Skip to content

Conversation

@aakashsane
Copy link

@aakashsane aakashsane commented Dec 17, 2025

Adds option to activate shape function obtained from machine learning (genetic programming and least squares fitting).
The relevant flag is 'CVmix_kpp_params_in%ML_diffusivity', when set to True uses the mixing coefficients.
The mixing coefficients are obtained using equations similar to the ones in the GFDL's ePBL scheme.

The corresponding article preprint is: Sane et al. (2025) https://doi.org/10.31219/osf.io/uab7v_v2

Comment on lines 3750 to 3881

!BOP

! !DESCRIPTION:
! Use Entrainment Rule, BEdE_ER, To Find Entrainment Flux and Depth
! for each assumed OBL_depth = cell centers,
! until the boundary layer depth, ERdepth > 0 kER_depth are determined, OR
! if there is no viable solution ERdepth = -1 , kER_depth=-1

subroutine cvmix_kpp_compute_ER_depth( z_inter,Nsq,OBL_depth, &
uStar,Bsfc_ns,surfBuoy,StokesXI,BEdE_ER,ERdepth, &
CVMix_kpp_params_user)

! !INPUT PARAMETERS:
real(cvmix_r8), dimension(:), intent(in) :: &
z_inter, & ! Interface heights <= 0 [m]
Nsq ! Column of Buoyancy Gradients at interfaces
real(cvmix_r8), dimension(:), intent(in) :: &
OBL_depth, & ! Array of assumed OBL depths >0 at cell centers [m]
surfBuoy, & ! surface Buoyancy flux surface to OBL_depth
StokesXI, & ! Stokes similarity parameter given OBL_depth
BEdE_ER ! Parameterized Entrainment Rule given OBL_depth
real(cvmix_r8), intent(in) :: uStar ! surface friction velocity [m s-1]
real(cvmix_r8), intent(in) :: Bsfc_ns ! non-solar surface buoyancy flux boundary condition

type(cvmix_kpp_params_type), optional, target, intent(in) :: CVmix_kpp_params_user

! !OUTPUT PARAMETERS:
real(cvmix_r8), intent(out) :: ERdepth ! ER Boundary Layer Depth [m]

!EOP
!BOC

! Local variables
integer :: iz, nlev , kbl , kinv
real(cvmix_r8), dimension(size(OBL_depth)+1) :: zdepth, BEdE ! surface then cell-centers<0
real(cvmix_r8), dimension(size(z_inter)+1) :: sigma, Bflux ! interface values
real(cvmix_r8) :: ws_i, Cemp_Rs, Gsig_i, Fdelrho, Bnonlocal, sigE, maxNsq, BEnt
real(kind=cvmix_r8), dimension(4) :: coeffs
type(cvmix_kpp_params_type), pointer :: CVmix_kpp_params_in

CVmix_kpp_params_in => CVmix_kpp_params_saved
if (present(CVmix_kpp_params_user)) then
CVmix_kpp_params_in => CVmix_kpp_params_user
end if

nlev = size(OBL_depth)
Cemp_Rs = 4.7_cvmix_r8
Fdelrho = cvmix_one
maxNsq = 0.0
do kbl = 2, nlev+1
if ( Nsq(kbl) > maxNsq ) then
kinv = kbl
maxNsq = Nsq(kbl)
endif
enddo

! Set default output values (no solution)
ERdepth = -cvmix_one
! Set surface values
zdepth(1) = cvmix_zero
BEdE(1) = cvmix_zero
sigma(:) = cvmix_zero
Bflux(1) = Bsfc_ns ! non-solar surface buoyancy boundary condition for all kbl
! Set OBL_depth(1)=top cell center values
zdepth(2) = -OBL_depth(1)
BEdE(2) = cvmix_zero

do kbl = 2, nlev
zdepth(kbl+1)= -OBL_depth(kbl)
BEdE(kbl+1) = cvmix_zero

sigma(kbl+1) = cvmix_one
Bflux(kbl+1) = cvmix_zero
sigma(kbl+2) = -z_inter(kbl+1)/OBL_depth(kbl) ! > 1.0
Bflux(kbl+2) = cvmix_zero
Bnonlocal = 0.5_cvmix_r8 * Cemp_Rs * (abs(surfBuoy(kbl)) - surfBuoy(kbl))

do iz = kbl,1,-1
if (iz .gt. 1) then
sigma(iz) = -z_inter(iz)/OBL_depth(kbl) ! < 1.0
call cvmix_kpp_compute_turbulent_scales(sigma(iz), OBL_depth(kbl), surfBuoy(kbl), uStar, StokesXI(kbl), & !0d
w_s=ws_i , CVmix_kpp_params_user=CVmix_kpp_params_user)
Gsig_i = cvmix_kpp_composite_shape(sigma(iz))
Bflux(iz) = Gsig_i * (OBL_depth(kbl) * ws_i * Nsq(iz) - Bnonlocal)
endif

