjZpf6vFJlXN9ifgkHesQApEeGIxWfHjK7/jyR8e8OvcS+uNkzRFpwFpfgczGlr75ya8fsMHTpUjln67Gh36pOCVf59GaFSw2/10QVr0HtNNCkWw72LDvC1Y+NVyXHjzaMR3jJXGrRpj1NSh6DLIv5D6WYP6JE3mPu5PCCGEkMYTLMBlHwOaUNdt4R0AuY+bSE4GBPmX2kXmOsBWN/nGreOrgW8mAkWH/AtWeDCQO4j2XC6Oiu0w1jwTT1hvx1J7X6yw98Kb1qsxwvwe0odORpNUFwI/XescbqhRehT4carnySwF+4FZo4AtXwKmckeoo/gQsORpwFINpI13VIPw1+hnWJy5aZ+DEEIIIYSQRtCeqIC8yOC5gShCWQlotmaCN9n8Pq7ZYMbj390HXbDrpJrkrglSZQJv5AoZwuPc9Gfc2Llir/Sg3+n8HSJQfl0fVF7WHVUXdcaSIOCu937DyULfKzGxyhG1eOdHlsZw3inc4LStZxxMaeG46uFJaIqi7BLMuOItp3BDjZMHcvD85Dc97ntkx3Hc0/8J/DNrKfQVBikgcmJvFj7932zYrXb0n9ALMrn/fYxbXr4WnKflcAkhhBBCCGlBNlEprdzvCXssLwg89AJb09/Rzp87Vb1gwaiY56HgXfskYco0CFKNAM9knBJaeZgfZwIKDJsgwi79rICAHspKjNMWY4SmDGO0JRimLoXJuAjvZsxEsdl3cNwmFPtswypYeNIzdCqaosBUiA8Of+oUbqiRZcyRtnlyuOo4ntrzOlYWroPRbpKqOGQasvFd5s/oGF2GYTHJkJ3qY9R0NapsGizL74JfM/tjcW43R7iBkQH3T/KzKjghhBBCCCHNxMtbZ+pyVUk1nvrpQai1KpdtaX1SwLPksheaADWCwv2rKLd18U6IPhboWfHjWjwz6TVpLMIXf6p5e3PVI5c2ab+TB3Pw6rXvOYUbahzefhyvXveex333rDmAewc+KVXINlabpHESts9H938NdYAavcd29/md13fbq9c16TOQcxNVcCCEEHL+0UW2znEVOqDDeODBvcDuuUDWZscE+44XOioDLHgQ2OGl/FbHi4DAaO/nOP6fo0oBq1rgj8y1wDcXA9NXAKFJntuxqhEsNOEGe+j9uuILTLM8DiPUmGsfI71qDNVkYmr/U1Un7Dbg0D9AxmLAbgUSBgA9pwKqBjf/bJuxDNj8pfeKF0UHgCPLgA7jXLf9fR9gdK4mUas4w/FiVRm6XwX88z9HAMIbX989IYQQQgghLSQ0KgSRX29C4U1dYQ9sMMFHFKHJNCNw+XEosxpXopkFGwZP6oc5mZ9KJYEPbj4MhUKOwZf2l8oIv3Xzx1g+Z43H/YddOQhBYd4f3G9fthuLvlmBw9uOOb1v6hgJ/egOLu03H8rC7W//gh+evB5RIQEejxudHFVbepkrr6593y4H7GrvD7/lI9Iw7qaR0s82qw3r/tyMTQu3Q7AJ6Dq0Ey64YTg0ARqnfawWK6rLDZj30UKvFS9YiGHnyr3oNbqby7a3bv0Y1eV6t/ud2JclvViFhxFTBuGDu7+EL2ExvitnnH1aoIKDVBeEEEIIIYS0pEBFCPQ2FQLkJqkygdPdF6vaIPKotqtgEeWQ86Lfd2VaWRCSA4YhTvsbDlcuQrHpIHhOgeSAEUjQDcLi3Bk4Vu25T9IhcAwUvPO9u/O1idhadhBL8jeBF7ahvdpRtWGwpgxBvHP4IERmwxBNKQ6VrsSbh3LxdOfnEaxwv+ooo5DFw2I94PXzmQT30ysUfBiSA8dKP1sFG9YV78T20oMQIKBbcBpGRfWDWubc92PtKq0mLMlfAavoeXXZw9VHcaTqKNICU12+i0+OzJaCDe4UWE4g21SKobG9MCa2A17YvtTrZ2P/GYRrToUdzinUJyGEEEIIaYvCov1bbKmxIuPDMWzyAPQ4+ak06Z4941dplBh2xUD0u7CXFDbY/O8Oj/tfcMMIKNWeg9mCIGDLwh1Y/O0qHNl+3K9r2vTPdvxv5HP4ePPrXsMTMcmRyD2Sj6Zgi1cNnTxA+tlitmL1L+ul8RzWb+g1ujvGXDvU5XOxdqxaxR/v/+OyoFXDBa+O7DyOtF4pLt/Fm9M+9DjGwr4ftqhTv4t6od/4Hvj0oW+9fgZexiMwzPM40tmL+iRNRQEHQggh558eVwOrX/c+4Z2FFTpdAuz52f/jdp8CKE5Vaeh/u+NV35hngMOLHVULGlIGAgkDgYocQLQ7/g2IAsJT60YU5t0D7JyDRjMUA+veBy55x3ObPjcBu37yuHkAfwi/KV/AJ7bLsEToByvkiEMxrpMvx3ThXyj5u4CKbOCHK4Gig3U77vkFWPEyMHUOkDwMMJQCq98Edv14qmqDHyndY6tcAw55u4Gcrb73ZaENFqRIGQkcW+m5Xbt+dd81IYQQQgghreyCm0Zi7ht/IeaTndD3iYahcxhEOQ9FgQEB2/KhPlkFTaAaQ64bjuU/ep780xCb5M8qBrCSwJPvnQCAverc+sq1WLf/OPLiA2CNC5L6GarMcmh35CLELCK9XypK8spgMVlQnF2KiHZhiG3vCALb7Xa8cdOHWPmTazCaLfxqGJDo+j578UBRlQE/LNuG/01xhBDcmXDbWPz36wbpZ77aBK6oAmJkMAQlV7fUqAf6QKX0ufNPFOLJi152KnnMAh3fPjcXL857HF0Gp6OssAJzXvpNKvVsqDT6VTGBDQI0DDjs33AIx3Zl+tyXPfhnAwTdR3TCnv/q9ZUa6DmqKyLahfs8HiGEEEIIIS2hb+hIrC3+B5U2LVS81VGZgBNhF3mY7QrY2XL+XDD6hPTC7gpHn0QED0HkwHOeow59QsdK99gqWSC6hV7lsn1w5F3INuyERahy2abigxCiTIfeVgZR1MNkK4JGHg2dIk7abhfteGX/t1hXvFv6PVRuQIoKSFYaXcINNVh444rgDLxSGILlBUtxRfwUj9ceEnAd9CbPIQAW+sixhUDGiZBBkLopgghYRRnYVCCekyHHWIjn9nyKfFPd6qwrC7fi+xP/YEa3O9EhMBFFpip8cWQl/s3ZCYPdgrTgEqh8zNrYW3nAJeCwrzIDuaYCr/tFB1ZjS+Eh6G0W9AyLwb7KbHCnAit2Ow/BzlbNdfSJhse2R5jKtfIGIYQQQgghrWH8tJFSdWRvAkID0P+iXlj501q/j3vRrY4FW9liTlP+51r5+a63p2Hv2oPS+EBDwZFBSO6WiPKiCmmBpPKCckQlRiAqMbJ24aQXrpwpBRYaK/94IeZ/ugTXP3Ol13GS7cv2oClEQZT6YpkHsvHUhFdQeLKuQt3yH9Zg9rM/4ZV/nkJqz2SpmsT3L/yKlXPXSuEEf8ZJdizb4xJw2Lp4F/JPeK+WxwIWLBDCKpC375nkdVxl8KX9pPEtQmpQwIEQQsj5JywFGHgXsPET99sD2wF3rAJ0EY5KCcWHfB9TGQB0u5LFUx1VB+wWICIdUNa78Tq4AKj2cGNnqQKWPed41cdW9GHH1kUBxZ4nw/i0bTbQ5TKgvYcJRUlDgD7TgO2e07Jd+Ux8rPwAFlEGE5QIBJsMxK5RBfA88NO1zuGGGqZyx7bblgK/3NTg+2zCSpwsGLFshv/tC/cDRRmet7MqGxc83/jrIIQQQgghpImSOsfjkjvHYcHnSxG0Lkd6NVyl56MtbyAgRIsDmzKQe9T7pJWa6g0jrx4iBRFO7M2C3WZHctcEpxV5Fh/LQuYI5yCCqVMkTB3CYV+Ugc8f+Q6fP/qd0226QiWHNkiL4IggnDyQ7fbc1rhgiDqVU+DBqgNsbOFVNl9GBL7dtRMj+qeiX1K822P0G98TF9w4Asu+/89x3h3HYB3SCdD4fpitVMillYKenfS6U7ihRkVxFZ655DW8u/ZlPHfZG04rIPkqH800fLhfWVqFb56Z63UfQa2APVwnzXjK2J0JmZfTKFQK3PLytTgniS1QwaHZFSAIIYQQQkhD7bQpUshhW9lqmASFdN+u482QcVZoeSu0siTclvoOFLwKJw/uR7nVMWGfjQ+oYHObQVbLAtAleDAE0Y4CUyZEiIhSJULOnsGfsql0C/ZXaxChsCFIqh4hSrd7LCSgt5vxX+FH2Ff6BtS8pXYfoxCIUnssbGIk9pSzagVaaGRmaJV2lNp0SNDWhQncCZVbcEnwIRyt+gaFxk6I0rhWZ2N06vEI1ExClXG+yzZ2jYcsUbBBDpt0e8ruc9m/ji9CyamkAMaMPZ87hRtqlFur8NzeT/F694dwz5bvkGssr90m+DFO0vDrLjXrMeuw98lgjIwXEBVUhd1lmVAqALmi7lwymV3qR1nMcqhlCjzU3XMg/axGfRJCCCGEkDaJLUg0aupQrJrruqgSk9g5Hh9uehUyGY9dK/eiNL/uHtqT4IhADL28v1TpmVVYZrfaSV3joWA3w6es+HGt23ADU1FUiQ/v/RIf3feV09gBe4bPxmt0ITpkH8pFU81940+pmgFbbMqd4VMGYcjc/lg/b0ujj61UK6SKDA3DDTVKcsvw1MWvYuaK5/H4uJekkENjxkkadgJL88vw/Qu/+H19u1fv97qWlSZAjZuevxrnJOqTNBkn+vVfJyGEEHKOYf/zt/Y9RyUHm5vyvVFdgGnzHZPpv58MlJ/077iaUEfFAEYd7KiMMOZZoCoP+KC396oRrY2TAVd/C3R2TSjXficLHgK2fdO443a9Aug7DfjuMu/t4gcC2ZvQaNf/DnS4wPGzuRr4ZgKQ71ihqdnkauDan4BUR4KbEEIIIYSQ04VNJPnx1T/w4yu/w2p2Lf2b1jsFby57Tnpoz6oSFGV5n7Qj4YCAEB2qy/TSr6yU78Q7xmHaC1cjq7QSk9/41uNccc5iR8RXW8Fb3K986o05NRzVF6RLP7PDm0MBwU0FZznP4+Opl2JkR+dVfup/J2/f9imWfLvKcSwZD3tyJMrGtQdknp98TxrQBZeEReCZSa97vc7OgzviwAYv4WcPZq6YIVVYYPQVejw4/FkpROKOqJDB2D8F1uRwNpvI8abFBtXBfKh2ZblMTFJplXhlwVO1xz8XZGdnIyEhQfp5ZPq9UCuCmnU8k7USqw99JP2clZWF+Hj3IRlCCCGEENI4LIiwNP8X7C77EUredYJPtLoTLk94A6WWEnxx7FVU2hxjHxwEqeIDD7ZCqGNoQQAnVThQcAIC5GqYBUefRCsLQv+wCRgRdQ3yjFl44+DTtcdnx4lWVkDBs3ETDkrOilhFudsKEewcJlEBQeRRbAlAvjUISl6ATmbBvWF7IfdSVYLZZAzDCZsOPBQYH/8W4rT93LYTRTsOFj0Gk/E3KejBlNi0yLSFoUzQeTx+1+BLIZONwmsHvI+vJGrSsKnIucp3tLYSERqD1/2e7/oU0gLaSz+XWwy47r+vUGbNRmIIq5TtGfve2F/KLnAoNWpRYmABcudeiZpX4fNBN6BfpOMe/lxAfRJCCCGEkLMDW6jpm2d+wm/vLoDd6jo20XVoOl5b9AyyDubg6YmvobzQ+/0vw/EctIEa6Csc99ih0cG47J4JuPapy3Fw8xE8MKSuT3ImKFUKvL7kWXQf3tnjd/LSNe9i3Z+Nm191xQMT0aFve6kStzfpA9JwaPMRNNZnO96Sqj8wrFI2+x7zjvlenMsfbAGvN5Y8i/T+aThXnGt9Eq5eOuWbb77BzTfffFrOSxUcCCGEnJ/Y//BqQtyHG2pW/WeT/a/5HrhnM7D3d+DQQkCwASXHgBIPk2Jqwg0MC0es/xAoPABEdzuz4QZGtAMLHgQ6TgBkcvdPuo+uaNwxWYWJofcD++f5bpu7DY3GgiZpY+t+3/JFy4UbGPb3r7d6FCGEEEIIIacLz/NSqV134QbmyI7j+PiBr/HEd/fj6wPvY8WcNdi8cDvsNgFZh3KRc9i1UgFLF9SEG5iq0mrMff1PqfKC7qYBXhfCF5UymDpHQrurrrqBv2QVdf0qm9Z9uEHaJgh4/u+lWPG/6eB5zm0J5e3L6u73ObsA+dECaCNUMPRz/7BWrZDjprF9seytBT6vsykP7dmAQP3wwR/v/es53MBx0I/pBHtUgwfVSjnMPeIhquTQbD7utMlssEChPof7JKwb3Nyu8BnuShNCCCGEnKt4ToZwJec23MAUmA5iTeFnuCD2YTze6T1sK1uDQ1U7IUBAofEkyqwF9aq/cVBwNimsUBNuYAz2Sqwu+hnF5mzYEe50fA1vhYJnB3D0DcLk1W7DDdLROUABOyzgEamqRphSjwJrMKyiHJWCEmEys9fPahBl0r8CrFhX8CamJP/sUqnNsV3A6vKTMNo7QsnZIYgcbJBBxtkh59zfmMo5NXqEXYk5mRvgy5GqTPbJnd4rNWkRpjbATRdJ0jEgrTbcwHx9eB1OVJeAZ1UjBA4y6Tt0r2YLaxOp00PGCSjUBzq1MQlmBNRb0facQ30SQgghhJA2SyaXQaVRuQ03MPvWHcLXT/6Iez64FbMzPsDS71ZLYwhsTfejO0+4XRiKjTPUhBuYsoIKzH5uLnKOuhlTOQNYlYX3/28Wvtz7rtvtVotNqljRGNogDSbfPwHfv/irz7YZW4+isXqP7V4bbmB+evWPFgs3MOzvpQl07iedU6hP0mSnlhEjhBBCzkObv/C+/eA/QEUOoNAAvW8Aps4BLnoNKDncuPMcWQYcX402QV8MHF7iflvmOqCcPVz3kzYCuGYOEMcqU/hREIqFQxojPA24dq5zmbPt36PFnVjb8sckhBBCCCHED39/ssjr9v9+2SCthKPWqnDx9Asw44/HcPvr17sPN3jByhlv33fCZztbOFvNs/HkxXrIiqodx1B7b5tfrcf6Y+4r5G1buhvFOaUu72s3nYRmVy5gd55QFB6oxXt3XIoOcRF+lVAWGuzvS1KXeLzw52NO7y38ernH9tbEMNdwQz2WjtEQAlRuSzMTQgghhBByuomigN1l8722OVS5AiZ7FVQyNYZEjMMtKY/iwuirUGZlVQi42hcH0WMAgNlXuQ5Z+oNO72llltqfZbBDzTkqJngik2aFOO77ZZyIULkjSLHXFOZ1v2pBhkJ73X14lTUXBUb3Cykdr9oEo52tCsvBIsqlcANjF3np1bDboZNHYGL8awhVJvrXJ6lLhNSyCnJkVYXCLromHBK1Cbivw/85vfdH5g7HsUQeRXrPVSVqKmvUF6oxQs67Th7bUuy7v0gIIYQQQkhLY9UKFsxa6rUNq/hsrDZKC0ZNvncCXvzrcUx9/HL/ql7Xs/Tb1Ti4qZHzvVpJ5v5sHNrifkGm9X9tRnV5XWjcl8iEcLy28GnEpkTXC6B7xgIgjdGxXyqe+vGB2t/tdrsUNGlpe/6jcZK2TBTF2tfpqt7AUAUHQggh5yebBSjc57viQf4eILhd3XsnWQmwxt3sSXJ3os0odz+ZCNX+pGs5YNQTjvBB50mA/NSgQMoIYN173ndllRIE7wMUSBsHaMOBjhc6ji9TAFX5QME+QKEFKrLR4njHAAUhhBBCCCGnk77SgOwM70EFtlLP8T0nETq2e+17e9Y4TwryxR6mg7lLLIpzSwGVhyVBT+HMdRNdBAUPzibAwwKqLgJWH0XlpK4Q3VWLayC/ssrt+6X55e6vix1/7QloduRC6BKNa2dcjZSYMIzukQqFzHE/32tMN/z5wb9ez8vLeJ8hh0GX9EVgeAAGX9IPQy7rL60gVVhWhWO5JdColChyE8CoYU2J8HpsFt62pERAvSfH+bo8LdVKCCGEEEJIKzLYK1Bl8z4uYBPNKDVnIk7brfa9E/oDLu3knN1prSJ3Cs2ZUpeEBRNYJQEFb4cAHiI46Xdf+7PtrH9S00VhgQgWjNhpCkdHVTli5K6VKOwisM0UWlsloobew+fW2zzd73OwSVUgeKg5FfqFX4UwVTJSAoZJlTCYniEdsSh/vdfPYLO77y9VW1XIKItEqMqIi+JSEajQom9ob/QO7Qme42G15cBsPcxiICiz6Gs/T5EhAEq5DSFqk1MFCKE23MC5fIdBKhNKjc7BCN7Xl08IIYQQQkgrYAseleaVeW1jqDJKYykd+rRv9mR4Vh27rSjMKkF6/zS/x0nq04VoceWDl6B9jyQMmtQXsppxktHdfIYP2K2/t2w22z74sgEIDNFh2BUDMeDi3lJF8oLMIpw8mCONszQmgOEvjqe1+okrCjgQQgg5P/Fyx8tXVQFFg+VH2T5N0oRQRGspPQrYrcD+ecCe3xx3p50uAUISfe8bmuQIODSUOgaI6uo5NKLQOUIL+/7wfOyYHsANvzlXm/j3EeDA/Lq/06mBghaVOrblj0kIIYQQQogPCpVCmtgu+FgtR6VROv0uk/v/kNeaEArD8I6AjAdvAeotWur+XEdLUD6qHaoGxMAeogJntUO7pwQhq7KhKDa53UfkOVhSI2BJDIW8oAp8VBAEtff79qy8Ulhtdqz6cQ3++22j9D2MuGowwuPYxCPPZHoLUg3AnRMGuQ0mJKTHeRygYCWa+1zQHWv/2Ozx+F0Gd8RLf9f1d4or9HhjznL8t/Mo7Kf+TvJr+kK57SRUGYWu34XKd3/RXZt+F/bCuYoTRenV3GMQQgghhJCWJ+cU/rXjnTsSNRP66/M9PV5EjKIcIXKDU5CB3WZXC2opPMBu+7zNs2fb698ZsrasaoRZVODXylQM0eSjm7oUqlOVJPJtKuyzBKNY6gixGIXjxVRbc2AXbNhZtgoHqjZCBhm6hwyFTuEjtAwOQcok9I+Y5rJlSERPRKvCUGB2H5IIkGvRQdsF/xVmuN3OKjKk6Lrh4U631b5nteUiu+xpVJuWSfUfmE+6B2FuTm+sLu0o/Z5XFQSLIINGYYNGZgXPs8/o+YuUSdvrfyJgaFQqzlXUJyGEEEIIabuUDcY//G3HFiZqkjb0qDn/eAFsNhsWfbkCGxZsg0Ipw5jrRyAi3nuFOialWyJufO4ql/dHXTME3zzzk9tK2UxIVDDa90zC9qXuK9ox/Sf0xgt/PFr7Ows2fHDPF9i6aGfteBbHc42uBOENGyPqO64HzlXUJ2k6CjgQQgg5P7HkZ/rFwIG/PbfRRgCJg53faz8SkCkBe13p5LPO5lnA5i+c79wP/QuoAoHgRKDCQ4UHpveN7t9nIwnX/gR8f7kjQFGfMhC45nsgLAU4sQbQF7mv7jD+pbrfzdXAt5OAwv2uVTVaUtIwIL5vyx6TEEIIIYQQPyhVCulB8aZ/tntsE9EuDJ0GpLlMhvenEoEo52EYkiaFGxjeCnA2EaLc/UQX5dESlExKgjkluO4YChn0faJg6ByGmK/2QZXrvCqPPVCFyoldIQTVBcNlVkBokBN33gn49p9t+HHuegT8sx/ycscqq+v/3gptsEZ6eF+cXVobnjCnhcMaHQDOLkJ5rBQX3TrG7WHZCkIvzX8CT1z4MvKPO4cPAkJ0eOGvxxAWG4pdq/ajqrTabeBk+hs31P5eZTDhzrd+QWa+8+pRNo0CtmGpEGU81Afyna+h0gR7VJCXD+9oU1+/C3tKqywRQgghhBByuqlkAYjX9ka2YYfHNkGKGESqnCe/pwf2AidFBerGGHxNbQmRGRAkcw1Ns6oDgbwJFXYtDIIKOpnZ4zHsYH0b5/6MXXT0dyyiDJtMEThk1SKAs0LgOJiliguOq5PDucLE7tLPsa3kK+RbgmA7NWXicPUGqGWBCJaFwmD3vIpst5CL3L4v52WY0f0uPLfnUxSZnfcPlGvxfLc7oeS02F56EtU21+9CzStwf/qFtb/b7KU4UXglrHbnMZtIZSXuS1kNBS9gWXEnKRhRrNchQGmBXCdAxXsfR7HYnSeDjYnphOQAX8EOQgghhBBCWl5oVDC6DEnH/vWHPLZJ6NQOSZ3jnd5jVQVmPfb9Wf0nmfXo9/jisR8g1lvgZ91fWxAcGYTAsAC34xg1PI2TKNVKvPLPU3jq4ldQklvmEm54ecGT0iJa/9vwHIzVrn0STYAat7x8be3vZQXleGjEsyjKKnFq15LhBmbE1UMQnRTZosck5waq60EIIeT8NexBx8R6T+L7A/JTKxOdWAf8Ph2Yex0QEIWzn5ubTXMVUJ0P8F4S0ocWAnrnG9dagTHA1T8A6RMdYQmFxlHV4YrPgdTRQGgycMsiIG2c8yBEXG/ght+B9qPq3tvxg2u4oaVva9r1Ba7+tpHnIIQQQgghpOVMfeJyKazgSdch6bUrEW0+eBJPffUvHpmzFIqbB8OcEgbRy+qm1pQIQFm3tglrqqwCeAtb9rRef0AUpeoMfEWVU7ihPlEjR8nlzpOa2BGqLursFG5g5AaAs3q4KBFQVDuuxcbCEZd0kYIYNQwVRlQUVUGukEmhhpJpfVE5viOMPeNg6NMO5VO6YwGnR6XBfTWJyPhwPP/HoxhwcR9oAzVQaZVI7ZWMJ+c8gB4juiC+Qyze/e9F9B3fE1y92U2dBnbAm0ufRbdhnWvf+331bpdwQ32mPglSyKE+zTE3Ye76rHYojxfX/tp1aLp0bec0aZndFngRQgghhJBWMSD8OnBenq0HKQeC43hp0s2m4gw8vetHPL7jD4hijFO7mgoMrkTIYEcA7/4enmG35hreglJbAGynAgsNsfkzVtF57UaTIIcNdZP1tbwFAnhUikqYBMf7NecOlJmlf9WcBfypSggKzoYYZbnTeInJXoUKmw18vePWp7crsbxwH4x2R1C7oRh1GF7pfhOujI/EsIgCDI3IxcRYJV7pfi06B6UgNTAaXw66Df3D2zvt1ys0EZ8NvBXdQuombpVVz3YJN9R3bdwWyDlHmEEUeVSZ1SjWu+/T1bALHCpNdX24ARHJeKXPZJzTqE9CCCGEENKmXf/0lV639xrdTfqX9Uk2L9yBF69+G2/f/inCYkJwtqsfbqhRUVQJq8Xmdexo9a8bYNS772O16xCDGb8/gt5jukuBBbVWhU4D0/Dszw8hvV8q0nqlYObKGeg+om48hGG/s/fZ9hq/v7vAJdzgi7zeuJQ/2HjN/2bdiXMa9UmajBPd/X8JIYQQcj6wW4GZHQCjp0krHHDnf8D2b4EtX7butbCSzi1dnaCpuk0B9s8DBA+zkhKHALcurPt9w6fAuneB6gLPxxz1FDDsIeDoCsf3rQ4C1CGALgKITHdtP2sUkOt51ShJ/UoaLIwy+ilHEGXNTPfte14L8HJHaKXTRKD9aO/1rgkhhBBCCGllFpMFV8VMh6HS4LEs76w972D2lv2Yt36fy3bOIkBRZITyRBGUGQXgrHV9CmO/ZFg6x7o9rsCzCg+Oh6pyM8DbRVTGW2EJ81Z6AYj9aFdtFQdLYqgUcHCHBS8sgYBdJQIyxz03Cz0o9ICsQTG8gNVHoD7gXHFh9B1j8bvMANupfRsa3CkJn919Re3vv8ych19nzkd5YYXHa7/99Rtw+f0TsHXJLujLDQgI0UIXokNodDAS0tu5tL/6uW9xLNf7g/vgdUfBH3Jce7dhnXDzi1OxMq8YPy7a5vZveWn7OKgyS6HSKDH08gHSAMO5KDs7GwkJCdLPo1LvhlrhvaqFLyZrJVYd/UT6OSsrC/Hxzqt1EUIIIYSQZtxr2U14atfdiFNnSxUBathFDlnGMOSbw/FOrxn47PBKLM7bKW1jtRtSAorRNTgPKt4GQWTVEuSwCDLIeDb14FQfQAo3CFDzFoSxJLRXPIptAZCJNgTLDQiUmcBzojQPhMUNbKIcYr2Fk1jgIdMcLp2FVYFg54pSVNY7nggNZ0WQzOgyDMCOaRIVsJ6q8FBoDYK+QRm6XsGjsadiJbSnqk6w4EWZVYsiawBE8OgV0hv3ptWFlfeUzEZW5bfgxQII4FBoC0KBLVgKXDhwuCD6DvQMnYCDlbulgIScY/fJQYhUBSKRjZU0cDhvKKy2E16/tbePXYgNZYnSz/3Dk/BAl7HYVrEei/L/c2kr43j0Cx4uBSE0MgXGx3VBv4hknIuoT0IIIYQQcvaoLtfj6rjpsJrcz1FSKOX45tD7+PzR77Hmt42tdh0yhQyCTXAbOjgTxt88Cku/W+2xWsKoa4bg6Z8ekn5m1/zdC7/g748XobLEfeUHNkZx/yfTMfaGEdi6eCeMVSYEhumgDdJK1cTjUp1D7MzU+DtcKkE0xBbpstscY1O9x3aXKkD8O2spFn2z0qUtW9xq/LRRUoVyTaAGI64ajG5DO+FcRH2SltG4uAwhhBByLjm4wEu4gRGBRY8Dmev9PCDvmLhvYiv+NBKbdG/19YD/NDkw33O4gTm5Hji5CYjpDvx0HXDc9abUxapXgdVvOIc4orsBl37ovr3BjwTwiEeB9Isd33mI4wE+UscA0V2BjZ8C2ZsBjne8N+Q+5woRhBBCCCGEtAFslR1P4QZGEES8+fF8bLC5X4lHVPKwRWkhhiTB2j4KuuX7EahSoLpM7xR2aEiat8SCBgLACSyQwMEWrvG5Ur4tXF0bcLDGeV4ZlBMBFZtbZLLAHqSSula8h8thQYmGAYfFB4/D1sP1YXqNDQczcSCrEMlRoXhi8uvYt2wPOLv3a//yiR/w9dM/Sg/Oa3Tok4KHv7rbbfuKavcrstY37a2bMCwxRgpLRCU6yif3ZBUhkqPw85Id2HcsHzzHYXCPZNx4cT/06eSY9H9eYYMvzS1X3cLlrgkhhBBCSJ21xVuQY1Yiz5yMMKUeKt4KqyBDiTUAdikAIOCjw3OxPC9Pas+qHwyLPIpYTV2YQMaJUMAiBanNogoKXgu9XQ8ZiyRI4QPfOHAwCKzitgJVVjV4qyMcwUOUAg+sOkNNUMEoKFBu08IkKKUwgdSOYxOR6tY0Yv8Eugk3SNs4QA2rFFpgoQktb3YJOOys2Igcc4ijL8MJjgoV9T7JzvIdyDXmIlIZjC15twP2TQipt8BqiMyIOHk5dpkSYJOmZIhYmv85fjo5F9Z6VSoSte1xQ5L71Urt9lKf39tLPUegirsIwUoNYjSOPlqf8ESkBSRjYd4qHNWfBA8efcO6YXLcOHQKcq7Md16gPgkhhBBCSJvGJvF7CjcwrJrBW7d8gl2rXBeBcodNE9IF6aTgRGMo1Qpp0n9bsfqX9R7DDcx/v27Ara9ch6CIADw88nkc3ZXp9XhsvOm9u2bh/bu/cDpul8Ed8ejse93uU1lc5fM67/ngVukYwRGBiGjHQuhApwFp6DIkHX99tBDHdmVKIYjBl/bDNY9dhk4DOuC8Q32SJqOAAyGEkPNX3m7fbXJ8VBFwIjjCDcEJQEWW/7uxif6mCqCiEQGHkCSg3PvNaZPZzb7bLHgQKD7sPQjRUMMKFQV7ge8mA9NXABFpzttCU4Byz6WXJVGdgRhHKTon3a5wvOw2x0gF776UNCGEEEIIIWfake3HfbbZqdcDKs/3tIIc4C2AEKSBsV8KuP8OISYlCjknimHu4X2lexZEYLqkxmCfpgqlBu+T+nmDrfbnmJRInPCji8TX7eIWC1c0VB2t83VkPPf9YhzPKYE9JQDctAFQHS6CdmsWeKPnPkr9cANzePtxPDr2BXy8+XXEto922tYuMgQlXsInTGpSFNp3T3J5/6LBnaWXzWYHz/PSykiEEEIIIYS0RSf0jrEMFiUoZmXY3MioYv0WRwAgPajAKdxQH7vtVcAKi1CNSGUsyq2OUISFVV+oFz5wJ1rTHXm2YliEmj4JBztkYKMKxbYgKVgh5wSpsgR7nwlTRKLYWuJoJ8pgEJTQnSoZp+Et0vV4wq5FydlgFhVuAxhW0YxAOWAReBjsytqqFDV0vAlbCp6AUtiBYJn7iVMBMjM6qApwwNyu9pxamREVtrr+zknDMXx4+BU82ullhCodk4FqKOVJMFn3eK8qp+6IOLVrOHx01CDpZRPsUuiaZ7O8CCGEEEIIaYMO7zjms83+DRl+H08UHFUh2nWIRc5hR5/EH10Gp2PvmgMwGxuUofYiKjEChSeL0RrMBovPwMKMK9/Csd2ZUjDbXw1DE+y7fWT08/hk6xsIiwl12habGo2TB3K8Hi+1VzJSezpXhuM4DhNuGwuUaqkAAQAASURBVCu9bFYbeBkbJ6E+CWk8+q+GEELI+Uuh8d3G5nvVTheNCTcwA+8EelzduH26TMYZVbi/ceEGT8wVwLp3Xd/vO837fgExQMeLvLeRsZleFG4ghBBCCCFtl0rLJsp4JqjkMHoJN0g4DjULgNrahULQKpF/vBCyCiMUx4o878dmGJ16jn3NhX1wWdfOXk8jKzdDfayi9vfxI7r77nLl+V7dR5HvZnKUH4GAjNxi2E9VnBCVMpi6xqB8cncIGrbqq/+qSqvx69vzXd6/3Mfniw0PwuCuzg/tG5LLZRRuIIQQQgghbZqS933/bGKLCUlEpAZ4n7zDqimwdjXhhprwhEn0fp4uIVehR0hdFeaG83PYMayiTAo5aHgzlJwVvUNHOrVhVR1qitLJOc8V7WrwpxLf7q7NfqqTpeTZ+ZzHQlhliCGBh2G374GW9z6GFCGrkq61hkIqbSdKgQ1WGYL9W2WrwKrCRS77hgRc5/XYSnl7aFWDvbaR8zIKNxBCCCGEkDZNrVH5bGM1N35+UmPCDcwVD0zEyGuGNGqfC28ZjTOJVUdoTLjBk5LcMsz7yLVPcvHtF3jdL6V7IroM6ui1jVwhp3ADaTIKOBBCCDl/db70TF8BkDgY6HMTMPD/HJUf/LX+fUAXhXPCjh+AN9sDX10I7JrLYsZAl8s9/31kSuDSDwFZ4yYuEUIIIYQQ0taMmDLYd9naxuA5CMHa2l81649CeTAPsNWrXMBm/Agi2HwfFiMYFB+BC4d2xm0D+iI6wHPlhNDFmbUVH5jf7v4a4XLP9+Sc2QbdxuPg9J5XGeIsNqgPFrq8r8j1HYyofy01hGA1DH29V61wZ8FnSzAl6lb8b+RzWPHjGoiiiAmDOmN4z/Zu26sUMjwzbRyFF/wh1oRpmvNq9J+UEEIIIYT4aUBYb59tDDbHfb9GZoFO7n0VUamospsbuAq7BhbBfXg7QjMayYEjMSziCuhkwS7VEhgVZ0GITA+dzCwFDlh1hAPlXyFKWdcnMYlK5FuDpSoPouhHFTWRBRk4VNnVzm+LrIKDvPZ3JW8HV+8zddHkQME7ghwKzrlKnLvsdgBfVzVbPHU8hUyQjsH+Zb+vKvwX925/AK8deBObS7dIbUN110Kndg5x1OA4DWLDZkoroxLff2fqkxBCCCGEtF3Drhx0pi8BI64ajAETeuO6p65AYFiA3/t9/+KvjWrfls194y9pnOSxcS9izR+bpPcm3X0heozs4ra9NlCDh2bddZqv8ixFfZImo4ADIYSQ81dUJ++VEIITgeThrXsNJzcAe34FAiKBW/4FUsf6v6++EAiMdR8AONsYSoCsjcCfdwK/3ey4u7tqNnDha0BYqqMNJwPSJwK3LAQ6jj/TV0wIIYQQQkizpfVOwaBJfT1uj0+KRM8UN/f89bGwQv05Nba6lUo5UYRmywkE/r4NmjWHodyfC3lOORQFlVAcK4R2yV7se2sB1s/bjOjAAMy5/moMSUxwTP44RV5iQsTcQwjYVewSMLB/txFRGufJQAxbbylw0QHI9FYELToAzui6uhJnsSNw8SHwpprVYOto9uQDdsHHw2D3m8wdIyH6UQHC6XCiiIriKuxZcwCv3fAB3pj2IWQ8h7fuvhQPXDUC7SLZJCtAJuMxpm8HfPn4VAzsktSocxBCCCGEENIWdQpKQ/fgTh63t9PEIEGTDCVvw8CIE/W7CvWwif42KYTAqhWwqgSuLXiU2ANQZtPCJMilsEO5TYNDhhgsLTqOveV7EKKMwi3tX0WitqvTLT87pk5mkcIT9bEKCGouH1HKumrdBkGFE+YIFNkifH52iyiTKjWEyfW1VRbY5zMISoj1QhbsvLJTnS4tb0a4Ql/3ufwI4wr1whZWQe7yOdjvct4Gk70CB6sO4eMjn+Gr47PBcQokRsxGVPCTUMhqgtwKBGkmISVqHnSqgb5PTgghhBBCSBvXZ2x3dB/uucJ0+55JSO7aiAVjm2DNbxux+7/9aJcWi7dXvYDOPqoS1BIdVaJDohxjCPUp1GfXoq2CXZDGSXYs34MXp8zEh/d+CaVKgdcWPo2bX5yKyIRwqZ1CKceY64bh/fWvoPPADmf6ssk5jhPZCB4hhBByvrIagfkPOEIGYr2H7rG9HBPsyzOB7y5r/HFVIYC53L+2nNwRbkg89TD6l5uB/X/6t29gDDBhJnB4EWC3AtHdga1fAWXHcVab+A7Q/7a6383VjuCG/CwMbxBCCCGEEOKFUW/C27d9gv9+3ShNtK/ReVAHPDP3IRyqqMIDH81zt4iphDeLkJ3KCHAGMwL+2i6FDwJCdKgur5t446tE8HvrXkZ6P0e4+Mlb38N/6/eBN9qgyqr2dGpJdEokbv7lQazddwI2ux2dYyPwz72zUXSsrjKDoJTB3CkKloQQafaOIrcS6gMF4N0EH2qYOkagcmwaIGuwPouI2uoTnoR9twW8ofElq+t75Ou7ceHNdeWlDSYLlHIZ5HL3q86SOtnZ2UhIcAw4jUq+C2p5YLO+HpOtCqtOfCb9nJWVhfj4xlfpIIQQQgghnhlsRnxy9FtsLd0FsV6SuFNgGh7ocBt2lefg58zXkaArl4IA8nrl1OSwQcNbpEoFNVi3Ri+oYEEYzILR7TlZ5YQiC7tPdOxoFbR4svPzSNI57vU+zHgdh6t3SceOVVVA7qVSQrAiEd3DpuNQ1Q7p+tupU7Cq6G8kK3cjSGZyu49N5FAtsGg2X3vNhdZAFNmCncINNaptSthEGcLlVRgYeKz2/RBeDzXvGtquYRVl2GBIlQIe7DOX21jVPPe9GRb6qLDWhTXuTr0TA8MH1P4uCHpwnFIKPhDvqE9CCCGEEHJ2YWMZb9z0ITYu2Ob0fq/RXfHUjw9Kk+7Z4kSNpQ3SwFDpvk/SkEqjxMdb30BSZ0ef5KGRz2HvmgN+7du+RxKufvQybFu2C6IgomPf9vjx1T9QXliJs9kLfz6GIZf1l35m41fGapP0PclonMQn6pO0jLraioQQQsj5SKEBrpgFjH4aOLwEsJmBhAGOV02AgFcAQiMnxyQPAcpOAIX7fbcVbcD8+4F7HCW+MO4FIHMtoC/yvW9VPhCaBFz2MWDRAx/0BqoL0KLi+wPKACBxMLDqVZwWW792Djiozo2SboQQQgghhDSk0anxzNz/IfeVfGz+dwfsNju6Dk1HpwGOlW90lToEbTiOygGJQP2HxqII3oracAOj2pMthRuYPuO64/juk8g6lOvzS7dZbXj/rs/xydY3pd/vefIaZAx5GpUl1U7tWGUEc4cImNOjIGgU4KvMMB8oQMcAHS64aTyqy6txc/oDqChyfmjPW+zQ7M6TXv5SZxRDkV8Fc49YpF7aG1qtGr1S4vDZ/A1eww2wCeDMdVUsmmrBZ0ucAg5aNYWtCSGEEELIuUkr1+CR9LuQZyzAzvL9EEQ7Ogd1RPuARGn7wHAZ1hc77vHZJH8ZbI6qBrBDy9evrCBCAQF2jkOAzIzkwN44WH0cVZZsqfKBgrNL4QGDoECOJbTBRH8Tvjz+I17q9pj025UJN+KNg5nQ272HG5gK60m016WhV+hQVFmr8NbB+yGiHEdN0UhWFSFEZnCqmmAVeanSQ/3zs+1RiipU2rUwic73/hx4JGs7Qi3TontQLCr0b9VuY0EOFef4PtzJsoZJ4QYWXtDbWfU7z70Z9v1wUkTD0WZF4SqngAPPs3AEIYQQQggh5x62YNNLfz+BzAPZ2LZkl7TQUc/RXZHaM1na3nN0N3Ac57RIlD9GXj0E25fuRkGm7/lXZqMFH9//Nd5c+pz0+70f3Ir/jXgOhirfAYljuzPRd3wPjL1+OEpyS3Frl4dgqDSgpcgUMqT3T4UuWIeOfdpjziu/43SY/9ni2oAD+/61gXWBbEJOBwo4EEIIIQwLCQyY7vpd5O5sfLiByVhcF5LwR9FBIHMDkDTYcS23LgZmjQTMVb73/fcx4Ob5wPeXt3y4IXUscOMfdb+z4MXx/3zvpwkDYnsDx5Y37bwF+xxLJnkaFSCEEEIIIeQcE5cag8n3TXB5f9+6g1DszUNoRiHMHSJhiw6CPToYnExeG2aAxQbV7iwoj9RVTVj31xbpgXcNkQNEBQ/e4n5y0OHtx5Gx7Sg69k1FfIdYvPPfi7h3wBMw6c3SdkHBo/KSrrDF1K3Gbw/TwpoUitcXrMOHHabgsQtecgk3NIes0oyxYRF48ZHrat/buO8Edh3zHJRQHS0GZxcQHBGI1D4p2L5kd5POfXzPySbtRxpg/brmFhCmAsSEEEIIIadFrCZaejV0tHoP6xFIPwvgYRblUEqVGxwT+3kISFKUI05WCRVvhyACZXYt7Ja5uCSoI3KNmci2BaBScAQHVLxNCkYcMUbDIjqqEbBJ/RlVx5BlyEWCNg5xmnZ4NP0pvHPwaWlrGG9AuFwvBQDK7RoU2QOdKi2sKPgYl8XPwCv73oJC5qiubQePo+ZoqDgrgmRGKWTBzs0+gzvss4QrqpFjCXN6v3vwYNyUfH/dubIWoNziWMnVCjnKBS2CeSP4epUtpAoV9g4w8wORZzoEm8hDK/cexGbnrx9wyDJk+fybET9Qn4QQQggh5KzBqifUVFCob/PCHY0ONzAr5qxBcrcEvwIOzM4Ve5F7NF8ar2HhipkrZ+D+wU/BZvW9qBILRzw55wE8POr5Fg03MGOuHYbHZt9b+/vaPzchc3+2z/1CY0KQ2CkOu1b5sTivG8d20zhJi6A+SZO5770TQgghxOHQv037JkQ7cHJD4/YpO173c3gq0PtG//bL2gAsfhrIOlUBoiUdXQ58MxEoPVVy+YIXAM7H7QOvBIyljnBDcELTbjdYxQgKNxBCCCGEEIKN87fVVUHYl4/AFRkI/mkLdMsPQL3lODRrMxD4xzaoDuU7fVt2qx3712fAEq1G/k3tcfTd/tLr+Eu9UHphHAS5a5g490jdMdggAlttqIZ+SLJTuKG+Dcdy8N53S3F4+6l+Qwva8PdWPDbuxdoBiAcvHwGezZhqQApwWKzQbMuCQqVARXGVFG6ISooAr5DB1CUG5Vf2RMltg1B6Qz/oByfDrvNclUETwFZXJYQQQgghhOwq3+X0JbCAgElUSBUHWLihlyoPKYoyKdzAKDkO/8/efcBHVeX9H/9OS+8JJfTem1QBARW7Ijbsvax1rY9lde2u3XXd1bUrFlTUFVEEK3YUUFBRBKR3CKT3ac/r3JghA+mZZEL4vP+v+TP3zr3nnrnZZ3fOzPmeX2dXsbq7MhXr/V49I3J1UMxmDYvMsCbwG+bYrlHmM37ZdomvbF3GrcW7QtsdYjpq/5RhGhG1TsOiN6iLK1OdXVkaHLVZY6JXK9ZWEpgrsjL/e32w+SUVev/Y4w9W4ncpwxMvj9Xb6n+viLKVBm0Xe536cOuvuu/3x7SzJMvaNzDtWvnNAKRC+9u98VbwItsTrV+L2mlm5kjNymyrbzLXK8bZzlp3sqb5WD6/Tb4KoY0oB2MSAAAAwFg4Z3G9boSpyrB84apaH29CFJtX7VpYtufQbtp/0vBanfvF9Hl69oZXtanC7yyh8ukrX+nWY+9X5tayMclfHj67xnOcEU5lbc22wg2tO6XJbq/7ArMx8YxJEF4EHAAAqE7G8qa7PzGpwdubyiYy1cqPU9VoTNWGF4+S8rZJzijJX305aPkq/ACQY1YYquH4yvQ/ru7nAAAAAC3Qxj/2rFZgvoZ2bslWxIqtcq3baVUsqExxp1htuH6A8ka1sqo3GJ6USO08tqM2X95nj5BDQlpC0PaKH8oCC74Ih1U9ojr/m/frn1OTQm/xZ0usVY9yd+YpOqtI8TOXyLmlrFKEJ1IqbO1Xfie/8nu5tPmyAcoY01ruxAgV9kzSOodb2Yf2UsEB3eRNjZUcdvljIlQ8sJ1yjh8kb2LlJZXHTxndSO9mH2PCKKF4AAAAIGw2F+9Qqa/yaQXtnLlKchQHth1WSMAmWyULGHVwFah/RGZgO8bhVqKzQF6/CRKUVXKId8YFTS7aL3JmUPuBc+1uDYvaIKe8ctk8irOXaF3eW4qyV16R2xwTafPIKU8gZFEZEzAwHz8LPU7tKInVztJY6+hfcn7T3UsfVoGnUPneOP1W1F653l2TfUzgwYQoNrpTFO3waGjCah2UtEwDYjaq0LNZRT67Snzm7lTNhCnKRntlRqaMqPZ41BJjEgAAgL3eltWhDw1UxVSHLufz+bT6l3W1PnfW0x83Sp/M2Oj7WT/q+ol3qii/SA5HzdO+PaWewPPt63fIV48KGBOmjKnzOagEY5J6K1sKAQAAVPG/lFWv6BlSsa2lbgcFhxvqUpHBW7ZSUaPJ2yIteFpK7qpGFxEvjdlV7hkAAADYl7ki6//13bYzusoXXfkkmqJeCcoZ10bJn5f9MNCqY6oGH9gv8PovXy0NVGTwpsRIruon4xS57IqOcspWvOtL81AyFRzef/JjxSXHyrUtX0kzf1Xe0NbKO7G75Ng1CcibFKmswzsr69BO1uQg84rNK0XkSBFlmYgAE3TIH99die//GrQ/LilWJ15zTKO8DwAAAGBv47I7leuJVqqroELhZZvcfofaOfOCj7XZKw03lOvsytey0iR5rCiElOQs0g53gvyyqU1kK/WO7x44trDkS/k8y6psK9LuUbeIDO3wlU9AKlZ8XKa2uxOV440JHNfKmasOETsVZS8bq5h5PaYCRYEvyrpuRdmeGHn9dhV5IwJVJcptK8nQ59u/UZyzRLm+GP1a1Elx9iLFO4qsc1q78hTn3LUAlMPmV3pkrtIi8rW8sK2y3DEqtTkU8Weli4pMgKTAu+v3KBP0OLTNIVW+dwAAAGBfEhHVNHO3uvTvaFVtKGdCBRUrX9ekuKBx526t/32TPn7pS+VnFdT95DrmG5LbJGrSZYfX/TpACFHBAQCA6vQ+qmnuz8TbgsMUf3yiZmfJW5IzsnGvkdpDOmuG1KpX414HAAAA2EuMnlS/VTsLeySotENstcfkjm0deH7hfWfI4dgVYlgwe9GuA6uoELEHs/RqI5r7+tdyRZat7Oq325R1RKegcEOQCuWW/Q6pJEUqSdrzME96gjzJu6o4dOrbXg98cqvadW/bCO8AAAAA2PsMShyqIl+EMt1m8v+uz9mFvghF2YIrJtQUz3ba/Epz7Jr0E2HzWpUcTKtndD4hKBxRUDS3xr4l2Yv3aD/dla24P/e3dWWpR9S2QLjBMJeItruV6CgMmuXj89u0071rtdbKfLtjvpz2sjGJOddh86nYH6l4R0mlwQXDZfOpU2Sm4l2lKvE4lF0aLbfPbt1L82+eO1I5bjMmKXvvHaI76IY+/6fUyJQa3z8AAACwLxg9aXijX8Nmt+nC+88I2rfggwq/kzQTc1//pkELY9VGj/266qG5dyg1PblRrwPUhAoOAABUJ6615IqW3EWNd58m3iENPSt4n7fyMsphVZwjdZ8oOSJDWzFixIVS675SWi+py7iyXxcAAAAAWFLSkxQR5VJpce3GCN6kGBUN7ai8/SqZzb+b0lZlAebL/32+Dj59XHA7nl2hBmdGgey5xfIlRFXZlmtjtuzuyif0hEp+dqFGHrWfHE6HcnslyptQw6pNZmhRIXNRmlhWxcG2W17j2NtPUo+IKHXu10GDxu+qYoEQ8PvKHg1tAwAAAGHTKiJeyS6PbH6Pir1Oq+pBpN2tSIddpX6nnLuFHGpi+/NDuqmkYCb5221+Xdr9DI1K3S/oOL9qbtdm2zNkbX5iSHXmqajUpU4RO6s812XzWgGNYn+E1Y8tpYnyym71q9RXeQW7Qm+R+iUM1cxNU+W0ef7MVfsV5wgOWuwu3lEsl82jeFexNhYlK89TcWzl17HtJio9urU6RLdXr/ieNb5v1AFjEgAAgL1eWodUOV0OeRrxN4ibp12lUUcPC9rn9TTubx71UZBdoNHHDtezN74a0nZPufE4tencSt2HdFG//VmUNqQYk9QbFRwAAKjKDy9Ir57UuOEGY7/gBLCl82g1OyaAEJsqDT8vtO2a0IQJOXQdT7gBAAAAqOCdxz7Q7cc9WOtwgyclRjmT+qugX4q8kTV/7efI98jusGviGcHhBmPAAX0Cz82cnejFm6puyOdX9KJqXg+RTn3aKa1dig4/90B5kutRXc4muSspajH6kMGadMlhhBsAAACA3Xy1/R1N3/CI7CqxggOmwkKco0SJzhI5bH6tcwev6FnT9B+fX8r0lX2W98ghj5xy2BwanTZyj2OjI0fV+PfI/7Ot3ZmqEEn2fKuP1TGhg0JvhDI9scr4s3pDsc8lXxXTKNpFt1VKRGsNTT5AdpUFce1WJYfqr2PuXcSfgYgYR+nur2po8n46uPWBhBsAAACA3bxy51t64Oz/NGq4wSwydcAJe44/+h/Qt9n9PTr2aa+Ovdtr3En7h7TdcSfub/1OQrgBzQkBBwAAKpO7WZp9ffByn42h+8FlVSL22D+xLFDQlFyVzPSpaNifwYbD/iF1nRCaa0anlN0DAAAAAEG2rN6mp697qdZ3xZMQoczje6uonVOeGJvsRZLNU/05CQt2aNTRQxWfHLfHa/tPGqa2XXeNVaKXblPM9+uk3VYsspV4FDf3D0VsymnwXzAqtvrQwtF/OdT694rHL9CQ/XrU6xr+3b4NTUuM1bDeHerVFmpzw/2heQAAAKDJbS/eqI+3TgvaZyb1R9t3BbBXl6Yq37erslppDdW3NnliVeJ3yu23q9AXYT0GJo5UhH3PsUB89FFyOtKrbMvntynDu+dYplyyq+bFq0w4wQQbNpYky29Vb4hWnqfqccnE1uOtf0/q8Bd1jCmrtGAqWtTmI6vHX1YVwlSsqKhVZIp6x3evuQHUD2MSAACAvdbKxWv08p1vNvp1JpwyRk6Xc4/9B506RsltEtWUTNiiNr+T3DD1CqvaQih06JWuXsO6haQtVIIxSb3t+X+VAABAWvSK5KthNlBDOaPKKhd8cX9ZoCKhvTTkNCmpU9lyPqe+Jr18nJS7sXGub67T60jJFS31PbbsmuZ6JZVMTOo7SRp8Wtlzh1M64y3pkd5SUVbD+jDhRslVsRQzAAAAAGP2s5/KZ5Y3rYXsQzorb3Q7M1Nm184om1zZNpWmVd6GM6tUbedn6bDp5+uJD+cpI7dA6ckJmjyin9omxcvhcOju927SjYfdrcwtZZ/7YxZvUtTSbSrpnip/jEv23BJFrt4pm6f6SUxVadejrUYesZ8VbBg/ZbRVqeJvR9yjovziPY49+PQDNOHkMdZzV4RLjz1yqUY//rTy3dVUt6jkrVeYi2W55JjRcjnKJhoBAAAA2GVh5sfy7/ahOtLusX5KCHzktkk/FbdVr4idSnMUWFXTSnw+Rdr3XGdxhydKC4taq9AfIZ+p3uC3y+NPUr/4ifr30rnaWZKvdjFJOr7TELWOTpDNFqH2aVO1MeMMeX07gtry+m1a7Um1qkBUxrxe8megoDoxrh7qnzxJkfZo7Ze0v3LcxXpw+X9U4tu9yoI0odUYDU8ZYj132SN0Xtc79K/lZ8njL1GBL9KqbFEVUyWixO8KCjqUO7njsbLbWJcSAAAA2N2spz9p9JsSlxSrA08ZqxdueU05GblK797WqiKd3CZJkdGRumvmjbrl6PuUuzOvUa7fZUBHDZ7QX7GJMTrotAOUsXGn7ji+8srepsLC8MMGW8+jYiL14Ce36dT2f5G7tP7z20yVvnPvPs36F2huCDgAAFCZHcsb97607ielD5amnylVXNHoi3ulLuOkU16R0npKl38vTZsirf8u9H1oM0DK2Sg5I6WsNVK/ydJfPpfm/Vv6dYZUmlfWz+HnS8POlSr+IGHOOfBv0pwb6nftmNSycMOoi0P2dgAAAICWZP2yTbU6Lnd0O+WNbb/nCzbJ7rUrcrtPpcl+/TmXxlopJmZpjkavkNrecbwue/eToNVGH//gWx2YkKL7r5uiLv076oWlj+rGw+/R8gUrrdftJR6rmkModBvYWds37FBkTIRVsWLscSP1+IL79dbD7+mrt79TcUGJug/urEmXHq7Dzzso6Av2aJdLVwwfrvu/+67W4QabV3IWlj1PiY/RJZNG64RxA0PyXlAFE9KpZVCnSg09HwAAAPWSUbyx0ooH5ZzyKs5eLK/Nod/dreVyexRjd1vBBTMg6ewsUJzdrWK/U6vdidrkibOqHZjwQbHfpQTXABW6B+rsr95Wm9hcpcflapPHo3k/O9Qnfriu6XOeoiIGqmv6V5q97mq5vD9a119fmqI8f4TaRFY9wcgEDszD48+Rc7eKCRVFOXvK7Vsll6JU4m2vPgmjdfeAmzVr80dakLlIpT63usR21GFtDtL4VqODzo10xGh02on6OuM1ZXljFG0vlaOSa5mPs5tLk6znHp9dRd6ywVmyK1GndJqs8a32r+VfBPXCmAQAAGCvtWF57X4nqa++o3qqVYdU3XLUvUH7n//bNB1wwijd8NIV6jOyp15c9piunXCb1i0N/QK1nfp2sH4nicmJtn4nMVW3//3dvXrrkff07YwFVtCh94jumnz5kZp4xrigcxNS43X8VUfrzYdm1uvaae1TdNEDZ2rClOCxDkKMMUm9EXAAAKAyUY1UYmzAydK4a6QN30uzrqn8mLVfS//eT7r0OykhXUrq3DgBh+Wzdz3/7R1p9v+VVY2Y9FjZozpF2dIPL9T+WnanNPE2Kb6dFJUgdTuwLCQBAAAAoFKxSTE13hm/3aa8Me2qPsCEHDx2xa7zyxdljpdO6dJd5102VF/vyNAD735ZyWd3m77Iz9Kpx92jl9+40VqlqHWntEDAIZS+mTE/8Pzz179VYqsE3f3ejbruuUutR3XMaknfXvSa0mI9yp7YQZ606F1fFJsghPmnwvEuu103jD9AbZyxio+O1Ki+neRyUrkBAAAAqEqUI3aPfd4Kn7LNhP6Ki3y65VSOb9f0g99KTaUGU6XBriJ/RGD/gKTjNSRlsmauX6231nyiga23KDmqSDb5lOrMV6Tdq2Lvh7rrt6W6ud99inMmaaV7qH7K3vX53S6fhtnXKsX1Z4LZ4rdCF+Z6pX4ThbBpqztJ7V1ZQf0sV+CN1OpcMyYpe3FF7mdy2ltpUof7dGmP83Spzqv2Pxz57mz9kPmV3D6HfDZpizvJ6n90hbJxhV6XNpcmK98XJafNpSPbnyOXLVlxzlgNSOwjp50xCQAAAFBddYXGcNK1k3T0Xw7R3Ne+0St3vVXpMd+8M19/LFqtpxc/ZAUJUtKTGyXg8NVbu+aDffbq10ptn6L75tyim16+ssZzd2zO1Oevf1Pra0VGR+iih85SXGKs9XvMfgcPkIPfSdCMUesQAIDKDDipce7LiPOl1n2lb/9d/XFFWdJzh0g+n9Smf+P0pbJrvniUtLQWyd7vn5QyltX8EcOUVe51pHTuB9LYq6RBU6RehxNuAAAAAGpw0KkH1HiPCga3kS9u10Shyvit+UU2OYptchbaNOWwUerQp71e+mJRtedt7BCrq8fdKr/fb1VaaAqm/PNVY/+u72f9WOOxZkWijSu2KH5xhjo8vFjt/v2z0p9coo7/WKjUGasUlVFkHeew2XRorx567cyTde6YYTpyZB8dMLAr4QYAAACgBoOSglcHNUp8LqsCnAkjuOzeas8vCxX45ZCpYr2rssGw1KOUFNFGL6/6Xp0Ss6xwQytnrgbFblSnqCy1ichVx6gsdYn8WdPX/p91TsfoDkFtm+DED3ld9Ut+B+10x1qVshPtBUp0FCnVWaDekdvU1bXdqhSx3p2qAu+ucVO+J9I6Z5snIRBuKOfxZejl1Vfq15xfa/zPxxcZbynLvU1emUCFU/neKK0rSdXK4lbWv6uL22hFcboKfbEamLi/Lutxtw5qfbgOaDVSQ5L7E24AAAAAanDgKWMb5R4dc8mhatUxVe8+Pqfa47atzdD/HXyn9bzboKb5nWTnpkxdOvR6/fzFbzUe+8rtbypj484qX7c7yuZuOV0OHXjqWD027x+afNkRViWI4YcNJtyAZo+AAwAAlekyVup5WGjvTUp3qfNoaecqKWtNzcfnbpTev1La70zJ+edqpI3OL/3vAil3S9WHrJ8vff1wDe34pGP+Jf09Qzr9DakTJZYBAACAujBfLg85eEDln7ZdDuVM6q+CA7rVqc2ebdPUv2Nbrdy6U1uz86o91tMqVhs279ST10zVkRdOlCsi9IVgfREOlXRNUUn3VHljyyYc+X1+3X3yI8rZkVvleeaL/bcefi+wbaYkRW4uUNS6PDkLPEpYsE3pjy7Wk11H6rfrr9R/T5ikIe3SQ95/1IKZ/RaKBwAAAJpcn4Rh6hzTN2ifqYqQ742s02e0itUTWkf1VmpkF/2evVU7S/KVHpdrVT3oEJklh81vVWaIspUq0uY2xeXk9y3V/IxndWDr8XLYHHv0ZUtpoiLltkINTltwn+IcJeoWsV2lPqfWuVtpWXG6ZmwfoqVF6crxmZVgbVZQw1zLup4VxJDinYV6dtU/VeipWB0i2PLcxZq/s+JkKJvVH/MO3H6XCn2RKvE7dE6XG3TvoGk6q8t16hDTvdb3DCHEmAQAAGCvNe7EUeozskdI2xw4rq/a90jXsgUrlZeZX+PxKxev0Wv3/k/HXHKY7GaQ0gS8Hp9uP/5BFRUUV3nMtzMXaPYLn1Xbjs/r04Of3qpZhdN0y2tXq/vgLo3QW9SIMUm9EXAAAKAqJ78sDT1bckTu2ueIkGLb1P2eRcRJJz5b9txf/apGQX5+XbI7peOfkuyupvlbed3Sj1Mrf23jj9JLx0g+T83tLJslOUI/CQoAAADYF9hsNt0180Ydes4Ea3Wdcq5IlyJOHSZ3+0TZzcfymuYVecsCAHFREbrvjCOsXT5fLScj2W16/8mPFJsYo+uevyyw2k9D+e025Y/top3nDFfukX2Ue3hvZZ45VLmH9rRCD6XFbs15fm6l5y75+nfdePjdtXoP37w5Tw47X38CAAAA9WG3OXR211s0OGmc7No1JvEqVrGupD8zDmZav6mn4LOm91dUnoHw+s2IxKZIe7wOS7/B2ufz+xRh9yrK4VF6RJYSHIXq7MxQ34gt6hmxXb0itqmna6sS7YX6LftNJUck6twuZ1mRhIq6RO1Q+8isKt+Dy+ZTmrMs3F3icyo5qkRJLjNJyK94u6kckackZ6H1MMeZfpj3EWnP1Tc7vqm0zZV5v+jVdXcrwgQx7KWKqBCO2N0v2d9b9xEAAABA3TldTt334d81fsrooN8nomIilZAaV+f2klon6NrnLg1M/q+tN+5/V+ldW+uK/1xg/XbTFApyCvXZq19X+tr8D37UnSc+XPPvQ5K+fPM7ORyMSbB3YtYhAABVcUVLx/5Hmni7tO7bsm/jU7pJzx5U+3tmQglDTpPGXCWl9dhVySGurZS/tebzTZDgg2ulHodI582WfnxJWjXXKres4mzJU3Vat0E2/bjnPvP+p58heUtrH5QAAAAAUG/RsVG64cUrdNH9Z1oT+80X560GddQZ/3rL+nxuFih1FEnemGra8Dl0wuj+OvegYeqYmmTt6942RUkxUcourHo84cgukj2/VCZD8e/LntWwQwfrn1/eqQ+e+VSLPv3F6oupsuAuqUX4eTd5B/dQSa9Wu13QrpKereSNj1LSjCVavnDlHuf5fD7dddLD8rprFxr3lNa9b2gEVGAAAADYa0U5YnRyp2t0RPo5WlewTHabXcmuRL274TK5bFKEPFalhXI+v01uOf6sZmDY5LfFalDi0RqWerISXGULSPVObKsYR6QGx6xTt8jtirF5rAoOQde2e9TJnqlNbp9eW/OS2sUM0019btAXGV/o99zl1vE9o1fIaat+YlKSo1Cb3ckqMJUn/pToKLTar8jMU4q2md77tFYpWlOwZyVun9+rGRvvU4yjwljK5pdTPnl8dpX6zfSLXTfEXZcFr9B4GJMAAADsteKSYnXr9Gu1fcMO/f79H3I47UpMi9e1E26vdRtRcVE68vyDNeX/jlWrDqnWvl7Duiki2qXSoprnNhXlF+vxvz6vIQcN0ENzb9espz7WL1/9boUuMrdmyeepfViiLszvJMdcfGjQPo/bo3tPf8yqhl0bbn4naR4Yk9QLAQcAAGoSmyb1m1z2/Jc3a1e9oNz1f0jRycH7TFWD1n1rF3AwlrxV9ohMlA6/RzruCSlrnfTYoMb72zkrVK0o9/U/pbwttW+j3dCQdgkAAADYVyW3SdL4k0Zbz2d8+6t8Fb4IdeVJZg6NL2LP82IXbdO86XcpMir4xQinU33cTn1fzTVjftoSmJbzyctfWo/45Fhd9tj5umHqFVq/bJMu6Hd1nd+LJyVmz3BDxdfbxqu0a4pckXt+bfni319XdkauVQGiqE+KSjonWvujVmcrakWmFfioqPeI0JauBgAAAPZVCa4UDUwaYz1fkjVDLnkUZXNboYCK7Da/Ivwelfid8suuNYVpumvwjD1WOY1xRuiKnlvUNiLDCgfsHm6oqK0zR09v/kbripYpwRWja3qfoEu6/0U7i//QRxsqr7JQkQksZHti5LbCB2XzSnYPN1RkKkuY4IbTVNfezSdbn5PHn1PpeU67Tz6fV54/r2MqV7SP7l5j/wAAAADUrHXHNOthvPXwe7W+ZXaHTe/nvrLH/tjEWLXr3lZrf91Qq3ZmPf2J9UhqlaBrnrlEt7x+jZZ+t1xXjf17o/35TEXv3f3rkmdUmFdU6zZ67tctxL0Cmg4BBwAAGitRGZUkfXqH1HF/qf/xkiuqbH9JvrTxh7rf95Ic6b2/Stt+lzKW1e4cZ1T9qjz0OXrP9/3ji3VrY9jZdb8uAAAAgGr5d6s5bKYJRWRJvkjJEyX57ZLd41fKm7+pTYFfT149VQMO6GOVcI7488vw/OwCbfnvl4o8sItKepatVlRR9JJtivlpz0B2XlaBHrzgCf2iAi0pzdO2c/opYmuh4n7YKtfOyscdEdERKi3aVQWupGfZDxDVKe7ZSmMnj9yjesPHU7+QOzVaO07rK29S1K5SzcPayrmzSGlvLJUzq8TaZ7fbdPh5dai+h8ZhxpINXZmIlY0AAACa3Zgkxl6yR7ihnNlv8/u1IKeLop1pmr7hBfWM66chySPksJVNTyj1Zio94itrdGMCDtUx4YcxySvVJjpfm4sTdf9vL0u+hfJ5f5BDNVdI8NkSAuEGI6KacEO5VhH5GpoUvIiT1+/R0ty51Z7ntJmAg0N+v02lviiNSBlX47XQyBiTAAAAtDjm94LaSmmbrMcufUZDDh6oA44fKYfTYe3fsWmnNizbXOdrm0WY7prysE66dpJ+/bZ2c7eiE6JUlFv3uVtjjxsRtF1aXKqv365u6ao9AxIHn3FAna+LEGNMUm8EHAAAqIvkzrU/tjhb+nFq2ePT26XTXpfaD5NWfSaV5tX/vs//b+2Pbd1P2ryo7tUb+p8QvC9/u5RTu9Sy5cCbpRRSwAAAAECotU2MNzOKypINfzJPHSVlD4tXityUrxyPTx8884n1eP5v03T3+zepx5Cumv/BIpUUlCj5g+Uq6ZCgon6t5YuNkCOvRNG/bVPElvxKr+2Nc2n72f309Jo/v7TvlqSSbknK2z9dCd9sVuS2Etm8PkWszZL9z7LOXfp30IofVgfa8FVSmWF3kSmxGnt8cMBh27oM7dyRqx2X7idv4p4V5zxW8KGf2jz1k2w+vy6474zAak4AAAAAQifBmShnNRUXDJfNqwiHXx7/Dn27Y671SNmcpku6X6/06A7aUfiZ/CobM9h2C3FXJtbhUWJEsVIjCtQ2dam2F3xd9oLNLo/fLqet6glOpbYBknZVXajN9RKcERqcNDhoX1bpZhV7q/9tx24zc1f8KvRG6LgOZyvBlVTjtQAAAADUTUJaQq2P3bEpM1B9Ib1bG907+2Z16NVO38xYIK+n5sB0Zbwen6Y/OLPWx3foka4/Fq2p0zXik+M09JBBQfvWLd1Yp+oNV/z7fCWkxNfpukBzYg93BwAA2KuYyf/1kb9NevUkqTCzrIJDU0hoJ42+rO7n9TxyV7WJcpWUYq6yYsSJz0sH3lj36wIAAACoUUyUqyzgUBW/WS3VJr+rbBWiil/i/+2If6ggpyDoC/DIjblK+nilUmYsVeKnq6oMN1htnNhT7jaxe75gtyl3XHvlHtxN+Qf2UOZZw5R/QFe17d5Gx152RNChjqzCGt/jgRMHy+kKHoOYVZUK+6dVGm4o50mJloa3021vXaeTr59c43XQBMxKWqF4AAAAoNmIcsTVeIyZ6G/frTJDZukO/Xfl/Sr1lcjjKwjs91dMb1eh2F9Wja6NK0dRu1VgKPRFyFfFGCnK2V3t4k8ObssXUeP1BiRNkN0WPJXCruAxVlWc9gSd1/UGjW8VPBZCmDAmAQAAaHGSWyfW67wtq7fpb0fco9ISt4ry6l5RoT66DuqkQ8+pe7XpQ8+ZINtuZfPKq0/UJD41TvfM+puOuuiQOl8XjYAxSb0RcAAAoC6SOkv2si/S66woU/r2MamtWS2oCXQeV1aJoa6VFMb+dc99salSdErN53Y7SBp4Ut2uBwAAAKDW2qclymHmCfmqCDd4ZVVP8LkcKunZSiXd0+SLclmVEzL8Hr353KfqNqgOlen+VNo6xqrWUCWb5In587nDruKB6ep1+2QdfPoBatUxNXBY1PIMyV39qkhnHR5cdtkw1RgcQ9vV2M9BV07UuBP3r/E4AAAAAPUT7+oUXFKuEn6/FGUvlcvmsR5lVRP8ynHv1FfbP1JcRO/AsZ4apiyU+h3a7olXpM2taHtZ1YeKfHIo3xetEp/Tuq7Vpt+uDHecPM6jtF/yBMU7d41ldnjiqwxElLGpb9Kpe+xNjmgnhy262r56/Tb1S9hfA5OGV3scAAAAgPpr37Ntvc/dujZDs576WN0GmXFN4xt55FAdcd6BSkyrfSUFu92mE646eo/9XQZ0VIRZBKsGB04Zo1FHDa1zX4HmhoADAAB1EZMipfWs/z379l/SrGuktF6Nf99/fUvK2SCdNl1KaF+7c8ZdJ3Wo4ov3Vn1qPt9Z88pHAAAAAOqvVVKcurgirCCDzSxc+mfYIbBtJuq4Pco5eT/lH9hTeQf30s5zhmvneSOUPWWwHluzWg98t1hp4+o2rinpXHPJ590XQn1v/lJlFZboH7P+ppT0ZGufvdSr+M9XqaoZRZcdPVq92req9LUOvWsOOLgi6xlIBwAAAFArsa50RTvTqz3GK7vaRuYq1llqPRKcRYpzFCvK4dbH217R9E2z5XK0DwQcTDCgMiawsLwkXX7ZFW0vrfJ6PtlV5I9UpjdWfxS30e/F7bXZk6qfsufI7SvSeV3/plhn2ZjG43dobUmrQBhid4NSrlR8RJc99pvVU2McHap938Vel+y22q2qCgAAAKB+OvZuH/jNoT6evGaq3nz4vQa1UVsz/zNHPq9Pd7//N8Wn1FwNz7j00fPUpvOev5PY7Xa16phW4/mO3Sp8A3ur4FrvAACgZm36S9uX1v9ObfqxLGMYnSwVZTXeHff7pN/fl8b8VbpiofTLm9IfH0s+j5TUScrdLK3+QvK6pY6jpP0vkfpOqrq9wadK6+dVf80u40L+NgAAAAAE65fn0Tp3iXxxkVawoZw1P8frlS+xbFVRa41U8+3fbmWMf1mzRc7BrdU6M1/u37bU6vbaql/itFIen09f/LJKJ48frBeXPabPXv1KCz5cbH2Zn5LeXutTIjR/5UbruKHd2+uMg/bThIHdq2zv6PFD9NPsL6q95ogu1U84QhMzs8aqmjlWlzYAAADQrMS4uqnQvXn3oYbF57dZoQVnhcGKOc5p88vm91kBgzUFy5RdnKDR8Tny+fNVLKdcfq+cJqrwZ5tZ3hitKW2lTG/ZJCB/DVUjrGvLoUJ/VGDb63drZd58DUo+XDf2+Y9+zPxSK/J/lt/vV0p0vCL8fyijeKH1e0qr6GHqmXi60mPHVtn+gKSDNXfbWkXZ3UHv3XxkLfa5VOp3qXtc/1reRTQJxiQAAAAtUode6crcUv85V798udRaMCkqNlLFBSVqLMWFJZo/e7EOPu0AvbzycX089Qst+uwXK0DdulOaNq/aqp+/WGp9bh0ycaBOuuYYDT1kUJXtTTxjnF6+481qrzloAmOSZoUxSb0RcAAAoK5SG1DBIcAnRcZLw86XfvufVJJXViEhro302zuh+5uUFpT9GxErDT+v7FFfA6dIc++WCjIqf90ENgadUv/2AQAAANRK5w6tlPDYLBUPbK+Snq3kj3LJnl8iR0aeSrvvWr3Hb2q3VjEHyOPzK+LE/XTC0SP15VvfqTi/WJ37d1RCWry+fvv7PY6PWpldVnWhfLZRJRyV/AZQWFK2ympMfLQmXXq49aivyUP66fHPv1NOUeU/NqTFxeiYQbWoPAcAAACgQRIiumhT4fdy+k2kwGdN9jdzNqxqDGaBJ9msIMPu7FZMwW/9/1lel5aWjNGhaR2UUfCRvP4iRbp6K8fXRt9lLZHfZtrZpdAXYV2jslBFuSLfnhXd3L5i698oR4zGtjrSetTXiBQTcPifcjwFirR7Au+lxOe0qkwkulI1MHH/ercPAAAAoHY69WlvhRQawl3iVpcB3TTwgL76ZsZ8lRa71X1IF7kinfr+fbN4bWiY31+MuKRYnXD10dajvo666BC9+dDMKkMZbbu21phjh9e7faA5Cf5WAAAA1GzI6dJuX6zXS/Z6qech0lU/Szesls6bLbUfGtq/QNuBoWsrIkY6/U0pJnXP16KSyl6LKivxDAAAAKDxHH7eQXIUexSzYK2Spy1U8gvzlDT9R/kdu830qWHYsnZHtva/9BC9suoJvbXteT089w51H9Sl0mOdOSWK+XVH1Y35Jeef+eqKendorVCJj4rUk2ccp8ToyD1eS46J1pNnTFaUi/VcmuXKRA19AAAAoFnpmXBMWYhBDpXIpWK/0/rXKxNqKBuXFHkj1c2Vrx4ReYqxeax9JpxgQg7l1hZtVVz0qRrTca7GdfpOQ9OnqsQ+RHm+qD0+Brr9ThX49hwLlDN57DxvWTW7ilpHdQvZ+451xuucrjcq0h6rYl+EinyR1r8m3BDnTNR5XW+S075nyAJhxJgEAACgRTri/IND0s4fP67WpMsO17S1T+qtrc/p/g//rvY90hVKJjQRKqnpybrjneutyhO7S2ufonvev0kO555hc4QRY5J64xc/AADqKqmjNP4G6cv7G37v8rYEb7cZELq/R2JHqdcRCikTwLhysfTTa9LqL8o+hHUdL+13RlkFBwAAAACNrkPPdE35v2OtVXoM258Tf/wRu77qs3ZVs7JpuYyc4FRCt8Gdqzw25b1V8kc4VNQnZc8CddmS3Ru8u1PrJO3fp5NCab9O7fThVedrxuLf9P3qDVZBidHdO+n4/fpbAQgAAAAAjS85srv6Jk3R79lv/bmn4uDDr95Ot06KXaVou8/a4/bbtKQ4UXPy28pjlXvYdXSeJ1vp2jUOaRfdRV6/w6rYEG0vDSoit9WdoDbKVfxu5eO8fpt2eOKtwEVFaZFd1DF2YGgnJ8X11419H9fCzM+1Ov832Wx29Y4foqHJExTl2DNgAQAAACD0eo/ooaMunKjZz33W4LYyt2RZv7uU6z44dIGE3iO6W30NpWGHDtbLq57Qh8/P1ZJvfpfDadeoo4Zp4hkHKDqOMQlaDpvfzxJYAADUy6JXpA9vkkrz638Dh50nxaZJ6YOl3keVVYZ4fLi0c2XV5xz1sJSzsey65t8VH+55TGSidNY7UgfKjgEAAAAt1aynP9FT172kksKyyT0FY7qquP+uL+F9zppDDmentVWK16beI3to1NFDZb4qPKfHX7VtXUaV51z2/rVaGelRodutLVtz9P2PawMhi3KJsVF68ooT1LdTmwa+S+xtNm7cqI4dO1rPD0w+Q1GOuAa1V+zN1xdZ06znGzZsUIcOHULSTwAAADTc79lva972p+S0FVrbJT6nRkQWaHBUXqXHry2N0XNZ3QJBBKfNq4NaHapoZ4zaRfdV19jh8smne5depjxPlhWWcNp8sssnv2xy+8sqRJzb+XyVelbI6y/W1uLtWpr3m/V6RTGOJJ3S+T61igrd5CTsHRiTAAAA7BvM7xnv/OsDPX/zNLlLyqrG1cfxVx2lmPho9R/bR8MPGyx3iVund7pEOTsqH9fYbDb93wuXac2S9SotLtX63zfpp89/3eO4lPRkPTz3dnXs3b7efcPeiTFJaFDBAQCA+hp6luTzSLOurv89/PHF4IoLJ78knfSC9PJkqch8eb+bMVdKIy8K3rf6S2nBM9KmRZIzUupztDTyL1Jy1SuvAgAAANj7HXPxoSotKdWTV0+1tiN/3xYUcDCVFXZbwDSIc3u+5vz3ncB2erc2uu3t63TLG9fob0fco4KcsklKFZ3x9xN1/NGjg/bNG7VW07/6Wcs2bFeky6mJQ3ro1AlD1CY5PiTvEwAAAEDz1DfpJK0ujNasLa9Z26mOEp2f8EuVx3eJKFTvyDwtLUlUgrNIkXaPfs5+N/B6ckR7Te5wm87sfI1eWHOfSnxF8lihhl0DmyPanqZ+SUdKMo8yffIWaHHWLG0vXi2XPUq9Ew7QfsmTFO9KbbT3DgAAACC8TNDgxGuOUUFOgV656+16tzPjsdmB5536ttcd71yvm1+/RrdPfkDFfy4wVdHFD5+tw845MGjfvJkL9f5TH1mhBxOWmHDyGB172eFKbpNU734B+zoqOAAA0BClBdJ/hkl5W0JzH6OSpEvnWasSWaGFpe9J7sKyCg8jLpJ6HcbfCwAAAECA+eL+3N5XKXt7jrVdNKidCkeVrVBqiir4q6ri4PYq6f2lcm0NXoEoqVWCnlnyT6sqxLv/maNv312g0mK3VUb52MuOsFYvAmq7MtGEpNNCUsHhy+zXredUcAAAAGh+8j35+tuSv1n/HpuwXpMTN1R7/K/FiXq/oJUi7d5KX491pOjc7k+r0FOob3fM0W+5C+XxedQppofGph2pHvEDG+mdoKVgTAIAALBv2bklSxf0u7rSRZvqo1XHVD3366PK3JKlGf+erfkfLJLH7VG/Mb113BVHatD4fiG5DlouxiShQcABAICG2v67NG2KlFP9l/a1Nu46aeJtoWkLAAAAQIu3cvEa3Xrs/dqxKdPaLm2fqOIB7eRpGy+/zy+b2yNvfITkckg+vyLWZylmwQa5dhRU2t65d51qVWoA6oMv7gEAAPY9q/NX67E/HtMxcT9pYnz1C0KtKY3RjII21R4zofWFGpE6JcS9xL6CMQkAAMC+59dvl+mO4x9Uzo7gRZ3q64r/XKDJlx8Rkraw72FMEhr2ELUDAMC+q3Vf6a+LpOEXhKa9ZbtKnwEAAABATXrs11UvrXxcR5x3kLUdsSlHCR/9rpSXFij1lYVKeWOx0l5YqJRXflTqiwuUOHtZleEGY957C7npAAAAAGqtW1w3PTz4YXVNPLDGYzM8kTUeszLvO+4+AAAAgFobMLaPXl37pMaduH9I7hq/kwDhR8ABAIBQcEZIh/9DikpqeFveklD0CAAAAMA+JCLSpUv/dZ5i4qMrfd3m9cmRVyJ7ibfGttwl7kboIfZJfllVQxr0MG0AAACg2XPZXeqedq2kqGqPm1+UWmNbXj9jEoQIYxIAAIB9RlRMpP76xIVyRTgb3Ba/kyBkGJPUGwEHAABCxRUtTX5csjfwg3L74aHqEQAAAIB9iAk3XP30xbI7GvaVX5+RPUPWJwAAAAD7Dps9UbbEO6qchjA7p4OWFyfX2E56dJ9G6B0AAACAli65daIue+x82Wy2BrXTl99JgLAj4AAAQCj1nSSdN0fqfbRkc9SjAZs08i/8TQAAAADUy0GnjtXDc+/Q/scMk91e9y/wzTnHXn44dx+h4feH5gEAAIC9hi36BNmSX5QixpX95iFpVUm8ntzRR69nd1eOJ1olvqp/P7HJriHJk5qwx2jRGJMAAADsc465+FDdO+cWDT10UL2CDk6XQ8dcclij9A37IMYk9dbwWiwAACBYx5HSaa9JPq/kdUvTz5BWflqLu2STDr9X6jiCOwoAAACg3gaO62s9vF6vSkvcum3S/frp899qFW644vEL1WNIV+4+AAAAgHqzRY62Hn6/R15fqV5b9h+tKFhZ/qrWFLZS95jtctl9wefJrsPSr1ZqZCfuPgAAAIB6G37YYOvh9XhVXFSqGw+5U8sXrqrxPIfToetfvFzp3dpw94EwI+AAAEBjsTvKHqdMkz65TVr8quQuKHstKlFqN1QqLZA8xVK7IdKIC6X0wfw9AAAAAISEw+FQdIxDd7//Nz193Uv65OUvVVJUar2WkBqnnsO6qzC3UO4Sj3qP6KFjLztc3QZ15u4jdHxmwpovBG0AAABgb2SzOeV0OHVDn6v06rrp+nbHfLn9bhX5IrSxuKdGJKfJZc+Uz+9WenRfDUk+RmmRXcLdbbQkjEkAAAD2aSawEBsfrQc+vlVPXP2ivnhjntwlbuu15DaJ6rFfV+Vl5ltBiP5j+mjSZYerU5/24e42WhLGJPVGwAEAgMbmipKOelA6+O/S5sVloYf2w8v2AwAAAEAji4qJ1FVP/kUX3HeG/li02vpCv8+onoqIdHHvAQAAADS6aEeULup2jk7rdJLWFayXw+ZQj7huctqZrgAAAACg8cUmxuqGF6/QxQ+drVU/r1NEpNP6ncTpYkwCNFf8XycAAE0lKkHqNoH7DQAAACAs4pJitd/BA7n7AAAAAMIizhmr/ol9ufsAAAAAwiIxLUFDJ/I7CbA3IOAAAAAAAAAAAAg9v7/s0dA2AAAAAKC+4wnGJAAAAADChTFJvdnrfyoAAAAAAAAAAAAAAAAAAAAAAEBoUMEBAAAAAAAAABByfp9Pfvka3AYAAAAA1Hc8wZgEAAAAQLgwJqk/KjgAAAAAAAAAAAAAAAAAAAAAAICwo4IDAAAAAAAAACD0/P6yR0PbAAAAAID6jicYkwAAAAAIF8Yk9UYFBwAAAAAAAAAAAAAAAAAAAAAAEHZUcAAAAAAAAAAANM7KRD4qOAAAAAAIE8YkAAAAAMKJMUm9UcEBAAAAAAAAAABJ+fn5euKJJ3TYYYepTZs2ioiIsP4dNmyYbrnlFv3xxx/cJwAAAACNhjEJAAAAgHBqLmMSKjgAAAAAAAAAAPZ5n3/+uc4++2xt3Lgx6F5s377deixatEgPPvigbr31VutLfIfDsc/fMwAAAAChw5gEAAAAQDh93ox+J6GCAwAAAAAAAACgcUov+30NfPib5C/z0Ucf6cgjjwz60t7pdKp9+/aKiYkJ7PN4PLr99tt16aWXNkm/AAAAADQAYxIAAAAA4cSYpN4IOAAAAAAAAAAA9lmbN2/W6aefrpKSEms7Pj7eKr+cnZ1tBR7y8vI0Z84c9erVK3DOs88+q2eeeSaMvQYAAADQUjAmAQAAABBOm5vh7yQEHAAAAAAAAAAAIef3+UPyaGw333yzMjMzredRUVFWNYfLLrtMsbGx1j673a4jjjhCCxcu1ODBgwPnmRLM+fn5jd4/AAAAAPXDmAQAAABAODEmqT8CDgAAAAAAAACAfdKWLVs0bdq0wPb111+v0aNHV3psQkKC/ve//8nlclnb27dvp4oDAAAAAMYkAAAAAPZaW5rp7yQEHAAAAAAAAAAAoef3hebRiN544w15PJ5ApYbLL7+82uO7d++u448/PrD9+uuvN2r/AAAAADQAYxIAAAAA4cSYpN4IOAAAAAAAAAAA9kkffvhh4PnIkSPVpk2bGs+ZNGlS4PkPP/yg9evXN1r/AAAAALRsjEkAAAAAhNOHzfR3EgIOAAAAAAAAAIB9kvnivdz+++9fq3NGjRoVtP3dd9+FvF8AAAAA9g2MSQAAAACE0w/N9HcSZ8hbBAAAAAAAAADs8/w+v/w2f4Pug9/fsPOrs3XrVmVmZga2+/btW6vzunbtKqfTKY/HY20vW7as0foIAAAAoP4YkwAAAAAIJ8Yk9UcFBwAAAAAAAADAPmfjxo1B2x06dKjVeSbc0Lp168B2Y5ReBgAAANDyMSYBAAAAEE4bm/HvJFRwAAAAAAAAAACEXIm/0CxP1LA2VBx4vmXLlhqPr+2X78b27duDtlNTU2t9bkpKijZv3mw9r1gFAgAAAEDzwZgEAAAAQDgxJqk/Ag4AAAAAAAAAgJBbqLkhbW/kyJE1HuP3+2vdXn5+ftB2XFxcrc+teOzu7QAAAABoHhiTAAAAAAgnxiT1Z2/AuQAAAAAAAAAA7JVKS0uDtl0uV63PrXis2+0Oab8AAAAA7BsYkwAAAAAIp9Jm/DsJFRwAAAAAAAAAACHRtm1bbdiwIeR3c8uWLWrVqpWcztB9pb17tQebzRaytgEAAACEB2MSAAAAAOHEmCQ0CDgAAAAAAAAAAELzhbPTqQ4dOoT8bjZGmxEREUHbdVlhqOKxUVFRIe0XAAAAgPpjTAIAAAAgnBiThIY9RO0AAAAAAAAAALDXSEhICNouKCio9bn5+fmB57GxsSHtFwAAAIB9A2MSAAAAAOGU0Ix/JyHgAAAAAAAAAADY56SlpQVtZ2Zm1vrcise2bt06pP0CAAAAsG9gTAIAAAAgnNKa8e8kBBwAAAAAAAAAAPucLl26BG1v3ry5Vud5PB5t3749sN2hQ4eQ9w0AAABAy8eYBAAAAEA4dWnGv5MQcAAAAAAAAAAA7HNatWql1NTUwPaKFStqdd7q1autL+/L9e/fv1H6BwAAAKBlY0wCAAAAIJxaNePfSQg4AAAAAAAAAAD2SSNGjAg8X7BgQa3O2f244cOHh7xfAAAAAPYNjEkAAAAAhNOIZvo7CQEHAAAAAAAAAMA+6bDDDgs8/+abb5SdnV3jOe+//37geb9+/Rql9DIAAACAfQNjEgAAAADhdFgz/Z2EgAMAAAAAAAAAYJ80ZcoUORwO63lpaan+85//VHv8qlWrNGPGjMD2WWed1eh9BAAAANByMSYBAAAAEE5TmunvJDa/3+9vlJYBAAAAAAAAAGjmTjvtNL3xxhvWc5fLpTlz5mjixIl7HJeXl6fx48frp59+srYTExO1cuVKpaWlNXmfAQAAALQcjEkAAAAAhNNpzfB3Eio4AAAAAAAAAAD2Wffee6/i4uKs5263W0cffbTuv/9+5eTkWPvMGkEff/yxRowYEfjS3rjrrrsINwAAAABgTAIAAABgr3ZvM/ydhAoOAAAAAAAAAIB92vvvv6+TTjrJKr9czpRkbtu2rbKzs1VQUBB0/Omnn65p06aFoacAAAAAWiLGJAAAAADC6f1m9jsJFRwAAAAAAAAAAPu0SZMmadasWerYsWNgn9fr1aZNm4K+tLfb7bruuuv08ssvh6mnAAAAAFoixiQAAAAAwmlSM/udhAoOAAAAAAAAAABIKiws1EsvvaQZM2Zo6dKlysjIUGRkpLp06aIDDzxQf/nLXzRgwADuFQAAAIBGwZgEAAAAQDg1lzEJAQcAAAAAAAAAAAAAAAAAAAAAABB29nB3AAAAAAAAAAAAAAAAAAAAAAAAgIADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACAsCPgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMKOgAMAAAAAAAAAAAAAAAAAAAAAAAg7Ag4AAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAICwI+AAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAADAXqC0tDTcXQAAAAAAAAAAAAAAoFERcADQ6BNw5syZoyuuuEJjx45VmzZtFBUVpejoaLVr107jxo3Tddddp3nz5tW6TZvNVquHy+VSfHy8OnXqZF3b9OHzzz+Xz+er9/spKCjQE088oWOOOUYdOnSw3ou5Rrdu3XTaaafpzTfflNfrVUNNnjw56L2cdNJJDW4TAAAAwJ7uuOOOwOfuLl26VHqLzP7yY8zxTW3Hjh0699xz9frrrzf5tQEAAAAAAAAAAAAAaErOJr0agH1GcXGxHnvsMeuxZcuWSo8x+83jm2++0T//+U8NHjzYOn7ChAkh6YPH41F+fr712LBhgxWiMOEEE0x49NFH6xwamDVrls4//3xlZGQE7S8pKbGusWbNGr3xxhvq27ev9e+gQYPq1e9t27Zp9uzZQftmzpyprVu3qm3btvVqEwAAAMDe6fnnn9cNN9ygzMxMHXjggeHuDgAAAAAAAAAAAAAAjYoKDgBCbv78+dbk/ptuummPcENsbKw6duyo9PR0q8JCRT///LM1Yefmm2+W3++v1bVM9YTu3btX+jBBhqSkpD3O2bhxo6ZMmaLTTz/dqjBRG6+++qqOPfbYoHCD3W5X+/btraoUFf3+++8aPXq0vv/+e9XHyy+/bIUzDLNCrGG2n3vuuXq1BwAAAGDvdeGFF1rhBgAAAAAAAAAAAAAA9gUEHACE1HvvvaeDDjpIf/zxR2DfwIED9d///lerVq2yKh2sX79emzdvVl5enr744gsraFA+kd+477779Ne//rVW1zvhhBO0cuXKSh+makNWVpYKCgr07bffWm1GRkYGzn399dd18skn1ximWLFihS644ILAcaYN00cTdjBhCVNZwbynSy+9NHBOYWGhjjvuOOXm5qquXnzxxcBz079yzz77rHw+X53bAwAAAAAAAAAAAAAAAAAAAPYGBBwAhLRywymnnKKioiJr2+l06p///Kd++ukna/J/t27dgo43QYEJEyZo2rRp+vjjj5WQkBB47Yknngia6N8QMTExGjNmjP79739bfezUqVPgtZkzZ+ree++t9vy77747UOnBVG2YNWuWVZ0iJSUlcIypSmFCHI888khg37Zt2/Svf/2rTn01VR9MBQgjIiLCClKYaxomRDF79uw6tQcAAAAAAAAAAAAAAAAAAADsLQg4AAgJE2owlRiKi4utbYfDoXfeeUfXXHNNYIJ+dQ455BD973//Czr2hhtuUHZ2dkj/QoMHD7bCFImJiUEBhtWrV1d6vKna8P777we2Tz31VKuvVTHvd8CAAYHtGTNm1Kl/L7zwQuD56NGj1bVrV40fPz6w76mnnqpTewAAAAAAAAAAAAAAAAAAAMDegoADgJB4+OGHg0ICt912myZNmlSnNkxw4MILLwxs79ixo1Em9Pfu3VuPPvpoYLukpEQPPfRQpcdmZGQoJycnsD1u3Lhq27bZbDr44IMD2ytXrqxTSGT69OmB7eOPP97694wzzgjsmzNnjtatW1frNgEAAAAAAAAAAAAAAAAAAIC9BQEHAA1mqjb85z//CWy3a9dON910U73auuWWW4KqOHz++eeN8hc655xz1KtXr8D2yy+/bAUMdmfCDxVVdkx1fD5frY99++23lZubGwhKnHjiidbzKVOmKDo6OtDeM888U6c+AAAAAM3J1q1b9cADD+iggw5S69at5XK5rApr/fv310UXXaSvv/66Vu2Yz8amYtq5555rhZiTkpKsz82dO3fW0UcfrSeeeEJ5eXnaG91xxx3WmMA8KjrvvPMC+7t06WLtu/LKKwP7zFhq48aNtb5Ojx49AufeeOONgf1Tp04N7D/mmGMC+z/88EMriG2uHRkZqZSUFI0dO1b33nuvFQ6vq6VLl+rvf/+7Ro4cqbZt2yoiIsL6z8Tw4cOtMeWSJUvq3CYAAAAAAAAAAAAAYO9GwAFAg82ePTtoMsv5559vTUypj06dOlnVIF577TVt2LBBH330UaP8hczEnwsuuCCwXVhYqI8//niP49LT0xUTExM0oac6fr9fn376aWB7wIABte7TCy+8EFQpokOHDtZzM9nruOOOCzrO7XbXul0AAACgOSgtLdWtt96qrl27WpPXv/jiC2sc4fF4rKCvmez+3HPPafz48Zo8ebJ27txZZVsLFizQsGHDdMIJJ+ill17SihUrrMprJny9fv16a4xyxRVXqHv37tZk/ZbsrLPOChqPVKwKV5358+dr1apVge2zzz67ymPNfTWvH3nkkXr33XetqnLm75mVlaV58+ZZQXUTlqg4pqlOfn6+Vb1v4MCB+sc//qGFCxdq27Zt1jjH/Gfixx9/tEIwQ4YMsQIs5ngAAAAAAAAAAAAAwL6BgAOABjOThyo69NBDG9TeNddco9NOOy0wwb+xHH744UHbla0U63Q6rclV5UwI4tVXX62yTTM5x0zMqhj2qI3Vq1fryy+/DFqZtaKK7ZgVb82kIgAAAGBvYSqhHXXUUbrnnnusyfIVP2+bCnCpqalBx7/33ns68MADlZ2dvUdbM2fOtF776aefgvablf/bt29vVYQoZybLm8/WFasT7A1MZQQTzjCP3d9j+f7yCg4jRoywKliUe+ONN2p1DRMqLzd06FCrgkZlTGjChBteeeWVwL74+Hjr7+ZwOAL7TEjFhMhNNYfqmCCDCbE8//zzQRXv4uLirMC7+beced0EWEyVCDMOAgAAAAAAAAAAAAC0fAQcADSYWT21XHR0tPbff/+94q7269cvaELO4sWLqwwtJCUlBbbN5J5LL71UixYtsiZnmcla3333nU499VRrRdpyhx12mLUqaW2YVWXNxKHyyUJTpkwJen3ixInq3LlzYPupp56qwzsFAAAAwuvyyy/XZ599Ftg2E/TNRHxTdWHTpk3asWOHfvnlF6tCQLlff/1VV155ZVA7P//8s/W523wGN8zn9EceecSaNG8eGzdutNp8++231adPn8B5Dz74oJ599lntLcz7XrlypfWoyFQ1KN9vKmBUVsXhhx9+CKrMUBmv16s333yz0vN3ZyrUvfXWW9ZzUzXDXLf877Z9+3ZrvBQVFRU4/u9//7s++eSTKq970kknBY29Tj/9dKtigwlImMoQeXl51utnnnlm4Bjznw3zdzfnAwAAAAAAAAAAAABaNgIOABrErKi5YsWKwLZZOTQiImKvuKtmZVezQmi5tWvXVnpc165drQk65QEDE0QwAQMzuccEOmJiYjRmzBhNnz49sAqtqUJhVp2tGKCoSvmqpOVOPvlkxcbGBh1js9l07rnnBrY///zzoPsOAAAANFfz58/Xiy++GNgeOXKkNQn/lFNOsT5Llxs4cKBmzZoVVEHNVE8r/9xrPoebSe/lFSDMZ3kzEf7aa6+1KhuUM5/RTzzxROsahxxySGD/1VdfbVV0aInMfTFjhtpWcZg7d26gIoIZv5iQQVVKS0utf00Fjm+//VYTJkwIXMtUmrj55pv1wQcfKDIyMvB3Mve6YnWGco8++qi++eYb67lp47nnntO0adOsChIV+z9kyBCrYkTFYLepeEfQGwAAAAAAAAAAAABaPgIOABrErLJZUlIS2G7VqtVedUcrVmaobrLT8OHD9fvvv+uSSy6ptj0zKeemm27SPffcE5jgUxOzIur69esD2+edd16lx5n95ZN+zKShp59+ulbtAwAAAOH02GOPBZ6bQIMJBlf8HF6R3W7Xk08+GQhNm8+95ZP1zSR6U9Wh3GuvvaYuXbpUeV0TGjbXSkxMtLYLCwv1+OOPqyUyYexx48bVOuBg7l3FynMVAyKVad++vXVOVWOcgw8+OKia3dKlS/eo4uB2u62AQ7kLLrjAelTn4osvDqrkYKp1UMUBAAAAAAAAAAAAAFo2Ag4AGqSgoCBoOy0tba+6oxUrJRQVFVV53KJFi3T44YcHrRhqVjo1E33Me64YPDDhBlPJYvcJPVWpuJqtOW/s2LFVTloyE4fKTZ06NbB6LQAAANAcmUntprJZuSlTplQbSjDS09OtSe2m+sLll19ureZvVKx6ZvZV9bm5IlNhwFSKKPfOO++opaoYBDBBEBMyqIwZQ8yYMSOwffbZZ9fY9vXXXx8IilTlyiuvDBpfvfXWW0Gvf/zxx9q8eXNg+4orrlBtXHbZZYHna9as0U8//VSr8wAAAAAAAAAAAAAAeycCDgAaxOFw7NV3sGJAoHyV2N29++67GjNmjL7++mtru1u3btbqpdnZ2dq4caNV+cFM1HnwwQeVkJBgHWP2H3nkkZo5c2a118/KyrLar6l6Q7mKK5xmZmbqzTffrOU7BQAAAJre4sWLg0LRxxxzTK3Oe/75563AsKm4cOyxx1r7yj+PG/vtt1+t+1AxCPHbb79Zn6NbIhMeqVhhoaoqDqYSRk5OjvXchBYmT55cY9unnnpqjcfEx8cHBbK/+uqroNcr/v3MOHLQoEGqjREjRgSN1Sq2AwAAAAAAAAAAAABoeZzh7gCAvVv5hP5y+fn52puUT+wxkpKS9nh95cqVOu2001RSUmJtjxo1Sh9++OEex7Zt29Za1dRMvjrooIO0ZcsWeb1eazXUZcuWWavQVsYEJcpDFmaST02rpx5//PFKTk62ghGGqShRmxVXAQAAgHBYvnx50PbgwYPr1Y75fL1t27agSgy7T6CvSsVKbabi2tq1a63KDi2NGaNMmjRJb7/9trU9ffp03XXXXZWOQcqddNJJioqKqrbdTp06qU2bNrXqg/n7vv/++9bz1atXq7S0NBBOMGGXin+Hnj171vKdyRpblTPtAgAAAAAAAAAAAABaLgIOABokJiZGaWlp2rFjh7W9YcOGveqOmioM1QUc7rjjjkAAwbxXM5GqsuPK9e7d21opdcKECdZ2bm6uHnnkET388MOVHv/CCy8EnttsNo0bN65OVSe+++47/fLLL7Ve/RQAAABoShVDCYYZO9THzp079wgqVwwr10VLreBgnHXWWYGAw4oVK7Ro0SINHTo08LoZn8yePTuwXZuwdMeOHWt9/datWweFEszfrTzsXfFv6PP5tGrVKtVHS/77AQAAAAAAAAAAAAAkOzcBQEP169cv8NxMovF4PHvFTTWhjIyMjMB2nz59gl53u91WoKHiZKF27drV2O748eMDAQejYhsVmWCCmXBUztw3M8mnpkfFFWjLqzgAAAAAzVHFcG55aLg+6htmqExBQYFaqiOPPFKpqamBbRO+rsiMTcr/Jl26dKlVwDo+Pr7W19/971teCS+Uf8OW/PcDAAAAAAAAAAAAABBwABACFSfFFBYW6ueff25Qe2+++aaOOuooq+rB4sWLrdU9G8OCBQuCtkeNGhW0bcIaFcMEJrhQWwcddFDg+Zo1a5Sfn19t9YaGmDZtWqXtAwAAAOEWGxsbtL17WLe2oqOjg7affPJJ+f3+ej0mT56slsrlcunUU08NGluZ91zutddeCzw/88wzrSpydQ2pVCcvL6/Kv3/Fv6EZe9X37zdjxoxa9wcAAAAAAAAAAAAAsPehggOABjviiCOCtt99990GtWdWFZ0zZ46uv/56DR06VJ988okawxdffBG0PXbs2KDt7OzsoO2kpKRat92qVaug7dzc3KDt0tJSK5hQ7oILLqjTpJ6nn346qO2KE5UAAACA5iI5OXmPKmr1UbEqgbFz584G9aslM5Xnyq1bt04LFy4M3LO5c+dWelx16nKvt27dGngeFRWltLS0Sv+G/P0AAAAAAAAAAAAAAFUh4ACgwUwwoFu3boHt559/XiUlJfVqa9u2bUEBCTMJZuLEiSH/K5n+vfjii4HtLl26aMyYMdUGGjZv3lzr9rOysoK2U1JSgrbff//9oMldp5xyiupiypQpioyMDGw/9dRTdTofAAAAaAp9+vQJ2l6yZEmtzjOr9JtxwEUXXaT77rtP6enpQdUAFi1aVOs+mGpnu1cWaMlMdYSePXsGjT2MDz/8UF6vN3BMr169atXe8uXLrYB2bfz000+B5/379w+qENG7d+/A89WrVysnJ0d1CU5UrEQBAAAAAAAAAAAAAGi5CDgAaDAzaeWqq64KbG/ZskUPP/xwvdq68847g8IRF154oZxOZ8j/Si+88EJQwODcc88NmnxjdO7cWS6XK7Bdl0oSX3/9deB5p06drNVLd79+ObOq6cEHH1znlXCPPvrowPbixYs1f/78OrUBAAAANDZTka3iZ2Ezyb42TEU3U23gueee09SpUxUREaHRo0cHXv/0009rHVq49tprlZCQYIWOhw0bpszMTLV0Z5555h4Bh1mzZgX2nX322bVuy4QbzP2uTci7YpW8Qw45JOj1cePGBZ77fD7NnDmzVtefN2+eFXCJjo62QhmvvvpqrfsOAAAAAAAAAAAAANj7EHAAEBIXX3yxFQioGFT46KOP6tTGO++8E1SJwExCuuGGG0L+F/rjjz+C2jUBg4oBjXJxcXEaP358YNtMwDGrl9bEhA0+/vjjwPYxxxyzRyWIivfmxBNPlMPhaNCkJYMqDgAAAGhuTDBh0qRJge033njDqtpWnezsbL399tuB7SOOOML699RTTw3sy83NrVWoetWqVXrppZcCE/BNFYDdq6s1d3b7rq9ualvFoOJY4eeff9aaNWsCYxDzN6lrBbna3OtHH300KKy++3jFBLTNGKucqcxRVFRUY7u33Xab9a9p24zlBg0aVKe+AwAAAAAAAAAAAAD2LgQcAIREZGSkNXGofPKN2+3Wcccdp8cff9xanbMmZmVWM2Gp4oSdJ598MuSTj8zkHjNBKj8/P7DvwQcfVFJSUqXH/9///V/guZlQYyYCVTcha+PGjZoyZUrgfZgKENdcc03QMeY+eb3ewHZdJxdVnCBU8f5Mnz7dmgwGAAAANCemgkLFYIKZ+F7VxHbzOfqKK66wwgiGGV9ccskl1nNzXrt27QLH/uMf/9Bbb71V5XXNtcwYw1QgKNcYAerGFhMTE/SeaqNbt24aO3ZsYPtvf/tb4J4eddRRSk1NrVMfPv/8c911111Vvj579mzdf//9gW0TahkwYEDQMWbMZYLx5ZYtW2ZVkqj499ndvffeq88++yywffjhhxNwAAAAAAAAAAAAAIAWjoADgJCZMGGCFWgoV1xcrL/+9a8aPHiwVV3ATP6vKDMzU2+++aYOOOAAXXTRRVYoomKw4PTTTw9Jv3JycvTpp59aE6KGDx+u1atXB1677LLLdN5551V5rglDVFwp1gQkhgwZov/+97+BCUKGeW7e47Bhw6xVYiuuNtqjR4+gNqdOnRp43qZNG+u+1YdZedWEKcqZSWLlq9MCAAAAzcX+++9vfe4uZz6bjx49Wh9++KE8Hk9g/48//qgjjzxS06ZNC+wz44m+ffsGQtXms3R5qNqEhs1ndTNp3kyWL2fGFe+//75GjRqlH374IbD/kEMOqXe4OJxat24deP7KK68EhbWrc9ZZZwWFocuZUEF93H777daYasWKFYF9W7du1S233GKF28vHc6YS37/+9a9K27jjjjvUp0+fwLap1GH+82ECEhXHg+XhB9N2udjY2CrbBQAAAAAAAAAAAAC0HDZ/xeXSASAEzCR7M4GpsLBwj9fMqp2JiYnWpBwTcNj9v4IcDoe1MujNN99c9X9x2WyB5/Hx8UETfioyE2RMuME8KnPVVVfpkUcesa5ZHRPUOOaYY4JWDi3XqlUr6/zt27fvUanChDaeeeaZoH3ffPONxo0bF9i+/PLLg0IhdfXtt99aAZFyZvLX0qVL690eAAAA0BjMZ+rjjz/eCjVUFBUVZX2mNpUJdv/cfuihh1pBBRNsqMhUejPBh4pV0crHGmZyvflsbq5X0aBBg6xghblWZZPu77zzTut5586dtXbt2j2O6dKli9atWxeY6G/OaSom1GyCABUrOpgxkKkwZ0Lk5YGP3ZkQdtu2bYMqJJgKcFu2bLHC0tUxQZKKQfD+/fvrt99+C2ynpaVZ1epMwKHimM78Pd977z3rb1cVE5AwQfI1a9YE7Td/Z/O+CgoKrLHi7q+ZcPyxxx5bbb8BAAAAAAAAAAAAAHs/KjgACLlzzjlHixcv1oknnhgURjCys7OtiUE7d+7cI9xgVnGdP39+teGG3eXl5VkVEyp7rF+/vtJww8CBA62JUmb1z5rCDeWTdD766CNr9VDzvKKMjAxrUk/FcENycrI16Wr3cIPxwgsvBG03dAXZsWPHqmvXroHt33//XV9++WWD2gQAAABCzXyONp/Bb7zxxqDAggkibNiwIehzuxlDmACDmSi/e7jBuPTSSzVnzhz16tVrj7GGGQPsHm4wlQzMZ+TKwg17AxOmiIuLC2ybILkJYZigQsXqcbsz45Kjjz56j/FHTeGGypiwd8Vg9Y4dO6zrVxzTmXHWvHnzqg03GObvZsZ9J510UtB40QQ2zH8Wdg839O7dW3PnziXcAAAAAAAAAAAAAAD7CGe4OwCgZTKTVswqoybMMGPGDKvSgFnxc9u2bVYowel0WhNuevbsqTFjxliTW4YOHRrSPpgVRc1EoNTUVPXp00dDhgzR5MmTNXz48Dq3ZYIQ99xzj6644gqrQoWZ4GMqJZighlkx1UyWMqvCHnbYYVbAw1SW2J1ZifStt94KbLdr1y5oklB9nXnmmbr77rsD20899ZQmTJjQ4HYBAACAUDJjgPvvv98KKLz88stWiNhM0DefqU1VAhPcPeigg3TxxRdbk9qrYybRm8/j77zzjj744AN9//331ljDVIozVRx69OhhfdY+99xzrYn3ezNTPWHhwoW699579cUXX1jv09zL9PR067kZU1XFhDvMeKzidn20adPGCom89tpr1nhoyZIlVhDBjINGjRql008/XSeccEKV1SR2Z84zY6Off/5Z06dPtwIMZuxo2jQBDFN5YsSIEVabxx13nPV+AQAAAAAAAAAAAAD7Bpt/9yXUAQAAAAAAsNf7+uuvNX78+EAIffny5bU6b+rUqTrvvPMC23x1BAAAAAAAAAAAAABoKrVbWg8AAAAAAAB7lddffz3w/Oyzzw5rXwAAAAAAAAAAAAAAqA0CDgAAAAAAAC1MSUmJpk+fbj13OBw699xzw90lAAAAAAAAAAAAAABqRMABAAAAAACghZk6daoyMzOt55MnT1b79u3D3SUAAAAAAAAAAAAAAGpEwAEAAAAAAGAvVlBQILfbbT33+Xx68803dd1111nbNptNN954Y5h7CAAAAAAAAAAAAABA7ThreRwAAAAAAAD+9M477+iGG25olPsxbdo0jRo1qtbHL1iwQEceeaTatGljVW3Iz88PvHbxxRdr5MiRjdJPAAAAAAAAAAAAAABCjYADAAAAAABAHeXm5mrVqlWNct+KiorqdHy3bt1UUlKi9evXB+0/8MAD9dBDD4W4dwAAAAAAAAAAAAAANB57I7YNAAAAAACARtaxY0crzJCUlKSYmBgNGDBADz74oObMmaO4uDjuPwAAAAAAAAAAAABgr2Hz+/3+cHcCAAAAAAAAAAAAAAAAAAAAAADs26jgAAAAAAAAAAAAAAAAAAAAAAAAwo6AAwAAAAAAAAAAAAAAAAAAAAAACDsCDgAAAAAAAAAAAAAAAAAAAAAAIOwIOAAAAAAAAAAAAAAAAAAAAAAAgLAj4AAAAAAAAAAAAAAAAAAAAAAAAMLOGe4OAAAAIHQ8Ho+2bt3aKLe0bdu2cjr5+AgAAAAAAAAAAAAAAAAAaBzMUAMAAGhBTLihY8eOjdL2hg0b1KFDh0ZpGwAAAAAAAAAAAAAAAAAAO7cAAAAAAAAAAAAAAAAAAAAAAACEGxUcAAAAWqjv53RUemtHg9rYst2r/Y/cELI+AQAAAAAAAAAAAAAAAABQFQIOAAAALVSb1na1a9ewgINP/pD1BwAAAAAAAAAAAAAAAACA6tirfRUAAAAAAAAAAAAAAAAAAAAAAKAJUMEBAACghfL6fdajoW0AAAAAAAAAAAAAAAAAANAUqOAAAAAAAAAAAAAAAAAAAAAAAADCjoADAAAAAAAAAAAAAAAAAAAAAAAIO2e4OwAAAIDG4ZPfejS0DQAAAAAAAAAAAAAAAAAAmgIVHAAAAAAAAAAAAAAAAAAAAAAAQNhRwQEAAKCFMvUbzP9raBsAAAAAAAAAAAAAAAAAADQFKjgAAAAAAAAAAAAAAAAAAAAAAICwo4IDAABAC+X1+61HQ9sAAAAAAAAAAAAAAAAAAKApUMEBAAAAAAAAAAAAAAAAAAAAAACEHQEHAAAAAAAAAAAAAAAAAAAAAAAQds5wdwAAAACNwye/9WhoGwAAAAAAAAAAAAAAAAAANAUqOAAAAAAAAAAAAAAAAAAAAAAAgLCjggMAAEAL5ZPkbXAFBwAAAAAAAAAAAAAAAAAAmgYVHAAAAAAAAAAAAAAAAAAAAAAAQNhRwQEAAKCF8slvPRraBgAAAAAAAAAAAAAAAAAATYEKDgAAAAAAAAAAAAAAAAAAAAAAIOyo4AAAANBCef1+69HQNgAAAAAAAAAAAAAAAAAAaAoEHABgH7Hq57XK3p6jtl1bq32P9HB3BwAAAMA+5tdNOcoqLFXnlFh1So0Jd3cAAAAAAAAAAAAAAM0QAQcAaOF+/ORnPXP9K1r9y7rAvsEH9tfl/z5fXQd0CmvfAAAAALR8c5dt0/1zlmnFtnxr22aTxnZP052T+6t7q7hwdw8AAAAAAAAAAAAA0IzYw90BAEDjhhtuOfq+oHCD8fMXv+m6Cbdp4x9buP1AC+YL0QMAAKC+Pvt9my56+cdAuMHw+6VvVu7QyU99pw2ZhdxcAAAAAAAAAAAAAEAAAQcAaKZyd+Zp5U9rlLFxZ73beO6mafJ6vJW+lpdVoGn3vN2AHgIAAABoyTILSvXb5hxtzSmudxv3zv5dXp+/0td2FpTqv1+sakAPAQAAAAAAAAAAAAAtjTPcHQCAfVFBbqF++OhnlRSWqOfQruo6sHPgte3rM/TMDa/o2xkL5HGXhROGHNRf5/3jdPXbv1el7fn9frlL3IqIigjsW/Preq1cvKbafnz55ne65plLFBHpCtl7A9B8+OSXV/4GtwEAAFqenCK3vv4jQyVunwZ1SFTPNvGB10xVBRNM+GTpNnl8ftls0tjuabrxiD4a2CGxyjFJicenKJcjsO/nDdlalVFQbT9m/rRJ/zhugOx2WwjfHQAAAAAAAAAAAABgb0XAAQCakJn089Jt0/W/f81ScUFJYP/AcX11/dTL5Ypw6upxtypjQ3DVhp8+/03XH3yHHvj4Vg04oG9g/9a12/XG/e9q7mtfqyi/WGntU3TURYfopOsmKXdHXo39MaGIorwiAg4AAADAPsLn8+uBj5bp5XnrVPRnoNoY3S1Vj5w8WD6/Xyc8OU8ZebvGK36/9M3KHVr0zHd6/aL9NbhjUuC1dTsL9OQXq/Tez5tVWOpVu8QonT6qky4c102ZhaU19secU+zxKiaCr6gAAAAAAAAAAAAAAJLNb2bbAgCaxLM3vqo3H5pZ6WttOrfSkIMH6KMXP6/y/N4juuvx+fdbz9cv26TrJtym7IzcPY5r3TlNR114iKbe+ka1/YlNiLGCFeZ/CvqN7qWUtsl1fk8AmpeNGzeqY8eO1vN5C1opPX3XKsr1sWWLV2NGZljPN2zYoA4dOoSknwAAIDzueO83TZ23ttLXOqfGaL+OSXr3p81Vnj+ya4revHi09XzZ1lyd+sz3yi5073Fcp5QYnTi0vR799I9q+5Mc49IDJw6yakYN65ystLjIOr8nAAAAAAAAAAAAAEDLQcABAJpIdkaOTu94idylniqPcUU65S6p+nXj2SX/VJf+HXX9IXfqp7m/hqx/TpdDE04eo78+caEVfACwdyLgAAAAqrI1p1hjH5grr6/qtS6cdps81bxufHX9QeqUGqMT/vutFq3PDtkNj3DYdeyQdrprcn8qOgAAAAAAAAAAAADAPsoZ7g4AwL7i2xkLqg03GDWFG4ydmzOtIEQoww2Gx+3VZ9O+1pY12/XPL+6Uw9mwVd8BhJ/vz0dD2wAAAC3D7CVbqg03GDWFG4xtecUqcntDGm4wSr0+vf3jRm3KKtK0C0fJbreFtH0AAAAAAAAAAAAAQPNnD3cHAGBfUZBTWOMxtlpM4GnVMU1LvlqqxrJ03nLNm7mw0doHAAAAEB75tQhU1zQisdmktglR+n71TjWW71bv1JcrMhqtfQAAAAAAAAAAAABA80XAAQCaSJcBnWo8JqVtUrWv9xreXc9c/7L+edHTakxzX/+mUdsHAAAA0PR6tYmr8ZjW8ZHVvj68c7JunrFEt7/3mxrTzJ82NWr7AAAAAAAAAAAAAIDmyRnuDgDAvmL44YOV2CpBORm5VR6zc3NWla9FxUYqP7tAK35YpcaWuaXqfgDYe/hkk7fGdZhrbgMAALQMh/Rto4Qop3KLq67ksC2vpMrX4iKd2pxTpE1ZxY3Uw4r9aPxrAAAAAAAAAAAAAACaHwIOANCIln63XJv+2KqE1DgNmThATqejXu0MP2KI+o7qqVfufEtNYeMfW5rkOgAAAAAa1w9rM7VuZ6FS4iK0f9cUOex1Dy+aMw7u01p90+P1+OeNH7g2Vm0vaJLrAAAAAAAAAAAAAACaFwIOANAIli9cqUcufFJrlqwP7ItLjlV+Vv0m6fz69e/K2Z6jppK7I0+L5y7RfgcPbLJrAgg9n7/s0dA2AADA3ufHdZm68X9LtHJ7fmBfUoxL2YXuOrdlPg7MX5OpTVlFairb80r047osDeuc3GTXBAAAAAAAAAAAAACEnz3cHQCAlmb9sk264dC7gsINRn3DDUZxQYn+WLRGTWnRp0ua9HoAAAAAQuP3Lbk66/kFQeEGoz7hhnL5JR4t25anpvTNHzua9HoAAAAAAAAAAAAAgPCjggMAhNgbD8xQYW7TrWxa0SFnjte6pRu0ff0OJbdNUu6OfGVuzapfY36WbQf2dl7ZrEdD2wAAAHuXxz9fqcJSb1iufeKwDlq6OVfbcovVOj5SGXkl2llQWq+2/FbtCAAAAAAAAAAAAADAvoSAAwA0QGFekea+9o02rtis+JQ4HXTaWH05fV5Y7ml0bKSufvovioyODOx77NJnNOvpT+rV3pCDB4SwdwAAAAAaQ26xWzN/2qx1OwqUHBuhowak66Nft4TlZidEOXXf8QMV4dxVMPS6N3/W/xZtrFd7Y3ukhbB3AAAAAAAAAAAAAIC9AQEHAKinL6Z/q0f/8rQVcig39dY3wnY/9z92eFC4weg3une9Aw4v3/mWFdroNay7SotLVZBTqLjkWLkiXCHqMQAAAICG+N+PG3XrzF+DqjU89NHysN3UIwekB4UbjGGdk+sdcHjow+W6c3J/9U1PULHba4U5kqIj9rgGAAAAAAAAAAAAAKDlsPn9fn+4OwEAe5tfv12m6w68XT6vT81Fh17tdMNLV6jvqJ6BfSaYcGbXy5S1LadebUbFRmnIQf216NNfVFrsVkx8tCaeOV5n3XaSktskhbD3AEJl48aN6tixo/X84/lt1Tbd0aD2tm7x6rBRW63nGzZsUIcOHULSTwAA0DDzVu7Qmc/Pl68ZfavTq02c/nnyEA1onxjYV1jq0Zj75yq70F2vNmMjHBrVLVXf/LFDpV6f4qOcOnFoB105sadSYiNC2HsAAAAAAAAAAAAAQHPAkncAUA9vPjSzWYUbjI0rNluhi8VzlwT2RURF6K6ZN1qVGPZgq7nN4oJifT/rRyvcYJhqFe8/+ZGuPuDvytqWHdL+AwAAAKi9J79c1azCDcaKbfma8tR3+mFtZmBfTIRTz5493Aom1GNIooJSr+Yu226FG4y8Yo+mzlurk56ap6yC0pD2HwAAAAAAAAAAAAAQfgQcAKCOTOGbBbMXN9p9c0bUf7V1d4lb/77sWauP5fqM7Knnl/5L591zmgaO66t+Y3pr9LHDpQZMhtq8aptevuPN+jcAoEmY/yrw+W0NelDrCwCA5qfU49M3K3c0WvvOBnxbVOT26taZvwXtG9ElRZ9dN0HXHtpLI7oka1jnZE3s07ohQxKtzijQ45+vbEALAAAAAAAAAAAAAIDmiIADANSRz+dr1OoNDmf9Aw7GxhVbtOTr34P2JbdO1Ok3n6B/fnmXHvvmHsXERzewl9Jn075WaTErpgIAAABNzevzN2oI0Wlv2NdFv2/J1c8bgiu+tY6P0pUTe+qtS8bof5eOkcvR8K+k3v5xozzNrLIeAAAAAAAAAAAAAKBhCDgAQB05HA51Gdix0e5bSWHDQwPb1mVU+7q71NPgaxTlFytnR16D2wHQeLyyheQBAACal+gIh7qkxTZa+8WehocGNmUXVfu6x9fwa+QUuZVX3PCxDQAAAAAAAAAAAACg+SDgAAD1kNo2uVnft6XfrdC37y6Qx135ZJ/+o3s3+BquCKfikhtvUhUAAACAqrWOj2zWt2fBmkx9unRblRUW9uvU8DFVlMuu2Ehng9sBAAAAAAAAAAAAADQfBBwAoB52bMlq1vdt1lMf644THtIZXS7TvJkL93j9sHMPVGRMwyZEHXDiKEXHRjWoDQCNyyt7SB4AAKD52ZFXouZs6ry1uvDlH3TAA5/r8+Xb93j91BEdFels2OeMYwe3U0QD2wAAAAAAAAAAAAAANC/8CgwAdTT7uc+0dsn6veK+ZW7J0l1THtEvXy3VljXbrLDDok9/UWRMhI6/6qh6txufEqezbz85pH0FAAAAUDsvzVur1TsK9orbtTW3WBe//KMWr8/Sup0F+vi3rZq3cocSol06Y1SnerebGhuhvx7cM6R9BQAAAAAAAAAAAACEnzPcHQCA5srr8erbdxfok5e/VNa2bLXu3Eq9hnXXS7e9Ue82Bx/YX5tXbVXGhp1qyvdx50kPKz8zXz6f39qX1DpRB5wwql7tDT10kC7957nq0KtdiHsKAAAAoCK316cPf92qGYs3aWd+iTqmxKhverz++fGKet+o0d1SrHDEttymqwBR6vXpwpd+UGZhqfxlQxK1jo/UYf3a1Ku9Cb3SdPuk/tb9AAAAAAAAAAAAAAC0LAQcAKAS2zfs0P1n/VtLvvo9sG/5wlX6+u3vG3S/zrptiroO6qTTO12iksLSJrv3uTvygrazt+do1lMfKyYhWoW5RXVqa+QR+6lL/44h7iGAxuD32+Tz2xrcBgAAaHobMgt01Rs/adH67MC+nzfmaNYvWxrU7vVH9FHH5Bgd8MBclXh8aio7C4LHP9vzSvTq/PWKjXCooNRbp7YO7ddW3VrFhbiHAAAAAAAAAAAAAIDmgIADAFQw+7nPNOOxD7T2tw0hvy92u03LF67Ucze9Kk8dJ/A0FneJRzabTf7yZVRr4b3/fqgTrj7aOg8AAABA6JjP5WbS/9Rv12hVRkHIb63DJi1ck6nbZ/4qj6/pwg3V+bPIXJ28/N1anbl/58boDgAAAAAAAAAAAAAgzAg4AMCfnrxmqt557INGux/xKXF69sZXm9X9dpe4NfmKI7Tok1+0YfnmWp2zedU25WcXKD6ZFVOB5s4rm/VoaBsAAKBp3PLur3pt/vpGaz8xJkL3zVmm5qTI7dV5Y7vo82XbtXZnYa3OWbEtX8Vur6JcjkbvHwAAAAAAAAAAAACgadmb+HoA0Cyt+HFVo4YbouOjlbMjT83RT3N/1QX3naGLHzm7Vsebyg2uSFej9wsAAADYl/ywNrNRww1xkQ5lFpSqOfp+9U79/ei+uv6wXrU63mG3yeXgKy0AAAAAAAAAAAAAaIn4NRgAJM157rOQ3IeB4/vqjL+fqNR2ydZ2bGKMJl9+hGLio5rtfV63dKPuOOEh/fbtcp1z18k1Hj/88MGKiolskr4BaBiv3x6SBwAAaHxvLNwQknbG9kjVZQd2V6v4ss/sidEunTumiyKczbfawe9b8nThyz9q+bZ8q+81OaRvayvkAAAAAAAAAAAAAABoeZixBgCStq7d3rD7YJNad0pTYW6hNv2xRTe9cqVmF7+md7Ne0tl3nqydm7Oa/X3+5p358pZ6deatJ1V7XHFBiebPXiS/399kfQMAAABaug2ZhQ0630z3b5cYpexCtzZlF+nx0/bTinuO1M+3H6ZLJnRvttUbKnrv582KjXTq4vHdqn2fuUVufbUio0n7BgAAAAAAAAAAAABoGgQcAEBSUuvEht0Hv7R9/Q6t+mmdvpg+T9dPvFNPXvOS9VJkdIT83aNUemyiSo9JlC/d1Wzv+bR/vKPBB/XXBfedYfW7Mku+/l1/P+Y+PXTeE4QcAAAAgBBJi2tYlTQTP96cU6zfNudq5k+bdcoz3+vBD5dZr0W7mm/1ht098vFyHda/ja4+pKcinfZK3+d3qzN19gsL9Ld3fmFMAgAAAAAAAAAAAAAtDAEHAJB06FkTQn4f3n/yI73zyke67tdXlP94B5Vc2koll7dSwXOdVHRLW/ljzNqjzYupynD7cQ/qqAsn6vWNT6vf6F5VHvvJy19qxr9nN2n/ANSNTzb5ZG/go/n9dxUAAC3RCUPbh7zN575Zo1e/X6uLXvlBewufXzp/6kJdcEBXff+3iRrYPqHKY19fsEGvL1jfpP0DAAAAAAAAAAAAADQuZyO3DwB7hf0mDtSYySM0b+bCSl+PS45Vp97tNe7EUSrILdKOjTsVFRel95/6WF63t9Jz/A7pP97PVZS52+Rgu02eA+JUFGtXzM2b1dwU5hbpoxc/12HnHqg/Fq2p9tipt76hE646usn6BgAAALRUB/VurQm9WunLFRmVvp4U7VL31nE6ckBbZRe6tT2v2KrM8PJ366yqBlW5Z9bvKvb4tDfJKfJoxuJNOqJ/Wy3dnFvtsffPWabTR3Vusr4BAAAAAAAAAAAAABoXFRwAQJLNZtPNr1+t0ZNHyOF07Lonf2YT8rMKtPT7FXr6+lf05ZvzdMatJ2n4YYOrDDcYVoghveqVz737xcjTP6pZ3v+fv/xNq39ZJ3eJu9rjivKL9dPnvzZZvwDUjam+4G3ggwoOAAA0Dbvdpv+eMVQH9m4lh23XOKL8WXaRWz+uy9I9H/yuj5du1TWH9tKobqnVhhuMvS3cUO67VTv16+YceWt4g7nFHi3ZmNNU3QIAAAAAAAAAAAAANDICDgBgwghuj/5x6qP6buZCeT0VQguVTKbZsHyzbjn6XtkrBiEq4RkbV+O9NSGI5shmt8kV6arVsd/OmN/o/QEAAABauhKPV5dNW6QvlmfI6981EKlsfv+Kbfm68KUf5LRXHahuCYGPCEf1Y65ys5dsafT+AAAAAAAAAAAAAACaBgEHAJA0/YGZ+u69H2p9L9b/vkkF2QWKiY+u8hh/VM2TjeLS45vl/R9+2BD1GdnDmlRUk+KCkibpE4C68/rtIXkAAIDG9+/P/tCXKzJqffxvm3Pl8/sV5WrY/1YnRDnVHE3o2UrDuyQHKlhUJ7/E0wQ9AgAAAAAAAAAAAAA0BWasAdjnmYoN7z/1UZ3vwz8vekqFeUVVvu5YVfPE/8IfM5vd/U9uk6hDz54gj9tb6Wqxu0vrmNoEvQIAAABadvWG1xdsqPN5107/WcVuX4OunVvc/MIB6YlROnZIO5V4avfe2idHNXqfAAAAAAAAAAAAAABNo3ku0wcATWjxZ0u0c3NWnc8ryi+u9nXXnFyVnpQsOatYc7TQJ9dnuWpO0tqn6J5Zf9PqX9bpzYfeld9Xc8RhwNg+TdI3AHXnk816NERDzwcAADX7fNl2ZRaU1vlWFbq9Le72tk+K1tTzRuinDdl68otVtQpdj+iS0gQ9AwAAAAAAAAAAAAA0BQIOAPZp7/zrAz157dRGadu+3aOof29X8VWtJcduE4RLfIp+YKtshbWZrtN4YhKi1bZLK3Xs00H7HzNM46eM1juPztLzN79W6za+fOs7RUZHaMABfRu1rwAAAEBLZCbxP/DhMu2rEqKcap8crZ6t4zSxbxsdOSBdT3y+Uo999ket23hn0SbZbDYN7ZTcqH0FAAAAAAAAAAAAADQ+m9/vD+/sWgBoIoV5RcrckqWE1Hjr8eu3y3Tt+NvU2P816O0RqXHTj9H3m5crNyNPzh8L5XovW44N7hrPjYqLVHF+SaP0y+6w65XVT6h1x7TAvt/mLdfVB/y9Xu0NOXiA7vjf/yk2MTaEvQRQVxs3blTHjh2t569820Ot0l0NuokZW9w6a+xK6/mGDRvUoUMH/igAANRTXrFbGXklSomNUFJMhOat3KHTn5vfJPdz8pB2+mJ5hnKKah6HVBTtcqiokSpFuBw2zbtpolrFRwb2NeSeTOjVSv89Y6hiI1nPAwAAAAAAAPh/9u4CPIprf+P4uxt3IiQEElyLu5TilLbUlQr1lsqtu3t763Ir1EudKoViLRQoxd1dEywCcd/d/zPDn4WUyCa7SUj4fp5nHmZmz5xzMrk3ZcJ55wcAAADUVvyLL4A6L2VPqj57/DvNGT9fBXmF5sL+3iO7qTC/sMrDDQavrfnacck/8t57UMF5ri0mslotGnxFf/n5+2rKJzOrZF69zuqqiAb1ip377b2ple5v5V9r9fI17+rZCQ95YHYAPMEuq2yyut0HAABwT+KhHL02fZOmrN2vgiK7vK0WDW0Xrcy8omq7tasT05WT7/p4Vot0cfc42ewO/bx8T5XMafgpMQoPLB7GHLdgZ6X7m7M5WQ/+vFrvXdHNA7MDAAAAAAAAAAAAANQEAg4A6rSUvQd1d/8ndGBXsvOc3WbXgolLZbFYyr3ey8dLvc7saoYivLy91KxDY417anyF57Fv+wGX2waFBeqFKY8qMjZc2ek5+vPLOSosqNzCp6i4CKUkHizxs4WTlmlk4JXqd15PjXrofLXp2VLr52+SO4z7unvjHjVu28itfgCcvFasWKHPPvtMc+fO1a5du5STk6MGDRqoWbNmOu+883TZZZepYcOGVTb+zJkzNW7cOM2fP1/79u2T1WpVo0aN1LVrV40ePVpnnHGGeQ4AAFftScvVRR/M14GMo5XZiuwOTV93QBYXqxwMbhMt4/HF28uqVtHBemvGlgp/A3akZLvcNiLQR59d21ORwX46mF2g31buNedcGQ3r+WtvWl6Jn01Zs19/rJumEe0b6LbBLdS+YZhW7E6TO6au2aeEgzmKjwh0qx8AAAAAAAAAAAAAQM2wOKrj9eUAUEPeuuUjTf7oz0pfP+rh83XVExfLL8DPee6u/o+7HQRwVVhUiDqc1k7zJyxWeT+tGzSLVlpSuvKy81U/LlJn3TRMfoG++uiBr8odx8fPRxfePVLjX57g9pxvef0aXXTP2W73A6ByEhMTFR8fb+5/9k9bRcUWfytyRaXsK9T1/Tea+wkJCYqLi6uSb016err+85//6Ouvvy6znb+/v5566indf//98vb2XFb30KFDuvrqq/X777+X2W7QoEFmAKJx48YeGxsAULfd98Mq/bw8sdLX3zOstcYMbC5/Hy/nuZHvzNW6vRmqDlHBvureJFx/rj+g8jIOjSMClJSRp7wihxrVC9AVvRubVfNe+2NzueP4+1h1Td+m+vDv7W7P+fnzO+iqPk3c7gcAAAAAAAAAAAAAUP14/SyAOquwoFB/fTvXrT6+/+8EXdrgJr1z+yfKSM00z93z4RgzeFAd0lMyNe/XxYpvV/6C4v07ksxwQ1R8pO5470YzmDH1k5kujVOYX+iRcIPBVmTzSD8ATh5GuGDIkCHHhRtCQkLMIEFQUJDzXF5enh555BFdccUV5oJJT8jIyDCDC/8ON0RFRZnbsWbPnq3+/ftr//79HhkbAFC35RQU6ffVe93q480Zm9XzhRl6euI6pecWmudeubiTwgLcCzG6KiWrwKw20bL+0f8el2b3wVwz3BAXHqAXLuig2wa10PilCS6Nk1do90i4wWCrZLUJAAAAAAAAAAAAAEDNI+AAoM7KSstRblae2/3kZOZq0gfTde/AJ5V5KEtN28fr3cX/1ann9VR12b0+UR1Pa+tS25SEVD153sua8slMJWxybzFVZXQccEq1jwmgZHZZZJfVzc1S5bd3zJgxWr58ufN42LBhWrhwoVnVYdeuXeaff/31l7p16+Zs8+OPP+r555/3yPg333yzVq9e7Ty+8sortXXrViUnJ5vbtm3bzOoORxiVLC6++GKPBSwAAHXXwewC5RfZ3e4nM69IX8zfqcs/Wqis/CK1bxim324/VUPaRqu6bE7KVo+m4S61TTyUq+u+WKIflyYq4WCuqluvZhHVPiYAAAAAAAAAAAAAwDMIOACos1bNWitX1uWGRAS71N+u9Yn6+Y3Db/du0DRaT//6oBl0iG/TUNUhaXeqBlzcVzFNir9NvDRv3/aRqlu7Pq3Urnerah8XQO01f/58M6xwxKWXXqrp06erd+/eslgO/xD38vLS4MGD9c8//6hXr17Oti+99JLS0tLcGt+oyDB+/Hjn8Z133mlWkmjRooXzXPPmzTVu3Dg988wzznPz5s0rNm8AAEqyYFuKSzemnovVGNbvy9C4+TvN/aZRQfrs2p765bZ+ig/3r5ZvQHJGns5o30AN65U/npEDfGzCGlW3vs0j1S42tNrHBQAAAAAAAAAAAAB4hsXBq2cB1EF/fTdXL135Trnt2p/aRq/MeEpzf1qoeRMWae7Pi8psHxoZrCFXnKbZ389TdnqO4ts2kq3IZoYfTiYWq0UOe/E3lxtBj5f/fFL14yJrbF4ApMTERMXHx5u34qO5pygy1tet25K6r0A3n7beWbkgLi7Oo7fZqIzw1VdfmfvBwcHavXu3wsNLfzv0nDlzNGjQIOfxt99+q8svv7zS448cOVJTpkwx941Qw4YNG+TjU/oi06FDh5rVJAwdO3YsVvkBAIBj/bB0tx78qfwF/v1bRumTa3poypp9mrpmn/7ckFRm+/ohvjqzQ6x+X71PWXlFahUTrJyCIu1IyTmpvgFGDvLfxZRaxwTr6xt6Kzq0egIfAAAAAAAAAAAAAADP866CPgGgRtlsNr36/DgdujlW+e2DJIfkvypLwVMPynt/gbOdf6Cfxrx2jRlQWDZjleZNWFJu3xmpWZrwv6nO4+2rd+lkdON/r1RGSqa2rNghvwBf9b+gtwZd1k++/u4tpAZw8lm+fLlz//zzzy8z3GAwKjsca9u2bZUeOyUlRdOmTXMe33LLLWWGGwz333+/M+CwZs0arVu3Tu3bt6/0HAAAdVOhza4nJ6wrt12wn7ceOaut2X72pmTN3Fh2uMGQnFmgLxccfQ5ZtzdDJ6MnRp6i/Rl5Wr83QwG+XhrZMVZndYyVrzfFSgEAAAAAAAAAAACgNiPgAKDOeX/qVO18qpHkc3RhS1a8v7KHRyjyld3yX5llnmvRtakeHvGc8nPyZSuy62QXFhWq9JTyF0cFhQXqnFtHKCCIt6ICcN/atWuVnJxsVk6IjCy/AkxmZmax44iIiEqP/eeff8puP/rz/5xzzin3GqOCQ0BAgHJzc83jX375hYADAOA4z/++TnkuPGO0iQnWpWMXKK/QJtu/qhGcjOoF+igtp7DcdhFBvrqyT2P5eXtVy7wAAAAAAAAAAAAAANWH19oBqFOVG1au36IPcpcWCzcc4fCzKvW+eNkDDn+2bt4m5WTknvThhqhGEbrzvRv1/rKXFds8utz7fPnDFxBuAGoJm6we2apa/fr1NWDAAJeCAr/++mux427dulV63CVLjlbuqVevntq0aVPuNb6+vuratavzeP78+ZUeHwBQ9xTZ7Jq3JVnjFux2qf2y3WnKLiDc0DDMXy9f1FGT/tNfDeuVH6S+Y0hLwg0AAAAAAAAAAAAAUEdRwQFArWe8ffvnN37XhHenaksfqxyXlb5I3xHopZxB9RQ89aBOdqdfM1CnXzNIHfq3k5e3l9b+s0EpieXfl4RNe6tlfgDwb//8848efPBB5/Gpp56qPn36VPpGrV+/3rnfrl07l69r1aqVM9iwceNGvlEAANnsDo2ds01fLdil/Rl53BEXXdYjXhd2a6QeTSPkZbVo3tYUHUgv//5tT87mHgMAAAAAAAAAAABAHUUFBwC13us3fqCPHvxKSbtTVNii/Ld9FjQLUE0IjgjyeJ8RDcMVHhNWqWv/GDdHz496U9+/PMEMiXz2+HcqLCgq97rZ4+eZ1TIAnPjsDqtHtprgcDhUVFSkAwcOaNKkSbrssss0cOBApaenm5/HxcXpq6++cmuMxMRE577Rn6saNWpUrA9jrgCAk9s941fq1embTvhwQ4i/599zERvqp4jAyvU7fmmC7vh2hT6eu9387+kr0zbK5sJ/Vies3FOp8QAAAAAAAAAAAAAAJz4qOACo1YyqA398Mdt5bCkofzWMpdCumjDimsH69e3Jsts9txD24N5DCgoLrPT1aUkZ+uKJ77V1xXat+XuDS9fk5xaoIK9QAUFelR4XQO20b9++cttUJChQlunTp+vMM88s8bNzzz1X77zzjpo0aeLWGElJSc79yMhIl6+LiIhw7hshjIyMDIWFVS5sBgCo/f7ZkqKJq2pHlbPLe8Xr4793yJPRvH0Z+QoL8Kn09UlZ+frv1I1asyddqxIPBxnLk5lXZFbNMKo+AAAAAAAAAAAAAADqFgIOAGq1aZ/NKnYcsDBDuf3KXmQasChDNcHH11sBoYHKTsv2aL/Z6Tlu9/HPL4tdbhvVKEIBQeVXygBQ82yympu7fRzRq1evctt7qprBrl27SjwfHBysZs2amcECd2VlZRXr11X/bmv0Q8ABAE5ePyxNUG0R6Ostf18v5RZ4tiJbem6h231MXl1+kPKIJpGBhBsAAAAAAAAAAAAAoI5yb8UbANSw5MSUYscBC9PlvTuv1PZ+m3Plt9qzAQNXhcfUk+UEfsGo1cu1/yScdeOwKp8LABgBBx8fH7MiRFRUVLEwwdtvv6127drprbfecutGFRQUOPeNsVz177aFhe4v6gQA1F770nMr1L4miw5EBfud0L8IcvXWXN6rcRXPBAAAAAAAAAAAAABQU07kf9cGgHJFNooodmyxSfWf3SnfDceHGPxWZOrWws6Kjosst9+Q8CA1atnAY98Bbx8vDb78VEU0CC+3bVhUqGpCvejyxzXuySUPnFst8wFw4lm8eLESEhLK3DzljjvuMMMMRp/Jyclm4OGhhx6St7e3M1Rwzz336MMPP6z0GMdWm7CcyAk0AMAJLSa0YtXN7hzSSlHBvuW2iwzyVaN6AfIUXy+Lzu4Uq0iXxnY9+OdJrtyXVtHBurZf02qZDwAAAAAAAAAAAACg+hFwAFCrnX71oOPOeR0qUvTjOxT94FaFfblfYV/sU8w9W1T/+V1a+sMSjX760vL7vWaQImLLDyO4yupt1aLJy9Whf9ty2/oFlr+opypExR19Q3ppopvWl3+gX7XMB4D77JJsDotbm9HHEbGxsWZFhbI2TzHG8vU9+vOwcePG+u9//6vJkycXq6Bw//3368CBA5Ua49j+K1KF4d9t/f0rtrAVAFC3XNi1UYXaz9yYpDuHtiq33ahe8S4t+HeVt5dVszYlqVvj4iHxkvh6e6kmxLoQ6GgcESh/n5qZHwAAAAAAAAAAAACg6hFwAFCrFeSVviDVd1ueQn5LUcikVPnszjfP7VyboKy0bPn4l/5GUquXVWffcrpOu6iP5+aZW6jXb/xAm5ZsLbdtTJP6qgnNO8SX2yY9OaNa5gIApTn99NP15JNPOo+NKg9ffPFFpW5YaOjRyjXZ2cdX/imNMeaxgoKCKjU+AKBuyC86Ng5YvjV70lVYZJePV+nVg4zPLu/VWGd2jJWn5BTYdM/4VdqalFlmO6OoUWxYzYT3WkYHl9vmYE5BtcwFAAAAAAAAAAAAAFAzCDgAqNX++nZuha/55KGvVFhKMMJitejej29RXOuGGjr6NFmM1T0etG3lTnmV8TbU8+84U0OuOK1SfQfXq/wC25E3D5evv+8JG74AUDl2WT2ynWjuuOMOeXt7O49nz55dqX6ioo5Wrjl48KDL1x3bNiAgQCEhIZUaHwBQN/y2cm+Fr3lhygYV2hylhhteu6Sz4sIDzeoQnn0ikdbuzZC3tfRexwxoobM7NaxU32EBpQfJy3P9qc1kdeH5q5ELVR4AAAAAAAAAAAAAALXXibdiDQAqICO17LePlsReykIiw2UPnKcR1w42943Fsw5H6W0ry1ZkU2hkiCIbhRc77xfoK7vNrvantpF/kF+F+zUqU1RUbPMY3fbWdTrjhiGa8smMctufecPQCo8BAJ4WFhamdu3aOY8TEhIq1U/Tpk2d+3v3ur44dc+ePc79Ro0aVWpsAEDdcagSFQXsZTxm/GdwS53X5fB/X7ysFnn+iUQqsjsUGeyr6ODiIecAH6vyCovUt0Wk/Lwr/iuj9NzSK+yVpllUkJ47v4NGdmqgX5cnltt+VM/GFR4DAAAAAAAAAAAAAFB7EHAAUKs1ahnr0f4WTVnu3DdCBoGhAVUWzEjdc6jYufycAk18f7ru7v+4ep3VTdXhkW/u1AV3nqWf35ikokJbmW37ntdDfc7uXi3zAuAZNofVI1tVKigo0ObNmzVt2jRlZ7se1AoODnbu2+32So19bEjCmIOrjm3bvn37So0NAKg7jAX6nvTXxiTnfmiAjwJ8Sq8A547UrAIlZRUPZ+QW2vXF/F0a9dECDWpdPdXbPriym0b3aaKxc7arjCy66ZzODdW/1dEKTAAAAAAAAAAAAACAuoeAA4Ba7aybh3m0v/07ji4mslqtZqWF6paTkatNi7fKYrVU+Vgzv55r/rnw92Xlth121QBZLFU/JwAnjzlz5iggIEBt2rTRmWeeqdmzZ1eqikKDBg0qNX7Pnj2d+/v373epEoQRyFi5cmWJfQAATk6X9/JsRYGEQ7nOfR8vq0IDvFXd0nOLtOlApqrjr/+/rthjVs6bdUywozQXdG1Y9RMCAAAAAAAAAAAAANQoAg4AarXG7RopINjfY/2Fx4Q59202m5J2JasmHNiVrPrxkVU+zqGkdPPPooKicts6ynudKoATjl0Wj2xVxaigcGz1hV9//dWl6zZs2KDdu3c7j3v37l2p8YcOHWqG2Y74/fffy71m5syZys09uvD09NNPr9TYAIC6o11sqPy8PffrlahgX+d+boFNBzLyVRN2puaoYVjVVLQ7VnJWvuwOo/JU+c8blSzaBAAAAAAAAAAAAACoRQg4AKjVMlIylZuV57H+ho0e6Nx32B2yGyttakjSrhTzz4jYelU2RmyzaPPPdn1bl9nOarWobe9WVTYPACen6Oho9e3b13n83Xffae/eveVe9+STTxY7vuiiiyo1flRUlIYNO1oJ6J133lFhYWGZ17z22mvO/bZt21LBAQCgpMw85Rd5buX9hd3inPtFNbyif0/a4VBfTKhflY3ROCJQXlaLOsWV/dzjbbY5GkgHAAAAAAAAAAAAANRNBBwA1Gr+QX7m4ntPCG9QTyPHHF3o6u3jfUIs6j+4L013jb1J7y56SaGRIR7r12Kx6Iwbhpr7F9xxVplt+57bQzFN6ntsbAA44u6773bu5+Tk6JprrlFBQUGpN+j555/XTz/95Dw+77zz1KNHj0rf0Hvvvde5v3HjRt16662ltn3uuef0119/OY/vu+++So8LAKg7gny9PdZXbJi/LutxNOAQ4u+jtg089wxQWUYViTcu6aRfb+unUH/Pfb1GsOGSHvHm/nX9mpbZ9syOsYoO9Vz1PgAAAAAAAAAAAADAiYmAA4BaLSA4QD3P7OqRvg7tT9NDw59T6r5DznMX3Fn2wv/q8u3zvyjzULYyUjM91udVT1ysuFax5v5pF/XRZQ+eV2K7Fl2a6p6PbvHYuACqj91hlc3NzeijKl166aU644wznMczZsxQ//79zSCBzWYzzzkcDi1evNgMMzzxxBPOtg0bNtR7771XYr9NmzY1g1xHttKMGDFCZ599tvP4008/NY/XrVvnPLdz505dd911xSpH9OzZ0zwHAEB4kK/6tYj0yI3Yl56nqz5drNSsfOe5609tdkLc5Lf/2qqUrAJl5BV5rM/7T2+jRvUCzP3zuzbSdaeWHHIwKjc8f34Hj40LAAAAAAAAAAAAADhxWRzGijEAqMU2LNqi+wY+qcICzyy06XhaO70x51nn8ccPfa0fXv1NNa33yG5aNHm52/0YgYVL7z9XQ6447bjP1i/YpN8//FMJm/YqINhfAy/tq+GjB8rX39ftcQFUj8TERMXHH34T8kuzeyu8gZ9b/R3an69HBi0y9xMSEhQXd/St0p6SkZGhwYMHa/ny4j/jgoKCFBkZqYMHDyorK6vYZ0a4YcqUKercuXOpAYddu3Y5j8v6K29KSoqGDBmiNWvWFDtvjO3l5aWkpKTjxp43b545BgAAhkXbU3XlJ4tUZPfMr1hOaxWlr27o7Tx+euI6fTF/Z43ebCMueGrLKP2zNcXtvjrHhWnMwBY6q+PhwPWxFu84qO8W79b2lGyF+HnrvC6xOq9LnHy9eUcHAAAAAAAAAAAAAJwM+NdhALVeu96t9OzEh9Wgaf1i54PrBWnAxX0q3N+auRu0aek25/FNL1+ldxf/V43bNvLIfKMbV+7trhsXb3V7bOMt5mOXv1piuMFwSt826jqko2yFRVoxc43eGvORHjv7JS2ZvtLtsQFUP5ssssnq5lZ69QNPCQ0N1dy5c3XTTTfJaj3619Ps7Gzt3r37uHDDOeeco2XLlpUabqioqKgos2LEsZUcDKmpqceFG4zKDcZcCTcAAI7Vu3mkPhzdXQ3D/IudDwvw0Yj2MRW+WXO3pGjT/qPV254+t71+ua2fmkYGeuTGx4RWPABpRDdWJaS5PbaXRfrtP/1LDDcYejWLUN/mkSoospthigd/XqMbxi3RPA8EKwAAAAAAAAAAAAAAJz7vmp4AAHhCj9M7a9zWd7V8xhrt35Gk8Jgw9Tqrq16/4YNK9bdq1lq16dHCeZyenKG05AyPzPXggfQKX2P1ssrX38elAENZbylv06tlmdePvW+cfn7z92LnVv61VqtmrdNdH9ykkTcPr8CsAcB1gYGB+uijj3Tffffp008/1axZs7R9+3azukO9evXMqhRGlYfLL79cPXr08PitNUIOkyZN0syZM/Xtt9+aIYZ9+/apoKBA0dHRZrDBGPvCCy80qzoAAPBvQ9vFaFCbaM3dkqw9abmKDvHXoDb1ded3Kyp1sxZsS1GbBiHO44NZBTqYXeCRG1+Zfny8LIerKOS7N3bPZhFlfv7EhLX6auGxVZgOBz6MgMMrF3fWxd09X00KAAAAAAAAAAAAAHDiIOAAoM4w3vptBB2yM3K0YOJSTf5whnatT6xUX0ZQ4Iipn87UGzeN9dg8i/KLKnxNjxFdzAoVE9+fXmobbx8v9T67u+b9urjUNvm5+Zr1/TwNvLRvsbekGzYt2XpcuOEIIzTx3l2fq/+FvRUWFVrh+QOoGXaHxdzc7aM6tWnTRq+88orb/ezcubNS1w0dOtTcAACoDC+rxQw5pOcWasb6A/pm4S5tTy5eiagyzyRfLtipJ39b57FvSqGt9FB0aYa3i1GIv4/GL00otY2/j9WsvjBrU3KpbbLyijRlzT6d2aFBsa/RsGh7arFww7HsjsPhh9PbxyjUhfA3AAAAAAAAAAAAAKB2IuAAoE4oyC/Ukqkr9OeXc7R42goV5hW61V+PEZ3NP7PSsvXenZ+pJhmVG27875XasHBLme36nddTd7x3o7av2qV92w+U2GbH6t168Yq39P7dnymsfqii46M04roh6n9hL03+aEaZ/RfmF5r39+J7z3Hr6wEAAADqorxCm2ZvStJPyxLNigP5RfZK92Ws+z+tVZS5n5qVr+d/36CaFOBj1f0j2ujvzaUHFwwjO8bqgRFtdNEH87UnLa/ENmv3Zui2b5YrKthX4YE+io8I0qU94nX6KTH6bvHuMvvPLbTptxV7NLpvU7e+HgAAAAAAAAAAAADAiYuAA4Bab/JHf+rzx79TekqmR/rrfnpnNevYxNyf+c1c5ecWqKY0aBatB7/4j5p1aKz/jn6nzLaFhTY9d+kbpYYbjpWWlGFuu9Ylasm0lepzdnflZuaWe93erfsrNH8AAADgZDBu/k698edms3KDJwxtG6Pm9YPN/V+W71GBrfJhCXc1jQzUm5d1Medz05dLyw15GOGF0sINx0rJKjC3LUnZ+mtjklnRYX96+dftSs2p0PwBAAAAAAAAAAAAALULAQcAtdof42brrVs+8lh/7fq00qPf3OU83r8jSTVlzGtX66J7zpbFYtGu9QlmZYayLJy4VA6Ho1JjLfx9mZqcElduu9CokEr1D6Bm2GWVTVa3+wAAAKX7euEuPTVxncduUa+mEXr90sMV5QwJh2pmQb9F0jPntdfoPk3MZ5K1e9K1LTm7zGumrT0gWyWfSaau3a8W9YPKbRce5Fup/gEAAAAAAAAAAAAAtQMBBwC1lt1u15dP/1C5iy3SrW9cI4vFqi3Lt8vX31f9L+yt7sM7mYt3jqgXHea5Cbs6NYtFt711nc6/40znucyDWeVeV9lwwxEH9x0qd17Drhrg1hgAAABAXVJos+udmVsqda3x1PHs+e2VX2jX+r0ZCvD10lkdY3Vqy6hi7SKD/FTdvKwWPX9+B13eq7HzXFpO+dUpKhtuOOJgdtnV86wW6bwuDd0aAwAAAAAAAAAAAABwYiPgAKDW2rBwiw7sSq7cxQ4p61COrn760hI/zsvJ159fztHcnxeW25UtwKrCGH9Z82zy3Z8vd/QZ2V03vTpajds2KnY+tkUDWb2sstvsqiqZh7LVrm9rbViwucTPR948THGtWUwE1CZ2h9Xc3O0DAACUbPGOg0rKrNwzgBEFyMwr0m2DWpb4eXZ+kX5alqg/1++v1tt/ZocGeuiMtmoaVbyaQtOoQBlZcDczDGU6lFOoznFhWpWYXuLn1/ZrprjwwKqbAAAAAAAAAAAAAACgxhFwAFBr5WTkuHX9zvUJx53LTs/Wb+9P1w+v/qbstLL7twV5KeWyOGX2iZDD7/ACYN9dOYr8da+CV5S8IKcs0Y2j9Nykh0v8LDI2XH3P7aF5vy5WVXr4qzv046sTzXBHfu7ht6eGRATrgjvO0pVPXFSlYwMAAAC1jRFQcMfWA8dXakvPKdTn83bo03k73O6/oppFBemDq7qX+JkRLBjYur5mb6pkyNxFH1zVTW/P2KoJK/cov+hwwDsiyFc39G+m2wa1qNKxAQAAAAAAAAAAAAA1j4ADgFqrySlxslotstsr9wrRoJCAYsdLpq/U85e+oZzM3HKvtftblfhwaxU0Lv720IImgdp3ZwvFfLRToQsOVmg+Vzx6YZmf3/bmtdq8dJuSE1JVFaIaRahh8wa664Obdf2LV2jLsu3y8vZSuz6t5OvvWyVjAqhaNlnMzd0+AABAydo0CHHr1gT5Ff+1zIz1B3Tn9yuUU2CrkVv+n8ElV5M44plz2+uSsQsqXbWiPHHhAWpYL1AvX9xJD5/ZVuv2Zsjby6KujevJz9urSsYEAAAAAAAAAAAAAJxYDr9yHABqoejG9dVrZLdKXz9o1KnO/X3bD+jZi15zKdxgSB9c/7hwg5PVopRRcXJ4ub4o+Pz/nKmRNw8v9fP1Czbpi6fGK6JBPVXVWuOUPQc1+aM/zf2Q8GB1G9ZJnQe1J9wAAAAAlFHxoH/LqErfn3M6N3Tub0vO0m3fLq+xcMOYAc11Ufe4Uj9ftD1Vb8/YophQ/yqbQ+KhXP28LNHcDw/yVf9WUerTPJJwAwAAAAAAAAAAAACcRKjgAKBWu/O9m7RzzW7t35l83GcWi0UOR8nVHYyF+8YC/iMmvj9deTmuv4U0o39kmZ/b6vkou1OogleklzAvqf/FfZSXmWeGNM66aahad29Ral9j7/1CP781WdXhh1d/01k3DTPvHYDaz+6wmpu7fQAAgNK9dGFHXfrhAu1Lz6vQbRrQur56NYtwHo+bv1MFRfZqudXG3/bP6hirrPwiNY4I1Khe8WrfMKzU9k9MWKuvFu6qlrmNnbOtzKAFAAAAAAAAAAAAAKBuI+AAoFarHxepdxf/V7+9O00zvv5b6SkZatSygbqP6KJZ383VgZ0pxdobC/cHXNJX9358S7FF/MtnrK7QuEVhPuW3qVdyGyNzEVIvWE+Ov6/cPmZ+M7dy4QaLFN+mkZp1bKy/f1zg8mV7tx3Q7g2JanJKfMXHBAAAAE5C8RGBmvif/vpywU5NWLlHaTmFah4VpFNbRpnHe9OKBx+Mp5DzuzTUCxd2LHb+ny3Fn12qkhEDjwn103vnlF8R7/vFuysdbmgZHaxW0cGauna/y9dsScrS7tQcNY4spWIeAAAAAAAAAAAAAKBOI+AAoNYLiwrV1U9fam6GpIQU3dL1AWUezDqurVHRITQyRIEhAcedrwif1ALlh3iX26Y0CyYu0T0fjjnufHZ6tqZ++pdmfT9PWYeylJ6SqUpxSAkb9yhpV7K8vL1kK7K5fGlRoettAQAAAEj1Q/x03+ltzM1gLNAf+c5cZeYXlfRXdUWF+CnQt/jzRMWeSNxnhA6ePKf9cefTcwr1/ZLdmrR6rzLzipSaVfpzTXm2JmVpb1quvKwW2eyuf4WF9uqpZAEAAAAAAAAAAAAAOPFYa3oCAOBpRjWHksINR0z9ZIYO7j9U7FznQccv7ClL6N9lv13VO7VAgWsySv380IF0M4hxrJQ9qbq91yP68P4vtXnpNrOaQnZ6jtyRn1ugsKgQl9sb4Y/4Ng3dGhPAicNYGmiTxa2N5YUAAFTcZ/N2lBhuOOLLBbuUllM8ONCneWS13up96XlKycovdi7xUI7OfneuXpq6UWv3ZGhXao6yyvg6XJFTYFNksG+FwiKNI6jeAAAAAAAAAAAAAAAnKwIOAOqcv76dW26FgoWTlhU7d97tZ8jHz6dCAQf/zaWEKIocqv/lblnKeUFpxr+qM7xx84fas2WfKsMYKqdtmNIGNFBGzyjZ/L2cnx3cn6b+F/WW1Wopt5+zbhomX3/XFx8BAAAAON6kVXvLvC35RXbN2pRU7Ny1/ZrKx6v8v7N7UlpOYbHj+39cpYSDuR4fJykjXyPax8jiwpd3Ve8m8vHi11UAAAAAAAAAAAAAcLLyrukJAICn2Ipsevma/yllz8Fy2xbkHV7IM3v8PE38YLq2rdgpX38f2Ww22YuKv6+8XnSoepzeWTO+PhqcsBY61OjVzTp4XkNlDIiULdRHsjsUsCFTkb/tU8Cm0itIGHx8vRXdOMp5vHfbfi2dtrISX7WU2yxYSVe1VGF9f+c5S75N4X/uUcQfhxdWnXvrCN38ymjN+WG++XXsWpdwXD99zu6uq5++pFJzAHBisjus5uZuHwAAwDWFNrvu/G6FUrOLV2coSV6hXQ6HQ7+t3KuvFu7Sxn0ZCvDxks1eZDxaFFM/2E/9WkaabT3F38eqBmFHnyE2H8jUwu3lP0tV1s0DWuiRM9tp8pq9+mX5Hm1Lzj6uzZkdGuj2wS2qbA4AAAAAAAAAAAAAgBMfAQcAdcbXz/2kWd/Nc6lty27N9M5tH2vS2D+O+8zHz1vt+rRWRGy4+l/QW/0v6GWGJ+ZNWKLcrDxnO2uBQ1E/7lHkL3sV3DpKbTo21Yqftsrx79VIJTj1wt4KjQxxHm9ZvsNc3FRRBTH+2ntrOzmOqdhgcPh56eDZjWUpcij8r32qHxep2GYxGvXQBbrswfO1YuYaTf3sLyXtTlFkw3CNuGaQep7ZVVYrC5kBAACAynrtj02auna/S207NAzVgz+t1o/LEo/7zM/bqq7x9RQT5m8u+h/WLsas+vDHuv3KLSweyD4iOsRPp8SG6u8tyccFJEpyTqeGCvY7+muhNYnpqipG5YaYUD/FhQfq9sGtdNuglpqzOdn82ven55lBi0t7xGtAqyhZXCnzAAAAAAAAAAAAAACoswg4AKgTCvIKNPH96S61bdGlqTIPZpUYbjAU5hcpOSFVT//6gCa8M1WX3/WZDu1PK7U/i82hG++6QPN/WyK5sJDIqNxgVFNITkzVpA+ma8Gkpco6dPzbS11xaGjD48INxT4f3lB9C0MV17rh0flaLOo2rJO5AajbbA6rubnbBwAAKF9OQZG+XbTbpVvVrXE97T6YW2K4wWCEGVKyC/Th1T306T879Niva8utCvHAiNaauGqfS+GGxhGBeuCMNko8lGNWj5i1MUlpOYer3FWFvs0jzXDDsc8kg9pEmxsAAAAAAAAAAAAAAMci4ACgTtixZrcyUjPLbRceE6bHvrtbY+8bV2a7fdsP6PYeD5t/uuL9uz9XYV7JC4K8fb1VVFCkoLBADb96oEY9fIFZOeHRM19QVlrlgg1HZHWJKPNze5CPOt0z2K0xAAAAAJRv7Z4MZeYVldsuNsxfb17WRY/8sqbMdluTsjTynblKPJTr0u03QhAFtpLTDT5eFhXaHAoL8NHF3eN066AW2pGSres+X6Ks/PLn7K7hp8RU+RgAAAAAAAAAAAAAgLqBgAOAusFicanZa389rfg2jbRrXclvSj2Wq+EGQ2nhBoMRbnhr3vNq17uVrFarbEU23dH7EbfDDQaHb+nVG46Y8PGfKpi1SyNvHq6m7ePdHhMAAABApR9J9OOYvoqLCNTmA+UHtF0NNxhKCzcYjHDDpP+cqg6NwszqCflFNt369bJqCTcYPvp7m/m1XN6rsVpGB1fLmAAAAAAAAAAAAACA2sla0xMAAE9o3qmxWZ2hLC26NFXjdnHmfmBoQLXe+EdGPK9vnvtZBfmFmjdhsZITUz3Sr9+e8kMSWcv2aML/puqmjvfqiye+d7nvlL0HtWtDonKz89ycJYCa4pBFdjc3ow8AAFC+jo3CVC/Qp8w2XeLrmeEGQ7Bf9b5z4opPFum9WVtVaLNr8up9SskqqLax96Xn69N/dmjYG3P07l9bXL5uf3qetiZlKrfAVqXzAwAAAAAAAAAAAACcOKjgAKBO8PH10enXDNL4V34rtc3F957j3B94aT/tWLO7mmYn5Wbl6ctnftDa+RvVsktTj/UbNveAkq4o/Q2oAZvS5Zt0NKDwzQs/q0n7eA0edWqp16yas07jnhqvNX9vONxHsL+GXnmarn/xCoWE87ZVAAAAoCT+Pl66oEsjfT5/Z6k36OYBzZ3753RuqP/9tbXabmZmXpFe+2Ozlu9OU+P/D1nUBGMOrWJCNKJ9g1Lb/LMlRW/N2Kyluw6ZxyF+3rqwWyPdN6KNQv3LDpEAAAAAAAAAAAAAAGo3Ag4A6gSjKsKv70wp8TOLRbrqiUs07KoBznPn3HK6Jn/0p5ITUku9xuHw/DyX/7la+7Yd8Fh/IQuTldMqVFk96x/3mXdqvqK/3Xbc+Z/fnKSWXZvqh1cn6u+fFigvK0/NOjXRubeOUGSjCD19wSsqKrQVC2f8/uGfWjd/k96c+5yCQmtuMRSAirE5rObmDnevBwDgZDFp1V59vXBXiZ9ZLdL9I9rorI6xznNX922q8UsSlJSZX42zlP7amKQmEdVb0e7fjGoOzaKC9NHf2zV1zT7lFdl1SmyoRvdtojB/b9327QrZ7EcfyDLzizRuwS4znDF+TB8F+vLrLAAAAAAAAAAAAACoqywOR1Us4QWA6rNv+wHd0P4eFeYXlvh5XOtYfbbhbVmM1MK/rnv5mv9p3bxNznNGtYIL7xqprSt2aNGU5aoNjB/iWV0jlNEvRgUxAfLKLVLwshSF/ZMkr5yiEq8JCPFXbubRyg5H+Af7m4GH0lz73Chd+dhFHp0/AM9KTExUfHy8uX/nHyMU2sC9BYwZ+3P1zunTzf2EhATFxcV5ZJ4AANQlW5Mydebbc1VoK/lXLG0bhGja3UcD10dsT87SfT+u0ordac5zRrWCmwY014JtKVqw/aDqIuPJzM/bagYb/i3Ax6rcwuPPH/HYWe3M+wMAAAAAAAAAAAAAqJt45R2AWm/i+9NLDTcYEjfv0/IZq9V9eOdi52Obx+ituc9r26qdZqDBP8hfPUZ0NisUbFq6TStnrVV+boFqw+KgkBUHzc1VJYUbDGWFGwzTP59FwAGoReyyyO6wuN0HAAAo27j5u0oNNxg27s/Ukp0H1bNpRLHzzesH69fbTtXaPenasC9DQX7eGti6vvnnqS0jdfnHi1RQQgigtjPuVEnhBkNZ4QbDD0sTCDgAAAAAAAAAAAAAQB1GwAFArbdm7vpy26yes15BYYFaMm2l7Da7Og44Rd2GdjQ/a9G5qbkdUVRYJP9AX937ya369sWftWtdokvz8PbxUoPmMUrctFdVqc85PbRi5mrl5xwfvrB6Wc2vr6qkJKZWWd8AAABAbbV4R/lh40XbU2W1SHO3pMiopdm3RaT6NI80P+vQKMzcjsgvsinU30cvXdBRH8zZpq1JWS7Nw9fbqoZh/tqZmqOqNOKUGM3enKz8EkIKVjMgWXX2p5cdygYAAAAAAAAAAAAA1G4EHADUeharsYSmbDO/matvX/yl2LnmnZro6V8eMCs5GGxFNn37wi+aNHa6Dh1IN8/Ft2moKx67yGxbr36omnduoqXTV+njh75ScsLRxf7RjaM0+qlLNHjUqRrVaIyy0rI98IX9/6tNjxxaLBp29QDd8+EYFRUU6ac3ftfcnxea+216tdQ5t45Qu96t9PHD3+jHV39TVYhsVPyNswBObDZZZDOXGbrXBwAAKJvVSC6U47vFu/XaH5udx2/P3KKOjcL04ejualgvwDxnVGt4Z+YWfbt4tw5mHw40t4oO1p1DW6pNTKiiQnzVJiZEf21M0svTNupARr6zv7h6Abrv9NYadkqM+rw4U9kFNk8/kpgBjct6xuu58zoot9Cmj/7erunr9stmd6hb43CN7tvE/JqembReX8zfqaoQE+ZfJf0CAAAAAAAAAAAAAE4MFofDeG8gANReXz79g7569sdKXWuEGz5e87p8/X313KWva+7Pi0psd+1zo3TlYxc5j202m/76dq5+fnOytq/aab6B1dCiS1N1PK2dJvxvqjzh3NtGKCQ8WP5Bfjrt4j5q1DK23GuMub1+wwf688s5xc57eXuZAYwZX/9d6flc++woXfn40fsA4MSTmJio+Ph4c//WP85UaEygW/1lHMjRB6cf/pmWkJCguLg4j8wTAIC65L9TN2rsnG2VurZF/SBNvWuAvK0W3fjlUjO8UJLHzmqnmwY0dx4X2ez6efkefT5vhzYfyJT9/59JjIBBl/h6+mrhLnnCNf2amNUkgvy8NbJjrOIjyv+7RaHNrnt/WKVJq4pXt/PxsujsTg3164o9lZ7Po2e11c0DWlT6egAAAAAAAAAAAADAiY0KDgBqvZFjhuuXtycrOz2nwtfu235As76bZ1YmKC3cYPj62R91xvVDFBkbbh4f2p+mTx/5Vql7DxVrt23lTu1Ys1uX3H+u/vhiltJTMuWOBs1idMl957jUdseaXdq0ZJt8A3x165vX6uJ7z9GMr+YoLSVDjVrEasR1g7R+weZyAw4Wq0WOI6ujjtG0fbzOv+OMSn8tAAAAQF1lVC74asHOSlVN2Jacralr98nfx6vUcIPhtT826eLucQoP8jWP96Xn6dXpm5SSdbSKg2HNnnRt3J+hmwc00w9LEpWWWyh3tKgfrKv7NnWp7do96Vq/N0P+vl564YIOGjOguSas2GPOoVlUkC7pEad5W1LLDThYLHKGyI/VvmGoruzdpLJfCgAAAAAAAAAAAACgFiDgAKDWM0IHL0x+VE9f8IrSkjOKfRYeE6ZDB9LLvH7+xCXyCzi8SKg0RYU2zfjqb1324Hnm8fiXfzsu3HCE3WbXwklL9dnGt3Vjh3vNMERlpR04/lq7w6Gf1q/TN6tXaVNqioK8vFVvQ4Zs366Tz8HDi5uMr8eo/nDDf6+Ul5eXea4gv1Dv3PZxmePViwnTXe/fpJ/f/F1r/9lonjOqRwy5vL/ZV1BYUKW/FgDVz+GwyO6wuN0HAAAoW6N6Afrkmp669ZtlSsspHiioH+yr5KyCMq//c/0B5RXay2yTX2TXbyv36NpTm5nH783aely44YhCm0Nzt6Tqz3sH6PQ3/9ahf82pIlJLmLvN7tD4JQn6ZtEubUnKUpCvt7y9LErOPDqfQF8vXXdqUz16VjtZrYf/PpFTUKQnJ64tc7yYUD89fU57fTx3u5bvPvw8FOTrpQu6NdKDZ7Q1K0kAAAAAAAAAAAAAAOou/lUYQJ3Qvl8bfb3zfc36fr42LtwsHz8f9RjRWd/999dyAw6F+YXKSC2/0kLKnlTnfnlVEBI27dWeLfv11tzndHuvh5V1KFuV8ev/pmrUIxcoJDzYGW64e9oU/b55k7NNgc2mQy38ZL23oxq+v15+e3OUn1ugH1+fpML8It3+zvVmu7k/LSy3ooTDZteH93+pkIhgXfXExep1Vlc1OSVegSEBlZo/AAAAcLLo2yJSCx4eaoYQViWmy8/bqkFt6uvNPzeXG3AoKLJrf0ZuuWPszzgcICiy2TVx1d4y227Yl6HkzAL9eEs/nffuP5WqLmH4cM423TSguYL/P1hghBtu/XqZ/lh/4Jj5H//15RTY9N6sbSqyO/TIme3McxNX7lVmXlGZ4xn9vzh1gyICfXX3sFYa3CZarWKCFejLr7AAAAAAAAAAAAAA4GRgrekJAICn+AX46YzrBuvuD8fouhcu1xdPfq91844GAUrTtlcr1Y+PKrdd/bhI88/CgkJlpZUfWDh0IE3RjaOUm5mnyjLCF4+PfMl5PGHjhmLhhmPZg3yUdEXLYucmjf1DKXsPmvu7NySWO54RgNi/I0lblm3X18/9pFeve1/5OSW/FRbAic8uq0c2AADgmgBfL43q1VgvXdhR9wxvrRenbDDDDuXpHF9PsWHlh4obhPqZf+YU2swAQXmMCg8N6/krt7By4QZDXpFdN41b6jz+fsnuYuGG8nw+b6cOZh8OQGxNyiq3fUpWgRIO5pr37a0ZW/TQz6vLrW4BAAAAAAAAAAAAAKg7WLEGoE56787PtHXFznLbGZUeRt48TCOuHVxmO28fLw0bPeDwNb4+imwYXm7fsc2izYCCrajyi4kM6xdu1rTP/jL3v12zqsy2BY2ClNfkcLUHgzH2Pz8vMveD6wVVeOyEjXv01i0fVfg6AAAA4GT3+K9rtPlA+Qv6A3y8NKpnvC7pHldmO6MixHldGpn7wb7eigjyLbfv+IhAMxxgd8gtC7anmpUpDN8s3F2ha43qFH+s22/uhwb4VHjsjfsz9dTEdRW+DgAAAAAAAAAAAABQOxFwAFDn5GbnaeY3c8ttZ4QWHvn6TkU1ilT34Z008NK+pba9+unLFNHgaKjhzBuGltm3UbnBqArxz6+LZfVy/0fthHenmn9uST1cjaEsBQ0Cix3nZOaafxpfX2XmsmDiEiXtTq7wdQBqns1h8cgGAAAqJiOvUFPWHl7UX15o4d0ruioy2E/D2sWYW2kePKOtwv8/1GC1WsoNRDSNDFRkkI/+XL9fVg/853zc/J0uV2H4t6z8IvPPczo3lKUSc5myep+SM6ksBwAAAAAAAAAAAAAnAwIOAOqMvJx8M9jw2SPfuFQ1YeCl/XTaRX3MfYvFoke+uUvXPjtKEbFHgwxNTonTg1/8R5c/ckGxay++7xy16NK01L6TdqfosoY365Vr3pXdZpe7tq3cqcKCQoX6+ZXb1pp3ePHQEU3bx5t/Rjeur3NuOb3CYzsc0roFmyp8HQAAAHCyyc4v0s/LEvXSlA2yuVA24eLujTT0/0MNRmjhg6u66c6hrRQVfLQ6Q9sGIXp7VBfd0L9ZsWtvG9RSrWOOVm/7t52pOer14kw99PMatys4GFYlppt/hgZ4V/ja1jEh5p/NooJ0affDzycVYXM4tDoxrcLXAQAAAAAAAAAAAABqn4r/qzQAnICmfDxDHz34lbLTc1y+Zv7EJSrIK5Cv/+HFQ15eXrry8Ys06uHztW/7AXn5eCm2WclvUA0KDdTrs57WF098rwnvTZNKWDBk9O0pRuUFL28vnd26jT5ctqT0drlFClx/dOFP/fhI9T67m/P4trevU0BIgH57d6pys/JcHn/z0u0afFl/N74CADXB7rCYm7t9AACA8n25YKdembbJWa3AFZNW79PT53aQz/9XWjP+vHd4a/1ncEslHsoxj+MjildoOyIs0Ec/jOmrV6Zv0reLdpfYJq/Q/bD1ET5eh/9OcHanhvri/6s5uMKoJHFaqyjn8QsXdDDn/vXCXcopKD+YfsSaPenOMAgAAAAAAAAAAAAAoO6iggOAWu/vnxbozTEfVijcYMjNzNPS6auOO28ECeJaNyw13HBEUFiQoptElxhu8LQ+Z3eX1WrVtV26qn5gUKnt6v25R9b/X8QUGBKgR7+5ywxuHGH0ccOLV+j7PR/p6V8eUOsezV0aPyis5EVVAAAAAKRflifqyd/WVSjcYMjILdKCbanHnff1tqp5/eBSww1H1Av0VcMw/2r5Fgw/pYH5542nNVNE0NEKE2UJ8ffWW6O6mhXzjvD2surRs9pp4aNDNfaq7moXe7i6Q3mC/HhHBwAAAAAAAAAAAACcDAg4AKj1vn7up0pfm5WW7dbYa//ZoKpmVG+49IHzzP2Y4GB9d/El6togtlibIKu3Oq3PV/yKdEXEhuucW0fovaUvq0P/diX2aYQf6kWHmZUZXNGwOW9KBQAAAEricDj0v7+2VvrmZOQVunVjF+88pKpmVG+4+bTD4ei48EB9d1MfdYoLK9YmyNfLrNZghBpiQv10bb+mmnzHaeoSX6/EPkP9fRTq760N+zJdmkN8OKFrAAAAAAAAAAAAADgZ8Po7ALVa4ua92rFmd6Wvb9yukdvhg6o2eNSpat+vjfO4eXiEfr7scq1PTtLm1BQF+/qpf+PG8vf2kT50vd+Z38x1qV1IRLD6X9i7MlMHUMMcDqvsDqvbfQAAgNJt3J+pHSmVD063jA526/Z6HS2OUGUu7h6njscEGto0CNHE//TXmsR0bU3OVIifj05rHSU/76PV41wxYeUel9rVD/HT0HbRFZ43AAAAAAAAAAAAAKD2IeAAoFbLzy2o9LUtuzZT216t3Bq/54gu+ueXRapKW5YfX2UhIzVTqz6Zp7k/L1Bedr4WdWlqVm3oNOAUl/vNPJTlUrv//O8G+fr7VmjOAAAAwMkit9BW6Wu7NwlX2wahbo0/sHV9zdqUrKq0Zk/6cedSs/I1e1OSpq3bb96DjqvDNLpPE/VoGuFyv2k55VevMPIbz53XXj7VEC4HAAAAAAAAAAAAANQ8Ag4AarWGLWIUGBKgnMzcCl0XEh6kBz6/3dwvyCvQqtnrlJdToJZdmiq2eYzL/Qy58jR9/dxPSk5MVVU5dKD4YqKNi7foodOfU07G0a85YdNezR4/X1c+fpGufXaUS/3GtYott03/i/poyOX9KzFrACcCmyzm5m4fAACgdC3qB8vfx6q8QnuFblNEoI9evqijuZ9XaNOC7anKL7SrfcNQxUcEutzPRd3j9N7sbUrOzK+yb1NKZvFg+ZKdB3XNZ4uVU3A03LE9OVu/rdyrB0a00e2DW7rUb7P6QeW2Ob9LI53RofxnFwAAAAAAAAAAAABA3cDr7wDUagHBATr9mkFltulxRhezWoO3j5e8fb1lsViUeShbT1/4qh4/+yWNihujR896Uc9e/JquaXWHHh35olL2uBZY8A/000vTHlODZtEutbd6WXXlYxepbW/XFvwYGjSt79xP2XtQ9w58sli44VjfPP+zls9Y7VK/Z9441JxPWXas2aVDSce/rRUAAADAYWEBPuYi/LIMaRuttg1C5G21yNfLYsYHD+YU6oYvlujazxer94szdd3nS3TL18s08NVZunHcEpcDCyH+Pvry+l5qGObvUntjDncPa2UGKVwVFx7g3N+TlqvLP1pYLNxwrFenb9LiHQdd6vfyno1lKSdLuW5futJyKl+5DwAAAAAAAAAAAABQuxBwAFDrXf/i5Tqlb+sSP+sypIOe+eUBjXntanl5e6mooEgOh8P8bN/2A1o0ZbkyD2Y52xufLZm6QvcNflpZadkujd/klHh9sekdPfDF7eYYZTHmce1zo/TyH0/q3NtGyMev/EI63YZ3du6/eMVbKswvkt3Hqowe9ZVyflOljmys/Lijbz797b1pLs07Oj5Kt7x+TZlt9mzepzdvHutSfwBOPHaHsVnc3Gr6qwAA4MT36Mh26hQXVuJng9rU19iruuuRs9rJarGowObQkf+87jqYq9mbkpWeW+hsb/y3d8aGJF3+8UJl5xe5NH672FDNeXCwXrqgo6zlBAaeOa+97h7WWt/d3EdX9m4s33JCz4aBbY6Grm/9epmKyvkLwpcLdro076ZRQXr4jLZlttl8IEuPT1jrUn8AAAAAAAAAAAAAgNqPgAOAOlHF4dWZT+mej27RKf3amBUPOp7WTg98frtemvqYWbXh9Rs/UH6u62/93Lt1v6Z+MtPl9kaw4fSrB+mGl64stY1RReKsm4aZ+4EhAbrj3Rt12kV9yu07LyvP/DM5MVVr525UbstQ7Xqim5KvaKn0AbFKG9pIifd20r4b2srua9Wq2ev00QNf6qc3JunQgbQy+77gzrMU37ZhmW0W/b5M+3cmlTtPAAAA4GQV6u+jH8b01fPnd1DXxvXMigd9mkforcu66JOre5ihg4d+Wq0Cm93lPrcmZemnZYkut/fxsury3o11z7CSw9+GzvH1dHH3OOecX7igowa1PRpeKE1W3uGgxa7UbK1OLL/C27ytKXpxygZ9+s8OpWaVXYlizMAWio84WiGiJNPW7ldSxuHnIgAAAAAAAAAAAABA3Vb+q8MBoBbw9ffVWTcONbd/W/rHKu3fUfEF+jO/natL7j+3Qtdcct85CgoN0Dcv/Kyk3SnmOR8/Hw26rJ9uffNa+Qf6FWufk5lbbp9H2uxcl6CCcF8zyODwO75SRE77cCWNaiHrl1v04+uTzHOfPvKNrnriEl35+EWl9r9ny/4yx7fbHdq8dJsaNI0ud64AAADAycrfx0tX9Wlibv/25/oD2l+JBfoTVu7RNf2aVuiaO4a2Uligjz6YvU370g+P6edt1XldGuqJs0+R37+qzuXk28rtM+P/Aw6b9me6NIdDOYX66O/t5v7L0zbqvuGtzSBDSQqK7Eo4WPZzkVExYu3edA0J9XdpfAAAAAAAAAAAAABA7UXAAUCdt29b2Qv4S5N5MKtS1xlVGs64YYgZCjCqRjRtH6+wqNAS28a1MqonLCuzv0atYp1VH9JPa1BiuOGI7E6RKoxKkE/K4YVMRYU2ffHk96oXHaqRNw8v8RofX+9yq1sYIQ0AtY/dYTU3d/sAAADuMSofVEZ6bmGlrru6b1Nd2buJViemmQGCNg1CVC/Qt8S2zaKC9M/Ww+Hs0jSPCjL/DPar+K+RjPFfmrpR9UP8dGG3w9UjjuVttZibEWIoi69X6c9BAAAAAAAAAAAAAIC6gxVrAOq80MiQSl0X37ZRpce0Wq1q26uVOg9sX2q4wTDy5mGyWCylfu7l7aUzrh+iDYu26I8vZyv3lIhyBrYop229406Pf2WCHI6SFwx1GtS+zC4DQwPUZUiHsscFAAAAUKrwUsIF5WkeFVzpu+pltahr43D1bh5ZarjBcEXvxmX24+tt1UXd47Rs10H9tnJPpefz/qytJZ63Wi3q1azs55zwQB/1bBZe6bEBAAAAAAAAAAAAALUHAQcAdV6fc7oruN7hN45WxMibhqmqxbVuqOuev7zEz4zgw21vXqsvHv9Od/Z9VFM+miG7Cz+1HV7HByb2bU/SZ49+W+zc2nkbdUefR7Rk6ooy+7vgzrMUEORf/sAATjgOWWR3czP6AAAA7jm9fYyCfCtegeCK3vFVfuvbxYbqzqGtSvzMapGePbe9np20Thd9sEDjlyZWepytydl6e8bmYucWbEvVOf/7R/O3pZZ57Y2nNZefNxUcAAAAAAAAAAAAAOBkQMABQJ3nF+Cna58bVaFr2p/axgxGVIfLH7lA9312q6IbRznPRTWK0B3v3ajc7HxN+3yW87z/9sxy+/PfUXKb71+eoE//P+SwfsEmPTT8WW1cXPJbVI9Uj7jo7pG65pnLKvgVAQAAADhWiL+P7hpWcoigNP1aRGpAq/rVciPvHd5aL5zfQbFhR4PNDev566ULO2p/Rp4mrNzrkXHenLFFb8/YYu4v3J6qaz5brDV70ktt7+Nl0S0DW+i2QS08Mj4AAAAAAAAAAAAA4MRncTgcjpqeBABUh6mfztRXz/6o5ITDbwe1elnVacApcsihVbPWHdc+tnmMXpr2mBq1jC12vrCgUPN/W6rETXsVHB6kAZf0VXh0WKXntXHxFj165gvKPJRd7LzFIgWFBSkr7ej5vPgg7bmr4+FXqZbAb0em4v63ttSxjK/5q+3v6eWr/6fVc9aX2q5Zx8Z6ccqjimoUWamvCUDNSUxMVHz84bc9XzLpEgXFVLyCzbGyD2Trx3N+NPcTEhIUFxfnkXkCAHAy+nrhLr3711YzNGDwtlrUu3mEimwOLdpx8Lj2zaOCNO76XoqPCCx2Pr/IpunrDmhXSrbCg3w1smOs+WdlLdl5UNd/vkSZ+UXFzhvz8/exKivfJk8xQgvzHx6qm75cqpUJaaW269AwVJ9d21PRoVSTAwAAAAAAAAAAAICTCQEHACcVm82mjYu2KiczV03bxyswxF/XtLpD6SklVz1o1CpWn65706xmYFgybYVeve49HTpw9C2jPr7euujec3T9C5fLYqQSKqCosEhXNbtNqXsPuXxNet9opVzU/LiQg09SrhqOXS/vtIIyr7/k/nP142sTy2xjBCF+Tv5MwfXcWxgNoPoRcAAA4MRWZLNrRUKacgpsatsgRD5eVg16dZYy8oqHC45oHROsaXcNkPX///7/x7r9euSXNUrNPvr3fl9vq1nl4O5hrSs8n7xCm07971/F+qtqtw5srg/mbC+zja+XVaueOl0BvoefxQAAAAAAAAAAAAAAJwfvmp4AAFQnLy8vte/Xxnn8y9uTSw03GPZs2af5E5fqtAt7a+uKHXrqgldVmF9YrE1hQZG+/++vmvPjfF31+MUaNOpU+fr5uDSff35ZVKFwgyFsQZICtmYoo1+M8uOCZS2wKWj1QQUvT5G10F7u9cm7U8ptY7fZlXkoi4ADUMvZHVZzc7cPAADgOd5eVvVsGuE8/mD2tlLDDYbNB7I0Z3OyBreN1vLdh3T7t8tVaCtejLOgyK63ZmzRbyv36s6hLXV2p4ZmcMIVv6/eV63hBsPetMMVLMpSYDyT5BUScAAAAAAAAAAAAACAkwwr1gCc1FbMXFNum+V/rjL/HP/qb8eFG461b9sBs7rD/YOfUnZGjkvjb1qyTZXhm5ynqN92qdF76xT78UaFLkpyKdxgiG8X56xIURr/QD+Fx9Sr1NwAAAAAuG7e1vIDyHO3pDjDEP8ONxxrR0q27hm/Sld+vEg5BaWHJo61OjFN1a1VTPC/C9IdJ8TfW/UCfatrSgAAAAAAAAAAAACAEwQBBwAnNYfD4UKbw3/O+3WxS31uWLhFY+/5wqW2vv6uVXrwFIvVom7DOqrvuT3KbDf48v5myAEAAABA1XLIhWcSOVRks+uvjUku9bl450H9d+pGl9r6eVfvr4a8LNKAVvU1sHX9Mttd1C1OvtU8NwAAAAAAAAAAAABAzeNfigGc1LoM7lBum5V/rdHoFreXWb3h3/767h9lHMws9XNbkU2HDqSp11ldVZ0cdofuOe0J+fn7KrJheIltYpvH6NrnLqvWeQGoGnZZZHe4uamc1ysDAAC39GsRVW6bWRuTNPC1WbLZyw9DHPHT0gRl5ZdexaHQZldyZr4Gt4lWdTIKUJz3/jxFBvspKrjkCg3N6wfpzqGtqnVeAAAAAAAAAAAAAIATg3dNTwAAatKI6wbr2xd+Vuah7FLb7Nm6v8L9FuQVatvKneo6pKPzXMreg5r26UwtmLRMuzckKi87X94+XgpvUE+H9qepOs38dq4ue/A8ZaXl6K9v5yo3K09BYYEafvVAXfHYRQqPDqvW+QAAAAAnq8t6xmvs7G3KLCOMsDM1p8L95hTatXFfhno0jXCe25eeq+8XJ2jmhgPampylvEK7fL2sigz2VWpWgaqLUSXvp2WJunNISx3IyNfEVXuVW2hTWICPLukep9sHt1R4UMnhBwAAAAAAAAAAAABA3WZxOIx/VgaAk9f6BZv0+Dn/VebBLI/2e9pFffTkj/eZ+18+/YO+eeFn2W12nSjCY8L07e6x5n5OZq6CQgPl5e1V09MC4KbExETFx8eb++dPvFyB0UFu9ZeTlK0J535n7ickJCguLo7vEQAAHrZwe6pu/nKpMvJKDzlUxkXdGun1S7uY+y9P26iP5myX7QT6NVCjegH6+8HBsjscys4vUoi/j7ysVI8CUDt98cUXuu6668ptZ7VaFRQUpEaNGqlLly4655xzdOmll8rbu+6+i2j27NkaPHiwud+kSRPt3Lmz1Hs3cOBAsz0AAAAAAAAAADh51d1/NQEAF53St42+2v6eZnz1t1bNWSdbkU2Lfl9u/umOub8s1L0Dn1R6SqZZseFEc+hAulllok3PlgqNCKnp6QCAtmzZYi5s+fvvv839Q4cOyc/PT/Xr11ePHj00cuRIXX755fLx8fHY3SoqKlJISIjy8vIqdF1YWJjS0qq3+g4AoO7q0zxS/zw8RD8tTdTSXQdVaHOYVRbsbmYRflu5VwmHcszqDNuSS69aV1P2pOVqa1KW2jQIUb1AKjYAODnY7XZlZmZq48aN5vb999/rlVde0eeff66uXbvW9PQAAAAAAAAAAABqHAEHAJDM6gXn3X6GuRkhh/kTlrh/XxzSmrkbTuj7azuBKkoA8DxjUaTd4d5bkN1dWOmKrKws3XXXXeaCnn8XFysoKDAX/2zfvl0//PCDHn/8cY0bN8759k93bdiwocLhBgAAqkKov4+u79/M3GZvStKf6w+43WeR3aHFOw7pRGarjr9sAEANGDNmTInhhvz8fKWkpGj9+vXOSgarVq3SkCFDtHjxYrVq1aoGZgsAAAAAAAAAAHDiIOAAAP/iH+h3UtyTkPAgtejcpKanAeAkl5GRoUGDBmnFihXFzhuVG6Kjo5WTk6PU1FTn+YSEBA0fPlxffvmlrrjiCrfHP3ZcX19fxcfHu3RdaGio22MDAFCaAB+vk+LmRAX7qWV0cE1PAwCqxNixY8tt88cff+jKK680Aw9GhbhLLrlEy5cvl9Vq5bsCAAAAAAAAAABOWvxLCQD8S6vuzRXTpH6Z98Xm76X82EAVhfl69P4FhgZW2/dj5M3D5RdwcoQ5AJy4rrvuumIhg169emn69Olm1Ybdu3ebC32Mt5o+8MAD8vI6vNjTZrPp+uuvNxf+uOvYsY2qEFu3bnVp88TYAACUpluTcEWH1Mzf1YN8qy9cMbpPE/l686spACev008/XV988YXz2KjkMHny5BqdEwAAAAAAAAAAQE3jX5EB4N8/GK1WXfHYRSXel6JgHyVf0lIJj/XU3ru6KOGRHto7pr1ym7n/Ju/QyBDlZOSU+rmXt+cWGvW/sLeuefYyj/UH4MRkd1g9slWVv//+W7/88ovz+LzzztM///xjLvLx8fFxnm/SpIleeeUVTZgwwRlyyM/P13333efRgEO3bt3c7g8AAE/w8bLqtkEtqv1mRgX7KrvAVurn3l4Wj411bueG+s+Qlh7rDwBqq5EjR6p58+bOYwIOAAAAAAAAAADgZOdd0xMAgBPRWTcO1cF9B/XVMz/KbneY52yB3tp3SwcVRQUUa5vfLEz7bwhRgy82KGBreqXGs3pZFRDsr4zUzFLb2Ipsim4cpaTdKRXuv1GrWDVs2UDhMWE6/ZpB6jywfaXmCQCe9Mknnzj369Wrp3HjxhULNvzb2WefrTvuuENvvfWWeTx79mzt2rXLDEBU1sqVK537Xbt2rXQ/AAB42rWnNlNSZr4+mL1Nh59Iqpa31SIva9kBhiKbQ7Fh/tqXnlfh/lvUD1J8RKBiQvx1cY849Wwa4cZsAcA1mXmF2p+eZ4a3jAo1DcL8FeJf+jNHTenYsaO2b99u7hsV7AAAAAAAAAAAAE5mBBwAoBSr/97gDDcY0gc0Oi7ccPSnqVWp5zRT3JtHF8q6qnnnJrrhxSv1xk0flNu2WYd4ZaVlKycjt0JjtO3VUg9/dWeF5wagdrM7LObmbh9VZcqUKc79UaNGKSwsrNxrrrvuOmfA4UgViNGjR1dq/B07dig9/WgwjYADAOBEs2jHwWoJN7RvGKJHzjxF//luebltO8WFKS23ULllVHooSY8mEXr54k5uzBIAXONwOLRge6q+WrBLf6w/INsxv9sxglwj2sfoqj5N1Ld5pCyWqnveqYgjleoM4eHhHuv3wIED+vzzz81nr/Xr15vPP8HBwWrZsqWGDBmiMWPGFKseUZo9e/bo008/1bRp07Rt2zYdOnTIDKm3aNFCI0aM0E033aRGjRqpqqWkpJjBeGMeq1evNucRGBio+vXrq1evXmY1jEsvvVTe3vyzBwAAAAAAAAAAtRm/6QeAEmxduUMrZq4pdi6ze/0y71VhTKDy4oPln5BV+g9dX28z0BDRoJ46DWyv7sM7qXnHJs4qC6l7D5U5xqIpK9SgaXSFAw7dhrGQCMCJZf/+/UpNTXUeG4tRXGEsoDnWvn37Kj2HFStWOPdDQ0OP6xsAgJq0bNchc/M0Xy+L2jUMVXSwn/q2iNKA1lFqGR1iftY0Mkgrc9LKvH76ugNqGOZf4YBD/1ZRbs0bAFyxdk+67v1hpTYfKPl3M0bYYcqa/ebWOiZYb1zaRR0alR+0rmobN2507nfq1MkjIY9XXnlFTz/9tPLyilfdSUtL09KlS83t7bff1vPPP6/777+/1L5eeuklPffcc8rNLf67qOTkZHNbuHChOdZTTz2lhx56SFVlwoQJuuaaa5SRkVHsvBHaMLatW7fq22+/1ZNPPqkff/yRADsAAAAAAAAAALUYAQcAKMHyP1cXO3ZYJXuIb7n3yhZadpuigiIzoPDE+HuP+2zkTcO0es76csc4uL9ii5yiGkVo0GX9KnQNgLrBLou5udtHVTCqNcyYMUOJiYnm20B79uzp0nXGGzqP5efn55GAQ5cuXU6Yt7cCAGD4Z0tKldyIAptDLaKC9cZlXY777IpejbUyoeyAg+FQTkGFxowLD9AZHRpU6BoAqKi5W5I15qtlynExgGWEIC79cIE+HN1dp7Uq+6UWVWnmzJlmdQWDr6+vWbXOXUZlho8//th5bPTbv39/NW7cWHv37jVDCUZQID8/Xw888IAKCwv1yCOPHNfP9ddfb1aAOCIiIkKnnnqqWTHBqKbwzz//6ODBg2b44eGHH9b27dv14YcfytPmz5+viy++WDabzTmPfv36KTo6WpmZmWZAZM2awy8qMSpMDB48WOvWrauWqhIAAAAAAAAAAMDzrFXQJwDUeg5H8WOLXfLKKH8RT6AL63z+/nGBtq7Ycdz5QaNOVf8Le5d7fUFeoRo0re9yuOHFKY/K17/8cAYAVKeAgAANHTrUfAPno48+qg4dOrh03V9//VXsuEmTw1Vw3A04dO3a1Xzr57vvvqsRI0YoJibGXARkLJjp27evnn32WXMhEAAA1cWhfz2UuMjPu/xf9fyyYo+2JmUed/7Cbo00pG10udfnFtrVqF6AS/Mx2n1xXS/5ePErKABVW7mhIuGGI4z2xnXG9TVh4sSJuvTSS53HL7zwgho0cC8QNm7cuGLhBiMYsHv3bjNIYYQVpk+fblY7uOCCC5xtnnjiCWfI4oi33nrLGW4wno1effVV85nImPOnn36q3377zayo9/LLL8vLy8ts99FHH1VJwOHBBx90hhuMAIgxj0mTJpnz+OGHH7R69Wrz6woODjbbGM92RuUJAAAAAAAAAABQO1kcRr1qAEAxm5Zs1X96F39z3cHT45U+JL7UOxWaYVPki4tcupPDRg+Ut7dVW1bskF+Ar049v5fOuGGIgsICdUH4tcrNyivz+ptevko71u7W7O/nqajw/99eF1tPnQcZC4Qd5lvIuw7tpMGj+skvoPJvNwdQ+xgVEeLjD/+sGvHL1QqIPrzAo7Jyk7I0/cIvzf2EhATFxcWpphh/be3Ro4eWL19uHvv4+Cg5OdmsBlEZxts8j4QWhg0bpmXLlh1XIeJYgYGBeuqpp8zFNQAAVLVF21N12UcLK3RNoK9VOQV2l9pe1iNONoe0bm+GAn29dGaHBrqkR7y53+Gp6covKrufJ89upxUJ6Zq6Zp+K7Id/tdQgzF+9m0WYgXGrRRrQur5GdoqVn/fhha8AUFXPCSPe+tusyFBZbWJCNO3u09yq6vbFF18Uq75gVFEoiVEtITU1VatWrdLOnTvNc0ZAwKig8Nxzz8kddrtdTZs2NZ/dDBdeeKF++umnEr8uo3qDEeY+Evw25jt27Fhz36jKYFR7yM7ONo/Hjx9fLIjxb1999ZWuvvpqcz8qKkq7du0yn5+OmD17tllV4UhI/cjXXdK9GzhwoNn+iJycHAUFBTmD8sYzW2mV/Ixgx80331zqOAAAAAAAAAAAoHbwrukJAMCJqE3Plup4WjutmbvBeS5s7l7ltI9UYczRf6A9wlJoU+B3R9uWZ8ZXc4odr1+wWb++M0WvzHhSLbs105q/y+4rP7dAe7bsc4YbohtH6ZL7z9V5t5/h1j/GA0BZjLdzlqcqAxDGYpsj4QaD8cbRyoYbkpKSilVkmDFjhnPfWFxkvDXVWEhzbODBOH7ooYe0bt06cwEOP28BAFWpd/NIdYoL0+pE198q7mq4wTB+aWKx42W7DunzeTv17U291bZBiFaVM25Wvk27UrOd4Ya48ADdOqiFruxd+epKAFAZC7anuhVuMGw6kKmF2w+qb4tIj30TKlLJwAgH3HfffW6PuWjRIme4wdvb26xQV9pzixESuPfeezV69Giz7ebNm4sFBY6EG4zAQVnhBoPRx5tvvmmGJVJSUsxAxLFhD3ccmceRMEteXl6pAQdjnsazXvPmzc3NaM9zGwAAAAAAAAAAtY+1picAACeqx8ffo2YdGzuPvXJtiv1wrUIW7pcl/3CwQHaHAjYdUuyH6xSwI8Ot8VL2HNSzl7yus28eXma7sPqh+vLpH7Rh4RbnuaTdKXrvzs/09i0fuTUHAChLr169zOoQZW1VZfHixebimyOMBTjuvN105cqVx50z3l46ceJEc8GMUQnDeGvpjh079MQTT5hvCj3iyy+/1DPPPFPpsQEAcNWHo7urpZvVmCpiT1qu7vhuha7offQ5qCT1g/30xp+bi4UvEg/l6rFf1+qZSeuqYaYAcNTXC3edUP1Uxueff65mzZrpo4/c+72O8TxzxNChQxUbG1tm+0suuUSbNm1Sbm6u/vrrL+f5P/74w7l/5plnujT2yJEjnfuzZs2Sp9SvX1/R0dHmvvGsds4552j16tUltjUC8I899pguv/xy9e7dm3ADAAAAAAAAAAC1FBUcAKAUEQ3C9cGyVzRvwmK9e8enOnQgXV45RYqasF0Rk3fKFuora26Rec5Tdq5NUL2Yehp4aV/N+WHBcZ/7B/opK+3om+v+bfLHMzRs9AB16N+O7ysA2R0Wc3OHu9d7glEx4eyzzzYXsxzx4osvqnXr1pXu03iz6LHuvPNOvfHGG2b1hmM1bdpUzz77rM4991wNGzZM6emHF3I+//zzuuKKK9yaAwAA5YkNC9DUu07TtLX79eRva3Uop7DKb5oRWnjy7GANPyVGf64/cNznwX7eSs3OL/V6owrEhV3j1DGuclWWAKAiMvMKNX3d8T+rKmPauv1mfyH+Ph7pz6geUJKioiJlZWVp9+7dmjt3rvkcsn37dqWlpWnMmDFKTk42F+lXxvr16537PXv2LLe9UQmhpGcaoxLEEVOnTjWD3+XZuHGjc3/NmjXyJON57fHHHzf3jXvWuXNntWjRQsOHDze3IUOGqF69eh4dEwAAAAAAAAAA1BwCDgBQBi9vLw24uK8at4vTbd0fVGHB4TCDtdAua+rRhbaetHnpNj367d3qOqSjJn4wXTvX7JZfoJ8GXtJXIZEh+vG1o2/jK8mUT2cScABQZVUUynsDqKcZb+Y8/fTTzUU+R1x44YV64IEH3Op31KhR5kIeYyGREZx49NFHy3y7Z48ePTR27FjzTaAGm82ml19+WZ9++qlb8wAAoDw+Xlad07mhmkUF6YL356nQVvKCWU+HHD64spu+W7xbXy/crc1JmQr29dbZnWMV4O2lz+bvLPP675fsVse4jlU+TwDYn54nm90zPxeNfg5k5Hks4FAaoxqdsRjf2Dp16qSbbrpJ5513nqZNm2Z+/uSTT+qMM85Q9+7dK9z3gQNHwx4NGzas1PyM8EV29tGXa8yZM8fcKiI1NVWe9PDDD5uhifHjxzvPbdu2zdyM5zQjqG5UbDCqO1x22WVmNQwAAAAAAAAAAFB7EXAAABc0bR+vO967UW/cNLbK75evn4+sVqtG3jzc3Iw3/h1ZdPu//3xS7vUHdh5dBAzg5ObpCg5GuCEuLk7VxXgzp7FA5UjVBMPAgQP19ddfu913kyZNzK0ijIUyTz/9tDZt2mQeT5kypdjPaAAAqlKHRmF69Kx2embS0bdzVxVfb6u8vawa3bepuR3737uHflpd7vUJh3KrfI4AYMgusHn0RmTle7Y/V/j6+uqbb75RfHy8cnJyZLfbzaoOxrmKOjZYEBgYWKn5HPv8VVmZmZnyJCPA8P3335vPZP/73//MwIVxn44wAujz5883NyO8fuWVV+qtt95SZGSkR+cBAAAAAAAAAACqh7WaxgGAWu+M64eobe9WVTqGsWio77k9jjt3RHhMvXL7qBcdViVzA4DqZCzmGT58eLHFNYMHD9bkyZMVEBBQI98M4+fxiBEjnMf79+9XYmJijcwFAHByurpvU50SG1qlY3hZLRraLrrUZ5KoEN9y+4gKLr8NAHhCkK+XR29ksJ9n+3NVRESEzjrrLOdxRSsmHBEUFOTcz82tXNjs38GIqVOnmkG3imyHDh1SVbjgggv0119/mZUqjGfG6667Tk2bNi3WxhjfCMUblQDz8/OrZB4AAAAAAAAAAKBqEXAAABcZi3pe+P0RdRveqcru2SmntlZs85hSPx961WmyWst+U/jpVw+sgpkBqM0VHNzdqpOxGOXJJ5/UVVddVWwxyrnnnmtWTDh2wU5NaN68ebHjpKSkGpsLAODkY4QPxl3fS32aR1TZGH2bRyg2rPQw4YXdyq/mdLELbQDAExqE+Zs/Gz3B22pRTKi/ToRnjco+ZxxbsWDfvn0uXfPvIES9evXk7e19Qj/zREVF6YorrtBnn32mHTt2aMuWLWbVizZt2jjbLF++XOPGjavReQIAAAAAAAAAgMoh4AAAFRAaGaKXpz+hsSte1cX3niO/QD+P3r/M1KwyP49tFqML7z671M97ntFFPc/s6tE5AUB1ycvLMxepPPfcc8XO33DDDfr555/l719zi42O+Hf1CJvNVmNzAQCcnOqH+On7m/vq9zv66/pTm8rP27O/2jmYU1Dm5y3qB2t0nyalfj78lBj1axnl0TkBQGlC/H00on3pL4qoiBHtG5j91ZSsrKxiC/gro0uXLs79ZcuWuRQwb9iwoRmM6NGjhxkWMF7w0blzZ2ebhQsXujT2okWLNH78ePPP5ORkeVJGRoaWLl2qzZs3l/h5y5Ytdc8995hfc4cOHZznZ8+e7dF5AAAAAAAAAACA6kHAAQAqoUXnphrz2tXq0L+tR+/f7g17tH31rjLbGOPe/MpoRcSGO88FhgboortH6ulfH5TVyo92AIc5jCoOsri1GX1UB2PByhlnnKHvv/++2PlnnnlGn3zySbE3iHpKQUGBEhMTdejQIZevSU1NLfUNqQAAVKcOjcL05Dnt1Tm+nkf7Xb83UztSssts8+x57fXAiDaKCvZ1ngv199aYgc31/pXdPDofACjPVWWErmqin8qaM2eOc/+UU06pVB+DBg1y7s+YMUMHDx4ss/38+fOVlpZmttu4caPi4g5X4Bk6dKizjRFayMnJKTcocfPNN2vUqFHq06eP7rzzTnnKgw8+qLCwMPXs2VMPP/xwmW2Nin8jR450HmdmZnpsHgAAAAAAAAAAoPp4fqUYAJwkknYna8WM1R7vd9f6RO3dtl+BoYHqNKCdvH2O/1F9yf3n6sK7R2rrih0qKrSpeafGCggu/lZxAKgtjAU1p59+upYsWeI85+vrawYbRo8e7fHxjFBDx44dzXENDz30kP773/+6dO2xb0ENCQlR06ZNPT4/AABcZQQRluwse/FqZWzcn6FN+zMVGuCtXk0j5O1VPERtvN379sEtddNpzbVub7rsDumU2FAF+HrxzQNQ7fo2j1TrmGBtPlB2VcyytIkJUZ/mEaopP/zwg9atW+c8vuyyyyrVz1lnnaXGjRtr9+7dys/P1wMPPKBPP/201FDC008/XWxMH5/DFSxuueUWvf7662bFOiP8cNddd+njjz8uddx3331Xq1evLlaFz1P69evn3J82bZrWr19fZgBk+fLlzv22bT37YhIAAAAAAAAAAFA9eM03AFTS5mXbZTdW8niQxSK9eMVbeuai1/TQ8Gd1ZZNbNWnsHyW29fL2UpueLdW+XxvCDQBqrdzcXPMNm8eGG4y3cxoLV6oi3GBo1KiRioqKnMfTp0936br09HT98cfRn8kDBw6UlxcLOQEANWd1YpocHi63ZDyT3Pr1ct3y9TJd8fEi9X95ln5YklBiW19vq7o2Dlf3JuGEGwDUGCN09calXRRYyZCVcd3rl3Y2+6luRoDACHZfe+21znMtWrSo9LOQ8Xzy0ksvOY8/++wzjRkzxqyYdyzj2BjTqPJgCAgI0COPPOL8vFmzZmao4QhjjldddZWSk5OL9ZOXl2eGxe+55x7nOaMy37Bhw+Qp55xzjjmfI8+PxvHff/99XLvCwkI99thj+vPPP81jo8KpJ4MWAAAAAAAAAACg+lDBAQAqycfv8FvtPOnfi5MO7k/TO7d9LFuhTeffcabHxwNQt9kdFnNzt4+qdMcdd2j+/PnO4+joaDNE0Llz5yob01i4dPbZZ+v77783j1euXKlZs2Zp8ODBZV733HPPKTMz03lsLBQCAKAm+f6rskJVPJPsz8jTgz+vls3h0OW9Gnt8PADwhA6NwvTh6O4a89Uy5RTYKhRuMK4zrvc0owpCaYzqCgcOHNCiRYvMCglHBAcH66uvvpK/v3+lx73iiivMft955x3z+KOPPtK3335rBrRjYmLMkMLs2bOdzzbG89HYsWPVsmXLYv28/PLLWrt2rTPk/c033+inn35S//79FR8fr6SkJC1dutT88wijj3HjxsmTjNCGEbAYMWKEGVTfvn27+bW0b99erVq1UmRkpPk1Gc+VKSkpzuuefPJJKjgAAAAAAAAAAFBLEXAAgErqPKi9gsIClZ2eU+X38Munx+vMG4fIL8CvyscCgOry888/69NPP3Ueh4aGmm8Q7dixY5WPffvttzsDDgbjzZ7z5s1TbGxsie0///xzvfHGG87jfv36mZUnAACoSae2ijIX51ZkMW9lvf7HZl3cPU4+VRCqAABPOK1Vff0wpq/u/WGlNh/IKrd9m5gQs3JDVYQbDB9++GGF2nfr1s0MI3Tv3t3tsd9++20zhPDUU08pJydHWVlZmjx58nHt6tWrp48//lgXX3zxcZ95e3ub1zz88MNmWMKokGAEM2bOnFnimEYA4csvvzRD6542ZMgQ/frrr7r++uudVSTWrVtnbv9mhESefvpp3XfffR6fBwAAAAAAAAAAqB78qzQAVJJ/oJ8uuvvsarl/mYeytXjqymoZC0DdYdfhCg5ubaqaCg7GmzcfeOCBYuc+++wzj4QbjDeQHtmaNm1aYhvjraPXXnut83jHjh3q0aOHvv76a+Xm5jrPb9iwwVxEY2yO/3+ltRHEMOZq9A8AQE0K9ffR1X1L/m+dp6Vk5eufrUffjA0AJyIjrDD97gH67qY+OqtjA3lZi/+d3dtq0ciOsebn0+4+rcrCDWWxWq3mIvyGDRtqwIABuvPOO82KckY1BE+EG464//77tXXrVj3zzDNmQNsIHvj4+Cg8PNw8fvHFF83PSwo3HBtyeO2117R582azIoJxnVEFwujH+BratGljPlcZoYdp06ZVSbjhCKMKnzEPI2xx1llnmQGOgIAA+fr6Ki4uzqzq8Morr5htCDcAAAAAAAAAAFC7WRxHVmoBACrM+BH64f1fasL/pspWVLVvTb3no1t01o1Dq3QMALVfYmKiudDD0P+HG+RfP8St/vKSM/XPpYerLCQkJJgLRzzBCBKMHj262CKfZs2aVbgfYzGQsR3r2OBBkyZNtHPnzhKvNd4+alRh+PcbSI0FMsainczMTKWlpRX7LCQkRH/88Yf69OlT4bkCAFAV7HaHnpm0Tl8v2i2bvWp/xfPWZV10ftdGVToGAHhSZl6hDmTkKSvfpmA/L8WE+ivE34ebDAAAAAAAAAAAcALzrukJAEBtZiyiveX1a3Txfedowv+maPzLv1XZWHGtY6usbwB105EqDO72URV++eWX4uPY7dq2bVuF+zl48GCl5+Dn56epU6fqscce05tvvmlWlTAUFBSYYY6Sqj58+OGHOuWUUyo9JgAAnma1WvTMeR10y6AW+mTudn36T8nBPk9oFhVUZX0DQFUwwgwEGgAAAAAAAAAAAGoXa01PAADqgqiGEbrxpavUbXinKuk/JCJYUY0iqqRvAKgJmzdvPiFuvI+Pj1555RVt375dTz31lE477TRFR0eb58PDw80ww4033qhp06bp77//JtwAADhhxYYF6Imz26tX06p5bogK9lVEkG+V9A0AAAAAAAAAAAAAwBEWh8PhcB4BANxy6ECabup0n9KTMzx+J719vPTguDs0eNSpHu8bQN2RmJio+Ph4c7/f+BvlXz/Erf7ykjM1/7JPzH2jqkFcXJxH5gkAAKrG/vQ8jXjrb6XnFnq8b19vq94Z1VVndGjg8b4BAAAAAAAAAAAAADBQwQEAPCg8pp7e/PtZWb08/+O1qNCmV675nxK37PN43wDqJrvD4pENAADUHg3C/PX9zX1kqYL/hBcU2XXn9yu0Jy3X850DAAAAAAAAAAAAAEDAAQA8L75NI93/2W3y8vaqkpDD72P/8Hi/AAAAAOqOdrGheumCjrJWUcjhu0W7Pd8xAAAAAAAAAAAAAAAEHACgagwfPVAfLHtZLbo09Xjf6xds8nifAOooh0UONzejDwAAUPuM6tVYE//TX61jgj3e97JdhzzeJwAAAAAAAAAAAAAABiu3AQCqxtp/Nmrbyp0e79fbx9vjfQIAAACoexZuT9XmA1ke79fbiwAkAAAAAAAAAAAAAKBqsEoWAKqA3W7Xj69PqpJ723tk9yrpF0DdY5fF3NztAwAA1D5FNrs+mbujSvoe2ja6SvoFAAAAAAAAAAAAAICAAwBUgcTN+7Rv+4Fi5xySck+pr+wuMSqKDJQ1r0gBG1MUtHyfvLILXeq3XnSYzrxhCN8zAAAAAGXadCBT+zPyPH6XYkL9dFH3OO4+AAAAAAAAAAAAAKBKEHAAgCpgt9mPCzccOru18tpFOc/Z/L2V1SdOOR2iFfXdWnmnlb34KKZJfT0z4UGFRobwPQPg2s8ih8Xc3OHu9QAAoGbYiz+SeESTyEB9fHUPhfj7eL5zAAAAAAAAAAAAAAAIOABA1YhrHavwmDAdOpBuHud2iC4WbjiWPdhXaWe2NEMOJQmJCNbNr16t4aMHyMvbi28ZAAAAgHK1iglWvUAfpeW4Vi2uLBGBPnrinFN0budG8rISfgQAAAAAAAAAAAAAVB1rFfYNACctbx9vnXvbGc7j7K4NymxfEBeqwqjAEj/LPJil5TNWEW4AAAAA4DJ/Hy9d2buxR+7YwZxCzd+aSrgBAAAAAAAAAAAAAFDlCDgAQBW5/NELNGjUqeZ+aeGFYxXWL73NPz8v0qGkw9UgAMBVDofFIxsAAKid7h7WWiPax3ikr0mr9yrdA9UgAAAAAAAAAAAAAAAoCwEHAKgiXl5eeuzbu/XarKfl4yi/vbXAVupnhQVFSti4x7MTBAAAAFCn+XhZ9eHoHvrmxt6yuJlZzCu0a0dqtqemBgAAAAAAAAAAAABAiQg4AEAV6zywvdpaA8psY8ktlN/OtDLbBAT7e3hmAOo6u8PYLG5uNf1VAAAAd53aMkrNIoPc7ifI14tvBgAAAAAAAAAAAACgShFwAIBqMDgqWpa8olI/D1m4RxZb6auIG7WKVcuuzapodgAAAADqutNaRbl1fZuYELWKCfHYfAAAAAAAAAAAAAAAKAkBBwCoBhdfM1TRP2+Qd3J2sfOW/CKFzNmp4KV7y7z+6qcukcViqeJZAqhrHA6LRzYAAFD73Xhac1nd+M/63cNaeXI6AAAAAAAAAAAAAACUyLvk0wAAT4qMDdd1N52pL5/5QfmNQlQUGSBrvk1+2w/JWmgv81ovL6u6De/ENwQAAABApcVHBOrmAS00ds62Cl/r42XRqW5WgAAAAAAAAAAAAAAAwBVUcACAajL6qUt099ib1dQvUEGrkxSwKVUhQf7lXmez2bVny/5qmSMAAACAuuvhM9vqmXPbq1G9AOe5sACfcq8rtDm0OzWnimcHAAAAAAAAAAAAAAAVHACgWo28ebjOummYdq1PVG5WrqxWi+7o86gcjrKvCww9ugAJAFzlcFhkd1jc7gMAANQd1/RrqtF9mmhLUpZyCorkcDh00QcLVM4jiUL8KQIKAAAAAAAAAAAAAKh6/Os0AFSznIwcTf1kpv4YN1tZadnlX2CRpnw8Q7e8cY28vLyqY4oAAAAA6rCMvEJ9u2iXflm+R5n5ReW2N+KO3yzarYfPaGuGtAEAAAAAAAAAAAAAqCoEHACgGhlVG+4f8oy2rtjh+kUOacL/psrL20u3vH5NVU4PQB1jvIm5vAoxrvQBAADqjvTcQl324UJtOpBZob8PfPT3dvl6WXX/iDZVOj8AAAAAAAAAAAAAwMnNWtMTAICTyUcPfFWxcMMxJr4/XRmpri9CAgAAAIB/e3biugqFG4712bwdyswr5KYCAAAAAAAAAAAAAKoMAQdUSkF+oYoKi7h7QAXM+Ppv/f7hn5W+Z4X5hVo0eTn3HIDL7LJ4ZAOAE5GtwCG7jTozQEWMX7JbP6/YU+mbllNg05zNydx0AAAAAAAAAAAAAECV8a66rlFXF2j/+s4UbV66TRaLRd2Gd9KlD5ynbkM71vTUgBOaUXnhzZvHut1PXk6+R+YDAABQW+2YatfWXxxK23o4st+gp9R2lFX1uxDIAsqSlJGnxyesdfsm5RbYuNEAUIrZs2dr8ODB5d4fb29vBQQEKDIyUs2aNdPAgQN11VVXqUWLFpW+t5mZmZo4caKmTp2qVatWKTExUVlZWQoKClJMTIy6deumESNG6JJLLjHPAQAAAAAAAAAAnKio4ACXjb1vnF6++n9muMHgcDi07I9VemTEc5r+xSzuJFCG6V/MVkFeodv3qFW3ZtxnAC5zOCwe2QDgRLH8LbuWvvL/4QaDXdq/SJpzn127Z9preHbAiW38kgQVeqDqSce4MI/MBwBOZkVFRWYgYefOnZo1a5aefvpptWzZUqNGjVJKSkqF+srOztYjjzyiuLg4MyTxzTffaO3atUpLSzPHSU9P1+bNm/X999/ruuuuM9u98847stkIrAEAAAAAAAAAgBMTFRzgko2Lt+jnN38v8TO73aH/3f6J+p3XUyHhwdxRoAS71ye4fV9a92ihtr1acX8BAMBJKXmlQ9t+K3lxtsMuLXvdodi+DvkEEswCSrIlKcvtG9OraYTaNgjlBgOAi6644gqFhIQUO2e8NKawsFCHDh3S7t27tWbNGvPYMH78eLMKxLRp09SlS5dy+1+2bJkuvPBCs59jq0N06NBBbdq0UXBwsDIyMswxNm7caH5uBB/uuusu/fHHH2bowWgDAAAAAAAAAABwIiHgAJdM/mhGmZ/n5xZoysczdNmD53NHgRIE1Qty675ENYrQI9/cxb0FAAAnre2/l/3m+aJcaecUu1pd7FVtcwJqk9AA934F1KhegF6/tLPH5gMAJ4MXXnhBTZs2LbONEUB466239Pzzz5tBhwMHDmj48OFaunSpmjRpUup1//zzj8444wyzgoMhKChIDz/8sMaMGaP69esf196o6vDAAw+Y4QnD5MmTdemll2rSpEny8uLvTwAAAAAAAAAA4MRBwAFlys3OU0ZKphI27Sn3Tn3y8Dca//IE5WXny+plVf3GUep5RhcNuLivOpzaljuNk9rgUaeWWgXlWL7+Prr+xSu0Zu4GbV+1SwEh/ub/h84eM1xhUbwpFUDF2B0Wc3OHu9cDgLuKch3KT5cyEsoOOBhWviet+9ImW54kqxQYI8X2luIHWRR5ipVvBk5q53RqqK8XHn3Dd2kCfb103+mttWBbqjYfyFKwn7fO6dxQl/eKV71A32qZKwCcTEJDQ/Xkk0+qX79+GjlypAoKCpSSkmJWfzBCDBbL8c9kiYmJuuCCC5zhhhYtWmjKlClq3bp1qeMYVR2MNnfeeafeffdd89zUqVP1+uuv68EHH6zCrxAAAAAAAAAAAKBiLA6jJjbqjIL8w+XMff18lJacrmV/rFZhQZFO6dtajds2cqmPTUu26psXftbSP1apMO9wfzL+Hc2N/6XEtWmoW9+4Vr3O7Fr5ToBa7umLXtW8XxeX+nmXIR10/QtXqF3vVtU6LwB1i7HQJT4+3txv98Wd8nUzHFWQkqEN175j7ickJCguLs4j8wRQd9kKDj84ePlalHfQoQPLHLIXSVEdLQqJcy00lbrOofVf2ZW0XLL//yOJu88koU2lLv+xKqY7wS2cvK79fLFmb0ou9fPTWkXpoTPaqkOjsGqdFwDUFbNnz9bgwYOdxzt27Ci3gsOxjODBHXfc4Tz+/vvvddlllx3X7sILL9Svv/5q7oeHh5vVHpo3b+7SGDabTaeddpoWLFhgHoeEhJjzjIyMdHmeAAAAAAAAAAAAVYmAQx2x8Pdl+uG137Tm7w3mcXhMmDIOZslWaHO2MV72FR5TT6dfO1gX3TNSgaGBOrjvkAJDAxQaEWK2mfH133r1uvdkt9k9Pkcvby+9OOVRdRvWyeN9A7UlgPT+XZ/rj3GzVfj/YSSL1aLuwzvptjevVXxbFg0D8GzAoe3nngk4bLyOgAOA8u2Z69CmH+xKXXv42C9cZuUFHftoYZH8I6VmZ1rU+mKLvPylvIOST5DkG3I4eLBjil1LX3O4FWYojdVHGvCaVfU7EXLAySmv0KYnJqzVhJV7VGg7/H8yb6tFA1rX15Nnt1PTqOCaniIAeFZehpSxVyrIlnyDpNCGkn/oCRtwMN5F1KVLF61evdo87t27txYuXFisjRFm6Nmzp/N47NixGjNmTIXmOW/ePPXv3995/Oabb+ruu++uUB8AAAAAAAAAAABVhYBDHfDzm79r7H3jKnSNEWowyptnp+eYf3Y/vZPO/8+Zeubi152+6JgoAAEAAElEQVQLr6tCm54t9O6i/1ZZ/0BtYFRXWTVrnWw2uzqe1k7143hDHqrGmoT9mrp6kzLz8tUiOlLndztF9YICuN11HAEHADVh47d2rfm4YokEn2DJYZeKcozkgdSgp9TiXIvmP+mQ42hO2+OiOkmD3/aqugGAWiA5M18Lt6eaOaLezSIUE+pf01NCHbV38wZtWvCPCnJzFBXfVO0HDpV/MEEaVDGjYPHOudLij6WNk1XsLxYWL6nd2VLPG6Wmpx1+I8wJFHAwfPrpp7rxxhsPT9di0f79+xUdHe38/Nprr9W4cYd/F1y/fn3zGdDX17fCcx00aJCCg4PNoMOZZ56pzp07V7gPAAAAAAAAAACAqkDAoZZLSkjR6Oa3e6TigtXLWiWVG/7tkgfO1cJJy5S0K1nhDerp9KsH6fw7z1RIOP/ADQCekF9YpAfHT9WMdVuLnffz9tKzFw7X2V3bcaNPloDDZ3fJx80KDoVGBYfr3zb3ExISFBdHtRkAxWXtcWjqaLtHKi4Yaw6rMtxwRJvLjYoTUk6SFBB1uKJEy/Mt8gmmsgMAeEJhfp4mvflf7VixtNh5bz8/nXnbPWrd5+ib4wGP2rtS+vUWKflwldsy1W8nXTBWatjlhAo47Nu3Tw0bNnQef/fddxo1apS5b7fbzbBDamqqeTx69Gh9+eWXHps/AAAAAAAAAADAicBa0xOAe6Z/NstjoYTqCDcYfnx1ohI27lF+boH270jSl8/8oDv7PqpDSenVMj4A1HUv/T77uHCDIb/Ipkd/mq5Vu/fVyLwAAHXTjikOj4QbDNURbjBs+k7KSpTsBVL2Xmntpw79dYdd+eke+kIA4CQ34+P3jgs3GIry8zX5ndd0YPvxzyuA27b9JX1+lmvhBoPRzmhvXHcCiY2NLRYs//vvv53769evd4YbDAMHDqz2+QEAAAAAAAAAAFQ1Ag613J5tdWORauLmffrw/sOl1QEAlXcwK0cTlq0v9XOb3aFx/yzjFp8kHA6LRzYAKK+CQ12QsVNa83Hd+FoAoCZlHkzRhnlzSv3cbivS8im/VeuccJJUbvj+Kqkwu2LXGe2N64zrTyAtWrRw7u/Zs6dYwOFY3bt3r9Z5AQAAAAAAAAAAVAcCDrVcWGSo6oq/f1yojNTMmp4GUK7CgkLN/Xmhfnlrsub8uEAF+YXcNVQbm82mTUu3ae28jcpOP37hxqLtCbJ5F8i/Ybb847LkHVJwXJt/Nu+qptkCAE4GvmF1Jwi1e6ZDhdmEHFALFOVL636VFrwvrZ8oFR3/dz6gqthtNu3full7Nm1QQW7OcZ/vWr1SDnvZVUJ3rFrONwie43BIv95S8XDDEcZ1E2493M8JIiIiwrmfkpLi3N+7d2+xdjExMdU6LwAAAAAAAAAAgOrgXS2joMoMGz1Av7w9uUbvcGBYgKLjo7RzbYJb/RTmF2rvtv0KjQzx2NwAT5s9fp7eu/MzpSVnOM+FRYVozOvXaPjogdxwVKmJ70/X9y//quSEVPPYP9BPQ68aoDGvX62AIH8V2Is0JWOOIk7dL8sxEcbCNF9lrA2XPe/wf/bt5Sw2AgCgIpoMs2j7xJpdEOgTLPlHSpluZvhseVL2fqne0ZcmAyeeld9J0x+Vcg8ePRdUXzrzZanDRTU5M5wEjMoLSyb9oqyDh59JfPwD1H7gUA246jr5+PqpsCBfq2dMK7ef8gIQQIXsnCslb3DvpiWtl3b+IzU77YS4+UFBQc791NTD/38zZGcXD3FERkZW67wAAAAAAAAAAACqAwGHWq5Vt+YafPmpmvXdvBqbwz0f3qJBl/bTvu0H9PePC7Ry9lotnb6qUn1tWb5drXu0kNVKcRGceJZMW6GXrnxbdnvxBXzpKZl69dr3FBQWqH7n9qyx+aHuKSos0tp/NiovO1+r5qzTT69PKvZ5Xk6+Jn/0p3atT9ArM57Uy5t/0Jr8zcXCDQafegWq1y1FhxZFy2Gzqmfz+Or9QlBj7A6LubnbBwCUJaqjRY1Ok/bMrbn71OsRixr2syprj0MJsx1KWm5slevr0BaHwppLFgs//3AC2jj58FvG9a9QUXay9PONkn+Y1HJYTc0OdZCtqFB7Nq5XUUGBdqxappXTfi/2eWFerlZO/10H9+zWRY89pynvvKZ9WzaW22/8KR2rcNY46Sz5xHP9nCABh7y8POe+l5dXiftH2vn6+lbr3AAAAAAAAAAAAKoaAYdaKGl3spJ2p6heTD3FtYrVQ+PuUP24KP3+4R/Kycit9vl8dP+X6jzwFMU2j9FlD51vbjd3vk871uyucF/v3PaJpn4yUy9MeUzh0WFVMl+gsr5+7qfjwg1HOBwOff3sjwQc4DET/jdV3774sw4dSC+3rRGC+OWXPzWz/opS23gF2uQXm6O8xGCNPrUr3ykAgFuy9zuUmyz5R0jBjSzq84RVqz9yaMdkh4qq/5FEK991KKqDw5xLuystanuFQ9OusSurEkXmlr7s0PZJDvV/0Sq/MEIOOMHM/u/x4YYjHHZpzisEHOAxSyf9osUTf1ZuRvnPJLvXrtbyyRO1dcmC8ju2WNTtzHM9M0kgL0PaUDx4U2kbJsnszz+0xu9revrR/9/Vq1fPuR8WVvz3pUZ1h9DQmp8vAAAAAAAAAACAJ/Ga/FrEeEP3w2c8r6ua3a57Bjyp69rcqbtOfUwbFm3RTS9fpQ9XvqaWXZt5dExH6UsnnJITU/Xbu9OKnes9snulx9yyfIeev+yNSl8PVIWUvQe1fsHmcv+3a1QyAdw1/pXf9N5dn7kUbjhi0obyK/n4Reeq2YZ0aUOSmzNEbeFweGYDgCPStjk0516bplxu16w77Zp6lV2z7rIpbavU5Xarhn9iUZhnH0lckr1P2jbx6A8so/pCg16VDyccXC8tftHuodkBHnJwu7R/ddltEhZJGfu45XDb/B+/1ZyvP3Mp3HDEqplTXWoXHBGpwvyjb6cH3JKxV3LYPHMTjX4yT4yfoYcOHXLuR0REOPebNm1arF1KSkq1zgsAAAAAAAAAAKA6UMGhlkjcvFd3nfq4stNzip03Flw/OOwZ3fn+Tfrkoa+VnpLpkfFyW4Yrq1dDFTQONRMOfrvSFbxor/x3pJXYfua3c3Xtc6Ocxyv/WuPW+KvnrNfmZdvUunsLt/oBPCUvO9/FdizSgHuyM3L0zfM/Vfi6nMLy/zfqezBb+RO36OlJ6/XIN3dp8KhTnZ/l5+brl6mLNCtxj3L9LGoQHqYLup2ivi0am4tEAQBI3+HQrDvsx1VoSFktzbrbrm53W7TqA4cKPfNIUmG7ZjjU7qqjx8kr3Uto7V8sZex0KLQp/x3ECaKg+O8DSlXoYjugFLmZGVryW8WfSQpyXCvhk5Waol9fflbn3PuwWvXq5zxfmJenVX9O0Y6Vy2QrKlJo/Wh1GDRcjTt04nuFMv6Hl+3Zu5OfVeN322azaf369c7jTp06lbhvWLZsmXr27FmpcfLz8+Xt7S0vLy83ZgsAAAAAAAAAAOB5VHCoJcbeN+64cMMRhflFeuOmsR4LN2T2bqiDl7RTQZMw49WnktWi/Gb1lHpZO2V1a1DyNQeP/uPfnq37tHHxVrfnsezPVW73AXhKdOMohUQEl9kmMDRADZrHcNPhlvm/LVFuVsWDMjFFoeW2sWw+3K/D4dCH94+Trcgmu92ucU+N16Crntdzy5fpn6T9WpawT5NXb9SNX/yiu7/7XYU2D70NE9XucAUGi5sb3zgAh6189/hwwxH2AmnpazUXbjAUZBQPY6Rvc7/P/Uuo4oATSEQzyTek7DYB4VJYXHXNCHXUlkXzVVRYUOHrQqPqu9zW4bBr9pefymG3y2636e9vv9C7119mVo3YvXaV9mxcpw1zZ+nH5x7V5HdeNdsAJfIN8uyN8Sv7dz/VYe3atcrJOfp74GMDDI0aNVKLFkdfCDNjxoxKjzN27FhFRkbq7LPP1muvvWYGHgAAAAAAAAAAAE4EBBxqgdzsPC2euqLMNg67e6sPY5rUV0RsuIrC/ZUxuEnJjSwWpQ9vJluI73EfGW/+fu3697Rp6TZlpHrmTWffPP+zfv3fFOVkuvYGQKAq+fr56IzrBpfZ5vSrBykgyJ9vBNySWcmfoVcOOEMR5Sx485p0tO/UvYe09I9Vevc/n2rstHlKbxdR4jV/rt+qD2YtqtScAAB1R0GWQ0nLy2nkZhYgqKHkF1756wuzjJCFXWlbHSpIl0es/Vza+ptNRbmkvXCCLOLtfLRyYom6jpa8/aprRqjDFRwqo+/Fl8s/uJwQzjEykg8oYf0a/TH2f2bFCHspweqN8+Zo8YSKV5TASSK0oWTxUAUCq7cUEquaNmnSJOe+n5+fBg4cWOzzCy64wLk/c+ZM5eVVrprohAkTlJ6ersmTJ+v99983xwIAAAAAAAAAADgREHCoBfbvTHI7wFCe3KxcfbbhLfX674WHqzaUxmpRdqfo404XFdg0/YvZ+k+vh7Vo8nJ5ebv/D4v5OQV6/67PdWu3B5S0O9nt/gB3jbz3bDUZ0l620ONDDG17t9J1L1xe6b7zcvK1fMZqM8yUnlK5xSSoGxq1KrlSTlkGjTpVp47sqac6XKUAr5IXJFg/PiTL1uJvYd2+aqcmffinsnqWvYBj/OLVKigqqvC8AAB1R8bOql/gb1SHOPMrixr2r9z19kJpx2SH/rzZrqRVDqmMxxpX2XKlFW9JM26xKzeVkANOAL3HSFFtSv6scT9p0COV77sgW9r2l7RlhpRzsPL9oNYLj21Y4WvaDxyq5t166uy7HpJ3BRZJ79+2WevmlP8G+pV/TC41AIGTnH+o1O5sz/TV9uzD/dUgm82mjz76yHlsVFcIDy+eAL3uuutk+f/f36alpemzzz6r8DgrV67U7NmzncdXXHGFW/MGAAAAAAAAAADwJG+P9oYqYSus+n/ANaou3NjhXv0fe3cB3tTdhQH8jdbdS6HF3d3dYeg2YMCY+9jYmAITNrbxbczYxhjO0OHuVrzQFqnRUnf3xu/33BsqofGmApzfnozk5lrS5Ca3Pe//lMzpZHBehauN3vu3fLMLApFmwEHuao2Sbl5chwh+mRx2t7JglVRk1L6l3s/A93N+x4rzXxs1PyGWlp5diJ+3nMOF4PtQ+TgCE7uCn1MM69BEOEsUmPT2GMz8dAqsbEwf6U6lUmHTlzuxa+NZlJRIICgog1goxPBZA/Dmry/Axl7/+408fnqM6QLPJu7ITMw2OK9PMy889eZoTJk/jitu6OzSHGt6vY/VVw/gfOotQMQDL1wK/v4i8G9Lqy2fGJkChYMISmf9nUfySstwPysXbX2qB9xIw8aAB4bh1XgdhBBSF6R5wImXGTA1zREwQPhGRh3nt9CpVFEiEPS9CoP+Z6ERogkxVW4ccOxT4N7x6u1SrF2APm8AA94zr3uDSgmcXgoErVaHHFhCa3W3iNHfAWJb+nk9YZr36ANbJ2eUFuQbFYboMnoiuo5RF5j7d+qCOd//hvOb1yI2+LrB5bMSE4zap5K8XOSlp8KtUWOj5idPmJ4vA+H7LbOeevbTTz8hKSmp4vb8+fOrzdOuXTtMnToVu3fv5m5//vnnGD9+PPz9dXTlfYhCocDrr79ecdve3l7rdgghhBBCCCGEEEIIIYQQQuoLdXB4BHj5e4DHr/3iwuzkHKTeTjQ4H1+iMCmUUTDQD+lvd0VR/0Yoa+eGku7eyHyxI7KfaQ3GyMd1JzAC92/FGzUvIZaUnlWAuZ9uwrkbMVBV6aSicrNH6dA2yLMVYf/KY1wQxxzz31yFPyJjkTaqDQqndEH+jB4o6OiDoxvP4fPx30GpoBEqnzQCgQAfrH0TYmuR7pl46iDEV/s+wvQFE7llyjWydQf/z1yI5qZCNDMFzJ8FKPJwQP5oD0iaVxanufu5wc7RFryH6uN0EfLpKwMhhDzJ7H3rJuxUmg6Umfe1ShP7tc3CX6MybgCFidTFgdSD3Fjg78HAvaPVww0sSR5wbRWQX1kQa5J1o4FLP1eGG1gKCXBzA7BtBpvKNn/fySNJIBRizBvvcf/qwhcIuI4NkxYuRrexEytGk2e5+jYCwxh+3Th7+UAoEhu9X+w2CdEqYCDg0bZmT45nOyDAzDZSFnLmzBksXry44va0adMwcOBArfP++OOPcHR0rOjiMHLkSMTExBjchkwmw5w5c3Dt2rWKaUuWLIGHh4dFHgMhhBBCCCGEEEIIIYQQQoglUAeHehQVFIOz2y+hrKgMAR2aYOTcwbB3tqs2n4OLPXqP74arB2/W+j7Z3M1GaScvvfPYhmUZvb7Stm4oHNZE631lbd2QP8IfLieMCy5EXI1G884BRm+bkJoqyC7EvJkrUODjpH0GPh/Sbv4oPnQL/3z8L5Yd/kzrbEqlEtcOBePS/uuQS+Vo3aMFRs0bgjUHr+KyUgo4VXZpYKxFkHT2g9LVDrdPRODygRsYOLU3/TCfMN2Gd8Svl7/Fjh/2IXDPteqdfBjgxrFQ3DxxC237tMLAab1RkFUISbEUAR0a4+7FSKhEPGS90ARF/VwBQWWxkVVsCbxXxqH/lF7wbeoFQbEMwowSKLzKP38Y2DYqgW2jYgjt5WCUPPDznGBlR4VtjyK2DNcCA6ETQh5jOWEMks4xUJQBzs0B/1E8iOyqhxmsXXnw6g5k1P4pSYOWG8HAsQl1tiF1qCgDWDUQkBXrn68sFzj9JfDsv9rvVyqAqMNA1DFAKQMa91J3aDi5BEgO0r3euPNAzCmg1aiaPQ7yyGnatQdmfP0/BO3fheigK2AeCrqolErEBgchLuQGfFu3RYte/VBWkA+5VAqPgKZIjggzuI2WffrDyrb678G0EXPz0fGX6MAGbKasAtaPA+RVwlrGEtkBk/9Sr6cepKSk4Ndff8XPP//MdVdgNW3aFKtWrdK5TEBAADZu3Ijp06dzv3eKjo5G165d8dFHH+G1116Dp2f1DownTpzAxx9/jNDQ0IppEydOxIcfflhLj4wQQgghhBBCCCGEEEIIIcQ8PIZhqG6tjknLpFg261dc3q9ZRGBtZ4WPNryNgdP6VFsm7m4C3huwGKWFZbW6b+yLIefZtpA2c9F6v3VkDtz2Rhm9vowXO0LW2EHn/TypAr4rboAvM1w4++G6NzF63lDuenZqLnLT8uDm6wo3H+37SoixJKVSnNkSiIv7rkNaKkXLbs244u9FE79D+sgOgJX+LJjtsTsQ55VgS+IquPu6atyXm56HT8d+i9hbCRrTxW72yJjUCYyev53bn4zA0O4t8eXuhfTDfIItm/Uzzm6/bNIy7OipaW/4o7iv5uuxnDBLih8c+mHE5L6Y2fg15Dd3Qt6kVtyngEvHHFh7Vv+ssRNYY3mX19HGUXtojTQcycnJaNy4MXe96eoFELnpCGkZSZ5TgLhXV3DXk5KS4OfnZ5H9JITUL0UZgytfqpB+XXO60BbovYgP377Vv6TkRqlw/n11GOJJ1XsxD02GqbsalWYxkOYCNh7qAAghNSItBm7vACIPqwMIvl2BVmOALU8bX6zLFwIfRgO2D30HLEgB/p0GZEVoThc7ALIiw+vtMB2YvtaEB0MeN/t//BYxQVcsvt5Rr7+LZl174u835oFRGW67w4YhnvniO3gGNLP4vpDHxP0zwPbZpoUc2HDDjH+B5sMssgvnzp3D0KHq31+yZs2aBQcHB62dFHJzc7lgQkREBKr+ir558+Y4cuQIWrViz9P127lzJ1544QWUlpZWTBMKhVzYgV3eysoKWVlZuH79OjIyNNtkseGIf//9l5uHEEIIIYQQQgghhBBCCCGkIaEODvXgt7fWVAs3sCQlbPDhF/x2ZRlXYM1SKpTYsGQHDvx5zOxwA1tAXdrOCSXtncEIeLCJLoJDSC54yurZFrYsx213FPJHBKC0gwcgEqiny5SwvZ0Jp9PGdVtgqYR8veEGbt+shJA1coB1XIHe+YQiAXqN7Yq4OwncSPk3jt/i/vDH5/PQfXQXvLp8DgLaq4s5CTFFRkIWPhrxFVLvV/6R9/b5cOz++RAYduQ+A+EG7nVsI4Iqh8EXk35A7O0ECIQC9BrXFdM/eAqrF26qFm5gFfg46A03sKQtPVGYbUTBEXls3bt53+RwA0vqLdYZbmApPKyQ2twKe345DJVSBduwbCgdrSCf4ao13MAqUUqwPGIb1vX+WO+2U/Ly8dfJC4grKYCnhzOmdOyIgU38udAFqXsMw+MuNV0HIeTxc+N/TLVwA0tRClz5QoURf/Ph1FT9/lfJGdxdy+D+fgYKCZ5YfDHg3YOHvHsMbq9WITNYnRDn8QHvPkDn1/hwoO4OxBy5scDGSUBBYuW0+EDg8m+mrUelADZPBTLuAAIx0Go00O8d4NCC6uEGljHhBlZpjmn7QR4ryZFhtRJuYEmKi3Hz8D5u0HxjRl+RlpbgxN+/YfZ3v+idLz8jHVd3b0N+Zjoc3T3RfvBw+HfsYrH9Jg0YG1J44Qiw93Xtx72HebZTd27wrb3Xx9atW42elw0mvPzyy/j222/h6qr7nL6qZ555Bh07dsSCBQtw7NgxbhrbBSIoKIi7aMN2d/juu+/w4osvGr1vhBBCCCGEEEIIIYQQQgghdYkCDnUsJy0Pp/8N1Hm/Qq7Enl8P4+ON73C3l0z6AdePhpi9PYWTCClvtYbMz65iWuFAL+TkyeD7VxSskitH9yrHU6jgciwWjucTufAByyqpEHyp4dH0zGJEE5ExLw5DflYh3h+0BCUFlfusUjEIOhqCiCv38Mulb+DflkaVJqZZ+sxPGuGGqngMA16pDIytWO86+MVS7t97N2Mr3seBu6/h0r4grnhcG8ZG/zpZKlsxGjVxN+JRkMeRSqXCNzN+NmvZ4p6GO9vsuhsM0beV4QmHKylQzlGwQ/nqXCahNAO382PRyVkdwou6cR+pMemwd7FDl2HtseT3ndiJVDBC9cjWKMrE/th76Obpg3VTpsGRRoUkhJAGoSSdQdJ53d/BVXIgejeDHh+qAw4XPlYhy/xTksdG86d4KEkHzr2n0uhiwaiAtMtATpgKw1by4eBHwTBioh1zNMMNNZEWUhl2CNsLhB8AmBqey7s1t8iukUePUqnA4V+X19r6Q48fQmFWpknLZMTGIP1+NLybt+Rup0VHoSAzHdYOjmjctgMO/bYcMdcrAxkpCENE4Fn4teuIKR8vgdjaxuKPgzQwbFjhzStA/EUg6B8g4pDmcZDtdtNmAtDzZSBgANsCsV52UywWw97eHt7e3mjfvj0GDx6MadOmcbdN1bZtWxw9ehRhYWHYvXs3rly5wnWFyMnJQVlZGddBgl1vz549MXbsWG477PYJIYQQQgghhBBCCCGEEEIaKgo41LHgU7e5rgz6sAX7rAu7rtQo3MCWLKW8qRluKKdwESPl7Tbw//IWBBLt+yMoU8AmJs/k7YqsRZBJ5JAGOIJXJOVGBec9qJ96+E+GPIkC4pRidBrcDj3HdMX2H/aiJF8zdOHTzAtNOzbBPx9t1gg3VFWcX4L1i7bhy90LTd5f8vhLi83AkX9OISkqBfbO9hg2awA6DmqL4FN3EBV0X++yovuZkHXUHZzh5xRD8NBrtpyucAO3XIk6FKEPO8+4z0YanI88XthONTuW78f5/65AIWMDB6ZjxA8CBnqkp+fi4b43PF/DXwuSSjNhFcPgp5f+RNydykI8SRM7pMzvAAiqbzs4Mw0fnTiKVRMnG/kIiMWwn7+MBdZBCHmsZAQxgO6vKZx0dh72c+n4oxlu4IvUQQ1TePUE3DvyELWd4TpZVGXfCHBswuDWX4xGuKEqWQEQtp5Bn8UUcCBa5NwHbm5Qd2uwcQE6PQM07gPcOwZk3K29p6ym4QZW93mW2BPyCMmIu4+g/bsQfe0SF7yuLaaGG8rlpSZDqVBw3RxyU5KMWiY5/A5Orl6J8e/S742eCGxooelA9UVSCBSlAdJiwMoecPABrB1rbdNDhgzhus7WBzYowV4IIYQQQgghhBBCCCGEEEIedRRwqGP6Cp4fnmfjFztqtK3Sdk6QNa4ebiindBShsK87XM5qH73eXGXWfGS+1AVyL9uKaUz5/1SaIQf7mxloHOCFTza/Cw8/N0x7fzyOrD6FTV/tRGFOcUVx+u9vrzW43SsHbqAwtwiOrg7IyyxA5LVoCEUCdBjQBjb2NELfk2rPL4fx94cbuW4f5Y5vOAuBUGAwbMSyikiFws8FKhct7yW5EjZBcWbtl/h+Nkp7+gNCgc55hrcLQNve6lEpyZPh9oVwfD5uGSSlhgMw+lgllJo3T7EKcNAfjtj33SHE/xlVrei9YLAPINBd0Hky7j6SCgrQ2MnJ4L4RQgipXWzHAWPnidj0aKacTA03OPoDvT7hw9qVh9bPMri/n0H4JgZy9SkJilOAmysMryclkIG8lIHIloeyHAZ5UeqBot07AUJrCj48sQJXAKe/1kwNhmxWvzjYTgsNWcenAe+O9b0XpA7F3w7B/uVLoZDLGuzzfm3/LuQkJZi8XNSVQAya/QIcXKlT4hOFDTPUYqCBEEIIIYQQQgghhBBCCCGEWB4FHOpYx4FtwePx9I7kxXYzYO9PvpdW44CD4XmcLRpwYAQ8ZMxtB4W7lkABD2D4lSEHnwwZ3nlqOMbOG1IRQBCKhDi0+mRFuMEUbDAkLTYTqxZsxLntlyB/MPK5raMNnnpzDOYtfRYCge5icvJoKcguRFZyDpw9HOHeyA3ZKTk4sfE8spKy4ebripFzByMyKAZ/LdigdXljwg0snlwJu5NhkHb0g6yZJ2DFFiGpIEzOg9WdZJ3dGwzhSxWwDUpAad9mWu+3isvB2Lf6mbVu8mhiR0b93wt/1DjcwLILzocgVwalq1jHxhg4nsqqPv1MKfCcnsKPIhXi/rlX0ZWnqrJW+gtG2EUuJyfiWScqkCOEkPrm3on9Nq4/uODRiQeVnEFJzU5JGjwrF6DdXCBgNB9CG3UAgS8A7h+oDDeYGqwoSWcQuYVB8nmmYvB8kT3QchoP7ebywONT0OGxUZINFKYCdh6Aow+QnwTc2g4UpgBOjYDOM4G4i8Dpr7Qv39DDDewI6B2fqe+9IHVIpVTi+F+/NOhwA8uccAOLUamQHHYHbQcOtfg+EUIIIYQQQgghhBBCCCGEEEIshwIOdcy3uTf6TOzOdRvQhg0/THl3PFecb0y3B30YIwpnjJnHFKXt3LSHG8rxgIEtAjB/SF90bORd7e5j688i/m6SWdtmuzWsfHsNIq/HaO5TYRm2f78XhdmFeH/162atmzQc6fGZWP3RZlzeF8SFFNj3jHdTT2QkZGm8Z7gOKBZ6ebMhB+vgBFiFJoKxEnK3eYqavT9Z1uHp4JfKUda5EZTu9tw0frEUVhHpsL6TgmUX7+O3q8vQoktTCzwK0tDdPHkb6XGZFlkXw+PDKpaPUjbnpiXXZXNLgrLWXlA6lcAmPAf8B69n3t4iMKNsAQ/tXw94mwvAk5k/kndeWZnZyxIzMWyosoYHw5ouTwhpcJya8uDVA8jQfkoC8NXF+Ao2c/doNnAwyLcf0O55PlxaVT/GxexnUJxs3noFVkDQ9wzyozWns2GJ8I0MZEVA13fouPrIy7kPnFwCRB2FOsXCA1z81QGH8lQL68y3j/abiB2YYecc4NXzgGeb+t4bUgdig4NQnJvzWD/XpYWF9b0LhBBCCCGEEEIIIYQQQgghhBAD2PH0SR37cO2baNWjebXpbKH2Gz/PQ+ch7SG2EsHN16VG27GJLjI4j220Zf+wW9rK8D67OdhqDTfs/e0IVrzyl9nbbtWzRbVwQ1VH155B8r1Us9dP6kbImTv4fMIyjLOeibFWM/DJmG8QdDyUuy8zKRvz+y9C4K6rFR0Y2G4nabEZ2gNBFq4l4qkY8MvkFgk3lBPH58Bp/204b7sBpx034bTzJmxup3Aj5LNBpz2/HLbYtkjD6T5yZmsgTmw8h6SolIrpKdGWGyK7pI8vVA72sIq3giBXAJ6MB8gBfiEfoiQxVPYuKO7ji9zJLZH2XndImqk7/vDyVOC9nwmESjRXmKcE77c88HYXQyXko3CgF7Lebo3MN9qgoK8vlDZC2Nwz8HnCAMsvBGLSli04ff++xR4rIYQQ8/T6lA8nLY2keHyg+3s8uLXjQWQLiA03hXskWbvztIYborarEPq7+V8iXVqhWrihqph9DNfhgTRwMaeBzVOBr92BpR7AlqeB2PPq+3LjgHWjgchDVcIMDJAXrxluKJ/+qFNIgGvmn6eThqkkPw8RgWcRdv408tIrf0+Sl1Z5flJzDTPMdW7TP9jy+QLEhd6s710hhBBCCCGEEEIIIYQQQgghhOhAHRzqgaObA367/C0u7buOczsvcx0GAto3xoTXRsKvlW/FfJPeGot1n281er32LnZo3bMF4u8mIic1D/a3ciHMkULhZqV1fp5ECcfLWbAogeE/YCuUKkRej8b+P44h/HIUhGIhmnZogvP/XTF7s67ezrC21f44y7GF8Ge2XsTcL58xezvENGlxGdi/8hhuHA/lAggdBrTF5HfGolknf63zH/r7JH578x/uZ1Xu5olb3IUN/7DdPXLT8h7LHwO/VKZ1etDRkDrfl8dRsUyGzbdDsDMiDGlFRfC2t8f0tu0xt1NXOFrpP3YYUlJQgoOrTuLU5vPIzyzgOoqMeXEYfFt4c8f3Ri19uGOcQq7AX+9v4MJWcqm8Yvkeoztj4fq34OCi7uJhKr6Qj5eWzcLt8+EoLSrjtvWfnxIoLQVPwYMoSwRkPRiEX8shWmUrQvazbeC1+hZEORLw0pTgfZAFprEQaCoCShku8MBTANJmdsj9tCl4Hmz3FPXyZUNcUJzoBYddKSju4qb7c4BhN8/D3YwMvLZ/P34aOxaT2rY16zET47GH0yqHVLPUdHlCSMNk7crDiL/5SL7AIPkcA0UZ4Nych2YTebBvpD6W8/g8NH+Kh4jNxh8IxA6AazsgLwqQ5qPBYhRA9l0GMXsZ5EYyEIgAxwAg+UENuzlsPIyo51UBSWcZtJnZMAt/H9tuC9f/Ae6fUX8hCRgA9HoV8NTxPeTqX8CxTzSnRZ8Aok8CE1YACVeAEgufRzd00afqew8eC9LSEoQcPciFCtguCQ7u7ugwdBS6jB4PsbWeTphGkBQXI/TEYS60UFZUCGcvH3QYOhJOXt6QlZXC1bcx3PwaQyGX4+z6vxF2/hSUCoV6YR4Pzbr2wOg33oO1vYNZ2+cJBBg463kk3b0NuUQCD/+miLh4DpJiwwNv1If0mHvY+/1XmPD+x2jVu3997w4hhBBCCCGEEEIIIYQQQggh5CE8pmolMWlQpGVSfDrmW9wJjDBpOaFIAIVcPXKk1McGKe+0gdJZXC3c4PNPNOwiCiy6z4V9fZA3tqneeabYeiNk4V6NInZT8AV8bllGxUBkJcKg6X3w/NfP4n/z/jD4XE1+eyze+u1Fs7ZLNOVlFiA5KhW2jjZo3jkA6fGZXGcFtsCaDTCw07+c+j9ISqSaC/KAqfPH440V8zQmZ6fkYHbTtyo6MzyMz+dBKBZBJtEeBKgrNvbWKCt+aHT7WuTgYoc9ORuMnj8rOQdH/jmF6OBYWNlaYcCU3hg4rTeEoic3z1YolWDmnp0Iz65eiOapEKLZmvsoSy3gggjjXxmB0S8MhUAoMGrd+VkF+GDIF0iM0D/Sabt+rWFlLULImbta72/Szg+Ltr+Ht3p8wnXuMJVbI1esOP81fJt5Qa5UotNXv2nczx1tHwQcGAEDxkEBCBhAygevWMAFD+yD0uByNE7nNpQOfGStbgOerfZjtyLGGvZ7UpE9xR8QPtQgil1EqQ44lHO1scGlV1+FWGDcc02Ml5ycjMaNG3PX/f/8EEK3mg2/rsgpQMKbP3LXk5KS4OfnRz8OQp4gijIG5z9QIVfb12z2sK7jKz1PqA4RNFR+Q4Dkc+YvzxMADNvUiwH4YqDxUB46vMjD5S9UyIvUv2zrGTx0eo2aKVpEUQaQex+wdgK82qu7K0QcAGSlgHdHgC8C/nuefSE//BMEBrwPjPhCczLbheG3rg9+uDp+8HwBoKzfcxIIbbQ8plpk7w18GGX8/PmJwM0NQPpdQGwLtJsEtJkICJ7ccxI2dLDjy0+Qk5xY7T5bJ2cIRCLIStkggh86jRiDdoOHgc++1oxQnJeLnV99grw0/R0r/dp2gIphkBoZpvV+d/+mGPPme9j62QKolNrPy/VxcPfAjK+Xw9HNA9LSUqx8oeEPLmHv6oZXVq4Dn85JCCGEEEIIIYQQQgghhBBCCGlQnty/LtcCuUyOO4GRkJRIuAJv7wDPGq3PysYK3x9fhL2/HcXh1SeRFpvBFY2PnDMYU98bj6+f/hH3QxOqLVcebuDWkVaGgK9uobC3O0raOwN8HmzuF8HxUiaERZavOLIPyUT+0MZgrLW/tBxEIgQv2l+j4aDZTgDlI8q+vuJ5PPXGaK7I2MnT0eCyjVr54El7TZ7ZdglhFyNhY2+F3hN6oNvwjkYty77euM4LKgYdB7aFT3MvlBSUQilX4J+P/8WlvdcrXmt2zrYoLSjTCK3weDztIRYG2PPLYS4I8cE/b1RMZke11xVuYLH7Ud/hBnbE+m1Jq3By0wVEXLsHkViI8Kv3kBSpv5CkJjoMNH6E+zNbA/G/F/7QOAZc+O8K/Nv5YcxLw7jrafcz4OjugBGzB2PiG6Ng72yHx92PVy5pDTewMoUKSDpZwzMiDfdu3Ocul/Zfx1d7PzIqFMJ2ZDAUbmCx3Wq0kTZxQkkPX6Q3ccZT63ZD/FRr2N5MhXWcaZ1KclJy8XK79zDjkyl4bvE02FmJUSLVfL8wPAYqDzkYNzlQtaZSzgM/xQplLV0rAg5sR5zWvVrg1rnK4qfCuY10hhtYAn8pIBTC/6sQFPXxQP4QX6hs2OrWyu4NVeWWleFsbCxGt2xp0mMlpmEY9lhcs1HCa7o8IaRuKWUMsm8DSing3BKw9azZe1how8Pgn/iI3s0g9hCD0gxAZA8EjOahxVQGlz4DCqufkjTocAO7/zXp1MBiqnxt7fou0Gw8H5JcBtYuhpd1eNJyYgopcGs7kHJD3eKjzTh1FwVjuy9wnRegXsapMSAtUq/z5GIg6gigevBiY0MOkgIjUzgMcHEFIC0Gxv+vcvLNjbrDDdxiSsCMwm+LYkMWH0QAoduA1GBw7UcSrwK5sbW3Tf++xs8bsgU4+G7lz4UVthfw6gB0ngmE7QHyEgA7D6DzDKDHi4C14XP5R92FLRu0hhtYpQWV7W7SYqK4y/2b1zFxwSdGhRxOr/3LYLiBlRyhPWxdLjshDv9+PB/mKsrOwrr5r6LP1BnoOXEqhGIrKGQPDXhgApG1DbyaNje43zXBdtJIuB2Cpl171No2CCGEEEIIIYQQQgghhBBCCCGmow4OFrLn18PY9t1e5GcWVIw232tcN8xf9SrcfV0tsg2VSgU+nw+lUokdP+zH+kXb0BCVNXVE/ryOkPE0C0nsrcQYmSpA8K+nLbYtNuTQoX9rhF2K4grg9RFbi7EjdfVjV9DNvi5unriF+LtJkJRKuQ4D7GMsyivG+kXbIZfKNeZv3bM5lh78FC6eTtU6MhxffxbxYYmIvBaDlOg0jfvLAws6gwtmWHbkM/Qc05W7/t3sX3Fm60XUF3bEfn0BC5ZPMy9silmpMY19npfPW4lrh4It9rxUtfzUEnQdZjiUEncnAW90/9jgY6iK7Vjw07mv4OZjRCVeA1OYU4TzOy8jP7MQ3k09MXB6H64o/2Flcjl6rV2FYrnucAxPqkTTxTfBl1YWs81ePB3Pf/Ws3n1gg1WzGr9uVscFVmlnbxQOa6pOzjzE4UI87G6YF5wZOrM/ZDM6YkfQ7Ypp7CtT5SmDylPzeFBBBQjvCtF42U08+/FkvPDNDJzfeQXfPfdrxSwZG1sDzvpHm+Zf4eMdtOJCFgM3rONCDPp8MXQo5nZVHwNI7XRwaPLHQot0cEh863910sEhOjoaGzZswIULF7jreXl5sLKygoeHB3r06IHx48dj5syZEIlEtfJ5euDAAWzZsgXXr19HZmYmt+1GjRqhb9++mDt3LgYNGmTx7RJiSVHbVYjczkD2oMabxwd8+gHdF/Bh7WKZsBLbRY39Dq5SMgjfyCBic8NtCKiti4TIAXBvD6RdteSGAPcOQDZbg8sYHnh/4m4+Fxx5rKhUQMxJICsKkJcCYnvAxhkozgDOfV+940HjPsDMbYCta/WODKH/ApmRQPINIC9Ox5Oqp32IqeYdrgxcbH8OiDyEeiMQG+4O4dEGeOua5rSSHGDvq0DMqVrYKR7w4nGgSW/Ds6YEA2tGaCaADGEfD/szsHPHo6a0sABRVwJRVlgIZ28ftOrdH0KxZvdMFtvNYNVrc0wu9h8w83n0nvy03nmKcrLxz9svgmHfgw1I+8EjuH/Dzpv3muz79Cz0nToDYedP4/iqynMSo/B4XMii9+Tp+POV2ZBL9J+TjHz1HXQaPtqs/SSEEEIIIYQQQgghhBBCCCGE1A7q4GAB23/Yh7WfbtGYxhbbXz10E4lDvsAf17+3SFE9G25gR71fNOE73AmMQENlE1eIl2wDUNLTG5fjErna3f5N/fF01w5YOupbi26LLbBiu2YYgy/gITMx+7EKOERci+YKkNluC8aKCrqPLyb/gN8uL6uYdmz9Wfz25j/VwhBVlRfvW7KI/8BfxysCDnZO9fdzadWjOV5dPge/vfWP3tH4J789tto0Bxd7LN3/CZKiUhBy+i73/HQa3A5H15zGob9P6n1O9WGDJK/9ONeocANr3+9HTQo3sNgQy+9vr8GXuxfiUcAWH0vLZNj76xFs+WYXZJLK5/bP99bjnT9exrCZmqMBpxUX6Q03sBgrAeSuVlzHm3LbvtuD8a+N5AJqbOeQs9svIeT0He7n22VoBwybNYAL5JgbblDai1E4JEBruIFVNNAfVjG5EOZLTF732W2X8NkLg3HSzga5JWWV3RvYzg26sLkFR/W2rh2+iX5P9UDXYR0gFAkqO4IYUYjp19EHL82cxQVQvO3sDQYcvB0cTHps5PFVXFyM+fPnY/369dU+Z2QyGYqKihAbG4udO3di0aJF2LhxI4YOHWqx7ScmJnLBicuXL2tMl0gkKCgoQHh4ONauXYvp06fj77//hqurZcKrhFhS2AYVFzioih2IPvUiUJSkwoi/LFNUz4YbZMUMAj9WITccDVr7eWwnCx6yQtlQBuDVk4dm43m4sNDChcAMkH3HyHl5QGkW4NgEj4+Ey8Ce14AC7aPTa5V0FfjveeD5g5XTgtYCRz8GVMZ8f7ZgsCZoTWXAgQ1l1Be/nsDIpcC+14G8eN3z9Xq1+jQ7N2D2bnUwJD5QPS1gIBD0DxC8yXBoQhf2jTN2uXHhBta1VaaFG1hZkcCxT4Bpa/AoYIMECpkM1w/sRtD+/6BUVJ4PnN2wGiNffZsLOlRVkJluVieDy/9tQcehI2Hr5Ay5VIKIi+eRFHabO1f079QVrfsORPiFMw0u3FAebJj0wee4f/MaJMVFJi8fE3QVzbr2RJOOXcDj8016jB5NAtDv6Vncdh3c3JGbkqR3fke3Ry9cQwghhBBCCCGEEEIIIYQQQsjjjjo41FBJYSlmNHoVkhLdf6x++fvZePajSbCEH57/Hac2X0BDtzb8FzRp06ja9IUjvkLoGXZo0/rRtk9LjcL+R1nq/XS80f0jlBbqLyDWZcX5r9FxYFvcvhCOhcO+NNgBozZ4B3hgc+yf3PW7FyPw/qAldbp9gUiAr/Z+hN7julXsw6djvuU6YTyMfa6+P76I6wRirILsQlw/GgK5RA6vpp74cvJyresu5+hmj+ZdmsK/nR8mvD4K/m2NHyV9Xut3q3XdMAZfwMeW+D/h3sgNdaU4vwRXDtzgjp9NOzRB5yHt9c6fnZLDdcg59e8Fva93tnPOd8cXo9vwylBIVkkJeq1bZXCf/L8MhihPs/Br7MvDMeXdcfh83DJkJedo3Md2SikrNi58oHASg+HzIMyXoryxTXFvPxT311/ZaBeUAofABJjDt4U3Zq18HttT4nE1LgkqBwWU/vqLqnhlKgS8oK7OZIumFu14H0HHQnFs3RluWtafLaBqpH/U/G6JjcFfeRdJUako6OeFnKnNdM7rbmuLi6+8ApFAYNZjJEZ2cFj5kWU6OLy9vNY6OBQWFmLIkCEICQnRmM52T/D09ERpaSlycjTfgwKBAJs2bcKsWbNqvH32MfXv35/7txz7HmC3LZVKkZ+frzF/ly5dcPHiRdjZPT6BSfLokxYwOPS0Sm9deJd3eGg5VX8nHmNd+VKJ5PNo2HjAuC182PlUD3WceVuJnDDUG4+uwJAVj8nnH9uxYfVQQF5i3vKvnAUadQPunwE2T7VscMFY7q2At4PU1++fBTZPrvuuDc/9BzQbor4dex7Y+gyg0PJds+lg4LldgND4cxIUZ6k7OyilgFNjYPtMQKHne6GtG+DVQX3p8SLg3sL4ba1oBxTqDozrfQ4WRNRpF4ey4iLE3rwOmaSMK4j3a9tB7/yF2Zm4tncnFzLQ1xGALxDg6SXL4Nem8hynIDMDa955yaz97DZuEtoNGoa933+Jkvw8jfvE1jbc/jdUro38uE4Kt08dQ3KEGb8H4vEw+aPFiLp0AREXzxm9mF+7jijOzUZ+uuHzYwd3D7z8+xrw+Y/JMZkQQgghhBBCCCGEEEIIIYSQx4RlKlyeYJf3BekNN7DObH0wgqIZ2JHD8zILoJArkJueh3PbL6Gh6zG6i9ZwA2vAFCNHfqwlEVejEXfHvILhhmb3z4fMDjewrh8J5v7976cD9RJuYFnbW1dc7zCgLfpM6G6xdb/164tccbqrjwtXxP8wkZUIn297vyLcUL4Pv1z6BgOn94FAqC5wYJefs+RpfHfsc5PCDSwnd0duJPyY0Hh8Pe1HveEG1vjXRmH5ySXcvpsSbigv7jeHSqlCfFgy6gI7KvuGJdsx0+81LJ+3En+8uw4fDvsSL7V/D9HBsVqXSY/PxDt9PsOBP48bfL2zr+Pt3+/VmOZhZ4fejfQ/l9ZxRdXCDayz2y7is7HfVgs3sIwJNxR3ckfqW52R8kEPpL7fHSnvd0fBAF8wPEDhamNweYVL5fvDVKkx6fhxzA/oEVKIo/Pn4ZVBPQwuw4h4Gj+rb2f9gtlLnka/ST25abaHqj8PGiR8JCw8w4UbWA7XM2EVV6h1VgGPhy+GDaNwA+G88MILGuGGXr164fjx41zXBrazQnZ2NuLj47Fw4UIu2MBSKpV48cUXERys/iyrSWeYZ599tiLcwAYb2E4SbEgkPT0deXl5uHXrFsaNG1exTGhoKF555RX66ZEGJfk8Y3DQ+8ST5n/fU8oYSPIYqBQMStIZJJt/elNnfPtDa7iB1WhgzTtZ1ERWCFCUXD/fvy3u8m/mhxtY0SfU/176rX7CDSyxfeV1NmTQzHIdgjD+Z6DnK4Cdp7obwsOENsAzmyvDDdw+DAZePAa0mQDwHhRdOzYChi5SByFMCTew7D2A1mOA1BBgxxz94QZW7zeA5w8AY5aZFm5gaXuMxmA7TGTfQ11gOwFc2LoBq19/Hsf+/Bln1q3Cji8/wcaFbyMrUXvnjLy0FGz5bAFXqK8v3MBSKZUI2r9LY5qTpxd8WrQ2a3/Dzp3C7mVLqoUbWA053MDKTUnGkd9/hE/L1njh51XoNt7EgT8YBvt//BYDZz6Ppl2M/11Bcvgdo8INbBhl2AuvU7iBEEIIIYQQQgghhBBCCCGEkAZIWN878Kgryi22yDwPS4vLwL9Ld3GBBplEDltHG7Tv1xoKuRINXdilSPz25j+YtmACgk/expWDNyCXytG6ZwsMnTUAzp6OyM/UXvRaF5Kj09G0oz8edRf3XKvR8kqF+rV08/gt1JdB0/tq3F68cwH+nL8eJzad514zLKFIyAV8TOHR2A0T3xzFFcK++csLkMvkCNx1FZf2B3GhodY9WmDcK8Ph6u1SbdnmnQOwZOcH3HxsIMHe2Q58vnmFOmUlEiwc8TWib2ov3n/YtmV74ObjgklvjTF5W91Hda4oLDcV243A0thg1rG1ZxB1I4YLk/Sf1BMJ4UnY8s3uavMmRqTg45Ff48+by+Ed4Klx36oPNiI7Jdfo7bIdYkqLymDrUBkgeK93P8zdtwtylar6AkoGrkcqR22vig2vGQqw6ZIzLgCF/Xy50aNZPBWgcLZC/qgAyL3sIM41/JrmS2p+vN+38ihadm+G6VM74++ES3rLBq3iSzVuqxQqfPfcr/glcCkir0fj9I6L2J2VjGwPLRW0KsDur3QIJZWPi69g4PNPBPJGNUZRL0+obNVfObr7+uKdPn0wMCCgxo+PGMYw6ktN1HR5fS5cuIA9e/ZU3J40aRL+++8/iESa3UL8/f2xfPlyDBo0CJMnT+YCDmx3hQ8++ABnz541e/tsF4grV65U3F6xYgXee+89jXk6deqEQ4cO4eWXX8a6deu4adu2bePmY8MYhDQEsiLLzPMwtgg/fBOD5HPqAIXIHnBtqz7uN3RsiCDkNxVaTgPSrwOpV9iABuDenge/QQzEjoCs/k5JUJwCOFi2IU79CD9Ys+XZH4pKCcTVY0uQ9lU6NvB4wIytwJGFwJ2d6sJ7Fl8Egymih7k2A3q8oF7n+B/VwYKwvUDUEUAhA/x6AN2eVwcQHubbFZixBZBLAEUZYOXEJprNe3ySQmD9eCDTyLYlZ78F7D2B7s+bvq3mw4DgjTCL2PKdkdhQwJ3Tx5ERFwOh2Aote/VFWsw93DhY+d2jXHZiPP5b+jnm/PArHFw1O0mc3bAapQWaHZ30iQu5CYVcDmGV7zP9np2NPd99wQUsTCEtrUGAqIEIOrAbnk2bo8OQkQg+vN+kZRmlEsf//g3TP1+K1HsRXCcHtouGtMT037NVxXbs6Dt9Fpp06FSj9RBCCCGEEEIIIYQQQgghhBBCagcFHGrgTmAEAvdeNThfo1Y+Jq03OToN7w9YhPysyoobduTyoGOheBSwI5sfXHUCh/85xY0OXy70bBh2LDftj9m1wdG1ygidjzBD3QAM6TCwbcVI7fXBzdcFE14fpTGN7ZDw3t+v4YVvZ3LvL0bFoF2/VnhvwGKkx2Uave6Jr4+uGOWbJRKLMGzWQO5iLHZfTO3Y8LAjq08ZHW4o9/cHGzHo6b5w8XQyablJb4/F0TWnIS2r3olAHy9/D7Tt0xKWdPlAEJbN/EVjX9iwFk9Pl4mivBLs+eUwF0gpx3atuXLghknbZl/PXDimSsChT6PGWD1+Mr44fxqJhQUV04U5EnjsSYDtPe3VjWznj6rHMGNlTwhAUX9fzf1i69HYVSmBks4esNp/3+B6rCOzYAl7fzuCv54fgv5ezXAxQ/fr0eF49Q4NYZcjUVJYija9WsK/nR/CxyxFcOM8lI5zBeMsAFQMBJEyuG/PBm5Vfx75MhXcDiXA5VgiGDdrrL35I5r6aoZYyJNtzZo1FdednZ2xcePGauGGqiZMmIB33nkHv/zyC3f73LlzSEhI4AIQ5vjxxx8rrg8cOLBauKEc29lh1apVuHTpEqKiorhp33zzDQ4cOGDWdgmxpMxQBqmXDH+fszexmL4gjsG591QaIQB5MZARhEcC21QgZi+D+/vZEdsrp2eFMIj4F/VO7IDHg1wzIGky/37qf6v+kOqSU2Og21zNaWJbYPIfwIgvgcQr6oCCXy9g9RCgyIRAMdu5gV22nNAK6DxDfTGWyFp9qYnrq40PN3AY4OjHQLunAJvqgXC9+rwB3NoOKE08V3VrAXhbttD83tWLOLLyJyjllcGUyEtskEb3OUlZYQFCjh3CoFnzKqYVZmci7pZpHaMYRgWVUgFU+U4T0KkrnlrwGc5uXI3CLOPPbdkuA2xXiEdd8NEDmLX0Ry5YkBxx16RlE++EQi6VwLdVW7j5NUFKZDiytAQchCIxFHL958M8vgAv/rwKzt6m/Z6OEEIIIYQQQgghhBBCCCGEEFK3zBwC8MnFFs8GHQ/FO30+xYLBS3A3MNLgMuNfGWFygXPVcMOjypzCYG18mnnqLD42FVvM3XGQurD/UdeyWzOzl3Vyd0CfCd256x0HtUNtmfXZVIyaNwQCYWXYgNWqR3P8eOZLnUX8Tu6OGDClNwZO6wM3H1dMnT/e6G32n9ILzyx8Cg3B8Q2mjyoulylwcuM5k5fza+mDL3Z/yHV7eZi+YMHsxdPN7lChTUpMGr559metQQs2sKLPuZ2XNG6nx2eZfBzxaeYFR7fqFYMtZFZY33UE3hE2hdeW+/D9Ixz+S0NhdzdP57q8A7SMpmtAcUe3auGGCnyAefBWkAY4wiq6eqCgnDg+D+LEAgR0aKJ3e4wrH8wMB6jedQbznCMYT833GismJI7rSPJdzwloYq+9SM3+dA4cArU8F0xlt5jNX/+He5ejYb8jGx7z7sFj9j14PhsF909jtYYbNB66goEgowwrZ/2hdz5SCxgLXWrJkSNHKq7PmDEDTk6Gw10vvFAZhCrvAmGOkJAQhIVVFny+++67eudngxfz58+vuH3s2DHk5xs/mjMhlsR+pqZdZXDyVSXOv69CboThZZpPNO3zPnSlZrjhUWWpunlbHbWwPDO+Rtk3ftAJ43Hg09n8ZR18gGZD2RM7oHEf1JqhnwMdnwZ4D31P8usJPH9QdxE/21mBLfJvOxFw8AJ6v2b8NjtMA3q/jgYhdIvpy7BdI27vNH05z7bA0xsAkbZuDLrPSTDkU80wSA3lJCfi8G8/aoQbKun/YhN1OVDjdkFGusntrFx9/SC2tqn2uyQX30aY9OEidB41zuh1Obibfk5iaR7+TWu8jrR7kVz3ijFvvg9HD9MCz+xzd//mde76xe2bkZUQp3U+Q+EGbl0qJU6vX2XS9gkhhBBCCCGEEEIIIYQQQgghdY86OJigMKcIiyZ+h4ir0UYvM/iZvtxo7MbKTs3F9SOmjQ5oLJ/mXnjzl3n4dsYvkJTUbPT/ujJs1gB8uO5NbhT3fSuPIi02A3ZOthg2cyC6Du+Aj0Z8bdJjeXHZLIsWc9eniW+Mxq1zpozEqcaGDZYd/bzieZj2/gSEnL5T4/2xsbdGk/aNISuVolknf647Q4f+bbj7XvtxLq4dDuZ+Vi27NeVGgzfF5HfGIvleKg78eVxrJwh7Zzt4+ntg3MvD0W9SzwbzM85O1l3Arg/7OjdHzzFdsTVxFU5tvoCY4FiIbcRcSIQtCFnx8l9cYKAc+5zNWzoDY14cBks6+OdxdQcFM+SlF2DFK6vw+ornYetgwwVxTMU+Xnak9XInN5/Htu/2IikypWKaMWt19XbG2JdHYO2nphWEFQ7QEW4ox1OXVCmcxHDbEI6iwQEo7eAJiB4U3ClUsIvKxkQPH4w68hl6jO6Crd/uwYYl26utinnWAcyLToBQ/Xi5sqvnHcHsKAJ/bWWnClbwqdvoM6EH9o14CTvjQnEw8S4SEtOhjC6E46kc2AbrrmDNiM/CynfXYv8fxyofBgPwikwfSfb2hXBc3HuNCzARkp6ejpycyuNkr169jHpSmjdvrnE7LS3NrCeTDSiUEwqFGDt2rMFlJk6ciDfffJO7LpfLcfDgQcyZM8es7RNiLkkeg4ufqJB3z/hl/Efx4PNgoHxjlKQxyAxBrXDwBzq+Alxbavog7/UlYCwP3d4HUgKB+/sYlKQBIgcgYBQPru2BCx8yUBnbRIsHdHqFr/F95ZHW82UgxbSOWxyBGJi9t7Kove9bQJLh7ogGie0Bj9aAXAJ4d1TvX+Oe6vvGfA9EnwAUEsC3q/piiv7zgdz7QPCm6vc5+ALWToCLP9B9HtBqjEUL9muk0ISuE1XlxZu3XJtxwIJwdSeH9DuA2A5oNwmQlwGH3gMKkirntXFVd8roOB2WFHLsoLqDghkKszJwas2fGDznRYisrGHj4GjyOlr3G6Rx+87ZEwjavwt5aab9LOzd3NFu4DBc2bUVdY3H56NN/8FoN2gY/Dt2waUd/+La3h01Wmdi2G1uXbO//xV3Th9H5OULyE1JhtKIYAIbNDnxz0rcOVX5/c1c8aE3ERd6E027qAd9IIQQQgghhBBCCCGEEEIIIYQ0PBRwMMGy5341KdwgshJh/qpXuWLr8CtRXIH+3YuREIqE6D2uGya/OxbeTT254v2z2y+hOL8E9k62UBkY5dxcafczsHjiDwbnY/fJv50fV5BeXzoPac8Vtfef3Isr/hk0vS93ediK819j/aJtuHH8FlfELRQJ0KJbMyjkCsQEx2k8phe/nYWhM/rjcTH46b64dW40Dv5VvehfG/Z5bNWjGRbv/IDrZFGOfS2+/P1srpCbfQ7N4dvcC1/v/xj+7Rprvd/R1QEj5ww2a93l+/7Oypcx7pUROLbuDLJTcuHm44LRLwytUSeL2ubR2B1FeSUmL+eso7OFMewcbTHprTHVpm+MWYmbJ29zxwGug8fE7rCysYKlhZoRuqnq6NrTiA6OxfcnFqNRCx+06d0SkdeMP+7mZVSOpv7fTwexeqGWAjQjNGrpjeHPDTAp4MDwAWkTA/EJts6ND/ALZeCpGDiejYP95UTIGqkLp8SpRZjz4STM+3pGxSLPLZqGvMwC7F95tHJbQ23BvOpcff0CHjDLEUy2Erz9xRWTf3tzDXqO7QpHsTVebt2Hu6TFZWDuK29XzKNwsUJxV08onK0hKJbD7lYmxBml+O+nAxYNxR1cdUIj4CBXKiESVO88QSyDYXjcpabrqA1st4ZTp04hOTkZKSkp6NnzQQGqAXl5mt1GrKzMO5YFBQVVXO/QoQPs7LSNNq3Jz88Pvr6+SE1VFyhevnyZAg6kzl350rRwg8AK6Pqe+vtU9h0G0XsY5IQz4AsB3348tJjCg62Xung/6awKilJAaFt73VuKEoDLiwzPZ98IsPcD0tWNhOqFZ3eg5VQ+9zyxmgxTXx425GcGd9epkMmePrEhQCHg0gpQyIDCGM3H1PFVPhoNbCCF75bQeQaQcAkI2WzkAnzArwfwzCbAsUpbDLZTwpDPgHPLzN8Xt5bArB2Am2YQroKdO9BllvnrZwMLT/0O9HgRCNkCFKcDjo2ArnMA7w5osNh9ZIMZpmKfL3PZOAN9tHSwmH8LiDkN5CcAdh7qIIjIGpaWGFazAP+tk0eQERuDaYu+hnuTAHgENENWfKzRy5fk51Zcv7pnBy7tMPb9Ub0TRNv+g+sl4ND/mdnoPeWZitsDZsxBaUEe7pw5YfY6T/3zB178dTVs7B3Qa9J07sIGHNYvMNzt5OreHVBILXdOwv6MywMO7O9BVEolBEL6FSkhhBBCCCGEEEIIIYQQQgghDQX99c5IcXcScPPELZOeXHYU88D/rkImlePP+es1isfZsMPRdafhHeCJhPBkmMunmScGTO2DXSsOgrFQMMLBxQ5zv3wGN07cglKue4Rutki6ILsItRVwMGaEb7a4fdmRz3Fm+0Vs/nInku+lccXQbAFXu76tMHz2IK6bAHvdnFH92a4dMSFxEIgEaNunFcRWIjQk7/7xMnqP68oVDN+7EQtpmRQqpYrrplAeopFJFJCWShHQoTGcPbQXzj/70ST0m9QDh1efQlJUCje6PxugiA6Ow+HVJ5GXUVBR9D1twUQ0ad0I14+GQKlQotOgdug9oRsEdVCg3LxzAN769UU8KkbPG4q/FmwwaRn2tTtijuaIn5bAvv57ju6C2maJ0YjZ99wM31cwYvYgPLtwEr6d+TMUeo5FVV347woWrn8LRbnF2LB4m9n7cCcwEluW7ubCQBkJlZ0v9GIPwexxmG/4OXDPrxxRli9VwjpWXbA9cu5gzPniaY15N3/1n0a4gdvUTP1BCuYZB+BAMddpgZWVnIOgo6HoM0FdxJOfVYAvp/yvYv6CwX4oGNJYY6Thon6+sLuZDtdDsVwuwxCVkAelkxX4EiUEJbq7eMTeSkBsfi7+CrmOQzGRKFMo4O/ojOfad8a8jt0gprDDE8PGxgbDhw83ebkzZ85o3Pb39zdr++Hh4RXX27Zta/RyLVu2rAg4REZGmrVtQsyVG8Eg+7Zpy7BdElIvsp0fVLj9l+b5QvQuBnGHGVh7AMWJ5v9c2MJ93wE83NvJWCwYYeUCtJ3NQ3oQA6h0zyd2BmSV+UaL8urOqwg36OPWjofBPwoQf1yF8E0MSlKBXPYQwwPcOwJNRvLg3IwH13bmfVeS5jPIjwH4InZb7L8NKCDBPp5JK4HWY4Eb64C02+oOCSoFYOWgnt7rVUBWqp7u1R6wddW+riEfq0f6v7lBXZBv4wK0nwIk31BPK82uDDL0fw9w9lMXyzMqoOkgoMVI9ktv7T9mc7o/1KeuzwGnvzZtGZ4A6FhZ3G4xfAHQahRqmyXeIen372HVq3O4Dga9Jj2NI7//D4xKz8GoiqjLgRj5ytsoyc/DlV3mn5Mk3glFyPFDsHN24dZlaSIbW8jLSqtN7zh8NBc+qCpw64YahRtY+RlpSLx7i+viwCrOy8X+n741allLhhtYWQlxyElOwvX9/+He1UtQyKRw8WmEziPHocvo8RR2IIQQQgghhBBCCCGEEEIIIaSeUcDBSDdOmFhJ9MD9W/E4tOqE1pHxpaWyGoUbWJ2HdMCry+eAL+Bjxw/7YAnsrn404mu94YaxLw7D/L9fxWdjv0XwqZqNjqhNSkya0fMGHQvBD3N+5wr7y7HPd/iVe0iJTsPvV78zOdxQVlyGP9/bgDNbAyGTyCsCHVPmj8esz6ZapIjbUnqP785daqpx60Z4/afnNab1m9SLGz0+PT4LYishPJt4aIRQiH7jXh2BM9sCERVk/IipE98YxXUuMMe1I8HY9/uRyk4x47th+oKJaNG1aY1/VPFhSdzxyt7ZlvvZs+svJ5PIcO9mLHfw6DS4HRdQqCk20HBs/VmEng3D7C+ewenN55EUpS4o1kdaJoNcpuC64pS/d811cvN5PLdoOtclxhhsmMA6rhCS5no6cDz4KJDE5YIdHLsqVx8XvPLDbI2wUEJEMjZ9tbPitkrMR960xnBpbqC4ylsIBIiAuMrnIC02o+L6Ty/9hdjbCdz1kk7uKBjaROtqSrp7Q5gvhVNgis5NqawEyBvRmOv+wNioXxfWsQVwPp0E6/jCavMrmjli0u4tKJJVFiklFOZj2ZXzCEyKx9pxUynkQHRiP99//fXXitsikQhDhw416xljO0dU7cxgrEaNGlVcT0ysQUU4IWZIv2FeeiA3EojZo31ZRVnNwg0sr548dH6dD5VcpXM7pmJr1gM/0h9uaD4Z6PoOH2fnq5BzFxZXrPvjr5qUiwyClj+0vwyQfYddD4Phf/FMPoeQFzMIWckg6QwDlbwy+NH6GR5az6iDQn5TtBmvvtSUZxtg7Pea09iQxOCPgYIkQGgFOFU5ZjcbUvNtPu7YgMndvUCGCeftfd4AnLV35zMo8jBw7W91MEUgAlqPA/q+ZZEuF2xRem5qCqzt7NG4fUfwqwZj5WVAaih3tWmHDshNrdnvWlhKuRx3Th9H0t1b6DN9FiIunEF+ujHnJKXcd5aIwLNQKSuDzea4e+4Uuk+YjKs1CErooi3c4ODmjoEznwevyu9QMuNjcX3/LotssyAzveL60T9WIDclCfWBPR5vXbQAsrKyiml5aSk4t+kfJN4NxaQPF2m+vgghhBBCCCGEEEIIIYQQQgghdYoCDsbSElAwBltkr7JQZwVtBj/Tj/t33tfP4ta5MK57QU2VFpahpKD6H7rLefq7Y8GaN7jrLy57DuGXv4Ck1LKj6YWeuYv5AxahVfdmmPjGaDRpU1lM+LDVH23WCDdUxXaY2LpsDz54sL/GYLsSfD7+O9wJjKi2rg2Lt6Mwuwhv/DwPTwq2kN2vpXkF9086a1srLD/1BVcgf3LT+Yr3Vds+LeHi5YyQ03dQVizhpjl7OGLyu+O4AI05/l26Cxu/2FFlihSntwRyHQ0W7VyAfk/1NGu9bEePFa+s4kIT5Vy9nbkuL2NeGsZ1Odj/xzGu2wnLxsEaQpHA6I4LhqTHZ2LDg4BBo5Y+XGhJH68AD67TSnZKbo23zQYk/Nv5YeC03gjcfc2oZZzOJUPSzFGjE4IGRh2EyHmmDaQhGXA+mQCeUv0ZkZuWh/9+PIBX/ze3Yvaj/5yqXFTAQ9orbaFoZQsXVBYG6fRQPY6zpzp4kRiZgquHblZML+yn+/jKKurtA8fLqRX7WZVKxEf6i+0h87PXmC5p5oT0Jg7w3BoF2yjN0WbTnm2iEW6oKjA5AVvDb3GdHIgFWfBrSFqa4QCiKWEBU61atQrBwcEVt6dMmQInJz2hIh1KS0tRUlJScdvNzc3oZV1dK0cez82t+bGGkLp4P2eG1t75CKvxEPXnXqfXeMi6xaDA+GynTpJcdfhCX9eIbvPVH3adXuXj/AeqihCApaRdY3DmbSXXoaHZUzw4+Gn/fGcLmW//rdIZxmAfS9R2Bl3fNT7goJIzuPCRCrmapySQ5gG3/2YgK1Kh4ysNLORQm4RiwK15fe/Fo4ntpDHvEHBmKXBrByB70IWxcR91N43Yc4D8wfm/nac6jDDgPfO2xXaKCPyp8jb7nry1FQjbAzy7BWg5wqzVZifG48Tq35EWHVUxzd7FFf1nzEWHgUOAc8uAoLWARN3OZZCVI2y9XHExww+MBfo55Gek48rOf7nrzj6NkJ+mP/3k4uPLFdAX5+XUeNtySRl8W7ZBs+69EHvzOmpbUU42go8eQP9nZldMu33qmMXWb+voXBGaYDtU1Bc22FA13FBVbHAQFyzpNHx0ne8XIYQQQgghhBBCCCGEEEIIIUSNAg5G6jzU9NHqrWzFXAeH2tJxYFt0H9mpogj9x7NfYkajV1GcV1mwZyp3P1ek3tdfOJuZkI3IoBi06dkCrXs0xw+nluCPd9fh3o3KSibfFt6wdbBGTIh5jz8nNY+7hF+OwoE/j+O9Va9i7EvDq83HjhQff1f/iH/ntl/ilhcIjRt97+Le69XCDVWxI+RPfW88vPwruxkQooutgw3e+vVFvPTdc8hMzObeF+6N1IW0JYWl3GuYfW226tGcK8w3B7sOzXBDJbabwfLnV2Jb8t9cV5YTG84h+PRtrhCvy9COGPPiUDi4aBanl8tKzsEHQ75AXkaBxvTc9Hz88vpqnNh4jgtxVVVWpA5ssI+JDQtZkqFwA4sNVwQnJuO0hwQp73QEX6qE3e0c2AdngS8z0PVAx/oW7VjABUV2/ngASZEpkPOA3C7uKOnqCaWTGIIiOexuZcCJnwvHkXzYtU6ETCBGYZY9irLtwTAPiqpU6nADV5wqFqC4ty8Uztbw2F4ZHmGf06oBh/jwyuNbUXcPSJs6AnIGcqkAIis9z2+BEkjQrPJkj9EXdl3B5f1BFdOUdiLIve30PgcqezFkXnawSi2udl9Rb+9q4YbKJ4+P3AlNYXMvT/242UmdPZEu1j+K7bbw2xRwaMB69eplcB5tXass4fr161iwYEHFbaFQiKVLl5q1ruJizdezvb2O17EWVed9eD2E1DbPrjyErTftPSa0BQpja22X4Nkd8Ois/qwTiHkY9hsPB59moNCdlzbI1gsoTTfcXaEwnoFjAA/uHXkY9CMfob+rkB9TOY9DY4AnMv/xS7LVl5wwBtF7GPT8mAf/kdVDBbnhQLGBweITTrABB+O3nXSWqRZuqCpqJ4MWUxnYuDWcznKkAbNxBsb/BIz8GihIUYceHB+E2MvygYy7AF8ENOqm7rpgjsRrmuGGqhQSYM8rwIIIdZgi5F8gPpAdRx9oPhToMguwdtI54v+Orz+DpEizM1hxXi6O//ULcGMdOhQf1riPLy1EL9dCOIolOJzUEpZkKNzAbZ8vQFLEXSRHhFtkm2wngUkffo6oSxdw49Be5KalQKVQ1rg7hC5scX/VgENOsuU6VqVGR+DuuZO4XwdhDV1sHBxR9tDr6WF3Th+jgAMhhBBCCCGEEEIIIYQQQggh9egJGvKxZlp1b84FCkzRslszMLXQvYER8eD1Ti8kvd8ao3atx4vHduN4fDRXHP36T8+bvV52f8e9bNyIiof/PsH9e/tCOP75aDPu3dQcpjU1Jh3SUhmW7PoAT38wEZPfHotPNr+Lz7bOB19g2suO7c7wy2t/aw2L5Gfp/6M0i+0uISlRF10b49S/5/Xvj4rhRsYnxNRuDmwnkvJwA8vO0RadB7dHh/5tzA43sA6tUr8fdWE7R2xbtgezm76JvxZswLXDwbh+JASrF27Cc/5vIOxy5UioVe3++VC1cENVD4cbqmLDDb3HdUVdu9tYgGd27MR1RT5XeC9p7oScKc2Q+m4nKJzEJv/M2vdvw3XZOPT3SUTfjEWpQoHk51qjYKQ/FO42YNhuFa5WsHnLGuIlzuD3tYbIVQU7Jwl8WmSjcbs08Hgq8JQA/0H3BvZ6OUlrV0j8HTU6xSiV6hkUcgXu3aisyCzqWR6q4qEoy0Ax9sFi8B4axXrXioO4uOeazo43eumonSzu7ql3MYWrNdfNgeXh54apP80wuKm4/Lxqr6XC3CKLB2aeFGzAxhKX+hYWFoYJEyZAIqn8PF+2bBlatWpl1vpkMpnGbZHI+GNw1XkVitopLCREF7aQ37WNCc8PD3BqWkvPJw9waQ0oJcDxeUpc+lyJtCsMBDY8rpODuVzaAP4jjZv3/gH1Z1pmiLqDQtVwA6uIzQmqgL5f8tDqGR5aTOWh92Ieenys+7NNF0YJBP3AoDCx+vmdVD1ovF7yEnVXBmMlnNQ/L6MAks7UbmcO8hgS2wEerSrDDeXhh4ABQJPe5ocbWDfW6b+/LBcI/BH4pQNwcjEQfQKIPg4c+wT4uQOQUtmhqaqgA3uqhRuquhSSBV2/dmljn47efcz7rlATbCBg55efICO25h02xTa2XAcHWWkZQk8e4TofKKTSWgs3sErzKw9qCpmM26alBO3fjfs3rpndJbWmHD290G3cJIPz5aWlatxWKhSQFBdDpaJzEkIIIYQQQgghhBBCCCGEEELqAnVwMMGiHe/jk9HfIO6O5uh1PD6P66Agl6qrSVt0bYpZn03F72+vsexPi/2jqjUfGR+2R4wfW8mj/oNrdF4OziTGok2hFf6eOBUiK1HFvhjDykaMLsM6IOT0HUQHG/eH69y0fGz++j9s+nKnznmSolKx/ft9+OP69xrT//vxAKKD42AKNlRw4I9jeH/16xrTfZrpL65lOXs4wsbBRut90jIpivNL4eBqX1FgXphdZHCdhdmGgxWE1JWqo/zr8t9PB6GQVS+CYYv3Px61FDtSV3OBi6rObrtYo/26diTE5ONRTZS1dEL+6CZa75N72CDr2RbwWW38KKpjXx4Oe2c7LJn8A26dC+OmFQxtDLmvZrjAuXEB7D20D1Nt4yiFp38usqLd1V0M2C4OD81T2skD1gnqY4pQLMSvr/+DCa+P5IJiBc4yyPo7o7i5E8qaWwMCJXgyHgqy7CC2kcPeTct2L5aCt8m4Y5SgRA5RZinknpo/+6r4pXKI07V3BlI4WRnchsJZPU92Si5UeYbDZk7W1ur5U3Ox9ZvdXKCstKgMto42GDlnMGZ9PhWu3i4G10NQa10UfHyqFEXWgdu3b2PUqFHIysqqmDZ16lQsXLjQ7HU+3GWCx+PVaF01WZ4QU/X9mo8LC1UoSnjoDh7AF7JF9JVBgXZz+Li2zIxgmzH4QF6VjGRhApB6WQVHf6DfNzz1B54J9asCW8CjI5AZDORVNjfSqywHuPOPCpFbdW+oMB6I3s1g6G+a3dzu7VBy95kacri/j+3EoPmet/M1vKyNBztAvvZjhULCcAEIK8fKeaS6M6YmBSsIqTNZelqOlAv8WZ3OeZi0ENg4EfgwGhBrfi+NvKR/AIJihRWSSp3hb6f9DWEXdwQCYRuuQP1R1HnUOIisrbH/28VIjTLiObYA9ndcJ/9Zic4jxyErIQ6yshq05GlgirKyjAqHWD/o2FWYnYVre3Yg4uI5yKUSWNnZof2g4eg99VnYOmrvOkIIIYQQQgghhBBCCCGEEEIIqTkKOJiALaj86+ZyXNx7HRf3XoOsTMZ1PWCLYB3d7JERnwWxtQieTdSjbK94ZRUsLftpf5T4aS/Wj3SUYvo7P8Df0RoFWcYXFCsUSm5Ed1OwhXz6wg3l7t24jzuBERXdL079e8HkcIO+0eIbtfBB5yHtK4qPtRn9wlDw+ZpdI1Lvp3MBjfM7r3DF1zb21ug3uRfmLJkOn+ZeekemZ/k09zbrMRBSG+ycdBenl9MWbignLZVyAYh5Xz2rMb0oT3tRuynqKtzAKuin/33JdnNAM2fYZktRWlimd15bJ1u8snw2EiKSceXADW4aI+ShuMvDoSoGTr76Q1GOHsXIi3aFSqW9e43KRqjxczq69jQOX7oI3ofekK5qxE23Y0dvlRegIN8OEokYUAAZaU4oyrWFg2spBGIllHI+hP/lwWZnjkmDUjtcSUXupBY677cPSgdPqb1wVFAog8KjymcSjwHfVsG1q2CkAjAyATdPeRF42K/n4f6iL7L1FElNbtkWmUnZeG/AImQl5VRMZ39m+/84hmuHb+Lni9/A3dfVhEf5BGN/dDUdILfK8my4wc+PTVnWjcDAQEycOBEFBZWVvoMHD8a///5bo/WKxZodXeRy449VVee1srKicAOpc7YePIxaw0fyBQapFwGljIFrGx6ajuNBZA+UZgACK8DWU/1poNJsWGI5OgaxZoMOx55nILID5MXGr47dz/Rrpu0CG+bQF24ol30HyI1UP0+s2MMqk8MN5XLCqm/PqSkPru2AXD05ymbjq386FyUxCNvAICWQ4R4LG/JoPAhoN5cHe18g38Dg7/bqrwmENAxsQscQbeGGcrJi4PpqYMB7lbOrVJCWGj4nkSo1A0xV2QrlDS7cIBRbgSfgQ16m/5zE2t4BA56dg4zYGCTcDqmz/VPK5bh96hhunz4OgeDx+rUhw6iQHBHGPbeSYt3ncW0HDEFBZjq2LfkIJXm5FdOlJSUIPnoAcaE3MOOr5bB1cq6jPSeEEEIIIYQQQgghhBBCCCHkyaK92pLoJBAKMPjpvvh863v4au9HmL14Otx8XCASi+DXyheZSTk4v/Mywq9EoVXP5hZ9JpW2AhT1dNM7T/4gTxRkF5v4x2sd1Ul6lJUYHoW7XOjZuyjILsT7gxbjh7m/w1wCUWXRgkwqR05aHmQSGd7+/SXYOesu8E6Pz9QYqTkpKgXv9v0MpzZfqCi+ZkexP/3vBcxr9S5SYtL17oe1rRWGPzfQ7MdBiKUNebZ/jddxfselatMatzFiOGIjsYObewcY7rhSE9ImDgbneWHnW5j12TSD87l4OnHH9etHKguJFA5iMFXCCCyBSAmRtf6CKb6QLfLUXV0qfKirgaqZGNIfvCFpovkRLRIp4eZeCCsrGRdPZOwYlPCFyMh0QnqMO3LDHWG9x7RwA8s+JBMOl1K03md7JwtO53R3CLEPzqy4LnCVwqplIcQBJRA3KYW4RRHEvoUQF1QWpUVcjMLb7XroXJ+nrR1e7twD/3y8WSPcUFV6fBbWfb7VyEdHHmVbtmzByJEjNcINQ4cOxeHDh2Fjoz3saSxHR80izJIS4wNdxcWV37Ps7Nj4ESF1jy/kockwPvos4aP/NwK0nc2HtSsPAjEP9n5ASTqQdI5BTjhb1F8PO6gyLdxgqO5ZF5nhxmsVMkMYSHIZnH5TiZs/mp/84lX5KsCGS8pyGO7f7u/zIdSTOS1O09xmQRyD02+pkHRGHW7g1lcKxB8DjsxiUJqtfz+EdkDjodQ9hjQgHQx/xzbo9g6Nmzw+Hy4+hpM8rmLdQYECmXXl+ng8OLjX7jmJMYa/9AZ6jJ9icD4HVzfwBQLEhd5EvWAYKBV1F1ivK0nhd9B78jM673dw80DXMRNxduMajXBDVXlpqbj835Za3EtCCCGEEEIIIYQQQgghhBBCnmyP11Bs9ejGiVv4c/46JEWlVkyzd7Fs0ZvM1xaMWH8mRe5pzQUhHAQigyOUs3h8HhiVaQU+fZ/qgbjbCSYt8/6gJUiK1F5Aa6weozojOyUHm7/6D2e2XYSkRAqhSMCNtC4r0/1Hd7ZLQ7cRnTHu5eHc7b8/3ISCbN3VUJFXo7n1KrQEP/h8Ht5e+RLsnamgkdQ+NsRz+O+TuHYkGAq5Ah36t8FTb46Gf7vGGvMNfqYfdv98CPdDtQ9FzHYoYUM8+pQUluHY+rO4fjQYKoUSHQa0xYjZg7D61maLPBY2Y1RSqHvUfkvQ1WWgKhuxGAE9mhmcr/WDgJpSUXkc4EuVAHu85FcWEzIq4woLdc7HMLC7maExST7bGbDh6wyKODmXIjPjwejzPICxYqCCCp5b48FXqGAOl5MJsLuVhZJunlC4WENQLIddSAaskvVXpzpeS0dJZ3eo2gsg8pZU21eeiwq53/jD/YM48IvUz+U4n2awH2qLFUGXkFpl1FQ7gRieJSK8PesH5B2M1BvUOL/jMt769UXYORruXkLYZ7KmBbB1W0DLhhK/+OILLF26VGP6U089hR07dsDaurJQ0VxsQMLW1halperjUm6u9uI1barO6+lZ/0WShFSVdoVB6B8qFFf52s12dagvbMG/otTIw4yJmQO/IUD2bdOOLaffZlCahhrx7sVDaQaDsI0MF05QStnAiTpwoNRTB5xwHPDqroL/SPVnfOhKFeR6Ahq5Yer1qrQEP3h8oPsCHoQ2FHAgdaAgBbixDog5BTBKwL8/0PMVwP2hDmCdngWurQKyIrWvh2vrYiBQKCkEbm4AYk6zX6CBgAHoOmQQzmzbpnMRX5tCuFuX6jwHuZPvrXEckOnpJFZXRFZW8G7e0uB8Xg/mUSlNH5Ti0WfGB4OxGAbtBg+D2NYGV/7biuIqIQaRtQ2s7OywdfGHKMjQP/hFeOA5DJ77MkRiq9rZT/LImjdvHjZu3FjRfe7cuXMa92/YsAEvvPBCxe2qg7JYkkQiwdGjR7mAeEhICOLj41FYWMidC3l4eKBLly4YNmwYZs2aBRcXl1rZB0IIIYQQQgghhBBCCCGEEHNRBwcdVCqVxh+aivNLIC2Tap339oVwLJ74nUa4gVWcZ/xowMbgGVO4qmK4+VRKFVp0awqhWHeGhS3St3UwvUiQLa4W2zworjXClUNBNQ43sFQMg3f7fY4ja05z4QYWG0IozC6q6MSgy4Yl25GRkMUFJIKOVo7Irgu7Xp9mnmjWyb9ipMduIzvhu2OLMHre0Bo/FkIMibgWjVc6vI/NX/+HezfuI/ZWAg78eRyvdVmI01sCNeYVW4nww4nF6DOxO/darZhuLcKkt8agff/WBrdXnFuMn176E4G7ruLSviAuCMRuu01v7YU3Di52mPzOWJN+kEW5Jg7lrKOLzkvfzeL+fZhtuP4CZZFAgEFNA9B1WEf4t/PTO+9Tb47h/u00qG3ltksVsIqrHEmepVIKUJav/ziqzAFkxdqPmY5nkyDKrQwGMDY8qPrqL9oXixUQCpVcgKBiOZEK1vGFFbeljexR1Msbxd28uM4TxhBnlsLlWDw8tkXC9eB9g+GG8tCH1+ZwiFx1B+pUnmKUjlMXS7g3coWbrwumt+mA48/MQzsHD/ClPPAlPEiKFYiQFCJ4sAuyZrUAo6dmUyaRIyc1z6jHRR4tbBEOW2DzcLjhpZdewu7duy0SbigXEBBQcT01VfM7nD4pKZXfafz89B9LCKmpqkFkrjC3WN0tQJuMGwwuLdIMN7BM7aRgac4t9J91ih0BgfGnFhWcmvEgMKGmNOkMahxuYKkU6s4L8UfV4Qb1NEBWADAGBjq/8w+D0iwGxakMMoON2Ra4jhyO5YcrtiNWL2DwT3yugwchtS7hMvBnHyDwRyAtFEi/ow4x/NUXCNunOa/YFnj+INBipGY4UmgD9H0b8O1ieHslmcDB+UDEASDyEHDsE3SJ/AxdO2gPFNo4OmHUxME6V3cluwny5Zpdn6QlNT8o8gVCDJgxl+swYSqh2Ar+HbuiaZfucPby0T0jj4cuo8ZzV/3atseTp5bCDeznh6cXbBwc0Wn4GMz93x9wbVQ5gIBcUobsxHiD4YbyecuqdBojpKGQy+VYvnw5d74zdepUrF27FsHBwVxQW6FQoKioCLGxsdizZw/efvtt+Pr6cgFz9lyMEEIIIYQQQgghhBBCCCGkoaAODlXEhMZh5//249Le65BLFWjW2R+NWvpwxcXpcZnc6P29xnXDzE+noF3f1hrF89pG+7c0q4QSCHOlULjqruSxiSoEX6qCRCpFTHAcV+A8e/E02Dvb4+bJW0i+l8Z1lhgxeyCmzp+AN3t+jOibsSbtR0pMGgZM6Y2tEXsMzuvb3BvRN+JgCcfXnUVhjp5hTvXIS8/HnGZvYtTzQ6AysmNFWmwm/rmzAl4BHhAI+BBbm1F5RYgZ5DI5vpz6PxRpCUmxHQX+98IfaNunJff+Kufk7oil+z9BQkQywi5GwMbBFt1HdoKjmwPuXorAjeO3DGyz+vDAZUUSJIQl4YVvZuLM1kAkRqTA1tEGQ2f0xzMLJ8GnmRfX6WHXTwcQeT2mTn7W7LFrxsdT4NPUC9/M+FnjPseLaSju7gFGXD38wHq6Ywe42anDA4t2LMDHI79Gbnp+tfmmzB8H76bqIir2WN+qR3Puc4DlfDYJGf6OgLCymCk30Rm+TukagYOqmHX5GOUvxvmSbEgDnLhp4sRCOFxNhW3EQ6EMWz4gMDwaM5/PBt6qPE4+D0U9XOF4PQ8501pB1sih8j4VA7tbmXA5EmtUlwtTydvbAGL9+1w22An2O7Ix4bVREAjU+708MBD3czPg55MPGxsplEoBsrKcUFxsg+JuHrBKKoZToPbCIvbz2NGtHockJ7WCHU2U7dJw/vx5jelfffUVlixZYvHttW3bFuHh4dz1e/fuGb1c1Xnbt38SCw5JbcuNYhC1jUHqZYYrcHduCdj7ALmRQGmGevR+n35A29l8uLauPP7eWaviBjxvSNjuDfkxgMAaaDMTEFjxuCAGG8Jggw0Bo3loMYWP4/OUKDStQRyKkoBGA3i495/hzzY2JFCg/iivsdiD6jCDOcqygCMzVPAfY3znheJkYOy/fFi7AjwBGwahrg2kjsjLgB2zAWlliLaCUgbseQXw6wk4Naqcbu8JzN4FZIQDSdcAG2eg2RDAxkXdlSHhkv5tsut9CE+Sj6HWp+E6axmCzwUiLy0F1rZ2aDNgMHpOnAZHD0+gZSfgyu9AmvqcJ73MHjdzGyGysHY6LXUcNgq9pzwDe1c3HPtT85zEkM4jx8DaXv09duKCT7Hr28UoK6x+UOkxYQq3flaTDp3h1tgfOUkmHigf0rh9JySFmdD65jHVedT4ioEBzm9eg9yUJLPWwxcIYGVH5ySkYWGDC5MnT8adO3cqprGvd/bcp127dnByckJJSQkiIyNx69YtLkDLBhu+/vprHDt2DAcOHICXl1e9PgZCCCGEEEIIIYQQQgghhBAWBRweYIv/l0z6gRsVutz90HjuUo4tjL966CaCjoXgq70foff47shKzsGdCxF18mriMYDL8TRkzawccViDkoHrUc0RiNnHs3XZXqw4/zWmvT+h2iIB7RubHHCwc7SFq68L+AI+1ylCF7YouKxI96jepjI33FCO7fh+fINmW3hD2K4P7HNESF1iuyjkpukenZ4NORz86zhe+/H5immR16OxddkeXDsczL0v2QL9rKRs7n3foX9bdBvREcGnKv/AbayyYvUIfmvuai/cGfx0X+4SdCwUn437FrWJ/aP8jE+nqrf7TD+UlUixeuGmis4Q4mwJvDZEInNmS6iqdi1QMbAPzcbM4ZXHTvZ9/fetH3F49Slc2nsNJQWlXMgjOyUXe389wl3YgNtbv72IJf99gPcHLUZWUg6skorgsTUCeeObQeGmHg22LM8GWTed4d42D3y7yqJDRsJAubEIHUuaYdEXc/B8y3dQwj6fPOgOGhQogUIl4Kg9pMGtlwEUCgH3b1VKeyEy57aH0vmhEe75PJR09eJCGa57o2FJYidrFPc0XDimshdwHUae/XgSd7tIKsW5jEvo2TMJAkHlA2nUKAc5OQ6IjPRDQX8fOAamVx3/t0KPMV3g7KEOixAD2KeXabAD6FbIz8/HqFGjEBQUVDFNLBZjzZo1mDNnTq1ss2fPnlxXCBZb3COTybht6pOcnIy0tDSNdRBiSalXGFz5QgVVlU4A+ffUl3JsiCH1IpB+TYUBy/jw6sFDcQqDvMiG+7NQSoDwzcDwlTy0frb6iOdshwJTAw5ie8DajeECH/qCHW7tAUkOLMbccEM5dl/jj5h2YGWDLfaNKNhA6tidXUBpjv4wws31wLBFldMSrwGBPwExJ9UvdtdmQGEa0Ps1oMVwoElfIPGKybvChhy6eOajy8+rtM/Q6WnuknQzEPt//BZSlVDn+QRbzFsTbNeGXpOmc9fbDx4OhUyGwG0bIC0xooMnj4f2g9kOF2qeAc3w/P9W4vapY4gJugppaQlUSgWKc3Nx4+Ae7uLq64dhL72ByR8uwrYvPkJpvnldzAI6d8Po1+dj3XuvQS6tx1Ha2WBBDX8GDxNaWYNRKqBUVA/tP6xl737oPl59TlJaWICIi6b9jqiq5j16w8pWf/c9QupSVFQUBg0ahMzMTO62SCTCO++8g/nz56NJkybV5o+Pj+eC5Js3b+ZuX79+HWPGjMGlS5dgS69tQgghhBBCCCGEEEIIIYTUs+rVJU8ghVyB5fP+0Ag36KNUqLBk8nJcPXwTxflG/BHbgpzPZ8JtXxJ4Ms0qHn6JAt7r78P2XvUQAFvsvGvFwWrT2T/sh10yvRJKWirFyrfX6gw3NG7ti6/3f4xfLi5FUpRm4KIhYLtaGMvV27lW94UQbYzphnDo75PIy1B3H2BDVwsGLcGVAzcq3pds15l/Pv4XX077H5RKJZYe+ATjXhoOQZXOAzw+D74tK7tA6BJ69q7BeXqO6YLhzw3Ueb+ThyM6DmqLmmjSrhE+H78Ms/xfx9fP/ATf5l7Ynvw3143hqTdHc/PY3C9Ek++C4bH1HpzOpsDlWCL8fgyFx44YHPnzhMb62AL55z6fhsU7P0BpkYQLMDBVOrykRKfhs7HfYvPX/2F95K8Y/6q6GMnmfgF8fguB57q7cNsdDc8NYXBaGAHF1HQovsuHYn0RFCsKIJ+eAZ8gB3y17yNuW+xx0d7BRm8XBZ4CEJxUBzZ0KSsTQ6Wq/vHNWIm5cANfpIStZwl3EVhVFvmUdHCH3PWh8IOZZn02Da+vfw1F3/RHVksXg/NbZ6nw1i8vQChSF5udTw1B0xaJGuGGcm5uRWjePB0Kd2uo7KoXp1nbWeGFpTMt8jhIw1BWVobx48drhBvYkUXZEURrK9zAYgMVVffh9OnTBpc5ePCgRpHkiBEjam3/yJNHKWMQ9INmuEEfdr7AT1TIuKGErGY54DrBKIB7u6of9xklg2x1MxWTSPIY3F6lO9zg6A8M+IHHXUq0NwSqV3wTmsOx3RsIqXMpNw3Pc20VUPqgI1nkEWDDeCD6eOUbMzcWOP4psOsFdsQIYPYeoPNMdTuScux1NghhSNwFg7M07j4Q/j0H67zf1tkF3i0qu3Gaw7VRY/y39HOsfvMFHPrlB7g39sdrf23E+HcXouNw9TmJTgyD26ePakyyc3ZB3+kzMX7+Qi7gUJSTDabKgS03NRm7ln6OG4f24uVf/0G7QcPN2uenFnzGdYSY9OEiiKwtc05gFguGG9jnbei8V7mQgTHhBoFQhKFzXwGfr379hV84A5XSvG6sYhtb9Js+y6xlCakNRUVFmDhxYkW4wcPDAxcuXMBPP/2kNdzACggIwKZNm7B8+fKKaaGhofjwww/ph0QIIYQQQgghhBBCCCGEkHpHAQcAVw7e1DtaujZsEfHiid/jr/fXm1QwXxOuXs4QiARwPZaGpp+GwmNLHFwPJsNr/X00/SQEDjceFBZoEXQ0pOL63UuR2Pf7UWz6cidS72eYtA9t+rTE2e2XdN7P7t+PZ79E34k9uEJWkdhyTULYQkJLYIMsQiP2q2nHJmjZzYhCC0IsTGRl+JgiKZFi2axfuG4OK15ZxXUf0ObqwZs4s/UixNZivP/P69ieshqLtr+PT7fMx5b4v9B7bDeD22KDEMYYOmuAzvsKsgohEArg7Gn+qPsJYclIjUnngghsl4sPhnyBPb8e4TpIuPpUFtmzAQL7WzlwPZYI57MpEOWoRyiNvKa9e8GGJduRn6l7OObj68/iyD+nUZhbWT3KPiPWCYWwu50F67gCrsMOpIDqeBlUG4uhOlAKFDNIiUnHiQedYzoPbo95S2cYfJyif/PBi5VpvU+h4KMg305dF1SlNkhQIIfK1gYurXLg2zcFbu1yuItPn1S4tcsChCputNSytm6oqe6jOuOFb2bgoEMBkmWlUEkEUMn0f50QH8zCtzN/qbh9q+QKN3irLp6e+RAKFdXCIGzo7PmvnkWzzv4mdwAKuxyFuDsmDg/+OGAsdKlF7Kiily9frrjt6emJ8+fPY+jQobW63a5du6J168oiR7b4Rx+5XI7ffvtNIyDh5eVVq/tIniwpFxiTuwMwSuDCQiBsnQr8ujklgZWrZm2yKdKvVx5QskIZRO9R4e56BpIs09bj3hFI1jPoNk8EDP2ND59efAjFPK7LQ0Ojkhn3PLq0ZjtcUPcGUg+EVobnkRYBe18DFDLgwDvq5JU24fuBiAOA2BaYsgpYEAFMXwdMWwssCAea6g4lVDLufdC6v+a67IVStHPKQHunDAiLU2BtZwdreweYKycpAfkZaSjKyULUlUBs//Jj3Dl9HG36D4adk+EBEtKio7ROv7htEyTFutNqt04eQcSlc5AUF5q8z7kpSdyyLP9OXdB32qMfFma7J/R7+jlEX7+MkjzdvwurSqmQ48jKyu97967p/t2WPnYurhgwYy7cGpt2TsJ2jEiJikB20hN4TkJq3RdffIHoaPXvPNiudGwwu0+fPkYtu3DhQjz99NMVt1evXo3IyAbcGowQQgghhBBCCCGEEEIIIU8Ey1WfP8KSa9BlIOT0Xdi72Bnd/aEmch+M1s4SlCjgHJhlUiDj2pFg/PTyX8hLr1yPKToOaocmbRoh8qr2ImGWUq7E8fXnMPPTKVwgof/U3jinJxBhrK4jOsLKWoyrh4wYRdIICpkCIish5FKFzoLu5xZNs8i2CDFVv0k9sfN/+w3OF3o2DPv/OIbsFP0FHUfXnMbIOepCH7aTwOBn+lXc131kJ+z97Yje5buP6FRxPfZ2Ag6tOoH48CTYOdliyDP9MejpPhCJRdi/8pj+/T1zl+tiwAauDq8+BRU7imsNrf10C7oO62BUmIoNYD2srLiMC0sYsmP5Pji5O5q1j3++tx5FucWY++Uz3M/CEF6JClYLUqGY5gTFeEfAVQCVgofSIisUlNhCpdSs0rQRitA5sBCpU2Ww9tX8LGJDBLaeZRBYZyIj1AsyH1vURJO2jbBw/VuIzc3FhYTywhwepJk2sPYt0VpAanWlENYXChCpKsCh1Se5z5CouXfB07MrfD4DD0kW+BLNEVVz0/Px94ebuNDJN4c+hZe/h979LcguxKoPNuL8ziuQS+UVj2Hul89ywRhS/3bv3o21a9dW3HZ0dMSpU6fQsWPHOtn++++/j9dff527znZwWLp0KRYvXqx13jfeeEOj0OeDDz6ok30kT46iJPOXTQ8CRPa6a4stSWpcHalWKiWQfEGF4J8ZSM07JYFnd8DGHci+o3seRg7En2DQajoPfBEPPv2A1IuoMZ++6uc44wYsgg2o8ITq7hbasJ+r7eZSuIHUk9bj1B0aDIk+AQStAUqz9c8XvBFoP1l93cEL6FDlfLv5UODmev3LNx9WcTUj7j5unzzKdTewsrNHm/6D0LJXPwiEQoQeP8TNI+QpMcI7Bm2csiDg0sjq5gH3c+LQd/5WhF29gdtn2G4TNUxyMgzOblqDxu07gS8wfE7CF2g7JynC/ZvXDC57be9O8IXmpdlOrl6JsqIi9J78NO6cPQlLE1nbwNbRCQWZtd8yx6NJAEa99i6yEuKQHG6422BVyRF3cefsCSSH3UHaPfMKuNlAxZn1q3DnzHFM+eQLOLi6658/Pw/nNq1B9LVLFZ0m2M4f/Z6djZY96ZykLhTLypBemo9SuRS2Iit42zrDXmyDx0VqaipWrlxZcXvBggXo3bu3Setguzjs3bsXCoWC6wK6atUq/PJL5SAFhBBCCCGEEEIIIYQQQgghdY0CDuyIfi52NXoSi/NKTB6dvbzQsq7YOtli0YTvzF7e3c8VXYa0R+hZw3883vG/fbh+NBjDZg3E1HfH4cr+IEjLtI9Gbqz5f77ChUhuXwhHaWEZLKE83MCGGRiVZlEDe3vNJ1vQvn8buPu6WmR7hBirfb/W6DKUfb+FGZz3lhHzpMXq7tTSc2xXBLRvjPgw7VWVDq72GPOiupho23d7se7zrdU6ROxacRA/nFiMu4ERBvflj3fXYcO93+DR2L3ausx14K/j6DiwrcH52M4y5dLL8sGw/2XJdHa/qConNQ/ujQwfCxRuIhSOdENpdycwQh6sYkrgeDwHm7/+Dw6udlxAxBi8UgaizfncRe5mheKejSBv7wiRMw8KWwVU1gz4UhUmd+iIN3r0Q1TAXfzK7NO5PitHGWzcy1DawR0lEbmwC8uBKRq18sEzHzyFYc8NhLWtFc6GVXndsQVjdkrIFAIIhSrweQwXrFDJeXBanwrbY3ngPciy/Pr6au5f77kO4BkYhdcuIhe6IjDs6/Wzcd9i9e2fINBSJMYqKSzFh0O/rPbaToxIwTfPrsCts6O4kI61nTUGTOsN/7Z+eCxxHRhqWBxbSx0c2OIZdrTQqtatW2eRcEPVrk/+/v6Ij4/XOt9LL73EFe+EhoZyt5csWYLY2FhuBNSAgABuWlhYGD7++GMcPny4YrkpU6Zg5MiRNd5PQqoSmT+gOEdebNr8PDHA1OwruskEIuDKF+YfVGw8AfcOQLrhOmCEb2KQEqiE/0geWj3NQ/o1psYBkG4LeJDm8pB9VwWlukFUjVWEG9jD1kNPDaMCbv3FwLUtA2sXCjqQOtZsMODXC0i+bnje+EDD8+TG6b6v9XjAtTmQe1/7/XYeQGd1J7RLO7fg6u5tGnffv3EV3i1aYdpnXyMlMpybNtEvAs3sNTt1sl8PWjjkoOz0uxg5/wpsnZ1xdfd21BjDcB0WXBs1Njhr8+7qomOGYbguEOz7Xi6VQKXUDPZqU5iVCQ9/87tMXty2EWJra+SlJsOS2g8ZgV6TnkZscBDOb16D2sI+vz0mTuG6ZYjEVlxgwBwnVlV25KoJNmCx94evMef7X3V2HJUUF2PHl58gLy1FYzrbxeHAj9+iy+jxXDhEbG2DVn0GwNW3kUX2jajfY9fS72FrxHmcTrwFJfuh+oCAx8cI/y6Y2WYQenu3sljH2PrCdlxgu82xRCIRF+I2FXvuw3ZxyMzMxIABA7hudYQQQgghhBBCCCGEEEIIIfWJAg7siOaeTlqL3GvLK8tnY9uyPcjLKEBdKcgqrNHy2cm5XIGuMUryS3H3YiR3adqxCT759138+OKfKCkoNWvbVrZixN1NQrfhHfHTua+40bvZkeC1YUdxd/VxQUaC8d0tdP3c0+MyseaTf/HJpnfN2m9CauKL3Qsxw+9VSEv1Vx5a21sbXJeje2XFZFmJhCvAsbFXj1bI5/O5kfA/HfstkiI1iy6cPRzx9YFP4OjmgKDjoToDCTEhcfjxpT8h1NIh4WHsezNw9zWMe2U49v522CLHwfuh8dxFH/bYMP61kTiQfBOb4y4itjiTm+5r7QLpZBeI9+UZKLcHeozugqggHUVXbPFKC1tkfNIUKvvKj1aFjxVK+rvAeUcG9vyqv1OGzn3PkcLlWCx3Yfg88Kocs4TDFWh5ciJON8oHDNQp2XqUoizHFvmjAmAbnsPlEozVd0IPjHtlROU+CcpbNTAQeErAs2KLRXhQKMtfA+zKeZD42MBOpVlYxpKFKGDdX6R3RGscLdK7T2xQ4cqBGxgwRfvIlIdWndQZ3GEdXHWi4vqGJdsx+Jm++GjD2xBbi/Vul1jO9u3bERdXWezIHo/YIAF7McW7777LXcwhFAqxa9cuDBkyBMnJ6jfRhg0buIunpyc3emlOjmYgqF27dlwQgxBLs3Kp2+e061vA3bWArGanCSYxt2tDubJMIHyjcfPKi4Ds2+yFgXNLoNdnPNxYzkBhZlZaaAPkRwOeXYAhv/Bx+y8Vsm5pn5cvUv882f01mo7P5eJk9ufEoMeHj3bxJXlEzdoB/NQGUEr1zye2N7wuu8pR7mUS9RuRLermsJ0PZu8C/p0G5MZqLmfvrd4Pa0fEBF2tFm4olx5zDyf/+YPrkOAtzq0WbqjKpiAKiDqKziPHIfTEEUiKan4gzIyPRVLYHf3HEbEYHYePxu1Tx3Dj8L6KoIGjp5c6fWFEN4mm3XogK+Gh58gEIccrA5uWUlZUyBXmBx89gNrEdunoOLSy6JovrP9faWbFxyL+VjCadumu9f6QYwerhRuqCq3y87i081+0HTAEo19/FwIzO3UQtbDsRHwSuAHR+WlanxI27HA8Ppi7tHT2wfcD56G9e5NH9unbv7+yA2ifPn248xhzbN1qmUEoCCGEEEIIIYQQQgghhBBCLKH+/xpYz/b/cYwbUZwd2auu9BzTFX3Gd8f6xdtwcfc1o0YPf1TF3UnEiY3noFQYHo1QF7bA+6up/4Otgw0mvjEK3x9fhKykHGQn50BsI8a/X+/ClYM3uHnZ59KUcIMhF/67ijd+eQH3CwqRXyKBv4czmnu5WWz9hOhi72yHUc8PxcG/jut9kqbOH4urB2+gtEh3td7IOYNxad917PzxAMIvR3HTWvVojmnvjec6rXj5e+Cf2z/h8oEbuH4kmCvo7TigLYbOHMCN1s/a+5v+4ny2k0OTtr4oMqKjzfmdlzB0Rn98vf9jLJv1q94OE8ZhcD9Uf2cENsS2s/AG1sad15ieKskDXvGAwk8Eu5W6qxDZkf4HTuuDLd/s1r4HfCDzfX+NcEMFPg/5M7wR6iVH93vOSDl3z9gHVv1xPBTICjl9h+sKUSI2XK3JF6hHrFQ6W0HS1Ak2scaHS5w8HLl/pWVSLqCSkZAOoS0PSlvFg3BDtT3l/l88yg2OB7MhytQM6hRvl+kNOLSQN4dri1KEZapfr7oEHQ3RGXA4uekcTHF+5xUu3MCGHEjd2LNnj8ZtlUqF+/d1h4h0yc3NrdF+NG/eHOfPn8ecOXNw+fLliuns6KUPGz16NP799184OzvXaJuEPOzeThU3Un+d4QE+vfnw7Kounk+5xFR2EngMscGEpLMMlDXo4MAGIy59xkBkx6DFVB4Gr+CjJB2Q5AB8McM9jxlB6nnZThEmhRsMSDzNoPMbKuTH8CArAhybAA5NKPBA6oCtK9DpaSDkXz0z8YB+bwORhwC5nkENOs9A1JWLuHFoDxdGYPm0aM2NyM+OXA/XZsBbQUDkQSDmFPvFAAgYAHSYBojUoW5DBfT3rl6Ei7cvWqvUXRz0CtsD+7YTMHnhIhz5/UeuO0JNsN9jcg11RuDxcePgHgQd0DynKMw07nzIxsERLXr0wfW9O83eTzZU4errZ3hfTcB2bmDXJys1rbupqWydnLh/5RIJ7l27hNzUFPD4fDDsa6UWNG7fEbKyMmTExuidLy7khs6AQ9iF08ZvkGEQEXgWIisrjHyFzknMdSklAu+c+RulCgPBrAfYEMScoyvw+7DX0L+R4c6QDU1RURFu3apMXA4ePLhe94cQQgghhBBCCCGEEEIIIcRSnuiAQ2ZiFv58b32dhhs6DmwLv5Y+3PXPtryHvBX5mNXkdSjk5gcALIXtfJCfVQCVwrJ/HL566KZFumOwBdw7lu9HQXYRPljzBrwDPHH5QFBFuEEbT393KKQK5KabN1xsob8jpv6+FRnFlYUa3Zr6YvHU4WjpXTkCJSGWJpPK4dnEXW93mZ5ju6J1z5Z4/utn8df7G7TO49/OD9IyGb6c+j+N6fdu3Md3s3/jRsGft3QGBEIBBk7tzV20uRsYoXd/2eNoQrjukSmrSo5Ox9u9P6nohtCknR+sbMSIvmneSKQtuzU3GHAoc2SwPu6CzvulY51hdbwAwmjtRRBjXhzGPVe6lPZwgtJNz8j/PEDSxQbB7lZwvZMEUY72QALjyAfTUgzIGfAipOAZUYgZfOo2Ap72NjifvLQyUKCyF0HqY4vCfl6Q+diCL1HC7lYO7EOywVdovt74Aj6GPzcQp7cEYuU7a1Gcry5csp3SFMWTDRR583koGegM592aBWOyICUKfpHA8V0r7jVeVYBVACaqJmKrtWbxuzZKLZ9XydFpOLHhLFLvp8NU7GOc9/Wz8GzigccF+xWnpl9zautr0r175od9LK1Zs2a4ePEi9u3bh507d+L69etIT0/nihV9fHzQt29fzJ07lws4EGJpRckMbq2qw3ADAK/ugK2X+vjb90seSjJVODqLUXfQqWdWroCs4EE3HwtKvWSZdcpLgIjNDBc06DafD3tfdXiiPNygjZ0PoJAAUt0DyuullADHnmcgyal8nXh0Brov4FPQgdQuuQRwYkc1Z48XOo5TbScAPp2BwR8Bp77UPo9XR1yPFyFw1/cak9NionDw5+8xYMZc9J7yjLqTQ/sp6osWKZEGggsMw42WL/Yx/GYvSovH/k/fqyhed2vchBs1PzPO9LAly9O/GTLuR+udRyGVVAs3mKLzyLHISdJ/3mOM/EzTvyfrxTBIvHMLbn61NwK+QChEm36DcOfsCZzbuAayMvM6hBrLp2Ub9Jk6g+uqYAj7ffFhOSlJCD9/GoVZpg/AcffsKfR7+jnYOddxa6fHpHODKeGGcuz87HKbxy545Do5REREaPxeu3t37WEbQgghhBBCCCGEEEIIIYSQR80THXA4suY0VMraGelNGxt7a7y+4nnNiTxegwg3sNjnwtLhBpYlwg1VHVt3Bs9+NAl+rXwNjiqfmZBt9nbKWrkhf0IroEq4gRUcl4oX/voP296dicZuNIIzsbyC7EJ8PGop7ofG65ynXb/W+GTzO9z1qfPHw9rOGlu+2YXMRPVrng0sDJjaC89+PBlv9/pU53q2fLsbQ2f2h3+7xnr3SSgSwFISwpI0bieGq0cPnTx/HA78cUzrcYjhAUonK654Rlig2Q3g7LaLBrfJTHSHSldR1gPSUU4QRmsfuXXKu2MrAhlal21mY3gfbFSQCYCCIY3hvluzsJthuyG86QpmqB0gflDwn68Ef1ch+DsKH/RD0LFeBhjl3RPr445Ayg4ZrWOe4nT7itvFbZxQ/HxLjXlK27ogf7AvfP8Oh7Cocj3TF0xE7J0E/PD87xrHc/f98Sgb1Q6Mrf7Xhspe+/0l22WQXFLAbrIIwqZ8uDi4wCXWFddXhOGy9DaM0XGQ5gibqxduwq4Vh8wOLrKfg9cOB2PiG1TEXhfu3r1ba+s25zXA4/EwZcoU7kJIXYo7xCaR6m57Ijug0+t8jWk8hgdGWbchC51Ulg83sCy9zvsHGLR+loGdNw/Ru/U/d2ynh5r+jNlOEVVl3QLOvqfCiL/4FWEVQiyqKAPYNAnI0hN0DhgITPpTfX3A+4DYHghcARSlqqcJxEC7Scjv9j4CP/1E52ou7tiM1n0HwtlbPRiELnyBACql4XYz2VJbg/PcichERk7lyPw5SYncv93GTULIsYMmdwUIv3jW4DxCkRgKuea5jCm6jJmIhNshqCmVonZa9nQYOhJXdm2FshbW32vy00iJisCJVb+hNtm7uMHR0wvpMVH4b+nnRi3j16adxnfQsxtWc68hc7Gv8bjQm+gwZITZ63gSsc/9J4EbTA43lGOX+yRwIw5MXsSdFzwqUlMfHG8f8PLyqrd9IYQQQgghhBBCCCGEEEIIsSTNypYnTGKkcaON1xQ7OnXbPi2x/PQXaNW9ucZ9Di52sHGwRn1j/3iXn1mAR8XRtWeMGlXeXGz9UdFAfy6Aok1+qQRrz+oZppWQGvjp5b/0hhue/+pZ/BK4FI6uDhXTxr08HJvur8Svl7/FDyeXYGviX1i0fQGuHrhpMMh15J/TBvep17huqG37fjuCkXMGV3svFvbxRur73ZDyYXekLOyB1He7oKi7Z8U8bIcKQxSuhj/uVB6VHQ4e9t3s37nCeV1JA57UiAKoB7OUtXaFyqqy6J8RAsrvvMCMtq8MN7CcBVC97ALVK/qDVC6tPLFn1Rn0i2kJPpsE0SI/1hmKMvXjUynlKO5d+fxVJfexRebMFtx1V29nvPq/ufBo7Iavpv6vWliNp2Jge9fw54YoTffPR5mkQuHvUuQuKEPO5yW48d1dKKTGVaC6eDph6Iz+Fbf3/3EM//10sMZdmeTS2in4qjeMhS6EkFpTmFhHbzIe4NYBGPIzD87NNT8vrJwBgRUaBKl5jdfqngqIP8p2vWCQE2Zg3lr6EbMdIaJ20EGa1JJ9r+sPN4z6Bph3CLB2rJzW6xXgvTvAiyeAuQeA98OBaWtw+0qQ/pZQDIM7Z44b3KWmXY0bmTyswAtyle7v/8VyEa7laB+lPfjIAbQdMASmUsoMn5OoVDVLWh1YsQyhxw6hweHxYOvohFsnj6JFr746f49iDntXNwyd9yrENrY49MsPqG1KhRypUeFQKY37Wdm7uqNl78pzkhuH9tYo3FCxH3IjWvkRDdfS7yE6P61Gz0p0fiqup+vvxNLQlJSoOyyWc3Nzq7d9IYQQQgghhBBCCCGEEEIIsaQnOuBg72RXq+sX24i5f9mi0Iir0fh83DLsWqH5h87dPx+GQlb/xZQ1LQjVx8bBBk3aNLLoOi/tuVYRHqkNcl8HKJ31B08Oh0TV6vNGnkxpsRm4evCm3nnuBIZrHVFQIBCgXZ9W6Da8I1y9XbhpqbHskMH6GTPPtPcnWLSLg1YMkBKdhja91AX2rNyJzZA3oRkUrpXvR7mnLXKntEDeCM2uE7qOB+6NXKHKMDyKIz9X97E47FIkIq7e01mgaHfdcKE/v/BB0yQBHyrbygZKzCA7MO10V5WqpjmCcav+3Jc1d0L6S+3x5p3LWFYUg03RuSjYwEB1vgwqGQ8qBQ9lOdbIuOOJolR14RnDKKF01N+8qay1M9rP6o0uwzvg+tEQ/PHuOp1F/w4nc/WuiydRwu5iHnfd6sFnoi6mhuzKSiRY99lWyKRyqFSqap+v5mrbt5VF1kMIIcYS2dfuKMG88sMvA+TcBc5/xCBmb2Uwj/0+G7WTgar+T0lqlcgesNM/OLzJki8wXHCEV49n1Qmn6HyE1IKsKOC+elABneIvaZ8uEAJNegPNBgP2HtykgnTDRcf5mRkG5+kxYSrXxcEQiVKE46mtoNQS/mVP4XckdIZK56/DGBTn5cIzQHNwCqPpKO53cHM3umhel9TIcKTFRKHBYRgc/OV7rntD1OVA/WEWE/h36orG7Tsh+vplnN+81qjuHYYIxfrPScqKCk1an7S0GJd2bOa6VrA/3+DD+2AJPi1bW2Q9T5JtkRcstJ7zeJSwvweqSiKR1Nu+EEIIIYQQQgghhBBCCCGEWNITHXAYOrNylLXaIHtoVPHCnCL8/eEmbP9+L3d7y7e7seaTfx+/0aIfIimRYPQLQ7luFZaScj8dC0d8BVcfdRG3pams9RcAs8pkcshrWKBAyMPYInpDwZnwy/eMfuKc3KuMqKqDsxHztOzWDIt2LICtgw1q072bsfj+5BLMXjId0kb2KO7trXPewkF+kLtUBgPYMFnj1r4VQQcrWzEmvTUGnYa0h9WpQuChDgQPE58yv4uNOEUK22t6hpyW8cDLVx9XeHIl+MWVI3Kqhhs4Ngp4UA3TnKekvRsy57aDtKlT5XocxMht3QRZCV5gJqWi8Acecq67QJpvDSgZWEfkADLjRgK9EhOHM1suIvTMHb3zWd0rhcOhLO13Khm4/p2CDl1a4O3fX8KGmN9hY29+xyK+NQOBY2U7AUmJFLt/OYwvp/4PSVGpSI/LRE15BXigbe+WeKywhX2WuBBCak2TYbX7HmMeGlRclg+E/MYgepc65BC2juEuzGP+tVZeCjSfxIPQghn3wngg8GMVrOtxsGR5Uf1tmzzGkq5ZZp4HbBydDM/jYPicxLdVG4x9+wOIrAx/p4wq8sC2+M4IL/BAqUKIMqUQ9wrdsDW+M/Ll+s9p0qIj8cyX36HnU9NgMoaBi0+jiqCDyNoa3cZNgk/LNqav6wmXcDsEEYFnkRx+t8bratSmPUa8/Cbm/bIKApHuzn2mkkskCDqwG4d++R7ZSQlcOKamXHz94BnQzCL796QolpXhVEKoRdZ1MiGUW9+jwslJ8/iak5NTb/tCCCGEEEIIIYQQQgghhBBiSYaruB9jXYd1RPdRnXHzxK063e7WZXswfPagiqDD444tOmYf87hXhiP8yj0kRaZwoQ6/1j7ITslDXrqeomA9Qs/c5UZMrQ3CPMN/zBQUSpGbnAvvAM/a2QnyRBIIDY9IKjChk8KIOYOw++dD+ueZO9iodfV9qge2Jf+NM1svIiEsCbaONvBp4YWfXvwLlgyGSYolmPvFM1gbF6l/Zj4PJd084Xw6qWISW+heTloqw+mtgeg0qB0EqXJY7c+HdIr2UJT4bCFE4TUb6dBjZSKyFQxK+jlrjtxaxocg2Qo8lXqaTXgO+PLKkbPhZETWsMo8jIDHdbZggw/aSFo4o6ydK5xPJ8LpbCJUtiLwZEooXKxQ3K2LcQ/GQBikqpYxSfBVJMGplQJKPh/xha6IuewIyS0RSpr64H6bRuja0xPnDt5AWbHpz7F9NwbeLwGOfdUjZEuTgaydDDK2sCEKHoKOhqDfUz1gCexr/Ni6Mzix8RxyUnPh0didC+gNndEfQtET/ZWJEFKLvHsBHl2ALMvU5RktbBODRoNUiNrxhHQAUAERWxg0HQ/khgFFSYBKDjg0AUozAKl5pyTIuIF6V5bDwMaNwmjEgvhGFIALjC8SbzdoKG6dPKJ3nvaDhhm1rtZ9BqBplx5c4XtuajKs7Ozg4OqBk//8Xm3eDIkDjqa2MatonVGqMHDm8wg9fhhyqWnfYfPSUjTWFR54Fj4taET++iQpLoJSoURU4AUo5caFvk0RE3QVTbt0t8i6WvTsg9unjiHs/GmUFuTD0cMDHYaNRuu+A8Dn13JXxUdUemk+lEyVc+waYNeTUZoPe3HtDu5gKQEBARq3s7Oz621fCCGEEEIIIYQQQgghhBBCLOmJr9brO7FHnQcc2ALPrd/u5kafNkXPMV1w78Z9FGQ/esN0lhSU4r8fD1bc7jS4HRZtfx+Obg64tO86V6CqVKnQvHMAVi/cBJXSyEKrWqrHEuZJ4JQvQ4GzWOc8NrfTcW77Jcz4ZErt7AR5InUd0RFiaxFkEt1FF30mGF840aJLU4ycOxgnN53XWdDdeXB7ncvLZXLsX3kMh/4+iZToNC7UMGzmADzz0ST4NPXi5jm29gzCLkVpXZ6dv7TQtNEPrW3F4PF4cGnvi3RFsd55FU6VHRy0Kc4rwbXDN7nrdmuyIMiUQzLFBSpPdUEWL08B68P5sN5R85E2+XIGnr8nouxYHrJebgnGig9emQC80soiFEGBFE7nEjUXTFUArfU/Dl5KZaef4m6eUNnrLygr7u4J+5As8FSA4EG3CEbIrzxu6quBVKpgG2VclWfzd6Ro9prma7WDWzpajc7CMcfuyMx1xj1VKZadPA9BqQIevnawSi2BsZyHMWj2A8Cr8nCt/AC/BYBdJyB2IcN1F2ADb26+LshJzUNN3Dh+C/t+O1pxO/V+Bm6dC8Opfy9g6YFPILay3GivdYX9UfNq+FlJJbOE1C6285BPXx6yQpk6H/mfLfhni/xN4dMfyL79aHYOYPc5emflbc/uQJ/FfIjsgOQLDDKC1NOdmjG4vYoNaqPeCawApYHTxuSzDFpOp6M1saAWw9UhB30HiFajjV6db6u2aNVnAO5dvah9VX0Hwqel7gCAQiZDyLGDXNF3fkYaF2poO2AI12HB0d2T64B3+/RRZMTGaF3eytYO0lLjv4Py+HwIxWLuXzsXF+Snp6EmJEWFiL8dXKN1kJrJSU7E2Q1/1+rTmBwZwXUiKSsqrNF6oq9d0njNsa/5xLu3EXnxHJ764HMIhE/8r3KrKZWb9vtVQ0osvL7a1KJFC9jY2KCsTP17l5s3b+Lpp582a10KhQIqlQpise7fhRJCCCGEEEIIIYQQQgghhNQVI4aNfnzJpHJs/qpKhYsWrXo0r5VtRwbdN2l+voAPrwCPRzLcoM3t8+H4dOy3XNXkoOl98cHaN/HR+rcx7b0JmPnpVDQEvkFp4JdqL+gQpRTC/mYainL1F18TYipHVweMe2WEzvtFYiGmvT/BpHV+sPYNzPx0Cuyd7Sqm2TrYYNp747F45wK94YZFE77D3x9u4sINLDaswIYd3u71KeLuJHDTvtr7EToMqD4yqk8zL7z164sm7SvbVcfOSb2fHTtojkSojaBIZnAepaKyOtH6QD6cXoqD45vxcHw7Hs7zYmGzLZcLAliKTXQRfL8Pg/25AvAK1cWGPLkSdiEZ8NxwB8JCzX3mHzZwXC9RgXdWXZClEvNRMKyJwX1QOFtXmybKLAO/VKEOOOipoXUIyoKwyHC1q3N3ZbVwQzmxWIlhPW+DV2VDSlshMme3hao8aGEAT8SgySLNcENVLiMA5+Hq6/lZhZj89ljUBBssSq7SAaSq4JO3sWXprhqtnxBCdFGUMYjYpD/c4Nyqdp6/PAPNkh7GEwBih0cz3KBN5k3g4icq7nE1GcZHz4/Vl1ZPC9DSvNpAixPaGp5H9pj8PEgDYu8JdH1O9/1Ca6DPmyatctw7H6LHxKkQ29hqBA/YkML4dz7UG27YvWwJLmxZzxV6s6QlJVxnhS2fLUBOShIXjp7y8RdauyS4+Pph8GzTzkmadevFBRxYPi1N7wChDaNUWmQ9pOGSFBWg86jxNVqHUGylM1ATGxyEoAO7a7T+x5WtSP+AAaays/D6apNIJEK/fv0qbp86dcrsdR0+fBguLi4YMWIEvvnmG+Tm1nwgCEIIIYQQQgghhBBCCCGEEHM90cN+sV0DDAUG8rMKamXbMcGxJs3PFifv+71yVOnaIhAKMOaFoQg+fRtZyblQyCpHDbe0+6HxuHLgBgZM6c3dlpZJ8feHm3Fy4zk0BMWR6XCLz0ZJz0Yoa+sOxkoIQaEUtrfSYRecBp5ChcZtGtX3bpLH0Gs/zkVJYSlObtTsumDnZIuPNryNlt2ambQ+gUCAF7+dhVmfT0PU9RhuhFM2vMWGHPQ5+OcJBJ+6o/W+wpwivNnzE0ydPx5T5o/DzxeWIuxyFK4eugmVQon2/dug94Ru3La3LtuNlOh0g/vJF/Dw3OfTKm5P7dQeO0Pv6l5AxcA+OBOmYsMMwgTDwYiaEOZJ4bYvGi6H70NlI+SCBfwqQYuq+LekYA4VQTXBofqdSgaCX3PAk6gLX0s6e0JlIzIr+MGXq+AQlImCwb7qEanZnMFDgz2LU0rgsSfOqMfY+Fn9IQh7Wwn8/TIQn+xdMU3lIEZpR3fYhxj+uTkPBUSu+udxnwrknwK8Azy5riKJkSk6u5UYwr4v9Dmy5jTmfPE0hKIn+qsTIaQWpF5mIDcwsLjC+IHHTZJ3z7T52z0PRG5FrWPDbU1HA+k3AEk2oKq9UxLkRoLr3ODdqzJwcutPBgkn0SDIjchTOxjOPhJiurHLAWkxcPehkKe1MzBtDeDZ1qTVsaPOs0GDftNnIS3mHng8wLt5K4isqwdzq7p5ZD+SI7SfE5QW5GPzx++ix4Qp6DpmImZ9+xOSw+8iLvQGNwp543Yd0bRLd7Abu7JnG4qysw3uJ18oRO8plQmnDkNGICLwrEmPlTyZHD290XfaDOSlJiPqSqBZ61Ap9X/g3Tp1FL0mTwefX9klkADets4Q8PhQWqD1kpDHh5et8yP1tE6ZMgWnT5/mroeEhCAtLQ0+Pj4mr2ffvn0oLS3l1nX16lUsWKB7QAxCCCGEEEIIIYQQQgghhJDa9sRU6SnkCq74ViaRo3lnf7h6u6Agy3Db+NKCMox7eThX2KhN005NIBDwERMSz912b+SK7BTLjnDl29IbZcUSlBSUorYpFUqMmDsY7/39Gnf77sUI/LVgI+7dMK3jhLEu7r3GBRzYwtIvp/4PN47fQkOhkCkhlCnhdDqWuzB8HngqRqPYfMiM/vW6j+TxxBZQsx1NZn4yBee2X0ZJQQmatGuMoTP7w8ZOfwGQPta2Vug8pL3R8x9arb+yjw1A7fzffpz69wJ+Ovsl2vdrzV0etnjnB3ij+0dgqrx/tHWpWfzfB+g4sLJQqpufL57q0AYH7mofXtrhahpEORI0ZGyogC83HKYQ/JoLXpQMyskOQHMxF2zg3ZSAv6MA/NvSivnK2rlVdmB4KJxQla7gh+uxRMi8bVHW2lkdcqiyDpvIfPisiwBPf51/Bc8e7Ki2+gtwvFpkI8PWBrJ0GygL1aPgSgIcjQo4WPnB6HnGvjwcfD6fC/GEnL5j1uewXKr/seRnFiArOQc+Tb3wSDHQscPodRBCLEIpY5ATDqhkgHPL/7N3H+BN1G8cwL+X1b0nHRTK3nvvJVuWDBUc4EBB/TtABVQUGTIEUVRQEQcosvfee+9NKdC998i8//O7mDZts5sufD/Pk6dpcrm7XC6XXvN+fy/g6MVBnm7+cao8IKwPh0f7DL8h2bzYcT3j3z/ZnXyBPPN1vFZhRfT5aYC6HD56eSUQPliEVu9rP6gSL/O4/J2m4PnZW/RRHoFtOfBqHsenaZB0GZWGxkxTJQdPILiLiT8KCLGVxAF45heg6xTgxkZt2CGgIdBoOCCzoLWIESzQUL1xU4unv7p/t8n71Uolzmz6BzeOHsSYmfMQ0rCxcClu8LsfY82MD1iq1ei8OJEYQz6YUaQTRPXGzVC3fWfcPX3c4nUm5Ufq4AilvHKcEzbp+RREYjE6PPMsom5dR256mtXz0Jjp9JGdkozcjAy4eplJgv/HuMqc0DusOfY8vFjqebH5sPlVJc8++yymTJmCvLw8Idy1ePFizJ8/36p5JCQk4O+//y74fejQoXB2tv1YTwghhBBCCCGEEEIIIYQQUlpPbMCBFczn5+TDwdkBm5fuwt9fbUJagrYbg0QqRpdn2qPrM4UtvI2pVisA7/z4GnyDfbD5u13CqOWMk6sj+r7cA69+NRYyR5kw2jrHccjNzMUrjd8rdRhB5iSDIk9bFBt7Lx4bl+xAedmxYh8ad6ovXM9MyS6zcAPDAifM+T2XK1W4wRD9cAMz+dsJQsE4IWUltF6wMGJ8RYm5G2vRdKlxaVj0yg9CFwd97Lh4cPUxRF57jHpta+P26XtG5zFhznPoPPTfoZNZEXyuHIf/PoEaV+PQzcsVJ1XpUDppP7LE6XK4n4iF+6k4lAeNowg5XT2R29odvFQEh/u5cNubAkmSmYpDK4l2ZwsXXsZpAw4Gals0MrE2k6ABeCODdoozFQh4mAO3MD9kpWUjNzOv4D5OzSNw5S3kNvRGVms/qN1k8Hd0wudvPINdk9bgghWF7DnJCrj5m55GyYsgdlHBMTwL8keuUKU5lDiWGn2sBRkFVSpQq1kN+IV4QyFX4uN+X9o9ZKiPfd4TQog1WLhPlQ9IHIE7a3nc/YcvCDSIpEBodw7V2pufj0sQ0OZDDs4BwP3NfMGo/hIXIHwghyavcBBJOSizeXBiQJ4B7J2ggaqU+WixA6D+N2eX9Vh7KS8PtvEFAQd5Gl9m4QZG/W8WMfYUKlW4wRIt3+UgZn87EFJW/OsD/tMqZPuqVUpkJiVYNC0r/N730zI8M73oOUl+TjZuHj2E1JgoBITXRkKE8XOSHi+8gvAWrQt+V+Tn4faJI3Dx8ERwg8aIvXMTvKb0I8T/V8icXeDo7Iz87GxhW5ri6u2Dvm/8TwirRN803EXQEKWiMAxekQJr1YGzh4cQtlg/51Obwg2WkkjpnMSQZ+t3tUvA4dn63VDVeHt7480338SiRYuE35csWYJRo0ahdevC45k5kyZNQn6+NizEBg/4+OOPy2x9CSGEEEIIIYQQQgghhBBC/pMBBxZA+HveJuxZdVi4LnWQlBiVWaVU49BfJ/DoZjQCa/ojPtL4SNIDXuktfLHDioxHfzgEt8/eh0atQZ1W4XB2cxJCDYyLu3ZUK3bbvD0zMGPQXGQka8MQlhKJONRuGQ6ZoxTXjxsesbw8RN8tLBr+88v1ZbqsOi3ChZ9sBPiqGKIh5Enm4umCrNR/KyjNYMesyOuPUbNxdeH3E5vPYv6L3yE3y3QhC9NvfE+M/ODpgt/P7rqEeWO/QVZaTsFt1UQclH5Owoir0qQ8i7sMlJYyUIaET8Oh9issIpE3dkXmIF/4fhsFl5Pa4FypsI8RvefDKYw/OVlCDpRBruBYXRX/b8hBV9PIHqYBPPc8Qm5SNpyCpHhh5ij8+N5vRRfHAy43UoULs/LWEoTWDMa12oG4YMVqx+0Uwa2h8ftZjiE6x0u7TI51W8iBKl0Gx/sWDFXOOiYcANQfAmITg2embAOSrzzE682nYPj/Bpr8PC+tBu3rwKea9vlUKTynvZR2HoQQq+Sn8bi9hsfDPTyUWdowQ/GR+NnvrCNDxmPzHRdYiIETc2g8gUP953mk3dYe9r3rAWJHdpzVvk+lrtqfEiegyzwRTszQQGG+aV1RIu182SxZt4mKkhVd+Hl484+y/eD3qqv9+Whv1Stc5jV0jCZPLrFEatUI/Y+uXUZafCy8AoOE3++cOoY9P3xj0eObPTUQLfoPLvj9/rnT2P39YshzC89JnmTsc8Te/+NQ5ObA0cUF7UaMxrHVq0wtHWM+/woe/oG4feKoVQEHUx05ylN8xD38PvVtNH9qoBC2KSuhjZrC0dW1zOZflbULrIs6ntVwL932gRDqeAahbWAdVEUzZszAunXr8PjxYyiVSgwYMAA7duxAmzZtTD6Ove+nTp2KDRs2FNw2ceJENGpkefdPQgghhBBCCCGEEEIIIYSQsvBEBRwykjPxbpdPEHWncNTx4uEGfQ+uPELXkR2E0cd1nQT0tezdBH1f7l5k5GbW/eGfb3bg7I6LUKs1aNSxHgZN7AO1SoMbx29DJBGj3YAW6PpMB2z7ca9V69+id1PUb1sba+ZsREWS5+Rj/svfQZ6rwL0LD8psOSzI0W9CT+G6JWEQqYMUSrl9R0wvjdJ26SCkIqiUKty7GAm1So1azcLg5Gq8erzns52xZdlui+f96EaUEHC4fzkSs8cshlJh+PgbUjcIQbUD4Bfsg77je6JBu8ICgoc3ojBzxAIoix2T2aj/soTyfc+xUpmkKTWKhBsKSERIfisUsof5kMaWctRQK2pyXM4nIKdFQEFQgVP9+/B/QxLiLAVcrmkLalJi0/D7zH9Mzq/X2C5CpxDW/eDgmuNWrXbMBilCn1XCKdjwE3iQ7YtcdeG24yQ8ZOJsON9KsWj+6iwOcT/yCHnX8P05N4GU7drr2ek5WDt/C8rS89NHlOn8CSFPjvxUHgff0iBHrxFS8XCDvvQ7QGhPIOaY4elYh4fqfQqL2CWOHCDicW+tBvHnAF4N+DYBag3loM4HUm6wYy4Q1IFDUEfgoeUf5drltQPca3K4s6Zii0aVOcDZuRqo8nhkRpbdclgYpEa/fztFWJBbZNuWN36KWe6UOex1opADqVpYZ4aEBxFCYa1/jZpCiMGY+p264tpBC/+3wvNIiXosBBzi7t3Bzm8XQqM20BaNBcSCQ+HhHwB3Xz807vGUMAK/TkJkBLYtnmv0sU+ishrAITMpEWc3rTM5TZNeTwnhBmV+Pu6dse6cpDLJz8rEhR2bym4BHId2w0aV3fyfgJDOvC4vYdyur5Grsv4c3VnigHldXiwIjVY1np6eWLt2LXr37o2cnBwkJSWhU6dOmDx5Mv73v/+henXtYBT6Tp8+jWnTpuHQoUMFt7Vq1aqgEwQhhBBCCCGEEEIIIYQQQkhFeqICDr999k+RcIMljq0/hUlLx+PK4Rs4ueW8UPTrF+qDQa8/hWfeHwypTFow7eG1JzBv3LfCNDrXjt0SLvq2/bBH6ORgrUsHruHC3iuoaJHXo4RLWWs7oCW8/D2E60HhAWZHDq9M4QYmrGFIRa8CIVYVrKxbuBUbFm9Harx2BH1ndyf0H98T4+c+D5lD4bFOZ9SUp3Fk3SmkJ1rWpcDp3+PexiU7jIYbmPjIBHx95HN4BXiWuO+7yT+XCDdUlPymrlBWN15sxUIOWX194P2rdZ87peEQmw2PA4+Q0Sus4Dah/IKFHRRq+Gy4K4RBdHIzTXfQaNheO2R1cnSKxd06dFRZHM6Pd0KTr/Lh2bxwxGs1zyEiyxeXUkNLPMbtery2+4SFEn7j4Ofnh4CXNUhXaoMbGjmQugeIXgDw8sLiE3luKYMmJrh4OqN13+aoktjuUNp6tcoxMC4hVca1n/ki4QZLRB0CWrzNIeE8j7hTbFR+wDkQqPU0h7ojOYjEhce7h3s0ODefF7r26CRdYZeib9aIzTwk2iZzVok/A8Sdqvg3fvo9din79QjqBMj+7XzhGsQh+arpZVamcAPjHlY1CzHJf/ec5Ozmdbi4aytyM7TnJA4uLmjaqx86jR4HsaTkv6jaDhmJe2dPIT/bsg6ZMiftge/89k0mAwqs8H7MF/Ph5OpW4r4Dv3z/nwo3lDVzXTCC6tQXfmYkxkORZ74DYEXwDKwGlUKB7FTTYW0W0igrbF+t3qhpmc3/SdDItzq+7fk63jq43KqQAws3sMexx1cE1jHBGh06dMCLL75Y4vb27dtj+/btGDlyJJKTk4VODosXL8aSJUvQpEkTNGzYEC4uLkhNTcXFixfx6NGjIo/v3Lkztm3bBkdHE/8HIYQQQgghhBBCCCGEEEIIKSdPTMBBnifHgT+PWv04NkjdpqW78Ovtb4SCXEWeAi4eziVG7MrJzMXXr/5YJNxgSm6W9V/KatRWVH2awTpNqJSV+wv54xvP4NzuS2jTrwUGvNrb6o4XFcnNywXNezSu6NUgxGLL3/8NG5bsKHIbK35nt105chOjpw5Bo0714RfiU3C/f3U/LDw0E0teX47rx2+bnL+Ds4PQEYI5u/OiyWnZsenCvqvoPbZrkdtZ5we2LpWFvIGL+Wnqm5+mOI1UhJwWgcht5g+1m0zouuB8NREuF+MhUpr/HHA/HgNZTDay2wZCHuIGTsXD6W4qXM/EQZpqXUHN7l8PIbBmALYs2wVb5MeIcG6sM9waqCH91APKQEfE5blDrikZmGGkMdatX7tBrTD1o0lw9XLGpOHvID46HnkRgDq9fIs5c9JzkRyTioAwv3JdLiGk6lHm8og6aENRPg9EbOXRd6UYagUPtQKQumhHI9Ynz+Bx4eui4QZTVDY0P2LhCnsRyQCNApXa4/1AzQE8/FtwCB/E4eHuig93WMrBE/BtTAEHUnWw4MCVfUX/7pTn5ODc1g2IunEVrQePQHC9BnD19ilSWD7qs7nY99N3iLtr+pxE5ugE31DtOUnkpfMmp1Up5MIy67brVOR21vmBXUj5uXZoL5zc3XFp17ZKudlrt+mAfm++C6mDA36aPAHZqdrgdXnLy8pEbmYGXDy9KmT5VUWn4Ab4o/97+OjYKtxLjzM7fR3PIKFzQ0WFG5jly5dbNX1+fr7BgAPTvXt3XL58GVOmTBE6Omg0GiFcdvXqVeFiiJubG2bMmIH33nsPEgNBM0IIIYQQQgghhBBCCCGEkIogwhMiJTbNplABE3MvTujCwEYwd/V0MdiO/OCa48jLLruR2Oytfrs6cPWyvvC2vH06dD6+eWMFHF0chALrqkKj5qFSVrLhWwkxIu5BAjYt3Wl0+9y/FInZzy7B2Jpv4ssxXyM7vXCEzbAGIXh3xUS07G16pEg2ev7/On+CxMdJUKvMV0YaCottXmpbkb21NG4iyPu5I3+kFxQdXcGLjUyotqDAUa9bgkXLdhAjeWxjZPauAZWfM3hHifAzs1cN4XZ2vyUcIzPgu/YOghedR9A3F+C1K9LqcANz78IDTB84B2d3XkJpZN0SI3alGA9zfIyGG7hsNWSnrOsS0fPZznD3doOIE0MS747sC5zJcAP7LCkrnw37CrtXHhQKRAghxJjcBB5qGxvKZEYCqbd4iGWc0FHA0DnJo718pQ8M6PNtDEisb2xX7o59pMHFbzRCYKD2cFQZLIzCzksIqQpSoqNKhBv0xUfcw/Yl8/DT5PHYsXQB5LmFCS2/6jXw1KuTEdKwicllKPLz8NenHwij7Gs05gd8MNSl4cLOLWYfR+wr9s4tbJ4/C4+uXa6Um7Zh1x5wcHaGSCyGk6ur2eklMlmZrcumrz7HjSMHhIJ1YhwLK2wd+gl+6/cu+tZoCTFX9N/fEk6EfjVaCvdvHTqjQsMNZSE4OBhr1qzB/fv3sWDBAjz99NOoVasW3N3dIRaLhZ/s91GjRmHFihWIjY3F1KlTKdxACCGEEEIIIYQQQgghhJBK5YkYlin+YSKmDZhdqnlE34lBnVbhcHIx3IY76nYMqpI2/ZpD6iDFpQPXUJmpFCpsX74PB1YfQ6PO9Us1L2c3R+RmlU8IhXX0iItIQPUGIeWyPEJKY/8fR6GxoBCfdZE58s8pJDxMwuJjsyCRSnDrzD189NQsiwJkCY+SsPj15WjcpT5Ob7tgfEIOBd0e9F0+dB1lLe95b8if8QJkhQUOXKoKzosTIL1YdJhrp4tZyBgdaHJ+ThcyrVp+ZrfqUFYzXBTDbmf3e+6NRFXkcCgT8t7uUDVyNni/88okcHLrCnF2/bxfCDkwXYa3w+0z94xOywqBp/42GUteX4HMlCzYW8TlR1j0yg84t+cypv/1P4hEVSQjyjZ5aeufqH6KEItkx/A4/nHp3jCZj3m412ChAMNhrqyoqvViBLThoFHxSDY8YHClwUIjEZt5PN7Hw6t0pySQONvWOcMWikwgL5mHSwB1cSCV342jByyajoUObp84gqyUJIz+bB44kQjRN69jw7zPoJKbT5Clx8fhwMofENKgMR5dNRHi5Tj4Vq9R4mbW1YEQfdcO7EGdth2F63XadULS44fGdyuRCP0nv4+9y5cK3UnsLeHBfez+frEQBuk/6T2DYUjy72vBcWhXra5wyVbkISE3HTlKOVykDghw9oSrrOwSmKtWrRIuxrz00kvCpazVrFkTH3zwgXAhhBBCCCGEEEIIIYQQQgipaqpIdZ5xbCTlTwbPQ8y9+FLNZ/HrK/C02zi81/1T7P71IH7+6E/8r8sMfNBzJv5ZsAUyR8MjUldGMicpfp3xd6UPN+hj3THO77Z9tD42avfSU3Mwe+c0ePi6oTwseWMFdXEgVUJaYoZV098+ex8nNp0Vri94eZlV3XEu7L2KbiM7mJ6IB6YPmofI64+L3GxLbYYywBXyml5QeRsuqhdLRHDzdoVYKkb+CC/In/MpEm4QVsdbgpxPqkFVy6HgGPrKvLGYPuMl+EYZL1R1VIngdjDN4nXVSEXIbeJnchp2P5uuvCkCnJDeLQhpPYKQX8O2Yyin4uH+aTQct6QK3Rp0xA/y4TonBo57rdsPmdiIhILr/V/pBb8QH6PT9hrbBV2Gt8dv977FK1+NhW+wN8rC0XWnsHfV4TKZNyGk6uLVvNAFILfwsGWTc/N4bBqgwZH31Hi4W4MrP2pw8C01Dr+nxt11GohkVSdxJJIC15ZX/nCDPmUOkGgio2mOxAXos0KEjrM4SMvnlATnF/DC/kdIZZebkW7V9DG3byLi4jnwGg12/7DYonCDTsSFs2jQqZvpiXgeG+Z8itTYaJQ1kVgCR1dXiESWdWtjpI5O6DZ2PPq89hZkTobPdcq6WwDRSk8s/HBv1qc/XDy9jG6axj36oG67Tpiw9Gd0Hj0OLp5lc05y69ghIQhELMPCDLU8q6GpXw3hZ1mGGwghhBBCCCGEEEIIIYQQQoh9VPkODud2X8bDG/YbyvTa0VvCRd+VwzeEAlk2+ldVaAOvyFPiv8Qv1Acf/v4WwhqGCpc1UcsxMmACcjMtL8q2BdtP9v95DP1e7lGmyyGktAJrmC6qN+TQ38fhGeBhdfcadox0dnPGawtewE9T/zB6zEyNS8OnQ77CqjtLIZZoC31a9GqKXb9YNrKrPMwT2V1qQK0XbJDEZ8Ht0ANIkwpHymw/uDWcXB2x7+9jkI8wXojCQg/sfsn8eHQb2RGjpw7RPl7RAZNOrcPZ5EdFJhenKeG54BHEqZYfb9UeDuAdTH/ssvvV7g4QpZTt8UtH4yhG4pjayG1YWHjDIhuy6GwE/HEX0jTLC8kY1qHB5ackOP+eDHWgVPhdHG/7Z5KHn3vBdTcvV8w/8Blmj1mM+5cKu1yIxCL0GdcNry0ch32/H0FSdIoQblh5awmy0nKE8JxapUZcZCLWLdwKe9j24170G98TVQJ1cCCkXMScALLtWCObeIldin6GJl3iIfNAlaH5b52SwDkQaD9DBNdgTrgEtuWxebBG6A5RllggI+owj+q9aBRvUrl5+AVY/RhWwC2RSJChV2BuCRaKcPHyRqfR43Bi7R9Gp8tOScaWBV/ipa9/KBgJP6xJc9w6bt8wa932naFRKXH3zAmLH9Ogcze0HjxcuF67TXtsXjALcXdvl5hOpSjjgwyBk1vhOYmzhydGfjIH27/5Csl6nRxEYrEQbug85kVcP7wfOWmpcPP1w4SlK5CbkSF0E+F5DVJjonFxl33OSa7s24UGnbvTK0QIIYQQQgghhBBCCCGEEEKeSFUy4HDt2C2hCDb+YSISHyWXyzKzUrOFLgH5OXJoPMRQ9nSDxk8CUYoK0oNZEKUVjlZNyoeLpzOm/DoJ7Qe1glhcOBKizEGKLiPaY8+vh6yan0+wF1JiLB+NnWH7IQUcSGUlz5MLI81vX7HP6semJ2Xh8U3bKjW/evFb+AR5o06rcNw9H2F0uvjIRJzceh5dhrcTfh/2dn/s+/0wVErTx1N5dU9kDG4AiIoW8qkC3ZA+ohG8/rkGSao2IKBSqrD/j6NQtXAG72F6xFRlRxfwnHa9lk76Gf0n9ESdluH4s9sLOJ/8GPNWrkXknWjI7uXC5XSG0LHAGiK5ZZ8TIkX5fZ4kjK2LvLqeJW5XhLgi7tWGCFl8BSKlxur5smCD5FHpi61YcEFfSJ1q+OHCfFw/cRt3zt6H1EGK9oNb4eL+a3ih1mTkZOQWTLvsnZV4bf44DHytj/C7Wq1GxOVIYdrSemTHYCUhpOpKvMwjcieP3AQeOaVrJmcxRQYgcQJU5ZODIxaQuQNtPuJQrR0HTu9vE7GMQ3AnIMq6UxI4+QN5idY9JnIHCzjQy0UqJ6U8H9cP7cP1w9afk+RlZSI5qmjXN0ttWzIPbt6+8K8RjsSHD4xOxzo4PLx8ATVbtBZ+bzlgCO6cOgaNWm3XbRBx/rTF07OwRWpcDA7+ulwommfP4blZCxF18xr2/bQMaeXQdYIUatS1aLDZJyQULy74DtE3ryMh8r7QRaNWq3aIuHAGP781Hoq8wg/pg6uWo8eLr6Fp737C72qVCvGR9xF7+2apN3FKtG3vDUIIIYQQQgghhBBCCCGEEEKqgioVcGAjgX8zcQV2/LS/QpbPwg2BM5rgTps8QFpYvJL/oi8c1qTA8W/riuMtUS08AHEPrBut8L9AIhXjo9/fFsINhoz79Bns/e0weI3lBchqG4p4Ex8lWf0YQspDblYePnxqFm6fuWfT4x2dZTiw5phty87MQ26mZZ0fbhy/VRBwqNkkDC16NsG5PZdNPianY/US4QYdXiZBTttQeOy+K/x+ZvtF7R0OFoxqLBUBnDZExy7bftiDQa/3wUtfjkHUmmvI/PgcvEvRxUecpYAsOhOKkMIRQItj97PpykN+dVeD4QYdla8jslv4wv1s0SpLeYgrchr5gJeKIIvNgcvVZIhUGshqceAkgOIhD966xg8G1Wgcin7jDXfI8fB1Q8KjJKGTAwua6Xd00N8Pl0xcgQdXH+G56SPgU80Lc3fPwKtN37c5vKPj4lHYOaTSY6kddintPAghhW8JDY9zX/F4tLdiOruxcINbdSCrHOsaXYOBbOuaOv0niKRA+09ECGht+DjZ8GVO6K4gdNOxkCrf+vXIodNFUknl52Rj3azpSIw0Hno2RerggFsnjtj0WEVuLlJyLTtQxty5WRBwCKxVB0H1GiL6ZulDsTrWhBt0//uKvnFNuFzavU0IXbQbNgoJEfco3FDO/GvWQoOuhs9JHN3ckJ4Qj6RHkUI3BfazOHlODnZ/vxgJkRFoP2yU0AFi9Gdz8ev/JiI9Ia5U6yZzqkLnJIQQQgghhBBCCCGEEEIIIYQ8yQGH7T/utTnc4OTmiBY9G8MrwBMPb0bj7rn7UMpVVs1D0c0VdzqyipNiBSwSDvIXfCFKVUO2NxOl8crc53Hv0gPInGToPLQd2gxojpfrviMUclYF7j6uyEzJtvt82WiorJiMjWTYoldjjP1kJJp0aVBiurzsPKQnZcLD1x3D3h6AjUt2WLyM9MQMq9fLK9B4cTAhFWnltDU2hxuY6o1CscmK94+txJLCrgonNp81G25QeTtB5e9qchp5LW/wEhE4VWFoSRwhB9Q8IDZeqC16IAdXLOe0ffk+7Fp5EGozXSUs5XY0CiljGhoOaGh44f7yktPY2/w0jbwLAg4amQhJz9ZDXl2vItM4TXRFjaAYOARqf1dn8sjcrEbKD2rwSgtXhm0OvjDA1uWZ9pj0zXg4uTqVmJS9Jt9O+gkaCwNsW7/fg50/7UefF7pj8ncTMHfXdExq85FNx3yd7qM72fxYQkjVd2+97eEGiQvg3xxw8AIyI4G0O4DGulMSQZmGG0RA4/Ec0u8DEkcgpCsH/1Y8dj7HIz8FVYLUFVDa/5Sk8POKAwLbAA1fEMGnUcnPdGUuL3TbcPblED6Yx4Otli9CacPppKP5j3RCKsSRP1baHG5gvKoFI+L8GZQ1TlR4TsICFfYMN9jDxZ1bcHnPdrt2lSCmiSUS1OvQBT1eeh1SmUPJ12TXVhz67SeWRrFoU17atRVX9+1E45590ePFVzFi+iysnvYu8rOzbH4p6nfsYvNjCSGEEEIIIYQQQgghhBBCCKnsqlTAYdPSnTY/Ni8rHxlJWTi55bzN85CPNF05In/GC9K9mcXjDxbzD/NF3Ta1kByTCkW+AmkJ6VAp1Phg5ZuYMWgu5HnlM6q3LhDCtpm12IjZZeH1hS8Io7w7ujrC3dutxP0sAPLbZ2tx5J+TUOQrIZVJ0Hl4O9RrWxt3zt5HWXnqxe5lNm9CbJWXky90MLEVCxJp7FTQb07bgS2RlZaNnT8dwOrZ681Or3Gw4GNLLAIvFRcJOIiSVJCczYGqg/FwhMO2dIO32yvcwDg+zID3xjtIf6omNO6FhTKiTDk890YK95cX1oHBmmnkrzZHXpBjkftrhsehdp3YIreJ3Tl4vSCBrLYIsf9TAiaa4/Qa2xXNezRGxyGtEX03TuiUVLNxqBBGTIlLw8MbUfAL8YaLh4sw/Z3zEVaFG3RUSrXQ6SExKgnzdn+CFVcX4oVabyE/x/rPOdY9YsS7A1FVcLz2Utp5EEK0WOD23ibb3xSqHECeDsSeqLxb1DUI8K7HIT+Fh1oB5KexDgQc2kzlcGKGBhpLw2t2IHHSdqywltqGLgiWaPE/IKidCBJnQOZW8qwvO5bHjZU8oo/ywnYSyYCQLoBnHSDd9typWTX6UacdUjm7N9w6XppzEhGU+WXz/4Xiwlu2Rm5mBq4d2IMzm/5BZUThBi0HZxfIc3Psum0bdeuN0EZNUKtVW6TEREOtVMC3eg04u3sgKzUZ2VEpcPPxg4OztmNC9O0bVoUbdNQqFa7s3YHslCQMnfopXpz/HX7+36tQK4z8r4/jjC7DxdMLLfoNtv7JEkIIIYQQQgghhBBCCCGEEFJFVJmAQ3pSBqLuFC2itNaNk3dsfqzGTwJNuIPpaUJk0ARLIY6xvepnau8vCq7v/PkAfvl4NT5d/wG+OTkbf3+1GSc2noFSoYKrlwv8Q30R3iwMB1YfE4qtSqv3uK5o1LE+jqw7icsHr9s0D1ZEai2po1R4LizUkRKTWqRwlY3uPnrqEIz43yCjj2fhhrc7TkdqXFrBbWwbHfq7bCvHareoib4v9yjTZRBii7iIBORl217Z13l423LZ8F4BHvCv7os3Wk61uEuNODNf6HRgsAPCv7g8JTgDHXqcv0tEdrAUmuolj+XS/Zml7sCj6zRjjtPdVDjeS4W8pifUbjKIsxRwiEwv9yJyh2jzhUFDnmqHkaOegdxDhhf2Fg0ZymRKhNeKM/pYl44iuHQVIeew4YRDzSbV8cJnI7Hn10P4dtLPcPN2Ez6H4iITMXfsUlw6oB05V+YoRbdRHTFh7vPY8t0uq8MN+i7svYrxDd7Bh3+8jVlbP8QnT88TQhXFAz4TF70IjUaDNbM3ICutcDvVaRWOKb9Ogn91P5vXgRBSteUlA7nxpZtHyg1Uamo5cHRK4bE7cgdwdQWPTrNE6PmtCLf/4hFzggevAqRugLM/4FETeHygsBtPadToD/g04PBoH49kGwdRt6UrBgsjsOfCQh15SUWfCycBGo7jUPtp4+HA7BgeB9/SQF54SgKN4t/tUoa8GwBhfSjgQCqf1OgooVDcVvU7dS2Xon43H184OLvijw/fRnZqFWlTY2lrtCdEsz79Ubd9ZygVCmz+6nO7zjsgvDbaDRuJ64f3I/LSeTh7eKJh155IjY3GtsVzEX1T+78xicxB2Ce7PPcSLu3ebnW4QV/EhbNY9f6bGPj2FAx5fzq2LpoDlUJeItzQe8IbyM/Jwbkt64uEOgJr10W/N9+Fq7eP7U+cEEIIIYQQQgghhBBCCCGEkEquygQcJNKKXVVebFnRiMhBDGc3CdoObIGo23GIuBxp0eOc3Z2Q+Ci5xO2ssPKjfl/CzctFKJxt1bc5Br/xFNr2ayHc/+es9aUON9RoFIrnZ4xA99GdcGLLWZvDDZbgRRxU3k5CgfKgIe1w/9JDRFx+iJh7RYtkg2sHot/4nkKxq2+w6S9tf53xV5FwQ1lzcJKhx7Odha4STi5FRzMnpKKp1Wps+W63zY8PqhWAsZ+OxI0TtgfCLNW6b3N89cK3FocbGHGOErKHaVCEG++o43grEZyB46IoXQ2396Kg6O0ORXc38G5iiGKUcNidAcmZHJu77xTMXyyCWmNZERYLMzg+MNwxory4XElGysAwaFylhidQa1A3UYMWw5tg1bmLJcqkAqulQiQy/fnjPthwwKFhh7po2asJXq73dpHAwrYf9pQIirCuPPt+P4Lrx29DozbRDsJCLCw5tdfnWHBoJn64uABbvt2F0zsuCJ06Gnasi6GT+6Nx5wbCtOzz9vyeK8jJyEVYwxDUa1O71MsnhFRtnBhVZj0ljkC1DkB6BJBp2SmJ0JlAKO4vRpEBHH5PA5mrtqazWnug9hAOAa21Bf/XftaUqtiT8QgHGr4oQkhXDo8PamwON1grbCCQfgvIeABkRxe9zy0UqDEAqPGUCI7epv9SuLqiaLihrIkdtcGGphM5iGUUcCCVCxup/tKe7TY/3isoGO2Gj8HDyxdQ1mq2aIOd3y54QsIN7JxEDI3ahpRXJeYZUA3VGzfD2S3mO/5ZI6RBYwTVrY+V704s8hl2afc2IfTM693GAgjXD+1DzJ1bUORkl3rZKdGP8ffMjzB65lcY99U3uLhrmxCw0GjUCKnfSOjOwNaNadlvMB5euQhFfh58Q8OEUAYhhBBCCCGEEEIIIYQQQgghT7oqE3Bw9XQRCiJvnrpbIcsXJSrBJSvB+0qNf+kqdcb2u79CJtJu1lPbzuPTIV+ZnK+TqyO6juyIPb8eNDoNK7pMT9SOLH5623nhMmHOcxjz0TAkRZUMRVgqrGEw3v/lTTRoV1f4fc2cjUJYwFoevm7ISM4yOQ3PAdkdQ5HbLBAaZ+023AQ1eD4PLgamj7kfD7VKYzbckJOZi6PrT6M8iMQcPt/8IRp3qi/sj4RUNmqVGp8/sxCntp63eR6xEQlCR4U2/ZoLI+ez4vKywgrZrQlSsOlZ4Ynb0Uik+btA41qyE4MkKQcuZ4tVJwLo+VxnxD1IwK3T9+CwLQNh1x0QH5kIe2LHapaS4FC0GEYsEQmFRkp52W1LW4hUPAJ+v4P48fXBOxb7c0DNw2/9A6y+cAaZ1+Lh8oI2VKfPwcH885H4agsuHZwdMOajocJgspyYw9F/TuHPLzcYfIyx0B57/VjYzx5ys/Iwuc1H6PJMe7z0xWhMWjre4HQOTg7oNLR8OpqUGd4Og/g+WYMAE1IqTj4cPOsA6fcq74Z09AEGrmWfPdpjcNRhHqc/Nx0Qk7oAwV2Bh7uMT8M6Nsj/zebFHgdiT/Bo9qYGdZ8RIa8UH6ketYDWUzh419OGJa6v1ODWH9YfeBw8C9fPGrFHAKWRWtWsKO3fH+bCDfIMHrFl2zyuADvV7DyHg3cDDlJXCjaQyketUmLzgi9LFU5Ii43B71MmoWbzVuDEYvBl2MmBdYlIeHDf4uk5kQi8xrbQbYMuPZAWF4P4+9r/a3n4ByIjsZRtgYph4QZtcT77rfBYys5HIBJBo6xc5ySWOPLnSmSnp8HRxbVU85E5O6PNoOHaXzjg9omjRkMT+udz+tJio4X52IMiNwd/fvg26nXsgk6jxgodGwyROjqiTruOdlkmIYQQQgghhBBCCCGEEEIIIVWFtoqkihj94dAKWzanAWTbM0xO08+zaUG4gWk3sCVqNA41Oj0r+Ow4pA3SE62vxPll2hqM8HsZZ3ZchK0e3YzB+90/w5KJK3Bu9yWbwg1M2wEtTd7PvhZOH1wP2R1CC8INTAbUyOxTC1mdDG+jbT/uEQq2jRWnntl5EYf+Ol5uRcOsw0X7ga0o3EAqrS3Ldpcq3KDDRslnx5ayDDcwe1cdtmr66vWD8dZ3r0CSJYfX2mtwuhwHTq4dnVSUo4Dz2Sh4brgOkaLocUPqIMHBNceFcINXgAf6T+iJRCNdI5Q+Tsir4w15iJttNd28thim26iOeH76CHz0x9vYmvkHNqb8ipC61VDenD2c0OqpZkbvd3qYhdCvr8DzYAxkcTmQJuTC7UwCgr+5CrcLSQVdFXzSS44Cm58vM7t8ZZx2K8pz5Rj2zgBE3YnBqhl/48HVRzY9HxZqsxf2Oh1ddwrvdJqBRzej7DZfQsiTr/6Yyl1UXqMfVxBuYIK7AK7GT0kgdgKCOgN51g5ezgNXlvHYMlSN+Au2J6EyIoDD7/C4tFSDmGO2hRuYwHa2Ld9YuEEnYjNvNHynzOYRd4rH4/08+LKrvy6ieh8OAW1EFG4gldaFHVvs0nmBBQ8iLpwt03ADc/3QXqum9wurie4vvGL1csRSKW4dOySEG1w8vdC451N2DzcULc7nUb9TN7QfPhoD356Ct39fj0k/rYaHfwDKm6ObG4LrNyrVPC5s3wRnD89SzUORm4vWQ4Yj8dEDnFj7p9BFwRbK/HzYC89rcPvEEaz55AMh/EIIIYQQQgghhBBCCCGEEEII0eJ4Y8OSVVKbv9uFH95dJRTgljdeBORNDYSyq1uJ+2Rnc7H3g7lwdnYqcntiVDJmDJqLyGu2fXFaXljRb1qC6QCHIWKJGEtPzcbbHaYbDSPIwzyQOtLEl9kaHv4/XYA4S1Hirt/vf4dq4YVfwLNlrJy2Btt+3Iu8bPt9qazTvEdjXD50vcTtDdrXwdxd0+HiQZ0bSOX1cv23EX03Dk+qmk2qY8WVRbh+4ham9PoCKoW26J4Xc+DUpfsoU/o6I71fOBSh7gW3ibIU8Dj0EM43rO+UU71BMH65sQRqtRr3Lz0U1tXVywVvt58mBLSsxZ6dorkL8np6QuMpgThRAad96ZDdMT+vyd9OED43jR2jLdH3pR44080bl2ML9y+JVIWu3a5CLDa+7WPeUiD3FA9PP3e8NGuMEKirjNr0b4E5O6bhSREdHY3QUG01c8jnMyDxKl0xmCotHdGffSlcj4qKQkhIiF3Wk5Cq7M4/Glz9kaXaUKlwYmDYTg5iWdEce04cj2Mfa5BlW76s3Dh4AfI06x8nkgI9vuVw4I2yeU0GrRcJ3Tt0NCoeV5fzeLCdh9r+pyTwaw4kXS55u29ToMs8ESROlTtkQ/672L+Xfn5rAjKT7NsprTIJrFUXz8/5Go+uXsKGeTPLPIBRGv41amHcV98IYZHEyAjh3MTB2Rmrp78HlVxeruvSa8IbOPjrcpu7XzDN+gxA3L07SHwYYdPj3Xz80HrwMBxaVTnPSeq07Yin339yzkkIIYQQQgghhBBCCCGEEEIIKY3CdgNVxNDJ/ZGfk49fPl5j9WPFUjHUSuu+fPYN9oZfiA9unbkndHFwmhcP6Z5MKPu6Q+MrAZeqgmxfJuoq/OD8adFwA+Mf6osfLy3Aud2XcW7XJVw6eA2Pb1W+UdlsCTcw4z4dibqtaqHj0DY4tv60wWlyG/ubnomIQ25DP7idiTH4mun7+rUfrR713RIsRPHCzFHoPbYr7py7j+3L9yH6bqywfAdHmTCS/YKXl6HbqE7oMqIdJNIq99YhTzhFvuKJDjcwzu7aY2zjTg0wf9+n+OTpecjJyC0SbvDwc0P/Cb2h0aix9bs9yM81X7ij8nRA8vONinSYYTRuMqQNroO82t7w3nIX1pQSsuP8H5//g10rDyIpSjsktqOLA0LrBeHexUgr5gTwEiB9aijkbfXDdS7I6+0Fp92pcP8x3uC6sa2SW98D/7gkg/u+N1IvRMHxcAyc7mRY9VyYuMgELF0yDgMX/oSsf4sqVUoJ7t4JQYOGhrsfZO1VC+EGpt/4nkIwraJpZCJkN/eBylMGSYYCrpdTIJJrcGHPZSTHpMA32KeiV5EQUkXUGyWCMleNW7/Z8GCWPbCyvtPJH3D0AtLumJ7Osw5KhBsYl2oc+q4UIe40kHCeR/w5HtnRqHRsCTcwjV/h4F1PhGrt1MJztDe9Jn2Cs3N4RB2yf5KCddpo/DKH0B4ipNzQBiiyY3hh+SzEoVYCZ+dqENpTJHTm0O/UQUhlIM/NeaLDDYzMSXtOEta0BUZ8/Dm2LpoNRV7R0DHr0NCoex9oVEpc2rMdamX5dJ0sjgUBTq77C9cO7kZ2akrB+ntXC0biwwflui53Tx2Hd1Aw0uPjoVbZtj1Yx4un3/8Yq95/EypFyQEyzGnS8ylc3rsTlVXEhTPIzcyAs7tHRa8KIYQQQgghhBBCCCGEEEIIIRWuSlZp121d26bHsW4DlgYc6rQKx4Q5zwkj+k8bOKfgdlZCIr2UK1z01XxOO1KyISKRCO0GtETdVuHYsWIfngRhDUMwasoQPPVid+H3t5e9gqhbMXh4o2Shq8ZVZnZ+hqaRyCRCQETn0c0ou4cbJFIxZu+chhY9m4DjtAVC9drUFi4bFm/H8g9+F0ah1Dmx+RzqtKyJeXs+gbtPyU4ehFQU9n6RyiRQ/tvVoCJ5B3lB5iBFbHQyVL5OgIqHNCnX6qL64hp1qIdFr/yAexcfwMHZASPeGwz2tr195h5EYhHqtq6FuxceYN3CrVZ1K8hqH1wi3FCA45DfwBfpeSp47bWuCGjV7PVQBDsBYU5wiM5Dfo7c6nADk/28f7FwQ6G8ft6QPpTDeXfRilBexCH+pTrIaeaNuKwE7Y0N3YWL68VkBPx+H5wVdZm5Wfn4vPsX8L4RBVlTH+Q28gEvFSHzuApREsDvGQ0cG2kLapVxPDLWq5H2h/Y1cHCSoV67Olg7fwvKFdvh9J5jZjs/JA8Lg8ap8E+fpOE14LvtMTyOJyApOvWJDDiwzWDNa21sHoSQknzq2ZBUYOckMlg86r93Q6DxeBH8mwOH3zO/LI9w4/dxIg5BHQHP2kDElkrWesJG7PnWf45D9V7az6BWH4hw5F0Nsgxn72wicgAcPAqPhGl37B9uEMmArl9x8G3GFZyT+DTihMut1Rpc/7no8mKOaeDdAOgyXwSZKx2lSeUhkTlAJBYLHQMqmqu3r/C3fHZKkl3nG1i7LnZ/vwSJjx5A6uCI1k+PAK/WIOHBPXAiMQJr1UHcvds4t3V9qboV2Mup9auL/M7CGOUdbmCibl4r9Tzys7OxecGXUCmsD0iw18qvRk2cXFd0e5T7SYkJ7H2Tk5ZKAQdCCCGEEEIIIYQQQgghhBBCqmrAoUXPxgiuUw0x96wbrVyRZ/kIb/0n9EKrPs2E6yF1quHivqsmp6/dvKbZeW79YQ9UVnaQqIxYV4tZWz8Suh4wrNh44zc7kJGcCWc3J0hkYqH4OKReEK4dvQVxpvkR1MVZJV8bJ1fHIr8fWH0M9vbmkpfRslfTErezThs/vm94SF5WoLxg/DLM2vKR3deHkNLwCfZGfGTFjpjq7u2KT7dOxab4KFw8fhFqqbbgUJKSB/fj0XC5aluBkbuPK9Yt2lYkcHTz5B2hKwILG4lEHC4duCaECKzB5pbXyM/0RByQ2zIQrudjIU01X5HKc0DqkGrI6OkHtbs2OCFOV8JzXwK8diRYVSzOyzjk9vEyOU3OIG847U4rMt/UvsFCuMGQ7Ja+kMXmwntfrMXrcf+itgiKLcPtQqJw0WFbJGobIPYBOAmgYi+xXi2XPE+BWSMXCZ8NSnn5BXCe+3g49qw6hJTYNOQ09kLimHChY5A+3lGMpJE1IcpRwaeaZ7mtGyHkyRDYDnAOAHL/zZFZytJwA1NrMIeAVtpjl1sIh+SrposkvWqb/5S5t4kHX/E1t6XGulp0niuCs7/2Oafe4nF3PQ95FiBx1nY8kDgCbqFAwkWbsigCmUvR3x/tt3M4hANavsPBr3nJzhtxp/kS4Qad1FvAhYU8OsykgAOpPFjo2NnDs6BbQEVxcvfA0+9Pw43D+3Fl3067zvfs5nVFbou9cxNSR0c4uroKAaVHVy9BpbDunIRYJj7irs2bSinPx7av54ITico1eNL+mTG4um8XcjPSzU/MccL7hxBCCCGEEEIIIYQQQgghhBAClKyiqALYl8ZTV00qGN3S3ryreaH32C4Fvw98rY/J6aUOUvR5sZvR+5UKJWaOWIA/v1iPyj4CvCWSY1Ixb9xS4fqhv0/grfbTsP+Po0hLyEBuVh4yU7KREpMKL39PqBQqOF03U3Ct1sDpRslpWvRqUuT3rNRs2EvjzvXxxZYPMfiNvgbv37TUdBHEme0XERsRb7f1IaQ0WLeC+S8tq/BwA5ORnoPnvl2NP89cLgg3MCofJ6QOqYOsdtWsnmd48zDhuKIfbtBhgYbEx8mIf5hkdbhBIOLAy8QWTWo2CPGvhFdrIHVoUEG4gVF7SpEyMgSJL1Y3vBpikRAAcPNxLXK7MswRvKvp9VOHOEDjUTgNL+aQ2UkbQDMmo3MAeDv/BaBOAVSsyNdAvZBGrQGvsb0glHUnsZSLhzM6DW0rdPRYemqO0G0ovV9IiXCDvrzh4fCvbtnrW+WwxI09LoQQgx0R2n5cdqdTLDwR2rPw/Rc+2PR7UewIhPUxPo1awePYR2rc/btyd2/gLPtYRl4icG6e9kPn4W4NDk7WIOogD0U6oMoFFBlAXjIgc7c93MAEtC66TZX2OyWBXzOgyzwRag4wvB/d22B6xWOO8chNrNyvJ/nvUKtU2PHNggoPNzB5mRlYM/09u4Yb/GuEC/M1RJmfj6zkZGQmJVXpcAMr/ufEYji6sQPnk4d1SGAdVm0lllh+TuLg7Iw67TohMLw2npv9NVoNGmb2MTInJ7h4mg63E0IIIYQQQgghhBBCCCGEEPJfUSUDDkzDDvUwaOJTdp+vk7sT5u2eDidXp4LbwpuGYewnzxicnoUsxn4yAvcvPUTElYcGp/n5w9U4seksKjM2+vnU3ybDO9Cy0eJunrqLiweuYsHLy4Ti6uI0Gh6H/jouXHeIyjQYYNBxOxEFcY6yxO1DJ/cv8ntI3SCU1vwDn2Jz2iosPjoLHQa3Njrd9WO3TM6HFVpfMzMNIeXh/N4reL7GGzjw59FKscFzG/lCXt14QUxG9+rQOFhYufjvMVZiRSGJtTgND3GGZUVIaheZ2Wnyarkgq6OP0fsze/hBHly0O40uAKBSqJGVkl1i/SzB6dU/KvwcoXYrDFcYovZ0gNLbweQ0Yom2G4+9sA5GrBjYFkqF6c4PrHtQ99EdhcBhTkYuTmw+i5nDF+DtDtNQvWsd5IUWG367mEx3MSLT02xaN0LIf5tfMw41+tl/vlJXoMt8EcSywuOmd30O9cYYPo5yIqDhC0DKLSDjgeHPjsvLeMSfQaUPN7SdxsHBwgGsEy+xiwbnFxnuSsGrgejDpVkhoPawotvcNRil1vN7YOh2EbovESOwrfHPxuRrpufDnnPydQo4kIoXceEslr/xIu6e1v4P4MnDCaPrP+lYZwNerUZ+ViYqC5FYDInM/HmYNUGcsnqso6sb6rTtCJFEAnluLu6dOYHN82dh7WcfCgEZcxS5uchKSbZ5/QghhBBCCCGEEEIIIYQQQgh5klTZgAPz0hejEVTL9CjV1pr0zcuo2SSsxO3dRnVExyFt4BXgof1uW8ShUaf6qNE4FL/O+Bsf9/sSE1tMwcSWU3DxwDWh+H3bD3uw6+f92PnLAVR2ry98ET1Gd8LvD5ZhzEfDIJGaL0De+v0eKOUlgwk6+qOte+y6D7cjDyHOLCwkliTlwGPHXbiejSlR0Pzc9OFo0L5Okdv7vNANMkfTRbvmbPluD8RS88XSbDR1e0xDSFm6fykSnw75CimxlacwO6eZ6VHwWbeE3Ia+Fs+PHUfuno9AWXK5ZKYby7+HMkl6vtl5ZXb2scs0OpLIfIhSjR9nGendPIiy1KUKRRjCwmvyXPuOQMu6ODi7OxVdDxtDD/oBvQ5Pt8bhtSdLfCax98bC13+waD7yUhQ7EUL+25q8KhK6LdhTy/cA9+olj4/Ve3Oo1gGFAQAO8G0CuIUB11YAx6ZqsHeCBvtfVyPxigaJl3hEbNHgwXYNIndV8kJ4DmjxFofqPUUYsIZDvdHa4IY59zfy4E0cwg0FHyxdn0YvAZ61i95ccwAHrpTZy3sbAZEF87Dk+YvET37RNancYu/extZFc4x2N3gy8EiMLNtzEmK864JKobD75pE6FjsnKWWAhXW/qNGsJe6dPQlNsfOKrJQk7Fv+rUXzUSnt/1wJIYQQQgghhBBCCCGEEEIIqYrKbljscuDu44ZFR77A9++sxPFNZ4XCydKSSCVYNOF7RFx9BJVCBTdvV6QnZODx7WJF+CLg3oUIKPKLFlNGXH6ID/t8gYokloohFosK1q1pt4Z44bNRqNs6XNhO25fvxe3T94T7mvdsjBHvDkbb/i1w5fANLJzwPeIjjXdb0JcWn25RCICNTM6+KnY9FwuX87FQuztoR03PKvrFrZObExxdHIT5rpm9ETtX7Ef/V3oJ3TNkjjLh9X77+1ex6JUfbH6tT2w6g3E1b+HzzVOFLiDGtOnfAvv/MD0i/qWD19FnXDeb1oMQe1g7f7PJkFFFULuaH13TXHeB8uZ6Lg659X2gCnQteafuUKPWwPlayWMj+yzQL5xUe5h/bpZMUzB/DeCyJRVZLxuvnHXZVHSUT2liPqSJeVD6Fy3a0SeLzYU0VRte0Eg45LTwR3YLP6jdZEJHC7cLiXC5kmxxWMIauZl5GDSxD0LqBEGlVAmfPed2X7b48Szopvt8a9y5PkZNGYLFr/1odHo+IReOCiDfxK7p7uCAGp4WDhde1bCXsLQvYyWviSakojl6c+jxjQiXvtUg9oSdZspzODtPI3Rj0KgBB3cgLxnIji42nQhIvQ1oiv05kHYXOPI/exwAbCdiH3ccoPn3T37/liwwIBICA1GHNXiwTbvurKbUvxVQb5QIAa05JJzncX4hj9wEy5aTl2LBRJzlm0LiDIgdAHkacONX4P5mDWoN5tBgLAeRlBNebxbEuLjY9m0btR9IuqhB5zkieNUzXlQb2BaIPmJ6XgkXNQjpZnl3LELs7eyW9dCoKShaodiBVG+ACWKeSp6P5n0HwTMgUOjM8OjqZTy+bvk5iVgqg/rfMEJowyZo/fRw7Prua+PLUyqEzg7Fww/6nNw94O5resAAQgghhBBCCCGEEEIIIYQQQv4rqnTAgfEN8san6z5AYnQyfv5wNY5vPA2l3LYv1/1CfDBv7FKLptWoeSjU9issDq5TDTH34uwyL7VSLVwcnGXoN74n3lzyshC8mDXqa5zfc0UYEV3qIEHXkR3wyryxwjaMuPIQ0wfOgTzPstHipA5ShNSphpun7pqcrk7LmrhzrnCkQ44HJBmGRwTPz85DXlZewe/pSZn4a+4m3DpzD3N2ToNUJkXfl3rAu5onpg2YY3O9FpvvjEFz8eudpfDwdS9xv0KuRGi9IGEEP/0uFMXt++0wxnw4FNXrBxfc9uDqI2xfvg9Rt6Ph6uWKHmM6odPQthBLqOiI2BfbN09sOlvpNit7f6v8nE1Pk27frgClxak08P/jOpLGNIQyxN1gEaTH4UcQ55Q85rNwA+t4o1JqOyhIk80/N0mKdaNyOm9JgdpbgtxB3oD+KM1KHm5/JMDxVFbR5wPA80Askp6tZXSeXgdihZ8amQjxLzeCorpbwX0qb0fIa3ogu7kfAn6/BU5t/2Kp7T/uw9Nv9hWCZLl6x31LsHBDYE1/fPLPe6jbqhYuHbyGtATjIwaz9Xc5Eov8PkFGpxnZoDEcJZUreEMIqVqcAzh0+lKMnHgNrq7gEXu8ZOjA8nkBZ2ZZeOxVs/MS2I1LEJCj/YgoNd3zFzsC4YOAZm+KkHoLOPGJBokXtZ+1LEgQ2kPbBYMFB1Jv8zg+TWPxtmPzdqkGYb6meNc3P42OKg9Q5Rb+zoION3/nhXXrNEckdEyo9bQIjj4anJxh+2dkfipw7CMN+v8hgtS1ZMhBreDhFmY+mfFgO1D/WR4ugYXzSLvH48E2HlnRPGRuQFhvEYI6Ahx1eyB2plYp8eBi5Tsn+c/heaGDAK+xtWXNf/N8+vKe7WjRbzCuH9oHpdx8tz59LNzgGRiEwe9+BP8a4Xhw6Rzys7PMLNT03U179YOYzkkIIYQQQgghhBBCCCGEEEIIEYjwhPAP8UXTrg3h5mVgBG4LuHg6IynakuE/7S+odqDdwg365LkKbPluN2aPWYz3un0qjJCtK9hnIZADfx7D/zrNQEpcGv7+arPF4QZm8MSn0PsF890Lxn4yEjP+fhfuPqZfF07EwgSG77t88Dr2/na44Pc2fVugZc8mKI2stBzs+uVgidvZSOLPh72BX2f8bTLcoLP/jyPITMlC9N1Y/DrjL7ze/ANs+2EPLh+6geMbzwihkne7foKcjJxSrS8hxbHOKEpF5Rsp1eWy6Q4wXL4KTrcq5lhrNuTw53V47rwPcULh+1UWnQnvjbeFLg/G6MINjPtRM89Nw8PjaLJ168bm+2sCfN+8D9e/EuG0KxWuvyXA79W7cNmaavAxHqeT4L0jSug8oU/EA0H74+F2XrsOaX3DioQb9OXX9kR6jxCUla0/7LE63KDDOg0teHmZcJxWWPDZ5XIxAdWDHSDxzRMuIlelNnEHoH1wKD7o0AlPLN5OF0KIRVwCRfBtzEHiYtsGk7rC4s4F9uYWar9wgz51PnBvPXDmSw0Ov6tB4oXC44paDjzcDRx6WwN5Oo9bf1oebmDqDOcQ1sf8KW3jCSK0ncYJ29ckkfFjXvxZ4PHBws/V4E4i+JbulATydODhnpILjD/HY/tIDW79bsEBWAM82sdDnsEjK4rHlR/U2P8a65DBI+kSEHMUOPmpBoff00CZSwd0Yl9s5Hsqqq8cqtTrwHGQyMx3/isPl/ZstzrcoJMeH4s9P34jXFfJzQfdNWo1XL19DN4X1rQF2o8YY9N6EEIIIYQQQgghhBBCCCGEEPIkqvIdHHS2LNuN7976xaJpvQI84erlgtj7cRCJxcLo2/nZtn2haQ+x9+PLdP5H1582el/CoySsmb0BJzaesWheIrEIA1/tjdcWjBO6EjTv0Ugo5jekQfs6aDugBfJz5Ga7avAa08U2v326FgNf7VPw+5vfjMcrjd9FaVzYe1nowKATfS8OMwbPFdbXUvv/PIa1X22GxsT63zp9D0smrsD0v0q3voToY++/8KZhQtcQa/V5sw92nrsNuVQMUbYcjneTIMq3T1jC6XYKHO+kIr+ed8k7eR5eeyIhUlZs8Q3HCatikMvVROGicZQIE4nklg2Lrev44hCdB8/dCUjvF2BwOu9tcZAmWdfBQUeSoITrWsvDEd57Y+B+OhFZrX2h8pRBkqYQgg2SLGVB94bsFv4m55HVJgCeB6PBmTlG26SUs3x4PUoI7tVsGgaRiDN6HM7p4onUySHgkQqRg/Y2kYMCEg81JoX3xKtN2kIqpi47hBD7uPOPBld/sOwA5+QLiBy1oQIROwyJi3YOKG9ZUWU7/6iS2eIC2THArdUaxJ2ybF6cGKg9lEPjCdquBT6NgBTDpyTwawYEtOKgyALOLzTz2pj5E+X6T0CNwlMSNHsTOPAGSoWFGeqMKPw9I5LHiRkaaKz4cyFyB48bq3iT6598Fbj8LY82H5bsFkGIrWSOTvCqFoy0uBirH9u4Rx/cPHpQKPom5XCiU5nwPFQK286J7K6U2ysxMgKPr1+FX41wC7Y/j+zUooF4sVSKTmNeQKv+Twv/nySEEEIIIYQQQgghhBBCCCGEPEEdHBT5Cvw+8x+Lpg2tF4Sg2gGIuh0DtUoDpVyJvOx84fp/1b4/jlg0EvyAV3vhz8jv8fb3rwrF1cznmz9Et1EdhOJS/ULfjkPaYPaOaRCJREKAg23j0khLyBA6TeikJ2WgtIp/77zpmx1WhRuYpKhkk+EG/ZBJRXUIIU+up9/sa/Vjwt/qhX+4XKS3CUVe8yDkdK6JlBdbI7d5kF3WiQ2K77v+DtwPPYY4s/D9JIvKhO/ft+B+y3DHgfISXKcavj//FVqY6QLDAh+WhhsY/Y4vfn9Hw//XR5DFFHYnkD3ORcCKSPhssn+3HlMkmUp4HYyD38ZH8DoUVxBuYJS+TuAdTBfRaFxlULkXHV1VLK08hTcX912Bf6gvOjzd2uD9ymoypEwKAS8uWcypghqbEs5DLHoi/hQy+Z60x4UQYp4qj8dNS0bcZ515wgDnACAnWltUz7oWaPJZ6Pe/u6Uf7bHs+dcaCgz8W4Tmk0VCFzh26TxPhOAu/7Y90hEBId2ATrO1x/msx7AqNGBIXjKETgk6ikz7f4bcXcdbvZ5C1w8Ltt3jAzzy0+igTuyred+BVj8mqF5D3Dh8oMLCDRVdSO4TUh1jv1qK4AaN7TvjqhBusBORpPKM1/L4+mV4BQahRrOWVj9WrVTixqF94J7wcxJCCCGEEEIIIYQQQgghhBBCrFV5vhEsBTaCc2ZKlslpnN2c8PYPr2L5+78h6k4sKgrraHB25yVUJnlZ+QiuHYgYE50kWIDh+ekj4BfiU2K7zvj7PcQ/TMSlA9eE79NZV4egWoEF0zi6/Dtkdimd33MZfV/qgZj7cfj7q82lnl+z7o2K/H5i81mUFY1ag5un7qLbyA5ltgzy3zPg1d64fvw29v951PSEnDZ4lFfHF2fUhUX3BcQi5HSsAVGOAo73LO8QYHRxGh4ex6PhfiIaajcZOJUG4lxtiGrkR0OF98LVIzdRnqSOUox8bzBGvDcI7t5uaNK1AS4dvGbXZbACS103Go8jycJF5aH9mJVk2KdDhsHlchxqtaiB+xcjrXucwrIq2uIdN9RKNdx9XJGZko3K4p0fXsPj27FCeFFfdl8fQGJ8pOrHOWk4HH8XPavVK4e1JIQ86WJP8lDlmJ5G6ga0eIvD5WU8Mq1vwmQ3gW2B+LL709cmrMOCkz+Ql2i6c0PDcSI4ehc9tstcOXT8QozsGB6Jl3kh5+DfioNLYOF0Ykc7rCQPJF7gEdqTQ+ZjHnf+Ln0ixb950ecSe6LsCpRZkCb1NhBEpyTEzgGH6Fs3cO/MCdMTcpzw3mTB4Ng75XsuUFy7YaPx8MoFxN27U67LFUtlaDvkGbQc8DQcXVwRXK8BYm5dx5OAFej7hoYh6ZF15yS2YuEYmbMLFLlmPnjLgS7s/tTrb+Gfzz9Gerx1ofaU6Md4dO0yajRtUUZrSAghhBBCCCGEEEIIIYQQQkjV80QMEZaVlmPRF453zt4XOgFUFFb86unvYff5Btb0L9Xjnd2dMNjMSPBtB7aEf3U/4+tQwx/9J/TCgFd6FQk3MCF1g1CzSXWUFiuqfXQzCm93mI7zuy+Xal5Oro5CcbjOuT2Xi3SIKAtiyRPxdiOVCCts7/FcZ/MT8mxEZB65LYNNTmbufmuxUd8lmYqCcEP30R3x0hdj8MWWD1G/XR27Lcfd183k/Sxk1bRrQ6GTjO4zICnKvh1V3H3c8PayV4p0s9EFG0obbvAL9UHP5zqj1/Nd8NKs0ajfrnaJzzcWbjC3HYqTJedBmpBrchqHh5kQ5xR2fdCR5ymKjpJdBpp2a2h2mha9tJ04vAI88e3pOZi46EXUaVlT2GYNOtSFV98aZudxOYUNn04IIfYp0DdHJAaSrwKKijslAScCZPY/JYFz0VMAq8ncgdpDTX+4BHfmSoQb9LkGcwgfKELNgaIi4QbGIxxwDUWpadRA+n0eBydpkFjK3LrUBajRnysSklFkokyxfZAQu+5TIjEadO5mfkKeL9L1rKI07NoT7UeMxrCPZsK/Zi27zdfZw9Pk/VJHJ4Q0aARFfh5yM7QfAlkppQ+XF1kHTy/0eOk1IUxib+5+/qjfuTsadOmBTmPGIaBmsXMSjUYINzi6WndOYjO2P2nKvu2RJV02wpo0F366efvi+TmL0XXsePjVCIebrx+C6jaAq3fRgUIMibt72y7rSwghhBBCCCGEEEIIIYQQQsiT4omouA6tF2R2mpB6QTiw+hgqEiswvrj/qlWPkUjF8PBzN3q/o7MDXp0/zuQ8xBLTVSz12tSGh48bWvbRFooWF1QrQBgduzTGfToSpdWwYz18/79fzXbrMId1nZi5aSp8qnkJv2en5+DLUV8LReBlRSQWoXHn+mW3APKfdfXwDYumU7s7Qu3lbHoaHxeo3ezTcaU4F09nXDl8E2PD38Ss0Ysx9K3+mLpqMlr1aVqq+bp6uaDbKNPDEOfnyHFh7xVsWroTrzR6F1+/+gMkMvtW9ykVSqEgf+pvb6FRR/t2A2jVuyk+/vMdfPTH2whvWgO3z9w3OF1msvXHRs9DUcbv1PBG75fnKlC7eU2UlcAafvjfj68JATxjqjcIRpv+LaBWq5GfK4eLuzO6je6IsEahSE/MxK1Td5FwP8HssiRPeqUnb6cLIcQst1DzBaWuIcDjAxX7puI1sLowXyTTdp8wRuIMNH3N9PNn3RdM8aoPOPrw8Gtm+H636kCLd7hSBUMbjitl0S8H+DTkcPEbDZSlbGQkdQU6zRHBwUO7TvlpPE5/UbbFuuw18GlIB3Vif9E3q0YXAgcXFzy8chE/TRqPXd8tQpvBI/DUxHcQ2qh05ySObu6o1bq9yWmU+Xl4dPUSLmzfhF/ffR37f14GsVQKe1IrlajRrCX6vfkuAmvb95wkvEUbDHzrAwyY/D68qwUjIdLwOUl+dun+X2MNtk19q5sPNNvKM7Aa+rwyCVIH4y2AWJCheuNm0GjUUCrkQmeOeh26wCc4FLnpaYi9ewvZqebD9SLxE35O8h+zatUq4e8O/Uu9era/J4cNG1Zifv9l+tu3e/fuFb06pJwoFArcvFmxHaDsYe7cucK+K5VKkfFv4NHe2PtC9x5h75fydOlS+XQuf/jwYYUdE7OyshAREVGuyySEEEIIIYQQQggh5L9KgicAKyat0TgUD68bL9Qc+GpvfPPGT6hoKbGWdQmQOkjRcUhrjPxgCHi1Gh/0+lwoKC0efvh0/fto068FRrw7CBsWby8xH5mjFOPnPI9VM/4SCkANuXTgmnAp3m2ChR6Gvj0AT7/ZF25eriiNLiPao1bzGoi4/NDmeSx+fblQsFoqHNCmf/MiYYO9qw4jNyvP7EMbtK8DL38PnNx63urFatQa7F55CGM+HGr1YwkxxdIvcXixhdMV60BgLznpuciBtltAcnQqLuy5jFZPNcOYj4biwr6r1hcXVvNCky4NcPvcPWz7fq9VD9/1y0HYW15WPl5r+j7UqjIoTNR7jdct3GrXWbtcS4HGMQKpfcPAOxX+SSDKUcJ7eySc7hv/stXNywVlwcnNCZmp2ZjWfzbaD2qF09svIDez6DE6qHYgXlvwAuaOXYoTG89AqVAhIMwXuVn5yEotrDh1upAJeQPT69mzWt0yeR6EkP8e/5asgwCQHWN8mpr9OZxfUPEF5nJLTkk4QCQFQrpwqDeGgzKXx9EpPDSKkuGHTrNE8G/JIemyBhFbSz4/sSPQ+BUO11aUfLxOwlntpfg6OHoCdUZyqDWYg9S1dH+nhPUR4fZqNTIf2TgDHjg7T4OU0tZyc0C1jixsUHhT5E4easOna0WwAAgnARIvWL9YXg083APUGWH9YwkxqYoU28pzCrt/sqLzyEvnEd6yDVoOHIqoG1et/1vay0foyhB37zauHdht1WOv7NsFe5PnZGPV+2+WTWcDvdf43NYNqCyc3cugJRH7X5qTE3Iz0rFp/ueo3aY97p8/DWV+fpFpvINC0Hn0OGz7eq5wv0athod/IPKys6DINd9pVl+tVm3t/AxIZXP37l1cvXoVTZtaF6jKzMzErl32P14QUpXs3bsXb731Fp599lnMnDkTVZnu/dyhQwd4eJTNZ1hFHeMmT54sBFEOHz6MJ9Vff/2F999/H3PmzEGtWvbrBEYIIYQQQgghhBBCCHmCAw7MBysnYWrvz0sUQTKsQLLf+J5Yt2gbYu7FoaK7OJiz+NgsNO6kLcBXq9SY2ueLEuEGRqVU48aJO0LAYeKiF9GgfV1sWbYLd87e/zcg0QbPvDcY4U3DhIL+X2f8hYv7roLneYvWMz0pE+kJGaUON+i0fqpZqQION0/eKf1K8MCRf07B0dkRH6x8U7jpznnDIw/qc3R1xIy172Fym49sXvSO5XsxeuqQ//xIa8S+WvZpir+/2mx2OnFGPrhcJXhn46OEinIUEGdZUFlnJ6yrwtUjRTtQ8CIgu4c3snt5Q1nNAeIsFVyOpcNtdzLEWep/JwLSEjJweO1JVCZlEm4A0LxHY+EnC6ldO3bL7vN3O5cAl8tJyG3oDbWbDJIMOZxvpoJTm/6sSHiUXHCdl3BQdnGFopsbeFcRxFEKyHZmgItRQVHNCZxCA4foXHAW1PTm/Rs4Y5/n8Q+T4F3NE8PeGoDoe7FCR6J2A1vB098dnw2ZXyS4p78+Oi7705A5yBcaT8P7fUf/mmjsZb4LVJVmjw4MFV+LTUiVCR22+UiEY1M1UBnIzgZ3BWr043BjFY+8JFR4Fwdzev3IwbuutuGfWsHjyHuGwwnstpSbvBBwaPmuCL5NNbi/mUfaXUAsA4I7c6g7ioNHTQ4+9XlcX6lB4kVLV5R1NgAUmazjgX0KqP1bcch8ZPuBrdThBoYHHu8FpE48Wv5P+7zS7phfJ6kL0O4TEfa8aPvfHBFbeAo4ELsLa9ocF3duqZJb9sHFc0JXB1vkZqThzsmjqEzKJNzAOqc20nb8ZMX78RH3UFlkJMaXyXwVeXkFPzMS4uHq7YOW/YcgLT4WYrEYtVq3g8zRGVsXzYZKqSjV+rCQTVl2oiCVx/r1660OOGzZsgVyefn9n4aQymbWrFn49NNP8SRgHRtOnTolXO/fvz+eFAcOHMCAAQOEcEO3bt3wpJowYQJWrlxZ0atBCCGEEEIIIYQQQsh/yhMTcKjXuhaWnZ2HfxZsxeG1J5CXnY/qDYIxeGJfDH7jKaEoknVxWDH1D7Pz8gr0hJOLA2IjEuy+nmydfIO9cXF/0Y4JOh2ebl0QbmCObTiNq0eMt19mhc2D3+wrjGbebWQH4WJs+8zbPQMLJ3yPPb8esnh9tyzbjaFv90dw7WoorYGv9RFGH9dYEPIoa/v+OIIXZo6Ef3U/SGXGC7512g1oCf9Q31ItkxXqZqfn2C0wQgjDwkueAR5CGMkUTsPD6UY8ctuEGp3G8Ua8MF15UspVBdd5MZA4pQbyW7oX3KZyESNjZACyu3kh8LMISFKUBV1R/gv8QnzQdWR7yPPk+PG9VSXCIBp3MTg5D1GexurPovTEDGSmaLsdiJQauF4pGRAw1RHkvr8IGX2aQO0jhXOjbIg8CvcddQMnKJ7yQG6aA3JynIXbJEn58N4ZC4+Tli+HSY1Lx9WjN/H1kS+0y+Z5vFT3LaNdifSJs9Xwn/UQSVPDoA6QFbmvg19NLGn7jFXrQggh5vg25tDrBxHu/M0j6rB2RH6PmkCtpzmED+KELmns541fzX/eOvoCIjGQa/9TEnjUAqTOQLKRActDexSGG5iogzxSimYSi7j5O4/wwTwcPDhU7yVC9V6Gp/NpxKHbIjFOz1IjyoqGSnf/4VF7GA9n/9KHHNhrcX9jxZ+PMA928Gj4Ag9Hbw4iKXtuptcrqAvg5FO6bZAVpQ2siGVVY8R9UjWENmwKR1c35GdnoSpiI+9XpjBBZePhH4DardsLHQwO/2a/zqjewaFClwTb9xsOGYll8CFpAOv4ER9xF89MnyX8rtGo8fPkV4qEG2xRo3krDHhrip3WklSFgMMXX2jPay21du3aMlsfQqqCiIgIPCn27dsHlUr1xAUcoqKihHDDk+5J2hcJIYQQQgghhBBCCKkqCqtWngAhdYPw3k8TsTXzD+xRrcUvN5Zg6Fv9hXADM2RyPzTp2sDkPOq1qYWFB2di/v7PhAIkexv8Rl/M3DQVvcZ2gVRWmC+ROUox6PU+mPH3uyUK8U1hHR4Orjlu0bLvX460KtygKyTd97vpdTAlJS4NJ7eew9ldl4Qi7NcWvIDKgBVHn9x6XrjOOl2Y07hzPXzYdxbSEk0XkZsiEovg4FS0wJaQ0pr7/Ddmww06zheiIXuQYvA+dju7vyJl9fctEm7Qp/aXIfXVYFSE9oNb4f2f3yj35To6O+DL7R8Ln2GfDp2PHSv2C7fzDhyyxvoh6dc6SP6tLpJW10X6tBAoaztaNN+ajaujTd/maDeglU3rpZGKkDC+EZIG1oAixA0ODeVFwg36nL3kkDlqv+RU+Tki8cVwpPUKsHqZrHPFX3M3Cp8n53ZfsiqAKHuUj6C37sB3/iMEHclF20fuWFStH1Z1GQcPmROedKxrhj0uhBDLuYdxaPOhCMN3ifHMfhGe+kWMWkNE4MTac4u6Izl4NzQ9D59GQI8lInRdWDZF6LWHcug0h0NIT5YGK7xd7ADUHsah7cdFl/tor+kDgUYJRB2y7GCRcoO3Ktyg6zjxaJ/tB6O8JB6xJ3jEn+XhEgg0fqVyFPfzKiDulPZ5BXUyP713fQ5H3lNDmWP7MjkJIHpihjkglQH7n8H2JfOqbLihqqjbvjN6jp9Y7suVOTlh2Iczhesb583EzaNWHsCN8K9ZCzWbt0TN5radk2iV7x+pj65ewrltGxBx4QzunzuDrBTb2jGxMFC12vUw4O0pGPHx53Bw1gbCyZOpRo0a8PPzE67funULN28aH8SmuLS0NOzdu1e4Xq1a6QeeIYRUrF27dhW8n5s1a0YvByGEEEIIIYQQQgghhJjxxJY2iEQlsxsyR5nQxWDD4h3YvnwvEh8nC8GCBu3qoGWfZmj1VDOh04GORCqBUq4dLdxSLBThFeAhjDhdnFgqxo4V+7Bqxl/IycyDi4czWvZpii7PdECHQa3g7uNW4jHpiZlml8lG4bbEnpXWhRt00hJKPhdzWKeCpZN+wtF1p4UQBsOe79DJ/TF7x8fYtHQnLuy7Cr4Cuzko87WvbbtBLVGreQ1EXH5ocLrQekFYM3sj0iwsIjem3cCWwj5IiL1cP3EbxzacsXh61p3BffcdKMK8kF/fHxoXGUQ5CjjeSoDscTrEYlGFdkbIesrH5P15zd2g8pNCkmTdcdkSHMcJxVmG3LsQiTe+fgk1m1RH5LXHKC9fH/0c4U3D8Ne8Tbi4TzvENi/jkPZFdSjr6xXBiDnI27lB3twFXp9HQXYj1/AMOQivceT1x8LFVhk9QyEP0wZROKkaEg/To7Q5ucqhyC889qU8HQL3E0kQ51u3r62c/pfw08HZwep15jSA89lM4Gwm4hGBb3AC54a0wbQ178DByfr5EUKIxccfA4FpiROHbgtFuLuOx4PtPPKSALEj4N0ACGwFBLQVwasOV1DYb0sBJycCpB6AIs3AfRLg/gYeV74HVLmA1A3wbQKEdOMQ1IGDzK3kOudbcDogN7AsQyJ32fb3f36q9Y+TZ/C4uJhHzDH+322pfb51n+HQaTaHext5JF4s9xrZItT/foyGdOVwM4xH1iPD07nVgND5Q1G6UxKEdNF2EiHEXh5fu4IHF8/ZbX6cSPSf6Yxgjbh7d9D1+ZdxqdpWpMXFltNSOYz5YiF8QkJx4p8/EX3rul3myY5BiZERwqWqOfrnr8JPqYNl4XJDWBgo7v4dxC1dgPtnT6H/5PchkZrvLEqqJrFYjOHDh2P58uXC7+vWrcNnn31m0WM3bdoEpVL7/4+RI0di6dKlZbquhJCytXv3buFnv379hP9DEkIIIYQQQgghhBBCCPkPdXCwBCswf/bjYVj98AfsyF2N7TmrsfDQ53hu2vAi4QbGXLeH4ty8XfHdmblC54jxc54TCvr1qZVqPLweJYQbmJyMXJzZcRGrZ62HUqFtT1xcYE1/s8sNrOGHpOgUodsD67aQ+NjwKHIRVyJhCxZS2L58n8XTKxVKTOk1E4f+OlEQbtA939WzN+D09ouYu2sGWvVpiooUXLcaTmw+i1mjvoZEKoaHb8mASYP2ddCwY71ShxtYtw62jxFiT/v/OGr1Y9jXZw6P0uCx5w68Nl4Tftb3cMdHv7+FzzZ8UGFdRjRSDqpAM4XmIg7KENsLSYxh7/9X5481+uViSmwqJrX9CJOXvQJn9/IZ8X/UlCHwruaNtzpMw8ppawpuz+3vVTTcoM9BhMw3Ag3e9dSL3YTnp1aVrlhM5SpBRqcAaKQ8eBEPiYsS5r6TlToU/XzjHcXIbult8zrIc+Wwh5NbzuGbN37CE4/n7HMhhNgVCzk0fEGEQf+IMXy3CMN2itD9azHqPy8uCDcwrAiUhQ+s4eAJ9PlJhP6rRGj0MltWya4BGZHacAOjzALiTgK3/uTBF/7pXoSLBYMGs2lyE3g83KPBo70a5CYZTg1kRNiWJni8n4UjLP8cU8t5HH5Xg+gjheEG3fNlQYGkK0C3hWKrt6+9uVbnhXU8NVMjdNCQGWhm5dsU8KqNUocb2PzrP0fHdGJfN4/ZaUT/GrUw8J2pGPTOVIj/g8XeEqkMnce8aPR+1i1g9fR30fvVyZA6ls85SfsRY4TuAn989A5Ob/i7dDPj48wsjAABAABJREFUODTs1ks4IX0SAixKeb5d5nP39HEcWqUtfCdlR52dDfn9+8i7elX4yX4vT6NGjSq4vn79eosft3btWuGnq6srBg0aVCbrRggpH1euXEFsrDag2L9/f9rshBBCCCGEEEIIIYQQYoH/XMCheNjB1Gg5w98eYPG8GndpgL+jl6Nuq1pw9XSBf6ivUNBvibgHCfhl2mqD9/Wf0MvkYx1dHHB80xk8FzYR81/8DvNf+g7P13gT42pNwuLXl+OnqX9g5y8H8GrT93Dt2G3YgnVj+OaNFVj95QaT0105fANfjvkaIwNfwf1LhrshMNt/3IM/Zq1Ddrpl26esfPfWL5g5fAFObDqLO+cikJGcJdxeu0VNvDBzFL458SWWnpwjFMGWhl+IDz7fPBX129ax05oTopWZYr7DizEs0PNn5Pf4K+pHrLiyCL3HdkXHp9tgTdSPQkeT8sapeEBhvtCFyzNSeVkKHYe2FQJoxjo4MNlpOZj1zCLM3PgB+o3vKRx7Ge9AT7uuS41GoXj/5zcwfs6zmNZ/Nm6fuVfk/rynTC9PHeoARYOSBU+Pb8eUqmMOq29Pfro6Hs1sCZWHCGpHHioXHmqpBfM0MInarXIUrR1YfQzJMSkVvRqEkP84sQNn8pykzgjLT9n8WwED14rgEc5B5s7ByYeDSputNis7Cri+0vBxPXyA6XWQOAOP9vLYMUaDc/N4nJ3LY8coDXY+r8aFr9W4ukKDBzs02P2iGqm2nZJAkQmcn8/jzlrTfy8kXOBx8jM1tg7XINNEvvvueh63VquhrNhTEpz/CkK4IfYEkH5X+zwZr/pAo/Ecen0vQvfFIsQcL91ynAOAznNE8KxNAQdiX3lZtp+TuPn44tXvVuK1H1Zh3FffoH7HrqjbvjNe+36V0DXgv6Ruh85Qq0x3RsvLzMSu7xZhyAfT0KhbL0hk2nMSF08vu66LX/Ua6D/pPbQfPhobZn9in04LPI+UqEfCT1LUjcP7kZtZygQbMbDL8cg5fQbRb7+Du+3a48GgwXg4arTwk/0e/c7/hPtN/R/AXrp16wZ/f+0ANtevX8fdu3fNPiY5ORkHD2oDZIMHD4aTk+XBprS0NCxcuBA9e/ZEUFAQHBwc4OPjg5YtW2Lq1Km4c+eOVeu/ZcsWjBgxAiEhIZDJZPDz80PXrl3x/fffF3SYqF+/vvD3rLlR6XNzc/HLL79g7NixwmN8fX0hlUrh5eWF2rVrY8yYMfj9998L5lsamzdvFuatWy9WVJ6fbzicFBMTgwULFghBkpo1a8LDw6PguTZp0gSvv/46Dhw4YHJ5L730UsGyLl++jJycHEyZMgXBwcHC6xceHi4876NHjxZMxy737hX9v48xbJvrHrNq1SqD06SkpGD+/Pno3bs3AgMDhefg7e2Npk2b4p133sG5c9b9jzshIQHz5s0Tlq3/WrVp0wYffvghHjx4UOIxr7zySsF6durUyaLlREREFDyGBXqys7NRo0YN4ffffvutYLrPP/+8YLru3bsbnR/bxz/66CO0atVKeA3Ze6BatWro0aOHsH3Ye8QSbD1+/PFHYb9gryObj7u7u/BasvfEihUrkJdn2cnWrl27Crq69OnTp8h9M2fOLHhef/+tDRTevHlT2O9q1aol7D9suWy7s2mTkgwPbmWLixcvYvr06ejSpQtCQ0Ph4uICR0dHYXt16NBBeJ2NHTN0+/zLL79ccNuRI0eK7N/ldZwypzT7hO65sOemw56z7na2Hcpy3yGEEEIIIYQQQggh5L/sPx1wMKfdwFZ4adYYi6Z9ceYoITChs335XquWdWTtSeRklqyuaf1UM/R5oZvBx7B/oLr7uOLi/mslCkjjIxOx86f9+GfhVix+9Uehc0Rprf5yPdIS0g3e99OHf+KDnjNx5J9TyDETXGDfHf7+2T8lCnfLW1KU4aLW+5ci4eblioYd6kGj0SAr1faR3fq93AN/RC5Dm34tSrGmhBhWLdzwaP2W6PtSDwSE+cE32KfI7e7ebpi/71OENw0r183O8YDzGdNFHeJkBRzuWF+FKJaIjd7nG+yN1+aPw6WD18zOJz0xAx/2+VJ4zLasP7Fb8TdWP/oBrZ5qBnuQOkiw7Nw8IUBxZvtFPLj6qMQ0an/zwQB1QMlpbp+5X6p1Sx4ahvReQeClRf9sUCikRUbFNkSeX3J9pCn26cJQWhq1Buf3XKno1SCEEJNCunFoMM6yovTGL4sglhVOG7HNuqK9x/t5qPJLPqZaRyCku5F14ACpM5B4qeRdObHAg23Anb94XFjII+sxSo11X1BkGX5el77V4OgHGsQcLexQYZQGuP4zkFG6j8hSyzNSn5R2G3D0BrwbcFArAHUpBgsPfxoYsEYE/5YUbiD25xlgQYsXIxp17w13P3+4efsWud3Z3QOjPp0L7+AnJ+TAiYz/+41tgy7PvojH183/XZqdmoL1X34Cr2rBeOePDXh3zRa8umwlQhvapx2NRCbDc3MWo2HXnrh35gRSY6NhLwkPKviAW0mpVSo8una5olfjiZJ34wYin34aj196CVl79wLqYgMlqNXI2rNHuJ9Nx6YvS6ygefjwwq6u69atM/uYDRs2QKXSdkNkRf+WWrlypVAQzQrrDx06hLi4OCgUCqSmpuLSpUtCEX+jRo3w7rvvFszfVHE7Kz4eOnQoNm7cKIQAWPCAhS+OHTuGSZMmCcXIrDjdEn/++adQtM4K4FevXi0UHLOCfLYe6enpwnxY14oXX3wRDRo0wI1SvC67d+/G6NGjC54jCzewwAMr3NanVquFYmq2zdjPHTt24OHDh8jMzCx4riyUwoqRWWigX79+yMgwH0hiy2WFzayAm43az4IVkZGRWLNmDapXry4sT4fdZg5bp+PHtWlXVoD+zDPPFLmfBXWWLl0qzJsVpLMwBnv92HNghdvXrl0T7m/btq2wP7HnZwqb31dffSW8Xh9//LHweuu/VufPnxeKwhs2bCg8R33s9dM5deqUsO6W7Bs67LmxkIMt2Pr973//Q+PGjYX1Z8X77DVk74H4+HgcPnxY2D6syFw/OGHIyZMnUadOHbzxxhvCfsFeRzafrKws4bVk7wkWQGDz2rNnj8UBBxYa8PQ0PXgJWzdWiM/2OxYiYfsPWy7b7izkwcJAO3fuRGmw15OFp9hy5syZI+xf0dHRQghJLpcL2+v06dMFrzMLB9grEGbP41R57hOWsve+QwghhBBCCCGEEELIf5mkolegsnt++gh0fLo1Ph06XwgNGNKmX3M079G4yG2Pb8VYtRxFvhLJ0Slwaehc4r4PVr4Jv1AfbPxmJ/KztZUtbACcsIYheHij9MEFSykVKhxccxwj3i3aFv3k1nP4Z8EWVCRWwKxW2W9k983f7cKQyf0gEolQLTxA6LJhi9zsfOGLTELKQv9XemHdwq1Wf8Hk7uOGZz542uT9S058ib2rDmP/n0eFwn5HZwfhvVC3dS3cvRiBU1vOm1yG1EEKpdy6Efc8Nicir407eEfD7xnPdQlCEMJaho4NbP1YAOm56cNLhDxMYdv6z1nrEVjTXwiJMLO2fohRga8K3W4MLt9JAt5BBHGmEpyJLgpKuQrPh72B/614HatnGe6YI0pXQ+NvOpvIprHFhLnPC8c6ea4c/mF+2Llin9DZRuUuRUaXAIOP4TUi5Gc4wsnLcNUl2zXzsooWEIizlHC5bHhkNAcnGeR5pkeutTd7fnZUWjRQLiFVXuPxIoR05XF8ugZ5hk9JENQJ8GlUtIA9s2RWziTW7SE/FXANKhmsbj8DuBYI3N/MFxbbc4B7GJBpvm7JbtRyIOoQj1pPF32uUQc1uL+xgg94bJXsuAr3NvAIHwhIHDk4+gD5NjYdUudz4EQUbiBlo0mvvri0e5vVj3P28ELLAUNM3O+J52cvwvXD+3Hr2CGhU4TEwVEIVATWqoPYOzcRefmCyWWIJVKoVaUfBdweeI3GYJigSc++aDdslNVdGI7//Ts8/ANQvxMbEEOM4R9/ju9ffQ5KI6OTW0qlUODnyePR+9XJOLPZfBG2vXUbO0EIVaiUcrj7+uPynh2Q5xo+zyorrDOGSlG+gWy+eAE+sVn2iROIfutt8LmWDY4gv3cfj8a9gJBvl8LVwtHmbTFq1ChhNG9dwIGNmG7KP//8I/xknQRYUf3Zs2fNLoMVPrPR3XVYkXjnzp2FUcpZUT4rNmeFxKyof8mSJULAYNu2bQb/b8kKjdkI+bdvF7beYsW47du3F/4vwgqfWaEuK/5nI6CzgmhTli9fjokTJxZZN1bozbpCsPmx8ARbPzbqOcPCDgMHDhRCDqyg3xqsYJoFSlhBMTNgwAChoJiNoF4c66igGzGfYduKhQBYtwL2eNZdgXU9YNuMYcXIEyZMwPr1602uw5dffikUThfXsWNHITTwwgsv4LPPPhNu++uvvwquG8MCIbr//RkKALz11ltYtmxZwe+s0wJ77cPCwoQwAyteT0zUnkSwEAkLPLDR6NnzNIQVX//0008Fv7NOEGx+LEDBirXZ68/my153VqTOghQsCMGw6di+wgrz2Tqz56e7z9Tz09GNhv/8888LRfjs9dR1PWHF+K1btxau161bt8g82DqwUMleFmr6l64LAXsfsX2fbQe2j7GQBlsOey6G1o3tf3379i3YH9n2Zt0oWKcBFja4f/9+QTcMViT/9NNPC9ukRQvDAxyx9x8reteFbcwFIVjggw26JJFIhPche5+w7XnixAlhX2TbfsiQIcJ0LMhjLfZ49nz0uySwUBHr9OHm5iYU4l+9ehW3bt0S7mPrwsIBbD0mT55c8Bj23mehITYf3f7OtjnbHuVxnDLHXvsEez8wW7duFR7DsNelXr16wnU2v7LadwghhBBCCCGEEEII+a+jgIMFajYJwy83l+CnKX9g98qDyM/Vfmkjc5Sizwvd8cbiwpGJdFw9nZGZkmXxC6HtxuBm8L7Y+/HYsXxfQbiBYd9plGe4QSc1vmQHhy3faUcgKitiqRhqpfEve53dnTD52wn4+cM/Da6fLWLuxSE9KRNe/h7oNqoj/p63yab5sH2EkLISUqcaXvx8NFZ9WvhlrDmeAR747sxcYd9mWEH75m934fT280KBff32dTB0cn807doQQyb1Ey7FXT9x22TAwcXDGTkZ1ndakEXJ4f9lJFLeCIEquLAoXpSpgufaeLgesqyFvCXEEhEmzH0OLh7aL8qD6wRpu+FYiAVLdAGHpKhkZGeULLrJD3NDWp8Q5NX2AEQcRNlKuJ1LhNf+aIiUhtsesOPOzGELjC7X6VA6ckb7Gb1flKyE7Kp1BUAqVylyOlbDKq90qFrJ0CQwFH1aNoOnrzt+eG8Vspt6A2LjoYqcFGdwHA8HD7kQvtNhNVxZqS5QKfX+1FDz8FvzECKV4erP+u3qCMff5JhUlJfGXRqU27IIIaQ0PGtz6P+HCJeX8Xi4m4fm3zyY2AGo0Z9DszdKFrDLXIE8K2pdOREgM3xKgszHwIPteuEGhi/fcIMOC2EUd29T2YYbODErQDV+v8wdaDoRuPYTILfTnyyZkYAyh4fUhUNoD+Ce6Vo6o8SFjQYJsTu/6jXQbthonNm01uLHuHr54Pm5X8PJVXvASYuPxaVd2/Dg4lmhw1ZQ3fpo0W8wgus3RMv+TwuX4tiI96YCDo6ubsjPtvx/MhVBJJYInRuk/44o7hkYhJjbNy1+/LltG/8NOAAZiQmlDjfo5KSnYcuCWShvnEiMa4f2CmGQwNp1UatVO0gdHIUwR3li+19y1GPkZtjv/NMUjhMhqF7DclnWk451YrAm3KDDpmePC/vjdzg1alQm69a1a1cEBAQIo+pfuXJFKHJlo7AbwqZhxefMsGHDhOJyc1h3Al3RMPsfMys6nzFjhlCsrMOKlNkI5axAmY3Szgqp2TRz584tMT82jS7cwAqYf/jhh4LCc51Vq1YJI5RHRZn+/zQrGP7ggw+KhAq+//77IuvGsIJg1kWBLYt59OiREAYpvlxTWHE0KxjOy8sTfmchCdYNw1C4gRUr68INbJstXrxYCAqwwW70sQ4E48aNK+igwObHbmNBBWO2bNkizGfWrFlCIIK9huw1ZcEDhgUc2OvFAgCsgPvChQtC8b4lHQ6Kbw8WbNAPN7Bwx3fffScUcuuwYnF2my6McPPmTaEwft++fSWeL9tH9MMNLFDBHsv2X52kpCSh6HvTJu3/yz/55BOh4J6N9M+2pe756TpUmAo4sOJuFiRhatasiW7dtJ9rs2fPLni+uoADK1bXL47Xx56brpCd7VusYwV73fQL49k+xsIkX3/9tfA7Cxo1b968ROiATaMrUGcBIxYKcXd3LzINe81YBwRd9wG2DbZv325w3fbv31+km4gpv//+e0HRPNt2+vsZCxyw140FVNj82GvAQgb+/v6wBtuGunCDl5eXENhh3VqKO3r0KJ599lnhPcwsWrSoSMCBdetgF3Ys0AUcWPBEF+Yq6+OUOfbaJ3TPhx0TdQEH9rwNHZvsve8QQgghhBBCCCGEEPJfZ3oYaFJA5iDFpKXj8Vf0csza+hG+2PIh/opajv/9+BocnEp+SdJjTGertl7LPk3hFWC4PfEv09YIo2hXBgFhJQtr75yzrBW5rUyFG5jczDwseX05np02HJ+u/wCvzR+Hqasmo26bwnbftshIzMDM4fNL1Z2i45C2pVoHQsx5fsYIfPLPe3Dzsax9e2ZyFnb9fEC4fv34LUxsMQUbv9mB2IgEJEWn4Nj603i/+2cF+z37svXc7kv4+tUfMfu5Jfhs+HzMHrNYO0KxAawzQtNuthdnON7NRdC7dxEwMwLeP0bDb8FDhLxxC2777Fvwnp8jx5F1p4Xrv37yF7b9YF1L8Ec3o5H4OEkIsr3Z+qMSozXn1vVE7OsNkVfXUwg3MBpXKTJ6BCPu1YbQSGz7+HXelgZxnJEOBxoebr8mgDOcnTBIEeiMmHeaI7VHCO6npeFhWjq23bqD0av/QWJ7P7zw2SjA2VwWkkN2oiu4+wEQ7c+Dw8Y0OH2bAPyYDU3MvxtGw8PpZgaCl9yG20XjhUJXDt8o13BD677NENYgBE8y1vXEHhdCSOUglnFo9a4Ig9eJ0Gm2CJ3miDBonQgt3xEJ9xUX2su6UfurtWcBB8OPubpcA6W2VqPCORtoLJRWOABpmTAVbmAUmcClb4DGL3PoMFOEphM5tJ3GwaN0pyTIS2adO9S4Z7i5k0WCOlP3BlK2Oo8ZhwFvT4GDhaNs52Sk4cZh7TnJ4+tX8MfUt4UuEKxIPyslCXdOHcPfMz/ExV3azhCs4D3iwlns+XEptn8zH5sWfIldy7SFaMZG4A+qUx+VnSIvF/fOnRKuH/7jF9w4vN+qxydGRiA3MwO5GelYPf1dVHW8Ro3UmCikxcUIXTvWfPKB8Fq2HTpS28bUAg7O1o30bgjbJ8sr3MCEt2oLz4DAclvek4r97yLuo4+sDjcUPD43F3EffWx1h0xLsYJaVniuY6oDALtP1zHAktHZWaHz22+/XfD7vHnzhNHWiwcIWCH7yy+/jB07dhQUtbOiXtY9Qd/ly5eFUfd1WJG1oUJedhsLIJjz66+/FhT81q9fHytXriyxbrqRzlnwoVmzZgW3GeqCYAwrGmZFybplsWJ4Y50bmG+//bbg+vjx4/HOO++UKPZnWIE5e0104QRL14t1cZg2bZoQDGBF5EOHDhUCF7p56gr5i3cwKO78+fMFYRP9AADDRtrXL/hnnULYuuqHG3T7H3t++t0qDh48KIQ19LHiclZsrcP2WdZNRD/cwPj5+Qn7iG7Ueba/suJxHVb8zQrYGdblg3UDsCS8wYIRusdZg20f3fJZ14Pdu3cL+2fxUf/ZPsaK9L/44gvhd/Z+Z0Xwxd/3+iP+r1ixokSBOsMCKawQXz/EwEboN4QV6TOBgYFC8bw5bBoWPikeomFdFti+xzopMKzjgf7rZQnWdUM/wMK2m6Fwgy6YxcItOizYwy62sPdxqrz3CUvZe98hhBBCCCGEEEIIIeS/jgIOVnL1dEH7Qa3QYXBrox0XmCGT+8E32NuieTo4yfDSF4a/sGLFs6e2Gh8pvTw5Ojug53OdK2WXAkW+EsveXgmJVIyRHzyNPi90w4TZz0Essb59MVOvTW18OnQ+Tmw+J4wgaSuVXGnzYwmxVPOejeHq7mzRtGx/Xv3lBmxZtguzRi9GbpZ2VLvifvrwT1zcfxXjG/4P0wbMwa5fDuDw3ydwcvM5bQF6se95RGKRcHxYemp2qQoCwpvVgLObExxv5sDtYCqcz2WCU5ZNgUFKbCpWz96ANbM32vT4H9//DfNfXlaiWwXPAcnDawJGQgzyGm7Iamfd6Go6oiw1vD5+BKeTWYDedpE8zIfH3Gg4Hrc8DMcenfhcPSF4YcjCIyfQaEInfPrVBLPzcniUjTfTqqHXLV84/ZIMh92Z8N4RhxrTr6Dm+xcR/u4FhHxzB853K0dYjwlvGoapv71V0atBCCE2kblzCOrIIagDZzSQwNQdwcHBy7J5ih2BRi+LjBbZx5+rHC+WxAUI7c5Vyi4FajlwYTEPiTNQb7QIYX1EaDJBZPNZt29j4OhUHnEn//3gtpGmjP6WIkRfWJPmkDk6WbRRWGCBjcp/9cAebF/yFZRyA0VdPI9Dv63A4xtX8cv/XsPm+V/g+qG9uHPyKB6cP42ctJKhWE4sRsMuPfH87EVQq7UjJdsioFZdSIwUxNpbdmoKjv/1Gy5st61rJNtGO79bZLfuDdbgDBQC2xXP4/AfP6Nuu0546tXCEaNNaT14OEIaNkZVERBeG30nFhZ8EtvlnjkL+b37pdqE8nv3kHu27P7gYcXnlgQc2IjfjI+PD3r37m12vqxIXddFITw8HO+//77J6bt37y6Mts+w0cNZEa4+FmjQYYEB1kXCGBYi0H9exnTs2FEo7p40aVKRoICx9dNJSUmBJdiI9n379hUKvnXrxbaLse4XrJDf19cXLVu2hKenp1D8bwor8GfdCSxdL7Zc/WJuQ1gIQP81Z+tkbQCAhQ+Sk5OF6y4uLsJI86YCAiywoP96sa4V+s6cOVOwL7GicFbcbmx+LDjy3nvvFUyr67LAsMJ8VhxvaJ/Sx7pJ6PZ3thz9bWKNb775puB/kc8//7ywv5ny4YcfFoQ2bty4USKwkpNT2BlV1w3EkF69egmdJljXhQMHDhgMyDCsuJ5h+6glAY6ff/5ZeD0N8fb2FsIB+vuArjuEJR4/fiyEZFhYIiwsTOjQYArrEKHP0vdkWR+nynufsJS99x1CCCGEEEIIIYQQQv7r6D9nZYR1Y1h4aCaadGlgdtrRHw1F/bZ1DN6XEpcGtcrMcKHl5PVFLwoBj+I6DS2fLgWt+jQVQhamrJ2/ueB6fq4c4c3CIC5WZBxUOxADX+tjcj6BNf0R9yChlGsMrJljW+E0Idb4dtLPiItMtOoxf87agNQ406NSThs4B9F3tG3ILQlOePp7oHbzmvD084CtJi99GV1HtEN5yMnMwapPCkevs9axDWdwZvuFErfn1faAytvR5GOz2tgWcGCc80VY2mUcGn2RDq8PH8LnrQfweScSjmctH1ZbCH81D4DSz3QR2m/nLqI+3CBJlZuczmdXFE5uOCN00mFhFx028r8kWwVxvu1BMXsY9s4AdB7eDs16NELHIW3w8Z9v47uzc+Hlb/u+WmXwdroQQqokJz8O3ZeI4NPI/LSNXuLgWdtwwU0eq5uq2EN5gRaTOUicSq5ntU7ls/zA9oDIVJiCB+78rd1YrKhGowI8wlnhddHJ3EKBGgNMzIcDHH2BPOv+xDPo5u90ICdlb+/ypchK0RZZWurkutXIy8o0PgHPY/3sT5CREG/R/Hi1Gq4+PvCtXgPO7rb/nddr/ETUalU+5yTs+Z/ZbH4EdGNuHz+CR1cvobxJHZ0w/OOZcPa0MEVngEgshtTB9HkT2wdYJw/vkOoWzfP+uVNoP3yMTSOAl7VWg4ahdtsOCG3UFLXbtMfAd6bi2VkL4eRWcnRnYr00vY4DlWE+hrCCb10BLes2EBkZWWIaNkr58ePHhesjRowQCsetGTH8qaeeKjFCuSG6TgLMoUOHity3devWIgX15kyYYHpQhOnTp+PEiROIi4vD5Mnmw0oscKDDCpvNuXPnjhAE0RVeDx482GS4gWHFxKwDAXsd0tLS0KRJE7uuFwtOGCtQ13nmmWcKpomNjTVYUM06I+i6aRgKALBR/vXDC6xThDmvv/56wfWzZ88iMzPT4GvPCrCLd4IobuTIkcL2Z4XcrCOEPv11Zc/B0GAorPBfF9Bg7w/WocIW+u8BFsoxh+0bffr0MfoeaNy4cZHtqntPGtqPWJeOcePGoVOnTgb3uStXrhR0H7Bk3dq0aSOM8G9u33Fy0v4/Lz09HUePHoWl6tSpg+3bt+PmzZtCNwZzxwv9/d7S92R5HKfKe5+wlD33HUIIIYQQQgghhBBCCGD+WxJis+Da1fD1kS/w91eb8MvHhkcqYrZ8uwujpw6FzKHkCFbegZ7gRBx4TcUWpXgFeGDQ6yVDAZcOXsPZXeXzZbpSqRJCC6bcOHEHmalZ+Gnqn9i9sugXK4yrpzMWHPgM/qG+cPNywT8Ltxbp0MC6Uby+8EWsW1T4hU5pPLwRhce3Y1C9frBd5kdIccmxqUKhvbXSE7Wj2pmiVloXrtq4ZAdqNApFt1EdDL7/zGn1VFME1a6G0wZCA2Vhw9c7ymS+Ki8Hu0xjSOdh7TDx6xcREOaHYTejhGOdLVhwLsPD/J8Ax67cRfCWhwg4eg9xE+tD41TyMR6H4uB8JwMPkYFp/WeXqutNWWGFAJ+t/6CiV4MQQiqEe3UOPb8T48YqNW7+Zny6u+t51HmGh0hcsijUyQeVgpM/UKNfyYx+/FkeSRfLZx00Cu3FlMSLgCpPgwuLgcf7Sp7HydwhBE9Ydw2pM497G/kiARKxA9DiLQ7Xf7XPOWD6PSAnnodLYOUr+CVPhozEBDy4YP2o54a6MBgKLVjj7Jb18AkORb2OXXHruPWj79Zq3R5u3j6IvFQ+nTTPb6t6gyKwbdv1+Zfh7uuHZn0G4NS61TbNR6NWCxdzIs6fhkph+n9BOgkP7mPLwtJ1FSwrUqkMQ96fXtGr8URSZ2cja/9+u8wra98+YX5iV1fYGytoZaGF77//vqCLw5QpU4pMs27duoL9d8yYMRbNl426r1+wPnHiRLOP0RVc67of6GRlZQkF6zpt25of1KZ9+/bCObct7zv2GBZ8YMXWrBD85MmTRYr2jXU10GGPZYX4iYmFiVA2Untpi4XZiPiPHj3C9evXcfHiRRw7dkwIaVi6Xo0amU8Xu7q6CgXQf/zxh/D76tWr0bNnzxJF2rrnZigAcOlS4f/kzY1Qr/96seJyFp5gF7bdu3TpItzHXgf9QntzWBeHunXrGi3CZ4GW3NxcoWsAK/TWLcdQd4qXXnoJtmABiQcPHhSZpyXF6frPVf89wLDuG2PHji0YzZ+td1BQkFCYz4rg2T6nCyuZs2vXLuEn2+bs8ebod74wtd2bNm1a8N5n619837EVC6vcu3dP2PfPnTtXIrhibt8vj+NURewTlrLnvkMIIYQQQgghhBBCCKGAQ7k4v+eKyfszkrNwcvNZdB9dcthRD193+IX4IPGxdSMhGsO+cPIJ8kLtFjURWj8Yx9afQvzDJLOPk0hLFrXeOXcf0wfOhVKuNPlYd183dBjcGgfXHINSriqxPq8tHIdTWy/g6pEbJucTXKsarh4u/EezMYf+OmG0uDo7PRfvdJqOvx4vx4S5z2Pwm31x4M9jSEtIF7o29B7bFe4+bvj5I9uKhg3Jz8m327wIKe7ehQeVpssL8/WrP8LZ3XRXAGMu7L2KMcGvoaoTZ5kfzUycZfq4aYhUJsE7P74qfGZMGzDb7GeLOZzK/JeS+Wk5OL7xEpyy8xGy8BoyulVDdlNv8FIRHKKz4XEsAa7XCjuB5OdYVnhU3rJSLO9uQQghT6p4M7XH+clA/GkgqJPhThAO3oDcfC2yZTjA2Q/wrA24VgeiDlrWqUBsoFYt+RqP49M14IueZpQg8wSCOgCP9wOa4h/DIqD5ZCDqAJBi+pQErkEcEi+aL+CL3Gk43MAoMoGDkzUYsEaM5pM41BnB4/F+HvJ0wCUICOvDQebG4cJi+/2Np8qz26wIKSE+4i54vpKEXHkeu5Z9LXQYsAUrpmcXYpjEwQG9X3lT6NaxfvZSPLp2ucw3lTw3BxHnLQ/1K/Mr5wEvL9tEtxJSKqr4eDbUvX22oloNVUJCmQQcmFGjRpkMOKxdu1b4GRgYiG7dulk0z3j2/P/FivHZxRoZGRlCoTsrwGaBAX2sMNccd3d34cLmYw4rbN62bRsuX76MiIgIYQR5VlBtjLnQxN27d0vc9vnnnwvBAWOF98UplUrs2bMH+/fvF4q6WWF0VFSUEHKwdb28vb0tWjYr6tcFHDZu3CjsG6x43dIAgK77AVO9umWdbpydnYVOD7rH6s8jISHBqtfeFDc3NyHQo3t+a9asKRJwYJ0j2L7AsE4WLBBhC/39n2HdCayl6/6h8/zzzwvhkUWLFhXcxrpsrFq1Sriw7zOaN2+OQYMGYfTo0SYDLbqAQ7t27SzqsFG7dm2L1ln/9Sm+DSzFuj9s2rRJCJ/cvn1b2PfNzcvWAKE9j1PWLMte+4Sl7LnvEEIIIYQQQgghhBBCKOBQLmLuxVk0TUpcGnb/chAPb0bBxc0J7Z9ujcsHrwu320u1cH+8tuAFbPhmB9Z/vc3izhANO5b8UujPL9ebDTcwmclZOLL2JKasmowrh27g7K6LUKs0aNKlPoa+NQCNO9VHUK1AXDt20+j6sMLe0R8OwZF/TiI3y/gXXyF1q2HvKtMj8iRHp2Lnzwcw4JVeQieHZz8eVmKawHB/RF59jNISiUUIqVu6L4QIMUUiq3yNeHIzK2dBSXlh3QzEmQqo3Y2PGOh23oIqzmJ6Pd8F2Wk5eLfLJ8hKLX3BvvONVKQOqAGIOJPTKPK1x3lZshx+Gx4Kl6qmVvMa+M/iAa60A9hW8AC4bOTMBg0aCIUvv/76q80jOxrDCldY8UV+vnWBRA8PD6EggJCqIrtwAEyjsmI0yEsS4cFOHlmPAakrENQeiD8PKMzXrFnMPQxo9JII9zZocHet5ccZn0YlP7Nu/m4+3MAo0oHoI0C76ZwQ9mBdH1h9jl9TFjDg4NOQg6OnBik3eaPrwzor1BsDPNoHqE1k+jzCgQc7TD+pnDjg8UENqvcUCZ0VGowt+dycqwE50Sg1TsKCGaWfDyHGiCUlu1FWtMpa5F7VNerWG9mpKVj72YdC8KC8qE0UGlcVfmFFR14n9qPJzbXr5tTklN2+zQq8WXiBFeCy0dHZyPa6wnR2/fRpbcBq5MiRQscHS1gSLDBXsJydnS2c3+gXu7NCXEdHR4vmwboRmFoPNpL5a6+9JnRoMIYtq3PnzsL52eHD1nXg6devnzDqPAtNsPO6CRMm4OjRo8JzMGXLli3CiOts2xvj4+OD3r174/z588L8LQ0RWKJHjx7C68+Wz84td+7ciWHDtP+nZq/J5s2bTQYAWEhAh01jKTat7rXO0dvf9Yu6LX0Oprz44osFAQfWnWTp0qWQSqUFAR9duIU9N7YP2aK0+7+uc0lxCxcuFIrQWaE666ShUCiKvGdYETu7zJo1CwMGDBDCKWFhYSXWTbfP9+/f36J1Yf+bsIT+62Pt/yXY+s+dOxdz5swp8voXxzqGDBw4EN999x1Ky57HqbJelrF9wlL22HcIIYQQQgghhBBCCCFala8y9glkyejq5/dewZ+z1kOlLJx2x0/2aa+uT+ogxczhC6x6DPsyaOjkov+Ez8vJx9kdlo+0k58rx7Yf9uDrw1+UuO/Q3ycwd+w3RsMNnIgTwhHBtauh78s9sGnpTqPLGTK5P3743yqz67NjxV4h4GCMi3vpv8RhNGoN8rLz4exm2+iRhJjTtGsDuHq6IDu9/IpLKjOZkwyKPPMdFMoSp+Hhs/0hEsfUMRgekMbnwv1U4ah4lmjStQHeXDpe6JBhj3CDsB7pcrheSkJ2K3+D94uyFHA/kwBPfw+kxNpryO7yJxJz6Plc54peDWIjNkIfCzSYGtWztG7dumV1uIGQKsmCwdXjTgHXVmjA652+PNhaBuvCA6dmWjnauwioPazo56oik0fCBctnocoFHmzn0XVByZE/H+7W4Nx84+EGkYSFI0RwDeYQ9pQGD7YZDzDUGgpc/Nr8+kRs5lG9p/H7ZS6APf7CYwEQFshgAQ1CykJoo6ZCxwQKFWiJpDJolBV7TlIWqjdpju7jJmDH0vnlGm5gXDy9kJNedc9JOJEIdTsUjlxO7Etkh0LsIvOzolDc6nmLRMKo9suWLRMKXVmR93vvvSfc988//xRMx0b2thQrdNYVuv/www+YOHGizevn5FT4/0u2frm5uRYVupsqkr527ZoQ7NAvOq5WrRratGmDhg0bol69emjSpIlwkclk+PTTT60KOLAC7A0bNuDYsWPo06ePcBsbkZ5t48mTJxt9HBtNffz48UVGpK9fvz5atGgh/GSXZs2aCZ0g2P/Gu3btanHAwVJsvuPGjcPs2bOF31evXl0QcGAdHdj2Z9g+YygAwG7TFbebeg1MFW/rByP0r9vjHJwFOEJDQ4WOGCw8wTplsMLv4t0pWBDCVsX3T3Z+z147e+jevbtwYe8v1uGDXQ4dOiR0O9DHgilsOtahxM/Pr+B2Nr2uE4ilAQdL/zfBiv1tCbcwLADEBo/QYaETtt83bdpUeD+yASZatmwpvE81Go1dAg72PE5Zsqyy2ifKa98hhBBCCCGEEEIIIYRoWTYUFCkVRxfzo11dP367SLjBFuHNwtCiVxOj94slIjy6af0QoBMXvYjGnRsUuS0/Rw6Nhd0fdK4dvYW4BwklghKLX//RZCcJiUSMVn2aCtcnzH0OLXsbfo59X+qBIZP6QSw1v1unxhkf2SjqTozwepjSaWgbDJncD5ZIi6fRnUnZcXBywPD/Dazym1gj4ZDZ2g+JI8ORNKImchp4gjc90J5B7ItpFvioaK6XUxDw+x3IYgu/YOaUGrieS0TQjzcgklt3vL9z9j6+f2cljm/QjuZoL76bIuDKukkUOwZLE3NR7ZebEOcowZXxXwoaKYeMDn6Im1BbuMgHhEHjoF2oo6tlo0Wa0qRLQyGkkZOZC5VShcjrjzH/5e8w1OtFDHB6Dv/rMkMI2j2xeDtdKsibb75p9eid1mIj5+mwgppatWpZdAkPDy/T9SLE3sQWHFKTLqNIuMEW3g0An8bG7+fEQOYjK2fKAS3f4eBdr+gfB8pc649RLBCRl1T0QcpsHheXGA83MLwI8Guhvd7sDQ5+zQxPV+tpDuGDRBZ9fuYVDpJbQvp9Hml3TD8+pDsQ/jQskk+nJKQMOTg7o0Xfqn9OYi9isQgSh9L/HVvZRN++gQMrf0TEhbPlvmyRpGQwrSzpv35SO7yWYU1bwNHFFfLcXKEbReLDB9j53SJ8+9IoLBk7DGtnfoS7p4+Xejn/VZLAQPbGs9PMJJAEBKAsse4MOizgoKMLOLCC8I4dO1o8P19f34LriYnWd4vUx7pL6IuONv9/ZFZYr99JoLiXX365INzACqbZiOaxsbFC9wQ2ijwLtLdq1Uo4F7N2NHpWiM2CAA4ODkKXBRYW0Pn444+FboCGJCQkYNKkSQXhBra9WeExK4Res2aNELIYNWqUUOyt6wJRVt379Iv7d+3aVRAs0N83jHUx1C+INtWFQh97rdLS0gy+5qxbhU5cnPmO1OaCECzQ88ILLxT8zoIoTFJSEo4cOSJcr1GjhlDgbSv9/d8e7wFD3N3dMXz4cGGkfbaPsPfFjz/+iNatWxdM8/DhQyxevLjI49jryfj7+wuBAUuw7i6W0H9vWjP6//bt24uEG1599VVhmWfOnMFPP/2EDz74QAgNsfeqPfd7ex6nrFlWeSyvLPYdQgghhBBCCCGEEEKIFnVwKAdBtQJKFPbbm4OTDG99OwHBdYMwfcBs3LsYWaJzQ0i9aoi8atmXHTpjP3mmRPE0+/In4vJDoStBbpZ1ozmxUcCrhRd+UXjkn1PIyzI9MpFSocKsUV9jwYHPhGLuObum48z2i9j7+2GkJWSgWk1/9J/QC4271Meprefh4umC9ATTrYh9gryM3nfgz2Nmn4fUUYaXv3wWO386AKVcaXQ6kVgEn2Bvs/MjpDTY+zQnPQebvt0ldA2pavJDXBD/Sn2o3bVfZjOZnQIhi8lBtZ9vQ5Jh+einynylcKkMXG6mCReFnyM0DmJIU/IhzrOtalSRr8TulYfsvo6cmoffhvvwPBCF3IZe4CViOMRkwzEig9WSCpKjU+Eb7I3kmNKPmOru64bM5MKRAuXVnBA7qT5UXoWvPRuDzmNoGL5q3h3Ju+/gt0/XlmqZV4/cRD/ZGOG9wbo5sCpZ/ffJjRN3/r3cxuRvJ5RqWcS+nRtYwcmKFSvKfLPqBxzYCJO7d+8u82USUhFcAllhf9mHKFq8JYKTP3BsqgYZD4rd7wC4VAMyH1o33yavcKj1tKjEOUlmJC/Mk3UnsBgP5KUCTnoDZD4+wJudB68AznypQZd5YkicOHRbJELMCeDRXg3k6YBrEIeagzj4NgJijgFSN0Bh+pQETkVrb4p4tM98ckPiyKHxeA6RO4p23ShOJAUc6ZSElLHOY16APC8PV/ftAs/rn5NwFZuWrADKJ7QzlEapxPVDeytk2VnJSXD18kZ2WunPSRxdXZGvN/K1ISp5Phxd3fDU628jIfI+zmws3TnJw8sXsPi5IeA17JxELPzUHzU++tZ14dJ68HB0Gzu+VMv6LxK7usKtd29k7dlT6nmx+bD5lSXWzYAVD7MC8tOnTyMmJgYKhQLnzp0T7meF9bqiekuwkdcfPND+0cXmZ4mbN28K50GsuLxmzZoICgoSbmfrFRISUlA8feHCBaGDgSlsGjbKuyFXrlwR7tfvmqDrsmBMZGTh/7T13yeGsMJxXTCC+frrr4UR0Vm3ADbC/WuvvSZ0DSju77//LuiOwLogbNu2Dd7e3ibPT1kXAkvXyxp16tQRAhYnT54U1mnfvn146qmncODAAbMBAFY0f+/ePeH6iRMnLBoV/9SpUwXrz/YzFuLQad68OQ4ePChc13/djGHzYfsOCzKw/WjdunXCT30s4KDrUMGK69m2ZK+Rbp9h91uzvxfHAkGsoD05ObngPcC6bZjDRtRnwRu2fdkABp6engX3sdeBbVe2XqyrQXHBwcF4/fXXhU4IAwYMEF4zpvjgDLr/LfTr18/i53j+/HmLQkWsM4qOfrG8Ob/88kvBdbbfmfufi/77sTT7vj2PUxWxT1jKXvsOIYQQQgghhBBCCCFEizo4lIPuozuV2bzZ/8bbDmiBRYc/F7osePl74NszczFz4xT0GtsFnYa1xUtfjMGfkcvMFv0XJ3OU4pn3tG2jde5fisSEhv/Dx/2+tDrcwP6x6xdatIonLsKyUYmuHLmB5FjtF9lisRgdh7TBzA1T8M3xL/HRH2/DL9QHrzZ+D58Nm2/R8+z1vPF/aqcnGR91TCcjKRMu7s7o+kx7k9O1H9RKeE0IKUvsvTXx65ew7OxcePi5V6mNrXaWIO61BkXCDTqKYBfEja9X5cuhZEn5cIzOsTncYK3Q+pZ94adPmi6Hx8l4eB6NgZNeuEHHHuGGBu3r4N0VhV+282IOsW/WKxJu0MlQyjHl4kE0G9S81MtlX77qAg0adeH14rYs240L+67giVMFOziw0TR79eqF5cuXl8vy9AMOlo6qSEhVFNrD9sIhs0RAtY5Az29F8G7AwcmHQ+8VInSYKUL1XhyCuwCNX+Ew4C+R1SELiTNQe1jRdU+9xWP3OA2OTzMfTDC0rsWDBdmxlj00/hwgT/+3IEzMIaQrh05fitHzOzHaThPBwRPY9YIGpz7TmA03MGF9jL8mLDRhjjyDh4MHhyAzp5vBXTjIXMvw9SeEvSdEIvSe8AaenbVAKAwvVNX/midW4zh4BgbbfcPZI9wQ2rAJek1406Jp87OzsHf5N6jZ1D5/H7JQA6NRq40WiJ7ftlEIOhDreT37bKWajymsGHzEiBHCdbYvbNq0qWBke2bMmDFWzY+dO+mwYllLui58+OGHGDt2LDp37lywLjqs6FaHdTMw588//zR63507RdtRseWZkpqaikOHCgd3YMXw1mBFzQsXLiz4nXWL0B+t3tB6sS4QpsINusJn/ZHsrV0va7o4sM4WLNygC2CYCgD07Nmz4Drbj/Q7Mxjz888/Fzn/1X/u+kEK9pzZ62EKC2Ww7cKmYx0wWDimOBaQ6dChg3CdFZyzx7CgA8Oel/5zN/Z+MUd/O7AQjbkifLZt2f7/zDPPCOGAr776quC+ZcuWCaEXFvYw1jlDRyKRCKPz62RlFQ7ocfXqVSG8xPTv3x+WYqEIc68jC+iwUBQTEBCAtm3bWjx//X2/Uyfz31npdxIxtu9b8hrZ+zhVnvuEpc/TXvsOIYQQQgghhBBCCCGkEAUcykGPZzuhegPjX+6Kpba1UX/nh9ewPnElZm+fhnptahfOTyxGp6Ft8dHvbwshgOdnjIB3oBec3Jysmv9TL3aHi4dLwe+JUcmY0vtzRN2xsAKomOY9GyMgTG+oVDZKt4XF2LyGR8SloiMG6SgVSiFwYel6hdQLQt+Xexi9X7/DhDFB/07DujgY6wbh4euGV78aa9E6EWIPf83bLIRvyoOLh7PZaVgHk3rtasPJzdHoNJnt/KFxlRq9XxHqirw6FRsSUgQ4Qx7iCrWjbcdqS3Ai+xUdRt227Rhd1nqP645OQ9qgz4vdhN+zWnpD5e1gdPostRI/HzmBNv1KH3Kw1Pbl2pHTSMVhhQ5sZL8jR46U2zIvX75ccJ0tm5AnVY1+HFyD7X9m2PpDDkM2idB5thietQs/z1jXnJBuHNrNEKHjF2I0eF4ERy9OCCxYo+YACB0TdLJjeRydokG2tl7IatXaQghg6GPBBItogPQIw3ep5bzQtSLHwo9hj3Cgem/jn/8uFuQVXappH9/0NREcjDSoY50bWAcMQsrL6U1rhcLw8iBzcrYoeBFYpx6kDsbPSci/24qz078IeR7p8TYepMtYox59UK9DF9TraH4kZ4Z1eri0bydCGjZGebmyb1e5LetJ4tyuLRzqFP5v1BYOderAuW0blIeRI0cWXN+4caNwYdio4daMxs6wolzdSOMqlQqvvPKK8NOYrVu3FhSYM2wkcX1vvPFGwXU2nakOd2fOnDEYINBxcCh6zq8/6nxxrHCarQsbnV5HV8RtDVZYrF/c/N577wndMoytFxttXS43nphlRfnFOyPYsl6mjB49Go6OjgXbnIUcLAkAPPfcc/Dy0v4RyLYbW09ThdybN28uUrDOOlwUD7dUr15duM62yZQpU4zOiy1n5syZRZ6DVGr4/3v6z4F1edB11WDdTMLDw2GK/jyNvU6TJ08uuH7r1q2CjhHGfPLJJ8LACrrvUfSL0VnRv24bssEQ9AM3hly8eLHgev369Quu79q1q6AonnXksFR+fr6wzxoTHx+P6dOnF/zOugGw52Ap/X3f1PtR1/lg0aJFZvd9S14jex+nzLHnPmHp87TXvkMIIYQQQgghhBBCCClEAYdy4ODkgPn7P0OLXk2K3C6WiNH3pR5oP9C20eA6DWsDdx/9kRG1kmNSsGbORiyZuAJ/fL4OcZHaf852fUY7WpKl9qw6jLsXtBU8inwF5jz3DbLTCr9ksrYYeuKikl/I9BjTCSWGCjfixNb/s3cf0E2VbRzA/5nde1O62NCy9957CwIiKCggguiniCjKEAQVERRlKLKHLJmy994bSssqdNG9d9rkO+8bkyZtZgfz+Z2T04x7b25ukpvc5vm/zyVcPXITt8+EIDO1cD1O/XMB0Q+Vj9EQ9qNQ054NMO/oDFgbCHt0ebctJFKxwWX1GNOJ/2WBjV/PzEbnd9ryjhcMm5eFWn49OxveVb1wcd81LBizFD+++xt2/LZPa90JKStJMck4s/3iM9mg/kE+WH3/Nyw4ObPYfk0TGyk/9MIDZKfn6J0mu7rxisKsGua3BC8LGXVcEfm/eoj+uB6eflgHkZMbIaFfZcgtyjbo4OThgEZd6uJZYfsq1uHnWbty8DrfD09aMR6fLRsLSTPjo7oeDrmn3rc+C+F3jY8g97IRKMrmVN5u3LiBTp06oXfv3lrFJ6NHjy7X+w0LC0NqauEw6xRwIK8yFhJoO18I1zra1wvEQKXeAniaV0v338yAd0tAal/8C31WrALBa+W4Ml+O4DVyfplhoQdzPNoNpIYp583PUeD8TDlkJfw6LbUH6owtfgjMukyYekwSdVqO2CtyJNxSQJZVuIMMP6JAlvFDEn4/rONC25+FEFvqv9OA7gIYqzWu1Es5v623AB1+F/LAhPC/j03217ezAB0WCWHtAUSfVeDyPDkufi/Hw51yrXUnpKykJcQh7OrlZ7JB3f0rY/SiFRg0/Xt41wg0OGp+zP1QyHL1H5MQwNbJGb5BRT4gypHYwgI1WimDz8/S4+uX+TFJzwmfo9Oo8bCwLhzUQ5/QMycgtTRvwJDSSIp69Y5JngX2vHr98AME1tYlm9/aGl4/fK93pPyyxkYkr1BBmWY8efIkLyRWFYmby87ODjNnzlRfZsXjPXv2xOPHj4sFCJYvX463NLpUBAUFFSvkZaOPaxaksxHN//7772L3u3v3bj4yvaEiZTZyv2bxNSuof/LkSbHpWDEw6x7ACvA1qboYmGvp0qXqwADrMDBu3Di9nSTY7ax4uugI6mx7sSJrdoxYdFuWdL30cXBwQL9+/fj5uLg4rF692qQAABstftasWerLmzdv5uEZVgRf9LGw0eU1X1/t27fnReaa2HP1/fffqy+vWLGCF9CnpWkPpsIus9cN6/LAWFlZ4auvvjIpwME6Naq2tbFR7hlVgIO5fFn3dwy2nTRHw2fF6hMnTiz2nLJjf3b9/Pnztf7nUL16da3Xf5s2hSE4tj3Z66AoVsjOtil7T2kuq2jAoWnTpkY7hBTFOg6w90pGRkaxgvi2bduqC/FZxwz2eMyh+dpn4aWFCxdC/l+HIRV2v7/88gt/jchkMqOvfc3n6N69e1r/Yymv/ZQxZfma0PU4L126VOz2snrtEEIIIYQQQgghhBBCCgkUxvqzkjIVdjscwWdDebihUbd6cK3gjNun72Jiu+mQy817KmZsm8Q7NWja+OMOrJq6EQX5he2ChUIBWr3RDMlxKbh18q5Z99F2UHN8sXoCpnSfjRvH76AkWvRrjJGz3oJ/oI/O23+fsBw7F+kfDUwXSxsLdBrWBmPmvYOF45bh8NqTBqcPalUDX6z6yKTuDAxbH7ZeurzxSU98uKD4P9WzM7KREp8GB1d7HqBIiU/FN72+R+gl7WFere2tMHXzxGda0ExefdeO3sIXnQp/KCoptm+yd7VFckzxH6OYVv2b4ovV42FlW1jgcWjNCWz7dQ8e6OmyYkjUuFrIqWK4Q4PDiWi47iz+A3h5SmvigaS+lXXeJo3KgOey2xDKtH8ANFelOn48mJISZ37XjcCWNXDv8kPIcrV/aCyKFWdofsy7ejvjq/WfQGIhwcfNp6AsBNT2RfTDGORm5Rnt6LH24e9w91V28vny+AFsvGt4tDib60mouPyBwc9HsVSE/LzCz7zSqNW8Gg+tvewiIyPh46P8zA2YOA0Sh9KFhGSpKQj7Wbl/iYiI4D+ilzX2QzALOajY2Nhg3rx5fARKzSIjNjqouT9sG8JGSh0wYAA/b29vz4tbnlVREyHPU8oDBRKDFRBJAc8mAlg6CxB7RdkZAWYeHbb+UciXoenOajnurlFAoflRKQR82gGZsUCSmYcVfl0FaPipACcmypFYskMSVGwLBL0nhJ2v7vf4pbkFeGzmoNliK2VnjDofCHhwINJI8xn3+kCjL4Sw8TRtPxO6WY6bS3Q/ITWGClB7dPEEBAsu5KUqu1KwUEt2ogKnv5Qj5YH2dBJboMVMIdzr0z6PlJ1H1y5h+w/flno5QpEIFja2yE7TfUxSo2VbdPlgglZXhlvHDuLa3l2ID9culCOGufkFICM5EdlFildNwYIlMQ9CUWCguJlj3600jknsXN3Q65PJKMiXYfO3+gtizX0ciVGRkOcbPj4SisQYs3glbByVRYp7f5uHu6ePG11+0eOqokRisfHtYCKfwDoYNG1OmSzrdZRx5gwiJ3wMhRkF6CzcUPG3hbBt2bJM1oEVJ48cOVLdkeHBgyIfwv/5+OOP8dtvv2ldx46J6tQpHjY6ffo0L9hV0fV6ZEX6rCBds1idBQyqVKmC5ORkXhzNjudU3NzccOrUKZ2FvGx6dn937hR+8WKPhRVrsxHpr1y5wkdFZ9zd3XlRvuo+iwYeWLhgyZIlWqOgsyJrdszKio1DQkLUy2LYKO/suIxhIZCoqCi925cVex8/rvs9/N133/GiZpVNmzZh0KBB/DxbxwYNGmiNYM+K0Nnj8/Dw4I+HhS40w/ea68U6J6xfv17r/thxqiqYMH36dK3uBqZgxeYsMKKJPZ+qx2pI0eeebWP2/Pn5+fEwAnv9qIrimapVq/LtpgrZFPXJJ5/wwnfNIAXb1mzbxMfH83lVheJs/8iek3feecfgOg4ZMoQ/B5rH/CyIwZZtCPsfwHvvvae+zNaDvabZ8zV37lz19exxsts0OzSyZbOCc/YaZa+jixcvahXfs+ebjbLPAhqa2OuxSZMmWgED9vqvWbMm3wbsdcBCSZqvTfb8q7qZsHVxdXXl4QBW1K/5OtSFvVa+/fZb9f8lVIESFnxhIQP22gsNDeX3qXrvs8DAoUOH+GMoioWFVF0xi/4PhQ3ywAIDmkEFFqKpW7cuXyZ7TKwzi+ZjZ+uh2m5//vlnsWJ8tkzNIA7bp7D3OHuNsNeG5vYtq/0UC0YEBAQY3CeW5WtC9b7WDGmwgIanpyeqVauGL774okxeO4QQQgghhBBCCCGEEG2Gh6knZS4gyJefNAW1qolPln7AC/U1gwnGPLr5hBd9uvu48BGurx65heVfaf+4wrBpTm49V6L1PbvjEvYuO1yicIPEQozv93+Dum31j6bIfPTb+4i8/xRXDhYWNhqTk5mLf/84hMd3InjBrjHpSRn4bsgC5MvyEdSyBvqM6wq/WroDF0zf8d14d4bN83aqQyGV6vrxcAPruqELK/jWLPr+bvCCYuEGJistG9++8RP+vPmzyYELQoyxsi0s7ikJ9oNkg851MOjz3pjzduGPmEWd2XERMWFvIqC2n/q66k2qlPj+rR6mGQ04WD3QLrZh+7u8HMOFK6UhlwiR3KXw8RWV522LjAbusL+gPSKeOZp0r8+7u5RUt/c6oFrDSti+cK/B6Wq1qIbWbzRDZloWD4ax582uoiOCs5OR28AFonupEGeUrhCnw9DWeOOTHhjkNRqZqfqLSFhHj83zdvHPhIA6fmhV0c9owME6JNVo+K+swg1M+yGFI9mR54f9SPz777/D39+/3O+LFa1ohiwo3EBeF45VBPykyaOhAPUnCHDtdwVgRoYv+b4C+TmAtYcCQrEAMRfkCF6lY0I5EHG0ZOsbdUoBhwCUKNwglAJt5wOugYY7MDWaJERGtBwJph+SID8beLBdgbQnCohNGDA6JxU4N13Ogx+udQSo0k8AOx/9AYPqg4Sw9VIgdFNhsMOpGlB1oAB+nXW3d5BYCyDRWJez04qHGxhZBnDmGzm6rhLC2o1CDqRsSC1KO8q9AAH1G6Jhz/7YNV9/6DT07Cm0eHMonLwKO4J5Vq4GyTMcZV8kkaJAZjjg+6ILqN8YYdeKj0BsqnpdeiDc2we3jhgesMKnVm1UatAYeTnZkEgt4ebrzwMssWH3IRAKeZeN0gpq1wm1O3XD4lFDkZ+bq3c6eUE+Lu7cCu8ateDuVwk+QXVNCjgYGxumrMINTI2WhaM/E/OxkILf2jV4+uWXyL2vO1igyaJqVd65wSrQ8P8uywMb3Vsz4MAKYHWFG0zFRgNnRcCsADczM5OPhM4K29mpqMaNG/MCfVborgsbqZyNzs8CAay4mHn48CE/aWKFvD/99BMvImYsLCyKLWvBggU8KKDqzsCKvlkBsS5s1HbWkYAVOzPR0dE8wF+SkP3kyZOxceNGdUhjwoQJ6NixI1xcXCAWi9UdKFThiqSkJPWo+5rYY2IF6qyIWRWQYAXgZa1z5848cMAesyoAwF4j5jz3rEieFa6zbXz0qO4v3m+//TYPnLBidn1+/fVXHkBhBd1seaxYe8+ePcWmY4X3y5Yt410+jGFdQTQDDmygAWPhBoZtg9mzZ6tfe6xwn53Y9vnhhx944EYVDGCv9Q8//BDr1q3j+2223nv37tW7HVg3CV2F7Oy9yF7/LJSh6jCg6/WvCpN8+umnmDOnMJjG5lV1PigaWjGmf//+PJjCAjqs8L5oVxPV+m3YsIH/D8NcLBSwfft23lVDFdh59OgRPxXFivdZN5QjR46o91XstV804MCWyd4brIMIw8IY7MSw7ghsP1Ee+yljyvI1wbCuGux/VWxfwajeE+z5UAUcSvvaIYQQQgghhBBCCCGEaKOAwwuix6iOaNytHg8TPAmOwJ2z95D0NNngPGtmKP9pXJ5kefnY+5ey3bQ5/IN8sPjyj5BIJSZN/8P+b7Dt13+xbPJ65OeZ/sPw7dMh6DpSd+BA05PgSPX5RzeeYM+fhzFp5Xh0fLtw9LOimvVqyE/ZmTm8MNfG3vQ296GXHxoMheRk5WLX4gP4YJ7h0a0IMVW1RpXh7uuCuPDEEm001llk8uqPcPngDaTG6x+9k/0YtHvJQXy8WPljVuyTOHzc/CtkpmaX6H7tz8UipV0FKCx0Fx1K4rNhHZxcbL/EurIEn78HeX7pi2GKyqrpDIWV4Y/HjAZuRgMOAqEAtZpXxZ0z99TdMXxremP0j8Pw08hFJV4/thz2eRF203hXCxaoYh05Ns3dgaS4VCT28UFqGw/IrUTAqCoQyOSwvZwI982PIcyVl2hdOr/TFlJLKX8NGQo4MDt/389PTL3OtSFtLUKei4XuZaflwf5igknrwUI2oReNF68YUrGaF7qMaFeqZZCSY8ECNsogK6Bgf58VzYBD/fr1eQHB2rVrebELG+WPjSDIijbYiHusMGHUqFF6R7kk5FVQpb8QXs0VCNurLNpPuAXkGj4kwe2/WNGnqvCzfJoDFuQCYXvMX7ZjVaDjYgGEYt1hgKL7ofa/iBC8oQB32KCiZuTn4q6yTg7Gp0t7pN1F49FuBZpMEcKnnf6AgXdrAbxbi5CfreADoLMAg6kSbimQFKz/9vws8HUIeo8CDqRsVKheEzZOzshMVhZ+mcvS1hbdP5qI+xfOIM/A6OsKhRw3Du1Du3dG8cvJT6Oxcdok5GWX7JikJOQFBahQrQaePrhXJgX65YV1w/CoXBVP74WoL7tU9EPrt0dg78KfSrxcsUQKvzr1ERFsOLDM5GVnQWpljYs7tiI7XXdXjtIQSSSo0aodJFILfjIUcGCu7t3JT6yzhF9t84tDdREIhHD19Uf8k+IFouZwqeiLmq3omKS0WFghYNcuZF28hOQNG5B++DBQoPHBLhbDrlMnOL31FqybNH5uIWc2wrlmQTsrOC4tVmTLRgNnI6Sz0d1Z8X5iYiIfJd3Ly4sXGrP76dOnj7owXB9W3MwKybdu3Yq///4bly9f5p0NWGE5C2IMGzaMdxe4ffu2eh527KQrIMAKqnfu3Mk7HFy6dIl3AWD/X2LTszBDo0aNMHz4cP5XNYq6KkTARjY3NgK+Lqx4mBUrs04G7L7YurPOBKzQmWFF5KwTBSu4Zp39WDcHVvAtlUp5dwBWqNyyZUs+4jwLWLDbLC0tkZOTw4uVWfBDs6tGabHniBVYs8CIOQEAzeeehQjY4zl48CAvMGfPPXs8bHR9FkJht6u2sTGff/45Xx8WYDhw4ADvRMKOj9k6sW3Tq1cvXvDNAiOm6NKlC39Nsa4NjKmdGdn9nT17lv+vgAVQ2Pzstctez6wrBfurwl6ba9as4duC/WUhjydPnvDnztramj/n7H3HXreseN4Q9hoMDg7mIRnV/wfYaygvL493Z2DL6tatG99GqkCOiioow7oPNGzYEOZiQZUePXrwLhonT57kj5N1UWDrzEJA7MRCOiXFngsW/Fm0aJH6uWWF/2wbsS4DrMMDm4Z15WDblL2HVQEHtj9goaWiARn2vmJdIFjwghX2s4AH65Kg2TmkPPZTxpTla8Lb25t3fGAdN1hIi70e2PtL1blG9ZyU5rVDCCGEEEIIIYQQQgjRJlAYG4aMPBcX9lzBN71/eO5bv1IdP8SExSEr3bxCATbC+vakVbzo1Rx5OXn4edQSHN1QfNQefep3DMLD60+QlqhsjW1OYe6Ku7+gQmVPlLW/v9+OFV9vMLpt/7g+r8zvm7y+Dq4+XqrC+REzhyA9OQP/LPjX4HRuPi54f85QpCakY/W0TWbvH4rKqu6AmBHVi4UcxMm58PojGNK4HJ3zWVhboOeYjpDl5uP4xjNIT85EWUht6YXkHoVtznURpeTC56crBqdp3L0+5uyZgoyUTL5vc3R34D/Mnf/3Cqb2+aFU3Rsm/vUhTm+/gG8HmL4PiR0WgLQW7jpvs7qfBu9f7kJg5jeCkd+9haFT3uDnZ7+1AMc3nTVrfoGfPR69F4B8V+0OIKKUPFRYEgrLyCzYOtkgw8BzW79jbUz4/X183OJrg9PpXQeBAI261sVnf30I1wrGOwK9DNgIl2y0RSZg4jRIHIoXmZhDlpqCsJ9n8vMRERElGj3TGLZc1ToXpVlwxIpbTC2EMAX7gVpVUNSpUyde4MKKNvRhP4CzwgrV6HyEvOoiTyhwbsbzL9x1rsk6RQAKMwfIFlsB/XYLIRCZV7hYkKvAxe/liDxh+jyeTYHE24DMzI8ioQTovr58uijcWSlH8BrDH+7ONYCOSwx3tyDEHCx4cPivkh+TtB32HlLiYnHjYPGRojU5uHui1ZB3kJGUgDNb1hstai8vYgtL1O3UDbLcXISePYFcA8GM56FK4+bo+/nXyMnIQEG+DNb2Drxrwr3zp7F7QcmPSep17YWO743l3Q/2/vZ8/6/Rdvj7aNSrPz+/46dZeHjZvJHVxSwUkWf49WNhY4PcTP07eNahotWQd7Fx+hc80GE2gQCV6jdC17GfwLqU391JcQUZGciPjYU8MxNCGxuIPTwgMqNwnBjGCn07dOjAz7PieRZgICXDAvUsoKDars8y/F/esrOzefF8eno6H/GfhUSog6ISK5hnoQaGhVBWrdLVDo8QQgghhBBCCCGEEEJeP6UbAoWUm6Y9G/IC4uetz7iucHS3N3u+vByZ0ZG8WaeKZZPXYe6I37Fq2kZEhEbhxJZzZo/Cff9KGHqM7siLYM1RkF+Af5ceRHkwJTckf4FHeSQvpy7vtkPP0Z1KPP/lg9dhaaN7NH1N8RGJ+GH4b1jy6apShxsY69BU+M6+Cuc94bxbg/XtJLhtfgifH6/rDTcwuVm52PfXUTx9FFdm4QZGnJJbJtMM+rwP/2vraANnTyf1qGOpCWnGly8Rw8aheNeYdkNaYsIi5Ui1zfs0QoXKHjBFrqeV3nADk13VHrkNXGEOD3839P+kh/py34+6m/3jtOJJGirNvg3PFQ9gdz4edhfi4b72IfxnXOfhBpFYiOFT39S7XBZUYwGLDXO2mR1uYPPWblMTiy7/iDl7v35lwg3FKMroVM70hRvKExtBTxVuYA4fPqwON7AR+Fj4wcnJSWuerKwsTJ48mRcdUEaYvA4qthWg1jvPf3T/Kv0EsCxBvWd+NpCv/6sEl/pIgRtL5TzQcGeVHOmRckQcUyBZ2YDJZEl3gcp9BBCZ3vSNk8uUXRTKgylDGdBoB6Ss1e3cHTVbG++yqM/jm9cgsTB+TJIaF4M9C+fixLoVzy3cwOTn5uD2sUNIfhr1woUbGFXhP+uOYePoxMMNTHa6CcckFha884IWgQC12nRQd8+o1qwl7Fzcymx9WYcJczh6eqFul8Jjkvpde5t9nzzcYOA4hh3HNXtjiP7bRSI07vsmzm/baHa4QSgSo2Kt2nh37u/oP3k6hRvKCQszWFSuDKs6dfhfCjcYxkZi/+GHH7B582at4yV9zp8/rz5fu3btMnjGXk+sMwQbHZ9ho7qzjguvkh07dvBwA/Pee+9RuIEQQgghhBBCCCGEEEKIUSXvZUvK3ZAv+6N538bY++dhXvzPRim/fqyw7XdZsba3QlZa8SLlTsPboMfoTkiKScGaGZvNWiYrkl7wwR9IiEqCW0VndBjaBq36N+EFpawg8LePlmP3kgNa86z/7p8SrT8bHX3jDzvg5OmAAZ/2wuM7Efz6nMwc3DkTanDekEvmhSlMVa99oAnTBJXLfZPXF+ticunA9RLPz96brQc0K/F7sTTEGflwOhKlLpyPfRxv0nzZGTm4cvBGma6LdUgyhBl5kNvq70Bjd7l4i3VNXpU89L7HTeka41vTG7+dn4MTm8/h0c0nsLazQps3m8GvVmEROCvAnrr1c3zWeirfDoakN3Exep+ZzdxgeSUBpmLP0b9LDuLN/4IcQS1r4IN57+CPz9eYVfjt7uUMq/sZyLqSqHU9+7yYvGYC2g5qDrGFGKunbURaYkaxoNq3A35CRor+QiILGwuIJSJkFpmGzXvr5F38PmE5fj42g4dKiHFPnz41Ok15dHgoD9evF99fNm/eHF999RW6d+8OsVj5mnj8+DFWrFiBefPm8VEnmTVr1vBRJ9lIi4S86gJHClGxnYIX4WdEKVCQB8SX/OuGXmJrIF/H7jygpwB+XYRIeyJHyAbzyvFZ2ODCHDlyEgBrD8C3kxDeLcE7OijkClz5WYGwvdrLDF5dsvXPSwNC/lbAyg2o2ANIe8wKgYH8TCAx2PC8SSHlEzNwry/A3bUKo9MQUpayUlMQfrvk38/Z98hqTVvi8u5teH4EsHVxRkai9vdTfXKzMhFx5yZeNM7eFeFdo5bO2xw8vIzO7+bjjzenzUbo2VNIiAyHhZU1qrdoDecKhd/1RGIJen/2JTZ/O8VoFwRTmBuYTol5ittHD6J+N2Wwwa9OPd7Z4/TGNWYHJTKTkyDLySkWXuj1yWRUadyMh0PO/7MRORna3UPlBQXYMXcmcjO1j1U0sdCOQCgqFoCQF+QjMvgWjq5cijenzlYHUAh5nm7evImffvqJnx82bBjWrl2rd1oWEP/tt9/Ulzt37vxM1vFVtGXLFqSmpvLzY8eOfeUCAH/99Rf/K5FI8P777z/v1SGEEEIIIYQQQgghhBDyEqBqvhecX82K+HDBCH7+9PYL5RJwmLh8HJKik3Fk/UmkJWXAu6oXeo3pzEcHZz+m9P2oGw6vO4noBzEmLzMnMxfndl3m5+9feYSzOy+jZrOqmLXrSywc9xdObj1X5o8jOSYVR9afwvrHiyG1lPLuEMYCDhILCcpDrebV+eO9e/6+7vuVitF3fLdyuW/yeiooKMBX3WcjLtz0AvWi6rULQuW6/mjZvwnObL+I54UVzguFAsjlphX7lfUo6oICBVx2PUL84OqAqPgPypb3k2Fzw/B2btarod7bareuCZ8a3ogIUQY6dOk+qiPfj3V+p63Bx73qm7+NhhsYubXxj/tskfnbcd+Ko+qAA8NCZg5u9jwkE/0wBvIC451qWIiuZrMqkOUVQJYjg5WtJeq0qYUOb7fGkXUnseTTlUiOTYXUUoIqDQLw+HYE8vPy1fMbCjcwuZm5MFRqFXw2lL/e2w5qgVeRQKE8lXYZKk2aNDE6/cvS2eDatWtalz/++GPMnz+fh4c0+fv7Y+bMmejTpw86deqkLjr57rvvMHToUFSrVu2Zrjchz4NDgAD1P1Z+JoYfkSP+etm/z5t+LUBGFFu+ArIMwM4XqNxbCK/myvutOlDAb8synDHUUpAFPD2rPM86MkSdksO1DtBilgCXflSobytL2fFA5HGgx99CCMUCXPtNjsRgw9tLVD6HJDy84FgVSNF9SAKRhbLrBCFlpSBfhq2zp/JC8ZLyDawDr6rVEVCvIcKuX3lOT45CGW5gxaUvyfcaXSo3aqb3Nr+gunDw8ERqrP7/89Tu2BUSC0sEtddfsCyXF+D0xrVlEm5gCvILv+eb6taxQ+qAA9O0/yBYOTji0s4tSI2LhcKE7pns+fasXJUHDvLzZJBYWcE3sDaqt2iDOyeO4NCy33nXC5FECjf/ykiMfAK5xroaCjcwMiNdRiKCb+Hh1Uuo0qipSY+ZkPLUrVs3dcBhw4YNaNq0KcaMGQOpVFosMD5y5Eh1CJ4FwPv3V3aNIeZ59OgRpkyZws87ODhg1Chll5xXxZ9//omjR4/y8+wY2svLeMiOEEIIIYQQQgghhBBCCKGAw0vEp3qFMl9m/Y61eWcFoVCIfhO665zG3tkO80/MxKJPVuDsjkt81GtGIFSOfGoqVuw/KvBTpMSnobykxKXig/qT8NPhaWjRtzE2/7TT4PQt+zbhj+fuhfvIy5GhUh1fOLo5lMm6TNsyEV91m63uKKHCinS/Wv8JKlYr++eTvL5YiOje5Yclnt/S2gI9xnTi579a9zHGN/4ST4Ij8byYGm4wBQtqmVtwbXMnCcKVd5DW3gfZlZX7BFFaHuwuxcDhRBQEBtaPdR7o/WEXg8uf+NeH+LLrLB4G07Vf7vnfc2HI5YM3cGHPVZMejyTOeAhCasI0RcU8jsPUPj/gyqGbvHDIxdvZ5O4bKrJcGW6euKu+3O+j7hg8uS8mtp/BA3IqbB/94GoYysPh9Sdf2YAD0W/IkCE8nMCKSXJycnhBiaFRMhs1aoSlS5firbfeUgfLfvzxRyxfvpw2M3mt2FVk75OyLfj1bApUaKEctbram7qnsXQSoP1CIQ8MsGCCQlWvaubqJNwE9r+jQJ4yq1QushOAw2PkaDOPdYwQ4ME2wytYoZUA8nwF7/QglwGOVQALh7IJHrSYKcTJL+TI0D4kgcgSaD5NCBtPCjiQsnPv3GnEPyn59zWplZW6mL7n/yZj/Vf/Q/LTaDw3L3G4QSQWo24n3f/jYVingK4ffIxtP3yrM5zAAiaBbTsavZ+HVy4i/FY5tPUxAwtpbPt+urpziI2TM9Li48xaBtsGkXcLBxRp3GcAGvbsh03TJyM+nLXkUSqQ5SH+ccmPuw25e+oYBRzIC6FDhw68o92+ffsgl8sxYcIEzJo1Cw0aNICnpycPfLNjqBs3Crv1WFtb4++//4alpeVzXfeXRVpaGg+D+Pn5ITExEYcPH0ZWVpY6SM9CDi+z9evXY/v27bC3t8edO3dw8aJyEBX2uNjjI4QQQgghhBBCCCGEEEJMQQGHl4hfLR8EtaqB26dDjE7LiuhrNqsGV29ndBzWBteO3MKePw4hKz1bfXunYW3w4S8jebjBGBcvJ0zbPBGJT5MReS8a1nZWsLSxwLpZW3Fq63nI8vIhtZIiLzvP4HLKM9ygEhkajS86zcTiK3NRr30grh+7o3M6d19XZGfmYKjfh0h6mqzurNBmUHOM+2UkQi7cx6a5OxEeHImCAjl8a1RAzw+6oP2QlhBLjL91XL1dsOTqXJzedgFndlzkRbxVG1ZGj1Ed4eThWOaPm7zeTm4p+RDE7L08bevncPdx5Zd3Lzn4XMMN5nL2clK/h3UxNdxQNLTlnJAH2zV3kScWQCEVQZSeZ3QkfBZumLj8Q/hU9zY4XWCL6lh4djY2fL8dZ7Zd4PtQtk/qOaYzBk7sDYnU+FDOh9Ych6nsLyQgsY8PFFL9+3uH0+YVATGs48L5fwtH1jU33KDLjt/3IfZJvFa4obylJRoecfWlV4a1eaww4VUZbZEVk7CTOQYPHowZM2YgNFTZIWrv3r18H2MoGEHIq8apugBO1ZQdEYxhHQKcawLWbgL4dgVizgNhexTIzy683b+bAHXHmfYesnYXoOUsEbLjFbzbg8QWEIqB4DUKRJ5SQJEPiKRAgeFDknINN6ikhgEnPpej01IhXAKBRN2HJLCpAOQkKfDvIAVy//s6I5QCvh0EqDseiL8BhG5SID1ceZs962zRV4CK7QQQ6ug0VWz5ngJ0XS5E5AkFos6ABylcagoQ0EMAC0fad5GyFXr+dInnlVpZo+/nX8PG0Ylfvr7/3+cbbjCTlb0DstPKYOdSpGuE1NIKeTn/7TRNJBSJ0f2jiXBw9zA4nU9gHQyZORcXd2zBg0vnIC8o4PPU6dSdF/cLi3S10iX4xBE8b3nZWVrdPswNN+hyadc/SIyM0Ao3lLecjPL/fxkhptq6dSvef/99bNy4kV+Oi4vD/v37dU5bo0YNrFu3Dg0b6u9kSbSxwv/Lly+ruxpohvDHjx//0m8uFnj5559/tK5jHUBWr16NihUrPrf1IoQQQgghhBBCCCGEEPJyoYDDS+Z/S8dgYrvpSE1I1zuNUCjAxOXj0OGtVurrGneth+HTBuL2mVDIC+So2awq78xgLhZ0YCeVr9Z9gv/98QEyU7Mwf9QSXNr/fEfuU4kIjcayL9Zi+j+TMPutBbh8oHBUMcY/0IePkv7X5HVa17Mi4yPrTuHMjkvIydAezfzO2Xv8dHD1ccz+9ytILbVbs+vCghDtBrfkJ0LKU2aaeUUvler4wc3XFUEta6Dbe+3VnUvyZfnY8vPuMlknc7u8lLSzzfDpb+L7txea3aWhqKLrmp2u3AeI8lm1ibJzjT5elT3QtEcD9BnX1Wi4QSWgth++3vA/vs1ZdwIrW0uziqRT4kwvgBFl5sNtYxjihlUChMXvo2WKDeIilaMFvggu7rum9zZZoBWy+zlBVteGX5bcyITVzmRIbpv3HtDkXdWzxPO+bli44XUuSGDv0a5du6oDDjExMYiMjISPj8/zXjVCnqlGk4Q4/pkcMv2HJBAIgSZThKjYpvBzx7MhEDhCwYv92ce2Sy1Aamd+kb2VmwBWboWXm00TID9bAVkmcH6WnHdpeBGkhQG3VyjQcrYQ57+VI67Ixxvr1OBcC7j9l/b18jzg8X4FIo4DBUUaLCXcYicFnhxSoOUsIYQS49uPTePbiZ3K4lERol9etnnfx9x8A2Dn6oqKtWrzzg1Wtsr/UeTn5eHynh1ls6mLBAbKg6uPHxr3fgP7Fi8o/cKKrKs54QZHTy9UbtgEdTv3gJOXacckHgGV0fvTL1GQn8+7E7CgiTmyUssuMeZVtTqe3ld+x3oRPNYITTwLjp7U5ZO8OFQdGT777DMeXjh9+jTv2pCeng6JRAJvb28eaHjjjTcwYMAAiMX0E4O5WAeHXbt28W6CVatWxejRozFu3LhXIjxfp04dBAUF4cGDB7C1tUXTpk0xdepU/pcQQgghhBBCCCGEEEIIMRX9+vASdnH4/eIP2Dx3Jw6vP8kLcDWLiFlwYdjUN9Gke/1i81rZWvGgQ1mzsrHkp2fRncEcuxYfAARAQJAv7p6/z0MYFlZSNOnZACNmDsbY+l/onbdouEHT9aO3sXr6Zoz+cVg5rTkh5mOv80sGisKLenTzCeycbfHG/3pCalHYLeDelUcGuyGYo7zDDZ7+bvh+/zfw8HPjdUC/jf8LGSmZeJZsnWzww4GpqN6ocomXwYJQpnSFKYo9bnM4nE+AJCkPyZ28kFXLgQcdGnpUwIBqgdi+9gTCJ9eH3FIEaWw27M/HwuZ6AtuFPhcF+boDJdmDnZD3jjMvVBMqALlCCFlzO8ia2sJmUSwsD5SswKrXmM6lXGPyOqlUqZLWZTaaKQUcyOvGsYoAnZYIEbpRgfAj/3VkYB8a/330u9YGar0rhEfD4p8kEhsBPJuU/TqJrQQQWwG5z6A7gznubeIfWHCoLEBSqAL5WYDIEqjQAqg5XIBDo/R/XyoabtAUcwG4u16BwBEvfxEceXW4+voh4o7pCaP48DBYOzqiQfc+EGkUxz69H4Kc9DL6/0I5hxucPCvgjSnfws7Zle8Cj6xYCpmZHRfKonvEgCkzeVihpNj213wOTGXv5o7oe3dRGt41AlGrTQdcKatQSxmRyw2H3Msa65xByIumcePG/ETK3qpVq17ZzVq5cmXcunXrea/GS4N1iWQnQgghhBBCCCGEEEIIIdoo4PAS8vR3x8eLR/OTXC5Hfl4+4iISYWkthau3i9a07PYLe67i8LqTSEtIg1clT/QY3RE1mlRVTxP14Cn+WbAHZ7ZfQE5WLqo2qIS+47uh9YBmZq2Xm48L7l95hBfJrkUHtC7nZufh1NbzuHH8DmS5shIvd9/yI3j320HqLg55uTJkJGfA1slWq1ickGel1wedsfXnXZCbESpg74Ptv+7B4C/6qa9Ljk0x635Zxxhz7rMszT81C27/7fPaDGyGpZ89+x+Hh3zZn4cb0pMzkJ2eDSdPR0ikz2Yf0H1UR+xfcdTgNDYOVujwVmu0HdwCt0+H8M+BSnX80WZwc0gspYhIScXQTZsR58raVFjyeXIqSZBTyR621R3htulBsZCDSCyCh78boh/EoLzlO0uQ1skV2XVtYVu1AFJHBaSQq2+XywXIzRdDIRQgc5wHJFcyIUpgj8V0XUe2R63m1fHKYm/P0r5Fn89b/IVlZWWldbmg4NkWvxHyorD1FqDhRHZShhrl+UBWHAsaAFYu2p8eigIFos8BTw7JkZcO2FUUoFIvAZyqFU6XHq7AvS0KRJ1RoCAPcK4BVOknhHcr8wr4rd2B9Cd4odzbor0zZcGFiKNA3FUFFKXYhTzarUDN4QoIRcptVJCngCyDdcVQdm0g5Fmr26kHru3/16xQwZOb13Dj0F4ecmBYV7aMlJQXrkuDPm/PmQ8LG1t+vnrz1ji+dvkzDzg0HziUhxuyM9L5fds4OpcorFAStTt0RciZEwansbS1RY2W7VCtaUtEhtxBTkY63AMqo1qTFhBJJUiKisTmmVOQnWZ6Qk0oFsPO2QWpcbF4FdTr0rNUARVCCCGEEEIIIYQQQgghhBBCXjUUcHjJCYVCXmRfsapXsdtYWGFa3x9x7UjhiEnXj93hxfkD/tcTY+ePQPC5UHzVfTay0rK1ip7Zqd9H3TF+4Xsmr0t6YgZeFmkJ6aWaPz0pA0/D4mBla4m1327B8Y1n+Pa2tLFAx6GtMWzawGJhE0LKk1clD3z0+ygsHLes2G0KqQiyADfIXeyAAjnEUckQRSVBoAA2/rCdBxzYfuGfBf/iSXCk0fsSS0So2z4IPUZ15N1Mwu8an6c82LsoC4mYQ2tOIDn22Q/ZfG7XJVw/egtXDt7kxVj2LnboNrI93wewrjlMWmI69i47jFPbLiAnMwdV6geg94ddEdSyhtayLsVEYvuDYCTlZMPf3hFDqteBv4OT3vuu1awa+ozrquxWo8OH80fwDh0qddsGFptm0v79iMvU3fUio6EbrB6kwu5KvNb11ZtU4d1wShNwkEjFkOXpDyI4ezkhykmGmImVoLASwck+A1Jp8aI1oVABC4kMOTIJIBKg/m8dYPN3Es7tumzyunQa1qbEj4O8/PLy8ngHBhsbGzg56X+/aUpMTNS67OJCn/eEsI5yIikLLhTfFvnZCpz6Uo4EjUHd468peHF+jaEC1B4tRPx1BU59JdfqWBB3hZ3kqD5EgDofCE1/X5fua/4zlWtmDXdROUlANvuYVigQvEaBiGMKFOQCYmvAr5MAtd4VwNKZgg7k2XGp6IN2w0fh+JrixySGnN+2iQccWNDhyt5dSI42fnwhEkvgG1QHtTt2xYl1K5Ea+xTPg9TaRn3+1tEDZdd5wgz3zp/Gg4tnEc66ZygUvKND7Q5d0GzAEEikFnyarLRU3Dy0D/cvnUN+Xh48K1VBva694FVVO+gbEXwLd08f5yEEJy9v1OnYFQ7unnrvmz0HQe274Paxgzpv7zRqHOp27qG+7BNYu9g0+36fb1a4galQrSYUcnmpAg5CkRjyAv3HJDZOzshMTjJ7uVUaN0d+Xi4e37hq8jw1W7cz+34IIYQQQgghhBBCCCGEEEIIeZVRwOEV9ufna7TCDZr++WUPAur4Yd3MLVrhBk07ft+HSnX9UKNJFVSo4gkLK+UP47o8vPEYt07dxeuEFS1P7jwTidHJ6utyMnOxZ9lhXNx/Db+emQ23ilT0SJ6d3mO7ICDIB5M6zeSdXZh8TwfktKwGSETq6fID3CBMyYLlibvISMnCbx/9pbdIXpcPF4xEi76NeLgnIiQKz0vs4wT41vDm51lA43kIPhuqNVgs2y9snrcLN0/dxU9HpiM+IgFfdJqJhKjCwpjwu1E4uuE0Rswcgre/GYC8ggJMOLYb+x/f11r20psX8Xmj1vionv5uOhN+H4VKdfywfeFedTilZrOqGDSpL1r1b2p43ePicC3acCFYWjOPYgGHiNCoUgfavKt64fGdCL23D545AJNxkYcbxKJ8WEr1Fx4JBYBYKEe+XARRVVvM3DEaswbNx8mt50xaF0d3B7zKWJCJnUq7jFdNZGQkateujZT/RoiePHkyfvjhB5PmvXLlivq8nZ0d/P39y209CXkVXFuo0Ao3aArZoIBDpQLcWKrsaqBL6EYFHALkcKwigG1FQCTVX7CfGKxAcgheKzmJCpyZqkBu4SEJ8rOAh7sUiLmkQPvfhMU6ahBSnhr27As3/wBs/e4bXoBuClbcfmjZItw8vM/k++k46kP41a6Hc1v/fm7hBiYtPg4O7h78/K2juov8y1tk8K1i2/Piji2ICgnGwG++Q0pMNLbM+hpZqYWpqqSoCASfOoY2w95D495v8NDD7gXf49HVS1rLurTzH7QZNhKNevXXe/9dPpgA94BKuLZvN5KfKo8PvWvUQuM+A1G5YROD6x59LwRxjx+a/ZgTI54gu5RhEucK3kiI0NPyRyBAkz4DcWz1n2YvV2ppiT4Tp2DH3JnFtqc+1vaOZt8PIYQQQgghhBBCCCGEEEIIIa8yCji8ojJSMnFw9XGD06z/bitiHmsXrhY1f/RS/tfW0QZdR7bHyO+G8ILovX8exuVDN/jogHXaBiIzVfcI4K8qNgL7zt/3aYUbNMVHJGLF1xswefWEZ75u5PUW1KomVtz9BeMaTUZaXj5yWlUDxIXhBhW5ozVyWlWH9aHbZoUbOg1vg2a9G+KTlt8gLjyh1OsrEosw/teR/P3C9i2mUogE2P/wEc5fOo+0nFxEBUggibKDRcSzHbZZM9ygKeTCffy79CAOrzupFW7QtGraRgS1qoFdlnHFwg182QB+unwKlRyc0CNAe2RVTT3HdOan1IQ0vj3Z/toUIfHGn788L+ti1+kLN2TXtUV6L1fk1rLhK295Ix12uxNgGVL8ee03oTvCboXz1x7rfKHZ2YF1F7rtngt5pvJ1a2khM7qeov8CDrZiS3556ubPcHrHRcwbuQiZqVmQOVsgpZ0nMuo6QyERwiIyEw4nY1Dfwhn+gT5Gl09ePd7e3sjPLwzOHDhwwKSAQ2pqKg4eLCxebNu2LUSi4vtYQohSbooC4UcMp6TurAZyjHwkXfyeLUMBqT0Q0FOAwBEC5KUCD3crEHdVuXz3BgJkJ76CiSwDXAKVIRHNcIOmzKfAnZUKNPqcAg7k2fINrIMR8xZj/defIS/btO/45oQbgjp0hW9gXWz45vMSjbCvayT/9u+Oxqm/V5u8viohZ07wzgm5mZlIjNQf4H0eokLu4PbRg7i2f7dWuEHTyXUr4F29FoJPHtVZjK9QyHFi7XI4e1dEpfqNdS5DIBCgftdeqNelJw8dCEUiWNoUdtszJCH8MUqitOEGplHvNxAVGoxbR7SPh8USKTq8N5bfVtKuHmyb9J88HSFnT+LgH79BlqN7YBGmQvVacPQs3pWVEEIIIYQQQgghhBBCCCGEkNcZBRxeUfeuPEJudp7BaZ4+ijMrMPHPgn9x4/htPh8rGFUJPncPQrEQr5N+H3fHL2P+MDjNic3n8NFv78PGvniBMCFlTS6X4+Lea9i/8igP2NRuVRORLta4m6N/PyB3sUWBmx1E8aaHAk5sPss7BZRFuEEsEWHSyvHoMLQ1uo/qiCPrT2Hz3J2IvBcNuVx/gWKBlRjJ79XB/MuXC6+s5shPtuei4XSwZEUyZY11wYk1EiLbsnQvtneXGpzmr1uXDQYcVBxc7c1aPxupxOg0wtwCk5aV1tsVKe9qF+VkN3VAdiN7OC+OhO2JwoIqK1tLbPl5F7LTc3i3CVdvZ77uXpU80PndtnB0c8DmjcvV05tTktm1Qm3+XhAKhWjVrwkq1/HDe298i4dv+0FuXfiVJ6umIz81dvbDK09ZE1z6ZbxiWNFZr169sHHjRn75+vXrOHbsGNq3b29wvlmzZiE9vXCf+cEHH5T7uhLyMku8C8iN5NQyzKgHzksDQv9WhhrSnmh3fUi8o4DgdcobCYDKfQS49KPhnTQLmNT7SAGxJYUcSPljHRseXLmAO8ePICMpET6BtZES+xSJEeFlej93Tx1D7KP7ZRJuEEkk6PHRRFRr1gq1O3bBrWOHcXXPDr7exjpQsEL+0xvX4EV2Ze9O3sHB4DR7dhjtNHDl3+16Aw6a36+s7c3rjiaxssLzILWyxvltGyHLyeEBA1snZ1jZ2cPJqwJqtenAz984ZHroRlONFm34a0cgFPLz7v6VsH7Kp8jL1h1ycPTwLOWjIYQQQgghhBBCCCGEEEIIIeTVQwGHV5SonAIHD67pLhyW5xv+4f9VIbWUYNwvI1GtQSXkywwX/spyZUh6mkwBB1LuCvILMGvwfJzZflHr+qzOQYCL4ZEz8z0cjAYcWLeEAnspBKzYPSsf9688KvU6B7aswUfZd/Fy4pfzcmTY9ssehIdEGZ03uWclZLsqR+ovKqN5BVhEpcP6TiKeN1NCINdiopEhq2Bwmitx0cjJl8FSbDyQYI6C85EQ58mRL9X/eWFz0/h2lHlJkTJcT1GOSICkD7xhdS0dorQCCIUCZGfkIOp+DL85KUYZfOg6oj0GTuzNi6IYBwdbIDVWufx849WqcoUAXgmWmFN1FrJSs1CxmhfvatF7fFekfVwX8mzdXSd2JT3BwPDHaOPrb/Q+yKtn/Pjx6oAD8/777+PMmTPw8tI9gu7KlSsxf/589eUWLVqgZ8+ez2RdCXlZCU0JHAjMD1Ilh+q+XmFaLu+lJ7IAGvxPADsfARQGQqEMC4HkpgBiqp8l5awgX4ZdP8/RKpSPfVRO9yXLQ/zj0i/cJ7AOen48CTaOymMSWW4uru3bheSnxo9JGHnBi7/TSYtXfqc2JPreXeTn5RqcJvzOLXXRflnKYcFRdgygrzVeOWDHHKxTh6pbR2aKsg1O3c490LBnP/V0lramdaHQZOfihm0/zEBeTjacvbxRt3N31O7YDSKpBaAn4MC6Z9Ru3wUVawWV+DERQgghhBBCCCGEEEIIIYQQ8qp5vYbdf43UbFoVds6Gf4wNbFkdEunrlXEpsJYgrVVFxL5fFzEfNkDigOrICTA8wqCFtRT1OgRh7M/vYmvccl406+Bmry7E1UcoEpo9ojohJbFhzrZi4YayILcQIbmLP6ImNsbTCQ0RPbEx4obVQq6PXamXHXw2FCc2nVVf3vPHITy6+cTofPn2UuTUcjU4TXpT3cXJZaVWi+p4c2Jvo9MZKzhkxCbug1n44+6F+1rXxUUk4Napu4gINa0AS9P62f9gwbuLYX9Y/7DZwqx8OJx8anRZGZ2dAaGB/aFUCK/PGqBCFU+9nTkOrDqGoxtOqy939qmmPp+TJ0FBgf7ls1ooyeU85I69ycMNTOS9p/jj8zUY9d5PiNITblBZd/uGwdvJy4l9RqtO/v66AyytWrXCiBEj1JfDwsLQqFEjrFu3DtkaBWh3797Fe++9x0+K/4rv7O3tsWLFCqPfBQh53bnWBsQ2hqdxqwsI6KjUKJEl4N4QqDdBgD47hPDvJoSFsibbIIEYkNIhCXkGzm7ZYLQLwIsmMvg2Hlw6p758ff+/SIoyo63M8yIQwLtGIBr06FsmIQyh2IRjEgVw+d/tiH30QOvqtPg4RN69bXIoRNPpjWtxdOXSZxZu8KxcFfZu7urvc0XdOLQX9y8UHqNWbtjUrOULRCKkJ8YrgxMKBZKiI3Fs9TJsnDYJ2amFHe10uX5or1n3RQghhBBCCCGEEEIIIYQQQsir7vWqbn+NSC2l6D+hB9Z8u1nn7awg7+2vB+Dq4VvYOn83XgcyFyskDA2E3Faqvq7A0RI51Vxgey4KDsd1F1fnZuXho4Xvwa+Wj/o6Z08nNOxSB5cP6C+MbdqzAexdSl8ITogh+bJ8/Lv0oM7bRLGpkBvp4CCOSdV5vVwiRNzwQMgqaMwvECC3kiPifO3htvEuLB/pntcUrKhkyWer8PDmY3Qb2YEXuBsTUNsXyb42eGqknjjP244PBF2WZces88DULRNRt10trJ62GXuWHS6T5XZtWBsPJMnIkOXpncbyQTpWzl2PlSxc0bwa3pszFJt+3MH3P6rinBpNqmDUj8NQt22g0ftkwYg1M5SfDY7Ho6EQCJDSvgIUloVfCawScuG8LgSSZMMjuTIybwuj0zg190boDMMFb7uWHEDHt1vz8w2kHpA+zkKevzV/JpPTbeBsnwmhULsYiT3HFQ6IkDw/TOcyg+PYiLV+Bu83JDEerzKBQnkq7TJeVUuXLkVERASOHDnCL0dHR2P48OG8m4OHhwfS09ORkqJdkGZnZ4cDBw6gevXqz2mtCXl5iK0EqNJXgJANenYkQqDWO0JEnlDg4c5XeGdTBlgnhoafCWFbofAbjo2ngAdE4g1k9bxbCSCxpjAWKV/5MhluHjnw0m1mhUKOw38tRmzYQwS164TbJ4x/x3f180deVhYv7H/WBAIh+n0xFZ5VquHs5vVlts2rN2uNa/t3G+nioMDJ9eyIBKhYMwjN3xyKC9s3I5yFhf87JvGqVgNth70P7+o1jd5nckw0LuzQ/f8qFdYtgnWNKCt2rm6IeagdGi/q+sE9qNq0BT9foVoNk5bL/r9m4+iMjGTd3e/iTOg2khCuu1sqIYQQQgghhBBCCCGEEEIIIa8rGivzFfb21AHoPbZLsdGFJRYSfLx4NBp3q4/Rc4fhra/6w9LGeIHqyy65bzWtcIOmjObeyKnkqHfe1IT0Yte9N3uo3u1mbWeFETOHlGJtCTFN7JN4JMXoHg1S8iAWyNc/YqcwMQMiHa9tJqOxl3a4QZNYiOTulXiIoLQOrjqOz9pOw5O7kUanDbsVjqf3YowvVK4o03ADU69jbTTsXAeTO8/CzkX7kZVWOLp7Sdk52WDguB4YWqOuwemcDhY+5uBz9/BFp5m4tP+61sijIRcf4Kuu3+HG8TtG7/fQ6hOQFxQWCjkdi4Lf7CtwX38Prv88hNfi22h9KBkW0cpuCMYIs4wXHeUn5hid5tH1wqIeT19XVF76FBb3lN0XZPlixKfYIT3LAvlZAiBCBumhTHxj1R/J8x/oX7dc4+tmI9H9uUBeDxYWFti3bx8mTZoEscboxXl5eTz4UDTcwLo+nD9/Hs2aNXsOa0vIyynoPQH8uxf/ZBZKgcaTBHCvL0D9CQJUGySA6NU/JCmVPB3Z0tpjhHq3m8QWCBxJ4QZS/tjo/TnpaS/tpr515AD+njoJqbHGjzUSnjx+LuEGpnKjpvCuUQtbZk7h3Qbyc41/xzbGyt4BDXv2RVD7TibPwzo2bJ31DcJvXdfqvvD0Xgi2zvoaUaF3jS7jzvHDRjs3uPkFoCzl5xoPb8c9KQxOO3lVgFhqYbT7RZexn+gNN5hKamlVqvkJIYQQQgghhBBCCCGEEEIIedVQB4dXmFAo5EGGNz7thSPrTiI1Pg0Vqnii8ztt4eBqr56GFeoP/qIvL5hNS8zAsslrkZNp/IffZ8HDzw3pSRmQ5cpQo1lV9B3fHT8M+xX5Mv1F27rkettB5mFjcJqMhp6wfJSic+R2r0oexa6v2qAS5h37Fn98vhq3Thb+gF+vfSA+mPcuKtUxPGo4IWVBLNG/Gxdm5cHy9D3ktKwKFJlOmJIJy1OheufNrO9u8H7zXayQ62cPyydlVMhkYlrC4nEqBLn5UFjof9xWoUkoa9npOdi95CDuX9XdKcAYgVAAhbzwQXoGuOObTZ/B3ccVX3i3RlRGGvaEFXk+5Aq4bo+E3fVk7as1wgmaZHn5+POLtVh08Qf1dRGhUdi+cB8u7r2KgvwCBLWuiVwd+3cWBLC9UViUY+PvC69K7nj6yHjxlvXpFGS11h8QY1pIffDQyHIsbS21uhD17N8a22bsQU5VG2TVUXbDsbqTAasQZeih5+hOsHpqeJm2N5IQP8CPh3L06VXlFR+Fn73sSptGesUHVZdIJJg7dy4mTJiA5cuX4+jRowgNDUVycjJsbW3h5eWFFi1aYODAgejSpXhwlBBimEAkQOMvBKg+RIHwwwrkpQG2FQH/LgJI7QXqaep+KEDNYQrEXFJOc2OxAnLZi7F1rT2V4QJ5PuASBFTuI8D5WQqg7AYWN0ogUq5HUS61BGj7sxA3lsqReFs1MeDeAKg3Tgh7X9pnkfIn0ggJkvKTm5WBq/t2ISFCd/dJc7EC/l7/+xI2jk5oO3wU0hMT8PDyBZO7X+iSL8vDqQ2rMOTbH9XXJUaG4+reXQi7cYWHtH1qBiE7Q3fQvmj4gnVdSE8om45rFWsFIez6FYPTSC01jkmsrFGrTXvcPLxf7/R1O3eHUCQq9bpVa96q1MsghBBCCCGEEEIIIYQQQggh5FVCv0K/BipW9cK73w42OI2Ngw3aDW7Jz4ulYvzywR9ao4OrWNlZ8kLfZ8HZ0xE/HZ0OJw9HHF57EofXncCqqX/DzsUOyXpGrNdH5mljfBoP3aPVN+nRAG4VXXTeVr1RZcw/PhPRD2OQGJ0M14rO8AooHoYgpDxDQAG1fXl3A13EMamoFhKDdlMHYP2yw8jNyIE4Mgmi6GQIDBQtF9gbH9XeqaYncsLT1fsKZy8nJD3VLsYva0KZHHYXniKtjY/uCQrksDsbXezqitW8EP0wVm84wJj7Vx8hLiKhRPNKpGIsvjoXl/dfR25WHqrU90fj7vV5wIzfLhRhccc+OPc4DAv3HMbdkCcQRGXC/nQ8pAnmhc3uXX6IJ8ER8Kvlg8sHb2BG/7nIzc5T33584xmTlhNy8T5fV4mFGLLcfIPTWl1Nh0N4PlJ9dX+l6FyhBt4Mao1/7NcZ7HzRZmDhiPhyuRw1mlWB/Xo74H46LO9nQm4tRE59O2R0dIK/xBGjfhyGe1ceGVw3cboMbheTEN/CVeftXra2eCuwtsFlkOdP1/eR8pjHx8cHM2bM4CdCSNljhfasm4MhUjsBfDv8N41CjmsLdb+XxVZAfumbKZnEyh1ov1AIqS3weL8C4UcUuLNCAQt7INe8Q5JS8W4FWDrp3n4ugQJ0+E2E9EgFcpIAa3fAxpOCDeTZcfLy5ifWyUEfVx8/VGncDJd2b0eBrPD7aWnZOrsgI6kwqGvt4Iis1Gf45jSDS0VfXuxfUtH3QpAYGVGieVkngmHf/4Kwa5eQL5PBo1IV+NdtoA5uiiUS9Js0FY+vX8XZLesRG/YA8gLzBpZQiQq5g9S4GDi4e+LhlYvYveB7FMgKE2t3Tx83bTl3byM/Lw8isQQF+cYTbxILS8j0dLWo0bIt6nTqjnP/bDTYyaFas8KggVxeAO/qtRB67jRyM5Uha03O3j5oNXg4Iu/eMWn75+fpvl97Nw8Ete9sdBmEEEIIIYQQQgghhBBCCCGEvE4o4ECK6TGqIxxc7bBhzjZeLMtYWEvh4GYPDz9XxIUnIvax9gh6/kE+fNS6Rzcel3qLSi0laDuoBd6ZMQg2Dtb4tPVUPLhWslHTVQQy40XNAh1dIVjIYtwvI43OW6GyJz8R8jwM+bI/vn/7V723+1fxwtt9mqB7k2pYOP4vXL74CKraXycPByTHphabR5ghQ4GT4ZEorWTAsB+GoUbTKjwEtGraJhzdcArlzf5YBOSWYmQ08gSEhcV7gux8OO96AIvowuITqZUEDTvVRUGBHClxqchIySrRfebn5SMxqmSdIVoNaAr/Wj78pE96cgZW9V+EhBtP4IbSiXoQA3tXe8x5a4FWuMEcLNzAGAs3MCwoU3lpIiqs7Yj9kcHI/280V6lQhP5+9fBNna6IexgHV29nhKfpLnqzdbTBgE978fPJcan4usdsdbcM9lJNG+yO9F6uUFgpX5MsRjPi6t/4vkFvvtwEA8/NMKdKyKxXDatvXUduQeHjqZArRpvrOdhxbwe6vdfh1d2HUwcHQshLqkp/ISycFAhZL0fKA+V1IkvAwoEV7wMZT4HsIo2GHKsCBblAesnrh9VEFoBPBwECRwogkgBHxsuRVrpDkhKzcgPqfqi/G5GKXUUB7Co+k1UiRAsrkm/SdyAOLNV/TOJc0RfNBgxBrbYdcWT5Ejy5dZ0lEvlt1o6OyEopWShBYmGFtsPfh2flarBzccXxtcvx4OLZF+oZklhawTewDgoKCniXhLzskh2TsJBAScMb1Vu0hktFH37SJystFcfX/lWqEIZKUnQURBIp9v72k1a4wRws3MCYEm5grJ2c4eFfCfcvnoVCLlcHC2p36MJfIykx0bB1ckZKjO42cJZ29qjfrTc/z0Iz/3w/HQnh+v/HlRQVga2zp6Lr2E94t4nstOLH1Sp1OnXjXS9YNwjN7WHj5Ax3/wBc+Xc7gtp3gYM7DZhBCCGEEEIIIYQQQgghhBBCCCNQlGSIW/LSkuXJcOvkXeRk5iKgjq/RbgPbFu7FHxNXFxv13NnTAS37N+WdH+q1D0SDTnVwdMNp/DB8YanWr+u77TD+9/dhZWPJL7PlHVlf+oLpAmsJYsY3BMT6C4OawAZZKy7yYm9rOyt0HNYGQ77sB3cf3SN/E/Ii+WfBv1j25ToU6AjqMOx9Omff15BIJYh5HIeIkCgeIKrRtCp+fn8JDq7WHkUztU1FpLXz1Xt/opQceC28ChYvaNarIVy8nbDnj8N4lvIdLJAV5Aq5lRjihGxY306AMF9erNjqeX7M2TnZ4Nezs+FT3dvgdAvGLMXev46U3R2zJ+YZPuwGnWrjx4PTEJudjiuJ4RCyIjdXfzhbWCPy/lP8r+XXSE1I1zmvh78bpm6eyDviMJ+1m8Y/p1RSh3ggbaC7znndLGzxSWIQ/hixTOftLKy36NKPvNNJSk42jjx+hH1rjyN03SVYRmRqTdu4Wz3eiedJcCSs7a14V6M3P+/9UnbliYyM5N0ImCrjp0Fi71iq5cnSUvBg0Ux+PiIiAhUrUvUsIaR0CvIUSLgJ5OcATlUBaw/D3QZCNspxe5mCNXXQYuUKVGgJSGwE8GgogHsDAcL2yHF5Xuk+BCv1UQYKxJbK9To7vQBRJ/FMuAQBGZHK7hASG8CvqwA13hLAypU6MpAX34UdW3B28zq9I//712uI/l9M44MjpMTGIDk6Epa2dvCsUg17fp2L0HMlP/av2rQFpJbWuHPi2R6TvAys7OwxdPZ8OHoYDvTu+/1nBJ86hpdVQIPGeGPydKQlxCP63l3+OvMJrAMrWzse2tg47Qvk6OjEwDh6eKH3Z1/B3b8Sv7z+688Q8+CeSfdr6+KKBt374OS6FTpvt3F0wtvfL4CdsysPkTy6egm3jh5EdGiw1nQCgZC/R9LiY5HE3hs2trzzRKPe/WHvqvt4iBBCCCGEEEIIIYQQQgghhJBXFXVweI1s+2UP/v5hOx/FnBEKBWjcvT7+t3QMXL1dik3/JDgCf36+pli4gUmKScWdM6H44/o89XUd326NW6eCsefPkhcU3D4bwkdKh41yFO+TW86hLIiyZLC5FoPMxhV03u5obYkfPnoLnrPHICcrFxZWUl4YTcjLov8nPbDt1z2IC0/Qefv1Y3ewf8Ux9B7bBZ7+7vykMnH5hzz0cPNEYYGF3YWnyAp0Rb6bdfGFyRVwPPCY19Az5/+9gudBnJoL+zO6OwKoPM9wQ/0OQfjwl5FGww2ZaVk8IFamnvHDDqjjx/96WNmhR8VA9fVxmZmYM28DYq3ksPgvd1GUX62K6nBD6OWHWuEGuY0Q6b31h8ziczMQ1VCCSSvHY9XUjYiPTFTfFtiyOj794wMebmAcLa1QsPsBnnx/HMoInbZL+6+rz6cnZWD3kgM4vukMfjoyHZXr+uNlxTpssFNpl0EIIWUl5G85QjcpkKca6FoIVGgONPxMCEvn4p8UyfcUuLVMAehoyJadACSFAp2WFIaY/XsIEH9TgScHS76OLHyh+K8+Oztegegy/pjWx8IJaPGtcjvk5yh4Fwk6JiEvk8a938DVvTv1dhl4fP0K7p4+jsC2HXmxvWbBfY8JnyMtIQ5P74eW6L7vX3ixuja8KPzq1Ef7EWOMhhuy09MQev4Z7ezKiYe/8pjC3tWNn1RYN4aDfyzUG25g3PwD1OGGyJA7Jocb+PITE3hXhs5jJuDclvXISC7sLlexVhC6jJnAww2Mtb0D0lkAo0i4gWEdHsKuXdJ6Tq7t342QsycxePr3cKmofwACQgghhBBCCCGEEEIIIYQQQl41FHB4TWz8YTuWT9mgdZ1crsCFPVcxsd10PsK1raON1u07Fx1AQb7ukReZRzef4Pqx26jXPkh9XfdRnUoVcIi6H4Nfxv6JqZs+Q9itcMhY2KGMOBx5zCqEkFnfAxAVFkEFuDph3uAe8HSw45ctrVkZLiEvl2tHbukNN6js++swDzgUJRQK8cnKsZj/zmIEnw2FQq6AMLcA7qtuI6WzP7IDXaCQiPi00qh02B+PgNVD3UVLrztHdwc06VEfQyb3MxpsUHn6MJYHq15medl5WpfjszIx4+RRHHj0APl1ANSpDUlcNpz3RsL+SmEIgbm8/zqSYpLh7OmEa4dvat2W3cgeCgv9nXeYvVF38Mm7H6HjsNY8HMHCCT41vOEfqOxgoMI+z1gIyBxsWT+/vxiLL881az5CCCG63VkpR/CaIqkpORB9BkiPkKPjEiEk1tohhwfbdYcbVJJDgMQ7CrgEKudjgYCAnkI8OWhgJiPSHgPXflWgyRQBUh6gWOeI8mDvDzSbVhjyUHWPIORl8ujaZb3hBpWbh/fzgENRbLT9rmM/xoElC/H04T1W7V2Oa/pqs3ZwQuWGjdG4z0A4eeke5KGo5KdRvEj/ZSbL0z6mSk9KwNEVf+DB5fNGX08PL19AdkY67/YQfqsw+Gyqe+dO4Z2ffkdQu06ICL6FvKwsOHv7wKWi9jFJvkzGQwvmyE5LxcE/fsNbs34ye70IIYQQQgghhBBCCCGEEEIIeVlRwOE1wEYHXz/7H723Rz+M5aGEwV/01br+9unCUbT1uX06RCvgIP6vCLo0Tm+7gLjweEgtJUanZU0WTK17YCNQOx4Kg93ZSORUdYZcKkJ1Dxf8uWk8LCylpV5vQp6nmLA4s6dJy87C7P07cDgnDBkWBRCMFcE6qALst8dDEpsHUXY+XHY9gPxAGPKdLCHMyYc45eUuxC9Pw6YNxLCpAyESmbcftLLT1U/g5SISFz7m1JwcDN6+CY9SkrWmkblbIXZEVSgkQjicj9cK24WHROHw2pPYv/KY1jxyK+PbMkumDFew7a75eVTU4zsRSIzWXidT3L8ahtBLD1C9cRWz5yWEEFIoN1WBkL/1f3FPDwce71Og6gDtwv6EW8a/7LNpVAEHRlgGR7kRxxWoM1YBoSmHCeyuS1GL7VgN6LhICKGYQg3k5ZYWF2N8mvhYrctslPrDyxbxcER+kQJ1Yr6WQ95B074DIRAaDgkXJbW0euk3Nwvuq2SlpWLT9MlIjdN+vekjLyhAUlQkIoNvIfik9jGJKfJyspXrIBLBr3Y9vdPFhT3kr3lzRd+7i/jwx3DzfXk7yxFCCCGEEEIIIYQQQgghhBBiDvN+8SQvpbM7LiEn03ChwNENp7Quy/JkyEjJNKuolQmo7QtPfzeUhrxAjrvn76Nm06pwqeBkcNomPRpg6fV5Zi1flCmDzfVY2F2MRvTuWzi46nip1peQF6VzgNFpPBzV5w//cxptF8/GDsUDHm5gFJZCZHZyRuwPlZHnU9jJhHVzkMZkUrjBABaYyqzshD03Q/EgVrtDgTHeVbxQtUEAXmbsMyY+Uvm4196+XizcoCmxjy/kGgWcAqEAM974Ccsmr0PU/ada00rCc4zed1UHd5PWUVGKUYBZAOOlpSijEyGElFLkCQXkRgYHDz+svcMpyFNAlmV82YIigQan6oClK0qFrWtSCOBaG7Ao/AqlU8U2QPtFJQ8npNwr/tgJeRlZOTiaNc3NowexZMxw3LtwhsINZYR1Ybh75gSSoiPNms/V1x8uFX3xMsvNzkJGkvKY5Nq+XSaHGxihUIR/5kzD6Y1rkGpCUKcoFx8/E6cs+b4+2cznlBBCCCGEEEIIIYQQQgghhJCXGQUcXgPpSRlmTZOXk4cpPeYgPsJ4ke6hNcfxYaMvML3/XCwcvwx/z9mOLiPalXqdRRIRD08Mmdxf/zT89n7w8C1d9dL+FUdLNT8hL4LG3evD0c3e4DSdh7flf68evomvN/+NrIDCEIMmuZ0YyWO8y2U9XzWsPCWttQ9iJzTG73fv4MstB9Dn1zUY+ddWRCWbPjJn875NDN7uVdkDLzK2H33b/0Ms/nQltoUGG5y2wE6CrFqOWvvyzBTd1auWwZkQRxgOObwV0MikdfSrVRF2zrYoCVtHmxLNRwghpFBeunnT5OcocPJzOXJNaL7zcJcCh8YU4MzUAlz9tQChfysQ0LX0W18gAkRSAaoP1h9eEEqA6kOEsPUsXfeFsL0UcCAvvyqNmsLC2vD3psA2HfnfR1cv4dAfC6GQK8PWpAwIBDj/z9/Y9/vPWPnpWGydPRXpSQkmzx5Q3/D3ant3T7zIbh7ahz/Hj8SJ9SsRfMrMLgwCQPZfF4aSqNe5h0nTuflXgtTKukT3ITXy3iIvjlWrVkEgEGidqlevXuLl9e/fv9jyyIvp4cOHSEszv0sLIYQQQgghhBBCCCGEEEKKo4DDa8C7mpdZ02yauxPXj942adkRodF4cDUMZ3dewu4lB7Fq2kasmbEFler4QSgu2cvL0toC9doH8fP9JnTHiFlDILWUaE1j72KHbzZ9iqBWNXnhaWmKf+OexJd4XkJeFFILCd7/YZje232qV0DvD7vw82tnbkF6B8PdUXJr2kDmrTsA8azI3KyQ3CMAse/XRtw7gUhv4sk7JTxrVeoH4ItVH6HnmE7Fbktr74f0lj6QS7T3dxceRWDkX1uQlm28AwGzf/kRg7cnx6QU65jzolHIFdj+615EJ6UYnZaFHBgLawvk5+UbnNZlYQSE6bqnGeTfAJ29a5i0frsWHUB6svHAX1Hs86Zhl7p4qVH3BkLIC8CuovFiPNuKhefvrlUg4ZZpy86IAFLuA9GngYc7gNvLFbi7AXCorCxaLQmxDeBWR3meBRhqDhfwMIMmCyegxbdCONcQ8PNWpWhkl2n6QOOEvLAkFpZo9da7BrsE1O6oPCY5s3n9M1yzl59H5aro/tFE1PovIKJTkY5lT25ew5aZXyMv24RWOIDRUEBOehoEwhf734gKuRyXd/2D9ETTgx0SS0vIC0oetKnfvbfRcIjK1T07TX4+NNk4OcOnVu0SrB15Udy7dw83b940ez5WLL9v375yWSdSdnJycjBjxgwEBQUhKSmJNi0hhBBCCCGEEEIIIYQQUgbEtBVffY271YOHnxtiDRTy9xytLNyVy+XY8+ehUt/no5tP0OGtljj37xVkp5tW4KtelzGdtEbLfvvrAbww++SW80iNT0OFKp5o2b8JL+hmrh+7jYRI490m9HH2MlzoTcjLotvI9rC0lmLNjM08fMSIJSK0GtAM434Zyd9Xp7adx63zoSj4nzJEZIjMUwpJVK76MiuwF4mFyMuRobxlNPJAcvdKgLCwKjE3wAHpzSvAfc0diJML16s8NepaF9/v+4af7/xOWx6+2rX4AO5ffQSxiw2eNtHf6SIyOQ1bL9/Ge60NF7vcORuCuHDDBTg5mbkY+d0Q/LNgD9ISC4e3llhI8ObE3ti5aD8yUw0XygiFAsjl2kVP1RtXQeilByhTURmAj+HRRaVJeWg9oClys/Nwce81g9N659vgrYQgxNawwrGkh8jOz0M1Bw8MrdQI3SsGmrRK7HNi6cTVKInh099Uf94QQggpuQotAUtnIMdAzVelXsrCWXm+Ao/2lLKjgQJIfQj4dQUijwMFZn51qNJXALFV4feQoPeEqDpAgcjjCt5pwtYb8G7FQg/KaWIvGX5sxlg5l3xeQl4k9br0gNTSEuf++RspMU/5dSKJBNWbtUK7d0dDammFu6eOIS6sZN9BhSIRL7IvkJX/McmLokrjZuj7ufKYpGardvCvUw/XD+5F/JMwiKVSZKfrHy08+WkU7pw4gvrdehu8j0fXriArxXDLHFaY3+qtd3B51zbkZBYGh8USKRr1GYAre7ZDlmPs/z9sn6m9f/esXA0xD++hrIMOxgiEIlRr2gLZGekIv3Xd4LT2ru6o0bItsjPSEHbtMvJzc+EeUAn1uvRC1aYtTFqnsOtXcHrjGpREizffhkhM/8J92W3duhV16vyXnjTRzp07kZv7bP7/QUouMDAQjx49ok1ICCGEEEIIIYQQQgghhJQh+nXsNSAUCjFp5Xh83XMOLyYtqt3gFmg7SPmDLCucTYw2/KO2qU5uPY+Jyz/E/FFLITMyQrdK3XaBGD13eLHr7Z3t0OuDzsWuz8uVYfaQBZDlmrZ8Xbq8267E8xLyomk3uCV/Pz+88ZiHiypWrwAndwcUFBRg1qCf+fuSlZQIsgugsDLcEUCUoT2KZUF+Af66Mx+PbjxBRkoWXL2dsGzyejy+HV6mjyHPywbJPSoBguJDLhc4WiLhzerw/NP8kQ/NVb9jbXy+fBy2/boHB1YeQ3xkIlwqOKHriPaYvXcKdt4KxcxdRw0uY9/NUIMBh/CQKHzd83uT1sfFyxl/RyzF6W0XEPUghncWaDuoORzdHHB43QmjAYfBk/vxQMTTR7FwcLVH+7daYmrvH1DW7M7EImdIJb23S+Jz8NWng9FzVCf8MHyh0eWxTj2V3T1wb/IRVHgUB0d3e3QaFoh2DfTfR1E7ftuLkrBxsEbvscpRhl9WAoXyVNplEEJIaQnFAjSeLMSZb+SQ66hL9usq4CEIJicRyEstm20ecQxo8D8BrvysgMLEAbo9m7BAQ/HvIRYOAlTuW/z6/GwFzs+Sm7x8Xfy7lbDVBCEvoFptOqBm6/aIC3sIWW4OnL19YG3vwEfJ3/7jt3h09VKJl82WMeqXPxHz8D5yszJh6+SME2uXIyk6Eq+igHoN0fH9cbi8exsPKmQkJ8HOxRVB7Ttj4NTvcOPgXv74DQk5e8pgwCE+/DF2L5hj0vo4enpjzNLVuH/+DFLjYmFl74DqzVvBys4eNw7tNRpwaPHmUCgUcj6vtYMjqrdojW1zpuN56Dbuf6jVuj12zTf+2H2D6sDJqwIij93hx6kOHl6o0rg5/Os1MPn+ru7bVaL1ZNu2dvvi/w8jL2fAYebMmWbNs2nTpnJbH1J2KNxACCGEEEIIIYQQQgghhJQ9Cji8JlhwYOG5Odj8006c+uc8H4HdP8gHfcZ14x0TBP8VEltYW0AoEkJeYHy0O2PyZQUoyJdj3vFvsXraRlw9fMuk4mw2SrypTm45h5R4/aMVGlOprh96jO5Y4vkJeRGx93OVegFa1y0Y8wcPN6jYnEpBRhcXvcsQP82FNLR4wbxCrkCbgc2RHJeKLzp9i8e3I0xeryGT+8LG0RZRD57i/L9XkBKru3IxvbGXznCDiszLFrm+drAIL+xkoIuThwPv+JKWkM7/dnm3Ld8OLJxhqKCdhala9m8Kv1oVMbnzTIRcLBxdNj0pA398vgZH/z6NwO/6GH3M6TnFQ2Wa/py0xmgwQaVKfX9ILaXoMLR1sdsc3BwQF264k02Fyp7o9l4H9WX2GJJiUlDWHM7HI6O+C7KrOxS7TZAnh/vGRzhXVcgDDo271ceR9acMLi/ibiSO/X1afZkFTe5fDcP+lUcx7+gMHvQw5tapkBI9FvbcXD1yC4271ivR/IQQQrR5NhGgwyIhQjcqEHVKwYMOjlWAyv0ECOghUB+TiK10DvJdIvI8QGQBtFsgxO3lcsTfMD6PT3sBBCLTAwfhRxWQFQ5mbjanGhRwIK8e9n72qFRF67q9v/1cqnCD5rJZUT0r9t8yc4pZ4YZmA96CWCJBckw0Hl25aLD7QVmwdXaBnasbcjMy4FTBmwc/Diz5FbKcbL3zWNraoW7n7qjapAUcPDyxeeYUxD8uHBk8JyMdx1b9iZAzJ+ATaHw0+LysTIO3H1/9J+9IYAo3vwBIpBY8xFIUC7FkpxlOpzl6evEuFCq3jh0s9+dAnweXzvGAQ0C9Rrh/4azBaWPDHuL28cPqyxmJCYh9dJ9f9+bU2bC0sTV6f1F375RoPdn2iQoJRsVaxrswkhePv78/MjMzER8fj7t37yI4OBi1atUyad7k5GQcPHiQn/fy8sLTp8quOIQQQgghhBBCCCGEEEIIIa8DCji8RirV8cOXaz/mJzaau0hUPEhgZWOJJj3q4/zuK2Vyn/l5+ajVrBp+PDgNwyuPR0xYnMHpPQPci12XnZHNgxK2jjbFbnt4/XGJ1ktqKUGHt1phzLx3YGXLKqgIeXU9DYvFgVXHtK6z3x6PrKYOkDvo+BiQK+C4LobXFWpi70F3X1d+/texf5gVbmBYYX5AbT9+Pl+Wj4ntpiP43L1i0+X5GC9Yz61oPOBgZWeFX059p3Vd6KVHPOilzzvTB+GN//Xk5xf/b6VWuEHT/SuPkLHsOFDN2uA6VHZ31ntb4tNkXNp3DaZwdHdA5SKhFU0dh7bm66SPpbUFWr3RVOu6c7svozwIChSosDQEyR0rIK2lO/KdLIACBWxuJ8P5YBQswzOR7pLBO4KILUSwc7blwRFd2G0P9Oznw26F8+eIfaYZIxILS/x4UuLKaAhxQgghnFNVAZpNVX7LUBQodAYJpPYCuDcA4srmkIQHKVxrC9DuFxF2v1mAnATD09t46e7SwDo0SGyL35ai++uCUSJLwK+TAHXGCiCyoA4O5NWWFB2B0HMnS70cNuq/jZPyO/aBJb+Y17lBIECt1u3g5OXNLxbky7Dhm0mICyvhm9gErPB96Kx5WtdFhdzBtX279c7Tasg7PODAHFr2u1a4QdPT+6HIzzMcqGacK/rqvS01Lgbht2+aHNZw9qqg93YWXDi9cY3e26VW1qjcSPuY5OHli3hecjLYMUk+D2xYWNvwjiD6AifxT8J03sa6lJxctwJdPjB+TCLU8T84U2WllX0wnTwb7H+vb7zxBv744w9+ecuWLZg+3bSuJdu3b4dMpmx79eabb2LhQuMdEAkhhBBCCCGEEEIIIYQQQl4VJa/4Iy8lVlR8bOMZzOj/E/7X+hv8/P5ihFy8rzWNjb3hgl1z1GxWTX1+0OeGRzv39HdDg0611Zcv7b+Gie2no4/9O+jvPAKja3+GPX8e0prH0sbCrPVZcGoWfr/wPTZFL8PE5eNg52R8lD1CXnabf9pVbARkcbwMHlMfweKWdmG5ODoXrj+Hw/pC8VE0u45oBwsrC8Q+ice5XeYVxwe2rK4ON/D7kYjRd3w3ndMKTOggI5AbH9I5qGX1YteNmDUYzXo11Dl9rebV0OHtVvx8bnYuDq4+bnD50duvQ5RqeKTTIU3r6r0tITIRchMeBzNp1XiDt3d7vwN8a3rrX4+v+hcLiclylYUS5UGYr4DLgSj4T7+GSpMvo/Kki6jw1z0ebmAsbSwxLGAcvhu0QG+4oWI1L96xwpDjm84iJd54ACGwRfHXgqm8KnngpaYooxMhhJQhuUyBJ4fkOPONHEcnFODyPDmSQ7V3NpKyOiQRAC41C8MD1d80HCSw8wFcNQZEjz6r4Ou4vYccO3rLcfD9AoTt0/6uIrY0Y32EQIfFAnRcIkTvrUI0nCiExIbCDeTVd2H7ljJZTu0OXSASi5EUHYXHN00LC6v4BtVVhxsYkViCel16oDxVqFGz2HWth46AX536Oqdno/RXa648JsnLzsLdU4aPSfQV3muq919YQpf0BCOJLxWBAN3HTzQ4Sd3OPeDo4aX39uYD34LUUnuACRYyeV5EEgmWjR+JPb/9pDfc4OztA6HQ8L9O75w8hpxM4218KlQv/lowlYO7Z4nnJYAsU4G0xwok3VX+ZZefpUGDBqnPb9261eT5Nm3axP/a2tqiV69e5bJuhBBCCCGEEEIIIYQQQgghLyoKOLxGMlIyMabu55gz9Bec//cK7pwJxf6VxzCh2RT89eU6Ps3dC/dxZP2pMrm/gDq+OLz2BJZOXI0zOy6i84h2qNsuUOe0EqkYHy8Zw384fnjjMRaOW4YpPebg5olg9TSP70Tgl7F/4tcP/1Rf12ZgM5PXh42AHtSyBqo3rqKzGwQhr6qiISYVSXQuPL4Ng9dHoXCbHQaPrx7A6+N7OsMNtVpUx7uzhvDzoZcfmlyYzzh7OuLz5eOKXd9qQFO4ehfvcGB5P9nwAhUKWN4zMg2A09suYO9fR7Suk0gl+HbHF/ju369Qr0MQJBYS9W2sm8RQ3w/5/pCFODJTswwuX6AAnHbfgyC3QOftvapVRutq/nrnd/JwgCm+3TEJTbrpLoDSDKbNOzoDzXo3hEAg0AqBDZ/+Jt7+ekCxsBvrsFMeWvRtBCtbS/U2EmXlQyjTfr3cOhmMhKgkvd0WeozuhPmnZiExWvc0KqwLxC8fFH4m6MLCKsHni3cKMYVfrYr8c4MQQkjZyUmR48BIOS7OUeDpeSDxNhC2R4HDY+W4s0oZHIi/rkBU2RySwKkq8GiPAjcWy3lYoVJvwEX3IQmEUqDBZ0L+WZp8X8GDF2e+lvN1VEl9BFyeq8D1RYUhh4ptTQ8oWLuxwIUQzjUEFGwgr5WYh7qPSczhU6s2mr2hPCaJeRDKjwtMZeviii5jPip2ffXmrWHt6ITyEnr2NIJPHtW6jnUMGPDVt+j3xVRUrBnEgxYqkcG38efYd3Fm8zqkxMZAlptTqvsPat8ZPoEaqa0iTH3sA6bMhG+Q/uUwlra2GDTje/jXa8gDESoSSyu0eutdNOrVX2v6fJkM8gLdx1KlVa15a4glhsPS4beuIzMlWW+3hXrdevPHnZVmOFAtz5fh6IqlBqdhYZWnD0p2TOJRqQo/EfMoFArEXVPg7PQC7Oyj/O5xZJzyL7t8bkYBv51NV97atm0Ld3dlx9rbt2/j3j3jr4WEhAQcParcd/Tu3RtWVqZ3n42MjORdIlq1asXvVyqVws3NDY0aNcKXX36J0NBQo8tg34XYqV69eurr/vnnH96Nws/PD5aWlnB1dUXLli3x008/IT3dcIdNTZcvX8b48eNRt25dODk5wcLCAhUqVEDHjh35spKSDP8foKizZ8/iww8/RFBQEA+DsMfLlte9e3f89ddfyMnR3o9mZWXB3t5e/RiXLVtm0v1MmzZNPc+IESNw/Phx9WVNAQEB6utXrVqlc1nsdbdz504MHz4clStX5uttY2ODSpUq4e233+bdO0x9bd69exeTJ09G06ZN+faUSCT8+Wbb96OPPuLrSQghhBBCCCGEEEIIIYS8jMTPewXIsxEeEoWPm0/RW7C7ae5OVG1YGZf3mzcCoj6saDjsZjg/Mf8s+BcVKntg6paJOLvjEvYsO4ykp8kQCgVo3L0+hn49AGKJCB81/RKhlx4aXPa/fxxCh6GtUbt1TT4ivGeAO2LC4oyuExt9vjSiHjzlBcEVqnjyImlCXhYWVoYLOyQxefykIpaK4eHvhpyMHB5A6DqyA3//sPf1tl/3YOOPO0y+bxsHa8zeO4WHnKIfxsCrsida9m2MjJQs/DB8oc4id9tLMchs5Am5pe6PKKvgREiSjBf6ZKXnYMGYpbCxt0LbQS3U17MglXdVL9y79LBYFwN2me0PZbmmFf9bRKbDbfUNZDSugJzqLlCIhZDEZMDmagzCku4gsWtruHjpLhpy93XjIYvrRzWqJoto/1ZLtOjTxOA65OXKcHn/dTwOjsS9y4+0fgTPyczFxh92wD/QB20GNleHG6b1/RGX9l9HWWvYuQ4+XfYhVk7ZUCxcouJTvQIiQqP1LqMgX469yw4joLYv/4wwFqZhr60TW86h7ZvKx1fUsb/PIOlpipmPBLC0tsD/lo7By46FTNiptMsghJCykPpIgaMfKZCfrfv24NUKOFVTIPxI2ex4hBIg+R47KZd3b4uCd2hoNkOAyGPK4ENuMiAQAl7NgZrDhVAUAIfGFCDFSC32/a0K+HZU8KACO1m5AtkmDITu373k3RrYZ3xGFKDIB2wrAkIxdX4gLw9W1G8OkUQKOxcX5Ofmws7VDUHtuyCwbQcIhEJc2r0Nl3b9Y/KyrOzs0X/SVIScOYnU+Fg4elZA1SbNkZmchP2LFyBLT5F7WcjNzMC+xQsgtbJGlcaFAzSwx8G6HcQ8ul+si0G+LA/n/9kIWY7hbnGmeHz9Ci/Qt7bXHa52ruANr2o18PReiN5lBLbrBH89HSfU65yXh7Drl5EYGYHYsAda4RNZTjZ/PK4+vqjcsKlyepkM23+YjvDbN1HWKjVojE7vfYjjEkmxcIkK6+SR/DRK7zJY8OL6/t1w8fYx6T7vnj6O6i1aqx9fUcGsy0N68YEEjJFaWaHT+8UHCyCGsc/9i9/LkfZY9+0KORB5gp3ksPcHmnwlhFO18vtMFYlEPBiwdKkyCLNlyxZ8/fXXBudhYYL8fOX/JYYMUQa7jJHJZPj2228xd+5cfr5oYIKdrly5gnnz5mHs2LGYP38+DwMYw+YbOnQoDh3S7qqbm5vLwwXsxJbJCvabNdM/EE18fDzGjBmDHTuK/0/p6dOn/MRCHbNnz+aPgU1rCJt+1KhR2Lt3r97l7d+/Hz/++CPvhtGgQQN+m7W1Nd58802sWLGCX96wYQNGjx5tdDusW6ccHIhhAYeSun//Pt+eLOhRVFhYGD+xdWKBlI0bN/IAhD5Tp07F999/j4IiYTHV833z5k0sWrQInTp14tvA2bn4ICOEEEIIIYQQQgghhBBCyItKoHgWQ1WR5yotKR2jgj5DcozhAs/AltX56FK3T+v/YVvX6NaeldzBfgZMikmFla0Foh/GIj4iUef0rFh6xd1fILWSIi0hHRbWFrC2s8KT4Ah83OJrZKXpqXYqotPwNpi8egISohLxtv84yAsKR1DVhRUz/3rmOzi42sNch9acwMYftyP8rvLHb0c3e/Qc0xnDpg2EWEIZIfLiW/vtFqz5drNJ03Z+py3Gzn8X9s52xW776b1FOLjKvJHfnL0cdRaXi8QiPvq+Lj41vPEgIxWJb1ZHgb12IZRVSCKct92HUGb4PV90P/XX7QX8PPvIy0rPxrJJa3nQSh/WgcA30AehF0o30uxbX/XHe7OH6r2ddcP4vP10HkQoyt7FDr+enY2KVb30zr9/xVEs/2o9UuINF8uwLjmfLhuL6AcxuH/lES7svYqyxEILHy4YiZysXCz+ZIXO4Ip3VU+8/c1A/Dr2T+RmFwZq9LGr5Arvur4I3nMdwrzC51teTQpFVSkEuQoILmRDkC5Hnba18POxb3UuZ9bg+Ti55ZzJj4WF7Vr0a4KhU95A5br6O3C8yNiInT4+ymKs6mOmQWLnWKrlydJTEPrnTH4+IiICFStWLJP1JIS8XnKSFHzU5Dwj9Z3uDQBZJpBsfHBhNfsAwMZTdT+A2BpIDwdydB+SwNoT6LZaCKEIyE0FxFbsJEDKAwWOTpCjwMQB0wN6CtDocyEyohXYN0wOGDmytvcD2v8uhNTW/CLKsD1yhGxSICNCednCCajSV4AawwQQiijoQF58pzaswsWdW02atnaHrmgzbCQsbWy1rmff5ff+Ng8hZ06Ydd82Ts48zFAUCxko5LqPK5y9fZAU9d8brgy4+1fG8B9/VT+OvOxsHF25VG8BPsMev727B+LCDA8CYUyLQW+j+YC39N4eFXoXW2d9zYMVRVk7OGLod/Pg4P7fTlaH6wf34symtcjJMDyCO+tU0fXDj5EUHYWYB/fw+EbZHpO4+Pih/TujkZORhqOr/kRWavHjUGfvimj2xmDsX/yLSd0jWOcPWydnvr7G+NdtwDs+6LJ97kw8unLRxEfCtpUYVZq04Ovq6uNn8nwEiL2swJmppn+W8+1tCbScJYRHo7L5PGWj9o8cOZKfZ8XpDx48wLFjx9ChQwd+HRtZ//p1wwMOsG4GrNjfwcEBcXFxuHjxIlq3bq2+vei/81mBOwtR7Nq1S30dK+Rn87BuBqzY/eTJk0hNLexI0qZNGxw4cIB3YyhK1ZWgevXqvCvA+fPn+eXAwEDUr1+fhy/YOj169Eg9D5uOFe+7uLgUW15sbCzv9vDwYeH+jHWXYF0mWDeFJ0+e4PTp01rBjEmTJvGggy7R0dF8eY8fF6ZYPD09+XXscYeEhODSpUvq29h2ZI+hRg1lh0a2LVhnDdUgGOHh4fD29oY+Z86c4euq6tDAHgd7rCwkwvzxxx/qaVl4wc5O+T+1d999F82bFw7GcPXqVXTp0gWJiYnq7cyCFzVr1lR3Y2DTqJ5fti3Za6d27drF1okFN1hHDhXW/YEtS/WauXbtGv/fgEqTJk34NijacYIQQgghhBBCCCGEEEIIeVFRdfZrYN9fR42GG5i75+6hac+GZi37SXAkPzXr1RALz83G1cO3MKX7bL3Ts6LXw+tOoffYLnDyKCy4XD/7H5PDDczTR7H879mdl42GG9gI8gtOztQbbpDlyXBq63kc2XAKaYkZvAi35+jOvEPE5p92YtnkwhG6GFZIzNb30a0nmLFtEv8hjJAXWY8xnbB1wW6D7zE2Uv7I2UMxZHI/fpmFD05vv4jrR2/xHz+dvJzMDjcw+kbO1xduYCJCosBiDV6/XkV2DWfkVbCFQCaH1d1ESON0d6ExhO2jbpy4g+Cz97Dnz0OIfRJvdJ7sjBw06lwH9y8/NLqPMeTk1vMGAw7VG1XGvGPf4ufvNiD4zhOIk3NgkZLHO9uM+ekdg+GGoxtO4edRS0xaD1lePua++zvKjAC8MwULj3Qa1ga3Tofg2wE/GQwuJEQm8SBCXo72SJJF5Va0RWp7X4RXcsAdgQCCmo1hfSsBDncigf85QVFTI/SSK4dwVzpC/9Zf9GXS8ycEhL2s4fS+BzIccnFTFAMHq3MYkGUNb2t3vNRYXURpo6wUhSWElIGHuxVGww1Mwm3ArY55y04LU5682wAdFwsRfRY4O1X//j8rBog4qoB/NyEsNQayvbPavILIzBjlDjL6tMLovlLqALT7VX+4oSBPgcjjyu4VeemAna8AlXsL4BIoQPBqOe6s0r4D1nmCXZcaBjSbXliISMiLqm6XHrh2YA8fzV8fFjhoN/x9NOjRl19mnQ3uXTiLyGB2TCKElYOD2eEGRle4gdEXbmDKMtzAxD1+iOj7d/Hk5nXcPHIAGYnGW77kZGagXv1eiH8cBgUbcr6E7p0/YzDg4F29Jt6cNgdHVixRhynYc1GpQRO0Hf6ewXDDraMHcWT5YpPWgz2fe3/7GWVGIODhAxYAqNGqLSLu3OJBggIdQQ2V9MREVKhey6RwA8OeJ1OeKyb20QO9txl6rRVlaWfPwyKPb1yBpY0NGvUeAEcP/c8B0e7cYG64gWHTs/na/1p+nRxYmMDDw4MX+t+4cYOHHqpUqaJzWjbNiRPKfV3//v1N6rLACt01ww2sQ8MPP/zAi91VsrOz8d133/ER/1kBPSvy//DDD7Fy5Uq9yw0NVSZO/fz8eHCjXbvC7rhyuRy//fYbPv30U7685ORkLFy4kHeR0MRu69OnjzrcYGFhgZ9//pmvI+tuoRlaYNft3r2bX/7pp594oIKFBIoaNmyYOtzAlvfrr7/yLgya/6NlgQnWqSEmJoYHO9577z3ebYJhwQ8WCGABDfY4WKeEiRMn6t0Oa9euVZ9/5513+PeuatWqqbtyaAYcWAcKf//igyWkpKRgwIAB6nADCxwsX74cQUFBWtPdunWLB2RYtw02LZuHhR5sbQtDf2lpaZg5UxmoYuuyZMkSfPDBB1rLYSGUBQsW4IsvvuCXWSCFdQYZOHCg3sdJCCGEEEIIIYQQQgghhLxIKODwGjiz44JJ0wmEAnQc1gbndhdvkW3M+X+vYFyjyajVrJrRaVd+8zcfTbzD0FaQWkqRlyvD6X9MW0cVR3flD3S5WcVHPS/KzslGK0yhKTM1ExPbT8fD60/U14VcuI8j606h+/sdcHjtSb3LPbfrMi7suYrmvRuZte6EPGusEP273V9hev+5SE/K0LrNys4S3d/rgP6f9ISnv7KQOzwkCl/3nIOYsLjn+mQJ5ApYByfyU2lN6vBtsREOjalQ2RNfrJ2AmdPXIsfLFihQwPJRMqRPtbehITFhsRhcYTQ8K3mgx6iOPAzAuleonAl7gh9vnsPdprZA00B+XQNPT7zTqzN83Vz1Lpc9ltXTN+F56fh2a3y55mPeseGzNlNx/2qY0XlY+GHvn4dRpb6/3ulz/OwRN7wWIC4sSlBIRchq6gqb0QUQWRV5Di2EkL/pgBypiIfVJFKJcjlZuTiw8hgOrTmOqPsxhldMCIinO0LY1grpUFbCZBXk4EDMOZyKv4bZdcajmh2NmkoIIaUVdcq0z2GBEPDtJOAjMJt9HyeBI+PlcDChAc+NP9jy5fDtKIBQIoAsU4Gnypo3k1k4KIsg840fksDCsXD6ovLSFDj2iRxphYMQI+muAk8OKFCpD+veoH+5kScUiLsqgId5OXVCnjl7V3f0m/QNdv08B7lZmVq3WVjbIKhDZzTo3hf2rm78uvjwx9j+47dITzAeTn5ZbJz6hdnHJK6+fuj8wUc49MdvZs+rGdZYOvYdOHp4oU6nbqjRsg2ErIXNf8KuXcbJ9SuREPHf/0UEAlSoXhNt3h4BJ88Kepcrlxfg7NYNeF5qd+iCLmMmIDcrCxunTSpcfwNYwObuqeNl3qGDYa9rFpwQ/lewnZeTjdtHDyL41DGkxDw1eTk56co0YG5mJm4c2ofQs6d4AMXdv1KZru+rhr0/Ln5vfrhBhc138Qc5uiwXlktokBXysw4LrBCd2bp1q9bo+5rYbawjAzN48GCjy2bdD1iwQOXzzz/n4YCirKysePE96wqgKuZnoYVx48ahcePGepdvY2ODw4cPFwtksDDBJ598wjslrF+/nl/377//Fgs4bNq0iRfXM2zbssfXq1evYvfDOk3s2LGDF/Szv6ouDiykwLoyqBw6dIh3NdBcft++ymCcJtZxgS2HdVBgr49z587xDgbNmjXj68GCCjNmzODTsvXXF3DIy8vDli1b1OuvK3BhCtZxQRXKaNiwIX8Mmo9LhXVrYAEXtt4s7MA6RSxevFgdVFCFN7KylAOAtG/fvli4gRGLxXz7sW4hGzYo99UsPEIBB0IIIYQQQgghhBBCCCEvCxp6/jWQm6V/9DpN7LdyqZWEhw9K4tGNJ7h80HCLdYYVWLNRxye2m47MtCzkZOTw0cXN0Xm4so14lQYBRqet2rCS3nDD6DoTtcINmvYtP2p0vQ6sPGrS+hLyvLGOJOsfL8YnS8ag87tt0f39jvh2xxfYkbwaHy4YqQ435OXk4atu35Uo3GDjYAX/QB++fN9aFVGeWMcJ9pjmHp4GJ4/CEQn1KUkxkGVlF8y6cxMJ/Wogo2lFZLTwQcKwOkgYHAi5pWn7yYJ8OZJiUhB8NhTz3luMKT3mIF+m3K+cfRyO0Zt34G6sdtHW1ZgYDF23GWGJyXqXe+/yQ0Q/VHayedYqVPbAmLnD+fn9y4+aFG5QYZ00+ozrpvf25O4BWuEGFRvPrOLhBg35PWwwa+yv/HxGSiY+bj4Fv09YjtBLD/llQ4RdrHi4QRcWdFgQqizUeOk7OJT2RAghpVRgQgiAkcsAqb0CgsLaW7MkhwBxN4xPl5cCXPpRgRMT5cjPViA/i42wbd59+XdVFkA6VTVeCKlvRGgWbjgwUjvcoOnRLkBhZKDxsL20oyYvB9+guhizeCU6vvcharXpgNodu6L/l9MxfvnfaDd8lDrcwArD/5kzrUThBhaWcPX1R1D7LuU+6j3rKuETWAdvTp0DS1u7sj8mEQgglkhxav2qEocbGFZ0z7pYRIXcwb7ff8aOubPUHQxYuIF1PdAKBygUiLp7BxunT0ZqnP6wcHTIXZO7G5Q15woV0WrIO/z8jUN7TQo3qEQE30K9rj3LfJ3YNt23aD4/n5WWivVTPsOx1ct4Z4eioR5zsE4eB/8oLF4nusVfh97PUlOxblDxJnyHKKlBgwapz7Mif31YwT7DggidOnUyuty//vqLF+GrOi3MmTPH4PSfffYZmjZtqr7MRvk3hHVL0NdtgmGBBBXWEaGoRYsWqc8PGTJEZ7hBMzSxbNkydeF/fHw81q3T7qyrue169uypM9ygwh5nhw4d+Hl7e3te7F+0EwNz7do1hISE6FzG3r17kZSUpO7EERBg/H/RReXm5qq7PTDz5s3TGW7QDJWwbhsqLOCgKTMzU6szhyEs8MI6Zmzbtg1Tpkwxe90JIYQQQgghhBBCCCGEkOeFAg6vgaoNTBvlTV4gx6w355sdNtAUE2Z6AULIxQdY+tlq2DhaqzsymKJehyA0660corR+h9rwM1JIzUZhZ0XbmlhxwJfdZiM+onQjwydEKX/gIuRlYGVrhV4fdMYXKz/CZ8vGokWfxvzHY03HNp5BXHjJilQad6uPZbfmo++4boh9XL7dH+RyBe6ev8fP9xht/Ad/c1VqUhlTDpxEfF7xasw8Xwck9ateouVePXwTE5pP4UX3c4+dgkyuu5IyNScXi86c17uczDTDP2CXhepNqqDNm83hVtGFX3b2dMSQyf2w8NwcOHs68esOrCocNdEUQpEQXUe2R5cR7YrdludlA5mnjc75LF2VIxPqJRHgdMIdbJy7HcPrfIxHd8JNX6fe+osKmPCsGNxOfWjy8gghhJhX4F8UK+Y/N8N4Ub8hWaYPlI2EW8DNPxW8w4LE1vT5PJsAHo0Lz9voH+Scs60AFORpFygrChQ4/pkcOaU8pMhOoIADeXlIrax5cXn38Z/x0fcr1W8MQZFjkuCTx3hBfklUadwM7/70O2p36Iz0xNJ3gjNEoZAj+t5diMRiBLXvXObL96xclRfMZ/83on9ZYaGGjdO/4J0PTqxbAYWeY5LstFRc2KEctVyX3Gwj39HLgFfVGqjWrBVsnZz5Zfa32RuD8dasebC2V/4f6c6JI2YtkxU01+vcA9VbtCnz9Q05cwIXd27Bik/GlGmHCBaSiHl4v8yW9yp6uFNeNsvZUX6fqaw43sPDg5+/cuUKwsKKDxYQFRXFR+dXBQfYKPzGsI4GmkX7Eomys6EhY8aMUZ9n3RkM6dixo8HbNQv+MzK0O16yy6xrgsqoUaOMrpurq6tWaELz8am6EGiGL4xZs2YNnj59itTUVIwdO1ZrvVu3bq2+rOpyUNTatWvV50eMGIGSYB0sUlJS+HkWbGCvBWO6du2qfv5Zlw7N8EhgoLIDKMM6U7AODjExugNp9evX56GW/v37o3r1kv0vixBCCCGEEEIIIYQQQgh5Hko2VD95qfQZ3xUHVx83acQ/Wa6s1PdnaWOBnEzThmg99vdpjPlpOLq80xab5+0yutzO77Tj07PW7ipfb/wUX3SaiZS4VJ3zbZq7E3uWHUaVev5wqeCMdoNbQigSIORC6X8cdv2v8JeQl0laYjou7b/Ogz/VGlVG5br+6tsuHzDehUWfq4du4uzuS/iulEEpU+XLCrD8q/WYf2Im7pwNxfWjt8tkuRILCW7KMpH23wiIuuT5OCDX2w4WUelmL//B1TB82O873Omq7Jqhz76Q+5jdozPSYlIRfO4exBIR6rYLhK2jDXxrevOwAAumlbVxv4xAt/c7wsrGUn0d+/xQjWyYkpeNtLwc2EsteXcKczTqUo8vZ9KK8WjeuxF+HfsnUuKVBVv5DhZ65xOIjH9+ydvZYLH/KWClM5DtCOGRTIg3pEAQr10hKxAKlJ+H/y1S6Ge8+CMqKxZBDpWNP0BCCCF6VeknQMRR04oG5aY1oDNIaAHITewa8eSAArVHC+DbiRU2Gp5WbAX4dxegzgcC9Wcj+2xpPkOIk5/LkaenDjl4tQL3tyngVBWwdBHAr5MA+bkKlEWGztrNtPAIIS8SNsL94xtXUSCTwatKNd51QeXxjSslXi5bZuiFM9j760+QF5T/MQlb/9Mb1+CNr2bg6f0QRIUEl8lyRRIJYh4oA93l4en9UGycOgmJkYaDwXdPH0enUeOQkZiIpw/u8TAH61phYW0NVx9f3mWCtwMtY51GjUet1u0hsdR9TMJCH6wrAuvYkZWiv/OdLgH1GvJQTc+PJ6Fq4+Y4vHwxcjLMP67T59SG1SZ1/2ABGXMkRUfy0AspTpapQNSpstkyUacUfHkSm7L/bGUDTLDCfdVo/KwTwaRJk7Sm2bJli/r/t6zbgSlY9wGVFi1amDRPy5Yt1edZl4SIiAj4+PjonNZQ9wZVZwSV/Hzt/e6tW7fU17HHr9k5wtj6qYIFV69eVV+fnJzMwwoqjRv/lzY1oEIF/SnUd999FydPnlQHHGbOnKl1Owsl7NmzR91VYeDAgSiJCxcuqM+z/di4ceNMms/CwkK9/di2rFRJOYhRrVq1eHcPVTjlzz//5J08GjRogM6dO/MTey2w+QkhhBBCCCGEEEIIIYSQlxUFHF4D1RpWRs8xnfDvH9ojXpUXexc7kwMOudl5uH/1Ea4dvaV3GlYw9PHv76P9W61g41B8dO+AIF/8fvEHrJ62EYfWnNC5jIzkTFw/doefP7L+FJw8TO8YYUi3kco254S8DAoKCrDsi3XYveQA8nIKw0xBrWpg8poJ8PR3R0EpCubTkjLw07uLnkm4QSX00kPEPonHnL1TsPh/K/Hv0pLt5xzd7WHnZIu4iETkZuUit4pyhFBDcqo4lyjgwDwOZx0uDAcc8goKMKL+RCTefQqFXFngYGltgZ4fdMboH4ehRd/GOL2t8Efy0nL1dsY7Mwah+/vFR2dkP8BvfXwdq+6fx700Zaeeus7eEHR0B9aZVlBk52SD7qMKl92qf1Mecti/4ij2/HkI9/8bzVCX/EwJxJaGh/KW12XFT/8VoVgJIe9lh7wW1pB++hSC6MLXJNuWi6/MRUJkIg+z/GbzDxIKDAc1bFg160uKbZHSluZQ2SwhpCy41hbArwvw5OCz2Z4WDkC2iQ2l8rOBlIcKxN8wMJEAaPg54NNOCIl18T2jU1UBOi4R4NZfCkTqaXAkSwfieI2eAuGHFLAw/nXDJCxwQcjLoiA/H8fX/IVbRw/wcICKT63a6P7RRNi5uOrtKGCKzJRkHFj8yzMJN6hE3r2N7LQ0DPxmNg4vW4Q7JwyPhq6PtYMjLG3tkBoXo7VtyktC5BOj0+Tn5mL5x6ORnpCgLsiXWFrxLhythgxHQN0GCLte8kBKUXYubmg5eBgC2+o+JrlxaB+u7tul7o5QoXotSG1skJOpPWq8Plb2Dghs10m9vOotWqNKk2a4deQgbh7Zz0MEz2Lbs2357rxF/LkWSaTYs/An5Bjp1GFpY0aboddMdjw7ziubZbHlZCcAEt3NBUtt0KBBBgMOmzZt4n89PT3Rtm1bo8tLT09HnsbgDL6+viatR8WK2t1wExIS9AYcNAMMuhTtDFp0uSouLi48JGDu+mkuIzY21uTwginefPNNTJgwAVlZWXj48CEPImiGMFjgJDdX+T9uFm6wtS3Z+1Czu0JmZib++OMPs5eRWKQr0bp163h3jTt3lP/vlsvluHz5Mj99//33vFNEhw4d0K9fPx6scXR0LNG6E0IIIYQQQgghhBBCCCHPi/5fIMgrg438dfXwTZOnF4kLuyOURFx44Q9Ppji3+wruXy3ell2zGPXRzXCd4YbM1Exe1Dy23ud6ww26JMfq7vZQlF8t7R/8NLXs1xhNetQ3+T4Jed4Wf7IS/yz4VyvcwNw+HYJJHWYgIyUTdVrXKtV9sGU8a6nxaZBIJXj76wEl2n85utljQ/hSBLaswcMNjEJoQqGgKdPoIU7OMTrSqTBLhvi70epwA5OTlcufw/ljlmL8wvdQobKHznndKrrwMMEHP78DiYX+LKONgzWmbPgEPx2ZjnVhi3WGG5g5Nw5iypXd6nADcyMpCtf7WiCtl6vRx+vo7oDv9kyBk7t2uIw9Xz3HdMbiy3Nx6MGfqOaue1mZMYaLIPRuSWcR8sdqV4+yQqYKldx5uMI/sCLSt2kXCRQlzRejsXOgwWkIIYQYpyhQIM6MRlGC0h2SmBxuUGGhhLQwwx82aWECneGGvDQFri2U49AY/eEGXXKTTJvOvnBg+2J82gvg0ZACDuTlcfivRbh+4N9iReQRwbewZdYU5OVkw7tG6b57yXKy8ayxjgJiiQTNBw7ho/Oby9bZBR8sXQ2PgMrPpMDeHGnxcVrdBtj2vbRzK46uWIpOo8fD3k13cNve1R21O3RB2+Hv884P+lja2aPn/yZj0LQ5GPX7XzrDDczhvxbz148q3MBEhwYjLU674FkfGydnDPjq22JBAZFYwgMb78z9DZ+s3QYnr9IVTJuCvUYcPDxRuWFTOHt5o8BA90BVqMSvTr1yX6+XFQsqlunyslBuWrduzcMLzKVLlxAeXthFhZ0/f/68uvDeUHBAJS1NOxhjaoCAFb9rYkX3+mh20TWX5vqZum5Fp9VcN80if3Zsb2VVusEI7Ozs8MYbb6gvsy4OmlRdJJgRI0aU+H5SU037P7SxMIsmDw8P3t3i559/RmBg8c9NFtr4999/MWrUKHh7e2PWrFk8BEEIIYQQQgghhBBCCCGEvCwo4PAauH7sNqIfmvaDL9O0ZwM8S8c3njY6zaG1J5CXo/2Db2ZaFia2n4HtC/eWS1E1+6HskyVjMHn1R3DzcVFfb21vhbe/fgNTN0806cdGY2IS07Dx8FWs2nsR524/VreiJ6QsxUcmGuziEvM4HjsX7UPnd9vCzvnlGRlSKBTAM0BZUOPq7YI2bzYzexkjZw+FUCTE8Y1n1NdJo413ZjBlGn3EqXlwiDRcNWF7NR4CPb89H1x1HFlp2fjtwve860KFKp48rFClfgA+XjQKqx/8hs/+HIuBn/bG139/yjsVFGVtZ4Vvd3yB9kNaoV77IJ3hkAKFHOsensDmiJOwkuZBICi+f0oZ5oV8Jx0FSwKgfsfamLh8HNaFLUKtZtVgzNdd20Gio3giL8USeeG6X5dsn6lcK93FnfImVlC4FC6zfscgxD5JwPKv1uPzDjOQtj4RCpn+/W7OzRzIsw13j3ihKcroRAghpRRzybzQgVeLZ7vJw48Y39mF7VVAXqA9XV66Asc+kePBdgXyyyHnyeqkG00S8u4Rlho5QIktUGsE0PTrsgk3ZD5V4N5WOUI2yBF7RUHHJKRcpMTG4PZx/d0Nkp9G4+bhA7woXmqlXXz7IhOKRLBzdePnHdw9UblR4ejfpmo9dATk+QW4d6HwmORZEEulJZ6XPVes28bbcxag2YAhcHD3gIW1DTwqVUHnMR/h/YXL0OWDj9GoV390G/8ZhKLixwwWNjbo/8VU1GjeGj6BdSAUFj8WkBcU4NzWv3Hj0F79KyMQ6P2/jl+d+ug27lOMWvgXXzdD2PTtR3ygc11Vz3VZCKjfEElRkTi5fiU2z5wCWW6OwelZ6EUz+E60lXXDPXE57n7Y/xHZaPqqY1nWxUFl8+bN6vODBw82aXlFOwoYCipoysjQ7npiTvjAHJrrZ+q6FS3m11w3zfNs++XkGH7vmOLdd9/V6qDBup8yT548wenTyv9Z+/v7m9RRw5RACesQwf+PYebpk08+KbZcqVSKzz77DLdv38b9+/fx22+/oX///nBycioWdpg2bRrvVkEIIYQQQgghhBBCCCGEvCz0D6FGXhmskNNUYokIddrU4t0Jfv94BbLTS/9DkTEpcdqjjemSk5mL1IR0Piq5yvZf9+Lh9cfltl4f/f4+LKyl+OOLtUjR6PjAior3rTiGVm8048XEJZWfX4Dv1x3B7tN3INcINfi4O+L7sb1Qw0/3KIiElMSpf85DXmB4pLZ1M7ei3ZBWmLXrS0zt/T3Sk82r0pNaSop1hygJgVBgcvFGkx4NeLBB5ZPFoxH7OB7B5+4ZndfD3w3vfjsYnYe3RUp8Ku+OoGJ9IxYZjSoAYt0hJmFaLizv6x522cPfHbGPjVdwVjgWDdHYOkjKKj7cpCQ2Cw7HIw3Of3TDKYyYOQTDp73JT/q07NcEy279jN1LDuLG8Ts8zNGoS130GttFa59a1JWkB5hzZyPi81Jh/1/BiL0iBxk5FsjMtVBPpxAJUGVGK6TMvoaUOOW+sl77QLz9zUAenDBHswAfrB4+AL8eP4cLj5Ujs1qKxaicLULKx/cgqC2GvI8dFFWkQJ4CgkvZkPey0xtu4EQCKDzFECQW8MfOXlsf1Pu88PYeNsgTiiFWyCHSCHCw3XK+QoiCmhY4uOs0+g7tbNZjIYQQoi0r1vTCTKEY8GgggFdTBa7/DhSU/yEJ8tJMG9FZlgFYaDQkCt2oQFr5HZKg4ST2GafArWVAnsbgv2w9wvYAFVsDDpVKvvyCPAWuzFPgCQt4qL8qKmDnCzSfIYRDAHWHIGXn3vnTRruYnfp7Nao1a4F+k77Bjp++Q162eUOpSywsIMst/F5fYqxg3sTBB6o0bg5r+8IdQ5exHyMjKQExD+8bndfRwwsthwxHjRZtkJYQV2bdG1hXBdZ5wRiJpTXEUgvkZJgf3mZdHULOnETT/oPQctAwftKHPT53/0q4fnAPou4G8+/lAfUboU6n7rB10u64punx9SvYv+QXZKYkG1sZHpBICH/Mu2mw58+vdj00e2MwKtY075gkoF5DDPxmFs5uXo/Iu7f5dWILC96RQrN7REmx8EReTg7WfVm8WFkfeUE+Qs+d0tvd4nVn5aYMBGo0Gikx1kHKyniTwlJh3RkWLVrEz7OAAytQ1ww4+Pj4oEUL05Ke9vb2vMg9778uIKwLRK1axjtzsuJ9TaquEmXNzU0Z/lJ1X2AhB1PCFJrrp7luLi7a/8N4+vQpAgIM/282Pz+f/xXr6STToUMHvs0jIiIQGxvLQw0szPDPP/+oA5/vvPMOD0CVlKtr4YsqLs7MNmMmqlKlCj766CN+Yp0aLl++jO3bt+PPP/9EUpLy/1dLlizhIYcaNWqUyzoQQgghhBBCCCGEEEIIIWWJAg6vAScPjQocI/JlBVg6cTXvWFCxWgXcv/IILwKRRARbJxt15wb24/X+FUfL5b5YcfUnS0bj6aNY/PbRXzpHrk56moyvus/GqnsLYWNfsqHdflx/FDtPKX8s1xQRl4Lx87fi7xnD4e7ECncJKT1Twkrs/f9ejU/w5sTeWHX/N94l4NrRW/xH3LjwBITdCjc4//tzhmL5lA2lDjmYGm5g+7ax8wtH2mNsHGww/+RMrJq6ERt/2GFwfhZuYB0Gfh61BMc0ujcw4rRcOO25j+SeVYuFHBTCPECehNj3fGERlQP7UwkQZRSO8G9KuIHJDo2H9593IG7sivgAGyikIggzZbC9GgeHE1EQZSt/hNcnPjxR5/UF+cp10ezI4F3FC2N/LtxW7Mfu7Iwc/ldXJ5qH6dH48sYK5Mq1n0v2e76dVS7fLWZphBzcWvhiScQHfN9oaWMJe5eS77sa+npjzTsDEZuegbTsHNgpRBhV6SOIsmXAeRmE5wsDIQoLAQq62AHGBp5NLYCdkw1qNquGi/uuad2k6Mj24QLI5CLkQwHBfzt9OQ9NCPiyr8kfoi9e0oCDAtDReMPsZRBCSGlZOCkL9U0hzweu/aqAjRdgUwFIezEOSSCUAJL/vvrLMtgOFgjbV047SSHQ+Asg5b4Cl3/UPUl2PHByshzd1wohtixZ0d3leQqEHyr+GNLDgRMT5eiyXAhL/twRUnqmhBXk+TL8NWE0mvZ/k3cAuH3sECKDb0EgFPIOEMYKzFknhONrlvOC8FIxMdxg6+yCtsPe07rOytYOb82ahxPrVuDq3p0G52819F14VamO/Yt/QcjZkygrpoQbmOy0FNg4OUNiYWm0i4Au6Um6B9RgXReKdjxwrlARHUZ8oL7Muj+w+2R/2fNbFAuI7Jj3ncmhD5eKPhgw5VsehpBYWvHnoaR8atXG4Bk/ID0xAblZmbzTxarPPkRpWdrZwyOgMp7c1D4mMQWbhwIOuklsBPBuDUSeKPVTBO9WAr688tS6dWt4eXnx4vzz588jKiqKBxQuXbrEbx80aJDJxfRsuvr16+PChQv88pkzZ9CtWzej87HpVBwdHfn6lIc6depAJBLxrgjs/w/s8Xbs2NGs9atZs6b6PAsisJADC0swV65cMRpw2L17Nw+VVKxYkd/38uXLtW5n/xMZPnw45syZwy/v3LmTBxzYfKptrNnloSTYc6QSFhbGQw7u7oYHtmHba8WKFfwxsw4SlSpVgkRS2J2ThTHu3bvHAy1Fgx/sMTVp0oSfRowYgXr16vFuFyywcfLkSQo4EEIIIYQQQgghhBBCCHkpUMDhNcBG6nb2cuKFp6aKj0hEhpmjt+sisZRAZqTYWSwRI19muPig1RtNcXHPVWz5eRdCLz00+f4VYiFyqrqiwNEKgtx8WN5PgChd/2iOLfs3wVtfvYGzOy5i04+GCxHYSOWH1pxAv4+6w1yxSenYdbp4uEElNSMHW4/dxLg3Wpq9bEJ08Q/yMWnDsC4Pm+buhIWVBYZPfxMDP+vNrw+7HY7/tfwGWenFuw2wH3tHzByMN/7XC1npOVg9fVOJnoSsqnbIqO8CuaUI0ugs2J+Phzij+L5BaiVF52Ft8NaUN+DhVzgaoAr78Twx2vj+joUaVk/bhNgn8cVuUwiAAut8SCIjke9qC2GeBMIcBbKrKZDrb8nKc/h0bJzTxDcqwH35Y9ifN30fq5J+NwbWd2PgKxRALhVCmFtgcjH6xf3XIMuTQSJV/sB96cB1bP15F64duc1/tK7VojoGftoLrQc0U8+THJuCv7/fzvddGSmZsHGwRud32uKtr/rD2dNJPd2G8OPFwg2abC3ykJXLUgXKogtXCxu+L3f3Lf58lJSHnS0/Hd90BrnZytEoixLkKiA8kwl5e1u9yxGE5KKWdwC+3T4JwyuNLz6BQ2HRlTLeULyQROxqLEFBCCHEGK9mgNRBuwuBMZlPAXHJssRahFJArvujxKxpfDoAEccVuLdFjhTjA7OXWMX2QI23hDx4cP8fw18MchKAiCMKBPQ0vxgzI1qB8MP6l5+bzLpEKFBzGAUcSNlw9fEzaTqFvADn/9nIi+6b9B3IT0zsowfYNONL3YX4AgHavj0S9bv1RkZyEi7u2FKuTxsb0T+wbScexLBzLj7cOyvsT0/SHUjWdPf0cRxfvQwZJkxbXjKTdXemM8XDSxd4aEEVZHh09RIu796GiOBb/DLrntCwV39UadRUPQ97rBd2bEHwyaM89GJpY4vAdh3RpN8grU4YF3duMaujhbWDI0RiCe+0UFbsXFz56fbxwyj4bxT4kvKuEYieH0/CXxNGlWh+kUZhMymucl8hIk+UvoVD5X7l/5nHis8HDBiA33//nR+7s1H2WfG5ypAhQ8xaHutAoAo4rFmzBtOmTdMqhNdFs8jflMBBSdna2vIi+3Pnzqnv19j9JSQk8JCBSqdOnbRuZ+GDbdu28fObNm3CwIHKzwh99u7dywMWrCuEvi4OLMCgGXBg25B1clAFUli4wBD2fzFVtwddWrVqpdVpY+XKlZg8ebLBZbLXxejRo9WXQ0JCUL16dX6ebVNVIObXX3/Fxx9/rHc5bJ66deuqXyPp6eZ37CGEEEIIIYQQQgghhBBCnofiQ6SRVw4bxfuDeea30maje5cWCzcYv18FL7LVx9LGAs4ejvhuyAKzwg05lZyRMLIR0jtWQVZDb2S28EPi8AZIbx2gd+zYkd+9Be8qntj2yx6T7uPKoRsoiZPXH6LAyCj1x66WY9UUee00690Q9q6mj2C5dcFuZGcW7gMCgnzx8/FvUadtLa3pKtX1w4JTszD06wH88rCpA3mnAEd30zvHsML+yI9qIOqTWkht44H0Jq5I7OeLx7PqI62R9ih0qk4R//vjA53hBpXwu1FG7zfkwn2d4YbsyjZ4/FNtPP1fVaT09ERGU1uktZAis7Yq3KBNIRUidkwAcgJKXoH5f/buAzqKsgsD8DvbN713EkJCIKH33ntvUhQVCyCKir8ooKKIYEdpioodaQpI7yC9t9AhJJDee90+/5lZUpataQT0PucsbJn5drZkdie573cZHQuhwvZwQ2nI6uiG0/z57d/txXuDP8HFA1fL/qh+4+RtfDT2K/zx0QYkRiXj2xm/YFLD17B52S4+3MApyivGluW78Vqnd3HvenxZ2OxouvkAFkcgYCERlXetGBHYHLXlxukoi7cL/8gDU2SmkEXDol9xEyw++hGun7hturtIsvWiKVeZA978eCGen/kWZk79CEf+OlnWKeORx9bQiRBCqkkoYdBiWuWLBjXWJ3y3ylpwgcN9fFoKU3C3ieTA2U/YWg03cJpPEcDOE4jeYtsOOFVf31ZpycdZq/v4xKP0IUBqTsMOnSGR2/6d+dz2v6G5XwzK8W4QirEffAy/RobHJF7BIZi48Cu0HTaav9ztyUl8Jwe5oxNqS69JU9D3xZdNhhtK5SRbPyZJunW9TsMN1VWYk4WY8/qi2Qs7t2Dz5/PLwg2cxJvXsPXLBTi7dSOyEhNw8Ofv8MsbLyFy746yjh6KokJc2LkVa+fORFZSAh8k4DpAlI5rGwYR3XqhtqRE3azW+lznhXHzPuG7kVS1uwj3s7PmvTfx42sv4s/57+DOmZPQ6R6TY5KHwLMl4FS/emM4BQOeLfBQcB0FSnHF+qUF+yEhIWjbtm2lxpo2bVpZ4X58fDzeffddi8tzBfGlxfGcqVOnoja9+uqrZefXr1+PHTt2WOxa8NJLL6GkRD+5hr29PZ566imjx1uKe96OHDHfuuPOnTtYvXp12eWnn37a5HJhYWHo2FE/OcTdu3exaNEiaO6HmrgOCNZUDJQolcYT63BdMire98KFC3Hzpvn9Sl5eHmbNmlV2uUuXLmXhBk7nzp3Lzv/www8oKjI/SVFhYSH/PJRq3Lix1cdDCCGEEEIIIYQQQgghhDwKKODwH9H7ya6Yt+ktg1ncKxt4qCpLM1hxNGotWvRsgoZtjGfD4rb3/Q0z+QLcylB7OyB/QBhY6QMzcwkYlLTwRVF749ns7Zzk8Ar0wNldF6EoNt/loSLWSkjBHKWVjhUclZr+UE1qDtfVYNL88TYvX5xfgksHygtTOKGtgvHVofn4LWoZvjw4D7/cXIIfLi1Ck87lf2TljPnfUPxx71s4e9pWUJT+ZDBKGhsHIlixAGnPhEARaG9wvdzBOGTwILXSetF6aZG/wXoeEiTPbAiNh9TwBiGg9rFwv0IGOQO88bCd2HoWWSk5WPHGr2b3tas+/AsvhL/B70fNBdfS4zIxtdlMjHSZhEUvfguVhe4NpZj7aYzhHuEIcTJf2FUdRzeewpZluywuI0hQw+sLBVq4GH6GBAjc8Hnz5zH37Zf47hLJwjTYz3WA0+/OcPrBCbIJMjAODJgdlroVsZDpNNjLHkFMj1Rkj1Ig+tl0fJnzG2aMed9kRxNCCCHm1R8oQMd5AjhVnMT9EWkOwKoB77aAc6jxbS6hQIe5DGK21P52SJwAmTuQfJKFDR/H91XtmESrqpllCLEVN7t+x9G2H5MoCvL5AvmKfEMb4cmPvsDzi3/A2Pc/4f9/5rOl8AkNM1iO6/rw4vKfILU33+mrOrjuEtZoNdZ/iBX/gpm0o8+dQn5mOo6s/sXsMsfW/obfZr6MyH07TXfg4Ap601Lx25sv45sXxmP/ym/4kIOtmvXpD2cvH9SGm8cO4co/+6wu5+DuDr+wcIPrXH39Mea9jzDwlf9BIBDyAY4qYRhc3LUVqdFRyE9P44MS277+BH/Om232+fyv4X7H2f4dAYTWfzRN4tZrP0fw0H5Xys3o7+fnx58/evQoTp/WT14wfrzt+8hSgYGBeOONN8ouc8X5r7zyCl8kXxHXJWLevHn43//+V3bds88+i/79+6M2jRs3riw8wP3eguu4sGLFCr6rQkUpKSl8Z4vSsAdn+fLlcHPTd9As1a9fv7Jt5gIRw4cPx8aNG43u9+LFixg4cGBZdwxuPa4bgzkVgwxffvllWcCiYhjFHFfX8o6YFcMjFXFdIUqX40IHXCeKip0qSkVGRvJdLrigRenv87744guDZbjXtzTUcuPGDf55K13+wW4Y3POfna3v1BMUFFTrrzchhBBCCCGEEEIIIYQQUlNM92Um/0pdRrbnT7HXE/iizF/nrkPkP5Zn6X5Yzu2JxJbc35GRkIkjf56ESqlG74ndENjIH7+8t9ZqSOJBxa39AaH5/A4XcrC/mARGUz7rd79nekBuL6tU54oWPZuiKsLrWy+EbhTkVaWxCTFn2LT++OuLrSa7Fphyft9lRB66xs9U36xbOLqO7sAXivuH+vInU0oKS7D9+/3Y8f0+5GXkW70PtYsEBa2NuzSUETLI7eUDn9/13VvEEhE6Dm1jccwDq4/i3rX4KgWUcvt7Q2dn5qPRSp1DcbPqzRDr4GJvMnRhSWZiFtZ+vIkPilli6z5UWaLC3l8PQ9g5AJr65r8icMNpc1k0OK/EF0v13TuqI/5WEv+euXslDnJHGbo/0Qldx3TED2+t4u/LmtyT6Xj6dDDefm4MUhU5cJU4oKGjf9ntmxJ34W/v3ZAOKg+uiJqKIR0rQ/5r+dDuLQIGGAZpOFJGA5GUNXrxhU0kiHPLwbLZP2POivLZKAkhhFhXryeDej2FyLvHQlMCXPlOh8xH45AEqWeBUTsFKEwEEo7o+IBBUH/AMUCIyG/NdAuqYfUHMXy3C02J7cc/ni2rVozpGsatx9qwDCE1p83QkbiwayuKcvTFltbcvXQedy+d47+714toitB2nSAQCuHm58+fTFEWF/MdAq4c2ANlUWGNv3wiiRTBLS3PsH710D7kpljv4PCokdjZQVVcudY5eZkZOP33n2B1NbOf1CiVuHZ4PxiBwKYxHT080W9K9b+TZ8bH4vKBPchKiOOfh0aduyOkTXsc/uNn/QGQFYVZWej8xET0f+l1FGRlwN7FFZ5BwWW3H1//B85s/qtqG2fm/pOjbuHQ7z+i/9TXqjbuvwz3mdVlgQAn3tdBq6hcuIFb72F+5gkEAr4onSvgr1joX5WAA+fTTz/F1atXsXfvXv7yd999h99//50vovf19UVWVhbf6SA3N7dsnQ4dOuDbb79FbeMK8f/66y8+XBAXF8d3OJg+fTo++ugjPujh5OTEX3/8+HGoKnTt4ZZ5/vnnTY75xx9/8F0NoqOjkZ+fz4cQGjRogPbt20Mmk/HdEc6ePVv2uxCusP+XX8yHsEqf+xkzZvDbV7od3Gvk4GA9KMd1V0hLSyvrMLFr1y5IJBI+zDF06NCybVi3bh1GjRrFd6jIyMjAyJEjy7abCzJwnRa4gETF3+Fw4YaKHRtKO05wgQnuxOFed24buO4f9evXh1wu57t5nDhxoizgwW3Pjz/+aNBtghBCCCGEEEIIIYQQQgh5lFHA4T+ofhN994IOg1s/MgEHbrb1fb8fxrZv9+DeVX1h8s6VBzBkal8kx6RWejxl/fKZs0zhOjuo/Jwgjdf/YY/rHjFhzkjkZxUguHnFKWUtFyMPeL4nqqJNo3oI8XdHTFKW2WXG9W5ZpbEJMYebifDV5S9i3qgvoNNaLxTZ/p3+D+OcbSv2wrOeOxZsm4OQFvVNLn/x4FV89MQiFOXZXhBT0siJDzFYUlyhu0O3JzpC7ig3uywXyPjiuW9s6q4iFAn58EZFha1dUGUPPIxn54/HP2uOITEq2abVKxtu4Nw8fYc/1bi/c4E3LXRluKaE36w4vLd+JgQmZrjMzy7gP1+44EVEpzD41Dcf2Nq8bBe++99vBn/AP739An6f9yfS4zNt3uRNi3dg2Mv9EWhveF/Hos7gr6xtJtcR+gjh+KED8qZmAzeUYEc6AsFiQMuCiVRA1J4Lypl+fwp8hThecJH/3HByd8QjrWoTexNCSK1yDtbvX306MMi89mjsqLhiyHu7WERtZFEQp7/u3i4gZLgOhcm1v41uEUDYWECZx8IlxHr4gCNx5kIYVSvI9G4HOASAD3SYEzqSAg6kZnGz2Pd+bip2LPkCLGv9mOTS7vLvcVxowdnLGyNnfQCPeqaP2+9FXsD2rz+t1VntG3fpDqHEfIHo3Yvnse/7ZTaNZWsRf1V1Gf8Mrh8+gNy0FJuWr2y4gZN08xp/qmk2PS8Mg76TXzE5635xfh4Srl8Fq9PCr1EEnDw8zQ5zbtsmHF3zq8F1MefP8F0hivPKC8KtOb9jM57/uj/cAwy7hl49uA9nNv+J2nD9yEH0ePoFSO2MA9v/Rd5tGfRaKsDZT3XIj7W+vFOwvnNDXQT6uKJ8LuBQKjw8HM2bN69yiGDHjh2YM2cOli1bBrVajeLiYuzevdtkuILr+PDZZ589tGL3evXq8YX7kyZNKtsmLhCwadMmo2W5QAEXvOC6S5jj5eXFd7145plnysbjOhiY6mLAhQO4YEFAQIDFbXRxccGIESP4MIaprg6WzJo1iw9ocB0lioqK+Pvj2NnZlQUcOAMGDOA7dnDbfevWLYvb7ezsjKVLl/LPmSnvv/8+v+/jgiLc663RaPjnpLQbSEVcuOKHH37gu1gQQgghhBBCCCGEEEIIIY8Lhq3s1PjkX6MgpxDPhb3OF2fWNZm9FIoipcnbfIK9kHov3eaxuDd0xvRO/B+6LXHfdwchEhkiOjVCwq0kXD12k7/et4E3VAoVspJzLG7vp3vmommXxqiqe8lZmLZoI7LyjIuap43sjMnD9O3bCalp5/ZGYtELK5CdYv49bopOJoSztzNWXfqaD/hUlBqbjinN3jT7c2xOfgcPpD0TYnEZQaEaIXMull22c5Sj7zPd8cLHT8Le2R4atQZHN5zCnl8P4fLh6zaFN/xCvBHWNgSH/zxpcP3dpS2gdTb1B/77H5UWdiv2F3Lgt0z/R2muy8RHW2fzf2xOT8jA30t28QX4jwvu0Wpme0DX13imQiZRDef5eZj27tMYPLmPwW3ca8F1Xdj900G+GwRHIGDQaUQ7vLlymlEQgNvvzuw5r9Jdeoy211UItp4Y8/54E92atiwrcMpJy8W09XOA9pbXz5ucB+1NjX4sCcMHHMRj7CB51XJwQXtDjfnBr6BNvxZ4lCQmJvIFJJzGz38AiUM1gjtcoVthLm79+hF/PiEhwWphCCGEVIYih8WeZ3VQ1/wk65UmsgM0Zmp77XyA4srnrq0SiADHQMA9gkFeLIus+zXCXPBAXQQocyxvb49FAriFV70oMzeaxdG3dVCaqN9tNpVB4yfNd8UjpDpiLpzB3u+WoqTAete3B3Ez47+wdCUkMsPgc05KElbNeh0aVeWOSaqCKyZv0rMvuoybCIncDlqNGrdPHsPVQ/v5Yn9bvt+6+deDm18Aos+dqpVtbNihC4a/+Q5/Pj8jDWe3b8blvY/PMYk1XJeFPs9PQ0T33gbXc6/Fod9+5LtAaNXqsiBJw/ad0W/qq5DZGx7jxF2JxMaP59bYdo2e8yGCW5V3+CjIysTPr0/ht6u2jP/wMwSEV63D6L8V9zOYcRmI2aJD0jEuMFN+GyME/LsyCBnJwLOFfjKImvTbb7+VdR4ICQnhuwyY20bu2Co5WT8pwocffoh58+aZXJYrnuc6IFRc15x79+7x3QoOHDjAF85nZ2fzhfYNGzZEnz598MILL/Cz/VtS8TnhxuO6ApgTGxuL4ODybiXW9n9cV4E1a9bwhf5JSUkoLCzkwwXNmjXD4MGD+e1zc3ODrQ4fPoy1a9fy46WkpPAdCzw9PdGxY0dMnDiRDy1woQ5bcJ0XhgwZwp/nHjP3/Nn6/uCe7y+//BIXL17kO2U4OjryHRpMdY7gghBcuGPr1q04c+YMH/bgtpt7Hpo2bYpBgwbx7yEPDwsTT9wXExPDv+e4Dh1caCIvL48PvHh7e6NFixYYPnw4JkyYwHd1IIQQQgghhBBCCCGEEEIeJxRw+I+7fS4a7w//DDlpeXW6HQKhwKaiZFtlP9EMGh8LhalaHTpczUH+3XSLQQZTmnRuhIU73jEq8K6KnIJibDp8Bf9cuAOFSo1Ggd4Y17sFWoVR8SipXW/2/ABXj+pDPdYURbgit5cflMFO/GUvSPBa3+54qsLMgj/O+gN/LTI9S74lancpYue1AATm/2DscDELvr8YFwSEtgrGp7vfxcIJS/hgg63c/V3x9eGP+D+6z+j8HvIyy0NeSW+EoriluWJw1nzAQcfC/7MouCWqMer1wZg0fzzfIaLUbx+sx5qFxjMTPsq4kgRdVztohzqCDRDDw9EZDTM90FXUGH1Hd4XcXma0Dtc9Y/+qIybHa9g6GEtPfgxxhdluPxr3FY5tPF31bXQVQjPdDboudoBI/+IEyD3wYoMB6OPTEj/OXo19nY9A4FX+WphS9HURlJsMZ/kVTbKH5EXjgEdFunsaLKz3Glr0bIJHNeAQ/lzNBBxu/kYBB0JI7eE6OJyYq4Oqbg9JAK72rfYmUjfJNQwoyQIU5hu7meTZEuiyUACxffWLMhXZLGK2s0g6ykKrBtzC9EWfHk2pewOpXWvefROpMVFVWtfe1Q1dxj2NZr37l133z68/4NKe7XiYfELDMGr2B9i66BMk375h83pOnl4YP+8zqJVKrP/gbSiKai7lJZbJ0WbISHR6YgLfMaPUkdW/4vz2x+uY5EH2bu7wCgpGw3ad0LhbT4glUqNlti/5HFGnjplc37dhI0yY/wUEwvLnZfPn83H34rka3U4uvNJ1/DNo2KEz/vntB1zaXbvvyycXLIJfWNUn4Pi3UxexKMnUhxi5cKDcAzXy+Un+fVavXs13V+BwYRMudEIIIYQQQgghhBBCCCGEkLpBAQcCZYkSh9adwO8f/oXMxEpW1tQAdz9XqyEDD383ZCZl2zymIswD+f3DzN4uvZMJ572VL6QQigT44+4KeAa4V3pdQh4VXLeFZxpMt2nZvM7eyBrdwORtXMBhQd++/PmpLWbi3tX4Km1PyosNUdjKzOx8OhYBi29Afs90wU+TLo1x/cStSt1fm/4tUJxfDLmDDE27hOPG6Shc3H8ZOh2LomZOSJ5pbt/BglFowcoNi+W5sojX/NtgrH8EvOt7QiKVGNy+68cDWPzSD3jcjZ05DFO/fNbs7XE3EzG5yf8sjvHO6tfR+6nyWSfH+U6ucsCOdRBAvcyX79xgisOKfKg3Z8P5LxcI/a0EHD4rhHK74Uy/wq5SSD+xHAxgjmrw18zlkEhNb0NdoYADIeRxpClhEX+QxfXf2EoX+9cErtiRK360uIwnUJKBOsfNPD10gwAyVyrOJI+v7ORE/Pq/adUep/XgEeg1aQp//pc3piInRT8T+sPkFxaO5CjbwuOlglq0hqq4iO/+4N8oAom3byD+aiQ39XnVNoJh0GnMBDTu3B3OXj4Qig2/n17cvR2Hfnv8j0k6jh6PLuP1xcempN2Lweo5MyyOMfzNd/ngQanlz42DqsRM+55qEkml0Chrt6OISCLBq7/+BaFIVKv3Q8h/wYABA7Bv3z6+4wPXvSEoKKiuN4kQQgghhBBCCCGEEEII+c+iv34RSOVSDHyhN7wCPTC7/4KH+owIBAw6DG2LXSv3W1zOxcsJ+VkFUCnUNo0ri8qE2ssBJS39jG4TpRfC8fDdKm2vVqPDijd+xbyNb1VpfUIeBbnpthWUa+1FyB5W3+zta69cwYjwcLT19werq2IhDtcRYu1daJzEUIQ80HVFy8Jr/T2z4QbO9ZO3LM7ur+1lD7gIwKRoIDhUBEbB4sK+y2XLXDxwFf6hPlh++lPodDq4ertgdfZNLL96ymg8UaYK/l/chspPjsIOrtDJhfDWSrHo5Wdw4pvDeH3tGhTmFsEv1AdDpvTFyNcGQSwVV6mzRU2QyiUIaOSHmMhYm9fROEmgDHTkn3vZvTwIFdqy25JjUi2ue3j9Cavj//r+ejRqHwqRhyP+PnMVSd0Doc5XQBqdBendbDAm3kZCsRBadfl2lNIOdzQbbuAUPmkPyfZsqI+pIJwgN7scq2GhOqkyHv+kEro0DQTe5r8q9XRq98iFG4xwzylbA2MQQkgtE8kZNBjKQObO4sS7D7mNggDwbg/E7rK8mJ0X1+0AYI0/lh4q7v4vr9Chw3uWA3yEPMqKc3NrZJyLu7YiolsveDcIrdYxSXVUNtzAibt8sfz8lUtwDwjE058shk6nhb2LKx9IuLBjs01jObi5Y8jrs3DrxGGsnfsWlMVFcPX1R4t+g9BywBC+i8P5HX+jLnAF/q4+fsiIu1cj4+Wkpli8/fbJo1bHOLbud3gFNwAjEOLqP3uhURkfCzyIEQjA6ir/2VTb4QZO8z4DKdxASA2IjY3FgQMH+PODBw+mcAMhhBBCCCGEEEIIIYQQUsco4EDKtO7bHC9++hR+fmftQ3tWuBnTndwcrC7nEeCOhFuVm4nR8XgsXzBb0sQbWlc5GIUGsqgMPvzAVKPw4czOi9BqtRAKqaCIPJ4863nw4SLu58+SgjaeYMUCi8v8+M8JpBS5VKv+2Q5CBCy5geIIFxS0doNOJoQ0uQROJ9MhzrFSbGLmjjWTXKAd7wyIK8xs/JIbRMuyIPynyGDZpOhUfPr0Uvx6axl/eWaQJ7r6BWPhpq24VZAFViSAOEMLabQCOgc57CPz4BCZxwcIQlsH493mc6HVVAgCRKfix9mrcWbXRby6/EUk3bFchFMZEpnYatBLIBRg1u+vot3AlrBzlOPjJ5fg+N9nLK6jlQmRNSIExU3cAaH+OWNUWjieTYPr3lgwOsDZw8niGFkpljvxcFLvpWPimI+R1zcUWm52Wn9H/qQI94QorRCum29AoNAYPJb5f8/Ctu/34uzO8iIwjq6flc8OVyF07eRQbFBAMlQKgYPp97JyhxJsVvkbSejBwPkZERwGiSB0KYFWy6BEJ0axVsL18ChbLuSGL2ZMf8HqYyaEEFI5fp0YhD8L3Fz1EJ85HSB14vbxrNUODmzl65hrRdIxbqJ3FgxDXRzI48nJ04vvOlDljgUVnN78JwKbtoCgGsfoYpkMaoUCdSUrMR57vluCSV9+w1/u+cyLaNCqHQ78vAI5yYlm1xNLpXB098BfH70LVld+TJKTkoTDq37CvcgL6PbkJBRk1lz7GaFIDK3G2jGJCINfm4mg5q0gkkix/etPcPfiuWrft52Ts8Xbi3KtH5Nwz80v/5vGBxZsCS1wnRGGz3wPF3dv48MojxL/8Cbo9dzUut4MQh57RUVFmDp1Kj/xBWfmzJl1vUmEEEIIIYQQQgghhBBCyH8eBRyIgQmzRyG8Qxg+e3Y5MhOzDG5zcLHnZyevSVyRdf9JPfD3kh0Wi3YHPt8bRbnFuHqschVFkuR8/lST1Eo1Lh+6zgdCCHkcufu6ov2Q1ji9/YLF5TRuUqtjHT99A3e/u17lbbFzkuOLAx/g1fbvwP56Ln+qLs0oJ2ifdjG+wV4AzSwPMNlaCCINi5cSo1Lw16KtGPfWCP5ye68AKNffg6CnHyAWQGcPlLRwRkkLb0hj8+C59haUJSpcP3Hb7HZcOXIDaz+p2ZlSOw1riyMbjLtLVKTT6rB02g98IKHbmI54efFzGDF9IPb9fhg5abnwDvRE/+d6Yt1nm/n3ACtgkDYpAiquc0MFrESI/K5+0NqJ4Lkpmg8bmCqkvH7yNlbN/wsXD1yxuv1qT3tk92pgspBN4+2AvIEN4bLlJkrCXFAS6oygiAAowl3Rc1xno4AD62JDAZuLELpUHQrfLID9AgcIvcvX4Wb4Ve1Ronhx+eeayJeB70opRN7lYQihkIWDUAWJToOcLCm0N7VoEO+Lr799z/r9E0IIqZKmzwvh2VSHs5+xfMeEikT2gKZmD0nACIH6g4CojVxnH/PLBQ8SoChVhxzzDaQeGq0SyLoGeDSr6y0hpOoBh6BmLWukYDz67Cn+VFUyBweMnD0P699/G3UpMz4Wkft2oWX/wfzlgPAmVoMJaqUSKXfMH5Nwz6/M0XJQubKCW7VB9LnTFpfRaTXY9/0yyJ2c0KhTN/SdPB3ZSYm4fvQgSvLz4OzljYjufXBq41rEVuhmYUsnBVMSb1zDyY1rkXDd+jEJv30aCzv7B7j6BUAgEiGsY5dHKuDg1ygcEz78vK43g5DH1qRJk/j/1Wo1Dh06hNRUfdfKMWPGoGfPnnW8dYQQQgghhBBCCCGEEEIIoYADMdKiZxOsi/8ed6/E4cK+y3xBa8veTeEX4oMxni/wxbM1pf3g1qjXyB/PL3wSP7xleppW3xBvdBzWBhqVptIBh4rEUjEfTqgJOWl5NTIOIXXlpUWTcOtMNHLTzb+XhYXWf16EhVY6LFhRnF+C1R9ttPrzqfUWQecphiBHA2GS+eVYAaAdb6GAR8hAM8EZkgcCDpxNi3eWBRwWLViLuN5+gNC4gEZZ3xlZI0Lh+Zf5QqJSh9efQE154s1heGLmMKsBB05JoRIlhRnY8NV2PtjwxYF5mPXbqwbLzN88C2d3XcLKrYcRF2i+U0dRay84H03Cjh/287mEN74vnyH0wv7LeH/YZ1CrbCsQKm7lCwjMzzStCHFF0sxWUHvK+ctXweLFjVvgrhZA7iqFOEdZtiyTqgYbajmEw6Tqt0tzXYO8sbkQd5FAFCoEq2ChOqyCLtnw88xtptgg3FCRRKqDdF8+clao0W/FWDwuGFZ/qu4YhBDysHm3E2DYJiDnDov0C9zODPBuw0DmDmwfo7PWbKFS/LsCToECNJmkw7WfTQ/sGMhtE6DIYXDus6rfuUAC6Kr39anMg+EPQh43vSZNwfp5s6EoLKjT7VAUFuLctk18EXtlCt9rw9mtG8oCDrtXLIZGVf79t6punziCmtJh1Hg06dnHasCBo1KU8KezWzfi2uEDGPfBpxj8quGs6KPmzMPdC+dwatM6pN+LsTrmxV1b+bB0xa4FXGeIrYsWQqct72BR08GTTR+/X+NBkepq1ntAXW8CIY+13NxcbNu2zeC6Jk2a4Pvvv6+zbSKEEEIIIYQQQgghhBBCSDnzFY3kP69B8yCMfWs4xr09AmFtQnDp4NUaDTeIJCI8/YG+SLTziHaQ2klMLpcSk4Y/5m9Aj3GdMfLVQSaXkdlbn2ne2dNwdvLq8An2Mrru3rV47PrxAF9MnJ2aU2P3RUhtCGjoi2WnPka/ST0gkYn566RyCfxCvOEZ4M7/317qZnKm/YoczlueUdQWp3dcMBtu0ARJkP9xAPJ+aYCCz+shb2Uw8r6qB3WEzOTybCMp4G45u8e2koGVGhfZZ6fkIPZ6Avb+dghrL18zGW4oVRLuBo2L9f1OTRn0Yh+8tOhZvvtG2wEtK7VuXmYBPn5qidH1AoEAHYe2gbaTv9Uxilp48P/vXLkfMZdj+fNc+G3pyz/aHG7gqAKczd7GvdOUrigLN1SUJdYh5YUIqJ3F0In1r4twd6HlO0tWg7lUIciiBdRHVSj5pQSKtQqjcIPQi4FdF8tdIRyHi+Di44S+T3crH1arRX52AdSqmgnQEUIIMeTakEGjCQI0Gi+ASyiDtPNsjYYbuMBB+DP67wX+3RkI9F+LjBTEA7fWsqg/QIAGQ02H9YSmv54YkJr/KKw0e1/j63JjWNzdoUPsXh2UuZRQI48294BAPLVwEcK79YJQrP/hE0ulcPb2gYO7B5y9feHTsNFD2ZaYc6frPNzA4To25Kam8J0cbh0/jEdJywFD0HXCM3D18UNARNNKrVucl4td33xldL1AIERou44QiszsfE24uGc7spMT+fOsTof9P31ba+GGihQFNdsdtDoc3NzRuHP3ssvc4y8pLID2EXgPE/K46N+/P/z8/CCRSBAcHIyZM2fi2LFj8PDQ//6DEEIIIYQQQgghhBBCCCF1izo4kDJcxwaueDXxTgqc3BzQ+6lu6DCkNV8Ey9Goa/YPxlxHht/n/YmF2+dg0+IdUBabn8p0w6Lt6DGuE8bPGYmm3Rvj8PqTiLuRCHtnO/Sa0AV/L90JRZHlQmsPPzdkJlZ/mlOuCDwxKhnfv/kboi7chVgigp2zHDmp5TPhi8RCDHiuF15Z9gIkUtv/UE/Iw+Qb7I1Zv76KGSumoCivGA6uDkbv148PH8YvFy+aXF9+Oxd2t3Jrbfu0AWIUfFEPrINh0bm2sRwFHwfA8d1EiG/qC9iFIgG0Gh0gNt8doAzXQUDEAErjor/i/GKs+3QzlMOtFP0LGCgaOMPhYjoehnqNy7dn0vxxuHz4eqU60sTfSMT8JxbhzR+nwdHVoex6rij/6sUYwN/O4vo6WfnXhX2/HcbLi5/Db++vR8rdtEo+EvOFlloZwJr4VsKChU7KQhMsQewnrQGNDg6ROXDbnwTmUgnYVsaBCCh1EC/O4ib7NuDm64LsFNPvWXEAA0Zo+f0jdGMwd/v/IHeQ86GGdZ9s5gMxBdmF/GdDz/FdMHHuGPg28MYjg3vKq1vfSvWxhJCHiOvYcHcHi6JkFhInBkH9Gfi0BxhGv49ma7iGleumcP03Fl0WAFF/stBZ+Hi9uZqFfzctIiYJ4NkKSPiH5YMPEicgsA+Dm2tYaI2bRBngOlCUVD8fCqGce650uPAVkBsNCKX6gIWyQs5aIGYRPIRBy+kMBNx3H0IeQa6+/vys/v2mTIeqpAQyBwejYvcDP32Ly/t341EnEAprpNBeUVzEd3J41Lj51ys732Xc09iwYC50WtsL6tPvRWPH0i/Qb8qrkNqVH3+oVUqk3b1j+4awLK4fOYhuT07C4dU/ozArE48TO2cXPvBRHcPefBciiQTF+Xk48/efuH70IJRFRRBLZWjcpTs6jp4AJ0/jiTkIIeWmT5/OnwghhBBCCCGEEEIIIYQQ8miigAPhcUGD1Qs2Gjwbh/88iZa9muCjbXMgt5chvGNDcHVFViZ0r5Rzuy/h3J5IHP/7jMXlVAoVpjZ/q+xyo3YheOHjJ9F1VAf+8v5VR5AWa7lSqGm3cNw6G211m7jQBFfsbY6yRIVFL6wwuMydKuLCIDt/PICSIgXeWT0DlcUVzuam58PNxwUOLvaVXp+QypDKpfzJlHd79ICHvT1+OnsO2Up9xR6j0MDxXAbcdsaBqcXCZ/ULPkbhhjISAUqe94R4VgLfgWLlla9wYd8VpGRm4E/dVWgE5rvNMPFqMEWmb//5vTVIupMClrHe1cCoer4WNWgeWHa+cfuGWLBtNpZMW4nUe7YHLLj9bNT5GD7k0KZfC/66YxtPg03KtxpwEGeUlJ3PSMnC0QMXsWbRlko/BdK4PJQ0Mz29tVZqOtygtdMBFd8GIgEK27qjuIkz/L+9CVEXBbRDHAEPEaBlIThdAuHaXAiiVEadd7j9KRdwULW0g3KwCzT1pWCKdZAeK4DoTnlIzRwhhIhoFcbvo9/s/gEftCvFfQ5wYYfTO87j66MLEFghlEIIIcQ2V37Q4fb6il8uWD5E4N0O6LJQAKGEgXsE9+lTs19Ako8D6ZdYJB6xPC4XXtg7iTun/x7h3gRoPk0Av876T8TorVoosizfl2cLIOeW9W0SOQAaC82KtCXAhUXllzUl+lNFXFgjZgsLrRJoN6vyX1yUeSyUeYDcDRA7UECC1C6uMJs7mdLnhZfh4OaB8zs2Q1lkpYtXDROKJdCqzU/GUIrb9me/+Ab3Is8hNz0Nl3Zv47sLVMXR1b/wnRweNZ6B9cvOB4Q3xYi33sOBn1dUaltvnzyK1Jgo9H/pdQQ2ac5fd+vEkUoHQwqzM3Hr5DFc3LkVj1ughwvCVCfgwAUbfEJC+THWffA23/GjlFqpwNV/9uHuxXOYMP8LuPiYaPVDCCGEEEIIIYQQQgghhBBCyGNAPzU/+U87uvGUUbihVOSh61gx41f+vE99L3Qe0c7mcUUSEWT2poumK9q2Yg8fBKiM2+diMH/MIqya/xd/mZs12xKuy8K4t0eg3aBWZpcJaOSHP+59i5GvDUJN+WftccTfSrJ5eW7ZD8d8iXE+U/BixBsY6/0iFk74GskxqTW2TYRUBjdb8kvt2mH/xGcQ9P1N+H1zDUELLsBjaywEmtpLN7AyBsWtTRc4ldI0kUPrI0a/Z3vAP9QXw18ZgJc+eBoDAtpaXE+4Nd/sbVcO3+T/l92zUuyuYyG9a70gvib4N/RF67764p9SXEDh9zvLMer1yu2v0uMzMWfAQrwQ8QbO7bmEK0dvwvGs5f0Lo9TCITIDOokAmcMCsL4L8GzUP4j+og1SXgiF0s9EBwUz7CJT+A4MttJJWMNwQ8Xb5CJkjK4P0eo8SJ5KhGR0PCQj4iH+MN0o3NCyd1O8s/p1vlNR0YueKFhYD6rOjtD5SaANlaH4eU9kzAiCMtbye7qVa1uIBRKsXbjJINxQUV5mAVa8of/cfBRwIaSaOBFCSG2L2/9guKFc2jng8nf62xwD9R0dbMWI9J0NrLmzWQeNEpWSdR048Z4Ot9boC3MDe1npBCQFGj/FwMv8IQmcGwBD/hQgZChqTOxeFoXJtu/M8+6xOP6eFttH67B3kg7bRutwZqEORan0gUDqBiMQoOPo8Zi06FswAjNfDmuJLeEGTrM+A+Hi44NWA4eh17OT0ahTtyrfZ8L1K3jUeNQL4kMNFTVo3Q6Tl/+E5n0GVmqsvLRUbPjoXfw28xXEXY1E4o1rld6eqNMnsHPp53hsMAyCmrfCgGmvIysxvlpDNerUHQKBECc3rDEIN1RUlJuDw3/8VK37IYQQQgghhBBCCCGEEEIIIaQuUcCBYNOSnRafhYNrjiEvU18Q/L+V0+Ds4Wj1WbNzkmP+llnQaa0Xsp7ddQmKwkpWE933x/wN+HrK9xg0uTd86nuaXW7U64Ph6uWMDzbMRL9JPcAIjIuPEm8nY8lLK5GfVbMzQh7566RNy8XdTMQbXd7Dic1nodVoyzpBHPnrFGZ0mYuUu2k1ul2EVIaLiyMGdW0JWWwBBMqqzURaGay9EBBbnymYdRYiO9Vw9svXGg5DE+cgk8sL9hVCsK3A6riOp1L4bgDmyG9nQ5xTtf1WZTi62uOdNTP4oMmDBAIB2g20UCFpQcKtJLw//HNkp2RDmlIM54MJphfU6uCxOZpv3ZP4ejhyBvijWMiWd1Jo7Y6EN5ugpL6DTfcryipGk5gCk+2jxOklxq+v2HIhpaKBI5S+cn0RfoEOjLJ8+fpN62HOH6/jp+uL8eWBeXwgQdHODopRbibH0nmLkZTvBNbM6y4TyDDEbzi/f973++Gy64UugE+z2qsAAQAASURBVNdzQIPlQIOlgMd4IPLkZaTFPXqz7hJCyKMsaoPlfX7sHhbqQv0y7WYLILbho0fiCHSez4C1YWLw5GOwaTlTrv4EXFqmRYPhgNz8IQnCxjGQOgnQ5WMBAvswJrtB5d0FLi7RQWk+j1l5OljtTlEqN5rFP6/pkHISYHXlnSDiD+qvL06jkAOpO45u7gjr0PmRfAmKcgzbt/R58WV4N2iIfwO5oxMGv1beUbMirtC+fouqHZNwhf6bP/sQxfmVD45rVLYFT8xx9fPnQwe1zat+CP/cPf/1d3jivQVIj7tXrfGk9vZoP3Is//hvHCs/JjGF6+JQmJNdrfsjhBBCCCGEEEIIIYQQQgghpK5QwOE/jivUvHHytsVl1Eo13h/2GT57dhmun7yNFRc+h0Bo+a0zY8VkfDx+MVQKtU3bwbJVL5TZ/fNBbP1mDxYdmo/mPSKMOjc0aB6E4sISnN93GVK5BH2f7gGYubsL+y4j+tJd1KSSgvKiXS4osuGr7Vg89Xv8NGc17l2NK7vtp9mrUZBTZHKM3PQ8/Pr+uhrdLkIq64WPn4JPsNdDeeKYfC1QbCVIoWUhyFDzISnuZ2rzsl0ozC2CnUiGZa2nodFuezDnS8BEKyE4VgTxO2kQf5lpqpbQiDS5EG5bo012G5DE58N9SzRqm6uPC1Zc+AKN2oaYXWbfKstFLdb2/wm39TN+uv6TAK/VNyHjulJodGDUWthdy4LPj9dgfzULuT19oDQTYmBlQqRPqG/xvoRiIYa/MhBLTyzEup0fYkyeBA5HYyG7mQ75lVS4bLoO71+uQFCiKR+X21ELuLojHZxlxXCQmO70o3Y33SkouFkg+kzshqDwAP14OhaKIS4WtzPbxwUJm8RQJxm+7oF2QXiz0Wz4ywP491jpvtqhDdBkG+A/A3DuCjh3B+rNAcI3AzfjH5GZd9kaOhFCSC3SlLDIvWN5Ga0CODZHh7Of6JATBfT5nvvCYHmd1m8ApxewfIG+Taqxv4veDMTtBXouFsCjmeFtAgngEgoo81ikX2QhkjMI7MuYvb+UU0BB+WFCjdBUyBEqcljcWqfD+UU6XP1Rh/wKHYwuf6eDxvQhCRSZwPXf6EOB1K3uT78AR3cLSaI6En3+DPatXI5Le3dAWVwMmb0DJnz0Bdz86+Fx5ujugac/WwrPoGCzy1w/eqjK42s1GhRkpONhEAhFaDVoOJ76+Cu8sPgHhLbrVOv36Vk/GOFde8LNr/yYpKp8QsMw7oNP4ebnz4dC1ArjgHhFrE6HxBtXq3x/hBBCCCGEEEIIIYQQQgghhNQlU5Mok/8QrpOBQMBAZ+WPrDfP3OFPB1cfQ+MODTF96fP45vVfTP5x9vmFT+Le1QQUVyjsr21cJ4ectFy8/et0KIqU2L/qMLZ+uxfKYiXuXonjTzu+34/wjg0hc5BZDFRwj7MmBTfXzyS/59dDWPbKj3xgpNSfX2yFZ4AbXlr0LM7uumhxnGMbT6Pou2LYO9nV6PYRYit3X1csO/UJ/vxsMz+DPVfkbecoh1+ID9QqNd8VwNq+xFaMmoX0UD6UFgrSxeeLIMjWgptseddPB/nrfnlvLb8f6P5EJ7hGMpD8U/XOJw6XMyC7m4ui1t5QedtDoOKK/jMhi861KSRRXSKxED71zQdKuK4uR/48Va37SIxKhl+oD5KjU2F3M4c/mVLUw9fiOKoAeygC7SGLN66IdPZ0wrtrZqB13+Zl1/l4ucD+YrLRsl6rbiFtUmOwMhGEDIsO9aPQ0j8eDlJ9t4yUfGecig1FdKZP2TqifNNVq/2e7WlwmQvAaSL17xNLUnv4Ii1HA88V6ZDHFcNe5YB3Ds2DUCTkb5c7yiGRiaGVqtFgMSA00dRI7AEcwTp01XWHSCC2ep+EEPJfx9gYu8+6zp1YxO1n+RBBy+kMIr8x/d2jxcsMsm5ywYiHV5B/ZSWL4gwWHeYKoCrQd52I2cZCp+I6I+hPd7fp4FH+kWjxsdYk5wb6by8x23T8c1Yx9HFrLQs7H6DZZCD9kuVxEg6xaP0GC6H0YXwbIsSYk4cnX6B+dssG3Dj6D5TFRZDa2cPZywcalRI5KUnVmkChqrRqFa4e3MufP77ud37W/pA2Hfigw+NMJJHyz7mlLgwx509X6z6ykhLg5OmN/AzLx26MQAhWV7VWO3Yurhg6YxbqRZQn0Cw9rprSpEcfg8sB4U2qNI69qxueWrAIjED/gSmzt4dAKIROa/n5OLL6F4R17MovSwghhBBCCCGEEEIIIYQQQsjjhDo4/McJBAK07mdDhU0Ft87cwR8fbTQKN3BhifGzRuKpd0dj/+qjeJi4Aobt3+3DK21nIy0uHdvuhxsedPP0HUT+c83KYDW3XU7ujugxthMiD13D4infGYQbSmUkZmPhhCVWC8M1ai3fyYGQuuTq5YxpXz+HTZm/Ylv+KmzJ/R3fXfwCP11bjDXx3+PZeePQum8zBDb2tzpWrwld8OJnE+Hi5WxwvV+IN/+/fE0WBEkqk+syORrY/ZRhdD0XcPp04lLcuXiXDzZVCwM0Cg1A80zAa2MU37VB/pDCDRyvQA+Lt5/ecaFGiremfTUJQRH6GUUr8vB3w6e738Oa2BVQOlvPQ5rrpFCYU4i8zAKD67qP62xyWfm9fNRbdAmu++MwocNFdG1wpyzcwPF1ysOoZhfQ3C+evyxJKTYZqug4rA3a9m9hcF1AmB+EWttePdZVjPRRfsgpliPjRB6iL90ru00iFaPHuM5wH2E63FCqCHm4kle9AAohhPxXcMXynoa7basyrwI317AmwxIRkxiEjRMgfv9DLnJmgei/gQMv6VCSXh5ueFDmFf3pYZG5A/5dgdSzLC4uMd3RojgVOLPQ+rGQVgmo8mttUwmxiYOrG3o//xKm/7wOr/2+AdN/WY9nPl+K5xd/jynf/oqOo8cjsFlLuPpZPyaJ6NEHXcY/A7mjk8H1Lj5+VX41VCUl2L74M2TGxyI9rvx7ZFV51W8A94BA621raoGjlRBAzIWzNXI/fV6YBldf49fLydMLT8xdiBeWrKxyuIGjLCqEotDwmCSsU1ebAh5VFdahi0GgovS1rIqinGw+TFJKIrezqQNFYXYWos/RMQkhhBBCCCGEEEIIIYQQQgh5/FAHB4Kxb43AhX1XKlUoa6rQngs8bFi0FVI7CbKSsqv1zDq6OaAgu7DS63HrfPncCihMhBsqbufDIJVL8O7aGZDIJNjw1bYqzWyvCnBGSTMfaLwdAa0OPxy+gKkuXRHgYX5We0IeBoZhIHeQG1zn4eeGZ+aN5c/PHrAA8beSLI7hGeCOCbNGYswbQ3B+72XkZeTz3QRCWtbHaLfngDwtnN5OQMkEN6h6O4F1EAIKHSRHCyBfnwVhmsZsGGjTkh38/9XCAiX5xZjwzmh8Pfm7Kj9PVQ0h9BxvOgRQSqMy/fgr2yUiolMYVl75Cmd2XsS53Zeg0+rQvGcTdBvTAWKJvvuAo0SKfJX5/SpHWGC6k4JWo8MXk5bz9+MdpC+Q+nvJDvPjFKoRIboLH2/DAqRSDAP0Dr2BqHR/PO0ehuv+Sci8/5nj4GKPwVP64rkF4/nn/kEeUUBqO/OPweClEjAoesoD0jOF0GoM30sT545B3IHj3KMzPxiAu4U30Nq1O+oU95iq+7H38CdBJoT8BzUaL0DGZV2l1lGaaDzE6oCbq1mA0UJZzWyw2AFQV/6QBMpc4NyXpsMND5tIDnScK4BAxOD2em2N7NOv/65D+NMC2PtQFwdSt7jZ7CUyw2MSR3cPPrDAWT9vFnKSLR+TcLP4c4GItsNGIzbyAl8E7+LrBze/AHw3ZWKVt02rVuPi7m3VKsovG0ujQcsBQ3Hw5xV42Bp3tvxdVqsxfQxQGSKxBP6NI/Dc1ysQc/4M4q5c4o+hApu24Iv4hSL9ry5FUik0SsvHJGa3U63GrmWL8OLyn/iADOfiji1W1+O6gljCdUZo0qMv7l48i6Jc/YeSzMERLfoNQuexpt8/MgcHKAor/+GifaBbQ+exT+HO2ZNgdZY/OxNvXue7OBBCCCGEEEIIIYQQQgghhBDyOKGAA0HrPs3wv5UvYfn0n6CuZsEsV8S/6sO/qv2sBjcL5DtFqBSV/2N5XmbdTSkqkojg7OGIjkPbYtSMwQgKD0BJkQLn9kRWeqyitgEo7sDN0lhu2+U7+Od2HJa/PBKtGlifjZKQumJL8X1pAIErou80rK3BbW0HtsTZXZcgyNPC/ocMvlsDay8EU6wDo7FemXdudySadGnEj1EdyTFp2P3zwWp1YUiLM+40YYsd3+9Hv2d7wt7JzuTt4Z3CUF1dR3eAs4d+tlruNXjwdeBodDpouGpRC4T5ashjTAcS+DHUWuz4fh9e/HQiMhKz8M9aLhxgXtBohcXbJSItPuvri5HBE6CdPpbv1sGFEOo3DYTMzvwsq42i7JHWpBCsndDC6OXFmtoGMojDHPnPpIr8Q33RtDgc91jLHYHuXUkA6llchBBCyH2+nRi0ep1B5AoWbDUzfKwWuPFb9Z9a10b6TgumOh5UJXzxsDAiQOYC+HVh0HAMA8d6DFT5OqRX72tRmXs7gcQjOnT/UgC3xhRyII8uLhhgje7+MiKxGKHtOhrcFti0OeKvVb3dyr3IC/BvFF6tMTjczP3XDx+o8vpcF4T8jPQqrRu5dycfchDLZCZv92sYjupq1LkbpHb2/PmG7Tvzpwdp1OoH0siVp1GrcPXgXnR64knkpqYg6uxJVFe74WPQdcKz/HuN69ih02nhGRgMkURidh2uO0hqdFSl7kdq7wB3f8MDC66rh09IQ6TcuW1xXW67CCGEEEIIIYQQQgghhBBCCHncCOp6A8ijYdCLfbA24XtM+fxpDJ7cBzJ78wWiD8Pts9H48sA8fgZzodhSIeqjQScTobiFLzRDwtFt5XMYOf8JPtyQmZSFV9rMqnTXCLW3g1G4oVShQoXZv+6CRlu5GW4JeZgiOjWyYRnzBfoT5z4BsaQ8g8doAUG+1qZwA4frQjDytcEWl5HI9N0JrLl5qnLFJxVN+mg8mnWrWtFP3I1EbF+x1+ztTbs0tljMr3aVorC5G3QdfKGTGH/c+9T3xEuLnrW6Hf/E3UUxV1BkgTBfBcbKS3PjtP55PL83kn99LLHztb5/83PUB2SEIiEatm6Axu0bWnw+OF3aNIfjB4kQpBs+Hq5Wij+ZWKfT+A5G3Uo4Lf06Wd3GM19F4eLBq6hL3OtSEydCCHkYQkcJMPRPAZpNZRA8hIHAto/qWpN9E+ixmEFAD+4DB48NiQP45y9srD7cUJTK4sC0mt2Zc50tTi/QPbTueIRUhV+Y9e/hvhaW6TTmKQiEVZ8XRKfVotXA4RaXEYpt29GlxlT9mKTbU8/BN9T68Zkp6bExuPqP+WOSwGYtbHoM5gISLj6+/PZZE33uFDSq6rfFSb5zi///XuT5agcmOOL7HUS4LhPeDUL559lSuIET2tYwSGOLsI5dTI7bqFM3q+sm3LiGxFvXK32fhBBCCCGEEEIIIYQQQgghhNQl6uBAyrh4OmPc2yP481wnh/2rjtTZs6MsUUGlVMMjwJ0vQi65P9N7TRn71nBsWrzDapGtLUrCvVDQMxgQCVEIYOXeM/xpTKemyPnuGBKjUio/ZlMfi7en5xbi8NUY9G3ZsBpbTkjtGfpSP/5nTK00XRjvWc8dXUa1N7t+RMcwfLRtDpa+vBKp98pnG3Xxcsa4t4bjx9mrwVooSNHpdNi8dCeCIgL4oMCD3HxdkZ1Su1MrN+3aGL2f7IruYzvi1NbzWPvJ37h3Nb5SY+z7/TAmzBnFny8uKOH3y0c2nERJgQLBzQPReWQ7o24IGgcRMsaFoLiJKyDQz6osHRcM99MZkG24AxcPR/Sf1BNj3x4BVy9nFCiVWHv5CrbcuIGs4hIEOjtjXPOmGBURAbFQiHu52Va3UyezXvV5/cQtfPv6L/Bt4GV12ZJ0AZwaWt7v24vcURncZ0rKvXSIbyngMvkuVB3sUTDTD6y0NPxhPAM1o9Bh6oyxJsdr7doN+5L/QhGbZ/ox3AXyjgKbHXbynZIIIYTYRubGoPGT+n2yulCHxCN1V0CvKQa4JkYyT0AoAbQlNTt+2HgGURtYoIZzy8pc4MbvLG6sYhEygkHWTRZFlT8ksaooGUg9C/hWvlaXkIeiRb/BfAcCndZ0JwcXb1+EtG5ndv2AiKYY8dZ7OPDzChRklndls3d1Q5shI3F09S8W75+b1f/ygd1w8wtAdrLxMQk3TlGO9e/a1cF1oWjUsStC2rZH9JlTOL35L2QnJVRqjGtHDqL1YP3vipTFRXw3iagzJ6FWKuBVPwQNWrfHnTMnLI6hVij4IIRAKOTP2zm7oEnPvmg7dBTsnJyhKCzE5f27cPP4YZQU5POvTfO+AxHerScEAiFyUpJQE+KvXsbhVT9B7uRSI+M5uLpVanm1Som8jLRK30/XCZNMXt+kR1+c2rQeyiLut1HmsLi0axsCGjep9P0SQgghhBBCCCGEEEIIIYQQUlco4EBMGj1jCF80q9XUbLDAVgIBg7f7zK+VscM7NsTUL57BiFcHYlrLt1GYW1TlsVQBTijoEwIwxoWxm05dg526EA5VGFfjYW91maikDAo4kEeWd5An3ln9Oj6duJQPTFXk4umEj7bMhkhs+SOobf8W+P3Oclw6eBVpsRlw8XZGu4EtIZaI+cL/2OvmC3OK80twbk9k2WV7Fzv4h/rCyd0BPcZ1we6fDtRqwMHe2Q7tBrTElGZvIuF2MphQd9j1aYicehKIM4phdzUdAoXpQquKspL125iekMnvE5OjU8tui750j/+f67ijKFLy57lODcmvNIHa185gHKWARXJnDzz/cj+837NX2fWZRcWY+OdfiM4uL6zKKi7GpZQU7LodhZWjRsL1/qyklgiLLX1WsHDqCDh31uCicCekl90BIQtojfebpeI3S+HdxXzXCG0JgwBRF9iKC7x8OPpLnNt9ib/M6ADpqSKot+ei5AnzQQnp4Xxk+mbAu7Nx4ZJUKEfz20NwxHEtJL7G4Ya7r3J3DFw5cgN1jibXJoQ8psLGMUg6xvIhgxrHWN8/MgLg8Ou1sxP1bAW0mCZAyHAd9k9h+TBFjWOBmC21+yGQG8PCt6P5z3RC6pKbnz8GvvIG9qxYYhRysHdx5cMLjMByY9MGrdthcsufEHclEgVZGbB3cUP9Fq35GfuvHNiN3FTz6SGu6Dw28kLZZZm9A5y9fWHn5ITGXXrgwq6ttRpwkNo7ICCiOX7530v8dookUj5UUVml25iblooNC95FfkZ5AD39Xgz/v1AigdZKhwWtWs2f2o94wqBrQ2F2Fv6cP8fguSzOy0Vy1E1EnTmBETPfg9zBCTWBex9c2LkFjh6eNTAag5A27Stx31ps+Xw+4q9dqfQ9FWSm8++bB8kcHNBywBCc+ftPi+sn3LxW6fskhBBCCCGEEEIIIYQQQgghpC5RwIGYFNoqmC9O/uK5b6BSGBaZOnk4Ij+zoMrPnFgqQtOu4XzRsjk6Xe0V4tRr7I93B3+M9PjMaoUbOMWt/U2GG0qVNPeF/fkkMBrrVVk+9T3RZWR7bFqyE4wNHSvkUnGlt5eQh6nbmI4IbR2MHd/vx7UTtyAUCdBhcBs0bB3MhxOykrPRul9zPrDAyUnP4wvQuX1Oo3YhaNi6AQQCAdr0a2E0tkReufd/UW4x3w3m091z+cubFm+3uo5IIoLmgXCGzfeXV4xf318PnUiAnCfCoQxx1d/g4gVu8uf8bvXgujsa8ptZFsfxCvTg///smWUG4YaKuHCDZ4A7MhKzUNDW0yjcUNEfVy9jatt28HbQR68++ueQQbihomOxcfjp3HlMbNUC7+zfA63I/L7O8VymyevFnizClupgH1Hx2ky0nijEzZdZlMSYHjNprxT1n1DCs6PpkMP1JXb4zW4TdBod/3nRvHsEeozvDImZ/eLpHRfKwg0V2a/PhDpCDk2E8XMmilHA/rd0aMea3x87azxxYzjg0hdwaKOf5Tv/JJB/TB9u4AiElovmCCGEmOcewaDdbAbnF7HQPfCRIHECVPlVf/YEEsA1FMi6bn6ZWglW3GfvBxybrUVRqr5TxKPCIQDwbssFI2xbXmQ9B0lInQrv2hM+oWG4vG8XUu7c5oMJDdq0h0e9IKTH3UNBdhYCm7bgr+cU5ebgXuQFvhDft2EjeNXnjkmECG7ZxmhsoahyxySKokJ42dtj9Dv6yRxObVxndR2BSASdpmrHJFzA4uRfq8sua7juAWmVb+fi6K4PA+xc+rlBuKEiLtzg4OqOwhzLxzccLtjR5n7nBs6Bn78zGxS5e+EsLu3ZjvBuvXDwl+9QU7iOHIxACFZXnUk9WJz4azX/XuGaC3LdMsI6djH7vrhz9mSVwg0cnYXtdPbytro+d1xNCCGEEEIIIYQQQgghhBBCyOOEAg7ErB7jOqNl76bY++sh3L0aBzsHObqP7YQGLYLwTPB0FBdwZbqVp1Zq0GlYW9w+G13lMapj32+Ha2QclgFUgS6Wl5GKoPJ1hDQhz+JyjTs0xLtrZ8A32BttB7bC4lX7YKHWCtxfz3e+ugp5PS9h6Ev9+EAKIY8i7j095fOnyzoOfDX5O/w0p7zIxsXLGc9+OBZx1xOx68cDBt0eIjqFYc7q1/kxWJbFyXvxOBAVA5VGizhfCXRiAQRq2ysPrx2/hdvnY9CobQiCIgIQe818BwjO2JnDsO7TzaiOvP4NysMNFYmFyBnSEMIcJSSphWbXH/hCb8RcjsXVozct3k+DlkF486eX8fbV48iEvpuDKRqdDjvvROGFVq2RWVSEfXfuWBx37eUrmBgWAZfdicgaVs/kMuLUEjidyjBxC4uw5TrYNza+ReSlReNfRIgcrANbZBxyYDUMTk5zQsSMIgSNVkLirA+95UcLEbVSjoTtMsRgf9nye375Bz+/uwYLd7yD0JbG+0Ou44cpjJKFy9wEKPo5Q9HPBVpPEQTZGsgO5kG+Nxf2YpnF/Wur3k0hEoiQs0eDnD2ml2k3qKXZ9QkhhFgX1F8A73YsYnezyIsFxHZAvd4MnAKBnRN00Jr/2LNIpwQC+zB8BwKt4uG/ErE78cjxaAZ0mCuAnRcD3w4sLq/QocDy1yXcWseiIF6HBsMYuIRQJwfyaHL18UPPZyfz51Oib2P/D8uRER9r0M2h87inkXb3Dq4dOmDQ7cG/cRMMfu0tOHl48scksZcvIubCWeg0ahTn51Z6W+KvRiIzPhYegfXhFlAPuVYCB+2HP4HTf69HXWrWux8fDkmNsXzs4BfWGE179cO+H5ah0EJnCi4QcOfMCbToNxj5mRl8iMGSyH070ahzd9Q0LtzAdfBgdVVPs0XuLd+ZXzu0D8fW/Y7Rcz7kAzQPun74QJXug+v8wb1fzAlq1ko/8QaXsjCjvomADiGEEEIIIYQQQgghhBBCCCGPMgo4EIucPZww7u0RBtfduXi32sGEc3su4eujH2HhhMVIvJ1crbEYAYNpX03Cyll/QGtD54Maw/0B2UL3hjIC88s06x6BlxY9yxdcl2rbvwW+79YYYz9ZhdRc04XP0lsZyItKxU7utHI/Jr43Bs8tmFC1x0HIQ5AUnYK3+8w36pqSm56HZa/8ZHKdG6eiMKvPfHxyYgHe3LMPl5MqdDBo5wZBkzbwXH8bsljbp2++cvg6//M29KX+OPLXKbPLuXo745l5Y3HrbLTFbjOWaB3EKInQd2AwiZvZv28omLWXwZroWuPm44KCnEKc3HrO6n3dPhONtttaQJoeCWRZrvS8ezcZaNUa0VnZUFsp5kkpKMDbwz+B28lkMEodcvr7Qet0f0ZSHQv7qznwWn8PQoXxvte5M0yGG0qJnTWwWxsKl10e8LxTwoddTm49C1WJfopunZLBtS8ccHOZPeyDtHwhamGs+a8tWck5eHfQx/j19jLYOxl2ZMhJNV98xqhZyHfl8qcHDZjaC3aO5qem5rbZK8gTSXdMF6Zx3RvG/G8Y6hLDsvypumMQQkhdkrkyaPyU4XfqzKtslcMNpdIusui1RIBT83Uoqvyk5oYEQItXgMsryrv4PC68WgPNpwng2rD8OfbtyMAtXIB9L+qgsDAhuyITiNnK8qemLzIIf5pmCSePrqzEeGxcOBeqEsPfZ3BdG/avXG5ynaRb17FhwbsY8+5H2LHkc6Tdja72diTcvMYXrLfoN8hicb+Duwc6jX0S8devIPn2DdQWiZ09VCXFJgvkHdzcUZSTg5isM1bHSYmJwrA334FIKrW6bGZCfNlrwlppl8N1d/j703moDVy4QSyTwz2gHiQyGeROzog+d5oPYVS1M8SmTz7AC0tXQiwxfB6KcisfiOE06zvQaKyKHN3c4eTuifxM0901BEIh2gw2/L0eIYQQQgghhBBCCCGEEEIIIY86qj4glXZuT2S1n7Wo8zEIaVEfakXV/mhcEVcYfGLLmYcbbuAKPnUsRKkFlhfS6CBOMx1SkNlJ8ebKlwzCDaUc5VKMdfY0Hl+rg+xaKhwPxxhcvebjTTj2t/WCA0Lqyl9fbDUKN9giNTYDU37dYBhuuE9nJ0b6U42hcZLYPB5XcM5p2aspRs8YYnIZiUyM2ateg1gixsyfXoZ3kCeqQhnkog8xWKAOdcOifz7ku+WUKs1NZafmYs3CTVj14V9W70ss1YcOQlzdrC575Ku9fCcLO8n9oIIlOhYx5+5C1EyIoF75aBt2B+18bqFJ+m2ELL8Mvx/vQFRQPsNtRc5drRfFuzhn4mh7BkN+ewbvrX0DS098jI7D2hhkx7QKBvm3RRbDDaVy0vJw4I+jRtd7BVoImpjRdkALTP5sosVljv99xmy4oTSA5+5nooMHIYSQaks9V/3wVU4U4NIQ0Kpq4AXRAYmHH79wg8gOaPu2YbihlNSZQWBf28e69jOLlNMUiiOPrjNbNhiFG2zBFdhvWDC3RsINHIbRHyM0aNWODzmYIpbKMPjVmRAIhBj0yv/4sENt4Qr7x85diICI8mOS0i/khdlZOLVpHc5stn5MIhTpv6+7+QVYXZbrdpARdw9imcymbeSWrS1qRQnS78Wgw6jxGDpjNibM/wLBrdraNqGFCdxzduvEEaPrHT0qf1wZ0rYDuozTd0Q0h7svc+GG0vebvQ3HiYQQQgghhBBCCCGEEEIIIYQ8SijgQCrN1EzjlSWRS1BSpEBaXEaNvAJXjtxEXbCLtDzVq+x2BgQK4+JfoViI17+fioAwP7PrlsRlwXXTVbj8dRkOR+7C4Z9ouK+6AMcjd/lwxYM2L91ZxUdBSO07/OfJKq2n9HPAXZ35IiRWJkJBO2+bx2s7sGXZ+ZcXP4e5f76JZt3C+VCDvbMd+j3bA8tPf4o2/Vrwy2TZsXD/ZhDSF3dBwsdtkTMlHEEjm+HtX1/hl7fIhnoYHcuiefcIfHlgHpacWMjvGyszWb7OSQhNgAStR7XmLz/ZrLnF5QWFakjPpeGX99aiqbc3Ap2dLS5vdzMH9k+I4bbSEbL+Eoj8hZD4M3AZBHh9I4UoQmh2XcaGHlEMw0LLsvjywjH+cmjLYCzYOgdr4r+HR0DVinDWf74Zr7Sdhbf7fIgdP+znP2sGvtDb8kr2DDDGHswCN8i+9MWADUPwwfa3IZFZDs/sWLnf4u1c8O6NLnOhVlU/zFdlbA2d6lBcXBzs7OzAMAx+++23WrsfnU6HLVu2YOzYsQgKCoJcLoeLiwuaNGmCyZMn4+hR4/AMIaTuWJnw2yZCCaAqgMUOBZWRdQ2PFYGYCzcwsPcx/6VFXVi5At87mx6zhAf5z9DptIg6fbzK6+dnpNXMhjAM6rfQf3fn9J08HYNfewt+YeEQiSWQ2tujaa9+mPjJ16gX0YxfRlFUCN/QRpDI5WCEQogkEviEhmHgK//jgxA10cUgsGkLjJ/3GcbN+xRCkdhkNwdrglu24f9v3td0aKMijUqF43/+Ab+wxrUa3rCVTqvF8T9X8+d9Qhpi9JwPMfmbn2HnUrWw8qkN6/DHnBnYsOA9XP1nH9QqJZr17mfz+lwXjGZ9BmLw62+XBUfMuXxgj8XbtRo11s19m3+MhBBCCCGEEEIIIYQQQgghhDwubCg/JMRQs+7h1X5KuoxszxcUc7OOq5XVK/wUSUTQqEzPIF7bZHcyofG0R3Ebf6PbxEl5cDh2z2zR6xfPLsfunw5g2leTENbGuIuDk7ujfpyMIv5kzfUTt8CyLF8ASsijhCsaLi6o/EypnJKGLlaXEbb1h8vVfL47Q15GPrQa04UbHYe2QVC44WyiPcZ24k+m7LhzG//btwsanU4fB3QQQdnUGYcZBkM7+uC99f/D/NFfQllietpnSUI+3wEBAvM/k+0blG/PwT+OQmVmrAdpgqUoesYTqtb2gJDBn0wyciI34vVG/TC+UQT+vH3DaB1GrYPX2mgwWhYX91/BwdVH0aXIDvHIM1iO5arZGYDRsPBMSIbDAtNFUwInAZw/tkfWGO5xGt9eeAnwHmf5cWQU6vdz17LSsP/aDXT0D4SjqwOURUp4+rshMzEblcWtU7pe5KHr2LxsJ748OA99nu6Gg6v1QQoDTSVgPnEH46jPfHKvwH5E4vzpGHzeajqC7H3M3lf8zUSr28MF+Y5tPI3eT3Wr9GMhgFarxXPPPYeSKsy2XBnx8fF48skncfKkYRhLoVAgLy8PN27cwM8//4wnnngCP/zwA9zcaBZcQuqaZwsGt9ZUL4Hl35WBSA4wQoCtZt0nF+xj6+aQpMp0auD0fBZ3t2nRYroALiHG31kkTpUbM/NqzW0fITVJq1JDq6690KnUzh4CkQgCoRDFebl8aMCUsPad4eJt+P0yvGtP/mTKjaP/YM93SwzG02i1SL93F2KpFENmvI3tiz+r1mOr16Q8JH39yEG+IL4qrhzcB1WJAt2emoRGnXvg9knjLgYV3bt4DrdPH4dfw0aIyspEXUuJuonYyAvwadgIMnsHaBQKOLp5oDg3p9JjFWRl8CdO/LXLuLR7G56YuxBhHbog6swJq+trlEpcPbgH9y6dx9j3P4abn/HvnEplJSVYHS83LRkx58+gYYfOlXwkhBBCCCGEEEIIIYQQQgghhNQN6uBAKo2bbbxhmwZVfua4Wc9HzxgCoVCI7k90rNYrwBU0P4xwg52T3OxtDifj4Lr+MmTXUiFOzIM0OgvOO2/BZfN1CNSWZzC9evQm3ur1IaIjjYMQvSd2q1RYgXsuKNxAHkUCgQD1GpnvVmKRDT8CPg28sSH1J/yZtBILd7xjsrNC8x4RmL3qNZvvNqukGG/t36MPNzyA6zgw68AeBHYJxfeXvsTIVwfBL9QH7n6Gs3uK8pSQ3TFfoM/9eD/TpXz21tM7Lti0beoQKXI/C4SqnQMfbuCvY7XYmXQZk07+iAlBofD64w6ksQV8wIJRaeFwIRP+y67B/mZu2ThfTPoGZ978Gx6bYiAo1u9HWQELVgL+pLNjIHzVBYyFgIbQRwBJN7HJ27L3M1BZmOhWoxXgToZX2eXp6/7GaPfnMb3dbLzW8V3cPBONmhB/MwlfPv8tZv32KqZ++Sx86nuW3+gkAPNpebihohxtAV479CW+ePFbnNl5gQ/qVKQsUaIwx3r4jHN04ynUFYatmVNdeeWVV3D48OFavY+EhAR07drVINzAfZ56e3vzHRwq2rhxI/r06YOiIttee0JI7fFuCzgFV319rnA/dBQDoYSBX5fqbQsfkHgI4QaRleZRVZV+CTg8Q4f8WOMdflBfptLPBSGPIrFMBifP8u+eNc3NPwCv/LgG075fhRFvzeW7LTwoqHkrDHh5hs1jFmRnYu/3y0yGJXRaDXYt/wq+DRvjmc+WoUW/wXD29oGDq3ultpthBGg9aHjZ5bsXzqKqtGoVrh85gHUfvI3mffpbXZ6boGHX0i8Rddp6wf/DsunTefj2hQlY/c7/sHbuW0i7e6dGxs2Ij8X+H7/BkDdmoeuTk+DoXuGYxILC7EysfucN7P1+KR++4J6zilSKEqgVtgWBuTAJqT2xsbH8MURNnrgx/w3q169f9phMHdv9Gx8zIYQQQgghhBBCCCGEEEKqjwIOpEo+3PQWAsJ8K72eq7czPtn9HnwbePOXn3xnFOwczYcHLAnv2BBiqW1NSJw89LOEV5ajmwM+3TMXXx2eb3E7uQ4LTofuwnXzdTjvvg3p3WybC0JLChX4de46o+sDGvpiyNS+Nm9ru0GtbF6WkIdt6EvWC1xMkcXmW12mfVB5F4S2/VtgXcL3eH3FFAye3AcjXxvE//x+dWg+HFzsbb7fDTeuQak1X6mo1umw/voVBIT5YfqyF/B71HL8fme50X247I6GOKnAaH0Bw+DdYb3QrkIHB7WNYa2iyd5g7UxXD6Yq8rCl5Arcb+QhYOk1hMw8jQazz8J79R1IE00XZDudSUfgwguQ38wCy2UVKtQx2jlZ7yghbmR6W1gNg6jXBVBnmw43HIkJg0Ijub8woHGXoyTECVEX7qIwt2aLxy/su4KkOykYO3MYfo/+BsvPfKoPhA2yA+Ng/quQ0lGL/bFnMHfYZ5jRZS7ys8pfyzULN0FRpLTp/ktsXI4Ydm6YNm0aVq5cWatPCxdcGT9+PB9y4HDvixkzZiAxMRGpqanIycnB5cuXMXjw4LJ1IiMjMWXKFHq5CKlj3M9rlwUC2Ff+kARyD6D7FwLYeek/9CKeEUBoumGRVW5NAMbGo2pxJbshlJK4AN0XCdDjq6pvpzXqIuDar8ZF1M4NGNQfaHvIwbcDdZMjj67mfQbW2tj1IpqVnQ9p0x5TV/yO3i9MQ7Pe/dF68AhMmP8FnnhvASRy25NKVw/u44MM5nCdFq4dPgD3gHroO/kVTF72E55f/B3EMtt+x8IIBOg7ZTp8GzaqMGb101p5aam4feo4BMLHt2ksF2xQlRTX6Jgx58+iIDMTHUaOxeRvfsL4Dz+3aT0uwHDt0H4+fLF+3mwoigrLbjv512qbu3eolYoqbzshhBBCCCGEEEIIIYQQQgghD9vj+9dGUqe8Aj3xQ+QiHPnrFE5sPQuVQo3Lh67x/1vy7PzxiOgYxp8vyCmEk7sjnv/kSfzy7jqUFFifdW7Btjl8NwU3Hxd++vPnG71uU2eDsW8Nx89z1qCyCrIL4RfiDb8QH3x99CP8NGc1XyjLzZpXOqs5q6v+1Nbn90QiJz0Prl7OBte/9u1kuHq7YMvyXSiwMFM4/xhnls+6SMijZvj0ATi/LxLn9kSaDBKplWqTxeIvTuyHLT5a3EhNNzmuWCjExLYtDK6TO8gxbFrVAhWlTlyNsrrM8atRmNGhc9llqVyKAc/3wqbFO8quEyi18FhzFYoQVyjCPaCTCOErk+Pj2RPQsqlhJ5yITmE4ufWcyftSBNghr4c3lI3sIG+qtbhde9OvY9iETvjnt6OwldZRhKLmhh0oODqd9YpNVlG+D/QP9UFqbAa0Gv02Ft9mcPc5J2hfE8KlvQ4ChkV6oSPuZHijRC0pL65SMWBYBiWhzpDHWA+1VBa3z751Jhr1GvnzHUV0Wp1+P95SanVdbhn2UAlunbmDz55Zhk92vQeNWoPdPx20+f5DW9RHneFenup+TD3kDg5paWl86ODIkSO1fl+rVq3CqVPlHTa+/vprvPHGGwbLNG/eHDt27MDkyZPxyy+/8NetW7eOX659+/a1vo2EEPMc/BkM+FWA+IMskk+x0KmBtPMAa/mjEk2nAK6N9N/lVQUsZG5A+HPAzd8ArbX6Twbo9jkglAj4oIRWCex70XLXNn41EdBoLHDt58q/oqpcwCkQkHsy6LlEgKs/6pB+Ub9/5sIV/ITeNbCvTj4BqAtZiB0MQwpt32L45yhmK8sHISx1bwgbRwEH8uhqM3QU4q9FIv7aFaPbZE5O0CiU0KiMj0k6j3sat08eRVZivMlxRWIJ30GhIqmdHVoNGFqt7b0Xab3DW+yl82g/fEzZZS5AEdG9Ny7v22lxPUcPTwx7Y45BuIHjF9YYsZe5HUz13D51FKHtOiKqDroGuPj4IS891aDzhdTOHsriuu3AxbI6pMbcgbOXNwQCIVidlQ8rE5Jv38De75bwXULUKiUfcLGVV/2qd2Il1jk6OuKll16yuMyhQ4cQFaX/XYOvry+GDx9udUxCCCGEEEIIIYQQQgghhJD/Kgo4kCqTyCTo92wP/sR5NvRVpNxNs7iOs7sjzu2NxLpP/8bVozcrfZ/Rl+7h6fef4M9zgQBu5lauSNWSV5Y8jxHTB0JVrMIfH22o9H3mpOXxAYeQFvXx6e65yEzORk5qLjz83XB042l881oVqpQeoNOxyMvINwo4cIW4z344DuNmjcDV47ewcdE2XDxgWIwhlUvwv5XT0KxbeLW3g5DaIhKL8NHW2dj140HsXLkfCbeT+WBDn6e6YvT/hkJVosLmpbv4wJRaoUZYuxCMfHUQ2g1shb65eXh+zd+Iy8k1GFMiFOKrUYNQ3824ML+quBDG55O+QVRPN6CzvtOMOdkxGUbXPbdgAqLOx+DqsfL9G9fNRR6dw584XE+ExaeT8d3FL8s6wxyPjcOdIX5ICG0BgUIL+8uZkKZpoPF3RlFDOQpa2vGhLpGUm1HVcmFOsVaFsfNG4to/N5Aen2nT4y5o58m1lTB+jDkOcHI0Hz7jAl7KQ/eDbQyQFJ1qFL4KCQ/F3jMFyHF0N/2tQwsISmq/oVTFjj8efq76Dg62FINW+IzhAjpxNxIgd5AhN8O2IAb3HAytZuDmv4QLEkydOhUpKSkP5f4WLVpUdr5bt25G4YZS3Pvl+++/x4kTJ3D79m3+uoULF2Lbtm0PZTsJIeYJpQyCB3Mn/eXtY7VQWPn4kzoJ+EDErTU6ZF2v5LPLAnkxDBpN0H9uFqfblixoO5PrhCCAukiH2+srn0ZQ5HABB8CtEYMei4QozmChvH9d3H4WV76rfsKBC4Yo8wGxg+H1jJBBsykMwp9mkXGZxe0/WWQ8kFnlOku0my2AW2MKOJBHl0gsxqg583HlwG5cPbgXOanJkDs6IbxbL7QZPALK4mJc3L0NMRfO8LPic8X/rQcOR1DzlmjcpTs2Lnwf+RmGv/MQSaQY+sZsOHl61ehM/3u/X4KSAuvfN/MzjY9Juj81Cen3opFyR/+dxZSCzAzsWbEYT3+2BGKprCxQwT0HNUFZVIROY5/iC/ILc0y0dKtFuanJRp0qvENCEX/1MuqaUFR+TOLg5l6lMaLPn0Fuagp0Oi3/PNuC66ZRmx1MCODu7s4fL1jy3HPPlQUcwsLCrC5PCCGEEEIIIYQQQgghhBDyX0YBB1Jj+kzshtULNpq9nStmzs8uxIJxX1sNJZijLC6fTbEorxie9dwtFvC6eDmXFf5zQYHuYzvxxdVcES4XFNCqrc+Y5xXoYXDZw8+NP3H6vNgLZ/JysP/UDf6yJCkPshvpEKgqNxOfWCKCu5/5Im2ZnRTt+rfgT3E3E3Fo7XH+uQxs7I++z3SHg4t9pe6PkLoKOQx/ZQB/MmX6shf404MCXJyx46VnsPP6bRyMuguVVotmvt4Y37oZvB0fqMCrhjO7LuL9YZ/x+yeHSCDfSsDB9WY+jm8+g8h/rvHFz636NkPHoW3w+f73+S4OP7+z1uy6yTFp2L/qCB++mn/wH6y6dL9K0NuO/08Z5AiBGpDmsCgM5qZn1t+s01ovGrQTShBUzxdLT36MNQs24uCaYygptDwdtdpdAlakA3t/eEaj76iQluECX+8cSPlghTHlATW0CTqzYTOuU8J+WT4K2/lAmM+ClbHQSXUAl2fQ6Ts3CJQC/r448ijDEEtNkcjEaN2vuUEXopa9m+LS+btgOukLusxhzykhFOkQ1ikPdk5a3Di7G12GPWnT/XIZihkrpsC3geX3EgEuX76MmTNn4uBBw84YU6ZMwY8//lgrT9GlS5dw/Xp5ZfPrr1vuCiUWizFjxgy88sor/OU9e/YgNzcXLi4u9BIS8ggJ6stYDBBIXYGiFBaXlrNV7nrAdW0opVEAMndAkWV+ee720o4RzV8SILAvi3s7WRQms0g9a0P3BUYfZKjIzpOB3f3rGgwGMq+wfAeG6hBKAZmF3KhIzsC3I3cC8u6xfOcMrqMD110iqD8DsT2FG8jjEXJoPWg4f3qQvYsr+r74Mn96kKuPH577egVunTiCuxfOQqvR8AEIrmicW6+m3Dl7Etu++sTm5YUSCW6fOo7Em9f4LpP1W7RGcIs2GPfBpzi7dQNObVxndt3s5ETcOnEUzXr3x/6V3+DKwT019CgAqb093P0C8OTCr3B60zrcPHEEGqVxd4waxQeYjXeoXCeHRyHcIJbJENi0/JjE1dcffo0i+BBIpbAsbhw7hGZ9bAtRcwGP/i+9Bkd3w99tEUIIIYQQQgghhBBCCCGEEPIoo4ADqTEjXh3IF+ymxRnPIMh58p1RWPnWqiqHGzihrRvw///w1iq+gNjaWLnpeXip5Vt4fuGTaN49HPeuxqNRu1BMmj8eS15eiSN/njRahxUyUPk5AUIGEfW84Rlgela9m4npeOW7zcguLAYa6AMPqgZuKGoXAJfttyBOLbD5cXUd0wGOrrYVageFB/CzxBPyXyIViTC6RRP+VBt0Oh2WTFtZtk+R386DLCYfihAn09sTWwDFP/cwf1v57O9bvtmNwHB/LNzxjk0Fk0c2nISoT3B5uOHBbRIDxb7l4Qb+Oo0QGqUQIml5iErIcAEDFhodlxpgMNi/BQQsg/S4DHQb0xGDJ/fBkQ2nsHnZLqgU97stVJDTywt5PdwBYflGsyIWrAaQS1VIynKBn0cuZJLykAOrZaHYp0bBZ8Vw9XbmO92YonUQI7+9fjZbLsTAKPSBBlOkcQWQ3zO/39TKhcjv6AV1Wy8oNRrI4grhfDwNknTL4Q1Oy15N4eTmaHDd1C+ewZuDP4TiaS0YV6HJ9dh4NboGxmLEkni4eHO9NzjzUKTdgV5PBePQWsPZYStycLHDp3vmonH7hqhLXAcR7lTdMWrbpEmT+JBDKXt7e767wrRp02ot4MAFFEqJRCIMGjTI6jrDhg0rCzio1Wps374dzzzzTK1sHyGkaho+wSDuAGu2i0PjicCVH6oebuC4hOmDfZHLWURvtj4QF37Y96IOLaYxcA1jkB/Hwi0caPqiAGc+1iHllOX1PZpxwQPT4YHsmyyOzdFBZVtjIYvq9Wb4EIMtnIMZNJtMgQby3yKWSNGsV3/+VBt0Wi32//htpdYpyEjDjiWflV2+tHs7PALrY9TseTatf/vUMQiEwhoNN3CadO/D7ycLsjLRqHN3Pghy69RRXNy9Hay2chNC2MLO2QXFebUTljZFKJZAqy49PrBN/RZtIJHrA+2lej7zIv786B1oVZUb69TGtUi4fgWeQcHIiLtndjmZgyOeeG8BvBuEVmp8QgghhBBCCCGEEEIIIYQQQuoaBRxIjXHxdMbXR+bzRcLn914uKxT28HfD0+8/wc8aV1xQUuXxuXG6jmrPFxFv/Hp7pdb9de46o44IvZ7sCoGAgU6n307u36L2AShq5QtWLuavO8myeObDXxEakwdFZiH8Q30xeEpf+DX2x2s/bNGHGx7AysTIHdoY7qsulnVyCG4WiILsQmQmZZt8XJM/nVipx0MIqVlXjtxAZmL51MtcuZ7vyttInxiCoqaugKC0hQILu5u58F4dDWWxcWFO/M0kvDPwY3Qd3cHqfZYUKPBHpOlwQymdxMR6uTI4eBbBQaqEs0wBqVC/HVzAQad1RoNzAjwzdDoyEixMJX1fYQsXZDwVZHS9SKSFX71syO53bsjXylCi1EKUpwK2FUO5UwFdKguxVGw23MApDncFRPpAA/cMlmXSHqiHlCQXwfv322bHUXnLkTQ9HFrn8idEWd8ReV194LX+LpzOmg7WlT0eifHXndBWwfh694f4ZunvuDEsC4y70Cjc0OXkNUz6PNpoXaXqHCYsvIOrxxshM17/eVER19HizZ9eqfNww+NqyJAh+Oabb1C/fv1avZ9z586VnW/atCkfqrAmICAAfn5+SE7Wh1tOnjxJAQdCHjFydwa9lgpw4Wsd0i+Wd0eQewFNn2egKeE6MFQ93WDvC/h2AKL+si3cUIYFLn/HLV++jlDG8h0nrKUtMq8AB6drIfcAv/2O9RiEDGNg5w0ce8f2cINrI6AkA1AYH5LwYzV9gQILhNSl2CsXUZJv/ru1KWoTXREy42Px96fzENS8ldX1VYoSXNqzAzVJau8AuZMzfnz1BRRmWz8mqS6hWPxQww2cyoYbOFyQ5EFcF5AJH36Og798h9ToqEqNx3Xt4AIM94+0jG5nGAEGTX+Twg18N9hiFGZn8u93iUwOBzcPSO0MwyaEEEIIIYQQQgghhBBCCCHk0UIBB1KjvAI98cmu95ByNw2x1xNg5yhH066NIRQJjUIGleHgYo/3N8wEI2D4zg3VpShWYvfPB/lxC/OK+L8FF3Srj+I2fgbLsQyDyPxcXNcWwO3ANT64sfXbPWjx9kBkKIrMjs8FJBSNPWF3JRUNmgfh413vgtWxWP3RBvyz7jgURcqykMXTHzwBr3oe1X5MhJCqMxUGECq08P05CioPKUoaOfOFI/I7eVY7BiTdSTHZKeFBwc0DcTQ1rdLbqlWJINPo4OVmuA8SCXSAIAdrYzdDmWBbpWP2QF8T17Lw982G9H64oZRaJ4TaUQ70FgOrSuAX6oPk6FSL4+vEht0aykIO3Ol+DaWgSA3/JVf4LgEst7iUARQsGrYMRlFeMZLvpSF1SiODcEMZIYP0CQ34bg6SNPMBOkWR6dcstGUwlvz6IVKSMvBP8jncKI7F+d2R0J0ugfB0MUacND8bqkCUi/c2eWHhCCArOafsemcPR0z98ll0syHk8lAY1tJWfYxaxoVCevbsiXnz5vH/Pww3btwoOx8eHm7zeg0bNiwLONy6datWto0QUj0Ofgx6LBKiMIlFfhwgtgc8mgKMkMHl73RVHlfiBHT6UMB/lt3ZWP2do1YB3N3BQuwIqK00f8su32Uh7RyL6L9Z+HYGVDbWQrs0BLp+KoBWCdz4nUXCIZY/L5IDgf0YRDzL8OEQQkjdKcyquTBAVmI8gpq3tLqcR70gXP1nH2qSsqgQJ/78Aw+Di48fclPNd1WrLu+QhijJz0d+Rhr3hbVCYrvy1ErTxyQ+IQ0x8eOvkZOajBtHDyH1zi3EXo206b4UhQUIadsRKXduGYQ8uI4WPSdNQYPW7fBfxU26knD9KiL37UD0udNgdeWf/9wELA3bdUKL/kNQr0kz/ljk30ar1eLvv//Ghg0b+GB3SkoKBAIBfH190b59ezz77LM2dbDTaDRYt24dtmzZggsXLiA9PZ3vfseN061bNzz11FPo3bt3rT8eruvmtm3b+Mdz5swZ/vFw17m7uyMsLAx9+vTB888/z4fRCSGEEEIIIYQQQgghhBDy70ABB1IrfBt486eKXL1dqjRWj/GdMXbmMDRqG4qE20lIvZdeQ1sJFObqC4S1DhIUtzJV6Kun9nGEoqE75Lcy+cvHLkUD4V4Wx3brEop3F0xChyGt+T8icv63chqmL38RRblFsHexh0RqPPM3IeThSrmXhgv7L5u9XZKphCRTv9+R2knh27QeYq8lWByzILsAbj4uyE41P5PosGkDsP7cPig0hkGCihgNA1bIGnVX8PEwP654gAw5yQ6Q/ZEKgdp8EadWLoQi1MHoens7pVG4wYCvCE8fehZRn1zlAw6sowDaNnJAwkAQpYQgtjzcIU0yDoKVlY6UzqgdWwDWQwTleFeoezsCcgGYPC2SIhmsnv8lzsYlYsrubea3R8ggr5s3PDfGml0kuGmg+fW5h+TviYn+g/nzRzNO4fNly9GwYx5cvCwHVXRuBxGy8Rs8kSqHOEnBv+YdhrahfXsVcMUq9erVw8OUmJho0JnBVv7+/mXn4+Pja3y7CCE1x8GfgUP5jyxP5lq1ser1BRqNY+DakEFuNIsS/WFBjbAWbjAn5aT1Zez9gFavCeDTnivo1H8Kt5vNoPX/WKgLAbEDIJT8+wo7CXnccMXt8dfMH5NUJJbJ4ejugewky8ckaoWCn+GfK4I3p2X/Ibh59BA0VehIUNe6TngWcVcjazXgUJSTjee+WoHYyxexY8nn1RrLM9BydzJXHz90Gafv7nnz2CHs/X4ptBaOFUvdvXgWzfsMgHs9bnwWDq5ufLBBKPrv/r4p7W40dn/7NR/0MYULO0SdOcGf3AMC/3WdLrgAwHPPPWcyjH337l3+tH79evTr148PL3AhAXPjcEGIqCjj7iIFBQX89T///DP69++P1atXw9PTs1YeT2pqKkaOHMlvz4OSkpL406FDh7Bw4ULMnz8fs2bNqpXtIIQQQgghhBBCCCGEEELIw0UBB/LQ9JzQGStn/QG10vrM5hUd+fMkjm08jU7D2mDEqwNrZdsUjTyA+wU/5pQ09iwLONgyk16jtiHoNKyt0fVcqEFSxbBHVagUKhz56xRunLoNkUTEb1Prvs0f2v0T8ij7Y/4GrF6wATqdbTNxLj76EdZ9ttlqwIGbLfLddW9g7tBP+Y4tD5o0fzzCOzREv5y72HjtutlxGK7OSAiwFT6t3VwKcT8zZZZkiAypsibw+fG6+ZCDmTHs7S13qODEOWUiJyMPqilu0Ax1AmTlgwmulEDyZQYE6RrI4gogTS2G0sfO7FgOUekoXhIA1q38QbLOQqT3AJ4/shxt7azPOlrczA3sxtjy8EQF3GycQ17qZ3H9Qk0hLudegUKrRNCAelgd+x3OHfwCgPnXhmMnVGBtdCS2SIDBHf3AChJw6E4M+vm0Rgf3RhAwVl6oh4DrjMGdqjtGbXvY4Ybi4mIUFZUHcMwV9Zji5uZWdj47O7vGt40QUrsC+zC4+hMLVlu59RIOAImHWPh10aLB0McnEODehIFvR+Pt5UINwvLdWa3TKRTI37kTJVevgpFI4NinL+w7tH94G0DII+zY2t9wdtsmG7sDMHjq40U4tuY3qwEHzpAZs7D1y4XQqIyPSbpPfB5e9RsgpF1H3D55FI8brni9KLe8k1ptKMzOwpr33kRQ89bVGofrGNC8j+XfZxXn5+HepfNQK5XwDg7BlG9/xYGfv0P0WctpNq5Y//L+3RCKxQhq3gpatRp3zpxERLdeCGrR+l/ZncCS2CuXsG3Rx2Y7Zph6H/354RwMf+s91G/eCo+7gwcPYujQoVAoyh9/REQEWrRowXd1uHjxIqKjo/nr9+/fz3c+OHXqFORyucE4e/bswejRo1FSou+UyHVt4Do/cN3sVCoVLl++XNYRb9++ffxtJ06cqPEOCkqlEgMHDuTvjyMUCtGhQweEhITwk8lwgfOTJ0/yy3GPefbs2bC3t8f06dNrdDsIIYQQQgghhBBCCCGEEPLwUcCBPDQuns6YOHcMfnt/faXX1Wl1OLHlHG6fj4GrjwtyLMyKXhU6mfUfBZ28fPY7SXwuFBGGHSoe1LlxEOrajdNR+HDUF8hJyyu7bsvy3WjcoSEWbJvNvyYPyknPw77fDiPxdhIcXB3QZ2I3hLYKfshbTkj15GXmY8cP+3Hkr5Mozi9BcLNADJ3WHx0Glxem7Pv9MFbN/8vmMV/85Ck0bN0AzbqG86ErSxq3b4gWPZrgu4tfYvPSnTi1jStUUfM/eyNfG4Q2/Vrox2zbBjtv3UaJmZk5pXkMxCkMCurrwEr014nF1mfxlDsqoKzng7we/nA9YLrwSVikhSS5BCo/w0IGW8pfclUKxL8gh6aB8W265nIoP/eFbHoimGIWXW5rcC3EHukVislLOf+TCGaADLoK4YaKkrQ5cFDpiy8sUTtJkD0uBO5/xRg+FobBy4ufQ71GD0zfXbqtrA4bE//GvtQDULPl4btAu3p4aWhfaPJ+sXi/CSUucHIohrOjAmdyywvdD6RFoo1rKD5t8Txkwvsv3L9ESkqK1WUq0w2hrhQWFhpcdnAw7mZiTsVlHxyHEPLok3syaPwkg5urK5/e4kIRSUeBnCgWEidAlY9Hno/1nGCtKz5/HomvvQ5tTnkhcs6qPyBv0wb1vv0GQhfj8LcmIwO5m7dAFRfL3+48fDhkjRo95C0npHqK83IRuW8X7pw5AZVCAc+g+mjZbzDqt2xTtgxXmH5260abx+z57GR4BATBv3ET3L14zuKyvg0b8wXbT3+6BBd3b+WX12m18AtrjFYDhyOwqX7ig3bDxyD63Cm+MP5xUpyfz4cCbOEXFs53ySixcfmKcpKTILN3tG1hLkzwYFCFYdD3xVfg5Gm6C6hOp8XR1b/w75WKr4F3g4ZoO2yU1YBDKW7duxfOll2+efwwglu2wfCZ70Ek+Xcdk1jq3FCZcEMpbnluvfEffvZYd3LIysrChAkTysINXIh81apV6Nmzp8FkDD/99BNefvllPvDABQcWLFiATz75pGyZe/fu4cknnywLNwwePBgrVqxAUJDh7zmPHz/Od4qIiYlBbGwsxo0bh6NHj5Z1sa0Jf/zxR1m4gbt/LpTBhSwqSk5OxsSJE3H48GH+8rx58zB58mRIpdIa2w5CCCGEEEIIIYQQQgghhDx8FHAgD9XE98bAyd0R6z/bjPT4+90QGH0RKn+W66LA6gMNpmQmZqNp18Y1HnAQ5lr/46coV/+HPY40JptfR+siM7msl7MDBrVpjLqUk5aLuUM+QUGOcVHxrTN3MH/MIiw+usDg+t0/H8Ty6T9BrSovoN749Xb0HN8Zs1e9BpGYdhmk7ty9EoeDa46hILsQAWG+6P9cT5MhneSYVLzV60NkJGaVXZcWl4HTOy5gxPSBeHX5i/x1G77aZv1OGcA32AvTl7+IDoP04Yhuo9tjxRu/Wlzt3tV4/v4DGvritW8m8ydTwjw88OPokXhz527DAADLQpLPQJrDbQIDSYYAalcWrBDQKIVWN1so0YIR6FDQzhsuBxPMzsDvciAN6c/WN7iuRCGBs1P5/s6UwzEpkAUrzYYhWD8xNAOcIN6ch9g9N+B8Lg6qZs5QtvGGzM0ebUMDEfPJQWjjM1D0muH9c0QCLezFKkiFGuQyVxBYX46MdBeUFJsuUOAeX157L/Ry90fC35eh1ejQrHs4Rr0+mA+aROdnoECtQJCDG9yk9mXrbUjchF0pe4zGiy9OwBfR2/C2b3NoNVfMPg+70yP4cIMpF3KisTxqG94OfwJ1invtq9uBocL63MycVhe3afbhusXNOlqRWFweYrSm4rIaM+EkQsijremLAkhddLj9J4uSjPtXltbicbswxvL+szgV8GgOZJr/iHgk2PkAAT3qduZudUoKEqa9DJ2JQFjJhQtIevNNBP5iGCjMWbcOqZ98ClQo9M3++Rc4jxgB348XghHRMQmpO2n3YnDrxBEoiwrh5l8PTXr0gdzRyWi5rKQEbFjwHopyykOw+RlpiDl/Bm2GjkLPZ17kvzNd2LnZpvt18fFD38kvI6iZfob50Pad+M4PlmTE3eU7ELgH1EO/Ka+aXY7rFjDyrbnYvWIxH8p4XMRduWjzsil3bvEdDjgCoRASuR38I5oi/vJFvmOC1fWjb9t2RyyL4FZtkRpzhz9fr0lztB40HP6NI5AZHwtlSQlcff1g51R+HHt41U+4tHu70VBpd+/gyB8/wz0gkO8yUBX3Ii/g6Npf0fu5l/Bvx/087f7260qHG0px6+1ZsRjPfvnNY9v14uuvv0Zmpv53rS4uLjh27JhRKIF7bFOmTEFubi5mzZrFX8eFF7hQQGkg4N133+Vv53DdILZu3WoytNC1a1e+a0OrVq34IDx3fuPGjXzQoaZw3SFKcUGMB8MNHK5rxObNm/mgPdeljwt6cF0devXqVWPbQQghhBBCCCGEEEIIIYSQh48qA8hDN2xafwyZ2hfRl+5BrdSgfpMA2DvrC06vHL2BmT3nWVw/4VYSX9jMdRl4kEAoMBuOsEQWlYmC7vXBSs3/SMivppWdZ3QsOmVoEF3PDqkFxQbL+bo64puXRkIusb1Ysjbs+vGgyXBDqWvHb+HGqduI6NSIn7Xt9w/+xLpPTRdXHP7zJFy9XfDKkudrcYsJMU2r0eLLF77FwdXHDK7/7YM/8do3L2LQi30Mrv/s2eUG4YaKtn67By16NkF4pzDEXjPd2aCiJccXokknw9mCL/1z3ep6u348gD2//INOw9vi9W8nw83H1eyynQIDMRv18fmqv6H2lkOg0MLuWjZ0no5Q1XeDTiyA1scVDMuA0QJ56U7w9cvhJwc1hwUDe88i5AscUNjaAw6XMsGY2DW6HMuAsp4ceb3KO9IUFMrh4V4AkdD0vlSnZaDSCCC3UvOh7WHPBxxYHQtNRiFc/ykE/knibxO1D8WIrq2w8eAhQGg4kEykhou0pMLjY+HmVgRX1yLEx3kiJ/uB2VO54tP7myoeHoa/vn2Nf8+c2HIWq48exqsJ25Bpry9mFzMC9PULx5zmA2AnZLA/9YDZ7c9T5+OyZhjC1fcgFBcY3X4mKwjHCxtAJDH/mbM39QKmhg6Cs7g8VEEeDQ+GMKpTxMSN9bgWQRHyX9ZwjAChI1nkRAOsBnAKBsR2+p/l1HMsjs2yfEzBhRzq9WaQ8I9xCoIRAGzlD0mqxLMlUJAAKB746mPvB3T7VAChpG73Tznr/zQZbihVdPIUFDduQBYRAVajQfqir5D9m+mi7bytWyHy8oTXzJm1uMWEmKbVqLHrm68RdcrwmOTE+j/Qb+qriOje2+D6XcsXGYQbKrqwYzMCmzSHm18AclKSrT7lz3y+DF71DVunJVyznrC6tGcH3yEitF0n9HnxZYOi+gdxXSXaDh2No2ssdzB7XHHf1zT3A65cFwtFYQEU+fkI79YLVw7ssWUAm+/LydMbo+d8CK1GgztnT+LMlr+Qcuc2f58coUiEsI5d0XPSFH5bLu/bbXYsLqAS0qYD8jLSoLEhiGHKtUMH0GXcM5Da2eHfLOH61SoHQUplJsQh8cZVPpjyOOLCBaXee+89o3BDRdOnT8fChQuRn5/PBxtu3LjBBxW4bggbNmzgl+GOcZYtW2axI4O3tzfmzJmDGTNm8Je//fbbGg04cIGFUqUdJUzhAh3ffPMNH2Rv0KABWrZsWWPbQAghhBBCCCGEEEIIIYSQukEBB1InuD+OhbUJMbo+Nz3P6rp5mQV46+dXMGRqP+z79RAyk7Ph4e+OQS/2RqN2obh3LR6H159AUV4xgiIC+G4F+1Ydsbw9ah2cDsQgb1AYwHWReID8ciqkifkG16mTcqHdewVODdygCnThr/NSMfj621EI9fVAXTu755L1ZXZfwq2z0fjpnTVQK8pnSDVl908H8eyH4+DgQoW65OH6ac4ao3ADR61UY/HUH+AT7IVWvZvx1+1fdQQ3T0VZHG/bij1o3MF41j9TpDKJye4otuDCVic2n0X8jUQsP/1JWZDLVLHN319th8PdbOBahRvysiCNzoLaTYqsXm762aS5x60SQa0RQCI2E0Bg9TX/IokWEALpExsip28AfFfegDinwqz1DODi5QysjYfT6SzkdfOE2kMKUb4aqi0FEE6Wg3EyLGTQ6RikJLnxHSKsYe3MF0Fw+53GHcMgKQEqligw0D0QbqhwGwPUC8xAQYEcGvX9ry8swGj0XS44SQUFuHc1Dh+M+Bx3fZXI/l89gwCFmtVhd9J1XM9Nxv+aNYWaq2i14Fh2Mi5+PBT1mh9G23FZsJepEF/siu3JzbA1uSn8fAw/Fx6k0mlwIy8enTzC8W9x9uxZ+Pr64nEnkRj+bKsrzBJuTcVluWIgCjcQ8vhihAzcDHOMPGWu9UJWRQ7Q8X19SCJ2LwtFFgs7bwbBgxm4hjHIjWaRcIiFpgRwqs8i4wqQcLCGH4CA21bjcIPMHejyMQPHwLoPXxUdM/4O96DCo8dQdOoU0hcv4VrjWFw2Z916eLz8MgT/8kJd8ujhZtl/MNzA0ahV2PPdEjh7+fCz9HMi9+9C+r0Yi+NF7t2BXs/bNqt+aeeBiorzbT0m0SLq9HFkJyXgyYWLIJHJTS+n0+LiHhs63NUwRiCAzMEBJfmWv1fXhqRb1+ETEgZGIASrs358Y6uCzHSk3Y3GlkULUZh1v3NpBVzw4ebxw/wyzfr0h05reb+XfPsGXH39kRF7t0rbo1aU8N0gApu2wL/Z5X07a2ScyH27HsuAw+3btxEVVf67kIkTJ1pc3s7ODhcvXoSnpyecnMq70Bw8eJCfBIXTqFEjBAcHW73vIUOGlAUcTp8+DYVCAZnMdMfbymratCl27drFn+c6Ttjb2/MBClMd+J577rkauU9CCCGEEEIIIYQQQgghhDwaKOBAHilcobI13kGefDFhRMcw/vSg4KaBCF4YWHZ52MsD0HFYW2z/fh/uXo5FUX4JNCrjPyDL72RBVHIDha18oQx25YMOovRC2EWmwu5GetlyIrEQXkGeuHc1ni+plcVk8yeOAsDcQZ/g5+uL6zwIYEsnC26W+Zw066ESjqJYyXfY6Dy8XQ1sHSG2Kcovxs6V+83ezoUDNny1nQ84pMamY+nLK62OeftcDDz83eAX6oPk6FSzy7l4OiGoSYDR9d71re+nKkq4ncx3VBn71nCTtydGJSPlbnmHmAepPWR8AWNFxUUyCJxKIGS4mePLJxXVsQy0LHcFA5Wy/A/+XGeI1MnhCPjycmlOAo4uDshL1xcSye8W8ScDx/KAwfZAWync67kjBiJk58ih1Qghg/XZQwVxFcIUJuz8fh90Kg0EUQrowvTFD3ZitcXOFNzEke5uBUhL5jpa3A843H9EAqEWcEjG6xe/hPYTQOLkBDudGsVq45BKfFEOjqfdtvoYFFolbu/LwrENIfhhdzukTatfdhvD6Pjn3NrE/YJHYGZ//rmqIVy4ISDA+OficVOxiOfBmUGtKawwEzlXYEMI+fex9+H23ZZ3nvb3s14ezRj+9CCXUIY/lWowjIV/ZxYx21nkxwKqQn3nCJOs3z0EYkDuAX6sB3GBh2OzWQz8jYXIWsulWsbqrB+TZP+xCtos0zPdP4jrBlF86RIcunSpga0jxDYlhQW49o+FYxKdDhd2buEDDjkpSTj0249Wx0yNuQNnL284eniiIDPD7HIObu5w9fUzut7Jw6vSM9NfP3wArQYOM317fJzJYvzaJnNwREm+bb+TcHD3QFF2llEnruqI3LejRsMNnIKsTKx5702r+7/s5ETEXYm0Op5KqeA7OVQ3SPJvpiwuxp1zp2pkLK7rBjfe49bxguvAUIo7XrMllB4SYjzxzJkzZ8rO5+bmYtq0aVbH0VV4r3MdFLiwRYsWNROomTp1KpYuXQqlUom8vDw8/fTTePnll9G7d2/07dsX/fr144MYhBBCCCGEEEIIIYQQQgj596GAA3mkcF0dQlsFI/rSPbPLDJrcp9LjdhvTkT9xslNz8OHoL3Hz9B2DZYKbBSLuRiLEiXnQ1wczYLip0B/w2orJWDzlB7P3lZ2Sg32/HcboN4agLjXr2pjvXmGJreGGUqyJ54OQ2nTt+C2UFHLRIfMu7I3ki1y2LNsFZYnlonoON96cAQug1VguZOHCUWKJ8ayAnYa35cMPuRm2zzJ6YM1RswEHnZmfK52IQXFjVxQ3cTW6LTfDEXaOSuhYtiywoB9Ff0mtEqIwz3B2VpWvHUoau8Duln6214Kc8iJtk/J0wLoCqA6oEdNYhIwJQWU3KYok0KgFEJnpIsER7bD8/KjvB82kv2ShZIEfIGYgFlgvgrSTqyDQGRZrisQaBDZKRbZMAwQLwEAAO2hhhwLkK6TILHIwGudCZha8DGvcjdSzC0CqXQHfEcjhbA5yhnhDVU//vHKPXa0VQCIyv81iRoRmzuWhCPLokMvl/KylxcXF/OXsbNsKax9c1surcsWFhJDHAxdYcAwCCuLML9NgSOWCA1xAu15v7qS/XJzB4uRcHXIeaDzlHALk2TBJd6sZwIVF5m8vSQfi9rMIGV63AQe71q2hvHXL4jK2hhvK2BCaIKQmJV6/yndqsORe5AX+/ws7t0Knsd4ZqqQgH5s/m69PKVvABRIEAqHR9WEdu+DQ7yuhrERI8+axw2YDDraEkWqDreEGTmEWV+Rfs7+T0Faii5etMuLM/z7rQZkJ8VaX8QwMhrKwsMrbKpJI4RNqPDnIv0lhdmaNvYe5cbhAyeMWcEhLK580wc/POBRlq9TUVIPzP/xg/vef5mTxP6s1gwth/PHHH5g0aRJKSvT9HwsKCrB161b+xAkMDOS7SDzxxBPo2bMn3zWYEEIIIYQQQgghhBBCCCGPP/qNP3nkvL5iCuQOpluZh7UNwegZg6s1vpuPK5ad/ASLjy3A0+8/gYnvjcGXB+fho62zy7oecLNdmwo3cK4ds1ygwzm1/RzqGl+cLTUuzq4qsUSEiM40Kxp59DqRcDVBXMDhxJazNo978cBVpMWanym115NdMPH9MSZvk0jFePLdUaiM/MwCs7f5h/rAzdcwxJDb2Rtx89ogbVIYCtsYF1DnZ9ujIJcrtGfARRz0MQd9ASNX15GS4G7yvoobOpedV3nJoOnii+JGzmCFxsWPWnsRUqY0RsI7rZA5qr6+W4JABzvnErj55kOrFZitx9KeU6EEdlB7SGGN6HIJ5B8kQxCjhC0lKTqt8bb6BmdCwoUbTHCSKeEgMe44kVQE+MstF3709uqFrqPa8+cZDQu/L+5Afl0f3GAELBRqicWaNE+JJ+xEpj/PHhr9D0j1T/9C9euXh0+Sk5NtXi8pKans/L+hmwUhxLQ2bwogNPMx5t4ECBlRveCAnSeDvj8I0XOxAOHPMPyp5xIBOn4gsKl+N+Oy9WWST9b9/tt14lOAuOaOSRiZDPLmzWtsPEJsUXF2cnNKuwBEV2IW+djLF/nZ/s1p0qMv2g0bbfI2sVSGdsNMH6+YU1JoPoDsXi8IMkcr6d9aIrJ5H1H3+7SapiophouP5Zn2W/QfjND2nat8H25+ARBLrB+XPc5UipIaHk8fgn6cVAwVcEHuquK6JFQXF0CoSWPHjsXVq1cxefJkuLoaTwARHx+P7777Dn369EGzZs1w5MiRGr1/QgghhBBCCCGEEEIIIYTUDQo4kEdOeIeGWHpiIbqP7QSRWD9TITdb+oTZI/kggtzBcFbyqmrapTEmzR+P5xZMQMteTeHi5QyZveU/+gqEAkjlEqtja9SWZ4Z/GHwbeOO9dW9AIquZgqJeT3WFq1d5cTQhD0N4x4Z8uMaSpl0bQ1msRJ6FEIGtAsP9sfjoR3h3zRsQCo1nSi0Vf6O8wNkW/g3NF62IxCIMf2UAf17lIUX87HCkPx8ItS8DrYsWWgctWC51ZYBBUrQX0hNcoVLqnx+uBr0gT464aB8UFcjvf8I/sB4DqN2lSJoejvj3WiJ2XBCSXwlH7PxWyO3mXbYYF3hInhaB4nB98QADBiKhBh4BuXByL4ZEroFIooOOZfhABZcH405cR4NCpQT5Ec7InB6M+HdbIvmlxtA4W95viiJLYP9qAtivc6w+l/39OsLHobwjg7sTA3sny10+nGTGt/vJncEWN4daY/p17uvVG61dW2LM/4bCzul+14Y8Dfw/j0a9925CGlMEtVaIIqXpkINSLUKYPMTq4yF1Jzw8vOx8VNQDU6hbUHHZJk2a1Ph2EUIeDZ7NGfRaLoB/N4C5/1EhdQUfROi+iAs/1ExnBM+WDJq+IOBPni0YyN0BgZXDDYEYENjQi5Gt+0MSSENC4P/5Z2BqKOTgPHIEhM50TEIeLr9GjSGwcGzACYhoBmVxMRRFVrqk2cAjsD6eXLAIA195A4yFmcizkxMrNa6Lj5/FkEGLvoNQFzS10EWhtjXt1R/2rm5ll6V29lUax8nTi+/QYE7bYaNRv3krtB02CmJZ1X4XFhD+7/++Kqnic2N+vMerewPH3r78PVja6aAqKoYjxo8fz08mUdnTiBEjUNO4Tg4//vgj36ni0KFDeOedd9CxY0eIRIZfiG7cuIEBAwbg+PHjNb4NhBBCCCGEEEIIIYQQQgh5uGwoiyDk4QtuFoT3/3wTyhIligsUcHJ3sFhsXBNkdlL0frIrdv100OwynYa3Reu+zbHjh/0Wx4roGIZHQZeR7fH7neX89u799RAyk7KrNE7zHhF4ddkLNb59hFjj4umM3k91w97fDpldZsjUvnizxzyUFFoucrdFZmI2QlqWz+puzrm9kZUad/CUvhZvnzBnJK7dS8CfEYXQuuirGgUCHcQiLbQiATQiIYSFQjC6isWUDLLSnJCV5QiBkIVOx4Bly29nSv/hq+/110sSCpH0WgQ0roZhLq2jBJlPBANCBi6HU1HYwh0q/4pFOixc/AogFBkHLfgOEjqgSMUV+uvvh2EAsbsC2hIHlIS7IOnVCAR8fRXCEiuVljuKoR0ggbCl6crOMIf6mNN8BGa1BW5nZkKr0yGNjcOSO/csDisVGXd3kLFyrLt1FxJRIPxdc+HpVAihQIdChRQiTX2MbzOBX84vxAef7X0f80Z9gZzUXP14CSVw3piO7LlBUGrEUGlFkIrUEAq4gg4GSo0IWp0AgbEioA3qFN+RqJqT3VZ3/UdVu3btsGnTJv785cuXoVKpIJFYripOTExESkqKwRiEkH8v14YMOn8khEbBQqsAJI5c2KFmgg3miO0Z1OvBIG6/+Z1vQHcGXq2A2N2Wd9DuEbW7rbZyGjwY8pYtkb1+PfI3b4Emw3wXLUvsO3eG95w5Nb59hFjj6OaBsI5dceuE+VnBm/bqh/UfvA1tDRTrF2Zlwqt+A5s6QFRG8z76ULU5nZ54Eql3oxB3+VKlxv2v8W/cBP1feg06rRaZ8bF8QXfavWgc+PHbSo/FBVjunD1p8jZXvwB0e2oSf97dvx5Gv/Mhtn31MUryzXfiMMXRwxP/dg5uHvxzydrQbcUaLszk4Ga6I+KjzN29fJsrHq9YolQq+eMfhjuAv8/Dw6PsfHp6Oh41YrEYPXv25E+c/Px87N+/H2vWrMHmzZvLHtesWbNw8qTpny1CCCGEEEIIIYQQQgghhDweqIMDeaRJ5VK+a0BthxtKcd0c/ELKZzGvyM3XFS99+Sw6j2gHr8DyP/g9iJttfujL/fGo8PB355+/qoYbZnw/tUY7ZxBSWdOXv4AWPc3POvntjF8RfclygbutigtKkByTZnU5ndZ84YROLEBxYzcUNfOA2kOOrqM7oOf4zhbH435GS54J5cMNIpEGPl45CA5MRz3/LNQPzICfXzbErgqjhgzCIjUfMNBqBfpwAVeXcP/ELVoh7wBxajHUvnKjcENF2QMC+O0vbGlY0CFxUPEdG8zh6iEkQsPwAiMAhA76Ai+Npwz5Hb1gi5I5edAcVRo8Vq6DRFvXppgb8QoEjAAigQBNvLzQ3McHDmLr+yau00RFYU7eiEzN5M+rNGLcy/DE2ZhgnLoTgqsJAbiUosHuuNsGnYXWxK6Ao1t55wjpxUJIbhbx57nnXqGWoEgpRbFKwocbpJGFYM9a70hB6k7//v0NZjk9eNB8wLHU9u3by85zhUB9+1oOLxFC/h1EMgZSF6bWww2lmk1hYGf6kARyT6DZVAYBPRjILNRfcl0gGgx9NAIOHLGfHx+Yq2q4wfeLz1Hv558gkMlqfNsIsUXfydPh1yjC7O0Hf/4OmQlxNfJkcl0g8jOt/6zoKlHM3bhLD4S262RxGaFIBOljOHP9Q8MwCG3XEaNmf8B/D+SeL+8GofAJaQipvPLPm2f9BsiIvWv29pzkRMScP1N2OaBxE0z55ldIKsywbwu1ovoTATzqpHZ2aGjl/W0r7ueEG+9x07Jly7Lz8fHxyLDh85YLAXAdGxo3bowVK1bw17Vq1ars9gsXLkCjMZ4s4EFcyODnn3/mj6diYmKg1dZcCynu/u/cuYOjR4+avN3JyQljxozB33//jfnz55ddf/r0aT7oQAghhBBCCCGEEEIIIYSQxxcFHAipwNXbBUtOfIyRrw2CvbP+D5oyeykGT+6D5ac+hm8DbwhFQszfMgsuXs5Gz51ILMTsVa/BN9hMRVIdUClU2PLN7iqt6+bjgqFT+0EgoF0FqTtyexm+OPABmnUPN3l7QXZhjd4f9zNvjalt4erx87oHIPnNtsga1xjZo8KQ+korRA8JRHJegcXxitQq7Iq9DZFQiwDfbDjYK/nQQCk7uQp+AVmQ2CsAHeC+IQYBiyIhTivWL1AabKjo/mWutt9VK8TYbGewfYIsbofOToTiCBfoZOWhMhYsRA4qq88J1/3gQQJx+XWFbYyDYYyAQXgnw443/n4+mNVoCla0+RDTQibgpQYTsLzV+3gv4mU4iit2ldBr6doIdkLLxY5FyvtdMfI0GOUQgc4ujUw8YYa23bvB/8/NyBpfnIYEVQbe+OUl/jOA33YWcFsYD9nJPEBbIY2hZSE/kgvXz+IRdyPR4n2QusUV7zRqxL0X9L766iuLy6vVaixbtswgIOHt/eh83hNC/j3kngx6fytAyAgGovs1ltz/IcMZ9PlWADsvBkIJgy4LBZD8n727gI7i6tsA/qzvxt2d4AR3dyhaWupQoYW6UfeWKrWv7Vt3alAqQKEUd3fXEAhx92R9vzMTIstKHAh5fufs252Ze+/cnaXtztv7zN/Dtr9UAfR9SSqOc6Uwl5Yib/78eocjvCZNsnrCNNGlJix4vunVtxEUW/XboTptsfPf+3WlUNV8TyIseK+tkoJ8FOfmOG2jLS5G/J4daCpqN3e07tMfiissqCQ8+T+4tfX36hMShmuffhl3/d9XGHnPA2LAZcZHX2Hyky9C5WJ7TxLVtQfktfjOKnQaNhrhHeJqbHdi66bKe5Kc5CTkp6dixIwHxDnXVmMFb650XUaPb5Rxuo4eh+aoY8eOVtUXFi5cWGOf//77D1qtFidPnoS3t7e4b8SIEVbBhYqKd8588803uOeee8TwtzCPkpLyBwE0lFBlTwhgtGnTRpxXbq7zB7fceOONle+Fv2eKixv3/ysiIiIiIiIiIiIiIqJLS36Jz0d0xRMqRjz48Qzc98EdKCkohYuHBnKF9d8qsV2j8d3R/8OK79dhx797YTKY0KFfW0y8fzRCWgXhSnJqbwIKc+q32EKuUjT6fIjqI+V0Go5sPtHkF69V1yiExgbX2G7KI+Ox8fdtMJurFrYXDI9A0cAwm7a7E1Nwx7w/8des2+DlYn8xT662DDqTCf5+xZDL7T+JVVjD4hNWiKxdUnjsyhQX2Eu1NTxNUQJ4Fpux7oG74enlhmVffwbonD9N0eQihyqtFNpYT1gkFliE+SguKh1hh70WFnPVQkSzxrYSz+2v3IhpL01F8uk0pManixUS2vWOrVzAGCw8proGGpkKU8KG4ddE+0EuS5kZqkdSEJonxWNv34kJo0bi1Z1rahy3SK/DyvSdWHh+DZLLyp9+qfBSwP2/9tAeMKDotyTI95fC571kGP0V0HdyES+C6nAJZDnl34vSpTxYcVmJpTwaYYyr1OOPP4777rtPfC88cfT111/HSy+9ZLft/fffjxMnqv459MQTT1yyeRJRy6PxlaD7YxJ0fcgCQwkgZPykcusF/j7tJBg7T4qEfy1I32WBxQT4dZaIQQjXoCsrDFB24ADM9V1oqLwC/n1KBCAn6TzS46uqfDWV4Ni2cPd1XDWyQo9xk8sDCZaaf6wlHTmIhXOew7S3P3b4dPqSgjyYG/HJ69UJVQfu/uRbqF1d8fG063AlGXTrneg18TrkpiajICMdGncPBMVWhbB9QkJrHEPt6obuYydi15I/nbYTgglj7nsUHYeMwKqv/1fjuLrSEhxaswK7//kL+Rlp4j65UgVXbx+YjUaUFuTXOIa8hfwzNLxjHHzDIpCTfL7eY/iFRyKsFsGTK5HwYJJZs2bhrbfeEreF+xphwb+/v/176p9//lmsjFBRBWHixIni+/bt22P48OFYt25d5T3P0KFDHQa7ExMT8eabb1ZuT506VRyvMQhhCWGsnJwcsZKDEDZ/9dVXHbbft29f5Xsh7OHr66TUFRERERERERERERERXfH4WHYiB4SndHv4utuEGyoIx258ajI+3DAHH299E/e+f/sVF24QWKotwK4rqfTKWhhFLdfWxbvFJ/A1JWFRvbDYvjba92mNR7+YBams/F+jJo0cRX1DHLZPyS/Ewr2HHB73UWugkErgLlRocELtqofn6Qwx3CCQ5+trKkSA0lId3r/jU/F9qwtPZXRGmVkGj20ZYuUG8VeC2gydruawk9Fk+5PCVFL1z09FphYQhhmoBia6oPdLfXHri+WLm8JaB6P3Nd3E61qfpzPfEjEWN4aPgkJi/c9rVZEcbZf447YbJuK3Pf+HCXePFPfHetW80MHNvQAfnpxfGW4QGCwGFMrzUNKtFKVvhqD0zVBYVBLIswxwWV8Alw0FleEGQXBkzQENahrCn6OKV1RUlMN2d999N7p27Vq5/fLLL+Ouu+7CuXPnKvcdPXoUEyZMwHfffVe5b8qUKRg1ahS/PiJqckKoQeUpsQk3VFB5SdD+NimGfSzD8E9l6DxLesWFGxp6TyK5UD2J6HI7vWt7k59DIpGi79Sba9U2rEMnDLtjltinNvLT03Bk/WqHx109vYUJoCnoS0ux+pvyexLvUNtQ+OUS26sfek6YUlm1IbpbT6twQ10MvPl29JgwBTK59T2JQqVGSNsO6Hv9LZj56fdiuEHgGxpR6+tWEW4QGPU6FOdk1yrcIPDwD0BLIPzuv+bB2eL1rg+h39gHHm/W1YKE8HZwcPkDGzIyMjBkyBAcOHDApt2CBQtw7733Vm4/88wzcHNzq9yeO3culBeCMSkpKejfvz82b95sM87GjRvFMEReXp647erqitdee63RPo9cLseDDz5YuT1nzhy8//77YtUJe3N59NFHK7dnzpzZaPMgIiIiIiIiIiIiIqLLgxUciK5ysd2ixCoUpYVlde4bHVfzf3AnuhR0pbp69w1vF4pOA9qhOL8YfqG+8A31wZ8fLEV+ZoFVYGnWe9MxcEqfWo87buZIdB3eCf9+vQZr05KRKne+sGj5kVOYNai33WOuCiX85WpIpTUv/vM4nV35Xp6nr7G9RS7BjqV7cfZwIm7t1AX70qsWx1ws1tsHSw9+gcziYgz7fR5MErP4S8FgkEOnk0Olsl8xQlizaDBZLz40lshhMVTt8zVlQ7IwCBKv8n17kIQ7d72BR1vfiB4+7dAQwiKUO6In4tqwYdiWfRClRi3CXQLRw6cDZONtv5drYzrgnb0bUGywf/1kUhPSzWccnk8hM0MhNcHQzQVl9/nD5eNMu+3GzBiOy034CoVXQ8e4WgmLZv7880/xqaTJycnivh9//FF8BQQEwGQyiU8Mra5Dhw74/vvvL9OMiYiaJ03nOEg0GljK6n5Pom5Tv8XGRI1NWFheX77hkQiObSM+kd/Dzx8aDy/sWbYI2qLCyjYaD08Mu3MWYrr1qvW43a+ZiOiu3XFwzQok7NuFvNQUp+1PbtuEHuMn2z2mdnOD2tUd2uKqOTWmUzu2IC9tGrqMHIs1337usF1AVCvc/NpcFGZn4scnH6xVhYr6it+9Hd8/Oguj730Y4R07N2gsoTrD0Ol3o/ek68UwjL6sVKwIENWlu3jsYkLQYcuCnxz/uZJIkHbmVMPmJJGi45DykHdLEBgTi0lPvoB/3n8TBp3zhwdcHG4Q+gn9mzOhasHvv/+Oa665BiUlJTh+/Di6d++Onj17ipUZhHubnTt3Ij4+vrLP2LFj8fTTT1uNI7T/8ssvxZCA0CchIQGDBw8WKyoI4XBh37Fjx3DoUNVDHGQyGX744Qe0atWqUT/Ts88+i7/++ksMnQsPvXjqqafw7rvvokuXLggPD4dOpxPnceTIkco+wjEhtEFERERERERERERERM0bAw5EVzmNmwbj7hmJPz9cWue+E+8b3SRzIqqr1j1i6n3Rkk6kIOVUKnqP745r7hmB6E4RuO7Rcdj+zx5kJ+fCJ9gL/Sf3glJd/oTCuhCqtsycOw3SrXtwYLXtEw2rK9KVL1w5e+Q8ln25CuePJ8PVyxXDbhqAAVN6Q5usgzpYUmPIQZJmqHyvSimpcY6qlFLxr9uW7MHNz0/BmrNnsOLMaZt27kol3hs5FmoXFdacOgKzUMGhmvx8F3h5ldqEHExmCbRaGXCh4ovFDJiKFTDkqSrb+GenQXNb1XaFDG0uXjnyLd7v+hDaeTh+yn5teSrccE3wgBrbuSlUeH/AeDy8aQkMZtvV+6PDfJBgsR9aqKCUm2DQy2EY7g7zDzmQFpqsjl//2HhEtAutx6egS01YhCM88XP69OnYtm1b5f7MTNs/A2PGjMEvv/wCLy+vSzxLIqLmTebhAa8pU5D322917ut1c+2eZk/U1Bqy+DknKRG5KUlo1aMP4kaMhW9oOHqMm4wze3eiODcX7r6+iOnRB3JFzZXTLuYdHCourFe7uGLrwl+cthUCFoLMcwk4tGYFclOToXZ1Q7uBQxDbsy+M+tovCq8ziwVn9uxE93GTkbBvt/i6mDCXMfc/CoVajfjdO5o03FBBqI7w9zuv4eY57yIwuuGLs108vdBl1DU1thMCJaPvewT/ffoBLHbuScLadUTy8apF2/XRa/L18Aq88iqNNqWozt1w06vv4L/PPkRO8vka2wshFKFyQ3MPN1QYNGgQNm3ahFtvvRUnT54UQwG7d+8WX/aq2X366adi6PtiQlU7oRqEEHKoCIILIQPhdTGhnVDtTghWNDaNRoN169bhxhtvFO/ZBFlZWVizZo3d9pMmTcI333wDT0/PRp8LERERERERERERERFdWgw4ELUAM966Baln0rFtie1/0HRk0gNj0GtstyadF1Ft9RnfHUFR/kg/l1Wvi2Y2W8QqBoc2HsOHG+egVZcoDJ7ar9G+gNYBvjW2ifX3xfy3F+H7F6wX9m1dtEustKLv74qiVi7w9HMcWjCeM0OZVrWQXnOqEIqMMhgCNQ77eG5OF/9q0Bkgk0rx6dgJmH/0EH45fBCncrLholBgfOu2mNW9F1p5+4htc0rLQxFixkF4SYS1RVLk5blBoTBCpSoPWRgMMugLpYiYcwymKDUMHgqUBXpB39FV/IWhSi6Gx5YMeD4ohB/sL9YyWIz4LXE15sTNRGMxGozITsmFykUF7wD7CxvGRrbB3+Om4+vDO7HyzEkYTEZoThfDa3UmzvQDJDe7OT2HVHJhsZVCCvfhgShZnCpuhsQG4frHJoj/DL0iVHyHDR3jKhcTE4MtW7Zg8eLFWLhwIXbt2oX09HSYzWZxwU6/fv1w++23iwEHIiKqn4BnnoY+KQklm52HQqvzmTEDrr3tV8AiutRie/WDm7cPivNy69VfWMQuVAxIPnZYXEzvGxaBtv0GNdr8hPFq02brwl+x46/5VvtP79qGoFatYdTXXCGuIUxGI6QyGSY/+SIOrFqOg6uXiyELpVqDdgMGo9fE6+EVFCy2LS2sqrjX1IQqCrsW/4GJjz/bqJ+1ODdHDGu4eNi/J2k/YAi8AoKwe+lfYvjDbKq616truEE4R8U1E0IvPSdOQecRY9ESCWGFO97/TPx77cDKf3F693arEInwZ1D4+7nr6HEI6xAnVgS8mghVG4Qgwvz588X7mz179ojhbeFzhoWFYciQIZg1a5ZYqcEZobqDUO3ht99+w7///ou9e/eK4xiNRvj6+oqVEoRAwbRp0+Du7t5kn0eorLdhwwasWLFCrFAhhDWShN8TJSVi8DwkJESsyCeEIAYOHNhk8yAiIiIiIiIiIiIioktLYhEe5URELcKB9Uew+ueNyDiXiWPbT4sLnu0ZdftQPP3jg5d8fkTOnNp7Bs+OeQNFucUNulDdR8Zh7qqXkZaQgWVfrcbZw4lQu6kx+Pq+GHid8NRUeb0CFKM/+R7J+YUO2zzephP+nPa1w+MF/QKRd3MkgltnQqEy2Z7DJIHl6WwoDlwIH1wg6+CH07dFwuxmGyDwWpMCv6VJ4vvX/3kWfSf0sDou/ASwt5jjtyOH8ML61eVthLmo7P9UcFHpEJJWCsWviTAeMEIhl2Pg9X1w91u34cUJb+Pc0SQgVgHpNwFwRgoJFg18B2qZbZUHR3LT87D8m7U4uOEIIJGgx8jOGDFtEP79eg2Wf7MGeRnli3s6DmiL216cil5jutod5+1pH2Pdb1usd05xhfQR50/o15tkKNGXz3du11vRtsRPvJZB0QGXfYGM8ITN8PBw8X338S9C5dKwagO60nzs+/cN8b2wkERYFENERFQfwm+Pkm3bUPjPUuhTU1F24ICQmLTb1uvmmxD86qu80HRFST11HH+//WplJYT6iuneC1OeeQV5aSk4tHYlss+fg1Ljgrb9B4mVFIQF2HUlLI7/5sG7nAYw+l5/i024oTEo1BoYtGU1tpv64huIjOtaq3uSfcuXYP28b2p3fpUaBl159QmZQoG2fQei/03T8NebL4vXuDakMjke+elPyOw8zd4RIcBwaO0KJB87AolUgqguPdB2wBAcXPUvDq9bhbILgYOw9p3Q9/qbbT57hX8+eEsMmTTEdc++Aq/gUEilUnj4B172e5Iria60VPyu9NpSKNUucPPxhcrF5XJPi4iIiIiIiIiIiIiIiJxgwIGohYrffxbv3vkpzh4+X7nP1dMFtzx3HW56evJlnRuRI9mpuVj2xSpsXbJLXMBekOU4UOCIsNBjxpu34IeXFsBsqnqKo6BV1yi8s/JFePnbf8KmM/vOp2DmL4tRYueppzf2iIPh8x3Ys/Kgw/5mpRTJj8XBHKqCd2g+XD3LIJUKC37KF9OXJcrgMScJ8uSq8buP6oy5K1/C9h1H8eDb36O4szfMShlUySVi5QbXE+ULakJaBeKHk5+Ii13syS0rwx9Hj+B4VpZY0WFoVBRmr/kPJQYDLMLj+11MVjWfhGBDdGA23NRVc/GEO24ImoBR0UPKx0zPw9w7PsW+jBOQfuxf4/X7vd8b8FI6r5pQPaz1yrXvorTIehGVTC6FyWj9nQqkUgmenvcwRtxm/YTcxGNJuKfTbNsTeEghWRgEicrxoqAinQpGswwqqRzLhj4LT+WVs0CmesChx7jGCTjsXc6AAxERNb6yQ4eQ+tzz0J85U7lP6ukJ/wcfgM/tt/OS0xWpMDtLrDwgPHG/pCAf2qL63JNI0e+G27D9j19hsVj/fhUqKVz3/Bxo3Or+RPTzRw5h0buvwajT2Rzrfs0kZCYmiIvxG1NMj96Y8vTLiN+1HUs+eNNp9Yg7P/jc4fHSgnwxFJCdlAilRiOGBZZ/8h6MhtpXlXD18sbAW+5Ap6Ejxe2inGz89+kHSDp2uFb9H/5xoRg0qY1zB/ZiyYdv2VxrIZxSvRJDBYlUigmPPYM2fQZY7c9IiMcvzz2GhgZM7v1iHhftExERERERERERERER0VWDAQeiFu7otpNIPJYshht6j+sGjav6ck+JqFYe7P0sTu2pWgxXF8LTNS1m+1UJeo7pgrf/e7Fe457NzsOP2/di1fF4lOkN6BAcgFt7d8Gw9tG4vt0sGLK0kBbZLsCvYHRXIHNGK8iGSiCVmyGVWGCxSGBB+UJ7SaEJXs8kiiGH0NZB+GzPXLi6ly/AWf7tWnx831diNYnqvAI8MH7WKJzamyBWbWnXKxbj7x2FoKjyqgrLT53CEyv/g+6iRThR3l44V5gnxBvKQw5KC6AwQ63So2NEKuRy2+sngQSPtr4b/fx6Vu47fOQkns7+EmaJ44JRvkpP/Nz3Fcgk5QGMbUnnsTz+FIoNerT388cN7TvC58JCo+L8EtwWdT9KC2t+Qmx17j5uWJD8FZRqZeW+H19egF/f+Mt+h+tcIX3Yy0n1BmEcCa4P74NnOl5ZoTAGHIiIqLkp3bMHuoQEyDy94DZkMKRq3pNQ8zDvyQfFBfmNLbZXX0x+sn73JDnJ57Fn2WLE794uhgOEwETX0RMQ2bkbPr/nFljMju9H6sonNBy3vf1/UKrK/57dv3IZ1v3wVXlKuxpXbx/EDRuN9ITTMBsNCG7dHp1HjoWHX3kQ+vjm9Vj51ScwXVTRxTs4FHnpqTbj1RQemfTE8+I1rJB4+AD+evMlsVqEI0LVg5mffie+F9olHtqP0zu3waDXISAqBh2HjqwMnQhhjG8fvqeyakRtuXh6YdbnP1pVidj4y/fYs/RvNESP8ZMx9PaZDRqDiIiIiIiIiIiIiIiI6ErCgAMRETVLd7R+CKlnMppk7G+P/h8i24c1eJxMbQG+OLUaa9IPQWc2AiYL5LtKoP45B7JzervBi4LHg6Ab6riChHJnETzfSBHf3/HaTZj20tTKY2ePnMfSz1fixK7TUKgU6DigHTYu3IbM89lWY8gUMrFfzLVdcNe6f2FwsMipa3AQlAoZdqYki9vqPD1aBaTAtYvR4fyC1P74qOscsVJGhbeP/4QNmfsc9pkeORbTosaiSK/DrGVLsCMlyeq4SibHB6PGYnzrtvjr/5bhyyfmoT6e+/VRDL9lYOX254/9gEWfLHfcYagGLrP8oA0uvz5miwQ6oxxao7AgSYLBAe3xVtdboJRWK29xBWDAgYiIiOjS+Or+O1Ccm9Po4wqL9Gd8/DW8AoMaPFZhdia2zP8Jp3ZutQkQODh5nQIFg6fNQK+J11VuZ55LwMFVy8Uwg1yhREi7DmKAoSQv16qfVC7HgBtvg194FBa/97rD4EVouw7iX1NOHCufnlRWHsF2EtSwVy1iyftvIH73Dod9Bt16J3pPngptcTEWvTsHqSfLz1dBrlJh/MNPicGJnYsWYsuCn1AfQviide/+ldurv/kUh9ascNpHoVbDoLUfpmjTdyDGPfykVWiCiIiIiIiIiIiIiIiIqLnjf/0iIqJmKaxtSL0CDgqVHAad4wX6gkMbjtYq4GAym7Em/gxWxcdDbzKhc1AQpnbqCG+NBtnaQszc8RXStPlVHWQSGPu5obiLBm7PpEB2Rmc1XlDHIGQOKH8qqCP6nm4we8kgzTdhyaf/4aZnJkOhVIjHojtF4JHPq57cOavLEzbhBnHeBhPmvfw7Mo/ugaFPeSUHew6kpWPtHXch93gaXr3pA5SlFcJljY+4uN+RdG0WThefRRv3mMp997eagjPFyUgqzbRp38k1GjdGjBTfP7N2lU24QaAzGfH4quWI9vLGka0nUF8XX4uoThHOO2wow7DWbXHbJzchsywf27LikVSaC3eFGmOCu6Kzdw39rwTC4rQ6LFBzOAYRERER2RAqDNQn4CCVyWC+qIKa9c8vM5KPH6lVwMFkNIrVGs7s3SW+D2ndFh2HjITazU0MN8x/6ak6zdEzIBAFGem1br9v+RL0GDdZ/EwCodrBqFkPlX8Osxk/zL7fJtwgMBuN2PxbzcFlIdgw89PvkZOShGUfzYW+rLRWVSyEoIUwlwojZtwvVtvIT0+zaR/eqQt6jL9WfP/fZx/YhBsERp0Oyz6ei+nvfIyUE0dRX0U51vckfuGRNfYRql/0mDBF/D4TD+1Dfno6NO4e6DBoGIJi29R7LkRERERERERERERERERXKgYciIioWRo/axR2Ld9fpz5KtQKuni7Iyyhw2k4qk9Y4VmZxMe7662+cyKpaoLL85Cl8sm07Ppk4HrvKDluHG6pzkaHsHj+4PVdeiaFCcnY2oHBcvUEkk8DkIxcDDvlZhTi97yw69LVd1LJ/3WGcPXze6VBlbWo4F4Dv9+zBmbv/gjalEBI1IFE5DjdUKDWWWW17Kd1xV/4ofLp6AXI6agFvGZBuhOXfEhxdm4HPb1Nj4uvXYeWZ0w7HFKpM/HBwH7wU5Qun7HHpCihDJTDmWVC8U1jtZX3cN8QbmUnZSDyWDBd3DYbc2BdfP/UTSgocL5KacN9o+Ku8xFdHr6gaPzsRERERtRydR45F0tFDdeojVAKQyuTQl5Y4bSeV1nxPUpidhb/eehm51ULCp7ZvxrY/fsWk2S/g+JYNdQ5g1CXcIBDGF4ID1cMEFc4e2Iu8NOt7nvrYu3wJTmzdWKtwQwVdSbHVtpuPLwbcdDvWz/sapfl5VsdSTx7Hhp++RdzwMUjYt9vhmEIFjP0rlorVJ+rL1csHhVmZ4nemdHFB+4FDxaCHQad1WFGj86hr4OHnL77C2nWs97mJiIiIiIiIiIiIiIiImgsGHIiIqFnqP6kXRt0xBKvnbaxVe5lcinfXvoIV363Diu/XOWwnlUrQY3SXGsd74J+lVuGGCqUGAx785x/4dbBeNHMxUxcXmIIUkKUbKvdJ8k2QGC2wyB2HCISH6eu8XaCAzunT9Q9vOl7jZzAral40ten4GSiTLyyK0gKmDBNkgY5DBhJIEKwprwqRVFCAHw7swz+HjyK/sASqEld4fFgMt8NVlRyEDMK/36zBDmk+zB2c/yzZfD4Rr1/THRt+32a136UbEPKiFOroqutmyLQg/RMLCpaXXx+NuxobF27D+3d9BrO5fJ9vR390mt0TOxfvg+VQMSQXBSLueuMWxHaLRnMmsZS/GjoGEREREdlq228Q4nfvwMltm2p1eYRgw82vzsXefxeL4QPH7WSIiOta43hL3n/DKtxQQV9WhsXvvS5WgrickhtQ6aC6M3t2oLTAQXjcDolECq+gEPF9XnqqWGXixJaN0F4UeqhgMuhxYOUypNip3HCxxEMH0HPidTizR0hU143K1Q1H1q/Cvx+/W/nduPv5I7JzVzFYYa+qx5BpM+AbGl7ncxERERERERERERERERE1Zww4EBFRs/XU9w+i86AO+OfzFWIlA4lEAouDBf8P/e8edOzXFi5uaqz9ZRMMeqPddoNv6IegqPIF+o7sS03F/tQ0h8f1FiO05qrggj0SWGBpowQyDcCFdUfSMjOU24qgG+zhsJ+xVI6MW9rCgniEJJShVVf7VQVkcschBIGmhwRRARnQeaiRmeMJg0Fht11xqQ4+1bZ1S3RwmeXicNy27q0RqPbHwfR03LH4LxTqLgQxXBUoa+MlvrSb0uC36JxVv4RD54EOtk99rc4CC/pM7QH/1f4oNBRBJTPAt5Ue3pMBsxwwWoTARnnIQREgQdgcwKK3oHANoFQpsPPffeXjuEmhu98PiYPckKhMAfoEQpLjC8XCfCiXFMA/3A/3vHMbht8y0Ol8iIiIiKhlE+4/xj/8JCI6dhYXyGclJYq/Rh3dk4y+92EExsSix/hrcXL7ZrsL2gXtBw6Dm3f1X+G2zh85hMyzZxweN+ov/A5vYi6eXvANs78AXyp1fk9SW7rS2lduEAiBAXdfP6ScOIa/33lFDHzURta5hBrbCMGEVj37YPOCedAV2w9MOPvzcu5g+T1JhaLsLPF1MQ//AAyeNgNt+/KehIiIiIiIiIiIiIiIiFqemh/dTEREdIUSFoiMnTEcn+95FyuNv+Ofop9x/eMT4OblWtkmpnMkXvx9NibcO0rcjo6LxIsLZ0PtqrIZT6jcMPub+2o877bE806PW8wSSMz2qzAopEa4KbXwUGshf9Ub+DUIuNm98t/Irr9mwUthP0BgMUmgy3YBpBJkXxeNUfeNhEpj+zkEfcZ3t7tf2VqC8L9VCPtKiTY9MxHX5jyG9TmCtjHJYoTAihnwsFhnIbXzy2A4aD+8oTfI8M9hI/ZkJOOxFf9WhRsuUjA4GCXtvKz2aeILrU8vuegFoFVYGR46/BJM95vQ7lkd4p4rQ8iNJmhUJrjK9HCT6SCtSIsI3aQShD6mxKAb+qIgu6j8GiolKHs7BMYR7oCy6juy+Mqhv98P+lu9kZWUje+f/w3Zqbm4Klga+CIiIiIihyRSKTqPHIvb3/sUs39bgod+XIhu10yEUlP1mz4gqhUmPfkCOg4ZIW4LIYdxDz8Fucr2t3xM914Ycc/9NV7x80cO1vytSBxXhnPaTSqD2tWtVm2Fzy6T2w9LR3ftgcagVKvr1D711AmkxZ/Ev5+8V+twQ23JFCp8/9i9dQo3yBQKtO7dH9ri8nuS2ijMysSW3+bVqXIFERERERERERERERER0dWCFRyIiOiqIJVKoXZR4b4P7sBdb9yM1DMZUGmUCGkVZNO2/6ReWJD8FVb/tAkJhxLFsINQuaHTgHaNMxmLBCqtJ7Qu1otRlDIjNIqLwgGBcmCWJ9BKAbyZi/ahEXi6/0zcuWEecpEvrkkSHgBrLFFAl6OBWV/+FFSzRg7v8XEOpxDbLRrdR8Zh35rDlfukIVKEfKeCwqUqBCDul1oQHZYpLmY/eTbswmcoDziM7dAGa7ChqrEeyHupFNovIuHvXwy1wgijSYrsAnek5nrCYARu/vtXmPRySCqSCdUvDSzi/sIBgXA9UXV9lFlahOcDSd5VgYbq/PwKYHDLgsEERLrkwk2ut2kjk1jgKtOhyKSuHEQWYsL5wqon2xqHu8Hc2n4oRPx4N3tBsbQAGYlZmPfy73ji25oXlxERERERVYQdlGoNht95LwbdfAfyM9OhUKnhFWh7T9K230BExnXF0Y1rkZOcCKVGg7b9BiO4ddtGu5hqNzdoi2q/qL5CSNt2GHXPg/j9tedQVljgtK1XULDDY6HtOogvoZJCQ7TuOwh7l/1d6/b6slLMf+kpWMzW9z214eLljdL8PIfHc1Och93tMRkMSDl1vM798jPSsP2vBRgxo+YQPhEREREREREREREREdHVhBUciIjoqiNUNYjuFGE33FDB1dMV1z58jVix4YGP7qpTuGFAZESNbQZ7d4a/yqNyWwIL1HL7lQ9EI1yAHir0ndADkW5+cMkPQHGCJ4oTPVB81hNlaW6V4YYKKTU8NVSoXBE3uH3ltvoFH5twQ3URoVlQyI0VExZjkD8lHUfojF5W7Qr6+iO10AcHz0Rg54kY7D0dhcRMXxiM5blJg0oCi9xiFWqwSMpfwi8P4a9lrdxh0lh/nq4qb7vhBmGE4KDyRUYaoVKDnXBDBalEKMxgstpXaiipfG8QKjc4o5TCOLj8abUbFmxFWYnWeXsiIiIiIjsUajX8I6LshhuqBxB6jJ+M0fc+gqG3z6xTuCEyrkuNbdr1HwwXT+vKabUR27MvfMMialXFoSg72+nxSU+8gOA2DQuSH1z9r1gFoy7qE24QBMW0RlPQldS+4kN1xzatg8no5D6SiIiIiIiIiIiIiIiI6CrEgAMREVEddQsJQfeQEIfH1XI5ZnXri2/63IuRQXGQS2RQyIxiNQanxrli2M0Dxbe+Li6wmKViqMFisv+vaz8XF6fDuXu74cMNc/DhxjnoN3MovDs5DgYIZFILAnytn9BaZjRiW2clAkdWLfTRtqp5oRNklspwgxhaqHgJJIDZVY6URzvC5FIecpDJZUAHP7tDubrooFKVBy/c5TUHDhTVAg5SSOErD6zctnhYhyrssXiWt9GW6lCQVYjmTMiUNMaLiIiIiK4s4R07IzAm1uFxoXJE78k34OY576J17/6Qymr+HVyhTd8B4l9dPD1rbFtTGxcPT9z6+vu48eW30KpHH9SHUadDdnIivIMd34M1BplCAUkdrlOtx5XL4RXgOOhSUzUKbQ3BdiIiIiIiIiIiIiIiIqKrDQMORERE9fD55Ilo7+9vs99FocBnkyYiwssLIS7eeKvrLVg+7DmMC635CauurT0Q1jpYfH9d+6rKC/YoZTJMaFO7J7zGDWqP1rMGQCa3rmxgj0xm28ZoNsN1RvdqO2qx4t18oU31YMNF9MEuyB0bJr5/6H93Q6GRls/xohX1UqnZqhJGjaqdr6NnD4y7YUzVWGk1P/1UklreRq6Qwd2nFmEOIiIiIqLLYPKTL4qVFi6m1Lhg8lMvwt3XD95BIZj0xPO498ufKoMLzmjcPeDhFyC+7zB4uNO2cpUKbfqWB7RrE8gIbd8R9WU2Gu1+1sYikUgxauZDkAol4RpZ6z4D0GX0uHqHLpQ1BNuJiIiIiIiIiIiIiIiIrjbyyz0BIiKi5sjf1RVLpt+GtWcSsDo+HnqTCZ2DgnB9xw7w0mis2nopXdDKLRjrM52P2aFNq8r349q0xa+HD2Fvaqrdtg/06i1Weagto8mMoiIXqFTOKxIUFtsfc19hNgYNao/Dm4/D7VA+Srp7Ox3HdX8+Sjv51jiv4j4BeOXe8djifx47s44jsJUFZrMEZYVqFGW7wmySokyrhNksBB2AMpMSQInTMU2W8vymjzIA14XeBfc7PLH5753Y/d9+KFYUwtTX1XHnAhPkW8vH739tb7h6NPPFRBZL+auhYxARERHRFUcIMNz+7v8Qv3s7zuzdBZPRiJDWbdFhyAioXd1sKin4hUfh1I6tTsesHkLoMGg4Dq9difQzp+227T/1Vpvz1BRSaIjMcwkIatXa4XzqTSLBiLvvx6kdW5Cwb0+jDi1UnRh6+z1Qu7khfvcOnD9ysE792/YdCIVS1ahzIiIiIiIiIiIiIiIiIrrSsYIDERFRPcmkUoxuHYv3rhmLjyeMx909e9iEGyqMCOwJmcT5v3YnxQyyqtDw47XX4Za4ztDIq/KIwe7ueHXYcDzSt1+d5to9LARJ520rTlRXWKxBfqH9BUpmsxnP/PSwWNHAfWcO5Fk6cb+3awkifHMQ6p0Hhax8wZIqsQRB35+G++4sh9UbKki9zPifZC02Zx2D5UJ1BqnUAlevMviG50EqM8NolCMvv3xehUY1DGYpNFIdvGXFcJOWCSvwrdbiq6X+GB14HR5v8wa8lD6QyWWYs/hpDLt5AFT79JCvK7I/GaMF6k+yIDFY4Oblijteu8n55ImIiIiILjOpTCZWUbjmwdmY8OjT6D5ussPQgVCRQahU4EzX0eMr38uVSkx98Q10GjYacoUQNC7n4R+IUbMeQq9J19dpriFtnVepq4nZZML4R55u/IoGFgvWzfsaCft2W91bNIS7rz/6Tb0Vt7zxAVy9vCGTKzDl2VfFag5SWe2eN6N29xDHICIiIiIiIiIiIiIiImppWMGBiIjoEvBTeeK2yFH46dxKu8f7+nZAb1/rBT+uSiXeHDESzwwYiJM5OWLooVNAgBisqKsuIUEIVbZD4rkiREbZlpLQ6eU4eCLKYf9eoWEIjPTHl/vexayuT6LV3yfh/54a7q7lQQeBySxBYqYvshcaIbUAHlvTUdTnQqhCYn+tkGdAEXQW+09yVahMcPUpQWGWG1KOecIzshCBMSVop06Fr6KqioPWrMB5vS8KTR64NvwRdPYaajPWL3P+xPoF5U+rVf1fJmQGI8yDXWFxlcFokgAWCWSHyyDNMqLH6C649/3bEdEuFM2dxFL+augYRERERNT8eQYEouek67B7yZ92j7fu0x+RcV2t9qlcXDHmvkcwZNoMZCcnitUEAqJiIKnHPUl4hzj4R0YjK/FsveYf1r4TvIKCMf3tj/HTMw/DoNWisZgNhkYZRyaXY9zDT4qhk4ttWfATTu90XkGjnATRXbtjyO33iJ+XiIiIiIiIiIiIiIiIqKWRWCzCs46JiIjoUliWug0Lz69DmjZH3HaXu2B8SD/cHjUWCmnT5g5TCgpx+/w/USo/j7DwLLi7l8JolCEz3Quph91Q7Otht5+QTfht6g3oExYubsefi8fcpDcgczHZbZ+QEoD8d8qQNzoURj+1bYMLvzzkSiMCYnKdztlkkiDzkAfC3z+KoMBi3LLwLJRqs91Zxni9hPi8zvjnzHEU6HRo5eWD29p3gVuGHvd0ml3ebIgGeNgL8JFVTccC6ExyGM0yyCHFm11vw+CAjmiukpOTER5e/l31HvU8VBqvBo2nK8vHrtVvie+TkpIQFhbWKPMkIiIiostj/4ql2LNsEQqzyoPPGncPdBk9Dv2uv0WsCNGU8tPT8McbL1Seu7aEyhO3vP4eglu3FbeTjx3B7689iyuKRIJRMx+EQq3ByW2boCstgW9YJLqMugZmoxG/PPdYrUMSk596CdFdezT5lImIiIiIiIiIiIiIiIiuRAw4EBERXWJCtjCxNB1GsxkRLgFQyhSX7NylegOWHD2OL/9ci5zcQihTS+C+Mx2yYgNS720Pfbib2C5AXYLrY44j2j0f7QJi0TFiJiSKOPHY38kLsCrjX4fnECo5bNzUBgaVxvFELIBaWQafmKIa55wa7wt5ug73hqxEh9H5Dttl6zzxv1NDYDLJUFSkgV5ffl0HZrkg84UNQE8V8LYfIJPYTscCaI1ymCwyuMs1+GfIc1DLlGj2AYeRjRRwWMOAAxEREdHVxGI2Iyf5PMxmM3xCwyFXXLp7En1ZKY5tWo9tf/6GssKCWvWJ6NQFQ6bfLVaPEKz74SsxqHGlESpbCNf2YkGxbZAef6rW42g8PHHvFz9CJr903wsRERERERERERERERHRlaLu9eSJiIioQSQSCaJcgxHrHnpJww0CF6UCt3TrDO/PDyD4qyPwXXoWyswyyEqNCPv4CALnncJdLjuwfuJPeLzzLlwbfQrtXJfDlDMFpvyHYbEYsOHcBqfnkEkt8AsrqyjUYJ/FAp+FSTXO12ySwAIJLMFKtB5R6LStn6oAUd7Z8PAoQ2hoLnx8yttv8S9FcRcvYLqH3XCDQCIBlLLyihRFxjKsTT9U49yIiIiIiJorYSG+X0SUGBi4lOEGgVLjgq5jxotBh9o6f+Qgfn7mESz/9AOYTSYcXr+qcSYj3Ag0InvhBkFdwg0CIfhxeue2RpoVERERERERERERERERUfPCgAMREVELZDbZLryRmC0Y7HUWz0zYB4XMNp5g0f4HbebrKNWV1Di+/EJYwCGpBE88dBtau4c4bVZapBJmBpXcAIXM/mKh6tRSQ+V7T88yuLuXL5oqGB8AxAljOQ9mSFB+jsTS7BrPRUREREREjR8GcOb45vVYP+8bGHW6Rrn0Yx+cDZ+QMFyJclNTLvcUiIiIiIiIiIiIiIiIiC4L+eU5LRER0ZUtXZuNVelbkVyaATe5CwYH9ERXr3a4WnQa1B67/9tvs//6+zMhdRJ/lOj/hORMHNBD6XT8whKN0+PCc1IHj+mJKG0oHt/3HYwW20CE0SBFUZ6L+L7UoEShTg0PldbhmGYLkGdwtdrn4VGKoiIN9DHCOKVCLQjIJGaxKoTJIrX7AFeLBXCXq3E1kFjKXw0dg4iIiIguvby0FBxauxL56alQu3mgw6ChCO/Y+ar5KkLbdkDSscN17nd43apGq2IR26M3XN098Pfc1+oVuGhKalfrexsiIiIiIiIiIiIiIiKiloIBByIioossSVmLH84uhgVVK7vXZu4QAw7Pt58Flcz54v4rnc5wCje9lYRe046iVKvA1pNR2HMkFMpzZeg6sMhpX7lCj7BjBUjr4e+wTWGJGsUJMkgcN8GgiCj4ubjAz6UVPu4xE0/u+gVl0mLxmBAw0JYoUZDjCrNJCCEI34QU+zMjMST8pMMxE0r9UWyyDiYolSbIZGZYdBK4m8ugdjGJIQaB0SxFiVEBnUlReV6zRQIpJBgV1NXpdSAiIiIiako7Fy3Elt9/Lv+ResGR9asQ070XJs5+HnJF+W/Y5ior8SzkKucV1hwxGfSNMoeY7r2hcnFFVNcemPrC61jy/pvQl5VXgLvcpDI52vQbdLmnQURERERERERERERERHRZOHlGMxERUcuzN/covj+7yCrcUOFA/gl8k/AnmrPswi9wJn04FD7/oO3AAnQbmY2HHtyD5+ZuR+Hz4eWlFWpQnKXC+RQ/u8d0ejkOn4qEb2IWAn3zEBCQB41GZ9VGbgJm9xlQud3VOxofdZ+FvCQ/ZCZ7Iv28D3KzPGAyywAZoFHpcU3ng3D10aPYZH8RVJFRhbU57e0ek0rM6ByeBI1rVbhBnIfUDE+lDmqZQdw2mIWfRRJMCe+LII0XrgpCWYvGeBERERHRJXN61zZsWfCTVbihQsK+3dj483fN+tvY/ud8/PT0wzi7f89lm4NUJkP/G26t3I7o1AXXPz8HUvmV8SyYbtdMhJu3z+WeBhEREREREREREREREdFlcWX8VzsiIqJLxGKxYN+aQ1jx/TpkJuXAL9QHo+8Yit7XdINEIsHilHVO+2/I3IXpURPhqXBvdt9ZsXYjMgvesHusrUcmHm67AXvygtDbJ93hGGaLEgfcwmDUq5CR4wE3Fx3kciOMRhkysr2Qku6D0MhcuM8SQgO5F3rloqhIjbNnAyFL0OL5voPQJTDIatxO/oHo4h+B7WnnbcIJozsdgbdLKcyQ4oQ2BEGKAvjLC6GSGqE3y3CoKBS78qNRbNLYzFevl8PfowQufkaHn8lNoUOJQQGFxBW3Rg/AzNhRNVxJIiIiIqKG3ZOcO7AXRzasQXFuDtx9/dBp2ChEdi6/J9mzbLHT/kc2rMbAm6eL1Qeam/jdO7Dtj18bNIZcqYRR37AqDsPumImAqBirfSFt2iEwuhXSTjuuGldvQtLaTmDlYkqNC3qMvxb9pt7S+HMgIiIiIiIiIiIiIiIiaiYYcCAiohbDZDLhnen/w4YFW632b/pjOwZc2wsv/j4bRwpOOx3DYDHieGEC+vp2QXOTW/St0+N9/RPw46kRTgMOKxIDEXyXFhKptnKfBVKYdDKozCZ06XAOerkclotKQbi7a9HBIwGt9gTihjf7Y1X6DhzKjxePdfduixBFJHZcFG4QRPlmi+GGCkLIIdXgDYlFjlhlPjykZvhIzReKUgkLhqzPW5itRltVitPPLZUAwy1tMHvIDLjI7VeIaLaES9LQAgws4EBERETUaExGI5Z9NBfxu7db7T+5fTPa9huEMQ88htSTx5yOYdTpkHbqBKK69mh238y+5UsaPEZDww0RcV3RcehIHFq7EinHj0AilSKyS3d4B4U0TbhBUItwQ9v+gzHmvkegUKmbZg5EREREREREREREREREzQQDDkRE1GIsfPcfm3BDha2Ld+OX1/+EZEzNC7olFy2iby5KdTudHpdJLMgxSfH+6Z6YHbtHXPhf3Y78IPwji4Sk2vVxk2nhpSiFVCieEFC+z2iRIF3riUKjdUUFeZQM/b/tj5l730KOvqBy/9rM3VBLNFAoPaDXK6z6RPrmWG0rYMJE9wREKIoq93VS5eB6n5P4MLUPdheFifssZsCw1YCA905A8ZvrhQCEY/t/3olEt5Fo36e103ZERERERA2x4+8FNuGG6iEH3/CI2lcEaIZSaghvXApRnbvh24fvQWlBfuW+oxvXXvaKGMKfi14Tr0NgTOxlnQcRERERERERERERERHR5eZ8tR8REdFVVL3hn89XOG3z71erEefRxmkbpVSBDh6t0DzJamxhtkjw5dmuGL31BnxzrjPWZEbiz5Q2uH3POPxfZhwMlqoxXGQ6+ChLbYIQcokFoep8uMp0NuP/nr7CKtxQQWspQ3RUJuRyg/WMxeoMVUa7JVqFGypopEY8FbIdfiVlkP5aAMUdKXCdkwpZmQmmDOsx7NGd1+PLJ+bhaiN8NUIgpUGvy/0hiIiIiK4SJqMBB1f/57TNoTUrENa+k9M2So0GIW3aoTmSXAHBjK0Lf7EKN1TQlZbgcjIZDNj06/eXdQ5EREREREREREREREREVwIGHIiIqEXIOJeF7JRcp23yswrRz9jZaYWGEYF94a64vE/2rC83zTCnx/UmGQ7khYvvz5V6Yu6pPrjvwGg8e3QIdhcEwk2tt2rvKS9zOJawbslfaRtE0JutAwzVSaUWREZmQSYzVe7LLam61p5SLWIVtguRKiilZozTnIbsx3xI0o2V+7VLred9MXOuGbotBhzbdhLJp1KdtiUiIiIiqq+81BSUFdqGfasrzs1B+0HOf7fHjRgLpcalWX4RUV17Xu4piEGCK9X5I4dQmJV5uadBREREREREREREREREdFkx4EBERC2CXFFz9QJBB00r3NvqRsgktv+K7OPTGXdHX4fmytdtlnAlHB5fk94exUYVvN1KEOBVKP5VKrFf/UAuMUFxUXWFi7nIDZBJqsIKFRUiHLMg0KUQA2JPoXvYOXi7FONURhDM5vI+kYoiMTjhTP/ARJt92hV66HfbX8RkMVpQ9EEZcCEPUVMIhoiIiIiovqRyx7/Fq4vq3A1Db58JidT2nqRNv0EYdMsdzfZL6DlxCiR27rWoSnEe70mIiIiIiIiIiIiIiIioZavdf1klIiJq5gIi/BEdF4Gzh887bBPaOhjhbUMQIQlFb584rMnYjuSyDLjLXTDYvyfaecSgOdOouiLM91Ok5M6GxVJqdWxzZiwWpvdAh8g0yKSWyv0mswSpOV7ILXJDiVYBV3V5UECCqjbOVM8jCJUxjBb7i5lcZTrEeaTAVV5VbaF/dDzOZPtjx5lo9I1JqNU55Yaqyg1VHwLIf7IErneqoZmshNSnfA76fUaU/KCFYU9Vn1/e+BOfPvwdPP09MHLaYIy4bRCUaiWaLeGSWSwNH4OIiIiIGsw7OBTewSHIS3NcNcwvPBIe/gHoMX4yWvfpjyPrV4ntNR4e6DBwGIJi2zTrbyKsXUeMffBxrP76Uxj1ukt+fiE0YjE7D2pfVhIJ3jy6DIlHF8JX7Y7JsX0xIaYnlDLF5Z4ZERERERERERERERER0SXDgAMREbUYNz19Ld6Z/onD4zc+NRmSCyUCfFVeuCniGlxtPFwmwlU9GAUlfyFfexTH8krx1XY1kk0ahLcutKmQIIQdwv3zIEs1oPQXHVzvKQ8HGC0ymC2A1ElFBYNZCqNFggBlAcKVuQjUuCKpVIczpf7INrhbVYPo5nkeKpl1tQdBK78sCEUgdr7oA8lEHYZNSHb6+Y5t87B/QA9Y5kuQ/V0hpP4SWLSAJd925f7B9Ucr3x/aeAzLvlqNd1e/BFdPV6fnJSIiIiKqiXCv0WvSVKz6yvE9Sa/JUyvfe/j5o/8Nt111F7bDoGGI7tYTxzauQ+bZeORnpCHj7BmYDParrjUmjbsnSgvycLko1BoYtGUOj2e5ybE2/4z4Ph5p2Jl+CgtPbsG3Yx6Gm0J9CWdKREREREREREREREREdPmwJjwREbUYwtP4Z86dBrlCZrVfJpfh9ldvxLh7RqAlkEk94eM+AzH+H2BCmy9gvj8DYZYcm3BDdW3CjTB9X4Li+TqxkoJGpofBbH0dL1asV6CvawL6ep5FqKYAcqQi2iUHI/1OoIfHucrSAKHqfLvhhgoxgVlQX6fC0YBwHCv1ddjOZASWfx/k8LiLp0as5mBOt9gNN9hzas8ZfPbYD2i2LICkgS9WcCAiIiJqPHHDR6P/jbdBKrP+LS2VyTHo1jvFxf8tgcbNXaxScc1DT+Dm196FyWisuY+HZ4PPeznDDQKluoaQgp17sgNZCXh/999NNiciIiIiIiIiIiIiIiKiKw0rOBARUYsiVGkYdfsQrPl5E7KSc+AT7I2R0wfDL8QHLU2evgDbsvdC+ZAGaCuDWVzJbj/lUOyjxd3fT8OqfxbD15gPubguxwKLsAjeThetSY4gdSEC1MV2x2vtmoV8owvOlAbAT2W/TXXRXfKQpvPG9znd8Ih8FyKUhVbHjQYJvnomGmcOutn0lcqkuOmpyZj/ziLUx4YF23Dve7fD089BdQgiIiIiojrod/0tiBs2Gsc2r0dJXi7cfP3EYIOrl3eLu47FuTk4sW1TrdqWFRZg4C13YM/Sv6EtLkJzIpFK0XvyVOxctNBpO/9CA1R6E3RK6wDMP2d24YmeU+Cu1DTxTImIiIiIiIiIiIiIiIguPwYciIioxfEO9MINT05CS5WlLcCHJ3/EmZKTQkQB8muVF8IKFpgsEpgdFHia/+OvaDfXAKmqYo9Qy+FCyOHCg/71ZhlKTErxr+1c0pzOo41LBk6XBEBaixIB0gshiiKzCm+nDUBXlwz0cEmDe5EERxcCq38NRHZK5cSstO4Rg2G3Dqx3wMGgM+Ds4fPoOqwTmp3GqMDQ0P5EREREZMPNx1dc8N5SFWRl4t9P3kXa6ZMQbyhqacv8ebjSKFQqGHQ6p21C23ZAbK9+NQYcBHKTBRePVmrUIT4/Dd0CYho4WyIiIiIiIiIiIiIiIqIrHwMORERELUTy6TT834rfcaTjOXiobRfgCJUYZBeCDpaLKjlYCszwH2GsFm6o7FV+XHhZhMoNSsgkEvgpSiGXmJ3Ox1OhhcxiRoFBAw+F1mnbYmPViYUAxr7SYPEl08mQ9X+ZgMFx3zP7z8LDzx2uni4oKShFfShUinr1IyIiIiKiKjkpSVjzzWdIPn7kqrksZnPNAY20+JNw8/WFQqWGQef43qdUJUWpyrp6QwWVjPckRERERERERERERERE1DLYf0QzERERXVV+eeNP3H7rM9jZNhmuKr3DdmLIwU4wwbi8DF4DnC/cEfoqpKY6zSvhZAi2HG4LZ2uCtCY5Cowau8dMKhOkPs5/zhgNJkyLegDdRsahPvxCfdCud2y9+hIRERERUbnN83/Cj7Pvv6rCDQKTQV+LNgZ8+9DdiOzczWm742FusFSUr6smzM0X7XxCGzRPIiIiIiIiIiIiIiIiouaCAQciIqKr3EfzvscC15VwnesBH7UWMkkNQQXxf6vayE9KYPiuGJI61H0qNaugN9t/8miF8/k+0EKOHIkLNibaDzkYzFLElwZUzsp2rhJI9DX/nDHqjdixdC/a9mqFurrp6Wshkzv/LFcqicXSKC8iIiIiovoSKsQt+/g97Fq8sN5jyBTKK/YLkEil5WnvWoQcEvbvQUBUjN3jKb5qHGjlYffYrM5jIZXw/8YlIiIiIiIiIiIiIiKilqEOSxWJiIjoSmGymFBgKIJaqoKL3H51A8GnJ37F+lb7IGulErcl1YILjghrc4KVfvBV+2BkYD/89vACFOqB4gOA12DH/YR18CZL+aIbCyTI0HsgRp2FYHkR/GXFkEvMKLMokGF0R4bJDVsSWwNqs5hdOJoViuwyV/SOOAtvZRnMFgnStR4oMqoBYcGQA128OuCU/2kk56U5npdUAmFaQsghpksUxt0zEit/XI/slFz4h/ti7F3DodQo8OlD36Eor6Syn0KlwK3PX4drH76mxmtGRERERNTSmIxGlBUWQKnRQKlxcRhuWP6/D3By28Y6j+8VFAIPP390GjYK2/74DfnpqbgSxfbsi7Qzp1Cck11jW7PRgNB2HdF55Fgc3bAWxfm58PALQNzw0TgT7IItu/9Aob6ssr1apsCDXcfjxrYDm/hTEBEREREREREREREREV05GHAgIiKqhYRDiTi67SQUSjl6ju0KvxCfS3LdhAVBe1cfwuY/t0NbqkNkt3AYxhuxtXi3GHAQKhh09eqI68PGo7V7tFXfbdn7sTp7u/V4F4IIzh4wGq4JxofdXq7cPjsuHucOJiF9vhReg80O+wnhBnO14lBlJiU6qTKgkRoq97lJ9HBT5sBYIEN8sb9VLamMYi/szIiGi7qqvVJqhJdKa3e+CokCN4RNwK7b9+OHF+fbHC9t54G80cHiXyGVQHWuGMv2nMTsr+/DuJkjbdoPuLY3Nv+1E2lnMuDp74GhN/WHh687mjXh6zI3whhEREREdNkdzT6Pw9nnoJDJMSSsE/w09p/239gsZjPOHtyL+F3bYdDp4BcRiZL8fJzYsgFlRYViBYPobj3Rf+qtCIyJteortDmxdUOdzymMM+3tjyq3MxJOY++/S3ClkatU6Hv9zTi9cyt2/P17rfoc37IBD343H11GjbPa3xHAqJgeWHF2L1KKc8Tv95roHvBUuTbR7ImIiIiIiIiIiIiIiIiuTAw4EBFRi7Y1ORHL4k+iWK9HO18/3Ng+Dv4uVQtIspJz8M70T3Bo47HKfTK5DKNuH4KHP7sHSpWiyeZWnF+CFye+jaNbT5bvUALuAz2gyKs6pwUW7M8/giMFJ/B0uwfQ2atD5bH/0jbbGVUCMySQOankcE3wMKvtifePwdIvVqFwewmSPpYg/FHbviaLBGVmpdW+4R6nrMIN1bX1zMSkiENYlNzNan9OnjsUfgVQKEzitt4sR4FeDTeFDnJp1XlDNUGYEX0LMoqk2NNHifwnOsF4Og+eW7KgyNWjoL8fMqdFi8GGCrooNyREueGtHRvwfN+hNnNSaVQYOc1JiQoiIiIioiYING9NPY6V5/aj1KhFO+8wXN+mP3zUVUHb5KIcPLXpe+zPTKjcp5DKMLXNADzf50bxfVMpLSzAormvIT3+VNXOrRd9BrMZCXt34fyhA7ju+dcQ3iGu8tiBVcvrdd5uYyfabB9etwr6sqrqBpebX3gkRtz9gHiN8jMzoFCpYdBpa+ynLS7C1t9/xoCbptsc08iVmNK6XxPNmIiIiIiIiIiIiIiIiKh5kFiE/5JKRETUwgiBhpn/LcL2lCSr/UqpDO8MG43r2nZEWYkWD/R4Gsmn0uyOMfTmAXjht8eabI4vTXoHO5btrdxWTVXD9XHHT+8MVPnh426vQ3Kh3MH0Hc+i0Fhsp6UFcom5+tr/Sl09uqK/+yiEe3gi1tu3cv+xHacwZ+r7SDPrUPpUBNrGpcPPpwhmS3lgovyUVQN6ykpxu89Op5Uikkq8MGPnHTb7JRIL3Fy0cNVoocrSQnpGB+m/xVDCCKmvFBOmjsadM27FrNWLsSnlnHVnkwV+fychd2IYLMpq5SEusuTaaegSEIyrUXJyMsLDw8X3/fs9A7Xas0HjabUF2LZ9rvg+KSkJYWFhjTJPIiIiopauUFeK+9d+jr0ZZ6z2q2QKvDPoDvHp/cX6Mly75E0kF+fYHeO61v3w1sDbm2yOf7zxIs4fPlDr9j6h4bjrwy8qtz++fSqMtVj0X12bPgPQafhoeAYEwiek6rdn8rEjWPrROygtyMfl1mPCFPSfegsWv/s6ko4drtcYd7z3Kfwiohp9bkRERERERERERERERETNHSs4EBFRi/TshpU24QaB3mzCU+tWIMbLB8mLjzgMNwg2LNiKaS9NRWT7xl/wff5EilW4QaCaoHLaJ0OXjSOFJxHn2U7clsLRk1wlMFqkkFossFgkYi5BI3VFQXYwvjlchG/wt9gqzsMP/c/I4JauQ2jrYHy65x1M+n0Bco1anMs3QOciBAiEBIMFAapiq8CEr6zEabhBEO6aD6nEDLPFOoggzKmoRIOSLAWiHz8Lqc4s7jdeOL5sy0qciPGxDTcIZBJkTw0HLJJqcQtb808cumoDDkRERETUPDy35SebcINAZzLg6U0/INozELvSTjkMNwgWx+/A/V2uQbi7f6PPL/NcQp3CDYLclCSknDiG0HblleXkCjmMutr1Vbu5i1UQTu3cKr4EAdGxCIyJFavoeQeHYfrcj/HTUw+jrKgQl9OhNStQlJ1Z73CDOMbalRh+172NOi8iIiIiIiIiIiIiIiKiqwEDDkRE1OJs3XEE/54+Wb3ggBWTxYLvD+2F+s99NY61aeF2TH/lhkaf4/61tgtlpMGOKxJUyNLmABce2B+uikG+cb+TkIMEKVleeCB2BObu3A+D2WTV4nBhNo66GRG2+BhUqWX4+PulyLwjFu1apSAmPANy2YXggVmKYqMSCokZKln5GDpLzT8xtEa5TbihOvetOZXhhupKFRb8k3BCSHA4+GgXvlgnNarOFuShRRCuQUNrdbHWFxEREVGjW3VuP9aeP+jwuPDb/Odj63G2IMPpOGaLBSvP7cc9caMbfY51DTdUKMzKqAw4BETF4vyRmscZcOM0bP9rPrTFRVb7M8/Gi68Km375HiajAZebQVuGUzu3NWiMvPTURpsPERERERERERERERER0dWEAQciImoxSgpK8OYtH2FtXjIs01s5bbslKREDirU1jllWXIamYLHYriq35FoAN+f9vtt/GI8m74VCKkPHQE8YXaWQy21DAoKsLE+YMv2xVJICg9l+G7NGjtxxoQj+Nh4lgWr07HQGwQHW4QC51AwvpRb5ejVyy1whk5iRUeaGEdLj8PJ0/LjWjefbQqKTwKKy/azqk0Xw+yPFbr+yNu4w15z1cMpHrWnYAERERERE9ZCvK8Fj67/BjrSTNbbdlnocHkqXGtuVGmpZIuES5Vz3LFuENd99AZlCAZ+Q0Brbazw8xYoNZpN14NqeKyHcUMnOPVtdaNw9Gm0qRERERERERERERERERFeTBi4PJCIiaj7m3Pghdq+o3VNIhaUqMXERNbaL6RKFptBteCebfbr/nC9c0htk2JZQhCK9HrnaMmxOTMeZs0Eo0yqs2pnNEmRkeiI90wvS7Wk4mJluM5ZEboLMXQ+Ftxa6Ea7IvTMYnh31NuGG6jwVWvG6ac0KaAtlWPZBuMO2JXol/jjWB9J8GaQFMjHoAKPwISSQ5UoQ/GkCpHr7oYvGcG3r8ifKEhERERFdSg+t/bJW4YaK9fPtfMJqbNfWp+YQQX1EdOpSr36Z5xKgLytFWWEBUk4cq7G9tqQYWYln0dJ0GDj0ck+BiIiIiIiIiIiIiIiI6IrEgAMREbUIJ3fHY9/qQ+J7TXwRYHb+tM3+oRGYeP8Yp208/dwx+IZ+aAqRHcLRa2xXq326v7UwnRNSAPYXP51P8YMFEqv92jIlTp0ORXxCEJJTfXA+2Q/HToQhPdMb8hw91PuybcaSagxQeOkhU5kgkVkgkVtQNN4fvpPtn7uCRAK4CyGHfDN0z+Rj24+BmP98DIpyrAtGnU/xxPPrb0BKkQ8kkECqlUKWL4c8RwF5nhwSgxwlXf0cnkdzqggwOg8/hLo5fhpqn+BwjIxwXsHj6mEp/8PRkFe9n91LRERERNXtST+NPRnxtb4ofUPa4pZ2g522CXDxxIiI+gURahIY3QrhHeLQ1Cy1qNzQHLn7+Ts8Ftm5GyK7dL+k8yEiIiIiIiIiIiIiIiJqLhhwICKiFmH7P3sq3ytydHA76LgSgcQCKP9JQOKxZNz15i1226hdVHh+/uNQqqyrIzSmZ39+BG17VS3EtxRbUPhgIQyr9ZBaqv4VrjC74/TZIOTkudsfyAJoU6TIyfVAXr4bTAYpXA/mIuzDY1AnlQKmqgXsEpkZclf7QQalsuaFR8ZEC8puyob5iEHc3vxLMF7o0wtfzGiPebNb471r4/DYNzfgVG6wvWmKLwks0AdoHJ5DXmSEx84cp9/fu4PH4JHu/eChVFXuV8nkuLldZ/ww9jrIpPwJRERERESX1rqk8sB1bQix5XxtCVKLc/FA13F227gq1PhwyN2QS2VoKuMffRr+UTG285NIIan2m1rl4tpkc2iWJBKMe+gJ9J481erayJUqdBk1DpOfehESISFORERERERERERERERERDasH6lMRER0lTLoyhfcVwj4NQFGdzm0sRc96d9khv/8sziyIxtHvtiCoOgAPDPvIWxZvAvHt5+CTCFD3wk9MeWRaxDeNrRJ5+zh645Ptr+Fnf/uw6Y/t0NbokOrLlG45p4RUPgpkK7NhEamxkPL1yGvIN3pWJozxXDfmw1pqRHKTC3kBVXXw/VwHkq6+ojvpRrHVRrKjDWHOXK0HjAq9JCXVY1v1EtxeE35+OI52hlhEaIMkopEgwR+ngXoF3sK7YJSIZeZkdXPFYlyGc4s1AAW24U/AfMToQzzQHZkVYBBZLLAf/45HDmxEbM/uAP3d+2DfRmpMJrN6OwfBG+14+DE1UgIewivho5BRERERA2nNzmviFad8BNsQ/Jh8RXpEYB3Bt6BVYn7cSj7HJRSuVi1YXqHYYjwcFwloDG4enlj2tv/hzN7duL0ru0w6nUIjI5F3PDR4u/4/PRUcQH/so/mQldagpZGrlLBqNPZHrBYcO7gPgy69U70ve5mpJ46AYvZhKDYtlC7uV2OqRIRERERERERERERERE1GxKLxcJla0REdNXb/NcOzLnhg8pti1wKo787ymJcURqjgUUphTK1FJ7bMq0W/wuCYwLxw4mPIZM33ZNRG+K2fxZia/J5p20kBgmkJglUiUXw+ysBqtTSymMGXxWK3+2HbH0Z5F5aSOXlPw085aVwl+uQo3dFmVkJL1UpBoSddXgOs1mClXs7w5hmRviHRyEvtL6OAm2ECzJvjoK2lVt5wMEMRLtl46ZuO6GQlVeIkMMEN6kWcokJxSlybHnDDwnr3GExVwUdAqP8kXEuC6Vt3FHU2xcmjQzKdC08N2dCkW+AVCrBvPhPERQVgJYmOTkZ4eHh4vsBfZ6GWuXZoPG0ugJs3fmu+D4pKQlhYWGNMk8iIiKilmbpmV14atMP9erbyjMIS6e8BKnkyqxENv+lp5B66nj9B5BIoHZzh7aoEM2FZ2AQCjIcB82lMhlmfvo93Hx8L+m8iIiIiIiIiIiIiIiIiJq7K/O/ihIRETWy/pN7ISDCDxaJBNpukSie0hPaYR0giYyEq84X3geN8FmZahNuEKQlZGDLol2NNheT0YSMxCzkZeQ3yngTYts5byA8xd9c/lYX6Y7U+ztCH1BVyaB7hxj8c8N03NQuTmzX2jUTr7Vdhp+6zcMXnRfg527z8Ej0ejGMkFjg7fA0x86HQqtXwuirRu5Y2+oWQhgh6en20MZeCDcI65ikFkzstL8y3OAuLUOQPB/uMi00UgP8w8sw5ask3DT/HJRu5W26jYhDdKcI8b3LqSIE/nIOId+cgd/SFDHcIDCbLVj7y+a6Xsqrj5BjbYwXERERETXYmKhu8NdcVEGuls4UpGNj8tFG+xYMZhOSi3KQU9Y4gYK2/Qc3qH9kXFdMe+v/0HHISDQHUV17wCswyGkbs8mE41s3XrI5EREREREREREREREREV0tGHAgIqIWQai+8OrfT8E0tB0M7UMARbVqDHIZDG2CUDa4rZAFsGv/mkMNnoNBb8DPr/2BWyPuw7ToB3Bj8Ew80v957Px3b4PGvbZ1e7T2dvxUUIlJKNlUVf3AopEjf0R5AMHFXYP7PrwD8Tm5WHH8NNopM/F2uyXo7pkE6YUuKpkRo/xP4N32i5CU54VDp8NRXKaqHC+/2AW7TsbgdEpw5b6inn6wyKrOKVfJkXV7DCxK6yoYsT4Z8FSXlZ9HooeXrFR4eKuNsJ6leGC5Gl8ffB/vrn4ZJYVVFSgcaawACRERERFRY1DKFPh0xH2QS+pXGW5bSgMqJFygMxrw8b5/MPT35zDyzxcxYMEzuG35+9iScqxB43YaOgJeQVX3A3WhcnHFkOl3I+v8OZzetRVNRaZQNHiMoNg2uPODz3H9c69BV1JSY/vSAt6TEBEREREREREREREREdUVAw5ERNRimLxdURbs5fh4iDdMgfafqGpp4FPsTSYTXr3uPfz02kLkplctcjm+4zRemjQXK39cX++xNQoFfp18IwaHR9lWbjAKL9vEQHEXX/Se3BP/t/l1yKK9cN+/S1Ck1+HeNpvEQIM9wepC3CTZiZQd7li9Lw7/7e6C5bu6Yv3BjjCbpRjS6RgeGLQB341ehO/H/4u75qYjIFQv9h02dwp0AVWhiAo+mqpFQe5SrdPPqQg9jOD2avF9UHRAjdclOCawxjZERERERJeSyWyG0VJemayuLA7j2LWv2nDfms/wxcH/kKMtqty/N+MMZq3+FP8m7K732EqNC258+W1EdOpSp36tevbFLa+/J1YNW/Z/b0NfVh5+bgpxw8c0eIyscwnQuJffM3oEOK/gIPCsRRsiIiIiIiIiIiIiIiIissaAAxERtRgrttb8xFNDlL/d/V2HxzXo3Jv/3IFdy/c7DE988fiPKCtxvsDfmQAXV/w0cSrW3jID93ftDYleAqlOAqlRCgnslESQSzH5iQmI6RyJHw/uh9ZoRJRHFlp7ZTo9z7DoeAT+ckqoCwGtXgmdQYGOEUkY3OEE7gs/iicDTmKYeyYGe6fjllvTMW/ncXy0MgzRYzvYHa/MWPUUVZXE4PTcFpiQpy2vdjHu7hFO2ypUCoycPhgtncTcOC8iIiIiahz/nNlZ7779gts16NxLz+zC9rSTdo+ZLRa8sWMh9Cbnv8mdcff1ww0vvSlWOOh+zaRa9el97VT4hkVg7/IlMBntB60bQ+s+A8TzNJQwx9RTJ8T3ccNHO20rV6nQfuCQBp+TiIiIiIiIiIiIiIiIqKVhwIGIiFqMwuKaAwQWtdxmX1CUPwZd36dB5/7v+3VOj5cUlIohiIZq5e2DW9p2glSo3FAZbLDAy6sQPiG5kAWWQBZQBt/AHPxi+BtPHHgHe7Ub4OpWBn9N1VNcHXHzNsKtuBTqhPK23q7F6BiRgmGumejjkmvTXioF2sf9i3Yu9p8GezI7GHqTrNafTyIp/+nSaWB7TLh3lMN2931wBzz97FfjICIiIiK6XPJ1VRXM6iLKIwBDwxsWuv779Danx/N0xVh7/hAaSggSdBgyvFZtV3/9KX5+9lGc3LoJTen0zq0oyMpolLEk0vL7rKjO3dBxyEgHjSQYfue9ULm4Nso5iYiIiIiIiIiIiIiIiFoS21WcREREV6mwIK8a20iLrEMQ/uG+eOPf5yFXNOxfmVnns2tsk1mLNrUR4esDz3MlKIhxQ+eIc+gZewbemlLxWLFBiaQyHyTrvZEkBCBKAJUHEOsBSApNNY5dki+HvkwKv0WJSHm4PVrFZkIGM/q7OJ97O+VieGIYCmD9RFidSYEt51tjePQJaC1KuEj0DseQSpTwUVcFTR75fCZiukRh8f+W4/zxFHFfxwFtcdPT16LfxJ41fpYWwWIpfzV0DCIiIiJqFJEeAXXuE+bmiy9HPgiZkB5ugNSS3JrbFNfcpjYCImMglclgNjm/x8g+fw6XSvLRw1Co1DDo6l85T6jKENa+U+X2mPsfRUB0KxxYuQx5aeX3JGEdOqH3pKmI7sZ7EiIiIiIiIiIiIiIiIqL6YMCBiIhajAmDO+K7RTtgMpkdtlHElz/V0yvQE/e8fRuG3TwASrWywef2CfZG0slUp218Q7zRWKb7xeBA5Hr06ZRgtd9NoUd7RTo8tWU4WhxqdUznIUNCkR9i3B2HFfYsDhIeR4rAIglG5vgh1/MMQuRlcBNKRjghMx9H4EI/FNzYzubY1qQ2MJpkGBF5DJGabOFhp3aFuF0LpazqGkkkEky8b7T4Kswpgkwuhasnn5BKRERERFeuG9oMwDeHV8JcixBpgIsnnuw5BWOjukMpUzT43P4azxoDDMI5G4NEKkWHwcNxZP3qRhnv4rEtZjNcPL0Q2bkbTu/aDmMtQgvpZ041+Nydh4+xqsog3JN0v2Yiuo2dAG1xEaQyOVQuLg0+DxEREREREREREREREVFL1rBHvxERETUjAT7ueOy2IQ6PKw+dh6ywfGFMQWYheozq3CjhBsGYO4c5Pa52VWHwDf3QWG55uB96d7AON1QXoi6Al7zEZv+S7C7QmeznHxWycEx/cjH+yv4eC9O/watvzEDXgEgh71ArHvtyEfzVaSjSyyr3SS2A77FiZNxZjF+ntMLG38JgMtgOGOAyEu19n3c8tq87ww32WBrpRURERESNIszdD0/0mFKrttllhRgY2qFRwg2CKbHO7zc8lBqMjOyKxhI3Ygwam3dwCGZ9/iMe+G4+7v1yHsY99ARCWrdp2KASCWSKmu/72vYbhMHTZjgYQgKNuwfDDURERERERERERERERESNgBUciIioRblhdDdozBa8/f4SmILKn04qyyyE4mQaJEWlKBocA32UNyCV4MUFa3DPpAHo2TqswecdenN//PfdWhzefNzu8Rlv3gpXj8Z70ud5y2ZIaogxCiGH/GLrigfpUg88u/kG3N5hK7r4nxcugxD9gIfLJPh7PQ+5LAgaTVX7Ll4D8FfSXpSaZXCRmhyeK+GYGoW5crjn5sF9bx604S4wa2RQpmshLzSUN8rWYc/Lnjj6f67ocXsZxj3SCe4e/gh2GwdPVRyayqm9Z7Di+/XISs6Gf6gvxswYjrY9WzXZ+ci54uJizJs3D0uWLMHBgweRl5cHb29vhIWFYezYsbjzzjvRunXrRr+MsbGxOHPmTJ37CfPz8vJq9PkQERHR1evuuFFQyuR4c+dCp+2EKg/PbJqH+7tcg+6BDf99OiW2LxbFb8PBrHN2jz/Z8zpo5I0T8BbE797RaGMJAYR2AwZj8K13ipUbqmvbfzDOHzlU/8EtFpgMepvdCrUG0d16wt3XD+0HDkVgdNPdIxzITMCi+B3IKi1AkKs3prYZgA6+4U12PiIiIiIiIiIiIiIiIqIrmcRisfC5vERE1KKUFZfhhsB7oNUKi1gkwr8MoQ/zRMG4dkKZApv2T0wZjOnDezT8vCVafP/8b1g1bwNKC8urGIS3C8VtL1yPEbcNQmNan/4ejhcsd9omR++KfYWRVvukFhk0WYPgIldgUhtfDInwgYsqHDKph90xjGYDPo1/AXGybRjmmunwXB/MDsOqBb51+gyTHhiDhz+9B01F+An08X1f499v1tgcGztjOGZ/c5/4JNbmJjk5GeHh5YuhBnV7AmpVeZCnvrS6Amze/4H4PikpSQwaNJX169fj9ttvFz+DI3K5HC+99BJeeOEFyGS2f7/WR2FhoRhSqM/PYgYciIiIqD4KdCUYuOBZGMzGWrV/qe9NuK390AZf7GKDFh/uWYTF8TtRatSJ+1p7heCBruNwTXTD73mqW/6/93F8y4Y695MpFAht2wFKjQYRcV0R0rodvIJCHFZHMOi0+PX52chJPo/G1mPCFAydfjeaitlixvNbfsbieNswyK3thuDlfjc32bmJiIiIiIiIiIiIiIiIrlSs4EBERC2Oxk2DoTcNwMof1wvL3GGRSVE4uo3dcIPgw0Wb0KdtBNqE+jfsvK5qPPjxDMx461aknEqDQq1AZPumWSzuKq95rlqzwmZff/+ueGLgDbU+j1yqwMyYl/BX0mc4rP0LceoCmzZ/fulf53CDYN1vW5o04PDX/y2zG24QrPh+HSLaheKGJyc12fnJ2sqVKzF58mTodOUL7SrCDIGBgWKIoLS0VNxnNBrxyiuviCGIr7/+ulEu44EDByrDDUKoJSYmptZ9GytkQURERC2Lp8oVoyK7YvnZPbVq/8aO39EvpB1iPIMadF43hRov97sFs3tOQWJBJjQKZYPHdHguX7969WvXfwjGPvBYrdsrVGrc+PJbWPH5/+Hsgb1oTCe2bGjSgMPXh1baDTcIfjuxEa28ghol2EJERERERERERERERETUnEgv9wSIiIguhzvfuBmBkeUhAF2sLywa28X+FYRlzz8s3d5o5xaCDrHdopss3CBo5zkWkhr+NZ+q9bLalkvkuDZ0ZJ3P5Sp3x+3RzyI8eBniFc8iVzYYJsUgGGU345HxnfDNnBDUR3F+CcxmM5qCyWTCok+cV7hY9L/lYjtqeqmpqbj11lsrww3u7u747LPPkJ+fLwYZioqK8N9//6FNmzaVfb755ptGCzjs37+/8r1wjvj4+Fq/hLkSERER1ccTPa9FoIv1b3Jn9yTfHF7VaBdaCDp09ItosnCDoNPQUUJ6tE595Aoleky4ts7ncvH0wnXPvYYZH3+NPlNuQnjHzojq0h2dR46FVF7/57toS4rRVAxmE3497rzCxU9H19WryhgRERERERERERERERFRc8YKDkRE1CL5hfjg421v4tfX/8TC42dqbL/n8NlLMq/G4qEIQnff27A352e7x1O1nsg3ulRuu8ld8HDsdLRyi6j3OX1UgfBRzQAgvMrF9vwKJ/fbr5JQk7A2wZBKGyeLmZmUjfXzt6IwuxAhsUFo2zsWmeeznfbJSspByul0sZJDsyUshmrogqhLsKDq+eefR25urvherVaL1Rz69etXeVz4czB27Fjs3r0bgwcPxsGDB8X9L730khiMcHNza7SAQ/fu3Rs0FhEREVFthbr54vcJT+PzA8vx16mtMIkxBse2pxxvVhfXJyQUPcZfi73LFtWqvdrdA+MeegL+EVH1Pqd3UAgG3jzdap9Rr8exTevqNZ5PcOPdC6QU5+DfhD0o0JUgyjMArb1CkVVW6LRPYlEWUktyxT8rRERERERERERERERERC0FAw5ERNRi+QZ745HPZ+L82/OxJjXdaduSzAKbfYc3H8eRLScgk0vRZ3x3RHYIx5Wkj98MuMsDsD/3dxQYksV9Zos7JJY+uC7sJnQvS0CJsQyhLoEY4NsdKpmy0ecw873piD9wFid324ZIXL1cUJJf6rDvuJmjGnx+4Wmn3zz9M/766F+YTVXVIFQutfusUmndnjhLdZeWloZff/21cvupp56yCjdU5+Hhgb/++gvt27eHwWBAZmamWMVh9uzZjRZw6NatW4PGIiIiIqqLIFdvzBlwm7j4fWuq8wBDnq7EZt/OtFM4kJUAuUSGYeFxiPFquooM9TF0+t3wCgjCnn8XoSCj/J5LodYgtG179Jw0FenxJ6EvLYFvWATa9B0IubLx70mG3TELWefPIetcgs0xpcYF+jLH9ySdR17T4PObLWa8tfMP/HZiI8zVwsMuclWt+kvAexIiIiIiIiIiIiIiIiJqWRhwICKiFq+Tl2eNAQf12bzK9+nnMjFn6vs4va+qqsM3z/yCvhN74NmfH4GrR1VlhMutg9cEtPccj0JDKiwww0MRAqlEJh7rjthajWE2m7Fr+X5s/2c3DHoj2vVujZHTB8PFXVNjX+FafLDhNaz+aRNWzVuPvPR8BET6Y+yM4YjpHIlnRs1BQXaRTb+uwzth8kNj0VC/z12MPz5YarNfV6qvsW9glL9Y7aFZE9ZPmRthjCa0YMECGI3GykoNDz74oNP2rVq1wpQpU7Bw4UJxe/78+Q0KOOj1ehw/XrWYkAEHIiIiuhw6+IbXGHBQSMt/xwvOFWTi0fVf42ReSuW+9/b8jVGRXfHOoDvgqlDjStF1zHh0GT0O+RlpsJgt8AoKgvTCZ4ns1LlWY5jNJpzZuwsJe3fDbDIipE17dBg0DAp1zZ9T7eaGW+a8i6Mb1oqVHEoK8uEVGIhOw8fAKygEf7/5ErQlxTb9orv2QNyIMWioTw/8i1+Ob7DZX2rU1dg3xjMQIW4+DZ4DERERERERERERERERUXMisQiPNiYiImrBEo8l4YYnvoQ+1s/ucVleKYZlmfD+ypdRVqLFvV2eRFpCht223Ud1xtyVL+FqkZuehxfGv434/VVhDoGblyte+etJdB3WqUHjC2GRhe8uwbr5W1BSUIrQ1sEYP2uUGG5QqhQNGluvM+C2iPuQn1VYr/6tukbhs93vQCarWkjWHCQnJyM8vLyayKAus6FWejZoPK2+AJsPfii+T0pKQlhYGBrTmDFjsGrVKvF93759sX379hr7/PLLL5g+fXrldmJiIiIiIup1/n379qFHjx6V29nZ2fD19a3XWERERET1dTT7PK5f+rbTNkPCOuGrUQ+iWF+GSYvfQGpJrt12QiWHL0Y+cNV8GUU52fj77VeQnZRotV/t7oHJT76AsHYdGzR+Xnoq9vzzN05s2wh9WRl8QsLEyg1CMEMmb9izYcqMegz+/VkU6cvq1b+zXxQWTHgKUom0QfMgIiIiIiIiIiIiIiIiak74X8eIiKjFi+wQjoFGJdTHMwCT9ePuFckF8FxyDNc9eI24ve7XzQ7DDYJ9qw/h2I5TV801fe36923CDYLi/BK8PHkuspJzGjR+UFQAHvl8JhbnzcNK4+/48eQnuOGJiQ0ONwiO7zhV73CD4MyBc1j47j9oziQWS6O8mtKePXsq3wsBh9ro06eP1XZtQhGO7N+/v/K9EJJguIGIiIguh45+EejiH+20ze0dhot//Tt+u8Nwg2B90mGcyE3G1WLxe6/bhBsE2qJCLJ47ByX5VdX26sM7KASjZj2Eh3/8A7Pn/4O7/u9L9Bg/ucHhBsGe9NP1DjcIDmWfw8/H1jd4HkRERERERERERERERETNCQMOREREAJ7/8SG0SyqFz8/74LYuHm4bzsB7wQF4LTmK2x4ah/6TeonXaeviXTVer62Lam7THBzZegLHtjsOa5QVa7Hsy/In7zcGqbRxf5YY9cYGj7H0i5UwmUyNMh+ylZ6ejtzcqsV57du3r9Vlio6OhrzagrMTJ040SsChW7duKCsrw7x58zB58mSxWoVKpRJDD927d8ezzz6L06dP86skIiKiJvHBkLsR5ma/ktTD3SZgQGj5b6U1iQdrHGt14gFcDRIPH0Dm2TMOj+tKS3B47cpGO5+kke9JDOaG35P8enwjWICXiIiIiIiIiIiIiIiIWpKGP4qMiIjoKuAX6ovP98zF6p82YsPvW1FaWIbI0bGYeN8YxA2qWnStLdXVOJa+TG93v9FgxOa/duLQxqPiwpleY7uiz/jujb6wv7EI1Shqsnf1Qdz1xi24HEoKSrBq3kbs+m8fTEaz+D2NmzkSvsHe4vHYbtFQqBQw6Az1PodQoSI7OReBkf5oloTiCw2twNCEBRySk62fLCwECmpDCDcEBAQgNTVV3D5//nyjBByysrLQpk0bm3kJIQzhJbT94IMP8Mgjj2Du3LlWIQsiIiKihgpz98WiyS9g0ent+O/cXpQadGjnE4ab2w1Gt4CYynZao/37jep0Rvu/gfUmA1ae2489GfGQSaQYEtYJg8I6QCqRXrEBh5qcO7Qffa+/GZdDoa5UrKixOfkoLLCgV2Br3NB2IPw0HuLxjn6RkEukMFqsKwXWxfmiLORqi+B7YUwiIiIiIiIiIiIiIiKiqx1XZREREV3g4q7B5AfHiq+LFeYWYcHbi3ByV3yN16tNz1Y2+84eOY8XJ7yNzPPZVtUBIjuE4c1/n78iF9DX5imhZnMTrn53IuFQIp4b+wZy0/Mr9+1fexgL312CFxfORp9x3eHp54HhtwzEyh/XN+hcciV/LlVIS0ur8XrVNqQgyMzMtNoWKiXUlo+PT2XAoXoViLowm804dKgqyLNt27bK9xKJBIGBgTAYDOL4FX8/GI1GfPjhh2K/ZcuWiRUeiIiIiBqLu1KD2zsOF18XExa5f3VwBY7nJtU4Tie/CJt9x3KScP+az5FRWvUb+rcTG8UQxVcjH0SgqxeuOLUK616ee5Ij2YmYtfpT5GqLK/dtSz2Bbw6vwmcj7kO/kHYIdPHC6KjuWH52T4POJZfKGmHGRERERERERERERERERM3Dlfl4NiIioitIYU4RHh/0Ev74YCn0WufVALz8PTDkxn5W+8qKy/DsmDeswg0VEo8l4/lxb8JkMuFK02VoR6tt194ShL0rRatFMkT/KoPvnRIofWXIy6haIHUpCJUwXpr0jlW4oXqFjTdu/BA5aXni9r0f3iFWcqgvIaxSURGCgN69eyM8PNzpqy6Ki6sWgwnc3Nxq3bd624vHqa34+Hibvh06dMCvv/6K0tJSMdCRnZ0tBimEyg3e3lV/FtasWYN77723XuclIiIiqqvsskLcsuw9zDu2Dgaz83sHYVH9iMiuNpUG7ln1iVW4ocKJ3GQx+FCbgPOlFt4hzmafXibB0Qg3rOzuhxXd/bC/lSfyqoUMLgWhQsb9a76wCjdUKDXq8NC6ryrn9EKfG9HGO7Te5+oR2AqeKtcGzZeIiIiIiIiIiIiIiIioOeEjiYmIiIQFQyk5OLr1JCRSibiwX3j6f4Wf5/yB88dTarxOLh4avPznk8hMysGyL1bi6LaTkClk8PT1QO6FBff2CGPvXLYP/Sf3uqK+i67DOonhgPj9ZxHwqBR+t1vnIjXtZNCnJ2DGoAfx/P+eQq8x1ouomsrWxbvthkWqhxyWfbkKKo0S/3y+ElnJOfU+183PTkGzJixSa+hCtSZc6KbX6622FQpFrftWbytUWaiP/fv3W23fcMMNmDdvHjQajdX+oKAgzJ49G5MnT8bw4cNx/vx5cb/Qdvr06RgxYkS9zk9ERERUXVpxLvZnJkAmlaJvcFurRe0f71uKxKKsGi+Yh1KDT4bPQlJhFuaf2ISDWWehkMngoXSxuxi/wrHcJGxNPY6BoR2uqC8lqmsP+IZFICe5/PdXrpsCy3v6o0xdVdEgyZSM1X+8iM9H3Ie+Ie0uybz+O7cXWWUFDo+XGLT4/eQWmC1mLDi5CZmljts6I4EEs+JsKwwSERERERERERERERERXc0YcCAiohZt5/J9+HL2j0g5nV75xFKFSo4xdw7D/R/dBYkEWP3TxhrHmfzAGNz49GQc3XYKT498DUZD3Soy7F6x/4oLOAheW/QUXnjuJbjcbn9BjiJIAr/nTZhz/fv44eTH8Av1bfI5Hd50rMY2y75ajfzM+i0iEiiUctz7wR0YdF2feo9xNdq1axeCg4MbbbyLnxIsEf6Gu4SGDh2Kf/75B2fPnkVmZiZefPFFqNVqh+1btWqFBQsWoH///pX73nrrLQYciIiIqEHWJh7E3N1/IakoCxW/jlRSOW5sOwhP974eRrMJ/ybsrnGcOzuOwF0dR2Jb6nG8uPUXmCzmOs1jc/LRKy7gIPw+vPbpl/HTa09Dm5uLFT38rMIN1asmPLjuK6yeOgc+avcmn9fejPga2/x8bB1ytEX1PodKqsCL/W7EkPBO9R6DiIiIiIiIiIiIiIiIqDliwIGIiFqkkoISvHztuzi00XaxvEFnFBfInz1yHi/+PhslBaU1jjf0loEwGc14947/1TncIDCb6rb46FIJiPBH11fCcarEcVjApYsEiNBh+TdrcfurNzb5nGRy2wVNF2tIuMErwBPfHv1QrLzR7Al/rBr6R6tafyHcEBYWhsaiVCqttutSiaF6W2ehBGcCAwMxceLEOvXp168fRo8ejVWrVonbmzZtQlFREdzdm34hHREREV1d8nUluG/1ZziQddbmmM5sxM/H1yM+Pw1zBtwqLuCvycSY3ig2lNUr3CCoT59LwSswCLuvicP5U8dQopE7rZrw16ltmNl5TJPPSSaxrm5nT0PCDYEuXlh67UvwULnUewwiIiIiIiIiIiIiIiKi5qrm/xpHRER0FXr3zs/shhuqO7r1JP75YiXkipoX1Hv5e2DZl6vqFW4QaNw1uFJkJmVj48Jt2LJoJ/atOYQzOSdr7KNuL8GhWlRWaAy9x3VrsrFVLip8vPWNqyPc0Ax4eFhf55KSklr3LS4urnzv6uqKS2ns2LGV741GIw4cOHBJz09ERERXhyc2fGc33FDd9rQTWHZmd60W1Hur3fDbiU31Diq4KeoXGm0KKcU5+O/sXqxJPIAtycewPycRGT41z29X+qlLMr/BYR2bbGwXuQq/jX+S4QYiIiIiIiIiIiIiIiJqsVjBgYiIWpykkynY/s+eWrX98/1/0Htcd2xbstvpovjC3GIc21H/xTR/f/wveo7pip6ju9Spn9lsxq7l+7Fu/mYU55UgvG0oxs0aicj2dX/KflFeMT6672ts+XunVUWJ1v/KoAiSOO1r0QISqfM2jaX7yM5o3T0ap/eddVjhwWSsX9AksmMYQloF4WohsVjEV0PHaCp+fn5W27m5ubXuW71tQEAALqWYmBir7czMzEt6fiIiImr+TuQmY2vq8Vq1/erQSvQLaYctKcecLorP1RbhYA2BCWe+PbIa/UPbo3dQmzr1M5nNWJ90CMvP7kGRvgyxXiG4se1ARHsG1nkOedpivLT1F6xLOgRzPX6HSmsRBGkMQ8Pj0NorGKfz0+wel0ukMNYzaNLBNxyhbr4NnCERERERERERERERERFR88UKDkRE1OLsWXkQllouljHojDi48ajTNrpSHZ4ZNQd6naHec7KYLfjxpfl16lNWXIanRryGlya9g/Xzt2L3igNiUOKejo9jwTuL6jSW0WDEc2PfwKY/tluFGwSF651fK7PWgqKtFvQe23SVFaqTSCR4felzYsjhYgERfug0sF29xw6OvrQL5Vu6qKgoq+3U1NRa9ROqJlQPFYSF1T3Q0xAajXXFFZOpfoEaIiIiarmchRUupjXpcSAzwWmbUqMOd6z4CEZz/X+XCH0/2besTn2EQMNtyz/AQ+u+wvKze7E55Rh+OLoG4/5+DfOOrq3TWDqjAXet/Bhrzh+sV7ihqSsrXByk+HrUQ2jrHWpzLMzNF539be9VaovhBiIiIiIiIiIiIiIiImrpWMGBiIhanMKcojq1L8kvrbGNtkQHQ1n9Aw6Ck7vPICU+DaGxwbVq/7+HvsOhjfYXRn33/G+IjotAn/E9ajXW5r92iue3J3e+GV4TJZC52a/QkPeHBeYiYMxdw1BfaQkZWPblKhzZdhIyuRR9xvXANXcPh4evu932vsHe+Gz3XOxbc0isYKEt1SG2WxRG3T4Ee1cdwsENzkMpjlxz94h6fwaqO39/f/j6+iInJ0fcPnWqdlVQEhISxJBDhY4d67+QTRgnKysLMpms1pUgKuZbQfgMRERERHWRU1a3e5Jig7bGNiUGba2D3I7syTiNjJJ8BLp61aq9UG3hQJZt+MICC97e9Sdae4egf0j7Wo217OxusbJFfUkgweRWferd/1xBJhac3CRWwZBLZRgW3hnXt+4HT5Wr3fbBbj5YPPkFMayyOeUoyowGdPKLwKRWfbDu/EHsy7R/f1WTG9oMqPdnICIiIiIiIiIiIiIiIroasIIDERG1OAXZdVtMVFuJx5PhE1S7hUCOFNciTCHITc/D+vlbnLb58eXfa73Aaf0Cx2MZUoDzD5qgT7Eey2K0IGeBGRmfmBHVMcJhGKEmm/7cjrs7PIaF7/+DY9tO4vCm4/j22V/EffEHzjqt5ODu44bUhHSs+H4dPnngW9wW+QCObDmBHqM613keA6b0RveRde93RRO+/8Z4NaFevXpVvt+1a1et+lzcrmfPnvUKNgQFBUGpVCIkJASPPPJIrfvu3bvXajsuLq7O5yciIqKWLU9b3CTjnslPh4+6fr/LKxTqa3dPklKcg1WJ+522+XjvP7U+7/KEPWiIjr4RcFNaV9qqraVndmHCotfw49G12J+ZgN3pp/Hu7r8wYdEcnMpLcXpP4qFyQWJhFv46vRWvbPsNI/54AcdyktA7sHWd5zExuhd6BtW9HxEREREREREREREREdHVhAEHIiJqcST2CxE0mNlkxnO/PoKQ2CCbY52HdoCrp4vT/gqlHMHRtXuC/NFtp2A0mJy2id9/Fne2fQRHtp6ocbzi/BKnx8uOAPGTTTj/iAkZ/zMh7R0TTo83IeM9M2AGbnxyEuoj/Vwm3pn2CQz6qqfxV8jPKsTLk+fCZLT/OQ9vPo7Zg1/GjqV7xWtfUZ3jzw+X4szBcxg4pbcYgKitG5+aJC5Qoktr9OjRle+3bNmC/Pz8GvssXbq08n2HDh0QFhZW5/PK5XKx8kJFCGjdunVWVSEcMZlM+Pvvvyu3O3XqVOvKD0REREQVZNKm+b/kjBYTPh42E2FuthWm+gW3g0amdNpfI1eKlQlqY1/GGZhrCMMezD6HcX+/hkNZ52ocr0hfhoa4J25UvfqdLcjAc5vnwWgpv6eoLqusEA+t/QpmO8cE21NPYPp/H2Jj8pHKa5GrLcZ3R1bjXGEmRoZ3hUcdQhd31/MzEBEREREREREREREREV1NGHAgIqIWxz/cr0nGdfd2RccB7fDDiY/x+j/P4uZnp2DaS1Px6c638cG61zD6jqFO+w++oZ/TKgjCQv/VP2/EE8NewSf3f12rOaXGp+O5sW/g3NEkp+0i2tVigbgFKN5qQc6PFuT9YYExu3y3i4cGI6cPFt+XFJTg74//xTOj52D20Jfx3XO/iiGGi+VnFeDU3jNY+N4Su+GGCllJOdi62P5T/T954BvoyvR2j+VnFmLLol3wDvDEiwseh1whd/rRhGCDX0jtFnI1L41RvaFpKzjccMMNkMlk4nu9Xo///e9/TtufOXMGixYtqtyePn16vc89aVJVMCcrKws///xzjX2++OILnD1bVVnk3nvvrff5iYiIqOUKcvVuknF91e7oHtAKK6+fg8+G34eZcWPwYNfx+Gvic/hh7KOYFNvHaf8JMb3gplA7PK43GfH36e2YtvwDvLXrj1rNKaEgHTNWfoxzBbb3BdVFewaivrxUrhgb3UN8X6ArwQ9H1uDOFR9h2vIP8dHeJUgrzrXpk11WiCPZifj28Eq74YYK54uysDH5qM1+ISj76rbfxGtiT2ZZAdYkHUCgqzc+GDwDMonz/xtWKpHA38WzFp+WiIiIiIiIiIiIiIiI6OomsVQ8tpaIiKiFyEnLw7So+51WQPAN8cbIaUPw+7uLaz3u9Y+Nx30f3unwuLD4/96uTyEjMcvmmFBpYNzMkWLVAZPRjMzz2fAJ8kKnQe3ExfdCuOGVa9/F7hUHUB8jpw3GMz897LTaw/09nkZ9rTT+jvPHU/DM6NeRm5ZnU5ni2V8eweCp/cSww9dP/YRtS/Y4rMxQm+t6bPtJPDrgxVr1D4jwQ3jbEOxdfchhm24j4vDu6pdxNUhOTkZ4eLj4fki7h6FWeDRoPK2hEBtPlIcOkpKS6lUtoSa33HILFixYIL5XKBT477//MGLECJt2RUVFGDx4MA4cKP/7wNPTE/Hx8fDzq19oKSEhQawAodPpxG0fHx+xikT79u3ttl+xYgWuvfbayvYxMTE4fPgwXFycV2chIiIiulhKcQ5G/fmS0woIwa7eGBfdU6wGUFv3dh6Lx3tMdng8X1eCyYtfR0Zpgc0xb5Ubbmw7EKMju0Fr0iOtJA+BLl7oEdAKkAAGkwn3rvkMO9JO1usLvbHNQMwZcJvTihC3Ln+/XmPLJTIcufNTHM9Jwj2r/occbZHVcZVMgf8bejeGR3RBYmEm3tv9N9YnHYbJSbChulmdx2B2j2ut9gnXQQhR1Ea4u5/4fe5KP+2wzdDwOHw58oFajUdERERERERERERERER0NXP+OGMiIqKrkG+wN+58/RZ8++wvdo+HtArCh5teg2+wDw5tOorjO2wXoZg0MhQOCEBRDx+YNXJ4lwDRd/ZBWYkWhzcdh1FvRNveseK5Kvzx/lK74QZBUW4xfp+7WHzZkABe/h5iVYL6WvPrJvQa2xXDbx1k93hst2hMf/kG/Dyndk9hrU7jphafXvrKtXNtwg0CoULDO9M+gU+wF9646f+Qk2rbxhnZRdUXspJz8NmjPzjtow/QQBvtDokZMJ7OR+aaC+Um7HBx12DWu/WvAnBFq6zC0MAxmthbb72FZcuWobi4GAaDAePHj8err76K+++/XwwxCH++Vq9ejUceeQQnT1YtqJszZ47DcENUVBQSExOrfQzbzyEEFJ577jnxXILc3Fz069cPb775JqZNmyaeWyCMI1SW+Pjjj2E0GiuDGD/88APDDURERFQvoW6+eKDLOHx64F+7x6M9AvHLuNnwUbtje+oJHMt1XpFN4KF0QTf/aBQbtNiTfhomsxldAqLhp6kKvH51cIXdcIMgT1eMrw6tEF/2+KjdkKstRn39eWor+oe2x9io7naPdw9shZlxo/HN4VV1HttdqYHBbMIDa7+wCTcIdCYDHt/wHX4c8ygeWveV3TbOyKXlFceqB1Te2fVnrfsnFWWLL2fzn+0kmEJERERERERERERERETUkrCCAxERtVirf96I/z30LcqKtDbH/MN88cHG16B2UeHFie/g1J4zlccMPkokP9YBRj+VTT+/rdnw/rW8rUwuw6CpffHo5zORnZKLmXGzcbk99uUsjJ81yuHxzx79Hov/91+dxhw7Yzj6TeopVphwJqZzJBIOVS04r60PN85B3KDyJ+oXZBfioT7PIf1spt22Jlc5sm5ujbI2XtV2WuB6MBt+fydAarB+QqtKo8SHm+egTfdWuFpYVXBo+1DjVHA4+WmTVnAQLF26FFOnToVer6/cJ5PJEBQUhPz8fJSUlFi1v/XWW/Hrr786HK82AYeK/XfccQd+/vlnq/0V5xaqNWRnWy9GE8INCxcuFKs5EBERETXEwpNb8PauP1BmrPoNVD0E8cs1syGVSnHf6s9wPDe5VmMqpDJxsX/Fe6EKxEv9bsa5ggxMXfrOZf3CJADeGXQnJsf2cdjmpa2/4I9TW+s07q3thqBXUGs8vuFbp+3aeofiZF4K6uqPCc8gzj9KfJ9VWoAbl80VK1w0Bhe5CgsmPIU23qGNMh4RERERERERERERERFRcye93BMgIiK6XISKCPbCDRVVAj6672t4B3rh051v452VL+Lah67BhHtHQfnWYLvhBkH2AD8UdS2v2mAymrBhwVY8M/p1LPuy7k8hbQpfP/0z9FrbxVMCo8GITX/uqNN4Lh4a3PT0ZBzdcqLGtueOnEdddRrYrjLcIFj08XKH4QaLTIL0ezpYhxsEMglKuvsj87Y2Nn10ZXrkpeXjqmVupNclMHHiRLGKQ0U4Q2AymZCSkmIVbhAW+D3xxBP46aefGuW8EokE8+bNw/vvv29VjaHi3BeHGzp16oQNGzYw3EBERESNIqes0G64oaJKwOs7fkegixf+nvQ8vh71IG5rPxQ3tx2EcDf7VawEFeGGivdLzuzErFWfimGKy02InAqBjupzrE5nNGB14oE6jempdMFdnUZgb0Z8jW1P5aWirvoFt60MNwi+P7Km0cINglKjDjlldasoQURERERERERERERERHQ1Y8CBiIharGVfrnR6fP+aw0iJTxMXQPcY1QUPfjIDY96YglNm54tPCoYGWW0L1R8O7jwJk0aGy620sAzbl+61e2z/uiPITav9Qp2ojuF4d/XLCGsTApmi5s9mNtt/gr4jQrDh1b+fstq35pdNDtuXxPlCH+Lq8HhZe2/owtxs9p/YVfNCKLo0Ro0ahRMnTuDzzz8X34eGhkKpVMLd3R1xcXF4+OGHcfDgQTGMIFRYaCzC3+NCaEKo+DB37lyMHDkSwcHBUKlU8PDwQNu2bcWKEX/99Rf27duH/v37N9q5iYiIqOUSKkn9XkPoYEPyYaSX5Im/VwaHdcJLfW/C9a37I6nYOoRZk32ZZ7A/s6oq3eWUryvB5uSjdo9tSTkmHq8toSLDj2MfQ7i7P+TSmn8fWsSIRe31DW6Lj4bNtNr3z5mdaGyHs+te6Y6IiIiIiIiIiIiIiIjoaiW/3BMgIiK6HPQ6A1LPZNS44Oj88RSExgZX7juS7byPQBdetci+LNYT+cPCcLaVJzA1GIrMUnhsS4f7jnRIGvgZbOYrBQoG+6NwqD/0QSpIS01w35kL75UZkOcbKtvlpOba7V+cV/NCIqlMise+nIXwtiHoNLCqskKf8T0w/+1FTvsq1QrotVXzsOeau4fD098TfSf0QMf+bcV98QfOIn7fWahcVMjLLHAacKhJcRdfqJKLrfYpVIoa+9GlI1RRuP/++8VXQ5w7d67Offz8/PD000+LLyIiIqKmVmzQIr3UecDYbLEgoSAdQa7lVeIER3PqXhlNcDo/DVeKXK390Hi+vuZ7EpVMgZf73owYryB0C4ip3D80rBN+PLrWaV+FVA6D2ejwuHCPdmObgfBWu2FYRGd08Y8W9x/JTsTJ3BS4KFTIcTD3hlDK+H/REhEREREREREREREREVXgfz0jIqIWSaGU12rBvYuHxmpbXYuFJxKDWfxrUXd/ZE+NBaRVUQZDgAtyro0RKwn4/xnfqOGGtIdjUdLVq3KfSSVD/tggFPX1Qdg7J6HM0In74/efRU56HpZ+vhI7/90Li6U8oNBlaIcazyMEG665e4TNfiGMEDe4PQ5vOm63n5e/B/pP7oXl3zpecNRpYDvM/qZqUXtaQgbeuf1/OLbtZOU+4cm1jphVNRemsiht2wy4theuVhKLRXw1dAwiIiIianzCQn2FVAaD2eS0nZtCY9OvuTucfQ5Dwjrhp2PrsTnlKCSQYGRkF8T5RtbYN9YrGNe3sa2o1TekHTr7ReFQtv2gq7/GEwND22NR/A6HY/cLaY/XBtxWuS2ES57dNM9qTGGuda0E4Yww3vDwzo02HhEREREREREREREREVFzx4ADERG1SMJC+SE39cfqeRsdtvEP9xUX3Vc3ODwaGrkcZUbHT/10O5ALs0qGnMkxVuGG6op7BsDtQBY08Y4rEtRFwTB/q3BDdSYvJTJmRCH87fKgwOqfNoqv6s4cOIff5y5CSGwQUuPTHZ5nzIxhDo+98ueTePW693Bkywmb6zhn8TPwDfXBgfVH7FbOcHHX4IGP7qrcLswpwhPDXkFWUo5NVQ1HlGml0La2fw2qt6luwJTeiOwQ7rQPEREREVFTEJ7aPyqyK5af3euwTaS7P+L8rBf9Dw2PE/vqTY7vSa50v5/cIr6qO56bJAY+Qlx9kFpiv+qc4PrWtuGGCp+PvB8Prv0CB7OsQw5hbr7iMS+VG3amn0Jqse34HkoNnu19feV2VmkB7vjvI2SVWd+zNWa4QTAupgciPPwbdUwiIiIiIiIiIiIiIiKi5qzmRx0TERFdpW5+ZgqUGqXD48LCd5lMBpPJhHW/bRYX3N/X+lEE7XYcSpBoTfBal47iLn6wqGROz1/UOxCNpWBogNPj2jbu0IWonbYxGc1IP5sBV08Xh22Wfbka6ecy7R4rLSrD1CcmoseozpArZGKIRAhM3PHaTYjtFg3vAE98tOUNjJ85EmpXldhHKpOKIYOPtryO1t1jqs7z1WqbcENN/A/mOf1hI9Ea4bYvq3JbOO8zPz2Mq5oQCGmMFxERERE1iXs7jxXDCo608Q4Vf1cbzSYsjt+Bacs/wJQlb8FN4fy3fXMlVLPILM2Hi7z8fsGeX45vQHpJnt1jpQYd7u40Gn2C2kAulYnVEaI9AvFI94nitQxw8cT88U9hauv+UF+ohCGXSDEmqru4X2hT4bcTG23CDTURxnRcc86aMLdx0T3w5oDpdToHERERERERERERERER0dWOFRyIiKjFCoz0Exfi68vsH9+z8gAObjiCRZ8sx9bFuyv3y77NgdeUCOQPDQTkVUvq5bk6BP0QD2WmFsXdaw4vGHyqFiUJ8zAaTPX+LPoawgvlbTRQpWqdtjGbLOg2Mg7bl+wWAw8XE6o7vDx5Lr468L640MpsNuOzR77Hyh/XQ1eqt9v+/Rmf4/j2U7jjk2lYXXYark+2w33P9kFnSwC8fTzh5uVq02/jwm01fh4hiFFSUAqZXIb+1/bCrc9fhx2WAry2Zp3NM1WVMhkeaRMHl2ejoFAp0H9yT1ZuICIiIqLLLtTdD1InMd3V5w9gf0YCvji4HJtSjjbpXIRAgBCkuNyMFjNGhXXCysT9MFts70kSCtLx8Lqv8MfEZ8Vtk9mM17bPx5IzO6EzGWzany3MwNObfsThrETc12Us1iYeRJi7H94YMB1xfhHw0XjAXamx6eesskYFIWhSbNCKlSeEahz3dbkGW1OOY+7uv2zaqqRyzOw8VqwAIQQhRkR2QYxnUB2uDBEREREREREREREREVHLwIADERG1WBsXbkdpoYN0wwVfPfkzTu9LsNonsQD+f5+H95o0FHf1hlktgzKtDK5H8uHh7YaS/2/vPsDrrOs9gP9yMpomTZPulXRBS1vKpoxCobTIkiFLhspwcBmOC8hVWQqiKOJCFBXhCsrSK6ggVJC9KS1FVhmF0k33SNo069znnEogpE1OVlPg83mel77v//zHmzd9nuSU//f8srMiu6LxxpoPyi5/r09qk35bAg6JytqoK2j6x3piXWbzbyrc8K63XpgT0+77dwwa0T8uOPTymPvK/GbnvK1iRvzvP+ZFMve9zzPt3aVbXLLDp2JCjGzUf+3qtc3OeeK3joqDvjgp8gu6RF7+hkocW0fE6D594obpz8XUefMjO5EV+w4bFifvslOM7N07PnbqkhuOts4BAECHuGvW1KisbRwUfr/vPX1bvLhsTsZzFucVRnn1uqjdSDigqWoCGwsTdJb73p7R5P28sPTteHbR69Gna3F88b5fxNw1S5ud8w+vPJg+3i9V0eGKCafEHgNHNepfUd10ODzlazsfFodttXt0zc6LLjkbKkKkqkCM7T0k/vDyg/Hc4lmRnZUdE8vGxkljJsXwEoEGAAAAAAAAaI6AAwAfW3NnNr8xf/ZLm95IlLO6OkoeWdygbc3y8ujRrziqZiyJ5QcNjsje9Kexdpu+YeyYPUfGqqVrYv7rCzO+96Fjy2L2i3Pfm+vp5bF6v76b7J+9qjoKZq7JaO6mwg3v+ulpv47Fc5rfRJRScWTPqDiuT6P2pevL4+xnb40b9/pijCkZ2OC1odsNjkWzlzQ577DtB0f3nkWN2ncpHZQ+AABgS/fmqubfA7y6YkGL5lxVVRG987vH0srVGY/ZfcDImL1qcSxauyLjMVuXDIg3Vmb+HqYlapLNh7NTVRkWVCxv0zqL166K0//1q7jt0G/ENj0bvocY2WNgLF3X9DMc2aM0Sro0rkg3rv+I9AEAAAAAAAC03KZ3XQLAR1xhSeONKB9Uvb6mxfOueGdV5KypjuKHN70Rqctbq6LwxQ2bcY4557A48JT9WrTGjvtt2+C6xz3vRKJ80/fa868LIqu2/T6JP9NwQ6piQ8VRvTb5elVdTVz/xqNRVdnwU2sPO/3AJucdMLxf7HLADhneLQAAbJm65xU026e6ruXvSVoSbkg5ddv946gRe7ZozISBo6MztTXc8K7K2uq4/sX7Yn1Nwyp8x2+zT5Pjtirunw6GAAAAAAAAAO1LwAGAj62Jx42PRCKryT6JJiowNKfnvXOi511vRfbq9zbvZ1XVRtFTi6L/9a9EVl0ytttndEw4eo84/KwDY9h2gzOe+6+/mBI9+pXUX+ctWR+lV7waXd6uaNAve0119Lnx7Sh5qOlqCB2lakxBJLs3XTDq3jkvxCEFn4nPDjszbrn8jnTYYbeDd4ojzjpoo/0LiwviWzd9LRIJv8Y0K5VpSSbbeLT2uw8AQHMOGb5rpz+kvQaOjn3LxsbJ206K4cX9Mx73vy8/EL3yG1dU+zD626ynY4c/fDX2//OF8bsX7o2q2po4YOhOcezIvTbavzivIK7Y59TNfp8AAAAAAADwcZCVTKZ2rgHAx9NVZ14bd/763o2+Nnz7IdFvaJ948u/PtmmNZCJi/aBukcxJRN7CisiurG3w+mlXfi6OPefwWL18TfzumzfFPb+7P+O5B40YEPNfX9igLWfnvrG8S00k1tZGwUurI1HTeT/qK3frFqsuKGu2X98jU4GPDeep0McPplwYefl58ehfnoq//2pKvD79rehS0CUmHLV7HPXfn4yBW2W+8erjZt68eVFWtuGZTxx6RuTntm3TWWX1mnho9jXp87lz50ZpaWm73CcAABuc/9iNcfvrT270cYztPSS9mf7xBa906OP6zp4nxPGj9onllWviR8/8Je6Y9XTGYwcX9Yk5a5Y0qkyxumptfFiNHzgqfr3/WZGXnRN3v/ls3PLqIzFz+bwoyOkSBw3dOT43ZlKUFm26Uh0AAAAAAADQek1/pDIAfMR9+eovpCsC/O2XU2JdeWW6LVXVYY/Ddo1zrj09Fr21OJ6+a3rU1f1n932Geg3sEcsWrEifpzbu588t32Tfa8/7Y5SNHBR7HLpLnPPb09NVI/7xm/syWmf1stXxi6e+H0//Y3rUVNdG6TYD4tr/+UPULFkTW4LcNysjapMR2ZuulJHzZmV9uCHlhUdeib9dPSWO/frh6eoWqYPW+k8VhjaRhQUA6EiXjv9MFOcVxq2vPhLrajZUf8vOSsT+Q3aMS8efGLNWLoonFsyMZAt/L+uT3z2WVK7OqO8lT94aZUV9Yq9Bo+PyfU6JyMqKO954KqOxa6vXxy2fPC8enfdS1CRrY1j3fnH5M/8XH2ap5/2nVx+Lz46ZmK6ysSVU2gAAAAAAAICPCxUcACAiKlavjecffCmqq2pim3FbRf+hfdPPZe2adXFkz1OirrZlAYdxB+0YdXXJmHbv8xn17z+0T9zwxtWRSCRi5ZJV8bW9LowFbyzKaOzPHvtubDt+VCxbtCJOHfnV+qBGe0jkJGLvT+0WBUVdY+yE0fHjL14TybqWbaxa+c1BsX7P7pt8vejqhVFw38oGbQO37h83vPaLVt/3x1nDCg6nR35OGys41KQqOPw6fa6CAwBAx1lTtS6eXvhq1NTVxg59hsWAbj3T7SvXV8T4m8+LuhYGHD4xeMd0FYWnF72WUf9hxf3inqO+kz5fvHZVnPCPH8X88mUZjb39sG/FmN6DY2HFijjk9u/UBzXaQ85/wh7dcvNjp35bxYWP/bHFYY/WGFEyMO488qIOXwcAAAAAAABoKPGBawD4WCrsXhDjjxgX+x67Z324IWXmM6+3ONyQ8uw/n48Fs97JuP+i2UtixgMvps9L+hTHzx67LIr7bDoU8H4/O/23sa58XXxj/++2a7ghZdcDdowLbzsnzr3uzDjwlP3SVSYykXqGE4/bK7KysqL7NYsie876jfbLv39ldP1AuCFl4ax3ItnmygOkqze0xwEAQIcryuua3sh/0LBd6sMNKc8uer3F4YaUf82ZEQsrlmfc/61V78T0d2alz/sWFKerMnTPK8ho7EVP3BSVNVVx8j0/bddwQ8p+ZdvHz/b7Uly29+fi6BHjY/zAUc2OSdWPKyvqHQcN2bnV685Zs6TVYwEAAAAAAIDWE3AAgCY8+fdnW/V8UpvzF87KrALDu5bOf2/zUY++xXHQ5/fLaNzsF+fGz8+4Nt5+eW60t2funh6njvpavDr1jfT1aT86KbJzmv71IRVqWDR7cTx02+PRvVe3KKzNjZ7nvRVFv1kUuTPXRvb89ZH3zJoouWxuFF+1ML356IO69ShMzwMAAB93D819oVXjUpGIOWuWtmjMoooV9eepkMPhw8dlNO6lZXPiO0/e3CGhgPvmzIhP3n5JvLJsw/udb+1+bCSaea+Q+trnrlkaU96eHj3zi6JLIrfF6xZ3ySzcAQAAAAAAALSvnHaeDwA+Uua/0bKQQlv0HvTep7SmPHP3cxmPTYUJOsr81xfGNw+8LH417YdRvqI8amvqmg13VA/pEtUju8a66mTkPVcd2eXJKLh7RfrIxOTPTGinu/+Yq0tuONo6BwAAnSa1UX9z6VdYUn9el6yLxxa8kvHYu2ZN7aC7ipi1alF8/p9XxR1HnB/LK9dEXQuqjKX6t8bhw3dv1TgAAAAAAACgbQQcAKAJBUX5m+X59BvSJ3acNLb+esaDL8ZbL8zJeHxzoYO2Kl9ZEXf8/O4YOnZw0/fROydW/vegqB5b+F5jdV0U3Lsyiq5fFFm1za/Vo19xHPv1w9vhrgEA4MOvMHfzvCcZVtwvdu67Vf31o/NejtmrF2c8vibZse9JVqwvj5teeTj6FbwXwugoqTVO3nZSh68DAAAAAAAANJbYSBsA8B/7HLNnhz+LRHYizvz5qZFIJBoEHLY0j/7lqSYDH3X5iVh+6ZCG4YaU3ESs/WTPWH3GgGbXSIU8fvLId6NvWe/2uGUAAPjQO2jYzh2+Rk4iOy7Y/dORlZVV3/b0oldjS3Pv7OlRmNulw+bPiqzYa+DouOmQc6NPQXGHrQMAAAAAAABsmgoOANCEyor10aVrXqxfV9Vhz+m/f/NfMf7wcQ3a3r+xaEt6FrsdsnN07ZYf68orG72+blJx1A7c9GajdfuVROGfl0bOO9UN2k+84OgYvfuIKN1mYJSOaD4EQQukPkW3rZ+k28GfxAsAQNPW1VRFXiInqupqOuxRXTHhlNh70JhGm/23NGtrqmK/wdtHl+zcWF/b8H1FW3x1x0NjTO/BsVVJ/ygr6tNu8wIAAAAAAAAtp4IDAGzCDd++LX506i87NNyQnZMdex3RMNyQsssntm/1nFndsyJ3THZkD2nfH/Nb7zQ0Coq6xqfPO2Kjr1fu1b3pCbKzonJ84z5j9x4Vexy6i3ADAAB8wJVT74hvP3Fzh4YbchM5sU/Z2Ebt4weO3uK+H2N6lUVJl8I4edtJ7TrvuAEjY2LZdsINAAAAAAAAsAUQcACAjZj3+sK46bK/dPiz2fPwXaN7r6JG7WP3Hh2jdh/RorkSPbKi+OKu0ffvRdHrum7R59ai6HVDt+iyd/MFmxLZiSjp03RA4fAzD0r/+dmLjolJn5nQ6PVkQXaz6yS7NvzVo/egnrHz5O2aHUcrJZPtcwAAsNm9tmJ+/O7Fezt8nQOH7hTdcvMbtY8fOCpG9yyNzSUnK5EOLzTlxFH7pv88e+cj4oAhO7bLumVFvWOXflu1y1wAAAAAAABA2zW/4xEAPob+ef0Dkezgjd3denSLCcfsET/50q9j6fxl0Wtgjzj4C5NjzJ7bpF//zu3nxfmHfC/efP7tZufK6hbR81eFkTO0Ycggd2R2lPywIFZdvC4q769u8Nqw7QbH5M/sE10K8mKvT+2WrlRx3qTvxNL5yxvNf/iZB8aEo/eov/6f358Vzz/4YixbsKK+LeftyqgZ1nhj1PvlvL3+vXvOyoovXfG5dBULAACgof977fEOfyQ987vFfmXbxfmP3RhL166OfoUl8eltJsR2vYekf1//1eQz4kv3XR1vrFzYIeuP6VkWhwzfNQpyusTkITvEmqp1ccqUn8XSdasb9f382P1j3/9Umkjd25X7fiEm/ulbsbyyvNXrJ7Ky4n/GHR2JLJ8BAwAAAAAAAFsKAQcA2IhFby/puOeSFTHuwB0jNz83Lj/x5w1emnL9g1G2zcD43t3nx4Bh/eKaaVfEtw76Xkz/17+bnLLg2C6Nwg31yyWyouir+VH5UHVE7XvtJX2L4+E/PxF5+blRXVkdB31hUlwz/Yq469f3xcN/eiLWrlkXQ8eWxWGnHxh7HLpLgzmzs7Pj5EuOi5+c9uuI/+RACu5ZEZUTSzZ5j4kVNZH/9IaNSkPGlMbJlx4fE47avdnHRRvUJTccbZ0DAIDNbn554+Bxe8mKrNi3dGwkIxnnPnx9g9f+/NrjMaJkYPz2E2fFgG49429HXJgOHUx95/V2v49UxYZ73poWXXPyorquJo4aMT7+esQFccvMR+Kfs6fH2ur1MapnaZwwet+YMGhMg7F52Tlx5g6fjMuevq1Va4/sMSjO3uWIdMADAAAAAAAA2HIIOADARvToW9whz+XYrx8ex3/jU3H3tf+K686/eaN95r66IL409pz41bQrYvCoQenKDs3pekhuk69n901E3ricqHqqpr7tuftfqD9/6fFX4/cX3xpn/+b0+OxFx6SPpixftCJu/Paf6sMNKXmvrovCW5dExfF9Gt9fdl5cvufR0ff+3CgsLojh2w9p9msCAICPs175RR0y75k7HBwnbTs5/vDyg/HLGf/YaJ/XVy6IQ+64JB1uGNy9T/Tu2r1D7uWJhTPrz59954346bS/x+UTToqv7HRo+mjKoooVcc3zd2e8VmFuflwx4ZQo7lIQRXkFsU3PQW26dwAAAAAAAKBjqL8OABtxwMkTO+S57Hf8XukN/n+9+p4m+61fVxX/vdeFUbW+OkbvPqLZeRM9m/+Rnt0zq8nXqyqr44cn/6LZe0v50xV/i6ULGn+ibNGtS6LHJW9H/vSKKMntGn3zi+K4oePitn3/KyaP3D62mzBauGFzSibb5wAAYLP71NZ7dMi8Bw/bNQpy8uKWmQ832W9dTVUcd9cPo7quNrbvMzQ2h8raqjj7od/F/732eLN9f/38PbGscs0mX09EVrpCRL+Ckvjs6Ilxx+Hnx+QhO8Su/UcINwAAAAAAAMAWTMABADZi652GxQGntG/IYcTOw2LEzsNj3usLY9mCFc32X7OiPC477scx+bP7RFGPwib71i6qa3a+2nea75Pyq69dH/PfWLjJ1x+74+m4/eeb/qTULs9VRMmlb8fZr20X9x/w9bhw+0NjWLfeGa0NAABssHO/reKQYbtARwqoAAAZhUlEQVS26+PYqe9WMaLHwHhj5aJYXlnebP8V6yvim4/cEEeN2DNdAWFz+fYTN6crNGzK3W8+G7e++miTc9RFMs7d9ch4+LjL48I9jktXogAAAAAAAAC2fAIOALAJ5/7ujDjpO5+Okj7d69u69yqKfkNavlm/54Aecf4tZ2/44Zt4r5JCda8usXzygFh6aFms2aVX1OU0rLLw5J3ToqqyKr59+3lRUNR1k/Ovu7OqyfVr5tVG1bTajO419YH9d//2Xxt97Zkp0+PSY38cyQw+1f/pf0zLaD0AAGDjrtjnlDhjh4PTlQje1Su/KPp1LWnxI+tfUBI/2ufU9Hkiq+nqbu83Zfa0yIqsuGq/06Igp8tm+VbVJuviT689ttHX7ps9I855+LqM5nlgzvPtfGcAAAAAAABAR8vp8BUA4EMqkUjE5y4+No7/5qdi1ozZ6Y3/Bd27xpfGnpPxHD36lcRhpx8Qh55xQPToW5xuGzRiQPQb3jf+Pa4wVo/vm9pdVN8/e0119LvhjSh8dVXUFOfG6t36xDl/vzN22XFEXD79ezH1xidi2n3PR11tXbz1wpyoqqxOj1t7R1XkT8qNvO0a/2hPViVj9RWVLfra33pxTqO2muqauPwzV0WyrvlwQ0pWQo5yi5BBGAUAgC1TTiI7vrbz4XH69gfHzBXz0kGD3OycOPJv38t4jr5di+PE0fvGcdtMiB753dJtI0oGRt+C4li8dlVGYYOvP3x9jOs/Im486L/jvjnPx1MLZ0Zdsi5mLp8f1XWZBalb6vXlCxq1VdVWxzcf/X3GcyR8tgsAAAAAAAB86Ag4AEAzcvNyY9RuI9Ln9934cEbVC971v6/+PAq7FzQKTuScPS5Wx7JG/WuLcmPhaSOj+5NLYtXefSOyE/FA5TvxwFPvxE8TifjKoXvEVZccFwvffCdO2vrL7w1cH7HiqxVReGqXKDgsLxI9EpGsTUbV0zVRfv36qH6pZZuOum6kWsR1598c5SsqMp5j7F6jWrQmAACwcV1ycmOHPsPS57e9+miLHtO/jr0s8rIb/hNgdiIRg7r1yijgkPLI/JfSR05WIh24uO3Qb8QbKxfGoXdc2mHfsoLcxtUivv/0n6OiZn3Gc+zcb3g73xUAAAAAAADQ0QQcAKAFsnOzM+7braQgvnfCz9Ib/Q/+4uT6Cg4rK9fFUzmrImo2Pi6Zlx2r9u3fqL2mri5++szjMXPF4nhrxbKYfen2kTd/bRQ/sjgKX1kdycqI8mvWR/lv10eiZ1Yk1yWjSzI/qita/omqEz89vsF1bW1t3P/HRzIen8hOxEFfmNTidWlnqTBOWys4qAABALBFyc7KvFJacZeC+MoDv4ld+m0dx47cq76Cw9J1q+OFJW+3eO2aZF38eNpf46Vlc+KNFQszGlOY06VFoYR3HTJs1wbXqUoR97w1rUXVL44csWeL1wUAAAAAAAA6V+b/RxQAiP7D+mb8FMpXro2p9zwX/3vhLXHS8LPimXueS7c/OvftqKzZRLqhScmInGTcM/u1mLlqWVT3zY+KnXrGgq+NiiVHl73XrTaibkkykuURW++04VNeWyK/MD/GHzGuQdvKxatjxTuZfbprZEV87ZrTovfAni1eGwAAaNqAwsx/z161fm08PO/F+Mm0v8b+/3dRPLVgZrr90XkvRU2y5UHod02ZPT3eWJVZwGGbnqUtnr9bbn5MKB3ToG1RxfJYVbU2o/GJyIrv7fW56Jlf1OK1AQAAAAAAgM4l4AAALZCb17riR5Vr18d3j/1xLJ2/LKpqW7mRKDuZDg9szMpPDIjyHUoatA3dtixOPP/IFi8z8bjxkZ3TsFJFXn5uRmMLiwviJw9dGod8cXKL16UD1NW1zwEAwBaja05eq8ZVVFfGWQ/8JpatWx1Vda0JXLfcmF5l8fmx+7d43BFb7x6JD1Sq6JKd2ddd0qUw/njIuek5AAAAAAAAgA8fAQcAaIGBW/eP3Aw3+28s5HD9BbfEdr0zrwLxnmSzP7VXTuzXqNrErgfuGCN2zryKQ1ZWVhx99qGN2ot6dIuSfsXNjt9u39Gx3YTRGa8HAAC0zLDifpGT1TCQ3JKQw8+m3xnb9R6yWR77kKI+MWnw9jGiZEDGY7KzEnHSmEmN2vsWFEdxXkGz4/caODp27rdVi+8VAAAAAAAA2DIIOABACxR2L4jBowa1+pndd+PD8Z1dLoox2d1bNnATlRveb/3gwgbXT901Ld5+eV5c+vdvxlY7Dm1+iaysOOuqz6crP2zM8O2a3wSV37VL8zcKAAC0Wo/8bjG4e59Wj//za4/FVx74bQwvbhiQ7ghTZj8X89Ysi9984ssZhRwSWVnxnfEnxJDuGw+Fb5XBHLnZrau6BwAAAAAAAGwZ/B8/AGihrXYYGrNmzG71c1syd1nUfPPB6P/98bEoub7R611fXxXrRjRfLeGDsqrrGrU9deezcfw3j4xrpl0RU6fMiKf/MS1qq2tj0DYDY8mcpTF1ynNRU10b247fJo748sExevcRm5z/wFP3i+n/+neT95CqGMEWJJnccLR1DgAAtigjewyMN1ctavX4+eXL0n/2yi+KZZVroqMkIxkPzX0hTtp2UvztUxfGQ3NfjMfmvxS1yWS6EsXcNUvisfmvRG1dbezSb+v47Jj9mqwucfSI8TF98awm19xn0LYd8JUAAAAAAAAAm4uAAwC00ODRpW3/Aby6OgZf+WKc9df/irtmvRblVVUxsmevKH2lIu75xZ9i0clbR/kuvd8bkPzP0UQlh27PrWjUlgovvFudYbeDd0ofDZ2a8T3vc8we8fuLbo2Fb76z0df7Du4d+x2/V8bzAQAArTOix8CYMnt6mx9fl+zcuHD3T6crLaytroyRPQdFQU6XuHnmw+32ramu2/CeJJGViEmDt08frfXJ4bvG1TPuioUVjd/7pAwu6hOfGPrB9zwAAAAAAADAh0mis28AAD5sDjhlYuTmtT0juGL2sth2cXbcduRx8Y/jPhc//cQhMaQmP7KSEQN+/0YM+sXLUTR1SXR9fXUUTV0W3aZt+JTVjUmsq4mSBxp/guuYPUdGe8nJzYnLp1wQg0YMaPRa/2F94/IpF0Zefl67rUc7VnBo6wEAwBYlVckgO6vt/6y3oGJ5jO5VFn885Jy4/Yjz4wcTTo6+BS2vJteUnfoOb7e58nPy4ncHfCUGdevV6LUh3fvGtQd8OXIT2e22HgAAAAAAALD5qeAAAC3Uo29xnPnzz8dVZ14byTZu/l6zvHyTgYSC11anj3clsyKWrqqO1fv1j7r37WXKWbY++l83K/KWrG8w15AxpbHT5O2iPQ3aekBc99JP44m/PxvT73s+vfc9tcbeR+4W2Tk2EgEAwObQv7BHfGPc0fH9Z/7c5rlWra9ocL1jn2HNjkkVlsvkndCYXmWxc7+toj1tVTIgphx9Sfzr7Rnx1MJX0/cyfuDomDx4h8hO+CwXAAAAAAAA+LDLSrZ1ZyYAfExN/eeMuOLkq2Pl4lWtnmOfY/aILoVdYuTOW8UnTtonCosL48xx34jXp7250f5ZWVlx8UMXxqweNVFeXRUV0xbEv868LZI1dQ369SntFT+876Io22ZQq++ND6d58+ZFWVlZ+nxij89Efna3Ns1XWVseD624KX0+d+7cKC0tbZf7BACg7R6a+0J889EbYuUHQgotcfDQXdKVEbbrPSQO33r36JabH4fdcWm8vnLhRvsnsrLi1/ufFW+vXhxra9bHovIVceurjzQKPKSqLPz+oK9FWVGfVt8bAAAAAAAA8PEj4AAAbfDAzY/G5Z+9ql2eYUFR17jg1rOjbJuB8T/7XxKLZi9pFG44/Scnx1Ff+2SD9jkz58ed1/wzXp36RuTl58X4I8bFgadMTIcl+PgRcAAA+Hj5y2tPxAWP/6Fd5irK6xpX7Xda9Cssic9PuSoWrV3RKNxw8R4nxPGjJjRof23F/Lh15iPx0rK5kZ+dGwcM3SmO2HqPdFgCAAAAAAAAoCUEHACgDaqrquO/djwv5s6c3y7PMS8/N37z/I+jR7/iuO+Gh+PR25+K9WvXx9Y7DovDzjwwttphqO8XGQcc9i05oV0qODy88pb0uQoOAABbnsqaqjj8r5fFnDUNA9KtVZDTJe488qIoyu0at7/xZPzr7RlRVVsTY3sPjuNH7RMje6gSBwAAAAAAAHQcAQcAaKMl85bFJUf/KF6dOqtdnuWnvnJwnPXzz/u+0CoCDgAAHz/z1iyLrz7wm3h5+dx2me9L2x0Q5+56ZLvMBQAAAAAAANASiRb1BgAa6VPaK65++gdx8qXHtcvTmXbv854yAACQsdKiXnH7EefHadsf1C5P7bH5L3v6AAAAAAAAQKcQcACAdnL8Nz4VvQb2aPM8yWSyXe4HIvVXqS7ZtsNfRwCAD40v73hI9Mzv1uZ5/AoIAAAAAAAAdBYBBwBoJzm5OXHBLWdH1275bZpnh4ljfU8AAIAWy8vOjR/v+4XompPXpqe3e/+Rnj4AAAAAAADQKQQcAKAdbTdhdFwz/Yo44qyDok9pr+hWUtii8Tm52XHElw/yPaF9pKqBtMcBAMCHxp4DR8VfDv9WnDBqn+hXUBJFuV1bND4vOydOGLVvh90fAAAAAAAAQFOykkm71gCgI11xytVx340PN9svNy8n/ueGL8fE4/byDaHV5s2bF2VlZenzfbsfH/mJloVsPqiyriIeXn1r+nzu3LlRWlrquwMA8CGS+qe/cx66Lu6ZPa3Zvl2yc+PKfT8fnxiy42a5NwAAAAAAAIAPymnUAgC0q69ff2YMGVMWf7v6nlgyb1m6bdCIAbHjfttGxaq1sX5dVYzYeXgc/MXJ0XtgT0+f9lNXl/pPO8wBAMCHVVZWVjq0sE3PQXHzzIdj8dpV6fbh3fvFuAEjY/X6tbG+tjq27zM0jhm5V/Tu2r2zbxkAAAAAAAD4GFPBAQA2k9ra2lg4651IZCdiwPB+6Y1G0KEVHLp9un0qOJT/KX2uggMAwIdbTV1tzF2zNHISiSgr6tPZtwMAAAAAAADQiAoOALCZZGdnR+nIgZ43AADQKXIS2TGsuJ+nDwAAAAAAAGyxBBwAAD6qkskNR1vnAAAAAAAAAAAAgM0gsTkWAQAAAAAAAAAAAAAAaIoKDgAAH1HJurpIRl2b5wAAAAAAAAAAAIDNQQUHAAAAAAAAAAAAAACg06ngAADwUZVMbjjaOgcAAAAAAAAAAABsBio4AAAAAAAAAAAAAAAAnU4FBwCAj6pU9YU6FRwAAAAAAAAAAAD4cFDBAQCALUZ5eXn88pe/jAMOOCD69esXeXl56T932WWXuOCCC+L111/v0PXvv//+OOmkk2LrrbeOwsLCKCoqilGjRsUJJ5wQd999d9TV1XXo+gAAAAAAAAAAAB9nWclk6qN9AQD4KJg3b16UlZWlz/fpcmTkZxW2ab7KZEU8sv6O9PncuXOjtLQ0OsqDDz6YDhekvoZNycnJiYsuuigddsjOzm63tVesWJFe+6677mqy38SJE+OGG26IwYMHt9vaAAAAAAAAAAAAbKCCAwDAR1Uqx5qsa+OxebKw//znP+Pggw9uEG5IhRkGDRoUBQUF9W01NTXx7W9/O84444x2W3v16tXp4MIHww29e/dOH+/30EMPxd577x2LFi1qt/UBAAAAAAAAAADYQMABAIBOtWDBgjjxxBNj/fr16euioqL45S9/GStXrkwHHtasWRP33HNPjBw5sn7MtddeG7/97W/bZf3TTjst/v3vf9dff+Yzn4k33ngjlixZkj5mzZqVru7wrlQli2OOOSYUQgMAAAAAAAAAAGhfAg4AAB9Rybpkuxwd7fzzz4/ly5enz/Pz89PVHM4888woLCxMtyUSiTjooINi6tSpscMOO9SPu+iii6K8vLxNa6cqMtx2223111/96lfjj3/8Y2y11Vb1bcOHD48bbrghLrnkkvq2xx9/PP785z+3aW0AAAAAAAAAAAAaEnAAAKDTLFy4MG666ab66/POOy/23HPPjfbt3r17/OUvf4nc3Nz09eLFi9tcxeFHP/pR/Xkq1HDllVdusu/FF18ckyZNqr++7LLL2rQ2AAAAAAAAAAAADQk4AAB8VCXr2ufoQLfeemvU1NTUV2o466yzmuyfCiEceeSR9de33HJLq9deunRpTJkypf769NNPrw9PbMrXv/71+vMXXnghXnrppVavDwAAAAAAAAAAQEMCDgAAdJr3Bwx222236NevX7NjDjvssPrzZ599NubMmdOqte+7776oq6vb6LybMnny5OjatWv99e23396qtQEAAAAAAAAAAGhMwAEA4CMqWZdsl6MjpQIK79pjjz0yGrP77rs3uH7yySdbtfbUqVPrz0tKSmKbbbZpdkxeXl7stNNO9ddPPPFEq9YGAAAAAAAAAACgMQEHAAA6xaJFi2L58uX116NHj85o3LBhwyInJ6f+eubMma1a/+WXX27x2ikjRoxo89oAAAAAAAAAAAA0JuAAAECnmDdvXoPr0tLSjMalwg19+/atv54zZ06b18907ZRBgwY1mCOZ7NgqFwAAAAAAAAAAAB8X7330LQAAHynrk2sjknVtmyMq688XLlzYbP+WBAUWL17c4LpXr14Zj+3Zs2csWLAgff7+KhAt8f71W7r2u2pqamL16tVRXFzcqnsAAAAAAAAAAADgPQIOAAAfUVPjgXadb7fddmu2T0uqGZSXlze47tatW8Zj39/3g/O0Zv3Wrv3uPAIOAAAAAAAAAAAAbZdohzkAAKDFqqqqGlzn5uZmPPb9faurq9u8fmvXbsv6AAAAAAAAAAAANKSCAwDAR0j//v1j7ty57T7vwoULo0+fPpGT036/Pn6w2kNWVla7zd3S9Tf32gAAAAAAAAAAADQm4AAA8BGSCiCUlpa2+7wdMWdeXl6rKyG8v29+fn6r16+srGzT2m1ZHwAAAAAAAAAAgIYSH7gGAIDNonv37g2uKyoqMh5bXl5ef15YWNjm9Vu7dlvWBwAAAAAAAAAAoCEBBwAAOkXv3r0bXC9fvjzjse/v27dv3zav39q1u3btGkVFRa1aHwAAAAAAAAAAgIYEHAAA6BRDhw5tcL1gwYKMxtXU1MTixYvrr0tLS9u8fqZrp8yfP7/+fNCgQa1aGwAAAAAAAAAAgMYEHAAA6BR9+vSJXr161V+/9tprGY1788030yGHd2277batWn/06NEtXvuDfVu7NgAAAAAAAAAAAI0JOAAA0GnGjRtXf/7MM89kNOaD/Xbdddc2r71o0aKYO3dus2OqqqpixowZG50DAAAAAAAAAACAthFwAACg0xxwwAH154899lisXLmy2TF33nln/fmYMWOitLS0VWtPnjw5Eon3fh2+6667mh1z//33x7p16zZ6/wAAAAAAAAAAALSNgAMAAJ3m2GOPjezs7PrqCL/4xS+a7D9r1qy444476q8/97nPtXrt3r17x/77719/fdVVV0V1dXWTY6688sr681GjRqngAAAAAAAAAAAA0I4EHAAA6DSp6gupkMO7vvvd76arJGzMmjVr4phjjqkPIRQXF8cXv/jFNq1/zjnn1J/PnDkzzjjjjE32Td3bAw88UH997rnntmltAAAAAAAAAAAAGhJwAACgU33/+9+Pbt26pc9T4YVPfvKT8YMf/CBWrVqVbksmk3HvvfemqyXMmDGjftyll16arsKwMUOHDo2srKz6Y1MOPPDAOPTQQ+uvr7vuuvT1Sy+9VN82e/bsOPXUU+Piiy+ub0vdS6oNAAAAAAAAAACA9pOVTO0YAwCATnTnnXemqzNUVVXVt2VnZ0f//v1j5cqVUVFR0aD/iSeeGDfddNMm50sFHN5+++3666Z+5V26dGlMmjQpXnjhhQbtvXr1St/D4sWLG7QPHDgwHn/88fQaAAAAAAAAAAAAtB8VHAAA6HSHHXZY3HXXXVFWVlbfVltbG/Pnz28QbkgkEnHuuefGjTfe2G5rp6pAPPDAAw0qOaQsW7asUbghVbnh0UcfFW4AAAAAAAAAAADoACo4AACwxVi7dm3ccMMNcccdd8TLL78cS5YsiS5duqQDBRMnTozTTjstxo4d2+w8Lang8H73339/3HzzzekQw8KFC9MVJfr27ZsONpxwwglx1FFHpas6AAAAAAAAAAAA0P4EHAAAAAAAAAAAAAAAgE6X6OwbAAAAAAAAAAAAAAAAEHAAAAAAAAAAAAAAAAA6nYADAAAAAAAAAAAAAADQ6QQcAAAAAAAAAAAAAACATifgAAAAAAAAAAAAAAAAdDoBBwAAAAAAAAAAAAAAoNMJOAAAAAAAAAAAAAAAAJ1OwAEAAAAAAAAAAAAAAOh0Ag4AAAAAAAAAAAAAAECnE3AAAAAAAAAAAAAAAAA6nYADAAAAAAAAAAAAAADQ6QQcAAAAAAAAAAAAAACATifgAAAAAAAAAAAAAAAAdDoBBwAAAAAAAAAAAAAAoNMJOAAAAAAAAAAAAAAAAJ1OwAEAAAAAAAAAAAAAAOh0Ag4AAAAAAAAAAAAAAECnE3AAAAAAAAAAAAAAAAA6nYADAAAAAAAAAAAAAADQ6QQcAAAAAAAAAAAAAACATifgAAAAAAAAAAAAAAAAdDoBBwAAAAAAAAAAAAAAoNMJOAAAAAAAAAAAAAAAAJ1OwAEAAAAAAAAAAAAAAOh0Ag4AAAAAAAAAAAAAAECnE3AAAAAAAAAAAAAAAACis/0/Y3/EocZ8DMMAAAAASUVORK5CYII=", + "image/png": "iVBORw0KGgoAAAANSUhEUgAADDgAAAWKCAYAAACnpjQAAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjgsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvwVt1zgAAAAlwSFlzAAAewgAAHsIBbtB1PgABAABJREFUeJzs3Qd4VNX2NvB3SnrvgSQQeu+9I1IFFEUFFbuCDbvYBRFsYMNrQQEpYkFp0nvvvXdCSCO912n32SdkmEmmZTIhCby/75mPOTNn9jkz/LmedfZea8l0Op0OREREREREREREREREREREREREREREREREVUhelQcnIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiISmOBARERERERERERERERERERERERERERERERVjgkORERERERERERERERERERERERERERERERU5ZjgQEREREREREREREREREREREREREREREREVY4JDkREREREREREREREREREREREREREREREVOWY4EBERERERERERERERERERERERERERERERFWOCQ5ERERERERERERERERERERERERERERERFTlmOBARERERERERERERERERERERERERERERERVjgkORERERERERERERERERERERERERERERERU5ZjgQEREREREREREREREREREREREREREREREVY4JDkREREREREREREREREREREREREREREREVOWY4EBERERERERERERERERERERERERERERERFWOCQ5ERERERERERERERERERERERERERERERFTlmOBARERERERERERERERERERERERERERERERVjgkORERERERERERERERERERERERERERERERU5ZjgQEREREREREREREREREREREREREREREREVY4JDkREREREREREREREREREREREREREREREVOWY4EBERERERERERERERERERERERERERERERFWOCQ5ERERERERERERERERERERERERERERERFTlmOBARBU2adIkyGQy6REZGXlTftErV67ojykeW7dudci4TzzxhH7Mvn37OmRMIiIiIiKqHoqKirBmzRq89NJL6NGjB0JCQuDq6go3NzfUrl0bvXr1whtvvIHdu3fbfYyUlBQsWLAADz/8MNq0aYNatWrB2dkZgYGBaNasGfr374+pU6fi0KFD0Ol0FscScY5h3OOoh6VYJzc3FzNnzsSwYcMQFhYm/T7+/v5o1aoVnn76aWzYsAFardbu34eIiIiI6FZjeK3t4eGBS5cuVXh+Ijw83Kbjic+U14ULF6RrfcNxWrZsicTERJvHSEhIwOzZs/Hoo4+iQ4cOCA4O1sdWderUQfv27fHkk0/i999/L9e4Yo7JETGPmEMiIiIiIrqdlOd62cnJCV5eXtK1u5gXefvtt7Fp06Zqc5zSa8IsPRQKBTw9PdGgQQMMHToU06dPR3x8fLX73YiIqPxkOmuz6URENiQ4fPzxx9LzunXr3pQbx+IY9erV029v2bLFIQkJYjJg3rx50vM+ffo4LHGCiIiIiIiqTkFBAb777jvpIRbi2EIkJ4j9RVxgi4yMDLz33nvSIh+RSGGLFi1a4PPPP5eSCUwR8cgdd9wBRzMX66xcuRLPPvssrl27ZvHzXbp0kb6nOH8iIiIiotudWOhiqHfv3vpkZXvnJ0QCQmxsrNXjPf7445g7d265khvEXIrhgh8R+2zcuFFKyrbm8OHD+PTTT7Fs2TJoNBqbjqlUKjFy5Eh88sknaNSokdUEh+joaFRUVFTUTSvIRURERERUHZQ3/jBFJCr/9NNP6Ny5c5Uep/SasPISiediHdurr74qJUBUh9+NiIjKT2nHZ4iIiIiIiIiIaoR9+/ZJVUXFQh5TN7lFdwK1Wi11XlCpVPr3jh07Ji38effdd6WOC5ZucosKrQMGDJAW0RgSnwkICJCqB+Xn5yMtLc3oGKdOncLw4cOlm+xff/11mWOI6qei6pA1hhViRfUgUT3VErFYqrTffvsNzzzzjFF3BrlcjtDQUKnThEh6KKmRIX7TTp06SYu2eMOeiIiIiMjY9u3b8b///Q/jx4+vVj/NxYsXpQRqw+SGjh07Yv369fDz87P4WRHHTJgwATNmzDDZ0U0kMYgECRHTlI6tRLz1999/Y/ny5fjxxx+lzg7miKQEMVZ5iC50hknaYgxbkjWIiIiIiG5V1uYJxDW9KAyVmppqVLBJJDSLmGHp0qUYOHBgtTmOiFfEXI6p8QsLC6UCVHl5eUYxwptvvonLly/jhx9+sDr+zf4+RERkGyY4EBEREREREdEt6b///sPo0aOl5IISrVq1wvPPP49Bgwahfv36+tfFTfC9e/fil19+wZ9//qlfzP/ZZ58hKytLWqBkirhRLtoeGyY33H///Rg7diy6du0q3RAvIW54Hz16FPPnz8fMmTOlhT7Ct99+K92g/+ijj8p0ShCLkKwxTIy47777ylXBVRDn9Nxzz+kXKomEDFFdVVSQ9fX1lV5LTk6WJgJEtVaxWEn8piI5QyRpcPEQEREREZExkSgt4gTDmKMqibhCJHDHxcXpX+vWrRvWrFkDHx8fi5/NycnBiBEjsGnTJqPX+/fvj1GjRkmxVXh4uD4uEbHU+fPnpbFFFVPxXBALgZ566impgupjjz1m8ljl7aotYqo777xTn+Dg7e0tdaYTMQ0RERER0e3K1nkCMSewe/duaW5iy5Yt0msiUUAUjTp9+rRUwKk6HOfll1/GpEmTLO4jYgIxJzRx4kR9fCASrEWxJjHXYYub9X2IiMg2chv3IyKqVkQFHnGTvOQhbswTERERERGVEF0GxGKbkuQGUQVUdEkQi/lFgkPphUYuLi7o06cPFi5cKFUwFQtjSoiF/aLDgSnTp0/HuXPnpOdiQc+8efPwzz//SB0dDJMbBGdnZ6njgUiWEDe/DaukioSCs2fPVslfoKjEWlJtyNXVVbohL7pKlCQ3CEFBQdIEgkj+KJGUlCT9pkREREREVDYR+umnn9YnTlcl0fFNVBM1TG7o3bu3FPdYS24Q5//II48YJTeILnMiEWHDhg1SF7iIiAijpGvxvEmTJlJMIRb3iJhBdIczXJxkeC4VjWVEx4wSs2fPRosWLRwyNhERERHRrU5cp/fs2VOKDURSs+G9/y+//LJGHUd0oxaFp8T8huH8znvvvacvNlXTfjciotsdExyIiIiIiIiI6JYikhoefvhhqUKoICqELlmyBK+99prRwhpzRCXSxYsXG+0rFs6INselF/v8/PPP+u0xY8aYrURamqgaJLo4lBA32M11iahMokWzWJhU4o033kDHjh3N7j9y5EijBHPxOxERERERUVkiCUBUDK3q5AZx/R4bG6t/TXQ8EN0VbOly8P3330tVUEuIWEF0vhPJ4bYQsZiIwwzjpszMTLzzzjuoqI0bN0rd8EqMGzdO6qZHRERERETlIwpEie5rohBUCVEMytEJ2zfjOE2bNpU6VpdISEjAtm3bUJN/NyKi2xUTHIiIiIiIiIjoliK6KoiF+yVEm+Dhw4eXawyR5CCqkZZISUkxWpQjXLhwQd/qWDCs1GOLBx54QKp+arhApyo6XYib8CWefPJJq5/p0qWL/rnh70xEREREdLu7++67pc5tJcRC/itXrlTJuYhrddG5wTC5YfDgwVi5ciXc3d2tfl7EQCKWKhEYGIilS5dKf5bXs88+KyVWGCZKi0QHe+Xk5OCpp57SLxyqW7euFAcSEREREZH9HRAGDRqk3xZd1+Lj42vkce666y6j7ePHj6Om/25ERLcjJjgQ0U23f/9+qSpo27ZtERQUJGWy1qpVCz169MDHH3+MqKgoq2OICQHR5rjkISohWSJucosb76J6j2iXLI4pjt29e3epApFoF20v0Zr5+eefl9oe+/v7w9XVFeHh4dLN+mnTpkktyKyZO3eu/ruMHj3a6Ld66aWXpLF9fX3h4eGBhg0b4oknnjCqskpERERERMVE1wZxjV+idu3adlcHff/99426OIjWxoZSU1ONtu2pyjNw4ECjSkI320MPPYS8vDycOnUKy5YtM0q4MCc7O1v/3M/Pr5LPkIiIiIio5mjVqhU++OADo4X4Tz/99E2v4CnmWURyQ0xMjFHyxfLly6U5DFuI7hOGSQhTp06V5j7s9dZbb+mfiySJiiwymjhxotF3E93xbOlIQURERERE5on1SIbEYv2aeJyQkBCjba1Wi1vhdyMiut3cKNFHRFTJEhMTpUQAkWhQmqh6Kh67d+/Gp59+ivHjx+Ozzz6Dk5NThY8rqqo+/PDDOHjwYJnqQ+KxZ88efPfdd/j777/LNe758+cxduxYk63MxMWqeGzevBmTJ0/Ghx9+iAkTJtg8dn5+Pl5//fUyFWJLWkqLx7x58zBkyBDpvL28vMp17kREREREt6rVq1cjOTlZvy2qehpWUC2POnXqSFVARQWeXr16lVnMI5InDP37778YOXJkuY4xadIkvPnmm9ICH29vb1QFEXc1b95celhTVFQk/cYl2rdvX8lnR0RERERUs7z77rvSPMiRI0ekbTFPIO71i/mRm5Xc0LdvX1y9elX/mij+9Mcff9g85yISMkTSQImwsDAptqoIkdw9e/ZsKbZq1KiR3eOcOXMGM2bM0G/fe++9RhVTiYiIiIjIMeydW6nq44j1aYbq16+PW/F3IyK61bGDAxHdFOfOnUPXrl3LJDf4+PhIi4bc3NyMFsx89dVX0g3pinRWEE6ePCkdt3RyQ0BAgLRIqaQaq0gYGDBggHSethBJEaL7Q+nkBjFuSYcIwwpNb7/9tpRkodForI4tModFFwfD5Aax0EksplIqjfPS1qxZI928JyIiIiKiYoaL7wVxnV8Rr732mtTlwFSlUnHtHxwcrN/+66+/pGqthYWFNo8vPi9urldVckN5u2OIRU2io14JkZxBREREREQ3iPv4omuzYTKBKIBkeB1dWcQxROcGw+QGMTchYpXyFJQ6cOAA4uPj9dujRo0qMz9RXqKDtYgnKpLcIIj5FrVaLT0XczEiKZ2IiIiIiCru9OnTRtfvYg6kJh5nxYoV+uei01u/fv1wK/xuRES3GyY4EFGlEwv8hw8frr95L5IKXnrpJanKTkZGBqKjo6V9du3aJXUkKLFlyxaMGzfO7uPm5eXhvvvuQ1pamv41sTDp7NmzUueGhIQE6SFaGYvs2fT0dOzdu9fquKIzg2jlnJqaKm2Lds6iQ4P4HmJcMXGQnZ2NdevWoUuXLvrP/fnnn/joo4+sji9aRP/333/6SQNR5Um0gRbtlsXvNGfOHCkxpMSmTZv0+xMRERER3e7279+vfy4SqUXCc2URsY3oPmdo6tSp0s3rV199FVu3boVKpUJNJZKvRVx1/PhxTJs2DU2aNMHChQv177/33nvo379/lZ4jEREREVF11Lp1a7z//vv6bXFv/5lnnpE6I1QWMQcjOjeIuYoSTzzxBBYsWACFQlGusTZu3OjQxHFHEV3ADRcrvfDCCze9GisRERER0a1IrEkS67QMYxpR5LWmHUfEDD/99JNRzGC4xqqm/m5ERLcjJjgQUaV75513cOHCBem5SCRYtWoVvv/+ezRt2vTG/xjJ5VJHBFFtVbRvLiEWz4j97fHdd9/pjyuIyQTRglksyjGsljpp0iSsXLnS5hZhIulCJDIIvr6+UmLG5MmTpU4UJUQlJNFueefOnXj00Uf1r3/22WdSVwlLRAcLQSwgElWV2rZtq39PVCN68sknsX79en33CUF8LyIiIiKi251YkH/+/Hn9trj2r+xWwKLDQ6tWrYxeS05OluIRUTlV3DgX1YFEYrW4jhcLm2oKEaN5eHigTZs2UsXZkiqwQUFB+OWXX6RkDiIiIiIiMk0kBItracNiRTNnzqyUn0skNYj4wzC5QcxfiLkYw7kEW504ccJou0OHDqgOPvnkE/1zEauI+SciIiIiIqqY3NxcjBkzxqg7dUUK0t7M44jubmINlyhoKwpPiaJMonCTIGKkKVOmoKb/bkREtysmOBBRpRIXkbNnz9Zviw4GgwcPtviZTz/9FL169dJvf/nll3Yd23CioHPnzlISgjmi+tAHH3xgdUyRnGCYcPG///0P7du3N7u/aNk8a9YsNGjQQNoW1ZlE4oI14vu/+eabZt8X3+euu+7Sb9vSeYKIiIiI6FaXlZVldCNZLMSvbGJRjahuKpIBTMnPz5eq94h4ZNCgQfD390fPnj3x+eefIyoqCtWZ4eIoQw0bNpQ62Wk0mpt+TkRERERENYUohDR37lzpzxIicdjcdba9xHiic0NJF+0SooO2WOBjj8uXLxvFPDcjtrJGdLteu3atUSVWUcSKiIiIiIjsI4oa/fzzz1Ji9vbt2/Wvi6JOTz/9dLU5zscffwyZTGbyIeItEa9069ZNKjwl5mRKum+L7m+G8Vh1+T5ERGQbpY37ERHZ5e+//0ZBQYH0XLRAfv755236nNhvx44d0nPxp0iUCAwMtPm4p06dMpokeOWVV6xWKRL7iA4L4mLXnHnz5umfi5ZiDz30kNVzERVjxQWsqNYkLF++XKosa+l8RNtoazp16iR1nhBKOkoQEREREd3ORLUcQ+WJISpCLKoRN7FFkrVI0La0YEmlUkld4MRDxAh33323lOxg2OGuOhCJIomJifDz84OnpyeSkpL0ySN79uyRHt9++y2WLl1q1M2OiIiIiIhuEB2aRdfqkgJM2dnZePbZZ6Xubo4QGxsrVSU1TG4QcxIlnaJFASpR4GnUqFHlGjczM1P/XHSls5VY4FM6LjMnPDwcW7dutXlssViphFikJOZ0iIiIiIiorCVLlmDnzp1mfxpxrz89Pd3ktXutWrWkz9vSHftmHae8RDc7b29v6bgiYdtW1fX7EBHdrpjgQESVqiRJQRCLXkS1Ulv06NFD/1x0PRAXkCNGjLD5uKUnB6x1jRDExe2dd96pTxqw9n1at25tc2tnw+8jJgaOHz8uTWyY06VLF6tjhoSE6J+XJJEQEdEN69atw5w5c6QuN2KBpru7OyIiIjBkyBAp8axRo0b8uYiIbjEiqboqjy0qiD733HPYtm2btPBfVBe9cOGC2c+IWEckQIv/Zn3//fd45plnUF2IWCcmJgZhYWHStlggtWHDBrz//vs4duyY9Nrhw4elxVIHDx6El5dXFZ8xEREREVH1JLpHL1u2TJoXEMR19S+//IKxY8dWeOxNmzYZbU+cOFFKnjYszjRu3DipK3S9evVsHtfebm2XLl2yOcFBrVbbPG5aWppUUKvEgw8+qI9ViIiIiIjImEisFo/yzgkMHz5cKuRkuB6pOhxHFGIyt95MxBUiBklNTZXmXErih6lTp2LGjBlS7DV69Ohq9X2IiMg2THAgokpvGVwiLi4ODRs2rHA75PLuL25y25pYIZIOLCU4HD16VP98//79Nn8fUaW19PlZSnCw5ca8i4tLhScbiIhuReIGxqOPPiotLDVVUUFMJn/zzTfSTY0333yzys6TiIgcTyQtG8rJybnpP7O4mS0qqIpHSUVVUZVUdHjYvHmztOCnNJGwLKq4iiqkjz/+OKoDcS6GcYmoOjR06FD069cP9913n5S8IZw/f16qRjtt2rQqPFsiIiIioupLXFvPnTtXSjIoWdT/1ltvSUU4RDEOR5kyZYqUkCysWLECf/zxh77okkh4EAWcxLnYwjCBuSriqtL+/PNPo0JPtnYLJyIiIiKislxdXaX5lICAALRs2RIdO3bEAw88UK6k6Jt5nJdffhmTJk2yuI+IF8QatR9++EGKhUSyg0hWePjhh6V5G5EkXVN+NyIiKsYEByKqVCJDtoSo+GlqMY8tRHZteYhK3SUCAwNt/pxoGWaOuIkvFscaLqCtrO/D6qdERPYRk8TDhg0zam/fqlUrKalM/O+2WFiakZEh/TdJTCSL/d955x3+3EREtwjRrUdc/6ekpEjbogNBVQsPD8eYMWOkhxAdHS0lVc+fP19KmjY0fvx4DBo0CKGhoaiu3NzcpMVFItm7JN779ddfpcRBtl4mIiIiIjKtXbt20j0okYQgZGVlSR3cRDc3R/jyyy+le10lxKIekdBQEhPt27dP6iTxxRdf2BzHlBSwEucqkiR8fHysfs5aMkTfvn2ljnfltXDhQv1z0ZXVsGs2EREREREZE4WURJL1rXIcW5MPunXrJj3EegGR2CCSHMRDdLUTxZusrR+rTt+HiIgAOX8EIqpM4qa3I9ja0riEqNBtuADH3oqvlfFdbPk+CoXCYcciIrqdfPrpp/rkBg8PDyxbtkzq2CAWkS5evFjqJjR27Fj9/u+99540wUtERLeO5s2b65+L7gIlFVKri7p16+LFF1+U/vvz33//GXWbE9WEZs2aherO19cXTz31lFGsZNi9j4iIiIiIyvrwww+lQhwl1q9fLyULV5ToVGqY3FByzT5v3jzIZDL9a6Lr2oYNG2waU1QjNXTq1ClUFdEVb8+ePfrt6tL1joiIiIiIqqfRo0fjiSee0G+LAohz5syp0nMiIqLyY4IDEVUqw+SCUaNG6bNjy/sQN+jLw7ByaHmSIww7NFj6LsLbb79t9/d55ZVXyvV9iIjIuuTkZKMqdLNnz8Y999xTprL3zJkz9VW0xf8miyQHIiK6dfTq1Uv/PC8vD8eOHavQeIsWLcJdd92F6dOnS4v4tVqtUXVS0dVt9+7dRt3rbDV8+HBpfEOi21BN0LVrV6Pt6tAtg4iIiIioOhPzFr/99huUSqX+tTfffLNC19L3338/Xn31VZPv3XHHHXj99df12+I+2KOPPmrUAduc3r17G21v2rQJVWXVqlVG2/fdd1+VnQsREREREdUMhkUPhY0bN1bZuRARkX2Y4EBElSogIED/3J4FP/aqVauW/rktN+tLpKWlmX1PVDySy+VV8n2IiMg60S5SLGQV2rVrJyXWmfPdd99JyQ4lC0nPnTvHn5iI6BYxePBgo23RzacilixZgjVr1kgVUdu3b6+veCo6MHh5eaFhw4bo0aOH1CnIHnfeeSfatm2r3xbdhqoiSVB8n0OHDtn8GU9PT6Ntw8QPIiIiIiIyrUOHDpgwYYJ+OysrC88++6zdP5foYGrJ1KlTjbpGiPmSxx57TEp2sEQkRxh2vF64cKHVz1QWEY+VaNSoEZo1a1Yl50FERERERDVH06ZNjbZZpImIqOZhggMRVaomTZron4tqp7ZSq9XSIht7NW/eXP88KSnJ5kVCx48fN/ueSG4QN89LHD582ObzKSgoQHp6us37ExHdCrILVLiQmI2jMRnSn2K7MhkuYLWU3CD4+/tjyJAh+u3S1bOJiKjmEskG9evXN+roY6lTmyVi8Y/hf19EArdISBDCwsKM9t21a5fd51yvXj39c1dXV9xM/fv3R3BwsNSR4bnnnrP5c6VjrNDQ0Eo4OyIiIiKiW8/EiRPRokUL/fa6deukuKUyuLi44Pfff5f+LLF+/XpMmzbN6ueeeuop/bYoDmJvUndFiKSK7du367cN7+cRERERERGZo1AojLZv9twLERFVHBMciKhS9erVy6jjgeGNaEvEQlOxyEZUHxLJCuVtfyyqCxlaunSpTUkV1lqSGX6fo0ePIioqyqbz+frrr6XFtD4+PmjdujVOnz5t0+eIiGoaMem4+1IKnv/9ENpO3oAB32zHiB92SX+K7RcWHpLed3TFN5FItn//fv12yeJTS3r37q1/XlKNm4iIaj6ZTIZXXnlFv52QkIDp06fbNdbHH39slBzxzDPPQKlUSs/Dw8NRt25doximPN3jDF28eFH/3HCh083QuHFjoyTuq1ev2vS5tWvX6p87OztL3ZOIiIiIiMg6cf0sOpEaLrh54403EBsbWyk/n5iTEJ0cDH3wwQdSFzdLXn/9dX0HVOHVV1+VCkpVRHk7v506dcqoeFTfvn0rdHwiIiIiIro9iCRtQxEREVV2LkREZB8mOBBRpXrwwQelzgeGlYms3cBWqVT45JNPpOd5eXnSYp+2bduW67hicY1hF4dvvvlGGsuSBQsW4Nq1axb3GT16tP65+B6TJk2yei4ZGRnS8UvaTYtjGC4iIiK6VZyMy8Sgb7fj4V/3Yc3Ja9BojZMYxPbqE9ek98V+Yn9HOXv2rJSoVsLwvwHmGO5jqYMPERHVPOPGjTNKPhCJCqIqanksWbIEP//8s37b29sbEyZMMNrniSeeMEq2E8c1/O+RLUSS3YkTJ/TbI0eOxM00YsQIoxinJHaxRPx307B664ABA+Dl5VVp50hEREREdKvp2LEj3nrrLf12ZmZmuQs9lYdIVjAsDCXmYR566CFpzsIcsQCoZK6mpIvb0KFDkZKSUu7ji1hjypQp2LlzZ7k+d+DAgTK/GxERERERkTXz58832h40aBB/NCKiGoYJDkRUqRo1aoR7771Xv71161bpRrq5yt3i9ZdeeklaqFpCtEEOCAgo97Hfe+89/fPLly9L42g0GpP7Hjt2TDova0RF8A4dOhhdEFtaAFRUVIQxY8YY3fAXxymp+kpEdKvYcSEZD87cg/OJOTbtL/YT+4vPOYJhRx3RAciwupw5ovK24SSyYTU4IiKq2VxcXDBv3jx9srVYvCMW8v/vf/+zqWLorFmzpORmw7jlp59+krqyGRLX9rVq1dJvL1++XIp/YmJibDpPUTHVMIlaVFY1jJ9uhv79+xt1jRC/kaXORtHR0dI5lsRWomOG4aInIiIiIiKyjSigZEuRDkcQ1+0iRvL19TW6nzZ27FiLn3vttdcwatQo/fbBgwelJINVq1bZfOxt27aha9eu+PDDD41iLHFO1oi5G8Okc1ZdJSIiIiIiazZv3izN6ZQQawdEgV4iIqpZmOBARJVuxowZ0mLTEt99952UKLB9+3b94iJxU1vcGBfVf3755Rf9vmKx0OTJk+067sMPP4yBAwfqt//++2/06dMHu3fv1r8mqhOJBTziddFpwRa//fYb3NzcjBY1PfDAAzh8+LD+NfG9RDJH7969jW70t2zZEq+88opd34eIqLoSnRjGLTiEvCLTSWTmiP3F5xzRySExMVH/PCQkxKbPBAUFGW3bU32OiIiqL3GNL671DTssjB8/Hm3atJE6M8TGxhrtn5aWhkWLFqFnz5549tlnpaSIEm+++aYUX5QmFtj89ddfcHZ21r+2cuVKNG3aFC+88ILUNaJ0J7mcnBysXr1aSoTu3r27dFxBxBgigdqwA97NII4nfo+SJGzRgWLYsGFS14ukpCT9fuI8f/jhB2kxk0ggLyEWKYkOekREREREVP7EbDHfoFAobspPJ5IDxDW9ITFvIhK8rSVGGCY5iKRnETOIYlBi/kcUrDJMJBfzPSJmEHGGSGzo27dvmU4MIrFj4cKFVs/ZsBiWYZc+IiIiIiKi0s6cOYN33nkHd911l1G37YkTJ5ZZG0BERNUfS4gTUaWrXbs2li1bhuHDhyM1NVV6bcuWLdJDZMkGBgZKyQWlWyGLSkJLly41So4oD3Hj/c8//0S/fv30VX527dqFHj16SAuRxOPatWv6i1qxoOjRRx81SrAwpVWrVtK4on1zfn6+9Nq///4rPby8vKSqrmKRbG5ubpnJA/F9DJMjiIhqOjFh+fqio+VObighPvfGomNY+2ovm6q2mZOdna1/buv/znp6ehptl/7vEBER1XzPP/+8FHOIZIOSRIOTJ09Kr4uHiDl8fHykpAOxgL90pzmx0EgkXBt2hytNJDWvWbNGqv5TEu+IY4nqQCUVgkSc4OfnJ3UMEo/SRAyxZMkSKfmiKoikjtmzZ+PJJ5+UFiaJTnSimqxIcggNDdUnE5bufiF+V7EPERERERHZp3PnznjjjTfw5Zdf3pSfUCRur1ixQkrULiGKMol5k2bNmplNxBD7d+nSBR999JEUPwmi6FNJ4SdXV1epE7eIoURcVHp+xPB+3IQJE/D2228bJYqbc+XKFf1zw+55RERERER0+xCJ1b///rvZ98W6LzHHY7hmoIRY2yViLiIiqnnYwYGIbopu3bph3759UucGQ2Lhz9WrV8ssKhU3ykWnBfFnRYiFQqJThLhgNSSOJyq2liQ3iBvvYkGRrZVH77nnHuzYsUOqUGRIXCyL6kWlb94PGTIEe/bsQcOGDSv0fYiIqps9l1NxPrF4UtNe5xKzsfdycfVqexUWFpY7wcHJyclo27BSNxER3Toef/xxHDlyBCNHjiyTTCcSrcX1u1iAUzq5oSSGsZTcUEIkVYvECdH5wdQiHREniLindHKD6J4gFhgdP35c6jhRlR577DFs3LgRderU0b8mfpOEhATpYZjcIJLQ58yZU6b6KxERERERlZ9IGhZd4G6WH3/8EeHh4UbzNKNHj5a63lny2muvSR0VREKEKCBlSHw2Li5OintMJTeIOGPatGnSvIzoAmdLckPprq2lj0lERERERLeH9PR0XLp0yexDzPOUTm4Q8cP06dOxYMGCm9Y1j4iIHIsdHIjopmnQoIG0YGbnzp1YvHgxtm3bJt3MFheioqpqWFiYlNAgbqQPHDiwQpW8S1+0/vHHH9JNd9FqeevWrYiJiZGqDomWxiJZQVQeFdV/RMtkW4nkhoMHD0rVWpcvXy51hxALf8SiJVGFSIzdvXt3jBkzRvqTiOhW9PveaIeN061BgN2fFwtES/AGBRERlda4cWOp45q4yS26qolr91OnTkmLZcRNb6VSKXVYaNSokXTtfv/996N9+/bl+iFFpwPRDe7zzz+X4gMR95w4cUKf2CC6IoiqpmK/5s2bo2/fvhg1apTRwqKqdscdd+DixYtSx7r//vsPBw4cQHJyshSbifbNbdu2lZK3RYzj4eFR1adLRERERHRLEHHCb7/9JnVRKN01rTKI2Gfu3LkYMGCAPtFbJF2//vrrUvKDJWIe59tvv8Wnn36KTZs2Yf369dJnRRwhEshF3CMKSomkaDFHIjreiYRwUVzK8P6drUq6RZT8TkRERERERIbE/IVYcyY6aYvE6latWknFd++++27OYxAR1XAyXekShURERERENsguUKHt5A3QaCt+OamQy3D0owHwcjXuqmCr7777Dq+++qr0XEyciiQ6W7o+GE6MHj582OZOPkREREREREREREREREREREREROR45S+VQUREREQE4FpmgUOSGwQxTmJWgd2fF51zTFV2s6T0fqKqAxEREREREREREREREREREREREVUdJjgQERERkV1yizQO/eVyCu0fLyAgQP88JSXFps8kJycbbYeGhtp9fCIiIiIiIiIiIiIiIiIiIiIiIqo4JjgQERERkV08nBUO/eU8Xewfr1mzZvrnCQkJ0GisJ0vExMQYJUgYdoEgIiIiIiIiIiIiIiIiIiIiIiKim48JDkRERERkl1AfVyjkMof8ekq5DCHernZ/vmHDhnBxcZGeq1QqnD9/3upnTp8+rX/eqlUru49NREREREREREREREREREREREREjsEEByIiIiKyi5erEwa1CHHIrzeoRag0nr0UCgU6d+6s3965c6fVz2zfvl3/vG/fvnYfm4iIiIiIiIiIiIiIiIiIiIiIiByDCQ5EREREZLcxXetWm3EeeOAB/fOFCxda3Dc1NRVr1qzRb48YMaLCxyciIiIiIiIiIiIiIiIiIiIiIqKKYYIDEREREdmtW/0ANA7xrNAv2CTEC13r+1f4b+HBBx+Em5ub9Hzbtm34448/zO778ssvIz8/X3revXt3tGnTpsLHJyIiIiIiIiIiIiIiIiIiIiIioophggMRERER2U0mk+HrB9vC3Vlh1+fF5756sI00TkWFhITg3Xff1W8/9dRTmDt3rtE+Iqlh7Nix+uQHcdwvvviiwscmIiIiIiIiIiIiIiIiIiIiIiKiipPpdDqdA8YhIiIiotvYjgvJGLfgEPKKNOVKbpj5aAf0ahTksPMoLCzEHXfcgT179uhfa9SoEbp06SIlN2zevBnp6en69z766CN8/PHHDjs+ERERERERERERERERERERERER2Y8JDkRERETkECfjMvH6oqM4n5hjdd8mIV5S54aWYT4O//Wzs7PxyCOPYMWKFWb3USqVmDhxIj744AOHH5+IiIiIiIiIiIiIiIiIiIiIiIjswwQHIiIiInIY0Rxs7+U0LNh7BetOJUKjvdEsTCmXYVCLUIzpWhdd6/tDJpNV6i+/bt06zJ8/H7t378a1a9cgl8tRt25d9OvXDy+88AKaN29eqccnIiIiIiIiIiIiIiIiIiIiIiKi8mGCAxERERFViuwCFRKzCpBTqIGniwIh3q7wcnXir01EREREREREREREREREREREREQmMcGBiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiqnLKqT4CIiIiIiIiIiIiIbg1qtRrXrl2rlLFDQ0OhVPKWNhERERERMSYhIiIiIqLqifMkjsHZICIiIiIiIiIiIiJyCJHcEBERUSm/ZkxMDMLDwytlbCIiIiIiujUwJiEiIiIioqrEmMQx5A4ah4iIiIiIiIiIiIiIiIiIiIiIiIiIiIiIyG7s4EBEREREREREREREDrd3TQRqBSsqNEZCkgZdh8Q47JyIiIiIiOj2wZiEiIiIiIiqEmMS+zHBgYiIiIiIiIiIiIgcLiRYjtq1K5bgoIXOYedDRERERES3F8YkRERERERUlRiT2E9egc8SERERERERERERERERERERERERERERERE5BBMciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioyimr+gSIiIiIiIiIiIiI6Naj0WmlR0XHICIiIiIisjeeYExCRERERERVhTGJ/djBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqhw7OBARERERERERERGRw2mhkx4VHYOIiIiIiMjeeIIxCRERERERVRXGJPZjBwciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqpy7OBARERERERERERERA4naqWK/1fRMYiIiIiIiOyNJxiTEBERERFRVWFMYj92cCAiIiIiIiIiIiIiIiIiIiIiIiIiIiIioirHDg5ERERERERERERE5HAanU56VHQMIiIiIiIie+MJxiRERERERFRVGJPYjx0ciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioyjHBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqpyyqk+AiIiIiIiIiIiIiG49WuikR0XHICIiIiIisjeeYExCRERERERVhTGJ/djBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqhw7OBARERERERERERGRw2kBaCrcwYGIiIiIiMj+eIIxCRERERERVRXGJPZjBwciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqpy7OBARERERERERERERA6nhU56VHQMIiIiIiIie+MJxiRERERERFRVGJPYjx0ciIiIiIiIiIiIiIiIiIiIiIiIiIiIiIioyjHBgYiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqhwTHGq4QrUKlzOuIT4nrapPhYiIiKhay8vLQ506dSCTyTB37tyqPh2iW0ZhfiGuno1DcmxqVZ8KERERVTManc4hDyIiSwryChF9JhYpcYxJiIiIiDEJEd18+bkFxTFJPNduERERkTHOk9hPWYHPUhXKVxfh+yMrsPj8bmQW5UmvtQysixfa3IV+dVrz74aIiIiolFdeeQUxMTH8XYgcFZPk5GPuh39j3dwtyM0sjkmadmmERz96AJ2HtOPvTERERERElSo3Mxe/ffAXNszfhrzsfOm1Fj2a4LGJD6J9f86TEBERERFR5cpKy8Zv7/+JTQt3ID+nQHqtVe9mePzjUWjTpwV/fiIiIqIKYIJDDZGSn4WjSZchl8nRJqgeXtnyKw4mXjDa52RKNF7c9DM+7fko7m3UrcrOlYiIiKi6+eKLLzBr1qyqPg2iGk1UHjq77wKUTko06dwQE0d8gTN7jWMS8f6Hwz/DuwtfQd9RParsXImIiKh60F5/VHQMIiJBdI07d+AinJyVaNyxAd4f+ikuHI4y+nFO7TqHd4dMxUf/vIEeIzrzhyMiIrrNMSYhIkdKjE7GhcOX4eTihEbt6+GdQVMQdeKq0T4ntp/BOwM/wcfL3mYxKCIiImJMUgFMcKjmclQF+GTPX1gddRAqrUZ6zVmuRJFWbXJ/HXT4/MBiDKnXQdqOyU6Bm9IZ4V6BN/W8iYiIiKoDnU6Hjz/+WHoQkX1yMnIx48Vfsf2fvdCoi2MSsaBIVWQ6JtFqdfjx1d/Q497O0OiA+KRMuLk4oVawD/8KiIiIiIio3LJSs/Ht879g19L90GqK056cXJRQFZqJSTRa/PDKHHQd3gFFBSpci0qCh7cbgusE8dcnIiIiIqJyS0/KxHfPzcSe/w5KcyCCs6uTFG+YolZp8MPLs9Hp/PcoyC3AtSvJ8PBxR3AE124RERER2YoJDtXYubQ4PL1+htS9wZC55IYSmYW5UoeHI0mXkFVU3Ja5mX84nm9zFwZGtqvUcyYiIiKqLtLS0vDoo49i9erVVX0qRDXW2csJeOulWUgrVEHWpT6U0SlQxqWbTW4okZaSjfcn/4ujV1OQm18kvda0QQievL8benZscJPOnoiIiKqaFjpooKvwGER0+zqz9zzeH/YZstNyjF43l9xQIjkmFRNHfClVT83LLp4nadq5IR6b9CA6DeY8CRER0e2CMQkRVdTxHWfw0d2fIzczz+h1c8kNJeIvJeKje77A0S0nUZBbKL3WvHsTPP7xKLS/sxX/YoiIiG4TjEnsxwSHamrmsbX45vByuz+/Lfak0faZtFi8vOUXTOkxBvc37qF/PSkvE4vO7cDOuDPQQYtOIY0xumlvhHsFVOj8iYiIiKqya8OCBQvw3nvvIS4uTv+6u7s78vKMbz4SkXm//rMTs5ftA/zc9a+p6wRAnpwN961nIbvezaHMv0G5DIW9mmHXuXij189eSsQ7Xy7Dhy8NwaDezfWvJ6dmY9mG4zh4Iho6HdChZR2MGNgaIYHe/OshIiIiIrqN/TJhPv6ZvgIFjQKQf0ckVCEekKm1cLmUBvcj8VCmFScumLNv1WGj7bP7L+KDYZ/h/b9eQ+/7u+lfT4pJwcqf10sLj2QyGdrd2QrDxg1AYBjnSYiIiIiIbmffj5+N/35Ya/fn9648ZLR9evc5vDdkKiYufhPdhnfUv37tShJW/LQex7efhlwuQ8dBbTF0bH/4h/pV6PyJiIiIajImOFQTJ5Kv4LdTm7Az7hSKNGoUaCxn+trriwOLMbR+J7gpnXE48RLGbfwB2de7PAjHkq9gwZkt+KbvM+hXp3WlnAMRERHdJgqygKx4oCgXcPYAvGsDrpW7YLmgoADdu3fHkSNH9K+5ubnhl19+waxZs7Bt27ZKPT5RTXbyXDz+XnUIB45Ho0ijQZ6ZznHaIC8UdKoHtz0XTb6vrhsEbYCXyfdEAsOMuVtxR7fGcHZS4tDJq3jny+XIu97lQTh1IQH/rD6MqW/djS5tIh307YiIiKgqiHRITQUbMJhOqSSiW9GJHWew+NuVOLr5JDRqjVTlNLtPPeS3qaXfR6dUoKBFCAoaB8L3vzNwjjPugG2NVqvDj6/+hh4jOkOhVODAuqOYPHI6CvKKK6oKp/ecx9LvVmPy8rfRpm8Lh35HIiIiurkYkxBReYikZxGTHN92Ghq1FoUGcYLD/ndJrcGPr8xBl6HtIZfLsWfFQUwZ9bVRRwgRkyz5dhWmrHwXLbo34V8iERFRDcaYxH5McKgGVl0+gLe3z4Vap630Y4lkhvVXjmBgZDu8uOlno+SGEoUaFcZvngl/V0+otBq0CKiDR5r11Sc8xOekSUkYtT394azg/wkRERFRqdXLV3YA+38Fzq4CdAbLkWQKoNkwoNMzQGQvQCarlAQHw+SGnj17Yvbs2WjcuLGU4EBEpq3eegqf/bgOWvFvWATZ4jJfbv7XUtfxh/aIE+QmWjBrIoMt/swZ2fnYefCSlLzw/vT/jJIbSuQXqjBh6mIE778AbW4RmnZpiBEvDUGnwe2k9xOjk6EqUiM0MghKJ8YkREREREQ13apfNuC753+VujKWKKzja5TcYMRJgaxBjRDw2yHIyplIlRqfjgNrj6J5t8b45IGvjJIbSuRl5+OdwVPg5esBjUaL5t0b497xd6F9/9b6CqtqlQa16gVLiRJERERERFSzLZ2xGj+9NtcoJqks164kS4ndkS0jMHX0N0bJDSVyMnIxof/HcPd2g1ajQ6vezaSYpCQJOyEqEVqNFqEiJlEwJiEiIqJbD1eCVLGMwly8v3PBTUluKBGfkyolVaQX5pjdR6PTIjm/uPLRrvgz0uPOiDZIyEvD6dQY6fUAVy880LgHXmg7lIkOREREBMQfBZY+BySfMf1riGSH08uLH0HNgHt/Bmq3rZRfrn79+pgyZQpGjx4NWSUkUhDdStIycvHlzA365AaJtX82cjk0gV6Qx6aVeUvn5mz1mInJWVi7/TSyc81XP1LrgGQXZzhdTcX+1UekR6+RXRB34RouH4+W9vEP9cWwcQPx0Hv3MtGBiIiIiKiGSrqajBkvziqzkCi/VYjFz2k9XVBUzx8ul9PKf8yYFMScjUN+ToHZfdRFaqQnZUrP9644JD36PNAN0adjceXU9XmS2n4Y/vwgjH5nBBcVERERERHVUHEXE/Dz6zcnuaFEcmwqzuy9gEITRaBKiMSHkuSHXUv3S4++o7rj0rFoKZ4RgiICcM+LQ/DAm8OljhBEREREtwomOFSyXXFnsOj8TlzNSoKPiweG1++MYfU7wUXpJL2/7OJeFGjKZuJWph1xp1Hfx/LEgCmbYo4ZbacWZOPn42txNDkKswaOh1LOjGAiIqLb1qXNwF9jAFWubfuLJIjf7gJG/w406Oew03BxccGiRYtw3333cWEB0XV7Dl/Gyo0nEHctA77e7hjUpznu7NkEztc7H6zcchIqtUG3FVuZudEvyy8qk+SgK5U3cWjpfni1q2f1EFp/T6PtHYv3Fb/u5gRVZCDiXZ0w689tOHM0ClMWv8mb90RERNWMKOlS0bIuN68sDBFVBrFAaN+qw1gze5PUic032AcDHu2DPg920ycpr561Sao8WprG393q+Gp/N7hcLv95HVx31K7OC9v+2VOmG8TcD//ChcOXMPHft1hkgYiIqJphTEJEWq0We/47iLW/bUbS1RQE1PLDwMf7otfIrvqYYPUvG6HV3rzkBuHg+mPIy8or9+e2/r3baDs5JhWz3vkdl45dwXsLX3HgGRIREZEjMCaxHxMcKtFHuxZKyQ2G9iacwx9nt2HOoJelhId9Cedwsx1OuoTjKVccNp74Tncseg+DIzugeUAE7qzTBt4u1iceiIiI6Bbq3FCe5IYSYn/xuSdXO6yTg5ubGx544AGHjEV0Kywk+vR/a7Fmyymj1w8ej8aydUfx9Uf3w8PdBYcPmVgNpLPSxUGtgTKpuONbaYorSfrEBJUHUOAng/p6eKDMA1wT1Ti6YBt05+OB2v6Wv4SJCYWC1hEoallb6iJRYqNag1OjvkSfwW3RuHkd9G3bAJ5uLpbHJiIiIiKiSqXRaPD5mBllFuAcWn8Mq37ZgKmr34ObhyuOlopZSsgK1VaPISvS2JcIvuKgXQkO5uxaegBj6r2AXvd1QcP29dFjRCe4ebo5bHwiIiIiIio/jVqDTx78CruWHdC/dvlYNA6sPYp2d7bClBXvwNnVGUe3mo5JKtO2RbsdWrRpy587cXbfefQY0RmN2tdHt3s6SfEWERERUU3F3lSVZPH53WWSG0qcSr2KyXv/glanxYFrF1AV1Fr7bvqbk5yfhQVntuDdnfPRZ9G7+PHoaoeOT0RERNWUqOC+9LnyJzeUEJ9b9rzZSvBEZL+la4+WSW4ocep8Ar6bswVqlRqnt5XdRy7CBQv/LJ0uJkGmMh1TKKOTIU/JQoEfkBMuh9pDBsiKH+J5Tn0n5HYIhTY62ep3UCSkG20XNQlFUetwo+QGrRxQeygQ4++C3/efwUdz12Hw279i7tobExZERERUNbSQQVPBhxiDiGqmJd+uLpPcUOLEjjP49a0FKCpU4fzBiyb3cT2fYvkAGi1cLqbad3I6QGMmprGXqAa7+NtV+OKx7zE6bByWfLvKoeMTERFR+TEmIbq9/fXFMqPkBkNHNp3AnPf/RH5uAS4fc1yRWFvptDopAcOREi4n4d+vV+KzMTPwUPg4/PfjOoeOT0REROXHmMR+THCoJL+f2WLx/fVXjmDFpQPIURXgVpOvLsKMIysw68T6qj4VIiIiqmxXdgDJZyo2RtJp4IrpxFAist/i1Ucsvr9x51lsXLQb6nPxZd6T6QCZmSQH5ZVkuBy9anZcmVYHxYko5AeZX4yYeWckdDl5kGWab78sy86HIi5Nv62TAYXNaxvtI17TOIvI1vhYeYUqzFi6E39utvwbEBERERFR5XWU++/HtRb32bBgGzbM3waVmU4NrqeToMjIN/t5t2MJUOSpUB3lZefjp9fnSp0qiIiIiIioajrKrfzZ8rqldb9twfq5W6F2cPJzdZCbmYfvX5olxV1ERERENRETHCpBkUaNM2mxFvdRaTX4+9wO3Mp+PbEeBeqiqj4NIiIiqkwHZlWvcYhIkptXiGiD5ABTiorUWPXvXihSsiFPzCjzvlwLyFWAPKMAyguJcD4dB/fVx+C25xJkVrqu5LUKKu7aYI5chrxudeByOArytJwyb8sycuGy84zRcbR+HtB5uBjtp1HC4nHmrNkPlebWm5ggIiKqKbQ6xzyIqObJSMrEtagkk++Jf9baIB/kBvpi7frj0ClMT1XJizTwXXIKTleN4xVZkRru+2PguTMa1d3CqYulhVVERERUNRiTEN2+UmLTkGJlniQnIxebFm7Hrez3T/6VEtCJiIioajAmsR8THCqBRiuailhvnX446VKFjqOQydHUPxyO0jm0MfpFtHbYeJmFudibcM5h4xEREVE1U5AFnFnpmLHOrCgej4gcQmtjW+NTO4o7sLjsOQ9FdDKg1RoMooMyJgXuG07A7WAUXI7FQJFpXD1V6aRE/TZ1y4yrDnCzemx1hB9kzRvAJbUQznsvQHkmFl3CA9DT3Rlum05AnmecLK0r1aVB3I7XKSwfIzUrD4fPx1k9FyIiIiIiciyNmZhEG+gNVZ82UHdoDE2zOjieq4aqbxto6oaY3F+RUwS/ZafhP/8wvNeeh8/KswiYfRCee2OkWRgnFydEtoxw2Hl3GtwW7fq3cth4yTGpOLvvosPGIyIiIiIi22jUpjvFlXZm74UK/aQu7i6o09xxa7e6De+IVr2bOWy8+IvXcPFIlMPGIyIiIrpZmODgYKIzw/gtM6GTlttUrqH1O+LPoW+hTVCkQ8YbHNke3/cbhyda3AkXhZPRe2GeAXaNmc8ODkRERLeurHhA56AqhGKc7ATHjEV0mysqVGHyvV+a7MpgJL8I8vRc6alMo4XLwUtwXXMEzvsvwHn/RbiuPQKX/Rchs5AsMeCxPvh2xydo2K6e0evyfJXV85Srr8dM3h5QhIXC6WIiBraqg6mznsc9Lw6WFioZCvP1BEq3ibbUJeK6giLr50JERESVQwOZQx5EVLMU5hfik1HflHld6+0BdbtGgJuz8RtOSinZQRMeaHZMZUYBXM+nwOVyGuSqG4nZQ5/tj2+2f+KwJIf+Y3pj6sp3pXGVTsYZ1SGRQXaNWZBb4JBzIyIiovJjTEJ0e8rPycenD393U451zwuD8M22yYhoUtsh4w18oi8+X/sBBj1xBxTKGzGJTCZDcB3zMZMlBbmFDjk3IiIiKj/GJPZTVuCzZMKyi3uwM+50pf82db2DMbJhd3x5YDHUWi1C3f2QWZRboYSC5gF1oJDL8U7n+zGu9WDpexRoitAyoC6aBUTg+Y0/YkvMiXKN2cQ/zO7zISIiomquqHhhtMMU5jh2PKLb1OpfN+LollNQBnqjKMgHKNX5oITTxQTISrUllheoII9Jtek4dZuH485HemHmG/Mhk8sQGB6A7NRsFOYXwf1UCvLahVr8vFuSQbKCsxMQHoTGnRpIXSFe+v5pjPnofhxYexSqQjWadWmIeq3q4pX3F2BvTLL0EVlJP0cz30/6PjIZGoXZd8OfiIiIiIjss/x/a3F6d9nuzpoGtQCF+bpbmga1IY9NsTmtSXST63FvZ8x8Y54URwSG+yMrJRtFBfYnOYuYxMnZCa/OHIfHJ4/CwXXHoFap0bxbY9RtHoHX+3yEE9c74dlCLEiq28JxHSaIiIiIiMi6xd+swrkDlyr9p2rcsQE6DmmHmW/Nh7ObMwLD/JGZkiXNa9hD1HRq3KE+nF2d8eacF/DElNE4vOG41CGvZc+miGgShpe6votz+23vEieKSdVpxrVbREREVPMwwcHB/j2/C5VBBpm0OCfE3RcjGnWFm8IZT6z7rkyniCA3byTnZ9l1jK8OLcWCIa9Lz/1cPTG8QWej97+741m8sOlnmxM4utVqgvo+lhc1ERERUQ3m7OHY8Vw8HTse0W1qzexN0p+KlCw4HboEVdtIqSKqnlYL5YUEKC9dK9e4IolBqhAUEYCBT9whPX/rzo+hK5UkERQRgOSrqXC9kIaCRv4mx1Lm6aB1VkAn00JW8vFAP8x6+3d8uvp9adM3yAcDHu1j9LkvPhqN179ehkNnYqRtuRrQlir+aqhHy0jUDvQp1/ckIiIiIiLHxCSGdDIZdEG+lj/o5gKdrwdkGbkWY5KQukEY/FQ/KZFBxCSlifcTo4sTo7VuztBEBkPr5QaZSg1FTKoUK5kjYpJJSyZIz/1CfKWudYamrnoX7w6ZilO7yiZwmNJ9RCcE1jYdFxERERER0c2LSRxBxCTS2q16wRjy9J3ITs/BBBMxSWi9YFyLSir3+GK6Zda7C/HewlelbRFLDHy8r9E+X6z7AG8PmmJzkkOfB7vBJ9C73OdCREREVNXMl8ohu1zNSqmUX053/f+93Xkk+oa3wteHlpdJbhBEcoO9TdsPXLuAixkJZt93VjhhZv8X8f0dYxHuabkKaphnAKb2fMzOMyEiIqIawbs2ILvRGrVC5ErAq5ZjxiK6zSVcStQ/V8alwnXtETgdvgzluTg4nYiG67ojcDoTW+5xdaJbAoAXZzyNNn1bYN7Ev8skNwjJogOEDPBfcg7uRxOLuyyU0OrglKWDazKg9lCiIMDpxntKhVQdNeHyjfMvzdXFCTMmjMTUF4eitlwBp8QcKLIKTO4bEeyLD8b0L/f3JCIiIsdh62Wi21O8QUyiJzqvWei+pqdQWIxJ5HIZXv15LJp0aoCFU/41uZ+U3CAD1PVDUDioLdRNw6AN85cSHYp6NUNh9ybQmekksWfFISTHmu9q5+bphumbJ+Hd31+WOkZYEtE0DOP/94zFfYiIiKhyMSYhuv2IbgdJVytp7ZaISZQKvDHreakrwqIvl5vcz57khhI7F+9DelKm2fc9fDzwzfbJeOu3F+Ffy8/iWPVa1cHz3zxh97kQERFRxTEmsR87ODhAdFYSfj+9FdtiTyK7KM/ucR5s3APLLu5DkdZ0qzKtTodpB5agfUgDk8kNJcy/Y93ZtFg09DW/uFAhl2NAZDv0Dm+JR9d8jeMpV8rs4yxXYmrPR1Hbs/jmfpFGjfXRR7Av4byUfNE9rBn612kDpdxBCyKJiIioarh6A82GAadN37wrl6bDiscjIrtcjU3FkuWHsf9gFHI7N4M2OQPy6ETIs/Ig02ihvFpcvdQSsVBo4JP9sHHBNqiLzMQkGi1+mbAAkS0jLA+mA2QaHdxjCiEPADQuxVGKogA3OjYAULsroFWqIVfrgLwCKWHi0rErqFU/xOzQSoUc/bs0Qc9WkXi15/u4uDYaRfUDUNAsFFpvV8gK1fCOz8SU74YhyLe4M0xRoQrb/9mD49tOS9+z05B26Dq8AxQWFk8REREREZHtok/HYOmMNTi04ZjJ90VcIq754e5qdgyFQo7B93fFpjmboFFpTO6jVmmkmCQoPMDi+WgCvaFqE2nyPW2IL1St68L5SFTZ9zRaXDl51eL4Sicl+j3cC12Hd8TL3d5D9OmyCeSuHi54e/54+AUXd5QrKijC1r9348SOM1A6KdD5rvboMrQ95HLWISMiIiIicoTLx6OxdMZqHN18Quq0UFK0qTycXJzQd1R3bP5jBzRqrcl9VIUqzHrnd7h6mI9tKkJVpMbV07H6WMLkeTo7SZ0dut/TCS91eRdxF8oWs3X3csU7C16Gt7+XtF2YX4gtf+7Cqd3n4OSslOKZToPbSl3yiIiIiKojJjhU0N74s3hh08/IUxdWaJzutZtico8x2HT1OFILss3uF5uTioxC0+2ZHcFd6WzTfgvPbjOZ3CCIBI0v9y/Gy+2HY9aJ9TicdBla3Y0L/0Xnd6KuVxB+GfgS6noHO+zciYiIqAp0esYxCQ5iHCKyy76Dl/HRlGUoLLyelOCkBGoHQlMrADh1BfI42yoVdR7aHq//Mg7bFu0ym+AgxJyNQ1KMbWOqwv0g0wLKfDM7yGRSkoNzlhq4Vlwl1dZJgcXfrMSlo9FSErXL5VTpYWjWa/Mw6q17sGjacpzZd0FaqFRi1a8bpWqqn65+D6GRjEmIiIgqi2j2pNVVbKLcRMMoIqpmdi8/gCmjvpYW4liiuJoMTVPzydK9ujXC6xOGYdv8rWYTHIRLR6/gqpWudOqGlrtEaiICoTsVA5mJc7Y1Jvn7i2UmkxuEgtxCadHT3c8Pwt/TluPCwUvQGiywWjlzg1RNdeqq96wmaxAREZH9GJMQ3R62/bMHn4/5TkqIrgiR3PDyj89iy587Le53Zu8FyJWVl6wsEqZtsXDKYpPJDUJedgFmv/cHBj7WR4pJLh6JMkr6WPHzejRsVw9TV70L/1DLnSCIiIjIfoxJ7MfSMBVQoC7Cq1tnVTi5IcwzAFN6PCo9TyvIsbp/jqoAlcFJpkC32s1s2nfRuR0W3z+dFoPnNv6Ig4kXjZIbSkRnJ+PZ9f+DSlux4IKIiIiqWGQvIMi26wezgpsDkT0ddUZEt5W8vEJM/uy/G8kNhmQyaJpHQudm/UZ47YaheOWnsVLlofxs6/FGYa6NMZAN1UjF7XRdWia0OblwCvRCm77NbRp69a8bLb5/evc5TLz3S6kakWFyg2GixvtDP4VGw5iEiIiIiMhe2ek5+GzMd1aTGwR59DXIk9JNvlc3IgCvvtAf+TkFKMwvsjqWylQMZEAbbKVLpEIObWBxJVND7t5uaN6tsdXji+5za2ZvsrjP0c0nMfmBr3Bu/0Wj5IYSUSeu4oPhn0ljERERERGRfdKTMvHl499XOLmhfuu6eO7rx5GbmWfTWFozHR4qyjvAC4061Le6n0atwbq5Wyzus3/NYUwZ/Q0uHLpssqOFSHqYeO+0Cp0vERERUWVhB4cKWBN1yOZuCuGeAXix7VC4KZ3x97kduJyZCG9nNwyt3wmjm/aGr4uHtF+Yp7/UpaEqqHQaPLRqGsa1Howh9TpY3PdqdnKFjyfGWH/lsPQbEBERUQ0l2pbe+zPw212Ayo4uU04ewIifischonLbsOU0cvMsLP6Ry6CNCILifKyUxPDYxAchV8ix6pcNUlUfL39P3PlIbwwd2x+evsUxiX+oL9KuZTjkb0ORmgOtr7vFfXR5+chv6A+0CIFIrRg38W88fl8X9OnUyOxn1Co1kq7a1kXCkqtn4rBv5WGpjTMRERE5ngYy6VHRMYio+towb5vUrcAWdRrXxuNv343CAG+sXHsMcQkZ8PVxx8B+zTFscBt4uLtAq9VKC3qyUs13uraJnTkDeVn5eKXH+xjz4QPoOsz8PEledj7SEzNRUZePRePg+mPoNKhthcciIiKishiTEN361s7ejKIClU371m0ejscnj5Ku+0XC8rWoJPiF+GLAY30w5Ol+cPN0g6pIJSU+i32qgoiFXuv1IcZ89IDFOCErLQfZaTkVjovO7ruA49tPo3Vv24pPERERUfkwJrEfExwq4ExajNV9GviE4rNej6NlYB3IZcXVSwdbSB64v3EPfHv4P1SVs2mxeG3rLKTkZ+HR5neY3c/PxROpBRWcYACw9MJeJjgQERHVdLXbAqN/B/4aU74kB5HcID4nPk9Edrl4KcnqPvV6NceEBS+icccGkF1PJrpjdA+z+w95+k4snLrYrvPRejhD6+YMeV6R9HA+fw2q+kHmk5hUGmiCvIyWLZ69nIh3p/+Hd8YOwN13tjb5MaWT0mETDOvnbWGCAxERERGRnS4ejbK6T9PODTH+h2fQuEMD/WsD+7Uwua9cLsegJ/rin69WVOjvRJ6cBW2or/k1PlotNCLJW62FPCnTKCY5d+ASPrrnC7w190UMeLSPyTFc3V3g4uZsU7cJa9bP3coEByIiIiKiSoxJWvZsihe/ewoN29XTvzboCdNropycndB/TG/89+O6Svs70Xm4QhvsK82dyDJyIE8zXn91es95fDD0U7z352vo80A3k2O4e7nCyVlpUzc9a9bN3coEByIiIqp2ilfck10K1NYzgNU6LVoHReqTGwxptFpcykiQHuK58FjzfmgdGGlyLKVMcdP+pr46uBRZhXlm3x/eoLNDjrMr/jRWXj7gkLGIiIioCjXoBzy5GghqZtv+wc2L9xefIyK75WeZv2YvoStUoUmnhvrkBkNqjRaXE1NxOSkN2uvtiR946240aGs6JnFyMZ0jr/H3QM6A5sge2QG5d7VC9sj2yO3fTFo05HLoCqArWyZIVqiGHHKzNZm/X7ANeQXmFwuJzhOOsHv5QexYss8hYxEREVHNtXPnTul6qbyPESNGVPWpE1UpW5KORVcGw+SG0t3Zok/HIOZcHHTX44aH3rsPkS0iTO7v5Opk03kpLyaUiUPElvSKCEIUcqibhqGwZ1MU9G8NrZeb8b46HX56bS6KzMQkCqUCfUeZTxwvj+3/7Ma+VYccMhYRERER0e0mN9P6PIkIBAyTGwyJjg1XTsUg9ny8PiZ5dOIDCG9cy+T+zjbGJCZPQyGHql1DqHq1gqZJBDSNw6Hu3BSqHi2gc3cx2lfM2fz4yhwpZjLFxc0FPUd2gSNsXLANhzYcc8hYRERERI7CBIcKcFZYb4Ch1pa90BQXxL+d3IgB/36IoUsnS4/+/36AOSc3wk3pjN8Gv4JxrQcjwNVL2l8hkyPcMwD1fEJwsxRoVFgVZTrxQCRjPNmyP4LdfSp8HBEaTNr9B3JVBRUei4iIiKqY6MTwwh7g8ZVA83uA0smZciXQfETx+8/vZucGIgdwTsuyuo82LqXsa1odZm8+gEGfzsY90+bjni/n4a7P5mDhziPw8HbHV1sm4cG37oFP4PWYRCFHrfrBqNUgtMxYGn935AxqAU0tg/hAJoO6ti9yBrWE8lomPNacgNPFRMjTciFPyYbLkWgoUnIhs9AeOTe/CFv2njf5nkajwei374FvsANiEp0O34z92ezCJSIiIrKfBnKHPG6GI0eO3JTjEN1qlM42zJOoigs8lb6mF53jHol8Ac+0fB1PNXsVTzQejxU/r4eXnye+2vYxRr42DF5+HtL+cqUctRuEILRukE3npUjOgtOxK8D1RG49ExnWOm83KdFBV+q7ZKflYNcyM/MkGg0efv8+ePl7oqJEfPb1sz+bXbhEREREt0dMQkT2EV0MrFGrNWVe06g1mD9pER6u8zyebfU6nmz6Cp5q9grWzN4E3yAffLtzCu59+S54+LhL+yudFKjdMBRBEQF2/1Wp2zSALsSvzOs6L3eoOjWBTmk8t5p2LQP7Vx8xG5OM+fAB/flVhFajlWISMSYRERE5FmMS+1m/yiOzfF2Kb6xb4q4szrBVazXYGH0U+69dwMHECzifHm+0X0JuOr48sBhXs5IwqfvDeK3DPegT3gLPb/wJmUV5iM1Jvel/E1cyk/TPC9RFmH96Cxad2yGdi5ezG+6IaIX4nHTp+1REjqoAqy8fxANNejrgrImIiKhKiQrx9XoVPwqygOwEoDAHcPEEvGoBrt5Vdmpbt26tsmMTVRZ/ZwVkKZnQBZpZ6J+dBw9N8cJ9sVhmx+J9OLHjDHa4FOCs3LgjXVx6Fj5fthVxaVmYcHcfPPvFGHQa0hYf3zcdORm5SLh8Iz4wVNC+LuBkptucixIFbSPgse083PZdNnorr471hUmxcWn65/m5BVjyzSqsnrURSVdTpIVOnYe2R+KVZJzceRYVIRYuid/mzkd6VWgcIiIiqrkMExx8fHwQGBho0+dq1TJd0ZHoduEf6mt1Hw+f4u4IRSo1Nh28gOMX43Fkw3Fc23QKyoRMfc5B/KVEzHjhV+l6/+lPH8ZzXz2ODgPbYMqDXyMvO196vzyUUUlQJGRAHRkEra8HNLXLLiQqoXNzhrpuEJwuJBi9Hm+wnZuVh8Vfr8TaOZuRHJsK7wAvdB3aAXEXE3B6j+nkbFuJhUt7VhxCr/scU4GViIiIiOh24V/LlpikOAlAFDra+vdunNl3AYc3Hkf8xWtG+8WeT5AW+qfGp2PMh/fjhW+fRNt+LfHZIzNQkFtQZv/y0Hq5Qxds4VzdXKANC4Ai2nguRsQbJcRczb9frcCaOZuRlpAO3yBvdL+nE2LOxePsvoqt3RJx2MF1x9DlrvYVGoeIiIjIUZjgUAGtAiOt7tM2uD4uZiTguQ0/2JSk8Ne5HRjdtDeC3Lzx3IYfkaWy3t65siw8sxWezm54ttVAPLVuBg4nXdK/l12Uj/8u7YezqMTsAPNPb8b9jXtIbd2JiIjoFiGSGaowoYHodtCkU0MovloBTat60AX7FScZXSdLy4Li2GU0e/ZOXDp2BR/e/TmSY1JRFOqJtIdbmx1zwfbDuL9rK3irdPjo7i+Qn2O+25rWzQlqw84N17u06Qwu61V1/KBzUkCmMq78I8srgs6reKGTOf9O/gfeV1MxYvxgvHXnxzh3wCAmSc/Fpt93QOnimJhk8TcrmeBARETkYDqdDFrDCwM7x7jZCQ7vvPOO9CAi22ISa5p1boTTUdfw5ozlSM7ILX5R5EgPbA5FcjY8Np+FvOBG94JFXy7D0LH9pW5rk0dOR0Feod1/FbKCIjidjYOqSW2LCQ6CJsy/TILDwk+XwMXDBUOe7oc37piES0ev6N/LSs3GhgXb4OTqBEdY/M0KJjgQERHdxjEJEdmnSadGWP3rJov7NO3cEKf3nMOk+6YhPTHT6pi/f/IvBj/dD/nZ+Zgy+huoCowLRtlDG2I9EUMb7FcmwWHuh3/B2dUZd4zugdf7fITo07H69zKSs7Bh/jY4OywmWckEByIiIgdjTGI/JjjYSNxIFwv6/zy7HefT4+Dh5IJutZsi2NUbSaI6sQlymQz3NeyGp9fNQGJehs1/KUsu7Ia/q1eVJjcIap0WPxxdhWNJUUbJDYaKtI5pmXwhIwGrog5iWP1ODhmPiIiIiOhWo9VqsX7eNqyauV66ge3h64G2/VrAL8ATGUcvQefuAm2AD0T5U3l6DmTZeZAr5Og/phfeHTxFf9M+v0Ww1WMtP3AKfnvjLCY3CDpx09wgqULM9UnzfQZzfjq5HDl9GsFz0znIdCL9oZjTlWQUhpjpPCGo1NBdTsKc9//A8e2njZIbDKkLHRSTHL6MXcv2o8eIzg4Zj4iIiGqOoqIinDp1Sr/dvj2rFRKZolFrsO63LVj5ywbEnouHh58H2t7dCR6RQciJTjG63i+hUCrQ+7HeePHrJcg0EV9ogryQe0dTeK05qX9Nq9Vhw7xtUteGiiQ3GNLJZXbtoypUYeab86VKpobJDUb7OGCxk3Bq1zkcWHsEnQa3c8h4RERERES3GtGpes3szVj960bEXUiAV4An2vVrBXdvN+RlmV5j5eSsRPd7OuPtAZOlDgi2xj4bF2xHckyKw673IZdb30dRdp+iAhX+N342di/fb5TcUHofRziy6QSObTuFNn1aOGQ8IiIioopggoONyQ0Tts/Fisv79a/lqQulhAdB3PIufdteBhk+6DIK59Ljy5XcICTmZeJEcjSqi93xZ27KcSZs+w2f7fsHAyPb4YkWd6Kut/WFV0REREREtwONRoOpD32LHf/u1b8mkg82zt8uPZdyDPIKoci7UdlHJDe8+vNYnN57wagikdbT2erxkjJzcH71Yav7iS4M0GqlG/NS5wYz9+fVEX7I71gH7gduxDmKmFTII4OgNZPk4Hz8KmQarfT80IZjuBkm3z8dPkHe6PNAd4x8fRhCIxmTEBERVYQGMulR0TEqm0huUKluLAZo146Li4nK/FtUazBp5DTsXXFI2lbXC0F6g1DExqQBretB1jQcisuJUJyP1/+rFckNb855AXuiE00mN+jHDvaCOsQLysRs/Wspcak4sdNxcxPy9NwK7XN403HcDB8M/xy+wT64Y1R33PfaMARHBN6U4xIREd2qakpMQkTWqYpU+PDuL3Bo/TGjeRKRhG1u8ZZIbnh7wcvYu+KgzckNJVLj0rDPhnkSW8kzc1E842GeLNP8OR7ZfCMpvDJN6D8Z/qG+UseI+14disCwgJtyXCIiolsVYxL72ZAeSiKxwTC5obSS62MvJzc09q2NBxr3wJK738XDzfpgZ9yNyl+2CvXwkxIoqgttmfSN8nFXONt8nNSCbKlLxv0rPsfxZNPVkIiIiIiIbjfr5mwxSm4oraRQqqefB+q3qYuhYwfg58NfYsjTd0oVQA3Js4usHi/U18umSqnyQjWUMenF52AluixsEgKdk0K/Laq7uu48C6ez8UDhjQWF8oxcuOw+D6fLN5I1dNoKxiTebjbtJyrFimSQZf9bgxc6TMDFI1EVOi4RERHVDEePHtU/DwsLQ1BQUJWeD1F1tOKn9frkBlWLCKhb1QXcXfTv65ydoG4aDtf+raWY5O4XBmHmsenoP6Y39pywfq9fFeZntB0UEYhCkVDtIIprGZDlWuhQp9PB6XKi+bcrGJN4+LjbtJ9Wo0VaQjoWf7sKL3Z8G1dOxVTouEREREREt4ol3642Sm4o4/olu3eApxSTjBg/RIpJ+jzQrcw8iS2CIgIc1hlBkCVlAAUWYhytDoqrN+ZFHB2TePp62ByTpMSl4Z+vVuDFTu8g9nx8hY5LREREZC8mONjgr7M7bPoxs1X5eLXDPfikxxg09Q+XXovJSS33X8rIRt3QJqgebhW9I1qV+zPZRfl4a/tvUvcMIiIiIqLb3cqZ623aLyc9F+OmPSZ1bohsWUd6LTE6xWgf95PmF+2UdIMY0akFmnRsYNMxXQ9fBfKLiqsjWeKkgDrI0/hYWh2cT1yF+8rDcFt7DG6rjsBtwwko49LgSJ0Glb8Kc3Z6Lr54/HuHngcREdHtRqOTO+RR2Y4cubHQgd0biCzHJFoPF2jqh5r9mTLdXfHiwlcx/n/PoE7TMOm1pFgb5kmktnQ3utENfLwPGnWo77C/DjG6y94LRsnVRskNx6Ihz8xDZekwsE25P5ORnIVpT/5QKedDRER0u6gpMQkROW6eJCs1B2/Meh4vfvcUwhvXll4TC/bLQ+mkQP9He6NBm0iH/dWIok/KIxeBInXZN3U6KE5fsZyUXUHt+5d/7VbatQx89cxPlXI+REREtwvGJPZTVuCzt40LGbZno357aDmmHVyCK5lJ8HRyRY4qv1zHahUYid9OboKb0slU97QqUdHzEL+Dj7M7MovKNzkQnZWEPQln0b12swocnYiIiIio5rty0vaqnb9MWCC1ZY6/eA0evu7ILbVIxykpF27HriG/jelFSR0VHvh7wkK4ednW9UCRXQDPtSeRdX/7ci1aMnpZq4Ms23zsJJPLKlSdyDvIS+rikJeVX+7f/eTOM2jZkzEJERHRrcwwwaF9exuuaYhuM1qtFlfPxEnPNRGBZq/rBXHV/t3cLcjMK0R8Uia8PVyQmZgGhBgnO5emTMwqPpanKxqP6YVfVh6Ce98W0K4/BnmuYzpeiwQGt40noK4XDHUtP0Augzw9R+rcIM+wPH8hl8ukjm/2Cgzzh4u7Cwpt6JRn6PzBSzh38JLNCehERERERLci0XH6WpT57galzXhxFjISM5EYnQwvf09kp+WU63jNuzfB7Pf+QGC4PxxJnpkLp10noYkIgi7YV4qtZBm5kF9NhNzCHIn0WYVc6q5gr9B6IXBycYLKVNK3BSd3npU6y0W2iLD72ERERET2YKq5jQv0bXU+Ix5RmYnQQSd1dLD1drdIABBTAidSrmDpxT344+x2i5+VWS2P6jjdajWFj4ttrcpM+ffCLjzdagCc5Ipyf/ZieoLdxyUiIiIiulWIxfm2unT0ipTcIOSKRTomAgvvTZfhtSUKiswb1YB8ZQp4b7yEmC83YMO8bVj5s5VqSAYhiSK7EIrrC5LMUmmgSM6GPToNbmfzb6DxdUNR3QCoavlAd33h1Yof1+Hh9++Dwqn8McmVU7Hl/gwRERHVHKKD7LFjx4w6OFy5cgUffvghunXrBj8/P7i4uCA8PBxDhgzBTz/9hPz88iVNEtV0crkcbp7X50lcnc3uJ0IPrVKGM1eSpOQGIUskJ3h5SBVJzY6fmQ9lbDpc+jZH/pC2OJKajdXbTmHZzjPIv6sdilpGmE2ELi9ZoQpOZ+PgtuUk3DadgMvhKKvJDULX4R3h6uECey35dhUem/SgtCipvKJP2Z7wTkRERER0K3JyUUqL8211bv9FKblBKE9yg0iGEI5vO431c7di7ezNFveXK+yLSZQX4+G0+zScdp2C8tQVq8kNQo97O8PFzXw8Zs2iacvx5JTRdsVRjEmIiIioKjDBwQZ31etYaX8BjX1r4+1OI6XuBuZu7ytkxn9Nvi4eeKbVQNwMDXxCMa3Pk5g/+DW0DTJuB+3n4mlzmsWhxEtYNOydch9/37XziMuxoX01EREREdEtrO+oHg4dT1zHexxJQODsw+h2LANvN2gCl692wP14osn9Sy/C8Qn0wgOvDzd6zfWk5eRklwtJkBdpzL6vkwGqCH8UtKuDgjYRUAcUTyTUb10Xb897CdM3T0LTzg2NzyPIG7LrSQwab1fkDGqBnOFtkd+7MfL6N0f2yPYobBQsvX/uwCV8teVjlNeRTSeQFJNS7s8RERERoIUMWsgr+KjcQi8XL15EdvaNJMz58+ejUaNGmDJlCvbu3YuMjAwUFRUhLi4Oa9euxQsvvIDGjRtjzZo1/Cum20qfB7sXP8kvMruPTizuMbFYRqYDFKJxgYkOCLLcQnQuBB7+fTzSgrxNjqtqFgZNwxCj1/xCfHDv+CG4GRp3bIAJc1/ElxsnolH7ekbv+QZ7GyV/W3L5+BVMXf1euY9/aMNxpMSnlftzREREVDNiEiKyTqFQoPf9XSvtp2rbrwVGv3uvxWSI0okB/rV8MXTszVm71bxbY7w15wV8vu4D1G9Tt2xMYqPYc/GY+O+b5T7+gXVHkXYtvdyfIyIiIsYkFaGs0KdvE48174dlF/citcC+aqOWRPqEYPmlfRb3EYkEr3ccgbSCbNT28MedddpgS+wJh51DQ59auJSZUCbBopaHH2YOeBEBbt7S469hb+F8ehyis5KljhObrh7DH2e3QaU1v0ipxMWMBER4BZT73MQxtsQcx9hWg/Bqh3vK/XkiIiIiolvB/W8Mx+Y/d5a7jbI14nZ8/dAAbJ6xzuI0XWCYPx6b+CAykrMQWi8Y3e/piG2L9hjt43w1DZqD0SjoUEdqq2zI6Woa3A5Emx0/omdjnA32hMb9RkXUolbhCHdzwSefPALvAC/p8f3ez3D5eDTiL12Dl58HdizeJ3WaULk4IXdgC+hKVS8S2wVdG0jnIyoM1W4YWu7faPu/e7Bz6T7p+z/ywchyf56IiIgcJyHBerdX0WmhPI4cOWK0vXTpUv1z0bkhODgYaWlpyM3N1b8eGxuL4cOH48cff8TYsWPLdTyimurBCfdI18bZMcnQNK5d5ppfzC/oLJTUkmsAWb4O8isJ0Pq5S8kOTrHpcL6UjMjH+mLV7nMWjx84uC2ebFsfWSnZ0nV9t+EdpIqqjhLZqg4u5BVA1SAYWm83yFQaKKNTUE8nwycr3oGHjweadWmEHw9+iYtHonDtShK8Azyx+Y+dWDN7M7QardVjRJ+KRZ0mtct9bpv/2IFti3bj6U8fxgNv3m3nNyQiIiIiqtlGv3Mvdi8/gPycG52pHSWiSRg2zLMcX9RtHo77XhkqzdOENaqFrsM6YMVPVjphl0NkqwhcORFj8rgiJnHzdEPLns0w88h0nD90CUlXU+Ad6I31v23B+vlboTORUF7aldOx0nxTea37bQs2/b4d46Y/jhE3KdGciIiIiB0cbBDi4Yt5Q15Dy0DjLFhH6BvRCmfTYi3uk1KQhSZ+YVLXhrvqd4SL0gmh7r5Wx1bKFHioSW+r+100kdwgJOSm49HV32BN1CFkFBZP4DX2C8OAum2xKeY45p3ebFNygyCmOhLzMmAPrU6Hn4+vxd/ndtj1eSIiIiKimi40MhjTNk1Eg7aRDh+7ff9WiDkXb3EfcaO8addGGDXhHvR5oBucnJ2kpIfS3E7Ew3vJUbiciINTdBo8rqRidHgteG46B5mZm+taZyVOh3gZJTeUiM0vxAsf/YFt/+xBTkauvqNDz3u7YOvfu7H8h7XQaLQobFarTHKDocI2EdDJZUiNs6/qqVisNPejv7Bh/ja7Pk9ERHS7EpVONRV8GFZL7dy5MyIiIiw+yuvo0aNlXhszZgwOHjyI/Px8XL16VerwcOjQITz88MP6fTQajdTNYePGjRX4hYhqjvBGtfDlxo/QoEEoFOfNxA+lkh7KvA0ZXK6mw3PDGXhuOguXc4mQqbVoOaw9EpKzLH42NjETbYZ1kGKSXvd1gdJJicBw60WVnN2cMfipOyzuI7rJnfFxRWGn+tD6ewJKhRRfqJrWxoV6AXj97s+l5I7crDxp/4bt6kkxybq5W7Hql402JTdIx4EOKXbGJBq1Br9MWCDFRkRERFR1MQkRVZ3IFhFSB4M6zcIcPnbTLo2RGm+5Q8GVkzHoMrQ9HnzrHvQY0RkKpQIBJuZJSnP1cEH/R62v3TKV3CBEn47Fm3dMwo4l+5CXnS+91rhDAykmWfHTOqybu8Wm5IZiOiTH2heTqFUa/PDKHOz+74BdnyciIrpdMSaxHxMcbNTQtxb+Hf4O/rjrTXQNbQJPJ1dUVMeQhuhWq6lN+6q0aqPttsH1EezuY/Ezz7QagAmdR6KZf/mqlhlKyEvDa1tnoc/f72LK3r+lhAbRSeKPM+Vb2JOjKsC+hPOoiDknN0Kns/WinIiIiIjo1tKgTSR+PjwNX237GK37NIe7l6tDkhtExR9bF9QYEufgE1i29bEiqwDuB6/Cc/M5jL2jPV54c4Q08WCOqmGwxeSEmLwCfPzCL3gofBxmvjlfOo+UuFSsnrXpxhiRgRbPXefqhAw3JxzZfBIVsWj68gp9noiIiKofww4OCoUCf/31FxYsWIAOHTpAdn2xtvizffv2WLhwIX755RejJIdx48ZBpVJVybkT3WxiEc0vx77Ctz8+g3YezvAwKJ0kyy2QujJYVWQ81yEWCDXu2NCm44t/c4Y6DGwNDx93i595YvJoqcpoeONaZvdR1w+GJtz0wiSdqzMu+Ljikwe/xuiwsZj97kJotVokXE7ExnImQGen5lQ8JpnGmISIiIiIbl/NuzXB7FPf4vN176N5t8Zw8yhbOKm8eo3sgsgWtq2rKp3c3HVYeymBwZJnPh+D5756XOqOba+oE1cx+f7p0jzJvIl/S2unos/EYutfu8o1TlZKDo5tqVhM8s/0/yr0eSIiIiJbKW3ek7An/ixe3zob6YU5Ff41nOQKvNnxXoR6+KKeTwiiMhMt7v/v+V1SUkMJ0fUhJc98RSMXhROeaNkfbkpn/Db4VSk5YfXlg9Ca7NVgXaFGhd/PbEV2UT46hTYqk3BhjegAkZqfjYqIzkpCdFYyIn3sv+gnIiIiIqrJ9q85gs8fnSG1QDasNqoN9pUW8cvyiiBPzrSpppiTixOe/fJR6aZ6aGQQrl1Jtrj/6l834qUZT+u3zx24hKw089f4rp6uGDF+MNy93DBt80R8/9Js7Ph3b5mkZXWYn9VzVYX7oeBYDP79egXys/MR2aqO0USCzsV6aJuSloPczOIuEPYSFZqSYlIQHGE5oYKIiIiKaXRy6VERhp/fv38/atUyv0jZHp999hkee+wxXL58GZGRkRg1apTF/Z999lmpm8PMmTOlbfE5kRTx6KOPOvS8iKqr3csPYNqTP+g7rLm4OUuzDrL8IhR2bghNHfPXyrKsPCgyirsglHxWxCRhtfwQ6OeJlHTzcy+y3EKs/XYVnv3ixr+1U7vO6bsqmCKSH4aN6w83Tzd8tfVjzHhxFnYt2y+KlhpRNQyx+J21gV7Q+LqjICMPf32xDIX5RQgKD4DW5iqpNzrjFYhEkAo4f/ASMlOyTCabExERUeXHJERU9bYt2o2vx/6MvKzibgYVIZITnvnsEQRGBMIn0AuZKZbXNa3+dRMem/SgfvvY1tMoyC00u7+Xv6fUUc7FzQVfb5uMGS/+ir0rDtl9vqKDw++f/AtVoQquHuUvghV7IR6qoooVaTi586x0HmLuh4iIiKxjTGI/RmI2upx5DS9s+skhyQ2C6IQw48hKqfrX4837Wd1/8YU9uJKZpN9ecHqLxWQFkZAQl50qPXdVOKFXWAt4Olf84nL5pX24mmV54ZM5c09VvF37qqgDSM233KqaiIiIiOhWFHUiGh+PnGaU3KAO80fBwHYo6tYEqnb1UdSjKQoHtoUmxHK3N0HcABeVfuRyOe59eajV/Vf8tB5JV2/EAktnrLLY9rggpwApccWtjsWN9s5D2sHFVCUjuQ3pGNerJwtrZm+SkgyMhsi0PpFR1KUBFsYkobB1BHROCthr8x87pQVFREREdPOJ5Ibw8HCLj/Jq27YtHnroIbz//vt45JFHbPrMhx9+KF1DlVi5cmW5j0tUE507eAmfPPiVPrkB1xMb5PlFUpK185k4QGWmOJJOB+eTMUYviUSBBR8vglIhx/2D21o8ttOFBCz5dhXSrqXrX1vy3aoyyQqGxIKnjKTia3c3T1d0HdoBzi5OZfbTelufOzHc578f1yE1oTjWKa+VP29ARW38fbvFZHMiIiIiolvVqd3n8NmYGQ5JbhBEcsLvUxZLccLw5wdZ3f/vL5cZXYsv+dby/YDczDxkpRbP6bh7u6HbsI5QKO2fn9Af97vVyEjOLP8HdcDaOVsqfPyNC7YZxYVERERElYEJDjaaf2oz8tVFDu8IEZeTitFNeyPcM8DivjrosPLyfv32gWsXrI6//9p5bIo+hj6L3sPbO+Yiq8h8JaPySMqz4yJZXLirzWct2+r7IyvRd9H7+Gz/v9BojVu/ERERERHdyv79ZiWKCm5U1tGE+ELVsSHg5my0n87dBUVdGkMT4GV1zP2rDksLhO595S4Ehvlb3Fd0TNjy12799vFtp62OL/bZ9s8eqW3y9Kd+lJIeSlNYqYhUeh9RJTUz2TjBwPmC5Y54YjGVTAfkFKqgah6GvP4toHO23PVBVcsbOT3rI7tfI+S1D4fWvXgh1Ox3F+KhiOcw653fy3SjICIiottDWFgYWrZsqd8+ePBglZ4P0c3y71f/Qa3SmH1fnp0P1+1nIC/ViUGWWwCXvRegjL+RnFBi19L90gKhMXd3RmC+6TkY5eUkKC9ck469bdEem2MScb1+bNtpKSFgdPg4fPXMT0YxlZ7a/HfSfweD761Ra5Bj0ImiPByxCOjn1+fh4YjnMPejvyo8FhERERFRTbJo2nLpetzRHSFER4IxH94vdVywRMQTOxfvszkmEfMqouOBKNwk5km+GTfTIecvClgV5tm3hs2wiJa9RMdu8X0WTllc4bGIiIioejp58iQ++OADdO7cWSo+5ezsjICAAHTp0gXvvvuu1N26slle0UF6W2NOOvzXEEkL13LTEeYZgBAPX8TmFHdcMOdoUhSe2/gjEnPTEZ9rvTqQGPvrQ8ukbhGO5OPijoa+tXAxIwFVQaVVY96pTVJFqHc6318l50BEREREdLPtW2nctljVLNyos4ERuRzqJmFQ7D5rcUyRLJAcmwb/UD/41/LTd1wwRSeX4XBsEvZ9tRTJiZm4FhkAeV4hFBYW9sRfTsT/Xp4j3cQ3x+l8IooahwIK0/n3suwCKOOMF0L5hfiidoMQxF9K1Cc4qMP8oA73M3HiOshLFZHV+bijsFUEXA9Fld1dIUf2gCZQ1TEeK799ODx2Xobr2SRp8uDvL5dLlZaenPKQ2e9GRER0u9NCJj0qOkZ1VL9+fRw/flx6npR0o/Mu0a1sb6mYxBRFei7cNp2ExtcdOg9XyApVkKdkm/2XLJIW0hIy4O3vhZAryciJT4e6XhB0bs6Q5RVBGZUkjVniyOYTOLDuKFLj0qRqqNZcPROLxV+vkGIfc5yiU6ESMYkZsgIVFInGhZ+CwgMQFBGA5BjL8zqVRXS/EIuJnJyd8MgHI6vkHIiIiGqCWzkmIbrdiATmfasOO3xckbSQkZSJ2g1C4eXnYTUBQMQjO5fuQ2p8uukE6lIuHo3CP9P+c3jBJDFH4hvsI517VSjIK5SSrp3dnPHAG8Or5ByIiIhqgpoWk2RlZWHChAn49ddfoS1VhD4tLQ379++XHtOnT8d7772HiRMnGnW8diR2cLCRWufYJIESQW4+0p+R3iFW990ZfxpbY07gTFos1DYkLVzISHB4coMw//QWKOUKeChd7B5Dbm4hVjn8cXYb0gsqnllMRERERFQTqIpurNLXerhA5+thcX9tkLfVLgUymQz+ob7S8/DGtcyP5aJE7qBW2JqejV1Ho3A+IQ359YKQO7QNCluEmfyMXC7DhUOXLCY3CIrsArjtuQiY2E+WXwT3beek7guG/pn+H9y83ODq4Vq8nw5w33oWrvujIBcJF2LxkujaoClObjAVfegahUjJDKXl9qhXJrnh+hdCbq8GUmeHEku+W4XcTLZhJiIiuh25ubnpn2s0lXPvmKi60Vjo3lCaSIRWxqVJ3dgszQaIuME3uPgaO6xRLSjScuByKAquO8/B5XCUUXKDsOe/gziw5gguH4+2HmsoFTi1+6zF5AbB6VwCUGh+YZLTqVjISo3xx6dL4BvkDRd344565aF0UqCi/vnqP+Tnlu2UR0RERER0qxEL7KzFAPZel/sEFnfEDmtc2+r+O5fsw4G1R6WYxFrSgpOzEkc3n6iUbtDzJv6NwHB/KcHAXkorc0i2+PuLpSiyEE8RERFRzZGeno7+/ftj5syZRskN7u7uCA8Ph5OTk/41tVqNyZMnY9y4cZV2PkxwKCW7KB9Xs5KRozK+Idw2qJ7Df/wOIQ1QxztIej6qSS+Hjt03vCUOXDuPyiA6T5xNi0WuuhCN/WrDWV7+C16tTgeFrGL/51ekUWNzTHGVNCIiIiKiW0VORi7iL11Dfk6+0estuje5saG0YSGMTAad0vI1d7s7W0qVR4WhYweY3a+gawNo/U0nVBS2rQN1reLEbUM97uuCE9vPWD9PcZP/Sio8Vh6D8+l4KJKzoUjMgsuhK/BcccxkhwgxiXHp6BUU5BagXuu60k14keTgcu4avFYcg+eq41CoAbnWdHKDIJZmyUotRtK6OaGwUXGMZpJMhvxWNxJBCnILsX/NUZu+IxER0e1ICzk0FXyIMSpbbm4uoqKiUFhYaPNnUlNvVG0XbZmJbiVZadnFMUmphfPNujV2+LE6D20P3yAfqzGJPXrf3xWnd1ufJ5HnFsJt8xnI00olLxeq4Hz4itQxzlRMcuFwFArziopjEjuSFUT3iooWXxNdLA5v4DwJERFRTY9JiMhYVmpxTCK6BJRQKBRo0rmhw3+q7iM6w8OneP5jmINjkj6juuP8wcuoDBq1FhcPR6Eovwj1W9eFwp6YxKCwlr0yU7JxbOupCo9DRER0q6opMYlGo8E999yDAwcO6F976KGHpE7WYg4lJiYGGRkZ+O233xAUdGNNxaxZs/D3339XyjkxErvucuY1vLLlV3T7400MXPwRevw5AW9vn4v4nDTp/THN+jr0h3dVOOGtjvfpt1sHReLplo65UO4Y0hCvd7i3Uro3lHY+PR5FWvsueDW6imdW56uKKjwGEREREVF1cOVUDCaNnIaRQU/h8Ubj8UDIM5j21A9IiStePDdi/F36fWW5hYDayvV+kQqyfPNVc9w8XfHM52P02617N8eIl4aU2U/r6Qp1mJ/lQzUx7v7Qtl8LPPz+fVYrpZbu5OB6OBoe607CY8MpuJxJgMyGm+tRx6PL3IS35XOCrtB4P1WoN2Ciq4PRPmHFHS9KiCQLIiIiqpkWLVoEDw8PeHp6on79+tiyZYvNnz1y5Ij+eevWrSvpDIlurkvHruDDez6XYhERkzwY8gy+fvZnpCdmlIlJHMHDxx1PTX1Yv91pUFvc9cydDhm746A2GPn6MJv3V2TmwX39CbitPwGXvRfhuv0cPJYfhvP5a7bFJOXobmHEAYVcReI1EREREdGt4PyhS3h/2Kd4IOTp4pgk9Bl89/wvyEzJkt6/d3zZOYyK8PL3xBOTR+m3u93dEf0f7e2QsbsN74ChYwfiZhDdJMrTcc+wy7cjMCYhIiKq+X788Ufs2LFDvz116lT88ccfaNWqlVEnhyeeeAK7d++W5lVKTJkypVLOiQkO4qZ9RgIeWjUd664chvr6ovtCjQrLL+3D6FVfSkkOXWs3lRIH7NHIt7ZRt4LOoY0xf8jraBtc32i/tzrdh6/6PIU217tFyCFDU/+wch1LdJo4nx6Hu5d/Anu5KZylokEeSpcKd1mobM0DIqr6FIiIiIiIHLKQ6NWeH2DX0v36FsuF+UVYP3crXu35IVLi09B5SDs06VQck8jUGiiuJz6Yo4xOhux62+PIFhGQy2X6G9bt+7fCV1s/RqP2xjHJizOewtvzx6NJpwbStkKpQOSAVlLnAkvUQcXtm4UWPZpIFYmebzfBvmqkMsDVwwUyuQzuXm6QKeQoquWJgnq+UPu42DSEPK8I8uTiCQ9zFPHpZRMhbDnfUvs0bOf4bn9ERES3Co1O7pBHZalXrx7y8m50i1q3bp1Nn9u8eTOSk5P12/369auU8yO6mc4dvITXen2IvSsO6WMSUS11zexNUqySnpSJXvd1kSqD2iOyZR394hnxp0hA+HrbZNRrWcdov1dnjsMbs19Ao/bF19miM0KDNuU7ZsueTXFq1zm81PndcsckirRcOF9NhWdGnjSB5iZikuuxVHXVsF1kVZ8CERFRtVXdYxIiuuHkrrN4vfdH2L/6iL54Un5OAVbO3IDXen8kdZrr93AvRDSpbdfPFtkyQh+TiPmSLkPb45sdnyCiyY11WeL9CXNfwmszx6H+9ThEdJAubxwkCkod2XQSr/X6wK55EjE34+zqdGOexEGJCKXprs8hVYQ4t/LGbERERLeTmhCTFBUVGSUpPPnkk3jvvffM7t+wYUO8/fbb+u2TJ0/i7NmzDj8vpcNHrIG+PLAEmYWlWg9fl5SXiRlHVuDzXo/jjQ734qHV08o1tpvSGXfWaY1vGzyDPHUR/F09EeZpvmX50Pqd0MC3Fn4+tgabrh7D2bS4ch3vaHIUKsLHxQM9ajfDPQ26SB0gPti1ABlmfpuq1tQ/HO1DihdeERERERHVZD+/Phe5mTcW1xlKjE7G75P/xas/j8VTnz6MtwdMll53OhkDra8ndD7uZT4jS8uB8mxxLOHm5Yre93eTWiGLyQC/EB8ERwSaPZf+Y3qjTrMw/DF1CfasOIhLR6KAHo0sfwGZDOrwACgS0qWFRHrluDeuDvZCYeNgeNULRJuezTGse3Nk6VSY9MdqZMivd3/T6eASlQHfdVFQplvunOByPAb5fZtJHRlMnYYitrhbnyGnhCxALOay0MXBKS5T/7xZ10ZlkkSIiIio5ujQoQPCwsIQF1d83TRv3jx8+OGH8Pf3N/sZtVptdGPf1dUVjz/++E05X6LK9OMrc6R4wZT4S4n467OleP6bJ/DEJ6Px0T1flLtTQ98Hu6P3A12Rl12AgFq+CAwLMLs4ZvCTd6Bu83D8+ekS7F11CJeORZsdWyeTQRvqC52bM2QFKsivpePkToPJNDvW6/gEeaPDgNYY+PgdyEzOwrfPzUReVj6qozZ9W6BucxaCIiIiIqKa74eX50iFn0yJORuHf6b9h6c/ewSPTnwAnz78XbnG9vTzwJ0P90KP+7pI1/YBtf0QWNvfbExy17P9Ued6THJg7RGpQ0J5HN9+uoIxiRc6DGiDQU/egaSrKfj+xVlm4zW7yRzTUa7j4Lao3SDUEWdEREREVWTZsmVISkqSnvv6+uKLL6zf/3300UelTg6BgYHSwxGJk6XJdJUxag0iEhj6LnoXWgs/g0Img5+rF9ILcqC53uHBFFe5EjKZHPmashfckd7B+P2uNxDo5m3xfA5cu4Bn13+PAo0KtwJPJ1fkqBx8kQ1Iv+Pcwa+ioW8th49NRERERHQzJUQl4rEGL0nP85r6I6dzLRTV9oRMrYXbuTR47YmHa2YRvP09kZmSra+mKuiUCqjrBUNTJwg6Vye4yeWQRyVCcyYWMoP9Sro4iK4N3gE3ui2YcmjDMXx49xdQFRbHJFoXJXLu7WBx0b9Mo4NC7F6khtPJq3CKKg5+bSEisbzu9VHUNMTodbULUORnuiqRPKcIwb8dhyLb9GSHfowQb8gHtEKuWlO2SpJWB5cDl+F8+Ub1ZSGnb0Mp0cL0yergveoUnOKzEBjmj2mbJyG8EWMSIiIiQ7GxsYiIKF5sO2tnMwTWcq7QD5SSUIRnep6RnsfExCA8PNyhP7hos/zBBx/ot4cPH44lS5ZAqSxbG0ir1eLZZ5/FnDlz9K+98847+Oyzzxx6TkQ329WzcXi6+asW93FyVkqLgkrHJKW5ebpCo9agqKDsHIeogPr11o/h4eNh8Vj7Vh3CpPumQa3SWNxPU8sPqtaRgIvTjReL1FCeugplTAqqC/GbOHwxEoCQukGYvmUSQiPNxC9ERES3qZoWkxARcPFIFJ7vMMHiTyE6Grh7u0kxie56hwdTxD5ifkNVWKqDMyB1r562aSLcPN0sHmvHkn2YOvobKba5Fbh6uKIg1/ExSe0GIZi+5WMEhZsv9EtERHQ7qmkxycMPP4w///xTej5+/HjMmDED1cFt28HhVMpVrIk6hKvZyRaTGwSNToeU/CyrY4Z6+uNKlumFPOL1aQeW4IveT5j9vMg1+WDngkpLbqjnE4IgNx8EuHpiW+wp5KkLUdkc/V2C3Xxwf5MeeKhJbwS5+zh0bCIiIiKim+n0hQRs2XsecVFJUEcGI7uJB3K63Fgsr3NWILddCPJaBCLwrzPQXLnROaCETK2B04UE6SGENa6FuPMJJjseXzkVgznv/yl1gjBHo9Hgq2d+0ic3CPJCNZwuJUHV2EwFHp0O8pJ5AmclVO3rS+eljEkts2tE0zCpMpKXn4fUZlpUYypsFlomuUFEaCoLeRhaT2dkd60N3w1XzO8kzj0rH/larekW0HIZCjvVgzIhA/L8G9/XY+dlaN2doQr3LXVQHTx2R6GWTIm7Jj2I4c8PhG8QYxIiIqKa7s0338Tvv/+ub5+8YsUK9OzZE59//jl69+4NuVwuJTZs375dSoTYtWuX/rNt2rTBpEmTqvDsiSrm1O5z2LV0H2LOx1vdV1WkRnpi2ZikNP8wP8SdK45PSrt8LBrzJi7CC98+aeE4KikmsZrcEOQNVYeG0nW9EWcl1G3rSTGJ6DBnRAbUaRomJSuLBU371xw2uejJ0Ry9kCioTgCGjR2IYeMGWE1gJyIiIiKqzk7sOINdy/Yj5lxxZ0VLRBK1qUTq0vxCfaV5ElPOHbgkda8WnSDMKcwvxDdjf66U5AbRHUJ00BYd7ZzdnHBg7VGoi2peTCKSrIeOG4ChY/vDy8/ToWMTERHRzbdt2zb98yFDhlSbv4LbLsGhQF2EN7fNwcarxxw+trnkhhIioaJLaGNpsU5jv9poFRRp9P7ehHOIzjauHupIjf3C8EKbIWjiH46conysjz6Krw4uRWpBdqUcz8vJDdkqx7RtFlMUy0d8IH0HIiIiIqKaLL9AhQ+/XoE9R6L0r6l610dOpOkOCSLRIfXexqj93SHILFQlEszdtC+xYcFWNO/WCFqNDg3aRqJR+/pG7x9cexTJJhITXA9dgU4sFIoMLHVyOshVojWg8cuqZuFQxKRK1/FaVyeoGgRB6+WKiPu64vHRvVA/PBA5GbnYsXgvvj54Gvkq40kJrZPoTmG6e0OJvJZBVhMcXDvVR66lhHa5HKr6wXA5dWPyRHTO8F59GqraPihsGCh9b0VGHtwuJOO3fV8gonFti8ckIiKimsXFxQVr1qxBr169pKpKwr59+3DHHXfAw8MDAQEBSElJQV5entHnmjdvjg0bNkifJ6ppcrPyMPn+6Ti88YTDxzaX3FBi7W+b0ahDfWjUWjRqXw8N2hjPk+z576BNiRRqcV1eOrmhhEwmvV8mwUEnKrY2xOh37pUSHbLSsrH9372Y/c5CKT6pDD6BXlKFWUdQOCkw79wMhLBjAxERERHVcNnpOVLXtuPbTjt8bGvzJKt+2YC6LSKkpGrR0aFeyzpG7+9YvA/ZaTmoDKLwbYvuTfDAW/dI3aEzU7Kw7Z89mPXO78jPdnyHBcE3yBsZydaL+trCyUWJeRf/h6AwdmwgIiK6VSQkJCA+/kYBnHbt2umfHzp0SOrscOLECWkfLy8vNG7cGCNGjJC6YSsUiko9t9suwWHSnj8rJbnBFkVaNd7btUC/3SKgjtTRoaFvLekidv7pzZV6/HVXDksPf1cvjG83DP0iWuO9gvmVcixvZze0CaqPHXGnHDLegLptmdxARERERLeEz35aZ5TcIBT4WV7Mr/VyRn4Tf7ifKZt8UB5F+SpMe/JH/XbTLo3w9vzx0o10EZMsnbHa5OdEYoX7rgvQnIyVEgLUjWtJi4NkGtPNEXRebtD5uEMV4o2CDnUBRXHyxtrjUdIj0NsdY+/rjo53d0T6nrLxmc50rofxPm5O0MnKJleUEJVMw+5oidTzlis/aX3cpSR0rY+bvuuDGNMpPlN6lLhzTG8mNxAREZWTVieDRvwHu4JjVLbIyEjpRv1TTz2FVatW6V/Pzc2VHqWrLT755JOYNm0a/P39K/3ciCrDF499XynJDbYQi3a+fPx/+u0WPZpIMUmteiFSR7ll/1tjdQydixK6AG+L+2h9PFDULBwynQ6y7Hwo4tOl5xvmb5MeAWH+eOqTh9C6d7NKS27wDfaREimOb3fMoq3BT97B5AYiIqJbNCYhut1MfejbSklusEV2eq4UE5Vo07cFJsx7CcERgVLXhv9+WFupx189a5P0CKoTiKemPCTFRJWV3OBfyw+hkUEOS3C458XBTG4gIiK6xWKS8+fP6587OzsjJCQEcXFxeOaZZ7B2bdnroj179mDevHlSh+vZs2ejQ4cOlXZut1WCQ2JuBlZe2o/q4lTqVTy+5hssufs9LDq/E1tibs6EQlpBNj7e8yf+PLvdoeP6OLvD380Ld0a0wcPN+mD2yQ2AlS5y4p+dzoZOEF/1fcaRp0pERES3sPz8fPz+++/SwqTDhw9L1VaFwMBAdOzYEXfffTceeeQRODk5VfWp0m0oPjETW/bcCBBLaGwo/KsKcgPOOPZ8zu67gDfvmIifDk/Dv1+twKENxy3ur8jMh/xMPLT1a1kdWxXqg8JOxtVYS6Rk5eHTORvQJCLY5PtyGzo/y7MKyyQ3iKQG32Bv9BjRGXe/MAgzVx8ErCQ46LxdkX1fO+g8XaVtWV4RnM8mwOVkvD55wzvAE2/99oL1kyIiIqIaKzg4GCtXrsT+/fuleGL79u2IiYlBdna21MUhPDwcAwYMwOjRo9G6deuqPl0iu109Gyd1SaguTu06h7f6fYwfD32BBR//gxPbrQc9uusJ1CbfK0mYlgHqZgYdoQtUcDl0CYrr3SFS49Iw7akf0LBUV7sy4ynlKGoSiiLRlc7dGfLcIjhfTILz+UTINNoy+3sHesEv2Ac97+uC4c8Pwq8TbhS9Mkcml0FnpVufX6gvXv7xWatjERERERFVdxePRuHQ+qopTGvKsa2n8Fa/Sfjx0Jf45c35OLPvwk05bvLVFCnRoknnhg4d1yfIW4pJej/QDcOeG4gZL/zqkJgkKCIAY6c95sAzJSIiIns7Llgj5jNsVdLZWvD19cWFCxfQvXt3pKZaLr557Ngx9OnTB4sXL8agQYNQGW6rBIed8aeh1pW94VyVUguyMefkeiw6v+umH/t8ehy8nN2QXZRf4bFkkGHu4FelLgsKuRwp+VkI87TekkxnQ9LE/CGvwUleua1MiIiI6NawYcMGPP744yYv6MXiJPFYunQpJk+ejEWLFkkJD0Q3076jUdDqyl4Fy2wIU+QFNqz6t0NqfDr+/eo/LJ1hvVKqpEAFWX4RdG7O5vfRaKGua6WisQw4H50EjwAXZBcV6bs2iN9CdIaQF+mgdTZficD9fIbxcHIZpm2eiMgWEZDL5UhNSEcdpeVEJq0c0AZ7Gr2mc3dGYfu60Hq7wX33JfgEeuGrbZMrvb0iERHRrUgDufSo6Bg3U+fOnaUH0a1q/+rDqG4So5OlhOsVP623aX9ZvgooVAEuJq73RQghNxFHuDqhsGtjuG49BXlmnv7li4cvw93LDXnZZedJtM5K5A5sDq2/h9FrBZ0ioYoMgMeG05CpbwRzCqUcX2+fjDpNwqRuLylxqajdMNTq97Ga3BDig2+2T5biHCIiIrr1YxKiW93+1UdQ3cRfSpRikrVzNt/0Y5/bfxGunq4oyKl4FwelsxLf7ZwixSEiJkmKSUFEk9oVjkkCw/zxzfZPpDGJiIioamOSzjbMX+hMrEkxp6RorKBWqzFkyBApuUHcixRdr0Unh5YtW0rdd48ePYrvv/8e//77r7S/6ID94IMP4uDBg2jUqBEc7bZKcNBoq1dyQ4n/Lh1AvrqoSo7tiOQGQQcd7v3vU4S4+8Lf1RMX0uMrnExyd4POeKPjvdKYRERERNaIaqsjRoyQLqoFcbEtWqE1bdpUung/ceKElEEsREVFoVevXti2bRsXL9FNpTYTkzhn6qB2t3BjWKOF2xnLGfIVsfH37VCJBUI2EGepjEqEqnmE2X3ksSkoahpiZSAZNM46ZKlVgOLGd9cpRMVVHZyygUI/ncnFSfJCHTz3xpW5AT+uzZsIjgiAV4AXrpyMgVqtgeKOZtCE+hTvIwO0yusVXXXFidrFf5alahiM/j2a49nXhsM/1M/6D0NEREREVANoDBbkO2xMPw/ovNwgK1JDnpQJmZXFMaZsWLAdGrVtSd0ynQ6Kq8nQNKptunuDOQo5VI1qweXgJaOXTSU3CAUd6hglNxjSBHmhoE0E3A5F33hNrcUzzV9DSN1AePh44MqpGGhNdHkoj+HPD8Rjkx6Eb1BxTENEREREVNPZet1/s22Yvw1aO2IZR3BEcoOgLlLjiSYvI7ResJTIfeXk1Qp/p3tfuQtjPrhf6qBNREREt568vBvFYNLS0qSHi4uL1Jlh6NChRvv27t1beogkh5dffll6LSsrC88//zw2btzo8HO7rRIcOoY4tq2XoxRoqia5oTIk5mVID0dQyBRmkxs2Xz2OOSc3IL0gF3V9gvBEizvRObSxQ45LRERENY/IKB4zZow+uaFt27ZYsGCBlEVsaPfu3XjkkUdw5coVFBQUYOTIkTh37hzc3d2r6MzpdtO2melWgK4ZQIG/DloX00kOngevQZltPm7QSVVzdJDZeZ+6MK98MYnyXDw0AV7QhpS9Xpdl5ML5ZIzVBAeRbKB2k5nOLhDfR6eDSzKg8dRB7VZchVWm1kGZC7ifSYMiy/QN/6SYVOkhDQPAbcc5FHSqj6L6AcUdIQwqDOlK/j+N6dPQNa9tNrlh6/qjWPT3TmRn5CLSxxOjnuqHlj2bWfzOREREtxutTi49KjoGETlOq96Ou2bV+rijsEMD6PwMkgAKVHA6HQOnqKRyjVWYV1iu/ZXn4qD184Qu0PvGi+Ki3kpFUU1t25KXdU4KqCIDLe4jkqJdj1wtk9CRGC2qnt2ofFYRzi5OZpMbNv+5E8v/twY5GXmIbBGOka8PR/OunCchIiIyxJiEqPpp3bs5qqOCcsYk1dm1csZjlri4uZhNblg/bytWztyAvKw81G9dV4pJmnRs4LBjExER3QocHZPs378ftWrVgqOoVGULYX711VdlkhsMjR8/HocOHcK8efOk7U2bNkldHDp27AhHuq0SHOr7hqJnWHPsjDuN6qS2RwAuZSZU9WlUOxcy4nE1Kxl1vIP0r+WoCjBy+aeIzk7WvyZ+O5Hw0DusJX7o/xyc5IoqOmMiIiKqKtOnT0dmZqb0vG7duti8eTP8/MouWujevbt0Yd2uXTspizg2NhYzZ87Ea6+9VgVnTbejRpHBaNc8HEdOxxq9LtMC3ld0yA0DVJ43FuTIijTwPJAAn01XTY6njgiAumEtaP09pYQAeWIGnM4lQJGSBZ3ofKCUA0Uak4v3DYVEBuHysRuVR60RC3hcdp2Dpk4g1JHB0Hm4AAVFUEanQHklCTKNFvLUHGgDPM2OoVWK1gkWAnmZDHKdDk5p1xMRRPaGaOiQXQD3vVEmPyL2U4f5QVUvEDpnJRRZ+XC6kAinc/HIbxIoJUmUxP7iN5e6N4hcCoXpJIfLl64hISoRterdSNbIzi3A4y/ORJxaXfxhdyecVxVi06Q/MTDUHx/OGw+FgjEJEREREVVPYgF80y6NcHbfhQqNo/VwQYFYmORcaprJ1Qmq9vWvd36zfVFNaGQQstNyyhWTOO85B01EIDR1gqBzc4ZMq4XOR2RHW6CQS3GDtRhJ6+UCOFm+rte5KKFzd4Ysp3IWQmk9XXA+PhUJyZmoZZDkkJGSiefbTUBKXJr+tatnYrH9373o91BPvL1gvNTVkoiIiIioOmrTtwXqt6lbrjmJm0F0PchMzqrq06h2Lh2NQlJMCoIjbiSAp15Lx/Pt3kJ6YvHcrBB9OhZb/tqFwU/1w+u/PgeZleRzIiIisk+tWrUQHm66sKY9XF1djbbr1KmDcePGWf3cRx99hPnz50OnKy7+8t9//zk8weG2u8P5Ra/H0cAnFNXJlaxEeDtbuel+GzqZEo2Biz/CI6un41hy8QKmUSu/NEpuMLQ97iS+PbT8Jp8lERERVQd///23/vkHH3xgMrmhRP369aX2aCWWLl1a6edHZGjiK0MRHlK2AqdSDQQsvYTQH47Af+l5BPxzDrW/OQhfkdzgpIA6PADqOoHQehUHmEWt66Koc6Pi5AZBJoM21A8FfZohd1ArZI/qjOwHOiNnRHsUtggrTngwI/pULNy9yxeTyHQ6KKOT4brtFNxWH4bb5pNwunRNSm4QXM5YTuLWWjifEvL0XOkhU2ukxAbX47HwXHMCchMdJ3RKOfIGNEf+HU2hjgyEprYviprWQu7wtsjt0wg6Zxl0SpmU5CAlOijFoyR5wvQKp9Prj+OxBi/hjTsm4sLhy9JrT741F3GiW0ypm/OaWr5Yl56NhVOXWP1eREREtwsN5A55EJFjffj3awipe6OwUAm5DdfoJVRNapdNbjB8v1n49U5ztok6cRVunsaTaTbFJFeT4bLzNFw3HJUSHkTityVSfGHL4EXFHSKtUtm4Xzlo/D2Qd2dz5A1rhz1yYOSrszB+6j+4eDUZWq0WL3R42yi5oXRXh3+m/+fwcyIiIqqpGJMQVU+TFr+FwHD/Mq/LFVV3D0AkXLi4O1fZ8aurA2uPYkzkC3hn8BREn4mFRq3BC+0nGCU3GFo7ZzOW/7D2pp8nERFRdVXdYxIvL+NOTaJzg1JpvXeCWHvVpEkT/faePXscfm631ezQieQreG3rbFzKvKZ/zdfFA/c06IJ/h70Dd6VLlZyXRqf9P3tnAR7F9bXxd2dd4i6EIMHdKW4FWmipu7t8tX/djZa6u1GBQktxd3fXuLvLZn1mv+feJbJZjUES7u95BrKzM3fuziYzc+4973lRadJDwpwHnHKkIAV3r/8cSxL3IKXcfZLUwvidMFgck50YDAaDwWBceLQmPZLL83CyKJ3+T163Bvn5+UhPT6997c4mrYbx48fX/nzu3LlW6ReD4Yyz+xLw/jUfouT7jZAdSoY4rwwBgoArx/bCT2/fBHVeGaQleqhPFUN1roQ6OBAhg/7KoTCNjINpeHcYLh8E/aS+sMQ52g4KHMDLReCDNSQ7ia4j7grGQTHQTezlMsGIDEjrKvUQn69QSqqxmmODYY4JguAmackd0vRiyE7nOH9TsFJDBk+IS6vhs/ok/P4+CN9lx6A4kQXOaHG6rWF4F/BOhCPU1SFE5SBIoIjqiRycIEu2VZw9ueMsnp30JpavOICsKp3L/gqBaiz+by8sZud9ZDAYDAaDwWAwLjYnd57F3Fs+R0HG+UJCIsAvxBdXPDAVn+95FxIPrgU18NFBbt8njgpCiP3kmDssZh56rQFiSdPd0DidEeL8crfbSFIKvGpLrDVCXOzeUUKcV+EyPmmOuEE/uQ+EEN/adUSzcfhMJh55ezGWL9yFoqwSt238+/Eq8ESUzWAwGAwGg8FgtEGObjmF9279HMXZNtEuGbr3D/XF7Een49Mdb100kYPZaIZRZ4KYOGMz7CCVmY9sPIFnxr+O5V+vQ6mHuGvRvOW11ZwZDAaDwWC0bXwaCBzi4uK83re+wIHkbrU0l8xT2aniDNy5/jMczE+0W19urMb27NNQyxR4cshsXEwsAo8QpWNCTmOIULuuVlwfsah9ffV6iwlfHV3lxXZGJJS5SKJiMBgMBoPR6pDBqv15CXhi648YufBZzFr2Nm5c/QH9n7x+cttP9P2WHNTS6/W48cYbMWbMGHTv3p3asXlCLK5LmKiqqmqxvjAY7jizNwHPTXkLp3adg0gglUaLId+bAOOygzj23lL4K6S44/Ub7PYxDe5iEzI0GNC3BjomCpG/KoFoEVyJGCL8Ye7mWKW1PmZOBMXNo6CdMxj6sXHQj+8B7bVDYRgW63X11eB6iU6K45lQrz4BSU4Z/cxU2MBbIRIAOe+5PXmK+8SdGgSFlAoynGElf+7u+k7ecxIeyRLyqcCiBl2VHvN/3+axL+W+SmrFzGAwGAwGg8FgtDWObzuNFy9/B2f31ZsnsQIVRZU4sOYIgqOCcPOL13hsh0b0XggRrF5U+moIScwPCG36PInsaCpCfJy700lSCyDJKq597UlMIT+RRWMYpwgCdZhraUwDY1yeW63OiD9WHfLYRkVxJfK8FHIwGAwGg8FgMBgXkkMbjuPlmXMRfzC5dh2ZMiwvrMSB1UcQ0TUM1z9z8XK3rDIJeKUcvpHe5V65IjDC36vtvBWYtxUqS6rwz0eeHeNKcktRVC/2YjAYDAaD0XaJiYmxey2VSr3eV6PR1P6s1bovFtMUmlaKsx3y8aGlNEneGRXGanx1bDU+nXgffGQqfHt8DbK13iXStDRFeucWXt4yvfMQRGgCsCnjONIqCqA1GWAUzPS9ALkGfYNjMDqiJ9RSBX4+tQnZ2vbzQFng5bnhvDOYZjAYDAaD0cKcKc7Ei7vmI8mF4xJxrdqQfpQucf4RmDfubvps0ly6dOmCxYsXN2qfo0eP1v4cGhra7D4wGN7w43N/wGSwPZs3pLyoEn+9swTP/foYfAI1+HveMuQVVoKP9fz7SdNtRDb3BnDun4VN3cNqXQkc2uFE0E3pA62kQRsSDqZeEbBKxVDuS/HYnym3jYN/iC92LzuA7MQ8mzPEtnhYxRw0Q7qg+8Q+GDK2F9Ql1fjxZDxyDQbnDZkFmLoEgdOZICl17ZpAoI4VLqo6CV7MD1jJRz6ftySqMkAenwfZOccKA8UF5UBXD9+JhLuoNtoMBoPBYLQlBBoHiJrdBoPBaBl+ePYPmE3OHQdKcsvw93tL8cS3D1BHh38+WuHSKYD8VYuq9LD6qtwej3PjfuYSK1BW2PR5EpHRgjldQiHvH4Mdh1OQnV4EfW4prOdyIC6sQECYP3oM64qBk/pBppDSz0w+uzOkOeVQ7kqCYXgsrCpZ3TG0RigPpEJSUImWRFDKnLrS1aeQA1RSMURm9w4NIg+xIYPBYDAYlwrtKSbZvXs3xo0b1+j9rr76aixfvrxV+sRgtDTfPzOfOko7ozCzGP98uAIPf3o3AsP9seTTVSjOsbk8tDZWjRJCXDSsQb60KFKpIEAUFAAuKRsig/NcM3dc9eh0SKQS7Fl2ELkp+bSAkvm8+xv5bD1HdMeA8X2oq/bCuUtR3owY6EJTmu88fmoImydhMBgMBqN9xCT9+/e3e52X5zznyxmVlXXjo35+zSvuf8kKHHK1pTjQwLmhIUQQsD3rNHgrjxeGX4cjBSmYf3YL2hukzzKxBH0CO6HEYF+NuMyoxe6csziYlwiT0LK2yW0FpUSGXkGdLnY3GAwGg8G45NiTcw7/t/UH6CxGr7YnIog71n2KryY/hDFRvXEhEQQBv/32W+3rUaNGXdDjMy5NspPy7KukOmH74r0Y98h0CF3C8NDCp3DocAr+23HW5fbUsUHawLWBrLTaEo6cIWgULtszdw6CEKh2/X63UMjO5EBc6UKQcJ7FHyyniUJdB3amlWBrEPECqg+l4MShFJz9ch0dzBcUEkgnx8Ec06AakmAFZxXBHBcKc7dgqHemQJbqRpzdTFcYTmeG74pT9PRxWqPL88cRR4eu7tvyEayI6R3VrP4wGAwGg8FgMBgtTerJDCQfS3O7zaY/d2D01cMgU8jw+Ff3Yt/qI1j/81an20pSC2EeFOuyLa6oElyV+9ihtVjw5j+QK2Xo3LcTjIdT7AzbygrKcWDNURzddNKl2KM+sowSSDNLYIn0h1Upg0hnhCSvAqKWM6asxarwPGVHnPVIVVl3AgffIA0iu4W3cO8YDAaDwWC0NseOHWMnmdGhiT+YhMxzOW632fD7dgydPghKHyUVX+/4dx+2/LWzVftl9VGBH9bT3kmN42ANDwQfoIH4YHyjRQ7zX1sMhVqOTj2jUFFsn7tVml+OfSsP49D647B4EZO0ObyIhYiIgzgEMhgMBoPBaPsEBARQF4fMzEz6ev/+/V7ve/ZsXT5LXFxci/ftkhA4lOg9V9ExCxY8vPmb2tcKcV01nvaGibfgeJHriYq2KG6QcmJa1Vlwk5hEkozkYikMvPOqt4Sbe42nbTEYDAaDwbiwzg2NETfUQLYn+/0585kWcXLwlq+++gpJSUm1r2+44YYLdmzGpUtZfrnb9/lgH1QN7ILn5i6rXSdXurb+I0/NvBywikVOSqkCVsG5yIEzun6WtnQOhifMscEQn8z2uB1xqog/kOy6nfOVijiDBX5rz8EU7oOqK/pSBwpRw75zHKrHdaNJRJzeef8lhVUASfA5b+dc42pB/+MBqwcXRcXJHCh4K0weJimU2WUQRnSFWXARt/ACbr5yOMRiFpMwGAwGg0EQwNGlOTR3fwaDUZdE4wlDtREvz3yv9rVCJXe5rSS1gLoNCBENxMoEvQmyo6kX9dQb9SYkHnbtQOeNuKEGImYgbg6tjRIiGKxWKmJwhUwqhsTCu63aduPzcyBy0waDwWAwGJcS7SkmqS9wINVPg4M9j9cSIiIiWrFXDMaFjUm0ZdV4eebc2tdEJNDaCD2i7cUN9ZHLIHSNgPhsRqPatErE0OtNSHITF7VFcYPSRwG9B6G6QqOAUWeE1dU8CYDbXr2uFXrHYDAYDEb7pD3EJFdddRW+/vpr+vOOHTtQUFCAsLAwt/skJiYiJaVu/HX8+PEt3q9LYnYoTB0ArpGDuQa+8RZjjKYxLKw7Pplwn1txA6FnQDS+mvIwJCLngcWI8Dg8P+xa9jUwGAwGg3EBsVqteHHX/EaLG2og+72463fazoXg0KFDePHFF2tfDxgwANdff/0FOTbj0iY0Jthlgongp4Z5ZE9Y1fbuCgaDazGCVexE3FAfInJwslqaWuS6TZkXSfnnBQQtjRDqAw4icC6EGRBzMPYIdbk/qV4qSy6wuVpwAC8BeBlgkdtcLtw5PIj0ZoyOCsULvz/usfJQj34xeO/Jq+D01AtWjPPzwd3Pz3HfCIPBYDAYDAaDcREI80LQ3BCDznWsL7JaId+XAOnRVIjKq6nYV6Q3QZKYC8XWU+C0F8e9ob0ybPpAPP/dg+Cyy9xuNyAiEC//8QREnPN48LKrhuGm565upV4yGAwGg8G4UAIHMo+RnJzs1fLdd9+xL4bRLgjrHNLofYgIuzWxKmSwBvq63yY8EFYXz99225EaSLFhME0cAPP0oTDPGAbzsB4QAjRoD4yaNRRPfvegx+36j+2N5+c/7nLOa+JNl+GqR2e0Qg8ZDAaDwWC0FnfccUftzzzP4+WXX/a4z9y5daJUqVTaKrlXl4TAIVTlh/HR/S52NxgN8JEq8e2UR/DXFf9DVpXrRKsapGIxxkX1waprXsOc7qPgJ1NBJZGju38kPp94P/6Y+QyrSsRgMBgMxgXmQH4iksrzmtVGUnkuDubXOSq0FkQ9PHv2bBgMtiQLmUyGn376iT0/MC7YwP3gKc5jEkuPSJrA73Q03EVivuDJi8/JuDJXqYcsKd/lLlyF3kOj3m3TFCyBao/b8B62kR3NBEwmem6IYwMVgJBJBzrxIHJ6Ln2Vcnz95LX4aO2ryDjr2ZlCKpdg/JBu+Ov9uzBjeBx8JWKoiBhbrcRHD87Ax9895LENBoPBYDAuJXgr1yILg8FoPp16RqHvmJ4teiqps0FaIZRbTkG1/CCUa49CdioTnBuxNsMev2AffLjldby/7lUkH0+H/EQGFYo4Pd/VRqgS8jHhhtH44dhH9H+1vwpKjRzdBsXi3dUv4q3lL7BTzGAwGAxGO4xJTCYTzpw5U/t6yJAh7HtkdDi6DYxFj2Hd0KaQyzxvQxybpRLP4obB3cD37QzUFLMSiWAN84dlVC8IYf5oqwSE+eHTnW/jnZUvIvGQaxe8GqRyMabePh7fHvkAY68ZCbUfiUkUiBvSFfM2vIpX/n76gvSbwWAwGIz2QnuISUaMGIFp06bVvv7tt99oPpUrfv31V/zxxx+1r2+//fZWcZbzlBbTYXh++LU4UZiGMqMW7Z1BIV1xeedB+PDwUrQ3ZJwEvnIVzbfq4heOarMBZoFHlclzopRF4On/XfzCMG/cXRegtwwGg8FgMDzxd/zOFjlJf8fvwMiIHq12whMSEjB16lRqo1bDZ599Rh/SGYwLxcOf3o3/TXgdVWXVteusYs7lwDbVKPBW6tZABsLrY/XGoE5UJ5LgynWQH8mAyMTX7m+JDoQlOoD2QVyihTStCOY4NzaDJguk6cX0x4ET+mDItAH47dVFXn12j101883eho/0A6+WOT1f51sAjBb4lOig9lVBmleJOKkchoQC8P27oLpC57EPNZbRXaOC8NYTsz1uz2AwGAwGg8FgtCUe++JePDvpTeiqWke4fCEZOm0Ael/WE3+99S/aGwq1nCYAcWIOnfvFoKpESyujkZiE0xqh3HwGpr5RsMQEARIxYOYhySiG7HQ2hNG2sZMu/Tvj1cXPXOyPwmAwGAwGo4Ug4gazuU4kOnjwYHZuGR2Sx7+6D89PfavVnRm8xuhcXGwHzwNm29xAfUbOGoLYvjFY/MFyWMMDIEQGOd+f42Dp3wXSwuPUCa8toPRRQK6UQywRo+uAGFQWV0EQBK/mSczn55m6D+qCN/579gL0lsFgMBgMxoXgxx9/RP/+/aHVamG1WvHggw9i3759eP7559GrVy+6TXZ2Nj766CN89dVXtfuFhITgvffea5U+dViBg2AVsCv7LLZknoCRN6N/cCx+mf5/+O30FmzIOAoTb4FCLIOB9+JhtY1RbTGgq184NFIFtOb2ZfNsEiwo1lfSn4v0lTiYn4h/E/fgmu6jPO7byafxdnUMBoPBYDBaD61Jj80Zx1ukrU0Zx2l7GpkSLc2RI0cwc+ZMFBUV2dk7P/rooy1+LAajPmQweP/qIziw+gjMZgt6j+yBDza9hn8+XoXd/+2HxcxD4auE0Y21MamICosVXFE5+EANIBaBK9VC7CsFH+Te1likNQIqOU3st/qrYZjSB+aCCsgOp8EwltgiE+8BG5bYYJo0I00tgrmrk+duXoBybzJEFoG+1FZUo/vgLjQxpyUmImTpJTD1DPO4jTtM3YJtHoUubJFtjUhgPZsPc0oxyHThCbJsOIEN8wdi7LUjPfYzoqv7PjIYDAaDwWAwGG0JkjS/b+VhHFhzlP7c77Je+GDza/jno5XYu/wQeAsPhUYBg7Z9zTMQqkq16D2iO6RyKczG9uUYQWKomjiqJLcMRzeewKjZQzF06gC6jqs2QnEwFdbDabDKJBCZLBAJtkQoFpMwGAwGg9ExOX68bq4lKiqKJgkxGB0BEnPsXnYQh9cfg2C1ov/Y3vhw8+tY/OEKGqsIZO5Bo4D+IsUkIoMJopJKWIN8XW+TX1r7PF6fiqJKDJjQB0s+WQVzJw9/s3IphPAAiPNK0RbQVxnoQijJLcWh9ccx7rqR6DUyzuO+kWyehMFgMBiMDklsbCzWrl2L2bNno6KiotbJgSy+vr5QqVS0qCwRP9Sg0WiwdOlShIeHt0qfOqTAodRQhQc3fYPTxRm161akHKCCgC8nP4i3LrsVFcZqBCg0mLXsbWRr3SfKXCwUYil1N+CttiSiGpLKcvF/237AlJiBWJ9+FO0dInLoERCJIIUPSgxVLrfbknkSr+1ZgFdH3gi5RGpbqS8Dji8EMvYCnASImwb0uw6QtnxyJIPBYDAYDHvydeUOzylNhbRToCtvcYHDqlWrcMstt6C6uq5iPlEXv//++y16HAajISV5ZXj5irlIPVEXk2z6fQd8AtR4Y+lzeObHh6iTg2+QD255/FcUl7p2mhMJAmRHUyGql7Rj6hwE/Xg3rickqFTJbS4Q9eDD/KCb0R+QEpuDBkjFMMcEQrE3GebYYAihvpArpLCmFkFyOhvi0rq/o5TjGXjz2o8x4ooh2LPsQLN/ASQ5FRAXVIIPcz6JIC6sgiS73G0bAumrF84W5ghfyFNsThQ1HNl4Al36x0Djr4a2vO5zNmTnkv1Q+6nxyGd3QSqzxSSVJVVY/+tWnN2fCIlUjJFXDsWEGy+DTH4+ZmEwGAwG4xJGgIguzW2DwWA0nsKsYrw8cy4yzmbbxSR+wT54e8ULePaXR+mzryZAjbu6PY7yIlthoraGXCWD2WCG0CChKPFIKt654VMMu3wg9q06jPbO/lVHaPXX+sldJIlKZLAXb2z+aycUagUe+vhOWm2VUF5UgfW/bEX8wSQq+Bg9exjGXT+qNmZhMBgMBuNSpr3EJMeOHav9mbk3MDoKeWkFNCbJTsyrXbdx/nYEhPnhnVUv4bnfHoOuUk/dBO7o8pjbsfnWhEvMAj+sJyB1TKEj8zKq/FKYOBGsDWKS+APJePfGTzFkWn/s0XsxX0oLUrVddv13gMYkMoUUpgZxSH3W/boVcqUM975/K8RiW0xSml+GdT9vRdLRFEgVMoydMwJjrhkBiZNzymAwGAzGpUZ7iUkI48aNw549e/DQQw/R/2uorKykS3369u2LBQsWYODAgWgtSH3LDscTW3+yEzfUQNwOHt/yA0oNWkRoAqGQyHBLr/FoS5Bfw6kxA7H6mtcxLqqvy6RBInzI1ZZRUUBHYMG5HVBJXD/Mi60CfCw6LEnYhWd3/mpbmb4b+HwgsOFlIH41cHY5sOIx4OsRQHHyhes8g8FgMBiXKDpzy9rHVrdwe19++SXmzJljJ25499138cEHH7TocRgMZ7x5zYd24oYaiKjh9as+QHWlHqGdgqFQyXHVdPcBH5dXZiduIEgzSyDJcZ3wL7KKnIa4dPjdmbihBokY1gAVZgT4Ysmbt2JMQTXkOxPsxA01kCqpVaVV8PXgJOENpK+aTfGQZpTaxBm1HbZCmlkKzcZ4jyG7uNK7Ck/OKi0Rln62Gj6Barf7WkwWrPpuAz657zv6+simE7i9y6P46YW/sGfZQez4Zx8+vOtrPNDvaeSlFnjVHwaDwWAwGAwGo6UhVbReu2qenbihhoriKrw6632YDCYak6g0Ssy4b0qb+hJEnAgTb7oMfyR/jV4j4hzEDTUYdEYal6j96tzp2jP/fLQCfiHu53zMRguWfbkWnz/8I319YM0Rmgz2y8sLsWf5IWxfvBfv3/4lHhr4LBW5MBgMBoPBaB/UFzgMGTLkovaFwWgJiIPcK1e+byduqKGsoAKvXDGXCgZCooOg8VPj8rsmXrQTL9LqIT6cAFFRee38BCcSYcqkPvj7nyfQtUe4g7ihBiJOJkn8KpkXifwmC9o6C99fioAwf7fbmPQm/PPxSnz31Hz6etfSA7ij62OY//oiW0yyaA/evfkzPDL0eRTntg3HCgaDwWAwGN5DhAu7d+/GunXrcN9996FXr17w8/ODVCqlbnNXX301/v77b5w4caJVxQ0dUuBwqigdhwuSXL6vsxgx/8zm2td39p2CsVF9GnUMmVji9MT1CIjC8HDPdl3u0MhU+HrKwwhX+WNr1km3254sTsNV3UZ41W6MT9u2MLTCiiyt42C7RjDh4fJTOJm5GPuz/8OWnBXoenIB4tMOAn/fAhhtVih2VGQCC28ABP7CdJ7BYDAYjEsUlbRlK42oW6g9QRDwxBNP4Mknn6Q/E0gFkR9//BGvvPJKixyDwXDHqV3nEH/QteBWV6XH8i/X1r6+9ZoRGNI/xum2Iq0B0tOZDuvlchk0uxIhP5VtV9GzR0wIBnaLhMj5WLtXaPp3wuv/PgufQA2ObKizRnfGyR1nMe1O7yYeontEuH2fM/HQbEmA73/HodqTCtXeVPqzZnMCOC8G/mWJBV59bmlWmdP1JGkqL7XQcwPEXW7BLhzdchJvXvuRU+vs3JQCvH71B3b2jAwGg8FgXIoIVg58MxfSBoPBaBxHNp10KriuL7xe+e2G2te3vXod+o7p2WhnBSJEaEjc0K7oNbI7mkNQRABe+ftpSGQSnNh+xu22RHQ87c4JXrUb0zsKbRmBF5CfVuTVtut/24qjW0/i7Rs+oUKPhmQl5FLhPYPBYDAYlzrtISYhY4gkOai+g0N6ejpee+01jB49GgEBAZDL5YiOjsbMmTPx3XffQa/Xt2qfGIzmcmDNUWTF57h8nwiv1/y4qfb1XW/fhJ7DuzXqGAq13GlM0mtkHI1LGi1yOJ4M8Y4TEO85jcj0bLz64mzwVTqc2+86B63ms86Y2s/9ASw8uLxSxPbrhLYMb+ZRkOFdTLLyuw04tu003r/1c6eOD+mns/DuTZ+2Qi8ZDAaDwWhftIeYxBkzZszAzz//jHPnzqG8vBwmkwnZ2dlYvnw5br755lonp9akw3lB7ck953GbfxN344ouwxCm8kekJhDfTX0UC85tx7yDSzzu28U3FD9Me5wm9GVVFUMtkUMqlkDKSRDtE4T/7filWf2vMumwKH4n+gbFuHRvqM9vZ7Z41S5RF5M+moW2rwiuYaw+F98W7oQMdechktfh6fITKP33dsDoxjK7NBVIWAf0nnVhOstgMBgMxiUIEWSKReRh2gvbVQ9IRBx9NmuJijB33HEHVQvXoFarsWjRIsyaxZ4LGBeGIxvrJqNcseLr9bhszggERwUgJDoYH71+Hf757wB+/GETrCo5REYLxFnFEKcXQGS2F+7G9o/BuytfhFQuoQn5Sn8lxAEayKQSRAT74oXPVjSr/6R60ob52xDeJdRlpdT6/PfZaq/aJVWMODFHk3Zq4P2UsIo5iCv1EFnOC5IqDV67Mdi1X6qD/FQuDAMjAZFzvwdxcTWkWa6dLxrDuzd9BkO1a+eZ9DNZOLzxBIZPH9Qix2MwGAwGg8FgMFoyJlny6SoMnzEIwVGBNCb5cNPr+HveMvz1dt08CYkGhKggWGJDYdUoITJbIM4pQa8AFd7593/0ubsgvQgqXyUkUjHkShlCY0Lw8hVzm/VlFeeUYtuiPVD5KjxuSzTFy79a51W7MqUMIpGoYwiRrcDcm50nEtWQdDQNJ3acwcAJfS9o1xgMBoPBYDSO5ORkVFVV1b7+448/cMMNN8Bisc/tyMnJocv69evx3nvv0aJORPDAYLTXmGTRvOUYOLEvgkhMEhWEj7e9hb/e+ReLP/A8x9F7dA+8tfQ5WMw8CjOLofZTghOLqeiBONU9O/nNJvWbxDwwW5CfmIc9yw/CYvFcWJXMeax68S+IxvSB1de5u5w4ORciC0/711EgrhZzb/4MZjcFqs7sSUD8wSTqzMdgMBgMBoOBS13g4M3AtJG34Na1H9Of/eVqPDrwCtzVZzLWpR3BiaI0t/tmVBXByJsR4xuCYKWvw/v9g2OxJvVwMz4B8MupjRBzLatuIcmH0zsPxuq0Q2gPcFYB75QctBM31CdQV+C5kbSdTODAYDAYDEYropEpMbXzIGxIP9rstkg7pL3mPgc2FDeEhoZizZo1GDZsWLP7yGA05nfRE6TC5pOX2RxF/EN8ccebN+L2R6Zj94fLkbLDfYXSrHPZdMA4rHMIAsMDHN7v3TUcO46kNPkLk+RXYPGHK2AymNCScBIOo68ahj3LDsIUGwTDwGgI/ucH+808ZClFUB7JqBU6NAX1wQyI9Gboh8cAEvsqBuJiLXzWx8O59KHxVJVqPW5zfOtpJnBgMBgMxiUNDxH4ZpoIkzYYDEbLxyT6KgOeGG2LSQLC/XH32zfhrjdvwo5/9tFKq6QF89DuEKKD6tpVSGHpFY0ECw8zEViH+iE4MtCh7R7DuuHQevducJ5Y/OFyVBS5KXLUBMRiDsNnDsbBtc0fx2gLVBbXJUK6i0mYwIHBYDAYlzItHZPk5eV53J44LTSGY8eO2b1etmxZ7c/EuYHMc5SWlqK6urp2PamcOnv2bHz77bd48MEHG3U8BuNC4I2mWFtejf8b9TL9OSgyAPe9dxvunXsrjUny09y7LScfTaPihpDoILo0pMfQrh7d4DxBBOBE0O0NIkGAZP858H07QwgPBMTnrzt6E8QpuRBn2D4PcakbPKU/jm05hY6ANzEbiUmYwIHBYDAYlzJsnqTpdDh/7xERPRq1fbmxGu8d/Bdv7l2IB/pf7nF7wWrFY1u+d/n+Nd1HQSVpnuI2S1uC9Er3D+uNJaUiHwllOYjSOE42NIYghU+zP583jNPnIYLXNa8RF1VbGQwGg9F0LMV6VO3OQdWObBjTK9ipZOCWXuNb5Czc0mtCs9t49dVX7cQNsbGx2LNnDxM3MC44pOJQYygvqsRXj/2Mb5/6DTc9P8fj9rxFwFvXfeTy/asm9odc5lzLLvI0s2DhIS7RIpmzIlMuhqCxf/bnQ3xhGhAD48DOsEQFwNqIR+7UExnITyuAz6Te0E3oUSduIEjFMPUKh/byPtTRwSUi0GpOpDJsDVYJB0FWJxBXncpF4G/7odmaCPmZPChO5cJn7Vn4LT0Jsa5lRRueYCEJg8FgtDw5+gKsyt2C5TmbkFjlvlAJg8FgXKo0NiYpyy/HZw/+gF9eWoAbn7uaruM7h9iJG+pjlojxxvvLXbZ35YPTIG0Qk1g5EfhgXxpTWKWeCzylHE+nTg4tScKhFJQXViAg3K9Zz/gkgYo46rUHiGMFg8FgMFqWjLNZ1Anp349XIuFw04uMMNonI0aMQKdOndwujeX4cUdh6O23347Dhw9Dr9cjMzOTOjwcOXIEt956q52j9aOPPorNmzc3+3MxGBc7JinJLcOHd3+NBe/8hxufvcrj9majGe/f/oXL92c9fDnEkuYVlk04mEzjB28hbtyS46mQbj1OxQ6SvWch3Xa8VtxAOL0rHia9EX7BPs16xg+NCYak3rxIm4bFJAwGg9HipJ3KsMUkn6xC8jE2T8LouLSPEdhGMDSsO03CLzF4rlxTn8WJu3Ftj8to8r7OYnS7bWZVEXV6GBjSxeE9P7kaDw+Ygc+PraRiCGdOCry16RVJm0NSeS5kXNO/8h+mPopu/pGYuuRVtDadLJ6roXqk2+SW6AqDwWAwiMDPxKNsSSL0p4pBS/idRxqlQdCtvSAJal7lfUb7ZWR4D8T5RyCp3HPVIlfE+UdiRHjzrEm3bduGefPm1b7u3Lkzdu7c2aTJBAajuZDqOz4BalSV1VXU8oZlX67F9Hsm0UQgd5a+hPTTWUg5kY5uA2Md3gv0U+GuMX3w89YTEBoOHFt4qI+kQd8rAkKA2v49Mw+RwQz9+J61q4xDYyHJKIbiaCaMo3tACNLUNdUjAqJqAxS7E8BV6r36jMmns6C7baTL9/kQH5i6BUOe6Fzw/eGm1xEUGYj7+jwFc6cAGPpFgg+zOetxpdWQn82DPLkIIisgTy6my8Vk6OUDL+rxGQwGoyOh5w34Kul3HCg9Ybc+ThOL//W8HyHy5hX1YLQOglVEl+a2wWAwGsfIK4dA5aOErsq75/QaFn2wHL+e+xwcESPEhrnd9lx6ETJzShET5Xj9JQKA656eRV0YBCtg6RkFS7cwQCal70tEIlhT8yE9nQkRf2HnSxIPp0DshcDCKSLg8z1zIVNI8ciQ59EeYDEJg8FgtByk0vi8O77EgTX2TkB9x/TEq4ufcepqxLj4tIeYpL6Dg1gsxoIFC3DTTTc5JDQPGTKEvjdx4sRa1wYicnjooYcQHx8PqdT2rMVgtAXGXjMCcpUcRp37/KuG/Pn2P/gt8Uuvtj29Ox756YUIjw11eC+iaxiufnwGln6xxm5uuwaxhKPFpFoDkckCUYnrnLUzexPBuSv05K5tkQjfHp4Hk8GMJ8e0fu5WSzCMzZMwGAxGi1FZUoX3bvsCRzaecBAWvvL3UwgI82dnuw3SHmKStkqHEzgQ7ugzCZ8fXdno/ZYk7kW4OgCpFfket40vzXYqcJh3cAnmn9nicr+LJW6owSS4T5Ryx/GiNMQFROFCUCJW2L02gsMBRRh0nAS9TOWItVQBIjFg5Z03ENIb6D7N84HS9wBF5wC5L9BjOqBoeuUmBoPBaHUMFUDOQaA8A+A4ILgXEDEEkNhfM71FMFhgiC+F1SxAGqmBLKouabUhpYsSYDhb4rDenKNF0c+nEPbUEHDtpHIdo2UhA2nzxt2NO9Z96lEk6gwiLp037q5mVRQUBAGPPPII/Z+gVCqxevVqJm5gXDTI7/PsR6Zj4XtLG73v+l+2IjAiAAUZRV45IjgTOHz52M9Y9d0GKH0UMMWF1woAxHkVkCXlg6s2Qp1aBEt0ICzRAdQxgSvTwdwjDFafBvcUTgRLlxBUh/uDcyKWtqoVMIzvDeX6ExBZXDyb18McEwizh21M3UNdChzO7kvE+OtHwdg7HPqR9vGYEKiGfmx3CAEqKA9l4EJAJiEEFwlZcUO6YPDk/h7bOJSYhbT8Uvgo5RjfvyvUijp3CgaDwWhr5OnLsTTrIE6VZ0EqEmN8aG9cGTWoyW6flWY99hYlwChY0Ns3Cj18I1xu+3HCzzheftZhfZI2HW+d+RKfDHwZcjG7hjIYDAaB4zjMuH8yln62ptEnZP2v2+AX4gudXz3HNRekpBc5CBysVis+vf87rP9tG31tHhALvqu9WMJCikN1CYNVo4BsT7zNae4Cwps9xy5OsQJn9yZQUXtbwV1M0md0D/S9rE7A7gzyfR3beho5ibnQBGgwavZQKNVNG2tkMBiMC0F2aQUW7z+J09kFkEvEmNK3O2YN7gXleRFdYynX6rH3bDpMFh79YsPRPTLY5bZvXPMhTu5wjEnO7EnAi5e/g++OfghpE/vBaD8cPHgQERGuY9em8P777+POO+9EamoqdaZuKG5oyAMPPEDdHH744Qf6muy3aNEi3HHHHS3aLwajORD3hGl3jMfqHzY1aj8SKmz+YydUvkroPBRWsgpWpJ3KdBA4kPnCD+/6GlsW7HK5b2uJG7zF1TO8J8jz+9l9Seg+xDFf7WJBBPICUbY7YdDkfug+2H1fyfd1dPMp5KXkwzfIByNnDYVC1bSxRgaDwbgQ5CTnYfX3m5B8LJWK+cZeMxKTbhkDubJp166ywgoqWLCYLOg9ugc69452eQ94Zdb7iD+Q5PDeie1n8NLMufjm0DwqmGUwOgodMhPx9t4T8e2xNTC5Sn53Qa62BFd1G+GVOMLZxO2G9KNuxQ3tnVUpB3FnnwvjirBNGYUKTgo/wYxffHvjR98+qBDbzrnIasVoQz7misoRUUDsGhs8KAfFAbf9Y0v+dUXeSWDZQ0BhvUEoqRoY8wQw8cXW+lgMBoPRdMj16vTfQH2hWkkSkLYNGHwv4OP9YCoZ7KnclAHt7hwqbqhBEqqCJEQJq8ECzkcG9ZAwyOP8Yc6rdipuqIEvM0J3tBCa0ZG29nkBfIUJIgkHkZSD/mwJFVOAFyBSSCDWyKDoEUDfZ3QM+gbH4KvJD+H/tv7QKJEDeZ4i+5H9m8PSpUuRkJBQ+zo6Ohpff/11o9r4/vvvm9UHBqMhpFrpPx+vpAMRjaEwqxhTbhvnlThCoXFMOiED9kTcQOCqDFAcTXe6L3E4kGaV0oVg7BUBq9r1oItVKYXVZKX7Ob4ngyU2GNLkAo99FpTSZm2zdeEuTHvkcuiHOwo7ajD2jYQ0tRiSksY5aDSFTj0jkXEu2yEkie3XCW+veMHtvmcy8vHa7xuQVmD7DghE3HDv9OG49/IRrdVlBoPBaDIb807h9RP/wlxvvG1/SQJ+T92Kr4bfhy4ax2p57gqAfJOwAf9m7odRqJO+DQvywehgCczWSvhKgzAkYDK6agYgsSrNqbihhjxDIXYXH8aUsMvOt2+GzlIIiUgBi1WOo+UnobcYYOCtkHIqBMp8MTywFyQcG+hnMBgdl5ueuxrLv1zX6MSZwswiTLltPP6KzwWk7qeQlArHZ/d1v2ytFTcIagX4Lq7vD0KIH4Rwf4jzy9FeIDHJZXOGo61AY5Kz2Q7ruw2KxRv/Pet239N74vHxvd8iJ6nOlZMkkt3x+g24/pnZrdJfBoPBaA6rjp7Dq/9uhOV8oRvCroR0/LjlAH558DrEBAd43ZaFF/DZ0p1YsuskFTfU0CskAHHpFdBnlyGkUzB1Wx04oS9NGDqx+xwEtQyc0QJRg8RYci3etWQ/Jt86jr42m8wozi6FQi2HiBNh/+qj0Gv1dKyQuCwFRwfRitYkAZjRviDiBjIH0ZIMGjSILo3htddew08//VRb+IkUfWICB0Zb4+YXr8GanzbTuenGzpOQ6+nq7zd63FbpZJ5k5bcb3Iob2jtbFu5C//G90Fbo1DsKGWccY5JeI7rj1UVPu92X3F8/uf875KXWzS9p/NW46+2bMOfxma3SXwaDwWgO637Zgs8f/tFuvI04vC187z98uOUNhHf2fp6ExAzfPTUf63/dCnO9nAIiYgvrHILqCh3CYkIw477J6DemFw5vOO5U3FBDyvF07Ft5mAouCCYjiUlKoPRRUgUh6aeh2gCLmacxSUinIAyZNoAJIhhtmg4pcPjq2OpGixsIISo/3NxrPH45tQlVZr3bZLyJnRwr9Cw4twMdmQqTDitTDlyQYxk4CdZ2uQLlxcn4wn+g3XtWkQh7lRG4w+yDJdwZ+AumujeDugEzPwZ2fAiUZwLqEGDgLUD3KaSUrm0bsv6PqwB9mf1BzdXA9vcBEQdMaB/20gwGox1jMQDafNs1xyeKlFuzredNQMFJQFsIGCtsr4n7T2my7f+GmLTAga+A2ElAl4mA2HPiaMWGdGh3OA4yWAp1dKlBf7wI8p4BEKo91doG9KeLoR4ejsptWag+kAdBe34fcul1MmbFaaTwm9kF6qH2FfwY7ZcxUb3x58xn8OKu+Ugqr5sYd0WcfyR1bmiuuIGwePFiu9dJSUl0aQxM4MBoaX579e9GixsIxDZyzhNXYOmXa2DQuhYMqf1UGDbd/jmZsOKbdWgKlhj7qqvOsHKAyEWYxUcEeCVw4LQmz9voXd93qkq1WLPvHHWWcIepRygk+9LQLERAbN9OSD+d5XITZ4lEnftE4+FP78b81xbTiZjAcH9cftdEWuW1xq0mo7AMD3+1FFq9/XdcbTDhqxV7IOE43Dl1WPP6z2AwGB7Qmg1IrsqHlBOjl18UxCQ2Ic/2vBHbC48iS1eIAkMZDBYeZquAPYWpMFMLXBFUEhOCldVQS0wQiYrw2uk3cH30FZgVORMSJ44/Dfk8fg0WZ+yrt8aKfgF5CFJUIFFbt/ZE+Q709BmJ4+Wek3P3lxzDxJChOFH6G5IqV8LA25Jly81qJOuDUWz2oa8tAocKkxz+0gA83P1qTA4bzH5XWhEBHHhwzW6DwWA0DlLR7ZeXFzapKmhgeACue2YWlt7wGXShrh2P/XyVGDIgxm1MwncKqhuXd4GlU3C7EjiQmGTT7xdmLojED537Rjc6Juk2sDPu/+A2/PzSAhRllSA4KhDT756EQZP61dsvCy/NeBeGavuYhFTJ/eHZPyCRSVhCEYPBaHWqyrTIOJMFqUJGnTCJAxGhulKHbX/vQXZiLoqyimlijt5Hhg1RIji7s+VWVOHal7/Hs1174YZnr/JKNPD+oi1Yuue0w/r4ojIkWvTw330OnFnApj92YOxd43FOI0LxfSMAqZgEFZCnFEN9MAviyrrr6K6lB3DZnBH4861/aZJSZUlV7fWc3JsbQq7Pj35xL8Zda0tAYrQOHTUmiYqKQr9+/XDy5En6+vDhwxe7SwyGHUR888vLCxotbiAEhvlj1sOXY8NvW2E2up5nIW7Y/cb2cipw6MiQmIS4XFwIiEgvpleU07ijBmfihp7Du1GRwvf/+x0luUQ0GIQZ90xG/3G9a7dJPp6GV658D0a9/byRtrwa3zzxK+RKGWbeN6WFPxGDwWDYQ57ZyTVOrpJRx5mamIRci7b9vRs5yfm1MQm5Xh3fctrps31eaiHu7fUU7nn3Flz71BVeiQY+feB7bP7T8XqefDSNLjVsmL8Nk28di8TDqR7b3L30AIZOG4Df3/gHG+dvQ1VZtduYJDQmGP/39f0YNWso+9VoRTpqTHIh6HAChy0ZJ/D72a1N2vea7qPhL1fjl8v/D7eu+wQWwXn2jkamQH51GXxkSrv1p4szGnW8CHUAFUukVxbSynXNRSmWQU8SYVuJWN9QZFUVe9yOE3EQmvl5yJTHkFnv4+aV75HIx+k22VINFmu646HKehX8SlKAv6623/D0ElvicORQYNi9wOmljuKG+uz5Ehj1KCDXNOszMBgMhlN4M5C0Dsg7YhMvEOS+QMxYQBkInF1iEz80CiuQvhWoyIDQ+3YIBpuAgJM5PjDzWhO0e3K8btmY4OZ6Wb9dgwUlf56FoeH2LsasiACi7N9EiGQcVP1DvO4Po21DxAor57yGg/lJWBi/A5szjts940hEHKZ2HoRbek3AiPC42kTf5nL2rOtqvgzGxWDboj2Ntl2u4fK7JyIg1A9zV7+M56e+Db5eBbn6qPxUKMkpRXQPm3tODQmHUhp1vOAR3SD0j0SlxQxyJJFgc3do7F8nESETiG2wQedamEEdI8hncjPRzFlcT3iQz5tT5EXyk58KzUUiEeOVv5/Cw4Ofd/k9OIMMgr14+Tt260i1KLGEQ+9RPTDr0elYUljgIG6oz68bD+HG8YOgkHW4kJ3BYLQBiOPWl/HrsCb3GAwkPiGD2Ao/3NV1PEKVcnyR+A90fF1MQsa8BasIMokIUrEIHKyIVFfa5auKRGb8l7MCSdoUPND1fuh4EwJlGijEMofjFxkqsSTTvoBGrKYUUaoKp/1NqDqAaouaOi+Q+IK3chDoncr+bqXn9diS+xzy9PZJHf7SagyVVOOkNhp5Jn9IOAEBcgNKDeV4/+xfdDxtdHDfpp1MBoPBaKNs/H07Ns7f3uSYJDgyEO9+dDue+3AleBexu29+GUqyShDRta54hcVsQeqJunkSq8xzIY7ofjGQVVQjLzkfQhOSnxoiV8lhdBOTNJeoHpHIS/NC3M2Jmv15iMjgpYVP4eFBzzYqMSzlRAZemj7Xbh2ZMCcJv/3G9sQVD0yjMWtDcUN9Fs79D7MemgaJBxcPBoPBaApEwPD9M7/ThKGapEZSoZRU+iaJRV899jP0Wvt5kvKpXSFEhbtsUx+gwLffrkb8wSQ8/dPDVLBFik7IlY6OpTnFFVi+94zLtgQ/JYw9Q6E8nQ9BJcUKXgsBCpu4gSDh6PummAD4Lz0FSbmh9nMR8djp3fF27TlLJCIU55Ti3Zs+xXtrX8bQaY6FTBgMT3Tt2rVW4FBYWMhOGKNNsebHzVSs1tSYhNwXXl38DN689iOXz8IqHwVK88oQGlM316yr0iMr3vu5cEKnXpHgLQJ1EWiKIKMh5F5m1LVe7lZ0jwivYhIiTmju5yEig5dJTDL4WTpG6C1kruqlGfYxCYlRJVIx+o/vjSsenIaln652EDfU58+3/6W/C94kCTMYDEZTxNbfPTMf2xfthdlomycJ7xKK2169nhYM+e6p39zOeTuDtPPjc38g8XAyHv/6fugqdQiKCIBM4ThPkhmf41Tc4IqtC3d7tZ22QkdzDOIPJnsVkxRmFtN77QebXqPOdQxGW6PDjUwuiG965RyN1GZdNiC0C5bMfhH3rPsCZaQydgMKdRW4a/1n+G/2S4jQ1FU6lYolgMX7C1tetXdJo54glfZu6DEWs7sNxwMbv6YV+FqDG3uORbGu0uN2zRU3EMgl9Y8zW6F3IW6oYbU61l7g4LJTPJB90LZ4wlQFJG8G+s5pRI8ZDAbDC8j18fjvQFmD5FNjJZC0tvmnsCwFFb8uRXV2J4ikHJQDQ+B3eWeIfesG8A1nSWJp8wdmGiJUmWHIsSl/G0P5ylTIY/0g9nF8oGe0T4hoYWRED7poTXoU6MpRbTZCLZUjTOUPTQOBaEtw5ozrySgG42Kw8tv1Td6XODMQBozvgy/3zcWL09+l1XgaUpRZjP9NehPfHfmAVlitQSaXej3YohveGUl9QwHBUuuIQFwayO2K4x1FDkT44AqF1oA5/zcTE24YjZeveM9hErquEYAzA4KYqCgcE6VEvBWCrxpWmQQiJw4YVzwwFYlKz9UJrG4SdbyF2HMu+XRNo8QN7iATJIcLS7Bz3V4IaqlbFUlFtQEHEzIxvn/XFjk2g8Fg1ECKeTx5eD6Ol9kX6Sg0VOCz+OXwlRsdrk/kci0WWen9gYzShCurXBbjPllxGrfsexVVZhkVDkwNH4QHu81AgKyuiMS2gjMNCn1YEaMudfsl+ct0qOQVtDNi8CBzsyaBDGvWdUSKNOTpjzndn/S3tzoPBSZfWuWGE1nhKzNAsHL4NW0h+vm9AB+pL/tFaQXIOSZLc9tgMBiNozkVS1W+trh9+GU98c0Ht+HZVxZBW98JwsxDkpSDoqQ8/G/SG/juyIfwC7ZdQzkxR5Poa56hRdWe5ypyjqVBklsGa5APRAYzuCrX7trukCllmP3w5bjs6mF4eaZjFdCW4soHpuLM3gSP27WEWINMjJOkn5ZIsiKQ7+XE9rN08URZQQVO7jyHIVMc3cwZDAajOZgMJloYomHCTUFGEb545EfX+0V7fl43Rftgz/JD2LviME3gUfkoMeX28bj77ZvgG2RzdCNsPpYEwUOWprFbMBU4VI/oBMHPlkPQEKtSiuoxsfBbYxM05KUUID+tcUnmJHnqy0d/xlf737PrI6Pl6MgxiVJZN9/C8y0zhslgtBQrv2n6PInK1zZPctlVw/Hx1jfx6uz3oa9yjC2yE/Pw7OS38O3hD6DxV9N1JIG+sWLjrPhctASkANRVj82g7tuvXPl+bcJsa8QkB9Yc9bhdS8QRRBT932erGyVu8DTvcmzLabp4grjRndufhH5jHF06GAwGozmQuXQiAkg+VueSQCDP8p/c922zT+72xXux45+99NpJ5v6n3TkBd711U+29irDz3/oO1y0HEfnlJuc3erzoi0d/whe734VPACsI3hp05Jiktelwn/psSWaT992Vc8bOrUBwanJpo9SgdXCKmBpz4SsrEHHDiqtfxeujb8bg0G5YetXLGBravcWPMyG6H3W4mN1tBLgWqrbsCb3F8wREJddKCbGF51qnXQaDcemiKwZOLnQUN7Qw6gjbfdBqFqA7XIDCb0+Ar6y7ngpubDybg1BlavJ+ee8dQNH80+C1rTPIw7h4EDFDN/8IDAiJpf+3hriBwWiLNBwMaQxHN52wcyuwOEnyr4FUJlr+1Tq7dZfNGe7VcUxdg2HsZ+/+UAsROTQsiEMGwl2ERzKJGPNXvYjHvrgX/cb2xjeH5qHP6B5Ot7UqZNTxjYgcaJu1b1ghsljpepGYg6ByfM4fd91Iar95xWV9PH4+WUoRWgJDddOSq5xh7BKE6olxdPLbG9KTWmZShcFgMGrI1efhw/gfkWc6hSBlNaREzVYPhZRchF2fLyJyUIrNEHPuZzTVEtuEM3EZXZVzEI8c+saugEg1LQ5ihZjjIRVb4CvTQylxH6dIRFZIRXX9Jbq8+v2nEwUi9/bMMo5HqKwKIlihEJupi0OQQgerKAfPnHgKH5/+DhWGlrvuMxgMRnuNSY5vq0s06RTiA27dEUj3nIPkRBqkh5Mh33gUkqS82oST1d/XuddxHIdRs+ss7SVZxUB9cYQThEANjNMGwjS2N4xTB8AwsS/4IE2jq4rOT/wSD39yFwaM74uvD85Dj2HdHLazhPrCODAGxsGdYYkOhLWRUx0kHhl77Ug6MX2h0HshEmktMs9mXbRjMxiMjkn6mSy8cc2HDuIGr/Ams1Kwr05Kqniv+m4Dnh7/Gq3QWoPW4Hk+wyoVwyoWwdDDvQM1cXHgVbaxnsLMpo1H5abk46bIB/DOjZ+gurLxhaQYHYPq6mqkpaXBaPS+cEtJSUntz0FBQa3UMwaj8ZhNZnrNbyqndtYJcjv1jITJjXiZuC6s+3lL7WtSJXvo9EG40Cg0CvyZ9g0e+OB2DJ7cH18feB/dBsW2+HFm3DMJI68ciql3jMeFwmVBqwtA5rnsi3ZsBoPRMUk9mYHXrprXrLGzxoQv1RU6Op//v4lvUMe3Goi7Q2uQ74XDjzOyzuXgxogH8N5tn1/UsSgGo8MLHJSSpie8L0/ejx9OrscVS9/CZX8/hwqT+wvJ2jR7y/t7+k2FnLg4XCCknAQfTbgXXf1tdpybM47jme0/41Rxurv56EbTzS8c30x5GBJOjGifYNzUYxxaGxFEGBvV2+N2XcyeHSWaxM4PgcO/tU7bDAbj0iNpHbD3U6Co9avMi5X2CTl8uRGVW+qqs4pkrWTh2JyqDVbAGF+GvHf3o+DrY7Cct3NmMBiM9gpJrmksVpEIglKGVQt34eeV+3HdS79hxjM/onBCHIxxofR9VxUg6nPDs1dBIvMckxh6h3voT71Lu9ECxZ5kiJxM/sqkErz7zGxER9ic7bb/uxfv3fo5ko6mQuQk2hSZLVTYwAmAxASIDVbbYgTElrq82obuDd0GdcYri56mCVOxEYGYPcp1rCDJKoMktwLNhVSfHTK15UTs+qGdGrX97w//jI2/b2+x4zMYjEsXktzzR/oiPHfydZypOgo/uRFBSh1i/Uqp0OH8VpCSi7MbyK1IIvLs2tmwnWx9Cf5MqysSohSLIRXzVChhu701bRSLCC6IWIFMFFSbZVCIPccRSs5ExQ1k3/pYISDecAAPHH4aD+/8DiXEZY/RIvAQtcjCYDCaF5OQJE3BTwVBJYdVLoElKpAuVnmd+NbKiaggeeWf2/HTf3tx/f9+xdXP/IqycT0g+MohziiEOKcEIov9dX774j12r296fg7EEq72uV56Mt11UqpVgPW8i13tqgANTGN6Q/CyYpxCLccbS59DSJQtqW/zgp14/7Yv6IR1TRglyCXQTe0Lw+Q+MPeOhLlnBAxje0A3azD4Bsd3Rc8R3fHCH/9HnSu7DYzFhBtHo7WRyiQYNKkfLhbf/+93bFtk//0yGAxGUxAEAZ8//CMe6P8MDm+oK+7RGBSpZU3eJvNcDv75aGXta2W1Z4GDpEwHQSEFpB7mVEiVcB+bi7bAW5tV0Xrnkv2Y4383npnwOsqKmj+2xWgfMck///wDtVoNjUaDrl27Ytu2bV7ve+xYnYvhgAEDWqmHDEbjkUgl1EmhqSz7ai1+e/Vv3Nn9cdzZ7XHqjuyObQ1ikltevIaO718oiGPQOytegH+IH329Yf42zLvjS2ScyXLpgtoUSIGpZ35+hP7cZ3RPjJ49DBcithwwwXPRqdbiq8d+xu5lBy7a8RkMRseBuF19dO83eGjQszi+1bOLTEtDxqmWfr6m9rU38/lNoVkxicmCbX/vwVW+d+D5qW+hsrSqRft2KdPWY5K2TIcTOFzeeXCT902vLMRnR1YgtSIfOi/cA7Qm+4nT7v4RGB3pOSm/Jbiiy1Csv+5NzIgdAoPFhFvXfIzHt/6A0yWZMAmWZuWZNoQIN4i4oYYon9ZX/0+JGYA53UchWuP+WDdrk1qnA1YBWPMMc3JgMBjNJ3s/kLGzmQoA7xFMjkm1umNFMBfrYUyvgHZX265yYM7WIv/jw7S/DAaD0V4Ze+0or7e1SsQwDuwM3VVDoZs9BKd6huCHZXuRmV8GvYUHH6yB/rJuqJ7SiyYcNYRUfahP90Fd0H9cb4/iBT7Ug+W9CBDpDJCdzoFmzQnIMoqhWn8CsuPp4AoqwBVW4srh3bH483swdmg36LV6PDbyRcy96TMkH0uH2Wihj9QOzZp4iPPL6x+mdqmBK6oEp7OPx2589mqIxXUxSZd8LRRHMyEy1HP/MVkgP5ML9baEFgnvx98wGtPvnojgKJt4ozlY/JXgA+slTnl4LCACDa64Gp8+8D2t4sdgMBjNYV3+JmwoqKtkVwOZYCVCB+KgUPPaE7wXpa6dbbM27wiytKU4VJSBJdm77Y5lEKSotrgXB5oFDmYHeyGSSySgyiSDkZdAx3sWGJrBUfcHV/jIDcjBGdy7710UGOoqYTIYDEZ7Y+x1I+n/VpkEpiFdYZg5BMbJ/WGcPoj+bB4RRxfDjEEwDu8G44BYul4/czCORfjjl2X7kV1QTmMSIdgHhlHdoR/X06njQcOYpPfIOPQaFVf7WpJRBNneBHCFdYmaovJqiCqqieWD8w8g5mDuG+3xc15x/1T8lvAlhk8fRKvgPTzkOXxwx1d00phMytboKgzjetLP0RCrWg7DxF5UAOIJItwggusawmLD0NpMvnUcpt8zCf4hvrgYkESyD+/6CoXEiYPBYDCawaJ5y7HmxzrHn6agPp4PkRuHanlqGaTFrosXrv91K/LSCnBix2lseG4hRB5EDooz+eDI8Tw4ERE4Xcu6U5/adQ53df8/FGWzmORSoEuXLtDp6n53N2zY4NV+W7duRVFRnWvI5MmTW6V/DEZTIKLgMdeMaPLJO7s3EQvfW0rdGQw6z64mDWMSMkfSGu4JzrjqsRn4LeELKkwmbkH393saH9/7LdJOZVLxmjcGRN5yy0vX0HNbQ3gX9y5DLcHld03EjHsnQ+OvxsWAnEMiYC8rqJtXYjAYjKbw55v/YuP8usJyZCzI2DMc1VN6QzutDwyDOkFQN72wujeQmISMtx05k4HVC3ehzWIFjm09TWOS0nzPQnMGozXpcAKHO/pMtkvGb026nXdOqI+Jb9kBDFfszD5NRQ3vHfgH9274EkcLU5rfqNUKUYMspM4+Ibiy63C7datTDzX7UBIRhyu7DIPYSerRoJCueG/sneBEHOaNuwsqia3qRUNma9MwXdeKFsnkXPx2BbDxVaAsvfWOw2AwOi5kxCLjwj6UVuc6Tv5aTTwKPj6Mou9PwlLcDtwRLFaU/HUW5vxqGFPLwVd4b8fLYDAYbYHrn5kFTizyStxgmNgHlh4RgEwCnhRPdZF1aYnyh7FPhMP6zn0cr/smJ04L9gcmijjPo+rK/alQHM+sFRuIzDykSflQ7jwH5Y6zOPjuf3h66PP44dk/8OykN5F4yLuYRHY6C7Dwzt/kBchP2T/jx/SOwrjr7UUjWxfuguJkDnz/OQLN2tPQrDsNv3+OQHkoAyIvPltNNdSJN49xWsmp//jeePqHhyCWiPHc/Meb5MpRH4eEKfodON+W0xrhsy2Z/sxbeDxx2Sv4+cW/UJhZN2HJYDAY3iJYBazL3+x2mwDqAicCKYZHBANSjoeMs0AiItdqq114o+elHm8hVWbHcRytRY9pG77G3Xt+Rb6BDIhb4SvRw1+qo8fJrA5w22a5RenU6YEnwgfBVukoSRvqUSRRZnY/GUvmiOViCyycAe+d/h1ZukwkVMWj3MQmURkMRvuCCIRFcgmM4/uA7xxCBQO11FeZcRyE6GAIXcMAqQSCTOQyJuGjA2Hu4TgnEuMsJtHbz5OIiyog3xsPxcqDUKw6BPmecw7ODQ0RQvyoo4QrSGLP9n/24MnLXsGPz/+Jp8e9hpTjjuP4llBfp+KGGqxKGcweEoO6DuyMy66yr466fdFuNBeZQooJN14Gzsk5HzK1Px7/+j7I5FIak0jruW20FJYwX1RP6omKm4fTpXpCD1hCNA4JRY8Nf5FW0C3OYYm2DAaj8ZhNZiz/aq1X25JQw9TJH1Xju6JyUnfo+4ZDkNruYeIqEwL/Oweu2nEuXpZRgYDViW7bLi+soFXAn530FkpzyuCzJREwOx+fUh7JgjS/iroWyVPcX/ukORUQV7X8HIa+So95t3+J5GNpOLHjDEvsbAaClWuRpbUYOnQooqKial///vvvKC0tdbuPxWLByy+/XPtaoVDgrrvuarU+MhhN4eYXrmmqaWejcTpPovdc1La5iDgRtvy1k8Ykv7y0AE+OeQUZZ1un2GDP4d0wbLq94/S2RfYO301BoZJj/A2j7IQTNYy4YjAe/vQuus2zvz7aLFeO5mAymPHwkOfx+xuLUZLHEm0ZDEbjMeqNWPnt+trXvK8SVbMHwjCiCyyR/uDD/WDsH42qqwfDHNP8wnfO4IM0SO8Riuuf+QWPvbcEuaO7QTepN3g/MvfRNiDz2dbzrqwEbXk1PrrnWyQdTcXJnWdRzlzmGBeB1vE6uYhE+wQhUh2IzKrWT/64ued4VBp1WJ6yH8llefCRKWlS/oVAazbS5Y+z3lsUuiPWXIlXSo9giLEIq9Wx+N6vL4LC++CLSQ9AKbGfRKgwVjfrWJxIhLlj78TV3UfiueHX4t/EPUgszYFKKsfMLkMxPrpv7XkcFh6Hf2a/gF9Pb8L6tKMw8Cb04nW4tewErtOmtn48pC8F9n4FHPoVuHkB0G1Sax+RwWC0JUxaoDzTNvji3wWQNvLBUl9iu460JCIxYHU+6G7WalCdE4OOgCVfh4LPj9peiABplAYB13aHLNJDxXEGg8FoA0T3iERQZCCKstxPgJLkICHAlmhJKqE6KUxth7FnGOSnc+2egWc9NI3aQ276fQey4nOgCVBDKnOf+EL2l+aUw9zJdTIpqYgnKXBvO6mr1NNlyaer0BjEZToot5+DcUgshMC65BmuXAfZsXSIi+qO22d0D7z2zzMOn0lbZotJiJhBUth4e0wianjhzycw4YbRuP/927Du5y1IP5sFtZ8KE28ag2GXD6wd0B8ypT++2v8e/vl4JXYvPUAnRohtKBlU9/ozV+htog6J7UsmLVtrRA41X6jVCuXRbChP54OrlxBWUVSJxR+uwKrvNuKdVS9iwPiLZwfNYDAuPKXGKpytzAAHEQYEdIVG0riYJFufi1KT+4k/uZiHlLNAIeYhE9dXX1khtQowCuLzCR0iWMFBZ9ZAI9M6bcvIi6F1InAgogiyyMUCopVl6KIpgVJsqXV8yNP7Il3rjxh1uV1eLblWEnFDFRU42EPeqzLLan9O1IYiTl2IMIXz+0KCLhwCcXDwOG5lhVxsRrlwGm+dPUnXiSBCrLor7u58L6JUdYknDM+0RDJQayYTMRgdldi+naAe3RM6Hy/vGyQeIddTD39uprhwyBLsHcZITEImOElMkpOUB58gH8hdCBNsYmQrBIXcK+sgq1wCkcEEIUADwUcJkYUHV1AOES/AarXWxiT/frzSZRt8hL/H4/CR/kCic+c0In5+bfEzVPxcn6pS5/dCbyHtvbLoaVx21XDkpd2KtT9tQVZCDjR+aky+bRyNQ2oYMXMwvtw7F/9+shJ7lx+C0WCiyUXEOa+pkPiSTOTX/x4snYNg6RQI5d5kyFKL7ZKCSQXdld9uwNy1L6PPqB5N/+AMBqPdQRIJ4w8k0evWgAl9oPL23nKe1BMZKCuoc/FxhaCQoOLK3rCE1c0BGHuHonpUDHzXJ0CWUwF5ThXCfjgMy8AI6ALkICptZVIpZLmNHxuS5VbC/7+TMPSPgDE2EBCLICnU0nEZWWZdDKU6mAVTjD+sCifjbWYe6n0ZaC1IEtEjQ5+nPxMXod6j4/Dcb48hqrtjERRG+4V8t4888gheffVV+rqsrAx33303li5dConEMZ1HEAQ89NBDOHDgQO26p556CsHBwRe03wyGJ7oP7gKfAE2zn5u9YdZDl1Mh2MbfdyAvJR++wT5QqJ0XUm1JrIKVukeQZdEHy1vtOIOn9Mcrfz9l5yhHaO65JUWgXv/vWeqIl5OcR2MS8j/53qbePh4DJ/at3XbMnBH4fPe7NCbZt/IwzCYLfTYgznkXgtK8Mvz1zhIak7y//hX0GNrtghyXwWC0DYizWeLhFDoWQmISpaZxMUnCoRRUnZ9bJiNTukk9qaunA2IOurFx8Fl5nBak81S0wtu5Yj5QDd3k3rXzxBSRiAordFP7QrXpDMSVNqftCw05H+buYTDHhcPqazuv4oIKSM/lQlJQgcMbjtOlZn6975ieeH7+4wiPdV9wimEPmydpOiIrGQXuYIxf/CIKdZ4HSprLiLA4nCrJgN7S+srf1sCHN+Gp8uPobyrDAJN98pVZFQzp/ZuAwK4O+92z/nPsy0tw23a/wGicKc2uq/NHfs1EIowNjMADPS7DyLjxQAPhhFdkHwF+vkj2inI/4JkzgJwl1zIYHR7eBCSsAvKO1YkJOCkQOQzocQXAudEHCjxQeBrIPwEYq4CqFqzSQAQWA+8EDJVA6mZAZxPzWQUOuoIIVCT2hnA+wafNIBFRR4aWQjUsDAFzukNUTzXMYDAYbZHrQ+9FRbEHgcCVg2FV2QZPBA7gFZ4TfPwWHqROCvUHts/siW9Usj3BHOYD7Yy+LquzKo5nQ3msFd3SzsP7q2BVySDSmyE+P7BUg3+IL745NA+hMY7VVJ8c+yrO7nUfk3QdFItUJxVciWji6sdmYPwNoyGRSpo0ufy/iW80ej/thG40icgVyqNZUB12f859g3ywMPM7yJWtPznDYDAuLjqLEV8kLMWWguOwnI9JFJwUs6NG46HuV7p1LzULFuwoPIHthcdRYS5FqcV9JVNCmUEBucS5tQwZ0tFZJDALYvhLfTB3wL0oNeViRe5q5BsKzm8lQpVJilKjiooIHD6PUQqtXoGBIVnoH+Q8gbTSLMfJ8nCEKash5yywCBwEEQcezj+rwSJBiUFN+yeAiC9E1A1iREAaFTrIONvn0fN+OFUZgEKzL5QSM2RiFy5C56kyyaCRmiASWSEW2dqwWkX0GCTzd2zwZNwReyvERHzOcEp2djY6depEf35py0T4hyuadabK8w14f4rNPjwrKwvR0Y6VGRkMhiMzbv4MWheVqZ1BYhJB7nm8RbNov51r2pBpA3Bq5zmYjd7HJFYxB8MVQ+wndhvCC5DtPgfzwFhY/eo58JgtkCTkQpqc59WxjIM7w9zTfSIombhVbjvnsD4owh9fH/oAwZGO1fseHfY8ko6muW2364AYpJ7MdFjfd0o/XP3klRg3cwgkThzlPHFow3G8PHMumoqgkaNqzmCX8SA59z7/HQFncExWCowIwF9p33gU1jMYjPZPdUU1vnj0J+z8dz91mCQoNQrMfmQ67n3vFojFrq/hxF10xz/7sOPfvSjJLUXyMcfxmYaUX90X5ig/52+aeQQuOk6dEgLD/TF3zcu0iujf7y9DXqotJiGFKlor7cESoIR2TCzMMf61wjBpbgXUezMgLfCcXCpTylqskjj5nHOemImHPr7T7XdwqdPeYhKj0YhBgwYhPj6+dt3IkSMxb948jB8/niY1E2HDzp07qRBiz549tdsNHDiQih3kcjZeyGh7zNLcBuN5h+jWZOjlA3Fy+xmadN/RCOkUhG8OfYCAUMd75P39nvboGNGlfwzSTjnGJES8cPXjM6jguqGY2xv2rjiEN675EBeD0Jhg/JHyNbsPMhiXAKTI3xeP/EQL0Am8baxe5avEnMdn4q63b3IQfjV0bdj29x7sWrofxTmlVHhNMEf528QGbpCdyYXyqGshc0h0EC0AcXp3PBZ/sBwFGUVuYxJyPD7Mz3VaVWYJlHuS0Jq4ikkMI7rC0sWJWMFqhfxgKqTpRU4djG589irc9/5tTh2AGO0zJmmrdDgHB4KZ937QvjkcLGjdC0tr838VJ3GbNtnpe1JdMbD+ZeDWRXUryQU4dTtuMuRgn5t2IzgRFp/6ElmQ4oQ8CBKrFaMN+fBXBYDLyAeOfQIoA4HBtwMTXgDk9pbHbilzP2GAunqoaHGMFcDJxcDw+1u+bQaD0XYg17oTfwKlDa6PghnI3gcYK4GBtzvf16wHjv0KVLaw9SS5ZnYeD4QPAiTnByjDBwBVeVSMYSqTo3xXCqxm5wlJFxNOJobv1V3AlxthzqqCIbF5tpG6wwWwmngE3eo+4GAwGIyLjSfBAa1bel7c4DWCQBNN6nNsy6mmdA/SgiqodiVDd1lXoL6tsNUKWUIBFBdA3EAQl+sAsjihvKgSPz7/J15d9Ey97llplQhP1QLJ4FbmOcf7MZkEP7svkS7fPT0fM+6bgttfu65RgoHcZOeJufURS8XgzTy18jTGhcDUNRgCqT5rtNAqtA2R5FZAeSzHY7uVJVXUdnrGPcxZjsHoyAhWAS+d+AUnylPt1hsEM/7N2okyUxVe7Xeb030rTFo8f+IHJGtrrilWhChFEIscx0lIyr6M42kSv1JtgpGXQMfLHKrlk/HpWHUwroqchqnhQ6AQE1F1Z4wJHoVMXTaMghFlRhNeOvkXBDhOJPOCCDqDDDLOgt4BNYIIR3ylRoQrq5Fn8IVFsN2bFGIz/OV6h/xLvUWCYr2aihqs9caC5GIL4qsjkawPg0ZshMXKQcIF4/aY63CmWIdMXRKqsNtlH8wCB5XEBAnHgyOt1xxXZKWhIg8rthdthUkw48Fu97psh1EHeXLhm+nB2vYiXQajfWCoJ0LwCm82J/FIg3aPbrK53TQG4sAgzi4B76baG1dYARNxCmiYSC+VwNKPOJhaIfXm2byoyqPAgXMhTi/JK8evLy+klelqIMmFh9Ydg089NzpnaPzVyIrPtVvHh/nCZ3J/HDTzOPjHDgSuOISrpw7AXdeOhKwR4uu8FNf30xqkcolLhwdTXKhrcQNBzMHcLRTyM/b9r6mcunvpQUy6eYzX/WUwGO0Pi9mCl2bOxbn99nPheq0B/3y0go5P/O/nR5zuW5pfhhemvYP0M96PLZlD1K7FDQSpGKE3DsXdlw3CpJsvo+M4pDL4jHsnI+VEOk3UIW4z79z4KSyNEPfVx9Q5AIa+EbCEaojNHGQZpVCcyoWkTE8X/9XnwGtkVCTG6UwQV7qv6FofjZ8KD/zwEHVfJWNSx7edRlMhY2PLvlgLs8GMJ797sMntXEq0h5iEiBPWrVuHcePG0UQoAhEtTJo0CWq1GkFBQSguLoZOZz+O2qdPH2zatImJGxhtEp7nL4i4gXBk4wl0VIhT+O+vLcJTPzxkd24PrD4K/xA/ZMB1XgKJWci9xw6RbZ7kxPYzdAmKDMCVD07DLS9d06iCUDlexGItKfCrT2FmMfavOkJdJRgMRsfFZDTjxcvfcSguQZw8icuktrwa//f1/S4dH16Y9jayEhzHNfhQX4/H5kOdF7+O7d8JN/7vaky4cTRkChm69IvBlQ9ORcrxdFr4gxz3/du+rBWIEwSVzK24gWCJDqBzyvWLHLY0voEaPPDhHVT0RooIkoJ+ljA/5+IGgkgE45BYSLJLqaNqQwejxR+uoC4+D396d6v1uSPRHmKStkqHFDhEagJRZmx9mzN3kF9HDiI68dkWkVp5zNF6EAskbQC2zQPOrQQqMgHeDFgMmA7giuDLsFYd67CLQrDg/YIdEFsMiIUBsZZ6EwPaeg+4+lJg75dAxl7g7tW2quTeoAzwvA1xhrB4P6jUKHKOAcNbp2kGg9FGKDzjKG6oT9EZoCIL8LOpLO04t6zlxQ0EqwBEj3Rc72ObnJX7AyEPqlGxPg3GlIpW1Xo1FkFnQfnyZIQ+Ogh+0zqjYmM6qrY2L2lWf7IYpolayCI1dDDflFkFodoMSZAC0rB6Ff0YDAbjIkIqyLirnEPDV4MJUNicd2iBaJIo5CbJRJpZZlcp1RuIVWRNRYuGyFOLIcsqg7FbMARfBU2+l6UW02p4bQVSkePPt//Fzn/3oTCrmA6UOBOPEPGAqUcYzJ0DYZWIUV1aDXl8PiSF9olKpfnldgKKRfOW4czeeMzb8Bpkcu8qkBJ7a08Qi1SzhEPVjL4Q/O1jHRFvBUglKauV2psq4gshTyz0+rslFqxM4MBgdGw25x93EDfYvV9wDLd0noRuPpEO730Uv7ieuIEggs4shY/MfjKROB2oxMSloG4dETuoJUaUmdQwCfZDhjKxFbOiRtmtI5V5OqvPx0U+wBdDHsQPyetwvNw23iQWcag2ctDq5VQ00dmvGBLO/bUuRK5FkckHVqsA3srBwEtRoJNAJTFT0YHRIoZBkMLcoH8Eso1CYhto561iVFhUtjd4LX5KW4hPBj6PGPUE/JulwYaC9Q7781YRqs0yBMp1zgUhInLeBBpm7Srei1mRMxGpjKAxSUJVGqos1YhQhCBaFe72MzIYDMaFIjTYB7kF3jtdexOTkIpyjZ2K4zgRBCfPutKz2RCCfWHVOFYvE+mMAHGEcOMSYOkRBUlqgcfnaHFOKUTVRljVLkTNFgHSlEKX+29fvAcRXUKx/R9ShbyMTrCTpFJPkIl2u8NEB8I4Mg6GepPVpRU6/PbffpxOzMUnL10LiZeVU32DPBeNIlVYXQkciJOeJ9xtk3AomQkcGIwOzvp/9uAQXw3L5V3B6S1QniuGtLgusXrDb9tw0/NXI7qHY0zywZ1fNUrcQDB18ve4jbVbiMN4CIlJug/qUvt63sbX8Nurf+PMnoTa8RlvBA/Vw2NgGGxf/dLYKwzG7sHw2RAPWY7tfirWmujSWMh41BeP/Ijvjn6Ee969BV89/jNWfrsBzWHtT5tx4/NXI6JLGBXfkSSlqrJqdOoZ6fR7YbR9YmNjceTIEdx7771Ys2ZN7frq6mq6NPzdv+eee/DRRx8hMNDRaYrBaAsQlxni/kUEshcV0fmK2o0VgLchNi/YicDIAGxftIfeU4hTkqtn/fpUlTrJm7MS0XLdPAmJcf548x/6jP/W8ue9dkXw82KehMxPtRZknoQJHBiMjs3qHza6dc5c/f1G3Pjc1QjrHOLw3nu3fu5U3EDx5n7gYhulWoFpd06wW0dcJOKGdK197ROgwW+vLUL8AZtYXOyhaN/5RmCVSVpV4EBcLEhM8uOJT3Dfe7fi0we+x7Kzjg4/dpB4qnOQy3Gz5V+vx/X/m43gqCAqviNxWHWFDp37RCOyG5snYbQMHVLgcF3cZThT4uEPsJUhl7m2Im5wluMaJJjhazV7Tqjd8b7T9j4u3osRhkIs8OmBJJk/ZFYel+uycH/FWfQy1z0MeyTnMHD4N2D4fcDppUD8asCsAyIGAcPuAfxJJaZ6dJlgS+glVctdEdwTyG981SivqKmczmAwOg4CD5iridUAUHAKiF/meZ+8Y/YCh+oiIGMXUNi0Ktoe8cJWWdbJByEPDICl3AhBawKnkaLgs6OwGi+Mq5FbeCuqdmUj6OZe8Ls8FsbkcipKaA6644Xgy4yoWJcGS7G+dr0sxgf+c7pT8QODwWBcTKbfMxk/PveH222k6cUw94qsfcYWmwHe1eOmhYf8VONFdK7EDTWQgRJFvOfqn83FWVITqQZEKgK6g7cIdHDd7Ta+Cmin94VVZROLEAQ/JcxdgqkTheKk+/N2auc5OjF/+V0TqDvC3hUHaZWNnsO644oHpyK0U7Dd9sOmD4J/iC8VSLiCTCQfD1Y4ihto58iHl0C1MwnylGI0FpkTBwgGg9G+MQs8yow6qCUyrM49hq8Tl0HK2a7fApxPBG4uOGoncEjTFuLPtB3YV3LGYdtqiwwSToBSYrvmykVm+EoMsIoAs5VMWtalqpKc1gBZNQoNvtQdoQbBi5ikv38svh72CPL1ZSg3V8NXosaMDd9DsFpq3Rg8IeVs8QvpL8+T49scGkznHR2s4MDzHHVUqN9vspVC7PqeQhwXVuRuxf/F3YYbOt2MNRkFqBTi4acw0M9p4CX0PBGXCeJo4Y6a9/eVHECEIgZ/ZqxAvqHuet7Htzse6nYTYlQsqYhAxC0NXUEaS3P3ZzAuVa6c3B8//e3atcYO6/miTWYrBLkLCYOZh+ysZ9exhjgTNxBERjPkO87A3DMSfEwIIJMAZgvEmcWQJubCMLGf+4ZlEgih/hDnu0+YIrcMxc4EmKb0AU+OUQ+pRAzxrgRaidsVJHHoj7f+RXOwciIYSQJufWVhPQ6dysTG3fGYPKI7ti7YhX2rD1Nxd++RPWhMEhxpn7g4avYwqP1UdNLYFZHdw5F6IsPpeyKT5/FCkZtYTabwThzOYDDaD2aTGZUlWig1ciw5eBofHT8CYWJdoTvtqGgoTxfCf30yva4Ske/Whbtx55s31m6TdioDi+Ytx9HNTZgn8UI9R47piYET+uLzXe8iP72QJnWq/dW4v89TMJNCEy4wh/k4iBtqkYihnRSHgIVHGl10pCGGaiOWfbGGVpklC3FxyDzn3X2V91PQwh5EfCYyWSBNK4Y0qwzb/t6D8NgQKurITy+q3X7QpL7U3YEJHdpfTBIaGorVq1fj4MGD+Ouvv7Bz505kZWWhqqqKujhER0dj2rRpuPnmmzFgwIAL0icGozkQYRqpsn1ROX/faguIOEehBXm29uQITpww/mxmTOKJA2uOYteS/Rh55RBs/msXDq49Sudv+o3pjZn3T0ZguH0x2jHXjKCCPXJ/cwURipNK4a2B1MuCVQwGo/1ACkqQZ3iljwIrvl6P31752+N407a/d+PmF6+pXZd8PI3ed07vjne5nySnDMYBLp7/623jDG/EckOmDqBLXmoBLX4hC9Lg1lf/Au9uXwsPkRfFNJoLcb9Y8fU6PPjRnXjmp4ex79EfkF3mvoi8oHYsTFIDcarY8c8+aALU+P2NxdR1iECEhYOn9sdT3z2IiK5hLf452iPtKSZpa3RYgcPq1EM4WpiCS53+wZ3xzZRHsDnjODZnnoCJt2BASGfc0nUY8M0qQGjaxZH8udysTaaLBSKI7aa9G8nhX4EjvwHFiXXrUrYCe74Arv4WGHRz3XqxBJj6FrDMheWmbxQw8mFgxaNoFXrPap12GQzGhYc4vaRttQmtLK4nA52SdxSIGGwTOWTsBpLWtq5dQmCd2tcTEn854C8HX2WCJFgJc87FdTSqwXC2lP7Pa00QDJ4rSnjClFUF7a4ch9NOhBNFP55C6GMDIQ3xXI2OwWAwWovZj1yOHf/sQcIh1zEJSdqxdAqE9fzAAMnptJqsEMi4bL3EF67SAOXeFEhKG3m/aiP0vawnXl/yP+z8dz/2rTpEK+f1HhmHSbeMxaPDXrATYZDEH1LZlFRXJQM51PbSQ7WK6gk97MUNYsCiBngZoJ/WCfLuPvDZlQFpkevzt+q7DVjy6Srk1rNVPrzhBBZ/tAIv/vF/mHDjZbXridPDPXNvxWcPfu+0LTKxPPN/s3F4yyG3/Tb2Cm+SwGHMNU5cnRgMRruk0mTAN+d2YUnacRighUxqQaSqEsOCChEgs4l4K81yZOkCUGCwt01elHAcY/yHo19wGH5N2YFvEjdCylmgrrsc1kOECpMSHLTorCq3EwKQ+V3iiGCwSu1EDkqxCbp6qrv+fnFef65wZQBdCg0V6BHoi2RtHh0zMlIxhXuMPBmqtNLbICey0v75yoy1gg8CcaOwCCKUGZWwnG+TCCMCpdXwFeuhF6QoNPvWui0QJwhyDg6V2hKtykyVMAhGlBjU0Jpk6B+Qg1ifUig4M9233KJGodnHpbiEnB8iqIivSMWCjM3gRDzk54UZFiuHs5VJePXU5/hw4PMIV9iL5BgMBuNCcsOVQ7B9fyKS0ly7EzSEXs5MAgQpLXNau15UqYdifwrEFXVFJloCkqQpO5UJK0l6Ie4FZEK35k0v3AysUu+qiw4Z3AUv/fgoNu5PxN5jqeAFAQN7RmHSgFg8vuCZVi9VxUcEAB5EAf+tPYK/7/3GLkGVxCSLPliOVxc9jcuurrOWVqjkuPudm/HNE786bSsqLgLT7piAH0784Vps382xwqHdNmm2SWlnjL2WxSQMRkehsqSKOmdu+mMHFU0ZO/uh5IY+Tt189P1CIa42wXenLVFxxTfrMe76UejSL4Yms/z1zpIm90OWUwlPo17D4py4arsgPDaULsQNNKJbmFshgaGP+8qiZMzJ1CUQ8hTX18UaBF8lBJWcivjEZfYV9wn7Vh2m4obinBKY9N45QRj6RsIwLMbuvkyKeogLq3B8XwKOveqY+HV82xk8M+F1fH1wnkPhDkb7YMSIEXRhMNo7Nzx7FfYsP+jW7fpSYdjlA/Hc/MewhYgH1h+j8yIDxvfBiCuG4InRL1/s7lGWfrkWPz73J4qyS+xikr/fX4rXlzyLETMH165X+6pwx+s34KcX/nLaFqnePf6Gy1pN4EAEFgwGo2NQVliBv97+F5v/2kkT8BvDf5+vodeDTj2j6PXon49WeNxHUqyFuKASfJj9nEsNZH5alux8LG3gxL5e960msZ+Ir6NkUmQaXD//SzNKIPJQtLClIDEJETgUFFfC5MUxSWzjjiObTuDQ+uN264iw8OimkzQm+ebQPAeRHIOBS13gIJdI8cv0J/DNsTVYkrQH5UbbAIKUE9OKc5yIw4jwOMzpNgo7ck5jQ/oxmAXb5G6vgGhM7NQP4epAhKr88OKu31Fpaj+JRDJOYrPj9I/AtXGjUaArx7M7fqWffXKnAZjTfSQ0svNVRHvPBs40Xy0tae7wf2mKzS2iIVYeWP4QUJIITHm9bv3Am4iXGbD1XaCsxopIBMSMBnwjgXXPo1WIHg50tbc+ZTAY7VjccPQnoLLxVecovBE49ivQYxaQVGcT2zqIgE6X2SmCqWOBYIUkRAnReWtHIhwgA9xitRSmXC2KfzkNobr1Fb7eYuUFVB8uQNnSRFvl6mZCHSBc3H6sBguqtmUh8MaezT8Qg8FgNBGScPLh5jeo+8DG+dtQDhH4zsEQ+yqBKj3k2aUYPKwbptw/BdvTC7HjYDIsvACSc9q7UyhGD++KkEAfhPgo8eHkt2HQGtrNdyGRSahjQ5f+MZh53xTkphTgvVu/gFQuwdhrRmLqHeOh1NhiElINaN/Kw/Rnc6dAGId2AepV3jEOjoXsdBZkiXXCg/pYQn0gBKrrXssBk7+9QMQQFwBDVz/4r0mG6pxzQUHmuWzqFuHQvsmCd2/+DFmJebj91etq119x/xRIZRL88ebi2gQk8pn7j++DgDA/fDvvP2BEZ7fniQ9uvNvQgAl90H9c70bvx2Aw2h5VZgNu2/4H4isKoFSYoJAI6OZThH7+9tc7X6kRff3yoRKbkFZdl5hSUsXj9lX/4vVJo6m4wRMyzoxu6lLqjFAfcrlUUgsh2Ikc5GJLrcCBgwhXRNTZLgtWAbn6fPo4HqkMg1hkSy6tNFfQMTeNxAdnyrPx+OH5qDTrUeNGX2DyhUngIGvQh/oUGTW1sgIZx1MxhoRzfPAn6wLlehTq1QiTV+LKkFPopKirqlRhUeBYdWfkmgMgWG0ODWbBjPV5u/FDyj8QOAFhGjPGBCRBXc9ZQiU2QyUuh79Eh0R9mEuRA+FkeSqUYoNd/+TgwVtFqLZUYVn2RjzS/VZc6hCBiU1k0rw2GAxG41EpZfjqrZvw86I9WL/9DLQ6W2VNKawQIIJEKsawgbGYNrYXtu1LxO5DKeB5AZwF6BMbhlHDuyI4SINAlRwfTHnb60TMpkCf3i32wmYiqrAGun9m5ip1rmMSsQjdBsbi8ieuQKrA49Vv10Euk2DKZT0xfXRvKM8LDoZMG4AjG0+gNeED6mIWVyQn5kFWT9xQA3GXe+PaD/HAB3fgxmevql0/5/GZkCtlNDG5pkIeJ+bQf3xv+AX70GrerpDklLudzJdkl0FS5Nx9dfiMQegxtJvHz8NgMNo+laVVeHr8a3bJ/9rhkS7dZgjVg8Kh2ZcNzixQccTzU9/GXW/f1CxxA0GaXwVJQRUsYT5O35eIRLhp3MDa1zzPIys+l/7cqVckxGIxTaIpL6yAWCqGb6APzuxNwCtXvufS7YY42pk6+cHYyQdEN31es+wUPoAUU3ItcOD91TANiYUQVNd/UYUOshMZkBRU2LkCkeTR75+e71U1cXOkHwzDnY8v8aE+2JddBlf1VMsKKrDkk1V49PN7cKnDYhIG4+Kh8Vfj0x1vY/7ri7GFJK5W6Wuf10mCP5kzIIn/pMDQ9sV7sX/1kdqCSL1GxmHEjMEIjPCHf6gf3r3pU1o8qb1APqNYIka3QbGYed9kpJ3MxNxbPodCLceUW8dh0i1jIFfaxt7ImP+pXecudpeReDgFvJNzbNSb8Oqs9/HYF/fg6sdn1q6/8bmrodQoaLX04hxbsUPymQdO7AOVnxIL5/7XKv0cM2c4FVgyGIyOIW54auyrdgXoGgN5/n9uylu45aVrvRI31KDakQDdhJ4O4yKiaiPU2xPAGS1Or+uzHr7czr0gKyGXhk+dekWB47jamIRs6xOgwYntZ/DaVfNQTYo6Te0Lq9KxQpVIa4TsVBYuFCQmWbDsAL5bsAsCCf0kbkqaCwIkGe6L9R3ZfNLle+TesPTzNbh/3u241GExSdPpcAKHzMoiLIjfgT05Z+mEq79cXStwMAu2BzHeKqCrXzhmdx9Bl1dGapFZVQQfqRJd/e2rNNzbbyo+P7rygosUTOcFF40lQKHBlhvepW4Nz+34rVa4QdiTew4/ndqAX6c/gW7+EcDEF4HkLYCxbmDlouBM3FCfXZ/YkpGnz61b1/96oN91QM4RwFAO6MqAVU8AmXtbp49dJgA3zHc7qMdgMNoRWfuaLm6owWIAUjej1SHXHYVNzardl4uqXTngS21JrpxGClknH1hKDLAU2gbppZFq6t7QlsQNFKsVZUvqOfU0F9794L/uWCF4nRnSYBXUI8IhDWVuDgwG48KRnZRH7R2PbTlFBdbyGYNgPD8QQv8N9oWxSxiirx6OKXNGYgoZwKnUISe/HL4aBWIiA+3aS3nySixopYFgV5BEGTJo3RRCooPwe9JX1Bb0o3u+sZt0oK4IH67AB5teQ1T3CNz11k04vvU0qlQyGEfFOVYIlIphGhxLXRykaY7JPpZ6IgE6Me1nL26oRcyh/IrukGdVQKx1vEc6EzfU5/fXF8GkN+LeuXWJqtPunIApt49D/IEkVFfq6SqYjjIAAQAASURBVIAVcXUgA0OmaKKy8EAjK3GQRKKXFz7VqH0YDEbb5ZeE/YivKIREYoFUIkAhNqKPn+tB/C6aUhQYfKjogAyjaCuVEAQDfkjcVruNRSBJPeZ6l8G6Z+ZwRaWDuKE+xL2AiADOp5hShwLagpU4TWgQJA+ir9flbcHavM0oNtmSewKk/ujlG40SYzYKjHl0XWdVFxwp5lFpdrTPPVkahSFBWc4KwqLEpEKZue65nTgwOBM31CDmrAiVVeLOyH1UmFAfP4kB430TsLOyJxU5qCRmWIRqfJu8qPb8DPVNtxM31IcISiJkFcgx2VcW4iBAJuLBSXiYOBOMVBRi/2HEIitUEhM2FezDiQIOXXyCcVOXwYj1sZ1DBoPBuBBknMvGiq/X48T20/R1iJmHObcMIuKQYKqbM+jTMxJTx/WmS2l5NXILKuDvq0Q0cRyoR/yj0/HvJ6su6JfnU1yBSjcCB1GpFpyLpNXIbmH45cznWLXjNN7/ZRN4oe5+sv9kOv5adQhfvnQ9IkP8cM+7t+D0rnNNjn88YRURsbt7twQCfz7Zy3kjwE/P/wmzwYzb6gmviaD88rsn4tz+JOi1Bjpx/OUjP3pM/CJ3LvXWeOhHdYW5c1BdHEaSzNKKoTxQU1jKnlGzh+LFP5/w+FkYDEb7YPG85XbiBjKuYox1P55hlUtgivKFIr2cviZjIX+986/r7UVEHECKXIggLtNB5GZY33d9Aiqu6nNeTFAPC4/AvVkI+0BFE4ZI0v6yL9fWVpcOjg5Cj6FdkX4mqzYxqteI7nR8zpW4Qdc7GFUTOoP3rXOtE1kAid650EFk4t26Nhgm9gak9mkXVj8VjGN7QrQrHuLCSrpOW16N7576Dd5i7BPh9n1DpD9kKhk4nfN72MrvNtCKsTG9onDlg9Nqq8gyGAzGhSDtdCaNSU7uPEufP32DfGoFDqSwEMGkN6Pn8DhMunksXUryylCQUQT/EF9EdrPP3brigalY+e2GC/rlqXyVja4mXkNs30747siH1D36swe+h1AvJjm49hhNxP1g0+t0PuXe926lokEibr6YOBM31EDuwV8/8StMBjN15qhh9iPT6Xdzbn8i9NVGFKQX4avHf7Zz7m5Jxl03Es/Nf7xV2mYwGBeeBe8sabK4oYaS3DIsfK9x8+hEwKDZeIYW0jNHB9JxEXFxFaQZpRC5ECKTufPAiAAIgoDFH6zAim/W0WMTwjqHUEEbca3JSy2g6/qM7kFjFDJeQ8r3qDadgbFfFCwxQTbXUjL3nV4M2elscIYLd/0vFAHfLthle0E+Krk/OZuwIdP08Xke+yZ4mGMnsVtmfA69L5L7BXHaYzAag8jqTXmAdsLunLP4v60/QG/xbiD69VE349bedRXoXPHF0ZX49fRmGPkLczEJkKsxrfNg/JO4u0n7/xzTDY9kp9cKOhrSWSbHusn3gosYAOSdBH6fBRgussjBGx47CFTlAUd+tzk3qIKBgTcDPWcCXwwCqr232q4ltC9QeMb9Nv4xwFOnmtxtBoPRBtnzEaC3VRFoF8RdiYpz0ajafuFUux0N5aAQBN7Uk7ocMRgMRmtCKgy9c+MndJCXYOodBUvvaJfbv/zodFw5ub/bNknI9vOLC7DsizUw10tGak1COgVj0OS+2PT7jibtP+f/ZtLJhoaD2IJSBiHMD4FRgfhowZPoGhOChEPJePzdf6FVOVatqEGkNUC15niDFFLA2CMM+tFd6c8kJ9bs6/4677M7Ez57mmaHTe4hRLiRoddj2c5TyCupRKCvCrMu64vRvTrhjthHUVWqpdtaxRwqbhpKJ/4bYq1ngao4lYM4Xw0yTrq3ae7UMxK/nvuiSf1mMBhtkzGrPkeRoQoatQFiTkBvvwJ093FfCSez2h9JVaEoKfCFtsqW9BMUU2aXX6+UmCCXkPEgK11d8/g7yC8bMrH7ZEctL4PZartulRkVKNT7otoso8KE5/tcBZ2QgXX5W+z2UXAmyF20m1Xlj3y9Y2XoYLkWPX0LECTX0f4RYUWB0Qf5BrJt3YeRcjyk50UZRHDBiQSIzmdEkT4RZ4ZxvonorbYJK5xRZlFhXfkA+jMZAa0wK+m+YfJyDPfNcFvHwmLlcKo6+vyZtEIjNkLeINuJuDUUmzQwCnXuFzXoeQlyK30hFQsQBA7TI0bhpX7XXhIxSXZ2Njp16kR/fmbTVPiFn3eTbSIV+Xp8Os1WYCArKwvR0a6frRgMBrDrv/14/7YvvI4dXlrwJCbfMtbtNqRS9o/P/omV366/YFVTI3tEIPaBadiyJ8HxTYMJ8t3nwLlxurv6zRuwMDnHLpGoPhEaJT5/cjY6947G2X0JeH7a2zC6SBBtDpboIBhHdLfd4tzcA2RHUyFNdT/HQRwa/kr7BqknM7H+160ozCymFW0vv2sSBk3uh9s7P1KbNOYtVo0cEeN7IfNsNiQFleD0zufBug7sjB+OfdyothkMRtuFJOXcEHY/dWGoL0bIe7bOTdoVgUvOQpFmEzi4glx59YMioR8QAcHnvDOc1gjlyXwoj+U4jO/U7seJYOwWBFOXQDq2IinUQnm2gF6bnv31UVpkYvUPm9Ac9D2DUHZVD+fXZCsgrQLstOGCFf6LjsIcqoaxZygEtQycUYAsrQTyhEKYhnYF38m1mJkr1UK5xSY4bCzlt4+wJT+5QbUjkfbFGZZAFUw9wsD7yCE2WHD95UPw9Cs34FKAxSQMxsVl68Jd+PDub2h1a294c+lzGDNnhNttSFvfPPEr1v68xet2m0vXAZ0R0TUUe5YfatL+1z0zG/996looToTZc9e+gui4CCoEeXH6uxdd5OAJ4mz9Z/q3SDyUgg2/bUVRdimCowIx/Z5J6HNZD9wR+xgM590DvYW4Y0d2D0d2ousxvhpXj6/2vdfMT8BgMNoKZpMZ14fe12Qh2cWAFKI7tOFYk+fPa2Ieq0xCC5CIXIxZtSaG8X0gBNc5z5EeUANlspyPkUR6E6TxuZAlNk980hAyN3LdM7Pw0Ed34lKAxSQtQ4dxcNCaDXh6+89eixsI355Yi+TyPPrHMyayFyZ26g9O5Gh5/uSQq3BH74n47cwW6gahsxixJvUwWoveQZ3w9pjbMDqyFxac24H40iwoJXKMieyN5Sn7Pe6/7swGmH26u3w/w2TEjj9uwqTQrsDVX19ccYNIAli9TNL6926g8Kz9uuRNgEQJWJp4s6twn0hEiR3XtLYZDEbbRW9T0bYXLIWlqNrRYfSIFwX98SIU5Fcj9NFB4GTuJwQYDAajqVSWVmHuLZ/VihvIAIXFQ2W0XxbsQsp/ByAWcxg2YxCt0k8sLOtD4pUHPrgd1z51JbVx1JZVo7pShx3/NN29zCrhYAn1PV+RQutQfaHboM547tfHMHTqQKz6fgOtOKHyUWLQpH7Y/NdOj+0v/2qd/fHEHExDuoCPDqKDI2Q45I5nfsew/jF49sGpbsUNdH+NAoK/CuJy+8p70uwy6AWBjIDDSW6pA2QyuiHEJrSmYpQ7iBvHs58uRYLBPvbYfTINmgoDJBW62gl6ES9AfiYXhiH2Nsn0bn5+gMgS5gNtWC8kyaSw6vWQJzk6VNRAzjuDweg4mAQehQYtlAoTOJGVCg9IxX9PKMQWFOT5w1CtsF1RRLbrSv20HL1FCqmYh6TB8BYRUXiiph0ypp5RFQiLUDdsmFiZjlParfZtigSX4gZClKYcJUYVdZaIVFYgQK6jooRcnR92FXRFsEoHhcRMrXlFLlOcyK1KoMeqn39ExQ5WAXEqWzUkVwRIdAgSa1HGqyCIRJBzFuh5Gbooiz2adFIHCRFPRR9qsclB3GA7B1aEyKqQb/SDxWofZ0hFAgJUdYm3+8q344mjafhk8JOQcV7ctDoIRCAiuPl+vW2DwWB4R1lBOebd8aXX4gYSs3yzaDN2aYyQijmMj+uCMd07O4ixxGIxHvnsblz/v1lY9sVaVFfoUVVWhV3/HWi1r6b7wFi88vQsjBrSFcs3HEd6dgnUKjmGdA/H9jcXQ+ShgtzitUcgdHcdj+Vp9bh7wusYPawbHvr4zlYRNxD4UF+bVK7hTbseMk4ESbrreKAGIiB/+Yr3kH46qy7mjAnE1i9XQvHHZpi6h0CWVECTiL1FpDWicncSZJXOq5zXMJjFJAxGh4JUEa0vbiAQLbE0pxLmKEeRci1mHrI8W3EHd2jHd4Ghv737gKCRo/qyzuD9FPDZnuJ0P5Lgo0gqpktDTu+Op+Ku5kAuxZXjY1wLzojjhALg6l0SxXnlKL2pPwTN+bErEorxgDnCl35GiUVCh3pcIQRqIGgUbkV5bjvsCRdJUbrhnWHsF1n7mjwZLEjNwpk3/sR3r90KqQfhREeCxSQMxoWlMKuYOjs3RoRACjwd2XiCjtWPmj0MQ6Y4FoUSS8R44tsHcOMLc7D8y7XQVxlQXlSBvSuaJj7wBiLyJQI7ksi6+oeNyErIhcZfjX5je2HrQs8Fa92JGwi5KQW4t9eTGDlrCO5+++aLKm6QKaXUUcMTJNZ8Ydo7yDhTV5gx8XAK/R4UGkWjxQ0EIkovO+925I7Bk9k8CYPRkSDz3e1J3EA4vu1Us8QNNTGPpzGt1oLM19cXN9D+0D6BOofXWO7J9yVBUlTV8sc/78iXfDQV8za8Ru/tlwosJmk6HUbgsDL5AKpMjbvoFesrsTDedtFZcG47uvmF44dpjyHaJ9huu/+S9uKb42uQq7VV+xYTG00RB57+ZTceMm0ruBmRuKWXzVViZpehdKn/R36sMAUZVa4HujuZq5Akc28fSjgqD8GkjN3AX3V2xhcFnwig0suK5A3FDTU0VdxAMHq6GIuA4fc3vX0Gg3HxIdfqgpNAziGbsEEiB0Ri78VVbQBdmsa7gWyGWyz5OlSsSkXAdXHsTDEYjFZh4/ztMFTXDd4KfipA7j6BsaBCh5ULd0FktGD51+vQpX8M3l39EkI72ccka37chAVz/0NRlq0im0QqptU7G2vzS24nxsExMPeKgFCT/coLkGaUQHkwDaLz1VivemQ6TWqacts4utSv3EoqCZFKoY3BOLI7hPAAh/WHT2XihXnL7fp3vlC2Y+6P2HG6mNOZIEsqgqlnWM2Yi1tEZsfzFRwZgHwvkomMfcIdxA01VS0qAxSQXNkHmi2JEFfbEqMUJ3JolT1D3wja9/rihvpoTWZgQhztmyzdseIe+Z5nPzrd84djMBhtFt7KY0fhEWwq2IdCQyk0EgU6+WlRxdsubUTkYBbcpcTY0BrkMBmk8AuphExpEwbQMqv1LoCkLZJ03xCdRQYfqfsJRuJGQAQIBXqNnbiBUMU7VlCTc+4H4YmrcWdNKbpriqGS1G3by68Q+Tof7C/sDF+lCArqOOEI6QtxbmgobqiBuDsQEYInFJwZYoGM51khcBZYBA5qLwQlJBG10iSn5zRQYnH7OTUSA8rNaidD1la75Px0XQZ+S12Oh7pfGlVTGQzGhYdUM60RXHvCFK5GyY29kOMrx9lDJ+m6P/cfR5+IUHx3+9UI9dHYbU/ilUXzlqEk11Y4hCQfiUjVuSZUm7Nd10V0zsMVJCYhlTxnTupLlxosZgtOfrYKZR4KN/EhbhJ0a7fxwaH1x1Gc3fpOrzTMIeeqvpPD+c8fKpGgzMvzWCNuEOQS6Kb2gRBgu//QdOO+UTD1joTiUCpkSd47Xus8iBvIhPOsR1hMwmC09+qoWxbstlVaziqBJkBN/7YbJp9qDuehzI3AQXW2GJzB/tmYjB/Vv54T14CG4ob6GPqGQXE6H9Li6kZ9huzEXDQXc7gGfIB7dzFSQINq0iw8xPkVMHYPsB/LIUJzCcDTEE4Bq8UKeZX7azh1+PSsC3FAmlMOc6xrdwgypifJd0wINcaF2Ikb6nM8uwjfLtuDJ28Y3/gOMRgMhhes/XFzo13fyDW+5jq/7Mu1tFL/OytfgH+In912Sz5dhX8/XonSfJuTkFQudbgPeQuNZch+bnad/ch0Kvaece9kutRgMphoHFHj6NwcSB/2rzpSO/dzsQgKD0BemncxRH1xQ30MTRHznae6vNqjc8Ssh6Y1uX0Gg3HxMRnN2PznTmyYvw0lOaXQBKrBiUUQ+OYnQ5HH9SbcChpNxtkcdFRoxHP+HIrIvFMrcnzbGfz59r9U3MdgeMLz7Gk74XRJRrPbSKnIxwObvoZFqHvYJsKHV3b/WStuIPCwUnFDU/+U3Ykbbu01HtM6D3L6Hnkwv6ef+we2eyrjIfVCeEEmdSmlpELGRayC5qlc3oWCc6III24eV34MRA25GD1iMBgtAbmen/gLOL0YKEsFDGWANr9diRsIvOBmAJvRKKqPFYCvbtvWngwGo/2SeMR59TmP1AsPiFPCq7Peh0BcCc7z7yer8PnDP9oNcJMJAipuaOTjtGFkFxj7RdWJGwhiDuauIaie3BtWYg359CwMnzHY6f5kMJ+83xj4ALVTcUMN6TmlgMUCXmarkscrRLb/Zba8XYqFB+eiiofyQBpkiQUQ6z2PXCkSHCcJLF5UkqLCkD4Rdq9JLjIt1k0yW0nl1HBflN8yFPqBtglk0nXlkUz4/XMEyn2ptkp9buIf08jOTsUNT//wELr0s3eCYDAY7QezYMHbZ37AZ4l/4mxlIioshcg3ZiDEpxxd/MoRqqqCQmxGick+idQZmaWB6N49DzGhZQj30SLSpxKBympwIPcMK+RiM3xkhgaXGittX0suqm77yUHPS2HiOfhKDejsU2LnKhEglzfYwyY8cAfpVx/fAjtxQw3hqioMD8mCkRe7nHggggvq1ODi0mm2iqH3YN9D2tYKxPHCBnGcIOfJClK4xP1NtNikQaHRD2ZB4nH4SuVE7CGAo+KIhmwu2I/q5hTraGcQIU5LLAwGwzuSvIxJBIUYxbf0Ae/b8PoOnM0rxGMLVtqtW/Duf/jmiV9rxQ0E4oJWk7BPK8ApZdRRwBtoHpGbmedbXroGAyfWiRrqI5FKcO2TV3p3EA+Izm+TdtoLp+cmIi6qSzyl2gYaTFhtCzl9VoDP8Cy4boh+TFytuMEOTgTDiK6wBGsa31cnlfPIuud+ewzRca6TlRkMRtvGqDfi5Zlz8cl931IXhIKMIqQcT3daWVuZWALNXudJi7KMCvhuTXNY3/B6bugd6rFP3mzj0Ddf98IEgjncF9Vju0E7tSd0I2PBB6hg8ZWjamwMSq/vi4opXTwfiAiYtyfCf8FhmCM0rsdyyLiQhCwiCO4Kj5IKrY1w1qkPcQd15dBAIGI2zug432Xo61zcUMOyHadguIhVwi80LCZhMNrJPEk94g8k4a3rPrZb99urf+OHZ/+oFTcQiONBU8QNBBrLuNmVJF32GdXD6XsyhQxzHp+JloTcmy8mumaIE1oScUNb2vPihhf/egKhMSEXpU8MBqP56KsNeH7qW/jswe9xdm+CLSY5lt4i4gbChRA3EOTK9u3MLOIFcGUexHlmHlx58wV8nlj9/UYqerlUYDFJ0+kwDg4KcctcQNIqCrAl8wSmxw6B3mLC50fsB/LrY/XCjaEGbxwf7ug9Ca+MutHtNjf3Gofc6hL8dHIjrQFXfyD+vspzuFWbhCpOiiMK9wNDE3T1q1xcpLLgMg1QmdN2kqBHPQ7kHQPMeiByMDD8PiDM+SQKg8FoJ2TuBorPob0jVlw6yS+tjsUKU2YllL2ZaITBYLQ8coV98ihXrgNI9VSF61hFVF4Nkcl+IpKIHA6tO4aRVw5FdaUOv7/3HywRpFocIC6pom4PtdCSct490lv9lTDFhbl8nw/1wbVf34OHH3E/ME+SiQozirD0i7VeTR7wUYHu+8UBFpXEJhSogVRdEpNqeFaIjYA0o7jWXaIhJBZS7UuF/GQ2Sm7pB0tQXSJrfaT5WiiS7Suzqv1UKCYCCw9YFRIIvvXaJV11lrzFiegEOldlhDzVJqYglQ1lqcXQjenq9hgmHwWuffdmJK4/Tidmeo2Iw+xHLkfnPp089o/BYLRdlmRtxNGyc1QMION4+8KfIkAp4akTQZVZjgKDBmEK5wPHORX+UPmbaveXchb4SQ3UnYBcictNCpSbVbDYZdZY4Scz0KR+o1UKrUUGjRPnAiJuqLDIIeGoLw1NzVdKLAiU65BT7U/dFvgGjg7EOcFTCqtGbISEcz0WFqWuwMnSSJh5MWROXRxsAgepiK8dACaigbpPJ0KSPhQD1K7HlorMPtAJcoe+G3gJxGLSmtlpvhK5vWXqbeI8kVcWQVaH/c0uspwMggnJVZkYGNDTc7sMBoPRSGRK94K2GqoHhkFQu45TTucWYH9qJkZ1jUFlSRUWzF3idDtBLYepbzSEmGAqlibCZElmCaRnssA5cZLwxoXujjduwJ1vuJ8nuemFOSjMKsGq7za43EacWwbBX+W2HbJNayPOLoWorxFWVd39qP6tx1ctR8WBpEZp13k/JfhIN07eIhFMvSIg2Z3UqL6SZOcbn7saZ/bGgzfz6D2qB656dDqie7hPlGUwGG2bP9/6l1bI9BbfPVlU6FA9IAx8gIKOayjPFkOeWubVtUpQeZ6zF9Te3a/qI3EiwqqB3IOqJ8U5uB3oBkXAoqwbw7HWH0tzAR3TSSyGKdYfgsZ9P8kjP2cBSLjEuaifIc4rA9fExB1JkRaqXcnQjekGNEj4lKYTN1bHZFji8CMEuL//afVGxGcWYlBcVJP6xWAwGC0Rk3iCiPLO7E1A38t6ojS/DIs/rHOCbg7eVAu/7/3bcPMLc9xuc/vr16MouwTrf92K9o5fiC8q6gmzLya8RcBNL1yNU7viIVh49B3Ti86TRHVngmsGoz3z2yt/48yeBLR3ZPKWucddTCRJ+TCN6O76/fRCiCyei6s3l4riKuoIFDfE/fw5g9FhBA5TOw/CwvidLdLWruwzmBwzEE9u/RFVJNndDd6IGwiexA2E1Ip8r9p6ZugcXB83BssO/IX8+HXU7j6YN9AlTeKDG7QpmO/bC2Vi+8SeoYZC3F0Zj3GGPCisjbOEa3HkvoAqCChzrPRx0eg1E5gx92L3gsFgtBTkupu9v0OcT1XQOVRy3clNh9ECVG7LopMYit6B1B2JwWAwWoox14zE+t+22SXeS1PzYXaToC5NyoNVIgbfKRhWHyWtiiDOKcbBdccw+PKBePmdJSid0AeomcQl1vOZxZAdT6dVFhqjVzbGBHl0UEs1Oia+OuPhT+/GrIcvx88v/oU9yw/BHKqBJcyHVpWTZZZBXFWvMl29CWhSLJvme9bMyQqAILM5IDiFCB0EM+THPVdUFVebEPznCZTNioOxu72oQpZejoCViXb5pz6BGig1ClRX6Dx/4HrV8mj6r4dC0voBUbUCB7qPVOyVe924W8bgkZev89wfBoPRLuCtPNbn76FXDmkDcUN9iLBALrYgURsKoyBBhKKSih4IFoFDYmEYyqCETG4by1FLDAiVa+3aC1NWI1ihQ2a1P/S8LYGSOCcQcYMNEYrNGugFE3zEBiq2sFg5ZFf7UTGDM4EBaT9KXY4KoxxZWiInICNQtushcSaoWeMK4hzhiQhVJRLKQxHhW3leYGGDSBmCFNVQiO1FgBarCAZeRo8r4yzUxcFVfhJZb3FiXivjBOQbfRGrKoXRKoGMbFWvAcEqQrlFCZXMApHBCp5Y9njAVE8AQsQNBkFCz0/9uwc5ZzWODv9mrwEPCwb79+nwMQmRwpBz2tw2GAyGd4yZMxLb/ib3HvcYurtJjj/PrqR0DI4IwxvXfAizk+rQgkYB/aS+9oJuiRiWrqHgw/yg2HraQeTgSdxAyIr3XBSJXDuf+OZ+XP34DPz0/J84sOaowzayxHyYicBb6mIazCLAOKk/xAXlkCTmQVzaOtXpSFwo35MA45iediIHQoCvEqqDyShr5MQxH+rbIts4Y8pt4/DAB7c3aV8Gg9H2IBUx1/3S+MRLaZEO/luaNofLaT2PLYmb4Ghg1LneRz+0k4O4gTzGW0ief73nbVojxIPAQX28gL4tqLxIXqppx8wTjzuHZkU6I2THM9AcpGnFUPICTL3DaQEOrsIA+ckcSEurm1W+dv5ri3DHfVMxdNpAdHRYTMJgXFjGzBmBPcsOtkhbpBBU14Gd8cacD2nie0vgTbXwzPhsj9twHIf//fwIrn3qSvzwvz9wZNMJtEcCw/1tbhZtiBn3TMb977OYhMHoKBh0RmyYXzd/3p6xOHHBa29Isksg+Cph6RXlVJxNipZcKH55eSEVFA6a1A8dHRaTNJ0OI3AYEtIN3fzCkeKlSMAde3LP4YUd87Ezx/tqFi1BhcmLxJrzxPiG4KaBs/BMyl4clQfbDZZP1Wfjy6KdeDZ4LAoktgoN12pT8E7JQdimfRuLCAjpCcSMAo7Mb8L+ADqPAXwjAcECdBoF+IQB/97t3bEnvwqkbgfSd6HJyHwAU5Xr9zkpEMwq5zEYHQoiUDPUWVS2ZySScvhO6YzKTc0bCHcHp5baJpkN7f+B3BPmzCqU/HEWyv7BCLylF0SukmoZDAajkQya3BcRXUORl1pYu04SnwtBJQcf28BhzWqFJD4HIosVxumD7UQAfI9I7C3RIufzNTiUUWT3HsQcLF1CaZuKXecale5nlXkO/yqqvbchJlU8r3vrRqyFEZYQTe163WgrZKkl0OxMphUeROcFBGRi2Sqxn1gmLg1kcYcgF9NrdWzfTrSC6LpftrjcljPyCPovHuYgJYyxfjSekGdUQFqsw+Ap/REQ5kerkg4Y3xcqXyU+uPMrzx9UBDz0zi3YYNHhREre+XXuzzwfqqEV87jziWBigwUqjoNOcD0JI5eKERPqOdGMwWC0H8pMlSg1VZ5PbK9bLxHxNDmfOBIYBVtSqJzjYeClyNAFIUsXAB+pEWaeQ0GlL7RlKnSJLardt6G4oQaxyIpOqnIkVobSa5fSQWAgQjUvpwuBzF3m633QM8DWtjPIccJUWpSbLLgqZgZW5K6zvWGty51xeUn0YgiKgxW8VYzcSj908xNDKqmGjtcjVKmjLhUNIe4LvhK9zUFCBHRVFlMRA2mHLDWmRnSwGCIES7VQcibohbrkJPJ+mUWFEL4KajGgt3LgrDY5AvmXbFts0dDzGasugZizUmGFxI2TQ4VZCd4qot8pcW6grVmtEKgizkqdLOr/DpyrSsbcc8kYHzwc/xd3FziRZxEFg8FgeMPwKwYjOC4CRakFdYJoZ3ghrtq/7ijKvthFK6c6wzQwxqVbnVUth7lfJ8gPpzb6i6tshNCgc+9omlDkTODA6UxQbo+HYVxPWBv2U7CC40U01uKjgsBHBEJ2JIWKyV0iArr0i0GP4d2w4dfGTcxzVXooNp7A4PumQNUrit4jhvSLgTyvDJ/O3+5xfxIPPfr5Pdjw2zYkH0vzLnm1wTbEPUMqk8Cod514TATgJKZlMBgdh8LMYurEcyFRnCuEfoh7ZwDF2bqxM28x6Ey47qkr8d/na+zWW8UcTD0dHUtp2OPkficSbAU4nA2qhVvEUJ0rBRkdk3gjwqBVMKwAGXMrqQbEEoA4vJoskGQUQRqf69TRyFt4tQzVU3uBD1TXrQtUg/dXQr01AdYgDfhgH9oPSW4ZxLnl4Ew8xEVa8PXG6hzOgd6M00uO4MV/9mPGvZPxzE8Pd3jhNYPBuHCMnDUUAeF+KMuvaHZbe1cewpl9CYg/mIwLSVUjYhISIxDh9YUQOJC4gByv++Au2Pi75zjCGSOuGAKVj61Y7pCpA2AymPH1//3ilfPF/33zAJZ9sRaZ5zwLQJwhlnBUGGJu4GpeH42/GqExdTlwDAaj/ZOXkg9dpfsC4+0Fi9mCWQ9Nw+ofNrXaMYIiA+j50msN9BmdjCG1NLKz2ZBklcDSJQSCWgGR0UwdWcXFLe/m405ffmTjCbrMfmQ6LWTCYHRIgUOZQYuvj6/BiuT90JrdJ+PIOAl1UvDkppBXXYa86sO40MT6ej9wbLSYce/uhUitJ26oseDcpOoEnUiCzTkrsGnCW0g6tRKPlx5poriBRCAPAzPn2ZKFzywDDE0IRKa+BXQaXvd67XPe7SeWA/kngSLnkygeiRgI3PA7cHoJsPVd19v1uQrQhDTtGAwGo+0h8EBxIjoMcj/4jo6B2F+Oqh3ZsBR6L4hziwgQByigHhYGzZhIiKRiVO3ORuVaR1vjjoj+VDGqorLhO9F1ZXUGg8HwhrLCCvzxxmJsWbCLDjbUhwTs8qNpEFIKYIkJhtRfDaFCB1FKPq0kahrXh5T6cWgzy2hBxiHXg/YCSdQP84OkwPtnc86LwaOYcO8T7HUGE15ZtNVO3EARiWDqFowqMQffTfG47qphWJJdCqPESRYsnVD2MIEq5nDTmzfg/hevRXWlDtsX73E4zw2RlujpUp+HPr4T3QbG1r7+9IHvvfqcCpUcCYdTUJiYDZAJem8nfM9nsvYeGYdXFj2N/44l4pe1ritXXT68J3zV9i58DAaj/WIRLDhZfoYKGUQ0Md5Kk/IjFeXwk+hrLyV6XoICox9NkK9BAEdf64xSlBT5IDyqTrjtIyWD2q6PS1wQ/GR6VJoVNDHf02XKV+ZZ2KaWGhEk9sfNMdcgVBGMNbkbkWfIh4y4g9aWQK27PJKXJMG/wqJAqNhFVdHzlBo16KQOwPWdh+LWLiMgF0uwNGsDthQtdLq9WCTUCg2IhEEjJklHNjGDbbSv5jOLavvkK9bZCRyMvARKiQmlZjUMghkqzkS/Gx4i6Hg59FR0YtufOF3w4KDnZVCLTbUODPUpMPqgzKyudZ5QS4yQc2Z6fs0CB71FCqO1rs367Cw+hG6azpgVORkdFXJeyTlsbhsMBsM9JaVa/LJgD7buPAd9j05A9yhw+WUQJ+ZA1EDELFNKocipOi8Idk3BhnOoTCi1m3uwRAfA0imIiqeFEJtDgKu/ULKd7Fg95zkviY6L8Hrb6opqfHLfdy7flxRVQb38CK786HYsX3oApqhAmtjqcDnnRDAN6QpxfjlELpJt7p17K2558RpUllZh28LdNBGoMYgEK554ZhY69axL+p13x5de7atQy6nQJC+twPa58ipsSkU3RTskuXXPD/3H9cZLC57E0s/XYMmnq1zuM/X28VBq6p5JGAxG+8ZsMuPIhuMX/LiScj2Ux3KgH+xc5KA8kQtJaePnOEiyI3EUjYqLoCKHnCRbEQo+SA2r3DHlgRbZcAK9cvI2d04RqcAqE6NzcACuH9EPt44eBMk8Ef546x8smLsU4nIDeH/XYzVEky0iYZEVEALVUO5MgCS7jF6jm/sES0QY2st7Q/C3FTOsjxCgQtWcgRCbiaueDeJaxJVXQ7k9AYpTOaie7Lqwn/xsHr0vEdb/uhW9RnTHlQ9OQ0eFxSQMxoWhMKsYf7zxDx2/dyeqJchVMpj0Jo+63bRTnp2dW4PouEivt60orsQXj/zocburH5uJVd+th9AMtwQiep7z+EyU5pdh68JdsJgbV7iQ40R4/Kt7EdGlThj49g0fe7UviRNObj+D4uw65+rGQApQPf/741g4dylWfbfB5XbT754IGRELMhiMDuMod3hj+3S4cUZYTDCe+PYBxPSOxtIv1iA/rfHCbVcCtk49I3HlA9Mw65HLIRZz+OnFv/Dfp6vRWpBiHLKTrXOfFXyUsPSIAB8ZSOf5RZU6SFILIU4vdBonkfsCmU+fducEdFRYTHKJChwqjNW4Y92nSC4/X0XTDVGaIMzpNhLfnFiLtopZ4GGwmPD/7J0FdBvH3sWvdldoycxshx1maBsoJW3KKb2mzEyv/Nqv7esrM0OKSZsUkzbQMDMzm5llWwy7+50ZGSRbZEqaZH85Orak1e5Kimd2Zv73XhUX+GLt77wdyPWTVrFRnYCDKeNxceV2QCQXmJ1Qc531CFBxENj2FSALYK/qjQHTgEN/Aps/AXTxwJDpruLjYOCtwKG/0GGIMEIdAYx7GMjfCOR6cVYiyQ1T3uz4MSQkJP5ZGMuBPTMBqx6nDSSBhncgZHgc5PEhqPx4d+f3KWeQ9PI4j/QCW0EDGpZ0r7hBpmQh2v45KRGmLWXQjU+WUhwkJCQ6TF1VPR49+3mUZvtPkmPqzUg32zDh0uGY89o8+ph9eLJXcQOBOskFgE+JbpfAQZFXDevwNM9EiNbneaCETjYplN6dWN35e+thFFf7Pr4jPRJJ95+H4vQoRIJHaaVrW5k3pzs/1bokpe6aB6ZQp9K/Pl0CVt7+MQmZEFn2/RpUl9YiJikSk28/15VcFARWkw3rfttMf9dYbDCNTgdY1u85s3ozGIur4CnvQCFCo7S4/eLR2JNdip1EKNGKXsnReOya03fSRkLiTCPPVIh3j36KGrue1MpQWBmPTE01TWpwR806kaauQZ4YBb3ds6CwuiQM2ggrLShtQukl1aA1KtaJOjtx9gmsyRKC6HDINpX7HHAM5XFu7DmI5NJw7/bPkB5ag1C5vTk3wX1R2s5zqLSEIEZh8nkOMoRi2fnvejiFbq3Kx095ixDv1WxU9DDvIMcl5+YpOvDi0NqYfOGkaQoy6I1xUIUVUyGJVVDQmy9Et2MZeQXkMh5yxlVuX2dX41h9LBVEEKEISd0IV5g9ak3ljAC5wgYb70SDU+31/BaXr8XUhEmSY6qEhESnxA33Pzkb5Y3X2xSGgZAYBSE6DNzmw2CMLvEvWSwde9kIzPliCRpGJUD0cW3N6q1QHXMTNyg4WCb2gxDR4iDd2EC6+htvO+FYiEo5ZOYgHLDdIOMR4ojHyQMvXy39bg11J/cFSb7ref04VPIiIvsmo6LOT0EtSctLi4G8sWDWHTJ/dsVDU6jw+a9PF0Ohkrdb4DDljnMx/7OlqC2vQ2xKNL3PBzkmsRisWPvrpub7jMlGnfWc6T6cTXkBiiMt7yNnTz4dk9z88rU4tPkoDm1uawzTa3gm7nj9hna9JwkJiX8uR7Ydx4tXvo3aspOzTqLdVAC23grL4ETwEa5xDkuED3vLoD7gfw7NF6SgkqRyEnfP5D6JeOqC/zZesPtYA/ezNE79NgQgodiKZb8+7/EcKcCa8/o8uo1uVQ7qLutHlORtd8KLYGwA61bDa+8VD3lhS//p9dgyGRUb2sz+i38dqZFexQ3NsAxEXqTvowkhPASWCX2gWbIf6u0FsAxPbSOGUxwph2pficdjf368+LQWOEhISJwYccOjZz2PqiCK30lS87ALBlHx7T8Vcq1P+hzWz1pKE3/PWImaUv/9bda43qgurUFEfHjAbX1BEtmm3n0+Dm05hvmfLYFCrYCTmNS2g4vvOp8WyxLTrvi0GFx053lBr5OY6s1Y/fNGdJTju3IRHhNKxxxHt2fj2I6cNtv0G9MLt/z3ug4fQ0JC4p/FgY1H8PK0d1DnPl91ikP6OZKocOXDFyOxRxyev/SNTu8zMj4cv5TOaJNgNPf97usnyZiEU7JwWAOvN7UXPkoH+7g+HvUIYlgIHEMzqFmKfHu213nEPz9ZfFoLHCTOUIHD1/uX+RU3xKrDcHnP0RgUk4FzUwbhpc3e3d/+KSzN30UTKb6Z/DD2V+Xjx8NrsLcqD3KGxbmpgzC930Qq1CAsK9jdXOwzwVKKcy3FUIgC9iqjMD8kAyZGjmWGegwpWtv5E1v7BrBzJvUQ9AunApxublBEWBA3ADjwh+d2W78AMsbjhOC0AYufAi55H5j+G7B3DrDzB0CfD4TEAIOvB0bcBqj8u1VJSEicIpA2aNe3LkHA6SbayF0J9JqC+sW5XbNPh4Dyd3Yg8vo+UKa6HPfq5ucEbOo7Q9gVPaDpH42yt7YBjq6PUesIfJ0NvMEOLozkVUtISEi0H+I240/cQNzlzv3X2cga1wejpw7DW7d80vycEOcnLSEIgQMpMmoPMgcP9ZZcWMb19Or0qThYgjW7NsN4pBT/W/gsDm48SgUFR7dl0wKecZePxGUPTKHFOISVuwPHQh8wm3F4R+N25JiiqwC26ej0J+l7/KwTiKIMX364CCte/C1gDGfrQqOwaB3SslKwfKbnuIg4/Q09dyDai/JYJeT5NTCe2xuO1Aif26kONLoIhqpQHx2CDz/4C488NQ2fPHIlFmw6hD83HEBZbQOiQkNw6bgsXHnOQIRIrkQSEqcFRqcJbxz+EA1OzzFJlNzURtzQBKnvT1LVodBM2hVXC2l3snA4WSg1DvAiA6cgg5pzQhaEgYUrL4KBXWChZH2Li208i0qLFkla/7HD+iodSrfV4tvYbbjnkrH44PAy8IIMVVYtBNGMULkVTKNIgTTTFl6OKlsIBJHBUUMs+ugq24gceFGGWoeAlw8+iVvTH0a6NpU+/r+9i8HJvQ9KGCIz8NiPDNVOLWLlvsd/VoFDHR8CVkY+EQHT0+5FumIw/r3tP1BFVoFjfU/gk/dCkiHcj+cQOTh4V/9LUjJcohQZrE45oiOMPo20yfegEhxexRTl1ioYnCaEyr2qOiQkJCQC8t3sjZ7iBncUHGIvGYnz0yIx4Jx+GDllCP533XtgDXZE/n4UtdP6QGxS4zXCNNgQ/cthj5QD6+gebcUNBLf0njZNoCD4TEPwx5JvVqG+qgEvz3sKe1YfoKKA4ztzqcvr2VeOxqX3T0Y0cYADsH7uFp/7cfSIg31oOvYbLEBTOh7jX5QhhHpPLxAFEZ8/9gMWf7MyoJdU6zFJeGwoLcQl78sdkqQw7PzgxyTOaC2EMDX9TLmSOqg358AiZ+FMajUusTuh3ngcbH1LsZPZYMFXT83CPW/fjLdXvogl367Gkm9XoqqoBpGJEZh86yRa3KSWEuUkJE4L9BV1eO7i12CoNZ7U81AfrIDqYAUEnWvunTHYOpVqQJJsfnt3Aa5/+gp88+zs5vaYrTZBZnVAVHmadRBteOOlu0/q5WpMf/gbvPLIVGT2iKfzTh8/+DVt9wnKonpE/HEAplEpsKeHuwZvggjGDsjNQOvQPCE8QAqODDTls/eITNze9xG/ztuOFN/zTk2IpAtvNXwi/TUfHwbVgVIocqth6xUDQasCY3VAkV3l0T80kX+wCBaTVeoHJCQkOsz3L/zsV9yQ3DuBXssPnjQAwy8YhOcvfT3ofYssAz4pEqJaCZnVDra0lq51dCdEQEDMrV745XEqfCPO0kQ0TJLVzpk2BpfdPxkRjes7/sYkTRza1FZg3F4EQcCH987A0u+9mLq2Qq6Uw2FrGZMQYQUpxF345XKP7Ui/OuTcATgRGPUmfPPsT7jt1Rvw7pqXsfjrlfS91JTUIiYlCpNvOxdTbp8EpVpas5eQOB0gfcLzl7xOxVGnE7tW7MdfnyyhAodvnuuaOmRihHH34H/j+V8fR2qfJPA8j08e+ibgmnhHIWk+L859kqZQ3Nn/UfDOrisSI2fsGJ7p02yRT44CU1oLrqStKJwI34IVF0qcWZzSAoc/jrc41nij0lKPSzJHoU+kKwKTY/75fwDbyo/hufUzsSB3m8fj3x5YgV+PbsBXFzyIYXE9aNJDNG/Bl5Vr0N/eovC9wpSHR+v24uGY8bAwXfT17vze//PKUMDW4CluIFj0QP5676/JWwcowwDbCVDp7fsFOLoYGHM/MPEZYNjN3X9MCQmJk0PZrq4TN2hiAHMVuh1WCfBBONmVbofFMhS27K5rN/laK6o+2wv1wCiEjEmEo6R7FzwchQawYxIRfWMWqr87iH8KMrazYdESEhJnKmSCoXXhfGuImyhJC0julUDve7iQ+rPVFoOLjmwvJMWBuH3a+ifCmRhBRQdslYG6eyryXQsQO5buxVu3fEojjt355a2/8PeMFXh96QvoM6IHrPb2OZa2vGdSUeT2PnhAICvC3j4P8rAAzNtyBFpfEzkyQKNTw9xgaeOiWl9twL51h7y+bPeq/VDrVNQNtT0wdh66pUdgPL837BkuAXprcYO8UI/6qf3gSHEtfv9SVoa/n5uBW84fgTumjMK0CYPadUwJCYlThzWVG9uIGwjhcv9tNimAj5BboHdoSL0M6ixq9IoNRYOsjooa1KwDnEyEXZRDDf/Fog12Ff1pdCigYCw+uxuSshAbYgYDHQR4H0c57CyqViXSxvaPdfuQMFCL3foCsAxDBWg1thDobWqoOQdNUrDxHJy0ysZFuS0M9U41+ugqoGEdtPm3CXJYeAVNRaixl+HVQ/+HOPlUTEkciuMNVUjWKRHn43zckcucqHKGIpojwgLvfUSuNbYxYYI0xyKOGfIwNuNsPDbodnxT+C7kMgEc430CvynxwTsiQjg7hkSWUPGEhedoggMRRMTJG5CoqINS5oBVlKPEFoEqpw4q1rvAgcB1JDH1FIH8PwkmKSTQPiQkJLxjszuxYu1hvx9PmdGKSx67FHGxLoMLtnFMos6pQ/xnu2AaGgdbso5ed6uy9dDsrwRjb2kbBZ0KPBk7+KLpT7RVU8yW6CFzdqzwaPP8HXj9xg+xeo6nQ+jsw3Ox6KvleHP5/6HH4HTYfKRD8DGhVNzgtRP0cb70KT+FUqQAxyd+xiR1lQ305mthnBRJkdQ4gqDk4OgVB0dKJHXmZmtNYMrqYO+fCD6qRWBCCnlVe4uhWX2ECh+caVEQORas3gR5XrXX9zH/06X08ySFwdc+eTktypKQkDg9WfTVii4TNyT0iENZTkWHX0+aXNYQeP1DE6qBuSFw8RMpMCXuz8T5ufkYggjloXJYh6V4bMvaAF4hejX5oM9bRLAOIK+8Djc/9A0uS4jA+KtGtzEyUZQboZh/GLZesbCO7UEFBb6uTmX2AP2eCBzeegwTrhmLJ79/AK9P/8j3tr7U0wGgY65+JDlDA6beAtXekoDCEuLgejoXEkljEgmJ7sVitHikjXmjNKcCVz06tVkUIA/SvMmZGg3nAM9Uamf/VHBHSsDldiwRKFhIqvOrsvexptV7Kzj0Ox2TEOEwMVfyNSbpckT4FTeQtlwTqqbFxO7iBoK+vI7e2uxSFLF75X4o1QrYLP6ThbqC399bSNfUbvjPNFz1yFRaICwhIXF6Qq7bu0rcEJceg4r87q/d0uhUMAexZkzMATkFh7z9hV12bLKvO/s/hovuOI+akxBDiu5CEEQ6nhp32Ug8+sU9ePfOz7tu37FhEAOYZ/AZcV4FDmQ8QtKKTlekMUnHOWX/V5AC/1pr4MmZMlPLH8TA6DScCrQWNzRhdFjx6JoZcAg8sqJS8XHVeg9xQxNhggOfVa7FcOsJKMwlEHFDR2AVgNxPtGZXnyNJoljmGTMqISFxmlF9tIt2JAMGXt/JXQQpMgtG3EAuduxm1C3sovSGVlj210D/a1d9dr4x76qEfu5xqPpE0uQIb1chMiWLkLGuIuATgTxZC1brvchIQkJCIhCkeMVYZwq4HRE5NNFrfBac/VJhJwXufkQMNF7enzODKILLq+zQl8RVGhCy+ihCf9qC0B83Q7vkQLO4oYnW4oYmDHoTdXwlbkF9U2IDHou+D2+n3+qOjCcOeG5PkJ9kwZh3LRoLkSEQtD6ce0TXd9ERQkI1kCvbJwx3xmhhmtATfEQIdR9kas3gyuqhPFyOsHn7oN5RiPrL+rsSHtwKqgwWGz5ZsBGfLuh4jLOEhMQ/n911+708KoIjDVoQBftmuxzVRi1EkcOHky6jj4crzeAYV3oBSUdwCr6n80xOBcw8aS9FRChEV5pDq+6E3CeJEHJWgILlUWETYeW5NttZ6xU4uqAXHBbX9XKVwYTX9y2lv5N0BkfjeQhg6HGNDqWHuKHl3ctgFZSodWihd2jp+TWJDggqzoHttRvw331/0a3LTaE0IcLbftxRMQ5YBCWOW+NoWkXrhIhiWwQKbZ5CtPXVK/F17lyMjB2Cm9Pvgl1UwyawVFTShIIJwajIyfR9eUeEQsYjTGFFlMqMcKUFCRoDtKwVI0LyMTikCDFyA0I5K02XGKotxGBNEeRe/w+IyNJlQsMFcHqVkJCQ8IHBYIWlVUF9m5ZGBKpqWoRjvYmTWiOs0YHQ9cWImXOYpjZod5Z7iBuaxALtxu6E4kBRp7631uIGdxHzq9e/T4txegzN8LqNo3eCf0G5D005W9QydmsXnRiThEWH0gIvPkwN09TBsA1OhRBJ0ho0sGfEwHJOLw9xAz2cSg7L6AzY+sSBqzZCtbMA6q25UByr8CvSIAXPM57+ET/9r1XqtoSExGnFtsW7umQ/pG36z+xHO7cPpWeqgi+CETc0zbF98cQPbR5X7SmG4rjnPBnRQMuNImS2tu0iaxWhrm7pCUjCwd8r9+OTB7/xeWwyd0YEDP56F3l+4H7kj/cW4tvn5+Dcf52Dhz+7y6uwQBcZgsuvHBtwXzIiBCb9nUwGkd5cy1t8Yjhsw9JhmdQPxsuHwhmj87kP8pqhU4ZAEeR3JSEhIdEaIuZtLfJtjcALqHYrZuw5rGVM4gs+LhzOwRltXaA5Fs4BqeAbk6a7k9bihib0FfV4bfqH9PceQ7yPSU40ZHzU0WLi6OQosPITI3Qj47nPH/uepkdISEicvmxbvLtL9kMEWM/++HCn9hHsOnAw4gZCyfEyzHhqFroakiJHjAa/fGImupvZr87F7NfmYsrt5+K+92/1KiwIiwnFRXed3679ilr/4oamsZc3Rl40hIr1JCROmwQHJSuHTqGGwe5/0jha7Zp8312Zi9e2/nZCzi0hJAKZYfGotjTgqL6kS/ddaa7HyoI9uEkXgnib70mSENGJyeauU4p1C8QZXa49scfc+gUw7iFAF39ijyshIXFiELsoOiuqF6BLBMIzgLq84F4T2QPIvACwG4GGUiDfM3a+s9hqo8E3+Hdq7Qx8ffe7MhBM28qhPSsRmiGxUPYMh3lnBeylJjrprs6KgmZQDESnAOvBGvAN3X9OjmIjSv5vI7hoNTSDYxAyMh6MRprIPx2oqqrCV199hcWLF+Pw4cMwGo2IjY1Fz549MW3aNPzrX/9CVFRb53UJifag1qo83DZ9ERnvciXas78Qn83fDSEtrnmhVfTncFdrAh8Z4rUwR76/EIzR90RLXFoMUvomoqZU79NBgu61A+mW5XmV2Pb3bmQp1aTC1bejnChSgULbA8vaVNvS9VfB83Ra75U4knY1ZFFFoQle6GbtFw/zuIw23wlv56HZXgSuygjz4EQI4b4LVWeu2Inpk4YhXCsVs0pInI7wIt+mJJ80GQ6RhTKAyKHYEI46q8sI4rz4Pugblox+umQYxQNQME7EK+uhZJxUWECSAVpP9vbTDcbE2GtRbTMh35SDReV/09aUyBxaixdcryQPuipgDE41zKQhrmdgLtDCVK1BfRGZU3Ml7zCcAHsED73DBo6TgWNFmOxKcCoLUlR6DNQWI5SzwCbKkWOJoakFBoeKigR0XNt+UsXYoWOtkDO8y90/TMD6Mh0YhoNTYHGoOh5Z0eVgScKP26fp3u2Q9AWCQdBgnyUVYawZKpkDTrCoc4aAB0NFBXaaxND0vkX8XbYSUxMmYFz0eAwIG4xN1WtRYikCK5NhWMRIDAofCbtgx+667TA625p6kH16m2dPVdYiUu5d+BinaEA6X40qu2ueUiFzIkphhI6zQhAr8OL+G6HlUjEwfCLGx5wNDXeCDEFOAOT/gG+xSPD7kJCQ8I42RAmFnIXdT1E7ISLc1a7sXL4X37/wc/s+Tn/Cay/bMtUGKHfmISk2FInj+qC6pAYFB4vRlRQdLaVOo5kDUr0+zzemVfikMVjOHbakliYgnGgqCqrAKTlYzukNUe05NvEbJkTGJ4OTaUEvcS9vDz+/OQ9XPDQFIWGewgkJCYnTA2eAPiFYzp42Gn1G9kTGoFTk7QtuzXnsZSNw3VOX08LPgxuP4vf3ur540VTnWbxJivetw9LAR2shc5DmXaDppUSQoDxaQVNvDOf3cRlRiABnFsF5WXrgkyJRsfmYz+MSAZnyYClsg1O8P2+yQX4sODfxn1+fh8sfmIxL772QfmZLv12NgkNFtLh0/DVjMfaSETBZ7Fj61Aw0+HIGp4YhrU/Ci1Bcq4J5Uj+ELN4H1q1oiw/XwJ6VBGdKJNayDM6/6X1kMCwuHtkbk2+ZQJOJThekMYmERPcSGqWlYi3eT3obmcOKiAujv29ZuDMowa2zV6Jf0bKzVwKYomq/wrPEnvFIzIxDRWE1io50be1W7t4CHNh4BGlZyTjVIcW6DNt1RaVUcEeSA528z7HKT//7HZfedyFUGh/GVhISEqc0fBeNSSZedxayxvZBcu8EFB8rC+o150wbjWmPX0qTa/auPog/P1mMrsbiZ41e4GQwDYgEH64AW2dHyIFaME7vbaEQHQo+NQaiWgmZ3QGmuBpl+ZUBE9i6gu//72faDpNEnXOmjcGSb1eh8EgJFbpPuv4sjJwyFA21Bqz9eSPMhiBNPYL43mUO73VvWxbsxOXhNyOlTxIuvGUiLrh5PNSn0Vq6NCY5AwUO5AL4ih5jMOuw7wiueE0EPtmzCHqLEcfqSmBxnpjizaGxPXD/kIuRU1eGR1bP6PL9H6wpwhSD/9hpgjxQtRLDAuFpQG1exyqbugJH10SkBo3gBA7OA8bcd2KPKyEhcWIITQZqW6KJOwTDAZmNKtSEocEJHKL6AENuBmSNRRcl3pN4OgNvDax07TTk9LtII+KPugU50I5NhC2njmpSqLhgSAzkMa7FdhnHIOqW/qiasQ+itWsGPv4Q7QIcpSbUl5rQsKIQkdf1gXpA97t+SHQfs2fPxn333YeGBs+CtOLiYnpbs2YNXnzxRXz44Ye48cYbpa9CosNwcg7n3XAOFs1Y4fV5kZEh8oIsvLNuJ+oXb0De0UqIIim7BHiVDIJCRrchQgfGLoJxa4NleiMUm49ACA+h7qM8nfyXgalqgPx4GTgvccLNr2VkGDi+H6b/ZxqObMvGmzd/3OXf8vFduVTYEbIpD6az2hb8k8Im1ua3FofCMgySZUCh3QFBwfne3u4EE6RzRnuxm4MbJ/LhapjHenmvBAUL43l9ED5nB+w9/fchdiePlXuOY9rZgzp6yhISEv9gMjQZOGrI9hA3EOocGsQpW9yzW1NnU6Ha6nLVVLNy3Nd3Av398pQBWFe1DhnqKg89Gak1LbGFo9wWRo+UpRyHu3vcCabxgKsqXUkLLtq2W2QzRiSlPy3P8SIDUQtUHI0Gb5aD4XgkDq5AbN9qKEIcEHgG5WYtChoiaIIDywi4KGo/Bod6LhD30VSg1B6O3eZUVFhC2xw9Sm5EGOc5IZ4ZUgNdshUrywai3sqgxqLFjrJUJOnqEaE20X3orRpYHBx6R1ZB7t5pNr7Hej4E9fCPU2Qgk4n4Oud3XJY0GAcasmF2sghTpOOc6JFIULvSiRSMAndlPonPsl+FTbB6CCS86fpkEBAr959wmqKoxQ5kQMk4kKLWgyUXAM3nZUad4wiWl2fjj+I/8UDPezEkQuonJCQkAqNSyTHx7D5YtvqQ7/YnKQIffrkSBoMFOesPg1cqwARwWHWHLa/3L2wm0Mgg8osMQoQWCFNj4Pgs3Pj81di96gDev/uLLv86j+/Ko+KJzsLJGUQnhKKY5WFNG0kT7xRHyiAvC9SrdB3WiBCa2NCGAAMqIohwxodBXlrXvuOZbNj01w5ccLPrekNCQuL0os+IHji+s3Np0JpQNZ1XIky6/mzk7Zsd8DXn3nA2npn1cLMQ+5e3SEJb10L2TRyqm7AnhsMyqW9zH+WSbzNAiBqOjFgo9xTTwkpVlQ2sLsBaeKNrKafg4LR7L7pR7i8GBAG2rCTAzQmWrWiAenM2GFtwJlXkPXz+6Pc45+ox2L/uML2f2i8Z5980HvHprjFJiFqBdx68DA+/PxfW1oVCpFt2tHQTAVf5iRiyXyLU23KbRSEk3cHdFd0oitjPO3Fo7kZ8/39z8H+/PI7hFwwO6v1ISEic2RDR7FlXjsK63zb73CY1Kxnv3vk5TYjO2Z0XUIwnKuUQI/2bpYpaNRVxyXwUmRI36iGT+uOG56Zh8/wd+PSRb9HVZO/KQ2VBVaf3Q/qe2JRolOYEJ5TrDgS+8zVjooKDo08inGkxgIIDeAFscQ3kR0qo+NAdkjaxddEuTLgmcGKRhITEqUevEZnIP9i5ZE9dRAj+9dyVdAww/uqxNHEgEFNun4R/f31/8/2ZL/2K7h6TuGMYHo3qK9IhhLSYqjImB6L/yoduZ3XzhTv54RycCcEtjYg8JsRFQFbdAPWeHPDtmLvraGIESdQZdfFQOiYhpPdPwQU3jUdsagy9Hxqpw4t/PIEXLn8Tdkvg9XS2TA8H6eP9pAKxRb7n8kg66tHt2fT23Qtz8NLcJzF4Qv8OvT+J04dT2v7qrkGTaVqCL8rNeqwp2o+91XknTNxA+DtvB65b+BbMDv9Orh0hxmlBrL2hcy7l6kig90WATAHU5p48cYPmJBWPWk/cwoSEhMQJhLcD1Uc7tw9tAjD0diCs0YHHHOQiac1RYP3rQH1R+17XDlhVx4o6VYPa0daS7oDzv3KqGRkPzfBYYluKjmLLrkfNrMMwbiqDaUsZDCsLUfHeTtT+dgyCU4Cj2gL978e6XNwgTwsN+P5Eh4CaOUdgLzvxjn0SXcM333xDRQtN4ga1Wo3Jkyfj9ttvx6WXXoqwMJdDTG1tLW666SZ88UXXF1lInFnc8J+rEJnQdkwiKFnUTxuIYz3CsOFgHvbnl8OoFGBK4mBK4ODUshAUDEROBkEugzOEAS8TwJbVQr79OBTrD1FnOLaqAaqNRxEydxs0c7dCvf6wX3FD04TEilnr8NCY5+Cwdc84iCxAiIIA1eFyhP61n7qGMg1WMHVmcDVmcFZ4CDY8PxwR8QU1mBgRirBFe1D74yZwxyr8Hk+RUwkZ3/UqPG/fnb/0Bn9FXaJaDntmFIQgok4Nlq4fK0pISJx8DHYbfj1QQ+pdPMQNhFpHCMy896Qwp8Bge1Ua/b1/WAK+HXcL+oUl0Pus7Dh6aDzFDWjcd7KqDuGcBSanEnP2lGL8t1/gcGUlfb7cGnhxVU5SBORGeiNF93S/DKCMslFxQ9Ylx5A8vIyKGwgMKyBR14Dh8UX0tROjj7YRNzSRqKhDL1UFEjUNOC+upVBfy1rbiBuaiFGZMDYmF/JG4bjFqUC2PgbbS9OxrTQdx2pikVcTgxT2BgwOmwhR5t+9h6wxOETO476F5xCnrIeRX4E5Re9gf/2fOGqYh6Xlv+Gh3S/ji5zZcApOlFtLMKfwSw9xA3m9LxNzNeMA15go4Qs168CkmChkaIwe4gZ3VKwTnKwBHx3/HGWWk7eo3ZXwoqxLbhISEr657YazEO6tOL6x0LOoRI+tO/Nw6Fg5bHERcJ7dH85eSb532OpPjrHYwRVWByFuaIRlYBneA0t/XI8HRz8L3tk9iaROh5OOfbzBVgRYA+AFxJfWYlzfBDjVDIqq6yGS63hS1JocAfP5WbD2T8SJICYlypXc10FEP4vG/jDWSXNfEhKnIwa9EbtW7OvUPvqO7oW3V76ItCzXOknp8eCcUlfN3oAbM+6nSQSEslz/cz0dwb2QiFwiWs/u5XOuRtQoYCHPE/HFlCEB983ojS1i8EaxgzdIisNt6YmYmhCN0B35CFmwByHLD4Ixtm+uZ+1vm/G/697HX58uwfzPluKHF3/BLT0fpAW45H3m7ivAJ1e+C+XMrVDtKgRXVg+uvAHyknqwdiJYb7XDAJfMJKmBkHVWH/Dj+3iIG9zhEyNQF6XFS1e+jbK8rv8OTwbSmERCovu59b/X0UJUX4WgBQeLsGPpXhzdlh1c0pCfdtgDxvd2Ai/g7xkrXWMSvnsM9Rx2R7sC71oTlRSJ0VOH0Xb/ZIob4jNc4rrOihus47NosgYVNxBYBnxaDKwT+0PQtTVzNEljEgmJ05K6qnqanNAZssb1wTurX0ZST9c6SWlOcNelS75djZt6PIDi46XNqZldjS9xgykrApX/6ukhbiCQ++TxkS9f0vJYepyHuMFj/9GhwMB0MP6MRgBc/8wVmHDtOCqS6yjLZ67Fq9d/QMcj5EZSX2/q8SC+emomfZ/Hdubgw/tnBCVuIMicPLhjvhOTZCYruLwK9D+rL02v84dRb8L/XfZml5ib/BOQxiRnYIIDIVYThp8ufgJvbv8DKwv2wNlY9B8iV8Hk6B53z2Ahx392w8wu298UUwHuajiE/nY9UDIPCOnEBaalFjjW9fE77WbM/cCmD0+84CDaNZklISFxmlG4CTAGN9Heggxg5S7BVcJwIHWc59PVR4Lfld0IbP8MSJ8IiHznEiRI2kwrlJHVYFVm8FbvC9Y+T6ugAWyYAnx9EBecImh6AREe2PM822YuXgPdhBSEDG10DxqVgKov9nadRk4EzDsrYN5VQRMciNCgq3EU+HdUbYYXYdxYgsire3f5OUh0L8ePH8eDDz7YPKi8+OKL8d133yE2tuW6yWAw4P7778ePP/5I7z/00EOYMGEC+vXrJ309Eh2COBh8sP4VfPnkTOoCRCbNCfzU/nDEeHcY4tUktUEE26q557UcUFINtlTv9XWyDhSsvHf3l+gOZr/6ByITwunv8ioj5GtaEpScUVqYLxzgc4GZK6yBedNx7Nx03MMBj4/Wgo93iZDcYSsboNzTOZcPX1zz70vpAjJxMA0EHxW46Ii8d7bOAiHMf/JSepxrUVlCQuL0YsaBbThY3YAMNhSJUZ7X0yRlocASiRiFkYoSOEagC6BWQQULH46JSeEYEzkBUxLHe7yu1rre7zGTVbUosoajXsWiHrW4dOXXeHTgePhIPG5OG0hS1VOhgbsIo96hQoElCpyMo8kN2liz19crWAF9IyoxMizf77mlKmqQZ4tFqTUbWlYHI29AqA9xQxMpIVX4bNyT+PzILuyqKWoRFggy9AtNxF39xuKS1Cz6eL5xHGblPw/Rx6DEKpBs05Y32OBUIl5loCICAgMBvZQV6KGohI6x0e33mffjgR3LoVWIcIqefQP5rFgfxxKCLMAvsRyELECPruVsMNpUWF6xCjen3xDUfiUkJM5sEuPD8cmb/8Jn367Blh25EBqL/tUKFha79zkqoXcShHoTmEov4mkvTZ1yRx4tWCFFj222bRT2eSBn4UyNRkNuBT564Gt0B2TR1ZdgWX6szHWuMl9jkmo07MnH2tSwluKbVtiGpdFkBFbvvT/sKq554jJ89t1KdFQCzdZ37PxS+voRuUhISJyy/Pz6vKCLf5ogxfxKjRLpWcm4+K7zMOX28zye37Vyf9D7qiysxl2D/o07X5/eqbUDTsHC6aMPa8KRGE77Jn8Q0Ro5jcIFOxE6PBMNPly+iUqdy3WJxclxX/j1cfz27nwc3tIyd0XoM7InrnvqcpwzbQy9v/3cQfjPxa912TIJ6cP//HgxFn6xjH4vdquDulWq95YA5Eb6pwFJsEe3nT8LhNgoaNh3vAz2NP/zUo6ecbDmVGLBZ0tx99s3d/DdSEhInEmk9EnC++tfwVdPzcKOJXtoe0aEDQq1HLYgE5Q9IAZBpJhSrfC9jcNJCyUDUVdZjy8e/wHdwVdPzkJU6zFSO6gpqaW3kw3p2z59+NvgxCc+IMkNYqgPMxKlHPZBadTMyx1pTCIhcXry439/p+OC9kCufVUhSpogMPWeC3GhW+KkIAjYuyZ4wUR5XiXuyHoM971/K2QBRAL+IAX4fDvaRf3kZN9GeTIZ9qXJoNGpYTJYwKfH+d2XNTYcL//+BH59bS6O7chpI/4g7fa4y0bS+5v+2o4Xr3wLXQWpdfjtnQWY99Fi2pc7bO1LkiBzcjJepP0Caf8pogimsh6KXXnU4PHgxuBq8cwGCxZ+sRy3vnJ9R96KxGnCKS1wICRqI/HhpLtQY2lAibGW/rxv5ec41YhQapGsjcL+moI2z93acBjP6Hd7PmhyTbKcsgy7BTjncZfj+to3TtxxQ2KAvpeeuONJSEicOEq3d+BFoqsdMpS6bkSk0PNC11MOC2DqgDtN/hqA81/U6Jcxj7qEEg7PxUmyHhve9yBq9g4HxOADmIR6O8Kn9UL933kQLcE55sXeMwjOOhsEswOsTg5GJYdM7nlMZVooVFlRsB7sYrUsKV7qBnFDe7Ed915cLPHP5o033oDV6prMHDJkCObNmweFwnPyU6fT4YcffkB+fj42bNgAp9OJ999/H1999dVJOmuJ04GEzDi89MeT0FfUUSeI8toGPDp/rd/X8Aq0ETgQ7H3jIS/pwjaoHSusYb3jEdkvCcc3HAFXE9jNs7bMe5IEV2OEaks2rKN7tHFaYsvqoN7qORFDIOkMmlWH4UiPhqNHLASNgjrFynMqIc+rhsyHM2tnuPyBKbj68UtRU6bH7+8uCPwCpxCUM4XqYDkcab4XNeLCtThnQEZ7T1dCQuIU4OdjLqdUXvDuPCOCQaU9FNX2EGhIYgKJMqYloQ4Y+GzMLc0GjzpMTbyMbm9y1sDo9C/wIsX6Tjtpa2VQcg6EqOyYVbgIqaEiOB+zfqlqPXRc2zLKMLkVvZhqfPzQ63jt6HPwt/wcr2mg2/s9N8aJEMaGGnsFrk+5F78XzaKP+YORiUjSWDF7wm0oMdehwW5FjEoHnVwJJev5htK1A5GgHo0S85Y29atWnoPBqaS/2wQORl4JFePwEDdMDDmKOHmLCFrD2jFGl4cBmlIsbhgIg9h2XCf4ECdYRTksgpwmOfiCnINT5CCX+V8UaXp+f33nXK4kJCTOLFKSIvH6C1ehptaIymoDirLL8epny30W+BPIYqpXgYMXyPW6ev1R8JFaOFOj4EyOhKhW0vGGryMITakS7biUJ4IFUiB0fCdJng5MbZn3sRNbbYBiZx7sw9LbuLqyZXq6oOrIjPEpbmjC3isO6m156C6I4PrKhy5GQXE15hRXtVkIJ+FAoh9DO7aigQqsOzKGHX5BS8KShITE6QEp/Fny3er2v44XYDFYcHjrcXoz6M20fSIQB//2FieRdJ0ZT/8Itc5/4pq/4qbvj3+CO/s/BqsvQQI57yhtYDcQloGgVaJwfyEef2M63pm9AZbWBTqCAOX2HDoPRc9fFBESHoKPNr2G8vxKmOrNtG/ShGqgaCrQaWTk5CEYNCGrXQVXwUALTH0UU3EletgHpbZ7n2xjQoU3B+3WNG2zY9le3P12uw8lISFxhkKSf15d+ByqS2tRXVyDnL35+OCejq29keBLrqASzr7JPrdhC6u7JfU5OikS4bFhyN4d3Digxodh1anC9P9MwyX3XIhDm49RJ++OQHw/nGkxfrcRYsNc6z6Ngpe0rGQMPEcyn5OQON0gyTbLZ/luSwQVB2uvSPqTq7VAmaunbT4Zk5gbLLQtIiJjMj4h67iEoiMldA2+PZD9EeGWSutaI2gvLMfi+2MfUaFEMOkFjggFbCnejQ+bOFRTjU9+ug8fT/8cdq3/a3JBJkNk70R8uu0NmoxHCv1J/6QJVUOu8ByTjLt8JPqN6Y3DW46hK3HaO57IyuWUg82rgEDSKDgGsnozmCDMBr2xY9keSeBwhnPKCxyaiFKH0tsTa7/FqcT4pCw02C3YU5UHvc01seBOJG/F4/q9OK1IHgkcWwq8ngLE9QfCUoD67nFk9YBVAld+QWw/uv9YEhISJwabASjeAlTsdaXTdJb81YBCC+hzgbpOLF46O5EiVJffRtzQhDq6CtFDt6HuSBac5tCgd8lFKBH/2DCUvb4tqEVlweqkqQ9ceMvFvrPWCtPOCvD1Nvq4ZngcnBXd62B3MmkMhZI4hSBChd9++635/vPPP99G3NAEwzC48847qcCBsG7duhN2nhKnNxFx4fT2wxPf+HZoaIQUqZAmufVWPFmcPcGMvPkclKRH4lBhJajc+tJBYPRmqHcUQF7SvgmjJhR51eDK6qlYgQ9T08J/eUENuArfaTpExKDIraK37iZrbG+s+30znbDvMTSdTgpVB3BKUuTXwJkc7n+bvBpwtWbYD1fA1q+t+4ZKweGVW6aA9ROdLSEhcWpR79BjTeVy7NRvxcCMGhisKjRY/U1Oi1AxPESZ93bgr9I/oGBCsb32GLINhzDCf7NDqTJoERfegBBly0R7nVNEqIyFgvUsilEzdq/ihubnWRvK+T2wM23nqDzfRXA0bRerSsCz/d7AD7k3Bnw1EX2YnBYkqsOQpGn5AMqtlVhXtRl1jnpEKyIxIWYcjplqUGcPh5a1gWN4mqRg5pWwi01TniKN/tVyVoRyLeO0vsoyD3GDO2RfY0OyscwwwOu5kf2xZNXFAxlK7RHoofJtSFJsDy69h+xZzdrBC51IBvwHQb6TYBMu/O1DQkIiOKIitfT23Zt/+hU3EMSI9o892FojvRFxA5/kf5GYjAGC5ewrR6G8oArZu/J8ihbaizyvkooZnBmxEHRqyBxOcEU1VPxA4MMDp6QGs00bZIE7Sl6nQu+7zsVcsxk/3/0J+qTHIqaMQVVjImXrhAxq3936MGY7NJvaiscDodaq8NQPD1IXPgkJidODquIa6vq/9rdNaKhxtXGdYcZTs6DRqbBl4U7s39COlOtWkKKkjkCKkQ6sP+xX3ECQWYNzEm26dO8ZF47vXr8BN019Hc64MNpPstUNkOdUgGloda6iCFODGfHpLcnAhKKjJXQuqa6yAfEZsbjw1okoOOh/jZsPVcPeL8GVJsEwYGuMUBwt6/CcG0kWIgYifGOyKn2Pjcl3/gQfimMuQy+ZLXChkqxRBNKUVHuqI41JJCROLNGJkfRG0hw6A3u8DEJ4CIT4tmZCTHUDuMNdW2M0/uqxKD5Wgtx9hQHXCv7xBDEmIfQ/uy8WfbUc8z7+m6YUhcWEor7K9xqOT+RcQPE4NXrRKAGzHSFhGjz53QPtP46EhMQ/FmIASMYkZO2VCBW8YRiXAuOIRJr62QTTYEP44uNQFre0PURw/Nkj30LsHYPlOYXYm1sK023DqRhCvbcUXF3w9VhWY8eK6nknj0ObjgYlbqDn7Pae/NF7XG98sulV3Pbsz4H3KbjGJMSkwp2CQ0VYMWsd6qsNSOwRF9SY5GRA1v3ZSs+k847AS2MSnOnrJKeNwIGwoeQQ1hQFH5P5T0ht2Fx2FA4/C5aXm/KgoDPYHYAslmsTAIMrsrJT9LoAqC8F5GqSwQMUbfWs/uQ0gFwVuMCYuJoXu7msF21x/QxPB+oKPK+yw4gaW9Z58QM5Zr/LgHEPAQld5EpUV+R6/0ScIRUnSUicHMzVwM4ZgK0Dg2x/HAvCwbk7qTzgamtJgoQXVJG1iBu7ASWrL3YtcAaClUEeFwJWp4B6YDQs+/y4LcmA2tlHaFPMhikRMjoeuvHJaFhRAMPaYo8mumFlIWTc6V2cSQZO0mJv5+CNRjjLyyGYzWA0GnDx8WC13VO8bTQace+99+LQoUM4evQoJk+e7Hf7+Pj45t9LS0u75Zwkzky2LtqJXUv3AhP8O/ST8SevdDlysm7rsd2RVOAPbc9YrIYDzkLPgkwhQgPTeX0RsvJIwAVXIURJb2RhmXWbtGKsDqiPlCEyPrxLFgRGXTwMVUXVtCCHTIaTiSV31DoVWJaBsc63AI+065yCpQ4gTexfd5j+TMiIpc587jVFcekxNH6UnL8yuwrWgYkQwrw7EMoLaqm4gaBdkwN5WQOs/ePhjNFSYcMFw/vg5vOHo2diNLqCysIqeq6xqdFSfyUhcZIos5Tgw+OvocHpmqQlZp5qeQNidAaaIGAV2ootWZkQqN4UP+X/AB1nRYzCBjJ3yzK+K1UsTg6CXOYhbiBJBbEqA0JYGz2WhZfT9ACSIEH2G4jjDVugZJSwCb4n/y2CEnUOLcLlvoUQZl4Bk6CEXCZHrDIJIZwWmdrRyDU2zgV5QRDleGjXHDjEOYhXRWJq4jhcnTwRcwr/wOLylRDdBiV/FC+EVu6EAAYNvBpoM70mgoUAjm1Jh2iih9J/MmqSvA46xgKD4NnmR7Am9FSWI1buKhyrduqQa4tBg6BBmT0MdXYVBuuKwZEOvhEiiCiwxaCW19FzIm23v/8DTpGFmnUghOtYQZiEhIQEiaY/sPYg0C/N74chykQ440IhI0YX9e0zsSBCAT7Jv3CLLQ4u9TM8LhSb5m+HwHf9WIiOSY6X00Kd1sIJmQ9nbH/bNI9JdGqIvECdzt0hTnoEX4v5BCEuFPYLB2B3Rcv57DpcTH8mRelQ4lacTLqLlJgwOA4Uo1Iuc4nH7U4qKFceLm92Pw0GVYgSE68dh6ufuAxp/Xw74bZn3oy4upM+LSZFGpNISJwsiDv20xf8lxa3dBXk7/uDe09u2u22v3dBoZLD7kfEIM+uhG10pt/6TZnFTp1CyVxSUq8EaHRqjIkPx67lrvQ9b3ByFs9e9Cot7icFQ5fcOxlXPnwRPnv0eyz4fKnHtjNf+pUmZ/jCGR8K88S+aB6UkPFBYjgsieHg9xdDtbf9a+DUHIW4qboGi55PknlFL6Yr8uMVkOe71oa4Uj2dwxNVns6vHtvnVXfatVVCQuLMhhS4Htma3al9yEQR8m3HISREgE+NgahWuNYgiqrBlNbS57uKyPgIrJ+7udsM8OQKDrpILWrLOyZua4Jce48kY5LCapos5HQ4cHSbp+hZGxECp8Ppt6hXxsjoWspBNyHj7pWuWruEzFiU5XrOmyX3SURDtcG3kJKI2731S63QKDicf9f5dEyS3CsBnYX0wWRMwjAyxKb6T5CQkJDoPo7uyMEzF74CY53J5zaG0Ukwjk1p87gQqoT+qn6I+mk/5DUtc1MNI5Px4kI3k0qtEpZB8bD2jUHYgsNQlHZxnZgXdi7bS5MciNghEJzeBsbshKDxXYodqlQiOTQUqsgoDMpKwr5Dvut55YKAJ4b+GyIv0nHMZfdPxqX3T8ZH983Akm9XeWz7w4u/uBLgTlOcQQi0JU5vThuBww8HV+L1bb/jVEHBcF4TG1qT4PTd+AeEXH1H9+y8wCE2C5je6rOtKwT2/waYa4HITKBkF7Dnx467mhPH8qnvAbwdsBuB2P5A78nAH3d2TuBABAiP7CV5pugSdv8EbPoIqGq80A9PA0bfC4y5L6AjloSERBdz8PeuFzf8E9DnA6FJgN63A5tMHQHtuEQYNwQuylYPiKbiBgIRK1gO1pAKG+8buz1MkhoalhXAvKsSzmovi7IiIDr+Oe49TJQKutEJMO2uBF9nA6NioUgPhWV3x1zABYMd1mN6qPsE57Iq4bkAZt66DfrZs2FYuZJIqlueZFnozj8fEf/6FzSjR3VpQW54eDjeeuutoLc/frylCCE1tf2R3hIS3vj5jXn45rnZEOQMZGNTISpY78IGlSvBwaFr/BuglY4uZ05luRPqMCW4+o45SrQHTsGhIj4UTl9pE4wM5rGZ0C0+6DU2UghVwzYsHXxcaPO1MFNrhGJPIbhKVx9NFoNT+yZ1WuDQe0QPvLrwWY/HSCTnqjkbYNSbkNInEbtXH8CanzcGbKMcPiZCyvIq8fiMe2kxktVsQ88h6Rh50VC8dNXb9PxlTgG6vw/CeF4f8LE6tw9CpMkNIetaFmzIp6E6WkVviT3j8f3Rj7qszft7xgr8/t4CFB11XQeQ/V/1yNTmqFYJCYkTx/f5nzeKG0Ra8B4nr4eGddBmvZ5XI9cSjWqHK3lNRgrtZaQU3/81dJTcgDRdNTi3YnyyP4EkB6Btv7K/NhEaZUvRT7TCiIyQGo8pCi1nRyhvxdGGWEQGIVLOM+1Hz5A+OGgg10ve2644ZQKiNMPBO2b43o+dCLpkGBpxFhU3EEZEXYs84zaIPj6HbFM4HI1vvdxai29yF2J91UbUOlyFn+4IEGAXeKLp9oJL3OD+OQiNyQsseGgZ/wWh5HVhrKfAIVVRjRGaPI96oRRFLZLkeqyp74N62WgMCD8ba6q2IJI7hlglg566Plhbu83tu5PBCRbytmqMxnMEHOQigSziOCtx3HAIvXRZOJURRQaCyHR6HxISEsFBCi1n/fc3l3Nc72Q6Dm+NwAC8QgaRU8Ax0dXGMHoTFHsL/CauucOW1NLXCBEh3p8vrQWrNwU1JqkL8pgdhSxEk4L+1gIHeUE1bIP8F/qTbZoYcHbfNmOS4uNldAxiqjcjLSsZmxfuwKY/3QyevIwHTWN7Uhc+bxBxw0v3ToG+wQK7w4m+6XEYPTCNFtpaFnU86Tt9QApm7HsPXcX8z5bijw8WojS7nN4n47Fpj12CqXdf0GXHkJCQCI7Xp3/YpeKGfwqkmKjXsEwcbGVu4U7PgalIOCsLf2885HMb5V7XOOL8myZQcQPh+qevwJ6V+yH4aIvdi4NKcyrw1ZMzseTblSg83Ha93V+xk8jIYDmrl4e4wR37wGRwJXowJjucmbEQIrW0OJQt1YMjAjIv52fPjIFtZGaLiKGpuFcUaSpElkqFcc9cjiUbDqGm2oBQhsHQ2HCs+WmzZ4LqviLYRmV6PS+Z0QrFMVf7XpJdjkNbjiFrTG+cykhjEgmJE8vXz/yIX976q0v2RVo7kspGbt0FGZPUlnff/gkOu5OOFzorcBh6/iC8usBzTFJ4pARrf91Ek5PS+qdgzS8bsYOYcPmBjEecPox4ibjhudmP0jURh82BPiN7YNj5g/DviS9i/3qXWZRXl+7iGvBpvkUGfXvE4Zvfn0BXQNZ5iFP8vI/+putEBPL5Xv3vyzDltkldcgwJCYnghUav/et9v+IGkWNgGpHk+3k5C9OIRIQvda2z2hN0MI9K8b6tgkXD5N6I+mFnt5sGbl+yB72GZeDINt+Cvb6jeiImNRrrf98C3bZK1E9M9LntNf0HQMW5RMbTrx6D/a/84WG6545wqAhMY11XyfEyfP7Y93R9uOBQ23WSf5q4IWtsb2oQsmr2eugr6qnAr//Y3lg+y02w0g7yDxZRYX+Pwek4lZHGJGe4wKHIUIU3t/+BUwm7EJy6aKCtk06nRv+OdAHh1MDUdwG7GTiyCDCUAWFJQJ+pwDn/dm1TuBVY/BQ6zaE/gVvcnNPz1gFMEP9FdSSloszLEzLggv92nbhhzRvAmtc9HyOpE0ufBaoOA5d93DXHkZCQCAz5m68nqS+nIbzVJW4gKTxebSJkQM8pCI/vAcHihHmn73aei9Mg/LIezfcVyTpE3dAXtb8dg2gN7iLXq7jhH4imfxSd1I+8qhcUKS1FpxXVVjiKOrbAQ8QdksChfVgOHkTZM8/AdtzHII/nYVi6lN6UvXoi4Y03oO7fHycakvbw0UcfNd+/6qqrTvg5SJx+kEnkb/8zh/7OOASoDpTBMiy5TTGLU0M2IGWXjQuR5EdT9SUL2JI0qLx1EKLnHISisn0uqu3F4eThyIjyu42oVaLhyqFQFNZAvTm32cFU0CphPi/LZVfuBlmMtU7oC9XaI80iB72X+EmRZWDvGw97zziIjekP8twqKA6XgmklQCBOow9+fAcsRgs2zNuGusoGxKVFY+xlIzD9P9PoNnvWHMCH9/susg2WDfO24tWFz7nOURSxe9UBKJQtDuysyY6w+ftpKoMzTkcrUZUl9YhUK6H3EpFJnIPuefvmLhM3fPPsT/j5zT89HiNFRZ889A2KjpTQz0lCQuLEkGfKRpEln/6eoaxGrMLNbVkGhHMWDNEWYb8xiV7bazkrrUEhE9ZWgYPBqaZO/e6EshZkqqra+CeQ+yx1/icl/S2F3tn1Mdhbm4zoMFd/oWbtbcQNTShZHj111aixaQDvQTTNmHgT6p17EcHJoXeSdt5zhzLIcEXS9RgcPhyri+tgtf/ukY5A3mOeLQZF9mgkqdNxReJNzc8laQbgoqRnsKLsA9gFs8drCiyRyDZ5LoQqGTssfC60rAinyMAmcC19KBmvCAxYtu3Yxr17bYK8Vs7YwYOBU5R5iEi8YRdb5qRUMjtGaPK9maHS9z4h7DiKcSdkMjke6XMz+hDReiOHzU+izFrYfJ98h0TEwYFvPkfy/sl5tX5/22vXnfICBwkJiRNH9p48Km4gkOt2prAKQkZLemHzmEQta9NIEqGCdXxfqNYdCUrkQNxSVesPwzayB/iECLcdieCKqqHYlRfUOXfUGZosjjtToyDoXIkGXGGNV1F2E/VVLWMSsfG9s3UW6lDtyPCesMbUmiDPr2lOZnjgw9thNliwkY5J6hGfGYexlw7HjS9cTbfZtmQ3Nv+1w//7TYqg4x9/rN2ZgzcevtR1rqKIHcv2Qh2i8vsaVs5CG65BfVXbOTDiNnj3Wy19cWf57NHvaCGRO0R8Tdzeydjkri48loSEhH/2rjnotcDldICINuqrj4LlGPBOL/MtLIM7X5+OkVOGwmyxYc2uVoZRpOD/YCmUxyto0dGdb0xvfmrouQPxxHcP4OMHvobFGDjhjuBN3BAIZ0okdRv3h21IKhCq9XC8JglJjn5JUK09DMbc0reR9FQPcYM7Mhn43gkY0z8dutwq/O+Gic0FQKQvyZm7rdkog6DIroBMEGAbmNLSL5Hi1FI9VNvzaN/axIqZa095gYOEhMSJg4iiukrccKI4UWk19dWdE3brIkJw77u3wFRvouskDTVGJPWMx+ipw3DT/13TvL4RSNwQbFL5M7Mebi5e3rZ4N7Th3sXtTWjyKiHrn4IGL30rxzG4/6YJ6Co+vG8GFn213OMxck307h2foTyvArf+9/ouO5aEhERgYTIRBfvDlhoGUeW//tPaOwpoFDhYBnrOZbVG0Cpgy4iEKie45NCOQorzyY2MPYihn7fktzten44hkwbgP1Nfw5bFe2FL0cLaw2V65c6IxCQ8PnZc8/2xIzLxxP0X4uOvV8Nqc0utEwSwOWXg8tt+pqfC2I+si4+cPJiKy1/49d9I75/S3JfsW3cYFQUdM6hdPnMterx7agscJM5wgcOvRzdC6ML4sX8S1s4W51cf69zrOSWw8wfg2PWA1a0wSRkKxGUBFYe6zkG98kiLe/kvNwLlrgg0vxChxUVvAkueAY4uBsTGRe2YvsC5zwP9XAsBnYYkVqx90/fzu2YCQ28GUkZ2zfEkJCQC/E26ColOOHKtS1RFji/4jkbuEoi4QaFzpdo0RStoooAek4G4gfRu5DV9EHphOgxri2AvaABvdFD3bzZUAc2wWISMiAej9OxH1P2jkdArApa9VTCsK4az6tQQMATCuK5lgUGRqkPkDX3BhaugOycJtbNb4jXbg2Dq5u/4NMO4cSOKH3oYojm4gmwigii46WYkf/wRtGedhRMBGTgtWrQIzz33XHOCQ3p6Oh599NETcnyJ05tFXy6nC4ZNhGwthKjkYM2Kay4eEsiaprsBsY+ad1EtR93Unoj9bl+3nrNIHOQCRAZTGBkc6dEQVHJol7lc8ez9k9uIG5oh4oXBqeCWH/A64UKdOs7PghDdIkgTNQrYByTBkRaFkGUHwVhanLUVagXmf7YEm/7aTtMVmiAT6mn9k5G3r5AWGnUFBQeLm51YX77qbeoK4Q2uykhvhInXjcNtr96Azx/9Dtv+3tXsAJgxMBV3vHYDRk8d3iXnVnys1O/i0F+fLsGUO85FzyEZXXI8CQkJ/xxrcF1LhLFmD3GDO6TuZIC2FEX2qOaiddIlqFknlIwBNXYtHG5F9AnKuoDhkDJZAqLZDHy3Q8RRaKBTtxS8xCoNfl+v4RzIM6qpKIBjvCco0EL7Rrd8RuZAojIcpTazR3JDk7iBMCn5ZVgcd+Ng7Y+osB6E3mFGiT0MCi4e05LGY1TURCgYz0LOPqETkaEdjaP1qzGvaBnyTXpUObSw0o6y8X1CRIK6AaFyz2LVENEOA6+EXeBoGgYnI7IAvlH4QaQXIlgZeW9NfbKbGEJkYBdYKBgeRY4oZChaXLlb08CrUOls6acylFUeIo7WsDIeB6u+xxp9X3p/SHg6Xh70L8SqwjA+5hL8UvSZx/bkfO3kfEWRpjbwIpGwtP3yDM5TP7WQp+kjnRP6dfb1EhJnCgu/8CzwYA8XUddoITm6eUxCkht8dhYMA/ugluv4QJDiR9XGoxB0KvDRoa7CyMp6j2v57sCZHAkrKfBUtPSh9gEpkOdUQLEr32uLQa7r+fhwOHonQohxLTQz1Q2QZ5dB5nDC3iO2ZWwkiuBK66DelN3sBqhQKfD7ewux6a9tHsWwxIWOJNbl7isIqkhWCCeKd//klbgW6AsOFeHlq9+lQuZAnHvD2bjhuWlUfLBz6Z7mMUnPoRl0sX3EhYPRFZD32Vrc4M6v78zH5NvPpZ+JhIRE97N/ve/kgu4kJiUKqf2SsW/NQepIHSyOKDXMQ+JhT9TR9lWZo4dmXwVYs+95eCJuiEqMQE1pi7M2KZIhYioibiC89cjlKKmqx6yF23BofyEMOeWQHylHfJQOF35+Ny64eTyUas8xyQU3TcC4y0di9ZyNmPPGXFS6JfZ0FXyUNvA2saFgvbx9UauCbVxvqFe0rJU7SF/lK4WVJjTJ8P2Pa5vTF4ZM6k8duCPiwnHVo5fgw/u+8tieGI1weVXgo3SAnAVTbwZjbtuH17mJBE9VpDGJhMSJY+GXy6SP2wd5B7yvNQSLXKXAz2/8iU1/bqMJ1E2ERuuQ1CsBefsKYPUj+m4PTesi5Pr/5avfaU5u88eUa8biiv9MwwffrsKO/QXNruQkuYGIG4YPSO2Sczuy7XgbcYM7c16bi8m3TUJCRlyXHE9CQsI/+9YFHpOQdeH2bOOMCjx3Ej08DX0yk7Bn7UHw9u5NMCDihqjESNSUtpiUZw5Kwz3v3EzFDYRXFz2HkuwyzHn3L+w60oDiHmo4wxRICgvD1f3744q+/aDkPMu0L508GBPP6oMV6w5j9geLUJ1bAbakBjJ3wUMQ8CFy2BI1kDlEqAoN3Z5s4Q8yH/XDSy7zFcLwCwfj2R8fRlh0KK56ZCo+f/z7Du1XGpOc2eskp4XAIa8+8MXUqUqcs5OurU0F/x3FWgfs+7nt40TUULgFXYpSBzgswMwrAH1wDk84usiV0HDND4CpCqjNAVRhQLyr+LfL2DPbh5O6G7tnSQIHCYnuhrQ9x/4GKrq34NMnEenAoOmAzQjs+R4wtN+1p104zMDI+1w/5WogNKXNIjQXpkTEZT3btVtGwUI9MBr6P31HqZ3K2AsNqJqxH3GPDINmUAxsefUwbfaW9BMYEtEp87NoINGS3NAecUPz52s209elzZrZbUkORNRw9913o6SkBAcOHEBxcUuhdVZWFv766y9ERkZ2y7ElziyKjnr2CaQGUrc2F5rdpbD2ioag5GAYSxwnmOC6gDgt7AlaKMpcRfTdASnkIckJosqHUIHgNgfCx4fBGR8KttJA3VJbb0bqYcXG9y5Ga+FIjoC8WN/G1cI2INlD3OCxH50K1hHp0KxvEWo3VBuwwktsJYk7PbjxKLoS4sxKxBJPX/BfVBYGt7i95pdN1L3jpXlPorasDqU55QiN1CJjYFqXntuSb1d5iGi8sfTb1ej5kSRwkJDoTiqsenx2fBH26LciSQvEyP2nhbEyESGMFUbBMzaBXGKGyi2osbvaQ1KsTxIc/MHJBMi5c3BN5n2YFGfCLavmIMfe0v/ouMCLmCGcHXv0SRgaWUzPzR3SxBARgHuhvSDW49k+r6PBaUAIp0V6SEtCXBNqeRJGxD2N9qBg1EjSjMeSsg1gGTlUcs/CqFiVsY24gUCGQzrWChknQs06mut7eFFGb3KZ0DxkIvetPOcmIpHBzMvpe9xvSUKSXA+FzPu82TZTBhVRELEE+UQCfTeEBGVL4c+eunw8svMbfD/mIYyMnIBsw3HsrGu9+Oo6Z3LzpXq0OBTU1IXpoiQgCQmJM21MIoLblwcxpwxCQiQEBQuhf4JvpXVjIhsfqgbrJiwOBGOw0tuJgBSLWsf2pGIMz5OQwdErHrA7oTzQ1tHOlhkHR6soeyE6lN7k+wuhnLsTzoRw2tGwVQawrd4PSWxY+VPbMYmh1oiDm9oxJmlMxPNHiEoBg96Ipy54BbVlLQW9/lj+w1owMgavLnwWVUXVKMutpIVOGV1UROQ+JgnE0u9W4643b+zS40pISHhSlluBL5+cSY0gTgZjpg7Hw5/dhaqSGjxz4StBpRuY+8egfjJpv1v6IEeCDuZhCYj8/RDklSafryUCss92vgV9eR3CY0PRe3jbMUlSTBieue2Cdr2PkFANdb3+qAsSQb1BBICden1ECPiYULBVLtEzH4RIjo9o2WbP6oN4ZvL/8On2N3DJPRfg4KYjbebXyJCQqw6UgC2jc+xM675XQkJCwgtFR1rSYiTarjl3BjI2WDV7fZvHyfoJuXX1OglJ5n76wlfoWChYEzAyf/XBZ3ehrLKe3iLDQ5Ce7D9FvL0s+WZVwOLaZd+vwS0vX9elx5WQkGhryvbVU7OwZYH/JEsCvdYniw9+5rjlFS3r4YydR6DZkwmXj8Kj/zqPJgKQNd2SIIRYncFutePzXW/RdeDI+HBqKNGapJ4JeOLze9u1X51WhVG94/HZir3tLuLmVSxqLsuEaWAU0CgQYRvsCFtXgrCNHauPCgZaExAVCpEk+/ACmAo9ZD7MTkjCx3MXv4aPt7yGKx+5GIc2H8Xa3zZ36KBkjVwmrZOckZwWAodQZeAB/ckkhFOiR0QCyox6VFmCdzkYYa1AprNrL0T/0QyYBuz/LXhxQxOH5wPr3wUmPg2EkgWabqA+iJifykNEtucSXEhISHQ9JMlgxxeAJbiFvW4hrLFQUakFRj0AlO0Gji0EnN2UgkBEarwNiO7T7pfyDTYYt5TBeqgGolOEIkWHkLEJUKa6XOpo2gN/eqYfEfgaK8y7KyHaBZi2tL14l8dr4Kg008QLX9iy61D26lZETe8HZWZY957wKQwZSJQ980y7xQ3NrzebUfbMs8iY/1e3DEjKysrwzTfftHk8MzMTs2bNQs+e7RMISUj4QhvhPZ6XbbAiZGcxBDkDwzmJ7foAibNdVwkcQiJCkDxhEMrtAvQNNoDngUo9FLk1sGX5j/p0/8skCQus3uyR/MBzjU6wTYvUZIKBB8wT+oKrbKDOp0yjcxCp4XT0jPV7PGdKBE2LYKwnPkln4nVnYdkPa4IWNzSxavYGZA5Kx3VPXY6YLp6wb6KqOHDUau7+AmnRWUKiG6m21eOBHZ+h0lYHBgrEizKomMBtldxHEb2S4anzP3HvpyXuQVwKDQx3FfNEa0Ow4NI78EfeXnyT/wd4xug1AaA1ZARQbg3FytI+6BNWgdQQ1/hKgKxR3OBZtOIQ7RBgQ/+w9js/V9tqsbxiHXbW7oNT5NFbl4HJ8ZPQQ+saV9XYDRDoET3Pm4gKwuS+xlgi1JyjjTiD3Pf2WAjngJkHFSu4kNHfS+wR+KNmKM4NO4o4N5GKkVdgqykTx20ulzen6JrjaXm9b+xuaRyEfFMlVlbsQ5XVgC+O50LNJSNO3QAV66RJEjGKnpAxxJHVS7y1jIdC5sTW8oO4suh/eGno7RgafWq6YZP1e4GKODq3DwkJicDofIxJZCYr2OxSMAoOtoGB2xKRJrV1/VyXLlqHxLP6o9wsoN5oA5w8UKUHSisBe3DX/va+iW3FDW4QkYPiSClkzpa2VVAr4PAjPnYMSKEOeYq8rnfvJohyFo7MGDjjQiGSMRMxUpL5fg8XjOlDi3aCFTc0sfT71egxJB1XPnwxYlNjcLLGJDn78qUxiYREN1JZWIVHz3mh3W1EVzJoosuoJiYpCl/te5e2WV88MRNWH0k2zggV6i/s4TV9QNDIob+iL2Jm7KTF9t6gaZ6iiFEXuRIb2gMpeJr/6RJsW7wbTocTA87uh8sfnNKcfklcWAOZSXQUhmi4Gwu56BEa3777+/QxVGyGj9Y1CxyCQdZKSEectzfO20aduL2Zh/QZ2QPHduT6/QzW/7EF09Puxct/Pu1VXHIqII1JJCRO/pjknwIRysWlxaI0txyGmu4zlzrVmXTdWfj7qxVBixuaWPDFMlr0e/Fd5yMhtnvW1iuDGZPszZcKYSUkuhFi9PbYOS+gLsjrVK7OCmV+HWwZET630expESgos2vgSHTVNXlFEDEqxbW2HZcWg28OfYC/Z6zAl0/MhK2bUkWJwYVcwXVoTEIE6n99ugQ7SOImL2DQ+Cw6JmkyyqsuaUmGCBaBY1B+Z3/YiQuXG3yoArWXZEBQcYhY2bnkIK/H1arhHN4T0LYYevFZqWCKq8EeyPeaHnFsRw62LtqFAxuOeBU39BvTC4e3uBLTfbHyp/XYv/4wXpn/DE3POBWRxiQd57SQ2k/NGBlwG/lJLDo3OW3YV5XfLnFDGG/DS7Unx3njpJF1BXDEd7yxX3Z8A/DdWAClC0I4Ubwd+GAgsOXz7jsPCYkzmYJ1J1fcQIh3K+oh1UeJw4CzngBCu7HQhAlOi2graEDNz0dQ/s4OlL21nd4Mq4rgKDfDWW2hxf5Vn++FYb3LTYnVyknFD05niLChflGuh/t4E+RzUbS62PeGYHKgasY+WI+f5P97/2DMW7fBdrxzaSC248dh3tY91z0FBQVeH8/NzcXw4cNx7bXXor7+1I/Zljj5TLr+bL/PyxwCFPYAiWCtX9NFQjSyF0NiHA7XWqE32l0LynKO2NtBIdeCqTP7sWBo9ZCcpa6osLmctp1y4hDBeC5Sk4VbTgZeCThjQ2E6L8v1usZiKb+JEQSG6bTLXYeQAROuHYvN8zvWHv316WLwRDjSTUQl+J74a2Lf2kO4uceDmP/Z0m47DwmJM5kf81dTcQOB+PrXWEOaC+D9wfuZfiPF/E3bWHj/7aMossgKG9N8n7iiXZM5BHPOfgqZIYmoc3imRHijxhYCB8+i3qHGrpoU2EQ5vZGUg9bihiY4RoFg2FFQjMf+WIQLP/kOl8/6DA/vfBF/lixBkaUUZdYKrK3agv/sfwPLytfS7aOVOrAyBk6BaY6tJ2hYu7fap+bPq7WQIRBqKkLxfA1JTShxRGJW9Tj8WD0GC/UD8UfNMPxYOwbHbG2Ff4X2wOK1fYbkNo/9XrgZnx9fChEizE4F8gzROFwXj5yGGGyproeWdUVYNyGDgHDOjEi5GVrOjgExZRiVuBWz8p/A4brTM4FPQkLixI1J4HCCC6QYIqkxpm5IY5DJYIiJwdEqK+pNdte8GhmTJMYAg3oDaiVtqZ0JYbCMSIdlZAbs6dEuQYAbPElZ8IeCo27X7jjTY70W1bqfmzPDJWzrDETLJSpY+rP52FFaGC8fCuvIDJqCxydH+hVosCYbzh2WiU0dHJP8+cnibivUDXZMsnPpXtzS6yH8/fXKbjsPCYkzmVn//f2kihtYjvEo6mFZFlPvvgDfHfkQaVltr4cJ5sHxHkYZreFDlbD29J+wqwg0l9TI9mNFeOKbhbj05e9w2fNf49rpb+HnT/6mBf7Fx8poEs0DI59pTqSJTorsNhdQhsydEQ8rDhDkLTdyn/YVJD060FRhY5tO5tXE8MDrGVxh2+KoP95fiB9f+d3r9ke359CCokBUl+jx0JjncHSHNCaRkJDo5JiEtI8sA1HBQVSeeD/eusoGHN2efUaIG0gPwseGwZkRDz45unmNJhAyRoZzpo3Gxr+2dei48z7uYM1XF45JNs/fgVv7PIzlM11zkBISEl3LzJd+DVrc0ETYshyweu9mGur9FVAfqmq+rzpUCabe99yULqcWw0mRfSMsx+LS+ybj28MfIKlXNxlj0zFJcOskO5fvxUvT3sYtvR7Ezb0exO39HqHX5AWHilF0tBSLZqzAfcOfpkX7hI4Y55mGRLcRN7hTPyEJvKZr+1nSdzvH9PUQN1BkMggpMeAHeCanuvPzm3/i17f/8vocETdkje0d8PjEnPD+kU8j74D3+h+J05dTVuCQV1+BV7f8isv//B/e3j4XCSH+L2IcxFn/FMIpY6BnlDijKNnucirvCMYKoLadyQ/tIXVscNs1lABLngFWvNR95yIhcaZSuuvkHj9uEKDUtX1crgFG3Af0uwqQdbGYTqEDQlMCbmZYV0zFC5Y9VVTMwNdaidVo2w1FoP7vXNiLDWBUHNQDonE649T7X5C3l5oQcU1vyFO8fK/uiED1rEPgra5iXglP9HPm/KP205qMjAzs27cPZrMZDQ0NWLVqFS655JLm53/77TdMnjwZNlsHr0EkzmgKDhfjowe+xj1DnsD3//czohJ9j0nIuqVih0tkFgwypwhZzww4u2IiJiEKiPLuliNjOYQUWaHcWww0ubw1CRuIyVyr7Ul6A6krledXUb9pgSQ3+IKRQWABUaeCvYcrtUFGXFqDsGGWERHFiUZ0TaI4GsUb7aWqqIbeuotgJnea3Ak/fvBrzPrvb912LhISZyKCKGBp2U6PxyqtWuSaowPWo5iI4ssHvNgyNVdh9+NKBKBX2GSo2LbbRCh0+GT4Y7gu5TYyQPH5+hqbBg0OFRUUEIg4o9rq31kvXB6DBFXbuOXWfL5+K6b/8Bv+PngMBXo9mORD4GVtjShIof+3eT+j0FyCCIUWZ8f0pb2kzelrst3VIZHCf/KTJBu0F1KvpHB7nVOUweQgixGuPqzcEYYj1kTk2WMguH0f7pQ6wlHl8L1gkG+JwnFz24SiIrN/N/B1FRZcn3I/ktXECVVEOGeBgmn7HqPUBvxR9BKcQvc4UElISJy65B0oxIf3fYW7B/8bc96Yh8h43wIAch0vO+4/op4trwdj7oa2Jj4aiPDRzynkEPqkwjRlIMznZsHRJwGO3vGwntULxsuHgY909VV0FOFPqNBEq21EbWDxdDDb+EJQy2EZlYGG60ai4fpR9KdlVDp4nQqWSX29C7zpKbZKHiqvh3rZARxdfwQOW8fMnEqzy6GvcIkxu4PeIzKD2q48rxLv3/0FfnnL++K1hIREx3DYHVjz88aT+vFdfOf50OjaCqujEyPx2c63cO/7t9ICI3fsCYEL8x0Jvufok3snIC0r8DrJpws34a6PfseK3cdRVFWHwjoD6ockQn/dEDjDW86ZuKa+f8+XKMkuQ3RSFEZM9p9WJ4RpaBKQfXRvOIZkQIgKsJ7QRE0DNf+g1RjuXRNDHFdFmrAdqFdjy11tuiMjFqJC7tXMqXm3VQ3gqlvS6ZooPOJ/PjL/QBGe+PZ+ZA7274RKPrfnLnqNJmFISEhIuJO9Jw/v3fUFHZP88eEihPlx7ncmRcJ8dj9YLx4O60XDYT1vkEuQLNGlCJFa2M8dDOeoPuD7p8I5JBP284fA2TuIRD9BpAK4jo5JSL9iqjehuyCpdcGOjd669RP8+fHibjsXCYkzEYvJinW/b2n361ijHdE/7oNuTT64CiNYkuqQq0fEn4cRvizH83LZwSNi7gHIS1qZVDoFqPeU4qb+vaFUt11zIWmWX+55G3e+MZ2K6bqSjIGpSMgMbI5BUiSemfw/mqJWmlOBspwKOFulrBF4J493bv+UJvQl9ojHoAlZ7Tof41D/yZ2inIFpUNfWgwmpsQBNffXxPBHTqb2LQPIPFPrdNxF+PD7jXqT39z/u4x08nr7wfzQ5VOLM4ZQUOCwv2IPL/vwfZh1ejaP6EhzRF6PMdHo5K5sYOe6NnYhSVoMzBqfN5YbeUbozpaOgnROGGz8C6oMvYJOQkAgAEak5um8gHBCS0ND3Cv/tT9JIYNT9gCqAk1x7UEcEbNuIWKH+73YIvETAuMW1mB12YRoYkuRwmiLaAuU7i2CULHTjvTtLeWAXUP76NtQvzYcgCR1aPkKjEYYVKzr/ZRGhzvLldH9dTUJCAgYOHAi1Wg2dTodJkyZhwYIFePHFF5u32bp1K957770uP7bE6c3qnzfi3iFPYMHnS2nce+7eAtSU+h+TaLeWgiMitCb8LEqqq0XIGAbOrFQ4Uzo3ASEm+H+9LEQD1fFq6ObtoZNDVNjgRdwAXoA8u5L+qjhYAoERXFWj/o5NXOnIQmyay31C5hTAFfv/nBi9CWy9dxeP7sZusaP3CFJk2jFaL+J3JQc3HWvX9nNem9utxU0SEmcaVt4BE99aQCvDnrpkVNr8OOXwavDw3jbYBRa8WwJEpSMUVXbv+4pVDcC42Ed8HkfOcLgocTzu6/kqwuRtHX9qbRrs0yfA4iDX/y1td4k5zCM9oTUckw5GxgRMbvhg9abm++GxBihUvoteiMhhefk6+vv9vacgTK6BQ+BgcXBUA0eSLIj7NBE1yEiuhEyk3U3Tz47gFElCBgeTUwELrwR5SyTFwdt23j8PGVY39EORLdLjefJ7vjUaC2sHei1OMjj8i65tggOiGINequuxrzQJctK3+kDG1OH/DtyL+SVzYeuoQchJgIhGuuImISHRlmU/rMG9Q5/Ewi+XI29/IXL25KO2sRDSF+Q6nqn3nuAmszqg3J3fPR91nH83OnPPSAhRbftAUaOAeVI/CAqOtrNMIKdVQQBTa2y/eNreseIdQaOA8aKBsPeNp+kRFAUHe98EmC4aAMGf47hMBvmxMqg2ZSNk4R6ErDxExSV2qwO9R7Q4EbYXjiRjdBNHtuW0a/tZL/8Kg/70d8eVkDhRmOrNsJpP3nUgKbq5+52bfT6vUMox7ZGpeHfNy4h0c1cOJqFUxvu+Dg7GhXXLkQLMWLLV63NCiAINF/ZuU6y/8Ivl9Pe73roJ2nDvwm9n/1Q4xg+AkB4HMTacOpM6xvWDY0RPiAEGJ85oje8UbeJyqgBEP2IBpqIebGPqKk+SJui8Go0T9IR8vALAtS4Ac/t/4w+zwYK4tBhc/sBFCERDjQHXJtxFTTVsFmlMIiEhASz6ajkeGPE0Fn+z0jUm2Z2H+krv7ZGjVwIcI3tBjGi57hd1aioesw/yL7KSCB5Bq4JjVB9A06r4l2XB906Cs0fgftVmsaPvyI6PSZhuXCch/8faw3fPz6F9nYSERNdgqDV2WADF2Hlod5Yi5sd9iP1mFyLnHYYqR+9TEBEx9yAiZ++BbmU2dMuOI/q7HZigCsVtr1zv8xhE+HDdU1fgrRX/h/BWCZ+dIaVPYIHY5gU78Pt7C4LeJxE+LPrKVWtz33u3ehWS+4IPCVznxYd07fyQEB8gQYckpA7uAdGLuMTcYAn4/4okApJ0wEDoy+vomGT2a3Nh7+D/xZOBtE7ScU651aEqcz2eWPstHMLJdwdQMFy3ixzm6ALHQp42RPcGRtwGsIqOvTaqsRDJZgQsQRTykO1sbZ0svBLAca8NIg/s+6V9r5GQkPANKfInaQYnGnLMrGuAEfcC8iAuJnWJwLgngEHTgdSzgbBOTsYYygCH/8ln42b/znvecJS4Fha5KDVi7xsM9eCYlon27kljPvHQVe/g3oxIinmD2c7Gw7C6CFVf7ZNEDo04y8sBvotSsngezooKnCheeuklTJgwofn+Z599dsKOLXHqQ9wU3r71E6+OC4EmbnSHjVDqRTBNSTutqijJoq+6UoBa3/I43yvR5z7lwcQ4q4NwI9WowJrt0GzOhcxbwoIgQL0xG0xjugEtEgqmnZUBtCbRLf5Yub8IIEkO3hBEKPcU4WRB3H8uve/CDgkVyGubYkTJhHkwLkVku2An1+urPeNeSV0uKZjyNlFEcNidWD3n5Do7SkicTqhZBUK5tiYUAhgsqeyPY8ZYmgzQhLWOw/Y18Si1eRdA84IMdfbWYwwZcq2xOGyKR40jBAanElZnOibGv4CpKR9BwQQ2wUjW9MS/+36O61P/jbOjL4OWHYaNFenYXJkOs4P0B61crWUylFnD2hT7k66ACDd21FbC0kbY4clPO/Z63FeH+t+ekGtyOfakhcRgxuh7cW7cAIiiAia7Ega7Blaeo2KG1jVD/sQY/nCIHJwiR78vFzLorWo4BVmbRA0irSDHcb8Jogw2UYE1hn74o3YENjT0wvqGXvi1dhRWNPSHIOOgU5D33XKCrIyBLIgBFtmGCGiSdEHMZYl1WFj2F9479uYpJXKQkJDoeoqPl1GXVFKg2R5kDh7qlQchP1wKNC0COnlwuZVQrzgAxtDShpMWjY8LgyMrBY5+yeAjtZ0Yk/hOM3KqGAhK30tVJAHB0dPl6io/Vu73MERMzVg8FzfZwsBz+1wQ23jDOiwVotb7e6PJDYG6AY6FIq/KQ+Dda1gGLrt/Mpgg57Xc6TemF0IbncXpmKTB/7xi03YWY0fHJDIIKs7nmIQURq39dXNQ+5aQkAgMKcJvT9GLrKPq4FbEpsXgP3MexZvLXoCqdbGkF/qP64Mf8z7Fsz89gqsfvxRDov2L3Aiq7Fqfzx3adDRgMf3P6zzHJK3ho0PgiPdcYzq+K5f+zBiQig82vIKzrhzV7PQqY2TgU2PAZ8Z73Z+QEAk+QJGTvUeAtD85A/nhopb+2A2m2gDVluMtDzSdF3mOJ/05mUN0CR7IjT7m5fsOdn6LvJaYfgQDKT6a+dKveHbKq7BbpYQ5CYkzmfyDRfjo/hkQgkhsFlUKOPv5dmUm7a3gQ2wWDEGNSc4Q+MwEOs7w+XyPBIgBxho9h2bgsgemdOhaYvDE/lCHuNakyHgkmPUPsh1xhQ+GulZjkkCQ42+Y610EKSEh0X7ConVBjQm6Cq7GDPWhSmQ6Gbw482G89vdzUKgC15UOntAfPxV+gadnPoRpj03tlLkdYd+6QzRRzx9/fbqk3fttGpOQdvf99a9gzKXDm+eDGF9iadLv1QRuM4PZpj34mvvxICwE/NBeHh6PwfbRxPiRzCMFQ31VAxWwPX/J6wG/F4lTn1PuKu/3Yxth4x0nRcxw+4DzcWHaUFRY6hGhDMHgmAxsLTtKEyX+ytkKYwBXto7wV2hvTDPmIN1phAMyyP3ZvJ7qpJ0FcArgyi+AufcAQju+57MeBY4tAzZ+0JK2EJsFjL4XGH6L57aHFwKbPgKKGi9iEwYDYx4ABl/ne/8RwcWceWB0udtKSEh0EYkjgPzVvp+Xa4DkMUBEJlBXAOS63Hc6hd0IhKcRm4H2iTFiB7hupL/a8gFg8T057xfSDtYXAtF9fW7iKAlSqOWGTN5y4UlEDlH/6gvB4gRvtKN61iHwlae+i0HYxZmw5dTBesTPZ88xUGSEQTC2bxLeUWqCYV0xwi7sQN9wmiGYzV27P9OJTWq59957sXbtWvp7cXEx8vPzkZ4ufa8SgSFuCqR4vL04o0JgS9LRSiF5A6jIgbOIACuCJ7UvIsCZyaKk5zU/cTESQlRQ8Tyuf/ZKjLlkOGpK9AiPDUWfkT2xa8U+bPxzG1b8uA4Wt4KkZogQKdCkQ6PgQJFTBabeAnu/BDjjQ+m5qqqNYPcVg601tb/KlGxCXLcbHecIrN4MzcrDsI7KhBDRUqwrM1qh2lkAeclJSueTgU5wkUn7f39zH96943MaERosxBFk01/b8cvbf9HF9ybRw1WPTMWFt0z02Hbtb5vx+7vzcWRbNr3fZ2QPuug/8bqzfO4/IcMVfSrIWViGJsPWJxaiWk7FJ4r8Wqh3FoPTe7bLteWnV9KhhMTJhLQNFyWOwC+FruSB1sXz62t74ahxMG5OHYSR0ZmYX1WGdfFboC6zY0BEGZJC6mkCAWk6K61aHNLHwyGwSNA2IEJpaS7kJ81mPR+CKkMo9lckwGxX46r00WBlwSevsTIOA8PPorcJsTasq/gYdWjrnkcSElQcjwanGgajCjrOCjnD0yL/BoeqUQxgQ46xAAPC+vg83sEyz/kPkQ880a1gWt5PakgMXhsyHQ0OC/R2I57Y9R0UrHexGzk3Du0TGBLxhpl0tO7nKAJmpxx1Ng20chtUnANDNTWYGlaAwSG19Hs4bAvDckMicuyhHq+rEzSo4z0X3Z0CA44RoWCdVIFG/j3c53KsKj+IHbU5foUzgyLSoGPrsLg0CGdbcrEAIM+Ug5WVy3BxwqX4p9OUxdHZfUhISHiy8Itl7bpWbS1yUO4rhGJfoUuI7OTpWMQdMv6wj+lNxyLN9EmC2mzDbRcMwoiJWagtq0NEfDh6D8/E9iV7sOnPbVg5ez2sJi9FqESI4aPIxqkOYoGUJMIdKoW8qAbC0RA4+rQVgZPkBuUO18KwO6zeCLa4BnyjGLnN86W1YKvbP78mytnmpDq/2/nzE2n1uZPC2rQsV+HXI1/cgw/v/TKogjH3Mcm63zfjt3cX4MhWV2Fsr+GZuPqxS3DuDed4bLtq9nr8/v5CHN+Z2yyOuOaJy3HOVaN97j8hwyU0ERQsbIOSYe8Z4xJykLS/wlqo9hS3SeMjznoSEhJdA0loOe/G8TRN1BfRSZG4+O7zMWh8FjbP34E/3l/Y6ePqy/S0WLE9CTFyhRzn/utsevuXxYor3p2Jygbvc7+KPD3kFb7nhQ16E00pyhrre0xyuDCwcY4jJgTy8pb2XqFuKYwibe9LfzyJhloDTcN87qLXUJzpmofxBZ8WC/Z4qc/0CTpnEwBiIKJZuAvO1GgIREgoCOBK9GCrGtqknboX/tJ+pdVhyTYe+2ZkePTLu7H4m1XN81S+hDN9RvUE62ZOEgz71x/G/M+W0vmsfzrSmERConsgbUCw16qknQtkmORMi4GiLvA6oSpEiZtfupYWr5IEO9L3ZQ5Ow7a/d2PTX9uwavaGoAsk2wMnZ9ttenUyICI8vyg4CNFhYCu9X6dzCg6JPVwCvwc+uh2fPvwtTVoNdv70uqcux6o5G+g1yLEdrjmxvqN64up/X4YJ14xtk0o498NFtJ8nDDi7L6598nKMvXREwHWS9hAo6VBCQiJ4SELCxOvGYcl3vmu3YlOjcfGd59EEuFVzNtI5rM5SW6rHkHMHgGWDv2YlCXPn3zie3uqq6nHXwH+jzkfKUCDI6woOFaPnkAyf2zTNr7QH9zFJ5qA0vPLXMzQ1jazvPnX+f6Gv8H6+uu0VMGf5bu8ZswOaAzXoSph6EwRtAME96S4idBBjwiGrqgPLMXjim/tpssXxXb4TeEjaBllTtxjbV3u9e+V+LPlmFS69bzL+6UhjkjNI4LC/uuCkHNcuOLGicC8eHHoJspjU5sfHJPalt7sHT8Fb2//Asvw9zekSQ2IykayLwsLc7R0+bg2jxJSkyyAXeTjAoL9dj+uNx3G+qQhhov3Ui+DwRdrZLnEDYcA0IH4QsG0GsPN7IJAjXb9LAacVmH2t54pA5SFgwcNA+X5g6juuxzZ9DCx73vP1ZXuBeXcDVYeB819qu//SPUDFofa/p/CW/ycSEhJdQNo5QNUhwORlopoUxwy+CQhvLEw+GiD2i2u86HIGKuQXgfI9QOZ5HTtnVg4MuwPY+yNgbH/SAkXW0tJbj+th2lEBvt4GNlQBzfA4D0fsYFH3b+scxKg5mmRwOogbCIbVhVD2jnDN9PuYcwkZHgs2RE5vXIwazqrg37tpezlCL0jrMhesUxVGo+na/YV03J2lIwwYMMDjfllZmSRwkAiKo42Tsu3B1iMKxkm9PBzXRAXgkANykwiF+7y9t3aLkcFucmDTn9tx4/NXo9fQzOanhl8wmN6uf/oKfPXULGyct615on3gOf0QflZfrN3k55yJs4G+ZYGXqzaCW9/iEkcmH3gvaTfy4nrYeka2tdd2Q9b4MsUxz/6bqzJAu2gvnNFa6ngqszjAVjSc1PLFkZOHNLfrF9w0gRZq/fXpUhqv7QwgaDlv+jm0cOfzx7/3eJxMzL9926fIP1CIu9++mT7206t/4PsXfvbY7uj2HLz6rw9QdKQUN714TZv9H92ejYLDRdTdr+GS/uBj3NxzGQb2zGjYkyMQuugg5FWupCZCXLqrAElCQqJrmJ52LjZVH0aRucproforg+9Ev9AUuui3wOoSUVqcCmyvSsPeGifUnAM2nqPpBBEKDRgIyK4jbkciQuVWhCpsEEUZ6q0qVJm0NLKWPLeo8BDu6uu5ABgsGk6JL0bfhsd3zEZOKyMGp43zmFwlQgdvNKUQkPd1xLAXW2vWot6hR7g8EqOjJkLVakxSV6lFfI+myXMRnIyn4o4mgQK5jYoc2uY4oXI1jA4LbEI+1KyDChPEVjNfRHThFERwTJApbCKgd5BrVs8exi6wcAosfd8GhwqXhBfiocT9HtsMUesxSKXHD/qe2GqOoftyiOS9tk59kMEuMFQcEqd2NIsQFpfPRb/Q/thR67u09fLkkQjhVBgQGQ81k0wms/y+H7vQ8p2tr1pzSggcJCQkuoemQpHOQFsmLwU6xJHNflZfiF4c+SwaJdZWNeCG4Z7Od6MuGkpv1zWOSUhRbZMAgxTFaof3xsbNPs45iEGAe92Uck8huOJaODLjIISqaXEoV1ANrqjGexodGY9sy4bDYoeTXB839VskuSK/CvL9HVtzEkIUgYXkfualCFyZZ6HN2MtaCnlIMQApBCKFY0u+XRVQ0HLxXeej6EgJvnludpsF9tdv/AiFh0tw6yvX08eIy93s1+Z6bHd4y3H89+p3cOcbN9KipNYc3HwUxdnlVNhhnNIfQqTbHA7LwJERDUdSOLRLDoKrbRFex6XH+D1vCQmJ9nHjC9OwfclulOe1vW7UhKrxyoJnaNENz/N48+aP/e4rPDaMuvYHclYmJh/EqOGKBy/q0NcVqlZhxl3T8OjMBcir8jRiUObqEb7wWMB9NCUrCIKA7Yt3Y+kPa+g8DCmemnL7uVApAosJhJQY2JVasOV6MKW1OPvKtoKu0EgdLSKqKK+DOLhl7s0rCg5iqAYyvdH7ORtsEEL9p6qS5CTSd8nzqwBy8wGXUw4naU99zMHJTDawZZ6frSiI+Pa52Rh63kC/AodL7r2QuvAOOKsvohIjUFMavFnG31+vPCUEDhISEt3DsR0u855g8Da26Mg2BCKo3rpoF67592UejxNjKHIjBfIznv4RWxbupIl3ZM5/6HkDIFfJsXXhLnQUoZUx1T+WYBy2/WxzzrQxzb9f/sAUmsxExiRLv18dMEHwyocvwqHNx/DjK797PE6Mnv533XsoPnY9pv9nGn3syydm0oJXdw5sOEJv939wG658+GKvDureroECES+NSSQkupSbX74OO1fsQ1VR2wJ6XUQITVkgAmKnw4lXrn3P776iEiJoiotXsww3iHBtw9xtdK6kI4THhNFEupenvY3SnMDiaG8wjKvt5HkBm7bnYOnqg6irNyMhLgxTLxgEpUYBtFNT4HVMEqVDZWG1T3EDQX1Ej5DdlTAN9bIOzAuInpsDmYyFmBIFMTSELpTIquuAqjrIOhiTzeRXQkjyk1JH47Abf02Iosci9QVfPjmLzg36EziQ1CAiSBl67gCExYTShIb2jElOBYGDxBkkcFCwJ++Us+vKsKpwHy5Mb7sIG6cJx7sT7oB+tBElxhqEK0OQrItGlbke28qPodLcMQUYL7ouEB0y16T7QWUkXlCOxu/aHni3agPieMtpkOrAAMNv9Xwouhdw8VvA4fmAIUBRMElgWPKs75WC7TOAgdcAYcnA8hd972fD+8DAa4G4LNf9uiLgt1uAkp3oEH0v6djrJCQkWrAZgIq9riQFVQQw5BagYB1QtrtR/CQDonsDmecDocmNK6167yIId4iwYdRDwMFfA2/r6GTBvzoSGPMwQFw7iUCD3KxBugSwSiAsjU5E1/5yFJa9nhPcln3V4GLbX2CuSG9xIG3Cmq1H/SLfF5SnGoLZCcueKsiTtHCUm0iH6vG8ql8kwi9pWYyPujkLFe/t9Lvo7LF/gwOiXYBM2X6ByekEFx8PEJU8cYfv9M44cHHtd91oIjs7G+vWrUNOTg6ioqLw+OOPB3xNa4GKWh18xLvEmU2gKEU+SgtHZgxEtQIyix1scS2ME3t6nzSWyeAIARiH6HJNJRMMreeIbQ7IGuN5s3fnUXdUUjzUmtjUGDz/8+PUhYJMfJAJkPj0WFRWNmDv4W9R18rdv/kUCsr9TmZ4EzcQlIfLYE+LgEjWkL0tsJLiItG1yMpVep+IIGIKkNtJhuEYWhDkDpl8e/jTO7Hml40w1Po/x4yBqbSQyxfEQZU4ppJigx/+7xef283672+YdMPZSO6VQO+X5pTTyT/yvRNIcoOHuMEdBQvT2ZkIn7ev+aGzrxzl97wlJCQC0+DQY2/dBpicDYhUxOHdIbfhx4J1WF6+GxbeBlbGYExUX9yeeSF66ZLoa/JNNSg01bYpTLfbW/oPvd2CPyc+hPs2/YI8Qy1MZiXKfFR41tk7NyZJC4nC7+MfxJbqHKwuPYoVBcdRaDZSAYXRqoBW5dvVTsuFoKc2HbzI44f8j7C3bpvH87vqNmPgkF44ujS8uULValShvlKLiLgGKBlS8A+wxF5U5hIDkHtZoW0joXMMO7Gs/FuMji6k90nXZBM4mr5AhA2uFAAZFRkIggysTADbmIpBEidsPItwpQWKRvEDEZI0OFWwCfI23ZPeoqYCB3JuKQoDHkjwFDc0QcwFp4fnYkNdPHi27fUj2ZfJLkeY3EZFHCTNo4kGpwFba7fgnLhMbKqsb57ja+K8uIF4sHdLkdiTA+/FrPz7IScpEF4gxzI4WwqkauzVEEQBjJso/p8I+c5d33vn9iEhIeFJsPHuHfqbS4n2W1x08FgZdu0vxLCBbQ1+EjLj8OLvT0BfWY+qomrqwEbGKWWlddh38FsYGtr2aaxVAML8n5OslRCAJSlz7RhHkPGOYl8B5IeKIUS5rqeZGiNkHUzBoPu0kdQeMuDx00bRcZaPYlSDFVxhrYcj7EV3eC7UE/e+R7+4Gyt/XBdQ4JDcOxFfP+17TEKE1mSsQc6ptbjBnW//MxuTrh9HvzdC0dESOibJ2+/qn61DUzzFDe4oOFhGZ0C3+GDzQ2ddJY1JJCQ6S1VxDdb8vJE6eSb1SsAby17Az6/Po49ZzTawHEsFUsTNOmOAq20mf7PeCo5au5D+kP0JnjrvZVQU+C6uJwSaFwlEj7gozH/iFmw8VoC1O49i87xtMK7LhrwqcEJwRFwYdfN02B3479Xv0oJVd4hTd8ydZwMt5qdtIfNtCjX4RHKLBNcvBf0vGNRmM7LvL5/4Ieh1An/ppsTswzoizefzbI0JXHVwicZsnRmKvQWwD06j/Q65PCbaaxkPyKwOKDcf89rbkKIo8vkQwdyxnbltClOJYcet/72u+f5Lc5/EQ2OfC/r9l2aX41RAGpNISHQPcmXwaaMym6NLtmli75qDOLTlGLLG9PZ6XfzyvKeo+3V1SS0V9MWmRNPr2gPrj8BU37F0eiKyOxWQNZgghmsDbGP2Oc6ccptnGnXPoRl4fMa9WPrdqoDHjk2LxRetTKDc+eH/fqbpTsY6UxtxgztfPTkTE64di8j4CHo//2ARXrn2XSrabjcyYNwV0phEQqKzkPHCml82wag3IqVvEt5e+X+Y/ZprTGK3OuicBvlbu+Xl65Da17VOQq4//RXpE2rK9Jhd+AUeHP0salsJdrt6TELmWL47+hFN/NmyaCc2z99O00mDISY5Cmn9k2GzO/Hcq/OwfbcreYaw71AJlq4+hMyzsyDOWR+0mR9Zm84a1zalbv3crZjhZ82ZQI4R81s2VIVGNIyNh4PUjQki1Mf0CF9TAqVBBnFMf1ctTyNibARgtgJ7syGztT/piKkzgj1SBL6vK3m0zXjL6ZbD7JbiSr7X1XM2oN/oXtTQr3X605TbJmH68y7xG1l/eeHXx/HEJC8G5T6QxiSnP6ecwOG81MFYkt9xVW1nWV2036vAoYkIlZbemojRhGHWRY/jqXU/YG9V+6JoGJkMgo+Jkb3KaHwaPggawY5zLaUYay2nnnZkipv8PLWW/QRg7p3Azu+Ai94C4gd4Ch0CCRzqigOnPCx5GiCLxmKABYtdPwAXvekqkP7uYqDeNWnfIRqVexISEkFiNwHVhwGnHdAlAPocIG+N598tqwD6XAr0uhiwGwBOBchbFfgH+jt3/xsloohAAocQPwrUQJAClqZik8gexGYIKN4S/OuTRwGcEoY1RW3EDU04K82QKViI9uAXZKtm7AMbrqSFtIq0UCoCoOKGdkTen3A0HGD2757tDUeJEZE39oOzwgxntQUyFQvNkFgo0zxFHvIYDaJu6Y+aWYfaiCG8IVMwkMmldp7VaqE7/3wYlvqORQ8Wsh+yv45CxA133HEH/T0mJgaPPvpos4reF4cOtSQ0kcFSaqqUviQRHGddPgpbFrQVwZLWwzYqE85MT7cEa784gPPz/1EmA68UwVlEMM621/JsfqWHE+mWBTu8ChzcXSjIrYnY2FC8/8GNeOPV+Th6zG3h0e5wiRvKqv065Ply5SGihZBNuTCNywSt52yKmG4SabhqWSErq0Tlv3rCGa4Ea3BAu7MSmiPEIQL/GASngJenvYMhk/rjwU/uRFq/RuEkQCfq/DndEUqyywMWHH36yLfUDc9fnDN5bvHXK3HXmzdSocq/J75IF2GasPX1LwQj4gdnVAi4GtcCuSxA7LeEhIQntTYjNlQdhk2wo7cuCWXWjVhXNR8CnW1xoWTUuCLpLjzY6/9QazdCx6mgazUmcQrBXZvLGRZZYUnIqfc/iZ6hCxAt7wdSVE9EGORaZ2xMTwg8i28P72tMhwDKG0LRU+W7H5gcPwFKVoHFZb+3ETc0YVQcx4CsDBw41OLQXFEYhviEGihZJ01j4BobfdKdkfSE9469hFhlOESIyAzpi3RNAtZUfg2RdB6NkHpRFeukN9d7kcHCy2EWFHAKDKyQw+pkkW+MokkMBKXVgUilldYZEUEEyYAgiQpNraEgyqgQotYYAqXK9T1dEZXX3IV5gwgm+nNGbLH1gUJeRkUVLkSEcxYkq/TNr7cJLGrtITDxLUKEQksuPhj+IPbpK1BkrkaoXIMpiUOQFea5ENAjNBHTUp7D/NLXyUjG4znyfqrtWir0aELDhvzjxQ0SEhLdx7jLR2HXCu/irM7CxxPRmn827sjxKnBoIiI2jN6aSEgMx7sf34g3//sXcnLcHDftDnDZZZCNSYOo8+5yzclkUBzvmLtea4iggQ2wuB4sjMUBrqwezkTfnxdbaYAYooJIXPzcz8NghWbVYQ+hOUnhe+HSNzD0/IF46JM7m0XPhOQ+ic2iZ18UHCpqs0jcms8e+Rbp/f3PfZDx3+JvVtGiBFJoQMYk7gUJ9t7+U+L4uFDwYWqw9ZbmdS4JCYngIcWYWxbugt1qp8mS6//YirkfLvKYmwkJ0+Cxr+7F/R/eRkUKuggttOGewiPeS0KPNxRKDj2HpgcUOJBi0Y5C0iRYloiLZTi7Tzrk2TVYO3c/5EE6h17x0MWQK+T4+hmXG7c3yudsg/q2UbD4KD7lzCL4EAZ2UosrkpBvJe566FskHSuh19qDJ2TRtvbrp3+kbSmdz6oz+i8Qtdoh81MkqzpUDkdalHejCgcPzab21Q3Is8sREaVGQc8IOKKVrgGTIEKZa4LSbczqDeKc/fri/+DgpqMoy61AWHQozr9pPHoN80yp6DuqF56b/ShN/wjm/xBxV5WQkDizxyTEbT8Y2MJqOElf4ufakGzTHkhqnDeBQxOkOL6pQJ6Q0ocU5L6It279BPkHitp1LFK425Sa/U+HrCc5h/juv2RV9WAaDbVa47A58czkVzFiyhA89MkdSMhoWY8g/WQggUHuXv9jFtLnfvbYd4hO9D/XST7rZd+vwfXPXInKwio6JiFCzw4hkvpeaf5MQqI9VJfUUBGA3eZAn5E9sPLH9Vjw+VKPOQeS1PDEdw/gwY9uR11VA0IjtQgJ69iYhCQf9BicFlDgkNy7ZZ6kvZDUBdIWkPoRkvZDUuoWfbk86Ndf9ehUOqb55NuVHuIGd3INNmj6JoM/Uhz02vT9w5+igm7C0HMHIjYtGt8+N8fvWnITZJkidEs5vQmkfokX6U1UKiCOyvJuvKhRQRyYCdmO4Prv1rA5ZYhMiUGVSukqUCa+H+T/RWNNQDMWq9cxyZvLX8De1QdRnl9JBYgX3jKRCk/cGTyhP578/gG8e+fn9DMKhDQmOf055QQOk9OH4fO9i5Fb33WOAK7lzuAmURxCcMWVVlKgSyYvOAXSQmPRKzy+XQIHBjK8dc5t+Gj3AhQavE8qzdNmIsppwZ/aTNpmqAQeH1Stx3B7+y78Tzjxg4BysvjS6jMv2Ah8Oxm4aR6Q0qigHXE7kLfO974i0omkLfAxy/YCUT0Db1fbeMG984fOiRsIK/8HnP0IENuvc/uRkDjdISKAowuAku2BxQm8HTg0F1DogOi2StbmxARlGGDzs1ip0AKaaJeAoMxPSgtJzyHCi5psl0AhmAU5kvhQsB4o3eESYZBjJQwD0s4B8olgI0h3h/jBQI/JNL3BtLnU/7asDFychhbxB4VTBF/tuqB01liBXe2PcjzhdEDc0IT1SC0ir/Y9wdWEum8kYu4dhKrP9wUUexCRhFQ06iLiX//qEoED2U9nOOuss5p/r6qqwt9//41LLvGfpvT99y0uIiNGjEBkZMeLByXOLCb96yzMeX1umwhLR5+ENuIGgsgG0X8wcIkbWjU/TJke3FHPSWMy6RIMNotLBKxUK5GaFo1UixHHdhwGQlQAKcavM/pNbiDihv/MeRRf/PsHn65/iuxKyAwWmM7rB1He4sZA3jHZs0VngeVKzwJO0+AoqA/rEf/DUTrRcjIgrkM5e/LbTBDtWX0Qj571PN5a+X/oNdS1yHvJPRf4FTik9kui/XUgDm85jvDYwAu/Zbmuse6Cz5Z5iBuIO5+gCxzTzeuUzQKH71/4GdMeu4Qu3khISPj5uxEFvLXrD/xduwfOxjFJskaPHqFt2z6bYMGvRZ/gjswI9NQO9Lq/dG0UIhUhqCVjCR/EqUKRqAnH9ZnDsKCwxeXYExEaOSmYN2BLVS7GxHgWn/ii3m7Eb0WrsbR8G+ocRkQqdJgcPxpXp0zE54c2e5hp1FvUKKoNR3JEXZvhzqTYsbgmZSqcghMbqv1P9vfpVQtzZS/kkphjuthQSYUNIZxnoT4RAqhYHoJoQqWNjF9kqLKVIdtgpokM/iDCAi1nB8cLqHW6krfq7epmcQPBxnNwCEyL5o7M+bVqoktqIsELpM9yfddpqsALpD00ddjsqIIIhgyn6ExioqoOSsZzDEvuxysbUGkXYWg8R8L++v24o2fg692BEaOg4t7A+0f/hyiFgaZCWAU5TW5wEotWN8ZEjQu4PwkJidOXC26egF/f/osmt3UVpPCUXh8HYdzjCDL5gIxJyH4VKgUyesQiwVSPnD1HAbXSNSZpMNAxkGaNBeZz+0EM8bze5WTAaw9NxafLD0Jvbr+7XHej3F0IZ6zOw5muGQcP9fZ8MHVmONKjaeE/Laotq6PJDb2HZiB7d65HP0U+/13L9+GRcf/BO6tfanZiJ2OSD+79yu/4xhGE4+3+9YchVwV22i3Lc411//zobw9xg8gyNKkwEIJW2Sxw+Oa52bjy4YuR1LPjhQgSEmcCTocT7931BVbN2RCwEIg4T78+/UPaThAjBW+kD0ihRUcGve8xCUndiUqMxNS7L8DGP7d73YbXKsAOSEReOIfQ48UY3qvFEMIfJMnnt7f/wrIf1qC+2oCoxAhMuf1cXPPvSzH79XlBFew0tX//evZK2p/8PWOFz+1Ykx1J6wtgv2IgCqvcBOSiCNYqwqmSgXdTNfMaoFrHwLrXBmVRLUqOtzXbY7PL4BzRy/cx8yr8zqvJnAJNtLEOToatdyxEtZzYf0NeoIdqbzG42vY5iFszI1ExLAaie4oTI4OtZyTsiTpE/bofXJ33glXCzuX7cM87Nwc8zqTrzoIuUovnpvzPX0AF5fwbx+NUgAj8m0T+ndmHhISEJ1Nun4Q/3l+AmlL/BakEUlBP2k0+M97786W1YKsbWsYkQeAMcp2EpB0xjGtMQoRdsanR7RI4cAoOL/7+b7x166eddg8/ETDF1WCidBBSWoxImjFZIXcTIfQaloHjuzxFCeTz3754Nx4e+x+8t/bl5rWFS+65EJ89+p3P4xIXcrPBdz/UBBHq+7p+cadp/e339xZ2XNzQyIynf8TlD07xEGxISEi0hQga3rn9M6z7bRP4AIXlZJzxv2vfw/sb/oc+I9qmNRNICptaq4LF6LttSMtKRmikjo5Jti/Z43UbWTwL3UXhKB/WgEP1ucgKC26dpKbWiDm/bcWylQfRYLAiNkaHqZMH4ZorR2DOa38EtQ/SL13x0EW4+vFLYTbb8XcAsxHd6N5Q2ewozwuuBouM7ZqShYqPBTAA9wNjb/m+xKRo7+KGJrQaKuQmgu6OULfxIJhzBvs9BumLWkP6FyJuuPWV6wMe48KbJ1IR/4tXvBVw21NlTCJxBgkcFCyHbyc/jIdWfYn91QVdss/J6UMxPK4nvti7GDVW/xdGNt7/JPGqwr345sBy7KzIofcHx6Tj+j7jsShvR1DnQlz1pqQPwxMjrkSCNhJGhxUvbZ7tc/sarmWx1MAA/RzBReecVOqJUs3HoMRuBL65EOh3KXD+S0DWFcDAa4H9v7bdlhQNX/klkLsm8DFJQbEliM+myan9QHAdmV/2zQEO/gFcNQPof0Xn9ychcTpSvhc4ttD1tx80okso4EvgQBwsU8YA2X4KrpNGu8RRYaku4QERJHg9FA/krmgRO5CKH2UokDAcSB3nSpBwhxQw7fwKMLk70RmBgnVA8VaXQCMQsQOBjImAzuWIxNdYwNf7f51ocSLqnkHgTQ44ig2oX+xdMXymIhiCXwC3HqoNKG6QKVnoJnqJXTtD0YweBWWvnrAdz+7wPpS9ekEzamSnzqNPnz4YO3YsNm/eTO8/++yzOO+886BWt1wruTNz5kwqgmji4Ycf7tTxJc4siGDgzeX/Rx3/m1w0SfG5o3fbyflgy/cnj++PAYoQ/DR7A+pMNsgsdrCFVWAq6tokOhAXP3+s/2MLjfc9tPkYvd//rD6Yetf5WPfbZsjIpD+Jn/QDy7GYdP1ZuOP1GxCdFEWL7D9/zHessLzCgNB5u2HrGw9HehQVOrB1FtiUVlgGeJ8wtvSLQO2UVEQt6poxXXshzoS+FkpIPPIDI57B+GvG4I7Xp+O86edg0/zt2PDH1jbbEtfEp75/EBvmtn2uNSThwWK0BXaaiHaJIFb9vMHjcVL4JbM6IAYoSCJOsk0s+moFlv2wlsZ5jr10RMBjS0iciaz4cR0+OLYQNWe3TMaS4vWUEN9zCCRlYG3lnz4FDnKGw7XpI/HFMd/zFdenj6JzQKNj03Bzz5GYme1eUCSC4wQwjAhexuPjo8sRrrIgSu2EnBUQo4zEeXFjcHH8BKhbjUn0dgMe3f0RSi1kAlmkBfIGZx1+L16KJWXrcaCGbO9ZmFhp0EFvViNKa4KS4zE1ZSCuTT0fqSGuBcwyawmMzga/n6NJqMcPt09GTqkT+0vLsY47CA3rew5NwfBQyexg6KcpAysjRVzBOTyTRAcFL8DgVKDGroFIOuHGHpcIEOrsakQoLF706SLMNjlsNhbgWvoAIx+40JOXke+1ZZEglLO2ETc0QY4brTBSUULTe6pz+P/83FldeQQ5piiUWXWIVpq86uw1rBaT4y/GqYBUTCQh0T1odGq8teL/8NJVb7fbfdQXF91xLhJ6xGH2wl1okdl6x+kmxPXG6p830mKno9td6yQDx/fDlNvPw6a/tgPEhdzsKn5vgm2wQLtwDxUCOJMiwKnkmDx5KO659TxEhYeg7JGptFD+nwYRFocsOwTryHTwMTqP5AbVjnywta7CYkVuFUBubpTmlvssHCUFPPcOeQIT6bhsOqbccS42L9iBrYvappuTItQnvr0fS79bHfB8iSOrwxq4ECy8cUyyutWYhH53ZEyp8L+0SMYtTfz1yRIs+WYVXpz7JEZOHhLw2BISZyJLvl2FL5+cCaMfMYK3OQYidPNVIEjmri6683y6jS9IoQ4p2Bk5ZSguuuM8LP5mZfNzIiODcUIP2HrH0CL6jxdsoo+rGmwIXXkcSWFaKli49P7JUBMjjVaOr4+d8wLK86vofhyZMShMjcRXWw7h12uOwLYv3y2XzDvEyfPapy5vTtgsOFTsV6xBqN9bhJ/mP4dsgxGHCsrx9derAEYOWzTr1axIlMtgvLA3uPmHwFa1vV5ny/QQDxWB75vcklraCJNfQQUQgSAiB/XOQqh2FVJhgswhQOYjKdUXzkgNjBN7wZYY4kpQ9YKokcNwVhoiFvk26NBXBF9DsOnP7QHFDcTEY9pjU4Pep4SExOkHSRB6a8WLeHna2wGd/QnyfQWQme1w9owHVI1zU3YnuLwKcEdcr7/s/skIjwvDH+8tgLHOHLAQ1x/LZ63FvI/+xvGdLiPaIecOoELxHT4KaL0JG0h/RAoxSTrdFQ9ehFn//Q3/dEiPxe3Ng1BRBz41FqJWRZPsmJIasIWVkLkJKUkytS9IStSdAx6n6yO3v3YDLr3vQmxZuMNrkmBYtA6Pf3UP5n20OOD52S12CD4Sl7ylBLUZk3SAP95fSIWSr8x/BoMn9u/0/iQkTkcWfrkcM56eBXOD53yNP4gh3+/vzsd/5jzmc+5q8m2T8OfHi/2mtRHGXT6SJoytmOVmgq0A5E+GgTlPBTsrw/cFrrENmy/C+XI94pRRdBxD2icy/nGnrKIeDz8xG1XVLXXAlVUGfPfjRsz7bQuMewsCrkYQ0cXVj1/SnGaXnV8Ji9sarDcqaoz4c+ebyN58HEe3Z2PmS17qXbub8Jb5KV+IEboOCxxIP8IcKYCQle7VJFiWWwaZwXsfXlse/JhkM5lDDAAR0pNx7amAtE5yBgkcCPEhEfjt0mewqyIHW8uOUhEAERV0lCkZw6mo4JzkLFz11+swO30XnSwv2INXt/yKMQl9sKpoH+y8E4Ni0nFFzzH4/dhGvLndszB+b1U+vbXHNbBJ3EC4vu85qDDr8eW+JR4Oe77oMu8AUsg7+HogbgCw4X3PYl2vB5YDSh1gCbT0gSC2EYHD812JDiTBobWAgRQl978SGP8kENMH0MYCa14PfNyYvkB2gP8nWZe7fur9R6cFDSlmnncPkHYWoPWikJaQOJPJXwdkBx7keqUu35WUIPdeuIy08YChHKjY2/a52AFAxqSW+70udokJcpb7b5+I2IFaUdcCuctd+x5+N6Bwi1kjj/tqL/nABY2UxOHN4gZKsJGJjAyqHuFQZoZJAodWsBGthCh+sOX7Sf5oRN0/Clxk8Ps83SGLYAlvvIGCm26GaDa3//UaDRLeeJ3up7O88847OPvss2nR8oEDBzB16lQqZEhObnEWs9vteO+99/D88883PzZp0iRMnz6908eXOLOIT4/F5zvfwt61B7F/3WEYeAEzj3kpLJK5khmEACaXF4zojfEDMzFqSBoeGvksbH5EDKtmb0B0SjR6XTYSm3bmwMkLGNAnEVMm9Me89xZQ1353Dm48Sm/tWSS/592bER7jisS86pGpqC6uoZPA7vGjrYvq1buL6I38OZPNap8e6vc4hlGxiFhWBMYh+EyQmHzrRGQMTKMLB4HckRQqOZQaZVAuSoG2Ie3I2l830+928q2TcGC9Z1QnK2dx7vVn44bnpyG5VwJUIUr8/OafAY9LYjZ3LvNyfeLGhGtdjtxVXtx4lceqYB3kdp3QCqbeAq7CU7RPnFxfu+EDzC78gi46SUhItEDalu8//APmmZ4RuDq5FQrWv2tqtnEfHIINcsZ7ssrdvSYg21CJFWWH2jx3cdIg3Nrz7Ob7/zdsMgZExmNe4QKAy0OI3A6HwKLCrIXepkZUiAUs42p/SXpAmbUSPxbMx4bqnfjfgEcRwmma9/V17sJmcQMREbjX4VgEEzLjTCirC4Xe5BkX7eA5lNe72v2zB09sFjcQWFlw04esTI6xmYkYnp6AbTvtPgLwRISzZoSwnv0cmfJyiCyc8OKA7QWFzIlcQySE5lSDloOFc2b01FQiXG6GIMpQ7dChwqaj56MJsSM6wwQn7xJCVFm0WF6XjAsj/BcHb7NEe7wfLRdALCgTEcLaYOJd44YYZRSC5UC9qxjYzCtQZQMVazSJK8jnZOU5DA0fjwiFlD4mIXGmQxzxZ+x7D7tX7afX+/XVDX4XjQMx4bqzMOy8gRh22Ujc8+KvcPhy67Pasex/vyNOFJHePwVbF++ikfEDz+mHc6efg1/e+BM/veq5TkKuq8ktUBEoSYgjN8Kjvz5FF8MJ1z19BXWG/evTJUE7unYFRPxNnGnJmOTb//wEc0Pb9p+rNkK7+AD4MDUUMTrI7Tyshd4T8NwxBSjYImMvMvbbt+4wzrvhHJoI53FcBYvzp4/HDf+ZRl3YSbEWKeAKRM9hGdi1Yl9QY5KaMk83XtIVKnKrYe/r3XmXwOjNzYlyTdgsdrx6/fuYU/QF1Fof87kSEmcoRLz18xvzOvRaInrieR4s6/0a+tZXrkPh4WJsWdg2xZrMdZB0lSYe++oe9B3dEz+98jsqi2pgnNgDtj5tU0qtoUrYL+gF5697qRvy2t824+2VLza314Qvn5xFxQ2CRgHT+f0ghLWMV+hMx+VDod6c4xJ/+eCSey9sFjcQOHlwYxJOzmJcVjoGJcbghw9WwBZHIlN9zzuLCgamiX2g3lMEkWEgsznAldQ2F39yOWVgS6rBp8RA1Cjp89QZ248LrTdcphXtT6nmQxRouKQ/BJUcrQLd2mDLjICg4sD4OE5cWvDr1Ac3es6DeeO86eMRGR8R9D4lJCROT1L7JuHrA+/T60tiuESK4ud/5t2EkLTG8uwycDnlEEnfIANk9WbI3NYciMCXiPfIuOTxCf/n10F8/qdLEJ0YQdu3Hcv20qL5QeP749wbzsbMF3/Bb+8u8Nh+z6oD2LP6QNCuVCRR6cGPb4dc4TLGuPH/rqaFmYu+6nhtWkcgQgsiRifpbkQQaQuQbEfc0slnaynXgy33n64RqJBZ4AUsn7mWJsGdc9UYHGsUi7ifG7mmIGlL5HsgY5JgPp8+I3vS78MfE693jUlIElRXQBzk/3vNu5hd+HmbQmgJiTMdYnI398NFHo8RobKlXwwsA2NpcjxjckB9sBKag5V0/qaJzfP9G37f9eaNKDpa6nVt9NJ7L6SJbQRSK0IM5fqN7o3Zr89FTUkt5M+FgZ3Udg6BT5cBr+tQeHspvnxiJtbP3Yo3l70Alablb/uTL1d6iBvcqbPxYHokgj1GDLp9Q4QTTeIGAhdk7ZZCLseoi4bSBIuTInAIhk5OrTGlNYDFDjE9HmJUqEvoUGcEU1gBpsJ33xOXHvyYZP+GwGOSKbedi9CowIIOiVObU1Lg0MSwuB70VmGq67DAIVkbDRWrwPS/32lOXQjErMOr6a2JBbnb8MGu+bA4gixeDcC87C1IDY3BhOQB0CnUeGTYZbi691n4K3srykx67KzIRm59WyUt2VaM6gFUB1+85B0ZcPnHwJDpgKECWPpc4JcIDmDkncC6ANEwxFmdpCkEg7kGWPe2l2M5gfL9QGjjYntkpqsY2FDqf39p4wCLHtjzo+9tiBjh4ncAW9dcJFOcVmD3TOCcf3fdPiUkTnVsDUCOn4SFYCBtgb+2ZuD1QNJIoHQHYK13JS8Q8UBkT08VKWmTKg4EJ9ByhwgZspcAWdNaBE1luzv4ZprOm/UUN5COOlwJeXwIHOW+3Ym4KBW4GHXzhb9MzkD0USx6JhIy0veia2uCKbJntAGqlM9A1P37I/njj1D80MPtEjkQcQN5HXl9VzBu3Dh88MEHeOSRR+j91atXo0ePHhg/fjxSU1Oh1+uxbt061NS0FBoMHDgQf/zxR5cILCTOTAZP6E9vxRV1mPnYN23nBki7zJNiHREi5/3/WXpcBOQFtXj4nq/bFK14Q1ArMHNHDkS3qMpl6w7jyx/Xw7lsT4dFz4JGDj5cQxdxiXtgXFosRk8dRhep7377ZurKt2LmOurER4QdJce9jEkitdCEalBSq4cz2r8YTNBwsMdroCpqKzYgznrP/PgQJl13Nk1b8Bd93ITd6sA1T1yOn/73u9/tWDkDPsh+kixYzPFSaEAWN3L3FyA6yVVcmpaVgvDYMLqA449h5w+in9/qORt9bkMKf+5971ZaBNSEIGdg7RsDZ5gcIhFdkuIFoZXXuSAiZEu+V8cRq8mGZd+vwbTHLgnmbUtInBGU51fix//+Bn6KDpC3cuMk1ScBECGCF3n48v7nGBbvDr8OW6pz8GfRblRaGhCvDsMVqcMwOtozQpnsp9K5DOHalsJPktSQEaZHilCPKrsWvNi2dc83leDHggW4p8d19L7JacGaSteYhBTEe6vjIZc8CeENsDrksNjbXteqWA79IjwLmWKU8YhVJqDS5tuhNF6VjCila3JawcghJ0YYaDtPFspa24gbms5LDp4KEoQgejLyeTgEjr6OkQmIVJj/n72zgHLieqP4zcQ3WXcXdtldWNzdXStUaUsFWuou1Nt/oe5KaaGUFqhRWtxdFneHdffdeDLzP+9lJdkkk6wApZ3fOTlEJpPJhJ2Z973v3gu1xIAoRTkiFPbHYrWkFBHyCpzVhsLAWX8xiZhFkFIDmdiMXVXhOFwTiM5q582omysicNHoY5fgIBa5P49IbJYZEtIPnsKQ8WwtOosMOp0MMsZM0y5MHAMLJ4ZKYnWxuxYgCR3kd23pOgQEBFzTZWgHert0PKvZAgcixNVV6/Bwr+dp6oIo3B/okQgwjY7JRhPke87SJqRFb9pfd2/8aTvmPb/IrdMqH6QZlvVVUifXVfM2IDgyED3HdaXu4A99eg8mPzqGuvmRxvvDm44h/6Kj0YhfsA9ttCFJdC2BYUR4+dcn0W9ST+Scy8fnj9iP9xojriQprDrc8tIN+Ol//AnRZPvMJAnBA4jYfOm7jmJqs9FCf/PA2jFJUtcEqP1Vbh3ge4/rhtyzedj5p2snPJIMMv3dO+hnNEZxNBemmABwXk7qYywL5X7nKX2aSi02LNpOGxgEBASsZJ3Obba4gf7JWVh6cyVwIA2Zbyx/DvvWHMa6HzbTGgdpPiQupx0HtnNwX936yy4qbrD4yK3JDa4+Vy2HPjUUXodzcXb/Bfz4+q+4//076WtEbLfj9z30vnZAkp24oR7SLNWnDcTlGojLHc8ZpA4V265B3ECIS4um205qRK5o271NfcM9SdyUshy0cvfXkaxSDGOnuPrHxs5xkJ7Og6zWTZyk0kjO8c9BszIxDG1DYA5W03MkqfPJMsuosKEl6DtEWJM8yddw91XEDBVEOBM4kNo3SdzwFGI64mkC6bWAMCYRELi8kGNMtxGd6O3M/gsuBQ71y3McRBWO16zJPROpqPnB7s/i3EHPDEm/f3Gx3eONi8iY5EdU1yapOdCE4zIRVhPXf/9QPzpPQpriH/96Bk2vIZ9TWlCOQxuPoTDD8dwUEO4PjmVRXujeWI8PRsLgjT+fpWlLl45luhU31DXy3/bi9fj5rT94l5MppTC6cSKvo+BSEX794C+H58mYJvNkdv08Sfu+yVB6K6Cr5hcC9r+uJy4ezcS+1a57K14e/zbueuNmcC5Mt5oDScrbsnQXFWUICAhYuXAkw1HcIBah/LpUGGP86p9jveWoDlND1z4EAb+dAFNbLyDjCD5kChlmr5qF9FWHaLIOSRUjJg1kTNI4jc6oN2LLLzupuEEUK3YqbqhDFCaGeLQSlt+1OLnrDBbP/gN3/+9W+lpJaTV27+XvAWYjg8Ccy3F5vU7mu6Pahts917ZNKAIDVCh1dY4hvSepkVCr5PXpNuS6mozZrgScRAwuIgichLGOHbja017tcJH2K9QuKyr3PHHaFUx5NVBeXdsPYRV1uzMRIcaGrTkmuZbEDdfSmGTHjh0YMGBAk983adIk/Pmne0PIptJqhv9XA73ZiM3Zx3Co6ALifBxdJDyhf2QqZm74wmNxgys0Jj3Ylsqbavn00N94euv3GLT0BXqfXDhHqgNxb9oodPMajE64Dp1F1yEMKQAnglqqwJS2/fHr+OehHPFGK2wBB2Tutt49TiYpPPxee7/yLEXBZqK22RSfBg7ZCBXcfW/SMNx2FDDxU2Dgs9YmYmcQAcSymWh18jyLuRMQ+M+Qd9BzsZMzlAGAzAMH4oA2QNrNQPcZVsFDYJJjRFZuOlB8onnbUXDEKmKqE20QkUNLCO1gTcNphPegcIjlOojEzosMqv6RMGZUQX+2HJYqA+Qp146Tp0jhmUNrc1H3jYAs0nO3akWy+32nSBZciZzu6379EPvjQsiTEj3a1/KkJLo8eV9r8uijj2Lx4sXw9fWtT2zYsGEDvv/+eyxbtqxe3EAKrlOnTsWuXbvg7y/8pgLNR6fRY/ff+3F+60mEOxtEk2I9aWDRkchGUkng7F8zc+in9MGrk971SNxA3m3s3Racj+MEsUZnhIG8JnfVbuta2FA9LBkVt3RH9dj2qJrUER8cOo1XX1mEW6Pur3dfDY8Pxc3PTUL7finoOKg9dWgNiSGO1iKo/VS0UeWLfW/j3jm3QWTxbAwhclHUIUXrEzuswm3iWuopf37u3rGUuK+2BhcOZ2Djooao1HtmWwtnrgiLD0HX4R3w3A+PUAda0jDljIriKnwwvWFsZYzyRend3VEzhLgnBtOJd5IIwkpJe7UVcakG3mtPQ5bp2hXj3EF7dyUBgf86a+dvps7InMLxb7HGJIfFTaExRB4FhdhJs44N5PjYJzgR73Sdgvn97sWcrjc6iBsIW4vW4USV87qBhGFpEoErthanQ1+bFlekL4eRNUEEjiYIuN4uIEDtvAg/KS4NvjKlw/cYHNzg7uqMIcHjsTc/G1uzL6FIW4NkdZrj54KDinFtDkJFDqTK7gEGi6Q+SaG9bz6iVRWIVFY4iBvqIGkW8UrHZBwfmQFBCjGevtQP68qjYbb53Q0sg9+K2+CFi30cCs9m1v04hiRSECZFjEKUl/1kCB89AlIdnjOyEuhZKRU3uFpGQEDgv4u2Woddf+1DxolsGs3eHNIGpNCmdiJuIIjzyyHfcJQ2dIrKqsGUVkNyMhuKDUfBOGlGqqO54gbq8j0kGdXXd4VmRDtoxnXE+9uP4pXnFuKWyBn45b3l9akVtzw/Ge16t0WnIR2Q1j8FQVGB9Fzl7a/CpIdG0zHJXa9bxX8tgVwnnKh1i7O97neHu4YuQmLnhkZaPjgxA2NCMLQDk6EdnAJDWhR18a6D/F6kIbmOaW/wf++Y1Eg6jntxyRO0MYsIy51BmqA/vP8bp68xWiPUq45Dkl1mje6rRVxaA9X605DmVrj8/HONHF8FBP7rrP1+U4ven9glvt5V2hXk+EjcQ19a8iQ+3PIGrUk0FjcQfvvgbxzccIzeN8QHOs6jNMKY0FBHXzt/E4wGU30DpNlkgTlQDUsITwM8I4Ihxfk18si7BtslQtDFGQbXPz6O3me9lTBHBsAS4gvOZjvJcY0YchAXb1Jb6ZjoofFR4+8qEcOUFg2Th+83Rvqi4tZu0PaJhzExmAodakakoPK6TrTm5gnELMTpuhNqk+DI4dZdqY3lwGidzyFNfflG2kjmKd1HdXa7TM+x/MmtAgIC/y00lRrsWr4PeRcK4BvcPAFUcrcE/O/mDz0WN7jCpbihGXz+yPd486YP6TxJXVpadHIkbn5+MlJ7JqHLkDS075dMx2HknEsaLUki9hfpc3DbrFqTxBZAkvJO7LLOkxCht6es+Nq9QXBiF8caZXM4vuM0dixLr3889aUbeZcnjuYpPZPw2h/PYNLDo10a0BXnlOKzh+ahtRHGJAIC9qz5znFMUtMryk7cYIs5TI3qAQ3zrCm9ktzuUnIt33t8N7y81Domeeb7hxzEDYTFc5bVp38yA/lN9AjiQQ3LrJq3ERazdW4hN6+C1nR4IeMonpS4MfcMdUh7kUjEuGFcV97V3jSxG45ssY5JiNEDEWFfCbggX7D9O4BLigK8vWgCh0XBwOwthlkloTcTuS9nwFVpIKp0PFc2HoN5CtVie9AWMO3NWxAU6XnSdc/R7sckPca4X0ag6Rw61EJz51bmmk1w+PrIanx/fD2qjPyRWXwoxFL8fXFfK8kSWh+t2YAvD6+iBYuhoQNx7w/7UFhlOxGciHbhXTH/7h4I9ak9aPuOBrrfA+z/vkWfzR79FRj2OhiN4+SvSzxJPfAKBNoMA863Qmzb0aVA7wes99NuAE4tB07Zx8xRxHJrIgVTO/kcP4A/aYJtYYOyM6T8TQ8CAv85KjJa9v6oPm4L7B6TbXUTahYkvYYkPxARlYRc7NXKYJuDTxSQPNH+ObMBuLQJyop98Bqgoz2x+pJgVF1KgqnKj36cvK0/qjdng62qPXYxIsjbOh9s/BMhggIiQqDFd28ZjJlVMObWQHuwEJzes+YmZzA+Uqj7RMBnSAzvcpZKA7RHi8HqzJAEe0HZORjV27LBapwrzaVRaijaXDv790pDkhji//oL2vR9KP/5Z1Rv2ABYbH5HiQTew4fD/9Zb4dWzx2VLTbjlllswevRofPvtt1i1ahVOnjxJ0xvUajVNchgyZAjuvvtudOzY8bJ8vsB/AyJCJg51v3+8oj7G19QmBOjRUBS2PSvQ+GU91SeDlVifZcyASi7FpreX0/V5AhvsA85P5XoBqQTmuGBIz+R5tj65BFXj0qwuqbbP+yigGdwW3PbzWPDyElp86jw0Da9OfsfBdaht9wT87+8XqJNRnRCCOO8syC6DIdq1yExSYYAs33UD1Jr5mzDtf7egsthzlyONBw1VAWF+6DykPQ5vbqbAsZFL7bgZ1vjUkXcOxs5l6di78qDDcnKlDE/Nm0n3I7EZIM0ES99x7WBg0lsnpEnsa+X4FHAyJ420YhGYkhr4rDsPiRPHQ2fbICAgYD/5RmAuNtQAxCIzIr0qoZSYoTdLoJKS15xfr/QNGtNqu3NHCX+NRMGYIRZZ6pvbbdFZ9CgxlCPKKwxqiZfHCRQqmWPto1tQFF7sMszuOa1Zh99yVmBT0S4wkNOUBNtLOBEYhDL98MiaEyjWWSczpQyD4fERUAaI7LZFJjK73TYqzKDnRP7rxBKTCkqxAQnqUogZ6zr9JPzHQpIc4cUYoGXtJyYmx7RBD79h1LjE4iWBxbQfJyoL8fLJLOQbrSYd1QYFZEpN/XevtsihELt2pzKzDJTicFwXNRQTI4bzblepoRT7yvdBa9YiXBmOkaE98EfOVtSYnX+fNN8EpPp41hj7T4BIPVvqLGSViwoICDSGZVl6rU5SG4hLJ6E542wiVnY2oc1oDWBOZLtMK2oNWG8FLCo5dP3agKt1uKt/zUcJ3aC2wPZz+Pa5RdTpjUwMv37De6gssZ+LSO2dRMckdc5txKV6/9rD2PprrZFTM1k5dwPufP1mVBZ77mxXXeaYUNcYIspIZUS8InfikK4Z2g6cd8OEvTnSH4b2kVDuPAtpTnn9mGTEHYPo/bHTh9PGsromZVsUKjme/NZq7kQaotv3S8XvHzVyaaTj2mAYk8PA+qtovY4IGeQn8yC2aRQT1xig3njGmrjhLYdIb6YJFu6QO0t9EBD4D3N8p3VM0lwmP9I6YxJSk1rxzbqGJ4jjp7v3SBvGJtXlGpTXpkMQp1OCJcS9k6YzAUSnwe1x79u32z1XVVZNa3Crf9sDw8B2YG0NRvRGKM7lo09KJL564of6ZE2pTIIuY7tCrBLRdAU+GKPzMYopJQKSC4XUadzld1DLUT0ihUTwOb4WqEL18BT4/uV4TG7MsNv6Y9jUgdTt2zfElwrszh++hJ/M1TCw1qthogXneDo75JfKIW7kxE3MNojwY/LDY90mHG77dTetccZ3iMGYe4firy/X1Nc8G9NtZCe0sUm9+KcjjEkEBC4fFosF3z3/E/7+eh1NESa4EtHy4RvsjZXzNuKfCjnXkZRpksQWmRSO/930AX3Olg4DU/HGn8/R8VXdeXr/+iPYu+JAiz6bCKhvf+kGVJRUNSmpwB3h8SEw6ow4f6hlghLCxp+2YdCUPvXfe8/KA/VNyrZ4+SjxxFxrj5dMLqXC9eWfr3G5XtuU69ZC7mU/7hQQ+K/TeExCGuN1HfiFsfrUYHhvz6QpDte10piEiBNIak4dIifGVA7YpLWRcQA59pG5am+bOopLWJYU8V1e69715i12z1UUV2Lhq79g/cKtEMeGwJIQZtezJmZE6BMTgE8nv1N/DJbKpegyzNEIqrXhlHKwaQk00a0Oi1xkTXKwRSQCS/YZY6kLdbBj9L1DMeCG3rWCPTWdQ7t4JBPLv1zTojSdiMQw3PT0xPr5dFcQkeT23/dCV6OjY43xD4zEym831F9fNKbPxO5UdHitcC2NSQ7ZCByIsWxQUJBH7wsP99zo618vcPj04N/48oh7Z053dA1pg135LSseXQm+P74BC1aJUVbjeLA4mV+Fexbsw4pH+jdMXoz/CFCHA1veQj4XgG2WjiBB9t2Zs0hmcjz6TMaix1Of/YAbE71hvQxtJYi7+YRPgK93AqbmR1VTyi8BRaeAkFRrVPaUH4AVTwLHfmlYd2AiMGo2kGgzmXxhM6447Ro1LQsI/NepyW/+e8UyaxpMa0AK0xrHKPsmIam9OJaprMec0nOevYekSWhLrQKosC5AWEeSM2l/vDw4D6jKaYgJEwHK4GIoAkpRfKgHjBWBMJxp5NTMcjCcdu3e/E+D1Zogj22YyJAGKaHqFgpLmR7602XNX2+VCVVrM6E7UYrAqe0g8ZM7TNpUrryEml15dm5zjJcE3kOiUb09t0E0UrdtkWoE3dW+2dv0X4Fcj6h69aQ3S00NzIWFYDUaMCoVJKGhEKs9T9RoCX5+fnjmmWfoTUDgcjDvuUX45X37SF7phSKwKjlMqRENRQ16iOHqH5O+TdtAnk7Bfjhe6fy6mLjQsRH+sEQE0qKEqFILTu7eMZoN8QU8FDgYUsMcxA226LrHQn6uGEveXoZf3l+OmkZFe8LZ/Rep2+snO9+qf+7ZBQ9DvngNPs076XLdvlvzeB0dSNzyjA5PoX3/Vjrv12IymPHw5/fhwe7P0QJ+S8g5m4es07mISYmkDVfEdeijGd9QF9W64jtxSX3w43vQeUhDEevAuiMerV/XIcy5uKEWc6ganMSzYkb/G3p7tJyAwH+FjONZ9N+ypDDIDGK0CShCnLrMLvmADBdY+idm/3cmZ5RIUXdrle0wsUYUGwp5l7EmG7BOBQ4EL7F1TBKs8EMH3zY4WeV+TBKoUGN0dDKyayoQKFfhuvgOGBOdAplYbCdueO3EB8jU1tWSFNBZZFCKSUoEixKtCvlaH5jNuWC9xFBABr1OBhPLYmPWJXRXeiNcWdVkbTrZ73zvqTApoWdliFBV14sbCHKiHHSDl9joIHCoMVejo79Nuo88Ct3VQEz2fOSXWp2myw1KqGUGyMVmum3VZgXUYgOUTkQOZPsLDWoYuWL8nPkrdhQdwXOp9yFQbk0Yq4PlWPyc9TM2F20Gi4bJFG+JN+5JmIgfL21FualRA693LF5ud4/b7ykgIPDf4MvH5mP5F/bNIJ4Kp21J7pno8fVpa2EO9YGxYwzYQDVIKA4ndn3g13eLhTSjBIve/I2KOpw1WxKhwJs3fYD3Nr5W/9xLS59EYMQC/PGJfRN/U9Mx7kt7grqztiYmgwmPfjkdj/aZRccnjSG/onZQip24oR4JA13/thCvOAymxoDMk9nIOZePqKRwKlz434oX8P49X2LHH3thJMJpERDXPgYPf3Yv2vdNrl/NwfWOv7m+dxuYEm3S0sUimOOCYI4OgNeW05DkVzqkOZCbp5CJcgEBgdq/c45D1inP5mydofJToYcHjpaeUFOhQXG2NfWWIClx73zNEcOMse0hzS6H4mwRlLXHq4g2YUjpmYgjVR6IvSL90f26nijMKIZ/mB9G3jmIHidIfaWO6vIaPDnwFWRcLIJ+SHtA0UgopZBB3yEWOw5dgqRW3EAwGc1I/zMdypQImAbFUmMoZ5C0VRfB2eAUMrBB3hDziNz0qaFOxQ11mEO9YQr1hrSQv9GUiDhsj9HRbSPovwffW4rDF6w1PrKdZvJRTr4KEZqpd2Y2fG6AF/TtQnHGV4F3/t6JDeln8NaH98I3yMehkYy4Y6/+bqOdy61/qC9NQ/r5rd8dRIU0CWjx47zfR0BA4L/DJw98S48htjSnCZKkCVzpMUlz+OHVpTBoDU6bLUlD/5ypn+CtFbPqn/vfX8/j45lzsfKb5hvAEgH1fe2fpMkHrQkZKzz21XQ8MeBlmr7UEi4dy0L+xUKaFiRTyDBn9Yt47+4vqfiajH3IuSuhYywe/eI+JNu4mR/YcBRXmgE39Lrinykg8E+F1Fhyz9n3brEqGb3xQeYtLX4K+FkYdBnWoVW2hSSw2RrssWddXKTbbuu5hmUYMUONHQgJccFoEx+MC5eKXb5XVFQBEctSQTA5PhVlldA0nlHThqDv5B4Q28yTVJZU4fH+L9fvK8mpbIgzCmEhaQRyKaA1QJxTin0m+/oOOf6lr7r8TvhcdLCduIFliDDatWidjQgA66dySGglYy/bZI068cCJXadblK6Ud74Anzz4Lbb8uguv/PIUvP3t+4VMRhM+fmAu1v+w1a6uSX6Paf+7FT+98auDqJD8v3tu4SPN3iYBzwUOzz//PL1dTa45gUO5vgbzjtu4SDihT3gKwlT+CPbygYW1YP6JTXTS0JaRsV1ogsO1gN5ihJHJJpblTl8/kVeFHedLMCApuOE9/Z7Ci6cS8GemDLa6q37McXzUowYhRz5z6zKeV23GvQfa4KBKBYWllWLcstOBvV+1XNxA0JUDX/a2ihd6zQTSvwHONfq/UXoe+HMmcOdfQFhdQ9EVzuwI7wS0HX1lP1NA4J8M+ds1eO4w4ABp/D/xG9CjNsGlJZDOFCKYsBiauwKr2CpzG6CvAhgZICKzsm6KAMHtgPZT+JfJ3k3FDc4wVPrBVN28eE9PkcZ6w1ykA6dz3yTUEiQBztXTqj7hLRI41GHKqUHB+/sQ9lR3SPwV4MwsdMdKULkhE5ZSq7uhLazWjMo1GQie0QGWcgMMGVXUaUSRGgB5ot9lSxz4t0LEDFdK0CAgcCUpKyinyQ3OkB/NhvRiETo9MAIBCaEIDlBTN9VfNh21aV20MrJvCsRbT7ucKDb2SQHna5PWEOoHrpWvZQ02Ywin26GUwhTtD20m/zH55O6zOL7jFNL6p9Y/N2PiYOx98RT2hlvs3P9ELIfbkttj9w73bqokhnjLkp10crsuWrSlHN50DMs/X91icQOBFNvubfc4ek/ohrGvTcEvX6/DobUHIdEZ6+ebs07l4p07P8V7m15DbGpUkxrPjLF+Hi0jLeYfrxFH2+4jO3n0mQIC/wWIMIkUzLWJPqjqH4pULgdtvBsaeuogl34MuNrjd8N1oIHV4bfcL3Bfwqst3haxSAKJSAIzx3/d7crZxcLKsLvkPE5UZqHUWA0vsTdEkIDjjLwigX5BHfFg0g28n7kyf6ONuKFuOxhoLNaJAqLPlslYegNMUPvoYdRLUFLoC4uFQYVRCQsnQqiiBjKxBUZOTLXFfEZ+JpZBDaug3zZM1h5ay3mwqKp/rcSoRp6eHBtFDoIGD4IfwJIopUaEyG0aOW24KbYn9tYKHMysGNnVfgjxqoZaaqTfocDgAz+JDt4SPSS1Qgu9RQItK4WP1AA5Yz0269gDePboebzfcQ785X4wsmZsLTqI5Xl/QmNxFP9Xm6uxPPcXzO74Ai5qSnCqKgNSkQS9A9PQ2b91G2yvBOQ3d7bfm7qOfwLnzp1Dly5doNFomt1ILiDQWhRmFlNnZT56jukCv1BfhEQH0cnYFd+sd2g2IhO35UUVV/SHMYf5Qj8w2WpaRN0B+ZfnvGQwh/uhJo9/O0lC25n9F+waZu5642Yc3HQMGceswsY6yDlywoOj8NcXa91uL2m8JTcyWc5anLv7NZV9aw7TiVpn4gaCJcwXrB9PKrSYgTEpDIpDmSjJKcM9KY+h3+QeGDN9OE2KO7rVRmjOWYWdb0/9BO9vfg2RiVY3tcaHMFOkn724odHn6fomQv3HQV4ncz6IKztJshMQELBy4XAGajxIoXSFpkJDDRbe/KvljQYk8dG27iLNLAdTpafpnq7g5DKYI8jNF5buMdh6LhuHMnJRWq2F7NZuEH/a4L7qiqF9UvHk7YN5l/nl3eXIPJkDU4cYR3GDDaZ2URBnFjsco2Sn86CWilDTN8ZhICIyc5BV8R/T2g1sh5wNR6FxYU5Cjp3uMEX6uhU4kDRUZ0wZ1Kle4EC0+BI9YJESYWBddCxHkxvUO7MgLbMKADU9oqHrHt3w+QB2Apj42BdY/uWj8PNVwaAzYPPinfjx9V9QZCNusa13zX9xMT7a/gYuHMnEmfTzkCmk6Du55zV5LP83jUkEBP5JEJFtY3FDY3qP7wafIG+ExYagJK8Uq+dtchhLj79/BF3XtYC7ZDfSyJpxIhtx7RuOw/fNuZ1en2efzrVblsw5k7SDZZ+6N/clrtbkRuasW+Kibcvuv/bRRIWWihsIBZeKcFfSIxh0Ux8Mv2MQFs/5Ayd2nmlYgAN1AZ9z+6f4YMvrNPXpatRViDg0pZXF6wIC1zKn956rTwStQ+ThXKzIxKKqXEMb10nTeksh4gSGEdWLbtkdBnBFFohCnIuJybHQ8mfDNbpEKsaOZen0eEtqYBHBfrgkcnENZ7ZAXHuNPfjmfrh39m282/bT/353EIKIdEZIzl+Zc1e7vm2RcSybmnA4g/O37x3zxBjPEhXkIHBwNSaZMHMUPpz+dZO2mW4HI4I5OghskJr+EPtP5GBqwkP4OfMrqHy8oNcasHHRNmpoUpLr2IdQmleOha8sxcc7/0eNTc4fvAiZUkZF8bbi8GuFa2VMYjQaceLEifrHXbt2xdXmmhM4rLq4H0YL/6RvhaEG80c/Vv/47rQR+OPcblyqLISP3AvjE3qgQ1As7ln7Ca4VRCR3koctZ4rtBA6PLzmMNZmOTqw72TTcfkmNv+NOQpHhurhUzqlxkE2CATI8p5+Gj2VfQdRIJNIYM8dAInJX4OeAfd+jVTm/wXpzBXFI//1e4KG91sdxA4AdH+GKiRtu/51IBa/M5wkIXAuYHZvKm0xlJlCVB/hYXWxaRGgHIG9/M9/MASd/c3yaT+RAXovp537Nefud9uaY9QqUHukOznJ5T+EBN7SFJFgJ7cEilP969rJ9jqpHGP3XUm2EJr0A+rPl1qJ8gh+8uoVAe8BJwgYt3DfhQ8wcir87jtCHO6Pk++MwZrmJ5bRwKJl3HJyFg9hPDlX3UMiivQVxg4CAQD3rf9wGi4vYSgJx0bTsPIuX3r2r/rmp1/XG39tOIKegAj5qBUb3S0VyXAgeX7zL6TpMXRPtxQ31uB/4MsVVYGVimKP8qUODuEwLSYlz5zxO4V70zSo8O+ekrz5kJ3B486YPUbz6EGJVElR3C4bZXw5xtQneB4pRFF+AtP4pNN7SE1qrkYhAauakuau1MIX5YJ3YjDWfLbc+Mbo9mGo9lOkZ1MmwbmL4nTs+xZf736WPSZqDJxMXHuFGfEfEDcTFVRDpCQg0oK2yFr6r+oaAEbFIiXCdekP+wkRUXmb/t3a+5hiK9DkIUTg3o/AURsSgs19P7C93fj4gmFkRjMTe2snxrNLAYPbJXx3W6S+XgIPz+pmMkWJC5CC327a5aAcUDBFKcDBYpFTcYLceMQspY4HJZttkCjMCQqpQUuCH6holRN6ApkYOf5mGigBkMCNI5lqUpaHpCmSPizA1/kEEyEKxrXgzvrmwGHqWnI9qE5HogMB+UFBjUcCf0fIWfystjrWygcED6b+FumosvnAQuwqtbkR9Q+MwJqIjVucdrRc55NX4QcKYEeddAx+ZARpWAY1RDjHMUIuNUIjNCJVVg6FJINZt9YYBJlaLj899gKeTX8ALR7/C+ZoshCqrXIo9TJyJpmcU6eUIlQdgTHgvJPvEuPxuApcfs9mMqVOn1osbBASuNmvnb3ZoUG+MUW/EM98/VP/41heup+/Lv1QI30BvjLhzEOI7xOLB7s/iSmLoElcvbvAUIgD3hH2rD9kJHF6d/I6DuIGujwPO7ruApG4JOHfAKma7kpDxDWnu4ku4cIftMqQxiEzkk5sryGTxe3d/gY+3/48+7jykPVbObRgXmZKcT2TXf4ZSBnO0P6RZTTck6TAoFa8vExI2BQRs0dSOSVpC+qqD9W7JLYE4LfeZ2J0mvxDIJarP2jOonNDOad2ITFnXBd+Rf3RKBi8tbiQYm5AMZYUJLOf8+K2QSXDTcPcJFKu/tx4rLVGB/AvKpWBDfCC2cX2t/6xjuTQJSDMqDRa19fuIDRwYo7W51BWkweqVL6YjyF+FPz9bja+eWACOiN1C/ACpBCKNp3Nd/HUbsg2j7x1ab/Sx4ut1OLzlBC33dB3WESM6tcH6IxcaRA5G634n30S9+hTE2VYBIKsQo2JoDHQdw8CYOUi0ZPmGz67yU+CJtxbjo2em4LkRb+Li0YbEB2eQhqPHiau30YLwhBCMvW84kns0nGMFBAQEVs/jFzfQYxPL2o1Jbn/xBqydvwUFmUXwC/bFyLsGIbZdNO7r8OS/ZoeSMUmdwIF8/xfHz3EQN9Rdw58/dAnxHWJoAoInkHOTpZW6G4mwgYwPWwvyfbYs3UVvfEL9D+77Cu+uf4U+7jw4jTp2Xwm6jehIU/4EBAQa0DhJyGR0ZkhzKmGKsk8jtoUkvknKre/duSwdJbmlCCJpBi2ANLx3G9WZHkMpFsD4agVk7/pD5M04iBvMn1eDO2+2S6V5967P7ZYTBftBkhYHs6xhTCOq1IA5mQlRjQ5e3kpMmDmSd7uICHzdD1twtZDIJHjtj2fhE6jGbx/8jXnP/+T2PZwHpq2N62zE1GPU3UPqj9VkTHJ020n6fLcRndB3Ug+aytMYqUxCz3WN+yYs/ioY+ifTVLw6zIlhKK3Q4OVbPsSL3z2EZ4e/Tk0C+SCijkd6vwCLyYLwNmEYN304reUJXD6IuMFkakhHIYZPV5trTuCwO999A0y5wX6iKUjpgxkdRzksV6x1LHL8U2GN3ryv217EnsirxJoTBS6XPVdUg5/j78Pdok10knwn2x4V8Ea8KB+dGGsxf755NBU3EJZb+qFPSjvcYvgVuOj8oJ3DBeEWw0toy+TgEckydGGshRanuHM2vxwUnwbeDAGCkoCudwHBqUDxqcv/ub0fAtT8rrgCAv85lAG1qQktdE2uzmkdgUPsQKDwWAtSHFwc5xQBgL7RhB/53u1vArz5t1tzoBBeNWXELtbxtZwYz8UNTRUC2FC58iL8b2wLU2ErJO64QN0vArIobxgyq1Ay/wQ4vc0AJKsaIikD76HR9L4pr4Y+JhPQbFXT/+9YSnQo+/Wse3FDLZzJegFuKdOjal0mTX0IntERjPKau3QSEBC4DBzeeMztMsQdwpYgfzXunuQYfVvhZOKV9VaCDXFdOKLHdhe1Cc5kgdlHCs1N3QBJQ8OpuKQGXtvPQVxpP/lKHPkswfxJK+IqfZNFCCd3n6kvQok1Zvhty3dwKiRFCCJwIA4OxKGUk0nAVOogbhQzSb8Xx2H4HQNRnF2KI1saXAOaS2u5HJmD1NCMSLWL/iSw3gpohiRDteEUxOVa6DpEID0xAH0e/hTx4YG4rl97RCaHI/cMv7uHNLcK5mAV/zI5/OPaKU9NhE8A/3hSQOC/RmRSOHWfNAUrEOxbBaXM5MFltePBN0d3ocUCB8KIsIk4WnkARtb5mKTSpATHiez0TBZWhCqDAmZq3WkPyzEo1UuR7OuHYkOJ3WteYgWeSZmGaC+r0NgVh8pWI0R2EnKl9RqdJDGU0fQEX3A2AxWxiIXJJjmUoFCaIJWZUFjiC2+VEWAsKDOqaPO/kQ2ATGSBj9Tx3FJjkcHAWScbirQqvHZkE17vNAnnakqgZ6U0TYOILRq+p/3vUWHxgo9EB7HNMrYUm7xhabS/xoaNRaQyEnuKMnD/jl+gMTeMNQ6W5sBLIsWM1CE4UpmBs1UF8JJIEOdTDC2rJXMsFF+JDkGyGrvPJeMWqwTDuo1ShoWJPYaPzvyIczXZdF9YxQ0cTaIgd8mpyVIrqSG/oUikgYWTIk9fgu8urcT2kqN4r9OD8JK4dtIVuHy88cYbSE933TgsIHClIY2P7qgssa+BBEcFYurLNzbZhbQ1sQSowfk2Ept5kMDDNHIU9GRMcnjzcZrq4IrT6ecx9r5hVOBAxyShvnQMJarSQezEqZusm0z2Etc+T4XafPC6lXowXGlOkgJxUR3ndRti20djzL3DEBoXTNMpCKyPowjQ2Vi1Odz89CSonAr4BQT+u8SkRFKX0Za4JhN303MHL7ZY4EC4bdb1VDBBGoPqmpb8fjkCffswGOMDwKpk4EhTP9sgbqDbQNIEXJTMdX5SxMhUKCy0N93wUckx+6HxiArlTz9Y9unKhnOU1H1dnmyfM4jbtbjaAO8/D8McF0xdRCETg2NZF+YiVpjsUnx1/zd4Yu79yDieDUt8GCxtIuzrbQxbPy5whTSXP4Hojlen0HSd/euO4PXr36PCAtvjttJHiZmfTcPeohJcyCuFl1wKHM+DbtMZiLXW8Utl/zCUjYoBJxfbCVEUpRykmoaT7JHKSsyZ/pVbcUMdhtr155zNx9xnf8SOZXvxzvpXoPCypvoJCAj8tzm61f2YpKrU/hwQEhNMj3uNqSz1bP72WsBiMyYhyW0nd9kkGTTi2PZTGHPfMI8FDqSBlFzHZ5zIom7W1yKHNh7DONXtSOgQQwV+JNmOuHRfbm56djJtZhYQEGggtl2UXWpCHeo9OSi/3sdlFLN6d45dreT8oYwWCxwIpGZF5uBNRuucBHfSBMM9JZBM9gLTT0EVvuQ58x9a+q87mOIKcJsPI6JTHArzKyDSGSCqTUHwDfLGK789TVNP+Vj63nKXaW5NobkJPGaTGV8+9j0e/3oGLh13fq4QlVeDUzcc30Sso2GXw3s09nNR97x1G90Xe1YcwJs3fVA/LiSQGpjazwtTX5mCQxuPUlGC0lsBg8bgUHskkPl+/YAUKkJvDOunQnq5Bm/f8albcUPjMQkRC3791A/Y9dc+zFn9IhXqC7Q+hw8frr8fGRmJ4OCr3/d8zXXpXaoqdLuMl8T9f+AKgwaXqpy4Qv8DCZAGIU8XwLtMuwgfzN12AbnlOpwucH/x/8ZeFqtELyGDC0MJGgpI7UQZ6M8cw1zLeLvl05GGW+6cCuirgF2fgt36HhVAlMIHyyz9scA8CqXwRQ4bgh3GNHwnfR8DxMfxj4I0LxceB1Y/YxU4+McD5VZXvsuGN3/DgIDAfxKJHAjrAuTWpqo0F6aVTmGqYKDrvdYkBk1RoxQGUoDgmi9y6PEgUHQcMBsAdSgQ3gVw04xSvSMXlSsuQt5PDonSUTGtL+O/wLZFGqmG2FsG/emy+q8hi/WGuVgHVsufhqQ/U47ib4+C8W79i0JpmBfU/SJpegNrtKB0ob24wVZkULM9F2HP9YBYLYP2SBHKFrsuArlDf8IxatlTTPkaVK7LgP+kxGavQ0BA4N9D7nnXYuI65Cr3zYflhRUoyHAck7BBrt06a9Pnreeoxq6nJgu4ykoY24U7vM8SpEbNqPbw/usoGJuihPxMIbQ8AgciOJDkVyEgzA9lBfwTsnEdYrH03eUozi6hzkPuWPntBhgTQ2HsGG3nCMiU1kCx9wLEFfYFI5lcivc3vYaq8hosnbMMv7z/F642+s5RDuKGehgRdN1jYfaWglNZJ34NZgtOZxdhzpIipFzXGaFLzSi8ZG0ocobyaD50HUJdfoakoBqyfP7xX0C4f1O+koDAfwJvfzUG39IPGTUFkCjdF8JdlYIlIvcpOJ4QoYzGg4nP4afMuSg2NJxjxCIpivUyVJvJMYSjjUTkFKA1SaExyej8gmszHhE0RiXe7/QUdpYcht5iQLw6EoNDekAp5m9G2V3yC7YULYBNbwxt3g+WV0MhNuKCJqR+r7iK1CUih+pKLwQauiAhUouDZaegt0hhsMigUXTEqaIctPE9B2+pARaOgY4l2Q7WDzRYxMjS+qFYcwrTd1cgJdBRtECEDAqxhZ4T6/YBEXvkGvwRJquEjGloMyLijAxNIPKMvvCSWscdMV4xGBU6Cn2D+qLaZMDMnb8C4mpEeuuo4IXuZ4MM5RovfHtqP7aNfwS+MiW2Fe/Ad5fm16/bW6xHqNzxOEy3ibPKYmAjcsjR7USQnPx2LE3HUImNdvNEZI6DiDnIPiHbbZsecrY6G4sy12FGm4m4liBiDXJr6TquJrt378bs2bOv6jYICDQm/4IHYxIPmg+LsktQ7CQG/nLBKZ04gbMktt71e5hyLSTFNR41vsR0T8APf+5FcXkNzm8/BVYhtRv/NGbVvI0wJYbBmBppN/HKlFZDvv8CTWazRalW4KNtb6KqtAqL3vwNyz5djcuBJK8cxg78IkpxHv/4zBVkkpqIOsiNuN4RN8KSnDKIDPy1QoKotsmgqQRG8M9vCQj8F/EP9UP/63vxuhx7Qms1dSR1TcBbK2fhoxlfI++CdS5erDHC/2g+jOlZqJqQ5pAuQ8tTbqZpJAFyzJs+Hpv2n4PeYEJKXChG9UmB0kmziy0LX/sFP77RkFRHHFb5xAh8YrjOg9tDLBXjwLqjkJ4vgPxiIdIGpOLsoUuoSImEJcZxzkVUqYXs4EXsMJhRlFUCNi4UlmSrG7ctUgMDI7mId9H8JSmqhrTQed2GHINvfHICht7aH1Wl1XjjxvftxA116Kp0WP3Ej/gp40so1Ur8/dVafPr22nqZeXX3YJROjHd4H9F264KJ0IGDRG/dPpL0uufQhVqLw6ZzcvdZLHl7Gaa9cQuuJf4NYxIBgX8i+Zfc91vJPUiQzj2fj4rC5l3bXmmCogLotTMfUckR+Omt31FeUIGTe8+2ShKGLd4Bany6azbKiyrxw6tLsPKbDbjWMOqMVHBObim9kmjTr7v5p5ZCxpMCAgL2kIb23hO6Ozjzy7Mq4bfyLKqGxlOhcx0ivQne2zKhOGffd0PMpFqDdr3b4vXlz+HTmXNRUGvGgCIWzEIDjHPtBXOeQq6C/SQMXvj1SexctpfWRNr2SMSQW/pCruSvm3373CL88t5ytAbdR3ai4nYi8iIQYUmHgak4s+8C9I3EBnZwoGPGouxS6Goc+8cIouwicBFB9XPJJM2NldpMnDisk4M4y7p/yTF4ylMTMPDGPijNL8f/bv4QOn9vOv7h/FR0woIprEDVxXya6kDGJGQM+tuHf+Obpxc6Xb0pPsSpuKEO1l+FA1tONrLN8pyjW0/itw9XUJH+tcS1MiY5dOjQPyq94ZoUONhGKboi2d+9e15mVRHM7FVIEmgi/nI13h9wN+49cxY6Fy4efl5SvPjHMZiaqPTaz6U4PHeSi8NJS5zD82G+tQ1aCh+g5/1YtOkwXjHf7XS9RsjwovlebGGeBOPCNe+qQ9IbYvoANYWA6TK5k/vFAnEDLs+6BQSudRJHAaVnAX1588UNgcmttz2+0UCfJ6yiJ00xIFUCQcnW48PB+YC2GYI4Q6VVzJA0xuO3sHozqtZl0Pva/Ej4JJxHS/AeEAmvTiEwlepgzKyG2FcGRRs/WGqMqN6ag5rdeaQLyOX7zUU6iCpbJ9lCpJQg7Olu4PQWiP0UEIlF4MwsKv6+AFbjenKUiBw0+wrh1SWEJilcTbQHi+A3Nh4iaXMvtQUEBP4t8MXX15HUxXFisTFZp3MdIhspbpw46afrzJCczAIb5geOYcCUVYMpKEf1dZ1dvo/zksGQEgrl4QZnDfmZIhjjA2GOdOKaZ7ZAteMCAkJ98ezCR/DKxLftHBts8Q32wQf3fNEk50FjmxAYejrGSLKBamiHtYNqzTEwNkWdoCir+4ePvxqTHh591QUOrEzifL/ZYApRuZzkPl1WiQGTuqLsq00wGRz3qznACzX9ydhM5NTVVlymhe8qfuFfdEok2vdtxWsmAYF/Efe/dye23vc2Mo0KuyZ5Z9g2qdchYxRo692p1banjToZL7d7H+dqTqLYUAiVWI12vp1RbqzGs4e+QY6uhDa8G8zS2oZ3+zQDZ+ToSuEr9cU9CZM93g6tuRLbi13HHHtLDPCTalFhUsHMkmYe/mvjO5L7YGRcEnK1RThXk4EguR/SfNuiSFeN787two6CdYjxK6ApBqSpv8KkRLnBC3IJi1B1Nc5Xc1DI7Scv5IwRXhJy3CTt/9bzZt3vRxIgMg2BEHMsqgxyKqrI0gZAZ5HBX6rG3EEPQ2syIkQZALGIbL8JH55chgCfPMillnp5O5EWqBVGqORGFFRa8Pulo7irTSR01R/iZv9s1LBy7NdEQuEkiaIOsk0Mx4G1+b/jK9XRxAsFY4K3xDGZjpwylIwJOlYKkYhBmLIS+bqGc82a/L24O34spK0l+BdwS01NDaZOnQqL5Z9fRxb4b8Hr/l9Lcvc2bpfJPJHd/HSzZiSHNnaIqxc4uGoONVmg3HMBQZEBeGb+Q3hp/Jx6J7/GqIa2x0tLtts5pmJCF8iO50B2Ks/pe6i4obPjfAgb6A3doHZQbjwORme0S8Eg+AT6YMLMUZdP4FBSA3FRFSwhLsTvRjNk592bgbmDiBx6ju2C8oJKSDJKYAnmSX6zsJBkNd08pE3nOCR6MD4WEPgv8uDHd9OUynIn6Z6eoPL1Quehaa22PZ2HpGHB2c9waNNxKqQjtZ6eY7uiJKcUD3z8B3INjY7hpLfCTYnsYkEZIsN88fitgzzeDtJY8/PsP+yek1wqgqmz82MJLZnU6OgxnRhoiGr0kGQU1RtnTHlmEnqM6ozM8/k4czoPoVEB6NQ5HsU5pbRZ/69VB6GPCgSrVlAhlySrhH6eqPZ8cubARTAhzh1pia5aWWqBLoBxMKcgdRv1evu6DTmffXngXRi0BgRHB0IsFkNvNOOdT5ajsFc0HUTIcishP1cMkU3NsLqsBhsWbaeNUbb7hnz38qE8fREiwOBHDDJsd1jL5u5JIy5xXyfbLiAg8N/GNj3NFSm9k9wuQ1Jymus32JwxSXMJiQnCE9/cj5cmvE1Fwq6a6N+c8oFH+6a51I1J/EN8MeGBUdekwMGW03vPoe+kHtizYj9Yy+X5MUkDb2xqy1N4BQT+jTzy+b3UoZ8Ibm0hIgb5hTIY2vjD4i0HozFCcaHc7hq1LgmBiIdbC3Ld/sP5z3FwwzEUZhRRYXiPMZ1p+uQzw15HSTNMOkjtI6FTLDo0YTuJQeFvH7TePPQtz1+HjgPb0RSGC4czaAofmb8tzCymY5LV32103jNQC0kDkshcJNbpDGCOXwSbFg+IxdQoizFxYGXOB2vRRhM+P/8ZnZsOjg4CwzDQafT4+IG50MSFgU2wMfNmADYyEGyYP8oOnMPmJTvRvl8KTbZwhSXM1+3+sIT5QdyCRNkV36y75gQO1wqHbAQOXbt2xT+Ba242LNE/HOcr83mXGR7rfoJZLW1+nLu/XIVygwaXCwkjhp9chYlteuKO1CEIVwfg6zu8MXPRAWiN9hfKfkopKrTu3QZbSs94GzWrOhhLxOMAHrOeLC4Uu9j26N+cFAeFHxCYCOTux2Ula/flXX/qBEdXXQEBAStEQNDrEWDne4DZucqUl8hegOwyxJqTZBdyq0MsA2L7A6fsi+mXC93REnBG60VrdVYclKF5kKrsRVhy/zKYqvibKQmK9gGQJweg4q8L0BwoBGewnj8kwUr4DI2B37gE+nkWNwIGztA6BRhZpBoFb++jggWRQgJluwAYLlbCUuFeQEG2v2p9BnD5akEeQfahpdIISZA13k1/rhw1O3KhP291lJBGe0MW6gVJoBLyeF/IonkmhQUEBK5pYlIjkefGMbXPhO5u16Py8XL6PFNUCXfdtv5mC3Q5pQC51WJICnGdJlCLKS7QTuAg4jh4rz0FfYcIGFLCwHrL6XPK3EqE5lZhzJ1DMemRMQiKCMCLS57A7Fs/hsGmwYfgE+iNyiYWITiRiCY3ODxPN4qcyKQwpkZAsb8hCaLjoHZ2UdZSudSpMKA18Anypp9x/uBFl8twMjHvb0S/iwtxQx27cgvh50zc4KdExXVp4BQS6xwNOQeKam8sB1V6NrwO5NKYUT4G3Nib93UBgf8y5Ni16PvnMeTPr5Cn8UWk2nVTkbM4376BY6AQq1pdQNfWuz291RGqCMT4iMH44PTfuBKcrNoKC8d/bA2QalBuVKHSSByOnB/nRBILJrVJRf+oKMy9sBhbi9OhZ63X/tHKcNwUPQ4vdByFW3ftQKbGebOQVMwiUKmFkbMfM6jshAFWkQM9bdbOaHMgQgkFMmsCoaHpF9atTPIJx5iNH0HPmuArVWJYWFuc1RxFqbGSnHbql6Prq1WWkcN8qE81vEzfoqxoLboqGgYlQ7wv4YQ+CDt1Ua73Q330Ut3r1rV7iR3FDbbvkYosMHAM1FITZAYzjKy1hFtt1qLCWINgUjsjyQLFZ/Fzxk4cKLtIP6GjfyRSfIMQ5RWITn5JSPS++pO3JOXDVdJHU9ZxtXj00Udx8aL1eiAoKAglJSVXbVsEBGyJbRflNs2g1/hubneal4sxiSf4BHg7TIC7gzSbMmU1YAMaUuTIXzhjJikOHHWbJgdCMiZR5FUitLAaY6aPxORHxtBJ7ecXPYq3p37qIHLw6tkGhaQ5v3EjEcPA2DEGIp0R0oyGv19zgBJmbxmMHaMcHOPqxyRKGUxJYZAfzap/rYPNmCQ6OZI6gluaIPJuCpFnC6HoGo+zNmM+uml6E5TbzoDRtc5YKH2VdeJSdqEIpqRQsH7O/0/ITuaB8SDloTGDburb4m0UEPi3Qo5rXx96D3clPcLv2umCG54YD4UHaT1NHZN0HdYBILdaItqE4cbxPfHJ79ubvc6msHHRNofGUXFGEW2CIY01ttRdu3O+XmB9G45f5sQwSM7mYVK3Nkjpn4J3vlqH9dtPQl97HEuMC8Y9N/XFI5/fhy1BdwM7TrvcHi7AGwae+otEz0GdYwSbXwAzSUllWcgyyiDLLKPNRQ07AohpF4WpcTOpgQhpButx10BsEBtQUqUFkoLpYsbEIGi6R8N31SlIShv6EZZ/sRqfPTTPTuRoDPeCOYi/58GitJ5jRayIpvVIC5p27m4McdjWVGjpmJqwZ8UB/P7xChzffgoihkG7Pm0R2z4K4fGh6Dq8IxI6xuJqc62PSQQE/snzJCd28hvw9Bjt3vnXy8c673qlxiRNOX+R632Sbj1q2hBMfGgU/IJ9qfD6fSdmT34hvm7HaK1BpyENdUNyjGXEzGUTVBBhnspPRYXxl5PG7vGtzZBb+l3W9QsIXMsERQbiqwPv4u7Ux2i6ii1kDlJxjl9QMOXpSZC5SWdrKqThngh7bYlqG4FxM0bgh1eXXpExyfqFW8E21xCkEcQgI659NN6/50tsWbqzfp49qWs87nr9ZjzyxX1UOKCp5DfoNvOkaopKKsHsPAYuPAjw8YKE5cBazNQ4g/O31uBEZTWQZxYiJiUSU+MepLU1/1Bf9BrXFbv/OoBy8p4+LkQgYgbmzgn47eOV+ODer/iNVzzY1y29tC4miRYaPZQq61hox7K9WPbpKnpdIpYwaNc3me7zsLgQdBvZid6/2lwLYxKO43DkyBG7BIeMjAx899132LBhA06fPg2tVovg4GB06NABEydOxLRp06BUNv9a7l8pcLg5eQDWZBx0+XqAXI0Rse4vktv4haOtfyTOluc2eRsul7ihfWAMFo97GjKx44F/UNtgbH1mCJbuy8K+jHJIGBGGpIRgcXoWKlqpkM3H4vRsDE4OrX+cw4W4fU82Zy3ENAkRA8zYAgTEAxk7gJN/WR3USRrClrcBrnkRyFeFY78Bw18HxNfcn5mAwJUTOXS+C9j/ddPfqy0BWLM1yeFyE9YJuLQJ0DcxFlEZAHg4HlTMAAEAAElEQVQ5b9RxhaW6YcDAmWUoPtAHfkmnoAwtgIixFibkfqWoySQiDP4LF1m0D0oXnIAxw77h1FysQ9nSMzAVatyKG1oDkZeECgMMtSIAAqc30zQET7GUNEMEczkQASKFddqbpF8Q8YitK4gpo4re6pDF+iDgthRIfFt3kklAQODqQwooZPKOr+jb24NmIuJkGdU2HDln7QXcjNYAJq+MOiI4xULSbc5RozxbOKl7cS3nJIWGFKiUR3KhOJKLtKHt8e7qlyCTOp5j+07sQV0zVn27Aaf2nKXF/T7ju9OCQVMnESyhPuCUDbGm5HBqkQGstKHwYe4QSlMpZDnWc8jKuevRaVBD8f5yFe3JhMBXB99DSFQgDm06hp3L0unEM3FoWvTmr/UOGtTJlRSTXDhmuHMxJFj8vWgRp7EJu7ZnNBU32K3KOmtPH5kifSHa1yBUccXGH7fhrtduosVAAQEBR/z8vfH5mBvxwJ4F8Jbp4SNzvD4mqQm2f8+kpn2hPAiVFQoMC7VAylx+18qxkV2x8NJWFBvsr+3dJU/EqoIRpmxa/LrG7H4iVixiUaL3qm+6b4yFFUGqtKB3gj/eOPkZTW6wJVuXjw/OzsMlzRhUmfndapXSxjUvDhJi9W1Hw04gyQhyxgQ/iRZhihqcKA+FjPGHhKlAviEdapkcBr0XKk1abC/dAQnjWIhvkCJYhQn9fLIwLCDd6fa1V5SghpXiiMHG1YgHPSul2yh2k75BvqOhVhihlhhQZrTuawYieEms44ufLu3AJ2dW1W4zB5XMgIu607hoM3zq6NsGL7S7CwEyFw7gArwsW7YM8+fPp/djYmLw5JNP4vHHHxf2msA/ZkxC3OxcQZzguo3o6HY9qb2TEBobTB3jmkpzG4nkBzKgG5xKlGz1z1EtL0smW7XoJ5Nh9m9PQypxPMcOvLEPUnu3pWOS0+nnqOi5z8Qe+P7oRYDHAd2UEkEFDsYIb1QNioMposGUQqznoCjnwBhJSpv9mMSSFg6mqALSAus5eOXX65HaM6l+0u9yiRvIWGvu3rfhF+yDvcczsf3gBZjMFoQqZFh67zfgeCa1mwtxYfTacBL6XgkwR/rXi7WJoIKIG+QnnadguGPdgs245bnJTW4mEBD4rxAQ5o8XfnoMr05+t8nvzTqdQ1OmroST/qT+aVi0/gBKSSN+HeSy3EnipC3JkcEIUHs1uYG+MeTyWbbnLCzxoTDHh4DzVtKUH5HeCM7fufDc3DYCCTf3w2Ov/oKzl+znI85nFOPF95Zj2ujOqCqzT4xzwMn5yGH7RAwUx/Jc7gqfIB9oKzU4uP5o/XMV5Rr8UlgAVu04f8CpZKgcm4qAxQfrXXIzTzjWgTypBdLlaoe1ihMFDq67BFYlhyXI2+r2WlgJhsdQRCIVQ6GqHZO89TsWvLzE5lULTSUhtzq6Du9A/4+TpmABAYF/F+PvH8krcCACCNt6viuIo3ZAuD/K8psuDrhc4obeE7rhlV+fglTm2Ls17PYBSOufQucrzh28CLlShr4Te2JBM5tum8rfX63Do1/cR+8b9cbLNk8ilUvwzZH3ofZTYf/aI3ROzGIywz/Mj6YJNTsJ8Cqwdv5mXP/YuKu9GQIC/1jI/OdT82Zizu2fNPm92adzwbLsFZmHHDdjeLPmpEnty4uMH5pAuZMxSXNp2y0BTw151ZpYZMO5g5fwyqR3cNuLN7gVN3iCiIyPshrSPskvIjkDcLXmiH4BatSU1+BAdoORBkkTXPP9Znqf7eImCVYmxYXSGojdJMIx5RqwwfzzES1JbyCQeqCs1rWKjEfIuKQOIpY/vOk4vdXRY0wXPP/jI1QYKeCa8+fPo7q64e9r4cKFmDJlCsxm+zpkbm4uva1ZswazZ8/G3LlzMWbMGFwurrkuhz4RKTTVwBkkPn5a2nDIPGwof6TLePoe5+u68pDkBmfihjqCveV4eGgSfrinJ76b1gNj0sJwIq9lf/D8NByQNpwqQrmmofE2yNe9S2GQqBmRqsSa9HxthFpcf2D024B/LJD+zbUlbiDUFAAXNl7trRAQ+GdDxEtBKU1/X+kZ4Jht0fQyUH4JOL3cmt4Q3B5QNk2sgJj+VtFWExD72ReyWaMcZSc6I3/7UBSl90XBroGo0Y5AwB0NbnGuqNmW4yBusKV6R/MmJZsKpzWTrjD8G5C38YNYLYO5woCKv+3FDc4wZlahZN4xcDxRcgICAtcmRLwwbvpwp68xjAg3PjUBYo8mP0W487Wbnb4mPXwR4hInx3GTBVIibqh2FH+Jy9wXP/iWIWMgKZkwdiJuqCMw3B93vDIFs1e9iDeXP4/uozsjoxnuPZyNKIAcTs1K0kxEZltFdpO01aNTYWhjPQfv+H0vtDbfm8Q9Xw7IhEDdhHOXoR0w8+NpNPb5z89W2cWDiiwcZOeb3ghmh9HiMChnpQwMCQG8byMCBxIJ6w7SqHZ4c8OksoCAgCP9whLQNaAtNmYn43BxJMr1SujMEpTqvXCoOBJ/XkjDnvw4nCwNxZHiCKzNSMXRokisyT6DZ3evvKy7dF/pRcw+vhyzj/+FIaEdEWEnVhCBo24t9eonB26NHdjkz/SRujer6OzXFS+k3gGJyAIZY6b/1kHmNo0W6znw1+x1DuIGW1bmk5oJ/0W1s15IZ4kaYljgL9VQMYCUYelNJTaiR2A24rzPIkBZiRCvGiT4lqJzcC4CFFqn4ob6z7W5P8bvLO82dlAU16dHOGwrZy+WIb+ZzEGg4eTzbTaAsRFD9AxMhUqiRI62FJ+eWV33KVDLDDTxojFHKy9g1tGvYOEuTwOuJ7AQtcrtSpOfn4/p06fXX7MtWLAAvr5CU5bAP4cBN/TGiDsHuRTs3vTMJI8ml8kyd7w6hef11v/7E5fWQLnxBMQ5ZdYTB8FohvRMPrw2noCUjHl4xlPk2pw43M1Z/RLe+PM5tB/TGTk84gYCcfU2xPuj9MZ2duIGgkUhgiZUBJPayZhExkAzsh2MMdbrc+K0R5qI6o4NxKX1ckCEE4c2HqOf0btDHJ68fTDCLpZg5WM/XBZxQ91hltGb4LX1DNR/HoRyy2l4bTwJ9R8Hmi1uIBBB/8nd/OdSAYH/OsRQon2/5Ca/b8uSXfjkgbm4XBAh18ENR/HxA3Px1QNzMdHPH2G17p/1CTxuPPimDXWfcOqswcoZ5LJYcrEQio3HMEYuwYs39QHrzZ9eMP/33Q7iBttr9V82Hacpo3yIqt3X20TVOt4r1qqSKgenb0NikFNxQ/32qWQwJDnfF3VIi3QQGfmv9UVmUsMC5KeL4JWeZf8ZMgn0fdtCN6YzjD0TYeiVCN34LjB0SwDn4hqg7+SekClktB5oL25wDhFkvjhuDm18u1pcq2MSAYF/OkNv64/BNztP6yLzI2RM4gkSqQRTX7rhio5JPNkmZ+KGOohI/J63bqNjktf+eBaJXeNRnH1lEh9p0pHFeuwnx+OWJGDwYTKYcXTrSTpm7DmmC2Z+dBfU/mos/3zNNSVuIFw8mknFKAICAq4hx/O23d00uDth7YLN+OqJBZd1TLJvzSF8NONrfPP0Qgy/Y2CT54dJykRrjUlsGXHXIDz82b1ul1v42lIHcUMdJCXiz8/r6vyXB5GFpbfK4iq7ee7GcLVpCHy4W4YjCYNB/vYTI423p1oHcX7LBCSDbupDhf7k2G4rbnDFvtWHqJiEN3niGhuT5OfnIycnh/fWVA4dsqa82hpA1Ykb5HI5oqOjoVLZ94yTz5kwYQIVOVwurjmBA2FWrynoGpLg8DxxVvv44HL8fcG5q1pjRsR2xrsDpyFIaa8ailAH4OvhD2Hp+GdxV/thmNK2HwZGulcWt5TOwcSR255qvQn7M8pwOLsC5kbKW/Nlv2hs+KOwsBxKbQQON3Tlj7gPQgUGMQ2RJU2ioMG9AiufBDb9D9AUN+2/L3FOl7g/8NLlLic1Dco4AQEBF6TdAgS5iLnio/gEUHq+9XerxQQcmg8cmAvk7AEKjgDZOwFdORDdF4jsCajCAImrYgHJGe4PRPdp8kcrOwTVJwTYwppkMFb5waxVQxbtjcqVl9yuiyXCAj6EpvumIRbBZ3gMvavZV2B1p/IAkpihPdrC5lcBAYF/JI9+NR1te7RxWoj49tlF2P77Ho+jcZ/67kHqzGlLREwwPnz1Rnwx+1ZMmdAN44d3QK9QX8jXHYK40PmgX1JQBaaCf9JVfqaA9/WUXm0dnqup0OD4jlM4s+98feG8juY6ljI2ThTEAJwTu5ikYETQ9LVOqpKoTFtXjhF3OG/oag0uHGo4135w31dY+PovqCxxdARRHculDVrOCJBKIXczZpNfLKEufrZwcgmN+nQHq5RecZcRAYF/K5/3uRF9g5NxriIEG7KTseJSGjbntMWFymBwECNf44sz5aG4WBkEvUUK1sLQ3sflmcdxqKTpyaDu0JoNmJn+PR5I/w6/Z6djTf4R/JSxC3m6Gtwc0x+TonogyTsIkSoGQUotvfnLtVCITbXt/yLcETcEE8jYpYmk+gyCVMRfT/GWpmJJ9jL4yg3wlhnpv74yHS1aG8xEwGY9phs5/vhqA2u0a953hpllUGOwb/oxWBoL8Tj4SPVOUxHI7+Qr0duJMIj4Id6nFIwboQH5Ft5iHeIU/MdRL8aMELHzc4F1i0RU3FBpVtJGVfILuaujW6OGRXbfV8ZIMTV2FL2/LHtfbcIEMUxhIXEibqjjkiYfO0tcu7wLOPndOA533303SkutblYktWHIEOeGOwICVwtyPHly3kwkdIp1Ktj94tHveFPnbBk1bQge/XI6fALtG/8jEsPw3qbX8MGW1zH5kTEYc+8wdB6a1irbL67QQrnjLFR/7IfX8oNQ/XkA8kOZ1G0utZc1IcGW6vIa65hk/wWHBkmzhzWu6l5RdqkRdjAiGL1dj0l0veKo+7VBZ7Rz1RtxR9PFhM0Zk8yZ+gkWz1mGaicu44zE9djBL9SXOm27o7GrNqM1QppTDkl+JU38aynO3NgFBATseWP5c9Tpvqms/n4Tzh92P1/QVDSVGuoy+tzIN6lD9caftmP5K7+C+3wz7u7UFtf1SEGyEYjafBGK4461JkYkwszRfTC2W9MNroZPHVjvxumK2IFp+G7tCbfpCiXlGl5JtcZgBhvmx7sOEUlaLeU3HGSyPU+srsMU6T5lzRjJv21ivQXqQ/wNtarTVfBfegTem8/bJYgSYYd+QAoskQGNFNYMzAkhMDg5H5PkhttftDYhr/xmPTzl7P4LSF9l3ywjICBw7UMa359Z8BBiUh17h4h78iczv8X+dZ71DE2YOQoPfnw3vBul8kQnR+Cj7W/i3Q2vYPLDYzD2vmHoONC9EWBLcTYmIXMTZExy9oCTMYnpypm1EhMofY2+flxIzpuXiwuHM+rrJP+7+SP88t5yOl/UGDHPmCQgzI93zFKHf+jlNZUQxiQCAu6P6f9b8QI6DGx67xYRPmWdanoztTuqyqrxWL8XMWvsbKyat5GOSf74eCWty9z07CSMmjYYMSmRULtIdCMCuXvn3I4B1/dq8mePuGuwWzPDyMRwj5rri4nBBw815Y7H1auC2f2cv8jNMuaUGIikUoh1rHORg9EMxY4zLZIOkzSOW56/jt5f8fU6j99HUqeImci/hZ49e1LBAd+tqRw+fNjhualTp2L//v3Q6XTIysqiCQ8HDhzAbbfdVr8M6R958MEHsWFDral9K+NZ1ME/jK05x3GwyLm6kuU4vLFnCYbFdIKX1L2j5YQ2PTE6vhu25xxHsa4KEepA9ItIASNiUKavRpfgeLrOVZc8mwxwxZi4bjhWkoGcmoaYF1skIga3pjQ06OhNFsxZdQq/HciBptZ5IdRHjukDEnDfAKu4I8RbDqVUDN1likG2RSoWIVgth8nCYt2JQpTWGBCgkqHMRvRgywvyXyGzmTxuElX51n/PrQcOWGPgneNq4oIBpiwAik4Ba57j/6zQ9kDGdlw2fJt+sBAQ+M8hkQOd77QKgopPARWXgFIPXb3OrwECHgSKTgC5+wBdGSBTA+FdgPCuJM+9YVkLOV6J7J9zBkltcPr5LJC9q7bJhHMtmup4B+AdhubAyMTwm9gG5b+edfoRslgfVG/NJim/rYLYVwZLpfPjOIXEG5uE9AFxoAL+kxMhj/OFqUgL3bGmOXDojpdC1TW05T+YgIDAP4odf+zF2X0XnL5mLd7PRa/x3SCTu29CH333EAy7vT/2rT6M8sIKhCeE0sYhUkwijzsRNzq1HOtyinkLB+QM5bXtHHUY5ZxMBI/r1hZn1p+Bq6OYVCbB+PtH1D/W1ejwzdM/UkcgvdZQ75Z683OTMemh0fRxSGwQpAopTHo3ln2NEFfqIC6qgiXEB6ybXcQppTDGBsCnoBq+wT4wGU3Y8Uc6LeR7B6hQXea88EOK6nxOFHwU1botbd94BGv+3g9GKqbNVg7bpjNBvfoEDKnhMCaFUOc9kc4IZUYpPvzyAezLKsRna50L8EUGM5RHchHbOYE6IdXB6Mw0qcNl8xWB5cDUWH8Td4TGuncZERD4r+MtVWBe/1txqqIAWwrOY2/xJewudt4kxJrrkhOsvHNoM34afhu2Fx/C2oI9KNKXwV/mg+GhPTE0tDttSq9DZyFN+GK755zxv+N/Ir3U8RxjYi34KWM3TU0I8qqx60ERM8TF34hEeQBebDcDMaqQZu0LhViF4WEzsDr/M6fjnnBFJ8y9uB1mksBpA0lDCFDoUKxjYKxtyCfbZAsDljbjkxZ/0uRvYsUIkvuiSO86Upq1qFBlYuEn18BPpoNYxFqb/8nn1ybmSUUWSHjECmQ/qcQGVJq96p8jYgiS9lBlUraKM0ygpAYaToIatmF9eosERVXeqKhRIzi4kk46E8h3J3tBzNNqZeKsn0yEEdVmKaKUIXi87RQk+8QgX5eFTO0OtPEpgcYkQ41Z5nb7dhQfwcDgzrgakL8Xq2CjZeu4knz22WdYu3Ytvd++fXvMmTPnin6+gICnbFmyExePZDp9jbhEf3T/N/g58yuP0uUmPDCSTgzvXXWIukwTcUPnIWn02FWaX460fin0gEqaXFvCmHuHYvffB1BRZE1cIOMb2zGOXCnDWJu0PE2VFl8/+QM2/bwdxtoxB3FLvfWF6zBuhnXsEhPuD6mFhYlHJMwZjTAl8MfQk3EJOdw4095xKjnMkX7wqdBD5aeC0WDC9t/20H9Vvl52oofGaRpEcNIcinKsc0kbVuzDpvVHXY5JWBdjHiJsmL1yFrb/vheL5/zB+1kxyRH1v8nlQBiTCAi4xyfAG++se4U6UKavPkSTE2xrBS7hgO9e+Alv/vU8tizdhbXzN6Eou5S6mo68y1pvsnWgJrUecl4gjs98vHf3Fzi27ZTD8yadCX8/vtDu2OZzBvA6XAB9ajAsKinaxITgvdnTEBXE35zvCiK4m/7OHfjise+dvt7phj5Y8MdBmMlh37dprQ40/672dEGP9xzgFxeM6vxyl++Re8nAHbsEtlcKoHTsPWDyy8BkXz2TI78dxdC1D4FZ7XjNLCvn4Le7BBInia6WSH+wAQ2JHA6vRwXA4qeCuLaRNaZdJJ6cOxMJHWNxNrMIW3KLoOseB3G5BtKMUuoKy8f2P/bQVNyrwbU4JhEQuFbYsHCby6ZWk8GEj+//BgsvfO5Rutx1j47F2OnDqCCKCHsj24aj0yCrEW1JbilNOxIxDLJOt8xsZOKDo7B58Q5Uu2goVaoVGH3PUDux9VdPLqDJSeQ7Ecgczu0v3UDF4oS49tEtuvZvCkQEovRWwqAzYNuve2j/KGn2tE2/roOM50SMqPljktp5EuLQvmv5PpfLuZqHkcoleHvdy1g9bxOWfcqfhBuZFI5yN8l8LYGMIwUEBPjxD/HFh1vewOn0cziw7ij2rT2MEztPu91tRAT1/UuL8eLix7Hp5x30mFGaW4bg6CCMunsINfsjyTh2YxKpxO0c+ttTP8WpPeccntdrDPjtg795j21tOsfhjT+fRUhM8/72A8P9cc9bt+Lb5xY5fZ2I0xe+upQaH7YGvkE+qCyp4h2TGLQ8vV2tAJNbCkugD//cdJ5rsQYnl4KrNdBgLIBIw4KViqwmhxx5joNIY4FI49n8tjPiO8TgqXkzEZsaRQWH5P9oUyAGlV2Hd8TV4FoYkxyySXAgCRk//fQTbr75Zodri65du9LXBg8ejBkzZtSLHO6//36cPn0aUqlnJo3/aoHDb2d38r5ebdRhdcYB3JDkPA6tMVJGjKExneofGy0mvLV3CZad3w2jxaq0Je53zaVHWBI+GnIfzpTl4N51n6FEV+Ugbpgz4C7E+YbUpyXcs2Afdl2wF0MUVhnwv5WnaJLCc6NT6H+YNiEqHM/ld41oDUanheN8cQ0e/OkA3Q5bSCJc3fE6MUSNJ0e0xdiqocD6zc37sPPrgfeSAE3T3S6ssMCRxcCo2cCer4AKq6rYaSNyJv//pRbhHwfEXz5XWQGBfx3qUOsNg4H8w8CJpe7fU50LHF4IlJ5peE5XClRmArnpQNf7gJLTQNZO67IEv3ggbiAQ5MQ5yFANFLi7AOK5QCUCC/I5zRQ4EEgjPKOSonpTNoyZ1uM74yODulc49BmVHosbRDIGnJFtdsqDyEsCzl0KxH8EeRtfyBN8Ubb0DLSHmn5u4q6AEFFAQODKs/q7jbyvE7d/IoIYemt/j9ZHJpv7TupR/5gICr545DvqRkGSCwh1jZF8kAlL77+PWhvu40iqmRjiMg36xoThtYfG42zvVMwa85ZDGgERNzy/6NH6Ii9xHCKOGMd32BeuinNK8fkj36GqpBp3vDqFDm4j24TRWPqmIk+/AN2w9uC83DdmsmoZBt3clzq+vXXLRw6FbuqIXesEEZcWjbvfvBUXj2Xih1c8uJ5wwtZ95zDunk9RQmIXx3akyUfSzBLID2aCMdifH0VmFopjufRmy4a5G3H3W7fi77nrkRniRYUadYhLNVBvPY9AudyhYYFMCCvOFkPf3vX1hCyzHGKte1FJdEok0vo3IylLQOA/SqpfGL3NTOmPXy8dwqwDfxPzSgrppyfJDazF/li8vyQLrxybi4MVDc0/efoSnKi6iDUFuzG7w4PYU3YIq/I345LGOuHbwTcZkyNHoLOfo+Ncvq4CGwqOu9xGDiz8lRo7cYMtBYYCZGizmi1wIHT2Hw2VxB+7SpYiT2c9D/hIgtE1YBz+zsuFmXMu8CPb5CPTo0RnbZKRiuTgQCZXOcgZM01OsIUIE4wsGfM4/zK+Eh+crzEjNaAQoUpHx2ojy8DCiel63OHMhIMkXvAJHMhWVVsUyDN6I0LmWoRh5BjUcDL4SXSo1itQYvRGlsYfuVo/WMj/mUIZQkLsa3dGVgI5Y6I1tcaYOQYmTkwnqHUWKbylJnT2TUN731gsyvwYhyt2U+VFZK0xlZkVIUfrh2qzgjctQ8AzTp48ieeesxqmkEL8okWLaPyygMC1OCYpyy+nKQ79JnuW6EOaXW1d7ciE86cPzcPmxTupiJtAmmOaS58J3fHktzNxcs9ZvDRutkNDEXHrfnHJE3QSmWDUG/H8yDdxOt0+wbUwsxgfPzAXNRVa3PzsJEgkYkSaWGTwCBzEZAI2IYJ/A8mYQsQ5FTgQWJUcw8b1wLFtJzHn9k8cxlS2YxKSrHHPW7fh+M7TWDJnGZrDhm0nsGfapyghTVQjO1AnPUlWKeRHMiGqNcXig4hc1i/ciltnXY+1CzahLL/CpaPq0e2OTcytRWKXeLTt5ph+KCAg4Jykrgn0Rlzy//xsFb54jM8IzgpxoXxhzFs4vKlhHJF3voAKFNYt2Iy3Vs3C5p93YNlnq5BxPNvakDCiI255bjIVszUm51w+di3f7/LznDUSkXqUeqdVdFeC88ga1x9RNnWupkKSgwIjA7Dk7WW0FkQgNStiuLH5UjnYsnxQjTOZoOY5NynlEhi0pgZhg82y9IjNcaiKDoLZywuo0ECcWQjGprGIbANpziLvku46ATYmBJbwQEAqgUijp8kNRODQnLOjNKcShrb84zZZjvsEHEtCGAJOA7pADvogq2BPbACUJYC8DDAnR0J6vgiiRg6q5uhA9+uODqwXOPSb3Attuifg2U//wpYD5wG1DEgNp6/pu8VCuf0cpPmuG1MNteYpAgIC/60xCbl2P7DuCHqM7uLR+uRKOQbc0NsuUejjmd9i26+7688/LRmTDJrSB498fh8GTumDVya9A22VvShA4SXHy78+VZ9up9Po8cyw1+uTDOrIv1iI9+/5kr6fCDPIWCooMgBFWU0zyWsOI+8ajH2rD+Gduz53THiz8WlM6paAe2ffhn1rDuP3j1Y067PWLdhCP6u5wgOTwUwNtG5+bhI2Ld6OymLnvW1k3zWei2pNUnsnURGKgICAZ6T0TKI3IuRa8s6fVFDtjvRVB2n6m61IOu9CIY5sOUFrE2/+9RzWzt+C5V+sRtapXJqu0G1UZ9z6/HXoMMBxHvPS8Sx6/HKFO+EWOW5nnspttsCBcNMzkxASE4Sl7y7H+dqUTSJwI2OVtfM3eyxuICloRJTBh15rTeZxBtmGK3F+IQIHNi4UnI+X89czCyHSu55n4LzkdslwpL4mNtaqyuuQSawGf7W9D01l4E19EJMaiZcmzMHelQeb/H6SzPpvIT09HeHh1vFYa0GMnu68805cvHgRcXFxDuKGxkyfPp2mOXzzzTf0MXnfkiVLcMcdd7Tqdl2TAofsavd/tDkeLOOKp7Z8j/VZ9gfJutj35pAWGItyjRFbjxvQ0XIjCiwlMCoz4OVTjS4h8TS5IUQZgJ/2ZmL72RLkV+lwJNv1BeLcbRdxZ59YBKrkSA71vuwCB7Vcgjt6xWLa/HRU6x0PMOR4PSAxELPGtUNqeK2SS3MbsOFVawdAc2i2uKGWM6uBS9uAKhfq7eAUILoXcPCHpq1X6W8VLZxczt/kLJYB4z6gMZ4CAgLNILwzkLUdqM5zv6ytuMEW8t793wCaQvvnSUIEiWxOngBENxLClV8CuBY2o1/cAER45kLDGiww5dfQizxZpBqi2nhGZXIAvVlqjOAsHMRqGVi9GVUbnLvyOcOrcwg06Y7R0LZwztIZxCKaFCENVkKzl//9/xW06YUwnK2ApaJ5BXjy2woICPz7yL/o/nq14FLzr2nfmPIBLRzbUtcs4w5GY4Ryfya91ZE2KxXlRZU4uP4oOgxsh5KcUur0oFDLqRsriYD2CffH7+sOY9/xTBRnl+J8QTmkEoY28DeGOICOnzkSKh8lFRQ0R+AgrtLDa+0xmCZ3pAIGPnzlMury8eLY2U6LQGTfEBe4e2bfhvi0GPpc2x5tsPDVXzzeb3WYogOgG9AWOiJuqEPCwNQmBJYgNVRrjjt1Tm3Mrr/2Yfff+1FdUAF/RgRTtB9YmYSmV0iLaqjjXZsu8Vj/wxaH96rSs2GM8gPr69isGqBWon9oKHaDv+BPGsQe+3K6p19bQECgEVPiu2Du8XRcsKsvOU6g+qlrcLCi0ZijljPVmXj+2AfI1dnXJo5VnsHxyrN4oM1tGB7az+61/aUXYeGppSgkZpqW0ABH0whIsgF9xInwc8YqDAzu7tFvarBoUai/CEYkRrgiEeLadIkk7170pjFXwMKZoZb4o8xYhRNVL9cLFkgaA/k8AyuBpdYGVSGxgKEpCwwGBPXEttKtkDEWB3EDgdS6JSItxCIFTXMQ1T4nE0nRzjcOAZJgWNhNTsUNBBnDQmMWu8z3tMXZmcDTs8PaikTcHWJ/TrYly6SmiQwUFthVbE1eJajkegTFO3M1IvtNSpMnxCILfTcRNpCbkRPDzEpgYEnGAwOlxIyVBRuQrdsGMFl234C8Xyrm0EZdjLPVIdBanDfiJ6n/PZO4+fm1ya88REVFNWvdRqMRt99+O/R664TS66+/js6dr07yhYCAJ5CmmtZYxhnkGpo0/BzefML+eQ8nbzmZBJxcApHOVJ/QkNwzEWUF5bQRt9Pg9ijOKaMiBjLR23FgO4x/YCR1I1326Soc2XoChRnF9RPIzvjx9V+ow6tULkUSwyA7u5Q2YjZGklkC6dEcoE8YiRfi+9LWZlkX+KuVGHxLPzomcTYhSvZZ/+t7YdobNyO2nfW4SyZdmyNwMMUEwtA7Efpah1jrFxHDnBACNkAF5cYTTsdpjdn5Zzp1p61w0UiU1DWeiqKJw2JT8A/zQ0rPROz+y3UDdF2D2MOf3dukdQsICDQw+ZGx+OPjlch3U18irsm24gZbjm0/hcf6zMKl49l2xyvSbHpow1E8s+BhDJ860O495DjdlFoKq5RC3y4UhvhAWj+RFNdg7hcr7Yw8+CDNqxePZkEsFaNtt4R6d1ciuiM3km5KRFsklSK/oBJf3WFtniDX0BI9C7OX66Sikf1S8ff6ow7ihnpEImg5FmIvGRiFDOYwfzDncqEqLEPqxF7wC/PD5s9X0bROUgsSX8int9ZAfqEE2p4xNA3UVX1Pfp6/34H8SpYIf9o85FVivTkso5SBDVRD3EiYx/ElhzpZZvHsP7AiIx85YudurdrByVCvPErrfc5I6iqI3QQE/o14Mt5o7jwJcQKeNW4OTu4606wxiTOSeybRNAjSgNtlWAc6T0KS4khqAxH9jbt/BE1DIIKAY9tPouBSMS4ccWGoCmDBy0sw+p4h1KQitl3UZW9AJefCXhO64cUxs+uNsezggCG39sPUl6cgJiWyvjG2uQIHQktTFYhb9qp5Gx3FGLWQcQVpQN722+4mrTc4OhDxHWJpUzUf5Pd86FNhTCIg0FyIscTyz1ejJNe1c3+doMlZAlzd+OLhXi9QsXUdRBxA5sHJuGTWz49TAZrdezYca/GPRo7RPUZ5VtslaT2XjmXRGhMZk9SloQ6+uR+9kXoWGXcRQRaZE//qiQUeb8eQW/q7FQQ6S2cg5yaSXqT0UV4RgYOIZSHZexrmDvHgQv0axAomC5iMAojP8icoiTwRLbAsNfBoLj+8vBSr521EUWbz9gcxE/i3EB4e3ux5EFeQuZCmzoe8/PLL+Pbbb8GS3xbAihUrBIEDIVDpDbhOiqQEKPjjhl1xtDjDQdzQEjiWQYAlGX3e3gi9XSNpDHrGBeDB4d2RX6nD4M+3oKjas8ZJkvDw+4Ec7L5Yip3n7VMeWhsJI8LvM/vgj4O5TsUNdey8UEqFEPWogoCEIcAF/gP0ZcNQBeh5XC3Gvg8ccO96AkZCMp4BsRxofx0w6FkgsA1Qch449gtQUwiUXQIKjgI68p9SBCQOAwY+C8Q0uF0JCAg0g5gBnqU48NFY3GDL2VVASAdAbnu+aIX4MHLsObUcSJ3kchHOzKJybQYVIHAG68Ubo5JA3TcS3kOi650niLCh/j3kGOzJ5olA1+EzPBbmCj1tzG8SIsB4sZLeLjs2LhL/dJorbiCTJqqerauaFRAQ+GfgF+KD3HP8E5p+wTwxjjwc3XbSQdzQUtR+Xrg9dmZ9hHIdnYem0SSGrOIq3Pv4dyivsoms7xYPU/soKLadpnHztpDi+YaFW2kDP5ksby6M1gjloWxoBrie5JRxwDdLn8Hyj1byOlwQJ4/HvrbGIBKCIgKQ1j+lSdtHkh313eJcuv+xvl4wpoRB3iitwRkkSpS1WE90IpajqQu2kG1d+s6fTt/LaE3w/+MYNN2jYE4Lh1kEKKQSjOqWjBmjeiEyyBeZT0+mzUrlBRXIu1iIC4cuURdc4nrSc2xXTH35RiT3SPT4uwsICDhyb2ovvLB3lcu0BHIxG6B27azDgHUQNzS8k8N3l35Br4DO8JbWWvF7cHlMGtrrEIGj4gG77RNxKDfn4YdLf+Cu+OtdrsfMGrGpcD6OVGyAkbW61anEfugZOAl9gm6sTw1SSfzq36Mx6yBlzPCRGsDY2Ft7cUYqcqg2kcYcESQiEaYnjcCd8QNQaspDhsZ1IgX9DKkRZQayD1iQln6RiMXRyrMQ4QwS1fzjEvL9NSTlQMLvvKMnNqaNqNArqRCDCDL42FqVQBMcRvnZO4gT8s1eOGdq2EeRSnKs5+hQJ1JdAZWUnHc5OtHt+P9IBDMRM3BiWDgRKmkCg/P/bP4yLVhRAQluoEhEFshFJrt1dvDNQ5Y2APl6awx0HVKRGGPC7SeIriRsK0Qv276/Z0/3TvRNFTfW8dJLL+HwYWtduG/fvnj22WebtR4BgSuFX4gvFSa7W6Y57F93xEHc4AkWcr3cIQoWksJArqktLCTZpZAdy6YNq2RMQppUbekxujOmvjIFF49m4qEez6Oq1HVqji1EZEDcQDf+vAOn954DOYpaQotgjg8Gq5SB0RoguVQMSZG1uV9xvgz65CCX6yNu166OVmTd3/zxHH5+4zdetzfiHvfYVw0i4/D4UNqw0ziFgg9OJIKxc6yzEweF9VPB1CYUsjPuG2xJAwKfqyFJ1PhulnsnRjKxT1I8iGBhyK39MfXlG2gTEnFU3LJkJyqKKqkz47mDF6Gp1IIRM1SAfscrU2iCg4CAQPOZ9MgYfP0kv1kbmU/ga/a0FTfYQpqKPn3wWypEIM1/9TThWsoc4IXK8e3s0jktfkocAfD18h14YJLrZFOSXjr36YXU0ZXcJwSE++PGJydgylMT6pfzJ801tdRU24+/xDqWihcsCvuuezEjwszbB+KGUZ1xMasYx87zHzNZqQiMwfq92aRI6FNjkF6mBchtSCeICisgOXbJs6YdDxFZOPisPIWaCe1h9pI6iBt8Vp10L2Yj51oPzPa42gYtu7dW6sDa7Funq69sqBOyXjLk0HGgi7OlRAxjSjiU6Y7iRLlSRhuA/y1jEgEBAfvxRuNks8b4NnOeZO+Kgw7ihpZAal0kuXpq/EP1CXV19JnYHbe/fCPOpJ+nQu+a2vQad2irdXQ8smruepw76Fqc3Roo1Ap8nj4H857/ybm4oRYiQrY1PopOjqRmS2S8dTUoyCh2OSYh1zBPz38In8yc6/GYhDT8Dr1tAKa+ciOdAyIClC1Ld6GyuGFMQpI1yPJ9J3WnYxIihBAQEGj+sXP8/SOx4JUlbpfjq8naihtsIceHj+//Br3GdaU1h5bWd20hSXBL3/0TNz87mfc4/s1TP2DjT9vr6z1ExEDeQ5Ia6ggIs6aNEmoazZm7QixhMPOju6mB3/nDl3DuwMUmbb9Bb8D+tWRkdfmpG1OS8Y70wDkqkuZ8VdT1XFRaBZGbxAy6Do0eokqN9X0uYArK6Zx5S2iuuIGcP0beNQhXi3/rmCQyMhJpaWk4evQofbx/P78Zyn8mwWFim17YlefarVLKSDAuwTOnusasvLjP7TJiEcPrpmcLW5aEOX9l0pSDxqRnlOGpXw7jRF6Vx+KGOhanZyG3wvUkuqcEqWWIJIWmHOcTxq9NbI/kMB+sP8WveiXfb9PpItzVN67hyfEfAZ92alIhrNVw9/ukfwN4u4mkJnS+HRj6EiD3AaQ27qlBicCQWQ2PLSagpgiQqQAlfzFIQEDgMqQ4NAeS1JB/EIizuYDxiyNXbs1Pn6kjdw8QnAwEpTh+LMeh9KdT0J+yVzizGjOq1mfCUmmA//VJTjbXg20SASGPdIYswira8BkWg+KmChzMV+aYLY1Uw29yG1jK9KjalA1zoU1D7b8I8h0lAY7u2wICAtc+w6cOwomdrovrpAhDYo6bA2ladwdpGHEXv1mHSCzC3OcWOe2aJQ5/703/Gnt9Ffbihlo4hRT6gcnwWnHYoXix/Is1NGK6pURozBBHBOF0nmNBgvT0zLpzJKLiQ6mYgg9S3CbCkDH3Dqt/7slvH8DdKY95vC2WUF9wLpzz6jAmhHgkcKgTN7jiry/WwDfI9eQOETl4b7uEiZ1ScNubN0OtlENe62JIiE2NwrQ3bql/bDKaUFFUBS9vBVQ8xSMBAQHPuSWxM+afSce5SucFU5JgIBa7dpshr/NhZE3YWrwX4yOG1j/XLSAODERgXUgdbAuY0sbiBhtWFaxDt4B2SPN1NiZh8Wv2/3Cxxr7Wo7FUYHPRD6gxl2Nk+Awn7zPCV6p3+EzyWCE20/KPzqLCz/0eQ7w6lL52U/QovHeGX+BAkhiIWIP05ohFgImzTtLKalMi+CDJEHk6H/hIjPAS24v46iDiAa1F5lDHCpWn4YmUycjT52Fp1jrk6FwL5BeXdMJZfQAmBJ6Cl8gMAydGjlmFctbZtb4IoV5VteIG62MjK4ac5/+KniXHd9fFabXUWK+9E8NR3EAgr8epymiaRpHBOiYkv8kTybchUN68Buf/Elu3bsUHH3xA76vVaixcuBBisXtXWwGBqwlx3OabHPXyUaLfZM/csxuzeUnTxyQWPy/ohrYDbK5ZSWKCOS4YiPDHt28sdZqERoTKH8/4BvvWHvZY3FDHbx+uqB+TUCfvwkp6c4b31kwYI7zBejte70f4ecPfIMVFjaNghBxvX5o+FmHRQdizgn9MQgTlB9YdxbDbB9Q/9/g39+OBLs94/J0s4b50IpkPIuLwRODgbsxIxnSeNJxd/9hYTHl6IlR+KsjkDU24JD0v/n/WBL26MQlxeFX5ekHl4+V2vQICAu654fHx+PurdbwmGy1xstbV6GkdatyMEfXPdRqS5tF7yadWj2hrJ26w5Zu1+9CnQwI6JUQ4reG8NH4OjmyxF9OV5Zdj7jMLaZPifW9PdXifwWDf0EmO/VINC7GehUXOWNOyxWIs/OoeRIZZ52vvuKE3nn33T/7vIiYjEqtQmWCybXwlzVph/jArZZDsOum0IYcICCwxQbSuRGBKqiHJKHKbANq1QxwefOYWnKiuxg8/bETu+QJIcyppcoNHTUSk4ahKB87HRqDSGJYD46RRV3qhEOakMJeCOuKsSlKQ6h9G+rk0BKnDFOkPJRwbfJ9f9ChvDUxAQODaHpN8N+tnl697B6ip8PVKjUl4l5Uw+N7FthJRwKcz52LHsnQq2G0KJLGtNeZJwtuEQiIVI/t0ntPG0+d+eBhBEYFuU9SISdTBjcdpCpLtmOTRPjb9TVcQvt+HXMP8/eVaj8zCbnluMiY9PBpqfxWksoYxSZtOcfRWh9FA5kkqofZT2Qs4BQQEms3tL92AVfM28KYItESQQERl23/bgxF3DrIz6GsN5r3wE7oO7+jUuZ/UMF4Y85aDmI6YRXzx2Pc0eYaYBDZGr3Xfr0v6BL479TFCoq1GG6SmMvvWj5u07ewV6t3qMjQND35yD07tOYufZ/9Bk5dogh2PwYcrxGeyYe7e1rkI22SG+MJl6v/zgBcXPy7Mn18mEhIS6gUORUXNS+761wkcxsZ3x5LT23EoPxvm8gRYqqIAsxwiqQ5i32zMGJjc7ASHKqPVtY6P3uHJmNpuCCr0Gry8axHMrOvihKk8ltd+b+OpomaZV7eGuIHgrZDg01u64Ifdmfj1QHZ9SkNyqDceHpqICZ2sRSeTB4MCY2MXCf9YYOgrwMbX8Y8j9xAw6R6r0MGdwEEd4n59Yinga414ExAQaEU6TwPSvwAMTiYmVaH8CQ2eoG00aUnETD7RQGUrOBhk73EQOBguVUJzqMhB3GALSXVgfGVUaECWt1QZIfaVQeRBXLCifWC9uIEg8sC554ojAry6h8L/uiRrUkW0D4w5Naj5lwoclO0Cr/YmCAgIXCZG3DmQFnNcNRTd8sJ1tIDaHGo8KKD3HNsFY+8bTlMCPpz+df1kNquQAlIxRFpj/UQo56bRfvOBC9B3c+2qySlkMMcFQXrBfkDaGkV7gre3F964Zwx+3HEMK/achEZvLZi0jQrGjHG9MbSLNYXAmSsR+WaWAC86wSou19EIVFui2kZQh54f3/jVo21hlY4O3w6f6abZyFPO7DuPe9++3W0s6ZhpQxDo4/7/EinqB0cJ5x0BgdZmwZBbcMPaH1Cgc2y4TPYNhRmui/qukx8aKNTbvz9c6YeBoT4oNZ2CUmyCiWVQrFcjX+sDCyeG1iSFn0IHscgqCOBjbcFWB4HD8cqzOFS+BVka10YW+8r+RqUxDibocb7mBCpNVQiUB1qFCDyfSUQOPQO61IsbCBKRpw3iHJhmxrsFybXQWOR0n8gZ+/MA2X8VZi/aqiQTmSGmaQ0MegWOwc3Rd1BnqRTfSJypzuAVOBCOacIRqy6CpD69goMYLCy0Dcq6Y0pNaqQGFNDPIekQRFxBXtOxUrp9zgQbWrMUBs7zEi0RfvD9DhGKCuRofKAzylGlU6BnYOtMBv1TnInS09Np/HJrUllZiTvvvLM+RvnDDz9Emzau06UEBP4pjLl3KNZ8vwkXz+bDnBgOC7kWlEmpY5o4swhTHxwFpbp5DR1aD8Yk/Sb3xPA7BtKGduK2R1MHbMUNNphlEiA1CooDl1w2LxEn8abSlDGJpNqAoJ+PoaZXFHTtgsHJxBDpzVCeLEacoRivLX0KCzcewqrdp6CrTb5LiQ3BjEl9MaCzdSLc7IFzd+PUPNJsc9Mzk/DLe8s92k4y/nIH68EynroZ3vTsJGxctJ13uVH3DLVzUOcbk9RN3gsICLQec9a8iMf6voTyQkczo8Su8TjfQsfovPMFdo8jE8MQ3zEGl45m8b7PFOULiz+/mOmXrUfsBA6k8enQpuNYt2Czg7jB7n3v/wXvAG/UVGpwZPNxaugQFh8CU2K00+UZCzGKsF7LjRvfoV7cQJA6SS9oDsSJlA0PhDi3xCHt09A3hURvNjxHBBFtIyDbcxbiWvEeqdmZ40Po8mKWw0039MbMpyfSMQm58jz37Vas2XiuadtEzm+XCmHsFOdSLi3OLwejdxSDMzV6yI5kwtjZxryw/guwkKdfgMhG6EEShtwidj4n1dzm5tbi3+qWKiDwT2DCzJFYt3Arsk87NwSa9sbNkDXz2tWTFIXBN/fFoJv60mbUzx6ax7usxY3obMOibbC4S85xQmvNk/gEeOOlpU/g57f+oOLDunQjkgh35+s3o8eozs0ek6T2SqJO5H9+thr/NM7sv0BTfrb/vtflMuRcSRzQPRmTEEG2MCYREGh93ln/Ch7r9yKqnKT2tO3ehtYXWkJuo8S12HZRiE6JcCr6ahIc8NeXa/HUvJkNT3EcDqw/irXzN/EmBf301u+Qe8tRXVJNDQNJYlFEYhh0Gvc9u2NnDLc7FslbqY7TmjAMg5ufm4x73rqVPo5rH43Dm49TgUOz11lWDcmBc7AkR4OzMb4QlVVBfDKL1iyvBmQo02ucMCa5XCiVDfVni4X/eus/I3CQiSWY03cGJn6+FQZtQ1GCM6lgLknB5r2+mN7RBG+bQoKntPELc7tMW/9IDInuQO8Xa2rw4aHfnS5nLk0EWP4D1FXINrDjUokWz/1xFEtm9MEzo5KRUaqBQipGfJB9A02XaH9kl/GLP47mVkBvstD31zPgSSAgAdj1GZDbShEkwalA1zuBo0uA/GZG8UjkwLHf+Jch2x3ToGoWEBC4Csi9gV6PAFk7gLwDgLEaIM6Tkd2BmP7AsZ+B0qYVfO0gqSt1kNSG40vdiBtEnh+5yXqyd9PtNSEGZYvPwpTvWVRZ9Xr7iQOScuAJsih7cZ80TAXGSwJW23qxyc3CdrdxgHZfId0XQdPaQ6yWQR7ng5rtbpywm7DrPYHxlkHdPwLGrGroTzi687XKZ3hJwHjQKCsgIHBtIlfK8cz8h6jrDXHEaczelQdw/ePjoFQ1PcUlJsW9cLZNxzj0mWBNrSu4VIwf5q6DMS0KbEit043JDGlGCWRHs926xZmDvO0Osc6m6ywhPg4Ch9Yi80Q2Pr9/LmavnIVHJvdDTkklFDIpYkLsi9WpvZOwc1l6/WNd+zDoOkeA9bbuY5HehIOMCWPMFrvJ6ztfuwlRyRH4/aMVbgtsjNa9GwWjNdBI59H3DKUiF1exqu4gEztbf9nNu0xs+2gkdnEtPhEQELj8hHv5YPnou/Hd6XT8fukoSvVaRKp8cUubzpiW3AOvn/wGxyrPO30vNS1y0wPhLVXX32c5FvMvfQKz6BCI5pkgE1ugkpYjVFmN4+WR0JskqNQrEeTlfmxxovI8Fp3bjwiVLxJ8Vfjk3PfI0uYhXlkCf95yFYctxQtQZWkoQBcZit021pPX2vtG2T0Xp4qFUqyEzuK6pkRECFKRBX4yPRgRB71FAq1FDgMrsb7Gk+JABARWoYcIVWYlxCKSbmCm+528d09hDOJ9qhGlKqeOrFZYHCz/G6WGM7g7/gV4SdRo55OAFXn8zZ1mToYMbRBSVIVIklYjTqKBgmFh5kTIMStx2uiDAqNv/fYyIhYMR7aDnJNEqLHIIGUtkJHkDXDwkwVhQNBIHC7PxvHqAxDVCyccMdKEBwJHhRJ8KCVm1NQoUW7wQpBCBbXknzd50hKIuCEqyv7/WUt58MEHkZVlHYePHz8e06dPb9X1CwhcLoh44amlT+LhWYthq2nmvJUwp8Via0kNJhrNkBNxQROJTiZjEv606zad49B3ojUhIjOnBD+e5a/tmGODwB3KcOp8TcQNpG+Qk0vp+MUT1+rmIK4xwnfjRfhsughOLoHIYAY5rJLW4LmPfo/Xfn8Gj0wZiNziSngppIhqNCZJ6ZVEEyf4OL33HBV+SGzEHtPfmUonin//eAUuHM7gfb+otpHJ3ZiEjBNG3z0Ey79c67KhzB0yhRRbf9nFuwxxOSTpcQICAleP8PhQfHngHfz2wd/Y8ONWVJXW0Gb/sfcNw+RHx+KZoa/hdLrzMYkn2Ca5mE1mvHrduy7FDYxYVJ9YaQ5uGMs4g2M47Cm/hJ8u7Eekly8iiySYc+snHh2ziJHHvOcX2T2Xf7EQFj0DuDmvpabYi2HbJYZBIZdA38gUwxaRpSG9gQ82IsBO4MAxIhj6JNuJG+qRSWDs3RaKdYfBxIdA3zGmXiRAKnWL9p/H8dd/wXvPTobKS472/VOxZv5mj5zKWZkYmu6R0LUPBeclBSwsJHoRZDUcFXvYfi8xpOCIGYqT+mC0icWYMV1xqKAcu9LP0f0uLqiA9Gw+xBX2YkdJsfuUJU4mgSk6ANLsBpOvkJggu3OigIDAvwuSJPz0dzPx9NDXHZrqCTv/TMeY+4bZOe57SkxKFPavPeL2WrVuTHLxcAZWfrsBzaU54obWhBgizX9pMV5Y9Bju/+BO2mBKUvnIdYAtqb3b8ooE68Ykg27qY5dM+dAn99B5jWWfrsKlY/wiRk8hTc0jpw3BHx+vcBBMNmVMsv33PbzLtOvTFuEJ9vtBQEDgyhKVFI6vDryLX9//Cxt/2o6acg1Nnhk3fTgVUD3SZxYuHmm+kaxfsK9dEsvLE+a4FDeIJUyTjtkHNx6lIgeyvT6Basy5/VPehDzb1Llvn/7RYUziCUScZku7vm0hlUudniuvFHKlDEa90TpvRWtxLBbP+QNn9p3Da8uepT0Naf1SsOnnHS1KT2JKq8DsOgGWpOgQIxadgbfWRQT2o+8bRs9t+93U3JpLZFLrGib9m9FoNDSFISIiAnK5YwquM0pLG3ruAgNb34zxH2jt7Bkfrb2Iahtxgy3HcivxaRMdDuq4PqkPFVC4QgQRbkruX//Y29AWxpyesGgafhxW5wdjXhcqtriaRPh51ky152IZTuRVQikTIzXcx0HcQIj0d+/09PeRfEz5ejcsjSco2k8G7l4FiFqheNH3MeChPUCfB4H7NgI3fAeIPftjsiNxOHDcuTDFztnd7H4yQUBA4DJDRAiJo4CBs4Bhs4EBzwMJwwGJAogbQmIKmr/u8C4N9/P2A4XWyCSn+MYC7acAnjqQmvXAmb/AHliMki93eyxuaAmcyf4iUiRloOp9lS/UXAgTTDk1KFtiVUMrUgMhDuA5Z0lECHmiK3zGt16DpzRKDZ9B0Qi6ox0Cbrs852uvrqEQiQVXHwGBfzM/vLLEqbiBcGrPORpN3BxIwV/M4y5HCgdjpw+rf6xsHwn94JQGcQNBKoEpKQy6oe3ASVyfK8lrpiAvWBSARSmy/isjrmyNF2zWV/HYKWff6kPIOp0LL4WMJjc0FjfQdcU0rEvTIxqaAQn14ga6iQoplh89hxnvLHFwfx16a3+8v+lVuu/4EBdWQVTNLyy8+9aB+Obw+7ju0bH4cv87eP7HRyH2IGmpMSQSdYebwn1FYQUtoAkICFxdgpVqPN9lKPZd/zgu3PoCtk96CA+l9YNKKsOtMSPBuGiFsXCOxxwRyDU7V19jGhjcs/61HSXrcLSyQcjVuGn9tnhfvNzhOmhMXqgxum9aL9Hr8OrBtXhg52I8fnAOFTcQJLYdLy5Qit2LpMl3kYgskIrM9EbEBSbW/ryoECswOHggz1o4qMUGpPgUIVxZhVBFNWJV5UhQldA0hlIjf4JN431MUy5YORVImDgpotRViLQTNzSQqT2Lpdmf0/v9gjojSObaBU7OSPFN91no4j8TPWXlSJFVU3EDgSQ6xEm1GKgshrzRfwUivmhIbRDBxElo2kS1WYEwRRrGRozFrPb3Y2abu13vIc4qcNBZJB41XdHPrf2Np8R3pi53/wS31JbeLhdLlizBzz//TO8HBQVh3jx+x0cBgX8a3/6yG3oX1+pHTuZg6fLmmQ4RpzmGJypIIhVTwW8d6sgA9yuVisE5aXDkJGLou8Sg5vruqLmhO6pv6gHtgLaw+PG7gntKcLTjxBoRNTB6q7ihjt3L9yH/UiFUShnaxgQ7iBus63I/viFNVS+Mfsvh+RF3DsK7619xe1wWF1ZC5GKcWceM+4bTxoJJD4/B1wffpU6E7sY6zug0JA17V7pOdSKUFZRTd0MBAYGrS1BEAB744C78VvQ91pqXYuH5z3HL89dB4SXH7S/d2OxrPlJ/Gnpbw7z37x+tRPqqQy6X7zm2Kx75/D7q9iniaSoyhZug7atBdkwpXj+0GjN2LsHkvQtwVlGFFuEuxo4YYjSq63irFBg/mD/VjDF7eJxrdB6j6Ul8SZ+k4T8lEppOsU4TEA6fysHsr9fR+0Nu6Qv/0IbGrsYo1Qr6u9/6xs0on5IGbY8oq7iBIGZgVomgCxKBFXEQmTmItRZIqy0QqZRg28Y4XWfHwe1w27QheO/56zFrdFeo/joARfoFB3ED/YhyLcQFTtLW6+CsY1x9n0QqdKiDJNBebf7pYxIBgWud72b97LJh8+CGY/jzszXNWu+4+0fwnt9IY/zIuwbXP1YH8AvvriaeJi8TQ6SSvDKofLxoElxjcQMhyIN1ERHDyxPfdnh+zL3DMHv1i2gNHvjgTnyR/jYmPTgKc4+8j8e+mg6RB+fpxqT1T8XB9cd4lynNL2/BlgoICLQWZM6XiKX+KJlPxyQ/nP2MJlYSQ7fbX7zB9RvdHBqkMgkG3dy3/vHSd/6k5w9X9LuuFx0beToGKsoswWcPz8OsMW/hkd6zPBI3tBRdjcFBwDHs9gG4mhh0DeIGW8i+/vTBb+l9YtjhzXM+Vfup8FPGl7jhyfFuP4+p1lGxgzsjDzJffsuzkzFn1Yt48GPX8yQtQRiTuOeXX36BSqWCWq1GQkICNm/mF9/bcuhQQw2hY8eOaG2uSYFDmcaINcf51Z+/HsiBsRkK2wCFN17udSsdgDvjqW7XId634SLy620XwGpCYMrpA/3ZMfRmzOoPttq96+rlJMxX0aQmpPRLDU4KjVlzPB9fbfEsSoiIS95Zc9rxBZMW4Dx0EHfVrByaBgx8uuGxWAp0uBGwuHdZtUPhCyQOszYf86GvBCpynL+Wdwj4YwbwXiLwbgKw9A4gk999VUBAoBVofIHqHw90uBWQNmp6YaRAm9FAYJLrdQW3A1QhDY+z+RsMUZkF+ERZBRYyzwskmrwoWPRNd+9uDjU7cmHMtnfR8RkWC2WnYFw1eM5FhvMVMObV0GJH0J3taKqCAxIRAm9JgSxEBXNB64lEFPENEwVeHYMRcHsKGJ/WS1sQ+8nhM9R5XLaAgMC/A1Jk3v33Ad5lVn+3sVkxfGTSeuZHd7l8feaH0xASYz22k0b+xdtPkE5Gp8uy/ioqdHAGJ2ZQM6odLETgXHeOFYnAiUWwyIkLXcOyvBOYLiBugiaj504Ux7efcvnapsU7sOyTVfS+RSWDrotrB9HDuUX4/gdHpyZttZ7XUYJA9oJy70WIXDTwpMaH4o7JvesfE+epgVN6u423boxvkDfSBqTC7OZ9JO60rKDC6Wun9p7DW7d9jCmh99LbW7d+hJN7zjZpOwQEBJpO46J5F/9kPJNyB7wl9k2YSrEc98ZfjzSftvSiOFBag0RVEVK9C5GqLkCkohxDgzsgTNHQKLm9eD3vZ5+vOYZBYTFYPfQp6KrCnRajbanQWs0qAlVaiMUNxxuSjOAOE2cVbpGkASJcYMCCtamViUVmeIlNkDMmiEUsPY2QZIENRcuRrbV3arox6np08+/q9HMUjAl+Mp3DUE8uNiPGqxxVJgVKDV4O35U8rjAqqKCBj1BlDe+g5HTVQRTpcyFhxHglbQb8pPapeHRbGCmeT70HEV4h6CDbglCp8zQKL8aC630dI60Z+vn220D8YVN8GlycBgT3wYNt7oOPxNfuOxrM4loRhwhlBhUMrBhOjM8dUi3EUg6Jvj6YkdIwMSTgSHZ2NmbObIgnnzt3LkJDBUdAgWuHvMIKpLtJA1i+rnkJyKSR5t63p7p8/eHP70VguD+9TwS5y99d7n6lZgtEJrOD4FozvB2M7SKpYJnCMDDHBEIzMg3mwJY1KZF0PFei9MaQsdXxHU7mNmpZ8/0mrPLQEfbw5uP45X3HfaKp1LoVCxDRhfzAJZdjkrSkcNxc61JLII0EA27o5Xas05iAMD8k90h0+77SvHJUl5PzqSMndp3Bmzd/iBtD7qFjkjlTP8EZN6l5AgICrT8m6T2+G57+/kHabGILcX1+5PN70a5vsst1DZ86AEGR1kZJcnxa8fVa3s/et/ow+l/fEwsvfg7/Cj3pHHdYxhxigjHVADQq95sCJCh6JhaGpBYI2KrczBFwHBY9swAZJ+zTNh++YxD6dk1w+hbGyNqlHvAhqtHBHKSCISEQxkhfWIIcxw+NsZAEI57Xt6afQ35RJU2LfWP5c04bihQqOV79/WmExgbjmNxMt8EZpKZnUpMkBwskxoZUCi7M36nIkDi01jFuxgj6/4jUrFzhteMcTVB1/GDr+Yt+nkQMU4K1bhmTGoXrnxjH8+0FBASudYhp0dGtJ3mXWTmXv97Fdy1/56tTnL8oAh7/+n74BHrXu32vmtv89IbLSZtOsXQc4AlkbHVyl2NtqQ7iQL5x0TaP1kXO2X995Xhe11S0fL6946B2mPjQ6PrH5BzWb3JPmgTUVOEHSbpzN0YiaRZ6rfP+rqPbTuK1G96zjknC7sO70z7H+cMko09AQOBKjkkG3tgHj389g45BbCFjlMe/mkETX1wx6p4h8A+x1sXJvLq788buv/ZTE4n5Zz6hIuCm0NTjVHOZ/9LPyGkkpHjo03vQdUTrN397gjsxyObFO6mYjKTFkjFJ47Elgfy2ry17ho4fW5LW0Zi0/g1jEmIu+MQ39/OKLJpKQqdYTHq44Zwl4Jz4+HhotQ3XK2vX8tcG6ti0aROKi4vrHw8d2mCI858WOGSWamB0U3St0JpQ6mHhujFrdkuhz+oDS3UYOFYMjmVgqQmGMbsX9h9pcCI6kFmGzFKbC1EyqepmYrU5BKqa3nA5sVM48irdNPDbIOFR0n6ysWmxpvN3XoKhscuo3BdQeTBBeP084L4NQNLIBqEDeW+vB4BpKwGFjSttHX5NaCD1jQGmLgOCeJqebZk/Bjiy1P65438A84YDR5cCmmJr0sOpv6zL7v/e820REBBoHULSrKKDtFuBNqOA1OutaQ/xg4AOtwMK62SrAyVngFKbtJ8ad7GJnHUZIm7o+bDH6TG6YudNpZcDzmBByYITdhflJEEg8NYUBM/sBEl46zjfeYwH6QVE5ECQhqkQ9lQ3+E5IgDzJD/IEX3gPiUbY092hTAuCpcoI7bGG6OcWwQBenewd98jn+09JhrJriFsFuSdYqo10mwUEBP69EHcHd40g5YWVNKKzqZBi7q6/XDutntrb0MR+8FQ2CsucN5vUYYp3LnQzpIbBEuxi0lIkgqV2GEIOi+pOsR5N2toy4PpedB/YwjEiWLzlYBWOk6oMT2rFojd/a9jutsFuHfsWLt/lkHxAJmj5JmnreOurGZj7yq3olRZb33Dro5Lj1lFd8cXzU6CU24/PiMiBNAd5SkSbULy99mX6ryeQWNetv+yye279j1vxeP+XsGXJTlQUV9HblqW78ET/l7Duhy0eb4uAgEDrMDikGxb1fgPPptyBaXHj8UTbW7Go1xu4LmoInk2Zji6+oMkEstquGXJs8ZXqUWLYggyNNVLezJpQZHAeuVwHSSHI02UjROGDn4fcD73Wn6eHVISiGmsR2M/LviG/1MhfHCbDiWqTHL5SLSIVFQhXVCFIXkOTFsSwQMXoESDR0sdqsRE+Yj3UjJ6KIXQWLb688IHdxKSEkeDRpIcwK/U5+IjjUGmQo8IgR7leDh+J69oVST4IltegyqxEltYP5UYFaswyVJoUyDf4wuxBDU7lRstB9un5muP0fht1FL7u/iLuS7gOnf2S0cE3EbfEjMLcHi+hZ2B7FGgr4GNZwbu+JHkFgsT2k9bk9yZpF0qxEf5SDfykGnhLOPQN7Ga3XJpPCF5OmYK+/j2RW+2LjMoA5GtIHcx6MmLBoFDvjSoz/6RNmdELrEgMPVOCMmMLHXL/5cyfPx8VFdYxKXEhfuaZZ5CYmOjy9txzz9m93/a122+//Sp9C4H/Mtm5xFmff5mikmro9E2vT5AJ5T0rXI9JTu9tmDPYv/Ywqi4WgSniP+ZIMksgajSRbEyJAOtKxCAVQ9/DmuZJzDF8mjgeIZO3Pcd1RbWb8ZItrpL0WJbFT2+5SYRuxKI3fqPvsyUwwt9hst8Z7y94GF+8egu6pzU4bvuqFbh9fHd8OmsKFDL7MYnSW0kda02xAagZ0Q5VN3ZD9cRO0HeMAit3PBlGtQ3H2+tetkvJ42Nm12ex80/7lKlV8zbiyYEvY9uvu6kwm4xJNv28A4/1fRGbl+z0aL0CAgKtB3GwXpzzDZ5b+Ajuees2PDP/ISzJ+QYTHxyNN/58FgHhzusW237bU2+WoK3SoiCjoTHBGaTWknEiB6Exwfhqw+vwyW1U9wEHYzzPeUfKoPIGG+MpN5A6EuunojeSgMDkFPG/oawK1dkleGniHLunZVIJ3n/uOnz28hTEScUQ55VBXFoDicYMu/A6nhMrqZPVtPVF5XWdUDMsGdVj20PTIQTmxjFujWBU/HNJLMfhwIksej+lZxIWnPkU09+Zii7DOqDT4Pa487WbsODsZ+g2ohPyMwqxM49/LosIHCyND/3EGEVlP46Qe8kx4MYGEw8CEb49/9PjGHRTH+ffRWeCuKgaorpgQnJjQR/bpiLVpTAV55SgolFtUEBA4N9F9ulcj+ZSmpNSbDaZkb7GRaoQB5xOb5jn37vigEtRbmtBxiRNbbgkKWudh3aAttq5WUZTxiRkH/48u2ljku9nWRMrbSFjAHIOcMdHO97EO+tfoWKGOvyCfWiC1OxVs+i8iC1qfxW8vN2PdeogwoZ31r+MIE/SAAFM7/AU9q6yT5/78/PVeHrIa9i5LN06JimqxPqFW/FIrxewY9lej7dFQECgdSCC2SW5c/HsgofpmISMTcgYhTxPmub9QnxcNtefPWA1S6gqqaZGC3yQ1CAisItMDMdne2ZD2mje9p9ARVGVQ5IOSd97e81LeGfdy9Qk8EriLmGHnGOObDlRL4Im4pF7Z9+GzkPT0HlIe0x78xY6Tuk0qD2yTufg2DZ+caOnkBpZn0nd7Z5L7Z2EWT8/ToVzrUFhZjE9Rwjw061bN0RGNhj6//DDDygrc22YTzCbzZg1a1b9Y4VCgbvucm3i2VzcW7b9A/FRuj8wkb9LlZPCrTv2XCzFxtOkOBIAk87xQmrNiQIczCpH1xh/5BFniitAqcZz19MwHwWeGtkWTBOiSMmiZJ/O234RSpkYI9qFIsRbgVXH8vHN1gs4ld+0yVCThcO6E4WY0CnCvnDiEwZoCvnfvOE1oMtUq7hBHQZIlUD7G4De9wNKJ8U3kw4wufkd1KFA93uB8I5W4QRTOyCI6GJNYuCDbO+y+wGJDGh/HaAtA/58EGCdpVFwwMqngTbDAP9Y/vUKCAi0LowECHOidC0+CehdXPxyFuDQfMArEAhKsaY+sG4mfEnyC7lJ5NbPtLgX0nGW1he+8cFqTChbeoaKGmyRRXuD0ze9eNQSGIUYrMbchOUl8O4XSW+2VG/PReWqi01KJuKFBQo/P4Kgae3phEXF3xdhzGw410nDVfTG6i0w5lSDbY5QwcLR7Q6YQhx7BQQE/o04cy5wVogmDmtNhTQIHVx/1OXrpGlkytMTkdg5HoWl7gfknJeThBzSTJTkpnhCJpEZjk5QlhJBwuB21ElUeol/Mjk4OhD3zbkduhq9XVoESV0wtg2pd2aV5FdCcSgH0oIqWuiXKWX4/aMV1G2jz6Qe1K2DNMYQ51PbiRLWy/14UCcCLXb3tXE2lUgl8A/1c1vE+OqJBRj8yvXEVhz+Yd7wkkkxqmcybhrSGSql477UafRukxiIE9HY6cOR1C0BPUZ3pk2UhLi0aGQct3cVbExpbhlm3/Yx3T99JnSnDhofTf/aqcCGuM5+NONr6gBCkkAEBASuHDJGiiEh9oVYwqmqXTCwzhtQTJwBn595CydL+2FIWFuIRRJY3KRflhsMqDEZaB3HIpVAa5ZCKTbZJSCYWRGKdSqYasciIttOE1LqsMhRbFBT8YAzio0qRHuVw1usp6kMdakAGlYOrUUKSaP1kc+Wilh4i/SosihQaSrDgoz5uDv+Hrvl2qgScaRQjRJjCKQSC2K8yxySGxqjkhhQYyGNOCLUWJSAzeHW7IFvi4yRQc96XlfzlnpRYQq52TL37HbMO7MWG7q5r5EFSXQosTSIy0kCRohcDwlju98q8Pn5p3F3/IsQc5U4WPIRSg3WCQR/Bng6KRVZ+gG4WCNDmfkkNKx1XEt2V7HRGxIRC7XEcZyis0hRrLdOtpPvvTRzJ55tNxlXE2vPU8tU5JfLV8u28Zjcv3Chaa7jtstHRblOlxIQuFyoPRhryKRi2tTZVPb8fQDHtp3iTTMgYxLiqlqUXUqfkx/OhG5IOypMaIxIa4TshGPzkzGRf0xCxA+G9pEQmSww1ZDzkn0DpSvC4oIx/d073E6K2yKRScBG+eOnNQfodf/grolUVLB672ksXLkX5wbGQ9QnBrKLJVAcz4e4hr8uSMZDBzccQ/eRneqfI5Pu/qG+0FbxNzh9+uC3GHbHIKh2nUHs+XwoA9QYfl1vTBzbDcq6pAsbSMOUtk8CtIEqu3GgobMXHfep155AeJAPRt89FMk9E+k2EQEIESRGJoXTpjM+irJK8MaUD/DWyln0vUVZxfhk5lw6/nA2Kf7+PV+g6/AO8A1y3rwgICBweSANM8OnDnR4ntRWyvIrXB6rnhz4CiKTwtBrXDdan+Ez9OAkYlQbzdBqDfDyVsBnxyUYukbCkGQ1o2DVLDgV/4Fa19kbrIIBo+f5HBFgaRsJS2woIKs9jxlMEF8qhCgjH4gLd3yTRgfmtDXZqPBSMb547Hs89In9mKRDUjhM649BUWy9rufkUrAhfoCYgahSA0glMHdNpI9tYcWAllyoN0ru42RiGGmpiIXE4Px7y2QSmJ2lHriAuJHf9MwkerNl4Wu/YOH7f0I/vaHW5RSRCKxMBLG50fY0+l0NWgNmdnkGb616kTaEfvP0Qpy1SeEhLruxqZHQVOlwcvcZ2qRFYEwsFcXznY9FZutn6ar1WP75ajzw4TRcTf7JYxIBgf/CPAmp97tq2ueDiPBO7bExK2zEiq/X4canJtD0ueLaMcnlhBgMNkU8HZ4Qigc+uIs24XqKXCmD2WjGbx/+Tfdt38k96L+kaf/X9/9q0viGQJIjjm0/hQ4DUhs+w0tOhQqk4ZOPD+75EsNuH0h/u6CoAKh8VRhxx0CMf2AkTWxwNiZxl8QQkRiGkXcORmqftug6rEP9c2ROyd1vSFIcXp38Lm0MJgLAnLN5+Orx+U4/k8zXvHPnZ+iSk0a3W0BA4MqhVCloukJjSPpM3fWks2MVMUsg9Yle47rW1yv4IMdjXY2OnmPq/LP/aeScycO8F36ic+Z1kO9GEvaacj5pDcixvCnJn37BvlTQRm62zHt+EX55/69WS8Ig9bEHujyLOatfpGL7b5/9EecPNaTwpPRMRHRyBB2TkNTVKg/6IhqjqdDi76/WUtHN1eSfPiZhGIamXb/00kv0cXl5OaZNm4Y//vgDEoljbZnMp9x///3Yu7dBUPj4448jKMgzM5V/vcChTbAaaZE+OJ7relIxwk+J/604iZQwH9zQLQq+HogiCMsPu7+4/PNQLhU4hPs2LebmctI7IQABXjLc3CMag5JDsPuC5xfwRAzx2JLD9Y9f++sE3cenC5qvXsoqaxSxlrUHyPcgDrsqB9hqr2DD9neBw4uAaSuAQJvIIjIJ+d0IQOPGrcM73Pr+s0FARZZVQCFTAUNeAn6eQkYibjaKAza9ZRU4HP4JMPNMPpCG6QMLgOGvuv+uAgICl5/cfW4W4ABtCZC1oyE1ho9TfwCnlwOqEMDkmSO3RFUDU7U1Tu1KoTtSDNPQaIikYmj2FcBcoqMXmJby5iUbNRd3LoIEeaK9eI01WKA9VAjd8VJwJpaKJPRnmlas8QS22ojiecfAkUK7yf48YMrXwFSggbpvBPzGxaN0yRmYspt+TtSfuvzFNAEBgatHm05xiEmNRNYp1+OH0NggfP7wd2jTJZ4Wc1Q+niXpbPx5u/tlFm2nAocQDxyDRDrnQi1W7b4hipOI6OmSHtIlgKF7PMQFFWAar1MEdBqcBr8gb+rEQVzm9tW6K3FiEapHp8ISat/cYg73RU2oN1SbzkKRV4k5t31c/9rnj3yHyLbhTpv/mWr3wjPSbJR/wV5cfXDDUWSc4BcTEC5EeuPkrmN2z33z9x4s33kC3z49BRFBvnbNOw/3fJ63oEKKVb4hPlg7fxMVXRRmFGPktMG08WDaG7fg9Rved1uoI41DC15ZQgUOa77bBJPRdQM0Kd6vnrcRd7ziIr5bQEDgirK/bB3v60qpDjXmDHx3rhTdQr0R5OX62tdglmD6jnWQMJvQMcgH1UR8DQWqRTIoxGaaoGBmxTCQ7htGBLnUDINJCp1RCqXU/riRrQ+A1iJDiLyaCiQIJLWh0qxEmLzKIVmBCB1IUoMMZtSwzuthZBm5yAwDJ8WOkm0YGz4OKrERl6r+RI0pG1UmCRRiDVg2EAajCJzFfTGXb5Rm4sRUzGEvHGjAaGFQwXpDIXU9dhNBhCRv64RqHTqLDntKt+NwxQGYWTNYzhu/XCiCwSKBziKB0s7i1ZEa1rYGydF9WScUsaXSVIpFGbMQLc2ChbMfq1WZTsGHOYsRETPQ2f9xfHh2HjI02bWCEBFNsFCZDfCVEOGEBRaOockONWYFTXqoY3vRqasucBAQELh8tGsbjohQX+TxOCOHSxh8PONr2qQ4bOpAjx01PRmTbPppO3VwI2JegrhcA+XmEzB2iIElzNeqgLOwkOSWQXYky2EMQZpXOQ9EGsYO0fVNlCKNAfL0C5A4mRQn192dh6XBN8Ab42eOpK5yjVMHXGEOVEM7JBmzvmuIX3/vx42IjAjAhYLa+o5UDE4qhiEtAsbEYHivPglJKX998P/snQWYE1cbhc/MxJN1VxZY3N1dClXqhRql7kbtr7u7UaFUaGmh0NIWKO5Q3BfdXdbd48nM/M+9WUk2uoa08z5PIJtMZibJ7szc737nnIIM1zHJjmV7kXfSX4oskJ9ehB9eWNjwQEYxvt2dgVXfrMU761+s/8wJNqsNt1/zDiriPCdckM/YPKoTgooMdExCxmnFWSV0jKpQKTDzpWvx6vSGsZg3yET4d8//QgUOy75c43Ni3Gq2YeW89W7NuRISEmeH5V+t8fk8qW2Q+ha5EXMIT3/folYFe6cEiDFheO7j1VDMWYfkEDVMFh5B609BszsH1pRwWNspYB7sZz6EZSAqWaLI9bqIvW9HCAkNxzqKUg6+ayLY7GLI9hyDmBBF9wt2AUxROZiiMpekoKWf/k2PQ6SRf8XcdSjILAJv42niTB0MEU3kuDZ4yralQegQCyE6jO4rU6GHjYobvKd32jQMuFqBg0gux+uGOoIIpY2H0efHwWBAj4bEHkKN3oy/1xzG1n9OwW7nobbZse/r1QCpB5E5DZnv+SymsQ+H0QzUuO8FaSJ6bPwLqKkwUCdcZ4jYgTQXkaam2968AS9d9Q6t08myy2BP8d20QpapY/ufu8+6wEFCQqLt6DmqK3XgL83z7vAblRSJd2/7HN2GdMK4GSNp82sgrPMzJiE1c2IGdf3TV9IG/HMB4pDdbzwR+gbhsvumoMfwrjAbA5+fJ7X9V657v/7nj+/7GrEdYpCdltvsfcpPL3QROGxZssOvuIGQe6KAXv/XUZpbjq+f/JFe57+z/gWExzYky1pMFtwz4HEX06vGEBElGY/+/c1a7Fq5D0Wni+kYVaGU03mSt2/51O8+kWuW719ciHfHvoi/vljtUXBdh9lgwervN2Ha/VP9rldCQqLtWeZnTEKOf1lpufRGDCiI2MsXz132JhWFEZGU1RS4mPhMQ8RpVz50EarL9XR+tyi7hNZMiKjjTKIOUrpd7zcWQBDxmDPV5TVY+c16OrdNUpWIQM6XQWNzyT9ViEfHPU+T3xobCh7beQon92bi+mevwq2vz8ALl7+NnOO+k9A9QcYkZ1vgcD4we/ZszJ8/H8eOHaM///nnnxg5ciTeeOMNjB49moogiLBh06ZNVAixdWtDgmufPn3wwgsvtMl+nZcCB8LDEzvj9u93U4cAT+RWmLBwt+Mi751Vx/HeNX0xpWes3/VWBJCWUG5wFOJrmuC20Nb8k+EYMCw/XIheCSH46qYBaB+pRWap/wZcvtGHSBIYWiJuIERoGzmb7v2hRetDTT6w5Hbg9nUNj51cBRS6Nh55pKBWvEHEDfl7gb3fAzf/CXSaCFz9HfD3k0C1H2FL2Ulg/WtAeYNKzCvFrRPDIyEh0QqYmtBg7lfsVLccD+h9u5o5w8r8nysYFdfq6QoVv5+C9XT1WbWVEY12v+IGRbwO9koLbAV6mj5RtTwTgp/Xtdr+mXxsRwT0W/Nh2FmI0OtIMhKL6nXZsOUGrqSm4gkJCYl/NTe/eC1evuY9n00p5IZ56zHv6QX434KHMOTC/n7XW13m/1hT11BvIK6hpDnehwW2PMNzsZox2wJqKHJ1gAOsPROh2pXh+pwIHFh/mN7duGg7jY98fvFjNO44W8O5iRvqYVkYh7WHfOFeF88C0sDvLdlAdaIExiHJbm56ziiPFiHkZtdtrvjGaSzhBUuHSFi6eR43FpbX4IVvV+HL2Q3CgS2/7fQpciEQ8cKpvZn1E8fHdpykRfy31jxP4zWf+vFBzHn0W69uinVkHMjCz2/8hoyDDjdCX2Qezva7jISExJmh3Oq/iTEmqBp6Xonj5SEIV1eBZTxfR56qjIAIBjaBR7o+j/T3UASRhdHunjCjUtiowKFUr0W41t2socymozfeToQEOmiV5VCzFjdxg8s6OTvMIg+76Nl5T8XaIAoMLOCwoeAtsMJGF1+Z21OBtMo4LMweiEqLf+Gf1ct2HDC0qZ/sb2ORg4XncLwyGixEDHCYyXqka3B/RCnjUWIpQ44xF3p7JVYUfA+7UO0QjIgszIIcA2NZnCiPwuqyDrg0+oTXPSq0aZBrazj/KFm7R3FDHUGMu7ihDpbhkV71LdYWb8RNKffDaGfwW95fyDaRYzwDA6+it8YQIUYd5HflbCOIDL21dB1tASm4N6Xo/u233+KWW26p/9mfQFFCoq0hDf2zrh2GVz762/MCNjsK1h5AEWmSnLcec//3E55b9Cj6T/SQgtqImgAc0chEJ8FU03CO4SqMUG86BkElh6iUUVEDY/V8LCKHRzom8ZBI4ILYuFm/K9RrD4OrdJ0MJn+T+9Y45gs2LNxGm3ie+eVhhMeGorzQ+7U2EX4bJnVrcAivxUKSXerEDY13SSWHYUwqQpb4NnUizqjOkHFASyDjy/du/xyvr3C4qRE2/LINp/3M9NmignB8ezq4ShMdk6RtP4GV367HGyufxdhrR8BmsePLx753afr1BBnLLP5gGdIPZvndV2lMIiFx7kAaRjzBByth6hELe4SGHqtV6WUQM8ocJSanY6+gU8E+pBtNN6jDauNxqlQPDO0G+T9HwdVYoD5UAMVpDpXTgwC595oNV24DW+1emyfuq6QxUgjTuYsbnBCSoyHklYE76rs+Qkyf3rzxYxzclNak6za22gh2f0Pdi7zSessQ39viGJDLcDosca7RcQwqiGDER+1uzOBOiIsOoQIMUgsrMVjw2dLdqCENSCS5iBfB2kQwo3qCO5QJ1akymLtGed9/q2N5l8cy8r16hfo8R/ICfnp1MU1heGbhIzBWGfHDy7/iSJmepix5giuschEiknPM2eZcHpNISJzvcByHG567Gh/c+YXXZbKP5tIbSYEjTtYvLHkMvUd397vuQFya6+dJ/CSknSnIuYcYLdUlKBEjqCd/uB9B4bqA3LpJA78zpAm2JeIGT2OSFXNbNiYhjaUkce6FJY/XP7bmh00odhK3eTun1LlykzHJka3HsfqHjXht+dOYfPNY2tQ696kf/X7vBzem4c/PVyHzkP85kMxD/sctEhISZ4bGpnS+8CduqMNisgZ0LGgKRDRB1ttakGPfq9e9jwMbz24vaTUZu/lg3PQRiIgLQ96pAjrvXZxfgS8/+RsGrdoh+q40gtt7uoX5A94hIjqf4rbnf8FvH/yF5xY/horCSvzw0iLkNCEhSRqTBIZSqcSKFSswatQo5OY6rj9IQsO4ceOg1WoRERGB0tJSGI2uNdnu3btj9erV9PVtwTka0uKbvw8X4JnfD3sVNzTGaOXxwIJ9OFrgP0Y+JdJ/PNWOzHLkVxrx6KLWVyW1BofyqnDrd7sxY1DSWdm+SsZiai9HNOixwmo8ufggRu0ZiVGWD/CU7TZkCDHNW3HeHuDgImDzu8Cy2cDqhiJ+kyg6DKyovdjufilwB5lsD4CNbwJH//C/nMK/i66EhMQZQtaMpB1568YUCtYATuBt0BNhzTy74gZ/yGI1CLm4A0p/SEPhWztR9l0aKn49ecbEDYFCUiQqfjhGRRhRs3oCxMk8QBTJXpp5JSQk/hWQ4vSnD84LeHkSz0ucznKO+x9sJ6T6F2bvW3sQJYUVeOPTlWDJodPLRC1TY4L8pOeikeKUH5cessrGq2UY2BK8O9bVQaKjyfudeusEWDtH+96MVglbov911sGabdD+470wrTxejFC9DSOmDaI/k6L5O7M+w9bfGiISvWHp7vuz33MiF+vWHMBPry3BR/d+jXlP/4TmQNwmvnj0O3p/3HUj8NG21wJ6HWlK++evPX6X0+gCc+aVkJBoe1Ss/xoBy4qI0BmgVVuxtygBatb1mGgTWBwri0ZOTfPc6IxWJfIrPV+b2nkWJwpjoFM4RA2RPtIO6iApDd4gPTtEBNFBXQJW2OBxsNM9tACT446g1KRFjZ/xkt7u+3mSVlBpV+N0TSgKjToUGXU4WRWB/aUJVPRBXn+0Iha84H4dH6fqiAtib8A7xz/Gw/ufwgcnPsSy/I/AogIKloecFWhaQ6jMBBVnQ+fwEiytSEWVl30idcq/qlPrf+ZFxuN265AxPHSsbxe/EM4EBjX49vSbEFGBJ7o+AI7xJfoAaqwN4+Ceoa5OsBISEv8uVn+/EXNnfAD5nlNAo8lXptIAxbZjYJ0cNIk73POXv0UbKP2RkOqo7/uCJAGU5JTivTvmeLxm56pMXsUNdcgz/Y1JPIxzZCxsXeP97t+hzUfx2owPaXpa/eo4FvaYYNhjQ2gaA8HSPc5N3ECX9TN7xodrYYvxnJpAIE1MQy5yCNyP707Hmzd/jB3LHSl3LWHPqoNYv+kI5i7bgTe/+hvffL4CfJj/embjZciYjTQQEUiaw7sbXgxo+3Me+Rb71vo3nlJLYxIJiXMGXZj7mMTUIwblM/rD1C8BtuQwWFMjUX1BF1Re1RuCUoYQp2ZIvkuSi7jBBZUCfGrDMZmr4aHdXuV7f9aU1SfzOFOXHMEn+k4HoMsM6AK+RweIMt/Xxgc2HmmWKJWcI+wdYmDtkwJbr2TAz3YIjMXi3YCEPO6hsaFHxxjcfnF//O+i13Bz6v14evoHeGPhNlTzdpqqSoQTgoKFXcNCUHDge7WH5mARGLOXMZkogjMD5ggZSLAfETuyR7PAFnhvGAoEcg3x1AWv0EbbV/98EtpNx8HlNUofFESa3ECEjs50G9a5RduWkJA4t1n+9Vp8+8yCgJcnTf7PXvIGSvP8mxQmdPI/Jtm5fC8KTxfj43u/xrkIuW5+59bPMeH6UWdl+0TsPWByH3r/6I6TeOPGj7BvrcOoqiVs/3MPti7diR9fWYwP7/6K/t8cDm06iu+ec6REXHjbBLyxKrAesI/u/QqHt7qebzyhDjDBUEJCou3RBVC3aAxJwznTtIWhzdkWN/ij1+huNPnuiQtexi1dHsSz0z/Aewt3QJ8SCzEqBGJEMISOcbCN7QU+3rsQva0hqXOPT3iRJgK9tPSJJr22uzQmCZiUlBTs2bMHF110kcvjBoMB2dnZLuIGar4zaxY2b96MqCjvIvz/XILDxhMluOfHvQGLG+qw8gLmbc3EW1c5Lt68MSI1AnM2pvtcpqTGglnf7q5Pcgg00eCWEe3xyfqTMNva3tH5SH415NzZcRJ4YGInhKjlWHawAA/9so8mQgCkEBaMBfx4HBWS8Lvy+eatfMltrbOTh5cAE18AQhIBTQQQFAfUBODIbvfuYlhPzytaZRclJCRagcjugKG4aa+J6wdEdAYqMoGsjYEnO3jAWhMEu9G/K6loOfuummccASj7MQ18SQDH1XOAqj/SoWwXDN2IBOg3BuaUoRvuf7JdQkLi/GTbH7vw+vUfNrnIQSYBf/94Be7/xPc1bd9xPelyvijJLcf/7vkKeoalbgmsDRBkYoNFtSiCGIDLCmvA1Lr+kGL25Q9eRF0OSEKCMq0Atg6REII8CAKJsZxAjeLcn9IqIBK3Bj+DMuIKSrYjdPbfkCs0JUmCvF+DDVy5CXyYun4nGYMVmgN5UB0swM3vz6QNNWvmb6LRxnWT5P6wR/gvsL1wzxdQ+hOHBMDqHzZh1uszEBYdioj4MFqoqyqtCej3yB9jrh3e4v2TkJBoHdpphqCiaqnX54l4ocLqmGxTyASaxhDDXYUp7SNxovoEPk7bjnxDMPhGXZZWnoNS7nscQdIbQpRGxOpqwDAiSqvUYDlAo7TRftFKgwal1ToIAgORcRQlOdb/2MRbwoQz8QrfqTQDwrOwrrArdhclY3h8BpSc+3arbCpYBBlYCBDowd5bnYuBwa5AmVkHG+3icaXYHISSAg0iZCaEqkywCyxyq8MQo+qAHNPnKLI4xozRyhrIPHRakV4kLWul34EoBx7NmIT7E3aij7ZhrJljCcL80h7I5YMQqjBRgQRZ3tepUgbeVwBT/bZljABe5PBr7ld4tEsnjIkci3Ulnt32aqwKmPkGJ/Srk4fhbEO+uxa7pbaZN5SExPnLxoXb8NbMT+h9cuRj88ogRAYDCjkYgxlspWfBmtlgwR+frsSd79zkc/29xnTHsq/W+FymMLMEz1/xNl1noJDr3isevIgKd8k1uiItH7bkCM/JcrVjGk9HAHtiOJXQ+Ts6HNhwBDUVeof7dq9EWDvHAcraaTE7D3lmKWztwjy/OIBDDx+mgbzI8zX8rFdnQKFS0KavD+/6AkJTJ7U8IKhk0I/vgtk/rGp4sEcMiekG6+WzqqNuXOjMiq/X4pZXroMuVIfY9tHQhmhoE6s/rAG4GY6VxiQSEucMAy/og5Xz1tf/bIsNgn50B4/N+PYoHWomdMLMQb3QaUAHHNqZjvm7fCclCHHhENOywQiOcULYd/mwpqhhS3avN6kO1iDkd881lXqn1LqoOl+Q4VF0GAS1Auye42BasRHJnhAOW78OLqIGkqJAxAZeEUWIahU9b3lFb4I8uwxCiAaMjYcspwyq7DI8s2AbirIcn4llVFcq5HODYcArSa2OBRsSgrDFh1F1SXfwwQ1JfoxdhMwEaoQiyBgYo2VgLIDcqIWqogpsE/oavEFqbHPTPsCU6SOpEzsfrAIfHULfv6yQbMP9mmDafVNxtpHGJBISbSe4ft+D2DkQM6i/5qzGzJev87lcjxFdaTKAL3JPFNCUbRtJvQmQqKQIXP7Ahfjq8flnJJlx14p9KOqeiLPBra9fD5lchqWf/o1PH/im1d4vGcu9cPnbrbKuPz7/Gze9eDXUWjUV2qs0SpiN/seY0phEQuL8ov+k3tj4y7Ymvebq2ZchuVsCDm48gl/f+wtngkDmYP9tkCb1/019FaV55bR+Zh/YiUwiuS/IsuD7tAdbbQDjZKhyJiHnsTdu+BDfnfwY46ePxLoFWwJ6f5fdOwVnm/NpTBIdHY2//voLO3fuxPz587Fp0ybk5OSgpqaGpjgkJiZi0qRJuO6669C7t/+k4P+cwOHZJiQ3NGbTiVK/y3y3zXeRpo5jhf4bT+p4cmoXzBrRAQoZC73FhjkbG2It25KDub4dMlqbYJUMj03pihuHtkOp3oKHF+6vFTe4ki4mwCQqoGZaL9KnyYg88PMMYMobQOkJIHFQYOkM/iBCiXiHK5OEhMQZxmoAcv8BCvcBVqNDvBTcDLfKyiyg7CRgCDwirTEip0bZ/r4wF3mZIG1Mo8jnswGjYCFa216AV4e92P9k6bmGfmsezKd8N2rVETQ+CeruZ0+9LOGdI0eOYMCAAbBYLBgzZgw2bCDOwhISTeOT++c2uxC8e9UBv8v88dnfAa3rJInzrHVWJf2YnI2cTogyoVagQJ7QOiaT735/Ji695wJazC7PL8dvH68Aa7FDt+IITINTqFsfKUy4iBu8vUUyAc6xpIrtfx/3ZIBN0oFX+56cZo2Bjw2Mg9vB3DvB8Tre6RQqlyNEo8Z9X91FkyNKcsvw7q2fBSxuIDB2od7J1fsyrSNMJJGaZBJg1mszkHeiAN2Hd8H2P3a3eL3RyZHo1L99q+yjhIRE06ixVWFz6SrsKd8KI69HtDIe4WxXmG0cIlUG6thPIE34JkFB0wcKTMEIUVjoc6Q4aebkKLQdxA9ZJSgwFyApDAjVGJBXE4pyU4MIy2SVQ6u01uvaGhMqV6N7QhF0SlenziqTCtuz28NgVVDRQ10rJAOGnkOsAjlem3y+z8ZiC2eE2jXpON8TkUTQkKipQLo+GhtyOiEluBydQk2wwwi7yFLBgpqzIVldTkUHpBZo4JWotKlhE13LmeSUHKEmBXUzzHYO5SaN+zLgcLomHJayhgYgTn4KWovDdVTB2KH0Ie6gyRSsDVq5FccN0XgxdxTiFTWIkRtQwyuRbglFO20FYtQNUc9EmMAQZbcXbCJH35e375B+niJDl3O8BwGbSlZgWX4OzIIKWpkVCs6xfrvgEHkYbfLab5LBHamTMCSyk/eVS0hInNd8+uA3Lj/T8UCJ/wRrwu5V+3EnfAsc/prj1EDvA5KWFigPfn4Hpt46HpyMQ05WMX7bsB+CRg4uIx9iWAj4+DA3wbbXMQkZj5BlA5gsyjiQBcug9rB1apTWJuNg6xQDkW1+Uc5TQkVodDDuePsmTLpxDPLTC/Hh3V+2iriBrKFmcjfwUR4cDDkWAivSplaPpxWLHbJ89/kiIkh/8cp3cf0zVyL/VCEdk5AGrJYS3zEWKT3PTsK4hMR/nfJyPZYs3Yt169OgN1iQnBSBju1iwAdrILSPhhARBGOcynvSAJlqSQ7FvgMZWPvjZuQUVwPDuvveKMc5knDM1voUh9hnT4Gb0R5lAzUwyHjIiq3QrSuHbkMFFQsQ6L9EdMaLLrUWxhSAcK7uMjtICzE6DExRyxIK6lAkRcDUr6PbRbrMLMKm9f6ZsTaRCs18EqSG/Giey3H6WHHDsZmP0EH05TRNRA5yBmyoDrJTeZCbWXACEV7U1vHIR0hdUOpfAFElh7VbHGztI6FbeQRcpe+xnj9Ije33D5dhyxJHSipXbaY3z7vL4Pa3bkSvUd1atE0JCYlzE0EQ8Pkj3zb79WRM4k/gsNyP4LqOk3sD77+aPe9eTLxhFDiOQ/r+0/RcdybITgvMPK+1CI8Lw13v3kzTo7PScvDZg60nbmhtrCYbXrn2fVz96KV0TNJjeBfsWXOwxeslTdGJnSUzQgmJswFJ6fntoxXUnMNYbURKr2TEN67JBMDedYew7MvVKMhofu9WeFwoDJXGBjH1eYBap4LpDAoIDjolTJC0BjHIh4kvETm0i4HsSJZjebUS0KqpiQiqarzX8VoRu43Hkg+WYfuf/ufUyZjkng9vQZdBDcnbEoEzePBgejvbnFcCh9/25SK7vPkNkbyfC7biGjPWHWui07cf+iSG4K4xjj+SX/fkYv4/jj/wxqRG63Dv2I54dNGBZgs4GtNa6wkUk43HlB6OE9Ivu3JgtXuu5NRAg6X8cFwnO8sNhQUHgHnNdI1QhQJmUnRq9CGTFIivxgE3/wVESgdHCYkzBvl73PMFYHKKxK3OddyaSnVOy/ZFGYKKzJEwF4kBCwtYnRx8eeBud60BF6YEo+QgC1NBOygWpmNlMO5s/sDgvIQ4LnkQ4nnDuL/E78lVFq1G2FWdoUxuiPCWOHew2Wy44YYbqLhBQqK5/DlnFUpy/Mcne8Nfsz1xbAs4IthDMw2dJHU+VNl4OpFIXFIJpBC08tsNLsIC7YYTENRytBveGdc+eTme/26tT90dU2OmTnOBojhZAtMQ78kIjMkKeW5gAjJ7pK5e3FD/+ro7LIOKfgkYft2I+vdKihxNQXG6DJZuPopsVnvA+xoIJOVi9rgXmvXaoHAddaNt/GUVZ5fi3kFP4p31LyCufUzr7KiEhIRfyiwl+Ojki6i0NZwjThtPopQ7hHh1jUt/jIwToGRtyDRGQGA4qDh77TMiVEoTiu0HAbvT37vSiq7KYmRWhKNAH+JYUmRRaVAjVGtya5CPVYVhaKQe+Wb3Jp8QtRmjO5zCnpJEmuZAUEKNUHkkKmwlKLNpEaOo9pksQBMCPDwvNFG93T44GDIuCsnaCFyd0g/by3dhVdEuRCoNSFRXOn0ujv6iIJkFGs6KAnMIrLUCBlLqcxZcqGQ8YnV6FBiCYHdKcyDvR6exwmqT0c+OpFAkhVTQ74HssdqPIKNOsEDemVJmpesrsAXRGyFMYUSown3SgQgNyASyp8+TBwejEAId592gpNyupUKYOnaUbYbBHg67KIeFd4gZyK0u4YJsp1tINB7rdg26kdTScwAi0mixM1ELXy8h8W9j0Tt/oKKoqs3GJLkn8nF4y7GA1iUGOAlBnPouvnMSvf/Tpn1YpLbANKGhfs6Y7dBuP41ucVG46rFL8eLXa3w237JVRr+JcnWQxDpbqo/rYi/bIc2itRozz1h5KHLcz7Uk0WLENMfk37IvVjdJcO0LW0KoZ3FDHQxJZBI9TiYrj+SB8bIf+9cfprfmEBwZhGoPKXRE2HHf4KfomCQ6KbJZ65aQkGg6uXnleOjRBSgrbxDdHknLwyEOEMb0qD/e8Trfxg5kuZ3Hc6A+WQRGpXBcdPsaIJDkBpvTAAZAQnwU1LvtEOceQuNcT3JpZ+sc5xCZ6RzGHMF2nibUFVRUU9EWp2Mg15NrXQ+IRNDVcLATY8KBZgoc4jrGQKlRIKlzPC68fRL+OJiNdduOuy0nM4rg5SIEhfseEcGGokZwiO98YXf12xTlLEw9Y2HuGg1BpwBjFcCJoCkM3hqDaIqEKEJQyalQj4oqag/v9CVeviYidDAO74ig5e7HewURQTTBqXb53HV+ndI79e+AR766C6n9zg0DDmlMIiHR+sx/6VfUOJ1vmoq/a+T0A6epeVJrjkmGXToQF9w8lt5f9O6f2PLbTq/HsGkPTMXbMz/F+YrFaKHvl0DSMlpDcN2W7Fy+j96aQ0hUMKo8iP2zj+bh/qFP4d0NLyI8NkBTSgkJiRZDRFWzx7+ISich76FNR+mtqewNwDTQF4ld4sFyLMoLApvXDY4IgkzOobyw9eaBAyG+YwwUGiXadUvARXdMwm8fLW8VQ7zmIIT7qDvVIobpIJJxYqdkINRpeasNYnYhmAL/BvSNUaoVTRKhkH4Nf2OYbkM74aE5d6JD73Y4F5DGJM3Hz0j73OLbrYGlK3hjaAffTspFVZYmiQL8Ta0lhavx9c2D6P21R4vw2K8HoLd4brB5YEInXN4/EZf0aT0FaYS2wZXuTEDSGhbtcTQGp+X7dot63T4DecJ57GytIA1aXn5ZiMjhtzvP9B5JSPy3ObbUVdxwpghPBbpcAkT3BKJ7Ad2uhDX5DhjTAj+ZkNSEMy1uIPAVFrpdeZwWqm7hsJw4sxfpZxtWI0PEDd3BhbvHZHslgIsEVi2XxA3nMC+88AL2799/tndD4jwn0HQFb/QhE8o+KMkpDdhJh8vzL7RI0Srx/OLZ9P6mX7fjg7u+pBHQbusy2zHrnqm4YEIfjB3oW6irOFGIQAmK0EF5vAhcqZfJDlGEemdWwM1Jlq6+G/YtNh7LtqfVT4I0FdWhfCpi8Ib6UD5NeTgX0ASrvQ5JiMjhnVmfneldkpD4T/Nzzpcu4gYCx/CIkruKG+ogj7XTVIB1cfgXwfqwuGkXWg45sWauxcbL0FvXH/d1uhSjo3piXHQf/K/7tXip1yXIN6d7XY9GbkOczlG3UbB2hGuKUGgup31LFkGOQqt3sW6pVYsSexBMvJwuT/aW3EirjlhbZiRtSHreQ4SxE3aRQZ6tAlYuHwNjwjAqJhW7KkgjEUOTEpzFDc5wjIhIhZ5u25F+INKkBzVnhYqz0iQMIl4I8SA2oCkMSjs4RkD/xGzoaHKGQJcPpH2evEOjXQ4ZK9LtOxOhNHh9FQ/WbXmCThaKCfGvQiOL9vhKiyBDgS3U5TGbaEekykjfQ91n7RBANLyDCJX6nBE3SEhItA3LvlrdpmMSci3ZmhAn/2d/eYTeX7b7KN5cvAEmq+skpKiSwTCuA2a+fyOmTOyLYX1SfK5Tfipwkw5l33Y+G3NrD6nuj5OpHB9jM/XBPDA2waPAYd1PW+j9U/sDT7jwh61d4xZhD/CN5p9sPJT7c6A6nI+2QBfqXchOHBY/uPOLNtmuhISEZ956d4WLuKFOTECb8n0JFDxRe/xjzFYwZb7nfMeO6oo737gBI68YgrHXDseTPzyAez6YSRN03FZLjpPDOsHar129uMGuAPKSZMhIUMHUMxqmbpHQJ3KoTuHgpFl2SUtwGTbJ/Ag2fFCQXoTSnHJ0HpiKgZP7YIeX4zb59JRVAuR6AazZ7kga4kXIDQLUZTxNVfV1zqC76WSYIig4VF7eE4bhKeDDNRAVMipysAWxMIcRwZr39bDFlWBJ7apxLc3PV0xEcvZwVzfWiPgwWjcMj3Udd/jCn7ihbr3nirhBQkKibfh73roWvb73GR6TpPZvjye+v5/eX/71Wnz52PdUBNAY0gh7+1s3YPJNY9F7rO99bArqoCbMR7cChiojNi3a3upjknORoDDvY5LcEwX46J6vzuj+SEj813nz5k9cxA1niok3jsatr19PxyTjpo/A0wsewqxXpjcpQae6rOaMixsI+elFKMsrR7chndFvfC/s/tu1n0UkSW7RIbAnRkDwUYdpDZhA0356d3IVNxAUciA1CWJ804wuopMj8dyvjyI0KnAT2UAE2pGJEeeMuEHiP5LgUG224UBu8w+AZOL4lhHei+I2XsDenKY1x47rGoV1x0q8Pv/SpT0QFeSY0P143SmfdY1P1p3EpX3i8dKlPXGiSI+jBe7FohEdIzCkQwRNmTBa7EgvNYD30ggUE6xEv6RQ/H3kzLpxny51TOiq5L6LSVXQYU6HT/By6gngwM8OUUBwPKAvBowtHKxEdAJ6XQ1sfIPItdEmEDcSX+TtBvL3A/F922b7EhISDZgrgdLAXOVaFZkK6HwRoIsFkobXP2xa2TIx3plEtPKoWZcDkbgdndvGDS1G3TfKUfAXAWWHEGj6R4NVyqBI1KHy70yY9rRSgtM57oDxX+aff/7Bm2++ebZ3Q+I8p6KoEqcPNz/phxTHifOPN2xWG47uPBnw+jiDBYM6x2HXiQLP26sy4uFnr0RIpKMg8OOri72ui4gqfnp1MUZePgRPzJyI0wUVyPQgoBjWIxn9OiZi1/K9sBityD6W59VtKTYlisYA71yxH7q/02Aa2A7W1Mj6iWdGb4FmVxYUmYEnYvAh/icCcoodxSeVxndzLWH4ZYPQZVBHrJm/GZVFlYhKikDBrlwU9IqFEOy0LTsP1eECqPYFVghL7p6IcdcOx/cvLgrYQaqp+CvekEhR4pTSrntSm2xfQkKigWJzAU7UuDthBnNmn31EpLk+XG5AaW0KgC9xg+N5IFqrR16No/kkVKHG7B6T0CEoEtckj6pf7o/87/1+PeFKI0pMOkSqjXS7RJxAejTlLI8CSygVOkQrqqGhnTqAiZehzKZDFe9oiKmyq2HjWGhl7sciOWNHhV0LnY9UhCJrCBK1lThWpcTcjFWwCwKE2hpOlNK3AyARPziECa7JCOSuguPBCQJEOVBmJvvq+gVolBb0jc2BTu5IYaiDONn5NaYFg2qb0mNKhTdBhrPIYVDoaNhF8pmISNX1Rr+w0VCwKsSp52JP6ec4XfM3FS7wIoMyuw6FthDYa5Mq6rDwMvq+dTILqmxqj1vzViuUkJD4d0AS3/JOBi44bgxxorvsvilen7earTi642STxjg9R3TBQW9OfAzw8Jd31TfCf7lyh9d1kaPXV6t2YmT39vjfXVNw78sLkV3gPmczqm8KuqXGY8+qA1RMQMYk3q65EzvHQTe0E8p9iMPJ6ZeMTQSd6/iBHO25aiuJgwQfqWt43GKH6mAe1AfyXPefaVhf3knHGE0ZwJhkzDXDkNIjGWt/3ESdR6OSo1CSXYKaClfxnOjPGZx8v4XVUB/OBx+iQfsu8ZgwpAt+WODZmbY1MFa7i+ed2b3yAE1ziO/oIyVPQkKiVcjILMGhw+41C0HmLm7gzCLsWl8XviIUOQ2NPdzxXNhDdR6FBKEhGtw5ayzi48gY5ZL6x701E/IJYeCTGwzwBBYwRTKOwU7jZVUMauIZhOTUHuN5kYob2EapzIzBXdzcFPSVBsx96kd6LvHlcE32UG4SoTBawSjdTQZJqoQg9/K52uyQH28QmxmGJsMe1XBucUaUM7DpAEWN6HEbbG4pTVaV5VbAnhyA+M2JiQ9eCP5QLhiGoYKOcdNH0vrZx/+8hi8fn4+NC7ehNRD8zaNLSEic1+Qcz2tRyrVcKcel91zg9XmLyYLjO081aYxDUhe8jWPIafCRL++CNlhDj08LXvM+T0LmOha8/httMH3iu/vw6NjnUZjpPoc86sohSOwcj92rDtB5khwyJvHSEEaaK8mxNu2fEziTNGVMMuH6kYjvGIe1P22myRwx7aKoYJkIJVpChz7taLrdDy8uQltRXea7jrj9zz0oyS1DVOJ5bMArIXGecGznyYDTd1oTIq695ZXpbgmS55MRHDn2znn0O3rfeUxiT46EjczzqhvGH0ylAYp9GWArW3aM9gRD5ti7+DZPInUxqFyF0y4kx0EsLPNqbjjl1vEwVBpoTXHQlH4Yd90IKFQKfLSdjEl+wJYl3muHTUOaJ/m3cN4IHGwBumSq5CzMjVxzyAXrK9N6on+y59ipKpMNN32zEwecijWBcCDHt+DivTUnMa5rDIqrzdjvZ91E1JBRokeHKB0W3z0MC3flYPHePJTpLUgM0+DaQUm4rG88ZBxL0x4I648X4575e2Gy8W7JDXNvHkRFEmda4KAnBzEAF/aKxeK9vpt/xg8bCHS5EBj5kOOB1c8DWz9o2Q5ctwDoeqHjvqkS2NEGJytWBljcY5fdKDwkCRwkJM4E+qIzfGHCABGdgU5THOKGRojniKtzU9BvzYOqazj4qjOfJHGmUHcJh7JzGMzHyiHaeNgKjVC2CwYXpEDE1V1gGRyHkq8OEivZlm1Idl6FY/1nMBqNuOmmm8A3djKUkGgigTiUeYtRJIP02XPvQWrf9l5dIZ6Y/DJO7QvcTYcUzLPmrgUXFwY+JbpholkUwRZUQLEvEz88/wv6bXiJFqM9Oec5c3JvJoqzSxCdHIW5z03HHxsPYcXWo6isMSEhJgTTxvTCxKFdwLEsbn7+GvqabUt34dXp77s12xPnt5eWPoHDW49TgQNxtSOurOC4+tO2qFXCMKIjdRVV5AY2FmOIS54fjLVxxCOvGIoNv/iemL38gQvRd1xPzPjflfTnzx6ah4yPliPkaD5siaHgQ9VgrTzkWeVga8c6/nhj1bMYMLE3vV+aV4FlX7bMYdcTcoUMNWX+xyTpB7IkgYOExBmgwOxZ/KZk/Z83tJylXuAQyLhGKSMJBAzGxHbC7J4TqbihMXbB//GKhQit3OoiqiBJABaBoY8VWYLojSRMkOYXu8jRBAPSgE/kECQ5wCawND3BuReJAw85I0AvqFFkC0a0rNpNNFBq0+G0JYq+LlJlQJ4xFD9nb8TgiA74p+wIlJz/azaS2GAlKgYPcKwIuUjejUhFCXWoZFaEqwwIUljdvicla6eNqd7avMinRN4H2WfST0U/NSdBBC+w4HzuN4NuwYPQUdcV6frdsAkWlJizkKDpQhMcRsU+j3jttfgy4yXwIN+fhwYvkaHJGfT9y2xeBQ6A/4nrM8m/KXp55syZ9CYhcT6MSRRqBayNxyQylrpqexPAEkH345NeapKomzQAZR7K9r6ACHz/wkK88fczSC8sw+li3yZT+zPzUVZjRGSYDnNfuR5L1x3Eyi1HUa03IzE2DNMm9ML4IV3AsgxueXk6fQ1pxnzzpo9ha5TEFpkQjhd/fwJbMwux68eNPrcrz60El1cOa5dY8KEa2jgqP10KxYkiOg6wR2ipwzZ9PLfSJdVN3zsC1SPiYUkOoicJ9YkKlEc4jtejrhyK7X/s9rntKx66GN2HdsYNz15FfyapBxke0uhkpXpYO3tO/alfpqSGihw+XjQbPUd0o48VHMvDmh82obVRqORUkOFvzJpxMEsSOEhInCGBg8e/Qw/laoVegF3jPdVBeaoUnL7hHMLWGCHbcRR85ySIxESDYcCxDIYPTcVd9eKGwM5Xto6uxzGbzrO4oQ5ey4EXzFCYGK/X6ky+dzPCpvDzG7+h58MXY9dBX+c1EiPneQ6ApcMBwU1UwlSboNyVDlbvEGKIMhaWLr6P53YVIK9pNCog9T6n6SfVgWzoY4MBReDtHmMvHYTud1yAHcv30e+INOSSpmBSC3zm54dx4e0T8L+pr4G3u45tBI0Clm6xsCWF0fdPklqVRwsgK9F7bV4+l/g3jUlOnjyJfv36wWBwCCEDTQKWkGhNAnFN9jYm4eQcddX2JoAtzSvD45NepsenQLHbeGQd9d6bRP5MfnhpEV76/Qk6/1J42vd5Y/+6wzBUG2mj7Ge738SyL1Zj3YItVBCX1DUBF98xiTqEk3rZrFdn0Nes/mEj3r31c7fjJxEKEFfqjQu3n3GBQ50YefSVQ6k43BdXz74MHfuk4KYXHPM+b838pElzVZ74dNcb6DygI72fdSSXJoy3NkqNgs6t+Ruznj6cLQkcJCTOAC0xCWwOROA2fNpg3P7mDW7ihjpjwfMNYlbYY3hnaiRiT4qArfY46owYqoVlRDcoNx6pH2O0Fmy1EUxJFcSoEM8L2OxgWT/X+nIZEBYMlDn6qunVqk7tGPcZzBg/fSSSuyVi14p99Joi53g+PQfFdYjB87/Oxs4Ve/HspW96NVgMFDlJlDiH+DeNSc40543AIVyrQFK4Gjnlvh1hGosb6i5Y92RVYsYQ99gRo9WO+xfsa7K4gVBmcL0Yb8yh3CpklhroxHMg1O27RiHDzBHt6c31eR4HcitoTaRHfDDGdYnGhsfG4qcd2diRWQYZy2JM5yhcPTARoRqFr3pQm7H8UCF+2H4a1w9phz5JoV4/137JoRjbOarhAYEH9v3Qso2HdwC6ODnijn/asU5rAGKEQCEH6cvnAKueAWy+lcBQtG0skISERC2yM9i8EdcPSJ0KKBtFbTmhSPL+XFvAKDmIlhY2bfMiZBEqT0ak/xrKfz0ONPqY5PFahF/XFfJoDRU7xD09FMWf7gdf6vtawyf/zevJc57Zs2fTwj9hxIgR2Lp169neJYnzlIj4cOoCUZbf0JTD6xSwdIqk0fJcpRnq9DI3cQOBDMKPbDuOSTeNcXvOpDfhpWvebVbBuKa0BorSGogkSSEqmMZUshUGsLXxyoc2HUVxTqnHffJE3XJatQLTpwygN2fMRguO7T8NhmXQqX97moAw7/hHtMhP3h8nYzHkogGYfPNY6tJqrC2sGIe1h62dB4ccOQfDhK4Q1x2HGBsGPo4UTBhwxdWQnygAV+7qWqpML4GtvQ+nHVHElheWYIUuiO5Dx74pSN/vOV2p1+huVNzgXOha9d2GBhdwIrrwILwgp0p7Qihs7SMhymVgq0208YmrMSOlZ1K9uIFw2xvXY838TR7jrpsLmSR+av4DeP+OOW6uro1Rac+tJlcJiX8rKtZzozkRAfjDuQE/kAvyy5MH4YphlyNS5dntk5Cs6Yhtfoz0auxKKD2mDrgWWYlMgHF6P0ToUIdF5FBkDkE7rR1WwXE8IskKdZTbg1DDqxHKGaFg7LCDpckP+daw+s8mRG5ClUwNEy+gnSYOO8qOwi6wkDl37njE92fLsYLLZytjeShlPMIUrtf6MoaH0tGJRPfJId1whXwjjnW5fldk2bqvq9KmRjTnvU5ERBHfZHyGSAWp6zW8tzh1J0xLmI1wZQI6BnXF8z2+wLsnnkGVzdWd3S4wVNBAkjbq3j3Zd+fvg25HYGCvFUFISEj8O4lJiaKR7ZU+GsvJ/EHjRiKCYBeQtv0ExlzTkERah7HGhBeueLtZk9H+rkn3rj6AypIqWGyBCYattcvpNEpcf/EgenPGYLPiaGkxba7tGR5L30+Xwal0TEJcW2UKGYZePICOvYhLa0lxFTmQ+jSlkKcXgyvTQ57neT5DVmagt8aUT2mHqjEJDQ9wDEzdwjGPKUL3I0cx9Zrh+OXN35GV5rnhauAFfai4oQ6TwUxdUz2hPFUM04BkiEov03p2Hsrjxeg8sGO9uIFw5zs3UeG3vZEApCUQUf8zvzyCV697n44RfaHW+U/hk5CQaDlajXuigLcRBglpU5UJMIezbuICRVYFgjaku62HrTGB3XMCInHdfvgS3PTEZTS9wRtdBnfC3/PWuz0uNKpT2AMoW9jtNVAKOo/CAuZ0AZgaIzTBar+pMv4g58LuoVrs8rEMm18BRimHGOZ5PEaGFsTkgzuVSyb26efGlbrOU/PBSogK9zQM1xUxEDkRTN2chiiCs4o0JajuG+UqTdCtOgLTwBTwsQ0NSM7ft8sIxmTDqyOehY1cIzgt1H1YZzw5/wHEtY9B/wm9sSD3C9wz6AmU1rqz2yN1MEzq5nL+Iamntg6RUO08DVWae7IsMXqRaH3sdjtuuOGGenGDhMTZIqFTHK39k4Z/b5D5A09jEt7G49iOk9TVvzGGKgOem/ZWk8QNdfg7B+z4aw9dv6d9agwRDpGGS20wEBSmw3VPXk5vLturMVEhb116xKQbx6DH8C50THJs1ykqBh5+2WBMvGEU1Do12vXw7YbdFvw5ZyWdAxl//SgsfOeP+kSHxpA5HtJYWgf5nFqa6NNzZNd6cQPh7vdvxtbfd7oJQFoCmft4ZuGjeP6yN/2uV6WVxiQSEmcCdZA3Q57W56pHLqbH5hAiwPZCl0GpWPfTljO2T+ogFUw15hYnOfQY0RUHiMChm2eDEopCBnvnOCj2tkyM5gnZ3lOwD+jkELc7Y7ZCtuckmG4dA1iJY7wjJERBbBcDqGsHfnYe/3tkPmxHMum4qQ5yviKmLESoMnhqf/x4+nPcO+gJlBc2vZ+7DtaLMF3i/OO8ETgQ9etNQ1Pw6nIvUcd+IGkC1w1OwqAUR1SjwWLH2yuPY9GeHBha2hjqgwqjFb0SQhCpU6DUye2iMUEqGdpHem6It/MCPlhzEvN3ZKHS6FCXaRQcfY3FJlDxx+X9EnDTsBSEaBomMQ/n+XbPaSte/DMNk3vE4tuZg/DQL/ux8YSrAnpslyh8cG1f+p3WY64CjM2PsQOnBC7/0tVtRKkDJr0ILHuk+euN7w/oYgC7GUjoDwyYCYQmA7m7gB1zvL9OoQNSJzZ/uxISEoETkgyoQgFz8y9sAqbdaJ/iBoK6RwS4YAV4EmHf1nAMoh/qD3ueHtYCA2rWZTdboGA5WYmg8UmoWXtmVdVnDA+nelu+gaY2xDzQnyY5cGoZomb2QOE7vp31fMFppWYil8/YIMJUAthNgEwNqKMAua/48zZg1apV+Pzzz+n9Cy64ANddd50kcJBoNpyMwyV3XYBvn/uZHm71I1Ng6h3nMhmsH5WC4DWnoDzt7kxKnPyn3jYBXQY6Bv7EBWjukz9i1fcbaIxxSyBOopyT8KJxMSSpSzx0oRrofcRVBkcEIYYkQXjAbrNj3jM/Y/lXa+onLkihRhOkpqKIsJhQTL5pDC65ezK0IQ3jmvR9p6nLm7Wjk7i5MSwD09gukDkZadhTImFPjoByVwbkTi6EJElBVlAFOxVCuKM8XgS2yoSP75tLC/Ov//0MXr/+Q+xbe6jhs2IYDL1kAB7/9j6X1xL3UX+Ry8RlzzC+G/gY56JOGKzd4hCcVoDHv7zHZXky0TPr1en4/OFv0VzIRDP5bqwWG7oN6YSL7phE3YZ2r9yP5V+v9fo6su3+TmILCQmJtiM1qBuCZCGosbsmfRp4JbSc7+N7ha3hmCnSCAHvF/TEs/SyhMk+xQ2EPqHD8FfBj9A32p+G7QBVFhXknH8HHJpc4PN5LR7p/BJyjEeRbzqNHWULXJ63iTKU2F0L4aQxnzxO77MC4rXVIGnFeeYDuDppDHaULUac2rtZBUmOsDZq7G8MSW9wRsGR5AvBLR2CJDfUvxfioEPrSg6pg4O6ewyMdjlsQu1+MzwilQYEy020FKW3KWATGMhZz98fJwoIU7rXvQpMJzH/9NO4reNH0MiCoZEFYWbK43ju8DOOfWPI++VgFcj7dRKeiAwUnADBzlARSp0IwmBVIlh+5iaSAkJkHL/bLVyHhIREg/vYhbdPxE+vLfH+J+OjNrTkw2U0Cr59z2T6c02Fno5JiONooE6sTYXsDxmTpKREQaOUw+gjhSIqWIuoEM/nOQtvx9v7NmBh+kHU2BxN9UGCDHFbqqFZkouI2FAqcr74rsl0nFJHxq50KPdkwjK4g0e3cvnRfCpuaCqWRJ2ruMEJQRTxzMo1GNexPU14e23GB1R87jwmGXnFYMz+5l6X15UXVMBs8CwYYGwCdGuPo2ZSVyoUd8EuQLfhJDQ0OfBul6dCo0Jw8wvXYO7/fkJLGpS0IRrqjttjWBdceMdERMSFYeSVQ3ymQxAxTu8x3Zu9XQkJicAZ0D8FwUEqVDdqqGHsIkTOw7HPLEJWwMNGkhzKKsHqLVCml0Je5Pt4yNl5XHfXRJ/iBsKE60fim//96CaCYyz2pk9hGC1gD+RBTIqBGBniOJZXGcDmFoMpraTH/O9OfYz9aw/j1P7TVFjWXNJ+24ErLx+CxRvT3M4ZTLkeiv0ZEOLCYfcicKDLGcyQHc3znjhhDawvgXx3RODACo7/qeS6Uk9rgHVwFUboVqdB0ClhTQqDaVA7ovauV7bQawKSPEcTH3Jg81B/JOLHxye+hDl736I1vbDoELzw62zcN+QpehluGNfZq7jOPKgdZEXVbiLAoNBzzATwXzImeemll7Bz586zvRsSElBplJgyazx+fe9Pr5+GSAo9XvjlraV0TJKQGkd/riqtxtdPzKdCX1uAKcpNRRBEWvtv1yOJig98jX1I6kJIpOd+AIvJgq8en0+Nkky15k7kOpl8JlazFZGJEbhg5jh6vax2aqo/067mBN4u4L3b51Dh2ltrnqPiZHLMr4Ok4o2+Zjge/dp1/FCcU9aisSERHT7y1V0uj0UmRGDG/66gSRrNpc/YHjSxgbyvXqO64cLbJtB5qeHTBmHzr/94fR1J9iNzLBISEm3P4Kl96bU5EYG1JURcds1jl/kUNxBIjei7535p8/0hBIXr8P2pj7Fz+T6c3JeJX9/1fo70x/Fd6Zj86CX4I6PY53J8QgTEvZmt7sHK2HnIdxyDEKaDEBNKheZMpQFsQTkYUYRoMgNBfq73TRYI7eMgdoh3fVzGwRIVBvTmwO47Wb/vpGZGxiSf73mTCgPJsZsYazwy5rlmvw8yT35O8S8Zk5wNzhuBA2HWyPbYn1OJZYc8K0v98cuuHCpwsNh53PzNTuzO8h2H3BokhWnACyJUjQvOjbhqQCLUXtwaHl54AH8eyHd5zGjl6Y1QabLh3dUnsGRfHn65Yyiigx0XysTB6GxgF0Qs3JWD+yd0wnezBuNkUQ22nCqlB6WRnSKRGh3kOe2AiBT4Zjqbktfpi9wfH3QroA4FNr4NlDRDHNNhDDDxBffHh94DHPjZe0P1sHsBle8TqYSERCvBsED7CcDRxW37kYamAOoI/7vDsYi4sTtK5x2GYGybIkw9IlD01i7I43XQDYtzFK6JI10zsBUYYK9o3fgyCunRkrMQrS2LD1O0D4Y1s/WFe0KNDfp/ChAyyZHyJItUQ5kaCsup5glmNH18NPD+RyDOJiX7gVO/C8jfQoqYrn+uCaOAjpexiOrrmNBvSyoqKjBr1ix6PzQ0FHPnzsXq1avbdJsS/36ufeIyHN99CqsLi2DqG+/+N6CSo2pqF4QtPgR5sbuD0d9z11KBA3G5fGLSS7RI0dZEJ0fSAj5xqfElcJh663govETIv3Lte9j6u6uHHXGhqHOi0FcYaMMMjWLe8CJtoiGQRAdrfIibI2BjSJ+qaGvURMsysAxqD66oCmztBCzp+w1aeRSGYe0doolaF1YyQa5MK4B6j2OiwGYhaQwbcfWjl+Ct1c8h81AW9q8/Qo87Ayb3RlIX90YkMhFBRCy+3H5MQzo0EjfUwjCo7hGPUhmDTo2euuLBi6hAgTShNcd9auAFfXHjc1e7PX717EuxYeE2r+5UpLhHJlYkJCTaHo6R4YLYK/Br7jyXx/W8EqGCEYrahIDGVNuV0PMq16QA0XHIJG31PVWFGKDJQ6jMRNdllk1EtDLU7/7IWQVmpjyKrzPegFlwPe6TBhe7yKJTSBlMdhldL18vFnDOMGCcEh1EL4dxBia7iJk7n0WqLhkXxo0GQ6UFgV/786LjOE7Wn2c+gTJrPgpMIQhXGN3ECHX7X2YlhWnf5xVHCoVjGZJBoZXJwKPx5KwIrl5Q4pzeQO67rz9K0RdAEbQyCzoHlbikTATLLeBFBmZeBqWTcMSRvKBCB02py3YVtVasRKhRYy/Fvoq/MSLqGvpYkiYBHbRdcEJ/yuv7s9QKLchemmxymnphpyIIYEq8JG6TkPi3c/2zV+HEnnTsXnnA5XF6RGMYOtnoi7/nrsPd78+kE7yzx7+AjANZbbvDjKOpRBAADSOD0e143MBVw3tB5sH1mZyL7tq4GBvyM1wer2HtqBmtQYgxBPqfcvEVaYz6cTPeWf8CdVutG5Mo0ovBGiywdot3uFyT5LsyPRTHCyA/7XyMDpzqwTE+nzfZ7Fiadgw39u+L9za8RBP7Dm5Ko2OOQVP6Ir5jrNtryD6TRiMyfvOEvKAKIUv2w9I1BrZEck3AUAG46mghuGozyOis2oNYg7gahkaH4Oc3f/fq3OqLoRcPxLWPX+b2+LWPT8OWJTu8ijKmP3UFFeVISEi0PQqFDNdPH4bPv3RNTaCXnXWDjEaQS2FVZgUU/zQ0OzpDLqmt7SNh7RwNQaugtZlRnRIRHu8wE/QFaUp5fvFjeO6yN10aioiJhSW6oa4iswBWP6ULZXYVTWlg0tzdSUl5mRhvXBNzO7oN7YSL7pxEaz+kRh0ofFQwbKmxECKDsRMiTq4+APnBLAjhOohBGsBmhyyvDGxBBf3M2JxSMHFhEKM9jM14HvID7k1GJNGAk3OwmW3g9FbICqphj/M+j8xZRMhsIomSg7OGum9iGI54MeQw909yTSuqGxIJIpR7c6gpiDcKM4uxct4GXPHQRfVutyS59UhpFURf6aAMA2uXWMi2udY3x00f6f01Es1i+/bteO2116RPT+KcYebL1+LUvgxac28q5Bj99zfrcetrM6iZ0qNjn/eaeNZakEQJcj1MGveJ87+vBn4imPbk+szzPJ655A3sX3fY5XEinKgzTiLCvjmPfkfFGm+vfZ4myhHIGOBsQPZr4y/bqCDlw62v4vjudBzZeozuz+AL+9H0Hk9Nui2BzFcQgXtjbnrhGoTHhWHh20tRkOH9nOSNkZcPwbT7p7o9Pv3Jy2lCh7fvdMbTV561z19C4r8GGQNc8/hl+PbZn9t0O0MuHkDnXQNpcH920aN48Yq3/aZPtvQcY6w24srIWeg+vAsV8bWEvWsOQldUCdQKAb1Cjm1knFdbQxJJPS06HAjWOSZSyquomL1uCoQcC8n4iZhXBAJboae3xvRMjcLhIh+GgQYTYLZATHGve9UTHgwxOgwgYgnqKmmi9ao18zfjkrsm00WImC2lRxJOH2meSHDc9BHNep3Eucd5lcVBGvbfvqo3tP5iG71QUOUooPy2N++MiBvkLEOTFr7YmIHcCu9qMJLA8PgFXT0+tyerwk3c4I3MUgOeW9owgBjVKdJfH1GbQfa7jk4xQbhlRHvMHNHes7iBwMocCQktYdHNwNwLgA1vADWFDY/3vBK49x9gzBNNX2f/m9wf4+2A3QJc9gkQ2UjpS+ypR80Gxj7VjDcgISHRbBIGAl0vA9rSqbLyNLDnC0eiix8USUGIeXgAgicmgw32HA3dFNggOZRdwqhQgBao647t5EJVBGx5elT8ehJcUMsmDEVzKyUacQyCJ7VD2FWdEDt7IGTRvt2cAsGaXdMqn6UnjAdclc9h01LBKJt+raFIDoKqu38RzL+ZihMiVs0SsPERAXmbXMUNBPJz7kbQ58lyZPm25N5770VenqOZ+KOPPkJCgmdnRQmJpiCTy/D4Tw9CGNYQ2esGx8LYz/PvW0muw73572/WnRFxg1wpp45EP76yGEU1RpgHpkB/YS/op/SCpVciBJXj3BEeF0oLzJ7Yv/6wm7jBG9lH81zSCkjjDjSBHL+9DFxYFraOrkV2hriTbk5H6ILd0P2dhqAVRxD6025o9uS4rCVt+/H6++17tcPlD1xIC+CexA0EuUaJ+JmDUHRTN+Tf0xvFM7rA2Cm03llQUMthS3Ec56kBHqkZsY4buU8ee+KpH/DQqGfo511Bik+1TLxhNL5J+4AW9poCmQAnkw+NsfE8bMEqPLToYcSnuhaIiKiBfJfTn3KNzZaQkGhbRkVNxuUJN0HNObvCMMgwRqLc4n49nGcMwbr8zrQxnYUAJWsDB5H+bLJxuCFsP64LP4hOqjJEyYxor6xAN24RSkuvgiC4C+gak6Ltgse6votJMVciSBZGhw6k2Z6kAQi1ogK1zE6FBCx4KFgb1JyNPkb+Jz87pxiEycPQJ6Q7FKwcckZO12HhSZICkQWIOKnPwocnf4Cc9VG0rh3C2GoFFQ6xhet1t1nQI0JtwImaaJRZNC4u5EQ8UGAOoaIQf/1KJlsw7kqdhOd6XonfxsxGvCaCiilI+oMvPK2XPEbEICXWo+gfbkfnoGIXcUMdRCyh4uzI0oci3xiMXGMIMvSR9Ht11OdEhHAGJCnKkKCooLckRTlCOCOOVm12WdetHW6GglV6T7CoFTOwjAiznQgcHD/3D0/B8KjGUruzi0BEMq1wk5CQaICIkp+a/yDktW7KxFHNNqgTrBcNctxG9QCfGOn1IyvJc4xJ/pqzqu3FDaQxVa0AJ5fhi9+3oarESB2pPREXHIRbJw32+NzG/HQ3cYMzVZOjYYtyjDsyDmbhy8d+qH9u8NR+9H9ZYRU0649C98sOetOuPNRscQPBFum/DnnwVMMkbGq/9lT8fNm9UzyKG+pS8lJ6OdI1PMGHa2Hpmwx7ahwYjQacWYC8WE/FDXU8NeUVPDz6Wfz8xm/UDbcOMq6Yd+xDOi5qCjKFDJNvHuP2OEmYI5P4xPE1tr1rEqBap6INa3WNshISEmeGa64ajDtuGwutU0M6uYriyk1gqt0bUIgDp3yXZ1GtyDIwXNAdxrGdYI8PgRCipmma6/U1uPf9xTBbbQE5LX91+D1anwiNcRhhyLJKwZY2pLXJDaSJ3/vFvazUCEW2I5mOHGv6TehF61wKlaJWyECmbXnaLEtcqd+e+SkikwKv0ZOak2VUNwhxYY50HLkMFWoFrINSwVYYoNx2DMpdp2hqal1jEBESyneeBJeWQ9MlKIIANr8c8i1HwZY53p9Kp8Ks167HY/PuxfzMzxCV0CAM0e7M8f6+RRGKqtrxRt1lsCiCO56LE0t30ubQxhgHt/OaskAGI0Ko/3PWxkXbXH4mKUOyRPdtNYaPcHVGHTC5D/qO64lzifN9TKLX63HDDTfQ5moJiXMFpVqJJ354gIq3mkNJruM6/PePV7S5uKGuZk5q7XOf+tGjILiOuI4x1DTJE9uW7nYTN3jj5J4MfOOUoDbkQseY5GxwbOfJ+vvEfKtuTOJJ3EAgTcPJ3Vo2n/rYhBfxyNjnqJihurzhvH/xnZPw7YmP6P9NHVNOuGGU2+MkNUOhVuDhL++iRl+NkyTuevfm+kZZCQmJM8P1T1+JmS9d55KsGTBEXEZMEjyIzJzZ+ttO/O+i12hdwh8DJ/fB10fep6YN3tJ5mkJi5zg6zqFjErWcCgZIahFJlyFmFYe3HMM7t3yGyET/onBfVBMhmJ9JEJIcx9SJG4K1wKAeQGoSQIQDMeFAt/bQjhuA2z64BY9/ex/mn/6Miv1ayolluxAu93JtbLcDJ7IgxoZ7/R7r59h7tQc/tAf4YT3Aj+wFISkamxqNSR779l7a69BUhl4yAN2HdcG5xPk+JjmbnFcJDgSS4GAIMLqxMTFBDle8X/e0/QUywSaIuO7L7ThdZvR9UDJZobfYPSY4LN7btH1dfbQIRdVmxASraJLD2C6RWHes+UX65pJd4fs9u2AzAwuuA7K3t2yjgh3I+cdx2/4pMH0BkOLkEJG2tGnr6z4NCO/gtH4e2PIesPNrQF8roIhIBYbfD4QkAcogoMtUQO2/2CMhIdEGJA4F4gYAZceB48sASzMc+BkOCIoDqr0ce6vzyNUa0P1Kv6vighTQjUpAzeamOzU3RtkhFKGXdgSr4lDwxk4INZ4dUfkKi0O62LKwhJbDi9DvKEDcYwPByDloekWhKlff4nUK1e7xya2BUOW6XpLiEDQqAdVrsgNbAQuoe0Yi7PJOdGL3v0rRbhFbnxXABxgEUn0aWP+ggBEvs4gZ2Pqf28KFC7FgwQJ6//LLL8eNN97Y6tuQ+O+yNzMfZj8TSpaOnidTI2onIUmEsafJYzE8yOG6Wm0EE0Bhxh8kyeCxCS/hpN4Iw0V9HGk/dfsYqYOlaxxt8iEJDMTxjkwQN2bV9+776gsSB0wcYUmKQ3RyFPr3aoet9U2yXvDxtBDqWSjHWuxQ5Ho/3+edchI9+8Fks+H2Rb9jRwfy+Ti+I2uiDsaeEdDuK0bkr6fARwXRYgwtvJChG9No90kDbIQGR1YcwpGtx2lE96vLnqovoJDJ9i2LvUcle2LC9aMQldjwu2TnBcz9ewcWbT6IshrHmKv9jQNxWUIsEg0CtKEaDL90ILQh51jspoTEf4Sx0VMxPHI80qr248PjS5FjMKHa5ijkRyj0iFHV0ONFvikElVYN5LAhQVZe3zBPEgDyTDEYHRKCrgrP8cM26x5UV7+C0NDX/e5PiDwcIyMvxMqCFbCJnkuApCk/WG6GVWwoEpOivIwRIGctjshckn4T3hEzkqfTdIhZO5+GtVEyRB2HquzoGuQ9xcEskO04GpHIfU9JCWTbOoUVaVVxCJKbEaIwU3GCWZBBVZvqQIQR8toUhMYQIUd2jRKLrHvxx7gHIWdlGB3VB6cNBaiyqhGpqhOIMLCLDGQuKQ6O43V9HxH5zEW2thZvhiAaIXe2UPXweWplVpRZG9zuOMbxWUTK9AjizG7vNVxmgEV0bSyLV8dhbNQk/JG/HArWUbYmqRQkucEhbnDsYd2eyBgWk+J64X89LwVLYtMkJCT+9RzYcAQ2ix18XDjs/Tq6OHOLIVrY+3aAEKqF/LC7gCEi1teYhIVIkg/omMQAxtrydFKL0Yonpr6KXR1D6dFLZgIEmQhySiCaO3KYZG2AwWqE1cZD7sFdc3GGn0YilkHNiHCE/+4YA6xfsAV3vXsTvS5O7ByPLoNTcXyn41jrmPxtueECZ/L/2RTszwE868jdIA7nT0191avoxBYfCtPoLi5jOiFCB/PwTnSsot7pcDa3We10Qp3cFr37J17/+2l0HtDRsbwg0MSFpkCEEWExDS7lNqsN81/6Fcu/WoPKEoeAIqVnEq59Yhod7xLH1+GXDWpeM4OEhESLmX7NEEy7pB/+2ZGOTx75DlWZRWCqHLV5kkggkLqTIIItrgSr91zIlavkiL15JA6S+VsP7Dmei89/24aHr3UXPzUmOimSCqt+fffP+mOwesMxWPolw94uEiw4qMtFmEj/T6PaOmsVoS7nIGqUYIwW9J/QC3e8fSNtUL0u8U7a1OiJkuxSR6ORn0O9oFXC1tuR7OwGy8A6oAO44iqP50IicpClF4BLL3CYUvGiW4KSWW/GynnrMDftfXAch9FXD6fiM4Iitwra/UUw9o6BKGt430QEqKwUILPUrstiA3u6GFxOCRiTlWYglRe4mjgSQw57gu+kP2tKBDTbMqhpiDdyT7gm/HTo3Q4X3zoeP232cw6uTUKVyTmMmzESD3x6u+/lJZrMAw88gIwMh9AzMjISpaVnvvdDQsITpNmfD9AFujERceFexyRtgUlvpkLgw1sbTJE8UVOmp8I5T47/q5s4T7Lmh0247c0boNaqqAFTSs9knD4c4NxzK0JMqQKFJGo8ecHLTXqNJ0iawqFNR+mNzJO8sfJZel4hCLyArb/vbNL6Lr3ngvqEPsf6rfj+hYVY/vXa+rSIjn1TMOGG0QiLDqFNzMMuHUjd5CUkJM481z9zJS5/8EL889dufHLfN6jxkALgglIBJMUC4SGOpnhegNJkRLsgGU44mdk5s3f1Qfz48q+45ZXpfvcnpl0ULr13Cq2RtAgGGDCpD2a9NoMey6Yn3ul1zFGaW96iTZEUUrakGoIPQQKX6ZhDEuUyoEcHQOY+B2SwCVi9Nw9fzbuNCsRHXzUMSz5c1qJ9s5msKF+3F4iLdNw0KvqdoaQCyC0GQ9IbiMDBA4702dpJKHKrQ62E0DUZp82uY1BSzyKmG8u+XBPQvskVMky6aQzu/WhWi96jxLnFeTfjZSF/EM3kqoGJ9P+imgA771qBQ3nVqDH7LnSTWkJGieeDeZm+aRE5vCDiZFHDuj67fqBzvfuMYWqKCGXdy0CGa2Rqi7FUAz/PACy1amBShCs51rR1dBjr+vOSO4B1rzSIGwhlp4BtHwPGcqDvDEncICFxtuHkQHRPoNOU5r1e5B0iBl8U7gdsgYm4zMcqIFpa7qhiOlCCwjd3ompNNoQa382u8jidx/QBNkRxRs/6RIxg3F9C72sHxYAL9ZMzfRYRbQKsOY7zhflkBUq+PhSQuEHVMwLh07sg9vHBiJjRDaz6vNONthokiaEp4oY6yPLkda2d5FBQUIC7776b3o+KisKcOXNadf0SEtbaiTufMAzM7dwnFy+4ZRz9vyy/YTKS/AXwHeNgG9cX9kFdYB/YGbaxvWHv0wGijKPCB3t8OHWVs8eHQXQe8AfAkUNZKO+V4NIIU49SBtOYLrBY7TT60ROVxQ2un4FAGmpyjzek0L3++d3geN9/56wXF1cCE8jn7QGrKfCx1FvrN2NHtmeBo6FfNKqHNcSANhY3NOwo6KQ0H6Kunwx4ftpb9bGn5Of89KZFLxNnwvrtiiKemLsMc5b/Uy9uIGQWlmPunjSUd4nApBvHSOIGCYmzDHHd7xs2BFckXlkvbiCQhve06jgcrY5DlU0DFWvFtcl70T2ksD4NgDTHJ2sK0F7uu1hrMv4KQQhMQHyoag9som+hsNwtjUCkjfcyVoScI0IHHjvKt+DJQ7OxJPdP1Ni9j4dIugLH9IOCbTyByEDBxkLP62iTvlFQQPAxQCGnuhClCXqbAgZeWSuMaGhScqQxcG4TCEQEcLoqDFZBhnxTJdYUpNHHL44fjghFCKpsKlTbGsYmZDnn9008cDi6Z+Qm1q6/YT9JYoI/NDLH561g7dByFthFFgrG5iZucEbJlKPC4nDUO1R1AO8cfx2bS39DmMICBctTUUONXVW7vw0nodFRA/B632uxbNxsvNr3amhl5+64S0JConUhQmYSPW/vneLWEFqHkBIDIcLdne6CWd7GJPHgR/eG0L8zhH6dwI/qDb5HiiPivoUc2JteP7dD3cTtgNwEKAyO/8nPZosdBWUOl+7GlJn9pxfxwQ1iPSLedhY8v77iaTqR25poa+teXhFEyP8JvDHo84fmIW2b54l7MiY0D0v1PKYjvw+dYmGPdZ/0ri6rwXOXvUlFCXVju7pUwUBxduEmztEvXPE2fnptSb24gXD6cA5+efN3OmYh6XWSuEFC4uyiViswbmw3zLx9XL24gcCW6yE7VQBZRqFXcQPBSoRSet/jjT+2HoY5QGOOLb/tpLUi5zqPalcmtEv3Qr3mCJSZ1Qg6LUBVKkCuFyGvEaApFBCULYBjZbB3c8zvkybGG9rfS1MzjdUmn9vsNrQzVE5JFo4NA1FJEbQRn2An6TO+zg3kPNvOeyJS7SqpaKCxuKEOUmvb/sduev+y+6a4OKaq9+dCm2eHuoSHspyn/2sLeMhNDetijVawpdVU3OANQavw/T4IMrY+xdUb5JyRe8JRz9v2xy6aBvTnIw2JSN6YOronnl7wEH7M+hyPz7uPuqSfa5BxYmvczga//fYb5s2bR+8nJyfjmWeeOSv7ISHhbUzSXBrmSVrWANoU9q8/ArsfATep4RfneL5eriz2PFbxJWAuOt0wZnhz9bNeg6zbEiI2CJSP7/u61ZPHK4qq8Py0N6lwhFCSU0Yfawq9x/Sov2+32fHMJW/gl7eW1osbCOn7T2PBa0uo0/f4GaMkcYOExFmG1AXGTx+FGU9f4XtBYrzXsxMQGdbg+M+xsOh0OGnlHIkOXiDGC3X1jkDM+YgooUWIwNJP/8aNHe7F/Fd+rZ//9UbPkV1pAo0zpDYVlRTpUUjXGPn+TNKA6/E5trgKsvTauldshEdxQx2nM0uwa6dDLEuSNklST0uh46CCUjB7jwFb9oPZfhDMqRwqbqB4EaM7Xuz9ZFiqUqGw0HGO2LxkBx4c8XRA4oYps8bhmZ8fxk85c2iqjydDx7PN+TwmOducd514PeNDaA23qceci3rFYXhHRxGCOQfjOlRyDgt35eDHndnIKjMgVC3HtH4JiNQ1vQigdWpsJet9ako3vLL8KM4kQaoAf7WsRmCv/+JIszBXAQd+Bgbf7mh6Js7spHk5UGIbmomQsRE4/Kv3ZTe9DfS/EQhxFNkkJCTOMrF9AGMZkEEudJraOO3P1scO6IuAsPZ+1yRYWu5yV79XVgH6jf5TfYigIu5/Q6gowlZiBCNnYT5RAVtLExSagflUJbSDYsFq5Ii6vRfKfzkOa3ZDDOW5hGF3IWyFBlQsORnQrwyrlSPs0lRwwefehfGZhkxe73y96eKGOsjrdr4hYPJcttWaDW699VaUlzuKop9//jmio6NbZb0SEnX0SIoJyAnO0j0GqqyGhIGJN46ud/PnnBpT+K5JENrHur6YZSHER8AeGQQ+SO5wX6BOdwBDYnf3n4Ysr7y+2YU0z3j7C7J2ivHaCENfr1bAnhxBB/vLvlyNZV+tQWFGEUKigjHxxjEIj/XtAucJtZNbp0anwp2Xj8Bnv29zF9uJADHgJr213vZfltO8SY5AUwxqLBYsOZTme5lhsdB9fAgiGYgSZz5vMAws3WKh+cfhnkqafjb8vJW6npLCOjnOkeNmoHTsk1J/f8uR01h3wNXh25k5y/7BZUN7IILEkEpISJx1LkkcgFxjGb7N2Eja5F2es/MMRkefRpDcvQCuZHgoGd9FeVE0wG4/BYWir9/9MPO+G38acgtcxQ2eLstMvAnrS5aDhW9xQqFFjrf7zMPhqk0os+RDxqiwujgD+6oKoOZEaGR+3l/tGYE09pP7Vp6FgiOFQIamXNQlLpD7vMhRIYLjfTgei9bqASMDvVWJf0rTMTWhN8IUQXin7z14Le0HnNTnosamQpiCpDGwtChMhAjkfbv2CItQMCJY0Q6rV3Wbp88TiFNVQVmbNkHWo2X9i+4yqpehRuyFBdk/uPzOEAFKqMIMmU2gIoc6whXBuK/zFQiRNzjYnYu0RuH9v1q4l5DwBUkkEBIigNpxgjf45GiwZQ21mItun4jUvo6alkzR8FrikiYmNRo7kzSH+EjYNSow+cV03EAaLLmCitoUhAb8jUmYAJ1dZQyDPz9fSZtYi7JKaCPo5JvGIHaY/2tcWanrsda5yZ64fV735DQseN3hnO0PUSGjN/J+GS+TUZojZVDkG2CN97xvQbuKEGoPrG5EmkrX/rTF6/P2pHCIfhpTybhPVjsJ7AwRsmxevAPjp4+Ews86PNGxT4O7+bbfd2Hn8n1el/3mfz/RcW8wcYiXkJA461xy9wXUaIE4JzcFQaeEoPR9fqkxWpBbUonUxCi/6/MmRiDnBiq0CNWBXO5zlZ4Tdvj4cIgHMqmQgDSeLvnAv+MoaV76OfcLrPtpCxW8EbHDtqW7kJ5TBqFbO4hBGvAh/ufghVZIo9m75hBGXj4EkfHheHvt83jjxo9oEyY5x8iyisG0j/H8QrE2lWlYN7CniyA74jnhhzXaHEVKX7V1uwA2gAbXld9uQGhUMOY8+h39mYyC5JmlsLX3LPSICQ/CI/dfjCDi2irR6hAjp9tvdyRikJrit99+i6wsz78HEhJng65DOjXrddPun4rkrgn0vkKtaFID/plAJmPx+8crsOKbtTQVKDwuDBfMHIeIBM9u1L7QBDnVcWJCccWDFwV0HmtNtLWGTP4oL6zApkXb22QfCk+XYPufu+n5kHznTYFlGbTvlVz/88aF27Fv7SGvy3/1+A8YP2OkJLqWkDhHuPLhi1GYWUyFAR5Jjvda2xLlckeyQ3qOx+fJHGxxdikSUhtM6rzhTyDdFEgN549PV/pdjmEZLMj9Amt/3Ew/A5VWhc2LtweckkNSHFQbDsOeGgt7UiRA6lR6M2SZxTS9oV5kHeq/BrNvz2kMHtKRplm8teY5OiYhZhWtgUdPwMJyiKnEfLGRkCOAMv/KNYehyCnGN0//FND24zrE4J4PbpGEbf9izjuBQ1SQEsnhGmSWBuaeHalT4Iah7XDfuNT6hIMq07l1gaxTcvhw7UmsO+aIjiFUGm34YM1JxAZQXGlMWn41+iU7YqYJt43ugGWH8rEvp2kq2JYwqbuXYkxjSk8Aljbcr5ydDoEDywFdpgLH/grsdXF9gMSBDT/v/9H38kQ4cWABMPqxlu2vhIRE0yEJKtXZACMDwjsC8tpBeofxQFxfYNccwNrKTfVENBUA8phWbjBsNHnsCZIiwCo5aAc7GmXLFx4/K+KGxsgi1Ii+py+suTWw5ulpc6dhewHsRYGdz9savtKCyr3FAYkbZNFqmtggiRsclOwHqk+37POvzgRKDgDR/nv0/PLFF19gxYoV9P706dNx5ZVXtnylEhKNiAsPRmxIEAoqfZ9f+FDHOYkIBC67byptqCEQNwlDlcOBVFQpILTzfO1sVwJ8iMplgpLOV7IKWAd3gni8AExwEKBTQxQEsKVVYE8XgKl2Pbbykf4bHzVdYvHFY9/TSM86aioM+PbZnxGd7NutzhMZB7JcmvNvuXQINi7bizSLGWJtTyxTK27g9BbaLOURs4061TWHYZc4Xc/74GRJGYw232NEe4QakDPgKvSwxwb7XNYW5+qcenjrMSpwIA52Ay/og11/7w9ov3qM6FIf20z4458jvrdr57F81zHcOGFAQOuXkJBoPTIrKnCoqAgKjsOI5GQEKR21nLs7T8bFCQMwc9sXqLQZ6DGcF1gEy03oElzUokZuhgmsgSROneR3Gedt1qUDe4MX7VBxLIy898nIIJkGSk6DAeGOZL13js3FsRpHSpCFl0HN2bxug3xGMtgRr6pCiMwIhAAlZh0KrSHQCyqahsCJdpqkULcOInDgan8mIzUVeGhl5cjVB7tc3idqovHZwEdxrDoLJ2tyqbBjZdFaFJgKEaeqRLAHwQmBCB+omIJkO4gM3ZYvWEaAa6geEbf5/15rbAVYWHDITRBTh05uhYmXwy5ySNHE4/Fut5zz4gYJCYm2g0zehvZsh1I/y4lax/kiMiEclz9wIa6efSn92WKywFTjmNwV1UqIXhpUeZJQlhgCJDuJni02KA5kgcspBRKiIMZHOeLoBQFiaRWYnEIweteJY9ZkA1dUDT7G+7V0JMfh4xs+xsGNDeJj4sg5938/IWRSe+DGhjkPN2wCgra4CqPTD2QhsXN8/c+3vDIdW5bsQI5T2pzb+w3XUadwISrYcUK08fR9yo/mgnFye7XHBMM8qAN0FWoY1CIsZAhQq5JjTXYEbS9A2JocDH/zRgTCqf2nfTrg8sH+m5IEH8uQZAgicCBCj95jurt8xv4S5Zw/w5Xf+k7iJskZG37ehkvvuSCg9UtISLQe2cfycGpvBpQaJfpP7FXf3HHnOzfhwtsn4IHhT0Nf0ZCGI2iVsHeKA0+aNWUcmCojZBlF4LJLqZAgEJR+RHZ1pPT0PiYhdTG/6QMcC1EhB2N3XK87p0F4IyhcR40viMiD8Oxlb+CUwQZ+aPeGhWT+r9EDFej5xMnoIqVHEubsfRtp24/T8xS59v9l5UFkk8/c2ZyE1MyczEBIKhNfqQeX5+4qTlIeZHlVsCd6NyhRnC4L6HvNTy/AwreXujym2XIKRl6ErUOkS2pUl+RovH73RZK4oY0gc2i33HILysoc3/lDDz2EcePGUZGDhMS5QvueyfR46+yi7wuSonPVw5dQ9+i6hAOLIfAU5jNBZGIEXr/hI6RtP+EyT/Ll4z/QBsqmQo710ckNY6073r6RCu5Io+uZYtilgwJa7uSeDNhb47znY0xCBA4RcWFUHHNshyPJ1B+DL+xPG3IDHZOQ36tNv/6DKbUpIRISEmeOrLQcKuQljfz9yJhEq6Iizfs+vhUX3zUZDwz/H0w1Tq6ZWjUQ5nvOFRGhQGYerTl5onFCQnPGJG2VYhQcrqN1mGn3TaU/P3HBywGLG+pgzDbID+fQW0twNt8j8/dfHXwPh7ccRebhHAiCgEXv/oGiTD9JpU2ApPYxJ3Mhdm2Y5w6UnNPF2PT8goCW7TKoI5755RFJ3PAv57wTOBBC6cHJd0NkTLAS380ajA6ROiicHDaPFVafcwKH6CCVi7jBmcIqC9pFaJBVFngD6Lxtp3H9UNcDxMhOUWdM4BCillNRSWPsvAC9xQ6tUgZ5XZGGa2Pn6/S1gKEU0EYCIx8GTq4CeB8xOARdDHDFV66PVXuf9HBJcSDLTXgOUPuYbJGQkGgdrHogbTFQSqLbay/GWKLgHQqkTiHdn4A6HEi9AEjzkcDSVFShQFDDxJ4vZBFn3rVG07dhgM/XWGHcf+YKJI2Rhbu/f0ViEOTxOpR+feicETcQBCsP0ea7wM9FqhB6UUeouzXdoePfTPpSoXXW87uI6L4tc2ZNT0/Ho48+Su/HxcXhk08+aZV9k5DwRASjQAE5/Xj6tSWTkCRQqF00PjnwDpK6JkDmNOl7cm8mjLUFHCEu3GVysA5BBvAq1n2SlyRHyEghgqET0WRyUqQTsiygjQAXFwpu90lwZU6igADi78Iig7H3x20en6PuF51ikXeyNuoyAJZ8uAyTbhrTsNsMg2FBWuT8ugO2jtEQNAo6AStPL6ZufeaRXRzNTs7vl3y+cjnMY3tAve6IS0ORP0Iig3DRHRPdHicxyIYqIzTB6vrvpH5s4g9egCy3wq/AobFabufyvagur6EuptOfuoI699XFMXuDNKA9Nu9el8eKKv1PFM19Ywmqlx7AzFeugzZY43d5CQmJllGs1+OJ1auw6fTp+r98rVyOm/r2w6MjRoBlGCRpI3BHp4l49ZDDcCFUYcSU+CNem+Rt4FDOqxDOeY/H4mQdIJM5EoH8ESGPoU35RBDgDRtNJ3Cc1Bg/zfsEBcfD6OMwNia6YeK01FKB7WUNTs8k+cFgV0Ars3rsYyJJCsmqcpfPJ1FbRW+HK2NRZAsGyzWIGxgncYMj+8HxOo5lkBRUhS7B7gKArsHt0CkoEf87+CGyjSXgGEAn8z2hLqciBw4CSBqBx1M3xWr3nPRgEuTwVykqt1lgF72d68j7FNA7JATTEm5Av/AeOF8g1yyBCDz8rUNCQsIdTWIEkF/h86NJ7BqPVz6bRR1SOVmD+uroPydpMzr9G4sLh0AOhuRPjRzjaocPAhE3qD2MSZRyWAd1hDwuEpza6ZqTZYHoMIgRIcDhdDCNBOGq/TkwTOru+SAqiIjOr/TaeF+1OhPdx0YhLcnzcTLy5zzIql2fW/LBXxhz9TCXMQlp7vcmcOAjg2Ed3sW1wVTOge8QAyEyCMpNabTRlY/QwTS2G12OfFZBuYC2ELCrRfo+glaehCK7wuH0Osu9qcZus1PnQG2Ipv47kTulaXgikLGQr2W2Ld2JW8gYIUSL65++Eoc3H4Xgx0iFCN0f/fpul8dKct0baxtDmr8KMgpx0wvXSBPMEhJngOKcUrwz6zMXJ2OSYEOcUm98/mp67EvqkoAbnrmq3pVfCNXCMqIrdQCtQwzTwTZAByE6BPLd6eBK9OCjvItpUxMikRQT2FxofKr3hlCSYuA3fYAXwATQQOTM+Bmj6u/nnSrA9q0nwA/u6rptXqytqXmHC+C454/ELu7zSSThtdOADnho5LMo3p0OhVYF25iejnNpbV2xMUTk4EngQNDsykJNlA6ih+QNxmiFal9gDVGVRdU0/cLl9bwI7ZZT4A/l0Zpe+74puO/hSzC4R9Oblc4W5+OY5OOPP8bKlQ5n4B49euD1118/o9uXkAgUck3rT+CQ0isJT//0MJK6xoNzcnI+vOVYQKK1M4kuVOMibnCmIKMICZ3ikHfSYeIRCGRM4mzERN5/jxFdz5jAISoxwmWexmVMUmOicwh1YxLnhL+2YPOSHfTahIgwb3jmSjx76Zt+067jO8bgwc8dSTZ1lAZwbv70gW+QezwPNzx3NTWekpCQaFsKMovw7q2f48CGIy7nB2KyQWoQdULf6564HPOeWdAgbuiU4l/sTK6PyXyuxeqxuT2SpJsGQHyqwyD2TOI8Jjl9JMfFZLBVIfU3PykOyR7mtnuO7EbHJA8Me7pVxQ11sHmlEC02CO1iaWofhYiu5Y1SHRpRll7o9/yQ2q897n5/JnqPdhKwn+Ocj2OSc4UAOznONfxPtqZEaNE1NthF3EDwIug6qxj9XLTnlBvx5NQukHmbPW3EqWI9SmpcJ2Yv6xNYM25LIYkZ390yCHFOMWdlegte/PMI+r+8Gn1fWo0+L67Ck4sPIrfCCER3A8IanF1bHWMZsPBmx32SyHDtfEDbyI2KNEErtA7n91GzgTs3AVGNGgWCA/j8iHPI7m+Ad7sCRUdb8U1ISEi4wduAvXOB0mOu5wTBBmRtBo45OczE9Qdi+7Teh5gyznHcCAB7ufempObCBnkXhsmi1NAMbJgssGZXkw6is4Yly7PjtvlEBSwZrSu6YxQtu6Thgv0XN/hSM8p/PobK5RkQA2gW/i9gM4jI29w668rbLNL1NReiLL/55pthMDicyL7++muEh0tiFIm2gyO/r2RwTX5tG93qrto7Roajfa92LuIG+vvqdAwRvbjd2T2JG5zXwRGhAwNBXrscuXGkAUkG2+BOEJxeK89taHoi416eI06sjv8Fx7wpTAeyfb7fwswSzHptBtgAxQCn9mXWp1TUMW76SHCVRqj2nIZm8wn6P/mZOsjJZIDAOM5b5MY7nOrIh0mSMMz9/E+a2iO0sCaHI6R3Et5Y9SzCYkJd4pU/vu9rXBF5C66MmoUrIm7Bh3d/idK8MnSPiUZskG8HbGVmFTgzD3lupd/9kOe7nuMqiqrwxg0f0fu9RnXD0z8/TAUYjWOW1ToVkrrE48bnrsZne95yi1SNqSv++PoMSmrw+ycrcF3CHXQCX0JCou0wWK24fvGv2OgkbqCP22z4fNdOvLJhQ/1jV7UbiAmxjkLr8OhMyDnR2cTTjXRbqM/ng4IepI1KgVBqLYVZ4Lyuzyaw4JtYHoxQeHcGTdEkYExUg8DhaHU6hEZ1PItAUgg8bVNEorLCq/ijZ2ghYlTVjvSG2pMuafonogyO4WnSgowVHTdGgJwVUGz1XJ/ZUXYQx2oy6H0VSxIhfL9nh0DEIQIhghBPPaG8LRhGGxmvua+sxOZPHAcYBE/nOhFK1oYgmQVamQ0GIQNL8t/F8oIF4EmaqISExH+bukOTD9qnRFNnVWdxg/OYhI8JgaVrHOxaDnYNR/+3aVg6TuBJrcXb+YZhvAt/idN2l2S3XZMXVEOz4TiYRi6tpPFSs+kk9Ht8x0OKL+3DE6kjoSxoeL3qpB6xH6QjdLX7RCxpTCLpec6MvW6k1/XbSAKdl/GOGKyBvaNjMtzSK9FtOdYOKGoAhYGBrXsidad9c9WzVORcBxl7kDEIGYvQMUnkLXSMQsYqXYekIjTaNQnOGXlWmV/hutzHZHRJbjnevuVTer//xN54cv6D1G3X5T2wLDRBKirQv/nFa/HZ7jddnFLrGqT8YTFa8Ot7f+G6xDtRlN36E+QSEhIN6CsNmD3uBRdxA4E0LP7w0iLMfaohnX7a/VMx9GJH4qN1YEcXcYMzfFIk+MQIqPbnuiQPNOa2S4YG/FUUpPto4rTxYCt9GyGRpn6m0TGQHGe9QZp0xlzTIHA7tPkY7MnRbsuRVFHw3t8jW64HV5t6Qepp5nZBMHYOhT2kaeZ9R700ym5cuB0ndqc7fqDutqwj7dTLesRQHd0PT3AVRgQtO4zgClNDEjgvQJ5ZSh/nGvUNeILUpoIi3GtPIsvA3i0Z/OBuYGOikVVgxMsvL8U387f4FctJNI+0tDQ88cQT9L5cLsf8+fOhrE2KlJA41/Bn5EPo2DuFNrY6ixsIjQVV5wLE7MkXpXnluPmFawKuyx3cdNStSXPsNcNxJiDX8m+uftbFCKkoqwTv3T4Hl4fPxJWRs3BV9K347KF5qCypQs+RXREUpm2z/SGijvfv/ILeH3LRAMz+5h7oQl23R+afiDlVu+6JmPXqDHyy8w235mWSsuEPs8GMX95aiumJd6CswLcpgISERMuoLquhYxJncQOBmM19++zP+P6FhfWPXT37EvSf1JveZ1ISwVBxr5/rSdLoa3fvqyXH4Rm14olAICK11oYYQ3ij+7DOGDFtcP3PhzYFlqTZLArLiOu49+cNJhz+a6fHp9b+uAUZB7NadXfUQQ1GuExpFbg9x8Fu3A928wGw+32n93AcC63eGFAfwktXvYMfX1nsVwwhcf5zXiY4BDJW7p8c5tJgv/xQASqNNiSGq6FTymiSwLmAnGNQWG3x+347xwTh8xsG4M7vdwfUq0qc6pxJjQlCSqQGp0vb1i27VG/FwwsP4OkLu2Fi9xiU6i246vNtOO2UQGG08vh5Vw5+2Z2DQe3C8WLqbei265m226msLUDeXiChP9D5AuDhNOD4MiL5AjQRQPfLAI2fBsi+1wMHfwlse3Yz8O1U4AnfEzISEhItoHA/oPfhIp23C2g3GlAGOZJielwLaGOA9FUt2CgLpE4GEgcH/gp1659mtQNjwCg56DflQjDWnssYQNU1HGFXdALr7NATYHGlrbBmVEEw2d0+h1ZNlWAAVisHG6JwJELYm37xqh0cCy5ECVMAy4oWHvpNeeDLzYi44fxRA7cVphJAbKX6I1mPqRSQN7N29tZbb2Hr1q30/q233ooLL7ywdXZMQsILrNEGhVGELcjzsZa1iuiX1NCgXl5hwKZNx1CjNyM2KggKrQJWgxWMwV0MRyYr/TnIkdOS1wAJpQx85wSwx3PrG10sPRLABytBTbrrINshTtwKDlXpRT7bW8lERdfBqXh6wUN49br3A5rAbCyG6DKwI6LbRaI4y3WSgA/RgK8tnNMaBHlvHGBXMjStgpzPrL1jYEkMgmZ3FhRZrgVpe3QQjEPbQwh3rIOUYf63aCMeljEY1jMFpfnleHjkMyg83dBcY9Kb8dcXq7HsqzXoM7YHLpg5AN/VeCmqCCJCNjoiQ2UVRsjyK2GP99LcaxegPOp+jbLr7/3IPJxNm8tGXTEEQy7qj62/7aQFNdLINPqqoW7F/MZcOrQH1uzzUfjhBShPOj5bs8GCh0c9i4UFX/tcp4SERPNZnJaG9PJyr8//cGA/bhs4AOFqNVQyOd4deA0WZv2FbOMumjNgFWVQMp5rU2W8BgctUeimLIOCqr0cCJAjNORZaDRXB7yfGpmGpiYYBTnkjB0yKg4g6yKN+izsoqv4gTrA+ElxGB89BoPD5fgjbx0MvOMqmgWLIRG9cE/qdCid0jpZD+JwFgIVIDQmiDNTUYIv4lTVyDQ5mi2JyIEID4jIobFAgWr/IOJw9T5YeAuUnGszyMaS3Q3v2ecWa5dxWYiBVeCoMIS8DxZE8BANtTwGCibN4/qMghL5llDEKz0L5TqHzECOJQHAfpfH1ZzN7TMx8QasK/4dlbYyzEi+D+c65JKBpIi0dB0SEhLuMDY/cxwi0LMbObY4KC2tweZNx2DQWxAbHQw2ORLG/h3cEhVEjoFdw3qPq6lbTu4QQng8dKuUQHgwUO5qfkGSDeQ5FfR6WtA6Ut1keZVQqhSork2U8IbNYsMoIRqpcePx+n2fQ7SL4HxECpHJbtK070zfsT0QHheK8gLX4zEfroMY3GDa5Am+XRRk6YXgY70L/QhCuA5FlQY6brrnw1vQb3wvFGeXUJdu5wQEkuLwx2cr8decVXSCf/hlg7D8qzUe18mabVAcL4C1e4Ln5yuNtInVF9uW7qYiaCKkHnfdCIyYNghbluyg46Tw2FCMumqo3xS4C2aOw45le30u4/z+yJjkp6w5AS0vISHRdFZ8vdZno86SD5bhiocvon/bSrUSLyx5DF+9/xfm/+O7qYRvHw3l5qMQt6TDNDjFJRVAzjB49PrxmDiwc8D72VhQVYcYrIXYswM4Tu6oM3k675itkB1z1LecmXbfhTBWG/Hbx8vp8YZAxHyjrhyCBz67HXKF3KVJRgxxr7mQrXEWEYLCUYeqn08RRTBO55iaAdGoHJ8EPrR2TCGIUB+vQMQfGZBV+z53ETYs2oYn5z/gJjZct2BL0y54SXOXl8VYGYsIjQpReXqkrTgMUSUHY7KBbUI/xHVPXQ5LIxEi2Zy9fyrEKNdzX3WNGd8t2IbScj0ef2AK/mtjkoIC/6YiiYmJzdqOlZgpXH89zGZHzfjFF19E3759m7UuCYkzQSCGSD1GNJiLkuvhzYv/ganGTOcKyOvPFaGDSqusP6f4EvMOvWQgwuPD8f6dc/wWlYh4rLEYgggOgyODUF3qmnjX2hAxwyvXvo/7Pr6VGi/lpxfS6/PywkoXseRvHy3H0k//xsApfTF82mCsnLe+zfaJiPtue/16RCdHYfLNYzH66mF0TEKEJRHxYXSehCQ8+BuTNBZ3ekNfacTDo5/F9yc/aaV3ICEh0Zg/P1/lUxy28O2lmPbAVCjVCjomefWvp/DFS0vwxwpHwz9tTvfV11RR7Wb4IFfK8cCnt2H4pQ1GS80dk7QEklBRklOGPz9fSeedCTI5hzHXDMf9n97mcv0fqIFgc+uDYloG0K29I+3CGZMZOJKBNQeO4/F57nMJ635qJTdTMraSc3TOm5hjHNvhOuZkagUYjFUPkSQ7JHgWh9xy4wiUbXYVy3ijqrQG3z73MyqLq3DvR7NwriPNk/yHBA52XnBplvfG1QMdg8Z3Vx3HFxszYHU62AUYhHBGsPlwhnBGq5BhSIcIzL9tCG6et9Pn63onhiBc6+4e8f0tgzHlw81UYNCWZJYacOf8PZh780CsTivy+n2Rc9TO0+WYeroDvut0N8bkkEJ3G81YLnsUmPY5EN2VZKsBPS5v2us7jAF6XgUc/jWw5U0VQNpSh3hCQkKi9SnyF90lAtvfB4ijpSIISBgEqAKLS/YKJwOSRzTpJfIoDeQJOtjyfEdzBgqj4KAdGgdZiBJBI+JhPFQKW74eXLgKmj7R4LQNRXuCskOIo0p/FptByhYdR8S1XVyEF6KpFUWGpDCtt9Fbc5HHaqHqEobqNVkBf1amw2U0oULZzr8T678Zu6mV19dMHebBgwfx/PPP0/vt2rXD+++/37o7JiHRCKvFhuLNaVB2igcjCLDqHOkJFFGEzCRCVSVi6pgetDDz5dcbsHjJLthJUkEt7IBuwOEMsIXl4LsluRccAsL7QYtPCIe8VuBAEhJkJwtgH+w5Oc3C8xBGdIRuDUlG8g5JGCDNOeplKjx7yZs+3ZnIpIWnQvTrK57GPQOegKW2eYm4wFm7xtKJZDrPSEQXxA1W5T5w48M1qJnYFbp1J6DMLKtPbdBP7gY0miTOLCjHwx/+jk8euQLr3vrDRdzgjCiI2L/uMLDuMEa9dAG2MNW0oasOxsIj/K9MaE40FP21G05CP6kr+KhGcZ82HroNJ8BVe05w+uDOLzH7m7uR1CUBCqWcNhU1hZE9UjC+byrW7T/l8XnNzhywJptLcsTOv/dh8JR+TdqOhIREYPx5vOGYKZLjMU3WIU05tdeoIjD6p69gF0XEanWY3q03RraXI7v2escgKKngwFONihzd8/ggFBh1iOUMULN2WEQOZUIMpsff0qSvKFmTjHhVPEot2VTcUL89GkTk+IE06wsiCwVL4nMc++6tdqbm1BgVNQYh8hBcnjABO8t2oNyagTh1DHqFjoCac50o6BXi3vgkY0nqgvu6Vaz/a3p1o2UYP3U+ku7wVcb3uL3DzS7CC73ThaeJV8AusHS/vEEEIXWyQvL52BwKPPAiB4NdATNPjv1ZCJMDJFzJE1mWSJgEOWIVVdByjvOg3q5EhjkS8cH9MTSiI1YU/lm/PEml8CX42FuxGaMjL0SipoP3D0BCQuJfi9loQcn240BqfMOwwOkYj9rj46Qx3WjT6OefrsHS3/eAd5onsfV1Fzc02TSDLudlXKL27DRMdHTyPFeBgdWPuKEOkjAw8YbR9P8Xr3rXpxlUvwk93ZpJCa+teAb3D3mKCibqENX+3bhFjRKCnAtogklUyHD6SA6evvA1vLX2eSz9ZIWLuMEZ8v3sXnmA3u81uhsObfKcPqTclw3GxsPSNR6oq7MJImS55VDtzHBzN3fbJ1Gkbq2PfHUXFTkoVAqMnzEKTWH4tEFUrB2oyIFM9B/echQ9R3Zr0nYkJCQCY/0vDrMXb9isdsxIugu8XaCJBxfdMQkRvdsBfgQOQpCjnqM8WQJFZhmsKeEQtEqwBiuiDDZc9dXDTfqKiGFGfMdY2lhZhyjnIPbqSOth5JJXrrfDruIgymtTSkURbG4Z5EdzqRiucXPSlFvH0ZSca5+4DGuW7UFGWRXadY7DhBE9ENTo/NNvYi8wczd6PFtRkYNVdJiN1IrBSaqDXcegulcIrIMHwBLX6HzGMjB1C0dhtAZxnx8E52++QwQ+uucr2nRDjr116Csa5o2Y8hqACBd91AeZ4kqv6Q6CXUBZfgW90eGIuelzMMldE6lj9uIPljXsemSwm7jBmWUrD+KaaYOQkuzfTfvfxODB/o3Qmusk+8wzz2D/fofwffjw4Xj88cebtR4JiTMBSXAuy/du/kGQKWQYc/VwOpfw6QPfUMMhZ0FDoEkIZwJiGhQIKp0KF942AZpgFV6b8SGdY/DGwAs8C5ReW/40Hhr5DOzWtjXmJa7cT015Be9ufAk/vvKri7jBGfKd7Fy2l34fPUd1xeHNvueKmgvZDhmTPDjnDsS1j4FKo6Tju6Yw9trhWPXdeuxdE5jIoSC9CCf3ZaJTv/bN3GsJCQlfbPAzJiHzwVfH3Eb//mNTonDRnZMRRWpZcAgcSC2DzAt7rEOR6+Mcd1O50KhgTJk1vklfDBF6RSdFojjHtzlEoJBGfiLU0gSpcf0zV2L9gi3IOZ6Pdj2SMObqYfRxZwZM7oO2hKnSQ9x1BIiJAIK1jqZcYjpSWglGpDNYNLHn9rducBGD1ziNSVoKb+NRlldOb75g005D1JsgJEUDmtqxVo0R7OlCJCvHou8No/HnnMDNi4lI74qHLkJch5iWvgWJc5S2kwe1EeuPl6DKqWnDE1E6BTpE6fD5hnR8vO6Ui7jhfHT9ig1WISZYhZf+TMOjiw64pTM05vZRnic2kyO0WPfoWFwzMLHNRR68IOLNv4/h930Op1N/3HxyFE73e7Ttdih/L/DZEODVOGDehcDhxU1fxxVfAuOfBXQBHhAPLWr6NiQkJFqvq5qIGwjWGiBzHXC6hW4DvBWwNa37mhY0mnO89eDazag4RNzUnYobBKMN5QtPoGLRCei35KPqjwwUvL4TFUtPQXRunlXJoEhu1Hx5hrGklaPky0MQLA1NsLJI384LjVEQoUYbnrhMR8sg8iK0g2Kb9Drj3taPsTvfkKlbeX2+jQK9smTJEupsRMjKykJwcDAtwnm63XJLQ1Pgxo0bXZ7bsGFDa70ViX85237fCevRXDBVBij0IrSFAlQlPFSlPDTkfoWIOKsdsdEh+H7+VvyycIeLuIEgyGUQeqcCKgVkh087XNjqEAMYtJCnfSzi7K5HsLf3HpNJsCWGgtd5jzonRQFNcgTe+mkdnl+zC/qZQ1EzuRusSZ4FhNfMvszrZOk3Rz/ApJvGEPsimEZ3gb1DdL24gRSwBFJX8XbcZxkYh7Srf+vmvklu4oY6SPPWJ4s2Y+Mv2xAIOc+txK3FwQhblongjbkI/z0dSW/sRtAe1+Qh4n4X9Ndh6FYdheJ4ERSnSqDecRohC/dAnut5goCQtv04ZnV7CJcE3YjHJrxAnaqaAjlOvTnrItx10TCEO4lHuHIjdGtPQrPffey1/sfWc96QkJBwpcbimPQkpWFRIUJUOkQOjo578sdJwsUcR6tCgx7v796GT/c0uPMT3/8qXkPFBXV9D3WHdsePDF0mnw9Cui0MufZgmAQTbELTxiS8yEPLiVCwrikHHCNCxdpBcgiMdiUMdiUqrWp6K7eQizL3c4KW0+KB1IepuMFor8Kf+W9ga+mbSKv+BWuLPsInJ27CmsIvIdSNxQAEy3Vor23nsh5vfR6BOGoSIYYzJKXBHzvK/8FLaR/CQsZ0tSSooxv2BwxKrd5TdBgwSNL0hiDK6fdVJ24g78Nkl8PMNzQpmXhX0XljCq0h+Ke6A9ZVdMWaim7YWNUFOZYI7KvcT7+T4RHD65f1l2ZB2FNx7h/niZCmNW4SEhKubFq0HfZT+WBrjA2lJ6cxAnkskREREa7D3K82YMniXS7iBoEDeH+pcf4a80QRVi0LU5gMpggZzMEcBOdV+kuYaCLJ3RKoSx9pEv3o3q9ps5Sva+erHr3U43Mde7fD3LT3MX56g+CYCURgYbJSQTFj9iPI4wWwNeb65uK5T/1IXUkDgYgbJt44xuNz5KNVHs5D0G97oFl3FOqNx6BbuheazScCdug+uDENM7s8gEuDb8QTk1/CtqW70BQ4jsPzi2fj+qevDNj9cM38c/9cJSFxvmKoNPhdhogb6gRH3z77M/76aLnf1xAxVf19klR5qhTqA3lQnipBdUElrObARGl12G12cLJGLQlxkfXN/PRswzCQWQXIjOTGQ2bgodZo3NKKSDPTa8v/R8UNZdUGPDFvJV5YvwvfHTiBlxZtxJQnvsKHizeDd6qzRcaH074Bn+9ZEMHaHckNhkQZapLlsAZzsMR4r5XZI1SoGRLYnMLyr9fiqamvUtOUOhI7xzttXwCX6T21nPQG9EsMb7bzK2ka4+MjYO/XEbYBqeA7xFExnjPb/9wNhVpBG0frELw4qzqzan1gDqtnk/NlTELmK9599116X6fT4fvvv6fnXgmJc5V1C7bC7sdcNT41FsERQfhi9ve0WbFxWkNzxUBni9R+7cHb7Hj/jjn4/OHvIPcxJiHpDVc9conH50ja9VeH3qNNsG0NaS6e+9T8gETK5Ps4suU4xs8Y2Wb7s2f1QdyUeh8uDbkJ/7vwVexYHph4ug4iYn/5jydx3RPT/KZi17FWmieRkGgzSBKMP+qO/cSMjtRIVs1d62KCQd39aVpZ3UQJcRiyA2mnALO7+IwYSDT1/EEEZZw3ZyIfkDpUY0gKJjH0IyKG0rwyvHT1u/jgri+x+P2/8N5tn+O6hDvo2Mt5H2NTopHQKQ5tCRGLMPklYI6dBnM8C0xJBRU31EESe5655A06PqsjqUvDmMQfJJ2i16iu9PzWov0k58jsInBbD4HbfBDcpgOQ/ZNGTSG3Lt+HoMRIDLtySMDrI5/zmvmbcK5zvoxJzkXOuwSHrDL/B8Yaix1XfrYVB/OqcDYhv1K3jmyP+TuyYLY1P1btqgGJuPSTLaj247ZAihuPTu6MS/p4P/jEhqgwpnMUFu52j/NsbY4WNC1S7c5TI/AX9xnkfDPtmwOBNCdnbXXcMjYAl37se3neDhQcAAQbENMDGD0bGHI38HogB/j/5kFFQuKMoI0GqgMTUNVjKgdYuePvuTmwsiZ3c5uPlsGW2wzFq10EG6KAqmMobXBVJAdD0z+aChZEXkDJvCOw5TQ6xtoFGLYXQDDaETG9a/3D4Td0Q+Gbu+nzZwuSYKHfnIvgiY7GJu3gWOi35vt9HSNnEXpZR2gHxlJRh2FfMfgyM0xpZeArA3PRCATLyUoUvbeHCktImoO90gzR7D/tSDA0PzXi34I6CmBYIuZp+boYDlD7ny+RkDgnyE8vohOfyq3HYO3bHkJcGGTW2ms/Gw9ZRiHMOaV4YNQzOKb2MYHKsRDbxVKnApn5GPj2cRCjQ8CwLLgaK/gQ75OojFDrbkQqPx5qOEzthCmZ+CRF9K/KSnw3KJGJzggtOL3n4+uYhy/Eja/+BINz409iKOzkdjAPmt3Zjrck43D7mzdg+GXeY0FJ/HDf8b2wbOtR8HG1LnC14gaC4GeUKgSpYI8NBldugD3Bu4sc4cjpIgTJWNpzHAjpG44i4lgx7E6T+Z4ge0pcZxs7zwaC2WDG/vVH6O2ye6fQiGhf2Hgex3KKYRcEdEmIwp0XDsV1w3pgWsd7wPAiuJrWOydKSEgETmp4BE6UlTkqa96OW41MrTeeZtE1QQUwjqZHHhyqBQ1YCJDBDp3M4rOWIGfUkLNNG5Psq9iBAnMWFQKEy/Q0JcEusiiz62CHDEqWrxcWkEb/ugJprkGGJE00hkUmQxAFdNR1wrCI4VBxKtgFG37OfhpF5gyXbdlFC3aV/w6LYMBF8Q2urk92vR137XkRIhznJptIEiPctWxGQUFPVb7M+8rtzorY2vOgH8jqTtRkYEXBekxLvIA+NiV2JFYWNrhLlVqDqMAgUqF32b6cUWFa4p3oGzYGensNdpRtQZm1BP+U7UeBSU9FKM6YBTmUPA8l57mGR96zhrPT96nnFTTFI0RuQpF5I947sREyRo4uQYnIMVZDhP/GMQPftNqbhITEvwfigk0mLmX/HIO9d3sgOrThAGqzg80sQk1xBR4Y/SyOch7OHa3glEqOwPZgDryKqU9BM0XLoKqwQ1VkBVNaVT9GuOrRS/DLm7+3aHtjrhmOuwc87tdZlUy43vPBLRjkxS21bmK599getCmLwJbrwdSYIDZy2HNZb1YJnRiWZRTD1j3B+3LZZWCcnFgPb2ma++npw9l0HNe4+asO+r0XNH0cUg8R6OnN1PGU3K5+9BLc8fZNPl9is9pwcm8mNXPp2DcFM1++DhffPRnTE+/0u7lzyJRXQuJfR3L3RFqjagp5G49APm0IbD5SX7hc766mpJHQOYUgENb+6HAzdUYMazBmoueQ2sEBU3eCYRhYVUrEXzUKfRQiPSb2HtUd468fRd2eTVYb7nzvV2QUuLqDmiw2fLdqN4wWG56a0eDq+tIHN+HmO+bC7mO8RZ4xRbKwBjuu8QXyNv30QOn7RiFkdxlEuQyMyQLGh/iDiMyWfbEalz9wIf354jsnYfX3G+ufZ0/mQ5TJIKTEuAyWNGo5nnhwKsaO6IKK4iqs+WETirNLsHHhNpre6Q+SUmQb3AVwMsvgY8PBd4qHbN8psMWOdZD1kZtSrUD73u1QdLoYVQEkzlZWteG8/jnKzp07ERfXug1qVVVVuOmmmyDUinPee+89dOzYsVW3ISHR2hQ4JfN4o6KgAvcP+x+O7/KcSnymkCtluOLBi/DLW0ubvQ4yH0PmPe4d9GR9QrXX7SlkeOCz29FnbA+vyySkxqL78C7YuGg72hoyF+EraaJxo2juiQL6fttMgELGJDUm7Pp7P70R9/OZL13n8yVEJHhqXyad5yJjkltfvx5Tbh2PmZ0f8Ls5aUgiIdG2Y5JSP479jcnangZF/x6w145JHCIHoVb4XJs+nVdELu49vp4IDJqaAPT3N+tRkOFqaBcIJP2TCJO7Dk2l+9VnTA+Mmz4CSrUShmojZo9/EXknC1xeQ2ouP766mKav3vXuzfWPE8OIu/o95rXecybYu/ogVs5bT9P9COT/jQv9n4e0wWo8/v39GH7pIJQVVNAxCRF3rPtpC6rLmjdHQb/B2vGTGKKF0CEeq7IqserWr6BSydHu6lEoXrMPpgBSJqpKqpu1DxLnB+edwCFC579oQsQEe7KbX+BVciRinvSCtuxi7dK+8Xjm4u74ZXdOswQOIWo5Hp7YCd9tz/IpbhjZKRKD2oXj6oGJiA9V+0xVeGThfizd77+ptLUgoguy3UA4XmJCpiIMndkzVAjZ+z3QcQLQY5rn57d/Bmz7CKipPREpdEDf64FJLwIRnYAy3xGu6Dyl9fdZQkLCQcIQoGBf0z8N0ondXGJ6A5xvN846SFqB+UQFatY5mj2bg1BlhbJDCG3ud8Z0pMxd3OD8/IES2MYl0UZ9gixIiZj7+6L02yPgK85eAyQRNPB6Gy06KNuHIGhSMmpW+/58RJsA/fYCsDoF1F3DETTCMXls2OW/YAaiviaijqacyu0ibIUGsMEK+tmb0/zEqka0cnzBeYhcyyBhFJDbMA/TbBJGMnR9zWHgwIG4807/k+qE48eP1yc1kEmISy9tcHSMjw9coS7x34a4xRFI04py50kIagXEMB11l2BLq2kRhmQNHSytBt8l2NGEbq6NuW9EXcw7W2kAu+9UffEmJESDssk9wXtyZiPiBj86LC7bMRlN4jGJ4ODbOz+EhThg+MJDQYW4K8185Tp8kZ7lKm5wwtI7AcN7paBvh3hccMs46oznDeIK8dqMD7B58Q7YJvdEcxE0crB6WUAJP4xKBngRbjQm81Dzz93NgcRmDprSF0MuGuD2HJk8+G7tHsxfvwel1Y4xkk6lwLRhPfHAJSOQGBqMwtO+i3FDLnZfr4SEROtwfZ/eWH7yBBgFD52WCBYYGIxKt4QBZ3iBw4HcVPRJOuzyOGmSt0IBuyhAxniv/3QMngyWCayUZ7SbcKAqDWsKlyJUZkCqqhhytuE8kCKWIt8aRtMDNDIrTXBwhUGG3oDpyQMxPqafyzNp1RvdxA3OHKxcg6ERVyNCmUh/jlaF4e0+j+GFI1+iwlpOxRZ6mxLBCudjs0gP6QZBCR3n+ZhtE1iUNUpaIOIMIkzwBU9FGyI2lSyDjM2k99tre+PqxMlYlNsQdVxkCabrJ4IDm12GcrMaeYYQnKg4jvu6JmJ4dEdMiJlKl12Su53ssYetMaiyq6ASbAiVc3BcEbjvH5l/CZaZoeJsLqcyu2hDiSUTsaooRCr64pjet4tdhEKKXZaQ+K8SGhVSPyaR7z4JUa2EGKKhRhlMWTVtgidXkGnHCiF2b+/2eiLY9qcqC9IqYcwrB0/GOo0RRdi0DHh1o2Mhx8AcKYdoNEJX26B30R0TMevV6Vj0zh/NmsQl469Zr83At8/94lPcMOTC/ugxoisuuGUswmM9J83VNca8fPW7+OevPa4C5oNZsA7rTJPmGkPED7LaBi7l4Vzw0cEQIt1TU5lqE5R7T6Ml0KadM8iid//EwCn90H9CL7fnSJPlgtd/w+8fr0BlbQMsaW6+8PaJuOWV6xCZEO63kWHQVNfrCAkJidbj4jsn458/G45lgUBqVkF5ZSj3cpxkLTbIiGhCpQQ0KoeTapW+3jSD1JkCRa83Y9fODCyYtxGiRgXGaHbeE/ovvVT3UdvJL9Xj7ucvx8jhnV0eX/bPUTdxgzOLNx3EzRcMRHyEo4aXmBiJTz+4CU+/sBillU7z0E5xeuSeObzBIsPH0K4eIUQJfmht86roOAezx7Op2KEx5L3+8OdWHE5Q0nc/tHMyrnzkYix+76/6T0R2NBtiZiGE+AgwShnEGhNs+eX4La8EYa/OoI2yRJhGhGfk2OwPtU6Fmn6pLuKGemQc7P1TId94yCXJiDTtZh7MQmyHaHQe3Q07j/ruK0iM837O/bdC5hUSEx3j3dbinnvuQXa2oy558cUX4/bbb2/V9UtItAUhtWMSX9RUGHBsh5++Gh+ERgejsrjlTYvT7puKm168Fgvf+SPgRv/GzbSzXr8eX87+3qe4YdglA+mYZPLMsQiL9v75WEwWPH/529iz6gDOBE19zyd2p+NM8uMrizFoSj/0GN7F7Tme5/Hjy4vxx2d/o6rU0SNB0uQuuWsybnrhGoREBfttbB0wuU+b7buExH8dMiYhTfNNghegsZpQzbnOSdSLnW02iKUVXl/elDFJdXkN9qw6iIVvN1/glnsiH/d86G6ksfKb9W7iBmeWfrICV8++FBG118vteybj/c0v44XL3wpIqNxW/PzW79TEgiQxDJzSF5fccwH+/Gyl+4J1wzQRMFSb8Ou7f9K+gZ4juuLaxy+DocoQ8JjEZDB77d0i4nehb6pLPc5stiHDbEPSpcPQOb8YB1Yf8JsYJfHv5bwTOEzuHgud8gj0AUbuNocusUE4mNeyi2QZy1CBQmGVGb3iQ7Ato6zJ69j8+DgczK1CZqnv1AoFx+LBiZ3o/aMF1fhlVw5yK0yIClLiqgEJGNDO0WD06fpTrSJumDUiBVtPleF4UY1fccPYzlFYeyxwBdxmoTc6s010ZW8Ju+d6FjiseRHY8p7rY1Y9sPMLoOQoMPkVYMG1vtdderx191VCQqKBkCQgJBmoamITIm8BOl0IZG1y/E3XoQ53JDx4gzQRtZ/gd/WkEbFmbTZqNudBtPhPAPCH8WApNH2iYDpWDsFghyxCBcN+/8dU4/4ShExpaPyRx2gR+/ggWE5VwppdA0bGgtdbYdhRCNFPdGhrIZjsMPzjuLgn2+VClQi5pAPMR8pgyayqT2wQrYJb+kPZd0cQPqMbNL0iG5bzJxxsqrjBeV+rrfQzauy46wIDaAdJF8mEjpexyN3YcpV5x2nN988gBX9yC4Rvv/22XuDQuXNnzJkzp9nblfjvMuqqofjsoXn1hWyW/O90HrHFhcA0rAOEYFX9YyTiXlnJQ25q9PfSqHmmrnjTrnM8Kk5XQGgX4ZhQrT0m0eQGcvOxf4zBDFlWMXUJ0gZrUF5YgW7hwdhf7L0YxFjskBe4joEYlsGCnDn451gOCne5NuO6vX5gCq6/+5L6hpwVc9fSiFBStJk8cxy6DXGMV75/YSEVNxD4IOJi7sE+hzr1+dwcrrl1EvYt2IpDVh6iwns+g1zGYeCwrtjbxAn/MwmJ5vYkcHj3t02Yv961sVVvttLHMovKcdub1+OVa9/3ue7sY2dwbCUh8R9jUEI8pg4EeMUBdNEW0WSESpsaW/I640hOUsOBrNE15dbMGNzffxh2lf8CE99w3NXJknC4qga9g3M99veI0KBv+I1+94ukLSzM+RPLC9bBIliQrCpFH12B2zrJz4nKCvAiiwqrc7MLadsX64UaG4v3Y1RUN6Trd8DM1yBckYi0Sse1lHdEHK3ehJFRM+of6ahLwPeDX8DuimM4WZMDOSuDTSzCltL1sApWRywxI9KEBvJx6ViLS8+tWZChzKalyxBTkjp4kYNMtHvtz6X9SiKQqi2GkuOxuzyLPr67/G+EymNwX+pVWFd8BMeqM8AwLGx2LQ5VhcFsbxC3H6rMwz075uPDQddhTKxjolXBymERvE1oMzALChSaGUSrvA9KSMqDt16uSlsJUrQNyXyeYMFicPg4nOuQVJC6lJCWrENCQsKVMdcOx5ePfQ9bbVIAdY325GznoVmfLi8ArFWEoPT+95WikOHUhiOwt4sCnxJNHaBJAyQReAtaubu4wQlLcghUEVpoDFaotCraiELcoNOb2LwvV8nxU84cbFu6G+UF3sczBF24FtOfupzeP7bzJHWkK80vR1RiJKbeOh6d+negz33z1I8u4oY6uOIqKLYcg717IoRIR0Ms7Dy4vHLID2fXpzKQ5mDN2jRcNud2bD6ajezccurYLc8ogeJ4AZhGaXDECbvrkFQc2JCGc5W/5qz0KHD4+N6v8dcXq10e01caaGNA3sl8KnJ4+5bPfK47h4xJLvWe8CchIdF8+k3ohXbdE5GVltuk15n/OYm7F8/Gj7/tRLW+QXSQFKZF8ZIdYDokgwlpELeJNpJ2XwKNXo9rHr/M7/p5XsDcrzdi6e97aGMKSOPSoO4QK6rBHM+iqaNMZQ1tZBEDcF5dv/EY+vdLwfad6VQ00S45Aqt2+Z6DFUQRq3efoCKHOrp2jsOi+fdix+4MnDhVBJVKhsLCKixfeRAWix28DBDkDfvjz1yEwLloNhiIkSHgg7qC23kUjKVhvGAPU6Pi8m4oClXh5HZHA9gv2w+iXWQo7ph3F7Z8tR7H/jkBVsaRwFdYMlwbpdK2n8CTF7yMV/56CgMm9aHpSOTG+zEzsQSpIQRrfLwBDnxyNGTH3X+HCjOK0dPpPXhCJmMxZWLzDUzOFOf6mOTnn3/GTz/9RO9HRkbi66+/brNtSUi0JuNnjMQ3T//Upk7UJHmtpQIHcj0uV8ppYkBSlwRkH23aeVMTpMaPWZ9j/YKtfl2qQ6NDaNMnIW37caz6dgPKiyoRnRSJqbdNQMc+KfS5Lx79vlXEDVc/eim2/r7Db6ITeQ/teiTi6D/NF5u0NX/OWelR4PDe7XPo5+hMTbkeP722BPkZRbjpuavx8f1zfa4753geBkoiBwmJNmHw1L60uTz/VAAmpU4YjmVh5qd34dcftkFf03BRnRAbjJw1u8mgwuPriOkCEQn7g1wnf/nYD/jri1WwkjFJC9n4yzZ0H9YZO/7aQ5v92/dMwvpfGhKiPWG38dj86z+Ydr/DNInQfWhnLMj9AjuW7UXGgSyotEr62f09bz1NizgTkOv8ZV+urp+jJmPKu967GRt+3orju9IhU3BgWdZN0Hdo81E8PvElvP730zTJgpxbyXDOX9gPMT/01bsldEnyWr/MyS1HjzE9AB8CB4VKjok3jsa5zrk+JjmXOe8EDlqlDA9P6oyX/2q7YvCJIv/RJv4g6Q/fb8/CTzuycXHvpjdAdo0NQrBajmOF/i/Wjxc6LqLJZzJ3i+sEwYKd2bi0Tzzeuqo33Z+WolVyeO4ShxPFa8uP4stN3h37JnaLxuzJXbAjszxgQcp3/GTM4NZCzXgpmKhCAXML4pcbU3zU/bHqfGDrh95fk7kJGHwHMOYJYOOb3pcj62A4YMJzUg6zhERL4a2Ov32ZClAGA0cWNV3cQGBlQNJwIGkYUJ4O2E2AJho49rtvgYPIA7LGjqbuVK/JpgKH1sJWZET+azshmpyOoTL/Fyy80VbvxkDEA4LBRtMGVJ3C6K2O4AnJNBGCr7aiemXz3OWsKhsK25fDRpxrK9SIzg4FE0DQI19pQc2GXMTOHghGwaJmfQ6qV3k5T4lA1V8ZUPeIoM22qu4RMO72E73dwsRM89FyBE1IRs0az99n8MR2kEVKCQ6EqL5AcApQ3QKDwuD2QJRkniFxHhEUpsP1z1xFi/eNsUfpYJjYlah9XR4XZQzMERyYUhEys9NBqsazmDn9YBbkIRoISRE0scEjxHWHXGcraod1okhj5RX7MmlTjZUBfv14OZZ+ugLDb5+A/UT8RQRcHlAeyacur850HtABCpUCJ3MdaRC+SM8rpUK/j++biz8/d3V5IA0xxLHo/k9urW+OsUfqAKXnBAbWDgg+gvtCBeC+p64EnroSb/+4DgvX7ve67PiBnXDLkO54aO1hGgXaGhB3IFJAby1OH85xeyy3tBI/bfCeVrU17TSm39UX1zx2KRa+/YfX5X54cRGNab3xuatbbX8lJP6rGGxWFBirEaxQIVqtwyenvkTPiKVIVTsJkNVA/6AsbAjvhgUHhntcj0Ymx5DIyzEw4mJkGfbDIhgRqWyHN47+iAjVTlTxaug4K+S13TSkOGwVZcg0hYFhapstffBT9m//Z+8soKO43jb+zMy6xV1JAgR3d4cihVJKS929pS7/ursL1F0opdBSo1DcXYIEQkhIQtzXd2e+c+9mk92sRuCDMr9z5pBsZmdnN+TOvPe+z/Pgt6KmRkQiYvAXdhMvq8IBIR4seKillsZEAXKJ0dtk4IU9WHD0N5j5pusVy8hoCoP3bCIHRlt9o+Aiu+4Q9PZ6xMhjMSC8C92czIyfgd3Vu1BprsC/ZT9QcUCVTY0aKKFkSV0j0PdvFRzXOtfXJOfMMXzjBHrz3ijyuNEuQYq6EnKX9Aon1dYSHKhZhGe6fwAJI8V7R/7FR9nrvL4fu8Dj5QN/YWRMJzqu9g3ric0VO3y+f/LaUsb3ggRDz91/0XKodifGR8/CytJfvP78grh5CJM5ROAiIiLnH8QNdO5DM/HNs4v971jvOy1ZorfBIpHS1IXmMNV65P29hyY9SHNL6UYgI5fxokGwKQLP/Zg7R0OyKZc2w//yzh/UzbSlAofMgRmQyqTUSTqYNDaSOPDmjQvowrArpEaZetME3PTqlfjz03/pY7xKBkvHGPDhaipkkOZXQpJfCfn6Q1TEASkHxmAB46V5NCxCgzuvH487Gxpu/ly0yud5jbl0GKbdMhH3THoW9XEhEFRyMAYzpLnlYFu5yH4mapK8QwUe4gZXNi7djpl3XoAL75iMZe/95XO/Tx7+ll47L3kgcFO0iIiIfwx1RmomoQvX0AbKp2e/1mJxg3MMuXzmQFw8pQ927M+HwWhBekoUnp36AtjUJDBy90kZRioBkuNgLS2HmqQFBeDD91fil1+8GE2E6SD06gjsPAycKgeSYhxzQwE4lH0Ks6/4gJ6nE2uiPKA5Rl1DYoTVbsf23ALUGs1Ijw7HkIHpdHNy7ZXDsWHTURSV1+DtXU33+KQcIWWZ4NtXA4oKHrXJEtgblo8kBgHyKgay1FhIjjjWFgSOQeXsruB1nmtMeeXV+FwQsGzt05CwLG3CWvzGbz4bpBbc+yU+3v8GbTgibqukwcofFm3g35dARH0+9CLbf9yAS1+6Cj/8vM3rz2+/YSzCw9xT9kRaxsmTJ3Hrrbc2fv/RRx8hJkZM6hM5N4hKjMDF905vkyt2II62Q7oZadAkzfA/v7mcjp0tFTh0GdIJEqkEx4OpSQ7k08SBV695H6u+Xe+R5jzrrgto6sA/X61FWyFpaqS+IdtLV77j8XqukMbPMZcNxwPjnoatQbjdVs5ETULMtJqLG1whzbjkM51y/ThquuWLD+7+nN42kPpFRESkbehrDTTJkTj5h0Rq8diMl1osbiCQ51523UjMmjcYu7ceh8loRVqnGDw69knA4nuuhIgAVP4EvA28fevHfseFlnJg0xFclngzjC4CcYlzfd4P+hrHvBxJYCPGF+T71G6JGDpjAN2cXP3MXGxath2Fx07hx5dbd10V5FIIUaGOHoVaA9gq/6I8J6Sm/OPjlfho3+u0znjvzk/xq7dEh4bPf+F9X+KDHa/QHoJeY7phz79Zfo9v9dMzLOjUgNp/39WOrCKaxLT0Pc+0CDLfdPs710MX7pmyKvLf4ZwTOBCuH94BahmHd/89hsJqEvXevphI4087QYQOS/ecgkrGwtDMldofVw5JaRR0BCM6IEKG5uIGJ7/uLYJOIUF5fdsbekxWOyrqzYjQyHHn2AxsPFaOrCJPEUZ8iIIKIVYdKoE5gHuEK/lCDG623oP3pO9AxzT73UqV7StuIMi8xGvv+9HRzOyPPd8DMz8A1r5Glrl970dSIAq2A5d9D8jFwVREpMVYjUDO38Cp3Q6RA0EbB9T5jvnyS0wPgG2YjY5scADg7UCtZ8HsjgBUHAHi+vpNKKhf1/LFBH/wNV7GbVsQnftWHoa9paj58wQVEjiRJmoQNjMDskTHeMQqJFD3i4E+kFjAC6Sd6cjAk8jteQq8pOmclHUy9F6VgfDiwM1XfJ0Fht2lNAlBv9X/79ReY6YJFIpOYdCMSAgscGgjJCFCMzCOpl/Ury+gyRcEWbIWmuEJUPWMOq2vfy5BioaBj7BYfTcPu6tjVZBwCmDgwyw9jojIuQRxBiWLut+/uIRO5Dgx9Ur0EDc0wjAwh3CQmJoKeeZkmdddrSYrWFMNuJPlsCd5b16UHsiDJKcEfJSOOq4xNXqwejPs4WqYB6TClhhGHQ/YGiNW/bsf4TYbqvolQ1C5LFTbecgPnoJir6fT/4zbJtN/1YomF2tfqOQy2tTSXNzghExCK1RyOuFNzAWMwzt5FTcQSA+qYBfoArAHFju4VUeoayhx6bjpwiHYcfgkjhd6JubFR4bg7jkjsfbz1Q53iHZArpK166Q9QUmSLJqxfNsh6jboj9+2HcTD983A4jeW+3XJIqkZWZuO4KklD9DfgYiISMuoNBnw6t61WJZ7AEa7YywZHBeCftFL0U1d2ph4QBr+eeKpzzAYG3MIxxOjsLWgo4fw9sKOXeh9j4SRIV07kD5mspthsB9GlNwGGySotkto8z45rp0emUWYrA4Haw9hQLjvmqTGWos/T7k2dAqIkPpPBZWyPDSsCTK5HRzbdLJkiE5SViFEmgdzsyGGFywgVZUNzoghL5+bhcWWig1YVvgTqqxN18kO6nRcnnwdElXJ9HuVRI1hkSOwrGATDPOrFAABAABJREFU6q0yaKSOuo+8ez3vPmYR0YWctYATJNSpxvV8G99xw0M2noWZl0LNmb2KG5o+szIcqFmPHiGjsLxgC5QSC01v8CbeOGmoxM7KPPSPSMX0+AnYVL7DZ3KEhecg5Xy/bjC3vkT8Mip6OmIVyVhb/jtOGo7RxzuoMzEqahq6h5wbbtg0RKONAvQ2Pl1E5D/L1U/PpU0lP76yzGe6AWMwQaiuA0I956ZZHpDXWGEz1sNOagqZhCY0cCdKIT1aDJuXeX06fJHHiYlIAHi1zG0BdMOSLZDIJbC1IJ37woaaRKkNbDJBXEl/eu03D3GDE+JOR1LuSIOwJS0KpsFpbg5xtpRIsFV6qFYdakjp8/1aZEHbqDdBqVbguhcuw/71B1GQ7Tm3ldgpDte9eDmWbTmC6um9YScXswbMvZIh33cS8oNFLXagbf+axPPz/efLQIlNwIqv1uC65y7Dr+//TQXvvvj4oW+o09/ji+6lC+AiIiIto6qkGp8+8h1W/7CBuo+SeiK9dwqO7T7RdHOpVTtu4klTv5+GIMK4y0fQf+VyKYb1dzT615TXoqDaDIbMJfnAGhGGrC1H0W+sb8f+srI6LFvmnkbphlIBxEaAKSwDDuSA6d0RgnPNxgtkDqmwxJEA7YrNYAPUvpOE6HNLa7F4+368u2ozylwMRvqmxOPpmeORHh1Bv9dplbhgUk/a+Co9VQdrnLbxmietAywh3sseSb0Ai1bi9iO7AjCHcpBGxkNXUQFpuR7GzpFexQ1OTlbUYNX+YxjbNR1//LTF0eRTZwDjZVw9kXUSR7YfQ+cBGZhz7/SAAoegbqT97EMSmK6fNxTpqVH4aekOZDc4hPfukYRLLxroJhQ5mzmba5LPP/8c1dWO/gfSUPbAAw/QzRd1de6NahkZGY1fDxo0CN9+++1pOlMREe/c+PIVtEn1p9d/Q3Wp53jdVuzN0tHaKnTY/OsOcFKuRcedcdukxnojECqtAt89v8Sn2IAIv8l40h5mTIZaIyxmK2RyKW585Uqa9nPquOf6eWq3JNo4+8vbf7Rb2obsNNQk3j7fFUHUJKRuufThmQEbmd+/+3PsXXsQj353NxXRi4iItAySkPnpI99i7aJNtGGd1CQZfVJxdFfrhGjOmkShkGHIKEeSMRFzl+aXBxzLj+7MQbehvtOPyVj412cOc4v2ojDbc+4mGMEYmVsja+dfP/MTqlzqmh4ju+Dej29FYsc4+n1IpI6KtYggr6WQmonPTIYQH+k2z8XXG8HtPw6mPnBvdf6hQmxdvgt9J/QIOPaS33nu/jx06JGC2fOnBxQ4+D33IOaIKirqcPv3tyO9Twf88s7vNPnCmWg45/4ZGDCpN84Fzuaa5GznnBQ4EC4dmIw5/ZOwt6AaRVVG3PG9b3fLs4Fg3KydzOqTgHkDHQu9E7vG4MllWbD4udGc2iPep7jByW/7WtkM3AxyGierjFTgoFVI8ePNQ/Dp+lz8uD0fRTUmhKmkmN03ETeNTMOek9V4YlnLB7F1fC8MNb+Li7j1uK+7ASFaLWDWA/t/RLtjrgO+vQToeyXQeapjoNcHdqiFvhRY/YJ/cYOTE+uB3+YDF/uPRRMREWmGsQrY9j5gbdaQ01pxA0l/SB3j+XiwTdXV+X4FDsaDFbQp/mzAWmmE4YdSj7sba0E9yj7ej+jbe0Ma3aRq1m9r+Wd6rF8hcvp63sQbtRZsu+Awhi/pAU114Ime+k2FqF2VT8UOgSBJEwRZjBqyVB0sJ3ynHDFyDoK59ZNejJQFq5RA1SOSbrzFcSxW5seu6TwmrBODYc+y2Ph4y0QORNxAnkeeLyJyLkImtqfeNJ4uLJII4Bdu/xi2hFC/z+FlLI2852wAU1AGtsR3ghD5y5BtOwZbtQG29Bjq9Ekfr9ZDeqQIkgJHUz/nMiFiiwuBgUwEuYgs+BAljP1SIa8xQrdoF2zJYbCHKMFYbJCdqPTqGjr5urGYcNUo+vXYfh3x5k/rYPdTk4zr1xFL7vrK73snk170HBPCIGjkft83ZwZ4qQBe0nCttvOQ5VVCuasAqDLQCS4icAjRKPHJI3Px7d878ev6Ayir1iNcp8K0YV1x+aT+2Pfnbiy83/95BWLYrIEIjwlFXVU91vzoeA9tRWAZWNIiYMmIwsmUKNz73jLMHN4dI3ql0UnByiAmmyrqDPjs0eAiwEnc9Xt3fIr7P7utXc5fROR8oUhfigd3vgatqgiTMm0wWSXIqw5HNX8KmcoiSGCDjLE3lhRkctIOliYOXNxpO6IjanGkOB7HSmLACyzCFUrc1schamg+ZxQpc18UJA3+rn/dLCOgxLiftOP4PN9tlXtgE1xEdA3PC4RSYoW9ISGhCQGRUt8LleQ9c4JDgNEcK8/iQG01Vpcv9PhZrj4Hb2S/gEe6PI0oeZMr5fKizSgxaaGWVPgs0WyCQ0BCPnPyWTskIO47k+eS3lHyOIn71UgC35yuKf0dH+b8jVB1LULV5JLDoMqkRKmemGK4H7/M5GgmSdekIFmZjjxjjptej5wXef9kYyVE9O3dOT2YiWw5q4SMVaB32FC6me0meo2QsaJYTUREpImL7p6KC2+fjENbj6IguwivX/+hx8fDHMmD0LMjoPQcP5j8UsiPFzbeo5LEhkBwhZVgdNEB92ObGS7xvACVSh502jN5X6MucSQijbx4MD579Ft6DF+MmD0YP73mO92MsG7xZioINw1O9yq45sPUMA7rCPUq/wniZoMFFUVVdCE6NCoEb296Hotf/w1/f74alcXVCIsJwaRrx2LOfdOx/mA+Pvxpg+dBOBbmPilUVCLL9b8mMeLiwTS1gzQ5r/95K9oD8vu2doikYo/c1Cg88PYyzBrdE0N7daA/ry4NnC5O9ll4/9d+xQ1OtizfiQX3fYW73r+hXc5fROR84URWPuaPeBz66qb7SvI31yhuiIkEYqMcKQsNP0NNHXCikHTTeBwvPDaUNoE0hyXzSBH+57QYjkPWoVN+BQ7r1h72O1bTc4wOowIHproezJYsCMN6eB2TaQOIj9pAWs/D5kfgwBitOJidjw/zPaMJduUV4epPfsKi2+YhPrTJqOn3j1dCbTGgekZm47oRSRmVVQM2VUPaKKmDjAJk1Tx4kvTj7cVZ0HOrndYVoT/thSXVt2jEyRe/b8WC5/9GbabDAJGIVOi8YU6Rx2uQ6w+h1+hu6NAzxW/KURgjwNMSxB2m3HdDMhFSEmHaxLHd6EZSNDiWoeIYkfaBpE+5fp2Tk9Oi57vun5iYKP5aRP5fIElds+6+AEe2HaNCLOKafbZC5tJ1oRrUVgTXnE8SKpwO2yMvGYKvnl7kd//hswbhq6d/8rvPxiXtcz9PhNtEVBKdFImIuDC8s/l5Kvgmjank8Yj4MLrOQ97D6h82Bk7/C8DoS4ciJEKH0pPlVCjS3hTlFOOZOa/R5L1+E3rRx6rLAotmqkprsOC+L4N6jQ1LtlLR6C2vX93m8xUROZ84ticX9416ko47Tkjd0VpxA0kAumj+VI/HGX9R1C5kbcr2K3Ag69HBzFOcCbI2HMLufw94PL5/3SHcN/pJfLDjZTqGOyFJCi2F75wMIdHLPJ1GCXvfTuC2ZNGegEAQEcar170Pkz6wCK+8qIoKHAZP60fNPbyZfjghc2Su4g5XGLMlYNN+eLjDvHzytWPoZqw30vpV7mWeU+S/yTkrcCCQArpvchhOVvqOWT5b0FvsmNMvEWuzy1Ba1zQQJIUpoZJLYLbakRqpxmUDk6moweliTIQE1wxLxUfrjns9boxWjhidDMdK/d+A1xitkJAJlXbovQ1RNk1aaOQS3D2+I92I+xD5nTj5cG3LCnBX6qHCMtk0PHrxOBoFjTe64rRgKAeO/u3YMqcBc74EQh3iEr+EJAEHWlAAHPgZmPAMEJLQptMVETlvsNQD294DrO00vockA6mjgcpjQOVRICwN0MQ6fsawACdrSojwBUmR8YPg4sb9/42t2OBTukma/uvWnET4JZ2b9i9vWRqSTWLH8Z6+b1DtMp7+vOe6tMDHKg3+tbnQphvUkAs6oOzDvT7fJ0lZsBbUwXTEu4NhIJS9yKJQ0wKJKGwITEx/BmPeZrHtRR61Detr/tB1cCQ3iOIGkXMdTsKh65DOyDVbYZzcKzjhXHUd2KPFYCoDN4xQt7jsIkiyixwCB0FwuIl6gSYjDM7wmSBRHaLErKcuxq4PVqAqrymxIS49hk4CWEwWJHWOx7SbJ9IJCSfRYVpcNLIHflq91+txY8O1CC+p9+oO1Nz1jZOwMCaFB37fPBE01EJysgKSomqwxA3EpZFfE6Zu/FqrUuCWWcPoZud5cC7uFN+/9AvaApl0eeyHe2gE9cXR16E9ECQs6iZ1gT3GsYhebrVi3Z4cuk0c2BnP3XAB4sMDJyHFhWqxfvFvQb/uym/W4voX5yEsxn/DgoiIiINaazXePPoYonRNY7VCakPnqFKEs7UI5/QOcUND4w0RNthJMgNtu7cgVALMiNmDushDOJQcjwOFl+PugX1xxLgLh40Cuuq6IEEZT48r52RQcoGFtKEyz8QXVww293tr0uRfY1MiROL7npuIAMwe4gZAxVogIdbefiDZEs2xCwz2VicgVpXt+zzteqwo/h2XpzSNqwXGcpjsCuTrw5CorgbnIswgaxFE3GAXmj4jcrllBZ5+7s1FCOQ7hhEgYb3JLzw5aShEjbVpEYEkQ0SqDJBxdhTUuo+ZcUpi3+rg6g4z8ei+98AwdiokERqSI5znMz1+MopNW3G0/pDHa5JUDiKk8JZC4aRP2EhwTNN7lhN18DkIT8QmLTB+8XUMERER/zVJ92GZOO6jwZExW4Fdh6ljthAVBkg4QG8Ec6oCDEl3cO4XhLiBIM0+BWtyOGyuyXBekB8mSUfu1FfpaZPNlt92oLqs6RobnxELuUIGs8mClK6JmH7LRAyY3Kfx53FpMZh4zRifDnzk52Rx0zVdz1tDf6mEg7V/qs80OYI9LgT2UBU4l2bi5pD1G01ok3mILlyL656fRze73Q7O5br+1fLt8Iela4JfgQNZ+P/f9/PpDcfsqHaqSaQc9OO7wh7pWCQuN1mwdlcO3aYO74onbpiEmNTA6aWRCeFY/Z0X8YYPiKvqtc9dCm2Yl2RtERERD4iD6d3DHqMOzV6JjwYT3yQaJtD15VAdhM4y4FAO6Zhu/FmvMd0w5/FLsGlzDhjmOPoM6ICkFEdqKPm7lCjkAW3dtBH+0+r1QTTDkBRSJ6zJAqHeAIEkUHgbmn3Ms0ksAqS1dlh1XuooGw/12qPYPq+bz1Oo1Bvx5cZdeGTqaDdXVgUvQLcyB3Wj0yA0rA+QQDhZjQBFJQ9FDQ9GYFCbxPltxCGlC6+QwtQ9DvCWUNqMY8dLoa11+fRlUghp8eCVcnAH3BvHopObkl5veuVKPDrleZ8NXFfcOhH/nKzCwSM+1nOsdnD5ntdrJ5OucTcNUynPzRQesSYRETn9EEf87sO74PB2R/rk2QwRNxCX7I1Lt6G2oqkeSugYB6lcQtOSOvRIpjWJs9GekNIlEWPnDce/Pu5/EzvFw2yyBkyyINd30sQrBFl/+YLUP2pdU/8CEV6TRA2yudYkRDy16NVlbXqt+PQYPPrtfJrM1141CbwI+IiYm2xE5DB/wU2ISQksrI+ID8efLWgI/m3BClz11CVBJXKIiIgAp3JLcM+Ix4Nqeg+GfhN6Yvb8qVi3eAtNr+o3sScSMhwpBpHx4XRsC2TspnIZ+7yhr2lFn5lzoaedydrse52EpLH+8vbvuOGlK+j3NqsNJXllLTq+IJdCSGiqDzyQS8EnRoPLLQr4/o7tDl6w4laTvHoVnpz5is+a5MonL6Gpqjl7vDQR1egBvQlQ+177mDypp9v3Ss25OX6LNcl5KnAgZBXV4L5F3httzjaOl+ux6eGx2HK8ErUmK9KjNOgc638iiPDw5EzqUPfFplyYXNzB40MUMFrteHiJp9LLG+0hbiCCiu25lYjSyqm4wRWzzY5f9xRRsYWUY7E73xGn2FrmDkiCgogbyORbbVMD1mnj8HJg09tAv2uBf54EmjUGuJE4AMhqSSyQABz+HRh0U3ucqYjIf5+cf9pP3ECoLwH2fu1+RxqeDnSbC8i1gCYOqPHtckPROpqPfCGJbWq0DBbSQH86Uh8CJRcY9pUjbHYnMA0T66xKCp5EOgdJeWINbHL/r1HSuRpqaxz0m9snQYgLV0CeHgJbhRG2ShM954jLu6BycTYEk8u5sIBmcDx045Kp6IQkVlhPNUsBCQBJf9CND0LsJuIBEStM/IxF2V4gZymPwvWA4PJfnPRnJQxnkD6TQRTtAxcblUT+G2QdPYUXF6xwzH6Q4t3f/207D8me42CCdC11a9YMEFtMkxECNBmdlDD4Ln8B9qzOgqHWgJRuSXRiPhD3XzYGMokEi9fsoeJsJ/FKBZhFO/BuPnn/gbExDOwJEQH3Y6sNUK/2bAh1TprsXrUfI+cMgbLZhIdZb6YLDMS9lkyCOWMqW8sFN46n4gYSGU0EGu2BYVBqo7ihOSu2HUG31FhMH9wF7/++CVab7+ttN5kKW3w1OXjBbuOx7c/dHovTIiIi3vmt6DvY0FyIJiCU02OM9giUrK1xUo3k4JC8BVZgYIUjZUAq2GGFBFrOjIFhuUjWfoUP89ybMnuEdMfNaTdAK9UiSp6MCounu6grMYpUvz9PVnnWLMeNkeijPenzOcXmaFjh6b4ZTPIDudyVm1QIkxmpUKLUpMVxfSQVI0QJvhtMCdsqN7sJHHQSFUx2C6osKtRYFAiVGemmoOkSniIG5+szguA1xYGcvloiw5CIiThU538R12D3fu3Uyc1QSS0wWB0/T9NEoXd4MsrMp1BpKUO4PAT3ZV6F947+AKO96RrNMSxmJozBnKTxqLcNwpvZz6PMXOB2bHK7UG+TQSc1e71tULAajI2e7fe8RURERFzZt+4gTezyBRULE7fswpYtlHqDrTNCufYw7BMyYQvxPoYqDpyCpMr73B5JIfg2fwH2rsmCsc5Im4eSOgc2BiINLnKljLrZWV2c50gjPmlMev+uz3w+1x4bCnO/dKJWhC0IgzdbjM6vwCE2LRrb/9pDkyWaO8YZzTas2LAfBcXV9PJ1osj/NZEPVYFXy8H6aBaYdstE2pxUW1nXukV6LxgHdGgUNzTn9w0H0T09DpOuHUNdXv01FhAxCqmVgsVmsWHXyn0YNceRzCEiIuIf4kbsU9xAmhZjo9x6VFxvKxmlAkJkGFDa4N8v4ZBjAB5/2N28bdCwjnjoqVnQaBVISg7HiZP+DYNS0vw3GnboEFgcRRtYXN+KVg06qjcvQQJMHROxAWfmYbMZYIvSUrMMKUn/3FdEr08GP2JiwvI9h90EDroILRXfKY9WgU21wRLCgZcwYOwCZHUCHPpvh8zbLg9wcmSKkAVk/ZJxQfcU/HjMu5GhE6ne+7kKcREQ8kvB1DrWODr27YCMPh2QV1SJ4oo6RHSJp2md7935KYz1TZ+rRMpRR3WS9DSqqh533f8tCpon81htkOw4CsZLsishJFKHSx680P/7FGkzTz31FN2C5YsvvsC1117b+P3Z4k4sIkLY+c9eLLyvbWnKZ4r66np8f9KxTmLSm5DeO7WxwdYfZMwlaxJ/f7EaNpd1ktgO0agsrsLCIJME2ipucIrEtyzfhRGzB9G0HVfI/cOqb9ejOLeUChzIv21hxm2T6Zouqbvaq8nZH6QRtsvgjphy/Vj8+PJSv2NdXIdot/owEBajBfvXHcSgqU0mXyIiIr55/+7P2/XvPnvncTw69cXG78nYMmzWQDq+qnUqxKZG00QXf6R29b+undq95b0+RGwRSFjRGsiY4w+ypu0UOJD1aKVG4XZfHwghKpScvN99QrqnYOjIzljxxWq0B12HdKK9BXmHClB2soKK4O7+8EYsuPdLtzkiqUyCef+bTQWDg6b2xb0jn/AQcNAU8ux88L0yvL6PCJ0Sc2Y7kpREzl/OeYHDFxtPwNYON39ngrwKPSQci+EdvSunrHYeNrsApczdbYJlGTw8JRO3jkrH6iOlVNRw6FQtvtrctmad1lBSZ8aDP+/DM8sP4n9Tu9DECcLfWcW4/6e9qGsnB/NhccC9oeuBrMNAp8mAOgrQt33xJSDbPwOGzQcmvwgsv8e7PK/3FUBkx5YfO3+LKHAQEQkGmxko3tO+n5VLs0kjlTnA7s+AgXcAaWOB3Z/7fr5UA0T5T5KRp4VAEqWErSzIRsOGHtj2hlVJAosVbDwEG08jpQmq3lGoXZkf9GvYJYFv7G2ClYobBEagjkZtgmOgHZWI8k8PwHysSTwniVEhbE4nCEYbTaFglRKavCAJdTS7MioppMnaFgsciECE19sA0eC6VZAiNLo3EN2bg1UvwFgO2AyARAUoIwGp+v9X1HDNNdfQTUSkPfnxj53gBUd7JWttiKz3gfREBU0jaE/soWrYOsbCmhg48r6gpJpOkPSf2OQ85Apxh7Db7B5NOiQV4Z65o3Dt1IHYtD8XZqsNx//ej79eXNqic7WlRoMhajQXIQi5HDaacpOHeUCa17AA74XS/HK8dt0H+GD+57jjnesx4apR9PE1P27EmzctdItIbQsZfdOgi9Bg3eLNGDStH9QhqjY3FPEyDpZ0P04aAH5avQfzJvTFPReOwCs/r/G6z5zhPZEgbXn05v71h0SBg4hIEBhteuyp3uz2mJo1QScxobciD3ESMzSM0Gj+bBOAWp6BnsgcBAEkN0DC8LC63O/HSvIRKdGh3NYkcNpfcwCvZ7+FJ7r+D6NjLsHPJ5/1eU5aSRTSNf39nnev0G6IkkegzNw0huabIhAu0SNF6dlcWW4KwZqyDMRoKj2a7M28JKBmr9Yqx9YKz9S2ZBWZbvTfzGnmTbALNnCMY2pyfGxffNcgACEZGJUWNZQSK6SuatkWGSsJsNiNWFK4BZ20LDhycfECSZyosfp2/AmRG6nAQcZKcHuXfnjv6NPI0TcJ8OIVKXiy+2UoMphQZCqHTqLGqOh+iJQ7igmtVAfeNgDHaoxI1lbR8yVOPVaBgYzhUW+XQ8Fa6f8X8lmTz9wqcKi12lBvM0AnDZx6dLYjCAzd2noMERER/yx5a/kZbXDjKuuh+3EHjANSYO4UBV7tKILYGiOU+09BcdD3YnTRsWLI5FIMmNTb68+JyJcksylkUo+kijvevR5XPHExFRdYzTZkbTqMFV94v2d2rZfMgzv5TLrzBhHQ+eNUTgleufo9fDj/c9z5/o0Yc+kw+vifa7Pw2qerYCSpGc5rlCzwGEbSJbyROTADCrUcG37Zin4Te9Gv29pYwCsksKb6F50v+mcPZo/tRRMpPnn4G6/7EMfFsOimZKNg2b/+sChwEBEJgqrSGmz8ZZv3H5Ixo2MKQEzinDfsRPjLk7l4l/0iQpsEDp1SoafCYXe2bjyKx+/7Hm8svAbzbhqDFx73be4WnxhGUx/8MXRYR0REalBRXu9zH+ZU03ovSfokY77XppwgLmuyEj3Umw96PK7tHQ/fM0sO6kzu4+nYeSOw5O3fYU+OAsOwkNfSGSvvTw5ULDVQW2fE6vnfg72hHx1/vcFYBcirfdc9fHwEuFo9FflNe/xi3PTMD9iXXdT488wOMXj43ydRtSuXpquGRodgzGXDERHnmCeMCNOgi8GA4u3ZsJNUTzLnZ7WBKa8BU+t7nquuqp4KEVsz1p9tiDWJiMiZYfEbwacN/39TSGoShQwDpzSlxrlitVjpdbW5cIAkVcxfeDOufmYurUmIyGHf2iwqJjjTFBwpwktXvoMP5mtxz0c3Y/isQfTxPz5ZhQ/u/gzmAE21wdJ1aCewHINNy7aj5+iukMqlNMnhdLPsvT/pWsaVT87BV08t8rrPpQ/Pous2LWX/hsOiwEFEJAhI4sz2P3a162dVV+leJ5C5rA1LtqK+Wo9XVz6Jyx+bjVevfd/n81O7JdHEIH+MuHgwPrzn86CN68h8ExGDtTeRieEoL/C/TkLed/OahIi8giaIua7qinqs+NV9vau1EAHGBTeMw11DH8WhLUfd5q+e/Pl+Wo8QEUN4bBjGzBveWEtEJ0VSMaG3hAqmsg7s7qPg0+KBsAajeDsPpqQSdZtPwVRzOXQBUjvOBcSa5DwWOGzKCTQ9cfYQ6sNNdWdeJT5cc5yKF+y8gE4xGlw1JBWXD0p2czYOUUkxs08C6kxWPLfcc7LmTFJvtuGRJfsRrpYhLkSBO77bBau9fRZQRksP4ePKFyBd0aB4VoYB8X2BnFU47dQWAHXFQP9rAV08sOFNIL9hkI/IAAbeDAy8ESg73PJjSzwdEUVERLxgrgXs7VNwB6S+GCjLAmJ6AomDgYItnvuwEqD7JSTn0e+hyHgdPrczyj45QJMDPA6jk4HXW0kHjeMBoW3ROoyMhWBxfz6rlSFsdkdUfJnld/Kf08no8+lp8AK4SCVNLQiU/OBEV64Oeh8ibnB4qrauIUWeEQr1wFhULzvmEB24YCsxoPLbQ4i4qhtC+sd6fT7ZpzXUby5C+MWdWvVckSaImEHa8nATEZFzjp1ZTc7YROAgcAIEL/HzJJVAuc1L/GIbsKZEwtI/nS5ue1mn9iDER+wucXz98ZWl2PHXHvC8gLSeKbjwjil0ksKVUI0SFwzpSp16Ppn8UovPlw9V08V2xg7wEoewoVHc4DKZxdQ7RAqCTAJbQjggl4CpN4MrqgTTIHAnLkRkkis0WgelVokXr3in3dw1pAopju06TjdCSKQWnfunY9eq/W06rj1MRV0T/VFQVoOaehPmje6D2DAtvli1A/tyHYlIabHhmDeqDy4e3hNHdrQ87lsiO+enAEREzgiV1nIq2HUVN4RKjVAwFmTKaqFsNt5KGCCcE8DZeVQLgJ0IubzckHdSlqC8zj3BJVd/Anuq96Fv2BD0Cp2IvdWeiThSRoEZCfeDJXFYfmAZFnd2vA4vHnoXRrvT5YfBnvoUFFlC0U8nQG+pRK2Vxb7KBOyuSIJaaYVaLoNW5l6DWQUJ9HY5NBLfTZTFJk9nu2h5KO7LnI6Pc1/xe66RsuhGcQMv8MjQRCBSDhjtFlh5Fhaeo6kQrYH0GnFEaM0KkHIWlFvUiJTV08dcsfEMCozhVFDhCykrYFh0BuZ16Iq/Sj+A0e6+4FBkysOXJ17HTWkPY1KcdzfqHH0pys1qej7RynraB0USP8i/JJ2CfM6kanJWTs5EirVlq3BZ8tWt+gxERETOP3b/G1zKc3tCRivV9jwot+eB18jpA2ydOeAMkDbCe6r19oP5+OrP7dialUfH8s7J0bh0Qh9MG97Nbb/QqBBMuHIUdUh99/aPA56nrXO824Iv0bz5rZ0EAdypGgRDXZWeNhWFxYTAFqXD8x/+TcWOLWmCZQwWsPVmrzXJ4W3H6EYgDaud+qdj39q2rQ3Zw9QBF8BziyqoSGPugxdSN9qfXluGI9tz6M9Suydh9vxpmHzdWCqgbikSafBCExGR8xnitEwMKDwgw0lmGqBrlsJCxhmOgUAaQZzDUIPBEUK1YDS+m/+y9p3Ezm3HMWpcV2zZkI1///a8pqhUMjz4xMyAibwcx+LR/83A/x75CSYvyQDRsKOq3gi7S9qkvagcSIz2LmYOMIYqy2sc6Q8ukHHrhuevxK2//u33XFNJwoXzPHge8ZN7Qth9DGaNAqRUYW3eQySYhsQFq8bPZ9Fg4CGpswChOoT8ehjVMzpDULivFTMWHrp8u7swpTlyKXU8HXvHZDz300YYTO612+HcEjz03u949+HZmHrTBK+HyDtwEjBZIYRqgYY0VCEmHHxmMtjcYnDHijzeK5ljW75gBW569So/JyciIiLSxN7VWefMx0FSaryxY8VeLHp1Gfb8e4Beg8j9NxH2koZTV8JiQjHx6tG0UfPtWxbi/xOyVvPc3Dfx+pqnqUHTWzcvbDfxO6lJDm7KphshPDYUHft1aPz+dHJ0Vy69F7ryiTlI6BiHxa//Sh8jpPVKwcX3TKfmV9v+2t3iY0sCrNGIiIg0GVSQNeMzARl3yRzD+CtHYsvvO7F+sWfvliZUjQe+uD3gsYipxsPf3I0nZ74Mi5eaJCopEhVFlY1ryl7rrhYgU8o8khrIuHXDS5fj6dmv+X1uIpmzcqmNOozpCdn6o47jVdUBNQFEGn4Ey06YurangZKSbMiMARg9dyjeuGGBR5onmbt66qJX8drqpzD91klej3HigG/TXaa6HtyubAhyqWMd3WShabTkN/PHRytxzbOXtvk9iJy7nPPdDUGYI5w1zOrjGbNMkg+aiwOyS+rx2NID2J1fjdfm9PSYLPrnYAn0lrYNru3F+6uPITlc1W7iBi0MeJZZACnpeHJirHKIGxji9Nr+ijkPJA1OqJ0mOTZjNZnFAVThTf/h/nig5cct2AGYagGF92JJRESkAanSrw9nu1Oy3yFwyLwQCE0BTm5xiJ2IsCG6K5A8AtAGjqQkyBK1iLmzN+o3FsGwvwyCmYc0Xg3N4DjotxfDXNs+wg1F5zCEze0M4/5yR6IBAygywqDsHQVWxkHeMQzmbN9R0upBcfTaYqs2ofzzrBaLALTVSkQU6FCR2CzS2IXUrCbBARE31IcYYVFbEV4U/BhI0hgiLstE5eJsD3FDIzxQ82culJnenU0ZLw3GwWDJ9/3eRERERDzGmmZfcybSvC+AlzZd0qQnKqHckgO24T7eHqGBpVMs/Zc07EsKKiE9WgzWGLzzDU8mTPqnOZz7nI06ARZ+pwz1dLUgyQfNxQHH9+XhzZsWIHv7MepI1Jz1P2/xOikU+KT5RiGIXeZdCELOXz+6I/gDJeCTot2bb8xWyHblQnLKcZ0j7/e7F5ZAG65p1+hQa7P3Rlw+aNNYG29RmCDrJonE8Z7H9sqgW63BRMXwYRpl4/v+4G4/6VM+yNpwGEa9EUr1ue90ISJyOlFxTQpNBjx0EofoKk1a5SFucEXHCqgXBFiIe6qXpnkilPDG9srt6BvWG1Pi7kaSqgd2VS1HsTEHUlaGzrphGBQxG5Hy4GKVO2vT8WKPR/D7qVXYVrkbZrsFaZpkTIwdjbf27MPemnwwpPmfAW3aMVklKDeqoJJaPQQAxZYQJLMVkLGec1AZmqG4JeN+/F28F7urcsAxLAZFdMa4mF6Qc1KsKcvE0Xrf5hAjo8Y6XsNUhpcOfYBCYzEdY5USQNkgPtDbZNDJ/LtUkzQEb7heColYo9isg5qzQM7yMNg4VFuUqLEpoAyQTjc1sT9uy7gSX+cR0Yj3ZDi7YMdvRd/jvs49vP5cxrJQSS0w2mUo1IdAKzVDJzPC2dokBY8+ykqEcWbU8DLsNobDLHA4Xu9oJBUREREJhkANp6cTWgN5adD3xfjL3ZuDCMs3ZOHZz1a4iQOO5Jfi6U//xuG8Utx/+RiP56xdtJk6pgbC3uBg7YQ0rNo533WT5GQluDrv12xvkDrk+5d+gXlkFw9xA3kFstQh+FmJkx0t9poY0bwmqS6tQU152+eryAJxIFiGoWnkhFFzhtCNOHmT9+psBiPuhh/e+0WLX3/P6oMwmyyQN3PDFRERcUdLxEjeCA/1FDe4/wFDsDdIZs0N6xHhgR341/97CP0HpeOhJ2eiT/8O+G3JDuRkl0CpkmHE2C64+LLBSErxn0jppHfvFHy48Fos/mkbNm7IhsViQ+fOcZg5qx++vedTlDdrIGLzS2CPjfBqCEHHUNLW4uVnY0dm4t5vb8PKr9dh/4ZD1HmVOHGPumQobWrqsWsv9hf4ThSaO7An/TfvVCXufWMpTT1FcrjbHI5U7yIYcUFRxcNKkop9XEuc4ggpFLD3yQBrsyN8dTHMKjtsqaH0dyTLq4bMyIFJ8m7e5GTGNaMx/+7JePjtXz3EDa7pRx8s2oCPnvDe+MOR9NdYEq/c7ILEceAzEuh1iMtxmGu4ctDFlVVERETkv8Q4LzUJccx++9aP3cQB2Tty6NoJWS+54aUrPJ6z+oeNZ6z51x+kOfeHl3+BvtrQrsl+zWuSyuJqVJedmTV0iZQD21CTjL1sON1qK+vo+oyuQTRPEsk/fvDrFh97xz97aTIgSTsXERHxDVl7PZOs+2kzeozogsd+uAd/ffovfluwArn786HSKug9/sX3TUdCRnC9W/0n9sJ7217CkjeXY/NvO2gKaObgjph15wX45JFvUXayfdaUidDqljeuxj9frkXW5iN07Bo8rT9GzB5EU3+IoSC5hvhi2s0T6b+5x0vxxEOLUEwMN8JCATKVFR8N1BuIohmweF+TZ4gIgpgGNqwfe93nZKnnY6RubMH1ixhd3Pz61Xh06gse4gYnJDno88e+x8srnmi1CR9DEoKapQQd3HL6RXUiZzfn/NV6eEYkftje5Jh6tpIaocIVg1Lo1yarHb/uKcIvuwuwLbcKdh83mD/vKsAFPWIxrkuM2+PVhtMf9xUs+wpqkF0SXKRPIKIlBrzPvook1jOOprHp2eJ9MbndSBoEqJtN0ClD3b/P2wScaEXEXMUx4K0ewPz9oshBRMQfMg0Qng5UttyVuFW4pkXE9nZsbUASoUTojHS6OTEdr4Y5JzjnN7/HjlVBOzQBqn4xtHFfMyiOboQaaxU21KxCriEb1rFW6HqokLIvGglH3cc0WYoO2pEJ9Ga1/LMDsJU6mrVaSq816dg84yCMOs+b16SDnq+rqVFi5YUH0XtlBiKLgos01gyNpxP9xr0+rgsNEIGGpbAesgTPAouRtc6BgXwuxgPlUHYPbtFGRETk/GZAzxT87eJcSRt8bI6NIghQ7shrFDdYMuNg7pvauD+pBiyhKlg6xkD17yFwVcHd89rSogGWDbp5JjU+HDNGO5ovTWYr/txyCH9tOoT9W48CQ9IgP1ICSZn7vf3vH6/EyEuGou+4Hh5Opa2BJDDYU6PpyTZPbnBDwsHcJQ5SY7NaSS6FZVAGmHWHwDXEmB7YcJguYrcHUrmETnJ5gywMKLUKGFvQ7NQcrqKeJlEIxOHWBwMyk6BRuv9cp3K46znZ+c8+HNzc8gmdE1kncWXa7fjmxIdQNHsNERGRJsJkkeig7owT+sOIlNY5dWRIlPof+0hvi4oRYBBIU73nuGQWvCc7mnlLY3Nqj9BxdGsLccoY3JA2j25O1hYfxb7aPNfLBj1f0vpUpncsCiZra8A2iB8IJEXhqD4aEVI9wqQGcAyPOGU6+oXPQNeQcTRRYnbSULoRqi152F72BvLq1yKCNUGukqLIokKlzf0+vbO2C8ZET4SVt+G5g++ixOR5vy9hBVhsLOotMmiapUs4ccy/NzUUkek18pDz9+UKEZzU2xWotwMFeh3MdilYhoeCM/o1T5kSNwoW3oK91Vv9e1oYj6PEVIgYhae5iU7GgG3QlNsEDlUWVcNrGzBQWY45oSegdhGRzAk5gaW1yVheoaK/t1GxHXEuQ5I4WpvG4XoMERER//Qd3wPrf/Y/VrUWe6gK1tRI6qLG1psgPV4GtpkzXbCQhd0JV4+mXxvrjbQpddXizdicqAXvbQAH8OPK3ZgwsBN6dXQfY+sa6gF/0EtFs+OSRlXWAvAyT5EDV1wD5eaWC8x2rToAA0lr8wIVopOLlpf3J8mvgCyr0O0xqUwCq8VHTcKTmkQJY13r5vMIXHk9GKMFgtK3wGBIz1RIm9VY2jD36/mW5TtxdKcj8a4l5OzJxVXpt+Ob3A/oYr+IiIh3EjvFU9do0ljpRpR3o59GqJK54ca4rNLxmGsR4AOTsakmmTStN93aQnJyBO69bwrdnKz9aTOONTgvu52ywQx27zHw3dPovE8jggD2VAWYnEJqgMHHhQNSDpldEzF7Zn+MH90VLMtg1l0X0I2QeyAfb9/6ETYv2456jQTSuV1g9ZIcM7xjKi4Z2AMmixV3vfIziis817qJKYdVzUJa7ymrJkF36mIe+miWJmc0PQlgiLjBBsiq7U3zWmRMTY6F8kQxuJ+bkngElRz2xBi/ZiWzZvWH3mDG+oaUUV/syy5CUWkN4qM911+kXZOBk75NseypsWBPlHiI4A5tycaulfvQd7xDDHKuItYkIiJnhr4TemLr77vO+o+bXF/HXDacfm2oM2LFl2uw+ocNOLT5qE9xwI+vLKPNtR37prk9Xl8VuCZpT/hwLb0mCholGLsdTHEV2IIyMDY7ti7fSefG2gPShGrzUZMQ0bNKq6Sf3elkyIz+HkJ+Xbh7GuCGJVtxgqQUtZAj247hqow78PXx98E5E69ERES8zuGQFMfW/J21BpPesf7KsiwuuHE83dpCh+7JuO/T29weW/HlauRltf39dBlCxBJTaaIBGatm3zONboScvSfwxo0LsOW3nbCYLOAkLE1n8DbOTbp2NAwGMx6593tUlHu5ppAkvi5pwN4jXs+D9iTsPw57307utZTz5zlFYIkIohktETeQmmvG7ZNRXVaDnX/v8bvv7lUHUF5Uich4z7pV3sp16X1rs7Bv3UH0HNkV5zJiTdJ6zvks2GuGpULaSnfmMwGZsx7fJQaLbh6CEJUUVXoLLvpgEx78eR82H6/0KW5wMv/HPVh9uNRN9VuhD94N6Uxga6NTapc4Ld6b0wUbuVswgPU+IFPaQ9zQqWkizSt2K3DgZ8e/vji0vPWvb6oGfrmp9c8XETlfSCcxumdobNc2RX6dLmr/8a3IbQmhUzpAPTDWI5Wg2FSI3459h6Ljx4AaO+ywoSqqFnvGHcP+cbn0o+QiFAiZkoqoG7qDkXIwHaxotbiBoKyXY8TiHuh6KAOhxhAoa+WIygtF/z87oec698kdJ9pyFSrig3N1UA+KhTxFB8Fqh2ANfJ3h9d7HbVtZ699jxQ+HYatqfROriIjI+cPcC/qBc00ZaAZXUAm2wc3AHq6GuY9D+OyBXArjiE5BBwTwoZ5ufixPFlHJQnbTUTiWwZgBHfHho5dArZShokaPq5/9Di98sRK7sgthDVPBmh6F+gu6o2Zuf9Re3A/68V1gTXJMPjw39w0azew6uV9FXO2CwBomh75rGAwdQ+jCMHeqGgxx/iQijAAuszQBwxssC1sn9+t3W+NDO/VLw/2f3eZT3OCkLeIGAukxGJvq596DfMZbjmPd4s1+39PGX1rfvFZTVofXr/ug1c8XETlfmBp3KSKl9ZCRgbUBaRAjNNvQxG73MuV23BTl9TnJqiScbt4/vMbnsGvjORTXaul5E1GDxc7BbOdg5SWwCRKUWEJwWB+HrPoEDIy8A91DJ1JxgyvFhj1Ylnc9smt/g5mvBS9YoOL0yFCWIV1RQ1PdYuSxuDhxHu7IeABSVootFbu8ihucyCQ8cqoiYLBJPYZKo02KYqMONRY5dJJoKFgdjDYJhCAa4ZUNCkReYKFvdmxXLogbiw7qZJjtRtgF/9cHQr3Ne61TaPR0SKq3ytFNXoWrwnLcxA30/Fgel4WeQBdJNe7e+hNKje1jLCIiIvLfZvY90+mCY1AEuRsZUo2D0mCY0hPWLvGwpUXB0jMJ+hl9YOns3226OUSQTBZ9X131JBQqOcoLK3Bb/4fwzu2fYNepCipu4EkCfRhQnwjUJQP6WMDaoBl45KEvsWvVfrdjVhZXBfVWmToDBBIOTYV9DsjlnSTvsRYBjFWA9FgpVCsOQL3yIJggUiGaQ48t+D4H4uTNWgUqoODKaiHJK4fq34NQrs9udAbPHNQR9358q09xg5O2iBvo+fACRqf7rkmIi7dt01FsXLoNdrufmmTptlafQ+WpauqOKyIi4p9rnr3Uc8wOwvWS3PgL5VVAdcP9qSHwXEZ6p5aN663hm2cX+/wZabrhNuwDuz8HTO4psMcKwG06AO7gCbBmKyTHCiFbvx+yf/dg/uVDMXFsN4/r3s5/9uL2AQ9jxRdrqDGHcLIG4R/vhnrnKcgFhtZDaVHheGTqaLx/5QxIOQ4rNh/xKm5wQuay6ByWF2R6AaEn7FCW2pGk1iKMk0FaZYW8hoe62AZllee6Bp8cTQWDruIO8n59MW/uYKQkR6LOYIY9iPX4qjrvad35tQH+D0glECJDvDaxPnXRq+2SICQiIvLf5+J7pwedLPf/kUBHXLVJcsPLKx6nST8leWW4pc8DeP+uz3BwU3bA5IP/TXsRe9dmuT1WXtggJjwD2Dslwj4gE0JsOHXqFkI04DsnwTakKwSFrF3EDd2HZ2L+gpt9ihucBCtu4DVK8GEat2uf8/c/eHo/309kHKnaxHWdJMedjpqk7GQFPpzf8kQ6EZHzjWtJTXKGSO/d4bS/xncv/NIux7n7g5sw5tJhHtezrb/vxJ2DH6GGHvXVelhM1kZxAzHZI/undkvCHe9ejycX309FVv/8ud+7uMGJWgmEugu8XGHqjeC2ZCFesEFLDGBJjVFSBXbHEXDHi9r8Xq94Yg7i0mKo0Uig1CJyLa3zUV8VZLfuXMjn9+TMV6Cv9V7riPz3OecTHDJjdXh7bm/c/t3ugMvMmbFaHC4+c4uCw9Mj8cqcnogPbYqBeWTJfhw8FfwkQJ3Jhmu/2I6eiSH47JoB0Mgl+G5rPs4WIjUyhCilyClrvfiA/E56REkgJXYWpwO5DkjoDwy9A8gYB2x8G1j9AmDzMplTtAtYfB2QPAS4fDEg9xK3ZG3jgHl0pWO14/8xNlxE5KyHVuBnIM6RYYGEgaf1JXiTDZa89pn8ZbWezmrWcgOKl+zFyNweYBuaeSrianF4cD6qY+qR37EEmUOHIFHt7vppOhJ4ETgQCo0GQ0cMAyNhUfT05oC/svAiHQSJ/0l4SaQSmmHxUA92JFMwcg6sRgq+3n96kSTc3dnaCRFItBqbAP3WUwiZfPoLKRERkXObzLQYPHbrJDzzzu8QmrnisaU1kO9oclhLvGggsv0sLAsaBawdoiDL9Z9eQ/HRAE+adQQy3DIChvVNw4M3jEe0i7PNs5+twPHCCu+vr5A6HLBVMtjiQyHNLqEN949Mfg5dh3TCs789DKlcij8/XeX/1LRSlM9OgyEzrNGplK23InR1IUI2HoZ+fDdA5d3hNBjssaEQGIY230QlRdCGqeJczwbSYDm25wSSMj1dt9sF4uiuU6L70Ewan9pnbA98snwLPlu+FRaX3yFjtkG5JRfHcsrx7JId6D22O5777WGvjhYk5rMtbFq2vU3PFxE5H5AwJshIN6IL9YIUkfC/gGfgJTDTKJ1momSLDoUWT9caCSPB6KiROJ1UmfU4WO1/8pgkHNh5BkSv5++2PkTq2fRSYCjCnycfBMd4v75FSCtxWeqjSFQPdnt8d7X7orA3VDIb9hYnoEN4BRQSGz03s10Ce0NCRoQsEU93uxfEU3XK6meQpisH1+z35g+DTQa7wEIlsULaIGZJUMZhatxYjIsZ4TgHiRoqTg2D3ffcFxFwhMui/CZ0NCEgVGbCFG2h17QJJ3OjjuO7wm746cQu3N5lFM5V6H1FG8v79nIgFBH5L9NtaGfM/+hmvHHDgoD7pnRNRF5WQcD9LN0THalxzWEZmkhHksmkhYHnl0bMHozb37kOEXFhjY+9fNW7KMh2NHTyWjnsUsAQR9LomgZGuwQwqgB7jYDKUgsemvAMeozsgmeXPUTHBbJY7A9eKYNpUBrskeqmuXhBoK7aVBjekIDHFVZCvqXlqQ2uJHSIRo1ajlIf5lT01W08VETQ4KNZKGd3LpIyT48RC1lAV4Uq0WNYF8y5fwZ1vVvw80Z8/ccOWF3rSlqT5OBwfiWeWrIdAyb3xlO/PEgbwJpjbhDxt5a1izbh/mZOiiIiIu7w5O+z+X2Q2QqomtadvUKSG064jPNllRDio8D4SHKQyyWYPL1tiQ2BIMK2vCz/69tkjoc04oBsfgiL8axJju3JxWPTX/JoyJTUmBG6IhdYkYvXVj+FXqO6uf180z7PRInm8FIGHDET8XrOQJfQCLz/0DxY6gyYPetNCKFe1padsCz4mHBw+SWND3E5ReANJvApsYDWMVeW1iEKcy4agMkTHYmqYToVVAoZDCbf80HEfCU2Uuf1Z+YAhh4EwYd5i7HehL8+W425D16IcxWxJhEROTP0HtMdt799Ld6767OA+yZ1jkf+Yfcks9PJmMuG4dY3rkFYTGjjYy/MewunjjeNx4GoKq7G/WOeoul5Ty15gM7Rk3SiMwEfFQq+g2Pt3AOVAvYeacgw6FFVWoOastb3JZCEtmufuwxthY8Ogb1zEgRdwxoQL4Arq4auqBy9B3akNQlZb/rk4W+x5K3lsDVfzxeIY/dBug29cAAeX3QvJFJJu6+TrPxmHW0yFhER8Y3H3+dpQqlRYMJVp3edhIz5hUd9i4tbMsfirSY5tPUonpz1qk8DO2Ky987mF9BlkHvv1vatQcxJhemAat89zx27JeGNJfdSEcLlqe0z15LeOxVz7ptBxYGEiPhwyJUyv2MvSSWNTIzw+rO2jNlELPLPl2sx884AxuZnMWJNch4nOBA6xeqCaoNlz3BD+fTecdh+ohK/7i1CWZ0ZRdVG/HMo+BtkV/YV1OD2b3fh76xiVBn8N3meSYZlRGJsppdFjhb+AS8/ZgK0Pm7I24q5Fji+Gtj0DpC/BRh2N3DvIaD7xb6fk78Z+PsR7z+Lb+MkH28FTDVtO4aIyH+dEndHtlZDXEXD0h3/evyMBbrMApRNi6unA95gA4IIuuFCfMfCUyQMWIV74U7SBYoX7EbkcW2juIEQcUqHwb92RVixYyL9YN2eVkWOSePUCJ2VgbBLO0Oe5nKDLmGg6hON6Ft6gdPI6Hmx6sCR8pydReRJx8QRz/IQnBZ1DagGxyLmvn7QDIlvVDqTf9UD/LtHkXMjwgjv78HPYkIQmE+IzkQiIiLBka5RQrl8F6T78sHllUOSUwLFmoNQrj1E44Gd2EIDN/WbB6TD3Cc1YI0jKfDtDkSbdQRg0ogu2JVdgBXbjlAXt5MlVdi0P/DirRNrpxhYUhwTEQc3Z+OlK97B2h83+U0y4BUcTt3SDYau4Y3iBvq4RorK6amoHhYD5cbsgK/ttz+VHLfh2P0n9aZbWyCOdAc2HEZolPeF4DYhAIYaI7b9uRuLXl2Gw9uO4oZpg/HHqzdhUnwMFLsLoFp/DCE/7oQ8p7zxaXv+PYBPHvrW6yGbR2G3FOIYYiFNESIiIj7Jrl3v8dgxi//awS4AOdawxuZ7AssoIJONwbra7hCaiR44hsMNHa5FqKxpcfV0UGUxgA90VWEYyBBgXkZQQcK4X8dOGUvx5uEnwDH+zSAOVy/zeIynajz/9AyPwyM9ZuG2jOuRquoKg01OP18ZK8W4mEF4qed8aKVqhEhV0EhUqLfKghA1OGoXhn4mAhVMVJmVKDOqMDpyEt7o/WSjuIHAMRIMCPcvMMjU9UaYLNLrzzI07gK6BFUN0lTVSJP7NwvpqKpBqqIGOyvOTAS4iIjIuU9Kl8TAOzGOe8FAEMdqS0f/8zG2rsE144+dN5ze25KG9tqKOuQeyMee1VluQl9jtLu4wRVLCAOr2vGz/esO4dVr38eqb9f7XRgVZBIYxneDPT7M3WiIuJpLHWkR9NsaA2S7mgTprWXw1H4YkORd6OZEkl/uU9xAIMkNR3fkQB3SeiG4Pwc9fZUBW5bvpDXJ0V3HccvsYfj1jRswOiYC8n0FUG48Ct3POyHNb6ozt/+1B18+/oPXY3bsm96mczLpzQFdckVEznfWLvbSNFkawCmazEHluYub5VIO/dLDvaaPSiQsHnxyFnSnYexxpbq0NijRanSy93tqJyqtkhpvuJJ3qADzhz8e0G16+YIVHo8Fk4rQPTMBD9w+Ef+7ewq6dW669inkUkyb0BPvvnApNGo5wmPDoAwLYj1C6rlexZ6qhGTLQXBr9uDywan4dMF1jeIGglwmweRhXfwedkTfNESEeKa9EjK8CRabwfhxRD2w8VDA54ucGa655hp6/XRuIiJnGyndAqeUkrVfQ33bUsmajhXcfmMvG45dK/dTQUJdVT2yd+bQ9Y7WQI7z5s0L8c9X6wJee9oLkgDkDyFciyFXjKJC5rZAaqy8rJNQqD1Nl4KFjwmFrX+nJnEDgWVgjwlDVedkbPxrN358ZSly9+fjxpevwDcnPvS7vkPMmr597mevP+vYp23rJAbRDVxEJCDrf97S+k+JcRcw9JvQE4wXxx9yf//od/Oh9nEv215UlVQHtV9Miv+aRB2qAtustjq+Lw/3j3nSp7jByfKFXmqShoQHf/QY1Q33fHQLHvj8NmQOzHD7XKfdPAGv/fsklBolopOjqAihrVz19CVYsOvVRnGDsxYbNXeo3+eNnDMEWh81UXqvlDadk1iTnL+c8wkOBGsQkw+EUzXtc5NMUEhYmPwMMBzL4NFfDsDe0EAq5RgMSA1v/L41bM2tRHpU2xo1CeRSoZVLUBuEW0MgOkSocfXQVHy6PjeY/l2f1JrtQL9rgTUv4PQgAMfXAHmbgHk/AuljgZIAToH7fgLGPw2omjks9pgD/PMkYAruwucViXencRERkQY8HC5bQGwvRyoDiSskwimZGtCXAvmbgIpsh6V1WBqQPBTQBbHw20ZI+gAjZSFY/Y+SuikdUPP7cfB1PhaZbQLKPzuAmPl9aWICoXZVPph63qeYoMvmFGyalYVqq6dLt7yDDoad/kV39hozzMeqoRkSh6ibetLv7QYbJKFysEr3WwhFRhgMexzO2TWRepzoVoyq2DqwdhbR+aFIzYoFEyGFUWrD+uH7UBtlAMMDUflhSN8TjxguDqGTO3iNJNWOSoTpcCWspzwbgFiVBKEX+l5QVQ+Jo89tLd4KLBERERFfzSikMUd2xL9DdsXJclIs+B97GMCWEQvYecj3+Xa3U1TUwlqlBx/mOeFDqg5GJuB/n/4JvmGxSyrh0DsjnpjlNGux9Y+lcwxkeRWNDS6+nBec1A6MhjXKt5tg9dgEhG4pga7eglqN70kWziL4XXRlGurAxI5xGHfFSPz+0T9BCfh8Yao3YfL14/DDS+0TT+qNHX/vpa5DL/71GHqM6IKCH7ZAeazY5/4rvlyDa5+/jE4auTLx6lH4/LHvqYteWyK5RUREfGMVPP++Cm0a5FpC0EHm3bTggDkCFbwGnTUXoFvIOAiwQSfrBikXgvSwAqwoWYWsmiwIENBF1wUTY8YhRd22Sd1giJRrIGU5WHk/k+sCcHXqHCwu+hy1Nk+RLxlei/RS3LPzM3w19G5wRDAO4IeTy8ExgedHqi2e4rou2gxsLN/h93mHysyw6U/iqs598VKv+SgzV0FvMyJKHga1xH1s7BuWjo3ltQhXGME2E1M7CZPGglEZoZYUQC2x0vdVZVGh0BiCJFUnXJN2gdfnTYy5CEfq9qHY5Ol4rpGEYFbCVT7fw4UJQ7Gr6ij9WsVZECYzQUqKoSBQsHZIGj7rcxaBgeAiyG/tMURERIKrSQL/PaHR0dMeoQGvVdA6hiupAeNyL20P1wBy/8tHtkgtGJkEgp/XlcgkeHbO640R9jKFFF2HdHbbhzcbwcv9/51bwprGwk3LdgRc9LZ0jIGg9T0HL7CAfG8+1CXVMLVDU1JsWjQumjEAK2a/Cmt6jMfP2fJayPacCKqhaNI1Y7Dk7d9xutj6+y7sXZOFl/95Ap0HpKPgx81QnPSe8Ecg6X1kYbt5stzk68bg66cXtd6Bj3E0t4mIiPgXAnlQVQNU1gDhno6hVEFAxA08jxm3TaIJOsTQgfytk3EzJ7sYSxdtw+4duXReqO/ANMy8ZCA6ZHiOW+1NREI4bQIi5+MP4vz92vUfUudRbxjqjHh8+ot4f/vLjWMImR8JJlUm76DnvXyfzolYt8u/Y2rZyv3IyinDjNsn48NXLkdJWS3q9WbERuugVrmPjT36pGLrLsd4b1EzMEazsKpIAikgr+KhKuORlhSByvJq6Gs8BQU9B3fEVY/M8noeN84egh1Z+cgv9ky4iApT467LfIuyL5zaB/sP+nZKZ6rqwPppNibJqec0Yk0iInLGsAZhqkPEOXWV/k0fgoVc+sjlwJ/ehzTOPnHhK42iINL42WVwpza97tpFm8H6SEZqCWR8lcg4mA3+76mFIJp+Y3p3wISZ/dvWjNxQV46/YiSWL/ynxc8ln7CtS7Jv5YlKDltqLDb/ugN7V2fRdKUOPZKRs8e/KRc5l3n/uwhSmbvIccqN4/D9i0uCq4W94CvdSkREJEBNEiSz50/DoKl96RhNmvLJWueRHTlY+u4fdF6CCLD7TeyNWXdNQUrXwAK5thKVFElriEAi0TvevxEvXf621/t1Qn2VHk/OfAVvb3y+8bFPHv4mKEORfC81SfdeSdixzb/5RsGOozggmHHh7VPw7pYXUXyiFMY6I2I7RFNhgyuZgzvSMTZQOkPRsWKv68wkqejSh2Z6fd51z8+j69zFuY7esOZi9etfvNzna06/dRLeuDFw8qwvxJoE5+06yX/iat0hUo1QlX/naCIwaM/kg2k9/bvaESGDq5jBahewKcf3JHGwlPpxSg0WclbtIW4gqOQcwtQyXD64bQvyHaO1QGx3d/ne6cBuAf54ADDVAmUB3CZsRqDYi4s8aZa+5EtA2gbl4LaFrX+uiMj5gKaViS5SFZA23iFgiMhw/L0S1NFAl5nA8AeBEQ8D3S85I+IGAivjoOzp38FNmqyFunc0dGOT/e5nKzfCeMDh7CzYeBj3lvndP6xEC3W1AjLW02VB1SuKii8CpU8Y95ej7KP9qPknD1yIHLI4tYe4gaAZ7nAuyutSgg0X7UdBlzLow0yoizQgp28R1ly6B+Xd9dgz8AgVN9D3wAKlqVXYcuFB1F0p90iocEIej7q5J7SjkxrPmYhGVP1jEH17b0hjfI/Hys7hUBAH8VaiyGz9c0VERM4vUromejShN0cql8C4L4ALM5lUaVjrtaXHQPDThD7yosFQrDsErti9sZRMzNg4GywytlHcQDDDjs15J2FTtqz+tYe7j7PVpf7TyOr7+He2EGQc6ruGgfltH7hq74un0lP1fhMcSEKGE7lKjoi4MEy6ejTa+jtM6+n/WtwekAmu9+/6DNVltXTyyB9k4f7EAU+RC2lMeOzHe2mDWGv59f2/W/1cEZHzgWi5NxEtg/XGROw2RsPAN927Vtnl2GqMwQlbCBRcGHpHXINw5UBEKIdScQMhUZWI6zpcjdd7v4I3er+KG9OuOyPiBoJOpsTEeP9unwMjO2BMXA+MjppBUxBc5/iNNgmK9CEw2aU4ri/B+tKDjsftJmyp2AMbubEPgIz1NOwYGT0IGonve3kyrVZmNuK3E4cw5+9v8f7+zVTYkKqO9xA3EC5LHQ6zXYqTdTrY3S50jqQGi51FilJAvPIEQqRkfk2gYUARcgN6hZbgloyBUHLeHepUEg3uzHgKY6OnQ81pG96THIMjxuKeTs8hSu67hh0Z3ROjotIRraij6Q2EarsUtXb/jcN1NinyTDqMinWPrBYRERHxRVrPlIAubaS5p07CwjCpJ4zju8M8KAOmkZkwTO8La1o0eDkHU7IOllhVUKnZIy8e7PfnxNHUKW5w3gvvWX3AfZ+wwO6gtghFs4aoev/7p/qvScgFgDeZYar2n0AULAqVHDEpUZjUOR6K1Vng8srAVtSBK6qCfHM2FGtIsl9gcVsyqUna6GgXbIPCB3d/horCSpT5ETcQ6qr0OHnYU8gfEqnDI9/eDamslT5qAqhIXURExDfpvVK9/yD7BJB/CjC7NEPW6YEjuUBZJSLiw3DZI7PQe0x39B3fs1EUlt4pFvc9NgPfLL0bXy+9G/c8Ov2MiBsIYdEhGDK9n999Bk7pg6EXDsRFd3sXHTs5uisXO/52pFbXVtbRJslg8JaQM3VEV6j9XDsZowX1W3NoctD8YY/h5zeXIyZKh/TUKA9xA2HOxQPpv/pYFlVdJDBFsLArGdhUDPQJHCq6ScDEKlGrksMepYPg0gBKBCAX3z8DMoX38wnTqfDRk5fisin9oNM4rosqhQwXjeuFT5+ah/hoL6KXBiaM6Yq+HX24fxstkOzz31g66IK+fn8uIiIi4iSjb1rA+0OpQhqUMC1YyLUjkOjCtZmVCHSb1yQthQj2fDW+tgTi9B1I3ODYMXAtQdJ+kjonYNgs/59HMOskRHTQGkiSBNT+zV75xMjGtY8P7/0Cp46XoKrE/5oTWZM6ddyzmTYyPhwPfnlHq82cyO/xn6/Wtuq5IiI432uSAJA5krkPXog+Y3ug77gejWvonfun46Ev78R3eQvw9fEPMH/BTWdE3ECISoxA/0m9/O4z/KJBGHxBX0y/ZZLf/UgKEBFpECqLq6jBXTCovNQkF0zvDYXSz3qv2YKqrBP458u1uHPQI/j1g78RmxqNDj1SPMQNhIvvmR7wPEgZ4k3cwEk5XPLAhR6CMidkPf6dTc9j1l0XQBPqqDNVOiUuvH0y3tn8Av2MfTH5urHoOtTd9KQliDXJ+ct/QuCgkHKYO8D/YEcEBu3J6iNlCPM3uJwmOkVrIW9w7m4PSNJEayGD3cSujpjqx6d1xfRenpHUEpbBNUP9X+xClFJM6xED/Plww6LzaabiGFC4MzgxBefjd5w2Grh1IzDkDiCys6OROqkFhQJJgKjw7wgiInJeE9cH8NFY4pPwDKDfTYAqwALm/wMhE1PAhXp/P4xKgvA5DpcIy8m6gMcyNqQR8CZbwFQIgtwgRbo60+NxQcKg7ioFtk0/jLWX7MXWqYdglfnuJK1blQ/TMd/OrLJELfgpITgwItfr3YVdyqPUdsrrcwVGwPqalbDy7kJE18kmInIImZyKuEcHIf6pIYh/aijCL+4ESYT/ZmL9zhKYDrUuwYGIKdT9z8wCj4iIyLkPmZiZGKDB3koSHnJKwfibsHZNV5BwsMeGNv7IHqqCaWA69DP7Q3/RQGyy2aHqHAfF+sNQ/r0Xsl25kO3MhXT/CQgutQrPAqZwwBTFwBLKwBLOwBALWHS+775dH2esdo/JLDJhbA9RwhatBa9yX3jlvQjhmmNXScAardAu2wfNpuOQFFSDK6mD7HAxtEv3Qr3yIJhq7y5OXH45JA3OEGTxd8iM/vTrO9+/gU48eXONnRVgcTwsJgQDp/bFgvu+wpmARJWeyAogdmmAk0p8Lvwv3Ps6nURKykxAYqe4FjlPkcWDUpIoIiIi4pVuoRMgYTzv4QUw2GeJxpK6DPxQmYm/9MlYZ0xAsV2DRNUgTE96H1ppKwXbp5H5XccjWuFozPeW8PBc3xn0633VRSg26HCiLhwn60NwojYMhfpQKm5wsrH8MP233maATbDhlDkEfADlXAftOI/HZKwUU+NGQcYJkLA2SFg7WJpsIFBxg94mQ7jOgDCto4n11T1rsbPU0+HISa+wFExL6AMTL0NubThKjRoYbRwVD8oZK9JVZdBb90HNWeim5UyQMY4aRACP3woXwuanJiEih+nxl+OZ7gvxQo/P6DY36SaEy/wL2leXrkOOYRdkHA+uIbmBB4tNBh8NRg0sK0uDRhaKC5N7+t1PRERExAmJgHeNjveGWcbBOLoL+FD3BVVeKUXVtHQU3TcAZdd2R8VF6ajtwMAU5v58O+dwpDaFko3FukgJpH3athBtD/U/t0NwbQAldOqfDtbP2oYQRNO96z5tSRIgDVyDpzmadu/9+FYMG9wJim05UP6bBcXGI5AUVEIm4wI27EYlRaDPuB746IGvcSY4sj0HhQEE164L3N4YNnMgFux5jTrFJ3WOp1vmoOCFee/d+SmqStqQlC0i8h9nyvVjqTDNK0WlwO5DwK6DwI4sIOsY2Np6Oh69uf5ZRCb4T9/8/+DGV65EqI8mfJIWeveCm+jX2Tv9u5cStiwn67xAbXldwFQIJ2MuHe7xmEomwaXdUsF6OQZjskK15khjgiipDRbe/xWO7vJ9fv37pGLY5EzUJ3ofN3kpgy1JHAwjOsMytAvME3vD1sGxBkHexzu3fkSbXd2eQ9LKGwjVKnH35aPw1we3YuVHt+Ofj27Dg9eOQ3SE91rPydJ3/8SBd3+HZPcxMOU1gMkC1BvBHS2EdFMWGKPvRmPixDrmMs/PTkRERMSXoG3kJUP8fjjWIByuW8KhrdlQN6tvKKfZW7XLkE7tmkjm71BsqWd6jytyuQSD+qfRrx/84g70m+jZwEvMkgKtk8Snx9D39emj3wV72s1eJAjxs1zauP60f90hVBT5f29OfIkYRs8dhg93vYqpN02gayRkrYSkVwXLW7cspIJJERER71xw47gWOeeTddthMwfgjXXPICymaY37bOHm16+Gzse9c2xqFO5873r69dHdwdckRKQVKBXCyZi5wzweU6vlmDoqA4y3Y1iswKHcxqgi8jrv3/Wp3zVmUhOS5Ax/HNvtPWXUbrXjzZsWutUgBNfvye/1treuxeKyT7G06gssqfgcd7x7PRU/+OOn137FwU1H0BrI9WlEAJMVkf8urbRWOfu4d0InHCyqxfqjng0asTo5imvbTwFMqNC7NyWFqaSY2iMOxbUmrDzkqRxtL2JC5FCRiLIg3H6CIUItw+jOUfhjfzGMVjtkHEv/DYYZveKRGulQY8kkLN69rA9uH5OOX/cUoc5kQ8cYDWb2SYBOIYVGLsF7q495HIM87625vaE4uR6o8XQmdYOTORIY2gN9GdBhJJDrR42rjgISHM1SXgnvAEx63rERtnwInNwW5AkIwM4vgInPtuy8RUTOFyQKoMelwL5vAb550z0DdJkFJAwA9KWAuR5Qhjm2sxSSfBB9ay/UrsqHYU8pBAsPSBioekRBNz65sUlfcHG080mDYI+kKDByDoLZ/5jNhsjQVdu72SHsWFG6FPn8cSDB8ZjMJIHU4v+2QL+5CIoMzyLEwltgF2zI614CtLL+twhm5OgPo7OmO47UH0BW3W6UW0ogYSRIVXVE75CBiJBFg2EZMD6SHpojWO2o+f14q7RznE6GiGu6gQ2QECUiIiLiyvUvXY7cA/mNjg2uRCSEU3dMxmKjjS6m4Z3dm4rIxAQRNzQb1gXOoRqzxYXCPKQTUSg3/qyCZnomQCoAsgMnESaX0snc7EQtNh1xTGyQflNzhEPY5gbLwKp1iMzkDeY4jcMleQlnrLMAyAvcJ5i1fVNhmzcQdc5D8gIkhdVQbssFV2eGtNwEW7h/lx5pmcMVgiwSJ5kF9IiNxoYlW6l7EmkQMlvtUKw9CHtSBGzJkRBkUjB6ExU2kMQK50sTUUl0kkPcSBzunlx8P47tzsWaHzfCUGeiTkOkyYsIUEhkNHHaaw5xuX3467uwe9V+VJ7yP5lOGguCidkOBhJh2m1YZ2Rt9D2ZQ5wuMvr4Fowndoyjk0hOfnjpFxzakh3U65OF8z8/WYWrn57bwjMXETk/UHI6TI1/CMuLXoRdcP+7Z8BiUvyj6BoyDpXm4zDZa6CTxkMjPXvFsQmqUHw38nq8f3gN/iw8AJPdBjkrwZTE7rg9czT9OcHGOy5EdoGF3e7dYMO5j06igZyVwcwDucYIpKu8i6ZUklh0Cpnm9piFt+L1I+/iQK0jXdPRo0oSFQRY7SzqrHLyHf1ZmM6A6no1BIHBV0d2oV+0Zxqf3maGlSfzWo4FYSIgECBAK7WABY94eQ2krPtcGnlNJWej116zIIXBXousmi3oEToMy4u2YWnBJuTUF9PPaVR0T8xLGY0OmliwDAsl52Xh3Asmuwnf5S3yuli9oi4OqdJ6ZCpqPZ63szYKi8pG47PhV0AjbaH4/yyD/N7I1tZjiIiIBL9Qe+JggdcFQ+LoXZgYDjQT0JLb/vpEBjY1+Vtr+nsTpAwVSQucAGW5AJsM1IHadTArtVmAIUkg0yfqbScRGhOCsZcNx/G9eUG7okpqbI6T8POnLtG7j+EhUTootUqfrqlsnQn2AGkWZB8nCZ3iqIvgxqXbaMoEaZ4h/wbDlBvGNS7akySHZ399GEd25GDdT5upG15G71SMmTccSrUCVosdv33omaSmUMtpTbLt912orag7YzUJeY8d+6XhqJ9m4ri0GKR28y1iSc5MwJ3v3dD4/VdPLcLhrUeDen2b1Y6/PltNneZFREQ8CY8NwwOf346Xr3rXo+mdk7B45Ju7MeqSocjdn4faynrEp8f6dcz8/yYhI466fX79zE9Yu2gTHYPIuDn60mG46qlLGs+djA2BII03TsMKMo9ktdj8v3bHOEy4aqTbY0a9Cf+b+gJtrlTJJbBmxMAW63ADkZyqhiynjM7juUIaiohj6n2f3OrxGvpaAz0vS7wU8OMnwcscc3Kk3JFABlvPVFqcSHKKaZMnaZQaPL0ffl+4kl4z8g4W0OvEqDlDcMmDF1J3biLy03hJkPBGXVU9Pnn4G/o1W1JFt2Ah14AX/niU/p7OZcSaRETkzHLnu9ej4EgRFdQ2Jyw2FFXNEqnbSuUp9+OFx4Zi3BUjcXDzEb9z722BjMNEYK7QyGF0qSvaQmr3ZJqeQJKJyLWQ5RhqmkVfL68EfHwkNcXyxsxpfaDVNqT7aJV46a/HcHBLNjb8vAUmgwWd+qXR6y0Zz421Rvz1+WqPYxAH7oe+vgsbft4KQ6335O2ANYnRvZ+Lrjm51HkMecBg9ij9SL3hr1mXfC7kPscX5PnEBd7Jxw994/X/nzfI/cjKr9bhovlTg9pfROR8Izo5Cvd+fAtev+FDD2ExmTt5fNF9GHrhAOTsPYH6aj297ybpKmcrKV0S8TapSZ5ehPWLt9A6QqlRYOy8EbjqqTm0BiPYrf7rC4KtYR8y30ZEIM1rNo/X7pqIMZe5CxxIms3Dk57FoS1HHfN1MRGATuNYpK+uA0orAXtzAbRA6wTXuRgn+ho97Haemv+1lpK8MuxcsZeacPz24QosX7iCJnuSz2n03KG0JiG1HcdxjWmBgagqrcEXj//QqvMhZhrP//6oz1SJcwWxJmk9/xmBg1zC4YtrB2JFVjF+2lmAkloT4kKUNNnh680n2l3g0JwqgxWF1UZw7OkLxUgKU+KpXw+2a8YBESK8cnEvuhEuWbgZ23IDO13P7B2Pl2Z7OshlxuqQOVlHvz5VY8Qn645ja24lJByDOf0SkVehx/7CWkg5BuO7xOD6ER3QLT4E2FUY+GSJwGHoncCurx1NzW1BGwsMvwc4sZ50FHvfZ8jtxO41+GMmebrF+kVMcBAR8U9kJjDoTiB/E1CR7fhbDesAJA0FQhoW1dTRju0cgIgcwi7qiNDpabAbbFSgwJLuGxfkKToY95T5PY4sxTHGMhwLVd9o6Dd7T0Ug1CaaMKHTRVBw7k54u6o3I9/ovnAZUhb4xtNS6HBOJdRYq3DCcBTH9dkotTjOgUPr4h9dj7mm4i9k1zctgBNH2GP6Q/S1JkVfhERlStDHM2ZVgDcELjxc4UJk0E1KhapXFP2MRURERFoCmRx+ecXjWP/zFqz4ai2dqI9JjcKU68bih1eWUoEDHWtqTVD/sRf6CT0ghDeMv7z3fh6usp6KHMwDM9zEDa5YuySAK6pCTVktKooqYU9pcsOzKb2IG1ywqQFpHUANpd37mRq/tyaFgt8npYkL0aMz8eLSDe4dmiwDW1IY6iPU0C7fD+2WEhg7+Xbl4KrNUB1uWkwlTUnEVYhshDsHP4LD245R8YPkRBndmkOckSZcPQp3feA5eZPRpwPdnJMw37/4C13MIJM5k64dg4LsIhzblUsn4YfOHICL752ODt2Tsez9vxAIpVZBnVf//nw1qss8G1JbApnwuuzhWXh8xss+nT3m3D+DThAFS7dhnqlN/ig46vs+QkREBOioG4YrZO9iV9VS5Ol3QxB4JKt7o2/YhYhROtyJw+UOd7RzgXhVKJ7vOxOP95qKaosBIVIllM3mPbqHpmBNqadQz5UeoY57cjknw7DIfvi3dDMOG+KoqCBVUe4mJDDzMbgk6X3IOXdXpMUFyxrFDc2RcjxUEiv0NkcTDccKUCnM0BsV2F/Z5DR90lCGNSUHsKo4C1nVRfQxjcwxnjIQEKNwNIhqJSYPcYMrctYGs51MkTIoNxfh2azvsapkT+PPTbwVfxfvxLqy/Xi19w3oGeq4xgTDtsodMPEmKrKQsmQhgsguHJdYO1gsrOyEPspKDFaVIYyzoMYuxR5Db4Tp5mPp+O6QnMZ5RhERkf8mpJnl9dVP0eb6f75ei+rSWsSlRWPKDePx5ZM/Ii/Jc5HZqiF1ge+awRwGSKs9xQ2uGPonQZ5TgeqSGlqXBFrUdUVSbYLE4KhNvMID8iKj28LmO7d97PeY0mMlsEc75tC8wdSZwBXXNI319SYqMHByU6/7kLvfvyETMeG44PpxboJjJ0QsQTbCqeMl+Obpn3B4+zFag0y8ZjRt+MrZcwIypQzDZw3C7Hun0UX2n17/DYEIidRSYfvfX6xGXWXTXF1ra5JLH5qJZy95w+c+cx+8sEXOtETE3RIKjjqu4SIiIt4Zc+kwJGXGY+k7f2L3v/vpY33H9cDMuy6gCZuEDj2CnzP//4Y0zJP5n7s+uJGOYboIDeRK9+b5bkM6Y/ufu/0ep+tQx1hDGmqIk+e/323wuS8RQby+5mkoNe7rJJ898h0VNxBYsw3yrEK6BcI1weHkkUI6D0hMO47uyqWPld81AND6b76xywGJiQEvFcBZAVvnBHAnSulcGDkmuYZv/KXJVI8I5kgz6rqft+Clvx9Hlxak5az+fiM1FGmpQ+r1L16BYbMGtGheSkRERMQ5Nr+x7lms/XETVn67jqbtJHSMxQU3jMeH93zR7gKH5lQWV9NrjFMccDpIDKImaSlmgxn/+/6exu+v6XwXChvm7xmDGdzObNh7pgEu101i3nHhtL646dpRHsfrOrgT3ZzrAKSxNHtnDk1ymHTNGCooICJJhVqBEbMH4+L7plNDpd0rHfcb/ohKDMegqf3wz1draUNz4/nU6MHU6CGEqKn5Fk+n21xqCWKWVV7tWZM8PAsvXfmOz9eb+9BMtARak7wa/P5kzUhERMQ3xGwupVsSlr77BzX5I4Zy/Sf2ojWJ0xDBWZucC5CxjojF5y+8mZrRkXkWYqLnSpfBnbBntf91km4NNUloVAgVKLvevzcnIj4cr/77lEfts/C+Lx3iBgIRTBSUkNXtFtUkeYcKsG7xZmxcshU5e/PoYy1J3fAGETQsfe9PbPtjt5sY449PVmHd4i149d8nkdE7+HWSVd+sCyhKb05i5wTc+PLlNJGC/J8TOX/5zwgcCBzLYEqPOLq5simnHOu8JDsEA7nXCjJFBquPlOGS/m2LY/ZFhwgV8quM7SpuICSFu0/mTOwaE1Dg8OnV/TGui39XwlWHSnDbt7s8kiYiNXL8fOtQdI3XeQoOAqGNA8Y9ASQNBr6bg1YTmgykDCeyauDC94Hf7wesTTfdYDhgyG0OAURLSOgLxPUGTjUtgvtFefZFMYmInHUQ8UKXlhWsZzuMlIMkxPvNpKpPNGpW5EEwer+xI4kN6n5N469ubDJMR6pgr/TiDKFgkTKzHyqsVaixVSFGngAZK6PpDYfq9nrsbpcGTgZipCwqLGXYVPkvikyei7x2BL947Q2DvR7Zeu9FAhE6rCn/A/MSb6aOqcFgr2l56k/YxZ2g6Hj2poGIiIic/ZAJA9JsQjZXiOvOgfWH3R6TZxXA7Kf5g6nWw5IZD4RpAkb72tKiqRiCTJ4MG9fU5G53v9338iIMmOpqsJwcfIPDT3PI48Z+yehSbsJBkszgo7lFUMlg6pkA9ZZcaHaXob5PlOfLWeyIXnTM4dTjsrjtytALB1KBgz9e+edx9B7bw+8+ZIH5xcvf9pgwIRPm729/CSld3Wu38ADRmYTIhHDc8NIV6DywI565+DW0FhKV7FxcuPvDG+nCjutiM/l/RBqJZt3lPzK6OT1GdKEOIMTdLxi0ocE5a4iInM9EKTpgUlwL5wfOchScFLHKJjGcK9MS+uOznFWwCnooJTYwNFGBg9FG4uMZ6KQqTI7r07j/pUnTsa/6MMotVcg2xCLHGIUoaT1YhodNCMf8TvciR18KFuXoqM2AgpPT9IY1pev9niN5bT2xCm9Q3pFkB8e5S3CktgDvHv0V+6odDUQEuYShyQ9WnqfTPRqpGRLW8RwN59/0hFzWpIwdVkGCk4YarCpxuk4LkDA8eDDgBRZGuwUvHPwB3w95OOhGz0pLFRSslYoovD2FHHunMYJuju+Bezs9jHSN4xrxX4AXyOfXtgSGtj5fROR8QyKVUOc5srmy6rv12GnxnCuxhAT4G2MYWMMZMAFCAww946FbfQyrf9iI0ZcMDfp8iTBCUk0WRTnYVM0cPm2ArAZQ7S9pcvY86NvZ04nkRDkkieGwJXtxMidpcVuOuWm7Yzu4G6gQ90F/Agcypr+57tnGxWxf/Pv9Brx6zXsebuTRyZFYsOc1uqjuSkRc4DWDqKQI3PzaVVTU7a8JKBBpPVPoYjTZbn/7Onz80NduqRXEifHyxy7G1JsmtOi4fcf3pI2xRTmBF+QJYk0iIhIY8nd6/2e3/edMQnylAky5YSxNqDQZzD4FC8Q51Mm1z11Gm4+8pXJqw9R4etmDNO3zxIF8dB+eSZuKjPVGrPhyTavOnSSBHt52lM7lHNzsmaJpN1gCChzojT/5R8KAswrUrZWPCQVXVElFcL6ao4ij9mvXvY9Ps94K+nzLCirQUh778V507HvuiPkDIdYkIiJnHplciglXjaKbK/EdY/069fuF3MAH2TC18uu1GDpzILJ3BOfi39L76OP7HA2k7Ulss3WSYRcOwKLXfm38nq2uB7NuH4SoUAgksZoX8MHyh9Cpq2fSqStEIPfmTQs8nNfJuswnWW8iroP764YHVZNEUqE3SdB+48YFbj/jDuTBOjQTvJT1XEsiZlkpUVTUx9YZkTkwgyYTkY1cxz9//Ae3ZAiS0nT1M5diwpWeAg5/DJral67llDeYjgVCEyauk4iIBIKYODz05Z3/qQ+KJG2SzRvTbpmIxW8s95mgSdLnhl/UZIR948tXIGvDYa/meCSF9Klf7qfXJDKukZqECCpI0tqqb/2vk/irSQ5sPEwFEt7W1FtiPOINcp1zFTe4QoRtr1//IT7c+cpprUme+vk+j7X8cxmxJmk9/ymBgy/mDUzG5xtPtOq5wYobnISrpVQlywvtK9zokRiC3Arvcctt4bKByW7fz+mfhE835OJUjfcYtfFdon2KG/RmG7bmVqCszoLHl+6Hxe75IZTXm3HdF9vwzQ2DaMKGWt7wXzBtDKCNB+r8KGN7z3P8u+UDtAlzPVCVC0SkO46ZORXY/xNQdQJQRQA95gAh/osAnyQODF7gQF5HRERExAVeJuD4tHIkLtNAanG/RAsyBpFXdqHJD044rQzRt/ZC7T95MOwphWDh6cSAvGsYcgYU4W/7l7CVOpo6pYwMXbS9kKnpASPveT0pSalCN5YHy/sWDzBd1Pi1+HtY+NOTilRi9u+OoLfXI9+Yg1SVuzsRcb3OM+bgWP0hmHkTQqXh9L2irGXXTUmUEvIMUXwmIiJyeph68wT8/vFK93GnqAr84SJYiYihOTY7hFA17EE2oPM6VeOYmFDvaKIktUww/YBcRR3sKRq/+widYxHXXYl9JhdhsBcsaZFQbslF1A/HoDhei9qhsbDEqcFYeagOVCJ0TSHkp9zH5wtuGOf+/Y3jqAsIcVryxqhLhvgUN+hrDdR9r7ywAu/f/TlsXtwgKoqq8Nj0l/DiX/+jjhnOySsy6R0apfObzECcjQi/vP072gJJrTiVW0IXD0jD0Mg5Q6jbYMmJUoRGh2Ds5SNaHeHadUinoAUO5HVEREREXJGzHPpGanBc75KeI7VCJ5hgsobgxV5XQiVpakSKkIfihR7344eTy7GhfAdISVJuDUf/8J6QMza8fPhVWAXHWKzklBgfMwaDwgdAb/d/r04EDRwjwN5wITNbHXXQkPhY3L1rAQx295qEZQXIGDvsdoYKHIgwwQkXxOo3eRUyl7e5giRECIhV1CFaWQ8F5zj3WoscRUYdioyV2F6ZjYER7g2tvMBjV9VebKnYCoPdiHhlHMZEj0SF+SQUxJLVa05TE0LDlqBM+U+JG0RERM4upt88Eb++sBhCM2EzH4Spm50TILH6H8tsUY7ahTTOxKX7N0hyhbXYodmSB/2INJrkQFytybBJxA1kCJUW1UB+tJw6jRJhQDANUeRMFRuzYS2JgbVjLPhQFWDjITlZAdnBQnA1TYkQBOIm68r0Wydh+YIVqCl3pAE1Z/yVo3yKG8hC7/71h1CaX06bX70tKpOfPT7jJTz328O0JnE2+ZImLE2o2s0FtTkTr3bUJEvaWJPUVtTRBWayKD/zzikYO284XVgvO1lOxd/k+/DYlpuAEBFg5qCOQQscxl0xshVnLyIi8l9GrpIjoVMcTbrxlqz59NKH3BxWY1Oj8c6m52lS0dpFm6hYi6Z2XtgfdhuP+0Y+2Wh+QQQPM++8AAMv6EMdSFtD5oAMPDD2aZ8CDOWRClhj/MznCQKkDS/tOm8nNJib7N/gbpDSnPxDhdi37iB6juzq9ji53mxcug1rFm2iQgiSVkrmI/MPF0BgWTA8H9z7G9TxPyVuEBERObuYcdtkbFq6vXVPbkEPFhEYJ3dJQHujUMtp+tDpoHlNcuEdk/Hnp6tQV6V3D90uqwbKqum6gi9xQ21lHbI2HqFpcgvv/8pD3EAgP3tq1qt48uf7qSmU01WcrFV8MP9zmPRmv27uhF/e+cPjZ0SIIVitgNx70zCkHGyd4yHbkYOq0hpUFlfRuoOkWZPU7n+/3UDXdyITIjD28uHUGb2lkPShzgMzUO7HTd2VceI6iYiISDOUGgU1b/C23qoJUeHppQ9SgxEnCRlxeHvT8/jqqUU04YAII8g8FjHQIPXJPcMfbzS/0IZrMPueadS0rqVJa07Se3fAQxOecTOqaE/2rvWfXkEE5Ee2H0PnARluj9usNppuRxIlSApdWs9UTCM1SZDr1k56je72nxI3iLQNRiAdMOcBt3y9E39lNcXYny4emNQZGrkET/2W1WJxhD/CVFJUGdp3UCLCCa2cw8hO0bh+eAf0SnI0dR4vq8et3+zCkRL3yfvJ3WLxxtxeUDVzj7XzAt745wi+3JSH+hbEvCmkLKb1jMf9EzsjNkQBZC0FFl8LCF4mWKK7Atf9DSh0wHMxgM27ACNoYnsAt/iOK201H48DCncE3i99LHDFEp/utyIiIucHNdYqHKzbg3JLKaSMlDbnF5sLITdIkXQoGpEFIdThujyhFgVdy9ErcRDyjbmooPvLkKbuhO66ftBKdOAtdvD1VjBKDn/VLEWBybuwL1WZgRNG767Y3dd1QMpB7wvQrEqCo1dU4jB7sF0/A7fXAAc+QArEoLCR6B3SpIS28hb8WbIEp8yei9sTvugHmUka3GurJYi8vgdk8adnUkpERESE8MgFz2PHX55iWHuUDtb0GPA6JRjS/MIL4KOaJZ4FgC2uhrIhIeLWN66BPjMGb/+0DuZQkuLg/54z9M/jsAQRIxl54BQqurk7jHoj5JutYFyS3ASineO9t3aSpAJ1qAoDp/TB7PnTqAspgTQtPTPndZw8XOjWKEPEDcS1sHmEJ1nE/fSRb7F84T90wiRYSCPR6EuH4brnL0NYTChWfrMOr1z9HhWKNKdj3w54fe0z9DmTpXPBt1HVToQIb298Hu3NzX3ux/GGCFJ/DJnRH88sfajdX19EROTc4nhdGRblbcfR2hJoJHJIZaeQa/DubidlJJgVNxv/FB/FsboSqCVyTIzrgctShyBaoYPJbkattR5qiRJvZ7+PQ3VHvB5nQHg/bK3cFfDcyk0qR3KCSYqCsnBEKtQYnaHCtkrfDT92nqHiCJLgkKKpBAsBMbJaKBuECr7Q22UoMetQbg6DVlqHCLmnAINcGo7XR+DylHm4OGl44+MGmwGvHXkbR+ubPjcpa4Oas0DOOeobcsmwCyx9P27HbDRvZaCThODujo8iTtn+C/BnmoKCAiQlORYgMj6+B9LIlt3XNMdaXotjN75Jvz558iQSE1tpTCIiIoK7blmI7TX1bp+EPo4JmOIgqxLA2vzvIy2qRejSA/Truz64EbXldfjiiR+C/tRNnSJh6JcIe7hDvM2YbVAcLoV6S35jfUEc6lqz+EsaSF1T5JrXJMSxkwieL75nGjr0SKGP5+w9QWuSomNN60osy1CR8D0f3UJdaZsv4n70wNf485NVPptefS2ak4aaa569FCGROvzxySrqsOqr6fT11U/Rr6eqLkdb6T2mG15d5Thee3Jdl7tx8oh/IxMCqe8e++Hedn99ERGRc4uck+VYunIvcgsqoFbJUb0pGzlLt5MmBq/ih2uemYsNv2ylTTLqUDVNUZ111xTaHEmSGYg4TR2ixGPTX8bBTd5rEpIAsebHTS0+V+IGnZSZgN2r9vvcx66WouSGXuA1TSIMV6T1ApTljq8ZOxE7ON6ndOMhcOW1YDnWayOqK/MX3OSWsEMaWR+Z/LybUzkfoYO9QxyECK0jwbVGDzavBFxRhd/39+q/T3kkDJ2LiDWJiMjZy51DHsXhrc70zNMHWUcoPHoK37/4S7sel5NysDdLaGuPY2rDNBgyvT9m3zO1sanzyI4cPDf3DRTnlrrVJBOvGUOToV2bawkWsxUL7v0SK75Y3aK6SaVTYvwVI2lNQs5j6Xt/4v27PvO6b4+RXfDyisdhNlgwK/waj5/zISqYA6Rvw85DsXwHGF6gosPnlz+K9uby1FupsDwQRFTx4Od3tPvri4iInFuQOaDfF/6Dk0cKoQnToCin2Odaq1KrxFVPzqFN/CR9jexPTCKIeQQRZTlrEpVWgUemvOAzTWjsZcNp8mdLiUmJQmRiBLI2+hdGtwWnkaI/HvzyDreEneqyGjw86TmvQvWWvr/XVj9FheznOmJN0j6cFwkOhA8u74tLFm7GjjzPeMr2JD1Kjcnd49AxWoPHlh3A8TL/DqfBQkQE7Q05ZrXRhl/3FuGP/afw+iW9cGHvBKRFafD3PSOx6Vg5Vh4qwf7CWjAQoJRx2JZbiVGdomhzkZMnlh3At1t9xzX7wmTlsXhnATbnVGDJbUMR020mIFUBq59vSkGQKIEeFwMTnnGIGwhsO/y3Ld4P5G0GUobgjBPbE7j0O1HcICJynkOEDRsqVkLwYjdhVllxrF8h3VzZUrW2aR+YsK92B7LrszAt9hJEyKLBhnM4acz1KW4gEHFDqCQc1TbPSMasYSdoh03y4WgwLtZBkkgldJdmINvmfSKjvQgkbiBwcLcVJJ+hN3GDslYelLiBC5VB1TsGmiFx4EK8R2KLiIiItBfP/fow7hr6P4+JDK6slm4EQcLBML1vi49NnEidpHRNRL+JvdAxMRIvfP03jsG3SzZbZ4bicAUsvVID3p8KZUQA7X+BkyGT5i7iBvqYnzVZIkwgjU8rv16HNT9sxP9+uAfDZw1CarckfJr1Jnat3Icty3fi6K5ccBKWOvAR56E+43q41SRv3LQAK75Yg5ZCGo/++uxf7F2TRZ01yCS+SqvEl0/92DhxRVyZxl0+Eje+fDlNeyDiB4bYg/NtW8Q4uDkb2Ttz0KlfOtqVIEpH4l702I9iI5GIyPnON8c349WsvxprEglrR2polc/LAUli+CR3KSqMDjfSWqsRXx5fj98KduGjQdcjTRsNBSfHzsrdPsUNhO2VOxEtj0Kp2fcio5UnYgAGVhuL4kodMkIi8OqQybh3/3se+5I5K4YR6P4cC5gsHKLkZmgkZkgYATZaQ/gWOJCUiFMmHaqsGqgkRq/iBvo6DJCiroSKc69JPsv9ulHcwICHhjNDKbE2fI6OD5OkvbIMT+fibELT88lPSS03MHwYRkaNR4hUTJQTERE5vbzx3g24/r4vkF3alJYmqxb8Cxx4AfJKAVad/3pBcbDJsb9Dj2R0H5aJjD6peOe2j1HqUq/4fH52Od1sYUoIHAtJtdFNOE0aeUjDTmvwJW5w1iQ1ZbW0nlj9/UY8ufg+DJraD+m9UvHFkXew4+892Pr7LupOJ5FJaOMpaZjtPaa723FevurdVjXLEoE2EWqTmuStDc/RhDtNqApfP/MTThxwzHmRGmX8lSNx/YuXU9dyIqYg9VBb/cv2rM6i4nJSf7UnwZxX9+GZePjru9r1dUVERM49vvl1G97/fr37gzIW7PhuUK49BMbiPvdiNpipE7UT4mr9w0u/4J+v1uC11U/TxnylRok1P270KW4gkKQHkgoUTOOj67WNCPjuHfmE3/04vRWR3x9ExSVdYQ+RuSc36AGFy0uyNkc1xtYbwZY3JIoGMYYScZwrr133gdt8oz0hEvbu7nN9Qoga9p5pEHQqSA67r6nEZ8Ri/OUjMe3WiQiLbrlTtoiIiEhLIILdW/s9SBNpTifpvVJoInPmwI54+7aPUHnKe2J0SyDi6PYWNxDIMatLa2hiw7/frcczyx5C3/E90bl/Or48+i62/bEbW//YheN7T0CqkNJrxaEtR6n7tyvPX/omNi1reUIGSf759YO/aULQW+ufxcw7pkAXrsG3z//c+HsiIgjyeV73wjxIZVJYfZjfCs1EF14hE3hk4+3Y/uce2kgcnx6LM12TkHWm+z6+tV1fV0RE5Nzj66d/wldPLwp6f2Od0aMm+fa5n/HPV2vx+pqnaWM+qUn+/mK1T3EDYfWPG2mCTkVR8L3MxCjwtreuwb2jnsRpJQiFg1qndPv+pSvfbZO4IbFzHMZfMQrTb5kIHRFpi4g04G4b9h+GTH4vunkIXrm4J00qUEpZurjY3uw44Rh0hmZE4t/7RmNM5yiv+9HosCCP2Tc5FJmxbXM6C4SNF/Dg4n2o1DepeHfmVeGzjSew/UQltp2owi+7C3HN59txxadbYWyYUMqvMOC7bS0XN7hSWG3EWysbFNqdJgI3rwXu2g3cvB64/whw4XuAKrzpCRnj0C4UBXYLbDEdgohTnvQ8IHUf5EVERM4vSsxFWF/xj1dxQ0sx8UasKmuKpD9Wfyjgc0Kk3uPlBU7AgVG5WHPpHhwYlosjg07i5Gw9uDsSIcRKghIgtAU2iNsSo92EItNJlJpPwWCrxzH94RYvXLsSeW13hExOFcUNIiIiZwQy+f3Opudxz8Kb0bFfGm2cZ5oVJXyYGpC4N04Ggq3WQ+KyIEsmoQmDu6fi15dvxnCV93GftfEIX3YUnNEKSVGN39cYkJmEjMhQcCUNi60+kGWXBl3nNIdEc5L0BH2to7GUNOzsW3sQS9/9k7pQkK/J5NBDE5/FY9NfhMXkqF3yDp5slbiheRzz9y8soV+TuNCFu1/D50fewYe7XsEPhR9RZzx1iLrxvAZM7o324Mg276lKbaF5o5U3bnvrWg/HWRERkfOLHeW5eCXrT7eaRC21BAyaJI37zam06PH43sWN32+q2Brw9ZMDpBTY7BzUEivClRbM7RaGT8dNRYxGBbtL6qeUtSNEZkSk0oAIhRERCgPUEjOSNVXoFFJBxQ0Eq8DBzHu/thJRxNH6aCpuIIRI/TfOSlgBErYMB2pIikUeKswVVLBB1GU6iREx8jpopBZwjOAQXtB8hqbPmGOdjzVxd8dHMD3+4v+suIGsgwgC08bt//tdiIj8d5BIOHz6+jV44Lpx6JgSBaVcCkWVBYpc91SHRgQBmiKHuzRrEfwKp+XHmmqSvasdUfZEKPBt3gKaXub1eV4WaSRVRkjL9W7iBkL/yb2pmPt0YjVb6YKsM4GB3PsTl+5l7/+FrE1HqAiB1B4PjHsaT130CqwWx3Xj6K7jrRI3uEISDxa9uox+PfLiIfh43xv4/PDbDTXJQtz53g1U6EAgTq29xwa+7w+Gw/9PNckd717v4TgrIiJyfrFl7wlPcUMDfLgGpgHBG0KQpqDXrnu/8ftV33k/rhNyf9mxb5rffZy1ETHcINcgYsqhDVMH1TDJqUMQkQ3ocmyQV/JUKKgpBE1ucF75SHoDQ5ZcGAFsflnj42wQ84JVNQbs2ZOH7OxiFB47hS2/7Wx6b8RZvGuyTyMTPjUWfMMclxPSiHXlk3P+s+IGsSYRETm7IILdD3e9itvfuQ5pPVMgV8nczIzai93/ZjXO9/9Y+LHPcZ8ImINl6IX9EZceg9MJSV548fK3G8XdLMti+1+7sXzBCmqaRGqtvz5fjXtHPYHnL3uTCrYJBzYebpW4wRUisF7y1h/067HzRuDTrLfw6cG3sGD3q3SdhKwrkIRrAqlNug3r7HEMRm8KLNYjazsNQhFyXT2y3XcDcGsJpl4iNQlZtxMRETl/2bh0W4vEDf4g4mnXRE4iWPOHwAvoMqhjcDWJlKPJo6QmIal2pxsuiGtjZUk1nSc7tieXrtXvXLHXfQel3LEFyTubXsDl/5v9nxU3iDVJ6zlvBA7OyfJL+idh2e3DcOjZKVh4ZX9I2lnlsGyve+zu59cOxHuX9aGJDlKOgUrGYWbvePw1fyS+uHYALugRhyHpEZD5GBjIcx6YlIm0KPeJhtOB2UYSFRyODX9nFeP1f7K97rfxWAWe/s1RDCzbU9gui4zkOOaGG29KeBoQ1xNQeJlIGXpX+6Q4cN6jQdtE/+scKRT+0huCEUGIiIj8pzlQ274CqyprOW36dwoeAiFnFRgRMRFSxntjoyHEjLweJTjWpxD7ovZjWcn3qLCUQsachnGz2XkFYk/tFvxW/AN+OfUNfir6wqfowqA1w6h2LEb7gtVKaTqFiIiIyJmETJZecON4fLD9ZfxW9w3+9/097k09Lbm5FgRwhZVQEEc7l8S35nGWHz16DV65cAIy5GrIwEDDcpjVqwt+ve9avPTurRh58WAMCQnxWRvJJBxunTUMCR1jodyaC1i8O/OwlXrIs9zroda4l5I0B8LqHzbiuwbRQXOIY9HHD37jeL/ftTy+0xtEPGG3N11XiOtfRu8OUOs87+/n3D/DazNWSyGJFO3NjNsnQUZcnHxAmsu6DvbeYCYiInL+8G3ullY9z9d686HaImRVF9Cv620+mmRdCJWF4KqUSyFn3WsMcjmz2DkIDOMwCQKPg/UH8dC+V1FsKoGCdYxvMtaGEJkJMs7F2ZsBFRek6Zq7hDPQ83Lo7TLYBJZeaomwodyixsG6ONTZm2qCEGngCfdFJ5fi8QNv4YF9r+ChfS+BB49QKRFXuAtEnOYmROjgJnJwUWOHyyLpJiIiInKmRQ4XTeiNr166Cv9+cReemj0MUV/vR9jyHEhKm1JsJPUCdCd4KCoFsDwgr+bBmalqqelgggBJpRGhi/Y2q0ncF3Hf3vg87v/sNiR0jKMpCMT9c8oN4/DpobfxxOL7MGL2YPQc1dVnc5FcKcPVT89td1dPb9RX67G6oaYibns/vf6b1/02Lt2OLx77gX696lv/i9bB8vfnq92+T+wUT2sS4vzXnEseuLBdGsFk8vYXGcy8cwqkMt/H7T2mG03IEBEROb9Z9Jf/dRJ7fBj4FjTvkMTP3P2ONM7aisA1SUxKFG565Up6jfGG83Jnt/HY8dce3DX4UZQXVgacyxFkEvDpcbQWUFby0ObZoSznwVobDsgT0aDjmuoIfWNgy0ygwgRv6Qwex+7aAR8u3oX77v0Ot97yOe6+7wfwUU1iaT4+gnQk+T1HPqnJoJFcmyPivJujiIiIiJwuiPkOSQlYuOc1LK//FvMX3tzur7G6WU3ywY6XqZERESiQmkQdosK0WybS1Lb/fT8fw2YNpIkIzU2pnJDx+con5pyRmqS6rBYbfnbM3f324d80XcEbRGT9zbOL23Wd5M/PVrl9n5yZQO/dSbp1c+Y+ONPjMdZoAVviPy1DcqJJ2EeQnoaa5KK7pvoVLwy8oA99byIiIuc3v7zjEHW1F7tXHUDB0VNB1ySJnRNwzbOX+qwxGmsSq52mi94x8GHUVdWfdnGWLAhhwju3fYL7xz6FW/s+iAfGPdP0g9hIoHcmmJ6d6Ua+po8FSMvThjlMqEREmnNe26NM6BqDr64bSNMDtp2obJdj1hisNG6e3PM6J5en9Yqnm5PiGhPu+2kPFQo4kXEMIjUylNc3JSh0jtHisWldqABiw7EynAmOFDsG10835Prdb8nuQjw0ORM1xtZFQjfHYLHTzy5aF8QAnNgfuOgjYNkdgLVpwYUi0wKWusDHYDig02S0O0R4EdkRONVMlUYIzwAu/a79X1NEROSc45TJ0fjTnuyo2oi+oUMc6QwBNA5kn67aXshQZyJHfwRH6vajxOK7IdUu2LC24i9kaLriYN0enA5UnBohkjAYzc3G9Wa4Osz6FXOwwInuxeiyNcXnLprB8WBa4MohIiIicjoYNWcIbe755pmfqPsOW1kPxmrzG+PL1BggO1QItqIebIOzqCt1lfW0UZ84+zTWJAO6081JSV4ZXp7zFvava0r+CUkOByZ1Q4WtScDQKSkK9102Gj0z4rExJhSSSgO0vx+AqVcirCnhNEaYMVkhO1YG+b4CsA1Jb23hxAFHQtzPb3pvJHLy1+f/4prnLqXRn+3VyGSsM0ETGlhc3nNkV9z/2e14+9aPqKOSK0qtgh4nEJIGt432hjQSJXSKQ+4+z6S91O5JeGLx/e3+miIiIuceuyodjT+uGG2BRFcCTDb36xNp3g9X6KGVmrH81CJIucmIVcTgYK33pDUnMYpoTIodh+GRQ7C1cgd+yd2JA9UFCNWQe3zPhWQzb8GCnO8xNqY3/ji1jQoZvPV0aiVmt8RWDnaoWAskDE/zFEy8FPV2KWpsKlRb3Mf7CFkYohUc8g3+F2GdfUmEamsddBIblJx38Z/jM3KVN5D5QtIc7Ph6ZNREsIxYk4iIiPz/Mv6KkfQe+NvnFuPwh3tg10hhHtcLDOs+V8/ZAUUlD14C2GEDV1YLedYpSMvqg6pJJl0zhm5OinKK8fLV7+HgpiONj8mUMqi0ClSXNiXHdezbAbe/cz069UtHeNyZSbshzqWEn99c7ne/3z9eiSufugT17VSTkEYmklRHXG0D0X9iL9qg9d5dn9HkiebNV0Q8HggijCau5O0NOX/SOJZ/qNDjZxl9OuDR7+9p99cUERE599h7OMA6CcvAHqUBm+ffyMiVTx7+Fpc9MouadLheX7xBGvtn3DYJk64bg7U/bsIfn6zCsd2+18cNdUa8d+enGDF7kN8mUj42nLguNn7P2QQwBh52GXnMUQh4lDISDraUKCTZeahjQ1GVW0KFEFx5XaOAUJBwEHp3AlQKN61hFZmD6tqBviZTXAFBFdhIynUfIko7Hc7pIiIiIi3hghvGQRehwXfP/4yju/z3KgWLt5pk6k0T6Obk5JFCvDDvLbdUM+KMTdK3a8qaapLMgRnU7b9DjxSEx56ZmiT3wEmabrDk7d/97kcEEJc9ehHqqwM30gZDeUHwvXNDpvenSRwf3f8VrC7GWLJ9eWDiw2F0EcE7YSrrIckucqtd+o7vifaG/A5jO0SjsKHR2BXy+3zoqzvb/TVFRETOPQ5s8L+O0VLIuP3xA19h7kMzaU3ir74gJGTEYvJ1YzHt5glYu2gzli9cgdz9nuu7TvQ1Bnx0/9cYMqM/NiwJnKTdGpI6x9NUubysAL1bLmN8lVPYlpoAJibCbT9GLgNS4iEo5MAJz3kiwqy7LmiPUxf5j3JeCxwIQzMi6UZEB/VmG5bvK6KCh9Zi43mkP/oHOJbBqE5RuGlkGganNf3hkteY9/EWHC93n/C22AUqbrigRywu6pOIaJ0cPRObbozjQs6Mw7RWIQHPC9geQPBhsfHYmVeFtKj2UU8ppCx0yha4l3afDaSPA/b9CJQdcSQ99LgY0MYBWz4Adn4J6Et9P7/XpUBoUqvP12jn8UtJFf4or4HJzqOXToWrIhVI+WoaUOEj0jljXJteU0RE5L/D6WhgOWU+id9LTiJc6l/5yoJFZ00P+rWMlVORw5bKNQGPb7DrES2LRT6nRb09CCFZC5AxcsTJk5BraP311xvHe5+CtkqFxOwmNyInyp6R0I4Rx2QREZGzgwGTetOtrKCCNqH8vjMHX//qO0pYtj8fklO+my/JMabILgXLORroibNnt6Gd3Rr5iaNCca77/TKfXwl8vB4z75yEkdeOQXSYBpkpTXHL0UmOawxXY4R63VEIHEvd5RizDUx7xLo1oNKpYDKYA8YSm/RmHNl2DImd4trndbVKKk4IlglXjcKgaX2x8qt1dCFEG67BuMtHIDQ6BIvfWI4/P13ltgjSnCnXj0NYTOsXQ4x6E1Z9sx6bf9sOq9lGJ+XHXDoMT8x8xeN362TglD6iK5+IiIjPmsRil8BglUIldW2SFKg4gGN4KijgZDzsPIMqkwoqqQWdQ0shIx2vAPKMu/DW0V1IUCRT4UODH6kHUkaCEZFD6ddqiQr9QwfijuPbEB9FriW+G2vKzJWYl9wBu6qzYIf3yXWObRLaqVgztJx7M5SctdHHTbwMHGOHXXA07ypYDbqHpOBAzVZo/ExPkTn7emuTe5FdYKFk3YVu3nD/PBz/DgwfgTHRU/Bfh7xvQWhbw5Sv/0siIiLtx+Bp/ehWerKc3mcv23QEP/7u6axN/ho5qwDlxqNU4OCL2oo6TJZeSkW9g6f3x9wHL0TmwI6NP68pr8X9Y56iNZArFqOFbhOvGY3hswYhKimCJhg4iXZxnD6dEBF6bWWd30Vl58LysV3Hkdi5yeCqLWjD1EGJG5yQdEDiNEvS6EjjTkikDuOuGEEFK4tf/42Kwv05Bk6/ZSJ04dpWny9p9iUJfFt+3wmbxUbT4kgax+MzXkLZyeaJSg7I/7OwaC/J3SIiIucdpOE0IE2BbUGx7c/ddCNiqkBNj+MuH06/JuPgyDlD8OG9XwY8fkH2KeqwuvOffb7nfLy4rwos4/eOltwua7omIGFkJtbtzYU93dFbwBgtkB06BfnBIiAhioobfB4jLR4oqQTjI3nVjYZ9pt44HhfefhoMAc8yxJpEROTcgNz/k600v4yaCi15+w8sX7Ci1ccrK6ikNQkxBBo6cwBNG+jYN63x5xWnqmhNUlnsvtZiNpjpNvWm8Rg0tR9iU6OosMFJdPKZSeJU65SoKKqk1x5/1JTXUdOoxI7tU5OEtVDAQZI4Rl0yFP98uQanjpfQ9ZHxV46EPFyL73/djj9W7UedwQJGbwJ3ogySnGIwdt5NaEfWZlqLvkaPFV+uxbY/d9HUJZLCQRp//zf1RVSeqvL6nGEzB7WpDhIREfnvQJJE7ba2m/e5sunXHXTL6Ou/JiFJQqPmOtZJyHwOuVZ9MP/zgMc/vi8PVz45B3tXH2g3E0DXa0By10Rs/nVHy5+sUniIG1whPxNKKgCjuyEHuQ6QNfP/OmJN0npEi7AGYkMUyIjW4NqhqVSc0Fqc4iSS4vDv4VIqZliyq8mB4uedBR7iBlf+OlCMzDitm7iBML1XPOSS0//rIuKGO7/f5eb84AvyOc3oHR/w85rcLRaxOv/RNdN6xkPREL0ZNMpQYNDNwLQ3gPFPAjHdAFU4MPYx4IGjwPWrgJDmzasM0OMSYNqbaC0nTRaM3X4Y9x45iZUVtdhQXY/380sxbNcJLJKk+37ijk+BWv/Fh4iIyPlBktL/jWxbqLSWQ835Fp/ppGGosVU1qofLLCWwCME5IBGRQ5+QIWhvyOvnGA6DR/sWDmTI3zs2B9snNamuZclaRN7YAxHzfEeMioiIiPx/EZUYQSNxLxnfA9I8LwluPA/Z7hN+xQ10NztP7+fJhMymZdtx3+gnsXbRpsaf//nJKp8N8ISNC1aie2y4m7iBQBplOJd7djIJzZqs7SpuIBD30ZeueifoiSciNAg0ppMJ9rAY/000RJzAcS2rScgk+EXzp+LuD2/Cdc/PQ0rXJDoJdf0L87C45FO8vvZpRCaEu58zy2DytWNw29vXorUUHjuFG7vfSxMktv2xG7tX7cf3L/6CW/o+6Pd3+8s7f6K6rKbVrysiIvLfYUR0U5OpK8V1WphtXGNTPhEESFiHuIEg5XjEqOuRoqtAl7CSRnGDK4WmfCQovdck5JKhkybhpMHR9MgLPHaXF8Fot0IuDdyIU2erw5Wpo51HQ4jEgFRlOTJUpUhSVIJr6ICSMTYPcYMTKcsjVlYLq51FvVWKOosEFqEGWyu3Q29nYOF9XwuqLSrwbtOpDDi2ZdfBDqoumN/pCVyZeouY3iAiInLWQUTNzpqEayY+oPA8pHtO+BU3EEhjCcFmtVNHuXtGPE5rEyfLF/zjIW5wZc0PG6lI21XcQJhw9ShaA/jCHKdG5ZRUlM/OQPXoRNi0wYsFmgsXXrlpIcydY1A/NhP147vA1CMBvMLTM4ycDxFkBDK/HjNvBEIi/TfRTLzaeY0LHlJ/XHzvdFqTkKbbpM4JVEh94ytX4ueyz/HKyic8XGZJTUKca2989Uq0lrxDBbih2z14945PsP1PR03y7XM/4/YBD/kUNxCI8II0IYmIiIgMaTbGe2DnISlp3RwGcUqNTvHdgErGSmfDKM/z1Lm1eRqOL4hw7KK7p/reoVnSpwPvNYNNBhgiWNTHsTiZLMdfOcdhljXlWAtKGcx9U2DqnQwhxn1+yQOZFIjQgS2qcBRefujfJQ5vb3wO8xfeLKY3iIiInHVEJ0fRcXr2fD9jbRA4G1ZJsgBxxb572GPY/tfuxp8ve+9PD3GDKyStp+eorm7iBsKka8cEvPdvr3S3N25eGLRokNQkgSDCA02Y/wTrSUEcpzlEwEyMtkhNcvXTc5GQEYfIcA3uvGYM/vz6Lrxx03jE7s6FNLuoUdxA6ijS1EpqmNaSuz8P13WZTxuCd/y9l9YkXz21CHcMfMSnuIHw/UtLqIGUiIiIyMAp7Z9q6eTYrlzEpPo26kjKjEehS02yf92hoMUWhlojpt/W/kLlquJqbPxlG+01aDFR4UHsE9b4Zf9JvfDe1hdx+9vXtfy1RM4rzvsEh+b8uu8UFSe0F+RQj/6yH+MyYxCiktKEiED7/7H/FG4a6d4or5ZxVABgblgYOB2Qe/CvtuQFta9KxqF/ahiOltQF/LxGd47CraPTcelHW2C0eg7EkRo57h7nfWG9TST1B+7eC2T/BZzaC0hVQJfpQIQfEUIQ3HAgF7leJqdsYHFP5wfRo/4ouuiPez6RtwEHlwKDb23T64uIiJz7dNf2RXb9AdgE7w08SlZFJ7BNvP/IL1/o7fXoqe2PQ/X7YBXcx6tqawWWF/8IrSQEtbZqmugQLHJOgVBJ0w3nmYJ4GzVN6becmmjHoqk0QYOoG3uCkYr6ThERkbObNd9thGxbDiSHi2g8PU+SzkhSgpWHoFHCThr1awzkphyMyQrW4N85mkyGvHHjAgy8oA+UGiXWuIgdvEGakNb/vNXDwY0kK8gVMhisRpwuiFDhl3f+CGpf4kqaOagjTXFwjcH0FZU8847JeGjis7CYPBesiQhh3v8uQnvTc0RXfJP7AXXqOL73BI1bJo6mcWnu4pGWQASKT130Kkq8iGACTTiRxfoNS7bRqFMREZHzmyvShuD3wn2w8u7zNCSR4GRNKFLlSsSEl0PvI70tVG6iwgdf1NgqMDV2Bv4qXg87jLS/hggH9DYZSkxleOHgC+gVKkGdrZhIBDAsWQc9SBOq/3t1kvgQKtWCBY8OqnJoJE3XQDUcX1t4FqoAqQrk50S8UW9XQM7ZIGt8LwyqLUpoJGYoOWvjgjVJeqg0K1Br83SUs7UgnSBF1RG3pv8PEvb8mZIlV+i2zrS2r5RSREQkGEhSmGz7MfBHimBPjoAglVDHTUleGU1waymkxnjt+g/w/cQFkCvlWPPjRr/7k3v2jUu3eTi4kRpAKpfAbLBQN2xbUjhsyZHg5RzqM+QwJbqP0zVjEhH25wnothS3qCZZ/NVq1E/oCmFwk8OrLSGUihzUa45AWuRouA2N0iGjbxp1zQuk+x4xayCmXDcG/7vgBdpk1RziDDv3oZlob/qM7YFv8z7ExqXbqbMrqetGXjwYMSmtT8MgC+9PznzFq0jFKW7xBUnr27RsBxWqi4iInN9cdkE//Ls1G3YfcxnxNh52lQz6YBIJvFCaV445j87Gsm/Ww6w3A9X1YOyO+uforuO00TU6OQLFuWVuhh6B0IVr/JpoMLV6KgiES0IFYxMgNCsBrEoGpjAGrl2yAseAlBw8J0BqaMq3s3SNg7TIHDjXjFyvjWaw+aXgmxmXOOndIwkvvzAXnB/B4H8NsSYRETk3WfnNunY9Hpkbf/Xa9/Fd/gJIpP/H3nmAR1GtYfjbXtN7r5CEhN5776AgighiBQsqCiKIIlJUrmDvYgERKQqIIh2U3nsg1ISQ3vv2Mvc5s2mbbEuy9PPeZ252Z86U3cWZ85/zf//HNysKZc0p++g/J9FvfE+z9a5eLuALBQ4L4xoDiUnWf/qPQ23J3EZEy1Ac3mS/2nafsd3Qd1wPzH3wQ4tJtIHR/qx42tl0GtwGq9K/Y+cm0i5msHEdcU8iRb8ai16nxzsPfGhRpGIvQZgkBh/bfIotjEWhUO5vyD3v8KaTVudXydgJcfhUlTdOFJWbmo+HXx+Bv7/eXm9++tLRa3ily2x4BXmy7QQWnOCsQcRqYXFBVrcb3KXQ+7mwwmdBZgm4Cvsu1A5BAhJr418CB+Y8iCgbQLuBrfDBlrfvK7E1jUkaz/0zm+YgGcWNSya1hVpnxIbTGXi6ewTK1fYHYSrUeui0Ghj1eoikJvXszqRclKpuXge5oZOFj3UKhYtYgO0Xcu223XYhB+M6hWLt812weNtlHEwuYAf7+VwOBrbww+yhcQjxlOKmwOUBscNNixM4VlKBs+XWE7oMHD5+DhyNJVc/ttxAbbuyFYVCuT/wEHphkO8obM/7EwamfoCtaqSwoTbnyq0PYhCxABE3EIwOejzzOHxESmMg4ooh4AjrCSduJjKuHBVGy4lVjuBaKIO0jQ/cH4ym4gYKhXJXkJNqqsDPLVOBl1sKQ6dmrMCBDXw5gLa5LxgyB1kZ9JM2ojNp4BVZr4KpLFfhv9UHMWzyALYaqT3IAC9JPCEDwTJXU199/7oj7HFuJvaECrUZ+eIgiKUiHPjzqN22pM2762Zgyb/zsOztVTjz3wV2PV/AQ/fRnfDc4onwDmr8YLoteHweej7UmV2cAalClHo+vdH7O/L7UyiUe5/mrv74qP2jmHF8LXR1nNQMxUKk5nIh72W9D87n2I8j1mX8i1IdSTStcnMwPbciZQXwFVegrHKIjIEeER5FMBg5yFS7QW0UVkYtHBiMRMpgSrwRc4Xo7NkaYp4QEVKVmbihNkSsIODYHn8jj1AJTwvoADGPjLcx4FV+JiLyKNeLUaEXgc8xsNch5fmhTF/GvicLl2O6Pl2laENWSwxRF9OTjYcOHr0wKuip+0rcQKFQ7l7yKsW03DIluOcd7z8yQj67ECE2p05SSXlRBfatO4KBE3tDUda4mIRUUWXFDUIeVH3iYPQ0PWMUfhyofSzciHlcFI+IBL9IDekV2054VRgZBop+sWCkFtwfBDwo+sTAdcNp1s3uwZeHQigSsNXtHIlJZq98FR/unItlc1Yjcf9F0yGFfPR8uAsmf/g467xwMyAJXL0f6couzoC4yGVebbxbNY1JKBQKIS7KHwteGY53P98EfZ3hIH5aIUqPXgOnkUUJGR4XxthQrDx7A4a2YSBdfUG5Fty0AnCuZ4JT6XyanWIag9M7KKKQuUnReUR78PhcNgGpdnIrEQMa4yPAeNcXP3DII9HAkIkWU1sOoHY3FzfUxijkwKhlwKu6LC4X7uEeKE2142ihNsVIvItp4Gj1MBCRg9AUf5CoaujgVnjl+X73lbiBQqHcvVgq8NNUinNLWWe5Xg93dahPqihTsZX+ybyF1MUkpt65Yu9NFTc0dJ6EuAqROQgiELcHcdd7/acpWLTtbSx/Zw2SDl9h15NnWp9Hu7ExCRFw3AwEQgH6juvutOMRAXdT/o3QmIRCoRASesRh5vKXsfipryyKHJzxLFr38T82C4IQcQPB0WcLcQftMLgNe71knpscowpSNFHZsxn0gTUxicrIQJBaCOmhZHCaWFjd08/duvuR1v718wwGDHthEJ7/+In7StxAaRp0Rq0OPnIRbgbXC0zJRs39XHApx/oEcaAqC5L/9uGLn5NYFZVHYDDaDh6OM8amuQ44E18XETafy8Key3msk4M91JU30lbB7lg5qTOyS1UorNAiwE0Mr5v0fd8sjjhgnXzErZX1jT4xzr0gCoVy1+It9GUnTO8WWrt2hJgngdaogbFOAtTNxlXgjgpN4wUOHeL7wrNXtFOviUKhUG4mVUktRpkI2s7NAD6vevLTQHJs6gT8xNFB2b8FpLuTbIocMq6Y3OTCE0LsJqOQiqok6Ya4BYS1CMaoV4Yh9UIa7hS8gjzYiQQyaO9IRQtNpQNbiy7NsWT3POSlF6CsoBw+IV5w83bF3cS5fUlN2p/8nhQKhUKIkwRBfcYVjIcGHImBqJ9hLBKCUfEh87HX/7Yfy/C5VXFDzXPLXaBkxQ2W4HEZBIrLkKryrC4FxOMZoDcy0DM8PBQ8GDK+BCp9OVz55Q5Kta1DhAwEKV/LOjbwSJYT65QDaIx8KA1E2G0aOg2S+KJIW1THtYJcn551dyDuFEKuwWJ+kt7IxbORM5Hg1g73IwzDYZemHoNCodxa3H2tV6a2hNFNCn1sMIxkP3IzNBjBzS6CICmdFTtUkXnFFIeEx4cgP71+9f/a7PhlD757/Rf2NalIOnrqMFw+dpV9r+4YVS1uILdzDXl02KDowWhIlpywX/maTCiHesLoIrbeQMBjRefBhSpsXrqTrfxKKqw6GpO07BmHT/YuYCfJiejDN9T7piUR3SwSmxiThNKYhEKhVBLn4wbxhhPQhnrB6CYBR2sAP70QvJLGF2cgvXptjxZQB8uBWvdnrTsfAvdAiAR88C7faNSxH3/nYbbYRlFOMQz6GlEEO2bXthngaipcyEYzxsoXRMdA4h2VEUYxFwyfA72YY3ZtljCIUCNwABAS4W1b4KDSAMWmOI49X3IWuNezwbjL2WfzR3/OQNsecbgfoTEJhXJ34tHAmMRRMqpikoRQnN1jKoRkjU3fbscXU35gX0e3jWDFBJePX8OdgnewFzZ8vhk7VuyBkQjp7KCtTJ4lLm9kIcW2KooV8Av3gYtHVYGSuwMak1AoFGcR3TbcqoPDncgT8x5li23kpeWbOdYQp9OKQS1g9KhTZJzLgS7SGwoBD/Ldl5p0bpJjYFXgkF8EBNh2C/1kwzS0aB2G+xEakzQeKnCowwOtA/HhtkvQOdD5awjuElPSzYTOofj7rCmxqC7RFdcwOH8XlLUmiYuzMvDvsu+R1uphkh3v1GtqLHnlmspXVX9t0zLIPPAIcJOwy+0mTaXBL1mFOFhcwQ709PZ0wROBXggUW6jMVAnPAfUY30I1dha5n9OcJCgUyt3PNcUlME1Oybk1hEuaoaNHD/Z1oTbfouvEzYTPcdyKrS5RsliEeN45IkEKhUJxhAGP98Qvc9dAG+lXLW4gGEn0Zq0/yudB0yYU0n9NVUAt4eJpSpoZ8fwguxVGU87VTPTeSMrA5y8uZZOK7hQKM4tNLzIda9+sbYTZe98Qb3a53WQl5+Dvb7az1Vu5PC46Dm6D4c8PhFeAh9V9SDWmxkKSpzoObdPo/SkUyr3FpsRLMJCufUH94hOM1HafnyT182G7yqnKUL8f7ye2LZwgAgIZTwsFyeapta67Zwc8EjKEfZ+lvgajnXMT8QLXhssEKYRXqJXDU6iAm8DcXpo8asU8PevoQJwcSHqQkMerI26o3Z6DIo0MniIlK+rgVo7rGcGB3shDB8/e9624gUKh3L0MmNgLqz7YwAqe7WF0l0HbLdYsdiHOCcZgb2g8XSA6kFQtcnCpFCWMeGEQjm8743BMcj0xDZ9M/o6NSYxSIQxBNf1lnZRU6raTJOomhLKVL2TnTJW6baH3sy+A1ga54boE0ISbBB2itFJIZQLwFNar1TVrF2n23i/Mh11uN0QIT2KS8wcvsZX/Og1th+HPDbDpJsFtQkwS1CwAbfslNHp/CoVyb7Hr132AVg/htVynHVMfHQB1iCmpvy46Fz44Mb4Qp+eCozSPA+wx+Om+eHj6SPb1pWPXzBJJGR+PanFDFezZGZOAukrkwFcbwXAYaMXkPmrbRaFSj12NgKgoyMEsjQ2S9WXKekI+4oDBKSrH8OcG3rfiBgqFcvcy8Ine+OPjTU4/bnVM8vxAuwIHEodUce30dbbC9500T1KQYRKNF2QWOdQ+uq15TOIf7guE47Zz42IGNn2zHUlHrrAOd11GdMDQSf3g7uN2U+ZJSIJuQvfYRu9PoVDuLUhBvbuFB6YMZhfCxSNXTbFGJbpwr/rihlroQzyg95KBX2i/uLc1uFwbMYxKAyY7HxwrIofRYzvdt+IGStOgAoc6+LqK8WKfaHyx21QJyFk80CaI/ds50gsv9I7Cd3uTzX8Iow79CvdVT4LWxfXSHiDoEdyN9Ivxvd2XgEPFFfgpMx+nypQQcDiIk4uxp7AMmlpf9+lyJX7MyMcvLSPQ3cNyxaT+Xi5YaP7T1W9TdKT+Sr4EeGgpwGt8ki6FQrm3UBkaX4HoVlOozUOaMgWeQm9w7Qy6OxsOOMjWpDd4PxlPjniXtmjt1olam92HvPbaa/j8888btM/WrVsxZIgpaY5Cud34hvrg4dcfwIqTKdXrGAsTm3UhTg7E9YGrqC9E5nI56PuYyf63w6DWbPXTP7/Y0qDrqj2Yf7fR9YEOt/sScGp3Iv7+eis7CS4UCxEWH4KT289Ap61J0r109Cpbcen9zW8hvptl97fOw9thxbzfG3x+iVyMN3+dCh6v8QP/FArl3qKgwnJMIvFRQB5WBr2RAz7X8jiVybFAb1V3pzXwoNTXLyAh5tm3KSZOCIo6+oo0ZTqOFlxEpDwQRFphD+LAwONorRZFzVS7Q89w4S2y7CZBEHCN7GdkGCkSS67YPJ+Rw8XlUh8EScsgFZg+o4fQC719BqOv71C710uhUCh3GsHNA/HgS0Ow8autdtvqEkLNxQ21kYqgbx4IwbkbbAJK70e7sau7PdCRTbYkDggNjUkMIV52q15bQtkqwCGBgz2TIqLfU7ZwBfg1AgBtmBsqOgXCc8MliNLKLO7XY3Qn3G6Obz+Dv7/ZhqsnUyCSihAaG8SuM1S6cFdNkJOYZNHWtxHT0bIjaudhbbHmf382+PxSVwlmrXiFjtVRKJRqinOtVP9sApo4f+sFQsg924UHob8neCmWCxJag9w7j209zVZ45QvMYxLG13qhiiqhA4xGEA02h2HA13DtlhGsrdeWigS4sPca67oH4jzHOkNUCh4I5LjuLmC4XHCMNTv6R/iyY4Bkua9hB1adcAwKhXJLiWgZhmGT+mPLj7uddkziBt3r4S7s695ju+HYttPY+cve+2aepMdDtz8mOXQyGRu2n8HV1HxIRAKEycU4ReLOWvNaSYevYMNn/2DR9jmIbmNevKqKTsPasnFLQ3HxkGHWL6806TNQKJR7i+I8Gy5pdxhkHvn4ttOIbhcJnsB8LE4b7mV3fyKCaKzAQeYmxZn/zttulJYNRqMF/L3BEZuKWAUGeeChcZ3xwMMdcV9DY5JGQwUOFpg+sDnWnUhHVmnDKjdYY2yHYET71th5vTk0Fu1C3bHi8A2cSS+BkM/FSGk+RDesD2X4agsQwlMg3WBe/eFuQFlrcJxwIasUaYVKeMiE6BTuySZb3Uy+TsvDwmTzQao0tckOui4VBiOeOZ+Kk11bQF5rUkZtMGJZZgFWZReabEWtnEvO4+LJtr0Aw3kg6xTAFwGxI4CuLwN+LZz6uSgUyt2NC99+Nbg7hXJDKbbmrWdfB4hCIOFKoDKqbsm5BRBCyzjmGETo4z0U/qIguPDdwOXcWjEG5c7h9OnTt/sSKJQmM/nDx/HPxC9QqKzVb62cnDVyAZ0c0Es5IMXbeFpAWM6wfxmxwGwguIrhzw8yVeOpZMpnT6Nlzzg2ueXKiRQIJUIExwTi/H7rDhBVgxeK0rtHpFeFssz8uXXlZDJyU/Ph7uuGhB6xNz3BZuXCdfjl3bVm67JTLFcnJN/vvNGLsTL1G4gkNRXM1UoN/vpqG7b+tNtsDrsucncZnnpvHP5ddQDXTqVAJBGix0Nd8PDrI9kEJgqFQqkiyL1+TMLhGeHevJi9L1boRHAXqa0KHJJLvRDpVlgvx1Rn5CJLRY5d995qZG14bcGBES48JUQcLZQGETQMH3K+Fgwu47e0BSjVSREsbg03gRxqo3VxQplBgnS1J5rJcsEnCUC1yFa7IKnMH25Ctd38WBHXgBslnvCU264oy+UwKNVKkKN0w6cdRiPBPQheQh8akxDowD2Fctcy5fOnsXvVfpQXWb/fGmViMJVOcdYwBHuDn5jGJld6B3pWr3/tu+fQpm886x5AqqGKZSK2uv/5A5dsHk/mIjJLCuUrK615bNzUOTrA4G29il1tBJkl0LYIsLiNPMY0JIfVQsU6RsRH0ehY+H13ElxNfSek8mLzCeSklBzkFJbBy02GVs0Cb3pM8vPbq7B6kbkoIetajsW25Dd/d/Ri/JryNQTCmqJNSo0Wq/afwZ9HzyPvla7gKLSQJOVBejobXI3erCruk/Mfxa6V+5B8JpUVW/ccY4pJgptZ/m4pFMr9iV+tsSpndT0NbvUd6szgcqBo6QdOtAd4Ci24ZKDNTcYOtHBzS8BPyQG3zjhSlbPQ7DH/I0podOweD6mLBMryynY8B+YiKnUJrPNPqQEKf77NZxe3ShvOMBCfToNO5mHuClE5W119BDKvLRYCSjXeXT8DUa3D4RfuY7vKKoVCodzhvPrdc/hv7UGoyp2Tu/XI6yPh5m0aDyP97zd+fgntB7TG399ux/VzNyBxkcA/3IdNsLcF6d+qKpxzTbcS0s8PiPCrfn/x6FXkpxfAO9gLLbo0v+nn/2L5f1j7z0mzdWyZw97xEB+4aPb8Lckvw/yHlmD51S/NijYpShX484ut2PazbeGLu68rJsx5mK3MTkQpUhcxK2ohbkwBxD2dQqFQKvEPu/2Fux3lyskUvDXsA3aeuOPQthBJhdBU5RI44GzD1BFFNASD3gB9nRxgi+QWssuCHXMRFhcM/0B3WuiC0iSowMEKI1oHYum+moqpjeWxTqF4b1R9u91B8f7sUsXB33/DkWO2j/Wo5jA+Ew6EngzW30XIRKZ/ZuczS/HWn4k4l1GjfAv2kGD20DgMb3VzBrXPlSvriRvsUao3YF1uMZ4K8mbfqwxGPHY2GUdKbSvYPAU8/BgfgRCPVkArk0UphUKhWCNKFofDRf9Bx9ivYHonQdwUeODdMvcGrd06RjXwOXyESaIg5klu6nVR7mwYhsHZs2er3z/33HMOBUyhoXeOpSyFUkWf3vFYv7WWYIdhYBByoPTjgOHX/Ls2ikyCB3EhA5my/n1z1NRhePGTJ+utJwkmZKnih5m/2hU4kInR1PPpMBpqlZG7CyATE1UD9l9M+YFNoKoiMMoPzy15At1H3ZzqRRcOXa4nbrAHGbz/b80hDHm6L/teVaHCzIEL2coctvDwc8O8DW+gRdcYPDiFutJQKBTbPNAqDh/v2g+NvmZQWuKrBJdvGndSGwQo0QAuAg14tZwc1HoeMsrdoWG3S+EnLYOLUMOKF7QMD+U6MZh64gaGFSoQ1wTLMJBz1ZByteAIzIUU+XpX6Bg+eDwGPrwKKJlDKFNJ4GPFfYEk++Rr5FAYxDhREg4fYTnrxEBcHbLVbijXi9nz8bn2n2WMUYDrZQJ41tQtsd6W4UDKE6KTVzxkpOAFhUKh3OWQWJr0kbf9/K/VNozEAcdiPg/j5ozBs/PG1tvU59Hu7FLF11N/titwCHOXo4RhYKyM9cntXFgGaGsMFerBUwMcvWMxDD+rBNwiBYye9YtNsY8QG8mojJgPZUtfyE9k19tGEmEJZ65kYvGK3biWXlC9LdTfA9PG90b31pG4GZz+N7GeuMEehVnF2L/+KPo91oN9X67S4Nmv1+FSZqULBpcDxkWEiq4hKO/oB8m5HIivlyJIz8f8jbMQ0yGKdQGhUCgUWwx6sjeWv7PasUQZJ0CEauRebnQVAxyJSdSgA0QlRgjUDIyhPtAGeUFw4hp4tdwlVK3kKBvtA01LU2CQk6mCt8wdgg0q1lABFSrAx8aDqI78m2sgxUqM0LpZnmvh6BnwNAz7PJKfz4QupwzoUuMSYfVJxDBsZeqOQ9qYFc2gUCiUuxUi0iLub7t/29/kYxEB7uPvPFwv5uk/oSe7VPHJ5O/sChwiWoXi4uErVosQ3alUxSQkPiCx142kjOptoXFBeOnzZ9BuQKub5txQV9xQjVgATcdoSHYnmq3OSc3HkU0nq+duyorK8Xqfd9k5Klv4hHhh4d9vsmK/US9TZ1UKhWKbwU/3wcr31t1Vc9/k+XNsy2lW4FAFr1gBfaCbzf14RY67NxB3ODbGEYsg4ACqzHzrcUgdSIHB9r1izYpmUCiNhQocrDCxSxh+OZQKjYOD3pYQ8DiYPSwWPAccCqSu9it5+7pK8Eq3Zvh0l+3O9J2Ev6sYHcI8cC2vAo/9cATl6poqPoSMYhVeWnUKR6+Hsc4Z7rVuvM7gl8yaSYKGcLJMUS1wIA4Q9sQNBE8BH24WlG7HSxVYk12ILI0OQSIhxgV4ogOpBEKhUO5rhFwhunsOwJ7CrbjbMMAAIUcMHaMBcxN9eRt67GayeCpuoOD69esoLTWJKcPCwvD999/Tb4Vy1zJmaFv8vfMcdHqDacDAAKh8zMUN1XA4UHsBejchhKoa8ZxQLMCzH4x3qFqbm4/9mMQr0BOdhrTFmg834m7BP8IXzTtEspX2Zg1cUK+yUlZyLuaP+QijXx2GiXMfYR0QnMmmb7c3ar9LR65UCxxWvb/BrriBQKpPEZeNupzbl4Qdy/egKLcEviHeGDqpP5twRKFQ7m/cpWLMHtIH8//ZXd3z5kvMx22IyEFt4EPINYDDYWAwcqHUCGFguJAItOy6Qo0cOSpX6Aw8uIlVEPLqj6WJuDoESUvB5TIwMhzW8aA2RNwgI1ZEdSDn9ReUIEvrAUOl0JrHYWDkqlChD4ALPxcMas5Hjp2pdmPFDex7cJGjcUOZTlRHdMGBxmBfuF2m48LfpRx6I9emIIIci3xP48PbU3FDXRiOXecOuzR1fwqF0miI6wKpeEmqtFmCUyv2sIZELMBT7zzsUPEBR2ISP38PPDKsPdZuPVW9TpbJQC8h4u/65+ApAZ4OEF9xbK6AHEG++xIq+sfWEzkw7DPO9vNDG+wK1BE4hMQGIrJVGC5ez8UrS9ZDozV/3qblFOP1TzbiybbN8MQz/SFzdcxt4qbHJEevVgscvt12uEbcUFk3XC8H2EcuRwjtwFCQ0RhPXx8II2qcOqo489957Px1L4pzS+Ef5oNhkwcgum1EEz4VhUK5F/Dwc8fkxRPx7bTlTjkeuYfzChUweMstdim1ZHXteXsOB0YhoPLmAnkGCEhIwuNC1y4K3B2nwTEYUdHbHUVTgkkgUr2bPkiEnMdECGrjCd7cJHAz82EI87Po8GM6ObFdMF9F3Fg5jBFaea2xPiMDvoqBsIxsA8Sn0qDX66DsEQptpJC9diKMkBTowdfUOaBCBY5Kg+FTh1Jxg4Ufn8YkFMrdHZP8t+ZgkxJP5e5STJgzxqG2jsQkxC07IiEMm5fuxN1CVJtwBDcPZAsyvT18EXQa81gu7WImZg99H4/NHo1HZz4Iidy5BQU3bD9jczvjJoXBywW8wnKz9RePXKkWOPz81mq74gaCh68bpK6SegXyTu06x7rMlRaUIzDSj41JSJxGoVDub3xDffD0wnH46a1VuNsg7g2k+F1JXhmEl3OhiQuwXphDq4cwxbGxMcbXA4gKqXaFYJ8YQb5g0nPBSbPsBlqbB14cTMUN9b5UGpM0FipwsEKIpxTfPt4OL/12GqpGVo0YkhAAV7EApXk5KC8qhNzDC+5+Na4NtYnp1gt7f/0JBr35wHZtWvTqh0d6R6NIocGKIzecrgbu2cwbXSK9cCGrFGUqPYR8LnxdRWgX6oEVh1JxPquswcfMLVMj5p1t8JIJ64kbarPi8A38fiIdk3pE4vVBzZ1mTXOeVMxoBCIOt7qTuzKr0KF9rik1eOTMNezuGIMAkRBGhsFrl9Lwe06xWbuV2YV4LMATH8eEgHuTbacpFMqdTYxLAqR8GU6XHGWdEe4mtIwa3T3647ryKrI0abf7chAkDkNXT1MSKOX+5syZmgGyNm3a3NZroVCaSmiQJ+ZNH4H5n22GVqtnJ1yNQhv9Rw4HivYBEG6+Vr2qz7juEEtFyErOQVF2MWs1TAbfLdFvfA/8/PZqq8lLhEFP9EbPh7ugrLAcW3/6l+0vO5MuI9sjtmMzXDuTAmWZCkKxEF5BnojvFoO1i//CjQsNf17mpuZjuGQCXL1drNpGk8+x4bPN2LJ0Fx6dNapeJaemkHwmtVH7CUSmqhbk97BVNbc2qRfSMXPAAnx35iN2EN9gMOB/E7/EnjUHzdqRiZeRLwzCK19PoragFMp9zrgOreDnIscPB47jVHoWjDpLCTkc1kmh6gnE5xsgYfNzKtdwGIi4Bgh4Bqh1fAjrCRUYeIuUELACAQ5URgFEXD14MLJWyhwYWecGaxBBgwtPhRJDTZKSgMvgegUHz0dNw4Wyf3Gt/AorQijRS6FnahJPyWNKx3AtOEoAxRoJ/MTl4Ndyp6gHF/CSKlnhBDmWtWGcPKUcPXxi8FrsIOvHolAolLsQkuwxa8UrWPLUV9DVSconcBVqcIrKwXi6WD3GoD4twOfzkJ5VjJJSBXy9XeFnJWmIVE79df7vMNpwsR44sTc6jWiPcoUGW/ZdMF0HA8iyGKi9ODCQgtXk+WIAuBqTwwNHa4DsuGNOzz3GdEZkQhhSzt9AKfjgRvvBK9gLbZsH4du1O3GNKM9tYeHaMy5nY6hoHLhjOkAjsJz8Sp6SK3aewta5v2P822MwbtYo3PaYRGiaQtTq9fjreJLZNp0LYDTpCc24mJePJ1etw9+TJsJdIoZep8d74z7FwT/NLcw3fbcDY14bjhc+eapR10ahUO4dHnp1OHxDvfH7kr9w8Yj14g56Tyk0MT4wSgTglmsgvpQHXnl9J1PRhUwoe8fU3588H6wl+3A50HjyIMipvMcLeDAEe4GbW4jiZwPNxA21yYzj4sMTM7D7xT+RdOkGjHHh9YMGhgHHUD8i4WmNgJIDvpKBkQwBccC6SVRrwdU6aF0FKB8Qx4ouqlCLuFB78uB6QwtRWa1k37QcdB/VEU8ueNTKN0ihUCh3JzEdo/H6jy/i0+e+a7Tjz+Cn+rLj4OmXM1GaXwa/cF/4BHtZbDtgYi+s+Z9t97MBE3ujTd94KMuV+G+1+di7MyAi44AoP9xISoeyVAWRVASvQA+06ZuApbN+Rd6Nhhd6TTmbimHixyB1k9YTN1RBRCS/vbcef36xBU/OexQPvTYczuJqar7dNkZ3aT2BQ9U8CXG53v3bPofOdeVkimme5PQSVjyu1eiw4OGPcHRzjUie8NfX2zDuzdFskTAKhXJ/Q+4FAZF++P2jv3HlRDLuJkghiVm/vIz1n23GhaPXoeoSUT8m0Rsh23vVIXdTxt0FaB5W/xhEzB0WAEanByfb+nOoz6PdMH7OQ43+PBRKXajAwQb9Yv1w8M1+WHs8HRtPZ+JyrnlHyhYkof+pODF+nz8b6Uk1NlrBLRLQZ+Ik+EVGV69TlpUiL+UaK3JI2mc5ccU/qhliu/dmO93zH0zAsz0i8f3eZPx2zPGkUj6XA72NiYFne0SgT4zlZCcybDJj3Tk0FHI2g5FBnoUBprqodUZ89d811vFi2sDmcAbSWgM+DWGQt2mCpdxgRI7WfhWqKop0BizLKMBbUYGs80NdcUMVq7OL0EwqxpRQy983hUK5fwiRRLCLxqBGhaEM67N+NatAeidzTXEJhbrc23oNHgJvdPHozX6HzhLHUe5uqMCBcq/Ru3MzrPt2Mv7ZnYi/LlzCRY3l/mUV2sCa5E/PAA/0GNUJ03vPReL+i9Xr2/RLwIufPGVWmaYopxjXE9PQc0wX7FlreUA+oUcsejzUGTweD9OWvoBH3ngQqxdtYJ0BHIVHJohtTEI8PH0kWveOt7hNUapkbZMbChEvEJFAcU6J3bZqpQa/vLsWfCHfaQlFYhmZQW84XR/owP4tLShDSb7jYvOinBJs/n4nK9L4beH6euKG2glFYfEhePClIY26PgqFcu/QNyaSXUpVauSoCvHy2U9grFVelEPkAbW62nweAx6jh57hQm+sEROQXCEjh4MypQiu0ppxIC6McBXWCMxIao/aKGCPS7bJuBqrwoEqZDyNmcCBIObpsCvnPHK1ueByROwxZAIdDIweGj0fGiOfSCjYRCJTkT8O24YMjRExBFluVHgg0qXI4vmVegG0bKaRyQlCxwACECeLmjYGIwfu/OZY1Ho0unhH0ZjEWrHaJuohnV3khUKhNIy+47qjVe8W2PrjbjahJOOKuTuB4HwatN1iq6u61cbX2wWd20bgxZm/4cJlk8CA3Ec7tA7HK8/2RXioyUWZUJBVhIwrWeg2qhMObDhq8VpILNN5RDvweFy888IQTBzZEcs3HsX2/RchJNM3pBK2K8kQrblZc7VGuK1PAr/YVAyJx+fZFHWPnfEg4jo3s7gtOycPHx0zT4qpizi52GJMQmYZyqwkyFZh8HZBBRj8NPs31o2PJP06A7HMghLBAbo+2JH9m1+mQLmq5tlu5BK3DOv75ZRXYN3Z85jUpQOWv7OmnrihCjL5TmKSoc/2b9T1USiUe4ceozuzS3lxBdIvZ+G17nOqi2qQ/1f0ioQ63ryIoKpdMKQn0iE9mWG2XpBWBEFWOXSBNeI7cgxSOMQWpOtPwhtu5SOCcZVCGa0HI7Xt3LO19CrSTl8Hl4x3qXUwtowik/LVJ64WN9R5BPDURhiEXHC4HNZpqC68lByU9o82EzdUw+WgLEwIryQ1uBoDYrwlmLRmKtr2a2n7Q96n0JiEQrn7GfRkH7Tt39IUk6zaj6xr9qtHV0ESVlv2aoGXO7+Jy8dNSatcLgftB7fBlM+eRnCzgOq2+RmFyLuRjy4j2uHIP5b7/R2HtEGHQa3ZMaC3fnsN498ag5UL/sDePw47fE08PhcGK0mm5LhjZz6IqNbhFrcTp+pVH2xAQ2GLgGj1rMDDHqT41LfTl0MkFWL4cwPhDCSVQgVbWEq87VYZk+SlF0KtsJ93VkXO9Tzs/GUvRr0yFD/M/LWeuKEKImaJSAhBv/E9HT42hUK5N+k9thu7lBWVIzUxDa/3nYe7hf0bjrLPB5HBCF6RgnVy0Pu5sDd/QUYJRBdzwCt1sEh4iJ/1Sk+V25nsgnoC7hZdY/DsovFo1atFkz7LvQqNSRpP47K/7yM8ZUK82CcKE7qEOtRewONgeMsA/PBgKA59NtdM3EDISDqPtfNnI/d6MjRKBbZ+9TGWvvgk1i96lxU3CEQiCCU1VllcHg9uvn6Qunvg9LZNUJWbOpuhXlLojEaHnCg6R3hi7ogW+OOFrvBxsTzq/ELvKKviBsKx1CKb55GLePjxifas+0JT+XF/Cio01t0eGsIIH/cG75Mgl2CAl0ngICZWnw1MmP0nv5QVkvycaVs1/VNGPgx0hpZCoVQi4onhJfRFa1dTMuPdQL42B3rGOffrxhAoCsXYoKcRKo2kiUR3KBqlEoUZaci+dpn9S97fbE6fPl39um3btjf9fBTKrcDTXYYnxnTBCAcmKckAMKmySZwbXv12Mj4Y/7mZuIFw5t/zrOiBVPsngzQfTPgME8JexFvDPmDFDRK5mF2q4At47CQAcUD466tt7GQzgQz8W6v0U5vAKD+07hOPl754Bh//Nw9u3paru06c+4hVcQMh6fBlm+eRuEow/69Z7HGayu+LN0JTK4GnKRDRSEOJ7dyMnbAhkN+C20Dh9v71R6DT6rDp2+0225FKTM524aBQKHcvbhIxYjyDMCq4R6215uKGKsg64sjA45iPTfF5RhBvhlKVCBo9jxURMAyHdWGoC0nzMYBXL9HHEsSDoS4GhoN83TnwuGqzayTnkgp0EPIM1aIGkudK2it1fOgMpN4LBwIeg1KdFFfLvFGirnnuKXUCpJV4oEQnNctCMjJcVjRB3Cx0Ri4KlFK4ow++6fgGuvpE05iEQqHc03gFeLAC2gGP9663jVuigPDgRXBzS6oVSUIBD4N6t8Crk/pj/kf/VIsbCKTJ8TOpePmt1UjPLEJJfikWPvoJHg+fwsYkRNwgcZGYxSQkxgmM9merb/799XYoShXs+vAgL2hUOrbaNVlE5YA8i4G40AhRsRGSPCOkuUBos2C2wurUbyZj8a65cPGQWfyczy6aYFXcQLi+8hj4hdbHNjz5Qny0ZBIem12/Uh0jJFmz9h96jMhUl2z1oj/ZPv3tikmIqCWheyz7Wi4yCQmrYMUNdj7KtktXWQH55qW7bLbb8PnmBl8bhUK5d3HxkKNFl+YYNqlG+KRqG1RP3MDC5UDZKRTqZjViOQLD40JoEEBcoAdfaQRXYwRHb8OOrQoOB8bapSH1Buj97KgiABw/f7mmorinK7jggKtnTIsF5wZWbEEEb1wO+CojK4AwQ6uH4Gwq9DJOjVDCElwO1IZy9AyR4+u/ZlBxA4VCuechjgtPzBuLPmO7OdSeCIYHPtkbk/43Ae+P+7Ra3EAgjnHHt57GtJ7vICc1D4XZxZj30GI8HmGKSYi4QeoiMSteJBDxERTtz7op/P3NdijLTYmi4fEh1a9tEdw8kB3zn/b981i0bQ6krjV5YbXFDS98/KRVcQPhyknblcU9/Nzx3qY3MfaNB9BUiJsDcYl2Bn262MklI0m52eZi8faDWqNZu0j2tdzdcgxni33rD0NRpsT2Zf/ZbEeE1xQKhVKFq6cLWvWOx8An6o+B3amc2H6GdeEh8PMrINt3FW5/nILbutOQHrnusLiBxFIgDg62EAkBOZk7MXc/+vzge1TccJ9w9epVyOVytt9yKwoRUwcHB+kX64t5f1+w5C5czdgOwXhrWBzcpUL8+eF8aFWWbw46tQoHVv8CtaICOdeumG/TmJJoojp0Qd71aygvLEBpXi67pJw8hsN/rMLI6bMR0aY9LueaEotsMSzBH7OHxVW/3zK1J347egNbE3Og0OrRIsAVE7uGoWczH6vHKKzQYOMZ2/bNFRoD3v07CaGe5jewxqDQGrD3cj6Gt6pRSjeWR/09seBaFjQOJu20d5ViWUIE+/pYSQXr4NDH0wU7Ch2vmKo0GHFdpUG2nWSvTI0OqSoNoqSNq55EoVDuTTp79oaQK8bZ0mPQMDVVTu9EjHDOgEZjIHVYu3jePQHF/QRJlE2/kIgzO/7BteNHwNQSZHK4XDTr2BWtBw1HSHzLm9LZpQ4OlHuZvrGR+GjbPptVjMcO7IipH01jJ4RnDlzAJpRYc0P4ec5qthpR8plUs22qCtPzp8dDnXDp6DUUZBYhOyWXXQ5tPI4V83/HvA1vsBOnqefT7V43qXzz5PxHq99/f/ZjNvGeJC5pVFo0axeBB6YMYe2VrUGque7744jN86hIVaHXlsG3VhXYxlJerMDp3efRZUT7Jh9ryLP9sGzOaofts1v2jMPcda/DaDTi4uEr7O/RbkBLnNh+1uFzqhVq3LiQYdf5IfNqNluVyjek6d8ZhUK5d5gSPQquAhnWpe2FwmBboMrnGmAwmCfdcDkM9AwPFVoeOBwGXA6fFRdYEjkQtGZZRJbRMvz6VeeMPEg51sVoUp4WGgOfFVKQM5OcUj7XaNYHJS8VBjGuVUigKCCuEhyodTwEyCrgJbL02TkwMlX78zG1xQC7136/QwQuZGnqMSgUyp0BcRlbPndNvfXcUiWER6+AEfLx0MxReGLWKMhlIrz05ipotZaLY5SVq/Hjyv3IWrmXFV/XRlWZINTrka6sYJu4sZEqrWQ5uPEYfp3/Oxb8NQsJPeKQklFoti953Ajq3MIHvTocT4zubBaTkKSkQ38dg1atQ2ynaDYmIX1xa2Rfz8XRv47DUy5E0ZhY6H3NE2yI8IG/7hS+W3sJnn71Cy9xVDo2aRVCG889gxHcSjfskrxSJO67iHYDWqGpDHuuP1Yu/MNqlVhLThnv/D6ddbq4cOgyNEoNOoQF4nhq5TyRA7dllVaHlLOpqCgxiVGsQWJKInJx93Fz6NooFMr9wdRvJ8Pd1w0bv9mGwsr5YtKnZ0joURV+GAGit1a1DoT4aq2iczIJ6yrE0zHglZrGYojGWeMpsCtyqHJvIPAyi8CNrJ98WhdDbq18AD9P6w2JsxkHYPic6uvgGgGu0sg64zAGPXhXMsDLKATHyEA5NMbuueEqwNPzxtpvd59DYxIK5d6LSew5GBB35nGzR7MC6SkdZrLOBZYgfe7lc9fi8rGr9ZzqqkQLpJjU6d2JrPNB5rUcdiFzGyQmee+f2Yjt1MyheZKRLwzCQ6/VOLQtrYxJDm86wRaSatG1Oeu2TCpgWyPtUqbdeYLi3BJ8P2MFXDzNnVAbA5k7uHjkarXwuSmMGtASq/44BIMF5z8CPyUXnFq/U4fBrTFnzTTodXo2JiFxW1zX5uyciaNolFpcOZFcPedlDVMbFSRy+899CoVy//D6jy/C098dm77bwTrbsEjEgK8X4CIzTVKUVQB5hYBGe1uvldwjnYKj+Tu1CngIRAKnFB+817lXYhK9Xo/HH38cCoXt8T5nQgUODhLsIcWotkHYcCrT4nZXMR+vDmjOihuUZaW4fvqkzeOlnrVtY5x8wnLyjk6jxsbFCxAQHYM2BRqA8cNFeSy0PMvODPLKaj9VEAeH1wY0ZxdHOZtRAq0DA9+ZJSp2cQZEfOEMLlSo7IoburjJ0M1Djt4eLujsLsfa7CIsSc1GRuXNn9waSBfb0TTeaKnIkUJMLCuzCjE7MgBCLjVToVAoNbR174xwaRR+z1pGvxYrBIiC4SOyULWJclvJTbmGrV9/wro1WIKIHa4cPcguXsGhGPrSdPhFRjvt/IWFhcjIMFmSe3h4ICwsDOXl5di5cyfr7FBaWgpPT0/Ex8dj8ODBcHU1OTZRKHcL4d4eGJzQHNsSLQ/gekgleG54T7i4yFCQWcg6NdjiyKYTYGwouA/8ecw0e1wHMojz9rAPENMpGvnptl3LCKTSUd3qr08tGMcujkIGrUlyjSO2w2RxBvYGvR3l6skUu+IGIu5I6BGLjkPbspUKt/ywCysXrmMnEAjEwYHD5dj8vWoTEhvEtneEzUt34ol3x4JnZWKBQqHcfxABwMTwQejkEYuXT39qsy251RD5QO26pKY7FafyFREE8FGskcBbbFksoWaEUBkEkPCsD8KXGcyfJcVaCUR8g92xeCFXD4VeyLovVK2zBI/LQCgwoEItBoc0deAW2s0nGrFufvYbUigUyj1EZKswdBnZHkc2WZ7/8PSQYcLUoay4ITO7GIkXLc+nVLH38FXwL2Vave3uX3fEouMYESTPHLgQMR2jUOzrSm7kNs8jkwrrVX999oPx7OIoFw5eZiu98ss08Fl2FpoId2jC3dlnhii1FKKUYvZzZJWYhBh1IcmqwuR8aOOsF3YSpBWBW2tuxFkxyeVjyXbFDe0HtkJ8t1h0GtYWMR2j8dfX27B60QYUZpmqqBqCXMEdEw8jqc7mwPRNtLs7W+jCEYjLw7g3R4HHozEJhUIxweVy8dTCcWg5oSsmfbnBJAwgt4jaDwyeSfCg95XDKBGAS4Rk7A2r/v2Opwf4KgZ6qfWOPk9DXBcqz59VBG6ZErKDWpQ87k/s66zuJ9truk8yJNjg2069YIhzg4WghAgdwOGDI5eBY6wca3OgUEbXIW0RGhtktx2FQqHcSxBBQbuBrXBq5zmL272DPNm+JRE3ECH11VPXbR6PuFobbNxz9649ZDEmKS0ox+t957ExiT1RL0HiYl741C/MB5M/fJxdHOX8gUsOtUuv5aDXVJwWk+xNgmDPBRg7RoNxq1U412BkxQ2CxDR0GtqWdbfuOrIDottGYP2n/2Dt4o0ozi2tmSchfQIHTanD4oLYPoWjMQkRoDjankKh3PuQedNJ/3scLXu1wJwRiwBPdyA82Hz+VSIG4+0JJN8wiR3udshcvEoDSCznIbMQZx9FzbOh55jOCIyiuVv3CwsWLMCxY8du6TmpwKEBfDC6JfQGBpvOZZl1mALdxPh6QjsEuZsmW1XlZWAYxyrhNAajwYDMy0kgKXm9kIwOJafxl/8IFIjMq26Sjp0zXBC4t8BKpC7EWcIZ7Ckqt9smV6tDsc6ALfml2FpQiu/S8822k5+6ITXKtUYjIiQihImFuKG2rdD7Nj0flxRqrGgZCYGjqggKhXJfkK/NxZ0MB1wwpETSbSLOpfVtOzfFMqnnTuPvj95nxZiOQEQQa+e9iQdmvI3wVm2d8rUSEUMVRNwwffp0LF261KJ6WCqVYtq0aZgzZw7EYuqmRLl7eP+hQTAyDHacv2q2PsjDFZ8/NgI+pGIEW3mIxCS2R3ntJsvb2EwqHjkymM7lctiqq02FDFzfaqLaWLeBbgiOOC8UZRejrLAc+/44jP9WH8TGL7eYba+yFXUUvVaP8IQQdjKHOHDYYtX7G9gKU8Q1giYUUSiU2pzLarhgjDx6ahwOSEUa08MkudQbrsIMCNnMHXPI4+hAQSR6eKVAwq8vcijTS6AyiqrbFmmkyFS5IVRmf8yHiC/UeseGP4lgQlEp1ijXCeEF2+4VgwO6OXRcCoVCudd467dXsejxL3D47xNm6wOj/TFv/Qy4eZvG9otLbd9HCSS2gYBnMRmVYCumIVVOSUyibR4AtA6z2o7P46J3p2ZwZkxCnnTi6yXs0hDEZ9Oh93OF0dPc/YE9Zrka4pOpZoJDIihxBie2n7G5neFxke0ihEeUJ7Zdz8TmLSexdf46sza8zDK4bbiAsr6RYDyl4Bgqk42tIN6fgehRQ9kK7KQyri2Wv7MGKedu4O3Vr9GEIgqFYkbS1VyTc0NdcUMVlcIHfYsw8DOKwMkrBhQqU8KNzHzMV5qtR1m4ACAig7oYGYiKDYDRCF56IfiJpvsxr0QP1435KHvEsrBZlK6DMigQpa/FgGM0QlQKyHIZCFT1n1/sGjtTwYy/J5hL6eyxxMlF0MT62mz/UF/njKtTKBTK3cbc36fj/cc+w/FtZ+oV/iHu0zI3WbWbgT1siRvsxSRalZZ1XbOHUCxA91GdcLfNk5DzRSSEOC0m4ZapINmdCIOXC4zuUnD0RvCyi6udG4pySlgxw3+rD2DTd9ux5YfdTZsn0RsQ2zkacneZXREKcb1IPpuKmctfNnN/pVAoFOJkA4EACLdcXI7D44KJDAXOXWLjiVsNmYsnBTkcheFyUNHWA5pQKTg6I+SniiHKUtWUrcrKB6KCrR8grxgcInKoZNhk6nJ9v3D48GF88MEHt/y8VODQAMQCHr54rC1eG9AM2y7kQKU1ID7QDQPifNlB8irkHp7g8fkw6J3jQmAPqVGFEblbsCJkAowc04iytyYfDwhTcfiz3TgplqB5lx5o0bMvBI1I4OsQ7sk6QVRonPN5iNtFmdr6sdqGuiMhyDl2xI48Nq6rtLieab/yrKOcKleiUKfHC6G+mH3FVEXaFv8VleOP3CKMD/By2jVQKJS7n0zVjZt+Dje+B8KlzeAu8IDGqEGK4grytdlsSo89bqe4wVPgjQiZ405ElFvj3NAQcUMVpD3Z79F5/3OKk8OZM2fMXtd+XxelUon3338fu3fvxqZNm+DtbS4UpVDuVCRCAT57bASS8wqxKykZWr0e8UF+6B0TAV6tyjLewSQm4TnkenAzCWoWgPce/QRSVwl6j+2O/hN6QGSr6oMVWvVuAZFECI3KORafMncpFCXWE67a9I13WgU84l5jD2ItTRZncW7fRajK1RgzbQQ7MG+PQ38dx97fD6PfYz2cdg0UCuXu58DlHBjkXPD41u9jZNy8dvSgM9TNPDK9VhsEOJUfjEiXQnhLFNXOl16CUIRKuqOfdzAUmgpkq3ZBzzkJLkePUp0E15XeKNFLIOOT+z8RHoigM/Ig5WnBIZmVdiDOEPrK7EvTfLT1CUoyd8nlMjAYOVDohKhQiSCXaCy2jZCFoL1nK7vnp7ClbE1LU7gDrJcpFEoNErkECzbOwvXzaWw/kggN4jo3Y93Iale79PNxtT/JSpKJmujmLLieB320H5g6iaxVhHE4mD/0fcjcZeg7rju7CMXmjg6O0LZfAgRCPiv2biwcnQHyHRdYFwd+u3BUGAzgqLSss4MwKQvcWnMwHYa0QUCkc5yCbInbdf6uUPRtjhKxABf+qxFn8wfFQf7fFfaaqxBmlMH71zPQBrpAHe6Kkn5BYMT1pxndd95A0vEC6Bc9jdFTh2HZnNV2r5GIvclv02N050Z9RgqFcm9y4Uy6SRpgK9GQA2gjPcFzdQMTEQju2avgpmbDGB9h1oxoqd1SdVD48aGX1TgpNPf1RP+YKIR4uKLsfDoOrj4A4p1aded0X5sHXrkBZQ/6wOAlMJ1SbYTgqg46vRc4kabjkPYqGaDyY+B5SQdRaZ04ijSzlzBJnGyEfECthTC1CPy8CtahwhKtwgPQLc45Qrh7HhqTUCj3HETA8MGWt3HtzHUc/ecU9Do9WnSLQYdBrc2S04lLwp0AqWz99vAP4OIpR9/HeqD32G4QikzPlIZAXNeI6KChif7WkLhIoCo3JbVaotuDHeEd5Jw8JlbcXgmvsJxd6nLt9HV2cRbHtpxmXeUefGkIfnt/vd32u37dh77jerBOEhQKhVJF0uFLgI+HTZdKDp8HxssdyLdddM5W0T3iXuMX7oPCrCIc3Hgc105dt1vMkNAQcYMqUo7s56Jh8KgZFysaGQzZ6SL4/5QCrs4IEIGDixTw9ax/gNIKIKVmPrt1n3i07h3v8Pnva+7ymKSiogKPP/44DLXELbcKKnBoBJE+ckzpYz0JTySVsYKCiwf24FbhYlAgSpGCq/Jm6FByCl2Lj7Lrq4yQ086fxcnNf+KRuaTTbD2BT1FSzF53RVEhXLx8ENezD+SubpjQJRTf701p8nUOjvfD9xM74M3157DmOBmUMsffVYxPxrZp0DEVBpP7Qo5GhyCxEK3lEqzKKcL2glKU3oaELj0DpKu0eDrIGxlqLb5Jy7ObKvxbViEVOFAoFDNURvtV7ppKoDgEXTx7V79v7dYRS1M/uu2/BAccuAu8oDIooDaaD6oEiELQ32cEeJWCPsrthwRVW7/+pMHihirIftu++RRPLPmqyRUx6goavLy8WBeHhx9+GKGhoayTA1EVf/zxx9izx9RPO3LkCMaMGYNdu3ZBQJT3FMpdQpSvF7tYw93HDV0f6IADG0xxwS2HLfFgboV8alciNnz2DxbvmgtPfw+ruxZmF+Pf3/az1Xp8Q73Rf0JPuHq5YOik/tj45dYmX1q/8T3w5q9T8eGTX2L3yv31tpNzvv7TlAYdU6HWYlfiVRSUKxHo4Yp4F1ds/W4njvxzwiF7amdDkszy0gpYgQP5++cX5o4Qltj64y4qcKBQKGYUKdWogAhu7tYnOvVGbqVTA6DR8WCEtX46B2q9EMcywiHgGVinBq2Bh0cjeuCJ+EE19y9jdwzZO7Pe3kQgUYWQq4ev1P69lQgVyrSmZFfGyGHdOW11N1n3CaOpAZ/DB5QtwBHcAMM3n5Ro6RaLV5s9DR6HWtZTKJT7m4iEUHaxho+XCzq1jcCRk9bnFbiZBeA0YCLWEiQBX7wnCZpO0TD61DhDcwxG8K9mIzsxvXqe5OSOs1j/2T9YsuvdaqcJS+SWVmDzqYsorFAh2NMVw9vFwsPPHQOf6I0tP+5u8vU+2L4Zpv3wAt4f/xn2rTtZrw0RNkz7/vkGHbdcpcHus9dQVK5EkJcrYmRybPl2B45tPY2KkgqL+xjkIlQMiDW5aNRBH+QORc9oyP+9XG+bMKucXaQX8lHe2R/KOE8wfC5EmRVwOZIDcWoZyChRYVYxHps9GvnpBfjn+512PwP5bqnAgUKh1Ka0VAWO0abJqOmeJans6EtEMLaMBic5HZyMPDD+XsTKp7odT6mH+7YUoLQcBhchuEodBk8ZikmPVBZ8GNAKDzzdB6M8njI7vsuWQsi3FUIbJQHDJ4oKPgrHJliWT/M4KGkugO8JDTi1L9yR5x0pkqEzid2EQj5aJZfhhlSMQrl5Skf3uHAsemIorTBNoVDue6LbRLCLLWEBKWZ05r8Lt3WeJPVCTW4UcZ0g8xwf7niHdRawRl5aPv5ddQClBeWsWx6Z1/AJ9mL/kkT8pvLAlMGY8tnTmP/wR/Xc+QghMYF45atnG3RMMheyf/0R9pqDov1ZR41/vtuB49vP3JZ5EkWpknWTmzjvEdbpevvy/+zus+XHXVTgQKFQzCgrrACkEvvfiiNtrND9wU6Y+O4j1e+HTRqAsQGTG308UgTEEOYLxkUC6A3gZhfBoFYga2oMjJL6Y0CKtp7IfZJBwI/JpkfX5RusU4MoIgD+LUJQeCMfFZfSgIIScCpFFyQPYdYvLzf6Gil3F1OnTkVKimmMlxSPLShwXjF5e1CBw02ix2NPIv3ieVQU3rofs3PxCbQov4hQteXKn8XZWdj8+RKMm/+hxe1H//wdh9etMnOe2L96OXqMewJvDH0QBeVarD9l35GAEBfgguR8BbR6k3JYLOBibIcQzBnegn3/vzGt0CfGF78dvYErueWsQ8SIVoGY2DUM3nLHK7quzCrE/GuZKK+lUK6MEW4r7gLTf1rvRAVCzOHg4xu5NtunOqkSLYVCuXdw4VufZHUW2er693QBRwgtY7lKaWPgggtjA90e4lxaoaeXKcmpRFeEdJVJmUwEGd4i51SuoziP9AuJKMxIa9IxCtJvICMpESHxTauCe/r06erXrVq1wpYtWxAUVFOBXSwWY8SIERg+fDhmzpyJjz4yCXr27duHr7/+Gq+99lqTzk+h3Gk8t3gikg5dZoUCtxwrHfIbSRmssODD7XMtbl8x73es+mCDmfPEj2+uxHNLnsDzHz2B0oIy/Lf6oMPVLtKSMqorrIplIgyfPACTPnycnQCe9csr6PZARzbRJu1iBjuZQKrzjHxxECuocJRVB87gi60HodDU9Om5aj1cdidDcqUQtwtSDYp8TjJJIRAL8Pviv2y2z0q2HbNQKJT7j0BXF5wslEAo00EiqF+tWq3jQ6Un4x+cSqGD7aKkWh0PDDjQGvjsQjiab+5cx+fwIOTyoTXWPV/NQV0E9sdQyBh7gVoGI8MBYxQhJ00OVy8FJC7W99XqTddHmBDZEbNaDmFfpyuzca7kIvtwS3CLQZjMhj0zxeJv4UChKbu/J4VCuTt5+Zm+uHg1G6VlFsRyCjX4l53jYsZVaiHZkwSjqwQGDzkrbuDllpi5D1Rx/VwaPn72Wyz4a5bFY3265QCW7z0BQ61E1E8278esB/vgpS+fRXlxBfavd0xIHt02HNcT06vjG4lcjJEvDsYzHzzGul28veo19BjVGZuX7kTGlSy4eMjRb3xPjHhhIPvaUVb8exLfbDkMlVZX852odHD5LxmiFOvVAzVx/hbFDVXowjxhcBODV2q5qAW/VAuPHWnsYgnimkFikle/fQ58Id+uYD07uUqKQqFQKCb8fd3Au5wLo8h2YRwigjC9ACAXg2nTzPRebwCnoAQoqQBHrQUnr7haWEfuk4Rz+5LMjiWUCC26opJziK6anmfFw227ERsFHKjdAUmxSbQg1OlhVOmhcxODEVlPz+DklbDPMMKYaSPx7Afj2ddXswpw9HIaG2t1iQlDVIBzqmnfL9CYhEK5v5ny+TN4vfdclBcr7ph5kisnkvHZC0sxZ820+rswDOvKTIoW1XZqWPrGCkz9ZjLbtyZigSOb6gulLRFFYpJzadXHIm7bo18Zhifmj2VjknfXz2DnXLb8sAuZ13Lg5u2CAY/3wvDnBrBOGY6yetGfWPX+eqiVzsszaCocLgcyNyl4PB5m/DwFPAEXW36wLVjPTqHzJBQKxRziBpScmOuYWLmRnNtHhHg1Agcyp23XFdUKhnA/GFqEmk3UGPw9oWgBGG1oMCrae0K3MQOCAo1plqS4DI+9NhSPv/Mwu5047Jzdc4F1EuowuDVCYmrycCj3dkzy559/YtmyZexrUliWFJm9lblVVODQRFTlZdCqVJB7eoLHr6km5+rtg/ELP2IFAxcP7oVeowFfJEJst964evQgNErnd5499CXsYovMSxeQl5oC3/BIs/Xn9+zCgTUr6rU36HTY++tPkHt44uOxvfF870j8sC8Ff5y0LnQg98dvJ7SHhKPH8YtpEEjl6BIbDDepeVXkIQn+7NJYNuWVYMbl+i4Qt3vOs7lUhEhpjUijudyyNXZtvCoFERQKhVJFrLw1ksprbOFvBhpj/cnJSFkMLlWcc9o5GipucON7oIN79+r37gJPdqHcuZzdsdkpxzmzY0uTBQ7Lly/H1atXcf36ddYerba4oTZkcn3x4sU4ceJEtZPDhx9+yKqOyWAehXK3QZL+1QoNvAI9wK/VryRVPz8/9D5WLliHPWsPQqPSsgk1pMLPzhV7oVXXJL84AiPgQRvpDaOLGBy1DsKUAjaRqKGc2pmI9MuZ9QY+Nn23A78u+KNee3KdX73yE/v53vrtNYybNRprF29kqxdZgwyukIQlHcPg5IGLkIuF6Ny/pdmAPLkX9Hq4K7s0lk0nL2LRxvpVf4xiPkqHNgdXlQRRWiluNc3aR7LVnKoIbxFSr43eXQSGzwOvRA2u3gi3WtVuKRQKhTC2TQI2/nkWZZ4SKLUGSARa8LgMjAwXaj0feqOFas9GInIGeDzGbNCViBs02vpjH6V1XMDIvbm3TxvszK1fOa4KAde+W2eRWoIbpR5gWMteDnguepTmuUAkLQK31rVVQeYJlFqTLXOkizeej+lVvS1EGsAuFAqFQrFOSX4pNEptvZgkNNgT3y2egOVrDuG/g5eh1RkglQgxoFcsdr25EoZKMXJDYhJdhA+MZKJXrQM/tQDcWsWDuGUqdrHH4U0nkJOaB/9wX7P1K/adwk//Ha/XXqXTY/76XfBzk2PuHzNw9VQK1n64EXv/OGz1HAIhHx9seRsVpUqc+TeRdYzoMLgNpKR6XtX1crnoO647uzSWDYcS8fHG+hVcjRIBSgc3h/vGCxBml1vcVxfsbvf4uiAP8EqzG3xdCT1i4eHrVv0+PL5+TFIXGpNQKJS6DB/UEttOXYbOTh0KYamxUm1tvp5D3Bu83FjBGzfVsoiqrMD8HikQCtBtVEfsX3fE6vl0PlK7P5a+pACcQ1nEWg7GiBBwJGLwyzXQEWEZ14Jgg1RWTTYJ/yJbh2HcrAerNzUL9GYXCoVCoVinOLeEnUvwDiK5WzVjVsR1jp0nWbiOvbeTgkgk6b3fYz3wz9KdYJroKNdY9q07jIKsJ+EdaD4PvuZ/G7H+03/qtSdzQB89/TX7+Rb+9SYuH7+G1Ys24ODG+vFLFSKJEIt3zkVxTgkS9180xSRD2kAiq8lhIsn/RNBAlsZChMw/v70KdxrtB7SEzLXmmR1mYZ6kLu50noRCodRh6LP9ceipbwHPmjEOi5SUNfq7K8k331cil6DTsHY48o9jYrYqjJ4uMMSHWdxWaj4EVh8uB4qW7nD/zyTmaN4hCmOmDa/eHN02gl0o9xfZ2dmYPHly9fwdycm6ccO8cNnNhmZVN5KMi+dxeN1qpF04x87Uil1ckdBnALo9PB4Csakz6OLljUHPT0W/p1+AWlEBsUwOvlAInkDgtGTAxrDjuy/AFwkhdXVHi979Edm2A45trJ9IVJvt332O/LRUtB44FEseaQ0hn4vfjlquyvNCBy9c+v0HXD68H3qtBlweD5oOndF97ER4BdvvMDrKp1YGomwRJBIgTi7BhQoVsjUNS+gikEl6e6m6r4WbVxcf5OUGdz4PJXUqfdTmgVoD/RQKhULwEfkhwaUdzpefumlfiMqoRJYqDYGS0Op1bdw6IUVx2akuDo4g5IrQXJaAdu5dIOHZnxyg3BlolEpcPW59Mr8hXD12iD2eSNr4379jx47s4ghs9fZZs6oFDjk5OTh58qTD+1ModwJn/jvPDsqTaglVA69Dnu2Px98ZA5HEJLglCTukMs3UbyaxFYpIVX+hSAC91uCQHW8VmigfqDpHmFX3VLcNhSgpG+KTN+rOH9uFuDiQCWMPf3cMfrIP2g9ujd8Xb7S9zxNf4tq06xjx/EDMXvkqWwF0x3LTf8N1eWD2KHy57Th2n7gCrd4APo+LvnmFeHF0N4T6ecAZkEpKS3cdtT0Q1Dm4nsDBL9yHTe4hVZqKcxsufiD3L3JuWzw+Z4zZ++6jO0HyshiqCjVUzTxQ3iMEOn9TRViOWg9pYh56D+/Z4GuhUCj3Nu2Dg/BwVBv8VX4YeilQrhHDnhaUxwUqFEJWCMHlGQGGA52e7GT5SZFRXoaT+Zlo71MjehsX1g8HChKhMliOSXQGHiR82wmxKr0QDFNzsTyxARqGi7wbnnD3LYdYbkqGJbdTcn0KrRByngyjItrg+ZiecBfSmMRpkEdWU3MFbnc1EwqFYpUTO87it/fW4fyBS+x7Dz83DJs8AOPfHsPGHYSgAA+8PW04ZkwZhHKFBq4uYggFfGgPXnTYnY2gjfaFpl04UCtZSdM6BMKkLIjO1S+EZOuWool0w+vrtoDxkMDfVY7RbePRJTwEy/ZaF9iRZ8bMZZvxbKd2GN2/NeasnQ4O7zPsWWP5Mzz02nB8O305Dqw/yiZREcFDz4e74KmF4xAQ4RyHUlLJ74cdx6w34HGh7BAM4SbiRAQzMXxYi2Ac8ZGhWGdnnsRSEq4DNtoT59ZUHiSQz/7ttOWs8N4aTRF6UCiUe5MObcIxrGMs/rx2BQYrLg58pRGCikqltRUYf08wN3LAqVBZdLQk1UhrJ+uMf+shHNt8yuo9i6OxL7rmagzg6CrjlsrqqVydEYIiJfQuohonB4Zhj8dLzYGbVIjBLw3B+LdGN6hqNsUONCahUO5pjm4+ybpCJx2+wr4nouvhzw3EY7NHV4uvSbElMqcwbekLUJQq4eolZ+cninKKbQoEbiZEWLFw7Mes6NknxAtDnu6HhJ5xWP/pJpv9//ljPsIjMx5g466562ZgwSMf4+CflmOCMdNG4PMXf8Chjceg1xkgFAvQe2w3NibxDXGOcI44Hq3+358N3i8o2h8hsUGs8IL8JjeDCXViEhJv/DDzV/a7sEbfx3rclGuhUCh3L52Ht0PP/nHYn1TIipYtwZRXAOWNL3Z+IykDqRfSzYpDTJgzBid3noOuAfmtBhvjTbWmS6y34XPg7uuGIc/0Y5+jRGhBuX9jEoZh8PTTT6OwsJB9T1wb+vbty4ocbiW0RG0juH76BP5YOAdp589We3+oy8twYtMG/PH+HOi05hOwRNRAHBDIX0LHkQ+xgojbRe71a8i8lMQmEv61ZCHWzn8Txdm2raD1Wi0rglg+fQpunDuD90Yl4N2RLRDsXnPjDpZzsaB/IDx2f48Le3ex4gaC0WDA1aOHsHruDBSkpTrlM1xXapCksGyLbAtXPg/vNwuCTyMdE+yJG+JlYjzk52n2H/rJMgX6e9n+vbcVlKG0apCLQqFQKunu1R9dPfqCzzF3wHEmieXmil83gQdG+I+Fh+DWWRz38hqMJ0NeRnevflTccJdRUVQApglWe7Uhx6koMnWMbxW9e/dmK5NUcfbszXVNoVCcycGNxzBr0MJqcUNVdYc1//sTbw37ANo6gx1CsRBeAR7VSUbj3hwFubtjE6W6ADeoukeZiRtYuBxoEgKhiQ9k35Ii2UapEIzQfl/78rFkNgmKVEyaM/J/mDlgAXJS823uQyoU/fbeejwbPw3n9iXh9R9fxHNLnmAH/6sgrgVPf/k0NlWUYeuRi6y4gaA3GLHz+GU8/cFqpOYUwRlcyylEan6xzTbaEDfWzaE2pIrpC588xQ4QNQZ74obYTtHo9mCn6vdGoxGXjl5Fp6FtoWjpg6IxsdXiBvZ4Yj4UHQOxUVCGCqX9arcUCuX+4r2hA/Fq5BAI1Y4NZFfdogxGLnQ6PnR68uzgWG1r1HOx/KJ5Mmm4zB8ftn4eIVLzkkKkoF65WoR8Zc09zBpFqvoCBZ5ID51agPw0T2Rd9UHudU9kk79XffBe3GM4MOwNzGo5mIobKBQKxUH+W3MQbw97v1rcQCACXtJnf+eB/0FfZ7xbJBLAmwiuK8fmx781xszNwBb6QHdoOkaaiRtYuFxoE4Khbe6YUzSJWQofao78CfE4WV6MU2lZ2HL+Cib/+icm/boBeWW2J6PLjTr88OdhjHtjGc5fzcKbv76CZz8YzyZRVeEX5oPJix/H9uV7WAEHETcQyF/iQvdqt7eRnWKqhtdUktJzkVVku0KgNtQdDN98KtA72BNP//gcZKEu0LgCGjdAJwMsmDOBn1vW4AnVVr1boN2AVmYxyZUTKWy1WFvs/f0wlBaSjykUyv0NEclN7dcFUkP9tAZBuREuqboq/YBNiMjB4nqGYStP1ya6TQTe3/IWAqMtP1+kFwvsnIyBpFYbptZ4CxE5CItUEOZVQFCggDBPAWGxCu8unYy12T9g8oePU3EDhUKhOMiOX/bgnQc+rBY3EAqzirFi3u+sEMBgME9kF0tF7DwJETcQHn/nEXbd7SLp0BU2niJxA5nvmTNiEUrrOAvVhYgBlr+zBpPip7ECvXfWTsdTC8bBw9/NTND83EcTWdfsfX8crk7oJw4XxN2bxCR56QXO+QyHr6Ao2/Y8iSX8I/3w7KIJcPO2Y9PUSNoPao2EbrHV78m/BfJ9kfW2+G/NAaiVt7YQJIVCubMhhefeXvUaJoxtD4GuvgCaIc4N1240WfT299fbzNbFdmqGhX/Pgn+Er+PH8bR+TxU5cKv+6MtXsCbze3asy9ExO8q9y5dffont27ezr+Pj47Fo0aLbch1U4NCI5LtdP30Do8FyMnr2lUtI3G36Ya3h5uuHR+d+gIBmMbgTyLpsXr3HFjqNGn9/8gE0SgXaKi7i0ctL8UT6SjyZvhKjE79G0S8LUV5oOTFJo1Bgz68/OeWaVY1MpszR6NDj6EWcuwmD5FIeF5/E1VRBP1xSgc5HLuLhM8lYn2v7KXG+QoWYA+cRsfccpl1KQwrtMFMolEpauXXAs2GvYbjPwzflO8lWZ9Rb5yPyx9igZ/CA/2PwFwXf1N9CxnNBc3k8uBzaJbkb0aqd+zzVqm9OhQ5rSCQSeHnVJEYXFDhnMI9CudmQRKEvXvoRRoPlPvG5vUnY+YtlZ4MqgpsHYsnud9GsfaTd8xERg62ZYk18ADQJQVCObAflA+2geKgDlP1aQF9rQN0eifscj0mUZSrMe2gJW0WPx+dCUVJz78jPKMTSTUdRUGo5Mam0Qo0v/9gPZ6B2UKBcN5koOyUPkxKm4XqiZUe8piB1lbBVqKo4tTsREyNfYidH9vx5FKX9w63+lmczczGoxxt4wHUiPnv+e6clXVEolLt/8H5yx844/vCb+LLdRDBG25lDBna7/ewiIm4waE3ih6O59atux7uFY3nnN/FJmymIlESjVCVGQYUcKp0QhSoZlDrrIvACpZR1cLB5nToetCohDHoewtw8MDI6Djwak9wUGIbjlIVCodxZaNVafPXKT2wFUUuc2nmOFUDYglSl+3DnO4hqE273fJr4IJsxiTYukBUv2KO8exBU8ZYrlR5NzQDjYF2kcqUGMz/9C3oDAw6Xa1ZxNPdGPn5593eU5Fl2ayMikJ/fXgVnoK4UT9iEOMBVxiTk19IFe+BiqAseWrICyUXFAI/DiteNQg50LoChVn4XL68c/PyKBl2Ti4cMr377XPX7Y1tPY0L4i5g95D2rlWWrINVbH3R9Ag+6P4EvpvyAvDTbIngKhXJ/wOVy8NQj3XDw86n4ZNxgSI+mQ5qhgdsVLVxTdeDaN1MwYaP4HSmkUZfWveOx/PIXWLxrLprXGT+TXMgHv8D6WLb0XB74JTXJkUxhSb2CFRwDw4odOEYGoZE+6D6opVkxHorzoDEJhXJvolKo8fWrP1stCHTkn5M4sMF2/5O49yzaPgfhCTUVs28np3cnOty2rLAc80YvYV+T70BZVlMgloztL5+zBuVFlvvyBZlF+OXdtU64YjRaDHD9XCqebzODdVJqNFZiQCKamPr1pOr3h/46jvGhL7DFwY5uPmXzkKd2JmKk/HGM9nwKX0/9GQWZt7Y4H4VCuTMh/fSn3hmDTScXYNZbQ8GkZ4NJzwJz/opJ3GBlzr4hWIpJ2g9sjV+ufokPd7yDyFZh9g9ioyCFy3Xb2+O9fNGneXMak9wk7raYJCkpCbNmzWJfCwQCrFy5EiLR7RGF0mzCBnIj8QzK8vNstjn/7w67IoGKkmJ0HfMYHnnnfXR56FHcTWhVSvy77Hvs/ukbaJUKuOnL4ao3qYgNFpRq9b6/AtvfnyOES0Rw4TX8n2+x3gCdnepCYkuWy3WIk4nZcf8qEuRidHWTYcn1HMy7lolFyVl46PQ1pKltfx+WhBurs4sw9OQVnC+/tUmeFArlziZYFoFIaXOnH5djI/koQByMkf6PIsGlHbjgOf08Yq4Eg31Hg8ehg/Z3K0Kxc1XbQnH9Srs3m9oDn8JKty0K5U7n2JbTdivibPv5X5vblWotCvgcTPzpBSw+sBCPznzQYjuGx4U+wLZQgZEIoW0ZAkZa89+Q0dcV6l6x0IXdHEcgMjBPEl6+nbYcyvIasRVJ3Knws13x58C5FBSVNb2vHeHrAYkdZzhuhQZchXlMUFpQBoMNC2SCUGL/fkQGssgkf1UCcnS7CMR3j2GTpX6YtRJLZ/6KNwctRF6aSbylauYBRmLbFUrRyheqCjU2/7ALL3eezdqhUigUStV9pndQc3R3a2H1CyHdKp3W8n3RaCBuDRx2Mei4MGh4pjLaZHLARsJqa49ofNPpOTwQ1BV8junYDDi4WOiHUrWk2jGCPQcD5CrkSCmpn7jKnkFT/97qI5Xhu2EPgOtIyVcKhUKhmCWIkISapsQkCqUGJUIBnvp5ChbvXYAxrw232I4R8GD0se2QzMhEMHrYdqgjj53yDgE22xj5jE1zAg6ZXKhsUFSqxJL31+HHN1eybnO10apszwsc2HAU5cUNEw5YIirAC8K6rhZ14JapwVHrYXARo+LBNlD0i0WGNw8GS4lgHA70EsDIBSRaA+R7airhWotJSB+BPQ+Xwwro47o2x9I3VuCn2b/hm9eW4e0RH6Ago2EuekTUTqrNvtRpNjKuZDVoXwqFcu9C7jP9u7RAD5kbZLsugV9u7l5qFxsJmFwrc87kHte2X0t8un8hhjzdF7zKey4RJnivvgDxjTpiNr0RshPZcN+WYr5eowGyc6vHcWrj7euKdz4dX30/pVAoFIpjEGcC0m+0xbafd9vcXlGiYMfDiVP0h7vm4sGXhtxVXz8p+PTRM9+wYgVNnecccWuwxZ41B1mRSFMhMUHV87EhFOWUWi3iVYVQbHs+g8RmZjEJj4vmHaIQ0ymanTsiThefT/kB745ejKLskgZdH/m3sfGrrew8SfZ1WgyKQqGY4HK56D+qI+KjvIDcQkDtPMcXazEJOSdxyfz80Pvo/3jP+u1qhRHcPOv3OlEJ4HXBcoZYkNwV3wx4oNHXTrn1ZGdnIyMjw+bSWLRaLSZMmAC12tRPmD9/Ptq0se3KejNxsB4NpYqygvxGtyHuD4f++A2nt/3DOiAQeAIBYrv1gtTNHcrShnWobifXjh1u3I4Mg7XzZqNV/8FoPXAYxHJ5o90SxgV44ocM51ZabuciQYpKCzWZebdBfy9X/N4mCslKDd5LzsKJMiXOw/Qf9S4nCHhL9QaMP5eC7+PD0dW9cd8RhUK59xjo+yA2Za9FlsZ5FZ9DJBE2txNnhe5e/dHOvQvSlNdhYPSsw4ML3w2nSg7jmuISdIyWXW9tCjhYHI4eXgOQVH4GOepM9pihkijEurSEhHfrE9opzkPu6c1WKiR9nKbC5fEg92x8IvSVK1dw8OBB5OWZhJRVamJbkA55UVHNJHtAgO1EBwrlTqEqYb0xbfQGI75fdxDrd5+FojLpRiTgYUjXWLj4uKI8v8x8BzLx6sAEK3kC1GvF5UDTLgL8jCK2Kp2zObD+aL11RpLAX8cxoS4GI4Nn/7cGo3u1xEO9W0EuaVy1AblYhBHt4/DHEetVlaTncsFp4Edv2SsOyWdSobVjktNjdGd8sPVtZFzNwtIZv+LKieTqbZaqEBlc7H9Oo7wm+ZckrL09/AO8teo1xHe7M9wHKRTK7eebXuMw8d9lOKdMMXs8kBxJjZYPA8mIrAPZZtSZ3Bos0SfItpuQgMvH3NYjMSWmD/bnXYPOqEcrj2D4il2xLHknDhWchkKnQb5KAK2F8xP6+sdias/B+C3xLE7lZEHI42FARBTGtkiAu5NFuxQKhXI/4FBMcsPyPIleb8A3q/bj793noKxMuhGL+BjSPQ4SNylUtdwQqkTXDmGncJHeQwyjix0hMRv/WK9oJ1QQmV0Ne/YkOuBbZOFadAZM7fo2hj83gF0k8sY9izzkEgxu1xybjll3xJMk5gA8LhQDW4CRi0wODba+Kw4HHdqEIOvtv6CpI9auS9/HeuD9Lb2QfikTS2eswNWTKVZjEobLgSrWG6oEXxhchOCVayE5nwfJpQK2erkliAsGqbI6+7dXEde5mc1roVAo9w+keunUrm/h0pFEMH6egJscDHE+8HO3vpPRCE629WdXxyG2kzWEYiFe/2kKnlw4Die2nWHv4/HdmsPd1w0/f7kJu48mQUOKaSTlg6uwnFDaa1ACHl84Hpt/P4bLiRkQivjo2i8Ogx5sB7krjUkoFArlVs6TaDU6/PDGr6wou8qBQCwTYeDE3hBJRfXEAncye9c5nrtF+uT6MB8Ywn2glAgx+a1VeHBQG4wc0BJikR0xgRW8AjzQ46FO2Pt7I3PIrNBpWFuHHC2GPNMPPR7qjLRLGfhu+gqzeRLi4tFUCrOK8dZQMk/yKpq1s++ITqFQ7g8+2jMPL3eazc7nOouOQ9ra3C6WivDmiql45v3xOLnjLAx6I1r2jIXMXYZf5q7Fob+PQ51XDEWwNxgrc/uPRMZj1JgO+DXpNM4X5EHM52NoeHOMaR4PF+Htqc5PaRydOnWy28aay5U95syZgzNnzrCvu3XrhpkzZ+J2QgUODUTm7mH/SxUKcW73NgQ2i4V3aI298q6fvsG5XdvM2hp0OlzYuxvu/gF3lcCBuFA0lrL8XBxYswLn9+zEo/M+hNzDs1HHeTMyAOfKVThaahKLOIMz5So4kqLpLxLARyjAwkpxw80gT6vH6NPX0MZFimUtwxEgolWlKRQKMDLgURRrC3Gi5CBUBgXcBB5w4bvjeMl+i1+Pt9APBVrLVQW44KKVaweHvlYJT4YYlwSzdd28+rELIVudgR15f0FtNL8nBohCMMBnJEQ8Mbp69qU/4T2GSCpFs45dceXowSYfK7pjV/Z4jeXo0aN45pln2Nd8Ph8vvfQS5HaElEQQYTDUiBq7du3a6PNTKLcSD38bE7aV8IV8bPlhF+J7xCIsLrh6/Qc/7sDmA+YWlxqdAX/tu4CwhzrA+MN/MIR6weBncm3g5ZWBW6KE0d3Gf58MYz2JX8SHPtgTghvOt/G1ZH3MVetNNqCWkqBqjeWk55Xgi3X7sengBXz/xlh4ujbu/jN9RE9cysxHYnpOvW2i68WQHcts8DHPH7gExkqCT228gjzZyYPvpi83G7S3Bq/M/qQMr1xTbwLotR5z0KJbDN5d9zo8/e3HwxQK5d7n135P42pJHr6+sBfFWgUiXLzhKXbBF0mWY5I41wCcz7ec5Crk8vB0nGMxibfYBaNDzQf5X28xCq9jFPv6SH4KZpz4HaU6c4VYV58ovN92NOQCMeb2ojHJbcH5OkcKhXIXxCQcHhdbftyNVr3iENw8sHr9/K+2YPdhc2cAtUaPjf8mInxMZ6h+/s/8OGodOOUqMC42kj91ejZusXk9DvSxCYKscugD6rvC8RUM+HVOoa7QoLEpqcSZ4PsZK7BzxV4s+fdduHradqKzxsyH+uBqViEuZdR3zhalFEF6Jgu6KF9W3EAwOjArePpAEtzL7M8BeQd5wjvQk3XXu2ZjUp847RU9FAdtaI07oMFDwr5XxfvAc8NFq6L47JRcNpG5Ve8WmPvH63Dztu3mQaFQ7n1IBdOvjv4P185cx8oF61BWVI7w+FBI20Zh1dr6xTBIbk+UhIfrWr3VRKEHXx7q0LnJPY8kUtbm9fcm4vXK18e2nsYH4z+Doo5YjyRpTv/hBUhkYkyZPcLhz0pxIjQmoVDuOTwdiElIYt/Wn3ajdZ94BEb5V69/79FPcPjvE2ZtiSsbcRELjglExuW7x0VMZ8epobZwXNM9BsZa/enrmUX4bNm/2Lr3Ar54dyzkssYlt77y1STcSMpA6nnnOUIf334GjAOFs0hM4hPshY8nfYvU884rElk3dpvSYRbaDWiJOWunw8WDFqmlUO53SD7Kd6eW4PLxa1j1/gaUl1SwjjJ8oQDrP9lUrz1xcgttEWz1PimRi/HAlMEOnds3xBtDn+1vtu71H1/E63iRfX3gyFW8/8kWKOu4i/bs2gzTXhgAkUiA93sMasCnpdxPMcnevXvx8ccfs69JvtWKFSvAIwUFbiMcprFSjfsUg16PH15+Bopixyx1Q+JbYejL06FTa7Bs+gumsnUNgYy63MM/UUCzWPQa/xQCmseAxzcpgg16HZRlpRBJpBBKbCcaaYxGrM8txtrsIuRodAgUCzA+wAsdXWX4t6gMf+QU4XS5ndKnDUTEAU53T2AtnNsdSoLuFvw+XgI+drRvjiAJFTlQKBTLEHeFc2XHkam+US0saOXWAcHiMOzO/wepqmtm7fkcAfp6D0WkzHkVmfVGPZIVl5CnzQafw0e4tBkCxDVJtZR7k7Tz5/DHwreafJyxcz9g+02NJTk5GdHR0dXvly1bhqeeesrmPqNHj8bGjRvZ1+3bt8eJE+aDmRTKnYpWrcVjIS+wFfYdof2g1pj1y8so1Oow4a1fbbblkgqddW1/GQP0YutZMCQRhWd5jphFeC4NwqRbNyFQ0acZdBHe5ittFCjtEOKLl/q1R1yXZuAL+NUVnMoKyiBzk9qtpqrR6bHp5EX8deICCsqVCHR3xUOdE9DG3R0ntp5hq0BdO30dzoRUk1qTuZSdMJ8Y+ZJdK2cCw+Mg5+UOMEqtV2Jy33wNsnP1E6MIXoEe+PrEh/CiIgcKhWKF3VlXsOzKURzNM8UkXX3D8UxMF3TyDsWUfRuxJ7OmqjNBLhDi854PoH9wTR+uqaj0WmzNTERSaTbEPAEGBLRAG88Q+pvdYoj9cUiI6XsP/nwW+J41Ca2NQV9UioxXP2Rfp6enIziYxpkUyu1GpVBjXNBzUJbZH3vncDhsYucby15CZokCk95eZbO9eE8SeHWc5fRxgVC1DbO6j+ByNsQn7VfNy36hDfQ+1ucc+AVK+H93BupoTyg6BsPgJQNXD/CVDPi154WrKuGpdRBeyoYwKbNRTg5VtB/YCo+/8zDiujQHj88zj0ncZWxCrC1UWh02HU3CpuMXUVSuRLC3G0Z3TUC8iwtObjuLddfScaW0gm2rkwJ6qe2rFSUXweOvSzbbkFiJxCSFWUV4OuZVm1XhynqFQdEpyPqxjmbAdb/9ZCTfUG98c+JDKnKgUChW2X/gMtZtOI7ExAw2iahd23CMfaQT4pr5Yf6Yj+pVgib3MpKo2GFQa6d9q6oKFf5ddYCt5koSlXo90hUxHZ0X81Acg8YkFMq9T0WJAo8FP2+xEJKlmKTbgx1YN57riWl4vc+7DT4fl8d1aBz+TkWbEAJ9LeF5XbrHBePJoW0R2zm6OpGRzEWReSi5h5wVBNp7/m1fvge7V+5DaUE5AqP9MXzyAIQnhODE9rOseIQ4vzkTdx9X/Jb2HbKu5WByy+m4FQRG+eHLo4saLVCnUCj3Pnt/P4QNn29G0uErbEzSYUgbPPL6A4hqE453Ry9G4j5zF04XTzneXTeDFeM5C6VSix17LiAltQBSqRD9esSiebSf045Puf0xybFjxxAQEGCzfUPnUUpLS9GqVSukpZnG6JYuXYrJkyfXa7d8+XI8/fTT1e9vtvyAChwawaWDe7H5iyUOt/cIDGarEh//64/GnO6+QOrmjtaDhkOrrMCFPbuhVlSAy+Mhsl0ndH34MfiGN87q6+WkG1iXW+zUa30pxBfvRAfin7wSTLrgPKshewg5HCxrGYH+XrRCEYVCsY6RMQ2scDnmlavzNTm4prgEnVEDT6EPmsnjIeJSizFK0yGd1V9mvITCjMZXxfAOCcMTS75iBxibQo8ePVhXBkJYWBhOnz4NDw/L1cZXrlyJiRMnVr9fu3Ytxo4d26TzUyi3ku3L/8PHz37rcMBIBpETZj2AVdtO2W5oZMCtc0j2LdcIg6C+Op+j0YMLns1kHtHRZAiuW67cfTPQBrpBMaiFuajB1gUajHBbewre7jI8+PIQFOeUYseKPWyyFl/AQ7dRnTBx7iMIj29cguzCRz/Bvj+ca8/81MJxmPD2GOxauQ8fPvGlw/sp471RPLJZTUJWLYRppfBek2S1cirbRizAwk2z0a5/y0ZfO4VCufcxGE0xCY9rHpOcys/ElhuXoNDp0MLDF6Oj4iEX0JjkXh+4D/rsTacM3Ge+9j/2NRU4UCh3DiRBhVTud5Rm7SIQ9eJgrN9hsji3Bj8lD6KT5qI40kPVdI2GLsKnXnteTgkkey+D40CykaKlD4pGNbO63ePva5CfzauucKoY1rra+YDFyrgF/3o+JIfNi4s0BlJ9dNQrQ5Gbmo/dv+2HslwFgZCP7g91xhPvPoKQGOsiAVtM/3QjDpw1fadGHqDxsD3+4rb1KiQXbcdwL3zyJMa8NgKbl+7EZy8stSm0zn2hAxiJdaE1R6mD3/cnbMYitcXeH2x5Gy17xtltS6FQ7l8MBiM71kwSimpz/uAlHFh/hK3SHd0uEv0n9LBb2IJyd0JjEgrl/mDDZ5vx7fTlDrdv0bU5wuJDsPXH3bifYLgcqIa2BUTW++TQGSDZegq+AR4Y9cowZF7Jwr+rD7DPTIFIgF6PdMET7441c8JoCLMGLcCpXeZCw6Yy7YcXMOzZ/vjziy345rVluFVIXST43453ENfZemxJoVAoBr0BHC6JScznSc7uvYCDfx6DVq1DTMco9H2sh10RGeXu5G6LSSZMmIBVq0yFaUaMGIFNm+q7kdwOgYMDZrQUS64DIpkcGoWp4o09irMykH3VdrWb+x1laQkO//Gb2TqjwYBrxw/jxrnTeOSd9xHQrOFVxju7y5wucHg80Atb8kvwxmXn2as5gpZhMOl8Kg53iYO/rcCDQqHc19QVNlThI/JnFwrF2ZCJoqEvTcfaeW9Cp1E3eH+BSIwhU6Y1WdxAWLx4MStyIB3oGzduoH///mwHPDY2trqNXq/Hp59+itmzZ1evI51zKm6g3NqIDcIAAQAASURBVG3Ed4+FxEXsUMVUArG8FCSaKmrbhPynWCcGZf/rNHIhPpcJg1wIo4sYHFKpNDkf4PGg7RRl/Xg6A/jpjrnfNRRGyIcu0hf6QHfi7QleQTkE13IBVym4OsDIr7x4y4/GGnhcGNwlKMopwbI5a8w26XUGVpxwYvsZfPzffES3jWjwdcZ3i3G6wGHwU32wZ+1BfP3qzw3aT3qhAFy1HmXdQ6ALMlUY4qh0kJ3Ng8v+dLsJRWSwbf5DS7Ai+StaNZVCoVilrrChinY+QexCoVAolHuDVr3i2GRzkvDiCFdPXQcuZdhtx4jqT1uRbr348DVW/KCL8oNRLgJXrQM/JR/8zCJwHJxHkyXmw+AiRGmfEDYOqMZghOu+jGpxA3tOgxHS/5Kg6hkDo7ttp2l9hA+Ucil42SXQilUo7+gOnZcIXA0DeWI5XA/kgFdR2wLCMgWZRfjxTfN5Ep1Wjz1rDuIkiUn2LkBEQigaSuvmgdUCB64B4GoZGIVWxBoFSoivFNg95sCJvbHz171YOtO2S6DeXWxT3EBgpAIYXEXgF9sfVyL/3uY++CF+TfkacneZ3fYUCuX+hFf7Hl+LhO6x7EKhUCiUe4PWfePZojxk3NoRSDXt+xFGIrQtbiAIeGBkYuSnF+KHOn18nUaH3Sv348S2M/h0/8JGCa8Tusc5XeDQ77Ee2PrTbiybsxq3EiJEf2fkIvx6/Ru7bnsUCuX+pcqhsy6te8ezC4VyJ7FmzZpqcYO3tzd+/PFH3CnYS/WgWODAmhUOixuqUBQX0u+ykZBkyd0/f9uofR/y84CnhUqzjSVcIkSqSo3JF1JRrDfgVqMyGvFrlv3JBQqFQqFQbiV+kdF4YMbbrFihIZD2ZD+yvzPo1q0bPv744+r3xMEhISEBvXr1wjPPPIMxY8YgMDAQM2fOhMFgeo537twZv/1mnjxAodwN/PjmSofFDVWUkeR/e9hKDJKIINt/DS5bzkP+72UIbxRBkFoAbkG51V2E59LAuQn9ZoO7FMqhraFtHQqjjyuMXnLoYgKgHNIK2ghvNtJlnShIEVcHkp3sXSP5rhsqJqhi0JN9IHOznRDVEIiTxJWTKfhg/OeoKFY0eH9xcgl8VyTC/6sT8P3+FAK+PAG3/26Aqzc6PHi/9ad/G3HlFAqFQrkvYZy0UCiUO47v3/jVYXFDFeU37I9tcyusJ7nzc8sgOXQVsh3nIdl3GYIMx8UNVbgeykTg5yfhtisVsqNZkJ7OgcvhTFYwYZCbJ/1wKzSQbj0HPrluO4UZDB4S5D/sj5xJEVC09oA2WAp1lAwFo/yRPqcNFH2awyhufOGi8mIFvmtAddraPNAzAZJaCU3CMoCnZkiJtXqubh7rL9gVPjdrH4nT/57H4ie/shuXchyMMxxtR6goUWDHL3scbk+hUCiU+xwak1Ao9yzfTlvusLihCkUD51XuBRzua9uZJyktKLcrcLbG0Mn9ISJCCycR3z0G+9cfwSeTv4PKRgx5syDfxb+/7b/l56VQKBTKXcodHJOkp6fjxRdfrH6/dOlS+Pn54U6BChwaiEapxNWjBxv8RQslUvAEzuus1cMJVY8t0dBExZtFbso15KWa21Jbg1RtPlhcjj9yinCyVIllCRFws6KKaygvhPhiSWouHHBKdoggkQCtZA2zGTpS0vAkJgqFQqFQbjbhrdri0Xn/g1ewY5UEvUPC2PZkP2cybdo0rFy5Eq6urux7ImTYv38/li1bhg0bNiA/P7+67ZNPPont27dXt6VQ7hZKC8pw+O8TDd7Po1gJvpUKdlXYSg6ytIljZCDZcxGCqzngGmsGyTllKogOX4PwqgOiCjtI5OYxCcMB1D1iwFhIDjIKuTD4yCttJyoDXjt9d26ZGrwC+33s8wcuIf1ypkPXbDQacfrfROxcsRdXT6Xg3fUzWNtiS5DPowlxhTraE3oP+/HXw6+PxC/vrm2y3SOvXAtBkRqB4b6IbBXWoH0T9yc16dwUCoVCoVAolLubgqwi1lGgofgo1OBybcxlMAy4RUq783UMjwtGJABT51gcW8euBU+hgzi1FOoYDyg6+qOsTwiKR0Yhc1p7FA2NYPvo1cckTmgOjOErQgGVFfNUnTtQ0tMdqn5xYPiNn5Y7vfs8clJrXCZsQcZDTu06x7ospJ2+jv+9PLJa5EA+k7ACEBUDwmI9ZEcz4bXiDDzXXWC/G3s88voD+GWuufudNfilGvBzbRcMi/Z0R0SwDxpC4v6LDWpPoVAoFAqFQrm3yE7Jxdk9Fxq8n1eAO24mjsYkTZ0naQgcjQ7cgjLbbUoU4DogYD+2+RQKs4sdjklO7DjLxiTZybmYs3a600QOY6aNxIp318JZRLQKQ1CzgAbtQ2MSCoVCodwLLFu2DCUlJexrLpeLN954A9HR0VaXWbNmme1fe9uECROcfn31vX4pNlGWlcCg1zf4W/INj0Rcj77Ys+KHm/INewYGo88Tk/Hn/95tcqJLaMs28A4ORUCzGJQXFmDfb8twJ1Can8t+j7bYU1SG2VcycF1VY/ccLBZgQXQgcrV67C0qhxEMOrvK8E1aHuybQpsgIcgLIT7o7+WKN6/Yt9F2lDci/JGq1OCcwrFJCQL/JolZKBQKhUJpKsSJ4cmPvkZGUiLObN+Mq8cPg6mV8Mzl8RDdsSvaDBqG4BYtwblJzzTSaR4+fDhrm7Z161ZcuHABRUVFcHFxQVBQEPr164fHH38cHTp0uCnnp1BuNkXZxTAarFfcYaMBkjSjN1bl+bPExoeiXb8W+G7dQcsCaSNj1r4u/Lwyq9V/RCdTEcnh4YnPnsQ7wxaBW6ayeSx7dBjcBiExgYjvHov0S5lsQn8VhiBPMBYSjNjCBRZ0zRyjSURg7YLI4D67zYEwKic136798pF/TrJuDznXa/r4AZF+mPrNJORcz2eFD4QW3WLwy9bDKO4YCKOLyKxqqtvOZPBLzKsOkXvm+LceQlyX5kh55hs4i6cXPoaLR68g5dyNJtuqUigUCoVCoVDuDwozi2A0NnweIi4+FM3jgrBi22mL27laBsaECDBhfuCfugpOrXF+AiMTw9A8CEZ/DzLjBugM4GYWgHc1ExytHrEdo/HwjJFY+MgnNq9D7yZE3hMtYJTWEU3zuajoEgAOw2AIzxOBUf5o1bsFEnU6/PL3MavHY8BAGWT7+yDiB7mnBLoIn0YLwcncT+6NfPiH+9psd+DPo2w127y0GseMwGh/zF0yEclGPU5dymATr1qH+2H9pO8BhWMzJUSc8sS8RxESG4j0y1kOX7f8SAZKHoy1uI2Epq+M6IlzKRqkXXRMUE7gNUEoQqFQKBQKhUK5+8nPKGzUfi26xiAkNgh/fbUNN4NWveIwbNIALHr8iyYfq9uDHdm+f+u+8Ujcl4R1n/zT6GMJLmZC090FsCTAYBh2uyOQODA/vQBeAR422+1ZexBL3/jV7Hci3/vMX15GytkbSDxwEVweFy26NMfq//0JxsH4kuwzadEEeAV6sPM1zoDEOeSYu3/bh8yr2Y7vR2MSCoVCodwDGGvldJHXycnJDdq/dvvg4GA4GypwaCASF1dweXwYDQ0TOUS26wRXH1/wBAIYdA2zSHOEosx0+ISGIbxNe1w/3fBqrrWRe3ii71PPsa+VpSU4sHoFjEbbVmS3Apmb7Q7ysZIKPHHuOrR1BB4Zah2mX07HypaRmBpmsk8h7g6ODNl3dpOhk5sM4wI8ESUV42KFc+zqpDwuZkX4Y1yAF6ZfSmvQvt095E65BgqFQqFQbgYkATckvhW7EOeriqJCaNVKCMVSyD29IJJKb8kX7+7ujhkzZrALhXKv4e7nzg641k0oYkR86JoHQh/mAwj5gFYPfloBBJezwNXq0f7RrnD198DPaw9Bx2HAkHwQDgccAwOOngFIzroV4RFHrQPfzmBxyolktIwNRvsOUTjz7/kmfUb/MG9M+exp9nVBZiFWzPu9Wsht8LLcH676PPWunWwjcTm7vfYOpj8GbxeoEwIhSbSfoOPpb7u6ExEvzHtoCQx1rJxJNaklT3+DD3e8gwlzxrDr1h1NRKEmp94xtKFuKHw0Ad6/nQOvQotWfVogoVssBj/dl02wunTsKpwBcZR4dtEE9B3XHYf/Pt6gfdv0a+mUa6BQKBTK/YANlWGDjkGhUO4kPPzd2fi/IcWWSFe9/eDWEEtF+GPuGmii/WH0dTNt0zPg6ozgVk67MC5S6DrEQHDwPOsaRzC6SKDvGgcIak1rCXgwhvvB6O0GweEkXDp2DR2HtEWLrs2RdPiK1Wsp7xxQX9xQe3sHfwTCH1MWmKqOReSV2BQ4GAWAwbJhWzVEjK2XAbpw7yY53dmLSY5tPY2Fj3xcL17MupaDjx/9FB/9Nw/Pje7Grtv45VaHxA1t+iUgvlsMhjzTj02wOrcvqeHucZll0Aa6mMVsrmIRZozohf4J0diXt6FBx2w3oFWD2lMoFArlfobGJBTKvYinnQR7a8nxbfubCrD99fU2h4oeNZTE/Zfw4Y65WPfJJlw9db1JxwpPCMXTC8exr4m7QFMEDrz8MgiPXYW2TTggruWioNZBmHgDfAddGQgefrZjkoMbj+GD8Z/XixdJMavFT36FT/YtwFOVn2vt4r8cEje0G9jKNE/yTF/4hnizzhDOQO4uw5TPn0anoW2x4bPNDdq3w8DWTrkGCoVCodwP0JiksdASJw1ELJMjumOXBu0jlMrw10fv4ddZU3Ez0et06DX+KYikMqttOKSqkR0uHdwLVUU5+1rq5o74Pv1xuyEOFYHNLVf4qWJJak49cUMVBgb48LopecjAMFiUkm33lvJBsyD81a4Z3o4KZMUNhFCxEMImVpv2E/Kxs0NzPB9iqrIUU3lsRwmqtJGmUCgUCuVOh4gZvIJDEBAdw/69VeIGCuVex8PXDZ2GtTNbx4gEUPeOh55Y6BJxA0HIhz7aH4ohrWB8shumLt2KpxasAiPlsQP3PBUDvtIIvoYBzwBwiQ7bQn+aiBvEey+xTg320Gn0eG7xRJt2yWQSwR7bf9kDRZmSfe0d5MUm4TMCHvs5idOERax005na21ibh/puDZo4f5PLgw2i2oQjqnW4zTbEaaKuuKEKsv6XeSYnCp3egC+2HbJ6HKNcCGXHIExf+gI+/nc+nn7vMVbcUDWRwRc0zUHBJ9gL351ZggemDK6eKGmoAIVCoVAoFAqFcv9CEkra9k9o0D5SNylmDVyIV7vPgaigAqILmeCXG0yLqkbcUI1MDKO/Z/VbQ4tQc3FDbeRiGKID2QQavVaP5z9+EiJJraSdOmgSfGxfrICLP/49AbVSw74N8nVH3+hAq825Oscyo1h3uap4rRHEdm5m11Fu+Turrbpr6LR6rJj/B/tao9JgRWV8YvV6uRy2wuqSXe/iqQXjqp0jiNueI3EdoaxnKAomtoI22NVULbZyPjfQ0xUbpk/EmE6mf0fhCSFoCP7hdn5DCoVCoVAoFMo9TXCzAMR3j2nQPlJXKV7v8y6m954LgfDm5N0Q920yF/DCJ09BYCO3h/S17bHxiy3QaU0FdMPigtFhUNMS6vlZxZBsPQPh4csQnEmF8MgVSLaeBj/dcTeM1n3i4UeKbNlg+TtrrIrhNSotfntvPftaWa7Cb++ts3ksEnfMWTsdH25/BxPffYSNRQmhcUGsUKUpBEb54aekTzFwYm/2fVh8w6pO+0XYdtajUCgUCuVuYN68eexz29Fl2bJlZvvX3rZnzx6nXx8VODSC7o9OhFju4nB7rVJR/fpmuDdUCRFcvLzhHRqOR+d/iIg27cHhmH5e8jc0oTVGvzkPHv7WB+GrMBoMSD9vUrumJyWiJLd+VdFbiVrqguSxk9Hz6EW0PHgeo09fxcbcYrMOcYFWjwPFFTaPc6ZciRsqDQ6XVCBLY/t3cOFx8Uxw/U753/klVkUUjpKr1ePNKxnV74f6uDWoDp3KYD+xjEKhUCgUCoVyb0Mq78vcakRD2vhgMBZEBQZSSdRViLJafUit3gCjkAOD2LwXymEAboUewsR08NMKwUsrhOh4CqT/nAavuCamsZU07+HnhmbtIvHxnvlsRZ2qAWYyCE3eL9o+Bz4hXg4JJRL3XWRfn0i8gYxIP6ge6AjViPYwhFoePCfXbxU7HW5GJgJjIwGKJxMhZFQXPD75B4ye8DWmv7UWew5cNmtDrJYvHDRfVxfymQqyinD4ahqKKkwCDmuIekVh6KT6YvP/Vh+EXtc0hz1yrd+8WjP40Ovhhon4VeXqJp2fQqFQKPcRjJMWCoVyxzH5Q9vC5rooSmr6vzqNDkZfD7u1y4y+psqgjEQExtvk9mC1bbA3ApsFsBU4W3RpzjoVEOeBKnh8HjoOaY3Fu+bCNdB2xVGCSq+vdoE4vu00lDsSITqaDE5ZLZdnhgFHZwRPDQiLbB+PpwL4FQC3kX1pgYiP4Gb+eLL5KxgbMAmzBi9kK6PWJuNqtt0qsad2nkNZYTmObT2DcjtxHkkeqkr2qc3u3/aziVv2UDXzREUXy0lCWcVlWPzP3ur3vceaXCUcRVFGYxIKhUKhOAiNSSiUe5bnP3qSdYhzlIpaOUUkJrkZEOGuUCxEq14t2NijZa+46m08PhedhrVl508kLvZjKSIAuHw8mX195J+TKCuynRPlCByGAT+7BIKUXFbwQN47ChGRewd74clmL+PRwMl4a/gH7HXV5nriDaReSLd5HLKPqkKFw3+fgKrCdr8+MNofvR/pWm/9zhV7G+QoaIms5Fz8MGtl9XtSaKshKEptz/FQKBQKhVINjUkaTeNLxdzHeAYGYdyCxdi/ajmSTxy9KecgAgp1pYuCIzTv0gM8vunn9AkNx0Oz56OiuAiKkmLIPTwhczfZs106sAdFWTXJ9bZEDlePHcI/n33Ivr5dVHj64M9xU5GjJtMcpmpJ+Vo9DpcosKOwDF/FhYLL4aDCYHBorvOyQg2tA/Zm5QYj2xmurfjVGo14P9m284Oj7C+uwCWFCrEyCUIlIjzi74HfcxyzfFuYkoU2rlIkuNAq2BQKhUKhUCj3K+HxIfh0/0L8MOtXHNt5Dobg+qIB0us1CqynCzF8DhiuERwjh3VF4OaWQHAhHdxyU8KOq7cLygrKwfC5rLuBTQEBgP6P9wK30jGOiBxIRZ2CzEKU5JXBK9Cj2rY4um0EclPz7X5GUuVo18FLmP/5FhhrD1QT+2SjBbk+WUfaNbZqj5UEHYGXC/h9W2PHEdNEAqGoWIGTZ25g2KCWmPnqEDZucHQwO+NSJkrd7Ifi5WpT/FMbUkF22ZzVcAZHN59C5rVsBEUHILh5IPo82g171lp3lajNt6//gqi2Eey/QwqFQqFQKBTK/Qnp13+ybwF+fHMlTu441/ADOFCx1N3PHSQF35YYuRoBH4Mm9a8e04/t1Ix1HiDi3tL8MngHe8LdxySSiMu+iv0pN2weTphVwcYkO37Zg4+e+YadLyBXIUjOYwXSms7NYHSXVQs0XK4DhWQaxsrHkqVzQP4nTM5DQxHLxRAIeNi1cn/1uuKd51ixwsgXB2Pq15PYdcpKF7za6APcoW3uD6OHDDAYIEgrQnpmIcodSI6yFOOQJKsV83536LoV7QNsbt994RqyS8oR4O6CyFZh6PZgRxz667hDx/7qlZ8QkRDCxjIUCoVCoVAolPuTuM7NWGHzj2/+hjP/nb8p53DzcWXjCUcZNmlA9euE7rH4ZM8C5KXlo6ywgi3+5Obtym6LbBWO8/tNRZ5sQWKSf77fic9fXIrbidRVwsZau1fuq15XtPU0jm89jTHTRuCFj59k1zkyT0LE0tnX8xyKSZQWjldWVI5V75tcIJrK3rWHWFdyMn9FYsj2g1rj5A5TQWB7fPb896xYJSDCzynXQqFQKBQKpT7UwaGReAWFYNQb76DjA2NwM/AMCoHMo8Z+2R5dHhpXbx0RNvhFRFWLGwhtBg+3eywOlwu/qGbY9eM3t1XcQNjcbQRySMKVBTbkFmNNtqkskr9QAFe+/X/OU5JuOOSAECER1bMz21NUjgJdXZ/sxnOiVkd8SUwIK3JwJBWrVG/EcxduNFmNTKFQKBQKhUK5u4lICMUHm9/GiGkjAD6v3nYjyaG3l+xfVArRrnMQbz0F0ZEr1eIGhsdFwNguEDzfDxVjO6Pikc5QdYmCwVVs1U553KwH6633DvJiE5+qxA2EB18aYvez8QU8RLaLwEc/7DYXN1Sdj3Tp63TrySfllmkAvYX+vp2uMy+3DFyN5b6+qnkwSivqiw0IW3YkYtce0ySEX5g3xDL71aLmP/wRuAX2HTHCvGviuCqO/nMSFSX293UEEk9cPHK1+v2Mn6eg72OOVSgiEzrvP/apU66DQqFQKPc4d2FlotOnT+OVV15BmzZt4OHhAZFIhLCwMPTp0weffvopsrKybu0FUSh3MNFtIvC/be+g3+M9Hd6HEfCgD/eBQSqAkWf7P/GIYE+4ebuAo7VfXZXMDjw8dZhFpzkSk1SJGwgTO7W1eSxBVgVcCjQIjQ3E11N/NhuLZ+MOhQbiA5fAK6hJdBIXcuB+AeDo6nwiIyC/zoE0mwN+Sh74mY4VOqqNVqmx6raw6dvt2L/BVIgrINIPApGgepu6TRhUfeNgCPIAIxWCcZFAGx+E6d9sAbzlds8b3Ly+QOHgn8fsVlmtvu5A207oBiODc2k1RaXeXDkVPcd0dujYRdnFWPT4Fw61pVAoFMp9zl0Yk1AoFMeJ6RiNJbvfRbdRHW/K1xbRMhQunvb7zgSegIcHXhpcb71vqA8bk1SJGwgPvWo/d4s45vmF++C76ctxu1ErNFbFC+s//QdHt5xiXwc1D2Tnd+wxa+ACCCU1sYs1gizEJPv+OAKt2jkOHDqtHldO1BS3euf36ej6QAeH9s1PL8TiJ79yynVQKBQK5R6HxiSNhgocmkir/vaTcxpD1uUkKIrteBpXEtWhC2Tu9i2VCYHN49CiVz+bbaI7dkH+jetQlpbgdlLo7o204CibbZZnFrB/xTwuHvW3LwipMBix6Ho2OthxP5gYWL8CrjPFDYTz5UqcqayoJOJy8WVcGI50iUMPd/vBUYpKwwouKBQK5W5Ea9Qgsewk/spehT8yl2F3/j/IUdt3F6JQKBSKZUY+08/kXFAXB5wMGLGQFTVwtDV9XSJuUPdvgeOlFcjTqKAXAQYxF7pIXygHtYSBVP6sQ++x3SBzq7/eEm37tUSvh7vYbEOOd+5GAcoVlhNn2KQiI8DLK4fgfAYESZkQ77sE+V+nId+SCEFKfrXQgVesgPCajSqpDAPJuUyLm4wuEhjdbPfPN/5zmv0rkUvQf0Iv2KOiRIm1Ly1HbKCPzXZju7Sst660wLkxwNWTybh6KoV9LZKI8NZvr2H5lS+Q0CPW7r6p59Nxdu8Fp14PhUKh3CrI8+W3bSfx7MLVGD9nBeYt3YbzTnLtpNy9lJaWYuLEiWjXrh2++uornD17FiUlJdBqtUhLS8PevXsxffp0REVF4X//+x/0eueOFVIodzMjnhvoUDt9pB/UQ9pC1zYSxiBPMEIujGIOK3SoC4dhkPjrf2wfmFOhBqfEdnXPIQMSIKqV3G+L3s0iMMDNcpVNXpkG3uuusH37kzsTWccCS5AYSrzvIkR7LoB/MQP8y5nw/OMyImachPf6TLicU8HlMuB7mAPXs0qIjiZDfNTU924oRjuu1ETkQHDxkLPObAR9gBt0LSy7G5RWqLHi0EWExgXZPO5wC79raS1Rhz04DrhpXz5yFclnU9nXEpkYc/+YgZ8vfoa4Ls3t7ksSkS4dqxFtUygUyt0EqT79+5K/MLXbW3i+zQzWLehyrQRLCoVCoTSM4c/VOCc4C1LY6cy/5x1yGqhyb+Dx7Cf3E3o+1Blt+iXYbDPoyT44sukkNCotbjfEdcGRmMTD1w3dR3eyezzi/P33N9tZkXZDY82GxCSOkHT4Cq6fT2Nfy1ylWLBxFn5I/BjN2kfa3ff8gUtIOWfbHZBCoVDuVBT6MuzO/ROfX30bH19+A3+kf49MlWmMhkK5U6AChybi7h9g5pDQVOq6BthDJJUhqn0nbFzyHpZOeRo/v/Y89q9ajvIiU+K/JYa+NB0t+w2yuM0/qhkGPTcVZXm5uN3ke/nbbZOkqJlcmBkRgFZyid19sjQ6jPR1h6cV1XB3dzmeCfautz5cbL8aa0NYnlWIISevoP/xSzhZaqq+FCYRYV3baAQ5MBFzzsrECoVCodzJlOvLsD5rBQ4V/YscTSaKdAW4priIv3JW43jxgdt9eRQKhXJXEhUTBA9LiSOOOH5xONCHeIGp5YZmiAuEKtgFGldAL+VAL+FAJ+ew740SPtSdzAd1Xb1c0GJSL0xZvhH9P/gBIz5aji+2H0J+mfVB/3d+fx39J1iu8tqiWwxe+XoScvJK7V+/gA/RhQyIEtPBzy5hhQ+8EiWkB67BbdVRuP56GC6bzkF2IBmS4zfquzto9ZAeSIYgw7K4m7EjjCYkp9aIJ5754DGEJ4TY3Sc7JRePBoXCVWI5xujePAwPWxA4BEQ51+p4w+dbMKXDLEzpOAtXTpom0YOiA/DpvoXw8KupcGuNa6euO/V6KBQK5VaQmVeCx+euxOer9yLxWjaupRdgy8EkPLNgNZZtMlXApji7MhGnicvN/0WKi4vRr18/rFy50my9i4sLQkNDIZPVCDnVajVmz56N8ePHU4dVCqWSlj3iIHOz3XfWB3tB1zq8vvsch8MKHZhas1U8Dge8U9fMhNi8pDRS8t/isT3cpWjp64K3hn+A8aEv4Nn417Bi3u8othFTfD11PMYoXCC5WAhekRqCHAXc/k2D/7dn0T4hEi9+9hRya/X1rcErqoDwYiaEFzLAyy0FT2OEx85M+H+TCP9Pj8F15VHItiVCmJLvkINzY0ipFAgQnlsyESGxQdA1sz2/kppVhOELHoXUxfKcCqlaOvDJ3vXWB0bZn7epQpRs262CozXgr6m/4oW2b+CVLrOrhQ4hMUH44tD7kFsQ19fl6snGiUYoFArldpJ+ORPPt56BH2atZN01SWLk9uX/4ZXOs7Huk030x7lPYxIKhdI0Og1pB7HMsgN1YyBuDIwDgt0qvAI9WJeGN4e8x8YkkxKm4bf31ttMxl+y6110Ht7O4rZ2A1th8uLHkZuaj7uB2kn+L376NAIdmMtIPpOKR14fadUZu9cjXdFnXPcmxSSOsOqDDXiu1et4tccc3EhKZ9eFx4fim+MfQiQV2t2/qogUhUKh3E1kq9Lw0eUZ2JqzBunKa8hWp+Fo0b/47MqbOFhgEq1RnAiNSRoNFTg4gYGTX27yMWTunmg7dCSEEvsJNCwcDsJatUXzrj2x4/svkHziCMoL81GcnYljf63DiplTkZdqvRM16PmpeGLxl2g9cBhCWrRkXSCGvzoT4xYsgVguh9SJoo3GInZgpEDKq/kn7MLn4c+20fAV8u3uV6I3YGv75ngi0AsulceIkAgxNyoQq1pHso4KdenqLkO01HGRg6OTFRcq1HjkbDKSKmoEC54C+59BwrtZ0yEUCoVy8/gvfzPK9JaTSE+VHkaakg4AUCgUSmN4fcrgesk+XL19kQMjl0LTuRmUw9vDrV8Cxrw2HPpuETCIOfUdILgcaOWA3kfOujhwuRx0HNoW8R+PwZzte7H34nXklFbgen4xvv/3KMZ8/huu5VgXXr/561R8c+JDtipoq94t2Ko+c/94HZ/smc9WySFJSvbg2LEh5tT6+OLzWXBbexKSwykQn05nhQ3ua09CdM36BIHIgdhCIq4Z4Hb1dMFnB95jRR/20CcXYs3U8Xi4cwKklQLnCB8PzBzZG1898yAEFio9tR/YCv7htp0fzHAwZCBJQW/0n4+0SzVOFnIP+85yogbERxQKhXKn8PY3m5FtZXL523UHceKiqWIb5f7i+eefx6lTp6rfDxgwAEeOHGFdHW7cuMH+/ffff1l3hyr++OMPvPfee7fpiimUO48pnz1tc7s+xrZbAMNl4OsqxrgxHSE6kgRuvvn4Ebe4Avyjl8Cp5WxMYpJunaLQScrHpxM+x/Gtp5GfUYi0i5n4dcEfeLHdG8i4kmX1nB/8bxLWTnsKkyo8MDhJhxHeQVi4choW75rLugl4+DnmnO1oTNIYHEmokchrErncfdzw+cH3IHEgbtBIhfjy6CIMfqpvdVIRcXV46fNn8O66GRarz5IELJK85Qjy41k2XRykZ3LA1RrY15eOXcMb/eYh81qNo5LcjmiGQGMSCoVyN7Jw7CcoyCyqt55hGHw/YwWSDl++LddFoVAodzvPLX68ycfwDfPBozMfdKyAFIlJeFx0H9URCT3i8Olz3+HkjrNsTHIjKQPL567Bi+1nsgWPrPHeptls/530yck8CUnqX/j3m1i09W3WddmRQkQ3G0eEI7XbeAV44MsjixyKZcg8FGk78IneEElM7SNahmLq15Pw9urXwLWQu0Xmkty87c/BNJSkQ5cxo+885KXVzBlZE4TXRkznSSgUyl0GiTtW3PgE5fr6hUEYMNiYuQwZNHeLcodABQ5OIKpDZ4yc/hbELo3vQClKitj+sUZpquRvC7/IaNa5Ie38WSTu3maxjbq8DL+++Sq+mTwBu3/+FiU5NYPCVfiERWDApCkY++4ijHpjDmK79QKPb0rgie7YxXGxxU3A1ccXr44fD4+61ZzqMNLHfIJBxuchtFaCkTWOllZgb1E53okKxNVerZDZpzUOd2mBKaG+FsUNVe4aH8eEQOygy0ZD5i2UBiM+Sc2pfj/Mx3aQQq5waJ3PTqFQKHc6hdo8ZGsybLY5X16TUEKhUCgUx+k7sDXmvTAItXuRrJtBqcbqPhwDA06VJkLAQ5anHMaWIShnlRHWduLAIAIinukLzvie+NdHjPUXrlhsWlihxCNzluLRoOfw9as/I8dC9dNm7SLx2nfP4eP/5mPe+jfQc0wX8CpjgL5dmkMssi0w4NcaaHYErlYP8aVcSM5kQHQ1D5xKRweGOFm4S2BwrZFZE2vk935+EdLKQXVr9OkZY/aeiDN8Q+s7wtXlzH/ncX7jScwa0gPH3nsZZz98FZtmPoUnerWzKG5gr5/LxbQfXoRQbN/xzfTB4DDKMhVWL9pQ/b6HHRtp8juRqq4UCoVyN3E+ORtJ1227lv6+88wtux7KncGhQ4dYsUIVY8eOxfbt29G5c+dqt12S5Nu3b18cOHAAnTrVPCMXLVqEkhLLIn4K5X5j0JN9MOPnKRadHIxyMRhX24khjICH4r+PQJicDX2xZTc4InIQHL4I7slLiGjjC0OkBLuy0/BnQS7UzX3qdX8Ls4rxbIvXMC74OXz3+i/IS68vwI7pGI3pP7zAxiRz/5iB7qM6VSf29xnXDQIhH0aZCNqEUKh7xUHdPRa6SF8zF7ybRVCzADa5yV7CTK+Hu5q9d/GQw8vXfiLUqS2n2CSel758BpvKV2Kbbg1+uvAZRr0ytDouqwtZP/2HF8F3QAwuzKmA+9+XwdHUiTEZBtKzuXDdV1PllVBerMDvi/+qft99dGfbxxcL0GVEe7vXQaFQKHcSZ/dewPVE26Lqv762PP9PoVAoFNuMfHEwXv12MqR2Yg9b5N3IB0/AhaGuG7QFYjtFs0Lhw5tOYu/vhyy2yU8vxFMxU1lXhx9m/oqCrPoCtxZdY9hYisQk76ydzvZxqxL7+43vYbVvfisg7nAL/prJxkW26PVwF7P3pAiUhwMxydHNJ3HlRDL7u/2j+I2NSZae/Zj9LS2JGwhCkQDTlr4A3k2IyUryy/DHxzVuSj3sxCTk9+8wuLXTr4NCoVBuJpfLzyJfUz+XuLbI4VDhDvojUCzy1FNPsSKZquVmQwUOTqJ552546cfVGP/eJxj0wqvoNnZCg49xZptjlpO5KdegUVSAMdrpUDMMVGWlOLN9M1bOfg3ZVx2v9iAUSxDTrSduNWIXV7QeNAyTvvgR0Qmt8UqYddsyOY+LF0N9660f6Ws/8f9QiQIzr2Sg9aELWJ1dyFpeO0Jndzm2dGgOT4HzA4htBaWs0IEwMdDbphPFWH9PhDgg5KBQKJQ7iTxNjZDLGvkOtKFQKBSKZQYOboMt62bg+/lj8dYz/TC5ewzkm05Dsv8KuMW1hNQMA66OAVdbv8D/iu0nWacGthlJROKbFuLEXoVBCFy8kY9ypQYqO0X+tV4SZHP12PjlVkxpPxPXTl93+OdzkYnRNybQ6nZuYTl4adYdIhyBfC5lu2AUT2iP0rFtUTKuHfBybwz79mksv/IF2veJx7gxpiRGI9f02Y21QgG5XISxo+on+ROhhj1O7TrHVnQaF/Q8/l21Hzwrg/V1ade/JT7dvxByDxmczd7fD8OgN1VQfeClITarIA2b1J+txEShUCh3ExdS7McbSQ60oTgOGd92xnIz+e6776pfy+Vy9r21SXSJRILFixdXv1epVNi6dev/2bsL6KiuLQzA/7hEJu4khCRACO5S3N0K9VKntKVCafsq1N2NljptaaFIaXEp7u4BIoS4ezIub50bksxkNAYE9rfWPDIzd+7cSV6Te+45/94ghFRhVUf/Kf4Vn+5+E8/+NAe3vzil6okrYwxnTAI+ln2w2uE2ukB3lI1tj9MFRahQa2EwmWAI8EDl0BhUDom2CjkYjSYu6LDqs3XcmCTlrOudelg3hB6PjYZ6ZGfo2wbD6OcJY6ACuq6RUA/vzAUfmoNXoAIzn5uMXy58gW7DOmHqU+PsbsvO2SfPHWv1+LDeMY7fxGDE8Z924JOHvsUdYbOxe+UBmx0bbOk9ths+2/2mS9VMZYlFCPz2KBSbk+B2JAsee9MQ8OMJeG1JttndYvvSvTVfT31yHDwcjHvYoidXuucRQsj15OLhJKfbsK425OYakxBCms6E2aPwb8lv+HjH69yYZMb8SfXex9J3HY9JzH9fs8JBxjrdtetiz7OuDss/XoPHe76A9Iu1nZSd8Qv15To7X23eQV648+Xp+Dn+c25MMol1Ebe3baDC5vOuzJMcWn8cH92/kBuTHFh71OUxCQumf7z99Wbp6Lb9z9oxyfR5ExwGZtiYxU3R9HM1hBDSnNKUSU2yDXEdjUkajgIOTSw4pi06DR2JLiPHQSBysarmVcA6Q2z46mOXUzNl+XmI370dVxvrPHFqywbsXfYbSvNy0HbLCgw9uRsirWXl2VYCYFmXKETLrVuh3RHs6/LifxYomHchHdsLy1w+xg7uMnzWPhxNTW8CKg1Vi4n8xEKs6BqNdnVavQl47PP54MN2YU3+/oQQ0twEPOcXJPgubEMIIcSxjnHhGD+uOybcNoCr7CO+XAiPdafh8fdxCCr0EKgB1qTB1hIjo0jALQhiC/n17oBBVnXTuwF6mVnQ4cr1etbNwRldoFtNNc4P7v3K5R9fRmI29r29CuKjyeBVqGuf0BsgvJQLyd4L4BkbPrvIXlkxrC1UPcNhMmuVXKTV4fcTF/HjxsNIzy1Gmq4CujZSVLQSojJEhIpWIlQGCeAXpsCn79yG4CDrgPX4R0bAL9THpeNQlqvwwayvuY4OrmrbIwpPffOwa5/TtbVkHJ1GB41Ky33tF+KDD7a+ilZ1Qibs/1MTZo/E418+4PqOCSHkOiF2oeKd6BpWxSPXxvHjtZ0Ep0yZAm9vxwE+1tnBXHJycrMdGyEtVadbYjHm/mEY//BI8Pm8qvN5rd7xeataC6h1DruQcefwQ2NgslMcSNMuANpIX7uvLy0ox0f3fe3y57iUlo9dGYWslZr1sbhJoOnjJETQQCW5pVj+0b9Y/tEapGYXISPEE/pJ3aAc2h7aqAAuCFLddY6dswe0su4gN31EV/jY6KZRTZSYCz77frMO46VKvHvnFzi33/UiWe17x+CJrx50aVu+zgi303lQ7LwMjwMZEJaYje/qUFdqoNNWHVdghD/e27wAIdFBFtsIRQKuy8TDH97t8vESQsj1QiRxvn6AVaYmhBDSOF0Gx3FjElaop7o7o6uaM9RUlFPChYxdlXAsGUc3X/1uo8U5JfjznVVY/eUGpManoyiv1GZnadZ17qNtr8EnyPpaypQnx7kcSGbzR2/N+IT7vK7qeEssHv1kFppaRUltwbDQ6GC8t/FlBLX2t9iGdbSY8exE3PfW7U3+/oQQ0tyEfOfjDSGPxiTk+uC8hyxpELmnAh2HjMCprddPBa+S3GyknjqO1l2dt+w99d9GGHRVF5HtkSu8oSwtRnM4vGYVDq/5GzAZweqhdjq2C0mt20MjlsKnpABtclMR8OIbgMK61ZenUICVXaMwJz4Vx8uUTt+LjU3eSs7i1mh1cpch0IWLRqP9FBjp64mt9QhGOOMrEsJbWPufJAs37OrdHvuKy3GqXAUpn8e9byh1biCEtFCtZJEQQAADqsJctrSWR1/VYyKEkBsZW6A+/O6B2LJ4J3efV6kBz0mXABZ8MEpMMIrrXPDnASZhVchBVFobjuAZHa4/qtpGV1u96PK5dJzeHY/Ogzo4Pf51326GXmeAkLWETs2HSSHnFvLwy1Xg6ar+lngHeKI4r2Hn5LpQBbRR1guBqn2/7iB++OcA9EITwCZAzCZBDFI+MkUaqPi2/6Yp/Dy5i/rv3vk5Eo8771rBKjj98MIS3Pv6TLTt0Qbegc670g25bQA2/PAfTmy3Dkawn4mycyCU3YKg92fpFCOkiYVwP5wJUb79MRILZcjca0PWUV1a46f4z3Fi2xmu+4bUTYr+U3px/98ihJCWaECXSAgEfBgcVNYb3IPGJE2K/VFq7MKAZq6WevbsWeTn5+P8+fPw9bW/MLpaeXm5xX0fH/q7SIg9Qa0DMGhGP+z8az93Xq+PCbbaRi8GNAo+9DIpytr3hTC/EvKT2ZCdzbMKZevCFDAqHHcN0HQIhCSl0O7z7Pz8wuFEboG+M6s2nYTBQaja5OUGjw5hKI/PQHP47tdt+OxcctUCK08pd9OHekPbIQTybfEozi2B3k5wxNfLDQtfmoEFC9cjybzzncEIUWIOJCdSLbZnndy+f+43rkpru15RXPcKZ0beOxjrf/gP5/ZdQFMJigyASFw7R9OuZxQWX/wSx7aexqVTl7nxyoCpvW0uoCKEkJag78QeWDRvMddhyJ7+k3td1WO64bWAMQkhpPmEtQ1Bv0k9sf/fI9fNt/ncvotIOZOKyE4RTrf9d+Emh38zqru6sTB3c2BjBIPeaLeYLgtCsHkcW1gQ+8P/XsV7d32BVBfGTDqtHt/N/w23PT8F7XtHuxSOYMWYNv74HxKOXUJTqVv0qUO/dvg16Wsc2XQSqefSIfeUc2MS7wDnYyZCCLkedfTsiQ3ZfzreRsFW7JImQ2OSBqMODs1oyKxHEN2rH64nhZnpLm2XeSHe6TbtBwzC2CeeRfP1ZamdbJboNIhLPIXu5w6hdWYyjHo9dv76g92XR8gk2NCjLTb2aIvHWlkmaW05X6nG3acvofv+c7jzVDKKdI6rSTEftA1r0v+AZHwe/s0rhq7O4GSAtwceCw/AA2H+FG4ghLRoMoEcsR7WwbRqIp4InT3pJJkQQprS3K8fQp/x3bmv2eIgfqmTADCPdXFw8LyArfOvPV8VVTqZ3WML65OKLB5iF4BdcdZskUz1sQuKKmrCDczoB4bjmR9moyE0bQMcPm80maDnXwk32Hq9zoBPVu12OHHyzdEP8cX+dzD1qXFOjyfhaDJemfAebg+bjVenvI/K0toqQfY8/d1sq+pT7CdSMj4GZaOiqsINjJAPdaw/Cu7sBE0rT4dVBHct3w/Dlc5yDNt/9xGdMfO5yVybaQo3EEJasgAfD0y4xX7Izl0uwcwRXa/qMZHrg7+/PwYNGoS4uDin265evdrifvfuVedahBDb5v3wKLqP7AxhfDr4eaUWz+lkQGUwH3o3HmvryT3GzmHLRkajdHS01VpCg5fjcINRaIImWAajyPGVe1cW1zCnL2Q63WbCq7di7teudTKoD4OvOyq7R9isHstCHqpbYrhuB98995vdfUSG+mLJu/di0YLbMKN3W0gPJsHtn2OQHk+F2bCuRvyBhKoxSegjeOPWj7luc848890jaEqsO8PulQdgNBotxiQ9R3XhxiQT54ymcAMhpEULjgzE0Dtvsfu8h487Js4ZdVWPiRBCbnTPL34cXYY4H+9fTZfPuTYmObvXeZh4xvxJeOTje9AcWHjBXriBYWOGH/+3xO7zrIjSj2c/w8c7Xse4h0Y4fb/Tu+Lx8vh3cVvIw3jnjs+gVmpcmidpSuzT7l19yOJz8/l89BnXnRuTsFAFhRsIIS1ZgDQUnRSWXYrNuQk90cfH+e9sQq4GCjg0I6FIhMnzX8btr38Avlll/mtJJHU8AVCNd2UywRGBUAh1edN1MKiv/LTLyL2U5HCbbp5yjPFzPTXLlvFsLypHz/3xOFvuePFXiFSMJ8IdL4qqjwyNDo+fT8Odp5ORo9bix4x8vJaYia9Sc5HF2nMTQsgNoJ/PULR37wxenRp8coEbxgROh0JE1dcIIaQpSeUSvL32Ra5KDlsoIkzOdbi93qS2u6C/mkFa+7yk1ASewf7FbbeTORCoLMPDrLqNK0wSISq6B6B4bCRKhoVDG2j9OvaZyvIbVpnI6CZ2/P4ujJjPXs7BpWz71WGZDn3bou8E1wN8rJvDgTXHcGfEHKSddzzJERIVhGl1whPqtr5cmMEmkQAlY2NgsvMjzr6Ui3fu+ByvTv4ABVlF+Pvz9VxVwb8+/Je7TwghN4Ln7x2O8bd0sPpzF+Djjs+fnYoQFypWk3pgf3Sa4nad2Lt3L55//vma+wMGDEDfvn2v6TERcr2TucvwweYFeHft/yA7lAjRkSTwc0uBciVU3pad0sypOwRA08byOhFPa7syqM7NhLI2BpR0MKKkmxAp73VH3swIGGQCm9vLPWRNNoEmEglR0sCuco5o2wU5HJsZAjxh8HHDmd3nufN4R7q2C8UtUcEQXcoHX+O8uBOr0Lr370O4K2IOspJzHG4b0aEVt8CnqWQkZOOtmZ/izVs/5sYgKz9di2+fWYwVn6zlOlYQQsiNYN73j2LoHQOsilYEtfbHe5tegV+o865i5OYdkxBC6s9N4YaPt7+O11c/59JaqKtB7unimETgfFTCOqCV5F67tVvHtpx2On/QZXAceozqXK9gBesEeFfEo8hLN+tIZ0NM9zYYdd8QNJW0+Ay8Mf1jrkN3fmYhVny8hpsnWfXZOpTkW4b2CSGkpboj/HGbIQdfcSBmt3kZHiKaJ2lSNCZpsOtj1f0NLjQ2Dj3HT8Hhf1de0+MQisSI6e28o0Tq6ZPISUp0ul2b7r2cBgyaW2VJsdNt2rvLIBfwoTTUVvxxRmk0YsqJJOzs3R5hUvsLn16KCkGARIRv0vKQpdGhKewprkCPg/EwXyf2fko2HmsVgJejLFuhEUJIS8Pn8THYbzS6K/rikvIitEYtfMX+iJBHQ8CzPelMCCGk8boN64RJj43Bqi/WwxCggKGV9UQpr1IDvroEaO04gGC6cj2dna7yjIBblhHKQD6MYrOJAb2RCzd47rxs8VqpmwR9J/Zwery7ElOwd7gfNKg9zvKBYZDFF8L374SaUEXfCT1wbOtpNAS/0oUQsZOwB5NfWok2wY4nnqO7toZYKoJW7fqYQVmmwlO3vMJVN/INth8AnP3JLPiG+GDlZ+tQlF0MZedAh/s1ekqgifSG9JL9sdThDSe4xUwsbFHtl1eW4s6XpuHe12e6/BkIIeR6JBIK8NrDY/DgpL7YcSwRKrUOMeH+GNgtCkIXJo3JzYNV6mNdjQoLC3H48GEsWbIEK1eurKkqHhYWht9///1aHyYhLUbvsd0x9oFhWP/9VggzCqGO8YWpUzuHr1F1CrQ4bxVfLkIl6+gmqr2GpPUwoSLCaJFGMMoEKB0cBFWUB1p9Gg++pva81k0hR6+x3ZweL6vYmbnzHNDG8fl1/+5tsOdECpqaPsDDpW0ERZUoyilBsJPjjOnRhguIs4VCrqooqcST/V7Cj+c+g5eDAOCT3zyMgHB/rP5yPYpZeKUJ7PvnCA6sPWYxJvn5pT9w7+u34Y4XpzbJexBCyLUilorx0h9P497XZmLv6sPQqrSI7h7JdWEVCGiehBBCmsuAyb0x4p5B2Prrrmv6Tfby90S34Z2cbrfzr31Ow8wsLNd7fHds+H4rruX1k+KcEqfdn9v1igafz4PR6KQzuJmywgrM7fsiN0/i4e1ud7tnf5yDoNYBWLNwE0rymybswQIWu1ccsDjen178Aw+8eydunTexSd6DEEKuFTFfglmt5yFXnYFzpUehM+kQLo9GO48u3LouQq4XFHC4SvrPvBuFmelIPnoI10r3cZMg8/B0uE1xdib++fgt6LWO23yFtI1FWGxHiCRSXEsevn5Ot0mqVCNKJsGZCuftlM1VGIxYlJ6Ht2PCHG73UJg/7g/1w9kKFR44k4LMJgg61C2Cy+5/lZaHZdlFiHWX4rYgH0wK8IboOkmXE0JIfbG0bxdFb/rGEULIVfTg+3ch/WImDm86CUNWEXRtAmHykAJaA4TpBRCx7g5RXk73I9CaYGQjySvnonyTCe5ZRhhMegjSc8FTaSFNKoZAaX1ePHP+ZLg56eCQkFeAuX+thbaqh4IFVQdfFGvawGdNMroO68hdENdpnVcgtUV6MQ/aGDudDhjWfphLcTg+5w7ydr7wKO1CJkJjgpFyJq1ex1hRXInVX6zHQ+/f7XACg7Wgnvb0eCSdvIzZa7eiQOV47KP3dj6OM19IxBj0Bvz+5gqs+34r2nSOwOj7hmLQrX0hENLEOyGkZQoL9MI943pd68O44bG/ojxT4/dRLTs72+n2LHjQFDZv3oyxY8fafG7SpEn48ssvERER0STvRcjN4tFPZyEzKRsnt5+F3sv5Oaney7KqKV9rgOxkJlS9wrn7JpigDLEMN5jThrmhZFAgfLbW/u6448VpXKc7RxKPX8I7t38GEwu+hfkCYqHdcENUhD9KB3XAH1hVdUwiAQw+csBogqCgEjw2rmgAnpF9OufbsPGAX6jjhUTVnRFCooOQdj6zXsdRWlCONQs3Oww6s2NgoYMZ8yci+eRl/G/021w4orHqjklYOOPnl//Evws3cmOSMQ8Mw4CpvWkxMCGkxQprG4LbX5hyrQ/jhtfUYxJCSMv2xJcPIjs5F2f3Xrhmx3Dny9MhlogcbhN/MAHv3/MVd13ekVum9UZYTDA6D47jup5dCyy04MqYhHWHY8HszCTHXeLqKsouwfrvtuL2/9kPOvP5fNzz6gzc9sIUXDp1GfOHvQGN0vG6N1fUDWOw+ajv5v/GdXNo0yUCYx8cjv6Te3HvTwghLVGgNIy7keZFY5KGo4DDVSIQCjF5/itIPXUcu5f9hvyU5Abth8fjw2RyvRNBNb5AgOKcbGQnXkRwjP2qSMc3roVe4/gkLyAyCpOfe4X7OrBNNELbdUDmxXhcbYFtYuAfEWn3+TK9AQ+dTcHu4ooGv8ffucUOAw77isuxv6QCPPAw2McDQRJRkwQc7MnX6ZFfXMF9pj+zi7CkcxvIqLogIeQGozaoUKDNBR98BEhCIOTT6QohhDQFdsH87XUv4sjGE/jppT+Rssv6HF6WUIiySh2MbvYvrotVPMsFRCwAIACEShNkp3LBt9OlgFULTbuYiYRjyWjbI8ru/n87eAJag/2L9pWd/dFXJcWCpfO4+x0HtOeqkSYeu4T6EGWVQpyUD2207ZAD33gl4+Dgz1C3qBBEBNrvrlBWVM61Mj5t43vtqm1/7HEYcDi+7QzO7I7nWlX3GtMVft7uTgMOfHXDQiEMq8R0jN22nMKWX7vgjX9ecDoZQwghLU2ZrgKXKtK5sUg7j0iIaExy3ejdu7dLlQObQmpqqs3H3d3dERkZCb2+4X9PCblZsWDB+5tfwaH1x/H1sm0442R7W+et4qwK6CuN0Ml40HsARsdZBZT1868JOLAxScqZVCSfuoyoLq3tvoYtVmGL6fk6AyT7L0LTNwao0+m5a/tQvPbUeO5rVn21dZcIxEt40EYH1HSYYOFvSXw2JGez6r0wUphVAq2nZcDDgtHEbdNteEcERtgPbpfkl+K1qR8hfv9FNNS2P/fYDTiw37msq97ZvechFAm56uPegYomCTjYU5hVzN2ObDqJfpN64tUVz3LvTQghN5LivFIuNMY6gnbo15Z+zxFCSBORe8jw8Y7Xsf/fo1w1/sxE54UUmpJIIkLiiUtIOZuGyI5VwW1bVn6yxmm4ocfIznjul8e5r3uP64bQmCBkJtYvPNAUWAcJ70D7xbMKs4vx2pQPcPFIw9bJVY9J7AUcWKfNo5tPIf7ARYjEIm6MwLpk5Kbmo7kUZBZxN9YNe+CtffHy0qcpeE0IueHoDXlQ686Dz5NBJu4OHo+uvZCrj/5fdxWxKjatu/ZAaPs4LHzoThh02nq9nnVfUJU3rJWW0WBA4qF9SD56EOOffA5t+95i8by6ogIH/16GM9s3O91Xp2GjIfesbUcskbvhamOBjWH3P+JwmznnUu2GG9hkgitTncV22jVnqLVct4bTZl0hPr6cg/A6kxzNaV9JBT5Iycbr0aFX7T0JIaQpqQyVSFEmQmvUwkfkDz9RAP4rWIMcTSZXgY+R8mXo5NkD3RR9ub+jhBBCGodVkekzvgc63tIetwY+BH2d7gc8gwle6xNRNLVdzaIcc/5GCTR2Fs+b5GLo2gdDctJ2lwK2QGjnsn3Y9/chvLJ8HvpPsqyaXVZYjiVvr8JaWSEgcVDtRsDHsPdnwNPHo2ZBjbtXw8Yk7jsSoSpSQh0XBJNb1cooQbESkgu5UHcO4yq1mgQmm10cxDwe5s8Y4nD/b834xG64gcfnweRCK+byIttjGtaa+vVpH+HS6drFl7+9vhwet3UDWtlfCMXTGSBNLEJTYJMGf7y1Eve/fUeT7I8QQq62/IpKbLuQhEqtDu0D/REb4In39/yIRLc0GNnvfwAKkQemhA7DtLCR9AO6ybCAg0gkQmBgINRqNQoKCrjHKyoq8MUXX+Cbb77Bhx9+iKeffvpaHyohLYpAIODGArHDOmLoa4vgaMmOOKUIqg7+3FUicUYZBGUaSAd3gFZpgEBpgsHB+v9qem+JxZiEBYj3rDqI11c/j16ju1psW1ymxI+rDmB9fjFM/aMhTsiFoKAcso0nYQj1gdHbraozQ1YRbr21H9yvjCG4XNW07tBeslxMZJKJoe4RAZNUBNlR26Epu5/9Qg60UbVhibqEaYWQ6o149JNZDvfz2pQPEX8goVnGJBkJWdyYJDU+o+axX1/7C8FRgbhaDqw5ir8++Bd3vTL9qr0nIYQ0pYLMQm6RLasyHd09kuvq8OaMT5BwJKmmarRPkBdmPjcZ05+ZQN98QghpojHJwGl9ENs3BneGP+rSObE5uacMyjLHRYbs0Wl02PrrLuxZcRBvrf0fug7taPF8cW4Jfnt9BfauPux0XxPnjIbMvWpQxD6Du5c7rjapmwQPf3CP3efZ/M2Cie8h8XiK3e4Pdbsk1GdMcvlcOt6Y/hHXsa7a4leXXdUxyZ6VB/F3nw2Y8ezEq/aehBDSlNT6bOQrt8Ng0sJTHAc3YTDSC2dDqztds8JWKAiCn8dc+HjcR998clVRwOEaEEml6DBoGM5s2+Tya7yDQ1GcXb/WwfaCDuu/+hh7/lwMZVkZPP0DoPAPxKXjh12ubsb2US3j/FlcOnHEhVfxEBgVjdzkRDSFbmMnQ+ruyR0LCzvUFV+hwrYi+2EQbkKEx4PWyWeOstGqWms04vZTyUiy0c4sTa2FhM+Dpp4DoIZaml2EFyKDqYsDIaRFYX9vDhbvwtmy4zA6nMYG1EYVjpTshcqgxADf4VftGAkh5EbnpnDD4Bn9uMU9dUlTSuD/+xlU9AqBOsYHJgEP4uwKtBXIkaZ33E1OF+lvN+BQs41Wj3du/wy+oT4ozS/jWhL7hvhwnSXY3wjd/F6OAw4ADMba42DVQk9sO+NCSJqPtj3a4MLhpJrHWHt6+clMyE5lwugprVqsVF51ni/Mq0Dl0LZs5ACT0AQTOyQWdDCZIEorxkMjesJTY4TBYLBZmef8oUSc3HHO7vGwCQeBSACDnVB1tdC2wVaPaVQavDDqLS7kUFfp6tOQPdwDKpnt4b7bwQzwtY7fsz42/PAf7n71Vq4yEiGEtBTs78j7m3dh2dHT0FX/TeGZENElHVJfy05Epbpy/Hr5X5TrlZjVevK1OeCWjF0ia+xlMrPXHz58GMHB1n8bm8PcuXPx+uuvQyyuKmiSlpbGhRo++eQTrnuDTqfDM888A5lMhtmzZ1+VYyLkRuLtLsOI4BBszs6y+TxPo0dl/3CAfyVsbDKhrYcC2fHFVW3d2Tm7C00ChKXWhaa0ah3Xac07wBNlRRUIjQ6CbGRH7MkqqDrvD2Zhag9o2vhBlFMO+Y7zEGYUAux2hXk11T2nLuFknXCDOU1sMBdYEKv1iOkRiQuHasck5kw8oPQWf5QOCYAmVA6e1gBpgQlu2QIIWSe96s+UUQTZgWTc+cZMiGVirmIpC7PXdWrXObvhBu79jCZunGQ0OB7nhdkYkyjLVXh+5JvIT6/9nlTLTs7lKo6z7/PVsHbRZtz+vykQCG2HQQgh5HrE/o58PfcnbPxpu9MK3UU5JVj07K+oLFXa7ahDrt6YhBBy4/AL8UHPUV1xZNMJl1/TOi4Ml8/VBnwbSq3UcGFkdx83VBRXolW7EG7e5vh/bDGpayzGJKsO4uIR2+MMc2xOIrpbJC6azZM0Bvu7xDrlsbkdW8UKj245ZTfcwLBwgyvBaxYAtNVBm82TFGUX2xyTiKQi6K7SmGTNN5tw67wJVLCRENKiGE1anC94A9kV/8J0Ze2WCDr4CtQQsEl0M3pDDnJKXobRVAE/zyeu0RG3YDQmaTDHq0ZIsxn50GMQy+Uub98U4YZqRr0eJbk50KqUKEi7jORjh+rVuj20fYear+P37HDxVSZolUp4BVmfdNYbj4dj6/7GL8/Mxg9PPIBDq5fDaLS88PNfofNOF8ESkdO20HcH+1o9ti6/1Ga4oRoLN/T0lENgtnMfkQAjfT0hszHJ0BilegNSVPaPhRBCrkeHS/bgdNkRp+EGc+fKT6BMV9Ksx0UIITcb1rqYVdexRZSvhPeGJAR/cRghnx6C39JzyNvuwgVviQim6gVIDrCFLuwCM6tylHzyMg5vOF4zJpGkOT+X7xFeO674b8kuF4PaRlSWKblARV3sGo2gVF0TbmBEueVQrDgOt92JkJ3Ohux4Fjw2XoDPL4fhvSUBy59dgvvbPYl72jyOFR+v4RYVmTu0/pjTYwqODHC6zYRHrCuGb/9zr81wA8PCCx6LT6Crvx/4ZhMKPm4yjHTzgd/ppm3LXJJfhtzLzdfqmRBCmsOHW/fg98Mna8MNALxCSyH11dq90vxv5jYUamhMcq2xcENYWJjDW1O+V3W4gQkPD8f777+P9evXc50dqs2fPx+5ubb/LhNCHHt37jT4HM4EX2m26IQtcFFqYZIKa8MNDI+HhIoyKAP4Nb+lJcWAwEnhVM8Dts9VWaXsnMv53JjkbGkldmfnV4UbzAl40IV4QDWABZ8tq4zG9W9Xc3/jfttd22pfwIOujR+3AElVrkaQjXEACzfkPBSFvHsioWnlxr3GJBVAFcZDYWc9TEX5EJ/NhPuRM3AvT4GwrQiLX1mG+9o+iVnRT+Dvz9dbzfMcXn/c8XHZCS/UNe5h6zHJ1t922Qw3mI/52veJsVjgwyqQ9xnXHSJJ04ajC7OKUWhjURMhhFzPWLhh3XdbnYYbzC374B+U5Jc263ERQsjNZsGKedwCfVc1RbjBPDScl1rAjUkuHkmuV7iBBZVj+9aOU/5bstul17GCS6yAUkC4HxpLIOTj++d+x6yYubiv7Vz8u9C6yO+hdc7nSSI6OL+WM+7hEVaPbf55h81wQzUWbmjfO9piTOIb4o3eY7tBJG7aetA5KXkoLXA+t0UIIdeT8wWvI6viby7cwIMJQuih4Gu4cIOMx4ecx0fdv5D5ZZ/DYKQxCbl6qIPDNcLj8zH9xTex7LXnYaqzEOZ6Fto+DoGRUTX3laWl9Q5psG4UZfm5MOj1VU9cqYLqMrNtK4oKsXfZb8hPu4wJTz1f87jOhQ4KbgI+vooNxzMX0qCzsfkAL3fcH2Z9Ur+5wPlnbu8mw3dxrXG2QgUpn48+CjdIBXyU6vRYk1+CHI2O6/awIa8ElWbH6kpXibpYxwhCCGkpNEYN17mhvkwwIanyPLp79WuW4yKEkJsRq2759roX8dyw1106Hec5CPnWbKPSgtfIbmbuh7KhirUOGlfr3yYcUf61z5fkuX7ROP1CVXVYVg2JBQT0V7onsAvctkLfPIMJkuQCgN3MmI/g2KKe75//HanxGZj/82M1jxucdLtg3L3c8Mz3s/HlYz/anNDuNaYrxj5k3cHowNqjDvcrqNShX4YOH7x2Py5mF0AmFqJnZBhEQgHK5k7DruUHUJxTgsykbOz/9wjUlWbBjgZUNWLVWQkhpKUoVqqw9MipmvsCkR5B7fPhEVDJXaJi2J8ENgapqg9exWAyYk/+MUwJo85y9cJW7LJbYzT29U1s1KhRePXVV7FgwQLufkVFBRYvXowXXnjhWh8aIS2OWCLCJ6/cjRcnvgdNsAdMQj7XQa50Unu7rzFIedDLAJGq6re0IgEo6mS7nJc4SwnFLucBJHX38Kp5Clt4POhaecEoE4OvquoG0WdCD4vgdFG50ul7GK+cM7NxAxPePhSZSTk144CKPn4o72V7HGSS8FE+VAI/YyH4vd3A47tzjwtS9dB/X46cvfn4dt5iZCRk4clvHq55XfV4xxGvAAUmPTYG3zz9i81ODv0n98LIewfVe0zCdB7UAS/98RRSzqRB6i5F50GxEIqE3MIfNiYpyStF+sVMHFh7jAucVGtI94emDk0QQkhzKsgq4jo31JdOo+N+f05+fEyzHNcN6wYckxBCmo7MTYoFK57luim0JAOn94F/mPk8ietrty6fSef+DY8NRUZCds04wN48iT3mcyBZyblceI/Nuzz6ySyzbZyPSfxCfTBq1hD8+MIfVoWkmMEz+2HIbf0bNCbpOborXvj9SaTFZ0DuKUOngbHc3FhxXil2Ld+PsoJybox2cN1RizEIjUkIITc6lS4TWRX/cl+zcAOfZ4KYZ0CAQAB/gQRCXtWFNqPJhHKTHrkGLTc/bjKpUKbcCG/326/xJ2hhaEzSYBRwuIZC2rbH3e9/jrWfvIeS3Gxc73xCwjD+qecsHlMEWFc/dSXoMPWF12Aw6MHj8bFn6WIUZVSdQDfUxf270Xn4aIR37MLd7+Pl5vQ1se5S3Brkg14KN3ydmou/c4u5sEFrmRj3hvjhwTA/SGx0XNC6sGBLYzIiVCrmbuYUIiHuCakNTbwXE4a1+SXI1ugQJBFhop8CC5KysCynyMVPXtWyjRBCWop05SXoTQ1rBakyOCnJRwghpN66DI7DV4few9u3fcZVmHFEUKIEv6gCRp+qxTS2CC853gfDFi1p2wVBGxUAo1wMvlIDcVI+xAk54OmNkKaWwWtzCkpGtbZaZBQT4IsPp1pO4ga1dt4Foa70i1l4f/MrUFWouYvZi+b/iqzEHDTG5sU7MO7h4ejQr6qSa8cBtRVd7YnsFI5xD43gFv6wKnzsgjoLG7AqqhNmj8LkJ8ZwC4BsTWg7o9PoEeqj4G7mPH08MPHRUTX3WVeL3SsOcFVPWdWmW6b1xhdzfuC6RLiqnhltQgi5pnYkXILWUDW5yhcYEdEjExJ3y9+r7M8P78rFe/OQQ5m+4qofL7k+zZ07F2+88Qb0Vwq47Ny5kwIOhDQQW3Dy+a438O4dXyAvpQBlwyKdvkbvxoNIVXUSKisAfE8C5W0ArVfV8zyNAR5HC+H3TxoEascLaoxuYpjkjhfHmwSAPsQb4uRcRHeLxPyfaoPNTIifAicuOunCzYIS4T7gFyshKFcj7UImPt7xOsqLKrhz/udT97GZhdrt+UbwBFWfUQAjIrqVQCCy7MDHjxBC9JYXdK+XwLhLg7WLtnCVTdkxMh1vaY+/v1jv8LDadI7gFsp2HdYRf33wD3avPMiFDdhip4mPjsbEOaMgEAgaOCbRcUGQul30FH6emPTY6Jr7FSWV3JikKKcEga39uVDFJw9+gz2rDlnt0ySXwCTgg1eprhOup0EJIaTlOPDvkXp1bjDHFmISQghpWv0n9cLH21/H+/d8iYJM19fqXCusK8HTi2ZbPMa6xLEuEPWRcTELn+x6E8W5pRBLhPj0kUUoym5c99JVn63jxiQs0M3EDWjPdSxypE3n1pjx7CT0HNWFmyfZ+/chLmzQumMrTJozGuNnjwTfxtotV8ckYTHB3M2cd4ACU54YW3O/rKgcu1cc5IIibPzSd2J3vH/3VzjoQgcKQghpifKU7HczF1ngAg7s33ABD8FCy7WufB4PCp4IEvCRZlDBCB4Mxuv/byW5cVDA4RoLiGiDB7/8AWX5edi86Aukna2tIGev88PV7vggU3hh4G33oP3AIRCJqy6gqysqcHzjv7h4YE+D9pl4eD9GP/oU9/Wu339skuM8u2NrTcDhFm8PtHeT4kKl2u722wvLkarSIEImwUftw7mb3miC0ElHhG6ecmx00sWhu6fzgAXjLhTgjmDLqkyfx4bj1iBvfJOWh+1Fzi9S/Z5diDdjnLdsI4SQ64HedKV7TwN4Ci0XaBJCCGka7XpG4/fkhVxlnY/u+xpn9l6wu63k2GVoRsTBaKO6Kb9ECfEFx8Ftk1iAipFxMPrUni8bFXKoe0RA29oX7lvjwdMZ4HEwG5KkEpQPCYfOTw5/X0/MnT4U4zu2g1hYNYwtqVBh6Zbj2CQyoOTuPuBXaCBOzIPkQg54NiqP1sU6F8z9+iHu6y8f/wFNYdPPO2oCDr3GdkNoTDAyE+1/T9jF8by0fIS1DeEWSbEbm+BmoQtH2vWKxtHNp5xOcrjCzVOOsQ9aViP/3+9PchWTln/0L47/d8bpPjb8+B/uf+sOl96PEEKuNbWudkziFVpqFW4wx/7amXdyCJDY7zBE7KiaG2mc63DNqkKhQGxsLM6cqfo7mZ7euOIthNzs4vq1xx+Xv+U6jL345yacKHO8qIYnYItbaheGSosB6THAoFFCdPoSRPlqp8GGakaJC9NkPB782wRgzuu3YdCMvhCJqwIRrOrn35+tw8m1R4Be4fZfbzJxIW9duyDurjCrBLIDl3Bw7THM/vhe7rGy3/YDrEEEzwSB1FATbmACFWUQiWx/Hh6fB+FsD2h3a7jfl5t+3o4nvnqQe44FBQIj/JGbmm/30NjiodtemIKI2DA8v/gJ7ubKmKR9r2ic3hXveJs+MXAF62zHFkGZW7D8WRzdfBLLPvwXp3eegyHIG4aYEJgUV8aSWj0E6fkQXMwEz2jEll92cp+DEEJaArWyqiNQQwRH1b/44E3vBh2TEEKaVpchcVia/h0XRH7v7i+QdDzF4fbsPNx0lYuRshDDg+/eiVum9akpjFSYXcyNSVy5jm+rmOrRTSdx31tVVbiVZfbXV9XH5p+34+EP7+G+HjSjH354YQmKsovtbr975QHMmD8RkZ0i8OKSqnVkBoPBZtC67jzJhcNJTTImYYWhJsweafHYG/88j8MbTmDZB6txbt9Fp/vYtmSPRZCbEEKuZwZT1e98NvPB45kggxHB3PU226R8AfxMApSa9BAJHFwDI7bRmKTB7P+/klxVnv4BaNd/oNPt2vYZgJje/cF3ciLXlFSlJdi/4g8kH62qlqMsK8XSBfNxYOVSVBY3LJFVlJWJgvRUxO/ZAZ5ZJbzGKC8qsLj/c8dIyGykeKsV6w14KznL4jFn4QbmjmAfyBxspxAKMCPQG43BAhqPtvJ3adsys7ZvhBByvfMT17/KdrViXWGTHgshhBBLrCrNoBnWbX7NCQorMM7fG4N6REFQfU6s1UOUkA3Z9nNcOMERdbdwi3CDOaOvO9RdW1XtMtwbyuGx4Hn5QqyXoTRXhx+WHsDeM5e55wtKKnD/W3/i57WHUFihAgR8GBUyqHtGoGJ0B65LhCtdHC6dTsXW33c5XbzjqoLM2r9VrKIQuwDOWhnbwyoj/bJgmcVjrhzL+EdGQiSxv1+FnweG3jEADcVaUfcY2QWTHrfslmFPZYmywe9FCCFXW4fg2jGJIshxRwbzPJ/BwMPxy2aVtckNQ6vVIiEhAZs2bUJlZaXLr3N3r+1qZbzKBWkIuVGFRgdjyMCOTrcb378D+ndvA77ZmESYmA33zfGQple6HG5g+BVa1rLH8UYmE4oOJuKXV5bi2JbT3EN56QWY2+dFrsJoZXwmxBcddYSznAXRh3ihYnQc0tPykXQihRuTSA1VsTqBVG8RbmAUMsfn2/xQIdBVbDUmYWMLNiYRiu2HOFiF2t9fX17vMcmER0dBKLK/nU+wNwZO74PGjEl6jemGcQ8Oh6GVP/Q9Y2rDDYxYCENUMHR92sLE46GsiLosEUJajpjuzrsV2ZPhrGMQIYSQRmGdB1hHB2fGPjAcPUd34c5brxbWhfvnl5fi5I5z3H1WtOqJ3v/D8o/XcJ3hGiI9IRMXjyZzYxKJzHFnO1flm41JxBIR3vz3BQgcjB3Y5/rj7VUWjzkLNzATHxsNvoPFuCzs3W9STzQUm+PpO6EHRtw9yKXtSwvKGvxehBBytXmKO1z5ygQ+TPAXVHVrcETOF0HMul8bLl2VYySEoQ4O15H2AwZj95JfoFHan0jrM3Um/CMioVEqoamswIkt63F0jeWJXrWA1lHIT0tpko4PFcVFWP/Fhzi0ejnUFeWoKGrcItO8lCT8Ov9xNCV3b8sqen5iIfROPvumglIU6fTwuZJudoW/WITv4lrjkXOXoa4z8eEm4OOnjq25zgyN9XuWa9/jKLllW2pCCLme+UkCESgJQa7GMmDmioTKc+jtPRBSgaxZjo0QQggw4p5B+OmlP6CutL2Ak12sn/XEWK7jQIVSw91WvbsK//x91Ma2QFTX1rh0KpWrBMRCB9pIxyFebRt/CLJKUDGiHbt6bPFcbnE5nl+0Fm2D/FBcqkRBqe1xk8HfA+rOYZAdT3P4XvEHEjC76/wm/bH7hvhY3Pfy94TBSSB51/IDXCcJuYfrf9/8w3zx4pIn8d5dX0CnteyOJPeU4fW/n4NE1vhxwqaftru0HetUQQghLUXXsGAu5BCfnQeBnWrYdZlMQEamL/5QnsWTPQbCXWzZppm0XLt27cKwYcNqAgrr1q3D+PHjXXptZmbt4rKgoKqq7ISQxpvSKw4LNx+AVm/7dzQLWj86th9CfDxRXqlGpVKLpa8tw4Z1x6y2ZYtdIjuFc2MSE/tlbgOfhSOySqAPs1+0SFCqgaBcjSweD8+/+Rda7zyN4vQClMPIFU3iGU2QH0yBoKgSmthgGL3kVS9k8wc82yWeTO4SHErMw6Eez3P3NRNDwZsSDJ7V1IIJwjqBB1vyH42GbGG21ZiEhZ+Ndr6X1bYv3YvHvri/XmMIFpB/7pfH8eF9C7mOD+Y8vN3wxurnajpdNMbmJbug71AVhLfF5OsJY6gvQqiiOSGkBek6tCMiOoQhNT6j3q/9d+Fm3P7iNEhpfpgQQprN2AeH4c93VkFvp6ATC/re+8ZM+AZ7o7y4AqpyFRYvWIatv++22lYg5KN1XCtcOp1md0xSHyzU8PK4d9CmS2sUZBSiJL9xi+qPbDyJ3SsOoin5BluOSTx93GFwUhxr62+78Ogns+pVjIp1oXvm+0fx2SOLYKzT1ZuNg9g8iStBCWds/VztddgghJCWwld2C2TCcKj1qeDBBJELgT3BlStc5ZU/wMPjUfB4NE9Cmh8FHK4jYqkMY594Fms/ew8Gnc7q+YF33seFGxiJXM6lRbMTztvcV2i7Dpj5+nuoKCpCduJFqMrLsO2nbxp9jAVpVRVTHeELhTDqLRfZ1KXXNrz1pj2+YZbtb/K0Olh/F+schwnI0ejqFXBgRvkpsKt3eyzOLMC+4gpu8dZgbw/cG+qHMKnjX96XlBosySrEZZUG3iIBpgf6oL93bcU3Rms0YkN+qUvHMjPIcnBACCHXu6F+47A25y9UGsrr9TqDSY8MdSqi3do327GRG0d+fj4WL16MtWvXIikpCQUFBfDw8ECHDh0wYcIEPPLII/D2blzHJUJuRO5ebnh+8RN4987PrS7es3DDnM/u48IN3LZyCXh6Ay4cSLS5r67DOuH9za8gL60AF48ko0ClwQfbjjs+ALEQqp6trMIN1dj1/4uZ+eCz4YaD6yy8Lq1gOpEOnoMJA42y6atwR3aOsKqGWnexT106jQ5FOSX1CjgwA6f35d5v7TebcWZPPLd4q+forlwbZb9Qy/B3XazN9sYftyE7JRde/gou2NJxgOXfV1WFCoc2OPl5XTH8LufdCAkh5Hry8bSxuO/XldCqRBDJHF/DMhj5KNdKUFLKrt3ocCAzDSMjo6/asbZ413nr5djYWIvuC6tXr3Yp4HD+/HmkpdWGKfv0aXiVckKIJR93Od6cOQqvLNtsVcCIXYd/edowLtzAeLhJue4NCYeSbH4bWUXVt9e+yFUETTh2CXnp+fh+/u9W28n3J6N8YheYbFQsZV3q5P/FQ9suCJpuEdxBJGQXsXbQQP8Y8IsrIdtxHnyNHpKEPO5mFAshbB+M4q5hDn+85YEe8LjytdeOXJRN9Lcx0OFBqxdALHTSLY8vQckDMQjr0sXi8bz0Qi5w7vC1lRqUFpQjoFX9QtLD7hyI6O5tuDHJ2X0XuIVevcd2x/jZI+AT5PiaS8rZNC5QnZuWD59AL4ycNQSxfWIstikrKsexc5lA1zYO92Vo5Ychtze8gx0hhFwLLy99Gs+NeBOl9VyYWlFSibN7L6DnKMvf96TljklsOXHiBH7++Wfs2bMHqampUCqVXKg6MjISkydPxm233YaQkKprtISQpseurz+1aDY+e/hbq3Npdh2eLapn4QbGw9udmwNIPJFic1/9JvbCa6vmIyMxG8knUpCdkoefXvyjUcfHjol1gnNG5iGFqlztcBtVhePnG6JtL8vzdzZH5ExlqZL7G6fwqxrruWrM/UPRvnc01izchPOHErnudazrwriHR8A7QOHwtcmnLmPTz9uRn1HI/TxH3z8UbXtEWWxTkFWE+P0XXZ6zIYSQloLH46NzwGc4ln0/YCqEmptTdxxy0KPqOp3RWACt9jgkEvq9dyOPSa4XFHC4zkT16I273vkUxzb8i5QTR7mgQEi7WHQfOxkRnbtabLvrj1+QeSHe5n4yL8bj6NrV6D35Vnj6+UNZWtIkAQdXOAs3NJdLxw+j77Tbau6z0IKAxxbE2n8N+7XsIxRwoYMfMvKxpaAUOpMJPT3d8ECYH27xrp5esBYhk+C16NB6HePnl3PwQUqOxe+bP7KLMNrPE9/HtYbkykIu1hnC1Sbal1QaBEqaplUcIYRcDQqRN24NmYUVWYuhNNSvXabR5OpvR3Iz++WXXzBv3jyUlJRYPF5UVIS9e/dyt08//RRLlizByJEjr9lxEnK9Yhdhvzr4HlZ9vg5HN52EwWBE50GxmPrkeHQZEmex7bdPL8aFQ7YDDie2ncGahZsxZe5YBLUOQE5hGeAk4MDOk43+9s/BOXweTDyTw0ssaqMRYqkQPJWzyHPTOvDvYUx7clzNfa8ABRcMcVSZiVUk8vR1R+r5DKz+YgMObzzOVTPqODAWU54Yi04DY+2+NiwmmAud1AerJPXHO5ZdANd/vxWDZvTjukIIr4S/2cSGyclCKPOqUZ6+Tn5uhBByHWnj54PVj96NBz59Hximsrsdu6ZUppOgvFJa85izbqGkZQkICEC/fv1w4MAB7v7SpUvx5ptvOl0s9Oqrr1rcnz59erMeJyE3m/Hd2yPCzwu/7zmBAwmpMJpM6B0VhrsHdUf3SMtr8l898aPdxT2HN5zggr1scQvrOJCRkGUz4MBX6eCx5iTUXVpBG+UPiASA3gBRWjFkhy7B6OUGTffWNt/D6O0Gdd8oyHddtOgKoVI7L/JkEtdO0Qkr9JBdLIOqh/UinJJKOQIU9guFKJViqNUSVkoP/5alYyp61TznHeh4UY9JwINALoa7l5wLHbAxydHN5uPAcejQr53d14e3D8XjXz6A+vjh+d+x/OM1Fo+tXbQFw+8eyHWFqK6yqixTwejC3IdJKkZeaj4iO1kGzgkh5HrGfmd9f+pjPNRxHsqL6jdPYtBdm7l40vxKS0vxxBNPcHMXdbGANbuxLnQvvfQSXnvtNcyfPx9CIS35IaQ5sIXz4e1D8PcX63Fi21nuse4jOmHqU+PRoW9bi20/n/0dLp9Nt7mfvasP4b8luzHi7kHc9Xy2qL6xAQdXOQs3NBfWEWLobbfU3PcO8nL6GolcDJmHDEknU7D6yw04vvU0N6/Cuh6xMUm7XvaLjbAOGU9+83C9jnHhkz/jn683Wjy25pvNGPPAMDzz/Wyu4HB18MJVrOAV+xkTQkhL4SnpgH5ha3A0cwwKDOWIFJogdNDJodJYO+9uAo1JyNVBo53rEOvSMGbO0w630SiViN+1zeE2p7ZuQK+J08Dj8yFXeCG8Y2eknT2NGxXrVFFRXAR3b5+agMNIX09sKrBf+YIt1xly5CIqDAaum0O1DQWl3O2VNsF4IiKwSY5vfX4J3k/Jsfnc5oIyvJWchbdjqio6eQj48BYKUOyk2ivz6eUcrOhKlQMJIS2LVCDD+IAZWJH9S71eFyihijTEsQ8//BAvvPBCzX2FQsEtWGLVjRITE7mFS6xCa15eHiZOnIj//vsPt9xSe5GNEFIlulskXvh1rsNvB6umuWPZXofb/LtwIxdwYIJ8PdEpOhhnkrLtbi8orIAxpAkWyhtNXKXVq+3kjnNcS2pWtYlhVX96jOqMo5tP2X0Nq+50f7snUVmqsuj2sHvFAexZeZALMLAL+E1h+597rMIN5u8XHBmAh96/m7vPKiXJPWXcoiJnlry1Em+t+V+THCMhhFwtvm5yfDzxfsxb9zaEQ2sDDNVYNq1SJ4HOIEB5oRv3mIDHQ5fAIPoh3WCViZ5++umagAOrjDpr1iysX78eYrHtLq1vv/02Vq5cWXOfVVDt2bNn8x4kITehjuFB+OCuqrGEPUU5xdw5syNs0QoLODCsG11M90gkHrcORJjcpOBJpRDqeTAZ2HjCBIFKDx540LV1/LvfEOwFo4cUfLMFRAIb59EsqK0NMEKvMIIVvZNdtFxwJDtfYTPgUFjpBneZGnKxdYDbYOAhM7O2g9vu9MtQ6XSQiaqCAcGRgeg8uANO77IslqUNckP5gDCo2noDAj5GfrEYpv+SIN+XAd6VqlE7/9rPjRPmLnyY6xTXFDb+tM0q3FBt25I9CGkThHtfn8nd9wn2hozPg7NlvzyVFkveWoUFy+c1yTESQsjVwrrdvLXmBTx9ywKXX8O65cT0cNzZhrS8MQlTXFyMESNG4PhxywIxrDM160ZdWFiIyspK7jG1Wo0XX3yR2/avv/7iCqwQQpoeC/o6CvsyeWn5OLDmqMNt/v16IxdwYKK6tEZ4bCjSzmfiRsW+HwaDoSa4zELRrMvChcO2O+8xGqUWd4U/irKiChgNtcVFtv2xBzuW7cOzP87BqFlDmuT4/l24ySrcUI11dAiNCcbtL0zh7geE+0EkEXGduJ358+1VeP7XJ5rkGAkh5GqRCgMRF/A1zubOQrLOhLYi2Dy3VBp10Fwp183jSSESWRZFJDfGmOR6VBU5JC1OYUYadBrHaduy/Dwoy0pr7ve79U7wBTd2psWgs6yK9L82wfBkraIdKNFbhhvMvX0pG2fKXU/kOrIoLd/h839mF6H8yoIm9ofigVA/l/a7p7gCO4vq176UEEKuBz4SP/TxqrqY44pwWRuu+wMh9uzcudMi3PDggw/i8uXL2LhxI9fVgXVuOHLkCNfGmdFoNLj//vuh013dCu+E3ChSTqdBq3b8309GQjbXVrja7Gn9IeDbmXAzGiE9kQae1knFB7bi1MkAXphRDJ6+aStsuzpRWPd78uB7d0Hmbr1w1lxZYYVFuKEaq1D07TOLkRpvu/pTfa38dK3D59d//x/USk1NZwlXFzEdXH8Mp3fb7i5ICCHXs5iukZhpGgPVD5XQaXk1f2Y0BgFKNFKUayQoyvOAXlO1SHRUZDRC3D2v8VGTpjZz5kyMGTOm5n51CHr79u3chHz13+TDhw9zYYYFC2oXoLFODwsXLqQfCiHXSNKJy9A7CTannEmD1mwxyqw3bgO/zphEH+AJ1dAOMAQp2Il/Vbc4kQD6qEAoh8dxzzvE40FfpxOdIKcMfLOQg87TiOKBGpR30UHV2gBVGwOKxoqQ9XwUjLKqOQyPXYXgqW2NC3hILfBBYbkHdLqqRUKsoVBxsRuSk4KhVklqtmXdLrRGy308/MHdkMhqQ1vqCE/kzeoIVawvF25girQaFA9qhYLbYmEy+/4YjSauSwbr2tYUVn22zuHza7/dXPPzEktEGDe2K+BkjChIz8eevw8i/mBCkxwjIYRcTXH929csonTF4Jn9uWAEufHMnj3bItzAwg4HDx7kujqkpqZy/7IxSvfu3Wu2WbFiBRfAJoRcOwnHLnHnzA63OZps0eX5vjdvb7HBJP6V8YMjbK6Ddak298hH93JBAUdK8ssswg3V2GOfPrwI+RmFaCz2c/j783VOAynV8zUyNymG3+Vaobxtf+6x212QEEKuZ96yAQjxmIUCI3BWa0KZ0Vjzd0tnMqDEqEaxqXadslw2DQI+jUnI1UEBhxZKcKX6jjN8s5aEYbEdMez+2ZB6XJ2J2KY+IXf2mVmXCncfy1BAezcZ/ukWgyHeDa8C+2tm40+SNUYjjpTVLuyyRWkw4pjZNrcFVXWicMXCtLxGHR8hhFwrXb36YFzgrQiVRnAV8ezxEflhiF/tghNC6tJqtXj00Udr7s+ZMwc//vgjvLws256yi/+rV6+uaduclJSEtWsdL/glhNgmkghdGhMIxbXb9Y6LwLzJ/eAltayIzKtQQ74rAYIyNQTFjjsG8Iyo+othb85Ab4D0VEbVtvbCFA3ALuSYfxZb/EJ94FVn8VN010h8svMNdB3WscHvu27RVjRWZWmlzUq15lgYJfHYpZr7Yx4fA4OvO1eN1sTjwSQS2P62m4AVdqqwEkLI9e6eBTPwxoy5aPexP4o+MyD1oifSC7yRW+CJwgwvaMqrQmpxfgF4d/Coa324LY+J1zS3ZsaqnpovFGLB6OHDh3Md4SIiIuDp6Yk+ffpgzZo1FuGGDRs2IDQ0tNmPjxDS8DEJW4AjMCuC1Htcdzz41YNwC/WpObfVdm9ds9C/LpOnDHBhXMEzW7DE3WeLYfYlgW8wwig2oayHFkYbuWdVZ0/kPtaa+1pQaYD30lyuu4PVcRj4KLjog6QL4Th3thXOnY1ARro/NBrLsVW4pwKe4trAA9O+dww+2v4618mBHWXxhGguwGGLpo0XKrsGWC0oWvdd48ckrONGanzVWM3RoqaU06k198c/OAzC+LSqBKINvIJS8LOKYDKanAa6CSHkesWKY7z+93PoNLB91d8sO392WPXruV8/eLUPr+VrAWOS/fv3c2EF8xD25s2buTFI9ZoLVgl96NChXCGn3r1712z73nvvoaSkpFmPjxBin7NF+wybVzBfP3XLtD64/8N74OZv3b2NMbpJoY9tBV33KOjiImBUyBv1I2jqeRI+3/FSQ9ahQlxnDqjTwFh8+N+riOvvuCOGPSxwsOGH/9BYuan5yEp2HN4uyCxC2oXaDhsT54x2ad9s3LTKSXiCEEKuV1G+C9De/yuYxN1xRsvHRZ0GWYZy5BmVqDTVFg4Ri3vDS/HmNT3WFqkFjEmuVzd2Of8bWEBEJDz9A1GWb//EK7R9HGTuVQv7z+zYit1Lfoa6orzmeR6fDxMr89NM3Lx94OHnj+yEC02yP4FQBIODCssJcb2h5fEhq/O41mhClgvtwuw5V+F4gVVTYot7s9RavJqUiQ35td03XOnioDYYIXUhLU0IIdebVrJI7lYtT5ON+PKTKNYWQsyXIMqtPaLd2kPIdy3cR25O69atw8WLF7mv2QKkTz/91O62Xbp0wfjx4/Hvv/9y91mHh2nTpl21YyXkRtGuVzR8Q7xRmFVsd5vuIztDKq9aXLN20Rb8/PKfqCiu5Mbf8iAFBAo5DKVKCLNLoY0NgWpgu6pqoazika2L7kYTeIaqeV5ueQv7H7PN+CVKyA+mQFhUFRwOah0ADx93rkJSU2CfpcJB9VCJmwQGvbGm9XI11r64MLOowe976UztAp8GczGAzjbLyi/FF3/swu6jSTCN7lT1uMEEvtYEvkoHQVo+hAlZ4Jl1nTi88QSMRqPTyQ1CCLke9Rnfg7tVO5aThT/jTyFZWARPiQSTY2IxIbodJDd4Z9SbGQsw7NmzB08//TR++ukn7m8aU1lZyd3qmjhxIr7//nsEBQVdg6MlhFSLG9AeCj8PlBbUznvU1Wd895rz8+XrjuKnJbtRzsYb/dqCV6aCpKCs0QuGYDBCkG19PV+YX4H2yYUond0WRaJsuy9XdlNAEyaFJEMNbbAvBGkSGBUGmORXOj4r+eCXCsHT8eEhFaPYQYVYRYkQBoMRQqHlmESr1nILdTSRChi8HXeYq+waCPfjlnNPl05fxlUrisXjITMpG4vm/YqD646B+yQ6PQwxITB5uVdto60alwgSMmvCJYfWHWv0MRJCyLUyYEpv7lbtzJ7zWP/DVmQm5nDXtkbcNRADb+0LkZjmSW5EixYtqvna3d2du2/vGptMJsOHH36IIUOGcPdVKhU3x3HHHXdcteMlhNTqMiQObgo5KkuVdr8t/Sf3qvl6xe/7sOS7HVBpjUBEOBCghqi4BLqsfO55fbsw7rzXnDEyEPz0fAhPpTgoF2hfZKdwrqOCs7CxK1iw2MPXjetKbQ/rHsc6YtadJ9GqtCjMtj+f5MwlsyB0c49J2HYs5LDo2V9xZOMJl/dPYxJCSEvm7zaWu1VTa/ajsnIJ9PrL4PN94Sa/FTLZOPB4NCYhVw/NyrVQLJzQZ8oMbP3hazsb8NBn6kzuy4N//4V9f/1utUlzhhuYNt16oSQvp8n2p1UpwQtrDVOG9YX0lLBorI7rD2lyFt5rG1b7uFKDmaeSUKZv+Gd1cyE0sCavBIszC7gwhFzAxwR/BR4O80e4rGoxl4TPR1+FGw6W2u/i4C7gI0IqwuQTSUhXa+t9nAY7FYwIIaSlCZAEczfS8hnVehhKNTBpjeCJ+RAoJOBLm+f0888//6z5+o033oBU6niy/tlnn0XXrl3h6+uL2NjYZjkmQm50AqEAtz0/Bd88/YvdSql3/G8q9/UvryzFn+/+XfMczwSI2AKg7FKuraAu1Bua7hFVz7F9awCT0AQju/7NXW/mcQvsa7o3XHmYnQELs0ohTsoDv0IDYX651WKmxOO1HQkai3U48AnyQlGO7apomQnZ+OXlpZj98b01j6XGp+N/o9+GqqK2dWd9Sd0sK7Daqpq0Y9k+rFu0hbvIL/eQYdCMfpj29HgEtKrqcufmKUe7XlG4eMR+2INNmHu1CcDsN/9CfrHlBIVJwIOB/WplF61iQmAM8IJ4b3xNyIFVJ2KTG9QnkhByI+gRFMLdSOOxv/ns1th9XA1yuZwLLbCxAgs57NixA5cuXUJZWRnXGa5Vq1ZcxVS2cKhnz55X56AIIQ6JJSLc+uwk/PTiHw7HLMyXv+7AsvXHrbozqFiHBmfYwhw2n2JnoaHocgH4attFlm4ZFIc1gVrASd6ZhRyEhXqo2yjA0/EgKGDvZT1hXFmogb+/HPl66wVU4mIgK6UQP6w9iDlTB9Q8nnQyBS+PexcalRb6boFOP67e23r8IXN3fJ2FBcO2/bGH6/SQei6dW+Q15LYBmPrUOPiFVHWr9g704hZXpZxJs7sf70AF3BVyPDNwAYpza0MjgtwS7maSimES8MFTacCrE/RgYXNCCLlRsErX7EZujjHJ8eO15yhTpkyBt7e3w+1ZZwdzyclNU9yFENKwokjTn56A395YbvN5kViIGfMncV9/+f46rPvbckzCk0mhl7HiCXwY+AarcEM1Yyt/GJQaCBOz6n2MAyb3xu6VB9BUWLiBzSWUF9kOObBO0sve/wd3vTy95rELhxPxysT3uWJQDeVsTMJCFVt/2431329F+oVMeHi7Ycjtt2Dqk2PhE1T1ezUg3A9hbYORkWA/gO7fypfrqMTGJI7C9DaPgcYkhJAbiFTSn7uRm2NMcr2igEML1nnEGKgqynFw5VLodbUL4kVSGSI6d8Wx9f/g8L8rkXH+bKPeh8cXQCKXQV1hP4Fbl0AoRLexE7Ht52+dbysSI3bAIJzd6byd2IoJ90F+4TQ6XTwO98pylHkocKZdd1yI7gQTX4Cl2YV4qU0wPK5UJ/omPa9R4QZmUoCXw+efv5iO37IKa+6X6g34IaMAK3KK8VfXKHTxqKr+NCc8AAfPpNjdz90hvvg1q7BB4YZImQhudSoyEUIIIdcCW2SruVSKygNZUMUXAuZ/hvmALM4Pbn2DIWET9q5W7nOCXbDasGED97VYLMatt97q9DUDBw7kboSQxpn65DiuI8PS9/6GzqyzgdTfE10fGYlfdsXDsPUUzi7bz10Q5tk5N2fdG8yx3w48PcC/skuxmA+RRIgKlcZiO1F6EeR7Em3uV8zCw0+MxQf3fOn0c0jkYm7xzeZfdjjd1tm1g3XfbcGsN2+r6Vyx7IN/XA436BUSKLuFQBPlA5OID1FuJWSnsjF4Rn+Hv3c/fvAbbFm8s+YxVi1q1Wfr8N/vu/DRttcQ2akqPDLj2Ul4+/bP7O5r0pzRWLb1lFW4oQaPB4MY4KtMMCnk0LcNgSg+nXuqdadwbgEZIYQQ0tK1a9eOq4hKCGkZbn9hCnf+u/KTNdDrajuMsQX2PUZ0xm+v/wWNRITDMnG99sud9/Or/mXhBa9zmdDe0haVKsvr98L0QkiOptgNKk+cMxp/n6vqIOmIVCHFqNnD8QvP8QIanokH90smsHiDxgcwCgGBFpAWAOKSqi7RK/47gQcn9IFYVDUFuPS91Vy4gREonS8oEiitu9Y5GpOwcMN7d3+Jncv21TzGfibLP/oXW3/biY93vIHw9qHc47fOm4iP7l9od19sDMfGUObhBovPr9barVob1bW1g09FCCGEXL/Onj2L/Px8nD9/nivK5Ex5ueX5go9PVZiQEHJt3P3qrVCWq7D6yw0wmHU9ZiGAbsM6cYFsLV+Ic0X2u0Mj2B8Gd8fzptIukRDmFENdrnL52OSeMox7ZAS2L93rfFsPGW6Z1gdbfq2da7DHWUHd1V+u58Zq1XMGf7y9qlHhBoYVdXI0V/zWzE+xb/VhizHJsvdXc/Mkn+x8AyFRQdzc9PRnJuKLOd/b3de0p8Zzx1vfcAPTpmvVXAwhhBBCmobz0vTkusa6ODzy7WIMf2AO+k6/Hd3HT2Znkkg6fACpp08gI/4MW/HSqPcwGQ3oOnoihtz7sEvbCyUSjH/6Bfi1ikBITHun2499fB5GPfoUPPz8HW6nlrkhBUKca98dyyY/hB/vfAbLJz6A8227cuEGbhujCatziy06KzTWKQeDg035pRbhBnMlegMej0/lFhwxo/0UeC0qxOZ/dCxE8XKbECzPaVg7thSVDrNOX0K52WCJEEIIudq0mRXI/fw4Cn44A9XZOuEGxgiozhRwz7Pt2PZNITExkWvDzHTu3Blubm5Nsl9CiGvueW0G/kxfhMe/fAB3vTIdk967E8phnbAjPgNHT6fixIUs6Lq2hnpEFxg9rKujmng86AM9YbyyeMgWrdaAB27piCcm9YWIdWvILwOvqIILAWjaBsIoFlgtJHp15XyExQSjQ792Tj/DK8vm4ZnvZ3PVQh0RiAQottO9oZq6UlNzEZ2NBXavcK0ykjbIHUV3doGqazCMHhKYpCJoI7xQOikWJzzsTxbs/Gu/RbjBHLsA//69X9XcHzyzP+5763bw+dYTJSPuGYS7X7sVm/add3ygfB5MVwY1hnD/mp/Z5TNpeHPmJ1BVNrxTBSGEEEIIIQ3x4Lt34s+0RXjs8/u5McmUuWO5Bf27Vx3E8f/O4Hh6gd3XcmfGdQYibGxikLAbD0YJD3qFGMVt/TF7RFc8MqEXRAk5EMdnQr7xNGR7Ey06CZiunGuzhURvrH4egRH+6OZXtbjfkfc/fBzzProfXjLHVUklQgHKitSQFfDglcCDTzwPiiQeJCUs2lD13mVqLQ4duMB9rdfpsf+f2kU+0qRi8J2EHORn8q0eY10g7Nn62y6LcIM5FlQwDzSMmjWE+xnZKnox9sHhmDF/ot19OZNwNBnv3vUFNHWC8YQQQkhL4O/vj0GDBiEuLs7ptqtXr7a4371792Y8MkKIM+zclnV1XnL5G8z59L6qeZLHRkNZpuQ6J7AxydkLuY53IuDBZGP+xFylWofZP87BHS9Wdc52hnUweGvN/7iOah36t3W6/TsbXsLchQ9xQQdHJHIJKkqsO8qZK80vx6ld57ivVRUqHN5g2bmiIS6dumz3uQ3f/2cRbjBXkFmETx6qLc47YfZIzLzSVaMu9nMbP3skdq882KBjPLvnAj56YCG0jQxzEEIIIaQKBRxuADIPT3QdPR5dR43Hmf82Q6dp+ou3h/9ZgdJ8JyfcV0R26QG/sHCUFxVApvACj7VvtsPD1x/RvfpyJ/xdRoy1uY2Rx8fFyA7YP+Fel97/r+zaXs8VhsYv+P8juxCbC2xXC/o1y/7ECJOk1GBfSe3izXtDfTHS19Nqu0q9ESU6PQp1DhLbTmwuLMPMk8lQG6gNMyGEkKtPnViM/O9OQZ/r+IJWNbYd2569rrHOnDlT83VMTEzN11u2bME999yD6OhoyGQy+Pn5cRMEX3zxBdRqWoBLSFPy8ldgyhNjMe6p8fjnZCo0Zt0casjE0PZta7F2SO8lRenoaKj8ALUvDypfQOvOQg/WL/9twTLkJ2RD28YPBhaI8HOHPsQL6t6tUT6lKwxeVZ3TmH4TeyI8NhR5afnwDfEGX2B/6BsSHYTe47pBIBBg3MMjbG7DQhja1r4Q39oTlUPaQt0xBEaJ/YaIm37ZXvX5dHpo1c4vZLPvSenYtjDZ2ecfe0/hwMVUm8+tXbTZ4b4vnUrFuf0Xa+6zxV49RnVhzRhqsPEYq2ZUUliBCqXz8WTNz0ciAsy6NuxZeRAvjX2H+9yEEEJI1R+NJroRQogT3oFeXIc5toB+/XdboTcbk5hkVd3V7GKX1K8UKmLhBiNr9lAnFGzwc8dXO46j8HgKpMcuQ3IqHYIri3qMIj6Kh4ci7aXuSPmgL1Le7IX2v9+OoN6tkV5WghCJF/h2+w4AMQo/DAhsDbFAgOldbS9qNMEEo9AEhbcMFaHgxk5GBw3UNvxQ1TGbBT3MO1vwDCYottseWzDCIhXcj+ZYPb7s/X9wZo/tMPS6RVvsHwiAC4cSkXSiNiAx/ZkJ6Dqso8U2PD4PFSUVKM4phdqFMYk9O5buxYJJH1hUziWEEHKTu8HGJHv37sXzzz9fc3/AgAHo27fvNT0mQkgVFiSY9vR4DL3jFqz//j8YzDtPi0VN8m1a9OxvyM+wXYTVVseDkKhAZCXnIKh1gM2QcbWY7pHoOKA915l65L2DHe5X4efh0vtv+GFbTVEoo1kovKF+fW05Lh5NtvncWidjktO74pF6PqPm/sznJ6PzoA5WY5Ly4goUZhc3qtsEK0j1+rSPuE53hBBCyI04Jrma7K/IIC3Ome1boNM0z2I9o0GPExvXuLRt4uH9SD52iKtW6qgtmcxTgSnPL4BAWPV/wx4TpiLt7CnuVq1S5oYV4+9Dvl+wy8d6vFyJYp0e3iIh2rtJca7C8feE58J//4szC7gODHWdd7Jv5kKlGrd4V53gP3T2MnYUWbcx21ZUhrtOX0KIRISsRpwonyhXYlVuMe4Kcd66khBCCGkqrBND4e/xMGnrd6GGbc9e5z+7C8Sh7g1+/0uXLtV8HRQUxLVyfvjhh/Hvv/9abMdCDXv27OFun376KVatWoWePXs2+H0JIdb+3XLKdrjhCpO7FMZgbwiyi6H3lqFwZkeYZGYX9vk86GWAQWyCtBjgVZ+o6wzQF1Vi+YXLgNA6rGCSi1Exoh08V53gXrNj2T7s+fsQDDq9w4Z2PsHeXFVVPr9qn6zyEbvQbb5wx8j2PTIWRi85uOVLEb7QRfhC3TkMbrsTIMqw7uhwZvd5riqRzF2GsLbByEjIdvh/F22kN4wKx5Val+8/jX7trNsbs84JzqSeS0dc/3bcGO21KR/i1M6qyknV2OMH1hxFaX4ZvLu0QnGZ47Aar/rXPVs0VCdUfnbvBexafgDD7xro9LgIIYQQQghpamu/3QJdnTEJT611PkfATmt5Jq5jg0Ua2IxaZ8A/xxJQG62uCjdkz+4ATUTtIh+TTIgVCefxT9ZF6PgGGNkMhJAPvthwpWVErWC5B74dWNvR4PFBfXE0LROnMmtDBiaeiRsnsZJlmapyQAHoFIAqAHBPB8R1GmTyS1U4ue4sdD/puOqrrItEbmptVwa3k3mA3oiyweEweFeNQ9iISHK+EF6bL4Gv1tsNV3caGGv1eIoLY5KUs2mI7hbJLfJ5ZcJ7iD+QYPG8yWjCnlWHuC507l5uqCipREOd2HYG+/89goHTabEnIYSQlo1dszMYDCgsLMThw4exZMkSrFy5smbRbFhYGH7//fdrfZiEkDrWLNxkHbjV6Zxec+eptDDJWNraDo0O6qxCbFuy26XvOQtZbPl1l9PF+kGt/bFg+bM19+9/+3bEH7iIxOO2u7jlpTkuBFvt0Lpj3O8xTz8Pbi6mKNtJ0TsXFm+t+3Yz2v30mMVj7D0un013ejxsm4jYMO5n8+KYt60+HxuT7Fi6jxuTyNylULmwHsyeIxtP4Mimk+gzjjrsEEIIIY1BHRxuIJkXLBepXEtGg8FmuEEslyM0Ng6D7n4A93+2CAGt29Q8JxSJMO3F1zHioccQEBkFsUyO9ePvrVe4AVfOd8uuDBbuC/VrkpTPxUrrE9dkpRo6k/OFnG5XqsUeKa20GW6odrpChZ6ebmis5Tm1HSwIIYSQ5sYuGhUtv1jvcEPN67XGqtc7WoHsRFlZWc3X7GL/6NGja8INrHvDHXfcwXVy6NSpU812aWlpGDx4MA4dOtTg9yWEWDtlVgHHHr2/B7RRASieVifcYMYk4EFndmosTs6DNsoPxjpVVC1e4y6FLtyn9n20tsMN7t5u6Do0Do9+Mgs/nfsMreNa1TwnkUnw/uZX8PiXD6BNlwjIPWXQjonjwg1WRAJUDm4Hg4d1NVh2gVxZXjWGmDhnNJwKse7yVlditvWkAas4ZHTh96fsSkvpE9vPWoUbzLFFRj1CHYelWcXX6uCJgFWK4vNhDPWDISYUhohAmMQibPltp9NjIoQQQgghpDmc3XseJqkYpjahMPXsAFPvOAj5zqul1oSrHYw5GG0rb268Uq1kSIhFuKGm24KbERq+vircwOj5MKqEMOn4UAhl6BcYgVd7jMTGcQ+jjWftObibWIzf7pmBl0YNRtsAP7hJROC7C2zP5gmAinDAUOfjSc9kceMhVimVBScmPDrK6qVuZwsQtPA4An4+Db8lZxH27Un4rroIQYX9xU+2Fg2x4ALvSmDcERa0qF7oUzfcYI4Fztl4rbFoTEIIIaS5ZGdnIyMjw+GtqWzevBkikYgr7DRp0iQsX768JtzA7rNuDpGRkU32foSQpsGKAFkpsC6UVJfgUo7j5y/ngmc0OSzqVJe9cAMLHXQb3glzv34I3536BMFtAmuec1O44ZOdb+CRj+5FRIcwbp5EKK5//WTWmY29P+uePd5O92xzIhe6XLDxR12J6QUw9IiAumsr6MK8bXYIZ+QeVeHuff8cthveYI5vPY2uw2rnlBtqK82TEEIIIY1GHRxuIFq1Ctc7rVKJftPuQETnrjafFwhF6DJyHHc7Va7EO0ftX+i2x0PAR8CVE987g32xs6gc6/NL7W7vSr8EgVnFJq3RiHkX0rlOCc7GDVI+D2OudH5Yk+ckjczmOEwmdHSX4WxFw3+WrGMEWyTqqL0cIYQQ0lQ0l0qhz3Vc6dsZ9nq2H2mUV4NeX15eGyD89ttvodPp4OXlhZ9++gnTpk2z2Hbbtm246667kJubC6VSiRkzZuDcuXPw8HCtnSohxDH1lUX99rDzZ220PwxuYhicNG7RSwBRBSBKL4LkRCoqRllXCq3LEOABpDoO/FYUV2LWm7dz7ZZtEUvFmPLEWO52KjETD737l/2dCfnQtguC7GiqxcOevh41bZonPz4GJ7afwcG1x+wfd7nG8Qdj66zM2llr1Vp8eN/XXKcEZ1ilod7junFf716+3+n20oQcRIb6ICXTxvfRZAJfe2UUpNGBX6qEfnAXQCio2cQYE4rEyut/bEoIIYQQQm5MKoEQ6Nbe4hyVLxFDoDTAIK99zAK7ns51SnDhDQR8mIQC8Ax6bnxT3qd2IZDFzJuttzLxYNIKUKzV439Dh6OTf5DNt5CKhJjVpzt325uainv/XmX/ePiAxhuQ57GBhRHSUxmQJObBJ8gLboqqoPb0Z8bj5I6zOLaltns2wz6uOKuq/YNLZSvM5hzYYqX37/4C+/454vRlrCNDz9FduK93rXBhDOMhQ0h0ILKSctFQicdqu30SQgghTal3795Ot2lMQSdzqamW1xyrubu7c8EGvd5+J11CyLXDzpWtVCphKigGz8/b5mtMuQUQpOfAJBbCEBNi9Tw/vQCCxKwmO8aygnI89vn9FgWgzLHu1DOencjdDq47hgWT3q/3e7BOcmy+hbn9f1Nwene8wwJMzjpN1FWp0mLBN+ux71QK0L62cC6vQg35rosQFNfOX3v5e6LrsI4uj0m8AjwREO7ncrcKWy4eSW7wawkhhBBShTo43CDYILk4u+lOZpvThf2O26UVavX4MSMfL1xw3kLMlumB3pBd6ZrAggk/xLXGl7Hh6Okph7CBa/7T1VqMOZqANJUGLydmYqUL4QbmkTB/eIuqckQVBudTBGqjESu7RsFXZGeixQWlegO+SmOzGYQQQkjzqzyYfc33w4IK1Vi4QSKRYOvWrVbhBmb48OFcyEEmq6ocmJ6ejoULFzb4vQkhsOigkrP/guNtxDyuxbKJna47C+TyeZDuuQD57otcVSJ2c8rFucMdS/c6fL44rxR/f74en7270um+9EFVgWZzo+8bAuGVcYBAKMDrq57Dsz/OQfs+MeBfGauYkyQVcouRHClYdwZPDXgZ+RmF+PzR710KNzAzn5sMN8+qhU1KF4LUhkoNFr48AzKZAWWtgOIYoCQKUPpVdW/gs1teCURn0mCMCbNYOMbh81Hk7oYVq50vdCKEEHLj412pit6o27X+EISQFkOvNyBX7m59jsoW8pfrISrXA1eqHhsFgF4M6EWA8covGh57ysmCRJ5KC562ajGhScKHQVG1YMecUeR8LmDtJcdjp/yKSvx84Bje3bjN6b4MfC1ESfmQJOYDIhF0IV4Y8+Aw8K90VmCVUN9e+z88vegRtO0ZVfN4NZ2fDOrWntD5VFU0tSfldCrmDXkVRTnF+Oj+hS6FG5g7XpzKdctjlOUujEn0Bny6602uUmxDFWYVY+2iLQ1+PSGEkBtHSx6TsIAD6+AQFhYGPz+/mscrKirwxRdfIDY2Fp9//vk1OjpCiC0alQYFtooHMZczYMrMgUlbu5DfpNHClJ4NsBvLSl/MgGjHaQiSs8HPKgQ/JReiPecgOnWpyX8X7Vy2z+HzBZmFWPHxGnw3/9cG7X/cI7VdG1jQ4d2NL+PJhQ8hulskeE465zkKDTw/8k2U5JfitUUbqsINNrp9K4d3gFFSW/P5rgW31nSIULkwJjEZjPhs95uQujkeIzmSk5KHLb9St2tCCCEte0xyrVHA4QaReuYkVGX2uxRcT7Qq+1Wev0vPQ/cD5/BKYiZONrCLwa7iclxW1Sai+TweZgb54OsOEdA3oljCyXIlpp1MwrJsxxVhGbmAj2ciAvFim9qUcAc35xfjO7hJ8WJCBgp1hoYfKIBF6XnQXJmoIYQQQpqLUa2H6lzDK1eYY/th+2sIFmgw98QTT6Bnz552t4+Li8Njjz1Wc/+3335r0PsSQiwdWn8c6pOXucr+trBqqCaB2cIhZ/RGiLNqxzjCDOctnIUZxTCJBDA5uTjuaFHNsvdX467wR/HtvMVIPmG/TXEtk83vRW5qfs19FnIY88AwLuRgtBFkECh1kJ+2336aX6aB7Ewu4g8kYP7Q1/DfEsehcUbuIcOsN27D3QturXmsTacIp6+L6NgKr23ajqxWQhhkPC6IYhLwoPHhobgNgNMJEB+4CFOQj8OQyl8rD0PvQsibEEIIIYSQprJ390WotLavrbMzV5HSAF6lBlo3HnQefBjkfBjc+NB5CaB1r5ou4zm5NCFOzINRKkTZLWHIva+z7UCECzOO5Vr7Xdy+2nUAQ7/4ER/8txsJpc7HQVyV19b+0EUHQhsbDOXwWGw1apFXVNvxkgWwxz8yEk99+zCMV+YONK08kPNQJ2TP7Ya8+zsi+6nuyL0vDtqgqoC0LWd2n8f8oa9jtwtVT1kHiYfev5sLXddrTNKhFT575DsoyxrXGW75h//UfFZCCCGkqRw+fJgrnOTo1lTmzp3LhRnYPvPz87nAwwsvvAChUFhT8OmZZ57Bd99912TvSQhpHFaYSKvS2t8gOx84cwGmc4kwnUsAzlwEci3nWvmVagjPp0N0PBmic6ngl1Y2y4+lssz+2q2fXvwDd0c+ju+f/x0ZCQ0rUrdn1UEU59aOZ8QSESbOGY3Hv7gfJlcKWtlxYtsZzJv6IfacsN+1zSQVQRcTyHWTm/PpfVzH7mqRLoxJwjuE4ZOHF0Fd6bhruTNsvqmpuvoQQgghNyMKONwg8i83b7td75BQyD2tK5M2hG9YuM3HV+cW47WkLGgacSLLpKi0uP1UMrRGIyr0BvyeVYA3k7LwdWrD2xlXy1DroHNy8uktFOBU/zi80CYYPLMFPzODvLnggz1syz+zC7E6z/GEhYfA+exIkc6AI800yCGEEEKqGUo1QFPNExsBQ5mDC34OsHbM5u6++26nr5kxY0bN1+fPn0dBQdMENQi5mSWfvAyezgDJvguArQv4SnXNgni+EeDrHJ9XSxMLwdPX/pJpK5FAIbcMNJnjVWig6h+F0jt7o/SuPqgc2g56Xze7C2Zs2fTLDvz00p/QXanIKjQLWNhja5u0C5l4adw7XFeLytJKrP12M354/nes+nSd3f24774M+dFMoE7YWZRVBu+VZ8HXVB1TVnKu04v/3kFeWJrxnUW4gRn9wDCIJFVVimxh45el+05gy4Ukm8+bpAIUj42AzMsNJl9Ph8dQUFiBiw2c+CCEEEIIIaQhkpMcdzZmZ9FafylMIutr7EYxjws58NUmmPQ6GISAsc7l/LZhflCUqJD3YBeUDQ6HwU8Ovs56XzyD82v4bb1rqzCb++PoKXy9+yB0Vxbm81yohSRSWs87JGUU4pnP/uEW05Qq1Vi69yQ+Xbsbf+4/DYNcBE2oO/Lu7QBtKw+L12kiFci9vyO0AfZDDukXnXcTDwj348Yktz1fG25gxj08HEIHHaxZd4lVn63lQuOOyNydV1LNuZyPS6dTnW5HCCGE1EdwcDDXUcHRrSnfSyyu7RYVHh6O999/H+vXr+c6O1SbP38+cnMbvxaCENI08yROsYGJSg2YFW51VUyPNpB5NLyrgLnWcbbnSVZ+uhbLPviH66zWGEnHU/DqlA+5r8sKy7H6yw34/rnfsO67rY3aL7dvF9ZDBQzpgGWZ32Ha0+MtHp8we6TNTtvVBAI+lr77N45vPe1w/650d2Bjp4wE5+MnQgghhNhW24+JtGgiSdOcwNYl9fBE15Fj0WP8VKz74n2knj7ZqP3xBQJ0Gj7K5nNfNkEAodpllRavJWVieU4xKq9y1VABjwcPGy2wFSIhvo4Nx+xzqTZDEuyRIrMFXPZ81yESd55xHmjRNjIoQgghhDhj0jbt31iTpmEXyhQKhVWHBmfqbpOZmWnR4pkQUn/VF3P5pUpIN5+EIdQHRl8PwGiEIKcERhEf+qGxNduLKgCNF+unaGNBkEoH94NV1c68AhSY+OgoTJ83AS/d+yUOiE0wudcJOmj0MLlJansp8HnQhftAF+oFt20XIMquDSGwBf5jHhhq9Z5s4c9fH6y2eExYUAFBbhkMgXYW8+sMEF+0PY5JO5+Jb55ejC2Ld0Bd6XyigrWW9NibCrcjmdC09oJJyIcorxKi/PoHl0ViIdfBoS7vAAWe++VxfHDvVxaTE+z7pon0graVJ8o7ezncty7QDc8feB2vPPWX0+PQNbIzHSGEkBsA18Kpkc2TG/t6QshNQyqzH+ZldB4CGKX2F9ezDmY6OWCU1i4kZMHsILEbZg7ugjtGdsf9fjwY8muLJAjUgJHNtJmtj+HpeDCJ7feOlwlFmBZjfe3CaDLhx/1HLB7jG3gwGkw13fDqYgEIqZ2aDYlp+fhg5Q6sOnYOap1Za4qHesAILUzi2p1yYyn+lV+5ciGKxkci6JdzaCixVASZjQU/fqG+eOb7R/HJQ9/a7G7HOi6UFVY43f+rK5/Fi2Pecbqd7kpQnBBCyE3sBhyTjBo1Cq+++ioWLFjA3WddHhYvXsx1dyCEXFtSN/tFmhrDL8wHk+aMwdSnxuHJfi8h5Uxao/Yn95Rh2J23WD2u1+mx4pO1aCoXDiXi67k/YeNP26BV2+7+3RCs67QzUk8ZJDLrn0dwm0A8ufAhfDHnB5vdFQwGI8qLnc/LvLpiHl4a967T7WhMQggh5EYck1wt1MHhBhHdqy8XHmhqRr0e7foPgl6rQdpZx+lUZ3g8PoY/+Bg8fKwXD6apNDjfyNZedf2SWXjVww1MD4X9ykbj/L2wqWdb3B7kg0CxkOv2UF+vJGU63YZN43SysaCJEEIIaUo8cdOeSvIkDTuXiY6Otqj0x27OuLlZVnVnEwCEkMa5ZVpv8PlVA2ueyQRhRiHEpy5DfCYNgvwyCHPLgCudERiBHpCUAHyt2QVkkwmS9DL4Lj8LYWnV+MCg03MX2suLKnBh3XF4rjoO+Y6LEMdnQ3I2C+IzmYDYTnZfwIeyf1RN8IFV5Zn3w6Pw8lfYqaRj3XHAbWcCBLYW2Gj1cNt5EQIH4YU1Cze5FG4wxzo1yC4WQH4ur0HhBqZDv7Z2nxt6+wB8eeAdjLhnEHyCvSGL9kf+Q91QNLMDKvqFweDpfALm89d+BypVDreRSISIahPQoOMnhBBCCCGkIQYNbu/wedahwR4WUtBLWbjB8tqEUcSDSm7C6P6xyC2vwGmzcAPDM/IgrAB4esvHBEW2w75CHh8fDx4LhY2iVRdy8pFVWm71OAtRwMbueFojPFKqxla2GMTAHwdPWYYb2LBLyIfeV2o5xypki4SuzBoKAHWMAjn3xXJB9YaIdTAmGTVrCL7Y9zY3zvMJ8oKHr2VnTld8+diPTrdhoe/WcU1XRZsQQgi5nsydOxdCYe010Z07d17T4yGEVBk0o1+zfCuMeiN3TT8zMbvR4QZWIOmF3+ZC5m69pijhaDKKsovRlP5duKlJww2MMN/5vG6n6GC7z41/ZCQ+2/MWBs/sB+9ABTx8bHcDd+TLx52PSTx83BHW1v5xEEIIIcQx6uBwg3D38UXnEWNwcvN6m88LxWLotdp671erUuLAqmXoNGwUTFdaIteXUCJBZNce6DFuCkLbd7C5ja2OBtcrKZ8HtYPuCCN97FR3vSLOXYbPY8OhMhjR40D9KyBdcqFNXV8vd/iLHVerIoQQQhpLoJBUTXw3RZ6Qz4PAs7ZCYn107tzZotJfdna20zbQxcWWF+d8fHwa9N6EkFrBkYHcQpVNv+yw+W2RSoTQXMiGtnNt22O2EEdQChj5Jph4JrhlaSAu5wFmQxdWKefPd//GwOl9YTSauCKo4tQi7sY9P7ajwx8D6/YgbBuEgd3aYOpT49Ghr+2FNnqz8IU5vloH93VnoA/z5rpCmPg8rrODODkfvGvUoYBVQzWfENArpFB3CIDBQwxBpQ497rGuvGSubY8ovPDrXFRqtBj51nfQG8w+OxvqOCkAkX0mA5IKAYyxEXa36RkXCg/35uk0SAghpAVhf1cae9mv5Vw2JIRcY63CfTFsRBy2/2f7urtEJobOxkUM9mtGL7F/HlxcqcLPO46gd/twm8/zjTzwK6rGNWwfAb+dheRyOVTtPVEyLBCqth6Qu8kwPDIaD3bqic7+QTb3o7czB8Mz8SBUVXVxYEEMeXwhZMml4Lv5wBhovwObzk4NJBO/zq9pge3Prm7rjcLJbeC/MsnqOZFUBJ2DRUp9J/SEI+17x+DFJU+hvLgCd7V+DPWVfcl5R/De47rZXLRFCCHkJnODjklYZ+vY2FicOXOGu5+eXtUNlxBybUV1aY0BU3tj3+rDNp+XyCXQKOtXFIkpyinBio/XIKZ7m0Z1bRgwpTemPT0e0V0jbW6jszNPcr0RZJdAotFDI7G97JENbwbGhDrcR1z/dtytJL8U90Q+Xu9jyEnJc7oN+36LzToEEkIIuUndoGOSq4E6ONxAhs56BN3GToTALKnP+Ldug+7jJjd4v0mHD7hUCdme/jPuwqR5L9kNNzDhUgm8nHQzYCeg7gI+hvp4YFaIL64VR+EGZn5CBuZfSOfaSTvyT14xipppQdRAH49m2S8hhBBiji8VQhZn3ZmpIWRxvtz+GiImJga+vrXnBtu2bXP6mpMnT9Z8LZFIEBUV1aD3JoRYemrRI5gweySEIstz+7Y9ozDpsTGQnMmA+HwW16nBnEBngnumBuJKI2vFAoQFWjy/a/l+iOxcqDZ6OO848MDXD+Dlpc/YDTcwrIoOu8BvbywiyiiG24FL8DuZgYFtgjF+1lBcK+bhhoq+rVB0bzcoe4VB0z4Ayh6heGHLXry3aofN9srm1p44j1LzcAP7rE6GKDyVHtLEEvDT88HLLLC9TXE5uodYd8kghBBCCCGkuc1/YTzGjOsCgcByTqNDXCgmjawtkGC14N/JFMj64xcgEzm+bsGCDoJKA6SXy7kxhPxCGUK+SUTU08fxETrhi2ET7IYbmCh/H0jrzO9U44EHvoEHWZ4WkavTMdonDBNG97C7L64rg8h2YoPHchRXhgr2wg3VKrv4Q2+jIIWjcAPz9sxP8d383+DM5l92QFXuuDtcQ3UZ6jgMTwghhFwvtFotEhISsGnTJlRWut7R1d3d3aL4EyHk+vDikie5bguso7S5ToNiMWrW4Abv978luyFtRFGhJxc+jOcXP2E33FAd0BBJHBdT5fF5VWGJqb0x4u5BaJY1oCIBTDz7AxX2jHDLWfCUNgr9Gk2QHEjG64Newy+vLHX6fht+2AZ1A0InrugyxP46OUIIIYQ4Rx0cbiB8gQDD7puNvlNvQ/Kxw9BpNAhsE43QdrFQV1bgxKZ10Knrf6HYaNDDKygYHn7+KC/Ir/fr5Z6OF7aU6Q1IV2mgcTLofiI8AC9HhXBfl+sNWJNXgmL9tamY6syS7EKESUV4urX9yYqtBWXN9v5+TiZaCCGEkKbi1jcYqjMFTbKfhhIIBJg5cya+/fZb7v4PP/yAWbNmOXzNH3/8UfP1sGHDIBZT9QxCmoJQJMRT3z6Cu1+dgUPrj0Or1qJdr2jE9onhquCsWbgJvAu5EMu9oXMXcN0Q+DojRJUG8MzX4nt7VgUdrowR2IL+Nl0i4BPkxVUqMsdT62GSOf5v2MtD7vD5cpUGWRmF0Oodj0nufWMm7n7lVu7rsqJy7Fy+D8qy5lmM4wpVhwAoe9d2xDC3bM9JhPh4YtZQ+4uedpy/ZPUYXw8Y2HDCztyBYlc6+Fe+T8Jzl2HMLoIxzA+QSQCtHvzsAvByS+D15OiGfixCCCE3EqpMRAi5ysRiIRdyuO+BQTh0MAk6nQGxHULRrn0w8oorsGLvGejqzis46WDGKDU6dA0PgZdcihKl2u52sguFNh9X+Dvu/FyqVSG1qBhGtcHhzN0z00fgwY//x31dWFqJrc+lQaWxETZw8JnY2IunA0xiFz67gAdVtBc8jjuvTmqOha1XfroWwW0CMekx+2ODg+uOoTHKu/ugdIA/jHIhxNlKKPYXQJZUzj2n8KVCUIQQQq7/McmuXbu4OYrqgMK6deswfvx4l16bmZlZ83VQkP11CYSQq0sik3AdlO9/63Yc3ngSBr0BcQPaccGC7JRcbkE9e6y+yosq0GNkZy5c0JB5CWdjEjbnkXY+Awa94y4OT3z5YM05fl56AXavPGBRlKmhTAIedO1DoIsKgEkuAQxGCDOKIDqXCYGNzysoVcF93UloowKgb8W6b/MhKKyAOCGHe4796mbdwdmYZMwDw+y+74G1R9FcPKg4LSGEkBYwJrmeUQeHG5Bc4YVOw0ah+9iJXLiBkbq5Y8JTz1t1d3CFxM0Nbl7e6HfrHfV+rUgqQ0zvfjafS6xU46GzKeiw9wyGH02AyklnhONlSnTadxYxu0/j/jMpmBPuD4WNrg+sE0RrJwucXCVxkAh25seMAmgdhDa0TqqpNpSYB4z2o2qphBBCrg5JGwWEgY4XDjvDXs/20xgPP/xwTcepffv24bvvvrO7LXv+119/rbk/Z86cRr03IcSab7A3xj00HFOeGMuFGxgvfwVe+P1JCKRi8A0mSEr1kBbrIK6oE25g2Hk4v/Zc3MvfEwo/T9z58nSr9xJfchzC9pBLMKir7bbNSZkFePbbtRg271vc8fFfyJ3ZFRUDo2CU2a5QdHpnPGYEPYQp3rPwzh2f47bnp0DuYd31QeHngcAIJx1uXBxqiKT2qyUpu1cFwO35Y9dxGByMSXQGg83DErBiRXWe4lfq4L3xEjwPZls+XlQG4elLEB46D+GJRPBziiGTi9F3QneHx0YIIYQQQkhz8vP3wPiJ3TBlWk8u3MAEeLvj9ftGgW821qjpaOBEgMIdCpkUjwzqbXcbnkYPj4NZVo97BSjQa0xXm6+JL8nB7L1/oc+aTzF9z89Qx1bA5K+BSWA9f8DXAGd+OYAZgQ9yY5JP7vwCD/brAJmNCqs+HjIEeLpVzZ/yrtzMnheqq4IOrhDJGz7fsuqztQ47y+m0jhdPGdxFULfxhiZCwS14qqYNlOHSO92Q80g0VHEKaCLdUN7fHxnzY5H1SDTk3nL0tPM9J4QQQq4nsbGxFt0XVq9e7dLrzp8/j7S0tJr7ffr0aZbjI4Q0XEC4P9fxevLjY2q6JgRHBuKZ72dzXRDqiy3UZ/MRM+dPrvdr/UJ90G247Q5nF48m4+UJ72JGwIN4ZuCrMBocDxT2/XMI0/0f4MYkXz3xI+58aTokNtZo+YZ4Ow1VVGPn+qohsdB2alUVbmAEfOgj/KAaGQd+iLfN1/G0BkjOZ8Ntyzm4bzoD2ZEULtxgjgWvHdE7GZM0FJsn6ja8U7PsmxBCCLlZUMDhJtKmey/c9saH4F1Z/OequEHDIRCK0GnoKAy7fzYXeKjbOcKe/rfeAbHMetHjhUoVJh5PxLr8UuhdvIi+r6QC+Vo9yg1G7C2pwLuXcjA5wAuvtAnGYG8P7sa+3tAjhgs5ONJPYfkZ7DE0IvpUoNPjbIX91HR3T9cXg9ZnaOMhFOCXzAKcd/DehBBCSFPh8XjwmdkOPHHDTivZ67jXNyJUyHTr1g1z586tuf/YY4/h3XffhUpl+fdw/fr1mDBhAgxXFvVOmjQJEydObNR7E0JcN3BaH3y07gUuv+CQVgeYVTAaff9QrlsLmwh45KN7uQpF1cQXcyG21Yb4ikenDYDUxoKfC2l5eODDv7DjZBIM1WFrkQCa9oEondTJZsjhxPYzKMkrRWWpEse3nubaG49+YCgeeOdOdB/ZGT1GdcHsj+/FZ3vfhrt3bYt4WzoPdq01sclOQMHgLobBx/GYIrekApdyiuw+36WV7e45bKGTUAsI1IDH/iz4L4lH6KdH4XEox6VjZpMsq7/ciLQLtVXkCCGE3Jy4KuFNcCOEkKYypnd7fDV3KnhsuMHGAUYT+HoTeDrHv2xu7VO1GOj+AT3wzIgBkIstxwuSci38lsZDVGh9Xf6Bd+6AqM72zMnCTNyx/Vdsz06EoToEIABMvnqYwlTgGUzg6QG+FhCVA0IlcPBiKkryy7gxyZGNJ/D7g4twZ3AAZk/rj95x4ejXqTXm3TUE3718G9w9pTCKYXnj14Y6Bkr9ISyy342CYzRBklzVRY+FJCp7eCLv8XDkzm+N4hmB0PvaD2QzWcm5yEyyP46I7R1t83GDTIiiSW2RO7sHim6NReFtccid0xPlvUOh9xQh/dkOMNh578ruPlDe0xZ/f7YeGYmWAW1CCCE3n+t9TBIQEIB+/WoLRi5duhRZWdaBybpeffVVi/vTp1sXhiGEXJ9G3zcUb/z9fL1fN+7hEdy/d70yHfe+NhPS6iDAFQI766TYHOxD79/NzbHUdWbPeTw7+FUc3nACRidFaasd/+8MygrLuTHJwbXHsPjVZZg+bwLueXUGuo/oxIW7n/jqQXyw9VV4OJkn6Tq0apyliw6C0V4YQiSEukdrNFRqfAbyM2x32mOqi3Q1Nam7FCs/WYvsS7nNsn9CCCEtx/U+Jrme8UyOSqeQG9Kmbz7DuV3bXNrWNywct73xAWTuta18dRo1ko8dhqqsFF5BIQhsHYUdv/2AhIP7YDRUJVs9fP3Rd9pt6DxijM393n4yGTuLq9oEN9ZQHw+cKldCazShi4ccaWoN0h20P+vhKYdcwMee4go0tw3dY9DdTpgiT6NDn4PxTjtXNMZ4fwW+jo2ATEBZJkIIIc1LnViMwt/jYdK6UPbQLNzge08HSGNsV92oLxZmmDp1KjZv3lzzmJ+fH/r37w8vLy+cPHkSp0+frnkuIiICBw8epNbNhFwD77z6N3Zui7e/QXoOkFF10Teqa2t8svMNuJkFhFUVKhxYe4xryRwaE4yIXm3w6dJd2HE8CQZD1e+hED9PPDS5HybeEmfzLR76eDmOJ9pfgC89mw23AykufR5WGfTi4SQYdAa07xONjIRs5KUV2N2+48D23L9n91xAQ7GAQ+EDPZ1ut/y5u9Eu1N/mc1klZRj38WKbnRwYfrkWgYuOgdeIMcvQOwZg/s+PQ2wjZEIIIeTGlJGRgVatWnFfhy9YAKGXV6P2py8pQdpbb3Ffp6enIywsrEmOkxByc5v/+b/YfSK55r5RAGhYc0kblVQ7tgrET3NmQG52Tlup0WL7hWSUqTVo4+eDaKkbFj75Mw6sOQpj9ZgkKhCz3rgNw+4caPMYpv/3M04X21/AKMwUQZRmWQlVfjQTHntTLR5Tt5ah7RejcUydx3Vw6+YXisvxJSjIrg1b1JzR88CFJvq3bgXR32dxOisHeXe1tfm5GdmFIgT+dgEGNwFyX4yEJrrOfIfeBL8f0uGxq9ju5/jlwhcIa2u7+xwLIDwU9wwMZgF3o5CPgrs7QR9gp1BVeSkqO7k5LOHGVxkQ+cIJCHQmjLh3EOZ9/yiEovp3OCeEENIytbQxyfLly3HbbbfV3B8xYgRXrEkstt1F6e2338aCBQtq7k+ePBn//PNPkx4TIaT5/W/M2zi25ZRL28YNaIcPtiyARFYbaqgsrcT+NUehLFOhdVwrBLcJwFdzf8Lh9cdrwgps/uT+t+/A4Bm1QSpzs7vOx6XTluOLhmLBhvMHE7muNB36tUXyqVQU51SFpW3pM747Fzy4dCoVleO6wGRW2MoW2ZYzEBRVNujY/rj8DddRw5bL59K570P1OK6psYAJ63g+95uHbIZMCCGE3Jha2pjkekUBh5uQsqwUy994EYUZtS0Lq7HuDqxCqMxTgU5DR6LXpFshdXecqK1WWVKMgvRUiCQSBEW3BZ9v+8QsU61FzwPxjeiN0DjsEnbzNBiz5CkU4HT/OEgdhAu2FJTikXOXoW7GkMP0QG8s7BDRbPsnhBBCqmkzK1C0/CL0uUqn3xRhoJzr3CAOde08w1VarRbz58/HN998U9OlwZZbbrkFf//9N/z9bV/MIoQ0r+KiCsx77DdkpFt3F+BXKGE8mwSfQAXGPjgcM56bZBFucKSAdSzIKoJMIkRcZDD4dhbppOWVYMqCXxzui6fRw/v3w81SDUEoFkCvtf87yhXssIru7QaDl/2L/t5yKba+9QhEDi6abz6TgBf+2mQVcuCpdPBdcR7i7MYHw8c8MAzP/jin0fshhBDSMtCFe0JIS5BXVI7Z7y5HZn5pzWOsu4FeDphkfBhNJgR4umF63064b0hPi3CDIwWZhUi7kAW5hxTtekXb7ViZUJqH8Vu+d7wzHSA9KgfPrMez1+p4SFJrFwlV9PRCzuOtAaH1PIQwRwhRoZDrvMDtwuxQJOCDn2+AQAtoZHqoQoVWIQdxZgUCf4mHQKnnOjYoe7IEiA1GE0IWJEKSXBWo0PnLoQ315DpQhGh5WHb2c4cLebb9sQcf3b+wJuRQ2SUQpaOj7G5fGawHHK994oR+ch7yxKpCW5MeG425Xz/k/EWEEEJuCC1xTDJ27Fhs2rSp5n6vXr3w/vvvY/DgwdzfUVa39MiRI3jnnXewZs2amu1CQkJw+PBhhIaGNvkxEUKaV25qPuYNftVmsSQ2t8FCCv6tfDH+4ZG49dkJFuEGR/LSC5BxMQtuCjna9oyyOya5eDQZT/T+H64V83mSipl97Iauq0n2J0KUZr8Tgz2Brf3xe/JCu98HZtPP2/HZ7O+aLeTAzHh2ItehnBBCyM2hJY5JrkcUcLhJaZRKnNq6Aed2/ofK0mJ4+vqj47BR3I0t4BFKJA5P7hrjaGklJhxPxM1ggr8Cn7cPh7udVnBMmkqDX7MKsb+4AikqDUrMKhU1BTatcbBvLMJdHOwQQgghjcEusmsulaLyYDZU5woA8+tAfB5kcb5w6xsMSRtFs51rMOfOncPixYuxZcsW7uS+vLycCzP07t0bd911F9eumc+nDkeEXEvlZSqsWX0M/208jZISJQKDFBg3qRtGjesMk8EImZu02d77yMV0zP50pdPtvH87DL7masSjG0bZOQgVQ9rYfd79YBrGtYnAvB8edfj9TCsswV+HTuNYSiYyLmRCfzwD8lN5ECjtd8arD9Ya+4/Ub+Eb3DQdewghhLSgC/evNNGF+7dvvgv3hJDmV1KhwoqtJ7HpwHmUlKsQGuCFKUM6YcKADtCbTC6HGhpiZ3YSHt67zOl20kNy8IxV10+E+ZXw+eNUTU7BIOPj8pedYJLamX8wAeJkMfh6O9c/jCbI8gGBHjCIAD1PBZNWA77GALczhZDHF4JnBHRBYmR82t7hgiO3vcXwXZyDkvEx0IbVBiHYKyb2iMWr00dA6qCDQkZCFtZ+uwXxBy7ieDdvlChsf++NQhNUwQbAhR9N2MfxkCVVBbZFEhGWpi+Cws/T+QsJIYS0eC1xTFJWVoahQ4fi+PHjFo+7ubnB19cXRUVFqKiwLETCwg0bNmxAly5dmvx4CCFXR3FeKf79eiO2/7mX61gd1jYY4x4egRH3DIJeZ2jWeZI9fx/Cm7d+jOtB5eTuMMlsd62pJt0RD2FuWb33zcIio+4birkLH3LYaTr1fAbWfrMZFw4nIu18JlQVajQlqZsEyzK+g5vCTqc6QgghN5SWOCa5HlE/1puURC5H78m3crerzV988/zfbl1+KUr1KVjRNdruNix48ER4AEb6euKlhIwmDziwdaX/FZbhgTCqUE0IIaT5sdCCNMqLuxnVehjKtDBpDOBJBBB4isGXXp3zgLi4OHz00UfcjRByffLwlOGuWbdwt6vNz5ULyDoDeI3sstDc5KdzYPCWQdUl2Oo56fk8yA5nYOfhDKjKVXh77Yt29xPu64VHendFqrsfPl94COkXMpv0OFkl1iMbT3CdHAghhBBCCLleeLnL8PDUftytLsdLaxrPX+pCR0uWtb5SOEJQpITXmgvmTRhQPsDHfriB4QEGHwP4eXYCDnwedB4mCIoBgQ4QQAa3/y5DlFHbIYJRdXB3Wk1V3dEdhTPiYPCRWXWeW3PsPNQ6PT69Z4Ld14e1DcEdL03lFhK9sHc/SsqqOi/UxY4XrGCGif3r4KOrDJCkVta+TqPDsS2nMOzOgQ4/ByGEEHKteHp6Ys+ePXj66afx008/wWisOgmorKzkbnVNnDgR33//PYKCgq7B0RJCmop3gAL3vXk7d6tLJG6+wDXjG9y4hZZNSXi5ALrYELvP85QaCPLqH25gWCcM1qFBp9Xhf789aXe7iNgw3PXKdKRdyMT7d3/Z5AEHdaUGJ7afxS1T+zTpfgkhhJAb2c2z0pxcNyJkEvTzcsOBEuuBeEv9j8hRTdc9xRU4WFKBvl7WExZlegNeTczEP3nFUBvZpf7moWMX+wkhhJCrjIUZrlaggRBC6iMyyAcdI4NwNiXH7jaSpHzW8vC6/8Z67EqB4lIxStt4w+AhAb9SC9n5PIhyaiu6HVp/HBePJKFdL+vgdVlRORbN+xU7/9rPLfppLjrt9dsJgxBCSDNif0ob++f0+v9zTAgh9RbnHYT2ikBcKM21u40kQQdZfD4kKcWQJBeBV2cOQRtqGSawxSRx/EtULwNMxbVZAW1MoFXAgXX9dkaqkMPgYz8WsuV0IhJzChAT5Gf1XEl+Kb55+hfsWXmQq1JbNLUdEONrcz9G0ZWDYWs+HWQ7vHbkgK+zPHAakxBCyE2qBY1J5HI5F1p49tlnuZDDjh07cOnSJa67g5eXF1cBlnV5uOOOO9CzZ8+rc1CEkBtWh37t0Kp9aJMXPGoI0cVs6CN8YZJLrJ80mSA+leZ0XCL3lENZprT7/PY/9uLuBTMQFmNdMKoop5gbk+z9+zBXsKm56GmehBBCbk4taExyvaEVZ+SaeDUqFNNPJkFpuFJ+qAXzFQuR6+QkdG1eiVXAQW0wYubJZJwst3+C3VR6eFKLM0IIIYQQQszNu3UQ5ny+Chqdweq6AI+FBE5ktJhvmJceMO5KcbjN7hUHrAIOqko1nhv+Bi6dSm3mIwRi+8Y0+3sQQgghhBDSkrzcdSQe2LMUOqP1AhpBgRb+XyRCWGJ/7oGvcmHhjbMpGNYNwWyG1OhmHVKQnq0AWLjCQRcHd40MpXB8PJtPJVgFHCrLlJg/9HWkxteOv+Qnc6G2E3CoWdRkYu0p2DFVdaowJ8pRw3et9SKt2L5tHR4fIYQQcr1o164dPvzww2t9GISQm8CcT2dhwaQPmnVRvyv4ah1k2+Kh6dEahiCvmrEHr0wFyZl0CNOLnO5DLBNB6aDJg8lk4kLVd7w41eLx8uIKzBv8GjITs9Gc+Hwe2vW2LkJFCCGEEPvs9KUlpHl185Tj767RGOjtQhvm6/w/oGKd80qklTaCHKtyi69KuKGLhww9FRRwIIQQQgghxFzX6FB8N28GerYN45bzGMSAXm6C3h3Q+QlRPrg1dL7OK6Jeazw+D2WFtd0a7LHVTnnzLzuuSrih08BYRHeNbPb3IYQQcv1hC1Gb4kYIITeivgGt8eugu9DTr1XtgwZAksaH1143GKIjYHSX2n29x2HLTgu2CErttzkw8U3Qy40oiTOiqJMRZVFG6KTWC5tE+Vq4HSq1ux8hjw/VUQcria5Qaa07xq3/bqtFuIGRppRAftp2ZwuB+dCHCzlcCXFU3/RA0I9JVn87uo/sjPD2oU6PkRBCyI2HxiSEEGJfrzHd8N6ml9Gh37UPA/MrNZDtvgj5uhOQ7oiHbMsZyDeccincIBQKUFZQ7nQ7VYXK6rF/v97U7OEGps+EHgiODGz29yGEEHL9oTFJw1HAgVwzXT3l+K1TG24Bfn2M9PXEq1EhuCPYB9eSiMdDqEQMrQuTrB1tfMYVOc5PwhsrXCrG93Gtm/19CCGEEEIIaYk6twnG509MQVSMH4ysUGl1RVIBH+p2fii6rRN0gdah7P6Te2HOZ7Mw7K5bcC2JJCL4hfq41NY4qqv1uOC/33ehuYXGBON/S55s9vchhBBCCCGkJerlH44fet+O7ieC4b1FDL81EigOiCHQCGAI94N6SByMCnnN9kaxAJpof/R6dSqe/OIxjGnVzu6+hbk6CIpsT2AYhSaoA4zQ+VSFvA1yQOMHFA73QNGYEKvt/b5Lh/Ss9YIhCV+I6GXFEJ53vpioXYi/1WNb7YxJFJuSodiYBGHulUSDwQjpxUIE/RQPcZZ54SgeYKy9uZ0qhjTDsrBUeGwonl/8hNPjI4QQQggh5GbUbVgnvLX2fwiJDqrX6wbN6IenFj2MPuO7N+nx8JVaCHPLICiqrNuszSaJTAx3H3cYbRSerSvKRiEme2OSptSmcwTm/fBos78PIYQQcqMRXusDIDe3xZkFOFVunZB1ZGthGXfzEQq4sMOuonJoTc1byq23wg0LokKwOrcYZXoDYuRSdHCX4p4zKU5fKxfwMSPQ2+rxAhc6P7iaUhrv74WHW/lhZU4xTperuPcc76/AzCAfeAjtV2gihBBCCCHkZrdkz3FczC6w+ZxJIkTp8Dbw+/O0xeP7/z3C3bwDFegzrjuObjnV7C2cuw7riHtfm4kdy/ZxVYYiYsMQ1i4Eb0z/2Olr3RRyDLvTOoxRkue8yqor+AI+Bs/sh0mPjcGWxTtx6fRlyNylGDSjP0bcPRAy9+u/EwYhhJBmwqprs1tj90EIITewP9ccQUZCMUS2apKJhdB2iYB093moO4VC3TkUEAmwNS2Hu/l6yzFsRBR2F12CnutNx9ILJridKEXAj6kw8QTIv7cjDF6WnSC0Pka7M4SFk1tBllTO3arx1UZMPqbAhCfuxMb081DqtWinCEBkMh8frP4Ycj85lF0CAZ7t39nebjKM7tzW5TEJ24vbmTzuZmJBdKOpZnFT6FfnkXtvNJSxiprthXw+JsfEYlaPNtii24bL59Ig95RjyMz+GHbXQEjlEtsflhBCyI2PxiSEEOLU0ndXIyspp17fqd0rDnA3/zBf9BzdFcf/OwWjoXnXbg2Y2huT5ozG7pUHoVFpENWlNRT+Hvhw1kKnr/UJ9saAKb2sHi/Js9+trj6EIgFG3jsEw+8eyHXPTjufATcvNwy9/RYMu2MAxFJWZYsQQshNicYkDUYBB9JktHojUvNUKK7Qgc/nIcRHgmBvCXh2Lmgz36bnNfj9ivQGbC8qw/RALyzPKXHabcFDyIeUz0eWxroNsiPBYiHWdI/hvu6lcKt5fFGaa8f+TWwEFCLr/9RaScVIUmrQGO4CPm4N9MZr0aGQCfjorbCuLksIIYQQQsjNorhMiXW7z+FCSi6kYhGG9IrGgK5tuPGJPUu2HnG4T32gO3T+bhDlV1q/X24pjm09hSG39ce2P/Y43I9QLITcQwaRVITCzPp1cwuJCsJH/73Gfd1pYGzN43+++7fT17Lh2Et/Pm0zZBAUGYDc1Hw0htxThtH3DcVDH9wNsUSEjgPaN2p/hBBCCCGEtGTFuSXY9PMOJJ9KgVTOQr/90GtMV4fzJCvWVI1JTAITdGF6mMQAv4wHUW7VvILRzxOqbq2g6RJm9drCYiXKV2twp28ANu86CJOAB1lCBUT52itbGBDw82lU9giCrkcIpAEeEEp5SBM77rhQMiTQIuAQ0SEM76x/ifu6X0Btd7jFfyzj/hUVKOGx8zLKh1pXROUbjPj47nGQ2JgnYWMSZwuKeEbLRVJ6f3eIS4QwZfNhkJjgKZVgZsdOeGbILRAJBOjcx35XC0IIIYQQQm50hdnF2PjjNqScTePmJAbP7I8eIzvbHZMYDAas+XZzg98vP6MQZYXl6D+lN/auOuRwW7FUxBVHEoiFKMoqrtf7RHWLxOurnuO+7j6ic83j3z/3m0tFml5Z9gyEdsYkl06lojE8vN0w/pFRuO+t2yAQCtBlcFyj9kcIIYSQKhRwIE0ip1iDw4mlMJhdaE4vUEMhF6J/ey9IxdZdBH7LLECetnFdDFj493iZ8w4QMXIJtvduj6XZhXjmQnq93iNKblnZqJrIwSKpaq2kIozxr60iZO6uYF/sKHLettmRCoMRi7MKcaFSjb+6RkHC59sOg+j0WJpdhMOlFRDyeBju44mpgd5cKIIQQgghhJAbwc4jiXjt243QmI0x1u85h9jIQHz63FR4e8qtXrPy83Uo1jsPQBsUEpsBB0avMyDphPPObtHdIvHVgXex9tvN+PLxH1EfYe2CbT4uEjsf0oe2DUHvsd1sPjf2weE4tfMcGkNZpsLqLzcg9XwG3ln3os0JAqYkvxSbftqO+IMJXCWjPuN7YOjtVLWIEEIIIYTcOFi3tY/uXwidWZGlzYt3oEO/tnh73Yvw8LYuUPT7O6ug1BmgjtVC1UkLmBX15JfxITsggTBfAEP7ILvvq9UbkFiphcfBYhjcxDDKRTDKTOCrqo5DoNLDc28GOgs88cmO5/Dj6aN4+8BOh59FHVFb7IkJjw21G+Su5n48G+LcClR2C4Y2xIMLJkguFaOTQYI+0eF2xyQXDiXCVco4f5SMj+aS3Hw9wNfzoKrU4dddx3E5txhf3TMJAjvzJIUllViz/Qzik7MhEgkxqEcUhvVtC7GdMQwhhBBCCCEtzdbfduHTh7/l5i2qbfp5OzoNisVba/4HNxvzJD+/9Ce0quqAdMNoVFpkJmQ73a7LkDi8u+FlrnjTL68srdd7tO5gHfiuOyaxp23PKIviUXXHJAuf/BmNUV5ciWUfrEZmUhZe+Wse+HbGJAVZRdj4wzYkHE/mOjoMmNIbg27ta3dehRBCCLnZ0epm0mgVaj0OJZRYhBuqlSr1OJRoXX1HazTig5T6tTezh3VBcBY1mBzgzf3LOjjU14wgH5uPj/D1dPof0AR/L7vPjfNXYLyd8EN9HSytxF/ZtqvA7i0uR+8D8XgrOQubC8qwPr8U8y6m45ZD55GkVDfJ+xNCCCGEEHItpWQWYsHCDRbhhmrnU3K55+pSKzX4482V4GlqL/TbU70wyJ60C5lO9zFkZn/uX1ED2hCPvGewzcf7TOjh9LWDb+1n/5hu74++LuzDFce3nsaOpftsPndk0wnc0+Zx/PTSnziw5ij2rDqEjx/4Bg/GPYOs5KYZFxJCCLmOmRp5I4SQFiDpZAo+uPcri3BDtfgDCfhw1tdWj1eWKbH8g3+gjtFA1cMy3MAYPY2oHKaC3s8Ek8TxgpcktQrFU+JQeH9PFN/WBQX39UDp2HbQe0qsxiQSgXVBqrp4OstfwCPsjEnqjifEmeXwXpeAwO+PIeDH41BsT8HwkbYD18yoWYPRY1QXuMIo4qN0RGRVmzobdl1IwdaztsMSu48mYdqTP+L7Ffuw9/gl7DiUgDe+2Yh7XvgNOQVlLr0/IYSQFozGJISQm8D5Q4n4+MFvLMIN1c7sPo9PHvrW6vGyonL889XGJnn/jItZTrdh3SSqOznUl6tjEpvvO8P+PMm4h0eg8+AOaAps7uPQ+uM2n9u14gDujXoCv72xHAfXHsPuFQfw3l1f4NFuz3HBB0IIITc4GpM0CAUcSKNdylHBRrahRlG5jruZ21lUjkJd47o3mHM01xkqEeGeUF/u66H/Z+8uwKO42j2A/2ddshv3ECW4uxYr0BaoUBfq3kudr26Uuhst1L2lFArFKlDc3ZNAiLtv1mXucyZENqsx9P3dZy67szOzs5uvyZw553/eEA2UflReqNdfo8Llke5DCglKOS6L8Bxg0IhFuC02zOPrIo7D/J6JeCElBvGtGOTU3E9uAg4lZituOXBCqPTQXL7Zihn7M2HnqaeYEEIIIYSc3Rb8vQdWm+egws5DOcjILnVat33Fbuiq9RCbvV8PcyY7pPneK6/x3hpEJ0scX3T7OOHx0Ev6CxUM/NVrVDeMmj7U7Wvx3WIx8oohHvcNCFJj6r0TPb4uFovxwu+P447XbkRkQjjaauVXq13WleSWYfZV78CkN7u8VnSiBM9f9gZ4apMQQgghhJCzHKtqZvfSJmGDXHLTnIPRm5fsgNFkhqmXl9lSpYC5m/fZVB0iwCznYY1rMqGSWARzSiiqruwNu0aOuC7RuHDGBcJLFyZ0hthDSKBewL7G/oZ+43th6JQBHivVDb6on8fjBIZpcMldEzy+zmYqfXnpE7j15esQHlfXj+OJqWsoeIX3oMfvO10r1OUWVeK5D5fB4qZPKqewEk++u8TrMQkhhBBCCDkbLHp/GRxuxgbV27RoG4qySpzWbfx9Gywm31Wu/WF1MwFVU4k9OwlVnZnhlw4C56NN0tTgi/tj4MQ+bl/rMbyrUBnCk5CoIEy+ra5/xh2ZXIrXVj6Dm1+4BqExdZPntgWrmNFc9uFcvH7TB24D8dmH8/DyNe+2+X0JIYSQcxEFHEibldb4LlVWWuM8mKWqHcMN3gRJxPi9f2eEnCznFSSV4BYvoYN6chGHa6NC8Gu/FMi9VH14p1s8LglzrcIQIZPghz7JiFc2zo7kDutEuCMmDL+lJGJ552RMDtaitfJMrj+HHwvLoffSgDlhtOAfmp2IEEIIIYSc5ViAwZcdzbbRldfCHq6FxCoGZ/cQUOB5SNtY9CwwXIu317wIdaBaeB4cGYSL77zQ535ypQyX3DkBr6542mt54ie+/T+3g43CYkPw6spnEHYy7O0JOzZ7nxkvXI07Xr8BvUd3Q2uVZJe5rFv22d9CtQxP2M37nX/va/V7EkIIObNxfPsshBByptuz+oDX11mod8/qg07rasp0MPdSgVd7H9hji7UKbRNP7KwbwsPgIIdaBvmlvfHmvy9AGaAU1kUHaHBlF88DgES1VgSuK4FCJce0eyfh5aVPCuFoT575+WEMcDPYKCI+DK+tehZBPipZS2VSXPzQxbhq0f/hupWPoPN092EKe5NqFJ4UVrlWY1j8zz5Y3MxiWy/tRAn2HMnzeWxCCCFnJ2qTEELOF77aJA4Hj73/OQeCq0pPTTUzFmZ+45/nIDs5+Wts52ihwrQvygAFLp95MV5cNMtrIOL5hY+5DTmwyade/+tZaIIDvL4PO68p91yIW2Zfi9tfvQFdh3RGaxU3m2yLWfLJX24ra9Q7vDkNR7e7r0ZHCCHk7EdtktbzPtUJIR3E6GOG0/ais9uhlTjfeH8uJQZmB4/vCsrQdBxTpFSCBxMi0TVAgR4ByoZQhDcqsQhf9U7CkVojlpVWwWB3oI9GhSnhgZB5CUbUd2gcztXjeJEe9RmEy3gVemlk2C02I89iQahUgisjg1Fps+HVzCKvx4t0U6J6c1Wtz8+wqUqHi3x0MBBCCCGEEHKuMdQawUtFwg0FWTVgVfNwsHvrJ2+SczYeUgMgtolY+TV4LVvn7X2qDdCEON88f+CD22C32oSZfFinQr3wTqG44akrENc1Fin9En3edGfYIKU5fz6FY3tOYOPibbCarOgyKEWo7OAtGME4HA588cQPWPLJKqdZmqKTIxEWF4Lq0hohkDHhptEoy6vAdy8u8Hq8kGjXCnf71h32+Rn2/XcQgyd7nvWVEEIIIYSQc1FttR680o/qbpK6fIO78Tw8B/Bi7wGJiggVtJHOfQBzRk8UqjsvzjgMR5PwRFyAFo8m9Uby79OE6gysKpwvLMz9xl/PIW3ncWxZskOYlbTb0FSMuGwwxM36Z5qz2R14a8U6/LrtAKz2kwN+UhVIfGkiUnaVQZ9RgpDoYFx40wXIUDvw6e79Xo8XpnE9391Hcn1+ht2HctC/e5zP7QghhBBCCDmX1Fb6HlPUHvTVBgSGOU/4+viX9wv/rv1ls1OV55iUSFz/1HQhnMD6OlSauqC2N9oQjTDR1OGt6di2bJcQJug5oiuGTh3gNazN2Kw2fPLgV0J/TdMQAquCFxgRCF25TphQ6sIZY5C5PxsL3/nT6/FY+6W5/etcK801x8In3Yak+tyOEEIIOZ9QwIG0WbhWhhqD94oM4c1m1lH4GPzfXliAocxicworsKoJr3WJw8z4CCGUUGt3oKtagcmhgZCwgUut0D1AKSwtwcIN6QV6p3UscdzZJkUPyDC+fyiUsroLbbPDgc9yS1HhJdHLKk4058+nEfm1FSGEEEIIIWeuQT3jkVtU5XWbwT3jXYIB4iqjEFxg18RyHcCLAIeYB+cARCcvvUXVRnBtCGizsszVZTVON+HZIJ9H5t+LG565EhsXbYOx1oTkPgl+3Wz3hA0+YktLzJ/1PX5/b5nL+sLMYpiNFny25y0ER9QNhDLqTcK2rCPCk0m3uJZ5FvnRxuJOUfuQEELIacD+hLZ1nhOq4EAIOQv0n9Abf3+z1uPr7N7/gAt7O61TB6ogyfZdMk5ULYLIzgF6E3iNwiXg4IvJaoPOaIa8ST+JTCzGO+MuxkMDh+OvExkw2mzoGRaBcfHJEHmZGdWbroNShKUlXv3zP/y6zTW0kGXQwzQsAr//9CiCVHWfeYTJjG8OHIbRS4Xwywf0cFnH+dEHwrWyb4gQQshZgNokhJDzqE2y9tfNHl9n9+r7jXOuchDgxyRL7cGgMwr9IE0D1KxqwtM/PoxbXroWm//YIfRJsEDDoMl9IWpln0GPYV2EpSXev2c+/vrmP5f1eemFsNtYyPpNqLUqYR3r61ny8Soh1O3J5FvGuqzzVn2iJX0phBBCzlLUJmk1GkVA2iw5SilMaOpJqEaKEI3UaV2YrHXZGrmIQ5xcisFatfCvL1KOQ4SH94pRyHB3pwg8mhiFKeFBwmfILzdhW3oVNh2pxP4sHXRG78GN1rLYHELlBs+v8zhe1DhwSC4S4YWUWI+34XsFKHFjdKjL+jEhzglod8aEaPw8a0IIIYQQQs5M10zqD6mXmUFZACI1IdxpXVCEFiK9GZKCxmAECzaIrY3hBkaW7lxJTaaUISoxHL1HdxcqLvgiU0gRFO7+ujwyIRxXPjIVNz13lTC7Ke/gsfbXTXjpqrfxxOSXMe/x75CXUYiOUFlSjaWfrPL4ekVhJZZ9+nfDc6VagTtfv8nj9t2GdMbEmy9wWT9wYl+f5zJoku9tCCGEEEIIOZNd8eAlXqsVDJ0yAHFdYpzWhUQGQVpggXy/91lTpZkyiIwWaJbuh3LbCagMVsSEadG/SywiNKq68g5eqORSaJXOk1DVi9cG4a6+g/HgwOGYkJAiVJpb/eMGvHjlW3jyojn4/IkfhAB0Ryiq1mHhjgN+v65RyPHQ5JEetx+QGINL+nZzWT+kT4LPcxnaJ9GvcyaEEEIIIeRMNf3hqRCJPQ8DHDl9KKISI5zWhUS5VmX2h0ItF/pJ+ozpgaCTkyR5w4INymZh7XqxnaNx9eOXCv0kQy7uL1RR+Oe7dXhx+ptCm+TLp39CcXYpOgJr6/z97VrvrzcJsrMqFDe/cLXH7fuN74VR04e6rB84sY/PcxlI/SSEEELOIHv27MHMmTPRr18/BAcHQy6XIyEhAWPHjsV7772HgoKCU3IeFHAgbRagkGBolyCI3aQcAlUSDEl1vZgdE6xBZAtCDgFiEe6IDUP2mL7YOaIngqRi5HlJxNa7JDwQQU1mJfIWOFh/sALbM6pRUGFGSbVFCBj8u68cGYWegwitVVRpht3hfZv8crPT82ujQ/B5z0R0Vzde9CtFItwYHYLf+6VA7abz5ProEIRIPXeq9FArMI4CDoQQQggh5CyXFBuKlx+4BHI3bYzuSZHCa80NuWQAAsM0UG7LBKdzP2uqJLcCsrSihtlVr3p0Gpbrf8T3mXMhkUlQmlvu89zGXDtCqBbhS1VpNWYOexqvXP++UNVh9z/7sfDdP3FH94ewxEsQobW2LNkhVJfwZt1vzrM9Tb1nIp7+6WEk9Ihz6shg61//+znI3QyamnL3hcJ350nXwSnoO9Z51ihCCCGEEELONp37JeGJ72ZC6mZiph7Du+B/3/6fy/rhlw2GSqtE0NwCiCrcX5tL8iSQnpBCdrQQ2gAFbr1sONb98gSWvHkneCuPinIDRD7maZoyqDtkfvSTVBRV4v5BT+D1GR9i0+Lt2PX3Pix4awlu7fogVn65Gu3t34PHYPdRLe+v/elOz2eMHIDXrp6MxLDghnVquQw3DO+HebdNh8xNP8n0iX2hUnieMKtft1j07Bzdqs9ACCGEEELImaL70FQ8/uX9kLgZI9T7gu547Iv7XNaPvnKocI/fX5qQANz0/NX4U/eD0E/CqjJUlVT73G/SLWP9ql5dmleOe/s9jjdv/Rib/tghtEl+eX0xbkmdiX9/WI/2tn7hVvA+AuPN+0mue/IK4buM6RzVsI71gVz58BTM+fNJt8H3Sx+4CAqV5+95wMQ+SOlLoWtCCCGnX3V1NWbMmIEBAwbg448/xr59+1BVVQWLxYKcnBysW7cOjz76KFJSUvD666/DZuuYCeTrtW4afUKaiQqW46IBYcguMaJSb4WY4xAdIkd0sNxtqS2JiMNzKTGYeSTHa5X5a6OC8UpqHAKaXAAeN5jwb3mNz59BuEyCp5O935Q2mO2oNdmQlq9Hpd79f2wHs2uFoEZEoP8X9b7Y7Lwf27gmIKZGBAlLht4Evd2BZJUcWi+zQoVIJfihTzJu3n8CZc3KNndRKfB9n2S/SqERQgghhBByphs7OBVLusXhz3UHcfREMRQyKcYNScWIvkluS/vK5FLc8dqNePeuzxCw4gAsXSNhTQoHL5dApDNBll4MWVYZptx1Ie599xYoVI1B48z92diz2vNMo/XCYkNw60vXet2moLQaeSVV+O7pn3BszwmX1x0OHp88+BVS+iag16juaM+S0L6wzonmxl03Uliyj+TBpDcjrkt0Q3lmd4IjgzBn2VN44fI3UVOuc3otuW8CXlz8v1Z+AkIIIWcFHuD4th+DEELOBuw6mc3YuerLNTi+74RQBe2Cq4dj0OR+bu/Ds9dvm3O9cL0f8egxVN8UD9NQNSADRDqREGyQ5kpxzcT++L/5/+cUKD50vBD7M+pmSpMYAYuE/cJ1fY+YEC3uuch1BtGmsquqkFtdjW8f/hZZB3Mb1luD5bAHyiGuteL9e+YhuW8iug5KQXsxWKyt2ubSAT0wrX93HC8ph9lmF8IOLOTgSWSoFm8+fjmeem8pdHrniaW6J0filYcvbeUnIIQQclagNgkh5Dwy8eYxwmB51iY5cTBbmHxp7LUjMODCPm7bJOpANW5+8VrMn/Wdx2Oy/pUrH52KW2dfB5mi8bp737pDyNiV6fOcWBDg+qev8LoNq2RdnFUiVLXOTXOdEdpus+Pt2+ciuU+CsLQXYyv7SS66fTwm3zYOWYdyYTVb0albrNC+8yQmJQovLJqFl695B4Yao0sg/pmfHm7lJyCEEHJWOEvaJJWVlbjwwguxe/dup/UajUao4lBeXg69vm6yeJPJhKeeekrY9tdff+2wMcgUcCDtRiYRITVG7fH1shoL8stNsNp5aFUSTAsPgrynCG+eKESGwdxQUqSTQoZJoVrcHBuGVDcXgFuq9D7/e5WLOCwbkIoED2WX9SY79mXVoLjK4tdnO5xTi4jeLQ84WG0OFFaahc+sUYgRHijzGF5oLlDtPKNQZa0VxwoNKK42C7+wwrQymKMkqJXzyCwyorSm7rOEa2VIjlIKlTWYAVo1dgzvgcUlldhepYeE43BhqBYTw7RCEIUQQgghhJBzRZBGiRlTB3t8fc++bKzbkAajyYqUpHBcdM0IyJUyfPfSb8g/kA/FgXzhZn1UciRGXD4MU+6ZiLhU19D0vrWHfJ6LIkCBDzbNQUR8uNvXc4sr8db3a7DtUDaECYKC5RBd2heK3TmQ5lU6bctmEPr62V/wztqX0FL6aj02L90JfbUB8d3j0H98LzgcDhg8VK1oHkBo6vDWdCx6fxl2/3uAnZQweGv6Q1OgDdNi6SersH/9YeHmxaBJfTHt/skN5a57jeyGH7Lm4r+fNuLwlnRhBqlh0wZhyCX9IRJRYUlCCCGEEHLuCI4IxPVPuR+8w67rNxVkY+WJdBjtNvQKjcSVd42DMkCBH+f8DvHcE3B8JYWjcyQi+8Zj9EX9cflD/RAbEeRyrN1H8xoeixyATAfYFDwcrFuB3ffneQRK5Pj2kWsRHhjg9nyOlZfjxTVrsCX3ZKhhdACknftCu6kIpm5hMCc1VueW5ekw7/PleHfQgy3+TqqMJvyXdhx6ixWpEaEYmthJGKBkOV7mc9+u0WFOz3cU5+HLQzuxuSBH+JijYhJwh3QwQsvsWPLxKhzYeAQisQhDLuovtEkiOtXtP7BnPP74+G6s2nAEh48XQioR44JBnTGsbyJNAkUIIYQQQs4podHBuPHZKz22SXb+tVeojmAxW9BlYAouuWsC1Folfnp1EYqzS4Xt2DU1CyaMnj4UU+6eiMgE136O/WsP+zwXbagG7294GUHhjW2Lpk4cyMbHD36F/et8H4u1Ib594Ve81IpJk9jkS1v+3CmEFVilhN6ju8NmtcFQ6zvg0LyyAusfWvTBcuGcORGHwRf1w/SHp0Iqkwj9JIc2p0HM+kCmDMTUeyciLDZU2I/1m/yU8xn+/X490ncdh1whw8grhngMnxBCCCGn2j333OMUbmBhhzlz5mDIkCHC3yq73Y7169fj8ccfb9jut99+Q+/evfHcc891yDlxvK9aS4S0Q7WCbelVKKl2DhOwSVQHpGjRKUyJAzoDdDYHUlRyRLop4dzUjwXleCytcRYhdyJlEuwb2cvtayaLHWsPVsBo8R0yaKprrArRwQoEB0hdjldjtEEs4hASIG248GRVIdLz9bA1KbGskovAgYPebPf5fkO6BCI2pC7gkVduws5j1XUDn5o52VfhRCwChqQGCZU1CCGEEEIIOd/p9WY8O3sR9uzLcVqvkEvx1KwpuGBkF6F6AqtqEN8tVqg64M0fH63EJw995XWbqKQIfH/8E7evFZfrcOvsn1BeXTfDgRMHD9W6dEhzK1xeunX2tRg6ZSA6909yWl9eWInsw3nCwKiug1MaQgPfz/4NC95cAtPJQHn9ebE2RGFmCXx5ZfnTGHJxf+HxP9+tw9t3zIWjWVibtX9YKMTebD0ra/3SH09gwITePt+HEELIuSUvLw+dOnUSHifOeh7SQO9/V32xVlch663ZwuPc3FzExcW1y3kSQsipVG024Y6/F2FHcb7TerVUig/HTsX4TsnI2H0CJr0JCT3iPA4Aqvf98h34+NcNLutZVwEvAjgHkBwbil9eu8Xt/jlVVbjy559RYXQzoIfnITJzENkbB9nw7MgiBx6dPBpjkpLQPbQuzFyvuKYWx0vLESCXo3dspNBOYN2PH/y3Gd9s2Q1Tk3L1CYFaBP56FBXbslByzwDYgzzPdPrVnVdhaErd35Sf0/bh6c1/w9GsQ4S1fiK/zoJmU91grHoqrRIvL30SfS7o4fH4hBBCzk3UJiGEEFfVZTV4duprOLr9mMt183MLHsOAC3sLFRnMRgsSe3YSwgnesP6H715c4HWb1AFJmLvzTbev5abl46ERz0BX6aafxIu735ohVMlL6hXvtL4ktwx5aQVQB6nRZWCy0CZhkz19+eSPWPzRSqHSQj1WmZp9ztLccp/v98HmV9BjWJeGvqG5D38ttHWaYoEQ3sG7rA8IUuOVFU837E8IIeT8cba1STZv3oyRI0c2PL/mmmvw888/u52s0Gg0YuzYsdi+fbvwXKlUoqCgAEFBbfuM7lAFB9Lh9p6ocQk3MGzc/67jNUKlgd4ald/HGx0cINyw9hZPGBui9fhaRqGhxeEGJi3fICyBKgn6JGqgUUqwP0uH/ApTQ8BAKROha6wadgePw7m1LscwmP1736QIZUO4wWJzYPdx9+EGxt16NrZoR0Y1Jg8IEyprEEIIIYQQcj57470VLuEGxmS24uXXl2Leh7cgdUCy38djJZ59YbPxePLdih3uww2MiINpYDwkuRVoPmfPN8//KiysU+D/Pr4T0UkRwuxGmxZvF2YvYqISw3HT81ejorDKbedC0QnfwQbmyoenNIQbKour8N7dn7mEGxh2w95ud22UmPRmzL7qbWFGIpVG6dd7EkIIIYQQcq56eO1yl3ADo7dacf+apVhxxS3oOijF7+MN7Z3oNuDA2hAs3MAM6+Vcka2pT7dvdx9uEA7CwSEDRCdftssdsAc4wEuA13evF5a+4VGYM2oiIuQBmLPiP6xJOw77yc6K+OBAzBw3AifKK/DZhrqOzqayq2sguiAckUcLEbw0HeXX9AB/siJ1U3eNHdwQbiiorcGzm/9xCTcw7OMW3RQP5YFKSGoagxSGGqPQJvkx+1PIPVT7JoQQQggh5Hwx57r3XMIN9dfNL01/C/P3v4Ougzv7fbyBk/r6DDgMnNTP42usil1Lww3M/FnfC0uP4V3w0Kd3IyBIhY9mfonty3fDcXIC2tjUaNw253qk7ziGBW8vdTlGXnqhX+9184vXNIQT8o8V4tNHXMMNjLu+E6a2So+XrnwbP5z4BFKZ98l+CSGEkNPps88+a3gcEBAgPHcXbqgPNLz55ptCyKE+8LBy5Upcf/317X5eFHAgHcpotiOvzOTxdXbdxwIQUrEINrsDgWopkiKVCFJ7vrCLV8oxJTwIf5ZWuX1dynG4M865bHFTuV7Oxx/VBhs2Hq6ESi52qcTAghN7T+iECgqtwSo89E7QIOZkuIHJKTUKgYWWYpUj2L6do9WtOxlCCCGEEELOAQWFVdiwKd3j6zabA+++9geUxwtgNpiF6giX3j8ZSb09DwZiVR6GTR2Irct2uX1dKpfi8pkXe9x/5eYjXs/ZoVXCHh4ASalraJphM7s+MXE2AsMDUZzlHFgoyirF27fPhUzRupvlrOz0ve/cguHTBjWe75drYLU0DhTyl77agNU/rMe0+ya36lwIIYScA4SpxNvhGIQQchbLqCzHmtxMj6+b7Xa88NNiRC7IgdVkRZdBKUKbJKFH3eB+d7rEh2NIz3hsP+Qa5GbkMgmuvNB96NrmcODPo0e9n7SIVYLg4ZDwsAU66pITTewrLcL1y35FqE6J4grnQUk5ldWYtWglZBKxx8M7VFLohkYj+O8shH+9D/pB0TClhoCXiJASHITHbpyE0V0bK9f9nL4PNt5zRwkvFaFmZDhCVjoPVKou02Htr5sx+dZx3j8vIYSQcxe1SQghBBm7M7F3zUGP3wSrAv3W7XOFQVysL6D70FRMu28SOnWN9bgPG/jfc2RXHNqU5vZ1VnF62r0T3b5mNpqxfuHWNv1kDm9Jx6NjnxfCzBWFlU6v5WcU4pXr3hMqK7RGYu943PfOLRhwYeNkV8vn/dMQoGgJdm4bF23HuOsaZ8UmhBBynjkL2iS7d+9ueHz55ZcjODjY6/ZDhw51en78+PEOOS+a2p10qJIai8//tqr0NpTWWFCptyGrxIj/DlQgo8B7Sve9bp0wKijAZb1SxOGTHgleK0KYra1ICzTDPlPzcENTrQkkMKzaQtNwA1NjaPlAonqVta3flxBCCCGEkHPBzt1ZHquh1TuUUYx9aw8Jsxctm/cP7uk3C398vNLrPk98NxO9R3d3Wa9Qy/Hsr494HIxks9lRazT7PG/eR0CBVUhoHm5oymJqLLfcEiFRQU7hBibLw6Apf6Tt6JibGYQQQgghhJwtNuRn+dxmW2UhDqw/IrRJls79C3f3eQwrPv/X6z5z7p+CnilRLutVChneeHAaOkW674g0Wq0w2nz3HfAchMoNLqXlTqq1WpDrqPG4v8XuuQ9FOI8eocK/khozAtdkIXLebkR9shNdtxY7hRuYtMoyn+drjnVfOY7aJIQQQggh5Hy36+99Prc5sP4wDmw4gqPbMrD4wxW4q/dj+Of7dV73eeH3WULF6ebUgSq89Mf/EBEf7nY/g84Eq7l1fRhN6asMLuEGp+rTJytftxSrlN003MBkHcpFa6XtcK2cQQghhJxJDh48iJKSEqxbtw5PPvmkz+11Op3T85CQkA45L6rgQDpWK5NDB3NqERwgRZhW5vb1AIkYC/t3xqZKHf4srYbebkd3tRLXRYcgROr9f9ZqhRh6U+suYjua3U3aV9LachAswXRyV6PFjhPFRpTXWMBxHCKCZEgIV0IupYwTIYQQQgg5t/GtaJSwG99zH/oa3YZ0RrchqW63CQhS4911s7F79QFsWLgFZqMFKX0TMenWsdAEu4ax60kkYkSGaFBc4dzob06ka1vludYyGywu61ReAuS+1FeSKMktE2Y4OrDxCCRSCYZc3B+Tbxvn9bsihBBy9uP4uqWtxyCEkLOZX22SZiECNjPoB/fNR9chnYV2hjuBGiW+fP56bDuQjbW7jsFitaFbYiQuGdUDASq5x7cKkMkQqlKh3GDwft4iHryPwnAOJQ++igfnKQXh7fgy5/4JU5waDpUEOqXrsTRSz5+nnshDv099myRfX4VfTuzE3oo8SEVijIvugsvj+0IjdZ50ihBCyLmF2iSEECIUZmgxFg54545P0XVwZ6GqtTvBEYH4ePvr2LFqL7Ys2QGLxYqugzpj4s1joNK4DyAzmmC1sOgqvU9+e7qwCaaaU2k9fx5f6tskBceLsOyzv3F0xzGhEviISwf7/K4IIYSc/c6WNkl4eLiw+GPx4sVOzwcMGNAh50QBB9KhPAUU/HG8yOBz/5HBGmFpicQIJQ7l1OJMpDPasf5QBfokahCkrrvAjQ2RCd9Fa7BqEEWVZmzPqHKqKsEqZrAqGSO6BQtBEkIIIYQQQs5V/frE+9yGcxM2YCEHVsXhye/cBxzqDZjQW1ha4rIxvTB/8RaPr4tLdRBXGXG6SlU/Nu4FzPz4TiT2rKtCccE1w/Hnd/+Bs9rB2Vt292TkFUOweckOvHL9e05VJfasPoAFby3Ba6ue9ThgixBCCCGEkHPB8GjfbRJlmmslBBZyWPLxKjz6+b0e92MTGg3rkygs/mL7XN2zJz7bscPzNv7OEcWdXFrRySo92e+h7xmM8qnxsEbWBauLeGDGooV4aex4JJ+c/e2SxK5YeOxAkzd1pdlR4Xb9qCuGYGXeITyxazGsjsYPtqU0E1+kb8KXI2egs9a/zltCCCGEEELORn3H9mjVfizk8Ofcv/DAh7d73EYkEmHoJQOExV9sEqSJN4/Fog+W40y0d81BPH3JK0I/SXRypLBu9JXDsW6B534db0ZNH4p/f1iPt2+f61RVYvc/+4V+kjf+eR5xqdHtdv6EEEJIR9q4cSP+97//NTwfOXIkhg0b1iHvRQEH0qFYtYSYEDkKKlzTrb5U1FrbpSJCXpkJZTUW4Z53VJAcSZFKFFaaUaFr+/E7QrnOio2HKzGye7BwnlklrRvYFKiSIEgtwT97y5zCDfUsNh5b06owqX8YxKKWz65ECCGEEELI2SChUyiGDk7Gth2Z7jdw8BDlFLt96cjWjDa/v9FsxartR7HnWD4kYjFG9UrEtRP7Y+PeTBw+4fq+nMUG5VYP53qK7F93GI+OeR5vrH8JqzJysHjzQVTeNoQ1sCDLrIBqVy4klb7bKd2HpSKuawxu7/aQU7ihXmVxNZ6/7A18d+xjiCXiDvo0hBBCCCGEnF49QiOEkMOWwhz3G9gdCF7joU2yLb3N72+sNeLfHzbgyNZ0YSDRsGkDcffEQViflYXDpaUu23OsjWTm4JCcDC546z5weAk3+Ng3YGcR9L2CUXRrV6BJHwXPAZtycnDtwgX4fvqVWJx9EAuOHQAnOTnzLPt/Qp9H/T48ZCUGVF4aiQppFBSZBgSuLoW01IK+Y3tC2y8ST6ye6xRuqFdi0uH/tv6CFRP/DyKO+kkIIYQQQsi5qcfwrsL9+tb0ebRHm0RfY8C/369HGqtcIJNgxGWDcf0z07Hrn33IPpyHMxGrSvHIBc/h9b+ew6ovV+Ovb/5r1XEGX9QPcqXMJdxQrySnDC9Nfwvz978jhNEJIYSQMwnP87Db7SgvL8f27dvxww8/YOHChXA46gYkx8XF4fvvv++w96eAA+lw/ZO1MFmqWhxYaOuY+8paK7akVcFsbRzdn1NqEkIXQ1ODUFBpQlaxESaro8lt8PbBjicRc7C6md2Urbf5mPWU7bf5aKUQQmgNtVyMEd2CkF1qdBtuqMc++5ajlUiKVCE6RE438AkhhBBCyDnp6VlT8b9nFiAto8j5BYcD4sPZENW4r5gmkbZt0P2BzEI88skSVOoawwBLNh5EUnQI3rpnKv7achRL1h9EebUeErEI4uMlkO7NhbjGhLaSyiVC2WN9tdFtKWVDjfeAQk2NAfd+tAgVoiZtErEIltQwWBOCoF16GNJSz5Xx4rvHYs6fT+H395a5DTc0vXn/7LTXMe3eSRg6dQDEYgo6EEIIIYSQc89H46bi5lW/4XCFc6CAszoQ+U0m5Pnur89ZIKEt9q8/jBenvwVdReO1+8ovVyOpdzw+WjILv+VmYMHBg6gwGiHjRFDsKEbAxiIYeoejemREXZDAyyU6Z+HA/q+eQ8LDrrWDlzsgF0ugMEthKLeBY6mFJsLTqyE/XI7cJ/t57AwqM+px/T8/o9La+N0I4324uhAEWD+Lg4eYs8PWSSEsjKm7BlWTIzB8G48XXnkIn57Y7DbcUC9bX4H/vfQJrh48HIMv7i/MQEsIIYQQQsi55vnfHsOTk+e0OFAgbmObZPfqA5h91dvQVzf2w6z4YjVSByThhd8fx6ov12DV1/+hplwHqVwKq8XaboO35CqZcH1vrHXtc1EGKNyub6q8oFKYDKppe6olUgcm45lfHsFXT//kNtxQL+tQrtBum3rPRAya3I+CDoQQQs4Yf/31Fy6++GK3r1166aX48MMPkZCQ0GHvTwEH0uFkEhEu6BmMoioL8stNwuB9lUyEzGLvA2qig+Wtfk+rzeExIKA32bE9owoX9g1Ft1i1EDbYml6Fspr2q+jA3pV9TlYZQS7lhJCBRiFGYqQSMcFyHC8y4FCu3usxWhtuYPRmOwxmB8r9+EylNVaU1lQLoYjh3YKgUdKvBUIIIWeftWvXYty4cW06xtdff41bb7213c6JEHLmCNQqMff9Gdi87RjWbUiD0WhBZLAafz71PWCyeNxv+LRBrX5PFmp48MPFqDG4VrM7UViBJz9fgV+evwl3XzECBpMFT016GUc3t71iRD2r2SYsKo0S2tAAIWQQ3yMOU++ZhOGXDsKv7yzFNy8vBGe1CzO0NmfsEwND03BDE7xMAv0FyQj6fb/H989LL0RJbhkObU7zea47/9orLJ26xmDOsqcQkxLVwk9LCCGEEELImS1cpcafl9+Mv7MzsDIrA0arFXG8Auuu+x6SamuHtEnKCyvx3KWvuw03nziQg7eueR+fbH8dj40ahVqzGbNGPY/M3SeE1xV5tbBpONQMjxDCCnA35t8OiKvsDQkIu9oOa4StobCCEVYYZVZog+QIrQqAzeRAakQYrh/UF2OSE/DF2FV4W++5DcQrHE7hhqZY0EFSaoJI5IA1pi7Y4ETCYccoMYpFJuwq91A5o4n1x49i3+x1SOzVCa8sewoR8eE+9yGEEEIIIeRsEhYbis/2vIWNi7Zh0x/bhT6D0JgQ/PnpX173a0ubpDi7FC9c/gZMetd+kozdJ/De3fPw7rrZuOP1G4V2y0Mjn0HOkXy0F7Ohrv8nIEgNVaASNrMNKf0SMe2+yRhwYW98/dwv+P3dZV6P0dpwA5N1IAc1ZToc3HTU57abl+wQFnZ+c/58Uvh5EUIIIe4UFhbCF1ZZoT1kZ2e7XR8QEICkpCTYbDZ0JBrJTE4JVkaLBRaahhZsDl6oqOD2f5giDslRqla/X3apyWtAoNZkR2GlGTEhCtgcjnYNNzRld/AwmHnIJByUcjHkUpEQbMgqcT9DbHtiIQpO1LJQxOYjlbiwX5gQzCCEEEIIIeRcIhaLMHpEF2Gpp9t2FGt/2eR2e3WgCpfeP7nV77dk00G34YZ6x/LLsOVQNkb0SkRNYSWO+hEEaA2Dzgij3gRtqAYR8WHQdArBu4s24M+CfBhvGcKS2ZAfK4Nydy7E+sawh6l7hNfj2iICYAtVQVLuvm3jsDuw5ONVEEv8b5TkphXgqYtfwZeH3mvzTLWEEELOEOz2XFtn3WuvkquEEHKaSUQiXJLUVVjqvTD2gDCIxR1NSACm3DOx1e+3fN4/Xiu3pe88jn1rD6Hv2J6oOF7aEG6op8iphW5YJGAWgZfwAFtY14ED4GwcYOPAKzjIDlXAGq2GNelkeetmauxm1GosCA5UIzwhAFoRh08f/hqLd+4Dbkxxe248++XPghVe2KLl4MSe/0jYeAe+S98FqciPKnEnq25nHczF05e8ivn736FKDoQQcq6gNgkhhDRg993HXjtSWOoVZhZh51/73H5LQRGBuPiO8a3+Bll4wl24od6BDUdwZFsGug9NRcHxonYNNzRVW6UX+krY52FhZla94ZMHv8a/P6xHR7JabMJ30JL+juN7s/DcpW9g7s43qJIDIYScK9q5TTJkyBDfm/N8uwUcpFIpIiMjYTKZUFZWJqyvra3FBx98gLlz5+LNN9/Eww8/jI5AIwbIadMvSSsEAPLLnS9mWQhgYIoWJVUW7K3QCdsEqSVIilRBq/Lvf7IFFd7LiDHs+CzgYLZ6v0neHljYIrfMJCynSrnO0uIqGAaLA3nlJiSEK31WyGAVKlh1DomYwhCEEEJOv5iYGNxzzz0t2mfhwoUoLy8XHkdERGD8+NbfoCOEnJ0e++I+2Cw2YcaipkJjgjHrm//D5qU7G2Yy6jIwWQg8dOoa69ex1273HVjYergu4FBVWoOOxDt4VJfWYNWvm7DAVAO7tskMp1IxzN0jYYkPRuDSAxDrzML9EUfTbTxgx/EUcGAObTqKHiMaB2/5o+BYkfDzaNrB4o7ObEaNyYxQlQoKCkMQQgghhJCz1JPfz8SrN3yArct2Oa0P7xSKWT8/jJVpJ7D299Ww2mzonRCNa0b1RXx4kF/H/m/LIVRNSoYtRAmRyQbl4TIoMsrBNenf3Pn3PiHgUFVSjdpegaicGAVruAIigwPKwzXgjFZAKQVn5QBrXfCAq08x8AAv4qDvHQxZUTnAaTyeiwM8yswG/JK2HwsO7kX0hgxIyz1X0xP4yko3/SAe7CzNQ59aOXZJvW+n2KVreJx9OE/4eYy4dLDXffTVetRWGRAcGQiZQubzXAghhBBCCDkTPfvLI3j52vew62/nkENUYjhmfft/+Pvbddi2fBdsVht6Du+KqfdOQnRypF/H9hTmboq9Lws4VJV0bD8Jm5SporASy+f/g+Wf/3PKJtRg1RtYn1NLHNtzArv+2Y9Bk/p63U5XWSuE2oOjgiCT+2j0EEIIIa0wc+ZMvPjii5DJ6u595eTkCKGGd955R6jeYLVa8cgjj0CpVLZ4zJY/KOBAThtWJWBIahBq4mwoKDfBZucRqJYgWC3F5qNVQkWBehW1VmQWG9E3UeO1soPOaMPuzGpU6HyXPjFaHbDYHNhzvGMvkk8X1sWQ70fQo7niKrPHgAP7fo/k1qKg0gwW8hKLgLgwJXrEqaGQ+TELEiGEENJBunTpgs8++8zv7b/77jvMmzdPeMzSxn/88Qfi4+Pp50PIeUahkuOFhY/jxMEcbPx9G0wGsxBkSOwdj6cvfgUlOXUzEDCHN6dh6dy/8PBnd+PiOyZ4PGbWoVy8c8dcHAmVAbF1A4+a3yevjwiXF1WiplyHD+6dj1PBMCjeOdzQBK+WwTAsEZp/0oTzYwOZeKX3G+IiNtjJ2+tiEbb+ubPF57l91R6PAYf00jK8v3EL1hzLFKrxqWVSXNajOx4aPVwIOxBCCDmzsLGnfow/9XkMQgg5VykDlHh56ZM4tvcENv+xAxaTBV0Hd0bUsBTcN28xSqv1DdvuPVGIn9fvxewbJ2HKoO4ej3mktARPrvwbBydqwfFaiE0cRAbA2DUU4gojQpamw6HhYQ+SolBhQplRj8eKt6DgocZqd4ylkwIwAmKLDZDUdSc2DTcIlRxObmvqEuD7w4p4wM7BIRWh8M4UJD+xB4rMGpiSte63Z+/hdX4l9qL3PxJinsOhx9dANDsWjkD3XaLyg7WQZzhXutixco/HgAP7WX334gJsW75bGCSl0ioxccYY3PzSNdCGeA55EEIIOT2oTUIIId6pA9V4fdWzSN91HFuW7oTVbEX3YV0QmRCOpy95BZXF1Q3bHtqUhsUfrsAT3z+IMVcP93jMjN2ZeOu2T4Sqzb6UF1SgrKACH8/88tT9qE7lvSaOw+5/D7R4N9Ym8RRwSNtxDN+9tAA7V+2Fw8EjIEiNSbeMxc0vXi38PAkhhJzbbZLt27cjOjoap0Lz92Hjql5//XVhAtmpU6cKAQfm8ccfx+WXXy5UemhPFHAgp51WKYE2rvHm99oD5U7hhqb2ZekQFCBFSIDrQJv0/Focym282e9LUaUZK3eVwnEGdpLKJJxQ9aEtWLWLoiofMyC54ak6TY3BhvWs1PTJUs2M3QFklxhRWm3GmJ4hFHIghBByVkhPT8d9993X8HzOnDkYPtzzTThCyLkvqVe8sNS7p9/jTuGGemzwyvv3zhcGHCX3SXB5nQ1y+f7l34Sb49J+cbCygEP9gByu2TU3D2x8dwX2Pf0bzIaWX7e3FC8Wwdw5zOs2loRgOBRSiExWRFSaUewl4CCqNkJS1DjLqTsxKVHC7Kct5bC5r7J3sKgYN/68EHpL4/elt1jx09792Jydg19vupZCDoQQQggh5KzUuV+SsDBsgMrlr33rFG6ox0K+z//4N3p0ikRSZIjL61/tX4Zlx/8CF8BBYw5HjVEFh5wHAgBZJeBIlCH/ta7gFXX3+b9GEX5aOhd6o8M1TcAqKCgB1iUgsvHgRO7DDcIqNhuSr1FCTV52BEigGxSKsN9PoOCBnnA0q97NghQhYjXKHZ77fKTFZtiivVdOSKyQ4mieDtovClH5YBw4qfNnFBVbEfxWrst+dg9tksNb0/HExNkw6Rsrk7MZU5d8sgp7/zuI9za8DE2wH2EPQgghhBBCzjBdBqYIC2O323Fr6kyncEM9q8WGN2Z8iC6DkhGd5DqIce4jX2PxByv8ft9l8/4RqkSwsPeZJihC2+bKEsGRQTAb0lu8n93mftzc/vWH8dRFc4TK4/Vqq/RY9MFy7F17EO+umw21liaDIoSQc1l0dDTi4uJO6zlMmjQJzz//PJ577jnheW1tLb755hs88cQT7fo+vgq8EnJKVegsqNR7r76QWWRwes6qMLCB9y0JN9Q708INEjGH1GgVLugZApXc83+erB/B28RFrC+BVcNojTCN+w6B/dk6p3BDUwazA7sza2C2ur/pTwghhJwp2A25GTNmwGCou54YM2YMZs2adbpPixByBtm39hAy92d7fJ2FHJZ8vNJpXWVJNWaOeBrfz64LNzDytGI2Mqnuwp1zN9GoA5KC6lMSbhDOWyUFpD6qrolEUMWH4Lonr8C8D+9BRJCHgTk8j6Bd+RBLPLdZVBol4nu07sZK79HuZ6N9+d+1TuGGprIqqzD71xVCSWZCCCGEEELOZpuPZiG7pNLj6yzk8OvGfU7r9LZyfH/sARhk72J890O4sMdB3D7qP1zSezckYhsgBqzhdlgTLA3hhnpm3gqxwl5XYaE5dskv54T9OfvJpVm4geEsXkst1OGdt7HEKiEvNCD2/QPQbC8BZ6kbwBMiU2Dm0KH4Zcp1CFO4n32Uc/CIWVCIgMOer/+1MgW65UhgDZWh5KYEmK0yWMxi2KwiYTGbJDBo1KieGOGyb+8L3LdJ2KyyTcMNTbFw90f/9wX0boIphBBCCCGEnE1YJYeirFKPr7OQw7LP/nFaV5pXjrv6PNqicEO9My3cEBwZiJtfvAZv/vsCAsM8V2mTyCRCJWtP2L6RnUJbdQ69L+jhdv1HD3zhFG5oKnNfNj558CsYdM4V6gghhJCOMHPmTEhOVn1l1q5d2+7vQQEHckYp17m/CGuqosk2PM9j/aFKv/Y7G4zpGYxeCRpolBJc0CME0cFyp44CjVKMIV0CcdnQSEwdHIGoINcwglTCYXBqIMzWlqc3pGIO8eEKl/UGsx2l1d4bFMVVFqzaXYrdx6thY6UdCCGEnPesNiN0+nxU1WQK/7Lnp9snn3wilGtjFAoF5s+fD47zoxOeEHLeOLjpqM9tDm9Jd5pF59ELnsPRrRlO2wgzmIq9/H4Ri2Dp4jqQpqNwJltd4MKHeZtewR2v3oCEThH4+tFrcEHvZIia/J5MjQnDB/ddjtVHPsHi8m8waLJrieSgcC2e/fURVJW4zu7kC9t3/I2jXdZnlldgV773ctYrszJxXad7hCobJoP7QUeEEEJOA76NCyGEnGf2nij0uc2+E43XxnaHBQuzHkK17YjLREndogsxtc9u4TkfZPPYK8gu+UVSD+0FFnzw0Zbg9GJwXrppeIdrwEFkqgs0yMpMiPjlOJKe3o7kp3fg7+nX45HhI5EaHIaFF92IsbHObZIewRH4ZuI1WLf9M2x64TkMj3StrheuUOOTkZcjX8Oh+O5kODSss5WDw84CDhJh4R11X0bVxRFwKBq/mNCYYIy5ZoTLMY/vy0LGrkyv38N/P2/CdXH3CEGIM22QFiGEnNeoTUIIIS1yaFOaz20Ob2ncxqg34aERzyDroGt1tLMNCyx8ceg9zHj+aqHy9zvrZmPgpL5O/cmpA5Px5r/PY6XpZ/xW9AV6jermcpyw2BA8t+AxlBd6Dq97EpkQjlFXDHFbUS7rkPfv+J/v1uG62Lvx2aPfwGo5N8bSEULIOeEcbJMEBgaie/fGSUJyc9v/OqB1U7wT0kGa3qT2pOkm+7N00Bm9V3w4WwQHSKFls6qepJSLMaxrEIwWO/Qmu1DdIUjd+Dp7PrxbMCprrSioMMHm4BF0cv9dx2o8VlvwFm5g7yd1MwsrCzj4WxEju9SEoioLenZSIy5MCXF92WpCCCHnBRY+rKg6iuy8NSgu2wNe6MGuw3EiRIYNQELcOIQEdTvlwYLi4mKhRFo9VhqtS5cup/QcCCFnPonUdzNZ3KQSAhtMn5fuOgDJkhLq3Hhxw5wSCsXhIpwKIqsdsuxKWJI8zxY0MDUOMaGBDc/Z4w/uvQzFlTrkllZBq1agS2y4U5WG11Y+i6PbM7Bx0TaYjRahhLXZaMaca99r8SxBmpAAzF76JJRq19B1QY3OryoVJrsdy+f/g63LduHON27EmKuHQyprbEcRQgghhBByppN4mQG0cZvGNsmfBe9DZ/McBk4OL0VUUCWKpSqvx+TE9T2mru0YSZUZDq3n/eWVHOS5EtT0ssEhd35NuDVkc/1Mmp0Vzu/vAAaP7YWQqOCGdYnaYHwz4Wrk19Ygp7YKIXIlugaHO1Vp+OnCG7CrNA9/56bD4rCjb2g0qiutuH/BMhisVti7ev/cvFIMfb9AaLZWCoHrl5c+CZnctQ1RklMGf7AKD0s+WYXNS3fg7jdnYNT0oX61MwkhhBBCCDlTSHxVg262zes3fShUcDgXDJ82ENqQxqoNCd3j8PqqZ1GcXYqiEyUIitAioUenhte1oRq8t/5lHNhwBFuW7oDNakf3YV1Qll+BZ6e+1uLJmEKig/Hy0icglrj+DEr9bJMYa034/f3l2LSkrk0y4rLBbo9HCCGE1LNYLMjKykJmZiZGjx4Ntdp9VdXmAgICGh47/JhssaXojho5o0QGy4Bs79uwgf1/7ymD1eGApRVVCs5ELAPQK77xP/amlDKxsHgLRrCFKa4yY/PRqha/P6v6MLZnCAKU7n8lKGQtK/ZitjqwO1OHw7l6ITRRf36EEELObdW6bOw7/AVq9fluX2dhh6LSncISoI5F3x53IlDjOsteR3nppZdQXV03m3hsbCz+97//nbL3JoScPYZNHYAvnvzB6zZcVCCuH/ccTGU61B7y8DvPjw4Af7ZpT8qdubDGBoKXuV73y6VizLxilNv9IoM1wuJJtyGpwsJs+XMn3rrtEyHw1hKB4Vp8vP01RCW4r2oRHuD7JgpntoOz1oWzywsq8MaMj/DV0z9hzp9PIbnPqft7QwghpIn2mF3o3Lj9RwghfhvTMwmfrtzi8XVOaoc6oRy3rH4JkOvRM3g/VD6aFl0iC1FcmeJ1GyGfzbn5vevgELihGIbekTDHu4YFxEZAVQSIHCKEbJHCHO6ANZCHKYwHz6raNavcwGi2lkFWZHJap1DLcduc692eW2yAVlg8GRgeJyzMirR0vLz67yYfzOvHrvuIchFCooIwd9ebCI1uDFg0xV5vidLccrxy/fuISgzHnOVPCwOjCCGEnAbUJiGEkBYbOnUgfnnjD6/bmI1W3JR0vzCAv7q05pz4llVaJW556VqPVRXY4knv0d2Fhfnn+3WYP+u7Fr9/eFwo5u56A0HhjRNRNRXcwjYJC2TMvvodxHSOwivLn0ZcanSLz4kQQsi53yZZt24dxo8f3xBQWLZsGaZMmeLXvvn5jWMloqKi2v3cWjZqmZAOFqCQIDak2fQ+zVTpbdCb7WdduIF1DkQFyRCmcR7sH6SWYGT3YIRpZW1+j/R8fav2s9p45FeYvf5cQpqdtz9MVgc2HK5ArencqLJBCCHEs9KKQ9i6+3WP4Ybm2HZse7bfqXD8+HF8/vnnDc/nzJkDlcr7DH6EkPMTm3ln+KWD3L5mC9dAN6UPdoWrcDw+GPkD4qG7tB+sMa43lcWVBp/vJa5sWYWDtlLUmnERp0T/lBin9b2TovHpQ1eiT3Lbb27/9OqiFocbGNYBsnnxDo+vdw0PQ68o9+GHegF7SoVZX5sPKnrkgudQmuvfzEaEEEIIIYScbt07RWJY13i3r4lVVoSNL8SJ0AwUSSohlpWA43xff0tEdvi6TBdeb74Nz9otNijzrVDqVVDnAxI9ILLUBRuURYAmu676AsPxHBQlYmgyJAjZKYG0wjldIBOJMTU0CROOOfeH9BzZFW+tfgGpA5LRVp9u2ea8wuo74SDPMaKiqApblu70uE3XwZ2R2LNxplZfrOEq1IyOx9HOAbjr/z5GWeW5MeiLEEIIIYSc+3qN7NYwWN+TI1vThaoGZ1u4QSqXYvSVw9BtaN2kTfX6jOmBd/57CUm92z5Z0s+vLmrVfqwKxvYVezy+zn4mMSmRLT5uwbEiPDTyGVSX+66UTQgh5PzTvXt3p+oLixcv9mu/I0eOICcnp+H50KFD2/3cqIIDOeMMSAmEg69GYWXLynSdydjt87G9QhCkrgsJ6E02GMwOyKUiaFXt85+hxeZAmc7a6v3zykzoGus6K2qNwYYTxQahKkNr2B3Av/vK0T9Ji4QIZavPjxBCyJlduWH3gY9ht7fsbzfbnu03bMCTHV7J4Z133oHNVhe4S01NxYwZMzr0/QghZ7cnv38Qc657DztWNt5Itoeoob+wOysp57StI1AJw7iuUK8+AklR44182YkKcAYLeJXnILPicBFOFVYuet6+dxDfLVZ4nltahaIKHcIC1UiKCmmX96goqsTRbRmt3n/1Txsw/WHX2SBOHMjG0rl/QXY8C6KxYXCwWWCbEVebEfRfntvjGmqMuLnzTMz6+n6Mv2F0q8+yWBfpAAEAAElEQVSPEEJIy7Ext36Mu/V5DEIIOd+8desUPP71MmxLz3VaH9S/FGJ1XdUyRimxwuKQQCny3jdQWhMIziAC1J7v8/O2+hIO9SsASZkVsR+lwTwwBQ4pD6uGh40Vo+YASS0gMXFCqIE9ZwGJplfqYiuH4MNiSA5kwq60QyaR4JffXkRcWChwxVXISy9AWX4FwmJDENfFOYTdWnnV1ThSWuq0jtOLwcs9T8Ikz9RDcaIuoL7mpw2Yes9El22O7T2BpZ/8BZPR7L7KRRO8iEPlJakwdQ9rWMeOPumNr/H6jZdgUm/ngVSEEEI6FrVJCCGkdV5cNAsvXvkWDqw/cs58hQqVHF+lfYDw2FDheW5aPsoLKhHeKRSxndunukH2kTzkphW0qZ9k0i1jXdan7zoutEnsbBBWK9SU6XBD/D149pdHMXya+0m+CCGEnJ9tkoiICAwfPhxbttRVlP35558xe/ZsxMR4v1/3/PPPOz2/8sor2/3cKOBAzjgSMYdhXYNQrbcKVQXsDh4lVWbUGBtv2rcnlUyEuHAFckqMMHVQVQh2VKPZLlSfcDh4oRpCeGDbKzY0VVXb+nBDfUCiuZxSI3Zn1vic2ckXtj87DhOskSJAIYZIqHdNCCHkbMdm6d53+IsWhxvqsf3Y/qOHzAbXQX8bKioq8O233zY8f+aZZyAWOw9QJoSQplQaJV5d/rRww3jT4u2wmKxYazagtsZDVQaRCKZ+8QhYdbBhFefgEfBfBnSTu7mEIhjlnjxIi+tmy4lOjsC460Zh1df/oaKwskN+GDarHcVZJTi48SjsVht6juyGwX3aN1x2dNuxNu1fW1nrsm7ll6vx/j3zhHYUE5lRhIrJCTAnaes2sDugOlyJkBVZkNRYPB7bZrXh9Zs/AkQcOvdLQmxqFP0tIIQQQgghZyytSoH5D1yFA9lFWHvgOCw2O3auWIuKSOd+AJ7noHMooOWNQhVpd6x2MY5mRUNklcAht7jtGUzWhGJiZDcs3LkHZbpaSCus0K4vQeDWMvBSMaqTA1DTmQffZF+7EjCH8QjIAhTlLOHgelzOZIV6b4nQPmIK80uwpTYLdt6BgVEJ6NelF9rT7qJCOCR178XZ6ypKiExiOPQO8G7CHeIqKyI/y2p4rqtwbZMs+WQVPnnwK78r1VWPT3IKN9Qz8w7M+nkFRNXj0SUshNokhBBCCCHkjKYN1eDdtbNxaHMati7bJfQrrFu4BSXZHVMtOaFnHIZNHYhVX/3XYVUhTAYzCo8XYfvy3cI4Jla1od+49m2TsMoWbVFbqXdZt/DdPzF/1vetqp7dlMVoxeyr38FzCx5Fp64xiE2NhkgkatMxCSGEnBsefvjhhoCDwWDALbfcguXLl0Mmcz/Gec6cOVi4cGHD88suuwyDBrV/gI4CDuSMFaiWCovNzuNYoYeBRG2UHKlEt7gAoZJCz04a6IysWoFRCFeIxRyig2XYe8L1hnZrbE2vdnquUYoxqHNgQ1WH1mLBiR3HqlHehuoNTIDSedBVrcnWLuGGpupDDgqpCMlRSnSJUXfYYFZCCCGnRkXVUdTq89t0DLZ/RVUaQoO7oSPMmzdPuABnoqOjccMNN3TI+xBCzj1dBqYIS43ehK/un+t1W3u4Bo4AOUS1jYEvWX41Ahfth6l3DCyJIYCYg6SkFoqDhZDl1AUZrnxkKm54errQWXDbnOuRdSgXyz77GycO5ghBi6GXDMAH93/eLp/n2Wmvw2F3wCEVwRqlQXLfRDz37m1I6VxX1aG1WBlqVvGiLdUbmNhms7ZmH87F+/fObwg3MIpsHWLmH4Q1SA5HgBSSSjPEev/aQryDx2s3fCA8Do8LxWX/dzGufnwa3cAnhJCOxH6Ft/XeElVwIIScx3onRAkLq5a2av6XECHY6fVqqwIqiRXltgCESmpdQg7sUnrtxl6wysRwaHnAJAEnddQtIoAzA/f1G4G7ug+DVqbA/waNQeb+bKFNki0D1NMS0ffyQXi8Zo9TuKEBB9Qm8pDWAmKj671+xZ4cIdzgkHGouj8Gt51YAEeTX+w9ReF4a+hVSIyMbNP3lFVViZl/L8eB0mKgvt+VzY5n5yGyAKJqKXizHQ5W/ULMQ1pmQsC2SgT+UwpJdWN1h7iuzm2SY3tOtCjcYFdKYOgd4fF1m92BJ9/4GcHLMxCZEI4rHrxEqGJH/SSEENKBqE1CCCFt0nNEV2EpyirBb+/82SHf5owXrsZVj04T+kTufO0mZOzOxPJ5/yA3vQABQWohiPDZo42T2bXFrPEvOfU5dBmUgmd+eRgxyVFtOm7O0Xy8cv17yNyX3abjxHVxriRxeEsa5j3+HdqLzWLDC5e/KTyOSooQ+qgu/7+L2+34hBBCzs42yTXXXIOvv/4aq1atEp7/+++/GDVqFF5//XWMGTNGmDiQ3R/bsWMHXnnlFSxdurRhX1bp4ZNPPumQ86KAAznjsRu+HSUuTCGEG+pplBL0SdQ0PC+sbN1s1P7QGe3470AF4kLl6J+shUTc8lQsq26x8Uglak1tr24hFnHQm2xQK+p+LbCgR3uGG5oyWR04nKtHjcGOwamBHfMmhBBCTonsvP/a5zj5azok4GC1Wp0upO+//35IpW0LFxJCzj+1BrNf9wwcMglEcG5DSKqMCNhwHGCLGxfdMV4IN9RL7NkJ//fRHQ3P1y+smymhKXYuls7hMHWPhD1QCc5ig+JYKeSHiiAyNw7Oac7ucEA/PB7GXlHg5RLsYQGL937BZcN74clrxkMpa/nvR4POiFkTXkJhZjHaSiaXCmEJNtCHWTr3LyGQ4Y60ygywxQ32/ZhSg2FO0AojupQZlZDn1lXLqFeaV44vnvwBeWn5eOzL+9t87oQQQgghhHSk2ioDKwHgsr7SokKYXI9aKGGxSqAVG6EQWeuqSjtkOJ4TjQOWGDgUJ3fgOfAWsbCwK2fOyuH6pP5CuKFecp8EPDj3robni9IOgV/j5eQ4QBcPqPN4SA0cOB4Q6UxQ7M2FLLNudteKxzvBPIi1e5w/wyFHKS7/9X3ckpaEB965FTJFyytfV5tNuHHJb8iv1bmcFwtlsBaF2MKqSYghNokR+F8+QlbluD2WRCoW2gosEF1fvaEls6Ra4gMBife+HlNyXUiFtX0+e+xb5B8rwoOf3On3exBCCCGEEHI6uKss0F4un3mxEG6olzogGQ/Pu6fhOQs7tJem4QYmfedx3NrlQVz2wEW4+60ZkLain6SqtFroJ2mPCt0isQhlBRUIiwlpaJN0lKITJUKguzirFPe8fXOHvQ8hhJCzw6+//opx48Zh9+7dwnMWZpgwYQLUajVCQ0NRUVGB2lrnyeJZuGHFihWIjW3bhIqeUJ0hcsaTSUWQOhcXaDeFFd4DDJW1FnS0vHIzNh+tgqMVaYLcMpPf4QZWMcJbhqK4yoLV+ytQUl33nVTW+p4FNTpYjojAlnc41MsrN2FvZg2O5ulOyXdNCCGkfVltRhSX1V3YtlVx6W7heO1t9erVyM+vqzDBEsV33NE4aJgQQvwVGqiG2tdAG4cDvFYJh6JlN7/X/brZ6+tHtztXReDZDKkXdkXtuFTYorTglVI4ApUwDIxH9RV9YQ+QezyWbnxnGAbGCeGGhuOJRfhj+2E8OH+Jy419f/zz3Tq/ww1JfeIhbfLezW36Yzvu7vMYDmw4IjxP23HM5zHHXDMCfcf1bHhuDVWi6IH+KLuhO3QjY6EbHYeS23uj+LZesKtc33vV1/9h7iNf44c5C3F8f5Zfn4MQQgghhJBTLTwuBPKDPHijcwDYzotwojYURrsEFl6KMpsWeZZQ5JlCcSAjCVt2dGsMN7jgwEuBPzKPen3vvcWFPs/PIedh1YpgVlmhXHMYmkV7GsINls7Kk+EG9yzxciw8uB0vXfU2WmPB4YOu4YYmeDFrR9W1dXqrgxG+zvPnWfvrZqFNcuRkdTp/2iTjbxiF3qO7172XyI+K1c22+fPTv/DJSz/j6/nLcTyjbVVSCSGEEEII6SiRieFe7++3xb/frff6ev31eUdh1Z//+GglXrn+/Vbtv3zev36HG1IHJkPsJRT97/frcU/fx4UqFszR7b7bJBfOuADdh6WitX5/bxk+f/IH/PjK78g5mtfq4xBCCDm7abVabNiwAXfddRdEosa/VXq9Hjk5OS7hhmnTpmHXrl3o27dvh50TBRzIGU/EcUiMUHXIsUuqnQfVswE9bNB9Wn4tThQbYDC3rXqEROzHzWwA5TortqZVCYP9c0qNQmUGfxRUmHxuo5SJMCBFi3G9QzG2VyhiQjwPeGLvuz29GjY7L1R08CVAKcbI7sEY1zsEsla2Y06UGHEkz4C1ByuxfGcxqg2+gxWEEELODCZzBXi+fSotseOYzW2f1aK5xYsXNzyeOHEioqOdy3oSQog/5DIJpozu4XUbjudgHtoZhmn9YRrWGbyfKe2df+9zem6x2vDXtqP4ctk2LFq3H8VFVU6vm7tFwpJUN5tocw6NHPrRKU7rVNq6WY9sISqYukd4PI/t6bl46uH5+OC++Vjz0wZYLf5dl29ctNXnNtHJEXjy+wcxd8cb+Gjraxg2daDXihCzr3obFpMFUrnvsEh8t1i8vfpFfLLjdQTEBKF0Rg/Ywhpneqpnidei7Lq6QUfNLf5gBb59/lfc228Wrou7G7lpNKiIEELaCxtP2h4LIYSc75QBSoy/dCSwyHXWVLNDgmO6cByrCkX6wVgc2ZmA9Uv74cDmzrAqfN/nX593wum5yWrD0oNH8OnGbViw5wAKqzyHBxqc/F1t18pQOySaFU9owF0U6XN340gt1h7Lwswvf8OLK1dj2aE0WO3+Te60MjPd+wYckBAWjPenXoLf7r0FH65/GYMme+54ra3SC20Su83uV5skqXcC3l03G+9vmoMQg0OoIueNLK9G+NcSrkTxzd2Q+dowvKMpxMv6NEz642dMnPUWckvKfb4vIYQQ/1CbhBBC2ocmOAAXXD28Q77OnX/vdXpuMpjxz/frhAH3q75aI1RZa4v6fhJfNi3eLrQFPnzgC6G6NmsT+GODH/0krC/juQWP4qOtr+K9DXPQb3zjxE3N1ZTrMPvqd+BwOITK176wihcfbn4Vb//3olMlDH+xqnUL3lyCb577BXf0eAQ3JT+A0ty6wDohhJDzq02iUqkwf/58HD58GLNmzcKgQYMQEhICiUSCsLAw9O/fH48++qhQ3WHp0qWIiorq0PPpmGglIe2sa6xaCCNUG2ztetym/90XVZqxO7MGZmvjQE3Ov3yCRyqZCDVG/y54WQWF+gH/B3NqMaxLEEI03i9U7Xbfv7miQ+RICK+7gNWqJAhQsP/sPVeusNp55JYZheoMzQMgzcUE14UlgtRSdIvTYH+WHx0dXlhswJr9FZjcPxSqDkp+E0IIaT92u/dKSC1ls/sO7rX0Zgy7oK534403tuvxCSHnl7uvGIFdR3Jx3N2NdJ4HZwdsMsCmEoMPC4chWQvtkgOQ6H0EBZpUcvtvdwZe+fZfVNU2VrSRyDhI+sRCub9u0L2ph/ebBNbYQNi1Cohr6n6nRqdE4vieLJi6hvn8jP+lZyPw7wwsm/cPPn/iB8xe8oRwY9wbk97334LRVw7HhBtHC49T+iYiNtV72KyqtAbrftuCEZcOxsGN3meTHXnFEOHfLgNTcNnPd+P1NRs9bmvppIEpUQtFVt2AInfKCypxV+9H8VPOZwiJCvbxyQghhBBCCDl1bn/1ehwYcwT5Uh1wRQA4aWMHhs0gRs7eTrBUeizX4FHTXgYWLJj91xpUGRvv0YhkHBDg/RhiY+O5mFKCYdPKIKmp61+I6hmDElR73d/UORC1Mzrhr6I8oCgPP+3ejxitBvOuvRxdI7y3ZQxW3/1GU7t3xdTu3RraDtFJ3kMXZfkVQoU51iZJ33nc67YjLx8s/NtzeFdcd+dEvLtrL0yp7kPpjGpPEaqHRqJySiLsKpEQwKjHS0Q4HgNc9MkX2PjkgwhWtnxwEiGEEEIIIR3lrjdm4PCWdBQe96+qc0v6dJtWjf7koa+grzY0rBP7OaGUJ9HJkTi+178KzhsWbWuotMb2m7PsKSGc0NZ+kgtnjMEFV9UFRLoPTUVkPJuQ6pDH7YtOlGD7ij0YcdlgZB3K9bidSMRh+KWDhMd9x/TE5TMvxk+vLkJbFGeV4JYuD2JB4ecICFK36ViEEELOTl27dsWbb755uk+DKjiQs4NUIsLonsHoHqeGoslN+7YK18qEfytqrdiWXuUUbmCaXEO3ir/hhubYeWw+WulyPs0Fqn0ndYNUzttU+RpgJWxjQ6dwhVD9wdt3F6Kp+/6YUh9hiJbYmua9s4MQQsiZQSz2XBWoNSTilnfCe7NlyxYUFRXVHVsiwZQpU9r1+ISQ84tWrcD8p6/FnZcNQ1igqkmwgQdnA4xhHIyRIlg1HGxqDuYYBUrvHgRDL89VE5i+Y+tm6dmbkY8nP1vuFG5gbDwP08B4mLpFCgOP7CE+biZznFCtoR4LNzAOIejsnUMhdRrQ8/TFr0BX6VxqsrmUfkk+j5vSL9Hpefou7wOEmIxdmZh8+ziERHsOGQydMkAITNTbnOO7dLKxS4jPbew2B1668m2f2xFCCPED304LIYQQBIUH4oONc3Bd0AQEzjTA8V4VHPOqYX1Nh+L/Yt2GG5oGDzwZHt1J+HfziRw8vmSlU7iBcVh4cF66FVh7SGJo8j4iDrbQxjZJ9h9HfJ6Dw+Ha11FQo8MdPy9Crdl730PPcO9tLnfb+NsmueTuCxEUEehxm9FXDUOnro2DnfasPoigVcchLXJtR/Hs/6xGFN2SgrJrkmFXO4cbmjIGSTHrs199niMhhBA/UJuEEELaTWh0MD7c/Aqu/d9l0IZp2u24fcf2Ev7dtmI33rrtE6dwA2O3tm7sVT1/ww3NFWYW46mL5sBs9B5g6NzfuQ/En238bZNMu38yNCGeE+fjbhjlFODes+YA2oPVbMWbt37cLscihJDzHrVJWs3z6GVCzjBSsQjd4gJw8cAIIejQViIOSIqsm/0mo0Dvq2rwKccqKRzK0eFwbq2wuAsQ1J+/J1IJh7gw504NMfvgPrBt2Pc9rEsg5G4CJZGBMgzp4nxT39HWNEgTrFKH40z7gRBCCHGhkIeA49rncpLjxJDL23em7OXLlzc8HjVqFIKDaSZuQkjbaNQK3D19BFZ8eC9uu3gwxFZAZAcsQRzsSjfX2WIO1ZNSYIl1f6NfrpRh6r2ThMdfL98Ou91zwNnUJ7Zu8IsfN/I5i+s24irfVXIkVUaXSgpfPfMzvnn+F2HZv/6wyz7T7psEzkvpu+DIQIy+cqjL5/aFbaMN0eDF3x9HULjW5fVh0wbi6Z8edlpntfvRySH2LzDPZqFi5Z8JIYQQQgg5k7Br5NtfuQG/HfkcVyaPA36phfjvGshy3FcpE+s5cF7yASqJFNd36ys8/mzTdo/3+SU6ETg3Y3rYseUlInC883U216TdolpXDU7v+VqdvaWj0n0boaS2Fh/tXoN5x/7G58f+wf6qbJdtbupZd/6exARocGFiitM6mR9tEplChuCIQDy34BFoQ10HFLF2zqyvH3BaZ7XYIDLZoNpfIgQ/wJoUDtRV/AsATJ0UcAT4nriKWWcu82s7QgghhBBCTnXw+s7Xb8LvJV9h6j11/RttodIqcfEd44XHP73yu1M1hzNBSU4Zvn72F3z97M/47sUFOLItw2WbafdN9nqMmM5RGDS5X4v7SVi7JSwmBM/++ggCgp3HybF+mbHXjcSj8+91Wm+z+K5w56+ty3a127EIIYSQ1qCAAzkrscH/bRUbooBcKhIujgsrfZcLOx2yS01Iy9cLy8YjlVizvxwGc2NHgEYpQd9E94OlxCJgSGqgS6AhOsT3bNsxIXIYLXZsP1YDs9X1u5ZJRSiuMqOgwgTbyUFYoU2qObQHnbH9LroJIYR0DKlEiciwAe1yrMjw/sLx2tPGjRsbHg8fXlfykxBC2kutoa4N4RABVm/5axGHmmk9YR6UAnuQyunm87jrRwkz75itNmw56H0GIV4thz0sAPIT5V634wwWSItcBzcpj5YCXgIUjOKQa1npZZ/9jR/n/C4sj419ATOHPYWygoqG11kFhXvevtnt8VQaJZ5b8BikMucBPCMvdw48uDPyiiEoyirBqze8LwQtmtN2jsKGvVlYv+MYTOa66WT7d4rxeVxZrg7+Ki+o9HtbQgghHtDMRIQQ0mH01fqGx0HL0iEpdq4aYJfysGgBka5ugD37pcxJHBApbRCprZCobbiyZzcEyGSoMZmwNTvX43tx4CDViyEvFkFaxQkLe6wsFkNkd+6DENeYIctvvO4WmRwIeT8PsLhpj/A8HIUKwCJ2eUkksyOwZwWW6tbim8w1+CpzNe7Z/qmwVJgbP2v/qGjMGjbK7XlrZHJ8PHkqxCLn7tBRfrRJRk0fgvxjhXh9xkeoKXetyBAYrsWmxduxeemOhhldew7vAodMjNqRCRA5ALGtbuFFvBBwaAm7XISaZtU0CCGEtAK1SQghpMPoaxrbJK0hEosw+dZxkKvkqCyuEiYeOhP9/t4y/PTqInw/+zc8OPxpPD7+RdSUN7Z5+o7piZueu8rtvqwP6NlfHnGZKGrk5UO8vifbfuTlg5F9JA9v3Pwxaiudv2s21o1NDrV+4VYhiGA52U/SY3hXtBfewTcclxBCSFt+oVKl69aigAM5K2mUrje7Wyq33IS1ByuEwIA/AeCoYLkQGjidWGWDTUcqnaobJEepMKZnMOJCFVDKRFDLxUiOUmJ871BEBLqGGdh2AQrP31+YRoowrQy7j9dAb3I/q1JumQk7j9VgW3o1Vu4uw5HcWiSEK4SqGO2luPrMDJ0QQghxlhA3rl2+koTYupk52ovNZsOOHTsang8aNKhdj08IIYkxIcKXYGeX3F4qGDBWFQdbYjhM43vBFhPccPN51VdrhJvhpYWVflVEGz59KEJPVABuKjTUU+7NA+emGprIaIVm/Ym66VHdUO3IhbTcueyzO0e3H8PTF78Ce5NqCVc+MhXvrZ+NsdeOQER8GGJSInHlw1Pw2Z630Ht0d5djTLhpNKKTG0smNzdocl90G5KKN27+CEVZpU6vOdRyGMf2wOK8crz08Qo8+fYSXHrvPHy7eBuuGdgbEi8/CzbQSnXYe0Ckqe0rd/u9LSGEEEIIIadap26xDY/FBivCftiPoCVHoThcCl6vhyUYcLACzxIxuFpOCAyIlHZwEh6sICcbdP9T5m5c/e+3KDE0DuDnwcMuc8CmrlvYY7aOmdilM7QmGaQ1HMQW99femo254Jo1OxS7ahExKxOqvysgqrSB0/MQH7dDvJkDX+lmUiaOh7ZrJSQq14mQWBWHx/d84zSz6wMDh+KXy6/BxSmpQsWGxMAg3N1vEFZeezMGRLkGoSffNhbhnUI9frdsIFFS7wS8esMHKM1134ZY9tk/QpvlhcvfxPVx9+C3t5cKFfqs3SNYSXKnbW2tKErOQinrD51o+Y6EEEIIIYScIp26NrZJWsNhd2Dxhyvw6JjnUVlc7dc+LBjAAhGn0761h/D85W84rbvlpWvxxt/PCW0J1taI6xKN6564HPP2vo3UAckux7jkrgsREl3XX+TOmGtHIK5LDOZc8y4qCt1PxvTHRyuFNslzl76OGzrdI3yX0+6fDK4dB29toyoOhBBCTiPJ6XxzQlqLDdI/kF0LWxsrObAB/PuydNAqJajxUTGgX5IGVbUKbE3376K6o9Sa7CioMCMujPVM1AnRyITFH6yiw8juwdieUY3KWuekbWSQDIM6BwrVE0qqvdStboL9DI7m64UBWZ3CFELVifagM9hxOLdWCHMEB0iFyhMiHwPHCCGEnHohQd0QoI5FrT6/1cdg+4cEtd9sEkx6ejqMRmPDcwo4EELa20Wje2DuLxtgRQsqj4lEMA/pDPHy3eCsdQGBnCP5+OqxbxGfGoKc4iqPu0rEIsx682bsH9cHLzz4BWrHdoYjsLHyDWe2QbEvH5JqEywJIZCU1UKkd76mVx4qhrjGBH3/WFg7BQrBDEmRDqq9BVAc83/g/4kDOdj65y6nGYZ6jeouLP5QqhV489/nMfvqd5CxK9PptRGXDcYT383Esb0ncHDjUafXeJkEprE9wDfrvGDVNOb9shE2mx1XcKH4zVoCSJzT6SI24OuXo27DH56k7TiOkuwy2Kx2dB+WiuGXDoJY3PawPSGEnE/YANfmg1xbcwxCCCGuJt06Ft88/yusJ2fUZL8vlRkVENcYUXlBX+ffpRoHIHf/CzWtuhRz0zYhRqtBnr4GNrZt08teBWC381AbpHh1+iRs/XUr5jz/PSov6Qx7cGM/BWeyIWBLLnjODN3AYCgy9ZBWNrZJROV2WM3h4NPU4BycEJmwe+jWkIeYIFZ4DnYfqcnDtvIMDAvr0rBuWGwnYfGHOlCNN/99AS9f/Q4y92c3fgaOw+irhuHxr+7H4a3pSN953Oex7EoxyhQOzJ3zi9CfMeTGkfg7v8BpG74VzQiJHtidX4B0fQVsDgcGxsVgXOdk6ichhJAWojYJIYR0nIvvGC9Uf7bbPF+7+4P1E7DB+SFRQago8txPogxQ4InvZ2L1DxvwwX3zcTod2pSGfesOCdUb6g24sI+w+EMbqhH6SVibJPtwXsN6kYjD2OtG4rEv7sPe/w4i65DnSntNVZfpMPfhr3H/+7dh4MS+2PnXXrSHA+uPIH1XJniHQ5jQavDF/SFqViGPEEKId9QmaT0KOJCzEhvcMyBFi+3tEDYorrKgW6wKNfneByb9u7cMEsmZMcC+sLIu4MDCBRJxy89JJRdjbK8QVOgsKKuxwmJ3IFgtESo+SCUiFFW2vHpCeoEBKVEqtJecMuegBKtOMbRLkBB2IIQQcuZgHb99e9yJrbtfh93e8r8fYrFc2L95Wc62OnToUMNjhUKB+Pj4dj0+IYRo1Ao8ddckvPjZSpjYzKFefo9Jml7aSsSwJYRDeqyoYdWmP3Zg+g/34/O/d3k8hii9GHckPQCZQgppiQ5BC/bAFqOFnYUczDY4glSw9IyBRXayme/gIcmrhGrTcYjMjW0dWW61sPDsdDmuRQP+m9qydKcQRrCYLJArWz5bUlRiBObueAMHNx7BwU1pQnnlrkNShJv/Ko0S6TtcBxJZO0e6hBua+vq3zbgpOQrR8/egdlAUzPEa4fMpMqqg3lMMsaEFYRQAK79Y3eycw/Hi4v8hpW9ii45DCCGEEEJIRwgKD8SDc+/Cu3d9Cr7JdX3NsCg4l1vmAbX3a+GVuUdxW59hmHtwh3O4oZ4YMKitmPDpV1CVm1AxORyWcBN4qRWyAjMCdlXBnChDyc3R4OsrSNt5BOypRNiP2ageE4WqCdHgZWwgjANiIyCtFEEdYII6pQYypQ12mwi6kgDoStSQBvu+x7Sh9DCGhqa2uk0SlxotzKbKBiUd2ZqBSoUdXcd0xZCeqVBK5W7bJE3ZAqUouywBtf1CwEtFQhvs5RN7cNOEC4BmAQeuZU0RYXteBHx/ZH/Dus+3AfFBgfjsqsuQGua5+gQhhBBCCCGnSlhsKB748HZ89MAXThXWWuO/nzdiyj0XYtH7KzxuY9SbcFPi/RA3m+DodGH9JH0u6NHqNklC9zh8cfA97FlzAGnbj6G2yoCeI7ui3/hekClkwiRMLTVv1neYdu+kdgs4LP6o8efx65tL0KlrDGYvfVJoTxFCCCEdjQIO5KwVG6LAmF5i7MiogsHsaNOxbH4M6rE5AJvlzJgyrlJvxbKdJbDaeEglHBLClegSo4ac3URvAYuNR36FCVX6urvrYlFddQx/q0E0d7zIIBzD3rYfh1tGiwObj1ZiQp9QKGQ0ayohhJxJAjUJGND7/7D7wMctCjmwcAPbj+3f3k6cONHwOCgoqN2PTwghzKSR3REVrsXjP6xAganW/ZfC85DVOLcjHFql83O7A9zuHEhPlMGaFOZyCHF5LZRbT0BnaZwFiQ1XkhbUCItxcIIQbnAi4mCLD0FtgBya5QfBNbtIF2bDbkOHw6EtaZgeehtqq/QIDNNg8m3jce0Tl0EbomnRcWrKa7H21004vjdLeK5QyTHhxtFI6Z/ksq2tk+t305SD4/Dbwi1QW3hI/m2chbW9FGWV4snJc/DlofeE2ZUIIYQQQgg53S66bRxiUiLxynXvNcx0aoluNhGRyHdvoMVhh1Vpdx9uOIkNuC8TGeBIdABJIY37xiig768BmvdPiDnUDgqBvkcgeDE7gcbQhV3JIyKpFCEh+qbvAFWQEYHRNag2sIrODvA8q/TgPky+b+NhXD58EQw1RgRFBAqzx14z6zIEBKnREvmJYnxdXY60qjJg/zGoD8swPaUn+is897fYtFLkPtILttAmg5hEHGpTNPgyax/UASI4ahvbYNJawKp1+grc4wGJoe5fXuq6cU5VNW775XesvOsWaOQtH0BFCCGEEEJIe2OD6WNTo/HqDe+jurSm1ccxGy2+L5h51qegw5li59/7sCLwZhhrTQiJDm5ok7BJnFqisqgK/3y/Tqj4zai0Sky6ZSzC41oebLZb7Vg+/x9IpGKhOnV7y00rwBMTZ+OLQ+8J1boJIYSQjnRmRBoJaaWQACkm9AlDmLZts/rrjO1/UdeR9Ca7EG5g2L/HCg1Yd7ACpiYDnnzJLzdhS1pVQ7iBYWOesktNyCioFYIKra2u0VFYICOrxNhhxyeEENJ64SE9MWzAkwhQx/q1PduObc/26wiFhYUNjyngQAjpSH26xGLx07dgYGKzgAHD81BU8M4VHBg35ZpP7M+Gem0G1KvThMoLomojxMU1QgUGzfJDEHm41neoZDB39zxTjiNEDUuy92BAa+SlFQjhhvrSxwveWoKHRz6L6jL/OzD+/WE9Xpz+VkO4gTEZzFj++b/489O/IJU3G4Ul9R10tou4Fg9oaomqkmqs+mpNhx2fEELOOXw7LYQQQjxiM4Z+efh9dB3ZFbbkKEDVbDCNn79Lj5SX+viVzsOhdrgdc8R7mUGVV4ldeiODgvQN4QaZyIYQuR5RSh2iVTp0Cq9A104liAuoQVxANUIVekhEru2hvMXHhHBD/XX6z68txiMXPAddpYfwuRu/ZOzD/euW1IUbTtLbLPg+bQ++DM+HSOU+GVIxKdY53NCEFQ6ok5x/Bpydg5gFFzzgTIC0ClDlA1Id5zbcUK+4Vo/FBw77/nCEEELqUJuEEEI63IAJvfHV4ffRuX/bqh8f29M4gd3ZIPtQrhBuYCoKK/HjnN/x+LgXoK/xcvHfzB8fr8RrN33YEG5gWDvnj49WYv3Crd6Kh3tkNdsQFtsYSm9vJTll+O+njR12fEIIOedQm6TVKOBAznp2Bw+ztfUlA9gYGZ2xhfWBz0B6sx2Hcv27ce/geezP9pxqrjU5EKRuXWiE/Sx6dFIjSN0xBWIKK/2fGZwQQsipxSoxjB4yG0P7/w9R4YPAcc6XmhwnRlTEIOF1tl1HVG6oV1vb+DeRAg6EkI5mMVgg3liB4IMmyMttkBh4yKp4BOTzkLm57JbkVTg9D44MRNbhXGGckCynApp/jiJw0V5oVxyCPL3EpfqC03snhgozhXpj7YCAg6eZe7557he/trVarJj32Lcey1afOJCD7kO7OK3jTg5e8kZUY0R5QSXueO1GJPfpmL8zW/7c2SHHJYQQQgghpLWMdgfKeyTA3iMeyqpmwWCeA0zeuwOjlVpkFDq3U1yIeI8TqvocdCN2vu4PCa5rKCnFFoTIDZCL7Q3HkIgcUEqskIuswjq11IoolQ5SUZN+nGo7JP+59odkHczFjy8vhD+MNite3fWfx9cP1ZQi9vERLuvZ16kb4r2NlW/UYeb0UUiJOjnjKgdIzBwktQDX5GOwx2ydzMBB5ODAcRwcfhTYXnMs0/dGhBBCCCGEnEIGnRG6yqYV2lomKikCOUfycLbL2H0Cv7z+h1/bsiDEV0//5PH1tB3H0GNE11ZXpL7rjZvQqZt/kxO21JZl1E9CCCGk43XMCGRCTqH9Wbo2VWBgJY4N5tYHJM4krCpDnwQNpF5mS2JKqiwwWbx/ZlYNIiVKhcxiA5t4tkXUcgnG9Q4QKk1YbA6hukR7TbbX0nMhhBByarGO2NDgbsJitRlhNlfCZjdBIlZALg+GVNKykpyt9fnnnwsLIYScCh+8tRK5WeVgxXjlVXaYIuRwyNxfk4sLKiGucB6Iw2b4MelbF+Tlm1c5cMPhxzbtZfWPG3Dvu7dArnQ/m2m9bct3o8pHuWpWIYKVt2YVHRx2B6SZxTBHBnrcntMZISqpO2Z8t1jM2/s2CjOLUVlcjYdGPoP20hFlnQkh5JxG93IIIaTDvfnRX8gvrBIeK0t56OJ42AKapA50EkBh8RhQqC6wwmAwA96KoXkKMbRwRlEOPJRKq/BvoMzkMRwhE9th5cVw8CIh0x2iMKLYoAH0DihnF4Ezu/8D8/e3a3HnGzdBIvXeDvo7JwM1Fu/tsPLBgbjo9vH4+5v/4HDUvZ9DLoZD6buN1TUhHHeNHoyc0ioU1+hw8zcLIbZwEFtYSKLuWBxLSzTh4Fz/bHJSu/Ad81ZRXbqCtUkc50afFiGEnDLUJiGEkA739u1zUZzlvSqcNxVFlbAYrTgXsCrQt825DiKR97FbGxZubagA4YlILMaFMy7A6h82eJwwypNuQ1NxzazLkJdRiOKsEjw5eQ7ai536SQghpGWoTdIqFHAgZzU2CD+/wvvFXj12A/zk/WeBWAQEKMSoNpwdg1PY+XqZuFXAXjdaHD4DDiY/Kl6YrTz6JGqQGqNCQbkZVrsDJdUWlOt8NyiU8rr3VyvEUEOMyGA5itqp8kJIQOsqSxBCCDn1WJjhVAUaCCHkdCkprsaWjekNz9lwE0WZGeZgGewKUcNUpiKOg7ywAty2jIZtlQEKRCZGIOtgTqvfX1xtbJdt/KHUKGDUeW9/sZvxFUVViE6K9LpdxcnBV963qcSDc+/CdU9dgY2/bxNmM9pcpce+/HLXja02yLcdaxhbFd6pbqbU6ORIYRkwsQ92/7Mf7aHHMOfKEoQQQgghhJxOeQWV2L7nRMNzNnY+7IADlV1FMIecvEK2iCCpkCEmsQIKmR4WuwQFukDIRGpEW4ORWVkNETjYlbzn2u+8l/UnB+w3XJALTzm3+7KHbFyOSmrxWflBKrLDbK87IVblIWyjGYa5hRBVeO7XYbPGVpfpEBod7PXYJUbfFbFLjbV47Iv7cdNzV2Hjom3CrLSbNhxEJnv7ZoUymosO0Aj/xocHCcvAhFjsys53G2wQ8CzA3vhVijQWSMLMECnrPitv42CvksFWqkD/2Gif504IIYQQQsipknUoF/vWHvK5nUgiEgb92yyNZc0CgtQIitAiL70QZwN1kBr6Ku+VKqpKqmGoMQqfzZvywkqf71dZVIl3176Em1+4BhsXb4fJYBLaJpn7sn3uGx5X108SlxotLF0GpSB953G0h+7UT0IIIeQUoIADOavVGG1+zeivkIpcBvUHq6Uo82Ow/pnCV7ihnkzie7oklYfZZN2FFJQyMVKiVcJjtcLoM+DA3j1U41xDuWusGiVVZqeASWvFhSmEVDKbIZwQQgghhJDTLfNYCRx25wtdzgEoyi1wSDjYT157h2floSqzpHEbEYduQztj/7ojbXp/aXY5OFMieIXnILAsrRj2ADmssaz6AQdpUU2rQg++wg2MSMT5vGnfNIDgdZv4MOHfiE5hmP7wFOFx2FdrcGTRNtg6R8LB3sdmhyS3HNKMIohOznQkkUmQOiDZ6Vg3PXsV9v13CHZbGwPuHDBhxmhqkxBCiL+/NvnGgZqt/tVLMxsRQohXGZklLv0kYisQdtABqxKwBHIIiavGyItKUGtvDBr3jyxATEVfzN9eVwWNAweJTgSbxuEacmCrLBwcaje/lDkefGO22znFUD+Q384BIh6cpK6jQ1erQGCI7zaJiL1xE/bVxV7DDYxEKoZK63vCjWh1XQDBmxi1Vvg3MiEcVz4yVXgs3twZ/65fA5uX3VUOCVJDnNs8D4wbhru+WwS7u46Spqt4QBxohjTW+fvhJLwQeBArHbisaxdqkxBCiJ+oTUIIIR0vY3emz23EEjE0wWqnys4iMYduw1Oxc+VenC18hRsYmUIKhdp7lev6vg+f25zsJ2ETOV392DThsVwp8xlwYBNssX2auvmFq/H8ZW80VKdrLdYPNO6GkW06BiGEnE+oTdJ6vkc5E3IGE7OyDH5wV7HgVIQbWNWFUykiUAaFTOx7oFCgDKqTAQZPEiKUrQpZsAvZeja7AzmlRpTXWNA5WgWp71PzacPhSizbUYq9mTUwmM+O6huEEEIIIeTcJZd7njdAZOMhNdghrbU5hRsY3sFjz+qDbR5wz9l5qDYe83ixrs2thLlbJKqvHgDDqM4wjEpB9VX9oZvUHQ5F+895MGTKAGiCA3xvd3F/hMZ4n1H14tvHu6yzGC2Q5pRBueYQ1Iu2Q710F+R7shrCDfU37uuxqg9/f7sWR7dl4JpZl0IdVBfebjUeeGDQk7g8+BZ8PPNLlLmrJkEIIYQQQsgppPDSJpEagTBej96XZDiFGwQiBwrC9iA5Oa9xlZ2DtFoEsZ4DZ4GwsMfSKhE4i0gIOjhjo/GbhRsY9px1QXA8VLwEIpUNIq0FIrVNWCpMSjjcVTFwObrzNo4K350UI68YAqW6sU3gycROqQiRew9CXJPax2Wd2WaHrIYD1zjprDMHEGZufP9qswkL0g7ggL4IN184AGp5s3B6k+IXPHg4gm2QRHsOf3BqK2699ilMD70Ncx/+GhVFvmd9JYQQQgghpCMpVL4H87O+kKbhBoZNHnUqwg1ylfMkrR1tzDUjIJH67n8ZfdUwqAO991lcdPsEl3VWk6fGSKPAsMZEdk2FDiu/XI2cI/m48tFpUPjRXvKGBSRu6/IQpofdhnmPf4eq0uo2HY8QQgjxhCo4kLNaSIAUCpkIJouf5Q1OsWC1BGU63xeW7YHlCrrH+R5IxLDqB30TtdiaXuW2AgY776QI14voILXvXxnBAXXbHC8y4HBuLWxNZrMVt1PRBZuDx4kSIwoqzbigRzAClPSrjBBCCCGEnB69+sYjiM06VOll1p7Kjr25K82rQsCKgzD3jIE1PpiljiEuq4X8SBESbxuNvdnFLvtYOwVDN7kHtEv3t9vM2GxGoltevNavbdlsTTM/vhOzr34HDjfhjJ4ju2LybeNc1qcOSPJ57O7DUoV/f3vnT3z/0gIYm4QfZMr26chg5aWXfLIKm/7Yjvc2vIyoxIh2OS4hhBBCCCEtNaBPPALUctTqzW5fjx5dBJHU80V/5+QCZJ6IhsNRNykSx3MQm9lycoOTu4p4wGEWgZc3qfDgLtzQFA90iwvGvsoCp9UmmwwnKkLQO7LI6/42R+OsSbbjNtjTvAfEVRolbnruavhDLpbgpSET8dDGP+Fw01EyIioBlyf1dFnfPSYCnIODohiwBvGwsYyE6GTWwwRIqzn07xIjbPvJnq34eO9WGG2NE26poqWwFzogNp38vkUOqKMMUIYZwKscMEEMMy8Gz8pieGCcEITaDTlY/OEKbF6yQ2iThMf5rpJHCCGEEEJIRxg4qa8w8VDTe/FnkrguMTi+N+uUvBerUnHD09P9Dobc//5tePv2uUKFtuYGX9QPF1w1zGV9Zz/6SXqO7Cb8+92LC7DgrSUwGy3tHvjQVdRi4bt/YvOSun6SkCjvk1oRQgghLUUVHMhZjQ3U7xqjxpmqo8INzStDsODByO7BCNE0m/nHi6hgOUZ1D0a4tvHCVSrmhEoLI3sEQ+ImjRCklgqhEm+SI1XILjVif5bOKdzANHvaZmarA/uydO17UEIIIYQQQlpAKhXjuhkjPG/gcAD5ztUbOoKkXA/1+gwE/bAdQd9thWbFQXB6s9twQz17WACsCa0bBKPUOM/w03VwCt789wV07u/7xnq9kZcPwRt/P4e+YxsHDWlDNbhm1mV4/a/nIFO43mTvMbyrz/e49P6LsHz+P5g/6zuXDhVWAaI9leVX4NNHvmnXYxJCyDmFb6eFEEKIR3K5FNdfMcTj6yHdm1VuaEYmsyMs1HMoW2QDJDpAUgNhYL/IJAbHBudbfYQbGInDJdxQr1yvQUGN1uOuNgcH28lB/ryNh/Fjg9c2SY/hXfDWmheQ2LMT/DUtqTu+mXA1BkfENawLVajwQO/h+GrCVZCJXctSD03phOSIEIgcHOQVIqgKOCgLOeFfRZkIYiuH64f3xVcHd+GtnRucwg2MwWGFJdwBXsZDqrIidmQ+wnqVCSGHAK0JYVo9ojU6yMSe+5fsoY39NMXZpZj/v+/9/syEEHLeoTYJIYR0OBY0nv7wlDP2m+6ocEPzNkmvUd3w9n8vCYEKf026ZSxeXvqE0J6pFxIVhBnPX42X/vifMFmUu+BDTEqk1+Neev9k/PLGH/h+9m9O4QbGbGjffpKC48X48umf2vWYhBByTqE2SavRtOfkrJccpRJm9D+ap4fd0djjKZeKhAH2Tde1BBvsPzg1UNifBSnMFjv2nGjfwfQKqQgma8urT9RPcCqTcOjRKQBJkd5LlnkSppVhVA+ZEBRg3xWrhiFmpSC8GNhZi42HK2F0UzUjJUqJmBA5/tlbjlOlpNoCvckOtcL1op4QQgghhJBT4crrhsJktODn7zbBbG4chBIapkHNtkOwGoxe9+e1aoCVBLY5gIpqcCcv+DUhAXhuwaPQVxsglUtRdKIEH8/80u/zsiT5Di9oRneBOWsLWsqoqwsOBEVocdcbM4Sb8K3Rb1wvYWEljFkYISw2BFKZ91D1Uz8+hFkTXkJFYaXLaywcMWhyX8xIfgCnytZlu1BeWInQaJqdiBBCCCGEnB4zrhkGi9WGnxfvgMXS2CYJDwuASOa7j0TMue+nCFEp8cFlU6DTmyGXiJFurMCcjWuFoANYxQeVm4oKHA+OlXsA61vx/t7pZRGIVGnBifMhFvaBUHXa6hDD7GBdmBxsR20wfGqAbafVbZskJDoI975zC8ZdNwqtcUFMkrCUGvUw2ayIUmsgFXnub2D9Re/cMAV3fvE7ymsNQsULrkkW4b4JQzEgKRb/9/Ofnt+U5UO0dsR1LYZE6fodikQ8wgJqUVSjhcNNJQdxhfN3sWnRNtSU64TAOCGEEEIIIafDLS9dC5vFhkUfrIDV3Hi9GhEfhpKcslYfNyQ6GM/8/BCqy2qhUMlwbE8WvnqmfQfTh8aEoLygosX71bdJWL/G/R/cjtHTh7bq/YdOGSgsFUWVsJiswvEkUs9DOkUiEZ799VE8OXmO0A5o7vZXbkBKv0Q8O+11nCrrft0sVKNQa1s3fo0QQghxhwIO5JzQJUaNpAglCirMMNscwmD36CA5NqdVobS65cnTqGAZenbSQKtq/E8kPV/fzmeNVoUbmrLYeBzI1gmVGwJV/ldvaI6FQeR+7h6gkGBc71BklRiRV24SghFalRhJESqhKkSV3gq92XuZ6PamN9so4EAIIYQQQk6rG28bjUuvHISN645CV2NCbFwIho1MxePjX8DBUteB+AwfoATfLREIUDautNnB5RZjZP9OuP3VGxHfLbbhJVZKuEWkvkPAZaXVkHWJgLlzOHiFBKIaE+RpJZDmVsLXZKxMVUmNELroPiwVnbo2nmtLBYUHCos/2Hcyb+9bWPbZP1i/cIsQjEjpm4Bp903GwIl9cXhLGkpznUPXpkStsHA8D0V6FeSF7de+c9gdKMwspoADIYS4wca1+hjb6lNb92+JjIwMfPPNN1i/fr3wuLKyEnK5HOHh4Rg0aBCmTJmC66+/HlJp6+/DEUJIR7njxlG4atpArN+Sjlq9GfGsTTIwGR8dz0GeMdPjfixQUFukBmcHeAn7xc0J5d8ndUvFY2NHISEkqGHbzZtyGx5z4MCzroCGZgcPTuwA13Q8vo9GhVjkQKbBDA6hUIitQkUIk13SELrgjYBoZj44g+c/BhWFVfjgvs/RbUgqopO9z2LqTbjS/2rhXaLC8PtDN2HB1v3452AGjFYrusdE4Prh/YQKD5vzs1FmdK440Zwqwgip2nOVBjYXlVpmgc7sPCsso1ztXJXDarEJlRwo4EAIIWd/m4QQQs5WLAh85+s34arHpmHT4u3CxE0JPeIw+OL+uKfv48g61NiW8IdILMIFVw3DHa/diKjEiIb121fuafdzb024oXml5/fvmSdUuo7oFNbq44RE+T+JUuqAZMzb9zb+nPsXNv2xXQhGsPdnFa57j+6ObSt2Q1dRi1OFVYkoyyuHugcFHAghpDlqk7QeBRzIOUMqESEhQulc3SFS2aqAQ7Ba6hRuMJrtOJx76i78WoJN7ppRYMCgzv4NBmoPLBDRNVYtLK7nc+rv8MglrjMYEUIIIYQQcqpptEpcPK2/0zp2M/ngxqMu2/IKGfi+qawh4/yCRAxHUgy6X3OBU7ih4HgRfnh5YYvOR1zhexC/LUQFa1znhuf2EDWsiaGQZZRAve6YXyEHFjBY+M6feGT+vThVWBjipueuEpbmTE3KK9sCZSi9oRsssQGNG0xMgOJ4FcJ+SYfY6HlAUUsEhtFMqYQQcjarra3FQw89hK+//ho8G+nbhMVigU6nQ2ZmJhYsWIBnn30W3377LcaNG3fazpcQQjwJ1CoxbXJfp3UjwiZhQe5nHvcpLQiCSacQOgx5joNmfRbU+0ow/vVuTuGGjIpyfLZ7h/POFhGgrJvIiVVtcAo3MOxXqpdGhVpRd+3Og4PRLnN6TahcIAckEwMgXuK9ujYbPLXog+V44IPbcaqEa9R4YOJwYWnOaPPdzlCpzT63kUts0DXbTLa3FopNNS7bUriBEEIIIYScCdi9+yl3T3Rad+n9k/HhA1+0eGKh/uN7O4Ub0ncdxx8frcSZiFVSWPLxKtz1xk2n7D3DYkJw25zrhaU5s8F3e6O9Ay6sKjkhhBDSnmhUMDmnxYQokBLV8nQoCwxYWXLgpOxSo3Af/lRjM/T4o6CiruzZmUCjlPh93u1Bq5QgUE2z5hFCCCGEkDPTuOtGYtq9k1zW83ERruGGJn76aQtMpsYyzqu+WuMy4NIX2bFSwOqluhrPg1c5DyKqZ0mNgLl7FKR+lnrbsGgbzhRJvTpBIhWDF3Movq2nc7jhJFNKEEpndGuX9+syKKVN1SsIIeScxrfT0oFqampwwQUX4KuvvnL6W8sqN3Tq1AmhoaFO2+fm5mLixIn46aefOvbECCGknQwOHiss7tTWKHBwW7LTjHKWxGAhCPzjK7/Damlsk/x66IDrASwcYGUdAjwgcv8L21szRirxXQ1a0t2/ygobz6A2SffQcIhYOQovRCbff+D4Zt+jZKcewa/kCtU2mmIztEYmhLf2dAkh5Nx2FrRJCCHkXDflnokYf8OoFu/3/ezfYLc1Xvyu+nINTgepzL/5ozcu2oozRUq/RCF0cKr0v7B3iypQEELIeYXaJK1GAQdyzuuTqMGIbkGQSfy/cLM5eBRXNs76abA0hh1OpZhgGfok+E64sixGSwc7dRSZRIS4MNeSyR3FZLXj331lOJpXC7P19PycCCGEEEII8ebBuXdhzrKnoAluMjAnwvuN3tpaE3buPNHwvCSnrMVfsshiR8C6jLoGQ3N+VF4z9YzCxJsvwN1v3+xz21M9G5A3wZFBGH3VMOh7h8EW5lzlrylzvBbG5DZWwuOA4uxS3NXnUfz06iLUVHifWZYQQsiZ57bbbsOePXsang8ZMgR//fWXULUhJycHZWVlyMrKwqxZsyAWi4Vt7HY7br/9duzevfs0njkhhPiHDWq5Nv4+3JrwOCzZQdDr5KgqV+PIrgRsWdULZpNz6NkWVHd/v6qkGnv/O9SwPl/nWjWAYxfEBhFg5uB+7AwndOK6675g6xwO3/02l8yYgNvmXHdWtUliArS4MD7F6zaig77D5LUGBYxGGYxGqfCvIVQN2Oq+TPb/DT1CUXpLT2y7JBqXzvse8zftQI3pzJkQixBCCCGEEEYkEuHJ7x/E8wsfgzLA//FEZfkVOLipsUJ2cU7paflCL3/wYrfVpL1Vlz7dYjtHY1Cz6n4dhRNxOLE/G/cOmIXf3vkT+hrDKXlfQggh5z7/IoaEnOUig+QYmBKILWlVfu/TtIKDQnp6skBRwQoEa6RAdq3X7YLUklOavPWld4IGhRVmWO0dH7qw2HhYbHYcydPjRLEB3TsFoLjKAoPZDrlUhIRwJaJD5D5nSyKEEEIIIaQjDb1kAB6Zfy9mX/1O3YqTAyS9MTYZoBMU0bqB+LLsCmiX7Ie5ZzQscUFsdBOkhdUQl+hgHNE4U6s7jiAVhl05DNGxoZj/+Hdet+08wPuxTrUHPrgdy577yOd2xu4hUGZWt/6NeKC6tEZYvn72Z6z44l/c9OxV2Lp8F0pzyxEaE4xJt4zF8EsHNQyKJYSQ80p7zHbagbeX1q9fj0WLFjU8v+yyy/Dbb79BKnUedJqQkIA333xTqPRw+eWXCwEHs9mMxx57DP/991/HnSAhhLSjXkGDcWGcGk/9+pfX7URGW8Njo87Y8DhM5b5athBysLE+FE/VGFjIgXf+dc5CDw4OBpMMKoUFoma/7B1sH2EBxkb2gfoi4Otnfzmr2iSvjJqErelZqJE3fp/1NJl2qNaJwfcRg4t0/73ZHRyqDUrwfON3YYuUw5KohCzLiPLpqTD0rqvaYDSbUFZsQlrxRvy2+wAeju6C7T9uRmleOSI6hWLSreMwbOpAYWAZIYScd87wNgkhhJwv2Jim0dOHoaZch/fvme/3fkZdY4A3OCIIp8P460fDZDDjh5cXet0udUASziSsT+rWLjNhaVItvCPwDh6VxdXCcnxvFlZ++S+ufuxSbF6yAxVFVYiID8NFt4/HkIv7n1Fj2wgh5JShNkmrUcCBnDciAmXCgHd/Z/kPVDX+59EpTIG0fD1OtcggGWRSsfAvG7TvSVKk+44FT8pqLMguMcJgsQvhjfhwpfD9tNeFJKviEKqVoqhJFQx3pGKuRSGIPgkaGK12ZBS4T/uarDz2ZDrPmMq+t3CtDMO7BUEsogtlQgghhBBy+gydMgCakADoKmoBvRHQNqno4EZSckTDYzZI/vf3lrndziGTwB6iAmd3QFymB9dselRJpQGSjcfR9N2skRrfJ8zzGDCuF+RSCfqO7Yl9axtnb23usvsnoyX2/ncQq75eI4QAwmJDMPnWceg/oXe7tUkCw7ToProbNmTleN1OHe7H99DEQ5/djby0fPz+3nK3rxdnleKdOz91Wrdl6U4MvqgfXlz8P8jkvmdpJYQQcup88cUXDY+DgoLw7bffuoQbmpo6dSpmzpyJ999/X3i+du1aZGdnCwEIQgg5G0zo2Rlq+X/Qmz3fu1cdKml4nNgrvuHxld164ocD+9zuw7Mx/A42c6eno3LgWdeMMFi/kZhzCOGG5s0A0clAhKVcgT5BSRAN4NB9WCqObM3weN6XtqBNwipi76lMx19F21Fmrka4IggXRQ1Fv+BUtJdwlRrj00OwyZCPmhQx7HIOshoHAtPsCMhiEQ4Ojq+10D5sgV7h3P9ks3MoqAiGg3f9Qh/7YSYOpxXhm5xjdZ/l5KhbIWgCIKeyGk9v+wsRS+pmus3YlYlNf+zAiMsG47kFj0Iipa5hQgghhBBy+oy5egQ+e+RbITDgC+svSOgZ1/B84i1j8Nc3p3aiCZFYhM7964ILyX0TkLkv2+O2l95/UYvaJDv/2ou/v1uHShYCSAjDxbdPQO/R3dFewuNCkdQ7AWk76toOnqgDVdBX+1914cnvZ2L/+sNY8flqt6/nHi3Au3d91vA8fedxbFy0DRdcPRxP//QQTQZFCCHEbzRVBzlviEQcenYK8DvcEKJpLMusUUqQEqXEqaRRiYVwA9M/WQu1wv1sn/FhCiSEuy/hZnfwqDZYoTs54xK7QN59vBobDlcip8yEshor8srN2Hy0ClvTq+FwtN/0EyEBzmWt3ekSrUJylBIquX+/ijKLDUJliJYqrbHgUI5z8IEQQgghhJBTTaaQ4bY51wuPuQLvpZS794hB586RDc+T+yTgkjsnOG3DS0QwjEhGzTUDob+oJ2qn9EbN1QNg6hHt9ph2rQKWhBBYYwLrghA+yiX3iYsQwg3MrK8fQFRi3eygzU25eyLG3zDa7WtGsxUZeWXIKa6sOwe7Ha/P+BCzJryE1T9swP51h7Hmp414YtLLePnad2G3eZr1teX6xsX43Oaue6dg4gczEHDnKNSO7wJTlwjwYs8hiyUfr8SWP3e1+Fx2rNqL7174tcX7EUII6VgrVqxoeHzdddchMNB3xaTbbrvNpQoEIYScLdRyGR6YONzj65IyA1T76wIO/cb1RHy32IbX+kVF44quPZy2Z4PreTEPSDnwFh8Vy5p1P4hFdoQG6l3CDQxbx4FHT1tPoW+HeeK7mcIAHXeuePASjLpiqNvXjDYLMnRFyNWXC8/tDjtePvwtntj/GdaU7Mb+6uNYXbwLs/bNxeuHf4BDSGK0j15dYxF8yI6EpRYk/2ZG3F9WaIRww0mVYtzhuAy3JvbEmDArkhVlkNusyC4NhcnqJnBndWDZE7/j35ICOMQ8rBoHLGEOWMIdMIfYYVM5hJ+JqXMwbEFyp13Z7Kk/vdJYtYgQQgghhJDTISBIjRueudKvbQdd1A/RSY39JH3H9BQGyZ9Kgy/u1/D4mZ8fQUh0sNvtrv3fZUKFAneMtUZk7s9GYWax8NxqseL5y9/A05e8irW/bBIml/rn23V4dMzzwgRKbGxXe2FBcV/uffcWTLp1LCI99AE1t+iDFdi2fHeLz2X9b1vw29t/tng/Qggh5y+apoOcVxIilGAVeA/n1MJgcX+TWibhMKiza2dm7wQNFDIxjhcaYPKzCkRbGEx2LN9ZAhHHISpYjsEpWpTpWCDBBIvNAY1CgsRIJWJCFG6DDUdya5FVYmyokKBRihGkliC3zH1AoKjSjCN5tegZr4HNzsPB80IlhtZKjFAiLb8Wdg9fFeuTOF5sbNF3WWtq/WCn7FITenQKgERMuS5CCCGEEHL6TLt3EmQKKb6f/RsKiyuAyBCXbUJC1Hjif1PdVg+ITIzAHx+tQEVpDWondoc9Uuu0Da+SwTQkEbxcAuWeXGGdPUAuBCFsMYF1I4XYgCGDBZKiGliTw9yfqINH4Y9bMP2j1cL5jrhsCJ5d8Bj2rjmI/37ZKMzmk9AjDlPvmYRhUwe6DTZ8+sdmLNl0CLXGujZISmwoethE2PTjBrdvuWHhVvzUcxFmvHA1jHoT7Fa70NnRWtf07435W3bAYnffjlBLpfh24XaU1xjrpn/oHCYsxkGdoFl5RKh80VzWwbrvtDVWfLEaN794jRB0IYSQ8wX7q9PW2jwdVY+zqKgI5eV1g12ZIUOG+LVfSkqK0/PCwsJ2PzdCCOlIt4weAKVMgnmrt6GourZupd0BRUYFAlefgMhiF4IEj35+n8u+b104GQmBgfj+wF6UGQ11vYz1t9wtIvAiHpys2T1/XigO5/IbXaMyuQ031BNxPIqjD+CqTQcgF8swKqwPXtr2FHZ8vQvrFmyGQWdEUu94oY01+CLXgUQGmxkfp/+DZXm7obfXtUm6aqLRNVCLjeXuK1GsLtmFpIBoXBs/AQaTBXaHAxqV+wmm/DHlioH4/edtsDfrKHGIAIcCiOtqw9HED2HQVQvrY9RsqUa34GL8daIHaizOE2/J8nmc2HQcORdFwBrkcJ7GTgzY1TwcUh7SahEsUWpIqpz7g5bN+xs3PDOdqjgQQs4rZ3KbhBBCzlfXP3UFVFolfn59McrzK9xuwyZcevizu13WP/3jQ4hLjcayef+gprzjJzo9uOEopofdBoVajguuHIaXlz6J7St2Y/3CLTDWmpDSLxGX3jcZAy7s47KvvlqPL5/6Cf/+sF7YlkkdmIyohHBs9TCR0qqv1ggTXrEQNwtGOOwOqANb308y7b7JWDr3L+E4nqphz3vsW9RW+V/BgVVkaK2lc1fh6senURUHQsh5hdokrcfx7Rn7I+Qswf5nX6GzoqjKLMzuX2u0QyLmEBeqQEqUCkq555mG2MD/Y4UGHMo5eeP/FGHj8od1DUJEoPOsO+7Ob9PhSiEM0VISEYfgAAlKa+r2ZVUjUiLrqiyw0m8tVVhhwvaMajY26owwpmcIQjRuZj0ihBBCCCHkFHM4HDiyLQObtx7HnrQiFBRWQ62WY9y4Hrhi+iCEhnquPmez2vDdbxvx6b9eZsixO6BduFsIKugu7QNHgPt2hLigqi740CQIzJmsUG/KhOxE46BPht3Af23lM+g1ynuJZKvNjrve/g17swvBn2xacWzsjY3dhABUm45DcbRupqLmAoJUSOmXJMxYxMR3j8Xl/3cxpt47qVVtklVH0vHY0lWwNgs5cGY7lMUOcJzU+a4Sa7vwgKjWjOBfdoM7GRhvL/P2vi10ThBCyLksLy8PnTp1Eh53u/N5SDVBbTqeVVeFo1/MFh7n5uYiLi6uXc7TaDRi8+bNwvnm5+fj0ksvRa9evVr0+Zj3338fDz30ULucEyGEnEps8P6+7AJsWrEbBxdsR+nBPKiD1Jhww2hc9n8XITjS8+9vs92Gj3Zuxcd7t7q+yEIO0rrrb1UeB1mhGFWDbYD05LU1x4MTORARpINSVld9ujkx54BY5HotrhYr8Gqfe9FNm+j1s5ntVty+eT6O1hY0e4VHkMIoTMDkiVYUgJDtvbE7PV94nhITiusm9Mf00b3RGqv/OoC3X14qhBxsCqB8sBi6VBEkSjuu7b0DCon776DGLMfv6QPAn2ysiPQclHvFiPxkB469NxS8l9y0uJZD9PwjUB6vC0409fXRDxDXxXe1O0IIOZudLW0SQgg537GKzoc2pwnVxvatPYjirFJoQgIw4cYLhDYJG3zvicVkwTfP/3LKKwIEBKvx1r8voHP/JK/bsUmcHhrxDE4cyGnxe4REByE6ORKHNqUJz5P7JmD6Q1Mw+dZxrTpnFpp47555HkMOp9qP2Z8iopOHybcIIeQcQW2S9kEVHMh5iQ2MCdXKhKWlWEUFFo441dh15o6Malw0IBxiL3ffMwr0rQo3MDYH3xBuYPQmO/Zn61BRa8WgztoWDyiKDlFgQl8JMgoMyCk1nvagA6veQQghhBBCyJlAJBKh5/CuwtJSEqkEe4qcwwcuxCJYksLAy8Qeww2MIzQAgb/uhjUxBA6FFOIakxBs4Nzc6DbpzXjluvfxQ9ZciCWeQ+HzV2zFnvxCoEm2mBcBdjEgsgKGwQmQHysFZ3N9DzZLUH24gck5ko8PH/gCaTuO4/Gv7kdLXdS9C7pEhOHrTTvw54a9sBotUGZUQVZhh3FQgvOMp8zJsINDI4c5NRyKoyVoTxIZ3YYhhJxnTgbH2nyMDqBUKjFhwoQW77dmzRqn5wkJFFwjhJydxCIRBiTFYcADccADl7ZoX7lYgh3Fee5fdHDgzXXXvVwNB4uWA3RSQGsFpA6IxA7IhGCD+/4GDrzbcAOjt5vw2pHv8PWQZyHiPN/w/2T3GjfhBhac4L2GG5gaRy1yCrJQ36A5XlCOV77/F2k5JXjqxpb/3ZgwuTdSUiPxy6Kt+FadBqOqrh3UJbTYY7iB0crNSFRWILskDJIyCSRlYoiMFpji1V7DDYxD7oAiq8bta9QmIYScd87gNgkhhJzvWD9Dnwt6CEtLsUrJB9YfwalWW6nHqze8j6+OfOB1u/mzvm9VuIGpKKwSlnqZ+7Lx9u1zhePd+84tLT7eRbePR5dBKVjw1hKhGp7N6r7q9akipX4SQsj5htokrUbDfQlpBbP19KRaLTYeBRV1ZcvccTh4HM3Tt/v75pWbUFRladW+AQoJ5FLRaQ83qGQi/D97ZwEdxfW28WdmXeJukBDc3Z1CS6lBlbrbv9TdW1raUrevLtDSUiqU0kJxirsTIELcdV1n5jt3NslmsxIhgQD3d84cdkfvzIbde+/7Pu8ToqbJRBQKhUKhUCiUc4Mag6XJfQSlDPbUwFVwBIUUXHQQlGklUO/LdwkPAlTxqSiqwvble/xutzmc+Hb9Ht+5SkQ4IHNd054SgZaw6vsN2Lf2EFpDl4hwJG4qRdS7exD/f4cQtiYPXJjGXz5VfVstvWPQliR2j0NSD1oplUKhUM52V9gPP3QHsGUyGSZNal31PAqFQjnbqbI2Y0wiA2zhxNGNAfRSMKwAqZQXixHZnL7n6yVs4PhLibUKe6uO+91usTmwOMuHs4QonGhmIg9pbyN+++8Q9me4XB1aSnKXaJjHqurFDYT4YHfCkj86OQxQpSkhK5OKz1CZUQlHVGCXb5blERxlhPBiOPiXIiBcrIGgcN1PSr9OiE2ObtU9UCgUCoVCoVAoHY2act+i3vYm/0QRDmw44ne7scaEf75c0+bX/f39v5G+N6tVxxJnaSIsONPihh7DUgO6BVIoFAqF0hAqcKBQWoFG6b9aaXtTGcCdobja1m5Cgpwy8ykc23Sgo73pFq9psQMFhUKhUCgUCoXSUUmICmlyH9ZghdCMSjhEcNASju1I97tt9f50OPkACUlE5CABeHXL3fRWfL0WrYHneVEg4bFOIw8scCD7hKjQllz71Ew6JqFQKOcfAsCc4tKwWmpxcbFo7RxoaU8+//xz7Nu3r/79zJkzERLS9G8yhUKhnIt0Cmr6+09idfX/BeLIoHGCTNFLJK7xgp2TwO70jrU0Zxb/uD7f77YVu47BKTpENESATBROME3GUJw1MvBm32OkpVsOozXYOQ5LT/pPgGoOjMUB9YFisCb/rg9KlQ2dUksRGWsAxqqB8WoIj4VD+D4WQicprnt65im1gUKhUM5K2nhMQqFQKJSOQ1yXti1S1BLS9570u231go0Q2il5a8VX61p1nMVkxYbFW3GmoWMSCoVyXkLHJK2GChwolFaQHN22iS4tweH0nyxUZfQvfjhVTNbWqXiJq8SZcryoQ8Iy6BR15j4zCoVCoVAoFAqlrblifL/AO9idkGdXgDU17cTG6lomSDZU+XeNO5xb0vQJWDSrXY0pPlmG1mAxWGCoMno2wWhr+sA21EdrQtSYfP3YtjshhUKhnKcMHz4cSUlJAZf2YteuXXj00Ufr30ulUsydO7fdrkehUCgdnet69Q+4nXEAiioyQc8BQQ4wKhJjEESRQ+0e0FlUsDqkEBrk/jQnDagqwHjiaE4pYPEMf0qYuusysHOBBd7WtGC/2wrLdWgNOrsVBodnm4v0TVctLSkKF/+VVJgRtjQNEoMN6nQ9pNXe989KOMQmVkEi8fEEo6UI+jwFE64d1ar2UygUCoVCoVAoHZGL75xyxq5tqPaMOTTkxO7MdrtucXZpq47Tleths7Q8LtOWhMWEYPTlw85oGygUCoVydkEFDhRKK4gMliPlDIkcIoJkfrex7ehQoJC17uuCZRlIz/A3DccLyK+oTdqqqQGOHwfSTwDm1rtSUCgUCoVCoVAoZ5KRfZNxyZg+vjfyAjQ7c+CMCwUfFHjcwtZYIC1pmY1zv/G9/G6TS5vhdsfzkOdUoqWERvtPNAqEUqOEQuXpGKE42fT1JTVt50Rn0pmx6dft4uvcYwX497sNWPvjJtS0MkGKQqFQKKeXo0eP4pJLLoHVaq1fN2/ePHTv3p1+FBQK5bzlgs6puKxrT98bBSA4m4E9mgciHWDkdUWQmEZiBgZ6qwqVJg30FqW4GG2KgNcVeKCvtpvf7TIyJslVIlxhwpCIPEyNP47JcenoF1qIEJkFTl4iukc0bId4XgEwHwqBPUfj99zhQWq0hiC5AnLWc6yUXhkjijv8YdSpULYrCGG/HkHkogOQlbuE5gwPRCzL89o/OMTsW9xQi15hxZYKl4vEiepyLMk4hD+zjqLaeuYduCkUCoVCoVAolNYw/upRGDNzuN/tTDvmUA2Y2NvvNpncf17XqRIW3Ton0aBwLSTNid+0I9WlOuxeuV98nXUwB/9+ux7rf94SUCxCoVAolPObwGVKKBSKXwZ2CUaIRoqsEjMMFpe7QWSQTHR32JPVsgSh5kK63omRKtSYHLA7eWiVUqgV7g5oXLgC6UX+q6meCp0iWybo0FucouuDQsoiSC1FtdG/bXJzYRmgf3IQlHIJjuQaYGyBq0RNhQHYuwHIbzDxz7JA9x7AmLFAUZFL9GAxA9ogoGdPIC7+lNtMoVAoFAqFQqG0Fy/ePg29U2KwZN0B5BRXiRVJh/ZIwswRPfHWz6/DMGsIGIYVE4B8ljdwcNBsyWyRUYFULsWYK4bhxJ4smGpMSOwRj+ikyPrtk/ql4ocN+wKeQ5leASaAM50/pt40oUX75xzNR0l2mSiMSOweL06Y1yHPqQJjtkNQy/2385h3JSSlRoH7P7gN2lANvnn2JxRmFDe7PTtX7MOahRuxb+3h+nUyuRQX3TEF9753C7Zn52PZ/mOoMpqREB6Cq4b2xaDOdExCoVDOcoRmluJu6hwNXBTi4uJwOjl06BCmTZuG8vLy+nWzZs3CE088cVrbQaFQKB0Nkiz0weQZGBQdj4VH9yNbVy2OLcYmdMY1KX3xyp4VqJrgcDuj1X6fcxwLqdRzPMALLKxO16DFapdCJXFCJvM9/2+pCcWYhFQcrimAyWlDijYKMUq3GHrigFTsqlqBPpG5DdwigBiVEVFKI47rYlBqDQbHM2BFZwcBgsDAZJfBUhoMZQAztxmj/Ccx+eLkoVyU5VUgLDYUSdpQZOndQmviJPFvZl9c2PUoVDJPd26TToltfw6AelcB5Kl24J4IIIQFCp1QbeLw5H2zYRkVg3d2bUae3iWaVqmbrsa6tTwNn+1Lw44Sd5xEIZHi+u4D8PTgCdi74gDWLtoEfYUB8amxuPiuKeg53L+YhEKhUM7HMUl7k5GRge+//x6bNm0SX1dXV0OhUCAqKgpDhw7FjBkzMHv2bMhk7Zc8S6FQKGcLLMvihV8exR8frsDyz1ah+GSpWIR1yLQBmHzDOLx108ftcl0SJ+g/vjeO7cwQHaQ790lCRFxY/XbiUrDq+w3tcu0LWhgnyTyQjYqCKkQmhCO6U6T4jNrCsfqhz+6G0+7Egpd+QWmue86sKbb+uQs/v7kUR7eeqF9HClRd/r+LcOvrs7Fj+V6s/2mz6Mqd2C0OM+6Zim6Du5xymykUCuWMcpaNSToSjCA0rlFCoVBaisPJi5P5UgmpPiTgz51l7fIQY0JkMNv5ekGFa50c/VOCRLGDzcFjxd7mdxybCwkCTOwbjlCN50QJLwgoqbaJ7ZFLGcSHK2F1cDiQbUCVwT0hT0TAzuZrEQLSKUqJwV2CxeddbXSI93yy1IzSGt+T9yHmamjsJgwoS4PS4kf1q1b7dnMgIofxE10PgEKhUCgUCoVC6cAYzFbIJBIoFTLYrXZMHfgorMO7uOdMWNdSByMA8oxyqLe1zCp51GXDkH+8AAXprsR+EiwYfvFgPPDxHYjpHIWKwkpc9NAncMT7dltgTXZE/LCvxQIHIqz4bO98JPdJ8ljvdDixffleFKYXITgiCGOvHIHSnHJ89L+vcXxnRv1+6mAVzHrPyqT2TqHQX9QTkHirP2QFNQj+5xgY3nvKZMbdU/HQZ3eJr4/vyhQn2v/44G/sXXMo4D0otUpYje7K33UIEgaYMxpFSu9rzR4xAC9cPjngeSkUCqWjUVBQgKQk1/d1z9tehDwo9JTOZzfU4Ph3r4qv8/PzkZiYiNPF5s2bcemll0KnczvuTJgwAStXroRKdWbcXSkUCqWjorNZRZcClUwGg8mKUW99BHPPRoWPiKCAFSCXO8X6Q40hEUubRQYJeMSG6aFSueMMPM+gplyLkTH9kcMXIN9cJa6XMCzGRXfHM30vFYUOlbZivH/ifr/T+qSLv6MiGQ5BKl6PFxiXwMIhhSJTDo3VCXulAuYaT7cGTZUZP711OxJTPYV2Tt6JAzX7UG4rg1aqxZCwYcjdW4RP5nyD9D1Z9ftVP9MP5d0UXu2Sshy6hpchTqsDY2NQdTgShRkxkBTWQDulEsxAb0eLmQnjcX+3mWKMZn9pMQx2G/4sX4HDevf1Gj1Z173bgpBd4tuhoku6E5I3D3itv/KRS3Dvu7f4OS+FQqF0TM7GMYnRaMRDDz2E7777Tsw3CAS5twULFmDSpElt3g4KhUI5WyHfncYaE+RKGRQqBSqLq3Fdwt3tcq1xV41Exp4slOS48rOIM8LoK4bhgY9uR3hsmFh86a5+j7b5dRVqBb5Jex8xnaI81tttDmxdugulOaTgU4jYvuxDufj0oe+QuT+7fj9VkBIWg3eMojVc++TluPPNG8HzPNK2p4tCjx9e/RXHdrjjMv7EIVaTzee2iPgwVBZVe62f/cxM3P769W3SbgqFQjldnI1jko4IdXCgUNoAmdQ9E08S75UyMhne8oqkgYgIkqFU51nFh1Cqs2PT0WoMTQ3GoVwD2gMyh7I7Q4cLBkTUW7iV6+zYk6WD1e6+z0M5rus3zgFqK3EDIa/cihC1FF3jNAjTugQXROTQWOAQbqrEgMIDCLW4A9B+8SVuIBw/DoRHAP36t0nbKRQKhUKhUCiU9iJITeqMupAr5QjqHou6aWrSg2dIt513pbXUF1BVtazSG6lItGP5Ho8gK88L2PH3XtEd4fFv7sfHD3yDkNwy6C7sDkcnz4kaSYUJISuOt8q9gVQCen32+/jq0Hv163avOoB3bv8/VBW7J7xJEhHJGHLY3GMnR7QWlTFBAB8CeV41JAbX5Lk8rwYhy47CPCTR1VaGAWu0ic4Nqn2FPsUNhH++XIOug1JwyT1T0WuEq5opqVDUlMDBl7iBoJvYGSYf4gbCzzsPomd8FK4e1i/guSkUCqVDc5aW11m0aBHuuOMO2GzuoCtJIFq+fDkVN1AoFIoPQhTuMUmQRglNrBxmNBI4CIDAM7DZpJDLObAscVBwbeKcDBx2KXiOBQ8W+WURUFgFKFUO0WHBrFdhdPdYbDZ69rs5gcfG0uPI0Jfi+X6X4o+Cr6GUBnaKjlUZkG8OE68tYQSESIxICatGUJL7O7+6MBjHN3WBsUQJRUYZ5Dtz8Wb+h/hk55v1+xys2Y+FOd/C4HS7ei/O/RGV39pQucfd/2f7yqBWlCMiKBR6ixIOp7T+vh2cBMdK43CsNB7KIhbBR51QHM+HcooZzEDfYoSlhZvQNSgB02KHY0isy/WtgunrQ+AguMaDtddilQZ0iregrDIYVpunm93JrhIkR8ghq/SMtfz+/t9IHZjcYkc9CoVC6VB08DGJXq/HxIkTsX//fo/1xLkhOjoaZrMZlZVuFyCS0DR16lQsXLgQ119PEz4pFAqFQHKZgsK09Q8jPDa0TRP6667Rf0IvbP5th8d6zsmJ64io4H8f3Y737/6iXT4Um9kmulK8958rwZWw6bft+Oj+r6CrcOeLffzA1+CcvNiuhrTls/hl/jLRWWHCNaPRd0xPcV3m/pwmBQ7+xA0EX+IGws9vLBVjMuOvGnWKraZQKJQzSAcfk3RUfNRHoVAobSFGOFW6xKiQEqNC93g1JvcL9xASNIYk+G87UePh7NDWGK1cvYhAb3Zi+4lqrzaR/B8/OUBNMjA5qNn7niyxeCRVJUYqoZKzHq4NY7I2N0/c0BRHDrsUHhQKhUI5q+A4DosXL8aVV16JTp06iQlIQUFB6N69O2677TbR3plCoVDOZXoNSvW5vmGxUMYRePww88GLcem903D9s7Pw5aF3RetifxXkyvMr8ezF81CQXgTW5kTYX2kI++UgNDvyoN6Vj9A/jyJi8UFI9f4nr5si50g+9q8/LL5O35uFl66Y7yFuIDjsznpxAxekQM3MftDN6g/TmBSYxnVB9ezBMEzuBqHWtUFWakDIimMI/2YX5o4djLAf90K9p8CvuKGOPz9e4fH+ghvHiQGTlsLLWZj7Rwfc54etnsFtCoVCobQv5LfuxRdfxI033ughbrjsssuwYsUKaDS+k00pFAqF4knPxBgfj4QBBAbgGditUlhMtYtRDptFLoob6mEF3NR3JC5JGI1bu03G37NvRQFb6PcxF1qq8OCeH6BzuNzmAqGWuJP4Q2Vm9AsrQZDCc6wSlqDHsEsOImbLbmi2ZYPheJzYnYW07SfE7VnGTHye9bGHuIHggAPBd7EIukoKJkECxZfhUP5fOMImC0iKqUbvzsVIiqoSgykCGZLxogRBPPbNkeMQ8steqE4WgZnq6SDRmKUFnnNbF8UOR4hM41fcUIdC7kRCTBUU8kYFtVgGxqFhvq/14T8B20KhUCiUU4PELBqKG4YPH45Vq1bBYDAgLy8PFRUVyMnJwRNPPAGJRFIfA7n99tuxb98++vgpFArFjxihS7/Op/xsrn7sMrHY0U0vXo0vD72Dkwdz/e5LnK+fm/EGyvIq2u0zObz5WL0rw8GNR/H67A88xA0Eu9XhJW5oDmTs8PCX9zR7/z8+8oyTTL9zMoLC2mfe7A86JqFQKJTzEipwoFDagZ6JblVwa4kLV2BgSjD6dAqCkxdgsgXufJ6OHPwqo2vCO73IBK4NDSpSY9VIiVUjJtSzYpA/yLNo6JAhYRmM7hlWL3LoVXoMUqGNGqjXA2ZT8/cnH0RBPvDfRmDtGmDfXv8OERQKhUJpF7KysjBs2DDMnj0bf/zxh1jNyGq1ihbPGRkZ+P777zFhwgRR/KDTtYEYjkKhUDogd942pcl9ZLnuym++IJV3Hvy/u3Dba7NRXVKD8gL3/r6GH40nzGXlJmj2FEC7Kx/yAtf3LReigmlsKqpuHIbK20aiZtYAWFMjm31fxOq4rjpQQ5eGxghSFrpL+sBJnBsawjKwdY+CYXJXj9XXkyDF7AkYNLFPs9qRm1YAfZU7aKDSqvDGv88jMiEcLcERrYGgCGyumVlWiRqztUWJubtW7se7d36G16//QHxWNeX0945CoZwZGKFtltMFGTeQCqhz5871WE+cHH7//Xcole7q5BQKhUIJzIOjxgXYWpvUL7AQeIno0OCLy3v0wmuTL8Ajo8ag1FmJSpsx4BmJm4ODbzr0yQkspAwHlcSOZG2VlwigDmmQgIRbOZ9jkpXFy8GJCgXfhN4mg+L9UEh6ugpiEV+KEJkZ0UoDukeVoldSkYcE/dFBYzDzghHoPbIb0F0OKPw0qpZMYyGsnFuooZWp8OaAuxEmd42BfIkb6mBZICLUMwmKYXnYU1Wwpaq89s/Ylw2ruflidZ7nRac/4rhHxiS/vvMX9JXt40BOoVAoZ/uYhBRjInGMOi6//HJs2bIF06ZNg0zmLqrYuXNnzJ8/H3/++We9yIEIsh977LH2axyFQqGc5dz08jWnfI4Lb5+Ehz67Gze/fA1y0wphqA6cP8S3ZTKVH+rGJD/N+71Nr3fnmzdixp0XiA5uzeHY9nRRcFdHaFQIXvv7GYRENr/AbXNJ25YujjOaC2nX1j934e3bP8W8Gz7AHx/8A2NNC3K/KBQK5Twak3RkAkfRKRRKqwhWS5EYoURBZevsvUgx0VCNzMOhoSNArJsJxdWtr7ra+Dl1i1OjU5Rrwnxwl2D8d7QKZlvT98ucOA7kniRZVEBkFIJ798G0gZEoKtEh9mBJm7TPfbFmasHsduDfFUBxgwpRxBF67x5g4iSgW/e2bReFQqFQvCgoKBDFC4WF7op+ffr0wZAhQ+B0OrFt2zax0hGBBA2Ki4uxbt060eGBQqFQziV6JEdj4tCu2Lgn0+d2ttIIaV6V3+PVwSp06d+p/n1NuR6cWgrDiASY+0eB18oh0dugPlCGoJ1FYO1NVwNyxAZDP60XIJfU5/FwERqYJnWHrXcsQpYfafIcUplUTODf9ueugPtZe0SDD/GfhGpPjYRzTz56dYkTKzBNum6MuP7JBXPw4OhnUVHg/9nUsfKb9di7+qAotOgxrCsuuXcaFmR+gpVfrcUnD36LZtFMCzxp3WCsCYjo4oVL36wPcBA2Lt6KhS//gqcWzqEWzhQKhRLoO1SvF10a/vvvP4/1r7zyiujoQKFQKJSWMSQqERPjU7GxiEyS+8ApuIMOPghTqNAt1C2GrrIHSkYR6pP5i80hSNQEFvjaBAli1EbIGCfUUv/CabEdU4HcVwQITqZ+TOLknTisOxjwOGkUA0UwuU0BWqkVEQqTx+2GRFoRrjDDoh+LO3qPwoyUHuL6ZxY9hIf+9yo8veq8YcBg8daD2Hw8Fw4nhwGd43DNyP5YNPI5LCvciq9O/hXweLXKDpblRfG6RMGBlQiwTgxGycRgyAqsCFtYDNUBQ331W7bWBa8piLiauPtl7D3ZaEyyBM/+/DBGXTq0WeehUCiU84Wvv/66/nVoaCgWLFjgIWxozCWXXII5c+bggw8+EN9v3LgRubm5ogCCQqFQKJ4MuaA/Bk7uiwPrm449+IK4Nid0ja1/ryv3dG87U0hlEpj0Zuxf17r7akyfMT1wzeOXY/Tlw8T3z//yKB4a/VyTImWGZfD7+39j98r9cDo49B3bS3S7+DHnM/z+3nJ8/+IvbdK+umuRcUlzqCyuxrMXv+7htrHh5634/sXFeOHXxzDswoE+jyOxp+Zeg0KhUCinB+rgQKG0E0NSg5ESrfKan5dJGESH+J+UIJCEf7nU/d9TJu0YHajYMIX4L8e1jSSMOC7UiRsISrkEk/tFiM8oEKFWHZTbNgGFBUBJCXDkMPDrL2BPHENikKRBzaM2ICIS0OuAvFzA0ESFoY0bPMUNdRAV8YYNwNEjwPFjQG4ueYhAViawbCnw5efA118Ca1YDZaVt2XoKhUI577j//vvrxQ1BQUFiNaMjR46IQYFFixaJ7g4ffvghWFKqDsD27dvx6quvnuFWUygUSvvw6r0X47IJfSFtmIgiCAgzOzBeKgcTwAZu+h1TRFeCOpQJISi7tT+MoxNEcQOBC1bAMD4J5Tf3Ba9wVY7zBynIapzQzUPcUA8DOGODYZjUrcl7GnnpENEpgkyWB8LeJaLJc5F9YpOj6sUNhKjECHxx4B2oggIL32QKKb5+6kfsX3cYR7YcFyfx7+zzCP5bsg2DLuiP5iIvMYE1uquu+mJQpzgcLy7HphPZKK4JPCZ56+aPPcQNDS2p513/Af7+fDVWfL1OdHggFYzW/7RZFHRcKLsWl2huEKurZuxzJyJRKBTKKSO00dLO1NTU4IILLvAQN8jlcixcuJCKGygUCuUU+HTsLMxK6QdpwyJCvIC4bA5T9dEeDgaNmd1tEBQSd502raF5Ic0yqxaVVrXf7UanHDxc4xdJM8rfsUqArT0dyzIYMWMwnIIDQjN+oMj5VVIHIhuJG+qIDjJiVl9jvbiBEJcSg88XvQ6FM3AciatW452/t2BnZj725RThu//24rJ3FmLDkWwMDmu62BLJ25FInZCqnKK4oSGORCXKnkyGpZ/Lrbz/BX1wxFSAbeXpKLMGFo+8PvsDD3FDHcQBYu5172HV4c1YXbIN+6rT4OQ5/J59CDPXfItuS+ah3+/z8diOZTheQ+MkFArl/BmTrFixov71ddddh5CQkCaPue2227xcICgUCoXim1eWPolJs8d4CXZDooIxaEq/gI/t0vsuFAXOdSjUrtjImUQilWD4xYPEOX+SkN8WdOqZWC9uICR2i8Nn++ZDpgg8JpFIWHz15I84sOGoGCdZ/OZS3NbzIbEwVFPPtqUMvXAADv2Xht3/7hcFDIF49ap3PMQNdViMVrwy622s/HYdVn6zDvvWHhLjJOT1/UOfxEWya3FZ8E2Yf9snyE3Lb9P2UyiU85wOPibpyDBCW/3aUSgUnxD3hdIaG8kjQniQDEEqV+f3cK4BmcVmr/2jQuQY1SMUkgaz3XuzdMgrb50bRFshlzII18oRESxDQYUVOrOzTc47ZUAEgmufSR1ZJWYcyvGfuDM8ZwcSdMS+2ceM/GVXAH/9KSZutQlKJWC1us+flASMmwBoXRP79ej1wOKfmn9dkljryz6NrL9gKpDSpQ0aT6FQKOcXJ0+eRGpqav3733//HbNmzfK5LxE1vPTSS+JrjUaDiooKKMl3PoVCoZyDVNQYsetoHnheQP9u8egUGyau/+h/X2P5Z6u89ieT4y/9/gTkDSavH1+yAv8cPuH3GtpdRQhd43LI8YW9UxgMU3sFLrMgCAj+5whkxb7HAmGxoeg5PBX9xvXBv9+uQ94xt1tPHVyIErxSBuPYFHBRjfrsjVAdKIR2Zx4WZHyMuC4xHtuWvL0MXz31I1oTXPhw61zMGfUchGa6MxhGJkA/0X+VvRCVEjqLa0zCMgwm9EzBS5dPQXSw5/3lHisQRRbNQZAwcAyKgTlUDsbGQZ1WCVmtAyEJWrz0++MYcfHgZp2LQqFQfLmqJZH5EwC9bnkRcm3oKT0ku7EGxxa4RMn5+flITExs04dusVhEcQNxe6uDJBUtXboUkyZNatNrUSgUyvlKidmAbSU5IH4Bw6OT0EkbJibjPL1jBZZkHfLaf1pSd3wy7grIWLeQ+qVZb+HvCyvBJboKMXkieAgIpAyHvmFFiFPr69eT7nmVXQ2dU038HsR1EoZDglJX7/7gC0cVcGgqoJkqRZdbItFraAp6BPfE6uINKLOX11/fJZYQwAlk0MOIoYJqhxrhchM0Uv+iZhYsXuj9CULl4R7rf8hZhYU5//o+SAAqd0fBXuEtzCYC958fvgYPHZoPIUA+Es8zyCsLA+MZnhFhGF58QtJMC8K3VUJ+bxJ0cI0XJAyL8dG98HSfyxGu8ByTZO7Pxn1DnvR5PckEBWRzgsBGuz9TFjKUGmWwOOQwW+Vw8q5tRNjy1dhrMCY2xf8NUCgUyjkwJikpKUFcXFz9+2+//dZLvOALk8kEbYNY9VtvvYUnn/T9/UuhUCgUF2V55WIiPmHAxD6I6RwFnucx/5ZPsG7RZq/HNPHa0Xj6xwchkbj7r89Mfw17VgV2cmtvIhMj0H1oFwyc2Ae/vrsc5fmVp3xOmVyKRXmfIyzaU2T3zbM/iaKFFp9PIcOHW+bi/mFPoy0grgqaEDWMNab6OMy4K0dgzid3IjgiyGPfo9tO4OGxz7eorcSluzFKjQLzVjyHfuN6tcEdUCiU85GzZUzS0fExbUWhUNoShczTpaCOfp2DkBihRE6ZBSYrJwoIkqJUiCUJJg1m0x1OHoW1iSZnErtTQEmNTVza0iFhf5YeRqsTTk5AiFqKlFg1usSoYLVzyCgye4jPWAjoU3jIt7iBQCIGxCEhNBSobsrAuZnUiRvqzp+XByz5xXUNotTunAz06Olyk2iJqMKXuKFuPXGCSEwCAtiPUigUCsWbhtVWyUDBn7iB8PDDD2Pu3LlwOp1iMGDXrl0YP348fawUCuWcJDJUi4vH9PZa/+Cnd+KCG8dh5dfrUJJbjtDoEEy7eQKGXjjQY0xSbbJgdVpmwGuY+kUjZH0uGD9ub1yYOlBxVhcMI4ogwn7eC8aHQ0N1SQ22/7VXXMgEdkMcscEwj+gMZ7RrMrs51VSlFSYxqWr+raQaTwFsZhu6DkrBZfdfhKsfvwxVJTVY+uE/ojCkDolMAi6AewRxl1j1/X+iYKIoswTNQbujEJxGBtPQOJeoug5yXZapFze4VgnYcOwk9h3NwaDt5dBIpRhzxQhMvWUC9q893KzrWZODUXFV93onDoJucieoD5Uj4q8scTL/7Vs/wU/5X3iIXCgUCuVcZc6cOR7ihujoaKxevRoDBgw4o+2iUCiUc4lYdRBmdfGs4EnGHG+NmoGrUvtjSeZBFJn1iFJqcGVqf4yNTfYYk1QUVWHH8n3QpiugeyUJUHorpwUeqDOKcAoSHKhKwnGdA+EKVxKMzqZEbJARUtY9N88JElh5GVQS74SW+mtvYpGySoHgCCJSKMcJI1l2gYUUUoYBy/Di8XVuECRMYOOlqLarRCGFMsC5CTx4vLbnJ6zJFGB1OtE/MgY39xmMG7pMRY3diOVFWz3GN1JIUXE42Ke4Qbx3jsffuzMQVahGWQ/vIlt1GGrkYBoZ8SlkDgQprVDIXGMebggD56AwWDhLvdsGJ/DYXH4I6TvT0CUoDGqpAqMiBmByzAixAqov2GFyyF8OAdPIvZuHA5EaB8xOB0LUZljtMtSYVLBxAh7f+Rc2XzoH0loXVgqFQjkXIcLqtWvXislPxJl62DB39exAVDeKgysUvsR/FAqFQmlIdKcoTLtlosc6lmXx9A8Pio7W/363HhWFVYiID8OFt07CoMme45eSnDLsXe27v3s6qSioFJdtf+6GVN42aZ8OuxNzr34X2YfzxPhAzxHdcPkD03Hr3Guhr9Bj5TfrPdwiiCCCHOP3fDYHtizdJRatInGdU4Vcu07cUBeH2fjLNuxdcwgJ3eKgDlJi3JWjMOXGcaLrdkvwJW4gWE02zL/lYyzI/ET8O6FQKBTKmYEKHCiUM0iYViYugTDbOXB+cuHbE6mEEUUHvmhL25cqo7uzWG1yojpLj3KdHUNSg5ESo0Z+hRVWBwe1XIJOpZlQVGQFPmFpCTB6LLDib7QbDjtQXuZ6XVQEHDwI9G5D1a7dDuzcAYwd13bnpFAolDOAwcmhyOaAieOgkUgQr5AhqFFCaltCXBjqqFNC+yM4OBhRUVEoLi4W35eV1X6vUygUynlG71E9xCUQBdU6ODj/Sf0EQSUFp5FDqrf53M7YAx9ffx6ZFLauUVAeK4E2VA2zwQrex4CITGA3FDfoL+4NeFhMM66Bix9RBWO2Q37SVdmIWCfXkbY9XVwObjyKR7+6F1fMmS5Wb6op1YmihcriKix5+6+A93B023HcPf8mvDzr7WbdM2li6LocaPcWw9wnCrxGDtZgg2FEAqD0PW2jY3nscxgRtLlQrDq15J1lmHazZ3DGF44IJcqv7wVB3uj3mGFgHhAN1sEj/O+T0FUYsODFX3DXWzc26x4oFArF73ec4FpOhVM9PhDE9e2bb77xGCeQBKN+/TyD2BQKhUJpP4ZFJ4lLIIh4mIwL5GkWhD2RC/M1EbCNDAJkDJhqJ8yMBryDhTbK7KEZtnIyFJlDwTkZ6Ks0iNEavc5dY1dCpbRDyrjGHeRnhxfLLTGQVAdBNoVBsNadTFMHDyc0EgGSBoIJArm+UuJEqNwCk6V5bqG7SvKhs0WKr3eXForLnpJBeGXMlbgyaQLWle6F3mFCvCoSGYccWFgQOLHqQE4Rbu96Md4sWgzEe48pbDYpTIflQB/3OrXChlC1xeP5SVhyfxxYRoDNSc7DQCW1I1hhA8cAGUa9uN/BmnQsLVyPUYqePtsju0PrJW5o+LwUEid4QQaN0iEuHM/AbDPhy/SNuL/n5GY9QwqFQjkbxyQqlQpTpkxp8XHr16/3eN+5s39nUAqFQqE0DXF0IEsgCtKLPZL8TxfBEVoYqlzFmhrjDCAyaCmHNx+rf03iI2S55vHL8MiX9+LqJy7Hhp+2QF9lQGL3eOQcycPfX6wJeD7ipHDLK9fgg3u+9L8TGSKcwiM1VBlxfGeG+Hrf2sP47b3lGHXpULQVJTnlYjzouqeuaLNzUiiU85OOPCbp6FCBA4XSwZF7JOmcHoiTglYlQWGl7+Sk9oaIGmJDFUiMVKJHgsa9wZ236h+inCVJrcRV4YQ7UaldMZuAEyfa9pxHjwDEWnTgoLY9L4VCobQzZHJla40R3xVW4N8KHRpq5Ugcc3pkCG5NiMSYUK1HJb62ID4+vv51dnZ2wH0tFgsqK92WnQkJCW3aFgqFQjmXCFY1IymHF8Da/E+my3MqYRqd4ulQ4AdHQigGaLWITAjH1j93Nbm/aWRyI3FD7bx43W9Qo0sydieCV58A08CZoTErv1mHkZcOwejLhuGG566sX7/o9d+bbI9URlwVhmPidWOwcfHWJvevP67GhuCtBeJrc68Iv+KGOogYImhHofia2FBvXNL0tQwj4rzFDQ0wDopGyMZ8SIwOLHl7mfgZzHzw4mbfA4VCoZxNEDe3J554wmPdt99+S8UNFAqF0gEJCnPHCaQ5NgTPL4IgBQQ5C1ukCtVP9RW3GcsYqEKtkCpcgmgyJrCbZTCbFBAEFhabHDK12yFNxjgRr9R7uDqQ4QMLHknqXsiwpCBUudZPqwTRvcEfKokTQVIrbJwUaql/FwfSxgqDy4muIQvS9mNK51SMT0zBTckX1q//+KjbdcgfUgmLyReOxuY7d2Cr9Bj4S7VgtQycThZ6nQbVVVrwsQxkvFV0vWAY4rDtKW5oiEzCiwWxGIYXxQ2+9iu1VmLvEE/nP04jheOWCIT3IwISq/hsOYGFnZeILhv17WXJsyQ+FUy9sEKrtOHHvH8Rp9FiZtLwJu+ZQqFQzqcYzIcfflj/XiaTYdKkSWe0TRQKhXK+jUlOFwMn9REdpg/9l4YzwZJ3/sLIS4ei37heuOmlq+vXf/H4wiaPJW7YxBmDxHh2rzzge6c2TtYtzCjGXj+ucq3lm2cWITw21Mv9g0KhUCinB+qhQ6F0cFQKCSKCArs8BCJcK0WQqmXVsnVmJ4qqzoy4oY7sMh/WyZ06NX1gp9oKFRMmAqPGNCuBqk0wGICYmLY9J3FxINXIi4uAkhKgiaq5FAqFcqY5ZDBj4u4TuOpAFv4p9xQ3EMj7v8t14nayH9m/LRk5cmS9RSRxZiDVWP3x1VdfwU4cc8hvZXg4+vfv36ZtoVAolHOJzhGh6JcQuK8rL7PC2TUeXGSw17b+E3qjc6coyPOqAl+owe/Gid2Z2PHP3ibb5gxVgYvS+q9kQfKNOB6swQpWZ4HyYBFCfz0IWYmhyXP7qkA08pIhTR43coZrn2d+fBB3vHF9qwR9vKrpMSCv9hRAFGaUoMew1IDHWHqEBz6phIWla1j92/975DvkHM0TqzelbT8Bp6PtKkJRKJTzBKGNlnZg8eLFHsJoMpZ46qmn0LVr1xYtH330Ufs0kEKhUCj1pPTrjJR+nvEBxgmwZh6KfBOkZjMkWhs4VoC+QoOawiDoirWoKQiGqUKD0ZFdkKwNQ2l1iMc5YhuJGxqSbz6GApv/MQlD0vGb6OoHy6wwOJVu8bUPimtCYbYrfG5bdOyg17oJvVICX7R2HzIOeeHLh3Fj14uRnR2PjBPxyM6KQ2VFMHiezJ8x4G2uMYVabgfbxL1IJRw0MnvAe87nS9H9xu7ia0eEAvr5XdDpBhvkLC+enxxLnjcRfChY/6KPemcHqRPzj/yJXGMFdpXl4UBFIZz8GbA8p1AoZzdtPCYhsYeCgoKAS3vy+eefY9++ffXvZ86ciZAQz983CoVCobQ93YemIrF7XKuPH3bRQMSmRLfoGOLe3NBZ4Uzw9xerWx0nIXNtc5c9jdnPzsLpIvtQLpL7BnYIbCnv3f05CrOKcWhTGo7vygBHc7coFMo5FCfp6FAHBwqlg2OycghWSVFpCDzZ6wsyYRyikSG71NLiY8+As5oHBouPZP7QMCA5BcjxU5VbLgd692ngA608vTcSHeO6LhEjtBV//Oa+B5UK6Nff5epwuoQbFAqF0kz+qzLgtiPZMHPNCzKeMFlxxf5MfNc3BRPCvavUtYbU1FTMnj0bixYtEt/ffvvtUCqVmDFjhsd+P/zwg0el1ueeew4azemvukGhUChnC4WZxRhYxeBorV7AC16A0qKAs2eCuLBVRii2nwBjdUCpUSCpR4JYYUhzAnBeNxh8kA9HiNqJGdLLlRXrxFWco2mBr9CEEMDVa2YR+tuhgA4TvshL8w5Ipw5IFgMRu/894LeK08V3X+C6KssiODyoVbbVTDO0zdJqd+XZOgZP6S8mMh3f5Vk5tQ6B2Ck1gcc+AnDv4CfrPwtSqeiqRy/F1Y9f1nQDKRQKpYPzxx9/eLzneR5ZWVktPk9VVRMCPgqFQqGcMicNFYh5dQQOLrZBlmWGcp8BxDzB2k2FiueTIdPyorsA6XoLggNOGwunjsQHGATJ5ejMhmLP8ULwshDotXoEh1igZO1QsIE73hEq/Sm1W8LwsPEyVDvUCJOZvab1q4wa7MuuLdrkg4xqt/toHf07xWFYl0TsPuk7gTZco8LMYS5HC4lEAmF6MvitJ33uy1mkYGQcJCrvkZ5C4oBWSoQPgui4UGNTQiZpeqAy5pnR4I868N8kBfr3LwXL+h4PKSRO8dy8wMDOSXzG6UVRhITDZWv/DwaLK6QdqwrC3b1G4tYew5psC4VCobQHw4c37SrTmrmg5rBr1y48+uij9e+lUinmzp3bLteiUCgUiid5xwpEkUNBenGLHw2JG4RGh/iNKwRCCOBEfTrI9REnGTCxD3qN7IZjOzJ8HhMeF4Zpt0wQX0ukEmiC1TidTLpuDDYs3oqcI/ltcj4SH7mj1yPgnK7xUFRSBGY/PROX3ud22qNQKBRK+0AdHCiUDgqxGduXpcPqAxXILmu5QEGjYNE1Tt0qcUN7ImUZRAXLm97PX+LNuPFARKSfcj4KYPcuoLRWYKCrwWmFTFZNvqDtz1mHxQLs2gls29q216BQKJRThDgxtETcUAfZnxzXlk4OxJnhoosuEl/r9XpccsklojvDLbfcgptvvhk9evQQ/yXuDSTx9IUXXvAICFAoFArFjcPuwFu3fIzbejyEDc//gbBfjkFa6Tm+kFgFBOULkDYwgOPDtbCO6YlOvRNxxZzp+OfLNfUTECG/7AdjtvusOkFGAEQUIU8vc52oGZpe1mhrUtTM2Jxg7G5xgzpYhcEXNO3cownxPen+6Ff3elQAIm4LxuGJ0N08CLYHx+KDjbtwNN81Jsk/UYSWILAMTJO6wz4oBYwz8H2pD5R6r2QZPLlwjt9jFAXGJtugKPB0t2goNKkqqcGXT/6Ar578ocnzUCgUSp2bTlss7UF6ejr9kCgUCqWDY+UceHTX75ix5v/wK3ccuqujUfF0Moo/7gHzQC0qXk8BE8TWCwfIvyShXqbkIA2xomdkBG7qMQC/7yVybYB1SJC1JwkGqwKyZqiKVdJTczCzOqXicMXoVKLIGgKdQwmzUw6rIwIy+0T8d6w7HJz/WnRBct/ODvOun4YuvTVArA0IdhAdB5wKQAhhoYiU4+0NW5BW4hpXnawJIMQTGDj1CjitUg9niliVHokaPUIVVgTLbYhUmtEluAoqSdOFuCRqGeb8+xi0QwGZ1NdcoSA+eyXrRLDMhlC5FVFKE6KVRrA+JPWkPQKx66ilxGLAq/vW4P3Dm5psC4VCoXT0MUlLOHr0qBjvsFrdBS/mzZuH7t1dzjkUCoVCaR8sJitevvJt3Nn3Uaz/aUuLj+8yujum/u9CrFn4X+sa0E61T7VhGgya3K/VcZKnfpiDhK6xXuulcqlY+OqrpxYh+3CuuK7gRCFOJ0qNEo99fV+bnrNO3EAoz6/ER//7Gj+/sbRNr0GhUM5dzpUxyZmAOjhQKB2Uw7kG5JZ7V+RsLiYbj/Si1ieMSlighXmqzcLJCyjX28U+eKDv3aQIH1VdDx8C9uwG7HbvbSRKYDC4lox0YMRIl+DhdOJwACeOt/91jhwG+vYDqN0ohULpAJBKRHOO5bVY3FAHOe7BY3nYMKyHWHH6VFGpVFixYgUWL16Me+65BwaDAYcPHxaXhkRGRuKff/5pVrUlCoVCOV/56L6vsPYHd9KIKrMaysxq2BODwKVGw5kYBWmjIQvp4/NSQIjV4HCoDMd2HIM8PgSyIpcrAysICPn7KAwX9Qav9eyvMxYHgtYcA1ubUK/WqmA2BBZsSww28dyOhFC/+yjSyzwmfcx6C/atPQSWZURheaAqP4359Z2/8ONrv4nnIDgi1dBd2QdcrZNEvs6A/N1p+GtPGp68fCKCwrVoCZYRyXB0jhDHSwo9YA0jM1bev4/KjCqoj5Z7H2+wYvX3G8QEJz4pClynKAgahSjwYAsqoN1bCkvPcL/XV+ToIC9tehz52/t/4/I50xGd5EN8TqFQKGcJR44cOdNNoFAoFEoTPL9vOVYUuMQJDeFi5Kh5PgUM63s+inShicjhJF+Ak6UFEFIZMJVyMDUyCLwEufsSETLcAigDC4AVrBqFZgYRau8+skBS7wUhoNlynjEMlTYt1DKXE0K+LRR6q1I8FiiBMlgKq54UhPJ9kstSe3qt+yrjP3yTsRnmCDvYiNq2WCVw5qvhsEiRW6MTlz8OHcXLF01GqMJHrMXjRhgYKjUIDTWJ9xKpNEEjc/h0UwhTWFBlU8MpSHyfSgDKLQJ2mjdhRJdMhCjJuImBiZNB51DDIUhFcYO0kasDuW6QzA4Zy6PQHOzxPHjxOXs/n8/TtuHGroMRpWrZmItCoVDawkUhLi7utD7IQ4cOYdq0aSgvd88FzZo1y8OpmkKhUCjtw1s3f4ytS3f53MZKWPB+YuTWXtGw9I/HrnA1dlWWQHLNAKgOFkF5wntePxBBYVoYqpouXNRSjNUm7F/vGT/3xaTrxnq8J2OghS8vwW/vLYfV1KDyVW0SmNPuRFFmibis/GadKDRoaZzkVLGarPj32w2u2lpEoMGyYAwWMA1ECvX3I2fAD1ACCgZsph1MSfNF7j/O/RUz7rlAdPKmUCgUSvtAHRwolA6IzcEjpxWuDW1JQoQSWqX/r4j4sKZdGAIRSNyglLPoEttIBZyW5nIu8CVu8MXOHUBQkNhRPW1UlAN795yeaxERB4VCoXQAttYYccLUekEe4bjJim01bTMxw3Ec3nnnHTz44IOiuMEfFRUVYkDgo48+apPrUigUyrlGeUElVvuoKCQm3hcYILGx3uIGBnCoAIeWgV3LwBGlhKVHOAzTe8M8qkv9fhKdBSG/7YNmUwbkWeWQn6yAemsWQpfshbTc/Xsw+fqxiE2J9tvGybNdAgT19mzR+cEXbI0Fqv3eFsqEQOKG2OQoXHy3pzvbHx/+I7oX1IkbyNG6GT3qxQ0ez0IA5i/biMTJvUQhRXPgFVLYu7rvV2IHlJWAxCLUu1SwVg4h67IR/sdxn5U6jmw5hp/fWgbH8O5wDkiBEKYF5DIIWhW4nkmQJCYhZKPv50HcOSL+yGheWzke6xdtbta+FArlPEdoo4VCoVAo5x35pmr8k+9fjMYzgYttuIQHrh8RRiEA8TYI0a4EHLtJjqM7UsE3Ua9jWMQE5FX2g87qLRLgeAl6aib7NZSrtKpRZg0CJ7Aw2JWosqihs6ogYXiwtW1nFU5IFL4TaFKCw3BND8+Kqt9mbsbHx9fBzHnGSRQaG8J7ViA4Vg9W4jo3Lwh4+d/16B/uXVXV614cEugqtGLbgmQNkpR8PFO11H+MxmSXo8K+HdnOHxGpMkHO8pCzHEKlViSpqqFmrV7ihoYoJU5oGpyfDNk4noXV7l2vz8Hz+Dsvrcl7o1AolLYekxBxQ2JiYsClLdm8eTPGjx+P0lK3k+eECRPw448/0g+XQqFQ2pnctHy/4gaCP3GDcVQyjBO7ggt35z1xERoYJ3eDaZjbHbo5XHTbJITHhfndPvn6cWgvOvdOxJQbPc//wyu/4se5v3mKGwiC7+fz3l2fo+9Yb+F2e7Llj51YtvoAbNMGwDa5H2wT+8A6fRDsA5IhkGq/tTivDYH950Q458XA+VI07AsS4JgbDSHct6C7MXarA5t+3dGOd0KhUM4ZaJyk1VCBA4XSASmpsYkTt2cKqYRBj3gNxveJQHK00kMjoFVKMKpHKEb0CEOXGNUpXUcmYcSlIRFBMozrHQaFrMFFSZShNcKBrCyX08HporLy9F3L0np3DgqFQmlLvi+saKPznPp3qMPhwOWXX44nn3xSFDDI5XI89thjOHjwICwWC3Q6HdavXy9WNiKQ9w899BDuu69tLSopFArlXGDH33v9Ts4TBB9CYqcScKoZ8DLG7TrAuN6b+8XA2s2dvM9wAuQnKyErrAFjtoNXy8EFu5OGtKEaXPvUFfho+zxMv3MK5MpaEQEDdOqViPnrXsIzix7G9DsmQ1ptQchfhyHPKCeWca7dbE4ojxSJ61mb/4o7IVHBUAd7jmsGTuqDdza84lF1x25z4Od5f3jsZ08OBRfmf0xEEp3W5uRjxj3T/O7j8fxig11Weg2QOAGlDlCXAuoSAapyAdrdxX5tSDP3Z4PrEgMh2rejhaBVQm2UI+bLg9DsK4W80AhFtg5hf2ch9ouDkOqbKSgHUF3qcuWgUCgUCoVCoVDag/XFJwJo3AI7J9ThtUukA4LcNWawWJQ4mes/+V8tCcKkmMvw0+S7ECZchX2FXZBXE4YifSjs1v64rdM83Nb1foTbZqG8xj12cPIsqmwqlNs1CFFYRDEDqXLaWV2JSzofwbVd9+Pa1H2YGJ+BKKUBCREKaGWeBaXGJXTGTzOuRZDc7XpncdrxTaanyFjKcogL0iEhWI/oYBMSepSj68gcRHauEp8RETlsSc/F1T36+n9I5HEIQE15MDijtMnnSlwWnLz3Tia7DJyTgcDsh5Tx/HzIawkjIE6pr72gf7S1AgcynrI6ZbCR83K+E4wqrDROQqFQzm0WLVqEqVOnirGMOiZNmiS6UxM3awqFQqG0L9uWtTxPyRmuhnVgvN/tliGJ4II93a39ERYTgqufuBwf75iHC24aD6nM1S9mGAZdBnTGR9tfxzM/Poixs0bgVIhMCIdS424TOf+w6YMwf+2LUGnccRuT3oxf3/2rRefmnBwObTqGSbUFq04HaUYrHIO6QGjQdkglYuzEProHBIaB85ZQcHeGAcENxhrE9XukGo63YyGom1e4qrq0ph3ugEKhUCh1eJe8oFAoZ5xAlUTbG6WMwfDuodCqXF8Pg7qEoH9yMKx2HjIpA7nUnXDTPzkIFQYH9ObmW3Q1xMEJmD44ElVGBzheQIhahmC1j6+lkhLAbGr5BcrLgCnXA3I5cOhgYPeH4GBATybXzxKKioB1a4DUrkCnzp5OFTabS2whkQBRUafXxYJCoZxXGJwcVla0TXLjiooa8XxB0uZVRPDFK6+8Ik7sE8jk/qpVqzBunLuqhFKpFCf/yfLxxx+LLg+Ezz//HGPGjMGNN97YBndCoVAo5wYOm29HhDoklQbwDaoGEfcGTsGIE8A+YRmYh3eCMqPMdf74EBgndYdQJ1wgtsGDkiDLqURqTg1e/OlhxCa7BBGPfnkv7v/gNlSX1EAbphEtmet4+It7cGTrceQfL0LQxgwIm7MgyCWiwIFpxrhKV67H0urvcXDDUbHiUNdByejc27uC0sENR1BT7jlecMQ0bat8JK8Ev318O4LCNPjzk5X17g++iO8Wh0w/2+qfajPcILjkmIDb+ZgwyI/kIuKvLLQGR5wcxgsisHKIHpk7l+KSTn0xIbYr2AYZTPoqA3KO5IvClG5DukBCxiYUCoVCoVAoFEoLsHNcgK2MKBpoKhnf54ggzAGUKhAUYYQ1hEG1XYVQmcXjXKGyWFzf+UkEyyIQLAPmj7wUZueFqLCaECpXIVjuTpR5bOh1uGVjHoos6WISPy/23hmEyO3QSJ2QsU4kKmrQOcid+EK69QkaHeLUemwv4bDi+vnYUpgDG+dE38hYpIaGezV7e3kWDA63jR4RTsQF6b0cESRSAVHJ1eLritxwHCouxa+3XodwpQo/ph2AyeHwrB7Ikda6bj7eGUkCK4EfKgQUGYJFtwW5hCNSE9G5wc5JMTwqB2wAWQq57xCpBTqnJsA+gigSsdkkMNmVMFn8u4nv/XYb3qw+hCnXj8PQCweKiVh11NhNyDGVQCmRoXtQIliGxkkoFMrZA/mNe+mllzB37lyP9Zdddhl++eUXMdZBoVAolDMfJ/GFtZd/V2oRhoG1Vww0O/MC7pbYPQ4v/f4EwqJDxPdPLZiDBz+9EzVlegRHaKEJcfepn/v5Ydyc+j+UFxChc8vRVxmxpOhL7Ft7WLznHsO7IqFrnNd+O//Z5+3c0AzS92SJYonwmFD889XagOeI7xaLoowStBZBLoWzp383JT4yGM4eEeCv8T8mETrJwF0YBOnSpnPItizdieKTpbjgxvEYNKWfx5ikukyHvGMFUGmV6Da4i8c2CoVCoTQPKnCgUDogYVp3ks/pxuoQcLzABNLfiwhyTRxLWAYapXdCisMptFrcUAfpvsWHNzEJ42h+FVEPSBIN6SAOGQr0HwAUFwEZGUB+nksEQJBKgaQkIDsbpwQRUQQSULQ1NTWuJTMTiI4BLp7hutft24DMDMBZ+7loNMCAgUC//qevbZRmU1SyC1l5K2AwFoiDmaiIfkhJuhARYT3oU6ScFRTZHODaSJNHzlNsc7Ra4KDX6/H+++/Xv3/zzTc9xA2NmTNnDvbv34/vvvtOfP/yyy/jhhtuoBMLFAqFUkvP4V0DPgtpThkcPRPEqjcEngX4JmYYeK0MvFwiihoMF/Qklm5e+ziSI3DSwWHBS7/g5pevQc/h3cT1SrUCcV28E/d15Trknyiqf89wPBhL4IqgjWFZBmOuGB5wH7PBnUhUf61at4hAKGRSsCyL216bjeuevgIHNqZh/U+bseffAzDWuETcZHJ7yLQB2LruEBDfP6BAWVrsX1ioCVHDaLICanelJfK5ODQMBJYBywmQmgWwJBlMqwJjbXlwRndpJGpuiBMzk/TQ4Xi+Dsvzj2BYZCd8MeY6MGYnPntkATYs3iLaMxOikiIw++mZuPS+C1t8PUr7s27RJix5+y/kHM2HRCrB8OkDcdVjl6HvmNNrG045h6lLnjzVc1AoFArlvKNfuP+qp82BOAD48HAAZDwUGhs69ysGKxFQagtBpV0LrdQqJtdbORl2GJXIqtmOB3oq0DvU1Q61VI5OWu9k+yp7NVhNpjin5BI3uJGyPJLUNeik9l3Vk1xvWHQOlFLgopTuAe/H5PRMAgpWWL3EDQ2JSKpBVUEIFFIJJCyLZ0ZOwJzBo7CjKA+/H0/DlrxcGGtjGkFyOSZp45D++O+IX6wIKBwx2Ml2RnxORjsZe7h37hTkbFJ0omKdCFQuxZyrhn2jFsz+Apge6uJ3P8bCofyrI1hn5bHux80YfEE/vPLnU7DLOHySvgwbSg/AIbhEMrHKMNyUcgFmxJ9aZVtK+2A0/g6b6Rso+ONgIINEORkyzd2QyAfRR045L8ckVqsVt912GxYvXuyx/o477hCLNUlJbJtCoVAopwWS6N9S+KCm3Rl4bdP7FGQU47vnf8Ytr1yLLv07i+tUWpW4NKYwo7jV4gYCETUo1AqMu3JkwP0sBv8FnAIhU8oglUlx73u34qaXrsaBDUexZuF/2L/+cH1RKBLfGDK1P7Ys3dWqa9Rfq3s8rI2cshvDTwsF5IFz3fjJGqAZAoeTB3PFhdzP8IsH4aXfHofZYMH/PfwdNv+2A06Ha0wSnxqDG1+8GlNvmtDCO6KcDv75cg3++GgFCo4XQqaUY9SlQ3D145eh+5BU+gFQzssxSUeCjn4olA5IqEaG8CAZqgz+E06YdvzeKtPZUaG3Y2SPUMSE+u9YHys0nvK1CqpsSI1VB94pPNyVvO+KSDSflAaT3zKZy+mALKTyU1kpQCq6RkYCa1aj1SgUQJ++QE4OUFWJMwK5l40biKc2UNpIyWwyAdu2ktkwYFjgpC3K6YPjHNi5fz5q9O6queTPu6zigLj063kbkuL9J2ZTKB0FU8BKei3HeArnW79+Pcxmly29Wq3G3Xff3eQxTz31VL3AISsrC2lpaejTp0+r20ChUCjnEr1H9RAr72fsPelzO3FIUO87CfPgLqLIQSDzxQ0yWURHB5L7QzQMPMDaAZZnxIl7W48Yn+KGOuypUdixZC8OTnwJ81Y8hwET/X83f/f84lMeGP23ZDum3zEl4D5d+nfyWqfIqoJxbGeP+27M5H7uAAgJPIy6ZIi42K12HN+VCZ7jxef83Ix5EHQWyLIr4UiN8ns+RVqx17qQyCBcMediUVRgPF5ELAFFkYQtmIU9iPFony1EgELHQ+Zs+W+uZYAWNTf5TjLbXZGHF/f8A/vDu3Bit6czRHl+JT7639cw1pgx+5mZLb4upX2wmKx4bMJLyNjn/j9O/h63/rkb25fvxVMLHsDk6+mYhEKhUCgUypljZFQKugVHIUPvx1FAYETxLs94C4/JXCtP1L6+cLKI6lQtihvqVwkS1DjcFTxDlFZsKTuGXRXZ+Hr0zRgY7u3yVscveX+KQgV/hMtd81X+kEucOK7fir6hkwLu1z041uO9Rh644BK5v5AYA6b2cI9JtHI5LkjuKi4WhwMHy0rE8VS/6Bg8MeYF2C4NhskpQCvzfW5xDtscJEaniMiBYQQIAoMIhQY3dRkJk1AMvSNwEhA5JhBVW6LBFEmg3qWDdgsZc3m7WbACh+SjBVBdpwBfxsO+wSZWm/3o0W9w4jYrsoxuETyhxFqNt4/9CrPThqs7jQ94fcrpw8pZkFZ8O3pItsFdBo0DZ10BzroaitCPIVVdTD8SynkFKeREXBr+++8/L/fqF1988Yy1i0KhUM5Xhl00EPFdY1GU6dtRgEy9i0LnBm7SrLnpwkJMM/Yh/fRty3bjwPojeHv9SwETrb997uemzxfoUrwgzgmPmxVYEJxSK7RoKWMbFJgizhOk4BRZyBx1OoknMECPYV0xZ8Qz4hx1awiPC8PVj12KX1YdhKGJfQUtGUk2sU9Qyx3gdq3YLwobDm8+hrxjhR7birJKMf+WT0T3ikvvndbic1PaB5POhDmjnkP+cffnZTPbsPGXbdi6dBde/O1xjLxkCH38FMoZhPpxUigdlGFdQ6BR+E766RKjalUOT4RWCpmkeZZXpP99MNsgWmD6o9p4au4NBJO1GYk1QcFAkndCUZP07uPf2SEuHkhIcIkdCgtafu7EROCyK4Abb3aJJkJctnBnjJxsb3FDQw7sB2oTfylnFvJ/ateBdz3EDY05euIH5BZswLY9r2Plhruw+r//4WDaN6LTA8UTk7kURaW7UFq+H06u5XaIlFNDQ75P2xDtKZwvkzja1EJECs2xaO7RowfCwsLq3x8/frzV16dQKJRzkecXP4LoTpE+t816eAaQXwnl6oOQZJaAtQv1gmQibLCHApwG4JQApwYcIYBDDQwe1xvyvgmBL8wycCSGiQ4An8z5JuCu6Xv996mai7/gREOSeiRg4OS+HuukNVYoMvyLnKVWJ64c6XlMHXKlHP3H98bASX1hqDLi6NYTcIQrwVRWgzebvMd7ggDlrhzIity1TkfOGIz3N8/ForzPxWql8amxYAQBbEkN7BoG9mDWW3zBMLCFSmCPbPp3sjH6Gf6FF4SVBWk4mpHrd/ui136Dvqqp0ALldMDzPJ6Y8oqHuMFjO8fjvbs+x/LPVmHOyGcwXXEdrgi7Be/e+Rlyj9ExSWPyTxRi4y9bsX35HtgsdEzSGJLD2BYLhUKhUM5PPhh+FaKVJKHeE9LLvbnLKBj1cjjtrEdtJBLb4HiWpOD7POfEyK6IiQssDiDdaK3cDgvnwOuHVgTcN9+SE3C7jG06BlJtb3pM0iMkFgPD3EILl6hCgFpiR5jMjFCZGQrWM1EqKtGAK/v7jpOoZDKMTEjCyMQkVJ4sR3pWDrjpWpSZtbA6vevjkWdcYg6CyekuijUtvhd+HHc7Vk99CMOjOkHF+heC1GHjpX5rWVXuD0Nkzyp0mpSH0EsZxHyXi4iFBZAVux31EozlGBRXgIirGKjvUkP7nBahf4ZBPkOBNZX7vcQNDfn25CqYnd7ufJTTDydw+CP7cVHc4BsnbLonsKl0LZ4/8hpu3nUv7t7zEL7J/gEl1tLT3NqOT7UtB1n6tcgzboOTp2OSs3VMUlNTgwsuuMBD3CCXy7Fw4UIqbqBQKJQzBHFnfvn3xxEaHeLTGfrKRy71EDcQFCfKmjzv5J6dIVM0ryZ1nRtAIE4e8j8v35Zxkt4ju6ProJQWnVcqk2DKjb5FxiqNUixwNWBCHxScKBJdhlvKpOvG4MOtr+GHk5+IzuTxsaFNHsMUNy2iYPNb7oBNWPXdBi9xQ0O+e+4nOofcQbDbHHiwkbihIQ67E/Nv/QR/frIS9w5+AhfJr8OsyNvEgl7FJ+mYpDHZR/KwYfFW7FyxT3y2lLNzTNIRoQ4OFEoHRa2QYFK/cOSWW1FYaYWTFxCiliIlRgW7g8fJ0pZbf4UHyWF12OBoZoVsk41Dhd6BqBBv22VCgKKrzUYh8xFkqK4mJSoAkpwaE+NaN2488NefgKEFCTFkX4276pJPWuu6oA0CiH3z77+SGSe0O61xsGgIqeK6bi3QtSuQ2pXMiLVl6ygtoLL6GKp16QH34QUnjqb/UP/eyVlQWLIVJWW7MaT/Q4gM73XeP/PyqqNIO/EjTBb3wEEqUSGl0zR0Tb5MrJRAaX/iFTIQ3RzXBh1pKQPEKWStPt7pdIvuWmLRrNFoUE1+d8gg1UEHWhQKhdIQkjD/+f638e+3G7D59+1iZRkyeX3pfReiLLccf+AfsBY7WI6HlANYJ+BUAU7SBW/8U8wAvBJIeWA8jv57GIYaU+CHzbpOQCa003akixPnvlBqWp6o35iQqGCvdeS6pTllCI0JRY+hrspIj351Lx6b+JLoSFB/7KpM6ATA1j3CQ0wgqbIg+J8TqLq7FOEDA0/4p+eXoPTm3rB1cU+8syYHVLkWKCqdkOgskJ8ohcTgmYgTkxwNXbke9wx4XLSgrj82owj2QYHFCJZBiVBmtmwsZO+rDbidYwTYemog3eEWYdThCJOjekgEHlvyB6ZOHIxLUntALaNjkjMFqSR1YpdbHOoLm8UuTtTX4dSZ8e+36/Hfkm2Yt+JZ9B1LxyTbdhzHh/OXitW3pCU6SMuN0IZqcM0Tl1O3EgqFQqFQ2ojU4Cgsm3IPfs/djzWFx2HlnegTGofZXYbiRGWl6OJgN5OEewEMS0TXDFg5B4ncd8IKZ5VgYO8k7HZI4GiiflNd9z5NV4xjumL0ConzuZ9C4r9fK2eckPpwmGiMSuo9Jsk0lKDUWoMIhRY9gxPFda8OnIk7tn2HcpsBrMAjXqmDlNx3LcEyG2ycBOU2LXiwkKjs0As1CIGn+0NjjhUXoeqVZARLOfBgUGAKgUZqF50cWIaHnZNCZ1fCznsGhZI04aiw1WD2liUotFRByjgxLb5+OOeTSrsW1XYVFA4OKoVDHCuaitRQyhxIHNogSWSCBDEPCyh8tgIhj5eD10qgGCdF8PNkXOJ5AVbLQvO0Bo6cwHOLFs6Gp/ctwYSoAZiR1BtKaevnIimnxuGaPUhgdnmsk5C/WbE2IwMePDjBiLSKd5Ftcv39mzgz1pdtwo7K3Xi65yNI1bYsue5cJF2/BbsrPoHF6U7KUrDBGBB+E/qHX3dG20ZpGRaLBTNmzMDu3bvr14WEhGDp0qWYNCmwww+FQqFQ2peUfp3x1eF3seKrddi2bBccNqfoNnDZ/y7E8Z3ec6yyUqMocrD1iPZ5PuXREgyZOR4HF29vdhtIgSRSZIUUYvKFQiVvlzhJ1sEcMR4SmRiOrrVxjqcWzhGL59SUeccBfOF0cNBV6KEOUgXcL92Pm3hTEIeN4pNlmHf9hyjNLYcgYYHpgwMmtElWVYCbpgUi/ecUsP+0rlgTud9AGKpNeH32Bxh35UhMuHqUWAyLcmYgsY48P+KGOkiBsk8f/NbjPSkMtXHxFsxf91L9/4vzGSJq+PrpH1GWV+HhPH/jC1fjijnTz2jbKOcGVOBAoXRgZFIWXePU4tKQcl3g6kL+yC61IDZULgoXmovZ7n/fuDAlynSnlgyaGNGgE0sCEls2ASUNlMGhocCIUUByMjDrKmDXTuBYWvNOXlYGxAaYuLdYgP82tq7hRDixauWpiQ5aQltcp6jQtWzf5hKMdPOdJEZpW4zmEjidFqhVUZDLtDiZu7LV5+J4Ow6mfYVxw+fCYCoQwzghwSmQBAiina0uF0QIYraUQSbTIjqif/092h1G7D/ymbi9MUQIkpG9DBxnR8+uV5+Blp9/BEklmB4Zgr/LmzeBEYjpkaHi+VpLTJ0grtbNgfwdNSV0sVqtKCO/FbXExfkOVFMoFMr5TFCYVrT1JUtDjNXG+td8rMsNR67jYQ3z4RrQgB937Me4LklYvy9wcrW0VF//upxMivkROBAbYzK531okUgkmzR5b/55UtP/4ga9xbEdG/brOvRNxzzs3Y9hFg/B/e97CN88sEqvwkC46w/EIXZkO53YlbKnh4uQ5CWDIc2vEvtqJXVkBJzjLjSY8u2u7h7iBwGtkMPWWQb48C6q9vivBhMaE4NWr3vGqECVIBAi+hOQN4CI14DRySEz2FtlUeytXPGEatwVAxZWdUDMxFkQVuQblWLNxFeZu24g3J0zDjNQezb4+pfWQ4JfZYEVC11gxAf+X+X+2+lwWoxVv3fwxPj3yLk4UVYiVyvp1ioW8BQLTswHy/2r30VwUlekQFqzG6IEpkMtc91itN+PJj5fhQGYxEKIABrscJyVlBvD/pePb536C3WrHLa9ce4bvogNxnlYWolAoFErbEKZQ487uY8SlIYV695iE9FMF3tVX5WwSCAIDiYwDU+tjL/AAZ5GCN0vx7aG9uHJYF+yrORzwumaHO/m92KzzK3AYFjYQeWZvFwcJwyFe6RoXBELCyNA72D0mOVqTh3eP/4VjerdzVqo2Fg/3uARDI7ril/H34vOM5SiyrYSkgbihDoWEQ5TCiFKbK0Ep05CHJLX/OEmxWY9ny7fCkUDE43VCdEZ0amjo1uArVBEkleH5g79AqP2xdwpSHKmOR7+wIp/DQr1DgTKrRtzPwgLZX3SDYJMgZXo2gvs1/DxdSEMZJL3H4uQNHJxWAdr7SBsb3rP7IgzLQJPEw95EyGpTSTpW5ORh3sE1eGvYZbgggcZJTgdFliLYODtilNFQS9VYXfo3LlG5CrkxYCCHDGzDogFgIRUkGKSqxOZagUMdZs6Cz7K+xYu9nsUxXQmkLIt+YQmQs+fYmETgUGTeDaOjBCppOBI1o8TvC4LRUY0lea/B7twNaaMynjZej10Vn0KAEwPCbzxDre+AdPAxyZw5c7Btm9vRJDo6GqtXr8aAAQPOaLsoFAqF4iI0KgTXPztLXBrir1K/dkMmJHorLH3jIKhcv9+MyQ7V4WKo9hfit5M69BnTA/vWBh6TNIQkD/sTOIy+fBhy01rvvKvUKDBu1vD690e2HBNdIzL2ZdevI8Wv7v/gNvQb1wuf7X0Lnz+2UEwQbw4Ze08iLsUdy29McXYpvnrSXQC0JcjkUrx500f170nMRnYoB47BXXzGqtjCSkiKasDOt8IxN5qoQ733+dcAyY6WFx1uLtv/2iMunz+6AE//MEeMPVHan9y0fLGwU0K3OGiC1Vjy9rJWn4sIVd6+7VO8ve4lnDyYC6lcKjqISGtjCOcKHMdhz6qDotApIj4Mwy4aWH+P5QWVeOHyt5C13/09UYeuwoBPH/pWdAuf9fCMM9DyDkoHH5N0VM6t/1UUynlCZLAMSjkLq73pyj8NIS4QoVoZCqqab0+qknl35uroFKVEWr4RjlaW7k6NVUOjrE1m1dUAy5cBtkZtI+4Iq/8FJk0GMjKA/LzmX2DfHiA4CEhulFBEHCwKCoATxwCj96R5k0RGAdknT5+4oa0hFco3rAfUGiDB9wCIcuqUVR5C+sml0BtcdoAsK0Vs1DBU67NO6bw2ew3Wb3sUPO+K1MikGnROnIxuKZeDqYvYncVUVZ/AoePfieKGOsg9du8yU7zPvYc+adIBIyd/jejkoJB7W0VS2p5bEyLbROBwa0LEKR0/Zow7yF1eXo7169djypQpAY9ZtmwZ7MSNhwR/FQoMHTr0lNpAoVAo5xMDJ/cVbZlJlR6htjynxAEITRTA1Fts6N8nARv2EzGa732kxTpIq8z178mkmT8uun0yFr68RHSXaA1EuBERF1bv2vD45Jdh1ntOXJPAwAuXvYVnFj2IFV+t9Rl0kNZYId1b5LX+u+d/RlRSBIZP95ygJsnPe9ccwk/ZGSg3ue+1MbrJnaA9UAam0Zir9+geWP/TFi9xg0igcqmt2a8W5UEDLMP8968YOw9FmqczR9X0BNRM8U4EM9hteGjdP4jVaDEklo5J2ottf+3Ggpd+ESfYCXKlDBOvGyMKefxB3DZsnTRgnDxU6QawDs95B0HCIL2zFpNf+hI2zrUtTKPC9eMG4u4LRoiCh7Od3Udy8cbXa1DUoI8bGqTCfdeOxWUT++HhD5YiLdtbeMRFB8E4tReC/jqEX9/5CzMfuhjB4UGnufUUCoVCoZw/TEhIQbBcAb298ViAAW+XgLezEPN+ORaCk/RRXP2UCosZ3ZQjsQ/+k4mMdrnoWlBHtNL/b/rE6AlYXrQCdsFTPBwqtUDCuFL/RXG0n27S6MiroZa6+tnp+iLM2fs1LJznubKMJXh033eY2/9arCzZiDzzYUQo/MeHiMhBwTph46X48uGFCLlDicEX9PfYx+K0Y3v5SSzK2IdqpwlSoemQMcfXzT8zGBaegr+L9taLG+rIM4eL1+0ZUoogmeuzIc4PZTYtiiwhEMQK/S6kBZVApyBE9vHvLscqGcTMl8McrxZFDHUZAeSZul65H6xcxoN18uAFtsl70NmtmLP9NyyZfCv6hcc3ee+U1rG7ag/+LPwLBRZX8p+clWNk+AgUmAtgUbjig3JIPcQNdZDiNYPVNYiSWlBO7CIbUGwtwYz1r6PS6vq7jVBocHPqSNzZbew54e5cYNqBraVvw+R0jzuUkjAMi7ofqUHTsCj3ZZgdaQiS+I9THqj6Ab1CZ0HOehbRo3Q8fv/9d3zzzTf174ODg7F27Vr069fvjLaLQqFQKE0z8pIhUGmVYlGYhpBxiHpPAVT7CsGFu36LJVXm+gJBJDH4qscubZHAISI+3O824rr927vL4bA3YVPnB1JpXRNCrLmB47sy8PSFr4mJ4A3J3J+Npy+ci2d/ehi/vvtXiwpPffbI92I8qf/43h7rLUYL9q87gqUfrYCxKddvH5Bk67+/WOO1XppXAcbqgLNHPPhIl/CbMdkgyS6FNKNYHEEw+62QPVgM7uoQ8GPVxH4PTKYdkr8MYFe1Io+sFegrDXh51tv4ZOcbolMIpX1Y//MWLHrtt3pBEhH0TLlhHPKbcG9oChJ3uTb+LjhrC0eHx4bi6scvw1WPehaMO1vZtmy3WBCuorCqfh25x/vevxVjZg4Xvw/8ibzq+HHur5hxzwVQqLyLJ1AozeXsz4SkUM5DyORcr0RX57KlEEHBwJTmBdhVchZRIf4rw0slLEb1DG1pXoxIXJgC/ToTK+Fa9u3zFjfUQWaqidNCS8QNBHK+1atcYoY6jhwGflwI/LsCyM5uRcPjgUGDgSr3D/hZCXmmB/a7hCUVFS7RA8FkAk4cd7lkVFef6VaetZSU78Wegx/WixsIPO9EUel2cJzn4LY11IkbCA6nCZk5y3Ho2Hc429Eb87HrwHse4oa6ezya/iOOZfzSpLiBwAtOlJTtbceWUhoyJlSLHhpSPa319NQoMTq0wW9CK+jevTtGjBhR//7BBx+E2ew/YbSiogJPPfVU/furrroKGuLOQ6FQKJRmIZPLcMPzV4qv2arayV5xVrjpwUFKXDgeu3aiz13ZGjO0G93uCaSSSp8xPQM6TLz29zOQylvuAjThmlG4440bPCbaGosb6uCcHObf+mnAgAOvkolLQ4j18ktXvIXDm93uU7++uxzXJd6DFy9/C+ty3f1Fn+fUyGBN9XR3GHxBP8x8cLrfyVdJjQWMJXDZUtZgA2tsmSgkeHk56Wj53a7ZUAWJ0e0AyMsY1Ez2XynWyfP4/MBuFKQXiVbXFpO1Prjz73cbsOLrdeI2Susn7V+e+Xa9uIFgtzqw+vuNsJm9nTs4jRRFd3VDzisDUXx3dxTd3xPZ8wah8uKE+pQ18m/1pT1hHhRXL24gVJss+PTf7Zj3x/qz/uM6drIEj7291EPcQKgxWETRwye/bPYQN/ASwKkESHFj8nz4UDUcncPFAOC2P3efgTugUCgUCuX8QSWV4X/9R/nfQWBEdwDBSUKhnoOPRGVn3Nh5ps/DrE4pCvWuJBhCt6Bo9A3zL8oNlgXj4e5zwPCeAgGtpK6/zYAnC0nIb9CdJq/7hUzB+Ojr69d9nbXGS9xQh0Nw4r30hTisy4BG2nRfXilxQDDzqFhehucvfVNMVKrjq/TNmLTqPTywczG2V6VDqXaAkfKw2gOLHOycROzzjInqhttTu8HhzAMLb6FFqTUIR/Rx2FOdhH3Vidhfk4hCS5iHuEHId0Kx/iRiag6JThvkPFKGE5fGZQ3VXYRacYMbMp5kXD2w2v1dS6ARKcczsNjdYzYHz+ObEzuQby7FSWOh6DBAqLKXY0flBmyv3IAKm29HPUrTbC7fgk8yP6sXNxDsvB2bKjbDzjtxyBoFFgzYAIWbJAwwKzSr9rP2hGHdsZZKmwnvp63D/COrzvqPptRyGGsLn/YQNxCsXDU2l8zD9vKvUWo9iQiJAZESPaIkOoSwJrDw/L/j4M3INzavqjLlzOF0OvHEE094rPv222+puIFCoVDOEtRBKlzzxOV+txNBg7TCJC6N3Y97jeyOm1++plnX6T40Fcl9kvxuj0qMwEu/Pw6WdJ5ayIx7puLaJ9338N0Li73EDQ3nl+fd8GGLXbVJgvSz019H5gFXjpYgCPjhlV/FOMlLM+fjwIYjLW73qMuGYtxVIz2SrxsiKdNBsfkYlH/vgXLFPihWH4CsVtxQB3vSAdlbFVBcmgf5hbmQvGiEcEINLsHl1n06IM/0t/f+Ru6xApw8lCsWxyIUnyzFym/WiUtJjmf+DKX5LP98Nd644UOPRHxSMO2fL9eCc7asqLQv6sQNhKqSGnzx+ELR4flsh/yffPXqd73+f5F7JM/zu+cXNyluqHO62P3vgXZsKeV8gDo4UChnKcnRanEC/Ghe8x0UyIRvuJa4P0gQGSxHZrEZ+RUWNMhL8KBfclCTlU4iguSY3D8CGw5X+j2P7+Nk7nMTR4WszMAHkH1aA3lIG9YBrAQglZxqK3W3CNJOuRyIiHSdY83ZP0EqUpAPLP7Z9VomA0hir07nGWVJTHK5Z6hphZfGCAKP8sojqKw5Lg6CIsL7IDKMKM4FpKUvPu3eUoUlW8W/VSJ+IM4FiXFjEKz1P8g90+gNeXA4LdCqY+HkbDiZ9y/yi/4L+NxyCtY2+/w6g7ctPKV9IN/lH/fqhCv2Z8Lckh+CWtQSFh/16tQmlbXeffddTJgwQbTKS0tLw+jRo/Hdd99h0CDPqtm7d+/GTTfdhNzapFJSEen1118/5etTKBTK+cYVD0yHwAv45oN/oEuIEKsSSSwCOJX/73SFVIK+CTEY2y0Zw3sm4edVe7Hq371w6K2QZ1dCfrJCtBAmSKQS3PfeLU3+RgyY0Aef7n4LD4x4Bg5r4MT+hvQb564WZDXbsHXproD72/1M6tu6RsHaLx5chKZepKE8UgzlcVcygtPBYd71H4j3Y6g2eogoeFUzqqSqpGClLDQhanQblIKaMj1ev+4Dv/sTtwflsVJYBif63Ye0j3xejig5dJMiYU9UgbVw0O6qhmafzlXptvExx82I+KwAlXclkLKbHtvUO3UIX1Dssc7SNRi8JvD9rT2ZgewZi8TrqYKUYhWqoswS0bZWvBeGwfCLB+GJ7/6HkNpKSxQ3xMHjv/ST2J1TKA5bx3VLxsguneB0OPHFYwvEQFFzIGKUggd7wt6okAKvlqJqRiJ4pQRRf+TBnhwKe7J/R5Ul2w5BvjMfjsIaRMaH48LbJgUMvJ1JyLMhVcfMBgs69UqEsdqIX99ZjqWZBXAEcI1Z/O8eMT+SFP61hQNOMlSu/Y5inALkekDWKRzynErRKYO4zJzvMIIgLqd6DgqFQqFQfHFPX1exi4/2boFJaFCtlHQnHd7CBoJaKkPviGiMVCRhYGhv/FW4HutLD8Di5KC3KcWlLk1eyrB4qu+FTT78PiG98WzKC3jsj88hj9ZDEBggtbJBmTmSnk2WetsBkSR1n/rXBocF2yr8JwrJJRwYxoxQmR1SXx32RpCrOX8zA2YBlk4snvjvJ9j1WugdVtFRjSdtbPB8JBIBeqscEpaHTOo9x2d3KqBigvBAFwsmhS0Ab0/Dpz2AKocaq6p6Yll5P/D1N8zA6pSBlUFMufYF94erQqsiXoCKtYtuF3WQn367IIGjCVcJsRsmumO4XR0UNg5mOSOejwhBiC7CyklhccpQbRQ7b/XHBymtOGLZirv3kHlpIEiqQM9gQO8oqHemYMCgb8gQXN/pHqilp1ag5VyEFzik6fci23QMEkjQM3gwumh7w847sDj/V7/Hkc/3sDUCl/L5UARwISB0V+jQU1OMIlsYdA2cHNyOIm6W529An3Ai5jEiSBqFvqHTEKHohI46JimxZsHBWxGhSIKNq8b+qsXINqzwKRyqPQrpNYvRX1WFYEnDYlo2hAkmlDuDYRbc1VErbMeRigtwvtORxySLFy9GdoOCfCzLioWZGhZnag6k4BNZKBQKhXL6ufGFq0Qx7k/z/vAbQ2gMmetP7puEXiO6iS4Qv7//N/77dTucPhwYZAoZ7n33libPOWLGELy74RU8PvkVsWBTc+k/rlf96+rSGuxvwlWiuffYGCKaIAV5eJ4X3RoshpYXBpXIWGhDNeg6MEWMI7x35+dNHsM4yLMI/Dy4UA3sw1IhBDfIi3I4ITtWKIoi2ps1P/yH1Qs2iq/J/YVEBYv3Vze/T1yTx8wagce+vg+ahm2kuD4/Jye6DRzddgIyuRQjLhmCvmN6ig4hXz/942l/SkveXgZdhUG8fnRSJC66YwoSu3k7nXcEyP/HjH3ZsJltYiyHCBqWvLMM6xZt9pu6ReJSf368stnXIOcfO9NdqPR8pSOPSTo6jNDcaCeFQumQcLyAXek1KKlpuhOZGKHEsG4uq+M6bA4eR/IMKKiw1hfjDNVI0StRi9iw5lsEVRsd2H6iRjxfcxjdMxQxoQq308L33zb7WpTTTHg4MOsqEuGgj74W4jCw59BHMJo8K8oGazshpdOFOJj2VYd4Volx49Cn+w0orzoMq60GKkU4oiL6gWXdgSGHwwyGlUAqOT2WYMVle5B+cilM5rqBICsmrglCK0VMAejeZRa6Jl/S5uel+Oa/KgNuO5LdIpEDETd81zcFE8Kb5yzUHD7//HPcf//9Hgl9AwYMQO/evSGRSHDkyBEcOOBWiSsUCvz111+YNm1am7WBQqFQzjdsFhuee/wH7Cyshi2UhTHRf2WbK4f0xdyZUz3WVZVU48snf8CmX3fAYXMJFHqO6Ibb5l6HwRf0b3Y7yOTlyzPno6Zc36z939nwsiiOqGvDtfF3o6VYBiXCMsR3soTiSBE0OwKLLovv6Q9HXOAkmZivD0FR0DJLZIFlYLiwB+zJ3rbVivRyaNdlQD8pEuW3JLlKYjbcnmlC/NuZkJh998+4IAmMk8LhSFCANXHQbK2BIsvb+cLYNxTF9/dosq1dH9gJponuQ7fBKfh4xxuiSITiIruiGvcvWoacSk/nvb7xMbgjOhnvXvV+sx+VbnQUym7o4n8HjkfKCwdgHJ0Ma4+ogOfS7MxH0PZ8CDIJBCmLy2+bjHveuRm7/tknVveJ6RwlWofXfZakz0YCWiRQp1QrTpu7xcKXl6CwNjhV1xanwMN41XAEsqkkjg28lIE5ziUM8YUq24TIHw6Kr8m9nyuW1C2hoKAASUkucUu/616AXOPpRNNS7KYaHF48V3ydn5+PxET/Ai4KhUKhnJ9YnA7c9+H32MLoiHEDOHcOtBc39xmIV8d5JvyWWvR4++hqrC0+Bgfv6gcPCk/CQ72mYFhkcrPbsed4Pp76v+XQmawYc/V+RCR6ukI15o4u7yBB3V18XWypwqzN8/3uG64wIkZlhFrqgJx1imn6RKTACaxP34JiSxB0Cx2wHuShezIBkHmO08jUGTleFGM0wOlgoZQ6oVbaRbEDOb/FIYOTl+DSqCO4t9NWn+3boeuM9/InNRAQCAiBGXK1dxiaW2EGN18HeZyAvr/wkPrRMtt4l8iBCBT0DRLbAyOAsTHQqG0eroEGmxzHymMQrLIiTGWBVOL6nFlGgELiBHmKRBAhZ30PTpI13fBQt5cDug2cb5RY8/F99luosns6DXRWd0e/0Kn4JvuHgMcrWTtuDj+BUeqagPuVcxIs0iWhhlOjwq6BzqkW3TiOlMWCF1jR9WNCeDquiDuMcJkJFkGGfEcYCpyhomvIkPBZGBd1K/JNW2HhqhEki0eCejhYxj0mMXFmyBgZFBL/rvZtyaGaddhc9jNqHCXiezlDXF+sRJYEBZwBzTGjpTVQs76LO5D/10WOMDjqa1wyGBX9CHqFzsL5xtkyJpk1axaWLl16yud56aWX8PLLL7dJmygUCoXSOkgy85NT5+L4Trdzmj+ufuxS3P32zR7rSnPLxTgJKcRUJ1DoN74X7ph3A/qMbnqevY49qw/i9eveF+dcm8MXB95Bl/6dxdfEReDOPo/gfILXKGCd3A+Q+xZXyw7mQJbp6rOdafpP6I