Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@
- Wrapped isObjIntegral() and test
- Added structured_optimization_trace recipe for structured optimization progress tracking
- Added methods: getPrimalDualIntegral()
- Added realtime_trace_jsonl recipe for real-time optimization progress tracking with JSONL streaming output
### Fixed
- getBestSol() now returns None for infeasible problems instead of a Solution with NULL pointer
- all fundamental callbacks now raise an error if not implemented
Expand Down
135 changes: 135 additions & 0 deletions src/pyscipopt/recipes/realtime_trace_jsonl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,135 @@
import json

from pyscipopt import SCIP_EVENTTYPE, Eventhdlr


class _TraceRun:
"""
Record optimization progress in real time while the solver is running.

Args
----
model: pyscipopt.Model
path: str | None
- None: in-memory only
- str : also write JSONL (one JSON object per line) for streaming/real-time consumption

Returns
-------
None
Updates `model.data["trace"]` as a side effect.

Usage
-----
optimizeTrace(model) # real-time in-memory trace
optimizeTrace(model, path="trace.jsonl") # real-time JSONL stream + in-memory
optimizeNogilTrace(model, path="trace.jsonl") # nogil variant
"""

def __init__(self, model, path=None):
self.model = model
self.path = path
self._fh = None
self._handler = None

self._last_snapshot = {}

def __enter__(self):
if not hasattr(self.model, "data") or self.model.data is None:
self.model.data = {}
self.model.data.setdefault("trace", [])

if self.path is not None:
self._fh = open(self.path, "w")

class _TraceEventhdlr(Eventhdlr):
def eventinit(s):
self.model.catchEvent(SCIP_EVENTTYPE.BESTSOLFOUND, s)
self.model.catchEvent(SCIP_EVENTTYPE.DUALBOUNDIMPROVED, s)

def eventexec(s, event):
et = event.getType()
if et == SCIP_EVENTTYPE.BESTSOLFOUND:
snapshot = self._snapshot_now()
self._last_snapshot = snapshot
self._write_event("bestsol_found", fields=snapshot, flush=True)
elif et == SCIP_EVENTTYPE.DUALBOUNDIMPROVED:
snapshot = self._snapshot_now()
self._last_snapshot = snapshot
self._write_event(
"dualbound_improved", fields=snapshot, flush=False
)

self._handler = _TraceEventhdlr()
self.model.includeEventhdlr(
self._handler, "realtime_trace_jsonl", "Realtime trace jsonl handler"
)

return self

def __exit__(self, exc_type, exc, tb):
fields = {}
if self._last_snapshot:
fields.update(self._last_snapshot)

if exc_type is not None:
fields.update(
{
"status": "exception",
"exception": exc_type.__name__,
"message": str(exc) if exc is not None else None,
}
)

try:
self._write_event("run_end", fields=fields, flush=True)
finally:
if self._fh:
try:
self._fh.close()
finally:
self._fh = None

if self._handler is not None:
for et in (
SCIP_EVENTTYPE.BESTSOLFOUND,
SCIP_EVENTTYPE.DUALBOUNDIMPROVED,
):
try:
self.model.dropEvent(et, self._handler)
except Exception:
pass
self._handler = None

return False

def _snapshot_now(self) -> dict:
return {
"time": self.model.getSolvingTime(),
"primalbound": self.model.getPrimalbound(),
"dualbound": self.model.getDualbound(),
"gap": self.model.getGap(),
"nodes": self.model.getNNodes(),
"nsol": self.model.getNSols(),
}

def _write_event(self, event_type, fields=None, flush=True):
event = {"type": event_type}
if fields:
event.update(fields)

self.model.data["trace"].append(event)
if self._fh is not None:
self._fh.write(json.dumps(event) + "\n")
if flush:
self._fh.flush()


def optimizeTrace(model, path=None):
with _TraceRun(model, path):
model.optimize()


def optimizeNogilTrace(model, path=None):
with _TraceRun(model, path):
model.optimizeNogil()
87 changes: 87 additions & 0 deletions tests/test_recipe_realtime_trace_jsonl.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,87 @@
import json
from random import randint

import pytest
from helpers.utils import bin_packing_model

from pyscipopt import SCIP_EVENTTYPE, Eventhdlr
from pyscipopt.recipes.realtime_trace_jsonl import optimizeNogilTrace, optimizeTrace


@pytest.fixture(
params=[optimizeTrace, optimizeNogilTrace], ids=["optimize", "optimize_nogil"]
)
def optimize(request):
return request.param


def test_realtime_trace_in_memory(optimize):
model = bin_packing_model(sizes=[randint(1, 40) for _ in range(120)], capacity=50)
model.setParam("limits/time", 5)

model.data = {"test": True}

optimize(model, path=None)

assert "test" in model.data
assert "trace" in model.data

required_fields = {"time", "primalbound", "dualbound", "gap", "nodes", "nsol"}

types = [r["type"] for r in model.data["trace"]]
assert ("bestsol_found" in types) or ("dualbound_improved" in types)

for record in model.data["trace"]:
if record["type"] != "run_end":
assert required_fields <= set(record.keys())

primalbounds = [r["primalbound"] for r in model.data["trace"] if "primalbound" in r]
for i in range(1, len(primalbounds)):
assert primalbounds[i] <= primalbounds[i - 1]

dualbounds = [r["dualbound"] for r in model.data["trace"] if "dualbound" in r]
for i in range(1, len(dualbounds)):
assert dualbounds[i] >= dualbounds[i - 1]

assert "run_end" in types


def test_realtime_trace_file_output(optimize, tmp_path):
model = bin_packing_model(sizes=[randint(1, 40) for _ in range(120)], capacity=50)
model.setParam("limits/time", 5)

path = tmp_path / "trace.jsonl"

optimize(model, path=str(path))

assert path.exists()

records = [json.loads(line) for line in path.read_text().splitlines()]
assert len(records) > 0

types = [r["type"] for r in records]
assert "run_end" in types


class _InterruptOnBest(Eventhdlr):
def eventinit(self):
self.model.catchEvent(SCIP_EVENTTYPE.BESTSOLFOUND, self)

def eventexec(self, event):
self.model.interruptSolve()


def test_optimize_with_trace_records_run_end_on_interrupt(optimize):
model = bin_packing_model(
sizes=[randint(1, 40) for _ in range(120)],
capacity=50,
)
model.setParam("limits/time", 5)

model.includeEventhdlr(_InterruptOnBest(), "stopper", "Interrupt on bestsol")

optimize(model, path=None)

types = [r["type"] for r in model.data["trace"]]
assert "bestsol_found" in types
assert "run_end" in types
Loading