! find the peak
if ( (Bflux(iz+1) .gt. Bflux(iz+2)) .and. (Bflux(iz+1) .ge. Bflux(iz)) .and. &
(Bflux(iz+1) .gt. cvmix_zero) ) then
! Find sigE (the root of the derivative of the quadratic polynomial
! interpolating (sigma(i), Bflux(i)) for i in [iz, iz+1, iz+2])
! Also find BEnt (value of quadratic at sigE)
! call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2))
! comment by Aakash: the above is the original line,
! it gives me errors so I changed it to below call. not sure if it is correct
call cvmix_math_poly_interp(coeffs, CVMIX_MATH_INTERP_QUAD, &
sigma(iz:iz+1), Bflux(iz:iz+1), &
sigma(iz+2), Bflux(iz+2))
! coeffs(3) = 0 => sigma(iz), sigma(iz+1), and sigma(iz+2) are not unique values
! so there interpolation returned a linear equation. In this case we select
! (sigma(iz+1), Bflux(iz+1)) as the maximum.
if (coeffs(3) .eq. cvmix_zero) then
sigE = sigma(iz+1)
Bent = Bflux(iz+1)
else
sigE = -0.5_cvmix_r8 * (coeffs(2) / coeffs(3))
Bent = cvmix_math_evaluate_cubic(coeffs, sigE)
endif
Fdelrho = cvmix_one
BEdE(kbl+1) = Fdelrho*BEnt*sigE*OBL_depth(kbl)
exit ! No exit leaves BEdE(kbl+1) = cvmix_zero
endif
enddo

if ( (BEdE(kbl+1) > BEdE_ER(kbl)) .and. (Bsfc_ns < cvmix_zero) ) then
call cvmix_math_poly_interp(coeffs, CVmix_kpp_params_in%interp_type, &
zdepth(kbl:kbl+1) , BEdE(kbl:kbl+1), &
zdepth(kbl-1) , BEdE(kbl-1) ) ! surface values if kbl=2;
coeffs(1) = coeffs(1) - BEdE_ER(kbl)
ERdepth = -cvmix_math_cubic_root_find(coeffs, 0.5_cvmix_r8 * &
(zdepth(kbl)+zdepth(kbl+1)))

exit
endif

enddo

!EOC

end subroutine cvmix_kpp_compute_ER_depth

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Your merge of the latest master introduced a second copy of cvmix_kpp_compute_ER_depth(). Did you change this function in a previous commit? I'd suggest deleting the first instance of this function, in case there are differences in this second copy...

Copy link
Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I haven't introduced any changes to this function. I think I copied it in error!

call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2))
! call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2))
! comment by Aakash: the above is the original line,
! it gives me errors so I changed it to below call. not sure if it is correct
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What error did you get? These two calls to cvmix_math_poly_interp are not equivalent, and will change answers regardless of the value of ML_diffusivity:

call cvmix_math_poly_interp(coeffs, sigma(iz:iz+2), Bflux(iz:iz+2))

fits a quadratic such that P(sigma(i)) = Bflux(i) for i = iz, iz+1, iz+2 (standard quadratic interpolation)

call cvmix_math_poly_interp(coeffs, CVMIX_MATH_INTERP_QUAD,           &
                            sigma(iz:iz+1), Bflux(iz:iz+1),           &
                            sigma(iz+2), Bflux(iz+2))

fits a quadratic such that P(sigma(i)) = Bflux(i) for i = iz, iz+1, and P'(sigma(iz)) = (Bflux(iz) - Bflux(iz+2)) / (sigma(iz) - sigma(iz+2)). If we were okay with this interpolation change, you'd still need to change your arguments to

call cvmix_math_poly_interp(coeffs, CVMIX_MATH_INTERP_QUAD,           &
                            sigma(iz+1:iz+2), Bflux(iz+1:iz+2),           &
                            sigma(iz), Bflux(iz))

And this would interpolate at iz+1 and iz+2 while having the derivative at iz+1 match the finite difference computed between iz and iz+1...

Anyway, if you could print out the three sigma values and three Bflux values that cause problems in your runs then I'll look into what's going wrong in the interpolation routine we want to use.