131r/cJoUjzxWIK8hLV8xHWV6Fx3ryf2fidWPw8f1foyNw3dNX4Ibnr8KO5XugrzQiLjUGQ6b2F8WtDeMkcqUMCtXpiZMQF/Wf5/2Okpxy8b1ULhWLj9UVIGsryJ/rI1/ei+l3TMH5xtkyJvFFRkYGvv/+e2zatEl8XV1dLeZWRUVFYejQoZgxYwZmz54NGSmo3c5QgQOFco6w/lAldGZvNW8dRLQwtlcYZFLfk692Jw+zjYNUwkCrlLZabFFYaUVBpRWlAQQXGoUEUwdGuDtdZMbthwWAxTsp5pyB3GtMDFBa6umQcLZAXBy6N3/QdDa6MZSU70NB8RbY7DpRCJAYPw7REf3BNApYcLwDm3e+IIocfKFQhMJmCzwhfzphGImHeIC4O/TufoN4n7kF62uFBgwiwnoitfMMhIWkis+C3INSGY6YyMGQSNqmQ1JYsqNW/HH6/g+MHvo8QoMDJGtR2pRDBjPmHMvDCVPTFRd6apSic0P/oLavMrBs2TLcddddKC93Dcb80bVrV/z0008YNmxYm7eBQqFQzkduH/McTpod0A8MhzXBewJuUEIsvrz9SmgUvhMG9FUGlOaUixVq4rrEtKoNxL534y/bsGHxFuxZ5Uow9kXn3on4+og7AZxUvL8m9k7RLrW5cEEK6K4eHDAZOviPA5BWmf1uNwyNQfUlqX63y0pNiPvM/30EgvS4HJ1CYe0RDV4jh8zswODwMGQs2QlTVzUKn+vut+2aPTWI+/AkTgVnsAzZrw8EAlg5K3KN6PTW0Wad7/lfHsWEq0fhXIX8DW7+fadYrammtAYxydHihC8RAzQOWFjsDsz4eAGKdQaf54qXKcG8tL4+t6ypAr8FD/WCpXtgh4zI33IhhIXD3inwBKwyoxJSGwNnQqg4DmbMdqizKyHdlyu6i4jnSgjHnE/uFK21l336r1iNitzjkGn9cd3TM9F9SBds+WMXasp0iO4cJdqNyxVtMyb599v1ePfOz3xuE+RSGK8cGvB40bkhjIEtPEAQyckj4Z3dYO2kyjKDz/e/XR8kPC8n7q9to4n7X6jAgUKhUCiB4QUBF33wDXKNBji0PHiVdydoZFwSvp8xC0qp775Fjd2MInMNQuQqJKj9uzoFwmpz4N9dx3FUtxlc8r9+94tTpuKuru4xiZVzYMbG12DmbD737xNWjFC595wbCTc4eVLv3d3vtnMSnDQRsTODykoVnH6SdcixJFG8oasBzzOwWeSQSDkolO6YU5DEigX9f4SC9V+o5o2cC7Df6HbwUnxfAVW+GZKLVEC4BGy5gJ5ViTjyf4fFqo+dHucRe6P/zippn4mXo9qubtLNof6aLBGA+E7I4AQGZo589i7rByIUqRsSSRgOGklgR8C7ujyBviGDca7i5J3YUbUXm8t3wOA0IFoRhcnRY9E/1O00UoeVM+Pt4w/D4PQUXNcRIotButFS51vi002FfL5jg/JwZ7jLZdcfh2xKbDDHwsTJYeblyLOEo1AfglJTkPh5v9h1JXoHeSedVXAa7LQkQ0Y+W/Fvwv33rJHGYFT0EzioM2JVyX8otVWIbh0DQ/tgVuJF6KyJx/7qvTA49YhURGFAyCBIGxSOOhX2VP2DVcUNxyQCgiUWqFk7oiVGKBgn9LxSXBojY5xIkPl+5nXoOSWqOHdBIQYsZiX/iBB5x3SyON/HJH379sXRo82bFwkEFThQKBRKx4AIE27u+oBXsnVDhl44AK/8+ZTf+c6acp14PHE0JsViWiu2WP/TFmz4eQsO/pfmd7/eo3vgwy2v1b836c24Nu4u0W3hXEUiZdFrZHcc3XpCTCq3D0qBM1A8yuaAasU+MHUVg88wb61+oUWFwc427DYHNi7einU/bYah0oCEbnGYcfdUDJzU12tffaUBd/R5RIwj+ILEGYtPeoqxzySk0FJDd5XYlGg8/PndyNh7En9/sUYUObESFiNmDMbsZ2YhqUc8tizdJT6H+K6xottLWxUB+/Xd5fjyiYU4XZD7WpDxMWKTo3E+cbaMSRpiNBrx0EMP4bvvvmvSJZ7c24IFCzBpEil20X5QgQOFco5AnBOIgwJxUmgImZztkaBB93iNaFt1ujiUY0BWiXcij0zCYEyvMIRpG3XWd+0E9u/DOYFGAyiVQGWly/UgOQUYMBCIiiK/BMC/K4FK/wOaDkmnzsD0iwGDATh6BMjNATgOiI4hs29AbMe002oIzzs9nAvq4DgH9h76CBXV3hOIsVFDMLDPvWBZdyexsGT7KTs0ENEEEVV0RFhWDp53D1hlUg16d78eCbGeyWR6YwFM5hLIpGpRHNFYCNIYnuewYdsTsNlPr/gjIXYMBvS+47Re83yHdHK31RjxXWEFVlboUJvHJiJlgOmRobg1IQKjQ7XtWl3AbDaLnekVK1aIjg0VFRWiAj46OloUNFx++eW49tprIZW2TWCKQqFQKEBlcTVeuPQN0W7UHq+FaWAMnOFKqAQW910zGTfMGA1JbTWS08GH930pTgo2JjgiCPPXvojUAZ6VWD9/bIFoBd1czEOSYB3kTt7xheJoMTTbswM6LZTP7glrN+/kKcbqRPTCNCiKWubeQIhJjoJKq0TOkXyx4su4K0fi6scvE++ZTJLeuWoxjmgCnJcX0Pnxo5CVn1ogo/i2VBiHRfpv54IsBO9s3tho3FUj8eKSx1CcXYpln/yLnf/shdPBoc+YHrjigenoObwbzobJeV+BK6vZhudmzMMhH8GmydePxVML59RX8iEs2XMYL/21NuC1VFlmMGq1mDUkLdJBdbgQskKdz8n03Gf6wp6oCXi+8JWFkFrksPSLDbif1MRD6vDu45E2aNYeqw8EuVzcvCdHiZ27TC4TxUp1hEYFY86nd2L8VZ5jkhP5Zcgrr0GoRoXB3RKa/H4hz//6pHtEe2hfkNaYLhsEQeO/QpLA8zB0loBXBu7Hhv+ZAc0hl9j20nun4cH/uwvnE2fjxD2FQqFQzg2IAPSexX/iRFkFeKkATiVAYAWopDI8OXocbuo/8LSNSUhf56/Cj3CwZp3XNo0kBDenvI4opWfC8dvH/sQf+Tu89g+SWtA/wn/VUNKtshOrKTBw8CzyzaGw8645L5NdBqPNO1G6Dp4n3X/3MyHT1laLAgqVHRKJu78WyL2hjp26zng3f7L4OskajNBXy5B3IB8KlRzjrx6Fa564HMl9ksQ+/bPTX0fkJwWQN5HfUO1QodoRuK9aB0mm10jsYr2pUIlNlHxUc3IPhwsbJ4FdkIqJ4hLWfX9KURgR2GV4WNg43Jh8P0yOXOTpf0KFeRMEcAhTDkWn4BsQovAWAnQ0OMEBCeM9JrFwVrxx7ANkGL2F7hOjxuDuLjd7zOVuLV+JZUX+ndnDJCaES40IlVrEv88KhxYnrdGodLodDBlIoWUNeCFuP6JqHTUaYxcY/GUMRaEzRBSnWAU5is1abCtOEd2hb0vcjstiDvttR7Y9HEWc776oILDYrksRHSEaopJwCJLycAjueGuwNAQ3Jt+KgaGeApdyazr0jmKoJKGIU/VrMk7i4K348MQtsPHu4goyxoGRqjwkSms8ahAYeDmO2GJgEdxFIoJYMyKkgQszOAQWhY4Ij3V9Qq/FiOg5OJ+gYxIKhUKhnClIUZfnL3kDuWkFHuuVGgXueftmXHz3BR5zve0Jz/N486aPsOFn7358RHwY3tnwChK7eeb6vHP7/2HV9xtwLpDQNVZMrM4/USQ+/4nXjMY1T16OpB4JKMwsxjMXvYasPp38ujfUodh6HJKSjlHk9OI7p4jV8PNPFOLPj1eKjh0CL2DAhN64fM50dB1I+skdG4fdIcYAGkMcDJ6aNhfpe7K8tvmaY/9l/jJ8/fSPbSo6ON2QPE4i/vdaL2HFttW53tf9n33s6/sw7KJBHvue2J0pxv3CYkLRdyzJ3QocuzDpTLgu8R5YTb6LK7QXs5+Zidtfvx7nE2fbmESv12PixInYv3+/x3ri3EDyrEgOViXJhW2ARCLBwoULcf317ffZ0owuCuUcQSFjMbFvOMp1dhRX28RqReFaGRIilJCcRmFDHf2TgxAZLMPJUgtqTA5IWQbx4UqkxqqhUfpQFA4cBOTnARVnOPG/LtHV6d8Nwy8keaRnL5eYQS53RRUadxy0WhIdaN75goJcgoKOgN0OlJYAK/5xva6DtC8rExg1Gug/ALDZgOoql7AjMsr7/k8zDocJJ/P+RX7xZtjtejFZPzFuDLp0ni46GRDST/7hU9xAKCnfKx7fNXlG/bqyitZV0G1I54SpYuJOdt6q0+pm0BwaihsIDqcJB9O+hkymER0tDMYCHD6+ADX6LA+XCLKtT4+boFT47pBVVqeddnEDwWDMP+3XPN8hA6YxYUHiYnByKLY5YOQ4aCUSxClkCGojVXlTqNVq3HfffeJCoVAolNNDRFwYPt39FvatPYQdf+8F5+TRd0wPMTHd12Rle/PQZ3dj0JR+WP75amQdyBET/kmC9MwHpyO6k3floxuev1Jse/bhvGadn9cqTnkfkuwd9fNxGIbHwjg0Fs5IFVQyKZSHyqFcmw1ZZdOuSA0hlfEvvvMCXPXYJVBpVeA4Tpxcagip+lQUzgGB5i5ZBpaeWiSo2IDVppoienEOHNFK2Dq7k1jqCNlY0mxxA8Gst+DQpjQxOGQxup9LSXYZ1i/aggc+vgOX3X8hDNVG5B7Nh1wlR9dBKactWOQPXYUeS97+C6u/34Cacj1CIoNw4a2TxEAKqcJF+PKJH3yKGwik0lb3Iam48pFL6tf9l960u4YjVg253uUmSNwUDPEhUG87CeVxV8Wia564DHaLHX98tALyMmuTAgdZqQWqvJrAAgdBgMTpewzojA+BPTUKigyXE56/yi8kGNNQ3EAgz+312R+I4iRSqel4fhle+2ktjua6qy8p7BwuiInGYw9djrBo11ivMbtW7PMrbiCQlsuyymDv71+4JCuoBuJDAKVvJ5o6OLX7Oy/rYA7OZ4iDSFMuIs05B4VCoVAozSEuJAjL7r4Rm7JysDkzB5wgYFinBEzt2RWyRv3i0zFHdlnCg0jVDsKeqpUot+VBzqrQJ2QshkdcimCZZwIy4a7UqdhblYVck6craYJW18S1XOGICptadDto6OYgaeqH1GVmUA8vMFBLZZBKnXA2cAaOlDctvI6QmRCrDMUVScNwffJYKK+Q+RyTxKXEoKKwCjHN0C0ESSNQ7WjeuEjK8BipKce0oEIkyFxxmHKnAhuMcVhvJP1YBlKWh50TwHo9l6Y7HFbegkrLNuwvnQNOcMd5LMYCFBn/Qp/IV5AYdCXMTj3KbQWQsUrEKVPatchLczA5q7GncgnSdKth5QxQS8LQJ/RCDI24GkqJq9L/wpxffIobCBvLt6KLNhlTYybUrzum3ys+s1iZDgnyamhYG5wCi3JnsCi2iZS5k/DJ7UfJjYiUGXHYlIgCO3EXAa6In4EqmxnrTLmYqqlCRCORg5VnsNWqRiWnEt9ztX/XoQorxiTkIK0iClMiTgS890RZDYq5EA+Ri7tdPFJVZdhncBc/IK4eSokdjkZ/DnqnDl9kfYLHuj+NrkHdUWo5hk2l76PcllG/jwAlEtSTMTXuHmikvh3y0g07PcQNhGHKfHSSecdOglg7BimKsMuaBCdc/4da+5dU1aCd5yN0TEKhUCiU0wmpUP7loXexa8V+7Fl1QJwHJXOaoy8f1mbV15sLmRt/+ocHMXz6YPzz5RpRdKEJUWPSdWNwxZzpCI/1Lrx0+7zZOLw5DUVZZ7byvTpIBYvJKs4Xt5TY5CjMuGcaZj08Qyw45GtMktA1DqW5FUCjQli+CEuMgL6DCBzMBgt2rtiHV696B3arO/mdOBWs+WETHv/2flxw43jRCST/eBFUQUqx8NWZHpNUFFVhyfxlWPvDf6KTenhcGKbfPhlXP34pNCGugeFH//vKp7iBQOJ8PYZ3FWMrdZAiWKfKrXOvRUlOOVZ8uUYcU59ufIkbxPUcLy4NqSyqxksz38b7m+eix9BUHNl6HB8/8DVOHnQ74pGCZ+T/993v3IzgcLerW0OIk/jpFjcQaJyk48dJbrvtNg9xw/DhwzF37lzRoUEmc8W8cnNz8emnn+K9994Tv1vJcvvtt6Nnz54YPLh9HC+pwIFCOceICpGLS0eACBrI0iyIIODSy4GDB4Djx0jpbYB8OToCWwK3KePGA737AEsWA9WBLV69CA0Dxo4DYmNdyf0Efx3E5nYchw0Ddu/uGCIHgx5YvcpT3NCQ7duA4mKgIN8tDiFiDiJc6eNtFdYUDocZhSVbRZcAqUSB2OhhCA9tWUVWu8OIHXvfgNFc7D6v04Ts/NXILSSKc/LLT5wUAqtx8wrXI7Xz9PrKO3wT+zeHyuqjGDXkWSTEjMS2vW+A509/57FlCMjK+RtadRx27J8Ph8MzmEWeYWnFfpRXHcWIQY8jLKSr1xmstjMz4JNImk48pLQfRMxwugQNFAqFQukYkEnSIVMHiEtHgAgaGld990dQmBbv/fcqlry9DCu/WS/a2pLJX4vBdzINa2l6rNKcfYjIIXhHsbg8vuABXHjTBNyU+j+UtEDcwGkVSJ7YC/97+xYM6BoPqcTVd208aV9/zeakRQjAnW/cgK+e+hHlBZ4VOZqLxMIh8d00GIdEwDA8EpxaAlmZFSFbyqDO8D/O4eUSWPvGwtYjGrxSConehkwLh1evfd9D3FDfVEHApw9+g/3rDmHXyv31E/vE4vf6Z2dh+h1TWtx2fZUBaxduQvbhXKiD1Zhw7Wj0Htm9ReeoLq3Bw+NeQFGmu9ouSbD/8dfNWJibD3uU1vVZnSyFPFIDaYXvSpzLPv1XDMbUBSEcjSa2fSE0/ogZBuaRKZDnVol/l7tXHcAHm+di4nVjcP9978M42DvBrg7W6IB2fxVYpwD1viKYB8f73E9qCTzBau8eUy9waClkMv+neX8grHcC7v7gNxgsnmMom1yCf6oqsGvaS/j4qwfQY5j3mIQEAJpCfqwIXHQwuFhvkQSjt0CxNweyLt1gCwo87yKrcie8KbXNnBehUCgUCoXSJpA+04SuKeLSEdrSN3S8uDSHULkGXwy/D4uy/8Pywj2ocZiglcqhljRdkMkJFlV2jVciNxEsBKRR/+39EbNwcWI/TPz3HZTb3PPAVQ7PKve+iJP0wMtx12NASny9U4bfMQnpn2YCQU0MHa/rdAO+PPkbahyBRR6Ey0JyMSvUU7AeJbXhmtAcxMvM+LE6lUQEIAXvFaZxuVi4+9kseGglNqiJEwQjiMn7RnsmDpT96iFuaHAGHK14Gbuqj+Kw/gictdX/w+VxmBR9DQaGTURLqbGbsLxgH3JMZdBKVbgwvj96h7SsQqPRUYFfch+B3uFOUDNz1dhduRj7qv6EVSD6dhkqbCyUrAY2XgYZy0ECQfzTIPdNllUl6z0EDhwc6K0qRLTMPa6TM5wodiCJQWZe4SG0IZBn3kdTiAqnBlZegUO6I3i215OotvXCxqL/IYI1IV7iEF0MKjkJCpwyGHkFrIJM/Dt2CJL6z0otdWBEdB400sCugzKGh5JxeLggNCRKbhA/a1dbBSgl/sfwnMBhZcnfuF4+E3/lPwZHo78DBlYUmlbgw/T9uDVlHuJV3slyeoenyF/D2JAs8z9OUbIc4qV65DldyYcmXoFwBHZwsPLe9yplXSIRCoVCoVAop09YMPKSIeLSEdpCEt7J0hyI6OHDba/jl7eWiU4OhiqjKIow6cw4Xbyy9AmMvnw4ZobfKlb1bwl9RvfAnW/egN6je9QXP/I3JiHV88mcrxAaWHn94Lzr8ckNH4qFeM40pEDXvNkfeIgb6iBOBO/c8X/Y/PsO7F65Hw67axyZ1CMeN798DSZeO6bF16su02H19xtRcKIQ2jAtptw4rsUuEcRd4JFxL3jEmaqKq7Ho9d/x2/t/g3M4IVPKYDUGzpta9slKD4EDcYI4VXavPCA6vk+4ehSevXgenLXPrKNCHB1+eWsprn/2Sjxz4WuiO3hDyN/Fqu83YuuyPXh/06uig2JjyvLPTOFpUoSO0nHZtGkT/vjjj/r3l19+OX799dd6YUMdnTt3xvz58zF+/HhcccUVosDBZrPhsccew4YN7eP+QwUOFAql40BEDsOGuxYibCBuDn/9eXqunZzicl8gpHQBqluo9KypBv7+y+XiQJL6+/X3vy+xCDp+PPD5ZHIgIQnolOwSfBCXBPJMiGigwNPK7rRgasagISfb873RCGzZ7HJ1GNz8gVtJ+T4cTPsKHOfuiOUUrEVkeB8M7vs/SKX+Oz0WSwUqqtPA8xwKS7Z7iBsawvPN7+habdWwWqugUkWK72XSU58INpgKkF+8CSlJ0zB+xCvYe+hTGEwd22mgWpeJjOxlXuKGxu4Pew59hMmj3/YSFlisrUuKO1XiooeeketSKBQKhUI5O9GGakSLVLKQicG07el4auqrPveVp5fB2j8h4PnkLUjmnnjtaEy9YZz4evyVI7Hknb+aPIZXy2Ea0wWOxDAcZBnc/c6viArV4M4ZI3DVRP+ZQmPjUrAsx7eLmQgnIKZEwJALB4jLiq/WYdOv28SqLtGdI7F39aFm3xdJiidODc11a+BVMtRc0Rd8qLvf7VTKQOr2yNh4BK/QiaIQr+N4AVuW7vJYR9wd3rvrczH4ctWjlza7zf8t2SZacTecHP7jw3/EgNRzix+BUu1fRFucXYr9647A6eCwesEGD3EDwTw0CZYhtZPKHAcHxwHJ4bAkhUK7Nh2KnCrvc54sFYMndc4EYfqmRdcSX3k+Eha27tFQHSxE5r5srFm4CZfcMxULf34e9y/+FYeivMdJjINHzA8nxc+RELwpRxRimAfFwxnlCvzICnRQlJrhTI09ZdeTQBxYfwRfLN/mJW5wN5ZBZZ9ovDhzPn48+amXcwx5jk1B/rYU29PhTIqAMyVabDNrc0KaXQ55RikYBwft3lLYUvxbCRNBjjLDnaQ0oZkiq3MW8qdzqpWFqIMDhUKhUM4jQmRq3N99urhYOTsO16Tjm+y3mjzOwZOUdG8xg8UR2E1PaCCAuDxpAKYnuAoWTYvvjUXZ7v71xqpuuC1hJ2Ssf7Ht//0Whd3HliAmPAh3XTEKl433X/xoyLQBOPbLdgQN8P9DLxUi0U07AG/17431ZZuxs3Iv7LwdkYoIHNJ5OqBFSKy4PMS/G99YTRm2mqKRbQ+CSuoEGVJw4vOqFRELEigEp5iELwGPaLledHuoQ8JwCGIPwckHSmriUG1ZBacQXb+myl6M3ws+hI23YETEdDSXFYX7Me/IUth4d4LNTzlbMCmmD14bcC3kEv8h/iJLGY7oMiEIThSbl3iIGzxaK1jBiMIBJ0JkpFiNCaW2YFF8UIcMPDiBQZGlCGanBera+EgnhQOCw7donTxDJWuHmfeO5RBHkb6aImRbo5BvOYEdlTsxNmoMLkz6AesKn0ap7aT4iTgggYlTiMIE8jdqFJP2GbEtdU4OxLGjOdTt7wsippAwvCiaIP825XhyRHcIO8t14AST+GwYUQjiahN5R4Q7aqYM32W/g6d7fQgJ45lMV271nCNIktU0WRMtWmJCjiMMTkEiCkdCJWYESXwXRCDiEj3vHcNKCXIngp2X0DEJhUKhUCgtIjQqBPe8czPufvsm2Cx2MVn+1avfPS1PccZdF4jiBsK4K0di5TfrWnT80W0n8Mj4F0Un61vnXhdQ2DF4an9sSyuEfUgXv/vEKGUYNqKb6Mrx9xdrsGXpTjhsTkQnRWDvmubHSdoK4sIRCM7BYduy3R7r8k8UiQ7JJL5z0e2Tm30t8uw//t/X9UIJwm/vLReLJj214AFIZf7HJPknCnF40zFwHI+/Plvlt4iWrTYGQ+IpTZGxLxtOh7P+uuqgpkX4TUFcw7f8sRMTrhmNT3e9ITokkLhSR2bbsj3iZ9JY3NAQY7URr1z5Nr499qGXe0dRlmfM6nTR3GJ05ywdfEzy9ddf178ODQ3FggULvMQNDbnkkkswZ84cfPDBB+L7jRs3iu4ORADR1vgf0VMoFMqZhHxJtqdFFjk3WSIiXc4NU6cRea5rG3EcULUyiZ04T2zbCuzf53s7SfonAoq6a/nDYQeW/SkmvGDAQGDWVcC1s4GLLwG698BZxb69gLV51WfLKw5j/+H/8xA31FFRdRSHj3/v8zin04r9Rz7Hhu1PifscTf8BNfpMtBUs6/7Rtli9E45aw7GMX5CW8bM4KT9uxCsY2OceyGW+LcI6CoUl25rchwggiko9E8sIOkMOTjcqZSQS4sae9utSKBQKhUI5NwiUxE6Q1ligSPM/ESjPKoes1L9LASthIZVL0W1IFzz61b14ZtFD9RWFrnjwYoREBu4b8nIp9DP6wtEp3JWVUUt5jQlvLFqPn9b6HpOQ6ixXhHSFtNahzBfaHdWwZFaLVXWIBfR1T12B/9szX5wMnbfiOUya3X59LOO4FA9xQ0McSaGwDPTtHhCIBS/9ApO+eRWmti3b5Zrs9zE5vOPvvaJNsi9MOhNevfod3NptDt6/+3N8/L+vcGKX55jEGalxixsaI2FhmtgVgtT35yKTu4MFlr/TwNgDTPhzxD3Dz6Zg97P9ZM7X+OLxhZApZPjrxYfw3uTpiDYwpCSqKGzQ7q1E4ntp0B7xdGNTp5UjctFBRP/fTkR/sgMRvx2FPK/pirqMj6pSzYVXy+AIVmDlrsDFAvgQFUqdDtFmuTGZ+0/6PY7k9elHxaHowUEofGYESmenwhzugHznCWj+OQhFWpEobiCo0iqhSvMj2HHyCP8rs97JIrF7HCbXCpcoFAqFQqFQWopSIhfz7w3OpoWiZRbvqqMGiwI2h/+kExYsJKwE/cISMG/wFeJSl/xwc+ooBMvcCeo6pwqLiv0Xk9mfnoI9x1PF16VVBrz27Wr8scF3wk+1vQIXPjYO1askqFjuOw5k4yTYXKHFPbu+AAMprki4GG/0fwHvDpyLp3o+iNHh/aFgHZCzTjDgMV5bAkkTIaUxGneiChlCETeHOurcCkiCeJjM5CFuqEPFNN2f1bK+k0zWlvwIezOdnLeW78ZPOZ+iW3AeugSXQy23QSlzQCrhsKH0CN479rfP4wwOE15P+wL3752LBTnf4r+yD1BlSw94LSKLqcuSIM8kWmEQk/Y99mEEKFknpKw7WV/LZAU+LyNAQgYmPoiUGTBIm4v+mnysK30Pa0sWAEwQrkhejH6Rc1HBd0K5I1hM5rfxUug5JZyCVPxsLJw7VmODDAYu8P8Nst0u+P8/QM5X5wwR+M9HgIq1IVhiQIFpnehWQe7RJZAQxPcy8X4FyFkOJmcR0vTehdTyzPmiuKaO5og0WIYXXSxsghQMI0GuPRJm3jvRhDyfci4Ijkb3GypPQYq2+YlsFAqFQqFQKHWQsUFTcZJThcRJyPx071Hd8cyPD+LhL+6p33b145dCHdS63C3iGvDWzR9j9YKNPh2hyXYifpDklEHiJ/mesdih+3MXHp/8MhRqBW568Wp8sf8dfJv2AV7/51mMmDEYZxPfPLMIdlvz5ujJcyPFoxqKG+rYuHgrvnryR5/H6Sr0eHbGPNze62G8f88X+Oj+r5Bz2L8QvUWQMVytezmhsqhtcrfevPljfPvcTwiJCsGCjI/x0Gd3Qd0gjtLRIE4dO5Y3XbS5IL0Ye1Yd8FqffaiNPo8W0HVQCsZc4RIuUTomK1asqH993XXXISTE2+W8MbfddpuXC0R7QB0cKBRKxyUy0uXqYA9sMdtiYuOAKRe43BB8QVwYLr0MWLsWqGrQkSUT+6Q9xJGgOUn9vfsAitrOfmYGcGA/UFl7PqXSdV98gMlLvQ7YuQOYVDvxSI5dswrQNZ040qEgIo3MTKCv/2pNZABxLHMxcvLXBDxVcdku4AgDJ2eGQh6KxLixCA/thn2HP0VFdYAKtKeI2VoOhcL14222tJVaVxDvt6BoC4YNfATxMSMQFz0cR078gPwi70HW2USNLgtJ8Z5JPHb76bXrCw1OFUUjbeG4QaFQKBQK5fyl5/Cuom2qxehbsKvedhKs0QZrnzgIGnntpLcDimMlUO3379A1cHJfPP3Dg4iIC/O5PSoxAm+teRFv3PChR0UeiUwiTugTW2hb71jwwf7dzb74awdmjusHlcKV+LBm4X9Y8vYy5Bx1tSv1kk7IuiYKzkYVKtWHdIj+zjXBmXesEN+/sBgPfXa3+D59bxZeu/b9ZlXCb20Suz05POA+1t6xUO0rbCL5pNExJhs2/7YjYHUinufxyQPfYPnnqwOea+0Pm+C0c6I1dlRCOC68fTJ6jeiGFy57C4c3H3OdSyGBwDKQWJxebQ+EoJDC1jUSyuPeYw5SNYhMAhNKD+YjPBOouqoHBFkje20ekAfoehM3gjo4Jy9WXPr32/V4c9XzmDWsD2Y+0Rtv3/Ep1nz/X8C2iudqILKQFVSLAgZBKRPToUiBVb62aayDOHkA8syWj6XsiSGi64UzNrjZxwhKKY5tT8fkRkIcXbnBr7ih4poesPSOcK+UMLD0ioClWxiifj4OVaZb5EH+9iJ+T4cxVw/j0Fg4o9QAx0N1ogrBWwshL3Y5IPYb10sULrV3EJBCoVAoFMq5Tc+gFNi4INjInLjEd8J4jU0Jk1MJCevq23M8A71FCZ1ZBcbAgiXJ+uEOj5pSo6NSMW/QVQhXeAsjCImaMHw16iY8tfcP5JhccY1fSwbBxGlwS+IxaFmX2NtgVmLdnv5Ysm4MBMFTrPv5H1txydjekNdW2NxRuR4by/5Bqa0QUAFDt4Qi+xM9yqPUiBtsg0Zqg5NnUWoNRr4pDHZeiixjCb7JWoeHe14inuOkMRNfZ3+KKnsFlLX9TSULRMuaFjSHSzxjO6S1vNh7dT0YXpQ88FCSDqwPSIX+pnC5Qnhj5c04pt+JAaH+K8jyAod/iv4P+6rWoHuDXILuQeVI08ei3BYECctjWcEeVFqd0NltiFeF4KrkwegdGotX0z5DuiFHFH4kqyshY7gm64iJtcAEdyFIkqyvkdhg5DzHmkTwUWmrQJzKJTi3OJt2pGYZgZgD+oRcJ0JmEl0TtlX8jgPVa3Bj8lz0DbsIvUOnYXHuhzii31wvQiEiBJvoUuL+G4uSGVDEBaM7W+7zPknCf7Yj8Pgyz0q2uw7magUujc8VJjUgWVkJbe3fD9mH/C2Qv5eGsghyT4LAwwmJeO+5pnT0C/FM4jFxelh4OdSsXbxONRc4fiGeXWARwtpQwblimhwkyLDFIZg1I1xiEgUQxN3BwKlEJ4mG7Y9TDcGEuBchYV3zFRQKhUKhUCitoe/YnmKxJqePZPdTEU8Mv3gQnlzwAILDfRd7SuqRgDf+fU4UKhRluWMSpC1KjQLGatc8bCC+efYnTLlhHCRS1+CBzP///v7fKMwoFt8T12Td7kw4iqvhTIkBH6wC43BCkl8JWWYJGJsDGXtP4uc3luKOedfXV/1/88aP/LoSdFSIS/SuFfswduYIv/s47A68e+dnWPfj5oDnWv75KlSV1cBUY0ZscjQuvmsKkvsk4ekLX0Pm/ux2aL1Ll12aU464LjHi24Z/E6cC+bsmny+Jk7y97iVccs80TL9jCuZe8x62/uld3PVsgrjUD7tokJcI5XQy9MIBeGrhnPr/g5SOR0lJCSrr8lkBDB/ePDFKaqqryEUdxcWu79W2hgocKBRKx0Uqdbkp+HNDIGg0wP+zdxfgUVxrH8D/M+u7cVcSgrsWL5QibZG2ULev7rftrbu7l7a37i5QWrQClCLF3SFEiLut787M95xZIpu1yAYIvL/v2afJ7NjO5rvMmXP+5zUFvmmVgwmnjQQS4oGY2MDrR0YBF10MFBUC5eWuihKsjI5OD1RXA38sdf3XF6cTyMkGevUGdmwH1q9zf7+FFQ2QdRgYO861v0ULWr7dicbiv3PhcO6igOGGekWljTNx5hetRnRkX1RUuZejDraKqv2IDO8u/6xS6uFjMtQ2cQoWbNv9Ps4Y/Qp4XoG+PS5BUckGeXlHUSi0EISO+1viec/bC70u9phVcejb8yqkp5ziJZcJIYQQEhQsTDDthkmY99Zir++zcQPJ5WZU/LAZQpRrYJCiygyu6ZSMR4XHhskz/LBBzxkDA5fo7DYoHZ/sfhM7/tmDrB25ctBi9LnDER4ThiP7C/Cfz5agoMroc3ujxYZVO7Jw1ohe+Pa5efjiiR/c3hcWHUHqygLUjY+BLUUL3iIgZEMVdAfd21fLv12Nm1+/Wg5VsIfT7L9Bwy5gk0vljNTJlQz8EUM1kNQK/xUMvKgq8R8U//KJH32GG5TDVdDM0ECRyEOslLBm6UY41rDAOrDkk+UYftZgOdxg7h2JmvHJsKW7BuOrSswIW1uI0M2ugf0C+3wBCJHeyyrvWLmnIeBgiDBAt78A8e9tQ/XMHrClukY/sXFYCrvrsooaFkBwDVZqqj5k4IzQwRkfKofuxbxqPHfpm/LsRKyKyO1vXotVP62DzdzyyQY4QYJ2yxGYxneDnY27aVJVhI2N4m0CQvMaZ1TShWphqfPfJrFlRKNuck+3fQUkSVBUW6DSeLZJEjLiGgI+TZn7xbiHG5pS8qg8rxuS3tyCppOrsusauqlYfolKHpwgul3r+z67DWddQ22S+mvV/O+wtdq7PSGEENKZhaoMODN+FP4sXoVEXS0MysZ7NDbQusahRV51b+TVOKFWuu6R7U42cIADnIAiTwvRygMaAXFdNLj5zJE4LTod3ULjAh67f2QyFk36DzaUZyOzthQGlQYTE3ohXKWDw5mJu17/ETsz1XA4vXc3V9dZsG5XDiYM7Y4lRT/ir5L5bu+bNbWIvxcoMSuxpcI1SMWbJQVbcXvPs1HtqMTbh16BVXR/ds4GdBu9zGjfXI2g9jK4v75eASfPrK/ifYcCagQdYpW+q/QxFU7flfhMTv9tElbJYFvVXx7HV/EiBoQXYl9tgjyTvyBasbpsE2qsrH3B4cecLTgnNRWHrTkIUVqRrKuWb6GlFgQy2N9Q81stdg28FV84ULevIeCg4kPgFP0PjJFYktjb8ibnFa6woFbQwSzU4Jf813Bbj/+B53icl3IDtuzeBqfke4bZKJUJVaIBWU4Racoqt2oIDolHriMK5WIIlBDl8EFzRiEG2ZYYt/Oyiwq3IFGsqha9dEVu3wn7mUUtOEmQwwZuIQeI8rEdogJKzvNvMkodjwp7MUyCGhreiXxHOIyiGiGs8dYEaxVrOB5KjkMI70Si6gjKnFpstiagTGBtRg61okF+sQovrEoF+4Qmpwo6VtWEk3B52j3oH0HV5OTvjNokhBBCSLtExkdg0uWn448v/va5TkRsmDyAPpC4LjG45IHzMWRSfznAEEjf0b3wxcF3sHXZTnlCppAIA8acNxz6MD2O7MvHPROeRG2F73v0yqIqbF2+C6edNRgf3PulHG5oqrrUdY+uPFIuv3xhg9+vefYSFGYW49HpL8iTKnVGgfpJ3r/7S6/hBnZr7xyuh31KGKQYJbhyJ/76cxuUm83y3fDC9/+QK1p0WLjhKBYuqQ84hEToA36e1mD7evHKt/HB1lflwfh3/O8GrF+0WZ4oqqP4m2AtGFh1lObY9asorMKx8MxvD2L0TN+VIE8lJ3KbJDw8HMuWLUN+fj4KCgpw2mmntWi7qir3vyNN/STgQUYBB0LIiW34aUBtLXA40/O9IUOBQYOBVf+4ggCBqjb4qSDgU2KS69VURIQrcBAICyOYzcDGxgH5rcaOw/5ByDsS/HDD6DGuahRsv+xp9+7d6DChvmfbFAQHslsYbvCmo8MNDMc1DrJKjB+BWmNwS3ZZbVUoLt2MpISRUCg06N39Iuw+8BU6QqghFQP7Xod9h35AZfWBDjmGBAl1pgKEGpLhFGzIPvIHyqtcs9l2tC7JEyncQAghhJCguv6lK1CcW4a18zd6zDB01ZMX4bzbz8br17+Pfxds8rufgeP7yOu21qAJ/eRXU116J8PsDDzAv8ZkQWleOb56+iev7yuMAiKW+J/lhj1cLTpcjBXfrQluuAHAne/diPK8CnmmJYnj8MvPawJvxAaSC61/oJzQ1fcALovRgl/fXer5BgcYHjVAc4777KXq8Wo4NtlR90AdYIdc5rd2VAIqz81wW88Rr0fF7O6wJxoQvTAbnC3wd8Y1qbDQVNPSyxMvGSt/p2KoFlJkONTevhYOYGO85JBD/XlnloG3OFAzvQ8cXZpUDxFEmPeVYN2SrRg7YzgM4QZc99zleP+eL9AaqrxKODTpgJfAM6tqUTOtJ6J/2IXuQ7vi/s9ux5xbP5JnEPKGVcAwju3aunADO4eCGihqbXA6BeQdKJA7yUy1Zsx9fSH2rPXe/jEO8z2YjhHCNHIlB/0B7w/9+WYdHBf8dzqFGwghhBASVDdkzEaZtRKbq/ZCzTuhVbgGfZudGlyVPgsTBozGQ2sXYWXZITbCWg7i8tUKKIrU4GxH7yNtCow0dMel6S2bia9pu2dUbIb8akqt6oH9ORFwOP2HYmuMVpTbirGs5Fef68Tra1FiCYHJ6b0zvNZpQYm1Bv9W/OkRbqi33hyDs0ML/N4+rjN7Tn51ffq1KLUVwyxYIEoitlT97nN7i6RBnaBFqMJ7X41ZVKPMT8AhQuW7TWIVjNhS6aVNchT7XMn6GuRZogBeRGp4LcK1VuRVR8hVDbZV70FaqAlxWiPUnKvdwSoMsMH2qqZJXa9VKdwvmugjmMCCB/USDecgq+ZTv8EJZ5NqC43HYzi3sEB9yKHanoPDdVvRLXQoDMpQnJ1wARYVuQf167EgAqv+wJQJoagQDIjkzfJnt0sKVIr6hmoPZkkNtSRAefS6mAUNdKrBmN3lvzhi+xY5ppyGAIPRoQEHK9QKV42GbtoSn4EX9p2IEusNcf88dsHVHpJgRYWtCNGaRPn73VgxFybHDsSoTHKYxiaqUCdo8Httb5wXvrvhe2JnredYJQb3A8cqrZhiyMWfpjSUyyEHFxbssEkcBIlDjaBHjcBhRuIMCjcQQgghJKhuf+c6lOWXY+uyXW7LOZ7DrW9cg/EXjcbLV72DbSvc329u2JRBOPe2s1p1bHZfxLZjr6bS+qbCXBu4kltdRZ088U3zcENrsCAEGwA/783FQQ83PPTVHcjekydPCGS3OfD7p8vRUfz1k1SX1Xg9tqQAzA8nwjnGVVGsnnNcKJRrjdC/WCRPDrRhsZ/Ji4OkaT/JGZeMxfy3lwR1/4e352D3mn3oP66PXIH98kcuwNfP/IxgY7f6vUf1xL0f34oXLn8LWTtz0RHY32pRdgkSu8bLQSBW5Z1NqHYsXP30JRRu6CR0Oh0mTZrU6u1WrFjh9nsamzi8A1DAgRByYuN5YPIUoP8A4NABwGwBwsKA3n2AyKMDMqZMBX76EahqnA3SQz/3AUHtFh4OGI2B1zl0UJ4Rs10WLwS0gWf6bLXNmwCHo7HCRXwCUOIqK+2TXg9YLK6n0/VCQ4E6P7MWsX03K0vUVH7RKjgcwR0oFWyxUY3hmC5JE3CkYCUsVt/p7bY4lLNADjjIx0g+Qw5V7Dn4DUTRc4ATC0EIQtsaTXWmPGzd9S5GDn0IW3a+jTpj4FLSrXWk4G/5xapr2B1G1AU5EOJNWGga0lMmIyVxbIcfixBCCCGnFpVahafm3S8/1Fz29SpUl9ciuVsCzrlhElJ6usLQT82/H9f2vquhrLE3597W+nCDP13iIlBV57/qV2pcJP768h+IbQgENMVmQWIz7gfbpw99C1ONqwOCzbw0sE8y1tZYIYb7PlaSwGbDdJ9lNKlbvN9yxGHRoRg7y/dAroXv/wlzree11Fyo9Qg31FOdpob+Vj3Mc8wQDCpUTkv3uf+60YkwbC+D5nAZHGlNggXNSRI0h8t9lvGtN/O2qVj62XJk+qo6UI8/+rI6od1fAu22PNRcMBBCVLMqEQoe1v6JeG+lK+DAzP7vdCjVCrx/z5deS497m1nI3D8OkpfKCfUciaGwpYQhc2s2nr7gVby24ik8fM7zyN2b77GuvUsEJIP7DLuBcCY7QlZlyT/Pn7NEfrHqGmyWLn8dBM6owH/bzmjWJvc/q1Gv07ph1p3T5ZLnpAn2/6ztnVmIKjgQQgg5xal5FZ7sfyt2VR/CyrJNqHOYkayLw9SE0UjUuQbtfzDxIpz92mcoMNYAAgdO9ByVfdnowUE9r9T4COzPLQ24zsbKf+RJcfyJ09Uhu857wIF1R1y26mOMTCjwuX25oMVyYyKmhHpvk202R+OgLbzpXqHkJPxa8FVDaEKvCEGythec4iYoee9tqCOOaPRRKsBL7Ll642dSKjKw28SWeK9IF6qMRK+wYT7Pf3PFAnAwQsu7rpQgKeCU2L4av8dQZf39tyRXJIjUWqCPtaPaqodW6UCsxrOfxSKooVRYvQ7S9xZCYMtMguf3wIFD37DGfpL0sCtRYFwAm1Dm9fNY5YoCbKv6M65/eZ4Iz0ny+bFKC2vLvpEDDsyUhPOg4FT4rZCFHFx9WSwYYBVVMDo1ECQ2sVZlQ5ijQnQfcOVa33UN7VDKVQ6Yg5Y4mE0VyLG+h4f73I//bvkAxbZS1/WQeFidSiToa5GkqZWrZ/jDQ4TQ7BqaRQ3UvIB/y3/FuvLf0Ct0KKzOPFTYj7iFI3QKhxxYKneGYLstAcnKWkTxVoQpXNfDG/Y3O1Rbij9Nje1P198LhwqHAd0M3TE1YSpGRLUuyHTSozYJIYQQ0m46gxYv//mEXA3h7+9Ww1hjRmqvJEy7cTIS0l2D5l9Y+giuSLsVlcXVPoMKrQ03BJLUPUGu7OBPco9EuQJDe9067AGvz8rbgwVE5tz2ccOz9vCYUPQ8rRsObvI/yW9sajTK8io8Pqe/Pqr4tFgMmzLQ5/ssvOHw8vlsl0Z5hBvqOceGyO9rv/MzXi9IWFWFIZMGNPx+4T0z8Pf3a1pUOaQ1vnjiR7nvgvm/py6GSquSK4ALXiYd0xo0bQq8sLbHvnUH8fxlb+L5RQ/j7vGPoyQ3uGPQmO9f/AU/vjwfo2YOR+6ePBRkBhgTGAT9x/XGBXfPwLhZrvFv5ORsk0iShDlz5jT8rlKpMHFix1Q1p4ADIaRzSEhwvXyZMgVYuMA1+L45VuWhS5BTYn36AgV+bpINBtcxl7W9MkEDFkKoDyIEU9N92u2ucAMLjTQrIeQWNplyluuz5ea4ghtxca5gBPuc3qposKewY09n/5J53WVmzkIczHIvS32iiYnsh7DQLvLPLFRQXrUXKUnjcThnIUQxeN+LyVyE0vKdiItxNShSk8YjMX4kDh6ej+KyTbDZa6HVRMoD+FllhK2732vzsSzWChzOWYRRQx7A7gNfo7hsMyQp+GXVWlJdQ6nQwSn4H5jnS1ryZPTMOB8KhRq8l1liCSGEEEKCic3Ywl6+Hsw/9uPdeGjqs6gp9wz/XvHYBRg8sQ0V5fyYNX4Adhz2/bA6OTYcI/t0weIHv2v3sYzVpoYgQjA13Sc7Bnug2z9pGHb6WF+jUuDVBy9B5MOXy7MBOR1O9BvbGz2HZ+CZC1/Hv79t8jqjD6sUofZSipf54vEf8O3z87y+p73Q/8B3zXQNzB+ZYRwSCyi9D2Rq+HynxSP61ywoBhghxHrvDNAcLIOixnM22NHnDm8o182qTWxfsRvTb5yMd3ICl3tWHSpB6NpscA4R1t5xnuGGJvaajdi2KxtDBnRtCOWcecXp8sN7VsGEzeAUkxwtVydgZYxfvLLx4SVj9xfeqF8nPRKa/Fo5kPLTawvw+sqn5UoOa+ZvhMRGK7FBSCoFhIgWhPzZ+hzAWZ3QHCqDbkchFCb3GYRZdY1AQhRKBCpkzZu8t/0uuu9cXPH4BdDqNHIHCyGEEEJIRxoQ0UN+eaPgebxx2Qzc9PkvqHV4DrC4a+pYDOqSGNTzOf+MgXjpy2U+3++aFIXBPZOxJjOrYTB4hNIMPSszxtoDggY1gk4enK5WOJv11jeO8BZEDtVOC6rsdVD5ueWaX9sFJQ4dzgorQKzSdQ1qBRVWmeKxpDbFbV026z0LCTStCGEWjDhiMaJnSC/YBO8ViRWcHsMT3oJewaHcvBoSBERqhyFE3RcFOc/jkHGbl22UmJl8i/xfb1aWfITNlfPcmhQKzgmlxMmD+euvBQcJOoUdBoW9IYDhFDkYlHaEKGwNg+JdwQLXtXRCgTpRCz1vkwfHN72VdkDhETioc2rhZFO0NjMs8jTEaFxhGptgwUHjfui116HOOAdqzupW/cEmqeSX5+gL76P2HU2OV2TZh1zjYaSFuCbNOjN+Gk6LGo/5Bb9gS9V21DgsiNZEY0biWPQOAdaXPut1n/J1kOorRriLUpoQBSN4sRzrKxZjzrD/4PX9c7GhYjd6hpUiQs0+j9QkUOJb808kByTkz370HCAh27geGt4hV2hg/z/Arrkg8XIwQsGqBipscCAMeU4eRRAxXue/ymKC0gwDZ4dJcgXCx8ZejtExs6Hk1VBw1CYhhBBCSMcaOmmA/PJGqVLi8Z/vxaPTX/A6odBNr16F7kNcz56DZfqNU/xWImbH6zEsAx/c+2W7j1VdUuPrlrbN2DPxphMJsf4l9soYlOZzpn19qA4v/fF4w/Nvto9BZ/RDWr8UPDLtBbn/oDmVWom7PrgJPBv35cU7//kEC977w/P8lIB9WtOguCf2vubHShwtmNZhzrxiHGKSouSfTTUm7Fq9HzNumYrvXvil3ZN8NbXjnz3I2XME6f1c48Que2iWPOHZF499j3ULNqOuyoT4tBicc/0k6MJ0ePvWj9t8rOxdR7D00xV4a81zePPmD7FxiWd7sr1EUfLad9acRqeGzeK/QqMv1z53GWbdNU3uh6N+klPDBx98gK1bG6u2zJo1C+FsIvAOwEksTkEIIScDsxnYsxvIznIN3o+OcVVuSHXddAQV+59OX4P6FQpXVYndu4H84M+O3+EGDwYOHHAPi4SEAqePB7r4uJYs7LB7l+v61x5NxyYlAUOGAimpXjcpr9yHjdtfxYmC4xSQJPc77sjw7hg28E6oVSHIyfsLB7N/g9MZ/IFd9XhOhT49LkFC3DBo1O7/8NfU5cJqq5JDDuGhadi2+wMUlW5sd2WKAX2uw54D36CkvOPLxXnHWoCtvxWJiuiJkUMe9CjTTAghhBByPJUXVmLhe39g9S8bYLfY0X1oV3mQuK8H/u0hiCLuf38R/tnu2SbRqpV49cZpmH/v19j+9x50Nud/cTPm7j6EalPjg/2UmHA8fvlkjOjlvU3CZs+Z+8YiLHz/D5Tklsn3iUMmD8DlD8+WH+57s2HJVjw240Wv73FRHCIXuh6W+1NzUw1Ku3VB3Sg/gXz2nRyuQcKneyBqlDBN6AZ7WpRr2k7GIUC7rwShW/Ig2t3bJOzcn55/PwzhBrl8MAtj1HcOVV08EM6jYQlvd9Rs76yigW6Xa1aemhl94UiN8HmOghIIqTHirttnYnK/nohmFfyaOLjlMCqLquXZoboNSsdTs1/F2l8b2yQVF/WDI8X/A0z9lkKErcpp+H3UzGG45+Nb8eo172LtnhxYBqfAmRDm+jwBxuYoyoyImLez3X1KdWOSUHWW7wocnE1A8mubwNvdO0mGThmIl492JBF3+fn5SE11PQsYPPtxqA2+/+5awm6qxvZfXIPX8vLykJLiPkCREEIIIY2Kquvw/frtWLH3MGwOAf1T4nH56ME4LSP4/346nQLunfMb1u1qvL+rp9eq8Mo90/GTeSFKbTuQoqtGirpSDhW47UPikWeLQp45ErmmqMaB6RIH6ejL4lBCknj0iS5ClNb/ZDlsZn+2bbLKJM+rX+ZkFQzcj8kG/7MZ9v2ZlTwZe6sXwSo2VkWIUCXh7KR7kKL33r5zig6sKf8Vmyr/QK2jQo4ZdA8ZjAlxFyLN0NfrNgdr12BBQf0gfQkqjg17l+TPwAIIbCC8TXQNZLcJCtQK3gPLKhaIOBp6YIPovVUeULAh9ZwEk1Mlf342sJ7dTNcPuK+wG2ARDBCbxQL6hPXDrd3ugFahw8rSn7G67BfYRVdbLUZVKwdW1JxTPmd29nq+5RNDsW2KHBFuQYsqexwu6nIVeoeNgF7JqjQ0yjNnwuisRqQ6DvGaVCwrvAeF5g0+988qG9SJ9eFpCXGKWoQrzA1/h+xvLd4wBf1insYnWXNwxLwTChZE4IBQ3oJEdXWA8weEJvNJljtCmhzPdcwIhQlqTnCrysC+LxY60XCuGXJtkhpqzgEdJ2CszntVjKYW1aWjUtQjI2Q0zkt9OuD6pyJqkxBCCCHHT3FOKRb873esW7gZDpsTfUb3xHm3n43+Y3sH/Vh2m0MOVHgb1G8I18vVuT999Dvs33AInc0lD5yPRR/+6TZRVGrvZNz/+e3oM9J78N1utePHl3/D4o//QkVhFXiew4hpQ3H5oxf43Gb5t6vx0lVve31PSFXB+KHvZ+f1Qm7MgaIgOBPE8goOouDehhs5fSge+/EeeRD+V0/9hLmvL4TV3PrKCS0VEqHHLW9eizHnDkdoZOOEVWyY9f6Nmagpq0ViRpzr+5j0NHb+E3jyV38mXDwa//3gZjmgsm/9QXQm7Nwf++Ge430ap1ybZOPGjUhM9D+JRUf1o7BjT5gwAVar67mAUqnEnj170LNnzw45HgUcCCGkrdiTz717XIP6WdUDlnRN7woMGQLs2gkc7Fw3HQ169gLGTwDyjgBmCxAa4goptGQgObsm7B8wFvJQux66+7Jl17soKTteg+q9Bxx6dbsARlMRFLwK8bFDERPl6nTILfgbew58fUzPJSVhLPr2ugI1NVnYe+h71BobyxfrtbFy1QO7w7PkdGvptNFyRYfOhH03A/tcB5XS9+yzhBBCCCGnAqcg4qe/t2PuPzuRW1wFlVKBSUN74JpzhuPH+77GPz+tQ2c04+YpuOXt6+QB71VGM5Kjw+VgA3sYH4goiqitqINaq5ZnMvLnkWnPY9Pv3mf458I4RC5tQcDhumqUpyShZpL3YHc9/c5yxP3Q2EYUQjRwxofII2JUBTXg7QJUGiWue/5yuVSw1qDFuAtGYtAEVzjjl7cWe8xEZR6aDOPoo9UKm18a9vxfFBH91daGqgbVswfAGR/qcW4iD1hjAKHJorIrMAABAABJREFU5VIpFLh4YH88euYE7F65Fx/c84U8m1C95O4J8nVmsxXVqxvTBaaR/h+YRvy2D9os96qBSd3ikaWUYDq9W0O7U+6+YCPS/HzlhjVZ0O1uWUlliecgqRXg7AK4o5UiGj6/mkfJDQPhiPfevoj4Iwdh/xZ6PLS/95NboQtpQaWJUxANJiKEEEJOHSzk8OOy7fjl7x3IK6mWq66deVpPXD19BL6q+gUbKndDr7BhUvR+j3BDPYfEY3Fxf9Q53e+tBIGD2a6GKLlmGY3QmNEvxvf9H6tmYBKaVWGTJHmwP6vYwHGS3IWh4gWovQQAmjoj7mycm3Qxso0bYRHqEKlOQqp+UIsm3BElEWahFipOA43C//3ij7n3I8+8Ux7cHsLb3K4RC3/UCRrUCTpI4FHt0MLRpDpAU0rO6RZqUHCCW8WGxsshydUEdHLFjPplQIktDNmWGGh5Na5OPxtF1kJoeA2GRY5Aj1DXIIVVpfPwV8k3bvsLUVgQyoISTcIjYbylxd1Jlc4QWI5WImgaSmC1DpScGkMiz8bkhOtxyLgTiwu/RKktv2G9OE08wvgjUMF//4ZR0MiVLBKVVQhXeA/IaJUZ+L1SDSUvuX2WDE2Jz7/b+u+IfTesiVEj6FEtGNzeZ99rpNJ90iwtZ0eYwsc1kiRM0JX5PSY71ty6nkgPnYrJif+FivdfefBURW0SQggh5NTBQg7z5yyRwwDF2aXyIPgzLhmLSx48D+/e+Rm2/uWrZvSJ7dKHZsnVwVk1a2OVESm9khr6CwIRBAG1FUZo9eqAz7DvGP2IzwCIkKiC8dPAAYfQ67LBFze2MdrDEKaXqyYf2ZsPfZgeEy4Zg76jXG2SL5/8Ed88OxfHCvtbYuGc6168XK6u8PEDXyPvQGNfAftOKgorYakLXP0tkLS+Kcjd29jeOdFxPIep/3cG7nzvBrk/jhzbNklLdETdAxZkmDhxIsrKGoP5r7zyCu6//350FO+1MAkhhATGnj726+96CYIr4MCWmUxAZmbwr6BGA9g6LoHagFVuYAEFFtZoJZujFnklq1BVkykP0o+LHoTkhFFQKDQe69bUZuNEwqo3GHSJyOhytvy7INghiuwGnENm9oJjfi55RatgtpbJ11IU3ZPObHmwtCfcoNPGQqXUuYUvOtrIIQ8hOrJjUp+EEEIIIZ2NUsHj8slD5Zfd4YRSoZBDAKyCweq564N+vPDYMHlmmnq2rlGw9kuEEGNgo4mgya6AdlchFLXta7dUl9VCo1LizMHdW71tVUkNlny8DPs2HJLLLo+eORwTLxsLjc6zTcJm2vFFqpXg3O2Asr/3AUSMUCJAOCQgpKwMNRNTGisyeBGyzf0eXmG0ya+m2GxW3Qan48J7Zsq/2yw2OB1OuYTwdy/M89indk8JTMOSIWm8PN5jp6Lg4UgIheKw655fUWH2CDhIHGCJZ4P83Td3CAK+3bYD+XllKLrtVzjs7p0TBZmeA8v0u4phGpbI/jC9XgNFtQWabPdwA5OfVw7TFcPdQvVynbf6Z69eLquy1Ajt/lIk90iESqvCgYpKOKM0UJid0GTXoH48kKhTwTYgBfaMWJbaYKkgqLLLod2ZD97sCn4IkQaE7qiGsT9gT9A1fI+KGhvCVuUjdHOJ27Hf3fgieg1v/d8mIYQQQsjJSKlU4Iqzh8kv1iZhoWsWAsg3l2DjYVc1uURNjd8B2ypORKza6BFwUDSrvFBt08NiT4ZOXeCxD3bv6BAVcAocLE6V/LNaIcCgssvVARySoqHsmRr+qzcwRkctVLwGPcNOR2tV2mvwZ/FaZBpzoeZVGBk9CONihkLFe7YtiiwH5OoHYbzVY8A7C2VEKCxwSEqU2kN9hhsYVoFB1aTygiApIEqSXI2ADdRnN9V2gUeMxujxXbDjJmhr5euUY4lBsq4vpiacI78nilaIkgNOSZArNzRnFjRyBYeGigjsOJICGs77Na6/x7dIKhgFHeySZ1um/uyckh2bKhegwlaIXbX7IDb53lg1ilpHPkJV1a5gtB9yRQaIPsMNjNWZhURVAsqExop07LNUC3pEKUxewwgsiMHOX63oDrOoR62QJwdLWNURdtXZNdfxrjZHPfaOz3CDvAKHYqcWySrf55rvDMOF6Z8gVpvh/4MTQgghhJwi1BoVLnngPPnFwg6sX4C1SbJ25nZIuCEqMRKVRZ7PuYOturQGWr0GEy4a3epty/Mrsfijv5C5LRsavQbjZo3E+ItGQaVWeQyAPrjJdz+JosgB/ogdYhffA9j5XFvQwg2MqdaMYVMG4qJ7z5V/Z5UaWAVvq8mKuW8sxLFks9jx02sLcGR/ATYu2Sr31TSV3yTs0F7tCTewcITTIaDgUBGOVbjh0z1vIrVX8jE5Hjkx7Ny5E1OnTnULN8yePbtDww0MBRwIISQYWCCgXlGhPFNm8LVgyptgCHMv+dtSpRU7sW3XexDExge2peXbkZmzECMG34sQg3tpJJ478f4J2rJrDnheDbUqBFZbpXzNw0LSYLPXHJfzqajahxOZxVoOUdW2v5e2iInqT+EGQgghhBAf1KrG++ttK3Z7PGgNBqnJPk1ju8Lav8k9vgby77YesQhdsheq0rZXG0vsGtem7db+uhEvXP4W7NbGgPC/v23Ct8/Pwyt/PYHEjHi39VUa3wOEGMvXFoS+7Hsd63dWsDFEqkorQtcXoW5Mktf1tAeroDvYsg6PByY/A61Bg9CoEJTlVcgdMd2HdkVNeZ3HupxTaBz944N5SBK0RwMOuj3FsPV1vwYOg2e4oal/ygqQHKaEujxwB4Wizo6IRQdRPb2nK0zQBF9nQ+Rv+xuCB03Zu8d6DUWwdeUBUE0qOXB2JzQHy6DfcAScU8QRmwmOSwehVNFYOYIFEyKW5UKXWQPj2f0hhTSZ0VSpgKNHPJzJkdCv3AfTmAw4E11tGpUEKFiWwWaDYX0udPvLPc53zKzTKNzQWuwatvd/joL/P2eEEEII6eA2yfbqg5CO/iMerWqs+uVLvLYWWeZYz30qBVgdfMNAdYkTUWPXQatwQMU75dtE1xB+DiqFhHCFDQaVAwerYhCutcqD0Jvf0Xtb1ly0po1tkvIteOvgV3BKjffPGyp3YG7e73iq/x2I1bhXiVNyKmg5m88B72y5nrPLQQJ/Be1YFQGnyEPZpIoDuyZOFuyQwwIcdAqH36BJvKYG+ZYI3LZpDsZHFuOc2AIoJDa5EQ+FcjB0XC2sCHHbhkUHKh0hiFCaGipIsIoMKskCLe9wBZfl4yvkagfVgg5mkd2fe/8w7P6fnXdTWabNkMAaLfVJBkkOf7h+ahlWVSKQJHUVyiyNAQf2V8XCJTWiDqG8tTHEIUEONljlwAkHQSiAKEXKf5MN10UO3Cihbhb00LFrEqCrb6MlHlMU+QjhPdtgZlEJo/oSCje0FrVJCCGEkFMq7FBv67KOqdzgsLlPUNpRmvdntNRfX/+D169/Xw4F1FvzywZ8/+IveOnPxxGT1NgmYf0PSrXSrU+lOc1PlbDcl+Dn/eCHPW4efD90oVq5mkN5QSV4BS9PDmU1HYNJgb1Yv2gLTmRF2aVQawO1coPnrGsmUrjhOLdJNm7ciMRE93GYHWn16tWYOXMmamoax09OmDAB33zjXuWxIwSY04AQQkirmd3LzQaNrf0lrVokxL2EbktYrJXY2izcUI8FBbbsehuS1Phg3WQuQYjB++Cf400U7UfDDYyEWmPOcT6jE5kEm+PYhD/CQ7tiSP9bj8mxCCGEEEI6O1YSN9jYg+7aCtcge3tqhHu4oQlWTcB4Zs92PaeLT/cc2BRIUVYJnr/MPdxQj5WlfnLWK27lWPMPFiK9v6s0rC+ONQ6YXjVCsrp/GskpwfKFGba5jW20qEU5iPg9F7yxsU3EWZ0IXVuIuG+8D+z3hT2kZ+EG+ViShENbsryfX2wIJK3/4LgzIRSi2jWoSVlukoMBbu/rA5wMx8E0MKbF567NrkLs51sRsu4I1LnV0GRVIWx5FmK+3AZlpfdBRc5InVxJwtslkuc9FV0VGyJ+2o6orzYjZE02eIcAR4wOhZf3RqnCfdCQEK5BxeweqDm7h3u4oQlJr0btOf0awg312JgsXqWBbUgaoHR/bNp3TC889NWdLb4WhBBCCCGnskJzY+U3FkwIiN0QesE1uZFOCjXCItbJg+WtAqtXwObxV8iD+5sOmGeD/LuGV8LqVMMmeN4v20X/99Cs2aDhGwO0LZVnLsZbB790CzfUK7SW4pX9n7gtyzGWIlyVIVew8MegsEHloyJCU6xKBatc0aTZc7SyBQ+rqJT34w8LUIQrzbgofitmxKw7Gm5gRAjOrRitz0SCstpjOycUKHeGocxuQK1TjQjejFD5nEU5iMD+ywb2syCKACUUTSpNNFdf+aC5+kADw7avDwmYRc9KfU2xz28RVS1qn7IwgqvaRf0xBfk4rBqGUdShTtDKr1pRB6vEAheuk5ArXIiVHtdS7SWgwCo8BOKAAl9WDsR+WyTskqtN4pA4HLJHYJd0HkbHP9yCT0MIIYQQQopzSoN+EVgF7bpKY6v6VdoqqbvvUIEvmduz8dp177mFG5pWCHjhsreaLctD1wFpfvepXlEH7WflrGHh/oZDlJer//acnCkYLHVWOdzAiILos5+EAHaLHcaqwBMLBMPwqYNw53s30GU/zhITE5GSkuL3FSzffvstpkyZ4hZumDhxIhYvXgydzr0SZ0c48abPJoSQzs7Y9plKg2bUaCA3ByhqQ/mpnTuBAYPcq1J4UVt3BLkFf6POmC9XOGDBAF9YoIFVeNCow7Hv0A+oqjnU+vMip5yIsO4w6OOQFD8KMVH92tX4I4QQQgg5lZTllbd5W1GrhL17PIS4MHk0iLKgCursMsDZ+PDa2s//g3UxXItbfr0Xq15agH3rW3/v/+PLv2HGLVOhCNAmObjlMBZ98Bdy9hxBZVG135mTsncdwbblu+RyzB/e92WLz8v2qw325Xaoz9KAT+AhVYqw/WmDVO4+RIbdqUasKkD42kLYkgxs5ArUhSbw9o6o7tfkoK1cT781H8oyIywDEuGMZ7OvKgLOfyJp/H8PzSlMDoSsz4ek4CEmRUOMj4QwLBJirRn8kVLAYYeo4iEpFTCPToc9PbLhHOXBWEKTU5ZcP7PgiLLSfTKBmtOTfQc8WDCjTzhC8rxfJpFnn8v3jEZiiAa2HnEYFhWB5Ix4TLpyPIZMGkBtkjZqTcCHEEIIISeH7OrGMDCbuT+QSkdjpzgPETqlEyqFAEHFoY4XYLWpYVA17lOvtEFztIIDq8jABvc3vfNj2z/a73wsKPwXhZYsGJR28EdvSgSJh1VQQqvwXqWs2BqKT7NWYnL8qID3fwfrsvFH8RrkW0pQZauGU/I9gD3TmIt9tYdhcXJ4+8Dv2FuTj66GakwLMG6JnQKrHiAEvKdyVWxg14MFAlg4hG3Lrj4b4s8fHbxv4GyIVrgGv5QJIXLFhXoZujKcFpbrde9s0P5AXR5K68Lkyg3NscoMrNKBQeG9ryhcYZUrHxglrfwdeLtT9/URmwYP6r9HhgUOwhQWn5UpLKJaPi+bGLiCgwAeKs4p7y+Et4GDCBtUsIuu9pC3z1yPHd/R7BTYtWd/+02rOEg+gjxNsb/lI/YofFsZJlc/GRqejlBVInrHTsUow+CA2xPvqE1CCCGEnHoqjg6ODxqOTZjauged931+G+a+vlDun2itb575GWdcPCbgervX7seSj5fJkzqV51fIYQBfdq3eJ/ersMHwnzz0DQ5tzW7RuWjmVkH1Vy0cE0MhxijBlzuh+rsOfE3gAC/p5DhgwPi+SO4Wj6lXT8SA0/sc7zPqtDpbm0SSJDz55JN49tln3Zafe+65+PHHH6HVep9gLNgo4EAIIcHm9P5Q/JgSBOCMM4FFC4C6VqZlLRbgSC7QNcPnKodzl+LA4Z9btdvtuz+AKDndKjkQ4otKFYIxwx+hC0QIIYQQ0gb+ygn740gMh3lCL0DVOKDdmRIJ24AUGJbvhaLaNShEiAo07T9g0avwwJf/wYNTnkXpkdYFLsryK7D1r5047ewhPtf5+pmf8dVTP7Vqv0+c/wocdgfEJmGNlpDqJLdqDf5wggRt3rEJvavKTOBsTrlqhi8szMDb3DsZ1HnV8otx3DAAlu6hfo/D21r/1FXSquE4rRdgcD3gFFSAaWAYLPFJENgijgPnlKA0cVDVNRnaxH5QuIIO8jIJYE1IzaEy9/3zgLmf/8oSopqDoJGg9DJRbQvG2CFkVAbe+uTuFn9mQgghhBDSyOQATDYVDBoHJI6XB937GoTO3rNJrvApm/U+QmNtmKGf3RvqVUY41XzDDWK0xgSdorHNw7bUSE5YRZU8wL8ez1vxYO8r8ObB11DrbBzgzmo/2EUe1ZYQhKls0Ctd+zI5VSizhqBGDltUYnt1FoZEdvP5tX6d8xt+KfizVV/703v+hyorUGtXQckBFkHt99owbJC8K8Dhm1gfDOYkqPj6Cgeui8h+ZlUU2ID9EdpsxCuNbtsVOsOx05YsV8PI0Phvu7HB+omqahQ4ojzeswk80kNcleh8CectMIlan0kGyUeKu2m4wLXO0bAKFCh2hCNOVetRCcMsqFEpuCqWVzhDkKSqkkMavrDQSy9tkVu1CMACh8Sj0hkiH8sXyU81BqUkNoQyrKLaZwCkXpE9Qv4vC4NUOvpgVtoLftcnhBBCCCHeOb1UMWiXNgxOFhwC7v/idjw2/UVUFntWQ/OHVVzYt+EQ+ozs4XOd9+/+Ar/MWdyq/d438SlYzTZIrQxrsDCD5tfWfQbS+SV3S8Abfz99vE+DHGNWqxXXXnstfvjhB7fl119/PT744AMolccudkABB0IICbYQNgvmcZZ1GNi7BzC1sQSVn+3KK/e1OtzACH4qPBDSnF7rf7ASIYQQQgjxLS619fdSolblEW6oJ+nVME3sjdBft8kzjHD2wB0Df3+xEotXHkBFYVWbvqqyfN+zK21YvKXV4QbGZvYy0r0T45widHtKYB6a7HMd3Q7/Vf3UtWzIjp9jCIDS2rpKao64ENhGdoek00BpEeWgQU1XBeyRnNskrZKSgyMcEDUAG0flFnKQVzj6MyfBMqYn7INtUGWWQrO/CBL7Q1QGTin4DDK04CMl90wKvBIJjKVV5NIc7dDe7QkhhBByzCXpw/FHQRiSImvAhtbXCjqvM+07JfYeC1Bz4DnRPdzQhFLtaoNEqs1u4YZ6bBst74BZYMP4XTeBfxRuxiIsgNFZ47G+mhfhVAjIMkbLxxVEtp17W6jM6nvwzrqK7a0ONzA20Qa9WkKCoUr+HGzAfZXTgBiV75B0uSPE58B/NqMie8sVamBVGlzXwlsFhNP1WYhWuvf9sOOnqGrk4MI/ph4IUQVuMxl4z3XMggopmiq/QQ1GzbM6Cd4D567xVZ4nL0qsMkXjjT2r/tA0hGCXVMi3R0HP26HmnHIzwiKoXJUvIMrr14k6lDnDEKes9Xp96gQNVOzcvLzHghNRSqO8va+GhK8ACvtb3G+MQw9DmfwdOaGARVRBx3uflKDSoUeZwxVANztVCFP5noiMtAK1SQghhJBTUlv6SYJtyafLUPRwKWrKa9u0PavIAB8Bh+Xfrm51uIGxGFs2mRMhTFq/VLoQp1ibpLa2Vq7S8M8//7gtf/rpp/HEE0/gWGvBfGWEEEJapWcv70+QfQllD0WDrKKi7eEGxuCa1cab3PxlON4iw3sfl+NGRfSGQR8PtSoEEWHdMKD3NUiIHd6hx1TwjeWhTyVREb2O9ykQQgghhHRaZ107EVwr2iSJ3eJh7xHnNdxQTwrRwpnqmqVTfThARQZBRO4vm9scbmBiUzxnBK03/52lCDaJ42DvGg3jpF6oO6cvTKO7wumjUoVKo0L/ccenTTLkzP5I6p6A8JhQ+RyeumkmzujX1eu6+i0F0O13r3zQnMIsQuPraxIBXRmgjfRf4aGeYFCjelZ/1FwwENYUPWzRChhTVKhLVsAe7h5ucNtOCzj1rjyDqHC9JK7JhFg8B0nJgjYa2AemwjSln7yCoibA4CtJgpexb7Jmk7t6NaRXSuCVCCGEEEKIVxd0HQRR4pFfGYGCugh59vsqwYBaQSsP8GYv9nO1YJAHgau4LnIlBX/NGI4Tofcz+z3bllWAqB8sf8iY6zXcUI8dL0JtgVYhQKd0Ht2WnQ27WZQQq3XNpO/NosK/2/zNs5CGQekKNzC5tij5erAQQhRvQndVKXqpi9FFWSl/kEJbpMc+tLwOSdoMKHhRPn8lL0HB+Qo3iBiiy/EINzQVpzTCKShgOVpJw58u+mGIUidArwhDuqEvZqfchS764YhUmVv0+QUvQQY2ToNFH5pjy0vtIVByusZl4OSqF+44mEUNagQdbJISaoUoBwqUvCh/ryrOiUJHOCqEEPlas78Ptm+bqJT/Llm1BH/VHVjIQcN5b1yw8EXTChOe5x+OlRU9sbM2GdnmaGyt7YKDpjg4xKahDQ65lmisq+0Gk0ODAmM4smuiMSDCdwURQgghhBDi3znXT2rVJYpPjw36Jd2/PrPN4QYmJiXa53vz3259uCGYwmPD0HVg2nE59vCpg5DQNU7uJxl8Zn889PWdGHRGvw49pkZ/ao7d6j+uz/E+BXIMVVdXY/LkyW7hBrVaja+++uq4hBsYquBACCEdUcFh+GnApo2B142PB86fDSxeCOTnnzjfRXExkJzC/pXyeKuqJhPHU3REb4hSkEvJtQgnBxoM+ji3paEhKSgu29yhR05OOB0FxatxsuA5JXheDafgvcOD4xTokjzxmJ8XIYQQQsjJIjEjHpc/OhvfPjcv4LqDJ/bDq8ufws3P/oBtmYV+13XGh0F1pBKafSWwDkqGpPH+WEm7uwi81TVzZt2IBJgHxkIwqKCsscGwqxz6nWXgHb5HmHM8h11r9skD+HUhjQNZ6u399wCCSVQrYDyrD5xxofLAenmsTUo4rP0SoNteAP3mI27rD5nUHzVlbe+UaCteweO+z2/3mHkq4Z892P7sQlh7xULUq6CotUK3txTKisADjFTFtdAkh0NhA+xhgFPj+vhKM6CugRwQ4KMjMPXmKfjzw7987kdScKid2RdCpHsohE20KmrlqVP9YpOUsqBD/XqscoTCxKpHuH4X1IDCNVYNYqRBDjqEbClBzZldfO5Tk1sH3qID1J5/pzqFApxKAaPD+yAltVKBC04f6P+kSYvIVV/aObFQe7cnhBBCyLHXIywW1/cchU8Prseu8iR0DSuXC3Cx2fbZq6luIcPxaL8n8eDOV5BpzPGxRw4a3n8AgnHN7C+hxq6DTukj7dqEVuGAXVTKs/ezsING4ZSPIUlK5Jp3oV94KtReJiE6UJeFtlDxTmjrb2yPckpKHDbHYlbkdkQoGuurhfE2xCvr4BSV2G5xv+/tFdYf5bZCqHjfN0pKTkCaqgy9tUWIVgRuG3RTl+OgJQEpat+VKzioMCbxKUxQuA/+ilXr8HvBArnaAu/n5s0qKmERNfI11/BOue3BKnywl7dEtF1iFQ804J1ajI4eie3VrkEWdlEhf9fsVf83wapZsKoYzatIsPdZmIUFEVglkeZhBhZ20HGBK5BrOTusorrJ8QCzqIbo54+yyqGHg6W1OeCIJaqhEsc+ANvq+iBKYYbZaUehNQJmQeN+PIUK56Z07ARbpwpqkxBCCCGnpu5DuuK828/Gb//7PeC642aPxBM/34ubB9+H7F3u/QHHi0KpwNZlO9FtcDrUGvc2lOAUcGDTYRxPLGRwYNOxHz+m0anx8Hd3ISzKfWImrUGDHSv3dOhxx5w/An9/twYnC12IFqIgwmbx3h7Sh+pw1rVnHPPzOhl1hjaJxWLB9OnTsWnTpoZl4eHhmD9/PiZOPH5j+KiCAyGEdIShw4CJk4Ao32laxMQAU892/aw8wfJmO3cAC38D7Havg8+Pp/QuU2Gz+X7A3lG6JJ/hEW5gJKkFU3+2gyDaodWEoVe3C3GiUfDuD9xbIiIsAyOG3IdRwx6EWh3m9e9rUN8bvF5rQgghhBDSctc8cynu++w2pPspH9t7ZA889uM98s8aXeCZOuun1LcPTYfCqQDnmnqzyfsSlGUm6NfnwpYSgvyHTkPVjAzYuoTCGa2FtWs4Kmd2Q8mNA+XAg8/DiBK+f2E+Hpj8DCwmz3LJSj+VJtrCNDYDjvhQeZC+PNKFO/riOViGJMPay/3edPZd01Fe0PbqFG01645zvJbVZg+g1YW1CPv7MCIW70fo6pwWhRsYFlaBU4TSAuhLgLAjQOgRQFfuCjdwTgm2ajtiz+iPKx67wOd+bN1jPMINMjY4rAVfFxvz0zQEwbZxhgEOw9F9qDjYDY1VHexdYxGyvggRFd4fvCtqbYj+9RBC/twDRbH7rL2DeiTh/Ycuxgf3XYgIA0tVeIYbnr/+HCQ06yAhhBBCCCGt89CgyXh22DTEaFLwd35P2AXPG8NUfV+cl3Kf6z6M999PwvkqCdaMU+RRbdeBb6wJ5mefgJIXEKkxQ6t0hRvk5ZwTvxX+htcOvAaH6BmUULSxn4QNwPfmjNCDbuGGpkaHZCFFVdnknDlMiJ0Ki+C9TcKqFXRRl2OYPhsDdXkNQYJAWKWDveZE5Ft9V65IDLsRqmbhhsZ+Ek6ujuBPpdOAckcocqwxKLWHwQnF0eoH3s/QIbr+JkyCFRHqbhgTfZ4cVBCghE1SwyRqYBZUsAqu9ZqHG5piYQgWMGABB5uokEMS8n8lZYuuD/vuwpVmudoCOwerpEKWhV0L7+0Gm6BEjqmx/aZoUkZuQHg3vDjwbtzR+2GU2NI8wg0aXoXnB12OaA21SQghhBBC2uM/71yPO969Ack9En2uwyoAsL4UVhWbDWI/UbAQwxeP/4BHp78Ah93hMUkUmxDpeGHHPvf2s1FVeuwngrr0oVke4QZGZMnlDlRbYUTfUT0x/cbWVQY5FnShnv0cgbC/+7fWPIfnlzwCfZjnRGMsMPLE3Hu9Xmtycrrjjjvw77//NvweFxcnV3I4nuEG5gQbUUsIISeRnj1dL5PJFRQoLATKStmocCAtHUjt0lgvmP2c42tmouOkvBzYsR04bYTb4riYQcgrbCxF5ImDVhMJq63xgXtwcOjV7QLERPaB2VoW5H17Hqt+6IxKaUB66mR0T5/pdc3QkFQolTo4nd47H4KhuGwrhg+8CwcOz8WJJD52CEzmYtTU+f/bjY7sg+7p50KjDkOIobHhOH7kc8gvWoPS8u0QRQGR4d3kyg0GffwxOHtCCCGEkJPfWddMlF9l+RUw11mw4+89OLj5MNRalTzTzLApA+WH9szoAV2xfleu3/0pC6ogRBng6BorzxTCBsVLvCTP0s9wToDT6WHtEY2yS7tDah5EYAPVOcARp0fled0R+x2bt9K3/RszMX/OElz+yGy35SNnDMOyr1f5Pk+VQi6PXFEYOIQgGtRwdI12BRu84TiYR6ZDe6AUPM/h5tevRo+hGagobGzviDoVbL3iIIRrwVmd0Bwqg7KyZQEDX1gHBQt6MGHRobjg7hm47OFZXtftOSwDWr0GVrOt1cdRmOzQ7y6FeVB8Y/u0/hwECZoqQW4drdpwCE9cf6bPqiD2DD/h/pZkwn30PQh6VxUHNhZIUnJwGCSoTWzEjxKcUoELLWHYWmzBTqUVzigteLMDhp1lCF1XCGWdq9Mn5K+9GHbxaFz81EWIiQhBl4TIhv3Pe/oa/LpmF9bszoEgihjSPRkXjh+I5JjwFpw0IYQQQggJ5NKMofKryFwDu2hGqW0ziq2HoeI06B02BukhgxrWHRLRF3trM/3O/s9mzfdXxYFVAmAVElwz+Qe+EXWICoSprD6bA4eMh7CidAXOSjjLbfnwyP74t2Kbz/0qOSVCFHpUO90H/HBebnzDeAvS1RV+z3OgLh/5jijw4HFR6tWI0ybAJHgOJlJCQIamFGpeQLTC2HCtXHf1/hXbw1BsCcMnltNxXuwODArJB3/0Gir5aCSF3YTE8Ju8bhur6wMFp4ZZksCLEnS8+wAs9r3VClqUOcNQ43ANvqkVNIiSTH6/z7omA/+3VW3F5V0ux7LSJVA1VG7gIEgKCBARxrtXxvD196GQv4XGb4L95AQPFfxXDmfbyJ9LaUKFMwxKTpKjGWmGacg27oJNPAQt74RDUqDMFoIiawScTdLeY2IGYGbSmYjRRCBJ1xh8+GHcPViQvxnryw9ChIihkRmYlToSCTrfQRNCCCGEENJy5952FmbeOtXVT1JrkasiHN6RA51Bi/EXjcbA8X0b1h1+1mC5X+JEsn3Fbvz+6QrMvLWxTcLzPEacMwTrF23xuZ1ap4YuRIOasrqgV5a4+6ObEREbBlM1e1h/TIZuISohApc8eL48AZU3fUb1kM+NBUM6ytr5G/B/T12CxR8vx4nk7OvOxIZFW1B4uMTvehMuHiP//0Jclxgkdm0cl/XZvjlY8tEybFm2Q267DZnYH9NvnoLYFD/9PuSkMm/ePHz66acNv4eFhWHZsmUYMGAAjjcKOBBCSEczGFyvSDaIop/3dXr0BLZsAcwdfPPXWvv3eQQcuqZOQUHxOoii95kyUxNPR3Rkb2zf+1HQTiMxbiR6ZpwvD3wXRaf7XWyQqFVh6N39EkSEpUOtDkVNbY5cTYANulcofKe0lQoNUpMmIPuI77J2HMe3q9KDKDqgUuk75HO3R1rKJJRV7AoYcAg1JCM6spfHcrUqBBldzpZfhBBCCCGk49Q/hEzrk+JznRnj+uLLRRtRWet9YD5faYKyqAa2Yeluy9l4l+bjhmonpHqGG5pgIQdL9wg4orRQVXpWaGhq6SfLPAIOF94zE//8tA4Om/fZT6ffNAXdh2bg9evfQyDOuKOVG/yQtEpMvncG/u/Ws5GYES+HRepZ+8TDNKarK8hev2xQMtSHyhCy8lCrSsZGJ0XixpevQu+R3WEI1yNzW44c1ug7ppdHCeqmDOEGTL3mDCx47w+f6yhUCggO7w/2VZUW6EoFOPU8BLWrzaG0SlBapIbzt9sFhEaFyIEYiT3hbkZSep8tiv1tKKyAg03y42dCKZ9jzzhA0ALKo3+WLOQgKiTwDgm8U8Ss285G5A9rUf7Kb753zprcXeMxtLdnNZPIEB2uPXuE/CIdRApCM/bEaQYTQgghpI0S9SxAGo60EO8TCTGT4sfit8LlMDq995PUVetRAh4Jid6DzOw2lVVvYCLUFvABbsbl9Vlwm/f/7H5V2SqPgMP5yVOwsXInnJL3e+wZSWcgXhOND7N+dFvuGvDu3o5JVNX4HeTPJKhqMCZ6Ms5KmIEoTSyMzYIT9WJUdXK4gQUdtE1CBlZJAS2LOfg4DqtksKq6O5L1Ebgy7Vz0C09DjFqEyb4XPKdBiGYoeM53P4lWEYFuoVNwsHYxjKJWruTABvtzbMj+0WoHlc5IFFrDIRwt3caCCZUOPaLV3tugRqcaVrHxmA7JAYMyRL6GrIICq9DBPo8ouQILohQ4ZG4TlVAp3Pu22H7skgoayeEz6NL0L4mFHJScU64uwSIOE+OmwuQMwaIi/4HzbiEpGBjR3WM5q9JwbbeJ8ot0EGqTEEIIIac89ly7vjqyv6rXbFD3/LeXwFTTvgmMgm3JJ8vdAg7Mxfefh41Lt8kVnr256N6ZCIkw4MP7vgraecy6cxouuu9cuc+pNK8cHSGpewKufvoS9BvTC0q1Elk7c+XKGn1H94RS5Xuoc0xSFCZcPBorvlvjcx3W3+L00U/SEnabE2ExJ1ZFAzZZ1qw7psFutgcMOLDJuwZN8By3GJ0YiauevEh+kVOvTeJ0OnH//fe7Lfvss89OiHADc/xq1RBCCGmkUgHTpwMhISfWVTGbAYf7w/YQQxKGDbwDKpXnuSbGjUDfXlcgIW44QkN8D55qrajIXg2z+vO8ErHR/RFsdkctVCqdXGGADbxnx4iJ6uM33FCvV8ZsxEU3zjTVVExUP4wYwm4EWlY+25twFrqQz+nEuHlgemVcIIc/UpNOlwMc/rAACCGEEEIIObGFGrSYc99sxEWGeA03GP7e77qj1Qe+P7YmeZazdcN2xHGwJwdu/xTnlEEU3R/QdxuUjifn3is/nHfbLcdhyv9NwC1vXI0zLxuLLn2SA+4fLSxb3O+C0+RwA6MP1WHwxH6wJ4fDNC7DLdxQz94jFuYRaWgNVnEiMj4cyd0TEREbjuFTB2HwxP5+ww31bnr1Kgyb6r1NMmrGMLy49NGGah3NcdUmsDFdaqMIXaUAXaUIlbkx3MD06ZEgP+RmZYu9UZb5COuzGXZFQGX0c/IsJOOnT6G+QkjD6kpAWViFW1+6Et0Hd8U5N0zy+dnkz8dx8jqEEEIIIeTEFq4KxeN9bkeEKszjPUutBrm7krBjRwbsDpXXsIJD4iEe7fpmoQVFgIADu4XUKAIPbim1lXos6xGahnt6XQe9Quu+T3CYEj8WV6adhwlxI5CojXV73+xUyefqdu4t6DsQJB7pIQPlcAMTogxDmr6Hx3oRCpPXShHsupgkVwWM5lhY4LuyEbBKapTZKpGki0CiLhoqRSwidBMQph3lN9xQb3TcXUjUDXGdLxQwiRoYRR3MkgbJhsmYmvQ8bJL7d1flNKDEFgK72BiQd0ocqhx6lMkp6Ubp+q6I0cQhw8A+N4tO8PJ1qb9+NinwvI4saMH+TtxJ8j5MotZr81A6WvmhaR+PjrOjTtDi0i7/h0RdEqYmjPF7XBbHmBQ/OuD5EUIIIYSQ44sNkn9u0cMIDzCI3d/z6I5QeLjYY9mA0/vgoa/vhC7EvU3CKlGzqhX/99TF8sz+8WnubZL2GDJpQMOEWiww0n1IVwRbYWYxUnomyufN+iROO2uwXGXDX7ih3p3v3ShPGOXNpCtOx6M/3t2uc2PVtNlEYj2GZeCEwAH3fHyr3Hc17abJfldVqZWYejWN3SKefvjhB2RnZ7tViHnwwQfRvXv3Vr3efvttdASq4EAIISeKqGjg0ssB9o9GUYFroA3PA5ajs4MmJwNGI7Ddd9njDgleKD3/qYiN6oczx7yGotJNqDPmQ6HQIDH+NHmm/nojBt+HHXs+RnnVnmZbt74KAauS0FS3LtPkygHBVluXi/iYwa3ejoUuhg28E+WVe1BQ/C9s9hrotbHy4P+I8G7yOgP7XIdd+7+A1GxGp+jIPrBYK2G2+E7SpiW7BuP0zJiFyqr9EHxUzzhW+vW8CmkprtmEdNpo9Op2IfZn/uR13W5p0xEa0oKBZYQQQggh5LjrlRaH+a9dj+UbD2LbwQJAEKEprUPd1mxw04Zi6KSByDIo8e0fvtsk8p2+7+INbjghcLuAVQ1gD9OaGzl9GL7P/xArf1iLnD15csWDMy4Zg9ReR+89VcDLfz2Bl696G9v/3uM2mw07yfoqBKwqRUvomoUMLn1oFla9/YtrVJQPtj7x0G/NA+doeTW3g1uyMHTyQLSWRqfBC0sewabft2PZN6tQU1aLpIx4nHPjZPQa7mqT3PX+jXjnP596lGgeOSwDh2NCUVTuvVQ1+4izznENVLr2ucuwZ+1+2K3uQXjtnmJYBiWh+ZSn7DfeyQIO7KJzcBpYFYajb4oSlJU2iKFav0O6mld3YOs++t9zMe08V9UFFghhnTVfPuk+O249NttTUrcEP0cgHclblZe27IMQQgghp4buoel4f9iz+Ld8Cw7UZYFlnU2Vocg2SujRjce4jHQ4IuOxpuIPKDixYQb/pgPdGbasJXMOSWy9AEKV3gc3jY4ejMERvbG6bAsKLMUwKPU4PWYYEnVx8vs6hRbP9L8Lbxz8HPtqD7uOBx61Dj3C1azfx9UmybNHQpA4v4GMQ9Z49A53DxmcGTcLn+e84rZMefTGyQmFxz5trK6DxEMLJ1QQ5eu1xZiKf2p6osgR0bBepjEPfcNbP2BHxeswLeUtHDGtQ2btn7CJtQhXpaB3+LmI1rrCGFd0uQLfH/me1XVo2K5O0KGrYSRKbdmodlTCIVe5aN6u4DAx7kz55/OSLsE7mS/BKbFq341qnTqEKaw+m2jsb8IiqOT/svXUnPNo88XVZ8VCGbWiHiF80+of9VGRZufD8Tg/+T4Mihov/55mSMKFKVMxN/9Pr8f+v/RzEathVd7J8UBtEkIIIYS0Rv+xvfFt7vv4+/u12L8x03UXz/OoKq2BQsnjtLOHyM/Il3664phd2IhYzxA4M/HSsRg5fahctSD/YKHcn3Lm5eOQ2NU1WRObJOrVFU/ihcvnYP+GQw3b8QreZ+UHf5qHKS57eBaevfgNBNuhLVnoOczVr9EahjA93vjnaaxbsBkrvl8DU7UJKT2TMOPmKeg6wDUh1Y0vX4lPH/4WYrN087jZI7Br9T7UlHnvJ2HXrL6Kxg0vXoFHpr3g0ddyLLHzeezHu3H67FHy7+x6XfDf6Zj31mKv69/02v8hMr6x3UeOrRO5TfLLL7+4/c4mnTt82PUMozUqKyvRESjgQAghJxKFAuje3fXyhgUcdmx3TUd0LPTo4XPADqtskJI41uemGnUYRgy5F3WmAlRWHZQTzDFR/eF0mpGd9wdKy3dClFiJYh5O4WiIwwueV3lUR2AVHdgDZEkK7r/ePB94FiJf2OdjVR98VZdg1yo2qj/yilahzlgApVInV7xgVSKMpiJs2PYqbPZqj+1YqCE60pUwDg9Nk6tB7D34HWrqGtOTYSFd5OoOWUd+9whQcBybEcp98FF7dE+f2RBuqJfR5WzodbHIPvIHqmpYAw8IC01D19SzkJzgupkmhBBCCCGdg0qpwNlj+sgvbwpKq/Hdn9t8Nkk4SYKy3AZnrJ8qDmxWf4cA7WHP+9/mplzle0YZrV4jz0Dkb7alV5c/JZcwZh0OCqUCw88ejKqSGsx7cyE2Ld0uP4B22kXUaXynMnRqFUb3ca/GMOjMAXDO89+BIamVcMSHQZ0f+HPWY6WW24p1soycNlR+eTP9pilyZwfreDmyvwAh4XpMvGycPPvR4Zwy3PPUT6isdi+9zZqDt11zBvr2TJR/7zOyB17643G8f/fnOLS1sU3Su2cy+o8eiM827YbQrGNAp1JCPW8HOJsDti4RECLUUFSYoDtYJf+dlF7rp1KdBCis7otuv2Acpp3jCjfUu/LxC5HaKwlz31h4tNMJ6D2yBy68ZyYmXEQzpRJCCCGEdCZqXoUz4kbJrwYjG38stERiVcVfENlM/N5m3JcAs6AGDzvUfio0sNtWk1MNjdLpN1wwJsb37PwsxDA1wXc/SYwmEi8MuAdZxjwcrMuGglNgWGQ/1DjLsbxkKfbV7YIkaZFpz0AvjfcBBKzCwk5LP1wQ3tttefeQfnCIvBxqqO/GsUtKaDinHF6oFXWIVLjf3zvBwyi52hwba9PxV1V/r9e/rVi/TVrIWPnlzeT4yRgSMQSrylehxFoCvUKP0dGj0SO0B3JNOXjz0OtwOOs8wg2XdbkCqfou8u89Qnvj9u73Y27+tyiwHGlYL1nXC0Mj0rGtigWf3b9PFadFqYOHQ1LCISjkAAOrSqGACCUnIKKh0cHJ66j9lZhj4ZbY/6BvpCvcUO+q9HORqk/EgsIVOGzMk5f1Ds3A+cmTMDrGe7U9QgghhBByYmITCrG+B1/9D6zK9LEMOEz200/CKk6zAfy+sLDDO+tewIHNh3FgYyZUGqXcT8AqJbDB8FuX7ZRvnwVBgM3se7LVsOhQ9B/n3iZhFag7grod/SQKhQLjZo2UX95cfP95GH/RaCz9ZLlcGYN9LnZ9Wd/Hvg2H8Mg5z8NYbfKoivHfD25Cl96uCbbYJFXPLnwIH933lTwBVz1WPaLv6J6Y98aihkm26ulCdbDU+R4b11p3fXBjQ7ih3i1vXIOuA9Pwy5zFyNqRKy8bML4PLr7vPLnSNyHeHDx4ECcyTmr+/02EEEJObCzgsH6d9/eSkgFRAIo9y5O5YTOgsqmP/NHpgFkXAKH+S6+1l9lShlXrH5XDDr4qAPTqdoHH8qV/3+gxmL99OEwY9QIMeleS+VizO4zIK/gHxWVbIAg2OSCQlnImIsO9h11qjfmwWiuh1UQgLNT1YL/WmIfcvOWoqN7fEChJS5mEPQe+QUXV3nafo1YTiTNGvyxXrPDF6WQdAZIc4CDkeDKbzfj000+xYMEC7NmzB+Xl5QgJCUG/fv1w7rnn4vrrr0dUVBR9SYQQQkgbfPbrenw471+v741JjEa1rQZrY/3cq0tA9MYShCz2PwNIdFIk3t3wImKSXSWPO0pOUQUufu4bOH3MWHTrzNG4cbr7g2K27ojb5wTcd+jSvVDntSzgwB6Sf531P8R1CV7J6NaoqjZh4V878c+6Q7A7nOjdPUGu3FAfbmju8I4clBdUyiWpMwa6AiD780rxw8rt2JrJKv3xGNs3HZdMGIw3Lngdu9fs97qfivO7wzzINcttcwoToGoyJis5OgwLnrwWCi9VPeqZj3YSsI4dcnzk5+cjNTVV/nno9Meg0bdvZiibuRpbFz8n/5yXl4eUlJSgnCchhBBCOq9fC37G78ULvL7XTT8MhVYHiqyZCFX6ntHf5DCg2qGERuFAuLpZqvaoaHU0nuj7BMJU3mdMDZY8Uy42FlyMPrp8t+U2UYn5lYNxWvztmJk01e09q2DB/TuuBwcRCvYZOQlxyjokaVztD7Y8WVkFHe85AVK+LQLflYySB/M3peQU+Hzk04hSd+zn9aXGUY1/ylZie/U2OEUHuhq64cy4SUgzpHtdP8+cI28TpY5Gks51/1lkOYBtVb+h0LwXPKdERshIDImciS9z3kK+xdUGZcGGEKX1aKUGCeG8BVpWeo61yyBCz9t8/t2EqtJwVuo8uQ/GF7OT/d1x0DWrTk6OHWqTEEIIIaSjfXDvl5j35iKv77EAQXl+BQ4fHWTuCwsbOGzO+qJiXiV1i8c7G15EWFTHjt1iEwfdNeYRj8oG9W5/+zqc/59z3JZVl9Xgovgbgnoeaq0K3+d9KAcPjofyggos+uAvrF+8BYJDkAML595+thxq8ebglsPypFoJ6bFI6+tqk+xddwC//e937Ft/SP6OR88cLu/j0ekvIGd3YyCirTIGpeHDba/5XcdUa5arPOgM7lU3yLFDbZLgoIADIYR0RllZrqBDaYnr9+hoYMBAoFdv1/REv8wFyst9bz/1LCDFdWOFokJgw3pWK6jxffbeuHFA+LEpT1VbdwRbd/0PZmuZW+WG9NQp6JVxgdcHxas3PIE6k/vD/vZIjB+JIf1uxsmoujYb67e+DFH0nbYORK0KwWmD7kF4mPebdkJOJH/99ReuvvpqFBUV+VwnIiICb7zxBq699tpjem6EEELIyeKv9Qfw3dLN2JvlapP0So/DFecMw1lj+kAQRVzw0sfYK7rPFiqTJIRsL8eHN1+MfqN7geM5bFu2C589+h1y9+Y3DPRnlRb+8871DaWUO9qenGI8+PFiFFbUNizTqpW4asow3DJjtNc2yewHPkZOrdH3Tp0CIr/dAp51ULTAWddMxH2f3YaT0e61+/HA5GfgsHkOrmLdJXVjkmAckQgh3DUAiHNKUFg4KJuMM4sO1eP9/8xGz+TjEwAhLUcP7gkhhBByLGyoWItlJUuRZ3ENGkrXZ2BKwjQMixwJpyjgjq3Po8aRD73SBr7J7TzrQim3hODRvveib0QSeI7Hrpod+KXgFxRbXZNH8eAxMGIgruxyJaI1HRu4rre/NhM/ZL+JROVuaHgnSh2hOGjNwLSkGZidMs3rNk/uuhPVzsZ+FRZq6KErQYjC1RfAQUIYb0EYb4aCE1FhD8FWYxfsMqXCKXlWsZueOA639bgYJ6PMul34NPt5CA0TZ0nydWYVHFgVDANng0Fhk6t5KDkntJzDI+SgVcRiQtL7CFN3PR4fgbQCtUkIIYQQciz8/vnfmM9my9/papOwwfCsQsDY80fAbnPguj53oSSn8X69KdY38taa55DeLxUKJY+18zfiy6d+kisrMGxw+pjzTpODBaxa9bGwY+UevHjFHFQUVTUs04Vo5QrK7HN5c0nSjagsbnkV60AuuHsGbnn9apyMNv2+DY/NfAmij8m2WiKuSwxeWfYEkrt7n5iKnDioTRIcFHAghJDOzG53PY3XNJsFhi3783cgJ8d9OZvlcuw4oG8/z31VlAMWKxAeBoQen9l5KqoOoM6YB6VSi7iYwfKgel+27noXxWVbW30MhUIjV0hoxCEpfiQG9L4WCkXbSy+f6KpqMrHv0A+ors1qWMaqQ2SkTcO+Qz/CbDkalmlWsUGnjUFc9ECkJo2HWn18EtKEtMZPP/2Eyy+/XC6hWK93794YNmwYRFHEunXrkNPkfxsfe+wxPPvss3SRCSGEkDYymm1yqd3QZrPAiJKEux/7BCvKi2CP04MTRKgLTYhfXYj7Hr9cHszfXOa2bNRWGpHSI+G4VDFgn2PTgTxkFVUgRKfBhIEZCNX7nt3mvts/wArBd0lhzb5ihKxuvP+upw3RwmpsHLnPAh1T/u8MuaSwSn3ytkl2rtqLD+/7Cgc3N1buGHB6H1x0/7l4787PUJRbBmeElj2sBCQO1n4JiBzRFQmpMRg/IAPnj+qHiBCqytDZHtwPmxacCg5bllAFB0IIIYR4Z3aajs6Wr3db7hSdeHjHJ9hftxshSteM/FanEpXWGDzY9yKckzzQoz2Qa86FWTAjQZuAKPWxr/7KzmFXzT4UWEpgUOowPHIQ9H6qJb9z8FlkmtyrN7MKBPHqWsQo66DiRbAJWLPNMdhW3QWVDoMcdIjRsuoQjf0kLNBxVuJo3Nr9Qig4z+DDyeJQ3S4sLvwKhdbG58PdQvrhjJgZWFr0HmqdZVBClEPY7DpFKs1I0IQjTBWPZMMZSA89F2oF9ZN0BtQmIYQQQsixVFdllAMJhjD3NonNasfDZz+HXav2uS1noYH7v/gPTp890qM9cHBLFsy1ZqT2Tj5mwYam2JiKLX/uQMGhYoRGhWDMecOh8/Nc/o7Rj2D/hkOtPk7zfhKFUoGZt0zFLW9eDYXi5G2TsJDDxw9+g+xdR+TfWVt2yKT+mHXnNLx580eobBIuqRefHidXiGDBmanXnOHxd0ZOTNQmCQ4KOBBCyMnMZAIOHQQsFiA0FOjR0zMM0UkdODwPh3MXt2objToCo4c9BIu1Qq5qwPNKxMcMhl4Xh1OF0VQIq60KWk0UQgyuRK/TaUVB8b8oKt0o/xwakoIuyRMRGd7teJ8uIa2yb98+DB8+HGaza7bomJgYfPHFF5g+fbrbQ4FPPvkEd9xxB2w2VyfeDz/8gEsuuYSuNiGEENIByvIrsOK7Nagpq0FiRjzOvHwcDOGGk+Jaf3DPF/h61Q5YhnfxeE+VX43QP/bLwY7ms+u88c8zKDhUJHdUaHRqeRam+LRTpypBzp48+SE9uxYpPZMayiX/+cVKrJq7DlaTTS73PPO2s9BrOLVJOiN6cE8IIYSQE0mhuRpLC3egxmFBF320HGwwKE+OfpKf8j7F2vJlPt6VoICISpseh+oaK+Ml6aLwv2G34IilAFnGAmgVaoyJGYgYTSROFUWWXBidNYhUxyJG4+onsQpGbK9ajn21/8Ip2pGg64bhUecgUUdtks6I2iSEEEIIOZEUZZXg7x/WwlhlREqvZEy8bCx0zSaN6qxeve5/8rP91kjtlYTX/n4Kh7ZmI3tnLnShOoydNeK4BDqOl8M7clBTViv3m7EXU1tZh98/XYG1v22Cw2pHr9O649zbzkLXAWnH+3RJG1CbJDgo4EAIIaTTViRYt+UFv+uoVaGwO4zyf5MTRqFrl7PkqgSEkJPThRdeiHnz5sk/h4SEYMOGDejbt6/Xddl6bH0mLi4OWVlZMBhOjsGWhBBCCDk2tq3YhQcmPwNnpA623vEQwnXgbA5oDpXLAQcOQHhsGOoqjYiIDcPkqybgwntmIDK+fbPZE3Kiowf3hBBCCCHHxp6abfgo6xW/61TbUpFVxyNKE4pzEofhkrRxiFT7rp5NyMmA2iSEEEIIIcfG6nnr8cxFr/tdJzyG9ZPUITopSq5AMPu/0xEWRZXRyMmN2iTBoQzSfgghhJBjKjK8O6IieqOyer/X99XqMIwf+RzUKnpQT8ipoKqqCvPnz2/4/emnn/YZbmAuuOACnHPOOVi6dClKS0vx1Vdf4dZbbz1GZ0sIIYSQk8GQMweg98gecvll5bocj/djkqPwyZ43qVwwObVJkuvV3n0QQgghhBAPfcIGIVmXhgJLrterE6WOwauDnoOaV9PVI6cuapMQQgghhHQYVqE6rW8Kcvfme30/qXsCPtn9BlRqFX0L5NRFbZI249u+KSGEEHJ8DR1wG6Iienks12ljMGLwvRRuIOQ4czhF1JqdqDQ65P+y3zvKP//8A1F07V+hUOD6668PuM1ll13W8PPcuXM77NwIIYQQcvJ6dsGD6DvGs02S1C0eL/3xGIUbCCGEEEIIIR2G53jc3O1BdNF383gvTpOEW7s9QuEGQgghhBBCSIdRKBV4Yemj6DY43eO99H6pcj8JhRsIIW1FFRwIIYR0Wqw6w6ihD6KqJhOl5TsgSgIiw7ohLmYweF5xvE+PkFOSJEkor3Ugq8SMokobms61ygFIjNIgI16PmDAVOI4tCY4jR440/NynTx+Eh4cH3GbAgAENP2/cuFEOSPA85X8JIYQQ0nIRseGYs+Y57Fq9DxuXbIXgFND/9D4YOX2oHLok5FTHSa5Xe/dBCCGEEEK8C1dF4t5ez+FQ3V7sq90BCSK6h/RBn7DBcgCCkFMdtUkIIYQQQjpWXGoM3t/yCrYt34Utf+2UZ6sfPGkAhk8dFNQxIYR0VtQmaTsKOBBCCOn0IsO7yy9CyPFVbXJgc2YN6iyC1/fZuKTCSpv8CtUpMLx7OCIMwSlFWFdX1/BzdHR0i7YxGAwNPxuNRuTk5CAjIyMo50MIIYSQU8uA0/vIL0IIIYQQQgg5HnqE9pVfhBBCCCGEEHKssSDD0MkD5RchhAQLTdtACCGEEELarbTahlV7qnyGG5pj67H12XbBEBER0fBzTU1Ni7apqKhw+72goCAo50IIIYQQQghplnRuz4sQQgghhBBC2oPaJIQQQgghhJDjidokbUIBB0IIIYQQ0u7KDesP1kAQWzf6iK3PtmPbt1ePHj0aft6zZ49bRQdf1q9f7zfwQAghhBBCCCGEEEIIIYQQQgghhBBCCCHk2KKAAyGEEEIIaTNJkrA5s/Xhhnpsuy2ZtfJ+2mPcuHHQarXyzw6HA++++67f9Z1OJz788EO3ZRaLpV3nQAghhBBCCCGEEEIIIYQQQgghhBBCCCGkfSjgQAghhBBC2qy81oE6i9CuK1hrccr7aQ+9Xo8bbrih4fennnoKf/75p9d1WZjijjvuwP79+z1CD4QQQgghhJDg4aTgvAghhBBCCCGE2iSEEEIIIYSQzob6SdqOAg6EEEIIIaTNskrMQbl62UHYzxNPPIHU1FT5Z7vdjunTp+Ouu+7C9u3bYbVaUVtbi7/++guTJ0/GBx98AIPBgKSkpIbtNRpNu8+BEEIIIYQQQgghhBBCCCGEEEIIIYQQQkjbUcCBEEIIIYS0icMpoqjSFpSrV1hpk/fXHrGxsVi4cCESEhIaKjK8/fbbGDJkCHQ6HcLDwzF16lSsWLFC/v3HH390CziwZYQQQgghhJAgkqTgvAghhBBCCCGE2iSEEEIIIYSQzob6SdqMAg6EEEIIIaRNLHYRwRpqxPZjcbQv4MAMGjQIGzduxOzZs32uM378eGzdulWu8FBdXe0WkCCEEEIIIYQQQgghhBBCCCGEEEIIIYQQcvwoj+OxCSGEEEJIJ+YUgzuTqlMIzv5SU1Mxb948ZGVl4ffff0dOTg4kSUKXLl0wefJk9OnTx3U8pxP5+fkN2zWt5kAIIYQQQghpP05yvdq7D0IIIYQQQghpa3uC2iSEEEIIIYSQ44XaJG1HAQdCCCGEENK2G0meC+qVUyqCu7+MjAzcdtttPt8/cOAArFar/HNoaKgcjCCEEEIIIYQQQgghhBBCCCGEEEIIIYQQcvxQwIEQQgghhLSJTs2DRRKCMaEqxwE6FX9Mv4nly5c3/Dx06FBw7CQIIYQQQgghwSMFocFAFRwIIYQQQggh7WlPUJuEEEIIIYQQcrxQm6TNju0oMkIIIYQQctJQKXkkRmmCsq+kSI28v/a44447MHv2bIwbNw6VlZUB158/f37Dz+ecc067jk0IIYQQQgghhBBCCCGEEEIIIYQQQgghpP0o4EAIIYQQQtosI14flKvXNQj7WblypRxaWLt2rVt1Bm+2bNkir88oFApceuml7T4+IYQQQgghhBBCCCGEEEIIIYQQQgghhJD2oYADIYQQQghps5gwFUJ1inZdwTCdUt5Pe82YMaPh57feeguS5L3utNlsxnXXXdfwOws3pKWltfv4hBBCCCGEEHecFJwXIYQQQgghhLQFtUkIIYQQQgghxxO1SdqOAg6EEEIIIaTNOI7D8O7hUPBcm7Zn2w3rHibvp71uueUWaLVa+ed///0XN9xwA2pra93W2b9/P8aPH4+dO3fKv0dFReGVV15p97EJIYQQQgghhBBCCCGEEEIIIYQQQgghhLSfMgj7IIQQQgghp7AIgwqjeoZj/cEaCKLUqnAD245tHwysCgMLK9x5553y75999hl+++03jBgxArGxscjMzMS6desaKjvo9XrMmzcPSUlJQTk+IYQQQgghpBnWPmhFG8Gr9m5PCCGEEEIIOXVRm4QQQgghhBByPFGbpM0o4EAIIYQQQtotLkKD8f0isTmzBnUWIeD6YTqlXLkhWOGGenfccQecTicefPBBOBwOVFRUYOnSpR7r9e7dG9988w2GDRsW1OMTQgghhBBCCCGEEEIIIYQQQgghhBBCCGk7CjgQQgghhJCgYGGFSQOjUV7rQFaJGUWVNjSda5XjgKRIDbrG6xETpgLHFnSAu+++GzNmzMD//vc/LFu2DLm5ubDb7YiJicHw4cNx8cUXyy+VKrjhCkIIIYQQQkgzrEHQ3gIMVMCBEEIIIYQQ0p72BLVJCCGEEEIIIccLtUnajAIOhBBCCCEkaFhoITZcLb8cThEWhwinIEGp4KBT8VAp+WNytXv06IG33nrrmByLEEIIIYQQQgghhBBCCCGEEEIIIYQQQkhwUMCBdDjRYkHt4sUwb9oMKBUIGT8BoZPOBKekPz9CCCHkZMbCDMcq0EAIIf5YrHb89fde7N5XAKWCx+gR3TFmRDcoFPS/UYQQQgghhJCOZzbb8OfyPdi3vwgqlQJjR3XHyBHdwPMdU92SEEIIIYQQQpoy1Zjw11ercHDLYag1Kow5fwROO3uwPHkdIYQQQsiJiEaYkw5l2bkTebfeBqGiomFZzbxfoM7IQJePP4IqOZm+AUIIIYQQQkiH2bU3H48+Ox81tZaGZYv/3IWuaTF49ZmLEBsTSlefEEII6SCsi5yT2r8PQgjpzLZtz8UTz86H0WhrWLZ46Q706B6Pl569EFFRIcf1/AghhJCTGbVJCCEE2PTHdjx38Rsw1zXpJ/l4GXqP6I7nFj2M8JgwukyEEEIItUlOODRdJekwQnU18m662S3cUM+elYW8W26BJIr0DRBCCCGEEEI6RGWVCQ89Nc8t3FAvO7ccjzzzC115QgghhBBCSIcpLa3Fo0/94hZuqHcoswRPPPsrXX1CCCGEEEJIhyk8XIynZ7/qFm6ot39jJp679E26+oQQQgg5IVEFB9Ih7Lm5KJ3zthxy8MV2KBPGVaugHzwYNQsXwZGfB0VUNMJnzoAqKYm+GUIIIYQQQkib5R0owMef/QOjyXMgUb2Dh0uwZXsuuqdEYvk3q1GSW4bIhAhMvvJ0xCRH09UnhBBC2otVb5DaWcKhnZsTQsjxkrs3Dx99shIWi93nOnv2FmD3nnwkpUThj9V7UVpeh5ioEJx1eh/ERFJlB0IIIaTdqE1CCDmFZe/KxUcPfA2bnzbJ9hW7cWhrFqKTIrHs61UoL6hEbGqM3E8SGR9xTM+XEEIIOSlRm6TNKOBAgspZUYHCRx6BadXqFnVeVn7xJQq23w3Jam1YVvb224i6+mrEP3B/i44pSRJMa9bCum8feJ0OoZMnQZWY2K7PQQghhBBCCOmcygsr8eq1/8PWv3bCMbI3EBXqd/3vPl2BfZ/8BYfN0bDs88e+x6UPno9rn7usRccURRGblm5D1s4j0IVqMW72SMQkRbX7sxBCCCGEEEI6n9IjZXKbZPvfe+Ac0QcIN/hd/7Of12HLwQI4nELDsg++X4PrLhiFay8c3aJjCoKAjUu2IWd3HgzheoybPQJRCZHt/iyEEEIIIYSQzqcoq0Ruk+xava9F63/68HfYsXI3nI7GNslnj3wr95FcfP95LdqH4BSwftEWHNlXgJAIPcZdMAqRceFt/gyEEEIIIRRwIEEjWq04cs21sB061OJtzOvXey4UBFR+9hmU0VGIvv56v9tb9uxBwT33wJF7pGFZyUsvIWL2bCQ88Tg4lap1H4IQQgghhBDSaVmMFjww6WnkHShs2UQJCmDz2n1Q2RzgmrwnCiK+e+EXuZrD+f85x+9+9m04hBcufwvF2aUNyz6450tMv2kybptzLRQKRbs+EyGEENKpSQDX3goMVMGBENKJmGpMuO/Mp+UBRS0hqDis33vEc7kg4uOf/kV0pAHnThrodx+71+zDi1e+jdIj5Q3L3r/7c5z3n3Nw06tXgef5NnwSQggh5CRBbRJCyCmmtqIO9058EmV5FS3eZstfOzyWsbDDxw9+g6jESEy+crzf7bet2IVXrn5Xrv5Q7/27v8AFd8/AdS9cDo5r2gNDCCGEnGKoTdJmFHAgQVO7eHGrwg2BVHzxBfSjRqHq629Qt2IFJLsduoEDEXnlFTCMHo2q775D+XvvQ7LZ3DcUBFT//DOgVCDxySeDdj6EEEIIIYSQE9tfX61yCzdwlXWQmlVwYGMknToegoYDeA4IT4CtSwQ0ewugzmwMKTA/v7YAvc8ZjJ8Wb8PazYfhFAT075mEi6YPw6Bu8Zj/9hJ8/+J8OO1Oj5mKFrz3B1RqJW5545oO/tSEEEIIIYSQE8XST1e4hRu4qjpIfio4CBr/4YNvF2xGzzA95r25CBuXbIXoFNFvXG/Mvms6eo/oLi//6dXf3GZalZQKODgOc99cBLVWheuevzxIn44QQgghhBByolv4wZ+tCjcE8uMrvyKpe4Lc9tj8+3a5ovXACX1xwX9nIGNQmtyPwt4TnKLbdg67Ez+8/Cs0eg2ufPzCoJ0PIYQQQk4dFHAgQVO7eElQr6ZQVo7cSy+D5HA0LDNv3Ci/wGZBFRof2HtT/eNPcgUIdUpKUM+LEEIIIYQQcmJa+eNat98VeaUQ0+Pl8HN9uMERykNUuQ8ikkK1sI7sBkmrgmZ3QcPyIrsTNz/yPZxC44P5zbuOyC/NoSIodnnOtNrU/HeX4qL7z0V0YlSQPiEhhBDSycglk4KwD0II6aRtEj6vFEJqHKDwDDJIHKsq538m07yiKtx59nOQqkwNy7b8uUN+8Qperj5XT4gJg7NXEsTYMIDjwJls+H7BZlx437kIiwwJyucjhBBCOh1qkxBCTvE2SXvl7M7Df8c9BklsfECzcck2+cXxnNtyb75/8RfM+u80GEL1QT0vQgghpNOgNkmbUV1a0m6O4mKUvf02LDs9S5a1V9Nwg5sA4QaZKCLvxpvkyg+EEEIIIYSQk1fpkTJ89uh3OLQ1y205Z3VAuTUTcLraD6KK8wg3NGXrnwJRq5J/lhQ8bMO7uYUb3NbtkQgh0vdMrPLxnCIePvt5uaIDIYQQQggh5ORVlF2Cjx/8Rh780xRntYPfedh7n4alWXVqHwQfbRK3cENSFOxje0OMC5fDDYxk0MDSMwn3PvmTz30QQgghhBBCTg4FmUX48L6vUHCoOOj79hViCBRuYOxWBx6b/iIkiWawIIQQQkjrUMCBtEvdihU4fNbZKH/vfYjGxhmEThT27GxU/zL/eJ8GIYQQQgghpIOsmrsO1/S8E9+/OB9Wk+cAIb6iFqqVO6DYnwcBTv87U/BwpMfIPwopUYDaf9FDZ9e4gOeXvesIVny3JuB6hBBCCCGEkM5p+bercW2vu/DTq7/BZvGccIkvr4Fi9S7wh/LBlVaBK64EvysLijW7wZkDhBxsDnBGq99VJJ6DfUg6wHuvBrGvoBIr1x9s3YcihBBCCCGEdBq/f7YC1/X5L+a+sRAOm4+JZI+j3Wv2Y/2iLcf7NAghhBDSyVDAgbSZo6gIBXffA8nWslmGjpfquXOP9ykQQgghhBBCOkDh4WK8eMUcOOz+gwucQ4AiuxiwB36wLx2t4CC2oFyyFKpr0Xku/XR5i9YjhBBCTjacJAXldTzl5uZCr9eD4zh88cUXx/VcCCEnnty9eXjlmncDVm3jHE7wOcVQ7DgMxa4s8CzkIElQHi7xu50qqwRcgFlRWfUGqF3tGF8WLd/l931CCCHkZHUytEkIIcSfzG3ZeOOmD9wqvJ2IqJ+EEELIqYraJG3nfzpKQvyo/PbbDgs3qLp0gePIkaDsy1FQIP/XeuAgrLt3g9NoEHL6OCjCw4Oyf+IfK0lXtA44slyCvU5CaBcOGTM4hHf1PpsUIYQQQgghLTV/zhI4Hf4HEjUPOgTCH51BNTk9BrmBVg4wiKlecXZpQ0dD5vYcaPVqnHb2YBjCDS3anrSPIAj497fNWPnjWphqzEjvm4LpN09Baq9kurSEEEIC/htyzTXXwGKx0JUihHg1941F7RpIpDpQCDFCDyHVVUmuqS4GDcr3uvo3/JH0moDrFJXWyv89sPkwsnfmQheixWnnDIG+haFt0j5OUcRf+zOxdN9BGG129IyLwaVDByA9KpIuLSGEEEIIaZefX1sgj8vpCMk9ElBwqDgo+6rvJ9m34RBy9+RBH6aT+0l0IdQmORacDidWzV2P1fPWw2qyotugdLmfJLFr/DE5PiGEENIWFHAgbVa7cFHQr55h3FhEXHwxtH364vBZZwFi+xPGirAw5F55FcybNzcs47RaRF5+OeLuvQecQtHuYxDvHGYJax4WUb6zcVnJZgmZv0jofz2HPldSERlCCCGEENJ2K3/6t3UbcAFCtpKEsf3SMOPlq5E0tCuuvOcLtsgnZV5Fiw6rj9DjrrGPYu+6gw3LtAYNZt81Hdc8e6k8IzTpGMZqEx6Z9jz2rT/UsGzLnzvwy5wluPGVq3DRvTPp0hNCSEdij/ba+3jvOE5AeNttt2HlypXH7wQIISe8NfM3tGt71hLQbMiEkFMGZ3ocJL0aY6cOwrlTBiFByeOWL/8JvA9b4Ep1BrUC/xn5EA5sOtywjIUcLrr3XFz5xIXUJulAVWYLrvvuF+wpdg3oYtZk5eKLDVvx2Fln4Mrhgzvy8IQQQjp5m4QQQgJZt7BxLFSwjJs9AtNunIKQCD3uHP1oUPbJ+kRuHfaAPBFUPRZyuPTBWbjs4VlBOQbxrqqkGg+d9RyydjZO67X5jx34+fWFuOv9mzDthkl06QghpCNRm6TNaHQxaRPRaoWzvDzoVy/6xpsQNnUq1KkpiLz0kqDs01lR4RZuYCSrFZWffYaSF18KyjGId1vfktzCDU3t/lRC4b9UzpMQQgghhLSNuc6C2nLXLKQtIfEcxMgQwM9MRpwIXPHylRhz3mlIT43BtDP6+1632gRFfssCDmVHyt3CDYzVZMN3L/yCTx76tsWfgbQeK83dNNxQT5IkfHT/V9jy1w66rIQQQrxWbrjlllvw0Ucf0dUhhPhUW1kHU7W53VeIhRyUJTXQbjgE3d97cNPZQzB2aAa6DUzHxMvGBtxeUVAZsLpc8bJdbuEGxmK04qunf8JXT/3U7s9AfHtwwR9u4YZ6oiTh2d//xqbcfLp8hBBCCCGkzQPX2X19sF3/whU47azB6DOyJ8aef1pQ9pm964hbuIEx11rw2aPf4fsX5wflGMS7F6982y3cUI9VI5xzy4fYv9GzD4UQQgg5EVDAgbSJPfcI6+kL+tUTLY2dAfGPPoroG64Hp9c3rtCGmU1Fo9Hne1U//ABHieeDZdJ+lgoJeX/7DzAcnCvCVCzhwI8i9nwuIv8fCaLg2sZcJqEuX4LoaNxHXZ6Eir0SrJUUjCCEEEIIOdXl7S+A2JqyywoeHM/JIQaO3XM2Lc0gSfIyTgIs1sbZTx+4ZSounj4MGrV78UNFURW0a/aDa+Hx2UN6X+a/vQTVZTUt/xykxUpyy7D2F/8z6v4yZzEKDxfjp1d/kwd2rf11ozyolSnNK0dBZpFcurnekf0F2Lv+IKpK6TsjhJCW4Ni/sUF4HUslJSWYNGkSPvzww2N6XEJI55OzO08OzgYbC0PXu//z23HubWdBrVX5XJ9zClDu8z1InqsywrY3z+f7c19fCFONqR1nTHzJrqjCP5nug7iaYn89X27ahvyDhfjxFVebhM3AKx6tbl56pExukwhNAiy5e/PkNgm1Iwkh5ORtkxBCSEsd3uE5aD3YbZJHvvuvPMO/qmk/iY+hWxLHQQozQAo3QFLwPvfZ3A8vz4fFFPygBmHBklxsW77L56Vg/Wy/vrMUufvy8cNL8/H10z9j49JtDW2S4pxSV5ukyRjBnD2uNkltRR1dYkIIaQFqk7Sd+ygNQlqI12qCf614Hpru3WHLypZvhtVpaYi77z5E33wzTGv/heSwQzdgAKp/+w0V738QnGM6naj7809EXXVlcPZHGlTsAaTGcUBelW0HllwhNinrKUEdBqjDAePR/hZNBBA3zPV71dFJbzkeSBoLDLqNhyGh9aEXQgghhBDS+al16tZt4BDAsZmMQrSuUSTys1hX52T9HaVSwSMtMQJ5BwrA8TySuyfgrmsn4tqLRmPzzlw4BRF9eyRiyesL8HOzigxt5bA58O+vmzDtxslB2R9ptGft/oAhmE1/bMc1Pe90G5gWFhOKsKgQ5B8skn+PjA/HkEkDcGRfPjK35cjLFEoFxs4agVvfuBoxydF02Qkh5CSxaNEi3HTTTSgqcv0bQAgh/mha2yZpARZkSOoWLwdrFUrWJknEHe/egKufvkQelMIGuvcd00sOJfz2v98btlNlFoNzCHD2SoJk0LoWOgW56pxq1xG/4Wyr2YZ1C7dg8pXjg/55TnWbjxQcbXX69s/uQzh4yddubZLw2DCERBhQcMj171F0UiQGT+yPrF25yN55RF6mVCkw7oJRcpskKiGyQz8HIYQQQgg5ddokuhAtYrtEy20Sds+Z1C0Bd390C6557jLs+Hu3POt/v3G98c2zc/H7pyvkbdidrJSWAKlLHKA+Gs52CuAKy8FlFgQMirFJojYt3YbxF44O+uc51e1ctS/gOqvmrcfyb1e7LWP9IlqDFkVZJfLvsSnRGDihr1yFI3evK2Cv0qgw4eLRuOX1qxEeE9ZBn4AQQsipjAIOpE1Y+EDTsydsB30P6lHExEAoL2/5PjMykHvlVXAWF8u/q1JSEHXNNYi68gqEnX0WrPv2ofz9D2BcswZ8aCgUEeGQHM6G9dtKNPmu8ECAyv0SCv9llRSA6H4ckkYDnCJwqICFEAKSWznui+y1rlc9WzWQt7zZZiJQsBqo3Cdi0ns8dLEUciCEEEIIOdWk90tFSs/EhkHo3sQkR6G8oFL+md0xqg6XwD4oreH35jJCdLhj0H2oKKySf0/qnoCL7j0XM26egjPH9MLBLYfxzf1fYcufO+TBJqHRIbBb7A3rt5W5zneFBwLsXXcAGxZvhdMhoP+43hg5fSh4PnCDg282Q5Q30tEKck3VltfJr3pVJTVY8d0at3XYwLJVP6/DwU2ZeHv9i4iMC6evihBCWvjsp9WOwWSpO3bswL333ovly90fQt144434+OOPO/4ECCGdUo9hGYhPi5Urh/kSmxqNsryKFu8ztXcybhlyPyqLq12/90rCxQ+cj7OvnYgJF4/Bvg2H8OnD38phB9YmCYsOgdVsR2VRFZS5ZVDklkEK18uzpfJ1Fjn00N6qcwTYtXofNv2+TR7MNWB8X5x29uAWtUkUfOC+C4fV4VEJpKasVn7VY23O5gOOWPto5Q9rcXDzYbyz7gWERYfSV0UIIZ24TUIIIW3RZ1QPRCVGyu0BXwK1WZpL6ZWEG/rejeqj96NpfVNw6UOz5ED0GZeMxe61+/HhfV9h58o9CIlkbZJQmJNjUaFsFrZQKiB1iYek14Lfkemr6EMDcx1VcPBn6+4j2LQjV247DOmXihGD08FxXFD6SVibpDnWLwI0VrIuy6/waJOwCbyWfb0Kh7ZkYc7a52AINwQ8FiGEnJKoTdJmFHAgbWLZvQeKaP+zVKpSklsccOBDQmDPzHRb5sjPR8lzz8n/1Q0bioJ77gUcjTdVYl1wSl1pevQIyn5ONnajhHVPiSjd0nSpBH0CMPZZHhHd/d8oxw4GFFpA6MA2iKUc2P+9hCF3UsCBEEIIIeRUs39jpvzg3l/AgQ0mqg84MKoDxRBiwiAke85uGcpxKPjyH3C2xjJkhZnFmHPrRyg9UoauA9Lw8v+9Iw9sr2esNgXls6T1Sw3Kfk42rLzx0xe+hp3/7G1Y9tOrv8nBk2d+fQBpff1ft8Fn9pfLZjvsAUrLtYHEBiopeRTllMmz5974MlUFJISQzuzqq6+WQw71DAYDXnvtNdxyyy0UcCCE+LRv/SF5Zn1/g4VYm6WlAQdDuB6Ht7sqhtXLO1CI169/DxUFlXL7hv3ctEpZ8zYJe1LO1Zhb/a2l96c2iTdVpTV4avar2PvvgYZlP77ymxxEYW2SlJ5Jfq/rmK5pUPI8nGJDGWsPukOuMEtbsXbr/LeXyFU+CCGEnJxyc3PRp08fWCwWfP7557jmmmuO9ykRQk4Qe9cdlCd68hdwCI8La3HAwRChlwerN8Vm62d9I1XF1dCH6TDn1o/dArp1VifELn7ui2PCgagwoLLJTKdepPdLadE5nmrKK414+OVfsS+zcfLfb+ZvRNfUaLz00CwkJ0T43X741EHgeS5gtev2YH8jC9//Uw7CEEIIIcFEAQfSKpLTicKHHkbtokUB17Vub+wUDEQ0+q6iUPnll+B++MEt3BAsyoQEhJxxRtD3ezJY/3TzcIOLuRhY9YCIsz7noQn3HSxQh3DoOo1D5i8dO6VF1iIJ/a4VoQ5tSckIQgghhBDS2TnsDrx4xRysnrdB/l0IYeWOOSiMdq8DjppiZZC1aw/A2SUGjow4SCEaOdCgzCmDmFUKzul90MkPL82HUq1yCzcES1K3ePkBM/H05KxXsHvNfq8DeB6c+iw+3fOm3xmBImLDMfXqM7D442U+15F4wDgwCsZh0RB0CqiLLQhfUwpNsfcZbMUwLex9U+BMjWLTsYKz2vHz6j243GKHoQPKgRNCCDn2pk+fjnfffRfp6el0+QkhXtmtdjx7yRtYv9DLA/RmDmx0n9jJH5OfYMJXT/8EroMGpbAZWQeO7xv0/XZ2bNDW4zNfxIFNhz3ey9tfILdJPtnzJnQGrc99JISFYHq/Xvht1z7vKzhFhK0rbPe5soDDJQ+eD61e0+59EUIIObEIgiAHGli4gRBC6llMVjxz4WvY/EfgcVms4leLcICp2neb5LPHvpcrmjWvPiYlRgEBKgmwdTg/AYceQ7ui9wianLY51v6797l5OOwloJKdV4F7np2Lr968Bhq17+GfiRnxGHfBKLkidUf6+fWFmP3f6VBrqZ+EEEJI8NCIYNIqZXPmtCjcEFSSBMka/DIAvF6P5NdfA6dQBH3fnV3lAQklm32/b6sCspcE7kgZdCuH1DM7trqC6AD+vkuCw0i1QQkhhBBCTgUfP/CNHG4wD4hD6fWDUXL7aSi5fThKbxgM06D4gNtzEqDKLYf+770wLNwG/Z+7oD5Y7DPcwLDn9azUbrCxGVof/vauFpURPtXsWr3Pa7ihXkVhFf788p+A+7ltzrUYN3uk1/dYoCHvnn4ovqEHjEOiYOkdjpozEnDksYGonJzouX6kHubJ/eFMj5HDDYykVaMuPQb/ef4nmK2eIRtCCCGS6x/S9rzk+s0di/1bfMYZZ+Dvv//GokWLKNxACPHrvbs+b1G4IZjYQCLBEfzAdWhUCB76+s6g7/dksHXZTq/hhnqlR8qx4tvVAffzzLRJmNijq8dyziYg9ueDUBe3vuKGt3DMg1Oegc1ia/e+CCHk5NM52iS+3HbbbVi5cuVxOz4h5MT0zu2ftCjcIGvp/4QFWM9pd8rtEg8qVeBdq32vExEbhvu/+E+LTvFU8++Ww17DDfUKiquxokm1OV/u+/RWDOvgibZYRe5Hpr0Aewf0pRFCSOfXudskxxMFHEiLiWYzqr7/odNdMVahIeXdd6AfPQp8aCgUMTGIuOxSpM+bC/2wYcf79E5IResC/w9i4b+B1+GVHEY9zmPKxzwUHThxUG02sP/7U/N/xAkhhBBCTiWmGhOWfrIcteO7oHpadzhj9A3vOaP1qDm7G2omnnizLY+/cDQe/+keDDqjn1zCOSoxEufdfjbe2/wyzUrkw/pFgQeMrVvoJ5V9FJst6Mm59+F/m16CSuPeiVJ6WVfY0kO8bldxfheY+oS7LbMNzwB8zIS0P6sEPyw5toPcCCGEBM+CBQvkcAMLORBCiD/VZTX486vAQdsTzZSrxuOR7/6LAaf3kdsk0UmRmH3XdLlN0n2I5+B70rI2SUvW0alU+PCS8/HztZchcmMxQjYXI3JxFlJe2wz9vsqgXeq96w7it3d/D9r+CCGEHP/KDbfccgs++ugj+ioIIW7KCyux4rs1J85VsQYO2XIWG6bfNBkPfnUH+o7pJbdJYlOiceE9M/G/zS+ja/8ux+RUO5u1m7NasE7gCh26EB1e+v0xvLXmObkyYEfZsXIPlvipqE0IIYS0lu8aRYQ0Y9m5E6LR2Omui3HtWkRecQXSPv/8eJ9Kp8GqIgQiOVuwjiSheCNQto0lydChspdK6H+DRLPfEkIIIYScxHavPQCjhoNxVLLPdUwjkqDfVQpVeftnwQyWdQs24dzbzsJrK5463qfSabDZoAKu4wi8jiiK2LhkG3b+s8dtZgtHpBrGwVF+t62emADDvhr5ZyFcDzHaexii3oK/d+G62aMDnhMhhJxKWOUk9mrvPuoVFRUFXD8lJaXVx0hNTW31NoSQU9OuVfs6pLpbR1s1dz2m3zwVb/zzzPE+lVOuTcIGqG5YtFWuUhf5R26HVOKot+ST5bj4/vM6bP+EENIZBbtNciyUlJTgkksuwT//dL5QJSGk4+34ew8EZ8fdU7YWV1QBKSMJ4H3PscwVlmP5tyWYduNkzFnz3DE9v87M2YLvWfBTnbxxHQH//rZJDkWzKqZSBw7gYpOUnf+fczps/4QQ0hl1xjbJiYICDqTl5FInbcRuZMXAN1UdwuFAyUsvIeT0Rcfn+J1QdH+W2PX/fUf385/qNRZKWPuIiNpcHBO2KsBpAVSNk/gSQgghhJCTjSTBPDAO4Pzfi7J1wlfkuC2TH9q2p03TDg67Ex/c+yXe3/LKcTl+Z8RmcfplzmL/64zq6ff9/IOFeOK8l5F3oNDjPWtGKBBgpiJLt9CGn8XIwA2Nkoo6OAURSgUVyySEkI4yYsSIgOscr3/vCSGnhvb8bwxrxhyv/4myWez46P6vMGft88fnBDppm2TRh3/5X2dUL7/v5+zJk9skRVklOBaO1XEIIYR0nEWLFuGmm25qUbibEHJqOtGee3B2J7jMAkg9vU8eweWVgqs1wwrg4we/wavLnjzm59hZ9e+VhKUr2eRNvvXrlej3/czt2Xhq1qsoyS3DsUBtEkIIIcFEve6kxbQDBgDKNmRiOA6h5/hOZ3JqdYd/C/bDh1H7+7EpzWvetg21S5fCvGXLCdewaAnBLiF+uARNhO91OAXQ7TzO7z5W3X/swg0MrwGUmmN3PEIIIYQQcuz1Gd0TUqQu4HpCmPuNIa/gMW627wGRaq0KHUHiOAhJUXD0ScY+oxXrAjyIDsoxJQm71+zDyh/XYs+/B9AZ2a12jJoxFKFRvismqNRKzLhlqs/3rWYbHpz6rNdwg0wM3FbjmmT0hbjwgOuHGjQUbiCEkObYs7FgvAgh5ATRf1zvQHlrn/evo2YO9/m+Rtfx/SRsts7tK3YdkzbJzlV78c9P/2Lv+oPojKx2B8ZeMAr6ML3fduQ5N07y+b6pxiS3SY7lAJ+IFrRbCCHklNNJ2iQ7duzA5MmTMXPmTLdww4033tjhxyaEdC4Dx/dp03aszTH87MG+39e3fcANn1cKfkcmUG1sXGi0gNuXC/5gXsOi7St2Y9/6ju+3YJWdd6zcI7dJDmzKRGdks9gwaWwvaFUKn+votCrMmDTA5/u1FXV4+Oznj1m4gaE2CSGEdN42yYmIKjiQFlOEhEDbuzesu3e36qqFjB+P5BdfQJFKhZrffnP7fzZFbKwcgBBKSzv8myj4792om7EciS88D74DQhWm9etR/OxzcpiinjotDfGPPiJfgxNd9lIRmb9IqGb39gEKOAx/AAhN9d2Lk79SgsnHOKKOEjuQBS/a0LNECCHklGE2m9G7d2/k5eXh888/xzXXXNPibf/44w989tlnWL9+vVweWq/XIzU1Feeccw6uv/569OjRo0PPnRDiEhYVioy0eOyC0+8l4U12t9/Hnn8aHvr6TijV72HlD/+6BZFjU6PhtDtht9YE9TILUSGwj+gBNBmo9MA7S3HO7iN44JapUCp9P5Ruq01/bMd7d32G/IONnaCpvZPxn3eux1A/D7lPBOw7WfLxMvz67lLk7M7zW3GD4zk8+PWdSEiP87m/Fd+uRumRco/ljmgNakfGw5akd4Uc/FRx0O+tdg84sNPx0+QY2sf7DFWEEEKCZ+PGjUhM9D8zHSGEdKSohEgk90h0u+duifEXj8Z/P7gZr1z9DlbP2+D2Xnx6LCxGi1xloaM9MPVZTLt+Eu743w1QdECbZP2iLXj/7s9ReLhxUH96v1T5eAPH98WJTBQl/PL3Dvy8fDuyCyvlGeL4ISnQ7C6EssLoEaJ/9Ie7EZMU5XN/f375DyqLqnAsDT6z/zE9HiGEkOC5+uqr5ZBDPYPBgNdeew233HILPv74Y7rUhJAGcV1ikZAei+Kc1g1aP/Py03HLG1fjxSvnYP3CLW7vJXVLQG1FLWzmtl9orrwGivIaSKzCMceBcwpe1/vv6U9g5i1Tcduca8HzwZ+XefUvG/DRfV+6XZ+MQWm46/2bAlaFPt4EQcBv7/6Ohe//Ibc5WV+IGGkAWOU4tfsQTzY86tn7zkWEn1D20k9XoLo0uH1fgQyZfGL3RRFCCOlcKOBAWsUwZkyrAg6qrulIfP45ufJDxMUXQTd8GOw5OeBUKmh79YZlxw5Ufv55274FhYLd3bVqk9pFi8AplUh66UUEk2X7duTddDMku3sHhD03F3m33Y4un3wCw6iROFFteVNE1oImg4cCBL60Ef4bGYXrcMzVZAHmEgn6eAo5EEII8e6uu+6Sww2tYTKZcNVVV2H+/Pluy202G6qqqrBz5068+eabeP7553HffffRpSfkGBgdG4dddf7TtPpdjQ+uuw50PbhWqBSYectZGHRGPxQdLoFSpUT3oV2xbcUuLPjfH206F4WSh+BsMs3/UaJBA/uY3kCzmXXYbfaSv/dApVLi/punIJh2/LMHT5z7EpwO9zZS3v4CPDb9Bby64in0G9MLJ6rXrn8Pf36xsuF3f9XwJFFCRGyY3/2tX+zeQcNUT0hE5fS0hlADJ4qQfDVtBBGRK5oMWtMoAfZVs/W9NTkkIHvJdpRferrfQU6EEELah4UbUlJS6DISQo4bdp86YEK/VgUceg7vhv+8fb1cxeH8O6Zh6ORBKMoukX9n761fsBlLP1vRpvNh7RyhWRvA7/mLEhZ/vEyenfXWN1s+8UNLbPlrB56c9QpEwb2NlLMnDw+f/RzeWPUseg3vhhP1e33ioyX4s8lssuxTiGnRcKZEQr/yAFQFjQFo9hkj4yNa3SbpaPs3HERVaQ0iqZIDIYR0atOnT8e7776L9PT0430qhJATEKtO0G9s71YFHPqO7imHG1gVsgvvnokRZw9BcW6Z3CbpM7IH/v5xLZZ/s7pN56NUK+C0N7ZJuGbtAY/zF0T89r/foQvR4voXr0AwrVu4Gc9d/LocXm4qa0cuHpzyDOasfR4ZA9NwooYbnr34Daydv9Gt/aaoMEK7bCec6bEQj7ZB+LJaKHJKEfv4hX73ueE4tEl2r94nV44Iiw495scmhBBy8qGAA2mxsnfeRcVHH7XqiqV+8AGqvvsO1XPnwll69Oaa42A4fRxCJ01C4f33t/0baGW4oV7NwoWIvfMOqJKSECxlb7/jEW5o4HSibM4cGEZ9F7Tjybu1Sqg+5BpcE9kTUKj9D+yvzZGQvVSCuQTQRElIGs0hqjeH6sNwDze0QPYSCQkjfB9PEoJbEodTA1KAyausFcCqB0RM/ZQHr6SQAyGEEHcvv/wyPvnkk1ZdFqfTiRkzZmDlysYBtwMGDMDgwYPl4MOKFStQXV0Nu92O+++/X17/oYceoktPSAf6+MFvsOjV36A/KwPmwQle19HtKoW6uHF2zWcXPIi5byzCH5+vQFWJa6YanucwYvpQjD5vOBZ98Febz8dbuIFxspn8/ZQNXrxiF667eAyi2cw7QfLF4z94hBvqOexOfPnkj3jlrycQTGyW2cPbc+TZS3sMy4BKrfK7fvauXPz+2d8oK6hAdGIkRs8cLg/o2rvuoFu4oSV+/3yFHFbxpfm1MPeOQOVM905hzskBnASp2VfF2QXEf5MFba6pYZlGEGHjeUjNQw71TR8RKNueg0envYD3trwMBQvkE0IIASe6Xu3R3u0JISSY3vvv51j68bIWr69Q8Hh6/gP49rl5+Ovrf1BTVisvZ/fQo88djhHThuD3z/9u8/m0JtzQ1KIP/8QVj18gV8kLls8e/d4j3FDPbnXg66d/wnMLH0YwmWrN8mAlFvToOSxDDrL7k7k9G398/jcqi6vlNsmY84ajx9AMbMwsdAs3uFHwsIzuBuW8reCaBLH/+GyFPBgs2N9NSweOeVOYWYLHZ76Id9a/KFfFI4QQ0nnaJOx/t8844ww8+eST8n8JIcSXObd8hOXftjyMwEINj/98r9yHsPzbVag9Wp2MVXQbO2sEhp81uM3hBibQPaovLORw6cOzYPBTgaC1Pnv0O49wQz2ryYZvnpuLJ366F8FkqjEha+cRKFmAfVhGwEp5BzYfxl9frpSDybEp0XKbpNvgrtiwaItbuKEpzuaA6kAhwF5N/P7ZCtw+5zqfx3I6/FdDD9akX00d2VcgB9/fXPVsUI9NCCGdWWdpk5yIKOBAWsRZXo7yVoYbFLGxyJoxE3A43N+QJJhWrYZlx05Izd9rCzZwRBTl/baIIKDoqaeQ/MorUER4n2HHWVkJ09q1kOwO6AYPgqab71mF5HXX+S9ZYNm2DY6CAqiSk9FeolPC7k8lZC2U4Dg63kYdDnSfxaHvVZxcoqy5HR+IOPij+/U5PJ/9LkHjf5Ihr8xl/q91dH8OBauDF3LQhAHW8sDr1R2BfNzUifTgnhBCSOMMfE8//bT8aq0XXnihIdzAykF/++23OO+88xreN5vNuPvuu/HR0XukRx55BBMnTsTIkSdu1SZCOrPSI2WY+8ZC+efwP7KgqLbBNCwRYqhaXsYb7TBsLUbIuvyGbWKSo3B1jzs8BpawB9ysBPOetQd8DsCpJ/EcbN2i4UiNkMPaqsJaaA6VgWvyEFepUrgG1Ct4cN3TICZG+t2n0ynizWd+xkNPXoSQCO8hh4paEzbsPQKnIGJQ9ySkxfveZ2leOXav2e/3mNtX7EZVSXXAWUZbwm5z4LOHv5XLG5vrLPKyiLhwzL5rOi596HyvA2n+d+dn+PXdpW7Lfn3H9Xt4gGoM3pTlVfh9v9/oXti0dFvD7zXjEz3W4dj/OThITgkSL0FpAXgbB12WHSHbq9zWjTHaUBCpdOUaWPPTbT8AV22CotKIrEojNizeijHnntbqz0QIIYQQQk5sBZlF+O3d31u1TVRSJK7seqvHIBDWDmGDV9jslv6ql7UUG0zjtLd88AoLHLx92ye4+6ObfQ4oqiiqwtZlO+VzHXB6HyR18x4yr782Bzcf9ntMdn9urDb5bAO1hs1iw8cPfIM/v1wJi9EqL4tKiMAFd8/Axfc3Prupx67xWzd/iCWfLHdbPv/tJfINvfKSEYDa90AkSa+GMzUSqiOVDctK8wO0Scb0wo6VexAs0UlRKGnBLL0HNh2Wv7dhUwYF7diEEEI63oIFC5CamkqXmhDiV/buIx73tIFExIfjirRbPfpCBKeAVT+vC9o9q0qjgsPW8jFg7D7+3Ts+xZ3v3QidQet1nfKCCmxbvlu+nx84oS8S0uP8TrCUszvP7zH//XUTrGYbtHpNi8/T5/mbrPjovq+w7OtV8j7r+6Quuu9cua/EW4WG169/H3999Y/b8nlvLmJdTwiJDGn1OZQFbJP0xr71bObc4IjrEouirJKA67H+ql2r98ntSEIIIaQ9KOBAWqRm0SLPoEIAQpn/B61ijWv21HYTBHB6vfxfyea6aQyEBSyyL7kEaV9/DVVc4w3w/7N3F+BRXVsbgL/xTNw9hJBAILi7u7s7BQrUywUq0BYpLaWU0lKjuBVoaSnuDsXdg0YIcU/G5z77hMgk45mg6/2f+Uvm6JzhhrPO3mstrVKJ+K/nIe3PP3U6Mjg0aQK/r7/SWbfgc2RmmpVcoc7MhPF6puY5NUuD2GLJ04p04MZKLXITgHpTdCcT3d9WMrmhKHlhV2WzST2MLw/pxMONVVqocmATdm6AUyCriGp63bwEB9sclxBCyMstJSUFw4cPx86dOy3eNjExkev6kG/ZsmU6yQ2Mvb09fvvtNy7RYe3atdzDNZbkcOCAZQ8WCSHm2b/2WMEDeHbH63Q6Fo5nYqHyYpNxeBAm5YBXrDJPUmzh5BN9MlMKOz3oo3axQ3q3CGicCx+uyyt5IbtBEJx33oQoMS/jmCU3sHbK2uAAKCT6H8QXd2LrWby39xIWHJ4JVy+XgvcVShXmbziMbf/dgFKVl5jBHm43qVoeX4zqCHc9k4+y0wo7DRjCfkdlp+eUOsGB7WdWv2+5SfxFpSWkc9WR2IDDO4vH6iz7e9GOEskNReVXsbWEh7/xJJIu49piw9f/FAws5IYaTqLgaXngqXkQZQBCGQ8aD0fIKnpAerswy9pfpoR7JX9cvZNXIUkn6lKpITn/oOBHNlGNEhwIIeQp9systBN3bTDxlxBCbIFNRLE0GcFUYm56UiZsgSU3SJ3suORulrxgjiObTiLqZgwXkzgVmUzDkgd+fGsZ9q89yk16YlgSc6PudfG/ZZPg7FGy60NWqumYhCWa52TklDrBgU0M+qznPFzYf1XnfdaVgXX9Y7HJ+PkjdJZt/OZfwxPBtEAqu2ZGEhy44zrb6YzxsA4QxnQd3w5/Lthm0SQvY9hkLhdPZ5OJJPkxCSU4EEJI2cQkcXFxJlcPDAy0+BCU3EAIMQer/G+phEfGq4la83xeH3bfa+8khVKhhFJuXvI1Sw54dCMG8w98rpN4zZIHFk1cgkN/nCgYF2KduZv0aoDJSyfqjSkyzYhJWHzDEitKm+DAOiOwbs5sEn/xMalfPliJjKRMjJo9SGfZutmbSyQ3FP1nxtR4lT6mYpJuE9pjy487DXb/tlRARV8u7mRd9Ew5ueUMJTgQQkg+GiexGiU4ELOok1Ms+FslZCVJn+mV1eZYPpNe+SgKse9/AIGTExSPHnHdHLRaDWSXr5RYN/vkSUSNHoOQv/4EXyrVWSb09gbfwQGabMM3yzyJBCJ/f5RW4iVtieSGoh7s1KJiXy1cKhROt7nzp+0Hgct35htdLnbmocksPk5M10CdVzypVNIiAefygNQTyDXRySHtfumPRwgh5OXGJhusWbOGSzaIjY3VSUhgyQjmWLlyZcG6tWvXxsCBAw2uu2jRIvz999/c+gcPHsTt27cRHh5ug09CCCmKTVIpjqcFRAk5pa5eaqhzQ3pX3eSGgmX2YmR0jYDb+gvgP22/nKtQgyeWcBPf+QoN1ELj98z81CxEpeVg9sDvIJFKEHfvCdfJILVJBVxLTS/xzOPEtYeY9P1mrP54MMQi3VDeO9gLEqkY8tzCJO3iWAKGR4A7Suvc3sslkhuK2vbLXvR+rysCK+Z1TNBoNPhn0Q6rj8eiGX392TqOMp7VzBI5pm/6ELP7LzB6XQyRV/LUSXC4cfwWymflwsfTGQl2ImilYq6ToCA2FeKbseCnF/49vHf5ocXHI4QQQgghL760BPMn/tgiJrFUbqblD+MfXI3CnIELuc7Q8Q8TuPto1qXt3qWHJZ61/Lf1HD7u/CV+OPklBELdZAC/Cj4QiYVQGvnMbBKSqw06yrFufMWTG4pXQO35dmf4BHsVTGJik3qM4XFJCMaT1fky3c/WcXRrk9VNP1n/HuYOWWSTJAdWWTe0Vnmue56++Liou5cKE7AJIYTYVoMGDUyuY4vuTIQQok+aBckIpu7Py0J+x2dLRJ6/jy8HLeTu2xOikuDu54aM5MwS3RhYwvTxv09zic0Lj84Cn687BhNQ0Y+La7TFCmEV5erlDGd3yzslFHds8+kSyQ1FbfxmC3q81RHuvm4FXbG3/mxZN0BzdBrTxujygDA/TFv9DuaN+NEmSQ7n9lxGWO3yXNI7+46MibxIMQkhhJDSMz7jgpCnRAEBJq+FqFw5+HzyMeyqVH5prlvuhQvIOnIEiocPkXvpkt7khnyKe/eQ9vc/Ou/lXLiA+G+/1T/jpgindu0gcDZcMdRcD/dqLVonJ0GLTOMd2Czm1wTwa2h6PZ+6PHRew0fESB7Epf/oyHhoOrmBYesYC1gIIYQ8QyoZkBUPpEfn/Zf9XMZkMhnq1q2LkSNHFiQ3SKVSLuGhfv36Zu9ny5YtBX82ltzAuLu7o3PnzgU/b9q0yapzJ4QYZ6z1cL7AcH+89cMYBIWbn1zMKpHqowhxh8bF8AQXrVQEeXjehBmOo33BvkSZxiev8FIywU/LmxB/5fANnN11ETF34nD5RnSJ5IaiImOSsOvUTZ3B0itHb3BVStmDe73nyeNBKxGhxaCmBts8W2L/Gv0VhoqeU9F1Ht+Lx5OHxrv7ldgHu/4VvJDVuToyhzZCxqCGyGlWEWq3vApOzfs1Qu221U3up2GXOlhx+wcM/bQvvBNNPLzXAIIiDQE1eqq3Prz0CFn7r0K6/QLst5yF/T9nYXcqUie5gUmMNiNwIYSQ14XWRi9CCHkB+JYvcv9vQHBEIN79aWzB5PrSxCTPyoX9V3B+72UuJmGTdIonNxTFugcc/es/nft/NvF+2cfrwDeQ5J0fk7Qe1gJiSen7XO8zEZOwiU8H1hVWimIVYZMfpxrdRvTAxD28Sg1RVGE3jrbDmqNaU9NjYc16N8SKW4swaFovOLiU7MZnKfbdmEpuYOIfWRaDEULIK41iEkLIK8ScOKNCjWC8/+t4uPm6vjQxydndl7gkZhaTXDlyo0RyQ1E3Tt7mkq/zsSJLFw5cxfJP/+CSOoxpO6xFiWTtsohJWDIB6z6R7/7lhzbr3pev8xttUbFOBZPrtRrYFMtvLsKA//Xgui+U1t2LD00mNzBPHiSU+liEEPLKeAVikkePHnFFZdk9AysY+6xQBwdiFuduXRH/zTdGOyX4zpgOx+bNkbJ2ndlXVRQUBFVSErS5lmfxPg/xc+dCGR0Nh1YtET9nDhR3TbcCZjJ27oQ6KxNeb70FaY0a0MhkyNi+HZmHDkOrVEBasyZc+/eHyNv4pC15munfVHLjz+lLJbAV0PBTvsHJU2qFFtlPAIEYcPDlQerJQ9VRPPjU1eLQ+xpu0lBZU2UDyizWRaLsj0UIIUQPVpko9T4QcwpIvMGyzgqX8fiAVwQQ2Ahwq8CelpVJgsPFixcLfm7WrBmWLVuGSpUqYenSpWbv48yZMwU/t23b1uQ2LVq0wObNm7k/79u3DzNmzLDq/AkhhrUb3gLLPlkHhcxw8sD7v4xHzVZVseFr3cRkYwLD/RD/MLHEfpUBLia3VQa6Qnr1Sd4PRW7VBTI1RGlyKF1LtjnmZcsgPntX7/4UFTxKvKflAZqnz9v5amD+N38jYftl1G1fHYvfWY7o24/17ksrFEAb4getnwcgEmL3o3SkzvgLI0c0Q6WKvlyL54PrjuH0zgvcw3Y2Oafz2LZw8zb+uc2ZTJMWb3odY2SNQqEMKxIbCXlQlfeEOsgd3QN98NGXQwwnpsgUXEKFnb2Yq5jqFejBtYKuGBWFkX/9ZfDZjzCHdQQp3Kcw2XDsy61lpNpRRnIWZDnyUre5JoQQQgghL5b2I1th1ecbjVa+nLxsEqo0rIgVMzaYvd/gqoGIvRNnVnVVlZs9lBU8uYRcQXouxHeTwH/GVVnnj/6Jm3BUrVllLH53OR7ffRoT6YtJgn0BHw9AKMD26wlInvEXRoxqgdBQb2TnKrDrxA2cuvIQao0WtSsHoEfL6nB10u2ibVVMYsY6RYnvJkBR0Qeap0nVxUmuxoLHuvfxgM5j2uL938Yb3JdMqUJsWjocJGL4Ojtxk9De+Good72md/8az0JKXBo30at4VVtCCCGlx8YO/PzyOpcSQsizxir2r/9yM5fUa8jUVW8jtGZ5/PKB+ZMPK9QM5u7xWReFl8HcId9j4NReqFi3An5+f4XZk+m3/LgLCdFJGPnFAARHBCE7Iwf7Vh3B+X2XueTtmi2rouOY1nB2dyp1vJEan4aywIZGuk3oiHcWv2FwHTY+wZKeHZyl8Azw4DrujftmOCo3qoRZ/b7Fs5AcV4aT1wghhDxTarUao0aNQu5zmONNCQ7ELDyxGHbVqiL3zFm9y527d4dDs2bcn0X+/lBGRZm1X/fRo+BQvz6Sl69A5v790MpksKtWDfJ796DJML+12jOjViNl5UqkrF7N0oDN306rRfaRo8j57xR858xG0g8/QhkTU7A4++gxJP30M+yqVIGkcjhce/WCvZ4q0yxpwFQ6lkOR5ylSL8ApCDbr4pBwQXeeatHEhusrtXiwQwvF06/NtSIQMZyPgOY8eFbnof4UHs5/p4Wm9J2YjeIJAEHpk44JIYRYIyMWuP4nkB2vfzn7RyThWt7LwQeo2h9wNt0lyhoVKlTAnDlzMGjQIIurjty6dQsqVeHkgIiICJPbFF3nyhXDHaEIIdaT2IsRVicEN07eMfhgnyU3MGwCiakKnfkGTOmFinVC8Nd323Byy1ko5UqENwjDFRchTPWd0bkzz8yCVqMB7+kEEnG6EoJcNVROImjE/LwOAUmZEFy8C56BQQKtSKCzb5WUdRLIn1Gf96ZGLcHGBVvx54KtBjuXaQV8aOpUApwKJ+ewAY//Tt3FxUuPMHliGyyb+BsSowsrkLIuEqu/2IjQWiHc4EfH0a1RtUm4VZ00fCv4FPzZP9SH+z7MrSCqDHDVTW4o9rlO5OTojYjYA/tVn23EnhUHkZmazb1XqV4ohn/WH4261UXTcuUwq21bzDx0CKpisZwgFxAXG2uwv2rg3zIziCQiiCT0uIUQQhieVsu9SqO02xNCiK3YO0tRoWZ5rouBPj0mdeSSGxh2D5yZkmXWfgd/3AeBlfy4mOTUtvNcAkVE40q4ffYuZNnygi4IOc1DoQjVrdiaW7cc7E/ch+T+s+sippSrsH7u31whJIMxCUtuqFkRcChMVlCrNTh+7A7On3uI9z/ugoV/HkNSWt69O3Py8gP8tvE4qmcoUNnXDR3HtCm4nkX5hnjj+onbRs+RrVO0q4a7nxtSjEyw4ak0cNh7HbKGIVCWcweexnW8HAUk12IhuVWY2M4mP+mTJVfgh0Mn8c+lG8iU531vNQP98HbLRmgeVh4Nu9bFxIWj8Nv/VkOjLttqUPZOUkpuIISQMopJWHJDYGAgXV9CyHPh6OaA8tXL4f7lR3qX9/uwO/d8n/EO9kL0rbxu96aw5+ge/m5cTHJ6xwWoVRouQZfdd7OiQi8aVrBqzaw/uTFglphgLpbAceyvU1wHu/d+Gc8lgRRNVmCfffn0P7gxo7BaIVxRKH1dEli8EXn+vtFjsaSCfCyOdPZwMqvzgSns4148oH8sOjs9m+tksX/NUeRk5k1Crdo0HCNnDkTtNtXRvE9DLvl6xafrjSbJ2IKjDTrYEULIq+JlHyeZNGkSDh8+/FyOTaU7iFkeT/6fweQG1oXB76u5BZMHnTq0N2ufDk2awK1/f0gqVoT/V3MRfvYMKl+9gvJ/rAff/gW/0bEkuaEIrUKBJ59O10luKLpP2fXrSN/8Nx4NH4GYDz6AVqWCOiMDycuW40H/ARDueNv4AfhASOfCSZzsO6nYz3bVsVnyQswR3V+WGpUWxz/W4PYfhckNTFokcPJzDe7vyLtW5Tvx0XUDH9XG8uBVy/BvH5fQ0p1jQDPWQeL5ts8jhJDXUnIkcH6J4eSG4th6bH22nQ1JJBJs2rQJd+7cweDBg61qqfrgwYOCP3t7e3Nt1kwpOqCRnp6O1FSqSkGIrc3qv8BgckNQZX98+PuEgp+b9Wlo1j7ZxPf2w1twD/ynrXoH/6avxk7ZH1h4dDbsEwsn2hgijilSpYclLaToVu0RKDSQJMshjcuF3ZMcCK9HGUxu4NZPzesawO64lQ6AhjUAKPprjAeo3CVI61LR4EQibvtyPjrJDUXJZEp8M2+bTnJDPjZowSZr7Vp2AO83m455I3/kqn6yh+6sK8ak+tNwfp/xJC6hSIAOI1sW/MwqhvZ5vyvMpaxY+NBfn+T0bBy7qDtwoJAr8UnnL7nBl/zkBoZ9ls96zsP+tUe5n4fUrImjY8figyZN0NA3AOJsHuwSALtkHtj/5aueoTXawcGUFv0bQSAofZtrQgghhBDy4mCTZti9paHkhpDq5fDO4rEFPzft3cCs/bLYpdXAJqhUNxSfrHsfWzPWYGfuenx78AvwBYUP0XPrB5dIbuAIBchpHgaVt/EKo2XBaEwS6K2T3FBUTq4CM5fu1UluyMfKTVyU8rFt9WG82/gTfDfuV+7apyWmY92XmzGp3lRcPXrT6HmJ7URoN6xFwc8CoQC93+ls8vPw5SrYH42E0+YLsN9/Ew57rnN/LkhueCohKglnd18q0bXhjTWbsfr0xYLkBuZyTBzeXL8Fu6/nxbJ93uuKtQ9+xojPB3ATjQx1y2ZdPUqD/Z0ihBBCCCGvXvXk6d2+MpjcwAr+vPntiIKfm/U2b5ykzZBmaNKzPio3qIjpGz7Etsy1XEzyzb7PTBZgfd4sSW4oKicjl+tMp68Tg0qhws1Tkdj2615MqjcNi99ZVtCRYc3MPzGhzhTcOm18fFvqaIdWg5oW/CyWiNDzrU6wlZg7cbh8+LrOe7lZufhfm5nY+vOeguQGhiWpfNzpS5zcmjfnb9C0Xlh97ycMm9GPS6zXGYN6io2vB1UpXZHCVgMLPz8hhJCX995jwoQJWLJkyXM7ByopSEzKvXIFmfv2GVyujI5G9rFjcGzVCgnfzOc6HBjDs7eH16SJcB8xAjyRCFq1GlmHDyPn3HnwBHw4NG/x4ic4lIJWaV4Lg8xduxHv4YGsg4egfPy44H+wnk7LkOSov9VY9Td4sPfRvfsM7cFHVqwGdzbZJvAo3g0i+pCW6+yglxa4/IsW5dpoIZTyYOfOQ5Wh7AWk3dPizp9axP2nhUYFeEQAFfvwkXhZi/R71p0rXwJUGUZ5W4QQ8lw6N1xZy1r6WLYdW59tV3e8zTo5SKVS9O/fv1T7iI8vTNLw8TE+0Tafl5fuJIOkpCS4ubmV6jwIIYWuHL2BMzsvGrwk0bce4+LBa6jZKgK/frAK//6822TlVVaRqPe7XbjJLiw4/2/rOVw7fouboM8qa7okZONxhgwaZ/3twXi5Skhu67Y91kbHcROMeK7Ouu9rNNA+imUzeYyel+ReEnIblIfGQQityPB6ssqeUJ6NhShefxKG1t/T6HGUYjH4TvbgZRqfxM+q/Lh4OePIxpNIik2BOcbNGw53X93ff+w6P777BP/+ZPx7YTTO+idBFfUoTvdc9q8+gqvHbhoc4GBVmFr0awSxnRg+jo54u1Ej7nUjJh5rj1zA0RsPoNZoUTvEH8Na1sHFnw5gi759sVBLwOequxqrlDr4o94mPwMhhBBCCHm5nNt7GZcOXjO4/MHVKFw7cYvrOPDj20ux8/f9JiuvsknuPd7qyCUFq5QqnNhyFjdP3YFILETjHvW4STFs4o1GLIA83EgnNT4Psmr+cDxovKvBM+XrYXCRSsqHQl+r6HwiIZSh3pDceMwlXzt5OHL3/ClPirVdg/6JOBO+G8VVRy1qwNSeeHwvntufKfxcJfi5xo/FKuE27FKn4Oc/L1zF5VjdRIh8Gq0WX+4+jLaVQyESCOAV6IHhn/fnXrfORGLz9ztwbvclLrm8RssILgni0B8n8Oi6nkJZZnB0deA+LyGEEEIIebWc3n6BG8MwhCVjR164j/LVgvD9m0uwd7XxSsvOno4YNXMQur7ZnruPViqUOP73Ga6THOtS3LRXfS4mYd0SXkUskcEcbFzDwcWei/HSEotUfTWAXcu3fhgDB2fdeW9DZ/RF3IN4btzFFlhMUqt1tYKft/2yF3cvFhbxK9654qd3l3NFv1j8yToOsq4O7HXjv9tcTHJh3xUuJqndphr6vN8NO5fuR/RN8zqAFMfisb4fdrP6sxFCCHn+4uPjMXDgQBw5cuS5ngclOBCTMnbsMGOdnZBdvYqUFStMrqvNyQHf2Rk8sRjy+/cRPXEilI+iCpYnL10GULVLTuq69Xn9xYrwzVwIieoekh1GQCaqzL3nXhmoNJCPoFb6q/3UnMhHSGct7v6rweOTQK7uPCyLiIsVgnq4y3gygiobOPCWBg6+gF8jHoLb87hkB9dQHhp8VPJ87X2B2xutS3CwcwHsjYzzEEIIKQPs36nrf1qe3JCPbce2b/Qee+KDF0FmZqZOwoQ5HB0ddX7OyDD9gIsQYr5Dfxw3a51zuy9iy+JdJtdlk4RcPJ255IYHVx9xlVifPEwsWL7xm3+5aqnOKZnI6BYBjRNrpaCb3OC88yb4imLdGLRaaO9HQ2svBc/NmYtrtDI5kJzGShyYPC82cd7hcCRSe7L7fOO/E3OreOlNcODupO3E+t8vulepGDCS4KCRCKEIdsf6AxfB42kgMnFGEU3CMXBKT67SU4nPxePh7R/fQNfx7fDvT3twasd5JBtKmDBjUMHZUTfpZM/KQwbXVTmL8bCOC/ovXQOfAA+0DQ1FjyqVIRWJEBHog7lDS1Zy9RzZUufvkcLfEZmNAyCr6M5NHhMm5sDhfBwcLsSXuCYsIcQzwN3kZyCEkNcqXiht6+Tn2HqZEELyHdpgXkxyeMMJ7FhiPLmByUrNhrufG9f5i01C+rz3Nzpd1jbM21JQ3V/l68wlUhujDHB9Yb4sLTtvseGMbbWd6SJFKh8XLsGB+evbrdAY6RaRr3rzKhg4tSeXsF4cm8TDuv71mNQRW3/ejdM7LyAlznTChCFO7rrPgf65dMPo+olZ2Rg77BsE5/LRtFcDtB7UlEvAZlVyP13/fon1hSKhWckY+rj5ucLd98X5+0AIIc8dxSSEkNcsJmFdjveuMp7cwGQmZ8MjwJ27V755OhIz+85H8uPCDvWsq7OhjmOvG3YtzIlJarWuioHTeqNeh5ollrHYj3US7/VOFy4mObvrIlLjS3aQsDYm2b3C8DhJfie6txt8DO9yHmjauyFaDmjCdZaIaBzOvYpTypU4sPaYVefmGegBV28Xq7YlhJBX0ksWk2zfvh3jx49HXFwcnjcqdU5MUmdkml4nNRUpq1abfTWTfvoZ6owMRI15Qye5oXCHpif/vBYM/GJyy92KsKR+qFv+Q/TcxkfbXwQGkxvyOZfnoc57AnTbKED1N3mm5kvpxwOCWutumFM4D8ygjAdA3H/AhYVa7B6lQWaU4V+4LiE8VOhmXZCUkwCcmm2k8hMhhBDbS70PZBd2PLAK2z5Vf0WJ50Eul1uc4CAS6Q7cK83s2EQIMU9WuvFOA0xaYjrXetdca2b9iYyUTHzUcY5OckM+jVoDYVou3P64AMcDkZBEJkJ8NwkOR+/Bfe15iBKyDO88Jxfa2Hhoox4DCckWxTfi6FQIE0wnSWns9Ncr4O6kFYW/g3I8+UisLkJcEwniGomREi6EwpEHyPX/nmJ36jl1g5A6pC6yW4Yhq0EwMjtHIG1gHSi9i2U7A6jfuTa2pK7EouNz9CY3FBVSPRjv/zoeG6J/w4iZA/WuI3qQZHQfAh4PbepX0nkvMaZwIlhR2VXdET2tNtLaB+GaLB0H7t3HJ3v3ofPK1XiUZngyU6W6oWg3vAX359yKbkgcXg2ycA8uuYFRedkjvVMoUntULNGgO+5+PL4e8aPRz0AIIYQQQl4+2WmmY5LUhHSTnRuKWv3FRi6O+bjTHJ3khnza/Ak05hSEeJFG+9h5qwwnLvPMGI/lFRkbMTWRqGnvBtiStgrfHZmlN7mhqLDaIfjw94nYGPs7BlnZeU0oFqJZ7wY678WZMY52+95jrnPgt2N+xvia/0P8o0SjyRot+je26vxYldUFY3+xaltCCCGEEPLiykrT39G5qMTYFLOSG/K7H6+Z+SeSHqfg0y5f6iQ3FKxjxqT+14GpmIQlMP+bvhrzD3yhN7mhqPB6oZiy/C1silvKdW+zhsRejIbddGOfJAPjJEWx5HrWOfCbkYsxsc4U7rs3pE67GmjU3Xh8Zcj9yw/xw6TfrdqWEELI83P58mW0a9cO3bt310luGDdu3HM7pxfpkSd5QUlCK5hch3Vj0GSbvpnOp4qPR9LPv0D1RH/LXosIX99GJPLT+/GwfVM8GjUaGXv2mr1d5UF8NJ/Hh0+9p78FeIBAtwiqXlIvQOys+57EwkJArHvE8U81RgOhOh/wEDHKZNFaveLPAWl3KcgihJBnJubUi7UfG2CVSopW0yCEPH/lKgeY9b9dea753WTYRPS1s/9CyhPjVTt5ai3s7iTCaX8knPfdgd3NBGiF/LyqpE8JRLb9XSFKMB1bCVNyDS7jxeU9yE4PESCtkghKp6e/1/g8yDwESKomQo6fbleKfLm1A5FbJ6hEhViNsx0yO1eB2kU3cDi/9zJGVXoX0zrOxsl/z8Jcw2f0w5xtH6F22+rg83ncS2wngvheAvhGElqCspVwkAhLdE0oTukuQcKQitCKSj72iE5Px4Qt/3IDOIb8b/kkDJreF+ndKgIC/Y9Ocqt5QVbRrcT7p7adR9Qt61o3E0LIK4f9qtWU8kWPeQghL0lMolFpoDSjI1m+qJuxWDfnb6QnGZ8cL0zIZDNqjK4jSTadgPGscJFSvOGJMgKZ6SJFwsfmd1c4te0cRlV8B590+RKnd5w3e7s35g7BzH+mokbLCK7rHOviJxKbHm/yD/WBxF43nvKQmB5gEWYWFtSIjYzDzH7fGl3/k3Xvod/k7laNkxz76xTiHpSyIAkhhLwqKCYhhLwiylUONLkOq7rPijeZ6+7FB1g/dzPX9aG0+MLXdwri0c2nMLLiO5je/Suc3XPJ7O0mLhyFGZs+RNWm4QUxCes8bkpgRT9uPMXUOImpePTLQQsNLmfn89mfk9Hr7U6wxsH1x5EUazrpghBCXgsvSUwycuRIHDhQ2FHUwcEBv/zyC5YsWYLn5fW9uyBmc+ndm0tgMIjHg30D3Wo15sg5f84m34LH2LHg2dvjtaTRcN0zck6dQux77yHus8/N3tS3Pg8t5gvQbx8f/fbzEdCMZ1ZywrGpGqgVhb8x7b0sP+2sGCDOyDxW1ubONZRv9S/muNM08k0IIc+ESgYk3rDNvhKv5+3vBcBu0vOpjFQcNNaxQSLRP3GYEGKdzm+0MfpQlz30rdqkssX7vXLE/N9hrGNCZvPySBpbH0njGiBxfANktA2F2lmCwR/1hkRqJGaykP3lJ8bbTKo1kF5LMLiY9ygecokK2X4GJufweUjtHgZNsQEHlrghq+FvcL9asRC51XWXs8GStMQMXNh3BZ/3/gY/vbcc5mLVVb/Z9xl2KTZwrwZd6oCn0sB+3w0IY1LyKr/mfya5EpKLj5Dy91lM7/41lEW6VHj6u5fYd0YTX73JDfnuJCXjhL5ugkUS3Pz61YZaanyCU3YtH73vs/bShBBCXg0sIS7/NWoUq8hBCHkddRnXjkvKNUQoEqBygzCL93vp0DWT6/BzlRA9MpwwwIzu1Rgiie4El+eJFx0PyPUnoAtyVOBnGH4GxMtVQHTfjNbRT6lVeTHJ2d2XuFjh92lrzd6WdaFbcGgmdis3YLdiA2q3q27WRKCZfb+FWlXYqa9cgvFOnvxMBewidZM2Is/fx7XjNw1uw2Lg4Iggq8ZJWIXZc3suW74hIYQQQgh5YXUZ346bdG4Im/AeVqu8xfu9eMB0TGKOYTP6cXHR60itVCMtIR2nd1zAJ52/xKrPN5q9bYt+jfH9sTkFMUn15qbHuu5dfsQlJ2iKJMJ7+JcsxmTKteO3cPvcPYPLRWIRylUxnVijD4uXzu+7YtW2hBBCnr+uXbvi2rVrmDBhwnM9D0pwICYJPTzg+8UXrCSq3uXe//sfpHXrWPg3jw+e2DYT/8TB5VD+jz/g3LUreKK8B/hCP79n09lBJALPzu6F6SKRtmkTMnbvsWgblkzAXmG9zCsDlHgZ2DlUgyu/apD9RAuBlV9j4mXjT+WzYq1PUtCan5BOCCGkNGTptvuly/Yjz3ghvg9HR8eCP2dlZZm1TfH1nJycbH5ehLzOPAM88PaPb+h9eM/eY1VuwhuEWrRPNllEVKwTgLHkhtR+1ZFbyx/a/G1EAsgifJDavzoCm1XC98fnoOWAxgUP8H3Le3OJF9YQpsrgdMzA5HutFi4HHkCQkzeBhn0GllxRNAGEp1QhR2o8aUxrJ0ROVU+d9xSBrlwSgzGKEA+jy7f8uMuiqqn53TfYq8ekjnk/y5SwP3wbjv9ehPTwLdgfuAnHvy9Acv0xt5wlU4wMewfLPl6HhKhE2DmUDEpkIaarFZ2JiTG6PCrZdNVYtbudVS2rCSHkdcHTam3yIoSQ582vgg/eXDBS7zIWk7yzeCxCmlREbhVv5FTzhdK78NmCISwhQWgkKbcogYrPdZfTu0ymQUR4IBYem41mfRoWxAas0wB79l/WRHYiLiYpGv/wFCrwLt0BElN1EpeRkQ3+1XuwP3Ad/LSSXSd4OXLYH7oJXpHkAUttmv8vLhy4atE2LB5h32OPSeZVJz21/TxGhL2NlTM2cFVJPW6nQxxroBOHRgu3PQ/A0xMjXDaRdP/4bpzBZRoRHzkRXsiqH4DccA9oBbrftSWVewkh5FVGMQkh5FURXCUQY+YO0buM3Yu//9ubCK4aZNE+7ewlRhO5LVGtaWUsODyTSyLOjw0CKvoZTcqwFbGemOR5Yt3Dr5+8XaYxybHNp7muEau/2ISUJ6kluszZqhBY7N0nsJaWxkkIIeSlikl4PB5atWqFQ4cOYfv27Shf3vLESVt7Mf5lJy881z69Ebx6FRzbtWUlibmJ/dL69RH4269Qp6UhavgIi/bn2Lw5HJo0tsm5JcyfD7vwSghY8C3CL15A+PlzqHjoIBxbtUKZ4vNhX7cuXPr2ZeWdLd7coUVzrvuFraX+8UfBn7VKJVJWr8G9bt1wM6Iq7jRqjCdzvoTycd7EoKI8qvJQfZx55yNLAm5v1GLPaA1UudadJ8/Ebx+JC6zmVbPsAyRCCCFsVqf+SnxWU8lfiMvq4VE4eTcpKcmsbRITdSsL+vr62vy8CHnddXuzPeYf+ByNutflHlYLxULUalMNc3d/gicPEvBxpy8t2l+TnvVQq1U1s9bNbhgEtZtU7zKNvRjzNx9GWO0QTN/wIbZnr8PWzDVYc/8n1O1QE9ZyPBMLt39uQhyVnjchSKOF5H4q3P+8Afsr8VB7OkFVPxSVJvdAm3nDoCz24F7lavphdt3hTXTfMOPhP+vyYMrWXwqTrhVKFf7YfR4Dpq1A45EL0emtX7Bw3WEkpJSc/FO7TXWuylM+frYcophUCOPSwCs2OScxJhkb5m3BuOqToVToicfMeHAuMBGPuTroT14oip+jPxas0aKKyW0JIYQQQsjLpc97XfH1numo37k2l5zAXvU61MTX+2fgspsAb/1zEJltw5DVqgJSB9RASr/qUDkbvi9v0b8RarSoavK4GgcJNL6uEOYCwlwteKq8F1+hhTBHC4GKh4WLdiK8Xig+/+t/2J69lotJVkUuRo0WEShLLJmiZosItBvRssSEetaFjX/zIXinr4F38TZ4Z66Df+kOeOlZ4Oco4LDjMlo52EN85wlEkfGQnojkkpwFqSUTHyy1rUhMIs+VY+M3/2JU+LvoKByAAX5jsWTKam4SUHENu9TBgCk9zTpGQlQS1n25mYtJWEKH1+obcDwTB56sMEYQx2TC84+bsL+erHcfAhMxmIun/sTt7Fq+SHizHtI7V0Rmi2CkdQtH/Jv1kFup8JlWjZZl+90TQgghhJBnb9C0Xvhyxyfc2AMbI2FjJQ0618a8fTNw/cRtzB38vUX7az24Gao3t81946JJvyOicThm/jMVO3LWYVvWWqy8/QMqN7S8050luLGi1tXQdngLq5J8G3WrWybnVTQmyc2W4Y+v/uGSpFlMMjBgPJZ+tBapCekltmvetxF6vdPZrGOwsbE1s/7E2GofmowtDLE2JjFnkmy15jROQgghL5OtW7dyyQ0syeFF8WKUnScvBbsaNSAJC0PuhYtQp6Qg9+xZPHn4EKpiE/pMEQUGwndmXkeI5N+XQiszXlnUFHVKKtJ37IRL1y7cxH3WxUB2+w6UcYYr21iK5+QEnlgETXJKXlICy4jSaJBz6hT3soa0Vi1Iq9dA0k8/wZbkd+4g59w57hqwayG/XZgVzJJRUteuRcbOnVzCCvs+i6o8hA+VQoObq8zL+FLLgJij1p2nb0MelDlaPNqjRdwpLTQqwL0KIHYG4v4DcpPzkiAsLQzuVgnwqkEJDoQQ8kwIxLbdn9A23Z1Kq0qVwoctcXFxUKvVEAiMt1SNjo7WSZAo2gWCEGI77EE4q1J04+QdZCRn4tLBa4i6EYOUJ6Yr7RfFqgaxjhAKmRKbv98BpTyvG4I+Wj4PsspeRvcXJ9Li6L5LaNG+FuLux2PHkv14dDMG8Q8TUBp291K5F7s7d3RzgFAoQFpKFmTNKkPt68qtc+bOY+6FrrUhPv8Aokd58Rk/13QSdu0G4ag5pSdX4ZQRpGSb3EaYbHqd+1eicO52NO7FJuPvA5fxIDoZ+XfoqZm52LDnAvaduo3fpg9AkI9u2+SRMwdy30v+OZmSk5mLk1vOlnhfeicN8mDj3XRahJRHdno29qw8jLO7L3KDH5UbVoSDiwNObTuHpIws8DsHQmOkgpX9tZLxcNWm4QivX7aDNoQQQggh5PmIaFwJ5/Zcxq1Td5CZmo1zey/jsrsQsZ4ln2mofJ2Q1rsa3DdcBl+ue38eHBGIid+NQmZKFrb+vBsqpeGOBWofF25cgt2V8tQAX8+qj3PlOLvnEup3rMVV2Nz1+35E3YpFclzJSfzWcvZw5M4jIymzYJhErVJz18AY1mEO7FX8fQCNqwajnETMdYKzpXuXH3JdHKJuxuDfn3Yj5nZh0afU+HT8uWAbDm88ie+OzuK67xU1bt4wKGQKs88pRazCdmk8FGODwc9Uwe3fmxAnqcBTqCHMMF4chCXLZKZmYc+KQ9x11Go03KQwO0c7LiZh51pcThVPZLStUOJ9rVSEtK6VwJfdQONK5RBSrZxZ508IIYQQQl4u7Pkze55963QkstNzcGbXRUReeIDUeMvGSSrUDMa4b4YhKSYZu5YdKHUHsNg7cbh85DpqtqyK6NuPsfP3/YiNjENGchZsxcXLmTtPFkflxyQqhYq7BtZq3KM+3H1dsXPpAdg6Jjm/7zKibsZyscXje4WdEFLiUrkk7CObWEwyG16Bup2z31o0BopchdnnxK4Hi1OtUb9zLW68bdeyg7hw4EpBNw7WPfy/beeRpicJwxwNu9ZBYEU/q7YlhBBiXJwZ86IDAwMtvoxBQZZ1gnoWKMGBmEWrUiFmwkRknzyp876lyQ18Z2e4jx0LoZcXeAIBAhZ+h9j3P4BWXrqKzY8nT0by77/nTea3oh2L0M8PKgP/w5fWqwv/r+dB5OeLx59+iowt5k20MYrHg0u3bhCXKwehlyeX6KGMjS39ftlgR2oqHg0bbnydlBTEffY5yq9fV2KZVzUebnJTqMxkRfcbt8qAnSuwZ6QGuUUKYydcQKnwRUDjmdSYhhBCnhk7F+uy0fRh+5FYVwHC1sLCwiCRSCCXy6FUKnHnzh2dpAd9btwobN9ZvXr1Z3CWhLx+lAolPukyt0S7XEuTG5zcHbkqR67eLlzL34/XvYevhnyvvwsAq5YqFUErNhE683n4bOQPqOLnibsXH8AanoHuSIpJ0busduuqmLrqHbj7uWLm9zuw/3SknnPgQ1GvAvhZuRAkZ8HhWiLkoXlJEPoI+Dx0qR4Ov2b14Bngjj8XbEVidDKEj9Oh8jfcTs3uuvF2xEpvR9xrHIw3v/2r8E1x3iSsohOxktOzMW/FASz+qLBjQ75qzSqbneDAqJwkkFXxhSrAlZslxT6Dw40kZDTzg0aq/7urHxgA50QFRtd9T2fS0IX9V3XWc3DSIrOF/olBovhsSK/qxsRiqQjTN3xg9rkTQsgrjz03Km3r5LLvvEwIIWZhnQA+6jgHN/67U/Ce2lGMBHfDBSA0ThLkRnjD4eJjnUk5A6f1hrOHE1cNc8rKtzF/1GKjSQ7m+KTzl6hYJ4Sb3GQND383JD/WnxDBKsROXfkWd76z+i/AyX9LJhlbSiQWouWAxlxs5l3OC39/vx1JsfpjIks9uZ+Aae1nGV2HdYX76d3lmL31oxLLqjWrYlaCQ0o3PyT38udiwnwZrb3hcC4Vfr/dN7otu6bsOx8d/i7SkzINxiTF/0nMamRksJnPg7ptGD6aO8HkuRNCyGuDYhJCyCuEdQKY0nYmIs/r3mtamtzg5uuCQdN6w8nNkXt9+PsEfDfu11InOfyv9ReoWKcCIi8YvxfWhyUssNhAX5Iv06BLbUxZ8RYcXR0wo8c8nNtzCaUlkYrRrE8DdBrTGn4VfPDPDzstHnMy5NGNGC5+NObJw0T88uFKfLZpst6YxJKkC60Vz98a96jHJUe81+RTLoE/34V9eYkO1rJ3lnLfFSGEkLIZJ2nQoIHp1Ut7vBcEJTgQs2Ts2lUiucEamowMxH/xBbKPHOGSG1j3Brvq1aG4dw9aVh3Z1TVvor/a8gf58lu3rDonnliMCtu3IfvECa47hVatgsDJGaIAf9hVqwa78HBuPVVqKjJ37YYtuA4YwCU3MG6DBnE/yyMjoXwSj/g5s6GMjkFZy71wAbI7d2BXqZLO+161AakndBIPbMnOE2gyk4fDH+gmN9iCRmmbObaEEELMJLQDvCKAhGulv2ReVfP29wJg3RpYQHDs2DHu5+PHj5tMcDh6tLCl0YvUro2QV8n+NUdLJDdYgz2sXTD2F5zZfRHTVr8NpUyB8AZhiL4VC7VawyVAJDxKhFqVd2PJVVplD/VNtOnl5Sr1JjewDhDsgQPPyEMEO3sJVt35kauGc/PUHa4KqqOrI3yCPbmOAuWr5k1gSU7LxuFz94ycBA/Kin4QJEfC/noSMhv4Qemnv6PM0Aa14OeS1+Gg97td0OOtjnh4LRpxqZmYu+c0nqQUTrDJJ7kVD8k9wzfxahcpMjtWBcTFut7weNCwpw9aLfhF7tfP3ohC1JNUlPPV7eJQr2NNuHo5Iy0xA6YoAl2R1S4cEBYeU+1mD3llH3jsjEJyR39oHEU625Tj2eGHzp3xfo2pBgdL8jkfjwFfrkZm4wBoHJ9OXFNrIL2VDJe9D8B/+vek4HxylXkjMYQQQggh5JXDKloWTW5g5BU8dCa36yMP89RJcEhPzMA3I3/E+b2X8OHSidz9f6X6oYi5E8dNKGKJD08exEOjzoshBAkZeYOgRu4zuXUAq5MbHFzsseb+Tzj+9xncPhNZEBuxxAPWtaJc5QBuvfhHiVxnAVvo+0E3uPnkJWX3n9wdfd7rggfXovDkQQIWv7PMYLKFOcwdxD2z8wISohK5z1m82iibOJWVZriDXWZdVyT3ybsuxWXXc0NScgC8Nuof6/EP88GU5ZMwqd40neQGU1Se9lC7S42uk+4uAd/pxXjGRgghhBBCbGv7L3tLJDdYI/VJOuYO+R4X9l3G2z+N5cKNSvVC8fjuE+5emsUCrFu1VmP55EhrkhsYFy8XrH34C479dQqR5+9Bo2ExiRO8gjy5okj53QBiIuNw3kQXOXMNnNoLzu554ySDPuqNfpO7c+MkrNvCj28vRdrTOMsa5l471qE65Ukq3IuNkzTpVR9SRzvkZslQFspVCcB7P4/D+Jr/00lusAVZlgwiO91xGUIIIcQalOBAzJL212abXqmsQ4dwv1dvKB8+LJEA8aw5dewIgYMDnDt04F6G5J4/X+pOE3xHR7gNGwqvd9/VeZ/H53OJFOxlX3sz0jZtQvr2HVDFx3MdGcqK4v6DEgkOfAEP1cfzcGZu2WRxsSSElFtAduF4jk2pS/cVEUIIsVRgI9skOLD9vED69+9fkOCwbt06jBs3zuC6ycnJ2LWrsKpfr169nsk5EvK62b38oE33xx6S37/8ELGRuh0Jsoo9yOWpNJDcS4a8ku6El6KEcRkQpus+ZJaHeUEW4Qe1lyM3GUkUmwa7K7EQxZWMeVoPbgaxnRgt+zfmXoZcuB4NlYkKSmqfvO4LPLUW3muvI6VLKGRVPPISLdiEfTsJRjSqjbdaNSqR3BVaszxCAayvF4a/j13F7rO3kZyUgay78bC7+QTiR8Zjk9waASWTG4pgSQ48BddkoUBUXMkEB5FYhNFfDsHC8b8aPZ5GLEBWG93khsIPxIeyShACF15EbrgLZOUcwVNpYX8jFT65Alzzq851rDCH49k4OJx/AkWgE7QCPkQJ2RBkKw2uL8+hoIQQQgqwEfJSVyZ6NSoNEUJezZhEKzLdUdjQOgfWHcPNU5Hc5BljMQk/SwZBXBrU/rr3zQU0WggjTbemN6bdsBbcfXjrQU25lyEXD16DxopJTlwQ8HQzNlmq/+QeGPSR7vMTgVCAsFoh3ItNYNr+6z4c2XQSyXGpXKJ6WWCfJSbySYkEB5aEPnLWQK7DgyFpHX2N7jujhRc8/n0MvqxkDMcKNZ3bc9ni6rBaoXkdrGVKFQz35SOEkNcMxSSEkFfILhuPk+xecQiXDl/nkoyLKqv7b2PaD28BsUSEtkObcy9DLu6/Uuqq1C6eTlxyQ///9dB5XygSIqx2CPeq3rwKtv2yF0f/+g8pLCaxcRJAPpbw/vhefIkEBwdnewz/rD+WTF2DsnJy6zlkJJufcG1JnKWUKSF1oMRrQggpi5jkzJkz8PPLS/x71VGCAzGL8kmc7fdZLLnheeA7O8Nz4kSz1jXrBpnP57pQcEkJT9cXeHnBoWlTOHfqCIcGDcC3tze6C4GzMzzGjuVe2afPIGrkSJQVgXNeJnJxwe354PE1uLZca/NEBEU6EH2gbAamRY6Ao3+Z7JoQQoghbhUABx8gO976a8S2dwt5oa7xgAEDMG3aNOTm5uLIkSNYv349hgwZonfdd999l1uPadKkCWrWrPmMz5aQ14O5k9EtUTy5wRCH09FQlHOFVl/FGZUGjicf6byV3bA85NX8dTsrBLpB6e8Kh2N3IbmbqPMgffAnvW0Wk4gkIjh7OiEzOQt8mRqef9+Ba7gPaoxqhlZ9GqJecCCkYuOVc1wdpRjTuQH3Orv7Ij7pMtes81Ow6rXG8HjQ8rTgFfkYjvYSvat2GdsWIrEQqz7fyFWJ1Xu8it5GEypY4oOygheczsXC6VzhPtjfpCN/nTL1cXRPXaOFJMp0Qj7rPOFdztOifRNCCCGEkJc3JhEm55jcTphkeJ3iyQ2GSM7chax5ZWg8ij3TV2sgOXcPgjTT52GIu68rBkztad7KZsQkEqkYYqmYS9TIj2G8Aj1Qv2NtNO/XCDVaVOESvI1x9XLBsBn9uNfxf05jZt9vUVYcXfWP2fR6uzN3nmtn/YnEGN3vXiPiQRamv1tewTpSAWQhDrC/WXLCEKuGe2LLaYvPVZiSC55SDa3IcBzk4+IITyfj41CEEEJeLqWdyEsIeXUkRhvusGyt4skNzwOLF/p+2N2sdc35lWjvJAVfwEd2ek7B71DvYC806FwbzXo3QPUWEVwyhTGs29yILwZwr4N/HMdXQxehrLDucfqwBAyJvQTr524uVYc7faJuxuLUdtt05yvON8SbS2wnhBBSNvz8/BAYGPhaXF7zSn2Q157I2+eVuwaicuUQvGYNJBXMm1BpX6cOeCLjN7iiwECoU1J07qjViYnI2LIFGTt2mkxuKHHMunUg9Cmbay/09oZ9gwYGl5dry0fnNXy0WsSDvbdtj11Wz2DKd+JBIDHeDpwQQoiN8XhA1f6AwPjAtEFsO7Y9288LxMfHBx9//HHBz2PGjMHKlSt11mFJDePHj+eSHxgej4d58+Y983Ml5HXhEeD+3I4tTJPBbfN1iKLTdG5mhU8y4frvDYgfF05YUXk56iY3FMXnIbtJBa7zAFOucgC+OzobfiHm3fPXjgiEQGA8jPeXSpCRlKkz8Jl2Ox5HP96MM/N2m0xuKK5Wm2pw9TZd+1PLfo3r66RQXJFf936ezqhR0XCGcvsRLbH63mLMP/AZ3P1KVqtVeep/6K+zDuugoe98NcY7YVir0xssMYNaLxNCSAGNjV6EEPIC8NQTk7AuZ/wM3W5uxUmvmZfEYAyb1G538Dokx25B+DARgphkiK5FQ7rzIoRR1ieDh1Qvh++OzoJ3kHlJujVbVeWefxjjFeTJVXwtGpOw5JCdS/fjv61nTSY3FFevYy04uJTNhP2gygGoVJf1sYPBxOs1D37C13s+hZu383MZJ2Hd+OShHsiuHwRZFR9IIlOMrt+/YXUI+DT8SwghBSgmIYS84jHJyy6sTggXk3joGQPQp2brqibXcfd3Q1ZaYcI1k/AoEdt/3Yvzey+bTG4ormHXOrBz0F+sqbQq1AxG+apBBpf3mNQR6x7+gjnbP4azh+NLkUDXfUIHk3EjIYS8VigmsRo94SJmceltXkXRl4nnm2/CLryS2esLPTzg3MN4xrAyNtbgsoxt27iODJbgCYXwevcdlAW2X7Z/o8fn8+BVg482i/lwr2yjA/OBoFa2v5H1rAFUe4NukAkh5LlwDgBqDLM8yYGtz7Zj27+Apk6disaNG3N/lsvlGD16NCpVqoThw4ejX79+CAgIwO+//16w/owZM9CsWbPneMaEvNo6jGxV5sfQCvnIrRmA1IF1kDy2MVKG1kN2g2BopCIIU3LgtuUGPFZfgOvf1+C+9iLc/7wK8WPdqv6yyr7GDyISQBHqxf1x6Ix+XJKDubzcndC2seEYhj0vTth1weDy3csP4ubpSLOPx52uWMRVTTVFXollRWvzEhiKvorSasErMkl1Qr+m4PON38Pz+XzUal0dP5z8EhXr6Can89SmH77zVCVnxQqEArQc0AS2VrttdQz/zPS1IoQQQgghr05MwrqTuey5A55cpXcb+7PRJWIGa3E5xU/SIDl7D3b/RUJ8MxZ8mbJU+xw5cyACwsxvae9XwQdNetU3fI58HmLuGG4LvfXnPbh32bLu3nb2Egydbvv7bDbhZvTsQSbXEwgEqNu+Fr4/8SWXEMLwlVrYRWYZ3Y6fo4Ld/Wy9y1i3uhb98p45GaMIcEHK8LrI7BCO3HpByGlSHqpynuBnKfSu37xyebzRxvD3QwghhBBCXm4dRrbGq2bMnMHwLW9+1dXgKoGo37m2weWsc0PMbcMxyV/fbUf0bcNzu/RxcLbHoGm2nzfHxkdGzx5scj02ptGwSx0sPDYH5arYZlydxVnN+5qOSSzVtFd99P2gm833Swgh5PVECQ7ELC7duoLvYLo65suCZ2cHp7ZtLN7Od/p0ODTRMxGGz4dDixaAWm10+/S/N1t8TNe+feE7cyZ4EttkAws8PeE3ZzZc+5k/ICD14qHtLwK0/oGPqqN5KN/Z+kQCvwZAUBs+PEwnVRtl5wk4+AGe1YF6U3hoMZ8PoR0lOBBCyHPjURGoOx5wMLPzEFuPrc+2e0FJJBLs2bMH3bsXJjhGRkZi7dq12Lx5M1JT81qBCoVCzJ49GzNnznyOZ0vIq6/jqFZcK96yTG5I71oVOSyhwdmOyxbQ2oshqxmA9J41oHbIS+ISZMghjs2AMDVX7364bU1Qu9hB6miHRt3qWnyeU8a1Rx091XwEfB6aeLuAn2B88tSe5QctPmbPtzph0qLREOmpaqT0dUJmy1BkNw+Fll2zIsu0fC1yvbRIr6hFaoQW6ZWAHD/A3cMBn7/ZCZ2aVDH7HHyCvfDzuW+w4PBMriV0uxEtIXpoulKt+GHJ6qZNetZDm8HNEFbbvG5+xqplsVbL1VtUwdSVb2Puzk8srkZLCCGvOh5LbrPBixBCXgRdxreD2K7kPbEoPgvuGy5DevEx182Bn62A+EEKXLbegOPpaLyonNwcUK9jTYu3+9+ySYhoEq530k3d9qb3xxKvLdV/cneMmzccwqfd8ErLM9Adn6x/D837NjJ7G/9QXyy5vADf7P+Mi0n6mnim5XIkCXy5/jZELQY0RpuhzRAcEWhwe5WbFBmdK3NxafEkEj5fDLu7qfDnixHo7oz6oYH4enAn/DiqJ0QC21wjQgh5VVBMQgh5lXSb2B5CsfFCpi8T1j2adZG21Eer30F4/ZKd2IQiAWq1rmaya8Hu5YcsPubQ6X0xavYgCES2ud/2DvbE9E2TLRonYgWzll5biK/3TOdiktIUcmo9uBnaD28B/zATRbtM8Ary4MZJWAGoT/94HzP+nMzFhoQQQgpRTGK9V+euh5QpdVYWNNn6K828jNyGDuFuWrUaDXgWtOrlS6Uot3wZsv/7D+nbtkOTmQFx+RC4DuiP5OXLTW6vjLOuFbXbwAFw7d0LyStWIvPQIShjYqBOSrJqXzypNC8Zwwqe1Xnci3GvrMGFhZYNMDsGAHUn513vJrP5OPGJBim3rDoVtPmBBwc/ytEihJAXCuvE0Og9IPUBEPMfkHgD0BYZyOXxAa+qQGAjwC0kr9T4C87JyQlbt27lEh1Wr16NkydP4smTJ1xF8eDgYLRp0waTJk1CRETE8z5VQl55aQnpkOfIy2z/ubUCofZ20rtM4yRBdpMQOO+7bXI/PLnpCqp8mQp93+8GlUIFjUbD/U4xl4NUjB8/64/Tlx9h/8lbyM6Ro3ygB3q0rYG109aY3D4hxnRSgD693+mCruPaYdP8rTi94wLiYpMQXcMXyqBibaO1XKMGLrkhszygKZLvoRHnJTgo3cRoWLu8VedRo0UE92LCvt+Ob45chMpLf1tmQUo2RI90P29Q5QC8s3gsV6119raPMKP717h78YFV57L47Nfw8DWvbTYhhBBCCHn5JcemQGGgY4IgUw6nEw+5l9nYY5HnmMPVb3J3yHMUXJIuuz82l6OrAxYenYWzuy/hyKaTyMnMRUi1cugyrh2WTDUdkyRaGZMMmNIDPd7qgI3f/Iuzuy4h/lEC0kwkeBvi6OKAuh0sT+5garepzr2YgMsn8c35o0CxznSOZ1Lg8bf+qrCsC8SkhaO5zhAsSXp696/x4GpUifVya/pzHQD1YUfTeLvgr8/GwNlBatXnIIQQQgghL5+ER0ncuILNPOeYZMDUnsjNlEHoLrQoJnH2cMIP/83Fqe3ncWzzKeRmyRBaszw6j22LH99aanL7pFjrYpKhn/ZF7/e6YOPXW3BuD4tJkpCeZF1Mwj5DnXZ5cYUl2HViieX5yeWBlfywbo5lxXZZt+zx84dDKBLi693T8Wm3rxB9y7KuFnknAyy78T2kDqYLfxFCCCHWoNnBxCxahcJ2f+nc3eE+ZvRzu/LCgACkrFiJyMZNcLd1GyT+9BM0cssmSjk0bgz/uV8i8Mcf4T35Q4iDgiDyNt0yTehjZlVrPXhiMTzfHI+QDX/AsWVLq/ejio5GwrxvUFqhPfhoOONpwGOGSgOBtr/wIfXM28DOjYda7/AhsPI+98FO67YjhBBSxtjDJ/cKQI2hQMsZQOMPgPqT8v7Lfq4xJG/5c0huOHz4cF6Co1aLUaNGWbRtx44dsW7dOjx48AC5ubnIzs7GjRs3sHjxYkpuIOQZUcht99DezdeVSzDIp+UBssrG79WV5dyhsS9ZrbU4yV0TichaLYI1fKyfuxl9vcZgWMgkrJ/7N5QK04kRRR9gN6pVHtMndcJX/+uJNwc1g5+XMzz93U1ua846hrCJT8Nm9MOPp+ai0he9SiY3cCeX98r11k1uKOp+aiq+OXEMpcW+w5mDWkH0pOQAgvBJBpx23QDv6eAM+2dnyKd9uHN383EtuBYTF46CpFhFVHPtX32kdB+AEEIIIYS8VJRmJDOby8PfDb3f7YLnxa+CD1bO2MjFJCNC3+KSBtQq4x2qi2JJ2g271OE6mX2xeQpGzhwIr0CPMo9J7OztMPKLgVh8+itUbVLZ6v08vB6NFdM3oLQm1WyCBc4N4b4jDo6nU+CyPx5Bs2/C79f74Km1JTovjJw1EItOzOEmMzHe5bwwYcFIvZ1BFCHuJrsQ7jl+vdSfgRBCCCGEvJ4xiVeQJ3pO6oTnxT/UB79PWcPFJKMqvYO/vtsGtdqymKRJj/qYtuodLiYZ/ll/LtbwMCPe8PCzvnCRvaMUo+cMxk9n5yGsrvVdou9eeIC1s/5CaY2aNQhvLhhp1twtPp+HN74aiu+OzuYS1/NjwzfnD4fIms4gWuDEP2esOGtCCCHEPJTgQMwi9PKC0Ld0banEoaHwm/8NQv/dApF/APguLs/+6vN4UMXGApq8atKq+Hgk/bgY0ePfhKaUSRwuvXoBJlr/uvbpjdJSJSUhfcuWUu0jY8cOJP2+tFSfWaPW4spvprO5+SKg8Rd81JwggNip8I5ao9Liv881UMusPb512xFCCHmGhHaAgzfgEpT3X/YzIYRYybe8F9euuDRCagTjkz/exy/n58GnvBccnO2597USEbRSE8kLfB7UzqYrY7KOAcIn6QaXS+8kIOFKFDSavBvpxOhkrJj+Bz7rOQ8qZemSODqMamWyylHH0a1RWk9SMrHnrOFuFqx7g8LEV7X58jX8+evuUn1mhVyJ5e+vgtP2a3D+5zKkZx5xL+d/r8B5+zXwc/MGeyRSMWb9+xFGzx5c8J1z28sUmN1/AVe11hqWTAAjhJDXFtfWxwYvQgh5AfiH+cLJLW8SiLXC6oTgsz8ncxP0fYO9Yef47J+VsIn2cffjuQIQzJOHiVj60VrM7PetRROKrI03Oo1pg9J6fO8JTmwp3USaHb/txdafd5fqM8ty5Fg/cQ08NsfC77f78F4fDbsHJbuh2zlIMHfnpxg2vR+kjoVxZW62DHMGfqe3M4hWYHoIV1W0cyohhBD9KCYhhLxCylUJhL1T6Tp4VW4Qhi/+mYLvT8yGb4g39/z8WWPjGI/vFcYk7M+//W815g5ZxHW9Lo1OY0zHJLYYJ2FJ0+f3XC7VPv5etAO7lh0o1WfOzsjBmpmbTM7dsneW4pv9n2PQtF6ws5cUvJ+Vlo0vB38PpZWdQdQqG3YUIYSQVxXFJFajBAdiFp5AALfBg0t1tVQJCUhZtgyRbdoifs4caNINT/opMwYGRHNOn8a9du0R9eabyNi9B1orHmiL/Py4DgvGJHy7AIroaJ331OnpUDx8CHVWllnHyT51CijlIAOTuGABoseNt7h7Rb7HJ4DcBOPruFYCuqzjI7BlyUlWsceBXBPFbY3xb2L9toQQQggh5OXDWuV2Hd+uVPtIiknGH3P/xtDgifj5/RXcg1+Gp1QXJEEbwzPjAS/rGOC05ybEt+MBVeE+eXIlpBeiYHf8nt7tzu25jBGhb2NGj6+5iTrWPNAOCPNDvw8LO1Po8+vkVUiIStR5Lz0rF1FPUpGda95E//+uPzD6rFzDCv0Yz/2GRsjDj7P/4D6vJd0rijr21ymkxufFlcLkbEivxHIvYWJhbFWlUSWsursYjbrVLbH9kU3/IS3RuvbRTIMudazelhBCCCGEvHwkUgk6v9G2VPtgCc6rv9iEoeUn4ZcPV0KWZWUFoFLQPk22Lu6/ree4mOSzXvPw37ZzBZONLFG+ahB6vmW8CuxP7y1H0uMUnfcykjMRExmH3Kxcs45zescFlBZLOv/x7WWY2fdbq5OXD/1xnDt3Y2q0iMDqez+hXoeaJZYdXHcMmaklEyIYUYLpMaPGtcMsOFtCCCGEEPKyY8kNHUa2KtU+4h8lYsWnf2B4+be4pAK5meMCtmQo1jj6539cTPJF3/k4s+uiVfuuVDfUZFI1iwNS49N03ktPysiLSbLNi9FY/FRaGrUG3437lUswsDbJYd/qI8jJMB5H1WlXA6vvLkbNVlVLLNu76jBySxGX1mxVzeptCSGEEFOs6C9EXldCT49Sba/JzIT8luEqn88bS8Bgr+wjR+HQsgWCfvwRPLFlmcpe774LoY8v4ufNgzYnb7JUUbLr1xE1ajRC/t3CHSvx+0XIPHgQUKnAE4ng1LEjvD94H6KAAKPnaSsssSN52TJ4TZpk8bapt00PbrDisVIvntXbGyL1AjyrUX4WIYQQQsjrxs3HtVTbZ6Zkca/ieGoNxA9ToahgOOYRpGRDmFLyHl8fnkoDx+P3oDn7CCpPR/A0WggTMrnjGJMYk8y9Tm0/j6a9G2DGxg8hEJrIFChm/PwR8Cnvjd+nrtE7MHHrdCSmtJuF3y59i9iUTPyy+QROXL4PtUYLiUiAtg3CMbFvU/i4Oxk8RlKM7mSk4nhmPocX5Kq4xI5/Fu3EgCk9Yak75+6ZPoaQb7DdtDnbG2ufHVbL+vbThBDy+rBFBwbq4EAIeXG4eDmXavv0xAzu9aJKiEriXmyyTqtBTfHx2nfB51v2LP6tH8bAP9QXSz9eB6W8ZDLzteO38FGH2fj5/DeIuhmDVZ9txJmdF7iEA1Y9ttXAphgzdzDcffXfxzOJ0aWonlQM+6zbft2LXm93tnhbc2IKoUQINwPdCI1tb3c1DsoAw63xKjo7obyPu5lnSgghrzOKSQghrxYXT8PP7s3BigblFw56EbEEDPY68c8ZtB/ZElOWv2Wyc3VxHyx5EwEV/bDq841Q6SlcdfnwdXzUaQ5+PjsPdy89xKrPNnBjFSzxgnVfazukOUbNGQRXL8P348ULSZUGS+yo274muoy1PKH+znnTMYlYKoKLp7PV2xtSqV4F+Jb3tnp7Qgh5fVBMYi2aIUzMotVokPTzL6/N1WJJDkm//mrVtvZ1autNbsinjI1F8u9L8WjwEGTu3cslNzBapRIZ27fj4aDB3DqG2FWzbfZr6oaNUGdnQx4ZCeXjx2Zvp1GbHlwWSKxbZgxPCLRaSL+6CCGEEEJeN6yi5h9f/V3ifa2AD3mYF3IahSCnfnkofa2bcCS9GA2wTg76aLSwPxtl8T75chXEsWkQxaWbTG4ojj283/jNv7BGlUYVjVZdenz3CdYv2YexX27A0Yv3uOQGRq5UY+eJGxj35QYkphquFhrh72l0sipfzYNQfxHSAnb3MyBMyzvHbb/sRbZCgciEJMSlG69+WpTKjNbHYiPttY0tM0YkFmL+gc+t2pYQQgghhLy8FHIlNs237h79ZXR4wwkuGdlSbPIRm+iiL7kh36MbMdg4bws+bPEZl+DNkhsYFsfsWXkI7zebUaKialFhdSrAlriYRK5AZHwS4tPN67bNKM3o8seSNqyJSSQPUiC9qH+sSCpTY/G0QWaeJSGEEEIIeVXIcuTY/P0OvC72rTqC7b/utXg7lqRdqW4FvckN+e5ffoQN87ZgcsvPcHb3pYKuErJsOXb8vp+LVYx1awu1cQGkbb/s4bqOP7weXaLjnTFKmbJUMYnEzrpxEpYIMmf7J1ZtSwghhJiLZgkTs8iuXTM66d5mzKgEJHAzXLXHllI3boJWYXkrtgyWtGBC2oYNUKfrz4hWJSYi8YcfDW5rX68eILCsiqsx6oQE3GnSFPe798DdNm3xYMBAZB09anI7earpffs3NbwsoJllGdaMwA7o8DsPjgGWb0sIIYQQQl5u10/eRvJj3ZtQlZcTMvrWQW7TMCjCfaGI8EN2x6rI7FwNGollDQtZdwbnndchStNt5cvPkMHxwG2IowqP7eqtP4mCx+fZ/IG2Wm0g6cKIY5tPm1xn45mbyDaQBPEkORNL/z1lcNuGTSpDEm14shFLfnA5kQCoDCR1qDVw3x3N/VFjJ8CNqo5o8s2v6PbrGrRatBSDlm/AyfuPTH6G1Dgj5/BUs14NDC5jXTIsZe8sxe/XvoN3OS+LtyWEkNcSGxy2xYsQQl4ArMpnepL5CbnW4gtMxxVuPi7PJCb596fdBRN9bB2T/PPDTuRmyfQui7sfjz+++sfgts16N7C4iqshaqkQl4PFaDbnV/RctAat5/2O4Us24ez9GJPbpj4xHZM0NRKTNOvd0Oi2DqcewWXLNUgiEyFIyoYwLgO+1+Lx9+wx8HZ1NHlsQgghFJMQQl4tF/ZdQVaaiepCNsA3I65w89XfcZsvsO1UxC2Ld1m13bHNhsc48v313TaDxaKibz82muDedmgz2NLdiw/Q32csxlX/EIMD38SUtl9w42KmpJgVkxiOO5qaiEkMdTZccfsHg53qCCGEFEPjJFajBAdiFo2RjgS25Nq3r8l1RAEBKLdqFRzbtAHf3h58Bwc4degA/4XfsdJANjsXdXIyFFYkdWhlMtP7NpDckC992zYkLVkCVaruBC51WhpSVq6C0NcXNiWXF/xRduUKoidMRMYu40FCnOnxCTgHG/4+XMN48G9i2Wm2/I4H5/L0a4sQQggh5HVUfOKLRipCVrvK0EpFJdZVezshu1Uli48hSshCP3sXuPxzmUtqcN52Da4bL0DyULdaTlB4AL7eMx0Nu9bhqtSwSe+tBjbBR2vehS0lxaYgOdb8Sj355DmF9/f6aBwkSBXrT5rWCAClFNh8/hpWHz6PjFzd656elIG/vtuO8pEpEMbrmdyl0cLh+H247r4Hv99vQRSvmzAiSsiF77LbkN7NgEbMR/yoasiq7wuZpjCR42JMHMau+wf7bxtujcwmWZ3fdwWmBFcNMrgsolEl1GlfA5b4/vhsBIT5WbQNIYQQQgh5NcgMTMa3tdaDm5tcJ6RGML7c8QnqdazJxSQOLvZoM6QZpq1626bnwhINWAxg65iEyUzJ65SgFfK5znzFsUqt//y4E9npuhO4krNysPLEJfDGN0Ra5zDkhrlDa+XQkEYiQNKQasip5Qt5keTy8w9j8caKzTh256HBbZUKJZf0YkqFGsEGl9VsVRXVm1cxur0oLgNO+yPh9udluP57DctWvA9ff3eTxyWEEEIIIa8eQwnCttaif2OT61RuEIaZW6aiTrvqXEzi6OqA9iNa4sPfJ9j0XKJuxiInU3ecwRzGulzny0rNNpmUve3XvSWOnxyXis0LdxgshmWtol3wLh26jiltZ+LSoWsG18/NluGGGUkQFWoajknqd6rFfZfmYonmv16cD0+KSQghhDwDlpW0JK8tSWgoIBQCKtPtdq3Fc3CAONR0W2Ghrw8cGjbgXsVl7NiBrP0HbHZOfLHlrbjsIiJKf2CNBonfLUTSTz/D9/PP4dqnN7JOnEDsO+8+m2QTjQZP5s6FU7t24IlKThjTarRQGM/R4KhlxkcVGk7n48zXGsSabhgBj6qARxVKbiCEEEIIeV2FVAviqgZpNHnVQ+XhvoDYcEir9nWBytMRwqS8STPmcHJ3RGAlfwhXZUOYZPjBtkeAO+q2r8m9itu76jDO770MWxFJSt6Pm1KxjvG4SuNQMs5hV1XpwCb45N3Dq6HFt1uPYvHuk/hiQHt0qVMZp3ecx5yBC7k22Izz/Xgoy7lBXsETWrGA64IhuRkPQVbecvvIdJSbdwm55Z2gchVDmK6A3YNM5EcJWfX9oPR10HuOaq0WX+4+hDaVKoCvJ5GdDU6YM6iRa2Kdz/6cjHkjfsR/W8+Z3FetNtUQUs3wQAAhhBA9WDMfAw19zFba7QkhxEZCqpcr82vJOjP4V/AxuZ5XgAcadK7NvYrbsWQfrh679VxjkjATMQkjq+QNWTU/qD3yYgJhbBqkl2Mhjs0bfFAqVPj5vRVY8ekfmLLiLTTv2wj7rkbio/W7IFepAUc+EOGN3AhvCBOy4b75BgQ5hROCzJFV3x8qL3u9y1RqDeZuO4SdH47S2y2CTS4za9KUiQq7bFLYV0MX4ezuSyb31bBLHfhXsHEBLEIIedVRTEIIeYVUqFH2MYl3OU/4BJvuYMwmuDfpUZ976etOffus4QJGlmDjQkKR/oJNxoTVDsG+1UdKdWyFTIkfJv2OpR+txcdr30OjbnVxaMMJzB+1mItXyhpLePj5/RVYcnmB3uXZadlQKdWlSuRgsc6c7R/jy8Hf4+KBqyb31axPA0puIIQQS1FMYjWaLUzMIvTygkMz27bXKs6+fj249OwJnkRidD3XPoa7PLj27m2z85FUqQKtWg3l48cF72lVKq6rgkZh+KG1Q4sW4Ds52eQctHI54qZPR/qu3YgxJ7mBJaHYiDoxCVnHjhlsc21veowFDv6Gl2mVSuQc24fw4NWo12UbBDwjn40HVB1Nv64IIYQQQl5n3uW8uOqW+VQB+tsfF2XOOkXVblsdHUa1gkBo/GF5p9GtDS7rOKqVyeOY23iOVc1hk/gTopMK3lOr1FwFVUWRSj7FNepeF1JHuxLvq9ztofRzzmuDWXyZfWFyQ1EyhQqfrt+N/SeuYVb/BQXJDdzn0ALiR6lwOhQJ5z23YH82CmJ5yYf60oeZcLqUDGmR5AYmq7bxQZLH6Zk4eT9K7zI7ewk3+csUXyOTw9g1PLfnMqo3j0CPtzoZbZ3N/k6M+HyAyeMRQgghhJBXF0uGrtLY8k5xlqjXqTY6jm7NTeIxptMYwzFJ+5HmxCTmBSU1WlZBWkI6EmOSC95TqtRIzczl/mtIs971IZYaLiCV3TgE2S3DCpIb8uO3zM4RkIV7l0gkmDvkexw8eAlT1z1NbihG5e2AtG55341AaP5YQk513WMV9yg5jevmoA/rmsGS5E1dZ98Qw8dQyBRcgnztNtXRbUJ7buzFEKFYiKHT+xk9HiGEEEIIebWFVA9GaK3yZXoM1rm605g2JmOGTm+0Mbis/fCWJo9j7N63qNrtanDxSNLjwm7XKqWKGydhXdUMYQnSIolt5lDlZORy4yNH//qPK5hkKrmBb0FMYsqDq1G4ffau3mXOns6wd5IaPxc+Dz7BngaXy3PlXLfs+p1qo/PYttz8LENEdiIM+cTwnD1CCCGvLq1WW/AaNWrUMzsudXAgZrMLD0f24cNlc8XYQ95PPoHQzQ1e77+PhHnz9K7m2KYNHFsZvhHWGnmgXuKQzs7QZhhurayMjcW9Dh25P4vDwiAKCIDs0iWo09PBE4vh1KkjPCdOhCQkpGAb+f37iBo9BprMTNgM6+awcCG0JpIb/ObMhrRBA0SPHsOduy2wpAo2+UlSqRI8xo2DS9cuBctCuvJwfXnJiVH53CoBbhX13/lmHjiAuM+/gDqpcKJWhL0jkjzeQZxqqM66Eleg7mQ+fOpa2WOaEEIIIYS8MkJqBOPiQcPteIvTmptJ8HTiyaSFo+Dh54bhn/fHyhkb9K7XckBj1GlXw+B+NGqt6fN6uoqTmwMyjVTOibkTh1GV3i2oFusV5IEbJ+9wFUAlUjFaDmyCYdP7wa/IJP4HVx/ho45zdFpVK8q5IadBOajdn04e0mjBl6nA4wu5Z9VaHqA2kmeu1mixePNhrlqRMdPWvIPweqGY1n62zgQog/t1Np7cznw0aD7sLyZwgzZDPumD5n0aFSxjgyx/fPWPwW0jmoQjuEqg3mVH/vwPi99eirTEwpiQtdEW24mQkazb9cPdzw2Tl05E9eZVTJ4vIYQQQgh5tVWoHoyb/90pk32ziSfj5w+Dq6cLBn/cB+u+3Kx3vXbDW6BaM8P3plozOt+wwUiGTdDPTDHc9e7epUcFMUn5RhXh2LUGzscnIztXATuxEB0bVMa4bg3h5+FcsM3diw/wcac5UBjobqD0duI6N+jF4yG7SQjED1PAL5I8zaqSLv7rMJQOhuMtRZALPj76OUJcnbmYKCUu1eR1UDuZ7uL9xk9/QaAEqvh4YHy3JmhZI5R7XyAQoMPIVti8cLvRLnB+IfqTrg+sO8ZVY81ILhxPYonqLJGh+HfiGeiBKcsnoUrDiibPlxBCCCGEvNpCqpXDvUsPy2TfrNDPmLlD4OjigH4fdsOfC7bpXa/L2LaoVDfvvlgf06MkLG4xIybhATdP3SmISVhXBndfV1w9dpMbA2H3z22GNMewGX3hGeBRsNnN05H4tOtcKPUUZCpNN4Xln/7BFaEyZva2j+AZ4I6PO87RGX8ojXcaf8KNYYXXD8Xwz/pzyQiMWCJC26HNse3XvQa3rd+5ts61KWr38oNYMmW1zjiVvbOUKwZVvOsD6+wxddXb3HdACCGEPCuU4EDMpsk23ka3NJx7dIe4XF4rNY/RoyD09ETykiWQR0Zy7wk8POA2cCA8J04Aj28401VSMczsY3LJDXw+eCIR1ymhANu/RgNNkeQHxd273KtgW4UCGVu3IevIUQSvWc11I4if+xVyz59HWVBG6a9aWpQiKhqu/foh5N8tSP/7H2Ts3gXZ7dvQZpvo+mCMOu/GXH7rFh5Pnoy0jRtRbtVK7sa5Uj8eHp/QIvV2yc2EUqDO+/q/p5xz5xDz3vuASjeQ0OZkwSPnK4S854B0h97cxDDPanz41AF4AkpuIIQQQgghgKzIpH1hQgbUnsarZQqfpJt92VhlGg9/d+7PQz9lD8PdsfGbfxF9K7Zgknv3CR0w+JPeRisXla8WZPYx2UNjNmDAKhWpilT8YQ+PNWoNl8hQtEoPe+WT5yqwd+VhnNlxAd8dncVVEPrpveW4eSovhmK0Aj6yGwVDVtU3r23E01EFdjyNvYhLdBAoAA17MmAiGeShWg5TTanj7sWj3dAWWHJlAfdg/Ojm//DgShRk2UXirSIEGXKoPO2N7zRVxg103L3wALP6LUDdDjXx9e7p3KKBU3vi9I4LuH/lkd5qqu8sfkPvLi/sv8JVgGXXuCh2nuw1es4gqFUabtIXmzhWq3VV8I3EoYQQQgzjabXcqzRKuz0hhNgSq25ZVlhXMZbcwIyaPYibQLLp262IjYzj3mMxSs+3OmHA1J5G92NRTJKSxU2oZ7ECq4JaPCbJTs8bX9BIRbgU5AjNw7xzye/29u/xazh+9T6WTxuIjLvx+Om9Fbhz7p7RY8qrmGgPLRRAHuYJ6fUnOm8/VOaytGSjmz5UydCmWjX8fnUBdi87iGN/n8bDq1E6neiKEmQqoHYxnnitUWm563PtSRLeXboV7T288O3nw7hlQz7tg7O7LyLqZsmiU2yi1qTvR+vd5+kd57nKr/mJJvnYJC0Wb479ehj3d439mSVas26G5nbdIIQQootiEkLIq0Yu059IbAv9J3fnkhuY8fNHwDfEB399tw1x9+O591iM0uudLlzyg6kkDEtiEtZpgcUf7Ll88ZiEjX0UTaYufv+8Y8k+nNl5Ad8fn434R0lY/O4y3L9ccszAFvKvgzFP7iegUde6+P3ad9i19CBO/HuGi0nYmI612BgJ+z82/vNJl7lo2b8xpm/8kFs2/IsBOL//Ch7f1Y2fGFcvZ0xYMFLvPo9tPoUFY38p8T673iz5/s0FI5Gdlg2BSMDFJDVaRFBMQgghVqKYxHqU4EDMJvLzLZOr5dylC/xmzdJ5z6V7N+6liImBVqGEODCA65rAaGQypG/ZgvR/tkCVnMx1VnDt1xfOnTtDUqEC7Bs0QM6ZM+YdXKOBtHZtOHfqCGV8PJfUkLpuvdnnrklPx6PBQ6Bh3RWe92Dr04fbAkdHuI8Yzr00cjmSfvoJyctXlEgosAa7rrHvf4DARd9DKOWh5Xd83FqnxYOdWsjTAJ4QCGjGQ8RwHlwq6H/YnvTbEqPnkvvPElTZ0wc8Hk0gIoQQQgghuryCCtvoim/FQx7uCwj03zfyU7IheqKnOg7XsqDIjzwe2g5rjrd/HKOzWsdRrbnX43tPuIo8rEuCUJQXQudmy7jkgv1rjnAVeNiyzm+05bo7hNYsjyqNKuokGhjD9t2gS2007FKXqzCanpyJ7Uaq7RTHjv92w4+Rk5mr87lUng5I71IFWntxic/OQhfubp21gJbJABFbh1fqbhj5E24cXVl1p+7ci00kWvXZBvzzw06dwQluvYsJSGtvuJ22IE0Guwe6SSrn917G/NGLMWXF23BwccCCwzOx/svN2LPyMFf5VCQWolnfhhg6vZ/B7g2sEm7x5IaiDq4/jqXXFpr8vIQQQggh5PXjFai/8qVFisUkbPJIh1GtS0w86TKuHZeIzWISdv/qH+rLJUgz7P6fJRWzLgDsPjigoh+6jmuHZn0aIqJRJVSoGWz2pB6WbN20VwOu20BafDpS49Owc+kBnXVy6wRB4yzVeS//IyRl5GDozDXQHL4DSWSCiciCdXIznqTAFD8WdzwzhmDyj+3s7oQBU3pyr9ysXKz4dAP+/Xl3iTjA/ko8MpsbmXylAXjFQod9SQlY+MlafDB3GHechUdnY92czdi76jCXpC6SiLjYkMUkgRX1d6pYO2dzieSGws+pxZFNJ/DzuW9Mf2BCCCGEEPLa8S6jmKTrmx0was4gndV6TOqI7hM7IJZNntdq4Rfqw3UyY7LTs7Fz6UEc+uMYV8wpKNwfXce3R5Oe9bkE3aDKAQUFpExhnRZaDWrKxTLpiRlIepyCPSsOmf1xWEfpN2tPKdF1wOYsCEpcvVhnvt7ci12rZR+vx/Yl+wo6V5QG61DtHbwG478ZDjdvF3x/fA7Wz9mMfWuOcEnqhjqAF7V29l8G96/RaLkEiEXH55T6XAkhhJDS4GkNPUEjpBhVUhLutm7DdSuwlqRKFXi+OR6yGzfBt5fCqUMHLinBXOrMTESNHgPZtWslljm0bIGgxYuhfPwYj4aPgCohwbydsm4E/52EwNUVMe++h8y95k8melb4Tk7QZBa2Kdan3KpVcGjYoMT7GTt3IvbDyTY9nwq7dkISUth2jHVbUGbmdW4QSHhGu4Dcrlff5E1/+c1/QVq1qk3PmRBCCCGEvPwSopMwvMJbBZNSFOXckdOiYokkB36mDA57b0CQVbJKZ0TjSlyFIVb1395Jiub9GhmcdKJPRkomprSdqXeyUNPeDTBj44eIiYzDlDZfIDXevA4SrBLRlrRVkDrYYXr3r7iuBKWhEQmQOqQOtFKR/hXY7fjTJAderhJOO68jZWjNvIQHAzyyVBAuNZ5Ivujkl9wARHF7Vh7Ct2N+LnmeYj7iR1eD0k9PJw61Bp4bb8P+TmrJZTxg7f2f4RPspZMokpmaxX2nYrsiSR3FpCdloJ+3/s4ORS299h2CI8yvfEsIIaRQTEwMgoLyfoe2Cp0EO5FzqS6PTJmBw/fy/h2Jjo5GYKD+BDZCCHkWWLLBqErvGpycbo6araui85i2eHg9Gg7OUrQc0MTgpBN9UhPSuXjj0Y2YEsvYpKCP176Lh9eiubiFJT+YQygSYFvWWi6pe0q7mbh08JpOZ7jUofUBkaDwPfb/uIBCdz+8HAWcd9+EMDlvYpHa2xlqbxduHIafkA5BfDoy24dDWd74pCzpuSjYXyz2+frXQFw54138/vpgGCr7l+w9t+3Xvfhh0u8l3tdIBEgcVh0qLz2d5bSAQAbw8xpd63C4/BjbNnwCDz+3gvdYBwyW4GAqJmGTr4aUmwBTVt9bDL8Q8/9eEEIIKUQxCSHkVcbiiHHV86r3W6t+59poPbApom7FcgWLWg1sovO83RSWgPC/1l8UdJsrqv3Ilpiy/C1EXriPae1n63SqNsbOXsLFJMx7zabjxsnbeNG4eDlzCRjGLL/5PYLCA0q8//f3O/DLhyttdi5sXOnPJ0vh7OFUMiZxtodYYmB8CEDs3TgurjVlQ+wSnZiHEEKI+SgmsQ0qkU7MJvT0hNcHH5Tqirn26QPnTp3g/eEH8JwwwaLkBibhm2/0Jjcw2UeOIuG7hRAFBqL8X3/CY9w4CDzMyFzWarmJ94zyScmWXS8CltzAkxhuk2xXtare5AYm7d9/Te7f2L71Sd+6VednvoAHiSvPaHIDwzpKmJPRrM0tbDFHCCGEEEJIPu8gT4z4fEDBz+KoFDj/fRGSS9EQxqZBGJUC6Ym7cPr3st7kBqbj6DZoPagp3pg7hKucY0lyA/Pz+ysMVkI98c8ZrP5iE1ep6Odz87h2zi6ehQ+XDWEJG7LsvPNNjE4u9RcuD/cynNzAFLltZ+sJk3MgiTR+XPX+SK5NtCFVm4brTW5gWKcLffgKDXxWXofjmThIinRwkzxKh/faG/qTG7iTBvavParzFqtkyyoiGZtIxMhz9P+9KC7/+yCEEEIIIaQo1kWBxRGl0Wl0G7Qd2pyLSQZ91Nui5Abmx7d+15vcwBzecALr5/6NkOrl8Mv5eej7flc4uRtPCmBUSjXkuQq9MYmGxRZmJDdwy+zFyOhUBWpHO+S2rQ5ZiwgoKwdAGe4PefMqyG1fA+JHacZPRqOF5G5iyXPcfwcivuFhzUZhQXqTG4zGJHI1PNddg/3FJzoxCU8FCHL1JzcwSmc7HPrjuM57LDmEYhJCCCGEEFLWylcNQt8PupVqH53HtEH7ES25mGTg1J4WJTcw37/5m97kBmbfqiP4a8E2VKxTAT+fn4deb3fmkihMYd2g2QR9JjE6CS8iltwgEBqOSRp2raM3uYHZu/qwyf2zDtXmYuNKhzee1B+TGEluYOQ5ebGfKbJsmdnnQwghhJQFSnAgFvEYMxoB3y3gOjFYik3Cd+3X1+orrs7IQPq27UbXSVmxApFt2yF9y7/wev89hO7cAZ7Y+AQXtlzolXezLvLxxoucYMJ3LlnxTlIxDIE//2RwO3Vyisl9uw0ehAo7d8B91CizziVz127Ef/UVci9dgrlY54/EHxebXI99H+LQULP3SwghhBBCXi9Dp/fF1FVvo3y1vMrQ/BwFpJdj4Lj/JhwP3eYmwvCednjQ172h3fAWVh87LTEdRzf9Z3QdNploROjbOPTHCYydNwy/X/2Om3xvjMReDGePvElHHv6lr4ajDHQ1vdLTyUj8DBn3R+cD9yCK01/d1eHEI0gepsKrnCdXjbS40Frl8dmfhrvGpSUYrmjEJhS573yAd1Xe2DlpJCbmusNnxXXYPdC/jcZOiNzq/tgWE4fvNh3BjYfmJ6kr5EqjbZeLVooKDPc3e7+EEEKM0Ght8yKEkBfI6DmDMXnpRARHWN5RpkbLCK46qrWSYpNxYstZo+us+mwjRlZ8B8f/OYM3F4zErxfng2+kWxtj7ywtuNf3DHDXWcaTqwBNsRjLyO5YkkN2+who3EpOYtK62EMd4gvhY8Pd7uxuPIEgs2TCsTBVhogbaZCKS07WqRbkg/nDuhrcZ1qC4eMJZCq47bmPDxwDsf39kRhQoxqErHOD/rCSw5ersGflYfz2v9W4e+kBzCXPlWPdl5tNrufgYm9x4gshhBADKCYhhLyCJiwYifd+GY/ASpYVcGLqdqiJJr3qW33suPvxOLPzotF1lkxdg9GV38PZXZfw1g9jsPjMV+DxjMckbIyETdDXF5O8SMpVCYREWnIeWkSTcExb/Y5VMUm+ETMHYNmN77mEeHPs/H0/fp+6Bg+u6i/KpU9utgzrv/rb5HqseJd3OU+z90sIIcQIikmsZn7qHyFPOXfpwr2U8fGIm/EZso/qVs4sQSCAa/9+cBs6FElLlkB+8xb49lI4degIp3ZtwROa99dQfu8etDLT2aHqJ0+Q+N13kF2/Ds9JkyAJD4fs6lWD62sVCq4jgWu/fnDp3QeZ+/a/kN+1MjYW5f/ejNwLF5F7+TJ33RzbtIZTmzbgCQxPmGIdLQx1vcgnLh/CddNwHTgAKStNt0RTPHyIFPZatRqOrVsjYOF34NvZGd0m7rPPkf7PPyb37dy5M4Ru1OKMEEIIIYQY1n54S+6VGJOM+aMW4+JB4/e7QpEAXce3R7cJ7bHmi014cC2Km8DTsn8TNOpeFwIj99NFPbwWDaUir4KQMfGPErkH+PcuP8SAKT25ZIx7lx7qnayvFQshy1Hg8IaT3EPrjqNa4+xu8xOJ9bFkGqjkdjz3X75CDbdNVyEPdYeMdYCQCCBIyYX91XiuwwPzOPIJl7BxYf8V3D57FyKxiBsIadStLvhGKqn6hnhzbbONKVfBD6Ge7ugxuBV2zNOf2C6v6IXspqGAkI9ItRKR+y9g3f4LaFsnDHPe6Azx08EPQ9jfleIVjfRh34ODs73J9QghhBBCyOur05g23CshOglfDf0e147fNro+64bWfUJHdHi/C37echL3HyfDUSpBhwbhaFajgskEhHz3r0RxlTrNmXT0ywcruRim+8QO3CQcY/fkORm5XEJE8z4NuZjk8uHrBcv4SjVEj1KhDHnaMduMU1U7SSDIMRCZOElhf+4u5Om53D0+niaE82RK2F2Lg/Si/u4UTMKOa/j7559x8H4UbsQmQCISol21MDQLL2/0GrKY5PG9vNjHkOBQP1TwdkffxtXxz0njMabkThIeRqXh4bUo/PXdNrQe3BRTV75dMCHLkLlDFuHkv8YTVJgOI1txideEEEIIIYQY0u3N9ug6vh3X7WBmv29x59x9oxdLbCfiuimwIlBLp61D9O1YOLo5oM3g5qjfqZbJBIR8dy89hFZrehSCdXj48e2liLoZw3WLCKjkh5jbjw2un5GchdM7L6BhlzpcTHLzVCReRCzGWnN/MY5s+o9Ldrazt0Pzfo1Qr0NNo9eQxSTJjw10rX6KxW3lKgegy7h2OLDumMlzYWNQ7LXp263oMKoVPvx9gsnxrln9vsW5PZdN7pvFu2wMiBBCCHmeKMGBWE3k4wPnjh1NJjj4zZ3LVfd50LsPoCqcDJSxcxckEVVQbulSCN1NZ9/ypSUrhRqTuWcP9zJH3MxZSPh+EZcoIPT1heqJ+VVAnyWW1OA+bCjAXmZiiRuZu3cb3qe9PZy75VU2koSEwLFNG2QdPGj2/rMOHcKTWbPhP/dLvcvVaWlI/PkXs5IbJJUrw+eTj80+NiGEEEIIeb15BXqged9GJhMcPl7/PjKSMvFmrSk6k4FYl4XKDcLw5c5P4OzuZPJ4EgsnmLAH0PoeQit9HJFTvxyUgS4AjweeQo2Zq/fg1+nrIVRpuOpESbGmO7EZIn6cDmV5EzGWFhAkZEF6tbCNNE8L2N1N4V4G920nQp/3DFdG1afzG21xavt5o9VJW/RvzP25Qo1g1G5XHRf36yapK32ckN08DNAzaenAhbtwdz6Kj4a0Mdh5Y9XnG81KbgivH4px84eb8akIIYQQQggBvIM80bRXQ5MJDp//9T88kPAwePY6aIpMBtp9+hZqhvlj0fu9uYQHU/RVCjVm17ID3MsURYATpm3cDfG1SxAK+BCOqAvZ9hsQpeRyy6UXoqDyd4FWYpthRbW3KxyP34X9mUdQezpyleyECZngmdG1R8rnY2TLuhbHJBeKxRhFuXo5o3HPvCq21YN9UcfXCxeeJOpdVxSdBnFUms57LLZ093XjKunqkxqfhuWfrDcruYFVfh395WCT6xFCCCGEEMIm1HuX8+JiElMJDmwc5PaZe9w4SdEEhQNrj6FW66qY9e80SB1Nz8uys7csJvn3p93cyxyz+i/gig8JxQK4+bhy99EvGnbtpE5SrriVJbqMbYfrJwzHjay7N0vuYGq0iEDFuiGIPG9+t7i9Kw/D09+d6zioT9LjFK7bgznJDTVbVcXwz/ubfWxCCCGkrBgusUiIGZy7doHI39/gcnFICMTBwYibPl0nuSGf/MZNPJ4y1axrzToxiILLlc33olRCnZQEVXx8XnIDnw++Q2H7ZFFAACQVK3KTj54XgYsLdy0t5dC0CURBQQaXe4waBYGjY8HPgT8sgiQiwqJjpG/Zgrvt2uNmlQjcadgIT+Z8idzr15F9/jzu9x+A1NWrTe5DFByM8uvXcZ+TEEIIIYQQc7FqQ+zBryFswryrtzN+mPS73kqnt87cxYI3fjHrWJXqVSh1S16FvzPSe1SFMsi1IL7QigXIDPPAg0aBSEhM55Ib+AI+pE6FXdL8KvggOCLQrGNIbiVw1U8N0mi5qqgu26+BpzJd/TWfm4+LVZ+/Ybc68Ap6Wu1Vj0Ef9dKpTjp3xydc14uiZNX99SY3MGwoZvPxK+g6fRnqvLUQraf+im//OoLbd2Jx+ch1TKr3Ebb/us/keZavGoQFh2dS9wZCCLEl9kuaDZqX6kVfCSHkxdZxdGu4ersYTaLlhXjh2z8O6yQ35Lt89zG+XGVeZ+mqTcO5+3Jbyq7jh+RB1ZAR7IykrBw8Sc9CjLcEaaNrg1fVh1tHmJaLypHJCHVzMuv3skBlYqWn9/ask5zocTpETzLMSm5gcYWbryss1bR3A6PbDZneF2JJYXXS36YMQiUFH1CqC1dSa2B3MwGuO27pbWLBJm0NLT8R7fn90d/nDW7y0N3LD3HhwBVMrDcNu1ccMnmeYbXLY/7+zyB1MN4xmxBCiAUoJiGEvAa6jGsLJ/fCeT/FVW9eBfIcBZZ+tFZv94VLh65j8bvLzToWm/xu7FilochVcEkNidHJ3H8FQgHsHArHDgIr+XEdDp4n/1AfOLlZ/vlbDmgMF0/DhbZGfD6A+7z5vjsyixsXsgTrLje43AQuJhnoPw7LPl6He1ce4dyeS5hUdyoOrj9uch9VGlbEV7s/hcSMBHxCCCFmopjEapTgQEqFb2eHoGVL9SYeSCqGIej335G6fh2gLvIQuJjsEycgjzTdWkyTmQlpjZrP5hvTaKBVq1Fu3VpU2LkTofv3ocK2rQjdu4fr8PA8uPTrC77E8hvIjJ07oYw23Ho6Y++eEl0iKvy9Gd6ffAyhn595B9FooIyJ4Qad1enpSF27Fg/79kPU0GFQGTl2UQInJ/Dt7c07HiGEEEIIIU+xikJf75kB3/JeJa5JhZrBmLP9Y2z5cZfRlsn/bT2Hx/dMd3HLTstB5YYVzb72GrEASl9HKL0cCuYAZTcLAYo8pC5K7W6P3Jp5CeQsGUOr0eL7E3Ow4tYirL67GEuvLcTym9/D3c/4hB42Sch51029SQ78bDlc/rwEh7NRFiU3MF3Ht4dQZHnF1v1rjnIDEoYc/fM/nZ/ZMZZcXoDx84dz3SwYZaCr4edBAkAFLR6nZHDzYNOycrHu4AUMmbMGH/T4imvRbQ42KEMP7QkhhBBCiKXY5BY2AYR1mCuuUr1QrhLq+n2GO5oxB8/fwZOUTJPHykrLtigmMUXpIUVG6/J6izupeEBW7wj8cP5rrLzzA9b+9zU2fTMWm74YDjcjlV15uUrwFcaPK0g2/Vn16T6hIwQC/fGUMbuXHUTqE8PVX4t3exOLhNj48zuYWikcIRfj4bLzFjxXnofzgbsG4yiVQoWEqLzYIy0xA5u+3YqJtadgWvvZSDazQ5+zpzPEdpZVxCWEEEIIIcTVywVf7foU7n4li0FFNK6Ez/6ajM0Ltxu9UIfWHzerY0J2umXjJKWhVqm5zto/nf0aqyJ/xIpbP2DZje/x8/lv4OhWWLT2WeoxqRPXOcNSrAhTepLhOOjwJt2YxM7eDituL8KILwbA1cwkd4VMiaSYvLGYlCdp2DBvCybU+h8+7vwlUuPTzdoHO5ZIXJj8TQghhDxPtuklS15rkpAQhO7ciaxDh5B96jT3IJx1DXBs0QI8Ph85Z8+Z3Efa33/Dc9IkbpK7PunbtiHus8+hzc1rh/wsaGUyyC5fgceY0QXviYOCELxmNR6NGAlVXNwzOxeHJo3h9e67Fm+nzsxE4vffG11HcfceMvfvh+z2bWQdPgKtSgX72rXgNmQIPEaMgCo1FffatYcmOxtlieuQQQghhBBCiBVY5f2Vd37EiS1ncOXIDa77Qf3OtVGvQ03uQfPVIzeMbs+SH3YvP4iB03oZrN7Plv/49lLuAbEpGhEf2U3LQ1bZi+vOwPDTZbC7nQS1h/GH7vLK3nA4m5ckLMuW4+6FB+j5VqeC5UHhAVhwaCb+12Ymkh8bniQjis+C27oLkFfygtLfhUtGFkenQXI3CTw9nSxMadClNoZ82sfi7TJTs7Dqsw1G14m88ACndpzH7TN3cWbXRW7QglWU6jGpI/pP7oH0pAx0nLECSj3nreUXefEAnubpi30PjhJkNasAl103zTpXcztkEEIIscTTLgylQi0cCCEvvrBaIVh9bzGO/30a147f4ipvNuxaB7XbVudikgu3Y4xur9ZosX3HWQzt3ZhL4tZn26978csHK6GUm45JzJVT09do5+oMmRw3lLnoGxZa8F5YgCeWTO6HCfP/RHKOTGd9fqYMTvtuQd6kClCkI4IOpQrCh4lWdWEYMKWHxdtlJGdizaw/ja5z4+RtnN93GZcPX8e5vZe5ZPMaLSLQ462OGPJ+N6QlpmOA7ziUtZCqhrtxE0IIsRbFJISQ10N4/TCsffATjv55CjdP3YFQJEDjHvW5jgsMGzsxRqlQcV3Her3T2WBHsb+/34Hfp62BqminszKWnpiBmNuP0WZI84L3KtYOwfwDn2Nq+1nITM56ZufSalBT9H6vi8XbsXhi3Zebja5z8cBVXDp0jeu2cOHAVe55Wq3W1dB9UkcMm9EPCdHJGFZ+IspacATFJIQQYnsUk1iLpzVWxpIQG4hs0waqx6aTAXhSKVy6d4fX1CmQX7sGxcOHELi6gu/sjOhx4412gSgrLj17wH/evBLvq9LSENmkKde5oCwIAwIgsLeH0NsbLn16w7ljR66zgiVUycl4NHwEFPfvm3XtSySPCIXwmzMbrr16IXriJC6BpSyV37QR0ho1yvQYhBBCCCHk9dTfdyzSEkxXp2GtjtuPaIU3vh6CW6ci8fhePNcyWOJghxndvjLaBSKfls9DWp+qUPo7613OU+dNwDfG45eT3AR9psvYtvhgyYQS66Q8ScXAgPFlNueTtT6W2Iu5KrQdR7dBsz4NLK6UmvQ4BZNbfY7Hd013x5BIxZDn6pZ5ZQMw01a/g1YDm2LSws04fTNKZzm7jGq7vA4OBReM0QICBXvgwVbSwm39BQiy5CbP4deL8xFas7wFn5AQQog+MTExCArKGwxtVX4C7IT6C5qYS6bKxOGHv3J/jo6ORmAgJaQRQl4+Ld9ejOxi97vFORy+A9ekHHQc3RqjvxyEa8du4cnDRLh6u4Av4GFmn2/NikkskTywKhRBxquBDm1aCx/3bF3i/SfRSRjQdkZeQjVLso5Nh/hBMngaLdSeTpA1DQeKd4BTqmH3320IEjJMnltARV+IJCJ4l/NE5zfaoknP+uDzLWtMH/8oEf9r/Tl3HU0R24lKJLSz43/6x/to2qsBPmgxg0teKSssEWbZjYVcUjshhJDSoZiEEEJK6mI3mEtiMMXBxZ67/x4xayCuHL7OdSlz93WFUqbEl0OMF1gtKwOm9MS4ecNKvB995zHGVH6vzI4bGO7PjVP4hnhz16Rx93oWd29g3cPZOEmSGV3dRGJhie+IjZ189tf/0KBzbbzV4CPcOXcPZYUVD2OdMnzLe5fZMQgh5HVBMYltUAcHUuYcmzZD2p/Gq+MwbIJ92qZNSN+yBVpFkQf9bGL/c0huYHh2UmTs3YuMnbugycyEJCwUrgMHQlKhAhxbtULWwYNlclyndu3g+/FHZq3LBjRyTp+BMi4OQk9PrtsDTyDAk9lzzEpu4PahrzOGSoW46TMgrVkT7iNHIuvwYRtU3NPP8+23KbmBEEIIIYSUmXoda2L/mqMm12MdE7b9sge7VxzkHtbnE4gEZk0k0kiEyGkQaDC5gWGdBtjMfEOPwHk5Cp1lEgcJ9p2/g73nbyNbpkSYvwf6taiBcr5uqNOuBi7su4Ky0HpQU4yeM9isdTUaDS4duo7E6CQuIaJWm2rcxKNFE5eYldzAFE9uYFgVqG9GLkaVRpUwtF2dkgkOEkCr76kGD1CLnyY58HlQu9qZTHAY+/UwSm4ghJCywP79LO3zJKrPQwh5BTSKCMaB85GGV1BrIIzLQI5MiX9+2IntS/ZZFZNYiqc0XcRJIhTg4B/HcWzzKeRmyRBaIxjdJnTgkqLr+Hjg+tHbJbYRJGXCfvdlKEO8ofZx4e7RWVKD8H48+GZ0xWM6jmqNwR+b10VOrdHg9J1oJGVkwcfVCQ0qBnETj74b94tZyQ2Mvm59rFvG3CHfY/W9n9D3g25lluDAznXCdyMpuYEQQsoCxSSEEMKp26EmTm0/b/JqZKfn4K/vtuHfn3frxiRCywog2RJLRt6/9iiO/32KG0tgHfRYTBJUyR+V6lbAnfPmzY2yVPcJHdHHzI4NrDP1hf1XkBqfDp9gL9RoGcHd588f/ZNZyQ2MvgQU9nlnD1iAdQ9/4WKSr4YuQllg5/rO4rGU3EAIIWWBYhKrUQcHUubkkZF40KcvtErbtU1+VsShoVDcK5b9yuPBe8oUuPbtg8j2HaDNMF1pqCjWlUKdlmZ8HQ8PVDx6hEtUYIMWhjKAs06cwJOZs6CMKpzoI/Tzg+fEiXgyaxaXpFBa9o0bQxxcDor7D5Bz9qxNB5V5dnYI/GERHFu0sNk+CSGEEEIIKS7ywn280+gT7gFzWWBdG3LrB0NeyQcqJz60QuMVfIx1cZBeiIHD6aiChAnXye3wIFk35uDzePjfgFboVDUEIyu+g5wMPQnLRjh7OCEjOVPnPaWvEzROduDlKiGKTYOXvzvWPfqFS1QwFpOc3nEei99ZpjNpiD28Hzq9L75/8zdoNFqbJKj4BHvjjkiLM/IcrmmFlgco7Yt1biiGpwIEKsBl82WIErP1riN1tMMXf0/hkkUIIYSUQWWi4Ddt08Hh0W/cn6mDAyHkZXXl7mOMm7cRagP3x+I78XA4YbtJOVoBH4oKHlB7OHLJE6KoVIjiS45l5FTzRnqnMKP7qvlfAhJO3C1R2fO9n8ehQdc6GB3+LpcsbgkXL2ekJxofW2FVUlffXczFIsZikgNX7mL+P4cRl1oY4wR6uGB845pY3OFr2EKDLnW4ZO6H16Jw/WTJhI7SYBVyZ/4zFTVbVbXpfgkh5HVGMQkhhJR0+fB1TGk7s0wSp8saS66Oux+v8x5LuJi8dCKqt6iCN6p+AIWJjnnFuXo7I81EZ7mgcH8sv5mXUGAsJjm88QR++99qnUSGgIp+GDClBxaOz3umVVqNe9SDu68b7l95iJunCpPnZWHuyK7lB6WPI3hqLST3U+Bw/jFEyTlm79vZw5GLSao1q2KTcyWEEEIxia1QggN5JjIPHEDslKnQ5ph/A/W8CdzdoU4xnEXr1KkTso8dgyZb/0QZg8RioGiHCgMcW7eCMvYxlyDCk0rh3LEjPMa+AUloKLc858JFRI0c+cwTR1gCBTumOimp1Pty7tYNAd/Ot8l5EUIIIYQQYsyRP//D/FGL9XYKKK3sFmFQhHpxf+Ym3QtMJDgoNeCBtXLQxU/Lhes/V8GX5SUq84c3RKK9/qpI7Dl6N7ETzi89BHmOZZ9JLBUXPOxX+jkju3kFqN3sC88jSw77Uw/RqmoI14Eh6mYslwjQckATDJjaE4EV/QoGRKZ1mF1miSP6qF2kcO1cHemedkgQmkjo1gCS+By4brxkMA+CtZX+8PcJZXGqhBDy2tKZTBQ03jYJDtFLuD9TggMh5GW2878bmLNyHxTF7p9FUSlwOBwJntp0NwVzKH2ckN0mHFo7kc77wicZcDhwC3xF4fG1Ah6ShteEyrMwHijKJ00J/tKzepfx+Tw069MIp3acgyLXsnEKib0E8hzTSRFNezdA1I0YxNyJg72zFK0GNsXAqT25CU7MiZsP8c7vW/QmjvA0WrhsvgZxnG5yty2w47PKtsUTx63R+50umLRotE3OixBCSB6KSQghRL9dyw7gx7eW6u0U8KJy8XRCepL++26WeN2sdwP8t+0clHLLPhMb82Ad6kxp3q8R7l16yI2VOLo6oM2QZhgwpSdX6Ik5ufUsvug9X3/iCBuYKKN8Ev8wX8RGeCC+gkvJhSo13LbegiQq3ax9DZzWC2O/Gmr7kySEkNcYxSS2UXJGBSFlwKltW1Q8fAg+n3wMSZUXPOOTx4ND8+ZQp6YaXS1z927LkxsYM5IbmKxDhyG/c4frmMASQ9L/+QcPBwxEzsWL3PKkn34qdXKDtF49i7dRxcXZJLmBcenZ0yb7IYQQQgghxJSW/RtjffSvePPbEQipUc5mF0ztKi1IbmB4ZjysltxNhjCuSGUglQaS2wlw3XKNS25gE4XqDmmCJAfDLZ/Zs/I9Nx9anNzA5Cc3qDwdkNG5ik5yA6NxlCCrbSUcvnIfj27EcA/mczJzucGPtxt8xHXEYFZ9sbHUyQ3Vmle2aH1Bei4yN5xB7tE7plfmaWF/JspYkwe0HdbcouMTQgghhBBirS6NI7Dz2/F4t39zVBRLILkeB6ftV+F44LbNkhs0DmJktatcIrmBUfk6I7tlJZ33WIVP9z+vQ1xs4ouAz0PrCuXAW3ne8LE0Whz96z+LkxsYc5IbmBP/nEH07cdcTMISCnYs2Ye3GnyEB1cfcct/2nXSYFcM1mkvu2Fewp0x1ZpZFpMwrHqsLZIbmDZDm9lkP4QQQgghhJjCCv6wzs1vzB2CoMr+L/QFYx0aGnerazC5gdGoNTj61ymLkxsYc5IbmGN/neKSG5istGxs/XkP3m74MaJuxXLvrfpso+GuGGYmN0Q0DoelHshy9Cc3MEIB0jtW5GIic7QZTDEJIYSQFxMlOJBnRuDsDPcRI+AxetQLd9W9pk2D7xefw/eLLxC6d0/exPsybMsm8PCwajuWUBE9dhySV65C9smTpTsJBwf4TPkfnhdhYCAcmjV9bscnhBDy+snJyUG5cuW49qErV660ah+TJ0/mtm/VqpXNz48QUvac3Z3Q78Pu6PVWZ5vtUxHiqfMz39TcHi2gDHCD886bcFtzHq6bLsF91Vl81KsF3v92JN7/dTxW3V2MRpPamwxJWPeF0lQ9yqkTCIgMJFHweMitXzIRhE0qmtpuJjZ/vx1Xj95EaTi5O2LUrEFWbSuKzzJrHcmDFKPtpWu2rGrV8QkhhBBCCLGGq5MUIzrVx8CICrA/8xDCRNP3tZaQh/sAYqHB5apAV6iKJTgLspXw2HQdcxo3wPTebfBF33bY/dEbaK9xBE9lm8QLQ/GANTJTsvQuo3MAAQAASURBVPC/NjOxYeleXI+KN7quMsgFGqnh6+Hm44Ihn/bF81KhZjAqN6j43I5PCCGEEEJeP24+rhj0UW90HNUGL5r/LZuId38aiw+WTMDahz+jehk/v3dw0d/JzpS0hHRMbvUZNs3fgvtX8pKvreUV5IEBU3pYvF1udV+Tye+yMHeT+6nSqCIq1Ai2+PiEEELIs0AJDuSZc+rQAXwXA1mkz0nSokVQREXDtW8fiIOCwDMzi9VaLn37WL0tS3JI+Prr0idg5OTArkYNODRpjOch4LsF3ARRQggh5Fl57733EB0dbfX2R48exaJFi2x6ToSQ56PlwCZc+2Fb0Ip1EwR4KvYyXK2HLYdECHm4NwRZcgiTc8BXqLH80/VIiEpCpzfawLe8NwTm3CuXIibo8GY7KIONP9xWu9tD5V7yAX9WWg5+/XCV1ccu3E82l2BQvbnlXf7E8VkQPjE+GczxRJThhTxg+sYPLD4uIYQQC2k1tnkRQsgrhlXtl0jFNt+vMtDNjHVc9b6/cswSyHffQp/6VeHn6lTm4yQdR1lfPIJ1T/j10/WmV+TxoCkWs+nuJwv1OtRE5QZheNbY+MiMjR8+8+MSQshrh2ISQgjRq8PIlhAZSY5+Hn7732ruHr3zG23g6e8OgaBspzW2G9HC6m3TEjLw+7R1pT4HlizRqHtdi5MMVO5SM9YxnsDBuol/uoHGSQghpMxRTGI1SnAgzxzfzg6+M2awO6UX5uprZTKkLF+OBwMHIWP3bsPtw2yAZ28Pt8GD8dxptVA+eoSARYsgCgx8pod2bNsW9jVqPNNjEkIIeb3NmzcPS5cutXr7GzduoE+fPlCr1TY9L0LI8+HgbI+3fhhjk4RbQVquzs9sjzzF00SGomGFJq+7A1+jv/tCbqYMG+ZtwftNZ+DY5lPgR6UAGuMTOsXRaVZXJer6VifAjAlLxRM4bEmr0SIhOglf/DOFq1JkLoWfE1K7V4bKy8Fgi2fHk1GQRKcb3EergU1QoUZ5a06bEEIIIYQQm3SXe3PBSNtfSXNCHANxAOvWtnb2X5jc8nMc/+c01CoW1JQN1lGu45jWepexW3ylnwvkFb2hCHKD1kDcJkiXAUrjz2l4MhUEWQqDy9UqNZcsMXvbR3D305/4UVY6jGyFwEr+z/SYhBBCCCGEFO3kMHbesBfqgmSmZmPlZxswpe1MnNx6FkqFqZbZ1vPwdytV0rWtKOUqKHIVmLvrUy5OMhdPbjpe45tYp+ubHeBTzsvsYxJCCCHP2ouVikleGy7dukLo7oak35Yg5/RpvCjkN24g9v0PyjT5wuvddyDy9QXf2RmajAw8T1q1GgInJ66K0bMiqRgGv1kzn9nxCCGEvN5Y0uLMmTO5l7VOnTqFHj16IDk52abnRgh5vjqOag13X1f88fU/uHr0psXba1gXhkreUHs45CVI83gFc4m4JAc1u98uXL/4HTfPwMT8W2ciMav/Aq5aqqRFKNfpQS+1BnZXH8Mab8wdAl9vVzgIBchWGZkQpNbkTRoqQ2xCEZvcpVGbV51bHuKGtK7hgIDPXVPuMj69ljyFCpL7KbC/Eg9xXKbBfVSoGYx3Fo+10ScghBBiFPs3srSFRMqwEAkhhDxP3Sd0gGeAO5fofOPkbZvsUxifCbW7g/F1nhi+V2aunbjFvcqyg8PYecPhH+rHdbGQ5xYmICj9XZDTpAI0ToUd93g5CkjPPoLkfpLOPlgnPLs7SZBV9TF4HLubCeCptSZjEndfN25i0bMSXj8UExeWQYILIYSQkigmIYQQg/q81xVeQZ7YNP9f3Dod+cJcqcuHr3OvsopJWPGr8fNHICg8ECKJ8JnGAvqoVRp4+LlBli03exvpnWQoA10Mr6DRwi7S8Nh2RJNwjJs31NJTJYQQYg2KSaxGCQ7kuXFo0oR7qTMzIbt5E9ETJ0Gbnf1ifCMmKqWaJBYDCt2qQKKgILiPyasSGz3+TS6x4LkmOIhEyD55EjHvvQdldHSZH07g4QHPtybBtVcv8O2Nt0EjhBBCbCElJQXDhw/Hzp07rd7Hjz/+iMmTJ0OpLLsKIYSQ56d+p9rcKystG3fO3cPnvb8x6wGyPMQD2S3CAKFudwMu0YHlOmgAbdFFvMK5mfmP40XRqSa7Gzgcvw+NnRDKYHfdhUo1HA9FQpicU2I7tVSInJo+0NT0g1ythjAhBw6X4iCJykBgJT/0n9ITKrkK07vOhZeTANkehROHihM/TAE/t+x+/0nsxfjv33PY/tteJD82fj0YLZ+HjLahXHJDPp3hDbEQGg9nqPzlEKbLwc9RlKjINPyz/mg7rAXs7CW2/CiEEEIIIYRYpXH3etwrMzULN09HYlbfb3Um/FtKcvNJXpL00yJO2mI3zYLkLIjizRuXYDFJaYgkIijluvFEUOUADJzaEzkZufis5zw4ezohMTpv0o3KyxFZ7Srr3O9z52EvRk6LMPDUGogfpegsczzxCEpfJ6g9So45COOz4HDa+NiHvbMUB9Ydw/bf9iEzJQtlzaucB4bP6I+2Q5tDbCcu8+MRQgghhBBiSvM+DblXRkomrh2/hTkDF5a4j39erI1JNFIR5JV9gXAfKJQqCJKyYXczDsKELJSvFoSBU3shJS6VGxNy8XRGUqxunPEsObk7YseS/dw4iSWxIEvmzq7lC7W7/vlX9lee6O1m5xvizY2TtB7cFCKxqFTnTgghhJQ1npabgUHI88eSHOK/nvdCdXSwFefu3eH5ztuIHj0GythYvBAEAkBtvH2zLQWvXwf7OnWe2fEIIYS8vtjt7Zo1a/DJJ58gtsi/u/b29sjJyZsMvGLFCowaNcrgPq5du8YlNuzdu1fv9i1btsThw4fL9HMQQp692+fu4bfJq3D1mOGODioPB2T0qG646xvrRKDSQCPl503MKToDn0XfWkCQJYfrxovgqcxLrFZ6OUIR6gmtmA9Bcg4kkYlctdIS5+Zmh6SBVaFxKjl5v3/VShjToCY+6jAHiTF5E4i0Qj4yukZA5etcYn1+ei5ctl4DP6dsBjK0Ah7U5d2h4mkhTMqBMM10pwhZmDvSu1Y2ug5PBQhlee2ZnfbcgDCxcJLST2e/RqW6oTY5f0IIIYbFxMQgKCiI+3MrvzGwEzqV6nLJVJk4HLec+3N0dDQCAwPp8hNCXlk3/ruN36asKVVHBwVLyG4ext3v57WXKxKUKNVwOHEfkruJpT/ZgpZq5ukxqSO6TeiAjzrO4SYTFZfZrjJUQW4Gt+en5sBly+US72vEAuTW8IUswhtqBzEEmXLY3UiA9OoT8JXGYy6BSAC18tmNkyy99h2CI/L+jSSEEFJ2KCYhhBDrXTl6A79PXYNbZ+6+lJdR5W6PrI4R0EpLTt4f1qw6utUMw8ed5iAt8TkWpC1CKBZApWe8xxxqexHSO4RBEexaEPfxFGrYX46D44moEp3F2Rur7vwI/1Df0p84IYQQoygmsQ3q4EBeGHZVqiB41UoooqOhjIvj/vvk0+l4FWRs24acCxegelGSG5hnmNxgFxFByQ2EEPIaUmjkyFZlQqlVQsQTwUHoBDG/bCtmy2QyNGnSBBcvXix4TyqVYsmSJVi6dCmOHDlich9fffUVZsyYAXWRfysHDBiAVq1aYdKkSWV27oSQ5y+8Xii+OzILsXfjuIo90bdisWji7zrryKr6GU5uYHg8SG4+Rm6DcnqW5f3H7kKM2ckNjCgxi3uZktqtkt7kBubP63dwZekxZD5NbuBOR6WB8/YbkEX4QF7FB2onCdexQXQ/CRq+Bkl9KwNCPkTx2XC48ATiJ7apaJpd2w9ZDQKhtX86wKDVQhyVDpd997jJSIaonQ13m8inffrVaCVCZLYNh+vGC6yyA9dumZIbCCGEEELIiy6icTgWHZ+DmDuPkRyXigdXovDTe3lJXuYSP0jmJvXIauuZSC8ScN3oWLcz0eP00p2sheXTtv68B8f/OY2UuLSSuxIJoApwNbq9xs0ealcpBGm5Ou+z5G+Hc7Hcy1LPMrmhVptqlNxACCGEEEJeeDVaRODHU18h6lYsUuPTuO7XS6aswcuAhSjZbcL1Jjcwa49fxZFvtyPrBUluYKxNbmAEOUq4b7kJlasdlD6OeV3votL1FshiGnapQ8kNhBBCXiqU4EBeOOKgIO7Fl5TtBMhn7YVKbrAA38UFmnTrBzoEfr4IWPidTc+JEELIi9094bEsGtczL+JhTiS0RUa7eeAhxL4iIpxqw98uCLyiFQRtmOBQNLmhWbNmWLZsGSpVqsQlOJjj9OnTBckN7u7uWLRoEYYNG4aVK1fa/HwJIS+mgDA/7qVvwo7SxKQbLZ8HWQ0/wyvwAHm4F6Q342FLCn9HKH0dja7z0EsEj+Kno9ZAejWOexV0gRhcFWrnwnhM6eOAnBrecD74EE5nHpfqPLPqBSCreXCxk+BxFYaS+1eF5/or4MtUOosd3RyRlZrFJV+YwivynWkdJFCUd0cwBPhk3XulOm9CCCGEEEKepcBK/txLkauweFsWk8jDfQyvwOcht0ZA6RMcrKAvuYHhuk3wTT8nYokQz4OThyMyk61P+A6o5Idpq9626TkRQgghhBBSlspVDuBemSm2KXz0LKgCXaExUSgp3tMeDnj5OHs6ISMpU+8y1iHbVJfs4KqBmLx0YhmdHSGEEFI2jJSdJOT5sqteHSJqOf/cCNzc4PHmm6iwdStE5fRUnzWDXc2aCN26FeLgYhOYCCGEvJIS5fH48/FKbI/fiAc5d3SSGxj28/2cO9xyth5bv6xUqFAB69evx9GjR7nkBktJJBJ88MEHiIyM5JIbCCGvp2rNKsPD3033TVNzbniA1k5/daB8Kj9naMS2nZjDqvOYXMfXERohH1l1fRA/qhriJtRC0oBw5IYWJm2k9Kqkk9xQVEab8pAHOll9jhoRH9kNAw0vd7FDTs3C1siu3i4YNqMflt9YCO8gT0jupXDtlY3h6eZGoFq/hvjt0rfwCfay+rwJIYSUglZrmxchhLymarauBlcvZ4u2UXk5QmsvNr5OgAu0ghdniJAnU4JnKplDrQE/w/ikHVtz83XFiC8GYPmN7+HmYzzZ3ZC6HWril3Pz4BlQPN2cEELIM0ExCSGElEq9jrXg4GL/UlxFlYeDTdZ5kXgGuGP0nMFYcWsRnD2sG59p1L0uFp/+2uqYhhBCSClRTGK1F+fpJSHF8Ph8eL1DFW2eF+8pU+D9wfsQ+Xj/n737gI+i2ts4/uxueiGE3nvvvUpTLDRBAREr9t5fy7Xr9Xrt3mu5NgTsigUVpKgIiKAU6R2pCQRISO/J7r6fGcySJW2TbNgk/L7vZ97MzJ45Mzvr1T3JeeYvswJDQPF/EClMSM+esoWXfQIUAKDqiM7Yr++PfKaEnDiP2hvtjPbGcd5kBBNmz56tXbt2aerUqWWqEnHDDTfo4MGDeuWVV8wKDgDOXDY/m658fLLbPv+YEkoXezoJ08uTiSw5jpIb2R06dl1XJYxprexmNZRbL0QZHWor7vJOih/TygwvlBSUSOtVTHWKEmS1riVnCcGOjPZ1XOu3/ucaXf3UFPOX7o/OvlcBTin0j6iiD7ZL1lOKPHQZ0E4h4cFlvmYAAADAlwIC/XXZIxNLd5AHlRCMKmqV6S+ERiW2wF3Him0TsP+4rFmnJJor2N1v3WiOCWvWjdCjX9wjq1FpopS6ntVRwWGMSQAAAFA1BYUE6tKHLlJVYFSs9kabyuTe6bfosocvVo1a4Xr407tk9WS8d4puQzqZnyMAAFVNJfr1JVBQxPjxavD0U2Y1gdPNVrN6JFdrXX2VQs86S/6lqKJgCQlR+LkjXdvBnTurxccfKbhHj1KdO38fAIDqy6jEsOjYt8p1njKrtARGe+M4b1ZyCA4O1uTJk2Wzlf3J6GPGjFG9evW8dk0AqrYxN56r2167VuG1Tkz8D9x6WHIUHWLwj0ooscqANSlDloyS/51ZmqfxBO5NkHKL/8W80+ZUTv3Cn06U1ruBUvqcrJ5QlOxGJVeKONWke8eaTy1t0KlxiW2dQX7mT+OJUMZThfJ07N9WL/7ypHr7hyh88R5Zk7PyHWQEPCS/jIIFNkb0alPq6wUAeBnVGwCgXC66c7RueukqhdX07Emjtvh0KddeYhtPQtLhtUv//b+sgjYekt+RwgPl1sR0Ba8q+0MyJv/fheo1sqsatPT89z0RdcLV54KTfxPpNrSTXvjxcbXt1bJU5x58Ub9StQcAVADGJABQLpc+OEHXPXuZQmqc/uBu3t9mPOF/IL7Eh1D574+XL0x5YLx6ntO1VNWmazWMVK9zurq2e5/bXc8ueEStupdi/pfFokET+pb6egEAXsaYpExOzBwAKrHISy5RxIQJSvv1V+XGxysnKlrHZ82UcirgST0WiwJatFBgu3bKiY2Vfd06VQnGJE57wT9YRF42VfX/8Q9zPX3dOh247HKPuqtz000FKi8Ed+umFp9/pqy9e5Vz+LBy444r9pVXlHus8KcqhfTrp5DeJyckAQCqJ6fTqSVx80sdbshjHLc0br4mNZpWpmoLAHA6TLh9lEZdd7ZWL9iglPhU7bHk6qPV22U/JehgO5aisKW7ld6vmTK7Fl3pIHjLkQIT8fNYrBY169BIzTs107HoOCUfT/HoGm3pOQrdeFRpvYs4b2aOcmsHFduHUdWhLMx/fVsschYS/Jh4z1jd9NLV5vrvuw7oxne+KbYvW0KG+dN4SmpwqPv1dhncQa//8W8d2Bal2EPxOmK169WFq5VgBEYK+ZvF4C4t1LF5/TK9JwAAAKAymXTvOI29+Tytnr9OqYnp5nfib1+bL0ch38GNKgeBe+KU1b7o78KB22KKfM1qs6pph8Zq3qmJYvYeVcrxVJ0OxpNUw37cpqx29ZXdrp7sYYGyZuQo4K9YBe44ImsxQXJjHGUMSwq7H8bTTq95Zqq5/se8P/XYhc95dD1XP32pWUEjv+7DO+t/a1/Qvi0HFXcoXscPx+u9Bz5SchH3yAg3tOjc1KPzAQAAAJWZUcVh/O0XmH8nSUtK195NB/T9mwvNvxV7mzEmMcYjzTo2UdTOQ+bfZTxhS8lSwJ44ZbcpPERgSc9W4C7vPXjPrW+jsoLzxN/OTzXt6Ut1+aMnKvMt+/J3PTPlFY/6vPZfU81K4/kZIYd31nc3778xHomNPq53H/hYaYlphfYxYupgNW5T9srcAAD4EgEHVAnWgACFjzxZDSDy8suUOPtLZe7YIWtwsMLPO0+WwAAlz5+v3IQEZe/Zq9zDh0t1jhoTJsivTh0lfPCBsvft89q1WwIC5MzOVkWw1aurZtOnmxNCj8+cpZSff5YzM1NBXbqY9yhizBhX25BevRTYto2ydv9VZH/WsDDVvfNO1brqyiLbBLZqZS5mn3366NCddypz2za3NqFDh6jxSy955T0CACq3w5lRSsiJK1cf8TlxismMUqPgZl67LgDwtsDgQA25uL9re9KEgZqzfIv+io5VSFCAzundVoHRiVoWHqHk5HRtsvrpsKNgKDtwV6yCNhU+mWj0DSMVHBak795YoAPbDpX6Gmss2SenVUrvVl+ynSzYGJSRK7/V0Uq6oPgnjdprBsqS5Sw2cOaX5v6U17pNa+v5Hx9TdmaOvnplrlZ+t0Y5Wbnq0L+NGQwZOmmgq+2Ats3UrE5NHYxLLLL/elGpuu3N6zXulvOLbNO8U1NzMXTv2kr3vzVXu6Pd/1s0rEdr/fO6C4p9vwCA0/hUovL2AQBQUEig2/frCXeM0vz3FpthB+NJqsMmD5LdbtevX/6u5JQMbfbz05HcQsYkO48qcEfhk3qMCUuGeW//pANbo7x21/0C/JSbXfJDqyx2p4K2HzEXTzVoUU/P//yY0hLTzTHJH3P/VG5OrjoNbKeL7hyjQeNPPq2076ge5hgmNup4kf3VqB2m65+7QqOuO6fINi27NDMXQ6eB7fX0pJd0YFv0yfdhseisif11/8zbPH4fAIAKwpgEALwmOMwYd5wck1x054kxiRFCMCrODb1kkLLTs7T86z+UkpCmvZv2K+FIUqnD3ZlpmZo/fbH2bT5Y6msM+W2P+e/+7NZ1JSN08LfAtGwFLtoma6b3H6bbuG0DvfDzE4qPSTDHJKvnr5c9164uZ3XQxXeNUf8xJx8OO3hCX0XWj1DC0aLvS816NXTji1fp3CuHFdmmVbfm5pJXAfvpyS8releM25jECDfcN/0Wr71PAEAZMSYpM4uzIqKUgI857XbtGnyWHIlFT5zJL6hzZ0VOvVQxjz7mtWsIO3ekak6cqLg331Tm5i2qKKFnDVbooMGKGH+h/GrXLrZtxuYtOnjttXKkFHwKbFCvnmo+Y4asQcU/1bUw6WvXKn3tn7L42RQ6ZKiC2rcrdR8AgKrpp2PfaW/6rnL30yqkvc6td6Eq0vDhw7Vs2TJzfebMmZo2bVqpjp81a5auueYac33YsGFaunRphVwngOoh1+7Q2L73Kb5RuJzB/rKmZClo+1H5RyUWWr3B+EX38CmD9cYd75f73PawAGW2q60hlw3W2DH99eElr2t7erLiLu9U/IEOp/xTJHtwEQEHh1OhB7JU8wv3Snf9R/dSr5HdNPLKoapR270S3Kk27Dusm977RulZBSv/DGjUQP+7Y7L8A0r/LIa1O6O06a8Y+flZNaRbS7VsWPzYCABQcaKjo9W06Ykg2vD60xRkCytXf5n2VC09Ostcj4qKUpMmTbxynQBQ3eXk2jWqxz1KbVpTjiB/2VIyzWCD/+HCJ9L0GtlVfc7roXcf+Mgr58+bUHPe1cP131vfU8yeinlSqmHguD7qeU5Xc0wSHln8f3c2Lt2qR8f+W5npWQVe63N+d/1z7kPy8yvdmMT4U+v6X7Zo+x+7zKoPA8b1VtP2jUv9PgAA3sGYBAAqh8yMLE2IuEr2XPcHJxVlwNje6tCvrWY9/nm5z21UhLO3qK1zrh6mUaP76NXznzWrHVSUsy7urx4jumjkFUMUGhFabNs1izboiQkvKKeQv5MYY5sn59wvq/XkQ6w8HZOs/XGjdq3do4CgADNI0ah1g1K/DwCAdzAm8Q4qOKBasthsqnnRRYqfObPEtn4NGqjRSy8q6qabvXLuoG7dVOemGxV+zomn+6T9urxCAw5pv60wl9hXX1Xde+9V7WuKnqwZ3LWLWn45W8ffn6HkBQvkSEtTYJs2qjn1UkVOmWLet7IwKjkYCwDgzJLtyNK+9N1e6Wtf+i6zvwBroFf6AwBf87NZNXpgZ819a1GJbRu0qKv/m3mr7j/7Ka+cu2vXFrrskYlm8MCwum8b7f1wqazpOXKE+Bd5XOChNPk7Q5Ulp+xG7jlfJQfjSaqBiZI1017guFXz15nL+w9/opteuloX3lp09YUeLRvps7umauaSP/Xjpl3KzM5V24Z1NGVQN03s31XWfE9UKo0+7ZuaCwCgknE4JIuj/H0AAErN38+mUf07aOHMJSW2bdSmge5++0bdNfhRr9zprkM66vJHJ6r3ud1dTxStyIDD73PXmsv7//hEt/73Wo2+vujqC92Hd9ZrfzyrL1/63nyybHZGtlr3aKELb71A518zotiKdkUxjul1TldzAQBUMoxJAMBngoIDNXTyQC35bEWJbZt2aKzb/nuNbu37kFfO3atPG135+GTz+7+hfb82FRpw+O2bVeYy/cGPddfbN2rkFUOLbNv3/B567fd/mWOSFXNWm0GHtr1bafxto3TuVUVXbShpTGL0aywAgEqGMUmZUcEB1VZOTIz2XTxR9oSEQl/3q1dPkVdeocjJk5UbG6u948r/1Ghb3bpqu3SJHOnpyty8WbJaZQ0L0/4pl0r2ghOBKkJAq1YK7tpVNSdNVEjfk6WXi0rwluWX9QAAGBKy4zT7cMlhQk9d0uhaRQZU3BO3qeAA4HSL2XtUt/Z5UKmJaYW+XrdJbV101xiNuu5sHd5zRLd54Rf39VvU1Ud73jTPaTypx8/fTwFB/rr7rEeVOKiRks4+UbK4gFyH6n6+Q5lndTDLNjtsUq4ZcpCsOZIty1xV4MZoBa+PKvYamnduovZ922j09SPVeVD7YtsyJgGAav5korpXeaeCQ+yH5joVHACgdA7uOKQ7+v9D6SkZhb5ev3ldXXzXGJ1/7Qjt23RA9wx9vNy3uEm7hpq54zUlH0/R7nV75fd3hTYj0H26isq36NLUfPLrmBtHmj+Lw5gEAKofxiQAUHns3XRAdw16pNAKaoaGrerr4rvH6Pxpw7X9j9168Lx/lvucLbs207sbX1ZibJL2bNgv/0B/M0Tw0PnPlLtvj6+hWzN16t9OY246V217tSq2LWMSAKh+GJN4BxUcUG35N2yoZrNm6vADDypr507XfktIiGpfe63q3Hara3J/zuHDXjmnPTZWUbfepvRVq+TMzDyx02qVX926yj12zPhWqoqWvXevuSR9951qTp6kBk8/XWSIgXADAKA8cpw5Xu4v26v9AYCvGb+Yf/6nx/TC1W/owLZo1/6Q8GBd+tBFmvqPi1z7crNzvXLOo/tj9di457T+l83Kzjzx72mjKkLtxrXkWHFIjgCbUgY2kmwnyxtb03JU6/u/FLQ3UY4Gx5Tdrr6sdinglFyGJTNHgTuOlHgNB7ZGm8uPs5Zq/G0X6PbXryuyLWMSAAAAoOI069BY/170qF665k1F7Tz5d5DQiBBd/ugkTb5vnGtfjpfGJNG7YvTo2H/rz583ucY5VptVdZrUVmxUnE6H/VuizGXhjF806d5xuumlq4psy5gEAAAAqDitujXXswse0UvX/U+H/zr594XwyFBd9eQUTbhjlNfHJPs2H9QjY5/Vup82KTfH7hqT1G1WR7EHT8+YZN+mg+byw3s/6/JHJmraPy8tsi1jEgAACkfAAdVaUPv2avXdt0pft15Zu3bJGhqqsBHDZQsLK1D1wBoRIUdSUrnPmbZsmfsOh0O5R0+UXg7u1UuO1FTlxsXKHl94ZQlvSvzyKwW276BaV1xe4ecCAJx5/C3+Xu4vwKv9AUBl0K53a03f8qo2L99uhhyMiUQDxvZScFiwW7sWXZopOCxIGal/B6XLYdX8dW7bDodTsVEnSi8PyQ5R4uJYRUdalZiWIb/jmQrZcVwW+4kwdvAf+8yyDdlt6pqVHPJYkzMUsnSXrBmlC7d99+ZCte7RQqOuO6fc7wsAUAUZD/so7wM/TtPTvgGguuo0oJ1mbP+vNi7dalZ0qFErTP3G9FJwqFGy7STje7tR/S0vKO3VMYndYYYbjGcxdTmro1ISUnU8JkEpx1NV0b56Za7a9Gypcy4fUuHnAgBUQoxJAMDnug7pqFk7X9P6X7bo0O4YRdQJV/8xvRQYHOjWrl3vVvLzt7lCCeWxev76gmOSg3GyWC3qclYHJcelKP5IglLiC6/A7U2f/Otrte7ZUkMu7l/h5wIAVEKMScrs5CMbgWospFdPRV46RRHjxhYINxisQUGqOWlihV9Hxrp1qnv3XQobMUKnS8JHH522ss8AgDNLqF+4LCq8SlBpWWVVqF/B/0YDQHX6Bf7Ym87ViEsHFwg35FV1OH9axY8TtqzcqZsemayzazVQxK/RCt0a5wo3GCwOp0JW7lGNr9cpeNU+Bf15UKE/bVf4NxvkF59epnPOeW2+F98BAAAAgLLoPryzxt18noZdMqhAuMFQo1a4zrl8aIXeXONPFdt+36mbXrpavc7uqtNlzms/nLZzAQAAACi8SkGvc7qaY5KhkwYWCDcYIuvX1LApgyr09jkdTm3/Y7du+c816jqk02n7qOb8lzEJAAClRQUH4G9177pLWTt3Ke233wrcE0tQkAKaNZVfg4ZK+/XXct2z6DvulOzlTxt7KvvAAdmPH5dfnTqn7ZwAgDNDgDVQLUPaam/6rnL31SKkrdkfAJzJrnvucu3felAblmwt8FpgSIAatWmg2g0jtXbRxnL98v7xCS+YTysqjjUtW4HbT5aLLm856LTkdIXWCPFKfwCAKoQnEwFAlXLzK1fr4I5obV2xs8BrQSGBatyuofm01XU/by7zOey5Dj0y+lk5HMWPSbxp55o9ysnOkX+Ad6uRAgCqAMYkAFCl3P7adTq0K0Y7Vv9V4LWg0EA17dDYfGCUUaGuNIzHPNnr15AjLEg5Wbl6aPS/pNzTNybZunKn+XBaI+gBADjDMCYpMwIOwN+sAQFq+s7bSvnlFyXN+Va5x47Jv2FDs7JD6NCh5pdMe2qaDlx2mbJ2lWMi52kMN7jYbKf/nACAM0Kn8J5eCTh0Du/hlesBgKrMmDD03KLH9Nuc1frpw6VKOJqk+i3qavT1I9X73G7mmCQ1MU13DnpEUTsOlfk8JYUbKoLVRgFJAAAAoLIzJgq99MuTWv71Kv300TIlxSarUev6GnX9SPNpq4bk4ym6Y8A/dHjP0TKf53SGGwzGWMpqZUwCAAAAVHZhNUP1yq9Pa9ns37X4k1+VfDxVjds20Jgbz1X3YZ3NNvFHEnTnwEd09ECsR33m1gtXZv/WctQ4WV07MzNHgRsPKuCvYzodbDYr4QYAAEqJgAOQj8VmU41zzzWXwtjCQtX8ww909PkXlDx/vpxZWZX+/gV16iS/yEhfXwYAoJpqFNRUkf51lJATV+Y+avnXUcOgpl69LgCoqmx+Ng2bPNBcivrl/stLn9I7//eBfv3yD+Vk5ZT5XLkRQcroUl+59cMlh1OB++IVtP2YrNneDWV3OauDgkODvNonAKCKcDgli7P8fQAAThs/fz+NuHSwuRSmRu1wvfLrP80xyfKv/lBujg8e6lRKvUZ2NcdaAIAzEGMSAKhyjMprI68Yai6FqdUgUq8u/6feuneWVn67Rvbcosck9pohSh/RUTplPOAM8jdDD7I7FbDPs6BEefQd3bPCzwEAqKQYk5QZAQeglGw1a6rRv59V/YceVPaBA8rYsEFHn/13pb2PEZdM9vUlAACqMeMJeCPqjNb3Rz5TrrP0k2z9LP4aXmc0T6wAgFKIrBehhz68U7e+eo0O7zmijUu3afpDH5fqHma2q6Pkc9pI+Sor5DSJUHrPRqr53Tb5JWR47TMZc9N5XusLAAAAgO/Vbhiphz+5W0n/TVbM3qP686dNmvXY56qsLrztAl9fAgAAAAAvqtukth6ffZ8SjiXpyL5jWvXDn/rkma8LtMvq0rhAuMHt9W5N5L8vVpYK/nQuumN0BZ8BAIDqh3qsQBnZIiIU3K2bIi66SJbgk2XMKhNLSIgiL77Y15cBAKjm6gbW1/n1JphhhdIw2hvHGccDAErPeHJqh35tdf41w+Uf6Pm/g3NrBhUIN+RxhAUqaXQHeetZ2UbFiRGXDvJSbwCAqsbpdHhlAQBUThF1avw9JhlRaSskGNc4cFwfX18GAMBHGJMAQPV/IFTH/ifGJFare0zBabEot0mtYo93hgXJXiesQq+xdqNI9RjRpULPAQCovBiTlB0BB6CcbOHhirxs6mm5j5aAgFK1r3XFFaU+BgCAsmgS3EIXNpiqSP86HrWv5V/HbG8cBwAon5p1IzT6+nM8bp/RpUGh4YY89shgZTevWehrAUGlC7NdfPcY2WyVc6ITAAAAAO+o06iWzrt6+Gm5nQHBpfubxyX3X0jlUAAAAKCaa9iyvkZMPct9p81S7N9CXEoZ1g4MDSxV+0sfvKhU7QEAwAkEHAAvqHfvvap5ySWStWL/JxXSv7+C+/T2rG2/fqpz6y0Vej0AAORnVGKY3GiaxtWfolYh7WQ5pZinVVa1Cmlvvj6p0TQqNwCAF938ytU6b9pwjybu5DSsUXKbBuGF7u9zfg916N/Wo2vqfV53XfrQBI/aAgAAAKjabn/jOp192SkTiirAoAv7qE3Plh61HTCutybeM7bCrwkAAACA793z7k0aMmmAa9uS65AlNbP4gxxOWZMzSnWeYZMGqEWXph61HTKxv8bdel6p+gcAACf4/f0TQDlYbDY1fPop1b7heiXPXyBHaorsSUlKnP2lV++rIyVFzWbN1PH3pitx9mzlxsZKNpsC27aVMzfXfN2/YUPVnDRRERdeSPUGAMBpZ0ysbRTczFyyHVlKy01VjjNb/pYAhfqFKcBauidaeNPSpUvLdfy0adPMBQAqIz9/P90/4zZd9vDFWjb7d6UnpysxNlmLZi4p2NjhKLE/i8NZ6H6j3xd+flyf/3uOFry/WAlHk+Tnb1OLLs2UnZWj9KR01W9RV6OuO0fnXD7EvC4AwBnM+M9JEf9NKVUfAIBKLyDQX//4+C5d/ugkLf/qD2WkZuh4TKJ+/miZV8+TnpKhl5Y8qc+e/cYc7xjjHr8AP7Xo3FRZGVnKSMlUw9b1Nfr6kRoxdTAV5QDgTMeYBADOGIHBgXp89n06sC1Ky79epcy0TEXXCNSC7VFFHuN3KEHW9OxSnSc9JVOvLHvaHJMsnLlEKfGp8g80xiTNlJmeaY5JGrdtqNE3jNTwKYNkreCH5QIAKjnGJGXGTAPAiwKaNlWdm240151OpxyZmUr+fq7X+rdFRsoaFKS6d9yuOrfdaoYorMHB5j4AACobI8wQEOC7QAMAnIkat2lohhwMDodDGamZ+vXL393aBO5PUG4JVRwC9icUuj+ibg0Fhwbpmmem6qqnLlFaYrqCQgMVEBTgxXcBAAAAoKpq1qGxLn90orluz7UrNTFVf8z902v9R9SpodAaIbr+uSt0zb+mMiYBAAAA4KZ5p6bmYsjJtSvhlW/1x+YDBe6SJSVTQWv2lWlMEh4ZphtfvErX/ftypSamKTg82Ax9AwAA7yEiCFTkE6yff16NXnxRtrp1vdJnxPjxJ/u3WuX3d+ABAAAAAE5lPBXokc/u1gOzblfNuicDDcFbj8qSkVPkDfM/mCj/2LRCXxt5xTDXus1mU43a4YQbAABFczq9swAAqiSbn01PfnO/7pt+i8Jrh3mlz5FXDD3ZP2MSAEBJGJMAwBnN38+ml++doIeuGakadqeUlStrcoYCN0YpdOFmWTNKV73BMPLKfGMSP5sZeCDcAAAoEmOSMiPgAFRwyCFi3Fi1WfyzwkaeU2J7W716Rb4W0qePwj3oAwAAAADyhxzOvWqYPt7/P/Ub3fPEvsxc1fx+m6wpWQVuVEOHTRGLdhZ6A3uN7OrqAwAAAAA8YYQQLrj2bH2y73/mmKIktRvVKvK1/mN6qec5JfcBAAAAAHn8/Gy66Oxu+vatmzX4WKrC5m5Q4JZoWbNzixiTRBZ584ZM7K8ugztwcwEAOA38TsdJgDOdNSBATd94QxkbNihp7jzZk5MV0LyZ/OrXV/befbL4+SlsxHAF9+yp4+9NV/ysWbLHx5vHWoKCFHHhhar/0INmOwAAAAAorcDgQP1r3sPa8tt2/fLZCqUnp6tJm8YKHdxKexKSFeBn0/AurdWleX19Wr+R5rw2X8nHU8xjg0ICde7Vw3XTS1eagQkAADzmcBj/zwt9AACquuCwYD3/4+PauGyrln2xUumpGWravrFZbS5q52EFBPlr8EX91aZnC3305Jf6/n8LlZJworJccFiQGZK4/vkrzAdLAQDgMcYkAIC/hUaE6pWlT2vd4s369cvflZmeqRadmiosMlTROw8rMCRQQyYOUMuuzTTz0c80752flJaUbh4bUiNYY24YqWufvYz7CQAoHcYkZWZxOqnxDVQ2zuxsZWzaJGduroI6dpQtIsLXlwQAAADgDJKdma0dq/+SPdeudr1bmb/4BwDAE9HR0WratKm5PizsEgVZy/ffkExHmpalzjbXo6Ki1KRJEz4IADgDZGVkmWMSh92h9n3bKCQ82NeXBACoIhiTAAC8ISMtU7vW7JExtbJ939ZmaBsAAMYkpw+PgwcqIUtAgEL69PH1ZQAAAAA4QwUEBajb0E6+vgwAAAAAZ3AVuu7DOvv6MgAAAACcoYJDg9R9OGMSAAB8hYADAAAAAAAAAMD7jOLB5S0gTAFiAAAAAOUZTzAmAQAAAOArjEnKzFr2QwEAAAAAAAAAAAAAAAAAAAAAALyDCg4AAAAAAAAAAK9zOhxyylHuPgAAAACgrOMJxiQAAAAAfIUxSdlRwQEAAAAAAAAAAAAAAAAAAAAAAPgcFRwAAAAAAAAAAN7ndJ5YytsHAAAAAJR1PMGYBAAAAICvMCYpMyo4AAAAAAAAAAAAAAAAAAAAAAAAn6OCAwAAAAAAAACgYp5M5KCCAwAAAAAfYUwCAAAAwJcYk5QZFRwAAAAAAAAAAJCUmpqqN998U+edd57q16+vgIAA82fv3r31yCOPaPfu3dwnAAAAABWGMQkAAAAAX6osYxIqOAAAAAAAAAAAznhLlizRVVddpejoaLd7cezYMXNZt26dXnjhBT322GPmL/FtNtsZf88AAAAAeA9jEgAAAAC+tKQS/Z2ECg4AAAAAAAAAgIopvex0lHNxnpZPZtGiRRo1apTbL+39/PzUuHFjhYSEuPbl5ubqiSee0C233HJargsAAABAOTAmAQAAAOBLjEnKjIADAAAAAAAAAOCMdfjwYV122WXKysoyt8PDw83yy4mJiWbgISUlRQsWLFC7du1cx7z33nt69913fXjVAAAAAKoLxiQAAAAAfOlwJfw7CQEHAAAAAAAAAIDXOR1OrywV7eGHH1Z8fLy5HhQUZFZzuPXWWxUaGmrus1qtuuCCC7RmzRp1797ddZxRgjk1NbXCrw8AAABA2TAmAQAAAOBLjEnKjoADAAAAAAAAAOCMFBMTo08++cS1ff/992vgwIGFtq1Ro4a+/vpr+fv7m9vHjh2jigMAAAAAxiQAAAAAqqyYSvp3EgIOAAAAAAAAAADvczq8s1Sgzz//XLm5ua5KDbfddlux7Vu3bq2LLrrItf3ZZ59V6PUBAAAAKAfGJAAAAAB8iTFJmRFwAAAAAAAAAACckRYuXOha79evn+rXr1/iMePGjXOtr127VgcPHqyw6wMAAABQvTEmAQAAAOBLCyvp30kIOAAAAAAAAAAAzkjGL97zDBgwwKNj+vfv77b9+++/e/26AAAAAJwZGJMAAAAA8KW1lfTvJH5e7xEAAAAAAAAAcMZzOpxyWpzlug9OZ/mOL86RI0cUHx/v2u7YsaNHx7Vs2VJ+fn7Kzc01t3fs2FFh1wgAAACg7BiTAAAAAPAlxiRlRwUHAAAAAAAAAMAZJzo62m27SZMmHh1nhBvq1avn2q6I0ssAAAAAqj/GJAAAAAB8KboS/52ECg4AAAA4I6Snp6tDhw6KiorSzJkzNW3aNI+Oy8jI0Mcff6wffvhB69atU1xcnLm/Tp066tOnjy688EJdfvnl8vf3r+B3AAAAAFQtWc504/FE5etDma71mJiYEtt7+st3w7Fjx9y2a9eu7fGxtWrV0uHDh831/FUgAAAAAFQejEkAAAAA+BJjkrIj4AAAAIAzwl133WWGG0rjp59+0tVXX13oRCqjL2OZM2eOnn76ac2ePdsMPAAAAAA4YY1+8eqt6NevX4ltnE6nx/2lpqa6bYeFhXl8bP62p/YDAAAAoHJgTAIAAADAlxiTlB0BBwAAAFR7zz//vKZPn16qY+bNm6cJEybIbreb21arVb179zarQBiTpjZv3qyNGzear+3bt09DhgzRsmXLPJp0BQAAAMD3srOz3bZLU5Utf9ucnByvXhcAAACAMwNjEgAAAAC+lF2J/05CwAEAAADVlhFEeOqpp8ylNOLi4nTFFVe4wg09evTQRx99pC5duri1W7lypS6//HLt379fmZmZmjhxonbu3KmQkBCvvg8AAACgqmjQoEGpK6d5wqiqVrduXfn5ee9X2qdWe7BYLF7rGwAAAIBvMCYBAAAA4EuMSbyDgAMAAACqpfj4eF155ZWaP39+qY996aWXlJSUZK43b95cv/zyiyIjIwu0GzRokBYvXqyePXsqOTlZ0dHReuedd3TPPfd45T0AAAAAVY0RQGjSpInX+62IPgMCAty2S/OEofxtg4KCvHpdAAAAAMqOMQkAAAAAX2JM4h1WL/UDAAAAVArGU1g//PBDdevWzS3cUJqqCl988YVr/dFHHy003JCnVatWuuWWW1zbc+bMKdN1AwAAADi9atSo4badlpbm8bGpqamu9dDQUK9eFwAAAIAzA2MSAAAAAL5UoxL/nYSAAwAAACpGdraUEC8dO3rip7FdwTIzM9W7d29dffXVOnTokLkvODhYH330kfr27etRH0eOHNH+/ftd22PGjCnxmKFDh7rWt2/fXqZrBwAAAHB61alTp0AVOE/lb1uvXj2vXhcAAACAMwNjEgAAAAC+VKcS/53Ez+s9AgAA4MzldEqHD0tbt0j7953YzmOxSC1bSp26SI0andiugIDD+vXrXdtnnXWW3n//fbVr107Tp0/3qI+MjAxdcsklZkDi6NGjatiwYYnH2Gw213pKSkoZrx4AAADA6dSiRQu37cPGWMYDubm5OnbsmGu7SZMmXr82AAAAANUfYxIAAAAAvtSiEv+dhIADAAAAvCM2VlqyWEpIKPx1I+ywd++JJTJSGnGOVLduhdz9Vq1a6ZlnntGll14qSymDFC1bttQXX3xRqmPWrVvnWufprQAAAEDVULduXdWuXVvHjx83t3ft2uXRcXv37jV/eZ+nc+fOFXaNAAAAAKovxiQAAAAAfKluJf47idXrPQIAAODMEx0lff9t0eGGUxntjPbGcV4UGBio2bNnm1+4p06dWupwQ1k4HA7NnDnTtT1gwIAKPycAAAAA7+jbt69rffXq1R4dc2q7Pn368HEAAAAAYEwCAAAAoMrpW0n/TkLAAQAAAOWv3LBooVF/rHTHGe2N44zjvSQ4OFiTJ0+WzWbT6fL6669r9+7drm3j/AAAAACqhvPOO8+1/ttvvykxMbHEY+bOneta79SpU4WUXgYAAABwZmBMAgAAAMCXzqukfych4AAAAICyczqlJYtLH27IYxy39JcT/VRBa9as0UMPPeTa7tatmyZNmuTTawIAAADgufwB6ezsbDPAXJw9e/Zozpw5ru0rr7yS2w0AAACgzBiTAAAAAPClyZX07yQEHAAAAFB2hw9LCQnlu4Px8VLM4Sr3KezatUvjxo1TZmamuR0QEKD33ntPFovF15cGAAAAwEPGU4XyV2H75z//qcWLFxfaNiUlxQw05+TkmNsRERG6/vrrudcAAAAAyowxCQAAAABfalJJ/05CwAEAAABlt22Ld+7e1q1V6lPYuXOnzjnnHB09etS179VXX1W/fv18el0AAAAASu/ZZ59VWFiYuW78Un7MmDF67rnnlJSUZO5zOp368ccf1bdvX23YsMF13NNPP606depwywEAAACUC2MSAAAAAL70bCX8O4nFaZwVAAAAKK3sbGnWDONbbPnvnVH1YNq1RhmECvschg8frmXLlpnrM2fO1LRp08rUz59//qlRo0YpNjbWte+hhx7Sv//9b69dKwAAAIDTa+7cueZTh4zyy3mMkswNGjRQYmKi0tLS3Npfdtll+uSTT/iYAAAAADAmAQAAAFDlza1kfyehggMAAADKJi3VO+EGg9HPKV+EK+uX+WHDhrmFGx544AHCDQAAAEAVN27cOM2bN09NmzZ17bPb7Tp06JDbL+2tVqvuu+8+ffjhhz66UgAAAADVEWMSAAAAAL40rpL9ncSvQnsHAABA9ZWT4+X+TiaAK6PXXntN99xzjxwOh2vfM888o0ceecSn1wUAAADAO84991zt2LFDH3zwgebMmaNt27aZ4ebAwEC1aNHCrAp34403qkuXLtxyAAAAAF7HmAQAAACAL51bif5OYnE6vfXYXQAAAJxREuKl2V94r79LLpUiI1VRjC/Zy5YtM9dnzpypadOmeXScEWi4++679frrr7uVYHvrrbd0ww03VNj1AgAAAAAAAAAAAAAAAMCZhgoOAAAAKJvQMMlikbyRl7VapdDQSvdJGKXWrrzySn322WeufaGhofr88881duxYn14bAAAAAAAAAAAAAAAAAFQ3Vl9fAAAAAKqogACpZUvv9NWi5Yn+KhGj0Nmp4YZ69epp6dKlhBsAAAAAAAAAAAAAAAAAoAIQcAAAAEDZderinbvXuXOl+xQeffRRt3BDixYttGLFCvXp08en1wUAAAAAAAAAAAAAAAAA1RUBBwAAAJRdo0ZSZGT57mCtWlLDRpXqU1iyZImee+4513bz5s3166+/qk2bNj69LgAAAAAAAAAAAAAAAACozgg4AAAAoOwsFmnEOZKfX9mON44bfvaJfioJh8OhW265xfxpCA4O1rx589S0aVNfXxoAAAAAAAAAAAAAAAAAVGtlnIkGAAAA/K1uXen8C6RFC6Xc3FJ8E/U7cZxxfCXyzTffaOfOna7tJk2a6I033ihVH2+//XYFXBkAAAAAAAAAAAAAAAAAVG8EHAAAAFB+TZpKF06QliyWEhJKbl+r1onKDZUs3GD44osv3LZ3795tLqVBwAEAAAAAAAAAAAAAAAAASo+AAwAAALzDCCtMniLFHJa2bpH27ZOczpOvW61Si5ZS585Sw0aSxVIp7/y2bdt8fQkAAAAAAAAAAAAAAAAAcEayOJ35Z50BAAAAXpKdLaWlSTnZkn+AFBoqBQRwewEAAAAAAAAAAAAAAAAAhSLgAAAAAAAAAAAAAAAAAAAAAAAAfM7q6wsAAAAAAAAAAAAAAAAAAAAAAAAg4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAAAAAAAAAAAAAAAAAMDnCDgAAAAAAAAAAAAAAAAAAAAAAACfI+AAAAAAAAAAAAAAAAAAAAAAAAB8joADAAAAAAAAAAAAAAAAAAAAAADwOQIOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOcIOAAAAAAAAAAAAAAAAAAAAAAAAJ8j4AAAAAAAAAAAAAAAAAAAAAAAAHyOgAMAAAAAAAAAAAAAAAAAAAAAAPA5Ag4AAAAAAABVQHZ2tq8vAQAAAAAAAAAAAACACkXAAUCFT8BZsGCBbr/9dg0ePFj169dXUFCQgoOD1ahRIw0ZMkT33XefVq5c6XGfFovFo8Xf31/h4eFq1qyZeW7jGpYsWSKHw1Hm95OWlqY333xTY8eOVZMmTcz3YpyjVatWmjp1qmbPni273a7yGj9+vNt7mTRpUrn7BAAAAFDQk08+6fre3aJFi0JvkbE/r43R/nSLi4vTtGnT9Nlnn532cwMAAAAAAAAAAAAAcDr5ndazAThjZGZm6r///a+5xMTEFNrG2G8sv/32m1555RV1797dbD9s2DCvXENubq5SU1PNJSoqygxRGOEEI5jw6quvljo0MG/ePF177bWKjY1125+VlWWeY9++ffr888/VsWNH82e3bt3KdN1Hjx7V/Pnz3fZ99913OnLkiBo0aFCmPgEAAABUTe+//74eeOABxcfHa/jw4b6+HAAAAAAAAAAAAAAAKhQVHAB43apVq8zJ/Q899FCBcENoaKiaNm2qhg0bmhUW8tu4caM5Yefhhx+W0+n06FxG9YTWrVsXuhhBhpo1axY4Jjo6WpMnT9Zll11mVpjwxMcff6wLL7zQLdxgtVrVuHFjsypFftu3b9fAgQP1xx9/qCw+/PBDM5xhMJ4QazC2p0+fXqb+AAAAAFRd119/vRluAAAAAAAAAAAAAADgTEDAAYBXff/99xoxYoR2797t2te1a1f973//0549e8xKBwcPHtThw4eVkpKipUuXmkGDvIn8hn//+9+64447PDrfxRdfrL/++qvQxajakJCQoLS0NK1YscLsMzAw0HXsZ599pksuuaTEMMWuXbt03XXXudoZfRjXaIQdjLCEUVnBeE+33HKL65j09HRNmDBBycnJKq2ZM2e61o3ry/Pee+/J4XCUuj8AAAAAAAAAAAAAAAAAAACgKiDgAMCrlRumTJmijIwMc9vPz0+vvPKKNmzYYE7+b9WqlVt7IygwbNgwffLJJ/rxxx9Vo0YN12tvvvmm20T/8ggJCdGgQYP02muvmdfYrFkz12vfffednn322WKP/+c//+mq9GBUbZg3b55ZnaJWrVquNkZVCiPE8fLLL7v2HT16VP/5z39Kda1G1QejAoQhICDADFIY5zQYIYr58+eXqj8AAAAAAAAAAAAAAAAAAACgqiDgAMArjFCDUYkhMzPT3LbZbPrmm290zz33uCboF2fkyJH6+uuv3do+8MADSkxM9Oon1L17dzNMERER4RZg2Lt3b6HtjaoNc+fOdW1feuml5rUWxXi/Xbp0cW3PmTOnVNc3Y8YM1/rAgQPVsmVLDR061LXv7bffLlV/AAAAAAAAAAAAAAAAAAAAQFVBwAGAV7z00ktuIYHHH39c48aNK1UfRnDg+uuvd23HxcVVyIT+9u3b69VXX3VtZ2Vl6cUXXyy0bWxsrJKSklzbQ4YMKbZvi8Wis88+27X9119/lSok8sUXX7i2L7roIvPn5Zdf7tq3YMECHThwwOM+AQAAAAAAAAAAAAAAAAAAgKqCgAOAcjOqNrz++uuu7UaNGumhhx4qU1+PPPKIWxWHJUuWVMgndPXVV6tdu3au7Q8//NAMGJzKCD/kV1ib4jgcDo/bfvXVV0pOTnYFJSZOnGiuT548WcHBwa7+3n333VJdAwAAAFCZHDlyRM8//7xGjBihevXqyd/f36yw1rlzZ91www1avny5R/0Y342NimnTpk0zQ8w1a9Y0vzc3b95cY8aM0ZtvvqmUlBRVRU8++aQ5JjCW/K655hrX/hYtWpj77rzzTtc+YywVHR3t8XnatGnjOvbBBx907Z81a5Zr/9ixY137Fy5caAaxjXMHBgaqVq1aGjx4sJ599lkzHF5a27Zt06OPPqp+/fqpQYMGCggIMP+Z6NOnjzmm3Lx5c6n7BAAAAAAAAAAAAABUbQQcAJTb/Pnz3SazXHvttebElLJo1qyZWQ3i008/VVRUlBYtWlQhn5Ax8ee6665zbaenp+vHH38s0K5hw4YKCQlxm9BTHKfTqZ9//tm13aVLF4+vacaMGW6VIpo0aWKuG5O9JkyY4NYuJyfH434BAACAyiA7O1uPPfaYWrZsaU5eX7p0qTmOyM3NNYO+xmT36dOna+jQoRo/fryOHz9eZF+rV69W7969dfHFF+uDDz7Qrl27zMprRvj64MGD5hjl9ttvV+vWrc3J+tXZlVde6TYeyV8VrjirVq3Snj17XNtXXXVVkW2N+2q8PmrUKH377bdmVTnj80xISNDKlSvNoLoRlsg/pilOamqqWb2va9eu+te//qU1a9bo6NGj5jjH+Gfizz//NEMwPXr0MAMsRnsAAAAAAAAAAAAAwJmBgAOAcjMmD+V37rnnlqu/e+65R1OnTnVN8K8o559/vtt2YU+K9fPzMydX5TFCEB9//HGRfRqTc4yJWfnDHp7Yu3evli1b5vZk1vzy92M88daYVAQAAABUFUYltNGjR+uZZ54xJ8vn/75tVICrXbu2W/vvv/9ew4cPV2JiYoG+vvvuO/O1DRs2uO03nvzfuHFjsyJEHmOyvPHdOn91gqrAqIxghDOM5dT3mLc/r4JD3759zQoWeT7//HOPzmGEyvP06tXLrKBRGCM0YYQbPvroI9e+8PBw83Oz2WyufUZIxQiRG9UcimMEGYwQy/vvv+9W8S4sLMwMvBs/8xivGwEWo0qEMQ4CAAAAAAAAAAAAAFR/BBwAlJvx9NQ8wcHBGjBgQJW4q506dXKbkLN+/foiQws1a9Z0bRuTe2655RatW7fOnJxlTNb6/fffdemll5pPpM1z3nnnmU8l9YTxVFlj4lDeZKHJkye7vX7OOeeoefPmru233367FO8UAAAA8K3bbrtNixcvdm0bE/SNifhG1YVDhw4pLi5OmzZtMisE5NmyZYvuvPNOt342btxofu82voMbjO/pL7/8sjlp3liio6PNPr/66it16NDBddwLL7yg9957T1WF8b7/+usvc8nPqGqQt9+ogFFYFYe1a9e6VWYojN1u1+zZsws9/lRGhbovv/zSXDeqZhjnzfvcjh07Zo6XgoKCXO0fffRR/fTTT0Wed9KkSW5jr8suu8ys2GAEJIzKECkpKebrV1xxhauN8c+G8bkbxwMAAAAAAAAAAAAAqjcCDgDKxXii5q5du1zbxpNDAwICqsRdNZ7sajwhNM/+/fsLbdeyZUtzgk5ewMAIIhgBA2NyjxHoCAkJ0aBBg/TFF1+4nkJrVKEwnjqbP0BRlLynkua55JJLFBoa6tbGYrFo2rRpru0lS5a43XcAAACgslq1apVmzpzp2u7Xr585CX/KlCnmd+k8Xbt21bx589wqqBnV0/K+9xrfw41J73kVIIzv8sZE+HvvvdesbJDH+I4+ceJE8xwjR4507b/77rvNig7VkXFfjDGDp1UcfvnlF1dFBGP8YoQMipKdnW3+NCpwrFixQsOGDXOdy6g08fDDD+uHH35QYGCg63My7nX+6gx5Xn31Vf3222/mutHH9OnT9cknn5gVJPJff48ePcyKEfmD3UbFO4LeAAAAAAAAAAAAAFD9EXAAUC7GUzazsrJc23Xr1q1SdzR/ZYbiJjv16dNH27dv180331xsf8aknIceekjPPPOMa4JPSYwnoh48eNC1fc011xTaztifN+nHmDT0zjvveNQ/AAAA4Ev//e9/XetGoMEIBuf/Hp6f1WrVW2+95QpNG9978ybrG5PojaoOeT799FO1aNGiyPMaoWHjXBEREeZ2enq63njjDVVHRhh7yJAhHgccjHuXv/Jc/oBIYRo3bmweU9QY5+yzz3arZrdt27YCVRxycnLMgEOe6667zlyKc9NNN7lVcjCqdVDFAQAAAAAAAAAAAACqNwIOAMolLS3NbbtOnTpV6o7mr5SQkZFRZLt169bp/PPPd3tiqPGkU2Oij/Ge8wcPjHCDUcni1Ak9Rcn/NFvjuMGDBxc5acmYOJRn1qxZrqfXAgAAAJWRMandqGyWZ/LkycWGEgwNGzY0J7Ub1Rduu+0282n+hvxVz4x9RX1vzs+oMGBUisjzzTffqLrKHwQwgiBGyKAwxhhizpw5ru2rrrqqxL7vv/9+V1CkKHfeeafb+OrLL790e/3HH3/U4cOHXdu33367PHHrrbe61vft26cNGzZ4dBwAAAAAAAAAAAAAoGoi4ACgXGw2W5W+g/kDAnlPiT3Vt99+q0GDBmn58uXmdqtWrcynlyYmJio6Otqs/GBM1HnhhRdUo0YNs42xf9SoUfruu++KPX9CQoLZf0nVG/Lkf8JpfHy8Zs+e7eE7BQAAAE6/9evXu4Wix44d69Fx77//vhkYNiouXHjhhea+vO/jhp49e3p8DfmDEFu3bjW/R1dHRngkf4WFoqo4GJUwkpKSzHUjtDB+/PgS+7700ktLbBMeHu4WyP7111/dXs//+RnjyG7duskTffv2dRur5e8HAAAAAAAAAAAAAFD9+Pn6AgBUbXkT+vOkpqaqKsmb2GOoWbNmgdf/+usvTZ06VVlZWeZ2//79tXDhwgJtGzRoYD7V1Jh8NWLECMXExMhut5tPQ92xY4f5FNrCGEGJvJCFMcmnpKenXnTRRYqMjDSDEQajooQnT1wFAAAAfGHnzp1u2927dy9TP8b366NHj7pVYjh1An1R8ldqMyqu7d+/36zsUN0YY5Rx48bpq6++Mre/+OILPf3004WOQfJMmjRJQUFBxfbbrFkz1a9f36NrMD7fuXPnmut79+5Vdna2K5xghF3yfw5t27b18J3JHFvlMfoFAAAAAAAAAAAAAFRfBBwAlEtISIjq1KmjuLg4czsqKqpK3VGjCkNxAYcnn3zSFUAw3qsxkaqwdnnat29vPil12LBh5nZycrJefvllvfTSS4W2nzFjhmvdYrFoyJAhpao68fvvv2vTpk0eP/0UAAAAOJ3yhxIMxtihLI4fP14gqJw/rFwa1bWCg+HKK690BRx27dqldevWqVevXq7XjfHJ/PnzXduehKWbNm3q8fnr1avnFkowPre8sHf+z9DhcGjPnj0qi+r8+QEAAAAAAAAAAAAAJCs3AUB5derUybVuTKLJzc2tEjfVCGXExsa6tjt06OD2ek5OjhloyD9ZqFGjRiX2O3ToUFfAwZC/j/yMYIIx4SiPcd+MST4lLfmfQJtXxQEAAACojPKHc/NCw2VR1jBDYdLS0lRdjRo1SrVr13ZtG+Hr/IyxSd5n0qJFC48C1uHh4R6f/9TPN68Snjc/w+r8+QEAAAAAAAAAAAAACDgA8IL8k2LS09O1cePGcvU3e/ZsjR492qx6sH79evPpnhVh9erVbtv9+/d32zbCGvnDBEZwwVMjRoxwre/bt0+pqanFVm8oj08++aTQ/gEAAABfCw0Ndds+NazrqeDgYLftt956S06ns0zL+PHjVV35+/vr0ksvdRtbGe85z6effupav+KKK8wqcqUNqRQnJSWlyM8//2dojL3K+vnNmTPH4+sBAAAAAAAAAAAAAFQ9VHAAUG4XXHCB2/a3335brv6Mp4ouWLBA999/v3r16qWffvpJFWHp0qVu24MHD3bbTkxMdNuuWbOmx33XrVvXbTs5OdltOzs72wwm5LnuuutKNannnXfeces7/0QlAAAAoLKIjIwsUEWtLPJXJTAcP368XNdVnRmV5/IcOHBAa9ascd2zX375pdB2xSnNvT5y5IhrPSgoSHXq1Cn0M+TzAwAAAAAAAAAAAAAUhYADgHIzggGtWrVybb///vvKysoqU19Hjx51C0gYk2DOOeccr39KxvXNnDnTtd2iRQsNGjSo2EDD4cOHPe4/ISHBbbtWrVpu23PnznWb3DVlyhSVxuTJkxUYGOjafvvtt0t1PAAAAHA6dOjQwW178+bNHh1nPKXfGAfccMMN+ve//62GDRu6VQNYt26dx9dgVDs7tbJAdWZUR2jbtq3b2MOwcOFC2e12V5t27dp51N/OnTvNgLYnNmzY4Frv3LmzW4WI9u3bu9b37t2rpKQklSY4kb8SBQAAAAAAAAAAAACg+iLgAKDcjEkrd911l2s7JiZGL730Upn6euqpp9zCEddff738/Py8/inNmDHDLWAwbdo0t8k3hubNm8vf39+1XZpKEsuXL3etN2vWzHx66annz2M81fTss88u9ZNwx4wZ49pev369Vq1aVao+AAAAgIpmVGTL/13YmGTvCaOim1FtYPr06Zo1a5YCAgI0cOBA1+s///yzx6GFe++9VzVq1DBDx71791Z8fLyquyuuuKJAwGHevHmufVdddZXHfRnhBuN+exLyzl8lb+TIkW6vDxkyxLXucDj03XffeXT+lStXmgGX4OBgM5Tx8ccfe3ztAAAAAAAAAAAAAICqh4ADAK+46aabzEBA/qDCokWLStXHN99841aJwJiE9MADD3j9E9q9e7dbv0bAIH9AI09YWJiGDh3q2jYm4BhPLy2JETb48ccfXdtjx44tUAki/72ZOHGibDZbuSYtGajiAAAAgMrGCCaMGzfOtf3555+bVduKk5iYqK+++sq1fcEFF5g/L730Ute+5ORkj0LVe/bs0QcffOCagG9UATi1ulplZ7We/NWNp1UM8o8VNm7cqH379rnGIMZnUtoKcp7c61dffdUtrH7qeMUIaBtjrDxGZY6MjIwS+3388cfNn0bfxliuW7dupbp2AAAAAAAAAAAAAEDVQsABgFcEBgaaE4fyJt/k5ORowoQJeuONN8ync5bEeDKrMWEp/4Sdt956y+uTj4zJPcYEqdTUVNe+F154QTVr1iy0/f/93/+51o0JNcZEoOImZEVHR2vy5Mmu92FUgLjnnnvc2hj3yW63u7ZLO7ko/wSh/Pfniy++MCeDAQAAAJWJUUEhfzDBmPhe1MR243v07bffboYRDMb44uabbzbXjeMaNWrkavuvf/1LX375ZZHnNc5ljDGMCgR5KiJAXdFCQkLc3pMnWrVqpcGDB7u2//GPf7ju6ejRo1W7du1SXcOSJUv09NNPF/n6/Pnz9dxzz7m2jVBLly5d3NoYYy4jGJ9nx44dZiWJ/J/PqZ599lktXrzYtX3++ecTcAAAAAAAAAAAAACAao6AAwCvGTZsmBloyJOZmak77rhD3bt3N6sLGJP/84uPj9fs2bN11lln6YYbbjBDEfmDBZdddplXrispKUk///yzOSGqT58+2rt3r+u1W2+9Vddcc02RxxphiPxPijUCEj169ND//vc/1wQhg7FuvMfevXubT4nN/7TRNm3auPU5a9Ys13r9+vXN+1YWxpNXjTBFHmOSWN7TaQEAAIDKYsCAAeb37jzGd/OBAwdq4cKFys3Nde3/888/NWrUKH3yySeufcZ4omPHjq5QtfFdOi9UbYSGje/qxqR5Y7J8HmNcMXfuXPXv319r16517R85cmSZw8W+VK9ePdf6Rx995BbWLs6VV17pFobOY4QKyuKJJ54wx1S7du1y7Tty5IgeeeQRM9yeN54zKvH95z//KbSPJ598Uh06dHBtG5U6jH8+jIBE/vFgXvjB6DtPaGhokf0CAAAAAAAAAAAAAKoPizP/49IBwAuMSfbGBKb09PQCrxlP7YyIiDAn5RgBh1P/FWSz2cwngz788MNF/4vLYnGth4eHu034yc+YIGOEG4ylMHfddZdefvll85zFMYIaY8eOdXtyaJ66deuaxx87dqxApQojtPHuu++67fvtt980ZMgQ1/Ztt93mFgoprRUrVpgBkTzG5K9t27aVuT8AAACgIhjfqS+66CIz1JBfUFCQ+Z3aqExw6vf2c8891wwqGMGG/IxKb0bwIX9VtLyxhjG53vhubpwvv27dupnBCuNchU26f+qpp8z15s2ba//+/QXatGjRQgcOHHBN9DeOOV2MULMRBMhf0cEYAxkV5owQeV7g41RGCLtBgwZuFRKMCnAxMTFmWLo4RpAkfxC8c+fO2rp1q2u7Tp06ZrU6I+CQf0xnfJ7ff/+9+dkVxQhIGEHyffv2ue03PmfjfaWlpZljxVNfM8LxF154YbHXDQAAAAAAAAAAAACo+qjgAMDrrr76aq1fv14TJ050CyMYEhMTzYlBx48fLxBuMJ7iumrVqmLDDadKSUkxKyYUthw8eLDQcEPXrl3NiVLG0z9LCjfkTdJZtGiR+fRQYz2/2NhYc1JP/nBDZGSkOenq1HCDYcaMGW7b5X2C7ODBg9WyZUvX9vbt27Vs2bJy9QkAAAB4m/E92vgO/uCDD7oFFowgQlRUlNv3dmMMYQQYjInyp4YbDLfccosWLFigdu3aFRhrGGOAU8MNRiUD4ztyYeGGqsAIU4SFhbm2jSC5EcIwggr5q8edyhiXjBkzpsD4o6RwQ2GMsHf+YHVcXJx5/vxjOmOctXLlymLDDQbjczPGfZMmTXIbLxqBDeOfhVPDDe3bt9cvv/xCuAEAAAAAAAAAAAAAzhB+vr4AANWTMWnFeMqoEWaYM2eOWWnAeOLn0aNHzVCCn5+fOeGmbdu2GjRokDm5pVevXl69BuOJosZEoNq1a6tDhw7q0aOHxo8frz59+pS6LyMI8cwzz+j22283K1QYE3yMSglGUMN4YqoxWcp4Kux5551nBjyMyhKnMp5E+uWXX7q2GzVq5DZJqKyuuOIK/fOf/3Rtv/322xo2bFi5+wUAAAC8yRgDPPfcc2ZA4cMPPzRDxMYEfeM7tVGVwAjujhgxQjfddJM5qb04xiR64/v4N998ox9++EF//PGHOdYwKsUZVRzatGljfteeNm2aOfG+KjOqJ6xZs0bPPvusli5dar5P4142bNjQXDfGVEUxwh3GeCz/dlnUr1/fDIl8+umn5nho8+bNZhDBGAf1799fl112mS6++OIiq0mcyjjOGBtt3LhRX3zxhRlgMMaORp9GAMOoPNG3b1+zzwkTJpjvFwAAAAAAAAAAAABwZrA4T32EOgAAAAAAAKq85cuXa+jQoa4Q+s6dOz06btasWbrmmmtc2/zqCAAAAAAAAAAAAABwunj2aD0AAAAAAABUKZ999plr/aqrrvLptQAAAAAAAAAAAAAA4AkCDgAAAAAAANVMVlaWvvjiC3PdZrNp2rRpvr4kAAAAAAAAAAAAAABKRMABAAAAAACgmpk1a5bi4+PN9fHjx6tx48a+viQAAAAAAAAAAAAAAEpEwAEAAAAAAKAKS0tLU05OjrnucDg0e/Zs3Xfffea2xWLRgw8+6OMrBAAAAAAAAAAAAADAM34etgMAAAAAAMDfvvnmGz3wwAMVcj8++eQT9e/f3+P2q1ev1qhRo1S/fn2zakNqaqrrtZtuukn9+vWrkOsEAAAAAAAAAAAAAMDbCDgAAAAAAACUUnJysvbs2VMh9y0jI6NU7Vu1aqWsrCwdPHjQbf/w4cP14osvevnqAAAAAAAAAAAAAACoONYK7BsAAAAAAAAVrGnTpmaYoWbNmgoJCVGXLl30wgsvaMGCBQoLC+P+AwAAAAAAAAAAAACqDIvT6XT6+iIAAAAAAAAAAAAAAAAAAAAAAMCZjQoOAAAAAAAAAAAAAAAAAAAAAADA5wg4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfI6AAwAAAAAAAAAAAAAAAAAAAAAA8DkCDgAAAAAAAAAAAAAAAAAAAAAAwOf8fH0BAAAA8J7c3FwdOXKkQm5pgwYN5OfH10cAAAAAAAAAAAAAAAAAQMVghhoAAEA1YoQbmjZtWiF9R0VFqUmTJhXSNwAAAAAAAAAAAAAAAAAAVm4BAAAAAAAAAAAAAAAAAAAAAADwNSo4AAAAVFN/LGiqhvVs5eoj5phdA0ZFee2aAAAAAAAAAAAAAAAAAAAoCgEHAACAaqp+PasaNSpfwMEhp9euBwAAAAAAAAAAAAAAAACA4liLfRUAAAAAAAAAAAAAAAAAAAAAAOA0oIIDAABANWV3OsylvH0AAAAAAAAAAAAAAAAAAHA6UMEBAAAAAAAAAAAAAAAAAAAAAAD4HAEHAAAAAAAAAAAAAAAAAAAAAADgc36+vgAAAABUDIec5lLePgAAAAAAAAAAAAAAAAAAOB2o4AAAAAAAAAAAAAAAAAAAAAAAAHyOCg4AAADVlFG/wfi/8vYBAAAAAAAAAAAAAAAAAMDpQAUHAAAAAAAAAAAAAAAAAAAAAADgc1RwAAAAqKbsTqe5lLcPAAAAAAAAAAAAAAAAAABOByo4AAAAAAAAAAAAAAAAAAAAAAAAnyPgAAAAAAAAAAAAAAAAAAAAAAAAfM7P1xcAAACAiuGQ01zK2wcAAAAAAAAAAAAAAAAAAKcDFRwAAAAAAAAAAAAAAAAAAAAAAIDPUcEBAACgmnJIspe7ggMAAAAAAAAAAAAAAAAAAKcHFRwAAAAAAAAAAAAAAAAAAAAAAIDPUcEBAACgmnLIaS7l7QMAAAAAAAAAAAAAAAAAgNOBCg4AAAAAAAAAAAAAAAAAAAAAAMDnqOAAAABQTdmdTnMpbx8AAAAAAAAAAAAAAAAAAJwOBByquISjidq3+aACQwLVoX8b2Ww2X18SAAAAgDNIakK8jkcdlH9QkBq2aSeLlUKBAAAAAAAAAAAAAAAAKBsCDlVUUlyy3rhzhn77+g/l5tjNfXWb1NbUhy/WuJvP8/XlAQAAAKjm0hIT9MuMt/XX2j/ksJ8Yk9SoW08DJl6qriMYkwAAAAAAAAAAAAAAAKD0CDhUEduPxmrNwWjZLFb1bVBfL45+Qfu3RLm1iY0+rtdufU8ZKRm65P7xPrtWAABQOTj+XsrbBwAYju79S4d2bpPV5qfGHTpq7qvPK+FwtNvNSY49ph/ffk25WVnqecE4bhwAAAAAAAAAAAAAAABKhYBDJRebmqZ758zXqgMnJw5ZJAV3ClbtXVZZswtOO/zo6S815qZzlZmWpb2bDigoJFAdB7SVnz8fNwAAAIDSSTkepx9ee0GHdmw7udNikZzOIo9Z8cXH6jLCGJOk6vjBA/ILClKjth1ktdm4/QAAAAAAAAAAAAAAACgSM94rsVWL1uu2pYuVHOo+CciYRpTepY4cQTbV/3B7geOMYMOD5z6tv9bvlz3Xbu6r1TBSUx+6SBPuGHXarh8AAPiWQ07ZzW8O5esDwJlr95rfNf+1F5Wbne3+QjHhBkNWeppmP/2wWfXB6TgRyg6rVVsDLr5U3c9lTAIAAAAAAAAAAAAAAIDCEXCoZDLSMuV0OPXu/R/qiz82KHlSu0LbOS1OpXeoqej7esiakauQrfEKX3NMtvRc8/Wda/a4tY+PSdCbd81QekqGLnv4Ytf+fZsP6Jv/ztefP26Uw+FQt2GddNGdY9Sxf9sKfqcAAAAAKqPszAwzwLB45jvatmxxmfs58tcut+3U+OP6efqbysnKVJ+xF7n2H9u/V+vmf68DWzaY523WuZt6jR6v+q3alOt9AAAAAAAAAAAAAAAAoOqxOJ0lPHoTp8XK79do9ovfaeuKna59xy5tr4xOtQu0dVqdchrRFIv7fltKtupP3yaL0yKnzSL/Yxmy5p54WmqewOAAfX7oXYXVDNXK79bomSmvKCf7RCgij9Vq0d3v3KTzrh6u3JxcBQYHevvtAgCAChIdHa2mTZua6ytX11XDhu6VoEorJsauQf1izfWoqCg1adLEK9cJoPLZtWqF1n7/jWL+OjkmqQgBwcG66e0PFRAUrJ2//6b5r78kh919TGKxWnXBrfeo/cAhcjjs8g9gTAIAAAAAAAAAAAAAAHAmIOBQCXzz3x/01j2zCuw/elUnZbapWaByg9O/YLjBxQw0WGWRRdb0HIWtOarIxVGy2E/mWO5592YNnTRAU5vepMy0rML7sUgWi8WsJtG8UxNdeOsFGnvzueb29lW7lZOVo1bdmiuiTo3yvXkAAOBVBBwAlMXq777S8k8Ljkkqyqjb71OL7r303q3XKDcnu4hWFlksRlEHp+o0a6GeF4xV17PPl8NuN0MYjtxc1W3RSsFh4aftugEAAAAAAAAAAAAAAFCxjDoA8KG4w/F69/6PCn0t4EhawYCDrZhwg8HPKtmNhpIjxF/Jw5oop36I6n28Q5a/Mw5x0cf104fLig43mCc6MZHIcGBbtF6/fboWzVqiuEPHFR+TaO73D/TX8CmDdNt/r1FoRGip3zsAAKhYRuzR4YU+AFRvSceO6rfPPjyt50yNP64tS34qJtxgcCqv3mDcwf366d03tHnxj0qOO6b0pBNjEj//AHU4a7hGXH29AoJDTs/FAwAAAAAAAAAAAAAAoMIQcKhAdrtdP334q+a/95MO7T6iGrXDdPZlQzT+tgtUo/aJp4z+OGup7LlGIqGgsDVHlDywkWTLl2goLtyQv83Jgg3K6FBLGW1rKmTXiUlAf8xbqxadm5b6/exau8dt26jiYAQldq/bqzdXP6eAoIBS9wkAAACg4thzc7V12c/a/MuPSjx6RCHhNdRp6Nnqfu5oBYWFmW22LP1JTufpjTPtWbtK4bVrl/q4I3t2uW0bAYktS37Usf17dNkzL8vmxxAXAAAAAAAAAAAAAACgKrM48x7TD68yQgtPTnxRf8z9s8BrDVrW0yvLnlbdJrX14Pn/1LqfNhXZT0qveoq/sLVkPZFscPg7JWtJJzc+WPckRMjmONX73H0ykLc4AqzKGdZIHaf0UZdurXRh245qHuFeeQIAAJwe0dHRatr0RJDxt9V11bChUf6p7GJi7DqrX6y5HhUVpSZNmnjlOgFUPHtujr594Z/av3FdgdciGzbSlCefV2jNSH3+xIM6tGNrlf9I/AOD1LRzNzVs214dzxquiHr1fX1JAAAAAAAAAAAAAAAAKKWSpsqjjL57Y2Gh4QbDkX3H9N9b3lVOdo62rthZbD/h646pwXubFbrhmGyJWbKl5pZ88kIiK/bwiqmukNo9Uvv+1VMHJzTWoqwYvbxmhYZ/Ol3/WPqj7I7T+xRYAADgziGL7OVcjD4AVE1r531baLjBkBBzWItnvKWc7KwCVRGqqpysTO1dt1orvvhI0++43nx/TsYkAAAAAAAAAAAAAAAAVYqfry+guvr+rUXFvr5mwXotmL5YWelZJfYVeChVgd/8Za7bQ/0UfU93OYoKLDgkSyETEf0SSz5PaWU2C1XMtW0kP2uBfMVn2zepRmCg/jFwmNfPCwAAAKB4RqG+TT8vKLbNnrWrtHnxj7Ln5FTD2+nUhkU/KCishgZfcrmvLwYAAAAAAAAAAAAAAAAeooJDBcjOzNah3TGFvubwsyq9Sz0lntVMX27eqdyIwFL1bUvLVYP3t8vveGYhnf+9FCJs7VF5W8LIhgXCDfl9vHWDUrK9H6wAAACecTi9swCoerLS05Qce6zYNg67XVuW/KTqbP3C783KDgAAAAAAAAAAAAAAAKgaCDhUgKyMbFmtBW9tZutair2xj5LPa6P0Po21IdShuGt7KemcVnIWLLpQpMCYdDV5cb2afr5HI/1qq+aig6rxyyFZHEbthoIdha4/puB9ySX2O/DCvrrw1vM9vo60LjWLfz0nRysPHfS4PwAAAADeYc/OkSwlDzJiD+wt13n8A4PUrGsPeUvb/oPV9RzPxyQlyUpL06HtW73WHwAAAAAAAAAAAAAAACoWAQcvy0jL1IPn/VMOh3sphZz6YUoc207OID/3AywWZXRvoNTBzUp1HotTuqh/D715xxUaFdJAtRcdVN3PdirgUKqrjV98piLn71Odr//yqM8BY3rpjjeu180vX63I+hGu/TY/mzoOaFegvdOv5AlTuafcBwAAcPrYZfHKAqBqyc5I19fPPiY5K74ES7eR5+vih55Q8249vdJfm74DdN6Nd2jIZdMUHF7Dtd9q81ODtu3L1KfdbvfKtQEAAAAAAAAAAAAAAKDinTLbHuW14L3F2v1nwaegpvVpJNmKzpOk92io0NWHZM32bPJNxwFt1evcbnpy4ovavW6vIuqEK/xwlkL/t0m5Yf6S1SJbSrYZhPBU4/YNzZ8T7xmr8bdfoK0rdyo7M0etujVX7YaReuWGt7Tg/V9c7YP3piqj7clJR6eyWSzqUe9EnwAAAABOj/WLflDswf0Vfp7GHTqrUfvO+u6lfynu4H4zkGAEvbPSToauS6tWo8bmz37jJ6nX6PGK2bVd9pwc1W3RSqE1IzX/9Ze0/belHvdnBiNaty3z9QAAAAAAAAAAAAAAAOD0IuDgZYtmLSl0f2aryGKPcwbYlN20hoL2JBT6usViUXjtMDVp10jnXz1ch3bH6KmJLxVoF14rTCnxZZtQ9M69H+h/a18w1/38/dR9WGe31+9+5yY57E7Xe4xYeqTYgMN5Lduocb6nrgIAAACoeFuX/lwxHVssCg4PV61GTdR5+Egd27dXc195tkCzwLBwZaWmlOkUSz6YrqlP541J/NW0cze31y+47R45nU7tWLHMo/7aDzzLDEYAAAAAAAAAAAAAAACgaii6pADKJO5QfBF32uLBp1H0x2FM4kmOS9F5Vw1Tw9b1Nful7wttZ4YbPDhVYXav26eda/cUc3lW/d+MW/XG6ufUaWA7RWxOUuSiw4W27Vynnp4ddl7ZLgQAAHiFXRavLACqltT44xXTsdOpjORkdT37fIVGRGrDonmFNitruMFweOc2xUUdKPJ1q9WmMXfer8ueeVkNWrczQxdFadCmnc657pYyXwsAAAAAAAAAAAAAAABOPyo4eMG233fqy5fnatUP65STlVNoG/+YFOU0iSiyD5vVolvvnaDPH/xU6ckZRbb78Kkv1XFAm+IvyKkyO7TrsNr3aV1sG+P1f/3wsO4a9Igc30cpdFOCks6qp5z6QbJm2FVzQ4Iee/wcRQYFm+2Tj6dowfu/aOPSLeYEpN4ju+n8a0YorGZo2S8UAAAAgEv09i1aO2+O9m/4U/bc3DLdGavNT4OmXKFV33yunMzMItutmP2x6jRpXmF3P+HwIdVpWnz/Ddu218X/eFKfPnqfEo/EFPpezrr0SgWGnBhzpCcnafPiRYresdWsjteiey91HnaO63UAAAAAAAAAAAAAAABUDgQcymnpFyv03JWvy55rL7Zd6PojSiwm4DCic2tNvfoCzf7H58X2Ex+ToD8XbSrVNTotUm6tE2EDv/gMWYoJQIRFhnnU5zf/+UEHdxwy14P3p5pLfm/fOVOxd8fqq5e/1+E9R91eW7NgvT599hs9O/9hte9bQlgDAACUmdMpOYwvAuXsA0DltnXZYi16679yOh3l6qf9wLPU78KJ+uPLT4ttlxIXq/SkRFWUoDDPxiRr5n5TaLjB4LDnaumH76vbyAu0du4cJce6j0n2rV+rVXNma+LDT6tei1ZeuW4AAAAAAAAAAAAAAACUn9ULfZyx0pLT9coNb5cYbjAE7T6usLWHC32tY+N6emLSyBN9JqWX2FdmepZH12fMR0zp30hH7uito7f0NJcjt/dWSr+GhRZ5CAjyV7dhHT3qe9GsJcW+fmhXjF679b0C4YY8RlWHR8c95/F7AQAAAFBQRkqyfn7vTc/DDZbCQ08N2rTTOdfdIntOjnJzskvsxmhXEfwCA9WwXQeP2m5d+nOxr8cd3K9fZrxdINyQxwhpzHn+KdlzK+a9AAAAAAAAAAAAAAAAoPSo4FAOv3yyXBmpmR617XJWB13xyCTZ2tbVl39s1v5j8QoPDtTonh10QY92CvA78VE069hYB7ZFyxsSR7VSWu8GbvvsEYFKOq+lciODFLlon9tr2Zk5urLVbZrywARNundcsX3HRR8v//UdS9KSz37TqOvOKXdfAACgILss5lIe5T0eQMVXb/AkkGBo0qmLBk26TBarVZsWL1JizGGzWkLHISPUbsBg2fz8zXYR9eor6VjhoYCKlpuVpel3XK9+4yer16iixyRGKMEbVSRS449r1x8r1PGs4eXuCwAAAAAAAAAAAAAAAOVHwKEcDu44VGKbll2b6dkFj6hOo1qufT1aNCqy/dibztObd81QeWXXDy0QbsgvtW9Dha47qoBY94oRiceS9c7/faiU+FRd88zUIo+v3biWYqPKH3L48cNlBBwAAACAMko4XPKYpH7rtppw/2MKizw5JmnSsUuR7buNHKXln87y2WeSlhCvJbPeUXZGugZcPKXQNkYYI7hGhDKSk8p9vi1LfibgAAAAAAAAAAAAAAAAUElYfX0BVVl2RslPSs3KyHYLN+SXlpyuP3/aaC7GumHcLeep3+iehbYPCg30+NrSu9crsM9pLBbJaXzqNunozd11/OK2yq4XUqDt7Be/U/yRhCL7P3/aCHnDluXb9c1/fvBKXwAAwJ1dVq8sACqv7MwMj6oi5A835JeZlqr9G9dp/6b1rr56jxmvZl17FNrePyhIp8uqb75QRmpKka93GT7SK+c5uGWDNv403yt9AQAAAAAAAAAAAAAAoHyo4FAOgR4EDhx2R4F9Odk5ev+hTzR/+mJlpGaa+4LDgsxKBtc/f7me/vZB87V57/yoqB2H5Ofvpxq1w2W1WRWz96hH12YPDygQbjDnJ1ry7bRalN61rjLa11KdT7Yr6GCy66XcHLuWfr5SF989xq2f7MxsJRxN0gXXjtCvX/2ug9tLfmJsSd5/+BONvGqoatQKL3dfAAAAwJnEL9CDMYmj4JgkNydHyz56X1uW/mQGIAwBwcFm9YYhU6/WxQ89oU0/L9SmxYuUEHNIVpufgsON7+sW5WSeGMNUtNycbO36/Td1P3eU2/6c7CxlJCWp28gLtHv1SiUeiSn3uZZ9PFMdBg9XYEjB8DcAAAAAAAAAAAAAAABOHwIO5RAeGVZim5DwYPNnamKaFs1coo3LtmrX2j06fti9OoIRdPjmvz/o6MFYPfn1/Rp383mq07iWnr76NR3tUkf7u9aTPdRftuRGCtl0TKF/xsiaU3CiUh5b8olJSi6WU8IN+TgDbEoY31oNXl/v1uTgjmjXevLxFH3wxBf6+aNflZ6SYYYtep/bTU07NNYf36+VvZAgh6eyM3P088fLdfGdo8vcBwAAAHAmCgmvUWKbvEn7GSnJ2rL0Z0Vv36Ijf+1SelKiW7vsjAytnfuNUuOPa8yd96vnBeMUGllLP7z2onIyM8zldIs/HOVaN653xeyPtf23Zea1WG02Ne/WU7WbNNfedavlLCTI4Smjv50rfzVDEwAAAAAAAAAAAAAAAPAdAg6l5HQ6lZ6croDgAHUb1qnE9t2Hd9aW37brsQufN0MOJVkxZ7W2rtxphhueuuY1HZ7cQfZaJ0ISBntksFKGNVdm+9qq/dlWWbPthfYTsvGYUvs3OrmjiHBDntxawcpqGaGgfUmufT+8+7PsuQ5d++/L9H/Dn3Cr1mBUplizcMOJfs3yEOXzzX/mafyt58vmZyt/ZwAAwOR0WuRwlvAlwIM+AFS+MUl2Rrr8AgLVpFNXrf7uq2LbN+3cTQe3bNR3L/3LPK4kO1YsU5+xF5kVHX747wty2Asfc5wO6+Z/L3tOrgZOmqrPn3jArVqDcV371q+VxWKV01n2cEOetfPmqMvZ58pqZUwCAAAAAAAAAAAAAADgKwQcPJSdlaOvX5mnee/8qGMH4+Tnb1PHAe1Ut0ltxUYfL/QY/wA/nXP5ED10/jMehRvy/PzRMoXVDFXcoCZu4Yb8chqEKWVwU0Us2V/o6wHH0hW6JkZpfRt6fN7c2kFSvoCDYeGMX3Rga5RbuMGNF8INhqP7Y/XtGwvMyhUBQQHe6RQAAACoRnKys8wKC5sWL1Lq8TizgkGjdh0VUrOm0hPdqzHk8fMPULv+g/XlPx82KzR4atvyJeZPX4Yb8mz8ab6O7d/jFm7IzxvhBkNCzCFt/nmROg8fKb8AxiQAAAAAAAAAAAAAAAC+QMDBAznZOXps3L+17ufNrn25OXZtXr69yGP8A/31j4/v1KZft5cq3GBIOp6inTuilNGndrHt0rvWVY1fD8hiLzxlELlon/yPZyilfyMzvJC/VWHPYram5xbaz/bVu3U6vH3vB3r3/o/Uf0wvTf3HxerYv+1pOS8AANWVXRZzKW8fAHwvNztb3zz7hKK3b3HtM8IH+bdPZVR4GHv3g9q/cV2pwg2GjJRkxR7Yp8oiZvfO03Ken9//n36Z9Y5a9eqnARdPUf1WbU7LeQEAAAAAAAAAAAAAAHCC9e+fKMbCGUvcwg1FCY8MVd8LeuiqJy7Rh3ve0JCJA7Tp162lvreNWzdQVoif5Ff8x+MM9pc9xL/YNmFrj6j+O+vldyRFTj/J6X9icRjr+eYrWjJyFbQroYgTle76nQEWOUKtrsOM++Iph92h379fq/uGPa7VC9aX7sQAAABANWVUMSguzJAnKCxcLXv20eBLrtD1r09X6979PDruVDXrN5TDXngAuioKDAvzuK0RHPlrze/6/PEHdGDzhgq9LgAAAAAAAAAAAAAAALgj4OCBBdN/9qSZUhLSdO5Vw3XpPybI6XAqLTldh/86qtKwWCwafcNI9RrYseTGDqes2fZimzitUuwVHZXdLNy9bINFJwIPf++LWHpQ1lyHyiO7fbASHmmqo5910LFPOiju7TZKG19LgycPKHVfOdm5evXGt2XPLf79AQCAotmdVq8sAHxv0+JFHrXLTE1R13POV58LJ5oT9bMz0pV4JKZU57JYrep69nlq3LGLqou2/QaX+pjcnGz99N4bcjrKN04CAAAAAAAAAAAAAACA5/xK0faMdXiP5yGFGY98qtdve88MO1isFjPo4KnMpuFqfNNAPfTHckW0C5Lf8kzlhAW55RLyC9yXKGtW8QGA9C51lNmmZpGvO61ORc7dq/A1Rb9Hq9UiRwnvI7NvmBIfaCr5n7xae4MApVzTQAfq11CdhbUVd/C4SiPuULxZxWHguD6lOg4AAACobpKOeh5S+PWjGVr0v/8oK90Yk9jkdJQuNFy/ZWst/N+rCgwNNRLYkrOUJd0qgBG6KE/QIDstVcERNZWRlFiq45KOHtGBLRvVolvPMp8bAAAAAAAAAAAAAAAAnuORvB6IqBPu8Q09su+YGW4weBpuMFo5b+qlozd11Tql6vf9UVr41x5lNAySPchpvn4qP4tF4SuiSuw7tXe94htYLbLYi7/OIZMGqm7T2kVfv01KvrWR5C+FB2SqXkiKagenyWY5MZFqydGduuCzKQqpEazSiilFuAQAAACoroLDa3jcNvFojBluMJQm3BAScSIYfWTPbh3cslG7V60sNtxg9Tt9efkOg4cqNLJWmY/ftWqF+l04UX6BgRUaLgEAAAAAAAAAAAAAAED5EHDwwMgrhqmitO/bWlesfEgHmwYV+rrT36KAYPePqWXdSN3btasCYlJL7D+3RoDHbYypS45Qq5wBJ6swdB3SUfdNv1n/+e0ZDZ08UH7+NtdrzTo2kV+An7L6hSuorkOd6hxV21pxalIjSc0jEtS1XowahxlPSHVqufOA3l7/ojyR2TxMsZe0VMyN7fVd8HGtizns0XEAAMCdQxY5ZC3nUlQtKQCnU8ehZ1dY3006dtFZU69WejHVDfwC3McVtZs004CLLtHp0KxLN517w+2a+vQLattvkKw2m9t15N8uTtTWTbr8X6+U+vxG0CPmr52lPg4AAAAAAAAAAAAAAACld/oeuVmFjb/9Av300TLF7PV+NYFGbRvok/Wbim3jHxag16eMUlJGphrVDFevFo21/Os/POrfLzlbuXVD3PY5LU45rcbPE9sNRrbR8UbZSh9RQ456/pLdqcA1qWq0JEv3vX+LgsOCzeWxL+5VYmySju6PVVBYkD58crYObo+WpZ2/2tSKlZ/V/emuVotUPyxVTlkUlZagmnWLf+qscT2xU1opZcDJqhPLs2K1/MvPNLFjZz0/8nxZLUyyBAAAwJmn9+jx2rFimVLiYr3ed0T9Btr40/xi2/gHBevC+x5RZmqKIurVV6N2HbVt+RKvXUOtxk0Ufyi60KoS5998l/wDgxRRr4EuvO9hM4iRHHvM3Lf88w91PPqgR+dIPBJTpioQBzZvMJduIy/QyOtvk4UxCQAAAAAAAAAAAAAAQIWhgoMHatQO1yu/Pq3BE/rKYsza96L+lw3WgYSin5RqSMrMVER4kMb26GCGGwwNW9cvse/AkADdNfk8t30Oq1MOP8lp+/vTtzq1p9VxpU6pfSLcYLBZlDUgXPvuq6UbbnxGX770vaJ2HjJfqlk3Qu37ttEXz3+rX7/83dwX2S23QLghv7ohqQrIyFXUzuIrMSQNa+gWbsjv6+1b9e6fa0p8zwAAIN9/92WRvZwLFRyAyiG0ZqQufep5terVV/JyZZUW3XuXGJzISE5SeK3a6njWcDPcYKhZv0GJfQcEB2vwlCtKbFdYuMFghBk+euhu/fnDt0o4ctgVemjQpp1WfvWp9qz1LPhtslgUHx2lstr080KtX/B9mY8HAAAAAAAAAAAAAABAyQg4eKhOo1p68psH9Nba59VvdE/VqBOu8jrr4v7qPrSTR20dOblu2216tFSdJsU/ffTyRybpqnMHaGCLpicrN9jc50P5RWTLL9S9b5cAqw5fXkPvPPiRru14t56c+KIyUjN07GCsFn+y3NUsrJ2j2OuwWZ0K2HZI237fVWz1hqShxU+Q+nDjeuU6ij8XAAAAUF3VqFNPFz34hC5/9hU179ZLweHlH5N0GDxMjdq296itw+n+XdwIOgTXiCj2mEGTL1efcRPVuEPnMl+jUTVi6YfTNePumzTvP88rJytTCTGHtGvVilL1k5GcrMO7tqs81i2cKydjEgAAAAAAAAAAAAAAgArjV3FdVz+/fPabXrr2f8rJynHtswfblNo3UjmRAXL6+ckZGChHaKBsSdkKW3dMQX8lFvp8VavNqgm3X6A6YaHq3KCeth45VuR5bUlZ+ubez9Tj6/td+7as2KG46PgijwkMCdRFd42Wv82mdy+ZoNeW/64Z69Yp22l3a2cEHIpjVHXI7hmqwHVpWjFntZ7JelUDxvaRw35ycpM1oOQnyGb/Gau41seLfD2ndpByawUW28eRtFTtT0xQm1q1SzwfAACQ7E6ruZRHeY8H4F1blv6sn959Qw57ESHlUrDabOp5wVjVqFtPtZs00/Hog8W2X/Pd1xpz58kxyYHNG8zKDsVVb+h+7mj5+ftr4sNPacUXH2v9wrly2N3HJB5zOrXz9+VyOOxq3L6TuV0aGSlJSk9JVnkkHT2i5LhYRdQruaIeAAAAAAAAAAAAAAAASo8Zax7a9ecevXD1G27hhsQRdbXvpe46dnVLJVzYWImj6ytpRE2ldwxVerc6Ojatk+Iuba/C5gUaAYEZj3xmrl8/oE+x566x4rB+n7Naf23Y59r33ZsLiz0mKz1Lu//ca66nxaWoyR9xCsoqOJHI6l9yRQR7gwDX+ur563V4zxG313N2lTxByb4lV1+9Ms+tekR+Fg8nJ33/+gLt21L8xCsAAACgOjq0c7t+fPs1r4QbDEbQ4LfPPzLX+144scT2O1Ys0/FDUa7t9QvnFds+OyNDcQf3m+uZaakKCg2T1Vb+jP3uVSuVfDyuTMeu++G7cp9/3YLvSgyDAAAAAAAAAAAAAAAAoGwIOHhozmvzZc89OZE/pU+kYq9oIWeQrcAdtUc45Ag6ERxI71JbScOaFNrntt93KXp3jMZ0aq+u+3OkfFURTA6nwn87rBorY8zNX7/83fXSztV/lXjNO1b/pblv/6jLm9+iGY98qoz49AJtnPaSqy9YE90nUCXHpbhtp31dfBWI7C25ytnpOHH/isgx+B3Pkv+xjGL78YvL1PynvtON3e7T05e8rOzM4s8LAMCZziGLVxYAlcO6+d/J6Sw5oFwaUVs3KTnumDoPO0c1PKhKsPuPFa71I3t2ldj+yJ7d5nVPv/06rZj9sXKzs+QN2elpZTrOG+GQdfO/16z7btUPr70oe+7JADwAAAAAAAAAAAAAAADKr/yPzzxDrPt5s9t2/NhGxba3h9llzTyRH0np10ARyw7J4ig4uz/xaKKatG2o5jtTFf/FX0rrVU+5NQNlS8lR6IZj8o8/OQFo07JturnX/Tp+OEHJx91DBoU5su+o5r71o5x/V0cI3RavxAYhbm1ykwMUUDezyD4sybkKXJt68n2F2mStH6wOA9pqxx+7zX2ZS3OV9mW2QiefrPTgan/MoYSniu7fdR5JNZfEKHZKqyLbGK/nTbFc/tUfCgoN1AMzby+xbwAAAKA6OLh5Q4X0m56UpBp16ikkvIaSjx0ttu3+zRu084/flJaYoMyU5BL7jj8crfUL58rb/IOCVad5S8UdOFnl7nQzKloEhoRo5PW3+ewaAAAAAAAAAAAAAAAAqhsqOJRBTp0AZTd1DwqcyukvOW0nggWO8ADl1g4q0MZisahe87rmeqtuzeWXkmMGIWp/t1c1f4lyCzcYtq7cqT0b9ivxWJIcp1Z7OIXVatG+zQdd4QZDjd+Pypru/sTSnMRAObKK/scg7JNYWbKdSu8RrsNPttbB97vorV6HteHB+nJc1VLOvxMHSS9n6vi96cr8LUe5MQ7l7LEr+Z1MxV6VJntUwWu1WAs+DbrG78dU8+dDZuUKNw6nai4+rIgV7pOtFn+8XLHRx4u9DwAAAEB14SyqHFo5WKxWhdeuY67Xbd6yxPaHtm9R3MH9ykhOchtrFMZq8/OoykNZrF/wvbLSUhUYGlqu915eW5b8pPSkxHL3AwAAAAAAAAAAAAAAgBMIOJwiauchbVy6VTF73SfT9zy7i2vd6V+G21ZI9YY+53dXvaYnJhONvfk8M/DgLedcMVRbV+xw2+eXlK0G72+XLSFfcMJhUUZUmHTQIeWevEZbTLZq/OewQhYmKmVYpI4+0FJZHcJcr8dkpejA6BoKenOg/AJPFALJWpmr+P/L0LGLUhV7eZpSZ2bLkVj4pCenwyk//4IFRGrPi1Kzf21Q5KJoha86ppo/RqvZsxtUe+7BAm2NkMeaBevLdoMAADgDOGSVvZyL0QeA0+t4dJSitm5S0inVFJp16e71c7Xu3U+hNSPN9e7njvZq352Hna2Y3TtVUVLiYpWVlqZajZvKarOV+ninw1Gm4/Kz5+Zq/ybGJAAAAAAAAAAAAAAAAN5ScIb5GcqojvD2fR9ox6rdrn3dh3fWLa9OU+vuLXTRnaO1+NPlxmNT5RebJWtKjhzh/kV3aP97MW7ysXT5H890e7lG7XDd/Mo013aLzk118ytX6+17PyjxSajFMUISgy/qqwuuHaGfPlxW4PWgqFQ1e36d0jvWUlbjUFlyHArdclwBsZmy17TJ3jRQlgyH/PZkyuKUHMFWHZ/WWCqk4oJhR6101e8crJB1KaW+1twc92oSefyPZ6nWgmgP+/j7JgMAgGph/fr1mjFjhpYvX64DBw4oPT1dDRo0UMuWLTV+/HhNmTJFjRo1qrDzL168WB988IFWrlypmJgYWa1WNW7cWD179tSVV16pCy64wNwHVISobZu17KMZOrr37zGJxaJmnbtpxLQbVadpc/UaPV67V6302vlCImpq6BXXurbrt2qjIZdN0/JPZ5WzZ4vaDzxLHQYN0+ZfflRFiz8UVbYDLRY57OUfTzhyCx/XAAAAAAAAAAAAAAAAoPQszvLMpq8mtv2xS/ef/aSyM3MKvBYaEaL//PaMGUB4fPzzWjl3rbJa11TcRU2U0TG4yD6tqRb5Z1jltFs0MiFYh979XenJGfIP9NewSwbqiscmqXGbhgWO27x8u+a8Pl9bV+w05tuofvO62vb7Lo/fS+ueLbR/c5TsufYyBySatG+otMR0s8LC0b7B2n9JrWKPCV6XrAYv7JMvvLXuBbXp0dIn5wYAoDKKjo5W06ZNzfUZv3VQnYbFBDI9EBeTo2vPOlEVKioqSk2aNFFFSEpK0u23366PP/642HZBQUF64okn9H//93/y8/NeVjchIUFXXXWV5s2bV2y74cOHmwGIZs2aee3cQF644et/PWZWBDhVUFi4pv7zJdVq1FhfPfOoDmzeUOqbZlR/iPlrl3IyM+QXEKj2g4Zo4MSpiqhXv0Dbg1s2af3CuYr5yxiTWBReq4657qm6LVop7uB+s0JCWVisVtWs31DZGemy2vzMn1npaaqspr3ylmo3PvHvXQAAAAAAAAAAAAAAAJQPFRwkvf+PTwoNNxjSktL14VOz9fjs+zTlX1P0XZ1s5TQIk1HKwZpulyPEPR9isToUEpylwLrZstgkm6z/z95dQEdxvW0Af2Y12bgHSHB3d/cWKFVK3d2pC+1Xb6lRp06FKrS4u7s7BIu7brI6852Z/AkJyUo2m5CE53fONrszd+7MTujuTvY+90VEo8Z4/uUPEVCkVQITel+9w19Ip0HtYDFZkJmYpQQbMpOyHbaVDALsI/whRWuBXDvUawoQt+eM5/8a5MFTfnoEhQfiuifHKxUWpu1a6XKbog5BKGoeAN9TblZxkItBeCFWI58rhhuIiIjqPjlcMHLkSOzevbvM8oCAAISEhCAzMxNGY/HgZpPJhBdffFFp+9dffymDr6sqLy9PCS7s37+/zPLw8HDlZ0ZGRsmytWvXYuDAgdi+fbtSWYLIW9bP+qnCcIPMVJCPrf/+iSsffRq9r76h0gEHlVqNwIgojLz3Eeh8faE3+EGj0zls37hjZ9isZhRkZSAl7gQKsjIrtb/0M6dQFVq9Hn7BIeg18TqYjYXY+OfPqK2adO7GcAMRERERERERERERERERERGRF132FRxSz6bj1mYPuzhLgN5Xh4Qb2sDSMKBksQQJdn8JtgARklpCtChAaF4IMyzlugjT+eOHvvcj1i/M6a42/LsNb934MUS789lObaP9YX00DPBRXVhol6CZkwvt945DEZWVOzYcWXc2ctpGMqmgOqdB7Du7oTaVrRwRGBaAvEw3gw+VENO6AaatfA0RMc7PJxER0eVcweH7je0Q3sDxIGZ3ZCRbcO/AI9VawWHSpEn4559/Sh7LYYe33noLvXv3VgIMdrsd69evV6o2lA5BvPHGG5g6dWqV9z958mQlLHHeLbfcgtdffx0tWrRQHp86dUp5/Msvv5S0GTBgADZs2OCVgAVRVlICfnrqQecnQhCg0Wphs5S/1ijNNygY1sJC2Kzl2/mHhuGmNz9AYHik0z6ObFqHJZ9/BEnyrAJDbSNXwJBDIt4WFtMYN0x9WwljEBEREREREREREREREREREZF3XJYBB3mQ3NYFu7B+9hakxWfi4IbiQXvOmGMDkXFrR6dtGre1ID08z+H64VEd8EH3mx0fl82uhC0yErOcH393H1jeiQZUFQ+o03yXBe0/ueWWdxrUFlFNI5VQwIpf1yEjwfl+lH0FqHHuq/aAtlSQ4iJSpg4o0iB03hkEb0gus05QCZBEL/0TE6BUbJjw4GgMv2UQfAyOK2EQERFdrupawGHz5s1KWKB02OGPP/6ASlX+s0dRUZFSaUGuniDz9fVFUlISgoODPd6/XJFh2LBhJY8ff/xxfPrppxW2lQMVr732WsljORQhHy+RJ0S7HSd3bsXxrZuQl5GO5OOur0ncIYcYnFVcaDdwKK587BmH6+02K7556E4U5ZW/nvCGmHYdERgRCb+QUBzZsKbS1SE846UScv/rK6p5S3QZfQXaDhgCrY7XJERERERERERERERERERERETepMFlJi8rHy9f+Q6Obj9Zqe1MzVwMnFNJSAvOU4bOOLI29TB+/vRfqHLsaNa5MfpN6Am1Rl2yfueyvS7DDTLbjcEOww3K+usCofk3F0LZYgoQ1CoMndQfva7ohjveuBF71xzCe7d+ipw0x6EMdb4dIXNSkT25QYXrJbMKKCp+DqbmgUCpgENQeAByM7wzU6p8nn4/9zVCozk7KhERkbtESYBdEqrcR3WaMWNGyX1/f3/lcUXhhvOBhmnTpikhh/OBhyVLluCmm27yeP8ffPBByX25YsOHH37osO2rr76KdevWYfXq1cpjucoEAw7kicK8XMx5+1WknYnz+gl0FRg4tmUDQhs2ghxzj2jaHM2794RKdeGaJG7X9moLN8jUGg3aDRiCJl26Y+CNt+HsgT1Y9NmHMBsLqmV/hsBgFObleKUvQa3BQ9/8Ct+AC1X9iIiIiIiIiIiIiIiIiIiIiMi7LruAw4d3f1XpcIPCxdg+QStCcHE2RUiY+cW/0MSZlcdyJYWXfn8CHQe2g81qw5/vz3V5GJJegNjN13mjUA1yH2kIa5EK2lQL/NdlQZNrw/61h5WbzkeLa58Yh9F3DnUabjgveG4aCluHwNTZF4KmeOZTSZRHZmmAXG3JyRFKVWqQn1vL7s2wZf5OeMOYu4Yy3EBERFQP7d69u+T+1VdfjZAQ52HGPn36lHkcF+f5APGMjAwsXbq05PGDDz4IrVb+bOPYM888UxJwOHDgAA4dOoQOHTp4fAx0eVr8+YfVEm5wt3LEpr9nlTyWqymMf+J5NGjVRqnesH3e7Grd/9kDe5WbRqdHz/HXoHX/gdUWbgiKjEJIwxic2bvLK/11GzOO4QYiIiIiIiIiIiIiIiIiIiKianZZBRwSTyZj6wLPBrfoz+WhoL/j9ZJNAOwSoHaShBAlpXrDeekJmXh53Lv4atf7+Hf6IhzceNT1gVyYXNUp4+AQWGzFv97sSVEI/TUZQcsylMcWk1UJU6z+fSMEQYAkT9/qQuDSdJgiW0PSSoAgAVYVcNGMzq1EX7Qc2Qn9JvTCqDuG4NfX/3H9dDQq2G1yWsKxsIYheHLGAy77IiIiorrn4MGDSE9Px5EjRxAWFuayfX5+2epQoaGhHu97xYoVEMULn0MmTJjgcpsRI0YolSTk6hGyf//9lwEHqpSM+LM4u39PrTlreelpmPPuq7j9/c+xZc4fSI07USP7tVnM2Prvnzi8cY1X+w1p0EgJbbTs1Q/tBw/D+t9+crmNIKggKQlux+Q+h91xnxePlIiIiIiIiIiIiIiIiIiIiIhwuQcc9q877NZg/oroT+dAk14IW4ShwvWCSYJmZyFsffwc9qHZXwhVpq3MssL8Ivzx7n9YPWuDW8chFEoQzlkgNdY5bCM/Rau9VBJCo0LWXY2gTbfAsPtCxYa0+AwYAn1RmFc8QM8Zv4NZ0KaZYI2suHqELt+K5++6Ch16toRfoAGn9p+FIcBFpQnAZbghqkkEPlr7uhLEICIiosqxQ6XcqqKq27sjIiJCubnjv//+K/O4e/fuHu93x44dJfeDg4PRpk0bl9vodDp069YNmzdvVh6f/0nkrvjDB2rdyTIbjdg2928cWreqxvedl5YKna8vLP8LDVWFSq3G8HseRMNWbaHz8UXq6Tjo/Rxfn53nKtwQHN0Qk157p8rHR0RERERERERERERERERERESuXVYBh6oMkpe3DJt9BBmTO8Ae4lN2ncWO0LnHobUYkdfBB5J/BWUWTCIMPxVXULjYprnbYbWUDT5UxBqsRca1MZB8DAhBocN2RWYtpIuqK8hyJkSUCTjI3Ak3yAQRiP7+CFLuaQtrVNmQhybThMgfjuLl13dCb9DDP9iAzKRsVNVVD43Bve/fAl9/10EJIiIiqv82btyI5557ruTxgAED0LdvX4/7O3z4cMn9du3aub1dq1atSoINR4+6UYGLqBRBubKofU5s3wypVEWTmuSNcINMtNsx562p0Pr4KqEJY3ZWlfvsMW4iBky6DVqfsteARERERERERERERERERERERFQ9LquAQ/eRnaBSCRBFz6o4aHLMiPpuDwrbh8PUMhRQC9Al5cOwNw3qQqvSJuC5eBTeGwFbVwOgKh68pDlQCMOPGdCcNFfYr81qd7lvW4AG8c+3gy1cDxRJ0Obb4R9Qvj+LVY38wooH35jb+UPUq6AyezZwSZtlRsyH+1DYLgRFbYKVZT5xuUp1BzkAoeyj0KzcvCE/p6DCcIMoivjzvblYNnMNjDlGhDUKxfVTJmDojf2h1Wm9sm8iIqL6QJRUyq2qfVwKctUtu92OzMxMbN++Hb/99htmz56tfA6QxcTE4Ndff63SPhISEkruy/25q1GjRmX6kI+V1abIXU06d5WT18Vl12oRu831NUldYTUVKTdvMBmNFYYb5DDIljl/4vD61bAUFSIgLBw9JlyLtv0GKZUkiIiIiIiIiIiIiIiIiIiIiMgzl1XAIbJxBAZP6o+1f27yuA/BLsHvQLpyq4jmrAWBUxNhj9BADNdAlW2HOqU4/OBIwxZROLXvrNM2WVc2KA43FB8FsrMCUGjUwy/ADI3GDhSJKFTrYbbKv1Ins8JWcYyiIAF+h7OVW3U7fTAe+9YdQufB7UsGDWYmZeG+zk8jP6ugpF1uRj6m3fEF/vtsMT5a+zp8/Ti7KhERUXVITk522aYyQQFnli1bhiuuuKLCdVdddRU+++wzNGnSpEr7SEtLK7kfFhbm9nahoaEl9202G/Ly8hAUFFSlY6HLR0iDRmjZsw9O7tiK2iQ4Khppp+Mu9WHUOulnTyPhyEE0atuh5JokNy0Vvz7/OMyFxpJ2Rfl5WPL5h9i7dAFuePUdaHXnr92IiIiIiIiIiIiIiIiIiIiIqDIuzZS8l9BT39yP1r1alFuu0Xk366FOt0F7xKSEG6TWWkjDfCF116OiSZDlcINfkKHCfiSNgIIugcgbEl6cLijFbNYhKyMAaSnBSMsNgaVA7TTcoDtdCFWRZ9UbLoUzB87hmWH/hztbP4atC3cpsyM/1vfFMuGG0k7sOoWvn/ypxo+TiIiotrJD5ZXbeb1790ZsbKzTm7ecPVtx+NPf3x/NmjVTggVVVVBQUKZfd13ctnQ/RO4Y89CTiGjSrNxylebS5c/lcIPOt+JrksuZfF7++r8X8NNTD+DM3l1K5YbfX3m6TLihtOQTx7Bh1swaP04iIiIiIiIiIiIiIiIiIiKi+uKyCjhsW7wbj/R6Acd3XJiZ1D/ED1c9PAa/xn2BgFD3B7a5Qw42iDOiIH0dDemVcEgfREKa1QDSiPIDh4y5hdDqyw5oyhkZgTOfdkTKMy2BAAEqvQhBZy8XdCgmwGdfvtPjCVycgbooKS4Vr10zDX+++x/SE7Kctl3523oY8wpr7NiIiIioesgBB61Wq1SECA8PLxMm+PTTT9GuXTtMnz69SvuwWCwl9+V9uevitlar82pdRKXJlRtmvfiUUhngPB8/f3S/4irc8+n3lzRkYCkqhFrj/v8Ll5Ps5CT8N+1NbPvvbxTm5jhte2D1MljNpho7NiIiIiIiIiIiIiIiIiIiIqL65LIJOOxeuR+vXT0NCceTyywvyDZi2U9rkJWSg0c/vwcqleMKCJUhxWqUQANa6cquiNRAeilMqehwMavZpgQuZDmjIpBxRyzsgWUHGAkqQNDJVRjKhxyCZ6ehoxRa4fGELM5AwIbskseGgPL7rwpJL8A0Jgh5/9cIue/GwnhvBOwNvTc4SrSLmDN9oct28jk8ezjBa/slIiKiC7Zv3474+HinN2957LHHlDCD3Gd6eroSeHj++eeh+d8M93Ko4KmnnsI333zj8T7k6lDnCYJ3PgMSOXNq9w7M/+gd5KSWvSYxGQtwYPVymI35GHbn/Zf0JNptVuj9qhb8Dm/ctMLlgqrs5afOULcqRoh2G3YvXeCync1iUQIRRERERERERERERERERERERFR5ZUsG1GM/vvw77DZ7hevMRRb8+vo/eHP+CwgMC8Dvb8/BgQ1HqrQ/6eZAwN9xfkS6OxhYU4SLh9LJgQtRKyDrmgYOt1XG32kkSLYLW+tPF8DnXCH6Lrbh1kdGYaMtEQcOxCF3bwoMy9KhP1MEvUGHjgPbYcA1vWHMMWLJD6uRdDIFVWWP1CDvrViIDS+EOWydDDBNCIHfF6nwWZELb8jNcF6h4jydnrPOEhERyeRIpF0SqtzHeQ0aNFAqKtQEeV+lNW7cGO+99x6GDx+O8ePHl1RNeOaZZ3D11VcjKiqq0vvQ6XQwmUyVrsJwcVsfH59K75suTxv/+BmSVPr/qgvkGf+3zvkTE6a8CENgELb+9xeSjx/FpWA2FlRp++gWrdB1zHicO7AHSSeOwZidBUkUlZtW74NG7TqgVe9+KMrLw/5VS5GXnoa6oijPvWsbVsIgIiIiIiIiIiIiIiIiIiIi8sxlEXBIPJmMYzvinLbZtmgXFn67AllJ2Rh8Qz+07dMS/3zoenbOikhyrmGIiwoJDTVAOx1wxFJuVWGnQIgBLn41agmwFd8VzHZE/nlOub/q1w3KrWGLaKjiUhBSahNzoQW7lu/D7hX7y8xYXFX5LzQsE264cIwCjI9GQRNnguaUGTXBP9gPzbs0qZF9ERERUc0bPXo0Xn31VUydOlV5LFd5mDlzplLdobICAwNLAg5Go9Ht7eR9lubnV1yBi8iZjHNnkH7ujNM2J3duxf6VS1GQnYn2A4cpQYE9Szy7JrmUDq5ZgYNrVyIoIgoFmRnlghxn9u7Cmb27K6xKVx/4BgQiLCb2Uh8GERERERERERERERERERERUZ10WQQc5KoIrsjj/T998NuSxyq14+oLLukEQO/G9g4qPIi+avf2I0owHMpF+LxE+JwtLLMqKc5xZQZvhhusbX1gb+0kzKEWYBofDP/PUp324xdsQFGBCaKt4hltZVq9BjpfHYw5ZZ9raTe+cDVUqir87oiIiOoRESrlVtU+apvHHnsMr7/+Omy24rTn2rVrPQo4hIeHIy2teOb4rKwst7cr3dbX1xcBAQGV3jddfkxuVEUQ7Xas+O6LksdCXf5cK0nITXNWLa72hRv0/gGwGI0Oq2zIVFotNGoNLKYih236XX9zNR0hERERERERERERERERERERUf1Xh0fMuC+6WSQ0WjdDA/8j2h0PanFFMElAqs3FDiQg3lrhKl1y8UzCzugTitD8mb2I+exEuXBDdSpqGYy029rh3Ct9Ef9yH+Tc5LpagrW9wen6EbcMwouznnAabpA17dAY7y+bCh8/H4f9TH7uapfHQ0RERHVbUFAQ2rVrV/I4Pj7eo36aNm1acj8pKcnt7RITE0vuN2rUyKN90+UnOLphpQMLkuj5NQlVTvvBIzD2wSechhtk0c1a4toXX4dGp69wfafho9Ft7HiefiIiIiIiIiIiIiIiIiIiIiIPXRYBh6DwQAy8rm+N7lNY6GKG1p0mCCn2Clf5nCqE/rTz0ELQsjRo8l2EKLwsb0BDpN/WHqaWIYBWBUmnhjXSeXhBJtgrnp01unkkvt3/EV749XHE7Tnjuh+VgDa9WuK301/i9v+bhJjWDRARE4Yeo7pgxu5pSj9ERER0gV1SeeVWnSwWC44fP46lS5fCaHRddes8f3//kvuih4PAS4ck5GNwV+m2HTp08GjfdPnxDwlFix69L/Vh0EVCGjTCnR9/jSseeQqpp064PD9ySKVR2/a49/Pv0ffayUpwJSAsHE279sTtH3yB0Q/wmoSIiIiIiIiIiIiIiIiIiIioKjS4TDzw4e04uu0EUk6n1cwO/8kHevoAXSqoNpBhg/BZttPNI787i8QXW0EMKP8rGtmwJW56cDDeXTe93DpboA5FrUMhaVTQJRXA51wevMEa7ouckeWrNdhzdUCs8zCGdmfxYEVRq4JpWAyswxujUA9IQYFYVpSCW8xRsBRZ3K6qIQdWbnv1BuVGREREdde6deswfPjwkoDCwoULMW7cuEpXUYiOjvZo/7169Sq5n5KSolSCiI2NdRnI2Lt3b4V9ELky7M77kXoqDvmZ6XX+ZLXuOxDNuvbAshmfoq6Rqy9odDrYLBaoVCqc2r0DgWERsFrcuCYRi0PqfsEhGHDjrcqNiIiIiIiIiIiIiIiIiIiIiLyn3gYciowmrJ61AZvm7YDVbEWbni3wyl9PYcPsrVj+81pkp+YivFEoMhKzqmX/ghXA8+nARH9I4/yBRhogVwRWGCHMzoeQ5XymYX18EWJfPYqcKyKR3zcEokENXaIJQasykHMkDrZ3b0FwRCBy0osDDJJaQPaVzWHsHAmohJJ+tKlGhP17HNqMoio9n4KeUWX6PU8yq2HL1kETUvFgIKHQDp+F2RB1KiQ92B7mJgFyLAIQgVPZ2Zi2cSPmHT2Kp7q1dHkM0U0jqvQciIiILjciBOVW1T6qi1xBoXT1hf/++8+tgMORI0dw7ty5ksd9+vTxaP8jRoxQBjeXDlg89NBDTrdZtWoViooufK4aPXq0R/umy4PFVITD69cgbtc2iDYrGrRqi6ueeQnHNm/AoXWrUJSXq8z+n5+Zgbom8dhhtOjZB3o/P5grUX2lNrBZzMpNlpkYj/W//Yijm9ah62jXrz9BkVE1cIREREREREREREREREREREREly9BkiQJ9UzyqVQ8N+qNctUaNFo1nv3pEQy/eZAykE0e0HZfpyk4cygetY1ao0JodAgykrIgieV/RYIgYOiN/bHmz03K48yrWqKwS2SFfanyLYj+Zi/URTaPjyft1nYwtQqpeKVKgr55PjRB1rLHmGNDwLtJ0B4qQsaEJsgd2tBh/9e2aYvURxci5Yzz2Wx7je2KF2c9gYAQf+Xx2awc/L5nH3acS4RapcKQFk0xuVsnhPv5efI0iYiI6ryEhISSKgTvr+uF0Gh9lfrLSjHj+SE7lPtyhYOYmBh4U//+/bFlyxblvsFgwIkTJ9CwoePPDLIbbrgBs2fPLnm8Y8cO9OzZ06P9jxkzBsuXL1fut23bFvv374dWq3Uaili9enVJezlsQVSRrKQEzH5rarlqDWqNBlc+9oxSAUGSwzWCgB+fvB85Kcm17kSq1GqlUoGjAIYgqNC67wAc27IB9UGnEWOUag7GbOch+OY9euPKR5+B3mAo+V3vXb4ISceOQqVRo0X33kpfhsCgGjpyIiIiIiIiIiIiIiIiIiIiovpDhXro/677oFy4QWaz2jHtzi9x9nC8Em6QTXz0Cu/uvIqTHMshjKsfvQK/nfkase0aVRhukMm5lDOH4xHdLBK2YD0KOzmubiAG6GDsXrWZRlUmu+OVogDzyUAIf5rh808mfOZlwf+jZITcdUoJN8jVJfJ7Vxy+OO+/g4dhtLkOYOxYuhf/d+0Hyv0lR4/jiu9/wY/bd+NASir2JiXj0w1bMPbbn7EvKaXyT5KIiIhq3JNPPllyv7CwEHfccQcsloorQ8neeuutMuGGiRMnehxukE2ZMqXk/tGjR51WcHjzzTdLwg2yp59+2uP9Uv0mf1af98Fb5cINMrvNhsWff6gEGgSVSgkudx093rsHIFTtokQOYXS/ciLu/2omAiMcX0dIkoictBSlCkV9cGDVMtitrq9JTu3ajoXT31PuH96wBj8/8wj2LFmA1FMnkHz8KDb++QtmTnkIqafjqv+giYiIiIiIiIiIiIiIiIiIiOqZehdw2Lf2EE7tO+twvd1mxx/vzi15PO7+kRh1x5BK7cM/xA9+QcWzdV5cXaDHqC6oCp2PDg9+cgd0PlrsWXnAadvT+8+h5+guKGoTCqicD2IKmdChSsdlOOC8soLMf3U6/H7OgN936dCvyYNgLQ5n2IJ0EA0ap9tKWhUyJLNbx7J/3WEsnrcZT89fCqu9fPAi12TGQ7PnwexGYIKIiKg+EyUV7FW8yX1Up0mTJmHs2LElj1euXImBAwcqQQL7/97n5cHi27dvV8IMU6dOLWkrV3r48ssvK+y3adOmysDx8zdnFRzGj78wuPyHH35QHh86dKhk2ZkzZ3DXXXfh1VdfLVnWq1cvZRlRRc7s263M6u+IHHLYMX9OyeNuV4xHm36DKnUyffwDoNH7lFkm/1tv3r0XYtt3rNIvRqPXY+ht9yj/7yUevfD/QkVS406gWVf3QkYhDb1bAaY6mAry3P4dH9mwBsu+ng6xgmuSovw8zPvwrQrXEREREREREREREREREREREZFjzked10H71x922WbtX5vQvl8rxLRpiPb92uC5nx5Fn3E98Nakj11u26xTY0xb+SoMgQbkpOXCL9AXaq0Gao0KWp0W7932WZWOvzC/CH9Pm4+2fVopA4pcWfjNCogDXQ8UEvQa+PjpYTK6FyK4mO/xbOjP5sHcJLDi9YcyoUsyVrhOZXZvUI/KJLp9PO/MXAhrb8dVK9KNhVh69AQmdmzndp9ERER0afz1118YNmwYdu/erTzesWMHRowYAT8/P4SFhSErKwsFBQVltpHDDYsXL0ajRo2qvP+ffvoJw4cPx4EDxeHSRYsWKTd532q1GmlpaeX2/ffffyvriCqScOSgyxNzcN1KRDRphtCYWDRs1RbjnngOzXv0wpIvXF+TRDVvietefhNanR6FeTnQG/yVCnUqjRpqjRbzP3qnSr8Ys9GI3UvmIyiqoVvt969a6nZlCLVWC7vVivpgxfdfOg0w5Gek4+TOrWjdZ0CNHhcRERERERERERERERERERFRXVbvKjioNa4HmslVHD5/9Ac8P+pNXBt6J76e8jMGTOyFbiM6udz29MFziD+aCJ1ei8jYcPgF+cHHoFfCDbJOg6o+oH7uF0vwzi3T3W6vSyk74K8iqvhcDL95oMfHJEhAxKwjMOxPB+wXggiC1Q7/7ckIn3Pc4bZqow0+J3Kd9q+PL4A20+T28eSGFZ9vZ/YmJrvdHxERUX1khwA7VFW8Oa8S5Q2BgYHYsGED7rvvPmWQ9nlGoxHnzp0rF26YMGECdu3ahS5dqlY567zw8HClYkTpSg6yzMzMcuEGuXKDfKxyhQgiR1RuhF9Emw2rfvwa/7zxEr64+0Zs+ONntO0/BA3btHe5berpOOQkJ0Gj0yEwPBJ6gwFaHx8l3CCLaVe16m2yXYvmYvkM969J3GG3WdGmr+fXJLWN1eT6+iX5xLEaORYiIiIiIiIiIiIiIiIiIiKi+qLeBRz6jOteqfZWiw3/Tl+IN274CDe/dK3rDSTg7Zs+dVhdYfgtgxAcUXGVA4UbYwSzkrORk1o2ECCpBBg7hiPzmlbIuL4N8vs2gOhTPHDK52QONFlFTvvM/2sfti/Zi0atGsBTeqjQ/6wdLb49hLC/jyH8z6No+NEuhC46DcHuvNpE6PJ4wOagQoMoIWRZfKWOxdX+ZDo3wi5ERFQ5+9YdwrfP/oIvn/hRqYhks9p4CskrDAYDvv32Wxw+fBjPPvssevbsidDQUGg0GiWA0K1bN0yZMkWp7jB//nxER0d79czL+1iwYAFWrlyJu+++G61atYK/vz90Oh1iYmJwzTXXKFUbtmzZgubNm3t131T/NOvas1Lt5YoGO+bNxuLPP0Tfa290vYEkYeGn0xyu7jB0JHz8/FEV+ZkZKMrPgzdlJyUi4ehhBEZEedyHXAEiqkVLaHR61AXnQydEROQ9qbsk7PtKxJ7PRSSskyC68TciIiIiIiIiIiIiIiIiIqo7NKhnWnRpiojYMKTHZ1Zquy3zd+Lqx66EIdCAwrxCp20zk7Kwf91hdBlafmZUva8O4x8ajT/e+Rf2igb0e/Cdqy1Ij/Rb28MW5luyrKh9GHKHxCL872PwOZ2LsDnHkX5Le4iG8gNoglafhT6xABkogFrr+aD/N+Y+i0atGuL2lo/CL6Vy2/qeykf0zGPIvK45rCEXBiOpcy0In38GfkdyKtffkSwUtQ5x2mZ4qxaVO0giInIoNyMPr149DYc3X5iJeu7nSxARE4bX5z6HVt054Ls2EiVBuVW1j5rUpk0bTJvmeOC2u86cOePRdiNGjFBuRFXRsHVbGIJDUJiTXantjm3ZgG5jJ0Ct1cFutThtm5eeiqTjR5V9XUyu5tB55BXYsWAOJNFByPgSkY9bEDzP2V/30hswBAZh5tMPV+Eo5Ne1mhkM26Jn7xrZDxHR5cCUJWHjyyKyj15YdvJfCYYoYOA7KgQ1r9nPrURERERERERERERERERUPepdwEE2+fmr8fmjP1R6uxW/rEV0swic2nfWZduE40nlAg6iKOLdWz/D2j83wVvkYTcZk9uWCTeUrNNrkHFjW0R/uQe6FCOiv9mLgp7RKGwbBkmtgi65AAE7kqGPzy/Zxm61e3wsO5buQ9OOjT3eXg4xGN7ejaJWQbCF6JVwg+F4DgQPxlz5701H4aimMBkqDmz0iGmIPo1jnPZhMVuxcc5WnD4YD79AXwyZ1B8Nmns+mywRUXU7visO875cqoQM1Bo1+ozrgYmPjEFk4wiP+ks+lYoNc7bCXGhBi25NlSpIanXFr6v/d+0HZcIN56UnZOLFsW/hh8PTERTupIIREdFlpuf4q7H+t58qvd2h9asQGB6B7OREl23lNhcHHETRjgUfv4eTO7agtpIkz0MXZ/buQqfhY6p6BPAWlUYD0VZxNaPGHbugQcs2Tre3WSw4vnUjMhPjoTf4oW3/wQiMiPTa8REReVvWEQkn/5OQeUSCSgs07CegxdUCDBGehQvyEyQkbpBgtwChrQVE9wEEVcV9XRxuOK8wFVj/rIixP6ug9WfIgYiIiIiIiIiIiIiIiKiuq5cBh1F3DMX3L8xCUYGpUttlp+ZizB3D8PWUmS7bBoT6l1u24pd1Xg03yMzNg2CN8nO4XtKpYewehaB18VAXWBG0Nl65VYf1s7fghmcmVKkPQQIMx3OrfCwqi4gOy5Oxv38YrJFlwx9ysOHza8Y73X73yv1495ZPkZOeV7Lsp1f+wOg7h+HJGfcrA4eJiGqTRd+uwGcPfwdRvDAo8+zhBMz7aile+3sKel3R3e2+rBYrPrn/G6z8dT0k6UJ/QeEBStCrIMeIkOhgjL59KIbfMgjHd8bh4MYKRhL9T25GPpb8sFoJGMrysvJx5mA8dD5aGAJ9sWHONuRn5aMwz4SgiACENwrD0Bv7MxBBRPVapxFjsPnvWcoA9soozM1FhyEjsPHPX1y29fEPKLfswKpltTrcUFXHt25CpxFjUVsEhIYjN618ebsmnbth/JPPO9321J4dWPLlJzDlX7gm2fjHL+g86goMv+t+qFS8JiGi2uXEHBF7v5TK5MTyTks4OVfCgLcERHZzv0KP3SxhxzQJ8WtK9ydBHwylIoPVCPiGA03HCmg8QkD6PlQYbjjPlAWcWSah1XXFAQdzroS8M4BaD6h95BAFYM6TYC9C8T4iBMQOE6ALZCCCiIiIiIiIiIiIiIiIqLapdwEHuYrCR/d8Velwgyy6SQSuuG8E/po2F1kpOQ7b+Qf7KbNcX2zhjOWV26HgevJQU7Mgl93IbeSAQ3WTz6k8GLYmqNQqdBvRCbuW73PYJnPHOTTccQ6mlsEwNQ0ARKCJSYVrPx+Op1YsRnxeLsIMBkxs2QZXxDZHSEggBEHA2cPxeHXi+zAXlR1sJg8aXvrjavj6++Dh6XfVwLMkostZ8ulUHNl6AhqtWnm9CwgpDs5lJGZi6Y9rELfvDDKTsmAymgFBwOkDZyt8zzAbzXhp3LsYfcdQPPjxHSX9OPPZw98robyKggryTZZwPBkH1h/B/K+XoTCv0GWf25fsxoQHR2HGlJ+x+o+NsJisTtt/88wvuO3VG3DTi9e47Js8J0IFO1RV7oOIKvn/jWjH0i+nVzrcIAuMiEDXMeOxa9FcFJUa+H4xn4BANO3SrdzyfcsX1+tfl9VswqF1q2pkXyq1GjHtO+Hcgb0O21QUbgiKjEab/oOwcPr7yMtIh19wMNoNHIqWvfrBEFh8fZd6Og7zP3oHdqu1XHWLfcsXQefri8E331kNz4qI6IKCRAlZRyWoNAKieqCk+kFhqoTTSyTknpJQlCmHEYr/fpV7quKzZysE1k2R0OxKO7o8rILWz3VoYOcHEuJXl7/AMecU35TjSwDS90qImyeVLHMmeauEJqMkJYQhBydEp5ckEvZ+JaHTPQJaT+LnXSIiIiIiIiIiIiIiIqLapN4FHFbN2oB1f3s2Y+nYe4bD188H0ze+iQe6PuswJCFBwvGdp9BpULsyy08fOFep/UU0CoXOV4fkuNQyM3JftDO3yVUl8rMKUF2ad2mCzKRsl+3UGhXsNrFK+xLtIm55+TrsXX3AaV/yV+a+J3OUm6QCjt3ZCk9vXFmy/lRONnYkJeLNM/PRbVEaxkwahF3L95cLN1w8S/qtU69HYFj5GXGJiKoqNyMPH983A1sX7Cx57df76jDu/lFo2CIKX0/5GXabvdL9Lv95LU7uPY1nf3wYRQVmRDUJR2TjiHLt0hMylbbuOrHLwSimixTmF+H50W/i2I44t9pbzVb8+PLvCAzzV547EVF9cnD1CsTt3OrRtp2GjYbeYMCNr7+P3158EjazPKq0ApKE1FNxaNi6bZnFGfGVuyYJjIiCSqVSBuqXrurjKbmqhKmgOCxXHcIbN4UxO9NlO0GlgiRW7ZpEEiX0v/5mxB/cV6lzI5/L5TM+K3mcnZSAhMMHseLbL5TzLVfoOLlza7lwQ2l7ly5En6snKf8WiIi8zZQlYecHIpK3nf+7kwS1D9DyakGpbnDgWwmSBy+hpxcDOadE9HhagK1QgF+D4koJFytIknCugnCDI1lH3GtnMwLrnhaRc9K99qIF2Pe1BF2QiKZjGHIgIiIiIiIiIiIiIiIiqi3q3bd38uB0T50faNqgeTS+P/gxopqWHxgqM+YU4uVx7yD+WGKZ5YZA30rtLz0hC4knUhyHG+QBQqdzXfYTkW3DPe/egs+3vYvwRqGoLlc9NAYRsWEu21U13HDe4u9XVaqvnKENYOxS8fGZm/rjcHd/zHprDo5uP+G0H3nW8Z1OKkcQEXnKYrYqIYDN83aUee2XQ1f/froIXzz+o0fhhvNO7TuLh3o8jylDXsWtzR7BC2PfwtkjCWXaKMEKu3dep0vLTsl1O9xQ2nfP/4YTe9wLUVDliZLKKzciqpx9K5d4fMrOD6QPaxSLOz74Ev4hFX++lUME/777GnJSy1YQkGf+r4y89FTkpCZXOdzgGxCAwbfejZve/BC+gcGoLl1Hj0NAWMXXaaVVNdyg9CGJ2L9qqVeCH6XP95bZvyP9zCmXlSrOHXRcOYKIyFM2k6SEAJLlHF6plze7CTj2p4T9MzwLN5yXfRRYeZ+EtU+IWDRZxIYX7MhPKPs6mrRJqtSEHu4qzIDb4YbS9n0lKcEMIiIiIiIiIiIiIiIiIqod6t2ItXNHyoYOKmPr/J3KT3kAi0anQW56nsO2cnWHOZ8sKrNsyKT+8DY54KBNdlyVwV+vwx+/PI/Jz1+NRi2iMWPPBxh8Qz+o1N791V5xzwgMvXEARt42GBqtGjXBbrO53VYSgNyB0U7b5PcIg93XvWM/5iIEQURUWXvXHMSzI/4PcXvP1MjJk9/Ldi3fhymDX0XiyeSS5Vaz+6+tlZGV7LrCT0WMuYV4uMfzuL/L0zi1v2bODRFRdctKKhsuq4xTu3eUDNCXP9MXFTi+JjEXGrFnyfwyy9r0G4Sa5uPnjzs/noFeE65FaMNGuOODz9GyZ1+lioI3dR0zDi179UWHoSMgCDVzKStW4prE21JOHr9k+yai+ke+PkjdKWHdUyLyaupjtwikbAPWPC7CmHIh0SA6LmBTJUUZnm1nyQNW3CNh+X125J1l0IGIiIiIiIiIiIiIiIjoUqt3AQf/YD+Pt102czU+e+Q7XB18B25seD9MRrPT9pv+21bm8fVTJlS6ioM7wv88Ck1aYbnlQT56fH3TREQG+CuP/5o2Fw92fxbr/9ni1dm52/RqgSnfPajcD40OwY3PX43qptaoMfj6fm63Fw0a2ML0TttIOjUsDQxu9ffvp4vxy//97fb+iYgcsdvteOeW6Xh2xOs4vLnmByrmZebjtzdnlzxW11BIrbJOHziHB7o+i1uaPYRjOz2YdpUqZIfglRsRVY6PwfNrkgOrl2HFt1/g8zsn4btH7obd6nwU6IntW8o87nnVtdDqnX8u9ibfgEBc88JrMAQGKY+3zPkTv77wBE7u3OqVKgrnNWrbHiPufki5HxgeiW5XXIXqptZq0bK3+9ck3rZ93mxsm/vPJds/EdUfol3CltdErH9WRNbRmt+/ORs48lupkg3V9fGyilUhck8Cy+6UsPhmO3LiGHQgIiIiIiIiIiIiIiIiulTqXcBh2OQBHm+blZKLBV8vR2F+kVvtzUWWMo+jmkSg85D28DZNvgXR3+xF2F9H4bcnFYb9abirVXOsePIu9Goaowxevb3Vo/j+hVnISMjy+v6ve2pCmceCUP0DHUfdNhgDr+mDph1j3Wov2Nz7Fluwuv8F9a9v/IOjrORARFX01/vzsOaPTZf0PK77ewv2rj2IVb9vwKy356A2Szubgcf7vYxjO+Mu9aEQEXmsTf/BHm+bl56G/auWwmo2udXeZikbyg6JboiGrduhJsghg3s+/U7ZX2FuDr595C5s/vs3GLO9f03Sc/y15QLR1a3jsNFo3XcgQho0xKWy8Y+fkX729CXbPxHVD4d/lpC44dIew7lVEtL2iTi7wo5jf1UxiVDNjMnAygck5Jys3cdJREREREREREREREREVF/Vu4DD1Y9dAa2Ppkb21apH83LLzIVlQw/eIkiA38lMdA0+gqvu3w+h2wx8e+oGzI1/C6/c9yKS41Kr7TkOuq5PmWUb5mytcr96Xx1uefk6+AWVr6gg7++xL+9V7r/8x1MIjiyeDdYZldkO32O5TttoMk3QJxgrdZxPDX4Vb988nUEHIvKI3WbH/K+WXvKzZzVb8ezw1/HerZ8hOyUHtZ1cheitGz/GtsW7sWrWBhzbwYoOHp9LSeWVGxFVTo/xV0OlqZlrkqjmLcsts5qdV6Lzlj1L5uOr+27Bgk/ew++vPI38jPRq2U+D1m3RvEevMsuOb91Y5X61Pj7oc80k5efF2g4YgmF33KuEu8c98Tx8AgJxqcx6eQoWf/4hUk/x/ZCIKs9ukRA3/9IP1LebgHVPStj+DmBx/uebWkGyA1veFJG0RcLZFSKyj1/6c0hERERERERERERERER0uaiZUTc1KCQqGBGx4Ug6kVLt+xr/wCgknkzGom9W4OyRBBgCDZCkavrCUyWh88cmRI6wlywSYcfx/E1o8AqQmuKDrK3e+3UKKgH9J/bClO8ehEZbtt+iAvdmk3VEq9fitTnPoNfYbrjxhaux5veNOH3gHHwDfDBkUn+06NK0pG3TDrGYsecDLPh6GdbP3oqigiIUZBthMpYftBWyIhFFLQMBdcUVJkJWJClBkcqwWWxY++cmbJi9Fc/9/CiG3zSw8k+YiOqsM4fisW/tIWVwY/dRnRHTqkGltk+KS0FmUrZXj8k3wBcmowmSWL8H2KScTsMr498teRwRE4pHP78H/Sf2vqTHRUTkjoDQcPgFh1TbgP/Suoy+EllJCdi/cgmykhKhN/hBUNVcMEm027wSNqiQICgVFEbf/yhUqrIVGyymql2TaHR6XP3sVDTu2AW9J16PIxvXITPhHHS+BrTtPwjhjS9ck0Q1a4Hbp32GvcsW4cT2LUrVjKK8XNgs1RNuv5jdasWRjWtxbMtGjH/iObTq079G9ktEtUNOnISM/RIEFRDVS4B/w8pV1cw/5/1AgdYPsFZu/og6qeAcsOml85VAJRiigO5PCWjQhwFgIiIiIiIiIiIiIiIiouokSNU2Iv/SubHhfciqgRmqG7drhPijiaiJMxg93opO7zmeibUoWcDGMQZArNwX3Y74+Onx8bo30Kp7+SoVUye+h60Ldjndvuvwjti/7rAyC/d5KrUKHW/ui8G3D8Sgvh0Q6le+eoMr+9cfxtNDX3O4Pr9bGDJvbA6b74UBUILFjtAlCQhZnYyq0Plo8fu5GQgKv3SztxJRzcjNyMN7t32Gncv2lSyTQw79ruqJ52Y+Ar8gP4fbGnONWPzdKqz5cyNy0vORHp/hteNq2DIab8x9DjnpeZj11hzsWXVAWa7RqmGzXgjA1SZyFR75fHorkNFjVGdM/edp+AVW/j3kcpGQkIDY2Fjl/ourhiI4uvzM5JWRk2LCuyPWKvfj4+MRExPjleMkqu++uPsmmI351b6fsJjGyEyMR41clNQwOWxw0xvTyoQNzvvnrVdw7sBep9vHduiMhCMHIYkXrknk8EfTzt3Rpv8gNO/eC74eVGY4s3cX5rzr+JqkOmn1Pnhgxs9KkIWI6jdTloRtb4lI21NqoQDEDAZ6PqeC1uD47z+WfAmnFkqIXy3BnAsUeTFvF9AYGPCWCoVpwJFfRaT/75JJ0ACSDbWSLvh/IQ8vvVVG9wX6vaqCxtc7f4MjIiIiIiIiIiIiIiIionpewUFmLzWovjqdO5KImhJzvdXpet8GEsIH2pGx3ju/UrlCwrfP/oIPVv2fUpVCni1cDiis/WszjLmFTrf18fPBvjUHy4yxMrYPhXliaywwAAu2boR2+2aMbtsKL48agnB/9wfnZCRkOl0fsCcT/oezUdAxBNYwH6jzrfDfmwl1UdUH/lpMViyfuRY3PHNVlfsiotrLbrfjxSvexoldp8osl18LN8/bgakT38fHa9+ocNv0hEw8M+w1JMWlevWYmrSPwb3v3YreV3aDSqVCE3nG7iEdkJeVr7xeG3OMeGb468jLrP6BtJVVkF2Ah6ffBb2vDke2ncDSH1ZXqdrRrhX78fp1H2Laile9epz1lfyJyC6PhKtiH0Tkwf879poZ5SlXHaivLEWFWP/7TFz7QvE1idVcXLXh6Kb1sJodh79lWh9fxB/aX265RqfD6b07lZtao0HrfoMw7I77KhV0yM9yfk0iU6nVEO3eDx/K5+Dw+tXoNnaC1/smotpDtEpY/6yI3LKXJMoA/YR1cvUEEYM/KFvZ5jxjioS1T4oo9O4lCYKaA53uVyG6d3H4OyAWiOqhhjlXgt0M5ee6KRKsBah1bEagx5Tiz8SZhyScWVq1/lK2AlvfFDHwnYp/B0RERERERERERERERERUNfUy4BDTugFy0/Muyb5NTQNR2DEcol4DQ44F+m2JUBc4Dye4w9DY9WBQ38beHYK4d80hfHzf19j433bkZxUoX2C7MyhVDkOUVtA5HJnXtQJUFwZYWkURiw4fw+GUNPx952QE+bo3u3RYo1CXbXzUWgi7XA868sSZw/HV0i8R1R4LZywvF24o7cD6I9iz+gC6De9Ubt1H937t9XCDrDCvCH3H9yi3PDA0QLkhNhyfb30Hv