Architecture Design (CNN under 25k params)
Conv1: 8 filters, 3×3 kernel, stride 1, padding 1 → output: 28×28×8
MaxPool: 2×2 → output: 14×14×8
Conv2: 16 filters, 3×3 kernel → output: 14×14×16
MaxPool: 2×2 → output: 7×7×16
Flatten: 7×7×16 = 784
FC: 784 → 10 classes
Parameter Count
Conv1: (3×3×1×8) + 8 = 80
Conv2: (3×3×8×16) + 16 = 1,168
FC: (784×10) + 10 = 7,850
Total = 9,098 parameters