Low-latency microphone audio processor with AI noise suppression, smart gating, Auto-EQ, and 10-band parametric EQ.
Current version: v1.7.0
AudioForge is currently focused on Windows desktop use and portable distribution. It is optimized for personal use and small friend-group sharing.
- AI noise suppression backends:
- RNNoise (fast baseline)
- DeepFilterNet LL (low-latency quality mode)
- DeepFilterNet Standard (highest quality, higher latency)
- Smart gate modes:
- Threshold-only gate
- VAD-assisted gate
- VAD-only gate
- 10-band parametric EQ with per-band frequency, gain, and Q controls
- Wideband de-esser with manual controls and auto amount mode
- Auto-EQ recording/analysis flow with validation and one-click apply/undo
- Dynamics:
- Compressor (soft-knee, adaptive release, auto makeup support)
- Hard limiter (final safety ceiling)
- Real-time metering and DSP telemetry:
- Input/output level meters
- Buffer and processing health metrics
- Gate/VAD and gain-reduction indicators
- Preset save/load with migration support
- Latency calibration dialog for per device-pair compensation profiles
Runtime processing chain:
Mic Input -> Pre-Filter (DC block + 80 Hz HP) -> Noise Gate -> Noise Suppression
-> De-Esser -> 10-Band EQ -> Compressor -> Limiter -> Output
Note: model latency labels describe suppressor and DSP behavior only. End-to-end round-trip latency also depends on device driver, buffer size, OS mixer path, and routing setup.
- Python 3.9+
- Rust 1.70+
maturin
git clone https://github.com/FueledByRedBull/audio-forge.git
cd audio-forge
python -m venv .venv
.\.venv\Scripts\python.exe -m pip install --upgrade pip
.\.venv\Scripts\python.exe -m pip install -e .[dev]
.\.venv\Scripts\python.exe -m maturin develop --release
.\.venv\Scripts\python.exe -m mic_eqCreate models/ in repo root for runtime model discovery:
models/DeepFilterNet3_ll_onnx.tar.gzmodels/DeepFilterNet3_onnx.tar.gz(optional if you only use LL)models/silero_vad.onnx(for VAD gate modes)
DeepFilter runtime library:
df.dllin repo root (development)- bundled next to
AudioForge.exefor portable builds
You can also use environment variables:
DEEPFILTER_MODEL_PATHVAD_MODEL_PATH
Use the provided packaging script:
powershell -ExecutionPolicy Bypass -File .\build_exe.ps1Output:
dist\AudioForge\AudioForge.exedist\AudioForge\df.dll(if present)dist\AudioForge\models\...
Create archive:
Compress-Archive -Path .\dist\AudioForge -DestinationPath .\AudioForge-win64-fresh.zip -CompressionLevel OptimalRust tests:
cd rust-core
cargo test -p mic_eq_core --testsPython tests:
cd ..
.\.venv\Scripts\python.exe -m pytest python/tests -vMIT License. See LICENSE.
- RNNoise by Jean-Marc Valin
- DeepFilterNet by Hendrik Schroter and contributors
- Silero VAD contributors