705G+v+3qwEsgyBvsp2l5pcWeLrJ3/CtFWv4Yp7RiiVgT575LsqzZ4qV644uPEIOg5sB3ORWakqlJuRjwYtopQKD3IIhIjoUgtp0BBpp+Mu9WFU20D7miJXS1g+4zMc374JZqNRHlXrVrUKq6ni90Cr6cK1it1mw5ENa5B+5hQmv/EB9Ab3qgMFhIa5bKPWaKvtvGcm8JqEqL47PkcqH24oJXUnkHFQQnjH8kHW7e96P9wgk0MMDfqU358+qHiZIVLAiC8lHP5FQsJ6CaIV0BgAm/M5MmqEfCy7P5Ew7HMVmo9XIbiFiL1fVq2cQ/IWIPuYhJA2AmxFEpK3SDDnAQExAiJ7FIdAiIiIiIiIiIiIiIiIiMgz9TLgMO7+UTi06ViN7lPUqpAxuS3MzYNLlilDavpFI2ThKfjvTatS/5YcAfpI51++WnMr/vJUq9fCai4bsvD190FRQdkgQkWW/LC65L4nM25LKgE5Y5uWCTeUdjorG7N27cMtbdth0bcrsWnudpgLzWjVozmuengs2vVpVaZ958Ht0bBFlNMBxC26NMHhLcdRHQwBvtXSLxFdOrkZeUg5naa8Vq74dR1mf7TA5TZr/thYJuCwd81B/P3hPOxavq9ajlGtcT1gv2GLaDw381E8OeN+pdKOHHC4pclDysD/S00UJcz5ZKFSdWLCg6Ox9u9N2L/2cJX6XD97K04fOIefXvkD+dnGkuXRTSPw1LcPovvIzl448rpPlFTKrap9EFHldRl5BVZ898UlP3W1Jdyg0mgg2spWtdD5+sJS5DyMJ1+DHFizvPQCrx9bRvxZ7F+1FB0GD8e+lUtwcsdW2K1WRLdoja5jxiG6RdlrksaduyIgLAL5mekO+wxv3BTJJ46iOsjnjYjqF3OOBGMKoNJKOL1Iwsn/XG8Tv1pEeMcLFQRSd0k49oeIjPLFa7xCcKNYQUBjAX1eEdDTLMFqBNQ+EhZNKr5/qUkicGK2hLBXBbS6XoVzq+3IOlK1PuUgR8YBCYdmln6OEvwaAr2eUyGiC0MORERERERERERERERERJ6olwGH4TcPxKb/tmHT3B01ts/s8S3KhBtKqFXIntAC2owi6BM8H2SavECDgKctDteLEhBwpRqpSyVI1gtfoPaf2Auv/PUUdi7bh81zt8NqsaFNr5YYemN/3N7iUZgKzahORS2DYQ/QOW3z9879WHfjD8hKzi5ZdvZwAlb+uh53vjkZt7x8XclyeQa8Rz+/B69OfF+ZFfxiTTvEYsIjY6ot4DBs8oBq6ZeIal5mcja+eeZnbJizDTZL2QGXrsivTwOu6YM+V3bHjKd/VgbvV6deY7u53Vbno1NuZw/HI7RBSK0IOMjOhz9OHzyH1DOOB4S6S36d/++zxeWWp5xJx9Sr3sMnG95E6x4tqrwfIiJPdRw2Cid3bMHpvbsu+5PYut8gXPHoUzi9Zxfidm5TQhcNWrVBq1798P1j9yiVFC61/SuXYMf8OSjKyy1ZlplwDofWrcTgW+9GrwnXlixXqdQYdtf9WPDxu5DE8lX0Ipo2R8dhI6st4NCm/+Bq6ZeIal5huoR9X0pI2CABlSzKeWoh0HCAhKgeAnZ/IiJuvvcDYKVF93Z/sL5aL0CtB3LiAJ+w2hFwkKXsLD5HOSclFFX9kgRpeyVkVZDbNiYBG14QMfwLuVoEQw5ERERERERERERERERElSVInkzLXwfY7XYs+Go55n+9FPFHkyCoBGh1GuWnf7Afeo7pirF3D8OW+buw9MfVyMvMh0oloPeV3TH4+n4IDA9AeEwoXhr7NrJScpzuyxagQ/KTPRxWKZD5HspA+GzPB91r/CX0/r0Qfs0r/nUZ7TqYJS0K5wYg6ycftOzWHP2v7oXdK/fjyJbj0Og06Du+J656eAyimkQo23x079fKcy/NGuYDY6cwiDo1dCmF8DuUCcHu+T+Rgu6RyLympdM2aquImDe2Olw/8rbBeOaHh6HWXJgucN/aQ/j5//7CgfXF0+35+OnRdXhHmArMykzq1aH3ld3w9sKXqqVvIqr5qg2P93vJaTUYV+SKD3II67vnfkV1kqs3fLv/YzRu20h5XGQ04fDmYxDtohJYCwwLgMVsxdlD8UoIrFmnxjiw4QimTniv2kNslSG/D10/ZQL+fM+N6WjdIKgFSE7enwZe2wevzX4Gl6OEhATExsYq96esGImg6KrN9J2bUoSPR61U7sfHxyMmJsYrx0l0OZAH7u9dthB7ly9CTkqynNaFWiNfk6jgY/BD02490XHoKJzYtgmH1q6EyVigrGvevTda9+kPn4AA+IeG4583XoKpoHYE1tzhGxAIrY8Popq3QovuvXFm/26knDwOtVaLFj37oOvocQgIC1faLvrsAxzdtO5SH7Jy3isKK5zXafgYjLzvYSXccN7Z/Xux+Z9ZSDp+pKSyQkz7zrAUFSLh8IFqOc5Wffrjqim8JiGqD0xZElY9LKLQ80sSJUTQ/g4BB76t3j/tqTTAmJ9V8G9Y/Hcva6GEzENKsQKEtgd0/gLsFgl5p4srPQQ1kytKAJumihAdz9VR47T+QNMxAk7M8dL5kgudOQmmNB4hV7RgNTQiIiIiIiIiIiIiIiIiXO4Bh8Nbjyszae9ctlcZ/Kk36JGbnleu3aDr++LlP56EWq2GzWpDTloufP194BfkV6bd4u9W4pMHvnG6T2OncGRd29ppG6HIhphp2916DjofLSwma7nl+kgRvRebodfb5bFRCrskwCRqlXCDzKAOwEvtvsWir1fhy8d/xMW/Xr8gA95e9BI69G+DtPgMPNH/ZWQkZkFSC8i4pgWMXSLKBDVUBRZE/HkcvqfLn0N3FDULRNrdHZ220aYY0fDL4pm9nVXlePG3J8otz0jMhDG3EMd3xuGDu7+CJJeyqAaj7hiCx7+8Dz4GfbX0T0Q168eXf8cf71Z9oH1wZJDy/lGdVGoVZp35CiHRwZg59S/M/2opCvOKSt4vGrePQfq5jJJKDaENgmEymkva1BZywLC6XqMdadG1KRq1aoBx949C9xGdcLlgwIHo0ks4egi7F83D2QN7lc/jGq0WRfnlP0+3GzgUVzwyRRlcb7dZUZibC52vAXqDoUy73UvmY83Mb2vwGchBPh9YzSaPtvULCcX9X/6E3YvnYd1vP5Zb7+MfgOteegPRLVohJzUFf0x9BoW5zkPltaUqx5gHy1+T5GWkw2oqQuKxI1j53ZeQpEpOw+6mTiPGYPidD0Cjc14hj4jqhr1fijgxu+qfj/XBgLmaX0Ll0MKE2SpoA4AD30k4tUCCrbB4nUoPBDYGClMAy/+yeL7hgKUAsHv2NlJ95D931eQliQAEtZDPj4DmEwREdmU1ByIiIiIiIiIiIiIiIqLLLuCwatYGTLvzCyXY4I673roJN790rct2C79ZgZ9f+8vhIFa3Ag4mG2Le3+72gNmJj4xV9lmavomEjvPk70dFaAQRkiTApkwXV/YL0uBfemPVxzvK9Wtp4A9TyxD4BPritffuxNB2LZEen4GHez6HUwMjUdA7uuJjN9uVAII2s/LfTMv/uJKe7AZbmOPZo0MWnkLgthSXfX266S3EH0vCkh9WITkuFUERgRh562CMuHUw7mn/pBJ0qAx5pvOOg9vhwLrDTtvJg2NnHvusUn0TUe02OeZ+ZCZlo664++2bkXQyGUt/WnOpD6XO6jiwLd5Z8jJ8/XxQ3zHgQHRpHVizHCu++cLtQe5Db78XPcZd7bLd7iULsHXOHxUGJapDYESkEsDY9t/fHm3fqnd/nNi+2eF6ncGAcY89i2bdeiI3NQW/vvgELIWV+zx/Kdz67nSknTmFA6uXIS89DYagYLQfPBxt+w/Cj08+6EEoREDDtm2RdLS4CoQj4Y2b4I4PvqzSsRNR7TJvoh2WmnlJ94ouDwvIPgacW1Vv/oxY4yK7AwPfVUGtY9CBiIiIiIiIiIiIiIiI6LIIOORm5OHmxg9WWPmgIqJBBemaRmj9UC+oBBUGRDbHxMad4a+teIb+vKx8zP54IfIy8iGKIpZ8v6pknS1Ah+Qne5SpfHAx38OZCP/nmFvH1n9iL7z+33M4tPkYFny9DHF7z8DHT48+t3bCwcH/utz+wHjAknDhWEQfDbKuaQ1zs+Ay7ZqEBeOja8fikU5PI+HZHoBGDktULGBrMsIWnIYnipoHIe3WdoC2fP8BKUUI+WYvBJvrf4ZRTSKQeja9wtnN3Q21XEytVsHuYturHh6Dx76416P+iah2GqOZBLGGqwlUxZBJ/bHub8eDRMk94TGhmLH7AwSFB142AYenVoxCYLTjkKE78lKK8MmoFcr9+Ph4xMTEeOU4ieqjguwsfPfI3RDtNre3kasZNGzTDiqVCk279ED7QcOg9ak4jCVXeNi56D+YjUZlHwfXFP+/WR3a9B+M8U88h4TDB7F3xWJknDsDna8vYtp3wo55s722n9BGsRj78JP4/eWncamotVrYre5dRwaERyA/o/w1iVyFQxI9uyZRqdUQ7XanbXpOuBZDbr3bo/6JqPYRrRLmjK6eai/VJXYEEH/hT2HkIb8GwMhvVdD5M+RARERERERERERERERE5IgG9cTymWvdDjeYWxuQ/mITiAEaJKacUJatSj6Gr46ux/cDbkG74AuVDOT8x6y35uCfD+ejML+oZLlaq4bdWjwIRZNvgeFQBgo7RVS8Q1FCwNak4vvnv790Mq524qNXKD879G+j3Er79PhuJJvOONy28HjZcIMs87o2sDQJKtf2bGYOHvpjPkztQ5VwQ0BAIXx8LDCZdMjPN5Ttt22oxwEH31O5iP7hIHKHxqCodYgSBFHlWxCwKxVtzlmR6ka4QVZRuEHmabhB5ircoNVpSn4fRFQ3mQrNmPv5EqX6S8rpNPgHG6DWaSC6+Z5RG2Qm151qE7VZRkIWPnvke0z9a8qlPhQiqqcOrl5eqXCDzFSQj1O7iiu9ndyxVanScN3LbyI8tkmZa5LN/8zCrkXzYDVduCYRVGpIovOB8RUSBLlTp026jRmv/Ixp31G5lRa3YyuykhLgDVmJ8Zj30Tu4lPxDwpCb5rqinKyicIPM03CDzFW4QaPVocuoKz3un4guPVuRhBNzJJxeIsGYDOgCAEEDSJV7y7ikitIu9RHUD/Lvf+9nEnq/xIADERERERERERERERERUb0POJw5HO925Ybz4YaLZZiNuH/zH1g55jHo1cXrf339H/z6xj/l2srhBkEQlMFGspCFcbD762BudlGQwC4iZPEp6OPzix+7GMt/11s3ofuITg7XD4u8Fr+f+9jh+pQfyj42N/KvMNxwXnpBISIG6NGn32EEBl4YLJWf54tjR2ORnR1QfNiaqn3xqk8sQOSsoxB1Kkg6NVSFVggiYI8JRW2g1qhht5UdWKTz0eKF355A47aNLtlxEVHVFBlNeH7UGziytTjMJsvLLKh1p9Uarkf28CgUdA+FpFNBH1+IoHWpCNhdHGwIjSpbgYc8t2HOVmQkZiK8UdhlcRrtkkq5VbUPInJPRsI5r1SB+O/913H39G+h1hRfk2z44+cKqyYo4QY3wgrlN3TSXhAw9LZ70Khte4dN+lwzCUu+dHxNUlnGrExcSjaLGbVBRZUcNHo9xj/xPIKjLoTwiahusRolrH1KRM6FSxJY8lDn6HlJ4jXxayV0fkiCTwhDDkRERERERERERERERET1OuDgF1i24oAjxqEhFYYbzksz5WNxwiFc06QLCnKMmPXdUuT3iAZUgP5cHnSphSVtz4cbZCqLiIhfDsHcPAiFHcMh6tTQphfBb3eqUuHBHTc+dzVufulap206B/eH0ZaHJSm/wSKaSpbbi4DET4HsZWW/HDW1ch4gCAgxou1VaVBryg5yCggsQrceJ7BrR2vk5vpDf+5/AY0qks8T5BuAoPAAZCRmoTaQww13vX0Tzh6Kh7nIgtY9WuCKe4YjhIOKieq0P9/9r0y4oTYyNfVD4uNtIBouvDcVtQksvq1NReSfZ8sFsMhzkijhxO7Tl03AgYhqlt7g3jWJK3npaTixfTPa9h+Mwrxc7F4013HjyoYbXOh33U3oMe5qp23aDx6Oovw8bPzz11oTDvCUb1AwjDm1o1KSHG4YdNMdSDt7GnarFQ1atUHHYaNgCHQcWCei2u/wL1KZcENd5eW3m8uaaAVyTwE+PS71kRARERERERERERERERHVTvUm4DB08gD899lil+1MHfxcttmWfhqjotvh3m//xtl7OhbPivo/+jO5CPvvONQF1nLbya18TuUqN08c3e7eN979wseiW8ggzN3wBxb/sxTWNCBrGSAWVDDzm9r5rMvN2ieWCzeUbKqW0KJVEnbvbI3ALSnwpuimkbBarC4rWpwnqARlUGp16jigLW5+0XnAhIjqDrvdjiU/rEJtJr+qpdzdoky4obTcoVEwHMpFRlIWtHotrOby7z1UeTOenon0+EyMvWc4dHptvT6FIgSIklDlPojIPXIgYf/KpV45XfGH9qNZ1x6Y/dYrsNtsNfYrSD55zK12cgiiw5CRWP/7TziwahnqouDoBrAUXgiw1waNO3ZB76tvuNSHQUReIlolnFlaP5IB5hxAUAMSs9deseczEa2vF9B0rACVlp+3iYiIiIiIiIiIiIiIiEpzPvq9DolqEoFW3Zu7blhcPMCp7Qt345Hf5mKvUf72tuyXjOamQUi7pQMklfe/fCwquFCRwRUftR866wcjZYaAjDlCxeEGALpEx5UXtHorQiKdV2YIDc1H1M6zGNiyKW6dej08NfCa3rjxuYm4fsoEvDbnGdz9zk3ITCo/U6o8BlPs6QP7DYGwj/eHKkKD5395FL2v7O7xvn389AiOdD7rqY9Bj+adm3i8DyKqffKzCpCd6lngrKYUtguENdLHaZvcwZEoyi/Co5/dDeGi9yRvatS6AWLbNoLeoIdaq0Z9lnQyFZ8/+j1eGPMmzEV1e+ZxIqpdghs0RFiMdz5Txu3chjnvvIb0s6dRk6ymIrfb+vj7o+2AIagJKrUGTbt0R59rJnncR+u+A9Fr4vXoMf4aXP3cVPS5epJSIcP1vtUY/+QLiO3YxeN9a/R6+AQEOG2j8zUgNCbW430QUe1jygYseagX7Gagy8PVOxA/oDHgHwOo9MVhivos/xyw62MJG14QYbfUjxAMERERERERERERERERkbfU+QoOKWfSMGPKTGxZsAui3Xl6wRDoC7+DhSjq53ywe8HuLGyTEh2ut0UaUNg+DH4HM+BNlRlgX5hfhDdu+BCSi+9AH73nSnySdRr5Qvlzo9XZLs5vlCOvf/DKvrj1nsmwWW1Y9O0KjwYM3/5/k9Cs04Xn99nD35VrI7bRwf5SONDwwmzaVknAvwnbcHbtQXiiVY/m+GDVa1jx8zp8+cSPDtuNuHUw/INdV/cgorqhIMeI5TPXFpfWqcVjRSwNDW608UXDlgG48r6RiGoagb8/nI/dK/Z7Zf/BkYGIbdMIY+8ejuE3D4RGq8Evr/+NX1//p0r92hvrYOtlgKQWoDlUBM0h9wN8NenA+iOY9dYc3P32zaiv7BBgr2KeVe6DiJzLTknC2p+/w+k9uyBJzq9J9AY/mIsK4eqDvDEnW7nVtIgmzdxuW1SQj0WfTnPeSBAw+OY7sfmfWbBZLB4fV/9Jt6DP1TfAajFj34olMBU4D2pXdBwDJ9+GkAaNShYt/Xq6W5tKkoRdC/9Fmodhkwat2+H6l17H3uWLseH3mQ7bdRw6EjofX4/2QUS1jyVPwpllbsyyUUf4NQRaXauCfyMJx/8SkbbHO/3qQ4DAxkCzcQJihwtQqQXsmyHi+F+1+ELOi9J2A8f+lND+dn7mJiIiIiIiIiIiIiIiIqoXAYeMxEw8NWgqMhKzXLZt3681eozugp/fnQ31teGwh10YRF+aJtkMu8X1oJKidt4POKScTUNuRh6CwgNdtl3xy7oKKyCU1rhdDDb9swWNLCYcH9oAoqHsczYXaCCai2fGc0QyA9fcPgE7l+/Df58tQkFOISpr9B1DMevtOUiPz0RogxDl8cVjJaVoDezvRgIBZafoEwUJh2PToJrsC/X3lZ9lO27fGViKLLjqkTE4tvMkVv66vlybjgPb4oEPb6t030RUO+1ffxivXT1NCTnUdiqz3XUbkx1nD6fAmGtEj1FdoNVrvRJwkEN/s858DZ2PrmTZtkW78Nsbsz3uUzKoUPhsFGx9/EuWya/c6hMmGN5OhjrDjrCGochIyERtseSH1UoITw53EBF5IjctFX+++hwKc3Nctm3UtgNi2nXAtv/+rrUnOyc1BaaCAqU6gysH16xw+bzDYhrj+NaNSnUCjwMOgoBuY8fj1J4d2LNkASyVqDJxXsdho7Dxj1+Qn5WBgNBw5bG7lZEkUUTyyePwVOqpE7Db7eg54Rqkno7D8S0byrVp3LEzBt58h8f7IKLaJXWXhM2virBV/k8otVbeacBWJKFBHwGCoELanqqHN7QBwLg/VVDrLrweJ6yTqjfcIAA+YYDJu3/Sq5JTCyS0u1WCUA3VYomIiIiIiIiIiIiIiIjqIkGSp6Oso7547AfM+3Kpw/XyYPqbX7oWbfu0QpueLfDRPV9h6U9rYInVI/2lprBHXBjUeT7cEPH2GeR3j4GxR7TTfevjchD5+2F4m1zF4dPNb2Pbwl2Y+8USHNl6AlqdBn2v6okbnp6A1j1aKO1eGvcOdixxf7o8u0GDwi5RMLUMgaQSoEvMh/+uFDR81IagiWVDBaXlzbej8faO2LF0r8t9aHQa2Cy2ksdBEYFo2DwKR7adKNe2da8WOL4j7sLxPRQC8VonwQ6TCM3NiRDyK/8FercRnfDMjw8jIiZMCWos+X4lkk+lKTOXj7ptCAbf0I8DW4nqiZz0XNzZ+nEYc+vGSCKbvwbnpnWH3ckE+2HzEhC6JAkTHhyNx7+6D4/0fgHHd154/awKvyADnpxxP4beOEB5fHf7JxF/1HEFI1eMbzeCrVvFVSnUKTZMi7we3Qd2xG3NH0F+VgFqi1lnv0ZkbDjqi4SEBMTGxir3H1p+BQKjXFcKcSYvtRBfj16i3I+Pj0dMTIxXjpOovlj+zWc4sHq5w/UB4RHofdX1aNimHSKbNseizz7A0U3rUJtFNW+FyW9Mw4ltm7Bn2UKkxp2AWqNFy1590XPCtcrzkP39+ouIP3ygRo6paZfuOLNvt8t2KrUaov1CgNA3KBhB4ZFIiSsfUIhu0brC5dWhWbeeGH3/Y/ALCcXpPTtxYPUy5KWnwy84GB2GjkSr3v2VYyeiuq8oQ8LS20XYKp/FunTcrHzX+gYBXR5WYfndduR6VtSmwpBDz2cFxAxSQRIlLLlVhDEZ1UMFDHxHQFh7AYtuEmGrRZn4q/5TQR/MgAMRERERERERERERERGRrM5OVyznMlb86nxgUFZydkm4Qebj56P81MWb0fCx4yjsFwRTBz/lS1zfffnw3Z4HQQR0KUa4+o5Tl1o934Ke2n9WmXl898oLs3PbbXas/XMTNv27DVP/eRr9JvSE3XohSOAOdaENAVsSlVtpmV8Cvt0E6BqXH11riZeQ8aUNqZnOww0+fnqYjOYy4QZZbnqecquIHG4IDAtAXma+8lgc6GLwpY8KUm9fCKsqf973rDqgDKYdffsQPPbVfeg1pmul+yCiumHpD6u9Fm6Qq7sc3HgU1UlTYEPExgykDK54cL0my4yg9WnK/ZW/rVcq83gr3CCTz9XbN03Hf58txvVPT6hSuMHW1sdhuEFmj9Zg9oFNGHhFL7y77BU80f9l2K2uK1hUN3n2bvl9rL6SJAGiJFS5DyKqmN1mwxEXYYX8jHTEtO+I8NgmymOtT/E1SW0mVxz4773/w7mD+0qWyaGBIxvX4sS2zZj4zMto2rWHUpWgprgKN2j1PrCaTWXCDbKi3BzlVhE53ODjHwBTQfE1SXWSQw3fPXq3Ujli+F0Ponn3XtW+TyK6NE4tlLwWbghtD2R5f26NclQ6KBU+XTm9VIJvhOi1cIPMmg9seVVCeBc7WlwlVF+4QSYCJ/+Tq1CoMOg9AWuekJRll5wKUNffSxIiIiIiIiIiIiIiIiKiSnMyZ3TtZjFZUJjn+hvjnNQLg1madiyezVgm2CT4bchB2IxEhH2TCMPW4nCDzHAwHYLJSYBAlJTqB9WldLihNKvFhg/u/ALmIjM6DGjrlX3Zs4D4u6zI+sUGe07xdH3yz+xfbEi4ywJ7pus+5HCDJ0RRVGYPV+jdGDzpThtH+7KLSvWO6Q9843EfRFT77V17yCv9qDVqTPnuQahUQqUHy5+nN5StEuSI/++nELI4EYKp7IBMn7h8NPr4KNTG4vejogITfvm/v1AdDm85jk/ur9rro7W/n8s2O4rO4LVrpqFNjxZ4Z9FLSqWfi0U0Dsddb99UZpmoVSG/dzSS7+uExCe6IfW2dihsF+rOJLMutevbUqmURETkCavJBJvZ9WdhY052yf2wRheuSWqz0uGG0mxWC5Z89QnsNqtSlaK2kMMNnpDfu3W+vqgJcvhi/8qlWP3TjBrZHxFdGml7vFMoVaUtrmxQaaU2cXfQvDvhhvNhhEMzq6cQbMY+YM9n1V9kNmUbsOUNO8I7qjDwHZVSQeJihmigw52oMRGdy/7eiIiIiIiIiIiIiIiIiC53dXZEn95Xj+DIIOSk5TptF9kkQvm5ZcFOfPn4j271rbKICPv3ODJvaANJqy67UpQQsigOmhzH3/627NYUrbo3R1JcKvZ5abDtefnZRqz7ewti2zT0Wp9iLpD5mV25CVpAsqJGFGQbofPRKveFkxZIPZwPLBJOWKq8z5W/rsdtr96ABs2jqtwXEdU+pfIFVdL/6l6IbdMIPcd2xfbFe1y2l4MQI24bjDvfmIzs1FzsWrEPP738h1v7kg85fH4iQpanoLBjEESdCvr4QvjEF1b4HlBd8rMKqtaBznVmUtIL2DJ/Jw5tOYbuIzvj93MzsHHOVpw+GA+drxZDbuiPxm0bKQE4+fVarihhN2iQemcHWKMvBChsYb4wtQqBYX86wuecgODhOChJLWCrLQt9XngbwY3DMLRnB9zVvReaBYegvhChUm5V7YOIKqYz+MLHzx8mo/PX0MCISOXn8W2bsH7WTzVyOqOat0Jk02bITEpE0lHvXpMU5ubg5I6tCIn23jXJpVKUnweV+qJrvmp2YPVy9L1uMgJCK67gRER1m7euSWKGCghqqkJENzvSXV+SQFADTccKaH8HYMoSkLxFwuGfvR8YsHmnYF6FLM7/xOc1CWuAnFtEpZLDhNkqJKyVkHdWDoRIiB0uICBGBdEm4cwysXorSvxP+l5g7jgRPqFAo8FAq+tU8G/IxAMRERERERERERERERFdvur0iLWxdw93uj6ycTjeu+0z3Nz4Qbx+/YdKBQR3+cblIOq7ffDfkQx1lgnqHDMM+9MQ+eMB+O9Nc76tvy9G3jYENzw9AdVBHvB59lBClfvx9fcpN9C/psIN51lMxTtUzct32k44YgZOWWFuaIAl2gDJw+95JUnCxn+3ebYxEdV6bfu0qnIfAaH+uOvNycr9YZMHurVN91Gd8ehn9yAyNhxterbAHgeVeJxRm+wI2JmFoM0ZFYYbPKXWuP9Wr7k41FeZ/Zwwud3m66dm4o/35uKN6z/CqlkblGpLHQe0VcINMpVKhf+b84wSZMwa17xMuKG0ws4RKOgZ7dHx2gI0OPdCR6Te1RJ5HYNxLtCOX47vx4i/fsSvh/Z61CcRXX5UKjU6DB3htE1QZBTmf/QOvnnoTiyc/r4yi39N0Pn6oMPQUehxRfVck2QlJiArqerXJDpfAwIjL234uKZ+J+dJoqgERIiofgr1QnEbfTDQ4Y7iP3zEDnXvDyDRfYCujwgwRKgQ2kZA8vbqr4bgLjl84XbbGpqKZfenEo78JmLzqyLOrZZgzgUiuqiUcINMpREw4E0BuvJF56qFJAJFGcDJf4Glt4k4vfh/ZWaJiIiIiIiIiIiIiIiILkN1toKD7MbnJmLrwp04czC+3DpBEJB2LkO5eUqbaULI0tMIwelKbXdgwxE8P+oN3Dr1elSHglwjAkL8Pd7eP9QPrbo2w/71h5F8KhWXSkRsONLji38/qi1FkGbnQby+gm+O023I36RF7ss9IPoXV3zQZJkQtD4ZQZtTKr1fk9Fx9Q0iqrvyMvOVWf89JVdh6H1ld9z7/q1K9QbZsR0n3dp257J9mNTgXjw381EMvr4fUs96/t7jbfLxrPlzk1tt7XYRfkEGGHMdByzum3YrRJuIOdMXlamipF1fANM9NkjBDj5a2CToFucpd49tP6ncSlv60xp0GtwOL/z6OLKSs/HaNR8go7AQhe1DnR5zfp9oBOxw772gTe+WiNt7BjaLDal3toSlkaFcG1GS8OqGlWgfFoEe0cX/DuoyuyQot6r2QUSO9bnmRpzaswvZFQ32FwTkpl2az9vxhw7gnzdfQu+rqueaxGTMhyB4npf3CQhARONmiD+0H5aiapwO3IXAiCjkpdf878hqch0MJKK6x5Ql4dwqz7eXX1Yb9AM6P6iCf6Piz2BZx9wLKiRvBuZfK6LvqwIa9lOhyPncHDUqZigQ7+55kQCNL2ArctykyyOAzQScmO151YfMA/Kt9LmVcHqRhMjuQO8XBRiTBWx+TYKl+BLGa0LaATnHAcnuPOyw6yMJwS0lhLTmZ3EiIiIiIiIiIiIiIiK6/AiSPKV9HZafXYDf3piN5T+vRUGOUZl9Wm/QOx2cWR/4GPQwFdbtgfpPffMAfpr6B3LSLnxbLPb0gTghAFIzLVAoQbXeiAxDFIytwyvsI3h1IkKXnqvUft+Y9zz6TehZ5eMnotrlx5d/xx/v/ufRtg1bRmPc/SNxw9NXKQG58+5q+zgSjidXqq+Rtw7GgY1HkHom3aNjCQwPQF6G86o2lREUEYjAMH/EH01yq/3bi1/E6t83Yt1fW2Cz2pTzofXRouuwjkplIvmn7PTBc3ik1wuwmi+U/rF18IHx9YaA4aIpWu0SfKenQrfKveel1qpht9pR1DIYabe3d9k+9o2tUNncn+HU3MAX56Z2dtpmfIs2+GJU9cx6Xt0SEhIQGxur3L9n6QQERJUPclRGfmohfhi7QLkfHx+PmJgYrxwnUX1SmJeLrXP+xOH1q2EuNEKt0UCl0cJqcjI6sx7Q6n1gNdftgfpjH34Ka37+FmajsUb3e/3Lb6FJ5641uk8iqn57vxRxYrZnf2bzjwFaXAW0vuHCZ2n5T3aLJouVDis0Gw8kbwFMmR4dilK1wJsD+33CALUOMLp5aTVomoAzS4GEdVJxEEAAVDogqifQZpIKEZ2Lr9myj0tY9YgIyf2CrZWqOuEshFATmo4V0Ov5Ol18l4iIiIiIiIiIiIiIiOjyq+AgkysZPPTJnbj3/VuQm5GvDLh8aezbqGsatYxGQKg/jl40o7UjdTrcIAC3vHI9hkzqB6vFhi8e+6FklWqnSbmdV9gqCMb7Kg43yHKGNkTA1hRocyxu7Tq6aQT6jOtexSdARLXRsplrPN426WQKvnvuN5w7nIhnfnxYWZaZnF3pcINs5W/r4eOn9+g45GzFdwc+xn0dn0JeZgG8ITc9Dw9Pvws/vDjLrapGRXkmvPDL45jy3UMwFZjgF2yAWq0uP2iqY2P0m9AD62dvLVmmOWRCwEPnYBkXBGsvP0ANqA+ZoF+QA/UZ916nZXK4QSa4E1qwSxBE98MNsqKWAS7bbE+uYCb2OkiUBOVW1T6IyDlDYBCG3/UAhtx2N4ry8pB84hjmf/xOnTttwQ0aQW8wIDXuhFvt63S4QRAwYNKtaNmrH4w52djw+8wa23VIwxg07tSlxvZHRDXnzDLP5xApSAD2fSX/FNH9qeJB7cZkyaNKDKcXAmofDw9EAMb8CiyZ7LyKQmXIQYs+rwrY96XkVuhCtAroO1WA/XlJOQZdgFzdovxnUrm6QXSv4jCHt13qcIMsfX+dnpOGiIiIiIiIiIiIiIiI6PINOJyn1WkR3jAUXz7+I+qSgdf2wekDZ5F4IqXG9ilqVBANGqiKbFBZKzco1Bn5y2ZJdP3la6tuzfDHO/9i1puzlcBBo1YNkHii4kHEBT0jnHemElDQPQIhqxNd7jcgxA+v/P00VCrOfkdUX8QfS8Rf78/Dur83eyX4JYck5IoH+9cdcjtwVhGT0bNjkWsqbZy91WvhhvNCo4Px/aFPcG3oXUpVBmfk83jmUDyimoQjMOxCEODAhiNY9tMaZCZnIbxRGMbePRzHd50qt70q3QafmZnKrar05/KhzrfAHqBz2Mb3WBaESr6VCW68V6nkkV1ERJWk1mjhHxqGA6uX1alz17rvQKSePomcZNefqeuLyGYtsPnvWdj0168IjmqAoKho5KZW/zWZb0Agxj/xXJmKUURUt+WdkXD0DwnxayWI7md6HYqbL0HrLyJ1l4TsY573Y/c0gyYBiWsE2Iq8O7jeL1LAmJ+B+VdJkFx8fpf3nXsa8GsA6IMuvF6m7ZVwZqkEU5YEQ6SAZlcKyD6OeotvFURERERERERERERERHS5qjcBB9nSH1dj+5I9qCuCI4Ow8b9typfHnjLHBsAW4gNVoRU+p3LLDdqMbdsI8UeLByrZAnTIGxaLwg7hkHRqCKINhrgsBCxPgDbD+TffY+8ZjqzkbOgNeuh0WmyevwNFBRe2CW8UCmNeIYryHfejUquUgTwndp8uWZZyJl352aBFFDITs2AxWUvWtevbCpreTXHc6nygrz3Q8cBXWWTjcAy/aSCuemQsImLCUFUWsxUndp2CJIpo0a0ZfP08nRaRiKri2M44PDfydRTmeWla0f/5+4N5uJS2LNyJ0AYhymuuM1q9Blaz87CCzMegR8v/vVaNvHUQlv7kuNKFSiXgw7u/Uu77+vtgxC2DcMebkzFjykys+m1DufdcnY8W1Ul+TwvckIjsK5tV3MAmImhj5QfjGo7kymUJlJCcI7o9GbDfbIdaU756BRGRM/tWLMHZg/vrzEkyBAXj+LZNxSm7aiB//g+ObohsL4QnOg0fg4LsTGh9fJXQctzObWWqSPiHhcNcUOC0soSgkiNsAtJOXQgy5qQWh63l48zLSINou/D+2qhtexRkZSE3rWrhh6DIKLQbOBRdRl2phGCqymaxIPV0nPJ7i2zWHFo9r0mILoWMgxI2PCd6rdLBeUd/v7Qz96fskKANAKz5ztsJGkByfUkCjR8Q1BzQ+KoQM1RE/Gonz08FbHtLXi8p2zUdLaD9ncDuj4GEdaW3k3B6kaQcQ31lM0GZSKSi6hVERERERERERERERERE9Vm9+Rrwu+d/q/FBqZZGeuRfGQ5TZ39IggCfQwUIXJIB3RnX0+SpNSrkpOV6vG9zjD+yrmoBa5RfyTJVvgXBK87Cf19xaEAWEhWkBBzkcEPaPZ1gD9JD62dBQJNs+IQVQRgK2G+Ngm1hAdQ/ZEEwl/+SuW2fVnj6u4fKLCvML8LmeTuQl5GPRq2iseLXdVj39xanxyzaHU/RlxyXise/uk8JfRTlF6F55ybKgNxnlyzF8UOHnfaryXE8U7oc8Pjx8HR4gyiK+OOd/zD388XISc9TlhkCfXHlvSNx9zs3KVVEiKjmfHzv114PN9QG+9cdRuseLZwGHJq0j8HoO4fiu+d+c9nfyNsGwz+4+L3ihmcnYt0/W8oE1EoTS4Xk5DYLv1mBTfN2IDslp8L2pUNp1SVwazJEvRp5gxop4bzS73lh8+KgTygOwbXv3wbXPTEOK2etV6oi+QUZ0Gdcd8yc+me5PrVZFgTszER+7/AK9ynI1Y3+Oo5NA7Zj8PX9UJdJkgqipKpyH0TkntU/fYM9SxfUndMlCCjMrfg13lskSYJ/SGiVAw6x7Tth9AOPlVlmLjTi5I6tMBUUILRRDPYuX4RTu7Y7Px5RdJgvz0lJwpgHH4fO1wCr2YzIps0R0aQZFkx/v0oBB7mP26d9Dm8QRTu2zP5Tea6m/OJrEr2fH7qMvAL9J90KtabeXOIT1Xry69vOad4PN9QGqTuBoBZAlpM/xwS3AhoOEHB4puswRrMrBGh8iwfpt71JQNImCXZHf8op9acjmxE4+Z+EhPWAyUGBOHcCFjUloivQYoKAsyskFCQBugAgui9w6AfP+pOfc8o2oEHdviQhIiIiIiIiIiIiIiIiqrR6Mfrh9MFzNR5uKOwRiPSnGgO6C4P+jJGhMA4OQdhX8fDf4HygkN3meLC/K5ZIA9Ju7wBJX3ZWaTFAh6xrW0GwS/A7mKEsy0ktPg65coMcbtAFmhHWKR0qtQjV+aE9egm4zgCpjRp4Nh32AA0szXyVAZ4RKSpM+e5BZCRlKbN3ZyZlISI2XBkwO/LWwcoX+mv/2oz1s7eiqlb+ug6fbnq7+DmarVjxyzpIO+OAxo63UQsCOhTpUdFwKa1Og0c/vwfe8vkj3yuDfUuTB1fP/ngBEk4k4c15L3htX0Tk3OGtx3Fq/9l6eZrk0MDBTUeh1qpht9orfG17ePpd6D6yM8yFFsx6aw7stvLtZF2GdsADH91R8rhx20Z4Z8nLmHbHF0g+lerW8TgKN9Sk4HUJCNiegsL2oRANWmiyTDAczVLe786Lad0AR7adwOg7hqLfVT2hVhe/R+5dcxB7Vx8s12fk76dh91WjsFNImeWqIhuif4qDPqUIa/7cVOcDDkRUc1LiTtStcIOsmqo2XKyqIQrfwCCMvO8R5GWk48iGNUp/gRGRaDdoGDoMGaGEFg6tX+0y3OCOwxvWYtKr7yj3rRYzDq5dCUuh0ek2glqN4MjoCkMcGp0ew+96AN6yfMbnOLRuZZllZqMR2+fNRk5KMiZMedFr+yIi59L3Afnx9fMsyeEDOdwgqAGpgksNlQ7o+qgKEZ0FiBYRx/6UIDn4M1dUT6DTfRcqEAS3FDDwPRV2vCei0L1LEofhhtrGryGQdQxoPl6FBn3l81f8vFO22pF5yLM+z62W0KAfKzgQERERERERERERERHR5aVeBByW/rC6RvcnGlTIeCK2TLihhFpA5kMx8DlkhCarema2VmaxvijcUFruiMYwHMqAIAHxx5IhalQo7Fg8S3Vw60zoNTaoBEmesLVkXJNNUsHeUQfjJ7HIDAtSnofSl1XAmyvmIfH5TRBLDaD94cVZiIgNQ3p8RpXCGqUlxRV/s31yz2m8MuFdZCYVz17uf0MLFPSKrHCbcfpoTJ17F/54+18s/2WtEjgQBAHdRnbCHf83Ce37tfHKsZ07mlgu3FDa1gW7sHvVAXQf0ckr+yMi5/atLT9gvSY0aB6JrsM7Ycv8HchJK541ubrI4YbIxuHITc+DuchSEli4840b0XFgO+Xxba/egOufnoCVv67H/nWHkHw6TXkNDI0Oxqjbh5QZ6H9exwFt8fOJz7FrxX7MmDITZw8noC5QF9kQsCvN4frlM9cqP+XQWXTTCLw+93mlGtCkZydi35pDSiCvNJVFRKOvj8PUxA/53UOV91VdYiECt2dAZS5+XzPmFqKus0NQblXtg4hcO7hmOU+TA5mJVRsBbCkqxLIZnyH5xFElzHDe+lk/ISAsXAk+lF5eFTmpycrP5JPHMHfam26FM9r0GYAht9+LrXP+UAISVpN8TaJC0y7d0P+GWxDdsrVXji3tzKly4YbSjm/bhMSjh9GobXuv7I+IXPw/ucs7rzuV5dcIiOwCJG4ELNV7SaKEGwzRgCkLEOVLEgGI7AZ0vEeFsPbFnxE73adCu1slnFkmIX2fBKNc8EYADOFA0zEqpfqAoCr7eTKyq4Arf1chZQew9wsRBXXjksSlM4vl/0o4/rcE/0bAgLdUCGwqoM1kFTZP9ezfi9VYM2FEIiIiIiIiIiIiIiIiotqkXgQcUs86HvBYHQqGhEDycRwwgEaFghGhCP7HzanoKkFSAYXtw8ouVEnQB5kgqCRYjVrYQn1gaeQPfUKBMqBT9NNB0qqhCzLBz9+Mi75XVoIOWkGEIArQtlIDuRcamLUSNjbOQeCkCIT8Ln9LXUyeLTzltHfPe3BEIIy5Rrx4xdvIScstWR4xOw66lELkDYhWnptMl2RE8NpEHNy7BW/+fRjvLn0F975/C7KSc2AI9EVQeKBXj02uJuFOBQoGHIiq19nD8fj0oe9wYMORS3KqW/dsiSnfPgjrF/fgrRs/weZ5O6p1fxmJWfh2/0cQ7SICQvwQ3iis/KzWfj6Y8OBo5eYuOQTRukdzxB+tqP5N3ZdyJh0vjHkT3x/6BL3GdFVCIHM+WaicxxLyW50E+Jw1KreKyO918vuSX5BfzR08EdVZuek1e01yObFbrUg6drjcctFuR26ad6+5DIFBKMzLxb/v/h9MBflubXN083oU5uXgmuf/D0NuuwfG7Gzo/fzgG+Dda5JD61a5bHN4/WoGHIiqWc5JCbunix7PyF9V4Z2Ans+q0e0JCZumikitevEap4oygLE/CbBbBegCAd+w8uFXja+AllfLN/f7lUMPwS2kehNuuFhBIrD+WRFjflah0UABLa8BTs4tvgapDNEKWAslaA0MHRMREREREREREREREdHlo14EHIIjg2t0f5ZmvpVq4xdkQJMOMTh9IB5F+UVV2rekUSkBipK+G+XDv2E+VNrib0jlCaotuXqI0Vrgf18Sq4qsgDw4NqqgXLihNLUgQaO6UKWhtLzx4QhclAF1rs3jY7cbNMgdHIX8nuGw+2mhzTAhcHMaArelQxAljLxtCJbNXFsm3CCTK1EEb0hG0MZk2IN0gChBk3ehOsbBjUcxc+qfePCjO9CgeRSqw8XHVJFTB85yICxRNUo5k4anh76G3Az3BhtWh67DOig/tTotXv/vOexdcxAf3v0VUs+mV8v+5AH5mYlZ6D6yc6W3PX3gLP75eAG2zNsJq9mKNr1b4upHr8Cg6/oq6/OzCyCK9Xc20OzUXCz7aS0yk7KUcMPFGrZsgMzETJgLi6tjVGT/usO4Ifo+PPvTwxg2eSDqIvlXLEpVGwxVj/+ZEHmVX1DNXpNUlt7PH6GNYpBx7qxSYYAq1n7wcBxYvdztcMN55w7ux9Z//8TAybcjOLpBtZxed6pJpJ09pVS80PkaquUYiC53+QkS1k4RYb10lySI6lH82U6tEzD4fTVSd0rY8b6oBBGqg2QDTNkCwjtV/jNl9gkJx/+RkLxZgmgHwtoBLa8tHvAvq+4KFJea/Ds5u1xC3hkJcfPKrw9oUhyEkM+xI6k7gQXXiuj9koCYwRVUkiUiIiIiIiIiIiIiIiKqh+rFN2Oj7xjiso1G570sh2AWK9XGmFuIw5uPVzncIFNZRKhzzMp9/9g8BDbJKwk3KPsVAH2wGZonDJD8VSXbGA5nwifQ7PyYBSf/ILQqGPsFeXzctiAt4p/uiKwrYmGN8IVo0MDc2B/pk5sj+f42kNQCeo7pgp3L9zk+PgnQ5FjKhBvOW/bTGpiLnD+/qohuFumyTdyeM5gc8wC+ffYXZdZvIvKuv96fe0nDDWq1CkNvHFBmWddhHZUqAX3Gda+2/cpVadyxfvYWTBn6Ksb73YIJAbfhwe7PYcXP61CQY4S5yKIM1n/jho/wzTO/KO1DG4TAx0+P+mzZT6srDDfIkk4ko2mHWKg1TioyAUo45J2bP8XKWeur6SiJqL5oP3iEyzaC2vlrTnUyGwuQfPwoww0uNOvSA2f37/HoHO9ftQx2W/lrFW8Jiox22Sbl5HF889Ad2PDHz5BE19etRFQ5R2dJlzTcoNIAjQaUDRpE9RQw9hcVonpW3341bmamzq0WsfoxO+aMseO/K+1Y+YCIcyvkaqOA3QSk7QE2TxVx8Mfi1yffSEClRb0Wt0AON1ScGM4/C4S0lqtZOO/Dbga2vCYhYQNf14mIiIiIiIiIiIiIiOjyUGcDDgc2HMHr13+Ia8PvwtSr3kdETKjT9jaL55UHLmbY6no2f8NW17Nresp/ZwoEjQj/hgWOG0VrIF7pX/IwcG08BLm8gwtW0fE/CdHf8wFZ6dc3gy3cp8J1he2CkTMkGoc3H/N4EI48gDfldBqqS+sezd1qZzKa8c9HCzD9gW+q7ViILler/9h4Sfd/5X0j4R/sV265j0GPtxa8iPdXTHU7jOCuqCYRaNOrpct2M6bMxJuTPsaB9UeUMIPJaFKqP1Rk9scLsG/dIfj6+WD4TXWzKoG70uMzna4/sesUXpv9NPpP7OWyr4/u+RqpZ6vvfYaI6iZ51v65H7yJL++ejIXT34NfiPNrEsnOEGxtl3j8CCTJs2uSorxc5Gc6f++pioim7l2TWIqKsH3uP1g9k9ckRN4k2SXEr7m0pa1aXgtofMtXUpCXDf5AjYHvCdB495IEAbFAcAvX1Rt2fyJi25sSMg8CogWwyXN8ODhdR36VkHlYgs5fQMzQqlUbq+0KU5yvzz4O9HtDQIPiQntObXtLQlEmQw5ERERERERERERERERU/9XJgMOCGcvx9NDXsPHfbcjPKkBeZj7SE7JqbP++h4zQH3YcLtCeLoJhR1617T9wcxL87VkQ1M6/WBeHXxiIq80yQX3Q6LJvo9nxbN7aJM8qJFiDdTB2DHHaJndgFOw2EZ0Hd4CnfPwqDlB4w97VByvVftnMtUg4nlRtx0N0uZGrohTmVb0Kjqd6X9kND358h9M23Ud0xjd7P0TbPq28tt/QBsEQ5PI6TuxdcxBzpi+qVL8Lv1mh/LzzrZvQqFUD1FeFBc7/zYiiBKvFhmGTy1bmcBSUvL3lY3j/js+RkVRznzmqSpRUXrkRUXm7Fs3DP2++hLid22AyFqAoPw/G7Lrz+kAVE+12xLTr6PHp0eqrrzpS4pHKXZPsW74EeekM5xF5i91SPJP+pdJwINDpXuefyxr0UWHUdyqlKoC3+IS5bpO8VULc/MqFP04tKG7f+X4BBtcFauosW6Hz9ZINUKkExAxxHfSQgyOLJkvY8b4IU/alDdsQERERERERERERERERVac6N2It+XQqvnjsB0huVCOoDucHmka+fwbRpyVc/PWjz/58RL19CkI1Tqgm2CUEHnAxBZzMr+yvV5qT77S5XRSQb6o4JKDKtcGw3bPQhiXaF1A5/6LWFuaDFv1b4op7h8MQUPnpBlv3bKHMdC7/uzh3NBGnD5yF1WJ12F4URZw9koCzh+OVgdOuGHNdfCN9Efk41vyxqVLbEJFjao0a0c0i3T5Faq3nFWdKi4gJwwerXsPbC1+Czkfnsn1000h8vuUdfL71HTw8/S6MvHVwlfZ/fOcpZCZnO22z8Jvlle733OEE5WdIZBA+3fQWbnh6AgLDApRlWh8t6gOtTgOdzvVz0eq1SsDOHXJVjJW/rsdTg6YiO7X6KjURUe2XlZSAtb9+f+kO4Hz4TRDgE1D8+k3e0bBVW3QeORYaD4IKDdu0h19wiFKVLjPhHDLOnYHd5riSoCjalXbyTb7virnQdWC9NLkSxdHN6yu1DRE5JldJ8Al3/wwJGu+cTXnw/9DpKgx4Uw2V1vUgeP9GAkZ+o8bwL1To+oiAmGFV23/mIcCc6/xvcHELKv9HsLwzxX36hgsY8aUKra4XoP1fIVK160uvOkHQAoIbf3lVaeVrDff6lAMRZ5ZKWPO46PL3QkRERERERERERERERFRXeenr1pqz+LtVygDDmqbVa3DXWzdh1O1DkJGYhaDwQGXg66n8DKw9ewz/fr4Y+UvPQRdvKheIqEoYQ6NVw2Yt/y2ncNbx4P2SNvFl20i7LLDPM0IRiK7aAAEAAElEQVQ98UJlh5J1Vgm5WwRI7Sr4stwqIuyreAg2z56HyuT6W1pBlNCuWwtoVCq8Pvc5vHb1NBTmuzdbu3yOb3nlOiz6dgX+/mAekuJSleXBkUEY/8Ao3Dr1emVw9HlzP1+COZ8sQMqZdOVxWMMQTHzkCtz4/ESoVBV/89ykQywqqyCncgOQiMi5cfePwg8vznK4Xg5A3PPuLWjTswVWzdqAn1/7q8qnND0hs2Tgf2W07d1KuckBKjlIdWL3aY/2L29/cvcphI3r4bDN2f+FFSrDL8hQcl9+P7v/g9tx37TbUGQ04aHuzyHppBshulpMrVHhkc/vwd7VB7D2r80O28mBuq7DOiAnvXIBvpTTafjzvbl46JM7UdvJUUyxXByz8n0QUVn7Vy6RR4/X+GlRa3UYfOudaNtvMAqys2AIDIJ/aJgyQD5u13bsXjwPxpzsigMRVThelUYD0clA/fpCvq4Ib9xEuT9xykuY//G7sJpN7m6NftfeiD1LF2DnwrnISy++JpEDD11Hj0Pva26ASlV8TSJfH+5aNBe7F89HfmbxNYl/WDi6X3EVeo6/xmH1prCYxpV+Tmaj48qDRFR5zccLODzT8eupfwzQ8R4BoW0ExC0Ucez3qp/lwlTAx3lRzAqFdRCUW3OLhLwzIvI8uySBaAVy44DI7o7b5J2pfL/nwwwyn1BBCWN0eViCzShh6d0S7MUvj3WWSgP0eFpA4noJSY4vSaALBMI7AYZI+bXf/ffqggTg+N8SOt3Hz+pERERERERERERERERU/9S5Cg5nDp67JPu1mm3477PFymDIll2bKeEGWfOAcNzdcQD++uBl3Hrj6JKBsHIwYcikfpj46Ngq7VcUK/5yU9hRBKQ4H2SkWli+YoP9kzzY3suBeKw4/CDZJIjrTbA9kQm/V5MQ9mU8dKf+V63AKsKwOQfRr8TBsNt59QdnfM4WQJNpdtpmZOPmSrhB1nVYR/wS9wXufe9W+Pi5njl11B1DcWLXKUx/8NuScIMsJy0Xv705G2/f9ElJyOSbZ37Bl0/8WBJukGUmZePHl3/Hh/d8Va5vebuVi7djYUEikh7tiMTHOiJzfBNYQ10fV2zbRi7bEJH7rn3iSnQa1K7CdfJr75vzX8DQSf0R1TQCy2aucdqXf7AfGraMdmu/6//Z4vGvSQ5Xvbv0FfQZ52Q0kBsVBmQ2q015XlOGvIrbmj+MJwa+gsXfrYQhsPJVb4beOKDcMnkwZX5WQZ0PN8jkigxfPPo9igpMyvuxI/J7tK+/Lxo0i0KbXi0qtY/lP6+9ZNWkiOjSSz939pLs1261YM/iBfDxD0Bk0+ZKuOH8wPfeE6/HnR99jR7jroaPX/GoUbVGg7YDhqDziKpdk0h2N6eVruNa9x1Ucr9p1x649/PvMXDy7UqwxJUuo6/EuUP7sfqnb0rCDTI5cLLp79+w5IuPS5at/mkG1v36Q0m4QVaQmYH1v/2Ild9/Wa5vuSLE4Q1rcGrX9ko/p9BGlQ9qE5FjbSYJCK34kgT6EGDgOyrEDlXBNxI456LQmi4I8GvgxtmWgIT1nn/uVOsEDPlQhaieHnehVBiQ2S0STi0SsfpROxZNtmPN43acXiJCW34eDZdihwkVXpMUZQGmOh5ukIk2YNdHkpIvFJwUGGx1nQC1XkBAYwFBzSu3j9NLeD1CRERERERERERERERE9VOdq+DgyUBOb0mPz8S6v7coVRwu5hdoUGa/vvudm5GXVQBffx/4GPTKLP67VuxH/NFEj/bpqFqFIAHqaRmwvx0J+JbPqQjLCqDaXHEFBHFpkXKD/AVrqbFK8lfL/muzlZskdykWL6sq+VhDl8Qj7daWFa7XQcBYfbQyUPT8bKXyjOI3PjcRcz9fDJPReTgiqnE4Zr09x+H6DXO2YefyfWjQLBJzPlnosN2Kn9dh/AOj0b5va+Vx3L4zeO6xL7F/dAREgwZoWhxeMTcJQN6AaET+dhx+hyqYIfd/+lzZzelxE5Frp/afxYpf1iE7LQfRTSLxxDf3Y8vcHVj03UplFn05dDb85oGY9NxEZZC6LPVMurLOGfm1+eP1b+DDu7/E8Z2nnLaVB8lXhfx69taCF5FwPAnbF+/G4u9XuV11QQ5udBzUDhaTBS+Pfxd7Vx8sWScHtQ5vPqZUrqis2LYNyy1b+dt6fPf8b6gv5OpH2xbtRtOOschIyERBTuGFAVoqAeMfHI0735xcsuyN+c/jliYPw2Zxb4Zy+d+QyWhSAhK1mV0SlFtV+yCisvS+Fyrh1LSc1GSc2L4FbfoNLLfOx98fQ2+/F4NuvhOmgnzoDAZodXoU5efh3IG9yraeuBwCXXKVimZdu5e5JjEEBaPPNZOwc9FcJVzijH9IqBJkcOTopnXoMuoK6P38sXfZIoft9q9cii6jrlQCLLKUuBOY+8GbMGZnefS8mnXv5dF2RHRB9gkJZ5dLMOcC/g2BXs8LSNwAnFooKdUVNH5Ak1EC2k4WYIgqfv0oiAeKMpyfRUsuMPxLAZtfkSssOG9rc6/ApUNyhYTBH6iRd1ZCyjYJcQsl5Rjd2jYMSqjDViRhw/MiMg5cWCc//4wDEvzKX144JwABFeSvTi8WceD7+vOeI1e/SN4CBLcEjMmAtVShT0EFtLxWQLvbLnzWHvCugCU3S5DczBWas+UQogRBzc/rREREREREREREREREVL/UuYDDkEn9sfr3jZds/7tW7qsw4FB6tu6QyKAys4R/tPZ1TH/gG2yet6NS+9LqNLA6GWipOmCG8GgK7DcEQhpkAHwECCctUM3Ph7C81Lemjjj5wlSoOFfhscAdGZC0KmSOi4Xor73wHNOKEPHnKXwdtwXzWvyOJ795AN2GdypZ37JbM2QkOh/Mk5mU5TAIct6MKTPRf2Jvl4Ozlv+0Rgk4ZCZn47kr3sKB+1sWhxsuIj+XtFtbI/bdPdDkVTzYqf58JU9UM84eScCG2VuVQEGzTrHYs/oQll9UieGPd//F7f93I36N+1KpaKDRVvA25ubYDpVahba9W7kMOLTo2hSeKDKakJuep4QU5CBGTOuGSDie7Ha4QXbD0xOg02vxw0u/lwk3lCaHOeT3GnnAvbteGPMm9L56JQTQcWBbtOjSBLM/dhwAqw0CQv2VChOVdeZgPP7v32dhzC1UwoZ+wX4YNnkAoppElGkXGhWCL7a9g2eGv46CbNfnMiDEDz5+PpU+HiKqH9r0H4QT2zdfsv2fPbCnwoDDeXLlBr/gkJLHvgGBuPH197Fsxmc4s3dnpfal0elgszgf3F8fiDYbln49Hdvm/oPRDzyGmHYdS9bJYQM5IOJMrly1wcW1xuqZ3yK2/YVrHUcOrl2B4Xc+gLyMNMx+6xWYC91/jy/nMginEHlT7mlJqZZgNwFBLeQwAHBuZdk2R34FOt0nYNyfaog2CSqN4Pk1iaq4IkTeGef/rwZXrthYCWuhpAQp9MGAxldAYBNBCVMUxLv/2iAHN+TnuP+bsuGG0oxJUKo4lB7A75QErHlCgkpnV+5HdAYCmgg4Oad2v2bJVTfk81lZOSeBge8JMGUCBYmALgCIHSHAEFH2H4pfpArDvxCx7hkJNjfOpU+oXB2C4QYiIiIiIiIiIiIiIiKqf+pcwKHv+B5o3681Dm857rU+1Vo17FY3p0dz47tWURSRFFc8wKVBiygl8KDVV+5U63y0eGvhi5gx5WdlBnNHhHNWaD7KBORbLRe0OQ0B29MRc2t3HDkWD226Cb4n80q+95fP2UtXvoPnf34UQ28coCy76uEx2Lpwl8M+m3VqDHVFA5wvEn80CcmdUl22y0gqDlMs+HoZEhtpYQ/UOWwrhxzy+kYidHnFg5U/uucrTH7hmjKBDSIqr7CgCG9c/xF2Ld/n8vSIooSZr/6pvLYOv6nigZ3RTSPRqFUDJJ5wPEu1PLg9tk1DTHhoDBZ8vdxh+Ennq8PR7SeU/Q6+vq8SqpDDChUGK/4n7Vw6Zr76F9b9vRkWk1UJqw28rg/ufGMy/vlovlv/BDRaNa57arzyGmK1WLHk+4tGVV3Ebrej+8hO2LPqoFuzbIt2qaQyxZ5VB5RbbedJuOG8DXO24oVfH3fZrkWXZvhg5Wt4uOfzLs/j6DuGlszwXZuJkkq5VbUPIiqrZa9+iGreEqmnTnrt1KjUaoh2d69JXL/WS6JYUrEhOKqBUmFADmNXhkavx3Uvvo7l336B7CT3A3p1QWSzlkg7Xf73l52ciH/enorxjz+HVr37Kcu6jhnnNOAQ3bK1W7+TjLOnERRRXHHKmYKs4mu7PUsXVi3cAGDZ19PRa8J1iGl/IbBBROVZC0Rsmioh3XmWSSGJwP5vJPg3ktBoUMWfB+XqBIao4goHjvjLbaKBlhMFnFni+DVE7QNkHJRgt4hoNAQQLQK0/vL7huPPogVJEg79WBzWkKsIqHRA7BABHe4WcOwv92a0UGmBtjcJaHW9CjaT5PQYFQIQ0RVunUOFBIj/K9iZulO+1e5wg8yTcMN5ctWPns+4/lwd2laFQe+LWPOY5PJvkE2vqP3XI0RERERERERERERERESXRcBBpVLh7UUv4aN7v8bmuduVQadVNXRSf4y5axg+f/R7ZSC8M/Js3A5nDQcw78ulmPPJQiSfKv4WO7JxOK64Zzg2/rvNrWPR6NSY/Pw1mPTsVfD198XNL1+Ht278GPWFyiYh978jCMotrHC9zWLD2zdNx5zpi/Dw9LvQa2w3XP3YFZj7+ZJybUOigvDyH09iy3zXs9DKA1WLCopctouICVN+yr8vc9sAl+3NTRy32b1SHjR8EI9+fo8S1CCi8v9fzv5oAX5+7S+Yiyo3M/Q/H853GHCQB51fP2UCPn3oW4fbX/vkOOX9pGmHWDz48R1KmKyiAe2WIosSgACW46N7v1IGmPj6+2D4zYNwyyvXlbxmnJd6Nh1PDHgZmUnZJcvkSjxr/tiEDXO2Ka9xrox/cDRue/V6hEYXz7ydHp+J3Ix8p9sU5Ztw/we3Q++rw/GdcXjvts/dCjpcLipT3WLFL+tcnrvgyEDc+MI1XjgyIqqr5AoJ1730BpbN+BRxu7Z7ZZb89oNHoHW/gVj94wzkpDi/JinMy4Uo2qFSlQ8syK9huxfPx+4l85CXnqYsC4yIQsdho3Bqt3sV5dQaLfpedyN6jLsaWr0P+l57I5Z88RHqk5yURIfrRKsV8z96Gw1bt8Pwux5Aq1790GnEGBxYtaxcW//QMFz56NM4snGty33Kvxub1fVnnoCw4ipDJ7ZVvUqI/Ds/vWcXRt3/KDoNH13l/ojqG/n/y6O/Szj8iwSxksVq5KBAo0EVB8cElYDW1wvY+6Xj9wd5vXztEtIG6HS/gAPfVtxWriZx8j/laLHj/eKfGj+gyUgB7W4T4BtWdpB7QaKE1Y+JMF+4JFGe29kVEs6tlSBZXT+3ltcC7W5VwSekuG9jsuvqDNYCoMcUlfKWmH1MwvZ3eD1S9vy4fz7OypegLpr7hAFtJjHgQERERERERERERERERPVTnZyS1z/YD6/NfgY/n/wCz/70CB786PYq9TfilkHoMrQDpnz3EAJC/Jy23bl8H965ZboSZHhh7Ft4ethr+O7535B8OhXfPPMLvnjsh5JwgyztXAZ+fu1v2G3uzZBns9gx+s6hSrhBNuSGfnj8q/uUGcPdIX+J7g1yBYlbp16PV/95GkGRAW61j2nT0K2+jQ7CDaUd3XYCz454HdPu+AJLvl9Vdl++Okx89Ap8s/dDNGkfi5G3D3Frvy26NnU523bvcd1LBinD7vrLZ8Euuhws8eUTPxb3R0RlfPP0z/j2uV8rHW6QndxzGrkZeQ7Xj39gFCY9c1WF/8/LoalrnxhX8li+/96KqWjaMRYqtZO3xf+9JMiVDxZ9uwKP9X2x3P/bP039o0y4oTR3wg2y/hN7lYQbZHqD3q3t5HYxrRti2E0DGW64iHxe3HV8V5zr39FVvZTqTER0efMNCMTVz07FPdO/xZiHnsTgW+6qUn/tBw1F005dMfqBx6DzNThtG7dzG5Z++Ql2L56Hf956BX+9/gI2/PGzEmhY9eMMrP3lu5JwgywvPRWb//5NqergDrvNik7DxyjhhuJjG4Zhd95f8tglL1W40ej06Hf9Lbjq6Zfg4+/vVvugqGi3+rYUuQ4/Jx0/opzbxZ9/iMPrV5fdl16vBEBue/8zhDRohA5DRrq136jmrVy2ad69l/KzINs7VfokScTK779CQXZxtToiumD3dAkHv698uEGWeQiwFTn+u4Fc+aDltRW8HgpAmxsFtLjqwrVH25vkWfsFBDRx7y91NiMQN0/C6kdEFKWXPYb935YNN5TmTrhBFjP4QrhBpnbvkkSpNhHYWEDMEA68v1hArPvnRA6IuBI7FNAF8jwTERERERERERERERFR/VTnKjiUFt00Urllp+ZgxtO/eNRHs06NkZWcgztbP14mmODMhtnblNt5+9cdxpxPFsDuYrC7u/6aNg8Nm0dh0PV90aBZFCY8OFoJYayfvRWZSVnYs+oA9q09VG678EahCI4MUgb+VoVKJeCF357AoGv7KMGN3DTnM4fLLCYreozsjIRjSS4rVMghDneYC81Y8eu68vsqsijVO25/7QblcXjDUGXwasJx5/vuOrQjJBH48z1l6sMKvXnDx7j7nZthMpphOJyNvEENnPZpOORg1EApol1UQhp3vjnZZVuiy0VSXAr+/XRxlfpwNcv+fdNuwxX3jsCyn9YgPSETYQ1DlQBZk3YxZdqZi8z49f/+xpmD8ZXavxxkkAMaU/+aojwuzC/C+n+2oip8DHq061N24GNYgxC069sKR7aecLhd885NENOq+PVKDnX4BRncCpNdDuTzMe5+9wadng/RuRIYHoi6QoQAURKq3AcRORYc3UC5yYGC9bN+8uhURbVohezkJCz9enqZYIIzcsWA0lUDEg4fxM6F/0G0uReoc2Xrv38hMCISbfoNRGB4JLpfcZUyiP/41o3KQPmz+3cj8ejhctvJ1SK0Pj7IjD9bpf0LKhXGP/UCWnTvhczEeJgKClxuY7OY0bxbL+xZusBpO7VWC7vVvVG+VpOpwuoMNrMZJ3dsQb/rb1IeB0VGKefL1e+vaZdusJmLsGvRPIdt5k57E/0n3eL2MbpDtNtwcM0KpRoHERXLOyPh1PzqrTLQ7TEVWlwl4cxSCUUZgCESaDpWKDfYXQ5KHPpJQn4lXzoLU4ED30no/VJxf+ZcCUmbqnbMWj8gpHXZZf4NBQS3BHJOOt4upC1giCg+DrVOUMIOcvUJKg6tNBvn/mdqdwIlDDcQERERERERERERERFRfVYnKzicl5mcjQUzlmPVrA2IbdfIoz5a9WiBD+/5yu1wgyNKhQYvfS++6JsVSlWIO1s9ho/u+Qo2q02p4NB3fHeo1Sr4+OnRtndLNOkQq4QamrSPwe3/Nwlf756GRz+/u8r7F0UJa/7cqNxf9/cWt7db+mPZWU0rIh+zRqtGVcmDlRd9u7Lk8QMfOq/i0ahVA3Qb0Qn3vHMznphxv8NjsJqt+O65X5X7vidyoT/rONyhyf5/9u4DvKmyDQPwc7LapntvWkrZZe9Z9h4yFRBFZTjRXxwgCCgKggMVBypbQUDZsvfem0IppQW6995Jzn99J3aEzKYpUHzv64omJ2flpCQ5yft8bxHsLqeatL8PwmNNmo+Q/4oDvx+rUpcB1m3Byd34CPos/PTKgnGY/vtUTFr4vFa4gdm6ZA9unAg3az9Y2Kq0kwQL27HXkKro+1J3oUvRw4ZNHWCwQ8/Idwfh0J8nsHv5Qdy5FIXQ0R1QU3gGuFt6wG8N7Pn3r2/6Z4TOz7Q1Ps8w4/MQQv47ctJScWXfLtw5d0oIOpjD1bcW9v/2g8nhBn0sFW5gruz9B8f+WIFlb07EgWU/QqVSwkouF7oLsJdr1mXCq049uPjVgq2LK9z8A9D5uRfw/ILF6DZ+YpW3z7pNRJw6Jly/feq4ycuxIn5j3AODwHFVPxXOSk7S2F7XcYbPxdgx8mvQGN1emITuE6aAE4n1BjWOr1sFS0uPq1yYk5Cn3b19VfsShxX0S2yMf4B1CODQdIoI7WaK0GSSSOdI/hEbeaSbd0qCmCM8SnLVj6UwDeBNG1NCr6BBnM7HpbMbRSmOdazgcH+/CtE7VciM5OHTETUGC55Up+avc7D1Mv1kx7ez8Xl9u1AImRBCCCGEEEIIIYQQQgghhDy9amQHB6VCiR+nrsCuZQeF6+aSO9jgyIYqDm1XjVjQYM/Kw5Bay9DpmTb4ZMRXKMjVHP7O3c8Vs/9+D7UaqIs3WcEv60Cw4qN1Vdr2yc3nEBuZgPxs00cALyooNjqPvbMdOg1rW6nghD5HNp7EmBnDhOvtB7XCkNf7YvtPe4XbvAjg/m2owYqFZ6x9WxjFm3H3dYGiRGmw4wLD5vZaEY6kF+ujMEhztG5pUj68Vt6GqNi0rh22jtoFy4T8l904aWb1zr9G/G+wxfZl12/GCyH1Ya8lKTFpcHRzEC5iidjs96V2A1ti8kNhrfTEDPz87moc//s0eJV2AZbUSoJm3ULw/evLUJhfVDa9bsvaqCnqtw3G4uPzhOPm5OGAyMv3EH39AdbM3YDMZHV4xBz+DXyFzg0j3hlkcL6Ii3dx8I/jyMnMhX89X4SObg+v2h5IjNZdZNymX3PUbxOMmoJnHRyq2IGBrYMQok2pKMGBZT8j7OgBoRjfXNZ2dgjX0SHgScHzKlzdvxsSK2vUatwUOxZ/IRTgP9y1Ych7M+Hs5VPWpaD9iOdwZtP6Km07/NRxdBrzAooL8kxepqTI+HDhcnsHBLVqg7sXyrvymYuFL1oNfEa4zrpd3LvaBzcO79Oaz9reAf3fnFZ2287ZGbxK/2eGqvxN6WNlS+ckhFSUer1qAYd6oyz3GSnqH/P3RVUCFKQBUjvAyunfoUzMfAnx7QKETNR8XPkpPK7+qEKcnqwZJwU8WgAXv+ShLHt74OFcHzWGe3MOIa9wQtdPmQMvdKrIigZuLGPhEfPXax8IBA/lEPyM4VBd2k0eMYd4FOeyQIz6eYj4CyhI0T2/T2fAsTZ9Rn8SrVq1Ci+99JLR+UQiEWxtbeHr64vmzZtj8ODBGD16NCSSGvlVvUmOHDmC7t27C9cDAgJw7949vccuNDRUmJ8QQgghhBBCCCGEEEIIIf9dNfJXExZuYJ0bir0doPCwA6dUQXYvA+LcInVVuom/Czft2ghn/rmIJ93uZQewb/URFFUoXq3YyeDjwQuwIvw7iMXqEUDHTB8mdHb48qUfdRbEmkKlUuG1Fu+jRY8QWFJ+dgE+XPMWzu+5IlyviqR7KTi/5zJa920uhBfeWPIKsro7YmvaTeS4ceCKedTLsMV7oQNQv1GdsuWuHbtl8jbEeQr4/BSGwgA75DdwFgoFrKNyYHM7s1Llnt3HdK7koyPk6RZ9/b7Zy0qtpQhuEWiR/WBdJOLvVq2Dj6O7Q1mYquPQ1ji+yXixpJOHI3qO64L4u4lwcLFHr/Fd0by75uttdloO/td1NuIjE/Wup6RIgQt7r2hNv3MpGjVFXla+ENYrFdKpgXC5djQMRzacMnu9MeFxWPruamxa/A/mbv4A9VoFadxfUlyChS8s0QrcsWDF+DmjhOcx8rLmcew4tI3wHkaqz507d4TClmPHjgnXMzIyYGVlBXd3d7Ru3RoDBw7EmDFjIJVKLbZNhUIBe3t7FBYaL4quyNHREZmZmRbbD1Lz7P/1RyHcUFXe9Roi+tJ5POmu7N0pXJQl2qHm7JQkbPvyM7z41Y9loeJOo5+HvYub0JnCXCqlAqvffR1+jZvAkory89H/jXfx4PoVlBRpn2NVRkZSPO5du4yAJupzkt6T3xBCIbdPH4fi33W7+vmj+0tT4BFY/l4UGx6GR61Bx9BHvk1CnlTsPCDb/FMSiK0sV2CuLOZRYFpzSN04wOrf5nbWLhy82gCJJuS3bNwBv1AOefE8rJw4BPTl4N5U8zEVpvM4/JYK+QZOmfgSIOmc9vSM26gxSvJ4yD1KQwjsOEC4JJ1TIt78UxLk3AMuf8fj9gYlOn3GwamOSOu5PzNPhXh1E9UyYSuBxhOABweBrKgKd3CAX1egzYc1uiEv+fd715ycHISHhwuX9evXY9GiRVi5ciVatGhBx4gQQgghhBBCCCGEEEIIIf95NS7gkBqXhu1/nUTG6GZQulUYgbIzD6uIFNgfuYv2A1siuHkgXLycYSWX4ce3V6Agp7xojY2wPfSNfshIqhlFaWyEcEMdB1hx7untF9B5WDuNkcBrh9RC1DXNX+w5EYeR0wZj8+KdRkcZL8wrwukdFyG1kqKkqMQCjwSIuHAXP/9vVZXDDaVFsR8NmI/AEH8MfK0PfpdH4IZ9JuCm/kGel3G47ZmPN+5sw6/ucrR1VxdEiyWV/yHY+n6ucDFHi55N0LKnZYuyCKnJYu8kVGlk/pLCEix68Qf8evXrKu8LK0S0d7FDTnqu2cv/s3Qvoq4/QGpsOmwd5bCytUJRnuFiya4j2+PVr180OM/m73YaDDdUN7aPd6/dR1xEQrVuJ6Chn87p7H26KgGHUqzDxpvtpuOnCwsR3Lw2cjPz8M8v+7Hxq23ISdN+3tn77aqPN+DzXR+hqKAI927EwMpahrYDW+rd1ycZyzmq+KoV35mZlayU3NxcvP3220JBDys4rKi4uFgo/omKisLGjRsxa9YsrF69umz0z6q6detWpcMNhGQlJ+LmsYMGD0Rwmw5wqxUAO2cX4f3iyJplGsX0IrEErQYORXp8XI04oLqCDRWlxT7AvauXULt5q7JpwW074OKurUiPi9WYlx2PNkNH4vy2TUIYwJDiwgJEXTwHkUQClUIBS4gLD8OR35dXOdzAFObkYNPnH8M9IAghPfvg2r5dwrGoKC02Btu+/BwjPvoUvvUbCtNEInU4/VEJatkGvg0aPdJtEvIky44GSnLMX551Kji/SIVeP1f937JICoitAaW5H0c44M5mHpl3VOpODraASAaojDTZ9O/Bodmrhr8fub2RNxhuqG6+oUDmHSAvvnq34xCg+/Ny8HAR4k9VvaNOfiJwYAqP3stVcAwQoTibx93tLPigu0ME68pxfTnQ9UtOuD/rHg+JNQefDhzs/alzQ00yZcoUneGGoqIipKam4ubNm2WdDK5evYoePXrg3LlzqFu37mPYW0IIIYQQQgghhBBCCCGEkCdHjQs4HNh8FukDG0BlZ6V5h4hDUQMP4f9J0cn4bPv0sru6P9dJGIk55nacMMJ2t2c7ws3XFR/0/hRPi6tHwjQCDnOHf6kVbmBYR4cjf55Em37NTe5ewcINUiuJMFK4JRz/+wwsiRWfLvrjb6RNq6Xz/gJlCaZf2IYt7V6GvZMt2g5oiT8XbMGj0LJXE8zd8sEj2RYhNYUlAlPR1x/gxslwYaT/qmKdFLYu2W3WsqwQe9187dcTKxsZigp0VxTJ7W0w/J2BRte9b9URPC4sDDdp0Xh4BXrg6MZT+Oy5xdWzHY7DwCm9hev3wmKw9ftduLDvqlDw0axbYzwztT+2fq/93LDgnaJYoVUIrw9775s16Av8eP4LTOs2B3F3DIc22HpnDVwg7IeNnTV6jO0ihFdI9cjOzka3bt1w+fJljemsc4OHhwfy8/ORlpZWNj0mJga9e/fGmjVrMHbs2Cpvv+J2ZTIZ/P39TVrOwUHdvYX8N4UdPWT0NSgnLRVD35tZdrth1x6IOH0CmYnxsLZzQP2OXYTww5+z38fTIubm9bKAAzs+Wxd+qhVuKL3v9qljqNWkGe5f0/y3rw8LN1gy5BB5ruohuopS7kfh8Iqleu8vKSzA3p8XY8y8r2Fta4vaLVrj4s6teBSCWrTBoP+Vnx8TQlhoq+pHISOcdSng4Vyfq/Jn4oBeHKL+MTNVqgJu/a69rKGQg9QOCH7G+H7f2/MIkq76cECLN0WwceNwb68K57+opn0RAUGD1Mci8y6PO5t4JF9Sb8ujBYegIUDUdh27J1V3rzAVrwROzODR/VseR95RIc9YjlwFHHufpZUBiRwI6K0Or5CaZelS/Z8NSu3btw/jxo0TAg+sQ9yoUaNw6dIliETUqYMQQgghhBBCCCGEEEIIIf9dNS7gcC45RTvcUEFRXTdkJWiOmCmzlgkFrA9LjS0vlqvpxOLyH71unLiF68du6Z03OS4NwWPboviuG5CRj7zWzihqZANRsRLy8xmwPZMJ7qHmDqGjOwqdLw6tO17loIOpBamVkdvHxeD9cQVZGNh7KrxjRej3cg80bF8Pt85EoLr1fqEbbGytq307hNQkvsFeVeqaUOp+WIxFAg6j3x+KY3+dRnqi5br6sHBDUNMAoWhfpSwf8dPd3xUfrXsHvsHeBl8jWQgrxQLvUSKJCCpF5UccZYGA2UMX4uON7yL8XCSqy6SFz6NWA1+c2n4enz27WCP8cuD3YxCJRRj38QihC0Pk5WjIrKRIup+CjKSsSm8rLT4dC57/rizcUFTLHsU+doCCh83tdEhyNKu/WLiBKcgtxM5f9+P8nsv49sRncPdzrfLjJppeeukljZBB27ZtMW/ePKFDg1QqFabdv38fP/74I7755hsolUrh8vLLL6NBgwZo2bJllQ5pxW2zbe7Zs4eeImJU7K0bRucpytd8n5PKrNA4tKfWfHkZ6U/NEa9YiHf/+hUkRN7WO29WchK86jYAJxKB//c115hGXbpDqVDg9unjFgs6PEoZCfH4aeIYyB2d0LRnX3jUroPk6LvVvt3G3XsJf3+EkHIOtdRF44r8qh0VNrJ+VQMOTINxHOJO8CiyYKNRFm5wDAKyotkH/PLpci+gwxwRbL04g+ckYatUKK78x24tnFhd3F9pPHDiI5Wwr+m3+GoMUXCw9eYQc4TH2c9V4BWaAQ+2/40ncMiNAzKjeIhlQG48zDo2+QkQtmE03FDq37dH9nd6dxuPxPM8eiwRwdqFujg8Tfr06YNVq1Zh0KBBZZ0cdu7cicGDBz/uXSOEEEIIIYQQQgghhBBCCHlsalzA4R6MFLJwHKQtjY+8m5GUibi7iagJPALckXw/xeA8vvV88OPbK5ASk4qE6GS98+U290B2qD82WmdBNaYuUKsAsC0vKCroZI+MLB94fBENq8gCjWXfW/66cNmz4iC+nmh8BLJHSeFjvGCnxNsKmZfTsH7hVrj5uqBemzqIOF+9BUXeQZ7Vun5CaiIWOuv/cg9s/ErHMJiVIHewzIj6rGD9m2Of4vvXf8PlgzfKQlgObvYozCtEcYF5w7umJ2RgVcT3OLPjIvJzClC7SS20G9gSYrHY4HIrZv6J9V9YpstMs9BG8Kvni4N/HBP2QWYtRadhbXH7/F3ERyYa7ZLxQa9P4VXbA5bCts+KX5uENsLwtweidZ9myM3Mw4Jx3+ns7MHCIesXbMWayCXwqOWOXcsOYvFk899/rh4OQ4mrNdJG1keJV/nwp5n9a8P2SjKcd0aBU+kunkp+kIqVH/+JD1a+iZpExYuES1XXUV2OHTuGzZs3l90eOnQo/vrrr7JgQ6mAgAAsWrQIXbt2xTPPPCMEHIqKijBt2jQcPnzYYgGHqoYlyH9HVrLx8wgrufFhlrNTU5CVrP+z+5PE0cPL6ONm8xxcsVToXpGZZLx68/bJo5XaBxaGGPDmNPR/411c2bcThwx0THiS5Wdl4szmDXBwc4dHYB0k36vecxJHdzonIeRhEhsOgX05RG6pWuG81NYyheYsbNDtWxEufatCypXy6TJHQFGgvxODMcXZQP+1HBJOAopCwKkOB6926o5thlz9icedv2ERnq0BuTuH+wd4KAsBsTXg2xlIC4PRQv/MO8DRaSpYOcFixOzrIw7waAnUGyGCR0sORZk8zi3QDDeUYuGMW2t5DFzPggUi3NmswpUl5v/dpF4zf9/z4oGwVTxavUsBh6fNwIEDERQUhKioKOE2BRwIIYQQQgghhBBCCCGEEPJfV+MCDmIbGZBheJ7gNnWMrifxXopZo1oz7IdgNrr1o8AKS+dseg8f9p6H7LQcnfM4ujsIhbnG5LbyRMZA9bERahX9CzXCDaVUjhIkzQqCzzu3IclU/7rrU8er7P6Oz7TF15OWaowAWFklbWxR9IwTFCE2bGhASC7lw3pTBiRhhWatT5SrgNJVanievPIhA1Pj0mHnZAuplVRnUa0lBDb2R+OO9atl3YTUdC9++iwuHbyGyMv3zFpebm8jhAUshXVUWLhvNuLvJiLmdrzQYaJhu7pCwOH9np8IgYDKykzJRnFhCYZNHWDyMhnJWdj0zQ5YyvC3B6H9oFYY+e4ghJ0Mh4OrPVr0bAKlUoXdyw7izwWbkZmcrXd59lqZk1G1ThulWLBsyc1vkJabDw8HOzjb2iAzJQtfv/IzCvOK9C6nVCix89cDaD+4NdbM3VClfVDaSJDyQmMoHR4KxYk45LX0BM9xcN2uv2PF0Q2n8Ob3rwh/fw8/b4yzh2OV9u+/aNmyZWXXnZycsHr1aq1wQ0VsVNO33noL3377rXD7yJEjQncHFoAw15Ur5VWELVq0MHs95L9FZCSsxngG1TU6jzowYOaHao4TPkc/Cs7evhj49gf4a95HKMrL0zkP60qw75fvq3U/nDzVHZA4jkPdth1rbMChYsDF2s4BIrEEKmX1dKTwDAoWLoQQbU0mc0i+zCPbvFMSSO0BrzaWO7IOARy6LRYjJ4YXugXIHACXhuqAw+GpKmSZkYUqSGW1/BzqjjS9ID4/hUfkZsu9v9QbJYJnKw51R6uQHgYhrMBuqxRA1A5eCA+wIIbe/UkCCi3U7MjWG+i+RCR0ypC7s2PMoTBdHW4wFCJRlQBRO3l4tABu/fFo3nv1eXCAR/M3WScJzeeUPQ4W3LB2pvDDw3IKS5CYVYi8YiVsZWJ4OVrD3trwd4iPQ5MmTcoCDvfumfnCRAghhBBCCCGEEEIIIYQQ8pSocQGHBv4euBOfanCe7l2bGF2Pg6ud2ftgY2eN/GzN7gaWwAp1pFYSWNtawzPQHb2e74q+E7rB1tEW83fPxOwhXyA9MVOrYJQVoBrDizlkda+lvs4uciVgp9Q/v60Yub1c4PS3ekTZ4Ba1y+5zcLGHtdzKYEGqIYWjnFE4wa3CFA6KdnbIbW0L+XdJ8LtjJXRXOLn5XNlI6sbIj2chK0Cz4LQirkAJ+TnNX8zvhcWgOrEiYkKI/i4OS84swPg6byA1tvLVKiOmDdYqMrcEFuaqGOiysbPBiP8Nxvyx6mLqypJZVa5o4thfp1FSbJkCx8Gv9UH9tsH4ZORXOLXtvNANgWEhh1HvDcFzHz5jUqeIonwzh4utQOltB25qJ3T/7FehFlciEqG1jyeSvj2CwntpRpfft+YI1s0vH+XfXCzEoBVuqCC/mTscj8ZAkqX7/Y0FVtj7cOnf3t5Vh7Fp8T9CtwuGvXf71fNBrQa+aNKlIToObQOxxHgRdHVS8Zxwqeo6qsuuXbvKrj/33HNwdDQeEnnppZfKAg6lXSDGjx9v1vajo6ORlaUOqDAUcCCm8qgdjMxEw8NO123bweh6bOzszT7oMmsbFBfkozrOScRSKaRW1nDw8EDj0F5o3LUHZDZyDJ8+F1u//AwF2eX/bhh7Vzeha0N1Y90OStk5uwj7qSypnrCyg4cX3GsF4O7Fc9UaJKnu7g0BTZpX6/oJqckk1hx6/cJh53M8iowMpKFLgzGsG4DlPyfZ+3Owr9CYVCoH6o3kcH6hea9FokrWcccc4sGbNx6IlrqjAIdA4MRMJRLOsA+W6ulWzjwajOFQdxSHmyYEBljAoKo4sbojxj+jVMIXY5wEcGsCZEQACt3ZPQ3RO3mErXi84QaGBV6EgMa/jfaidqpw5y8e2ffVt+Xe7G8IcKjFwb0ZB58O7LH/90IP7PvE01Fp+P30fey7mQRlhYFqxCIOfRt74vn2AegQ5Cp89nkSVOz26OzsbLH1JiUlYeXKlcK5182bN4XzHzs7OwQHB6NHjx6YMmWK0D3CmLi4OCxfvhx79uzB3bt3kZGRIYTU69Spg759+2LSpEnw9fVFdUtNTRWC8Ww/rl27JuyHXC6Hu7s72rZtK3TDGD16NCSSGvezByGEEEIIIYQQQgghhBBCKqhx3/SP7tIMO87e1Hu/j6sDuoSUF+MbGq27Qbu6CD97p9L7UB3hBoYVoi45PV/3fa3r4PeoH3FkwyncOBEOsUSEdgNb4bcPfwfijK+7INgZKvm/v2qz3+0MhBtK5YaWBxy2/rAbHQa3Lruvsj/+KZ0lKA6RQ+UmRolGuKECMYfCqV5YHPo+PBycEReZgJNbzgnFtS4+zvj5nZUoKtBdaGu/Pw15PZ2h8NZduOqwOQWiAgv9Qm+iA38cwysLxsLKRn8xLSH/ZRKpBF/s/RgTG/+v0sue++ciRrw9QAiAVbcuI9qhdpNaZUXspgoM8Yd3kGellsnNMKGyhlO/BhvrJMSOzQc9P9EKc7FuQMtnrBW6VWQkaRaoVgfHFv64080PySnlQQaFSoUzsQkQ9a8N13W5egMFpcwJweiS39DV8AwiDgUNXWB/RnfRskgsKgtIrpz1p1boIuleinC5uO8qtny/S+jCNG/7dKGjD9GWmJiItLTyvwtWjGIKVkBTUUKC4SJzQy5fvlx23cHBQWvdhOjTos9ARJw+brDjQUBT4x1B3GoFwj0wCCn31KP1VkZ1hBsY34YheHbOAp33+dRriEk/rkD4yaNIiAgXOg8EtWqLgyt+xqNwee8OBDYrP67V1VWP40QY9/nXkDs4Ij0+DpHnTwtBCtal4tDKX6qt20J1uHHkADqOHgex5MkbqZqQJ4FYJkKXL1Q4MKXyryfxp4DgZ3hIbKq/ONq/B4fwP3nkVO6UBM71ARu3yu1fse7modrYao0cNqmcw5H/qZD70PgSLFBy9Sf2eHiUmLq9KrBxAwrSgIzw8mm8Akgp/yhoFOsk8SRggRXZv/nIqz+rELFR80nIT1Bfks7xuPM3Dzs/oPN8kRCc+a+4EZeFdzdeQUSS7m6ELOyw63qicKnnaYdvRjdHiO/j78YXHl7+B9q0aVOLhDwWLVqEuXPnorBQs2NuZmYmLly4IFy+++47fPbZZ3jvvff0rmvBggWYN28eCgo0vxNPSUkRLmfOnBG2NWfOHHz44YeoLlu3bsWLL76I7GzNQWxYaINdIiMjsW7dOsyePRt//fUXBdgJIYQQQgghhBBCCCGEkBpMhBqmSaAX3nmmi877xCVKjPL2gVhk2sOauGAcJFLdIyuz6Y96AC+RiDM64nmfF7vh3d9exds/T0a91kF4cMuEdAMb7c7moSwLZ/zH+xJXK2T08hauXz5wHRlJ5d0jTC3a5WUcst7yQcqvdZE1zQ8FL3kY3k8JsDf1RlkI5ZmpA5CemIGf3l6hN9zAiPJU8JgTBeuL2Wyo6fLpmSVwWhkPxy0pOpfjjBzzqshJz8X5PVeqbf2EPA0CGvqh94uhlV7u9oW7+HjIQlSXkuISHFp3HB8P/QIf9P4UdZoHCp1lKmPM9GGV3q5ffR+j87Cw2YLdM43Ot+3H3QY71exffcSkfarqe2FUsD2UekYMVdnKkNvx0RX/81Ljnw9UMv0dFzoMbiV0MYq5HYc/FxjvfpEYnYzpfeehILd6gpGmUIGzyKU6sG4NBw4cwKpVq/D555+jTZs2Ji3HRuisyMrKyiIBh+bNmz8xo7eSJ59foxChaFwXTiRCSPfeJv89dR07AaIKI/ZWxAIEj/rv0tg5iVRmhSbd+6DPlKnoNfF1uPr6Izv50VR9Rl+6gMK88mJFRw/D5xbm4nkVbv8bYHHx8UWL/oORnZqCw6uqJ9xQnc9xflYmHly/Wm3rJ+Rp4FxPBL9ulf93mHYDODW7+gZSUBbzuLdXhRMzlDj2vgouDQCnug/NZGS3G4yt/Nd+FbtH6MOOV8d5xue7s4nXCjdUdG8vHokC1mTo8TdfsAjfLpwQqsm8y2uFG3TJjYXw96MsekoOgBHH76Rg9C+n9YYbHsbmY/Oz5R6ngwcPCt0VGJlMJnStqyrWmWH69Oll4Qa2XtaxYcKECejTp48Q8GaKiorw/vvvCyEGXV5++WV89NFHZeEGFxcXDB48WJg+ZMgQ4TbD7mfbY9utDqdOncLIkSPLwg1su4MGDRL2Y9SoUWjSpLyTLusw0b17d6HrBCGEEEIIIYQQQgghhBBCaqYa18GBGd+tBU59vxdXi/JQ4mEPTqmCLDodNjcSse63s3AoUGLE/wYZXU+zbo3x+a6Z+GXaakRd+7eXO4CG7evije9fgbOHA479fQYFOYW4e+0+Tm45W62Pq0WP8h9iSiXeS8atM3eEwEWLnk1g52RrViGMJKPCSF3sN818VkRVYnAZvkSEtAG+cDiZDHGBEjkZeXD2dBLu6/dyD/z0zkqj28340B/Frewq7LPxH1Tv55X/qDh/zGKc3Hpe70jaKmV5MYEkXQGPBfeh8JDCrUcAchNyUHIyGZxC/zadPRyRnlge3KiOkAMhxLB3f30V1nJr7Fl+ECXFphcNXj9+C0f/OoXQUR0teoiz03Mwve9nuHOxfDTt67gl/H/IG/0gkYhxbvclJMekoVhH8EpmLcXLn49Fj7G6w3iGdBzaGs6ejgY7K/jX98Vnzy02ui723mWIosR4Jx+Gr0IdjNJehuJahkfCLKjvBocDURCVVH+XHVliHhQecsPzJOjuoiF3sMGLnz4nXN+z4rAwGqYp0uIzcOD3Yxj8Wl8z9vjpZmNjg549e1Z6uUOHDmncDggIsEjAoUWLFsKon7///jt27NiBK1euCGEKJycnobND//79MXHiRPj4GA8ikf+GtkNHIuLMSaQ+uKcxnVepcHzdKshs5GjeZ4DR9QQ2a4ln3v8YR/9YgbTY8qG5feo3Qs+XX4WVXI47Z0+huLAQSdGRiLp4DtWpVkhzrWmZiQlIvBsBsVQq3M/2qdSjDGCw4EFxfj6sbdXnFyHd+wjHujqkx8WWXd/x9XxEX7moe0b2+PW8Jzh7+yAnIwOKQsNBN9YZIi9TM7xlSYW5j2B4dEJquLYzOEhtWcE9L4zsb6qkC0D8aRV8Olh2/JDCDB7H3lMhq0KDn9Rr6kBD8HD1a2/CGR75KYBKx1gQYiug6asc/LpW/jXavxuHKz8a7qxg68XjnO5aaA0lRr4SURn+Woo8RGoPNH5R/ZxG7+Ir1X3iwSEetftzT33nhim/X0R+sWnnuqXY/Gy5jVM6PJZODtu3b9cINLDwt5eXV5XWuXr1avz2229lt1kw4IcffoCnZ/mANazzAgsjbNmiDu9//PHHGDp0KBo1alQ2z7fffouVK1eWBSTYvr311lsaIfPi4mJhPhaCUCqV+PXXX9GyZUuLBx0++OADYf0MO14///yzVth93759GDFiBHJzc4VzOxbaYI+bEEIIIYQQQgghhBBCCCE1T40MOBzfdAbR/1yBepwpbStn/Yk+E7rB3rm8sF6flj2b4JcrX+HOpSih0N0zwB2BjdXD1ZWOfG1ta4XigqIq7fNzM4bh3M5LGkGKitg2Bk7pXXY7KzUbiycvxentF6D6tyOBtdwKAyf3wqRF4yGWiIWwASu4zM82PjK09f1sSFLyoXCXCwP88XlioEgEWOkuKGU1OqoCCXgrEXJbuMDzSjbcfF2Ewt99q47g9vlIOHk6IlNHES4b9dVKboWsWiKNcIOpYvLTUKwowZ7fDukNNzAVww0VSVJKMP2l55Cdnov5R781uC2v2p7VGnDwb+Bbbesm5GkhkUow9ceJeGHuKFzYe1UILuxZcUjvv/GK/vj0b7Qf1Ao7ft6H3csPIiEqGU4eDuj1fFcMf2cgnNzVxQlKhRJxkYlCMMo32MtgMeY3k5ZqhBsq2v7jHoP7w95DFp+YB3dfV5hDKpPi/ZVvYM6wL1FSpF3t07pvc/z99fay94Wq8q7jiYS7+kfdZu9NhXnmv/8p7WTGW0BIROCtJaxtBqqb3flE5Dd113u/OKMQ1ne0C0wbd6qPN5e8Inw+uLDvKo79dapS2z2769JjCzjwPAcVz1V5HU8KFiz57rvvym5LpVJhZE5LBBzCwsJQu3ZtrQ4RrPCHXc6cOYOFCxdizpw5QnENIbdOHNUKN1R0fN1KNOrSTQg6GFO7RWvhknj3DvKzM+Ho7gVXP/U5Scr9aOG1VGZtDUVh1c5J2o8ci9unjiEjvrx4vyK2r0169Cm7zYru9/3yPaIuXygr4pdaWaN5v0Ho/Nx4iERi2Lu5Q2JlBUVR1fbNFGz/WBggPzsLYUcOIDn6LmwcHFDw70i+FXEiMSRSKUqKDAf+9MlIiIOypARX9u3UH25g9AbeOKHLBQuH7F1a/rqli4ObR7UGHFx8H123JEJqKrGMQ+v3OIS8zCPxPI+Uqzzu7TZt2ZureXg05xG5lUf0bh75iYC1CxDYl0PdERxkDurPUioFj9w4QCQB7HwNf746v1Az3FCGByI3/3tFD1tfoPv3HGxczAtdiK04tPlAhNOfqHSGPbzbA7c3WK4jgtwLwjHTuz/WgNK8l/KninszoMXbItj5AwlnecQdr9wTwAIxtfvjqcXOE97deKXS4YZSbLlpG69izztdLBrefPXVV3VOLykpQVpaGq5evYp799SfJ8ViMWbMmIH33nuvSttUqVRCWKHU8OHDsXHjRq3H5e7ujj///BMdOnQQzotYeOD777/H0qVLhfvT09Mxa9assvlZEHz06NFa22PBB3Z+5O3tjRdeeEGYxpYbP3485BVCsVWRn5+PkydPlgXldYUbGNaZ4ptvvsHkyZOF2//88w8FHAghhBBCCCGEEEIIIYSQGqpGBhz2rT5i8P6igmIcWX+yUsWEdVsGlV3PzczDgue/w7ld5UVvVdFmQAu88vlYDJrcG9P7zkNsRILG/XJ7G8z+exrc/dQFscVFJfiwzzzcvaJZMFWYX4RN3+5EXlY+pi1/XZgW1CQAN06Gm7QfLjsikTKuMXgrMTgFBz7WGnxgATgxr1Wjo8yRgleqfwxX2kvRfUxnXDl0AwvGfSfsR0ViiQhKhUr4oaxFzxA8//EoIRzy2ZUdWvugVIkgFhn+sfFSejT6LpoB8cf3hTBGpfHAP7/sx0vLJ8JqegeEy4vAy0SQxebD6UQi7K6kC7Ox433z9G1Ul8AQf4R0alBt6yfkacPCCCyYwC49xnbGe93nGl2Gvda81+MThJ+9UzYtJSYNfy7YgsPrT+Krw3NxaO0JbPtxtzCSPuMT7IVR04ZgUIVQWcWuOae36Q9WGZN0PwWntp7H0Df6mb2ONv1a4PtTn2PjV9twcss5lBQpENyytrBOFuIwNdxg6ygX3i8MSYjWH25gxyk+0kClkQnEOcXqNxVDBSIlSogKKjFMbhVYxebA8dB9ZPXQHvFfVFACt79u63zfsXexh0ctN3zQ+1PhvbCyWMDmaZGQoPkZRhc/P79q2z4rtrl06VLZ7WHDhsHR0bxRVpOTkxEfH192+8CBA2XXWXERGzWVFdJUDDyw2x9++KEQhli1atUjHbmePHnCjpb/zehSXFAgdHgI6a79fqOPV526ZddZEf+uJV/h/jXLnJMEt+mATqPGCqGLTfNnIytJ8zXeSm6Loe/PEgIEDAsG/DVvpkZXidLp57f9LTy+Xq+8Jvw7cPX1R1JUJKpbo649cPfiOez58RsoHgrGsUADr1IK7zmsK0aHEc8h4U4EjqwpH724Mthx/+HlZ6EoNjeAx+Pq/t3oOHocHDw8kZ2s+z3X3s0DCZHVd07iGRQsXAghprF24YRgQmBfwC9UhRPTjX/2zrgNHH5bhcw7miPm31zDC6Pmh37DCWGJu9t4FKq/joC9P1B/DIfa/bVDCDkxPBKr0KwnLw5IPA3UHmj+Onw7c+ixRITb63nEn+KhUgAu9Vn3CA4Rf/Emhxukdsa7OLBjpY+tH5CnO5P3n2PlzP4+eRx5h1d386gk/uk5JdHpdFQaIpKq1kX1dlIOzkSlo0Md8wYs0OWXX34xeV4WDpg2bVqVt3n27FnExKgH7ZFIJEKBv77zFhYSePfdd4UwAps3IiKi7D7WASIvT93hMDQ0VGe4oSK2jsWLFwthidTUVGzYsEGjM0VVlO5HaZilsLBQZ8CBYfvJzvWCgoKEC5ufztsIIYQQQgghhBBCCCGEkJqnRgYcSotUqzqPPrOHLhRGELeU4GaBuH8rFv8s3QdHD0fIbKwgs5LA1dcFjTs2QN+XuqG4oBirPl6PC/uuICs1B4nRyXrXt3fVETw7fRicPRzg6KGvj4U2q9hceK64huyOvshv7Abki6CIkwHOKois1L908goRlAVi4N9wA+MptRE6YnzQ61OdI4qzcEOzbo0x+69pcHC1F6YFNQvA59HaI52zUaRVKg4ikeFfw3NbyCDvaAfZSfN+nDx1+y42b/gD2d5sOzJhWmFdByTWdYDjiST0zbSHV6AHdv1muDDtYV6B7ug8oj12/LRXCNIYKix+b8UbZu07IQRoFtpYGDU/7KTxgr+K4YaK2Ovo/7p8LAQeKmJF+9+99iuSH6Tg5c/Hatx389TtKndH+P2TjRjyel+TfkBPjknFjRPhQueb5j1CyjpOBLeojY/WvlM2+qJIJEJ6Yga+evknk/djyBt98ef8LYZn0tEkw9HNHsEtg+DgYlf1gENuMWT3MlFc21nvPDbhqeAUxrt1WIrD8TjIHuQgt40Xin3swClVsAlPh925REhYIEOHMzsuYEK9qchJN+89KaRTQzwt2rZta3QeVkBSHc6dOycU35RiBTjz5s0ze31XrlzRmsZGL2Wjpvbv319YP8NGVF2xYgW++uorFBSou2atWbNG6PYwd67xIBZ5euVlpBufx8xR+XmVClsWfoLEyPIis6ryqB2ElAf3hKJ7O2cXyKzlEEulwnX/RiFo3K0XivLzcHzdKty/flUIWOSk6j8nuXZgN9oOHQGptQ3kTvpf5y3F3tUN9Tp0xt/zZkGl1A7GsXADCzYMmPo+bOzU5yTOPn44+vty8Lx57zPmhxvU7l27jKhL54QwiC61m7eCjaMTbh49WKn1Onl5I6hlG+G5ZF0m9LG2sxe6SBBCzOPdTgSnekpkmvBSXDHcUFFuLHD4TR75D72c5sQAFxbxKEhVodF4zZBD6nXTAwT63FjBmxxwyEvkkXaDBycGPFpysHJUn8e4NODQYa76Oq/iwYk45CXwODffxJ3jgDpDOYSvNTK/jrtlToBzPUBiTQGHUrFHgORLPIq1mxaZxK3J0x3M/ePMfYutx5IBh8pYuXIltmzZInSNK+1AYI7t27eXXe/Zs6fQWcGQUaNGCed5LAxQeg7E7Nu3r+w6Oz8yxcCBA8u65B0+fNhiAQfWbcLDw0MILrBww+DBg4XgRtOmTbXmZQH4mTNnWmS7hBBCCCGEEEIIIYQQQgh5fGpkwMHd3xVR1+4bnccclw9dt2i4gRGJRZgU8q5WwZ9/A1+8ueQVRF9/gNlDFiI/R3fhy8PYevatOoJzuy9pdXkwRppSANdtkXDZFgmIOeQ2dUbixLpQFej+U5ArOaxZNh3r5v6lM9xQ6uqRMKQnZpYFHGwd5OjRtiV24OFf+TkUK8WQQQGR9kCFGor7OpgVcGBH+d5wPxQXaXaaKJXV2RO9Bg7FuZnlHSZ4EQeVlRiiIgW4CvVPNnbWKC4sgbOnI3qND8XwdwbC2cMRY2YMw4lNZ5GZnIXEeylCJ4gHt+KE+UNHd8To94fAr55PpfedEFJu7MwRmDlgvsFDwopsWLGNPg+HGyrasHArBkzqJYSdSomlVX9bZCG1ucO/xNzN7+sNOeRl5eHbV3/Fsb/PQKVUv+hIZRL0ebEbXv/uJcis1cEshoUbmKJ804osrWxkePWbCUKHCvb4D/x+rNL7f3HfVViKw9H7SPO2B2+tfWytilSwP6UeWfJRsr6fLVwqw9xwg7XcCgMm9cTjIgQL+aoVM1V1eUtgHRMGDRokFLOUmj9/PurVq2f2OksLb0pNnToV33zzjdC9oaLAwEB8+umnGDJkCHr16oWsrCxh+meffYaxY8dWaR9IzcYK7jMSyruA6GLnYt45SfTVixYNNzCsEH7NB2+pO+tU4FYrEL0nvYGEyAhs++ozKPR8htYVwgg7chC3Tx/X6vJgaSxE8fyC73Bs3Uqd4YaKgYKi3NyygAP7f1CrNrh74Sweh6LcHIOhr5YDn8GVvf8YXY/U2lp4/liQJKRbL7TsPwQ29g5oN+xZRJ47LYRRspITERd+ExmJ8ZBZ26BBp65oM3iEEIYghJiv4TgOp+cYKdBnH5UMzPJwuKGim6t51O7Pw8at/POWyALf1LFOEWfmKdH+Y83PNRUVZ/O48JUKcSfLg88iGY/aAzg0f52DSMppnHcxivKPYgZJbIAWUzkE9OWEjhRxlTslQXEWkFSFLhaVwY4361BRE5gbbpDIgdr9H/9n+uqSU1iCvWEGWoFUwp6wRGF99tZSi6xP3+cAhUKB3NxcPHjwAMePHxfOQ6KiopCZmYkpU6YgJSXF7CL9mzdvll1v06aN0flZJwRd5zSsE0Sp3bt3Izo62ui6wsPLuwxfv34dlsTO12bNmiVcZ8esWbNmqFOnDnr37i1cevToAScndScyQgghhBBCCCGEEEIIIYTUfDUy4ND3pR44u/OS3vutba3Q7blOZq37xGbjxS8ya6lQ9G4SDlj72Sadd8WEx+Gz5xbjQViMSeEGXswhL8QVBcGOWJNxD0WqHNiKOHBmjDYu/Kyp5FEvV4bGvoE4GKcdlJCIRPi6zyC4eTjh4oFrRtd5af81BDb2L7v97sBnsHvf11BoDRHOQcmLINI1dHgFKk/zfkwsqOeAYjdrg/OsvX4VHf1coXCUIaOXH3JbuoFnAYcCBewupMDpYBwkuSXo+1J3vPHdy1rLO7jYC4XRGvv77yjrhBDLaNuvBVr2aopLBl5/DIUbjGGdGvavPorxc0aVTWvRI6Ryr/F6nNp2Hkc2nEJ3He9FSqUSHw1cIHSLqKikWIGdvx1AZkoW5m7+QGu5vOx8o9tl+7468ge4eqtH0h78Wt9KBxwsTZqaD9c/ryOnUy0UBbsA7H1LoULPRkH4YERPpI+Oxy/vrdHbiaOm+/D3t+Ds+fQUWbAuCsZGALW0a9euoU+fPkKRT6nhw4fj/fffr9J6n3vuOaGQhxUSseDERx99ZLDzSuvWrbF06VKMGTOm7N8yG111+fLlVdoPUnOFdOuNBzf0v0dZ2dqiXnvzzknunD1tdB7WfcHQ6P0PO7tlo87pqQ/uYef3XyLxboTJ4YZSrDifFddXlYuvvxAYuX9NM3jEiMQSDJz6PuSOjrh/XbvzigaeF+apWNTf46VXEXXpvBDIeNSMdbS5um+X8LiNad5nILqO0x4BWe7giKa9+mlt05QuUoQQ0/h1FcGtiRKphup0q9BtgVcC9/fzaDCm/N+tZ2sOnIQHX8Wi+5hDgH93Hr6dtV8TVAoexz5QIeOhhnmqYuDuVnWXgPYfay9Xkmf8wYqtgQF/sk4Q6u9HWBeHuGOVPEjV0xBMi283oMXrIuTGAVd/ViHDstnCJ0b7ORxkDk/ve0NiViGUVezEWIqtJym70GIBB31YpwRWjM8urAvBpEmTMHToUOzZo+6GO3v2bPTr1w+tWrWq9LqTksrDHj4+5g2+wsIXeXl5ZbePHj0qXCojLU3/gBPmmD59uhCa2LBhQ9m0u3fvChd2nsaC6u3atRO6Ozz77LNCxz1CCCGEEEIIIYQQQgghhNRcNTLg0OmZNmg/uBXO7Lio8/7nPx4pdBAwhykjZDfvHoKX549FXlY+Pur/OYoKdC/DugIo7aTgSlQQF+j+ZTrsRPnIVoYUe9gg6aWGUDirC/eFcaQD6yMjrRCeq25BlqI/IMGLgII6DlDZiCFLLIAsuXzIveLcInxarz3a1wrA72FX8CA7Swg/dPUPxOst26Gdz7+BBR3FOSqZCAV17cFLOFjfz9Mq4HGztsPc5kMx+8pWqB7+dZrVF+kfSFDAZSphjmJv4899RHoqXns2FF/J46F0LB8pXWUjQXYXb+Q3dIbPjzfQ7+UeJm+Xwg2EWN7sv6fh/R6f4M6lKK37mnRpiJunI6BUmPdawaTEav7gbm1njeAWQUJXlqr655d9GgGHkuISHN90FofWndAKN1R0cut5fPXKTyjMK8KtsxFIj8+Am58rHFzsjG6z8/B2ZeEGRiI18kL7iEjTCuCy/TZUrIuDnQyDxoZiyrP9ILe3gU8nBzTt2uipDTiEdG7wWLdv6Q4OLNzg5+eHR4WNzMkKVEq7JjChoaH4448/qrzugIAA4VIZrFBm7ty5uH1b/W94165dVEz8H1a/Y1eEHTuksyif6TR6PKRWhkO3+iiKjQcNglq0QfsRz6EgNwdbvphbqbDDwx7cMK9zjyXCDUxJYQF6vjwFd86dwdX9u5CdkgyOE6F2i1Zo+8xo+NZvqJ7RSGDg35k0bjm4uaPXK69j/7IfTVz+0UmLvY9GXXvgyt6dBucL6d7b5HVSuIEQy+v0uQhH3lEhS/uUBB4tgWT2NlCFl5eC8gynQGoLONWBVvjAHHe3q+DbufycQFnMI/YojwcHeIPrjznEQ2KjREkekBoGFGUAtp7qzgzG1OqJsnADIxY6QTxZr7+cmAUvgCYTRZDYcLBxB1xDOGREPFn7aSluIU9vuIHJKzb/OwFdcossuz5TyGQyrF27Fv7+/sjPzxcGUWFdHdi0yqoYLJDLzft+vOL5l7lycnJgSSzAsH79euGcbMmSJULggh2nUiyAfurUKeHCwuvjxo3Dt99+C1dX8zqqEUIIIYQQQgghhBBCCCHk8aqRAQdWSP7K/HG4cvAGCvO1i3/++WU/er8QChev8iJPU9VtFYS9qw4bnadOs0Dh+mvfTsC3U37V6rSQ09kPec09obJVF8/L7mfB4UQMrO5Xvp+8SiJC4suNoHSy0rpP4WqNpJcbwu+ry+CU2j/EZrd3R1p/fyidyov4bSKy4L4hCrLUIqQlZGDhuO/x88VFmNisNbKKCiETiyGXls/PNOsWgvi76hHAWJ1j+iBfZPb0FAIBAiWP7e456FlYACfr8l+8h9ZqjgA7F6y5exqH790UfmySXc+DfH8GCmZ4Adb6Ox7IDuk4VhzQuk8zDHq1D3b+sh/n92iP4ioy4YdIO5kV1iTc0Qg3VKRws4bD/zqUPc+EkMeDhdUWH/8U+1YdEV6b0xMy4e7viv6v9ETP57tgwbjvhNCAudz9yn/oLi4qwcwBn+sNN0itpULHCEWxaUOp3rkYhWXT/xDCCbUa+GLRhB+QFp9h0rJ7V2q+DyVGJwsXY+o01xyhkL2Gufm6IDUuHY+LSCyCSqkuOhAVKoBCBXZ9vxuXdlzEogOz4V3bEy17NcHGL7cZXA8LQ5jS7chUXrU98Pril3D1yA1s+2mvyc9rZbh4O8PehGAK0Y0V87zyyisoqjCifPfu3bFjxw7Y2JhQXVcNWOFw3759ywIOiYmJiI2NFQqRyH+PSCxGl7ETEBceBkWxduD58p4dqN+xizDKfmV51q6D8JOGR8n1DAqGR2CQcJ3tx5HVv6GmyklLxe6fvsXYeV+hzZARKMzNgUQm0wqI+DduilvHDZ+rsW4NDTqFwkpuWzaNdTlw8fHDxV3bcPfCWfB81bs51G7RGs1698elXdsMdvIwRGYjx/VDew3O4x4YJOw7IeTxkdlz6PGDCNG7edzfy6OQFft7AbUHcKjVm8OpWSoknDF//ay4vpSyiMfR97Q7K5QSW7HuC+rOD6ZIvwVc/00FuQdg6wOcW8ALYQVTRD+UvWJdDkzhVFezmN65PmDlBBRl4rHhJNDoiMGOX+RmIPGcCqHfiCB35+DZikPkZsMBBxbwUFjulAR2fkCzVzkkXeIRyU6HqqGuXu4JSOVPd8DBVmbZYL+d1eMZKMDFxQUDBgzA33//LdyubMeEUra25Z+BCgrM+4N9OBixe/duoaPEk2DYsGHCJTU1Ffv27cOBAwdw+PBh3LtX3p2YDcLDQvE3b94UAg9WVtrfqRNCCCGEEEIIIYQQQggh5Mmmv7r8Cbd8xlqd4QaGFYGumfuXWevtNb6rUESpDxsNe+Dk8hE087Pytbo2pD7bCDmd/MvCDUxxgCNSxzRGQX2XSu9TXjM3neGGUqyrQ14T7dGoHF9ugeQxdTTCDUxBPUfETW0MhYO63Xrk5WiEnbotFO2xcMLD4QZGUuHHwpTRtYSAQ1m4gRFzOJoei6HrVqJIqVkk2tylFhaEPAOPMbfgOfY2nBfEwupCHqzX6S+4FUcUQnZYe6SvKV++gAW7Z6HT0LaYv2smFh/7FFIrzbbxttcywBUbLlrqERiEA3fvGpznrguPAiMj4bKC6OJC410/CCHms7KxwuDX+uKHs19g3YOl+O7k50J3FalMirEzR8BabmXWCMYiEYc+E7qV3d7+4x5cORymd/7aIbXw2Y7psHMqLxYwpCC3EBsWbcOPU1fgwz7zTA43VEVmsuYoi2KJGKOmDcHjVBpu0PVePW/0N8L1lr2aok5z/YEyW0c5VkV8j2krXrPYfgW3qI0OQ1rj1W8m4PN/ZkAis3zmc+CkXsIok09CB4eqXh4lVowye/ZsPP/88xrhhiFDhggdEyoW7DwOQUHqgvJSycnGw0fk6XXsjxU6ww1MRkIczm7eYNZ6G3frBYmBQiyJVIYmPfqU3S7KFfq7PZGcvU0rzk+ICEdSVKTw/m1j76Cz+4VIZPw1lQUc1n70LpQKzXMSv0Yh6Pf6OxYJN/R8+TUMnz4XdVq1w6iP52P0nAUm7dvDApu1xL0rlwzOk5WUCKXC8DmJoqREuBBCqg8b5b/ucBF6/SLGoI1idP9ejMB+IojEHBq9IIJI99gJwiANxjoJBPQpnyniLx5pN/TP71wX6DRPBImJg7KX5ALh63hc+pbH8Q9MDzdURWG6ZkhALONQd+TjLbCvGG6oKDcWODtP/b7g3R6wN9DcS+YADFwvQrO3LLdfLvU5+HQSocVbYnT+TFQt39LWGfJ0hxsYL0driEWWeZwSEQdPB/M6cFn6XMPc84yKHQsSEhJMWubhIISTkxMkEskTfc7j5uaGsWPHYsWKFYiOjsadO3eErhf169cvm+fSpUtYvXr1Y91PQgghhBBCCCGEEEIIIYT8hwIOqfHpOLfLcCHIoXXHUVSgOwBhbLTwacteFQpftXDAWz9OLBvxm7XB3vz9bo1Z8pu4ozhQzyitIg6ZfYOEEERlFNZ3MjpPQT3NeXwaeONee/3Lsc4FmaHeZbdvn4/UO++uZQex4+d9wvUSFxmyunnqnfe+Mg/zlm3Sml5SpIBKxZd1pCjysYPoZDFsliSBSy4vxhGVAPJj+bCbGQeuWPNH8ebdG2PIG5qjhYV0bghlieYv1eJ8BRyP6v8Bz8vWDl38AqCo0MZclwKFAtHpukMYZ3dexHs95mKgzVgMlI/DWx0+wtGNpwyujxBiecHNa2PBnpkIaKRZPMm6Fkz//S0htKZP11Ed4BlQPlzqzl/3G9xWxIW7cPZ0woaE3+DfwBdPos3f7sT5PZc1pg1/ZyBGvzdE9/tadeOMd7koDdh9uu1DreeRYR0QWLCEHfvLB65bbNdYqKLi9UX7ZwuhB0vxq++D56Y/Y7H1/VcUFhYKRSrz5s3TmM46OWzatAnW1o+v2KjUw90jWHcq8t+UlZyIB2GGR+4PO3ZQq9DeFKzAv/ekN3WG9di03lPegtxR/Vmfrf/qAc1zkmphJDioi6t/LeRnm15NywIO+rCOGGFHD5i0HhYuObxKs8seoy+MooXjIKpQ1FdRYPNWaNKzr8Y0n3oNoFJV7rXAwd0TvvUbGw1cFBfkIytZ3UnvYZHnz2D9nA/w3fPDhMufsz/AnXN0TkLIo+bSkEOXL0Swe6ihk40H0H42B79u+l8/A3pzsHEtvz/qH8MdBFJvAHa+wJAtIsjLv9J5otxeDyRf1nwcDcZyCB7OGT0/qBZGtpl6Hci4w4MTceiyQPt5ZGSOQOcFIsgcOKRonm5ViWfr8uve7TmEfimCg+VOSYR11Rv19Acc7K2l6NtY/3eVldG3sZewvsclt0JolRXwm6N58+Zl1y9evGhSwNzHx0cIRrRu3VoIC7DPm82aNSub58wZ09rUnD17Fhs2bBD+n5KSAkvKzs7GhQsXEBERofP+4OBg/O9//xMec0hISNn0I0eOWHQ/CCGEEEIIIYQQQgghhBDyaNTIgENKTFpZsbyhkbOzUrU7ABjDQgubvt2pe/08cHDtceGHH+ba0ZtIjU3TmCWvmeEf1FR2MhQGO1dqn2wdjY9UzFcoOBKJRWg3dyDSjLQhz2ldPqKXzFqm93is/2JLhWVchKCGIVsjw1CQW6A1+rZnHU9k9qyF+GmtkDS5KRJfbYbUhnWBX4pg984D2H0Qgx+9xuLPidMxaFwP2Nipixi9gzwxaeHz+HzXTMge6tZQWkT6MNd/YuC8NxZckWahUQsvb6wbPhq1XUzopMEDo9duwC9nzmtM3vL9Lswa/AWuHikf6T387B189txirJ5j3ii9hBDzsaDTshuLsfj4PHy45i3M3z0Tf0T/hB5ju+DtnydphBgqOvbXaRz680TZ7bg7iUa3FRsRL7wOfXfyM7h4GQ+fPWpKhRKfjv4GxUWaBZyTFo3H6sgf0LB93Ue6P6zLhjE3T90W/u/h74ZfrnyF2X+/h74TuqPn810w9ceJWHvvJ+E5vnMpCie3nLPMfllL0bJXE433upJiBZ55qz+GTe0PmU3VC1ri7yTgzqVoPG7sE4sKXJUuhj9xWbZgpV+/fli/fr3G9E8++QTLli3TGEHUUoqLixEbG4uMDNMLsNPS0vSOkEr+W7JTkllFmMF5ivLyUJSfV+l1q5RKXNq1rey8oyI27eaxQ2W3H1y/gvysTFQ3KxsThwv/l0gsQd02HYRjYCqxVPfrr1KpwLnt2iFqQ64f2qcVaLBxcICti/F/s8998iVe/PJHhHTvXdZJw9nbB6HjX8Ez738M8UOvR2KJFA7uHibvm2+Dxhg9ez4cPb1Mmv/3D9/GxZ3bNKad2/Y3tn31GeLCb5ZNi799E9u/no+zW83rZkgIMZ9HCw79VovQ7VsR2n7EoeuXIgxcJ4J/NxFavwdY66lTvr+PR9xx9Wu9sphHvu48k4acOHVXhF4/i4TC+yeNqhg4NVsFXln+HsaKpVu8JUL/P0Rwqvdo90dkwkfItBvqfbX15tB3hQjt54gQ2I9Drd4cWr3LYeCfIrg24pAWpkKCaXXeRomtAPcW5bd5FQ+Weas/mkOdodDfFaQSsu8DWVH4T3i+fcATtR5zHT16tOx6o0aNzFpHt27lnSoPHDiAdD2Dt5Q6deoUMjMzhfnCw8Ph56ceeKBnz55l87DQQn6+ZhdjXZ9RJ0+ejOeeew7t27fH1KlTYSkffPABHB0d0aZNG0yfPt3gvKzj38CBA8tu5+RU/vcBQgghhBBCCCGEEEIIIYQ8fpavFHsEnDwcjM4jlUlg72w8GPCw87sv4+Zp3SNBlYYaLh+8Loz2nJWSrbMzgjFKR3WRjKkUl+KBgDoG57GJyhL+X7dlbbz0+VjEBMiA/TcMLqOSq59+sUSMkuISLH13FazkVugysj1qN6mFrd/vxubvdiL5QWr5MrbG/2RKZByObzqLPi+W/6DG5E5ogmxlvtaxyOpXG6qTMjjvv49Pey1Ex6FtEX3jPoryi4RgRPPuIeg4tI3OcENmShZS47R/qGMRDNddsXA+mACnIQ3w7JwRaOzugcbu5QGUdn5+OBsbq/+B8EChQokvj56Ag7UVxjRvitS4NPzy3hq9i/wx7290e7YjAhrpGPKPEFKtQjo1EC4V7V9zDEn3dY8ayIJsC8Z9h28m/oz2g1vBxt4a+dmGg2Hs9TDmdpzQVYAF6Z5EhbmFmDlgAb48OEerq0XSPcuOoGiMnZMcGUnq9yd9xFJx+XWJGF2GtxMuFbH3JxY+tJSSwhK81vIDzN38vhBs+OGt5UiMTi67n3VqajugBSRSiRBmuxcWU+ltsL+vTd/+g8Yd61tsv59mrKCmT58+OH++PFQok8mEYMP48eMtvj0WamjSpImwXebDDz/EF198YdKyFUdBtbe3R2BgoMX3j9QMckfjoWWJzAqySgYDmMjzpw12M7h/7TJiw8Pg16Ax8rMNv85aSmWCGl7B9dBlzIvITNTfVe1hrGMC28aRNb9Bam2Deu07w8XHTwh6XNy1DXkZhovzHqZSKnD34lnU79BFY7pUZvx8bdP8j1G3bQckR9+FsrgEMrkctUKaIbhNB61wA5ObkYaCbO1zw4pcff3RevBweAYFwz2gfHhu7+D6SIhUh/30URQXCcfF2s4OjUN7Ct1DTvyp/5zkxPo1qN++M5y8ntDh3Ql5SrEifndhwHPNQSGidwGF5V+raGAF7SwMILEBvDuqi9pZQMCQvAQeObGAxApQPpmnJCjJBU7OUqHzgvLP+oyNG5BvPFduURI5UJxleghCJOHg3w3wr9B5gxVuX1qswt3tlov+KouAfa/w6Pw5j+Ic4MoPKo2Ai9wT8GrLgRMDyZd45DwwYyMq4M4mXgjdPO06BLminqcdIpLKOyBUVn1Pe7QPMmFAlGqyceNGhIWVD6by7LPPmrWeAQMGoFatWnjw4AGKiorw/vvvY/ny5TrnZX/bc+fO1dim9N/A6auvvoqvv/5a6FjHwg9vv/02fvvtN73b/eGHH3Dt2jWNLnyW0rFjx7Lre/bswc2bNw0GQC5dKu/83KCB5vdEhBBCCCGEEEIIIYQQQgipGWpkwMG7tieadGmI68dv6Z3H0cMBn4z8GrVDamHglN7wq2taccfRv08bnYeN+s0CDt51tLs1iHNLoLI3HGAQ5Rr5tfohdpdTkNG7FlR2ukc0FecUo7WVExz6+aDrqI5oFtoIkkzN0YV1kSarfwlnP1T99PbKsunr5m+Gi7cz0hO0RzOWJhn/9VyWVIg0O81lT9y9j1sPhRsqyungA/vziSjILMTBtcfKpudl5WP38oM49vdpLNz3Meq3CS67T1GiwJvtZugtSOZlHFRD7CB6VYYfE9bCKdUWfTNb4blaXeBiZY/3O3fGuL/+QpFSqWNhdmDKb/58+hxGNw3B3pVHhBHSDdn56wG8/u1LBuchhDwa+1YdNjpPUUExjm48Dc5IdxqGBZzYxaOW2xMbcGCuHL6B8HN3oFSosPPX/Yi5HQ+RiEN6YvWP8F1RYV6R0SKwdgNbakxLjU/H9h/34MSWc0LQzcHVHpGXLd8JgT1/s4cuFF7TFSWar+spsWnCa3nn4e0wa+O7WPHROpzaptnNxxQX91214B4/vQoKCoQRNiuGG9jonFu2bEH37t2rZZu+vr5QKBRlt/fu3WtSwCErKwv79u0rux0aGgqxWLNwj/x3uPr5wzOoLpKi7uidx8beAVsXfQqPwCA0690fjh6mjdh/+8xJo/NEnDkhBBycPJ+cInbvug2EIvwGHbvCp34j4XW+Ml0rDq/6tez2mU3rYevkjLxM0zusPCw3XfOc6O7FcyaFLkoKCzS6ZBTn5+Pq/t24feo4Rs2eLzyfpViXiLUfvYuSIgOfCzgOxUWF2P/bD5A7OqFR1x5oNfAZyB0c0XXcS/j781lQVnhN0ufM5vXCsqw7Bc+qovXheVw7tBddx04wuk5CSPW7t8d4UbyiAIg5CHAm9Fm9soStj4eNh7pI/knFOh1k3uWFsEPUPzxy43gh+1FsOA9mccYCI+yYe7XTfL/KT+YRuYVH3EleWF5mD2Tqzx2aTZEHnJihgoK9hTz0Z8LCDlE7ePj3ADrO43D1Jx6JZyu/jcQLj6of2+PFPnN8M7o5Rv9yGvnFhr+300UuE+Pr0c0q9dnFUtj3sitXrtToeFCnTh2zg97s/GTBggUYN26ccHvFihVCN7wvv/wSDg4OGh303nrrLaHLA2NjY4MZM2aU3V+7dm0h1PDNN98It1n4nJ27LV68GO7u5Z0yCwsL8e2332LWrFll01hnvl69esFSBg8eLOxPdHS0sA/sNjtmXbt21ZivpKRECGzs379fuC0SiSwatCCEEEIIIYQQQgghhBBCyKNTIwMOzLiPR2LmgPl6i81TY9OFCysu3PztP3jzh4kY/Gofo+styDFesJqdrh4N7H6Y9uj/8uvJyPK207ssl18CmzuVK9IRFavgteoWEic01Ao5iHJL4LnqFm7HqUdUPb/nCn7/ZCO+2DsLDd3ccStV/2jdjqf/Ha1ax2+dusINjP35dKSOrGWwk4Pj8RS4hWqOeLb12k2DjxEiDnnN3OF4VHdHBRZ0WDThBywP+7ZsGusSoW80ct6KQ/ECL6hCrJGgVBf0phXnYN39IziQeAU/tX4NLXx8sGbkSHx+5AiuJVUYJo/VCinZ7+7lP2rGZ+fgy8/+RElYhfn0iL/7iIcjJITolRxjPOxVilepC250vSZqrbdCZxtLYEX82Wk5Fl3n4sm/IOrafTxOxkIgrGOQb7C3EMa4cyla6Lax5btdKC4srrZj/XC4xZATm8/i9PYLmLhwHMbPHoUVM9cJ77MmewJqiVQ8J1yquo7qxIpqTp06VXbbw8NDCBE0ayYMgVwtWOHSoEGDsH79euH2lStXcPjwYaOBinnz5iEnp/zf6pQpU6ptH0nN0GHkGGz76jPwKt3F5jlpKcKFdVy48M8W9Jn8FkK69za63pIC/cHgUoW56nOStFhzhnSuHgl3woX/R1++gFN/r8OIGZ/C2ccPGfEGuqaV4rVfNKsSbmDsXd00bt88erBK6yvMy8Xen7/D+IXflU0LP3lUK0ihheeR8+95GZv33Na/cPvUMTz7yUL4NQrBiI8+xeHVvyHlvuFAHwtnHFr5S9m6DM8bb+rDIoRUs/xKNFETsksmnpMUlDcgswipnbrzgiWdm69CVhQeKxYeMaRWLw5yDw5pYbwQyGBBjMgtgKqkfJ6KnRUe9f7FHAJij/Fo/gaHxhM4XP9NheTywelJBSG+jvhlfCtM+f1ipUIOLNzAlmPLWxrrgqAP666QlJSEs2fPCh0SStnZ2eH333+HtbW12dsdO3assN7vv/9euP3rr79i3bp1QkDb09MTKSkpOHLkSNm5DTs/Wrp0KYKDyweWYRYuXIgbN26UhbzXrl2Lv//+G507d4a/vz+Sk5Nx4cIF4f+l2DpWr14NS2KhDRaw6Nu3rxBUj4qKEh5L48aNUbduXbi6ugqPiZ1XpqaWf4cwe/Zs6uBACCGEEEIIIYQQQgghhNRQNTLgsO3HPVg2/Q+jI+mXUql4LHljGYKaBqBxx/oG52XzsIJGQy4fvI7o6w/ww1va7b3lV5KR38QDJXpCDo6H74NTGBhtUw+r2Fz4f3kJuS3dURCs/sHN5k4W7C4lCwGIilgx6MyBCzB2/jDMyU+ASq79NMtvZsLhVOV/DReVqOD5ezQSJtYBJNpDCzodTIRbshJdRrQXbl/YdxWbFu/AAW8FEGj4h0Klnczg/Q9uxWH9wq1IupcsFMEaKtxVjHIUwg26JBdlYvHtrVjY/CW09vXFyuEj0Or7n8qKCCoGGyr6Z/Uh2D4w/mu/g5u90XkIIY+Gq7eT3sCWTjzgV88bsRHGR3e2pKIKBf2W8rjDDcY0DW2EMTOG4c1203H7/F08qdhnjV+mrcGzHz6Djze+i2d9J5sUhmSa9wip9v2r6TZt2oTly8s/T7ERRdkIok2aNKn2bb/xxhtlAQeGjex58uRJeHvrHg2fjRBaOnop07FjR6HzBPnvurBjM05uXKs33PAwNt++X5fAPaA2PIM0i8cexuaJvnLR4Dz3rlxEyoN7QmH8kygrKRFbv5yHhp1DcWrj2ke+fRsHRwS1aidcj7p8Hhd3bsOD65UIqemRfO8uzu/YgqzEeGSlJCH5nnmVu1nJSTiyehkG/286/Bs3xfDpc/HLay8aXe7K3n/AiYwP8c66hxBCngxWzkBJZbLMPGDnB+SakA2zpIoF/ZbyuMMNxni0AuqOAPZPViJTf0Omx45XAJe/49HoJaDDJyL8M1JlcvcOjxaPviPB49Slrjs2TumAdzdeQUSS8e/w6nvaC50bqiPcwPzyyy+Vmr9ly5ZCGKFVq1ZV3vZ3330nhBDmzJmD/Px85ObmYufOnVrzOTk54bfffsPIkSO17mOdH9gy06dPF8ISrEMCC2YcPKg7NMoCCGvWrBFC65bWo0cPocvfyy+/LIQZmLCwMOHyMBYSYZ0cpk2bZvH9IIQQQgghhBBCCCGEEELIo2G8MuIJc3j9SSFYUJhn4i95/+J5HluX7DI6X71WQUbnyc3Mw5xhi5Cfoz3Mmkihgtu6MMgvJ4KrMFpYXU9XfPFMH3jcM384PFGREg6nE+H5+23h4nAmUSvcUCohKglH5+2E3zc34HA6GVyRel+kSQVw23IP3r/dBsdGKzeD3eUM+H95C3YX0wEW1lDxsI7Khefyu/D4KwavLZ4Aa7kVti7ZjRn9PsOFvVchzjD+fEkyjc+zfMZa/PPLfmEE7bR43UXL7FEpBhgOGZxMvoXoZPWopo7WVqjl5ASOZ9EG3T/8ciUqyJLyoVIaL2Dr9Xyo0XkIIdVHpVKhMF/9etJ5mLqwUWkjgcJeBlMGom83sBWWXv4SL3767CN7mooq+Z72JChxlyOviQfyG7pCZSWu9PKJUUn4ePAXT3S4oaINC7ci4mIUnnlrgEnzsxEwh7/z+IvfVVB3cKjSRc97Y1WxkTfff/99jWkrVqywSLiBHf/SS2BgoM552KijEyZMKLsdHR2N1q1b448//kBBQflnvFu3bglFNOzCPk+WBjHYvrL1k/+mG0cO4OgfK6AoruQ5iUqFy3v+MTqfR+06RucpyMnG9q8/r9Q+sODEgLfeg9TK/BGBKyM9Lga3ThzBo8ZxInSfMBkSqRTnd2zGli8+sUi4odSxP5bj6oHduHf1EvKz1N3izBFx9mRZpwW5kxPsXFxNWs6UUE2jLj3M3i9CSNWx7nCKQvXnBr9OlV/evxuHXr9waPjCo3s2TC2Yf5rkJQDHPuSf6HBDRTdX8sh5ANQZYuJnUBELcPz3Pq+ysMLed7riz0ntMaCJF8QizWMgEXEY2MRbuH/PO12qLdxgiEgkEorwfXx80LVrV0ydOlXoKMe6IVgi3FDqvffeQ2RkJD755BMhoM2CB1KpFM7OzsLt+fPnC/frCjdUDDl89dVXiIiIEDoisOVYFwi2HvYY6tevL5xXsdDDnj17qiXcUIp14WP7wcIWAwYMEAIcNjY2kMlk8PPzE7o6LFq0SJiHwg2EEEIIIYQQQgghhBBCSM3G8aWVWjXEaJ9JyEg0r4jExcsJG+INj3D6fs+5uHJYe+Qnc6hkYihcrDFrzVT07tVSmLbqh6346fA+KNxkEKeXwO5oBiSp1TBM3r/FfRWfXlbYy1XDs126XnZ83/llCjoMbi10WHgh+M2yQEBhLXskv2ygYFGpgu/iixDnVv1Y8LYiFG4JMDpf7V95vDhkMOLuJOCiXRF2qdL0zmt3MRnuf0caXaebrwsWHZgN//q+ld5vQkjVsGDXnwu24PCfJ4SAg4u3M+qMb4ddCbEo9lOPYizKKYLt5STYn47TG/IKaOSHrJRsZKZkm70vrr4uKMgpQH62dhBOFwl7v6gQinsc2Gt4ugnvrwpHK2QMCkZxrfIiEBbos72QAIejD6qpFP7J0OmZNrh29CZyMvIMzicSi/Dmklcw+NU+eBxiY2OFQg+m88ZXYO1etc5ChSk5ODFa3WUhJiZGKByxBBYkGD9+vEaRT+3atSu9HlYMxC4VVQweBAQE4N69ezqXZaOPsi4MD49AygpkWNFOTk4OMjM1/13Y29tj3759aN9e3a2K/Pewz9c/TRyDwlzzgsuOHp6YuES7E1xF62ZNQ8Kd27Ckoe/PQnBr9d/t8T9X49zWv/A0snN1Q5/Jb6F281bISIjDiv+9yp40PKlcfPzR9pmRyExKRNLdCKOdO0zh4OaBkR9/BmcvH4vsIyHEdDmxPMLX8og5zAuBARt3wLk+EH+ickfRIQgoTAWKzT8lgdxTvbzCtFMScGKAf7ynJLByAYrSH+8+POn8ewAJp40/r+z5bDWNQ+3+NW5sG4vLKSxBUnYhcouUsLMSw9PBGvbW0se9W4QQQgghhBBCCCGEEEIIIcQACWqQrT/sMjvcwIglhkeYTo5JtVi4gREVK9GxWXBZuOHn8BNY4hMGxVjvsnmyRnvCcVsKeqV74aVPn8PUjjOhVFTPL8rVEW6ouN7M5CwENVUHC3YvO6jR7cD6QQ5sLyUhr6WnznU4HXxgkXCDoEgFFPOAzHCZbfzVeHx6chmyQj1RUNsOvJMVeKkUXDEndHMoJYvLhcs/0RrLOrjZIy8zX+u5So1Lx5vtZmDhvo/RoG1dyzweQohR92/GYFq3OchKzSmbFusqwXVRFvBvuIFR2Vshp2stlHjbwWVTuM7Xxfs3Y6t0xOs0DxRGbE2LM60yR2YthYOrvfD68Sj51fcRQlkskDVgYk/8/c0OHFx73OAyKmsxUsc2htJJc+RvXiZGbkc/QCyC4yHdheRPIht7GyGIYqpT2y8Iz60hwc0DMXfLB/AMcMeToLQLQ1XXUR02b96suR2VCnfvVr6jR3q6+f92rKyssHv3bsycOROLFy8WukowxcXFQphDV9eHX375BY0aNTJ7m6TmO7v1L7PDDYxIbPicJD0+zuLhhuA27cvCDSc3/oHz2zfp7HpQu0VrtB/5HP6c9Z5JXQKeRPmZGUKnCubqgT1PdLiBSY+PwZ6fFpu1rNzRSejk8fBzlZ2ajHUfvYtRs+fDI9B4h0JCiGVkRvI48q4KJeWnJChIUV8qKzuqavvCQhWsAN7UcIPYCpDaAYX6x32oFva1ABs3wCGAQ9AgDmGrVYg7hv8UiRxQ5Js+fwxrjGTkLdqlAdDhUxHk7k9z/Nx0LMxAgQZCCCGEEEIIIYQQQgghhJCapUYN47Xzl/1VWr513+YG72cF+pUhFhs+fA3aBmP2X9OE61vvX8PisMNQ8A/9CinikDXMAyFL+qJe6zoYNKU3LMXFxxmPkkrFY+/Kw8L1B7fjtPdn+104746CJL38F3ZpfC5c/7oNh1PxFtsPTgGITxoeXZuLKUaOmyMefNQEWV09UexvC6W9BCprHiobBUTZhbC6lw3XzXfhvfQGxIVKrYJkfUEUNmL716/8bLHHQwgxbsmbyzXCDSqpCJm9a7NqTZ3zF9Z1QUF91yof2tDRHTB38/sYNnUARvxvEBbsmYXJX76AqGv3TV5HcWHJIw83MLG343HtSBgK8wtRq5Efrh27aXSZvOZeWuGGinJbe0EprxkjYfrV88ZXh+YguIXpHQOMhRsYmdzqiQk3POkiIiLwJJBKpVi0aBGioqIwZ84cdOnSBR4eHsJ0Z2dnIcwwceJE7NmzB8eOHaNwA0HY4aqdkwQ2a2Xw/vzsygW6K3Ys0cW3QSMMeOs94fq1g3twZtN6neEFnlchuG17eNeph8ahvWAprAj/UVIplQg7qu7KkhFftdDik04ik+kNohTm5WLv0u8e+T4R8l928RvNcMOjEtAH6DBXhLojONQbzSH0axEaTxAh54Hp62DdJh51uIFh+5hyBVAWq8MOKVfxn+IQAHRbzMGhMk3MTMgfSmxA4QZCCCGEEEIIIYQQQgghhBBSo9WYDg7Z6Tm4F2Z+gYrUSophbw/Qe39uZh5Ob79QqUKiTsPa4tjfZ/TOM+LdQbCxsxGuL4s4ZXB9yyNOY0xQK0xa9DwehMfh8sHrWvP0er4rmvcIwdmdF1GQW4jrx26hqKBYb+EmC0wcWncC1YmVeiqcZMJ1aWYxUmJShev2TrZa87LSK/uzibA7mwilvQy9xnZBx25tse/+YaSJbOHk4Yi7V6KRnWb+iLgSmQRNujRAn4F98XnOVpSIdfzyq+LBbc1D8th6gFi7IIyXiqCSl8D7ixt6u16oFIZ/Ub4XFoMbJ24hpHNDsx8LIcQ0sRHxuHpEs/tOQQNX8NaG3+Lym3lAHm5+FQ/rfjBp4XihmL3TM23Lpv/24R+oKVgwbf/qo8J7mkhkPPNY0NBIKEQsQkF9F9hdTsKTZvBrfWFloy4EbdY9BO0GthQe8zdHP8FfX+/A2s83GX1tNwX/hI8U/iS5ceNGta3bnOfB398fc+fOFS6E6JObnobMpASzD5BEZoUW/Qbpvb8gNwdRF8+bvD6h60LLNoi6eFbvPG0Gj4DUylr4d6Grc0NF57dvRpPufdB9wiRkJMQhLly7u12Tnn3hXbe+sJ8lRYWIuxUGRYnucxL3WoFw9PRC5Hn950zVITddfU5iZWtndN7G3XujVuOmQigiPysTtk7OSLgbgeI8w4FpQ8RSKfwahqBRaE/s/WmxELqoDiVFRQbvT46+i8S7d+BVhzrLEVLdMu/ySL/16I+z3BNoMlEEG3cOfqHl329cXlJzuvCwcUCid/IQiQGuRg3DUnnBI9h5l7q5kGcrDl5t2WPm0GMJj/A/VQhf9+8XbYQQQgghhBBCCCGEEEIIIYT8x9WYgIMpoyYzcgcbYQT9h4veZ6yditohtXQukxqXhmnd5yI+MtH0/eF5XNhneGi53z/5C91Gd0JCfhYislMMzhubn4monFQEO7hjwZ6ZOLPjIvavOYKMpCx41fZA/1d6onn3EGHevhO6C/+/fT4SswZ/odV5wifYC/N3zRTur86AQ2YXT2R280KJhzrEIUvIxwO5lXC9+5jO2LVMPXLqw9hP7pKcYgwe0xVNuzZC9+c6CdOXvLlMZ7CjMr46NBeNO9YXriduSsUvqfvB17Eq33ayApJl6Uj3cNMZbiilcLVCXlNn2F3N0LrP2tZKCJgYExuRQAEHQh6B+LvaxfRKh/J/9/ooHY3Po4uNnTV6jO2CcbNGwN1Pu+Bf30jKT7IDa44idFQHJN03/F6lshIbXRdv9WR+tGjWrTGCmtbC8U1ncetMhNA5o9MzbYQg4gtzRgshwqkdZyIrJbtK25FKn6zHr+I54VLVdRBCKheekdnYoLhA85xELJFi8DsfwNnbV+cy2SnJ2PDJDGSnmB4SY10XYsKuGZzn1F9rUad1O2QkxCMz0XA4g3U8yExKhJOnF0bPno/I86dx8/hh5GdnwdnTWwg3sMJ9hgUhmLjwm9j61WcozNF8/XTx8cMzH85GTNj1Rx5wyMtSd8Fo2CkUt46rO8zp06xXP3gH10ejLupzrL1Lv8f9a5ertP0x876CZ+06wvX02Ac4u2UjLE1mI0dhrvFgOAuqUMCBkOqXq93EslpJ5EBAbw4Nx3OwcdXxWa0GFslH7eLh0xGIO4anlmdLDnY+QNwJHqk3eCiLOfh04iG15dBkohgBfXgcerPqnUC4J+uUhBBCCCGEEEIIIYQQQgghhJBKqzE/eTm6OSCwsb8wMr4+HAetcAOjKFZg9/JD6DysnTBKdUXJMan4ZPiXlQo3lNK1rYoe3IrD/ZsxEAfYm7Q+BRu2jhU/icXCaOAVRwRn0hMzcP14uPA4m3RthPptgrEsbDFObD4rdAsQiUVo26+F0FlCIpUgK61qRZqGJI8MRFaol8a0Ym85tiET/mdO4L3undGmX3Oc33NF5/JtB7QQwg2lFCUKHPi9ar9iB7eoXRZuYEYP6otttbYg3SUVKm8puCwlRFcLwamAwvcDja6vMNBOK+Bg6yjH7L/fw+JJPxsNOdg5a3exIIRYnoOr9ujM4lzdI0lXJMotqfS2WGeeiQvGCa+x+jQNbSx0BHhUPGq5IfmBeqTqqnRy8KztIXQ7KinSf1ykKflQOqtDbYbmeRJ9PmaxVljS1ccZsza8i5BODeBTxwsb4n7Fe93n4sbJcLO3I5I85cPOEvIfZ+fiCidPb8NdHDhOK9zAKBUluH54P4JatdMZbtiy6NNKhRtKlRQaPidJvhclhBZMDeDxKnW3AZFYjHrtOwuXinLSUxF/+5ZwXuXXqAl8GzTChG9+wp0zpxAfwc5JxAhq2QbBrdsL1+3dPPCo3TlzEmc2b0C7YaPh37ip3hBI3bYdhXBDqZLiIoSfOlqlbXvXa1AWbmDYPlzZtxNFVegI8TBrO3sMnTYTO779Qug6YXBeE7pYEEKqzsrh0R3FBuOAxhNEEEn0h1Ddm3GI3PLoUg42HkBBctXWwSsAh1pAvER9/Wl0cubD78W8cOw6zhXBpSEHh1ochmwW4fBbKqSbf0ry1HfCIIQQQgghhBBCCCGEEEIIIU+/GhNwYIa9PRCLJy/Ve7+hAVXP776MC3uvoE2/FsLtjKRMfPf6bzi17bzJ3SHMkZ9TiPpyP3hbOyChUH/gwNXKFkH2bjrvK8grFLobHF53AoqS0oIjEaQyCYoKistGEx8zYxg8A9zLlou+9qAaHhFQ6CfXCjdU9OPFsxjVMARzNr2HH6euxIE/jpUVzLLi2d7ju+L1717SWCYvKx/5OYaLswyxklthxtq3NabJrKSY+vNkfP7cYihvaxY7cwrjBV5snqahjRDQ0E8Y6bt+mzro+XxXyO1thA4Vfy7YondZexc7tO2v/lsjhFQvFvbyr++DmNvxZdNswtOQ1as2eJn+jgPy65WrwBGJOAx9vZ/BcENpgMu/gS9iwqt/GFfWUebznTOEwFX09Rh8O2WpwfdCQw6vP4kX5o7G8hlr9c5jeykJhfW0u1aUEmcWwuquduebJ4Gu9/q0+AzMHDgfSy9/Ce/anhBLxJix7m2MD3oDKqV5nThcvZ3xROE58FXtwEAdHAgpw4r6W/QfgsOrfjHwb0b/CzHrZMCK7VnRPZObnob9y35E9KXzJneHMAcLQbj4+kPu6GSwIJ4FOBw9dH/OL8rPx4FlPyLizAmolOpzEk4kglgigaK4WOgo0Khrd7QdOgr2ruXnNWmx9/E4sM4VjUN7YtgHs3Fwxc+4deIoVEp1xaxEKkPj7r3R7YWJGssU5uRAUVRk9jal1jYY8MY0zWlW1uj5yuvYveRroeOGOWqFNIeztzcUJSXwqdsADTt3g9TaGg07h+Lizm16l2PPd60mzc3aJiGkctyaAnJPIL/yObVK4cRA8FDD4QbGpzNg6w3kGW7cYxFSO6DrVxyKs4DMKB6XF5u/rgeHgYbjgJur8Z/BgiHHPlShz3IR5O6c8Ny2myXC7ufN7wyos6sHIYQQQgghhBBCCCGEEEIIITVIjRrTa8DEnhg2dYDZy+//XT0aJyukf6/HXJzccq5aww2MXz1v5GflQ77D8K/cY4JaQSbSLsRlhU5znlmE/auPloUbGFZ4ycINDCts3fnrfrzZbgZiI8oLfK1sZKgO2R0Mj8LKjujGWzdgZWOFd397Fese/Cx0PWCBhz9jluJ/v74q3PdwZwQW1DBXUX4Rwk5pD2/XZXg7LDowG637NtOYbnfNeAGu3ZUMtOjRBFN/moT3VryOwa/1FcINDPs7dPfTX+TLioRl1tVz/Akh2sWmE794XggglBIVKeFwTH/ISxaTDXlY5boeNO7UQHitMkYkEuHTbR/CK7A8cFZdj7swrwiTmkzDJyO+QnpCBqxtzX8dTbqXgtVzNxicxzo6E7bn43XvT5ECztvvgNMRwrBzqnpHm27PdUR1YN2Ytv2wp+y2h78bOgxpbfb6eo0PtdCeEUKeVC36DUKz3v3NXj7s2CHh/4V5udjwyXREXTxXreEG9n7h6OGJ4oJ8o10cmvcdJHRdeBhbbsvCTxB+koUElBrTWbiBYeu/sncn1s58V+gYUUoiezyfidm+hR05IAQB+r3+P0z+aSWGvPsRhkz7CJOXrkavV16DRCrVWMbazk4IP1QlSJIQeVtresNOoRgx81PUCmmmbjtYSYHNW6LXxDfQ77V30LRXP+ExMa0GDoOtk/5gXadnxwsBFEJI9eNEHJpO4aD1YdjC3JsBYhM+8ovEHDrPF8HGvfq/VSzJBfa+wOPMPB7F2YBI86W1UvLigPA/YXESufpSVf7dUC1KcoC728o/C9j5cvDSbvhksoA+FHAghBBCCCGEEEIIIYQQQgghNVuNCjgwE+Y9JxRLmiMzWd1BYc/yQ3hwq/pH1mYjQbNQwp/zN6PktzuwPZKucz6/exxeb9BF532XDlzD5YPXTdpeZnIWlry1vOx2m/4tIJHqH73cXApn40U/NyLKR2p1cncUggadh7WDo5uDzvmLeR4uU9oh7q1mePBRa8S93gTZbT3Bi03/UXbxpF/wfOBr+GbSUkRfL99+066NsGD3LLz4yeiyaQ6nUiDO1OzqUJH8RgbkSUXo90oPrftyMnIRff0BXvliHJp1a6xxn4uXkxCIeOZN84veCCGV13FoG8zZ9L7QyaGU3fkEOO+4A3F6gUYRvu3FBLhuuAnOQMCNFSg97PrxW3ir/Qykxut+La/Ir643loUtxrRlr8G7jmeVn1KfYC8MnNxbCM25eDsJhVMVi2FZJ4LVczbA1qlqVTuKIvXI1oY4HbgHl03hsLqXCa5QAVFusXBMPVZeg1VcjjAPe++Z8tUL+GLvLKyP/QW1Gvmhqo6sPwVHd93vIVV1avt5jdtv/zQJTh6OlV5Pu4Et0aq3elT2J4UKnEUuhBDNwECn516AWGJeBWdBdpbw/6v7dyMzsfqH1uZEYiiVSpz++08U5OjvKMe6LrQdMkLnfVGXzyMuPMyk7eVlpOPw6l/Lbtdp2VY4Zo9DQmRE2XUWBKjbriPqtu0IGzt7vaEIV/9aVdrmrh++xm9vvIz9v/2AtNjysGVAk+YY9fHnaDtkZKXWJ5JIhE4UD2PPZVpcDLqOewm+DRprdeLo8+pUNO3ZtwqPhBBSWf7dRegwRwQ7XwsdOx0vncmXgENvqFCYYTwY5xDIod9qEVpN4yDX34TTZPYBQO0BHOz8AGuXfyeqNDsRhC0HrCr/MVqDSv9XNZXCSYBmb3Do+pUIg/6yzPMScwSQVfHx6RN3UvM5bT1NBJnutyuDfLuyIAx9fieEEEIIIYQQQgghhBBCCCE1W40bzvHm6QhhxGpzeNdWdx44uO641n0qGymKajuDF4sgTcqBNDmvyvuqVCjxdseZSItPB8cDbj/Gwu5gOnJ7uEDpJoU4QwHbw+mQ3sxH+uh0YdTohx3+82Sltnn5wHUkRCfBu7Yn7J3t0H1sZ6H7gyWJs0qMzpN2w/RirezCQjy/fhNuurH1qkf5VtrLkOZvj7xmbvBceQsiheHRZhlW7Jv0IBW7lx/E/jVH8NG6d9BlRPuy+/euPFz+GAqU8P0+HAmT66LES92VoZTt9Qx4rryL3i+Ews2n9Fd7oDC/CEvfXY0Dvx8t655h72yLoW/0Q7PuIcLI7k27NoREWuP+WRHy1IQc2Mj7t89H4uuJP+PejRjIb6TA5kYKFG5y8BIOkvQCiIr1v57IbKQIahqI8LN3dN4ffzcJP72zErM3TjO6P6xTDdun799YVuXCpoBGfhj+zkC8+s2LGOM3Rd0qR4fU2HRIrSQoMSGoUBU2EenCRR8W7lv72Sb8Ef0jbB1t0XNsF9w8pT2idWVlpegvzK2KtDjNx+Ls6YRBU3rjj3l/m7S83MEGAyb2wkufj3lsRbyEkEcr7lYYlArjn4l1cfRQV5mGnziCR0GlVODPWe8hK8VwR7m8zAzkZ2fp7AgQfvJYpbYZfekCctJTYe/iBrmjE+q06YDIc6fwqBl7zA8HBjZ+MgOpMeVBabPwPLJTk3HtwB6EHT2Iwf+bjjqt2pUFKG4eO1ip1TXr1Q9yh/Jq2uLCAhxe9Zvw96MoUZ+T2Ng7oEX/IfBvFAIruR38GjbW2YmDEFL9/EI5+HYVIf0WcG6BCrmxlV8H69DgEAhkaDepFOTEAFd/5tHuI+OfOyU2HLw7AJe+rXqnILZP9cdwaPY6h39G6T+nKkhVd3FQmfc2aTG8Arj1B4+B6zlIrDnU6sUh807Vj0OxOqdocfnlzY8E1m5A7YHA7fWmLS+1A4IGcwh5mc5HCCGEEEIIIYQQQgghhBBCSM1X4zo4VByxurIGTOol/D87Lad8fRyQ0602Ul9uhZxewcjtHoSM55ohfXQTKB3M6xRRUUJUEooLy3/VtQ7Ph9tPsfD8NBpuS2JgcyMPKhUvzFexkF6lUv9YnJuVV+njEx9Z/qsoGz1cam3e6LL6OJxNMTqP9RHTO2QsPHIcN5OSdd5XGOSIzB6VH/mbFdcufGEJslLVxbBFBUVIvKe531aJBQj49Bp8fgiHy85YuG6LQa3PrsHn5wiIC5Vo2L5e2bzs+Zg9dCF2/rq/LNzA5GTkYduPe3Bx31W07NmEwg2EPGasuLxB27qYvGh8WaE5+680NR+yxDyD4QamuKBEb7ih1Kmt55GemGHS/pzbfRklRVWs7OGB09svYHLTafj5f6uQm2n4faF2k1rwCnTXmMZCD371fCC1suz7gSFsP/f9G7Dr/WKosF9PKvY+ffmQulvS3lWH8XKjd0wKNwx+rS8WH5+H9XG/Ch0rZI/w+JpKxXMWuRBCNPH6kmYmaPLvqPr5BropWFpGQhxUCsPhN5VSieyU8s/kJUWFQkE+U5SXW6nt8bwKWUnl5ySD3/kQIvGjDwEbe8wVHV79W9XDDQ9RlpRg5/dfoShf/d5dmJ+H3AzjnaAq8g6ur/EcbV4wBzcO7ysLN5SGMy7v3o7YW2GoFdKUwg2EPGbsPMS1EYemU8z7yk1ZqD/cUCr2CI+iLNPeixJO8+CVqLK4o8Del1S4+rMKivImeTo51QVs1GOMlBFbAXb+6s4KjwoLIzw4oD5OQQM52D+5pyTC8556Q72vUf+osOcFlUnhhrojOXRfou5S0XSyCCIJfXYnhBBCCCGEEEIIIYQQQgghNV+NCzg0bFcXUlnlfw195q3+qN8mWLhecXTlnO51UNDUGxBrHgqFlz0yhjeGyurRjHxpJZfh90/+wnN+kzHY7nkMdXhBGIHcxdOp0uuyc1Z3QWDEYjHe/fVVk5ct9pCjMNABCif94Q6be7mwP6c/5OB4NBFuCtOeo5yiImy/afiX+5w2nuBFlf+BlgUR9qxQd21gRb26CnvZWm1vZsF1Zxxc9sbDKr78V/qG7euWXT/zz0VcPqguftVl128HEHPb9FAHIaR6tenXAu/+9iqsbaseVNPVnSc2wrQuNRUDbpbY7u5lxkd9zssqwOrIH/D5zo/w2jcT8NriCfAK9EBsRHzVwxaVdPO0umuDja01vjw4B11HdYBY8mSOKH1o7XGsm78ZX738E2LCjb+eewd54qXPnkNIpwbC4yOE/Lf41msITlT5U6k2Q0bAvVagcP1JHGFfLJXi5IbfsXTKeHz/wkgseelZ7P/tB9i5uFZ6Xda29mXX2WPt+bLp5ySWYm1nZ9J8rHNFxGntLn+WUFJYIHRyYKQyq8o97xwHr7rlAYc7504hLvym3tkv796hEVIhhDxevp05tHyHg0hm+XWz7gh58abNqyzPQ1mkK0L0bhO2WQgMXCdC5/kiNHuDQ/M3OaEjQW6Meh2PUlqY+v9SWw7dFovg2wXgntBvQ1kY48YKFS5+zZvU/cPeH2j8Ege3EHWXCkIIIYQQQgghhBBCCCGEEEKeFo9+GM0qsnOyFYoKH5hQfMiwEaOHTR2A/q/0FG4XF5UgK0XdT15pb4XCRg8NKVeBysEahY08Ib9s4q/GZrJztsOPb61A+LlIjS4Oe1YcEsIKLI9RmcYVVw+HoX5rdZiD6fV8Vxz4/Sgu7r+mdxmhU0LPAJR4/1sExPOwis6C8+5oSNO0h+bz/OMuZMmFyOzqCaWD+td6SUYRnI4kwulQAkI/H2vSvt7PyERBiZHRZO2kUDjIIM0sQmVFXFQfU5FIhK6j2uPgH6YVLjXv3hi1Q8qH9ju49rjRzhlsngmfPlfpfSSEVM21Yzdx68wdIfzWblBL+AZ7C9P7vdwDXUa0wxttZyDujmmBBFPZOspNmq9+mzqPvIuRi5eT8JrXtn8L4TJn2CLE3K7e9zF9xNLyIk5HNwd8vOFdpMan4+6Ve0L4Y+WsdYgJfzz79rC0hHTs//2YSfO27N1U6JBk72xa4Swh5Okjd3SCg5s7spLLu7AZ4h4YhFYDhqJxaM+y7giFOeVd5Z4ENg6O2PPzt0i5F6VRnH/twB5Y29mjsiclD8Kuwa1WQNntpr36IezYIcTf1l+gb2n1O3Qxab70+FgoK9HtobKSotTnJBKZDMGt2yPi7EmTlqvdvBWcvXzKbt88rg5vG+qcweZpP/zZKu4xIaTSoo8BcZcAiRVQvz/grA6z1Rkqgn8PHvsnq5Bf3tjGIqTlY1sY5NKAFb6b33lIi+GmeAJrF4ATc/DuAHiDw7EPlMh7TGNCcBVyZdYuHDp+KkZ+Mo+su4CimMf13/jHtm8PY/t1d4cJM3KAV1ug9fsiSOUUbCCEEEIIIYQQQgghhBBCCCFPnxoXcGDkJhSWegS4Y+mlRVrFh/duPEB+TqFwvSjYBTDSGaCwrmu1BxycPR01wg0V5WbkwaeOF+Lvmv5L+Paf9mLktMFCgWupkM4N9QYcWLghZUxDzS4WHIeiICckTwiB5/JrkDwULuB4wGVvHJz3x6PY20b4rVyWkC9Md/dzxcDJvbS2k5WajdS4dDh5OMLV21mYJpdqd1XQRVSshDnO77mChOgkeNf2xJgZw3F62wXk52gHNiryr++DD9e8pTEtOzVb98ws29FDDjSxwrrCwwj/LBZvPz8e3oGeZu0vIcR0cZEJmDf6G6FYvtTSaasROroDpi1/HdZyK9g62uKVBePw6civLHZoazX0RZ1m6oIlYxxcy0evthROxIFX6S9Q6jOhe9n1pPspOL3jAh4XD383rWluPi5wcnfAG22nPzHhBqYov0TokmGIT7AX/vfLFDTvHoKaguc54VLVdRBCtMlsjJ+TOHn5YNz8b2Btq3lOkhwdBUVx5cO71Unu4KARbqioMDcHzt6+yEgwvQL0yt5/0LL/YI1pvvUbPrKAg6OHJ0K699aanp+VidyMdNg6OQsXRmZtU637cvfCWWSnpgihmHbDn0XUlQtQFBl+/l39aqHvq29rTCvI0XNOUsHJjX8gPuImek58A45u+sP8hBALSYkA/noRSK7w2rb3I6DJKGDw94DUGjJ7DiEvczg333IhA6e6gH0t0z6jWTnC8oxkJgL7VeicGsMj6TweG1sv7WlyDw5WTix48uSEGxhFvvEACeva0Pp9Dm5NntA2FIQQQgghhBBCCCGEEEIIIYRYQI38NUxkJJTA+AZ76RxZuWLRP19hZGl9TJmnqnLSDI/eysIN7y57DVZyK5PWxwpaM5PVXSpK9X6hq975M3sFaoYbKlDZSpHdxU/vspyKF4INCicrZHfygsOwRvhs/0yNol62/5+M/ArP+kzGqy3exxi/KZjebx7Cz99BkKsL6rtrF8BWZH03C+J880ZULcgpxNzhXwrXAxr6YeH+j4WuHhXJbGTwCnQXujZM/WkSfrywEG6+rhrzeAfp+EW8nhRY6w184AL0twU/QI6LneMw4eTnuHIr3Kz9JYSYJi8rDx/0+lQj3FDa4eDIhlP4Yvz3ZdO6DG+H0e8Nscih5TiuUp1aUmLTYGkswKdPow710GNs57LbERejDIYhqtslPcG6E5vPIurqfYtuy8XbWRhc3Nzn1SPA8HsREx+ZiA/7zMPnYxYjL5tVHxFCiJHXJl8/rXCD8LpjwvnMo5abkWHw/ozEePR59W2ITQwoszBEYV6uxrSQbtqBg+rg7OOL4TM+hZW8fHjztLgYbP1yHpa++gJ+/3Aqfnn1RWz+Yi6SoiPhHlAbzt7lnRIsrSg/D/8s/kK47hEYhJEfzRMCDBWx7g4slFErpBl6T35LCMaUBjBKOXmqu1QZxPOIvnwRK6ZOQvztW5Z9IIQQTfnpwJohmuEG4d+hCri2Adj2RtmkgN4iBA+z0Gu/CGj8kulf5+Unw+JsDbxkujcH/ELLH2vG7cd3PsIkXtC9/ZhDPHIse0oCG+OnFHpxIsBa86sonXJigCP/43F2vgqKgsd7bAkhhBBCCCGEEEIIIYQQQgipLjWyg4Oi2Hixe9PQRmXX74XF4ODa48hJzxVGX7ZzliM3Ix+SVOPFiZLUPFQnsUSMzBTjI3E6ezhi4b6P8WGfT1GUX2x0fqmVZuGRZ4AHglvWRuSlaI3pxZ5ylHiVF/7okh/iBuedUUKY4WF5DZ2QMjIISid1+CIVwIiD2/FBUReMadpU6J7wTudZyEjK0ihAvrjvmnBh3Sk6Tg1FhL7B/5QqOB2MQVWwItqrR8LQrFtjNGhbF79e/Ro3T99GXGSiEMRo1bspJFLD/xRYR4rdyw+WT7DlgC/cACftAIzKV4yPbyzDtgaLIGK/UBNCLG7vqiNIfsBecXQ7ueUcrh2/CRdPJ6HwfdKi8fAK8sT3r/9m9jatbGT436+vosuI9iYv4+LlpHFb4WQNhZscXJECsthsoetNZQ2a1Auuvi5Y9/kmxEYkCNNs7KzRa3woJi0cB1mF13+ZtWlFqNXl9oW7yEzJgpO75rCxxzadsdg2RGKR8F7KCjrFUolJnxEeNm7WcFjbmjZ6t0qpEkI06YmZ+OrQXCEc8SRjb92qKnZgeIwZGUKeaCqVkSGWAfg1bFJ2PeV+NMJPHhWK/p08fSCzsUFxgeHOYo+KSCxB0UNhBC08L3QgGDHjE2xaMAfKkhLD83McxBKJVuCDFfanxT5AdcqIj8P62e8jdPwraBzaE+ns9pwPUVihAwLPqxB9+YJwYd0p/Bo1QUZC9XUWSoi8jfiIcPjUawDfBo0w4eufEBsehuzkJNg4OCKgSXOIxIbD9U179sWt44dN2p5KqcSmL+bgzRUbnvj3KkJqrEurgRz153GdbmwC2r8KWDsD9l5oMdUOcm8Vrv1k/ocrsTXQ5kMRfDqY/u/alKL5yqr7DAeJHAhfxyP33w4IElsgsC+HJpM4iCTl+yeSGWn3UM1SrwIl+SpI5Zrfz8Qes9w+CV/9iP59lOy68Y8IWhq/AvAlph0rXgk82M+jKINH1y+rf2AWQgghhBBCCCGEEEIIIYQQQh61GhdwKC4sRsxtw4UnbETUPi92g1KhxDeTl2LfqiM655NFp0OUUwSVvf7OCDbXE1Gd2D6awsHNHo3a18P3pz7H251moTCvSO+8Tbo21Nm94os9szCpyTRkJGWWTVPJpSZ1seClInBFmvtaEGiPxAn1AYnmj8RZRUWYefAA5DIpwhcc0Ag3PIx1d4h/ewO6vtkZp9wUKLEqX5c4qwiu26NhE208AGLM4ilL8eYPE9G4Y33Y2FqjUYf6wsVU9dsEY+S7g/H3NzvUE/rb6gw3lCp0V2LvrdPo36hTlfedEKLt5NZzRg/LtNA5ZcGE0Gc7okHb4CodSqVShc7D21ZqGa9ADzTuVB9Xb9xDVu86KA4oDzyw9x/70zGQXzd9SFUnD0f0n9gTjm4O6PV8VxxefxK3zkQIIY7Ow9rCxk6zSJ91phFJRFApzKiwsZA5w77EnL+nwcWrfBRqQ+9hlcUCB+zCAgfmsrKxQq/xXbFy1p8mvy9fO3oTF/dfQ+s+zczeLiGk5iouLEBWUoLR7jCNurBzEgX2/LRYCDc8qVRK08JhNvYOQgeC5z5ZhA1zP4SiWH/wmhXsS62staaP+vhzrH7vDRRUCBtUB7b+PT9/KwRJwk8c1Qg36Oo2wS4seMBCCLwJ4RVz7F36HXq89Cp86taH1Noafg0aA+xiIr+GIWjWZyCu7ttp0vzF+fm4feo4GnTS382PEFIFt/79fkAvHljWS31VKgeajIS11SwAVRjmn3Us7VK5+R1qcXCuzzopwCKs3YDAfhykdhwC+/O4v49HRgQvBCn8unKQWGuGLzxbszfFx5pxwMmZPDrM4WHlVL5vikLLrZ817WChhkL9GXyjJDIOPj04hK1hCWXTlkm6AKRc5eHejIJshBBCCCGEEEIIIYQQQggh5OlS44aXP7XtPApyDf8K6ezpBA9/N6yY+afecAPDRs523H1bGElbF/nZGMjic/Qur5KIUBjoiMIgJyhtJAYDF1XhW9dbGJ3609Ff4/XW0w0WhopEHMbMGK7zPlYQu/L2d3jx0+cglqmL8yWZxn/RFeWXaIUbmIxevlrhhoq+O3UaRzaehike/HACr2e6wOOPcLhuj4Ln6lvwX3QRtjfTYQlxdxIxo+9nGGI/Hi/WfRN/fb0DipLKjfI95asX8MHqNxHULABopV2s9bAziWFV2GNCiCFF+aYXyBcVFAvvBb9/8leVDirrDJCbabzzT0UlxSXIKipG2rMhGuEGhoXrsvoEI6+pp9ZyEpn2e4pXbQ98sXeW8FqeHJOKtzvNxIJx32Hrkt1Y8dE6vNzwHcwZtgh52fkahftt+7XA43Tz1G280/ljoZNDqTrNAk1eXiIVo89L3WDnJK+mPQTO7b6M+2ExeOat/pVa7uiGk3jS8TxnkQshRFPEmZMGi/sZe1d32Do54+gfy5+McEMVR/F38w8QujZs++ozrJs1zeDj50QitHtmlM772DF5+btf0WHUWKFzRLXieZzc8AciL5jWOSgu/Caa9R5QbbuTHheDvz+bie9fHIkV70zBpV3boFKZFqwr1euV19D31bfh4utv0vx3TXzshBAzlFSiQr4kH7i0Br7h/SGTpJl9uJWFgKKSzX+UxTyK9X+1pZdIx3gYdn5A6JciIdyQl8Dj4KsqnP+CR+Rm4MZvwJ4XVDg9VwlFQXmaQSrn4PF4T0mQcgU4PFWF4uzy/XKqY/r7okjGulMAUsMNUKsk/oy6G0adIZVbLuYwtVsjhBBCCCGEEEIIIYQQQgghT58a18EhNc54wXtOWg7GBb6G1FjjPxpLE3Ph8udV5DfzRlEdF0AsgiQ5FzZXE2H1QPdo0KzOL6eLP3JbeYO3/vcQlighD0uF44FoiErUQ62JpWJMWvi8ELQoLjBcAGVo5Nfuz3XC/7p8jJKiEoPzyh1s8Ob3r6BN3+Z652EjmVvbyqAsVhfSSDKKYBWdhaLajnqXsb2SLAy2V5HKSoyC+prFug+7l5UJPxcprBIM73ep05vOwik5GyV6AieWEn83Cb++vwbXjoZh7ub3hfCIPrmZebh86AaUJQo0bF8PvceHCs/HgO+mGh18UGptvDsGIcQ8dVsG4fb5u5VahnWTsbG3QUFOJSuC/iW3t4G9i3Z3HEOObjyNmzZKg52CcjvVgjwsGZyS1whTOHk6ou+E7sLrL3v9aTeoJcRiMYoKivBh708RG5GgMwT46aivsXDvx2XTZqydinGBryM3Iw+PS0JUEjYu2obJX74g3B44uRf++mq70W4Jju4OmLb8dXQY1AqKpVNw5p+LiI9MxPaf9iLpforF9u/68Vv4sM884bpffR/h+CdGG++skWfm3xIhpObLTTd+npGXlYlfX59g0rzVSSyRoNsLE3FwxVKz18ECC8FtO2D9nA+NdnuwsrVFr4lvwL9xU73zSK2sIBKJTe4cURVpsQ8qNf/di2eF4EV17xvrGHF49W+IDQ/D4HemC8dYn4LcHMSEXYNKqYRPvYYI6d4b9Tt0EYISxohlMgvvOSGkjHczILlyAxtI8u+icb3vcfnmJ2YdSJkDINVs2mYU67CQZ7gRqk6qEsDKFajdl93i4BrCwbudehCPknweR6epkPfwKQkPxB4FlCUqdP68/LuW9nM47BrLQ/H4TkmQEwNE/M0j5GX1N1x1hnC4s9l4twQrZ6DtDA5ebURoVcIj/hSEcEfEJr5KHRselnyRXdQ7Y18LUBYB+UnGl1NULoNPCCGEEEIIIYQQQgghhBBCSI1Q4wIO7v5uRucpKVYg+YHpvzKKs4tgf/yecGFsHeVClwh9v3Fm9quD/OYPjbgtFQvTFM7WcPszTOgO0W9Cd4x4ZxDWfb7JrICDT7AXXpk/FkvfXW0w3NB5eDu0G9gKoaM7wMZWf2cBVhQ7a/AXuHLohsZ0591RSJ4QApVcuyBfmpQHh+OxWtNVMhFgQmcKiYMVkGDar60pMY+2+IsVyh7445hQQPwwVnS7bPpa/LN0Hwr/HSmedcfoMLQN3v31VdThvBEJw2Gb0Lotq23fCfmvG/J6X+z89QB4vnKjVbLCQPZvWaXSXk4kFkGl1F/d0mt8V8isTAsuseL7k1vOYduPu1HQ08/wPsmlKApwgnVUhsb0zKQsuPm4aHUVOLz+lM5wQ6lL+6/h5pkINGpfT7gtt5fjt2tf4/Mx3+LGiXA8LjuW7kNMRDx4FY+mXRvh1a9fwM//W6X1XLABxkuf1qyUbHz/2q/ITBqN/q/0ROdh7YTpa+ZuNLo9Fvpj752VDc3F3o6HnZMter8Qiv1rDI+4HtjItNGzCSFPH3tX4+ckypJi5KSZX/loZWuH4oJ88CojlZdGsI4EzfsOwrF1q1BSWInRxv/FOgV0GfMC9v36g8Gif1ZwX7tFa9Rr3wlSK/3nJGwfNi2YLXRLeFREYhamMK1TQk6q5QJ0prhz9hRunzmBBh27at2nVCiEDiDXD+6Dolh9TsKCEHXbdkTvyW8Kzw3rCmFIvXadqm3fCfnPazsRuLqu0oehtvdaXL71iRAG0MKyTgZe9gP7ceDEpnUeyI3nEX+CVxfxm6koDbD14RA0UKQdmtB/SoKEU0BmJA+nYPW+WjmI0Hc5j9OfqpD+6F7+tURu5pF5Vykce48WHJpOBq79og5m6FOUAVz4igUjVAjsK4JfKJvK4dqvxt9XpHaAohDgK5mZy3mgDrPU6gk8OGh4XgfTm+MRQgghhBBCCCGEEEIIIYQQUmPUuIBDhyGt4ehmj6zUnGrbhl89H9w+H6nzvhIXG+1wQwXFAY4orOMM+wc5wsjOty/cRf22dXF+9+VK78eyG9/g/J4rSDHSiYJ1Gej3Uneh0JcV7e9ZcRBJ91Ph7OWEPi+EosuI9kKXglUfb9AKNzDS1AJ4LL+O7C5+KGjsCl4qhii/ROjcwMINoiLNH20nfzkeFw/dQEKeAsW2+v+EZGIxunduimO3DReIPk67fjugM+Dw7au/Ys+KQxrTWBEuK1hmo3q/vuoVTItZCtjqKSyIV+DkmmPovLyp0IWDEGJZXkGeqNs6CBGV7OJQlF+M6X9MxfovtuDejZiyYENQswBEXorWu5yVXIbnZ48yun5FiQJL3lgmvH6UFu7zA4xXnKhKuwE95NT28+g6qj2OrD+FrNRseNfxwrG/Thld34lNZ8oCDoybrysWH5uH+zdjhM4XUisp8rLysG7+5kcWLivMK8KZHReF62d3XhLChG/9NBFhJ2/j6hH1yLc5abllobKKnZu+mbQUihIlBr/apyy8UGQkOJifbX53Bfa+mpedD4lULGxXF/a+OmBSTzzpeJ6DirWequI6CCHaReOHV/2KovzqG4raycsHSXcjqrQOsUSKwrxcJN+LgleduogJu16p5Vkx/Uvf/IzwU8dQkJ1lcN7iwgI0Du0pBDIiz5/BjSP7kZOaCjsXF2E66wDBujYcW7fSIuEG1pUi+spFPLh+FTyvvxqYhS0Cm7XEnXPG3z8fl+sH9+gMOOz9+VvcOnFEYxo7vhFnTiA7NRndJ0zGps/LuzbpEnnhDIJatrH4PhNC2IfseoBXEyCxcq+tYkU6Oswqxo01MuTcV0/jJIBjIAsF6F9OIgcajDX+uUxZzOPi1zzuHzDencAU8Sd5eLflEXOYR3EOYOfHujQYD03EHisPODByTw49fxQjK4pHRgQPsQwozOIRvg4W7YRgSEmeOnzBJJzmIbUHWr3LIeUKkHJd/ZiKs9TdEyoqSAbOf8GzF2EE9lOHPaRy9fqMbc9o+089irMBlYK9Fwub1UkkBQL702d1QgghhBBCCCGEEEIIIYQQ8vSpcQEHNnr269++hIUvLNE5ArclRF6O0ntfQYjx0VoLQtxhE5mBI+tPCpdOz1S+oKRh+7qQyqSIj0w0Om/cnQQolUosGPcdjm48rXEfC1Y0794YH/81TatgvyJpRiFct0eC/+cuVDIxREUKoQvFw1hR6ahpQ4SLz5nT+Pa05vYqGlSvPqYMa41rO64gM9lwQZSp7F3thAJYS9F1fGPvJGDvysN6l7l75R6SriZhWqNR+DrxL62QgzIPSI6xxxq3BOQsX4+PJ4yEtcS0Ud8JIbolP0jBg/B4oSi+QdtgzBm2qNLhBkZub4Nuozui59guiL5+H3lZ+UJoYHrfeQaXY8X0yhLjw27+9M4q7FqmOcSmOLMACg87g8tJMnQX40dfu49xAa9pFNmzQIYxef8W9+fnFODk1nPITs2Bdx1PtBvQEgEVug70n9gT147eFLoeffXyT3iU2LFf9uFarLn7Axxc7LF8xlqsX7hV7/xr5mxA35e6C58DQkd1xNYfdlfr/p3fdRlvLHkFS17/TevzBusC8vbPk4TgCCHkv0lqbY3QF17Bvl+WlLedsbDk6Mq/zz1MqSjBzWOHhEudNu0rvbxfg8bC/zMTDQzT/S82D+uSsGPxAiHgUCr53l1EXTovhAwGvDkNYUf1n5OYytrOHq0GPiNcjq9bhXPb/tY7b8Mu3dBmyEjE3LyOwlzLhOTZ9i21LiZDx/FNfXBPK9xQUWJkBIry8tDz5ddwcMXPeue7fnCv8Dfa4+XXIJHSOQkhVfvHeh9IiwRsnADvFsDaUZUONwhsnOHXwwZ+PdRdDkryAXs/4NBbhtMICvYR34S3nEuLeaHDgqVk3AZ2jlGBr5D7ZUX3xpTkq/ehJJdH3Al1OMLej4NXW8AxqHwFdYbwQsAgL0GFi1/jkSrJAa7/xmPAOhGktiJc+VGFO3/rP3bXl/Oo1ZuHSMzBtytwz9gpSRWfhoQzQPM3gctLtNfFnoPW73OwdqaAAyGEEEIIIYQQQgghhBBCCHn61LiAA9NjbBfYOdvhj3l/4daZOxZfv1Kh/0dllY3xohDlQ/Oc3Hoeds62yM0wfYTXYVMHCv93cLU3Oq+jmwM2ffOPVrih1JXDYfhx6gphRGpjOBUPcaH+It6C3EKkxqUJRZ1TWrfB+bg4nHzwQGu++m5umBkais3ztlgs3MBGULdkuIFxcNM+viyUwrphGHJ4/Um8t/w1oGcC0EcONLVCkac1Ml0ckZNvDd6bA7yBtbiP87tWY23vMXC3sbXovhPyXwk2sI4qF/ZeKasfdfVxRlp8hlnr6/l8V2HkfaZ2k4Cyrgul3Rz04llg7IoQCNAnPTEDu5cd0Jouv5qE7N76Aw6SlDzIEnS/tmWmZGtNUymND8PKAhl/f7MDa+ZuFF63S7n5uuDdZa+hTd/mwm2xWIwWPZpg65LqDQsYCjnsXXFYOK67lmsGQ3Qdi4v7rqLD4NYY9d7gag84lBQrhG0FNamFTd/uxOUD14TpzXs2wfC3ByKkUwPUBOyfTVVrr6undJuQmq9J9z6wsXPAmc0bkBRl+XMSXqW7g4y57p4/A5mNHMUF+SYv03LAUOH/NvbGz0ms7e1xdutGjXBDRfeuXsKR35ehpND8DjulWOeM/OwsyB0c0X7kGMRHhCP2lnanOo/addB13Es4/fc6ywQSOE4ICVgy3MDY2DtoTWNdM4wJP3kU3V54xeh81w/tQ2JUJEbN+kzntgghRqRHA//8D4g6Uv7JyN4HyIk379A1H1d2tbTDAQsD5BlbHQ8kXeRRq6f+gva8RB73LBhuYArTdeyKCZ0hVEXArbUq3PqDh7LslISH3BNo84EIHi3Vj4OFBTxbAeF/co/lkyfrlMACIf49gOhdhrfPOk2kXAY8WwP1x3C4t7t695d1kqjVWwTHOsCdv1VIvqwONni24lB3JAfXRhRuIIQQQgghhBBCCCGEEEIIIU+nGhlwYNr2byFcWLF9ckwa3u4485FsV5xuvCBH10jcxYUlwojPpnSdePaDoej+XCfheqdhbbHkzWUozCvSO3+PsZ2x7Yc9Btd5att5WAKv4pESmy4EHKwkEqx4Zhi23LqFjTeuIyYrG262cgxv1AjPhjTByXUnsf6LLVXa3qDJveFeyw1xkQnYt0r/CKbmSoxOxpQW76H/yz0xYFJPyKxlJgVB8jLzsHzGOiBbBfydi7zbIsRPCwR0LBqRmYr3T+3Eqp6jLb7/hDzNIi5GYVq32Vqvf+aGG9z9XDF25nCt6aZ0RGBuX7hrMOBwducljU4LpeQ3klFUxwVFQc5a93FFCjjujYSlPQiPxcE/tAsjU+PSMeeZRVh8fB7qt65TNn3PyqqPpm2ubT/tweo5G4RQhjE56eogiEctd7Qf3BpndlwwGGDLTc81u9sT6xbi4GoHV29nNOpQ36x1EEKefsFt2guXnLRUZCYlYOMnM/Akq0xoosPIMcJjY+q174wjq5dBUaL/tbpBx1Cc2/aXwXVGXjgLS+BVKuSmpwkBB6nMCiNmzsPNowdx/fA+5KSmwNbZBY1De6FJj95Cx4iLO7dVaXvN+gyEvYsrUmPuC6ECS0uPi8Xv099Gkx59hX0WS6QozMszKehxbO1Kk7aRci9K6Dgy9L1Hc95MyFPjwRlgzVBAUR4aFpgbbnAKADq9ozVZZOK3c+nhLOCg//6E0zxgQvjgUciIBKL+0f4snp8EnPhIhR4/iMoCHkx1hwUMifiLx9WlPFTGT0lQnM32k4ODvwgerZRIvqh/XmsX3QERU8kcAakccG/Kwb2pOqhPCCGEEEIIIYQQQgghhBBCyH9BjQ04lGKF9kc2nHpk25PfSEF2twBAor8g1vZKkta04oJiDH61D8LP3cGdS9HCNLFEhAbt68HWgY2kWgTfYG8MmNwL9VqVF52y+57/eBSWTf9D57Z863pDWaJE0v0Ug/vNCoTFUrEwb1W5eDmVXZeKxRgdEiJcHrZp8T9V2463M95Y8jIkUglGeRofmdQcLHgSdfU+fnx7BY5sPIkv9n6MWg39jC7HjvuJLeUFWpm9PQzOfyQ2ClHZ6QhycLHIfhPytEu8l4xp3ecYDHdVRoehrdFzbBdsW7JbKHhvGtoIbfo1h0gkEi5yexvk5xgOsDl7ORp9PdHXGcf5/+zdB3hTZRsG4Cc73XtvWkbZUMreUPbeIqCo4AYVQRREEXCioD8qijJlyFL23nvPFlpoKaV776aZ/3VObNqQ3abM9/bK1eTkOyMpJjnN+3zvttsoae6N0mbeULjagCNTQBybDfsLKeDnPlQsZQVJMckG75OVy9jw2WebP9Qsy3qQg9rAvM8Z64rEyEg0/v5VlX89H831V78ci6uHbxj8NzL+05Hse+6htSdQHVETukAgNN216UmnBIe91HQbhBDjHNzcEXP88YXFzCUrL0fzPgOREnMDWUmJ7DKeQADvsHoQiGygkEnh6uuHpj37wjO4jmY9Ztb/1kNG4vSmtXq36+oXAGlpCUryjFdxSktLAS4XUNas+pbD4cLOuTI4yHRVaNqzD3upiunKdnn3vzXal6OHJ3pMfJ3t3rBkYu0EluXScmTei8ehP39B3NmTGDbzc7j5mT4ncfLywe1T5ofA7144g8KsTPYxEULMkBOvP9xQXeGDgUZDgbM/q1tshXQCQnuwry88IQc8kXrGfmPElX+O0UthRoH+o1KQYPg+5nHGblChzezKz5ml5p8WWITpeGCq40RJmvnbsw+oPOamr3Nx5F2lwd9bo4kcpJ9XIaV6pyQI6csBh0ufxQkhhBBCCCGEEEIIIYQQQsjz56kPONw8eQu/fbj6ke2PVyaH874E5PcLZb+Efpj9mWQI0/XPtskUWv5y8Vs8iE1BcX4pfOp4wtnDeMFsRUcHsZ0I67/aqpm5nJlx3KeOFzKTsvDnJ+vMOnZrhRuYTgq9Xu4KryAPrfvSCouw6dpNxOfkQqTkIKY4HzY12Negt3qz4QalUon8rELUtuhTsVg7bzPGzh6O36evRklBqcGx9VuH4cDqytlbJWH2xjfOAY7duo06bdpb85AJeWYtn7UOkmLDhURKsQAKd3tAqQI/sxAcE0X0F/ZcxZltlbP9b/xuGwLD/TD334/gX9cHjTrUx4W9V41uo0FkmNH761XpiKAv5GB/OY29qDgA57/JScW2Ilg/3sDM6Gy8sunM9ouQy+TsayzDzdcFhTlFVj0GvoCH/pOjsO1n4x2GzBXSJJDtpHDtWDTS4jPYDg3ztn+EHyb9hrSEymAhE1Z5cfZwDHm3L8rLuiMnLQ9XD9+0aF8OrvYYP2ekVY6bEPJ8uH/jKk5ueHTnJDXBFNJP+G4JcpIfQFpWCmdvHzbAYE5HB6GNDc5v24zSgnx2GYfLhZOnN9u94tRG/YFsHTUMNzDsXFxw/dBetkuDo7v2OQlTwH/j8D7kpqWCx+MhL62as6z/p0WfgezjlEnLIS0z3c2vph5EX2ef44j+g3Fi3SrIyg1/UvAMCsbNw5aFQe9du4RmPfta4UgJeQ4cmGO9cAMjbg9wq0pHmVOLAc9GwAvrAJdguDQAsq8Z34RLA+Pd51zqM3+nsqwTAk9YO8EIU90Qko+r0FqlAue/v63ZuAHFKdY9BiY0EtQbSNhune251Aecw4DMKyqUpKkgcuGg/TwOLv2gQml65TiBnTrcUGcAF4E9VDiep0SOZackEDkDDV6kcMPT6OjRo+jWrZvJcXw+HzY2NnBzc0NISAi6dOmCcePGITTU8N8WTCkqKsL27duxZ88eXLt2DcnJySguLoadnR28vLzQsmVL9O7dGyNHjmSXEUIIIYQQQgghhBBCCCGEPKme+oDDv0v2PPJ92l3PBK+wHMVtfFEe4swGHQSpRbC/kAbbmGyD62Ulq2c0Dajvp/d+JqzAzADuFeyhM2v04Lf7YMDrUYg+HcvOVn1m23ns/P0gHrXc9HysnrsRf83bhLGzhuOluaPZ5esuX8O8A0chr1qw9Fpj2MTlwWNdLLgyywqZ6kWGoqSgBJt/2IHuYzvCM9AdmUmGn1tr2bv8MF76YjSmr3gb80f/ALmeUMjYT4bBt46X1jJ1cTXP6LZjTsYCFHAgxCTm//2TWyo7pFSlEvAgiQyBLNAN4P1X3COTQxiXAdG1JE1w4GFyqVxnWdKtFHzcex7+iF6EcZ+OMBpwYAJlkX1bGD3u8DZ12ZBD3MV4o+OqHqO03PqVRB4BbiY7MijkCraTQ0XAoddLXa0eFmReP60VbrB1tGEDC6+ET8WD2MpCVWcPR0xcMBZeQe5IjkuDg4sd2g1qBRt7dbxOZCNi3z8sVZRbjMToB2jauSGedioVh73UdBuEEOMu77FS5eQjUJSjniLbzT9A7/1MQEAhl8HRwws8vvbpYkT/IWjeewBS425BLpUi9vQJRB979Ockxbk5OL1xLc5sXo8Oo8ahzVB1Z4VLu7bh2Jo/oTI1VbeZfOrWR0l+Hrvd8I5dYOvkrAl31KYbh/ai3fAx6PXGFOxZ8j2UCt1zEuZx27u6Wbzt1NhbFHAgxBwl2cDt3dZ9rvSlCDKjgTXDgLfOotFLAhz7wPDrl0Mg4NnS+C48m3PgGAIUqhuHmkVZ87kwdNh6AaUZJvYrU3dW4Pz3p5TgPhzc/NOycIYpTGcFa4UbBPZAnQEc7B2vrBLEUEHsCjSZDIhduChOUUHoBPi254AvVn+G5ttwYOvJQY6FwZPyfKD4AeAabp3jJ08euVzOBhKYS2JiIo4cOYLPP/8co0ePxpIlS+Dubv65bElJCebPn49ffvkFhYW6k8QUFBSwl7i4OGzYsAHvv/8+5s6di7fffpsNhBJCCCGEEEIIIYQQQgghhDxpnvqAQ8yZuMeyX3FiAXtha/44HHZ2blOYGbL1ObH1HNZ/uQV3Lt/TFGz2m9QTL346AkJRZdCBx+exxZb5WQX4fNh3eJyUShX+mrcZXsGecO4ehs/3Hdb7VW1ZPRfkDgiB+z/GC36r4vK5iLsQz14Yf368Fo3aN3gkAQemUwQT4ugwpDUWn1rABizO7bzEFuo2al8PQ97tx94Xf/0+25Wh4kHbXitAUSfDXzxypEq436+FKREJeQYx/w/K9AQSmNfb0m7hUHg4aN8h4EPayA8qER825xIs2ld6YhaOrD+FPq90x6tfjtXbEYeZzX/23++DyzU+Wyrjk3VTMb3HXL0BA6YDAVOcXzVsoVSoatRRh3muHt7HB8vewHsdP2VDDIb41fXRhADKSiTgCXiwc7I12rnmceByOYia0BXth0Tiq7E/QlJarvOavWjyUsxY9Q4bBNQn9W6VqVQtsPO3/c9EwIEQ8mik3Yl9ap5qQ0Xxt08fx/l/NyHrvvqchCnmbxbVF22GjtYKOjDXAxo2QVFuNv799gs8Tiqlku2c4ejpBbGtHY6uXma1bTNdG5jfa8Xv9sS6FfCp2+CRBByK83JRVlyEBu07w8nDCxd3/oN7Vy5CqVTAr0EjtOw7CKERrZF657bF22a6cBBCzFCUxnxafzRPVW48ELMNni1GouEEDmJW654jiFyAdp9xNd0OjGHGHZumhERP5tmxDlCUBKiqnG6pahBwYI6rXN1oVMO5LtDyPQ4Ov6sy+hQyQQwuT/14ZKUq8IQq8G0B+ZN1SgJwgZC+HHi3Ac7NV+l0ppDkAhe+YZ53IGyo/nNGJvhQHfHbVXANp7Dx027s2LFwcND+O4ZKpYJMJkNeXh6SkpJw48YN9jbj77//ZrtA7N27F82bNze5/UuXLmHYsGHsdqp2h2jcuDHq168Pe3t7NvTA7OP2bfVnh/z8fEydOhX79+9nAw/MGEIIIYQQQgghhBBCCCGEkCfJUx9wEAgf70NgZ+JWmfdFZe+XdduT7/r9ABa/8btOwea6L7ci7lI85u/4mA02VHV2xyV25u0nwaaF28Cz72p0Hrri5h5w2Z8EXol5x6xkuyFUYsIF145Fg8vjQqmo3QIDpljAxl7MXq/fKhSz1r2nM4b5EvK7l5dowg0Ml30ZKG7rCpVA/5fZjsezceVwIjKmZcEryKP2HgAhzwAnD0e9/7/LA9x0ww1VyEI9IYxJBa9IYtH+zu68yAYcxswcikYdGmDbz3sQdzEBAhGfDTQNeqs33P3MmyHZL8wHS698hz1/HMbxzWdQVixBaPNgDHqzN359f6XeThLVwbyfvL/sdVzcdw1XDt1gX7taRjVFq17NUF4mReu+LXBmx0WD6zPHw7h34z4+7rsAOakPVSXVEg6XA5UZgcAK/V/vhSk/v4YFLyzSCTdUtfrzjejxYie9IRShjbBax3rnkmVhGULI8+1pmvm2cdeeejtQHFmpfU7CFPIzHRIyExMweNostuC/qrsXzurtLPA4XNy+FWIrF+Yx4YmqFHI5km/dBIfDtVqHCEOY51ogFGm6SAx8f6bOGCbssO/XHy3edvyl82g9ZBQcqtH9gZDnih1z3l5lVoPaFrcHaDoSjSZy4dFchbv/KpF/B+CJAL9OHIQO5sDGzbxCd8cgDnr9wUXCThWSj6vYLgYu9TgIG8LBxYVKrXBDTTDH1GIKB2lngMyrKrYTg3ckB14RHMjLVPBqqUKG4VMS9ngYeXEqnJip1AlK1BoLf631RnDQ7E0uTs1W6IQbNFTAzRVK+HfR/3mAV71TEuTGPqJ/f6RWLViwAMHBwUbHMAGExYsXs10YmKBDRkYGoqKicPHiRQQFBRlc7+TJk+jTpw/bwYFhZ2eHmTNn4vXXX4eHh+7fH2/evInp06ez4QnGrl27MGrUKOzYseOp+jxLCCGEEEIIIYQQQgghhJBn31MfcGg7oBW2/rirVrZdGuaE4lYekDsIwc8vh+OFTIgTi6q1rXqtQtH3tR7s9YLsQmz/ZR8OrT2BlLvMrID6MYWrJ7acRdfRHbSWMwWzT4qkWylIvVc5Q5hefC4kwY6wi9YzfWAVYjsRJCXlRsMsTOFubWIKhB1cjBdHXdx3FfFXE7WWiZIl8PkpHumvh0BpX+V/K6UKDqdz4bH+AXIUwCvhU7Hqzv/MLpYm5Hnk6OqAdgMjcOrfC1rLZcGGu6SwOBx2DO9GskX7Y0JUFZp0CmcvNT3+0TMGs5cKJ/85hzuXa14w36JHY4z8cDAie6tncWzTryV7YUSfjsXsgV/h4t6rbJcdpiuDospjq9BhaGsMfrcPpOUyzOr/1SMLNzAsCTcwBrweBblMjpNbzxkdl34vE7fP30XDtvV07uMLqlekkRyXhh1L92PgG73wNFOqOOylptsghBhXJ6I1rh9UF4o9yXzrhaNh5x6aAMOVfbtw6+RRFGQYPieJv3gO8ZcvIKxVG63lMsmTc06Smch0frPOaxVfJIK83PA5CU8ggFxq+H5rqNMyEgKxOnRt7PeSm/LA4m0XZWdhxXuT8er//oSdk3MNjpKQZ5yDNxDWA7h78NHsT1E5IYRnCw48W9Ss0FjkzEH4OOZSuez+ASUKtf+UUS3erYF6o7hskIHh24G5qK9nXVPh+AyFOtigAht60NchIqAbB3UGcCCXPOJwA8OSUxIO1MdZpmKDHMYU3Qfy76rgHKb7fsQ8D9VReA+4t0eJkL6muwmSp5ujoyPmzJmD9u3bo3///pBKpcjOzma7PzAhBn3dW5KTkzF06FBNuCE0NBS7d+9GvXq658UVmK4OzJgpU6ZgyZIl7LI9e/bg+++/x4wZM2rxERJCCCGEEEIIIYQQQgghhFjmqf+GbMi7fWHrYGPWWD3fBeml4gIZ4+ohfXJDFLf0gKSuE4ojPZH6VmNkjQi16LtQ5tiY2b+/PTgHYlsRMu5n4e3Imexs0yl30kx+sfrtyz9jx9J9KCupLCBKT8w0a9+SAHsUtPdCYaQH5PYCPNaCVSPPfZ2mQfhq7yyj4QZGTcMNXC6HLZbV96VghbSEDGz6fgdKCksNjjm367Le5XY3ChHy/nV4/ZEI5z3pcN2agqCPo+H9RyI4/32hL5XI8PX4/9XocRDyPHh53gtsF4eqVCIzMnnV6OoTrqco3trWf/WPVbYzctogTbihqrM7L2Fa189wfvcVNtzAqAg32DrawN3fFc26NsLHf03Bpxs/YGdmPL7pDLKSjQfPzBHWPBgB4X6wtpe/GMO+PzCvm1VDKIaUFpbpXf7gdkq1j2HJO3/g/i3LAjOEkOdTy36D2cJ4q56UWJHI1o49xhGz5oEvECAvPRVrZk7F2S3rjYYbKuz68RtcP7wPsiqF/eas92jVbJZrrzp1MXTm50bDDYyahhuY7gxNo/oaHZObkoxLu7ZBKtH/3sZIuGxkWnQTZOXl2PfL4mqvT8hzo/unj+7PZgGta30Xseut0w2g/guV4YaqmG4RRz9QIoPJqf+3q4pwA98OEHsAni2BtnM4aPMph+3ulnRQZZVwg0s9wCEAVtd0MgcOAUwQg/nbl+nxMgN/SiqyPI+mcWmhCsWp1MnhedGzZ082bFDh9OnT2Lhxo96xTEiBCUEwXFxcsH//fqPhhgrM30WZbhHt2rXTLGM6R+Tk1PzvA4QQQgghhBBCCCGEEEIIIdby1AccfOp4Ye62GWzxuilhLULM2mZezwCUNNU/w35Ra08UdvQ2azsdh7fBhtTf8e6S12DnaMsu+2HSr2zIwVyychl+eusPTG46jS2+Ly0qw54/Dhlfx02ElClNkDq1CXKG1UH26DAkzW6J7KEhUJnxPFnCK8gd9UXGOx5AroT4XqHBuxOu32e7M9QWFy8ndB7ZDkuvLsTUXyfjo9Xvssv0Sb2bjt+nr8aUdp8gL7NA7xiF3HChLVemguPJHHj8nQK37ekQZugWQN04cQtKpRnfjBPyHMtOyYVSof3/CddAAbvWmCLTY6pigmf9/uuuU1uK8oqt0r2B4RXsqbMs5mwcPh/+ncHXJqbw/9UvX8TCw5+j+9hObLiBce3IzRofT92WIfj+2Bf49eI34PKt85GiWbdG+GLbR3hx9nD2to29GF5BHkbXYT4DBBoIWZgTjjCECYvs/HU/nmYqlXUuhBDj3PwCMOiDT8wKL3gGmXdOYi3hnbri9aWr0O2lSZquAPt+XYziXPOL2ORSKQ789j+smfEuCrMzUVZchJgTR/CkcPHxYy81kXHvLgTmhlSqwc7ZBfXbdcZL3/2MqNfeRu83psLGUf85SV5aCo6uXoYNn05nn2t9VMrqv78x7t+4UqP1CXkuFDJB2Udw7i50AJq/WKu7kOSqUHDPOtuy89JdlnlVibNzlQafLnkJ0OJtLrp8z0NAN65m4olMK7wUuTYEuv7IRY+lXKv9ldOrFdDpGy7qj1FvUOQIiF2Nr8PhAw7++u9Tyqt/LEywImEHfSCvEUkhkHkbSL6k/sncfoK9/fbbaNq0qeb2okWLdMZcvHgR//xTOZHCV199hTp16pi9D+bvAt99953mdlFREdasWVOj4yaEEEIIIYQQQgghhBBCCLGmpz7gwHD2cNLMWG2MscL0CioeB4Vt9XxbW0VhR1+ozMgJtOzZFDt+2YdNC7ezRfzJcam4fPAGqiP9XiZbwMrMuF1WXNnN4WEKGz5S32iE8sCHQgd8Lgo7eLMhB2tq2rUR+roHAEaef/trWeCVyIxu59rRGPiGGn/eqysvo4B93uaP/gEntp5Djxc7YV3SUkS91MXgOkm3UvDzlD/13tekU3iNjocp2jY00zghRO3sDt1ZiYV3Mow/PTIFBPeytbq0OHs6offLXWHvrA6ZVSWyEWL2xg/g4uVcq0878/+7OZ1umMCeMXwBD1KJdiebxOgHmN59rqZbgyG7/ziou9CMItyG7eth/o6Z+PH0fPQc3xkCkUDzvL7w8VAsPDKX7VQkshHBxUN/kaYlJnw+CgsPfY52A1tVOUwO+k+OMrpe6/4t4Rngrve+Ru3r1+iY4qwUTiGEPPtsHBzNSgTJZcY/F5vNzE4QgY2b48renbi4YyuyH9xHVlIiUm7HVGuXeWmp2LnoG8SeOs6GHp4UgU2aIbRVm5ptRKVCatxt2Lvpfz+pqZL8PMSeOY6di79G/KXzaNwtCq//uhINOnQ2uA7zuzq2+g+99/k1aFSj41EqFNb7t0jIsypubw1WrvIabe8FtBgPiBx0hwnsgNGrAVsT1fM1JC02b5y9gQL9ClwB2G4GVeXdUeHEDJXJDgcJO5XVeivzaAZ0/IqLbv/jILAHhz0GhtgNCB/PQZeFXPDFHAhsOWxWpKaaTOag83c8eLeuPDgOj4OQ/sYP1q8jB2JX/WPca/aSjbw4CjhYjPlMdu848Pd44Jtg4Jc2wB/d1T+Z2xsnqO9/AtPczDkw052hwvnz55GZqd3Nd8mSJZrrHh4emDhxosX76dChA7p06YL+/fuzAYlu3brV8MgJIYQQQgghhBBCCCGEEEKsp/amzX+EVGZ+GZWeaLpzgtTTBkr7/74tNUDmKoIowBnSpHyDY3h8Hn56c1nlghlrUKdpEGoi4dp9dvZ/Y4raeELhYnjmUaYDhcuhZDgouCgrMhyUMBdTkDt8SCesHrgHGT0DAJ72l7niO3lw3WF6mkCmaHfw233x6wcrUVuY0MK8kd/j47VT0XV0e9w4bvy5PLn1PHLS8uDm46K1vNOItlj20V/sDPPVJbIVVntdQp4H+mbd5+WWQBidAmkjPTM0K1WwOZ8AjkyBAW/0wohpA9lt+NTxhEAowKtfj2O731zcdxUKhRLNujTEgNej4BlovDOANTAdY+ycbFFSUGp03NSlk/HL1OXsa5U+zOOZ1e9LrLq7hO08wVg7f7NO6EGf9ATtYghGRFRT7F1+2Oh6sefvYu2CLRj0Vh/MWPkOPlj2BiQl5ezj4XK1M5Lth0Rih4luB0GNA1CUU4zctDzd4+nVDGNmDtG73vAPBuDqkRt6Q4LewR6Y8vMkg/sc/E5fHNt4xuzPCg8TP+2v1yoOVOakMk1sgxBizv8r5r3OFOVkWW1/fKEIcqlux7AKXB6P7dZQ4dhfy+ERbP7svvqk3Y2Fi6+JClgzMR0lZJKan5M4eXqjSbdeuLTrX6hq0ClNIZOhea/+OLl+FWoLEzLZ9t18DJz2MUIjWiP5VrTR8bdPH0eX8a+qAzRVMMGIkxtWo7TA8DmpKTz+M/HnAEJqj6IGIaC2bwGRrzJpIsA1BOAJgO6fApdXAfGH1e8ZIZ2BVhMBR1/UNlsPgCcGFCZeciM+BC5+C5Sk6r9fKQNOzFSi7xoueEL1Z8SYlUp2uSklafo7JSQZb1KK7GhAuVaJsKEctJnNRaRMBXk5ILAFOA91KfVtCyTuM749p3qAJBMo1/Py6dMOqDdK/2ff8Bc5yLqmQvZ1/cGQFu8a/swcNoyL1NPVf39ifnfEAqlXgX/eALIM/N1PpQBitqkvHuHA0KWAb/Mn6inu16+f5jpzLnv48GGMGTOGvc10hd25c6fm/j59+kAorN5569GjR61wtIQQQgghhBBCCCGEEEIIIdb3THRwCKjvC9eHitD1zXxtzqz5HDPrH3sbmf3/4W4RzCZlzWwQHV6EsmEuUPgZD1AYU5xfYvT+kmZuxjfA46Ckias63GCFekU7R1t29u7XOreB//eX4HT4AWxvZMP+Qjq8/rgJ75W3wJWZ/hK3bkQo7J3tUNuYLwWXzViDorxitiuGqd/h/egHOsuZYul522fC2UO7yMgSy2b8Ve11CXkeNGxXT+9y8dUk2JyIBS+zUF0UpFSC/yAXtgejIUjMhleQB178dAR8Q70R2MCP/f+V4eLphLGfDMMPx77Ajyfn45UFYx9JuIEhFAsRNcH4e0ZknxaI6NkUA9/sbXRcbno+Dq89wV4vLyvHya3nzDoGZ0/d16uOw9qY7JyjkCtx6+wdfDPhf/hh0lL2+XRwsdcJN1QECbgPFRg9TFIo0RtuYLTu11Lz+3qYUCTA/J0f490lryG0eTD7vuMd4okXZw/HkvNfw8Pf8Htf4w4N0Gl49Wf17jisbbXXJYQ8X9wDgyF+qAj9YVw+3yoF/RUade1pcpb+h2Ul1rwzjbTMeGjPXNZ6LkQ2thDb2yOiv/6gnLm86oRBZPcozkmUOL5mOUoLClCcm2MydJGbkqyzXCASY8iMTyG2r/505bUZ5CDkmRDQunrrudYBOn0AuIUCHvXU4QaGgxfQZQbwyl7g1X1A91mPJNzA4NtwENTT+Gd1306AZzMeQgcaH1eWCSQfVf/xTFasQtpZ845BpKdxXkB3Dmw8ja+nkgM5N4Fz81S4vFgJroADoT1HJ9zAqDvC9J85Zfn6ww0M3/YccB+auKMCT8R0duCi+bscONUB+LaAnS/Q6GUOevzMNdi9geEVwWHDE9Xl34kCx2ZjAkQr+hkONzyMGceMZ9Z7gvj4+MDfvzJQevz4cc31mJgY5ORUfn5gujAQQgghhBBCCCGEEEIIIYQ8a56JgANfwMfgt/tYPBt4BeZr2XJ/B5SFOoNTKgc/V6J38mIVF1Dx1D+X2WRBPqguu25VXL72U6rwF6DwlyAUfRmAsgnuKHvVAwW/h6DoYx+oRJZ/QRnaLBg29oanblMKTf9KlULefw+KKYyp/qydTJeKziPV39C+NHc0xk7qA4/jqfDcEAf3fxNgc68Qto62eGvxRKNFr+5+rmjTvwX++PjRFP1nJefg1pk4cHmmnyuxnf5uGGEtQrAi9ie88f1L7Kzjzbs3ZguUzfXPT7sRfy3RouMm5HnCdFlhOh/oI0jKhd2BaLhuuQSHDedgezwWdsXl6DOxGxafmq/TdeVJwLxGGuriw3TCmfbnm+z12+fvmNzW5UPqKUPLiiVG39uq6jlet+CBWbfzyPbgPfS+ZQjT7eHUv+cN3h8U7o+R0wcZ3UZGkuFZy5d/vFYrxKdQKNjX68KcIvY2E34Y9FZvLL38HbYVrMaa+J/x8hdj4ORuvJh408LtOL7ZzKorPb+bnuM64WnGdG+wxoUQYhpfKETzqL5Gxyjlcqs+ldFHD0BgY6uznMP77/N+LfGqU5d9vNbC41c/AM4TCBDWWn1O0mnsS2jZdxA4DwXxRHb26PbSZIBj+PXMydMLAY2a4NSGNXgU8jPSkHU/0egxVe10oY9PWH288uPv6DzuFQQ2aY7Axs0Q1LSl2cdwfvsW5KbqhicIIf9pMgqwMXFuwanyWiiwA1q+BLyyD7Bzf+KexsavceBgoLGoQwDQ6gP1a2fubdMzf2RcUv+UlQIqMxsTBPXSfb1TyoGArkxYwbxtxG9TIf284eNzDuMgbKjxbZQamevi2lIV5GWV21cqVCjNUkFaqF7GdK2oO4yLXn/yMHQXD/3W8tDwJS6EjsZfy2PWKJF2BtXC/G6YIAgxs3PDhnGAzPjkMDqY8cx6zPpPkNDQUM31lJQUrYBDVREREY/0uAghhBBCCCGEEEIIIYQQQh6F6le3P2HGzByC5DupOLDqmM59zCzPhmbrL2nqgYKuAVC4/Fc0olSBl18Kuav6JvsVJvNFa9UvWzlAiViFks7ucLDnwmNdLBxc7DD47b64F52E0/+oC0CV9lwULvCHyl23YEfW0QHFXA4cFqRa9Dj5Qh7bhcAQYWopZF66RU5aY9IqZ1xluib0nxyF45vPQFJSjpLCUpTkmzcj68A3e8HdV/1EcTgcTPp2PEZMG4gTW86hpKAUQQ390aZ/SzYIwVyWvPunzrEz+5+z+UNcPRyNvIwC48ctFkAqkcEaivNL0XZABE5vu2BwDDMTfIM2dQ3ezxz78PcHsBfGv//bgwt7r7DXFV4CSPo6QV7fBhy5CoJzxRAdKgS3rPKb/71/HsbbP71ilcdDyLOG6Xow99+PMKvfAhTllei8Fsza8D7aD4pkC+KZAngmDGFjb4MnFfN68cPxL7B18S42KJCZlA1Xb2f0eqkrhn8wAM4e+sMcxji42sPJ3QEF2eoAgCEBDfzQ99XuWstKi8owo+dcxF6It2ifu34/gA5DdGeyTUjPQblMgWwTr+PGlJdJcXjdSfR9rTs2fP0vu6+cVHW3h6ZdGuLFWcPRsmdTi7bJvKetnruxWsdTN6IO5mya9kT/uyKEPHnajRiLvPQ0xJ6unGW3gqOHJwqzjHcQs5RcKmX6KWhuM7P5MwX+aXdice/qRdQKtiBfxTZSshZbZ2c07NQNd86dhlwmhaS42OwuES37DYato/p9lMvlodvLkxE5eATunDsFaVkZ21kjpEUEe59SqcCxv5aru0BVwXTeGPj+x7h35RIkxcbfV5lgh/p5rzl5uQTBTVsg8dplg2NcfPzgERRi8H4bewdEDhzGXhjnt23G/euGt6dFpcLNIwfQ+cWJlh88Ic8DkT0wZh2wbjRQXqh9n8AWGL0GCOsJlOYCknzA3gsQ1n4XmOoSOXHQ/X9cxG1SIXGPCmXZgNgdCOnLQb0RHJNF+nq36azOdZiqJ3cMAYJ7a29fWqzC0feUKLDslATxO5Twbq0d5GP+1lR0Xx2YkOSi2uQlwIMjKgT2BG79pULCThXK/2tA59kCaDiBC4/mlj1P5QUqdlvV4doQaPc5lw1WEBOY9/Z/3rA83FCBWe/fN4E3T5sVPnwUXF3/++M0gOzsbM311FTtvyV7eRnvzEgIIYQQQgghhBBCCCGEEPI0emYCDlwuFzNWvIOBb/TGvhVHkJOWCw9/d7aoc8Xs9XoDDsUtPJE3KOyhDXGgdLUDr0gGhR0PYFrTG5pJjgsUN3eFwwUXcO7k4cqh63D2rCxSLY9y0htuqCBrbw95kBD8++YVyPiGeWPF7A1GxzieSUdJC8MzBTLdKWxv/fftLDMDeJGEnVmcuTBmRH2BK4duGN0HX8jHiPcHYOKCF3Tuc/FyZmfYZty5nIBFk3/DjRMxbMCh25j2kJbLcT/6AbsNJmAw8M3e8PB3Ywt+TWG2MeXnl7Bn+WF2GzUJO/jU8cQLHw/Fhb1XISvXv50XZw9n/12Zq0XPJuzP8s4OKH7fBxBUfiEqa2EHyQhXOMxOBj9ZanImc0IIEN6mLv689SP2/HGIDQ8pFUo07dwQA97oxQaQKoIDzOVpYOdoi/FzRrIXpgCHCYY9rEX3Jjj01wmj22nZQ13kz+Px0OeV7vj7221GO+QsPjFPp0h/1Zy/LQ43MO7HqGd5Zo7/+vEY7LkciyOZWUgvUReh8sRKCDsGw/5MEjgKM6dyrSLjfiY+G/It+9pc1fVjMbh54hZm/jUV3cZ0MHt7J7eeY8N7lghpEoipv05Co/YNLFqPEEIYXB4PA6bOQIveAxB9/BBK8vPg5OGFJt174fDK36wecHgYU5z/IOYGexy1xdnLB6f+tm6XA1l5OTqOmcBeGOvnzEBqrPbsxA/j8vloPXgE2o98Uec+exdXtOgzkL2edjcW+35ZjNS42+w6DTp0gby8HDnJSeruD5Ft0SyqH7tO6p3bJo9VILZhAwE3Dh9AbuoDKGTVPydx8vJGm2GjkXTzOpQK/d092g0fo/czgyFBTVvgxLqVZo+v7X+ThDz1gtoD71wELq0E4pm/W6iAkM5AxETAyU89xtZVfXkKCB04aPwKc1F/ptf3+uLZkoPkY8YL8r3+mzCeKbwP6s3B3a2Gx9t6Ad1+4oL3UBfTG7+rLA43MArvq38yx591Fbh/QIn084Akxzq9akszgBMzlchSz1+hkXkFyLquZAMHfh3Nf11mnkulhbk453pAy/c4cAt/JhrvPhqJJ4CsWzXbRmYMkHgSCHkyuvjZ2VX+rSMnp+IfOFBSoh3icHNze6THRQghhBBCCCGEEEIIIYQQ8ig8MwGHqgWxzKWq0OYhOsWSKi4HBT2CDG6HyxXA4VgqCtt7QGFn+GlS8YGCjr6wuZOHmDNx6PtaD819srami25l7ezBv296erkGbcJw+9xdk+NsEorgfCAZ+VH+Ovdxy+Tw/OsOOFW+dw5sqD2u66j2JgMOP51ZgLot6hgds+fPQ1j8+m9QKit39iA2FWI7EeZtn4nm3RrrdNkwxSfUiw1E2Dnb4asXf0R1+dXzQcN29dnrc/+dgUWTliIrufKLQltHG7z8xRj0fbXyd2mOoHB/NBzTDCdGl2mFGyoo3QUomu0H5zfvsb8DV2+Xaj8GQp4XLp5OGPvJMPbyLDFUqMgU7zOhvIrOBQ9juj50f7Gy2OKFT4bh8sHruHP5nt6xM1a9wxb5MzNQRkQ1ZYMhUokU+1YeqdZx2znZ4uqRm/jxzd8RJwaKO2vPKK3gc1HW3Bdydzs4b48Bp8p7gDmyknN13q8rMO8nTCegDkMi2Q4f5ijIfmimXTO8t3Sy5j3iWaBUcdhLTbdBCLGMX4OG7KUqz+BQJMfcrPWn8kH0dTTuFlUr2/ap2wBpZoQALOXmF6B1u367TkYDDsz76Pivf4J7QKDR7V7ZtxOHV/ym1bEhN+UBhDa2GDbzc53fkZOn6RmQnT292fCEQCTGvqXVPydhOkt4BqvPqQZN+xgHl/2M4rzK80KRnR06vfASwjt1s2i7XiGh8A6ti/T4O2aNt3N5OoqyCXmsHLyArh+pL8/BOUlQFAfRKys7FzzMxhPw71q5bqOXOci6qkJBgp6xHkDkRxwkH1GBw1XBK5IDW08OZKUq3D9Qva4GTMeI9AsqXF6sRIm+pqiW56y1FKWqdMINFVQKsPv1accFl5kQxQySfMsfZ+R0LpzD6DO4RS78Yb3tPCEBB4lEornOTHCg73rFOKHQvHNkQgghhBBCCCGEEEIIIYSQp8UzF3DQp//kntjw9T9ayyRhzlDaGe6uwI6p6wqlyPRsaTJ3kea6s4cjBCIB2xVAJTS9rsqMNvPMd85VO0OY4rrvAcQJhSjs4I3yAHtw5ErY3cyF48l0CPK0Z7JmZv+uiimc3frjLs0s3Q/r/XI3g+GGzAfZOL/7CrJTcrD+q3+0wg0VmJm05w5fiFkb3oN/PV94B6uDDc26NmI7VKTeTTf4uCoCB9t+3ouayE3NQ+yFu6gfGYbI3s2x5t7PuLDnKlLj09nfX7vBkbCxE1dr214fNgbSLxq8X+kvhCzCDsKLJej1ctcaPApCyLOovEwKB1d7vQEHJny1YPcnENuKUF5WznbCYbpCLDwyF1sW7WSDZVkPcuDgYofOI9uzr2kfRc1jZzZlcLkcdB7ZDmM+GoKSAnXHBUs17hiOWf2/hESpRPHEVgbHyfydUB7mBnFctkXbv302zuj9hTlFOPXvBZ0uDmUlEhxcfQyH1p1AcV4J/Ov7ov/kKNw+Z15xZ4X6kaHPVLiBEPJkaRbVF5d3G+66Y032Lm7g8vgGuwJUB4fLhdBWuyOQtTwcyGjctQeu7tuBvDR9latA06h+BsMNBZkZSLx2CYXZWTj/72b1bOsPkZaVYtvC+eg/dTpcfPzg6K4+Jwlu1hIObh4oyjHcaa1Jj96a8ERNMMeXmZjAhhxCI9ogpHkrJFy5iMLMdNg6OSO0VRs2RFEdrv4BZgccGnWxLNRNCHn2KcoBgT30BhwEDkCnr7ls5wa5RAWeQN0VotuPXMRtUiFhtwqSbEDoyIQg1N0Wjn1Q+TrMhBwCenBQdyigqKzdtohbOAenZimhrH4DHaOyjc/5wXaKSDsD+HXUXi4vUyFxrwpJh1SQFQMOQUDoIC7yLGwq4N4UFG6wlKQQuFWz92WNWzvU2xM74nErKCjQXHd2dtZcd3LS/hsx093B0fHxHy8hhBBCCCGEEEIIIYQQQog1PRcBB6aIfuCbvbDj1/2aZQpb4+EGhtJWAI5MCRXfeFCB6YxQwdbRFh+tfhdfj/sR/DsSKOoZL0rhx5n+RpepTb1xwrKZUm3vFLAXU356axkOrzuBkR8OQvtBkWzh7LcH52DhK7/g4r5rmsJYoViAfpN64o3vX9LZBlNo++Oby3Bo7QkoFaanyivOL8HHfRawswW26NEYby6aiOBGAXj/t9fZwlmpRPdb6qZdGrL7Z9y5pGdaQAuUFUvw5Ys/YmXsT+wxMDOftR0QAWu4VZZmcow83AZ9G7REw7b1rLJPQsjT69qxaOz4dR/iryZCbCdmAw4PbqfoHVtWJMG+FUcwf+8ipNxJA1/AQ4ehrTFm5lCMnzOSvSjkCoADTGk3C3EX47XWZ0JnR/8+jZw0A1OxmuAd7IG0hAz2Nbq8kRcg0J41Uud4G3haHHDIrNJNx5CM+9pFp3mZBZjRYy4Sox9oljEhvVP/nLdo3z51vDD77w/wrGHexqtMXF7tbRBCas7V158tJo8+dqjWn04bR0f0fnMq9v26GEqFwirbVCmVSI21sErTTMxxxhw7hMhBwxHSohXbYWHknC+x95fFSLpR2dmHLxShee/+6DRW95xEJpFg328/Ie7MSahUps9JyooKsXn+p2yaPLhpC3R7+XW4+vohavI72PbdPCjkuuGQoKYt0LBzd/a5YMIJNSEtLcHu/y3Ey9//wt7m8ngIa9UG1pCZoP0ZwJAm3XtpukgQQp5fGZdUiN+mRME9QGALyEqAYv2nJJAVAQk7VUg7q+6ewBUA/p05aPAiB40mctFoIqBUqNguCgffUOp0dWBenpMOqNiQQHXY+wH591S1Fm5gmHNspRnMB+TKCUvKclQ49r4SRZWnJGy4I+W4Ze0k7AOANrNNT5ZCHlKYqm6vYQ3MdorSnoiAQ15e5bm7q2tlx6Xg4GCtcdnZ2QgJ0e6uSAghhBBCCCGEEEIIIYQQ8rR7br41m/LzJK0ZnwW5ZSbX4eeWwe6qiW82VYDjqcquA4Hhfugysh2WXvkOrUv8AOaLXQO4GTIIzpeYPA6mCL82G9PfPHkbnw35lp0BnOHq7YIvd8/C8luLMWr6IDRoHQbvOl5IuH6fLa5lAg1VffPSEhxYfcyscENVTHji8sEb+KDzp0iOS0Xzbo2x6MQ8dBgSCS5P/U/TzdcFEz4bha/2zIJQpA6liGxq3nad6RRx6cB1WBuPY/p/qWadGmL6iretvm9CyNNl5ZwN+LDb5zi28QyS49Jw98o9g+GGitfMf/+3hw03MOQyBbvuex1m4+qRm+wyHp+HM9sv6oQbqrpx/BZCmwVZdKxMl50vts/E5QPX2NsKO9Ovw0ozxuisIzf9PvLwe8CPb/ymFW6wVIM2YZjy82v47ep3mq5ChBBSW/q89T7CItvW+hPs6h+Ihp26YdzXP8Knbn2rdXDQ0wzBah7E3MDWb+bi2oHd7G0HV3eMnD0fL3//KyL6D4FXnTA4enoiI+EuGxKRS6Va6+/88RvEnj5uVrhBi0qFxGuXseGzGSjITEdI8wiM+uxr1GkZCc5/n+3t3dzRYfR4DP1oDnh8Pvtc8PmmA/Om5CQnIfmW+j3cmpjuHaYENWuJqEnvWH3fhJCny7WlShz/UImUE0BxMpAXZzjcUOHuVhUbbmAwQQOmY8Ght5TIvvlf5zgeB8nHVDrhhqoyL6s7HFjCMwJoN5eDbPUpSa0x522E/1BDo4vfaocbLOXWGIj4gIOo37iw9ajNvwA+o6Sm/7ZqkfJiPG4KhQIxMTGa202bNtV7nXHp0qVq76e8vJzdFyGEEEIIIYQQQgghhBBCyJPmuQk4MD5Z9x6+3jcbHYe1QZiNA+yKdWflrMr+cgZcDqWAIzX87aYwsxz21ypnkz6/6zL7M6hhABav+ASj0BxQ6lYCCSQcuP6QDY4ZX5y26NkE9SJrf2bN32esQXZKZaBj8w87sfG77bh9/i6SYpJx/VgMFr3+G6a0n4WC7EJ2zL0b93Fi89ka7bcorwR/zdvMXq8XEYrPt87AtoLV2Jz5J9YlLcX4z0ZCKK4saG0/JBLWkHgzCdbWydN0AdnbI4ayXSMIIc+vSweuYe38LVbZFtP14ftXf4FSqX5DObbpjMl1vEO82DCEOepG1GG7RDi6ObBdIBi8Iu2gmz68YtNjdNYx0RWCkZ6YwXYMOvnPOSTdesAGOmpi+op3MPDN3rCxf6hK6Znq4MCp4eVxPwpCni2DP5yNYTM/R2irtnD28QPPCoXyD7t3Sd3FxiMwGGPnf4+GXXroHcfl883eP1Pw7xFcy7MDq1Q4svJ3lBYWaMJ9F7ZvxqVd/7LBhtzkB3gQfR37l/6EDZ99BEmJugAx7W4sEi5fqNGuywoLcO6fjex133oNMPSjz/Duyo14c9laTF6yHG2HjdZ6rkKtFFTJTroPa6vTspXJMV3HvaIOrRBCnlupp1WI+9s6H/QUEuDid5V/4Hpw1PR2nZhJ6M18GXIJB8LHciGw5dRq2I7BNeM0qShFhfsHlEg5qUJ+vBLpNXsLQptZXNQZyAXfhsIN1SK0g1WJ7PG43bx5E6WlpZrbkZGVfwv18/NDaGio5vbBgwervZ+lS5fCzc0NAwYMwMKFC9nAAyGEEEIIIYQQQgghhBBCyJPguatoiIhqhs82f4jlt37EsnfHwlagv6BHFJ8Pu8uZEOSWw3fJTfAKpDrFN+KEYvj+cBWcKgGG41u0i/0/GjAKa9q/hfYIhofMDgFwxmt1umJHnxn4dO7r6DyyHVr1aQ5bR/2FlbYONpj0zTj41PFGbWM6MOxdfoS9vm/lEez6/YDecQnX7uPHt5ax14/XMNxQgdmOpLTySzSxrQhO7o7g6im6GTltEHt/TTHPrbUNC4iEs8DW4P2RbnXQyNnf6vslhDxdtv2816rbS0/M0nSlKSsy3aHIztkWn235EJ6B7ibH3rmUgFn9FuDKwetw9nRil4nuZoMjNR4SFMdkwlLM674pWxfvxtfjf8Lc4QvxZquZmtBFdXiHeMK/nk+11yeEkOoKadEKQ6bPxquLf8Owj+eCL6z5Z9uq4s6d0rrd96338cIX3yGwcTPYubjCycsH7UeMZQv3+77zAeq26YDgpi3AF4v1bk9kZ4eOYybAybP2z0kUcjnboYFx/eAezfWHZSTcwZEVv7HX485qP97qunWK6UpXOYuxQCyGraOT3iBA5KDh4Bk4l7SE0Mb65yRNo/pCaGtrNKziHshUFhNCnmd3/7Gw440JRUlA1jX1Z3N5ZV22QSInDtrN4cLG9CkJ8m4Bx6crkROjgqCWa8/N2X7sOuD8lyqc/lSJw28zieLq788hELDzpmBDjTj6AhwrTSTC5QMOj/8ccceOHZrrIpEIXbp00bp/6NChmuuHDh2CRCKp1n7+/fdfFBQUYNeuXfjll1/YfRFCCCGEEEIIIYQQQgghhDwJnruAQ1UtA/2w4bUxGNCkAQT/zagvLJLB6eB9eKy7pQkuiJNLEDz3Enx+iYbzoVS47E1G4BeX4bfkBngy7S+Ey4olyEzKQk5anmZZQxd//K/vJOwd9An+7Tsd/RQN8FHEHLY48/imM7i49yrKiiRw83MFh6v+UpPD4SCyT3N8f2wuwpqHwMnN4ZE8J6nx6ezPbUv2GB136p/zyErOgaTEOjN7ycplKCkw4xtwAMGNAjBvx0y4+bpoLefxuTrLDBEI+VbrBFFVYUIevL/PATdbpnNfC+cgfNtijNX3SQh5+jChAWv78+O1bDgtKNx0iKpOkyC0G9gKq+OX4Ms9s9CkU7jR8UyI4Jf3V6LneHVRBVemhP2JRHV7AD2EibkQJVR2BDIHEzQIaOBr0TrSsofChxYa/v4AvUE6Qgh5lAIbN8UL875DvXadwOXx2WU1nVlfVi5BYXYmSvIrz0l864dj5KcL8MbS1Xjtp2VsB4K/587EzsXf4M65U0i8fgVyiQT2rm7gcNT7Z34yxfBj5n4L94Agttj/UchPT2V/Xtm70+i42DMn2G4PMivNNiwvL4dUYjooyPAKCcWQD2fDzvnhcxKBzjJD+CIR6kS0hrVJioogstU/m3VAo6bo9+6HVt8nIeTpkxdn/W1e+0XJdjZwMCND5VQH8O/CQb8NXHT8mgvXhsbHq5TA1Z9VCIpCrXEMBuwtnJNCUcO3oPqjKNxQY2JHIHwArKLBAPX2HiOFQoHff/9dc5vpruDiov3ZYuLEiezfjhn5+flYvny5xfu5evUqjh49qrk9duzYGh03IYQQQgghhBBCCCGEEEKINakraJ5j9TzdsXBYX3w9pDekcgUOrziKH3/Q31ve9m4hezFGLpPjxeC32OuhzYMxesYQdBvTQXN/YU4RZkTNQ26VAARDpVIhJyUXbQdE4KUvRrOzZLv7umru96v7aGYPY2bPZr5Iu3P5nsluD3cuJ7CP0RqYDhaObuZPw9e8W2OsTfwVZ3ZcRNKtFNg726HT8Dawc7LFgdXHsOv3g4i/es/gzN5D3u0LZ4/qF2jlZeRj59IDOPnvObbAtl6rUPR4sRO+f20p+7t1PgRI2zlA3kAMyFQQnitG3QhPOK0xPJMqIeT5IbQRWn2b8VcTsfCVX+Du5wouj8u+TuvDdMCJekkdVODxeGjQOgxxF+NNbr8otxhBDf0Q2NAfSTHJsLmVCW6ZDCWt/CH3VofwuCVS2NxMh+2lFHAsmMXUwc0e7v5uuHbkJh4FphCECTcMeacvnnUqcKBScWq8DUJI7fIMroOB733Edg9QyGS4fmgfjq5Wd0yrjvLSUix7+xX2uledumg9ZATqtak8J2GCD5sXfIqywgKddYtzc9ixbYaNZgv1qxbru/hYFkSrLiZIIZNIkJOcZLLbQ2ZiAjyDQ6yyX7GDI0Q25n9eD24egUk/r0D8xbPITU2B2N4B9dp2YDs/RB89xHagyE5KZM/19Gk1YCjEdtWfipz5XV07sBvxF89BLpfDJ6we6rfvjL2/LNL7u2UwXTgMhR8IIc8XnrB2QhNMZwNbL+ZDN/tBUi++LRAYpf6MyeVx4FJXhfw7prdfnge4NODAzk+FkhTrHrvQGRA6AdnX8GhwgfCxHIT0p8C1VUS+BsRss852HrPvv/8eDx480NyeOnWqzpiGDRti2LBh2LJlC3t71qxZ6N+/P4KCgszaB/O54Y033tDctre317sfQgghhBBCCCGEEEIIIYSQx4W+RfsPn8uFrVCADkMiwf2vi0K1qLSLTb8cuxgbv6v8gm33soM64Yaqzu68BKFYqBVuYHQe2Q5iO7HBXZaFOSN7RD1kvNQIOYPDIAmsXseH3PQ8TGk/y6yxApGAPS6mc4Ixg97qjYBwP6NjosZ3gUAosOhYeXweOg5tg7GfDGP34eLlzD53/SdH4ZeL32D57R8R3rauTmHvmI+G4LVvxqG6Eq7fx+Sm07B67kYkXLuP5Lg0HF53ErP6f6X53XIUgOhkEez+yILdqmwIbkvYMRUdMgghz7eOQ6w/W3OF7JRcOLk7GHwvc3R3wJWDN9gwW+aDbFw7Eo1yMzsh5KUXYNT0wZrbosQ8uG6+AbflF+C26hLcVl6E3YVkTQckcxXlFOPq4ZuGGkJYFfM+z7w/vL5wQu3vjBBCLMTl8djieKZIHv/NylstVV5QMxLuYMcPX+Hynh2aZUxRvKECeMad82cgsrXV6UTQoENX8IW1UBFbFYeD/MwM/D33Y7OG8/kCNGjXWdN1wpCIfkPg7G08NN64a0+Lu2fw+HzUa9sRbYeNRvNe/dhwhkAoYq9P+PZ/eOn7X+BVJ0xrHYHYBm2Hv4D2I19EdaXH38Gq6e/g7Na/kZWUiLzUZMQcP4x/vv7c6O82+thBFGZnVXu/hJBnh1+n2guxlmYAYjfD94ucgcxLzOQZKpRmqJB5RQWlbiNMvaSFQL2R1j92af6jCzf4dwX6ruGi8av0Z1mrCe4EeBjvTGiSZ0MguCMep8OHD+PTTz/V3B4+fDg6deqkd+zChQvh6Oio6eIQFRWFu3fvmtyHVCrF+PHjce7cOc2yOXPmwMPDwyqPgRBCCCGEEEIIIYQQQgghxBqe+w4OD2OK0A3N+l9dK2avR8/xneHq7YJT2/R3h6jq1D/nEfjxUK1lTKGqvpodFY+DrNH1IalXGYgoZ2ZlbeEJ+4vpcNmZYNG8y8zjN4eDqz2adg5H9KnbUMj1zxJetfvE0Cn98H6nT5GfVaj3/nFzRsDa/MJ88NPpL9lOE0xHCrGdCK37tmC7PVQXM/vqvFHf630c5qzL/G5Hfjio2vsnhDwbBr/bF3v+PISivBK99zOBLaY4NS/TcIGiMXkZBRj+Xn/s/vMQyookWvdlJmVj/phFsHO2RUl+qUXbdfF2RkB93dm7eaVmViNVE0/Ag0KmqPF2WkY1xacbp7EBuecF84mmpp9qHkHuhBDyEKZQ3dqprxNrVyC8U1fY2Dvg7oWzRseqVErcvXAOEf0rQ20MDhueq+WuLioVbp88atZQWydn+NRrgPvXr7DHbIyLrx8Gd5uFvz+fCUlJsc79bv6BaDNkFKzNzS8A475ajPS7cci8fw9CsRghLSLZAEl1KZUK7Fj0FSTFRRavq1Iq2Y4TLfoMrPb+CSHPhrrDOUjcr4Jc/ykJbNwBhQyQVu+UBJJsZh9Awi5AoX1KgpJU4PQcJfh2MLh/Q8SugNjFSHuIWsLhAaqan5LApz3Q9lPuf++pxGqYYOjQpcCKfoDMwn9UDIEdMOTXmgVMayAlJQU//vgjFi1axHZXYISEhGDp0qUG1wkODsaqVaswYsQIdTfeO3fQokULzJgxA6+//jo8PT111tm/fz8++ugjXL16VbNs4MCB+PDDD2vpkRFCCCGEEEIIIYQQQgghhFQPBRwekpueD2uTyxQ4sPo4Rs8YDKnE9CzZzJiUu2mQlcvhG+rFdiU4tumMTpEqI797oDrcwFWB514Orls5OAIlVFIuyjydwc/1huNp63cNGDa1P0Q2Ipzbddnk2HO7L7PjfzrzJf6avxnH/j7NzhZu52SLXi91xYuzh8PJXT3jWG2o27IOe7GGSweusx0bqsvcWdIJIc82zwB3fL3/U0zvMRelhWU69+dl1Py9aMviXUbvtzTcYOtgg84j2rI/qxOOqOnzlZaQUe31+UI+Rrw/AOM/H/VchRsIIU+vkgLDHd+qSy6T4taJo2jZdyDkMplZ4/PSUqCQy+Hs7Qu+QIDbp45BLmXi1E+GVgOHsR0UEi6bDpEnXLmAZlF98cL873Fu6wbEnj0JhUwGsb0DGnXpgbbDxkBsb19rx+odVo+9WEPCpQsozMqs9vpyKZ2TEEIAez8OOn/DxbHpSih0T0lQll3zZ+nOFhOvRxbWoQscAL8OHHCFAN8GkOs57tpi4wGU1uDPa1wBUH8MBw0nMBOYULihVvg2B8b8BWwYZ1nIgQk3MOsx69eCWbNmwcHBQW8nhdzcXDaYcOvWLXZilAqhoaHYvXs33N3djW57yJAhWLduHSZOnIjS0lIUFxez3Ri++OILNuxQr149iEQiZGVl4fz588jI0D6vZsIRf/31FziPKdhBCCGEEEIIIYQQQgghhBBiCAUcHuIZaPyLo+rKuJ/F/qwXEYqEa/eNjt2/6ij+mrdZ0ymh76s9IJfqFiEpBVwUR3gBPCUEdYvBtamcSo5jowTXrwylb7rC7komeGXGZzS1hJO7A1Z/vhF/f/sv3P0qO0cYopSrj8unjhemL38bU3+djNLCUraTAl/wdP0TjLsYX6P160ZYJ2hBCHn6McEuSbFucO1JNXH+C2y4oSC7EJKSR1vc6hvqXaOAwzf7P0XTzg3xPFKpOOylptsghDxajm4etbLdwmx1Ubx3nTDkpSYbHXtt/26cXL+KvW7j4IimPftCUmJ5x4DawYGNgwOOr12Bs1vWs50cTFEp1Ockrr5+6PvONERNfhdSSRnEdvbg8p6u8FtGwp0are9VJ8xqx0IIeboJHaE33PCkavo6BzwRB2U5Kigecd7OIaBmAYduP3Hg2kBPa1ZiXaHdgYm7gX/eALJumR7v2VDduaGWwg0MJoBgLj6fj9deew0LFiyAq6vpv7kyRo0ahSZNmuCDDz7A3r172WVMF4gLFy6wF32Y7g5fffUVXnnlFbOPjRBCCCGEEEIIIYQQQggh5FF6uqrLH4HuYzti2Yw1Vp9p383Hhf05+O0+2LfiiNasXA/LTKqcJq8otxgbv9vGhgMeJvOyhUrMB9+3RCvcUBXHUYXil7zgtLT6XQeqUnnzkTOYD2VrX0h4QFF0OXj/CMG9a/j5atShgdZtoUgAoYcTHgelUgkuV/2F8u3zd/DPT7tx9Ug024G+ZVRTttNEWPMQg+uLbITV3jfTjSOyT+19YUoIeboc23gaSqXh94InSbcxHTDk3b7s9fsxyVDI9L/n1BYur/oF9sPf6//chhsIIU+vhp274+SG1Wz3BGuyd1afkzTvPQC3Th41OrYoRx3QZpQVFeLcP3/D2csHTwYVe0wMaVkZezHFr0Ejrdt8oZC9PA4qpRKc/85JUmJv4fKe7Ui5dZNdFtwsAi37DYJHYLDB9flCUbX37eoXgMDGzaq9PiHk2fLg8NNxPsII7gPU6a9+7SxIYF5L8dRoMJbCDY8UE1Z46wyQeBK4sAy4tZNJOlbez+UDDQYAka8BwR3B/lHwMRAKhbC3t4e3tzcaNWqELl26YPjw4extS4WHh2PPnj2Ijo7Gli1bcObMGbYrRE5ODsrKytgOEsx2IyMj0bdvX3Y/zP4JIYQQQgghhBBCCCGEEEKeVBRweIiDiz1eXzgBP739h9WeZC6Xg6gJndnrYS1C8NbiifjlvRVGQw4P0ztzNVMYy1WB62I8jFHe2QGq5engSGv2xbWymRiyeZ6ATeWMc0o/AZQ97MBfnAPe3mK96zXv3hiP2+F1J/DP//Yg9vxd8AU8BDcJxN0r96CqUlx8YNUxHFl3EjP/moouI9vp3U7rfi3w2/TVWuuZw9HNAZ9unKYJVxBCSHF+yVPzJFw+dAM7lu5D3ZZ1ILKtflFldYhshbh65KbZ45naFObtlemYM3RKP0SN74LnGvN2VdO6taen7o2QZwbTkaDT2JdxdLUVz0l4fIR36sZe963XAJ3HvYLjfy23aBv5GdYJTT8OQU1bPO5DQPSxQ7iydycy7t0Fj8+Hu38gMu5pd4i7eWQ/bp04jAHvf4ywVm30biekRSQbgKnOv6uB731U7eMnhDx7ZE/PKQnSLwDx25Vwrc8BX/xo982zATKvWL6eazhQdwQHgd3pb0GPHHNiGNJJfZEUAkVpQHkxILIHHHwAsWOt7bpr164W/c3XmpigBHMhhBBCCCGEEEIIIYQQQgh52lHAQY+Bb/bGlsU7kXKnBr3nqxg1Ywg8Az00t5lZsBu2r4ftP+9juwgIRAK4+7ni7M5LRrfj6GaPwpzKEIEwvQQ8mQQcnvH9q+x4ULjxwU+TVfsxqIQcyD710Ao3aPA4kL/nBu51CTipurPMlhVJNNcVCgXO776CtPgMOLo7oMOQSNjY26A2/Tx1Of793x7NbZlUjjuXEvSOlcsU+O7lJWjRvTEbSqhQmFuEv77YjAOrjxkNN7h4OWHan2+xgYrYC/EQigVoPziS/TdV0cWDEEIYgeH+T9wToXAUQxriBpWAB15eKYSJOeAoVCjIKsRPb6mLbH3CvODu74bs5JxHckwcDgeycvNnMJ+/6xM079aY7RZECCFPs4j+Q3Bp9zYUZVd2UqiJtsNGw+6/Dg6MyIHD4N+gEa7u34WMhLtsNwNbR2fcu3rR6HZE9g4oLy7C00ZSUnkexXTGuHflIgoyM2Dr5ISwVm0hENduteyBZUtw/eDeymOQyXTCDVWPb/f/FuL1X1dBZGurWV5aWIAzm9cj5vhho/uyd3VD1KS3EXP8CDIT48EXCFG3TQc07dlH698AIYQ4BD49z4EkB7i8SJ3edQgARC5Aed6j2Tcz+b/KgqZKXRZx4N6IA67g8XQGIA9hwgy1GGgghBBCCCGEEEIIIYQQQggh1kcBBwN6jO2M1XM31vgJHvfpCLw0d7TO8noRofhw+Vua2yvnbDAZcHDxckZ5mRTlpeqODRwlYHchE+WtTH9JxylToiaU3ewAJyNJCh4HigEO4P+u++2yk7s6KHBh31UsmrQUWVWKYm0dbNjnZ9h7/VEbrh+P0Qo3mIN5jvetPIqR0wZqwg0fdJ6D+zHJRtfzr++LOZumIaRxINr0a1mj4yaEPPs6j2iLX99ficKc6heJqrgccCzsKKN3OxwOSjvUgTTMQz3T5X/KWgfD7tgdCFILNMvS7maAy3s0M5Ay+5GUlJs93tbRBk06hVO4gRDyzAjv0AXnt22u8XY6vfAyWg8ZobPcp2599lLh2F/LTQYcnNw9kFMuYQv0nyY2DupzpvhL53Bg2c8oycvV3CeytUPHMRPQvHftnJMkXr2kFW4wh0xShpgTh9Gi9wBNuGHDnOnIS0s1up6bfyAGTfsErr7+qNOydY2OmxDy7AvswcG1pSrIn6JODoyiBzA52Ye1MPtRGm+cqkXoCLg1pHADIYQQQgghhBBCCCGEEEIIITVBPdIN6P96Tzi42NXoyRXZCDFq+iCzxnoGuJseE+SBSd+M11rmvDcFnAyF0fUEN0rAyzc+pmKWbIPqm57RVFlXqLPMvbkf3Jr6IvbCXXw25FutcAOjtKgMv36wEnMGf4PkOOPFOtWx6/cD1Vov4Xqi5vqGr/4xGW5gFGYXIj+zsgiYoZArcGzjaXzSbwEmNf0An/T/Esc2nWE7WRBCnm9CsRAzVr3DdvGxNNRQ0sIHWS+1QMaUdkh/uw0KosIgd6n+zNNlbYIhreupFW5g9yUWoLhHAyictTvtKBVKNkxg41C7s10z+7HEwDd6wcaudo/pqaPiQFXDC7MNQsjj0axXfwhtKmfwrw5m/Zb9B5s11sHN9DmJo4cXOo7WPiexLiOvOcbOV4xw8fWHvYsrkm9HY/v3X2mFGxjlpSU4tPxXbP/hK+Snp8HarlkYbqiQdf+e5jrTucFUuIFRVlTIhiEe7ghx6+RRbF7wKVZNfwf/fDMXd86fhkpZsxA8IeTpx7fhoPVHXHCewulPmK4KAnvmMdT+fiwRNowDnpA+PxNCCCGEEEIIIYQQQgghhBBSE0/hV5iPhqu3CxbsnoXPh36L3PT8am2j+9hOENuJcSkxBekFRfBytEdEsJ/eIEGX0e3ZQn9jM1X3mdgNnUe0Y8f8NW+TZqzTrynI/zSA7aKgQ66C/YZss4634/A2aDewFe5evofysnIIxAI4ezghvE1dLE85iOswXuzDKa+cRTy/swfye3gjzscGrdcvhXMRIGrpBKcz+o/lzI6L7CVqQhd8sOwN8AXW+af5ILZ6oYmKAlmlUsl2czBHYU4xG9T49fJ38K/rA2m5DJ8N+QYX913TjEm8+QAX9lxBZN8WmPvPdAiElhU2E0KeLUy3l5/OLMDmH3bgzLaLkJSVQylXGg035A1qAGmwS+VCAQ9ljTwhCXOF69YYCDKKLToGpYiPcibcYAifC0kjH9idStBaXFpYhnf+9wrO7ryMi/uu4nFj3j8mzn/hcR8GIYRYlaO7B4bO/Azbv/8SZQ8VrZurYefu4PH5eBBzgy3sd3DzgF+DhnrHhnfsihNrV0IuMzxVdZPuvVCnZSRk0nKc/3cz5FLzO+2YI7xTVwQ2bsYW9zPb5gkEsHV0hm+9cBxfuxwZCXct3mZeajKWvj4eQhsbKBVyg+PunDvFFv4zj7Hna2+By7XO9OB5aSnVWk8oVp+TKOQyxBw/bNY6pQX5+OfruXjpuyVw9PCErFzC3mZ+/xWykxKRcPkCQlu1xaAPPgaX94imQSeEPJH8OnHQfQkXcRtVSDujgqIcUD0l+SdZMRAxDUg6BGQ9/lMShPTnoOF4CjcQQgghhBBCCCGEEEIIIYQQUlMUcDCCKez/K/EXHN90FjuW7kP0qVizn1jfUC80nNQJ/RetQmJ2nmZ5kJszPhnYDZ3qBWuW3buZhFtn76DT8LY4sPqY3u0xBfEdhrZmr4+eMRgD3ojCugVbsfG7bRBdKYHTtykoes0LSo/KgnluhhSOv2dAeLOUvS22FUFSqr8AiQldDH9vABq1r4+o8V107s+/LsX1rL+NPmbuCfV+MkcFIr+nt/b6DgAm1oHMQwT37YYLfJjHb+tgg3f+9yqsobpdOLqMaq8p4C3MKTJ7PSZ0su1/e/D2T69gzecbtcINVTEhh7++2EzFuIQQhDUPwczVU9hnojC3CGMD3kB5mf7C0rLGntrhhipUIj4KeobCfa3+1x1DZH7ObIjB6JgA/fvcv+oY4q9Vdrwxl8JOCKW9ENxSGXhFNSuMjejVDK9/Nx4hTYJqtJ1nlUqlvtR0G4SQx8e/QSNM/nkFYs+cwLUDu5F2x/xzEldffzYYsHzqZORnpGkt7/Hqm2yQoEJmYgLS4+MQ1rodbp/Sf04SFtkOIc0j2Ovthr+AFr0H4vTmdbiyZ7vZx8QXiSAvN3ROwkVEv8HwqhOm9/6mUf1w4LefUF3SsjLTg1Qq3Di0DyJbO3QZ9wqsQWRnX6316rXtxP6UFBdDWqY+1zIHM/bq/l3o/OJEnNywRivcUFX8xbM4v20z2g4bXa3jI4Q8O1zrc9D2U3VhviRXhV1jlFDK8FS4twfIu/14j8G7LdDsdS4cgyncQAghhBBCCCGEEEIIIYQQQog1GK9oJOwM+z1e7ISe43SL/g0V1A9/rz8mbnwXM3Yc1Ao3MO7n5OPtNdtwPuEBslNy8GH3zzG56TQsmryULe7n8XlwdGfSAGpiezE8AtzZIvvfpq3Gg1h1OMDO0RZZyZXdEMRni+A++S6cP0+C40+pcJ6TBPfX49FQ7s4e/5zNH+KP6B8QUN9Xb7jhrcUT2XCDISfnHQXnguGCIIdiIZZ8+Qkm/fuuTrihqtx+vpB6iIw8g8DuPw6hILsQ1sB0EcMISAABAABJREFU0bBU8+6N0axrI/a6jb2YDYZY4uyuS2z3BuZxGLN72UHIpE9JxQAh5JFwdHXAKwvGGry/tInh11eG3MMO5d72KA9yRkGfesgd0Zj9WR7oDIM16lwzinC4+j8uMOEGhUxhev2K43O1Rf6gcORMjEDeqKbIeTkCeUMaQeZRvTBax6Gt8fXe2RRuIIQ88/hCIRp16YEG7TubNV7s4IhWA4ehw+gJ2PvLD1rhBkZuajK2fv05UuNuoTArExs+m4E1H03Bgd+XsOEGDo8HsUPlOYlAbAMHdw8U5+bg2F/LkZeu7pImtrdHUXamyePxCglDeKduGPzhbEz47n9w9vLRGcPhctFz0lsGww2M+AtnTDxuB4xd8AO6jK95WPra/t0oLy2BNTCdMSzFBEl86zVgrwttbdlOFpZgOjTIJBLcPHLA6DgmNKNUmv9eTgh59oldOWj40tNTqJ8X+3g7TgT0BDp9xaNwAyGEEEIIIYQQQgghhBBCCCFWRB0czNRhSCR+mbocMqnc4JgXPhmGl78YDS6Xi5eXbYJcof8bVmb5j/tOQfjjaSTHaRcbKeQKFGYXoWXPpmzhaEFWISTFEmQ9yEbs+bvY/ss+TPvjTURN6IK0+AytdTlKsN0cqmrZowkmfzdBc/uXS9/iyPqTOLHlLMqKJQhtFoyBb/ZCUMMAg48rKzkHp/69AMFuFeTT3aHsYKtVEMuJkaB8/gPMLPsCgk/bAPon+lbjclDYwQPu/yYbHCIrl+HS/mvVCic8rOvo9vjprWWQSkwHCbhcDjoOb8s+v6VFZTi/+zLbwaFZ98Y4t/OS2ftkin3T4tNNdn7IzypE+r1MBNT3M3vbhJBn37D3+sPJwxHrvtyKpFvar5UKZ7HJ9Yu7hEDhWVmUyrxrldd1h+hONhz3xYHzUNKBn1Vscpu8LP2vZxaFG1xskDe8MVRi7Y8esgAn5A9rDOetNyHIMr+QlC/g4dWvx5k9/nmlUnHYS023QQh5MtRt0wFH1/wJldJwJWf7UePQdugoNjCwbtY0KBX6X6sVMhk7u39hVgYKMrXPK1QKBSRFRQhuHsF2jCgvKYZMUoai7Cy2y8OVvTvR950P2MBFfka6yeMOadkKHUZVvmZP+PZ/uHXyKOLOnYJcKoVXSCia9erHdpYwhNlPwpWLRvfDHPPm+bPh5OmFmpKVS5B08xrqtlZ3dquJ8I5dcGTV71DKDZ9LVmB+b/XbdUKvye+yAYt7Vy5CKpEgoGETJF67bPY+lQo5G2Qx1fmBCa0wF0d3T7O3TQh59oW/yIXYVYlb61QoMfznmyeC6jFmtLgCoMmrNHcMIYQQQgghhBBCCCGEEEIIIdZGAQczuXg5Y9DbfbBl0U6997v7uWLY1H5suCGrsBjn7xn/BvjKgzR4p+WAZ+D+ywev613OBCC+m/gzVn/+NwqyjRfQM5w8nLRuM90I+r7ag72YK/5qIpQKJThlgOCLLCj9+FC2tgF4HHBvSsC9LWXHlUGBu/dTARdjCQdA5io0uU+5BUWzxlw/fstkuCEiqik6j2iHFj2bwCfEC2sXbMHGb7exIYcKXD4XSrl2IZnMXQi5uwC8fDmE6eWa5UGN/CEQmTfD6toFW/HuklfZjhyEEFKB6bxTNyIErzZ8X+tJ4UjkUAkMvXOoyT0doK8cnQk5lGaXwO6iuhNQBV5BGfgp+ZD7ORvcpjjGdPGqKSVtA3XCDRVUQh5K2gXCefsts7fXslcz+NfVnQGcPN3u3LmDlStX4vjx4+z1vLw8iEQieHh4oFWrVujfvz9eeOEFCCycydwcSqUS27dvx9q1a3H+/HlkZmay+/bz80O7du0wYcIEdO5s3uz5hNQWBzd3NO3ZF9f279J7v6OHJ1r0HsAWyRdkpiPtbqzR7T2I1n/OUSHx6iWDxfO7fvoOJ9evQklBvsnjtnFw1LotEIvRtGcf9mKuzHt3mcSVyXFMQX/W/XuwBkPhEEslRV83GW4IadEKYZHtENysBRzcPHB60zpc2vkPG7SowPxejYVbqnLzDzK768OZLRvQ7aVJEIptzBpPCHk+hPTlwrGOAoffeNxH8uTybQ/YeVMYmBBCCCGEEEIIIYQQQgghhBBro4CDBSZ/Nx48Pg/bluxBeZm6qJ/RoHUYPlozBc7/hQmKJJX3GaMU8cAznVHQoVKpkJ6YZXIcl8dF97EdUVNCsXZhDDdFDu4/+g+cX2i6U4KpMRwOB+Ft68IabhyPMTkm6VYKzu66hIsHrgEqsN0tHlY13CD1FyNngj/KGlfOkC66UwK3v1IgvlOC4vxS+IZ6I7hxABJvPjC670N/HWdnaP/h2Bds+IQQQipEn9ItSrW5nYWSSMOzW0PJFH4aLrApa+IN20spOl0c7E7cRVGfhlA664atxJcfQJCiW7zK43OheCj4ZfCwRDyUhxgPv0kDnaGwE4BXYvp9hDFgcpRZ48jTobi4GFOnTsWKFSvYzzlVSaVSFBUVISEhARs3bsTs2bOxatUqdOvWzWr7T0pKYoMTp0+f1loukUhQUFCAmJgY/PnnnxgxYgR+++03uLq6Wm3fhFiq+8TJ4PH5uHZgN9uFoYJvvXD0e3caxPb27G1JifldcapFpdLp/KAPc6xMp4ea4glMh6SticPhwiesvlW2lXLrpskxOclJ4PJ4uH/9ChsguXtB95zE3HADQ1JSDDf/QLj4+CIvLdXo2JuH97P7H/Xpl+ALH+3zTAh5suXcYM4tTIfLHhcO7/F2cKgzkLo3EEIIIYQQQgghhBBCCCGEEFIbKOBgAaY7w6RvxmHMzCE4v/sKJCUShLWsg/qtQrXGeTnZw0YoQJnUcJEmR6oAr7By1v+akvraQ+4oYgtDhQ8K2fJWz0B3vNv2Y9g62LAdCga93Ruu3sYLTPVp3CkcTu4OZnWMcDydjYLOnkbHhGfykW3k/oheTRFQ3w/WwIQ8TMlKzmEv5pD6ipD6WV0o7bT/1ymva4e0WWHwWXAHsefvstsb+8lwfDl2sclt3rmUgD1/HMLQKf3MOgZCyPPh6hHdYkjbK2koC/eA0l5/IIrD/mcYs57CUQx+gXo26KadG6LHuM7wDvGEisfBtqPXcfjyXcigAi+vDKLYDPCzi/Vuy9xwA7tfJihn6vWYw4HSxryAQ5NO4WjTv6XZ+3+uqTjqS023UYsKCwvRtWtXXLlyRWs50z3B09MTpaWlyMmpfJ9+8OABoqKisHr1aowdO7bG+2e217FjR/Zn1bAls+/y8nLk51cGfDZv3oy7d+/i5MmTsLOzq/G+CakOLpfHzrbfZugotsOCXCaFV5268ArRPidx8vQCXyBk73+c7F3dseajKRDa2KJ++05o3qs/bJ0Mdw0yJLBRU4hs7VBeap3ghqOnNwozDXcoCm3Vmu2IYQ0crvHuS4zCrEz2Yi0pt6NRVlSI1kNGYd+vps9J0uJuI+bEYTTtYX5XDULIsy/7eu2HGzwjgMDuHLYTAtM99N5uIOWEecGFxxluYI7bk05JCCGEEEIIIYQQQgghhBBCCKkVFHCoBgcXe/R4sZPB++1EQgxs3gAbz98wOMYmJhtcqfnFoYaUBzgiv1cdyD0qZ93m50vgePAe0u+qC2RykIe1C7Zg17IDWHhkLoLCDc/+nXD9PvatOILs1Fx4+LuhzyvdEdwoACM/HIw/Zv5l8nhsEorhcDYbRW3d9d4/rkEzLDjaC2u+2ITVn2/UuZ/Z1/QVb8MSmQ+ycXDNcWSn5LKhjrotQ7B/1VGc3nYBUol5M4GbK3+Er064oYJKyEXuGD/4zrvDBhy6jemAgqxC/D59NWRSudHt7lt5hAIOhBAtRXm6BZwchQq8UgWUzEs+U3NeUXeuAvi5ZVA625h8Fjlslwc1jwA39Huth+Z2RNfGOMsbpTODfk1xma5HcgXAN1LgqVRpwg1M56CmXRsiPSETGfezICtXv4byBTx0Gd0eU36exIYOybNh4sSJWuGG1q1bY968eWyHBoFA3UXq/v37+Pnnn/HDDz9AoVCwl1deeQUNGjRAy5bVryxTKpUYPXq0JtzABBumTJmCGTNmwNfXl112/fp1fPzxx9i9ezd7++rVq5g0aRLWrVtXw0dOSM3YOjqhYefuBu8X29mjXruOiDl++LE+1QUVIYK8XJzZvB43Du3DqM++gouP4UBzxr14RB87iJL8fDi6e6Bxtyi4+QUgov8QnN60tsbHFNF/MLpOmIQT61fh/L+bdO73CApB1OR3LdomE05gnuuSgjw4unvCPTAY0UcPIv7yea1OG48K0+2hODcHjbv2ZIMOJzeshlJu/Jzk5tGDFHAghGiR6s86WxUTbAjpV/HZngfP5ips6VXzv5fVFE8MeDQFilOBkrTKMAVXAAT24KDFFA772ZEQQgghhBBCCCGEEEIIIYQQYn0UcKgl7/XqiMuJqbibqdsZgJ9dCsdj92u8D6m3HXJGhUMl0C4YlTuLkTusAdw23YL4XuWsw/mZhZg/+gcsu/6DzraYYtb/vfMndvy6T2v5lkU7Mfy9/njjh5dRVlSGjQu3Q1ZuvEDHe0UCIhuF4ZqHFDmSUnaZp60dXmkUgTeatmZvj58zEq37tcTOX/chMSYZtg5idB3dAd3HdoTIRv/M5Pqs+uxvrPtyKzvLX21TirgoaeVkdIwk3B4yDyHcfNSdMoa82xfScimWzTAeDslJybXqsRJCnn6B9X1xYY/2jPbFHYOhdLEFT8FmGrQCDkpHG3DKZFDZqAvC9eFll4BXVNk9KPbCXZ0xTMee/KxCqz0OHp8LSJUQ382BpIHhmbBF93LBLVO/vwx5py8mfTuevV6YW4Trx2LY1/lGHRpoXl+JeZisSk3zKlbOu2g5fvw4tm7dqrk9ePBgbNq0SRNsqBAUFIRvv/0WnTt3xpAhQ9iAA9NdYdq0aThy5Ei19890gThz5ozmNhOgeO+997TGNG3aFDt37sRrr72G5cuXs8vWr1/PjmPCGIQ8ybqMewVpd2KRl5aCJ0VxXi52/+97vPilnnMSpRL7f1+Cm0f2ay2/uGMrWg8egY4vvARZuQSXd2+DwkSxPiOwcTNk3r8HSZH6fc3ezR2t+g9hgxKMTi+8hNCINrh+cA9yU5IhtLVFeMeuqN+uE/hCodmP6fi6lbi4fStUqsdfkFuBKbq1c1a/Z0YOHAZZeTnOmAiHMIEIQgipyjGAg6wrtdvFIfe29va5Ag74toBc/eckq+DwLO/2UH8UB40mqoMX5QUqZF1Tn3e5NwHErhRsIIQQQgghhBBCCCGEEEIIIaQ2UcChhpiOB6WFpfCv7wtnj8rid2dbMda+MRprTl3B1kvRyCgsgqejPYZFNMLhV1agsMx0QY4phR0DdMINGlwOCjsHagUcGIk3HyD6dCwata+vE2R4ONyguW/xLviG+eDleWMwZEpfbFuyF3/N22zwuPg8Hr4bNQxl5VJcuJsIR1d7dG3ZCPyHZtuu3yoU9f98C9W16/cDRo/D2pR2PKj4pr/EDu1WD15BHprb/nXVM0Abw8yiTgghVfWbHMW+/mpeg0R8lIdVdsdhX40srDWyu5RisksE06Go6n5rSiFXF3vanUmC1M8JSgfdEBunVAq7U+rgX4PWYRg3Z4TmPkdXB3Qc2sZqx0OeLH/88YfmurOzM1atWqUTbqhqwIABePfdd7F48WL29tGjR9nuDkwAojoWLlyoud6pUyedcEPVQuGlS5fi1KlTiI2NZZfNnz8f27dvr9Z+CbEmJqicdf8eZBIJXP38YePgqLnP1skZL8xfiMu7t7PdBIrzctQdEbpG4cKOrZCWWbF61ALp8XFslwavkFCt5ee3bdYJN1S9z9nHF51fnMgGFJiQA7PMEB6fj/5TZ6CssAApt2PY56JORCS4XO3zJ996DdhLdV3esx0XjBzH4+JbP1wTcGC4+hrumFHBwa3yHIYQQhh1BnIQv712Aw7lBbrLgnpad7+WhhuYEEODsZV//xE5ceDf2WqHQwghhBBCCCGEEEIIIYQQQggxgQIO1XR88xm2e0DSLXWxqEDIR8fhbfDmoolw8VQHHRzEIrzVoy17qUo4+i7bCaEmlCIeyusYn8Va5mMPmYsYgjyJ1vKvJ/wElUIFZ09HRE3oip4TOmPrj7rFrOX+dijo6IOyMCd8lHUNx3YrMTGiJV6aOxo8Po99/PqM/HAgvn35Z1w9fJMtuGJsax2Gyd9NQJNO4bAGZrsbv9tm8Xq+Yd5o0b0Jrhy6jtT4DIvW5RbJIZADMmP/1yhUmPT+cK1Frfu1gKu3M3LTtcMmVXUcRsW7hBBtgQ388OqXY/HnJ+vULy8uNgDTDcEYkQC2F5NR2sIX4FUZq1DC7mwSxHHZWsMLsgpxevsFtB8UqVk2YtpAHN14GjmpeVb9lfCKpXDZdAMlbQIgqecOMAE9OdPZIRsOF1MQ6OOGvrN7YOCbvSC2Nb+TDzGBeRuuaW1YLda07d69W3N9zJgxcHIy3imJMXHiRE3AoaILxPjx6o4flrhy5Qqio6M1t6dMmWJ0PBO8mDp1Kt56Sx3O3Lt3L/Lz89lgBiGPy62TR3Fm83pNhwaeQID6bTui60uTNEEHG3sHdBj1InupqqQgH1f37cTjsnPR11AqFWwRfqMuPdCgQxc2LGDMgd9/RsqtGLTsNwidxr7MpI9w/t9NugM5HEQOGo4di75CcsxNzWLfeuHoMv7VGgUaqmKO/+KOfyxez8XXD4GNmiLhykUUZWdZvD6HwzXZLaLjmAlat8NatYXYwVHTzUKfum3aW3wshJBnm3MYBw1f5iBmZe19IJRkA+kXVPCOrAwU1H+Bg+QTKpRb95TEOC7gGAiE9OcgdBAHPCF1aSCEEEIIIYQQQgghhBBCCCHkcTFRKUn0ObD6GOaN+kETbmDIpHIcWX8K07rMQXG+7ozYVY34cJDWDP/VoRTy2C4NpqjEutX46QmZyLifhdgL8Vjy7p94t80nyHqQozWmqIU7Ut5uguKWHlA4CiG14+PfmFsYvnY9tt+6hXGfjsCczR+iTs8GyI3yQdbwQNhObo7Xfn0Fu347gCuHbmjCDYzb5+/io17zcPPkLVjDg9hUiwMKDJGNEL0ndgNfYHm2hytTQXxUuzj4YW0d/dG2TWPN7fKychzZcAqNmWCHkV/Xnj8O486VBBRkGy44IoQ8f8bMHIrPt34Idz9XcGRmTDuqUsH2YgrcVl6C/clE2FxJhf2Je3BfcQl2l1P1rrLt571at9393PDDsS8Q0asZrI1XIoXj4Xh4LLsAtxUX4bHsPBwP3MWCNe9hecxijJw2kMINz5H09HTk5FR+/mjdurVZ64WGas/4npaWVq39MwGFCnw+H3379jW5zsCBAzXXZTIZduzYUa19E2IN1w/uxe7/LdSEGxgKmQwxJ45g49yPTXZnaD1kBOxdH18XsfyMNBRmZSLtTiwO/vEL1s+ejtICw4FghkqpQPSxg1j7yQeIO3cKnV54ie3S4BkcqhUeYEIMl/fs0Ao3MFLjbmHTvFlIu6vuxFJT2Un3UZRjeUBBZGOL8E7d2S4T1WEq3BDUtCX8wyvPSZjuHrdPH4d/g0ZG17t+YDcyE++hzEgIghDy/Gn0EhdtP+NA7Fp7+7j7r/brmp03B90Wc+HZEo9Ml4Vc9F7BQ70RXAo3EEIIIYQQQgghhBBCCCGEEPKYUQcHC8mkMiz7aI3Rwvvtv+zD2E+GGRzDdHhYdGIefv1gJU7/ewEKuRlFqw/hlcrAKZNBZSMwPEiuBC9fu3uD3mO+rS6KkjkLUdDZC8XNXCBztwFHpQJHDnCUlZX5cqUSH+3dj/aBgTjrK8XBoc5QqNSzLTPlSDdl0XBtag/nY7ohD1m5DMtmrsWPJ+ejphQyuUXjVUIOlN3tkNwVeGv3YnDCysBN5IAjsWwWQpfNaZA0cYDMS3d2cTeRLeZ3rSx8PLrxFBZN/g2lhWUmt5uemIm3Ij4Ch8NBy6immPD5KDRsW8+iYyOEPJs6DGnDXvIy89Fr+lLIHA13NxAk5YPLBCFkCthe0R9oeFjchXidZb6h3vh672ykJWRgxez1bFDLmjgKJdvRgREY7ofIPs2tun1SSaXisJeaqOn6hjDdGg4ePIjk5GSkpKQgMrKyk4gxeXnaU/mKRNXr+HHhwgXN9caNG8POzs7kOv7+/vD19UVqqvr/r9OnT1erewQhNSWTluPEupUG789+cB/XD+1DqwFDDY5xcHXHmLnf4ujqZYi/dB4qpfGi+dqWk5Jk9lilQo49P/+AwEbNkB5/B1n372nuy0tNwfE1f2qFrauSS8txcv1qjPx0QY2PWSm37JykQm5aCjbMmY7aYOfiiqhJb2tuRx87hEN//gpZuenzwry0VKz56F22Q0RwsxZoP2ocvEPr1spxEkKeLgFduQjoCpRmKLDrBet3+Mq7rbvMIZCDLt/zUJyiwvXflEg5gVrjXBfwbEEdGwghhBBCCCGEEEIIIYQQQgh5UlDAwUIX911DXkaB0TEHVh81GnBILyrGydx01Ps4CgPmDUfy4Vj87+0/LDoOjkIF2xtZKGnta3CMTVwOeGXmFd2Uhdgj9c36UNpW/pNgvq9W8VTgyACuvPKLXqlCgZmH9+PgA92iWAUXyBoZDH6eFPbXtQsQGTGnY5FyNw1+YT6oCf/6vnD2dEJ+pvHfBUMZLIDsKy/AnY9idokt0NkWmOAMwewMcOPURbYVbBzEKCvSXwDEL5TD57M4+C3sghsuJSiWlUPM46G1rzNsRBJ8dXs5Amw9odpWhBOzj1r8uJhCrEv7r+H6sRgs2PUxWnRvYvE2CCHPJhdPZ4yJbIg1sbqvvSyFEnYXky3erlBsOCjnU8cLn6x7D6HNQ7Bp4TYUZBexyzlcDvh8Htu9yFw29mKUFWu/tvqGemH+jo/B5VJDqeeRjY0NevToYfF6hw8f1rodFBRUrf3HxMRoroeHh5u9Xt26dTUBh9u39VTjEfIIJFw6D0mJ+pOtITHHDhkNOBRmZyLp5jWEtGiFiP7DkJ4Qh2OrLTsneZzk5eXY8/P3SLhcGVaqYCjcUCEp+jqKcrPZkEdNuAUGQWxnb/J38TBpqfHuGgy+SAy5iVCCb/2GbLhDJikDTyiEV3AolEoFti2cDzf/QMjKyxF/8Syq0yHi3tVLeBBzEyNmzYNfg4YWb4MQ8myy9eIhuI8CiXusu12u0PB99n4ctJvLxa2/VLizWQVpRZMZLnNeAqjMPSXhAjwBoCjXXuwQAHSYR+cjhBBCCCGEEEIIIYQQQgghhDxJKOBgIVPhBmNjJDI5Ptt3CNujb7OdECp0CA6Ea7g3cm+lW3QsjqceQBrkCJmXvc59vDwJnA4lmrUdFZeDtFfraoUbNDiASqCCSgFw/pvBWQUVTiQb33ZulC94PDlK2zpCJeZCeK8MdofzwCtU4I0W0xE1vgtGfzQEXkEeqA6BUIABr0fhr3mbjT82ASBboA436HDhQTbfC8IJyZpODo3a18e9m8Znj2VCDl3v2mP5gklILs3GglurkFgSC/yXk4gvTgXaAXjbGdyfmb4WlmO6XcwdvhBTfn4NnUa0ZR8vIYRMe2cQyr7fgq2xCVCKKl/XuMXlsD+aAEG6OoBgiQ5DWpscM3rGYAyd2g83T9yCVCJDWItgOLo5YM/yw9j752EU5RUhJy0f8nL91UXdXuiAKT9Pwv6VR3Hz9G3w+Dy07R+BziPp9Y1Yhila/vHHHzW3BQIBunXrVq2nkekcUbUzg7n8/Pw015OSzJ9xnhBrKsk3/RmztFD/OYlMIsH+3/+H2DMnKrs2cDgIadYSdk7OKCmo3ufXx+H+9SvVW1Glwor330DjrlGIHDQcDm7VCzoIhCI06dEbF7ZvgTUFNGyCtPg4k+OCmjRnO1HkpiZj5+KvkRp3S3Nf1a4W1cV0u/j3u3no+dpbCItsBx6f/nxACAEiZ/CglCqQdNh6nRz8OhrvnsB0u2w4noP6o1XIvs509QRc6gFCeyBhhwr39qogKwYkuYBSpn8bwb05aPYGhx2bE60CT8CBb3vArzMHXD51byCEEEIIIYQQQgghhBBCCCHkSUIVChbyDjZdkC+yEWLVZ3+jYbt6aNW7OftFLOOD7XtwIO6uzvhTiUnwndgQgo8z2M4M5uKWK+C+9iZKInxQ0swLCkcRuCUy2N7IhP2FVLO7NxQ3c4HC2ch0eUzIgc90cvjvC18OUM4kHgyOV0EZwUdWu2DNotIOzigY6QW3/z0AzhZix9L9OLH1HH44NhcB9SsLBS0x7tMRSIx+gJNbz+ncxxPwoJApoOxiB3ga+WfuwoN0uAuKiu0hdxQgJ7cEjgIlTMUJfEO9IeTxsDJxFxJLDARThjlAFSMF54jpGVr1KSkoxVfjfsLyWeuxYPcnCAo3v/iSEPLsmj1tON4vLceqv48hM6cQYcFe8FVw8d26q3j4VZ/L46Jlz6a4uO+qwa4Kw97rb9Z+hSIBu62qBr/Vh70w7sc8wBcjv0fSrRTN/cz7X/exHfHBsjcgFAvZfZm7P2JFVio8Y6SlpZkcY0lYwFJLly7F5cuXNbeHDh0KJycni7dTWlqKkpISzW03Nzez13V1ddVcz83NtXjfhFiDk6enyTEcLhenNq5lZ99nCuErzkl2LPqKnZ1fi0rFLnNwr174+HFRyM3vJKQv6HFl7w7cOXcKo+d+C2cv72ptp8PocchJTtLbSYLL40GpMHLeZMCDmBtmjXP29gFfIMCJdSuRl1r5/mtNkuIi7Fz8DZy9fDDs48/h4lO9czdCyLOlzWweWrynxO11QFm2Ci51ORA6qHDxO0BVOZ8Hi8MDPFoAmRf1b0tgB9QdZl7AgCfkwKuV9rK6IzioO0J9Pf+uCmfmKlFctbEdFwjuxUHE+xxwBRzUH0VhBkIIIYQQQgghhBBCCCGEEEKedBwVMxUuMZtSqcTL9aYgLSHDrPEB9X3x2dbpKHYRYsiKtUbHum+6A/urWdq/IA6Hna24NmUPCkBeL1/jgxQAr5zLXlVxVVCKDR8T31kCnvihb7QryJTw/uguhEnl7M3ABn4YO2s4WvVuBid3R3ZZXmYB0u9lwsHFDv71jB8X89xcOnAd+1YeQW5aHjz83dDnle6oHxmKK4dv4m/+WVwRGZ9dubRQhOxUl8oFShVc9yTDba/+IiEbBxtsSP4NRYIyjDuzAEpjlaPR5eBOyURNie1EWHj4c9SPDKvxtgghz6a7V+/hn59249L+a0ydKlp0b4yhU/ohrGUIfpm6Ajt/OwClovK12d3PFZ+sew9NOoVb7RiY1+Qrh24g9kI8hGIB2g+OhE8dL6ttn5jfmSAgIIC97v/jR+C7Wh4AqEqeW4Dkqd+YPb62PrecP38eXbp0gUQiYW/z+XxER0ejXr16Fm8rMzMTXl6V/zaXLFmCt99+26x1P/74Y3z99deaY5DJDEwTTEgtYorml73zCopzc8wa7+YfiMEfzkJZUSHWfzrd8h0y4Yhn+LTRPTAYrQePQHDzCNjYO7DLSvLzUJCZARtHR7h4mz4nSbx6CTePHUJpQR4c3TzQpHtveIbUQVL0DVzYtgmpcbeteswiO3u8vnQVirKzseKDNx7J70doY4vRn38Nz+A6tb4vQsjTKTdWhbtbVMi4rGInx/CK4LDhBadQ4PIiFe7tUQFV/lxk6wW0ncOFW0PrhQ6Y1+SMC0BenAo8sbo7hJ03hRoIIYQQQgghhBBCCCGEEEIIeZpQwKEaLh+8jlkDvoJcat6MoW6+Lmj6xwtYcUX/DNoVbG7nwmuNdQtfzJHTxw+5A/zNDjiI7hVCEiKG0la3MwKHp4TQQ114aIjdgVy4/aYdHhCIBOg2pgNKi8pwZvtFKOTqmU7rtQrFq1+O1Zk13FxfxfyNPWkGpgk0FHD4j9equ3C8mK2zfNI34zBq+mAcSDyPr+9tMH4AChW4vapOHVh9TNjlw+VvoddLXa2yPULI8yUrOQcntpxFWZEEQY380W5gK/D4vMd9WKSWAw5+i2daJeCQ8p66oP9xBRyYIEO3bt2QlVUZBP32228xffr0Gj9HjN9++w2TJ082a905c+Zg3rx5mtuUFSaPC9Mx4N/v5kOlNK9DANOdoU7L1ri2f1etH9vTii8QIrxTV5QWFrDPr0qprsL1qVsfnca+jICGTaq1XaYDQuyZE1Y91h6vvInmvfvj2sG9OLhsCR4VpjNIv3emoUGHLo9sn4SQZ0dJugopJ1SQSwDnOhz4tGX+jkThA0IIIYQQQgghhBBCCCGEEEKINt0KdWKSi5cTWxRqbsAhJzUPt6/fMzlOKXw8hab213JNBhw4Cg7b2cA2Oheem+KR09cP+T18dMeJTBdYSZra6yyTlcuwf9VRneVxF+PxSb8v8cW2j9C6bwtYKsK1rsmAQ1mJSO/yvB4+egMOnUe2w7af9+K3zRuBOc7GD0BmvSJPpoDyh0lL0bhjA/iGelttu4SQ5wPT4WbY1P6P+zDIU47pouDjo/v+X5uuX7+OXr16aYUbhg0bVu1wg75QAhMirMm2arI+IdVl5+zy3zmJeQGHouwsZCUm0BNuhFwmxY3D+3WWp92JxZYFn2LYx3MR2LiZxc9hYJPmVg841G3THhd3/oMT61fhUWJCH3t/WQS/Bo3g4Ob+SPdNCHn6MZ0U6o2kz02EEEIIIYQQQgghhBBCCCGEEOPUU/ITi6yc8zfKS8stWqfkeprJMcL00sfymxCllcHuaq7B+7nFMrhvuYeAb6/Ae00cuBIF3HY8gG10/iM5Pqabw9Jp1Svc6ebZFN5iFyPb5qK0UKz3Pqm/HeQOAq1ldZoG4fa5O1jy7p+QnisGitWzuhp0ugzWfi52LtUtuiKEEEL0Ulnp8h8m3ODv72/0Yk0nTpxA586dkZGRoVnWpUsX/PXXXzXarlAo1Lotk8nMXrfqWJFIROEG8tgwhe1yqdSidSTFRbV2PM86hVyOY2uWV2vd8I5dYO/iarVj8Q6rh3tXL+HYmj+hlJsXurf2c3H90N5Hvl9CCCGEEEIIIYQQQgghhBBCCCGEPB8o4GChorxinN15yeIn2ut+CRweKqbTolTB4Xy6ye3IHUWQ+thD4aC9Lb6gZt0fvFfFw57pVqDUntHYS8JDwMJoOJ/KgCC3MtTBlavguzQWPktjIUoqBUcOcJh6vyLTTUHEN4otPr4Ht1MQczbOrLGS0nIcWHMM677cikOrTuCLuuPgJdbttCCXcZH5wAUqlfn/G4yZORRrF2xhr3MkKuAfI0ViUhU4G40XkQU19EerXpbNAht3iWbeJYQQ8uxbu3YtoqKiUFBQoFnWrVs37Nq1CzY2NjXatqOjo9btkpISs9ctLq78HGNnZ1ej4yCkuorzcnH/xlWL17NxdIRApL97mTVwebXTkc7G0QlPgszEeGSa2QVDKilD9LFDOLv1b8SdPYVBH3wCe1c3qxxH68EjcO6fv2EtHkEh8G/YxKJ1MuLvWG3/hBBCCCGEEEIIIYQQQgghhBBCCCFVma5GJ1oKc4qgVJiYtV+PRi3D0K9ra7y/ax8g0C2od9mTCGGW4dn+pZ52KOwaDGnQf8U9KhVEiflwPHofguxSeAa644vtM/F6s2lQyC0/Pq5MCZ+V8ZDuTEa7LwehTkQIWnj7IO2faPwv+7TedTgqwP5mPvKjQsAr4ULF/GviAMpSHri2Cv07kinhsDsb1ZGXbrpjxIHVx/DLeytQnF9ZqGhjL8bL34yF/RBPXMiNYyeibuIUgo//PQ0Z8yAMEKaVgl+knqVZZCPEK1+ORb1WdZB484FmDGdVIVS2XGCIPcDjVK5coADn21xw7hieEZrL5bDbvHniFi7uv2bOU6A+LhsjQRlCCCFEC/PeVOX9qVpqur5lVCoVPvvsM8ybN09r+aBBg/D3339DLNbfeckSTEDC1tYWpaXq7lm5uYY7WT2s6lhPT88aHwsh1VFWVMieD1jKt35DhHfqhoPLfq6VJ97V1x/93v0Qa2ZOhUpp+TlJVQ279IB7QBD86ocjNe42263gSVCan2dyDNPdgOn2IC2r7NAntLFFp7EvswETJpzCvLL6NWiEQyuWmt2FgS8Soev4V+Hs7Yv8dNMdAs3B4XLReezLuHvxHJJjbpi9Hl9Ye0EZQggh5Gn28ssvY9WqVZruc0ePHtW6f+XKlZg4caLW+U9tkEgk2LNnDxsQv3LlChITE1FYWMieC3l4eKB58+bo3r07xo4dCxcXw91vCSGEEEIIIYQQQgghhBBCHgcKOFjI1duZLXYvL5OavxIHqBtRB04ZUoSujkNGUxeU1XeGisuFOLEQjmfS2J+GyDxtkfNCY6iEVWZE5XBQHuKCbB8HuK+7gdT4DNjYidBxWBsc23gG1SXMLgd/ezwmvzaKvV3yogt+/WAl5FL9RTdKPgdydxt12uG/+kdlphgc7zJwxA8VNSkBt5+SIUyq7ARhCa8gD6P3n9t1Cd9N/Fnni8GyYgl+fXs5PnF5D7PGvMAu27JoJ8SHHqC0r7/B7TkfS0fX0e3RuGM4ur3QAY6uDrh3M0lrDPuwf8mHiunU0M0WKjsOOMly4FipuqOFAR7+bnh94QS0HxSJc7svwxIte1g2uyohhBDytGCKcJhinw0bNmgtf/XVV7F06VLw+db76BocHIyYmBj2empqqtnrpaSkaK77+xv+HEFIbWI6AXB5fCgV5hXGM5jxHgHBEIrF4AuEkMssOJ8xU/aD+7BzcUWdlpGIv3iuRtuSS6WIHDiMve7i44cT61ZCqTAQon6EHDyMB5vizp3Cgd+X6Cxnwg6Hlv+KQdM+Qb93prHLzv2z0XS4gcNBeIcu8GvQEPXbd4bYzh7pd83rbGeKo4cnur40CcHNIxBz4ohF6wY3a2mVYyCEEEKIdclkMixatAg//PADMjIydO4vKipiLwkJCdi6dSs+/PBDzJgxAx9//LFVwuSEEEIIIYQQQgghhBBCCCHWQAEHC9nY26DL6PbYv/Ko+U+ykI/vXlbPksrhcuCeYP4swYzCzkHa4YYqVGI+ijoGwnVbLBQKJSZ9Mx7Rp2KRnaJ/HwKRALJyI5X3AM7vvoLs1Fy4+7rCzskOIz4YiA1f/6N3LEehYrsyQFRldmclB4pUG3BsFODYy9ngg0rKBScNsDtTgOpgAiJhLUKgkCvA4+t/LtYu2GJ01rO18zej25gOkJbLsP6rrXDNLYLUU4ziCHedsW4nM7Fo2kvoMKS11nK/MG+2g4L0oYALJ1sBbCoya45rB1d7fL1vNgLD1UWRoU2DYAlXH5pVjRBCyLOHmU2U6dJw7NgxreVz587FnDlzrL6/8PBwTcAhLs78YuGqYxs1amT14yLEHDb2Dqjbuh1iz5ww+wljzkN2L1movs6pvc4sTOeGruNfQ9qdWJQW6O/AZk444+650ygtLICtoxNsHBzRNKovru7diceJ6YDh5hfABi24PP3nJGe3/m14AyoVzm39G3Uj20EmkeDC9i1G98fl8zH4w1mo0yJSa7mLnz97n7mdH/SxcXTCiFnz4eLjy972DKmDWyfNP8e1dXKu9r4JIYQQUjuY0MKQIUNw40ZlVybmcx9z7tOwYUM4OTmhpKQEt2/fxrVr19i/ozIh8y+++AJ79+7F9u3b4eXlRb8eQgghhBBCCCGEEEIIIYQ8dtzHfQBPo4nzX4B3sPFuAlXJyysLT1RKy9qOK+wEKA82XjwiCXWBez1vtsMBc/nx9AL0n9QTYjsRe7+tgw17e9Wd/8E31PSXVMwx3jxxi71+9O9TOL3tvMGxTAcDu+gcQOdhcaAq40OZJWY7OqjyhRA9KEV1iGyFcPdzxSDH8egjHIOX6r6DTQu3s0GFCjlpebh19o7R7dyPScaD2BRcPxaDguwicJSAz8q78P/hJhxPZ8DuRi6cjqcj8Ovr8NmRrBNuYGz9cbdOuMFSRbnF+OalylldOw1vCx7f/P8V89L1F4oRQgghOlRWutSy/Px89OzZUyvcIBQKsXr16loJNzAiIysLhpniHqnU9Pt7cnIy0tLS9G6DkEet87iJsHfTDeoaopBVfnY2FgquCabTgp2zC5y9fTB2/vdo3C0KfKH6nERoY4tmvfph0pLlsHdzM7ktpVKB1Fj1OQnTXeD+tSt4nAQiMWzs7fHjhOFYNHYwlr//Bi7t2gZFlZBBQWY6shITjG4nI+EuCrMzcf/GVZSXlhgdKxTb6IQbGJd2/lOjcAOjrLAA+5b+qLldr20ni4IvJfl5Ndo/IYQQQqwrNjYW7dq104QbBAIBPvjgAyQmJiI6OhqbNm3CH3/8gfXr1+PKlStsGGL8+PGa9c+fP48+ffqgtLR6f78lhBBCCCGEEEIIIYQQQgixJgo4VAPT2WDxqQUY+GZv1Nbkp26+LuALeFDaCpiptowP5nHR/bXu4HLVv07PAHe899vr2JqzApsy/sDmrD/Z276h3mjcoYFZ+2eKW3b9fgALXliMpFspRsc6HUsBV6I0WQDpeEa3LbopTLcEHo+LM9svoqxYwi5Ljc/A7zPWYPaAryCTqgu1zA0dxF1K0Gyngs29Ynitvwff3+PguSkRopRSSMtkOoVfZSUSg50sLBV3MR63z6sDGS5ezhg2tb/Z666YvR5XDlfOxEYIIYQ8zcrKytC/f39cuHBBs4yZWZSZQbRqwY219erVS+sYDh06ZHKdHTt2aH1WYkIZhDwuju6eGDtvIZr26FNr+2ACFIY6FejTqGvl/xNOnl7o/cZUvL18A95cthZv/bEOPV99C44envCrF27eBjkcXN6zHXuWfI+8NOPnJLWJLxKxXeniL52HvLycXZaXmoyjq5dh28L5bEcHhtyMoFRFyEEmKTM5rmJfVTGhiAs7tsIaUm5HIyspkb3u6O7BBlDMdXTNn0i+HW2V4yCEEEJIzRQVFWHgwIHIzMxkb3t4eOD48eP4/vvvERgYqHed4OBgNlD+7bffapZdvXoVH374If06CCGEEEIIIYQQQgghhBDy2FHAoZrcfFww5efXMOnb2im8c/NxBV/IB7dYCiiURsfyVMAL7+gWowiEAjh7OLE/Kwx6uw9bnGOMQMhH/dZhWPbRX2YdqzCzFF6rYiDILjcYcnA8lQ676FxYigkulBZpBxIqXDl0Azt+2c9e9whwg7Onk8ntLZz4MwqyC03OThrSNFBnzMW9V1FSYL1ZzO5eURcTMV77ZhzGfjIMQnHl78qQ8jIpvpnwPyjk6kIqQggh5Gnu4PDuu+/i9OnTmtuenp5sJ4du3brV6n5btGiB+vXra24zxT/GyGQy/PTTT1oBCS8v052xCKlNDm7uiJr8DtoMG10r27d3dgWXxzdrLJfLQ8t+g3SW8wUC2Do6gcev3E7LvrrjdNYTiuARFIKT61fjcWOCBjKJ/nOSe1cu4sZh9TmJk6c3xHb2Jre366eFkBrYXlXM439Y1ZCFNWTei9dc7/byZEQOGg6ewPQ5ibxcgj1LfoBKafxclRBCCCG177PPPsOdO3c0nfCYYHbbtm3NWnf69OkYOXKk5vbvv/+O27dv19qxEkIIIYQQQgghhBBCCCGEmIMCDjXUdXQHWBuHy0HcpXhISsrBK5NDHJ9ndHz/iHDYi0U6HQf0qdM0CC/MHGp0TM/xXRB9KtaiYn7x/SL4f3cZnmtiYXsrD7wCKXiFUtjE5sNr1W24b7uH2rBr2QH2J1/AR/9JpmdRlssUWDFrPVr0aGx03KA3e+ssKyk0PcuqJa4fj8HJf85BLpOz3Tcmzn8BG9P/QJ9XTBd05qTm4cyOi1Y9HkIIeVSyknPw+/TVeDH4TQxzexkfdJmDIxtOmfU+Rp4tW7ZswZ9//qm57ejoiIMHD6JZs2aPZP/vv/++5jrTwWHevHkGx7755ptahT7Tpk2r9eMjxFyNOvew+pPFhH3T4+Mgl5pXTN+oW08IhOadk3iH1UMLEyGHxt2ikHTjKmTlpoMAj9v1g3vZn3yhEI27V3aHMUQhk+LM5nXwrd/Q6Dh9HRWkpdYLXDOSbl7D3Qtn2S4UTEil84sT8cZvaxDeqavJdQuzMpB47bJVj4cQQh4VWUoKMr76Cne6dkNsm7a4/9LLKNy7j34Bz6BiaRnu5qfhelYi+5O5/SxJTU3FkiVLNLc/+OADtGnTxqJtMF0c+P+FURUKBZYuXWr14ySEEEIIIYQQQgghhBBCCLGEedNxEoM8/N3gHeKJ9HvqFuA1xXRtkEvlWsscjyVC6ucApZ1QZ7yXoz2aFnDwVuRHiL9yD0KxEB2GtcaoDwezYQZ9XlkwFjYOtlg5ex2USu0CpLYDIvD2TxOx/b/OCJZg+h3Y38xlL49Kclya5vrY2cMRe/EuLu67ZnSdwpwitOkfgdT4DL2/t65jOqDva7pFYsGN/GFNR9afZC+u3s6Y+utktB8cCTtHW0z74y1cPRJt8t9U0q0UwHhWhRBCnjj3biZhRo+5yM8q1Cy7ceIWe7m0/xqm/fmmyS47xAJsB4YaPp+1lDuRy+XsbKFVLV++HE2aNKnxtqv+GwoKCkJiYmXXpKpeffVVtnjn6tWr7O05c+YgISGBnQE1ODiYXRYdHY2PPvoIu3bt0qw3dOhQREVF1fg4CbEWFx9f2Lu6oTg3xyrb4/L5UMq1z0mMcXD3hIu3L1Z/NAVZ9++xQYd6bTuw3QDc/AP1rtP95ckQ2dnh7JYNwEOhiLqt26PrhFdxYftWPA3y0lI019uPehEZ8XfwIOaG0XVK8vPQZtgYFGVnoSgnS+f+Rl16oGHn7jrL3QP0n+NVV8zxw+zF3sUVvd6YipDmEWwXin7vfIikG9dRkm/83C43NRkhLVpZ9ZgIIaS2lUVHI+mVV6EsKNAsKz13jr2UvDAGPp99Rr+EpxwTuDyXHod1t47hUNI1KFSVHYd4HC56BjXHCw06o413vaf+/JPpuMB0m2MIBAKtELe5mHMfpotDZmYmOnbsyHarI4QQQgghhBBCCCGEEEIIeZwo4GAFn6x7D+91nA2lovLLMkt5Brpj0Fu9sWbeZp2AAz+/HO5rb6CoQwDK6rsDfC5EQh66NwmF7f4ELP/0D81YSWk5Dv11Aie3nMOsDe8jolczCEUCnf29MHMI+kzsir3LjyDpdjJbWN99bEc0bFdfczyPm62jDUpNdE1wdLXXXGce5/wdH2NC6DvIfJBtdL3C7CL8fOFr7Ph1PxsyKMotRkADP/SfHIWuo9vr/XKzQeu6qBtRB3cuJZjdiUP1UIBEn9z0fHwx8nssPPwZGncMZ5c5eziaDDjYO9uZdRyEEPIk+WbC/7TCDVXtW3kErXo3q5XuSOTJs2HDBty7V9nhielmxAQJmIslpkyZwl6qg5mldPPmzejatSuSk5PZZStXrmQvnp6e7OylOTnaBeMNGzZkgxiEPGn6vfshNn3xSY264Th6eKFFnwE4uWG1WeMFIhFCW7VluywcX7tCs5y5HX3sEOLOnsLAD2YisHEz8Pi65yQdRr6IZj364ObRg2yhvNjeHuEdu8InTH1O4ujugcdNaGsHaWmJ0TFiewfNdSbcMXzWF/j9rYkoLcg3uh6z3XFfL8a1/btx+9QxlJeVws0vAE179mUDIvrOSfwbNmZDIznJSeY9AA4XqFLUaUhxXi62fTcPo+d+o3n+bRwdTQYchLa25h0HIYQ8IZj3ydQPp2uFG6rKX78B9h07wqGH9bsjkUcjOjsJM0+sxJ38yklRqmLCDvsSL7OXus4++LrTy2jkrj+Q+TTYtm2b5nrbtm3Z85jqWLdunRWPihBCCCGEEEIIIYQQQgghpGYo4GAF4W3q4sfTC/DN+J+0OgpYIjMpG7EX4lFeUq73fn5BOVx234U4Lg2On7RBLL8Qm8tvgNdMBsfhvnDdkQautLKYqbxMijmDvwGXx2W7MoyZOZQ9zqpcvJzxwsf6WwC0G9SKLbI3VIRa28Lb1sXUXyZj1oAvkZOaZ3Bc97GdtG7z+Dx41/E0GXA4v/cK+7PPq93x4qzhZh/X9BVvY3r3uSjINv28mBNuqKCQK7Duy634cvcs9na3MR1x+/xdg+MFQj46Dbes3TwhhDxuMWdiEX9V/0z6FXYs3U8Bh+fE1q3aM7MrlUrEx8dbvJ3c3Jp1jgoNDcWxY8cwfvx4nD59WrOcmb30Yb1798Zff/0FZ2fnGu2TkNoQ0LAJRn3+Dfb9sgj5GdU7JynMykDmvXgo/psF2Bi3gEDkPHjAFuYbwgQdtn71OThcLsJatUWboaPgVSdMawzTeaLtsNF616/bpj0Or/wN5SXGAwa1xa9BQ3R/5Q1snjcbZUWGP/+Hd+qqdZsJczh6eJoMONy9eBYKuQyNu0Wh3YgXzD6uvu9MY8Ms5SaCFywzwg0VFHI5zv+7GYM/VJ+TNGjfGSeTDL9v84UihEW2M3v7hBDyJGC6NEirhGz1yVu/gQIOT6lTKbfw7uHfUCrX//fVhzEhiPF7fsD/ur+ODn7qSUeeJkVFRbh2rbKTbZcuXR7r8RBCCCGEEEIIIYQQQgghhFgL12pbes41iAzDits/YUv2cvx88Rt8uPwti7dxYstZo/eX1rdHyox6iOEVQPHfzKwKZwHyBvmwy5UC3Rk+ma4Sp7ddwLQuc3Bu92Wzj4XphtBucCQeNbGtiA0dLDoxD6HNgzFxvuFCHxcvJ4yYNlBneY+HQg/6MF0Y1i7YgpfC3sHa+VvMPr6QxoH45dI38Aq2/myyF/ddQ2mRumNF71e6wa+uj8GxQ6f0YwMqhBDyNLl3I8kqY4j5mI8L1rjUhri4uCfmV1mnTh2cPHmSDV2MGTOGvW1rawuxWIyQkBCMHTsWe/fuZS/u7o+/yxUhhvg3aIhXf1qGN5etxbivFqHna29b/GTdOnnUrHE5D5jXa/NeIFRKJe6cP40Nc2bg/o2rZh+LQCRGSPNHf04iEIvRrFc/jP7sa3gG1UGH0eMMjmUCGi37DtJZznSiMCX9bhzObF6PP959DRd2aIe+jPEKCcX4b35i921t8ZfOsaELRtOovnDy9DI4ttXAobCp0r2CEEKeBuVxd8wY8+R8TiWWdW6wJNxQgRnPrMes/7S5deuWVveuiIiIx3o8hBBCCCGEEEIIIYQQQggh1kIBBytzdHVAvZZ10Gl4W9jYi622XearqsyJQVCJ9P/KJHXtUdDdcNG9TCrHoslL2U4B5rh/Kxn7lh/GoyYpLcfePw/jh0lLEX06Fsc3nQFPwNMZF9TQHz8c+wIe/rpFPT3GdUKdpkFm7U+pVGHlnA04vP6k2cfoGeDOdnKAbp5Ei4oLyD0EUDiZ1yiF+UKS6bzBsHO0xcLDn6FV72bgcCp3ZOtog/FzRuK1bwwXWRFCyJPK1tHW9BgHm0dyLP9n7z6go6jaMAC/29J7DymE3nvvvQpKkSaoqCgq2MWKgiiCovjbRQURERQEpPcuvYXeEyAhBUjvyWb3P3fibnaTbUk2NN/nnD3Znblz587spEz2++4HuuNOnTol/e6r6GPq1Kml+jZcf+WK5aohOuL37eDBg7F48WKpkkRWVhZycnIQFRWF33//XareQHSvcPHwRGD1WqjdriOUKgfcLdQF+dj849dSwoMtblyJwrm95itEVJaC3Fwc37QOW+f9gNizp3Dh4D7IFKXvSfzCIzBi6idw9fIuta5h157wqRJq0/7E+di1cB4uHtpn8xhF4kGfZ1+CvYmx6Cp4iOSF4VNmILxhY6M2ji6u6DDiUXQYznsSIrr3yF1d7dKG7i7i7/63ds8vc3KDjtjurd2/GiUL3Avi4uKMXgcGmk9MJCIiIiIiIiIiIiIiupfYFnlNZSYCNAe90A+LZ6ywy9nLreOGgmDLCRPpXfzgvfGG2fVJcSk4sPYo2ttQmWHND5uk4H9LQmtXQewF4w/S7GXT/B3Sw5xrZ68j6sRVaQwlOTo74tMt7+PL537Enr8PSVUsrJn3ziLkZOSgTuuaqNm0mtX2Tbo0QK8xnbH5t12l1mmVMqQP8UdmLx9ovFXSMofzWfBYfRPu1Qqh7OcMma8c2puFUK/NhXpVNpAH+If5wtOveAZUvxBfzFg/WTrHF49Gw9HZAc16NISzG4N/ieje1Lp/Myn5Lycz12ybLsPb39Yx3ffEr/KKxujcWzE+RGRABKg36d0PR9auvGvOS9qNRKmKQ0ST5lbbiiQDa2VkvINDkBJ/3Y4jNNj/5nXSw1IVi6TYa/AKDCq1zsHZRUoO2PzTN4g6cgharfV7kl0Lf0FOWhqCa9eFf3iE1fbiHNZq0wEXD+yBvXgFBUtj1/HwC8Cw9z5G0vUYKeFEVNWo2qiJ9JWI6F7k1r0bZI6O0OaZD4T36Nfvto6JKu5AwgVcTI2vUB8XU+NwMOEi2gTXvmfeEpGUbcjX1/7VnYiIiIiIiIiIiIiIiO4EVnCoRGM/HIlBE/tBrqj4aS7wsz7zan6Ao9V2cZcTbNrfpWPRVtu07tcMU1dMwp0gZlSb+84iszOrefp54P2lr+O3qG/x1IzRVvtLvHoT/3v2RzzX/A2Ma/QK4qMTrW4z/vPHoXJUGY9LDtyaFI704YH65AZBXdcZbtPd4fCcO+QRSsjc5ZBXV8HhBXc4fukDOMuQl52PJZ+uRHZGjlGfIomj28gOUmIKkxuI6F4mqtMMe/1Bs+u9/D2k5EAiIrKfzmOeRJNed9fP1tQE2wIQE6MvW21Tq3U7PPDSG7gTRNLC7kXzza4XlR0GTXoP477+2aZqB6kJcVJCxIJJE7HgjReQfuum1W26j30GMrn9buvzc7JxaPVyqYqFId+QMNTr0AU1W7ZhcgMR3dOU3t7weewx8+v9/eH9yKjbOiaquMXndtmpn9tfOaoiFCUqTOWW+P1NRERERERERERERER0r2KCQ2WeXLkcE756Er9e/BrO7hWbdV+RrrbeSCnHlU8b4fqrtZAf6Gg28N/WsVvj5OqIhCjzFSMqW9ylBJzdf8Fim4AwPzTuXK9M/V49HYsn6ryEI5siLbYT5/KZTx81WpbdzhO5LUqfY3+3TDiqCk32o6ivgupJV6QnZUhJG690fg8XDl/CT2/8hg9HzMbXE3/G+UOXynQMRER3q0ffH4bHpg6XKjkYqtE0ArO2TYV/KGectCutzD4PIrpnyeUK9Bw3AU9+MeeuCUx39vC0qZ1Mbv3njzimtETbkrgrg6jgICobWOLhH4AqdeqXqd+bV6Mx98WnEXvmpMV2bj6+6DTqcdhLdloadi2chz8/eBsJly9gx29zsfqLmdj2yxybEk6IiO4F/q++At9nx0PmbPy/OqeGDRH+669Q+vndsbFR2WXm52DLVcv/w7PV5quRUn/3Ck9P47+pkpKS7thYiIiIiIiIiIiIiIiI7Elp197IpKCIAIx+dyh+fmthuc+Qy+l0KJPzofaxUslBLkN2Y0/EVq2LsA/OQpWcr18lgkk7DG5tdV9bf9+NU3vOWm3XaWhbnNh1BndSRnKm1TYiaNbd2xUZKcZl2y0pVBfivYc+wfdHZ6FqvVCz7cRM475VvPHHJ3/jwuHLyOruXaqNXKaBh5PlGdSU/ZxR8FMmkA9EHb+KCa3fNlq/6ruN6DG6EybNn1BqdjYionsxyWHIyw/g4LpjyMnIQUSjcNRvW/tOD4uI6L7mXSUErR4cir1Lf7+j43BydUP1Fq2stju1fTMSL1+02q5Wmw64fOQA7qTczAyrbYJq1ISDszPyc2wPmtQUqrHs4yl4/LNv4RUUbLadeF/dff1waNVy3LhinySExKiL+P2dV42WHduwGg279ULvZ16wa9UIIqLbTSaTIeDll+H75JPI3LUbmuwsONWrB+dGjfhm3IMSslNRqNXYpS/RT2J2KtwcKjZRze0SERFh9PrWrVt3bCxERERERERERERERET2xKiE22T4pAcx8Nne5d5epgH8/ogFtFrTDUosLvRUIeWBIKNlYsZsFyuVJC4di8asJ76FptDMfv7VdmAL1GxWDa36NsWdFFLLfKCPLlFBBND6hviUue+CPDX++myVTYke3x6ciSXxPyGgTVip9SpFocg7sUjmIYfMV2E18WSg2xg8Wf9lKaEiO+PemVGOiKgkVw8XdBvZAf2f7snkhkokfv3ItBV88PIlum+0HTJCClC/kzqMeBQqB9PV5nTiLpzDpjlfQ2vu3udftdt2hG9oGCKaNMcdI5PBK9DaPYkaUccOw8277FWK1AX5OLLub6vt6nbogkc/+RLPzvkNrt5lv/exlUg8+fLRIZj/2vM4tHo5CnItJ3ITEd3NFB4e8BzwALyHD2dywz0suyDPrv1l2bm/ylSzZk04G1QiOXLkSLn7UqvVyM8vniiHiIiIiIiIiIiIiIjoTmKCw22cHe7F757GTydno3X/ZuXqw/1ACoK/joJDrEFgu4j50cf9GIcgZrT3Ncp72PXXPuxdecjiPlZ8vU5KCrCkZZ+meGfRy9LzsDoh5T6eimrStQFCa1cxu/5WXDKea/EGpg37HFdOxZRrH7v+2m92XX5eAbYs3IXPx32P2U//gBO7ziLI1aNUO43WttBQbY7GpqSLmHPXMfft3/Fyx8nISLFewYKI6F4Tc/46NvyyHZt/24mUxNQ7PRwiovuGmHW/z7Mv4dFPvkJ4ozuTqHxu705EHbN8T3J03UporczEXKNFG/Sd8Ir0PCCiOsIaNMadUK1Jc3j4B5hdn37rJhZMmoi1X36K5LjYcu3j/L5/zK5T5+fj9M6t2PjDl9j049eIO38W7j5+qEwiYSMp9hp2LZyHP6a+ibzs7ErdHxHRnZB36RJSly1D2urVUKek8E24i7moLCdOlpWrnfurTCqVCu3bt9e/3rJlS7n7Wrt2Lby9vdGzZ0989NFHSE5OttMoiYiIiIiIiIiIiIiIyk5Zjm2oAiIahGHq8kkY6vckcjLLNtulp587cCQVbkdSkdLDH7ceDf93jekAeo2zAlqVDLKCojSHs/svYsrgTzHx66cw4NleyM3Kg7ObE+RyOa6cicW8d37HgXVHrY6jzQPN4ezqJD0Xs6pmpd3+gBZHFwcpYcSSD4d9juiT18wmnFibEVbIzTL9HkWfvIp3B8zAzZgk/bL1c7dCNbwqMNw4yaGgUIncAiWcVGqz+yk8mg+kWh+P8Riu4ec3F+KVH58t03ZERHeL6FPXsPPPvchKz0a1RlVRo0lVzBjzJa5fTNC3USjl6PtEdzz/1ZNwcFTd0fESEd0vRELAoDfew7dPjkRhQUGZtnVydUNuVvmTbK+fO4MVn0xD72deQIOuPVCQmwcHJycp+eLmtSv4548FiD522Go/1Vu01leC0GgKkZ97+6ubqZyc0f0Jy3+Lr5z1kfnEBpnMfIU+AwV5pu9JEqMuYcWn05CVUhyAeHLrRrh4euF2uRF9GXv+/A3dnxh/2/ZJRGRPuefOIX3DBmiys+FUpw5U1asjftIbKIgt/tktc3CA17BhCHzrTchUvCe52wS5eEEhk6PQSnKkLZQyOQJdbt/vUXsYPHgwtm7dKj0/duwY4uPjERxsubqUKX///Teys7Olvvbv349XX321EkZLRERERERERERERERkGyY43AEqBxUGv/QAFk1fZvM2vlW8kRRXPGOcy9kMs4kNOoqUfMj/TW4w9N1Lv+DntxZKCQ4evu7wD/PF5cgrNo9FJAfoHN4YidN7zlvdxsnVEc26N8S+1eUvlW7owef7ICkuGb7BXnD1dC21/sy+8ziz74LZ7UVyg0iSyMu2XHq9epOIUstys/Pwdr/pRu+HTv7ya3BvVRsZ1RyMlt/KckWIZ5oUw1RqLGotCn4pX5DYtkX/4JnPHoOrh0u5ticiuhNEBZxZT3yLHX/ssdq2UK3B2p+2IDszB+/8XlQ9iMrAqNJTOVV0eyK6K4nkgCa9+kvVEmzl7uuHjKRbFd+5VostP3+Lrb/8gML8fDh7eMLVywu3rl0t1z3J5cMHkHj5otVtVE5OCKvfGFFHD8IemvUbIFVoEON3dCn99/i1U8dx48pl8x1otVCoHFBYYPmexL9qtVLL8rKzsGzGFOSkp5Val52WalO/9iIqSHR65HGoHIuS4ImI7gWa3FzETXoDGZs3W22rzc9Hyu+/Q5ObgyrTp9+W8ZHt3Byc0bNqU2y8Yn3SFmtEP6K/e8moUaMwadIk5OTkQKPR4IsvvsCnn35apj4SExPxxx9/6F8PGjQILib+tiEiIiIiIiIiIiIiIrpd5LdtT2TkiQ9HwifY9hnBSgbTO8blwumi5aB4z52mg4/Eh10iuUFIT8ooc3JDi16N9a+3/2k9OFUQ+zu15zzC64agvFzra+H/oAY+vbRY9u0qvNFzGkaGjMdXz/+EvJyi49E5tvWU1f58q/hArrD8LTDw2d6llm37fbfJ5AZBptbCY/IFdNOEwVVZnOQQ6BiCHn494ePgadRek1CIvHdToTletplzDZMtEqJvlGtbIqI75bsX59mU3GBo++I9uHomptLGRET0X9T1sXFwdjeuPmaJXZIb/qUpLJSSGwQRpF+25AY5qjZqqn99bu9um7YryM1F/MVz8A4u/z2JoYMrlmLph+9gznOPY/v8H6EuUQ3j2qkTVvvw9A8wStYwpWnvB0wmFZhKbtARyQ0RTVpIVSZ0fEPD0bTvALh6ecOe8nOy7XptEBHdDglTptqU3GAobfkK5F8zXSmU7qxRdTvbqZ8uuNf4+Pjg+eef17/+3//+h8OHrVfDMjRhwgTk5hZVjBKVft9++227j5OIiIiIiIiIiIiIiKgsWMHhDpq1dSqeazEJ+TnlC24PWHAVsW/Vgca19NvoeCUL3hsSYG9tB7ZAaO0q+tdZqdk2b5uRnCk9QutUQUZSBtJuiSoUgEKlQGFBodntnKtrUePDQrg1LF6mTgfifpEjbl4eVv+wCbEX4zFz42TpQzhbObs54dMt7+O9Bz9BTkZOqfXdRnVA36e6l1p+eFOkxX7leVrUXJ+Dz+a8iisZSXBSKFHDw19aV6gdiGMp55Ccn4Zbx25i7RsbceNK8cyqoqKGSDopCxePe2tmOSL6b0tJTMWmX3eUa9sdf+7F4x+MsPuY7mtaWdGjon0Q0X1JBNYPf/9jLHz7FRSqy3dPcifUatsBHv4B+td5WbZXQ8vJSJcePiGhyE5NRe6/28oVCinpojwKcnNwdP0qpCTEYfCbU6wmLBhydHXFkLc/wMrPp0OdZ5y0LTTo0hP1OnYttfzKceuzVHsGBmHgK28iJT4OSkdH+IaEScu7PjpO2j4rNQUZSTdxcvtmZCUn6bdzdndHTkbZ7kkcDBIpiIjudgUJCUhbs6bsG2q1SF+/AX7jn6mMYVEFtAmqjVpewbiYGl/uPmp5VUHroFr35PswefJkLF26FNeuXUNBQQH69++PtWvXolWrVha3ExVu33jjDSxbVlxl+Nlnn0WDBg1uw6iJiIiIiIiIiIiIiIjMY4LDHSSqGSyM+g4fDp+N03vOQaPRlml7x5gchH14FskDg5HZ2gdalRyKtAJ47LoFn7XxkOdq7Drehh3r4o35E42WhdYOLnM/sefj8NHqt+AV6AW5XIZPHv8aV0/HmmyrCtCi3s+FcPA1Xq70AMJfKjq+uHlyHNt6EgfWHkW7gS2lZc16NsL894tLq5tSrWEYmnRpgIVR32L195uwddFuZKVmSQkYA8b3RtcR7U0GJ2lteJs0Wq1UwaGBt/H5UcgUaOnz74eE/YCRlwZKY791PRl+IT5o1qMRFkxdgkXTl0sfMtpCJEQEVwu0qS0R0Z12ZPMJFOSry7VtdnrpZDQiIqoYv/AIPPXVj1j9xUzEX7pg2x+7d1B4w8boM/4Fo2WiIsPVE8fK1E/y9Vg8PPkjOLq4QiaXS8efllj+oEgh+thhXDt5HFUbF1WXCG/YBAdW/GlxG7/waoho0hxPfz0XkZvWStUo8rOz4BsahsY9+6N22w6mEyZseZ+0Gjg4uyCwek2jxQqlEjVatNa/bvfwKFw7EYnM1BS4+/ohvEFj7F78Kw6tKg52tCYvOwtuPiVu2oiI7lKZu3cD5Uxq02Rl2X08VHHid+XMTmPx6PrZyFaXThi0xkXpiJmdHi9TkuLdxMvLC3/++Sd69uyJrKws3Lx5Ex06dMDEiRPx8ssvIzw8vNQ2+/fvxzvvvIPt27frl7Vo0QKff/75bR49ERERERERERERERFRaUxwuMO8A70we+c0ZGfk4JPHvsbelYcstlc6KKE2CAx1SMhD0E9XoJ13FRpHOeQ5hZDZOSbJt4o3XvhmHNo/1Er/QV/i1ZtYOG0pti3eU64+ty3+B28vfEl6rs4zH+ga/IimVHKDoSpPapCwWAZNjgybf9upT3Co37Y2GnSog9N7zpvd9p+/D2FoZDRqNq2G0ZOHSg9bNO5cH/8sP2CxjUicsIWoONGiVxOjZWOnjUTPMZ2xeObf2DS/+ENGczb+sh11WhoHLRER3a3UFir2WBNSK8iuY/lPEH8TVPTvgrs71pmI7MDd1x+PfPS5FKS+9qtZUqC+JXKFEprC8iWrlZe7nz96PPksarRoo1+WmpiA/csW49yeXeXqU2zX59kXpecaO1WwOLNrq0GCQ2MpuSAx6pLZ9uf37ESL/g/CNzQc7YeNlh62CK3fCNGRR6y2sYVcrkBE0xZGyzqPfkKqHiESNM7+Y73y0ukdW9F5zBM27Y+I6I5Tl/93mENEVbsOheyngV84vu4+Hi9sm1OmJAeR3CC2E9vfCaJiQlm0a9cOjz/+eKnlbdu2xZo1azBs2DDcunVLquTwxRdf4H//+x8aNWqE+vXrw9XVFcnJyTh69CiuXr1qtH3Hjh2xevVqODk5VfiYiIiIiIiIiIiIiIiIKooJDncJF3dndH64ndUEhz5ju0LlqMLWhbuQkVI8a5ysUAtFdvmDRi1JikvBzDFf4fFpI/DwqwMRH5WIlzu9h+T4lHL3GXc5EYc2HMPlyCsWK1f49rEcVal0B7w6apG8WYa0m+lG695f+hqeqPuS2Rm/czNzMe+dRfh43btlGnvvx7vgt2lLkZGcaXrMVbyl6g8VEVq7CjoNbWNTgkOBhQQRIqK7TcMOdaRkOVur1Bg6tec8Hny+b6WMi4iIIFUzqNW6vdUEhya9+kGr1eDs7h1SUsTtkHHrJtZ+OQudRo9Fsz4DkBx3HX9MeQM56Wnl7lNUbIg6egg3r0aLqZ/tMs7sDON7koden4xfXnkWBXm5Jtvn5+bgnz9+w0Ovl+2epGG3Xjj491Kz59/DP0B6LytCVJGo3ry1TQkOanV+hfZFRHQ7OTc3Tuoqi+wjR+E1ZIhdx0P20yGkHn7r9yre2j0fF1OtV2aq5VVFqtxwp5IbhDlz5pSpfW5urskEB6Fr166IjIzEpEmTpIoOGo1Guvc+ceKE9DDF3d0dkydPxquvvgqlkh8VEBERERERERERERHR3UF+pwdAxTo93BY+QV5mT4lCqcDwSQ9hwpdPYnnSfGxU/4nn//cEYCIWR6GUo+2A5nDxcLbLKc7NzsOc1xdgWPA4PNviDYvJDTK59eCgi0ej8E7/jzH3nUVSwoQ5CjfrY9O1qVI90Gi5UqVEbpblGdsObzyO5ISyJWq4errio9Vvwd2n9OC8Az3x0Zq34eDkgIpa9e0Gm9pVa3TnPoQlIipPAlfLvkUzW5fVrqX7cCsumSediKgS1e3QGU7uHmbXK5RKtHpwKHo8+Rwm/vInXl28Cp0eGWuyrVypRLXmraByss89iUgS2DbvB/ww/lH8/s7LFUpuEK6fP4MVn3yAf/5YICVQ2INXoHG1IZlcbja5QefykQPIzTSdPG2Oi4cnBk16T0pKKcnNxxeD35wivVcVdXzzOpva+YVyRnMiunc41akNlzbFFYHKIn31aqhTyj/hB1U+kaywatB7+LXvK+gT0RwKmfG/v5UyOfpGNJfWrxo0+Y4mN1SGkJAQLFq0CJcuXcKsWbPw4IMPokaNGvDw8IBCoZC+itfDhw/Hjz/+iLi4OLzxxhtMbiAiIiIiIiIiIiIiorsKp2W6izg4qjBl2et494EZyEzNKpXc8Nrc51ClRnHATHpSBtbM2QSYmAS7WqOqmPznq9AUahB9KkZKSPhg6GcVHmNqovUgIrlcjkKN5WoShQW2VZvIvgx4NLPcJudSUUKFX5if0XJxfsTxWyJmMUu9kQ6fIG/ptTSzmUYrnW9L6rerg98uf4NNv+5E5PZT0oSvLXo3Rc8xneDsZjmAS7Rf+9MWxF9OgIevO7o/0gldhreDykGlb5Ofmy8lX9iix5hONrUjIrpbTPplAt7sNQ3RJ6+VabtCdSFO7DyD7qM6VtrY7jvibwStHfogov8MlaMTHnr1Haz49APk5xhXQpMrlOg38TW4+xb/3Z2VloqT2zaa7CsgojoefPUdaNQFuBVzFRm3bmHNl59UeIxZqdYDS2UKJbSFliudaQrtXwHPwy/A6HV2WqrVbbQaDXIy0uDk5qZ/Le5T5ArL9ySh9Rti3NdzcWrHZsSeFfckclRr1gL1Ooqqf04Wt71y4hhObtuEtMQEuHh6on6nbqjVpoNRUoSoDiH6tTUxhojoXlLl009x7YknkB8VVabttPn5yD58GB69elXa2KjiRNXANsG1pUdmfg4Ss1ORVZAHV5UjAl284OZgn+RLU+bPny89zBk7dqz0qGzVqlXD66+/Lj2IiIiIiIiIiIiIiIjuNUxwuMuIwPmfTs3G2jmbcWDtERSqNWjQvg4enNAXEQ3CjNr+8NqvuHb2usl+Lh2LxqLpy/HER6NQv21tpCdnQC6XQaOp/ChFEYBqLzeWyuHRzHySQtY5IPNkUYLDnhUH8PjU4UbVFFQOShTkmw9skivlcPZwxqk957Bk1kocWHtUSoqo3bIGBr3QD70e7WKxksPgF/tLD1t9+dyPWDNns9GyQxsiseq7DZixYTJcPVykZWLMIqjJFucPXkbrflayQIiI7iLeAZ745uBMPN/yTVw9HVO2jW382UhEROUnAucf/+w7nNiyHtHHjkCrKURo/UZo2ucB+FQJNWq7/Zc5SE2IN9lPwqULOLx6OdoOGYEqtesh0z9ZRBzelp/l1pIbKsuF/f9IFS4MqymIRAVLyRQiqUAkJMScOYlDq5bhSuRRaLUaBNeqg+b9HkTdDubvSURSRMsBg6WHLcQ9xsYfvsTpHVuMlkcfO4yQuusw9O0PoHIqSo5Q5+fDVolRlxDWoLHN7YmI7jRVYACqrViOqIEPouBa2RKveU9ybxHJDJWZ0EBERERERERERERERET2J9PaGkVNd5W0W+kYFTreYvC+V4An/oido69G8N5DM7F/9RHc7TRKObIa+6DA1wmKrAI0HxQP/z6lkxwKUoCzTyuQfbEowUH4/er3CDCo5DBjzJfYtugfi/tTqhRSIompbwWR5DDhyydhDxvmbcPn4743u77XY13wxvyJ+tcjQ8cjKS7Zar91WtXANwdm2mWMRES3041rNzGm+gSpco4txO+zhdHfwi/Et9LHdi+LjY1FWFhRUmTIR+9C6e1Vof7UKam4Pnm69DwmJgahocbBzUT035WZkoyfJjxhMXjf3dcfT387T5pJWVj60WRcOxmJ+9lzP/0OFw9P/etVn3+Miwf3WtxGJDkUqk3f27V66GF0fsQ+Mz1HblyLrfPM35M07tkXvZ6eqK8k8f34MchJT7fab0i9Bhg5teLVOYiIbrf8K1dwuW8/m9vLVCrU3LkDSh+fSh0XERERERERERERERER0X+Z/E4PgMon9kK8xeQGIfVGGlJvFgejjJ02Es5uRbNx3q0yG/ng2uQWuDmyFlJ7hSFpUHVsVrfFySUByDgOFGYB+TeA+N9kODnSOLnBVPWIpz5+BH4hlj90VhcUmq2W8PfX63Fy91k7HBmw4ut1Ftfv+GMPUm+m6V8Pe32gTf2eP3QZO5dYDpgiIrobBYT7S4ldMrnxz3Jzugxvx+QGIqK7SPL1GIvJDUJG0k3kZWXpX3ca+RiUDo64F+mSNKwRiQGGOo9+Ai6elpPNzCU3CIdW/iVVw7CHYxtWW1x/Zvd25GZlSs9lcjma93vIpn6vnz2Ny0cO2GWMRES3k0NEBII/+rCowpANPB56kMkNRERERERERERERERERJWMCQ73KBcP66XV5XIZnFyLg4fC64VgzHtD4Rd6e2a+livKdnnlRLjjxiO1oXFRGq9QKnDSsw6O/V4Th9orcbSXElc/UyA/wfjDZ/9QXwSEF1dv0AXPfrl3Ono93hVKhxL92mjtT5tRUXk5eYg6ftViG5GwcvFotP51ww51be7/ry/WVGh8RER3Ss8xnfH9kU/R98nu8K3iDQcnlcl2Tbs1wMs/PHPbx3fP08rs8yAiMsHB2cXqeZErFFA6OOhf+1WthjaDh8HV6/bMfC2C9O1FJEVbS87wCgwulczgFRSMRz76DHU7din3eE5s3YCKys3MRHJcrMU26rw83Lp6Rf86tH4jm/s/subvCo2PiOhO8Xr4YUT8tRSegwZB6e8PmcHvLUOuHTog6N13b/v4iIiIiIiIiIiIiIiIiP5ryhfxTXdctYbhqFo/FFfPmA9QadGnKVw9XKRAnF+nLMGSWX+jIM9gZlARr2i6cIFdiGSD4OqBOLb1pE3tU7uHAArzQZSp3ULgv/kKZMYTouoVFmqQlZYNDx93o+VXTsXg0LqjUFupeGHO9QvxNrfNycyBylEFpcr4W0uhVEgJJxqN5ROuVCkQfeoavnjmB5zdf9Hm/Z47cBE5Wblwdr27K3QQEZlSo0kEXvv5Of3rGzG3sO6nLbh2Nlb6PdZ1ZAc079nY5pmziYjo9gisXlMK6E9NNP/3co0WbaQEB1HVYPcfC3Bk7d/QWKhWYG/eQVXg4umJ2LOn7dKfSNiwVokhPycbji6uRstvXr2CK5FHS1V3sFVKfJzNbcX+FSoHKJTG9yRypeWxG7ZLjL6MLT99g4TLtt+TxJw9BY2mEHK5bfshIrqbODdoAOeZM/Sv82OvI/WvpciPiobcwx2eAwbCtW2bOzpGIiIiIiIiIiIiIiIiov8KJjjcwx7/YAQ+HD5bSmAoSeWgxJjJQ6Xn37wwF6u+21i6AxuTG0RAqal9WNNhUGtcjiyuSGCJRilDTm3jmU5LypRrULtLDaRuv2xyfXJ8Cr5/ZT7e/PUF/bJLkdGYOmQWCvIKUF7uPm4W1xeqC7Hiq3VY/f1GxF1OlJIZ2j3YEqPeHozaLWpIbUTCg0g4ObT+mNl+PHzdpdnLX+n0PtKTMso8Tgb+EtH9IiDMD2OnjbzTw7gvyLRFj4r2QURk8ueDTIb2w0dj3defmVyvVDmgzeDh0vNNc77GqR0Vr4xWVrXatMe1U8ft1p9IHnD380fGrZsm12ck3cTOhfPQ+5nie5L4i+ex+ouZ0BSWP7HDyc3aPUkBjqxdieOb1yP9ZiLkCiVqtm6HNoOGISCiutTGwckZYQ0aI+b0CbP9uHr7SMkZi9+fhLysrHKPl4joXucQGoKAl1++08MgIiIiIiIiIiIiIiIi+k+S3+kBUPl1GtoWk+ZPgHegp9FyvxAfNOveCJ+P+x5j67xoOrnBAq1ChtyavshuGoTcGj6AUo7gagFl6sPFwxkPTexrU1tPfw+MnjIMkFufmTs333KiwvbFe5B2K13/eulnqyqU3CCImcPNKSwsxLRhn2PO6wuk5AZpmboQ/yw/gJc7vofDm4qDqUa88RDkCvPfckNfGYC/v1pvc3KDRilHbg1v5NTxRVDranBycSzTcRERERERVVS9jl3Re/yLcPYwvidx9/FDWMPGUvLD3JeeqXByg6ic4OEfWKZtnFzd0KRXf5vaunh6ofW/yRjW5OfmWFx/Zuc25GUXJwccXPlXhZIbhLodulisGvH3rI+we9F8KblBEPu7sG83Fr83CTFniivqtX7oYZGZYravlgMG49Dq5eVKbvALrcrqDURERERERERERERERERERFRhTHC4x/V6tAsWXfsB01a+iVfmjMeINwYhOSEVBzccw7Wz13H9YrzVPtSejsgLcYPa3QE5df1x86mWSBtQBxldqyNtYF3cGNsMLd7sj7d+K56F1BLvIC9MX/M2gqsFomm3RlbbT/plAp58dxhq+PhYbOegUCArMs5iG5FcsGnBDv3rvSsPoaL2rDgoJTKYS6gwtw+RWDH76e/12zbp0gBvLngBLu7OKKjjhKxRfsga7YeCZq5ScoOo+LBt8T9WxyMm0s5oF4rE51oieUg9pDxYB0c7B2HEzPm4kZ5ZwaMlIiIiIiqbRt1745nv5uOh1yej1zMT0WLAYGSmJiP62GEkx8UiNcHy3/C20BQWol6nbug93rZ7EndfPwx55wPpa3jDplbbP/DiG+g4fIzVJAqFgwPyMjOtVlM4t2en9Fyr0SDq6EFU1IUDe81W1Tu9cwuuRB4xuU6dn4dNP3yl3zaiSXP0efYlqBydjNrJ5HK0HjQMLfo/hPN7d5drjLdirmDR5NeQlZpSru2JiIiIiIiIiIiIiIiIiIiIBCY43AeUKiXaDWyJFr2bYNkXq6Ep1Ni0XX6wK2481gDxL7fAjXGNEf9KCyQNqYlCN5VRO42rA345fwG7T0fb1G9IrWAoVEocT0xAYkc/ZD5QFbnhribbRjQIQ6u+RQFHY5o2sdhvwJVsKLKsz3y6dWFxQE5BXsVmShVEAsOOP/aaXLfupy0Wt70Zk4TDGyL1r5sOaQqvNR2R+lkEsh/xQ/ZIP6ROC8O2hzIQm5WMrLRsq+PJ6BSOjI7h0DopixfKZDiVkoKxPyxFZm5eWQ6PiIjuZ1o7PYiIrFCqVKjZqi3C6jfC0XUrpcB+ezv49xJEHz9mU1vvKqFSNYG4C2el5Ai50uBv5xICqtVAeMPGUpB/096WKz44OjnbtP/Tu7ZJXzUajbT/ihLVGC4d3Gdy3Yktliv2pSbG49qp4spyIsnBJyTUqI14v66eOIaUhHgpKaK84i+ex9IP30VBbm65+yAiIiIiIiIiIiIiIiIiIqL/NiY43EfWzNkMdYFtwTP5Qa64MbYh8qp5Fi+UyaBVyaB2A7QlrgyNFlgTdcWmviMjL+HhP37HoCW/4+uTh5HQOxixrzVC7Av1oXZXGSVCTFv1JuTyop2NadYUD9Wra7JPx5hMKH4qDsqx5HLkFaTcSJOe12ld02p7hYPCapt1P5tOZIi7nGB12+uXitqIWVNfOLQQx9NjSrW5kJGI5w8tQJX6wRb7KnRRIbNlFbPrryalYvmh01bHRERERERUGY5vXlcpyQ2C6PfifusVz4RrJyOx8J1XsPi9STi06i9o1KYTn31Dw6XKEzotBgxC7TYdzPabnV50n2FLoH9edjYUSiUCImpYba9QGSeZm3Ji6waTy9MSrVftS0ssuifRaAqxfMYUJEZdKtVGLFs560O4+/qjIpJir+HM7u0V6oOIiIiIiIiIiIiIiIiIiIj+u5jgcB+5cOSyzW1Te1aF1lxgvwxQO5VenF/FQwqwt0QrA+LH10V2dfdS63JreiDj7RboNqYj3l38Mn4+NRvB1QL16+UyGT7v3w8/DR6EnjVqoJavL7wS8uC39DKCvz8FRa7tM5/mZhXNGDpoYj+rbTUF1gOw4v5NUjAUuf0U8nMLrG7r6echfd136zJOp1032y4mOxnhLxdVszAnt7YPoLT8bbs28pzVMRERERERVYaEy6UD5+8YrekSNE5u7qjXqRsGvvIWHvv0a3j4FQf0i6oPA15+Ew++/i6qN28Fn5AwKFQO5dq3rhJCs74DrDYvLLB+X5GaYJzIIBKor5w4Bo3W+v2Ms3vRPUnUkUO4edV8Zb7kuFhUqW066bwszu3ZWeE+iIiIiIiIiIiIiIiIiIiI6L9JeacHQPaTm1kU1G+N2t0BedUNKjeYoFUCIhxIVnK5SiRFmA++yWrgjbwwV7Prk1yBllP6o2uNWibXy2QydK9RXXqc2HUGrz01BWXl5e8BvxAf6Xm3kR1wZt95/P31erPtRWCQNXKFHOoCNZQqJbIzcjBl0CeI3G69UoKLhzPaP9RSer4z0XriQUYTRzTv2QhHt5w0uV7jaP1b9mp0on6sRERERES3U0Fuzl1/wnMzM1C/Y1dENG1hcr1MLketVu2kx5XjR7Hs4/fLvA83H184exQlFTTs1kuq6GCuAoPNZDJoCgshVyiQm5WJvz+dhuvnzljdTCR0VGtWdE9y+cgBq+3F3VFI3fo29W3OzWtXpGoRImGEiIiIiIiIiIiIiIiIiIiIqCxYweE+UaguxLWz5qsDGNK4qqTgGItkpa8OWU4BFJlFs5Cak9XY2+r+N0ZZntX14q0kzNixE29t34qkB6oiP9AZZdHz0S5QORRXmpjw5ZP4dMv76DysHRycyzH7KoAb127hsZoTcfn4FXw+7nubkhuEx6YMh7Nb0fjzNWqr7dVaDaYsex0+QV4m1yuTrQeM5V9Nxrx3Ftk0PiIiur+JX+cybQUfd/ogiOieoS4oQEqJKgN3q4uH9lkN0N+x4Gds/vnbcvXfoEsPo+D+Xs9MxNB3P0StNu2hUFmuimdOakIc5r38DJJir2H9t7NtTkDoOPJRKB0cbK4UodUU4qFJ7+mrPpRHXlYm9v21uNzbExERERERERERERERERER0X8Xp3i/TxxYexSZqVk2tVWk5wMaLSCXWZ62U2O8yPn0DcgKLVc70Cqt58zkqc0H+k/fvgPzjhwteiEKQXSpgrQuVeDxTzz8Vl2BLTYv2IFuozqgdosa+mXNujeSkgZ2LbUcyGTJzZgkvNFzGjKSM6y29Q/1xejJQ/HAM730yxp5hWJFzBGL29V3D8bUIZ8hOSHV5HqnS8mQZ+RB4+5otg/XyASs3XIVj04Zpk+uICIiIiKqbJcO7r0nKjhYCvQX1d22zvsBxzetrVD/p7ZvRp12neBftZp+WUTjZnB2c8fFA3vL3W/ajUQs+eBtZKenWW3r4R+AdkNHSRUkdIJq1sHZf3ZY3C4gogZWzvoIORnpqIjIjWvRZtBwfXIFERERERERERERERERERERkS2Y4HCfiDkfZ3NbRXYBnM8nI6eer9k28gLjGZubRVRB4booJFrp2zEmC5kt/Cy2aRwYZHL5b8cii5MbSkjvGAxVci48/0mwMgIg7VYG3n1gBhZc/gZpN9OxYe42XL+cgPycfFRUepL15AZ3X3f8Fv0tFIriGVuFfiGN8dW5zUgtyDa5nVwNrOj2C3DD/DjFTNp1T6fibAs/aFXG/QsuxxPgFJ0KsYcz+y6gRa8mNh0XERHdp7SyokdF+yAiskFynG0V5corrH4jpCTGIzPpVoX7Cqxe0+TyI2tWVDi5QchKTcHyTz7AU1/+JI335PZNUnKCOi+3wn3bktzg6u2DcV/9DJncOAG9QZfu2LtkIfKyTSfHi/Z7liwUmR4W+3fz9UVmUpLFNrmZGUiIuojQug2sjpeIiIiIiIiIiIiIiIiIiIhIx/p0+3RPcPdxK1N7z81XIc8yPWupPFsNh9gsKHPUqObpjveH9cBPzw9FYJCP1X49DtyALK/Q7HpnpRLD6jU0OVPqvMOWqxukdQy2OcYy9UYaZo39Fo/XnIjfpy/Djj/2YO/KQ7gdlEp5qeQGwVnhgNktR8FNaaL6Qr4Gbp/EWkxu0Hnx5UHwW3gSzqduQJZfCBRqoIrLgNfaC/DaFKVvZyUmiYiIiIjIrpzc3O1+RkXAvU9IGHqPfxFD350GN2/r9yTWODi7oH7nHqWWazSFOLJ+FexFJDas+/ozzH35GRz8eynO792Fy0cO4nZQKFWlkhsERxdXDHz1bagcnUxup9VobLqR6D72WdsGwpsSIiIiIiIiIiIiIiIiIiIiKiNWcLhPdBzSGt++OBf5uaaTFkrSBnrD7boMuYFa5Is4JLkM0GjhfDkdXqsvQplRFGhf4KBE/T6dkRSThJO7z1rtV5FdiKBfLyJhbG1oHYwDahwVSnzVdwC8nZ1LbXctLU16WKL2cUKBnxMcbto26+nuZftxJzTtXjqBQ6e5TwSWd3kRf107hL03LyEzPQuJyy7BeV0qFAnW3zt5Vyf8kP83XH5yg0t2GjTbElC4IhtI1hi1c3J1RL02pmelJSIiIiKqDHXadcTO3+ZCU6i2W58i4D79RiICIqojNTEBCZcuVKg/paMjBr7yFhxdXEqtS74ea5fqEIYuHtiDOyG8YWOz66o2aoqxs7/HiS3rcfXEMeRmZSI1Ib5M/W/5+VubEknMVcogIiIiIiIiIiIiIiIiIiIiMocVHO4THj7uGPHGILPrXTyKkwoKqvkjv2lVKLRyuCZo4XVJC8/LGumrU6Eb4FYc7FOQr8bvH/2FuEsJUpUFW7ieTkXYJ8fhuSMeDnHZqKJwxhNNmmP9I4+hZ7UaJrfR963UQOmbC4fQLOmh8MkDFAbB+zIbSzhUIgcnlcX1tVvWtHiuApw88HztHpjT6FFohh+F27ybNiU3KN7whHKqN1KDsyHzVkAWooTiUXeofvQDQo0rRjTp2hCunq5lOCoiIrovae30ICKygauXN1oMGGQx4L081AX5OLBiCVLi48r9Prj7+aPFgMF4fNa3iGjS/J6vNqBQOZhfKZMhsHoti/ckHn7+6DjyMQx5+wNkJieVef/ZaalW24jzbK5SBBEREREREREREREREREREZE5THC4jzw2dTie/mQMPHxFSYYicrkMbQe0wOjJD0uvRYhLfv0Qo+1kWkCuLvoqgmFKrj+8IRJKh7IV+3C4lQf/FVcR/skJvJwdivc7d0M1L2+z7cO9vBDg5wDHqplQ+uRD7lwoPVS+edIymZMajllq1PDzQd8nu0vHeqdYq5Ix57VfMXngDOTnWW63+dedyMnKs2mf8h5OUPQ3HRAm81NA+Y6X0bLGnevZ1C8RERERkT11GvU4Oox4FE6ubvplMrkcNVu1Q+tBw8rd7+UjB6BydCz39q0GDkHXR5+CV2CQ2TY+IWFG4zZFrlRK7Rr37Iu2Q0bgTiksKKq4Z5JWi61zv8Oqzz9GodpyNY1T2zdDnW+hrwoIqdegUvolIiIiIiIiIiIiIiIiIiKi+1vZotbprjd80kMY9EI/nNh1FnnZeajRNAJBEQHIzc7D0lkrkZRfAK275Vk0Nf7u0DoqIcsrCobRaLQIrV0FYXVDEHPuepnH5Bfqa3H95ZRkRKXfQrZ3CkzVZ5ApAIfgHExs1Rfj3moOdb4aSpUC6+duxc2Yss82ejscXHcMv7y7GOM/e8xsmyNbjtvcn3yQ5WoM8voOkNVUQnup6D3zDjJOeCAiov8oe1RguHcmNCeiu4BMJpMC/0Ulh9gzp1BYUICAatXh4ReAvOxsHFr1F/Kyssrcr6awEAFVq8MzIBBpNxLLvL2br5/F9UnXY5AUcw15OdkW23Ue/QSa9OoPTWHR390nt29GVkoy7kaXDu3D/mWLpYQTc66ejKy0/bt6mk9wJyIiIiIiIiIiIiIiIiIiIjKHCQ73IQcnB7Ts3cRomZOLIz5Y+SbeGPUFcmzoQyuX65MNvAM94eXvgXEzRuODobOkhAdbufu4ocOgVibXHYqPxfS9OxF5Ix4qt3w4eBSa7Uem1GLPX5uxssPn0v7D6lRBz0c7Y+vC3bhx7ZZR26AIf7h6uuDMrZvIDXeFrEAD1zOpUGQb9C8OzobDEOdNJIeUh0jAeOyD4XB2dapwwKiipspqc5loc0kNJ1dHdBjUukxjJSIiIiKyJ5WDI6o1bWG0zNHFBYNefw/LZ05BQV7Z/sZ29/WHk7s7Oo56HGu/miVVKbCVi6cXqjczfU8Sc/oEdi78BYlRF23qS1Q82LHgZ2n/vqHhaNi1J07v3IrMZOPEa6+gYCiUKiTFXjPbl0wmh1arsbpPpaMj1GU8XzrHN69HmyEjoVSpTK7XluE8loWjiyuqtzB9zomIiIiIiIiIiIiIiIiIiIgskVtcS/eV+m1r4+d/PoKD3FSdhGKy7DzIcvP1r/uP6wmFUoH2D7XC5CWvoUqNQKP2zu7OpvuRyfDcF2OlhIuSDsdfx5jVf0nJDYJcZT65Qed83k19ckXM+Tgs/ngF6rWphbcWvohej3ZGj9Gd8PbvL2HaoQ8R9XxtXHu7EW6Mro7EsTUR/VEz3BwcDu2/h96yl3ECiDn5eQXSV41KhrROfoh5rQ6uvlcf8eOqI7uWm8Vts9KyEX3SfEBTk64NbBqDtP8s64FP2pyicyPeqx9e/RWHNhyrtIAlIiK6N8i09nkQEdlLaP2GGDPzS8gVijJt17hnX+n+om77znjgxUnw8De+J1E5mbsnkaP7E+OhUJbO7b926gSWffy+zckNwq1rV/TJFSJ54cCKJQhr0AT9Jr6G+p27o36n7hjw8lsY9Mb7UvUKS6o2aWbTPtX5xfdmZZWTkY7k6zFm14c3aIzKIJPLsWP+T7h6IpL3JERERERERERERERERERERFQmrODwHxMU4ouHejXF0o3HzLZRXUzUBzM26lQPo94ZrF/XaUgbdBzcGqf3nkf6rQwEVw9AlZpBWDBlCdbP24aM5EypXd3WNTF68sNoO8B41ladGft3Iq9QXaaxy9SlIyx3Lt0nJTuIRAIRzH/6VDROJ0cgWWYcTKR1UCC1RzC0ChkGZPkgPSnDpn1qCjVQuykR+3od5Ie66JfnVXVFRltfeG+Ih/9fsWa3F8kG5vR5ohsWTV+GjJQs6+PYkQvFw65m12szNdAezNMnVojqEeJRv11tfLj6LXj4uFvdBxERERHR7eBTJRQNuvbEya0bbWof3qgpWg4con8tkhzqtO2I6+fPIDczE97BVeDu54+9Sxbi1I4tyMsq+vs6uHZdtB86ChElKkno7Fw4F4Xqst2TmHJ29zbcvBaNW1ejpdfxly8gOzUFednm/86v2aod0m4k2LaDCiYty+Xm5zVo1L03Dq78C/k52bCn3MwMnNi6QXqE1muIQW+8J1V1ICIiIiIiIiIiIiIiIiIiIrJGpuUU7/85uXkFeOWT5Yg8Vzow3y01G64HLiOoqj/6PdUD/cb1gIOjyqZ+83PzkXj1JpxcneAf6mu23dW0VHRZ9LPRMqVzARy9iwL0zfGZfhVOh4sSKMxJ6RGMW4PDzTco1KDalONQpto+C+r1CTWR1czb7Prg7y/B/UgKRNhRTm1P5NbwlIKQgpIKsWrPbItJDmf2ncfkgTP1iSFmBSmg+tEPMg/TwUnquRnQ/Ga6j1b9muHjte9Y7p+IiO4bsbGxCAsLk56Hv/celF5eFepPnZqKax9+KD2PiYlBaGioXcZJRP9tIqD+r4/fR/yFc6XWqZycpAoA3kFV0Kh7HzTsJirK2XZPUpCfh4xbN6U+3H38zLa7FXMVv74+AXeMTFbhxAVbuHp5Y/z3v0rn05yYMyexctZHFhMyKqpW6/Z48DXekxAREREREREREREREREREZF15qMc6L7l5KjC1+88jKkT+qNVw3BUD/ND+2bVMeOVB7FxzWT8nTQfPxydhYcm9LU5uUFwcHJAWJ0Qi8kNwi0Ts4Oqc5TQqGVmt1FG58DxiJUkAAAZzX0sN1DIkdnEfLJCSQW+DshqYjkwNLVHIAp8HBH7ehMkPFMfqT1CkNozFOdGVMXwJX/i5r8zyJpSv10d/Bb1LSZ8+SQ6DmkD7yAz+0oohPq1JGiiS1SmyNFA/Yv55Abh0PpjuHomxtqhEhHR/UhrpwcRkZ05OLtgxJQZ6Pv8Kwhv2AR+YVVRvUVraab/F+YvxQu/LMGYGf9Dk179bE5uEFQOjlKFCEvJDUJ2WhruqNuQ3CBkpabgzw/eQna6+eMNq98I476Zi66PPS0lIjh7eNp9HBcP7UNqoo0VK4iIiO5h8+fPh0wmM3rUqVOn3P0NHjy4VH//ZYbnt2vXrnd6OHSb5Ofn48yZM/f8+Z4xY4Z07apUKqRV0v2I+L7QfY+I75fb6dgx81XD7enKlSt37GdiRkYGLl++fFv3SURERERERERE9F+lvNMDoDtDqVSgT4d60uN2C3Fzh1wmg8YoqEeG3CRnOPnkQq7SGLVXXcyBz4xrkNkQA6RxUtiljU5uNVdAbvmf5DnVXRH/TH2o/ZxKrYtMSMBTK1Zg5ejRZv/Z7urhgha9G8PD1w1Xz8QiJSHVZDvtRTXUT9yCrIkDZFWVQI4Wmr25QJb1E3Nk8wlUrV80mzcRERER0d1AJC406NJDetxungEBt62Kwp12/dwZ/P3pNDzy0edm2zi5uiGiSTO4eHjgxtUo5FhIiCgXrRbXTkbCK7CvffslIiK6B1y4cAEnTpxA48aNy7Rdeno61q9fX2njIroXbNq0CS+88AJGjRqFqVOn4l6m+35u164dPD3tn1R8J3/GTZw4UUpE2bFjB+5XixcvxmuvvYaPP/4YNWrUuNPDISIiIiIiIiIiuu8xwYFuuyA3d3QNr4ZtV6OMlmsL5ci56QyFYyGcE9PheiYNjpGZcDxduuKDOY5xOSgIdLbYxiEux+b+ZGrrAU8ODiqo/cwnQZy+cQM7r1xB12rVSq27GZuEz576Dkc3n7B5TNrj+dKjTO7/uC0iIjLFHhUY+DuEiO5DngFBCG/QGNdOHcf9QOnoCHVentn18RfP49qpEwhvWDqwMv3mDWz4/n+IOW37PUl5aP8DySRERETm/PXXX2VOcFi5ciXyLPx+J7rfffjhh3j//fdxPxAVG/bt2yc979evH+4XW7duRf/+/aXkhi5duuB+9dRTT2HevHl3ehhERERERERERET/KfI7PQD6b5rcvit8nUwlIsggj1XDf2Y0PH6/UabkBsFzd6LF9crkPLieSrG5P+dz6ZDlFlps4yO3nFAhbIsyTuYQstKz8Xr3qaWSGxz9NKg9LhvNpmWg/itZcK+uRkU169Gwwn0QEREREd1Puo19Bk5u7rgfODq7WG0TdfRAqWU5mRn484O3Kz25QVTLMJVcQURE9F9KcCirP//8s1LGQnSvuHz5Mu4Xmzdvhlqtvu8SHGJiYqTkhvvd/XQtEhERERERERER3SuY4EB3RHUvH6wYOhpD6zSAg1xRdDHmqOG5MwEhn51GfpArbj0UgZtDqyGjpT80SuNLValSQCYvXTXB5UI6vLbEmdynPKcQQfMvQVaGiUMVuRp4bbthdr1KJkf2iZtW+ykoLJ0ksXHedsRdSjBaVu2RHPTdmowGr2UjYlge6jyTg55rU6VkhzIN3EDzno1QrVHVcm1LRET3NvGrwx4PIqL7kV9YVTzy0Weo16kb5IqyFzdUKO+OgogKlQrZ6WlW2xX+G1Bl6MSWDUi/aTlJ3B6qN28F7+CQSt8PERHR3SQiIgL+/v7S87Nnz+LMmTM2b5uSkoJNmzZJz4ODgyttjER0e6xfv17//dykSROediIiIiIiIiIiIiIrmOBAd0y4hxc+aN4Z7b65impvHUH1N4/Cd+113BhbFwnj6yO9UzAy2gXh5siauDa5OXKruknbterbFI9MHorBL5ie6cj/7xgEzzkPl7NpkGepoUjNlxInwj49CeeozDKP029FLDy3JZYK8PRydEL9v27CMdJ6RYimJj6I3P7nHqPXgZ3z0fS9LMgdSm8vkh3qTrBczcJUwketFtXx9u8vWR0fEREREdF/kQi67/rYOLj7FQUf2qpas5ZoO3QUmvTujzvJ2cMTji6u0Go0VtsG16pbatn5vbvsOyBZ6XuS4Fp10Pf5V+y7HyIionuAQqHAkCFD9K+XLl1q87YrVqxAQUGB9HzYsGGVMj4iun02bNggfe3bty9kJv5mJiIiIiIiIiIiIiJjd8eUk/SfteLLdYg7fV1/ISY+Vgd5Ee6l2mncVEgYVw+hn0bi0Iaih8pRhQ6DWuP4jlPITDUO/nc7mSo97EEkNozUhOGxEU9gTdQ5pOfnoaaXL6pcKcB766fDw02J1J4h0DoUVaIoycfZGQ/WLR1MlJWaZfS61lOWExhqjM7FhZ9cUJgng7aaCnCWQxZTABetA/qP64HBLz+ALb/twqVj0XBydUSnIW3RZkBz6cNUIiL6j9LKih4V7YOI6D52ZM0KpCXGl2mb6GOHpYdCqULN1u1w7eRx5OdY/nu+ohp07Ym2Q0bi/L7d0r78QsOhdHTCqs+nW93W1csbtdt2LLU8L9v4nqS8HJyd0bhnPzTrMwCnd27FzavRUDk5oU67TqjWtAVkcs6tQEREd0ZhZibUCQnQZGdD7uICZVAQFG5Fk6jcDsOHD8ecOXOk53/99RemTJli03Z//vmn9NXNzQ0DBgzAV199VanjJKLKc/z4ccTFFVWd7tfP9KRNRERERERERERERGSMUQZkN7EX4vD9K/PxUsfJmNTzA/z99XpkpZsP8tFqtVj2vzX617nhbsit4WG2vcZZiYy2gfrXBXkF2PP3QbQZ0MLq2BycHFC9SVXUaFoVZRVcIxDvLHoZoW6eeLZxG7zRsjOG1GyAmOMx0npFphqBv12ALL+w1LaKvEJ8/+CDcFapSq0Lrx+qfy531MK/tdryMXhp4fWYEgVzQ1DwYwgKvgyGZlkEWuzqg1GfDENguD9GvzsUU/56HW/++gLaP9SKyQ1ERERE9J+SFHsN236Zg8XvTcLSjyYjctM65OfmWLwnObah+J6krArVBbh0aD+qN29lta3S0RH+VavBr2q1Mu/HNzQcfZ97GV6BQWgzaBg6jXoc9Tp1k47XGplMjocmTYbSxD2Jb0gYKkquVKJmq7ZoM3g4PPwD0O7hUXjwtXfQb8Kr0nlhcgMREd1u4vd71v4DiH3xJVxo0xZRAwbiyvAR0lfxOvall6X1ol1l69KlCwICAqTnp06dwoULF6xuc+vWLWzbtk16PnDgQDg7O9u8v5SUFHz22Wfo3r07qlSpAkdHR/j6+qJ58+Z44403cP78+TKNf+XKlRg6dChCQ0Ph4OAAf39/dO7cGd99952+wkTdunWlGemtzUqfnZ2NuXPnYsyYMdI2fn5+UKlU8Pb2Rs2aNTFy5EgsWLBA329F/P3331LfunGJoPLc3FyTba9fv45Zs2ZJiSTVqlWDp6en/lgbNWqE8ePHY+vWrRb3N3bsWP2+IiMjkZWVhUmTJiEkJER6/6pXry4d965du/TtxOPixYs2HY8457pt5s+fb7JNUlISPv30U/Ts2RNBQUHSMfj4+KBx48Z46aWXcOjQIZRFYmIiZs6cKe3b8L1q1aoV3nzzTURFRZXaZty4cfpxdujQwab9XL58Wb+NSOjJzMxERESE9PrXX3/Vt/vggw/07bp27Wq2P3GNv/XWW2jRooX0HorvgeDgYHTr1k06P+J7xBZiHD/88IN0XYj3UfTj4eEhvZfie+LHH39ETo75+wxD69evl76KiYh69epltG7q1Kn64/rjjz+kZWfOnJGuuxo1akjXj9ivOO+i7c2bN2EvR48exbvvvotOnTohLCwMrq6ucHJyks5Xu3btpPfZ3M8M3TX/xBNP6Jft3LnT6Pq+XT+nrKnINaE7FnFsOuKYdcvFeajMa4eIiIiIiIiIiOi/jBUcyC42/LIdXzzzAzSFGv2yyG2nsOSzlfh0yxSE1goutc2i6cuRlVacAJFd18vqfrLreMF7c6zRsjN7iz4YzKviikIPRyjS8+AYZzwTaUTDMHx7cCY2zNuGz8d9X6ZjC6tTxeRyUSVBx+VsKkJnRSKjbRByRJKGVguXC2mon6JAy7dDTG4/YHxv7FlxUHouszHVSPOoJ7R5xYFJapkGW5OOI+pIIr5vOQEuSieT211JSMbSHcdx7GIclHIZOjaqhiFdGsPP09W2HRMRERER3eWOb16HrXN/gFZbfE9y7WQkDq9ehmHvTYdnQFCpbf754zcU5JkOdrOZVouEKOvBaYHVamLkB58gcuNabJ1XtnsSnyrFydGGVI6m//435BdeFcE165hc17hXf0RHHkFFaNRqnNm1HbdirknHZ25MIhkjctNaxJ0/B4VSKSU/NO7ZFy6e1u8DiYiIbJVz+jTi33oLeRcvmW5QWIiMjRulh2OtmgieORPODRpU2gkWAc1DhgyRgl2FpUuXSgHFlixbtgxqddFEKCLo31bz5s3D66+/XipYNzk5WXocO3YMs2fPxgsvvCAF9CuVSovB7aNGjcL27dtLJV/s3r1benz//fdSIoEtFi5ciFdffdVkcHZqaqr0EIHuonLFtGnTpMSKBuV8XzZs2IARI0boz6FIblixYoUUZGyosLAQb7/9tlQdIy8vr1Q/4ljFQySmiIDkPn36SOMTCRCWiP2KwOYdO3bol0VHR+PKlSv46KOPpKB1cazCokWLrFb1ENv9888/0nMRgP7www8brReJOl9//bV0LCKJxJC4FsTj5MmT0nGK8yKORQRbmyP6E0HfIpi+ZFKIeJ8OHz4sPb788kvpeMQ1p/P4449LSSzCvn37pLGLZAVr14aOODaR5FAe4ryLsXz77bf6914nISFBeoj3ZMaMGfjf//4njdWcvXv3SoHoYhtD+fn5yMjIkN7P5cuXS++dSDgR14YtCQ4iacDLy/LfviKp49lnnzU69+K57rx/8cUXWLx4Mfr374/yEskwIjB/zRrTid6687V//34pEUEk64jzZi2J6Xb/nLqd14St7H3tEBERERERERER/ZcxwYEqLPrk1VLJDTo3Y5LwwdBZ+OnEbKPlOVm5UvKDEVv+Qa4o3SZak4PUCU2RH+CiX6ZKyIL3umg4XU2XXvcc01n66uJh+4xnOn2f6G5yuaiQ8N1L86AuKKrcoErJh8964xlUe74/zGy/LXs3wUMT+mLltxtQmCNDymkFvBuUrgKhU6CRIzm/+BgNRWclYNX1AxhZtUupdRsPnsf78zZAbfD+nL6SiMVbj+GrFwejUY3SySdERHQfqfxJSYmI7riESxewZe73UrJBSWk3ErH6i08wZsYXRsvzsrNwdH2Je5JySo2Ps9qmfudu0lcHF9N/01vSsJvxTK86tdq0w87f5holdZRUt0PpewSdmi3boFGPPji5dSMq6kb0ZZzesRVN+zxQat3pnVux8YcvodUUjzP+0nkcXb8KQ9+ZhsDqNSu8fyIiosw9exD7wovQlgjyNkckQVx99DGEfv0V3Gycbb48hg8fXqYEhyVLlkhfRSB93759cfBg0QQplojZ7UVAuo4IEu/YsaM0S3laWpoUbB4fHy8F9YtAXjGj+erVq01WfxVBxmKG/HPnzumXiZnH27ZtKwW/i6BnEaQrAv/FDOimkgMMzZkzRwrYNhybCPQWVSFEf6KCghifmPVcEMH/DzzwAE6fPi0F9JeFSMgQCSUimFgQQeAimLhkcoMgKiroZswXxLlq3bq1VK1AbC+qK4iqB+KcCRs3bsRTTz2Fv/76y+IYRNC/YXKDTvv27aVg/8cee0yf1CAC1a0lOPz+++/6aiOmEgBEILgI4NYRlRbEe1+1alWkp6dLyRE3btyQ1okEDZHsIGajF8dpiqgc8NNPP+lfi0oQor/w8HDExcVJ77/oV7zvIvBdVNwQyRWCaCeuFVHdQYxZHJ9unaXj09HNhj969GgpCF+8n7qqJ2L2/ZYtW0rPa9eubdSHGINIKtm0aZN+ma4Kgfg+Ete+OA/iGhNJGmI/4lhMjU1cfyLoXHc9ivMtqlGISgMi0eDSpUv6ahgiiP3BBx+UzkmzZs1MHp/4/hNB77pkG2uJECLhQ6PRSIH94vtQfJ+I87lnzx7pWhTn/qGHHpLaiYSVshLbi+MxrJJQr149qdKHu7u7FIR/4sQJnD17VlonxvLJJ59I45g4caJ+G/G9L6o9iH5017s45+J83I6fU9bY65oQ3w/CqlWrpG0E8b7UqVOUQC76q6xrh4iIiIiIiIiI6L/Oxnnjicxb+e1Gk8kNOldOxeDYtpNGy45sOo7sdOMyvE5RRckIljhdNm6TF+aOG2PqGyU3CAVBrrjxaH3khbohokEY+j5ZFEzUql+zMiU5tO7fDO0HtTK5zjfYGw88YzrQSPAJ8sLA53pb7H/i109h8h+voGHHuri62N1i2+hsXxRozeckbUg4XGpZ3K20UskNOunZeXjt+1UoUJtPqiAiIiIiuhcc27jGZHKDTmLURVw/XxSkoxN17DDUVgLy7MU/ojrqdSq6JxGVC5QmguzMqdmqHao1bWFynYdfABp262l2WzcfXzTqbvmepPczL6D/C6+jSu16kJcjeMjQ6V1bSy1LjovFpjlfGSU36ORkpGPl59Oh+TdwkIiIqCKVG8qS3KAj2ovtxPaVpXPnzggMDJSeHz9+XApytVQ5QQSfC4MHD5aCy60RVRR0QcNihvU33nhDCtQVwdJitnRRESI2NlZ67vJvoqVYN3nyZJP9iSBmXXKDCGD+5ZdfpMBdEYguKg6IYGuxTKyLiYnRB8+bIsZhOMO/SCoQy0TQsRiP6Ec8F4HDzz33nL7d1atXpWSQshDB0SJgOCen6H/OIknCXHKDCFbWJTeIcyaCqcU5Eufy559/xoIFC6T+xHslArB1xLkUVQksEdUn5HI5pk+fLgUxi4QRUUFCFzgtEhx0M+GLAO4jR47YXOFAlwCgIxIbDJMbRHKHOHfbtm2Tzq0Yrzjf4vhE4oNw5swZKTBeBK6bqh5gmNwgEiquXbuGrVu3Sv2JJA9xTsS1qfPee+9JferOpTg+HXG9WCKCu0UiiVCtWjV06VKUmCvOnUgKMgweF8HqYpl4iGoghkSihS6QXQTpi7GKa1Mcv7jOxPUurjHD7USika6ygiGRcKILUBcJRiIBR1QFEf2I4xEJR6KSggiWF0QyjDgH5mzZssWomogl4roT74s4bnFeNm/eLB2L+JkgElMaNWoktRP9icB7S9975oifFbrkBm9vb+m9Fe+f+H4Q7734Kl6LfYrAfJ3PP//cqB9R7UC8F4ZVD0Tiie490iV1VdbPKWvsdU3ojsUwqUZ37CWP397XDhERERERERER0X8dExyowk7vLZ7Ny5wze4tmWtLJzjBObhCcL6ZBFW/hQ0i1Bh77jEv7pnYPB1RmLmOVHLJRjTBr2xQ4uxUlNTi7OmHUW8UfwJjjFeCJ0ZOHYurySRZnCHrui7EYNLEflCrjNtUbV8WnW96Hd6DlktNCjWbV0Lpfc7SpNQy+icUfmBlKuOCMyNQwi/2k5BX989zQsl0nTSY36CSlZWPzYeP3hoiI7h8yrX0eRER3u7gSyQsm21wwbpNfxgDI8nL19sGw96ZD5VAUXOfk6oaWA4ZY387LG+2Hj8bAV96CTG7+1r3HU8+jSa9+pZITAiJqYNh7H8PZ3cPqvkQFhWrNWqLVg0PNJlPYIjsttdSy45vWWUxgyLh1E5cO7y/3PomIiMRM8fFvvVXm5AYdsV38W2/rZ8m3N/G/RRF4rmOpAoBYp6sYYMvs7CLQ+cUXX9S/njlzpjTbugjoNSQC7p944gmsXbtWei7Mnj1bCsA1FBkZKc26ryOCcksG1QtimS0JCCKoWBfwW7duXSnQt+TYdDOdf/fdd2jSpIl+makqCOaIJAERPK7blwiGN5fcIHz99df6508++SReeukl/XkxJCouiPdElxxg67hEFYd33nlHSmwRQeSDBg2SEi50feoC+UtWMChJBEPrkk0MEwAEMdO+4Wz4olKIGKsueNrw+hPHZ1itQiRAiEBvQyKw3jDYWlyzopqILjlHx9/fX7pGdLPOi+v1q6++0q8XAd+6BA5R5UNUA7AlecMw8aMsxPnR7V9UPRAB5eL6LPk/fXGNiSD9adOmSa/F97sIgi/5fW844/+PP/4ID4/Sf0uLahIiGcQwiUHM0G+KLmA+KCgITZs2tXo8oo1IbBDXiSFRZUFce6KSgiAqHpQ1OF5U3TBMYBHnrXv37mYTs7755hv9a5HYYy2553b9nLrd14St7H3tEBERERERERER/dcxwYEqTKkyX1VAR1EiAaAgr6BUG/HxRdD8c1Aml/6HrqxAg8CFF6FKKp5hVe2uQl51T4v7TXSTQe1sPL6Rbw3GUzNGw9XTuOpDrRbVMXPjZPxy/issuvY9xk4bCZWDyvJxKRWY8NWTWHTtB7zy47NSwsPsndMwJ/IzVK1vOSGhIL8An479Bk/WfQnz3l2EP2auwM9dz+HI02EIyu6EUJeWqOXeAwNCP0Hnhh9CY+XbNcjZu9SyU1HGCSGmnIq23oaIiIiI6G5mS+WBkgEtBXm3J5AkOzUVMulup1j7YY+g/bDRcHA2ri4XVLM2Hn7vIzz5vzl4+ttf0G7oKKvHplAq0XPcBKl9r6cnotvYZzBy2iw8+smX8KkSYnFbdX4+1nz5KX555Vns+fM3HFixBNGRR+Ds4YkaLdugauNmUuWJh9/9CL2ffcnqsXr4B5RaFn+paIZYS+IvWm9DRERkTvaBg8i7aL4qgi3yLl5E9sFDlXaSRfC5LQkOf/75p/TV19cXPXuar9KkI4LUxazkQvXq1fHaa69ZbN+1a1c89NBD+tnDRRCuIcMZ90XCgOFM/SWJJALD4zKnffv2UnD3hAkTjBIFzI1PJykpCbYQM9v36dNHCvjWjUucF3PVL0Qgv5+fH5o3bw4vLy8p+N8SEeBfv359m8cl9msYzG2K4azv4j03VU3BWgKASD64deuW9NzV1VWaTd5SgoBIWDB8v7744guj9QcOHNBfSyIoXAS3m+tPJI7oZr4XbS9cKJ5ARwTmi+B4a1UcCgoK9Ne72I/hOSmLL7/8Uh+QPnr0aOl6s+TNN9/UJ22cPn26VMJKVlaW/rmuGogpPXr0kCpNiKoLogqCqQQZQQTXC+IatSWBQ1QQEe+nKT4+PlJygOE1oKsOYQtRjUMkyYhkiapVq2LUqFEW23frVlSBrqzfk5X9c+p2XxO2sve1Q0RERERERERE9F/H/5xRhbV5oLnVNm0HGM8Cai5xQCQwhM46Dr8ll+FyOhnO51PhtSkGYTOOwfVUslHbQi8VHAOy4VY3Be4NkuFSLR0KV+PECfFv7LTc4qQInZFvDsLi2Dl4f+lreG3u8/jmwAx8d+gTtOjVBKG1gq0mNpQkKjX0H9cDQ156AI061bNpm29f/AWbF+wsNSPQtX9y8EvnKDTPfRW9qkxGuGtrdK3aFP6OlpM5BlZpU2qZQ4nEElMclNbbEBHRPUprpwcR0V2ueovWlhvIZKjWvJXRIpWjE24HrVaDvOysEsORod3DozD++18x4OW30OfZlzBmxv8wevpsVG3YFN7BIVLiQlm4efugcc++aN7vQYTUse2eZPNP3+D83l2lluekpyHm9En0fuYF9J/4Gqo2bor6nbrCxdNyhbrG3fuUWqawEsgoKG1oQ0REZE6KQcWBu6EfU0TAty6AVlQbiI6OLtVGzFL+zz//SM+HDh0qBY6XZcbw3r17W6xEq6OrJCBs377daN2qVauMAuqteeqppyyuf/fdd7Fnzx7Ex8dj4sSJVvsTCQc6IrDZmvPnz0uJILrA64EDB1pMbhBEMLGoQCDeh5SUFDRq1Miu4xKJE+YC1HUefvhhfZu4uDiTAdWiMoKumoapBAAxy79h8oKoFGHN+PHj9c8PHjyI9PR0k++9CMAuWQmipGHDhknnXwRyi4oQhgzHKo7B1Iz4IvBfl6Ahvj9EhYryMPweEEk51ohro1evXma/Bxo2bGh0XnXfk6auI1Gl49FHH0WHDh1MXnPHjx/XVx+wZWytWrWSZvi3du04/5sknZqail27Sv8tb06tWrWwZs0anDlzRqrGYO3nheF1b+v35O34OXW7rwlb2fPaISIiIiIiIiIiIqBsERNEJgx4tjdWfbsBGSnGQTs6bQe2QEQD42oG/mG+Zs+lvEADj4M3pEdJHn7uCK8bAvf6Pjg6OBv5KCo7Lihd1XD0z0VOrCty44o+IHJWKRHo7mZyP86uTug0tK3+dVZ6NjbO247tf+5Bdno2qtYPxcDn+qBZd+sfcpVVUnwKNv5i/MGPodysPKz4ci1e+GZc0bHJFXi97lC8e+JXqLVFZeoNtfCuiT7BpT/86NykOvaeslw6ukvTGuU6BiIiIiKiu0WzPgNwYssG5Odkm1xfu00HeAdVMVrm7udXrn2J6gaiMoKLhxdiz52WkgEscXB2gauXt9l1ddp11L/OzcrEqW2bcH7/P8jPyYFfeASa9u6PsPr2vydJv3kDZ3ebn51UnMtjG9egy5gnpdcKpQo9n3oea778BJrC0vck1Zq2QJ32xbP16tRs2RaxZ05ZHEvNVu3KdQxERESFmZnI2LLFLiciY/NmqT+Fm+n/JVaECGgVSQvfffedvorDpEmTjNosXbpUHwg+cuRIm/oVs+4bBqw/++yzVrfRBVzrqh/oZGRkSAHrOq1bW0kgFf/3bdtWCr43FcBujdhGJD6IYGsRCL53716joH1zVQ10xLYiEP/GjeL/IYuZ2isaLCxmxL969SpOnTqFo0ePYvfu3VKShq3jatCggdV9uLm5SQHQv/32m/T6999/R/fu3UsFaeuOzVQCwLFjx/TPrc1Qb/h+ieBykTwhHuK8d+rUSVon3gfDQHtrRBWH2rVrmw3CFwkt2dnZUtUAEeit24+p6hRjx45FeYgEiaioKKM+bQlONzxWw+8BQVTfGDNmjH42fzHuKlWqSIH5IgheXHO6ZCVr1q9fL30V51xsb41h5QtL571x48b6730x/pLXTnmJZJWLFy9K1/6hQ4dKJa5Yu/Zvx8+pO3FN2Mqe1w4RERERERERERExwYHswK+KD6avexcfDJ2FpLgUo3Ut+zTBW7+VLsndpGsDBFcPRHxUotX+ZXKZlBAx4s1BePDZohlBnz04B7dSSidACM6hWVBnqqBOd8ADDerCzdH6h1o3Y5PwevepiLuUoF927ex17F52AENffgDPzi7fhyzmHNoQCXVB6aAgQ/tWH9YnOAjt/Orhy+bjseDKVhxMugAttPBz9JAqN4yO6A6VvHS+0gNt62H++kNISM4wuY/mtUPQrFaIHY6IiIiIiOjO8fAPwOC3pmD17BnITkstVd2h73Mvl9omoklzuPn4IjO5aMZfS2RyOTz8/NFm8HA0+rdKwcK3X7Ga3CDU79wNShsC7dJuJGDJtHeRfrP4Hin5egwu7Nst7bfjSOuzKJdF1NFDUnUJSy4fPqBPcBBqtWmPhyd/hAMrluDqyUgRmQg3Xz806dkPrR4cCrmJ2VgbdO2Jw6uXIzPFuCKfTtXGzRBYvaYdjoiIiP6L1AkJYqp7+3RWWAh1YmKlJDgIw4cPt5jg8Oeff0pfg4KC0KVLF5v6TBDH/y8RjC8eZZGWliYFuosAbJEwYEgE5lrj4eEhPUQ/1ojA5tWrVyMyMhKXL1+WZpAXAdXmWEuauHDhQqllH3zwgZQ4YC7wvqSCggJs3LgRW7ZskYK6RWB0TEyMlORQ3nH5+PjYtG8R1K9LcFi+fLl0bYjgdVsTAHTVD4Tw8HCb9uni4iJVetBta9hHYmJimd57S9zd3aWEHt3xLVq0yCjBQVSOENeCICpZiISI8jC8/gVRnaCsdNU/dEaPHi0lj3z++ef6ZaLKxvz586WHSOhp2rQpBgwYgBEjRlhMaNElOLRp08amChs1a9r2N7Hh+1PyHNhKVH9YsWKFlHxy7tw56dq31ld5Epns/XOqLPuy1zVhK3teO0RERERERERERMQEB7KTem1qYWH0d/hn+QGcP3QZDk4qtB/UGnVa1jA7a9kL3zyF9x/6xGygv+hjxBuD8NjU4UbLL6bHIzLFclUCx8BshCoD8Gr3DhbbHU+5hujMW/h7+ipcv5YI2b/Lc6u6ocDXCYosNf76ah0adKyHTkPawF4K8gpsaFP6g7RGXtUwrdFjyCzIgVwmg5eDGxQyudk+XJwc8P2rQ/H6d6txOc74H/Nt6oVjxvjiUs9ERHQf0gIybcX7uJPEzJn16tWTAl9++eWXcs/saI4IXBHBF7m5uWXaztPTUwoIIKK7R2jdBnjmu19wYf8eJEZdgsrREbXadEBARHWT7eVyBXo89TxWz/7YZEUCQaFyQLuhI6UEA0NxF84hMeqi1TH5hoaj/fCiWTzNuX7uDFLir+PQqmVGyQ2GREJBlTr1UL2Z9dl0bVVoIXCvuE3p+xZRTSKoRi3kZWVJiR8uHp7SV3OcXN3w8OTpWPn5dKTExZaq+vDAS2+U8wiIiIgATbbp6k3lpckyXaHWHkSAt0heEAG4YnZ0MbO9LjBdPN+/f7/0fNiwYdL/Tm1hS2KBtYDlzMxM6f7GMNhdBOI6OTnZ1IeoRmBpHGIm82eeeUaq0GCO2FfHjh2l+7MdO8xXmDKlb9++0qzzImlC3Nc99dRT2LVrl3QMlqxcuVKacV2ce3N8fX3Rs2dPHD58WOrf1iQCW3Tr1k16/8X+xb3lunXrMHjwYGmdeE/+/vtviwkAIklAR7SxlWire6+zDK53w6BuW4/Bkscff1yf4CCqk3z11VdQqVT6BB9dcos4NnENlUdFr39d5ZKSPvvsMykIXQSqi0oa+fn5Rt8zIohdPD788EP0799fSk6pWrVqqbHprvl+/frZNBbxvwlbGL4/Zf2/hBj/jBkz8PHHHxu9/yWJiiEPPPAAvvnmG1SUPX9OVfa+zF0TtrLHtUNERERERERERERFSk/5TlROSpUSXUd0kB4lFagLsSXyIjYePo/svALUCPbFw50aY9bWKfht2lIc23pK+gevk4sjajSNQOfh7dBzdGd4+Jb+p/6pNPMfOum4ewOLHxwJHxdnk+vPpsVhyvHluJDxbwDRQEDWpSYcNmUgzS8QBUHFHxIo0vLx9d9bypXgEJOZhtXRZ5GWn4saHj4YWK0etDlqJF69aXXbem1rGb3emXgOC6J241jK1aL1HlUwulp7hF9xwvL/rUHktlPS8qY9GuHhVwagfrs60uvwQG/8OfVRHDh7DZEXr0OhkKNjo2qoV5XlkImI6O4mZugTCQ2WZvWsqLNnz5Y5uYGI7l4KpQr1OnaVHiWpCwqkagjn9/+Dgtxc+Fethia9+uHhdz/Evr8WI+bMSamdyslJSoqo066z1I+TiYCr+IvnrY7FwdkFIz/41OT2Uh+XzmPj918iKdb6/Y3wz+IF5UpwSE1MwPm9u5CXnSUlXNRu1xEatRrpt0xXxDMUXLPonkLn4oG9OLRmOeIvnJNeB9WsjZYDBktJDkfWrULs2ZOQyeRSVYYWDzyk3943NAxPzP4eV44flZJDxOyrorKGueQTIiIiW8ntEIht1F8ZAsXL3LdcLs1q/+2330r/BxVB3q+++qq0bsmSJfp2YmZvW4lAZ12g+/fff49nn3223ONzdi7+P6oYX3Z2tk2B7paCpE+ePCkldhgGHQcHB6NVq1aoX78+6tSpg0aNGkkPBwcHvP/++2VKcBAB2MuWLcPu3bvRq1cvaZmYkV6c44kTJ5rdTsym/uSTTxrNSF+3bl00a9ZM+ioeTZo0kSpBiESJzp0725zgYCvR76OPPorp06dLr3///Xd9goOo6CDOvyCuGVMJAGKZLrjd0ntgKXjbMDHC8Lk97sFFAkdYWJhUEUMkT4hKGSLwu2R1CpEIUV4lr09xfy/eO3vo2rWr9BDfX6LCh3hs375dqnZgSCSmiHaiQom/v79+uWivqwRia4KDrf+bEMH+5UluEUQCkJg8QkcknYjrvnHjxtL3o5hgonnz5tL3qUajsUuCgz1/Ttmyr8q6Jm7XtUNERERERERERERFmOBAlS4lMwfPf7Mc52KKA2gOXYjBn7si8crgzvhk0/tIvZmGnIxc+FbxhoOTg8X+VHLrpYi9nJzNJjfEZCXjmf2/IENt/IGB1kOBvIe9gAQ5YDDxkdpThcNNVXh943r0rlkT3SKqQ2VQDjnqxFVcOhYNRxdHtOzTBK4eLtBotZh6YAsWXjgmPdeZdmArQhbGQLMpxuoxDJpY/MHH4iv7MOvMWqP1Z9PjMPn4X3D+Kxkuy4oTJnb/tR97lh/Aqz8/hz5ju+k/MGtbv6r0ICKi/xDxK+geruDw/PPPl3n2zrISM+fpiIAaEYBhCw8Pj0ocFRHZW1ZqCv76aDJuxRQlCwsxp0/g2PrV6P7EeAyfMgPZaanIz82Fm48vlP/OLmuOwsp6wdXLy2xyQ9L1GGk8+WUIHrt5NRobf/gKNVq2QfVmLSE3uCe5cSVKWi+SMyKaNIeDk7NUlWLL3O9wctsmEaWob7t9/o+QyWXINQiMMqdZ34H65wdX/oXdi+YbrU+4dAFr/vdJqe1EQsXFA3vQb8KrqNuhi/6eRFRsEA8iIiJ7UQYFAeJ3oplqTGXrTAllYOVOCCKqM4jge8FUgoO4H2nfvr3N/fn5+ekDh2/csJ68aImoLmEoNjZWCvC3RATWG1YSKOmJJ57QJzeIgOlff/1Vn4hgSllmoxeB2CIRQNzHiSoLIllAVzHg7bffxsCBA03OjJ6YmIgJEybokxvE+Z43b54U3G2PcZWFCO7XJTisX79eSiwQiSbi2tAxV8VQBETrxmWpCoUh8V6lpKSYfM9FtQqd+Ph4m/rTjddcQs9jjz2mPz6RiCISHG7evImdO3dKyyIiIqQA7/IS178h8T1g72B2ce8/ZMgQ6SFcv34da9aswc8//yxV9hCuXLmCL774QqqKoCPeTyEgIEBKGLCFqO5iC/G9qVOW2f/FuA2TG55++mnMnDkTPj4+lXrd2/PnlC37quxrorKvHSIiIiIiIiIiIirCBAeqdFN+22iU3KAjPkOavXwX6oT6o3WdcHj5Wy8xLLTzqwOlTAG11vwHl53865ldtyDqn1LJDYYc/HJRkOooQnCglWkBETckA5afPyM9/FxcMLVLDzRTemLW2G9xcvdZ/bbObk4Y8vIDuDmoChacP1qq78zCfJwf5o+wi8lwijY/s9bYD0eiec/G0vObuRn44mzRByKm5DzsA4cd6VBeydMv02i0+N/4OWjZpyl8g73NbktERHS3Vm4QASc//vhjpe/LMMFBzDC5YcOGSt8nEd1+676eZZTcoKPVarD1lx/gH1EdIXXqwcW2WxJUb94S2+bJpe3NtmlhvgLcoZXLypTcoHNq+ybp4ebtgx7jJsA3JBTrv51tVFHCwdkZLQcOQV5WFk5u3ViqD1HJwSqZDF1GP4GQuvWll2k3EqUKEmUhEixEhYrwRk2lCg9ERESVQeHmBveePZGxsfTvvLIS/Yj+KpOoZiAC/UUA+f79+6WA1/z8fBw6dEhaP3z4cCkp0FZi5vWoqCjpuejPFmfOnJHug0RwebVq1VClShVpuRhXaGioPnj6yJEjVhMcRBsxy7spx48fl9YbVk2wlNwgREdH658bVlcwRQSOi+QGndmzZ0szootqAWKG+2eeeUaqGlDSH3/8oa+OIKogrF692myAt+7+VFQhsHVcZVGrVi0pwWLv3r3SmDZv3ozevXtj69atVhMARND8xYsXped79uyxaVb8ffv26ccvrjPDpI6mTZti27Zt0nPD980c0Y+4dkQig7iOli5dKn01ZJjgIAK7xbkU75HumhHry3K9lyQSgkRA+61bt/TfA6LahjViRn2ReCPOb40aNeDl5aVfJ94HcV7FuERVg5JCQkIwfvx4qRJC//79pfdMKDk5g+5/C3379rX5GHVB79aSikRlFJ2WLVvCVnPnztU/F9edtf+5GH4/VuTat+fPqTtxTdjKXtcOERERERERERERFZH/+5WoUly9kYJ/Thv/I7ykmd+twdg6L2JEyDN4p/907Ftt+R/5vo7uGBhiftZPZ4UDhlftYHb9hrjiDwBMkSu1ULiqjZIbDN3KzsZLG9Zg3OOfGCU3CDmZufht1gr8FGnhH/VKOVL6mZ4NLrxeCL45MAOj3x2qX7Yq9gjUFgKnhLw+pQOG1AWF2DC36EMpIiL6j1dwqOjjNhKzafbo0QNz5sy5LfszTHCwdVZFIrq33Lx2BddOnTDfQKvFxh++xNwXn8acZx/Dik8+QHSk5aAuD78A1O9cVC3NFEcXVzTrM8Ds+vP7dqMiMlOSserz6Vj83iSj5AZBJE7sXfI7jm1YXa6+/cIjMObjL6QkCR2RVGEpmcMcdUE+Tu8sCtAjIiKqLN6jRt1V/VgigsGHDh2qDxZesWKFNLO9zsiRI8vUn7h30hHBsoYzu5vz5ptvYsyYMejYsaN+LDoi6FZn0aJFVvtauHCh2XXnzxv/jSL2Z0lycjK2b9+ufy2C4ctCBDV/9tln+tebNm0ymq3e1LhEFQhLyQ26wGfDmezLOi5bqjjorFy5Ukpu0CVgWEoA6N69u/65uI4MKzOYI2aON7z/NTx2w0QKcczi/bBEJGWI8yLanTt3TkqOKUkkyLRr1056LgLOxTYi0UEQx2V47Oa+X6wxPA8iicZaEL44t+L6f/jhh6XkgE8+Ka5GJqqriKQXkexhrnKGjlKp1M/ML2RkZOifnzhxQkpeEvr1K67SbI1IirD2PooEHZEUJQQGBqJ169Y292947XfoYP7zEx3DSiLmrn1b3iN7/5y6ndeErcdpr2uHiIiIiIiIiIiIijHBgSpV5OU4qVKDJVcyM3H9YjyS41NwaEMk3n/oE3z/ynyL27xabyD6V2kGWYnsA18Hd3ze/HGEuxqXIjaUXVj0AYAlMrnp5AadQq0W0c3cTfdf1x35CssHndXU9AxADk4OqNOqptGy2GzLHyZJ4wlWmVx+5Uzx7GJERER3OxHoIGb227lz523bZ2RkpP652DcR3X+unz1ttU1KXCxSE+OlxIGoo4ewfMYU7F5k+Z6k57gJqNuhS6nlbj6+GPzWVHgGmE5qLlSroc4vrr5WXlqNBjkZ6RYrKJSHg5MzAqsb35OkJiagvJJirpV7WyIiIlu4tGkNx1rGv7vKyrFWLbi0bnVbTviwYcP0z5cvXy49BDFreFlmYxdEUK5upnG1Wo1x48ZJX81ZtWqVPsBcEDOJG3ruuef0z0U7SxXuDhw4YDKBQMfRUVTILWY463xJInBajEXMTq+jC+IuCxFYbBjc/Oqrr0rVMsyNS8y2npdn/u8yEZRfsjJCecZlyYgRI+Dk5KQ/5yLJwZYEgEceeQTe3kWVe8V5E+O0FMj9999/GwWsiwoXJZNbwsPDpefinEyaNMlsX2I/U6dONToGlcr0/6cNj0FUedBV1RDVTKpXrw5LDPs09z5NnDhR//zs2bP6ihHmvPfee9LECoJCoTAKRhdB/7pzKCZDMEy4MeXo0eIKznXr1tU/X79+vT4oXlTksFVubq50zZqTkJCAd999V/9aVAMQx2Arw2vf0vejrvLB559/bvXat+U9svfPKWvseU3Yepz2unaIiIiIiIiIiIioGBMcqFIp5DaUXzbxucvyL9di/xrzs6aq5Eq832g4lnR8Fc/X6oPHq3fFh41HYWWXN9Hcx/IHIzXc/K0OqTBPbja5QSe3hgfUbiY+uFFaP2atQqY/bK1chqx6XkhvHYCUEMdSH0R5Obha7U+Wbjp4ydXdWfp6KTIanz35HR6vNVGqlvHti/MQe9H4wz0iIrr/iGJE9nhUtuPHj6Nnz54YOHCgUfDJ008/Xan7jY6ORlpamv41ExyI7k/yMgT9GDq48i9cPVmcBFWS0sEBD7w4CU988QM6jnwMbQYPx8BX3sLT38xDSJ16ZrdTKJXwDg7B3So/N6fUPYmzu0e5+3NwKbonSbh8Eeu/nY2fXxyHeS+Px44FP1UocYKIiEhHBIIHz5wJmYtLuU6K2C545gyzM+Xbm5iRvEqVKtLzXbt2SYHEuiDxsnJ3d8e0adP0r0Xw+AMPPIArV66USiCYO3cuRhlUqWjYsGGpQF4x+7hhQLqY0Xzx4sWl9rt69WppZnpLQcpi5n7D4GsRUH/16tVS7UQwsKgeIALwDemqGJTVDz/8oE8YEBUGnn/+ebOVJMR6ETxdcgZ1cb5EkLW4Ryx5Lss7LnM8PT0xaNAg6fmNGzfw66+/2pQAIGaL//DDD/WvlyxZIiXPiCD4ksciZpc3vL66desmBZkbEu/VjBkz9K/nzZsnBdCnpxsn1IrX4roRVR4EZ2dnvP322zYlcIhKjbpzbW2We0GXwCEcPmy66rM4T4az4Ytg9ddee63Ueyru/cXy2bNnG/3PoU6dOkbXf+fOnfWvxfkU10FJ4m9lcU7F95RhXyUTHNq0aWO1QkhJouKA+F7JzMwsFRDfpUsXfSC+qJghjqcsDK99kbz01VdfQaMxrtIm9vu///1PukYKCgqsXvuG79GFCxeM/sdSWT+nrLHnNWHqOA8dOlRqvb2uHSIiIiIiIiIiIiqmNHhOZHdt6oZDqZBDXWj8j3JDDldNl11e9f1GtB3QwmL/Ya5+eKx6cflsWzxctTU+PrXa7Hp1thKafAVgetIpI1pHOWD8WQMco7NEiQdAYf5DUaeoLCl/IqO5H5IGVkWhh4O0/Kb4gOmXefioR090rFpVWtY9qC4WXdkOrVYGtdZ0cJbjdtMzt3Yd2QGbft2Bz8d9D43BeyAqZqyfuxVTlk9Cqz5NrR8oERFRJRIBNCLJQcfV1RWfffaZNAPlTz/9VGn7FYE0Oh4eHtKMqUR0/4lo2hwymRxarfl7EnOOb1qHqo0s/73sUyVUSm4oiya9+mHHgp9xN7p17Qp+eWU8ej/zIkLrN5SW1WjZBsc2mL+HsqRu+844sWUDtvz8ndF7cGTtdZzYugmDJr2H8IaN7TZ+IiL6b3Ju0AChX3+F2BdehLYMAegiuUFsJ7a/XcSs7kOHDsXXX38tBfTqlCfBQXjhhRekynQiIF3YtGkTatasKSUYiK8pKSlScHRMTHGlV39/f2k2f6Wy9McDX3zxhRRMfvr0aakygKgUIAKERbC2GPuRI0ekWdGFgIAAKShfKDmTvFgnArW///576fWJEydQq1YtKcg6LCxMCjY+d+6cvi9BzPIukg6EmzfFf0rLTuxDzHIvxiyIxAkR/D98eNHfaw899BAaNWqkn8H+999/lwLSxfEFBgZKxyPuFQ2T7+0xLmv3xH/88YfRLPm2BHVPmDBBem917/2yZcukoGoR4F21alUpGeGff/7RB8Xrzs/ChQul97Ik8V6Lyhwi8F348ccfsWjRIimwXpwbcew7duzQB4qLpCCRUCKuM3PEuRPn/M8//9Qfm7jnN6xkYo5hoLlIqBCJMGJfImng008/1a8TlUSioqL0FRpFwLoYuwg4F9fh9evXcfDgQaPge/F+Gwa264jjad26tRTon5SUJI1d/K+gXr160jkQ14FIShJ96oj3SlepQZzzvXv3Ss9FElBZiP9LiO3F/0HENSuSDMT5O3/+vLRPXRKySBgQ37+ifVmI6hDiWtElKrz00kv48ssv0aRJE6lPcUzi/TdMrhAJOLrzZuraN3yPkpOTpfMqvsfFNSKSNUQCTGX8nLLGntdEyeMUyQkikSgoKAi1a9fGG2+8YZdrh4iIiIiIiIiIiIwxwYEqlb+nGwa0qY+/954y3aBQA+cTcSZXXY40nsGnPJLiU7Dupy04sesM5HIZWvVtht5ju2Bf4CVsTyz+8EwvD8iN/3e2N/F5gYWJ2+SZBVCmmijLnFwAt6MpyGxlfnYmr82JyGzkgxujagIlqlxcS0vDuJV/Y97QB3Akex/+uXUEVdyLZkvKUyuQmueMXHVx9kVBvgIZVT3ge8z4w9tmPRohqFoA3urzkVFyg/5Qc/IxfeQXWBzzA5zdij5oICIiutPELH7ffPMNIiIiKn1fhgkOYra92zVjKxHdXh5+AajTvhPO7dlZ5m1vXI2q8P4zkm/hxJaNuH7utFRNonqzlqjXqZtUHSL6mOmZaO+0lPg4LJsxBQ9Nmowzu7bhwv5/ytVPtWYt4eTmUSq5QacgNwer/zcTz3z3C1QOjnYYORER/Ze5deiAqr8tQPxbbyHv4iWr7R1r1ZIqN9zO5AYdEdwtEhx0RABs48blT/gTAbciAFfMki6SEkTihAhsF4+SWrVqJQX1i0B3U8RM5SKYXCQE7N69W1p2+fJl6WFIBPLOmjVLCn4XHB0dTSZLiEQBXXUGMSP89u3bTe5XzNouKhLoguXj4uIQGxsrzVRfVm+++aaUMCCSNHTB1T169ICvr68ULK2rQKFLrhCB2bpZ9w2JYxKJEiKIWZcgIQLA7a1Xr15SVQ9xzGVJADB87z/44AMpcF2c423btplsO3r0aCnhRASzmyMC3kUCypQpU6T+RLD22rVrS7UTgfciEF9U+bAlgUMkOOiIBB9RgcIacQ6mT5+uv/Z27twpPcT5mTlzpj5JQwT6i2v9ueeek5I3RCKAGPe6devMngdRTUIXfG9IfC+K63/kyJH6CgOmrn9BpVLhlVdewccff6xfJrbVVT4oa4LD4MGDpcSUjz76SAq8L1nVRDc+kXQi/odRVtWqVcOKFSukZCpdwo5IAhCPkkTwvgjY37p1q/5nlbj2S1YbEH2K7w2RkCGIZAzxEER1BPFzojJ+Tlljz2tCEMla4n9V4meFoPueEO+HLsGhotcOERERERERERERGSs9TQ+Rnb01vBt6NC09i5MsXw33TRegTDI9q5qzW1Hp6vI6vOk4xtZ+AQumLkHktlM4uuUk5ry+AE/XewXjZa0xtfEgNPAMgavSET5whsuyZHg/ewk+S6/BIT4HUBfNiGSOx4GbkIlKDf/KreqChCciEP1xI6hFwoHjv4kSJdQ6XQD3gylI7htWKrlBpxD5mH3pR2y7sR/5muJS0I7KQgS4ZMJZmQ8xYVNurhKZmY5I7+EPrUHFiKoNwvDBiklY++MWFKqLZ4LT0TrLUPigG9JedsXErV9hWcxuZKpzbDqvRERE9iYSC8RMjCLQZc2aNbcluaFkgkOzZs2kAALxgXWfPn2k2fUcHBykmf3EjILiA3hdsAkR3Xt6j38B1VsUB9fYysGxYvckl48cxLyXxmP/ssWIOX0CV08cw/Zff8KCSRPRccSj6PX0RARWrwkHZ2c4e3jCnmQKBZzdTc/q6ubjZ3V7dX4eVn02HWd3b0fhv0FaZREQUR0DX3kLxzevs1g9IzcjHX+8PwnHNq5Bfo7tM24TERGZIpIVqq1ahfBff4V7nz6irIBxA6US7n37SuurrVp5R5IbBDHDuQhor2j1BkMiyFYEKs+YMQPdu3dHcHCwdE8jAnarV68uBd2K4GYxg7i1oGER3CwCyUXQsgi6FgHvIthfzJwv7t1+/vln7Nu3Twpy1zF8riO2EfsUgdqiH5GsIJbp7rXat2+PF198EYcOHZKCtsVs52IWdcNZ2MtDBA+LYGVdEruoyiBmq9cRQeSiEoUI3Baz5Pv5+UmJDy6iokdoqJRwMHXqVFy6dEmqBiFeOzkV/V0ogpV1iR/2IqpfiADrsiYAlHzvRTKASDgR7584ByIRQFSrmDhxonSORaC3peQGnddff106dpE0Id4j8V6J/kTyi3gtgrLFeluSGwQxQ70Yk44t1SkEcQ5ENQRR3VG8Z+LaEdezuLYNq1II4lgXLFggVQqZNGkSWrRooX9fRbC7OA8i2F3M2i/Og2hvjrgGz5w5I1UbENetCOIX7cU5EPtu27atdH2INp988olR9RJdooyoPiDGUFbinItjFtU0xLUo9imOQyRL6I6vPMkNhu+FSPx55513pPGJCg1i/OK6EMlFgwYNwnfffSe9v6ICQf/+/fXbimoKuuodhsT5FNdegwYNpPMkvr/F2Eu+R/b+OWWNPa+JkJAQqd2YMWOk57rvL3Hu1Gq1Xa4dIiIiIiIiIiIiMibT6uraElWy8zE3sPHoBWTl5iPE3RWLRnyNwqw8s+1HvT0YT05/pFz7SrmRhsdqTECumf59gr3xW9S3cHAsqoTwQtu3ce6g8cxuGkcF4ibUQ1546Q+TnC6nI/iHc5AXFAXqpHXyQ+KjESUSFrRwVChQ+9/goVpefnikdlO0CgzFkuW78NZV87O1BoYkIygkxez6fLUCZ2ICjXKUwt47C8erxUkKn2x6D0s/X4XDG48bbautoYJ6RiDgbfzPcw+VC2Y0eQoNPKua3S8REd39xAyXIvhEqPba+1B5lg4yKYuCtFREfz5Neh4TE1Ou2TOtEf3qxlySYVUFEdxiayCELcSH0rqkhZ49e0oBLikp5n//imAXMYulbnY+Irr3JFy+KFUjyM/NhYefP/75YwG0GvPB9x2Gj0HboSPLXblBJDeIRAFTPPwD8NSXP0lVHYQFb7yAm1ejYW8KlQN8Q8Okn6d+YVXRuGc/VKldF4dWLcOu38sXNGirER98gj1//obYM2Yq+pXg4umFIW9NlZI+iIiI7KEwMxPqxERosrIgd3WFMjAQijIEjpNlIkldBCkLLVu2lILoqXzGjRsnzXCvO68ikeR+kZOTI00iIILjRcC3SBJhBcUiIthdJDXoKl3Mnz//jr5XRERERERERERERHcL5Z0eAP131AkLkB46OePP46/Zq0229QrwxIMT+pZ7XxvmbjOb3CAkx6dg19J96DmmM+KjE0slNwjyvEJU+foMMtr6I711AAo9VFCm5cN9/w24H7wJ+b8VHvIDHJE4pmRygyBDXqEGJ2/cgCxHDne1C66pbmD9xD+wNfIc8Hx9s+Pz8Ss9E5IhB2Uh3JzykZlrMKNsibisld9ugKOLcWl4rYMM6ukBpZIbhPSCbLx9fC7+aP8OXJQVm6mWiIjuEuJXVUVTWW9DKqy55IbKJGbwNKzIsGXLFv1zMYOemF0yOzvbKOFBvH7zzTel2Q5F0AEDMojuPUE1akkPnYykm4jcuNZkW1dvHzTu1a/c+zqxZaPZ5AYh/eYNXDq8H7XbdEBSbEylJDcIhQX5uBF9WWSMwdHFFUnXY3Bw5V+4fOQAKps4t0oH43sSS7LTUrHikw/w1Fc/QVXB6hlERESCSGZgQoPtxCzmImlezKRessqEKWKWdR0xGzqVT25urjQ7viBm0RdVGO4nooKHbub/J598kvfSRERERERERERERGQVExzojnn60zEixgZ/f7MBBXkF+uURDcMwfu54LDh/FhtXXkRugRr1gwIwpmUTdKhuW3WBf1ZYD9Y5tfuslOCQmZKFAh8HpHYNQlZjb2iVMjhezYLXjkS4XEyH5+5E6WFOatcAQFEyucGAWKXQYv/1GOnhd+MK3BOyALUGUBZXYDCkVBWXNTZHqSjOaFAm5cMhtrh6g3DxaBRa9W1mtEzbzQXwNf9tL5IcNsYfweCwDhb3HXsxHqmJqQio6o+AsKIKFUREdP+Lj4+32qYyKjxUhsjIyFLL2rVrh7fffhv9+vWDUln0+/LKlSuYN28ePvvsM2nWSWHBggXSrJNipkUiurd1e/wZyORynNi8HoXq4r/B/SOqo+ujT+Hw6uW4dGg/1AX5CKpeC037DEB4w8Y29X3p0D6rba6fPS0lOORmWk5wtgutFtdOHZcet8uN6EsIqlG7TNtkpabg3J5daNS9t8V2yXGxyE5Pg2dAINz/rZpHREREFXPixAnMmjVLej5mzBj89ttvZtuKZPCvv/