Multi-agent reasoning system for scientific discovery, autonomous theorem generation, symbolic modeling, and formal proof verification.
Artifact Reason is a production-grade reasoning system that combines multi-agent architecture, symbolic regression, formal proof verification, and autonomous research capabilities to discover, validate, and publish novel mathematical theorems.
Core Capabilities:
- Multi-agent hypothesis generation and validation
- Symbolic equation discovery from data patterns
- Formal proof verification via Lean 4 interface
- Autonomous theorem generation and research iteration
- Academic paper generation in LaTeX/PDF format
- Distributed task processing for horizontal scaling
- Python 3.12 or higher
- pip package manager
- Optional: pdflatex (for PDF generation)
- Optional: Redis (for distributed workers)
# Clone repository
git clone https://github.com/Artifact-Virtual/REASON.git
cd REASON
# Install dependencies
pip install -r requirements.txt
# Verify installation
python run_system.pyRun Complete Analysis:
python run_system.pyStart API Server:
uvicorn main:app --reloadLaunch Interactive Frontend:
streamlit run frontend/app.pyRun Autonomous Research:
python run_research.py┌─────────────────┐
│ Input Data │
└────────┬────────┘
│
▼
┌─────────────────────────────────────────┐
│ Multi-Agent Reasoning System │
│ ┌──────────┐ ┌──────────┐ ┌────────┐│
│ │Hypothesis│ │Validator │ │ Meta ││
│ │Generator │ │ Agent │ │Reasoner││
│ └──────────┘ └──────────┘ └────────┘│
└────────┬────────────────────────────────┘
│
▼
┌─────────────────────────────────────────┐
│ Symbolic Regression Engine │
│ (PySR with multiple strategies) │
└────────┬────────────────────────────────┘
│
▼
┌─────────────────────────────────────────┐
│ Theorem Generation & Iteration │
│ ┌──────────┐ ┌──────────┐ ┌────────┐│
│ │ Generate │→ │ Validate │→ │ Refine ││
│ │ Theorems │ │ w/ Lean │ │ Loop ││
│ └──────────┘ └──────────┘ └────────┘│
└────────┬────────────────────────────────┘
│
▼
┌─────────────────────────────────────────┐
│ Academic Paper Generation │
│ (LaTeX + PDF with diagrams) │
└────────┬────────────────────────────────┘
│
▼
┌─────────────────┐
│ Final Report │
└─────────────────┘
- Hypothesis Generator: Creates diverse mathematical hypotheses
- Validator: Cross-validates hypotheses for consistency
- Meta-Reasoner: Analyzes reasoning quality and strategies
- Hallucination Detector: Identifies and flags unreliable outputs
- Consensus Builder: Aggregates agent opinions with confidence metrics
- Theorem Generator: Generates novel conjectures from patterns
- Iteration Engine: Validates theorems through multi-iteration cycles
- Paper Generator: Produces publication-ready LaTeX/PDF documents
- Research Orchestrator: Manages end-to-end research workflows
- Worker System: Distributes tasks across multiple workers (Celery + Redis)
- Calculus Engine: Derivatives, integrals, Taylor series, gradients
- Optimization Engine: argmax, argmin, softmax, gradient descent
- Physics Engine: Kinematic equations, conservation laws
- Lean 4 interface for formal verification
- Simulation mode fallback when Lean unavailable
- Automated proof generation and validation
See docs/API.md for complete API documentation.
POST /reason
import httpx
response = httpx.post("http://localhost:8000/reason", json={
"data": [1, 4, 9, 16, 25, 36],
"context": "Perfect squares sequence"
})
result = response.json()from core.reasoning_orchestrator import EnhancedReasoningOrchestrator
import asyncio
async def analyze_pattern():
orchestrator = EnhancedReasoningOrchestrator()
results = await orchestrator.orchestrate_reasoning(
data=[1, 1, 2, 3, 5, 8],
context="Fibonacci sequence"
)
return results
results = asyncio.run(analyze_pattern())See docs/ARCHITECTURE.md for detailed architecture documentation.
# Run all tests
pytest tests/ -v
# Run with coverage
pytest tests/ --cov=core --cov=llm --cov=proofsTest Coverage: 23/23 tests passing (100%)
- Conjecture Generation: ~50ms per pattern
- Iteration Cycle: ~100ms per iteration
- Paper Generation: ~2-3ms per LaTeX document (without PDF compilation)
- End-to-End Research: <1 second per conjecture
- CHANGELOG.md: Version history and release notes
- docs/ARCHITECTURE.md: System design and architecture
- docs/API.md: Complete API reference
- docs/DEPLOYMENT.md: Deployment guide
- docs/USER_GUIDE.md: End-user documentation
- IMPLEMENTATION_SUMMARY.md: Technical implementation details
See ROADMAP.md for development plans.
Proprietary. See LICENSE.md for details.
@software{artifact_reason2026,
title={Artifact Reason: Multi-Agent Reasoning System for Scientific Discovery},
author={Artifact Virtual},
year={2026},
version={1.1.0},
url={https://github.com/Artifact-Virtual/REASON}
}Artifact Virtual — Building production systems, not demos.
Version: 1.1.0
Status: Production Ready
Python: 3.12+
License: Proprietary