Comment on lines +468 to +469
case ('ML_Diffusivity_Shape') ! ML_Diffusivity shape function
call cvmix_put_kpp('MatchTechnique', ML_DIFFUSIVITY_SHAPE, CVmix_kpp_params_user)
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What happens if MatchTechnique = 'ML_Diffusivity_Shape' but ML_diffusivity = .false.? If that is not a reasonable configuration, then I think you should just set ML_diffusivity = .true. when using 'ML_Diffusivity_Shape' and .false. in all other configurations

Copy link
Contributor

@mnlevy1981 mnlevy1981 left a comment

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Summarizing a productive meeting with @aakashsane and @YakelynRJ

  1. The new ML_DIFFUSIVITY_SHAPE option needs to be documented in https://github.com/CVMix/CVMix-src/blob/master/src/shared/cvmix_kpp.F90#L158-L173 It should definitely be defined in the line after CVMIX_KPP_PARABOLIC_NONLOCAL instead of at the bottom of the parameter block, and could maybe be renamed CVMIX_KPP_ML_SHAPE?
  2. Use MatchTechnique == ML_DIFFUSIVITY_SHAPE instead of introducing a new ML_diffusivity logical flag
  3. There are a few in-line comments about moving code into the select case block that ends at line 1225 on this branch. This will allow us to do something like
    if (CVmix_kpp_params_in%MatchTechnique == ML_DIFFUSIVITY_SHAPE) then ! ML_diffusivity
      if (sigma(kw) .le. sigma_max) then
        MshapeAtS = cvmix_math_evaluate_cubic(MLshape, sigma(kw))
        TshapeAtS = cvmix_math_evaluate_cubic(MLshape, sigma(kw))
        SshapeAtS = cvmix_math_evaluate_cubic(MLshape, sigma(kw))
      else
        MshapeAtS = cvmix_math_evaluate_cubic(MLshape2, sigma(kw))
        TshapeAtS = cvmix_math_evaluate_cubic(MLshape2, sigma(kw))
        SshapeAtS = cvmix_math_evaluate_cubic(MLshape2, sigma(kw))
      end if
    else
      MshapeAtS = cvmix_math_evaluate_cubic(Mshape, sigma(kw))
      TshapeAtS = cvmix_math_evaluate_cubic(Tshape, sigma(kw))
      SshapeAtS = cvmix_math_evaluate_cubic(Sshape, sigma(kw))
    end if

For (3), I could see using ways to reduce the logical checks, but for starters this should be good.

Also, we talked about doing some off-line testing to make sure the parameters passed to cvmix_evaluate_cubic() match the polynomials computed in

          g_sigma = (2.0*sigma(kw)/sigma_max) - (sigma(kw)/sigma_max)**2.0
          g_sigma = g_sigma * (4.0/27.0) ! reduces the amplitude from 1 to 4/27 to match G(\sigma) of KPP

and

          g_sigma = 2.0*((sigma(kw) - sigma_max)/(cvmix_one - sigma_max))**3.0 &
                    - 3.0*((sigma(kw) - sigma_max)/(cvmix_one - sigma_max))**2.0 &
                    + cvmix_one
          g_sigma = g_sigma * (4.0/27.0) ! reduces the amplitude from 1 to 4/27 to match G(\sigma) of KPP

Comment on lines +1258 to +1259
g_sigma = (2.0*sigma(kw)/sigma_max) - (sigma(kw)/sigma_max)**2.0
g_sigma = g_sigma * (4.0/27.0) ! reduces the amplitude from 1 to 4/27 to match G(\sigma) of KPP
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

We should define this shape function in the select case (MatchTechnique) block (part of case DEFAULT; note that we want to compute that same shape function and use it as Tshape2 and Sshape2) but for ML_DIFFUSIVITY_SHAPE we want to encode this quadratic in such a way that cvmix_evaluate_cubic() reconstructs it correctly.

Comment on lines +1265 to +1268
g_sigma = 2.0*((sigma(kw) - sigma_max)/(cvmix_one - sigma_max))**3.0 &
- 3.0*((sigma(kw) - sigma_max)/(cvmix_one - sigma_max))**2.0 &
+ cvmix_one
g_sigma = g_sigma * (4.0/27.0) ! reduces the amplitude from 1 to 4/27 to match G(\sigma) of KPP
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This cubic should also be evaluated with cvmix_evaluate_cubic() -- maybe we need TshapeML2 (along with M and S versions)? Or if we are using the same shape function for M, T, and S, we could go with MLshape and MLshape2?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

2 participants