5a/7pXr148/eW0dOlSpKWlSc+fffbZ+y4B4Oeff5a+qlQqPPXUU3d6OERERERERERERER0D2CCA90xcrkcz8x6DCPeHIR9q48gNzMXNZpGQFnbD2N/X4aU7OKA/fj0DGy9cBnPdmiNV7uZD77fF3MNU39biagBXpD1awbXUynw3J0A1a1cab1WLkNWAy+ovR1xyVuD69cS8fbrP+Da242gcSn+dhDrs5r6wHdVDHw2Fs/ubEpeuIvVY9XKAVlh0fNbQ6rC7Xgy3E4kIbO5v8n2BflKODpZTnIoKCyuwuC58QZkJWbYdnR2wD/Li2dREzSNrc+CGpl62WyCw6k95/DTG7/hzL4L0mvxYVvLPk3w7OyxCK8bYrVvIiK6vcTvhpK/H8rTh07r1q2tttdqb0PJBzs4duyY0esXX3wRs2fPlqo3GIqIiMC0adPw4IMPomfPnvqgk48++giPPPIIatcuW+AuEd1d5AoFuo8dj7aDR+DykYMoyMtDYPWaUCiVWDb9PeRmZerbZty6iYsH96L98NFoN3SU2T6vnDiGzT9+LVVosCb1RgJS4uOw+n8zcT9SKFW4dLjslSJizpw0m+AQc/oEdv3+CxIuX5Rey2RyVGvWAl0ffxreQZZnmSYiIiLL+vbtq09wWLRoEdq0aYNnnnkGDg4OpRLGn3jiCX0SvEgAHzx4ME9vOURFReGdd96Rnnt6emLcuHH31Xn88ccfsW3bNum5uIcODg6+00MiIiIiIiIiIiIionsAExzojvP080DfJ7rpgyL7/vCrUXKDoR/2HETbiDC0rxZutFxs9/mRZdh6fR/kDQCvFHckpXkgrXMw0lsHIPjncyh0U+LmwxEo9Cj6QG4tsrHxzwUo7O9jlNxgKOnBMDifT4fzleLAppJkBcWVFGyikCO9jT98V15BXqgbCgKcSzVxzguFxumK2S5y85XIynUANFp4br4Jrw2lg6eqNgjDnhUHyx7kJZWcKO3UP2fxRq8PjaptiPN+aEMkzh96D1/tm46QmvyAioiI7g0jR46UkhNEMElubq4UUGJplsyWLVvihx9+wKhRRUHNhYWF+OSTTzB37tzbOGoiqiwunl76gHqtRoO5Lz1tlNxgaO+S3xHeoAlC6tY3Wi7+Nl73zec4988Om/cbdeQgoo4ekqor3G08/AORftN8JTtbeAVXwa2Yq2XeztzPY1F9YtnHU6ApLE4G12o10jkUCQ+jp8+Gh39AhcZMRET0X9a9e3epot369euh0Wjwwgsv4MMPP0Tz5s0RFBQkJXyLe6jjx4srQrm4uGDx4sVwcrI+sQoB6enpUjJI1apVkZSUhC1btiA7O1ufSC+SHO5lv//+O1asWAEPDw+cPn0aBw8W/X9aHJc4PiIiIiIiIiIiIiIiWzDBge4q+67EIDopxWKb3w8fN0pwSM67ia8ufIokeRxqhhUtqxmWgLRMZxw+XRO5cED8k7WhcVYACuNAmQJnmZhW1OL+0joHWExwcD+aguxGXhb7kBWW2K+fE5SZaoR8eRLpHYKQ0cofhW4qhPt4Y2zblniwXi18cPYrXMm6XrozjQzqkx6ocjwNyvXX4ZCQV6qJp587ajSJKJXgID+cg8LebhbH2sq3jsnlP77xm1Fyg6H0pAx8+vg3eH3e8wirw0oORER3FTvGzIrAhPtltkURTCIeZTFixAhMnToV58+fl16vW7dOCmi2lBhBRPee6MgjSLthObA/ctNaowSH1IR4LP1ocvkSAu6y5AbvKiFo3u8h1GrTHkunvYOk2GulG8lkcHJ1Q2FBAQryiqrlmUoa8QutiksH95V5DBFNmptcvmPBz0bJDYay01Kx7tvZ6DP+BXgH856EiIiovP766y889dRT+OOPP6TXN27cwIYNG0y2rVu3LhYuXIgWLVrwhNtIBP4fPnxYX9XAMAl/woQJ9/x5FAkvy5YtM1omKoD8+uuvCA0NvWPjIiIiIiIiIiIiIqJ7CxMc6K5yNuFGmdoUatWYdfYjZGpulWrn6ZaD1g0vYvfR+tC4KmGyMIEN8Yh5oa4W17sfSEZyn2AUBJmZpawQkGmMd6TIKgrKUeQWwnvrdekhgiMXXP4GQRFFM45+1PBlLL62BttvHEB2YS5kkKGxVx2MCOuPep1qoFBdiG9fnId1P2+VnuuE1amC5798Apt+3Vn6cHdnA/EFQLDK5FD9HD3RI7BZqeWxF+Nxdv9Fi+fhzL4LeLLey2jZpwnemD8R3oGWkz6IiOjeI5Ib/ssBCeJ3dZ8+ffQJDgkJCYiNjUVY2L8ZlkR0X7gRfdl6mytR+ucF+XlY/P7ryE5Lw71OJpNj+Psz4ObtI70eMXUm9vy5EGf/2Y78nBwpsUEkH7Qf9giCa9ZBoboAW+d+j1M7tkiVL3R8Q8PR9fGncXKL6WBIa5UjarftUGr5zavR0sOS62dPYd4rz6J6s5bo89zLcPG4t2dAJiIiuhN0FRleffVVKXnhn3/+kao2ZGRkQKVSISQkREpoGDJkCIYOHQqlkh8xlJWo4LBq1SqpmmCtWrXw9NNP4/nnn78vkucbN26Mhg0b4tKlS3Bzc0ObNm3w3nvvSV+JiIiIiIiIiIiIiGzFTx/oruLsoCpTm08OLEKmQ+nkBh1311wE+KYgIcXbdAMbJkuV5xVaXp+vQejs84gfXwO5NdyM+xbJDfny0uM6dLPUsqbdG+qTGwRXpQvGVR+OR6sOQnJ+GlyUTvBUuevXK5QKvPjd03hk8lDs/fsQcrNyUbNZNVw4EoV3H5gBTWFxgJGOTA0o374B9ccBQBXjcx3o5IWZTcbBUVH6PUhNTIWtDm88jsdrvYBhrz+IAc/2hncAg4qIiOj+Ub16daPXYjZTJjgQ3V9UTk7W2zgWt1kze+Z9kdwgVGvWQp/cIDi7e6DnuOfR5dEnkZmSDEcXV6OkAYVShd7jX0TboaNw+cgBqPPzEVitJq6fP43lM6YYJT3YwjMgEEPe/kDqt6SsNBvvSbRaRB09hLkvPo1WDz2Mxj36MNGBiIioHFq1aiU9yP7mz59/357WGjVq4OTJk3d6GPcMUSVSPIiIiIiIiIiIiIjIGBMc6K7So3YNfLRxB9RmAmG0Ci0KVNloNP9zZMsL0bjKVYQWx9+YFOibZjnBQTwsTI7ldizZ6rhVyfkIn3EWOdVckVPLHent/FHg5wKZtnTH7gduwjE+x2iZi4czxn/2mMm+HRUOCHb2N7tvvyo+ePD5PtLznUv2Yu7bv1scq+y6Gson46Dt4AJNCyfp2N0uy/G/b95EsJvp/QSE+0kziGm1NmSEAMjJzMWCqUuwZNZKTFk2CS17N7FpOyIisjPd77mK9kF6zs7ORmejsNByIiQR3XtqtmqHnb/Ng1ZrPji/IDcHXz0+DOr8vDIH8d+tnNzc0Xn0k2YTOryDqpjd1sPPH836DJCen965FXuXWL4nMcXR1Q0jPvgU7j6+ZvZRnAxui/ycbOz5YwEOrfwLgyZNRliDxmUeExEREREREREREREREREREd1+paeWJ7qDAt3dMLxZI5PrtEotCgILcEGZhgy5GoXQQq6wHnUpl5tvIxPR/Ra6UCblwWNf6WoL5jhHZ8FnUwLCp5+C165EyAyqP7g7OGJs7UYYrQqFg1PRjKRyhRwdBrfGl3umo0aTCFTUn7NW2tROVgjId2VD+UUylLOTkbvyFjZ8v8Vs+4Bwf7ToXfaAoNysPEweOAMnd58p87ZERESVLT8/H7GxsUhJSbF5m6SkJKPXvr6mA3GJ6N4lqgjU79LdYpvkuFgpyeFeS25wcnVD834Pom7HrlCodPckStRu2xGjPpwF39CwCu/j8Orl5douLysTp7dvNrvep0oIQus1LHO/ItHhr4/fR/yl8+UaFxEREREREREREREREREREd1erOBAd53JfbpCLpPhz6MnUGAQMKRxywOUxjk5ydkuqOKZZrG/lHRXyzvUAKqEHBQEOgKK4v4dr2Qi6JdLUOSUfWZmuVoL/6VX4LMmBnlV3SByLBZvmI7QqoFA79548aunkJyQCg9fd7h7u8Ee0m6l4+KRqHJvv+uvfXjio1Gllh/bdhJ/f70eZ/dfLFMVB53CgkK82mUKxk4bidGTh5Z7fEREVHYybdGjIiq6/d1IJDU0atQIqamp0us333wTM2fOtGnbI0eO6J+7u7sjIqLiCYpEdPfp9fQEKBRKnNqxGZr7pFKLTC7HmE+/gue/lRDyxz2PrLRUOLt7SIkP9pCRdAu3Yq6We/sLB/ag7dCRpZZfOX4Uxzasxs2r0YBMJKmX7ZeTRq3GondfQ+cxT6LVwCHlHh8RERERERERERERERERERFVPiY40F1HKZfj/b7d8FzH1th64TJyC9TYOGcD9nVVlGobk+KDOgGJUClMz5yar1Yg9qblmZUb+QVivE8YVv+6FZG5ydAoZHC6mgmnK1kVPhaRHOFyrigB49S209h2dScK8tWo17YW2jzQHApF6WMqj8LCQhxcf6xCfYhqCyUtmbUSP725EPYw//0/oNFoUL9dbdRuWcNuiR1ERERlFRISArVarX+9ceNGmxIc0tLSsGnTJv3rLl262O13ORHdXRRKFXo9MxFtHx6JqCMHUVhQgGOb1yI1Lq5S9hdcqw4adu2F45vX48aVy5WyD1FtIvb0SZxKTICmUI2QOvVRrWkLKfHBHkQiSNTRQxXqoyAvt9Sy/cv+wJ4l9rkn2bVwHgrVagTXqI2gmrXg6GIlGZ6IiIiIiIiIiIiIiIiIiIhuOyY40F3L380VI5s3RnZGDuac/AHoWqNUG7VGgcPXqqJV+FUoSyQ5FKjlOHK2OtSF5gMPX23THuOatYSzSoUBo7siPSkDG3/ZjsvHr8CptxPaDWyByQNtm9HZms+f+t7otaje8MqP49FxcJsK9XvldAymDPoEcZcTK9RPjabGM1BHn7yKn9/6Hfa0YOoS6aujswN6PdYFz85+HI7OjnbdBxERGRATXFe0AsN9WMFBVCQaMGAA/vjjD+l1ZGQktm/fjm7dulnc7sMPP0RGRob+9fjx4yt9rER0Z7n7+KFJr/7ITk/D9l9/qpR9iKoCTfs8AJWDIxr37IvstFSc2rEFt65dgYOzMyKaNMfKz6bbZV8bvvvC6LWLpyf6PPcyqjdrVaF+b1yJwsrPPkL6zRsV6se/ajWj1/GXztstuUFnzx8LpK8qRyc07NZLOv9Klcqu+yAiIiIiIiIiIiIiIiIiIqLyY4ID3fXysvMgzyqeZbmkW1nu2H6xDsK9kxDgmAUtZEhKdseVJF/k5TtY7LtNcJiU3GCYdDDs9Qf1r3cu2WvTGGVyGbSaskWAimSKD4Z+hsad6+PdP16GT5A3yiorLQtv9fkQSXEpZd62VF/pOTh38CLqtq4lvV79/SZotZaPSaFUoFBdWOZ95eXkY82czYi7nIAZGyZDbqdZY4mIiGw1YcIEfYKD8NRTT2HPnj0IDg422f6XX37B7Nmz9a/bt2+PBx54gCec6D9CnVe62pm9hDdsIiU36Lh4eqH1Qw/rX5/eudW2jmQywMrf7yVlp6VhxcwPULVRU/R/cRJcPDxRVjkZ6Vj28ftSYkZF5WZmIjHqEgKr15ReH9+03uo2crkCGk1huapFHNuwGmk3EjD4zSnlGi8RERERERERERERERERERHZH6OK6a7n4eeOsCwVlMn5ZtvkqlW4eLUK9h+uh4P7aiFxoQwFKVYubw2w9uwFi02iTly1aYxlTW4wdGLXGbzZ60Pk55o/PnM2/brT5uSGpt0awtPP3ez6U7vP4uWO72HHn3uk19Gnrlnts+uI9ujzRDcolOX7URKZcg7f7/kAK698ihNJ28rVBxERkakKDbpHRIRxhSKdjh07YuzYsfrX0dHRaNmyJRYuXIicnBz98rNnz+LJJ5+UHrrEPw8PD8ybN0/qn4j+G1y9feDk7lEpfZ/dvd3i+ptXo23rqIzJDYaunozEsunvo1BtPrHcnJPbNtmc3FC1UTM4uZm/J4k5fQKLJr+OiweLEs1vxVi/H6vXuRvqd+4OWTmTpqOOHsKSae9i7Vef4tyeneXqg4iIiIiIiIiIiIiIiIiIiOyHFRzorqdQKDBgXC9ErdiCG09VM9lGnl0I3z9ioUougNPlNChy1MgLdkZOffMzkMoKZDgce91oWdqtdClpIO5SPNx93BAflVihsfsEeSE5IRUubWXwGqWEc3MZtIVA9j4NUhYWIu+0FhqlDCdccjFq7kJ4h/qgWXAwRjRsBD8XF6v97197xGqbqvVDMeGrJ9GseyPcikvGwmlLsfbHLSbbimoMnz35HVr0bgIXD2erfQdFBGDshyMxdtoIKUnj2jnj82mOYzsFWszKQv/gSASq/g3oygF2XAxGneBvEezWzqZ+iIjIMpm26FERFd3+bvbDDz8gJiYGW7cWzY4eFxeHRx99VKrmEBgYiIyMDKSmGgfturu7Y+PGjahTp84dGjUR3QkKpRJNevbFgRVL7N739XOnjV6LZAFRtSE1MV6qqJCamFCh/l29vJGVaj0p+saVy1j8/iS4enohpG4DNOzWy6aKDlFHD1pt41+1GrqPHY/Q+g2Rfusm9i5ZaLYyhaZQjQ3ffYGqjZvBwdn6PYlXYDDaDhmBDsPHYMlH7yItIR5lFXP6uPT13J5d2PD9lxjy9lSEN2hc5n6IiIiIiIiIiIiIiIiIiIio4pjgQPeEEW8+hFN7zmHbvCtIGhqCQk+Vfp3jlSwEzLsCp2vFsy0LLufSkVvbE9qSV7kI9lQD8kIZFAazfK6fuxVfT5yLgrwCu41bJAloemXA/yXjQbj3UsCtmxzXP5XhXN36UPs54WZBKhCdim3RUfju4AF8/cAAdK9W3WL/hQWFVsfQvGdjKblB8KviA0dnR4vt83LysfnXnegyrD0OrjtmsW2XEe2L+g3xxYBne+G7l+fr12nlQH4NZ2gd5VDF5EKRVjRWp9ZytP02EyN9j0JRImo2wjkeKbdGwtNhE1wcGDhKRESVy9HREevXr8e7776LL774Aup/Zy7Pz8+XEh9MVX2YM2cO6tevz7eG6D+ozZARiDt/FjFnTtq1X5lCoX8euXEtdiz4qVyVFMxxcHaxKcFBSLx8UV/VYP/yP/HQa++iauOmFrfRqK3fk0Q0bSElNwgefv5QOjhYbJ+fk4Ozu3egTruOUlUHs2QyqY3Ur38AGnfvg92Liu9JyqOwIB9Lp72DJ76YA58qIRXqi4iIiIiIiIiIiIiIiIiIiMquOLqb6C6mclDho9VvYdrjw9F/SS5q/RyLwB+iEDb1DMKnni2V3CC4nE+BPF8OeY4MsoKipAbxVZ4rg7yg6NLvWj1C+np060l88cwcuyY3CIn5CfB7oThgyZBMKUPwGzIgqHSeUY5ajYlr1+B6errF/uu3q211DA3aGycKXDlTOmCzpKtnYtB1RHtENAwz26bL8Hao1jBc//rYtlP651k9vJHwXW3cnFkDtz6ohvg5dZD0cigKPRTwm+KI7p4XSiU36Lgo83HkzCtWx0hERDbQ2ulxH1OpVPj0008RFRWFKVOmoFOnTggICJCWe3t7S8kM48aNw4YNG7Br1y4mNxD9h6kcHDH03Wno9cwLCKpZGyobqgvYonrTlvqkgq3zvrdrcoOQEm9blbWSCnJzsPLz6VaTI6rUqWu1ryq16xm9vhVzzeo2SdevoX6n7vAONp9kUL9TN6P1104VVWKwh9Wzp9utLyIiIiIiIiIiIiIiIiIiIrIdKzjQPUOpUqLvE92kx4KpS/DbtKUW2zsm/J+9uwBv6mrjAP6PJ03qbpS2UNzdXTcYLhNkgwHzb8rGlAnbYL6xwRgTYMBwd3d3L20pdbc0nnzPuaVpQ7SlRd/f82Qk95577rk3bdfbnP99iyG7mgtVjDd4Op7VeoVYjNFNG3PP/5u5BiZT1c/g9BzCB49vve9SAqEJoQE5uJESYLVOpdfh4z074S2TcnNL24XVwGO1YyARlH3bPj6pF5Z/u95uMMM/zBcdBre2WCb3dHM6btZGLBXjnb9fxsdDZiL9RqZ5HV/AR+9xXfHyzxMstik9f4WP+SL/2WDLDkV8qDp5QdaIh+CgGwgWFTrcf5DPGRhNavB5UqdjJYQQ8nCrzP+fK7NNeHg4Pv74Y+5BCCH2CIQiNO7Rh3vsXfQnjq1dcUcnSypXoFGPPtzzO+2rOrCQw/Y/ZkMikwM8IKJRU8S07cCdh1JNevXHqc0bYDTYDmZ4BgYhqnlJiKOUxM35NYnETQ6RVIq+L/4P6779EkU5WeZ1PD4fjbr3Qffxk1BdWAjDaDCAX67CBiGEEEIIIYQQQgghhBBCCCGEEEKqH1VwIA8ktVLtUjv/xVchvZ5fdgtqVjWAZwKPb0KHyHCYYIJBb8DJbWerZZziKOffYgq59bGwcbHvzu0J17Hs0gUsv3QBb2zbhG7//IHLWWVhg4Aa/nh30asQScomGJXy8vfA9DXvcMGQ8rqN7OB0TN1Gd8SNS0l4t9/nFuEGxmgwIvlaGlZ8sw6rftyIjMSS9c26N4JRykfBKOuwRilRKA8yvtbp/kV8I1ILk5y2I4QQ4gRVcCCEkGqj07h2TWIXj4eIJs1hNBq4vpIulVVEu5/EHj2EC3u248Lu7dj40yzMf20SspPLqsKxCgr9Xvwf+OWC2KXkXt4Y9Ob74PMtQwJ123d2ul/WJiMhDqu+mm4RbmBMRiNXmeL4+pU4tXkdCm+tr9GwCapSQVZGlfZHCCGEEEIIIYQQQgghhBBCCCGEEOeoggN5INVqFulSO4HagKA/LyLlhYbQhiks5ntuuRaL48kpWDBsSNmdnhU8iPpKIWgj5gIGhtM66NepYMozoe+z3XHx0BUkXkp2eZzGQud3kNbp+TbDDewOqbdLLSrCuLUrseuZZyETlYQaOg1pg9qXvsf637bi/IHLEAgFaNO/OTdeD193qz7aP9EKddvUxuUj12yOp9PQNqjdPAovt30XeRksHGLt3N6L3IP57Y2/0XtMFzw740n8sn0zTG7273CqNQiRZ3CDkR2i/cIWKNRLcCI9BeM8atlvRAghhBBCyD0UUDP6zjowmXDl4F4u2DBk6icubdKwe28kXTyPvLQU3CsFmRlYOeMjjP9uDoS3rknqduiCoOgYnNm+CSlXL0MgECC6ZRs06NITUkXZdVipmHYdcXzDamTEX7e5j3odu8I3rAb+eeslqAsLbLa5eeEs92B2/f07V1Wj7dDROLT8X+i1zkPVrog/dQLN+j5eJX0RQgghhBBCCCGEEEIIIYQQQgghxDU8k3lmNyEPDq1Gh6ciptidgF9efudg5DxW0+76VmGh8PvxDK7mxEP6jRf43rcFDpRG6D4qwp9Lv8P5/Zcw4+kfbfYj8APknQTgSQHNRSPUZ0yQd+MjZKZ1dYXyDpyoi0KlW9n+WJUJJ4UfZnTvhVENGqOyivKU+Pb533Bg1VGuIgPDqkD0HtsVL/wwHokXkzClxdsV6pMFKvSjQ/FXwSmb63kwwUtWjLo+GXjS9wRqSSzvwlreqvRGSLr5NILWFkKn0aFuq9roPa4rFF7yCh4pIYQ8epKSkhAeHs49r/3ChxB5eN1Rf7qCPFybPZ17fvPmTYSFhVXJOAkh5EHHqi7MnTIOamXRHfcV0bgZigvykZkQZ7eNQCTGhJ9+R/zpE9j6m+1rkrup30tvoH6nbpXeXlVYgK1zfsT140dhMpVckwhFYi7E0XXMBKRdv4YlH75VoT6b9nkcBr0O53ZsQVWo064ThGIxDHo9gmvXRYMu3SFxo2sSQgghhBBCCCGEEEIIIYQQQgghpDpRwIE8sM7suYD3B3wJdZHaYbubbzWF3k/msM1HQQ2w3H0V+P62qw+YlCYoR2ZBDhmU+cWWKwWA31tCeDwhAE9YVpZAc9WI9Pd1CPxACFlj24mFfKUE6VpPGAx8FOW6IS/THXoD32nAoX+tGHzVrjty0/PgHehV6Yn/GYmZOLPvEq4bixDUKAzNImsgwtML2xbswddjf65wf91/H4J/fK5aLefxjAjxKIBEaIBMoEWULAtjfY9BLrC+s2qi2gtvXR4E4Q9ZcNuRZ14uU0jxwX+vo1XfZpU4UkIIeXRQwIEQQu6ehLOnsHrmpzDcacUAHg/tRzyFg0sXOm0qlrlBq7rtmuQeYOGGbuMmccEMuZdXpSf+52ekIenSBeSlpcI7JBShderBMyAIZ7dvxrbfK35N0qhHnyoLONyOHePAN6ahRsPKh80JIYQQQgghhBBCCCGEEEIIIYQQ4hgFHMgDLTUuHZ+N/BZXT9i+06mJByR82c5pP6/2qYWdhY4nwWSck8P0ax7k53ItlvtPE8JjkNDmNvoME5InauD3shCKbnxzAMJoAAoNUmRp2CSgslCEXifAzWv+0OkdV32omQVIvzwGvc4AoUiA9oNa49nPRyO0VjAqYsmFs/jhyCGk3brrLBtJh/AIDDME4ufhFb8rrIkPFC5tjgK+5QQvbzclvGVlQRSpQIdwaQ66uF9HA2kaxHwDigxibMuOwZKUllAWCBH43BXwNZYFZqRuEsw99w2CIwMrPDZCCHlUUMCBEELurtzUZKz9dgayEhPuqJ9mfQfg1OZ1eFC4+/pDmZcDo8EAgVCI2m06oOOoMfAMqNjv6qe3bMDhVUuhzM0pWcDjIbJpC0Q2a4md83+r1NjEUhm0alWltnXat0yG8d/+BoWPb7X0TwghhBBCCCGEEEIIIYQQQgghhDzqnNwnnpD7W3BUIH489AW6jLAdYuCZAJ5a77SfbGOa0zbScBPSnquDvA6BUNeQo7iWBxAthPsA2+EGRhjAg6K3AGnv6pHwhBap03RIXczDDZUPsjQKi3AD115kQFCNWxN7HFDujOfCDQz7d++yQ3itw/tIupYKVy06dwbv7txmDjcwLE6w/+YNfJV/EdIwT4fbGyNE0I7xhnayL/R93WGS8MAzAn7z0iDklf/RYoKHRGOxrdogwjVlIP5Kb4OpiY/jzbiBeOrMM5h3swOKtGJ4zU6xCjdw2xVrsP7XrS4fIyGEPPJMVfQghBBil3dwKJ6e8R1qtXIerHYkNzXlgTrLhdmZXLiBMej1uHxgDxZ/+BbyM9Jd7uPEhtXYMf/XsnADYzIh/tRxHF+7AiKJtFJjE0ql4PGr588dWpUKZ7Zvrpa+CSGEEEIIIYQQQgghhBBCCCGEEEIBB/IQyEzKxsVDV+2uV5zOcri9v0SG6zsuOd1P6RzPrOE1kfRGI6S8XB/aL2qAJ3C8naJHSQN9OlC0xQhltDuMrNSBHTKFFmKJZQWE8gSFOrgfy7RanpdZgPnT/oUrNHo9vjm83+76VGURAl7vYHOdSQRo3g2Aem449E95Qz/YE9r/+UP1bw0Y2rhBuyUF78s6o3tQHfDBA59ngoBve3as3iSAxiiGChIIeUZIjhbA94MEyA4W2B3byR3nXDpGQgghhBBC7paCrEykxl6p9PasGkB63DU86FhQ4cB/C11qq1OrcWj5YofnNLh2nUqNozgvF93GT+KqQPAswtdV48a5U1XeJyGEkIfDX3/9BR6PZ/GoU6dy/z9jBg8ebNUfuT9dv34dBQX2/6ZJCCGEEEIIIYQQQgghhBDXUQUH8sD7+eU/kHkz2+56zz0p4Ct1dteL/7uMzDUZTvdTkO9WUnCh3AeJAoHz21rzbr/paJTI6TZSsc7mHbMFRToEz70MvtZoc7uDq4+hIKfQaf97bsQjV6122OaKlx7PzxwDhZfcYrn2BT8YurLqE7dRCKB5PwDGSDEC84T4pd0onBz4Hvb2fQtCZykQAD5vxMN3xk1ILhVzr1kGxFBPAkNzGYw+ZdubTHQrcUIIqRCq3kAIIdVu+++/WFYhqCBVQQFUhQ/HhLirh/dDqyr5nd6R6yeOQFOsdNimKCcbHUeNgVjmVuFxuHv7YsjUj/HyP8vw/Oy/qq2iAyGEEOLM1atXcfbs2QqfKDZZftOmTXSC73NqtRoff/wxGjZsiJycyv8+SAghhBBCCCGEEEIIIYSQMsJyzwl54GQkZuLYJsd3zxTlaFBzYSzyRsYgx6tsonygQoHoU/lIPZgCA5tMH6+HINL2t4RWK0BujvWk/kKlzOkYNVdvm5BfbAQkjif8mwx88PQlESTTrTyF/5EsuK+KA19jO9zAGPQG5KblwcPH3WH/+RqN03Hnq9UY/sYADJjSG8c2n4YyvxinTl3E+l437G8k5kM32BMhtYK4lxKBEBKBAh39mmJ35gm7mxmv64BYdsAl9L3doXvaC6bAW2EQvQmCg0qIf8lG8x6NnI6dEEIIIYSQuyU3NRmJ5884bSeSSMHj86BVqczL3P38IXWTIzMxAQ8CgUgEg85+eJxh61lYw1koQV1U5HR/amUR2gwegWb9BiDh9Alo1WrEnzrOhSic8QoK5v4ViSUQ+UoQ3aINYo8dQlWIaNikSvohhBDy6Fi+fDkaN25coW3WrFkDjQt/wyP3VoMGDRAXF0dvAyGEEEIIIYQQQgghhBBShSjgQB5oN6+kwGh0fkd/SYYKnjOOQhbkBp2/FPxiPWKkHki+nFLSwAio38yD9GsvCKItvy00GiHiY4NgZCUFbmNgDyMPAr79MRQs0yOiaSHqd8sFX2hCXIIWV7xrstoONtsb9DwUF0jBY+uNZa34V/Ichhu4NgI+vAO9nJ6Pml6ut5G6SdBpSJuShX08sf5CosPteB3cEdMi2mLZyIg+OJZzEUpD2WSuUiaDCYa5ZVUndAM9oHvRz7KRkAdDZwU0URI0qNEABdmF8PB1HOIghBAC8Ewljztxp9sTQsjDLiclyeW25cMNjFjq9sCEGxhn4QZGIBRCqvBw2s47ONRpG6+gEO5fsVSGmLYduedGg95pwIGNwS88wmJZ++FP4sbZU9BpHFeyc0VI3fpQFRVCpqBrEkIIIa4HHKZPn16h07V06VI6vQ8ACjcQQgghhBBCCCGEEEIIIVWPAg7kgabwkrvUTl1UcrczcVox92BuosCijSnDCNX4HGhH+cAwzIcLFhQVSpGfJ4eJvbotjyB3U6NOrRSojSK48bTg2cgr8E554rl3diCmffl9JSNNcwXzMzogU2c9ISY3zRMmG2EKUa7zO7a1G9jSpYn/rULCUNvHF9dysu22GW3jrqR6E4t0OCZxl1hU2NixaD9y0/PQs15THAy/iExFvnm9KVEP/a8FMB0pOTaThAfdWG+7fRvDRJg291dIVhSgdf/mGPfpKEQ3YWERQgghhBBC7g2Jm2vXJLYm1mcnOaiOVkVkHp5QFZT9Dl7darfpAImb4+oNTI1GTeAVGIy89FS7bZr07Gu1zKh3fk0iLvee5Gek49L+3dw5aNyzLy4f3Adlrv3rIFes/OIj8Ph8RLdojQ4jn7EKUxBCCCFMzZo1oVQqkZmZiUuXLuHixYuoX7++SycnNzcXW7du5Z4HBwcjNdX+/y8JIYQQQgghhBBCCCGEEEIeNhRwIA+0mJbRCK0djORrVfQhnwkQLclBlmcAVHUdVzkICc4Gn8+KLPChNEgg4ush5BnBgwkGEx8avRDv90uA0WgZpGCCJIWYHLgXXyX3gdZU8m1oMPCQm+aBvHTru52K0oshTSircmCLu7cc4z8b7fKhftWjD8asXo4indZqXbeISIyo39BqeSMv52GCpr5R3L+/v7MQy79dB6OhrOqEQMiHMZwPBAuAPCP0CUYUtA9A0f+8YBLyoeArIVVYhzvK0/dwh2hZPg6vP4Ezuy9g5s6PUaelZcUIQgghhBBC7pbQOvXh4R+AgsyM+/Kku3l63bWAAwtTtB/xlEtteTwe+kx5FStmfAS9xjrMXatVO9Tt2MVqeWhd5xNDw+s3gslkwu5/5uHUpnUwmcquSXh8AaqCyWhE7LHDuHnhHEZ8NAMBNUuugwghhJBSAoEAQ4YMwZw5c7jXy5Ytw0cffeTSCVq1ahV0tyonDR8+HD/++COdWEIIIYQQQgghhBBCCCGEPDIczyQm5D7HJsWM/3QU96/tBpXo0wQEzbsCz92pEOntf7N4eynNz1mFB61RhGKDBEqDFGqjGGHSPBiNp+zux0dcjFrKHKQneCM13hfx50KRm+4JE4/LWZSNR2eE36p4i20VXm7mihF8AZ+r3PDd/s8QUS/M5eNsFhSMVSOexLB6DSAVloQsanp54/2OXTHnsScgZOmN20TI/dHWN8Zhv8NrdMCK79bjv5lrLMINjEFvhCleD9NBDdS5Qtx4vzGyBteAupYHNDUVUDeyDnfczuRRNi5VkRq/vf6Xy8dMCCGPHFMVPQghhNjF7uTfYcTT1XaG+IKyCfl2r3scyL5ZPVUiJHI5G5D5HLBAwujpX8M7KMTlPsLqNcRTn32Dep26QSgSc8t8QsPRbdwkDHh9Kvg2wgj+EZFcgMEuHg/N+g3A0dXLcHLjGotwA2MyOq8AURGaYiX2LJxfpX0SQgipOjqlCQUJJuRcKvmXvb6bRowYYX6+fPlyl7dbunQp969CocDjjz9eLWMjhBBCCCGEEEIIIYQQQgi5X1EFB/LA6zKiPQx6A1cxICs5x7w8qnEE0hIyUFygqnCffL0JdY4W4MuZr6NAwYeIz0dqURGeX7caBpaA4ObNOP5ANEaa7nQ/fSOyseaKe9mC0vlKLORgMMHtSh68tyZBmlhksV1RXjH3r0QmxuTvxuHx53uhMmr5+GJmz774ukcf6I1GiMpNnrLn/YYj8eqJ33G9KM1q3Qu1+6G5ZxS++Wamwz5YiCP1+RgYPEsmMZXS65xnrvip5VInAM7vv4ybV5IRXifU6baEEEIIIYRUh/qdu8NoNGL/kn+gzC27JgmoGY3s5Jsw2Kia5gpWGWLoe9OhLS6GQCRCXnoq1n33JVc9oKrIvX0sxuwqjbIk8C2USNDj2clo2LVy1yR+NWqi/0tvwPTi6zAaDBDcCl870v/lN7Hss/eRk3zTcgWPh25jJiAoOgZrv/kCd0vi+TNcBQ/2fhFCCLn3WBWfzNNA7GojUvazcFvZOh4fCO0ERD/Bh3/TyoUHK6JLly4ICAhARkYGzp8/j6tXryImxvHNQ7KysrBz507u+YABAyCTyVzeX1JSEn7//Xfs2LGD21deXh48PT0RERGBnj17Yvz48ahTp47DPkrPSZMmTXD69Gnu+YoVK7Bo0SKcOHEC6enpXPCC9TNo0CBMnjwZ7u7l/r7pwPHjx/Hnn39i//79SExMRHFxMXx9fVGvXj307dsXzz33HHx8fFw+3oMHD2LBggXYt28fEhISoNVq4efnx4196NChePrppyGVSs3t2f6CgoJQWFhSKXfu3LmYOHGi0/18+OGH+PTTT7nnY8eOxbhx49CtWzerdpGRkebn7DhZO1tfn2vXruUCL2z87HyyZYGBgWjXrh2GDRvGnVdXvjYvXbqEv/76C7t37+be76KiInh5eSEkJASdOnXi+uratavTfgghhBBCCCGEEEIIIYSQ+w0FHMhDofuTnbigw+ld55GfWYCQWkGo27o2Phr8NQ6uOVahvgQiAfo92x1PThsK/zBf8/Jdn29A8JpzyO0VAmUDbxQVyeDpURI0sIV/251CbclT56F+xE1EBmVAKtZCqZbiekogrqcEwcjjwW9lPEQ5Grvba1Ra/PTiPEQ2rIEG7R1/OOkI+8DMlXAD4y1WYF6bl7Ej7Qx2pJ9FsV6DKEUgBoW1RS33YFw5FovslFyHfRTX94IuQGp9PMViLuQgFNk/d8JNBVbLMpNyKOBACCE2sCyekzyeU3e6PSGEPCoadu2J+p26IfHcaaiURVwlg6Do2ljxxYdIOHOyQn3xBUI06tEHbYeMhMK7bJLf6S0bqjTcwFQm3FCeXqPBtrm/wL9GJAKjat3RNYkr4QZG4eOLp7/8HlcO7MXVw/uhVau5yg5Ne/eHb1gNJF06D1VBPu4akwmF2VkUcCCEkPtA7lUTjs4woiDB9nr257qkPexhhEdNoPW7fHjHVF/IQSAQYMiQIfjtt9+418uWLcO0adMcbsPCBHp9yQ0+Ro0a5dJ+dDodPvnkE3z99dfc89sDE+zBwgmzZs3iAgnffvstxGLLG4/YwrZ78sknsW3bNovlGo2Gm5zPHqzPNWvWoG3btnb7yczMxPPPP4/Vq1dbrUtNTeUeLNTx+eefc8fA2jrC2k+YMAEbN26029/mzZvx1VdfcdUwmjdvzq1zc3PD8OHDMX9+SfWlf//916WAw8KFC83PbYUWXHXt2jXufLKgx+3i4+O5BxtTy5YtsWTJEkRHR9vt64MPPsCMGTNgMBhsvt9nz57FL7/8wgVb2DmoSHCEEEIIIYQQQgghhBBCCLnXKOBAHhoCoQAtejWxWDb4lf4VDjgYdAYIxUKLcEPStVSs/mkTpCYTguddhVHEg6GLGPjU/h3UbpxzR+v2jvelk/DRJPqG+bVYpETLOnGoEZCF3WcaoKBtAHw33nZX0tsYDUYs/3bdHQUcKkrMF6JfSAvucTu9zvJDNVvUkQo7a3jIy3CHb3A+d0e92/GPKCHYaVnNgvEN8XZt4IQQQgghhFQjvkCAmk0tf0du3m9ghQMORoMeYqnUItyQmZiAszs2437Exnt8/So89spbd22fIrEEDbv14h7W43F+TVLVFDRpkBBC7rn04yYc+MAIg9q19iwEsetVIzp8ykdgy+oLOYwYMaJCAYf//vuP+5dVXmBVDY4ePeqwPZvgzu7Uz6oClGIT+dkd/Nmd/Nlk97179yI/P59ryya9nzt3Dlu2bLGobnA7tVrNVZA4fPgw97pBgwZo1qwZF75gY4qLi+OWs+oU/fv35ybvs2oMt2MVCjp06IDr16+bl7GqFh07doSHhwdu3LjBVXRgwQw2xkmTJiE2NpYLOtiSkpLC9ccqNpRiVRnYMnbcly9fxrFjJX8PZv10796dO4a6deuaKzCUBhzYeUlOTkZoqP3KsAcOHOCCB6UVGlhVDnasbJzMnDlzzG1ZeKG0msXtlTJOnjyJ3r17Izs72xzuZMELVr2itBoDa8OqObAARJs2bbBr1y40atTIakwsuPHZZ5+ZX0dFRXF9sa8Z9n6cOnWKq+bBbN++Hf369ePOQXVXLCGEEEIIIYQQQgghhBBCqoqNKcSEPDyadmuISbPGVPjDmw1ztyM/q6xSwPZ/9nAfLpXi60zQb9dA+aftT0x1V/U4/JI78tNFdvehN/KQaLJ956wA7wLUj0iCuJb1h4K2HNlQsQlT1SmqcQ24udsPfnD09u86q1GJkZnsBU06H9CXnHNeig6i37Mh+SQdvNs2rdumNiLqhVXJ2Akh5KFjqqIHIYSQSots1hIdR42p8HantqyHplhpfn1hz4578i6I3dxcahd3smLB8uoUEBkNoURy1/YXVr8hPAOC7tr+CCGE2K7cUJFwQynWnm3Htq8unTt3RmBgIPf8zJkz3KR7e1gYYM+ePdzzwYMHu1RlYerUqRbhBlahgYUAWAUDNpGfrWMVDd577z3z30jZxP4pU6Y47PfKlSvcpPiIiAhuov358+exYMECLF68mJvg//3335v7y83NxY8//mjVB/t76sCBA83hBolEgp9//pkbH6tU8eeff3KVG1hYgYUpSs2cORN///23zXE9/fTT5nAD64+FR1hIYfny5fjnn3+48MW+ffu40APDQhPPPvuseXsW/GCBAMZoNHKVEhxhx1xqzJiSvzPHxMRw+y0NrpRiFShKl7dr1868PC8vD0OHDjWHG1q3bs1VWGBBBtY/e7Dn7OujRYuSsCxry7YpKrK82UtBQQGmT5/OPWdjYfti55eFZ+bNm8e93yyQUT4gws4JO9+EEEIIIYQQQgghhBBCyIOCAg7koTfs9QH4/dw3CKnl+oQTnUaHo5tOmV/npOXZbKecq0bOs4VQrdNAd04PzSEdCqYrkTuhCPpsHuZNrAtlnnWhFL2Oh4NF0VAa7U+6iQ5JQ/fHW+K9xa85Ha9Bb7AIYNxLMoUMfcZ3c9hGcc72+Syl04hgWlgM2RPxkA2Oh2z8TYiW54N3241Y2Yd4V47G4gmvMfju+d+QHJtaFYdACCGEEEJIlWozeATGzPwZHn4BLm+j12iQcKbsmqQ4L/eevCv1O3dHnymvOm1nNN79qgn2SOUK1O/k+JqkyvB4SLp4Hj8/OxLb581Gfkba3dkvIYQQM/Y3saMzKh5uKMW2O/qlsdr+tiYQCDBkyBDzazYR3x62jlVZYEaOHOm0b1b9oHyw4M0338Svv/7K3cm/PJlMxk2+nzVrlnnZX3/9Za50YI9cLucqAHTt2tViOZ/Px6uvvspVLCi1fv16q+2XLl1qrkDB/o7Hju/FF1/kzkl5rNLE6tWrMWjQIPOyt956C8XFxRbttm3bxoUtyvfPKimw8ZTHqkOw/koDGIcOHTJXomDLWFCh1KJFi+wev1ar5YIDpdux6g+VwSoulIYyWICBHUPDhg2t2rFqDSzgUlq1gQVJZs+ebdGGVbsoPS/dunUzV5IoTygUcuev/Puzbt26So2dEEIIIYQQQgghhBBCCLkXKOBAHgkR9cPx6uyJFdpGp9GbnwdG+Nttp79kQOEXKuQ+X4TcP/RQqsUwNpDCxAMSz7hjRo+m2DArHPEnFUg8I8fuecH48ZUmuGlwXJ1BJtGhb0w4GnWqB4HQ8kO/2zVoX+e+KjE+4cun4B1o+UFqeZLkYridtz9BS1Cog8fBDPD0AK+47MNlgdDyRxb74Jk9igtU2DhvB15sNRV/vr8YL7d7DyNDJmJS0zex/Nt1UBWpqujICCHkAUMVHAgh5L7hX6Mmuj87uULbGPQ683MPf9fDEVWpdqt2CK/fCDye4z8fhNapj/tJ12cmQKpwr/J+ebdNoMStybAapRJntm3EgqmvYf+Sf7Dw3f/h1+efxoJ3XsXJTWuh01Ry1i0hhBCnMk8DBSVzxyutIB7IPFN9J3vEiBEuBRzYhH3G19cXPXv2dNovu2M/m4TPsEoLX3zxhcP2r7/+Otq0aWN+/d133zlsz6ol1KpVy+56VmGgVFxcnNX6X375xfx81KhRePzxx+32xUIKv//+O9xuVY/KzMzEwoULLdqUP3ePPfYYnnjiCbv9sePs3r0799zDwwOnT5+2qsTAnDp1CpcvX7bZx8aNG5GTk2OuxBEZGYmK0mg0FpUeWMik9BjthUo+++wz8+vbAw5KZVmFL5XK8d88WeDlm2++wcqVK7kKHoQQQgghhBBCCCGEEELIg4ICDuSR0bR7Q4dBhdvVbV324V3vcV3BF9j+djEEiaAZ5w3N4jDovg+G/j1/6GYGQftPGAwd3FCYJcbWn8Lx/eDG+GZgE6z6NBIZsTKn+zeZeGgTGgm/EB90GtbWYdvBr/R3+bhYtYedi/fj7V7TMTbmZfyv8wdcOECrLvkwtCqIpWI06FDXYZugP6+jRq71ORVmqRH602UIi8oCJqXe+OMFPPPhcLt9KvOL8e8XK3H5yDWu6kbc2RuY8+Y/eK3jByjIKazk0RBCCCGEEFI1Ipu2gNzbx7XGPB6ComubXzbs2otbdlfxeAitWx+eAUGIatHaYdPm/Qa63K1Br8fFvTvx3yfv4o9XJmLpx1Nxfvd2i0DHnRJJpQiuXcdpO5ffj1v6v/wmWj0xzO56jbIIR1b9h/S4ayjOz0NGwnXs+msud4ya4rIJiYQQQqrO9TXGqulndfVVR2WT4wMDA7nnJ06cQHx8vFWb5ORk7u78pcEBdhd+Z1hFg/KT9kUikdNtnn/+efNzVp3BkR49ejhcX37Cf1FRkcU69rq0agIzYcIEp2Pz8/OzCE2UP77bqxCw8IUz//zzD1JTU5Gfn4/JkydbjLtTp07m1//++6/N7RcsWGB+Pm7cOFQGq2CRl1dSzZYFG9jXgjN9+vQxv/+sSkf58EiDBg3Mz1llClbBIS3NdgWpZs2acaGWwYMHo04d578XEUIIIYQQQgghhBBCCCH3C+efkhDykGB3AXvxx2fxydBZ3CR/Rxp1roeoxhHm1/5hvhj/6Sj88V7Zh11GDwFU/wuAobUbxCKD9VyjICH0H/gDH2ZAcNTyblqFqWLkK3nwlNu/y5avoC7EfD5MJh1XfSItPoObuH+7J98bgk5DbQcgctJyEXsqASKJkAscsDF+PGQmjm48ZW6TEpuG8/svY/P8Hfhyywdwc3cevnBFky4NsH/lEbvrBWoD3gqPhGf3a0hTHkBmUhYSjipwcbYMxem2P4xlYQV2LBXFgg6/vfE33v7zpQpvSwghhBBCSFXhCwToPn4S1n//FUxGx5MxIxo1hU9ImPm1V1Aw2g0dhUPLF9+1NyS0bgMYjUbwDAb0mfwKln+eiYz461btOox4GlHNW9nsoygnGxk34iAUSRBatx5MRhNWffUJEs+X3SY7Lz0VSZfO48Lu7Rjy7scQSaRVMn5WeSL+1HGHbdoMGo7MhHgknD2FwuxMp32ysEJlquelx8Vi379/oeeEFyu8LSGEEPt0ShOS91XNGUreZ+L6E8l51fJ3STZxv/Ru/KwSwVtvvWXRZtmyZVyl0tJqB65g1QdKtW/f3qVtOnToYH7OqiTcvHkT4eHhNts6qt5QWhmhlF5vebOSc+fOmZex4y9fOcLZ+EqDBSdPnjQvz83N5cIKpVq1sv27R3khISF2140dOxZ79+41BxymT59usZ6FEjZs2GCuqjBsmP2AoyNHjpT9fZT9DvHCCy+4tJ1EIjGfP3Yuo6KiuOf169fnqnuUhlPmzp3LVfJo3rw5evXqxT3Y1wLbnhBCCCGEEEIIIYQQQgh5UFHAgTxS2g1oiRmbp2HBJ8twbt8lm21CogMx9Z+XrZaPmjoYgTUDsGzWGlw9mwDl56EwRksgEujt30hVwINhnJdFwMHEA3J6heBsogid6l2xuVkTSQ6aCbfDkM7K0vMhk3TGdzsmYP+6kuoLhTlFCK8Tiscm9UKdltFW2xfmFuGnl+Zh3/LD0OtKwhyefu6IbloTJ7efs7nPS4evYd47C/HK7IlIupoCnUaHkFpBkMgq92FYr7Fd8M8n/3FjtTglXoA4FIhqYoKo0wwUaosgFwHySKBmZC7aP8bH6inhSDyosOozP7MAlbVn6UFM/mYsPHzcK90HIYQ8aNj/nu50as5dvlc4IYQ89GLadMCQqR/j4PJ/kXr1ss02LNjQd8prVsvbD38KXoHBOL5uJTITE6p9rGnXLuPHZ4aCx+dzAYauYyegKDsblw/sgaa4GL5h4Wjcsx8CI62vSYoL8rHjj18Re+wQjIaSaxI3Ty/4hkfgZrlwQ3ks5HBg6UJ0eeY55KYmc5UevINCIBSLKzX+ht164fDKpdCqim2uFysU2Pfv39Bp1C73yaoyVNbFfbvR+anxEMvcKt0HIYQQS6pMwFQ1BRy4flRZgEhePWd5xIgRDgMOS5eyvwMCQUFB6NKli9P+CgsLodWWVWStUaOGS+MICysLUDJZWVl2Aw7lAwy2sOCCPazfUr6+vlxIoKLjK99Henq6y+EFVwwfPhwvv/wyiouLcf36dS6IUD6EwQInGo2Ge87CDQqF9d8qXVG+uoJSqcScOXMq3Ed2drbF64ULF3LVNS5cuMC9ZoHU48ePc48ZM2ZwlSK6d++OQYMGccEaLy+vSo2dEEIIIYQQQgghhBBCCLlXKOBAHjnNujfiHlnJ2Tiz+wIOrz+BxEvJkLlL0XVEB25ivtzD9oSTbqM6cI//Lh3ArBvsDl4m8HmOy9ebaktgDBOCn6RHQdtA5HYPhdZfjPws4OAVI5pFJkAm1pnb95Glor17+TuHGmHS7IZJsw+dB36LriPfcbg/rVqL1zp9gMSLSRbL87MK7YYbSm3+cydO7z6Pm5dTuNfu3nL0fbY7xn06CmJpxSYVsXP46dqp+GDADBTmKiEKBIL+x4NHNx6EIiO6uF+BwWRdSUOsMGLgrzfxe6cYaAoEqCpatQ5JV1JQvx2VYyeEEEIIIfdWzSbNuUdhdhZXySDu5FHkpiRD7CZH3fadUb9Ld4iltiur1e/cnXscW7sSexfNr9ZxsoABw6pNXD9+hKuG8Pj/pmLwOx853E6nVmPxB28hL63kuqJ8OMBZQODM9k24fuKoeVupuwca9+iD9sOfhEBou9KbPTJ3Dwx6+wOs/vpTmyEHbS9t9Y4AAQAASURBVJFlGLu66dQq5KWnIaBmyR2YCSGE3Dm9qor7s52JqxKdOnXiwgtswvuxY8eQmJhoDiWw54cPHzZPvHcUHChVUGB5IxBXAwRs8nt5bNK9PQJB5f82V358ro7t9rblx1Z+kj+rhCCT3VkVWnd3dwwZMoQLC5RWcSgfcCitIsGMGzeu0vvJz8/HnWJhlvICAwO56hY///wz5s+fbw46lGKhjfXr13OPV155BVOnTsW0adNc+roihBBCCCGEEEIIIYQQQu4HFHAgjyy/UF/0eKoz96iog8pr5ud2qzeUp+Ajp1cY8nqX3g2tJBQRnxGAG5l+CPbOhVSkQx23PLRvftZmFzwYoM+fBpGkG3h8+3f8nD9tsVW4oZSwNh+iSD6MhYDmuB4oy1VwdBq9OdzAsGDCsm/WIfZ0AmZsmgaBsGIfajZoXwd/x/6MdYs24njDdTB5lewwRJwHMd863FBKqjCi/tMFODXbG1VJppBWaX+EEHLfY/+7MVVBH4QQQqqFu68fGnTpwT0qKv70cdxtrBLD1t9+QGSTFg6rKuxe8IdVuMFVeo3GYlt1YQGOrl6GzBvxXFiBz6/YNUl4/UaY8NM8HF+/Cic2rIZBd9tF0F0mktI1CSGEVCWhrIr7q8YiO2xyObub/i+//AKTycRVcXj99de5df/995+53ciRI13q7/aKAo6CCuUV3Rbwq0j4oCLKj8/Vsd0+mb/82Mo/Z+dPrVZDeof/Xx07dqw54MAqaHz77bdcqOPGjRvYv38/t7xmzZouVdRwJVDCAhSlQZY7JRaLua8f9oiNjcXmzZuxc+dO7N69G7m5uRZhhw8//JAL1rCvPUIIIYQQQgghhBBCCCHkQUC37CGkEpT6kvLkjMnJxE+TwYS0JyKhfNIXkmAlxP7FEAjKJvcbTXwk5/jienoQevvfdPINWwSTer3d9RqVBqt/2mS1XBjJh988NwQsUMB7uht8v3ND0GZ3yJ90rSrDqR3nsHd55T58c/dWQDZYZQ43MN4C5x9q+ve0H4CojPC6oYhsFFGlfRJCCCGEEHKvaIpdnyhYldRFRbh29KDd9axSwrmdW6p8v6x6RNyJY5XallVy0CiL7nm4IaBmNLyDQu7pGAgh5GEj8wd4VfQXbp4AkPmhWrHqDKVYwKFUacAhPDwc7du3d6kvDw8PbpJ7KVYFwhVs8n55rKpEdfD397eovuBqyKH8+MqPzdfX16Jdamqq0770ej33sKd79+7cOWfS09PNoYYVK1ZwIQpmzJgxXMWIyvLzK/uiysjIQHWoVasWXnrpJaxcuRJZWVk4cuQIV7XBx8fH3ObXX3/F5cuXq2X/hBBCCCGEEEIIIYQQQkhVo4ADIZUQqQi49YwHg9Hxt5FGI4awAw9SPw3EnlpIfDVwjyyEzJvVvLdMR0QonJcsz1desbtu99KDMOgtgwGCQB58f3GDuKFlwRa+nAfPV6Tw+MS1W91t+WsXKut4zl6L10Y4/1BQEMaH/F05pE9KwfOs/IeIpcZ8VPYBMiGEPDJMAO8OH1TBgRBC7k9+YTXu2b7TrpdVtLvdpf27YTIaq2W/53dvr3TliYv7duPe4qHdsNH3eAyEEPLwEcl5CO1UNX2FduRx/VWnTp06ITg4mHvO7uSfnJyM+Ph4HDtWEuIbMWKEy5PpWbtmzZqZXx84cMCl7cq38/LyMo+nqjVu3JirhsAYjUaXKxeUH1+9evXMz1kQoXzI4cSJE077WrduHVflgVVheO6552xW1XjmmWfMr9esWWPervQcsyoPd6L8e8Tea1dCDux8zZs3D1u2bMGVK1eguy2kycIY+/bt44Ijto6pdevWmDFjBg4ePGiucsECG3v3Wv6NlhBCCCGEEEIIIYQQQgi5X1HAgZBKGFqjjfm53siH0Wj7g0e9jg8dnw9bn0tKWNjBXWMxcTRP47yseorSMqhQXvw56zu1yUeLIfCx/60u7y2CqIvI6X6zk3NQGXqjDsUGyzu0Zeo8nG6XKfCE5HEp3F6Uw2uVN8R9XKs2YYtYKkLLPk0rvT0hhBBCCCH3m8a9+t+zfeu1ZRXtbpd5I6Ha9luUYz2JzxU6jRo6tQr3kkgsRo1GTe7pGAgh5GEV/UTV/Ik7elD1hhtKJ58PHTrUPOF81apVXLWAUqNGjapQf6wCQal//vnHaiK8LX/88Yf5eY8ePVBdFAoFN9He1n7tYdUHSkMGTM+ePS3Wd+nSxfx86dKlTvvbuHEjDAYDVxVCKLT9N9XyAQa277y8PHMlBxZIiYqKcrgPZ4GUjh07WlTa+PPPP52Om31dTJw4EX379kXdunURFxdnXsfOKats0blzZyxatMhhP3Xq1EGTJmW/fxQWFjrdNyGEEEIIIYQQQgghhBByP6CAAyGVUMcjBJNql37AxoPWIIDOwIfRxD6cBHhGIfIz5ShSSWFyUK3AzbsYfv55CArNRkBQLjamRjrcr87IR47J/gePbu7W1RhkvR2HF9hncIpJzqs4+IdbloF3lZAvgpvA3WJZht4DhQaJ3W3y9VIkqMvKt/MkPMinKSBsVPJBpEBYsR9dWrUOW/8quWPr6V3nsWD6MiyesQpxZ8tK3hNCyEPJVEUPQggh953QOvXQZvAIu+t5/Oq73I9oWHYn4tuJZa5ViKsMd9+ya4SKEEtl3KMqVfT86rQaXNq3i5vMmnD2FA4tX4wjq5ch6yZdkxBCyJ3ybwp41LyzPjwiAf+7lEMbPrysyujKlSu5BxMdHY2WLVtWqK/JkyebJ+4nJibivffec9j+hx9+MFeLYJ5//nlUp5deesn8fMmSJVi/fr3DqgWTJk2CSlUSSpTL5XjyySetjrcUO2979uyx29+1a9ewcOFC8+unn37aZruYmBi0bduWe86CBLNmzYJer+dejxs3zukxikRlf3vVaKxDoKxKRvl9f/bZZ7h06ZLd/vLz8/H222+bX3fo0IELKpRq3769+fmcOXOgVFreWKa8oqIi7jyUYmEJQgghhBBCCCGEEEIIIeRBQAEHQirpueju+KHFOLTzi4FcIIVcoECPgNaY1+o1JF3xR2G2HHyx0e72MpEWPgoVPAOUkHuq4e5TjLNSD1ws8rG7zZLYZmjs3xAH1x7Dlr924cLBKxbru4xoZ/1N7u787nOCmgLwvB236zO+7I5wzrAPJE9sO4N1v23F3uWH4MavYbGehT5OKCNRYLCuWJGjc8OW3EYw3vbjiSfgwXuCFz5e+Ra+2/cZmvVoZL5DGo/v/BhP7jiLSU3fxFs9PsE/H/+H+dP+5V6/1/9z5KTlYuO8Hfhf5w8wNuZlvN1rOnYu3g+D3uDyMRNCCCGEEHK3dRw1BoPe/gA1GjWFSCqD1N0DDbr2xFNffAeT0f61yJ0QiiUIb9wE144dwvnd25F6zfKapE67TqguDbv1crktO/740ydwZttGxB47DK+g4CoZg1jmhsHvfIQRH81AeP1GLt+9mUk4cwp/vfECVnz+AQ4uW4T9i//G32++iNUzP4UyPw9ntm3C4g/ewh+vTsTyzz/AlUP7qu19JISQhwn7Gdz6XT4Ezguj2sS2az2VVWCt/goOpXf0DwkJ4Z7v3bsXhw8f5p6PHDmywn3VqFEDr732mvk1m5z/wgsvcJPky1Or1fjoo4/wv//9z7xszJgx6N27N6rTiBEjzOEBFvIbNmwYZs+ezVVVKC81NZWrbFEa9mB++ukn+PhY/p20V69e5jGzvz8OHDgQy5cvt9rvyZMnueoH7LhLt2PVGOwpH2SYOXOmOWBRPoxij7e3t/l5+fBIeR9++KG5HQsdsEoU5StVlDp9+jRXVaO0YoNAIMDXX39t0Ya9v6WhlosXL3LnrXyFh/LVMNj5z8kpqcobERFR7e83IYQQQgghhBBCCCGEEFJVeCb2yQIhpMqwb6laP38LE98Ij5oFNtuIBXq4S6zv6MW48XWY6HUJPf0SIRaUTGbJUUvx55UmSLzWF+nTdyE/q6yceGSjGnhj3hTUaVULGYmZeKrmCxb9+S+TQxQucDhmjUGInEF5MGXanjzDF/Ixc/tHaNy5vsVyZb4S2xbsxc3LyXD3VqDb6A7ITc/HtxN/Q2pcurmd5F1fhA8pglSgv/1swUughMioh94gQJ5JjmQt+7DP9gfKJpUJtWbVwCer34ZILEJWSg4Kswvx7xcrsXvpQYfHKJKIoNPobK5z85ChuKDk7nDlte7fjAtUsH0RQsiDIikpCeHh4dzzuuM/hNjd64760xbm4fKf07nnN2/eRFhYWJWMkxBCSPXR63T44enB1dJ3dIvWSL5yCeqismsS/5pR6DvlNQTUjEJuWgrmv1r1d4PmCwQY+fFXCImxvPOwuqgIF/ftRG5qMqQKd9Tr2BUFGenYNu8XFGRmmNsJhEIYbt2N+U5Ft2yDga+/x42pMCcLmqIi7F+6ENePl0xQtUcgEsGg09kNTmhVxVbLa7VqhwH/m8rtixBCiGPpx0048IERhpI57S6HGzp8ykdgy6oJN/z1118YP368uSJDbGyszXavvPIKN4G/vDNnzqBx48ZWbffv328xOf/2P+ezagOPP/44tmzZYl7m5ubGTaIPDg5GdnY2V+kgLy/PvL5NmzbYvn07FAqF1f7KBz3i4+NRs6b98hgJCQmIjCyrSGvrowZ2HcnGf+NGWdWiwMBALujh4eHBLWfHqNVqzetffPFF/Pzzzzb3mZGRwVU1KH9uo6Ki0Lp1a0ilUq46wtGjR81jYRP7Wf+OrmXZuQkKCrKowMACIH///TecYeeZBVVKQxEsdCEWi7kwB3tfSrH3Z/DgweYKFeXHzYIMrNICC0iUP4fffPMNXn/9dat9fvrpp1xoohQLPLDqH+y9kslkXDWPAwcOmAMebDysegYLehBCCCGEEEIIIYQQQgghDwIKOBBSDXp89SPi3HRQhBVAYKOKg6dEBeGt8IItJiMPhbFeqO+ZDa1RgPO5oWgPf1x/ea3Nqf9sgv6LPz6L+e8tRnZKjuW+Zisgb26/WIvRxIMqhYf8YXksb2CXb4g3FsbPhlBUcoewXUsO4NuJv0KttAxq8AV8GA23jo1vgn8XPbyH88FrKYEefC60IeCZwD6rK9RJkKFxh9oggl4tRIBn2SQpm+dFY0Ju9xyM+WgEnvmo7A5qrErEpyO+tbmN0BuQN2HnFCg6CRiLUCFjPxmJpz8YVrGNCCHkfgo4KO4w4FBEAQdCCHkQ/TZ5DJS5ltcGd4IvFCK8QWPcOHPS5noWLug6ZgL2LvoTxfllEyirkod/ICb8+Dt4/JLrmwt7dmD7vNnQazVWEzOr+14OnZ4ch9ZPlF0nXNy3C5t+/qZa9tX56WfRasCQaumbEEIeNrlXTTg6w4iCBOdtPSJLKjd4x1Rd5QZXAw779u1D586dza/r1avH3Y3fFmcBh9KQw9SpU/Hjjz9CZydMx/D5fK7iw5dffgmRyPYNPao64MBkZmZi7Nix2LRpExxhgYtffvmFCxc4wkIbzzzzjNP+2rdvj8WLF3OVLpxhFTT+++8/8+udO3eiW7duTrfbsGEDF2pgFSXKmzJlCletorzjx49z4758+bLDPj09PfHDDz9w58yezz77DNOnT3f4fpcGPObMmYM+ffo4PRZCCCGEEEIIIYQQQggh5H5hf9YzIaTSuph8WHIAmnyJjbUmh+EGhsc3YUKHjmgdNRr9GzyDHc9MRP6MfXbqGoCrPjBr/GyrcAPkPBhrS6A32qmIYAJ0RgE0K9QOww1MdkouDqwuKbN+8fBVfPnMj1bhBqY03CCPNqDThiI0/1mFyC5K1JTnoJY8C+58FeIKfHApPxCJxT5cuIEHHr5r8xwEPMc/knSnSj6wWz93Gwz6slL2HQa1Rs0GJZN5S/FlQI1PgAabgajvgOgfgIZbgNA3WOoBLls/ZysMhrJ9EUIIIYQQ8iAIq9fgjvtoP+JpdBw1Bj0nvIAJP/2BjDjbkzQZVtFh86/fV1u4gSnITEfcqZJrkpsXzmLLrz9YhRuYyoQbeDw+hr3/OfevK85s22Sxn5i2HeEdHILqcHrLhmoPbBBCyMOChRV6z+ejy3d8hHVhf2OzXM8TAGFdeNz63n9UbbihIlj1gpCQEIvJ9XeC3cF/1qxZuHLlCt5//320bdsWAQEB3HJWJaFFixZ4++23uRAFqwpgL9xQXfz9/bFx40YurMEm/jdo0ABeXl7c+Pz8/LggwcyZM7lqDs7CDYyvry/X365duzBx4kTUqVOHO05WqSA0NBRDhw7FypUruSCJK+EGpnyYgIU6unbt6tJ2jz32GFedoXfv3tyxsGPy9vY2V08oj1VZuHDhAhekeOqpp1CrVi24u7tz7wc7R+w8fP3111wwxlG4gWHvM6tWwf5lARi2PTt+Vr2DhU4GDRqE+fPnc20o3EAIIYQQQgghhBBCCCHkQVOBab6EEFdNHNkLG5+ejvRhNaERGyDxLCux7qrWoWFo5l2be35613kuYOAIN+GF5Snc+UCBEWC7bCIBT8aH2iiE2GSAkG/kQhIR4mwEiQqgMQlxsTgY2RusJwXZcv10PLoMb4fl36wtq9Jgg0BuQsvfiyENtJ6E4y1WoYlXMg7llN3dbWL0ADT1rou2Pi1wILtkwpItmqUlHwzmpOYiOzUXAeF+JfsTCjBj8zR8PGQmrhy7DnaQUT8C7i1vG5cbEPA0IPQBbky7dd4AGJrKYAwVgVdghPCoEjxN2bjZec9Ny4NfqK9L50ij0mDX4gPYs+wgigvViGpUAwOm9EFU4wiXtieEkKrEM5U87rQPQgghD572w5/ClYP77qiPiEZNERJTl3vOggWqwgLHG9yFSfgZCXGIbtEGx9athImVaasKPB66jZuIiEZNEN2yDWKPHXIpbMHOh5uHJ/daKBJh2LTPsGbW58hIuF414yq3LxYgkbl7uNRep1bj0v7duHrkAHQaDQJqRqFJr37wC6drEkLIo4FVIAhoCgQ0FUCnNEGVBeiLAaEbIPMDRPLqCzWMGzeOe7gyxuTkZJfDEK4G3djE9k8//ZR7VFZFQnUsCFCR9h06dOAeVYWFEFwNIjiTk1N24xgWLihfycKZnj17cg9XsCoaw4cP5x53ilUJuZP3mhBCCCGEEEIIIYQQQgi5X1HAgZBqEBwZiDGtWmLZR1tR2CYA2joy8CMAoVEPQZoGpgYAL9r+ndIUQhnqeZRNPlHmFzveYYgAgnEK8LvKwBPzYFIZYdyuRq7YAx5goQA+tCYevPkFeNL3OALFheZN+3tdwKEPArD03SgYdI7vViqVS7l/j2w46bBd6BM6m+GGUh4iNWrKcxEgboPhNXqh6a0gx4SoJ5Gcl4oEQ5JFe5PRBNXsYuiOlpVcX/HdehzbfBpalRa1W0ThiRf74ucjX+Lw+hOYOetLq3BDeT79gYy/gUKxFOr/BcAUIi5bWWiAZGEOxGvzzYvE0nLrHWChi3d6TceNi2Xjv3jwCjbM3Y6JXz2N4W8OtNqGla/PTc+HUCSAp59rE5YIIYQQQghxxickDI179sXZ7ZsrdbJkHp4IiIw2v9YUO7kmuUtEEilMRiMSTju+JnEFm7gY2awlWg0cirB6DbllfSa/itzUZGQnJTrbGEdW/Yf40ydg0OkQVCsGzfo8hme++gFXDu3D+u+/uuPxld+XwMU7bRdkZWL5Z9OQm5piXpZy5SJOb92A7uOeR7O+A6y2YedTmZfL7cPVEAUhhDwoWJhBJL/XoyAPggULFpgDCOPHj7/XwyGEEEIIIYQQQgghhBBCHmkUcCCkmkz5bhw8/T2w6ocNyN9RMrmEL+AjMMIfTZu0wgacsbvtwNAOkArKJtW7ecjs7yhMANFPvuB5C8yLWNUGwQA3eGiM0On4EImMkPO1mBBwEO4Cy2oNAp4JHUekA0I+/n0tyuHkn87D2nLPy1dv4IfwIRktg6i7BDw5D4brBgT6pDo7PfASKSESFpjDDdxxCmX4ouW7GP/UqyioqwRPwYPhhgGatWoYE8v2ySo2rPx+g/l1+o1M7F95BGM+GoE+47vCp5/T3cNrFB8ZzUIA6W2hDncBNFP8AZ0J4k0FaNChDk5sO4vigmJENqqB+u3q2O3zqzE/WYQbSrE72c35cCEympogipDDV+KOHoENse3nnVj7yyakJWRy7eq1rY1RUwej/cBWzg+AEEJcwbJmd3ozbargQAghD6yez70AuZc3Tm1ez1UAYHh8PjwDArkJ/ed3bbO7bfO+A7iqBOWDBfcaj8dH7dbtud+vq6J6A+tHr9WYww2MVKHgQgpzpoyDqiDf/lj4fJzcuMaiysLVQ/vQ6clxqNWq5LqpqtRo0BjXTxyFTq2Cf0QkgmvZvybZ8MPXFuEGM5MJO/+ai8KcbO59VXj7onab9ji3cysXfijMKrkmCalTH20Hj+CCH4QQQsijIiEhAdu3b+ee9+/fHxERVPWIEEIIIYQQQgghhBBCCLmXeKaK1JAmhFSYVqPDpcNXYdAZUKt5JDx83Lnly2/uwZzr62C8bWJOr6CWeKvuKAh4ZRPvp4/4BvuWH7bZv/Bzb/A72J9spFUL4aFQo4fHZfTyumy3ncHIw1vju0K9S2vdR4AMkjq+CPLxRKuwMFw5FosrR69DECOA/AdP8N0tQwJ1FSnwFLHKEfZlaBRI1vhgeoP3ECoLgdaog0LoBj6Pjx2L9uHLZ35EZczc8RHmxX0Ot5Z6h+3Sr0txRR5mtZwHI7tBKkxZBijGJkIsEkKrLqscEdUkAu/8/TKiGlt+0Jlw4SYmNnrd5r60PdyhmuwPyMuFULQmSP7JgmRlnlX7V2ZPxIDJvV06XkIIuV1SUhLCw8O55/XGfgixwuuOTpK2KA+X/p7OPb958ybCwqx/dhJCCLm/6bQapF27wgWVA6NrQSpXcMtZBYIDSxdahQUa9eiDXhNe5Cbxl1r11SeIO3kM9xILH7j7+iOsfiMkXTyHzBvxVdLvmJk/c6EPvVYLmcKdO2428X/rnMpdk4z8+Ev8N/09rjLCHePxIBSKoNeVXacFRtVCvxffgG9Yyf/vS6Vdv4ZF7/2vQn2z4IOt5aySRcOuPe9o6IQQQsiDQKlUYvDgwdi2rST4uWvXLnTt2vVeD4sQQgghhBBCCCGEEEIIeaRRwIGQeyhTnYfNaUeRrMqCl0iBXkEtEK0ItWhTkF2IEcETYdAbrDvw4UO0LAA8Ac/uPoxGHgrzZfi80WqEiAscjufXk11waiwPwvySCf3aQBkyh0dBHeVhbiPMVsN3YyIUp7LhttwP4iDrfsKkOQiVWU/cLy++2Bd5ejmCpSFIKs6ACSb4ir3RI7ATngjpjY2/7cAf7y1CcYHKopJF+de2dB3ZHvyhacitHeewXVyeD5LUPubXAr4BYoEBfF7JBB9uns9+FfhfZYOnspz0IxQLueocEpkY7Qa0xKCX++HE1jP4fvJcq/3oWrqh+OMQgG/7PZJ9lw7xNsv3hfW7OGkO3L1LJp4RQkhFUMCBEEJIRRRkZuD87m3Iz0iHm6cXGnTpAb9wyzBvUW4O5k4ZVyVVE+5HPmHhyElO4i4CPPwD0LhnP7R8fDBOb1mPA/8t4ionlBK7yaEtVjrsj53D9LhYZN28UW1jFohEkCrcIZZKUatVOzTt8xhijx7Crr9/r5L+xTIZJv32D8RSB9UECSGEkAfU2LFjuX91Oh0XaEhLS+NeDx06FMuXL7/HoyOEEEIIIYQQQgghhBBCiJBOASH3jr/UC8/UdHyn/uyUHNvhBpZQ8hc4DDcwfL4J6VleMOr4gNjxeCQSAzKGxyD4jyvwbBiMc6PCoZeVVR1g9L5SpD9VG4YeCngF2Z7Yk6HxQLA03xwWuJ3WKECe3o17nlScChNK7gybrc3FfzfX4nJBLN6Z/CJ6jemM/SuPIictD4ERfki6loa/P1zi8BiunYzH9F9fxc83pjoMfaRrPM2vhXwDJEK91c1M0UkGk68/8HoGeGVFHKDX6pGdnMM9X/Hdemz6YwcGvtDX5r40I33AFxi5I9Sb2H8t3y/NCG+IthVYLNWotPhhyu94f0kF7r5KCCE2sB/Ddn4Uu+xOtyeEEHJ/YxP62w9/ymGbouysexJuYNUaCrMzq30/OUk3LQIf+xf/jZQrF/HEW++jYbfeiD12CMq8XHgFBiE9IQ5HV/3nsL+M+Ovo8dwULP3Y/jXJnTLodFDm5oBdkR1buwJnd2xG4+62r0kqQ6tSYcf839DvBbomIYQQ8vDJy8vD2rVrLZY1aNAAv/322z0bEyGEEEIIIYQQQgghhBBCypTMKiaE3Le8AjzBt3P3f1Ou7eCDRRsTYDDwcS0v0Glb1qa4gTfks3oh4J3OVuEGc598wNjM/p08tSYhYpUBMNqYFKsz8hFX7M9N9GdjM9024Z85m38RezIPQaaQodeYLhj59hPoOrID5B7O7x4qlUtQwysaPfyG2VzPxnQ8MQIqraj0aCAWWIYbLNSXAD3lDvfJqkps+XMX+IJyP1L9BXD/yg2tuqWiT8hl9A69jK5B1xCpyOL2aR5PqBjGmtbJkz3/HcTs1/50eryEEEIIIYRUNzcvr7t+kgOjasE7xLK63d0Ud/IYrhzYC4mbG1eRofUTwxDTtiMkspKgtiNCiQRh9Rqi5YAhuFs0SiUuHdgDHq/q/sxzcc8O7P33ryrrjxBCCLlf9O7dGyEhIRCLxYiMjMQbb7yBffv2wc/P714PjRBCCCGEEEIIIYQQQgghFHAg5P7nHeiFFn2a2l6ZYYTxlMbh9i28GqBZUCjWJjdy2C6pyBsnMiK45+dQhB0ZZXcxtcIHDEbb4YdSuTo5Tl0PQWqRO4r0EhTqJUhWe+FSUTBUxpIJ/SXT/G2HN3ZmHLBa1mFQK8sQgQ2dhrTl/u0TOhIjwv6HrCIPLtRgNPGQnOeJ3VfrID7bH0qlhGsn5BtLqjU4YOrjOODAHW96Hhp3qlfyIkwI3wVyNOybBx+xyty/m1CHel7paObDzq0JYr4ebkIt+CG2B7Dqx404tvkUdi7ezwUe8rMKnI6DEEIsf4BV0YMQQsgjzcMvAOENGld6+1ot2yKoVkyFtkmPi8XN82dwL53budVqWe3W7W6Ve7OvdpsO3L9dnn4WfSa/6rR9VSnKyUJo3VvXJFXk2JrluHHuNC7t340rh/ZDVVRYpf0TQggh98KLL76I5ORkaDQaxMXFYdasWfD29qY3gxBCCCGEEEIIIYQQQgi5Twjv9QAIIY6dP3AZCi85BEIBDHrrig2G3wrB+14Ensx64r9C6AZNsT9O5F0FEII/49pifNRhq3Z5Ghk+O/p4Sdjg1kRWvZMZrfkFbtAb+BAKjHbbFG0w4tJJETw/9wTfw3J8JaED+2GFDDWrdGApoIY/+ozrhk1/7LC5jU+wNx6b1NP8+lqWHDuu1Ck3O7dsYlGxUgKJRA93uYPqDeaOXbsLakzLaHgGeGBf2yuIDsqAncIbCHYrhN6UAj3v1o/gbyXQnBAg/3s19Ncsz+d7j31hHr5IIkLf8d0w5ftxEIlLK1AQQgghhBBSvW5ePAc3D0/w+HyYjPZ//7dF6u4BvlCItFh2TVIxJlby7R7Ky0izWuYdHIp6Hbvi0r5dNrdx9/VHo269za+1alVJWb27JLRuQ0gV7og9Zn3dV1nLP3vf/FwolqBxjz7o/PSzEAjpT0qEEEIIIYQQQgghhBBCCCGEEEKqHn0aTch9SlWkwvTh3+D4Fsd3LTVd0UH/vxwIJruD31RiTg/ECCIQXFwLs1Mum9v+m9Aa5/NCMDD0LGp7ZECjF+Fgcm2si2+CHLXC4k7dbG6+3Wk4t8IJKWneqBGabbOJTsWHZoUKpmwTsgYWQNpbDGEdASR8Meo2qoNLUdcdHpenyN3m8qe+H4akhtm4cuk6DIk6GHapAQ0gEPKhKlTh81HfYeALfdFpaFskF5VWPLCVNOAhN0cOntEIH+9ih2NBunWwxBatRofx85/BxTPvQsR3PPHLV6pEusbT/FrSQgi/X+XIel4JfVy5bcu9CTqNDut+24rC3CJMW/w/l8ZECHm08UwljzvtgxBCyKNJU1yMNbM+w80LZyu1fXBMXQREROLMtk2VGwCrfFAN4QCRRMqNLfHcaYft5J5eNpe3GzoaOSlJXJWJ8uPj8QVQFxVi3fdfolmfx1GrVVsUZGXibjIZDegw4ukqDTiUp9dqcHLTWmiKlej7Al2TEEIIIYQQQgghhBBCCCGEEEIIqXoUcCDkPvXdpDlOww2lTJd10L+WA0NtCZRdA1AU4Y04iQ46+XnAzfLb/GxeGPco2ZCVWRCCZ7xVucHApv2XhAHkIjGKdFo7OwR4WiPSM0sm/AQH5kIkLJuUX1gkReEParhl35rsowHU67TAOqAIKhwQH4XvBj+Y3OxPVurs39ZylyYT/k5Yg7UpO2FoYYSwhRv3A8z0sju0XxfAsEcDVZEap3dd4B6DXuoH/8lNnZw5FnJwh6e7CgKh/bHwNinhCnWRGqvWbIMkynlVCBHPOjTBV/Dg/rwEuVNVDrfdvfQgRr87BFGNI1waFyGEEEIIIZWxefa3lQ43MKlXL3OPypK6yaFWFqGq6TRqLtzgrCJF/c7dLV6ztrv++R2nt2ywuR0LF+g0Bq5v9mg1cCjkXt64m7RqNU5sWlft+7mwdydaDxoOn5Bb15aEEEIIIYQQQgghhBBCCCGEEEJIFeFXVUeEkKqTfiMTe5YerNA2Wj8p0sbUhaSPGFEdMhDTJhn1GqShRkA2xCKd7Y14t27NbbAMNzDDGzRAi6Bgm5uJlAa8Gt4EglshhzMXInA1LgjXEwJw/nIYErZ4QLoly2IbE58HbYAMOl8poAWKfiq0eyxhsmD0DOxksWx50lasSt4Og8lyIhHPnQ/xR57gNxRZLF/98yaEJ+ggETjOcZn0fGSle9q/MexRFbDbSYWHW84fuIzlB3ZDbxI4bWsw2f7xK+0oBE/hfF+7Fu93aUyEkEecqYoehBBCHjk5KcmIPX7kno6hUc8+CIiqZXslj8dNsOeqPFSSo3CDf0QkGnbtZbHs4LJFOLVpncPtyju2dgU8AwLBd3JNUpVunDuF8zu3VP+OTCZcPrC3+vdDCCGEEEIIIYQQQgghhBBCCCHkkUMVHAi5D53cfhZGo+szSll4IHdsTUS0zYRYUlYZgM8DvBUquMs0iE3xh0ZXFgLg842Qu2kgVhhhMvCgLpBCXSDhUg9+bm6Y2LIlvKRS/HnqFBacOIk0dTHERqCN1A8fju6H6EB/+Pxlwsydu1DY0hf5+XKuX64aRA0pbk5rjoCF1yC9UYjcnmEoaBcIg4eYayNKL4bXrhTIf9Qj6O1ApKkzueUCngBtfJphfORIuAll5rFqjTqsSd5p9/h5Qh6Eo92gnZZvsXz33N14fXpXzDi+x/aG7FQZgaICNxgMfARpMsCvfevHYpYBoWdT0SL0JsKPKWEy8ZB4QI6T832QdqZsbOXFNVZBO9AHmRoVasqzIWDhETuKDBK7x8L35MFQ5Pj9V+a7FroghBBCCCGkshPl7aeAq5/Cxxct+g9CuyGjcWLDapzauh7FeXkQCIUIrdcQPZ57AT7BIeDzBTi8ckml9yNz94BYJkN+Rjr3WiASoU7bjug67nmIpFJzO61ahZOVqIxw9dB+tB0ykgtH3A25Kcm4W7Qq1yrdEUIIIYQQQgghhBBCCCGEEEIIIRVBAQdC7kMmF8MNem8pCtuFQdnAF/5tsi3CDeUJBUaE+OQjPt2Pey2TauHjXWRxs1M3bzW0KiH8sqLw0xNDEKRw55ZPadWae+gMBogElpUJxozri3XXr+GESQeT3mRRAULvI0Hq83UhjSuEqq63xXa6QDdkjqoFw8ZE/BE1FRmCbKiNGoTKAuEp8rAa/8WC6yjUO548I2gnKalJU+5mqgnnb2J64zbwkbrhl7OHkFCQV7KCnV52qvQ885ijMr2hffsM1A3doWzujWbNMjB43EXwyxVaqPN4AWr3LcCWt0NweY2nxf5NUh60o9lx8qDUSZBU7IUIea7NsWqMAhTpyyZLlWdUm2DMdv7+H1xzDPHnE9FlRHv0HtsVbu5loYuka6m4cjQWIokQzXs2hsKrJHxC7l+5Gfnc96OXv+XXFSGEEELI/X5NUh38atTEwDfeg9yr5Dqi7dBR3MOg13MBh/I6jHwaVw/vR05KUqX2pSoswPOz/0LWzRvQazTwCQuHm4f172Q3L5yDVlXxkDHr9/HX3oGbpxeOrV1uDlLY4hMajpzkm3hQXDm0H2nXY1G3Qxc06NzdIhCSnXwTGXGxEIjFiGjUDBI3t3s6VuKYyWRCtroQAh4f3lIXSgoSQgghhBBCCCGEEEIIIYQQQkg1ooADIfehxl3qg8fjcZMM7NH5uyHryYYwSYWA1ABP3yKHfbq7qSEUGACeySrcUEos06Mo8wy+6HQe4z4djU5D2pjX3R5uYNJz8nHKQ8PqQViEG0qxsanqeZcECmzI6R2GIhgQpajhcOx6ox7OsMoHtwcc3DxKJv2PiGmE4bUb4mpeFjZdv4b11y4jNjeHWxckV6C7JAhH31yCtOdioGziA29pEQZ122oRbijFFwK9ZqTixn45VNllP0LljwVBKS/ZQG8UILbQH4FCJXp6xsFTqEWRUYRzal/EpXgi38MdLA5ii2qrDia108NFdmou9zi//zLW/LwJM3d8BL6Aj1nPzsbxLWfMXztSNwkGTOmN5758CgIb7yG5txZ9vgJrZ29BTmpJGKZ280gMe2Mguo/uSG8NqRrsR8Gdzk+9d/NbCSGE3ENh9Rrcs31nJSZg7azP0XH0GES3KLsmuT3cwOSmpVY63FBKp9UgKLq2wzYGva5SfYtvTexv0qsfGvfog6ykRK6qw5WDe5GblsKtc/fzR40GTXBhz3bcCYlcAY3S8XVhVSrKyeYeyZcv4PSW9Rj+wecwGg3YPPt7JJ47bW4nksrQvN8AdBjxNHi2LrLIPcOuG386tR5Lr+zjAg5MQ78ITGjUG31rNqd3hhBCCCGEEEIIIYQQQgghhBByT1DAgZD7UFhMCFr3b4YjG07aXM/CCapBdUvCDWyij8gIvsDxDFS2jUhogESqsxluKGVsLkPC3GR8OvwbTF3wMro/2clu2zlLtsIovoMJKkI+1l27ioktWzpsFqUI5+4kaTAZ7Y/7qg64LQfRdUR783MWGKnj7Y86Lf3xWsv2uFmQz/UX5u6J1zu+j8yBNbhwA9O+xlUI+PbPp1BiQsNheTg2xw9hMcEY9voArEk7hgwU3GphwsTAkxjoe9Viu2bSTGzdHoi10Q0h8LfuV59iROFcFhipmKSrqZjxzE/IS89D4qVki3XqYg2WfbMOaqUGr8yeWOG+SfUoyCnEi62mIi0+w2L5tZPxmPHUD9zyJ98bAqPRiPysQoilIsg96K63hBBCCLl7AmpGoUbDxkg8f9bmejZRnT2Meudh5MpglQ/WzPwcA/43FbXblP1ef7uD/y28431d3r8bzfoOcNgmKKo2eDw+TA6uSWyp267seoqdL/8aNbkHqzyRn5HG/b7nGRCIhVNfq/T4WeWHVgOG4MSG1Xc14FBedlIiNs/+jjum3NSS4EYpnVqFI6v+g16rQdcxdE1yv8hRF2LI2hlIU1pWHjyfdQOv7fod77QaivENe8JoMiJXXQSJUAyFyHYlQkIIIYQQQgghhBBCCCGEEEIIqUp06zxC7lNv//USareIslrO7tI/4vsxKPIpm1hgKubD6MI8m8dktRDiKXLaztBMyt3Jce7bC2DQG+y2i7tyZ3dKZdKKnE/A8RF7ooNfM4dt9Nf1gLQsucHj89BvYk+77cM9PFHT0xs5yTk4fy4ehW3KEgch7pYTPGwZ8HZjLIj7Bb+dmgkPX3cEGBXmdU/4XrEKN5TqPSwdrXfGQrlWC6OqJERhVJqgXK5F1gQljFm2gxXseBw5u/uCVbihvA1ztyH9RqbT4yLVz2Aw4I0uH1qFG8r7+8MlmPfuIoyJfgkjgiZgsPc4vN1rOk7vOk9v0W3O7LnAhXhYJYzMpGw6P7fhmarmQQgh5NHU/+W3uMn4t+MLBGg7ZFSlwg31OnWDRC53qS0LE+xZ+AdMDi522MT6O8WqEDjj4R+A6JatK9QvCzQ06NrL7nrPgCB4B4UgLy0NmTfiUVEx7Tph4s/z8fSX33NVEhQ+fqhOLDTuSMLZU1bhhvJObV6PoluV9Mi9pTMaMHrDLKtwQ3nfHF+Fb46vRvf/3keHJe+g1cLXMWHrTziedu2ujvVBcDjlMuaf347Fl/cgozj/Xg+HEEIIIYQQQgghhBBCCCGEkAceVXAg5D7FJs3/dOgLHFx7HHuXHURxoQpRjSLQ//meuKQqAhbEljU2CFCcK4PCV2W3P/1ZHUJOFSB5vBQFesehgtLJrNkpuTi5/Sxa9bUdLvBXsYyU/QCEK4IUZcEAxmgy4WDqDdwozIOPVIZuYdGQCoSYFD0SycUZuK68adWHwcQD+iggaC6D4a1sIEEPk9GE66cT0LxHI4f7v3rsOlS1PGASleW91HrnIRB3dz+cXH0Of7y7CAXZhWCnjPd7OBAuwiDfyw637TsiFevbByF/php8BQ/GQpNV9YnbsalEdzLH2Gg04ePBX6PtgJbo91x3BNSwUUKC3BVH1p9EwoUkp+/X0q9Wm1+zwNGpHedwZvcFvLfoVXQpV53kUcTudLz+t63468OlKMwp+3n2y6vz0WdcN7z8y3MQiZ1/HxNCCCHEMbmXN56a8T1ijx3C1cMHoNOoEVAzGo179kHqtSuVOn1SuQJiqRs0SqVL7fMz0pF0+QLC6zey29+dUvhaBgNYoOLG2VPIz8yAm5cXIpu2hFAkQq/nX0ZeehqyEhNc6pf1wypRhNap57Bd2nXb4Whn3H18EHfyGA4sXQD1XajcYDLdWQOjwYDVX09HdIs2aNitF9xvO+/k7tmacBI3CuwHrhm9yYjfz20xvzbBhP3JF7nJ/D90ex49IprgUWYwGrHw0i78cnoDCrRlf4v5/PB/GF6nI6a1GQEhX3BPx0gIIYQQQgghhBBCCCGEEELIg4oCDoTcxwRCAToNacM9yku7cVuogGeCRK6x2w+bHK1fUYTtB/ei04tP4GZxlsP98k+WfTifm27/7oO9OzbFhuO7oI72sN+ZgzkuIj4fg+qVTfZhwYapBzcjsSjPvMxLIsVbzbrgqTpNMaPx/zB/z3JsEhyCiV/SscHEh4mb/g/w/AUQfOkDw9MZXGDg2onrDgMO7G7v3036DQgXWyw/mRKJtmHX7Q+cvQeHQ/Dd87+ZX7MRSGdlwPsbBYLEjidrBYRrERypRkqcDMZc57EFdbgbilr6wCgVQJyigvuRLAjULpTsuE3s6QTu8e/nK/DcjKcw4q0nKtwHqRhWAeXcvksoylMion4YwuuEYunMNZU+jUaDET+88DuimtbElaOx3F10m3ZvCN9g74fqrVEXa7B32SGkxKZxYa+uo9rDJ6jkGDNuZmFqn09x83KKzfOz6Y8d3GTCN/544R6M/D5FFRgIIYTcAYFQiDrtOnGP8vLSUivV3/ld2xDdqi0u79/t8jbF+WXXB7er26ELbl48h8oSiiVcH6USTp/Atnm/oCCzbPK3zMMTnZ8cx03KH/3ZLOz6cy7O79rqUv/p8bEOAw4sMLFz/m+VHLsUO+b/igfpl4r0uFjucWjFYnQdMxHN+w2okpERx9UaWNWFIp0atb1CUNMzAH+c31bpU8aCDx8d+heRXkE4l5kAPo+H9iF14Stz8HeBB1CxToNNCSeQVJgFH6k7+ke2MB/jzcJMPLflJyQWZto8P4sv7+X+RvBhu9H3YOSEEEIIIYQQQgghhBBCCCGEPPgo4EDIA6hpjWDU8PVCYnbJRB95oBIiqf0J72wStKCpBLpdhaiX6IdtCiG0RtslA/jHi8FP0JlfB0UG2O23y8j2qP/NCpz1FkPvI7Va77EnFQYPMZRNfG1u/1q79vCXy7nn57PTMH7HcmgMluPK06gx7fAWaHKLcXjSCiTUzYbgRU+7c2t4QULwOstg2qnC3x/9Bzd3GQZM6WPRJjcjH/tXHsGuxftRkF0EqU4E6I2AsKSKw8XMMMTmBKKWT7rNffhK2+HXN85YLRdc0UD2uRJYhju/+ymbrC3kIe3ZaCib+1gszxocjqC/4qA4neu8E1v9Gk34/Z2FCK0djA6DWleqD+Lc5vk78fdHS5GVnGNe1qRrA8Seiruj08cqFjxX71Xz1xALQvV4uhNe+WUCJDLJA//W7F1+CN89P4cLhZT6/Z0FGPbGQIz/bBSmPfaFzXBDeVv/3o2nPxyOwAiqVEIIIYRUl7D6DeHu54/CLOsJvo6wKhBswv/VQ/thvO13f3s8/QPtrqvXsSv2L10AVYH9YLYjnUaPgUzhzj1PuXoZq2d+CoPeclys7y2//QCNqhhnt29GTrJ1VTl79i6cD5FEgkbdelssV+bl4trRQ7i4byc0xa5VsygvqnlrbtsHFQuk7vprDryDghHZrOW9Hs5Da/HlPZh9eiMyVQXcax54aBscg9jcygWUSmWpCvDYyk+4qg6MiC/EoFpt8UHbERALHvxKauuuH8UnhxZzoZBSXx9biecb98GUJv0wcevPNsMN5S27egCTm/RHgJvnXRgxIYQQQgghhBBCCCGEEEIIIQ8XCjgQ8gBigYU3+3XCa4vWw2gyQeppv3pDKX6dkkkGAfDAJw2fwifn/4XaqLPs95Ia4hllH9KH1wlB48717fYplojw7dJ38HKvD5FcR4Gipr4wsSoDqSp4HEyD25V8mPhAbkooCjoEcWEHRpRWjGGh0ZjSumxy/S/nDlmFG8r7+vAuhJ1PhGCU5WT/Eia4CdixmKAyiMBrJuYCDjqNDj++OA+e/h7oNLQtd67mv/svVv2wATpt2b6EBTq4n8xGYeuSydCsIsSvx3riqUYH0DT4Bvi8kkkbPAgQJO+LrO09kXxtrs1xZhwWIP2GBIER9t+TjEQJ0hKsAyG3yxxd0yrcwI1PKkDqhGgE/xELvVfJ++p2oQDiDOdfB+X9N2st5J5uUCs1iGpcAwE1/HGlIBkHMi9DbzKgqXckWvnU4r7eSMVs/H07vps0x2r5md0XquRUlg/IsCoRW//ajfzMAny27l08yI5tOY3Pn/weRhY4KkevM2DJl6uQk5qLuMtJKGrlh8LmvlxVE0lKMTwPZHD/lg/xHFh9FENefeweHAUhhBDyaODzBej81Hhs+HGma+ndcryCQtD/5Tex+ZdvoddpHbb1j4hEUK0Yu+tFUimGf/A5lnz4NrSqst8HXNGoRx80719W1ezwyiVW4YbbwwpGw23V9Jww6HTYOucnuHl4cqEEk8GAPYv+xOktG1wOeJTHFwhQt0NX7pzEnTyKB92xtSvAFwqh12oRUDMK7r5+SI29goTTJ2E0GhFevyFqNGxyr4f5QPrn4k58ccQyfc8CCYdSr1RJ/6XhBkZn1GPZ1f3I1yjxY/fn8SDbeeMM3tr7p9Vydoy/nN6A1KIcJBSUVXhxVDljZ+JZjKprWf2GEEIIIYQQQgghhBBCCCGEEOIcz2Sq4EwEQsh9Y+fF65i5djcKAxLgG+P4bv6GU1pgqhKLk+bA3VuBfK0SaxMPY9m6bchPyodgvxL8YyqUTmWXyMT4fON7aNKlgdNx5GcX4Nm6r6Egu9BuGxOfB52PBDyjCaIcDZ6fOQbD3xjArdMaDKi/6FvoTfarUDDhn16C2wQJ+O1LwwEmBEgKuYeYX7Kt3shD5kUJksZpYdLzoIpUQDukFnKi3KA3GCGNL4TXnjQu0FCeUcxH6qQ6UNW2vLuij6QQzRLPwzNWCX5+HSSeKeYmWTvSd3wanvs0we76+R9GYNP8YId96D1EiP+iibmqhCUTIDIBgvIHYIL8ZB4C58VD4M8HusgAGR+4rgX2qQDLLIsVnocAom9qISfccpJVpDwAXzUdg3C5n+MOHkEqpRo7F+3D6d0XwDIgzXs2QbdR7cEX8PFkjSnIy6jcXYQrS9xcgE4/tYLOUw9PkQc6+bVHE69G4PNsfQ3dW1qNDie3nYUyvxgRDcKg0+ixYPp/OLbptMPtjJ5i3JxSB9rQksov5fmuvgGfHWV3omWhpg+XvYFHUVJSEsLDw7nnjUZ9ALHc64760yrzcG7Jp9zzmzdvIiwsrErGSQgh5OFw9cgB7P7nDxRmOZ/wy4hlMkz69W+IZW4oLsjHmW0bcXLjWqiLrK8lRBIphr3/KUJi6jnttyg3G3+98SI0yiKXx97j2Slo2qckEMnCET+PHwWTk2uSypK4ybnqFRUNSJTHggC+YTWgzM1BcX5JNb+HCY/Ph1SugKqwpNpA+ZDLE29Og2dA0D0b2/1KqVNj7fUjOJZ2jQumdwptgP6RLWAwmdBl6VQUaFV3fUwdQupDpdcg0M0Lg2u35cZ0P4bm1XotDqZcglKnQYx3KHcuWYDhQMolh9vxeTzu5gmuGBDVGjO7jK+iERNCCCGEEEIIIYQQQgghhBDy6KCAAyEPgZ+XrMC2sF0O22h/LED/gM54+ecJFsvVxRosmbEKG+dtR256Pjc5u92AFnhy2lDEtIh2eQzJsamYPuwbxJ294VL77/ZOR8OOJROVCrQaNF78vcP2PIERsqwiuNU2wd9dyS0LleYiUGp7AlPuLuDkAn+kjakNCKwnU3hvT4HfmkSLZWyKQnE9LxS18IVBJoA4XQ2Pg+kQZ1WsMgIz7uMEPDYhzWr5xvlB+PPDmk63L2jji/Txts6/CRCbAJtz1k0IEWZBHnLbpKkcA/B5DnCq3HF48iAaIYegrxQ8Hz6MOh5UfDFUehFXwaK8IKkXFrX/H9yEEqfjflRcOxmHaY99wX3PlOcX6oPR7w3BTy/Ou3uD4QGe02SQPVZSIaW8BvL6mBA4DvuXHEF2Sg78w/3QbXQHLuTEaNVaJF9LhVAsRHid0Lsy3FU/bsTCT5dbBKLYhCdX8pbJk+uguIG33fUhP1+C/ErZezJgSh+88ovlz7xHAQUcCCGE3G3s/+Pb5v6Mczu3OG3bcsAQdHn6WYtlWrUKR1Yuxbld26AqYNckAtRq2RZthozk7urvquykm1j33QxkJ1n+nm/PU198h6Do2txzZV4ufpv0jMv7IneXV2Awxsz6GSIxXZOUOpMZj8nbZiNXY3lNHKLwwbgGPayqN9wrXcMa4eP2T2JLwglkqQoRqvDBY1Gt4C6WmYMGNwoyIBaIEOkZeFfG9Me5bZh7djPytWVVX9hVcHXcAYa9F1NbD6uGngkhhBBCCCGEEEIIIYQQQgh5eFHAgZCHxMenfsYp5WWb64zpBjRdFoEP/n4DYonIZhuDwYCC7CJI5RLI5KUVEiruzJ4L2LXkADbM2Wa3TXTTmvjt5EyLCVEdV/yGZKXlnTpLCcQ6uLlp4SbWgs83wkOqgUygQ333NO7O+fbsOFEPacU+dteHfXMesgTX7/BaUWG1i9FtZCZ8g7UozJUD/MFY8tU57q71zuS380PGWBuTufi3Ag42BHjnw9Pdzh06VUZgUgaQpAfPlw/Jz97ghwqtmumMfOSpZVYhh7fqDcKQ8LZ4WJmMxYDqP5hUKwFjJsAPBs9tGCAbBh7PMjigKlJhbO2XrcINpVh4oDC3+r6ubuc2UgyP10omB9miXKRB4c9q82tWneXZz59ETlouNs7bgcKckrGG1w3F6KmD0axHQ2xfuI8LRASE+6HnM53hHXhnFQBKrfxhA37931+V2lbrL8WN95uwW6babSM/l4uQuVcsln217UM079EIj2zAYWQVVXBYeu8qONy4cQP16tWDSqXCn3/+iXHjxlXLfoxGI9auXYtFixbh6NGjyMjIgEQiQWhoKNq1a4cxY8agc+fO1bJvQgh5WCz5eCqSL523u7526/Z47NW3IRBa/x7KsOoGrJKDSCrlqjdUVuL5M7i0bzfO77Z/TRJcuw6e/Oybsn0bDZj7wniuOsLDSigSo06Hzrh25AC0qrt/Z/871Wfyq2jYrRceVkU6NZZe3oc1148gW1WAUIUvhsV0wKBabSEWWH7PFGiK0WvFh8jXlIT/b+ctVSBXffeuSZy5PTzAwvNvtByEpMJsrLh2wFxporZXMCY36YdmAdFcZYpsVSEX2HiiVhv4SN2rZCy/n92Cb06sxt30b/830TzQ9RtIEEIIIYQQQgghhBBCCCGEEPKoo4ADIQ8JtUGD768uwOHsMzCVmzqgyJPied/h6NKuzV0dz7JZazH37QVWy/3DffH19o8QVjvYYvnsc4fx9ck9Vu15PCMCA/IhFenLlsGEmopshMhsByJK3cz1xt7z9e2udz+cgaBFcahqtZpFwj/MB9dOxkMsFaHDoNZ44qV+CIzwh0qpxhvdPsK14473qw2Q4MYnTUpmgpQnMgIC6/YCvgGRoZkOAx9YXQT8mAfxh54Q9rQ/YaxYJ0KRzvLOqG18Y/B9i2cReyoey75Zi0Nrj0On0aFum9oY9FI/dBnRHvez4kIV8jLy4ennDrmn3GKdyVgAU84YQH/RekNRS/B8/gCPVxYgWPfbVvz4wu93NB72daFV61AV/JYpIAyz8UVxi7HAhIyBBYCDQiQmHqD3EoOnN0Gk1MNkLPsZIhQJMP6z0Rjx1hNlfRqNOLb5NJKvpkLhLUeHQa2szuvtWLWIUWGTzIGKispv44+Mpx1PCuIX6xH9znGLZV1GtMP7S17Ho+RhCjiw8F3Pnj2xe/du7nV1BRwSExMxevRoHDx40GG7YcOGYc6cOfDxsR+eI4SQR5mmuBgbf56FuBNHLZbL3D3Re9JLqNWq3V0dz+GVS3FgqfU1iWdAIIZ/8Dk8A4Islh/4bxEOr1iMh0FgVC24eXohMyGOC4ywcEnTPo/D3dcPWlUxlnz4NjITE/AgiW7ZFoPeeh9psVdxbP0qxJ08CqPegNA69dCs3wDuGO9nRVoVctRF8JEqoLhVvaAUCyOM2fQtruWlWm3XLrgO5vR6katwUOqvCzvw5dHldzQeiUAEjaFqrkmqGo+76i+7JmEBj7daDsEz9buZlxmMRuxNvoDEggx4SRToEdEECpHjYJRSp0bnpe9y/95NLKTyZaexd3WfhBBCCCGEEEIIIYQQQgghhDzIbN82kRDywJEKJJhabwKSitNxPOc89CY9Ytwj0dgr5p6MZ/ibA9G4awOsm70F107FQeomQcchbdH32W7cHe5vN6F+KxxOS8TelHiL5T7eRRbhBoZVF+Bb3P/RNnc3NmmBtbM9618XYDmphE3kDojw5ybCFxdU7I6mfD4PtVtEof+Enug1tgtEYtuVMlh1jJyUXKf9iTM0qG9U4KLAtcngcpnGcbiBaScF/uZB0MUyvHA7qVCHIh2rWlDWodqgxZENJ/DJ0FnQacvej/P7L3OPS0euYfI3Y5GQn4uzWWkQCwToEBIBd7HjfVW39BuZ+PODxdi77DAXyGDvcftBrTH+01Fw91FAIBTAjfe17XADozsOU9Ev4Lm/aV50aue5Kvn+8PTzwPxp/0KtdJA8cILvz3MYbuDaePAgjBRAf9lgM9iQ2yME+Z0Cofcpea8kN4rgszUZirMlX6d6nQG/v7MQfmG+6D66I1elZdb4X5CWkGnuZ+azQEzzaLz55wuIbFjD5jiObz1T6XADwzOYKtUm6ar1JLFHCc9U8rjTPu6VF154wRxuqC4stNGxY0fu31I8Hg8BAQHQaDTIy8szL1++fDliY2Oxf/9+yOWOQz2EEPIokri5YfDbHyI7KRFxJ49xFRlC69RHWP2G92Q8bYeMRESjpjizbSMyuIn+MtRp2wENuvaExM3653ibQcO5ChQ3L97573uVxRcK4ekfgMKcbOg1Ffs9kcfnIyi6Nhr16IMGnXuAL7D9e6JY5sb17wrvkFDkpiTjfqDTanDtyEGs/+FrGA1l1yTs/WKPNoNHouOoZ5CTkoz0+FgIxWLu/RdL7Vc7uxtuFmbiuxNrse3GaeiMeoj4QvSKaIpXmw2Ah8QNAh4fM44usxluYA6lXsHcs1vwUrPHy5al2K7eWBFTGveDRCjC9yfWQGO0vOa+18qHGxitQY/Pj/yHILk3d+4OplzCtP0LkKosu7bm7QMa+0diRscxiPKyDC+V2nPz/F0PNzAJ+Rl3fZ/k7kpISEBkZGSV9hkfH4+aNWviQceOgVXlY3bt2oWuXbtarGfXXg/bMRNCCCGEEEIIIYQQQggh5M5RwIGQh0yYWyD3uB/UaRmNOvNfcKktmxD/R4+hWBF7HouvncGNwlx4S6QwybJstlcbnP/40poEkLppoS6W2L3be3lv//0yuo3qgEnN3kTcmZIPX12hjlAgsGcMur/xBNpFRNoNN5QSSRyvL/V+gw74Ius0zmelly20M9FYwYU5HDO4C6Hr5AM3keMkBJ/HHiYY2ez3W65ezcJXr/1sEW4ob+kfW7C1hQknizPNQ5SLRBhXvwXebNkRfKfpC0s3cvOw5MxZXMrM5PrpVycGfWJqQ2RnkpYtGYmZeLXDNGSXC5Swyfp7lx3C/pWHYTSY4KYwYMnZS5A4utFn8TKYFK+Ax2OhD8BkuvPZ3tsX7MHs41+j7YAWeLXD+8hNK5tAXSGuzkOyMfGfLUkbVxtFzX0tlmsiFEidWAf+/8XDa1/Z197Sr1cjsmE43n9sBtTFt022MwFXT1zH5GZv4aMVb6L9wFZW+2PBoTvhdiUf0BsBId9+m4vW55EFWciDh1VuePHFFzF37txq3Q+rRjJy5EhzuIFNrnnllVfw9ttvIyQkhFt29uxZvPvuu9i4cSP3+vTp05g4cSL+/fffah0bIYQ8yHzDanCP+0Fw7TrcwxVsQvyQ96bjwu5tOLdzK/Iz0iFz90Bu6t2b4D/gtamo1aot5r82qcL7ZeecVWmIat7KbrihlEDk2jVJj/GTsfufeci66fr1UXXJuhGPTbO/swg3lHdk1VLcOHeKq/BQPszR4rFBaDdstMUkWlcnpS+5shfXclMgF0nRP6oletZoAiHf9WuSxIJMjN4wE9nqQvMyFnLYGH8cmxNOwHjr2sLZyJZe2Y8pTfpDwOfbDABUxsrYQ1gx8F10DW+EJzfMQq6m8mHku2XeuS0Ikftg8vbZXOihPHZGzmTGY+Dqz/BrzynoFNbAavtMleMqkNXFU+J2T/ZLCCGEEEIIIYQQQgghhBBCyIOKAg6EkPuGiC/AqJgm3IM5mxePV05cs9k2U6NADXkuNxnfHtZGIDDaXe9xvCw8MWByby7cwPR4spNLAQdtgBTpz9SCpoYCSQBObNsEiUCIsU2a4p32ne1O6m83oCVW/VgyUdYeuacbaoYGYFXHp7A5/hrWX7+MIp0Goe6eWHnjHPSmsuMSCAxwk2qdjletkSG3dyB8uNHax+bYmMqFG9jrGyo+TFq1zf9pGCV8JL1eF3HFZXf0Z5Q6HX45cxjFei0+btcDrlp8+iw+2r7DPNmH2XItFvX8/fHX8KHwldufHHK5IA6n8y5xE/D3TT9gEW6wGPOtCf8hkRpIpNaVDSyYcgFDBiAM417KPe78ru3pN7Kw7teteOr9oZh37lt8NeYnHN10qsL9GHNN0F3UQ1Tf/v/ODalG6GOtvw+K63tZhRvKyxpUA+7HsyBQlZwf9j0xf9pi63BD+fEYjJjx1A9YkjQHck/L81S+4oPd7YU86P0k4OmMEGVbfk0LC3XwOJyJgo62A1xsG+9d1ne9Zd/PjzT2pX6n89/ucgWH9PR0LnSwZ8+eat/XP//8g0OHDplff/vtt3jttdcs2jRu3Bjr16/HhAkTMH/+fG7Z4sWLuXatW7eu9jESQgi5u4QiEZr06s89mBtnT2P55+/flX2zifgs3MDU69gVB5ctqtD2WYkJ2PTzNxBKJGjR/wl0GPmM3Un90S1a4+z2zQ77kyoU8A4OxdNffo+rh/bjyuED0KlV8PALwIU926sk+FsRxfnOQ8Hlww2MVlWMQ8v/hV6nRecnx7m8r38u7sSMI8stggRbb5xCQ78IzOv9Mrwk9q8Jjqddw8HUy1DrtdiacMoi3FBe+esdZ2cyU5XPBRD8ZB7ca4XozqtSJBZmYtnVA3i2YU+sH/wB3tzzJw6l3nlliOp0JjMB359caxVuKE9vMuCNPX9gz8gvIROWhNRLJRfavoFCdRsQTb8zPuzc3d0xadIkh21Y9YKrV0t+RgUHB2PgwIFO+ySEEEIIIYQQQgghhBBCCHlUUcCBEHLfEvLs36ldaxQhqdgLNeS2J7mkqxVQGiTQamz/mPPM1KFWvhCRj7fA45N6oc1jLczr+k/siQ2/b0dKbJrd/esVQiS/VB8GT8sJExqDHnNPHofBaML7nbparNMZDDifno6oJ1tC8u8eaLKUdvtX5hfj1fbT8P2BzzCgVl0MiK7LLVfpdNwkm+UJZ82TYNzd1HDlZqT5GQpo1WKoisSQKewHIrQGAUy37iHK5tzkZSug54mgrimH4rz1XfgL2vpBG2J/gs0/F09hcuPWCJI7/3B+5ZbD+ODMQZu3MGXVHN7YuIkLOdwuT1uIry7PxeXCuLKFLwKyXt5Qv5cPU7rtoItK6drdV008mXlIKdetJ9FXxl8fLsH1swkY+dYT+HzDezi//xK+nzwXNy46DqDcrmiBBt4z7P/vXPmvxuaMqfx2/g77NYkFKGzpZ1HF4fD6E07Ho1ZqsO2fvRj0cj+L5ZeP2A4rlQYbcgaEIr9DAIyKkmORJCrhszEFitNlIRX/FQkwygQoauFnVY0lcEEsJMnFFsujm9ZE9yc7Oh0zuX+wIMHzzz+P1NSq+T5zZtasWebnnTp1sgo3lGKTQ3/77TccOHAAV65c4ZZ99tlnWLt27V0ZJyGEkHuHL7B/TXKnWBBB7ukNvxo10bRXP9RsWnZN0qR3f5zfvR0FmeWqublIr9HgyKr/uOcdR42xWGfQ65AeF4vQeg1xad8u6DT2w6vqoiL8+8GbGD19Jup16sY9GK1axfVzaf9uPChObliNlo8PhpuHp9O2/1zYiS+OLrO57nzWDby37x/M7jnFal16cR5e3jEHZ7MSUB2kApFFZYiq8PWxFTiflYDnGvbGn31fxZHUq/jo4CIkFGTgfrUv+YLTNgVaFdbHHcXwGMtrgXPZd78SSWO/mugd0eyu75fcXb6+vtz1giPjxo0zBxxiYmKctieEEEIIIYQQQgghhBBCCHmUUcCBEHLfinEPg4/YHTla23e8TFZ5QWsSIlhaALmwZMK+yiBEutoDGRp3mE6rodiZgfzOgTDKSn7cifh89I+OwacTesLjY4nNfhVecnyz+xN89/xvOLbptPnOpKyqgneQJ5KvpqGgQ6BVuKG8BWdPY3KL1vBzK6k2MO/ocfxx/AQylSWhBuk7zeBxMguyZVfB19uefJ+XWYA/3vsXH/73Bvf6YFIiXti8DnkaNZtpBYiNgMAEIZxUIGDhCi0f6kIp9zz9pg8i6qbZDEUYjUBesQw6owBajQjFhVLo9SUhAJ6dYhiFre1XAWAMJhPWx13BhEYt7bbR6/T44qkfsEKcDTSxnLxe3v6EG3hpxAxor2TBN8Qbvcd2Q6ehbfDZxdm4rky0ai+IEUH2nReKx+YAOuv+kuMkiLsgRVQDtd19nt6vgMkzCS16lRxnZmLV3fVz3/LDOLTmGD5Y9gbaD2yFeee/w4Lpy/DPxyUT0lyh2a1HwfcquL8gBU9crvKG3gTlIg2Kl9sOs+i9bX/9W7Txcd7GlutnEmyGdmwx8XlIeSkGqrqWk800NeRInVwbAQvj4bm/ZAIXX29C8F+x0GxJ5qpPGKUCiFNVXKUJvtZoMRm907C2ePXXiRBL7X+fkvvHmTNn8MYbb2DHjh0WyydOnIjff/+9WvZ56tQpXLhQNkHulVdecdheJBLh1VdfxQsvvMC93rx5M/Ly8uDl5VUt4yOEEHJ/CK5dFxKFOzRFtq9JKkMgFKJuhy7oPn4SxDLb1cnYRPyRH8/A1jk/4ca50yXJYxYClcvh5uGF3LQU8zJ7TmxYg5aPD+EqMbBrmqOrl+HkprXmSghCsYQLWbBAhD3K3Bwc+G8h+r9Uck2ScPoE1v/4NTS3rmseFAa9HteOHDBX5rBFo9fhtd2/Y9fNcw772nnzLJ7Z+A3yNMUIlntjSO126B7eBBO2/IRreSmoLldyk9EisBb3PL3YdqW6ytgYfwLbE8/gl+6T0SmsATYP/QTfHF+F389txYPsck6y1bIirf3rvqrGBw/9o1rio3ajIRbQn18JIYQQQgghhBBCCCGEEEIIqQj6hI0Qct8S8gUYUaMLfotdb3O90cSDh7AWLhSkQsgrmeSvN7E7rPKAHAN43+bBLykLPluTIW4bitf/fAFNAoIQIFc43bdfiA8+X/8eUuPTcf10AqRyKRp3qQ+xRASVUo0BK/5FTr79SSVaowHb4mIxumFjfLl7D+Yds7zzvdpogLqpN2SKugicdxE8O3OTDq4+hoLsQuSLjJi4cTWUuluz9I08QF0SPNCJxYC37cnjpTRFZRPVi/LdkHg1EBFBWYBnWThCpREhKc0HSlVJEKI8vkoP2XXbk7oMbs6rIBRq7U+aYv54919usr96Wtlda0uYIPNRwc1XBaFED6Oej5NpKrhtSEH8uUQc33IGMZNikPK07Uoe3NjDhRB2k0C/1fYY/vkmCB/OSwDfxs159Tpg0XeBaN4/Fi16NeGWeQV4Ii2hau6YWrIPA2Y9OxtLkuZwk/FHTR2EtbM3Iy+jwOU+ipdqod6qg7SvCIJAPoy5Jqg2aWHMsP2F5RPkhZQCHRy/K4CgwH6lD0dkCuuvobCYYFw9ft1qeWErH6twQ3lZQ8PhfiwbfE1ZgEGSqoJkg/1KF9PXvI22j9sP1DxK2M8Wez9fKtJHdRs7diwXcigll8u56gqTJ0+utoADCyiUEgqF6NfPsuqILQMGDDAHHHQ6HdatW4dnnnmmWsZHCCHk/iAUi9Gy/xPcJH97fMPCkZ1002lfcm9v9JzwEkJq14Gbp/OAnIdfAIZN+5QLM2QlJkAklSG8fkMIhCKuisJfb76Iwkz7d9rXazWIO3kU9Tt3x84/f8PpLRus1rvi6uH96PncFBTl5mLNN1+4vJ0r+AIBjAbnge2qoHYSyvjq2HKn4YZSx9JjuX9ZoGFv8gXU9wmv1nADczYzwRxw8JG6I1Pl+vWCM1qDHu/t/wc7R3wBEV+AF5s+hqVX9qNA6/g68074yTyQVYXHcDs3oXVYu6ZnQLW/T6X+6PMy2oXUuyv7IoQQQgghhBBCCCGEEEIIIeRhY2M6JyGE3D9GRXTlQg7s7ofliXhCvFZnCH5p+TqGSjtCf8MIvZ4P5BuBFYXAlAwgSc+1ZXd27xAUhl6RtVwKN5QXHBmIjoPboGXvJly4gZHJpVAZS/p2RKnTIjm/APOPn7TbRlXLE8X1vM2veULAux8QOQuI/hkImGRAQkocFpw7XRZuuE1hvhuMLPDggDpfAr+APO4hFutQmCvHUO+nMTSzO/pltcMTsidwLT7UZriB8dydYTHBvDx2B31nor187K4rLlRh4+/bS14Yy8+kNsEnKhfeNfMhcddCIDZC5KaHqL8Akjk+EEeWtL2hcD5BRdDRcnKLzkcCVZQ79++hzZ6Y9Wo48rIsM39ZqUJ8Nqkmzh5SmN97puczXVDVCnOKsPXvPdxzkViEV2Y/z1UhqAgWaiherEXh92oo/9bYDTeE1ArC9DXvYEDN2g774+mMcD+ejcrIzyzAsS0l1U9yM/K5aij7Vx6x2bagnb/Dvlj1laJm9r9+bjfu01EUbnjAPfbYYzh//jwXbqhOx44dMz9v2LAhF6pwJiwsDCEhIebXBw8erLbxEUIIuX+0GTISzfoOAI9n+ScUgUiM3pNewVMzvndYGaBURKNmqNWyjUvhhvK8g0JQu3V71GzcjAs3MGKpzGHlhVJalQo5Kck4vXUjKsug0yHzRgJObV5XpeEGptv4yWgzeASa9h2AdsNGozr5hobbXZenUWLltUOV7vtijvOAy50qXwXgiVptq7x/FpjYEFfy+5FUKMaH7UbddhVedSI9AvF7r5fQo0bjatoDuPDEwZRL3PP04jwuwLHbxQDLnXq71VAKN9xHNMXFyE5KRGrsFe5f9poQQgghhBBCCCGEEEIIIYTc36iCAyHkvvdC7QEYEtYB29JOIldbhGCZD3oFtYCXuGQy6uS2Q3H1nTM4t69k8sLt2ETxQS87n3BUEXV9/ZFSWOi0zZpLl2A0Ob79eVFzf8gv5kLoD9T6FZBFl63z6AD8a5yBhPxGbJqJze2NRj4yU70QEJJjNSmexyogmPSoVy8JpavYcHIyPbBw5E8wJZeEE/gCPjq+1Ar765hgFFr24bE/E36rS+6WH143FNnJOVwogduOz0N7nTe2Ojg+X6kb+taMsbv+v5lrzP3JruZB1dYPwX65kPsoYXQ3QWkoCSfwYURjj2TUVmRAFq4DNgFZJ0W4ki+AUGRAuCwHXqJimEw8ZGrdkajyQaFBVnKO/Ev+d6cJc0PWoJpQ1/Iw7196LR8b19zAnhZeaN2jEL5BOmQki3BspweMBh53Tts90crcvs/4btg8fydiT8XjThgUAqhaesAo40OcoMaSL1fh8Um9uHWdhrTBF5um4Ysnv+fCD7fz9HNHfpbjrz97UmLT8F7/L/Dj0S+QdHYf9icl2mznszkJwkLboRpndi7ezz3C64ZAq9Yh3UHFC7232Gl/eu+ygMntBEIB5F5uaNihLp54qR+a92DfK8SM/fi50woMd6GCA/s+69q1Kz766CPu37vh4sWL5uf16rl+d93atWsjJaUkWHX58uVqGRshhJD7C/v/VPfxk9C8/xO4tH8XVAUF8AoKRr1O3SBTuHNtek54AWnXryE97pqdPvhcSKIq+deoicTzZRWQbPGLqIlL+3aWXATcgf+mvwvprWOtSjv++BUwGc3VHIKia3Pn0RHfsBooyMyATqPmXvP4fATXroOUK7avBxmFrx+iWpT9Tl8eC+XOPbMZakPlfve9GwQ8PrqFl4UBRtTpiFXXDuJaXmqV7ue3M5sw6FZ44vGoVlwVhHf2/YVCrXWo3VuiQK7G+lrFFfEF6Ziw9ScsefxtFGhUOJbu+D2vjFWxh7hHba8QFGqLkVZsv+rfnRLy+PAQu6FFUC08U78bWgfZv/4ldwf7vr554RxOb12P2GOHYTKW3bCB/cyo3aodmvR+DOENGlX45gIPAoPBgJUrV2LZsmVcsDs1NRV89rMyOBitW7fGmDFjXKpgp9frsXjxYqxevRonTpxARkYGV/2O9dOpUyc8+eST6N69e7Ufj9FoxNq1a7njOXLkCHc8bJmvry9iYmLQo0cPjB8/3iKMTgghhBBCCCGEEEIIIYSQBxsFHAghD4QgmQ+eiexpd/27i17F2z0/QdJVywke7IPqyd+O5SY/V6VnGjXFzoQ4u+sjvbzRKiQU804dg15uYEkD8Iw88DU88AyWH54bFCWTtyO/tAw3lDLCgPCQM7iU0RD5Stt3GC/Ik8Ntfzbc62iBpiWBAK1KAB+pCm5uWou27LN734ACaN/hI++VW/swGJH2wxF0blEDF3100PiLIVDq4X4kG5K0kolDbu4yfLjsDQTU8MPpneeh0+gQ0yqaq3LxyaGdmH/hhNW4JAIhvuvaH2KBwOa4f5gyF+vnbDO/bhSSgLBusZCIyypk5GlluFwQgPY+cQiR5lts79dcB19TMgxc/OHWHXV5Jq5dkKQAZwrDkKV1R7FUCmOIG5JfagCT1HIs6tqe3PLQHy/g4GbrwkZdRrRDWO1g7nlWcjZ2Lz2IJl0b4OaVZGiKLc+tK0w8IO/JIBT284NJXLa/nEQ11u0+jAFdSyYUsaohy9LmcWGKbQv2ICctD77B3ug9titCawXhjW4fo7IKsgsx9/V/MG/Z6/j2yAEsvnAWhbqSYxFlquG9LRmeh+yHElx187Lj6hosWOMnliHVyQx6Ya7tyWYTZz6DYf97nJuoQR5sbLJKeLj9uypXh6SkkuBWaWUGV4WGhpqfJybaDggRQgh5OHkFBqHdUPtVBgb8byqWfTYN+elpVuGGHs9N4SbvV6WmvR9zGHDwq1ETQdExOLB04R3vy2gwoDi/GiaI3wo3lO6DhRt8QsORk5JkM5Qhkcsx8I1pkHt5IfHCWRj1BgTXjoGHXwC2z/sFZ7ZtstpGKJGg/4uvg88X2JwEPe3Agjuq3nA3DIxugxBFSVWzlKIcbIo/wVUIuFGQCa0L1QVdlVCQgc3xJ9E3sjn3unuNxjg4eiaWXzmANdePIFtVgEC5N4bUbgd/mQcmbvu50vvKVhfiuxOrMbf3S/j+xBosv3YASl3VVghhruU5uSYBD+5iGfK1lbur/wdtR+LJul0eyknyD6r0uFhs+uVbrlqDLSzscPXIAe7BAlP9XnwdgVG18LBgAYBx48bZDGPHxcVxjyVLlqBXr15ceIGFBOz1w4IQV69etVpXWFjILf/jjz/Qu3dvLFy4EP7+jqszVlZaWhoGDRrEjed2ycnJ3GPXrl347LPP8Mknn+Dtt9+ulnEQQgghhBBCCCGEEEIIIeTuooADIeSh4B/mi19PzsTOf/dj34pDUBWpEd2kJgZM6YOaDap+0mzXmpF4tmlzzD990mqdp0SKT7v1wOB1i3AhOwO4dYN6E0wwSkzgq3gQqMsmZItyNJDVBxQlc0hs4vFMqB2chuOxNhIQtwi3FgBzigA3HruFJASPecLtFVsTx0uWiVsJIWouhO5k2YSYlBOJePmjEdw5TDifbF5ev10MXvrpOfO5bF+uogHzUbvuaBEYgr8unMTZrDSI+QL0iqiFiY1aob5vgM3xHlxzzCLcEDbBgIiJ1oEBL7EKnfxiESi2XbGAzSMRmIwwshQJ9yjB55nQUJGMPdkxyFZ4QTPWzyrcYD4jUgGUw6Mh+eGcxfLOw9vhzfkvcBOffn97AVb+sBEGvQF3Im90EAqesD4nuhpSvJu4FckzE9G7TxtENY7gqhM89nwvrmrEsc2nkZWUDa8ATzToUBcDX+iDtbO3VHoc7Py/0uIdvL/0deSt3Y9DZ6+CpzdBnKYqdxarFwvWGFfHAuPtf13zVXooTuVYLe8wuDVGvDGwmkf44OOZSh532kd1u9vhhuLiYiiVSvNre5N6bPHxKZlcyOTkWH9tEkIIeXR5BgRi7Nc/4+K+Xbh29CD0Wg0CIqPRpFd/+IZW/f/rardpjya9+tmc1C9z90C3cc9j0buvIevmDTxIcpJvov2Ip3H5wB7ueanQuvXR49kp8AkpCRuyO7CX13PCiwit2wCntqxHRvx1CEVi1GrdDi0fHwy/8Aib+9oYf/y+CjdIBSKLShI88LhKCp+0Hw2jyYgvjizD4st7YSgXDKlqb+6dj8s5N/FYVCvU9g6BiC/A6HqdMTSmPfYlXUCmKh8+UgXah9TD4Oi2WHX9cKX3tTH+BBLyM/B9t4k4n5WIExmxuNuMMFU63MDem6fq3Z3qY8Q1CWdPYe2sz80VXpxhIYilH0/FwDenoWbjZg/8ad6xYwcef/xxqNVlx1+/fn00adKEq+pw8uRJxMaWfJ9t27aNq3xw6NAhyGQl1S9Lbd68GUOGDIFKVVK9hVVtYJUfWDU7rVaLM2fOmCvibd26lVt34MCBKq+goNFo0LdvX25/jEAgQJs2bRAdHc3d6IAFzg8ePMi1Y8f8zjvvQC6X48UXX6zScRBCCCGEEEIIIYQQQggh5O6jgAMh5KEhdZOg/4Qe3ONu+KBTN7QNDceCc6dxISMDMpEIfaNrY1yT5vjkyI6ScIMNRpmJm0jO15dMI1ccS4eig/P9BXjanuDPAgviG0rI4otKXhaz2cgmeEWzu1+KLdoJeKzOgYkLBbAbovp8KEHOVCN0l8smyCRdTcbvZ7/F1RPXkZuej6Ca/oio73xC1uNRdbmHq9b+WjY5XyA3Iew5+8EBL2HJh+r2sOPhm0y3Qg5lRHwjZNBApxNCGyrjzjubJGRLfpQCX65+Haknb0IsFaH9oNaoUbdk8tSiz1Zg2TfrcKcMcgEK+/vZXa9142He2X1Y8c4ytOrbFO/9+xpObj+LX179EzmpueZ2ck836HV3fqfW+HOJ+F+n91GQXQQpqo9BLoLeUwxBkQ7CAssQi/uxHBS084OqrqfNbf1W3ARfU/b1+X/27gM6iqqPAvjdluym956QQOi99yK9iqKIoCioFHv/7NgLFuyKYkNUEAQUUBHpvfcSWiC997bJtu/MxDSyPZsC3N85c9idefNmdjZsduDd95c7yTB+9kjMfn96PZ4xmZKSUrNKjjG2VENoLIWF/31e/sfNzc3qfau3vbIfIiIihVIphg6EpSEIg/ojOnbBsQ1/ISPuEhRKFVr3HYCuoydgw1efXHXhhgr5GWmYueBLsaJDcX4uPAOCrAqJtB0wRFysJYQFmhKtXof3B81EbH4aXOTOGNGsC5p5lIejhSoHP53Z2iDnsPD4enEZGt4J7w6eiS3xxzH/wEpkluRXtvNwckFptTCGvU5nJ+D2de8iu/Tq+V7lJJVjWtvBeKrHzY19KnRF5QZbwg0VhPbCflNeeeeqruSQlZWF22+/vTLcIITIf/zxRwwZUvWZKEze8M033+D+++8XAw9CcOD111/HW2+9Vdnm0qVLmDp1amW4YezYsfjiiy/QrFnNoNjOnTvFShEXL17E5cuXcdttt2H79u0OrbC4ZMmSynCDcHwhlCGELKpLTk7GHXfcga1byz8fX375Zdx3331wdi6vbkpERERERERERERERFcnBhyIiOpgRPNocakuPj8XG+Mvmt1Pr9RDWiiD+740qC4VADUnHzXKV+WCsOBs+HjnQy7XobRMgcxsd6TneKAsygXJ97eC9z/JUMWWDwyRuFbf2wC5RAeppGYoQBEsQcBXKmQ8VoKyI+WDyIvyymevbNXd9Kz6plw6EYc/Pv8Hp3bHQK6Qo/e4bhg/dyT8QnyMtI2vfOw9WA9ZjfOtSQhm2MtNVgZNkUJ8bJACprrSGwzIKinBnfNuhUFvQMqldKRcSoNPkBdWfrQOjlDS3R0GJ/P/2V/c2xPeP6eKFRueHPIyLp+Mh15fcwr9ivfIEYRwg70iO4TD3dsVJ3bEGN2u8VUie2wzFLfxEd5E4SJDeTEPPuvj4JxUPnu+RG9AyGfnkD0+FHkD/KF3K3+vnOOL4PNXMtyOVgU7hGzKohMfIqxlsN3nfN0pzzvVvY//CDNzWmwupKeaOGHW0eoUivKfO2tUb6vV1j1oREREVFetevcXl+qykhJw+VjtanN15ertg6LcnPK0dD0qLS7/rhjUouZAVmucyUrALzHbcDT9EhQymThIf0rrgfB3qR2oPZdTVbWuKdAa9CjSluKRrhOg0euQVJCFxIIseCtdsaQBwg1X2pxwHHf/vQCnsxLFioTV5dtZ9cCYuoQb2viEiZUvjmZcQkOQQoJ/bnkVwW6173Gp8Qj3IH9/vsDmcEMFYb/1X3yIu977DBLhH0uuQgsWLEBmZqb42MvLCzt27KgVShBe26xZs5Cbm4v//e9/4johvCCEAioCAc8//7y4XSBUg/jjjz+MhhYGDBggVm3o2rWrGIQXHv/2229i0MFRhOoQFYQgxpXhBoFQNWL16tVi0F6o0icEPYSqDjfccIPDzoOIiIiIiIiIiIiIiBoeAw5ERA52KD1ZHCxvjkEOSEp0cN+dKj7P32O530K9AcFB2ZXPXVRliAjNgpdnEc5dDkZRJ28UtfdE8KILcDuWA91FPfDfRH1C1Ybq4YbqJEoJvJ9RIu328gEqzdraN/v6Pz9swYJZC6HXVSUILhy5hD8+W4+3/n4BbXvX/I9oVw9VZVUCufsV5wQDwuQ5aOaUBSeJDhqDFBk6dxQabJ+Br6TUCbpSWUXHpmn1+Pqer/H9HQvh5OIEdaFQAQMIiPBDQbZjZhM1OFueyVCvrGoTe7xpz7h7+WQCXNxVRrdpfJyRPLcD9O7VqohIJVC39EJKhDuCvz5ZGXKQag3w+z0RPuuSoPV1hkSjhyK75gB0wdCpAxluIIe4MoRRl0FMQl9X6yAoIiK6diXFnK6XfjXqknoPNwh8wyLs2m9ZzA68tndpjfux01kJ+PnMNnw76hG0861ZBcJNoUJ+mflqcQ3t5d2/4NU9S+EsU6BEW/6dOMTVB0Ua+wZu19WprAQ0ZWezk6CUVa9cWL9uadWP4YYmKOHUCWQlVk2iYA+h4k3i6RMIb98JVyMhXFDhhRdeqBVuqO7BBx/EG2+8gfz8fDHYcPr0aTGoIFRDWLFihdhGuMf55JNPzFZkCAwMxLPPPotHH31UfP755587NOAgBBYqVFSUMEYIdHz22WdikL158+bo0qWLw86BiIiIiIiIiIiIiIgah+NqRhMRkSg7sSqEYJIw3sZJjow728AgAUovAXnbzO0gRaqJ8SwebmoE+5fPrgeZFGl3RkGilKFkTSkMWoNVFRAUUVI4dSr/leCktH1wSOK55FrhhgqFuUV49Zb3oNVoKwcDH9t6CoGRAZVtii9WDQ6WQ4dhrjEY4HoR4YpcBMoLEKbIQ1dlIprJs4weXxi/pDeRXjh5WRjEZHnwsdvRbMhKdGK1hIpwgyA9vnwGREdwuqx2SJumpLjA+CCD3OHhNcMN1RicZcgeG1lrvRB0cEpTGw039LupF5767n4HnDHVxf79+5GQkGB2uRo4OdX82dRoNFbvW72tMBiI4QYiImqKCrMd9x22gkQqRZmZAaZXksr+CxnbQe7kbNdA9yvDDRVySgvx0OaF0OnL71f0Bj32JMcgzN0XTZHwGirCDYLkIivuMa9TQmWJEl3V/Vt9GhvVHS/3ndogxyLbHNvwp0Mu2dENf12Vl/7s2bM4d+5c5fM77rjDbHsXFxccPnwYeXl5SEtLE8MNgk2bNkGn04mPW7dujaioKIvHHjduXOXjvXv3Qq123L9pdOjQofKxUHHi559/NnnvNmPGDMyePRvDhw+Ht7e3w86BiIiIiIiIiIiIiIgaBys4EBE5WPG/sZCE6WFQmM6QScvKB9xrfZQoaeMNlzM5uPwiEPWpFB5daoYE9Bo50rWu0BpMDxDy98lHcrrwH7gS6N0UmLH9KVx4dxsOvHsY7s+orPq0lwVJgeN6/P7Z35jy7E1QuSrNtj+Vdxg7M/9Fckk8ijNK4XsvkL0C0JUXZaghOzUbO1btgYu7Kz5/5DukxKbV2J5/UIriWMClOdBDFQd/ufGKCRGKXBTpnZGpd6uxXifm9WqHGE6mhCK7uKo8hFStAxS1L4YstxQ+6+o226M1nM8XQ3GpBJoo41UPBO4bjIc4bKVXKVDSMQilLXxhcJJBnlUM5YlUOMflQKeSoSxcBWgNUF4ugoX8i+3HVkhR1NHPbBt1C09ovJ2hyDE+GEkYND5s+kAEhvtjyO39Edm+5my7ZD2JAydZDg4ORliYfVVemhIPDw+TM4NaUlhY9fnk6urq0PMiIiJylMLsbIeHGwz/hQOsNXzWg7hwYC9iD+23+XiH1q1G93E3Qa5QmG23Ke4Ylp3djvM5KSjRlpqtpJdcmI3N8cchFF56a/8K8TmRORJIMKllHwS6emN8VE809wriBWuCSouLcf6AFWUxrXB+/26xP2cXF1xNhAoMFYT7NeG+zZIWLVrUWrdv377Kx7m5uZg7d67FfvTVfjcIFRSEsEXnzp3hCEJg4eOPP0ZpaakYxrjzzjtx//33Y+jQoWKQYcSIEWIQg4iIiIiIiIiIiIiIrj0MOBAROZguswQelzOQd0Og8QYGQFpSFX4oDXMXAw4FUT7YmNwSvppChAZkQSbTIzffFdn5rmjeMdXsMZ0UOrG9TlcegsiUaHD3q1NwcmgMcu4vQMCnSkhU5qsY6LPKBwMV5RVjz5qDGDp1gMm2KxN/wPaMf6pWeAH+c6TwmiRB3BwdyuLKV4ePLEHbGYXw71qGODyDlF1K6APcUFbgieJ23oBUAufLBVBdKsD5F+TovqgEER7mBxoFy/OQWVYecMgqdcWpHT5oJs1E0GANJP9dVo1OiuPJ4dhyvl3lftISHUK+iEFBL38UdvMTqwhISnVwO5QJn3+SIM+rXTWgPvh9Eo+0l5tD71V7sJb735lwOZhf52NovVTIu6k99K5Vs9SXuTmjNMoLZS4FUEcpxNcvkOWUwfvvVHj/mw5H0avkZgM+FXTuCpMBB09/Dzzzw8MOOyei6lQqlThraXFxsfg824ZBoNXbBgRUVaIhIiJqSnRa66sTWcPWcINAXViIAbfdiZRzMSgpsO07rtD+0tGDaNmzr8k2L+36GSvO7bSp30e2fCUW0yOyRoCLJ94ccBcv1lVQscaezyhjhH4Ks7OuuoCDUIWhQkhIiN39pKam1nj81Vdf2dxHVpZjJm2oCGEsWbIEd999N0r+qyBUUFCAP/74Q1wEERERYhWJW2+9FUOGDIFUyoLVRERERERERERERETXAgYciIgcLLRVCAKe3QS9SoaCPlfMYq8H5IVSSHVVYQOJTg+thxMyprQE5FJk5XiISwWVq9riMfUGYda8qj43fPIPtqy9jMLcIiANKFyqgcc9VYPdr6RN1qP0sK7yeX5mgcm2x3MP1Aw3VKPwlyD0dRku3aVDp4fy0enhmv2EDFQjeIAaa481w9GEyMr1TomFCPzxHAo/zYHsHfNDjjykaiy93B2GBB1Kl6vh8m8uUuAJ13AdvLprkds3EDGeUVBrq16vLK8Mwd+eh+pSobj4/3YZOhc5ZMVaSHQNO8TJKakUwf87j8JRvijq6wWDUgrF5RK4/5sFl0Omr7stCka0rBFuEBgkBhS21ELnXrMyh87bCZnTIqB3k8N3dbJDji8t1kBSphMrR5ikN5gNlQQ358BxhxBmMTYzk7HVfVyDIiMjK2c6TU62/mc/KSmp8vG1UM2CiIiuTd7BoY19Cji24U/sXbkMZSXlgUJbleSbDkWsiz1gc7hBcG1+q6H60szDnxf3KlCmLnFwf/Z9ZjWm6qECIchtL6FKQl0JAQRHmjx5Mrp164Z33nkHK1euRE5OzbKh8fHx+PLLL8WlXbt2+OKLLzB48GCHngMRERERERERERERETU8TmlERORgI+8eDCe5HMHfxcJ3TSqkxRJISySQFUqhyJZBWlbzo7eXbwAK+wSZnPG+pMgZ6hKFieE55Ut+gQoGQ/n+kjI9iledLQ83/KdwaRk0CcZnNDToDMj9uLTGaJ+Q6CCTr29n5r9mX7+qvQSBYzW1wg0VJBJgbMcjcHGqmrm/LMwNKXPboSTbzID4/0glcvRaFAjZrFQx3FChKEGGpN+dUfRMLgJeiYHPugR4b0hG0HfnEfXSUahiC6vOQWeAvEBjc7hhwC190GVoB7ToEolBk/ti/oaXcPOjY2Erea4WXr+mIfSxswibewaB71w2GW5w9bRtcIIm0A3aALfa67310Lmbfr3ZY4Og9TT2c2Y7qdYA16OZZtuozueaDTj0GNnFIedCZErbtm0rH587d87qC1W9bfv27XmBiYioSepwwwhIZZa/W1cIaVX1e9FR8tLT7A43CLyDgk1uWxqzDY1JJXNC76CWjXLsMZHd0CuoFdr6hGFsVA/8MOox3NbKdPU9R3BT1AxJXy8GhPK73tXASalycH9XV/UGgaura+XjikoH9qgejpgyZQoMBoPNy8SJE+FoQiWHRYsWiZUqtmzZgueeew59+vSBXF5z7iYhwD5q1Cjs3Gl7AI6IiIiIiIiIiIiIiJoWBhyIiBzM088Dj3x+H6RSCbw2JcM5VQd5kQwytRQSVFVZEAxpEYXPf30OXWaZG5AiQUqcb7VJ1A2QiIsw2L988fYoRnREKmRSHbz/SYasSAu9XIKiGQEo+S4c6iURSNF6ouiCBAZN1SD3shgdsp5SQ721qnqDYPMvO5CZnG30bBJLLlu8Bi1vqwpXGCOX6dE5rGY/Wh8ljmiaQ11o/leTq3IISlLND5RyTi2B7/pk+K1JgPvhbEiEEhd1JJPL8OBHM/Dexpex8PB7eOnXJ9BteCcMua0f6pO6uBRTnrkJMrl1v7K1flUDG6or8zUecKkkl6Kgtw8cxXtjAmS5VSGW6jycndH2lOmfEZWbEmNnDXPYuVzPJAbHLNeinj17Vj4+duwYyspMB24qJCYmIiUlxWgfRERETYmbtw9umDGnPF1sQcve/TD19fcQ3r4TmpKTWzeiKLfmTN0VzmQlojENDu+AQo3x77r1SSGV46W+t+PHMY9j9cQXsGDIvegT0hpjo7rX63E1eh3u6zASUit+nq4W3s5u8FdVVU68kruTCre2qt97PXIMNx8/SKSO+SduIRjm5uOLq42vb9U5V79fMae0tFQMJFTn51dVhTQ9PR1NjUKhwJAhQ/DWW29hz549YuWK3377DTfffHON1/W///2vUc+TiIiIiIiIiIiIiIjqjgEHIqJ6MPqeoZj/7zz0GdIRwT+chjyz9gx6N7SIwoc3ls/+L1R8MCc3yx3JhwOhK5KJwQZhXEn1sSXCY1+vQrR3vwTfv5NQ1M4TBT+1QOi9WrTvkIEOoSloHpULbbgz4lM9kPZ8GVInFyH97hKod9cMNwg2/bwDjw94ETlpVRUSKjhLnS2+fhdvrcU2Pm5VFRUqZEcHYseSYLO/tnzcH0Da5Yb/j/Y7XrgFfqG1Bzo4aiCFKTqNDqVFpXj481lWtZdoar+fAr0VxRl0HuZ/Dm2pLiHPL0PIFyfgdjANsv+yFXKpFKNbt8TyO6fg01+fRVir2u+1i4cKr6z+n9FrTeRII0eOrDHL6aZNmyzus3bt2srHEokEw4cP55tCRERNVpeRY3HL86+hWaeu4u8tY6J79sWYB54QH8udnNCUnN6+Gb++8gxKCvJrbVPJG+9c5RIp7m4/DClFxgPh9emRruPho3SvtV4iqd97klKdRvzzmZ63oKnxcLJutv2KcIYQEhEqXywd9zR+Gvskwt39jPSpwpfD7jd6ranpcXZxQcuefR3Sl/CZKPR3tenSpaoCYnx8PDIyMizuI4QAhIoNbdq0wRdffCGu69q1a+X2Q4cOQau1/G87+fn5+Pbbb8X7qYsXL0KnM/5vEvYQjn/+/Hls377d6HYPDw/ccsstWLVqFV599dXK9Xv37hWDDkREREREREREREREdPWybSQjERFZrcsNHcRFr9dDp9djV1wCjialwEkuw7DoFmgdUDWQYkR0C/xz7rzZ/tSnPJB5WYHgWxNMtlE1A0omuKHo1hD0bX4JKnn5QBSBk7QMbooyeDs5I3ayD+RzU80eL/VyBn6d/zvmLphRY30nz17YmvGXyf1kBjn8XSMAWHg9ZbUHJekVUqx5txncfDXoe1vNEINEokSg97uQaDsjM6lqMFFpsAp5AwOgCVRBWqyF+8EsuB7PsXvWealMCrlChjJ1+bULbRmMKf+biDH3Gq8oEN01El4BnshNz0N9OfDPUdz0yBir2jrF5QJCyEEhq1ynczZA72T5gigybBsAMGRKP8THJOHE9jMmQw7+v11Ed40XHvh+LrxVKrg7/xeQ8QUWnViAHSv3Ye+6g9BqdGjXpxVGzbwBbl7Gq1AQOZIweKd169Y4e/as+PyDDz7AmDGm/55pNBp88sknNQISgYGBfFOIiKhJi+zUVVwMej30eh0uHzuM1IvnIVc4IbpnH/iGCd/bqwb2XjpyEE1JTkoyDq5bjYFT766xfmRkVyyNMT7gVeAsUyDY1RuX8x0bjHaRO+PNAdMR6RGAbHXtwLajCLF2uUxeGSxo7hmE2Z1G4aboPkbbd/aPFAfl55fVDtY7yo6kU3hv8Ew0NTdF98axjMs4lnHJbLth4Z3xv16TxMoNbk6qyvV/3jwP6y8fxrbEk+J9e/fAaNwc3adGG2r6Oo8ch3P7djkkGHY1at++vVh9ITMzU3y+fPlyPPjgg2b3+fvvv6FWq8X7IW9vb3HdsGHDagQXVq5ciSlTppjtZ9GiRXjqqafEx87OzmLlByF4UFdClT2hYp5wHyaXy5GWlgYfH9NVJ2+77Ta8/PLL4mOhMkVhYaF4PkREREREREREREREdHViwIGIqJ5JpVJxGdIiSlyMGdO6Fb7Yuw+x2TlGt8uLAEUh4Nq5wOLxZLe4oUNUco1wQ3UeTqUI7FCKjLZOkJ4pM9vXhsVbMeeDu2vM+Do4YAz2Z29Dsa7I6D5DAseia6twbE75n9m+TyRVDaaq4JxQBINegp+fbomNX4Wix8QMuHhq0Wf0TWjf7RHIpF7QaXViAEEYEJ89OgRZN4bX6KOwuy+UF/IR8sU5yNTWzxzo7uOKF399AtFdo6ByUyL5QipkcpkYcDA1461A4aTATQ+PwQ8vLTPZRuivpFANewmv2cvfo/J1myMt1UJ1PAUl3cMq15UE6AGdFJD/V0rBCEmJDm77rJ+FViKVYOJDY7Dvz8MmAw4VWrYJR4SXV631coUcN9zeX1yongi5FoMD+rhGPf7445g7d674WJhx9PXXX8dLL71ktO3999+PmJiYyudPPvlkg50nERFRXQlVx2RSKVp07y0uxrQdMBj7/1iBvDTzQeiGdmrrxloBhxnth2Htxf0o1Bj/jn1fx5Fo6RWMx7Z+47DzmNl+GB7oMg7uTiqUaMvEigB6g2O/KPkq3bFgyL1o6xMOpVyB+IJMyCUyRHoGmN1PKXfCtDaDsfD4epNtXOROKNaav/8zR2fQw1/lCZlEKj5uCuRSGaa1GQIPp/0WAw5tfMMQ7u5fa72TTIEbW/QWF7p6hbfvKAa2shLj7e7DL7wZwtp1xNVI+Den2bNn46233hKfC/c1woB/f//aP/OCJUuWiJURBEIYYcKECeLjtm3bYujQodi8eXPlPc+QIUNMBrvj4uLw5ptvVj6/9dZbHRJuqAhtCH1lZWWJlRyEsPkrr7xisv3hw4crHwthD19fVoUkIiIiIiIiIiIiIrqa1W8NeyIisoqzXI4fJt+KzsFBtbYpCgCPS4AwxN7J2fJAEomfFH4u5mcT9VUWAlEKi30V5BShtKTmIBgfJz88EP0CApxDaqyXSxQYGjAe40OmIMy1H4JU3Uz2ezwxAukFnjVX6gzw2FM1mCrtggv+/KAZVsxrgbiDfcRwg0AIHfS7qRcKO3rVCjdUUEd7IGNKpMXXV+O1ZhehIKsQHj7uYmihWbtwhLUKMRtuqDD1uZsxbvaIWuuFfcfPGYGPd78JJ6Xl621Kx0Ft4erpigGTrBt047o3HqrDSYBWD73MAK27UB5DAmhNvBYD4LciETK1lQOVJMBT3z6AqA4RYsUFhbPp1yaVSjB21nDr+iVyEOHvXsUSGWn6s+Dee+9Fly5dKp/PmzcPM2fOxOXLlyvXnTp1CuPHj8e3335bue7mm2/GiBG1/84TERFdzRTOSkx+8Q0ERLYw204qq6oU1hCKcnPEChTVNfMIwLejHkGzKwasC5Ub5nQajYe6jMPwZl3QNaC5w86jtU+YGG4QqOROGBzWAY6WpS5AkUYND2cXceB9tFewxXBDhYe7TsDN0X1rrZdAgrvaDcWSMU9CIbV/npMegdHwVrphSHjTGAAuvK75A+8Wr8/kVgMgl5j+J05h260tGaq+lgnf+8c8+IT4OWYPYb/RDzxu1f1/Uw5vBwcHi4+FageDBw/G0aNHa7VbtmwZ5syZU/n8mWeegZubW+Xz+fPnw8mpvOJmUlIS+vXrhx07dtTqZ9u2bWIYIienfKIOV1dXvPrqqw57PULVhupVKF577TW8//77YtUJY+fy6KOPVj6fNWuWw86DiIiIiIiIiIiIiIgaBys4EBE1ESEe7lh55zQcTkrG3vgESCWAp8YJaXF5QCuge7twZAdcwC8Jq813ZIC4rzlOUj3kcj0sDWf38HWHs6r8P7arC3eJwvNt38f5wlNILomHs0yFjp7d4SavmqlvaMh72J+xALEF/0JvKA9JSKHE/stR+Ptk25od6g3wWxkLpwzjM7B6+FT9Z3tFoGDZkjyz517Q3Qd+q+MhzzdeycKYuNOJsHe2xMcWzsbNj4zBhsXbkJOei+DIQIyaOQQBEeWDrl5Z/T+8fcfHKMiuCp8IgyeGTx+EpPMpOL3nnPG+ZVLc/PBY8fGM12/HkU0nkJdpvpKH8Pa77YmDy5EkFPQIRH6b/6o5aCQQ33S58EPyX2OhIIRWCpdTlquDVJzPG2ufRc/RXcXn3gGeeGLRXLw383PodTV/ooTX98DH9yC4ufHZHqn+SfTlS137uFYJg2Z+++03cVbSxMTyv/8//PCDuAQEBECn04kzhlbXrl07fPfdd410xkRERPXLMyAI0+d/jMTTJ5EYc0qs/OCkUiE3NQXCuN+Ijl2QevE89qz4pcHeCjdvH/E8rtTZPwrrb3kVu5NjcCE3GW4KFYY16wwvZ1dxu1D5YNGIh/D63l/x16WD0OjLK6EpZQqxAkHFc2t5OLnUeH5/57HYmnDC4cWuLuSmYmhEZ5v3Eyp0vD3wLsxoPxR/XNyHbHWhGACZ1LIfAl3Lw+If33Afnt2xGPllJTWCAre26odTmfE4nZ1gMiBwR9sh4uMnuk/EwdTzyCsrRmMRqkh8O/Jh9AlpIz4XXt/L/abi5d2/1KqqIVTaELZVXAO6dgU2j8aNT72ANe+/CU2p2qZwg7CfsP/VTKha8Ouvv2LMmDEoKirCmTNn0K1bN/To0UOszCDc2+zbtw8XLlyo3Gf06NH43/9qVt8U2i9cuFAMCQj7xMbGYtCgQWJFBSEcLqw7ffo0jh8/XrmPTCbD999/jxYtzAfkbPXss89i5cqVYujcYDDg6aefxrvvvovOnTsjPDwcpaWl4nmcPHmych9hmxDaICIiIiIiIiIiIiKiqxsDDkRETUy30BBxqTSw6mG+JhArEtdCY9Aa3degNyA/RgbULK5Qu50BMOyx/B/+o2YMMTmDobC+lXsHcTFGIVWhf+AL6O77ADLUpyCRSBGo6oxhQXo0Ux3D5thYaPV66I6nQbP8NJyTjQ+QUbkp0Xt89xrrortEQb1XCFOYGU4kl0Ld3A1uR8tnE7SGq2fNQUu2Eqo+zJp/p9FtPUd1wdKEhdi2fA/iTiVA5a7CkCn9xCoRmcnZeHbk67UCFkKY4PGv56Jlt/KZZ0Ojg/HRzjfwzXM/Y8+ag2KgQKiQ0GtsN/SZ0B0Ln1gMdVFp1f5qLYLiipAJCfTitZIAOmGpft2Eyg56yAqsC4I88PHMynBDheF3DkJIdBBWfbQOB/85Jg486HJDB0x6dBw6D2lvwxUkanjCIBxhxs/p06dj9+7dlevT09NrtR01ahR++ukneHlxgBwREV3bwtp1EBdjApo1x75Vy6HXGb8ncbQON5iumiTck/QPbSsuxrg5qTB/0Aw83XMSjmdchlwqRffAaOSoi7A0Zhu2J54Sww75pcXIVOebPI6nkwsGXHGMtr7hDg83CNyd7JuBvnqlif/5/BdwvoIQnNg25R38FXsQsXmpYkWKsVE9EOHhj+TCbMz852PE5df8DqSQyvDWgLvQ0rv8JrOFVzB+HvcUFhz8HdsST4rXTwgcCJUdBoa2wzv7f4NaV/PeQgid5JUWOex6vdb/jspwQwWhikNzzyD8cGoT9iTHiOv6hrTBjPbDxPecrg+Rnbpiyivv4O/PFyArMd5ie7/wZmLlhqs93FBh4MCB2L59O6ZNm4azZ8+K9+YHDhwQF2PV7D777DMx9H0loaqdUA1CCDlUBMGFkIGwXEloJ1S7E4IVjqZSqbB582bcdttt4j2bICMjAxs3bjTa/sYbb8SiRYvg6XlFxVAiIiIiIiIiIiIiIrrqSAzC/3QQEdFVY0fGPnxxYTGM1V8YWNAb8UeAnMFb4aasGuh+JU2mCxIn68QB8qUlZbVm3hcIA9Y/3vUGvPzr9z+GczPyMKPVIyjKMx5wuH/BDEx6bFyt9S2//tDirKvBX56F24lcq85DJpfhp0ufwy/UF42hrFSD7Sv2YOeqvSgpKkXLrlEYN2cEgqOMVz/Iy8xHVnIOvAM94R1YPtg6KyUHfy3aiGNbT4nhiB4jO2P0PUPx1IFN2HC5apbGK7kdzELwd6a3VwhvE4pvTi4QK1ZQ0yUMQBFmsxR0G/cinF3qNhi/tDgXh/98Q3yckJCAsDDjA+bqS/WQlTAr6IwZM2zap1mzZrh8+bLFfYSvxL///juWL1+O/fv3IzU1FXq9Xhyw07dvX9x1111iwIGIiIiAE5s34N+vP4PBUPs+ouOwUSjJz8OFA3vNXiqFUimGoIU+tKWl4u/iK/mEhGHq6+9D6VazopujpRXlYsyqV1CsNX4P9Urfqbi9zaAa63R6PTosfggGB8YcFFI5tt72JnxVVZXxGlKpVoM/Lx3ExrijKNVp0MGvGaa0HogQNx+j7bNK8pFZkg9/F0/4KN0rr+Wv53bgYOoFMVAyMLQ9JrXsi6e2fYcdSafrfI5tfMKw+sbnTQbxiQTC50ni6RM4+s+fOH9gDwz6qs8qqUyG6J590WXkWIS169hgP0vCfczixYvFx4MHD8bWrVvr7VhClYWlS5eK9zcHDx4Uw9vC6xTu5YRjz549W6zUYIlQIeGXX37Bn3/+iUOHDon9aLVa+Pr6ipUShEDBnXfeCXf38r//xkRGRiIuLk58vGXLFrF6XnXVr/+lS5fE9sasX79erFAhhDWE+1KhSoUQPA8JCRH7FEIQAwYMsOEqERERERERERERERFRU8aAAxHRVehcQSzWJW/E8bzT0Bv0aO/RGmOCh6KTV/msoi/t/xqFTptN7C3BQy3moYV7eduzBy9i8bxllTPvK12cMeT2/rjnzamVA+frW1pcBt6753Mc21I1G6AwcP/OlybjxgeMDyi+6ZtvcFRrOrwgKdUh6vkjkJWYD0FU9vfQGDz4yT24Fl3Mzcatvy9Fjrqk1jZFkQ4h80/AKdN0IEYQ3DwQ7/zzIkJaBNXjmZIjXGsBByIiImqaEs+cxKE//0DciaNiibiIjp3RfexEhLfvJG5f/trzSDh13PjOEgmmvfE+gqNbi0+Tz8Vg94qfK/tSOCvRdsAQ9L99Olw8GmYm7vj8DDy380ccSqsK/gaoPPFwt/FidQBjxq9+DRdyUxx2Dvd2GCFWm7gWnctJwp1/fYD8str3JNLKinPmRXoE4NtRjyDUrXFC6XR1Ki0uRmF2FsrUxXBSusDNxxfOLnWr3khERERERERERERERET1iwEHIqJr1E8Xl+Ng3jpIpGWV69xknpgSMQsdPHsYraRQkF0Iv1AfqNxUaAyJ51MQdyoBKjclOg1uB7lCbrLtiy99g5+CcwCp8dkWvTanwP+3+FrrheBEbnp+5QyxwrEmPjgaM9+cek1XJojNzcb7+3eKlRy0ej0UUilGRbXEA2264cvbPkfMvvO1ZlGM7hqFsNbB6D22OwZN7gOFk6LRzp/sCzh0H+uYgMOhvxhwICIiIttt+m4hjm/8G3pdVejYxdsbo+c+hqgu3Wu1L87LhbqoEO4+fmKFh8YQm5eKi7mpcFco0SOoJeRSmcm2D2z8EpsTTIQ4zPBTeYiVDyq4KpS4u/1QPNxl/DVdmUAIg3x8aI14zXQG4Z5EjlGRXTGz/XC8tPsnnM5KqNFeKpGgnW8Emnn4Y2h4J4yM7AaFmfeDiIiIiIiIiIiIiIiIiK4NDDgQEV3DyvSlOJl3CAXaXPg6BaCtR1fIJNfGgJAfX1mOz9dvQfq0KBicagYT3A5kImhxLCT6mrOARrQNxftbXkVRbhHOHbwIhbMC3UZ0gqvH9TN7Y16pGpklxfBTucDTuXzQmE6nw751h7FtxW6UFKoR2T4c42aPQGAz/8Y+XbIDAw5ERETUlGjUalw4uBcl+XnwDAxGVNfukF4jg9TfP7Aa35zcYNM+rb1DsXjM48guKcCprHgo5U7oF9JGDDlcL3JLi5CtLoC/yhPuTuXheq1eh83xx/FP3GGUaMrQxicMt7UegCBX78Y+XSIiIiIiIiIiIiIiIiJqYAw4EBHRVenSiTjM7vwUdK5y5Pf2Q1mgErISHdwPZMI5qURsE94mFGUlZfDwc8fwOwZh9L1D4eLeONUpiBoKAw5EREREDeN4xmXctm6+2TbNPQKh1mvgq3THxBZ9MKllX7gonPkWERERERERERERERERERGZIDe1gYiIqCmL6tgMAyb1xs5V++C9ObXW9pAWgfh8/9tQuTHQQNcxg6F8qWsfRERERFRLJ/9IDA7rgG2JJ41eneaeQVh94/Nwlit49YiIiIiIiIiIiIiIiIiIrCS1tiEREVFT8+yShzHszoGQSiU11rft0xLvbnyZ4QYiIiIiIqpXHw65D2Miu0MqqXlP0iMwGt+PepThBiIiIiIiIiIiIiIiIiIiG7GCAxERXbWcVc549sdHMPP1qdj/12FoNTq069sKrXtGN/apETUJEkP5Utc+iIiIiMg4F4UzPrzhPiQUZGBH4mloDTr0CGyJdr7hvGRERERERERERERERERERHZgwIGIiK56gc38MeH+UY19GkREREREdJ0Kd/fHtLaDG/s0iIiIiIiIiIiIiIiIiIiuegw4EBEREV3LWIGBiIiIiIiIiIiIiIiIiIiIiIiIrhLSxj4BIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiBhyIiIiIiIiIiIiIiIiIiIiIiIiIiIiIiKjRyRv7BIiIiIiofkgM5Utd+yAiIiIiIiIiIiIiIiIiIiIiIiJqCKzgQEREREREREREREREREREREREREREREREjY4VHIiIiIiuVQZD+VLXPoiIiIiIiIiIiIiIiIiIiIiIiIgaACs4EBERERERERERERERERERERERERERERFRo2MFByIiIqJrlMRQvtS1DyIiIiIiIiIiIiIiIiIiIiIiIqKGwAoORERERERERERERERERERERERERERERETU6FjBgYiIiOhaJVRfqGsFBlZwICIiIiIiIiIiIiIiIiIiIiIiogbCCg5ERERERERERERERERERERERERERERERNToGHAgIiIiIiIiIiIiIiIiIiIiIiIiIiIiIqJGJ2/sEyAiIiKi+iExlC917YOIiIiIiIiIiIiIiIiIiIiIiIioIbCCAxERERERERERERERERERERERERERERERNTpWcCAiIiK6VukN5Utd+yAiIiIiIiIiIiIiIiIiIiIiIiJqAKzgQEREREREREREREREREREREREREREREREjY4VHIiIiIiuVULxhboWYGABByIiIiIiIiIiIiIiIiIiIiIiImogrOBARERERERERERERERERERERERERERERESNjhUcqN5lJmfj70WbcHzHacjkMvQa0xWjZgyBq6crrz4REVE9kgiLoe59EBFd7VLySrB0XzwOxuVALpNiWJsATOoWCnelorFPjYiIiIiIiIiIiIiIiIiIiIiqYcCB6tW+vw7jjdsWQF1cWrnu0IZjWPbOary9/kW06BzJd4CIiIiIiOrNP6dS8fDSIyjT6ivXbT+XgS+3XsRP9/VCdIA7rz4RERERERERERERERERERFREyFt7BOga1dWSk6tcEOFnLQ8zJs4H1qNtlHOjYiIiIiIrn0J2cW1wg0VUvPVuG/xQej1dSx1Q0REREREREREREREREREREQOwwoOVC+ObT2Fn99caTTcUCE9PhO7Vu9Hiy6R+PvbzUi5lAYvf08Mnz4I7fq04jtDRERUV8KYXUMdB+5y3C8RXYUMBgN2XcjCJ5vPGw03VLicVYxNMemI8nPBrwcSkJRbAj83Z9zaPQydwrwa9JyJiIiIiIiIiIiIiIiIiIiIiAEHcrCkCyl47dYPEHs8zqr2Kz5Yi3MHL4oDkCqs/fIfDJnSD88ueQQyucxiH0KIYsvSnbhw5BKUrkoMvKU32vRqWafXQUREREREV6cL6QW4/6fDOJ9eaFX7z7acx7GEvBrrftwTh0ndQvH+rZ0hlUos9lFUqsXvR5MQk1IAV2c5xncKRodQT7tfAxEREREREREREREREREREdH1ihUcyGGK8ovxv+GviZUZrHX2wAWj67f+uhtBUYG4961p4vOSwhJoyrRw93aDRFI1wOjQv8fw5u0foiCnqHLd8vf+QK+xXfHissehclPV6TURERFd1QyApK4VGFjBgYiuIjlFZZi2aB/SC0xXkrvSleGGCqsOJyHS1xWPDCsPTxeWaqHV6eHl4lSj3eaYNDy67CgK1NrKdQu3XcSIdoH4dGpXKBWWQ9tEREREREREREREREREREREVI4BB3KYDT9stSncYMm6hRvQvn8brPpoHY5sOiGuC4kOwsQHR6P3uG74bcE6/LVoI/Q6fa199/91BB/c9yVeXPaEw86HiIiIiIiatl8PJtgUbrDkxz2X0S7YA4t2xGLfpWxxXQt/V8zoF4n+0X5ikOG3Q4nQGwmD/Xs6Dc+vPoEFt3Vx2PkQERERERERERERERERERERXeskBoOB8/KSQzw19BUc23rKoVdTKNZg90+oBPji4Hy07NrcoedERETUlCUmJiI8PFx83Gfgc1AqPevUn1qdh7073hYfJyQkICwszCHnSURUH27+YheOxOc6tE+hflwdbkmw8YnBaBHg5tBzIiIiIiIiIiIiIiIiIiIiIrpWSRv7BOjqd+7QRbx3z+c4vfecw/uuU/zGALx043yUFJY48IyIiIiIiKipOZqQiyd+PYpTSfkO77uOtySY8f1+qDU6B54RERERERERERERERERERER0bWLAQeqk7++2YSHez+HDT9shUataXJXMyspG39+vbGxT4OIiIiIiOrJ4t2XxcoNq44koUynb3LXOSGnBCsOJTb2aRARERERERERERERERERERFdFRhwILslnE3CR3O/gl5flzlN69+GxVsb+xSIiIgahcRgcMhCRNRUxaTm45U1p+pW+a0B/MaAAxEREREREREREREREREREZFV5NY1I6pt5Yd/wlBP4YaW3Zvj/KFYh/SVnZIDvV6PA+uPin06KRXod1MvhLUMdkj/ZF5JYQk2LN6GzUt3oii3CGGtQzBu9gj0HNWFl46IiIiI6mTR9ljUV7ahY6gnTiTlOaSv9Hy1GAzfHJOOU8n5UDlJMbp9MCJ8XRzSP5lXoNZgxcFErD2ejEK1Fi0D3XBH72boH+3HS0dERERERERERERERERERNTESAyGpj7XJTVVt4XMQk5qrkP7HDVjCCbcPwoBzfxxR8RcaMq0de4zvHUIdDo9ki+kVq6TSCQYPKUfnvr2fjirnOt8DDIuJy0XTw97FXGnE2ttGz9nBB79cjYvHRGRgyUmJiI8PFx83Lffs1AqPevUn1qdhz273xEfJyQkICwszCHnSUTkCF1f24CcYo1DL+a0XuGY1rsZfN2cMGD+FugcEOpuE+SOwlItEnNKKtdJJcBNXUPx9qSOcJbL6nwMMi41T42pi/biUmZRrW339I/CvAnteOmIiIiIiIiIiIiIiIiIiIiaEGljnwBdnYryi5GXke/wfodOG4jWPaPhHeCJqc9Nckif6fGZNcINAiHXs3XZLnxw35cOOQYZt2D2QqPhBsG6r/7Fv0u28dIRERERkV1yi8uQ6+Bwg2BStzB0CPVEsKcKswY2d0ifwuD66uEGgZCbWHU4CS/9ftIhxyDjnv7tmNFwg+C7XZfw14kUXjoiIiIiIiIiIiIiIiIiIqImRN7YJ0BXp7TLGdDr9A7vV6vRVT6e/vJkuPu64df5vyMzKVtcp3CS21zVobSkzOS2rct2Y8ZrtyOkRVAdzpqMSbmUhv1/HjZ7cdZ8vh7BzQOxbflulBSo0bxTM4y4ezBcPFQ4e+AiykrKENUxAp5+HtDpdDi+7TTyswoR2jII0V2ieOGJiCyQGAziUhd13Z+IqL5czipGfXxCaXRVvT47pg383Jzw9fZYpBeUiuuc5VKUam27FzLXfuXhJDw2vBVCvFR1OGsy5mJGIXaczzR7cRbvvgwfVyesP5mK4jIt2gV7YFL3MLgoZDiWmIcyrR5tg93h5eIErU6PvbHZyCvRoEWAK9oEefDCExERERERERERERERERERORgDDmQXV08Xh185IbwQ2ioYhzedgEQCtOndEjc9NAYT5o7EuUOx0JRqxMHum37egYVP/ACdjYOKjBEqOez+4wBufWKCQ14DVTl/KBZ6YVpaM2L2X8DjA1+qsW7RMz+JAYf8rALxucJZgdY9W4iBiayknMp2wrrHvprDoAMRERHRdcpd6fjbWaVCijBvFXaez4RUCnSL8MZ9A5vj7n6ROJ6YJw5wbxvigWX74/Hu+hg44JYEOr0Bm86kYXrfSEe8BKrmeGKuxetx4HI2bv96b411b/0VAxcnKXJLtJWhlk5hnojLKq4Mugi6RXjhnVs6oVWgO687ERERERERERERERERERGRgzDgQHYJbOaPtn1a4sze8ybbBET4IT3e/GyZ1QU1D8T9XZ9GSaFafC4MchfCDTPfmIq2vVviwPojeO3W93F0yylxu1+Yj/hnZmJ5dQd7lak1ddr/WiZUTdj9x0HsWXsAWmE20z6tMeKuQXD1dLW4r5PSya5jajXaynCDQAi2nNwZU6udUOHh6aGv4tN9byOsZbBdxyIiuuYJObO6Tm/OAg5E1ES18HdD+xAPnErON9km1FuFpJwSq/sM93bByA+3o+S/ynKeKgXu6ttMrLDQvZk3Np5Ow32LD2L/pfJ7kGBPJfQGA9Lyqwa928PWihDXE41Oj39OpWJzTDq0OgN6Rnrj5m5hcHO2/M8ZznKZxTbGMtllOj3KSvQ13p8Dl6vC1hUOx+diyld7sOahAQj3cfwkAERERERERERERERERERERNcjBhzIrkHve9ceslhBwSvAw+qAg5u3KxJikmqsK84vwa/v/oHMpGy0798Gnz74jVhxoUJdgw3VKwFQbZlJWXhu9Ju4fCqhct2Wpbvww7xleHnlU+g6tKPZy9ZlaAex0kdRXnG9Xd7C3CL8+s5qPPntA/V2DCIiIiJqeoRKCv+eTqtxf2CMj0phdcDBQyXH+fTCGuvySjT4dPMFpOeXolWQO15fd7rG9pS88nB2XXUK83JIP9eahOxi3P39fsRmFFWuW3MsGe9vOIdv7u6BnpHloXdTBrb0g4uTDMVl5YGV+pBTrMGiHbF4bWKHejsGERERERERERERERERERHR9URisDQihKgadXEpXprwtlhFwSCToDTEFZAATinFkGrqb9ZRuUIG7X+zqDpSeJtQfHvqQ0gkEof3fbV7sNezOHfwotFtKjclvj39EfzDfM32seTVFfjx1eWoT1KZFEtiP0dAuF+9HoeI6GqRmJiI8PBw8XG/Ps9AqfSsU39qdR52750vPk5ISEBYWJhDzpOIyF6FpVrM+G4/DsbVnlG/Pkklxmf7r6t2wR7469GBju/4Kif8U8Xoj3bgbFpVdbfq3JVybHlqCPzcnM32M399DL7cavy+xlEUMgl2PTsUAe7Kej0OERERERERERERERERERHR9UDa2CdAV5eFj/+AI1tOIXdIKOKf7Y6UBzsh5YFOSHi+B7JHR8AgjPqpB/URbvAJ8sK8FU8y3GDEsW2nTIYbBCWFavz59b8Wr/Gd827FbU/dKAZU6otep8fjA19CVkrDDnAjIro6GIQRonVbhD6IiJqQeX+cbPBwg6A+wg1BHkp8Nq2r4zu+Bmw7l2Ey3CAoUGvx64GqanOmPD2yNWb2j4S8nu5VBRqdAbd+uRtZhaX1dgwiIiIiIiIiIiIiIiIiIqLrBQMOZLWCnEJs/Gk7siY2R87oZtC7O1Vu06vkyBsShvRprZrcFR10a198tv8djJwxBJEdwtGqRwvc8+Y0fH38A0S2L5/hmmo6svGExUtyeONxi22Eyhiz3p2On+O+hNKt/mYzTY/PxLJ3Vtdb/0RERETUNGQWlmLdsRRcbSZ1DcWqB/qJf7YKdEPncC88O6YN1j82EM393Rr79JqkXRcyLbbZed5yG6lUgpcntMfOZ4bCSVZ//wQSn12CRTsu1Vv/RERERERERERERERERERE1wt5Y58AXT2EGf0L3GQo6Btksk1xB1+UNPeAKjYfTcX23/ag/8298PR3Dzb2qVw1DOKM3ZbaWO6npEiNzT/vwNGtp6DTaFGf/v1xG+7/cAakUua2iIgqSAzlS13UdX8iIkc6Gp+LMp3+qruoq48mYWT7QCyY0qWxT+WqYc39hsGKKkOFpVqsPpKE/ZeyrbrPqYvfDiWIwRUiIiIiIiIiIiIiIiIiIiKyH0cCk9VkchkKu/lbbFfYPaDWOrlT42Zpvnv+F+j1V99AqMbSdVhHi226WWhz/nAs7o5+CB/N/Rpbl+2CprR+Aw5FecVQF5XW6zGIiIiIqHHJZBK795VL7d+3roRx9e/+c7bRjn816h/tZ7lNC/NtjsTnYNC7W/DS7yex9lgyNPr6DThkFpZBexUGcIiIiIiIiIiIiIiIiIiIiJoSBhzIam37tITU18ViO52rolYwYvzcESbbK92U9f4upMVl4PdP/67345SVarBtxR78tmAttizbhdKSq2vAvU6rQ9KFFIS0CIRviLfJdkpXZ4ybY/o9LSkswfNj30JOWh4aipu3q3heRER0xYhaRyxERE1Er0gfu4IKTnIppvQMN7nd1UmG+habUYRf9sXV+3HUGh3WHEvGou2xWHc8GaVaHa4mGp0elzOLEO3vCl9XJ5Pt3J3luL1XhMnteSUazPzhALKLytBQ/NycIJfxn1mIiIiIiIiIiIiIiIiIiIjqonGn1aerirPKGZ3bRmIr8s22k+fUHNQ/+La+eODDmXB1d8HKD9dBXVy1vUWXSGQm50BdqLb5fKQyKfQ2zI755eM/YOfqfXjt92fg5uUKR9u8dCe+ePQ75GUWVK5z93bF7PfvxuiZN6CpBxuWvr0aaxduQHZKjsXrPm/FkwgINz1b6sYl25Gb3nDhBkG7vq0glXIwEREREdG1zNVZjk5hnjgcn2vTfjd1CcHrEzvATSnH4t2XodZU3Ud0DPNEYnYxispsDwIIWQtbigI8v/ok/jqRioXTu8PN2fG3478dSsQbf55GbrGmcp2PqxPmjW+Hm7qGoikr0+rx2ebz+GV/vFgJwRyZVIKv7uoOf3fTAecVBxNqXIeG0DPSdEiciIiIiIiIiIiIiIiIiIiIrMOAA1lNp9OhbaEMWz0MgMz0rKnuB9JqDDp/9MvZKClUo1n7cMx443YU5hTBL9QHUZ2a4e9FG3Hx6GW73gVbwg0VTmw/g/l3f4rX/3gWjnRg/RHMn/4J9FeMbirIKcKC+76Eq6cLBk7qjaZIr9fj9ds+wK7fD1jXXqeHush8ZYojm0+goZ3adRaXTsQhqmOzBj82ERERETUMrU6P5v6uNgUc+jb3was3dkBhmRbtgj3w1MjWKFBrEOihQodQD3y78xJOJNoXzrUl3FBh54VMPPPbcXx+Rzc40oZTqXj6t2O1Cu8IFQyeWH4UnioFbmgTgKZIpzdg9pKD2Ho2w+r2QqUKc3ZfzEJD2xubjQvphYgOcGvwYxMREREREREREREREREREV0rGHAgq33+8HdYv3ADvAeHImeM8UHkHjuT4ZxcJD6WSIBHF87CR3O+wu4/DqC0pGoWzqiOEbj37TuwYfHWBn8H9q49hPiYJES0cdwMpj+9/lutcEMFg8GAn15f4fCAQ2ZSFk7ujIFEIkGnIe3hHeBpsq1wDof+PY5/vt+M9PhMePi6o+OgdugxshPS4jKtDjdU+HfJNgy8pQ8aispNKYZkzCnKK8bzY9/CD+c+EauNEBERINGXL3VR1/2JiBzp2VUn8NuhJKvbyyQSvHZjezy54ig2nUlHqbbqQ619iAeeGNEKa44lN/ib9NeJFCRkFyPcx8VhfX686XytcEMF4Vblk83nHR5wSMotwaG4HPE6923hK1aLMHdPsvVchlhZISVPDV9XJ/Ru7otBLf1wPr3Q6nBDhZWHkzC0TSAailIuhbraz48xOcUazPh+PzY/OQROclaXIyIiIiIiIiIiIiIiIiIisgcDDmSV1Mvp+PPrf8XHXtuSIM9WI29QKMrCy2emVKQVi+EGjwPplft4+HlgTpenASODbC6diBerBpgKBdhCKpNCJpdCU6q1ep/3Zn6O5395FMFRxgfExJ1OwJ41B6HV6NC2T0t0G95JDBIYk5WSg9N7zpk9XuyxOCRdSEFodDDqqrigBB/f/zW2Ld8DnbZ81lKFkxzDpw/Gg5/MrDW4X6i88c70T7F12a4a6/euO4RF/ysPD9gqN938DLddh3XCjpX74Chu3q4WAw6CzKRsbFm6C6PvGeqwYxMRERFR0yDMjP/boUSb9vF2VWDERzuMbjuVnI+Hlx4xGQqwhVwqgVQqQZmFAfAVhEM+sfwYPr69C0K8VEbbxKTmi6EMoVpBj2be6BftZ7K/+Kxi8fWYcyQ+F6l5agR52v79/0p5JRo8v+oE1p9KFc9PIAzon9IjHC+ObwtnuaxW5Y2Hfjkitq9u45l0vAnAxalme2tkFZqvKtevhS82x1Tdn9aVn7szEnNKLLYT2vx9MgUTuzguUE9ERERERERERERERERERHQ9YcCBrLL11901wghuJ7LEReciF0s1yIo0tfbJyzA/wKa0uKqiQ13odXpxEYIOwp/WiNl3Ho/0eR4f7ngdYa1CKteXFJZg/l2f1qpo0KxdGOb99pTRqg+lxeYH1lRQF1nXzhy9Xo8XJ7yNE9vP1FivKdPi7283ISc9F6//8WyNbb99sK5WuKE6a4IDVwpubn6m1OF3DsSPryy3GISwlqe/hxg02b5ir8W2e9cdZMCBiKiCMGq3riN3HTHyl4jIAdbaUWkhs9D8PUdxWXlguK60wr2S3gCZFLDylgQHLmfjps93YeX9/WpUcshXa/Do0iPYckVFgzZB7lh4Z3dE+rnW6qtEY93rKC6zPhRuihBWEKoUCIGJ6oRwx5K9ccguLsPn07rV2PbZlgu1wg11fR8iLFS/mNwjHJ9vuSBWVXAEf3dn8T0QQhmWCMEUBhyIiIiIiIiIiIiIiIiIiIjsw4ADWaUot8joellx7QEyKnclSgpsHzRfV9aGGyrkZuTjlUnvQSaXIflCKtx93KBwliP5YlqttnGnE/HMiNew6MQCuHnVHFDkF+Yr7luQXWjyWC7uKoREB6GuDvx9pFa4obq9aw/h9J6zaNe3dWX1hjVfrIejjb1vuNntKjcV3v77Bbww7i1kp9Yc+GSPC4cvISMhC35hPshMzDbbVniviIiIiOjaIwz8t5abswyFpY4JL9jCxlsSpBeUYtaPB8UsWVx2EXxdnSGVAAlGKgXEpBbgjm/2YcPjg+DqLK812N/NWY5CM1XtvFwUCPU2Xi3CFv+eTqsVbqjuz+MpeGBIHtqHeIrPNTo9ftobD0e7vVeE2e2eKgW+n9kL9/xwANlFdQ/XC69ZCDkEujsjrcB8eP1sWkGdj0dERERERERERERERERERHS9kjb2CdDVIaJtmMU20V2jxCoHoS2Dre5XIpGgMQmD4WOPx0FdXIqMxCyj4YYKmUnZWP3xX5XPy0o12PrrLrx6y3soKTIf6Og9vjtUrso6n++WX3dZbrO0qo0QBkiPz4Qjjb1vGDoPaW/Vz8PiC5/h8a/nIjDSv87HFSqCWAo3VLxPQrCDiIiE6gsOWoiImoDoADeLbTqHeeKr6d0R7Gn9QH4hUNCYhOCCMCBerdEjKbfEaLihgrBdqJJQQa3R4Y+jSZiz5CBKtea/A49sFwhnuazO57v2uOVKGmuqVduIzy5GZmHdq9lVN6NfJLpFeFts1yXcCzv+dwPevLkDgj3rfj+WUVBqMdwgSDLzHhIREREREREREREREREREZF5rOBAVhk0uQ++fOIHs1UKHvzkHnTo3wbfPLPE6qsa2SEc2Sk5yMu8Oma4/PG15Yg7k4DeY7vh66eXiFUgrLFl6U7EnUrAjNdvR98JPZCdmoM/v9qIPWsPQFOmRdverXDjg6MQ3SXKbD9FucUWj1WUX9VGpqj7AKbqhk8fhMe+mmNye056Hi4dj4OTyglte7eE0sVZDES07tkCD/d5HppS62fdtZe6qFS8Th6+7vV+LCIicrzCwkIsXrwYf/zxB44dO4acnBx4e3sjLCwMo0ePxowZM9CyZUuHHzc6OhoXL160eT/h/Ly8vBx+PkRU28QuoXj7rxizVQpev6kDOoV5Yd4fJ62+hEKlAWEQfl5J/X9XdYT5f8fgTEo++rfww1t/n0FusXXnvfxgIk4l5+PpUa0xpHUAUvPU+HlfHDbHpEOrM6BHpDfu6huJ1kHmv0fnl5i+/hUK1FVtFFLHzqtwe89wvHKj6cB1eoEa51ILoXKSoku4t1jt4o7ezdAhxBO3LtwNja7+k3vCz2hxmRYuTvwnFyIiIiIiIiIiIiIiIiIiIlvxf9vJKppSLUJaBOKsiYDDbU/dKIYbBGGtQ8xWQqhu8pM3ouvwjlj35Qbs+n0/SkvK0KpHcxzZdAL5WabDFI3GAGxbvkdcbCVUinjl5ncx861pWPHeGuRnVYU6Lp9MwN/fboJvqA+atQvDyLuGYPBtfSFXyGtV0ti77pDV1Tb8QnzQslsUzh++BEfYtXo/Sj5Tw8W95oy4+dkF+OLR77F9xR4xsCHwDfHG7c/ejJseGoMWnSPxyqqn8c70T8yGZBzBWeUElXvdZ2clIroWSAwGcalrHw1ly5YtuOuuu5CYmFhjfXp6urgcPnwY7777Ll566SW88MILkMkcE+TLz89HbGysQ/oiovqj0eoR4eOC0ynGQ8aPDI0Www2CFv5uSMu3rmrA3MEt0K2ZF5bsicOG02ko0+rROdwLW2PSUFDa9CqDCZ/KfxxNFhdbCQGHexcfFEMOX2y5gPxqQQShisTP++IR5KFEqyB3TO4ehjEdgiCXSWtV0th5wXyVuGj/qmobEb4u4j4X0h1zH/D3yVQx4KC8IsydVViKl9ecwvqTqdDqy393hXgq8dDQlpjWO0J8Tz+b1g1PrzhW43XXB1cnGZQOqJZBRERERERERERERERERER0PZIYDA04ao2uWk8MmYcT288Y3RYQ7ofFFz6tHIz/20dr8dUTP1rsc9idA/HM4ochkUhqbZsWORcZ8Vm4FkllUuh1eovtOg1uhzf/fB55Gfn4bcFaMTwgVGcoLS4zuY/CSY6f4xfCO8Czct22FXvwxpQFDjv/x7+eK1ZlqKAuLsVjA17ExaOXjbYXqlbc8cIt4uMydZl4Pkc2Hhf/LFPXnG1WKpWgda+WOLP3nN3nN3LGEDz93YN2709EdLUTwgHh4eHi44Fdn4TSuep3gj3UpXnYceQD8XFCQoJYSaE+/PPPP5g4cSJKS6sGJMvlcgQGBopVEoqLa1YxmjVrFr7++muHHHv79u0YPHiw+Fj4XtK8eXOr9z1y5Ajc3Vk1iKi+6fUGTPpyN44m5BrdHuGjwpanboBMWn5v8fnmC3hvw1mrqgG8c0sno9t6vPEvMgtNf/e+mskkgDWFDAa29MOiu3ogLV+Nb3dewl8nUsTqBGqN6fsZlUKGvc8Pg6dKUblu1eFEPLH8mKNOHx9N6YKbuoZWPhfOadIXu3AuzXiI4sVxbXHfwPLP9pIyHdYdTxZDGn+fSEXZFfdmws9QhxAPHEvMs/v87ugdgTdv7mj3/kRERERERERERERERERERNczVnAgi45sPmEy3CBIT8jEjpX7MGBSL3GG/u0r9prtz9PPHfd/OANDpw0UBxEWF5Tg3x+34eTOM+Lg/56ju8JZ6XTNvjPWhBsEx7edxgf3fYlDG45ZVfVACAc89tWcGuEGweDJfZGVNAOLnv0J2v+qK9RFelxGjefCe2cq3CBY+tYqTLh/JDx83OGkdMKI6YPF5Z63pmHdwn+xZ91B6DQ6tO3TChMfGo2dK/fZHXBw93GrDFMQEdHVIzk5GdOmTasMNwiBgXfeeQd33303XF1dodfrsWHDBjz66KM4d678d8SiRYvQo0cPzJ49u87HF0IKFVq1aoWYmJg690lEjrXtXIbJcIMgPrsEm86kYVArfzz0y2FsPJNutj9/Nye8fGN7jO8UIj7PV2uw6lAiDsTlQCGV4IY2AVDKa1YuuJZYE24Q7DifiedWHRevZ4EVVQ/kUgnm39qpRrhBMKlbmFhRY8G/Z6Gx9uBmJOWW1Hi+bH+8yXCD4MN/z+H2XhFwc5ZD5STD5B7h4vLM6BL8tDcOm2PSodMb0CPSB3f3a4ZVh5PsDjj4uChw/5AWdu1LREREREREREREREREREREDDiQFXau2me5zep9YkDBUrhBkJdZgPT4LDHccGr3WcybOB/5WQWV2zf/stNoVYfr0dZlu8xuFyo2yBQy9BjVBbc8Ph4d+rcx2m7SY+PEihkbftiKrb/uwrlDsXafk3eQV43nG3/abrZ9aUkZZnd6El4BnugzrjvGzx0Bv1BfcRGqOwhLda4eLlj69ipxll57yBUyu/YjIromCYW66lqsqwGKfT3//PPIzs4WHyuVSrGaQ9++fSu3S6VSjB49GgcOHMCgQYNw7Fj5LOAvvfSSGIxwc3NzWMChW7dudeqLiOrH+pOpVrXZeCbNYrhBkFFYhtQ8tfh4b2wWZv94EPnVBvD/fjQZvCMpt/pIstlrqZBJ4CyXYXArf9w3MApdI7yNthMG/U/uEYYVBxOw7lgKTqXkw17+bs41nv9+NMls+6IyHYZ/sBW+bs4Y3jYQd/SJQIC7EiFeKvxvdBtxqe62HlJ8vd2+eyYheK6QXbvhGCIiIiIiIiIiIiIiIiIiovrG/3Uni0qLyyy2KcotwvrvNlt9NX9bsBaZydl4acLbNcINFQwNMJiyPuhdpCgc4Y38W/xRNNgLeqf6HRbVulc0VmZ8h5d/e8pkuKGCp58HJj91Iz4/MB8vLH0MMjtmpJXJZbjh9v411uVnWh6YlJWcI1Z5+PnNlZjV8UmcNlOhIbh5IKbZWYVBqHTx6q0f2LUvERE1jpSUFPz888+Vz59++uka4YbqPDw8sHLlSigU5TODp6en4+uvv67zOVQPOHTt2rXO/RGR45VodBbb5BSXYdXhRKv7FAawJ+eWYNbimuGGClfnHUnD6x3li0MvDcfnd3QzGW6o4OfmjPuHROPPRwfig8mdIJPafr/kJJNgTMegGuuyCy3fs6bml+JUcj4+3nQeoz7cjpNJpis0RAe4Yc7g5rBHZmGZWEWEiIiIiIiIiIiIiIiIiIiI7MOAA1kU3S3KYhuVuwplao3VV1MINfz06goU5BTV+R1wVjmhKSiY4IuURW2QOzcU+dMCkfNImPi8eKBnvR3z5M4YjHO5AzNaP4JVH/0JndbywC/BkCn9xaDD6Jk3wD9MqKbgA1dPF+uqN1wxBsk3xMemcy7MLcKrt7wPTZnpn5e7X52Cx7+eA6kdM5+eO3hRrCZCRET/jc7V13Gp5xG+y5Ytg1arrazU8OCDD5pt36JFC9x8882Vz5cuXVqn45eVleHMmarfGww4EDVNHUI9LLZROcmgFT63rJReUCoOdi8orR1usJXSjvDwtWLnhUy0fnE9hn2wFYt3X4bOykpst3QPxx8P9sct3cIQ5KFEsKcSrk6Wq7EFeihr/Wry96hZ0cGSnGIN5iw5ZPZcnxvTFq/e2A52ZDBw4HIOjifm2r4jERERERERERERERERERERMeBAlo2YPggu7iqT2+UKGboO7WDzpTx3ONYhl3/W/OnwCqi/EIE1im7wQt6MYBiUNQc2GdxkyH44DOrObvV6/KTzKfjyiR/wyi3vQaezLuTQonMknvz2AfwSvxBLE77CkNv6WdwnMzELTw55GUV5VcEU70Dbr312Sg52rtpvto3KTQW9zoYRatUc23rarv2IiKjhrV+/vvJxr169EBgYaHGfCRMmVD4+ePAg4uPj7T7+yZMnodFUhe4YcCBqmiZ3D4dKYXrwu7Ncip6RtgVvBccTHDMI/cVx7eDtUl5d5np1MaMIL685hYeXHobeypBDh1BPfHBbZ+x9fhj2PDcMo9rXrMxgTEJOCaZ+vRdF1YIp/m62BRwESbkl2HgmzWwbFyc5rHwpteyLzbZvRyIiIiIiIiIiIiIiIiIiouvc9TvNJFnN1dMVzy99DE7K2gN2ZHIZnvruQTRrF1ZrZn9zhFCEq4fp0IQtSktK8eWh+bjt6YkIiPCDm5cr2vVrDSdV/Q8wUrkrEdoqGOo7Q003kkmQf4s/GsLetYfw74/ba63XarTISslBSWGJyX0nPjTaqooJl08mYErobLx1x0c4e+ACnF1sH0wkEPY1JyMhE/ayp/IDEdG1SGIwOGSpT0JAoUKfPn2s2qd37941nu/Zs8fu4x85cqTycUREBHx9fe3ui4jqj7erEz66vQucjHzPU8gk+HBKF0T5utrUpxCKcHGWO+T8dAY91j0yELMGRiHEUwkPpRw9Ir3hJLNj+n8buSvliPJ1MXptGsNfJ1Kx7kRKrfUanR7p+WoUl5mumHF3v0irKiacSs5Hjzc24vFfj+JkUp4YRLDHicQ8s9tT8tSwl6T+33oiIiIiIiIiIiIiIiIiIqJrUtMYAUFNXu+x3fDV0fdx00NjENIiEL4h3uh7Yw8s2PkaDqw/gqeGvgrYMP5x4K190Gtsd4ec2y9vrYRfqC9mzb8TP1/+Equzf8DHO9/AoFv7oj4JIY3Q6GCEjWuJEi/zo1fK2rtC71ZzxtnBk/uKARFH+2vRv5WPi/KLseh/SzAlZDZuD52Nm31milUeLhy9VGu/qI7N8OQ391sVDigtLsOWpbvwSL8XkJ9RYNd5GgvMVOcXavsMvBV6ju5i975ERNRwUlNTkZ1dNcN127ZtrdovKioKcnnVYNaYmBiHBByE6g0lJSVYvHgxJk6ciLCwMDg7O4uhh27duuHZZ5/F+fPn7T4WEdWNMLv/X48OwPQ+zRDh44JAD2eMbB+I3+7viz+Pp2DGDwds6u/GziEY0soxQeQPN55HqJcKL4xrh93PDcPxV0bht7n9MKKd5YoEdSGEO5r5uKBVkDvK7Kh+NqFTMGT1MBJ/6b6qyjp5JRq8se60GEjo9dYmdH51Ax78+TDOpta+j+gc7oU3bupoVXa+RKPD6iNJuPmLXShQV1XisYWT3Py9T5CHEvYa0rphQu5ERERERERERERERERERETXGsdMV0nXBa8ATxQVFCMjMRuaUg32rDmII5tOQF1UalM/LbtF4eHP7hMfL317FQqyC+t0XkV5JVj+3h+Y9Ng4nNl7Huu+2oALRy6jIMe+gffG+If7wsPXHXGnEmAwGKDT6qHV6HDhyCWcKkwFBrSw2IdBXnOYTsvuLdBlaEd88sAisU9HSTyXgs1LdyL22GVs+nkHMpOqBo7qtDrsWr0fh/45hnc2vIT2/VrX2Hfk3UNQkFOIhU8stupYep0ee9ZVzbxtiwGTeiM9PgNrvvgH+/48LFaZaNW9BVw8VTi88QRy0nIhkUpg0Nt2bboN74jorlF2nRMR0TVH+Ait6++YeizgkJiYWOO5ECiwhhBuCAgIQHJysvg8Pr5qIG1dAg4ZGRlo1apVrfMSQhjCIrT94IMP8Mgjj2D+/Pk1QhZE1DB8XZ3FweypeWpxQP+GU2nYeT4TxWU6m/rpEu6FeRPaQa3R4+vtsSgoNV1VwBq5xRp8v+uSGL44cDkHP++Lw+mUfOQVl8FRhACFm1KO2IxCCF+RdXoDNDoDTibni4s9ujXzRtcIb7y27jQcKTazEKuPJCImJR+rjyQjvaDqnlE45z9PpGDbuQz8Mqs3OoV51dh3Wu8I5BSX4b1/zlp1LKG/LWcz7A7NJGQX48c9l7H1bAZ0BgM6h3lBpZBhx4UMZBeWiRUlbLwlwbA2AYgOcLfrnIiIiIiIiIiIiIiIiIiIiK53HJVFViktKcX/RryG84dia6y3NdygdFOi3029oXBWQOnijDfWPYd5N76DvMy6hREWPfMTfv/0b2QkZtm1f+ueLXD2wMVa62VyKQZN7ouHPr0XHj7ueHPaR9i6bFeNNorEUkhKdDCoTFdjkGWUQZpfNWhKqNww7M6B8AvxESsVLJu/Gqd2WTeAxxIhMPL2HR+bbaMuLsUnDy7CV0fer7WtZbfmqG89RnWGplSLWZ2eRHF+SY1wRl0IVSGe/+UxB5whEREZk5Ji+XPa2pCCID09vcZzoVKCtXx8fCoDDtWrQNhCr9fj+PHjlc93795d+VgikSAwMBAajUbsvyKMqNVqsWDBAnG/devWiRUeiKhhFJVqMXXRXsRcMfO/reEGN2e5OLBdIZPCXanAN3f3wOwlh8RKA3Xx6trTYlgiJU9t1/4dQjyMBhWEKg0TOoXglYnt4aFUYPaPB7HhdBrqykkmFatY+Lo5I8RLhYXbLuJoQi4cIS2/FI//esxsm8JSLeb9cQq/P9i/1raOoZ6obyPbBSKrqBSTvjiIomo/Q7EZRXXqVwhHLJjCinJERERERERERERERERERET2YsCBrPLvj9trhRvsoS5UY/G8Zdj/1yG8+vv/xEH9nv4eKCkqhcJJDp9gbySdS4be1ikyhVmX7Qw3KF2dsWD767h0PK48ZCABfIK84O7jhqiOEfAJ8hbbZSZlYcdve2vtLy3Rw2V7LopGmR6U6bohBxJ91fOpz90shhsEfcZ3FxehcoIQ9Hj7jo9w7mDdr7UlscficPbABbTuGV1jfceBbRESHYTkC6n1ctyQ6EA8u+RhzO70VI1wgyOUqTViwMPTz8Oh/RIRUblevXpZvBS2VCUqLKxZxcnNzc3qfau3vbIfa124cKHWvu3atcMLL7yASZMmQalUiutSU1Pxyy+/4I033kBOTo64buPGjZgzZw5++OEHu45NRLb79UBCrXCDPYSB9fPXx2DL2XR8Ma0rjiTkwtfVCaUaHZzkUvi7O+OinYPc7Q03eCjlWPPQABxNzMWR+FxIJAYEuCvhqVKgbbAH/NzKw1RCtYGNZ+oebhA8OrylGG4QjO4QJC65xWXILCzFI0uPihUo6psQqIhJzUeboJrf3/tH+4kVK5JyHXu/UCE6wA1vT+qIYQu21Qg3OEKJRif+jAnvHREREREREREREREREREREdmOAQeyysaftjn0Sp3Zex5zuzyN7NSqGULLSspQlFfc4O/IsGkD4eSsEAf6XznY/8pz1mmND37x/DENmmYqlLVxqbXN7UgR3H/PEB8HRQXgtqcnYsLckbXauXu7ictHO9/AjpX7sPmXHUi+mIqEmPLZqetD6uWMWq9ZmLH6oU/uwbyJ86HVOHawjyA3PR971h6u8d47kqn3iIjouiSEDWwIHJjso56UlZXVeK5QWD8YtHpbocqCPY4cOVLj+eTJk7F48WKoVKoa64OCgvDEE09g4sSJGDp0KOLj48X1Qtvp06dj2LBhdh2fiGyz+kiSQy/Z/kvZGP3xDmQWVn0WqbV65KurKq81lFu6h0EqlaBbhLe4mHIoLgd2ZMEhkwC6//aL9HXB/UNaYErPiFrtvFycxGX1g/3w14kU/HE0GXFZxbiUWbeqBuYkZpfUCjjIpBK8PKEd7v/5MHT2vGALsgpLsf5kKnKL61a1wxRdxcUmIiIiIiIiIiIiIiIiIiIimzHgQFYPSne0+hrgbgv/MF/cOe9Wq9rKFDKT26RqPfxfvoTSoT5wubMFUgvyIElRw3VTDryOq9H3lr6Y/PSNaNmtOaRSqdnjKJwUGDp1gLic2n0Wjw14EfXFO9DT6Pqeo7vinX9ewg/zluHkzhiHHlOo2rB37UHU1+sJbRlcL30TERGwf/9+BAc77nP2ymoPQsiuIQ0ZMgRr1qzBpUuXkJ6ejhdffLGyaoMxLVq0wLJly9CvX7/KdW+99RYDDkQNRBiU7mjVww2NJdxHhQeGmA5aVycXkgoWOMkkYsWH1Hx1ZRhCqZBheLtAzBrYHO1DPCx+3jrLZbi5a5i47L6QiWnf7EN98XMvryJxpZHtg/DDzJ748N9zOBzv2HvHnGINtpwtD6E7WoinEqHeNYNyREREREREREREREREREREZD0GHMgqwc0DkHQ+5Zq6Wq16tMDLK5+CX6ivVe07D24Hpasz1EXGB1ZJtAZEXZAj5a79CKi2XhgytW3FHhTkFuHtv1+w6Rzb9W2FkOggJF9IhaMFNw9Ex4FtTW7vPKQ9Ptz+OtLiMzBv4ruIPXbZYceWyc2HPOw1Ye4oyBX8WCMiqqT/b6mLavsL4YawsDCHXWAnJ6caz22pxFC9rblQgjmBgYGYMGGCTfv07dsXI0eOxIYNG8Tn27dvR0FBAdzd3e06ByKyXriPC5Lz1NfUJesW4YWFd3aHv4lB/lfq38IPznIpSrWmP9yDPFWIz65ZGa+oTCdWYyhUa/HtjJ42nWPv5r4I9VIhKbcEjhYd4IYu4V4mtw9s6S8ucdlFmLX4IM6lFTrs2AorwiL2mN43UqxAQURERERERERERERERERERPapn1HGdM0Zc+8wXGsmPToOAeF+Vrd39XTF+DkjTW6XyqRIiU0zuf3wv8ex/68jNp2jMLPqnPfugqMntJZKJZj7wd1WzZQdGOGPBVtfwcBbeov71ZVMLsOY+xz/8zTw1j6Y9sIkh/dLRET1x8PDo8bzoqIiq/ctLKwa5Orq6oqGNHr06MrHWq0WR48ebdDjE12vbu8VjmuNUFEhwMP6kJa3qxOm9DR9HYQc8ZXhhuo2xaRj14VMm85RGKz/3Ng2cPSQfblUghfHmQ5cV9fMxxXL5/TFiHaBDrk3cpJLcVsPx/883dQlBHMGNXd4v0RERERERERERERERERERNcTBhzIKgMm9Yarp8s1c7VcPFTod5NtM5cK7nvnDoycMaTWeqGyQ7+Jlvv7d8k2m48p9Pvq78/AO8ATjhDRNhSvrXnWqvOtHu6Yt+IpLL7wGZ767gFMnzdZDHTYY9DkPugxsgt6je2KuojuGomOg9rihqn98c4/L+KlX58QwxNERFRFYjA4ZKkvfn41g4bZ2dlW71u9bUBA9dpJ9a9585qDV9PT0xv0+ETXqwmdQuCiuHa+73m7KHBDG9s/v14c104cSH8lN2c5hrYJtLj/ysOJNh9zfKcQfHlnN/GcHaF1kDu+n9kTQ1pb//q9XJyw6K4e2PrUELx7ayc8PDTa7n/QEK6fcO37tbCump8pHUI80CvKR+zvl1m98dHtXR0SCiciIiIiIiIiIiIiIiIiIrqeyRv7BOjqkJOWh6I80zOB2koilcCgr78Bk5aMe/VmxBbnIUIhgbuTs9X7CQPon/7uQUz5303Y/MsOFOUWI6x1CIbfORDfPveLxf3zMvLtOt++E3qgb+o32L3mALYs3Yn4M0mIPR5nV1/5mQUIjQ6ya9+gyAAEzSgfhNSiSyRev20BdFqd1fu36RWNRz6fJT5+cdnjeHfG59i5ap9d5/L0Dw+hecdmdu1LRERNQ2RkZI3nycnJVu0nVE2oHioICwtDQ1KpVDWe63TW/y4kIvul5KlRrHHc3zdhHHoj3pJgZv8oXMwoRDNfVzGcYEv1AWEg/QM3RGPtsWQUqLWIDnDDTV1D8eqaUxb3zy4qs+t8R3cIFpe/T6aIx72QXohzaVXVdGwhnEOkr33Vd4TrJSwVQYlHlx2FzoY3skczb8yb0F58vHB6dzy+7KhY2cIen03rikg/N7v2JSIiIiIiIiIiIiIiIiIiIuNYwYGsYtDrHXalItuHY+4HdzfKlS9q54WSDwfjbVksxv/6E3p/txDPbt6APLXapn4i2oRixmu348FP7sHEB0eLFQ6Cm1ueLdWaNub0u7EnXlj6OIJb2D9TdW5GPr566kfUVf+beuG5nx8RwyqWSOVSPPTpvViw/TW4eZUPRlK5qTD6nqGQO9mXs9qydJdd+xERUdPh7+8PX9+q2bPPnTtn1X6xsbFiyKFC+/blA1XtIfSTkpJiUxWGrKysGs+rvwYiqj96B1aUaRPkjufHtkVjCXR3xoJ/z2HcJzvR+82NeGH1CeSrNTb10SrQHU+ObI1XbmyPO/s0E0MSET6Wq+41s6KNOWM6BOOLO7oj2LNm2MsWGQWlePvvM6grobLEu7d0hDU1E+RSCd6e1AFLZ/epDJR4KBWY3CMccjv/ZeTPE6n27UhEREREREREREREREREREQmMeBAVvEN8UFYq+A6Xa3WvaLx8e438dKKJ5GdklM50L2hFHbxQeqcNkiSlVauK9Fq8evpE7h99XIUltk3k2mFEXcPhsLCYP1RM29AXaXFZWDX6gN16mPvukP49MFFKMwtsruPMnUZPn3wG4uVONx93PDexpfFIIjCSVG5vrSkFPPv+hTasqoBqraQWhGsICK67gmDgR2x1KOePXtWPt6/f79V+1zZrkePHnYFG4KCguDk5ISQkBA88sgjVu976NChGs87duxo8/GJyHbh3i4I9bJ/UL2gZ6Q3/niwHz6Z2lUcZG9L5QRHSiuouicpKtPh533xuPObfSgpq1uFivLB+ua/J0/uUfeqN7EZhdh2LqNOffx1IhVvrDuNwlL77gcERaVavLLmNCz9pvJ1dcLyuX0xtVczKGRV/wwiHPupFcegtTPPz1sSIiIiIiIiIiIiIiIiIiIix2PAgawikUgw6dFxdbpal0/E49Vb3se97R7Dr+/+UafB9bYySIGMSZEwmBjrE5OVgVG3PI/ZnZ/Eyg/XQV1cNeDIWl7+nrj/wxnitTLlrakf4dyhizXWxcck4eiWk0i6kGLVcY5tOwVHWPPlBjwxeJ7d78P23/YiL7PAbJu2fVrhl/iF6DSoXa1t25bvQUF2Iew15Pb+du9LRERNx8iRIysf79y5E7m5uRb3Wbt2beXjdu3aISzM9sG6crlcrLxg+C/AsXnz5hpVIUzR6XRYtWpV5fMOHTogIMD+ykpEZFvAdUa/ZnW6ZCeT8nHfj4cw8sPt+Gp7bJ0G1zva8cQ8dH19A8Z8vAM/7LoEtcb2sEOQpxLPjmljts2cJYdxJiW/xrrzaQXYfTET8VnFVh1n98WalWzs9c3OS5j69V6734c1x5JRYGHf3lE+2PXsUHSL8K617fcjSXX6GRCqWRAREREREREREREREREREZFjMeBAVistKavz/kLlhsZQ3MYLOi8ns20yOnvi0ol4LHxyMZ4c8jKKC0psPs6E+0fh9TXPwNXTxfgxErPw/Jg3kZuRh5O7YvBw3+fFwMfTw17FjFaP4Ikh83Dh6CWzx8jPqDkYqS6E17v0rapBmraIO5VgsY1Wo4XSxdnu/U2JaBuKqA4Rdu9PRHT9cET1hvqt4DB58mTIZDLxcVlZGT799FOz7S9evIjVq1dXPp8+fbrdx77xxhsrH2dkZGDJkiUW9/nyyy9x6VLV7+o5c+bYfXwisp3a3qn2/1Oi0YmVG5oqtUYvhg9eWXsad3yzD8V2VDu7b2BzfDW9O1ydyj9br5SUW4Lp3+5HXokGey5m4cbPdmLEh9sxbdE+DHpvC6Yt2ouzqeaDzFmFjruGJ5Ly8PW2miFwa51LM3+eAp3eAKXC+LUQgh326hDqgUi/hq1KSEREREREREREREREREREdD1gwIGsIgxUX/H+mqvqamndFMgbEITsEaEoal97ts4r6TyqAhDnDl7E9y8uteu4Hn4eKMozPfOpUPXgx5eX45kRryFm3/ka205sPyOGKy6djDe5f4eBbeFIf3+3Galx6Tiw/ogYuhBmpraGNe1MBT0ELma2maN0dcb7W161a18iImp6hOoLQsihwuuvv45NmzYZbVtQUIBbb70VGo1GfO7p6Yn77rvP7mPPmjULzs5VQbynnnoKZ86cMdl+/fr1YpsKzZs3xz333GP38YnINkJFg+92mg8DX0sOxeXg40017xes5alSoKjM9Pf1zMJSfLDhLO7+br9YOeLK6gy3fbUHsRmmq611b2b5/soWv+yPF4MXW8+m41BcNvR668J1Gp3ldu5KuZltCtjDzVmOn+7tbde+REREREREREREREREREREZB4DDmSVmP0XkJ2aW+9Xy0llvsqCwDfEB3Kn2oNU5P/NyikMcckaF4G4ed2QOSkKOWMikN8v0GK/8pyas5D+++M2lJbYPjPpvj8PWWyz6ecdKFOXD868UnF+CX58ZbnJfdv0agmFs+lBOrYqyC7EXS0ewvNj38LjA1/C9OYP4u9vjQ8srS4zIctim8GT+5rcNmRKP0gkEpvO1SvQAz9d+gLeAZ427UdEdN2qa/WGyioO9eutt96Cm5ub+FgIL4wbNw7vvPMO8vLKB90aDAZs2LABPXv2xNGjRyv3e+211+Dn52e0z8jISPH3TMVijBBQeO655yqfZ2dno2/fvvj8888rjy2Ii4sTgw0TJkxAaWn5dwOFQoHvv/8eLi72BfaIyL4B/znFxr9DO5Kz3PJtcoinEjIjHy1W7GqT5QcSUGZH1YotMekW26w8lIgynfG+heoOn5gJV/Rr4QeZ1Lbv8uZkFpah/zubMeP7A7jlyz1iJYlVhxMt7peaZ7nq3rhOwSa3TegcYvO5Bnk4Y9ezQ+HlYvnelYiIiIiIiIiIiIiIiIiIiGzHgANZRVumbZArNfzOQRbb+IZ446uj7+PGB0Yhom0omrULw6RHx+G9za9AJpchd3gocoeF1hxdJIzNtDA+02NfRo3nQhWG9PhMm1+DTmO5skFxgfmBOLtW78OnDy5CfExSjfWJ55Lx5eM/wNPPA45kqDZDakZCFhbMWog/Pl9vdp99fx+x2K9fmPFBp4LQ6GCMmjHEpvNcsPU1h792IiJqfFFRUfjll1/g5FQ+WFQIEQjBA19fX7HCg7u7O0aNGoWzZ89W7jNt2jQ88sgjdT72vHnzMH369MrnQrDhoYceqjy2v7+/GJb44IMPoNVqK8MNy5cvx6BBlr+3EJHjmBqM72gTu1ge9B7m7YK/Hh2EO3pHoIW/K1oFumH2oOb4+b4+cOC4fzHQkV6gtnk/ayobmKvwIPjjaDJeW3sKlzKLaqy/kF6A19adho+LfdUPrJGYU4Inlh/DrwdMV7YTqjzsOG/5fi3ES2VyW+sgd9xoY8hh1QP9xAoZREREREREREREREREREREVD8cNw08XdOad24GJ6XCZNUBR3D3cUPLrlEW24VEByGiTSge/uy+WtuGzhyMr5sV1FovgaR8EL+QeTAy4Mj5ciE8dtWe5VTlbnowjCkdBrQB5qNOhMmy13y5QVxmvjEV056fJFZ9eG/m59BpLQcoHOGHl5Zh1MwboHRxrrVNr9eLlSYs0ZSa/3l57Ks5cPFwwe+f/Q29hQFr3UZ0QnjrUCvOnIiIKgkfrXUdD9ww44nF6gjr1q3Dvffei4SEBHGdTqdDUlLNsJ9UKsXjjz+O+fPr+Mv2P0J1h8WLF6Nz585i2KG4uNjksQUdOnTAV199hX79+jnk+ERkvQ4hnlDIJFYN3reXn5sT2gRZDtRG+LqIg+PfvLljrW1jOwZj3fEUh5yPUIDG1Uj1Okt6Rnrju12X6nRs4Sp/t+syvt99Gc+PaYtZg5qLgYPnV5+ErlpAuj69989Z3Nw1DE5GSmOUavXiYkmpxnyb9yd3hpeLAj/tjYOllzW8bSBCvFi5h4iIiIiIiIiIiIiIiIiIqD6xggNZxcPHHb3Hd6/Xq9V9RCcMvWMgXCyECsbeN8zktm5PDYfexfgAIIlBIg7SlFQb3yIt0sJrczJCPzsN6RUDX1oNaYML+iIcSk6GRlceKsjPKsCFo5eQkZhl8hxa9mgBD193OMr3Ly7Fmi/+sSrcYOna2aIwtwhblu5EZnI2DELi4orBpeFtLIcNhAobpuRnF4ivSzB+zkg4q8pn7TZGoVTgnjem2nT+RER09RkxYgRiYmLwxRdfiI9DQ0PFqg5CBYeOHTvi4YcfxrFjx/D+++9DJpM57LhCyOHJJ59EXFycGJwYPnw4goOD4ezsDA8PD7Ru3VqsGLFy5UocPnyY4QaiRuLv7owB0aYrhDnCDa0DMKlbKJQK87fKU3tFmNw2qn2QxeNYW+ShV6QPYlILcCguB9r/AsHZRWU4lZyH1DzTlR06R3jCQ+mY+QyEW4E3/zojBgCsCTe4Ojvu8zmzsAzrjiUjPV9d655E5SRDqJnqDBUBkRb+bia3ZxWW4sc9lyGXSjGtdwScZKbfGZVCiidGtLLjVRAREREREREREREREREREZEtJIYrRwkQmfDt879g2Tur6+X6SKUSLEv+Gt4BXmKlgnfv/hR6IwNnxs0aLs76b8o/F87j/nVrzR9Mb0DEKwfh7O0CXWoBJJqax9E7SZF1UyRK+wWj1FA+iMjHWYnoc2rkfb4fWk15yKDzkPa4582paNe3deW+R7aexMsT30VJgeXqBrbwDfVBVlK22TbP/fwoug3viOfHvInzh+s2W+uVvAI8cfPDYzD1+UniIFDBqo//xJeP/2Byn46D2mLB1teMblv31b/48vHva1QEkUgl8Av1QUZCzfBIVMcIPLZwdo3rTEREpiUmJiI8PFx8PLjlQ1AqLM9Ebo5ak49t5z8THwuVFcLCwnj5iajRvLb2lFhVoD7IpRIcemkEPFUKsVLBs6tOiIP7rzSjXyReubG9yX7+OJqER5cdteqYQpBCqDBg7KZcKgFk0qqKFUJ1CX83Z5xPL4RWbxAH7/dv4Yf/jW6NTmFelfttjUnH/T8dQokV1Q1sEeypRIqZUIVg4fTu6Bbuhbu+2y8GMxwpwN0Z9w6IwuxBzSvvSb7YegHvrj9rcp+BLf2w5N7eRrd9v+sS3v47BmXVrpNwvYXjXPk62wd74O1bOta4zkRERERERERERERERERERFQ/HDOlI10X1EXmB7PUxc2PjBXDDYJhdwwUB7r/+u7vOPjPMXGmzuadmmHiQ2PMVm8QdAgIhFQigd5Mbsc5sQiKQi30hfliWzcfNxRkF4rbDFIg86GOKAh3Af4LNwiyS9XY3wzwGhUK33Xx4rpjW0/h6WGvYv6Gl1BcoMZnD3+LlNg01AdL4QbBpeNxGDp1AD7d+zZ2rzmIbSt24+TOM8hKyqnz8XPT8/D9S8vw70/b8dXR9+HkrMCND4zCwX+O4sD62oO3vAM98cTXc432te/PQ/j4/q9rrTfoDWK44a5XbhNDDdoyrfhns3blg3SJiMh2EoNBXOqirvsTETlSyX9h4/owZ3BzMdwgmNIzAiFeKny1LRa7LmaKQYf2IR5iuGFyD/PfTzuGeorhA2s+PtUavdjWU6lAXklV+FchKw826P8LN1RUMxCWCkL/Oy9k4tBXOVg6uw8yCkrxypqTSMqtn/s2cxUjKsSk5GN0+yCsfXgA/jmVir9PpOLA5WykF5TW+fhCH0IgYeXhRPz5yEAoZFIx8LDzfCZ2X6xdYS/IQ4m3bu5otK+/TqTg1bWna60XqlMI4YZnRrdGpJ+r+LxNkAeiA0xXgSAiIiIiIiIiIiIiIiIiIiLHYsCBrBbaMrjOV0uYpV8YyF7BSanAxAdH4775d9ZoJ1RHEBZNmQY6rR5KF+fKbXmZ+Vj54Tr8++M25KTlITDSH2PuGYqJD49BqIcHhkY1x8bYiybPwWNnauVjITwR3iYUU5+9GVnJ2bjgqcPHqbUHulTIHRICzx2pkOeVDywSKhA8Pew1aDVaNDaZQlb+p1yGgZN6i4ter8eaz//B1/9bAk1p1YApeyWeTcZzo9/AB1tehVwhx2t/PIO/Fm3Cn1//i4SYJLj7uOGGqQNw6xPj4Rfqa7SPZfN/N3sMoa+fL38pvg4iIiIiouqi/FzrfEGEygjVi8UJVRSEgfJPjaxZMWxgS39xKdXqoNcDKqeq76dCmODbnZew6nAisovKEOHjgik9w3F3v0g093fDgGg/7DifadX5VIQnZvaPEvu9lFmIRTsu2RT6uG3hbpRVC0PUC6FogoVDCKGDij/HdwoRFyEk8N3OS3j3n5jKahR1cS6tEPctPoDF9/SGs1yG72f2xC/74rF0fzwuZxbD21WBm7qG4t7+UQjwUBrt48utpu8XBT/vi8f2p28QKw0SERERERERERERERERERFRw2LAgaw2/M5B+PbZn6Eutn/2zba9W2LO+3fhwpHLULo6o8/47vDwdTfZXuGkgMKp6nlmcjaeHDwPyRerKiUkX0jFt8//gp2r9+HdjS/jreEjEPdbLs5n157F031PGjwOZtRYd3r3WbTuFQ3vAE/ct8b84HvIJCjo7gfvzcmVqxoi3ODu7YqCnCKzbfpN7FlrnVQqhbOLk0PCDRWObzuNC0cvIbpLlBhyECo5CIs1ivKKcHJnjNk2Wck5OH84Fm16tXTQGRMRXceEUbN1rcDACg5E1ITc0i0M7284hzJtVbU1W/Vp7ovHR7QSqw24OssxrE0gPF3KKzcYIwyiry4ptwS3Ldwj/lkhNrNIrC7w7+k0LLm3N967tTOmLdorrrfGntgsfDW9O9yVCtzxzV6bX1O9hxsAeKkUyCk2f18xvG1grXUyqQROcqlDwg0Vtp3LxIX0QrGygvD+COEQYbFGeoEaJ5LyzLZJzCnB2bQCtA32cNAZExERERERERERERERERERkbXKp1cksoKblyse+2oOpP/NymmPMfcNR7u+rcUB8SPvHmI23GDMwid+qBFuqO7sgYv4+P5FUGmBVbdPxSs3DEVbd28o0orhciIbQV+fQcCKWKP7atTlFRmyS4otnoPOzfTgp/oihBtc3FUmt3cb3hGturcwum3rr7ss9u/u7VZZYcMaW5Za7tMYrUbn0HZEREREdH3xdXPG6xPbQ1KHifVv7xWBnpE+mN43EpO6hZkNNxjz8h+naoQbqjsYl4OX15yEm1KONQ8PwMsT2qFlQPl3bUtZsorQRlZh+b1JUyOEG1yqVbG40rA2AWgdZPz+bu2xqoC4KZ6q8vfB2qIJa6zo0xitlUELa9sRERERERERERERERERERGRYzHgQDYZdsdAvL/5FfSZ0N3moEOPUZ0x/M6Bdl/xnPQ87Fq932ybzb/swO2hs/Ht4z/itpZt8duU29H687MI/v4sXGNyje6jUCrgFeglPg738LR4HoosNRqDi4cKwc0DjYYbXlr+pMn9CnMthzbGzhqGNfk/YsarU6w6F+E6v3bbB9j+2x7otNaFEYoLSrBg1kKL7VRuSjTv1MyqPomIyAK9wTELEVETMqVnBH6+tzeGtPa3ejB89QoD4zoG233slLwSbI4xHriusPxgInq/uRHv/3MWU3tF4Le5/aBUmL93EoIDnsryAf4RPi5oqnxcnRDqVTt4fUNrf3w8tavJ/QrUlqvezegXiVOvjsIDQ6KtOpffDibgwZ8P459TqdBZ+bsqX63Bc6uOW2znoZSjZaDlYAoRERERERERERERERERERE5nrwe+qRrXMeBbcXFYDDgzakfYdvy3WbbK12dcfuzN6PT4HZYMHshLh69DKWrEoNu6YPR99wAV09Xq46bfCHVqpn91UWlWPvlP4g7nYBbn7wRoS2DceHIJZPtNWoN1ny+Hjc/Oha3teuAtefOmmwrKdXB7VAmGkNmUjYWnVggXocze89BppCh74090bqH8coNFZq1C8O5gxfNtoloGwaVmwoj7h6C7+ctAwyWz2XHb3vFpXXPFnjr7xfg4WO+Gsdb0z7Cvj8Pm+8YwKgZN5itVkFERERE1C/aT1z0egPm/HQI/542HzpwdZLhoaEt0T3CC08uP4qY1AK4K+Vi2OHWHuFwc7bu1vhSRpFVua+iMh1+2H0ZF9ILMKNfFCJ9XcVjmlJcpsPSA/GY1rsZpvQMxwYLr6exJOaUYOtTg8XXcjQhD05yKUa2C0SHUPNB8egAN5xNK7DYxtVZjsk9wvDZlgsWzyU5T43kEyn480QKujfzxg8ze8L9v5CIKXOXHMLui1kW+xaCKUqF6WoVREREREREREREREREREREVH8kBmGUOpGdtq3YgzemLDDb5o0/n0fs0cv47oVfam0LivTHu5teRnBU7coEVxICC/d1eKJe3iuJVAKD3gCpVALto91xKcLIwBi9Af6/XoTH/gw0FiHgENk+3KZ9Tu85i0f7v2hyu7uPG5YmLISzyll8/uGchfhr0SabjtH/pp54YdnjyE3Ph6unS42AQsqlNCz63xLsWLnPYj9dh3XE62ueqTwXIiKyXWJiIsLDy39XDIm6H0qFR50uo1qTj62XvhQfJyQkICwsjG8LETUpqw4n4onlx8y2WTarD3ZfzMQnm2sPnI/0dcEvs/ogxEhlgiudTMrD+E93oj4I1SiEu3OJBPB3c0ZaQSmaou1P34AIX9uqTOy+kIlp35i+H/Bzc8buZ4eKgQnBo8uO4I+jyTYd48bOIXhvcidkF5WJQYfqoZXLmUV4fd0pbIqxfC8nVKNYOL07nOUMOBARERERERERERERERERETUGVnCgOhEGtkd1jMClE/FGt7fp3RJOznKj4QZB6uUMvDX1I3y6922Lx2rWLhzNOzdD7LE4h79rQrhBIMwAK/nwIPz7BUI6uS3SUD6oqGdAMIL3Z+PcsVxo0Dh8gr0R3jrE5v1a9WiBoKgApF5KN7r9lsfH1wgUPP7VXOSk5mHP2oNWH2PX7wdwq/+9KC4ogVQmRd8JPTDo1j4oK9Xg66eXoCC70GIfEe3C8Pb6FyCTcSAREZHDCL/e6pplZRSWiJq4cZ2CxRn/YzOKjG7vFeWDEq3OaLhBcDmrGI//ehS/zulr8VhCpYIW/q64aOJYdVFRGUL42BbCDRIAvm5OyCwsE0MPPSO9oZTLsDc2G2U6PRpDmLdKXGzVPdIbwZ5KpOSpjW6fO6h5ZbhB8PHtXZFTVIbt562vnrf2eDI2nkkTq2HIpRKMaBeAsR2DUVSqw5t/nUGBWmuxj3bBHvj27p5i8J2IiIiIiIiIiIiIiIiIiIgaBwMOVLcfIIUc7/zzIl6/bQFO7oypsa3b8I54YenjWDB7odk+YvZfQMz+82jTq6XZdkkXUhDSIqheAg7VCUNZPHanQbY/E0vPf4SAEF+4KBTAVKD49Xvw+MCX6v0cjJn44GjI7JhFdMMPW02GGwTrv92Eqc/dDKm0akDRa388g31/HcIvb67C+cOx0JRaHgwkhBsEep0eu37fLy62ULk6M9xARERERDYTZtr/+b7eeODnwzgSn1trNv6Pbu8qVgQwZ9+lbJxJyUfbYPNVby5mFCLKr34CDlcS8g75ai22PDUEQR5KqJzK7wUKSjS4+YvduJBhOUTsaDP6Rdo1+H/pvniT4QbBL/vjce/AKEiEJMd/fry3N/45mYovtl7A6ZR8aHTmE3dCMEQINwi0egP+PpkmLrZwU8oZbiAiIiIiIiIiIiIiIiIiImpkDDhQnfkEeePD7a/j7MGLOLr5pDi7aPeRndGic6S4/ex+4zOlVrd24Qa4+7ghNDrY6PYV76/Bomd+gqGus1DbQKfVYdeSXbjjxVsq17m4qTB/w0t4fuxbOH8otsHOZdidAzHlmYk275eRmIUf5i0z20aoovH3t5tw7sBF7P3zMHQaLdr1a42bHh6Lj3e9KbaZ5DsDBTn1O4irdc/oeu2fiOj6ZKh7BQeWcCCiq0CwpwqrH+iPw/E52BebDZkUGNI6AK0C3cXtxxJqBh+MWbLnMu4fEo1wHxej2z/ddB4LNp6r+8eqDcq0evx7OhWzB7WoXOeuUuCX2b0x/Zt9OJvWcCGHKT3Cce+AKJv3S8wpxkebzpttE5tZhBWHEnHwcja2nM2ATm9Ar0gfzOwfiT8eGiC2afPS31Br6rdyRecwz3rtn4iIiIiIiIiIiIiIiIiIiCyTGBpyxDhdl+6KfggpsZZnzhRm6+wxugse+vQenNwRg8RzyfDwdYennwfenfFZnc9Dp5SioK8PNEFKyAq1cN+bDUVGmdl9hk8fhGcWP1xrfWlJKSZ63i2GIOpD887N4BvsDd8QH4yaeQM69G9jcx/JF1Px+KB5yE7JsdhWrpBBq6n9Wu59+w7c/sxNeOuOj7Bl6S7UF2EW2K+OfYDI9uH1dgwioutFYmIiwsPLP0+HRM6FUl4+uNdeam0Btl4ur8aUkJCAsLAwh5wnEVFD6v3WRqTll1psJxQnGNomAPPGt8Pe2GzEZRfB28UJ7ko5nll5Ao1haq9wvD2pU631haVadH51gxgGqA8dQjzg6+aMEC8lJvcIR7cIb5v7uJBeiClf7UFWkfn7LoFcKhErL1QnhOdfGtcO9wyIwpwlB/HPKdsqMthCOP7GJwYj0s+13o5BRERERERERERERERERERElrGCA9W7vhN6YNXHf1psJ2RtDvx9BDNaPQJD9YEtkrqfQ34fb6TPaAaDSla5LmtSCDw3Z8D/pwRITIwJUro4Y/Unf2Hrr7tQmFuEZu3CMH7OSHQb3gk3TO2PjUu2oz6069sKj34x26q26uJS7Fi5F+nxmfAJ8sKgyX3h6uGCzx7+1qpwg8BYuEHw7XM/o8eozrjl8QnYvmJvvQQ6hEFLj345m+EGIqL6IORY65plZRaWiK4Bw9sG4ud98RbbCbchG8+kY1NMeo2PPwfckthNpZDhmx2xWHc8RQw1tA5yx/Q+zdCnuS9GtgvE3ydT6+W4fVr44sVx7axqW1SqFc8jJbcEQZ5KjO0YDFdnOV78/YRV4QbBleEGgfAevP7naQxq5Y/Zg5qL7019BDqEcMP8Wzox3EBERERERERERERERERERNQEsIID1buUS2mY2/VpFOeXNMrVLmnlhsRnWwEy48OSfH5Phu/qFKPb/MN9kZGQVWv9zY+Mxb1vT8PM1o8iI7H2dnM8/T2Ql5Fvto2blyt+Tf4aUpkU2am5ULkp4e7tVqvdv0u24YtHvxfDFxWEtrc+eSN+em2FGBqpq+huUWI1ifysQlw4EgtNqRaOIrzOD7a+iuadmjmsTyKi612NCg7N5jimgkPcV+JjVnAgoqtVbEYhxn+6E8Vl9VOBrT4FejgbrT4xd3ALPDIsGoPe3YLMQutCBBX83Jws7uPj6oS9zw0TA8kZBaViYMFTpajVbtn+eLz55xkUVLtPcHOWY9bAKHy48TwcoXOYp1hNIqeoDCeS8oyGIezl7aLAr3P6olVg3X5fEhERERERERERERERERERkWMw4EAN4tTus3hjygJkJmU3+BVPfqwFirp6mdwuLdIi6rHjkJbVHCTjFeiJ3LQ8k/t1GNBGfF01qk1YQa6QmayYUF3rXtFIu5yB3PQ8SCQSdB3WAXe+NBkdB7YVt+//+wheHP+2Q0IMtvAJLr+W2Sm5de5r9D1D8eQ39zvgrIiIyGjAIXy2YwIOCV+LjxlwIKKr2d7YLDy89Ig4WP9q4evqZLYCQo9m3jgcnyNWnrCFk0yCMp3lnbpGeOFyZhFyijVi0GFQS388OrwlukV4i9v/OZWKOUsOoaEFeThDozNYXR3CnLv7NcOrN3ZwyHkRERERERERERERERERERFR3Ukd0AeRRe37tcZPl77AvBVPotPgdg12xQwSoKiTp9k2elc5Stt4VD5XujpjxPTBZsMNgpM7Y2wONwisCTcIzu6/IIYbBEKI4fDGE/jf8Fexd135AKKf31xZ53BD3xt72LyPEGxwRLhBMGrmDQ7ph4iIiIjIkj7NfbH72aH4bFpXMRjQ1EirFZwTKiDc0i3M4gD+g3G2hxsE1oQbBEfic8Vwg0C49dh2LgO3f7UXO85niOs+3Vz3Cg3D2wbYvE9qfqlDwg2Cyd3LQ4FERERERERERERERERERETUNMgb+wTo+iGTyzDwlj7i4+PbTjfMQYVBQrJqI4VMmPvJTLQsUEKYlrRD/9bYu+4w/l2yrd5OK7CZP9LiygcF2RqOeG3y+7jx/tE4vftsnc5B5abEPW9Ow541B9EYojpEoEP/No1ybCIiIiK6PilkUozvFAKNTi+GA5qSN27qgEAPJaRSCXpG+mDdsWSsPJxYb8cL8nRGap7t1SzKdHrct/gg7uwTgZNJ+XU6Bw9nGR4b3gobz6SjMXQK80SHUPOBeCIiIiIiIiIiIiIiIiIiImpYrOBADU6oGuAT3DAzpkr0gPPFIvNtNHp8f9Pn2PjzDnQa1Baunq5wUirq9bzGzx1h976aUi1WfrSuzudQUqhGeJsQDLm9PxqaRCLBvJVPNfhxiYiuOwa9YxYiomvMmA7B8Hap3+/8tnrx95NYdzwFfaJ8xQoOzor6vV2/o1eE3fuWavX4duflOp9DQakO7UM8MLJdIBqjYsbCO7s3+HGJiIiIiIiIiIiIiIiIiIjIPAYcqMHJFXI8s/ghOKucGuR4Xv+anw3UbX8OpLkabF22C/d1eAIrP1yHjMSsejsfd29XjJxxg8376aKdoX4sAEWfhqHo/VCU3ewFg2vd/gonnU/F098/iGbtwtCQht81CGEtgxv0mEREREREFZQKGRbc1gVO8qZzS6w3AKuPJGHUR9vw3c5LSMlV19ux/NyccWv3cDQ2A4DEnBJ8MrUrIn1dGvTYU3tFIMRL1aDHJCIiIiIiIiIiIiIiIiIiIsvkVrQhcrhuwzvh071vYcUHa7Fz1T6oi0phMAjDWxzPY082SiNdkDu69qygyguF8F8SX/k8PT4TC59cjPoilUrw4Cf3wifQC77B3shKybFqv7JJXiid5VdjXWl7FcomesLluWRIUzR2nY9EUr4U5JivcuFIHQe1xcOf3ttgxyMiuq4Jv1vr+vu1nn4/ExE1thvaBGDV/f2waEcsNp5OQ7FG1yQ+8uKzS/DautP11r9MKsHrE9sj0EMpVrHIKbbvXsKR90jCPUleScOdx4BoP7w0vl2DHY+IiIiIiIiIiIiIiIiIiIisJzHU16hyIhukxWXg0f4vICvZugH/9iiJdkXeED9ogpSQFWrhvjsbbodyINE5/lhSmRR6nb7Guo4D22LcnBGIP52I3X8cQHZaLvIzCyz2pW2nRMkHpissSM+r4fpIos3nKFTQuOnhMVj/3WbkWXEedRUSHYQ579+FPuO7QyptOjPlEhFdaxITExEeXj4r95DQe6GUu9epP7W2AFuTvhUfJyQkICysYav+EBE1lLisItzy5W5kFpZdExddJgF0V9zt92nugzt6ReB0aoEY6sgsLG3UgIOLkxR39onE8oMJyG2A84gOcMMLY9ticCt/MVhBRERERERERERERERERERETQ8DDtSkQg4/zFuGbcv3QFOqgUwuhU5bMyRwtep3U09Me34Snh/zFvKzbAsTlDwTCO0Q84NTVU8mQn5abVO/EqkEBn3D5ZsWHnkPLTpHNtjxiIiuVzUCDsH3OCbgkPKd+JgBByK6HkIOH2w4h/UnU1Gm00Mhk0BzZUrgKjW+UzDu6R+JGd8fQL5ai6ZAyBg04C0JNj4xWAw5EBERERERERERERERERERUdPFgAM1OcUFJchNz8OlE3F4ZdL7uFZ4+XsgNyPf5v0Kv2sGQ7DCbBvnrzPhtDoXTVWXG9rjvU2vNPZpEBFdFxhwICKquwK1BtlFZTiWkIdHlh25Zi6pl0qB3JLGq9jQmIa09scPM3s19mkQERERERERERHR/9u7E+i6ynJv4E9OhiZN07lpS5POQFvKUEpLi2WwFSgWUCahICDCRQrfRS9QPgUBQRfqB3qveNEl6L2CgKBXUEEQEKggoBYVqAUECpSkA52HpE2TNPlWDpcjoVOSc5KTht9vrb3Y7z7vfp83O6WrZ63zPw8AAMAu5O1qAnS07iVFyWPThs1d6uG3JdzQJKeuMXb5paZ17fe1p6VD+8eKt1e1+f6R+w2LK+76Qkb3BEALNTa+e6Qj3fsBdkMlhfnJY1XVluhKdtdwQ1mfoqhc2/b3h/sO6Rn//qkDMronAAAAAAAAAKB9JNppXUjb6AkjYvg+5R/6J5n3p+qdP4Otjbue0wZ7jBoYF998Xvzw79+O0QeOaNMaBx65X3zvuW9Gn4G9M74/AABobwcO7RPD+nX3oLNkZP/i+PqJ+8aj/3Z47DWwR5vWmDFmQPzyomnRp7gg4/sDAAAAAAAAADJPwIFO7bxvnBGJ3A/3H9P8+9dHbNy6w9fzntgYiZX1Ga979nWnxXFzjo6iHkXx5bv/LYp7t/6DXXtOGBG5ebkZ3xsAAHSEnJyc+NIxYyInx/POhstnjonZk4dGUUFufO+MA6O4W+vfW+xb1jtyE36BAAAAAAAAALC7+HB/cpxO7+BZE+Pa+y6PoWOHdHjtAWX9ojNoCi90v2pp5Kysa/5CQ2PkzdsYhTet3On9F3z77Djm3Bmx9+TRLa5Z0qc4PvLJSanxkNGD4+Y/fyMO/9TUyM1r+V8bH509rcVzAWgnjY3pHQAfcjPHD47vnzEx2U2gow3uVRi7u6ZwyDXHjYtTDyqP8UN6tfi+/j0KYvqY0tR4dGlJ/OqiaXHM+EHRmrzCcfvv0dotAwAAAAAAAABZlJfN4tASU46dmDz+8dyiWL9yQ6xetjZunXt7bFxbnfEHmN8tP/aaODJ6l/aMJa8tj5WVqzvFLyn3H1ui+DOLo35KcTSM7hZR0xj5T1dFYkld5BfmRyIvJ7Zsrt3mvnO+NjtO+sKxyfPX//ZmzJl4eYvq/cv/OzO6FXVrdq0p5PDluy+JqnXVsfaddVG3pS6uP+M7sXhh5XbXOPTkKTFq/+Ft+nkBAKAzmTl+UBy9z8B4oXJ9rNtUG8vW1cT1D74cG7dkvpNat7xE7F/eO3oX5cfrKzfG7qBpz0221Dds89qVHx8b53xkRPL8L4vXxEnff7ZFoYgvzxoXBR8IV48u7RHf//TEWL+pLlZVb4nNtVvj4p/+Ld5Ytf33hidOGBKjBvRo408FAAAAAAAAAGRDTmOjr+Zl91OzaUs8ftcfYtHzb0ZhcWEcdvKUKCgqSF7bsGZj8sP8r85f1Ko1T7/ixFizfG389r+eyOhei0oKY/PGmmgPvQb0jO89983IzcuN+7//cDz9yz9H7eba2OugUXH8hTNj30PHNpt/8SFXxMt/fG2H65UO7R8XfOvsOPSkKS2qv2H1xrjx3O/FH+//S7z3V0l+QV4cedbhcdF3z42Cbvlp/oQAtFZlZWWUl5cnz48Y+JkozE3vg501W6ti3js/Tp5XVFREWVmZXwpARFRvqY9fPb80Xlm+IYq75cWsfQdHIicnfv3C0li/uTYWVK6Pvy/d0KpndcmRe8ZbqzfFvX9dktFn3L0gNzbVbm2X31tpj27xm89Pi/qGxvjJs4vj0ZfeidqtDXFAee84a+rwmDisT7P5x3znqXh52Y6fy9C+3eOqY8fFkeMGtqj+qqotMffnL8S8V1emGg81BSNOm1SeXCc/V+NKAAAAAAAAANidCDjQZc0u/1ysWrKmRXMPmD4+DjrqgPjhF+/ISO1EbiJOuPiYOPKsI+I/LrglXvnTjkMF6Ro9YXjsd9g+MfPc6TFi/NCdzq18bVnMnf6V7T6Xj86eFlfc+fk27WHpouWx8Ol/RG5eIibM2Df6DOzdpnUASJ+AA0DnMeG6R2LtproWzZ0+pjT2L+sd//67VzNSOy+RE+dOGxEnHlgWX7jn+Z2GCtK135BecfDIvnHqpKHJLgs78/qKjXHaLX9KBhM+6JSJZXHDKfu3aQ9vrqqOvy5eG3m5OXHongOib3FBm9YBAAAAAAAAALJLwIEu67Zr7ok7vvo/u5w3fHx5XP/glfGvU74Uq5euTatmIjcnPvLJyfGpuZ+IMZP3TF679f/eET+74VfREU76wqy44Nuf2emcdSvXx/3ffyR+/7NnYtPGzTF8n/I49oKj4pDjJ3XIHgHowIDDgLMy08Fh5e3Jcx0cAFrn6w+9HD/4/Ru7nLfPHj3jR2dPilk3PRWrq2vTesy5iZyYOX5QzDl8VIwf0it57Su/Xhg/fuat6AgXHjEqLp85ZqdzVmysiTueXRy/WbAsNtdujTGDe8aZU4bFR8eUdsgeAQAAAAAAAIDOS8CBLmv9qg3xfyZ/MZa/tXK7r4/cb1gyiHDYKVOi4pWl8bkDLku7Zq/+JXFXxQ9iVeXqWPDUy5FIJKJs78Exd/q1sWVzeh9Uaqme/Upi5H5DY+ZnZ8QRpx4SuXm5HVIXgM5BwAGg81ixoSaO/8+nY/mGmu2+Pn6PnvG5w0clAwkLl26IT978dNo1S0sK4pkvzoi312yK55o6GiRyYmjf7nH6rX+K2q0N0RGauieMHVwSp00aGrP2HRyJRE6H1AUAAAAAAAAAdn8CDnRpKypWxU0X3hrzH/pbNDQ0Jq8NKO8XZ13zqZj52empeYteeCsumDA3IzX3njQq/jF/UbNrPfoUR031lqivrY+OdPCsA+Mr986NvPy8Dq0LQPYIOAB0LhVrNsWVv/x7PPXaymh89y1JDOldFJcdvVecMKEsNe9vb6+NE773TEZq7lfWKxZUro//LZfUuyg/qrbURX3HZBxSZu4zKG4+48BkZwkAAAAAAAAAgF0RcOBDYflbK2LxS5XRvaQoxh2yV+TmNu9qUF9XH2cMmxNrlq9r133sd9i4KCopjCWvL4vKfyyLjvCZr54WZ1x5UofUAqCTBRz6nxmFuT3SWq9ma1XMW/WT5HlFRUWUlf3zw7gAtNzi1dWxaGVVlBTmx8ShfbbpalBTtzWmfv2xWLuprl0f69SR/aIwPxFvrqqOt1Zvio7w5Vlj47xDR3ZILQAAAAAAAABg95bI9gagIwwaXhoHf/zA2PfQsduEG5o0dTg4/qKZ7b6PF598KabMOjCGjB4cHeU3P3g0tm7d2mH1AACAbQ3rVxzTxwyMScP7bhNuaFKYnxufnjKs3R/ds2+sjo+NHRhlfbt32K/pJ39cHI3vta8AAAAAAAAAANiJvJ29CB8ms790QixdtDwe+fG8bV7rO7hPjJ4wPPoM7B0P//cTadX5zkU/jOjAz/asrFwd61ZsiH6D+3RcUQA6h6YPk6b7gVIfSAXoMJ+fsWcsXr0pfv3C0m1eG9izMMbv0TN6dc+Pe/+6JK06V/7y79GRmn6mDTX10asov0PrAgAAAAAAAAC7HwEH+F+JRCLm/tdFcfyco+PhH8+LNcvWxIDy/nHMuTNi5H7vfpNqXW1dLH9zRbwwb2Hbn1sHf3FpTk5OdCsq6NiiAABAq+XlJuKm2RPi7EOGxy/+WhmrNm6J8r7d47RJ5bHnwJLknJq6rcnAwF8Wr91tnnBTw4pueRpIAgAAAAAAAAC7JuAAH7D3pNHJY3vyC/Lj+geviLuuvzce+uFjsWb5uoicjg8ttMY+H9k7evQuzvY2AMiGhsaInMb01wCgQ00c1id5bE9hfm785NzJ8Z+Pvx73zK+I1dW1nf0tSUwb3T+5bwAAAAAAAACAXRFwgFYqKCyIz1x3Wpx59SmxdsX6WPDky3H96f/RaZ/j8Rcene0tAAAAGdS9IC8unzkmLjlyr2TA4clXV8bc/3mx0z7jsw4Znu0tAAAAAAAAAAC7iUS2NwC7q9y83Oi/R9845BMHddoOCT37lcRhp0zN9jYAyJLGxoaMHAB0Tnm5iRjYszBmjh8UxQWds0PCgJKCmDGmNNvbAAAAAAAAAAB2EwIOkKZuRd3i1Ms/0SHPsbBHt1bNP+Wy4yM3t3N+0AkAAMiMksL8OO/QkR3yOEu6ta4R5JzDR0dOTk677QcAAAAAAAAA6FoEHCADTvviCXH2tadGYXHrAgitte+hY2PaiQe3aO4Rpx4Sp1x2XLvuBwAA6By+8LE941+nj47C/PZ9mz91VL+Y3sKODCceOCTO+cjwdt0PAAAAAAAAANC15DQ2NjZmexPQVVSvr45nfv1cVK/fFBvXVsft19yT0fXHTd0rvv3kdfHwf8+LB37wSCxeWBHFvbrH3pNHR33d1qheVx2lQ/vHzM/OiIlH7uebUgE+hCorK6O8vDx5fniv2VGYKE5rvZqG6vj9+p8mzysqKqKsrCwj+wSgfazfVBe/e/mdqNpSH6uqtsR3H389o+tPHdkvfnLu5Lh7fkXc9ae3Y9HKqigpzIsDyntH7daG2FhTH2V9usdpk8rjI6P7Z7Q2AAAAAAAAAND15WV7A9CVFPcqjiPPPDw1rqmqiZ/d8KuMrd9vSN/Izc2Nj583I3kAAAC8X6/u+XHSxH+G0ZoCBz9+5q2MPaTBvQojLzcRn54yLHkAAAAAAAAAAGRSIqOrAc38yzc/Hd+ad20MG5eZb7s+5rPTPWEAWq6pUVcmDgB2W185fp+467yDY0T/9Dr6vOeUg97tEgQAAAAAAAAA0B4EHKCd7XfYuLjlxW/FJy6aGYlEzo7/Z0zkxKj9h+/w9WknHhwHHX1AO+0SAADoqg4Z3T8e/bfDYvbkobGTtySRm8iJsYNLdvj68fvvEVNH9WufTQIAAAAAAAAAREROY6Ov5YWO8s7ilTHvnmdi45qNUT5mSAweNTBe/+ubkZefF5M/PiEGDS+N393xZNzzzV/GWwsrkvf0HdQ7jptzdMz+0gmRm5frlwXATlVWVkZ5+bvfrn14j09FYSK9b+yuaaiO31f9LHleUVERZWWZ6UoEQHa8vXpTPLBgaWysqY89S3vEHr2LYuHSDVGQl4jpY0pjSO+i+NlzFfGD3y+KRSurk/cM6lkYZ04dFhccPioZggAAAAAAAAAAaC8CDtBJLXvzndhatzUGjShNBiAAoCUEHADIZBiivqEhhvbtHnm5GkACAAAAAAAAAO3Pp6ahkxo8YmC2twAAAHyIDe3XPdtbAAAAAAAAAAA+ZAQcAAC6qsbGd4901wAAAAAAAAAAAIAOkOiIIgAAAAAAAAAAAAAAADujgwMAQBfV2NAQjdGQ9hoAAAAAAAAAAADQEXRwAAAAAAAAAAAAAAAAsk4HBwCArqqx8d0j3TUAAAAAAAAAAACgA+jgAAAAAAAAAAAAAAAAZJ0ODgAAXVVT94UGHRwAAAAAAAAAAADYPejgAABAp1FVVRU333xzHHXUUTFw4MAoKChI/nfixIlx5ZVXxmuvvdau9R977LE466yzYvTo0VFcXBwlJSUxZsyYmD17djz44IPR0NDQrvUBAAAAAAAAAAA+zHIaG5u+2hcAgK6gsrIyysvLk+eHdTshCnOK01qvprE6ntxyX/K8oqIiysrKor088cQTyXBB08+wI3l5eXHVVVclww65ubkZq7127dpk7QceeGCn84444oi47bbbYujQoRmrDQAAAAAAAAAAwLt0cAAA6KqacqyNDWkeHZOFffjhh+OYY45pFm5oCjMMGTIkunfvnrpWX18f11xzTcyZMydjtTds2JAMLnww3NC/f//k8X7z5s2LadOmxfLlyzNWHwAAAAAAAAAAgHcJOAAAkFVLly6N008/PbZs2ZIcl5SUxM033xzr1q1LBh42btwYDz30UOy1116pe2699da45ZZbMlL//PPPjxdffDE1PuOMM+L111+PlStXJo9FixYluzu8p6mTxcknnxwaoQEAAAAAAAAAAGSWgAMAQBfV2NCYkaO9XXHFFbFmzZrkeWFhYbKbw4UXXhjFxcXJa4lEImbOnBnz58+P/fffP3XfVVddFVVVVWnVburIcM8996TGF198cdxxxx0xatSo1LWRI0fGbbeVAAk4AAAIEklEQVTdFtdee23q2tNPPx0///nP06oNAAAAAAAAAABAcwIOAABkzbJly+LOO+9MjefOnRtTp07d7tyePXvGL37xi8jPz0+OV6xYkXYXhxtuuCF13hRquPHGG3c49+qrr47p06enxl/72tfSqg0AAAAAAAAAAEBzAg4AAF1VY0NmjnZ09913R319fapTw0UXXbTT+U0hhBNOOCE1/ulPf9rm2qtWrYrf/va3qfEFF1yQCk/syGWXXZY6X7BgQSxcuLDN9QEAAAAAAAAAAGhOwAEAgKx5f8Bg8uTJMXDgwF3ec9xxx6XOn3vuuXj77bfbVPvRRx+NhoaG7a67IzNmzIiioqLU+N57721TbQAAAAAAAAAAALYl4AAA0EU1NjRm5GhPTQGF90yZMqVF9xx88MHNxs8++2ybas+fPz913rt379h77713eU9BQUFMmDAhNX7mmWfaVBsAAAAAAAAAAIBtCTgAAJAVy5cvjzVr1qTGY8eObdF9I0aMiLy8vNT4lVdeaVP9l156qdW1m+y5555p1wYAAAAAAAAAAGBbAg4AAGRFZWVls3FZWVmL7msKN5SWlqbGb7/9dtr1W1q7yZAhQ5qt0djYvl0uAAAAAAAAAAAAPiz++dW3AAB0KVsaN0U0NqS3RtSkzpctW7bL+a0JCqxYsaLZuF+/fi2+t2/fvrF06dLk+fu7QLTG++u3tvZ76uvrY8OGDdGrV6827QEAAAAAAAAAAIB/EnAAAOii5sfjGV1v8uTJu5zTmm4GVVVVzcY9evRo8b3vn/vBddpSv62131tHwAEAAAAAAAAAACB9iQysAQAArVZbW9tsnJ+f3+J73z+3rq4u7fptrZ1OfQAAAAAAAAAAAJrTwQEAoAsZNGhQVFRUZHzdZcuWxYABAyIvL3P/fPxgt4ecnJyMrd3a+h1dGwAAAAAAAAAAgG0JOAAAdCFNAYSysrKMr9seaxYUFLS5E8L75xYWFra5fk1NTVq106kPAAAAAAAAAABAc4kPjAEAoEP07Nmz2bi6urrF91ZVVaXOi4uL067f1trp1AcAAAAAAAAAAKA5AQcAALKif//+zcZr1qxp8b3vn1taWpp2/bbWLioqipKSkjbVBwAAAAAAAAAAoDkBBwAAsmL48OHNxkuXLm3RffX19bFixYrUuKysLO36La3dZMmSJanzIUOGtKk2AAAAAAAAAAAA2xJwAAAgKwYMGBD9+vVLjV999dUW3ffGG28kQw7v2WeffdpUf+zYsa2u/cG5ba0NAAAAAAAAAADAtgQcAADImkmTJqXO//znP7fong/OO+igg9KuvXz58qioqNjlPbW1tfH8889vdw0AAAAAAAAAAADSI+AAAEDWHHXUUanzP/zhD7Fu3bpd3nP//fenzseNGxdlZWVtqj1jxoxIJP75z+EHHnhgl/c89thjsXnz5u3uHwAAAAAAAAAAgPQIOAAAkDWnnHJK5ObmprojfPe7393p/EWLFsV9992XGp955pltrt2/f//42Mc+lhrfdNNNUVdXt9N7brzxxtT5mDFjdHAAAAAAAAAAAADIIAEHAACypqn7QlPI4T1f/epXk10Stmfjxo1x8sknp0IIvXr1ivPOOy+t+pdccknq/JVXXok5c+bscG7T3h5//PHU+NJLL02rNgAAAAAAAAAAAM0JOAAAkFXXX3999OjRI3neFF6YNWtWfOMb34j169cnrzU2NsYjjzyS7Jbw/PPPp+677rrrkl0Ytmf48OGRk5OTOnbk6KOPjmOPPTY1/tGPfpQcL1y4MHXtrbfeinPOOSeuvvrq1LWmvTRdAwAAAAAAAAAAIHNyGps+MQYAAFl0//33J7sz1NbWpq7l5ubGoEGDYt26dVFdXd1s/umnnx533nnnDtdrCjgsXrw4Nd7ZP3lXrVoV06dPjwULFjS73q9fv+QeVqxY0ez6HnvsEU8//XSyBgAAAAAAAAAAAJmjgwMAAFl33HHHxQMPPBDl5eWpa1u3bo0lS5Y0CzckEom49NJL4/bbb89Y7aYuEI8//nizTg5NVq9evU24oalzw1NPPSXcAAAAAAAAAAAA0A50cAAAoNPYtGlT3HbbbXHffffFSy+9FCtXroxu3bolAwVHHHFEnH/++TF+/PhdrtOaDg7v99hjj8Vdd92VDDEsW7Ys2VGitLQ0GWyYPXt2nHjiicmuDgAAAAAAAAAAAGSegAMAAAAAAAAAAAAAAJB1iWxvAAAAAAAAAAAAAAAAQMABAAAAAAAAAAAAAADIOgEHAAAAAAAAAAAAAAAg6wQcAAAAAAAAAAAAAACArBNwAAAAAAAAAAAAAAAAsk7AAQAAAAAAAAAAAAAAyDoBBwAAAAAAAAAAAAAAIOsEHAAAAAAAAAAAAAAAgKwTcAAAAAAAAAAAAAAAALJOwAEAAAAAAAAAAAAAAMg6AQcAAAAAAAAAAAAAACDrBBwAAAAAAAAAAAAAAICsE3AAAAAAAAAAAAAAAACyTsABAAAAAAAAAAAAAADIOgEHAAAAAAAAAAAAAAAg6wQcAAAAAAAAAAAAAACArBNwAAAAAAAAAAAAAAAAsk7AAQAAAAAAAAAAAAAAyDoBBwAAAAAAAAAAAAAAIOsEHAAAAAAAAAAAAAAAgKwTcAAAAAAAAAAAAAAAALJOwAEAAAAAAAAAAAAAAMg6AQcAAAAAAAAAAAAAACDrBBwAAAAAAAAAAAAAAICsE3AAAAAAAAAAAAAAAACyTsABAAAAAAAAAAAAAACIbPv/3NszCGiWJlQAAAAASUVORK5CYII=", "text/plain": [ "
" ] @@ -694,38 +702,21 @@ }, { "cell_type": "code", - "execution_count": 28, + "execution_count": 21, "id": "c21acfe8", "metadata": {}, "outputs": [ { - "ename": "IORegistryError", - "evalue": "No method registered for writing into ", - "output_type": "error", - "traceback": [ - "\u001b[31m---------------------------------------------------------------------------\u001b[39m", - "\u001b[31mIORegistryError\u001b[39m Traceback (most recent call last)", - "\u001b[36mCell\u001b[39m\u001b[36m \u001b[39m\u001b[32mIn[28]\u001b[39m\u001b[32m, line 1\u001b[39m\n\u001b[32m----> \u001b[39m\u001b[32m1\u001b[39m \u001b[43madata\u001b[49m\u001b[43m.\u001b[49m\u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[43mFilePaths\u001b[49m\u001b[43m.\u001b[49m\u001b[43mEXAMPLE_DATASET\u001b[49m\u001b[43m \u001b[49m\u001b[43m/\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mprocessed\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m \u001b[49m\u001b[43m/\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mpbmc3k_processed.h5ad\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m)\u001b[49m\n\u001b[32m 2\u001b[39m \u001b[38;5;28mprint\u001b[39m(\u001b[33mf\u001b[39m\u001b[33m\"\u001b[39m\u001b[33mSaved to: \u001b[39m\u001b[38;5;132;01m{\u001b[39;00moutput_path\u001b[38;5;132;01m}\u001b[39;00m\u001b[33m\"\u001b[39m)\n", - " \u001b[31m[... skipping hidden 1 frame]\u001b[39m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_core/anndata.py:1907\u001b[39m, in \u001b[36mAnnData.write_h5ad\u001b[39m\u001b[34m(self, filename, convert_strings_to_categoricals, compression, compression_opts, as_dense)\u001b[39m\n\u001b[32m 1904\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m filename \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 1905\u001b[39m filename = \u001b[38;5;28mself\u001b[39m.filename\n\u001b[32m-> \u001b[39m\u001b[32m1907\u001b[39m \u001b[43mwrite_h5ad\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 1908\u001b[39m \u001b[43m \u001b[49m\u001b[43mPath\u001b[49m\u001b[43m(\u001b[49m\u001b[43mfilename\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1909\u001b[39m \u001b[43m \u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m,\u001b[49m\n\u001b[32m 1910\u001b[39m \u001b[43m \u001b[49m\u001b[43mconvert_strings_to_categoricals\u001b[49m\u001b[43m=\u001b[49m\u001b[43mconvert_strings_to_categoricals\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1911\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcompression\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1912\u001b[39m \u001b[43m \u001b[49m\u001b[43mcompression_opts\u001b[49m\u001b[43m=\u001b[49m\u001b[43mcompression_opts\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1913\u001b[39m \u001b[43m \u001b[49m\u001b[43mas_dense\u001b[49m\u001b[43m=\u001b[49m\u001b[43mas_dense\u001b[49m\u001b[43m,\u001b[49m\n\u001b[32m 1914\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 1915\u001b[39m \u001b[38;5;66;03m# Only reset the filename if the AnnData object now points to a complete new copy\u001b[39;00m\n\u001b[32m 1916\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.isbacked \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28mself\u001b[39m.is_view:\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/utils.py:320\u001b[39m, in \u001b[36mno_write_dataset_2d..raise_error_if_dataset_2d_present\u001b[39m\u001b[34m(store, adata, *args, **kwargs)\u001b[39m\n\u001b[32m 313\u001b[39m msg = (\n\u001b[32m 314\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mWriting AnnData objects with a Dataset2D not supported yet. \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 315\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mPlease use `ds.to_memory` to bring the dataset into memory. \u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 316\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mNote that if you have generated this object by concatenating several `AnnData` objects\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 317\u001b[39m \u001b[33m\"\u001b[39m\u001b[33mthe original types may be lost.\u001b[39m\u001b[33m\"\u001b[39m\n\u001b[32m 318\u001b[39m )\n\u001b[32m 319\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mNotImplementedError\u001b[39;00m(msg)\n\u001b[32m--> \u001b[39m\u001b[32m320\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrite\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madata\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/h5ad.py:97\u001b[39m, in \u001b[36mwrite_h5ad\u001b[39m\u001b[34m(filepath, adata, as_dense, convert_strings_to_categoricals, dataset_kwargs, **kwargs)\u001b[39m\n\u001b[32m 89\u001b[39m _write_x(\n\u001b[32m 90\u001b[39m f,\n\u001b[32m 91\u001b[39m adata, \u001b[38;5;66;03m# accessing adata.X reopens adata.file if it’s backed\u001b[39;00m\n\u001b[32m (...)\u001b[39m\u001b[32m 94\u001b[39m dataset_kwargs=dataset_kwargs,\n\u001b[32m 95\u001b[39m )\n\u001b[32m 96\u001b[39m _write_raw(f, adata.raw, as_dense=as_dense, dataset_kwargs=dataset_kwargs)\n\u001b[32m---> \u001b[39m\u001b[32m97\u001b[39m \u001b[43mwrite_elem\u001b[49m\u001b[43m(\u001b[49m\u001b[43mf\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[33;43m\"\u001b[39;49m\u001b[33;43mobs\u001b[39;49m\u001b[33;43m\"\u001b[39;49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43madata\u001b[49m\u001b[43m.\u001b[49m\u001b[43mobs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 98\u001b[39m write_elem(f, \u001b[33m\"\u001b[39m\u001b[33mvar\u001b[39m\u001b[33m\"\u001b[39m, adata.var, dataset_kwargs=dataset_kwargs)\n\u001b[32m 99\u001b[39m write_elem(f, \u001b[33m\"\u001b[39m\u001b[33mobsm\u001b[39m\u001b[33m\"\u001b[39m, \u001b[38;5;28mdict\u001b[39m(adata.obsm), dataset_kwargs=dataset_kwargs)\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:518\u001b[39m, in \u001b[36mwrite_elem\u001b[39m\u001b[34m(store, k, elem, dataset_kwargs)\u001b[39m\n\u001b[32m 494\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mwrite_elem\u001b[39m(\n\u001b[32m 495\u001b[39m store: GroupStorageType,\n\u001b[32m 496\u001b[39m k: \u001b[38;5;28mstr\u001b[39m,\n\u001b[32m (...)\u001b[39m\u001b[32m 499\u001b[39m dataset_kwargs: Mapping[\u001b[38;5;28mstr\u001b[39m, Any] = MappingProxyType({}),\n\u001b[32m 500\u001b[39m ) -> \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 501\u001b[39m \u001b[38;5;250m \u001b[39m\u001b[33;03m\"\"\"\u001b[39;00m\n\u001b[32m 502\u001b[39m \u001b[33;03m Write an element to a storage group using anndata encoding.\u001b[39;00m\n\u001b[32m 503\u001b[39m \n\u001b[32m (...)\u001b[39m\u001b[32m 516\u001b[39m \u001b[33;03m E.g. for zarr this would be `chunks`, `compressor`.\u001b[39;00m\n\u001b[32m 517\u001b[39m \u001b[33;03m \"\"\"\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m518\u001b[39m \u001b[43mWriter\u001b[49m\u001b[43m(\u001b[49m\u001b[43m_REGISTRY\u001b[49m\u001b[43m)\u001b[49m\u001b[43m.\u001b[49m\u001b[43mwrite_elem\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43melem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/utils.py:243\u001b[39m, in \u001b[36mreport_write_key_on_error..func_wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 241\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[32m 242\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m243\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 244\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 245\u001b[39m path = _get_display_path(store)\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:389\u001b[39m, in \u001b[36mWriter.write_elem\u001b[39m\u001b[34m(self, store, k, elem, dataset_kwargs, modifiers)\u001b[39m\n\u001b[32m 386\u001b[39m write_func = \u001b[38;5;28mself\u001b[39m.find_write_func(dest_type, elem, modifiers)\n\u001b[32m 388\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.callback \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m389\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mwrite_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mstore\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43melem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 390\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.callback(\n\u001b[32m 391\u001b[39m write_func,\n\u001b[32m 392\u001b[39m store,\n\u001b[32m (...)\u001b[39m\u001b[32m 396\u001b[39m iospec=\u001b[38;5;28mself\u001b[39m.registry.get_spec(elem),\n\u001b[32m 397\u001b[39m )\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:77\u001b[39m, in \u001b[36mwrite_spec..decorator..wrapper\u001b[39m\u001b[34m(g, k, *args, **kwargs)\u001b[39m\n\u001b[32m 75\u001b[39m \u001b[38;5;129m@wraps\u001b[39m(func)\n\u001b[32m 76\u001b[39m \u001b[38;5;28;01mdef\u001b[39;00m\u001b[38;5;250m \u001b[39m\u001b[34mwrapper\u001b[39m(g: GroupStorageType, k: \u001b[38;5;28mstr\u001b[39m, *args, **kwargs):\n\u001b[32m---> \u001b[39m\u001b[32m77\u001b[39m result = \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43mg\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mk\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 78\u001b[39m g[k].attrs.setdefault(\u001b[33m\"\u001b[39m\u001b[33mencoding-type\u001b[39m\u001b[33m\"\u001b[39m, spec.encoding_type)\n\u001b[32m 79\u001b[39m g[k].attrs.setdefault(\u001b[33m\"\u001b[39m\u001b[33mencoding-version\u001b[39m\u001b[33m\"\u001b[39m, spec.encoding_version)\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/methods.py:987\u001b[39m, in \u001b[36mwrite_dataframe\u001b[39m\u001b[34m(f, key, df, _writer, dataset_kwargs)\u001b[39m\n\u001b[32m 982\u001b[39m group.attrs[\u001b[33m\"\u001b[39m\u001b[33m_index\u001b[39m\u001b[33m\"\u001b[39m] = check_key(index_name)\n\u001b[32m 984\u001b[39m \u001b[38;5;66;03m# ._values is \"the best\" array representation. It's the true array backing the\u001b[39;00m\n\u001b[32m 985\u001b[39m \u001b[38;5;66;03m# object, where `.values` is always a np.ndarray and .array is always a pandas\u001b[39;00m\n\u001b[32m 986\u001b[39m \u001b[38;5;66;03m# array.\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m987\u001b[39m \u001b[43m_writer\u001b[49m\u001b[43m.\u001b[49m\u001b[43mwrite_elem\u001b[49m\u001b[43m(\u001b[49m\n\u001b[32m 988\u001b[39m \u001b[43m \u001b[49m\u001b[43mgroup\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mindex_name\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdf\u001b[49m\u001b[43m.\u001b[49m\u001b[43mindex\u001b[49m\u001b[43m.\u001b[49m\u001b[43m_values\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mdataset_kwargs\u001b[49m\u001b[43m=\u001b[49m\u001b[43mdataset_kwargs\u001b[49m\n\u001b[32m 989\u001b[39m \u001b[43m\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 990\u001b[39m \u001b[38;5;28;01mfor\u001b[39;00m colname, series \u001b[38;5;129;01min\u001b[39;00m df.items():\n\u001b[32m 991\u001b[39m \u001b[38;5;66;03m# TODO: this should write the \"true\" representation of the series (i.e. the underlying array or ndarray depending)\u001b[39;00m\n\u001b[32m 992\u001b[39m _writer.write_elem(\n\u001b[32m 993\u001b[39m group, colname, series._values, dataset_kwargs=dataset_kwargs\n\u001b[32m 994\u001b[39m )\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/utils.py:243\u001b[39m, in \u001b[36mreport_write_key_on_error..func_wrapper\u001b[39m\u001b[34m(*args, **kwargs)\u001b[39m\n\u001b[32m 241\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(msg)\n\u001b[32m 242\u001b[39m \u001b[38;5;28;01mtry\u001b[39;00m:\n\u001b[32m--> \u001b[39m\u001b[32m243\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[43mfunc\u001b[49m\u001b[43m(\u001b[49m\u001b[43m*\u001b[49m\u001b[43margs\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43m*\u001b[49m\u001b[43m*\u001b[49m\u001b[43mkwargs\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 244\u001b[39m \u001b[38;5;28;01mexcept\u001b[39;00m \u001b[38;5;167;01mException\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m e:\n\u001b[32m 245\u001b[39m path = _get_display_path(store)\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:386\u001b[39m, in \u001b[36mWriter.write_elem\u001b[39m\u001b[34m(self, store, k, elem, dataset_kwargs, modifiers)\u001b[39m\n\u001b[32m 383\u001b[39m \u001b[38;5;28;01melif\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m store:\n\u001b[32m 384\u001b[39m \u001b[38;5;28;01mdel\u001b[39;00m store[k]\n\u001b[32m--> \u001b[39m\u001b[32m386\u001b[39m write_func = \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mfind_write_func\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdest_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43melem\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodifiers\u001b[49m\u001b[43m)\u001b[49m\n\u001b[32m 388\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m \u001b[38;5;28mself\u001b[39m.callback \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m:\n\u001b[32m 389\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m write_func(store, k, elem, dataset_kwargs=dataset_kwargs)\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:334\u001b[39m, in \u001b[36mWriter.find_write_func\u001b[39m\u001b[34m(self, dest_type, elem, modifiers)\u001b[39m\n\u001b[32m 330\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mself\u001b[39m.registry.get_write(\n\u001b[32m 331\u001b[39m dest_type, pattern, modifiers, writer=\u001b[38;5;28mself\u001b[39m\n\u001b[32m 332\u001b[39m )\n\u001b[32m 333\u001b[39m \u001b[38;5;66;03m# Raises IORegistryError\u001b[39;00m\n\u001b[32m--> \u001b[39m\u001b[32m334\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28;43mself\u001b[39;49m\u001b[43m.\u001b[49m\u001b[43mregistry\u001b[49m\u001b[43m.\u001b[49m\u001b[43mget_write\u001b[49m\u001b[43m(\u001b[49m\u001b[43mdest_type\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[38;5;28;43mtype\u001b[39;49m\u001b[43m(\u001b[49m\u001b[43melem\u001b[49m\u001b[43m)\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mmodifiers\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mwriter\u001b[49m\u001b[43m=\u001b[49m\u001b[38;5;28;43mself\u001b[39;49m\u001b[43m)\u001b[49m\n", - "\u001b[36mFile \u001b[39m\u001b[32m~/Projects/analysis_template/.pixi/envs/default/lib/python3.12/site-packages/anndata/_io/specs/registry.py:141\u001b[39m, in \u001b[36mIORegistry.get_write\u001b[39m\u001b[34m(self, dest_type, src_type, modifiers, writer)\u001b[39m\n\u001b[32m 139\u001b[39m dest_type = h5py.Group\n\u001b[32m 140\u001b[39m \u001b[38;5;28;01mif\u001b[39;00m (dest_type, src_type, modifiers) \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m.write:\n\u001b[32m--> \u001b[39m\u001b[32m141\u001b[39m \u001b[38;5;28;01mraise\u001b[39;00m IORegistryError._from_write_parts(dest_type, src_type, modifiers)\n\u001b[32m 142\u001b[39m internal = \u001b[38;5;28mself\u001b[39m.write[(dest_type, src_type, modifiers)]\n\u001b[32m 143\u001b[39m \u001b[38;5;28;01mreturn\u001b[39;00m partial(internal, _writer=writer)\n", - "\u001b[31mIORegistryError\u001b[39m: No method registered for writing into ", - "Error raised while writing key 'index' of to /obs" + "name": "stdout", + "output_type": "stream", + "text": [ + "Saved to: /Users/mlange/Projects/analysis_template/data/example_dataset/processed/pbmc3k_processed.h5ad\n" ] } ], "source": [ - "adata.write(FilePaths.EXAMPLE_DATASET / \"processed\" / \"pbmc3k_processed.h5ad\")\n", + "output_path = FilePaths.EXAMPLE_DATASET / \"processed\" / \"pbmc3k_processed.h5ad\"\n", + "adata.write(output_path)\n", "print(f\"Saved to: {output_path}\")" ] }, @@ -741,14 +732,14 @@ }, { "cell_type": "code", - "execution_count": 24, + "execution_count": 22, "id": "81c9ee78", "metadata": {}, "outputs": [ { "data": { "application/vnd.jupyter.widget-view+json": { - "model_id": "3bd42cdc4f1045ac8dfa22b3232338a5", + "model_id": "19daaa1b1492491590486e02fd5aeaf1", "version_major": 2, "version_minor": 0 }, @@ -758,15 +749,14 @@ " PackageVersion\n", " \n", " \n", - " pandas3.0.0\n", - " anndata0.12.6\n", + " pandas2.3.3\n", + " anndata0.12.8\n", " matplotlib3.10.8\n", - " numpy2.1.3\n", - " scanpy1.12\n", - " myanalysis0.1.dev29+g32849c680.d20260127\n", - " scvi-tools1.4.1\n", - " torch2.10.0\n", - " celltypist1.7.1\n", + " scanpy1.12\n", + " myanalysis0.1.dev29+g32849c680.d20260127\n", + " scvi-tools1.4.1\n", + " torch2.10.0\n", + " celltypist1.7.1\n", " \n", " \n", " ComponentInfo\n", @@ -774,7 +764,7 @@ " \n", " Python3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ]\n", " OSmacOS-26.2-arm64-arm-64bit\n", - " Updated2026-01-27 13:07\n", + " Updated2026-01-27 13:26\n", " \n", " \n", "\n", @@ -786,97 +776,99 @@ " DependencyVersion\n", "\n", "\n", - " cloudpickle3.1.2\n", - " charset-normalizer3.4.4\n", - " psutil7.2.1\n", - " docrep0.3.2\n", + " seaborn0.13.2\n", + " pycparser3.0 (3.00)\n", " texttable1.7.0\n", - " xarray2025.12.0\n", - " mpmath1.3.0\n", " six1.17.0\n", + " requests2.32.5\n", + " torchmetrics1.8.2\n", + " appnope0.1.4\n", + " platformdirs4.5.1\n", + " h5py3.15.1\n", + " jax0.8.2\n", + " charset-normalizer3.4.4\n", + " natsort8.4.0\n", + " scipy1.16.3\n", + " sparse0.17.0\n", + " llvmlite0.46.0\n", + " dask2024.11.2\n", + " pure_eval0.2.3\n", + " jedi0.19.2\n", + " sympy1.14.0\n", + " numba0.63.1\n", " matplotlib-inline0.2.1\n", - " cycler0.12.1\n", - " Jinja23.0.3\n", - " pynndescent0.6.0\n", - " PyYAML6.0.3\n", - " statsmodels0.14.6\n", - " ipython9.9.0\n", + " kiwisolver1.4.9\n", + " typing_extensions4.15.0\n", + " jupyter_client8.8.0\n", + " opt_einsum3.4.0\n", " mudata0.3.2\n", + " pyzmq27.1.0\n", + " jupyter_core5.9.1\n", + " fast-array-utils1.3.1\n", + " google-crc32c1.8.0\n", + " cloudpickle3.1.2\n", + " executing2.2.1\n", + " PyYAML6.0.3\n", + " threadpoolctl3.6.0\n", + " idna3.11\n", + " MarkupSafe3.0.3\n", + " zarr3.1.5\n", + " ml_dtypes0.5.4\n", + " scikit-learn1.7.2\n", + " cycler0.12.1\n", " comm0.2.3\n", - " scikit-learn1.7.2\n", - " jax0.8.2\n", - " absl-py2.3.1\n", - " toolz1.1.0\n", - " certifi2026.1.4 (2026.01.04)\n", + " ipywidgets8.1.8\n", + " certifi2026.1.4 (2026.01.04)\n", + " defusedxml0.7.1\n", " umap-learn0.5.11\n", " pyro-ppl1.9.1\n", - " session-info20.3\n", - " igraph1.0.0\n", - " decorator5.2.1\n", - " tornado6.5.4\n", - " rich14.3.1\n", - " kiwisolver1.4.9\n", - " MarkupSafe3.0.3\n", - " appnope0.1.4\n", - " jupyter_client8.8.0\n", - " fast-array-utils1.3.1\n", - " parso0.8.5\n", - " executing2.2.1\n", - " python-dateutil2.9.0.post0\n", - " numba0.63.1\n", - " asttokens3.0.1\n", - " pyzmq27.1.0\n", - " threadpoolctl3.6.0\n", - " requests2.32.5\n", - " llvmlite0.46.0\n", - " fsspec2026.1.0\n", - " lightning-utilities0.15.2\n", - " legacy-api-wrap1.5\n", - " lightning2.6.0\n", - " urllib32.6.3\n", - " attrs25.4.0\n", - " sympy1.14.0\n", - " donfig0.8.1.post1\n", - " scipy1.16.3\n", - " zarr3.1.5\n", + " tqdm4.67.1\n", + " Pygments2.19.2\n", + " fsspec2026.1.0\n", " debugpy1.8.19\n", - " patsy1.0.2\n", + " traitlets5.14.3\n", + " urllib32.6.3\n", + " decorator5.2.1\n", + " pyarrow23.0.0\n", + " pytz2025.2\n", " filelock3.20.3\n", - " tqdm4.67.1\n", - " torchmetrics1.8.2\n", - " sparse0.17.0\n", - " ml_collections1.1.0\n", - " seaborn0.13.2\n", - " defusedxml0.7.1\n", - " pillow12.1.0\n", - " numcodecs0.16.5\n", - " pyarrow23.0.0\n", - " natsort8.4.0\n", - " jupyter_core5.9.1\n", - " traitlets5.14.3\n", - " platformdirs4.5.1\n", - " typing_extensions4.15.0\n", - " Pygments2.19.2\n", - " google-crc32c1.8.0\n", - " opt_einsum3.4.0\n", - " ipywidgets8.1.8\n", + " tornado6.5.4\n", + " asttokens3.0.1\n", " wcwidth0.5.0\n", - " ipykernel7.1.0\n", + " absl-py2.3.1\n", + " Jinja23.0.3\n", + " numcodecs0.16.5\n", + " statsmodels0.14.6\n", + " mpmath1.3.0\n", " setuptools80.10.2\n", - " h5py3.15.1\n", - " pycparser3.0 (3.00)\n", - " jedi0.19.2\n", - " idna3.11\n", - " pure_eval0.2.3\n", - " stack-data0.6.3\n", - " dask2024.11.2\n", + " session-info20.3\n", " packaging26.0\n", - " prompt_toolkit3.0.52\n", - " jaxlib0.8.2\n", + " docrep0.3.2\n", + " lightning2.6.0\n", + " pynndescent0.6.0\n", + " ipython9.9.0\n", + " donfig0.8.1.post1\n", + " prompt_toolkit3.0.52\n", " pyparsing3.3.2\n", - " joblib1.5.3\n", + " stack-data0.6.3\n", + " joblib1.5.3\n", + " igraph1.0.0\n", + " patsy1.0.2\n", + " attrs25.4.0\n", + " jaxlib0.8.2\n", + " pillow12.1.0\n", + " python-dateutil2.9.0.post0\n", + " lightning-utilities0.15.2\n", + " xarray2025.12.0\n", + " toolz1.1.0\n", + " ml_collections1.1.0\n", + " ipykernel7.1.0\n", " cffi2.0.0\n", - " ml_dtypes0.5.4\n", + " numpy2.1.3\n", + " legacy-api-wrap1.5\n", + " rich14.3.1\n", + " psutil7.2.1\n", + " parso0.8.5\n", "\n", " \n", "\n", @@ -885,10 +877,9 @@ " Copyable Markdown\n", "
| Package    | Version                        |\n",
        "| ---------- | ------------------------------ |\n",
-       "| pandas     | 3.0.0                          |\n",
-       "| anndata    | 0.12.6                         |\n",
+       "| pandas     | 2.3.3                          |\n",
+       "| anndata    | 0.12.8                         |\n",
        "| matplotlib | 3.10.8                         |\n",
-       "| numpy      | 2.1.3                          |\n",
        "| scanpy     | 1.12                           |\n",
        "| myanalysis | 0.1.dev29+g32849c680.d20260127 |\n",
        "| scvi-tools | 1.4.1                          |\n",
@@ -897,112 +888,113 @@
        "\n",
        "| Dependency          | Version               |\n",
        "| ------------------- | --------------------- |\n",
-       "| cloudpickle         | 3.1.2                 |\n",
-       "| charset-normalizer  | 3.4.4                 |\n",
-       "| psutil              | 7.2.1                 |\n",
-       "| docrep              | 0.3.2                 |\n",
+       "| seaborn             | 0.13.2                |\n",
+       "| pycparser           | 3.0 (3.00)            |\n",
        "| texttable           | 1.7.0                 |\n",
-       "| xarray              | 2025.12.0             |\n",
-       "| mpmath              | 1.3.0                 |\n",
        "| six                 | 1.17.0                |\n",
-       "| matplotlib-inline   | 0.2.1                 |\n",
-       "| cycler              | 0.12.1                |\n",
-       "| Jinja2              | 3.0.3                 |\n",
-       "| pynndescent         | 0.6.0                 |\n",
-       "| PyYAML              | 6.0.3                 |\n",
-       "| statsmodels         | 0.14.6                |\n",
-       "| ipython             | 9.9.0                 |\n",
-       "| mudata              | 0.3.2                 |\n",
-       "| comm                | 0.2.3                 |\n",
-       "| scikit-learn        | 1.7.2                 |\n",
+       "| requests            | 2.32.5                |\n",
+       "| torchmetrics        | 1.8.2                 |\n",
+       "| appnope             | 0.1.4                 |\n",
+       "| platformdirs        | 4.5.1                 |\n",
+       "| h5py                | 3.15.1                |\n",
        "| jax                 | 0.8.2                 |\n",
-       "| absl-py             | 2.3.1                 |\n",
-       "| toolz               | 1.1.0                 |\n",
-       "| certifi             | 2026.1.4 (2026.01.04) |\n",
-       "| umap-learn          | 0.5.11                |\n",
-       "| pyro-ppl            | 1.9.1                 |\n",
-       "| session-info2       | 0.3                   |\n",
-       "| igraph              | 1.0.0                 |\n",
-       "| decorator           | 5.2.1                 |\n",
-       "| tornado             | 6.5.4                 |\n",
-       "| rich                | 14.3.1                |\n",
+       "| charset-normalizer  | 3.4.4                 |\n",
+       "| natsort             | 8.4.0                 |\n",
+       "| scipy               | 1.16.3                |\n",
+       "| sparse              | 0.17.0                |\n",
+       "| llvmlite            | 0.46.0                |\n",
+       "| dask                | 2024.11.2             |\n",
+       "| pure_eval           | 0.2.3                 |\n",
+       "| jedi                | 0.19.2                |\n",
+       "| sympy               | 1.14.0                |\n",
+       "| numba               | 0.63.1                |\n",
+       "| matplotlib-inline   | 0.2.1                 |\n",
        "| kiwisolver          | 1.4.9                 |\n",
-       "| MarkupSafe          | 3.0.3                 |\n",
-       "| appnope             | 0.1.4                 |\n",
+       "| typing_extensions   | 4.15.0                |\n",
        "| jupyter_client      | 8.8.0                 |\n",
+       "| opt_einsum          | 3.4.0                 |\n",
+       "| mudata              | 0.3.2                 |\n",
+       "| pyzmq               | 27.1.0                |\n",
+       "| jupyter_core        | 5.9.1                 |\n",
        "| fast-array-utils    | 1.3.1                 |\n",
-       "| parso               | 0.8.5                 |\n",
+       "| google-crc32c       | 1.8.0                 |\n",
+       "| cloudpickle         | 3.1.2                 |\n",
        "| executing           | 2.2.1                 |\n",
-       "| python-dateutil     | 2.9.0.post0           |\n",
-       "| numba               | 0.63.1                |\n",
-       "| asttokens           | 3.0.1                 |\n",
-       "| pyzmq               | 27.1.0                |\n",
+       "| PyYAML              | 6.0.3                 |\n",
        "| threadpoolctl       | 3.6.0                 |\n",
-       "| requests            | 2.32.5                |\n",
-       "| llvmlite            | 0.46.0                |\n",
-       "| fsspec              | 2026.1.0              |\n",
-       "| lightning-utilities | 0.15.2                |\n",
-       "| legacy-api-wrap     | 1.5                   |\n",
-       "| lightning           | 2.6.0                 |\n",
-       "| urllib3             | 2.6.3                 |\n",
-       "| attrs               | 25.4.0                |\n",
-       "| sympy               | 1.14.0                |\n",
-       "| donfig              | 0.8.1.post1           |\n",
-       "| scipy               | 1.16.3                |\n",
+       "| idna                | 3.11                  |\n",
+       "| MarkupSafe          | 3.0.3                 |\n",
        "| zarr                | 3.1.5                 |\n",
-       "| debugpy             | 1.8.19                |\n",
-       "| patsy               | 1.0.2                 |\n",
-       "| filelock            | 3.20.3                |\n",
-       "| tqdm                | 4.67.1                |\n",
-       "| torchmetrics        | 1.8.2                 |\n",
-       "| sparse              | 0.17.0                |\n",
-       "| ml_collections      | 1.1.0                 |\n",
-       "| seaborn             | 0.13.2                |\n",
+       "| ml_dtypes           | 0.5.4                 |\n",
+       "| scikit-learn        | 1.7.2                 |\n",
+       "| cycler              | 0.12.1                |\n",
+       "| comm                | 0.2.3                 |\n",
+       "| ipywidgets          | 8.1.8                 |\n",
+       "| certifi             | 2026.1.4 (2026.01.04) |\n",
        "| defusedxml          | 0.7.1                 |\n",
-       "| pillow              | 12.1.0                |\n",
-       "| numcodecs           | 0.16.5                |\n",
-       "| pyarrow             | 23.0.0                |\n",
-       "| natsort             | 8.4.0                 |\n",
-       "| jupyter_core        | 5.9.1                 |\n",
-       "| traitlets           | 5.14.3                |\n",
-       "| platformdirs        | 4.5.1                 |\n",
-       "| typing_extensions   | 4.15.0                |\n",
+       "| umap-learn          | 0.5.11                |\n",
+       "| pyro-ppl            | 1.9.1                 |\n",
+       "| tqdm                | 4.67.1                |\n",
        "| Pygments            | 2.19.2                |\n",
-       "| google-crc32c       | 1.8.0                 |\n",
-       "| opt_einsum          | 3.4.0                 |\n",
-       "| ipywidgets          | 8.1.8                 |\n",
+       "| fsspec              | 2026.1.0              |\n",
+       "| debugpy             | 1.8.19                |\n",
+       "| traitlets           | 5.14.3                |\n",
+       "| urllib3             | 2.6.3                 |\n",
+       "| decorator           | 5.2.1                 |\n",
+       "| pyarrow             | 23.0.0                |\n",
+       "| pytz                | 2025.2                |\n",
+       "| filelock            | 3.20.3                |\n",
+       "| tornado             | 6.5.4                 |\n",
+       "| asttokens           | 3.0.1                 |\n",
        "| wcwidth             | 0.5.0                 |\n",
-       "| ipykernel           | 7.1.0                 |\n",
+       "| absl-py             | 2.3.1                 |\n",
+       "| Jinja2              | 3.0.3                 |\n",
+       "| numcodecs           | 0.16.5                |\n",
+       "| statsmodels         | 0.14.6                |\n",
+       "| mpmath              | 1.3.0                 |\n",
        "| setuptools          | 80.10.2               |\n",
-       "| h5py                | 3.15.1                |\n",
-       "| pycparser           | 3.0 (3.00)            |\n",
-       "| jedi                | 0.19.2                |\n",
-       "| idna                | 3.11                  |\n",
-       "| pure_eval           | 0.2.3                 |\n",
-       "| stack-data          | 0.6.3                 |\n",
-       "| dask                | 2024.11.2             |\n",
+       "| session-info2       | 0.3                   |\n",
        "| packaging           | 26.0                  |\n",
+       "| docrep              | 0.3.2                 |\n",
+       "| lightning           | 2.6.0                 |\n",
+       "| pynndescent         | 0.6.0                 |\n",
+       "| ipython             | 9.9.0                 |\n",
+       "| donfig              | 0.8.1.post1           |\n",
        "| prompt_toolkit      | 3.0.52                |\n",
-       "| jaxlib              | 0.8.2                 |\n",
        "| pyparsing           | 3.3.2                 |\n",
+       "| stack-data          | 0.6.3                 |\n",
        "| joblib              | 1.5.3                 |\n",
+       "| igraph              | 1.0.0                 |\n",
+       "| patsy               | 1.0.2                 |\n",
+       "| attrs               | 25.4.0                |\n",
+       "| jaxlib              | 0.8.2                 |\n",
+       "| pillow              | 12.1.0                |\n",
+       "| python-dateutil     | 2.9.0.post0           |\n",
+       "| lightning-utilities | 0.15.2                |\n",
+       "| xarray              | 2025.12.0             |\n",
+       "| toolz               | 1.1.0                 |\n",
+       "| ml_collections      | 1.1.0                 |\n",
+       "| ipykernel           | 7.1.0                 |\n",
        "| cffi                | 2.0.0                 |\n",
-       "| ml_dtypes           | 0.5.4                 |\n",
+       "| numpy               | 2.1.3                 |\n",
+       "| legacy-api-wrap     | 1.5                   |\n",
+       "| rich                | 14.3.1                |\n",
+       "| psutil              | 7.2.1                 |\n",
+       "| parso               | 0.8.5                 |\n",
        "\n",
        "| Component | Info                                                                              |\n",
        "| --------- | --------------------------------------------------------------------------------- |\n",
        "| Python    | 3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ] |\n",
        "| OS        | macOS-26.2-arm64-arm-64bit                                                        |\n",
-       "| Updated   | 2026-01-27 13:07                                                                  |
\n", + "| Updated | 2026-01-27 13:26 |\n", " " ], "text/markdown": [ "| Package | Version |\n", "| ---------- | ------------------------------ |\n", - "| pandas | 3.0.0 |\n", - "| anndata | 0.12.6 |\n", + "| pandas | 2.3.3 |\n", + "| anndata | 0.12.8 |\n", "| matplotlib | 3.10.8 |\n", - "| numpy | 2.1.3 |\n", "| scanpy | 1.12 |\n", "| myanalysis | 0.1.dev29+g32849c680.d20260127 |\n", "| scvi-tools | 1.4.1 |\n", @@ -1011,109 +1003,110 @@ "\n", "| Dependency | Version |\n", "| ------------------- | --------------------- |\n", - "| cloudpickle | 3.1.2 |\n", - "| charset-normalizer | 3.4.4 |\n", - "| psutil | 7.2.1 |\n", - "| docrep | 0.3.2 |\n", + "| seaborn | 0.13.2 |\n", + "| pycparser | 3.0 (3.00) |\n", "| texttable | 1.7.0 |\n", - "| xarray | 2025.12.0 |\n", - "| mpmath | 1.3.0 |\n", "| six | 1.17.0 |\n", - "| matplotlib-inline | 0.2.1 |\n", - "| cycler | 0.12.1 |\n", - "| Jinja2 | 3.0.3 |\n", - "| pynndescent | 0.6.0 |\n", - "| PyYAML | 6.0.3 |\n", - "| statsmodels | 0.14.6 |\n", - "| ipython | 9.9.0 |\n", - "| mudata | 0.3.2 |\n", - "| comm | 0.2.3 |\n", - "| scikit-learn | 1.7.2 |\n", + "| requests | 2.32.5 |\n", + "| torchmetrics | 1.8.2 |\n", + "| appnope | 0.1.4 |\n", + "| platformdirs | 4.5.1 |\n", + "| h5py | 3.15.1 |\n", "| jax | 0.8.2 |\n", - "| absl-py | 2.3.1 |\n", - "| toolz | 1.1.0 |\n", - "| certifi | 2026.1.4 (2026.01.04) |\n", - "| umap-learn | 0.5.11 |\n", - "| pyro-ppl | 1.9.1 |\n", - "| session-info2 | 0.3 |\n", - "| igraph | 1.0.0 |\n", - "| decorator | 5.2.1 |\n", - "| tornado | 6.5.4 |\n", - "| rich | 14.3.1 |\n", + "| charset-normalizer | 3.4.4 |\n", + "| natsort | 8.4.0 |\n", + "| scipy | 1.16.3 |\n", + "| sparse | 0.17.0 |\n", + "| llvmlite | 0.46.0 |\n", + "| dask | 2024.11.2 |\n", + "| pure_eval | 0.2.3 |\n", + "| jedi | 0.19.2 |\n", + "| sympy | 1.14.0 |\n", + "| numba | 0.63.1 |\n", + "| matplotlib-inline | 0.2.1 |\n", "| kiwisolver | 1.4.9 |\n", - "| MarkupSafe | 3.0.3 |\n", - "| appnope | 0.1.4 |\n", + "| typing_extensions | 4.15.0 |\n", "| jupyter_client | 8.8.0 |\n", + "| opt_einsum | 3.4.0 |\n", + "| mudata | 0.3.2 |\n", + "| pyzmq | 27.1.0 |\n", + "| jupyter_core | 5.9.1 |\n", "| fast-array-utils | 1.3.1 |\n", - "| parso | 0.8.5 |\n", + "| google-crc32c | 1.8.0 |\n", + "| cloudpickle | 3.1.2 |\n", "| executing | 2.2.1 |\n", - "| python-dateutil | 2.9.0.post0 |\n", - "| numba | 0.63.1 |\n", - "| asttokens | 3.0.1 |\n", - "| pyzmq | 27.1.0 |\n", + "| PyYAML | 6.0.3 |\n", "| threadpoolctl | 3.6.0 |\n", - "| requests | 2.32.5 |\n", - "| llvmlite | 0.46.0 |\n", - "| fsspec | 2026.1.0 |\n", - "| lightning-utilities | 0.15.2 |\n", - "| legacy-api-wrap | 1.5 |\n", - "| lightning | 2.6.0 |\n", - "| urllib3 | 2.6.3 |\n", - "| attrs | 25.4.0 |\n", - "| sympy | 1.14.0 |\n", - "| donfig | 0.8.1.post1 |\n", - "| scipy | 1.16.3 |\n", + "| idna | 3.11 |\n", + "| MarkupSafe | 3.0.3 |\n", "| zarr | 3.1.5 |\n", - "| debugpy | 1.8.19 |\n", - "| patsy | 1.0.2 |\n", - "| filelock | 3.20.3 |\n", - "| tqdm | 4.67.1 |\n", - "| torchmetrics | 1.8.2 |\n", - "| sparse | 0.17.0 |\n", - "| ml_collections | 1.1.0 |\n", - "| seaborn | 0.13.2 |\n", + "| ml_dtypes | 0.5.4 |\n", + "| scikit-learn | 1.7.2 |\n", + "| cycler | 0.12.1 |\n", + "| comm | 0.2.3 |\n", + "| ipywidgets | 8.1.8 |\n", + "| certifi | 2026.1.4 (2026.01.04) |\n", "| defusedxml | 0.7.1 |\n", - "| pillow | 12.1.0 |\n", - "| numcodecs | 0.16.5 |\n", - "| pyarrow | 23.0.0 |\n", - "| natsort | 8.4.0 |\n", - "| jupyter_core | 5.9.1 |\n", - "| traitlets | 5.14.3 |\n", - "| platformdirs | 4.5.1 |\n", - "| typing_extensions | 4.15.0 |\n", + "| umap-learn | 0.5.11 |\n", + "| pyro-ppl | 1.9.1 |\n", + "| tqdm | 4.67.1 |\n", "| Pygments | 2.19.2 |\n", - "| google-crc32c | 1.8.0 |\n", - "| opt_einsum | 3.4.0 |\n", - "| ipywidgets | 8.1.8 |\n", + "| fsspec | 2026.1.0 |\n", + "| debugpy | 1.8.19 |\n", + "| traitlets | 5.14.3 |\n", + "| urllib3 | 2.6.3 |\n", + "| decorator | 5.2.1 |\n", + "| pyarrow | 23.0.0 |\n", + "| pytz | 2025.2 |\n", + "| filelock | 3.20.3 |\n", + "| tornado | 6.5.4 |\n", + "| asttokens | 3.0.1 |\n", "| wcwidth | 0.5.0 |\n", - "| ipykernel | 7.1.0 |\n", + "| absl-py | 2.3.1 |\n", + "| Jinja2 | 3.0.3 |\n", + "| numcodecs | 0.16.5 |\n", + "| statsmodels | 0.14.6 |\n", + "| mpmath | 1.3.0 |\n", "| setuptools | 80.10.2 |\n", - "| h5py | 3.15.1 |\n", - "| pycparser | 3.0 (3.00) |\n", - "| jedi | 0.19.2 |\n", - "| idna | 3.11 |\n", - "| pure_eval | 0.2.3 |\n", - "| stack-data | 0.6.3 |\n", - "| dask | 2024.11.2 |\n", + "| session-info2 | 0.3 |\n", "| packaging | 26.0 |\n", + "| docrep | 0.3.2 |\n", + "| lightning | 2.6.0 |\n", + "| pynndescent | 0.6.0 |\n", + "| ipython | 9.9.0 |\n", + "| donfig | 0.8.1.post1 |\n", "| prompt_toolkit | 3.0.52 |\n", - "| jaxlib | 0.8.2 |\n", "| pyparsing | 3.3.2 |\n", + "| stack-data | 0.6.3 |\n", "| joblib | 1.5.3 |\n", + "| igraph | 1.0.0 |\n", + "| patsy | 1.0.2 |\n", + "| attrs | 25.4.0 |\n", + "| jaxlib | 0.8.2 |\n", + "| pillow | 12.1.0 |\n", + "| python-dateutil | 2.9.0.post0 |\n", + "| lightning-utilities | 0.15.2 |\n", + "| xarray | 2025.12.0 |\n", + "| toolz | 1.1.0 |\n", + "| ml_collections | 1.1.0 |\n", + "| ipykernel | 7.1.0 |\n", "| cffi | 2.0.0 |\n", - "| ml_dtypes | 0.5.4 |\n", + "| numpy | 2.1.3 |\n", + "| legacy-api-wrap | 1.5 |\n", + "| rich | 14.3.1 |\n", + "| psutil | 7.2.1 |\n", + "| parso | 0.8.5 |\n", "\n", "| Component | Info |\n", "| --------- | --------------------------------------------------------------------------------- |\n", "| Python | 3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ] |\n", "| OS | macOS-26.2-arm64-arm-64bit |\n", - "| Updated | 2026-01-27 13:07 |" + "| Updated | 2026-01-27 13:26 |" ], "text/plain": [ - "pandas\t3.0.0\n", - "anndata\t0.12.6\n", + "pandas\t2.3.3\n", + "anndata\t0.12.8\n", "matplotlib\t3.10.8\n", - "numpy\t2.1.3\n", "scanpy\t1.12\n", "myanalysis\t0.1.dev29+g32849c680.d20260127\n", "scvi-tools\t1.4.1\n", @@ -1122,10 +1115,10 @@ "----\t----\n", "Python\t3.12.12 | packaged by conda-forge | (main, Jan 27 2026, 00:01:15) [Clang 19.1.7 ]\n", "OS\tmacOS-26.2-arm64-arm-64bit\n", - "Updated\t2026-01-27 13:07" + "Updated\t2026-01-27 13:26" ] }, - "execution_count": 24, + "execution_count": 22, "metadata": {}, "output_type": "execute_result" } @@ -1160,6 +1153,14 @@ "git pull\n", "```" ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "c445a7b3-a9c1-42c1-8cef-cbc7f79fd769", + "metadata": {}, + "outputs": [], + "source": [] } ], "metadata": { diff --git a/analysis/XX-2026-01-27_sample_notebook.ipynb b/analysis/XX-2026-01-27_sample_notebook.ipynb index 9d8acc5..499b181 100644 --- a/analysis/XX-2026-01-27_sample_notebook.ipynb +++ b/analysis/XX-2026-01-27_sample_notebook.ipynb @@ -189,7 +189,7 @@ "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", - "version": "3.12.12" + "version": "3.13.3" }, "toc": { "base_numbering": 1, diff --git a/pixi.lock b/pixi.lock index 7c95dd9..1bf6dff 100644 --- a/pixi.lock +++ b/pixi.lock @@ -291,7 +291,6 @@ environments: - pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/2f/3f/cc519c1176116271b6282268a705162fa042c16cc922bc56039445c9d697/pot-0.9.6.post1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl - pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl @@ -482,7 +481,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/5d/43/4be01406b78e1be8320bb8316dc9c42dbab553d281c40364e0f862d5661c/aiohttp-3.13.3-cp312-cp312-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/10/a1/510b0a7fadc6f43a6ce50152e69dbd86415240835868bb0bd9b5b88b1e06/aioitertools-0.13.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/fb/76/641ae371508676492379f16e2fa48f4e2c11741bd63c48be4b12a6b09cba/aiosignal-1.4.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/60/2f/fd99b85e3913803e4134657a311971f39d34c9995b26d3cbf9a218459c36/anndata-0.12.6-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/5e/09/f39f9443f901a8e9d960602e0f916005560839d3cfd96b89abd370ff7527/anndata-0.12.8-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/38/0e/27be9fdef66e72d64c0cdc3cc2823101b80585f8119b5c112c2e8f5f7dab/anyio-4.12.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/81/29/5ecc3a15d5a33e31b26c11426c45c501e439cb865d0bff96315d86443b78/appnope-0.1.4-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/4f/d3/a8b22fa575b297cd6e3e3b0155c7e25db170edf1c74783d6a31a2490b8d9/argon2_cffi-25.1.0-py3-none-any.whl @@ -608,7 +607,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/c0/da/977ded879c29cbd04de313843e76868e6e13408a94ed6b987245dc7c8506/openpyxl-3.1.5-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/23/cd/066e86230ae37ed0be70aae89aabf03ca8d9f39c8aea0dec8029455b5540/opt_einsum-3.4.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/b7/b9/c538f279a4e237a006a2c98387d081e9eb060d203d8ed34467cc0f0b9b53/packaging-26.0-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/a5/7b/9254310594e9774906bacdd4e732415e1f86ab7dbb4b377ef9ede58cd8ec/pandas-3.0.0-cp312-cp312-macosx_11_0_arm64.whl + - pypi: https://files.pythonhosted.org/packages/5c/bd/bf8064d9cfa214294356c2d6702b716d3cf3bb24be59287a6a21e24cae6b/pandas-2.3.3-cp312-cp312-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/11/da/9d476e9aadfa854719f3cb917e3f7a170a657a182d8d1d6e546594a4872b/param-2.3.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/16/32/f8e3c85d1d5250232a5d3477a2a28cc291968ff175caeadaf3cc19ce0e4a/parso-0.8.5-py2.py3-none-any.whl @@ -621,7 +620,6 @@ environments: - pypi: https://files.pythonhosted.org/packages/cb/28/3bfe2fa5a7b9c46fe7e13c97bda14c895fb10fa2ebf1d0abb90e0cea7ee1/platformdirs-4.5.1-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/54/20/4d324d65cc6d9205fabedc306948156824eb9f0ee1633355a8f7ec5c66bf/pluggy-1.6.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/a8/87/77cc11c7a9ea9fd05503def69e3d18605852cd0d4b0d3b8f15bbeb3ef1d1/pooch-1.8.2-py3-none-any.whl - - pypi: https://files.pythonhosted.org/packages/07/9f/57e49b3f7173359741053c5e2766a45dcf649d767c2e967ef93526c9045f/pot-0.9.6.post1-cp312-cp312-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/ee/94/448f037fb0ffd0e8a63b625cf9f5b13494b88d15573a987be8aaa735579d/progressbar2-4.5.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/74/c3/24a2f845e3917201628ecaba4f18bab4d18a337834c1df2a159ee9d22a42/prometheus_client-0.24.1-py3-none-any.whl @@ -648,6 +646,7 @@ environments: - pypi: https://files.pythonhosted.org/packages/51/e5/fecf13f06e5e5f67e8837d777d1bc43fac0ed2b77a676804df5c34744727/python_json_logger-4.0.0-py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/d4/69/31c82567719b34d8f6b41077732589104883771d182a9f4ff3e71430999a/python_utils-3.9.1-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/77/eb/cc6dbfe70d15318dbce82674b1e8057cef2634ca9f9121a16b8a06c630db/pytorch_lightning-2.6.0-py3-none-any.whl + - pypi: https://files.pythonhosted.org/packages/81/c4/34e93fe5f5429d7570ec1fa436f1986fb1f00c3e0f43a589fe2bbcd22c3f/pytz-2025.2-py2.py3-none-any.whl - pypi: https://files.pythonhosted.org/packages/89/a0/6cf41a19a1f2f3feab0e9c0b74134aa2ce6849093d5517a0c550fe37a648/pyyaml-6.0.3-cp312-cp312-macosx_11_0_arm64.whl - pypi: https://files.pythonhosted.org/packages/92/e7/038aab64a946d535901103da16b953c8c9cc9c961dadcbf3609ed6428d23/pyzmq-27.1.0-cp312-abi3-macosx_10_15_universal2.whl - pypi: https://files.pythonhosted.org/packages/2c/58/ca301544e1fa93ed4f80d724bf5b194f6e4b945841c5bfd555878eea9fcb/referencing-0.37.0-py3-none-any.whl @@ -836,87 +835,6 @@ packages: - frozenlist>=1.1.0 - typing-extensions>=4.2 ; python_full_version < '3.13' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/60/2f/fd99b85e3913803e4134657a311971f39d34c9995b26d3cbf9a218459c36/anndata-0.12.6-py3-none-any.whl - name: anndata - version: 0.12.6 - sha256: 1088843f63e788128b215a885237a48df3881ccaec66310f269c4cfb0f9a8929 - requires_dist: - - array-api-compat>=1.7.1 - - h5py>=3.8 - - legacy-api-wrap - - natsort - - numpy>=1.26 - - packaging>=24.2 - - pandas>=2.1.0,!=2.1.2 - - scipy>=1.12 - - zarr>=2.18.7,!=3.0.* - - cupy-cuda11x ; extra == 'cu11' - - cupy-cuda12x ; extra == 'cu12' - - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'dask' - - towncrier>=24.8.0 ; extra == 'dev' - - towncrier>=24.8.0 ; extra == 'dev-doc' - - awkward>=2.3 ; extra == 'doc' - - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'doc' - - ipython ; extra == 'doc' - - myst-nb ; extra == 'doc' - - myst-parser ; extra == 'doc' - - scanpydoc[theme,typehints]>=0.15.3 ; extra == 'doc' - - sphinx-autodoc-typehints>=2.2.0 ; extra == 'doc' - - sphinx-book-theme>=1.1.0 ; extra == 'doc' - - sphinx-copybutton ; extra == 'doc' - - sphinx-design>=0.5.0 ; extra == 'doc' - - sphinx-issues>=5.0.1 ; extra == 'doc' - - sphinx-toolbox>=3.8.0 ; extra == 'doc' - - sphinx>=8.2.1 ; extra == 'doc' - - sphinxext-opengraph ; extra == 'doc' - - towncrier>=24.8.0 ; extra == 'doc' - - cupy ; extra == 'gpu' - - aiohttp ; extra == 'lazy' - - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'lazy' - - requests ; extra == 'lazy' - - xarray>=2025.6.1 ; extra == 'lazy' - - aiohttp ; extra == 'test' - - awkward>=2.3.2 ; extra == 'test' - - boltons ; extra == 'test' - - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test' - - dask[distributed] ; extra == 'test' - - filelock ; extra == 'test' - - httpx<1.0 ; extra == 'test' - - joblib ; extra == 'test' - - loompy>=3.0.5 ; extra == 'test' - - matplotlib ; extra == 'test' - - openpyxl ; extra == 'test' - - pyarrow ; extra == 'test' - - pytest-cov ; extra == 'test' - - pytest-memray ; extra == 'test' - - pytest-mock ; extra == 'test' - - pytest-randomly ; extra == 'test' - - pytest-xdist[psutil] ; extra == 'test' - - pytest>=8.2,<8.3.4 ; extra == 'test' - - requests ; extra == 'test' - - scanpy>=1.10 ; extra == 'test' - - scikit-learn ; extra == 'test' - - xarray>=2025.6.1 ; extra == 'test' - - awkward>=2.3.2 ; extra == 'test-min' - - boltons ; extra == 'test-min' - - dask[array]>=2023.5.1,!=2024.8.*,!=2024.9.*,!=2025.2.*,!=2025.3.*,!=2025.4.*,!=2025.5.*,!=2025.6.*,!=2025.7.*,!=2025.8.* ; extra == 'test-min' - - dask[distributed] ; extra == 'test-min' - - filelock ; extra == 'test-min' - - httpx<1.0 ; extra == 'test-min' - - joblib ; extra == 'test-min' - - loompy>=3.0.5 ; extra == 'test-min' - - matplotlib ; extra == 'test-min' - - openpyxl ; extra == 'test-min' - - pyarrow ; extra == 'test-min' - - pytest-cov ; extra == 'test-min' - - pytest-memray ; extra == 'test-min' - - pytest-mock ; extra == 'test-min' - - pytest-randomly ; extra == 'test-min' - - pytest-xdist[psutil] ; extra == 'test-min' - - pytest>=8.2,<8.3.4 ; extra == 'test-min' - - scanpy>=1.10 ; extra == 'test-min' - - scikit-learn ; extra == 'test-min' - requires_python: '>=3.11' - pypi: https://files.pythonhosted.org/packages/5e/09/f39f9443f901a8e9d960602e0f916005560839d3cfd96b89abd370ff7527/anndata-0.12.8-py3-none-any.whl name: anndata version: 0.12.8 @@ -5842,10 +5760,10 @@ packages: version: '26.0' sha256: b36f1fef9334a5588b4166f8bcd26a14e521f2b55e6b9de3aaa80d3ff7a37529 requires_python: '>=3.8' -- pypi: https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl +- pypi: https://files.pythonhosted.org/packages/5c/bd/bf8064d9cfa214294356c2d6702b716d3cf3bb24be59287a6a21e24cae6b/pandas-2.3.3-cp312-cp312-macosx_11_0_arm64.whl name: pandas version: 2.3.3 - sha256: b3d11d2fda7eb164ef27ffc14b4fcab16a80e1ce67e9f57e19ec0afaf715ba89 + sha256: 3fd2f887589c7aa868e02632612ba39acb0b8948faf5cc58f0850e165bd46f35 requires_dist: - numpy>=1.22.4 ; python_full_version < '3.11' - numpy>=1.23.2 ; python_full_version == '3.11.*' @@ -5933,96 +5851,97 @@ packages: - xlsxwriter>=3.0.5 ; extra == 'all' - zstandard>=0.19.0 ; extra == 'all' requires_python: '>=3.9' -- pypi: https://files.pythonhosted.org/packages/a5/7b/9254310594e9774906bacdd4e732415e1f86ab7dbb4b377ef9ede58cd8ec/pandas-3.0.0-cp312-cp312-macosx_11_0_arm64.whl +- pypi: https://files.pythonhosted.org/packages/e5/63/cd7d615331b328e287d8233ba9fdf191a9c2d11b6af0c7a59cfcec23de68/pandas-2.3.3-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl name: pandas - version: 3.0.0 - sha256: 14c2a4099cd38a1d18ff108168ea417909b2dea3bd1ebff2ccf28ddb6a74d740 + version: 2.3.3 + sha256: b3d11d2fda7eb164ef27ffc14b4fcab16a80e1ce67e9f57e19ec0afaf715ba89 requires_dist: - - numpy>=1.26.0 ; python_full_version < '3.14' - - numpy>=2.3.3 ; python_full_version >= '3.14' + - numpy>=1.22.4 ; python_full_version < '3.11' + - numpy>=1.23.2 ; python_full_version == '3.11.*' + - numpy>=1.26.0 ; python_full_version >= '3.12' - python-dateutil>=2.8.2 - - tzdata ; sys_platform == 'win32' - - tzdata ; sys_platform == 'emscripten' - - hypothesis>=6.116.0 ; extra == 'test' - - pytest>=8.3.4 ; extra == 'test' - - pytest-xdist>=3.6.1 ; extra == 'test' - - pyarrow>=13.0.0 ; extra == 'pyarrow' - - bottleneck>=1.4.2 ; extra == 'performance' - - numba>=0.60.0 ; extra == 'performance' - - numexpr>=2.10.2 ; extra == 'performance' - - scipy>=1.14.1 ; extra == 'computation' - - xarray>=2024.10.0 ; extra == 'computation' - - fsspec>=2024.10.0 ; extra == 'fss' - - s3fs>=2024.10.0 ; extra == 'aws' - - gcsfs>=2024.10.0 ; extra == 'gcp' + - pytz>=2020.1 + - tzdata>=2022.7 + - hypothesis>=6.46.1 ; extra == 'test' + - pytest>=7.3.2 ; extra == 'test' + - pytest-xdist>=2.2.0 ; extra == 'test' + - pyarrow>=10.0.1 ; extra == 'pyarrow' + - bottleneck>=1.3.6 ; extra == 'performance' + - numba>=0.56.4 ; extra == 'performance' + - numexpr>=2.8.4 ; extra == 'performance' + - scipy>=1.10.0 ; extra == 'computation' + - xarray>=2022.12.0 ; extra == 'computation' + - fsspec>=2022.11.0 ; extra == 'fss' + - s3fs>=2022.11.0 ; extra == 'aws' + - gcsfs>=2022.11.0 ; extra == 'gcp' + - pandas-gbq>=0.19.0 ; extra == 'gcp' - odfpy>=1.4.1 ; extra == 'excel' - - openpyxl>=3.1.5 ; extra == 'excel' - - python-calamine>=0.3.0 ; extra == 'excel' + - openpyxl>=3.1.0 ; extra == 'excel' + - python-calamine>=0.1.7 ; extra == 'excel' - pyxlsb>=1.0.10 ; extra == 'excel' - xlrd>=2.0.1 ; extra == 'excel' - - xlsxwriter>=3.2.0 ; extra == 'excel' - - pyarrow>=13.0.0 ; extra == 'parquet' - - pyarrow>=13.0.0 ; extra == 'feather' - - pyiceberg>=0.8.1 ; extra == 'iceberg' - - tables>=3.10.1 ; extra == 'hdf5' - - pyreadstat>=1.2.8 ; extra == 'spss' - - sqlalchemy>=2.0.36 ; extra == 'postgresql' - - psycopg2>=2.9.10 ; extra == 'postgresql' - - adbc-driver-postgresql>=1.2.0 ; extra == 'postgresql' - - sqlalchemy>=2.0.36 ; extra == 'mysql' - - pymysql>=1.1.1 ; extra == 'mysql' - - sqlalchemy>=2.0.36 ; extra == 'sql-other' - - adbc-driver-postgresql>=1.2.0 ; extra == 'sql-other' - - adbc-driver-sqlite>=1.2.0 ; extra == 'sql-other' - - beautifulsoup4>=4.12.3 ; extra == 'html' + - xlsxwriter>=3.0.5 ; extra == 'excel' + - pyarrow>=10.0.1 ; extra == 'parquet' + - pyarrow>=10.0.1 ; extra == 'feather' + - tables>=3.8.0 ; extra == 'hdf5' + - pyreadstat>=1.2.0 ; extra == 'spss' + - sqlalchemy>=2.0.0 ; extra == 'postgresql' + - psycopg2>=2.9.6 ; extra == 'postgresql' + - adbc-driver-postgresql>=0.8.0 ; extra == 'postgresql' + - sqlalchemy>=2.0.0 ; extra == 'mysql' + - pymysql>=1.0.2 ; extra == 'mysql' + - sqlalchemy>=2.0.0 ; extra == 'sql-other' + - adbc-driver-postgresql>=0.8.0 ; extra == 'sql-other' + - adbc-driver-sqlite>=0.8.0 ; extra == 'sql-other' + - beautifulsoup4>=4.11.2 ; extra == 'html' - html5lib>=1.1 ; extra == 'html' - - lxml>=5.3.0 ; extra == 'html' - - lxml>=5.3.0 ; extra == 'xml' - - matplotlib>=3.9.3 ; extra == 'plot' - - jinja2>=3.1.5 ; extra == 'output-formatting' + - lxml>=4.9.2 ; extra == 'html' + - lxml>=4.9.2 ; extra == 'xml' + - matplotlib>=3.6.3 ; extra == 'plot' + - jinja2>=3.1.2 ; extra == 'output-formatting' - tabulate>=0.9.0 ; extra == 'output-formatting' - pyqt5>=5.15.9 ; extra == 'clipboard' - - qtpy>=2.4.2 ; extra == 'clipboard' - - zstandard>=0.23.0 ; extra == 'compression' - - pytz>=2024.2 ; extra == 'timezone' - - adbc-driver-postgresql>=1.2.0 ; extra == 'all' - - adbc-driver-sqlite>=1.2.0 ; extra == 'all' - - beautifulsoup4>=4.12.3 ; extra == 'all' - - bottleneck>=1.4.2 ; extra == 'all' - - fastparquet>=2024.11.0 ; extra == 'all' - - fsspec>=2024.10.0 ; extra == 'all' - - gcsfs>=2024.10.0 ; extra == 'all' + - qtpy>=2.3.0 ; extra == 'clipboard' + - zstandard>=0.19.0 ; extra == 'compression' + - dataframe-api-compat>=0.1.7 ; extra == 'consortium-standard' + - adbc-driver-postgresql>=0.8.0 ; extra == 'all' + - adbc-driver-sqlite>=0.8.0 ; extra == 'all' + - beautifulsoup4>=4.11.2 ; extra == 'all' + - bottleneck>=1.3.6 ; extra == 'all' + - dataframe-api-compat>=0.1.7 ; extra == 'all' + - fastparquet>=2022.12.0 ; extra == 'all' + - fsspec>=2022.11.0 ; extra == 'all' + - gcsfs>=2022.11.0 ; extra == 'all' - html5lib>=1.1 ; extra == 'all' - - hypothesis>=6.116.0 ; extra == 'all' - - jinja2>=3.1.5 ; extra == 'all' - - lxml>=5.3.0 ; extra == 'all' - - matplotlib>=3.9.3 ; extra == 'all' - - numba>=0.60.0 ; extra == 'all' - - numexpr>=2.10.2 ; extra == 'all' + - hypothesis>=6.46.1 ; extra == 'all' + - jinja2>=3.1.2 ; extra == 'all' + - lxml>=4.9.2 ; extra == 'all' + - matplotlib>=3.6.3 ; extra == 'all' + - numba>=0.56.4 ; extra == 'all' + - numexpr>=2.8.4 ; extra == 'all' - odfpy>=1.4.1 ; extra == 'all' - - openpyxl>=3.1.5 ; extra == 'all' - - psycopg2>=2.9.10 ; extra == 'all' - - pyarrow>=13.0.0 ; extra == 'all' - - pyiceberg>=0.8.1 ; extra == 'all' - - pymysql>=1.1.1 ; extra == 'all' + - openpyxl>=3.1.0 ; extra == 'all' + - pandas-gbq>=0.19.0 ; extra == 'all' + - psycopg2>=2.9.6 ; extra == 'all' + - pyarrow>=10.0.1 ; extra == 'all' + - pymysql>=1.0.2 ; extra == 'all' - pyqt5>=5.15.9 ; extra == 'all' - - pyreadstat>=1.2.8 ; extra == 'all' - - pytest>=8.3.4 ; extra == 'all' - - pytest-xdist>=3.6.1 ; extra == 'all' - - python-calamine>=0.3.0 ; extra == 'all' - - pytz>=2024.2 ; extra == 'all' + - pyreadstat>=1.2.0 ; extra == 'all' + - pytest>=7.3.2 ; extra == 'all' + - pytest-xdist>=2.2.0 ; extra == 'all' + - python-calamine>=0.1.7 ; extra == 'all' - pyxlsb>=1.0.10 ; extra == 'all' - - qtpy>=2.4.2 ; extra == 'all' - - scipy>=1.14.1 ; extra == 'all' - - s3fs>=2024.10.0 ; extra == 'all' - - sqlalchemy>=2.0.36 ; extra == 'all' - - tables>=3.10.1 ; extra == 'all' + - qtpy>=2.3.0 ; extra == 'all' + - scipy>=1.10.0 ; extra == 'all' + - s3fs>=2022.11.0 ; extra == 'all' + - sqlalchemy>=2.0.0 ; extra == 'all' + - tables>=3.8.0 ; extra == 'all' - tabulate>=0.9.0 ; extra == 'all' - - xarray>=2024.10.0 ; extra == 'all' + - xarray>=2022.12.0 ; extra == 'all' - xlrd>=2.0.1 ; extra == 'all' - - xlsxwriter>=3.2.0 ; extra == 'all' - - zstandard>=0.23.0 ; extra == 'all' - requires_python: '>=3.11' + - xlsxwriter>=3.0.5 ; extra == 'all' + - zstandard>=0.19.0 ; extra == 'all' + requires_python: '>=3.9' - pypi: https://files.pythonhosted.org/packages/ef/af/4fbc8cab944db5d21b7e2a5b8e9211a03a79852b1157e2c102fcc61ac440/pandocfilters-1.5.1-py2.py3-none-any.whl name: pandocfilters version: 1.5.1 @@ -6398,64 +6317,6 @@ packages: - paramiko>=2.7.0 ; extra == 'sftp' - xxhash>=1.4.3 ; extra == 'xxhash' requires_python: '>=3.7' -- pypi: https://files.pythonhosted.org/packages/07/9f/57e49b3f7173359741053c5e2766a45dcf649d767c2e967ef93526c9045f/pot-0.9.6.post1-cp312-cp312-macosx_11_0_arm64.whl - name: pot - version: 0.9.6.post1 - sha256: f3207362d3e3b5aaa783f452aa85f66e83edbefb5764f34662860af54ac72ee6 - requires_dist: - - numpy>=1.16 - - scipy>=1.6 - - jax ; extra == 'backend-jax' - - jaxlib ; extra == 'backend-jax' - - tensorflow ; extra == 'backend-tf' - - torch ; extra == 'backend-torch' - - cvxopt ; extra == 'cvxopt' - - scikit-learn ; extra == 'dr' - - pymanopt ; extra == 'dr' - - autograd ; extra == 'dr' - - torch ; extra == 'gnn' - - torch-geometric ; extra == 'gnn' - - matplotlib ; extra == 'plot' - - jax ; extra == 'all' - - jaxlib ; extra == 'all' - - tensorflow ; extra == 'all' - - torch ; extra == 'all' - - cvxopt ; extra == 'all' - - scikit-learn ; extra == 'all' - - pymanopt ; extra == 'all' - - autograd ; extra == 'all' - - torch-geometric ; extra == 'all' - - matplotlib ; extra == 'all' - requires_python: '>=3.7' -- pypi: https://files.pythonhosted.org/packages/2f/3f/cc519c1176116271b6282268a705162fa042c16cc922bc56039445c9d697/pot-0.9.6.post1-cp312-cp312-manylinux_2_24_x86_64.manylinux_2_28_x86_64.whl - name: pot - version: 0.9.6.post1 - sha256: 4f1b0148ae17bec0ed12264c6da3a05e13913b716e2a8c9043242b5d8349d8df - requires_dist: - - numpy>=1.16 - - scipy>=1.6 - - jax ; extra == 'backend-jax' - - jaxlib ; extra == 'backend-jax' - - tensorflow ; extra == 'backend-tf' - - torch ; extra == 'backend-torch' - - cvxopt ; extra == 'cvxopt' - - scikit-learn ; extra == 'dr' - - pymanopt ; extra == 'dr' - - autograd ; extra == 'dr' - - torch ; extra == 'gnn' - - torch-geometric ; extra == 'gnn' - - matplotlib ; extra == 'plot' - - jax ; extra == 'all' - - jaxlib ; extra == 'all' - - tensorflow ; extra == 'all' - - torch ; extra == 'all' - - cvxopt ; extra == 'all' - - scikit-learn ; extra == 'all' - - pymanopt ; extra == 'all' - - autograd ; extra == 'all' - - torch-geometric ; extra == 'all' - - matplotlib ; extra == 'all' - requires_python: '>=3.7' - pypi: https://files.pythonhosted.org/packages/5d/19/fd3ef348460c80af7bb4669ea7926651d1f95c23ff2df18b9d24bab4f3fa/pre_commit-4.5.1-py2.py3-none-any.whl name: pre-commit version: 4.5.1 diff --git a/pixi.toml b/pixi.toml index 51e9d77..edb41c4 100644 --- a/pixi.toml +++ b/pixi.toml @@ -52,7 +52,9 @@ torch = "*" jupyterlab = "*" ipykernel = "*" ipywidgets = "*" -pandas = "*" +# Pin pandas < 3.0 until anndata supports Arrow-backed strings +# https://github.com/scverse/anndata/issues/1434 +pandas = ">=2.0, <3" matplotlib = "*" seaborn = "*" From cfe2f4792b284c69e2b700b49976655c851f548d Mon Sep 17 00:00:00 2001 From: Marius Lange Date: Tue, 27 Jan 2026 14:40:31 +0100 Subject: [PATCH 12/12] Make the notebooks consistent --- .../ML-2026-01-27_demo_scRNA_workflow.ipynb | 84 +++++++++++++------ 1 file changed, 59 insertions(+), 25 deletions(-) diff --git a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb index 9a7bcc5..99c316f 100644 --- a/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb +++ b/analysis/ML-2026-01-27_demo_scRNA_workflow.ipynb @@ -18,7 +18,8 @@ "- 💻 **Local** — Fast, good for development, code editing\n", "- 🚀 **GPU/Euler** — Heavy compute, model fitting, GPU-accelerated\n", "\n", - "---" + "**Changelog:**\n", + "- 2026-01-27: Initial demo notebook" ] }, { @@ -26,7 +27,7 @@ "id": "ccefa0ea", "metadata": {}, "source": [ - "## 📦 Setup & Imports — 💻 Local" + "## Preliminaries" ] }, { @@ -34,7 +35,19 @@ "id": "5cb3d0f7", "metadata": {}, "source": [ - "Import autoreload to automatically sync changes in environment packages back here in the notebook. " + "### Dependency notebooks\n", + "\n", + "This is a standalone demo — no dependencies on other notebooks." + ] + }, + { + "cell_type": "markdown", + "id": "b9c5ff22", + "metadata": {}, + "source": [ + "### Library imports\n", + "\n", + "`autoreload` to re-load packages." ] }, { @@ -50,7 +63,7 @@ }, { "cell_type": "code", - "execution_count": 23, + "execution_count": null, "id": "f93b0838", "metadata": {}, "outputs": [ @@ -72,7 +85,24 @@ "# Local analysis package — edit these functions in src/myanalysis/\n", "from myanalysis import FilePaths, qc_violin\n", "\n", - "warnings.filterwarnings(\"ignore\", category=FutureWarning)\n", + "warnings.filterwarnings(\"ignore\", category=FutureWarning)" + ] + }, + { + "cell_type": "markdown", + "id": "30ba7210", + "metadata": {}, + "source": [ + "### General settings" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "id": "cf470e93", + "metadata": {}, + "outputs": [], + "source": [ "sc.settings.verbosity = 2\n", "sc.settings.datasetdir = FilePaths.EXAMPLE_DATASET / \"raw\"\n", "sc.settings.set_figure_params(dpi=100, frameon=False)\n", @@ -82,12 +112,22 @@ "print(f\"Data folder: {FilePaths.DATA}\")" ] }, + { + "cell_type": "markdown", + "id": "08b35b33", + "metadata": {}, + "source": [ + "### Function definitions\n", + "\n", + "Any utility functions specific to this notebook go here. For reusable functions, add them to `src/myanalysis/`." + ] + }, { "cell_type": "markdown", "id": "674c1607", "metadata": {}, "source": [ - "## 📥 Load Data — 💻 Local\n", + "### Data loading\n", "\n", "We'll use the classic PBMC 3k dataset from 10X Genomics, available via scanpy." ] @@ -132,7 +172,11 @@ "id": "fedaaf0d", "metadata": {}, "source": [ - "## 🔬 Quality Control — 💻 Local\n", + "---\n", + "\n", + "## Main analysis\n", + "\n", + "### 🔬 Quality Control — 💻 Local\n", "\n", "QC is fast and benefits from quick iteration — perfect for local development." ] @@ -213,7 +257,7 @@ "id": "d8be7399", "metadata": {}, "source": [ - "## 🧮 Preprocessing — 💻 Local\n", + "### 🧮 Preprocessing — 💻 Local\n", "\n", "Normalization and HVG selection are fast operations." ] @@ -266,9 +310,7 @@ "id": "bd7be0d6", "metadata": {}, "source": [ - "---\n", - "\n", - "## 🚀 scVI Model Training — 🚀 GPU/Euler\n", + "### 🚀 scVI Model Training — 🚀 GPU/Euler\n", "\n", "**This section benefits from GPU acceleration!**\n", "\n", @@ -381,9 +423,7 @@ "id": "5f6d5a06", "metadata": {}, "source": [ - "---\n", - "\n", - "## ⚡ Neighbors & UMAP — 🚀 GPU/Euler (rapids-singlecell)\n", + "### ⚡ Neighbors & UMAP — 🚀 GPU/Euler (rapids-singlecell)\n", "\n", "On Linux with NVIDIA GPU, we can use `rapids-singlecell` for massive speedups.\n", "Falls back to scanpy on macOS." @@ -483,9 +523,7 @@ "id": "3b0a5e58", "metadata": {}, "source": [ - "---\n", - "\n", - "## 🎨 Visualization — 💻 Local\n", + "### 🎨 Visualization — 💻 Local\n", "\n", "Back to local for visualization and figure generation." ] @@ -528,7 +566,7 @@ "id": "122594fa", "metadata": {}, "source": [ - "## 🏷️ Cell Type Annotation — 💻 Local" + "### 🏷️ Cell Type Annotation — 💻 Local" ] }, { @@ -693,9 +731,7 @@ "id": "eec9ac44", "metadata": {}, "source": [ - "---\n", - "\n", - "## 💾 Save Results — 💻 Local\n", + "### 💾 Save Results — 💻 Local\n", "\n", "Save processed data following the template's data organization." ] @@ -727,7 +763,7 @@ "source": [ "---\n", "\n", - "## 📋 Session Info" + "### 📋 Session Info" ] }, { @@ -1134,9 +1170,7 @@ "id": "e45c1207", "metadata": {}, "source": [ - "---\n", - "\n", - "## 🔄 Workflow Summary\n", + "### 🔄 Workflow Summary\n", "\n", "\n", "**Git sync workflow:**\n",